Solution

Section 4.4 – Determinants and Cramer's Rule

Exercise

Evaluate
$$\begin{vmatrix} -1 & 3 \\ -2 & 9 \end{vmatrix}$$

Solution

$$\begin{vmatrix} -1 & 3 \\ -2 & 9 \end{vmatrix} = -9 - (-6)$$
$$= -3$$

Exercise

Evaluate
$$\begin{vmatrix} 6 & -4 \\ 0 & -1 \end{vmatrix}$$

Solution

$$\begin{vmatrix} 6 & -4 \\ 0 & -1 \end{vmatrix} = -6 - (0)$$
$$= -6$$

Exercise

Evaluate
$$\begin{vmatrix} x & 4x \\ 2x & 8x \end{vmatrix}$$

Solution

$$\begin{vmatrix} x & 4x \\ 2x & 8x \end{vmatrix} = x(8x) - 4x(2x)$$
$$= 8x^2 - 8x^2$$
$$= 0$$

Exercise

Evaluate
$$\begin{vmatrix} x & 2x \\ 4 & 3 \end{vmatrix}$$

$$\begin{vmatrix} x & 2x \\ 4 & 3 \end{vmatrix} = 3x - 2x(4)$$
$$= 3x - 8x$$
$$= -5x$$

Evaluate $\begin{vmatrix} x^4 & 2 \\ x & -3 \end{vmatrix}$

Solution

$$\begin{vmatrix} x^4 & 2 \\ x & -3 \end{vmatrix} = \frac{-3x^4 - 2x}{}$$

Exercise

Evaluate $\begin{vmatrix} -8 & -5 \\ b & a \end{vmatrix}$

Solution

$$\begin{vmatrix} -8 & -5 \\ b & a \end{vmatrix} = -8a + 5b$$

Exercise

Evaluate $\begin{vmatrix} 5 & 7 \\ 2 & 3 \end{vmatrix}$

Solution

$$\begin{vmatrix} 5 & 7 \\ 2 & 3 \end{vmatrix} = 15 - 14$$
$$= 1$$

Exercise

Evaluate | 1 4 | 5 5

$$\begin{vmatrix} 1 & 4 \\ 5 & 5 \end{vmatrix} = 5 - 20$$
$$= -16$$

Evaluate
$$\begin{vmatrix} 5 & 3 \\ -2 & 3 \end{vmatrix}$$

Solution

$$\begin{vmatrix} 5 & 3 \\ -2 & 3 \end{vmatrix} = 15 + 6$$
$$= 21$$

Exercise

Evaluate
$$\begin{vmatrix} -4 & -1 \\ 5 & 6 \end{vmatrix}$$

Solution

$$\begin{vmatrix} -4 & -1 \\ 5 & 6 \end{vmatrix} = -24 + 5$$
$$= -19$$

Exercise

Evaluate
$$\begin{vmatrix} \sqrt{3} & -2 \\ -3 & \sqrt{3} \end{vmatrix}$$

Solution

$$\begin{vmatrix} \sqrt{3} & -2 \\ -3 & \sqrt{3} \end{vmatrix} = 3 - 6$$
$$= -3$$

Exercise

Evaluate
$$\begin{vmatrix} \sqrt{7} & 6 \\ -3 & \sqrt{7} \end{vmatrix}$$

$$\begin{vmatrix} \sqrt{7} & 6 \\ -3 & \sqrt{7} \end{vmatrix} = 7 + 18$$
$$= 25$$

Evaluate
$$\begin{vmatrix} \sqrt{5} & 3 \\ -2 & 2 \end{vmatrix}$$

Solution

$$\begin{vmatrix} \sqrt{5} & 3 \\ -2 & 2 \end{vmatrix} = 2\sqrt{5} + 6$$

Exercise

Evaluate
$$\begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{8} & -\frac{3}{4} \end{vmatrix}$$

Solution

$$\begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{8} & -\frac{3}{4} \end{vmatrix} = -\frac{3}{8} - \frac{1}{16}$$
$$= -\frac{7}{16} \mid$$

Exercise

Evaluate
$$\begin{vmatrix} \frac{1}{5} & \frac{1}{6} \\ -6 & -5 \end{vmatrix}$$

$$\begin{vmatrix} \frac{1}{5} & \frac{1}{6} \\ -6 & -5 \end{vmatrix} = -1 + 1$$

$$= 0$$

Evaluate
$$\begin{vmatrix} \frac{2}{3} & \frac{1}{3} \\ -\frac{1}{2} & \frac{3}{4} \end{vmatrix}$$

Solution

$$\begin{vmatrix} \frac{2}{3} & \frac{1}{3} \\ -\frac{1}{2} & \frac{3}{4} \end{vmatrix} = \frac{1}{2} + \frac{1}{6}$$
$$= \frac{2}{3}$$

Exercise

Evaluate
$$\begin{vmatrix} x & x^2 \\ 4 & x \end{vmatrix}$$

Solution

$$\begin{vmatrix} x & x^2 \\ 4 & x \end{vmatrix} = x^2 - 4x^2$$
$$= -3x^2$$

Exercise

Evaluate
$$\begin{vmatrix} x & x^2 \\ x & 9 \end{vmatrix}$$

Solution

$$\begin{vmatrix} x & x^2 \\ x & 9 \end{vmatrix} = 9x - x^3$$

Exercise

Evaluate
$$\begin{vmatrix} x^2 & x \\ -3 & 2 \end{vmatrix}$$
Solution

$$\begin{vmatrix} x^2 & x \\ -3 & 2 \end{vmatrix} = 2x^2 + 3x$$

Evaluate
$$\begin{vmatrix} x+2 & 6 \\ x-2 & 4 \end{vmatrix}$$

Solution

$$\begin{vmatrix} x+2 & 6 \\ x-2 & 4 \end{vmatrix} = 4(x+2) - 6(x-2)$$
$$= 4x + 8 - 6x + 12$$
$$= -2x + 20$$

Exercise

Evaluate
$$\begin{vmatrix} x+1 & -6 \\ x+3 & -3 \end{vmatrix}$$

Solution

$$\begin{vmatrix} x+1 & -6 \\ x+3 & -3 \end{vmatrix} = -3x - 3 + 6x + 18$$
$$= -2x + 20$$

Exercise

Evaluate
$$\begin{vmatrix} 3 & 0 & 0 \\ 2 & 1 & -5 \\ 2 & 5 & -1 \end{vmatrix}$$

Solution

$$\begin{vmatrix} 3 & 0 & 0 \\ 2 & 1 & -5 \\ 2 & 5 & -1 \end{vmatrix} \begin{vmatrix} 3 & 0 \\ 2 & 1 \\ 2 & 5 \end{vmatrix}$$

$$= -3 + 0 + 0 - 0 + 75 - 0$$

$$= 72$$

Exercise

Evaluate
$$\begin{vmatrix} 4 & 0 & 0 \\ 3 & -1 & 4 \\ 2 & -3 & 6 \end{vmatrix}$$

$$\begin{vmatrix} 4 & 0 & 0 & 4 & 0 \\ 3 & -1 & 4 & 3 & -1 \\ 2 & -3 & 6 & 2 & -3 \end{vmatrix}$$
$$= -24 + 48$$
$$= 24 \mid$$

$$\begin{array}{cc} or & = 4 \begin{vmatrix} -1 & 4 \\ -3 & 6 \end{vmatrix}$$

Evaluate
$$\begin{vmatrix} 3 & 1 & 0 \\ -3 & -4 & 0 \\ -1 & 3 & 5 \end{vmatrix}$$

Solution

$$\begin{vmatrix} 3 & 1 & 0 & 3 & 1 \\ -3 & -4 & 0 & -3 & -4 \\ -1 & 3 & 5 & -1 & 3 \end{vmatrix}$$
$$= -60 + 15$$
$$= -45 \mid$$

Exercise

Evaluate
$$\begin{vmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & -4 & 5 \end{vmatrix}$$

Solution

$$\begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 & 2 \\ 3 & -4 & 5 & 3 & -4 \end{vmatrix}$$

$$= 10 + 6 - 8 - 6 + 8 - 10$$

$$= 0 \mid$$

Exercise

Evaluate
$$\begin{vmatrix} x & 0 & -1 \\ 2 & 1 & x^2 \\ -3 & x & 1 \end{vmatrix}$$

$$\begin{vmatrix} x & 0 & -1 \\ 2 & 1 & x^2 \\ -3 & x & 1 \end{vmatrix} = x - 2x - 3 - x^4$$
$$= -x^4 - x - 3$$

Evaluate
$$\begin{vmatrix} x & 1 & -1 \\ x^2 & x & x \\ 0 & x & 1 \end{vmatrix}$$

Solution

$$\begin{vmatrix} x & 1 & -1 & x & 1 \\ x^2 & x & x & x^2 & x \\ 0 & x & 1 & 0 & x \end{vmatrix}$$
$$= x^2 - x^3 - x^3 - x^2$$
$$= -2x^3$$

Exercise

Evaluate
$$\begin{vmatrix} 4 & -7 & 8 \\ 2 & 1 & 3 \\ -6 & 3 & 0 \end{vmatrix}$$

Solution

$$\begin{vmatrix} 4 & -7 & 8 \\ 2 & 1 & 3 \\ -6 & 3 & 0 \end{vmatrix} = 0 + 126 + 48 - (-48 + 36 + 0)$$

$$= 90$$

Exercise

Evaluate
$$\begin{vmatrix} 2 & 1 & -1 \\ 4 & 7 & -2 \\ 2 & 4 & 0 \end{vmatrix}$$

Solution

$$\begin{vmatrix} 2 & 1 & -1 \\ 4 & 7 & -2 \\ 2 & 4 & 0 \end{vmatrix} = 0 - 4 - 16 - (-14 - 16 + 0)$$
$$= 10 \mid$$

Exercise

Evaluate
$$\begin{vmatrix} 3 & 1 & 2 \\ -2 & 3 & 1 \\ 3 & 4 & -6 \end{vmatrix}$$

Solution

$$\begin{vmatrix} 3 & 1 & 2 & 3 & 1 \\ -2 & 3 & 1 & -2 & 3 \\ 3 & 4 & -6 & 3 & 4 \end{vmatrix}$$
$$= -54 + 3 - 16 - 18 - 12 - 12$$
$$= -109$$

Exercise

Evaluate
$$\begin{vmatrix} 2x & 1 & -1 \\ 0 & 4 & x \\ 3 & 0 & 2 \end{vmatrix}$$

Solution

$$\begin{vmatrix} 2x & 1 & -1 \\ 0 & 4 & x \\ 3 & 0 & 2 \end{vmatrix} = \begin{vmatrix} 2x & 1 \\ 0 & 4 \\ 3 & 0 \end{vmatrix}$$

$$= 16x + 3x + 12$$

$$= 19x + 12$$

Exercise

Evaluate
$$\begin{vmatrix} 0 & x & x \\ x & x^2 & 5 \\ x & 7 & -5 \end{vmatrix}$$

$$\begin{vmatrix} 0 & x & x & 0 & x \\ x & x^2 & 5 & x & x^2 \\ x & 7 & -5 & x & 7 \end{vmatrix}$$
$$= 5x^2 + 7x^2 - x^4 + 5x^2$$
$$= 17x^2 - x^4$$

Evaluate
$$\begin{vmatrix} 2 & x & 1 \\ -3 & 1 & 0 \\ 2 & 1 & 4 \end{vmatrix}$$

Solution

$$\begin{vmatrix} 2 & x & 1 & 2 & x \\ -3 & 1 & 0 & -3 & 1 \\ 2 & 1 & 4 & 2 & 1 \end{vmatrix}$$
$$= 8 - 3 - 2 + 12x$$
$$= 12x + 3$$

Exercise

Evaluate
$$\begin{vmatrix} 1 & x & -2 \\ 3 & 1 & 1 \\ 0 & -2 & 2 \end{vmatrix}$$

$$\begin{vmatrix} 1 & x & -2 & 1 & x \\ 3 & 1 & 1 & 3 & 1 \\ 0 & -2 & 2 & 0 & -2 \end{vmatrix}$$
$$= 2 + 12 + 2 - 6x$$
$$= -6x + 16$$

 $\begin{cases} 3x + 2y = -4 \\ 2x - y = -5 \end{cases}$ Use Cramer's rule to solve the system

Solution

$$D = \begin{vmatrix} 3 & 2 \\ 2 & -1 \end{vmatrix} = -3 - 4 = -7$$

$$D_x = \begin{vmatrix} -4 & 2 \\ -5 & -1 \end{vmatrix} = 4 - (-10) = 14$$

$$D_y = \begin{vmatrix} 3 & -4 \\ 2 & -5 \end{vmatrix} = -15 - (-8) = -7$$

$$x = \frac{D_X}{D} = \frac{14}{-7} = -2$$

$$y = \frac{D_y}{D} = \frac{-7}{-7} = 1$$

 \therefore Solution: $\left(-2, 1\right)$

Exercise

 $\begin{cases} 2x + 5y = 7 \\ 5x - 2y = -3 \end{cases}$ Use Cramer's rule to solve the system

Solution

$$D = \begin{vmatrix} 2 & 5 \\ 5 & -2 \end{vmatrix} = -29$$

$$D_{\mathcal{X}} = \begin{vmatrix} 7 & 5 \\ -3 & -2 \end{vmatrix} = 1$$

$$D = \begin{vmatrix} 2 & 5 \\ 5 & -2 \end{vmatrix} = -29 \qquad D_x = \begin{vmatrix} 7 & 5 \\ -3 & -2 \end{vmatrix} = 1 \qquad D_y = \begin{vmatrix} 2 & 7 \\ 5 & -3 \end{vmatrix} = -41$$

$$x = \frac{1}{-29} = -\frac{1}{29} \qquad \qquad y = \frac{41}{29}$$

$$y = \frac{41}{29}$$

$$\therefore Solution: \left(-\frac{1}{29}, \frac{41}{29} \right)$$

Exercise

Use Cramer's rule to solve the system

$$\begin{cases} 3x + 2y = -4 \\ 2x - y = -5 \end{cases}$$

$$D = \begin{vmatrix} 3 & 2 \\ 2 & -1 \end{vmatrix} = -7$$

$$D = \begin{vmatrix} 3 & 2 \\ 2 & -1 \end{vmatrix} = -7 \qquad D_x = \begin{vmatrix} -4 & -5 \\ 2 & -1 \end{vmatrix} = 14 \qquad D_y = \begin{vmatrix} 3 & -4 \\ 2 & -5 \end{vmatrix} = -7$$

$$D_y = \begin{vmatrix} 3 & -4 \\ 2 & -5 \end{vmatrix} = -7$$

$$x = -\frac{14}{7} = -2$$

$$x = \frac{D_x}{D}$$

$$y = \frac{7}{7} = 1$$

$$y = \frac{D_y}{D}$$

Solution: (-2, 1)

Exercise

 $\begin{cases} 2x + 5y = 7 \\ 5x - 2y = -3 \end{cases}$ Use Cramer's rule to solve the system

Solution

$$D = \begin{vmatrix} 2 & 5 \\ 5 & -2 \end{vmatrix} = -29 \qquad D_x = \begin{vmatrix} 7 & 5 \\ -3 & -2 \end{vmatrix} = 1 \qquad D_y = \begin{vmatrix} 2 & 7 \\ 5 & -3 \end{vmatrix} = -41$$

$$D_{x} = \begin{vmatrix} 7 & 5 \\ -3 & -2 \end{vmatrix} = 1$$

$$D_y = \begin{vmatrix} 2 & 7 \\ 5 & -3 \end{vmatrix} = -41$$

$$x = -\frac{1}{29}$$

$$x = \frac{D_x}{D}$$

$$x = \frac{D_x}{D}$$

$$y = \frac{41}{29} \qquad \qquad y = \frac{D_y}{D}$$

$$y = \frac{D_y}{D}$$

$$\therefore Solution: \left(-\frac{1}{29}, \frac{41}{29}\right) \mid$$

Exercise

 $\begin{cases} 4x - 7y = -16 \\ 2x + 5y = 9 \end{cases}$ Use Cramer's rule to solve the system

$$D = \begin{vmatrix} 4 & -7 \\ 2 & 5 \end{vmatrix} = 34$$

$$D = \begin{vmatrix} 4 & -7 \\ 2 & 5 \end{vmatrix} = 34 \qquad D_x = \begin{vmatrix} -16 & -7 \\ 9 & 5 \end{vmatrix} = -17 \qquad D_y = \begin{vmatrix} 4 & -16 \\ 2 & 9 \end{vmatrix} = 68$$

$$D_y = \begin{vmatrix} 4 & -16 \\ 2 & 9 \end{vmatrix} = 68$$

$$x = -\frac{17}{34} = -\frac{1}{2}$$
 $x = \frac{D_x}{D}$

$$x = \frac{D_x}{D}$$

$$y = \frac{68}{34} = 2 \qquad \qquad y = \frac{D_y}{D}$$

$$y = \frac{D_y}{D}$$

$$\therefore Solution: \quad \left(-\frac{1}{2}, \ 2\right)$$

Use Cramer's rule to solve the system

$$\begin{cases} 3x + 2y = 4 \\ 2x + y = 1 \end{cases}$$

Solution

$$D = \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} = -1$$

$$D_{\mathcal{X}} = \begin{vmatrix} 4 & 2 \\ 1 & 1 \end{vmatrix} = 2$$

$$D = \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} = -1 \qquad D_x = \begin{vmatrix} 4 & 2 \\ 1 & 1 \end{vmatrix} = 2 \qquad D_y = \begin{vmatrix} 3 & 4 \\ 2 & 1 \end{vmatrix} = -5$$

$$\underline{x} = -2$$

$$\underline{x = -2}$$
 $x = \frac{D_x}{D}$

$$y = 5$$

$$y = 5$$

$$y = \frac{D_y}{D}$$

 $\therefore Solution: \quad (-2, 5)$

$$(-2, 5)$$

Exercise

Use Cramer's rule to solve the system

$$\begin{cases} 3x + 4y = 2\\ 2x + 5y = -1 \end{cases}$$

Solution

$$D = \begin{vmatrix} 3 & 4 \\ 2 & 5 \end{vmatrix} = 7$$

$$D = \begin{vmatrix} 3 & 4 \\ 2 & 5 \end{vmatrix} = 7 \qquad D_x = \begin{vmatrix} 2 & 4 \\ -1 & 5 \end{vmatrix} = 14 \qquad D_y = \begin{vmatrix} 3 & 2 \\ 2 & -1 \end{vmatrix} = -7$$

$$D_y = \begin{vmatrix} 3 & 2 \\ 2 & -1 \end{vmatrix} = -7$$

$$x = \frac{14}{7} = 2 \qquad \qquad x = \frac{D_x}{D}$$

$$x = \frac{D_x}{D}$$

$$y = -\frac{7}{7} = -1$$

$$y = \frac{D_y}{D}$$

$$y = \frac{D_y}{D}$$

 $\therefore Solution: \qquad \underline{(2, -1)}$

$$(2, -1)$$

Exercise

Use Cramer's rule to solve the system

$$\begin{cases} 5x - 2y = 4 \\ -10x + 4y = 7 \end{cases}$$

Solution

$$D = \begin{vmatrix} 5 & -2 \\ -10 & 4 \end{vmatrix} = 0$$

$$D = \begin{vmatrix} 5 & -2 \\ -10 & 4 \end{vmatrix} = 0 \qquad D_y = \begin{vmatrix} 5 & 4 \\ -10 & 7 \end{vmatrix} = 75 \neq 0$$

: No Solution

Use Cramer's rule to solve the system

$$\begin{cases} x - 4y = -8\\ 5x - 20y = -40 \end{cases}$$

Solution

$$D = \begin{vmatrix} 1 & -4 \\ 5 & -20 \end{vmatrix} = 0$$

$$D = \begin{vmatrix} 1 & -4 \\ 5 & -20 \end{vmatrix} = 0 \qquad D_y = \begin{vmatrix} 1 & -8 \\ 5 & -40 \end{vmatrix} = 0$$

$$\begin{cases} x - 4y = -8\\ 5x - 20y = -40 \end{cases}$$

$$\begin{cases} x - 4y = -8 \\ x - 4y = -8 \end{cases}$$

$$\therefore Solution: \qquad (4y-8, y)$$

Exercise

Use Cramer's rule to solve the system

$$\begin{cases} 2x + y = 3 \\ x - y = 3 \end{cases}$$

Solution

$$D = \begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix} = -3$$

$$D = \begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix} = -3 \qquad D_x = \begin{vmatrix} 3 & 1 \\ 3 & -1 \end{vmatrix} = -6 \qquad D_y = \begin{vmatrix} 2 & 3 \\ 1 & 3 \end{vmatrix} = 3$$

$$D_y = \begin{vmatrix} 2 & 3 \\ 1 & 3 \end{vmatrix} = 3$$

$$x = \frac{6}{3} = 2$$

$$x = \frac{D_x}{D}$$

$$y = -\frac{3}{3} = -1$$

$$y = \frac{D_y}{D}$$

$$y = \frac{D_y}{D}$$

 $\therefore Solution: \qquad (2, -1)$

$$(2, -1)$$

Exercise

Use Cramer's rule to solve the system

$$\begin{cases} 2x + 10y = -14 \\ 7x - 2y = -16 \end{cases}$$

$$D = \begin{vmatrix} 2 & 10 \\ 7 & -2 \end{vmatrix} = -74$$

$$D = \begin{vmatrix} 2 & 10 \\ 7 & -2 \end{vmatrix} = -74 \qquad D_x = \begin{vmatrix} -14 & 10 \\ -16 & -2 \end{vmatrix} = 188 \qquad D_y = \begin{vmatrix} 2 & -14 \\ 7 & -16 \end{vmatrix} = 66$$

$$D_y = \begin{vmatrix} 2 & -14 \\ 7 & -16 \end{vmatrix} = 66$$

$$x = -\frac{188}{74} = -\frac{94}{37} \qquad x = \frac{D_x}{D}$$

$$x = \frac{D_x}{D}$$

$$y = -\frac{66}{74} = -\frac{33}{37}$$
 $y = \frac{D_y}{D}$

$$\therefore Solution: \quad \left(-\frac{94}{37}, -\frac{33}{37}\right)$$

Use Cramer's rule to solve the system

$$\begin{cases} 4x - 3y = 24 \\ -3x + 9y = -1 \end{cases}$$

Solution

$$D = \begin{vmatrix} 4 & -3 \\ -3 & 9 \end{vmatrix} = 27$$

$$D_X = \begin{vmatrix} 24 & -3 \\ -1 & 9 \end{vmatrix} = 213$$

$$D = \begin{vmatrix} 4 & -3 \\ -3 & 9 \end{vmatrix} = 27 \qquad D_x = \begin{vmatrix} 24 & -3 \\ -1 & 9 \end{vmatrix} = 213 \qquad D_y = \begin{vmatrix} 4 & 24 \\ -3 & -1 \end{vmatrix} = 68$$

$$x = \frac{213}{27} = \frac{71}{9}$$

$$x = \frac{D_x}{D}$$

$$x = \frac{D_x}{D}$$

$$y = \frac{68}{27} \qquad \qquad y = \frac{D_y}{D}$$

$$y = \frac{D_y}{D}$$

 \therefore *Solution*: $\left(\frac{71}{9}, \frac{68}{27}\right)$

Exercise

Use Cramer's rule to solve the system

$$\begin{cases} 4x + 2y = 12 \\ 3x - 2y = 16 \end{cases}$$

$$D = \begin{vmatrix} 4 & 2 \\ 3 & -2 \end{vmatrix} = -14$$

$$D = \begin{vmatrix} 4 & 2 \\ 3 & -2 \end{vmatrix} = -14 \qquad D_x = \begin{vmatrix} 12 & 2 \\ 16 & -2 \end{vmatrix} = -56 \qquad D_y = \begin{vmatrix} 4 & 12 \\ 3 & 16 \end{vmatrix} = 28$$

$$D_y = \begin{vmatrix} 4 & 12 \\ 3 & 16 \end{vmatrix} = 28$$

$$x = \frac{56}{14} = 4 \qquad \qquad x = \frac{D_x}{D}$$

$$x = \frac{D_x}{D}$$

$$y = -\frac{28}{14} = -2$$

$$y = \frac{D_y}{D}$$

$$y = \frac{D_y}{D}$$

$$\therefore Solution: \qquad (4, -2)$$

$$(4, -2)$$

Use Cramer's rule to solve the system

$$\begin{cases} x + 2y = -1 \\ 4x - 2y = 6 \end{cases}$$

Solution

$$D = \begin{vmatrix} 1 & 2 \\ 4 & -2 \end{vmatrix} = -10$$

$$D = \begin{vmatrix} 1 & 2 \\ 4 & -2 \end{vmatrix} = -10 \qquad D_x = \begin{vmatrix} -1 & 2 \\ 6 & -2 \end{vmatrix} = -10 \qquad D_y = \begin{vmatrix} 1 & -1 \\ 4 & 6 \end{vmatrix} = 10$$

$$D_y = \begin{vmatrix} 1 & -1 \\ 4 & 6 \end{vmatrix} = 10$$

$$\underline{x=1}$$
 $x = \frac{D}{D}$

$$y = -1$$

$$y = -1$$
 $y = \frac{D_y}{D}$

 $\therefore Solution: \qquad (1, -1)$

$$(1, -1)$$

Exercise

Use Cramer's rule to solve the system

$$\begin{cases} x - 2y = 5 \\ -10x + 2y = 4 \end{cases}$$

Solution

$$D = \begin{vmatrix} 1 & -2 \\ -10 & 2 \end{vmatrix} = -18 \qquad D_x = \begin{vmatrix} 5 & -2 \\ 4 & 2 \end{vmatrix} = 18 \qquad D_y = \begin{vmatrix} 1 & 5 \\ -10 & 4 \end{vmatrix} = 54$$

$$D_{\mathcal{X}} = \begin{vmatrix} 5 & -2 \\ 4 & 2 \end{vmatrix} = 18$$

$$D_y = \begin{vmatrix} 1 & 5 \\ -10 & 4 \end{vmatrix} = 54$$

$$\underline{x} = -1$$

$$\underline{x = -1}$$
 $x = \frac{D_x}{D}$

$$y = -\frac{54}{18} = -3$$
 $y = \frac{D_y}{D}$

$$\therefore$$
 Solution: $(-1, -3)$

Exercise

Use Cramer's rule to solve the system

$$\begin{cases} 12x + 15y = -27 \\ 30x - 15y = -15 \end{cases}$$

$$\frac{1}{3} \times \int 12x + 15y = -27$$

$$\frac{1}{3} \times \begin{cases} 12x + 15y = -27 \\ \frac{1}{15} \times \end{cases} \begin{cases} 30x - 15y = -15 \end{cases}$$

$$\begin{cases} 4x + 5y = -9 \\ 2x - y = -1 \end{cases}$$

$$2x - y = -1$$

$$D = \begin{vmatrix} 4 & 5 \\ 2 & -1 \end{vmatrix} = -14$$

$$D_x = \begin{vmatrix} -9 & 5 \\ -1 & -1 \end{vmatrix} = 14$$

$$D = \begin{vmatrix} 4 & 5 \\ 2 & -1 \end{vmatrix} = -14 \qquad D_x = \begin{vmatrix} -9 & 5 \\ -1 & -1 \end{vmatrix} = 14 \qquad D_y = \begin{vmatrix} 4 & -9 \\ 2 & -1 \end{vmatrix} = 14$$

$$\underline{x} = -1$$

$$\underline{x = -1}$$
 $x = \frac{D_x}{D}$

$$y = -1$$

$$y = -1$$

$$y = \frac{D_y}{D}$$

$$\therefore$$
 Solution: $(-1, -1)$

Use Cramer's rule to solve the system

$$\begin{cases} 4x - 4y = -12 \\ 4x + 4y = -20 \end{cases}$$

Solution

$$\frac{1}{4} \times \begin{cases} 4x - 4y = -12\\ 4x + 4y = -20 \end{cases}$$

$$\frac{1}{4} \times \left(4x + 4y = -20 \right)$$

$$\begin{cases} x - y = -3 \\ x + y = -5 \end{cases}$$

$$D = \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} = 2$$

$$D_{x} = \begin{vmatrix} -3 & -1 \\ -5 & 1 \end{vmatrix} = -8$$

$$D = \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} = 2 \qquad D_x = \begin{vmatrix} -3 & -1 \\ -5 & 1 \end{vmatrix} = -8 \qquad D_y = \begin{vmatrix} 1 & -3 \\ 1 & -5 \end{vmatrix} = -2$$

$$\underline{x} = -4$$

$$\underline{x} = -4$$
 $x = \frac{D_x}{D}$

$$y = -1$$

$$y = -1$$

$$y = \frac{D_y}{D}$$

$$\therefore Solution: \quad (-4, -1)$$

Exercise

Use Cramer's rule to solve the system

$$\begin{cases} x + y = 7 \\ x - y = 3 \end{cases}$$

$$D = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = -2$$

$$D = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = -2 \qquad D_x = \begin{vmatrix} 7 & 1 \\ 3 & -1 \end{vmatrix} = -10 \qquad D_y = \begin{vmatrix} 1 & 7 \\ 1 & 3 \end{vmatrix} = -4$$

$$D_y = \begin{vmatrix} 1 & 7 \\ 1 & 3 \end{vmatrix} = -4$$

$$\underline{x=5}$$
 $x = \frac{D_x}{D_x}$

$$y = 2$$
 $y = \frac{D_y}{D}$

$$\therefore$$
 Solution: $(5, 2)$

Use Cramer's rule to solve the system $\begin{cases} 2x + y = 3 \\ x - y = 3 \end{cases}$

Solution

$$D = \begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix} = -3$$

$$D_x = \begin{vmatrix} 3 & 1 \\ 3 & -1 \end{vmatrix} = -6$$

$$D_y = \begin{vmatrix} 2 & 3 \\ 1 & 3 \end{vmatrix} = 3$$

$$\underbrace{x = 2}$$

$$\underbrace{y = -1}$$

$$y = \frac{D_y}{D}$$

$$\therefore Solution: (2, -1)$$

Exercise

Use Cramer's rule to solve the system $\begin{cases} 12x + 3y = 15 \\ 2x - 3y = 13 \end{cases}$

Solution

$$D = \begin{vmatrix} 12 & 3 \\ 2 & -3 \end{vmatrix} = -42 \qquad D_x = \begin{vmatrix} 15 & 3 \\ 13 & -3 \end{vmatrix} = -84 \qquad D_y = \begin{vmatrix} 12 & 15 \\ 2 & 13 \end{vmatrix} = 126$$

$$\underline{x = 2} \qquad x = \frac{D_x}{D}$$

$$\underline{y = -3} \qquad y = \frac{D_y}{D}$$

$$\therefore Solution: (2, -3)$$

Exercise

Use Cramer's rule to solve the system $\begin{cases} x - 2y = 5 \\ 5x - y = -2 \end{cases}$

$$D = \begin{vmatrix} 1 & -2 \\ 5 & -1 \end{vmatrix} = 9 \qquad D_x = \begin{vmatrix} 5 & -2 \\ -2 & -1 \end{vmatrix} = -9 \qquad D_y = \begin{vmatrix} 1 & 5 \\ 5 & -2 \end{vmatrix} = -27$$

$$x = -1 \qquad x = \frac{D_x}{D}$$

$$y = -3$$

$$y = \frac{D_y}{D}$$

$$\therefore Solution: \qquad (-1, -3)$$

Use Cramer's rule to solve the system $\begin{cases} 4x - 5y = 17 \\ 2x + 3y = 3 \end{cases}$

Solution

$$D = \begin{vmatrix} 4 & -5 \\ 2 & 3 \end{vmatrix} = 22 \qquad D_x = \begin{vmatrix} 17 & -5 \\ 3 & 3 \end{vmatrix} = 66 \qquad D_y = \begin{vmatrix} 4 & 17 \\ 2 & 3 \end{vmatrix} = -22$$

$$\underline{x = 3} \qquad x = \frac{D_x}{D}$$

$$x = \frac{x}{D}$$

$$y = -1$$

$$y = \frac{D}{D}$$

$$\therefore Solution: \qquad (3, -1)$$

Exercise

Use Cramer's rule to solve the system $\begin{cases} 3x + 2y = 2 \\ 2x + 2y = 3 \end{cases}$

$$D = \begin{vmatrix} 3 & 2 \\ 2 & 2 \end{vmatrix} = 2$$

$$D_x = \begin{vmatrix} 2 & 2 \\ 3 & 2 \end{vmatrix} = -2$$

$$D_y = \begin{vmatrix} 3 & 2 \\ 2 & 3 \end{vmatrix} = 5$$

$$\underline{x = -1}$$

$$x = \frac{D_x}{D}$$

$$y = \frac{5}{2} \qquad \qquad y = \frac{D}{D}$$

$$\therefore Solution: \left(-1, \frac{5}{2}\right) \mid$$

Use Cramer's rule to solve the system

$$\begin{cases} x - 3y = 4 \\ 3x - 4y = 12 \end{cases}$$

Solution

$$D = \begin{vmatrix} 1 & -3 \\ 3 & -4 \end{vmatrix} = 5$$

$$D = \begin{vmatrix} 1 & -3 \\ 3 & -4 \end{vmatrix} = 5 \qquad D_x = \begin{vmatrix} 4 & -3 \\ 12 & -4 \end{vmatrix} = 20 \qquad D_y = \begin{vmatrix} 1 & 4 \\ 3 & 12 \end{vmatrix} = 0$$

$$D_y = \begin{vmatrix} 1 & 4 \\ 3 & 12 \end{vmatrix} = 0$$

$$\underline{x=4}$$
 $x = \frac{D_x}{D}$

$$y = 0$$

$$y = 0$$
 $y = \frac{D_y}{D}$

 \therefore Solution: (4, 0)

Exercise

Use Cramer's rule to solve the system

$$\begin{cases} 2x - 9y = 5\\ 3x - 3y = 11 \end{cases}$$

Solution

$$D = \begin{vmatrix} 2 & -9 \\ 3 & -3 \end{vmatrix} = 21$$

$$D = \begin{vmatrix} 2 & -9 \\ 3 & -3 \end{vmatrix} = 21 \qquad D_x = \begin{vmatrix} 5 & -9 \\ 11 & -3 \end{vmatrix} = 84 \qquad D_y = \begin{vmatrix} 2 & 5 \\ 3 & 11 \end{vmatrix} = 7$$

$$D_y = \begin{vmatrix} 2 & 5 \\ 3 & 11 \end{vmatrix} = 7$$

$$\underline{x} = 4$$
 $x = \frac{D_x}{D}$

$$y = \frac{1}{3}$$

$$y = \frac{1}{3} \qquad \qquad y = \frac{D_y}{D}$$

 \therefore Solution: $\left(4, \frac{1}{3}\right)$

$$(4, \frac{1}{3})$$

Exercise

Use Cramer's rule to solve the system

$$\begin{cases} 3x - 4y = 4 \\ x + y = 6 \end{cases}$$

$$D = \begin{vmatrix} 3 & -4 \\ 1 & 1 \end{vmatrix} = 7$$

$$D = \begin{vmatrix} 3 & -4 \\ 1 & 1 \end{vmatrix} = 7 \qquad D_x = \begin{vmatrix} 4 & -4 \\ 6 & 1 \end{vmatrix} = 28 \qquad D_y = \begin{vmatrix} 3 & 4 \\ 1 & 6 \end{vmatrix} = 14$$

$$D_y = \begin{vmatrix} 3 & 4 \\ 1 & 6 \end{vmatrix} = 14$$

$$x = 4$$

$$x = 4$$
 $x = \frac{D_x}{D}$

$$y = 2$$

$$y = 2$$
 $y = \frac{D_y}{D}$

 $\therefore Solution: \qquad \underline{(4, 2)}$

Exercise

Use Cramer's rule to solve the system

$$\begin{cases} 3x = 7y + 1 \\ 2x = 3y - 1 \end{cases}$$

Solution

$$\begin{cases} 3x - 7y = 1\\ 2x - 3y = -1 \end{cases}$$

$$D = \begin{vmatrix} 3 & -7 \\ 2 & -3 \end{vmatrix} = 5$$

 $D = \begin{vmatrix} 3 & -7 \\ 2 & -3 \end{vmatrix} = 5 \qquad D_x = \begin{vmatrix} 1 & -7 \\ -1 & -3 \end{vmatrix} = -10 \qquad D_y = \begin{vmatrix} 3 & 1 \\ 2 & -1 \end{vmatrix} = -5$

$$D_y = \begin{vmatrix} 3 & 1 \\ 2 & -1 \end{vmatrix} = -5$$

$$\underline{x} = -2$$

$$\underline{x = -2} \qquad \qquad x = \frac{D_x}{D}$$

$$y = -1$$

$$y = -1$$

$$y = \frac{D_y}{D}$$

 \therefore Solution: (-2, -1)

$$(-2, -1)$$

Exercise

Use Cramer's rule to solve the system

$$\begin{cases} 2x = 3y + 2 \\ 5x = 51 - 4y \end{cases}$$

Solution

$$\begin{cases} 2x - 3y = 2\\ 5x + 4y = 51 \end{cases}$$

$$D = \begin{vmatrix} 2 & -3 \\ 5 & 4 \end{vmatrix} = 23$$

$$D = \begin{vmatrix} 2 & -3 \\ 5 & 4 \end{vmatrix} = 23 \qquad D_x = \begin{vmatrix} 2 & -3 \\ 51 & 4 \end{vmatrix} = 161 \qquad D_y = \begin{vmatrix} 2 & 2 \\ 5 & 51 \end{vmatrix} = 92$$

$$D_y = \begin{vmatrix} 2 & 2 \\ 5 & 51 \end{vmatrix} = 92$$

$$\underline{x} = 7$$
 $x = \frac{D_x}{D}$

$$y = 4$$

$$y = 4$$
 $y = \frac{D_y}{D}$

 $\therefore Solution: \qquad \boxed{(7, 4)}$

Use Cramer's rule to solve the system

$$\begin{cases} y = -4x + 2 \\ 2x = 3y - 1 \end{cases}$$

Solution

$$\begin{cases} 4x + y = 2\\ 2x - 3y = -1 \end{cases}$$

$$D = \begin{vmatrix} 4 & 1 \\ 2 & -3 \end{vmatrix} = -14 \qquad D_x = \begin{vmatrix} 2 & 1 \\ -1 & -3 \end{vmatrix} = -5 \qquad D_y = \begin{vmatrix} 4 & 2 \\ 2 & -1 \end{vmatrix} = -8$$

$$D_{\mathcal{X}} = \begin{vmatrix} 2 & 1 \\ -1 & -3 \end{vmatrix} = -5$$

$$D_y = \begin{vmatrix} 4 & 2 \\ 2 & -1 \end{vmatrix} = -8$$

$$x = \frac{5}{14} \qquad \qquad x = \frac{D_x}{D}$$

$$x = \frac{D_x}{D}$$

$$y = \frac{4}{7} \qquad \qquad y = \frac{D_y}{D}$$

$$y = \frac{D_y}{D}$$

$$\therefore Solution: \quad \left(\frac{15}{4}, \frac{4}{7}\right) \mid$$

Exercise

Use Cramer's rule to solve the system

$$\begin{cases} 3x = 2 - 3y \\ 2y = 3 - 2x \end{cases}$$

Solution

$$\begin{cases} 3x + 3y = 2\\ 2x + 2y = 3 \end{cases}$$

$$D = \begin{vmatrix} 3 & 3 \\ 2 & 2 \end{vmatrix} = 0$$

$$D = \begin{vmatrix} 3 & 3 \\ 2 & 2 \end{vmatrix} = 0 \qquad D_y = \begin{vmatrix} 3 & 2 \\ 2 & 3 \end{vmatrix} = 5 \neq 0$$

: No Solution

Exercise

Use Cramer's rule to solve the system

$$\begin{cases} x + 2y - 3 = 0 \\ 12 = 8y + 4x \end{cases}$$

Solution

$$\begin{cases} x + 2y = 3\\ 4x + 8y = 12 \end{cases}$$

$$\int x + 2y = 3$$

$$x + 2y = 3$$

 $\therefore Solution: \qquad (3-2y, y)$

Use Cramer's rule to solve the system

$$\begin{cases} 7x - 2y = 3\\ 3x + y = 5 \end{cases}$$

Solution

$$D = \begin{vmatrix} 7 & -2 \\ 3 & 1 \end{vmatrix} = 13$$

$$D = \begin{vmatrix} 7 & -2 \\ 3 & 1 \end{vmatrix} = 13$$
 $D_x = \begin{vmatrix} 3 & -2 \\ 5 & 1 \end{vmatrix} = 13$ $D_y = \begin{vmatrix} 7 & 3 \\ 3 & 5 \end{vmatrix} = 26$

$$D_y = \begin{vmatrix} 7 & 3 \\ 3 & 5 \end{vmatrix} = 26$$

$$x = 1$$
 $x = \frac{D_x}{D}$

$$y = 2$$

$$y = 2$$
 $y = \frac{D_y}{D}$

 \therefore Solution: (1, 2)

Exercise

Use Cramer's rule to solve the system $\begin{cases} 3x + 2y - z = 4 \\ 3x - 2y + z = 5 \\ 4x - 5y - z = -1 \end{cases}$

$$\begin{cases} 3x + 2y - z = 4 \\ 3x - 2y + z = 5 \\ 4x - 5y - z = -1 \end{cases}$$

Solution

$$D = \begin{vmatrix} 3 & 2 & -1 \\ 3 & -2 & 1 \\ 4 & -5 & -1 \end{vmatrix} = 42$$

$$D = \begin{vmatrix} 3 & 2 & -1 \\ 3 & -2 & 1 \\ 4 & -5 & -1 \end{vmatrix} = 42$$

$$D_{x} = \begin{vmatrix} 4 & 2 & -1 \\ 5 & -2 & 1 \\ -1 & -5 & -1 \end{vmatrix} = 63$$

$$D_{y} = \begin{vmatrix} 3 & 4 & -1 \\ 3 & 5 & 1 \\ 4 & -1 & -1 \end{vmatrix} = 39$$

$$D_{z} = \begin{vmatrix} 3 & 2 & 4 \\ 3 & -2 & 5 \\ 4 & -5 & -1 \end{vmatrix} = 99$$

$$D_z = \begin{vmatrix} 3 & 2 & 4 \\ 3 & -2 & 5 \\ 4 & -5 & -1 \end{vmatrix} = 99$$

$$x = \frac{63}{42} = \frac{3}{2} \qquad \qquad x = \frac{D_x}{D}$$

$$x = \frac{D_x}{D}$$

$$y = \frac{39}{42} = \frac{13}{14} \qquad \qquad y = \frac{D_y}{D}$$

$$y = \frac{D_y}{D}$$

$$z = \frac{99}{42} = \frac{33}{14}$$

$$z = \frac{D_z}{D}$$

$$z = \frac{D_z}{D}$$

Solution: $\left(\frac{3}{2}, \frac{13}{14}, \frac{33}{14}\right)$

Use Cramer's rule to solve the system $\begin{cases} x + y + z - z \\ 2x + y - z = z \end{cases}$

Solution

$$D = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ 1 & -1 & 1 \end{vmatrix} = -6$$

$$D_x = \begin{vmatrix} 2 & 1 & 1 \\ 5 & 1 & -1 \\ -2 & -1 & 1 \end{vmatrix} = -6$$

$$D_{y} = \begin{vmatrix} 1 & 2 & 1 \\ 2 & 5 & -1 \\ 1 & -2 & 1 \end{vmatrix} = -12 \qquad D_{z} = \begin{vmatrix} 1 & 1 & 2 \\ 2 & 1 & 5 \\ 1 & -2 & 2 \end{vmatrix} = 6$$

$$x = \underline{1}$$

$$x = \frac{D_x}{D}$$

$$y = \underline{2}$$

$$y = \frac{D_y}{D}$$

$$z = -\underline{1}$$

$$z = \frac{D_z}{D}$$

 $\therefore Solution: (1, 2, -1)$

Exercise

Use Cramer's rule to solve the system $\begin{cases}
2x + y + z = 9 \\
-x - y + z = 1 \\
3x - y + z = 9
\end{cases}$

$$D = \begin{vmatrix} 2 & 1 & 1 \\ -1 & -1 & 1 \\ 3 & -1 & 1 \end{vmatrix} \begin{vmatrix} 2 & 1 \\ -1 & -1 & = -2 + 3 + 1 + 3 + 2 + 1 \\ 3 & -1 & = 8 \end{vmatrix}$$

$$D_{x} = \begin{vmatrix} 9 & 1 & 1 & 9 & 1 \\ 1 & -1 & 1 & 1 & -1 & = -9 + 9 - 1 + 9 + 9 - 1 \\ 9 & -1 & 1 & 9 & -1 \end{vmatrix}$$

$$D_{y} = \begin{vmatrix} 2 & 9 & 1 \\ -1 & 1 & 1 \\ 3 & 9 & 1 \end{vmatrix} \begin{vmatrix} 2 & 9 \\ -1 & 1 & 1 \\ 3 & 9 & 1 \end{vmatrix} = 2 + 27 - 9 - 3 - 18 + 9$$

$$= 8 \begin{vmatrix} 1 & 1 & 1 & 1 \\ 3 & 9 & 1 & 3 & 9 \end{vmatrix}$$

$$D_{z} = \begin{vmatrix} 2 & 1 & 9 & 2 & 1 \\ -1 & -1 & 1 & -1 & -1 & = -18 + 3 + 9 + 27 + 2 + 9 \\ 3 & -1 & 9 & 3 & -1 \end{vmatrix}$$

$$= 32 \begin{vmatrix} x = 2 \end{vmatrix}$$

$$x = \frac{D_{x}}{D}$$

$$y = 1 \begin{vmatrix} y = \frac{D_{y}}{D} \\ z = \frac{32}{8} = 4 \end{vmatrix}$$

$$z = \frac{D_{z}}{D}$$

 $\therefore Solution: (2, 1, 4)$

Exercise

Use Cramer's rule to solve the system

$$\begin{cases} 3y - z = -1 \\ x + 5y - z = -4 \\ -3x + 6y + 2z = 11 \end{cases}$$

$$D = \begin{vmatrix} 0 & 3 & -1 & 0 & 3 \\ 1 & 5 & -1 & 1 & 5 & = 9 - 6 - 15 - 6 \\ -3 & 6 & 2 & -3 & 6 \end{vmatrix}$$

$$= -18 \begin{vmatrix} -1 & 3 & -1 & -1 & 3 \\ -4 & 5 & -1 & -4 & 5 & = -10 - 33 + 24 + 55 - 6 + 24 \\ 11 & 6 & 2 & 11 & 6 \end{vmatrix}$$

$$= 54 \begin{vmatrix} 0 & -1 & -1 & 0 & -1 \\ 1 & -4 & -1 & 1 & -4 & = -3 - 11 + 12 + 2 \\ -3 & 11 & 2 & -3 & 11 \end{vmatrix}$$

$$= 0 \begin{vmatrix} 0 & 3 & -1 & 0 & 3 \\ 1 & 5 & -4 & 1 & 5 & = 36 - 6 - 15 - 33 \\ -3 & 6 & 11 & -3 & 6 \end{vmatrix}$$

$$\begin{vmatrix} -3 & 6 & 11 \end{vmatrix} - \frac{3}{6} = \frac{-18}{2}$$

$$x = -3$$

$$x = \frac{D_x}{D_x}$$

$$y = 0$$

$$z = 1$$

$$y = \frac{D_y}{D}$$

$$z = \frac{D_z}{D}$$

∴ Solution: (-3, 0, 1)

Exercise

Use Cramer's rule to solve the system $\begin{cases} x + 3y + 4z = 14 \\ 2x - 3y + 2z = 10 \\ 3x - y + z = 9 \end{cases}$

Solution

$$D = \begin{vmatrix} 1 & 3 & 4 & 1 & 3 \\ 2 & -3 & 2 & 2 & -3 & = -3 + 18 - 8 + 36 + 2 - 6 \\ 3 & -1 & 1 & 3 & -1 \\ & & & & = 39 \end{vmatrix}$$

$$D_{x} = \begin{vmatrix} 14 & 3 & 4 & 14 & 3 \\ 10 & -3 & 2 & 10 & -3 & = -42 + 54 - 40 + 108 + 28 - 30 \\ 9 & -1 & 1 & 9 & -1 \\ & & & & = 78 \end{vmatrix}$$

$$D_{y} = \begin{vmatrix} 1 & 14 & 4 & 1 & 14 \\ 2 & 10 & 2 & 2 & 10 & = 10 + 84 + 72 - 120 - 18 - 28 \\ 3 & 9 & 1 & 3 & 9 & = 0 \end{vmatrix}$$

$$D_z = \begin{vmatrix} 1 & 3 & 14 & 1 & 3 \\ 2 & -3 & 10 & 2 & -3 & = -27 + 90 - 28 + 126 + 10 - 54 \\ 3 & -1 & 9 & 3 & -1 \end{vmatrix}$$

$$x = \frac{78}{39} = 2$$

$$x = \frac{D_x}{D}$$

$$y = 0$$

$$y = \frac{D_y}{D}$$

$$z = \frac{117}{39} = 3$$

$$z = \frac{D_z}{D}$$

 $\therefore Solution: (2, 0, 3)$

Use Cramer's rule to solve the system

$$\begin{cases} x + 4y - z = 20 \\ 3x + 2y + z = 8 \\ 2x - 3y + 2z = -16 \end{cases}$$

Solution

$$D = \begin{vmatrix} 1 & 4 & -1 \\ 3 & 2 & 1 \\ 2 & -3 & 2 \end{vmatrix} \begin{vmatrix} 1 & 4 \\ 3 & 2 & = 4 + 8 + 9 + 4 + 3 - 24 \\ 2 & -3 & = 4 \end{vmatrix}$$

$$D_{x} = \begin{vmatrix} 20 & 4 & -1 \\ 8 & 2 & 1 \\ -16 & -3 & 2 \end{vmatrix} = \begin{vmatrix} 20 & 4 \\ 8 & 2 & = 80 - 64 + 24 - 32 + 60 - 64 \\ -16 & -3 & 2 \end{vmatrix} = 4 \begin{vmatrix} 20 & 4 \\ 8 & 2 & = 80 - 64 + 24 - 32 + 60 - 64 \\ -16 & -3 & 2 \end{vmatrix}$$

$$D_{y} = \begin{vmatrix} 1 & 20 & -1 & 1 & 20 \\ 3 & 8 & 1 & 3 & 8 & = 16 + 40 + 48 + 16 + 16 - 120 \\ 2 & -16 & 2 & 2 & -16 \end{vmatrix}$$

$$= 16$$

$$D_z = \begin{vmatrix} 1 & 4 & 20 & 1 & 4 \\ 3 & 2 & 8 & 3 & 2 & = -32 + 64 - 180 - 80 + 24 + 192 \\ 2 & -3 & -16 & 2 & -3 \end{vmatrix}$$

$$=-12$$

$$x = \frac{4}{4} = \underline{1}$$

$$x = \frac{D}{x}$$

$$y = \underline{16} = \underline{4}$$

$$z = -\underline{12} = \underline{-3}$$

$$z = \frac{D}{y}$$

$$z = \frac{D}{y}$$

$$\therefore Solution: (1, 4, -3)$$

Exercise

Use Cramer's rule to solve the system

$$\begin{cases}
-2x + 6y + 7z = 3 \\
-4x + 5y + 3z = 7 \\
-6x + 3y + 5z = -4
\end{cases}$$

$$\therefore Solution: \left(\frac{1}{2}, 3, -2\right) \mid$$

 $z = -\frac{212}{106} = -2$ $z = \frac{D_z}{D}$

Exercise

Use Cramer's rule to solve the system $\begin{cases} 2x - y + z = 1 \\ 3x - 3y + 4z = 5 \\ 4x - 2y + 3z = 4 \end{cases}$

$$D = \begin{vmatrix} 2 & -1 & 1 & 2 & -1 \\ 3 & -3 & 4 & 3 & -3 & = -18 - 16 - 6 + 12 + 16 + 9 \\ 4 & -2 & 3 & 4 & -2 \\ & & & = -3 \end{vmatrix}$$

$$D_{x} = \begin{vmatrix} 1 & -1 & 1 & 1 & -1 \\ 5 & -3 & 4 & 5 & -3 & = -9 - 16 - 10 + 12 + 8 + 15 \\ 4 & -2 & 3 & 4 & -2 & = 0 \end{vmatrix}$$

$$= 0$$

$$D_{y} = \begin{vmatrix} 2 & 1 & 1 & 2 & 1 \\ 3 & 5 & 4 & 3 & 5 & = 30 + 16 + 12 - 20 - 32 - 9 \\ 4 & 4 & 3 & 4 & 4 & = -3 \end{vmatrix}$$

$$D_z = \begin{vmatrix} 2 & -1 & 1 & 2 & -1 \\ 3 & -3 & 5 & 3 & -3 & = -24 - 20 - 6 + 12 + 20 + 12 \\ 4 & -2 & 4 & 4 & -2 \end{vmatrix}$$

$$x = -\frac{0}{3} = 0$$

$$x = \frac{D_x}{D}$$

$$y = \frac{-3}{-3} = 1$$

$$y = \frac{D_y}{D}$$

$$z = \frac{-6}{-3} = 2$$

$$z = \frac{D}{D}$$

 $\therefore Solution: (0, 1, 2)$

Exercise

Use Cramer's rule to solve the system

$$\begin{cases} 3x - 4y + 4z = 7 \\ x - y - 2z = 2 \\ 2x - 3y + 6z = 5 \end{cases}$$

$$D = \begin{vmatrix} 3 & -4 & 4 & 3 & -4 \\ 1 & -1 & -2 & 1 & -1 & = -18 + 16 - 12 + 8 - 18 + 24 \\ 2 & -3 & 6 & 2 & -3 \end{vmatrix}$$

$$= 0 \begin{vmatrix} 3 & -4 & 7 & 3 & -4 \\ 1 & -1 & 2 & 1 & -1 & = -15 - 16 - 21 + 14 + 18 + 20 \\ 2 & -3 & 5 & 2 & -3 \end{vmatrix}$$

$$= 0 \begin{vmatrix} -3 \times (2) & \begin{cases} -3x + 3y + 6z = -6 \\ 2x - 3y + 6z = 5 \end{cases}$$

$$x = 12z + 1$$

$$(2) \rightarrow y = 12z + 1 - 2z - 2$$

$$= 10z - 1$$

∴ Solution: (12z+1, 10z-1, z)

Exercise

Use Cramer's rule to solve the system

$$\begin{cases} x - 2y - z = 2 \\ 2x - y + z = 4 \\ -x + y + z = 4 \end{cases}$$

Solution

$$D = \begin{vmatrix} 1 & -2 & -1 \\ 2 & -1 & 1 \\ -1 & 1 & 1 \end{vmatrix} = -1 + 2 - 2 + 1 - 1 + 4$$

$$= 3$$

$$D_{x} = \begin{vmatrix} 2 & -2 & -1 & 2 & -2 \\ 4 & -1 & 1 & 4 & -1 & = -2 - 8 - 4 - 4 - 2 + 8 \\ 4 & 1 & 1 & 4 & 1 & = -12 \end{vmatrix}$$

$$D_{y} = \begin{vmatrix} 1 & 2 & -1 \\ 2 & 4 & 1 \\ -1 & 4 & 1 \end{vmatrix} \begin{vmatrix} 1 & 2 \\ 2 & 4 & = 4 - 2 - 8 - 4 - 4 - 4 \\ -1 & 4 \end{vmatrix}$$

$$=-18$$

$$D_z = \begin{vmatrix} 1 & -2 & 2 & 1 & -2 \\ 2 & -1 & 4 & 2 & -1 & = -4 + 8 + 4 - 2 - 4 + 16 \\ -1 & 1 & 4 & -1 & 1 \end{vmatrix}$$

$$=18$$

$$x = -\frac{12}{3} = -4$$

$$x = \frac{D_x}{D}$$

$$y = -\frac{18}{3} = -6$$

$$y = \frac{D_y}{D}$$

$$z = \frac{18}{3} = 6$$

$$z = \frac{D_z}{D}$$

 $\therefore Solution: (-4, -6, 6)$

Use Cramer's rule to solve the system

$$\begin{cases} x + y + z = 3 \\ -y + 2z = 1 \\ -x + z = 0 \end{cases}$$

Solution

$$D = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & -1 & 2 & 0 & -1 & = -4 \\ -1 & 0 & 1 & -1 & 0 \end{vmatrix}$$

$$D_{x} = \begin{vmatrix} 3 & 1 & 1 & 3 & 1 \\ 1 & -1 & 2 & 1 & -1 & = -4 \\ 0 & 0 & 1 & 0 & 0 \end{vmatrix}$$

$$D_{y} = \begin{vmatrix} 1 & 3 & 1 & 1 & 1 \\ 0 & 1 & 2 & 0 & -1 & = -4 \\ -1 & 0 & 1 & -1 & 0 \end{vmatrix}$$

$$D_z = \begin{vmatrix} 1 & 1 & 3 & 1 & 1 \\ 0 & -1 & 1 & 0 & -1 & = -4 \\ -1 & 0 & 0 & -1 & 0 \end{vmatrix}$$

$$x = \frac{4}{4} = 1$$

$$x = \frac{D_x}{D}$$

$$y = \frac{4}{4} = 1 \qquad \qquad y = \frac{D_y}{D}$$

$$z = \frac{4}{4} = 1$$

$$z = \frac{D_z}{D}$$

 \therefore Solution: (1, 1, 1)

Exercise

Use Cramer's rule to solve the system

$$\begin{cases} 3x + y + 3z = 14 \\ 7x + 5y + 8z = 37 \\ x + 3y + 2z = 9 \end{cases}$$

$$D = \begin{vmatrix} 3 & 1 & 3 & 3 & 1 \\ 7 & 5 & 8 & 7 & 5 & = 30 + 8 + 62 - 15 - 72 - 14 & = 0 \\ 1 & 3 & 2 & 1 & 3 & \end{vmatrix}$$

$$D = \begin{vmatrix} 3 & 1 & 3 & 3 & 1 \\ 7 & 5 & 8 & 7 & 5 & = 30 + 8 + 62 - 15 - 72 - 14 & = 0 \end{vmatrix}$$

$$D_z = \begin{vmatrix} 3 & 1 & 14 & 3 & 1 \\ 7 & 5 & 37 & 7 & 5 & = 135 + 37 + 294 - 70 - 333 - 63 & = 0 \end{vmatrix}$$

$$1 = \begin{bmatrix} 3 & 1 & 14 & 3 & 1 \\ 7 & 5 & 37 & 7 & 5 & = 135 + 37 + 294 - 70 - 333 - 63 & = 0 \end{bmatrix}$$

$$\begin{array}{c|c}
-3 \times (1) & \begin{cases}
-9x - 3y - 9z = -42 \\
x + 3y + 2z = 9 \\
-8x - 7z = -33
\end{array}$$

$$x = -\frac{7}{8}z + \frac{33}{8}$$

(1)
$$\rightarrow y = 14 - 3z - 3\left(-\frac{7}{8}z + \frac{33}{8}\right)$$

= $\frac{13}{8} - \frac{3}{8}z$

∴ Solution:
$$\left(\frac{33}{8} - \frac{7}{8}z, \frac{13}{8} - \frac{3}{8}z, z\right)$$

Use Cramer's rule to solve the system

$$\begin{cases} 4x - 2y + z = 7 \\ x + y + z = -2 \\ 4x + 2y + z = 3 \end{cases}$$

$$D = \begin{vmatrix} 4 & -2 & 1 & 4 & -2 \\ 1 & 1 & 1 & 1 & 1 & \underline{=-12} \\ 4 & 2 & 1 & 4 & 2 \end{vmatrix}$$

$$D_{x} = \begin{vmatrix} 7 & -2 & 1 & 7 & -2 \\ -2 & 1 & 1 & -2 & 1 & = -24 \\ 3 & 2 & 1 & 3 & 2 \end{vmatrix}$$

$$D_{y} = \begin{vmatrix} 4 & 7 & 1 & 4 & 7 \\ 1 & -2 & 1 & 1 & -2 & =12 \\ 4 & 3 & 1 & 4 & 3 \end{vmatrix}$$

$$D_z = \begin{vmatrix} 4 & -2 & 7 & 4 & -2 \\ 1 & 1 & -2 & 1 & 1 & = 36 \\ 4 & 2 & 3 & 4 & 2 \end{vmatrix}$$

$$x = \frac{24}{12} = 2$$

$$x = \frac{D_x}{D}$$

$$y = -\frac{12}{12} = -1$$
 $y = \frac{D}{D}$

$$z = -\frac{36}{12} = -3$$

$$z = \frac{D_z}{D}$$

$$\therefore Solution: (2, -1, -3)$$

Use Cramer's rule to solve the system

$$\begin{cases} 2y - z = 7 \\ x + 2y + z = 17 \\ 2x - 3y + 2z = -1 \end{cases}$$

Solution

$$D = \begin{vmatrix} 0 & 2 & -1 & 0 & 2 \\ 1 & 2 & 1 & 1 & 2 & \underline{=1} \\ 2 & 3 & 2 & 2 & 3 \end{vmatrix}$$

$$D_{x} = \begin{vmatrix} 7 & 2 & -1 & 7 & 2 \\ 17 & 2 & 1 & 17 & 2 & = -116 \\ -1 & 3 & 2 & -1 & 3 \end{vmatrix}$$

$$D_{y} = \begin{vmatrix} 0 & 7 & -1 & 0 & 7 \\ 1 & 17 & 1 & 1 & 17 & 1 \\ 2 & -1 & 2 & 2 & -1 \end{vmatrix}$$

$$D_z = \begin{vmatrix} 0 & 2 & 7 & 0 & 2 \\ 1 & 2 & 17 & 1 & 2 & = 63 \\ 2 & 3 & -1 & 2 & 3 \end{vmatrix}$$

$$x = -116$$

$$x = \frac{D_x}{D}$$

$$y = 35$$

$$y = \frac{D_y}{D}$$

$$z = \underline{63}$$

$$z = \frac{D_z}{D}$$

∴ Solution: (-116, 35, 63)

Exercise

Use Cramer's rule to solve the system

$$\begin{cases} 2x - 2y + z = -4 \\ 6x + 4y - 3z = -24 \\ x - 2y + 2z = 1 \end{cases}$$

$$D = \begin{vmatrix} 2 & -2 & 1 & 2 & -2 \\ 6 & 4 & -3 & 6 & 4 & \underline{=}18 \\ 1 & -2 & 2 & 1 & -2 \end{vmatrix}$$

$$D_{x} = \begin{vmatrix} -4 & -2 & 1 & -4 & -2 \\ -24 & 4 & -3 & -24 & 4 & = -54 \\ 1 & -2 & 2 & 1 & -2 \end{vmatrix}$$

$$D_{y} = \begin{vmatrix} 2 & -4 & 1 & 2 & -4 \\ 6 & -24 & -3 & 6 & -24 & \underline{=0} \\ 1 & 1 & 2 & 1 & 1 \end{vmatrix}$$

$$D_z = \begin{vmatrix} 2 & -2 & -4 & 2 & -2 \\ 6 & 4 & -24 & 6 & 4 & = 36 \\ 1 & -2 & 1 & 1 & -2 \end{vmatrix}$$

$$x = -\frac{54}{18} = -3$$

$$x = \frac{D_x}{D}$$

$$y = 0$$

$$y = \frac{D_y}{D}$$

$$\therefore Solution: (-3, 0, 2)$$

Use Cramer's rule to solve the system

$$\begin{cases} 9x + 3y + z = 4\\ 16x + 4y + z = 2\\ 25x + 5y + z = 2 \end{cases}$$

$$D = \begin{vmatrix} 9 & 3 & 1 & 9 & 3 \\ 16 & 4 & 1 & 16 & 4 & =-2 \\ 25 & 5 & 1 & 25 & 5 \end{vmatrix}$$

$$D_{x} = \begin{vmatrix} 4 & 3 & 1 & 4 & 3 \\ 2 & 4 & 1 & 2 & 4 = -2 \\ 2 & 5 & 1 & 2 & 5 \end{vmatrix}$$

$$D_{y} = \begin{vmatrix} 9 & 4 & 1 & 9 & 4 \\ 16 & 2 & 1 & 16 & 2 & \underline{=}18 \\ 25 & 2 & 1 & 25 & 2 \end{vmatrix}$$

$$D_z = \begin{vmatrix} 9 & 3 & 4 & 9 & 3 \\ 16 & 4 & 2 & 16 & 4 = -44 \\ 25 & 5 & 2 & 25 & 5 \end{vmatrix}$$

$$x = 1$$

$$x = \frac{D_x}{D}$$

$$y = -9$$

$$y = \frac{D_y}{D}$$

$$z = 22$$

$$z = 22$$

$$z = \frac{D_z}{D}$$

$$\therefore Solution: (1, -9, 22)$$

Use Cramer's rule to solve the system

$$\begin{cases} 2x - y + 2z = -8\\ x + 2y - 3z = 9\\ 3x - y - 4z = 3 \end{cases}$$

Solution

$$D = \begin{vmatrix} 2 & -1 & 2 & 2 & -1 \\ 1 & 2 & -3 & 1 & 2 & = -31 \\ 3 & -1 & -4 & 3 & -1 \end{vmatrix}$$

$$D_{x} = \begin{vmatrix} -8 & -1 & 2 & -8 & -1 \\ 9 & 2 & -3 & 9 & 2 & =31 \\ 3 & -1 & -4 & 3 & -1 \end{vmatrix}$$

$$D_{y} = \begin{vmatrix} 2 & -8 & 2 & 2 & -8 \\ 1 & 9 & -3 & 1 & 9 & =-62 \\ 3 & 3 & -4 & 3 & 3 \end{vmatrix}$$

$$D_z = \begin{vmatrix} 2 & -1 & -8 & 2 & -1 \\ 1 & 2 & 9 & 1 & 2 & = 62 \\ 3 & -1 & 3 & 3 & -1 \end{vmatrix}$$

$$x = -\frac{31}{31} = -1$$

$$x = \frac{D_x}{D}$$

$$y = \frac{62}{31} = 2 \qquad \qquad y = \frac{D_y}{D}$$

$$z = -\frac{62}{31} = -2$$

$$z = \frac{D_z}{D}$$

∴ Solution:
$$(-1, 2, -2)$$

Exercise

Use Cramer's rule to solve the system

$$\begin{cases} x & -3z = -5\\ 2x - y + 2z = 16\\ 7x - 3y - 5z = 19 \end{cases}$$

$$D = \begin{vmatrix} 1 & 0 & -3 & 1 & 0 \\ 2 & -1 & 2 & 2 & -1 & \underline{= 8} \\ 7 & -3 & -5 & 7 & -3 \end{vmatrix}$$

$$D_{x} = \begin{vmatrix} -5 & 0 & -3 & -5 & 0 \\ 16 & -1 & 2 & 16 & -1 & = 32 \\ 19 & -3 & -5 & 19 & -3 \end{vmatrix}$$

$$D_{y} = \begin{vmatrix} 1 & -5 & -3 & 1 & -5 \\ 2 & 16 & 2 & 2 & 16 & = -16 \\ 7 & 19 & -5 & 7 & 19 \end{vmatrix}$$

$$D_z = \begin{vmatrix} 1 & 0 & -5 & 1 & 0 \\ 2 & -1 & 16 & 2 & -1 & = 24 \\ 7 & -3 & 19 & 7 & -3 \end{vmatrix}$$

$$x = \frac{32}{8} = 4$$

$$x = \frac{D_x}{D}$$

$$y = -\frac{16}{8} = -2 \qquad \qquad y = \frac{D_y}{D}$$

$$z = \frac{24}{8} = 3$$

$$z = \frac{D_z}{D}$$

$$\therefore Solution: (4, -2, 3)$$

Use Cramer's rule to solve the system

$$\begin{cases} x + 2y - z = 5 \\ 2x - y + 3z = 0 \\ 2y + z = 1 \end{cases}$$

$$D = \begin{vmatrix} 1 & 2 & -1 & 1 & 2 \\ 2 & -1 & 3 & 2 & -1 & = -15 \\ 0 & 2 & 1 & 0 & 2 \end{vmatrix}$$

$$D_{x} = \begin{vmatrix} 5 & 2 & -1 & 5 & 2 \\ 0 & -1 & 3 & 0 & -1 & = -30 \\ 1 & 2 & 1 & 1 & 2 \end{vmatrix}$$

$$D_{y} = \begin{vmatrix} 1 & 5 & -1 \\ 2 & 0 & 3 \\ 0 & 1 & 1 \end{vmatrix} \begin{bmatrix} 1 & 5 \\ 2 & 0 & = -15 \end{bmatrix}$$

$$D_z = \begin{vmatrix} 1 & 2 & 5 & 1 & 2 \\ 2 & -1 & 0 & 2 & -1 & = 15 \\ 0 & 2 & 1 & 0 & 2 \end{vmatrix}$$

$$x = \frac{30}{15} = 2 \qquad \qquad x = \frac{D_x}{D}$$

$$y = \frac{15}{15} = 1 \qquad \qquad y = \frac{D_y}{D}$$

$$z = -\frac{15}{15} = -1$$

$$z = \frac{D_z}{D}$$

 $\therefore Solution: (2, 1, -1)$

Exercise

Use Cramer's rule to solve the system

$$\begin{cases} x + y + z = 6 \\ 3x + 4y - 7z = 1 \\ 2x - y + 3z = 5 \end{cases}$$

Solution

$$D = \begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ 3 & 4 & -7 & 3 & 4 & = -29 \\ 2 & -1 & 3 & 2 & -1 \end{vmatrix}$$

$$D_{x} = \begin{vmatrix} 6 & 1 & 1 & 6 & 1 \\ 1 & 4 & -7 & 1 & 4 & =-29 \\ 5 & -1 & 3 & 5 & -1 \end{vmatrix}$$

$$D_{y} = \begin{vmatrix} 1 & 6 & 1 & 1 & 6 \\ 3 & 1 & -7 & 3 & 1 & =-87 \\ 2 & 5 & 3 & 2 & 5 \end{vmatrix}$$

$$D_z = \begin{vmatrix} 1 & 2 & 6 & 1 & 2 \\ 2 & -1 & 1 & 2 & -1 & = -58 \\ 0 & 2 & 5 & 0 & 2 \end{vmatrix}$$

$$x = \frac{29}{29} = 1 \qquad \qquad x = \frac{D_x}{D}$$

$$y = \frac{87}{29} = 3$$

$$y = \frac{D_y}{D}$$

$$z = \frac{58}{29} = 2$$

$$z = \frac{D_z}{D}$$

 \therefore Solution: (1, 3, 2)

Use Cramer's rule to solve the system

$$\begin{cases} 3x + 2y + 3z = 3 \\ 4x - 5y + 7z = 1 \\ 2x + 3y - 2z = 6 \end{cases}$$

Solution

$$D = \begin{vmatrix} 3 & 2 & 3 & 3 & 2 \\ 4 & -5 & 7 & 4 & -5 & = 77 \\ 2 & 3 & -2 & 2 & 3 \end{vmatrix}$$

$$D_{x} = \begin{vmatrix} 3 & 2 & 3 & 3 & 2 \\ 1 & -5 & 7 & 1 & -5 & =154 \\ 6 & 3 & -2 & 6 & 3 \end{vmatrix}$$

$$D_{y} = \begin{vmatrix} 3 & 3 & 3 & 3 & 3 \\ 4 & 1 & 7 & 4 & 1 & = 0 \\ 2 & 6 & -2 & 2 & 6 \end{vmatrix}$$

$$D_z = \begin{vmatrix} 3 & 2 & 3 & 3 & 2 \\ 4 & -5 & 1 & 4 & -5 & = -77 \\ 2 & 3 & 6 & 2 & 3 \end{vmatrix}$$

$$x = \frac{154}{77} = 2 \qquad \qquad x = \frac{D_x}{D}$$

$$y = 0$$
 $y = \frac{D_y}{D}$

$$z = -\frac{77}{77} = -1$$

$$z = \frac{D_z}{D}$$

 $\therefore Solution: (2, 0, -1)$

Exercise

Use Cramer's rule to solve the system

$$\begin{cases} 4x + 5y = 2\\ 11x + y + 2z = 3\\ x + 5y + 2z = 1 \end{cases}$$

$$D = \begin{vmatrix} 4 & 5 & 0 & 4 & 5 \\ 11 & 1 & 2 & 11 & 1 & = -132 \\ 1 & 5 & 2 & 1 & 5 \end{vmatrix}$$

$$D_x = \begin{vmatrix} 2 & 5 & 0 & 2 & 5 \\ 3 & 1 & 2 & 3 & 1 & = -36 \\ 1 & 5 & 2 & 1 & 5 \end{vmatrix}$$

$$D_{y} = \begin{vmatrix} 4 & 2 & 0 & 4 & 2 \\ 11 & 3 & 2 & 11 & 3 & = -24 \\ 1 & 1 & 2 & 1 & 1 \end{vmatrix}$$

$$D_z = \begin{vmatrix} 4 & 5 & 2 & 4 & 5 \\ 11 & 1 & 3 & 11 & 1 & =12 \\ 1 & 5 & 1 & 1 & 5 \end{vmatrix}$$

$$x = \frac{36}{132} = \frac{3}{11} \qquad \qquad x = \frac{D_x}{D}$$

$$y = \frac{24}{132} = \frac{2}{11}$$
 $y = \frac{D_y}{D}$

$$z = -\frac{12}{132} = -\frac{1}{11} \qquad z = \frac{D_z}{D}$$

$$\therefore$$
 Solution: $\left(\frac{3}{11}, \frac{2}{11}, -\frac{1}{11}\right)$

Use Cramer's rule to solve the system

$$\begin{cases} x - 4y + z = 6 \\ 4x - y + 2z = -1 \\ 2x + 2y - 3z = -20 \end{cases}$$

$$D = \begin{vmatrix} 1 & -4 & 1 & 1 & -4 \\ 4 & -1 & 2 & 4 & -1 & = -55 \\ 2 & 2 & -3 & 2 & 2 \end{vmatrix}$$

$$D_{x} = \begin{vmatrix} 6 & -4 & 1 & 6 & -4 \\ -1 & -1 & 2 & -1 & -1 & = 144 \\ -20 & 2 & -3 & -20 & 2 \end{vmatrix}$$

$$D_{y} = \begin{vmatrix} 1 & 6 & 1 & 1 & 6 \\ 4 & -1 & 2 & 4 & -1 & = 61 \\ 2 & -20 & -3 & 2 & -20 \end{vmatrix}$$

$$D_z = \begin{vmatrix} 1 & -4 & 6 & 1 & -4 \\ 4 & -1 & -1 & 4 & -1 & = -230 \\ 2 & 2 & -20 & 2 & 2 \end{vmatrix}$$

$$x = -\frac{144}{55}$$

$$x = \frac{D_x}{D}$$

$$y = -\frac{61}{55}$$

$$y = \frac{D}{D}$$

$$z = \frac{230}{55} = \frac{46}{11}$$
 $z = \frac{D_z}{D}$

: Solution:
$$\left(-\frac{144}{55}, -\frac{61}{55}, \frac{46}{11}\right)$$

Use Cramer's rule to solve the system

$$\begin{cases} 2x - y + z = -1 \\ 3x + 4y - z = -1 \\ 4x - y + 2z = -1 \end{cases}$$

$$D = \begin{vmatrix} 2 & -1 & 1 & 2 & -1 \\ 3 & 4 & -1 & 3 & 4 & \underline{=5} \\ 4 & -1 & 2 & 4 & -1 \end{vmatrix}$$

$$D_{x} = \begin{vmatrix} -1 & -1 & 1 & -1 & -1 \\ -1 & 4 & -1 & -1 & 4 & =-5 \\ -1 & -1 & 2 & -1 & -1 \end{vmatrix}$$

$$D_{y} = \begin{vmatrix} 2 & -1 & 1 & 2 & -1 \\ 3 & -1 & -1 & 3 & -1 & = 5 \\ 4 & -1 & 2 & 4 & -1 \end{vmatrix}$$

$$D_z = \begin{vmatrix} 2 & -1 & -1 & 2 & -1 \\ 3 & 4 & -1 & 3 & 4 & =10 \\ 4 & -1 & -1 & 4 & -1 \end{vmatrix}$$

$$\underline{x = -1}$$
 $x = \frac{D_x}{D}$

$$y = 1$$

$$y = \frac{D_y}{D}$$

$$\underline{z=2}$$
 $z=\frac{D}{D}$

$$\therefore Solution: (-1, 1, 2)$$

Use Cramer's rule to solve the system

$$\begin{cases} -x_1 - 4x_2 + 2x_3 + x_4 = -32 \\ 2x_1 - x_2 + 7x_3 + 9x_4 = 14 \\ -x_1 + x_2 + 3x_3 + x_4 = 11 \\ -x_1 - 2x_2 + x_3 - 4x_4 = -4 \end{cases}$$

Solution

$$D = \begin{vmatrix} -1 & -4 & 2 & 1 \\ 2 & -1 & 7 & 9 \\ -1 & 1 & 3 & 1 \\ -1 & -2 & 1 & -4 \end{vmatrix} = -243$$

$$D_1 = \begin{vmatrix} -32 & -4 & 2 & 1 \\ 14 & -1 & 7 & 9 \\ 11 & 1 & 3 & 1 \\ -4 & -2 & 1 & -4 \end{vmatrix} = -2115$$

$$D_2 = \begin{vmatrix} -1 & -32 & 2 & 1 \\ 2 & 14 & 7 & 9 \\ -1 & 11 & 3 & 1 \\ -1 & -4 & 1 & -4 \end{vmatrix} = -1834$$

$$D_3 = \begin{vmatrix} -1 & -4 & -32 & 1 \\ 2 & -1 & 14 & 9 \\ -1 & 1 & 11 & 1 \\ -1 & -2 & -4 & -4 \end{vmatrix} = -1279$$

$$D_4 = \begin{vmatrix} -1 & -4 & 2 & -32 \\ 2 & -1 & 7 & 14 \\ -1 & 1 & 3 & 11 \\ -1 & -2 & 1 & -4 \end{vmatrix} = 883$$

∴ Solution:
$$\left(\frac{235}{27}, \frac{1834}{243}, \frac{1279}{243}, -\frac{883}{243}\right)$$

Exercise

Solve for
$$x$$
.
$$\begin{vmatrix} x & 3 \\ 2 & 1 \end{vmatrix} = 12$$

$$\begin{vmatrix} x & 3 \\ 2 & 1 \end{vmatrix} = x - 6 = 12$$

∴ Solution: x = 18

Exercise

Solve for x. $\begin{vmatrix} x & 1 \\ 2 & x \end{vmatrix} = -1$

Solution

$$\begin{vmatrix} x & 1 \\ 2 & x \end{vmatrix} = x^2 - 2 = -1$$

$$x^2 = 1$$

∴ *Solution*: $x = \pm 1$

Exercise

Solve for x. $\begin{vmatrix} 3 & x \\ x & 4 \end{vmatrix} = -13$

Solution

$$\begin{vmatrix} 3 & x \\ x & 4 \end{vmatrix} = 12 - x^2 = -13$$

$$x^2 = 25$$

∴ *Solution*: $x = \pm 5$

Exercise

Solve for x. $\begin{vmatrix} x & 2 \\ 3 & x \end{vmatrix} = x$

Solution

$$\begin{vmatrix} x & 2 \\ 3 & x \end{vmatrix} = x^2 - 6 = x$$

$$x^2 - x - 6 = 0$$

 $\therefore Solution: \underline{x = -2, 3}$

Solve for
$$x$$
.
$$\begin{vmatrix} 4 & 6 \\ -2 & x \end{vmatrix} = 32$$

Solution

$$\begin{vmatrix} 4 & 6 \\ -2 & x \end{vmatrix} = 4x + 12 = 32$$

$$4x = 20$$

∴ Solution:
$$x = 5$$

Exercise

Solve for
$$x$$
.
$$\begin{vmatrix} x+2 & -3 \\ x+5 & -4 \end{vmatrix} = 3x-5$$

Solution

$$\begin{vmatrix} x+2 & -3 \\ x+5 & -4 \end{vmatrix} = -4x - 8 + 3x + 15 = 3x - 5$$

$$-4x = -12$$

$$\therefore$$
 Solution: $x = 3$

Exercise

Solve for x.
$$\begin{vmatrix} x+3 & -6 \\ x-2 & -4 \end{vmatrix} = 28$$

Solution

$$\begin{vmatrix} x+3 & -6 \\ x-2 & -4 \end{vmatrix} = -4x - 12 + 6x - 12 = 28$$

$$2x = 52$$

∴ Solution:
$$x = 26$$

Exercise

Solve for
$$x$$
.
$$\begin{vmatrix} x & -3 \\ -1 & x \end{vmatrix} \ge 0$$

$$\begin{vmatrix} x & -3 \\ -1 & x \end{vmatrix} = x^2 - 3 \ge 0$$

$$x^2 \ge 3$$

∴ Solution:
$$\underline{x \le -\sqrt{3}}$$
 $\underline{x \ge \sqrt{3}}$

Solve for x.
$$\begin{vmatrix} 2 & x & 1 \\ 1 & 2 & -1 \\ 3 & 4 & -2 \end{vmatrix} = -6$$

Solution

$$\begin{vmatrix} 2 & x & 1 \\ 1 & 2 & -1 \\ 3 & 4 & -2 \end{vmatrix} = -8 - 3x + 4 - 6 + 8 + 2x = -6$$

$$-x = -4$$

∴ *Solution*:
$$x = 4$$

Exercise

Solve for x.
$$\begin{vmatrix} 1 & x & -3 \\ 3 & 1 & 1 \\ 0 & -2 & 2 \end{vmatrix} = 8$$

$$\begin{vmatrix} 1 & x & -3 \\ 3 & 1 & 1 \\ 0 & -2 & 2 \end{vmatrix} = 2 + 18 + 2 - 6x = 8$$

$$-6x = -14$$

∴ Solution:
$$x = \frac{7}{3}$$

Solve for x.
$$\begin{vmatrix} 2 & x & 1 \\ -3 & 1 & 0 \\ 2 & 1 & 4 \end{vmatrix} = 39$$

Solution

$$\begin{vmatrix} 2 & x & 1 \\ -3 & 1 & 0 \\ 2 & 1 & 4 \end{vmatrix} = 8 - 3 - 2 + 12x = 39$$

$$12x = 36$$

∴ Solution:
$$x = 3$$

Exercise

Solve for x.
$$\begin{vmatrix} x & 0 & 0 \\ 7 & x & 1 \\ 7 & 2 & 1 \end{vmatrix} = -1$$

Solution

$$\begin{vmatrix} x & 0 & 0 \\ 7 & x & 1 \\ 7 & 2 & 1 \end{vmatrix} = x^2 - 2x = -1$$

$$x^2 - 2x + 1 = 0$$

∴ Solution:
$$x = 1$$

Exercise

Find the quadratic function $f(x) = ax^2 + bx + c$ for which f(1) = -10, f(-2) = -31, f(2) = -19. What is the function?

$$f(1) = a(1)^{2} + b(1) + c \implies -10 = a + b + c$$

$$f(-2) = a(-2)^{2} + b(-2) + c \implies -31 = 4a - 2b + c$$

$$f(2) = a(2)^{2} + b(2) + c \implies -19 = 4a + 2b + c$$

$$\begin{cases} a + b + c = -10 \\ 4a - 2b + c = -31 \\ 4a + 2b + c = -19 \end{cases}$$

$$D = \begin{vmatrix} 1 & 1 & 1 \\ 4 & -2 & 1 \\ 4 & 2 & 1 \end{vmatrix} = 12$$

$$D = \begin{vmatrix} 1 & 1 & 1 \\ 4 & -2 & 1 \\ 4 & 2 & 1 \end{vmatrix} = 12$$

$$D_a = \begin{vmatrix} -10 & 1 & 1 \\ -31 & -2 & 1 \\ -19 & 2 & 1 \end{vmatrix} = -48$$

$$D_b = \begin{vmatrix} 1 & -10 & 1 \\ 4 & -31 & 1 \\ 4 & -19 & 1 \end{vmatrix} = 36$$

$$D_b = \begin{vmatrix} 1 & -10 & 1 \\ 4 & -31 & 1 \\ 4 & -19 & 1 \end{vmatrix} = 36$$

$$D_c = \begin{vmatrix} 1 & 1 & -10 \\ 4 & -2 & -31 \\ 4 & 2 & -19 \end{vmatrix} = -108$$

$$a = \frac{D_a}{D} = \frac{-48}{12} = -4$$

$$b = \frac{D_b}{D} = \frac{36}{12} = 3$$

$$c = \frac{D_c}{D} = \frac{-108}{12} = \frac{-9}{12}$$

$$\therefore Solution: f(x) = -x^2 + 3x - 9$$

you wish to mix candy worth \$3.44 per pound with candy worth \$9.96 per pound to form 24 pounds of a mixture worth \$8.33 per pound.

- a) Write the system equations?
- b) How many pounds of each candy should you use?

Solution

Let x: total pounds of \$3.44 candy y: total pounds of \$9.96 candy

a)
$$\begin{cases} x + y = 24 \\ 3.44x + 9.96y = 8.33(24) \end{cases}$$
$$\begin{cases} x + y = 24 \\ 344x + 996y = 19,992 \end{cases}$$
$$\begin{cases} x + y = 24 \\ 86x + 249y = 4,998 \end{cases}$$

b)
$$D = \begin{vmatrix} 1 & 1 \\ 86 & 249 \end{vmatrix} = 163$$

$$D_x = \begin{vmatrix} 24 & 1 \\ 4998 & 249 \end{vmatrix} = 978$$

$$D_y = \begin{vmatrix} 1 & 24 \\ 86 & 4998 \end{vmatrix} = 2,934$$

Total pounds of \$3.44 candy: $\frac{978}{163} = 6$ lbs

Total pounds of \$9.96 candy: $\frac{2,934}{163} = 18 \ lbs$

Anne and Nancy use a metal alloy that is 17.76% copper to make jewelry. How many ounces of a 15% alloy must be mixed with a 19% alloy to form 100 ounces of the desired alloy?

Solution

Let x: total ounces 15%

y: total ounces of 19%

$$\begin{cases} x + y = 100 \\ 15x + 19y = 17.76(100) \end{cases}$$

$$\begin{cases} x + y = 100 \\ 15x + 19y = 1776 \end{cases}$$

$$D = \begin{vmatrix} 1 & 1 \\ 15 & 19 \end{vmatrix} = 4$$

$$D = \begin{vmatrix} 1 & 1 \\ 15 & 19 \end{vmatrix} = 4 \qquad D_x = \begin{vmatrix} 100 & 1 \\ 1776 & 19 \end{vmatrix} = 124$$

∴ Total ounces 15%: $\frac{124}{4} = 31$ ounces

Exercise

A company makes 3 types of cable. Cable A requires 3 black, 3 white, and 2 red wires. B requires 1 black, 2 white, and 1 red. C requires 2 black, 1 white, and 2 red. They used 95 black, 100 white and 80 red wires.

- a) Write the system equations?
- b) How many of each cable were made?

Solution

Let x: Cable A

y: Cable **B**

z: Cable C

a)
$$\begin{cases} 3x + y + 2z = 95 \\ 3x + 2y + z = 100 \\ 2x + y + 2z = 80 \end{cases}$$

b)
$$D = \begin{vmatrix} 3 & 1 & 2 & 3 & 1 \\ 3 & 2 & 1 & 3 & 2 & 3 \\ 2 & 1 & 2 & 2 & 1 \end{vmatrix}$$

$$D_x = \begin{vmatrix} 95 & 1 & 2 \\ 100 & 2 & 1 \\ 80 & 1 & 2 \end{vmatrix} \begin{array}{cccc} 95 & 1 \\ 100 & 2 & \underline{=45} \\ 80 & 1 \end{array}$$

$$D_{y} = \begin{vmatrix} 3 & 95 & 2 & 3 & 95 \\ 3 & 100 & 1 & 3 & 100 & = 60 \\ 2 & 80 & 2 & 2 & 80 \end{vmatrix}$$

$$D_{z} = \begin{vmatrix} 3 & 1 & 95 & 3 & 1 \\ 3 & 2 & 100 & 3 & 2 & = 45 \\ 2 & 1 & 80 & 2 & 1 \end{vmatrix}$$

$$D_z = \begin{vmatrix} 3 & 1 & 95 \\ 3 & 2 & 100 \\ 2 & 1 & 80 \end{vmatrix} = \begin{vmatrix} 3 & 1 \\ 3 & 2 & = 45 \end{vmatrix}$$

$$x = \frac{45}{3} = 15$$

$$x = \frac{D_x}{D}$$

$$y = \frac{60}{3} = 20$$

$$y = \frac{D_y}{D}$$

$$y = \frac{60}{3} = 20$$

$$y = \frac{D_y}{D}$$

$$z = \frac{45}{3} = 15$$

$$z = \frac{D_z}{D}$$

∴ *Solution*: 15 cable *A* 20 cable *B* 15 cable *C*

Exercise

A basketball fieldhouse seats 15,000. Courtside seats sell for \$8.00, end zone for \$6.00, and balcony for \$5.00. Total for a sell-out is \$86,000. If half the courtside and balcony and all end zone seats are sold, ticket sales total \$49,000.

- a) Write the system equations?
- b) How many of each type of seat are there?

Solution

Let x: Courtside seats

y: end zone

z: balcony

a)
$$\begin{cases} x + y + z = 15,000 \\ 8x + 6y + 5z = 86,000 \\ \frac{1}{2}(8x) + 6y + \frac{1}{2}(5z) = 49,000 \end{cases}$$

$$\begin{cases} x + y + z = 15,000 \\ 8x + 6y + 5z = 86,000 \\ 8x + 12y + 5z = 98,000 \end{cases}$$

b)
$$D = \begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ 8 & 6 & 5 & 8 & 6 & =18 \\ 8 & 12 & 5 & 8 & 12 \end{vmatrix}$$

$$D_{x} = \begin{vmatrix} 15,000 & 1 & 1 \\ 86,000 & 6 & 5 \\ 98,000 & 12 & 5 \end{vmatrix} \begin{vmatrix} 86,000 & 6 & = 54,000 \\ 98,000 & 12 & 5 \end{vmatrix} \begin{vmatrix} 86,000 & 6 & = 54,000 \\ 98,000 & 12 & 5 \end{vmatrix} \begin{vmatrix} 1 & 15,000 & 1 \\ 8 & 86,000 & 5 \\ 8 & 98,000 & 5 \end{vmatrix} \begin{vmatrix} 1 & 15,000 & 8 & 86,000 \\ 8 & 98,000 & 5 \end{vmatrix} \begin{vmatrix} 1 & 1 & 15,000 & 8 & 6 & = 180,000 \\ 8 & 12 & 98,000 & 8 & 12 \end{vmatrix}$$

$$x = \frac{54,000}{18} = 3,000 \qquad x = \frac{D_{x}}{D}$$

$$y = \frac{36,000}{18} = 2,000 \qquad y = \frac{D_{y}}{D}$$

$$x = \frac{54,000}{18} = 3,000$$
 $x = \frac{1}{2}$

$$y = \frac{36,000}{18} = 2,000$$
 $y = \frac{D_y}{D}$

$$z = \frac{180,000}{18} = 10,000$$

$$z = \frac{D_z}{D}$$

∴ Solution: 3,000 Courtside

2,000 End zone

10,000 Balcony

Exercise

A movie theater charges \$9.00 for adults and \$7.00 for senior citizens. On a day when 325 people paid admission, the total receipts were \$2,495.

- a) Write the system equations?
- b) How many who paid were adults? How many were seniors?

Solution

Let x: Adults

y: Senior citizens

a)
$$\begin{cases} x + y = 325 \\ 9x + 7y = 2495 \end{cases}$$

b)
$$D = \begin{vmatrix} 1 & 1 \\ 9 & 7 \end{vmatrix} = -2 \begin{vmatrix} 1 & 1 \\ 9 & 7 \end{vmatrix} = -2 \begin{vmatrix} 1 & 325 \\ 2 & 495 \end{vmatrix} = -220 \begin{vmatrix} 1 & 325 \\ 9 & 2 & 495 \end{vmatrix} = 430 \begin{vmatrix} 1 & 325$$

∴ Solution: 110 Adults

215 Senior citizens

A Broadway theater has 500 seats, divided into orchestra, main, and balcony seating. Orchestra seats sell for \$150, main seats for \$135, and balcony seats for \$110. If all the seats are sold, the gross revenue to the theater is \$64,250. If all the main and balcony seats are sold, but only half the orchestra seats are sold, the gross revenue is \$56,750.

 $D_{x} = \begin{vmatrix} 500 & 1 & 1 \\ 12850 & 27 & 22 \\ 11350 & 27 & 22 \end{vmatrix} = 7,500$

- a) Write the system equations?
- b) How many of each kind of seat are there?

Solution

Let x: Numbers of orchestra seats

y: Numbers of main seats

z: Numbers of balcony seats

a)
$$\begin{cases} x + y + z = 500 \\ 150x + 135y + 110z = 64, 250 \\ \frac{1}{2}(150)x + 135y + 110z = 56, 750 \end{cases}$$
$$\begin{cases} x + y + z = 500 \\ 30x + 27y + 22z = 12, 850 \\ 15x + 27y + 22z = 11, 350 \end{cases}$$

$$D_{y} = \begin{vmatrix} 1 & 500 & 1 \\ 30 & 12,850 & 22 \\ 15 & 11,350 & 22 \end{vmatrix} = \underbrace{15,750}_{=15,750} \qquad D_{z} = \begin{vmatrix} 1 & 1 & 500 \\ 30 & 27 & 12,850 \\ 15 & 27 & 11,350 \end{vmatrix} = \underbrace{14,250}_{=14,250}$$

$$x = \frac{7,500}{75} = 100$$

$$x = \frac{D_x}{D}$$

$$y = \frac{15,750}{75} = 210$$

$$y = \frac{D_y}{D}$$

$$z = \frac{14,250}{75} = 190$$

$$z = \frac{D_z}{D}$$

: Solution: There are 100 orchestra seats, 210 main seats, and 190 balcony seats.

A movie theater charges \$11 for adults, \$6.50 for children, and \$9 for senior citizens. One day the theater sold 405 tickets and collected \$3,315 in receipts. Twice as many children's tickets were sold as adult tickets.

- a) Write the system equations?
- b) How many adults, children, and senior citizens went to the theater that day?

Solution

Let x: Numbers of adults

v: Numbers of children

z: Numbers of senior citizens

a)
$$\begin{cases} x + y + z = 405 \\ 11x + 6.5y + 9z = 33315 \\ y = 2x \end{cases}$$

$$b) \begin{cases} 3x + z = 405 \\ 24x + 9z = 3{,}315 \end{cases}$$

$$D = \begin{vmatrix} 3 & 1 \\ 24 & 9 \end{vmatrix} = 3$$

$$D_x = \begin{vmatrix} 405 & 1 \\ 3,315 & 9 \end{vmatrix} = 330$$
 $D_y = \begin{vmatrix} 3 & 405 \\ 24 & 3,315 \end{vmatrix} = 225$

$$D_{y} = \begin{vmatrix} 3 & 405 \\ 24 & 3{,}315 \end{vmatrix} = 225$$

$$x = \frac{330}{3} = 110$$

$$x = \frac{D_x}{D}$$

$$x = \frac{D_x}{D}$$

$$z = \frac{225}{3} = 75$$

$$z = \frac{D_z}{D}$$

$$z = \frac{D_z}{D}$$

$$y = 2(110) = 220$$

: Solution: There are 110 adults, 220 children, and 75 senior citizens.

Exercise

Emma has \$20,000 to invest. As her financial planner, you recommend that she diversify into three investements: Treasure bills that yield 5% simple interest. Treasury bonds tht yield 7% simple interest, and corporate bonds that yield 10% simple interest. Emma wishes to earn \$1,390 per year in income. Also, Emma wants her investment in Treasury bills to be \$3,000 more than her investment in corporate bonds. How much money should Emma place in each investement?

Solution

Let x: Amount in Treasure bills.

y: Amount in Treasury bonds.

Amount in corporate bonds.

$$\begin{cases} x + y + z = 20,000 \\ .05x + .07y + .1z = 1,390 \\ x = 3,000 + z \end{cases}$$

$$\begin{cases} x + y + z = 20,000 \\ 5x + 7y + 10z = 139,000 \\ x - z = 3,000 \end{cases}$$

$$D = \begin{vmatrix} 1 & 1 & 1 \\ 5 & 7 & 10 \\ 1 & 0 & -1 \end{vmatrix} = 1$$

$$D_x = \begin{vmatrix} 20,000 & 1 & 1 \\ 139,000 & 7 & 10 \\ 3,000 & 0 & -1 \end{vmatrix} = 8,000$$

$$D_y = \begin{vmatrix} 1 & 20,000 & 1 \\ 5 & 139,000 & 10 \\ 1 & 3,000 & -1 \end{vmatrix} = 7,000$$

$$D_z = \begin{vmatrix} 1 & 1 & 20,000 \\ 5 & 7 & 139,000 \\ 1 & 0 & 3,000 \end{vmatrix} = 5,000$$

∴ Solution: Emma should invest \$8,000 in Treasure bills

\$7,000 in Treasury bonds

\$5,000 in corporate bonds.

Exercise

A person invested \$17,000 for one year, part at 10%, part at 12%, and the remainder at 15%. The total annual income from these investements was \$2,110. The amount of money invested at 12% was \$1,000 less than the amounts invested at 10% and 15% combined. Find the amount invested at each rate.

Solution

Let x =Amount invested at 10%

Let y = Amount invested at 12%

Let z = Amount invested at 15%

$$\begin{cases} x + y + z = 17,000 \\ .1x + .12y + .15z = 2,110 \\ y = x + z - 1,000 \end{cases}$$

$$\begin{cases} x + y + z = 17,000 \\ 10x + 12y + 15z = 211,000 \\ x - y + z = 1,000 \end{cases}$$

$$D = \begin{vmatrix} 1 & 1 & 1 \\ 10 & 12 & 15 \\ 1 & -1 & 1 \end{vmatrix} = 10$$

$$D_x = \begin{vmatrix} 17,000 & 1 & 1 \\ 211,000 & 12 & 15 \\ 1,000 & -1 & 1 \end{vmatrix} = 40,000$$

$$D_{y} = \begin{vmatrix} 1 & 17,000 & 1 \\ 10 & 211,000 & 15 \\ 1 & 1,000 & 1 \end{vmatrix} = 80,000$$

$$D_z = \begin{vmatrix} 1 & 1 & 17,000 \\ 10 & 12 & 211,000 \\ 1 & -1 & 1,000 \end{vmatrix} = \underline{50,000}$$

$$x = \frac{40,000}{10} = 4,000$$

$$x = \frac{D_x}{D}$$

$$y = \frac{80,000}{10} = 8,000$$
 $y = \frac{D_y}{D}$

$$z = \frac{50,000}{10} = 5,000$$

$$z = \frac{D}{D}$$

: Solution: should invest \$4,000 invested at 10%

\$8,000 invested at 12%

\$5,000 invested at 15%.

Exercise

At a production, 400 tickets were sold. The ticket prices were \$8, \$10, and \$12, and the total income from ticket sales was \$3,700. How many tickets of each type were sold if the combined number of \$8 and \$10 tickets sold was 7 times the number of \$12 tickets sold?

Solution

Let x =Numbers of tickets sold at \$8

Let y =Numbers of tickets sold at \$10

Let z = Numbers of tickets sold at 12

$$\begin{cases} x + y + z = 400 \\ 8x + 10y + 12z = 3,700 \\ x + y = 7z \end{cases}$$

$$\begin{cases} x + y + z = 400 \\ 4x + 5y + 6z = 1,850 \\ x + y - 7z = 0 \end{cases}$$

$$D = \begin{vmatrix} 1 & 1 & 1 \\ 4 & 5 & 6 \\ 1 & 1 & -7 \end{vmatrix} = -8$$

$$D_{x} = \begin{vmatrix} 400 & 1 & 1 \\ 1,850 & 5 & 6 \\ 0 & 1 & -7 \end{vmatrix} = -1,600$$

$$D_{y} = \begin{vmatrix} 1 & 400 & 1 \\ 4 & 1850 & 6 \\ 1 & 0 & -7 \end{vmatrix} = -1,200$$

$$D_z = \begin{vmatrix} 1 & 1 & 400 \\ 4 & 5 & 1,850 \\ 1 & 1 & 0 \end{vmatrix} = -400 \begin{vmatrix} 1 & 1 & 0 \end{vmatrix}$$

$$x = \frac{1600}{8} = 200$$
 $x = \frac{D_x}{D}$

$$y = \frac{1200}{8} = 150$$
 $y = \frac{D_y}{D}$

$$z = \frac{400}{8} = 50$$

$$z = \frac{D_z}{D}$$

: Solution: 200 tickets sold at \$8

150 tickets sold at \$10

50 tickets sold at \$12

A certain brand of razor blades comes in packages if 6, 12, and 24 blades, costing \$2, \$3, and \$4 per package, respectively. A store sold 12 packages containing a total of 162 razor blades and took in \$35. How many packages of each type were sold?

- Let x =Numbers of packages sold at \$2
- Let y =Numbers of packages sold at \$3
- Let z =Numbers of packages sold at \$4

$$\begin{cases} x + y + z = 12 \\ 2x + 3y + 4z = 35 \\ 6x + 12y + 24z = 162 \end{cases}$$

$$\begin{cases} x + y + z = 12 \\ 2x + 3y + 4z = 35 \\ x + 2y + 4z = 27 \end{cases}$$

$$D = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 1 & 2 & 4 \end{vmatrix} = 1 \begin{vmatrix} 1 & 1 \\ 1 & 2 & 4 \end{vmatrix}$$

$$D_{x} = \begin{vmatrix} 12 & 1 & 1 \\ 35 & 3 & 4 \\ 27 & 2 & 4 \end{vmatrix} = \underline{5}$$

$$D_{y} = \begin{vmatrix} 1 & 12 & 1 \\ 2 & 35 & 4 \\ 1 & 27 & 4 \end{vmatrix} = 3 \begin{vmatrix} 1 & 1 & 1 \\ 1 & 27 & 4 \end{vmatrix}$$

$$D_z = \begin{vmatrix} 1 & 1 & 12 \\ 2 & 3 & 35 \\ 1 & 2 & 27 \end{vmatrix} = 4 \begin{vmatrix} 1 & 1 & 12 \\ 1 & 2 & 27 \end{vmatrix}$$

$$x = \frac{5}{1} = 5$$

$$x = \frac{D_x}{D}$$

$$y = \frac{3}{1} = 3$$

$$y = \frac{D_y}{D}$$

$$z = \frac{4}{1} = 4$$

$$z = \frac{D}{D}$$

- ∴ Solution: 5 packages sold at \$2
 - 3 packages sold at \$3
 - 4 packages sold at \$4

A store sells cashews for \$5.00 per pound and peanuts for \$1.50 per pound. The manager decides to mix 30 pounds of peanuts with some cashews and sell the mixture for \$3.00 per pound.

- a) Write the system equations?
- b) How many pounds of cashews should be mixed with peanuts so that the mixture will produce the same revenue as selling the nuts separately?

Solution

Let *x*: pounds of cashews *y*: pounds of in the mixture

a)
$$\begin{cases} x + 30 = y \\ 5x + \frac{3}{2}(30) = 3y \end{cases}$$
$$\begin{cases} x - y = -30 \\ 5x - 3y = -45 \end{cases}$$

b)
$$D = \begin{vmatrix} 1 & -1 \\ 5 & -3 \end{vmatrix} = \underline{2}$$

$$D_x = \begin{vmatrix} -30 & -1 \\ -45 & -3 \end{vmatrix} = \underline{45}$$

$$\underline{x = \frac{90}{7}}$$

$$y = \frac{120}{7}$$

$$y = \frac{D_x}{D}$$

∴ Solution: $\frac{45}{2}$ = 22.5 pounds of cashews

Exercise

A wireless store takes presale orders for a new smartphone and tablet. He gets 340 preorders for the smartphone and 250 preorders for the tablet. The combined value of the preorders is \$270,500.00. If the price of a smartphone and tablet together is \$965, how much does each device cost?

Solution

Let x: Cost of a smartphone

y: Cost of a tablet

$$\begin{cases} 340x + 250y = 270,500 \\ x + y = 965 \end{cases}$$

$$\begin{cases} 34x + 25y = 27,050 \\ x + y = 965 \end{cases}$$

$$D = \begin{vmatrix} 34 & 25 \\ 1 & 1 \end{vmatrix} = 9$$

$$D_x = \begin{vmatrix} 27,050 & 25 \\ 965 & 1 \end{vmatrix} = 2,925$$

$$D_y = \begin{vmatrix} 34 & 27,050 \\ 1 & 965 \end{vmatrix} = 5,760$$

$$x = \frac{2,925}{9} = \$325$$

$$x = \frac{D_x}{D}$$

$$y = \frac{5,760}{9} = \$640$$

$$y = \frac{D_y}{D}$$

∴ Solution: Cost of a smartphone is \$325

Cost of a tablet is \$640

Exercise

A restaurant manager wants to purchase 200 sets of dishes. One design costs \$25 per set, and another costs \$45 per set. If she has only \$7400 to spend, how many sets of each design should be order?

Solution

Let x: Number of sets for \$25 set.

y: Number of sets for \$45 set.

$$\begin{cases} 25x + 45y = 7,400 \\ x + y = 200 \end{cases}$$
$$\begin{cases} 5x + 9y = 1,480 \\ x + y = 200 \end{cases}$$

$$D = \begin{vmatrix} 5 & 9 \\ 1 & 1 \end{vmatrix} = -4$$

$$D_x = \begin{vmatrix} 1480 & 9 \\ 200 & 1 \end{vmatrix} = -320$$

$$x = \frac{320}{4} = 80$$
 $x = \frac{D_x}{D}$

$$y = \frac{480}{4} = 120$$
 $y = \frac{D_y}{D}$

: Solution: 80 sets for \$25 set.

120 sets for \$45 set.

 $D_y = \begin{vmatrix} 5 & 1480 \\ 1 & 200 \end{vmatrix} = -480$

One group of people purchased 10 hot dogs and 5 soft drinks at a cost of \$35.00. A second bought 7 hot dogs and 4 soft drinks at a cost of \$25.25. What is the cost of a single hot dog and a single soft drink?

Solution

Let *x*: Cost of a hot dog.

y: Cost of a drink

$$\begin{cases} 10x + 5y = 35 \\ 7x + 4y = 25.25 \end{cases}$$

$$\begin{cases} 2x + y = 7 \\ 700x + 400y = 2{,}525 \end{cases}$$

$$D = \begin{vmatrix} 2 & 1 \\ 700 & 400 \end{vmatrix} = 100$$

$$D_x = \begin{vmatrix} 7 & 1 \\ 2,525 & 400 \end{vmatrix} = 275$$

$$D_y = \begin{vmatrix} 2 & 7 \\ 700 & 2,525 \end{vmatrix} = 150$$

$$x = \frac{275}{100} = 2.75 \qquad x = \frac{D_x}{D}$$

$$y = \frac{150}{100} = 1.5$$
 $y = \frac{D_y}{D}$

∴ *Solution*: Cost of a hot dog is \$2.75

Cost of a soft drink is \$1.50

Exercise

The sum of three times the first number, plus the second number, and twice the third number is 5. If 3 times the second number is subtracted from the sum of the first number and 3 times the third number, the result is 2. If the third number is subtracted from the sum of 2 times the first number and 3 times the second number, the result is 1. Find the three numbers.

Solution

Let *x*: be the first number.

y: be the second number.

z: be the third number.

$$\begin{cases} 3x + y + 2z = 5\\ (x+3z) - 3y = 2\\ 2x + 3y - z = 1 \end{cases}$$

$$\begin{cases} 3x + y + 2z = 5 \\ x - 3y + 3z = 2 \\ 2x + 3y - z = 1 \end{cases}$$

$$D = \begin{vmatrix} 3 & 1 & 2 \\ 1 & -3 & 3 \\ 2 & 3 & -1 \end{vmatrix} = 7$$

$$D_{x} = \begin{vmatrix} 5 & 1 & 2 \\ 2 & -3 & 3 \\ 1 & 3 & -1 \end{vmatrix} = -7$$

$$D_{y} = \begin{vmatrix} 3 & 5 & 2 \\ 1 & 2 & 3 \\ 2 & 1 & -1 \end{vmatrix} = 14$$

$$D_z = \begin{vmatrix} 3 & 1 & 5 \\ 1 & -3 & 2 \\ 2 & 3 & 1 \end{vmatrix} = \underline{21}$$

$$x = -\frac{7}{7} = -1$$

$$x = \frac{D_x}{D}$$

$$y = \frac{14}{7} = 2$$

$$y = \frac{D_y}{D}$$

$$z = \frac{21}{7} = 3$$

$$z = \frac{D_z}{D}$$

: Solution: The three numbers are: -1, 2, and 3

Exercise

The sum of three numbers is 16. The sum of twice the first number, 3 times the second number, and 4 times the third number is 46. The difference between 5 times the first number and the second number is 31. Find the three numbers.

Solution

Let *x*: be the first number.

y: be the second number.

z: be the third number.

$$\begin{cases} x + y + z = 16 \\ 2x + 3y + 4z = 46 \\ 5x - y = 31 \end{cases}$$

$$D = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 5 & -1 & 0 \end{vmatrix} = 7$$

$$D_{x} = \begin{vmatrix} 16 & 1 & 1 \\ 46 & 3 & 4 \\ 31 & -1 & 0 \end{vmatrix} = \underline{49}$$

$$D_{y} = \begin{vmatrix} 1 & 16 & 1 \\ 2 & 46 & 4 \\ 5 & 31 & 0 \end{vmatrix} = \underline{28}$$

$$D_z = \begin{vmatrix} 1 & 1 & 16 \\ 2 & 3 & 46 \\ 5 & -1 & 31 \end{vmatrix} = 35$$

$$x = \frac{49}{7} = 7$$

$$y = \frac{28}{7} = 4$$

$$z = \frac{35}{7} = 5$$

$$z = \frac{D}{D}$$

$$z = \frac{D}{D}$$

: Solution: The three numbers are: 7, 4, and 5

Exercise

Two blocks of wood having the same length and width are placed on the top and bottom of a table. Length A measure 32 cm. The blocks are rearranged. Length B measures 28 cm. Determine the height of the table.

Solution

Let *h*: height of the table.

l: length of the block

w: width of the block

$$(A) \quad h - w + l = 32$$

$$\begin{cases} (A) & h - w + l = 32 \\ (B) & h - l + w = 28 \end{cases}$$

$$2h = 60$$

∴ Solution: The height of the table is 30 cm

Exercise

In the following triangle, the degree measures of the three interior angles and two of the exterior angles are represented with variables. Find the measure of each interior angle.

$$\begin{cases} x + y + z = 180 \\ z + 2x + 5 = 180 \\ y + 2x - 5 = 180 \end{cases}$$

$$\begin{cases} x + y + z = 180 \\ 2x + z = 175 \\ 2x + y = 185 \end{cases}$$

$$D = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 0 & 1 \\ 2 & 1 & 0 \end{vmatrix} = 3$$

$$D_{x} = \begin{vmatrix} 180 & 1 & 1 \\ 175 & 0 & 1 \\ 185 & 1 & 0 \end{vmatrix} = 180$$

$$D_{y} = \begin{vmatrix} 1 & 180 & 1 \\ 2 & 175 & 1 \\ 2 & 185 & 0 \end{vmatrix} = 195$$

$$D = \begin{vmatrix} 1 & 1 & 180 \\ 2 & 0 & 175 \\ 2 & 1 & 185 \end{vmatrix} = 165$$

$$x = \frac{180}{3} = 60^{\circ}$$

$$x = \frac{D_{x}}{D}$$

$$y = \frac{195}{3} = 65^{\circ}$$

$$z = \frac{D_{y}}{D}$$

$$z = \frac{D_{y}}{D}$$

Three painters (Beth, Bill, and Edie), working together, can paint the exterior of a home in 10 *hours*. Bill and Edie together have painted similar house in 15 *hours*. One day, all three worked on this same kind of house for 4 *hours*, after which Edie left. Beth and Bill required 8 more *hours* to finish. Assuming no gain or loss in efficiency, how long should it take each person to complete such a job alone?

Solution

Let x: Beth's time

y: Bill's time

z: Edie's time

Let $\frac{1}{x} = a$: Beth's part of the job done in 1 *hour*.

 $\frac{1}{y} = b$: Bill's part of the job done in 1 *hour*.

 $\frac{1}{z} = c$: Edie's part of the job done in 1 *hour*.

All completed 1 job in 10 hours: $10\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) = 1$

Bill and Edie 1 job in 15 hours: $15\left(\frac{1}{y} + \frac{1}{z}\right) = 1$

All worked 1 job in 4 hours Beth and Bill required 8 hours:

$$4\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) + 8\left(\frac{1}{x} + \frac{1}{y}\right) = 1$$

$$\begin{cases} 10a + 10b + 10c = 1\\ 15b + 15c = 1\\ 4a + 4b + 4c + 8a + 8b = 1 \end{cases}$$
$$\begin{cases} 10a + 10b + 10c = 1\\ 15b + 15c = 1\\ 12a + 12b + 4c = 1 \end{cases}$$

$$D = \begin{vmatrix} 10 & 10 & 10 \\ 0 & 15 & 15 \\ 12 & 12 & 4 \end{vmatrix} = -1200$$

$$D_a = \begin{vmatrix} 1 & 10 & 10 \\ 1 & 15 & 15 \\ 1 & 12 & 4 \end{vmatrix} = -40$$

$$D_b = \begin{vmatrix} 10 & 1 & 10 \\ 0 & 1 & 15 \\ 12 & 1 & 4 \end{vmatrix} = -50$$

$$D_c = \begin{vmatrix} 10 & 10 & 1 \\ 0 & 15 & 1 \\ 12 & 12 & 1 \end{vmatrix} = -30$$

$$a = \frac{40}{1200} = \frac{1}{30} \rightarrow x = \frac{1}{a} = 30$$

$$b = \frac{50}{1200} = \frac{1}{24} \rightarrow y = \frac{1}{b} = 24$$

$$c = \frac{30}{1200} = \frac{1}{40} \rightarrow z = \frac{1}{a} = 40$$

: Solution: Took alone to complete a job: Beth 30 hours, Bill 24 hours, and Eddie 40 hours

Exercise

An application of Kirchhoff's Rules to the circuit shown results in the following system of equations:

$$\begin{cases} I_1 = I_3 + I_4 \\ I_1 + 5I_4 = 8 \\ I_1 + 3I_3 = 4 \\ 8 - 4 - 2I_2 = 0 \end{cases}$$
 Find the currents I_1 , I_2 , I_3 , and I_4

$$\begin{cases} I_1 - I_3 - I_4 = 0 \\ I_1 + 5I_4 = 8 \\ I_1 + 3I_3 = 4 \\ \underline{I_2 = 2} \end{cases}$$

$$\begin{array}{c|c}
\hline
I_3 & & & \\
\hline
I_1 & & & \\
\hline
I_1 & & & \\
\hline
I_2 & & \\
\hline
I_4 & & & \\
\hline
I_2 & & \\
\hline
\end{array}$$

$$D = \begin{vmatrix} 1 & -1 & -1 \\ 1 & 0 & 5 \\ 1 & 3 & 0 \end{vmatrix} = -23$$

$$D_1 = \begin{vmatrix} 0 & -1 & -1 \\ 8 & 0 & 5 \\ 4 & 3 & 0 \end{vmatrix} = \underline{-44}$$

$$D_3 = \begin{vmatrix} 1 & 0 & -1 \\ 1 & 8 & 5 \\ 1 & 4 & 0 \end{vmatrix} = \underline{-16}$$

$$D_4 = \begin{vmatrix} 1 & -1 & 0 \\ 1 & 0 & 8 \\ 1 & 3 & 4 \end{vmatrix} = \underline{-28}$$

$$D_3 = \begin{vmatrix} 1 & 0 & -1 \\ 1 & 8 & 5 \\ 1 & 4 & 0 \end{vmatrix} = -16$$

$$D_4 = \begin{vmatrix} 1 & -1 & 0 \\ 1 & 0 & 8 \\ 1 & 3 & 4 \end{vmatrix} = -28 \begin{vmatrix} 1 & -28 \end{vmatrix}$$

∴ Solution:
$$I_1 = \frac{44}{23}$$
 $I_2 = 2$ $I_3 = \frac{16}{23}$ $I_4 = \frac{28}{23}$

$$I_2 = 2$$

$$I_3 = \frac{16}{23}$$

$$I_4 = \frac{28}{23}$$

An application of Kirchhoff's Rules to the circuit shown results in the following system of equations:

$$\begin{cases} I_1 = I_2 + I_3 \\ 24 - 6I_1 - 3I_3 = 0 \\ 12 + 24 - 6I_1 - 6I_2 = 0 \end{cases}$$
 Find the currents I_1 , I_2 , and I_3

Solution

$$\begin{cases} I_1 - I_2 - I_3 = 0 \\ 2I_1 + I_3 = 8 \\ I_1 + I_2 = 6 \end{cases}$$

$$D = \begin{vmatrix} 1 & -1 & -1 \\ 2 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix} = \underline{-4}$$

$$D_1 = \begin{vmatrix} 0 & -1 & -1 \\ 8 & 0 & 1 \\ 6 & 1 & 0 \end{vmatrix} = \underline{-14} \qquad \qquad D_2 = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 8 & 1 \\ 1 & 6 & 0 \end{vmatrix} = \underline{-10} \qquad \qquad D_3 = \begin{vmatrix} 1 & -1 & 0 \\ 2 & 0 & 8 \\ 1 & 1 & 6 \end{vmatrix} = \underline{-4}$$

$$D_2 = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 8 & 1 \\ 1 & 6 & 0 \end{vmatrix} = -10$$

$$D_3 = \begin{vmatrix} 1 & -1 & 0 \\ 2 & 0 & 8 \\ 1 & 1 & 6 \end{vmatrix} = \underline{-4}$$

∴ Solution:
$$I_1 = \frac{7}{2}$$
 $I_2 = \frac{5}{2}$ $I_3 = 1$

$$I_2 = \frac{5}{2}$$

$$I_3 = 1$$

Exercise

An application of Kirchhoff's Rules to the circuit shown results in the following system of equations:

$$\begin{cases} I_2 = I_1 + I_3 \\ 5 - 3I_1 - 5I_2 = 0 \\ 10 - 5I_2 - 7I_3 = 0 \end{cases}$$
 Find the currents I_1 , I_2 , and I_3

$$\begin{cases} -I_1 + I_2 - I_3 = 0 \\ 3I_1 + 5I_2 = 5 \\ 5I_2 + 7I_3 = 10 \end{cases}$$

$$D = \begin{vmatrix} -1 & 1 & -1 \\ 3 & 5 & 0 \\ 0 & 5 & 7 \end{vmatrix} = -71$$

$$D_1 = \begin{vmatrix} 0 & 1 & -1 \\ 5 & 5 & 0 \\ 10 & 5 & 7 \end{vmatrix} = \underline{-10} \qquad D_2 = \begin{vmatrix} -1 & 0 & -1 \\ 3 & 5 & 0 \\ 0 & 10 & 7 \end{vmatrix} = \underline{-65} \qquad D_3 = \begin{vmatrix} -1 & 1 & 0 \\ 3 & 5 & 5 \\ 0 & 5 & 10 \end{vmatrix} = \underline{-55}$$

$$D_3 = \begin{vmatrix} -1 & 1 & 0 \\ 3 & 5 & 5 \\ 0 & 5 & 10 \end{vmatrix} = -55$$

$$\therefore Solution: \qquad \underline{I_1 = \frac{10}{71}} \qquad \qquad \underline{I_2 = \frac{65}{71}} \qquad \qquad \underline{I_3 = \frac{55}{71}}$$

An application of Kirchhoff's Rules to the circuit shown results in the following system of equations:

$$\begin{cases} I_3 = I_1 + I_2 \\ 6I_2 + 4I_3 = 8 \\ 8I_1 = 4 + 6I_2 \end{cases}$$
 Find the currents I_1 , I_2 , and I_3

$$\begin{cases} I_1 + I_2 - I_3 = 0 \\ 3I_2 + 2I_3 = 4 \\ 4I_1 - 3I_2 = 2 \end{cases}$$

$$D = \begin{vmatrix} 1 & 1 & -1 \\ 0 & 3 & 2 \\ 4 & -3 & 0 \end{vmatrix} = 26$$

$$D_1 = \begin{vmatrix} 0 & 1 & -1 \\ 4 & 3 & 2 \\ 2 & -3 & 0 \end{vmatrix} = \underline{22}$$

$$D_2 = \begin{vmatrix} 1 & 0 & -1 \\ 0 & 4 & 2 \\ 4 & 2 & 0 \end{vmatrix} = \underline{12}$$

$$D_3 = \begin{vmatrix} 1 & 1 & 0 \\ 0 & 3 & 4 \\ 4 & -3 & 2 \end{vmatrix} = \underline{34}$$

$$D_2 = \begin{vmatrix} 1 & 0 & -1 \\ 0 & 4 & 2 \\ 4 & 2 & 0 \end{vmatrix} = \underline{12}$$

$$D_3 = \begin{vmatrix} 1 & 1 & 0 \\ 0 & 3 & 4 \\ 4 & -3 & 2 \end{vmatrix} = 34$$

∴ Solution:
$$I_1 = \frac{22}{26} = \frac{11}{13}$$

$$I_2 = \frac{12}{26} = \frac{6}{13}$$

$$I_3 = \frac{34}{26} = \frac{17}{13}$$