Magnetismo

Fenomenologia

- Interazioni meccaniche tra circuiti percorsi da correnti
 - Correnti con lo stesso verso si attraggono
 - Correnti con verso opposto si respingono

Non c'è carica netta nei circuiti

- ⇒ Forze non elettrostatiche
- Interazioni tra correnti e magneti

Esperimento di Oersted (1820): Filo percorso da corrente posizionato sopra un ago magnetico:

- Se filo \perp ago, nessun effetto
- Se filo // ago, l'ago ruota
- Se si inverte il verso della corrente, l'ago ruota nel senso opposto
- Interazioni (attrattive e repulsive) tra magneti
- Impossibilità di isolare una carica magnetica

In un conduttore (es. metallo), **E** agisce su e⁻ (liberi) e ioni + (fissi) ⇒ corrente di e⁻

E <u>non</u> esercita forze sull'intero conduttore, perché è neutro

Il campo magnetico agisce solo sulle cariche in moto (e⁻), ma l'attrazione coulombiana impedisce che gli e⁻ vengano strappati dal conduttore

⇒ Le forze magnetiche agiscono su tutto il conduttore, "trascinato" dagli e-

I campi magnetici:

- Sono prodotti solo da cariche in moto
- Esercitano forze solo su cariche in moto

I fenomeni magnetici nei mezzi materiali sono dovuti a:

- Moto delle cariche atomiche ("correnti atomiche")
- "Magnetismo intrinseco" di e- ed altre particelle nucleari (spin)

Non esistono "monopoli magnetici" (cariche magnetiche)

Campo magnetostatico

Le interazioni tra cariche ferme sono descritte mediante il campo elettrico ${\bf E}$

Le interazioni tra correnti e cariche in moto sono descritte mediante il campo magnetico B (o induzione magnetica)

Una particella di carica q in moto con velocità v è soggetta alla forza F:

$$\mathbf{F} = \mathbf{qE} + \mathbf{qv} \times \mathbf{B}$$

dove:
$$\mathbf{F}_{L} = \mathbf{q}\mathbf{v} \times \mathbf{B} = \mathbf{Forza} \ \mathbf{di} \ \mathbf{Lorentz}$$

L'espressione della forza consente la *definizione operativa* di **B**:

- Con $\mathbf{v} = 0$, si misura **E**
- Con $\mathbf{v} = \mathbf{v}_1$ e $\mathbf{v} = \mathbf{v}_2$ (non parallelo a \mathbf{v}_1), si misurano le forze \mathbf{F}_1 ed \mathbf{F}_2
- Si determinano le componenti di B

Nel S.I.: B si misura in Tesla (T)

Nel Sistema C.G.S.: **Gauss** (**G**)
$$1 \text{ G} = 10^{-4} \text{ T}$$

$$B_{Terra} \cong 0.5 G$$

Per una corrente:

$$qv \rightarrow \rho d\tau v = J d\tau$$

La forza agente è:

$$d\mathbf{F} = \mathbf{J} \times \mathbf{B} d\tau$$

La forza per unità di volume è:

$$\mathbf{F}_{\tau} = \mathbf{J} \times \mathbf{B}$$

Se J è uniforme sulla sezione S (conduttore filiforme):

$$d\mathbf{F} = \mathbf{J} \times \mathbf{B} \, \mathrm{Sdl}$$

$$dF = I dl u_t \times B$$
 II formula di Laplace

L'**elemento di corrente** *I dl* isolato non esiste

 \Rightarrow dF agente su dl è un'astrazione, ma è utile per calcolare la forza agente su una generica corrente:

$$\mathbf{F} = \int_{\gamma} i \, dl \, \mathbf{u}_{\iota} \times \mathbf{B}$$

Leggi della Magnetostatica nel vuoto

I legge: Il campo magnetico prodotto da qualsiasi distribuzione di correnti è solenoidale

$$\iint_{\Sigma} \mathbf{B} \cdot \mathbf{u}_{n} dS = 0$$
 I legge della magnetostatica

Non esistono cariche magnetiche che siano sorgenti (o pozzi) delle linee di forza di **B**

- Le linee di forza di **B** sono chiuse o si estendono all'infinito
- \triangleright Se due superfici S₁ ed S₂ hanno lo stesso orlo γ :

$$\iint_{S_1} \mathbf{B} \cdot \mathbf{u}_n dS = \iint_{S_2} \mathbf{B} \cdot \mathbf{u}_n dS$$

Nel S.I. il flusso di **B** si misura in: Weber (Wb) = $T \text{ m}^{-2}$

II legge: La circuitazione di **B** lungo γ è proporzionale alla somma delle correnti concatenate ed il coefficiente di proporzionalità è μ_{o}

$$\oint_{\gamma} \mathbf{B} \cdot \mathbf{u}_{t} dl = \mu_{o} I$$
II legge della magnetostatica
(o Legge di Ampere)

dove:

 $\mu_{\rm o} = 4\pi \cdot 10^{-7} \ {\rm Hm^{-1}} = {\bf Permeabilit \hat{a}} \ {\bf magnetica} \ {\bf del} \ {\bf vuoto}$

Le correnti concatenate hanno segno positivo quando vedono come antiorario il verso di percorrenza di γ

Se non ci sono correnti concatenate (o la somma è nulla), la circuitazione è nulla.

Se γ è una linea di forza di **B**, la circuitazione è \neq 0 (**B** // \mathbf{u}_{+} ed equiverso) \Rightarrow Esiste I concatenata

Applicando il Th. della divergenza alla I legge, si ha:

$$div \mathbf{B} = 0$$

 $div \mathbf{B} = 0$ III equazione di Maxwell

⇒ Non esistono sorgenti isolate del campo magnetico

Applicando il Th. del rotore alla II legge, si ha:

$$\iint_{S} rot \, \mathbf{B} \cdot \mathbf{u}_{n} dS = \mu_{o} \iint_{S} \mathbf{J} \cdot \mathbf{u}_{n} dS$$

$$rot \mathbf{B} = \mu_{o} \mathbf{J}$$

IV equazione di Maxwell (in m.s.)

Le **correnti J** sono i **vortici** di **B** (cond. stazionarie)

Questa formulazione della IV equazione di Maxwell è valida in **condizioni stazionarie** (magnetostatica)

Calcolando la divergenza:

$$div \ rot \ \mathbf{B} = \mu_o div \ \mathbf{J}$$

dove: div $rot \mathbf{B} \equiv 0$ è un'identità vettoriale $div \mathbf{J} = 0$ solo in condizioni stazionarie

Nelle leggi della m.s. è contenuto il principio di sovrapposizione degli effetti: il campo magnetico prodotto nel vuoto da un insieme di correnti è la somma vettoriale dei campi prodotti dalle singole correnti

Il campo magnetico prodotto da una distribuzione spazialmente limitata di correnti "va a zero" all'infinito

Condizioni al contorno per B

Data una corrente superficiale di densità J_s

$$\Phi_{\Sigma}(\mathbf{B}) = \mathbf{B} \cdot \mathbf{u}_{n1} dS + \mathbf{B} \cdot \mathbf{u}_{n2} dS + \dots = 0$$

$$\Rightarrow B_{n1} = B_{n2}$$

$$\Rightarrow [B_n] = 0$$

$$\oint_{\gamma} \mathbf{B} \cdot \mathbf{u}_{t} dl = (\mathbf{B} \cdot \mathbf{u}_{t1} + \mathbf{B} \cdot \mathbf{u}_{t2}) dl + \dots = \mu_{0} \int_{l} \mathbf{J}_{s} \cdot \mathbf{u}_{n} dl$$

$$\Rightarrow (B_{t1} - B_{t2}) dl = \mu_{0} J_{s}' dl$$

$$\Rightarrow [B_t] = \mu_0 J_s'$$

Esempi di B prodotto da distribuzioni di correnti

Utilizziamo la legge di Ampere

Corrente rettilinea indefinita

Solenoide toroidale

B *esterno* è nullo (non concatenerebbe nessuna corrente). All'*interno*, le linee di campo sono circonferenze concentriche con il toro (simmetria).

$$B \cdot 2\pi r = \mu_0 Ni$$
 \Rightarrow $B = B(r) = \frac{\mu_0 Ni}{2\pi r}$

Solenoide rettilineo indefinito

Toro con $r \to \infty$

Il campo B esterno è nullo.

Il campo **B** *interno* è uniforme e parallelo all'asse del solenoide.

$$\oint_{\gamma} \mathbf{B} \cdot \mathbf{u}_{t} dl = B l = \mu_{0} N i$$

Se: n = N/l = numero di spire per unità di lunghezza

$$B = \mu_0 \, n \, I$$

Solenoide finito

Il campo **B** esterno non è nullo, ma è meno intenso che all'interno.

L'*interno* del solenoide è approssimabile a quello di un solenoide indefinito purchè lontano dai bordi e se la lunghezza del solenoide è >> del suo diametro.

Problema generale della Magnetostatica

Nota J, calcolare B in ogni punto dello spazio.

In generale, occorre risolvere le equazioni fornite dalle leggi della m.s.:

$$div \mathbf{B} = 0$$
 $rot \mathbf{B} = \mu_0 \mathbf{J}$

La soluzione è:

$$\mathbf{B}(P) = \frac{\mu_o}{4\pi} \iiint_{\tau} \frac{\mathbf{J}(Q) \times \mathbf{u}_r}{r^2} d\tau$$

Valida se:

$$\lim_{Q\to\infty}\mathbf{J}(Q)=0$$

Analoga all'espressione per il calcolo di \mathbf{E} , nota ρ :

$$\mathbf{E}(P) = \frac{1}{4\pi\varepsilon_o} \iiint_{\tau} \frac{\rho(Q)\mathbf{u}_r}{r^2} d\tau$$

Per una **corrente filiforme** di intensità *I* in un conduttore di sezione *S*:

$$d\tau = Sdl \qquad \mathbf{J} = J\mathbf{u}_{t} \qquad I = JS$$

$$\Rightarrow \quad \mathbf{B}(P) = \frac{\mu_{o}I}{4\pi} \oint_{\gamma} \frac{\mathbf{u}_{t} \times \mathbf{u}_{r}}{r^{2}} dl$$

Il contributo di ogni elemento dl di conduttore è:

$$d\mathbf{B} = \frac{\mu_o}{4\pi} Idl \frac{\mathbf{u}_t \times \mathbf{u}_r}{r^2}$$
 I formula di Laplace

L'elemento di corrente *Idl* non ha significato fisico, serve solo per il calcolo di B.

I formula di Laplace ⇒ Campo generato da una corrente

II formula di Laplace ⇒ Forza esercitata su una corrente da un campo esterno

Campo generato da una carica in moto

Per una corrente di volume:

$$d\mathbf{B} = \frac{\mu_o}{4\pi} \frac{\mathbf{J} \times \mathbf{u}_r}{r^2} d\tau$$

$$\mathbf{J} d\tau = \rho \mathbf{v} d\tau = dq \mathbf{v}$$

Per una singola carica in moto:

$$\Rightarrow \mathbf{B} = \frac{\mu_o}{4\pi} \frac{q\mathbf{v} \times \mathbf{u}_r}{r^2}$$

Forze su cariche puntiformi

Studiamo il moto di una carica puntiforme q in un campo uniforme \mathbf{B}

La forza di Lorentz non compie lavoro:

$$\mathbf{F} = \mathbf{q}\mathbf{v} \times \mathbf{B} \implies \mathbf{B} \perp \mathbf{v}$$

$$\Rightarrow d\mathbf{L} = \mathbf{F} \cdot d\mathbf{r} = \mathbf{F} \cdot \mathbf{v}d\mathbf{t} = 0$$

$$\Rightarrow E_c = cost \implies \mathbf{v} = cost$$

⇒ Il moto è uniforme

Scegliamo $z // \mathbf{B}$

$$\mathbf{v} = \mathbf{v}_{\perp} + \mathbf{v}_{z}$$
 dove: $\mathbf{v}_{\perp} = \mathbf{v}_{x} + \mathbf{v}_{y}$
 $\mathbf{F} \perp \mathbf{B} \implies F_{z} = 0$

⇒ Moto uniforme lungo z

$$v = \cos t \quad (dE_c = 0) \quad e \quad v_z = \cos t$$

 $\Rightarrow \quad v_{\perp} = \cos t$

$$\mathbf{F} = q(\mathbf{v}_{\perp} + \mathbf{v}_{z}) \times \mathbf{B} = q\mathbf{v}_{\perp} \times \mathbf{B}$$

$$\Rightarrow \mathbf{F} = |q| v_{\perp} \mathbf{B} = \mathbf{cost}$$

Nel piano xy: $F = \cos t$, $v_{\perp} = \cos t$, $\mathbf{F} \perp \mathbf{v}_{\perp}$

⇒ Moto circolare uniforme in xy

Equazione del moto:

$$\frac{mv_{\perp}^2}{R} = |q|v_{\perp}B$$

$$\Rightarrow R = \frac{mv_{\perp}}{|q|B} = \text{raggio della circonferenza}$$

Combinando il moto uniforme lungo z e circolare uniforme in xy, si ottiene un moto elicoidale

Applicazione: Spettrometro di massa

Misura di massa di atomi e molecole (con $q \neq 0$)

- Camera a vuoto
- Campo B uniforme
- Ioni positivi con v nota e $\mathbf{v} \perp \mathbf{B}$
- ⇒ Traiettorie circolari con:

$$R = mv/qB \implies R_1/R_2 = m_1/m_2$$

Effetto Hall

In un conduttore:

Campo elettrico \mathbf{E}_1 longitudinale \Rightarrow Corrente (densità \mathbf{J})

Immergiamo il conduttore in un campo $\mathbf{B} \perp \mathbf{J}$

- ⇒ Forza di Lorentz, trasversale al conduttore
- ⇒ Accumulo di carica sulle superfici
- \Rightarrow Campo elettrico trasversale \mathbf{E}_{t} (campo di Hall)
- ⇒ ddp (≈µV) tra le superfici del conduttore

Il segno della ddp dipende dal segno dei portatori

Il moto trasversale delle cariche si interrompe quando la forza di Lorentz è bilanciata dalla "reazione elettrostatica"

Applicazioni:

- Determinare il segno dei portatori
- Misura di B (Sonda ad effetto Hall)

$$F_{L} = qvB = qE_{t} \implies E_{t} = vB \qquad \Delta V = E_{t}h$$

$$B = \frac{\Delta V}{vh} = \frac{nqa}{I} \Delta V \qquad \text{(essendo: } I = Jah, \ J = nqv\text{)}$$
15

Azioni meccaniche su circuiti percorsi da correnti

Si possono valutare utilizzando la II formula di Laplace

$$d\mathbf{F} = I \, dl \, \mathbf{u}_{\scriptscriptstyle t} \times \mathbf{B}$$

❖ Filo rettilineo di lunghezza *L*, percorso da corrente *I*, immerso nel campo **B** <u>uniforme</u>

Se
$$\mathbf{B} \perp \text{filo}$$
: $F = ILB \ (\mathbf{F} \perp \mathbf{B}, \ \mathbf{F} \perp \mathbf{u}_t)$

Se **B** // filo:
$$F = 0$$

Circuito percorso da corrente I, immerso in **B** <u>uniforme</u>

Forza

La forza risultante agente su un circuito percorso da corrente stazionaria immerso in un campo magnetico uniforme è nulla

$$\mathbf{F} = I \oint_{\gamma} \mathbf{u}_{t} dl \times \mathbf{B} = I \left(\oint_{\gamma} \mathbf{u}_{t} dl \right) \times \mathbf{B} = 0$$

Momento meccanico

 τ è indipendente dal polo (perché $\mathbf{F} = 0$)

$$\mathbf{\tau} = \oint_{\gamma} \mathbf{r} \times d\mathbf{F} = I \oint_{\gamma} \mathbf{r} \times (\mathbf{u}_{t} \times \mathbf{B}) dl = \dots$$

Il calcolo in generale è complesso.

❖ Se la **spira** è **piana** di superficie S, si dimostra che:

$$\tau = \mathbf{m} \times \mathbf{B}$$

dove: $m = ISu_n = Momento magnetico della spira$

Consideriamo gli effetti di B su una spira piana

- **B** // **m** ed equiverso \Rightarrow $\tau = 0$ (Equilibrio stabile)
- **B** // **m** con verso opposto \Rightarrow $\tau = 0$ (Equilibrio instabile)
- $\mathbf{B} \perp \mathbf{m} \implies \tau = \tau_{\text{max}} = mB$
 - ⇒ La spira ruota fino a disporsi con m // B

Esempio: Spira rettangolare

$\mathbf{B} \perp \text{spira}$

B || spira

Applicazioni

Galvanometro

Strumento per misurare correnti fino ai pA

La corrente I da misurare viene fatta passare in una bobina

- posta nel campo B generato da un magnete permanente
- vincolata ad una molla ad elica

La posizione di equilibrio (lettura dell'ago) si ha quando il momento meccanico della molla è bilanciato da quello dovuto all'interazione tra I e **B**

$$ISB \sin(90^{\circ} - \theta) = k \theta$$

Richiede taratura

Motore elettrico

- a) La spira ruota per portarsi nella condizione in cuim // B
- b) Per inerzia meccanica tende a superare la posizione di equilibrio
- c) **m** della spira viene invertito invertendo la corrente (con contatti striscianti o corrente alternata)
- ⇒ la spira ruota

Si usano vari avvolgimenti sfasati per rendere la rotazione più uniforme

Azioni tra circuiti percorsi da correnti

$$I_{1} \Rightarrow \mathbf{B}_{1} = \frac{\mu_{0}}{4\pi} \oint_{\gamma_{1}} I_{1} \frac{\mathbf{u}_{t1} \times \mathbf{u}_{r}}{r_{1}^{2}} dl_{1} \Rightarrow \mathbf{F}_{21} = \oint_{\gamma_{2}} I_{1} \mathbf{u}_{t2} \times \mathbf{B}_{1} dl_{2}$$

Analogamente: $I_2 \Rightarrow \mathbf{B}_2 \Rightarrow \mathbf{F}_{12}$

Caso particolare: Fili rettilinei indefiniti e paralleli

$$B_{1} = \frac{\mu_{o}}{2\pi} \frac{I_{1}}{r} \qquad B_{2} = \frac{\mu_{o}}{2\pi} \frac{I_{2}}{r}$$

$$\Rightarrow F_{1} = I_{1}B_{2}L = \frac{\mu_{o}}{2\pi} \frac{I_{1}I_{2}}{r}L$$

$$\Rightarrow F_{2} = I_{2}B_{1}L = \frac{\mu_{o}}{2\pi} \frac{I_{1}I_{2}}{r}L$$

$$\Rightarrow \mathbf{F}_{2} = -\mathbf{F}_{1}$$

NB: Il principio di azione e reazione vale perché siamo in *condizioni statiche*

Definizione di Ampere (1960): L'Ampere è l'intensità di corrente che genera una forza di interazione di 2 x 10⁻⁷ N per ogni metro di filo tra due fili rettilinei paralleli posti alla distanza di 1 m

Il valore di $\mu_o = 4\pi x \, 10^{-7} \, \text{Hm}^{-1}$ è fissato per definizione come conseguenza della definizione di Ampere

Teorema di equivalenza di Ampere

Le correnti *subiscono azioni* dai campi magnetici e *generano* a loro volta campi magnetici, come i materiali.

- ⇒ Esiste una relazione tra conduttori percorsi da correnti e materiali magnetici (es.: calamite)
- Non esiste il monopolo magnetico ($div \mathbf{B} = 0$)
 La "carica magnetica elementare" è il dipolo magnetico
- Il più semplice circuito è una spira piana infinitesima

Teorema di equivalenza di Ampere: Una spira di superficie $S \rightarrow 0$, percorsa da corrente è equivalente ad un dipolo magnetico.

La spira elementare ed il dipolo magnetico sono equivalenti, sia per quanto riguarda il campo magnetico generato che le azioni meccaniche di un campo esterno.

Richiami sul dipolo elettrico

Dipolo elettrico ideale: $\mathbf{p} = \mathbf{q} d\mathbf{r} \operatorname{con} d\mathbf{r} \rightarrow 0 \ (\mathbf{p} = \operatorname{cost})$

Azioni meccaniche in un campo E esterno

Forza:

$$\mathbf{F} = \mathbf{p} \cdot \text{grad } \mathbf{E} = \text{grad } (\mathbf{p} \cdot \mathbf{E}) \text{ (essendo } \mathbf{p} = \text{cost)}$$

⇒ Il dipolo è attratto verso campi più intensi

 \Rightarrow **F** = 0, se **E** è uniforme

Momento (in un campo uniforme):

$$\tau = \mathbf{p} \times \mathbf{E}$$

⇒ Il dipolo tende ad orientarsi // E

Energia di interazione con il campo:

$$\mathbf{U} = -\mathbf{p} \cdot \mathbf{E}$$

Campo E generato da un dipolo:

$$\mathbf{E} = -grad \ V = -\frac{1}{4\pi\varepsilon_o} grad \left(\frac{\mathbf{p} \cdot \mathbf{r}}{r^3}\right) -$$

Sull'asse z del dipolo:

$$\mathbf{E} = -\frac{1}{4\pi\varepsilon_{0}} grad\left(\frac{p}{z^{2}}\right) = \frac{1}{2\pi\varepsilon_{0}} \frac{p}{z^{3}} \mathbf{u}_{z}$$

Dipolo magnetico

Consideriamo una spira di superficie S percorsa dalla corrente I

Dipolo magnetico ideale:

$$S \to 0$$
 con $\mathbf{m} = IS\mathbf{u}_n = cost$

Azioni meccaniche in un campo B esterno

Forza:

$$\mathbf{F} = \operatorname{grad} (\mathbf{m} \cdot \mathbf{B})$$

 \Rightarrow **F** = 0, se **B** è uniforme

Momento (in un campo uniforme):

$$\tau = \mathbf{m} \times \mathbf{B}$$

⇒ Il dipolo tende ad orientarsi // **B**

Energia di interazione con il campo:

$$U = -\mathbf{m} \cdot \mathbf{B}$$

Campo B generato da un dipolo:

$$\mathbf{B} = -\frac{\mu_o}{4\pi} grad\left(\frac{\mathbf{m} \cdot \mathbf{r}}{r^3}\right)$$

Sull'asse z del dipolo:

$$\mathbf{B} = \frac{\mu_o}{2\pi} \frac{m}{z^3} \mathbf{u}_z$$

