SOP: MATH F266

GRAPH COLOURING AND ITS VARIANTS

Name Rajvi Sampat

ID No. 2018B4A70820G

Professor Tarkeshwar Singh

Date December 7, 2020

Contents

1	Star	Colouring of Some Graphs	1
	1.1	Tree	1
	1.2	Cycle	2
	1.3	Peterson Graph	4
2 CD Colouring of Some Graphs		5	
	2.1	Peterson Graph	5
3	Refe	rences	6

1. Star Colouring of Some Graphs

A k - star colouring of a graph G is a k-colouring $V_1, V_2, V_3...V_k$ such that every component of the graph $G[V_iUV_j]$ is a star for $1 \le i, j \le k$. The minimum k for which a graph G has a k-star colouring is known as the star chromatic number $\chi_S(G)$ of the graph G.

A star colouring is a colouring without a bicoloured P_4 .

1.1 Tree

 $\chi_S = min\{r(G) + 1, 3\}$ where r(G) is the radius of the tree.

Figure 1.1: Tree of radius 3

Proof:

If the radius r(G) = 0, then the graph G consists of a single isolated vertex (since a tree is a connected graph there exists only 1 vertex). Hence $\chi_S(G) = 1 = r(G) + 1$.

If the radius r(G) = 1, then the graph G is a star with a single internal node and at least 1 leaf node. The internal node is assigned colour 1 and the leaf nodes are assigned colour 2, which gives a star colouring of 2 colours. Hence $\chi_S(G) = 2 = r(G) + 1$.

Now, let r(G) > 1. Let $V_1, V_2, V_3...V_k$ be a vertex partition of the vertex set V(G). Consider the tree to be a rooted tree, with root node x.

Let $x \in V_1$. Consider all the neighbours y of x and let all $y \in V_2$. Since x is the root node and r(G) > 1, $\exists y_1, y_2 \in V_2$.

Consider a neighbour $z \neq x$ of y_1 . $xz \neq E(G)$ since $xy_1 \in E(G)$, $y_1z \in E(G)$ and G is acyclic.

 \therefore x and z are independent. If $z \in V_1$, then y_1xy_2z is a bicoloured path of length 3 (P_4) and hence does not permit a star colouring.

$$\Rightarrow z \notin V_1$$
. Thus $z \in V_2$.

Consider a neighbor w of z, $w \neq y_1$.

 $wx, wy_i \notin E(G)$ since G is acyclic. w and x are independent. If $w \in V_1, \exists$ no bicoloured P_4 through x and w.

$$\Rightarrow w \in V_1$$
.

Thus, a vertex v at a distance 'a' from the root node x can be assigned to the colour set V_i , where $i = a \mod 3$. Since there exists no bicoloured P_4 in such a colouring, it is a star colouring. For any $i, j \in (1,2,3)$, $G(V_iUV_j)$ has each component as a star.

Thus, \exists a 3 - star colouring of a tree. Since r(G) > 1, there exists an induced subgraph P_4 , and since P_4 cannot be bicoloured, $\chi_S(G) \ge 3$.

$$\therefore \chi_S(G) = 3.$$

An example of a 3-star coloured tree is shown in Fig. 1.1

1.2 Cycle

$$\chi_S(C_n) = 3; n \ge 3; n \ne 5;$$

 $\chi_S(C_n) = 4; n = 5;$

 C_3 : Trivially $\chi_S(C_3) = 3$.

Since all C_n induce a path of length 3 for $n \ge 4$, and a bicoloured P_4 does not permit a star colouring, so $\chi_S(C_n) \ge 3$ for $n \ge 4$.

 C_4 : C_4 has a 3-star colouring as shown in Fig. 1.4a $\chi_S(C_4) = 3$.

Figure 1.2: Star colouring of some cycles

 C_5 : Since any P_4 has at least 3 colours, colour vertices 1 to 4 using a 3- colouring. Case a) v_5 is adjacent to 2 different colours as shown in Fig. 1.4b. Let $v_1, v_3 \in V_1$, $v_2 \in V_2$, $v_4 \in V_3$, where V_i is a vertex partition of V(G). $\Rightarrow v_5 \notin V_1$, $v_5 \notin V_3$ since v_5 is adjacent to v_1 and v_4 . If $v_5 \in V_2$, then \exists a bicoloured $P_4: v_5v_1v_2v_3$. $\Rightarrow v_5 \notin V_2$. $v_5 \in V_4$.

Case b) v_5 is adjacent to 2 same colours as shown in Fig. 1.2c. Let $v_1, v_4 \in V_1$, $v_2 \in V_2$, $v_3 \in V_3$, where V_i is a vertex partition of V(G). $\Rightarrow v_5 \notin V_1$ since v_5 is adjacent to v_1 and v_4 . If $v_5 \in V_2$, or $v_5 \in V_3$ then \exists a bicoloured $P4: v_4v_5v_1v_2$ or $v_3v_4v_5v_1$.

$$\Rightarrow v_5 \notin V_2, V_3. v_5 \in V_4.$$

$$\Rightarrow \chi_S(C_5) = 4$$

$$C_n$$
, $n > 5$

Label vertices from 0 to n-1, let $v_i \in V_{imod3}$.

Case a) n mod $3 = 0 \Rightarrow (n-1) \mod 3 = 2$

$$\Rightarrow v_{n-1} \in V_2, v_0 \in V_0$$

 \therefore any path P_3 $v_{xmod3}v_{(x+1)mod3}v_{(x+2)mod3}v_{(x+3)mod3}$ is 3- coloured.

Since $\chi_S \ge 2$ and a 3-star colouring exists, $\chi_S(C_n) = 3$ for n mod 3 = 0, n > 5.

Case b) n mod 3 = 1, \Rightarrow (n-1) mod 3 = 0

 $v_0, v_{n-1} \in V_0 \Rightarrow not a colouring$

Let $v_{n-1} \in V_2, v_{n-2} \in V_0$ (swap colours of v_{n-1} and v_{n-2}).

For and P_4 , if v_{n-1} , $v_{n-2} \notin P_4$, it is 3-coloured (same as case a).

If only one of v_{n-1} and v_{n-2} is present in P_4 , i.e. the paths $v_2v_1v_0v_{n-1}$ or $v_{n-2}v_{n-3}v_{n-4}v_{n-5}$ it is still 3-coloured as $n \ge 5$ and the other 3 vertices are of different colours and no 2 adjacent vertices are of the same colour.

If both $v_{n-1}, v_{n-2} \in P_4$, then no two adjacent vertices are of the same colour, and either v_1 or $v_{n-3} \in P_4$. Since v_1 and $v_{n-3} \in V_1$, the path is 3 - coloured.

 \Rightarrow any path of length 3 has an admissible 3-colouring. Thus the given colouring is a 3- star colouring of the C_n where n mod 3 = 1.

Since $\chi_S \ge 2$ and a 3-star colouring exists, $\chi_S(C_n) = 3$ for n mod 3 = 1, n > 5.

Case c) n mod $3 = 2 \Rightarrow (n-1) \mod 3 = 1$

 $v_{n-2}, v_{n-1}, v_0, v_1$ belong to the sets V_0, v_1, V_0, V_1 respectively, hence this is a bicoloured path of length 3, and not a star colouring.

Let $v_{n-2} \in V_2, v_{n-3} \in V_0$ (swap colours of v_{n-2} and v_{n-3}).

Consider any P_4 . If v_{n-2} , $v_{n-3} \notin P_4$, it is 3-coloured (same as case a).

If $v_{n-2} \in P_4$ and $v_{n-3} \notin P_4$, then P_4 is the path $v_{n-2}v_{n-1}v_0v_1$ which are in the colour sets V_2, V_1, V_0, V_1 respectively, so it is 3-coloured.

If $v_{n-2} \notin P_4$ and $v_{n-3} \in P_4$, then P_4 is the path $v_{n-6}v_{n-5}v_{n-4}v_{n-3}$. If n= 5, then this will be the path $v_{n-1}v_0v_1v_2$, the vertices of which are in the colour sets V_1, V_0, V_1, V_0 respectively, so it is a bicoloured path, hence does not permit a star colouring. As shown earlier, C_5 does not have a 3-star colouring. If n \neq 5, then the vertices of this path belong to the sets V_2, V_0, V_1, V_0 respectively, so it is a 3-coloured path, with no adjacent vertices of the same colour, hence acceptable.

If both $v_{n-2}, v_{n-3} \in P_4$, then no two adjacent vertices are of the same colour, and either v_{n-1} or $v_{n-5} \in P_4$. Since v_{n-1} and $v_{n-5} \in V_1$, when n > 5, the path is 3 - coloured.

 \Rightarrow any path of length 3 has an admissible 3-colouring. Thus the given colouring is a 3- star colouring of the C_n where n mod 3 = 2, n > 5.

Since $\chi_S \ge 2$ and a 3-star colouring exists, $\chi_S(C_n) = 3$ for n mod 3 = 1, n > 5.

Figure 1.3: Star colouring of C_8

1.3 Peterson Graph

$$\chi_S(G) = 5$$

Figure 1.4: Star colouring of Peterson Graphs

A peterson graph contains C_5 as an induced subgraph, so $\chi_S(G) \ge 4$.

Consider the outer C_5 . Any 2 vertices have the same colour and are at distance 2,the rest have distinct colours. Label the outer C_5 as shwon in ??

Consider the inner C_5 . If it can be coloured with 4 colours, any 2 vertices must have the same colour, rest have different colours.

Case 1: Suppose the common colour of the inner C_5 is the same as that of the outer C_5 , i.e. 2 in this case. Since e, b can't be coloured 2, c,d will be coloured 2. So colour of a will be 3 or 4. However, either of these assignments will lead to a bicoloured P_4 . Hence this is not possible.

Case 2: Suppose the common colour is 1. Vertices e, a, b can't be coloured 1 as a is adjacent to a vertex of colour 1 and if e or b is taken, a bicoloured P_4 is induced. If the vertices c and d are coloured 1, any assignment for a(2,3 or 4) will induce a bicoloured P_4 . Hence this is not possible.

Case 3: Common colour is 3 or 4. w.l.o.g, let common colour be 3. Again, any assignment induces a bicoloured P_4 . If a,e = 3. Then c = 1 generates a bicoloured P_4 of colours 1 and 3, and c = 4 induces a bicoloured P_4 of colours 3 and 4. If e,d = 3. Then c = 1 generates a bicoloured P_4 of colours 1 and 2, and c = 4 induces a bicoloured P_4 of colours 3 and 4.

Hence, a 4- star colouring is not possible. $\chi_S(G) > 4$.

A 5 star colouring exists as shown in ??. Hence, $\chi_S(G) \leq 5$. $\chi_S(G) = 5$.

2. CD Colouring of Some Graphs

A k-coloring $V_1, V_2, ..., V_k$ of a graph G is called a k-CD coloring if for every V_i , 1 i k, there exists a vertex x_i such that $V_i \subseteq N[x_i]$.

2.1 Peterson Graph

In a CD colouring, all vertices in a colour set must be at a distance 2. In a Peterson graph, all vertices are mutually at a distance 1 or 2.

Consider Fig. 2.1

 $S_1 := \{ x \mid d(a,x) = 2 \} = c,d,f,h,i,j.$

 $S_1 := \{ x \mid d(a,x) = 1 \} = b,e,j.$

$$\therefore$$
w_s=2, $\Rightarrow \chi_S(G) \geq 2$.

For each vertex, N(v) = 3, and all x in N(v) are mutually at a distance 2.

For all the vertices x in a colour set V_i , there should be a y $\in Gsuchthatd(x,y) =$

 $1. Since all x \in N[v] are at a distance 1 from v, N[v] can be a colour set dominated by v. Since N[v] = 3, the maximum size of a colour set is 3.$

Since the number of vertices are 10 = 3(3) + 1. $\chi_S(G) > 3$. $\Rightarrow \chi_S(G) = 4$.

We have a 4-colouring.

$$\Rightarrow \chi_S(G) = 4.$$

Figure 2.1: CD colouring of Peterson Graph

3. References

Sandhya T.P. (2017) Graph Colouring and its Variants

L.Jethruth Emelda Mary and Dr. K. Ameenal Bibi A. Lydia Mary Julietterayan(2017), A Study on Star Chromatic Number of Some Special Classes of Graphs, *Global Journal of Pure and Applied Mathematics*. 13.9