wooldridge-vignette

$Justin\ M\ Shea$

Contents

	Introduction	2
	Chapter 2: The Simple Regression Model	2
	Chapter 3: Multiple Regression Analysis: Estimation	3
	Chapter 4: Multiple Regression Analysis: Inference	
	Chapter 5: Multiple Regression Analysis: OLS Asymptotics	5
	Chapter 6: Multiple Regression: Further Issues	6
	Chapter 7: Multiple Regression Analysis with Qualitative Information	8
	Chapter 8: Heteroskedasticity	9
	Chapter 9: More on Specification and Data Issues	10
	Chapter 10: Basic Regression Analysis with Time Series Data	12
	Chapter 11: Further Issues in Using OLS with with Time Series Data	14
	Chapter 12: Serial Correlation and Heteroskedasticiy in Time Series Regressions	15
	Chapter 13: Pooling Cross Sections across Time: Simple Panel Data Methods	18
	Chapter 14: Advanced Panel Data Methods	
	Chapter 15: Instrumental Variables Estimation and Two Stage Least Squares	20
	Chapter 16: Simultaneous Equations Models	23
	Chapter 17: Limited Dependent Variable Models and Sample Selection Corrections	
	Chapter 18: Advanced Time Series Topics	25
Ac	lditional Resources	26
	Using R for Introductory Econometrics	26
	Econometrics in R	26

Introduction

This vignette contains examples of using R with "Introductory Econometrics: A Modern Approach" by Jeffrey M. Wooldridge. Each example illustrates how to load data, run econometric models, and view the results with \mathbf{R} .

While the course companion site also provides publicly available data sets for Eviews, Excel, MiniTab, and Stata commercial software products, \mathbf{R} is an open source option. Furthermore, taking the step to use \mathbf{R} while building a foundation in Econometrics, offers the curious student a gateway to accessing advanced topics available in the greater package ecosystem.

In addition to this vignette, please see the **Additional Resources** section on using R for Econometrics. It contains information on the excellent and in depth "Using R for Introductory Econometrics" by Florian Hess, written to compliment the Wooldridge text as well.

First, load the wooldridge package to access data in the manner specified in each example.

library(wooldridge)

Chapter 2: The Simple Regression Model

Example 2.10: A Log Wage Equation

$$\widehat{log(wage)} = \beta_0 + \beta_1 educ$$

First, load the wage1 data.

data(wage1)

Next, estimate a linear relationship between the log of wage and education.

Finally, print the coefficients and R^2 .

stargazer(log_wage_model, single.row = TRUE, header = FALSE)

Table 1:

	Dependent variable:	
	lwage	
educ	0.083*** (0.008)	
Constant	$0.584^{***} (0.097)$	
Observations	526	
\mathbb{R}^2	0.186	
Adjusted R ²	0.184	
Residual Std. Error	0.480 (df = 524)	
F Statistic	$119.582^{***} (df = 1; 524)$	
Note:	*p<0.1; **p<0.05; ***p<0.01	

Chapter 3: Multiple Regression Analysis: Estimation

Example 3.2: Hourly Wage Equation

$$\widehat{log(wage)} = \beta_0 + \beta_1 educ + \beta_3 exper + \beta_4 tenure$$

Estimate the model regressing education, experience, and tenure against log(wage).

```
hourly_wage_model <- lm(lwage ~ educ + exper + tenure, data = wage1)
```

Again, print the estimated model coefficients:

```
stargazer(hourly_wage_model, single.row = TRUE, header = FALSE)
```

Table 2:

	$Dependent\ variable:$	
	lwage	
educ	0.092*** (0.007)	
exper	0.004** (0.002)	
tenure	$0.022^{***} (0.003)$	
Constant	0.284*** (0.104)	
Observations	526	
\mathbb{R}^2	0.316	
Adjusted R ²	0.312	
Residual Std. Error	0.441 (df = 522)	
F Statistic	80.391^{***} (df = 3; 522)	
Note:	*p<0.1; **p<0.05; ***p<	

Chapter 4: Multiple Regression Analysis: Inference

Example 4.7 Effect of Job Training on Firm Scrap Rates

First, load the jtrain data set.

```
data("jtrain")
```

Next, create a logical index identifying which observations occur in 1987 and are non-union.

```
index <- jtrain$year == 1987 & jtrain$union == 0
```

Next, subset the jtrain data by the new index. This returns a data frame of jtrain data of non-union firms for the year 1987.

```
jtrain_1987_nonunion <- jtrain[index,]</pre>
```

Now create the linear model regressing hrsemp(total hours training/total employees trained), the log of annual sales, and the log of the number of the employees, against the log of the scrape rate.

$$lscrap = \alpha + \beta_1 hrsemp + \beta_2 lsales + \beta_3 lemploy$$

```
linear_model <- lm(lscrap ~ hrsemp + lsales + lemploy, data = jtrain_1987_nonunion)</pre>
```

Finally, print the complete summary statistic diagnostics of the model.

stargazer(linear_model, single.row = TRUE, header = FALSE)

Table 3:

	Dependent variable:
	lscrap
hrsemp	-0.029 (0.023)
lsales	$-0.962^{**} (0.453)$
lemploy	$0.761^* \ (0.407)$
Constant	$12.458^{**} (5.687)$
Observations	29
\mathbb{R}^2	0.262
Adjusted R ²	0.174
Residual Std. Error	1.376 (df = 25)
F Statistic	$2.965^* \text{ (df} = 3; 25)$
Note:	*p<0.1; **p<0.05; ***p<0.0

Chapter 5: Multiple Regression Analysis: OLS Asymptotics

Example 5.3: Economic Model of Crime

```
narr86 = \beta_0 + \beta_1 pcnv + \beta_2 avgsen + \beta_3 tottime + \beta_4 ptime \\ 86 + \beta_5 qemp \\ 86 + \mu
```

narr86: number of times arrested, 1986.

pcnv: proportion of prior arrests leading to convictions.

avgsen: average sentence served, length in months.

tottime: time in prison since reaching the age of 18, length in months.

ptime86: months in prison during 1986

qemp86: quarters employed, 1986

Load the crime1 data set containing arrests during the year 1986 and other information on 2,725 men born in either 1960 or 1961 in California.

```
data(crime1)
```

```
restricted_model <- lm(narr86 ~ pcnv + ptime86 + qemp86, data = crime1)
```

We obtain the residuals $\tilde{\mu}$ from this regression, 2,725 of them.

```
restricted_model_u <- restricted_model$residuals</pre>
```

Next, we run the regression of:

$$\tilde{\mu} = \beta_1 pcnv + \beta_2 avgsen + \beta_3 tottime + \beta_4 ptime 86 + \beta_5 gemp 86$$

[1] 0.001493846

$$LM = 2,725(0.0015)$$

```
LM_test <- nobs(LM_u_model) * 0.0015
LM_test</pre>
```

[1] 4.0875

```
qchisq(1 - 0.10, 2)
```

[1] 4.60517

The p-value is:

$$P(X_2^2 > 4.09) \approx 0.129$$

so we would reject the H_0 at the 15% level.

```
1-pchisq(LM_test, 2)
```

[1] 0.129542

Chapter 6: Multiple Regression: Further Issues

Example 6.1: Effects of Pollution on Housing Prices, standardized.

$$price = \beta_0 + \beta_1 nox + \beta_2 crime + \beta_3 rooms + \beta_4 dist + \beta_5 stratio + \mu$$

price: median housing price.

nox: Nitrous Oxide concentration; parts per million.

crime: number of reported crimes per capita.

rooms: average number of rooms in houses in the community.

dist: weighted distance of the community to 5 employment centers.

stratio: average student-teacher ratio of schools in the community.

$$\widehat{zprice} = \beta_1 znox + \beta_2 zcrime + \beta_3 zrooms + \beta_4 zdist + \beta_5 zstratio$$

First, load the hrpice2 data.

data(hrpice2)

Next, estimate the coefficient with the usual 1m regression model but this time, standardized coefficients by wrapping each variable with R's scale function:

Table 4:

	Dependent variable:
	scale(price)
scale(nox)	$-0.340^{***} (0.044)$
scale(crime)	$-0.143^{***} (0.031)$
scale(rooms)	$0.514^{***} (0.030)$
scale(dist)	-0.235***(0.043)
scale(stratio)	$-0.270^{***}(0.030)$
Observations	506
\mathbb{R}^2	0.636
Adjusted R^2	0.632
Residual Std. Error	0.606 (df = 501)
F Statistic	$174.822^{***} (df = 5; 501)$
Note:	*p<0.1; **p<0.05; ***p<0.0

Example 6.2: Effects of Pollution on Housing Prices, Quadratic Interactive Term

We modify the housing model, adding a quadratic term in *rooms*:

$$log(price) = \beta_0 + \beta_1 log(nox) + \beta_2 log(dist) + \beta_3 rooms + \beta_4 rooms^2 + \beta_5 stratio + \mu$$

housing_interactive <-
$$lm(lprice \sim lnox + log(dist) + rooms+I(rooms^2) + stratio, data = hprice2)$$

Lets compare the results with the model from example 6.1.

stargazer(housing_standard, housing_interactive, single.row = TRUE, header = FALSE)

Table 5	:
---------	---

	Dependent variable:	
	scale(price)	lprice
	(1)	(2)
scale(nox)	$-0.340^{***} (0.044)$	
scale(crime)	-0.143***(0.031)	
scale(rooms)	$0.514^{***} (0.030)$	
scale(dist)	-0.235***(0.043)	
scale(stratio)	$-0.270^{***} (0.030)$	
lnox		-0.902^{***} (0.115)
log(dist)		$-0.087^{**} (0.043)$
rooms		$-0.545^{***} (0.165)$
I(rooms^2)		0.062*** (0.013)
stratio		-0.048***(0.006)
Constant		$13.385^{***} (0.566)$
Observations	506	506
\mathbb{R}^2	0.636	0.603
Adjusted R ²	0.632	0.599
Residual Std. Error	0.606 (df = 501)	0.259 (df = 500)
F Statistic	$174.822^{***} (df = 5; 501)$	$151.770^{***} (df = 5; 500)$
Note: *p<0.1; **p<0		<0.1; **p<0.05; ***p<0.01

Chapter 7: Multiple Regression Analysis with Qualitative Information

Example 7.4: Housing Price Regression, Qualitative Binary variable

This time we use the hrpice1 data.

data(hrpice1)

Having just worked with hrpice2, it may be helpful to view the documentation on this data set and read the variable names.

?hprice1

$$\widehat{log(price)} = \beta_0 + \beta_1 log(lotsize) + \beta_2 log(sqrft) + \beta_3 bdrms + \beta_4 colonial$$

Estimate the coefficients of the above linear model on the hprice data set.

stargazer(housing_qualitative, single.row = TRUE, header = FALSE)

Table 6:

	Dependent variable:
	lprice
llotsize	0.168*** (0.038)
lsqrft	$0.707^{***} (0.093)$
bdrms	$0.027 \ (0.029)$
colonial	0.054 (0.045)
Constant	-1.350^{**} (0.651)
Observations	88
\mathbb{R}^2	0.649
Adjusted R ²	0.632
Residual Std. Error	0.184 (df = 83)
F Statistic	$38.378^{***} (df = 4; 83)$
Note: *p<0.1; **p<0.05; ***p	

Chapter 8: Heteroskedasticity

Example 8.9: Determinants of Personal Computer Ownership

$$\widehat{PC} = \beta_0 + \beta_1 hsGPA + \beta_2 ACT + \beta_3 parcoll + \beta_4 colonial$$

Create a new variable combining the fathcoll and mothcoll, into parcoll. This new column indicates if either parent went to college.

```
data("gpa1")
gpa1$parcoll <- as.integer(gpa1$fathcoll==1 | gpa1$mothcoll)

GPA_OLS <- lm(PC ~ hsGPA + ACT + parcoll, data = gpa1)</pre>
```

First, calculate the weights and then pass them to the same linear model.

```
weights <- GPA_OLS$fitted.values * (1-GPA_OLS$fitted.values)

GPA_WLS <- lm(PC ~ hsGPA + ACT + parcoll, data = gpa1, weights = 1/weights)</pre>
```

Compare the OLS and WLS model in the table below:

```
stargazer(GPA_OLS, GPA_WLS, single.row = TRUE, header = FALSE)
```

Table 7:

	$Dependent\ variable:$	
	PC	
	(1)	(2)
hsGPA	0.065 (0.137)	0.033 (0.130)
ACT	$0.001\ (0.015)$	$0.004 \ (0.015)$
parcoll	$0.221^{**} (0.093)$	$0.215^{**} (0.086)$
Constant	-0.0004 (0.491)	$0.026 \ (0.477)$
Observations	141	141
\mathbb{R}^2	0.042	0.046
Adjusted R ²	0.021	0.026
Residual Std. Error ($df = 137$)	0.486	1.016
F Statistic (df = 3 ; 137)	1.979	2.224*

Note:

Chapter 9: More on Specification and Data Issues

Example 9.8: R&D Intensity and Firm Size

```
rdintens = \beta_0 + \beta_1 sales + \beta_2 prof marg + \mu
```

Load the data, run the model, and apply the summary diagnostics function to the model.

```
data(rdchem)
all_rdchem <- lm(rdintens ~ sales + profmarg, data = rdchem)</pre>
```

Notice the outlier on the far right of the plot.

FIGURE 9.1: Scatterplot of R&D intensity against firm sales

The table below compares the results of both models side by side. By removing the outlier firm, sales become a more significant determination of R&D expenditures.

stargazer(all_rdchem, smallest_rdchem, single.row = TRUE, header = FALSE)

Table 8:

	Dependent variable:		
	rdir	rdintens	
	(1)	(2)	
sales	$0.0001 \ (0.00004)$	0.0002** (0.0001)	
profmarg	0.045(0.046)	0.048 (0.044)	
Constant	$2.625^{***} (0.586)$	$2.297^{***} (0.592)$	
Observations	32	31	
\mathbb{R}^2	0.076	0.173	
Adjusted R ²	0.012	0.114	
Residual Std. Error	1.862 (df = 29)	1.792 (df = 28)	
F Statistic	1.195 (df = 2; 29)	$2.925^* \text{ (df} = 2; 28)$	

Note:

Chapter 10: Basic Regression Analysis with Time Series Data

Example 10.2: Effects of Inflation and Deficits on Interest Rates

$$\hat{i3} = \beta_0 + \beta_1 inf_t + \beta_2 def_t$$

```
data("intdef")

tbill_model <- lm(i3 ~ inf + def, data = intdef)

stargazer(tbill_model, single.row = TRUE, header = FALSE)</pre>
```

Table 9:

	Dependent variable:
	i3
inf	0.606*** (0.082)
def	$0.513^{***} (0.118)$
Constant	1.733*** (0.432)
Observations	56
\mathbb{R}^2	0.602
Adjusted R ²	0.587
Residual Std. Error	1.843 (df = 53)
F Statistic	$40.094^{***} (df = 2; 53)$
Note:	*p<0.1; **p<0.05; ***p<0.0

Example 10.11: Seasonal Effects of Antidumping Filings

In Example 10.5, we used monthly data (in the file BARIUM) that have not been seasonally adjusted.

Table 10:

	$Dependent\ variable:$	
	lchnimp	
	(1)	(2)
lchempi	$3.117^{***} (0.479)$	3.265*** (0.493)
lgas	$0.196 \ (0.907)$	-1.278(1.389)
lrtwex	0.983** (0.400)	$0.663 \ (0.471)$
befile6	$0.060 \ (0.261)$	$0.140 \ (0.267)$
affile6	-0.032(0.264)	$0.013\ (0.279)$
afdec6	-0.565*(0.286)	$-0.521^{*}(0.302)$
feb	` /	-0.418(0.304)
mar		$0.059 \ (0.265)$
apr		$-0.451^{*}(0.268)$
may		$0.033 \ (0.269)$
jun		-0.206(0.269)
jul		$0.004\ (0.279)$
aug		-0.157 (0.278)
sep		$-0.134 \ (0.268)$
oct		$0.052 \ (0.267)$
nov		-0.246(0.263)
dec		$0.133 \ (0.271)$
Constant	-17.803 (21.045)	16.779 (32.429)
Observations	131	131
\mathbb{R}^2	0.305	0.358
Adjusted R^2	0.271	0.262
Residual Std. Error	0.597 (df = 124)	0.601 (df = 113)
F Statistic	$9.064^{***} (df = 6; 124)$	$3.712^{***} (df = 17; 113)$

Note:

Table 11:

Statistic	N	Mean	St. Dev.	Min	Max
Statistic	1.4	Mean	Dr. Dev.	1/1111	Max
Res.Df	2	118.500	7.778	113	124
RSS	2	42.545	2.406	40.844	44.247
Df	1	11.000		11	11
Sum of Sq	1	3.403		3.403	3.403
F	1	0.856		0.856	0.856
Pr(>F)	1	0.585		0.585	0.585

Chapter 11: Further Issues in Using OLS with with Time Series Data

Example 11.7: Wages and Productivity

$$log(\widehat{hrwage_t}) = \beta_0 + \beta_1 log(outphr_t) + \beta_2 t + \mu_t$$

```
data("earns")
wage_time <- lm(lhrwage ~ loutphr + t, data = earns)
wage_diff <- lm(diff(lhrwage) ~ diff(loutphr), data = earns)
stargazer(wage_time, wage_diff, single.row = TRUE, header = FALSE)</pre>
```

Table 12:

	$Dependent\ variable:$		
	lhrwage	$\operatorname{diff}(\operatorname{lhrwage})$	
	(1)	(2)	
loutphr	1.640*** (0.093)		
t	-0.018***(0.002)		
diff(loutphr)	, ,	$0.809^{***} (0.173)$	
Constant	-5.328**** (0.374)	$-0.004 \ (0.004)$	
Observations	41	40	
\mathbb{R}^2	0.971	0.364	
Adjusted R^2	0.970	0.348	
Residual Std. Error $(df = 38)$	0.029	0.017	
F Statistic	$641.224^{***} (df = 2; 38)$	$21.771^{***} (df = 1; 38)$	
<u> </u>	·	·	

Note:

Chapter 12: Serial Correlation and Heteroskedasticiy in Time Series Regressions

Example 12.4: Prais-Winsten Estimation in the Event Study

```
data("barium")
barium_model <- lm(lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 + afdec6,
    data = barium)
# Load the `prais` package, use the `prais.winsten` function to estimate.
library(prais)
barium_prais_winsten <- prais.winsten(lchnimp ~ lchempi + lgas + lrtwex + befile6 +
   affile6 + afdec6, data = barium)
barium_model
##
## Call:
## lm(formula = lchnimp ~ lchempi + lgas + lrtwex + befile6 + affile6 +
       afdec6, data = barium)
##
## Coefficients:
## (Intercept)
                   lchempi
                                                           befile6
                                    lgas
                                               lrtwex
    -17.80300
##
                   3.11719
                                 0.19635
                                              0.98302
                                                           0.05957
##
      affile6
                    afdec6
      -0.03241
                   -0.56524
barium_prais_winsten
## [[1]]
##
## Call:
## lm(formula = fo)
##
## Residuals:
##
       Min
                      Median
                                    3Q
                                            Max
                  1Q
## -2.01146 -0.39152 0.06758 0.35063 1.35021
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## Intercept -37.07771 22.77830 -1.628
                                           0.1061
                                   4.647 8.46e-06 ***
## lchempi
              2.94095
                        0.63284
## lgas
              1.04638
                         0.97734
                                   1.071
                                           0.2864
## lrtwex
             1.13279 0.50666
                                   2.236
                                           0.0272 *
## befile6
             -0.01648
                         0.31938 -0.052
                                           0.9589
## affile6
             -0.03316
                         0.32181 -0.103
                                           0.9181
## afdec6
             -0.57681
                         0.34199 -1.687
                                           0.0942 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.5733 on 124 degrees of freedom
## Multiple R-squared: 0.9841, Adjusted R-squared: 0.9832
## F-statistic: 1096 on 7 and 124 DF, p-value: < 2.2e-16
##
## [[2]]
         Rho Rho.t.statistic Iterations
##
                    3.483363
## 0.2932171
```

Example 12.8: Heteroskedasticity and the Efficient Markets Hypothesis

$$return_t = \beta_0 + \beta_1 return_{t-1} + \mu_t$$

```
data("nyse")
return_AR1 <-lm(return ~ return_1, data = nyse)</pre>
```

$$\hat{\mu_t^2} = \beta_0 + \beta_1 return_{t-1} + residual_t$$

```
return_mu <- residuals(return_AR1)
mu2_hat_model <- lm(return_mu^2 ~ return_1, data = return_AR1$model)
stargazer(return_AR1, mu2_hat_model, single.row = TRUE, header = FALSE)</pre>
```

Table 13:

	$Dependent\ variable:$	
	return	$return_mu^2$
	(1)	(2)
return_1	0.059 (0.038)	-1.104^{***} (0.201)
Constant	0.180** (0.081)	4.657*** (0.428)
Observations	689	689
\mathbb{R}^2	0.003	0.042
Adjusted R^2	0.002	0.041
Residual Std. Error ($df = 687$)	2.110	11.178
F Statistic (df = 1 ; 687)	2.399	30.055***

Example 12.9: ARCH in Stock Returns

$$\hat{\mu_t^2} = \beta_0 + \hat{\mu_{t-1}^2} + residual_t$$

We still have return_mu in the working environment so we can use it to create $\hat{\mu_t^2}$, (mu2_hat) and $\hat{\mu_{t-1}^2}$ (mu2_hat_1). Notice the use R's matrix subset operations to perform the lag operation. We drop the first observation of mu2_hat and squared the results. Next, we remove the last observation of mu2_hat_1 using the subtraction operator combined with a call to the NROW function on return_mu. Now, both contain 688 observations and we can run a standard linear model.

```
mu2_hat <- return_mu[-1]^2
mu2_hat_1 <- return_mu[-NROW(return_mu)]^2
arch_model <- lm(mu2_hat ~ mu2_hat_1)
stargazer(arch_model, single.row = TRUE, header = FALSE)</pre>
```

Table 14:

	$Dependent\ variable:$	
	mu2_hat	
mu2_hat_1	0.337*** (0.036)	
Constant	2.947*** (0.440)	
Observations	688	
\mathbb{R}^2	0.114	
Adjusted R ²	0.112	
Residual Std. Error	10.759 (df = 686)	
F Statistic	$87.923^{***} (df = 1; 686)$	
Note:	*p<0.1; **p<0.05; ***p<0.05	

Chapter 13: Pooling Cross Sections across Time: Simple Panel Data Methods

Example 13.7: Effect of Drunk Driving Laws on Traffic Fatalities

$$\widehat{\Delta dthrte} = \beta_0 + \Delta open + \Delta admin$$

```
data("traffic1")

DD_model <- lm(cdthrte ~ copen + cadmn, data = traffic1)

stargazer(DD_model, single.row = TRUE, header = FALSE)</pre>
```

Table 15:

	Dependent variable:
	$\operatorname{cdthrte}$
copen	$-0.420^{**} (0.206)$
cadmn	-0.151 (0.117)
Constant	-0.497**** (0.052)
Observations	51
\mathbb{R}^2	0.119
Adjusted R ²	0.082
Residual Std. Error	0.344 (df = 48)
F Statistic	$3.231^{**} (df = 2; 48)$
Note:	*p<0.1: **p<0.05: ***p<0.0

Chapter 14: Advanced Panel Data Methods

Example 14.1: Effect of Job Training on Firm Scrap Rates

In this section, we will estimate a linear panel modeg using the plm function in the plm: Linear Models for Panel Data package.

Table 16:

	Dependent variable:
	lscrap
d88	-0.080 (0.109)
d89	$-0.247^* \ (0.133)$
grant	-0.252^* (0.151)
grant_1	$-0.422^{**} (0.210)$
Observations	162
\mathbb{R}^2	0.201
Adjusted R ²	-0.237
F Statistic	$6.543^{***} (df = 4; 104)$
Note:	*p<0.1; **p<0.05; ***p<0.01

Chapter 15: Instrumental Variables Estimation and Two Stage Least Squares

Example 15.1: Estimating the Return to Education for Married Women

$$log(wage) = \beta_0 + \beta_1 educ + \mu$$

```
data("mroz")
wage_educ_model <- lm(lwage ~ educ, data = mroz)</pre>
```

$$\widehat{educ} = \beta_0 + \beta_1 fatheduc$$

We run the typical linear model, but notice the use of the subset argument. inlf is a binary variable in which a value of 1 means they are "In the Labor Force". By sub-setting the mroz data frame by observations in which inlf==1, only working women will be in the sample.

```
fatheduc_model <- lm(educ ~ fatheduc, data = mroz, subset = (inlf==1))</pre>
```

In this section, we will perform an **Instrumental-Variable Regression**, using the **ivreg** function in the AER (Applied Econometrics with R) package.

```
library("AER")
wage_educ_IV <- ivreg(lwage ~ educ | fatheduc, data = mroz)
stargazer(wage_educ_model, fatheduc_model, wage_educ_IV, single.row = TRUE,
    header = FALSE)</pre>
```

Table 17:

	$Dependent\ variable:$		
	lwage	educ	lwage
	OLS	OLS	$instrumental\\variable$
	(1)	(2)	(3)
educ	0.109*** (0.014)		0.059*(0.035)
fatheduc		$0.269^{***} (0.029)$	
Constant	$-0.185 \ (0.185)$	$10.237^{***} (0.276)$	$0.441\ (0.446)$
Observations	428	428	428
\mathbb{R}^2	0.118	0.173	0.093
Adjusted R^2	0.116	0.171	0.091
Residual Std. Error ($df = 426$)	0.680	2.081	0.689
F Statistic (df = 1 ; 426)	56.929***	88.841***	

Note:

Example 15.2: Estimating the Return to Education for Men

$$\widehat{educ} = \beta_0 + sibs$$

```
data("wage2")
educ_sibs_model <- lm(educ ~ sibs, data = wage2)</pre>
```

$$\widehat{log(wage)} = \beta_0 + educ$$

In this section, we will perform an **Instrumental-Variable Regression**, using the ivreg function in the AER (Applied Econometrics with R) package.

```
library("AER")
educ_sibs_IV <- ivreg(lwage ~ educ | sibs, data = wage2)
stargazer(educ_sibs_model, educ_sibs_IV, wage_educ_IV, single.row = TRUE, header = FALSE)</pre>
```

Table 18:

	$Dependent\ variable:$			
	educ	lwage		
	OLS	***************************************	$astrumental \ variable$	
	(1)	(2)	(3)	
sibs	-0.228***(0.030)			
educ	,	$0.122^{***} (0.026)$	0.059*(0.035)	
Constant	$14.139^{***} (0.113)$	5.130*** (0.355)	0.441 (0.446)	
Observations	935	935	428	
\mathbb{R}^2	0.057	-0.009	0.093	
Adjusted R ²	0.056	-0.010	0.091	
Residual Std. Error	2.134 (df = 933)	0.423 (df = 933)	0.689 (df = 426)	
F Statistic	$56.667^{***} (df = 1; 933)$. ,	,	

Note:

Example 15.5: Return to Education for Working Women

$$\widehat{log(wage)} = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 exper^2$$

```
data("mroz")
wage_educ_exper_IV <- ivreg(lwage ~ educ + exper + expersq | exper + expersq +
    motheduc + fatheduc, data = mroz)</pre>
```

Table 19:

	Dependent variable:
	lwage
educ	0.061* (0.031)
exper	$0.044^{***} (0.013)$
expersq	-0.001**(0.0004)
Constant	0.048 (0.400)
Observations	428
\mathbb{R}^2	0.136
Adjusted R ²	0.130
Residual Std. Error	0.675 (df = 424)
Note:	*p<0.1; **p<0.05; ***p<

Chapter 16: Simultaneous Equations Models

Example 16.4: INFLATION AND OPENNESS

$$inf = \beta_{10} + \alpha_1 open + \beta_{11} log(pcinc) + \mu_1$$
$$open = \beta_{20} + \alpha_2 inf + \beta_{21} log(pcinc) + \beta_{22} log(land) + \mu_2$$

Example 16.6: INFLATION AND OPENNESS

$$\widehat{open} = \beta_0 + \beta_1 log(pcinc) + \beta_2 log(land)$$

```
data("openness")
open_model <-lm(open ~ lpcinc + lland, data = openness)</pre>
```

$$\widehat{inf} = \beta_0 + \beta_1 open + \beta_2 log(pcinc)$$

```
library(AER)
inflation_IV <- ivreg(inf ~ open + lpcinc | lpcinc + lland, data = openness)
stargazer(open_model, inflation_IV, single.row = TRUE, header = FALSE)</pre>
```

Table 20:

	$Dependent\ variable:$		
	open	inf	
	OLS	$instrumental\\variable$	
	(1)	(2)	
open		$-0.337^{**} (0.144)$	
lpcinc	0.546 (1.493)	0.376(2.015)	
lland	-7.567***(0.814)	, ,	
Constant	117.085*** (15.848)	26.899* (15.401)	
Observations	114	114	
\mathbb{R}^2	0.449	0.031	
Adjusted R ²	0.439	0.013	
Residual Std. Error $(df = 111)$	17.796	23.836	
F Statistic	$45.165^{***} (df = 2; 111)$		

Note: *p<0.1; **p<0.05; ***p<0.01

Chapter 17: Limited Dependent Variable Models and Sample Selection Corrections

Example 17.3: POISSON REGRESSION FOR NUMBER OF ARRESTS

```
data("crime1")

formula <- (narr86 ~ pcnv + avgsen + tottime + ptime86 + qemp86 + inc86 + black +
    hispan + born60)

econ_crime_model <- lm(formula, data = crime1)

econ_crim_poisson <- glm(formula, data = crime1, family = poisson)

stargazer(econ_crime_model, econ_crim_poisson, single.row = TRUE, header = FALSE)</pre>
```

Table 21:

	$Dependent\ variable:$		
	narr86		
	OLS	Poisson	
	(1)	(2)	
pcnv	$-0.132^{***} (0.040)$	$-0.402^{***} (0.085)$	
avgsen	$-0.011 \ (0.012)$	-0.024 (0.020)	
tottime	$0.012\ (0.009)$	$0.024^* \ (0.015)$	
ptime86	-0.041***(0.009)	-0.099***(0.021)	
qemp86	-0.051^{***} (0.014)	-0.038(0.029)	
inc86	-0.001^{***} (0.0003)	-0.008***(0.001)	
black	$0.327^{***} (0.045)$	$0.661^{***} (0.074)$	
hispan	0.194*** (0.040)	$0.500^{***} (0.074)$	
born60	$-0.022\ (0.033)$	$-0.051 \ (0.064)$	
Constant	$0.577^{***}(0.038)$	-0.600***(0.067)	
Observations	2,725	2,725	
\mathbb{R}^2	0.072		
Adjusted R ²	0.069		
Log Likelihood		-2,248.761	
Akaike Inf. Crit.		$4,\!517.522$	
Residual Std. Error	0.829 (df = 2715)		
F Statistic	23.572***(df = 9; 2715)		

Note:

Chapter 18: Advanced Time Series Topics

Example 18.8: FORECASTING THE U.S. UNEMPLOYMENT RATE

$$\widehat{unemp}_t = \beta_0 + \beta_1 unem_{t-1}$$

$$\widehat{unemp_t} = \beta_0 + \beta_1 unem_{t-1} + \beta_2 inf_{t-1}$$

```
data("phillips")
unem_AR1 <- lm(unem ~ unem_1, data = phillips, subset = (year <= 1996))
unem_inf_VAR1 <- lm(unem ~ unem_1 + inf_1, data = phillips, subset = (year <= 1996))</pre>
```

Table 22:

	Dependent variable:		
	unem		
	(1)	(2)	
unem_1	$0.732^{***} (0.097)$	0.647*** (0.084)	
\inf_{-1}		$0.184^{***} (0.041)$	
Constant	$1.572^{***} (0.577)$	1.304** (0.490)	
Observations	48	48	
\mathbb{R}^2	0.554	0.691	
Adjusted R^2	0.544	0.677	
Residual Std. Error	1.049 (df = 46)	0.883 (df = 45)	
F Statistic	$57.132^{***} (df = 1; 46)$	$50.219^{***} (df = 2; 45)$	
Note:	*p<0	0.1; **p<0.05; ***p<0.01	

Additional Resources

Using R for Introductory Econometrics

Florian Hess

ISBN: 978-1-523-28513-6

address: Dusseldorf, Germany

year: 2016

url: https://urfie.net

Econometrics in R

Grant Farnsworth

address: Evanston, IL

year: 2008

url: https://cran.r-project.org/doc/contrib/Farnsworth-EconometricsInR.pdf