Problema 10

Elías López Rivera 1

¹ Universidad Nacional Autónoma de México Facultad de ciencias

26 de enero de 2025

1. Enunciado

Demuestre la siguiente proposición: Sea $(a_n)_{n\in\mathbb{N}}$ una sucesión de números reales. Si existen un número real l, y dos sucesiones de números no negativos $(\epsilon_n)_{n\in\mathbb{N}}$, $(k_n)_{n\in\mathbb{N}}$, la primera convergente a cero y la segunda acotada, tales que:

$$|a_n - l| < k_n \epsilon_n$$

entonces $\lim_{n\to\infty} a_n = l$

2. Solución

Tenemos que como tanto $(\epsilon_n)_{n\in\mathbb{N}}$, $(k_n)_{n\in\mathbb{N}}$ son positivas y además $(k_n)_{n\in\mathbb{N}}$ es acotada:

$$|k_n| = k_n < M, \, \forall \, n \in \mathbb{N}$$

Luego del hecho de que $(\epsilon_n)_{n\in\mathbb{N}}$ es convergente a 0 se sigue:

$$\forall \delta > 0 \; \exists T \in \mathbb{N} : n > T \implies \epsilon_n = |\epsilon_n| < \delta$$

De la hipótesis planteada se sigue que:

$$|a_n - l| < k_n \epsilon_n < M \epsilon_n$$

Problema 10 2 SOLUCIÓN

Tomando $\lambda := \frac{\delta}{M}$ para $\delta > 0$, se obtiene:

$$\exists T \in \mathbb{N}: n > T \implies |a_n - l| < M\lambda = \delta$$

Como δ es arbitrario se concluye:

$$\lim_{n\to\infty} a_n = l$$