1:

- (a) Assuming AC, show (‡) if $f: X \to Y$ is surjective, there is a function $g: Y \to X$ such that $f \circ g = id_Y$.
- (b) Show that property (‡) implies AC.
- **2:** Let $h: X \to Y$ be a continuous bijection of X onto Y. Suppose that X is compact and Y is Hausdorff. Prove that h is a homeomorphism.
- **3:** In a topological space X, say that a net $(x_{\lambda})_{{\lambda}\in\Lambda}$ has x as a cluster point if for each ${\lambda}_0\in\Lambda$ and each open neighbourhood $U\ni x$, there is some ${\lambda}\ge{\lambda}_0$ so that $x_{\lambda}\in U$. Prove that x is a cluster point of this net if and only if there is a subnet with limit x. Be explicit about use of the Axiom of Choice.
- **4:** Let V be the vector space of complex-valued functions on \mathbb{R} . Put a topology τ on V with a subbase given by $U_{t,a,r} = \{f \in V : |f(t) a| < r\}$ for $t \in \mathbb{R}$, $a \in \mathbb{C}$, r > 0.
 - (a) Show that a net $(f_{\lambda})_{{\lambda} \in {\Lambda}}$ in V converges if and only if $\lim f_{\lambda}(t)$ exists for each $t \in \mathbb{R}$, i.e. pointwise convergence. (See Example 1.4.8.) In particular, $\varepsilon_t(f) := f(t)$ is continuous on V for each $t \in \mathbb{R}$.
 - (b) Let $E = \{ f \in V : f(t) = 2 \text{ except for finitely many } t \in \mathbb{R} \}$. Construct a net in E with limit 0
 - (c) Show that no sequence of points in E can converge to 0.
- **5:** The one-point compactification of X. Let (X, τ) be LCH, but not compact. Form the space $X^* = X \cup \{p\}$. Define a topology τ^* by specifying that $\{p\}$ is closed, $\tau^* \cap X = \tau$, and open neighbourhoods of p have the form $\{p\} \cup (X \setminus K)$ for K compact in X. Prove that X^* is compact and Hausdorff.
- **6:** The Stone-Čech compactification of X. Let (X,τ) be LCH, but not compact. For each $f \in C^b_{\mathbb{R}}(X)$, let $I_f = [-\|f\|_{\infty}, \|f\|_{\infty}]$. Then the product space $Y = \prod I_f$ is compact and Hausdorff. Define $\varepsilon : X \to Y$ by $\varepsilon(x)(f) = f(x)$.
 - (a) Show that ε is continuous.
 - (b) Define $\beta X = \overline{\varepsilon(X)}$. Observe that βX is compact Hausdorff and X is dense in βX .
 - (c) Prove that if K is compact and Hausdorff and $g: X \to K$ is continuous, then there is a (unique) continuous function $\tilde{g}: \beta X \to K$ such that $\tilde{g} \circ \varepsilon = g$.

7: (Arzela-Ascoli Theorem). Let X be compact Hausdorff. A subset $\mathcal{F} \subseteq C(X)$ is equicontinuous at $x \in X$ if for each $\varepsilon > 0$, there is an open neighbourhood $U_{\varepsilon} \ni x$ such that $U_{\varepsilon} \subseteq f^{-1}(b_{\varepsilon}(f(x)))$ for all $f \in \mathcal{F}$. It is equicontinuous if it is equicontinuous at every point $x \in X$. Prove that \mathcal{F} is a compact subset of C(X) if and only if it is closed, bounded and equicontinuous. Use the following outline.

- (a) First show that if \mathcal{F} is compact, then it is closed, bounded and equicontinuous.
- (b) C(X) is a metric space, so use sequential compactness. Fix a sequence (f_n) in \mathcal{F} . Let $\{x_j: j \geq 1\}$ be a countable dense subset of X. Use boundedness and the diagonal technique to extract a subsequence $(f_{n_i})_{i\geq 1}$ such that $\lim_i f_{n_i}(x_j) = a_j$ exists for all $j \geq 1$.
- (c) Fix $x \in X$. For $\varepsilon = \frac{1}{3n}$, let U_n be the open set from equicontinuity at x. Choose $x_{j_n} \in U_n$ and find I_n so that for $i \geq I_n$, $|f_{n_i}(x_{j_n}) a_{j_n}| < \frac{1}{3n}$. Show that for any $y \in U_n$ that $|f_{n_i}(y) a_{j_n}| < \frac{1}{n}$ for $i \geq I_n$.
- (d) Deduce that $(f_{n_i}(x))_{i\geq 1}$ is Cauchy. Call the limit f(x).
- (e) Deduce that $f^{-1}(b_{1/n}(f(x)))$ contains U_n , whence f is continuous.

8: The Moore plane is $\Gamma = \{(x,y) : x \in \mathbb{R}, y \geq 0\}$ where for each (x,y) with y > 0, the usual open balls $B_r((x,y))$ of radius $r \leq y$ are open; and for $(x,0) \in R = \{(x,0) : x \in \mathbb{R}\}$, the sets $\{(x,0)\} \cup B_r((x,r))$ are open.

- (a) Show that this determines a Hausdorff topology.
- (b) Show that Γ is separable, but that R with the induced topology is not.
- (c) Show that Γ is first countable, but not second countable.
- (d) Show that $Q = \{(x,0) : x \in \mathbb{Q}\}$ and $I = \{(x,0) : x \notin \mathbb{Q}\}$ are disjoint closed sets, but if $Q \subset U$ and $I \subset V$, where U and V are open, then $U \cap V \neq \emptyset$, i.e. Γ is not normal.
- (e) Show that if $C \subset \Gamma$ is closed and $p \notin C$, there is a continuous function $f: \Gamma \to [0,1]$ so that $f|_{C} = 0$ and f(p) = 1. (Γ is completely regular.)