A análise de operadores generaliza a idéia de atribuir níveis de prioridade aos operadores em expressões (por ex, a atribuição ao símbolo * de um nível mais alto do que ao símbolo +).

O método funciona para uma classe mais restrita do que o de precedência simples, mas é muito eficiente e simples de implementar.

Todos os <u>símbolos terminais da gramática</u> são considerados *operadores*.

Também utiliza relações de precedência que indicaremos por <--, --, definidas sobre terminais.

- **Definição**: G é uma **gramática de operadores** se (KOWALTOWSKI, 83):
 - ela não possui produções com dois não terminais consecutivos do lado direito, ou seja, da forma A::=αBCβ, tal que B, C pertence a V_N;
 - as relações <-, =, -> , as quais veremos adiante, são disjuntas.

Em AHO, SETHI & ULLMAN (86) é chamada à atenção para o fato que na gramática de operadores nenhum lado direito da produção é igual a λ (cadeia vazia).

Definição de Frase Prima (KOWALTOWSKI, 83):

Se α é uma forma sentencial, então β é uma *frase* prima de α se β é uma frase de α na qual aparece pelo menos um símbolo terminal, e se β não contém nenhuma outra frase prima.

O algoritmo de análise de precedência de operadores sempre reduz a frase prima mais à esquerda da forma sentencial. Pode-se demonstrar que para gramáticas não-ambíguas esta frase é sempre única.

Consideremos G:

E::=E+T/T

T::= T*F / F

F:=a/b/(E)

As frases primas da forma sentencial *a+b*a* são: *a,b,a*.

As frases primas para a forma sentencial *T*+*T***F*+*a* são: *T***F* e *a*

Note que T não é uma frase prima, apesar de ser uma frase simples.

Definição das Relações <- ,= e -> (KOWALTOWSKI, 83):

- 1. Dizemos que $X < ^{\circ} Y$ se existe uma forma sentencial direita $\alpha = \beta XY\gamma w$ (ou $\alpha = \beta XBY\gamma w$) tal que $Y\gamma$ (ou $BY\gamma$) é uma frase prima mais à esquerda de α .
- 2. Dizemos que X = Y se existe uma forma sentencial direita $\alpha = \beta \gamma X Y \delta w$ (ou $\alpha = \beta X B Y \delta w$) tal que $\gamma X Y \delta$ é (ou $\gamma X B Y \delta$) é uma frase prima mais à esquerda de α .
- 3. Dizemos que X \neg > Y se existe uma forma sentencial direita $\alpha = \beta \gamma XYw$ (ou $\alpha = \beta \gamma XBYw$) tal que γX (ou γXB) é uma frase prima mais à esquerda de α)

$$X,Y\in V_T$$
 , $B\in N$, $\alpha,\beta,\gamma,\delta\in V^*$ e $w\in T^*$

- Pode-se demonstrar que estas relações podem ser calculadas num número finito de operações (como na precedência simples). Mais duas <u>relações</u> <u>auxiliares</u> são necessárias (KOWALTOWSKI, 83):
- 1. $A\theta_PX$ (primeiro terminal) se e somente se existe uma produção da forma $A:=X\alpha$ ou $A:=BX\alpha$
- 2. $A\theta_U X$ (último terminal) se e somente se existe uma produção da forma $A::=\alpha X$ ou $A::=\alpha XB$
- As relações θ_P e θ_U indicam o *primeiro* e o *último terminal* que aparece numa cadeia que pode ser derivada diretamente de um não-terminal.

Forma Prática para calcular as Relações

Proposição:

- 1. X < Y se e somente se $X(=)\psi_P^*\theta_P Y$.
- 2. X = Y se e somente se existe uma produção em P da forma A::=αXYβ ou αXBYβ
- 3. X \neg Y se e somente se $X(\psi_U^*\theta_U)^T(=)Y$.

As relações de precedência tem os seguintes significados (AHO, SETHI & ULLMAN, 86):

Relação	Significado
a <□b	a "confere precedência" a b
a = b	a "possui a mesma precedência que b"
a □>b	a "tem precedência sobre" <i>b</i>

Seja G: E::= E+T/T T::= T*F/F F::=a/b/(E)

	$\Psi_{\mathbf{P}}$	$\Psi_{\mathbf{P}}^*$	θ_{P}	$\Psi_{\mathbf{P}}^{*}\theta_{\mathbf{P}}$
Е	TE	TEFab(+	*+ab(
Т	FT	FTab(*	ab(*
F	ab(ab(F	ab(ab(

	Ψυ	Ψυ*	$\theta_{\sf U}$	$\psi_{\mathbf{U}}^*\theta_{U}$
E	T	TFab)E	+	*ab)+
Т	F	Fab)T	*	ab)*
F	ab)	ab)F	ab)	ab)

	a	b	+	*	()
а			->	->		->
b			->	->		->
+	<-	<-	->	<-	<-	->
*	<-	<-	->	->	<-	->
(<-	<-	<-	<-	<-	=
)			->	->		->

Passo	Forma Sentencial	Frase Prima	Redução para
1	#<-a->+(b*a) #	a	F
2	#<"F+<"(<"b">*a) #	b	F
3	#<"F+<"(<"F*<"a">>) #	а	F
4	#<"F+<"(<"F*F">)#	F*F	Т
5	#<"F+<"(=T)">#	(T)	F
6	#<¤F+F¤>#	F+F	E
7	#E#		

Aspectos importantes do método:

- a identificação da produção a ser aplicada em cada redução é baseada apenas nos terminais que aparecem na frase prima;
- os não-terminais indicam os lugares onde deve aparecer algum não-terminal, não necessariamente o mesmo indicado pela produção. Conseqüentemente, a <u>árvore não é realmente uma árvore de derivação de</u> acordo com a gramática dada.