Markov Decision Processes: Discrete Stochastic Dynamic Programming

Peng Lingwei

July 24, 2019

Contents

4	Cha	apter4: Finite-Horizon Markov Decision Processes
	4.1	OPTIMALITY CRITERIA
		4.1.1 Some Preliminaries
		4.1.2 The Expected Total Reward Criterion
		4.1.3 Optimal Policies
	4.2	FINITE-HORIZON POLICY EVALUATION
	4.3	OPTIMALITY EQUATIONS AND THE PRINCIPLE OF OP-
		TIMALITY

Chapter4: Finite-Horizon Markov Decision Pro-4 cesses

OPTIMALITY CRITERIA 4.1

4.1.1Some Preliminaries

About MDP:

1.
$$\pi = (d_1, d_2, \dots, d_{N-1}, \dots) \in \Pi^{HR};$$

2.
$$h_N = (s_1, a_1, s_2, \dots, s_N)$$

3. Rewards sequence: $\{r_1(s_1, a_1), r_2(s_2, a_2), \dots, r_{N-1}(s_{N-1}, a_{N-1}), r_N(s_N)\}$

•
$$\pi \in \Pi^{HD}$$
, $\{r_1(X_1, d_1(h_1)), \dots, r_{N-1}(X_{N-1}, d_{N-1}(h_{N-1})), r_N(X_N)\}$

•
$$\pi \in \Pi^{MD}$$
, $\{r_1(X_1, d_1(X_1)), \dots, r_{N-1}(X_{N-1}, d_{N-1}(X_{N-1})), r_N(X_N)\}$

4.
$$R = (R_1, R_2, ..., R_N)$$
, where $R_t = r_t(X_t, Y_t)$, and $|R_t| \le M < \infty$.

5.
$$\mathbb{P}_{R}^{\pi}(\rho_{1}, \rho_{2}, \dots, \rho_{N}) = \mathbb{P}^{\pi}\left[\left\{\left(s_{1}, a_{1}, \dots, s_{N}\right) : \left(r(s_{1}, a_{1}), \dots, r_{N}(s_{N})\right) = (\rho_{1}, \dots, \rho_{N})\right\}\right]$$

Definition:

1. The random vairable U is stochastically greater than V:

$$\forall t \in \mathbb{R}, \quad P(V > t) \le P(U > t).$$

2. Probability distribution P_2 is stochastically greater than P_1 if:

$$\forall t \in \mathbb{R}, \quad \int_{t}^{\infty} p_1(t)dt \le \int_{t}^{\infty} p_2(t)dt.$$

3. The random vector $\vec{U} = (U_1, \dots, U_n)$ is stochastically greater than the random vector $\vec{V} = (V_1, \dots, V_n)$:

$$\forall f \in \{f : \mathbb{R}^n \to \mathbb{R} | \vec{v} \leq \vec{u} \Rightarrow f(\vec{v}) \leq f(\vec{u})\}, \quad \mathbb{E}[f(\vec{V})] \leq \mathbb{E}[f(\vec{U})]$$

4.1.2 The Expected Total Reward Criterion

The expected total reward criterion:

1.
$$\pi \in \Pi^{HR}$$
: $v_N^{\pi}(s) = \mathbb{E}_S^{\pi} \left\{ \sum_{t=1}^{N-1} r_t(X_t, Y_t) + r_N(X_N) \right\}$.

2.
$$\pi \in \Pi^{HD}$$
: $v_N^{\pi}(s) = \mathbb{E}_S^{\pi} \left\{ \sum_{t=1}^{N-1} r_t(X_t, d_t(h_t)) + r_N(X_N) \right\}$.

3. Discounted reward:
$$\pi \in \Pi^{HR}$$
,
$$v_{N,\lambda}^{\pi}(s) = \mathbb{E}_S^{\pi} \left\{ \sum_{t=1}^{N-1} \lambda^{t-1} r_t(X_t, d_t(h_t)) + \lambda^{N-1} r_N(X_N) \right\}.$$

Taking the discount factor into account does not effect any theoretical results or algorithms in the finite-horizon case but might effect the decision maker's preference for policies.

4.1.3 Optimal Policies

Definition:

- 1. Optimal policy $\pi^* : \forall \pi \in \Pi^{HR}, v_N^{\pi^*} \succeq v_N^{\pi}$.
- 2. ϵ -optimal policy, $\pi^* : \forall \pi \in \Pi^{HR}, v_N^{\pi_{\epsilon}^*} + \epsilon \succeq v_N^{\pi}$.
- 3. Optimal value: $v_N^* = \sup_{\pi \in \Pi^{HR}} v_N^{\pi}$.
- 4. We can get $v_N^{\pi^*} = v_N^*$ and $v_N^{\pi_{\epsilon}^*} + \epsilon > v_N^*$.
- 5. Considering initial state distribution P_1 : $v_N^{\pi,P_1} = \sum_{s \in S} v_N^{\pi}(s) P_1\{X_1 = s\}$.

Markov decision problem = Markov decision process + Optimality criteria

4.2 FINITE-HORIZON POLICY EVALUATION

- 1. $\pi = (d_1, d_2, \dots, d_{N-1}) \in \Pi^{HR}$
- 2. Define: $u_t^{\pi}(h_t) = \mathbb{E}_{h_t}^{\pi} \left\{ \sum_{n=t}^{N-1} r_n(X_n, Y_n) + r_N(X_N) \right\}, (u_t^{\pi} : H_t \to \mathbb{R}).$ And we define $U_N^{\pi}(h_N) = r_N(s_N).$
- 3. Finite horizon-policy evaluation algorithm $(\pi \in \Pi^{HD})$:

$$\hat{u}_{t}^{\pi}(h_{t}) = r_{t}(s_{t}, d_{t}(h_{t})) + \sum_{s' \in S} p_{t}(s'|s_{t}, d_{t}(h_{t})) \hat{u}_{t+1}^{\pi}(h_{t}, d_{t}(h_{t}), s'). \quad ((h_{t}, d_{t}(h_{t}), s') \in H_{t+1})$$

$$= r_{t}(s_{t}, d_{t}(h_{t})) + \mathbb{E}_{h_{t}}^{\pi} \left\{ \hat{u}_{t+1}^{\pi}(h_{t}, d_{t}(h_{t}), X_{t+1}) \right\}$$

Proof. Part proof with backward induction hypothesis $(u^{\pi}_{h_{t+1}} = \hat{u}^{\pi}_{h_{t+1}})$:

$$\begin{split} \hat{u}_{t}^{\pi}(h_{t}) = & r_{t}(s_{t}, d_{t}(h_{t})) + \mathbb{E}_{h_{t}}^{\pi} \left\{ u_{t+1}^{\pi}(h_{t}, d_{t}(h_{t}), X_{t+1}) \right\} \\ = & r_{t}(s_{t}, d_{t}(h_{t})) + \mathbb{E}_{h_{t}}^{\pi} \left\{ \mathbb{E}_{h_{t+1}}^{\pi} \left\{ \sum_{n=t+1}^{N-1} r_{n}(X_{n}, Y_{n}) + r_{N}(X_{N}) \right\} \right\} \\ = & r_{t}(s_{t}, d_{t}(h_{t})) + \mathbb{E}_{h_{t}}^{\pi} \left\{ \sum_{n=t+1}^{N-1} r_{n}(X_{n}, Y_{n}) + r_{N}(X_{N}) \right\} \\ = & \mathbb{E}_{h_{t}}^{\pi} \left\{ r_{t}(s_{t}, d_{t}(h_{t})) + \sum_{n=t+1}^{N-1} r_{n}(X_{n}, Y_{n}) + r_{N}(X_{N}) \right\} = u_{t}^{\pi}(h_{t}) \end{split}$$

4. Finite horizon-policy evaluation algorithm ($\pi \in \Pi^{HR}$):

$$\hat{u}_{t}^{\pi}(h_{t}) = \sum_{a \in A_{s_{t}}} q_{d_{t}(h_{t})}(a) \left\{ r_{t}(s_{t}, d_{t}(h_{t})) + \sum_{s' \in S} p_{t}(s'|s_{t}, d_{t}(h_{t})) \hat{u}_{t+1}^{\pi}(h_{t}, d_{t}(h_{t}), s'). \right\}$$

5. Finite horizon-policy evaluation algorithm ($\pi \in \Pi^{MR}$):

$$\hat{u}_t^{\pi}(s_t) = r_t(s_t, d_t(s_t)) + \sum_{s' \in S} p_t(s'|s_t, d_t(s_t)) \hat{u}_{t+1}^{\pi}(s').$$

- 6. The computation complexity. There are K states and L actions, then:
 - If $\pi \in \Pi^{HD}$, then requiring $K^2 \sum_{i=0}^{N-1} (KL)^i$ multiplications.
 - If $\pi \in \Pi^{MD}$, then requiring $(N-1)K^2$ multiplications.

4.3 OPTIMALITY EQUATIONS AND THE PRINCIPLE OF OPTIMALITY

Optimality equations (Bellman equations or functional equations).

We start study this equation:

$$u_t^*(h_t) = \sup_{\pi \in \Pi^{HR}} u_t^{\pi}(h_t)$$

When minimizing costs instead of maximizing rewards, we sometimes refer to u_t^* as a **cost-to-go** function.

Definition 1. (Optimality equations).

$$\hat{u}_t(h_t) = \sup_{a \in A_{s_t}} \left\{ r_t(s_t, a) + \sum_{s' \in S} p_t(s'|s_t, a) \hat{u}_{t+1}(h_t, a, s') \right\}, \quad s.t. \ \hat{u}_N(h_N) = r_N(s_N).$$
(1)

If A_{s_t} is finite, it can be replaced by max. Then, $\forall h_t, \hat{u}_t(h_t) = u_t^*(h_t)$.

Proof. The proof is in two parts.

Let arbitrary $\pi' = (d'_1, d'_2, \dots, d'_{N-1}) \in \Pi^{HR}$.

Step1

First, we have $u_N^{\pi'}(h_N) = \hat{u}_N(h_N) = u_N^*(h_N)$.

Then, because we take the operation sup, we reasonably have $\hat{u}_{N-1}(h_{N-1}) \ge u_{N-1}^*(h_{N-1})$.

Assuming that $\forall h_t \in H_t$, and t = n + 1, ..., N, we have $\hat{u}_t(h_t) \geq u_t^*(h_t)$.

$$\begin{split} \hat{u}_n(h_n) &= \sup_{a \in A_{s_n}} \left\{ r_n(s_n, a) + \sum_{s' \in S} p_n(s'|s_n, a) \hat{u}_{n+1}(h_n, a, s') \right\} \\ &\geq \sup_{a \in A_{s_n}} \left\{ r_n(s_n, a) + \sum_{s' \in S} p_n(s'|s_n, a) u_{n+1}^*(s_n, a, s') \right\} \\ &\geq \sum_{a \in A_{s_n}} q_{d'_n(h_n)}(a) \left\{ r_n(s_n, a) + \sum_{s' \in S} p_n(s'|s_n, a) u_{n+1}^{\pi'}(s_n, a, s') \right\} \\ &\geq u_n^{\pi'}(h_n) \end{split}$$

Which means that, $\forall \pi \in \Pi^{HR}, \hat{u}_n(h_n) \geq u_n^{\pi}(h_n)$.

 $\forall \epsilon$, we can construct $\pi' \in \Pi^{HR}$ for which: $u_n^{\pi'}(h_n) + (N-n)\epsilon \geq \hat{u}_n(h_n)$. To do this, construct a policy $\pi' = (d'_1, d'_2, \dots, d'_{N-1}) \in \Pi^{HR}$ by choosing $d_n(h_n)$

to satisfy

$$\sum_{a \in A_{S_t}} q_{d'_n(h_n)}(a) \left\{ r_n(s_n, a) + \sum_{s' \in S} p_n(s'|s_n, a) \hat{u}_{n+1}(s_n, a, s') \right\} + \epsilon \ge \hat{u}_n(h_n).$$

First, we have $u_N^{\pi'}(h_N) = u_N(h_N)$. Then, we assume that $u_t^{\pi'}(h_t) + (N-t)\epsilon \ge u_t(h_t)$ for $t = n+1, \ldots, N$.

$$u_n^{\pi'}(h_n) = \sum_{a} q_{d'_n(h_n)}(a) \left\{ r_n(s_n, a) + \sum_{s' \in S} p_n(s'|s_n, a) u_{n+1}^{\pi'}(s_n, a, s') \right\}$$

$$\geq \sum_{a} q_{d'_n(h_n)}(a) \left\{ r_n(s_n, a) + \sum_{s' \in S} p_n(s'|s_n, a) \hat{u}_{n+1}(s_n, a, s') \right\} - (N - n - 1)\epsilon$$

$$\geq \hat{u}_n(h_n) - (N - n)\epsilon$$

Step3:
$$u_n^*(h_n) + (N-n)\epsilon \ge u_n^{\pi'}(h_n) + (N-n)\epsilon \ge u_n(h_n) \ge u_n^*(h_n)$$
.

Theorem 1. Suppose $u_t^*, t = 1, ..., N$ are solutions of the optimality equation (max version). Then we can construct a corresponding policy $\pi^* = (d_1^*, d_2^*, ..., d_{N-1}^*) \in \Pi^{HD}$ satisfies

$$d_t^*(h_t) \in \arg\max_{a \in A_{s_t}} \left\{ r_t(s_t, a) + \sum_{s' \in S} p_t(s'|s_t, a) u_{t+1}^*(h_t, a, s') \right\}$$

for $t = 1, \ldots, N - 1$. Then

1.
$$u_t^{\pi^*}(h_t) = u_t^*(h_t), \quad h_t \in H_t.$$

2.
$$v_N^{\pi^*}(s) = v_N^*(s), \quad s \in S.$$

Proof. Clearly, $u_N^{\pi^*}(h_n) = u_N^*(h_n), h_n \in H_n$. We assume that $u_{n+1}^{\pi^*}(h_{n+1}) = u_{n+1}^*(h_{n+1}),$

$$u_n^*(h_n) = \max_{a \in A_{s_n}} \left\{ r_n(s_n, a) + \sum_{s' \in S} p_n(s'|s_n, a) u_{n+1}^*(h_n, a, s') \right\}$$

$$= r_n(s_n, d_n^*(h_n)) + \sum_{s' \in S} p_n(s'|s_n, d_n^*(h_n)) u_{n+1}^*(h_n, d_n^*(h_n), s')$$

$$= u_n^{\pi^*}(h_n)$$

Theorem 2. Let $\epsilon > 0$ be arbitrary and suppose $u_t^*, t = 1, ..., N$ are solutions of the optimality equation (sup version). Then we can construct a corresponding policy $\pi^{\epsilon} = (d_1^{\epsilon}, d_2^{\epsilon}, ..., d_{N-1}^{\epsilon}) \in \Pi^{HD}$ satisfies

$$\left\{ r_t(s_t, d_t^{\epsilon}) + \sum_{s' \in S} p_t(s'|s_t, d_t^{\epsilon}) u_{t+1}^*(h_t, d_t^{\epsilon}, s') \right\} + \frac{\epsilon}{N-1}$$

$$\geq \sup_{a \in A_{s_t}} \left\{ r_t(s_t, a) + \sum_{s' \in S} p_t(s'|s_t, a) u_{t+1}^*(h_t, a, s') \right\}$$

for $t = 1, \dots, N - 1$. Then

1.
$$u_t^{\pi^{\epsilon}}(h_t) + (N-t)\frac{\epsilon}{N-1} \ge u_t^*(h_t), \quad h_t \in H_t.$$

2.
$$v_N^{\pi^{\epsilon}}(s) + \epsilon = v_N^*(s), \quad s \in S.$$

The proof is analogous.

5