CIS 471/571 (Winter 2020): Introduction to Artificial Intelligence

Lecture 6: Adversarial Search

Thanh H. Nguyen

Source: http://ai.berkeley.edu/home.html

Announcements

- Project 2:
 - Deadline: Feb 02, 2020

- Homework 2:
 - Deadline: Feb 03, 2020

1/22/20

Thanh H. Nguyen

Adversarial Games

Types of Games

• Many different kinds of games!

- •Axes:
 - Deterministic or stochastic?
 - One, two, or more players?
 - Zero sum?
 - Perfect information (can you see the state)?

Deterministic Games

- Many possible formalizations, one is:
 - States: S (start at s₀)
 - Players: P={1...N} (usually take turns)
 - Actions: A (may depend on player / state)
 - Transition Function: $SxA \rightarrow S$
 - Terminal Test: $S \rightarrow \{t,f\}$
 - Terminal Utilities: $SxP \rightarrow R$

• Solution for a player is a policy: $S \rightarrow A$

Zero-Sum Games

- Zero-Sum Games
 - Agents have opposite utilities (values on outcomes)
 - Lets us think of a single value that one maximizes and the other minimizes
 - Adversarial, pure competition

- General Games
 - Agents have independent utilities (values on outcomes)
 - Cooperation, indifference, competition, and more are all possible
 - More later on non-zero-sum games

Thanh H. Nguyen 1/22/20

Adversarial Search

Single-Agent Trees

Value of a State

Value of a state:
The best achievable
outcome (utility)
from that state

Non-Terminal States:

$$V(s) = \max_{s' \in \text{children}(s)} V(s')$$

Terminal States:

$$V(s) = \text{known}$$

Adversarial Game Trees

Minimax Values

States Under Agent's Control:

Terminal States:

$$V(s) = \text{known}$$

Tic-Tac-Toe Game Tree

Adversarial Search (Minimax)

- Deterministic, zero-sum games:
 - Tic-tac-toe, chess, checkers
 - One player maximizes result
 - The other minimizes result
- Minimax search:
 - A state-space search tree
 - Players alternate turns
 - Compute each node's minimax value: the best achievable utility against a rational (optimal) adversary

Minimax values: computed recursively

Terminal values: part of the game

Minimax Implementation

```
def value(state):
  if the state is a terminal state: return the state's utility
  if the next agent is MAX: return max-value(state)
  if the next agent is MIN: return min-value(state)
```

Minimax Example

Minimax Properties

Optimal against a perfect player. Otherwise?

Minimax Efficiency

• How efficient is minimax?

- Just like (exhaustive) DFS
- Time: O(b^m)
- Space: O(bm)

- Example: For chess, $b \approx 35$, $m \approx 100$
 - Exact solution is completely infeasible
 - But, do we need to explore the whole tree?

Resource Limits

Game Tree Pruning

Minimax Example

Minimax Pruning

Alpha-Beta Pruning

- Alpha α: value of the best choice so far for MAX (lower bound of Max utility)
- Beta β: value of the best choice so far for MIN (upper bound of Min utility)
- Expanding at MAX node **n**: update α
 - If a child of **n** has value greater than β, stop expanding the MAX node **n**
 - Reason: MIN parent of n would not choose the action which leads to n
- At MIN node **n**: update β
 - If a child of **n** has value less than α, stop expanding the MIN node **n**
 - Reason: MAX parent of n would not choose the action which leads to n

Thanh H. Nguyen 1/22/20

Alpha-Beta Implementation

```
def value(state, \alpha, \beta):
  if the state is a terminal state: return the state's utility
  if the next agent is MAX: return max-value(state, \alpha, \beta)
  if the next agent is MIN: return min-value(state, \alpha, \beta)
```

```
def max-value(state, \alpha, \beta):
    initialize v = -\infty
    for each successor of state:
        v = \max(v, value(successor, \alpha, \beta))
        if v \ge \beta return v
        \alpha = \max(\alpha, v)
    return v
```

```
def min-value(state, \alpha, \beta):
    initialize v = +\infty
    for each successor of state:
        v = \min(v, value(successor, \alpha, \beta))
        if v \le \alpha return v
        \beta = \min(\beta, v)
    return v
```

Alpha-Beta Pruning Properties

- This pruning has no effect on minimax value computed for the root!
- Values of intermediate nodes might be wrong
 - Important: children of the root may have the wrong value
 - So the most naïve version won't let you do action selection
- Good child ordering improves effectiveness of pruning

Resource Limits

Resource Limits

- Problem: In realistic games, cannot search to leaves!
- Solution: Depth-limited search
 - Instead, search only to a limited depth in the tree
 - Replace terminal utilities with an evaluation function for nonterminal positions
- Example:
 - Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
 - α-β reaches about depth 8 decent chess program
- Guarantee of optimal play is gone
- More plies makes a BIG difference
- Use iterative deepening for an anytime algorithm

Why Pacman Starves

- A danger of replanning agents!
 - He knows his score will go up by eating the dot now (west, east)
 - He knows his score will go up just as much by eating the dot later (east, west)
 - There are no point-scoring opportunities after eating the dot (within the horizon, two here)
 - Therefore, waiting seems just as good as eating: he may go east, then back west in the next round of replanning!

Evaluation Functions

Evaluation Functions

• Evaluation functions score non-terminals in depth-limited search

- Ideal function: returns the actual minimax value of the position
- In practice: typically weighted linear sum of features:

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$$

• e.g. $f_1(s)$ = (num white queens – num black queens), etc.

Evaluation for Pacman

Depth Matters

- Evaluation functions are always imperfect
- The deeper in the tree the evaluation function is buried, the less the quality of the evaluation function matters
- An important example of the tradeoff between complexity of features and complexity of computation

Synergies between Evaluation Function and Alpha-Beta?

- Alpha-Beta: amount of pruning depends on expansion ordering
 - Evaluation function can provide guidance to expand most promising nodes first (which later makes it more likely there is already a good alternative on the path to the root)
 - (somewhat similar to role of A* heuristic, CSPs filtering)
- Alpha-Beta: (similar for roles of min-max swapped)
 - Value at a min-node will only keep going down
 - Once value of min-node lower than better option for max along path to root, can prune
 - Hence: IF evaluation function provides upper-bound on value at min-node, and upper-bound already lower than better option for max along path to root THEN can prune