1 Σ_1 -определимость

Рассмотрим сигнатуру

$$\sigma_{\mathsf{A}} := \langle 0; \mathsf{s}, +, \cdot; <, = \rangle.$$

Обозначим за \mathfrak{N} стандартную σ_{A} -структуру с носителем \mathbb{N} . Мы будем называть \mathfrak{N} стандартной моделью арифметики. В дальнейшем приставка σ_{A} - и нижний индекс $\cdot_{\sigma_{\mathsf{A}}}$ часто будут опускаться.

Для любых $\Psi \in \text{Form } \mathbf{u} \ t \in \text{Term положим}$

$$(\forall x < t) \Psi := \forall x (x < t \to \Psi)$$
 и $(\exists x < t) \Psi := \exists x (x < t \land \Psi).$

Если всякая подформула формулы Φ , начинающаяся с \forall или \exists , имеет вид ($\forall x < t$) Ψ или ($\exists x < t$) Ψ , где x не входит в t, то Φ называют Δ_0 -формулой и при этом пишут $\Phi \in \Delta_0$.

Утверждение 1.1

Пусть
$$\Phi\left(x_1,\ldots,x_\ell\right)\in\Delta_0$$
. Тогда $\left\{\vec{n}\in\mathbb{N}^\ell\mid\mathfrak{N}\Vdash\Phi\left[\vec{n}\right]\right\}$ разрешимо.

Если формула Φ имеет вид $\exists \vec{y} \, \Psi$, где $\Psi \in \Delta_0$, то Φ называют Σ_1 -формулой и при этом пишут $\Phi \in \Sigma_1$.

Утверждение 1.2

Пусть
$$\Phi\left(x_1,\ldots,x_\ell\right)\in\Sigma_1$$
. Тогда $\left\{\vec{n}\in\mathbb{N}^\ell\mid\mathfrak{N}\Vdash\Phi\left[\vec{n}\right]\right\}$ перечислимо.

Подмножество \mathbb{N}^{ℓ} называется Δ_0 -определимым в \mathfrak{N} , если оно определимо в \mathfrak{N} некоторой Δ_0 -формулой; аналогично для Σ_1 .

Наша ближайшая цель — доказать, что всякое перечислимое множество Σ_1 -определимо в \mathfrak{N} . Для начала рассмотрим расширенную сигнатуру

$$\dot{\sigma}_{\mathsf{A}} := \langle 0; \mathsf{s}, +, \cdot, \mathsf{exp}; <, = \rangle,$$

где **ехр** интуитивно обозначает $\lambda x.[2^x].^1$ Обозначим через $\dot{\mathfrak{N}}$ стандартную $\dot{\sigma}_{\mathsf{A}}$ -структуру с носителем \mathbb{N} . Разумеется, мы можем говорить о Δ_0 - и Σ_1 -определимости в $\dot{\mathfrak{N}}$.

¹В дальнейшем будем часто писать 2^x вместо $\exp(x)$.

Лемма 1.3: о Σ_1 -определимости в $\dot{\mathfrak{N}}$

Всякое перечислимое множество Σ_1 -определимо в $\dot{\mathfrak{N}}$.

Доказательство. Нам понадобится специальная техника кодирования машин Тьюринга и их вычислений посредством натуральных чисел.

Двоичные слова. Рассмотрим $\iota: \{0,1\}^* \to \mathbb{Z}_+$, действующую по правилу

$$\iota(b_{n-1}\ldots b_0) := 2^n + b_{n-1}\cdot 2^{n-1} + \cdots + b_1\cdot 2 + b_0.$$

(В частности, ι отображает пустую последовательность в единицу.) Легко убедиться, что ι является биекцией из $\{0,1\}^*$ на \mathbb{Z}_+ . Если $\iota(w)=k$, то мы будем говорить, что двоичное слово w кодируется числом k. Разумеется, формула

String
$$(x) := x \neq 0$$

определяет в $\dot{\mathfrak{N}}$ предикат «быть кодом некоторого двоичного слова». Далее, на элементах \mathbb{Z}_+ можно определить естественные аналоги одноместной функции длины и двухместной функции конкатенации:

$$|x| = y := \text{String}(x) \land 2^{y} \leqslant x \land x < 2^{y+1};$$

 $x * y = z := \text{String}(x) \land \text{String}(y) \land (\exists u \leqslant y) (z = x \times 2^{|y|} + u \land u + 2^{|y|} = y).$

Заметим, что значения |x| и x * y можно ограничить термами.

Слова в конечном алфавите (а также их последовательности). Пусть E — непустой конечный алфавит. Тогда E представимо в виде

$$E = \{e_0, \dots, e_n\},\$$

где n=|E|-1. Зафиксируем $N\in\mathbb{N}$ такое, что $2^N>n+1$. Мы будем кодировать e_0,\ldots,e_n с помощью N-байтов, т.е. двоичных слов длины N. Для этого положим

$$\lceil e_i \rceil \ := \ \underline{2^N + i}$$
 для всех $i \in \{0, \dots, n\}.$

Теперь числовые аналоги E и множества всех N-байтов можно определить так:

$$E(x) := x = \lceil e_0 \rceil \lor \cdots \lor x = \lceil e_n \rceil;$$

Byte $(x) := String(x) \land |x| = N.$

Далее, под словом мы будем понимать конечную последовательность N-байтов, а под Eсловом — слово в алфавите E. Следующие формулы говорят сами за себя:

Word
$$(x) := \text{String } (x) \land (\exists u \leqslant x) (Nu = |x|);$$

$$||x|| = y := \operatorname{Word}(x) \wedge Ny = |x|;$$

$$x \preceq_w y := \operatorname{Word}(x) \wedge \operatorname{Word}(y) \wedge$$

$$(\exists u, v \leqslant y) (\operatorname{Word}(u) \wedge \operatorname{Word}(v) \wedge y = u * x * v);$$

$$x \in_w y := \operatorname{Byte}(x) \wedge x \preceq y;$$

$$\operatorname{Word}_E(x) := \operatorname{Word}(x) \wedge (\forall u \leqslant x) (u \in_w x \to \operatorname{E}(u)).$$

Здесь стоит отметить, что при данном способе кодирования конкатенация слов совпадает с конкатенацией соответствующих двоичных последовательностей.

Пусть; — некоторый вспомогательный символ, отличный от e_0, \ldots, e_n . Положим

$$\ulcorner; \urcorner := \underline{2^N + n + 1}.$$

Последовательность (w_0, \ldots, w_m) , где $m \in \mathbb{N}$ и $\{w_1, \ldots, w_m\} \subseteq E^*$, будет отождествляться с $w_1; w_2; \ldots; w_m$. Кодом пустой последовательности E-слов мы будем считать 0. Это приводит нас к следующим формулам:

$$\operatorname{Seq}_{E}(x) := (\operatorname{Word}(x) \wedge \forall y \leqslant x \, (y \in_{w} x \to \operatorname{E}(y) \vee y = \lceil; \rceil)) \vee x = 0;$$

$$x; y = z := (x = 0 \wedge z = y) \vee (y = 0 \wedge z = x) \vee$$

$$(x \neq 0 \wedge y \neq 0 \wedge z = x * \lceil; \rceil * y);$$

$$x \preccurlyeq_{s} y := \operatorname{Seq}_{E}(x) \wedge \operatorname{Seq}_{E}(y) \wedge$$

$$\exists u, v \leqslant y \, (\operatorname{Seq}_{E}(u) \wedge \operatorname{Seq}_{E}(v) \wedge y = u; x; v);$$

$$x \in_{s} y := \operatorname{Word}_{E}(x) \wedge x \preccurlyeq_{s} y.$$

Заметим, что значение x; y можно ограничить термом.

Машины Тьюринга и их вычисления. Рассмотрим произвольную машину Тьюринга $M = \langle Q, A, P, q_0, q_1 \rangle$. Возьмём

$$E := Q \cup A \cup \{S, L, R\}$$

и зафиксируем $N \in \mathbb{N}$ такое, что $2^N > |E|$. Определим

$$\mathbf{Q}\left(x
ight)\;:=\;\bigvee_{q\in Q}x=\lceil q
ceil$$
и А $\left(x
ight)\;:=\;\bigvee_{a\in A}x=\lceil a
ceil.$

С помощью Q(x) и A(x) можно естественным образом построить $\operatorname{Word}_Q(x)$ и $\operatorname{Word}_A(x)$. Далее, всякая команда из P имеет вид

$$qa \rightarrow q'a'\delta$$
,

где $\{q,q'\}\subseteq Q,\,\{a,a'\}\subseteq A$ и $\delta\in\{\mathtt{S},\mathtt{L},\mathtt{R}\},\,$ а значит, ей можно сопоставить

$$\lceil q \rceil * \lceil a \rceil * \lceil q' \rceil * \lceil a' \rceil * \lceil \delta \rceil.$$

Тогда P (точнее, отвечающее P множество кодов) определяется посредством

$$P(x) := \bigvee_{qa \to q'a'\delta \in P} x = \lceil q \rceil * \lceil a \rceil * \lceil q' \rceil * \lceil a' \rceil * \lceil \delta \rceil.$$

Напомним, что кофигурации машины M имеют вид uqv, где $q \in Q$ и $\{u,v\} \subseteq A^*$, причём v непусто. Стало быть, множество всех конфигураций определяется посредством

$$\operatorname{Config}_{M}(x) := (\exists u, q, v \leqslant x) (x = u * q * v \wedge \operatorname{Word}_{A}(u) \wedge Q(q) \wedge \operatorname{Word}_{A}(v) \wedge v \neq 1).$$

Далее, можно определить отношения «x является начальной конфигурацией на входе y» и «x является заключительной конфигурацией»:

$$\operatorname{Init}_{M}(x,y) := \operatorname{Config}_{M}(x) \wedge x = \lceil q_{1} \rceil * \lceil 0 \rceil * y;$$

$$\operatorname{Final}_{M}(x) := \operatorname{Config}_{M}(x) \wedge \lceil q_{0} \rceil \in_{w} x.$$

Теперь выпишем формулу, которая определяет отношение «машина M за один шаг работы переходит из конфигурации x в конфигурацию y»:

$$\begin{aligned} &\operatorname{Step}_{M}\left(x,y\right) \; := \\ &\operatorname{Config}_{M}\left(x\right) \wedge \operatorname{Config}_{M}\left(y\right) \wedge \left(\exists u,v,q,q',a,a',b \leqslant x+y\right) \\ &\left(\operatorname{Word}_{A}\left(u\right) \wedge \operatorname{Word}_{A}\left(v\right) \wedge \operatorname{Q}\left(q\right) \wedge \operatorname{Q}\left(q'\right) \wedge \operatorname{A}\left(a\right) \wedge \operatorname{A}\left(a'\right) \wedge \operatorname{A}\left(b\right) \wedge \right. \\ &\left(\operatorname{P}\left(q*a*q'*a'*\ulcorner \operatorname{S}\urcorner\right) \wedge x = u*q*a*v \wedge y = u*q'*a'*v\right) \vee \\ &\left(\operatorname{P}\left(q*a*q'*a'*\ulcorner \operatorname{L}\urcorner\right) \wedge x = u*b*p*a*v \wedge y = u*q'*b*a'*v\right) \vee \\ &\left(\operatorname{P}\left(q*a*q'*a'*\ulcorner \operatorname{L}\urcorner\right) \wedge x = q*a*v \wedge y = q*\ulcorner \operatorname{O}\urcorner*a'*v\right) \vee \\ &\left(\operatorname{P}\left(q*a*q'*a'*\ulcorner \operatorname{R}\urcorner\right) \wedge x = u*q*a*b*v \wedge y = u*a'*q'*b*v\right) \vee \\ &\left(\operatorname{P}\left(q*a*q'*a'*\ulcorner \operatorname{R}\urcorner\right) \wedge x = u*q*a*b*v \wedge y = u*a'*q'*b*v\right) \vee \\ &\left(\operatorname{P}\left(q*a*q'*a'*\ulcorner \operatorname{R}\urcorner\right) \wedge x = u*q*a \wedge y = u*a'*q'*r^{\circ}\right) \\ &\right) \end{aligned}$$

Наконец, отношение «x является протоколом вычисления машины M на входе y» можно определить посредством

$$\operatorname{Comp}_{M}(x,y) := \operatorname{Seq}_{E}(x) \wedge (\forall u \leqslant x) (u \in_{s} x \to \operatorname{Config}_{M}(u)) \wedge (\exists u, v, w \leqslant x) (x = u; v; w \wedge \operatorname{Init}_{M}(u, y) \wedge \operatorname{Final}_{M}(w)) \wedge (\forall u, v, v', w \leqslant x) (x = u; v; v'; w \wedge \operatorname{Config}_{M}(v) \wedge \operatorname{Config}_{M}(v') \to \operatorname{Step}_{M}(v, v')).$$

Стоит отметить, что здесь речь идёт о полных вычислениях, которые приводят к заключительным конфигурациям.

При вычислении частичных ℓ -местных числовых функций на машинах Тьюринга мы отождествляем каждое $(n_1, \dots, n_\ell) \in \mathbb{N}^\ell$ со словом

$$1^{n_1}0\dots01^{n_\ell} \;:=\; \underbrace{1\dots1}_{n_1\text{ mtyr}}0\dots0\underbrace{1\dots1}_{n_\ell\text{ mtyr}}.$$

В частности, $n \in \mathbb{N}$ превращается в 1^n . Соответствующая функция представляется так:

$$\operatorname{code}(x) = y := \operatorname{Word}(y) \wedge ||y|| = x \wedge (\forall u \leqslant y) (u \in_{w} y \to u = \lceil 1 \rceil).$$

(Покажите, что значение code(x) можно ограничить сверху термом от x.)

То, что машина M на входе (x_1, \ldots, x_ℓ) останавливается, выражается посредством

$$T_M(x_1, \dots, x_\ell) := \exists x \operatorname{Comp}_M(x, \operatorname{code}(x_1) * \lceil 0 \rceil * \dots * \lceil 0 \rceil * \operatorname{code}(x_\ell)).$$

Значит, для любого $(n_1, ..., n_\ell) \in \mathbb{N}^\ell$,

$$\dot{\mathfrak{N}} \Vdash \mathrm{T}_M\left[n_1,\ldots,n_\ell
ight] \iff M$$
 на входе $1^{n_1}0\ldots01^{n_\ell}$ останавливается.

Отметим, что полученная Σ_1 -формула $T_M(x_1,\ldots,x_\ell)$ содержит ровно один неограниченный квантор существования.

Пусть $A\subseteq \mathbb{N}^\ell$ перечислимо. Значит, χ_A^* вычислима, а потому её можно вычислить на некоторой машине Тьюринга M. Тогда T_M определяет A в $\dot{\mathfrak{N}}$.

Теперь нужно избавиться от ехр.

Как избавиться от экспоненты

Определим rest : $\mathbb{N}^2 \to \mathbb{N}$ по правилу

$$\operatorname{rest}(n,m) := egin{cases} n - \lfloor n/m \rfloor \cdot m & \operatorname{если} \ m
et 0 \\ n & \operatorname{иначе}. \end{cases}$$

Вспомним один полезный результат из элементарной теории чисел:

Китайская теорема об остатках, вариация

Пусть $n \in \mathbb{N}$, $(c_0, \ldots, c_n) \in \mathbb{N}^{n+1}$ и $(b_0, \ldots, b_n) \in \mathbb{N}^{n+1}$ таковы, что:

- c_0, \ldots, c_n попарно взаимно просты;
- $b_i < c_i$ для всех $i \in \{0, \ldots, n\}^2$

Тогда найдётся $a \in \mathbb{N}$ такое, что

$$\operatorname{rest}(a, c_0) = b_0, \ldots, \operatorname{rest}(a, c_n) = b_n.$$

Рассмотрим $\gamma: \mathbb{N}^2 \to \mathbb{N}$, действующую по правилу

$$\gamma(n,i) := \operatorname{rest} (\operatorname{left}(n), 1 + (i+1)\operatorname{right}(n)).$$

Её порой называют $\phi y n \kappa u u e i$ $\Gamma \ddot{e} d e n s$. С помощью китайской теоремы об остатках можно получить следующее.

Упражнение 1

Для каждого $n \in \mathbb{N}$ и любого $(b_0, \dots, b_n) \in \mathbb{N}^{n+1}$ существует $a \in \mathbb{N}$ такое, что

$$\gamma(a,0) = b_0, \ldots, \gamma(a,n) = b_n.$$

Подмножество \mathbb{N}^{ℓ} называют Δ_1 -определимым в \mathfrak{N} , если оно и его дополнение определимы в \mathfrak{N} некоторыми Σ_1 -формулами. Аналогично для $\dot{\mathfrak{N}}$.

Утверждение 1.4

График $\lambda x.[2^x]$ является Δ_1 -определимым в \mathfrak{N} .

Доказательство. Заметим, что график γ является Δ_0 -определимым в \mathfrak{N} , причём $\gamma(x,y)$ можно ограничить σ_A -термом. Возьмём

$$A := \{(n, 2^n) \mid n \in \mathbb{N}\}.$$

 $^{^{2}}$ В частности, c_{0}, \ldots, c_{n} должны быть отличны от нуля.

Тогда A можно определить в $\mathfrak N$ посредством Σ_1 -формулы

$$\Phi_A(x,y) := \exists u (\gamma(u,0) = 1 \land (\forall v < x) \gamma(u,s(v)) = \gamma(u,v) \cdot \underline{2} \land \gamma(u,x) = y),$$

а его дополнение — посредством формулы

$$\Phi_{\overline{A}}(x,y) := \neg \forall u \, (\gamma \, (u,0) = 1 \land (\forall v < x) \, \gamma \, (u,s \, (v)) = \gamma \, (u,v) \cdot \underline{2} \rightarrow \gamma \, (u,x) = y),$$

которая, очевидно, эквивалентна Σ_1 -формуле.³

Замечание. Аналогично доказывается Δ_1 -определимость графика $\lambda x.\lambda y.[x^y]$ в \mathfrak{N} .

Используя предложение 1.4, можно получить следующее.

Упражнение 2

Если множество Σ_1 -определимо в $\dot{\mathfrak{N}}$, то оно Σ_1 -определимо в \mathfrak{N} .

Стало быть, имеет место:

Teopeма 1.5: о Σ_1 -определимости

Всякое перечислимое множество Σ_1 -определимо в \mathfrak{N} .

Замечание. Вместе с тем отнюдь не всякое разрешимое (или даже «примитивно разрешимое») множество будет Δ_0 -определимо в \mathfrak{N} .

Следствие 1.6

Множество перечислимо тогда и только тогда, когда оно Σ_1 -определимо в \mathfrak{N} .

 $^{^3 \}mbox{Pasymeetcr},$ все вхождения γ в Φ_A и $\Phi_{\overline{A}}$ должны быть предварительно элиминированы.

В качестве простого приложения теоремы о Σ_1 -определимости выступает:

Следствие 1.7

 $\operatorname{Th}\left(\mathfrak{N}\right)$ неразрешима.

Доказательство. Зафиксируем $A \subseteq \mathbb{N}$, которое перечислимо, но не разрешимо. Мы уже знаем, что A определимо в \mathfrak{N} некоторой Σ_1 -формулой $\Phi(x)$. Значит, для любого $n \in \mathbb{N}$,

$$n \in A \iff \mathfrak{N} \Vdash \Phi(x/\underline{n}) \iff \Phi(x/\underline{n}) \in \operatorname{Th}(\mathfrak{N}).$$

Стало быть, A сводится к Th (\mathfrak{N}) , а потому Th (\mathfrak{N}) неразрешима.

Замечание. Из приведённого только что доказательства легко видеть, что $\mathbb{N} \setminus A$ тоже сводится к $\operatorname{Th}(\mathfrak{N})$. Стало быть, $\operatorname{Th}(\mathfrak{N})$ даже не перечислимо.

На самом деле, привлекая базовые знания об арифметической иерерхии, можно получить намного больше:

Упражнение 3

- і. Подмножество \mathbb{N}^ℓ определимо в $\mathfrak{N},$ если и только если оно лежит в некотором уровне арифметической иерархии.
- іі. Th (\mathfrak{N}) неопределимо в \mathfrak{N} .

Кроме того, мы без труда получаем следующий результат.

1^{as} теорема Гёделя о неполноте: версия lpha

Пусть $\Gamma \subseteq$ Sent перечислимо и $\mathfrak{N} \Vdash \Gamma$. Тогда Γ неполно.

Доказательство. Очевидно, $\Gamma \subseteq \operatorname{Th}(\mathfrak{N})$. Рассуждая от противного, предположим, что Γ полно. Тогда Γ совпадёт с $\operatorname{Th}(\mathfrak{N})$, как легко убедиться, причём Γ окажется разрешимым — это противоречит следствию 1.7. □

^аПункт (ii) ещё известен как *теорема Тарского о неопределимости истины (в арифметике)*.

О диофантовых множествах

 $A\subseteq\mathbb{N}^\ell$ называют $\partial uo\phi$ антовым, если существуют полиномы

$$p(x_1,\ldots,x_\ell,\vec{y})$$
 и $q(x_1,\ldots,x_\ell,\vec{y})$

с коэффициентами из № такие, что

$$A = \left\{ (n_1, \dots, n_\ell) \in \mathbb{N}^\ell \mid \begin{array}{c} p(n_1, \dots, n_\ell, \vec{y}) = q(n_1, \dots, n_\ell, \vec{y}) \\ \text{для некоторых } \vec{y} \text{ из } \mathbb{N}. \end{array} \right\}.$$

Как легко убедиться, A диофантово тогда и только тогда, когда оно определимо в \mathfrak{N} посредством σ_{A} -формулы вида $\exists \vec{y} \, t_1 = t_2$, где t_1 и t_2 суть термы.

На самом деле, теорему о Σ_1 -определимости можно значительно усилить:

Теорема Матиясевича-Робинсон-Дэвиса-Патнэма; без доказательства

Множество перечислимо тогда и только тогда, когда оно диофантово.

Для удобства введём обозначение

$$\mathsf{DE}\left(\mathfrak{N}\right) := \left\{t_1 = t_2 \in \mathsf{At}_{\sigma_{\mathsf{A}}} \mid \mathfrak{N} \Vdash \widetilde{\exists} t_1 = t_2\right\}.$$

Под $\partial uo \phi a n mo \delta n e mo \ddot{u}$ над \mathbb{N} понимается проблема принадлежности к $\mathsf{DE}(\mathfrak{N})$. Как легко видеть, $\mathsf{DE}(\mathfrak{N})$ перечислимо.

Следствие 1.8

 $\mathsf{DE}(\mathfrak{N})$ неразрешимо.

Доказательство. Зафиксируем $A \subseteq \mathbb{N}$, которое перечислимо, но не разрешимо. Теорема выше гарантирует, что A определимо в \mathfrak{N} некоторой σ_{A} -формулой вида $\exists \vec{y} \, \Psi$, где $\Psi \in \mathsf{At}$, причём < не входит в Ψ . Значит, для любого $n \in \mathbb{N}$,

$$n \in A \iff \mathfrak{N} \Vdash \exists \vec{y} \Psi(x/\underline{n}) \iff \Psi(x/\underline{n}) \in \mathsf{DE}(\mathfrak{N}).$$

Стало быть, A сводится к DE (\mathfrak{N}) , а потому DE (\mathfrak{N}) неразрешимо.

Замечание. По аналогии с $\mathsf{DE}(\mathfrak{N})$ можно определить $\mathsf{DE}(\mathfrak{J})$ и $\mathsf{DE}(\mathfrak{Q})$. Разумеется, они оба окажутся перечислимы. Более того, нетрудно убедиться, что

$$\mathsf{DE}(\mathfrak{Z}) \equiv \mathsf{DE}(\mathfrak{N}).$$

а потому $\mathsf{DE}(\mathfrak{Z})$ неразрешимо. Открытым остаётся вопрос о (не)разрешимости $\mathsf{DE}(\mathfrak{Q})$.

2 Об истинных Δ_0 -предложениях

Обозначим через РА множество, состоящее из универсальных замыканий σ -формул

A1.
$$s(x) \neq 0$$
,

A2.
$$s(x) = s(y) \to x = y$$
,

A3.
$$x + 0 = x$$
,

A4.
$$x + s(y) = s(x + y)$$
,

A5.
$$x \cdot 0 = 0$$
,

A6.
$$x \cdot s(y) = x \cdot y + x$$
,

A7.
$$x \not< 0$$
 и

A8.
$$x < s(y) \leftrightarrow (x < y \lor x = y)$$
,

а также универсальных замыканий всех σ -формул вида

$$\Phi\left(x/0\right) \wedge \forall x \left(\Phi\left(x/x\right) \to \Phi\left(x/\mathsf{s}\left(x\right)\right)\right) \to \forall x \, \Phi,$$

которые в совокупности называются cxemoй akcuom uhdykuuu b σ_A . В литературе теория РА известна как apupmemuka $\Pi eaho$.

Кроме того, обозначим через МА множество, состоящее из универсальных замыканий A1–A8, а также σ_{A} -формул

A9.
$$0 < x \lor 0 = x$$
 и

A10.
$$s(x) < y \leftrightarrow (x < y \land s(x) \neq y)$$
.

Теорию МА мы будем называть минимальной арифметикой.

Утверждение 2.1

A9 и A10 выводимы в PA, т.е. $[MA] \subseteq [PA]$.

Доказательство. Будем рассуждать внутри РА.

А9 Покажем по индукции, что

$$\forall x \, (0 < x \lor 0 = x).$$

<u>База:</u> Очевидно, 0 = 0.

Шаг индукции: Пусть $0 < x \lor 0 = x$. Тогда $0 < \mathsf{s}(x)$ ввиду A8.

А10 Заметим, что, как легко доказать по индукции:

- $\forall x \, \forall y \, (x < y \leftrightarrow \mathsf{s} \, (x) < \mathsf{s} \, (y));$
- $\forall x (x \not< x)$.

Вооружившись этим знанием, покажем по индукции, что

$$\forall y \, \forall x \, (\mathsf{s} \, (x) < y \leftrightarrow (x < y \land \mathsf{s} \, (x) \neq y)).$$

<u>База:</u> Очевидно, $s(x) \not< 0$ и $x \not< 0$ ввиду **А7**.

Шаг индукции: Пусть $\mathbf{s}(x) < y$ равносильно $x < y \land \mathbf{s}(x) \neq y$. Тогда

$$\begin{split} \mathbf{s} \left(x \right) < \mathbf{s} \left(y \right) & \quad \leftrightarrow \quad x < y \\ & \quad \leftrightarrow \quad x < y \wedge x \neq y \\ & \quad \leftrightarrow \quad \left(x < y \wedge x \neq y \right) \vee \left(x = y \wedge x \neq y \right) \\ & \quad \leftrightarrow \quad \left(x < y \vee x = y \right) \wedge x \neq y \\ & \quad \leftrightarrow \quad x < \mathbf{s} \left(y \right) \wedge x \neq y \\ & \quad \leftrightarrow \quad x < \mathbf{s} \left(y \right) \wedge \mathbf{s} \left(x \right) \neq \mathbf{s} \left(y \right). \end{split}$$

Замечание. Вместо МА нередко рассматривают теорию RA, которая задаётся универсальными замыканиями A1-A6, а также σ_A -формул

AR1.
$$x \neq 0 \rightarrow \exists y \, x = \mathsf{s}(y);$$

AR2.
$$x < y \leftrightarrow \exists u \, \mathsf{s} \, (u) + x = y$$
.

Её называют *арифметикой Робинсона*. Как легко убедиться, **AR1** и **AR2** выводимы в **PA**, т.е. [**RA**] ⊆ [**PA**]. Вместе с тем известно, что

$$[RA] \not\subseteq [MA]$$
 $_{\mathrm{II}}$ $[MA] \not\subseteq [RA]$.

Это нетрудно доказать посредством построения модели MA (соответственно RA), которая не является моделью RA (MA). Так или иначе, MA и RA обе куда слабее PA. Например, в них нельзя вывести:

- ассоциативность сложения или умножения;
- коммутативность сложения или умножения.

Напротив, в PA можно вывести практически любую из теорем, встречающихся в обычном курсе элементарной теории чисел.

Несмотря на то, что MA намного слабее PA, она успешно справляется с проверкой истинности и ложности Δ_0 -предложений:

Теорема 2.2: о Δ_0 -полноте MA

Для любого Δ_0 -предложения Φ :

- i. если \mathfrak{N} ⊩ Φ , то MA ⊢ Φ ;
- іі. если $\mathfrak{N} \nVdash \Phi$, то $\mathsf{MA} \vdash \neg \Phi$.

Доказательство. Напоминаю, что под нумералами понимаются замкнутные термы

$$0 := 0, \quad 1 := s(0), \quad 2 := s(s(0)), \quad \dots$$

Нам понадобится несколько несложных лемм.

Лемма 2.3

Для любых $m, n \in \mathbb{N}$:

- i. MA $\vdash \underline{m} + \underline{n} = m + n$;
- ii. MA $\vdash \underline{m} \cdot \underline{n} = \underline{m} \cdot \underline{n}$.

Доказательство. Простая «внешняя» индукция по n.

Это наблюдение можно обобщить следующим образом.

Лемма 2.4

Пусть $t \in \text{Term}^{\circ}$. Тогда $\mathsf{MA} \vdash t = \underline{t}^{\mathfrak{N}}$.

Доказательство. Простая «внешняя» индукция по построению t.

Кроме того, МА умеет опровергать ложные равенства между нумералами:

Лемма 2.5

Пусть $m, n \in \mathbb{N}$, причём $m \neq n$. Тогда $\mathsf{MA} \vdash \neg \underline{m} = \underline{n}$.

Доказательство. Простая «внешняя» индукция по n.

Отсюда уже без труда получается:

Лемма 2.6

Для любых $t_1, t_2 \in \text{Term}^{\circ}$:

- і. если $\mathfrak{N} \Vdash t_1 = t_2$, то $\mathsf{MA} \vdash t_1 = t_2$;
- іі. если $\mathfrak{N} \nVdash t_1 = t_2$, то $\mathsf{MA} \vdash \neg t_1 = t_2$.

Доказательство. Прямое следствие предыдущих двух лемм.

Вместе с тем ограниченные кванторы и вообще вхождения < можно элиминировать с помощью следующего утверждения.

Лемма 2.7

Пусть $n \in \mathbb{N}$. Тогда $\mathsf{MA} \vdash x < \underline{n} \leftrightarrow x = 0 \lor \ldots \lor x = \underline{n-1}$.

Доказательство. Простая «внешняя» индукция по n.

Теперь рассмотрим произвольное Δ_0 -предложение Φ . Используя леммы выше, можно построить по Φ бескванторное предложение Φ' , не содержащее вхождений < и такое, что $\mathsf{MA} \vdash \Phi \leftrightarrow \Phi'$. Осталось показать, что:

- і. если $\mathfrak{N} \Vdash \Phi'$, то $\mathsf{MA} \vdash \Phi'$;
- іі. если $\mathfrak{N} \nVdash \Phi'$, то $\mathsf{MA} \vdash \neg \Phi'$.

Это делается простой индукцией по построению Φ' .

Следствие 2.8

Пусть $\Gamma \subseteq \text{Sent } \mathsf{и} \mathsf{MA} \subseteq [\Gamma]$. Тогда для любого Σ_1 -предложения Φ ,

$$\mathfrak{N} \Vdash \Phi \implies \Gamma \vdash \Phi$$

 \mathcal{A} оказательство. Пусть Φ имеет вид $\exists x_1 \ldots \exists x_\ell \, \Psi \, (x_1, \ldots, x_\ell)$, где $\Psi \in \Delta_0$, и $\mathfrak{N} \Vdash \Phi$. Значит, найдутся $n_1, \ldots, n_\ell \in \mathbb{N}$ такие, что $\mathfrak{N} \Vdash \Psi \, (\underline{n_1}, \ldots, \underline{n_\ell})$. В силу теоремы 2.2, мы имеем $\mathsf{MA} \vdash \Psi \, (n_1, \ldots, n_\ell)$, откуда $\mathsf{MA} \vdash \Phi$, тем более $\Gamma \vdash \Phi$.

 $^{^{}a}$ При этом мы отождествляем пустую дизъюнкцию с $0 \neq 0$, например.

 $\Gamma \subseteq \text{Sent}$ называется Σ_1 -корректным, если для любого Σ_1 -предложения Φ ,

$$\Gamma \vdash \Phi \implies \mathfrak{N} \Vdash \Phi$$

Тут стоит отметить, что Σ_1 -корректность Γ не гарантирует $\mathfrak{N} \Vdash \Gamma$, т.е. «глобальную корректность Γ ». Пусть $A \subseteq \mathbb{N}^{\ell}$ и $\Phi(x_1, \dots, x_{\ell}) \in \text{Form.}$ Мы будем говорить, что Φ нумерует $A \in \Gamma$, если для всех $n_1, \dots, n_{\ell} \in \mathbb{N}$,

$$(n_1,\ldots,n_\ell) \in A \iff \Gamma \vdash \Phi(\underline{n_1},\ldots,\underline{n_\ell}).$$

Используя следствие 2.8, нетрудно получить:

Следствие 2.9

Пусть $\Gamma\subseteq \mathrm{Sent}$ перечислимо и Σ_1 -корректно, и $\mathsf{MA}\subseteq [\Gamma]$. Тогда для каждого $A\subseteq \mathbb{N}^\ell$ следующие условия эквивалентны:

- i. A перечислимо;
- ii. A нумеруемо в Γ ;
- ііі. A нумеруемо в Γ некоторой Σ_1 -формулой.

Доказательство. $[i \Rightarrow iii]$ Пусть $A \subseteq \mathbb{N}^{\ell}$ перечислимо. Тогда некоторая $\Phi \in \Sigma_1$ определяет A в \mathfrak{N} (ввиду теоремы 1.5). Легко убедиться, что Φ нумерует A в Γ .

ііі ⇒ іі Очевидно.

 $|ii \Rightarrow i|$ В силу перечислимости Γ .

Замечание. На самом деле, требование Σ_1 -корректности можно заменить на простую непротиворечивость, однако доказательство этого факта выходит за пределы нашего курса.

Следствие 2.10

Пусть $\Gamma \subseteq \text{Sent}$ является Σ_1 -корректным. Тогда $[\Gamma]$ неразрешимо.

Доказательство. Рассмотрим

$$\Delta \ := \ [\Gamma \cup \mathsf{MA}].$$

Нетрудно убедиться, что Δ является Σ_1 -корректным:

Пусть $\Delta \vdash \Phi$, где $\Phi - \Sigma_1$ -предложение. Тогда $\Gamma \vdash \bigwedge \mathsf{MA} \to \Phi$. При этом $\bigwedge \mathsf{MA} \to \Phi$, как легко понять, логически эквивалентно Σ_1 -предложению. В силу Σ_1 -корректности Γ , мы получаем $\mathfrak{N} \Vdash \bigwedge \mathsf{MA} \to \Phi$. Отсюда $\mathfrak{N} \Vdash \Phi$, так как $\mathfrak{N} \Vdash \mathsf{MA}$.

Теперь зафиксируем $A \subseteq \mathbb{N}$, которое перечислимо, но не разрешимо. Мы уже знаем, что некоторая Σ_1 -формула Φ определяет A в \mathfrak{N} . Значит, для любого $n \in \mathbb{N}$,

$$n \in A \iff \mathfrak{N} \Vdash \Phi(\underline{n}) \iff \Delta \vdash \Phi(\underline{n}) \iff \Phi(\underline{n}) \in [\Delta].$$

Стало быть, A сводится к $[\Delta]$, а потому $[\Delta]$ неразрешимо. Кроме того, $[\Delta]$ сводится к $[\Gamma]$, а потому $[\Gamma]$ также неразрешимо.

1^{as} теорема Гёделя о неполноте: версия eta

Пусть $\Gamma\subseteq \mathrm{Sent}$ перечислимо и Σ_1 -корректно. Тогда Γ неполно.

Доказательство. Давайте предположим, что Γ полно. Тогда Γ совпадает с $[\Gamma]$, причём Γ окажется разрешимым — это противоречит следствию 2.10.

Теорема Чёрча (для σ_{A})

 $[\varnothing]$ (в сигнатуре σ_A) неразрешимо.

Доказательство. Достаточно заметить, что [MA] сводится к $[\varnothing]$.

3 Представимость в арифметике

Пусть $\Gamma \subseteq \text{Sent}, f : \subseteq \mathbb{N}^{\ell} \to \mathbb{N}$ и $\Phi(x_1, \dots, x_{\ell}, y) \in \text{Form. Говорят, что } \Phi$ представляет $f \in \Gamma$, если для всех $(n_1, \dots, n_{\ell}) \in \text{dom } f$,

$$\Gamma \vdash \Phi (\underline{n_1}, \dots, \underline{n_\ell}, y) \leftrightarrow y = f(n_1, \dots, n_\ell).$$

Здесь ключевым результатом является:

Теорема 3.1: о представимости

Всякая вычислимая $f:\subseteq\mathbb{N}^\ell o\mathbb{N}$ представляется в MA некоторой Σ_1 -формулой.

Доказательство. Для наглядности мы ограничимся рассмотрением случая, когда $\ell = 1$. Так как графики вычислимых функций перечислимы, график f определяется в \mathfrak{N} некоторой Σ_1 -формулой $\Phi(x,y)$. При этом мы можем считать, что $\Phi(x,y)$ имеет вид

$$\exists z \, \Psi \, (x, y, z),$$

где $\Psi \in \Delta_0$. Введём следующие обозначения:

$$\Theta(x, y, u) := y \leqslant u \land (\exists z \leqslant u) \Psi(x, y, z);
\Omega(x, y, u) := \Theta(x, y, u) \land (\forall y' \leqslant u) ((\exists v \leqslant u) \Theta(x, y', v) \rightarrow y' = y).$$

Очевидно, $\Theta(x, y, u)$ и $\Omega(x, y, u)$ лежат в Δ_0 . Покажем, что Σ_1 -формула

$$\Phi'(x,y) := \exists u \Omega(x,y,u).$$

представляет f в MA. Пусть $m \in \text{dom } f$ и n = f(m). Нужно проверить, что

$$\mathsf{MA} \vdash \Phi'(m, y) \leftrightarrow y = n.$$

 \longleftarrow Ясно, что $\mathfrak{N} \Vdash \Theta\left(\underline{m},\underline{n},\underline{k}\right)$ для достаточно большого $k \in \mathbb{N}$; более того, так как f является функцией, мы имеем $\mathfrak{N} \Vdash \Omega\left(\underline{m},\underline{n},\underline{k}\right)$. Стало быть, в MA выводится $\Omega\left(\underline{m},\underline{n},\underline{k}\right)$ и, следовательно, $\Phi'\left(\underline{m},\underline{n}\right)$. Таким образом, MA $\vdash y = \underline{n} \to \Phi'\left(\underline{m},y\right)$.

 \longrightarrow Будем рассуждать внутри МА. Как уже было отмечено, для подходящего $k \in \mathbb{N}$ верно $\Omega(\underline{m}, \underline{n}, \underline{k})$, т.е.

$$\Theta(m, n, k) \wedge (\forall y' \leqslant k) ((\exists v \leqslant k) \Theta(m, y', v) \to y' = n). \tag{\sharp}$$

Теперь давайте предположим, что $\Omega(m, y, u)$, т.е.

$$\Theta\left(\underline{m}, y, u\right) \land (\forall y' \leqslant u) \left((\exists v \leqslant u) \Theta\left(\underline{m}, y', v\right) \to y' = y\right). \tag{b}$$

Из этого мы хотим получить $y = \underline{n}$. Отдельно разберём два случая: $u \leqslant \underline{k}$ и $\neg u \leqslant \underline{k}$.

Пусть $u \leq \underline{k}$. Тогда $(\exists v \leq \underline{k}) \Theta(\underline{m}, y, v)$, в силу (\flat). Вместе с тем (\flat) гарантирует $y \leq u$, откуда $y \leq \underline{k}$. Стало быть, $y = \underline{n}$ ввиду (\sharp) (поставляя y вместо y').

Пусть $\neg u \leq \underline{k}$, т.е. $\underline{k} < u$. Тогда $(\exists v \leq u) \Theta(\underline{m}, \underline{n}, v)$, в силу (\sharp) . Вместе с тем (\sharp) гарантирует $\underline{n} \leq \underline{k}$, откуда $\underline{n} < u$. Стало быть, $\underline{n} = y$ ввиду (\flat) (подставляя \underline{n} вместо y').

В итоге
$$\mathsf{MA} \vdash \Omega\left(\underline{m},y,u\right) \to y = \underline{n}$$
. Значит, $\mathsf{MA} \vdash \Phi'\left(\underline{m},y\right) \to y = \underline{n}$.

Пусть $\Gamma \subseteq \text{Sent}$, $A \subseteq \mathbb{N}^{\ell}$ и $\Phi(x_1, \dots, x_{\ell}) \in \text{Form.}$ Будем говорить, что Φ бинумерует A G Γ , если для всех $n_1, \dots, n_{\ell} \in \mathbb{N}$,

- если $(n_1, \ldots, n_\ell) \in A$, то $\Gamma \vdash \Phi (n_1, \ldots, n_\ell)$;
- если $(n_1,\ldots,n_\ell) \not\in A$, то $\Gamma \vdash \neg \Phi (n_1,\ldots,n_\ell)$.

Разумеется, когда Γ непротиворечиво, это равносильно тому, что Φ и $\neg \Phi$ нумеруют соответственно A и $\mathbb{N}^{\ell} \setminus A$ в Γ .

Следствие 3.2

Пусть $\Gamma\subseteq \mathrm{Sent}$ непротиворечиво и перечислимо, и $\mathsf{MA}\subseteq [\Gamma]$. Тогда для всякого $A\subseteq \mathbb{N}^\ell$ следующие условия эквивалентны:

- i. A разрешимо;
- ii. A бинумеруемо в Γ ;
- ііі. A бинумеруемо в Γ некоторой Σ_1 -формулой.

Доказательство. $[i \Rightarrow iii]$ Пусть $A \subseteq \mathbb{N}^{\ell}$ разрешимо. Значит, некоторая $\Theta(x_1, \dots, x_{\ell}, y) \in \Sigma_1$ представляет χ_A в MA. Возьмём

$$\Phi(x_1,\ldots,x_\ell) := \Theta(x_1,\ldots,x_\ell,\underline{1}).$$

Покажем, что Φ бинумерует A в MA, тем более в Γ .

- Пусть $(n_1, ..., n_\ell) \in A$. Тогда в MA выводится $\Psi\left(\underline{n_1}, ..., \underline{n_\ell}, y\right) \leftrightarrow y = \underline{1}$. Отсюда мы имеем MA $\vdash \Psi\left(n_1, ..., n_\ell, \underline{1}\right)$.
- Пусть $(n_1, \ldots, n_\ell) \in \mathbb{N}^\ell \setminus A$. Тогда в MA выводится $\Psi\left(\underline{n_1}, \ldots, \underline{n_\ell}, y\right) \leftrightarrow y = \underline{0}$. Отсюда мы имеем MA $\vdash \Psi\left(\underline{n_1}, \ldots, \underline{n_\ell}, \underline{1}\right) \leftrightarrow \underline{1} = 0$, т.е. MA $\vdash \neg \Psi\left(\underline{n_1}, \ldots, \underline{n_\ell}, \underline{1}\right)$ (поскольку Δ_0 -предложение $\neg \underline{1} = 0$ выводится в MA).

[iii ⇒ ii] Очевидно.

 $[\mathrm{ii}\Rightarrow\mathrm{i}]$ В силу перечислимости Г.

Для произвольного $\Gamma \subseteq \mathrm{Sent}$ обозначим

$$[\Gamma]^- := \{ \Phi \in \text{Sent} \mid \Gamma \vdash \neg \Phi \},$$

т.е. $[\Gamma]^-$ состоит из предложений, которые опровержимы в Γ . Для наглядности мы будем иногда писать $[\Gamma]^+$ вместо $[\Gamma]$.

Следствие 3.3

Не существует разрешимого $\Delta \subseteq \mathrm{Sent}$ такого, что

$$[\mathsf{MA}]^+ \subseteq \Delta \quad \mathsf{M} \quad [\mathsf{MA}]^- \subseteq \operatorname{Sent} \setminus \Delta.$$

Доказательство. Зафиксируем непересекающиеся перечеслимые $A, B \subseteq \mathbb{N}$, которые вычислимо неотделимы, и зададим $f : \subseteq \mathbb{N} \to \{0,1\}$ по правилу

$$f(n) := egin{cases} 1 & ext{если } n \in A, \\ 0 & ext{если } n \in B, \\ \uparrow & ext{иначе.} \end{cases}$$

Ясно, что f вычислима. Значит, некоторая $\Theta\left(x,y\right)\in\Sigma_{1}$ представляет f в MA. Возьмём

$$\Phi(x) := \Theta(x, \underline{1}).$$

Нетрудно показать, что для всех $n \in \mathbb{N}$:

- если $n \in A$, то $\mathsf{MA} \vdash \Phi\left(\underline{n}\right)$;
- если $n \in B$, то MA $\vdash \neg \Phi(n)$.

Теперь предположим, что существует разрешимое Δ такое, что

$$\left[\mathsf{MA}\right]^+ \ \subseteq \ \Delta \quad \mathtt{M} \quad \left[\mathsf{MA}\right]^- \ \subseteq \ \mathrm{Sent} \setminus \Delta.$$

Рассмотрим $C:=\{n\in\mathbb{N}\mid\Phi\left(\underline{n}\right)\in\Delta\}$. Очевидно, C разрешимо. Кроме того, для каждого $n\in\mathbb{N}$:

Итак, $A \subseteq C$ и $B \subseteq \mathbb{N} \setminus C$, т.е. C отделяет A и B — противоречие.

 $^{^4{}m Cp}.$ доказательство следствия 3.2.

Следствие 3.4 Пусть $\Gamma \subseteq \mathrm{Sent}$ непротиворечиво, и $\mathrm{MA} \subseteq [\Gamma]$. Тогда $[\Gamma]$ неразрешимо. Доказательство. Достаточно заметить, что $[\mathrm{MA}] \subseteq [\Gamma]$ и $[\mathrm{MA}]^- \subseteq \mathrm{Sent} \setminus [\Gamma]$. \square Пусть $\Gamma \subseteq \mathrm{Sent}$ непротиворечиво и перечислимо, и $\mathrm{MA} \subseteq [\Gamma]$. Тогда Γ неполно. Доказательство. Давайте предположим, что Γ полно. Тогда Γ совпадает с $[\Gamma]$, причём Γ

окажется разрешимым — это противоречит следствию 3.4.

Вариант Чейтина 1°й теоремы Гёделя

В этом варианте используется уже знакомое нам понятие колмогоровской сложности, но слегка адаптированное для работы с натуральными числами (вместо конечных последовательностей нулей и единиц). Определим $K:\subseteq\mathbb{N}\to\mathbb{N}$ по правилу

$$K(n) := \min \{ k \in \mathbb{N} \mid U_k(0) = n \},$$

где U — фиксированная главная универсальная функция для класса всех частичных вычислимых одноместных функций. 5

Лемма 3.5 [•]

Не существует вычислимой $f: \mathbb{N} \to \mathbb{N}$ такой, что K(f(n)) > n для всех $n \in \mathbb{N}$.

Доказательство. Давайте предположим, что такая f существует. Зададим вычислимую $V:\subseteq\mathbb{N}^2\to\mathbb{N}$ по правилу

$$V(n,m) := f(n).$$

Поскольку U — главная, найдётся вычислимая $g:\mathbb{N}\to\mathbb{N}$, которая удовлетворяет

$$U_{q(n)} = V_n$$
 для всех $n \in \mathbb{N}$.

Далее, в силу теоремы о неподвижной точке, для некоторого $e \in \mathbb{N}$ мы имеем $U_e = U_{g(e)}$. В частности,

$$U_e(0) = U_{g(e)}(0) = V_e(0) = f(e),$$

откуда $K(f(e)) \leq e$ — противоречие.

Если формула Φ имеет вид $\forall \vec{x} \Psi$, где $\Psi \in \Delta_0$, то Φ называют Π_1 -формулой и при этом пишут $\Phi \in \Pi_1$. Очевидно, Π_1 -формулы логически эквивалентны отрицаниям Σ_1 -формул. Значит, всякое множество, дополнение которого перечислимо, будет Π_1 -определимо в \mathfrak{N} . В частности, легко понять, что двухместный предикат

$$\left\{ \left(m,n\right)\in\mathbb{N}^{2}\mid K\left(m\right)>n\right\}$$

определим в \mathfrak{N} посредством подходящей Π_1 -формулы $\operatorname{Kolm}(x,y)$.

Лемма 3.6

Пусть $\Gamma \subseteq \text{Sent}$ непротиворечиво, и $\mathsf{MA} \subseteq [\Gamma]$. Тогда для любого Π_1 -предложения Φ ,

$$\Gamma \vdash \Phi \implies \mathfrak{N} \Vdash \Phi.$$

⁵Здесь U_k обозначает $\lambda n.[U(k,n)].$

 \mathcal{A} оказательство. Пусть Φ имеет вид $\forall x_1 \dots \forall x_\ell \, \Psi \, (x_1, \dots, x_\ell)$, где $\Psi \in \Delta_0$, и $\Gamma \vdash \Phi$. Ясно, что для всех $n_1, \dots, n_\ell \in \mathbb{N}$ мы имеем $\mathsf{MA} \nvdash \neg \Psi \, \left(\underline{n_1}, \dots, \underline{n_\ell}\right)$ (так как Γ непротиворечиво), откуда $\mathsf{MA} \vdash \Psi \, \left(\underline{n_1}, \dots, \underline{n_\ell}\right)$ и, следовательно, $\mathfrak{N} \Vdash \Psi \, \left(\underline{n_1}, \dots, \underline{n_\ell}\right)$. Стало быть, $\mathfrak{N} \Vdash \Phi$. \square

1^{ая} теорема Гёделя о неполноте: версия Чейтина

Пусть $\Gamma \subseteq$ Sent непротиворечиво и перечислимо, и MA $\subseteq [\Gamma]$. Тогда существует $n \in \mathbb{N}$ такое, что $\Gamma \nvdash \operatorname{Kolm}(\underline{m},\underline{n})$ для всех $m \in \mathbb{N}$.

Доказательство. Предположим, что для любого $n \in \mathbb{N}$ существует $m \in \mathbb{N}$ такое, что $\Gamma \vdash \text{Kolm}(\underline{m},\underline{n})$. Тогда, поскольку $[\Gamma]$ перечислимо, найдётся вычислимая $f: \mathbb{N} \to \mathbb{N}$, которая удовлетворяет

$$\Gamma \vdash \text{Kolm}(f(n), \underline{n})$$
 для всех $n \in \mathbb{N}$.

Ho, в силу леммы 3.6, из Γ ⊢ Kolm($\underline{f(n)},\underline{n}$) следует \mathfrak{N} ⊩ Kolm($\underline{f(n)},\underline{n}$), т.е. K(f(n)) > n. Это противоречит лемме 3.5.

4 Диагонализация

Ранее нами была введена нумерация

$$\#: \operatorname{Term} \cup \operatorname{Form} \to \mathbb{N}.$$

Её действие можно без труда распространить на конечные последовательности термов и формул. Для каждого разрешимого Γ ⊆ Sent возьмём

$$P_{\Gamma} := \{ (\#(w), \#(\Phi)) \mid w \text{ является выводом } \Phi \text{ в } \Gamma \}.$$

Разумеется, P_{Γ} разрешимо. Поэтому найдётся Σ_1 -формула $\operatorname{Proof}_{\Gamma}(x,y)$, которая бинумерует P_{Γ} в MA. Нас будет интересовать поведение производной Σ_1 -формулы

$$\operatorname{Prov}_{\Gamma}(x) := \exists u \operatorname{Proof}_{\Gamma}(u, x).$$

Отметим, что $\operatorname{Proof}_{\Gamma}(x,y)$, помимо прочего, определяет P_{Γ} в \mathfrak{N} , а потому $\operatorname{Prov}_{\Gamma}(x)$ будет определять $\{\#(\Phi) \mid \Gamma \vdash \Phi\}$ в \mathfrak{N} . Для произвольной $\Phi \in \operatorname{Form}$ обозначим

$$\ulcorner \Phi \urcorner \ := \ \# \, (\Phi) \quad \text{if} \quad \Box_{\Gamma} \Phi \ := \ \operatorname{Prov}_{\Gamma} \, (\ulcorner \Phi \urcorner).$$

Интуитивно \Box_{Γ} — это npedukam доказуемости для Γ .

Замечание. Пусть $\Gamma \subseteq \text{Sent}$ перечислимо, но не разрешимо. Очевидно, Γ непусто, а потому его элементы можно расположить в вычислимую последовательность:

$$\Psi_0, \quad \Psi_1, \quad \Psi_2, \quad \dots$$

Рассмотрим

$$\Delta := \left\{ \bigwedge_{i=0}^{n} \Psi_i \mid n \in \mathbb{N} \right\}.$$

Ясно, что для любой $\Phi \in \text{Form}$,

$$\Gamma \vdash \Phi \iff \Delta \vdash \Phi.$$

Кроме того, используя монотонность #, легко проверить, что Δ разрешимо.

Таким образом, не важно, задается ли (дедуктивно замкнутая) теория перечислимым или разрешимым множеством предложений.

Утверждение 4.1

Пусть $\Gamma \subseteq \text{Sent}$ разрешимо. Тогда для любой $\Phi \in \text{Form}$,

$$\Gamma \vdash \Phi \iff \mathsf{MA} \vdash \Box_{\Gamma} \Phi.$$

Доказательство. \Longrightarrow Пусть $\Gamma \vdash \Phi$. Зафиксируем какой-нибудь вывод

$$\Psi_0, \ldots, \Psi_n = \Phi$$

из Γ и возьмём $k := \#(\Psi_0, \dots, \Psi_n)$. Очевидно, $\mathfrak{N} \Vdash \operatorname{Proof}_{\Gamma}(\underline{k}, \ulcorner \Phi \urcorner)$. Стало быть, в MA выводится $\operatorname{Proof}_{\Gamma}(\underline{k}, \ulcorner \Phi \urcorner)$ и, следовательно, $\operatorname{Prov}_{\Gamma}(\ulcorner \Phi \urcorner)$.

$$\square$$
 Пусть $\mathsf{MA} \vdash \square_{\Gamma} \Phi$. Тогда $\mathfrak{N} \Vdash \mathrm{Prov}_{\Gamma} (\lceil \Phi \rceil)$, а потому $\Gamma \vdash \Phi$.

С помощью предикатов доказуемости можно дать альтернативное доказательство 1^{ой} теоремы Гёделя о неполноте. Ключевую роль тут играет:

Лемма 4.2: о диагонализации

Для всякой $\Psi\left(x\right)\in$ Form найдётся $\Phi\in$ Sent такое, что

$$\mathsf{MA} \vdash \Phi \leftrightarrow \Psi (\ulcorner \Phi \urcorner).$$

Доказательство. Нам понадобится $\mathrm{sub}:\mathbb{N}^2\to\mathbb{N}$, действующая по правилу

$$\mathrm{sub}\left(m,n
ight) \;:=\; egin{cases} \#\left(\Theta\left(\underline{n}
ight)
ight) & \mathrm{если}\ m=\#\left(\Theta\left(x
ight)
ight) \ 0 & \mathrm{иначе}. \end{cases}$$

Очевидно, sub вычислима. Поэтому найдётся $\mathrm{Sub}(x,y,z)\in\Sigma_1$, которая представляет sub в MA, т.е. для всех $m,n\in\mathbb{N}$,

$$\mathsf{MA} \vdash \mathrm{Sub}\left(\underline{m}, \underline{n}, y\right) \leftrightarrow y = \mathrm{sub}\left(m, n\right). \tag{*}$$

Рассмотрим теперь произвольную $\Psi(x) \in \text{Form. Возьмём}$

$$\Omega\left(x
ight)\;:=\;\exists y\left(\mathrm{Sub}\left(x,x,y\right)\wedge\Psi\left(y\right)
ight)$$
 и $k\;:=\;\#\left(\Omega\left(x\right)
ight)$

Используя (\star) , в MA можно получить следующую цепочку эквивалентностей:

$$\begin{split} \Omega\left(\underline{k}\right) &= \exists y \left(\operatorname{Sub}\left(\underline{k},\underline{k},y\right) \wedge \Psi\left(y\right) \right) \\ &= \exists y \left(\operatorname{Sub}\left(\lceil \Omega\left(x\right) \rceil,\underline{k},y\right) \wedge \Psi\left(y\right) \right) \\ &\leftrightarrow \exists y \left(y = \lceil \Omega\left(\underline{k}\right) \rceil \wedge \Psi\left(y\right) \right) \\ &\leftrightarrow \Psi\left(\lceil \Omega\left(\underline{k}\right) \rceil\right). \end{split}$$

Стало быть, $\Omega(k)$ годится в качестве Φ .

Диагонализация позволяет по-другому получить результат, из которого мы выводили версию Россера $1^{o\check{u}}$ теоремы Гёделя о неполноте:

Следствие 3.4

Пусть $\Gamma\subseteq \mathrm{Sent}$ непротиворечиво, и $\mathsf{MA}\subseteq [\Gamma]$. Тогда $[\Gamma]$ неразрешимо.

Другое доказательство. Предположим, что [Г] разрешимо. Тогда некоторая $\Theta_{\Gamma}(x) \in \Sigma_1$ бинумерует [Г] в МА. В частности, для любого $\Phi \in \mathrm{Sent}$,

$$\Gamma \nvdash \Phi \iff \Gamma \vdash \neg \Theta_{\Gamma} (\lceil \Phi \rceil).$$

В силу леммы 4.2, найдётся $\Psi \in \mathrm{Sent}$ такое, что

$$\mathsf{MA} \vdash \Psi \leftrightarrow \neg \Theta_{\Gamma} (\ulcorner \Psi \urcorner).$$

Но тогда, как легко убедиться, $\Gamma
varnathe \Psi$ окажется равносильно $\Gamma \vdash \Psi$ — противоречие. \square

Кроме того, в качестве простого примера применения диагонализации выступает:

Теорема Тарского о неопределимости истины

 $\operatorname{Th}(\mathfrak{N})$ неопределимо в $\mathfrak{N}^{.6}$

Доказательство. Предположим, что некоторая $T(x) \in \text{Form определяет } \#[\text{Th}(\mathfrak{N})]$ в \mathfrak{N} , т.е. для любого $\Phi \in \text{Sent}$,

$$\mathfrak{N} \Vdash \Phi \iff \mathfrak{N} \Vdash T(\lceil \Phi \rceil).$$

В силу леммы 4.2, найдётся $\Theta \in \mathrm{Sent}$ такое, что

$$\mathsf{MA} \vdash \Theta \leftrightarrow \neg \mathsf{T} (\ulcorner \Theta \urcorner).$$

Но тогда, как легко видеть, $\mathfrak{N} \Vdash \Theta$ окажется равносильно $\mathfrak{N} \Vdash \neg \Theta$ — противоречие. \square

⁶Это можно доказать и без леммы 4.2, используя строгость арифметической иерархии.

Об условиях Лёба

Пусть $\Gamma \subseteq \mathrm{Sent}$ разрешимо. Мы будем называть Prov_{Γ} *правильным*, если $\mathsf{MA} \subseteq [\Gamma]$, и для всех $\Phi, \Psi \in \mathrm{Form}$:

Р1. если $\Gamma \vdash \Phi$, то $\Gamma \vdash \Box_{\Gamma} \Phi$;

P2.
$$\Gamma \vdash \Box_{\Gamma} (\Phi \rightarrow \Psi) \rightarrow (\Box_{\Gamma} \Phi \rightarrow \Box_{\Gamma} \Psi);$$

P3.
$$\Gamma \vdash \Box_{\Gamma} \Phi \rightarrow \Box_{\Gamma} \Box_{\Gamma} \Phi$$
.

В литературе эти три условия именуются условиями Лёба.

В силу утверждения 4.1, если $\mathsf{MA} \subseteq [\Gamma]$, то Prov_{Γ} удовлетворяет P1. Однако с P2 и P3 дела обстоят куда сложнее. Отметим без доказательства: Если $\mathsf{PA} \subseteq [\Gamma]$, то стандартным образом построенный предикат доказуемости для Γ является правильным.

Для краткости обозначим $0 \neq 0$ через \bot . Очевидно, $\Gamma \subseteq$ Sent непротиворечиво, если и только если в Γ нельзя вывести \bot .

Утверждение 4.3

Пусть $\operatorname{Prov}_{\Gamma}$ удовлетворяет P1, и $\Gamma \nvdash \bot$. Тогда для любого $\Phi \in \operatorname{Sent}$,

$$\Gamma \vdash \Phi \to \underbrace{\neg \operatorname{Prov}_{\Gamma} \left(\ulcorner \Phi \urcorner \right)}_{\neg \Box_{\Gamma} \Phi} \quad \Longrightarrow \quad \Gamma \nvdash \Phi.$$

Доказательство. Предположим, что $\Gamma \vdash \Phi \to \neg \Box_{\Gamma} \Phi$ и при этом $\Gamma \vdash \Phi$. Тогда $\Gamma \vdash \neg \Box_{\Gamma} \Phi$ и $\Gamma \vdash \Box_{\Gamma} \Phi$ (в силу Р1). Это противоречит непротиворечивости Γ .

Замечание. Пусть к тому же $\mathfrak{N} \Vdash \Gamma$. Тогда для любого $\Phi \in \mathrm{Sent}$, если $\Gamma \vdash \Phi \leftrightarrow \neg \Box_{\Gamma} \Phi$, то $\Gamma \nvdash \Phi$, откуда $\mathfrak{N} \Vdash \neg \Box_{\Gamma} \Phi$, т.е. $\mathfrak{N} \Vdash \Phi$.

С помощью этого простого наблюдения получается:

2^{ag} теорема Гёделя о неполноте (для σ_{A})

 $\Pi y cm b \operatorname{Prov}_{\Gamma} - n p a в u л b н ы й.$ $T o r \partial a$:

$$\Gamma \nvdash \bot \implies \Gamma \nvdash \neg \Box_{\Gamma} \bot.$$

Доказательство. Для краткости мы будем опускать нижний индекс \cdot_{Γ} . В силу леммы о диагонализации, найдётся $\Phi \in \mathrm{Sent}$ такое, что

$$\mathsf{MA} \vdash \Phi \leftrightarrow \underbrace{\neg \mathrm{Prov} \left(\ulcorner \Phi \urcorner \right)}_{\neg \Box \Phi}$$

Оказывается, что в Γ можно вывести $\Box \Phi \to \Box \bot$:

Стало быть, $\Gamma \vdash \neg \Box \bot \rightarrow \neg \Box \Phi$, откуда $\Gamma \vdash \neg \Box \bot \rightarrow \Phi$. При этом (ввиду утверждения 4.3) мы имеем $\Gamma \nvdash \Phi$, а потому $\Gamma \nvdash \neg \Box \bot$.

Следствие 4.4

 $\mathsf{PA} \nvdash \neg \Box_{\mathsf{PA}} \bot$ для стандартным образом построенного $\mathsf{Prov}_{\mathsf{PA}}.$

Замечание. Очевидно, в РА нельзя вывести $\square_{PA}\bot$, поскольку $\mathfrak{N} \Vdash \neg \square_{PA}\bot$.

$$\begin{array}{c|cccc} \mathbf{1} & \neg \bot \\ \mathbf{2} & \neg \bot \to (\bot \to \Phi) \\ \mathbf{3} & \bot \to \Phi & \mathbf{1, 2} \\ \mathbf{4} & \Box (\bot \to \Phi) & \mathbf{3; P1} \\ \mathbf{5} & \Box \bot \to \Box \Phi & \mathbf{4, P2.} \end{array}$$

⁷Обратная импликация тоже выводима в Γ , причём здесь не нужны ни РЗ, ни свойства Φ :

Определим PA^0 , PA^1 , PA^2 , . . . следующим образом:

$$\begin{cases} \mathsf{PA}^0 &:= \; \mathsf{PA} \\ \mathsf{PA}^{n+1} &:= \; \mathsf{PA}^n \cup \{ \neg \Box_{\mathsf{PA}^n} \bot \} \end{cases}$$

В силу 2°й теоремы Гёделя о неполноте, мы имеем

$$[\mathsf{PA}^0] \subsetneq [\mathsf{PA}^1] \subsetneq [\mathsf{PA}^2] \subsetneq \ldots,$$

т.е. дедуктивная сила теорий будет строго возрастать. Далее, определим

$$\begin{cases} \mathsf{P}\mathsf{A}^{\omega+0} & := \ \bigcup_{n<\omega} \mathsf{P}\mathsf{A}^n \\ \mathsf{P}\mathsf{A}^{\omega+(n+1)} & := \ \mathsf{P}\mathsf{A}^{\omega+n} \cup \{ \neg \Box_{\mathsf{P}\mathsf{A}^{\omega+n}} \bot \} \end{cases}$$

Очевидно, $[\mathsf{PA}^n] \subsetneq [\mathsf{PA}^\omega]$ для всех $n < \omega$, и снова имеют место строгие включения:

$$[\mathsf{PA}^\omega] \subsetneq [\mathsf{PA}^{\omega+1}] \subsetneq [\mathsf{PA}^{\omega+2}] \subsetneq \dots$$

Продолжая этот процесс, можно определить PA^{α} для любого «конструктивного» ординала α . Однако мы не будем этого делать, чтобы не перегружать текст.

Ясно, что предикаты доказуемости можно строить и для богатых теорий вроде ZFC и её расширений. 8 Тогда получится, что

$$T \nvdash \bot \implies T \nvdash \neg \Box_T \bot.$$

При этом чем богаче T, тем больше сомнений вызывает её непротиворечивость, особенно когда абстрактный характер T затрудняет восприятие её «стандартной модели».

Замечание. Непротиворечивость T может, конечно, выводиться в другой, более богатой T'. Но непротиворечивость такой T' ещё сложнее обосновать.

 $^{^{8}}$ Для этого достаточно, чтобы в них «интерпретировалась» РА; см. следующий раздел.

Следствие 4.5

Пусть Prov_{Γ} — правильный, и $\Gamma \nvdash \bot$. Тогда $\Gamma \nvdash \neg \Box_{\Gamma} \Phi$ для любого $\Phi \in \mathrm{Sent}$.

Доказательство. Предположим, что $\Gamma \vdash \neg \Box_{\Gamma} \Phi$. Тогда в Γ выводится $\neg \Box_{\Gamma} \bot$:

Это противоречит $2^{\text{ой}}$ теореме Гёделя.

Упражнение 1

Пусть $\operatorname{Prov}_{\Gamma}$ — правильный, и $\Gamma \nvdash \Box_{\Gamma} \bot$. Тогда $\Gamma \nvdash \Phi \to \Box_{\Gamma} \Phi$ для некоторого $\Phi \in \operatorname{Sent.}^9$

⁹На самом деле, тут не нужно РЗ.

В ходе изучения предикатов доказуемости довольно естественно возникает вопрос:

— Что можно сказать о предложениях, утверждающих свою доказуемость?

На этот вопрос можно получить простой и исчерпывающий ответ.

Теорема Лёба (для σ_{A})

Пусть $\operatorname{Prov}_{\Gamma}$ — правильный. Тогда для любого $\Phi \in \operatorname{Sent}$,

$$\Gamma \vdash \Box_{\Gamma} \Phi \to \Phi \implies \Gamma \vdash \Phi.$$

Доказательство. Пусть $\Gamma \vdash \Box_{\Gamma} \Phi \to \Phi$. Возьмём

$$\Psi(x) := \operatorname{Prov}_{\Gamma}(x) \to \Phi.$$

Применив к $\Psi(x)$ лемму 4.2, мы получим $\Theta \in \text{Sent Takoe}$, что

$$\mathsf{MA} \vdash \Theta \leftrightarrow (\underbrace{\mathrm{Prov}_{\Gamma}(\ulcorner \Theta \urcorner)}_{\Box_{\Gamma}\Theta} \rightarrow \Phi).$$

Теперь Φ можно вывести в Γ следующим образом:

Следствие 4.6

Пусть $\operatorname{Prov}_{\Gamma}$ — правильный. Тогда для любого $\Phi \in \operatorname{Sent}$,

$$\Gamma \vdash \Box_{\Gamma} \Phi \leftrightarrow \Phi \quad \Longleftrightarrow \quad \Gamma \vdash \Box_{\Gamma} \Phi \to \Phi \quad \Longleftrightarrow \quad \Gamma \vdash \Phi.$$

В частности, теорема Лёба гарантирует, что для каждого правильного Prov_{Γ} ,

$$\Gamma \vdash \bot \iff \Gamma \vdash \Box \bot \to \bot \iff \Gamma \vdash \neg \Box \bot.$$

Поэтому $2^{\text{ую}}$ теорему Гёделя о неполноте можно ещё воспринимать как следствие теоремы Лёба. Наконец, стоит отметить, что в Γ выводится «теорема Леба для Γ »:

Упражнение 2

Пусть $\operatorname{Prov}_{\Gamma}$ — правильный. Тогда $\Gamma \vdash \Box_{\Gamma} (\Box_{\Gamma} \Phi \to \Phi) \to \Box_{\Gamma} \Phi$ для всех $\Phi \in \operatorname{Sent}$.