1 Section 3.D Exercises

Exercises with solutions from Section 3.D of [LADR].

Exercise 3.D.1. Suppose $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$ are both invertible linear maps. Prove that $ST \in \mathcal{L}(U, W)$ is invertible and that $(ST)^{-1} = T^{-1}S^{-1}$.

Solution. Observe that for any $u \in U$ we have

$$(T^{-1}S^{-1}ST)(u) = T^{-1}(S^{-1}(S(Tu))) = T^{-1}(Tu) = u.$$

Thus $T^{-1}S^{-1}ST$ is the identity on U. Similarly, for any $w \in W$ we have

$$(STT^{-1}S^{-1})(w) = S(T(T^{-1}(S^{-1}w))) = S(S^{-1}w) = w.$$

Thus $STT^{-1}S^{-1}$ is the identity on W. It follows that ST is invertible and that $(ST)^{-1} = T^{-1}S^{-1}$.

Exercise 3.D.2. Suppose V is finite-dimensional and dim V > 1. Prove that the set of noninvertible operators on V is not a subspace of $\mathcal{L}(V)$.

Solution. Let $X = \{T \in \mathcal{L}(V) : T \text{ is not invertible}\}$. Consider Exercise 3.B.7, taking W = V, n = m, and $w_j = v_j$. The linear maps S and T defined there fail to be injective and thus belong to X, but the map S + T is simply the identity on V and hence belongs to X. Thus X is not closed under addition and so is not a subspace of $\mathcal{L}(V)$.

Exercise 3.D.3. Suppose V is finite-dimensional, U is a subspace of V, and $S \in \mathcal{L}(U, V)$. Prove there exists an invertible operator $T \in \mathcal{L}(V)$ such that Tu = Su for every $u \in U$ if and only if S is injective.

Solution. Suppose there exists such an operator T and let $u \in U$ be such that Su = 0. Then Tu = Su = 0 and thus u = 0 since T is injective. Hence null $S = \{0\}$ and we see that S is injective.

Now suppose that S is injective. Let u_1, \ldots, u_m be a basis of U, which we extend to a basis $u_1, \ldots, u_m, x_1, \ldots, x_n$ of V. Since S is injective, Exercise 3.B.9 implies that Su_1, \ldots, Su_m is linearly independent in V and thus can be extended to a basis $Su_1, \ldots, Su_m, y_1, \ldots, y_n$ of V. Define a linear map $T: V \to V$ by

$$Tu_j = Su_j \text{ for } 1 \le j \le m \text{ and } Tx_j = y_j \text{ for } 1 \le j \le n.$$

Evidently, T extends S. Suppose $v \in V$ is such that Tv = 0. There are scalars $a_1, \ldots, a_m, b_1, \ldots, b_n$ such that $v = \sum_{j=1}^m a_j u_j + \sum_{k=1}^n b_k x_k$. Then:

$$0 = Tv = T\left(\sum_{j=1}^{m} a_j u_j + \sum_{k=1}^{n} b_k x_k\right) = \sum_{j=1}^{m} a_j T u_j + \sum_{k=1}^{n} b_k T x_k = \sum_{j=1}^{m} a_j S u_j + \sum_{k=1}^{n} b_k y_k.$$

The linear independence of $Su_1, \ldots, Su_m, y_1, \ldots, y_n$ implies that $a_1 = \cdots = a_m = b_1 = \cdots = b_n = 0$ and thus that v = 0. Hence T is injective and 3.69 allows us to conclude that T is invertible.

Exercise 3.D.4. Suppose W is finite-dimensional and $T_1, T_2 \in \mathcal{L}(V, W)$. Prove that null $T_1 = \text{null } T_2$ if and only if there exists an invertible operator $S \in \mathcal{L}(W)$ such that $T_1 = ST_2$.

Solution. Suppose there exists such an operator S and suppose $v \in \text{null } T_2$. Then $T_1v = S(T_2v) = S(0) = 0$ and thus $\text{null } T_2 \subseteq \text{null } T_1$. Since S is invertible, we have $T_2 = S^{-1}T_1$ and we may similarly derive that $\text{null } T_1 \subseteq \text{null } T_2$. Thus $\text{null } T_1 = \text{null } T_2$.

Now suppose that $\operatorname{null} T_1 = \operatorname{null} T_2$. Since W is finite-dimensional, range T_2 is also finite-dimensional; let T_2v_1, \ldots, T_2v_m be a basis of range T_2 , for some vectors v_1, \ldots, v_m in V. Define a linear map S': range $T_2 \to W$ by $S'(T_2v_j) = T_1v_j$. For any $v \in V$, there are scalars a_1, \ldots, a_m such that $T_2v = a_1T_2v_1 + \cdots + a_mT_2v_m$. This gives

$$T_2v = T_2(a_1v_1 + \dots + a_mv_m) \iff v - (a_1v_1 + \dots + a_mv_m) \in \text{null } T_2$$
$$\iff v - (a_1v_1 + \dots + a_mv_m) \in \text{null } T_1,$$

where we have used the assumption that null $T_1 = \text{null } T_2$. Since $v - (a_1v_1 + \cdots + a_mv_m) \in \text{null } T_1$, we have that $T_1v = a_1T_1v_1 + \cdots + a_mT_1v_m$. It follows that

$$S'(T_2v) = a_1S'(T_2v_1) + \dots + a_mS'(T_2v_m) = a_1T_1v_1 + \dots + a_mT_mv_m = T_1v.$$

Hence $T_1 = S'T_2$.

Now we claim that S' is injective. Suppose that $T_2v \in \operatorname{range} T_2$ is such that $S'(T_2v) = 0$. Then $T_1v = 0$, so that $v \in \operatorname{null} T_1 = \operatorname{null} T_2$. Thus $T_2v = 0$ and we see that $\operatorname{null} S' = \{0\}$, i.e. that S' is injective. Exercise 3.D.3 now implies that there is an invertible operator $S \in \mathcal{L}(W)$ which extends S' and hence satisfies $T_1 = ST_2$.

Exercise 3.D.5. Suppose V is finite-dimensional and $T_1, T_2 \in \mathcal{L}(V, W)$. Prove that range $T_1 = \text{range } T_2$ if and only if there exists an invertible operator $S \in \mathcal{L}(V)$ such that $T_1 = T_2S$.

Solution. Suppose there exists such an operator S. If $T_1v \in \operatorname{range} T_1$ for some $v \in V$, then $T_1v = T_2(Sv)$, so that $T_1v \in \operatorname{range} T_2$ also. If $T_2v \in \operatorname{range} T_2$ for some $v \in V$, then $T_2v = T_1(S^{-1}v)$, so that $T_2v \in \operatorname{range} T_1$ also. Thus $\operatorname{range} T_1 = \operatorname{range} T_2$.

Now suppose that range $T_1 = \operatorname{range} T_2$. Let u_1, \ldots, u_m be a basis of null T_1 , which we extend to a basis $u_1, \ldots, u_m, x_1, \ldots, x_n$ of V. If we let $X := \operatorname{span}(x_1, \ldots, x_n)$, we then have $V = \operatorname{null} T_1 \oplus X$.

The restriction of T_1 to X is injective since null $T_1 \cap X = \{0\}$, so Exercise 3.B.9 implies that the list T_1x_1, \ldots, T_1x_n is linearly independent. Furthermore, Exercise 3.B.10 implies that the list

$$T_1u_1, \ldots, T_1u_m, T_1x_1, \ldots, T_1x_n$$

spans range T_1 . Since each $T_1u_j = 0$, we can discard these vectors to see that the list T_1x_1, \ldots, T_1x_n spans range T_1 . We have now shown that T_1x_1, \ldots, T_1x_n is a basis of range T_1 .

By assumption, we have range $T_1 = \operatorname{range} T_2$, and thus there are vectors y_1, \ldots, y_n in V such that $T_1x_j = T_2y_j$. Since the list T_2y_1, \ldots, T_2y_n is linearly independent, Exercise 3.A.4 shows that the list y_1, \ldots, y_n is linearly independent. Let v_1, \ldots, v_m be a basis of null T_2 (since range $T_1 = \operatorname{range} T_2$, the Fundamental Theorem of Linear Maps (3.22) implies that dim null $T_1 = \operatorname{dim} \operatorname{null} T_2$, so that this basis is also of length m). As the proof of 3.22 shows, $v_1, \ldots, v_m, y_1, \ldots, y_n$ must be a basis of V.

Define a linear map $S: V \to V$ by

$$Su_j = v_j$$
 for $1 \le j \le m$ and $Sx_j = y_j$ for $1 \le j \le n$.

If $v = a_1u_1 + \cdots + a_{m+n}x_n$ is such that Sv = 0, then

$$0 = a_1 S u_1 + \dots + a_{m+n} S x_n = a_1 v_1 + \dots + a_{m+n} y_n.$$

The linear independence of the basis v_1, \ldots, y_n then implies that $a_1 = \cdots = a_{m+n} = 0$ and hence that v = 0. Thus null $S = \{0\}$ and we see that S is injective; 3.69 allows us to conclude that S is an invertible operator. Furthermore, we have $T_1 = T_2S$. Indeed, for any $v = \sum_{j=1}^m a_j u_j + \sum_{k=1}^n b_j x_j$ in V, we have

$$(T_2S)(v) = \sum_{j=1}^m a_j T_2(Su_j) + \sum_{k=1}^n b_j T_2(Sx_j) = \sum_{j=1}^m a_j T_2 v_j + \sum_{k=1}^n b_j T_2 y_j$$
$$= \sum_{j=1}^m a_j T_1 u_j + \sum_{k=1}^n b_j T_1 x_j = T_1 \left(\sum_{j=1}^m a_j u_j + \sum_{k=1}^n b_j x_j \right) = T_1 v.$$

Exercise 3.D.6. Suppose V and W are finite-dimensional and $T_1, T_2 \in \mathcal{L}(V, W)$. Prove that there exist invertible operators $R \in \mathcal{L}(V)$ and $S \in \mathcal{L}(W)$ such that $T_1 = ST_2R$ if and only if dim null $T_1 = \dim \operatorname{null} T_2$.

Solution. Suppose there exist such operators R and S, so that $T_1 = ST_2R$. Notice that this gives us $T_2 = S^{-1}T_1R^{-1}$. Exercise 3.B.22 now implies that

 $\dim \operatorname{null} T_1 = \dim \operatorname{null} ST_2R \leq \dim \operatorname{null} S + \dim \operatorname{null} T_2 + \dim \operatorname{null} R = \dim \operatorname{null} T_2,$

$$\dim \operatorname{null} T_2 = \dim \operatorname{null} S^{-1} T_1 R^{-1} \le \dim \operatorname{null} S^{-1} + \dim \operatorname{null} T_1 + \dim \operatorname{null} R^{-1} = \dim \operatorname{null} T_1,$$

where we have used that each invertible linear map R, S, R^{-1} , and S^{-1} are injective and hence have trivial null space. These two inequalities combine to give us dim null $T_1 = \dim \operatorname{null} T_2$.

Now suppose that dim null $T_1 = \dim \text{null } T_2$. Let u_1, \ldots, u_m be a basis of null T_1 , which we extend to a basis $u_1, \ldots, u_m, x_1, \ldots, x_n$ of V, and let v_1, \ldots, v_m be a basis of null T_2 , which we extend to a basis $v_1, \ldots, v_m, y_1, \ldots, y_n$ of V. Define an operator $R: V \to V$ by

$$Ru_j = v_j$$
 for $1 \le j \le m$ and $Rx_j = y_j$ for $1 \le j \le n$.

As in the solution to Exercise 3.D.5, this operator must be invertible since it maps a basis to a basis. We claim that null $T_1 = \text{null } T_2 R$. Suppose that $u \in \text{null } T_1$, so that $u = a_1 u_1 + \cdots + a_m u_m$ for some scalars a_1, \ldots, a_m . Then

$$T_2(Ru) = T_2(a_1Ru_1 + \dots + a_mRu_m) = T_2(a_1v_1 + \dots + a_mv_m) = 0.$$

Thus null $T_1 \subseteq \text{null } T_2 R$. Suppose that $v \in \text{null } T_2 R$, i.e. $T_2(Rv) = 0$. Then $Rv \in \text{null } T_2$, so that $Rv = a_1v_1 + \cdots + a_mv_m$ for some scalars a_1, \ldots, a_m . This gives us

$$Rv = a_1Ru_1 + \dots + a_mRu_m = R(a_1u_1 + \dots + a_mu_m),$$

which implies that $v = a_1u_1 + \cdots + a_mu_m \in \text{null } T_1 \text{ since } R \text{ is injective.}$ Thus $\text{null } T_1 = \text{null } T_2R$, as claimed.

We may now appeal to Exercise 3.D.4 to obtain an invertible operator S such that $T_1 = ST_2R$.

Exercise 3.D.7. Suppose V and W are finite-dimensional. Let $v \in V$. Let

$$E = \{ T \in \mathcal{L}(V, W) : Tv = 0 \}.$$

- (a) Show that E is a subspace of $\mathcal{L}(V, W)$.
- (b) Suppose $v \neq 0$. What is dim E?

Solution. (a) Suppose $S, T \in E$ and $\lambda \in \mathbf{F}$. Then

$$(\lambda S + T)(v) = \lambda Sv + Tv = 0.$$

Thus $\lambda S + T \in E$ and so E is a subspace of $\mathcal{L}(V, W)$.

(b) Set $v_1 := v$. Since $v_1 \neq 0$, we can extend this list to a basis v_1, \ldots, v_m of V. Let w_1, \ldots, w_n be any basis of W. By 3.60, the linear map $\mathcal{M} : \mathcal{L}(V, W) \to \mathbf{F}^{n,m}$ is an isomorphism, which restricts to an isomorphism $\mathcal{M} : E \to \mathcal{E}$, where $\mathcal{E} = {\mathcal{M}(T) : T \in E}$; we use this notation in place of $\mathcal{M}(E)$ for obvious reasons. We claim that \mathcal{E} is the subspace of matrices whose entries in the first column are all 0. Indeed, if $T \in E$, then $Tv_1 = 0$ and thus the entries in the first column of $\mathcal{M}(T)$ are all 0. Conversely, if A is an n-by-m matrix with entries $A_{j,k}$ such that $A_{:,1} = 0$, then the linear map $T : V \to W$ defined by

$$Tv_k = A_{1,k}w_1 + \dots + A_{n,k}w_n$$

satisfies $Tv_1 = 0$ and hence belongs to E; evidently we have $\mathcal{M}(T) = A$. Our claim follows. Using the same logic as in the proof of 3.40, which shows that dim $F^{n,m} = nm$, it is easily verified that \mathcal{E} , and hence E, has dimension (m-1)n. In conclusion, we have

$$\dim E = (\dim V - 1)(\dim W).$$

Exercise 3.D.8. Suppose V is finite-dimensional and $T:V\to W$ is a surjective linear map of V onto W. Prove that there is a subspace U of V such that $T|_U$ is an isomorphism of U onto W. (Here $T|_U$ means the function T restricted to U. In other words, $T|_U$ is the function whose domain is U, with $T|_U$ defined by $T|_U(u) = Tu$ for every $u \in U$.)

Solution. By Exercise 3.B.12, there exists a subspace U of V such that $V = U \oplus \text{null } T$ and $W = \text{range } T = \{Tu : u \in U\}$. Thus the restriction $T|_U : U \to W$ is surjective. Furthermore, since $U \cap \text{null } T = \{0\}$, we have $\text{null } T|_U = \{0\}$ and hence $T|_U$ is also injective. We may conclude that $T|_U$ is an invertible linear map, i.e. an isomorphism.

Exercise 3.D.9. Suppose V is finite-dimensional and $S, T \in \mathcal{L}(V)$. Prove that ST is invertible if and only if S and T are both invertible.

Solution. If S and T are both invertible, then ST is invertible by Exercise 3.D.1. If either S or T fails to be invertible, then 3.69 implies that at least one of these maps is not surjective. Thus

$$\min\{\dim \operatorname{range} S, \dim \operatorname{range} T\} < \dim V.$$

Exercise 3.B.23 then implies that dim range $ST < \dim V$ and hence that ST is not surjective. We may now apply 3.69 again to see that ST is not invertible.

Exercise 3.D.10. Suppose V is finite-dimensional and $S, T \in \mathcal{L}(V)$. Prove that ST = I if and only if TS = I.

Solution. Suppose that ST = I. Then ST is invertible, so Exercise 3.D.9 implies that S and T are both invertible. Applying S^{-1} on the left to both sides of ST = I shows that $T = S^{-1}$; it follows that $TS = S^{-1}S = I$. Reversing the roles of S and T in the preceding argument gives us the converse implication.

Exercise 3.D.11. Suppose V is finite-dimensional and $S, T, U \in \mathcal{L}(V)$ and STU = I. Show that T is invertible and that $T^{-1} = US$.

Solution. Applying Exercise 3.D.9 twice shows that each of S, T, and U are invertible operators. It follows that $T = S^{-1}U^{-1}$ and hence by Exercise 3.D.1 we have $T^{-1} = US$.

Exercise 3.D.12. Show that the result in the previous exercise can fail without the hypothesis that V is finite-dimensional.

Solution. Let V be the infinite-dimensional vector space \mathbf{R}^{∞} and set S = I. Take T to be the left-shift operator and U to be the right-shift operator, i.e.

$$T(x_1, x_2, x_3, \ldots) = (x_2, x_3, \ldots)$$
 and $U(x_1, x_2, x_3, \ldots) = (0, x_1, x_2, x_3, \ldots)$.

Then STU = I, but T is not invertible. Indeed, T fails to be injective, since T(1, 0, 0, ...) = 0.

Exercise 3.D.13. Suppose V is a finite-dimensional vector space and $R, S, T \in \mathcal{L}(V)$ are such that RST is surjective. Prove that S is injective.

Solution. By 3.69, RST must be invertible. Applying Exercise 3.D.9 twice shows that each of R, S, and T are invertible operators. Thus S is injective.

Exercise 3.D.14. Suppose v_1, \ldots, v_n is a basis of V. Prove that the map $T: V \to \mathbf{F}^{n,1}$ defined by

$$Tv = \mathcal{M}(v)$$

is an isomorphism of V onto $\mathbf{F}^{n,1}$; here $\mathcal{M}(v)$ is the matrix of $v \in V$ with respect to the basis v_1, \ldots, v_n .

Solution. First, let us show that T is linear. Suppose $u, v \in V$, so that there are scalars a_1, \ldots, a_n and b_1, \ldots, b_n such that

$$u = a_1v_1 + \dots + a_nv_n$$
 and $v = b_1v_1 + \dots + b_nv_n$,

and let $\lambda \in \mathbf{F}$ be given. Then

$$u + v = (a_1 + b_1)v_1 + \dots + (a_n + b_n)v_n$$
 and $\lambda u = (\lambda a_1)v_1 + \dots + (\lambda a_n)v_n$.

Thus

$$Tu = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}, \quad Tv = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}, \quad T(u+v) = \begin{pmatrix} a_1+b_1 \\ \vdots \\ a_n+b_n \end{pmatrix} \quad \text{and} \quad T(\lambda u) = \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix}.$$

Hence T(u+v) = Tu + Tv and $T(\lambda u) = \lambda Tu$ and thus T is linear. Furthermore, T is surjective, since for any scalars a_1, \ldots, a_n we have

$$T(a_1v_1 + \dots + a_nv_n) = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}.$$

Since V and $\mathbf{F}^{n,1}$ are both of dimension n, 3.69 allows us to conclude that T is an isomorphism.

Exercise 3.D.15. Prove that every linear map from $\mathbf{F}^{n,1}$ to $\mathbf{F}^{m,1}$ is given by a matrix multiplication. In other words, prove that if $T \in \mathcal{L}(\mathbf{F}^{n,1}, \mathbf{F}^{m,1})$, then there exists an m-by-n matrix A such that Tx = Ax for every $x \in \mathbf{F}^{n,1}$.

Solution. Let e_j be the column vector with a 1 in the j^{th} row and a 0 in each other row. Take e_1, \ldots, e_n as a basis of $\mathbf{F}^{n,1}$ and e_1, \ldots, e_m as a basis of $\mathbf{F}^{m,1}$. Then for each $x \in \mathbf{F}^{n,1}$ we have $\mathcal{M}(x) = x$ and $\mathcal{M}(Tx) = Tx$. By 3.65, the desired matrix A is $\mathcal{M}(T)$.

Exercise 3.D.16. Suppose V is finite-dimensional and $T \in \mathcal{L}(V)$. Prove that T is a scalar multiple of the identity if and only if ST = TS for every $S \in \mathcal{L}(V)$.

Solution. Suppose that T is a scalar multiple of the identity, say $T = \lambda I$ for some $\lambda \in \mathbf{F}$. Let $S \in \mathcal{L}(V)$ and $v \in V$ be given. Then

$$S(Tv) = S((\lambda I)(v)) = S(\lambda v) = \lambda(Sv) = (\lambda I)(Sv) = T(Sv).$$

Thus ST = TS.

Now suppose that ST = TS for every $S \in \mathcal{L}(V)$. Let v_1, \ldots, v_m be a basis of V and for $1 \leq j, k \leq m$, define $S_{j,k} : V \to V$ by

$$S_{j,k}v_i = \begin{cases} v_k & \text{if } i = j, \\ v_j & \text{if } i = k, \\ 0 & \text{otherwise.} \end{cases}$$

Let $A = \mathcal{M}(T)$, so that

$$Tv_j = A_{1,j}v_1 + \dots + A_{m,j}v_m.$$

For any $1 \leq j \leq m$, observe that

$$S_{j,j}(Tv_j) = S_{j,j}(A_{1,j}v_1 + \dots + A_{m,j}v_m) = A_{1,j}S_{j,j}v_1 + \dots + A_{m,j}S_{j,j}v_m = A_{j,j}v_j,$$

$$T(S_{i,j}v_i) = Tv_i = A_{1,i}v_1 + \dots + A_{m,i}v_m.$$

By assumption we have $S_{j,j}(Tv_j) = T(S_{j,j}v_j)$, so

$$A_{j,j}v_j = A_{1,j}v_1 + \dots + A_{m,j}v_m \iff A_{1,j}v_1 + \dots + A_{j-1,j}v_{j-1} + A_{j+1,j}v_{j+1} + \dots + A_{m,j}v_m = 0.$$

Thus by linear independence we have

$$A_{1,j} = \cdots = A_{j-1,j} = A_{j+1,j} = \cdots = A_{m,j} = 0.$$

In other words, each non-diagonal entry of A is 0, so that $Tv_j = A_{j,j}v_j$ for each $1 \le j \le m$. Now suppose that $1 \le j < k \le m$. Then

$$S_{i,k}(Tv_i) = S_{i,k}(A_{i,i}v_i) = A_{i,i}S_{i,k}v_i = A_{i,i}v_k$$
 and $T(S_{i,k}v_i) = Tv_k = A_{k,k}v_k$.

By assumption these two must be equal, i.e. $A_{j,j}v_k=A_{k,k}v_k$, and so $A_{j,j}=A_{k,k}$ since $v_k\neq 0$. Thus, letting $\lambda=A_{1,1}$, we have shown that $Tv_j=\lambda v_j$ for each basis vector v_j . It follows that $T=\lambda I$.

Exercise 3.D.17. Suppose V is finite-dimensional and \mathcal{E} is a subspace of $\mathcal{L}(V)$ such that $ST \in \mathcal{E}$ and $TS \in \mathcal{E}$ for all $S \in \mathcal{L}(V)$ and all $T \in \mathcal{E}$. Prove that $\mathcal{E} = \{0\}$ or $\mathcal{E} = \mathcal{L}(V)$.

Solution. If $\mathcal{E} = \{0\}$ then evidently \mathcal{E} has the desired properties, so it will suffice to show that if there is some $T \in \mathcal{E}$ with $T \neq 0$, then $\mathcal{E} = \mathcal{L}(V)$. Let v_1, \ldots, v_m be a basis of V. Define a linear map $E_{i,j} \in \mathcal{L}(V)$ by

$$E_{i,j}v_k = \delta_k^i v_j,$$

where δ_k^i is the Kronecker delta, i.e. $\delta_k^i = 1$ if i = k and $\delta_k^i = 0$ otherwise. In other words, $E_{i,j}$ sends v_i to v_j and each other basis vector to 0.

Since $T \neq 0$, there must be some $Tv_p \neq 0$. Suppose that

$$Tv_p = a_1v_1 + \dots + a_mv_m.$$

Since $Tv_p \neq 0$, there is some $a_r \neq 0$. For each $1 \leq i \leq m$, we have

$$a_r^{-1} E_{r,i} T E_{i,p} v_k = a_r^{-1} E_{r,i} T(\delta_k^i v_p) = a_r^{-1} \delta_k^i E_{r,i} (a_1 v_1 + \dots + a_m v_m) = \delta_k^i v_i.$$

Set $L := a_r^{-1}(E_{r,1}TE_{1,p} + \cdots + E_{r,m}TE_{m,p})$. By the equality above, we then have $Lv_k = v_k$, i.e. L is the identity map on V. By assumption, we have $E_{r,i}TE_{i,p} \in \mathcal{E}$ for each $1 \le i \le m$. Since \mathcal{E} is a subspace of $\mathcal{L}(V)$, it follows that $L \in \mathcal{E}$. Then for any $S \in \mathcal{L}(V)$, we have $SL = S \in \mathcal{E}$ and thus $\mathcal{E} = \mathcal{L}(V)$.

Exercise 3.D.18. Show that V and $\mathcal{L}(\mathbf{F}, V)$ are isomorphic vector spaces.

Solution. Given $v \in V$, define a linear map $T_v : \mathbf{F} \to V$ by $T_v(1) = v$ and a map $\Phi : V \to \mathcal{L}(\mathbf{F}, V)$ by $\Phi(v) = T_v$. Showing that Φ is linear amounts to showing that for $u, v \in V$ and $\lambda \in \mathbf{F}$, one has $T_{u+\lambda v} = T_u + \lambda T_v$. Observe that

$$T_{u+\lambda v}(1) = u + \lambda v = T_u(1) + \lambda T_v(1) = (T_u + \lambda T_v)(1).$$

The uniqueness part of 3.5 now implies that $T_{u+\lambda v} = T_u + \lambda T_v$ and thus Φ is linear.

The map Φ is injective. Indeed, if $v \in V$ is such that $\Phi(v) = T_v = 0$, then in particular $T_v(1) = v = 0$ and so null $\Phi = \{0\}$. By 3.61 we have dim $V = \dim \mathcal{L}(\mathbf{F}, V)$ and so 3.69 allows us to conclude that Φ is an isomorphism.

Exercise 3.D.19. Suppose $T \in \mathcal{L}(\mathcal{P}(\mathbf{R}))$ is such that T is injective and deg $Tp \leq \deg p$ for every nonzero polynomial $p \in \mathcal{P}(\mathbf{R})$.

- (a) Prove that T is surjective.
- (b) Prove that $\deg Tp = \deg p$ for every nonzero $p \in \mathcal{P}(\mathbf{R})$.
- Solution. (a) For each positive integer m, consider the restriction $T_m: \mathcal{P}_m(\mathbf{R}) \to \mathcal{P}(\mathbf{R})$ given by $T_m p = Tp$; since T is injective, each T_m is also injective. The hypothesis $\deg Tp \leq \deg p$ shows that this restriction actually maps into $\mathcal{P}_m(\mathbf{R})$ and so 3.69 implies that each T_m is an isomorphism. Then for any $p \in \mathcal{P}(\mathbf{R})$, let $m = \deg p$. As we just showed, there exists some $q \in \mathcal{P}_m(\mathbf{R})$ such that $T_m q = Tq = p$.
 - (b) We will prove this by induction on the degree of p. Let P(n) be the statement that for all polynomials p of degree n, we have deg Tp = n. For the base case P(0), let p be a non-zero constant polynomial. Then since T is injective, we have $Tp \neq 0$ and thus deg Tp = 0.

Now suppose that P(n) is true for some n and let p be a polynomial of degree n+1. Suppose by way of contradiction that deg Tp < n + 1. Then as we showed in part (a), there exists a polynomial q with deg $q \leq n$ such that Tq = Tp. The injectivity of T implies that p = q, but this is a contradiction since p and q have different degrees. Thus deg Tp = n + 1 and so P(n+1) holds. This completes the induction step and the proof.

Exercise 3.D.20. Suppose n is a positive integer and $A_{i,j} \in \mathbf{F}$ for $i, j = 1, \dots, n$. Prove that the following are equivalent (note that in both parts below, the number of equations equals the number of variables):

(a) The trivial solution $x_1 = \cdots = x_n = 0$ is the only solution to the homogeneous system of equations

$$\sum_{k=1}^{n} A_{1,k} x_k = 0$$

$$\vdots$$

$$\sum_{k=1}^{n} A_{n,k} x_k = 0.$$

$$\sum_{k=1}^{n} A_{n,k} x_k = 0.$$

(b) For every $c_1, \ldots, c_n \in \mathbf{F}$, there exists a solution to the system of equations

$$\sum_{k=1}^{n} A_{1,k} x_k = c_1$$

$$\sum_{k=1}^{n} A_{n,k} x_k = c_n.$$

Solution. As in Example 3.25, we can rephrase this question in terms of a linear map. Define $T: \mathbf{F}^n \to \mathbf{F}^n$ by

$$T(x_1, \dots, x_n) = \left(\sum_{k=1}^n A_{1,k} x_k, \dots, \sum_{k=1}^n A_{n,k} x_k\right).$$

Then (a) is equivalent to the injectivity of T and (b) is equivalent to the surjectivity of T. The equivalence of (a) and (b) then follows from 3.69.

[LADR] Axler, S. (2015) Linear Algebra Done Right. 3rd edition.