Final Documentation Draft

Jeren Suzuki

Last Edited June 12, 2013

Contents

1	Introduction		
_	Introduction cont. 2.1 Program List	1	
3	Setting Up Parameters	2	

1 Introduction

Starting with an image of at most three suns on a fiducial grid, we find the centers of the suns and their relative position to the fiducials (which provide a physical distance calibration). The program deems suns too close to the edge or suns partially cut off as unfit for centering.

2 Introduction cont.

2.1 Program List

1. defparams

Reads in parameter table

2. defsysvarthresh

Sets thresholds

3. idsuns

Identifies shapes in image. For each shape, calculate average value/max and assign region number depending on how bright it is

4. everysun

For each shape, find center

5. quickmask

Using a mask of pixel values above a threshold, find center of mass of mask

6. picksun

Determine if center is too close to edge of image; if so, mark as a partial sun and refrain from further analysis

7. centroidwholesuns

Depending on which suns are partial, only limb-fit the whole suns

8. fourpixfit

Fit line to a four pixel limb-profile centered around where it crosses a threshold

9. makeslimlimbstrips

Make limb strips 4 pixels long

10. makestrips

Make strips centered around solar center

11. para fid

Find fiducials in each limb-fitted sun, also use parabolic peak-fitting to calculate sub-pixel positions of fiducials

Has to be a cleaner way of doing this

- 1. Load Image
- 2. Read parameters from pblock.txt
- 3. Sort image and cut off top .1% of pixels (top 1% was actually too much)
- 4. Smooth, take deriv, smooth again, take deriv again of sorted array, find peaks that correspond to difference solar regions and their thresholds
- 5. Mask image above thresholds to find centers of every shape, regardless of partial or not
- 6. If center of shape is within a certain distance to edge of image, mark as partial and cease further analysis

Table 1. Final data structure of solar region

Name	Type	Value	Notes
XPOS	FLOAT	210.522	Rough calculation using a simple masking method
YPOS	FLOAT	166.702	n
REG	INT	1	Region ID #: 1 is 100%, 2 is 50%, 3 is 25%
THRESH	FLOAT	106.000	Threshold calculated from sorting array and taking derivatives.
			Used in both finding rough X-Y center as well as the
			threshold for limb-fitting.
PARTIAL	FLOAT	0.	Flag that determines if the solar region is cut off on the edge or not.
			0 means that it is not cut off
XSTRIPS	STRUCTURE	-> WHOLEXSTRIPS Array[5]	Strucutre containing the strips of whole solar data
		~ ()	bound by a cropped region chosen by XPOS and YPOS
YSTRIPS	STRUCTURE	-> WHOLEYSTRIPS Array[5]	"
LIMBXSTRIPS	STRUCTURE	-> LIMBXSTRIPS Array[5]	LIMBSTRIPS contains a pair of arrays, ENDPOINTS and
		v.,	STARTPOINTS that mark the limbs of each strip of data from
			X/YSTRIPS
LIMBYSTRIPS	STRUCTURE	-> LIMBYSTRIPS Array[5]	" ′
LIMBXPOS	FLOAT	210.710	Center calculated from LIMBXSTRIPS
LIMBYPOS	FLOAT	167.172	"
NPIX	FLOAT	26680.0	Number of pixels above threshold

- 7. Crop remaining whole suns
- 8. Extract 5 strips centered around cropped solar center for both X and Y direction
- 9. Extract a pair of limb strips for each long strip
- 10. Applt linear fit to limb profile
- 11. Mark position where fit crosses threshold
- 12. Use new threshold-crossing position to calculate chord lengths
- 13. Average midpoints of chords to find limb-fitted centers
- 14. Analyze the cropped image for fiducials
- 15. Using the fiducial positions, we compare the solar positions we calculated to a position defined by the physical setup.

This is the form of the fiducial structure containing the positions and xub-pixel positions of fiducials for each solar region.

```
>> help,*(bbb[0])
  ** Structure <260a348>, 2 tags, length=180, data length=178, refs=1:
     FIDARR
                    STRUCT -> FIDPOS Array[11]
  >> help,(*(bbb[0])). fidarr ,/ str
  ** Structure FIDPOS, 4 tags, length=16, data length=16:
7
                    FLOAT
                                   50.0000
    Х
8
                    FLOAT
                                   132.000
9
     SUBX
                    FLOAT
                                   50.8438
     SUBY
                    FLOAT
                                    133.291
```

3 Setting Up Parameters

Before we analyze the solar image, we load a parameter table and assign values.

```
1 scan_width 10 ; Distance to next chord when picking chords to limb-fit
2 sundiam 70 ; Approx Solar diameter, deprecated
3 nstrips 5 ; Number of pairs of solar chords to limb-fit per direction
4 ministrip_length 4 ; Length of limb profile to linear fit
5 crop_box 120 ; Half-width of box used to find fiducials in
```

```
6 elim_perc 1
                              ; Percentage of highest pixels to eliminate when finding threshold
7 n_smooth 900
                               ; Elements to smooth by when finding threshold
8 soldiskr 60
                              ; Deprecated
9 border_pad 50
                              ; If solar center is within this value of border, marked as a partial sun
10 triangle size .25
                              ; Percentage of image height to use for triangle sides for making clipped-bottom-corner
        mask
11 \text{ fid\_smooth\_thresh } -150
                             ; Threshold to determine row/column positions of fiducials
12 onedsumthresh 80
                               ; Once looking at fiducial candidates, look at 1D sum of smaller fiducial crop and
        threshold difference of smoothed array - original array by this
                              ; Arbitrary pixel brightness to eliminate bright fiducial candidates which are on the
13 disk_brightness 15
        solar disk but are not on a fiducial
                               ; Half-width of box used to analyze fiducials
14 fid_crop_box 15
15 fid smooth candidates 15 ; Smoothing paramater for 1D sums of fiducial candidates
```