

Tentamen i Funktioner och derivator

MA502G 2019-01-12, kl. 08:15-13:15

Hjälpmedel: Skrivdon (penna, sudd, linjal, gradskiva)

Betygskriterier: Framgår av separat dokument publicerat på Blackboard. Totalt kan man få 60 poäng. Uppgifterna på Del 1 är uppdelade i de tre huvudområdena Algebra, Funktioner, och Derivator, och kan tillsammans ge 12 poäng per huvudområde. Uppgifterna på Del 2 kan tillsammans ge 24 poäng. För betyg 3/4/5 krävs 3/4/5 poäng per huvudområde på Del 1 och 30/40/50 poäng totalt.

Anvisningar: Motivera väl, redovisa alla väsentliga beräkningssteg och svara exakt. Svara på högst en uppgift per blad.

Skrivningsresultat: Meddelas inom 15 arbetsdagar.

Examinator: Jens Fjelstad

Lycka till!

Del 1

Algebra

- 1. Gör en av följande uppgifter; lämna inte in lösningar till båda uppgifterna. (6p)
 - (a) Lös ekvationen $\sin(x) = \sin(4x)$.
 - (b) Lös olikheten $|x+1| \ge |3x-2|$.
- **2.** Rita området som ges av olikheterna $\frac{x^2}{2} + 2y^2 2 \le 0$ och $x \ge y^2$. (6p)

Funktioner

3. Beräkna gränsvärdet av
$$f(x) = \frac{2^x - 1}{x} \cdot \frac{x - 2}{x^2 - 4}$$
 då (6p)

a) $x \to 1$

b) $x \to 0$

c) $x \to \infty$

4. Välj ett värde på konstanten a så att

$$f(x) = \begin{cases} x^3 + 2 & \text{om } -1 \le x \le 0\\ (x - a)^2 - 2 & \text{om } 0 < x \le 1 \end{cases}$$

(6p)

blir kontinuerlig i [-1, 1], och skissa sedan f:s graf.

Använd grafen för att besvara följande frågor: Är f växande? Är f konvex? Är f injektiv?

Derivator

- 5. Bestäm största och minsta värdet av $f(x) = 2x^4 2x^3 x^2 + 3$ på intervallet [0, 2]. (6p)
- **6.** Har kurvan $y = \arccos(2x)$ någon tangent med lutningen 4? Om ja, bestäm en (6p) ekvation för en sådan tangent. Om nej, ange vilka värden som lutningen kan ha.

Del 2

- 7. Bestäm alla asymptoter och lokala extrempunkter till $f(x) = x + \frac{4}{x+1}$ och rita (8p) grafen.
- 8. En vägsträcka följer kurvan $x^2 2y^2 = 4$, $x \ge 0$. Talen x och y, som anges i enheten hm (1 hm = 100 m), är koordinater i ett givet koordinatsystem med x- och y-axlar pekandes österut respektive norrut. Betrakta en bil som färdas norrut längs vägsträckan. Är bilens hastighet någonstans riktad precis nordost eller nordväst (dvs med vinkeln 45° mot koordinataxlarna)? I så fall var?
- 9. Kim står i punkten P längs kanten av en cirkulär simbassäng med radien 25 m, och ska ta sig till punkten Q rakt motsatt P så fort som möjligt genom att springa längs kanten till en punkt R för att sedan simma direkt från R till Q. Var ska punkten R väljas för att minimera tiden från P till Q? Antag att springhastigheten är dubbla simhastigheten.

