The Lecture of Why

Jilles Vreeken

22 June 2022

Questions of the day

What is **causation**, how can we **measure** it, and how can **discover** it?

Dependence vs. Causation

Machine learning is amazing!

It's a cow!

It's... not a cow!

but not always in the right way...

It's a ball!

sometimes in a very bad way

It's an airplane!

sometimes in an exploitable way

COVID-19

CATVID-19

and often in a useless way

Let's consider my espresso machine

- X is the actual pressure in the boiler
- Y is the pressure measured by front gauge

Can we decide cause from effect based on data?

- we can compute marginal probabilities
- P(X) is the probability of measuring a certain pressure X in the boiler
- P(Y) is the probability of measuring a certain pressure Y on the gauge

Marginals are insufficient to tell cause from effect

Can we decide cause from effect based on data?

- we can compute conditional probabilities from the data
- $P(X \mid Y)$ is the probability of a pressure X in the boiler, knowing the gauge says Y
- $P(Y \mid X)$ vice versa

Conditionals are insufficient to tell cause from effect

3. COUNTERFACTUALS

ACTIVITY: Imagining, Retrospection, Understanding

QUESTIONS: What if I had done ...? Why?

(Was it X that caused Y? What if X had not occurred? What if I had acted differently?)

EXAMPLES: Was it the asprin that stopped my headache?

Would I have bought a laptop, if I would not have

bought a backpack?

 $P(y \mid x * 2)$

2. INTERVENTION

ACTIVITY: Doing, Intervening

QUESTIONS: What if I do...? How?

(What would Y be if I do X? How can I make Y happen?)

EXAMPLES: If I take asprine, will my headache be cured?

If make someone buy a backpack, will they

also buy a laptop?

 $P(y \mid do(x))$

1. ASSOCIATION

ACTIVITY: Seeing, Observing

QUESTIONS: What if I see ...?

(How are the variables related?

How would seeing X change my belief in Y?)

EXAMPLES: What does a symptom tell me about a disease?

How often do people who buy a backpack also

buy a laptop?

 $P(y \mid x)$

How can we decide on causality?

intervening on the barometer,
 e.g. moving its needle up or down,
 has no effect on the actual pressure

Clearly, Y does not cause X

How can we decide on causality?

intervening on the boiler,
 e.g. adding extra pressure, does
 move the needle of the barometer

- $P(Y \mid do(X)) \neq P(Y)$
- Clearly, X has a causal effect on Y

Randomized Controlled Trials

Randomized controlled trials are the de-facto standard for determining whether *X* causes *Y*

• treatment $X \in \{0,1,...\}$, potential effect Y and co-variates Z

Simply put, we

- 1. gather a large population of test subjects
- 2. randomly split the population into two equally sized groups A and B, making sure that Z is equally distributed between A and B
- 3. apply treatment X = 0 to group A, and treatment X = 1 to group B
- **4. determine** whether *Y* and *X* are dependent

If $Y \not\!\!\!\!\perp \!\!\!\!\perp X$, we conclude that X causes Y

Randomized Controlled Trials

Randomized controlled trials are the de-facto standard 1 treatmen Ultimate, but not ideal Simply pu Often impossible or unethical gather a Large populations needed 2. random ups A and B, Difficult to control for Z making apply tre to group B 3. **determine** whether *Y* and *X* are dependent

If $Y \not\!\!\!\!\perp \!\!\!\!\perp X$, we conclude that X causes Y

Observational Data

If we cannot measure $P(Y \mid do(X))$ directly in a randomized trial, can we estimate it based on data we observed outside of a controlled experiment?

Structural Causal Model

What happens if we intervene? What happens if we do(X)?

$$Q := U_Q$$

$$W := U_W$$

$$X := 2Q + U_X$$

$$Z := 5W + U_Z$$

$$R := 2W + U_R$$

$$Y := f_Y(X, Z, U_Y)$$

$$S := f_S(Y, U_S)$$

$$V := f_V(Y, R, U_V)$$

Doo-doo-doo baby shark

What happens if we intervene? What happens if we do(X)?

$$Q := U_Q$$

$$W := U_W$$

$$X := 42$$

$$Z := 5W + U_Z$$

$$R := 2W + U_R$$

$$Y := f_Y(X, Z, U_Y)$$

$$S := f_S(Y, U_S)$$

$$V := f_V(Y, R, U_V)$$

Doo-doo-doo baby shark

What happens if we **intervene**? What happens if we do(Y)?

A do-intervention on Y means removing **all** external influence on Y, i.e. removing all incoming edges

Do-calculus rules allow us to transform between interventional conditional probabilities, and observational conditional probabilities

Rule 1 (Interventions)

$$P(Y \mid do(X)) \stackrel{?}{=} P(Y)$$

Rule 1 (Interventions)

$$P(Y \mid do(X)) = P(Y)$$

Rule 1 (Interventions)

$$P(Y \mid do(X)) = P(Y)$$

Rule 1 (Interventions)

$$P(Y \mid do(X)) = P(Y)$$

Rule 2 (Observations)

$$P(Y \mid do(X), Z, W) \stackrel{?}{=} P(Y \mid do(X), Z)$$

Rule 2 (Observations)

$$P(Y \mid do(X), Z, W) = P(Y \mid do(X), Z)$$

Rule 2 (Observations)

$$P(Y \mid do(X), Z, W) = P(Y \mid do(X), Z)$$

Rule 2 (Observations)

$$P(Y \mid do(X), Z, W) = P(Y \mid do(X), Z)$$

Rule 3 (Exchange)

$$P(Y \mid do(X), Z) \stackrel{?}{=}$$

$$\sum_{Z} P(Y \mid X, Z = Z) P(Z = Z)$$

$$\stackrel{?}{=} P(Y \mid X, Z)$$

Rule 3 (Exchange)

$$P(Y \mid do(X), Z) = \sum_{z} P(Y \mid X, Z = z) P(Z = z)$$
$$= P(Y \mid X, Z)$$

Rule 3 (Exchange)

$$P(Y \mid do(X), Z) = \sum_{z} P(Y \mid X, Z = z) P(Z = z)$$
$$= P(Y \mid X, Z)$$

Rule 3 (Exchange)

$$P(Y \mid do(X), Z) = \sum_{z} P(Y \mid X, Z = z) P(Z = z)$$
$$= P(Y \mid X, Z)$$

Do-calculus

Rule 3 (Exchange)

$$P(Y \mid do(X), Z) = \sum_{z} P(Y \mid X, Z = z) P(Z = z)$$
$$= P(Y \mid X, Z)$$

iff **Z** satisfies the back-door criterion

Observational Data

If we cannot measure $P(Y \mid do(X))$ directly in a randomized trial, can we estimate it based on data we observed outside of a controlled experiment?

Sometimes, yes!

Causal Discovery

Causal Markov Condition

The world is a DAG

Causal Markov Condition

Any distribution generated by a Markovian model M can be factorized as

$$P(X_1, X_2, \dots, X_n) = \prod_i P(X_i \mid pa_i)$$

where $X_1, X_2, ..., X_n$ are the **endogenous** variables in M, and pa_i are (values of) the **endogenous** "parents" of X_i in the causal diagram associated with M

Causal Markov Condition

Data Table

 $(drawn iid \sim P)$

				[,4]		
	-1.111280231					2.40911019
[2,]	1.417817353	-0.3615978	-0.19247032	0.66140629	-0.1432120	-0.11834670
[3,]	-0.570567540	-1.6432378	-0.01828731	0.63376433	1.0635629	1.38168120
[4,]	-0.266227679	0.3599688	-0.24996129	-0.71842864	1.3101086	-0.12842456
[5,]	-0.427288260	-0.2755770	0.18415136	-0.38490679	0.7879288	0.17226519
[6,]	1.071823011	-2.2669731	-0.12903350	1.20311317	-0.9858127	-0.80158209
[7,]	0.837535622	1.1515241	1.59051510	0.38925330	0.1345126	-0.67640590
[8,]	-0.390993411	-1.1961786	-0.39611883	-0.03885206	0.6040686	-1.48233781
[9,]	0.362079425	-0.1536282	-0.07836638	0.35483976	-0.7917826	1.03274031
[10,]	0.458338530	-0.0165398	-2.03619702	-0.52135067	-0.4390771	1.20154780
[11,]	0.501343446	0.2389414	0.29264235	2.22713490	-1.0410120	-0.89328211
[12,]	-1.415642964	-0.1702699	2.38358494	-0.81265492	-0.6158825	1.26850073
[13,]	-0.046928402	-0.3022692	1.13007307	0.42498056	-0.1353464	-0.32156204
[14,]	-0.102232153	1.2782075	0.04981187	-0.20025751	-0.3551035	0.96481313
[15,]	1.341928249	0.1602453	-2.00424050	0.73607678	-0.7738258	-1.23018988
[16,]	0.379343237	0.8455179	0.38334824	-1.10415371	1.3109047	0.51595299
[17,]	0.992962014	-0.1822972	-0.62581816	-0.24508326	-1.0401618	-0.40046472
[18,]	0.148449812	1.8961460	-1.80999444	1.15871379	-0.4712393	-0.11946830
[19,]	0.343098853	-0.8892800	-0.99248067	1.25076084	-1.3800977	-0.49034137
[20,]	-0.694376265	1.0474346	-1.18596211	0.58955030	-0.1164544	-0.60899072
[21,]	-0.228495189	-0.2954567	-0.71869073	-0.45818747	-0.1463725	0.10861868
[22,]	0.452582822	1.2291624	1.93100711	1.28179874	0.5874635	-1.11419976
[23,]	0.935567535	-0.2807363	-2.28854793	-0.80001996	0.2223043	0.34980701
[24,]	0.894893812	1.6273959	0.49487719	0.83645987	1.2652432	-0.56321515
[25,]	0.007212357	-1.5697742	1.94262455	-1.32507779	0.5770311	-0.27249976
[26,]	-1.662708965	0.1443786	1.40188962	0.86200639	0.6357342	0.55804169
[27]	_1 100010700	0 1/28E8/	_0 67/69761	0 //0074400	0 4045044	-0 0/838EY3

Assumptions

Causal Graph G

Faithfulness

Independence in the data, means independence in the generating graph

Faithfulness

If $X \parallel Y$ in the data, $X \parallel Y$ in the generating graph

Faithfulness

Data Table

 $(drawn iid \sim P)$

Assumptions

Faithfulness $(P \Rightarrow G)$

Causal Graph G

Causal Sufficiency

We have measured all common causes of all measured variables

There are no hidden confounders

Statistical Causality

Reichenbach's common cause principle links causality and probability

if X and Y are statistically dependent then either

When Z screens X and Y from each other, given Z, X and Y become independent.

In other words...

For all variables X and Y, if Y does not cause X, then $P(X \mid Y, pa_X) = P(X \mid pa_X)$

In other words, we can weed out non-causal edges: if the data shows independence, **no edge**, and if a dependence can be explained away, also **no edge**!

All together, these assumptions allow us to identify causal DAGs up to Markov equivalence

Constraint-Based Causal Discovery

The PC algorithm is one of the most well-known, and most relied upon causal discovery algorithms

proposed by Peter Spirtes and Clark Glymour

Two main steps

- use conditional independence tests to determine the undirected causal graph (aka the skeleton)
- 2) apply constraint-based rules to direct (some) edges

for k = 0 to n

We now have the causal skeleton

Step 2: Orientation

We now identify all **colliders** $A \rightarrow B \leftarrow C$ considering all relevant pairs **once**

Step 2: Orientation

We now identify all colliders $A \rightarrow B \leftarrow C$ considering all relevant pairs once Rule 1 (collider) $A \perp \!\!\! \perp \!\!\! \perp \!\!\! C$

Step 2: Orientation

We then iteratively apply Rules 2—4 until we cannot orient any more edges

Done! We discovered causality!

Summary

We learned about the ladder of causation

- causal conclusions are impossible without causal assumptions
- no causation in, no causation out

We learned about do-calculus

 allows us to determine if under our current assumptions, observational data suffices to estimate causal effects

We learned about causal discovery

how and when we can discover a causal graph from data

Welcome to the causal revolution!

Thank you!

We learned about the ladder of causation

- causal conclusions are impossible without causal assumptions
- no causation in, no causation out

We learned about do-calculus

 allows us to determine if under our current assumptions, observational data suffices to estimate causal effects

We learned about causal discovery

how and when we can discover a causal graph from data

Welcome to the causal revolution!