

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

"МИРЭА – Российский технологический университет"

РТУ МИРЭА

Институт искусственного интеллекта Кафедра автоматических систем

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №6

по дисциплине

«Сети и системы передачи информации»

Выполнил студент группы ККСО – 02 -20

Шинкарев Михаил Сергеевич

Принял

Татьяна Владимировна

Лабораторная работа №6 «ПОМЕХОУСТОЙЧИВОЕ КОДИРОВАНИЕ. КОД ХЭММИНГА»

Цель работы: ознакомление с принципами помехоустойчивого кодирования и приобретение практических навыков моделирования работы кодеров и декодеров.

Практическая часть

Формирование бита чётности

Сформировать бит чётности (бит паритета) для заданного байта передаваемых данных (Вариант №17).

Вычислим бит чётности для данных 00101111. Для этого нужно вычислить сумму всех значений по модулю 2:

$$0 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 1 \oplus 1 \oplus 1 = 1$$

Бит чётности равен 1.

Исследование помехоустойчивого кода с формированием бита чётности.

Выполнить моделирование процесса передачи информации по каналу связи. Исходные данные:

Вариант	Информационные	Помехи	Помехи	Помехи	Помехи	
	биты S4 S3 S2 S1	S8 S7 S6 S5				
17	0000	0000	1000	0011	0111	

Рисунок 1 - Схема для исследования кода с формированием бита чётности.

Рисунок 2 - Помехи 0000

Рисунок 3 - Помехи 1000

Рисунок 4 - Помехи 0011

Рисунок 5 - Помехи 0111

Таблица результатов:

Информационные	Помехи	Бит	Наличие		
биты S4 S3 S2 S1	S8 S7 S6 S5	чётности	нечётной		
			ошибки		
0000	0000	1	нет		
0000	1000	1	есть		
0000	0011	1	нет		
0000	0111	1	есть		

Исправление ошибки с помощью кода Хэмминга.

Расчётным путём (вручную) определить, в каком разряде принятого кода Хэмминга (12,8) произошло искажение. Исходные данные:

Вариант	i8	i7	i6	i5	<i>k</i> 4	i4	i3	i2	<i>k</i> 3	<i>i</i> 1	<i>k</i> 2	<i>k</i> 1
17	1	0	1	0	0	1	1	0	1	1	1	0

Проверим значения контрольных бит по формулам:

$$k'1 = i1 \oplus i2 \oplus i4 \oplus i5 \oplus i7 = 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 = 0$$

$$k'2 = i1 \oplus i3 \oplus i4 \oplus i6 \oplus i7 = 1 \oplus 1 \oplus 1 \oplus 1 \oplus 0 = 0$$

$$k'3 = i2 \oplus i3 \oplus i4 \oplus i8 = 0 \oplus 1 \oplus 1 \oplus 1 = 1$$

$$k'4 = i5 \oplus i6 \oplus i7 \oplus i8 = 0 \oplus 1 \oplus 0 \oplus 1 = 0$$

Сравним полученные значения с исходными:

$$k1 = 0, k'1 = 0 \Rightarrow k1 = k'1$$

 $k2 = 1, k'2 = 0 \Rightarrow k2 \neq k'2$
 $k3 = 1, k'3 = 1 \Rightarrow k3 = k'3$
 $k4 = 0, k'4 = 0 \Rightarrow k4 = k'4$

Для определения, неверно принятого бита, требуется вычислить синдром $S = s4 \ s3 \ s2 \ s1$, где

$$s1 = k1 \oplus k'1 = 0 \oplus 0 = 0$$

$$s2 = k2 \oplus k'2 = 1 \oplus 0 = 1$$

$$s3 = k3 \oplus k'3 = 1 \oplus 1 = 0$$

$$s4 = k4 \oplus k'4 = 0 \oplus 0 = 0$$

Значит, S = 110. Переведём 110 в десятичную систему счисления.

$$10_2 = 2_{10}$$

Искажённый бит находится на разряде 2, то есть это k2. Исправляем k2 на противоположное значение, k2 = 0. Исправленные данные: 101001101100.

Моделирование работы кода Хэмминга.

Провести моделирование процесса кодирования, передачи и декодирования данных. Исходные данные:

Вариант	i8	i7	i6	i5	<i>k</i> 4	i4	i3	i2	<i>k</i> 3	i1	<i>k</i> 2	<i>k</i> 1
17	1	0	1	0	0	1	1	0	1	1	0	0

Рисунок 6 - Схема моделирования работы кода Хэмминга в системе передачи информации

Рисунок 7 - Демонстрация исправной работы схемы (синдром 0 при искажении первого бита)

Рисунок 8 - Демонстрация исправной работы схемы (синдром 1 при искажении первого бита)

Таблица результатов:

Исходные	Искажённый бит	Синдром	Искажённые		
данные	искаженный ойт	Синдром	данные		
101001101100	-	0	101001101100		
101001101100	1	1	101001101101		
101001101100	2	2	1010011011 <mark>1</mark> 0		
101001101100	3	3	101001101000		
101001101100	4	4	10100110 <mark>0</mark> 100		
101001101100	5	5	101001111100		
101001101100	6	6	101001 <mark>0</mark> 01100		
101001101100	7	7	10100 <mark>0</mark> 101100		
101001101100	8	8	1010 <mark>1</mark> 1101100		
101001101100	9	9	101101101		
101001101100	10	A	10 <mark>0</mark> 001101100		
101001101100	11	В	1 <mark>1</mark> 1001101100		
101001101100	12	С	001001101100		

Вывод

В ходе данной работы, проведено ознакомление с принципами помехоустойчивого кодирования и были приобретены практические навыки моделирования работы кодеров и декодеров.