Regular Expressions

Kamal Lodaya

BGVS Karnataka Indian Institute of Science, Bengaluru

January 2024

Outline

Meene's Theorem

- 2 Equation-based alternate construction
- Rational Expressions

Expressions built from a, b, ϵ , using operators +, ·, and *.

- $(a^*) \cdot b$ "any number of a's followed by a single b."
- $(a + b)^*abb(a + b)^*$ "contains abb as a subword."
- $(a+b)^*b(a+b)(a+b)$ "3rd last letter is a b."
- (b*ab*a)*b*

Expressions built from a, b, ϵ , using operators +, \cdot , and *.

- $(a^*) \cdot b$ "any number of a's followed by a single b."
- $(a + b)^*abb(a + b)^*$ "contains abb as a subword."
- (a+b)*b(a+b)(a+b)"3rd last letter is a b."
- $(b^*ab^*a)^*b^*$ "Even number of a's."

Expressions built from a, b, ϵ , using operators +, \cdot , and *.

- $(a^*) \cdot b$ "any number of a's followed by a single b."
- $(a + b)^*abb(a + b)^*$ "contains abb as a subword."
- (a+b)*b(a+b)(a+b)"3rd last letter is a b."
- $(b^*ab^*a)^*b^*$ "Even number of a's."
- Ex. Give regexp for "Every 4-bit block of the form w[4i, 4i + 1, 4i + 2, 4i + 3] has even parity."

Expressions built from a, b, ϵ , using operators +, \cdot , and *.

- $(a^*) \cdot b$ "any number of a's followed by a single b."
- $(a + b)^*abb(a + b)^*$ "contains abb as a subword."
- (a+b)*b(a+b)(a+b)"3rd last letter is a b."
- $(b^*ab^*a)^*b^*$ "Even number of a's."
- Ex. Give regexp for "Every 4-bit block of the form w[4i, 4i + 1, 4i + 2, 4i + 3] has even parity." $(0000 + 0011 + \cdots + 1111)^*(\epsilon + 0 + 1 + \cdots + 111)$

Syntax of regular expresions over an alphabet A:

$$r ::= \emptyset \mid a \mid r + r \mid r \cdot r \mid r^*$$

where $a \in A$.

• Semantics: associate a language $L(r) \subseteq A^*$ with regexp r.

$$L(\emptyset) = \{\}$$

$$L(a) = \{a\}$$

$$L(r+r') = L(r) \cup L(r')$$

$$L(r \cdot r') = L(r) \cdot L(r')$$

$$L(r^*) = L(r)^* = \bigcup_{i=0}^{\infty} L(r)^i \text{ (finite? infinite?)}$$

Syntax of regular expresions over an alphabet A:

$$r ::= \emptyset \mid a \mid r + r \mid r \cdot r \mid r^*$$

where $a \in A$.

• Semantics: associate a language $L(r) \subseteq A^*$ with regexp r.

$$L(\emptyset) = \{\}$$

$$L(a) = \{a\}$$

$$L(r+r') = L(r) \cup L(r')$$

$$L(r \cdot r') = L(r) \cdot L(r')$$

$$L(r^*) = L(r)^* = \bigcup_{i=0}^{\infty} L(r)^i \text{ (finite? infinite?)}$$

• Question: What is L^0 ? By definition, $L^0 = \{\epsilon\}$

Syntax of regular expresions over an alphabet A:

$$r ::= \emptyset \mid a \mid r + r \mid r \cdot r \mid r^*$$

where $a \in A$.

• Semantics: associate a language $L(r) \subseteq A^*$ with regexp r.

$$\begin{array}{lll} L(\emptyset) & = & \{\} \\ L(a) & = & \{a\} \\ L(r+r') & = & L(r) \cup L(r') \\ L(r\cdot r') & = & L(r) \cdot L(r') \\ L(r^*) & = & L(r)^* = \bigcup_{i=0}^{\infty} L(r)^i \ (\textit{finite?infinite?}) \end{array}$$

• Question: What is L^0 ? By definition, $L^0 = \{\epsilon\}$ Question: Do we need ϵ in syntax?

Syntax of regular expresions over an alphabet A:

$$r ::= \emptyset \mid a \mid r + r \mid r \cdot r \mid r^*$$

where $a \in A$.

• Semantics: associate a language $L(r) \subseteq A^*$ with regexp r.

$$L(\emptyset) = \{\}$$

$$L(a) = \{a\}$$

$$L(r+r') = L(r) \cup L(r')$$

$$L(r \cdot r') = L(r) \cdot L(r')$$

$$L(r^*) = L(r)^* = \bigcup_{i=0}^{\infty} L(r)^i \text{ (finite?infinite?)}$$

• Question: What is L^0 ? By definition, $L^0 = \{\epsilon\}$ Question: Do we need ϵ in syntax? No. $L(\emptyset^*) = \{\epsilon\}$.

$$(a^* + b^*) \cdot c$$

Class of languages defined by regular expressions coincides with regular languages.

Direction RE \rightarrow NFA: Use closure properties of regular languages.

Idea: Construct (finite) NFA from given RE and \rightarrow (finite) DFA using subset construction. Recall:

Class of languages defined by regular expressions coincides with regular languages.

Direction RE \rightarrow NFA: Use closure properties of regular languages.

Idea: Construct (finite) NFA from given RE and \rightarrow (finite) DFA using subset construction. Recall:

• $L \cup M = \{u \mid u \in L \text{ or } u \in M\}$ (NFA size?)

Class of languages defined by regular expressions coincides with regular languages.

Direction RE \rightarrow NFA: Use closure properties of regular languages.

Idea: Construct (finite) NFA from given RE and \rightarrow (finite) DFA using subset construction. Recall:

- $L \cup M = \{u \mid u \in L \text{ or } u \in M\} \text{ (NFA size?)}$
- $L \cdot M = \{u \cdot v \mid u \in L, v \in M\}$ (NFA size?)

Class of languages defined by regular expressions coincides with regular languages.

Direction RE \rightarrow NFA: Use closure properties of regular languages.

Idea: Construct (finite) NFA from given RE and \rightarrow (finite) DFA using subset construction. Recall:

- $L \cup M = \{u \mid u \in L \text{ or } u \in M\} \text{ (NFA size?)}$
- $L \cdot M = \{u \cdot v \mid u \in L, v \in M\}$ (NFA size?)
- $L^n = L \cdot L \cdot \cdots \cdot L$ (*n* times), where $L^0 = \{\epsilon\}$ by definition
- $L^* = \bigcup_{i=0}^{\infty} L^i = L^0 \cup L^1 \cup L^2 \cup L^3 \dots$ (infinite union of any finite number of concatenations of L, but single NFA)

Glushkov construction for NFA A recognizing L

• Make all initial states non-initial and add new initial state e. For every transition (s_i, a, t) of \mathcal{A} add transition (e, a, t). (Self-loop (s_i, a, s_i) of \mathcal{A} results in (e, a, s_i) .) If $a^* \subseteq L(s_i)$, the self-loop at s_i makes $a^+ \subseteq L(e)$. This is a single-source NFA for $L \setminus \{\epsilon\}$.

- Make all final states non-final and add new final state g. For every transition (t, b, f_i) of \mathcal{A} add transition (t, b, g). (Self-loop (f_i, b, f_i) of \mathcal{A} results in (f_i, b, g) , making f_i nondeterministic, still $b^+ \subseteq L(f_i)$.)
- If s_i were initial and final in \mathcal{A} and had self-loop (s_i, b, s_i) accepting $b^* \subseteq L(s_i)$, in the first step we get (e, b, s_i) with $b^+ \subseteq L(e)$. In the second step we get (e, b, g) accepting b, $b^+ \subseteq L(s_i)$, hence $b^+ \subseteq L(e)$ using edge for b and path through s_i . This is a single-source single-sink NFA for $L \setminus \{e\}$.

$RE \rightarrow NFA$: closure under star

• Fuse e and g in the Glushkov construction into a single start and final state h. (Edges (e, c, g) become self-loops (h, c, h).) Paths of L cycling through h for the first and last letter accept strings in $L^+ = L^* \setminus \{\epsilon\}$ which move out of an initial state. Self-loops simulate remaining paths, so all of L^* is accepted. Do any new strings outside L^* get accepted? No. Every non-singleton cycle from h to h not visiting h inbetween has to go through the A-states simulating a path of $L \setminus \{\epsilon\}$, giving cyclic paths from h to h in L^+ . The self-loops at h correspond to three possibilities from $A: c, c^+$ and c^* . But for all three cases $c^* = (c^+)^* = (c^*)^* \subseteq L^*$.

Direction NFA \rightarrow RE: If F is empty, desired expression is \emptyset . (Question: If there are no paths from S to F, should return \emptyset .)

Otherwise induction on number of states in given NFA.

Base case is one state.

- Let $A = (Q, S, \Delta, F)$ be given nonempty NFA.
- Define $L_{pq} = \{ w \in A^* \mid q \in \widehat{\Delta}(p, w) \}.$
- Then $L(A) = \bigcup_{s \in S} \bigcup_{f \in F} L_{sf}$.

Rational Expressions

• By induction on |X|, for $X \subseteq Q$ define $L_{pq}^X = \{w \in A^* \mid q \in \widehat{\Delta}(p, w), \text{ via a path that stays in } X \text{ for intermediate states}\}$

• Then $L(A) = \bigcup_{s \in S} \bigcup_{f \in F} L_{sf}^{Q}$.

$NFA \rightarrow RE$: McNaughton-Yamada construction

Induction:

$$L_{pq}^{X \cup \{r\}} = L_{pq}^X + L_{pr}^X \cdot (L_{rr}^X)^* \cdot L_{rq}^X$$

NFA \rightarrow RE: McNaughton-Yamada construction (2)

Method:

- Begin with L_{sf}^Q for each $s \in S$, $f \in F$.
- Simplify by using terms with strictly smaller X's:

$$L_{pq}^{X \cup \{r\}} = L_{pq}^{X} + L_{pr}^{X} \cdot (L_{rr}^{X})^{*} \cdot L_{rq}^{X}.$$

For base of the induction, observe that

$$L_{pq}^{\{\}} = \begin{cases} \{a \mid q \in \Delta(p, a)\} & \text{if} \quad p \neq q \\ \{a \mid q \in \Delta(p, a)\} \cup \{\epsilon\} & \text{if} \quad p = q. \end{cases}$$

Exercise: convert NFA/DFA's below to RE's:

NFA \rightarrow RE: McNaughton-Yamada construction (2)

Method:

- Begin with L_{sf}^Q for each $s \in S$, $f \in F$.
- Simplify by using terms with strictly smaller X's:

$$L_{pq}^{X \cup \{r\}} = L_{pq}^{X} + L_{pr}^{X} \cdot (L_{rr}^{X})^{*} \cdot L_{rq}^{X}.$$

• For base of the induction, observe that

$$L_{pq}^{\{\}} = \begin{cases} \{a \mid q \in \Delta(p, a)\} & \text{if} \quad p \neq q \\ \{a \mid q \in \Delta(p, a)\} \cup \{\epsilon\} & \text{if} \quad p = q. \end{cases}$$

Exercise: convert NFA/DFA's below to RE's:

Corollary: checking language of NFA is nonempty

Define $L_{pq}^X = \{ w \in A^* \mid q \in$

 $\widehat{\Delta}(p, w)$, via path using intermediate states in X at most once

- $L(A) \neq \emptyset \iff (S \cap F \neq \emptyset) \vee \bigvee_{s \in S} \bigvee_{f \in F} (L_{sf}^{Q \setminus \{s, f\}} \neq \emptyset).$
- Induction $(X, Y, \{p, q, r\})$ all disjoint):

$$L_{pq}^{X \cup Y \cup \{r\}} \neq \emptyset \iff (L_{pq}^{X \cup Y} \neq \emptyset) \vee \bigvee_{r \in Q} ((L_{pr}^{X} \neq \emptyset) \wedge (L_{rq}^{Y} \neq \emptyset))$$

Base:

$$L_{pq}^{\{\}} \neq \emptyset \iff \left\{ egin{array}{ll} \bigvee_{a \in A} (q \in \Delta(p,a)) & \mathrm{if} \quad p \neq q \\ \mathit{true} & \mathrm{if} \quad p = q. \end{array} \right.$$

Aim: to construct a regexp for

$$L_q = \{ w \in A^* \mid \widehat{\Delta}(q, w) \cap F \neq \emptyset \}.$$

• Note that $L(A) = \bigcup_{s \in S} L_s$. Example:

• Set up right-linear equations for L_q 's:

$$x_e = b \cdot x_e + a \cdot x_o$$

 $x_o = a \cdot x_e + b \cdot x_o + \epsilon.$

 Solution is a RE for each x, such that languages of LHS and RHS coincide.

Rational Expressions

Chomsky-Miller: Seeing NFA as system of equations

Aim: to construct a regexp for

$$L_q = \{ w \in A^* \mid \widehat{\Delta}(q, w) \cap F \neq \emptyset \}.$$

• Note that $L(A) = \bigcup_{s \in S} L_s$. Example:

• Set up right-linear equations for L_q 's:

$$x_e = b \cdot x_e + a \cdot x_o$$

 $x_o = a \cdot x_e + b \cdot x_o + \epsilon.$

 Solution is a RE for each x, such that languages of LHS and RHS coincide.

Rational Expressions

Conway: Solutions to a system of equations

- L_q's are a solution to the system of equations.
- In general there could be many solutions to equations.
- Consider $x = A^*x$ (Here A is the alphabet). What are the solutions to this equation?

• In the case of right-linear equations arising out of automata, L_q 's can be seen to be the unique solution to the equations.

Conway: Least solution to a system of equations

Equations arising from our automaton can be viewed as:

$$\left[\begin{array}{c} x_{\mathsf{e}} \\ x_{\mathsf{o}} \end{array}\right] = \left[\begin{array}{c} b & \mathsf{a} \\ \mathsf{a} & \mathsf{b} \end{array}\right] \left[\begin{array}{c} x_{\mathsf{e}} \\ x_{\mathsf{o}} \end{array}\right] + \left[\begin{array}{c} \emptyset \\ \epsilon \end{array}\right]$$

 System of right-linear equations over regular expressions have the general form:

$$X = EX + F$$

where X is a column vector of n variables, E is an $n \times n$ matrix of regular expressions, and F is a column vector of nregular expressions.

- Claim: The column vector E^*F represents the least solution to the equations above. [See Kozen, Supplementary Lecture A].
- Definition of E^* when E is a 2 × 2 matrix:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^* = \begin{bmatrix} (a+bd^*c)^* & (a+bd^*c)^*bd^* \\ (d+ca^*b)^*ca^* & (d+ca^*b)^* \end{bmatrix}$$

Schützenberger: formal power series semiring

A semiring is a set with binary associative operation · and binary commutative and associative operation + and their units 1 and 0, with the first operation distributing over the second.

Examples: A^* with concatenation, union; $\mathbb{N}, \mathbb{R}^{\geq 0}$ with $\times, +$.

A weight function g maps a string to $\mathbb N$ such that every non-unit maps to a positive number and $g(u\cdot v)=g(u)+g(v)$. Thus $g(\epsilon)=0$. More generally weights can be from a semiring $\mathbb K$.

A (proper) formal \mathbb{K} -power series over A has formal expressions representing weight functions $A^* \to \mathbb{K}$ (mapping ϵ to 0, or the special series ϵ with value 1 at ϵ and 0 elsewhere).

Proper power series allow infinite sums $t^* = \sum_{i \in \mathbb{N}} t^i_{\circ} (\text{with } t^0 = \epsilon)$

Rational expressions (see Sakarovitch's chapter in HWA)

Syntax of \mathbb{K} -rational expresions over A, where $a \in A$ and $k \in \mathbb{K}$:

$$r ::= 0 \mid \epsilon \mid a \mid kr \mid rk \mid r+r \mid r \cdot r \mid r^*$$

Technicalities: $(a^* + (-1)b^*)^*$ is a valid \mathbb{Z} -rational expression, $(a^* + b^*)^*$ is not, since the inner expression has value 2 at ϵ , which is not proper and its star is undefined.

Semantics: associate a proper power series with expression r.

0 is the zero series with value 0 for all words w. $0^* = \epsilon = \epsilon^*$. a has value 1 at word a and zero otherwise.

kr and rk left- and right-multiply the value at every word w by k. We assume $s \cdot t$ maps w to $s(w) \cdot t(w)$ (more possibilities in HWA).

Proposition: K-weighted rational expressions form a semiring.

Weighted automata

A \mathbb{K} -weighted automaton \mathcal{A} with states Q is a square matrix E of dimension |Q| with entries from a \mathbb{K} -power series, with initial row vector I and final column vector F.

Example: \mathbb{B} -weighted automaton over A.

The label of a computation $w_1 ldots w_n$ from p to q is the product $I_p w_1 ldots w_n F_q$. (A Glushkov automaton is one where I has a single non-zero coordinate with unit value and this unique initial state is not the target of any transition with non-zero label.)

The behaviour of an automaton is a power series representing labels of its computations.

Conway's theorem: The behaviour of an automaton equals $I \cdot E^* \cdot F$.

Kleene-Schützenberger theorem: A formal \mathbb{K} -power series is rational \iff behaviour of a finite \mathbb{K} -weighted automaton.

