Two constructions

We give two smoothings of a singular Calabi-manifold X_0 , both with actions of D_6 , the symmetries of the hexagon.

Lemma 0.1. There is an isomorphism $S_3 \times \mathbb{Z}_2 \simeq D_6$.

Proof. Let
$$D_6 = \langle \rho, \sigma \mid \rho^6 = \sigma^2 = s\rho s\rho \rangle$$
. Then $S_3 \simeq \langle \rho^2, \sigma \rangle$ and $\mathbb{Z}^2 \simeq \langle \rho^3 \rangle$.

0.1 Construction 1

Let E be a 3-dimensional vector space. Let $\{e_1, e_2, e_3\}$ be a basis for E. Then S_3 act on E by $e_i \mapsto e_{\sigma(i)}$. It also act on $(E \otimes E)^{\oplus 2} \approx k^{18}$. There is a \mathbb{Z}_2 -action switching the factors. Let $\mathbb{P} = \mathbb{P}(k^{18})$. Then $S_3 \times \mathbb{Z}_2$ act on \mathbb{P} .

The elements of \mathbb{P} are pairs of 3×3 -matrices, not both zero. Let M be the closure of the set of pairs (A, B) where rank $A = \operatorname{rank} B = 1$.

If \mathbb{P} have coordinates x_1, \ldots, x_{18} , let M_1, M_2 be generic matrices:

$$M_1 = \begin{pmatrix} x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 \\ x_7 & x_8 & x_9 \end{pmatrix} \text{ and } M_1 = \begin{pmatrix} x_{10} & x_{11} & x_{12} \\ x_{13} & x_{14} & x_{15} \\ x_{16} & x_{16} & x_{17} \end{pmatrix}.$$

Then M is defined by the zeroes of the 2×2 -minors of M_1 and M_2 . Note that M is the projective join of $\mathbb{P}^2 \times \mathbb{P}^2 \hookrightarrow \mathbb{P}^8$.

The variety M is 9-dimensional: the affine cone over M, C(M), is equal to $C(\mathbb{P}^2 \times \mathbb{P}^2) \times C(\mathbb{P}^2 \times \mathbb{P}^2)$. This variety has dimension 5+5=10, hence its projectivization M is 9-dimensional.

The singular locus of M consists of the pairs (0, B), and (A, 0), where rank $A = \operatorname{rank} B = 1$, hence dim Sing M = 4.

Intersecting M with a codimension 6 hyperplane gives a smooth Calabi-Yau variety X_1 . It has topological Euler characteristic -72.

Figure 1: A $2 \times 2 \times 2$ -tensor.

0.2 Construction 2

Let E be a 2-dimensional vector space with basis $\{e_1, e_2\}$. Let $\mathbb{P} = \mathbb{P}\left((E \otimes E \otimes E)^{\oplus 2}\right)$. Then $\mathbb{P} = \mathbb{P}^{15}$. There is an action of S_3 on $E \otimes E \otimes E$ given by permuting the tensor factors. Combining this with a \mathbb{Z}_2 switching A and B, we get a $S_3 \times \mathbb{Z} \simeq D_6$ -action on \mathbb{P} .

The elements of \mathbb{P} are pairs (A, B) of $2 \times 2 \times 2$ -tensors, not both zero.

Let N be the closure of set of pairs (A, B) where both A and B have tensor rank 1^1 . A pure $2 \times 2 \times 2$ -tensor can be visualized as a box in \mathbb{Z}^3 of unit volume. Let the variables on \mathbb{P} be a_{ijk} and b_{ijk} for i, j, k = 0, 1. See the diagram in Figure 1.

The equations of the set of rank 1 tensors are obtained as the "minors" along the 6 sides together with the minors along the 4 long diagonals, giving a total of 9 binomial equations.

Note that N is the projective join of two copies of $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$.

The singular locus of N consists of the pairs (A,0) and (0,B) where both A,B have rank 1. Hence the singular locus is of dimension 3.

Intersecting N with a codimension 4-hyperplane gives a smooth variety X_2 . It is Calabi-Yau and has topological Euler characteristic -48.

0.3 A Calabi-Yau with isolated singularities

Let $dP_6 \subset \mathbb{P}^6$ be the del Pezzo surface of degree 6 anticanonically embedded in \mathbb{P}^6 .

Let us describe two embeddings of dP_6 into $\mathbb{P}^2 \times \mathbb{P}^2$ and $(\mathbb{P}^1)^{\times 3}$, respectively. The surface dP_6 is the blowup of \mathbb{P}^2 in three points. Assume these are $P_1 = (1:0:0)$, $P_2 = (0:1:0)$ and $P_3 = (0:0:1)$.

An elements of $E^{\otimes}3$ have rank 1 if it is a pure tensor. It has rank k if it can be written as a sum of k pure tensors.

Then we can realize dP_6 as the solutions of the matrix equation

$$\begin{pmatrix} 0 & a_0 & -a_1 \\ b_1 & 0 & -b_0 \\ c_0 & -c_1 & 0 \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \end{pmatrix} = 0$$

in $\mathbb{P}^2 \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$. Since the r_i, s_i are variables in \mathbb{P}^1 , we see that the matrix cannot have rank 1. Hence the matrix have rank exactly 2, and that the matrix equation is equivalent to the equation $\det M = a_0b_0c_0 - a_1b_1c_1 = 0$ in $(\mathbb{P}^1)^3$. Hence dP_6 is the set of zeroes of a section of $\mathscr{O}_{(\mathbb{P}^1)^3}(1,1,1)$.

We can also describe dP_6 as the closure of the graph of a rational map. The ideal of the three points is (x_1x_2, x_0x_2, x_1x_2) , and this gives a rational map $f: \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ by $(x_0: x_1: x_2) \mapsto (x_1x_2: x_0x_2: x_0x_1)$. The blowup is defined as the closure of the graph of this map, and lives inside $\mathbb{P}^2_{x_0x_1x_2} \times \mathbb{P}^2_{y_0y_1y_2}$ as the solutions of the equation $x_0y_0 = x_1y_1 = x_2y_2$. Hence dP_6 is the zero locus of a section of $\mathscr{O}_{\mathbb{P}^2 \times \mathbb{P}^2}(1,1)^{\oplus 2}$.

In these descriptions, we can think of dP_6 as either the set of pure $2\times2\times2$ tensors with two opposite corners (recall Figure 1) equal, or as the set of rank 1 matrices with all the diagonal entries equal.

Now consider M_1 from above. It is the join of two copies of $\mathbb{P}^2 \times \mathbb{P}^2$. Now let $h_1 = x_1 - x_5, h_2 = x_1 - x_9, h_3 = x_{10} - x_{14}$ and $h_4 = x_{10} - x_{17}$. By the description above, we see that variety $M_1 \cap V(h_1, h_2, h_3, h_4)$ is the join of two copies of dP₆. The singular locus is the disjoint union of these two. Intersecting with two more generic hyperplanes we get a Calabi-Yau X_0 with 12 isolated singularities. A local calculation shows that these singularities are locally isomorphic to $C(dP_6)$, the affine cone over a del Pezzo.

Consider now M_2 from above. It is the join of two copies of $(\mathbb{P}^1)^3$. Let $g_1 = a_{000} - a_{111}$ and $g_2 = b_{000} - b_{111}$. Then $M_2 \cap V(g_1, g_2)$ is again the join of two copies of dP_6 , isomorphic to the one above by a coordinate renaming.

Perturbing the h_i or the g_i by generic linear equations we get X_1 and X_2 .

Hence we see that X_1, X_2 both degenerate to the same singular Calabi-Yau variety.

0.4 Euler characteristic heuristics

Let \hat{X} be the blowup of X_0 in the 12 singular points. The exceptional divisors are del Pezzo surfaces.

One can show that $C(dP_6)$ has two topological different smoothings V_1, V_2 , where $V_1 = \mathbb{P}^2 \times \mathbb{P}^2 \setminus dP_6$ and $V_2 = (\mathbb{P}^1)^3 \setminus dP_6$. The Euler characteristics are 0 and 2, respectively.

Let us for the moment assume without proof that X_1 is what is obtained when we replace all the singularities in X_0 by V_1 , and similarly for X_2 .

Let $U = X_0 \setminus \operatorname{Sing}(X_0)$. Then in the first case, we have $\chi(X_1) = \chi(U) + 12\chi(V_1) = \chi(U) + 12 \cdot 0 = \chi(U) = -72$.

One the other hand, we have $\chi(X_2) = \chi(U) + 12\chi(V_2) = \chi(U) + 12 \cdot 2 = -48$, implying $\chi(U) = -72$, so the calculations are at least consistent.

In both cases, we find that $\chi(\hat{X}) = 0$.

It would be interesting to see if we can find a crepant resolution. Also, can we use this resolution to find the Hodge numbers of X_1 and X_2 ?