	7			, ,	- Uk	ber	2	Pag	e ~	1 7	MEC	Hg	we	64	Ada	الحما	, Map		3
	1100				Au	An	Ato	19	148	Az	146	Ab	Au	A3	Az	A	Ao		RAN CHIPS
	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1 ₂ f	RAM
	1	0 1	0		0	0	0	1	1	1	i	1	1	1	1	1	1	Last	CHIPO
	0	0	,		0	0	1	0	0	0	0	0	G	0	0	0	0	725	RAN
	0	0	D	C)	0	1	1	1	1	1	1	1	1	1	2	2	Last	
-	0	0	0	0		1	0	0	0	0	0	0	0	0	0	0	0	72F	RAM
-	0	0	0	0		1	0	1	1	1	1	3	1	1	. 1	3		1 Last	CHIP.
6	5 0		0	0	1		1	0	0	0	0	0.	0				0 8	7,1	RECH
0	0	-	0	0	1	12	1	1	2	2	1	1	3 2		2	2	2	1 Last	

Draw the diagram of 8-bit microprocessor with 16 bit address bus interfaced with 7KB RAM using the full decoding technique. Each RAM chip has 10 bit address bus and 8 bit data bus. Also provide the corresponding address map for each RAM chip.

Ans:

Pageriol

RAM Chip Address Bus = 10 bit Dala Bus = 8 bit

Memory size of a single RAM Chip = $2^{10} \times 8$ = 8192 bits

= $\frac{8192}{8}$ bytes

= $\frac{1029}{1029}$ kB

= 1×8

Tanget = 9'7KB

Which mean we will need & RAM Chips.

Memory Size / Caracity of the Roccesson = $a^{16} \times 8$ bits = $5 \approx 4 \approx 88$ bits = $\frac{5 \approx 4 \approx 88}{3}$ bytes = $\frac{65596}{1024}$ kB = 69 kB,

	Alq	55 1 An	AIZ	An	Alo	Ag	Λ	1 4	1	1	T //		1			1		Page-
0	0	0	0				Ag		A6	A5	A4	143	Α,	0 1	1,	Ao		RAM CHIZ
-	-	0	0	0	0	0	0	0	6	-0	0	0	0	0) (0	151	. 57
0	0	0	0	0	0	1	1	1	ı	1	1	1	1		1 1		1051	PAM Cugp
0	0	0	0	b	1	0	b	0	0	0	О	0	0	0		0	7.81	Ram
0	0	0	0	0	1	1	1	1	1	1	1	1		1	1	1	Last	CHIP
0	0	0	0	1	0	0	0	0	0	0	0	0	0	(0	151	Ran
0	0	0	0	1	0	1	1	1	1	1	1	100	1		1	1	Tast	сн3 р
100	0	0	0	١	١	0	0	0	0	0	0	0	0	0	C		1 st	Ram chjp
0	0	0	0	1	١	1	1	1	1	1	1.	1	1	37	1		Last	3,3
8	0	0	1	0	O	0	0	0	0	0	0	0	0	40	0		254	RAM
0	0	0	1	0	0	1	1	-1	1	1	1	1	1	71	1	1	Lasi	3 9 3
	K								0	0	0	0	0	0	0		151	RAM
0	0	0	1	0	1	0	0	0	9		-			50	1	1	asl	5
0	0	0	1	0	1	1	1	1	1	1	1	-1		-	0	-	251	RAM
-	-	0	1	1	0	0	0	0	0	0	0	0	0	0				Gulb
0	0	0		1	0	1	1	1	1	1	1	1	1	1	1	de	ast	10000

Modeo	Basic Ilo
Mode 1	Strobe 110
Modea	Bi-din bus

Mode 0:

Broke Pin Jeford Pool 1,8 & c can work either as input function on as output function.

Mode 1:

000000000000000000

In this either Port A on B Can work
& Port C bits one used to Provide handshaking

A STATE ACT

Mode a:

In this mode only Port 1 will worsh, Pont B Can either is in Mode o on 1 & Port C bits are used as handshake signal.

Denice cord Mode to oparate ogs:

1. Peroi phenal Device LED => MODE O 2. 7 segment Display => MoDE 0 3. Single Push button => Mode o 4. Matrix key board -> MODE o S. Pe keyboard => [ASCI]

6. Prointer => [ASCII]

I. Embeded System LCD Display => MODE O 8. Pe 120 => MODE 1.

* Pe keyboard => ASCII key Value Send 40(4),

* Single Rish button => High/low Noltage Send told,

* Mode 1 = Acknowledgement as strain only,

thand shaking and alger told Its,

82 C55 Pin Layout

GITTOUP A => (PAZ - PAO) & (PCZ - PCG)
GITTOUP B => (PBZ - PBO) & (PC3 - PCO)

10 20

Y AO & A1 Pion Man comp Point Active 250 6461 Select

EDD MIN HOLL

PeniPhend

Spersy Posternal

A	Ao	Function
Pools	500M	Poral A
800	1 1	Pont B
1	0	Pont c
1	1	Command Registes

* Command Byte MODE 1 - THE MODER TO ATET,

Programming 80055

1-11-13

MING

005

Command Byle A (Program Pools A, B, C) GILLORD B GILLORD U Pool C(PC, PC) Ponte (PG-PG) 1 = in Put 1 = imput 0 = output 0 = out Put Porot A Peral B 1 = input 1 = imput 0 = output 0 = Output Mode Mode 0 = mode o 00 = modeo 1 = mode 1 01 = mode1 1x = mod 2

Command Byle B (sels on Resets any bits in Port c)

7 6 5 9 3 2 1 0

8:4 Set/heset

1 = 5 e t

0 = neset

& Suppose you want to interplace push button with Peniphend intenface 82055 PontA & LED with Peniphenal interspace. 82055 Ponts. Write down the appropriate command byte too A for 80 cas Commana Registen. Ans.

Mieno Processon 8086 PA 1 PAR PA 3 PA4 PA5 PA6 FAR PBO PB1 PB 4

Fig. Command Byte A = ob 100 10000 GIDOU P A=o (Group A = 1) -> = 261 - Q (02) GIBOUP B=1 अगर्व ख्यावी - वट्ठ,

Input -> Read -tora. Output ->

send tola high low vo Hage.

The Write motes on Basic Input (Output [mode o]

a. This functional Configuration Provides Simple input & output operations for each of the three Ports.

b. No handshaking is nequined, data is simply written to one near from a specified Port

Page->112

16 switch Idimal (4x9) matrix keyboard 8ac55 Ga Porol A Gas Porol B - Ga arrest interface 4x41 arrest,

x अन्विदा now 0.5 v अन् vee अन् ध्वाद्धा Connected -- अर्थ Connection - ध्या श्वाद्धार महाक्ष्म 10km Pull UP hesiston. Resiston साजाला - २०० व्याप्त now व्याप्ता -

* Port B TOR 6 Volt.

& Button Process -100 Tow Voltage.

* 82 c55 Column यन्त्रेष - Thread न निर्माणा देखे।

* Vollage was high att Cument flow at at

Looping

if (PAI == 0) \(\)

execute ();

if (PA2 == 0) \(\)

execute ();

if (PA3 == 0) \(\)

execute ();

f

execute ();

```
if (PB1 == 10W && PA0 == 10W) {

Proint "Button 4",

Print "Button 5";

If (PB1 == 10W & PAR == 10W) {

Print "Button 6";

Print "Button 6";

Print "Button 7";
```

Logary I PAI - sold

4 (503 : 503)

12 Write algorithm (flowchard for 4x4 Modrix keyboard)

20/10

