المادة: الفيزياء الشهادة: المتوسطة

نموذج رقم 4 المدّة: ساعة واحدة

ُهيئة الأكاديميّة المشتركة قسم العله م

نموذج مسابقة (يراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي 2016-2017 وحتى صدور المناهج المطوّرة)

Cette épreuve comporte quatre exercices obligatoires répartis sur deux pages.

L'usage des calculatrices non programmables est autorisé.

Exercice 1 (5 points) Détermination de la distance focale d'une lentille convergente

Dans une séance de travaux pratiques, on dispose d'une lentille convergente (L), d'un objet lumineux AB de taille 2 cm et d'un écran. Le but est de déterminer la distance focale de (L).

On place l'objet à une distance d de la lentille (L). On remarque que, lorsque la distance D entre l'objet et l'écran vaut 90 cm, on obtient sur l'écran une image nette de taille 4 cm.

La figure du (Doc 1) ci-dessous montre l'objet AB, son image réelle A'B' et l'axe optique x'x de (L).

- 1) Reproduire, sur le papier millimétré, la figure du (Doc 1) ci-dessus.
- 2) La ligne droite passant par B et B' rencontre l'axe optique x'x en un point O.
 - **2-1**) Expliquer pourquoi le point O est le centre optique de (L).
 - 2-2) Représenter la lentille (L) sur le schéma.
- 3) Pour déterminer la distance focale de la lentille (L), on trace un rayon lumineux issu de B parallèlement à l'axe optique.
 - **3-1)** Compléter la marche de ce rayon.
 - **3-2**) Indiquer sur la figure, en le justifiant, la position du foyer image F' de (L).
 - 3-3) Déduire la distance focale de (L).

Exercice 2 (4 points) Pression d'un gaz confiné

Le but de cet exercice est de déterminer la pression d'un gaz confiné. Pour cela, on a fait l'expérience représentée par le document (Doc 2) ci-contre et on a obtenu :

H = 75 cm et h = 50 cm.

Les deux tubes et la cuve contiennent du mercure de masse volumique $\rho = 13600 \text{ kg/m}^3$. Prendre : g = 10 N/kg.

- 1) Les pressions aux points A et B sont égales. Justifier.
- 2) Calculer la pression en A.
- 3) Déduire la pression du gaz confiné.

Exercice 3 (6½ points) Tension alternative et le réglage d'un oscilloscope

Le document (Doc 3) ci-contre représente l'oscillogramme d'une tension électrique alternative u délivrée aux bornes d'un générateur basse fréquence (GBF).

La valeur maximale de la tension u est $U_m = 15 \text{ V}$ et sa période est T = 20 ms.

- 1) Réglage de l'oscilloscope.
 - **1-1**) Déterminer la sensibilité verticale S_v de l'oscilloscope.
 - 1-2) Déterminer la sensibilité horizontale S_h de l'oscilloscope.
- **2**) Tension u.
 - **2-1**) Indiquer le type de la tension alternative u.
 - 2-2) Calculer la fréquence de u.
 - **2-3**) Calculer la valeur efficace de u.
 - **2-4**) Une lampe (L), de tension nominale 15 V, est directement branchée aux bornes du (GBF). Préciser si la lampe (L) brille fortement, normalement ou faiblement.

Exercice 4 (4½ points) Détermination de la masse volumique d'un liquide

Le but de cet exercice est de mesurer la masse volumique ρ d'un liquide (L). Pour cela, on dispose d'un solide (S) dont la valeur du poids est P=5 N, d'un dynamomètre et d'une éprouvette graduée contenant du liquide (L) de volume $V_1=250$ ml comme l'indique le document (Doc 4) ci-contre.

On suspend (S) au dynamomètre et on l'immerge complètement dans le liquide (L). À l'équilibre, le niveau du liquide correspond à la graduation $V_2 = 300$ ml et le dynamomètre indique 4,6 N comme l'indique le document (Doc 5) ci-contre.

Prendre : g = 10 N/kg.

Le solide (S) est soumis à l'action de la poussée d'Archimède \vec{F} de valeur F.

- 1) Indiquer la direction et le sens de \vec{F} .
- 2) Soit \vec{P}_{app} , le poids apparent de (S), de valeur P_{app} . Ecrire la relation donnant F en fonction de P et P_{app} .
- **3**) Calculer F.
- 4) Calculer, en ml, puis convertir en m³, le volume V du liquide déplacé.
- 5) Déterminer la masse volumique ρ du liquide (L) en kg/m³.

المادة: الفيزياء الشهادة: المتوسطة

الهيئة الأكاديميّة المشتركة قسم: العلوم

نموذج رقم 4 المدة: ساعة واحدة

أسس التصحيح (تراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي 2016-2017 وحتى صدور المناهج المطوّرة)

Question Réponse 1 B A 1 cm 5 cm 2-1 Un rayon lumineux, issu de B et passant par le centre optique d'une convergente, émerge sans déviation et passe par l'image réelle B Les points B, B' et le centre optique de la lentille sont donc alignés. En plus, le centre optique appartient à l'axe optique. Il en résulte que optique est l'intersection du rayon BB' avec l'axe optique. Dans notre de le point O. 2-2 (L) B	Ecran	Note
2-1 Un rayon lumineux, issu de B et passant par le centre optique d'une convergente, émerge sans déviation et passe par l'image réelle B Les points B, B' et le centre optique de la lentille sont donc alignés. En plus, le centre optique appartient à l'axe optique. Il en résulte que optique est l'intersection du rayon BB' avec l'axe optique. Dans notre c le point O.	Ecran	
2-1 Un rayon lumineux, issu de B et passant par le centre optique d'une convergente, émerge sans déviation et passe par l'image réelle B Les points B, B' et le centre optique de la lentille sont donc alignés. En plus, le centre optique appartient à l'axe optique. Il en résulte que optique est l'intersection du rayon BB' avec l'axe optique. Dans notre ce le point O.	Ecran	'
2-1 Un rayon lumineux, issu de B et passant par le centre optique d'une convergente, émerge sans déviation et passe par l'image réelle B Les points B, B' et le centre optique de la lentille sont donc alignés. En plus, le centre optique appartient à l'axe optique. Il en résulte que optique est l'intersection du rayon BB' avec l'axe optique. Dans notre ce le point O.		
2-1 Un rayon lumineux, issu de B et passant par le centre optique d'une convergente, émerge sans déviation et passe par l'image réelle B Les points B, B' et le centre optique de la lentille sont donc alignés. En plus, le centre optique appartient à l'axe optique. Il en résulte que optique est l'intersection du rayon BB' avec l'axe optique. Dans notre de le point O.	1 1	
2-1 Un rayon lumineux, issu de B et passant par le centre optique d'une convergente, émerge sans déviation et passe par l'image réelle B Les points B, B' et le centre optique de la lentille sont donc alignés. En plus, le centre optique appartient à l'axe optique. Il en résulte que optique est l'intersection du rayon BB' avec l'axe optique. Dans notre de le point O.		1
2-1 Un rayon lumineux, issu de B et passant par le centre optique d'une convergente, émerge sans déviation et passe par l'image réelle B Les points B, B' et le centre optique de la lentille sont donc alignés. En plus, le centre optique appartient à l'axe optique. Il en résulte que optique est l'intersection du rayon BB' avec l'axe optique. Dans notre de le point O.	A' X	1/2
2-1 Un rayon lumineux, issu de B et passant par le centre optique d'une convergente, émerge sans déviation et passe par l'image réelle B Les points B, B' et le centre optique de la lentille sont donc alignés. En plus, le centre optique appartient à l'axe optique. Il en résulte que optique est l'intersection du rayon BB' avec l'axe optique. Dans notre ce le point O.		1
2-1 Un rayon lumineux, issu de B et passant par le centre optique d'une convergente, émerge sans déviation et passe par l'image réelle B Les points B, B' et le centre optique de la lentille sont donc alignés. En plus, le centre optique appartient à l'axe optique. Il en résulte que optique est l'intersection du rayon BB' avec l'axe optique. Dans notre ce le point O.		1
Un rayon lumineux, issu de B et passant par le centre optique d'une convergente, émerge sans déviation et passe par l'image réelle B Les points B, B' et le centre optique de la lentille sont donc alignés. En plus, le centre optique appartient à l'axe optique. Il en résulte que optique est l'intersection du rayon BB' avec l'axe optique. Dans notre ce le point O.		1
convergente, émerge sans déviation et passe par l'image réelle B Les points B, B' et le centre optique de la lentille sont donc alignés. En plus, le centre optique appartient à l'axe optique. Il en résulte que optique est l'intersection du rayon BB' avec l'axe optique. Dans notre c le point O.	$\mathbf{V}_{\mathbf{B}}$	ı
convergente, émerge sans déviation et passe par l'image réelle B Les points B, B' et le centre optique de la lentille sont donc alignés. En plus, le centre optique appartient à l'axe optique. Il en résulte que optique est l'intersection du rayon BB' avec l'axe optique. Dans notre c le point O.		
Les points B, B' et le centre optique de la lentille sont donc alignés. En plus, le centre optique appartient à l'axe optique. Il en résulte que optique est l'intersection du rayon BB' avec l'axe optique. Dans notre ce le point O. 2-2		
En plus, le centre optique appartient à l'axe optique. Il en résulte que optique est l'intersection du rayon BB' avec l'axe optique. Dans notre ce le point O. 2-2	3' de B	. 1
optique est l'intersection du rayon BB' avec l'axe optique. Dans notre cle point O. 2-2 (L)	le centre	
2-2 (L)	cas, c'es	t
		1/2
		1
	Ecran	1
		1
		1
	A' X	1/2
		72
		1
1 cm		1
5 cm		
	\mathbf{b}^{B}	. [

Exercice 2 (4 points) Pression d'un gaz confiné

Exercise 2 (4 points) 1 ression a un gaz confine				
Question	Réponse	Note		
1	A et B appartiennent au même liquide en équilibre et au même niveau horizontal.	1		
2	$P_{A} = \rho \times g \times H + P_{Vide}$	1		
	$P_A = 13600 \times 10 \times 0.75 + 0 = 102000 \text{ Pa.}$	1/2		
3	$P_{B} = \rho \times g \times h + P_{Gaz}$	1/2		
	$P_{Gaz} = P_{B} - \rho \times g \times h = P_{A} - \rho \times g \times h$			
	$P_{Gaz} = 102000 - 13600 \times 10 \times 0,5 = 34000 \text{ Pa}$	1		

Exercice 3 (6½ points) Tension alternative et réglage d'un oscilloscope

Exel cice 3	(072 points) Tension alternative et regiage d'un oscinoscope	
Question	Réponse	Note
1-1	La tension u a une valeur maximale U_m qui couvre $Y_m = 3$ div.	
	$U_{\rm m} = S_{\rm v} Y_{\rm m}$	1/2
	$S_{v} = \frac{U_{m}}{Y_{m}}$	
	$S_{v} = \frac{15}{3} = 5 \text{ V/div}$	1
1-2	La tension u a une période T qui couvre $X = 10$ div.	1/
	$T = S_h X$	1/2
	$S_{ m h} = rac{ m T}{ m X}$	
	$S_h = \frac{20}{10} = 2 \text{ ms/div}$	1
2-1	Tension alternative sinusoïdale.	1/2
2-2	$f = \frac{1}{T}$	1/2
	Avec $T = 20 \text{ ms} = 20 \times 10^{-3} \text{ s}$	
	$f = \frac{1}{20 \times 10^{-3}} = 50 \text{Hz}$	1
2-3	$U = \frac{U_{\rm m}}{\sqrt{2}}$	1/2
	$U = \frac{15}{\sqrt{2}} = 10,6 \text{ V}$	1/2
2-4	La lampe (L) brille faiblement car elle est soumise à une tension alternative de	
	valeur efficace inférieure à sa tension nominale (10,6 V < 15 V).	1/2

Exercice 4 (4½ points) Détermination de la masse volumique d'un liquide

DACI CICC I	(1/2 points) Determination de la masse volumique d'un riquide	
Question	Réponse	Note
1	La direction de \vec{F} est verticale	1/2
	et son sens est ascendant.	1/2
2	$F = P - P_{app}$	1/2
3	F = 5 - 4.6 = 0.4 N.	1/2
4	$V = V_2 - V_1 = 300 - 250 = 50 \text{ ml}$	1/2
	$V = 50 \times 10^{-3} l = 50 \times 10^{-6} m^3$ ou bien $5 \times 10^{-5} m^3$	1/2
5	$\begin{split} F &= \rho \times V_{immerg\acute{e}} \times g \\ or \ V_{immerg\acute{e}} &= V \ car \ le \ solide \ (S) \ est \ complètement \ immerg\acute{e} \ dans \ le \ liquide \ (L) \\ donc \ F &= \rho \times V \times g \\ \rho &= \frac{F}{V \times g} \end{split}$	1/2
	$\rho = \frac{0.4}{50 \times 10^{-6} \times 10} = 800 \mathrm{kg} /\mathrm{m}^3$	1