

Exercice 1 - Parallélépipède percé* [2]B2-10 Pas de corrigé pour cet exercice.

La matrice d'inertie d'un cylindre d'axe (G, \overrightarrow{k}) de rayon R et de hauteur H et de masse m est donnée en son

centre d'inertie par
$$I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & C \end{pmatrix}_{\left(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)}$$
 avec

$$A = m\left(\frac{R^2}{4} + \frac{H^2}{12}\right)$$
 et $C = m\frac{R^2}{2}$.

La matrice d'inertie d'un parallélépipède rectangle de cotés a, b et c et de masse m est donnée en son

centre d'inertie par
$$I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{pmatrix}_{\left(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)}$$
 avec

$$A = m \frac{b^2 + c^2}{12}$$
, $B = m \frac{a^2 + c^2}{12}$, $C = m \frac{a^2 + b^2}{12}$.
Soit la pièce suivante.

On pose
$$\overrightarrow{OA} = \frac{a}{3} \overrightarrow{x} + \frac{c}{2} \overrightarrow{z}$$
.

Question 1 Déterminer la position du centre d'inertie G du solide.

Question 2 Déterminer la matrice d'inertie du solide en G, en A puis O.

Corrigé voir ??.

Exercice 2 – Banc Balafre \star [2]B2-10 Pas de corrigé pour cet exercice.

La figure suivante représente le paramétrage permettant de modéliser les actions mécaniques s'exerçant sur l'ensemble $S = \{JR + CB\}$. On nommera G le centre d'inertie de l'ensemble S.

Données et hypohèses

- On note $\overrightarrow{BM} = z \overrightarrow{z_0} + R_J \overrightarrow{u}(\theta)$ où R_J est le rayon du joint avec $R_J = 175 \,\text{mm}$;
- la longueur du joint est $L_J = 150 \,\mathrm{mm}$. La position du point B, centre du joint est $\overrightarrow{OB} = z_B \overrightarrow{z_0}$ avec $z_B = 425 \,\mathrm{mm}$;
- Le coeur de butée a une masse $M_{CB} = 40 \,\mathrm{kg}$ et la position de son centre d'inertie G_{CB} est paramétrée par $\overrightarrow{OG_{CB}} = L_{CB} \overrightarrow{z_0}$ avec $L_{CB} = 193 \,\mathrm{mm}$;
- L'ensemble $JR = \{\text{Joint(rotor)} + \text{Butée double}\}$ a une masse $M_{JR} = 100\,\text{kg}$ et la position de son centre d'inertie G_{JR} est paramétrée par $\overrightarrow{OG_{JR}} = L_{JR}\overrightarrow{z_0}$ avec $L_{JR} = 390\,\text{mm}$. On notera $I_{G_{JR}}(JR) = \begin{pmatrix} A_{JR} & -F_{JR} & -E_{JR} \\ -F_{JR} & B_{JR} & -D_{JR} \end{pmatrix}$ la matrice d'inertie de $\begin{pmatrix} -E_{JR} & -D_{JR} & C_{JR} \end{pmatrix}_{\mathscr{B}_{JR}}$

l'ensemble JR au point G_{JR} exprimée dans une base $\mathscr{B}_{JR} = \left(\overrightarrow{x_{JR}}, \overrightarrow{y_{JR}}, \overrightarrow{z_0}\right)$ liée à JR;

• Les positions des points A_4 et A_8 sont paramétrées par $\overrightarrow{OA_4} = z_4 \overrightarrow{z_0} - R_{CB} \overrightarrow{y_0}$ et $\overrightarrow{OA_8} = -R_{CB} \overrightarrow{y_0}$ avec $z_4 = 280 \, \text{mm}$ et $R_{CB} = 150 \, \text{mm}$.

Question 1 Déterminer l'expression de la coordonnée z_G de \overrightarrow{OG} selon $\overrightarrow{z_0}$. Faire l'application numérique.

Question 2 Sachant que l'ensemble JR possède une symétrie de révolution par rapport à $(O, \overrightarrow{z_0})$, simplifier la matrice d'inertie $I_{G_{JR}}(JR)$.

Corrigé voir ??.

Exercice 3 – Cylindre percé \star [2]B2-10 **Pas de corrigé pour cet exercice.**

La matrice d'inertie d'un cylindre d'axe $\left(G, \overline{k'}\right)$ de rayon R et de hauteur H et de masse m est donnée en son

centre d'inertie par
$$I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & C \end{pmatrix}_{\left(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)}$$
 avec

$$A = m\left(\frac{R^2}{4} + \frac{H^2}{12}\right)$$
 et $C = m\frac{R^2}{2}$.

Soit la pièce suivante constituée d'un grand cylindre noté ${\bf 1}$ de rayon R. ${\bf 1}$ est percé d'un cylindre de diamètre de rayon r. On colnsidère que ${\bf 1}$ est constitué d'un matériau homgène de masse volumique ρ .

On note
$$\overrightarrow{OA} = -\frac{R}{2}\overrightarrow{x}$$
.

Question 1 Déterminer la position du centre d'inertie G du solide.

Question 2 Déterminer la matrice d'inertie du solide en G puis en O.

Corrigé voir ??.

Exercice 4 – EPAS \star [2]B2-10 **Pas de corrigé pour cet exercice.**

Dans une première approche, on modélise le parc échelle d'un camion de pompier par un assemblage de trois plaques rectangulaires homogènes d'épaisseur négligeable, de longueur L et de largeur h. Chaque plaque a une masse notée m.

Question 1 Montrez que le vecteur position \overrightarrow{OG} du centre de gravité G du parc échelle est tel que $\overrightarrow{OG} = \frac{L}{2}\overrightarrow{x_5} + \frac{h}{3}\overrightarrow{y_5}$.

Corrigé voir ??.

2

Exercice 5 - Disque ** [2]B2-10 Pas de corrigé pour cet exercice.

Soit un secteur de disque de rayon R, d'épaisseur négligeable et de masse surfacique μ . Il est percé d'un trou de rayon r tel que $\overrightarrow{OA} = \frac{3}{4}R\overrightarrow{x}$.

Question 1 Déterminer la position du centre d'inertie G du solide.

Question 2 Déterminer la matrice d'inertie du solide en O.

Corrigé voir ??.

3

Exercice 6 - Banc Balafre * [2]B2-10 Pas de corrigé pour cet exercice.

Les galets 2 et 3 sont de masses identiques m_2 et de centres d'inertie respectifs G_2 et G_3 . Le balancier 1 est de masse m_1 et de centre d'inertie O (la tige de G_3H étant de masse négligeable). Les solides 1, 2 et 3 sont supposés homogènes.

Question 1 Donner la forme de la matrice d'inertie du solide **1** au point **0** dans la base $(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_0})$.

Question 2 Exprimer littéralement le moment d'inertie C_1 du solide 1 par rapport à l'axe $(O, \overrightarrow{z_0})$, en fonction de la masse m_1 et de ses dimensions.

Question 3 Donner la forme de la matrice d'inertie du solide 2 au point G_2 dans la base $(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_0})$.

Question 4 Exprimer littéralement le moment d'inertie C_2' du solide 2 par rapport à l'axe $(G_2, \overrightarrow{z_0})$, en fonction de la masse m_2 et de ses dimensions.

Question 5 Exprimer littéralement le moment d'inertie C_2 du solide 2 par rapport à l'axe $(G_2, \overrightarrow{z_0})$, en fonction de la masse m_2 et de ses dimensions.

1.
$$I_O(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_0})}$$

2.
$$C_1 = \frac{m_1}{12} \left(b^2 + c^2 \right)$$

$$(0 \quad 0 \quad C_1)_{(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_0})}$$
2. $C_1 = \frac{m_1}{12} (b^2 + c^2)$.
3. $I_{G_2}(1) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & A_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_0})}$.

4.
$$C_2' = m_2 \frac{r^2}{2}$$
.

4.
$$C'_2 = m_2 \frac{r^2}{2}$$
.
5. $C_2 = m_2 \left(\frac{r^2}{2} + a^2\right)$.

Corrigé voir ??.