

《计算机系统结构》课程直播

2020. 4.21

请将ZOOM名称改为"姓名";

听不到声音请及时调试声音设备,可以下课后补签到

本节内容

- 静态多发射
- ② 动态多发射 (超标量)
- 3 乱序超标量

• From: H&P Computer Architecture: A Quantitative Approach, Fifth Edition, (5th edition)

多发射:开发指令级并行 (ILP)

$$D = 3 * (a - b) + 7 * a * c;$$

ld a ld bsub a-b $mul \ 3*(a-b)$ ld cmul a*c *mul* 7**a***c* $add \ 3(a-b) + 7*a*c$ st d

现代处理器的微结构: 超标量

处理器	年份	时钟频率	流水级数	发射宽度	乱序执行?	核数	功耗
Intel 486	1989	25 MHz	5	1	No	1	5 W
Intel Pentium	1993	66 MHz	5	2	No	1	10 W
Intel Pentium Pro	1997	200 MHz	10	3	Yes	1	29 W
Intel Pentium 4 Willamette	2001	2000 MHz	22	3	Yes	1	75 W
Intel Pentium 4 Prescott	2004	3600 MHz	31	3	Yes	1	103 W
Intel Core	2006	2930 MHz	14	4	Yes	2	75 W
Sun USPARC III	2003	1950 MHz	14	4	No	1	90 W
Sun T1 (Niagara)	2005	1200 MHz	6	1	No	8	70 W

提问?

超流水线是通过细化流水、提高主频,使得可以在相同时间内完成更多个操作,

- 超标量结构 superscalar 的处理器每个时钟周期并行发射 和执行多条指令
- 超长指令字VLIW的处理器每个时钟周期也并行发射和执行 多条指令
- Superscalar 与 VLIW 区别在哪里?

多发射处理器的实现和主要特点

常用名	发射结构	冲突检测	调度方式	特点	处理器举例
静态超标量 superscalar (static)	动态	硬件	静态	按序执行	大部分嵌入式处理 器,例如ARM cortex-A8
动态超标量 superscalar (dynamic)	动态	硬件	动态	乱序执行	目前无
推测执行超标量 superscalar (speculative)	动态	硬件	带推测的动 态	乱序、 推测执行	大部分通用处理器, 如Intel Core i3,i5,i7、arm A76
超长指令字 (VLIW)	静态	主要由软件完成	静态	编译器(隐式) 完成冲突检测、 指令调度	某些特定领域,如 信号处理器 TI C6x
显式并发指令 运算(EPIC)	主要为静态	主要由软件完成	主要为静态	编译器(显式) 完成冲突检测、 指令调度	Intel 安腾 Itanium处理器

举例: 一个 VLIW MIPS

ALU (R型) 或 Branch (I型) Load 或 Store (I型)

- □双发射的 MIPS 处理器,两条指令组成一个指令束
- □指令束中的指令成对取指、译码和发射
- □由编译器安排指令束,选取每次同时发射的两条指令
- □如果找不到合适的指令,就用空指令noop代替

代码调度举例

```
以下代码 lp: lw $t0,0($s1) # $t0=array element addu $t0,$t0,$s2 # add scalar in $s2 sw $t0,0($s1) # store result addi $s1,$s1,-4 # decrement pointer bne $s1,$0,lp # branch if $s1 != 0
```

- 假设: 总能正确预测转移指令的转移方向
- 编译器:
 - ·将两条指令打包成为一束长指令
 - ·在一束长指令上的两条指令必须无关
 - · Load-use 指令必须间隔一周期

代码调度举例

```
以下代码 lp: lw $t0,0($s1) # $t0=array element addu $t0,$t0,$s2 # add scalar in $s2 sw $t0,0($s1) # store result addi $s1,$s1,-4 # decrement pointer bne $s1,$0,lp # branch if $s1 != 0
```

	ALU 或 branch	数据传送	时钟周期
lp:		lw \$t0,0(\$s1)	1
	addi \$s1,\$s1,-4		2
	addu \$t0,\$t0,\$s2		3
	bne \$s1,\$0,lp	sw \$t0,4(\$s1)	4

• 5 条指令花费4个周期, CPI= 0.8 (最好情况下是0.5)

代码调度举例

lp:

lw

\$t0,0(\$s1)

addu \$t0,\$t0,\$s2

sw \$t0,0(\$s1)

lw \$t1,-4(\$s1)

addu \$t1,\$t1,\$s2

sw \$t1,-4(\$s1)

lw \$t2,-8(\$s1)

addu \$t2,\$t2,\$s2

sw \$t2,-8(\$s1)

lw \$t3,-12(\$s1)

addu \$t3,\$t3,\$s2

sw \$t3,-12(\$s1)

addi \$s1,\$s1,-16

bne \$s1,\$0,lp

lp:

lw \$t0,0(\$s1)

addu \$t0,\$t0,\$s2

sw \$t0,0(\$s1)

addi \$s1,\$s1,-4

bne \$s1,\$0,lp

•循环

•展开

•指令条数增加了:增加指令级并行性(ILP)

•转移指令减少了:降低转移指令引起的开销

•寄存器换名:消除由于寄存器名字引起的相关性

lp:	lw	\$t0,0(\$s1)
	addu	\$t0,\$t0,\$s2
	SW	\$t0,0(\$s1)
	lw	\$t1,-4(\$s1)
	addu	\$t1,\$t1,\$s2
	sw	\$t1,-4(\$s1)
	lw	\$t2,-8(\$s1)
	addu	\$t2,\$t2,\$s2
	SW	\$t2,-8(\$s1)
	lw	\$t3,-12(\$s1)
	addu	\$t3,\$t3,\$s2
	sw	\$t3,-12(\$s1)
	addi	\$s1,\$s1,-16
	bne	\$s1,\$0,lp

lw \$t0,0(\$s1) lp: lw \$t1,-4(\$s1) lw \$t2,-8(\$s1) lw \$t3,-12(\$s1) addu \$t0,\$t0,\$s2 addu \$t1,\$t1,\$s2 addu \$t2,\$t2,\$s2 addu \$t3,\$t3,\$s2 sw \$t0,0(\$s1) sw \$t1,-4(\$s1) sw \$t2,-8(\$s1)sw \$t3,-12(\$s1) addi \$s1,\$s1,-16 bne \$s1,\$0,lp

lp:	lw	\$t0,0(\$s1)
	lw	\$t1,-4(\$s1)
	lw	\$t2,-8(\$s1)
	lw	\$t3,-12(\$s1)
	addu	\$t0,\$t0,\$s2
	addu	\$t1,\$t1,\$s2
	addu	\$t2,\$t2,\$s2
	addu	\$t3,\$t3,\$s2
	sw	\$t0,0(\$s1)
	sw	\$t1,-4(\$s1)
	sw	\$t2,-8(\$s1)
	SW	\$t3,-12(\$s1)
	addi	\$s1,\$s1,-16
	bne	\$s1,\$0,lp

Α	LU or branch		Data transfer	CC
addi	\$s1,\$s1,-16	lw	\$t0,0(\$s1)	1
		lw	\$t1,12(\$s1)	2
addu	\$t0,\$t0,\$s2	lw	\$t2,8(\$s1)	3
addu	\$t1,\$t1,\$s2	lw	\$t3,4(\$s1)	4
addu	\$t2,\$t2,\$s2	sw	\$t0,16(\$s1)	5
addu	\$t3,\$t3,\$s2	sw	\$t1,12(\$s1)	6
		sw	\$t2,8(\$s1)	7
bne	\$s1,\$0,lp	sw	\$t3,4(\$s1)	8

- •14 条指令8个周期,
- ・CPI =0.57 (最佳情况是0.5)

提问

• VLIW的优缺点

- 存在的问题?

- 优点?

VLIW的局限性

- 1 编译复杂、编译时间长
 - · 循环展开、冲突检测、指令调度
 - · 将If then else 结构转化为可预测得转移指令
 - 存储器访问地址预测

- ³ 锁步 (lock step) 机制
 - · 一条指令阻塞,其后所有指令都阻塞
 - 相关性解除了,才允许发射有相关的指令
 - · 流水线段数越多,相关性越多

- 2 代码膨胀
 - · 空指令浪费内存存储空间
 - · 循环展开后,也需要更多存储空间
 - · 需要更大内存带宽

- 4 目标代码不兼容
 - · 市场接受意愿低

VLIW的优点

- 硬件简单
- 成本低
- 能耗少

静态多发射处理器的现状

常用名	发射结构	冲突检测	调度方式	特点	处理器举例
静态超标量 superscalar (static)	动态	硬件	静态	按序执行	大部分嵌入式处理器,例如ARM cortex-A8
动态超标量 superscalar (dynamic)	动态	硬件	动态	乱序执行	目前无
推测执行超标量 superscalar (speculative)	动态	硬件	带推测的动 态	乱序、 推测执行	大部分通用处理器, 如Intel Core i3,i5,i7
超长指令字 (VLIW)	静态	主要由软件完成	静态	编译器(隐式) 完成冲突检测、 指令调度	某些特定领域,如信号处理器 TI C6x
显式并发指令 运算(EPIC)	主要为静态	主要由软件完成	主要为静态	编译器(显式) 完成冲突检测、 指令调度	Intel 安腾 Itanium处理器

动态多发射超标量结构

(superscalar)

多发射处理器的分类

常用名	发射结构	冲突检测	调度方式	特点	处理器举例
静态超标量 superscalar (static)	动态	硬件	静态	按序执行	大部分嵌入式处理 器,例如ARM cortex-A8
动态超标量 superscalar (dynamic)	动态	硬件	动态	乱序执行	目前无
推测执行超标量 superscalar (speculative)	动态	硬件	带推测的动 态	乱序、 推测执行	大部分通用处理器, 如Intel Core i3,i5,i7
超长指令字 (VLIW)	静态	主要由软件完成	静态	编译器(隐式) 完成冲突检测、 指令调度	某些特定领域,如 信号处理器 TI C6x
显式并发指令 运算(EPIC)	主要为静态	主要由软件完成	主要为静态	编译器(显式) 完成冲突检测、 指令调度	Intel 安腾 Itanium处理器

一个双发射按序超标量MIPS处理器

OpA	F	D	Α0	A1	W		
OpB	F	D	В0	B1	W		
OpC		F	D	Α0	A1	W	
OpD		F	D	В0	B1	W	
OpE			F	D	Α0	Α1	W
OpF			F	D	В0	B1	W

- 每次取指、译码、执行两条指令
- 理想情况: CPI=0.5

- 指令发射逻辑
 - 能调换指令所进入的功能部件
 - 能检测结构冒险、数据冒险等等

动态多发射:流水线时空图

```
No Bypassing: •无前向通路

ADDIU R1,R1,1 F D A0 A1 W

ADDIU R3,R4,1 F D B0 B1 W

ADDIU R5,R6,1 F D A0 A1 W

ADDIU R7,R5,1 F D D D A0 A1 W
```

```
Full Bypassing: 有前向通路
ADDIU R1,R1,1 F D A0 A1 W
ADDIU R3,R4,1 F D B0 B1 W
ADDIU R5,R6,1 F D A0 A1 W
ADDIU R7,R5,1 F D D A0 A1 W
```


按序超标量实例: ARM Cortex-A8

A8流水线处理器的特点

- 静态调度、动态发射、 按序超标量
- · 静态调度,编译器尽力做:
 - · 避免两条相邻指令使用同一部件(结构冒险)
 - · 避免相邻的指令有数据依赖关系(数据相关)
- · 动态发射结构:
 - · 每个周期由控制逻辑判断是发射一条还两条指令, 还是不发射指令;
 - 结构冒险:编译器实在无法避免时,能检测出冒险,一次只发送一条;
 - 数据冒险:编译器实在无法避免时,能检测出冒险,如果检测到冒险,要么把两条都停顿、要么停顿两条中的一条;
 - 控制冒险: 当转移预测错误时、清空流水线,从正确位置重新开始执行。

ARM Cortex-A系列

ARMv7-A

ARMv8-A

ARM

Arm 处理器微架构

Announced					
((64-bit)				
Year Core					
2012	Cortex-A53				
2012	Cortex-A57				
2015	Cortex-A72				
2015	Cortex-A35				
2016	Cortex-A73				
2017	Cortex-A55				
2017	Cortex-A75				
2018	Cortex-A76				

Announced (32-bit)				
Year	Core			
2005	Cortex-A8			
2007	Cortex-A9			
2009	Cortex-A5			
2010	Cortex-A15			
2011	Cortex-A7			
2013	Cortex-A12			
2014	Cortex-A17			
2016	Cortex-A32			

ARM Cortex-A系列

ARMv7-A

ARMv8-A

ARM

	麒麟990 5G	麒麟990
	CPU ISPU GPU Junifredor Local Maria Service Sales Local Maria Loc	CPU NPU GPU Then Makey Works South DP NO LPNG NP
工艺	7nm+EUV	7nm
CPU	2X Cortex-A76 Based@2.86GHz 2X Cortex-A76 Based@2.36GHz 4X Cortex-A55@1.95GHz	2X Cortex-A76 Based@2.86GHz 2X Cortex-A76 Based@2.09GHz 4X Cortex-A55@1.86GHz
GPU	16 Core Mali-G76	16 Core Mali-G76
NPU	2 Big Core +1 Tiny Core	1 Big Core +1 Tiny Core
存储	UFS 3.0, UFS2.1	UFS 3.0, UFS2.1
Modem	2G/3G/4G/ <mark>5G</mark>	2G/3G/4G

华为MATE30手机中的处理器

CPU:

- 2大核+2中核+4小核能效架构
- 2×A76(2.86Ghz),
 2×A76(2.36Ghz),
 4×A55(1.95Ghz)
- 麒麟990对标骁龙855+的性能

Cortex-A76: Microarchitecture overview

The foundation of a new family of high-performance products

乱序超标量、及其主要问题

(OOO superscalar)
Out of Order

多发射处理器的实现和主要特点

常用名	发射结构	冲突检测	调度方式	特点	处理器举例		
静态超标量 superscalar (static)	动态	硬件	静态	按序执行	大部分嵌入式处理 器,例如ARM cortex-A8		
动态超标量 superscalar (dynamic)	动态	硬件	动态	乱序执行	目前无		
推测执行超标量 superscalar (speculative)	动态	硬件(带推测的动 态	乱序、 推测执行	大部分通用处理器, 如Intel Core i3,i5,i7		
超长指令字 (VLIW)	静态	主要由软件完成	静态	编译器(隐式) 完成冲突检测、 指令调度	某些特定领域,如 信号处理器 TI C6x		
显式并发指令 运算(EPIC)	主要为静态	主要由软件完成	主要为静态	编译器(显式) 完成冲突检测、 指令调度	Intel 安腾 Itanium处理器		

双发射按序超标量

•2	0	1	2	3	4	5	6	7	8	9	10	11	12
Ld [r1] → r2	F	D	X	М	W								
add r2 + r3 → r4	F	D	d*	d*	X	М	W						
xor r4 ^ r5 → r6		F	D	d*	d*	X	М	W					
ld [r7] → r8		F	D	p*	p*	X	М	W					

・假设: load-use 相关性的开销为 (penalty) 2 个周期

双发射乱序超标量

	0	1	2	3	4	5	6	7	8	9	10	11	12
Ld [r1] → r2	Н	D	X	М	W								
add r2 + r3 → r4	F	D	d*	d*	X	М	W						
xor r4 ^ r5 → r6		F	D	d*	d*	X	М	W					
ld [r7] → r8		F	D	X	М	W							

·假设: load-use 相关性的间隔1个周期

三发射按序执行

•增加了流水段长度为4的乘法功能部件

三发射乱序执行

•快的部件可以先写结果

问题1: 名字引起的假相关

乱序执行导致的数据相关性

·输出相关

LW \$t0,0(\$s1)

ADDU \$t0,\$t1,\$s2

SUB \$t2, \$t0, \$s2

·反相关

•DIVD F0, F2, F4

ADDD F10, F0, F8

SUBD (F8)F8,F14

• 输出相关

- · 如果 lw 晚于addu 写\$t0
- · sub 会获得错误的\$t0
- · 又称为(Write after Write)WAW 相关

反相关

- · 如果sub 写结果 早于add 读 F8
- · add 会获得错误的F8
- · 又称为(Write after Read) WAR 相关

消除"假"数据相关性

·输出相关

LW \$t0,0(\$s1)

ADDU \$t0,\$t1,\$s2

SUB \$t2, \$t0, \$s2

·反相关

•DIVD F0, F2, F4

ADDD F10, F0, F8

SUBD **F8**, F8, F14

LW \$t0a,0(\$s1)

ADDU (\$t0b), \$t1, \$s2

SUB \$t2, (\$t0b) \$s2

•DIVD F0,F2,F4

ADDD F10, F0 F8a

SUBD (F8b, F8a, F14

检测"真"数据相关性

- ・真相关:
 - RAW (Read After Write)

课堂练习

- 1) LD R1, 0(R2); load R1 from address 0+R2
 - 2) ADDI R1, R1, #1; R1=R1+1
 - 3) SD R1, 0 (R2); store R1 at address 0+R2
 - 4) ADDI R2, R2, #4; R2= R2+4
 - 5) SUB R4, R3, R2; R4=R3-R2
 - 6) BNEZ R4, Loop; branch to Loop if R4 !=0

问题2: 精确中断、预测错误

如何保证"精确异常"?

•MIPS:

·为保证精确中断,异常处理会在指令执行的最后阶段(commit point, 提交点)进行

乱序流水线

实例: IBM Power4

Instruction pipeline (IF: instruction fetch, IC: instruction cache, BP: branch predict, D0: decode stage 0, Xfer: transfer, GD: group dispatch, MP: mapping, ISS: instruction issue, RF: register file read, EX: execute, EA: compute address, DC: data caches, F6: six-cycle floating-point execution pipe, Fmt: data format, WB: write back, and CP: group commit)

下一节

- Branch Prediction
- Limitation of ILP

再见

