Lecture 9

Determinants

Determinants

With each square (i.e. $n \times n$) matrix A, we can associate a number called the determinant, denoted by $\det(A)$ or |A|. Before showing how to calculate $\det(A)$, we need to grasp some other concepts.

The matrix we obtain after deleting one or more columns or rows from a matrix A is called a submatrix of A. For example, $\begin{bmatrix} 2 & 1 \\ 3 & 7 \end{bmatrix}$ is a submatrix of each of

$$\begin{bmatrix} 2 & 1 & 6 \\ 3 & 7 & 9 \\ -1 & 5 & 9 \end{bmatrix}, \begin{bmatrix} 2 & 5 & 1 \\ 3 & -1 & 7 \\ -1 & 5 & 9 \end{bmatrix}$$
 and
$$\begin{bmatrix} 2 & 0 & 1 \\ 8 & 5 & 1 \\ 3 & 7 & 7 \end{bmatrix}.$$

Consider an $n \times n$ matrix $A = [a_{ij}]$. The minor, M_{ij} , associated with the element a_{ij} is the determinant of the $(n-1) \times (n-1)$ submatrix obtained from A by deleting row i and column j.

e.g. if
$$A = \begin{bmatrix} 1 & 5 & 3 \\ 6 & 2 & 4 \\ 0 & 1 & 0 \end{bmatrix}$$
 then

$$M_{21} = \det\left(\left[\begin{array}{cc} 5 & 3 \\ 1 & 0 \end{array}\right]\right) = \left|\begin{array}{cc} 5 & 3 \\ 1 & 0 \end{array}\right|,$$

Finally, the cofactor associated with entry a_{ij} of A is given by

$$C_{ij} = (-1)^{i+j} M_{ij},$$

e.g. for A above,
$$C_{21} = (-1)^3 M_{21} = - \begin{vmatrix} 5 & 3 \\ 1 & 0 \end{vmatrix}$$
.

Consider the $n \times n$ matrix

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

For n = 1, i.e. $A = [a_{11}]$, $det(A) = a_{11}$.

For
$$n = 2$$
, i.e. $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$,
$$\det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12}.$$

For
$$n > 2$$
,

$$\det(A) = a_{11}C_{11} + a_{12}C_{12} + \dots + a_{1n}C_{1n}$$

$$= \sum_{i=1}^{n} a_{1i}C_{1i}$$

This is called the cofactor expansion along the 1st row of A.

Ex: Find det
$$(A)$$
 if $A = \begin{bmatrix} 3 & 5 \\ -2 & -4 \end{bmatrix}$.

Ex: Find det
$$(B)$$
 if $B = \begin{bmatrix} 2 & -4 \\ 1 & 7 \end{bmatrix}$.

Ex: Find
$$|C|$$
 if $C = \begin{bmatrix} 1 & -2 & -4 \\ 2 & -3 & -6 \\ -3 & 6 & 15 \end{bmatrix}$.

Ex: Find
$$|D|$$
 if $D = \begin{bmatrix} 1 & 3 & -4 \\ -2 & 1 & 2 \\ -9 & 15 & 0 \end{bmatrix}$.

We can take a cofactor expansion along any row or column:

$$\det(A) = \sum_{j=1}^{n} a_{ij}C_{ij} \qquad i-\text{th row}$$

$$\det(A) = \sum_{i=1}^{n} a_{ij}C_{ij} \qquad j-\text{th column}$$

Ex: Find
$$|E|$$
 if $E = \begin{bmatrix} 2 & 0 & 3 \\ 1 & 4 & -2 \\ 5 & 0 & -3 \end{bmatrix}$.

Rules for Calculating Determinants

Consider an $n \times n$ matrix A:

1. If A has a row or a column of zeros, det(A) = 0. e.g.

$$\begin{vmatrix} 5 & 0 & 6 & -1 \\ 0 & 0 & 8 & -2 \\ 1 & 0 & -3 & 4 \\ 3 & 0 & 0 & 1 \end{vmatrix} = 0, \begin{vmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 3 & -1 \end{vmatrix} = 0.$$

2. Multiply any one row of A by a scalar k to obtain A'. Then

$$\det\left(A'\right) = k \det\left(A\right)$$

(makes sense when you consider taking a cofactor expansion along that row) e.g.

$$\left| \begin{array}{cc|c} 1 & 3 \\ -1 & 2 \end{array} \right| = 5$$
 and $\left| \begin{array}{cc|c} 3 & 9 \\ -1 & 2 \end{array} \right| = 15$, as expected

3. Interchange any two rows in A to obtain A'. Then

$$\det\left(A'\right) = -\det\left(A\right)$$

$$e.g.$$
 $\begin{vmatrix} 13 & 1 \\ 2 & -1 \end{vmatrix} = -15$ and $\begin{vmatrix} 2 & -1 \\ 13 & 1 \end{vmatrix} = 15$, as expected.

4. Add a multiple of one row in A to another to obtain A'. Then

$$\det \begin{pmatrix} A' \end{pmatrix} = \det (A)$$
e.g. let $A = \begin{bmatrix} 1 & 3 \\ -3 & 5 \end{bmatrix}$, then $\det (A) = 14$.
Consider $\begin{bmatrix} 1 & 3 \\ -3 & 5 \end{bmatrix}$ $R_2 \to R_2 + 3R_1$

$$\sim \begin{bmatrix} 1 & 3 \\ 0 & 14 \end{bmatrix} = A'$$
 and $\det(A') = 14$, as expected.

5. If one row in A is a scalar multiple of another, then det(A) = 0.

$$e.g. \begin{vmatrix} 3 & -1 & 4 & 7 \\ 2 & 2 & 3 & -1 \\ -3 & 1 & -4 & -7 \\ 1 & 6 & 2 & 1 \end{vmatrix} = 0,$$

- 6. $\det(A^{\top}) = \det(A)$. This rule basically allows us to apply Rules 2-5 to columns as well as rows.
- 7. $det(kA) = k^n det(A)$ (This is simply an expanded version of Rule 2.)
- 8. det(AB) = det(A) det(B) This is not an obvious rule, but a very important one which is used frequently in practice.
- 9. An upper triangular matrix is square with all entries below the main diagonal equal to zero. A lower triangular matrix is square with all entries above the main diagonal equal to zero. Finally, the determinant of a lower triangular or upper triangular matrix is the product of all the diagonal elements. For example,

(i)
$$\begin{vmatrix} 1 & 2 & 3 \\ 0 & 4 & 2 \\ 0 & 0 & 2 \end{vmatrix} = (1)(4)(2) = 8.$$

(ii)
$$\begin{vmatrix} 2 & 0 & 0 & 0 \\ 4 & 1 & 0 & 0 \\ 3 & 0 & 5 & 0 \\ -1 & 1 & 2 & 4 \end{vmatrix} = (2)(1)(5)(4) = 40.$$

In particular, note that the identity matrix is both upper and lower triangular, so $\det(I) = 1^n = 1$ for any order n.

10. A square matrix A is invertible if and only if $det(A) \neq 0$.

From Rule 10, it follows that:

(i) det(A) = 0 shows that A is singular, *i.e.* A^{-1} does not exist.

 $\det(A) \neq 0$ shows that A is non-singular, i.e. A^{-1} does exist.

(ii) Note that if A is non-singular, then $AA^{-1} = I$. Hence,

i.e.
$$\det \left(AA^{-1}\right) = \det \left(I\right)$$
 i.e.
$$\det \left(A\right) \det \left(A^{-1}\right) = 1$$
 i.e.
$$\det \left(A^{-1}\right) = \frac{1}{\det \left(A\right)}$$

Ex: Find
$$|F|$$
 if $F = \begin{bmatrix} 3 & 0 & -2 & 4 \\ 1 & 3 & 1 & 2 \\ 2 & 1 & 1 & -1 \\ 4 & 0 & 0 & -1 \end{bmatrix}$.

Calculating the Inverse of a 2×2 Matrix

Consider a general 2×2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

To find the inverse A^{-1} of the matrix we can use the Gauss Jordan method.

Alternatively,

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

This is quite a useful formula to keep in mind.

Ex: Find the inverse of
$$C = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
.

Cramer's Rule

Consider a system of n linear equations in n unknowns:

$$Ax = b$$

where $\det(A) \neq 0$.

Let A_i be the matrix obtained from A by replacing the i-th column with b. Then the solution of the system is given by

$$x_i = \frac{\det(A_i)}{\det(A)}, \qquad i = 1, 2, \dots, n$$

Ex: Solve the following system of equations by Cramer's Rule:

$$x_1 + 2x_2 = 4$$

 $3x_1 + 4x_2 = 6$

Ex: Use Cramer's rule to solve the following system for x_1 without solving for the remaining variables.

$$2x_1 - x_2 + x_3 = 3$$

 $x_1 + x_2 - x_3 = 0$
 $x_1 - x_2 + 2x_3 = 5$