BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENT- UND MARKENAMT

nl gungsschrift

DE 198 26 131 A 1

(7) Aktenzeichen:

198 26 131.4

2 Anmeldetag: 12. 6.98

(4) Offenlegungstag: 16. 12. 99 (5) Int. Cl.6: B 60 T 13/74

> B 60 T 13/66 B 60 T 8/32 B 60 T 8/60 B 60 T 7/12 B 60 K 28/16

(7) Anmelder:

Robert Bosch GmbH, 70469 Stuttgart, DE

(12) Erfinder:

Weiberle, Reinhard, 71665 Vaihingen, DE; Blessing, Peter, Prof., 74078 Heilbronn, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (A) Elektrisches Bremssystem für ein Kraftfahrzeug
- Es wird ein elektrisches Bremssystem für ein Kraftfahrzeug vorgeschlagen, welches aus einer ersten Einheit (10), die Betätigungssignale von wenigstens einem vom Fahrer betätigbaren Bremsbedienelement empfängt und die auf der Basis der Betätigungssignale Vorgabegrößen für die Steuerung der Radbremsen ermittelt und aus zweiten Einheiten (12, 14, 16, 18), die den Radbremsen des Kraftfahrzeugs zugeordnet sind und die die Vorgabewerte in Steuersignale für die Radbremsen umsetzen, besteht. Die zweiten Einheiten (12, 14, 16, 18) sind jeweils einzeln einer einzelnen Radbremse zugeordnet und umfassen jeweils ein Mikrorechnersystem (R1A, R1B), welches sich selbst überwacht.

Wenigstens eine (12, 18) der zweiten Einheiten ist den Vorderrad--und wenistens eine-(14,-16) den Hinterradbremsen zugeordnet. Wenigstens die den Vorderradbremsen zugeordnete zweite Einheit (12, 18) ist mit den anderen Einheiten über zwei Kommunikationssysteme redundant verbunden.

Beschreibung

Stand der Technik

Es wird ein dezentrales elektrisches Bremssystem (brake by wire) für ein Kraftfahrzeug beschrieben, das durch seinen dezentralen Aufbau insbesondere den hohen technischen Anforderungen bezüglich Sicherheit und Verfügbarkeit gerecht wird

Ein derartiges Bremssystem ist z. B. aus der DE-A 196 34 10 567 bekannt. Das dort gezeigte Bremssystem weist eine dezentrale Struktur auf, bei der eine Pedaleinheit zur Bildung der fahrerwunschabhängigen Führungsgrößen, gegebenenfalls eine Verarbeitungseinheit zur Berücksichtigung von Zusatzfunktionen sowie Radpaareinheiten zur Steuerung bzw. Regelung der Stellglieder der Radbremsen über ein oder mehrere Kommunikationssysteme verbunden ist. Ferner wird das Bremssystem aus wenigstens zwei Bordnetzen mit Energie versorgt. Dadurch wird eine zufriedenstellende Sicherheit und Verfügbarkeit des Bremssystems gewährlei- 20 stet. Bei dem bekannten System sind Radpaareinheiten vorgesehen, denen jeweils zwei Radbremsen zugeordnet sind. Die Radpaareinheiten weisen im wesentlichen je zwei Mikrocomputer auf, die sich gegenseitig überwachen. Jeder Mikrocomputer ist einer anderen Radbremse zugeordnet und steuert diese gemäß den Vorgabewerten. Die dadurch erreichte Betriebssicherheit und Verfügbarkeit ist nicht für alle Anwendungsfälle optimal.

Es ist daher Aufgabe der Erfindung, Maßnahmen zur Optimierung der Betriebssicherheit und Verfügbarkeit eines elektrischen Bremssystems insbesondere im Bereich der Radbremssteuereinheiten anzugeben.

Dies wird durch die kennzeichnenden Merkmale der unabhängigen Patentansprüche erreicht.

Vorteile der Erfindung

Die Betriebssicherheit und Verfügbarkeit des Bremssystems wird optimiert, indem jeder Radbremse eine Steuereinheit zugeordnet wird, die jeweils ein sich selbst und die 40 Steuer-bzw. Regelfunktion überwachendes Rechnersystem enthält. Jede dieser Radeinheiten realisiert an der zugeordneten Radbremse eine radindividuelle Regelung der Radzuspannkraft bzw. des Radbremsmomentes.

Besonders vorteilhaft ist in einem Ausführungsbeispiel, 45 daß durch eine Redundanz des die Einheiten verbindenden Kommunikationssystems selbst bei Ausfall einer Energiequelle oder eines Kommunikationssystems lediglich die Bremsfunktion eines Rades verloren wird.

Besonders vorteilhaft ist, daß eine Überwachung des Sensors für die Zuspannkraft bzw. das Bremsmoment eines Rades ermöglicht wird. Dadurch wird ein Fehlverhalten der Radbremse infolge eines Sensorfehlers wirksam verhindert.

Darüber hinaus ist eine Selbstüberwachung der korrekten Funktion des Rechnersystems einer Radeinheit vorgesehen, 55 die mittels diversitärer Berechnung und einer Frage-Antwort-Kommunikation zwischen einem Mikrorechnersystem und einer Überwachungskomponente durchgeführt wird.

Zeichnung

Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsformen näher erläutert. Fig. 1 zeigt ein erstes Ausführungsbeispiel der Struktur eines elektromechanischen Bremssystems. Fig. 2 beschreibt die 65 Struktur der Pedaleinheit, Fig. 3 die der Verarbeitungseinheit und die Fig. 4 und 5 die Strukturen von Radeinheiten dieses Bremssystems. Fig. 6 und 7 zeigen die Strukturen ei-

nes zweiten und eines dritten Ausführungsbeispiels eines elektromechanischen Bremssystems, während in Fig. 8 die Struktur einer Radeinheit des dritten Ausführungsbeispiel dargestellt ist.

Beschreibung von Ausführungsbeispielen

Es wird eine Steuerung bzw. Regelung der Betriebs- und Feststellbremsfunktion der Bremsanlage eines Kraftfahrzeuges vorgestellt. Durch die dezentrale Aufteilung des Bremssystems und die im System vorgesehenen Redundanzen wird bei Auftreten von statischen und dynamischen Fehlern die Bremsfunktionalität in hohem Maß aufrechterhalten und die Betriebssicherheit der Bremsanlage sichergestellt. Zudem werden Fehlerzustände für Servicezwecke abgespeichert und gegebenenfalls signalisiert. Die im Text und in den Figuren eingeführten Kurzbezeichnungen für Komponenten und Signale sind dabei im Anhang zusammengestellt.

Fig. 1 zeigt ein erstes Ausführungsbeispiel für die Struktur eines elektromechanischen Bremssystems und die jeweils ausgetauschten Signale. Das System ist durch eine dezentrale Struktur charakterisiert, die sich aus den Systemkomponenten Pedaleinheit 10, vier Radeinheiten 12, 14, 16 und 18, Energiediagnoseeinheit 20 und Verarbeitungseinheit 22 ergibt.

Das Pedalmodul 10 des elektromechanischen Bremssystems übernimmt primär die Erfassung des Bremswunsches des Fahrers, die Analyse des Gesamtsystemzustandes und die Einleitung von Rückfallstrategien im Fehlerfalle.

Jede Radeinheit (12, 14, 16, 18) ist aus einem Radmodul (12a, 14a, 16a, 18a), der Radsensorik (vgl. z. B. n1, Fli, s1H, etc.) und einem Aktuator (12b, 14b, 16b, 18b) aufgebaut. Ein Radmodul (12a, 14a, 16a, 18a) umfaßt jeweils ein Mikrorechnersystem, eine Überwachungskomponente und die Leistungselektronik zur Ansteuerung des Aktuators.

Die elektrische Energieversorgung des elektrischen Systems erfolgt über die beiden unabhängigen Bordnetze E1 und E2. Je zwei Radeinheiten werden von derselben Energiequelle versorgt. Bei der in Fig. 1 betrachteten Systemstruktur wird von einer Diagonalaufteilung ausgegangen, d. h. die Radeinheiten (12, 14) für die Räder vorne links und hinten rechts werden von einer gemeinsamen Energiequelle E₁ gespeist. Das gleiche gilt für die Radeinheiten (16, 18) für die Räder vorne rechts und hinten links, die von der Energiequelle E2 versorgt werden. Eine Ausführungsvariante, in der die beiden Radeinheiten einer Achse jeweils einer Energiequelle zugeordnet werden, ist ebenfalls möglich. Sie wird im folgenden nicht weiter betrachtet. Die nachfolgend beschriebenen Vorgehensweisen werden bei dieser Aufteilung mit den entsprechenden Vorteilen ebenfalls eingesetzt. Die Radeinheiten sind in der Nähe der jeweiligen Radbremse angeordnet, während Pedaleinheit und Verarbeitungseinheit gemeinsam oder getrennt an einer zentraleren Stelle angebracht sind.

Der Datenaustausch zwischen den einzelnen Komponenten des Bremssystems geschieht mittels zweier unabhängiger Kommunikationseinrichtungen K₁ und K₂, die vorzugsweise als serielle Bussysteme, z. B. CAN, realisiert sind. Die Kommunikationseinrichtungen K₁ und K₂ werden von den unterschiedlichen Bordnetzen gespeist. Zudem wird mittels eines Kommunikationssystems K₃ die Verbindung zu der Steuereinheit des Motormanagements realisiert.

In jedem Radmodul wird die Ansteuerung des zugehörigen Aktuators zur Ausregelung der gewünschten Zuspannkraft oder des gewünschten Bremsmomentes realisiert. Hierzu wird in jedem Aktuator alternativ die Radzuspannkraft bzw. das Radbremsmoment durch Sensoren erfaßt. Der

elektromechanische Aktuator wirkt über eine Getriebestufe auf die Zuspannwege von Scheiben- bzw. Trommelbremsen ohne hydraulische Zwischenstufe. Die Radeinheit regelt hierzu die radindividuelle Zuspannkraft bzw. das radindividuelle Bremsmoment. Die notwendige Führungsgröße wird über das zugeordnete Bussystem vorgegeben.

In einem bevorzugten Ausführungsbeispiel enthält der Aktuator (12b, 14b, 16b, 18b) einer Radeinheit zusätzlich eine elektromagnetisch betätigte Ausrückvorrichtung (Ansteuerung über i1K, i2K, i3K, i4K), die einerseits die Feststellbremsfunktion ausübt und zudem in stationären Bremsphasen das Bremssystem ohne Energieverbrauch in der aktuellen Position arretiert. Im Aktuator (12b, 14b, 16b, 18b) eines jeden Rades ist zudem eine Rückstelleinrichtung integriert (Ansteuerung über i1R, i2R, i3R, i4R), die bei allen Fehlertypen, die ein Lösen der Bremsen eines Rades verhindern würden, das betroffene Rad freischaltet. Um diese Fehlertypen auch bei Ausfall einer Energiediagnoseeinheit (20) beherrschen zu können, erfolgt die Ansteuerung der Rückstelleinrichtung durch die benachbarte Radeinheit derselben 20 Achse (z. B. für 12b aus 18a). Bei der betrachteten diagonalen Aufteilung der Energiekreise werden die beiden Radeinheiten einer Achse stets aus unterschiedlichen Energiequellen gespeist. Dadurch kann bei Ausfall einer Energiequelle in jedem beliebigen Zustand zumindest ein Lösen des be- 25 troffenen Aktuators mittels der Rückstelleinrichtung erreicht werden.

Das Energiediagnosemodul (20) ermittelt den Ladezustand der Energieversorgungseinheiten und übergibt diese Information (c₁, c₂) dem Pedalmodul (10).

Eine detaillierte Beschreibung der Funktionen und der Struktur der Systemkomponenten des elektromechanischen Bremssystems wird in den folgenden Abschnitten anhand der Fig. 2 bis 5 gegeben.

Fig. 2 zeigt den prinzipiellen Aufbau des Pedalmoduls 35 (10).

Die Aufgaben dieser Systemkomponente sind die Erfassung des Bremswunsches des Fahrers und zwar bezüglich der Betriebs- und Feststellbremse und die Bildung der hierfür erforderlichen Führungsgrößen für die Räder der Vorderund Hinterachse; die Erfassung und Auswertung der Statusbotschaften aller Systemkomponenten des elektromechanischen Bremssystems; die Analyse des aktuellen Gesamtzustandes des Bremssystems, gegebenenfalls die Einleitung von Rückfallmaßnahmen und die Signalisierung des Fehlerzustandes an den Fahrer bzw. Abspeicherung innerhalb eines Fehlerspeichers; die Initialisierung aller Komponenten des Bremssystems nach Einschalten der Zündung bzw. bei Betätigen der Bremse bei ausgeschalteter Zündung; das Abschalten des Bremssystems nach Beendigung einer Fahrt; 50 und die Ansteuerung des Bremslichtes.

Die Fahrerwunscherfassung für eine Betriebsbremsung geschieht durch die unabhängigen Sensoren b1, b2 und b3, die vorzugsweise in einer diversitären Realisierung den analogen Fahrerwunsch (Bremspedalwinkel und/oder die Kraft 55 der Betätigung) am Bremspedal erfassen. Die Sensoren werden durch die unterschiedlichen Energieversorgungen E1 bzw. E₂ gespeist, z. B. die Sensoren b₁ und b₂ durch die Energieversorgung E1 und die Sensoren b2 und b3 durch die Energieversorgung E2. Der Fahrerwunsch einer Feststell- 60 bremsbetätigung wird über die Sensoren b4 und b5 erfaßt (ebenfalls z. B. durch Erfassung der Auslenkung des Feststellbremshebels), die von den unterschiedlichen Energieversorgungen gespeist werden. Je ein analoger Sensor für die Erfassung des Betriebsbremswunsches wie auch des 65 Feststellbremswunsches könnte auch durch einen binären Geber ersetzt werden.

Das Pedalmodul 10 selbst ist fehlertolerant aufgebaut,

z. B. durch eine Realisierung mittels eines redundanten Mikrorechnersystems bestehend aus den Mikrorechnern P1 und P2. das zudem die erforderlichen Peripherie-, Speicher- und Watchdogbaugruppen enthält, und einer Überwachungskomponente P3. Die Mikrorechner P1 und P2 sowie die Überwachungskomponente P3 kommunizieren über den internen Kommunikationskanal C, der z. B. durch ein serielles Bussystem oder mit seriellen Schnittstellen realisiert ist. Innerhalb der Mikrorechnersysteme P1 und P2 sind die unabhängigen Programme Pr1 und Pr2 implementiert. Mittels des Rechnerprogrammes Pr1 werden über die Eingangsschnittstelle U1 die Sensorsignale b1 bis b5 erfaßt, gespeichert und über den Kommunikationskanal C dem Mikrorechner P2 zur Verfügung gestellt. In entsprechender Weise werden mittels des Rechnerprogrammes Pr2 über die Eingangsschnittstelle U2 die Sensorsignale b1 bis b5 erfaßt, gespeichert und zum Mikrorechner P1 übertragen. Innerhalb beider Rechner stehen somit 6 Meßwerte des Fahrerwunsches für Betriebsbremsung und 4 Meßwerte des Fahrerwunsches für eine Feststellbremsbetätigung zur Verfügung.

Aus den Meßwerten für die Betriebsbremsung wird in den Mikrorechnern P₁ und P₂ jeweils durch Majoritätsauswahl jeweils ein repräsentativer Signalwert für den Betriebsbremswunsch b_{B,rep} ermittelt. Dies erfolgt unter Gewichtung von möglichen Einzelfehlern, indem die Einzelmeßwerte, die über ein bestimmtes Maß hinaus von den anderen abliegen, nicht zur Bildung der Referenzwerte herangezogen werden. Die in den Mikrorechnern P₁ und P₂ bezeichnet. Überschreitet der Referenzwert b_{B,rep,1} einen vorgebbaren Grenzwert, so erfolgt die Ansteuerung des Bremslichtes mittels des Signales u_{BL}.

Aus den Meßwerten des Fahrerwunsches für Feststellbremsbetätigung werden in beiden Mikrorechnern ebenfalls repräsentative Signalwerte berechnet. Die in den Mikrorechner P₁und P₂ ermittelten repräsentativen Signalwerte werden mit b_{R,rep,1} bzw. b_{R,rep,2} bezeichnet. Diese repräsentativen Signalwerte sind bei Stillstand des PKWs (der z. B. durch Auswertung eines oder mehrerer Radgeschwindigkeitssignale ermittelt wird) die Maximalwerte der gemessenen Sensorsignale b₄ und b₅ und im Bewegungszustand des PKWs, d. h. außerhalb des Stillstandes, die Minimalwerte dieser beiden Sensorsignale.

Aus den Referenzwerten $b_{Brep,1}$ und $b_{B,rep,2}$ wird in beiden Mikrorechnern mittels einer abgespeicherten Pedalcharakteristik jeweils die Führungsgröße für die gewünschte mittlere Zuspannkraft bzw. das gewünschte mittlere Bremsmoment eines Rades bei einer Betriebsbremsung berechnet. Diese Führungsgröße wird im Mikrorechner P_1 mit $F_{B,res,1}$ und im Mikrorechner P_2 mit $F_{B,res,2}$ bezeichnet.

Aus den Sensorsignalen $b_{F,rep,1}$ und $b_{F,rep,2}$ werden in den Mikrorechnern P_1 und P_2 ebenfalls jeweils unter Nutzung einer vorgebbaren abgespeicherten Kennlinie der Fahrerwunsch für die mittlere Zuspannkraft bzw. das mittlere Bremsmoment eines Rades bei einer Feststellbremsung ermittelt. Diese Führungsgröße wird im Mikrorechner P_1 mit $F_{F,res,1}$ bzw. im Mikrorechner P_2 mit $F_{F,res,2}$ bezeichnet.

Die in einem Mikrorechner berechneten Führungsgrößen für den Betriebsbremswunsch und den Feststellbremswunsch werden dem jeweiligen anderen Mikrorechner über den internen Kommunikationskanal C zur Verfügung gestellt. In beiden Mikrorechner wird F_{B,res,1} mit F_{B,res,2} und F_{F,res,1} mit F_{B,res,2} verglichen. Stimmen die Vergleichswerte jeweils innerhalb einer vorgebbaren Toleranzgrenze überein, so wird eine resultierende Größe für den Betriebsbremswunsch F_{B,res,2} durch arithmetische Mittelung aus den Größen F_{B,res,1} und F_{B,res,2}, die resultierende Größe für den Feststellbremswunsch F_{F,res} durch arithmetische Mittelung der Grö-

ßen F_{F,res,1} und F_{Fres,2} gebildet.

Stimmen die Vergleichswerte nicht überein, werden mittels der Überwachungskomponente P3 aufgrund der unten beschriebenen Rechnerüberwachung die fehlerfreien Signalwerte sowohl für den Betriebsbremswunsch wie auch für den Feststellbremswunsch eindeutig detektiert. In beiden Mikrorechnern werden die fehlerfreien Signalwerte den Größen F_{B.res} bzw. F_{R.res} zugewiesen.

Aus den Signalen $F_{B,res}$ und $F_{F,res}$ entsteht die resultierende mittlere Zuspannkraft eines Rades F_{res} durch die Beziehung F_{res} = Maximum($F_{B,res}$ $F_{F,res}$). F_{res} könnte in einer alternativen Ausführung auch dem resultierenden mittleren Bremsmoment eines Rades entsprechen, das durch eine Betätigung der Betriebs- bzw. Feststellbremse gefordert wird. Aus F_{res} werden im Sinne einer geeigneten Aufteilung die 15 gewünschten Zuspannkräfte bzw. Bremsmomente für die Räder der Vorderachse F_V bzw. für die Räder der Hinterachse F_H berechnet.

Mittels der Kommunikationssysteme K_1 und K_2 überträgt das Pedalmodul die Sollwerte für die Zuspannkräfte bzw. 20 Bremsmomente F_V und F_H an die angeschlossenen Komponenten des elektromechanischen Bremssystems.

Durch die diversitäre Erfassung und Berechnung werden Fehler, die zu unbeabsichtigter Bremsung oder einer falschen Führungsgröße für die Radzuspannkraft bzw. das 25 Radbremsmoment führen würden, erkannt. Auch verfälschte Speicherinhalte, die zu einer gleichen Fehlerwirkung führen würden, werden erkannt. Die Überwachungskomponente P₃ kommuniziert mit den Mikrorechnern P₁ bzw. P2 mittels des internes Bussystem C. Sie dient zur 30 Überwachung der Programmabläufe in den Programmen Pr1 und Pr2 und zudem zur Überprüfung der Rechenfähigkeit der Mikrorechner P₁ und P₂. Um die Sicherheit im Falle eines Rechnerfehlers in P₁ oder P₂ zu gewährleisten, müssen in diesem Fehlerfall die Programme Pr1 und Pr2 trotzdem 35 noch ordnungsgemäß ablaufen, oder der nicht ordnungsgemäße Ablauf muß sicher erkannt werden. Bei nicht ordnungsgemäßem Ablauf wird der zugehörige Rechnerkanal abgeschaltet und es erfolgt eine Fehlersignalisierung über die Signale d_{P1} bzw. d_{P2}. Die Kontrolle der Funktionsfähigkeit erfolgt in der dargestellten Ausführungsvariante durch eine Frage-Antwort-Kommunikation. Die Mikrorechner P₁ und P2 holen aus der Überwachungskomponente eine Frage ab und beantworten diese jeweils unter Berücksichtigung aller sicherheitsrelevanten Programmteile innerhalb eines 45 vorgegebenen Zeitintervalles. Die Fragen sind so vorzugeben, daß eine richtige Antwort nur bei einem fehlerfreien Ablauf dieser Programmteile, insbesondere des Rechnerfunktionstests (RAM-, ROM-Test, etc.) und des Befehlstests (bzgl. Addition, Subtraktion, etc.), gegeben ist. Die aus den 50 Teilprogrammen gebildeten Teilantworten werden in jedem Mikrorechner zu einer Gesamtantwort zusammengefaßt. In der Überwachungskomponente werden die von den Mikrorechnem P1 und P2 jeweils bereitgestellten Gesamtantworten hinsichtlich des Zeitintervalles des Eintreffens und auf 55 bitgenaue Übereinstimmung mit der zur Frage passenden richtigen Antwort überprüft und gegebenenfalls Fehlerbeherrschungsstrategien, z. B. Signalisierung und Kanalabschaltung, eingeleitet. Die Funktionsfähigkeit der Überwachungskomponente wird von den Mikrorechnern P₁ und P₂ durch geeignete Testfragen überprüft. Diese Testfragen können von der Überwachungskomponente nur bei vollständig korrekter Funktion richtig beantwortet werden.

Im Pedalmodul werden zudem die internen Fehlerzustände und die Fehlersignalbotschaften d₁, d₂, d₃ und d₄ der 65 angeschlossenen Radeinheiten bzw. die Fehlerbotschaft d_v der Verarbeitungseinheit erfaßt und in einem Fehlerspeicher abgespeichert. Zudem erfolgt die Erfassung der Statussi-

gnale c1 und c2 der Energiediagnoseeinheit. Diese Erfassung geschieht sowohl während einer Testphase vor Fahrtbeginn wie auch in allen Betriebsphasen einer Fahrt. Alle Fehlerund Statussignale werden innerhalb des Pedalmoduls mittels vorgegebener Tabellen, in denen für jede Fehlerart und für jeden Status eine durchzuführende Aktion abgelegt ist, ausgewertet. Als Ergebnis der Auswertung werden in der Fahrtphase entsprechend des Gefährdungspotentials der Fehlerzustände Botschaften für Rückfallstrategien in den verschiedenen Komponenten des Bremssystems eingeleitet, die an die Verarbeitungseinheit und die Radeinheiten mittels der Signale r₁, r₂, r₃, r₄ und r_V übertragen werden. Bei sicherheitsrelevanten Fehlern erfolgt eine Signalisierung für den Fahrer mittels der Fehlersignale dp1 bzw. dp2. Bei Fehlerzuständen, die in der Testphase vor Fahrtbeginn detektiert werden, erfolgt ebenfalls eine Fahrersignalisierung. Bei sicherheitskritischen Fehlern wird die Bremssysteminitialisierung abgebrochen und das Lösen der Feststellbremse verhindert. Bei sicherheitskritischen Betriebszuständen während einer Fahrt ist zudem ein Eingriff in das Motormanagement zur Reduzierung des verfügbaren Antriebsmomentes realisier-

Mittels der Signalleitungen z₁ bzw. z₂ werden durch das Pedalmodul die weiteren Komponenten des elektromechanischen Bremssystems nach Einschalten der Zündung bzw. auch bei Betätigung der Bremse bei ausgeschalteter Zündung initialisiert. Zudem erfolgt mittels dieser Signale ein gezieltes Abschalten der Systemkomponenten bei Beendigung der Fahrt.

Mittels der Serviceschnittstelle d_S wird dem Servicepersonal der Zugang zum Bremssystem und das Auslesen des Fehlerspeichers für das Gesamtsystem ermöglicht.

Die Energiediagnoseeinheit (20) übernimmt die Überwachung der Energieversorgungseinheiten (Batterien) bezüglich einer ausreichenden Kapazität für die bei Bremsvorgängen erforderliche Leistung und Energie. Hierzu muß zumindest die zur Erzielung der vom Gesetzgeber vorgeschriebenen Mindestbremswirkung benötigte Energie gesichert sein. Die Überwachung erfolgt mittels geeigneter Sensoren L₁ und L2, z. B. zur Messung der Lade- und Verbraucherströme, und eines mathematischen Modelles. Dieses Modell berücksichtigt die elektrochemischen und physikalischen Eigenschaften wie auch die Vorgeschichte, z. B. die Anzahl der Tiefentladungen, der Energieversorgungseinheiten. Die Energiediagnoseeinheit ist vorzugsweise in Form eines redundanten Mikrorechnersystems realisiert, das über beide Energiequellen gespeist wird und dessen Teilsysteme über ein internes Bussystem Daten austauschen können.

In der Verarbeitungseinheit (22) werden die übergeordneten Funktionen des Bremssystems realisiert. Hierzu gehören insbesondere die Berechnungen der radindividuellen Führungsgrößen F₁, F₂, F₃ und F₄ für die Zuspannkräfte bzw. Bremsmomente eines Rades. Die Berechnungen erfolgen unter Einbeziehung bekannter Prinzipien wie die Berücksichtigung der radspezifischen Drehzahlen bei Vollbremsungen im Sinne eines Antiblockierschutzes, die Berücksichtigung einer Antriebsschlupfregelungsfunktion, die Realisierung einer Fahrdynamikregelung zur Vermeidung von Schleuderzuständen unter Einbeziehung weiterer Sensoren, z. B. für Lenkradwinkel δ_L , Querbeschleunigung a_y und Gierwinkelgeschwindigkeit w, die Berücksichtigung der radindividuellen Bremsbelagstärke bei Teilbremsungen mit dem Ziel einen gleichmäßigen Verschleiß der Bremsbeläge zu erzielen, die Realisierung einer Hillholder-Funktion, die Berücksichtigung des Beladungszustandes zur Erzielung einer optimalen Bremskraftaufteilung auf die Räder der Vorder- und Hinterachse, die Erzielung einer adaptiven Bremskraftverteilung zwischen dem kurveninneren und kurvenäu-

15

Beren Rad einer Achse in Abhängigkeit vom gemessenen Lenkwinkel, um eine verbesserte Fahrdynamik zu erreichen, die Korrekturen der Einzelbremskräfte bei Ausfall einer Radeinheit, die gezielten Eingriffe in das Motormanagement bei einem Bremswunsch über das Kommunikationssystem K3, und den Eingriff in das Motormanagement im Falle eines sicherheitskritischen Fehlers des Bremssystems. Zusätzlich stehen der Verarbeitungseinheit noch die gemessenen Istwerte der Regelgrößen F1i, F2i, F3i und F4i zur Berechnung der radindividuellen Führungsgrößen F1 bis F4 10 zur Verfügung. Ferner kann optional die Bestimmung von fahrdynamischen Referenzgrößen zur Unterstützung der Überwachungsfunktionen innerhalb der Radeinheiten ermittelt werden. Details werden bei der Beschreibung der Funktionen der Radeinheit ausgeführt.

Die Verarbeitungseinheit (22) ist gemäß Fig. 3 redundant durch zwei Mikrorechnersysteme RV1 und RV2 aufgebaut, die über einen internen Kommunikationskanal C1 die berechneten Daten austauschen. Über die beiden Kommunikationssysteme K₁ und K₂ empfängt die Verarbeitungseinheit 20 (22) von den Radeinheiten (12 bis 18) die radindividuellen Drehzahlen (n1 bis n4), die Istwerte der Zuspannkraft bzw. des Bremsmoments (F1i bis F4i) und von der Pedaleinheit (10) die Führungsgrößen für die Zuspannkraft bzw. das Bremsmoment für die Räder der Vorderachse Fv bzw. für 25 Fv. Ersatzführungsgröße Vorderachse für die Zuspannkraft die Räder der Hinterachse F_H.

Bei Ausfall eines Rechnerkanales in der Pedaleinheit (10) wird der Datentransport über das angeschlossene Kommunikationssystem unterbrochen. Die Verarbeitungseinheit (22) übermittelt bei dieser Fehlerkonstellation die vom anderen Rechnerkanal des Pedalmoduls (10) empfangenen achsindividuellen Führungsgrößen Fv und FH wie auch Botschaften (r1 bis r4) für die Rückfallstrategien an die angeschlossenen Radeinheiten (12 bis 18). Zudem können bei diesem Fehler die Diagnosebotschaften (d1 bis d4) der Radeinheiten an 35 den funktionsfähigen Rechnerkanal des Pedalmoduls weitergeleitet werden. Beispielhaft werde hierzu der Ausfall des Mikrorechners P2 im Pedalmodul betrachtet. Bei diesem Fehlerfall können die Botschaften vom Pedalmodul über das Kommunikationssystem K₁ und die Verarbeitungseinheit 40 den Radmodulen 2 und 4 übermittelt werden. Den umgekehrten Weg nehmen die Diagnosebotschaften aus den Radmodulen 2 und 4. Zur Berechnung der für eine FDR-Funktion erforderlichen radindividuellen Führungsgrößen werden zusätzlich in der Verarbeitungseinheit (22) die hierfür notwendigen Größen (Lenkwinkel, Querbeschleunigung und Drehrate) erfaßt.

Die o.a. Berechnungen werden unabhängig in den beiden Rechnersystemen RV1 und RV2 durchgeführt und miteinander verglichen. Bei inkonsistenten Ergebnissen wird die 50 Verarbeitungseinheit abgeschaltet und eine Fehlerstatusbotschaft dv über das Kommunikationssystem abgesandt.

Innerhalb der Radeinheiten werden die Regelungen der radindividuellen Zuspannkräfte bzw. Bremsmomente realisiert. Die Kommunikationssysteme K_1 und K_2 stellen hierzu 55 die Führungsgrößen bereit.

Die Radeinheiten werden von verschiedenen elektrischen Energiequellen gespeist, die Radeinheiten 12 und 14 von der Energiequelle E₁ bzw. die Radeinheiten 16 und 18 von der Energiequelle E2. Die Verbindung der Radeinheiten zu den 60 weiteren Systemmodulen wird zudem mit unterschiedlichen Kommunikationssystemen realisiert. Die Radeinheiten 12 und 14 kommunizieren über K1, Radeinheiten 16 und 18 über K2.

Betrachtet werde im folgenden die Radeinheit 12 gemäß 65 Fig. 4. Die anderen Radeinheiten sind entsprechend aufgebaut. Die Radeinheit 12 dient zur Regelung der Zuspannkraft bzw. des Bremsmomentes eines Rades und zur Einlei-

tung einer Rückzugsstrategie bei einer Störung im Aktuator 18b der Radeinheit 18. Die Radeinheit 12 kommuniziert mit den anderen Systemkomponenten mittels des Kommunikationssystems K1. Über dieses System erhält die Radeinheit folgende Größen:

F1: Radindividuelle Führungsgröße für die Regelung der Zuspannkraft oder des Bremsmomentes des Rades. Diese Größe wird zum Zeitpunkt eines ABS-, ASR oder FDR-Eingriffes von der Verarbeitungseinheit (22) bereitgestellt. Diese Führungsgröße könnte in einer weiteren Ausführungsvariante zusätzlich von der Verarbeitungseinheit spezifisch für folgende Aufgaben berechnet werden:

> a) zur Erzielung eines gleichmäßigen Verschleißes aller Bremsbeläge eines Fahrzeuges

> b) zur Adaption der Verteilung des Gesamtbremsmomentwunsches des Fahrers auf die Räder der Vorder- bzw. Hinterachse in Abhängigkeit von der momentanen Achslastverteilung

> c) zur Erzielung einer adaptiven Bremskraftverteilung zwischen dem kurveninneren und kurvenäußeren Rad einer Achse in Abhängigkeit vom gemessenen Lenkwinkel, um eine verbesserte Fahrdynamik zu erreichen.

bzw. das Bremsmoment eines Rades der Vorderachse. (Für die der Hinterachse zugeordneten Radeinheiten wird in entsprechender Weise die Ersatzführungsgröße FH verwendet.) Die Führungsgröße Fv wird aus dem Betriebs- und Feststellbremswunsch des Fahrers gebildet und den beiden Radeinheiten der Vorderachse sowie der Verarbeitungseinheit bereitgestellt. Die achsspezifische Führungsgröße wird innerhalb einer Radeinheit zur Regelung der Zuspannkraft bzw. des Bremsmomentes verwendet, sofern keine abweichende radindividuelle Führungsgröße in der Verarbeitungseinheit gebildet wurde oder auch bei Ausfall der Verarbeitungseinheit.

r₁: Steuerbotschaft zur Einleitung eines veränderten Verarbeitungsablauf in der Radeinheit. Diese Botschaft wird von der Pedaleinheit oder der Verarbeitungseinheit aus den eintreffenden Fehlersignalbotschaften der angeschlossenen Systemmodule gebildet.

Die über das Kommunikationssystem eintreffenden Signale werden redundant in den Speicherzellen Si des Mikrorechnersystems R_{1A} abgelegt. Zur Funktionsüberwachung der Radeinheit können in Ausführungsvarianten zusätzlich noch die folgenden über das Kommunikationssystem K₁ eintreffenden Signale verarbeitet werden:

a_{R2}, a_{R3}, a_{R4},: Verzögerungen der anderen Räder

av,ref: Referenzwert für die Verzögerungsdifferenz der Räder der Vorderachse

s_{R2}, s_{R3}, s_{R4},: Schlupf der anderen Räder

Δs_{V,ref}: Referenzwert für die Schlupfdifferenz zwischen den Rädern der Vorderachse

v_F: Schätzwert für Fahrzeuggeschwindigkeit

Als Ausgabegrößen der Radeinheit werden den angeschlossenen Systemmodulen die folgenden Signale über das Kommunikationssystem K₁ zugeführt:

n₁: Aufbereitetes Drehzahlsignal des zugeordneten Rades

d1: Zyklische Fehlersignalbotschaft der Radeinheit

F1i Gemessener Istwert der Regelgröße

Zur Funktionsüberwachung in den anderen Radeinheiten werden in Ausführungsvarianten zusätzlich noch die folgenden Größen von der Radeinheit 12 benötigt:

a_{R1}: Verzögerung des zugeordneten Rades

s_{R1}: Schlupf des zugeordneten Rades

Diese Signale werden über das Kommunikationssystem K₁ den anderen Systemmodulen bereitgestellt.

Die Radeinheit 12 umfaßt folgende Komponenten

a) Mikrorechnersystem R_{1A} mit den zugehörigen Peripherie-, Speicher- und Watchdogbaugruppen

b) Überwachungskomponente R_{1B}

c) Elektromotor M_{1H} einschließlich der erforderlichen Getriebestufe zur Umsetzung der Drehbewegung in eine Zustellbewegung des Bremsbelages einer Scheiben- oder Trommelbremse

- d) Elektromagnetisch betätigte Ausrückvorrichtung 10 Ku₁, die Eingriff auf eine innerhalb des Momentenflusses zwischen Elektromotor und Bremsbelag liegende Welle hat, die im stromlosen Zustand mittels eines Federelementes geschlossen wird und in diesem Zustand für die Aufrechterhaltung der aktuellen Winkelposition 15 der Welle sorgt. Die Auslegung dieser Ausrückvorrichtung muß sicherstellen, daß damit jede eingesteuerte Zuspannkraft auf die Bremsscheibe eingehalten werden kann.
- e) Rückstellmodul M_{1R}, realisiert in Form einer elektromagnetisch betätigbaren Ausrückvorrichtung oder als Elektromotor. Dieses Modul wird von der Energiequelle E₂ gespeist und wird von der Radeinheit 18 angesteuert.
- \hat{f}) Leistungselektronik LE_{1H} zur Ansteuerung des 25 Elektromotors M_{1H}
- g) Leistungselektronik LE_{1K} zur Ansteuerung der elektromagnetisch betätigten Ausrückvorrichtung Ku_1 h) Leistungselektronik LE_{2R} zur Ansteuerung des Rückstellmoduls M_{2R} , das in der Radeinheit 18 inte- 30 griert ist.

Die Positionen c), d) und e) werden im folgenden als Aktuator 12b der Radeinheit 12 bezeichnet.

Dem Mikrorechnersystem R_{1A} werden die folgenden vom zugeordneten Rad stammenden Eingangssignale über periphere Eingangsbaugruppen zugeführt und redundant in den Speicherzellen S_1 abgelegt: Raddrehzahl n_1 , Istwert für die Radzuspannkraft bzw. für das Radbremsmoment F_{1i} , Zuspannweg bzw. Drehwinkel der Getriebestufe oder des Elektromotors S_{1H} und gegebenenfalls Motorstrom des Aktuators i_{1H} .

Innerhalb des Mikrorechners R_{1A} wird zunächst aus den über den Kommunikationskanal zyklisch empfangenen Größen F_1 bzw. F_V die Führungsgröße F_{1F} ausgewählt. Mittels des aktuell gemessenen Istwertes F_{1i} für die Radzuspannkraft bzw. für das Radbremsmoment wird daraus die Regeldifferenz x_{d1} gemäß

$$x_{d1}(t) = F_{1F}(t) - F_{1i}(t)$$
 (1)

gebildet. Mit vorzugebenden Grenzwerten ϵ und μ und Zeitintervallen T_ϵ und T_μ können dann die Vergleiche gemäß

$$|x_{d1}(t)| \le \varepsilon \text{ für } 0 < t < T_{\varepsilon}$$
 (2)

$$| d x_{d1}(t) / dt | \le \mu \text{ für } 0 < t < T_{\mu}$$
 (3)

durchgeführt werden. Falls die Bedingungen (2) und (3) erfüllt sind, werden keinerlei Stelleingriffe am Aktuator ausgeführt. Ist diese Bedingung nicht erfüllt, so wird mittels eines digitalen Regelalgorithmus unter Berücksichtigung der zuletzt ausgegebenen Stellgröße (z. B. eines Proportional-/Integral-Reglers oder eines Proportional-/Integral-/Differential-Reglers) die erforderliche aktuelle Stellgröße für die Ausregelung der Radzuspannkraft bzw. des Radbremsmomentes berechnet. Diese Stellgröße wird in Form des PWM-Signals u_{1H} an die Leistungselektronik LE_{1H} ausgegeben.

Zudem wird die elektromagnetisch betätigte Ausrückvorrichtung Ku₁ über das Steuersignal f₁ und die Leistungselektronik LE_{1K} angesteuert, wodurch eine Drehbewegung des Motors zur Erzielung einer veränderten Radzuspannkraft 5 erst ermöglicht wird. Sind während des Ausregelns der Zuspannkraft bzw. des Radbremsmomentes die Bedingungen (2) und (3) erfüllt, so wird die Ansteuerung der elektromagnetisch betätigten Ausrückvorrichtung Kul beendet und anschließend der Elektromotor M1H stromlos geschaltet. Um aufgrund einer Fehlfunktion des Mikrorechnersystems R_{1A} eine ungewollte Veränderung der Radzuspannkraft zu vermeiden, wird eine Ansteuerung des Elektromotors mittels des Stromes il H erst ermöglicht, falls das Freigabesignal g_{1H} und zusätzlich das Freigabesignal e_{1H} von der Überwachungskomponente R_{1B} am Ansteuerteil der Leistungselektronik LE_{1H} anstehen (vgl. &-Verknüpfung in LE_{1H}).

Um auch eine ungewollte Verminderung der durch die Ausrückvorrichtung aufrechterhaltenen Radzuspannkraft vermeiden zu können, ist die Ansteuerung der Ausrückvorrichtung Ku₁ mittels des Stromes i_{1K} erst möglich, wenn sowohl das Freigabesignal g1H und das Freigabesignal e1H von der Überwachungskomponente R_{1B} bereitgestellt werden (vgl. &-Verknüpfung in LE1K). Durch die Einbeziehung der elektromagnetischen Ausrückvorrichtung in den Regelvorgang kann bei einem annähernd stationären Bremswunsch des Fahrers die erforderliche Zuspannkraft zunächst über den Elektromotor aufgebracht und anschließend ohne Verbrauch von elektrischer Energie allein durch die Federkräfte innerhalb der elektromagnetisch betätigten Ausrückvorrichtung aufrechterhalten werden. Damit sind auf einfache Weise die beim Betätigen der Feststellbremse eines Kfz erforderlichen Zuspannkräfte einzuleiten und energielos beizubehalten. Zum Lösen der Bremse an einem Rad wird zunächst die Ausrückvorrichtung mittels des Ansteuersignales f₁ geöffnet und danach der Elektromotor M_{1H} mit negativer Spannung angesteuert. Wird dieses Lösen durch einen Fehler in der Aktorik verhindert, z. B. durch ein Festklemmen der Getriebestufe in der Aktorik, so kann dieser Fehler an der gemessenen Radzuspannkraft bzw. am Radbremsmoment eindeutig erkannt werden. Dies erfolgt z. B. durch Vergleich der Ansteuerung und der Raddrehzahl, gegebenenfalls des Drehwinkels. Eine Verklemmung wird erkannt, wenn z. B. trotz Ansteuerung keine Drehwinkeländerung des Elektromotors erkannt wird und/oder bei Nicht-Ansteuerung ein Bremsschlupf des zugeordneten Rades vorliegt. Die Regelung wird daraufhin abgebrochen und über das Kommunikationssystem wird eine Fehlerbotschaft d₁ abgesandt. Diese Botschaft wird in der Pedaleinheit (10) ausgewertet und daraus resultierend wird eine Fehlerbehebungsmaßnahme eingeleitet. Mittels einer Rückfallbotschaft r2, die über das Kommunikationssystem K2 geschickt wird, erhält die in Fig. 5 dargestellte Radeinheit 18 die Information, die Rückstelleinrichtung M_{IR} in der Aktorik 12b über die Leistungselektronik LE_{IR} und das Signal i_{IR} anzu-55 steuern. Da die Rückstelleinrichtung M_{1R} mittels der Energiequelle E2 angesteuert wird, kann ein Lösen der Bremsfunktion des der Radeinheit 12 zugeordneten Rades selbst bei Ausfall der Energiequelle E1 durchgeführt werden.

In der Radeinheit 12 wird in entsprechender Weise auf eine Rückfallbotschaft r_1 reagiert, die die Information zum Lösen des durch einen Fehlerfall gebremsten, der Radeinheit 18 zugeordneten Rades enthält. Dieser Botschaftstyp führt zur Ausgabe des Signales u_{2R} , mit dem die Leistungselektronik LE_{2R} aktiviert wird. Das Steuersignal i_{2R} zum Ansprechen der Rückstelleinrichtung im Aktuator 18b wird jedoch erst aktiviert, falls die Freigabesignale g_{2R} und e_{2R} bereitstehen (vgl. &-Verknüpfung in LE_{2R}).

Die Richtigkeit des gemessenen Istwertes der Radzu-

spannkraft bzw. des Radbremsmomentes kann durch eine analytische Redundanz sichergestellt werden. Bei einer erfindungsgemäßen Realisierung dieser Redundanz kann eine oder mehrere der folgenden Maßnahmen durchgeführt wer-

Vergleich der Istwerte der Radzuspannkraft bzw. des Radbremsmomentes mit einer Referenzgröße Fr,a. Zur Bestimmung von Fra wird zunächst die Änderung der Positionsbzw. Drehwinkelmeßgröße s_{1H} ab dem Zeitpunkt des Bremsbeginnes gemessen und anschließend mittels einer 10 konstruktiv gegebenen Funktion auf die physikalische Dimension einer Kraft bzw. eines Momentes umgerechnet. Diese Funktion berücksichtigt alle Elastizitäten der im Kraftfluß des Aktuators angeordneten Komponenten. Im Falle der Regelung des Radbremsmomentes wird zusätzlich 15 in die Funktion noch ein temperaturabhängiges Reibmodell der Bremsscheibe (z. B. Modellierung der Anwärmung und Abkühlung der Scheibe) implementiert.

Vergleich des Istwertes der Radzuspannkraft bzw. des Radbremsmomentes mit einer Referenzgröße Fr.b. Zur Bestimmung von Fr.b wird der Strom des Elektromotors M1H während einer stationären Bremsphase gemessen und anschließend mittels einer vorab bestimmten Funktion auf die physikalische Dimension einer Kraft bzw. eines Momentes umgerechnet. Diese Funktion berücksichtigt zunächst die 25 Auslegungsdaten des Elektromotors und des Getriebes, gegebenenfalls unter Einbeziehung eines Temperatur- und Reibmodelles. Zudem wird die aktuelle effektive Eingangsspannung wie auch die Drehrichtung vor Erreichen des stationären Arbeitspunktes berücksichtigt. Im Falle der Regelung des Radbremsmomentes kann zusätzlich in die Funktion noch ein temperaturabhängiges Reibmodell der Bremsscheibe implementiert werden.

Ein weiteres Verfahren beruht auf der vergleichenden Betrachtung der Verzögerung der Räder im Teilbremsbereich. 35 Die Berechnung der Radverzögerungen in den einzelnen Radeinheiten wird mittels einer Botschaft der Verarbeitungseinheit zum Zeitpunkt Tx gestartet. Die Berechnung der Verzögerung des der Radeinheit 12 zugeordneten Rades erfolgt gemäß der Gleichung

$$a_{R1}(T_x) = C_1 [n(T_x) - n(T_x - T_a)]$$
 (4)

Hierin ist Ta die zyklische Abtastzeit, bei der an jeder Radeinheit die Drehzahlerfassung durchgeführt wird und C₁ 45 ist eine Konstante, die durch die Radgeometrie und die Abtastzeit festgelegt ist.

Aus den Verzögerungswerten der Räder der Vorderachse $a_{R1}(T_x)$ und $a_{R2}(T_x)$ wird die Verzögerungsdifferenz $\Delta a_v(T_x)$ der Vorderachsräder gebildet:

$$\Delta a_{v}(T_{x}) = a_{R1}(T_{x}) - a_{R2}(T_{x})$$
 (5)

Der hierfür erforderliche Wert a_{R2}(T_x) wird von der Rad-Für die Verzögerungsdifferenz $\Delta a_v(T_x)$ muß bei korrekter Funktion der Zuspannkraft- bzw. Bremsmomentregelung

$$|\Delta a_v(T_x) - \Delta a_{v,ref}(T_x)| < \varepsilon_a$$
 (6)

Hierin ist $\Delta a_{v,ref}$ ein Referenzwert für die Verzögerungsdifferenz der Räder der Vorderachse. Ea beschreibt einen parametrierbaren Fehlergrenzwert. Der Referenzwert Δavref wird in der Verarbeitungseinheit mittels eines mathematischen Modelles unter Verwendung der zyklisch erfaßten fahrdynamischen Meßgrößen Lenkradwinkel δ_L Querbeschleunigung av und Gierwinkelgeschwindigkeit w sowie

unter Berücksichtigung eines Schätzwertes für die Fahrzeuggeschwindigkeit vF berechnet. Ist die Bedingung (6) verletzt, so kann daraus auf einen Fehler im Zuspannkraftbzw. Bremsmomentensensor eines der Räder geschlossen werden. Durch die Verwendung von beiden Rädern einer Achse zur Fehlererkennung, werden Störgrößeneinflüsse, die auf beide Räder wirken, eliminiert. Es wird bei diesem Verfahren davon ausgegangen, daß die Funktionalität des Regelalgorithmus und der Stellgrößenausgabe wie auch die fehlerfreie Erfassung der Drehzahlen an beiden Rädern der Vorderachse durch andere Überwachungsmethoden sichergestellt werden. Die Zuordnung eines erkannten Fehlers auf Radeinheit 12 oder Radeinheit 18 erfolgt durch Einbeziehung der beiden Radverzögerungswerte der Hinterachse $a_{R3}(T_x)$ und $a_{R4}(T_x)$ (z. B. durch Vergleich der einzelnen Größe mit der entsprechenden Größe eines Hinterrades).

Ein weiteres Verfahren beruht auf der vergleichenden Betrachtung der Schlupfwerte der einzelnen Räder im Teilbremsbereich. Die Berechnung des Schlupfes in den einzelnen Radeinheiten wird mittels einer Botschaft der Verarbeitungseinheit zum Zeitpunkt Tx gestartet. Innerhalb der Radeinheit 12 wird der Schlupf des zugeordneten Rades mit der Raddrehzahl n₁ und dem Schätzwert der Fahrzeuggeschwindigkeit ve gemäß der Gleichung

$$s_{R1}(T_x) = 1 - C_2 n_1(T_x)/v_F(T_x)$$
 (7)

berechnet. Die Konstante C2 wird durch die Radgeometrie bestimmt. Mittels des Radschlupfes s_{R2}(T_x), der von der Radeinheit 18 über das Kommunikationssystem zugeführt wird, kann die Schlupfdifferenz der Räder der Vorderachse Δs_v gemäß

$$\Delta s_{v}(T_{x}) = s_{R1}(T_{x}) - s_{R2}(T_{x})$$
 (8)

berechnet werden. Für die Schlupfdifferenz Δs_v(T_x) muß bei korrekter Funktion der Zuspannkraft- bzw. Bremsmomentenregelung gelten:

40
$$|\Delta s_v(T_x) - \Delta s_{v,ref}(T_x)| < \varepsilon_s$$
 (9)

Hierin ist $\Delta s_{v,ref}$ ein Referenzwert für die Schlupfdifferenz der Räder der Vorderachse. Es beschreibt einen parametrierbaren Fehlergrenzwert. Der Referenzwert Δs_{v.ref} wird in der Verarbeitungseinheit mittels eines mathematischen Modelles der Fahrdynamik unter Verwendung der zyklisch erfaßten Meßgrößen Lenkradwinkel δ_L Querbeschleunigung a_v und Gierwinkelgeschwindigkeit w sowie unter Berücksichtigung der radindividuellen Führungsgrößen für die Zuspannkräfte bzw. Radbremsmomente berechnet:

$$\Delta s_{v,ref}(T_x) = f_1 \{ \delta_L, a_v, \dot{\psi} F_1, F_2, F_3, F_4 \}$$
 (10)

In einer weiteren Ausführungsvariante kann eine verbeseinheit 18 über das Kommunikationssystem K₁ zugeführt. 55 serte Referenzgröße Δs_{vxef} unter Einbeziehung von Meßwerten bzw. Schätzwerten für die Radlasten F_{N1}, F_{N2}, F_{N3} und F_{N4} ermittelt werden. Über ein erweitertes dynamisches Modell wird dazu in der Verarbeitungseinheit Asvref gebildet. Dadurch werden Einflüsse, die durch eine Radlastverlagerung verursacht werden, bei der Berechnung berücksichtigt. Ist die Bedingung (9) verletzt, so kann daraus auf einen Fehler im Zuspannkraft- bzw. Bremsmomentensensor eines der Räder geschlossen werden. Es wird dabei davon ausgegangen, daß die Funktionalität der Regelfunktionen wie auch die fehlerfreie Erfassung der Drehzahlen an beiden Rädern der Vorderachse durch andere Überwachungsmethoden sichergestellt werden. Die Zuordnung eines erkannten Fehlers auf Radeinheit 1 oder Radeinheit 2 erfolgt durch Einbe-

ziehung der beiden Schlupfwerte für die Räder der Hinterachse $s_{R3}(T_r)$ und $s_{R4}(T_r)$ (z. B. durch Vergleich der einzelnen Größe mit der entsprechenden Größe eines Hinterra-

Das Überwachungskonzept der Radmoduls ist mit den vier logischen Ebenen L1, L2, L3 und L4 und zwei Hardwareebenen strukturiert. In den Hardwareebenen wirken das Mikrorechnersystem R_{1A} und die Uberwachungskompo-

nente R_{1B}.

Die Überwachungskomponente R_{1B} kommuniziert mit 10 dem Mikrorechnersystem R_{1A}mittels eines internen Bussystems. Sie dient zur Überprüfung der Rechenfähigkeit dieses Mikrorechnersystems und zur Überwachung der Programmabläufe innerhalb des Rechners. Durch die gewählte Art der Datenkommunikation zwischen dem Mikrorechnersystem R_{1A} und der Überwachungskomponente R_{1B} wird eine gegenseitige Überwachung dieser Komponenten ermöglicht. Dazu sind den logischen Ebenen folgende Aufgaben zugeordnet:

Eine Ebene 1 ist im Mikrorechnersystem R_{1A}realisiert. Sie 20 übernimmt folgende Aufgaben: Berechnung der Regelfunktion für die Ansteuerung des Elektromotors M1H; Ansteuerung der elektromagnetisch betätigten Ausrückvorrichtung Ku₁; Ansteuerung des Rückstellmoduls M_{2R}; Berechnungen zur Uberprüfung der Richtigkeit des gemessenen Istwertes 25 Fig. 6 dargestellt. der Radzuspannkraft bzw. des Radbremsmomentes F1;

durch die dargestellte analytische Redundanz.

Eine Ebene 2 ist ebenfalls im Mikrorechner R_{1A} eingebunden. Diese Ebene übernimmt die Prüfung der Korrektheit der in Ebene 1 durchgeführten Berechnungen mittels Algorithmen, die diversitär zu denen in Ebene 1 sind. Zur Durchführung der Berechnungen werden zudem die redundant in den Speicherzellen Si abgelegten Eingangsdaten verwendet, wodurch Fehler durch verfälschte Speicherinhalte erkannt werden. Die Überprüfung der Reglerfunktion erfolgt mittels eines parallel geschalteten mathematischen Modelles des Reglers, das mit den redundant abgelegten Daten für die alternativen Führungsgrößen F₁ bzw. F_v und dem Istwert der Radzuspannkraft bzw. des Radbremsmomentes F_{1i} berechnet wird. Bei signifikanten Abweichungen zwischen der Modellausgangsgröße und der in Ebene 1 durchgeführten Berechnungen wird ein Fehlerzustand erkannt. Zudem wird in Ebene 2 auch die korrekte Funktion der Regelstrecke überprüft. Hierzu dient ein mathematisches Modell der Regelstrecke, das den dynamischen Zusammenhang 45 zwischen der Stellgröße und der Regelgröße Fii auch unter Einbeziehung von Störgrößen beschreibt. Diesem Modell wird die im Regelalgorithmus in Ebene 1 berechnete Stellgröße zugeführt. Bei signifikanten Abweichungen zwischen der Modellausgangsgröße und dem gemessenen Istwert der 50 Radzuspannkraft bzw. des Radbremsmomentes F_{1i} wird ein Fehlerzustand erkannt. Die Ansteuersignale f₁ für die elektromagnetisch betätigte Ausrückvorrichtung bzw. u_{2R} für das Rückstellmodul werden ebenfalls in Ebene 2 auf Korrektheit überprüft und gegebenenfalls werden Fehlerzu- 55 stände erkannt. Die verwendeten Modelle werden aus den physikalischen Zusammenhängen abgeleitet.

Bei einem in Ebene 3 wie auch in Ebene 2 erkannten Fehler werden die zugehörigen Freigabesignale g_{1H} bzw. g_{2R} zurückgesetzt und eine Fehlerbotschaft d1 wird über das 60 Kommunikationssystem K_1 abgesetzt.

Die Ebene 3 ist im Mikrorechner R_{1A} realisiert. Um die sichere Funktion der Radeinheit im Falle eines Rechneroder Programmfehlers zu gewährleisten, müssen im Fehlerfall die Programme in Ebene 1 und 2 trotzdem noch ordnungsgemäß ablaufen, oder der nicht ordnungsgemäße Ablauf muß sicher erkannt werden. Die Kontrolle erfolgt in der dargestellten Ausführungsvariante durch eine Frage-Ant-

wort-Kommunikation der Ebenen 3 und 4. Das Mikrorechnersystem R_{1A} holt aus dem Überwachungsrechner eine Frage ab und beantwortet diese jeweils unter Berücksichtigung aller sicherheitsrelevanter Programmteile innerhalb eines vorgegebenen Zeitintervalles. Eine Frage kann nur dann richtig beantwortet werden, wenn ein fehlerfreier Ablauf der Programme für den Rechnerfunktionstest und den Befehlstest gegeben ist. Die aus den Teilprogrammen gebildeten Teilantworten werden zu einer Gesamtantwort zusammengefaßt und der Ebene 4 in der Überwachungskomponente zugeführt.

Diese Ebene ist in der Überwachungskomponente realisiert. Hierin wird die vom Mikrorechner R_{IA} bereitgestellte Gesamtantwort hinsichtlich des Zeitintervalles des Eintreffens und auf bitgenaue Übereinstimmung mit der zur Frage passenden richtigen Antwort überprüft. Bei einem nicht ordnungsgemäßen Ablauf der Frage-Antwort Kommunikation mit Ebene 3 werden in der Überwachungskomponente R_{1B} die Freigabesignale e_{1H} bzw. e_{2R} abgeschaltet.

In einer weiteren Ausführungsvariante (Variante 2) sind die Funktionen von zwei Radeinheiten einer Diagonale bzw. einer Achse entsprechend den vorherigen Ausführungen in einer Radpaareinheit integriert. Die Struktur dieser Ausführungsvariante des elektromechanischen Bremssystems ist in

Bei den Varianten 1 und 2 des elektromechanischen Bremssystems sind bei Ausfall einer Energieversorgung oder eines der Kommunikationssysteme K₁ bzw. K₂ stets zwei Räder nicht mehr bremsbereit. Dieser Nachteil wird bei der Ausführungsvariante 3 vermieden. Die Struktur dieser Variante ist in Fig. 7 und deren Radeinheit in Fig. 8 dargestellt. Diese Variante unterscheidet sich von der vorgestellten Variante 1 insbesondere dadurch, daß die Radmodule der Vorderräder jeweils durch die redundanten Kommunikationssysteme K₁ und K₂ mit den anderen Systemmodulen verbunden werden und daß die Radmodule der Vorderräder mit beiden Energiequellen gespeist werden.

Die geschilderten Funktionen werden durch entsprechende Programme, die in den entsprechenden Rechner ablaufen, realisiert.

Neben der Anwendung bei elektromechanischen Bremssysteme wird die beschriebene Vorgehensweise mit den entsprechenden Vorteilen auch bei anderen elektrischen Bremssystemen, z. B. bei elektro-hydraulischen oder elektropneumatischen Bremssystemen, angewandt.

Liste der Bezeichnungen

aR1, aR2, aR3, aR4: Verzögerungen der Räder avref, aHref: Referenzwert für die Verzögerungsdifferenz der Räder der Vorder- bzw. Hinterachse

a_v: Querbeschleunigung

b₁, b₂ b₃: Meßsignale des Fahrerwunsches (z. B. Bremspedalwinkel)

b₄, b₅: Meßsignale des Feststellbremswunsches $b_{B,rep,1}$ $b_{B,rep,2}$: Referenzwerte für Betriebsbremswunsch $b_{F,rep,1}$ $b_{F,rep,2}$: Referenzwerte für Feststellbremswunsch C: Internes Kommunikationssystem

c₁, c₂: Diagnosesignale des Ladezustandes der Energieversorgungseinrichtungen

d: Ansteuersignal einer Diagnoseeinheit

d_{P1}, d_{P2}: Statusbotschaften über den Zustand des elektromechanischen Bremssystems

d_s: Serviceschnittstelle im Pedalmodul

d_v: Fehlersignale der Verarbeitungseinheit

d₁, d₂, d₃, d₄: Fehlerbotschaften der Radeinheiten

E₁ E₂: Energieversorgung

e_{1H}, e_{2H}, e_{3H}, e_{4H}: Logisches Ansteuersignal für die Lei-

15

45

stungselektronik einer Radeinheit

 e_{1R} , e_{2R} , e_{3R} , e_{4R} : Logisches Ansteuersignal für die Leistungselektronik der Rückstelleinrichtung einer Radeinheit $F_{B,res,1}$: Führungsgröße für die Gesamtkraft der Betriebsbremse

Fres: Führungsgröße für Bremskraftwunsch

F_H: Führungsgröße für die Zuspannkraft (bzw. das Radbremsmoment) für die Räder der Hinterachse

F_F: Führungsgröße für Feststellbremskraft

 $F_{P,res,1}$, $F_{P,res,2}$: Führungsgröße für die Gesamtkraft der Feststellbremse

F_H: Führungsgröße für die Zuspannkraft (bzw. das Radbremsmoment) für die Räder der Hinterachse

F₁, F₂, F₃, F₄: Radindividuelle Führungsgröße für Radbremskraft oder Radbremsmoment

 F_{1F_i} , F_{2F_i} , F_{3F_i} , F_{4F_i} : Ausgewählte radindividuelle Führungsgröße für die Radzuspannkraft oder das Radbremsmoment F_{1i} , F_{2i} , F_{3i} , F_{4i} : Istwert für Radbremskraft bzw. Radbremsmoment

 $\mathbf{f_1}$, $\mathbf{f_2}$, $\mathbf{f_3}$, $\mathbf{f_4}$: Ansteuersignal für die elektromagnetische 20 Kupplung in einer Radeinheit

g_{1H}, g_{2H}, g_{3H}, g_{4H}: Logisches Ansteuersignal für die Leistungselektronik in einer Radeinheit

g_{1R}, g_{2R}, g_{3H}, g_{4R}: Logisches Ansteuersignal für die Leistungselektronik der Rückstelleinrichtung in einer Radein- 25 heit

 i_{1K} , i_{2K} , i_{3K} , i_{4K} : Strom für die Ansteuerung einer elektromagnetischen Ausrückvorrichtung in einer Radeinheit

 $i_{1H},\,i_{2H},\,i_{3H},\,i_{4H}$: Strom für die Ansteuerung des Elektromotors in einer Radeinheit

 I_{1R} , i_{2R} , i_{3R} , i_{4R} : Strom für die Ansteuerung der Rückstelleinrichtung in einer Radeinheit

K₁, K₂, K₃: Kommunikationseinrichtungen

 LE_{1H} LE_{2H} LE_{3H} LE_{4H} : Leistungselektronik für die Ansteuerung des Elektromotors

 LE_{1K} LE_{2K} LE_{4K} : Leistungselektronik für die Ansteuerung der elektromagnetisch betätigten Ausrückvorrichtung

 $LE_{1R} \ LE_{2R} \ LE_{4R} \colon Le$ istungselektronik für die Ansteuerung der Rückstelleinrichtung

L₁, L₂: Sensorik zur Bestimmung des Ladezustandes einer Energieversorgung

n₁ n₂ n₃ n₄: Meßwerte für Raddrehzahlen

P₁, P₂: Mikrorechner im Pedalmodul

P₃: Überwachungskomponente im Pedalmodul

 r_1 , r_2 , r_3 , r_4 : Steuersignale zur Einleitung eines veränderten Verarbeitungsablaufes in den Radeinheiten

s_{H1}, s_{H2}, s_{H3}, s_{H4}: Zuspannweg der Bremsscheibe oder Bremstrommel bzw. Drehwinkel des Elektromotors oder der Getriebestufe

s_{R1}, s_{R2}, s_{R3}, s_{R4}: Schlupf der Räder

S₁ bis S_n: Speicherzellen in den Radmodulen

U1, U2: Eingangsschnittstellen der Pedaleinheit

uBL: Ansteuersignal für das Bremslicht

 u_{1H} , u_{2H} , u_{3H} , u_{4H} : Ansteuersignal für die Leistungselektronik des Elektromotors in der Radeinheit

 u_{1R} , u_{2R} , u_{3R} , u_{4R} : Ansteuersignal für die Leistungselektronik der Rückstelleinrichtung in der Radeinheit

v_F: Schätzwert der Fahrzeuggeschwindigkeit

x_{d1}, x_{d2}, x_{d3}, x_{d4}: Regeldifferenz in einer Radeinheit z₁, z₂: Signal für die Initialisierung und das Abschalten der

Komponenten des Bremssystems

 δ_L : Lenkwinkel

w: Gierwinkelgeschwindigkeit

 $\Delta s_{v,ref}$, $\Delta s_{H,ref}$: Referenzwert für die Schlupfdifferenz der 65 Räder der Vorder- bzw. Hinterachse

Patentansprüche

1. Elektrisches Bremssystem für ein Kraftfahrzeug, mit einer ersten Einheit (10), die Betätigungssignale von wenigstens einem vom Fahrer betätigbaren Bremsbedienelement empfängt und die auf der Basis der Betätigungssignale Vorgabegrößen für die Steuerung der Radbremsen ermittelt, mit zweiten Einheiten (12, 14, 16, 18), die den Radbremsen des Kraftfahrzeugs zugeordnet sind und die die Vorgabewerte in Steuersignale für die Radbremsen umsetzen, dadurch gekennzeichnet, daß die zweiten Einheiten (12, 14, 16, 18) jeweils einzeln einer einzelnen Radbremse zugeordnet sind und jeweils ein Mikrorechnersystem (R1A, R1B) umfassen, welches sich selbst überwacht.

2. Elektrisches Bremssystem für ein Kraftfahrzeug, mit einer ersten Einheit (10), die Betätigungssignale von wenigstens einem vom Fahrer betätigbaren Bremsbedienelement empfängt und die auf der Basis der Betätigungssignale Vorgabegrößen für die Steuerung der Radbremsen ermittelt, mit zweiten Einheiten (12, 14, 16, 18), die den Radbremsen des Kraftfahrzeugs zugeordnet sind und die die Vorgabewerte in Steuersignale für die Radbremsen umsetzen, mit einer Verarbeitungseinheit (22), welche radindividuelle Vorgabewerte ermittelt, mit wenigstens zwei Kommunikationssystemen (K1, K2), die die Einheiten verbinden, dadurch gekennzeichnet, daß wenigstens eine (12, 18) der zweiten Einheiten den Vorderrad- und wenigstens eine (14, 16) den Hinterradbremsen zugeordnet ist und daß wenigstens eine den Vorderradbremsen zugeordnete zweite Einheit (12, 18) mit der ersten (10) und der Verarbeitungseinheit (22) über beide Kommunikationssystemen (K1, K2) redundant verbunden ist.

3. Elektrisches Bremssystem für ein Kraftfahrzeug, mit einer ersten Einheit (10), die Betätigungssignale von wenigstens einem vom Fahrer betätigbaren Bremsbedienelement empfängt und die auf der Basis der Betätigungssignale Vorgabegrößen für die Steuerung der Radbremsen ermittelt, mit zweiten Einheiten (12, 14, 16, 18), die den Radbremsen des Kraftfahrzeugs zugeordnet sind und die die Vorgabewerte in Steuersignale für die Radbremsen umsetzen, mit einer Verarbeitungseinheit (22), welche radindividuelle Vorgabewerte ermittelt, mit wenigstens zwei Kommunikationssystemen (K1, K2), die die Einheiten verbinden, dadurch gekennzeichnet, daß die Verarbeitungseinheit (22) über ein drittes Kommunikationssystem (K3) mit einer Steuereinheit zur Steuerung der Antriebseinheit des Fahrzeugs verbunden ist und die Verarbeitungseinheit (22) im Fehlerfall eines Rechnerkanals der ersten Einheit (10) nicht die radindividuellen, sondern die vom funktionsfähigen Rechnerkanal übermittelten achsindividuellen Vorgabewerte an die angeschlossenen Steu-

ereinheiten (12, 14, 16, 18) übermittelt.

4. Bremssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß wenigstens eine (12, 18) der zweiten Einheiten den Vorderrad- und wenigstens eine (14, 16) den Hinterradbremsen zugeordnet ist und daß wenigstens eine den Vorderradbremsen zugeordnete zweite Einheit (12, 18) mit der ersten (10) und der Verarbeitungseinheit (22) über beide Kommunikationssystemen (K1, K2) redundant verbunden ist und die wenigstens eine den Hinterrädern zugeordnete zweite Einheit (14, 16) mit den anderen Einheiten (10, 12, 18, 22) über nur ein Kommunikationssystem (K1, K2) verbunden ist.

5. Bremssystem nach einem der vorhergehenden An-

15

20

sprüche, dadurch gekennzeichnet, daß wenigstens zwei Energieversorgungen (E1, E2) für die Einheiten vorgesehen sind, wobei wenigstens die den Vorderradbremsen zugeordneten Einheiten (12, 18) mit beiden Energieversorgungen (E1, E2) verbunden sind.

6. Bremssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die den Radbremsen zugeordneten Einheiten (12, 14, 16, 18) ein Mikrorechnersystem (R1A) und eine Überwachungskomponente (R1B) umfassen.

7. Bremssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Mikrorechnersystem (R1A) eine erste logische Ebene (L1) umfaßt, in der wenigstens die Steuerfunktionen für die Radbremsen berechnet werden.

8. Bremssystem nach Anspruch 7, dadurch gekennzeichnet, daß das Mikrorechnersystem (R1A) eine zweite logische Ebene (L2) umfaßt, in der wenigstens die Überprüfung der Korrektheit der Funktionsberechnung in der ersten logischen Ebene stattfindet.

9. Bremssystem nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, daß das Mikrorechnersystem (R1A) eine dritte logische Ebene (L3) umfaßt, in der wenigstens eine Ablaufkontrolle der Programme der Ebenen 1 und 2 auf der Basis einer Frage-Antwort- Kommunikation mit dem Überwachungsmodul (R1B) durchgeführt wird.

10. Bremssystem nach Anspruch 9, dadurch gekennzeichnet, daß das Überwachungsmodul (R1B) eine vierte logische Ebene (L4) bildet, in der das Ergebnis 30 der Ablaufkontrolle der Ebene 3 auf Richtigkeit überprüft wird und die der Ablaufkontrolle zugrundeliegende Frage ermittelt wird.

11. Bremssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die den Radbremsen zugeordneten Einheiten (12, 14, 16, 18) die Richtigkeit des Meßwertes für die Radzuspannkraft und/oder das Bremsmoment auf der Basis einer analytischen Redundanz überprüfen.

12. Bremssystem nach Anspruch 11, dadurch gekennzeichnet, daß die Überprüfung auf der Basis eines Vergleiches der Meßwerte mit aus einer Drehwinkelgröße im Bereich der Bremse oder des Stromes durch den Elektromotor des Bremsenstellers abgeleiteten Referenzgröße erfolgt.

13. Bremssystem nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß die Überprüfung auf der Basis einer vergleichenden Betrachtung der Verzögerung oder des Schlupfes der Räder im Teilbremsbereich erfolgt, indem die Differenz der entsprechenden Werte zweier 50 Räder mit einem errechneten Referenzwert verglichen wird.

Hierzu 8 Seite(n) Zeichnungen

55

60

Numm r: Int. Cl.⁶:

