CURSO SUPERIOR DE TECNOLOGIA EM MANUFATURA AVANÇADA

PROJETO EXECUTIVO DE DESENVOLVIMENTO INTEGRADO DE PRODUTO XXXX – ROBÔ ESTOURA BALÃO

KAIKE ELIAS FERREIRA DOS ANJOS JOÃO PEDRO DA SILVA ROSA

São José dos Campos 2025

1. INTRODUÇÃO

O robô estoura balão é um dispositivo projetado para competir em arenas, onde o objetivo principal é estourar o balão do adversário para somar pontos e vencer a partida. A competição exige uma combinação de habilidades em engenharia mecânica, eletrônica, programação e estratégia. Um dos aspectos técnicos mais críticos envolve o design do chassi, que deve proporcionar ótima movimentação e velocidade, além do desenvolvimento de um sistema de controle eficiente para a navegação. Nesse contexto, a escolha adequada dos componentes e do design é fundamental para garantir a agilidade e a eficiência do robô.

2. PROJETO EXECUTIVO

1. Ideação e Planejamento Inicial

Realizou-se uma sessão de brainstorm para definir as áreas do projeto: robô, controles, arena, regras e placar. O desafio era construir uma arena e um robô estoura-bexiga. Inspirando-se em vídeos de referência, foi criado um croqui do robô e um mapa mental com as diretrizes para o desenvolvimento. Kaike Anjos liderou a parte mecânica, João Pedro ficou com a programação, e ambos compartilharam a parte eletrônica.

Durante essa fase, também foi decidido que o robô precisaria ser resistente, ágil e adaptável, com sistemas de ataque eficientes e proteção para a bexiga. O grupo utilizou a técnica de análise funcional para definir as principais funções que o robô deveria executar.

Mapa Mental do Robô

2. Prototipagem e Primeiros Testes

Usou-se como base o modelo do semestre anterior desenvolvido por Heloísa e Eric e o grupo AITEC. Testes foram feitos com acessórios como espeto e balão. Estimou-se o custo do projeto em R\$ 342,53.

Ferramentas:

- Software CATIA para modelagem das proteções e eixos.
- Espessura das peças entre 4 mm e 5 mm.

A modelagem 3D e a divisão das peças ajudaram na montagem precisa e eficiente do robô. Além disso, foram testados diferentes mecanismos de fixação e movimentação dos componentes, visando aumentar a estabilidade e robustez do robô.

A equipe realizou simulações de ataques, verificando o alcance e a eficácia do espeto ao estourar a bexiga adversária. Essas simulações foram importantes para refinar o posicionamento dos componentes e definir melhorias no projeto.

Componentes e Materiais

Materials	Quantidade Necessária	Estimativa de Materiais Ro	bô Estour Preco Unitário		Link	Link Secundário
Modulo Driver Ponte H - L298N	2	43mm A x 43 mm L x 27 mm A	R\$ 14,90	-	College	
Motor DC	4	70mm C x 22,44mm A - 36,60mm	L R\$ 7,90	R\$ 31,60	Motor DC 3-6V com Caixa de Redução de Aço - Robocore	Motor DC 3-6V com Caixa de Redução e Eixo Duplo (Plástico
Roda Hobby 65mm	4	66mm D x 31mm L	R\$ 8,50	R\$ 34,00	Rodas - Robocore	
ESP32	2	54mm C x 29mm L x 13mm A	R\$ 41,90	R\$ 83,80	ESP 32 - Robocore	
Mini balão	<u>2</u>	(*)	-	-	1	
Palito De Bambu Espeto Para Churrasco 18cm pacote com 50 Unidades	2	18cm C	R\$ 8,63	R\$ 8,63	Espetos - Mercado livre	
Filamento PLA Voolt3D 1.75mm 1kg - Preto Valvet	1	1,75mm D - 1KG	R\$ 89,00	R\$ 89,00	<u>Filamento Pla</u>	
Parafuso Allen Cilíndrico M4 x 60mm - 10 unidades	2	4mm D x 60mm C	R\$ 10,90	R\$ 21,80	https://www.robocore.net/ parafuso/parafuso-allen-m 4-60mm	
Porca M4 - 10 unidades	2	4mm DI x 7mm L x 7,74mm A	R\$ 2,70	R\$ 5,40	https://www.robocore.net/ porca/porca-m4-10-unidad es	
Parafuso Philips M4 x 35mm - 10 unidades	2	4mm D x 35mm C	R\$ 3,50	R\$ 7,00	Parafuso Phillips M4x35mm	
Roda Boba Rodízio Giratório Robótica Robô Chassi Arduino	2	Diâmetro da Roda: 30mm - Altura: 34mm 50mm (L) x 31mm ©	R\$ 11,80	R\$ 23,60	Roda Boba	
Jumpers Fêmea-Fêmea x40 Unidades	1	comprimento de 20cm	R\$ 7,90	R\$ 7,90	Cabos Jumper Fêmea-Fêmea	

Total Estimado R\$ 342,53

3. Ajustes Técnicos e Programação

Após a montagem do primeiro robô com ESP32 e Bluetooth, foram feitos vários testes até o pleno funcionamento. O segundo robô usou uma placa Arduino, exigindo adaptação dos códigos. A mudança na plataforma de controle implicou ajustes na lógica de programação, especialmente na comunicação serial e no controle de motores.

Também foi criado um fluxograma que detalha os movimentos do robô, organizando sua lógica de ataque, defesa e movimentação. Esse fluxograma foi baseado em testes empíricos e refinado com base nos vídeos gravados.

Impressão 3D: usada para a maioria dos suportes no primeiro robô. No segundo, parte das peças foi feita manualmente, adaptando materiais disponíveis e garantindo funcionalidade equivalente.

Documentação em vídeo: foi feito um vídeo mostrando a movimentação, ajustes e testes de resistência. Esses vídeos ajudaram na análise dos pontos de falha, permitindo que o grupo implementasse reforços estruturais e ajustes nos comandos de movimentação.

Desenhos Técnicos

Fluxograma

Códigos e Algoritmos

Foram desenvolvidas versões diferentes do código para ESP32 e Arduino, ajustando a comunicação via Bluetooth e os comandos dos motores. O código incluía:

- Mapeamento de comandos via Bluetooth;
- Controle PWM para ajuste de velocidade dos motores;
- Lógica de movimentação baseada em comandos direcionais (frente, ré, giro esquerdo/direito);
- Comandos de ativação do sistema de ataque.

```
ledcWrite(3, 0);
                                                                     ledcAttachPin(motor4, 3);
#include "BluetoothSerial.h"
                                                                    }
                                                                    ) (<u>)qool</u> bjgy
                                                                                                                                                  void moverTras() {
#define motor1 26
                                                                     if (SerialBlue,available()) {
                                                                                                                                                   ledcWrite(0, 0);
#define motor2 25
                                                                      char comando = SerialBlue_read();
                                                                                                                                                   ledcWrite(1, Velocidade_Motor);
#define motor3 33
                                                                                                                                                  ledcWrite(2, 0);
#define motor4 32
                                                                       switch (comando) {
                                                                                                                                                   ledcWrite(3, Velocidade_Motor);
                                                                       case 'F':
#define Velocidade_Motor 150
                                                                        moverErente();
                                                                        break;
                                                                                                                                                  void moverDireita() {
BluetoothSerial SerialBlue;
                                                                       case 'T':
                                                                                                                                                   ledcWrite(0, Velocidade_Motor);
                                                                        moverTras();
                                                                                                                                                   ledcWrite(1, 0);
                                                                                                                                                   ledcWrite(2, 0);
void setup() {
                                                                       case 'D':
                                                                                                                                                   ledcWrite(3, Velocidade_Motor);
 Serial.begin(9600);
                                                                        moverDireita();
 SerialBlue.begin("Bluetooth");
                                                                        break;
                                                                                                                                                  void moverEsquerda() {
                                                                        moverEsquerda();
                                                                                                                                                   ledcWrite(0, 0);
                                                                        break:
                                                                                                                                                   ledcWrite(1, Velocidade_Motor);
 ledcSetup(0, 5000, 8);
                                                                       case 'S'
                                                                                                                                                   ledcWrite(2, Velocidade_Motor);
 ledcSetup(1, 5000, 8);
                                                                        Parar();
                                                                                                                                                   ledcWrite(3, 0);
                                                                        break;
 ledcSetup(2, 5000, 8);
 ledcSetup(3, 5000, 8);
                                                                                                                                                  void Parar() {
                                                                                                                                                  ledcWrite(0, 0);
                                                                                                                                                   ledcWrite(1, 0);
                                                                    void moverErente() {
 ledcAttachPin(motor1, 0);
                                                                                                                                                   ledcWrite(2, 0);
                                                                     ledcWrite(0, Velocidade_Motor);
                                                                                                                                                   ledcWrite(3, 0);
 ledcAttachPin(motor2, 1);
                                                                     ledcWrite(1, 0);
 ledcAttachPin(motor3, 2);
                                                                     ledcWrite(2, Velocidade_Motor);
```

Montagem

O robô foi montado seguindo os desenhos técnicos e o roteiro de montagem. Foram testadas:

- Fixação dos suportes
- Estabilidade dos acessórios (espeto e balão)
- Funcionalidade da movimentação
- Robustez da estrutura
- Tempo de resposta aos comandos via Bluetooth

Testes

Link: Movimento com Suporte

Link: Movimento com Suporte

REFERÊNCIAS

- https://youtu.be/cUd_DcniZV0?t=74
- https://youtu.be/cUd_DcniZV0
- https://www.instructables.com/Otto-Build-You-Own-Robot-in-Two-Hours/