Alessandro Scala

Quantum Abstract Interpretation

Seminar for the Introduction to Quantum Computing course

Università di Pisa Dipartimento di Informatica

Roadmap

Introduction

As quantum computing advances, we would like to have some means to prove correctness properties on quantum programs, *especially* since quantum programming is counterintuitive.

The naive way to check properties of a program is to run it and observe its behaviour.

The naive way to check properties of a program is to run it and **observe** its behaviour.

We cannot observe the state of a quantum program!

The naive way to check properties of a program is to run it and observe its behaviour.

We cannot observe the state of a quantum program!

Could **simulation** on a classical machine solve this issue?

The naive way to check properties of a program is to run it and **observe** its behaviour.

We cannot observe the state of a quantum program!

Could **simulation** on a classical machine solve this issue?

No: **exponential** space and time cost.

$$n_{qubits}=1$$

$$|0\rangle\langle 0|$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

 $2^2 = 4$ complex numbers

$$n_{qubits}=2$$

$$2^4 = 16$$
 complex numbers

$$n_{qubits} = 3$$

$$|000\rangle\,\langle000|$$

 $2^6 = 64$ complex numbers

$$n_{qubits} = 300$$

$$\left|0\right>^{\otimes_{300}}\left<0\right|^{\otimes_{300}}$$

?????

$$n_{qubits} = 300$$

$$\left|0\right>^{\otimes_{300}}\left<0\right|^{\otimes_{300}}$$

 $2^{600} = 41495155688809929585124078636911611510124462322424368 \\ 999956573296906528114129081463997070489471037942881978866113 \\ 007891823951510754117753078868748341139636870611818034015095 \\ 23685376$

Bigger than the number of atoms in the universe.

The naive way to check properties of a program is to run it and **observe** its behaviour.

We cannot observe the state of a quantum program!

Could **simulation** on a classical machine solve this issue?

No: exponential space and time cost.

The naive way to check properties of a program is to run it and **observe** its behaviour.

We cannot observe the state of a quantum program!

Could **simulation** on a classical machine solve this issue?

No: exponential space and time cost.

Solution: abstract interpretation

Ingredients

- Abstract domain
 - Abstraction function
 - Concretization function
 - Abstract operations
- Assertions

Density Matrix

Instead of dealing with a state $|\phi\rangle$ in vector form, we use their density matrix:

$$\rho_{\phi} = |\phi\rangle\langle\phi|$$
 (For a pure state)

- positive semi-definite
- $Tr(\rho) = 1$
- projection $(P = P^{\dagger} = P^2)$

Density Matrix

Instead of dealing with a state $|\phi\rangle$ in vector form, we use their density matrix:

$$ho_{\phi} = \ket{\phi} \bra{\phi}$$
 (For a pure state)

- positive semi-definite
- $Tr(\rho) = 1$
- projection $(P = P^{\dagger} = P^2)$

Example:

$$\begin{split} |\beta_{00}\rangle &= \frac{|00\rangle + |11\rangle}{\sqrt{2}} \\ \rho_{\beta_{00}} &= |\beta_{00}\rangle \left\langle \beta_{00}| = \frac{1}{2}(|00\rangle + |11\rangle)(\langle 00| + \langle 11|) \right. \\ &= \frac{1}{2}(|00\rangle \left\langle 00| + |00\rangle \left\langle 11| + |11\rangle \left\langle 00| + |11\rangle \left\langle 11|\right) \\ &= \frac{1}{2}\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} \end{split}$$

Reduced Density Matrix

Suppose we have a composite quantum system $AB = A \otimes B$, and we want to focus our attention on a state $|\phi\rangle \in AB$ with respect to the subsystem A.

$$\begin{aligned} A &= \mathbb{C}^{2^n} \times \mathbb{C}^{2^n} \\ B &= \mathbb{C}^{2^m} \times \mathbb{C}^{2^m} \\ AB &= (\mathbb{C}^{2^n} \times \mathbb{C}^{2^n}) \otimes (\mathbb{C}^{2^m} \times \mathbb{C}^{2^m}) \end{aligned}$$

$$Tr_{B}[\rho]:AB \to A$$
 $Tr_{A}[\rho]:AB \to B$ $Tr_{B}[\rho]=\sum_{v=0}^{2^{n}}(I_{A}\otimes\langle v|)\rho(I_{A}\otimes|v\rangle)$ $Tr_{A}[\rho]=\sum_{v=0}^{2^{n}}(\langle v|\otimes I_{B})\rho(|v\rangle\otimes I_{B})$

$$\mathit{Tr}_{B}[
ho] = \sum_{v=0}^{2^{m}} (\mathit{I}_{A} \otimes \langle v |)
ho(\mathit{I}_{A} \otimes | v \rangle) \qquad
ho_{eta_{00}} = rac{1}{2} egin{pmatrix} 1 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{split} Tr_{B}[\rho_{\beta_{00}}] = & (I_{2} \otimes \langle 0|) \rho_{\beta_{00}}(I_{2} \otimes |0\rangle) + (I_{2} \otimes \langle 1|) \rho_{\beta_{00}}(I_{2} \otimes |1\rangle) \\ = & \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} + \\ & \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix} \end{split}$$

$$extit{Tr}_{B}[
ho] = \sum_{v=0}^{2^{m}} (I_{A} \otimes \langle v |)
ho(I_{A} \otimes | v
angle) \qquad
ho_{eta_{00}} = rac{1}{2} egin{pmatrix} 1 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 1 \end{pmatrix}$$

$$egin{aligned} \mathcal{T}r_B[
ho_{eta_{00}}] = & (I_2 \otimes \langle 0|)
ho_{eta_{00}}(I_2 \otimes |0
angle) + (I_2 \otimes \langle 1|)
ho_{eta_{00}}(I_2 \otimes |1
angle) \ = & rac{1}{2} egin{pmatrix} 1 & 0 \ 0 & 0 \end{pmatrix} + rac{1}{2} egin{pmatrix} 0 & 0 \ 0 & 1 \end{pmatrix} \end{aligned}$$

$$extit{Tr}_B[
ho] = \sum_{v=0}^{2^m} (I_A \otimes \langle v |)
ho(I_A \otimes | v
angle) \qquad
ho_{eta_{00}} = rac{1}{2} egin{pmatrix} 1 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 1 \end{pmatrix}$$

$$egin{aligned} Tr_B[
ho_{eta_{00}}] = & (I_2 \otimes \langle 0|)
ho_{eta_{00}}(I_2 \otimes |0
angle) + (I_2 \otimes \langle 1|)
ho_{eta_{00}}(I_2 \otimes |1
angle) \ = & rac{1}{2} egin{pmatrix} 1 & 0 \ 0 & 0 \end{pmatrix} + rac{1}{2} egin{pmatrix} 0 & 0 \ 0 & 1 \end{pmatrix} \ = & rac{1}{2} egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} \end{aligned}$$

$$extit{Tr}_{B}[
ho] = \sum_{v=0}^{2^{m}} (I_{A} \otimes \langle v |)
ho(I_{A} \otimes | v
angle) \hspace{1cm}
ho_{eta_{00}} = rac{1}{2} egin{pmatrix} 1 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 1 \end{pmatrix}$$

$$egin{aligned} Tr_B[
ho_{eta_0}] = & (I_2 \otimes \langle 0|)
ho_{eta_{00}}(I_2 \otimes |0
angle) + (I_2 \otimes \langle 1|)
ho_{eta_{00}}(I_2 \otimes |1
angle) \ = & rac{1}{2} egin{pmatrix} 1 & 0 \ 0 & 0 \end{pmatrix} + rac{1}{2} egin{pmatrix} 0 & 0 \ 0 & 1 \end{pmatrix} \ = & rac{1}{2} egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} \ = & rac{|0
angle \langle 0| + |1
angle \langle 1|}{2} \end{aligned}$$

Loss of precision

Computing a reduced density matrix **discards information**!

$$\begin{split} \rho_{\beta_{00}} = & \frac{\left|00\right\rangle\left\langle00\right| + \left|00\right\rangle\left\langle11\right| + \left|11\right\rangle\left\langle00\right| + \left|11\right\rangle\left\langle11\right|}{2} & \text{(Pure state)} \\ \rho_{2} = & \frac{\left|00\right\rangle\left\langle00\right| + \left|01\right\rangle\left\langle01\right| + \left|10\right\rangle\left\langle10\right| + \left|11\right\rangle\left\langle11\right|}{4} & \text{(Mixed state)} \end{split}$$

Loss of precision

Computing a reduced density matrix **discards information**!

$$\begin{split} \rho_{\beta_{00}} = & \frac{\left|00\right\rangle\left\langle00\right| + \left|00\right\rangle\left\langle11\right| + \left|11\right\rangle\left\langle00\right| + \left|11\right\rangle\left\langle11\right|}{2} & \text{(Pure state)} \\ \rho_{2} = & \frac{\left|00\right\rangle\left\langle00\right| + \left|01\right\rangle\left\langle01\right| + \left|10\right\rangle\left\langle10\right| + \left|11\right\rangle\left\langle11\right|}{4} & \text{(Mixed state)} \end{split}$$

$$Tr_B[
ho_{eta_{00}}] = rac{\ket{0}ra{0}+\ket{1}ra{1}}{2} = Tr_B[
ho_2]$$

The partial traces of two different initial states can be equal.

Moreover, for a state $\rho \in A \otimes B$, even if we know $Tr_B[\rho]$ and $Tr_A[\rho]$, we cannot uniquely determine ρ .

Abstract Domain

$$\begin{split} D &= \mathbb{C}^{2^n} \otimes \mathbb{C}^{2^n}, \quad S = (s_1, ..., s_m), \quad 1 \leq m \leq 2^n, \quad s_i \subseteq [n] \\ AbsDom(S) &= \left\{ (P_{s_1}, ..., P_{s_m}) \mid P_{s_i} \text{ is a projection in } \mathbb{C}^{2^{\lfloor s_i \rfloor}} \otimes \mathbb{C}^{2^{\lfloor s_i \rfloor}} \right\} \end{split}$$

