Synthèse de la menthone à partir du menthol (10 points)

Le menthol et la menthone sont deux espèces chimiques organiques présentes dans certaines espèces de menthe.

Le menthol (2-isopropyl-5-méthylcyclohexan-1-ol) est utilisé fréquemment dans les industries agroalimentaire, pharmaceutique et cosmétique.

La menthone (2-isopropyl-5-méthylcyclohenan-1-one) entre dans la composition de certains parfums et arômes naturels ; elle est obtenue par oxydation, en milieu acide, du menthol.

Dans cet exercice, on s'intéresse à la synthèse de la menthone à partir du menthol, réalisable au laboratoire du lycée.

Données:

	Menthol	Menthone
Couleur	Blanche	Incolore
Masse molaire (g.mol ⁻¹)	156	154
Température de fusion (°C)	43	- 6,5
Température d'ébullition (°C)	212	209

Solvant	Dichlorométhane	Cyclohexane	Ethanol	Eau
Densité	1,33	0,78	0,79	1
Miscibilité avec l'eau	Non miscible	Non miscible	Miscible	
Miscibilité avec l'éthanol	Non miscible	Non miscible		Miscible
Solubilité du menthol à 25°C	Très soluble	Peu soluble	Soluble	Non soluble
Solubilité de la menthone à 25°C	Très soluble	Très soluble	Soluble	Non soluble

Tableau de données de spectroscopie infrarouge (IR) :

Liaison	Nombre d'onde (cm ⁻¹)	Intensité
O-H libre	3500 - 3700	Forte, fine
O-H liée	3200-3400	Forte, large
O-H acide carboxylique	2500-3200	Forte à moyenne, large
С-Н	2800-3000	Forte
C=O aldéhyde et cétone	1650-1730	Forte
C=O acide carboxylique	1680-1710	Forte
C=C	1640-1680	Moyenne

1. La formule semi-développée du menthol est représentée ci-après :

Justifier le fait que le menthol fasse partie de la famille des alcools.

- 2. Sachant que lors de l'oxydation ménagée du menthol en menthone seul le groupe caractéristique est modifié et que la menthone appartient à la famille des cétones, représenter la formule semi-développée de la molécule de menthone.
- **3.** L'oxydation du menthol en menthone s'effectue en milieu acide par l'ion permanganate MnO_4^- qui appartient au couple oxydant-réducteur $MnO_4^ _{(aq)}/Mn^{\,2+}$ $_{(aq)}$. Cette oxydation est modélisée par une réaction dont l'équation est la suivante :

$$2\,MnO_4^{\,-}{}_{(aq)} + 5\,C_9\,H_{\,18}COH_{\,(s)} + 6\,H^{\,+}{}_{(aq)} \rightarrow 2\,Mn_{(aq)}^{2+} + 5\,C_9\,H_{\,18}C\,O_{\,(l)} + 8\,H_2\,O_{\,(l)}$$

Justifier le fait que le menthol subit une oxydation.

4. On réalise, au laboratoire du lycée, l'oxydation d'une masse $m=15,6\,g$ de menthol par un volume $V=200\,m$ d'une solution aqueuse acide de permanganate de potassium dont la concentration en ions permanganate est $C=0,5\,mol.\,L^{-1}$. Le mélange est acidifié par quelques millilitres d'acide sulfurique concentré. Le dispositif expérimental utilisé est celui du chauffage à reflux.

- **4.1.** Parmi les montages A, B et C précédents, indiquer celui qu'il convient de choisir pour réaliser le chauffage à reflux.
- **4.2.** Expliquer le rôle des différents éléments de verrerie dans le montage à reflux.
- **4.3.** En s'aidant éventuellement d'un tableau d'avancement, montrer que, lors de cette oxydation, le menthol est le réactif limitant.
- **4.4.** Déterminer la masse théorique maximum m_{th} de menthone que l'on peut obtenir.
- **5.** On transvase le contenu du ballon dans une ampoule à décanter et on y ajoute 20 mL d'un solvant extracteur. On agite puis on laisse reposer. On observe la séparation de 2 phases, la phase organique surnageant.

Déterminer quel solvant, parmi le dichlorométhane, le cyclohexane, l'éthanol et l'eau, a été utilisé pour extraire la menthone du mélange réactionnel. Justifier

6. La séparation de la menthone du solvant extracteur se fait en réalisant une distillation. En fin d'opération on obtient une masse m_{exp} =10,3 g de distillat que l'on considère être de la menthone pure. On réalise le spectre infrarouge du distillat ; il est reproduit ci-après.

Source: Spectral database for organic compounds (https://sdbs.db.aist.go.jp/sdbs/cgi-bin/cre_index.cgi)

- **6.1.** Justifier que le spectre précédent est compatible avec celui de la menthone.
- **6.2.** Déterminer le rendement de cette synthèse. Conclure.

Aide au calcul: $\frac{103}{154} = 0,669;103 \times 154 = 1,58 \times 10^4; \frac{154}{103} = 1,50$