

მონაცემთა ანალიტიკა Python

ლექცია 3: NUMPY ბიბლიოთეკა - სკალარები, ვექტორები, მატრიცები. მატრიცების და ვექტორების ინდექსირება და ანათალი. ლოგიკური, არითმეტიკული და სტატისტიკური ოპერაციები მატრიცებზე. წრფივი ალგებრის საკითხები.

ლიკა სვანაძე lika.svanadze@btu.edu.ge

Uses of NumPy

Numpy

- Stands for Numerical Python
- The Numpy library provides specialized data structures, functions, and other tools for numerical computing and data analysis in Python
- Documentation: https://numpy.org/doc/stable/user/quickstart.html
- It is designed for efficiency on large arrays of data
- It provides
 - ndarray for creating multiple dimensional arrays
 - Internally stores data in a contiguous block of memory, independent of other built-in Python objects, <u>use much less memory</u> than built-in Python sequences.
 - Standard math functions for fast operations on entire arrays of data without having to write loops

pip install numpy

NumPy ndarray vs list

- One of the key features of NumPy is its N-dimensional array object, or ndarray, which is a fast, flexible container for large datasets in Python.
- NumPy-based algorithms are generally 10 to 100 times faster (or more) than their pure Python counterparts and use significantly less memory.

NumPy ndarray

a Data structure

b Indexing (view)

d Vectorization

e Broadcasting

c Indexing (copy)

$$x \begin{bmatrix} 1,2 \end{bmatrix} \rightarrow 5$$
 with scalars $x \begin{bmatrix} x > 9 \end{bmatrix} \rightarrow 10 \boxed{11}$ with masks $x \begin{bmatrix} 0 & 1 \end{bmatrix}, 1 \boxed{2} \end{bmatrix} \rightarrow \begin{bmatrix} x \begin{bmatrix} 0,1 \end{bmatrix}, x \begin{bmatrix} 1,2 \end{bmatrix} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 5 \end{bmatrix}$ with arrays with arrays with broadcasting

Slices are **start:end:step**, any of which can be left blank

f Reduction

g Example

array([[-4.5, -4.5, -4.5],

[-1.5, -1.5, -1.5],

[1.5, 1.5, 1.5],

[4.5, 4.5, 4.5]])

მონაცემთა ანალიზი და ვიზუალიზაცია

- * მას შემდეგ რაც ბაზიდან ინფორმაციას წავიკითხავთ, საჭიროა წამოღებული მონაცემების ანალიზი (მაგ. სტატისტიკური ანალიზი) და მათი ეფექტური ვიზუალიზაცია.
- * <u>მონაცემთა ანალიზი და ვიზუალიზაცია</u> პროგრამირების ერთ-ერთი მნიშვნელოვანი კომპონენტია და პითონი ფართოდ გამოიყენება სხვადასხვა ტიპის მონაცემთა ანალიზისთვის.
- * პითონში არსეზობს სხვადასხვა მოდულები რომლებიც გამოიყენება მონაცემთა ანალიზისთვის, როგორიცაა numpy, pandas,, ხოლო ვიზუალიზაციისთვის იყენებენ matplotlib, seaborn.
- * მონაცემები გრაფიკულად შესაძლებელია წარმოდგენილი იყოს ჰისტოგრამების, წრიული დიაგრამების (pie charts), plots (მათემატიკური ფუნქციები/გრაფიკები)-ის საშუალებით.
- * Matplotlib-ის ოფიციალური საიტი: https://matplotlib.org/
- * მოდულების დაყენება შესაძლებელია pip-ის მეშვეობით შემდეგნაირად:
 - * pip install matplotlib
 - * pip install numpy

matplotlib - სავარჯიშო 1

* matplotlib ბიბლიოთეკის გამოყენებით შესაძლებელია შევქმნათ შემდეგი სახის გრაფიკული გამოსახულებები. იხილეთ პრაქტიკული სავარჯიშოების კოდი ლექცია 11-ის classwork.py ფაილში (ატვირთულია Google Classroom-ში). სურათზე მოცემულია titanic.sqlite ბაზის მონაცემების მიხედვით შესაბამისი დიაგრამები:

matplotlib - სავარჯიშო 2

- * სურათზე მოცემულია შობადობის სტატისტიკა საქართველოში წლების მიხედვით. გამოსახულია 3 წირი რომელიც ასახავს ჯამურ მონაცემებს და სქესის მიხედვით შობადობას. მონაცემები აღებულია საქართველოს სტატისტიკის ეროვნული სამსახურის ოფიციალური ვებ-გვერდიდან: https://www.geostat.ge/
- * იხილეთ ამ სავარჯიშოს კოდი ლექცია 11-ის classwork.py ფაილში (ატვირთულია Google Classroom-ში):

