Hypersignal Block Diagram Function List

1 Channel X Display

Displays input from a single channel

1 to 2 Demultiplexer

Demultiplexes one input channel to two channel output based on a select input

1 to 4 Demultiplexer

Demultiplexes one channel input to four channel outputs based on two control inputs

1/3 Octave Band Analyzer

Performs 1/3 octave band analysis on the input signal

1D to Matrix Converter

Converts a 1 dimensional signal to a matrix

1st Order Butterworth Filter

Performs 1st order Butterworth filtering on the input data based on some conditions

2 Channel X Display

Displays two waveforms on one grid

2 to 1 Multiplexer

Multiplexes two channel input to one channel output based on a select input

2 to 4 Decoder

Decodes two binary (0,1) inputs to four 1-hot outputs

2-Channel Display

Displays input from two channels in several display modes.

2-Sided Magnitude

Calculates the double-sided magnitude of the complex input signal

2-Sided Phase

Calculates double-sided ArcTangent of both the real and imaginary components of the complex input

4 Input AND

Performs logical AND function on four input signals

4 Input Max

Finds the maximum value for four inputs and channel number of the maximum value

4 Input OR

Performs logical OR function on four input signals

4 to 1 Multiplexer

Multiplexes four channel input to one channel output based on two control inputs

A-87.6 Decode

Performs A law expansion on the input signal

A-87.6 Encode

Performs A law compression on the input signal

Absolute Value

Outputs the absolute value of the input signal

Accumulate

Accumulates data values of all frames

Add

Adds two input signals

ADPCM Decoder

Adaptive Differential Pulse Code Modulation Decoder

ADPCM Encoder

Adaptive Differential Pulse Code Modulation Encoder

AGC

Automatic Gain Control

Alarm Clock

Allows the user to set an alarm to go off at a specified time

Analog Meter

Implements an analog meter control

Annunciator

Changes appearance based on different threshold values

Arbitrary Signal Generator

Generates an arbitrary waveform via a mouse

ArcCosine(x)

Calculates the ArcCosine value of the input signal

ArcSine(x)

Calculates the ArcSine value of the input signal

ArcTangent(x)

Calculates the ArcTangent value of the input signal

Arctangent(y/x)

Quadrant Arctangent (Atan2)

Autocorrelation

Calculates the autocorrelation function of the input signal

Averaged Periodogram

Calculates the averaged periodogram of the input signal

Bartlett Window

Performs Bartlett windowing on the input signal

BER

Compares the two input channels using the exclusive-or function to count bit errors and calculate bit error rate

Biquad

Implements a biquad, and applies this to the input signal

Bit Mask

Masks off user-specified bits in the input signal

Bit Reverse

Reverses bits in each sample (MSB=>LSB, LSB=>MSB)

Bitmap Display

Displays a selected bitmap

Bitmap Read

Reads a Windows bitmap file and outputs the red, green and blue planes

Blackman Window

Performs Blackman windowing on the input signal

Boxcar Window

Performs Boxcar (Rectangle) windowing on the input signal

Buffer

Buffers and outputs a specified number of the input samples

CD Knob

CD Control Knob

Center Clip

Clips the input signal by comparing it to two specified threshold levels

Cepstrum

Calculates the cepstrum of the input signal

Channel Information

Displays a channels information

Channel Perturber

Injects bit errors into a digital channel at a specified error rate

Chirp z-Transform

Calculates the chirp z-transform of the input signal

Clip

Clips the data elements by comparing with two specified threshold levels

Color Pattern Generator

Generate a color image (bleeds 5 colors horizontally)

Command Switch

Switch for controlling (starting/stopping, etc.) worksheets, typically used for power switch

Complex Cepstrum

Calculates the complex cepstrum of the input signal

Complex Conjugate

Takes the complex conjugate of the input signal

Complex Exponential Generator

Generates a complex exponential waveform

Complex to Real

Converts the complex input values to the corresponding real and imaginary values

Concatenate

Concatenates two input frames into one output frame

Constant Generator

Generates a constant (DC) waveform

Convert

Converts input data from integer to floating point, or from floating point to integer

Convert Character to String

Converts input character arrays to a string

Convert Number to Character String

Converts input numbers to a character string

Convolution

Convolves two input signals together

Correlation

Cross-correlates two input channel signals

Cosine Generator

Generates a cosine waveform

Cosine(X)

Calculates the cosine value of each element of an input signal

Covariance

Calculates the cross-covariance for two different inputs or auto-covariance for two identical inputs

Create Color

Takes three inputs red, green, and blue and creates a color

Data Display

Data Display for viewing data in multiple text formats - allows pasting to other windows applications

Daub4

Calculates the discrete wavelet transform of an input signal with 4 Daubechies coefficients

Daub6

Calculates the discrete wavelet transform of an input signal with 6 Daubechies coefficients

dB Amplitude

Performs the function of 20*log10(x)

dB Power

Performs the function of 10*log10(x)

DCT

Calculates the discrete cosine transform of an input signal

De-interleave 2 Channels

Separates one channel input into two channel output

De-interleave 3 Channels

Separates one channel input into three channel output

De-interleave 4 Channels

Separates one channel into four channel output

De-interleave 5 Channels

Separates one channel input into five channel output

De-Interleave 8 Channels

De-interleaves, or separates, one interleaved channel into eight channels

Dead Band

Forces a specified range to be 0

Decimal to Binary

Decimal to Binary conversion block function

Decimate

Decimates an input signal

Delay

Delays input by specified number of samples

DFT

Calculates the discrete Fourier transform of the input signal

Difference Equation

Difference Equation Function

Differentiate

Differentiates the input signal

Digital Display

Displays the input signal using digital numbers

Divide

Divides one signal by another

DTMF Keypad

DTMF Keypad

Dynamic Frame Pad

Pads buffers with previous frame values

Equal

Checks for Equal condition and controls the block connected to this block

Event Counter

Calculates the number of times a particular event happens

Exponential

Calculates the exponential function of the input signal

Exponential Fit

Performs exponential curve fitting on the input signal

Extract Sample

Extracts sample from specified index of input data frame

Fast Hartley Transform

Calculates the Fast Hartley Transform of the input signal

FFT

Calculates the Fast Fourier Transform of the input signal

File Read

This block reads an input file.

File Write

Writes the input signal to a data file

Find Substring

Find a substring

FIR Filter

Applies an existing FIR filter to the input signal

Five Input Add

Adds the corresponding elements of five input signals

Five Position Toggle Switch

Five Position Vertical Toggle Switch

Fixed Offset

Adds a specified offset value to each element of the input signal

Four Freq. Goertzel Algorithm

Performs the Goertzel algorithm at four frequencies

Four Input Add

Adds the corresponding elements of four input signals

Frame Count

Counts the number of frames the simulation has run

Frame Cumulative

Performs the frame cumulative function on input frame

Frame Deinterleaver

Deinterleaves and outputs two frames from one input frame

Frame Maximum

Finds the maximum of each frame of the input signal

Frame Mean

Calculates the mean for each frame of the input signal

Frame Minimum

Finds the minimum value for each frame of the input signal

Frame Range

Calculates the range of values of the input frame

Frame Shift

Shifts frame sample right or left

Frame Size

Extracts the framesize of the input signal

Frame Standard Deviation

Calculates the frame standard deviation of the input signal

Frame Variance

Calculates the frame variance of the input signal

Framesize Conversion

Converts input framesize from one value to another, which can be less than, equal or greater in size

Framesize Expander or Compressor

Converts (by expanding/compressing) data with an input framesize to a given output framesize

Frequency Zoom

Calculates the magnitude (frequency) of the input signal at any frequency range with any frequency step

Function Generator

Function Generator Control Front Panel

Gain

Multiplies each element of the input signal by a constant

Gaussian Generator

Generates a Gaussian waveform

Gaussian Window

Performs Gaussian windowing on the input signal

General Gaussian Generator

Generates a gaussian waveform with a specified mean and variance

General Knob

General knob used for offsets, etc.

Generate Character String

Sends a character string out its output channel

Global Cumulative

Performs the global cumulative function

Global Frame Mean

Performs the mean calculation on a sample by sample basis for all frames

Global Maximum

Finds the maximum value of all data passed through this block

Global Mean

Calculates the mean of all data passed through this block

Global Minimum

Finds the minimum value of all data passed through this block

Global Range

Calculates the range of values of the all input frames

Global Standard Deviation

Calculates the standard deviation of all data passed through this block

Global Variable

Global Variable to allow dynamic assignment, or placeholder, function

Global Variance

Calculates the variance of all data passed through this block

Goertzel Algorithm

Calculates the frequency domain magnitude at the specified frequency

Greater Than

Checks for Greater Than condition to control the block connected to this block

Greater Than / Equal

Checks for Greater Than/Equal condition to control the block connected to this block

Hamming Window

Performs Hamming windowing on the input signal

Hanning Window

Performs Hanning windowing on the input signal

Hilbert Transform

Calculates the Hilbert transform of the input signal

Histogram

Calculates the histogram of the input signal

Horizontal Bar Chart

Horizontal bar chart

Horizontal Bar Graph

Graph data horizontally

Horizontal Slider

Horizontal slider control

Hyperbolic Cos(x)

Calculates the Hyperbolic Cosine value of each element of the input signal

Hyperbolic Sin(x)

Calculates the Hyperbolic Sine of the input signal

Hyperbolic Tan(x)

Calculates the Hyperbolic Tangent value of the input signal

IF-ELSE/COUNTER

Checks for IF-ELSE (with counter) condition to control the block connected to this block

IIR Filter

Applies an existing IIR filter to the input signal

Impulse Generator

Generates a unit impulse with the specified delay sample

Impulsive Noise Generator

Generates an impulse noise waveform

In Range

Checks to see if a value is between a range

Integrate

Integrates the input signal

Integrate and Dump

Performs integrate and dump

Interleave 2 Channels

Interleaves two channel inputs to one channel output

Interleave 3 Channels

Interleaves three channel inputs to one channel output

Interleave 4 Channels

Interleaves four channel inputs to one channel output

Interleave 5 Channels

Interleaves five channel inputs to one channel output

Interleave 8 channels

Interleaves, or combines, eight channels into one

Internet Receiver

Receive data through the internet

Internet Transceiver

Transmit and receive data from the internet

Internet Transmitter

Transmit data through the internet

Interpolate

Interpolates the input signal

Inverse DCT

Calculates the inverse discrete cosine transform of the input signal

Inverse DFT

Calculates the inverse Discrete Fourier Transform of the input signal

Inverse Fast Hartley Transform

Calculates the inverse Fast Hartley Transform of the input signal

Inverse FFT

Calculates the inverse Fast Fourier Transform of the input signal

Inverse Hilbert Transform

Calculates the inverse Hilbert transform of the input signal

Keyboard Receiver

Receive keyboard input and output it

Keypad

Implements a keypad control

Knob

Implements a knob control

Leaky LMS Adaptive Filter

Performs a leaky least mean square adaptive filter on the input signal

LED

User control LED which gets set when a threshold is reached

LED

Simple two bitmap LED control

LED Button

Simple LED Button

LED Meter

LED Meter indicator

LED Meter

Implements a light emitting diode meter control

Less Than

Checks for Less Than condition to control the block connected to this block

Less Than / Equal

Checks for Less Than/Equal condition to control the block connected to this block

Linear Fit

Performs a Linear curve fit to the input signal

Linear Predictive Coding

Calculates the LPC coefficients based on the autocorrelation of the input signal

LMS Adaptive Filter

Performs a Least Mean Square adaptive filter on the input signal

Log

Calculates the natural logarithm (base e) value of each element of the input signal

Log10

Calculates the common logarithm (base 10) value of each element of the input signal

Logical AND

Performs logical AND function on two input signals

Logical NAND

Performs logical NAND function on two input signals

Logical NOR

Performs logical NOR function on two input signals

Logical NOT

Performs the logical NOT function on the input signal

Logical OR

Performs logical OR function on two input signals

Logical XOR

Performs logical XOR (Exclusive-OR) function on two input signals

Logx(y)

Calculates the logarithm (base x) value of each element of the input signal

Loop Counter

Performs the Loop Counter operation to control the block connected to this block

Loop Filter

Performs first order loop filtering on the input data

Magnitude

Calculates the magnitude of the complex input signal

Matrix Addition

Adds two matrices

Matrix Generator by manual entry

Generates a manually entered matrix

Matrix Invert

Matrix Invert

Matrix Multiply

Multiplies two matrices

Matrix Order

Outputs the row and column values of a matrix

Matrix Scale

Multiply a matrix by a scalar value

Matrix Subtraction

Subtracts two matrices

Matrix to 1D Converter

Converts matrix data into 1 dimensional data

Median Filter

Performs the median filter on the input signal

Modulus

Divides the input frame of data with the Modulus value

Momentary Button

Output different values when the button is in the pressed or non-pressed state

Multiply

Multiplies the corresponding elements of two input signals

NCO

Numerically Controlled Oscillator - generates sinusoidal signals with frequencies governed by the amplitude of the input signal

Noise Generator

Generates a noise waveform with normal distribution

Not

Creates the logical opposite of the input signal.

Not Equal

Checks for Not Equal condition to control the block connected to this block

Notch Filter

Performs the notch filter

Numeric Indicator

Numeric display to display a single value

Octave Band Analyzer

Performs an octave band analysis on the input signal

Offset

Adds the element of channel 1 to each element of channel 0

Ones Complement

Performs ones complement bit conversion on each element of the input signal

Pad

Pads the output frame with the specified pad value

Peak Extractor

Finds peaks within a frame of data, either by position or magnitude

Peak Hold

Holds the peak value for each frame sample globally or for a number of frames

Periodogram

Calculates the periodogram of the input signal

Phase

Calculates the ArcTangent of both the real and imaginary component of the complex input

Phase Decoder

Decodes the phase angle into data bits

Phase Locked Loop

Used to effectively discriminate between a feedback frequency and the input signal

Polar to Rectangular

Converts polar to rectangular

Polynomial Fit

Performs a polynomial curve fit to the input data

Pow

Calculates the user specified exponent (power) value of the input signal

Power Spectrum

Performs an average in time across frames

PRN Generator

Generates a pseudo random noise waveform

Product

Outputs the product of all input frame samples

Pulse Train Generator

Generates a pulse train

Quantizer

Limits (quantizes) the number of bits of precision in the input signal

Ramp Generator

Generates a ramp waveform

Read Com Port

Reads the input data from the specified com port

Real to Complex

Converts real and imaginary values into the corresponding complex values

Reciprocal

Calculates the 1/x value for a data sample x

Rectangular to Polar

Converts rectangular to polar

Rectify

Performs either half or full wave rectification on the input signal

Replace Sample

Replaces sample with input value at specified index

Replace Subset

Replaces a subset of data at a specified location within a frame

Reverse

The Reverse block outputs the input data in reverse order.

RGB Display

Displays an image in RGB format

Root Mean Square

Calculates the frame root mean square of the input signal

Rotate

Rotates input frame data by specified number

Sample Rate

This block obtains the sample rate information from the input channel

Sample-and-Hold

Performs sample-and-hold based on the input sampling clock

Saramaki Window

Performs Saramaki windowing on the input signal

Sawtooth Generator

Generates a sawtooth signal

Scale

Multiplies or scales each element of channel 0 by the first value of channel 1

Schmidt Trigger

Schmidt Trigger

Scrolling Buffer

Buffers and scrolls input data

Search

Searches input data frame for specified value

Serial Command Receiver

Receives commands from serial port

Shift Left

Applies a user-specified left shift to each data value of the input frame

Shift Right

Applies a user-specified right shift to each data value of the input frame

Sign

Provides the arithmetic sign of the data, either +1, or -1.

Sinc(x)

Calculates the Sinc (sinx/x) value of the input signal

Sine Generator

Generates a sine waveform

Sine(x)

Calculates the sine value of the input signal

Single Channel Display

Displays input from a single channel in several different display modes

Sort

Sorts the input data of each frame

Sound Card A/D

Sound card A/D

Sound Card D/A

Sound Card D/A

Spectral Inversion

Performs a spectral inversion (flipping spectrum) in the time domain

Spectrogram

Displays input from a single channel using color denoting amplitude

Split

Splits input frame into two output frames

Square

Calculates the square of the input signal

Square Root

Calculates the square root of the input signal

Square Wave Generator

Generates a square wave

Static Array (buffer)

Array used for holding results and feeding other blocks (ignores Data Ready condition)

Strobe

Finds the amplitude of the signal at the given index (zero-based) within the frame

Subset

The Subset block outputs a subset of the input data.

Subtract

Subtracts the corresponding elements of channel 1 input from channel 0 input

Sum

Outputs the sum of the input data frame values

Sweep (Chirp) Generator

Generates a sweep (Chirp) waveform

Table Lookup

Performs a table lookup function

Tangent(x)

Calculates the tangent value of the input signal

Tap Weight Buffer

Filter Tap Weight Buffer for Adaptive Filtering

Terminate Block Diagram

Stops simulation at this block

Text Display

Text display block

Three Input Add

Adds the corresponding elements of three input signals

Three Position Toggle Switch

Three position vertical toggle switch

Threshold

Examines the input data and outputs zero if the data is not greater than the specified threshold

Time Sweep Control Knob

Time Sweep Control Knob

Timer

Generates a pulse or level change at a specified time interval

Toggle Button

User control button used to create an alternating 0/1 output value

Transfer Function

Performs the division of two frequency domain signals

Triangle Wave Generator

Generates a triangle waveform

Triggered Buffer

Buffers input data when the selected trigger criteria is met

Two Position Toggle Switch

Two position vertical toggle switch

u-255 Decode

Performs the u-255 decode function on the input signal

u-255 Encode

Performs the u-255 encode function

Variable Bandpass Filter

Performs the variable bandpass filter on the input signal

Variable Notch Filter

Variable Notch Filter

Variable Signal Generator

Generates a signal based on the given equation

Vertical Bar Chart

Vertical bar chart

Vertical Bar Graph

Graph data vertically

Vertical Scaling Knob

General knob used for vertical trace control, etc.

Vertical Slider

Vertical slider control

Virtual Delay

Initializes a recursive loop

Waveform Editor

Dynamically edit an incoming waveform

Welch Window

Performs Welch windowing on the input signal

Write Com Port

Sends the input data out of the specified port

XY Display

Displays two channel signals using two orthogonal axes

XY Display with Intensity

XY Display with an intensity value

Zero Crossing

Calculates the number of zero crossings in an input signal