(X)

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: 2018

وزارة التربية الوطنية امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

اختبار في مادة: الرياضيات الحدة: 03 سا و 30 د

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

التمرين الأول: (04 نقاط)

 $u_{n+1} = 1 - \frac{9}{u_n + 5}$: n عدد طبیعي $u_0 = 1$ عبد الأول $u_0 = 1$ عبد الأول عدد الأول عبد الأول

 $u_n > -2: n$ أ) برهن بالتراجع أنّه من أجل كل عدد طبيعي أ) أ) برهن بالتراجع أنّه من أجل

بين أن (u,) منتالية متناقصة تماما على N واستنتج أنها متقاربة.

 $v_n = \frac{1}{u_n + 2}$: n نضع من أجل كل عدد طبيعي (2

. أثبت أنَّ المتتالية (v_n) حسابية أساسها $\frac{1}{3}$ يطلب تعيين حدها الأول

 $\lim_{n\to +\infty} u_n$ و احسب ، u_n عبر بدلالة n عبر بدلالة عن v_n عبر بدلالة

 $u_0 v_0 + u_1 v_1 + \dots + u_n v_n = \frac{1}{3} (1 - n^2)$: n عدد طبیعي (4

التمرين الثاني: (04 نقاط)

يحوي صندوق 10 كريات متماثلة لا نفرق بينها باللمس، منها أربع كريات بيضاء مرقمة بـ: 1 ، 2 ، 2 ، 3 وثلاث كريات خضراء مرقمة بـ : 2 ، 2 ، 3 ، 3 ، 2

نسحب عشوائيا وفي أن واحد 3 كريات من هذا الصندوق.

نعتبر الحادثتين A: "الكريات الثلاث المسحوبة تحمل ألوان العلم الوطني"

و B: الكريات الثلاث المسحوبة لها نفس الرقم'.

ا الترثيب، P(A) و P(B) احتمالي الحادثتين P(B) و P(A) الترثيب،

 $P(A \cup B)$ و $P_A(B)$ ثم استنتج $P(A \cap B) = \frac{1}{20}$.

2) ليكن X المتغير العشوائي الذي يرفق بكل نتيجة عملية سحب عند الكربات التي تحمل رقما فرديا. عزف قانون الاحتمال للمتغير العشوائي X واحسب أمله الرباضياتي E(X).

التمرين الثالث: (05 نقاط)

 $z^2-\sqrt{3}\;z+1=0$: التالية تا المعادلة ذات المجهول z التالية الأعداد المركبة المعادلة ذات المجهول z

اخبار في مادة: الرياضيات / الشعبة: علوم غيريية / بكالوريا 2018

 $\left(O; \overrightarrow{u}, \overrightarrow{v}\right)$ that is a larger than the same of $\left(O; \overrightarrow{u}, \overrightarrow{v}\right)$

B، A و C ثلاث نقط من المستوي لاحقائها على الترتيب: برع، وتو صz حيث :

. OBC يُحقِّق انْ: $rac{z_B}{z_C} \equiv e^{irac{\pi}{3}}$ بخقِّق انْ: (3) يُحقِّق انْ:

ب) استنتج أنَّ: B هي صورة C بدوران r بطلب تعيين عناصره المميزة.

$$|z| = \left| \overline{z} - \frac{\sqrt{3} + i}{2} \right|$$
 نسمي (γ) مجموعة النفط M من المستوي ذات اللاحقة Z الني تحقق: (γ) مجموعة (γ) ثم عين صورتها بالدوران γ .

التمرين الرابع: (07 نقاط)

 $g(x)=2+(x-1)e^{-X}$. كما يلي: $\mathbb R$ كما يلي الدالة العددية المعرفة على $\mathbb R$

 $\lim_{x\to+\infty}g(x)=\lim_{x\to+\infty}g(x)$

ب) ادرس انجاه تغیر الدالة g ثم شكّل جدول تغیرانها.

 \mathbb{R} على g(x)=0 بين أنّ المعادلة g(x)=0 تغيل حلا رحيدا lpha حيث a حيث a جين أنّ المعادلة المعادل

المستوي تمثيلها البياني في المستوي $f(x)=2x+1-xe^{-x}: + \mathbb{R}$ تمثيلها البياني في المستوي $f(x)=2x+1-xe^{-x}$. المنسوب إلى المعلم المتعامد المتجانس (c_i,j) .

 $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) + \max \left(\mathbb{I} - \left(1 \right) \right)$

ب) نصب $\lim_{x\to \infty} (f(x)-(2x+1))$ مُم مُثر النثيجة بياتيا.

 $(\Delta): y = 2x+1$ خيث: $(\Delta): y = 2x+1$ ادرس الوضع النسبي للمنحني (C_f) والعمنقيم (Δ)

- 2) بین آنه من أجل كل عدد حقیقی X یكون g(x) = g(x) ثم استنج اتجاه نفیر الدائه f وشكل جدول تغیراتها.
 - .] اكتب معادلة المماس (T) للمتحتى (C_f) عند النقطة ذات الفاصلة (3)
 - . $\left(f(\alpha)=0.8\right)$ (نأخذ $\left(C_{f}\right)$ والمنحنى ($f(\alpha)=0.8$) ارسم (Δ)
- 5) نافش بيانيا وحسب قيم الوسيط الحقيقي m عدد وإشارة حلول المعادلة ذلت المجهول x = (1-m)e^x : x.
- . x=1 أي باستعمال المكاملة بالتجزئة عين الدالة الأصابية للدالة $x\mapsto xe^{-x}$ على \mathbb{R} والتي تتعدم من أجل أ
- x=1 به العدد A مساحة الحيز المستوي المحدّد بالمنحنى C_f والمستقيمات التي معادلاتها y=2x+1 . y=3

انتهى الموضوع الأول

اختبار في مادة: الرياضيات / الشعبة: علوم تجريبية / بكالوريا 2018

الموضوع الثاني

التمرين الأول: (04 نقاط)

$$u_{n+1} = u_n + \ln\left(\frac{2n+3}{2n+1}\right)$$
 : n عددیة عددیة معرفة کما یلي: $u_0 = 0$ و من أجل کل عدد طبیعي $u_n = 0$

- 1) احسب كلا من u, ، u, و u.
- (u_n) بَيْنَ أَنه مِنْ أَجِل كُلُ عدد طبيعي n: n > 1 ثم استنج اتجاء تغير المنتالية (2n
 - $v_n = 2n+1$: ب n بنتالية عددية معرفة من أجل كل عدد طبيعي n ب ب (3
 - $e'''^n = v_n$ ، n برهن بالتراجع أنه من أجل كل عدد طبيعي (أ
 - ، $\lim u_n$ عبارة الحد العام للمتتالية (u_n) بدلالة n ثم احسب (u_n)
 - 4) احسب المجموعين , 5 و T حيث:

$$T = e^{u_{1439}} + e^{u_{1449}} + ... + e^{u_{2018}}$$

$$S_n = \ln\left(\frac{v_1}{v_0}\right) + \ln\left(\frac{v_2}{v_1}\right) + ... + \ln\left(\frac{v_n}{v_{n-1}}\right)$$

التمرين الثاني: (04 نقاط)

 (P_i) والمستويين (A(1;-2;1) عثير النقطة ($O(\hat{i},\hat{j},\hat{k})$ والمستويين (A(1;-2;1) النفين معادلتيهما على الترتيب A(1;-2;1) و -x+y+2z+1=0 و -x+y+2z+1=0

- 1) اكتب تمثيلا وسيطيا للمستقيم (Δ) الذي يشمل النقطة A و (I;5;-2) شعاع توجيه له.
 - (Δ) بين أنّ المستوبين (P_1) و (P_2) متقاطعان ثم تحقق أن تقاطعهما هو المستقيم ((Δ)).
- ا كتب معادلة ديكارتية للمستوي (Q) الذي يشمل B(-1;4;0) ويعامد كلا من (P_2) و استنتج تقاطع المستويات الثلاثة (P_2) ، (P_1) و (P_2) ، (P_1) و المستويات الثلاثة (P_2) ، (P_2) و المستويات الثلاثة (P_2) و المستويات المستويات الثلاثة (P_2) و المستويات الثلاثة و المستويات المستويات المستويات المستويات المستويات الثلاثة و المستويات المستوي
 - 4 لتكن (E(2;3;-1) و E(2;3;-1) نقطتان من الفضاء.
 - . (P_1) هي المسقط العمودي للنقطة B على المستوي H
 - ب) حدّد طبيعة المثلث EBH ثم احسب V حجم رباعي الوجوه

التمرين الثالث: (05 نقاط)

- $(z 4 + i)(z^2 4z + 5) = 0$ المعادلة : $(z 4z + 1)(z^2 4z + 5) = 0$ المعادلة : $(z 4z + 1)(z^2 4z + 5) = 0$
- في المستوي المركب المنسوب إلى المعلم المتعامد المتجانس $(O; \vec{u}, \vec{v})$ نعتبر النقط B: A و C التي لاحقاتها C التي المستوي المركب المنسوب إلى المعلم المتعامد المتعامد المتجانس C و C و C التي لاحقاتها على الترتيب C التي C و C و C و C و C و C التي لاحقاتها على الترتيب المعلم المتعامد المتعام
 - رفا، تحقق أنّ $\frac{Z_B-Z_A}{Z_C-Z_A}$ ثم عيّن قيم العدد الطبيعي n بحيث يكون العدد $\left(\frac{Z_B-Z_A}{Z_C-Z_A}=i\right)$ تخيليا صرفا،

اختبار في مادة: الرياضيات / الشعبة: علوم تجريبية / بكالوريا 2018

$$\begin{cases} |z_D - z_A| = |z_B - z_A| \\ Arg\left(\frac{z_D - z_A}{z_B - z_A}\right) = \frac{\pi}{3} + 2k\pi \quad (k \in \mathbb{Z}) \end{cases}$$

$$\stackrel{\mathcal{Z}}{=} Z_D \text{ is the proof of } D \text{ (2)}$$

بيّن أن المثلث ABD. متقايس الأضلاع و احسب .2

A مركز ثقل المثلث ABD ثم عين نسبة وزاوية التشابه المباشر الذي مركزه A. D الى G

 $Arg\left(\frac{z_{G}-z}{z_{G}-z}\right)=\pi+2k\pi\;(k\in\mathbb{Z})$: بحيث (C) بحيث M ذات اللاحقة M ذات اللاحقة (D) بحيث (Arg $\left(\frac{z_{G}-z}{z_{G}-z}\right)=\pi+2k\pi\;(k\in\mathbb{Z})$

التمرين الرابع: (07 نقاط)

ب: g الدالة العددية ذات المتغير الحقيقي x المعرفة على g +0; ب

و $g(x) = \frac{1}{x} - (\ln x)^2 - \ln x - 1$ و $g(x) = \frac{1}{x}$ كما هو مبين في الشكل المقابل:

- احسب (1) ثم استنتج بیانیا إشارة (g(x)

 $0;+\infty$ الدالة العددية ذات المتغير الحقيقي x المعرفة على f -II ب: $f(x) = \frac{1 + \ln x}{1 + x \ln x}$ بنائي في مستو منسوب $(O; \vec{i}, \vec{j})$ wirelace that the last $(O; \vec{i}, \vec{j})$.

 $\lim_{x\to\infty} f(x) = 0$ و بين أنّ $\lim_{x\to\infty} f(x) = 0$ احسب (1) احسب النثيجتين بيانيا.

 $f'(x) = \frac{g(x)}{(1+x\ln x)^2}$:]0;+∞ من أجل كل $f'(x) = \frac{g(x)}{(1+x\ln x)^2}$ (1)

ب) استنتج اتجاه تغير الدالة f و شكل جدول تغيراتها.

بيّن أنّ $y = \left(\frac{e^2}{e-1}\right)x - \frac{e}{e-1}$ بيّن أنّ $y = \left(\frac{e^2}{e-1}\right)x$ هي معادلة لـ (3) مماس المنحنى (C_{i}) و المنحنى ((T) الغواصل، ثم ارسم المماس

عين بيانيا قيم الوسيط الحقيقي m بحيث تقبل المعادلة e-1) $f(x)=e^2x-me$ عين بيانيا قيم الوسيط الحقيقي

 (C_F) معدد طبيعي حيث n>1 مساحة الحيز من المستوي المحدد بحامل محور القواصل و المنحنى n>1x = n و المستقيمين اللذين معادلتيهما x = 1

 $I_n = \ln(1 + n \ln n)$: n > 1 حیث $n = \ln(1 + n \ln n)$ بین آنه من أجل كل عدد طبیعی n حیث n = 1

ادرس اتجاه تغیر المنتالیة ([1]).

انتهى الموضوع الثاني

 (C_{τ})