EE247 Lecture 22

ADC Converters

- Techniques to reduce flash ADC complexity (continued)
 - -Multi-Step ADCs
 - Two-Step flash
 - Pipelined ADCs
 - Effect of sub-ADC, sub-DAC, gain stage non-idealities on overall ADC performance
 - · Error correction by adding redundancy
 - · Digital calibration

EECS 247- Lecture 22

Pipelined ADCs

© 2008 H.K. Page 1

Two Stage Example

- · Use DAC to compute missing voltage
- · Add quantized representation of missing voltage
- Why does this help? How about ε_{a2} ?

EECS 247- Lecture 22

Pipelined ADCs

Two Stage Example

- Fine ADC is re-used 22 times
- Fine ADC's full scale range needs to span only 1 LSB of coarse quantizer

$$\varepsilon_{q2} = \frac{V_{ref2}}{2^2} = \frac{V_{ref1}}{2^2 \cdot 2^2}$$

EECS 247- Lecture 22

Pipelined ADCs

© 2008 H.K. Page 3

Residue or Multi-Step Type ADC Issues

- Operation:
 - Coarse ADC determines MSBs
 - DAC converts the coarse ADC output to analog- Residue is found by subtracting (V_{in} - V_{DAC})
 - Fine ADC converts the residue and determines the LSBs
 - Bits are combined in digital domain
- · Issue:
 - 1. Fine ADC has to have precision in the order of overall ADC 1/2LSB
 - Speed penalty →Need at least 1 clock cycle per extra series stage to resolve one sample

EECS 247- Lecture 22

Pipelined ADCs

Solution to Issue (1) Reducing Precision Required for Fine ADC

Advantages:

- Accuracy needed for fine ADC relaxed by introducing inter-stage gain
 - Example: By adding gain of x(G=2^{B1}=4) prior to fine ADC in (2+2)bit case, precision required for fine ADC is reduced from 4 to 2-bit only!
- Full-scale input same for both →coarse and fine ADC can be identical stages
- Same reference voltage used for all stage w/o need for scaling down of Vref

EECS 247- Lecture 22

Pipelined ADCs

© 2008 H.K. Page 5

Solution to Issue (2) Increasing ADC Throughput

- Conversion time significantly decreased by employing T/H between stages
 - All stages busy at all times → operation concurrent
 - During one clock cycle coarse & fine ADCs operate concurrently:
 - First stage samples/converts/generates residue of input signal sample # n
 - While 2nd stage samples/converts residue associated with sample # *n-1*

EECS 247- Lecture 22

Pipelined ADCs

Pipelined A/D Converters

- · Ideal operation
- · Errors and correction
 - Redundancy
 - Digital calibration
- Implementation
 - Practical circuits
 - Stage scaling

EECS 247- Lecture 22

Pipelined ADCs

© 2008 H.K. Page 7

Pipeline ADC Block Diagram

- Idea: Cascade several low resolution stages to obtain high overall resolution (e.g. 10bit ADC can be built with series of 10 ADCs each 1-bit only!)
- Each stage performs coarse A/D conversion and computes its quantization error, or "residue"
- · All stages operate concurrently

EECS 247- Lecture 22

Pipelined ADCs

Pipeline ADC Characteristics

- Number of components (stages) grows linearly with resolution
- Pipelining
 - Trading latency for resolution
 - Latency may be an issue in e.g. control systems
 - Throughput limited by speed of one stage → Fast
- Versatile: 8...16bits, 1...200MS/s
- One important feature of pipeline ADC: many analog circuit non-idealities can be corrected digitally

EECS 247- Lecture 22

Pipelined ADCs

© 2008 H.K. Page 9

Pipeline ADC Concurrent Stage Operation

- · Stages operate on the input signal like a shift register
- New output data every clock cycle, but each stage introduces at least ½ clock cycle latency

EECS 247- Lecture 22

Pipelined ADCs

Pipeline ADC Latency

Note: One conversion per clock cycle & 8 clock cycle latency

[Analog Devices, AD 9226 Data Sheet]

EECS 247- Lecture 22

Pipelined ADCs

© 2008 H.K. Page 11

Pipeline ADC Digital Data Alignment

Digital shift register aligns sub-conversion results in time

EECS 247- Lecture 22

Pipelined ADCs

Cascading More Stages

- · LSB of last stage becomes very small
- Impractical to generate several V_{ref}
- All stages need to have full precision

EECS 247- Lecture 22

Pipelined ADCs

© 2008 H.K. Page 13

- Advantageous for noise, matching (later), power dissipation

Pipeline ADC Errors

- Non-idealities associated with sub-ADCs, sub-DACs and gain stages → error in overall pipeline ADC performance
- · Need to find means to tolerate/correct errors
- Important sources of error
 - Sub-ADC errors- comparator offset
 - Gain stage offset
 - Gain stage gain error
 - Sub-DAC error

EECS 247- Lecture 22

Pipelined ADCs

© 2008 H.K. Page 17

Pipeline ADC Multi-Stage Model

$$D_{out} = V_{in,ADC} + \varepsilon_{ql} \left(1 - \frac{G_l}{G_{dl}} \right) + \frac{\varepsilon_{q2}}{G_{dl}} \left(1 - \frac{G_2}{G_{d2}} \right) + \frac{\varepsilon_{q(n-1)}}{\prod_{j=1}^{n-2} G_{dj}} \left(1 - \frac{G_{(n-1)}}{G_{d(n-l)}} \right) + \frac{\varepsilon_{qn}}{\prod_{j=1}^{n-1} G_{dj}}$$

EECS 247- Lecture 22

Pipelined ADCs

Pipeline ADC Model

• If the "Analog" and "Digital" gain/loss is precisely matched:

$$D_{out} = V_{in,ADC} + \frac{\varepsilon_{qn}}{\prod\limits_{j=1}^{n-1} G_j}$$

$$D.R. = 20 \log \frac{rms \ FS \ Signal}{rms \ Quant. \ Noise} = 20 \log \frac{\frac{V_{ref}}{2\sqrt{2}}}{\frac{V_{ref}}{\sqrt{12 \times 2^{B_n}} \prod_{i=1}^{n-1} G_j}} = 20 \log \left(\sqrt{\frac{3}{2}} \times 2^{B_n} \times \prod_{j=1}^{n-1} G_j \right)$$

$$\begin{split} B_{ADC} &\approx \log_2 \left(2^{B_n} \times \prod_{j=1}^{n-1} G_j \right) \\ B_{ADC} &\approx B_n + \log_2 \prod_{j=1}^{n-1} G_j = B_n + \sum_{j=1}^{n-1} \log_2 G_j \end{split}$$

EECS 247- Lecture 22

Pipelined ADCs

© 2008 H.K. Page 19

Pipeline ADC Observations

- The aggregate ADC resolution is independent of sub-ADC resolution!
- Effective stage resolution B_i=log₂(G_i)
- Overall conversion error does not (directly) depend on sub-ADC errors!
- Only error term in D_{out} contains quantization error associated with the last stage
- So why do we care about sub-ADC errors?
 Go back to two stage example

Pipeline ADC Three Ways to Deal with Errors

- All involve "sub-ADC redundancy"
- Redundancy in stage that produces errors
 - Choose gain for residue to be processed by the 2nd stage < 2^{B1}
 - Higher resolution sub-ADC & sub-DAC
- Redundancy in succeeding stage(s)

EECS 247- Lecture 22

Pipelined ADCs

© 2008 H.K. Page 23

(1) Inter-Stage Gain Following 1st Stage <2B1

- Choose G₁ less than 2^{B1}
- Effective stage resolution could become non-integer B_{1eff}=log₂G₁
- E.g. if G_1 =3.8 \rightarrow B_{1eff} =1.8bit

-Ref: A. Karanicolas et. al., JSSC 12/1993

EECS 247- Lecture 22

Pipelined ADCs

Redundancy

- The preceding analysis applies to any stage in an n-stage pipeline
- Can always perceive a multi-stage pipelined ADC as a single stage + backend ADC

EECS 247- Lecture 22

Pipelined ADCs

Redundancy

- In literature, sub-ADC redundancy schemes are often called "digital correction" – a misnomer!
- No error correction takes place
- We can tolerate sub-ADC errors as long as:
 - -The residues stay "within the box", or
 - Another stage downstream "returns the residue to "within the box" before it reaches last quantizer
- Let's calculate tolerable errors for popular "1.5 bits/stage" topology

EECS 247- Lecture 22

Pipelined ADCs

© 2008 H.K. Page 29

1.5 Bits/Stage Example

- Comparators placed strategically to minimize overhead
- G=2
- B_{eff}=log₂G=log₂2=1
- B=log₂(2+1)=1.589...
- 0.5bit→ redundancy

❖ Ref: Lewis et. al., JSSC 3/1992

EECS 247- Lecture 22

Pipelined ADCs

Pipeline ADC Errors

- Non-idealities associated with sub-ADCs, sub-DACs and gain stages → error in overall pipeline ADC performance
- · Need to find means to tolerate/correct errors
- Important sources of error
 - Sub-ADC errors- comparator offset
- Gain stage offset
 - Gain stage error
 - Sub-DAC error

EECS 247- Lecture 22

Pipelined ADCs

© 2008 H.K. Page 33

Inter-Stage Amplifier Offset

- Input referred converter offset usually no problem
- Equivalent sub-ADC offset accommodated through adequate redundancy

EECS 247- Lecture 22

Pipelined ADCs

Pipeline ADC Errors

- Non-idealities associated with sub-ADCs, sub-DACs and gain stages → error in overall pipeline ADC performance
- Need to find means to tolerate/correct errors
- Important sources of error
 - Sub-ADC errors- comparator offset
 - Gain stage offset
- Gain stage gain error
 - Sub-DAC error

EECS 247- Lecture 22

Pipelined ADCs

© 2008 H.K. Page 35

Gain Stage Gain Error

$$\begin{split} D_{out} &= V_{in,ADC} + \varepsilon_{q1} \bigg(1 - \frac{G_1 + \delta}{G_{d1} + \delta} \bigg) \\ &+ \frac{\varepsilon_{q2}}{G_{d1}} \bigg(1 - \frac{G_2}{G_{d2}} \bigg) + \ldots + \underbrace{\prod_{i=1}^{n-2} G_{dj}}_{I} \bigg(1 - \frac{G_{(n-1)}}{G_{d(n-1)}} \bigg) + \underbrace{\prod_{i=1}^{n-1} G_{dj}}_{I} \end{split}$$

→ Small amount of gain error can be tolerated

EECS 247- Lecture 22

Pipelined ADCs

Gain Stage Gain Inaccuracy

- Gain error can be compensated in digital domain – "Digital Calibration"
- Problem: Need to measure/calibrate digital correction coefficient
- Example: Calibrate 1-bit first stage
- · Objective: Measure G in digital domain

EECS 247- Lecture 22

Pipelined ADCs

Gain Stage Inacurracy Calibration – Evaluate

 To minimize the effect of backend ADC noise → perform measurement several times and take the average

EECS 247- Lecture 22

Pipelined ADCs

Accuracy Bootstrapping

$$D_{out} = V_{in,ADC} + \mathcal{E}_{q1} \left(1 - \frac{G_1}{G_{d1}} \right) + \underbrace{\mathcal{E}_{q2}}_{G_{d1}} \left(1 - \frac{G_2}{G_{d2}} \right) + \dots + \underbrace{\mathcal{E}_{q(n-1)}}_{j=1} G_{dj} \left(1 - \frac{G_{(n-1)}}{G_{d(n-1)}} \right) + \underbrace{\mathcal{E}_{qn}}_{j=1} G_{dj} \left(1 - \frac{G_$$

· Highest sensitivity to gain errors in front-end stages

EECS 247- Lecture 22

Pipelined ADCs

© 2008 H.K. Page 43

"Accuracy Bootstrapping"

Ref

A. N. Karanicolas et al. "A 15-b 1-Msample/s digitally self-calibrated pipeline ADC," $\it IEEE J. Of Solid-State Circuits, pp. 1207-15, Dec. 1993$

E. G. Soenen et al., "An architecture and an algorithm for fully digital correction of monolithic pipelined ADCs," TCAS II, pp. 143-153, March 1995

L. Singer et al., "A 12 b 65 MSample/s CMOS ADC with 82 dB SFDR at 120 MHz," /SSCC 2000, Digest of Tech. Papers., pp. 38-9 (calibration in opposite direction!)

EECS 247- Lecture 22

Pipelined ADCs

Pipeline ADC Errors

- Non-idealities associated with sub-ADCs, sub-DACs and gain stages → error in overall pipeline ADC performance
- · Need to find means to tolerate/correct errors
- Important sources of error
 - Sub-ADC errors- comparator offset
 - Gain stage offset
 - Gain stage error
- → Sub-DAC error

EECS 247- Lecture 22

Pipelined ADCs

© 2008 H.K. Page 45

DAC Errors

- · Can be corrected digitally as well
- · Same calibration concept as gain errors
 - → Vary DAC codes & measure errors via backend ADC

EECS 247- Lecture 22

Pipelined ADCs

DAC Calibration - Step 1

• $\varepsilon_{DAC}(0)$ equivalent to amp. offset \rightarrow ignore

EECS 247- Lecture 22

Pipelined ADCs

© 2008 H.K. Page 47

DAC Calibration – Step 2...2^{B1}

- Stepping through DAC codes 1...2^(B1-1) yields all incremental correction values
- Measurements repeated and averages to account for variance associated with noise

EECS 247- Lecture 22

Pipelined ADCs

Pipeline ADC Example: Calibration Hardware

 Above block diagram may seem extensive nowever, in current fine-line CMOS technologies digital portion of a pipeline ADCs consume insignificant power and area compared to the analog sections

Ref: E. G. Soenen et al., "An architecture and an algorithm for fully digital correction of monolithic pipelined ADCs," TCAS II, pp. 143-153, March 1995

EECS 247- Lecture 22

Pipelined ADCs

© 2008 H.K. Page 49

Pipelined ADC Error Correction/Calibration Summary

Error	Correction/Calibration
$\varepsilon_{ADC}, V_{os}$	Redundancy either same stage or next stage
$arepsilon_{gain}$	Digital adjustment
ϵ_{DAC}	Either sufficient component matching or digital calibration
Inter-stage amplifier non-linearity	?

EECS 247- Lecture 22

Pipelined ADCs

Inter-stage Gain Nonlinearity

- · Invert gain stage non-linear polynomial
- Express error as function of V_{RES1}
- · Push error into digital domain through backend

Ref: B. Murmann and B. E. Boser, "A 12-b, 75MS/s Pipelined ADC using Open-Loop Residue Amplification," ISSCC Dig. Techn. Papers, pp. 328-329, 2003

EECS 247- Lecture 22

Pipelined ADCs

© 2008 H.K. Page 51

Inter-stage Gain Nonlinearity

- Pre-computed table look-up
- p₂ continuously estimated & updated (account for temp. & other variations)

Ref: B. Murmann and B. E. Boser, "A 12-b, 75MS/s Pipelined ADC using Open-Loop Residue Amplification," ISSCC Dig. Techn. Papers, pp. 328-329, 2003

EECS 247- Lecture 22

Pipelined ADCs

Inter-stage Gain Nonlinearity Compensation Proof of Concept Evaluation Prototype

- Re-used 14-bit ADC in 0.35µm from Analog Devices [Kelly, ISSCC 2001]
- Modified only 1st stage with 3-b_{eff} → open-loop amplifier built with simple diff-pair + resistive load instead of the conventional feedback around high-gain amp
- Conventional 9-b_{eff} backend, 2-bit redundancy in 1st stage
- Real-time post-processor off-chip (FPGA)

Ref: B. Murmann and B. E. Boser, "A 12-b, 75MS/s Pipelined ADC using Open-Loop Residue Amplification," ISSCC Dig. Techn. Papers, pp. 328-329, 2003

EECS 247- Lecture 22

Pipelined ADCs

