I Derivation

Soit f une fonction dérivable sur un intervalle l' et f' sa fonction dérivée

Fonction f	Dérivée f'		
ax + b	а		
X ²	2x		
X 3	3x²		
x ⁿ	n x ⁿ⁻¹		
$\frac{1}{x}$	$\frac{-1}{x^2}$		
$\frac{1}{x^n}$	$\frac{-n}{x^{n+1}}$		
\sqrt{x}	$\frac{1}{2\sqrt{x}}$		

Ex:
$$(4x-1)' = 4$$

Ex: $(x^5)' = 5x^4$
Ex: $(\frac{9}{x})' = -(\frac{9}{x^2})$

Soient u et v deux fonctions définies sur I

Fonction	Dérivée		
k x u	K x u'		
u x v	u' x v + u x v'		
<u>u</u>	$u'v-uv^2$		
v	v ²		
<u>1</u>	$\frac{-v'}{v^2}$		
v	v^2		
u ⁿ	$nx u'x u^{n-1}$		

Exemples:

Calculer les dérivées des fonctios suivantes :

$$F1(x) = 7x^5-4x^3+12x^2-9x+4$$

2) Equation de la tangente à une courbe Cf en un point x =a

Exemple:

On considère la fonction f définie sur IR pour :

 $F(x) = x^2 + 1$

Cf est la courbe représentative de f :

<u>Tableau de valeur</u>:

х	-2	-1	0	1	2
F(x)	5	2	1	2	5

Signe de Δ	$\Delta = 0$		
Solutions de $ax^2 + bx + c = 0$	$x_0 = \frac{-b}{2a}$		
Forme factorisée de f	$a(x-x_2)^2$		
Intersection de la parabole représentant f avec l'axe des abscisses (si a>0)	→ → → → → → → → → → → → → → → → → → →		
Intersection de la parabole représentant f avec l'axe des abscisses (si a<0)			

<u>Définition</u>: La tangente à Cf au point d'abscisse x=a

Est la droite passant par A (a; f(a))

Et de coefficient directeur f'(a)

Son équation est (T): y = f'(a)(x-a)+f(a)

Dans l'exemple :

L'équation de la tangente à Cf x = 1 c'est-à-dire : A (1, f(1)) est :

$$(T) = y = f'(1)(x-1)+f(1)$$

F'(1) est le coefficient directeur de (T) à Cf en x = 1

$$F'(x) = 2x$$

$$F'(1) = 2 \times 1 = 2$$

$$F(1) = 1^2 + 1 = 2$$

Donc (T) devient:

$$G=2(x-1)+2$$

$$G=2x-2+2$$

$$(T) = y = 2x$$

Exemple:

On considère la fonction g définie sur IR pour :

$$G(x) = x^2 - 3x + 2$$

Cf est la courbe représentative de g : Le sommet S a pour abscise $xs = \frac{b}{2q} = \frac{-(-3)}{2} = 1,5$

х	-1	0	1	1,5	2	3	4
F(x)	6	2	0	-2,25			

$$G(-1) = (-1)^2 - 3x(-1,5)^2 - 3 \times 1,5 + 2 = -2,25$$

$$G(1) = 1^2 - 3x1 + 2 = 0$$

Déterminer l'équation de la tangente (T) à la courbe Cg

Ex x = 3 (c'est-à-dire au point A(3; f(3))

$$(T) = g = g'(3)(x-3) + g(3)$$

$$G(3) = 3^2 - 3x3 = 2 = 2$$

$$G'(x) = 2x-3$$

$$G'(3) = 2x3-3=3$$

Donc le tangente x=3 à Cj est :

$$(T): y = 3(x-3)+2$$

$$Y=3x-9+2$$

(T)
$$y = 3x-7$$

3) Lien entre le sens de variation et la signe de la dérivée

La fonction f est définie et dérivable sur R(ou R*...)

La fonction f est croissante si f'(x) > o

La fonction f est décroissante si f'(x) < o

La fonction f est constante si f'(x) = o

Remarque: Lorsque la fonction n'est pas constante f(x) = k

$$Ex : f(x) = x^2 + 2$$

F'(x) = o sert à débrancher les extrémums de la fonction f