ELE 606 2024.1 – Prof. José Alfredo F. Costa – Unid. 3

ELE 606 2024 - 3ª Unidade

Projetos de Classificação de Texto com NLP e Machine Learning

Introdução

Este documento orienta os projetos de classificação de texto utilizando Processamento de Linguagem Natural (NLP) e Machine Learning (ML). O foco será em explorar diversas bases de dados, entender o contexto de cada uma e aplicar técnicas avançadas para resolver problemas de classificação de texto do mundo real.

Estrutura Geral dos Projetos

Cada projeto seguirá esta estrutura geral:

- 1. Coleta e pré-processamento de dados
- 2. Exploração e análise dos dados
- 3. Implementação de um modelo baseline
- 4. Implementação de modelos avançados usando LLMs
- 5. Avaliação e comparação de modelos
- 6. Análise de resultados e conclusões

Lista de Projetos e Bases de Dados

1. Coronavirus Tweets NLP - Text Classification

- o Fonte: Kaggle Coronavirus Tweets NLP Text Classification
- Descrição: Contém tweets relacionados ao coronavírus para classificação de texto.
- Objetivo: Classificar tweets em categorias relacionadas ao COVID-19 ou análise de sentimentos.
- o Métricas: Acurácia, F1-score, Matriz de Confusão
- o Modelos: NLTK, Langchain com GPT, Llama

2. Ecommerce Text Classification

- o Fonte: Kaggle Ecommerce Text Classification
- Descrição: Dados de texto relacionados a transações de comércio eletrônico.
- Objetivo: Classificar produtos em categorias ou analisar sentimentos de avaliações.
- o Métricas: Precisão, Recall, AUC-ROC
- o Modelos: Naive Bayes, Langchain com BERT, Llama

3. Hierarchical Text Classification

- o Fonte: Kaggle Hierarchical Text Classification
- o **Descrição**: Conjunto de dados para classificação de texto hierárquica.
- o **Objetivo**: Classificar documentos em categorias hierárquicas.

- o **Métricas**: Acurácia hierárquica, F1-score ponderado
- o Modelos: SVM, Langchain com RoBERTa, Llama

4. Spam Text Message Classification

- o Fonte: Kaggle Spam Text Message Classification
- o **Descrição**: Mensagens de texto rotuladas como spam ou não-spam.
- o **Objetivo**: Detectar spam em mensagens de texto.
- o Métricas: Precisão, Recall, F1-score
- Modelos: Logistic Regression, Langehain com DistilBERT, Llama

5. Text Classification Documentation

- o **Fonte**: Kaggle Text Classification Documentation
- Descrição: Documentos de texto variados para classificação.
- o **Objetivo**: Classificar diferentes tipos de documentos.
- o **Métricas**: Acurácia, Kappa de Cohen
- o Modelos: Random Forest, Langchain com ALBERT, Llama

6. Legal Citation Text Classification

- o Fonte: Kaggle Legal Citation Text Classification
- o **Descrição**: Citações legais para classificação de texto.
- o **Objetivo**: Classificar e analisar citações em documentos jurídicos.
- o Métricas: Precisão, Recall, F1-score
- o Modelos: XGBoost, Langchain com T5, Llama

7. BBC Full Text Document Classification

- o Fonte: Kaggle BBC Full Text Document Classification
- o **Descrição**: Documentos de texto completos da BBC.
- o **Objetivo**: Classificar notícias por categoria.
- o Métricas: Acurácia, F1-score macro
- o Modelos: CNN, Langchain com ELECTRA, Llama

8. Text Document Classification Dataset

- o Fonte: Kaggle Text Document Classification Dataset
- o **Descrição**: Conjunto de dados de documentos de texto variados.
- o **Objetivo**: Classificar documentos em diferentes categorias.
- o Métricas: Acurácia balanceada, Matthews Correlation Coefficient
- o Modelos: LSTM, Langchain com XLNet, Llama

9. Medical Text Dataset - Cancer Doc Classification

- o Fonte: Kaggle Medical Text Dataset Cancer Doc Classification
- o Descrição: Documentos médicos relacionados ao câncer.
- o **Objetivo**: Classificar documentos médicos por tipo de câncer.
- o Métricas: Precisão, Recall, F1-score por classe
- Modelos: Bi-LSTM, Langchain com BART, Llama

10. Email Spam Text Classification Dataset

- o Fonte: Kaggle Email Spam Text Classification Dataset
- o **Descrição**: E-mails rotulados como spam ou não-spam.
- o **Objetivo**: Detectar spam em e-mails.
- o Métricas: AUC-ROC, Precisão, Recall
- o Modelos: FastText, Langchain com DistilGPT-2, Llama

11. SMS Spam Collection (Text Classification)

- Fonte: Kaggle SMS Spam Collection (Text Classification)
- Descrição: Coleção de mensagens SMS rotuladas como spam ou nãospam.
- o **Objetivo**: Detectar spam em mensagens SMS.
- o Métricas: Acurácia, F1-score, Precisão

o Modelos: Transformer, Langchain com ALBERT, Llama

12. Dataset Text Document Classification

- o Fonte: Kaggle Dataset Text Document Classification
- Descrição: Conjunto de dados de documentos de texto para classificação.
- o **Objetivo**: Classificar documentos por categoria.
- o Métricas: Acurácia, F1-score ponderado, Log Loss
- Modelos: BERT, Langchain com T5, Llama

13. The Social Dilemma Tweets - Text Classification

- o Fonte: Kaggle The Social Dilemma Tweets Text Classification
- o **Descrição**: Tweets relacionados ao documentário "The Social Dilemma".
- Objetivo: Analisar sentimentos ou classificar tópicos relacionados ao documentário.
- o Métricas: Acurácia, F1-score, AUC-ROC
- o Modelos: RoBERTa, Langchain com GPT, Llama

14. BBC Full Text Document Classification (Repetido)

- o Fonte: Kaggle BBC Full Text Document Classification
- o **Descrição**: Documentos de texto completos da BBC para classificação.
- o **Objetivo**: Classificar notícias por categoria.
- o Métricas: Acurácia, F1-score macro, Kappa de Cohen
- o Modelos: XLNet, Langchain com ELECTRA, Llama

15. Text Classification on Emails

- o Fonte: Kaggle Text Classification on Emails
- o **Descrição**: E-mails variados para classificação de texto.
- o **Objetivo**: Classificar e-mails por categorias específicas.
- o Métricas: Precisão, Recall, F1-score por classe
- o Modelos: ALBERT, Langchain com T5, Llama

Passos Detalhados para os Projetos

1. Coleta e pré-processamento de dados

- o Baixar o conjunto de dados especificado
- Realizar limpeza de texto (remover pontuação, converter para minúsculas, etc.)
- o Tokenização e remoção de stopwords
- o Dividir os dados em conjuntos de treinamento, validação e teste

2. Exploração e análise dos dados

- Análise estatística básica (contagem de classes, comprimento dos textos, etc.)
- Visualização da distribuição de classes
- o Análise de frequência de palavras
- o Identificação de padrões ou características importantes nos dados

3. Implementação de um modelo baseline

- o Usar técnicas clássicas de NLP (bag-of-words, TF-IDF)
- Implementar um modelo simples (por exemplo, Naive Bayes ou Logistic Regression)
- Avaliar o desempenho do modelo baseline usando as métricas especificadas

4. Implementação de modelos avançados usando LLMs

- Usar Langchain para integrar modelos pré-treinados (como GPT, BERT, RoBERTa)
- o Implementar fine-tuning ou transfer learning conforme necessário
- o Experimentar com diferentes arquiteturas e hiperparâmetros
- o Implementar um modelo usando Llama e comparar com os outros

5. Avaliação e comparação de modelos

- o Avaliar todos os modelos usando as métricas especificadas
- o Realizar validação cruzada para obter resultados mais robustos
- o Comparar o desempenho dos diferentes modelos
- Analisar casos de erro e identificar pontos fortes e fracos de cada abordagem

6. Análise de resultados e conclusões

- o Interpretar os resultados obtidos
- o Discutir as vantagens e desvantagens de cada abordagem
- o Propor melhorias ou direções futuras para o projeto
- o Preparar uma apresentação ou relatório final

Pontos Adicionais para Discussão

- Ética e Viés: Discuta a importância de considerar questões éticas ao trabalhar com esses conjuntos de dados, especialmente aqueles que lidam com conteúdo sensível.
- 2. **Pré-processamento**: Enfatize a importância do pré-processamento de dados e como diferentes técnicas podem afetar o desempenho do modelo.
- 3. **Escolha do Modelo**: Discuta as vantagens e desvantagens de usar modelos prétreinados versus treinar modelos do zero para tarefas específicas.
- 4. **Avaliação de Modelos**: Explique a importância de usar múltiplas métricas de avaliação e como interpretar os resultados.
- 5. **Otimização de Hiperparâmetros**: Introduza o conceito de otimização de hiperparâmetros e como isso pode melhorar o desempenho do modelo.
- 6. **Interpretabilidade**: Discuta a importância da interpretabilidade do modelo, especialmente em aplicações do mundo real.
- 7. **Desafios Específicos**: Para cada conjunto de dados, discuta os desafios específicos que os alunos podem encontrar (por exemplo, desequilíbrio de classes, dados ruidosos, etc.).
- 8. Extensões do Projeto: Sugira maneiras de expandir cada projeto, como incorporar análise de sentimentos em várias línguas ou combinar múltiplos conjuntos de dados.

Conclusão

Estes projetos proporcionarão uma experiência prática abrangente com técnicas de NLP e machine learning, permitindo aos alunos enfrentar desafios reais de classificação de texto e explorar diversas aplicações práticas. Ao trabalhar com diferentes conjuntos de dados e implementar vários modelos, os alunos ganharão uma compreensão profunda dos desafios e oportunidades no campo de NLP e aprendizado de máquina.