Matemática IV-2023

TP4 - Relaciones entre conjuntos

- 1. Sean los conjuntos $A = \{1, 0, -1\}$ y $B = \{2, 3, 1\}$. Decide si las siguientes corresponden a relaciones de A en B. Justifica.
 - (a) $R = \{(1; 2), (0; 3)\}$
 - (b) $R = \{(-1, 1), (-1, 2), (-1, 3)\}$
 - (c) $R = \{(3;1)\}$
 - (d) $R = \emptyset$
- 2. Sea $A=\{-3,-2,-1,0,1,2,3\},\,B=Z$ y la relación de A en B que viene definida en la forma: xRy si y sólo si y es el cuadrado de x.

Escribe R por extensión. Define R^{-1} por comprensión y por extensión.

- 3. Sean los conjuntos $A=\{a,b,c,d,e\}$, $V=\{vocales\}$ y $B=\{1,2,3\}$. Decide si las siguientes corresponden a relaciones. Justifica.
 - (a) $R = \{(a, a, a); (a, b, c); (b, c, d)\}\$ en $A \times A \times A$
 - (b) $R = \{(a, a, a); ((c, e, 2); (a, b, 1)\} \text{ en } A \times V \times B$
 - (c) $R = \{(a, b, 1); (e, c, 2) : (i, j, 3)\}$ en $V \times A \times B$
 - (d) $R = \{(a, z, 3); ((b, i, 2); (c, x, 1))\}$ en $A \times V \times B$
- 4. Sea $A = \{1,2,3\}$ y la relación R en $A \times A \times A$ definida en la forma: $(x,y,z) \in R$ si y sólo si x < y & y < z. Escribe R por extensión
- 5. Para cada una de las siguientes relaciones: dar tres pares que pertenezcan y tres pares que no; indicar si son reflexivas, simétricas, antisimétricas, y/o transitivas.
 - (a) En el conjunto de los números reales
 - xRy si y sólo si $x \ge 4$ & $y \ge 5$.
 - xRy si y sólo si $y \le x \le y + 3$.
 - (b) Sean $A = \{1, 2, 3, 4\}$ y P(A) el conjunto de partes de A
 - en P(A), XRY si y sólo si $X \cap Y = \emptyset$
 - \bullet en P(A), XRYsi y sólo si $X\subset Y$

- 6. Determinar si las siguientes relaciones definidas en $A = \{a, b, c, d\}$ son reflexivas, simétricas, antisimétricas y transitivas:
 - $R_0 = \emptyset$
 - $R_1 = \{(a, a); (a, b); (b, a); (c, d)\}$
 - $R_2 = \{(a, a); (b, b); (b, c); (c, b); (d, d); (c, c)\}$
 - $R_3 = \{(a, a); (a, b); (b, a); (b, c); (c, b); (b, b)\}$
 - $R_4 = A \times A$
- 7. Escribir la matriz y los digrafos asociados a las relaciones anteriores
- 8. Sea $A = \{a, b, c\}$
 - (a) Dar un ejemplo de una relación R no reflexiva en A
 - (b) Dar un ejemplo de una relación R simétrica en A
 - (c) Dar un ejemplo de una relación R no transitiva en A
 - (d) Dar un ejemplo de una relación R no simétrica en A
 - (e) Dar un ejemplo de una relación R antisimétrica en A
- 9. Demostrar que si R es simétrica y transitiva y aRb para ciertos a y b, entonces aRa y bRb.
- 10. Sea A un conjunto arbirtario. Sea $R=\Delta_A$ (diagonal de A) . Analizar qué propiedades tiene R.
- 11. Proponer una relación en el conjunto de los números naturales. Mostrar que propiedades tiene (reflexividad, simetría, etc...)
- 12. Proponer una relación en el conjunto de los *alumnos de Informática*. Mostrar que propiedades tiene (reflexividad, simetría, etc...)
- 13. Dada una relación binaria R sobre un conjunto A, se define la relación complemento de R, \bar{R} por: $a\bar{R}b$ si y sólo si a no está relacionada con b por R
 - $\bullet\,$ Dar un ejemplo de una relación R y su complemento
 - Probar que si $R \subset S$ entonces $\bar{S} \subset \bar{R}$
- 14. Dada R una relación binaria sobre A, probar que:
 - (a) R es reflexiva si y sólo si R^{-1} también lo es
 - (b) R es simétrica si y sólo si $R^{-1} = R$
 - (c) R es simétrica si y sólo si R^{-1} y \bar{R} también lo son
 - (d) R es antisimétrica si y sólo si $R \cap R^{-1} \subset \Delta_A$

- 15. Sean R y S dos relaciones en A. Probar que:
 - (a) Si $R \subset S$ entonces $R^{-1} \subset S^{-1}$
 - (b) Si R y S son reflexivas entonces $R \cup S$ y $R \cap S$ también lo son
 - (c) Si R y S son simétricas entonces $R \cup S$ y $R \cap S$ también lo son
- 16. Establecer las propiedades de las siguientes relaciones en ${\cal H}$ el conjunto de los seres humanos:
 - (a) Sea R la relación en H definida por xRy si y sólo si x es hermano de y
 - (b) Sea R la relación en H definida por xRy si y sólo si x es hijo de y
 - (c) Se dice que una persona a es descendiente de una persona b si es hijo, nieto, bisnieto, etc..
 - R es la relación en H definida por xRy si y sólo si x es descendiente de y
- 17. Establecer las propiedades de las siguientes relaciones:
 - (a) Sea N el conjunto de los números naturales. Sea \leq la relación en N dada por $x \leq y$ si y sólo si x es menor o igual a y
 - (b) Sea N el conjunto de los números naturales. Sea | la relación en N dada por x|y si y sólo si x divide a y
 - (c) Igual al anterior pero en el conjunto de los enteros.
- 18. Dado un conjunto de números reales A probar que la relación sobre $A \times A$ dada por (a,b)R(c,d) si y sólo si $a \le c$ y $b \le d$ es un orden. Es total?
- 19. Analizar que tipo de orden es el usual en el conjunto de los números rales. ¿qué pasa con los números complejos?¿están ordenados?
- 20. Probar que el orden lexicográfico es un orden total
- 21. Sea $S = \{a, b, c\}$ y sea A = P(S) el conjunto de partes de S. Mostrar que A está parcialmente ordenado por el orden \subset (inclusión de conjuntos). Hallar el diagrama de Hasse.
- 22. Sea $D_{12}=\{1,2,3,4,6,12\}$ (el conjunto de los divisores de 12). Hallar el diagrama de Hasse de D_12 con la relación "divide"

23. Describa las parejas ordenadas por las relaciones de cada uno de los siguientes diagramas de Hasse. Determinar, si existen, los elementos máximo, mínimo y cotas inferiores y superiores

- 24. Considerar el conjunto parcialmente ordenado L=(N,|) (los naturales con el orden "divide"). Mostrar L es un reticulado.
- 25. Sea R una relación de equivalencia en un conjunto no vacío A. Seam $a.b \in A$, entonces [a] = [b] si y sólo si aRb
- 26. Determinar si cada una de las siguientes colecciones de conjuntos es una partición para el conjunto $A=\{1,2,3,4,5,6,7,8\}$
 - {{4,5,6}; {1,8}; {2,3,7}}
 - {{4,5}; {1,3,4}; {6,8}; {2,7}}
 - {{1,3,4,7}; {2,6}; {5,8}}
- 27. Considerando el conjunto A de los alumnos que cursan Mate 4, indicar cuáles de las siguientes son particiones de A.
 - (a) $P = \{\{alumnos\ que\ aprobaron\ CADP\}; \{alumnos\ que\ aprobaron\ Organización\}; \{alumnos\ que\ no\ aprobaron\ ISO\ ni\ Redes\}\}$
 - (b) $P = \{\{alumnos \ que \ realizaron \ las \ dos \ entregas\}; \{alumnos \ que \ s\'olo \ realizaron \ la \ entrega \ 2\}; \{alumnos \ que \ no \ ninguna \ entrega\}\}$
 - (c) $P = \{\{alumnos\ que\ est\'an\ cursando\ Ciberseguridad\}; \{alumnos\ que\ cursan\ Sistemas\ y\ Organizaciones\}; \{alumnos\ que\ est\'an\ cursando\ L\'ogica\ e\ Inteligencia\ Artificial\}\}$
- 28. Sean $A = \{1, 2, 3, 4\}$ y $R = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4)\}$. Mostrar que R es una relación de equivalencia y hallar las clases de equivalencia. ¿ Cuál es la partición que induce R sobre A?

- 29. Dados el conjunto $A=\{a,b,c,d,e\}$ y una partición $P=\{\{a,b\};\{c,d\};\{e\}\}$. Escribir por extensión la relación de equivalencia sobre A inducida por P.
- 30. Sean $A = \{1, 2, 3, 4, 5, 6\}$ y $R = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4), (4, 5), (5, 4), (5, 5), (6, 6)\}$. Mostrar queR es una relación de equivalencia y determinar las clases $\bar{1}, \bar{2}$ y $\bar{3}$. $\bar{2}$ Qué partición de A induce R?

Ejercicios Adicionales

- 1. Para evitar corazones rotos por amores no correspondidos, ¿cómo debería ser la relación xRy si y sólo si x ama a y definida en el conjunto de los seres humanos?
- 2. Se dice que una relación R sobre un conjunto A es asimétrica si cada vez que a está relacionado con b no se da que b esté relacionado con a Dar un ejemplo de una relación asimétrica
- 3. Probar que dada una relación R sobre un conjunto $A,\ R$ es asimétrica si y sólo si $R\cap R^{-1}=\emptyset$
- 4. Escribir un código que dado un conjunto y una relación, determinar si la relación cumple con las propiedades de simetría, reflexividad, transitividad y antisimetría
- 5. Analizar si es un orden parcial la relación sobre los números enteros dada por:

$$aRb$$
 si y sólo si $a^2 \le b^2$

- 6. Dados dos relaciones de orden R y S, analizar si $R \cup S$ y $R \cap S$ también lo son
- 7. Para cada una de las siguientes relaciones: demostrar si es de equivalencia y en caso afirmativo dar 3 elementos de $\overline{(3,4)}$ (la clase del (3,4)); si la relación no es de equivalencia, dar un contraejemplo de alguna de las propiedades.
 - (a) $A = N \times N$, $(a, b) \sim (c, d)$ si y sólo si a.d = b.c
 - (b) $A = N \times N$, $(a,b) \sim (c,d)$ si y sólo si a + c = b + d
 - (c) $A=Z, \quad a\sim b \quad si\ y\ s\'olo\ si\ a\ a$ $b\ es\ m\'altiplo\ de\ 4$

¿alguna te resulta familiar?

- 8. Mostrar que toda Algebra de Boole finita es un reticulado.
- 9. Sea B un algebra booleana y sea < la relación binaria definida por "a < b si y sólo si ainfb = a" Demostrar que < es un orden parcial.
- 10. Sea A el conjunto de las palabras de longitud 8 del alfabeto $\{0,1\}$. Mostar que la relación R dada por "aRb si y sólo si a tiene el mismo número de 1 que b" es una equivalencia. Encontrar la partición inducida por la relación.