L	by Blechturm, Page 1 of 2
	Shahishi asl madala
•	Statistical models
	$E, \{P_{\theta}\}_{\theta \in \Theta}$
E :	is a sample space for X i.e. a

tributions on E.

 $\Theta \subset \mathbb{R}^d$, for some $d \ge 1$.

1.1 Identifiability

Capstone-Cheatsheet Statistics 1

 $\{\mathbb{P}_{\theta}\}_{\theta\in\Theta}$ is a family of probability dis-

⊖ is a parameter set, i.e. a set consis-

 θ is the true parameter and unknown.

In a parametric model we assume that

 $\theta \neq \theta' \Rightarrow \mathbb{P}_{\theta} \neq \mathbb{P}_{\theta'}$

 $\mathbb{P}_{\alpha} = \mathbb{P}_{\alpha'} \Rightarrow \theta = \theta'$

ting of some possible values of Θ .

contains all possible outcomes of XVariance of the Mean:

$$Var(\overline{X_n}) = (\frac{\sigma^2}{n})^2 Var(X_1 + X_2, ..., X_n)$$

 $\frac{\sum X_{i=1}^n - n\mu}{\sqrt{(n)\sqrt{(\sigma^2)}}} \xrightarrow[n \to \infty]{(d)} N(0,1)$

Expectation of the mean: $E[\overline{X_n}] = \frac{1}{n} E[X_1 + X_2, ..., X_n]$

$$= u$$
.

4 Quantiles of a Distribution Let
$$\alpha$$
 in $(0,1)$. The quantile of order $1-\alpha$ of a random variable X is the

 $\mathbb{P}(X \le q_{\alpha}) = q_{\alpha} = 1 - \alpha$

 $F_X(q_\alpha) = 1 - \alpha$

 $\mathbb{P}(X \ge q_{\alpha}) = \alpha$

 $\sum X_{i=1}^n \xrightarrow[n \to \infty]{(d)} N(n\mu, \sqrt{(n)}\sqrt{(\sigma^2)})$

number q_{α} such that: $\exists \theta \ s.t. \ \mathbb{P} = \mathbb{P}_{\theta}$

A Model is well specified if:

calculated with the data $(\overline{X_n}, max(X_i),$ An **estimator** $\hat{\theta}_n$ of θ is any statistic which does not depend on θ .

Estimators are random variables

if they depend on the data (=

An estimator $\hat{\theta}_n$ is **weakly consistent**

if: $\lim_{n\to\infty} \hat{\theta}_n = \theta$ or $\hat{\theta}_n \xrightarrow{P} \mathbb{E}[g(X)]$.

 σ^2 is called the **Asymptotic Variance**

of the estimator $\hat{\theta}_{u}$. In the case of the

sample mean it is the same variance

If the estimator is a function of the

sample mean the Delta Method is

needed to compute the asymptotic

variance. Asymptotic Variance = Va-

 $Bias(\hat{\theta}_{n}) = \mathbb{E}[\hat{\theta}_{n}] - \theta$

= Bias² + Variance

Let $X_1,...,X_n \stackrel{iid}{\sim} P_u$, where $E(X_i) = \mu$

and $Var(X_i) = \sigma^2$ for all i = 1, 2, ..., n

 $\overline{X_n} \xrightarrow{P,a.s.} \mu$

 $\frac{1}{n}\sum_{i=1}^{n}g(X_i)\xrightarrow{P,a.s.}\mathbb{E}[g(X)]$

Central Limit Theorem for Mean:

 $\sqrt{(n)} \frac{\overline{X_n} - \mu}{\sqrt{(\sigma^2)}} \xrightarrow[n \to \infty]{(d)} N(0,1)$

 $\sqrt{(n)}(\overline{X_n}-\mu)\xrightarrow[n\to\infty]{(d)} N(0,\sigma^2)$

Central Limit Theorem for Sums:

Quadratic risk of an estimator

 $R(\hat{\theta}_n) = \mathbb{E}[(\hat{\theta}_n - \theta)^2]$

realizations of random variables).

is strongly consistent.

as as the single X_i .

riance of an estimator.

Bias of an estimator:

3 LLN and CLT

and $\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i$.

Law of large numbers:

$$F_X^{-1}(1-\alpha) = \alpha$$

If the distribution is standard **normal** $X \sim N(0,1)$:

$$\mathbb{P}(|X| > q_{\alpha}) = \alpha$$

 $=\Phi\left(\frac{t-\mu}{\sigma}\right)$

 $Z = \frac{X - \mu}{2} \sim N(0, 1)$

$$P(|X| > q_{\alpha}) = \alpha$$

$$= 2\Phi(q_{\alpha/2})$$

Use standardization if a gaussian If the convergence is almost surely it has unknown mean and variance $X \sim N(\mu, \sigma^2)$ to get the quantiles by using Z-tables (standard normal

Asymptotic normality of an estimator: using Z-tables (standard no tables).
$$\sqrt{(n)(\hat{\theta}_n - \theta)} \xrightarrow[n \to \infty]{(d)} N(0, \sigma^2)$$

$$P(X \le t) = P\left(Z \le \frac{t - \mu}{d}\right)$$

Confidence Intervals follow the form:

(statistic) ± (critical value)(estimated standard deviation of statistic)

Let $(E, (\mathbb{P}_{\theta})_{\theta \in \Theta})$ be a statistical model

based on observations $X_1, ... X_n$ and assume $\Theta \subseteq \mathbb{R}$. Let $\alpha \in (0,1)$. Non asymptotic confidence interval

of level $1 - \alpha$ for θ : Any random interval \mathcal{I} , depending on the sample $X_1, ..., X_n$ but not at θ and such that: $\mathbb{P}_{\theta}[\mathcal{I}\ni\theta]\geq 1-\alpha,\ \forall\theta\in\Theta$

Confidence interval of asymptotic level $1 - \alpha$ for θ . Any random interval *I* whose boundaries do not depend on θ and such that: $\lim_{n\to\infty} \mathbb{P}_{\theta}[\mathcal{I}\ni\theta] \geq 1-\alpha, \ \forall \theta\in\Theta$

5.1 Two-sided asymptotic CI

Let $X_1,...,X_n = \tilde{X}$ and $\tilde{X} \stackrel{iid}{\sim} P_{\theta}$. A two-sided CI is a function depending on

 \tilde{X} giving an upper and lower bound in which the estimated parameter lies $\mathcal{I} = [l(\tilde{X}, u(\tilde{X}))]$ with a certain probability $\mathbb{P}(\theta \in \mathcal{I}) \geq 1 - q_{\alpha}$ and conversely $\mathbb{P}(\theta \notin \mathcal{I}) \leq \alpha$ Since the estimator is a r.v. depending on \tilde{X} it has a variance $Var(\hat{\theta}_n)$ and a mean $\mathbb{E}[\hat{\theta}_n]$. Since the CLT is valid for

every distribution standardizing the

 $\mathcal{I} = [\hat{\theta}_n - \frac{q_{\alpha/2}\sqrt{Var(X_i)}}{\sqrt{N}}],$ $\hat{\theta}_n + \frac{q_{\alpha/2}\sqrt{Var(X_i)}}{\sqrt{a}}$ This expression depends on the real

distributions and massaging the ex-pression yields an an asymptotic CI:

variance $Var(X_i)$ of the r.vs, the variance has to be estimated. Three possible methods: plugin (use sample mean or empirical variance), solve (solve quadratic inequality), conservative (use the theoretical maximum of the variance). 5.2 Sample Mean and Sample Va-

riance Let $X_1,...,X_n \stackrel{iid}{\sim} P_u$, where $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$ for all i = 1, 2, ..., n

Sample Mean: $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$

$$S_n = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

$=\frac{1}{n}(\sum_{i=1}^{n}X_{i}^{2})-\overline{X}_{n}^{2}$

Sample Variance:

Unbiased estimator of sample variance:
$$\tilde{S}_n = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X}_n \right)^2$$

5.3 Delta Method To find the asymptotic CI if the esti-

mator is a function of the mean. Goal is to find an expression that converges a function of the mean using the CLT.

 θ) $\xrightarrow[n\to\infty]{(d)} N(0,\sigma^2)$ and let $g:R\longrightarrow R$ be continuously differentiable at θ , $\sqrt{n}(g(Z_n)-g(\theta)) \xrightarrow{(d)}$

$$\mathcal{N}(0, g'(\theta)^2 \sigma^2)$$

Example: let $X_1, ..., X_n \ exp(\lambda)$ where

Let Z_n be a sequence of r.v. $\sqrt{(n)}(Z_n -$

 $\lambda > 0$. Let $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ denote the sample mean. By the CLT, we know that $\sqrt{n}\left(\overline{X}_n - \frac{1}{\lambda}\right) \xrightarrow[n \to \infty]{(d)} N(0, \sigma^2)$ for some value of σ^2 that depends on λ . If we set $g: \mathbb{R} \to \mathbb{R}$ and $x \mapsto 1/x$, then by the Delta method:

 $\sqrt{n}\left(g(\overline{X}_n) - g\left(\frac{1}{\lambda}\right)\right)$

$$\frac{(d)}{n \to \infty} N(0, g'(E[X])^2 \text{Var}X)$$

$$\frac{(d)}{n \to \infty} N(0, g'(\frac{1}{\lambda})^2 \frac{1}{\lambda^2})$$

$$\frac{(d)}{n \to \infty} N(0, \lambda^2)$$

6 Asymptotic Hypothesis tests Two hypotheses (Θ_0 disjoint set from $H_0: \theta \in \Theta_0$. Goal is to reject $H_1:\theta\epsilon\Theta_1$

 H_0 using a test statistic. A test ψ has level α if $\alpha_{\psi}(\theta) \leq \alpha, \forall \theta \in \Theta_0$. and asymptotic **level** α if $\lim_{n\to\infty} P_{\theta}(\psi=1) \leq \alpha$.

 $\psi = \mathbf{1}\{T_n \ge c\}$

A hypothesis-test has the form

Right-tailed p-values:

 $pvalue = \mathbb{P}(X \ge x|H_0)$

Two-sided p-values: If asymptotic,

create normalized T_n using parameters from H_0 . Then use T_n to get to $pvalue = 2min\{\mathbb{P}(X \leq x|H_0), \mathbb{P}(X \geq x|H_0)\}$ $T_n = \frac{Z}{\bar{c}}$

 $\sqrt{\frac{\chi_{n-1}^2}{n-1}}$

Works bc. under H_0 the numerator

N(0,1) and the denominator

 $\frac{\tilde{S}_n}{\sigma^2} \sim \frac{1}{n-1} \chi_{n-1}^2$ are independent by

 $\psi_\alpha=\mathbf{1}\{|T_n|>q_{\alpha/2}(t_{n-1})\}$

Student's T test (one sample, one-

 $\psi_{\alpha} = \mathbf{1}\{T_n > q_{\alpha}(t_{n-1})\}\$

Student's T test (two samples, two-

Let $X_1,...,X_n \stackrel{iid}{\sim} N(\mu_X,\sigma_X^2)$ and

 $Y_1,...,Y_n \stackrel{iid}{\sim} N(\mu_Y,\sigma_Y^2)$, suppose

we want to test $H_0: \mu_X = \mu_Y$ vs

 $T_{n,m} = \frac{\overline{X}_n - \overline{Y}_m}{\sqrt{\frac{\hat{\sigma}^2 Y}{X} + \frac{\hat{\sigma}^2 Y}{X}}}$

Welch-Satterthwaite formula:

distribution of: $T_{v_1 v_2} \sim t_N$

When samples are different sizes we need to finde the Student's T

Calculate the degrees of freedom for

 $N = \frac{\left(\frac{\hat{\sigma^2}_X}{n} + \frac{\hat{\sigma^2}_Y}{m}\right)^2}{\frac{\hat{\sigma^2}_X^2}{n} + \frac{\hat{\sigma^2}_Y^2}{n}} \ge \min(n, m)$

Squared distance of $\widehat{\theta}_{n}^{MLE}$ to true θ_{n}

using the fisher information $I(\widehat{\theta}_n^{MLE})$

Let $X_1, \dots, X_n \overset{iid}{\sim} \mathbf{P}_{\theta^*}$ for some true parameter $\theta^* \in \mathbb{R}^d$ and the maximum

Under H_0 , the asymptotic normality

 $\psi_{\alpha} = \mathbf{1}\{T_n > q_{\alpha}(\chi_d^2)\}$

likelihood estimator $\widehat{\theta}_{n}^{MLE}$ for θ^{*} .

Test $H_0: \theta^* = \mathbf{0} \text{ vs } H_1: \theta^* \neq \mathbf{0}$

N should be rounded down.

7.3 Walds Test

Cochran's Theorem.

Student's T test at level α :

6.2 Comparisons of two proporti-Let $X_1, ..., X_n \stackrel{iid}{\sim} Bern(p_x)$ and

To get the asymptotic Variance use multivariate Delta-method. Consider $\hat{p}_x - \hat{p}_y = g(\hat{p}_x, \hat{p}_y); g(x, y) = x - y$, then

The χ_d^2 distribution with d degrees of

freedom is given by the distribution

of $Z_1^2 + Z_2^2 + \cdots + Z_d^2$, where $Z_1, \ldots, Z_d \stackrel{iid}{\sim}$

 $\mathbb{E} = \mathbb{E}[Z_1^2] + \mathbb{E}[Z_2^2] + \dots + \mathbb{E}[Z_d^2] = d$

 $Var(V) = Var(Z_1^2) + Var(Z_2^2) + ... +$

If $X_1,...,X_n \stackrel{iid}{\sim} N(\mu,\sigma^2)$, then sample

mean \overline{X}_n and the sample variance S_n

are independent. The sum of squares

 $\frac{nS_n}{\sigma^2} \sim \chi_{n-1}^2$

If formula for unbiased sample

 $\frac{(n-1)S_n}{\sigma^2} \sim \chi_{n-1}^2$

Non-asymptotic hypothesis test

for small samples (works on large

samples too), data must be gaussian.

Student's T distribution with d degrees of freedom: $t_d := \frac{Z}{\sqrt{V/n}}$

where $Z \sim \mathcal{N}(0,1)$ and $V \sim \chi_k^2$ are

 $\mathbb{P}(|Z| > |T_{n,\theta_0}(\overline{X}_n)| = 2(1 - \Phi(T_n))$

 $H_0: p_x = p_y; H_1: p_x \neq p_y$

$1(|T_n| > q_{\alpha/2})$

for some test statistic T_n and thres-

hold $c \in \mathbb{R}$. Threshold c is usually $q_{\alpha/2}$

 $R_{vb} = \{T_v > c\}$

Symmetric about zero and acceptan-

 $\psi = \mathbf{1}\{|T_n| - c > 0\}.$

 $\pi_{\psi} = \inf_{\theta \in \Theta_1} (1 - \beta_{\psi}(\theta))$

Where β_{tb} is the probability of making

a Type2 Error and inf is the maxi-

 $H_1: \theta \neq \Theta_0$

Rejection region:

ce Region interval:

Power of the test:

Two-sided test:

One-sided tests:

Type1 Error:

Type2 Error:

true $H_1 = TRUE$

 $H_1: \theta > \Theta_0$

 $\mathbf{1}(T_n > q_\alpha)$

 $Y_1, \dots, Y_n \stackrel{iid}{\sim} Bern(p_v)$ and be X independent of Y. $\hat{p}_x = 1/n \sum_{i=1}^n X_i$ and $\hat{p}_x = 1/n \sum_{i=1}^n Y_i$

 $Z \sim N(0.1)$

 $\mathbf{1}(T_n < -q_\alpha)H_1 : \theta < \Theta_0$

Test rejects null hypothesis $\psi = 1$ but it is actually true $H_0 = TRUE$ also known as the level of a test.

 $\sqrt{(n)}(g(\hat{p}_x,\hat{p}_y) - g(p_x - p_y)) \xrightarrow[n \to \infty]{(d)}$ $N(0, \nabla g(p_x - p_v)^T \Sigma \nabla g(p_x - p_v))$ Test does not reject null hypothesis $\psi = 0$ but alternative hypothesis is $\Rightarrow N(0, p_x(1-px) + p_v(1-py))$ 7 Non-asymptotic Hypothesis tests 7.1 Chi squared

Example: Let $X_1, \dots, X_n \overset{i.i.d.}{\sim} \operatorname{Ber}(p^*)$. Question: is $p^* = 1/2$. $H_0: p^* = 1/2$; $H_1: p^* \neq 1/2$ If asymptotic level α then we need to standardize the estimated parameter $\hat{p} = \overline{X}_n$ first.

$$T_n = \sqrt{n} \frac{|\overline{X}_n - 0.5|}{\sqrt{0.5(1 - 0.5)}}$$
$$\psi_n = \mathbf{1} (T_n > q_{\alpha/2})$$

where
$$q_{\alpha/2}$$
 denotes the $q_{\alpha/2}$ quantile of a standard Gaussian, and α is determined by the required level of ψ .

Note the absolute value in
$$T_n$$
 for this two sided test. **Pivot:** Let T_n be a function of the random

samples $X_1, ..., X_n, \theta$. Let $g(T_n)$ be a

a pivotal quantity or a pivot.

random variable whose distribution of n variables follows a chi squared is the same for all θ . Then, g is called distribution with (n-1) degrees of free-**Example:** let X be a random variable with mean μ and variance σ^2 . Let X_1, \ldots, X_n be iid samples of X. Then,

 $\mathcal{N}(0,1)$

If $V \sim \chi_k^2$:

 $Var(Z_1^2) = 2d$

Cochranes Theorem:

 $g_n \triangleq \frac{\overline{X_n} - \mu}{2}$

is a pivot with $\theta = \left[\mu \ \sigma^2 \right]^T$ being the parameter vector (not the same set of paramaters that we use to define a sta tistical model).

6.1 P-Value The (asymptotic) p-value of a test ψ_a

is the smallest (asymptotic) level α at which ψ_{α} rejects H_0 . It is random since it depends on the sample. It can also interpreted as the probability that the test-statistic T_n is realized given the null hypothesis. If pvalue $\leq \alpha$, H_0 is rejected by ψ_{α} at

The smaller the p-value, the more con-

 $= \mathbf{P}(Z < T_{n,\theta_0}(\overline{X}_n)))$

 $=\Phi(T_{n,\theta_0}(\overline{X}_n))$

 $Z \sim \mathcal{N}(0,1)$

the (asymptotic) level α

fidently one can reject H_0 .

 $pvalue = \mathbb{P}(X \le x|H_0)$

Left-tailed p-values:

independent.

tribution:

7.2 Student's T Test

Student's T test (one sample + two-sided):

Test statistic follows Student's T dis-

Let $X_1,...,X_n \stackrel{iid}{\sim} N(\mu,\sigma^2)$ and suppose we want to test $H_0: \mu = \mu_0 = 0$ vs. $H_1: \mu \neq 0$.

 $\|\sqrt{n}\mathcal{I}(\mathbf{0})^{1/2}(\widehat{\theta}_n^{MLE}-\mathbf{0})\|^2 \xrightarrow[n\to\infty]{(d)} \chi_d^2$ Test statistic:

of the MLE $\widehat{\theta}_{n}^{MLE}$ implies that:

Wald test of level α :

 $T_n = n(\widehat{\theta}_n^{MLE} - \theta_0)^{\top} I(\widehat{\theta}_n^{MLE})(\widehat{\theta}_n^{MLE} - \theta_0)$ If the support of **P** and **Q** is disjoint:

Right-skewed: above > below > Left-skewed: below > above > below 8 Distances between distributions

 $TV(\mathbf{P}, \mathbf{O}) =$ $\begin{cases} \frac{1}{2} \sum_{x \in E} |f(x) - g(x)|, \text{discr} \\ \frac{1}{2} \int_{x \in E} |f(x) - g(x)| dx, \text{cont} \end{cases}$

Definite: $TV(\mathbf{P}, \mathbf{Q}) = 0 \iff \mathbf{P} = \mathbf{Q}$

Triangle inequality: $TV(\mathbf{P}, \mathbf{V}) \leq$ $TV(\mathbf{P}, \mathbf{O}) + TV(\mathbf{O}, \mathbf{V})$

 $TV(\mathbf{P}, \mathbf{V}) = 1$

 $TV(\mathbf{P}, \mathbf{V}) = 1$

distribution $p^0 = (1/K, ..., 1/K)^\top$. Test statistic under H_0 :

 $T_n = n \sum_{k=1}^{K} \frac{(\hat{p}_k - p_k^0)^2}{p_k^0} \xrightarrow[n \to \infty]{(d)} \chi_{K-1}^2$

7.4 Likelihood Ratio Test

other r unspecified. That is:

Construct two estimators:

Test statistic:

 $H_0: (\theta_{r+1}, ..., \theta_d)^T = \theta_{r+1,...d} = \theta_0$

Parameter space $\Theta \subseteq \mathbb{R}^d$ and H_0 is that parameters θ_{r+1} through θ_d have

values θ_c^{r+1} through θ_d^c leaving the

 $\widehat{\theta}_n^{MLE} = argmax_{\theta \in \Theta}(\ell_n(\theta))$

 $\widehat{\theta}_n^c = argmax_{\theta \in \Theta_0}(\ell_n(\theta))$

 $T_n = 2(\ell(X_1,..X_n|\widehat{\Theta}_n^{MLE}) - \ell(X_1,..X_n|\widehat{\Theta}_n^c)$

Wilk's Theorem: under H_0 , if the

 $T_n \xrightarrow{(d)} \chi_{d-r}^2$

 $\psi_{\alpha} = \mathbf{1}\{T_n > q_{\alpha}(\chi_{d-r}^2)\}\$

7.6 Goodness of Fit Discrete Distri-

Let $X_1,...,X_n$ be iid samples from a categorical distribution. Test

 $H_0: p = p^0 \text{ against } H_1: p \neq p^0$

Example: against the uniform

Likelihood ratio test at level α :

7.5 Implicit Testing

Todo

MLE conditions are satisfied:

Test at level alpha:

 $\psi_{\alpha} = \mathbb{I}\{T_n > q_{\alpha}(\chi^2_{K-1})\}\$

7.9 QQ plots

diagonal

the diagonal.

Calculation with f and g:

Positive: $TV(\mathbf{P}, \mathbf{Q}) \ge 0$

Symmetry: $TV(\mathbf{P}, \mathbf{Q}) = TV(\mathbf{Q}, \mathbf{P})$

7.7 Kolmogorov-Smirnov test 7.8 Kolmogorov-Lilliefors test

Heavier tails: below > above the

Lighter tails: above > below the

diagonal.

above the diagonal.

8.1 Total variation distance The total variation distance TV bet-

ween the propability measures P and Q with a sample space E is defined as: $TV(\mathbf{P}, \mathbf{Q}) = \max_{A \subset F} |\mathbf{P}(A) - \mathbf{Q}(A)|,$

TV between continuous and discrete

Capstone-Cheatsheet Statistics 1 9.1 Fisher Information The Fisher information is the

by Blechturm, Page 2 of 2

8.2 KL divergence

 $KL(\mathbf{P}, \mathbf{Q}) =$

support of P!

 $KL(\mathbf{P}, \mathbf{Q}) \neq KL(\mathbf{O}, \mathbf{P})$

Asymetric

ons \hat{f} and g is defined as:

covariance matrix of the gradient of the loglikelihood function. It is equal to the negative expectation of the Hessian of the loglikelihood The KL divergence (aka relative entrofunction and captures the negative py) KL between between probability of the expected curvature of the measures P and Q with the common loglikelihood function. sample space E and pmf/pdf functi-Let $\theta \in \Theta \subset \mathbb{R}^d$ and let $(E, \{\mathbf{P}_{\theta}\}_{\theta \in \Theta})$

be a statistical model. Let $f_{\theta}(\mathbf{x})$ be the pdf of the distribution P_{θ} . Then, the Fisher information of the statistical $\begin{cases} \sum_{x \in E} p(x) \ln\left(\frac{p(x)}{q(x)}\right), & \text{discr model is.} \\ \int_{x \in E} p(x) \ln\left(\frac{p(x)}{q(x)}\right) dx, & \text{cont } \mathcal{I}(\theta) = Cov(\nabla \ell(\theta)) = 0 \end{cases}$

$$\int_{x \in E} p(x) \ln \left(\frac{p(x)}{q(x)} \right) dx, \quad \text{cont} \quad \mathcal{I}(\theta) = Cov(\nabla \ell(\theta)) = \\ = \mathbb{E}[\nabla \ell(\theta)] \nabla \ell(\theta)^T]$$
The KL divergence is not a distance measure! Always sum over the embedding for the sum of t

Where $\ell(\theta) = \ln f_{\theta}(\mathbf{X})$. If $\nabla \ell(\theta) \in \mathbb{R}^d$ it is a $d \times d$ matrix. The definition when the distribution has a pmf $p_{\theta}(\mathbf{x})$ is Nonnegative: $KL(\mathbf{P}, \mathbf{Q}) \ge 0$ also the same, with the expectation Definite: if P = Q then KL(P,Q) = 0taken with respect to the pmf. Does not satisfy gle inequality in general: Let $(\mathbb{R}, \{\mathbb{P}_{\theta}\}_{\theta \in \mathbb{R}})$ denote a continuous $KL(\mathbf{P}, \mathbf{V}) \leq KL(\mathbf{P}, \mathbf{Q}) + KL(\mathbf{Q}, \mathbf{V})$

statistical model. Let $f_{\theta}(x)$ denote the pdf (probability density function) of the continuous distribution P_{θ} . Assume that $f_{\theta}(x)$ is twice-differentiable as a function of the parameter θ . Formula for the calculation of Fisher Information of *X*:

Models with one parameter (ie.

Models with multiple parameters (ie.

Estimator of KL divergence: $KL(\mathbf{P}_{\theta^*}, \mathbf{P}_{\theta}) = \mathbb{E}_{\theta^*} \left[ln \left(\frac{p_{\theta^*}(X)}{p_{\theta}(X)} \right) \right]$

 $\widehat{KL}(\mathbf{P}_{\theta_i}, \mathbf{P}_{\theta}) = const - \frac{1}{n} \sum_{i=1}^{n} log(p_{\theta}(X_i))$

Let $\{E, (\mathbf{P}_{\theta})_{\theta \in \Theta}\}$ be a statistical model associated with a sample of i.i.d. random variables $X_1, X_2, ..., X_n$. Assume that there exists $\theta^* \in \Theta$ such that

9 Maximum likelihood estimation

The likelihood of the model is the product of the n samples of the

pdf/pmf: $L_n(X_1, X_2, \ldots, X_n, \theta) =$

The maximum likelihood estimator

is the (unique) θ that minimizes

 $\widehat{\mathrm{KL}}(\mathbf{P}_{\theta^*}, \mathbf{P}_{\theta})$ over the parameter space.

(The minimizer of the KL divergence

is unique due to it being strictly con-

vex in the space of distributions once

 $= \operatorname{argmax}_{\theta \in \Theta} \sum_{i=1}^{n} \ln p_{\theta}(X_i)$

Since taking derivatives of products

is hard but easy for sums and exp() is

very common in pdfs we usually ta-

ke the log of the likelihood function

Cookbook: set up the likelihood func-

tion, take log of likelihood function.

Take the partial derivative of the lo-

glikelihood function wrt. the parame-

ter(s). Set the partial derivative(s) to

If an indicator function on the

pdf/pmf does not depend on the para-

meter, it can be ignored. If it depends

on the parameter it can't be ignored

because there is an discontinuity in

the loglikelihood function. The maxi-

mum/minimum of the X_i is then the

maximum likelihood estimator.

zero and solve for the parameter.

before maximizing it.

 $= \operatorname{argmax}_{\theta \in \Theta} \ln \left(\prod_{i=1}^{n} p_{\theta}(X_i) \right)$

 $\widehat{\theta}_{n}^{MLE} = \operatorname{argmin}_{\theta \in \Theta} \widehat{KL}_{n} (\mathbf{P}_{\theta^{*}}, \mathbf{P}_{\theta})$

$$\begin{cases} \prod_{i=1}^{n} p_{\theta}(x_i) & \text{if } E \text{ is discrete} \\ \prod_{i=1}^{n} f_{\theta}(x_i) & \text{if } E \text{ is continous} \end{cases}$$

Cookbook:

Gaussians):

Bernulli):

 $\mathcal{I}(\theta) = Var(\ell'(\theta))$

 $\mathcal{I}(\theta) = -\mathbf{E}(\ell''(\theta))$

 $\mathcal{I}(\theta) = -\mathbb{E}\left[\mathbf{H}\ell(\theta)\right]$

Better to use 2nd derivative.

- · Find loglikelihood
- · Take second derivative (=Hessian if multivariate) · Massage second derivative or
- Hessian (isolate functions of X_i to use with $-\mathbf{E}(\ell''(\theta))$ or $-\mathbb{E}[\mathbf{H}\ell(\theta)].$
- Find the expectation of the functions of X_i and subsitute them back into the Hessian or the second derivative. Be extra careful to subsitute the right power back. $\mathbb{E}[X_i] \neq \mathbb{E}[X_i^2].$
- · Don't forget the minus sign!

9.2 Asymptotic normality of the ma-

 $\ell((X_1, X_2, \dots, X_n, \theta)) = ln(L_n(X_1, X_2, \dots, X_n, \theta))$ **ximum likelihood estimator** Under certain conditions the MLE is $=\sum_{i=1}^{n} ln(L_i(X_i, \theta))$ asymptotically normal and consistent. This applies even if the MLE is not the sample average. Let the true parameter $\theta^* \in \Theta$. Ne-

cessary assumptions: · The parameter is identifiable

- For all $\theta \in \Theta$, the support \mathbb{P}_{θ}
- does not depend on θ (e.g. like in $Unif(0,\theta)$); • θ^* is not on the boundary of
- Fisher information $\mathcal{I}(\theta)$ is invertible in the neighborhood

10 Method of Moments

 $m_k(\theta) = \mathbb{E}_{\theta}[X_1^k], 1 \le k \le d$

Let $X_1, \dots, X_n \overset{iid}{\sim} \mathbf{P}_{\theta^*}$ associated with model $(\mathbb{E}, \{\mathbf{P}_{\theta}\}_{\theta \in \Theta})$, with $\mathbb{E} \subseteq \mathbb{R}$ and $\Theta \subseteq \mathbb{R}$, for some $d \ge 1$ Population moments:

$$\widehat{m_k}(\theta) = \overline{X_n^k} = \frac{1}{n} \sum_{i=1}^n X_i^k$$
Convergence of empirical moments:

 $\widehat{m_k} \xrightarrow[n \to \infty]{P,a.s.} m_k$

$$(\widehat{m_1},\ldots,\widehat{m_d}) \xrightarrow[n\to\infty]{P,a.s.} (m_1,\ldots,m_d)$$

MOM Estimator
$$M$$
 is a map from the parameters of a model to the mo-

ments of its distribution. This map is invertible, (ie. it results into a system of equations that can be solved for the true parameter vector θ^*). Find the moments (as many as parameters), set up system of equations, solve for parâméters, use empirical moments to estimate. $\psi:\Theta\to\mathbb{R}^d$

$$\theta \mapsto (m_1(\theta), m_2(\theta), \dots, m_d(\theta))$$

 $M^{-1}(m_1(\theta^*), m_2(\theta^*), \dots, m_d(\theta^*))$

The MOM estimator uses the empirical moments: $M^{-1}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i},\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2},\ldots,\frac{1}{n}\sum_{i=1}^{n}X_{i}^{d}\right)$ 11.4 Bayes estimator

$$M = \left(\frac{1}{n}\sum_{i=1}^{n}X_{i}, \frac{1}{n}\sum_{i=1}^{n}X_{i}^{T}, \dots, \frac{1}{n}\sum_{i=1}^{n}X_{i}^{T}\right)$$

Assuming M^{-1} is continuously diffe-

rentiable at M(0), the asymptotical variance of the MOM estimator is:

$$\sqrt(n)(\widehat{\theta_n^{MM}}-\theta)\xrightarrow[n\to\infty]{(d)}N(0,\Gamma)$$

 $\Gamma(\theta)$ $\left[\left. \frac{\partial M^{-1}}{\partial \theta} (M(\theta)) \right]^T \Sigma(\theta) \left[\left. \frac{\partial M^{-1}}{\partial \theta} (M(\theta)) \right] \right.$

 $\Gamma(\theta) = \nabla_{\theta} (M^{-1})^T \Sigma \nabla_{\theta} (M^{-1})$ Σ_{θ} is the covariance matrix of the random vector of the moments $(X_1^1, X_1^2, \dots, X_1^d).$ 11 Bayesian Statistics

Bayesian inference conceptually

amounts to weighting the likelihood $L_n(\theta)$ by a prior knowledge we might have on θ . Given a statistical model we technically model our parameter θ as if it were a random variable. We therefore define the prior distribution (PDF):

$\pi(\theta)$

Let $X_1,...,X_n$. We note $L_n(X_1,...,X_n|\theta)$ the joint probability distribution of $X_1,...,X_n$ conditioned on θ where $\theta \sim$ π . This is exactly the likelihood from the frequentist ápproach. 11.1 Bayes' formula

. The posterior distribution verifies:

 $\forall \theta \in \Theta, \pi(\theta|X_1,...,X_n) \propto$

$$\pi(\theta)L_n(X_1,...,X_n|\theta)$$

The constant is the normalization factor to ensure the result is a proper distribution, and does not depend on $\pi(\theta|X_1,...,X_n) = \frac{\pi(\theta)L_n(X_1,...,X_n|\theta)}{\prod_{\pi(\theta)L_n(X_1,...,X_n|\theta)} \prod_{\theta \in \Pi(\theta)L_n(X_1,...,X_n|\theta)} \pi(\theta|X_1,...,X_n|\theta)}$

· A few more technical condi-We can often use an **improper prior**, i.e. a prior that is not a proper probability distribution (whose integral The asymptotic variance of the MLE is diverges), and still get a proper posterior. For example, the improper prior the inverse of the fisher information. $\sqrt{(n)}(\widehat{\theta}_n^{\text{MLE}} - \theta^*) \xrightarrow[n \to \infty]{(d)} N_d(0, \mathcal{I}(\theta^*)^{-1})$

 $\pi(\theta) = 1$ on Θ gives the likelihood as a posterior. 11.2 Jeffreys Prior

 $\pi_I(\theta) \propto \sqrt{detI(\theta)}$

following formula:

This prior is invariant by reparameterization, which means that if we have $\eta = \phi(\theta)$, then the same prior gives us a probability distribution for η verifying: $\tilde{\pi}_I(\eta) \propto \sqrt{\det \tilde{I}(\eta)}$

where $I(\theta)$ is the Fisher information.

 $\tilde{\pi}_I(\eta) = det(\nabla \phi^{-1}(\eta)) \pi_I(\phi^{-1}(\eta))$ 11.3 Bavesian confidence region Let $\alpha \in (0,1)$. A *Bayesian confidence region with level α^* is a random subset $\mathcal{R} \subset \Theta$ depending on $X_1,...,X_n$

$$P[\theta \in \mathcal{R}|X_1,...,X_n] \geq 1-\alpha$$

(and the prior π) such that:

Bayesian confidence region and confidence interval are distinct notions. The Bayesian framework can be used to estimate the true underlying parameter. In that case, it is used to build a new class of estimators, based on the posterior distribution.

(MAP):

$$\hat{ heta}_{(\pi)} = \int_{\Theta} heta \pi(heta|X_1,...,X_n) d heta$$
 Maximum a posteriori estimator

 $\hat{\theta}_{(\pi)}^{MAP} = argmax_{\theta \in \Theta} \pi(\theta|X_1,...,X_n)$

Given two random variables X and Y, how can we predict the values of Y

consider $(X_1, Y_1), \dots, (X_n, Y_n)$ \sim^{iid} \mathbb{P} where P is an unknown joint distribution. P can be described entirely by:

 $g(X) = \int f(X, y) dy$

$$h(Y|X=x) = \frac{f(x,Y)}{g(x)}$$
 where f is the joint PDF, g the margi-

nal density of X and h the conditional density. What we are interested in is Regression function: For a partial description, we can consider instead the

conditional expection of Y given X =

$$x \mapsto f(x) = \mathbb{E}[Y|X=x] = \int y h(y|x) dy$$

We can also consider different descriptions of the distribution, like the median, quantiles or the variance. Linear regression: trying to fit any

function to $\mathbb{E}[Y|X=x]$ is a nonparametric problem; therefore, we restrict the problem to the tractable one of linear function: $f: x \mapsto a + bx$

$$X, Y$$
 be two random variables with two moments such as $\mathbb{V}[X] > 0$. The theoretical linear regression of Y on

Theoretical linear regression: let

 $(a^*, b^*) = argmin_{(a,b) \in \mathbb{R}^2} \mathbb{E} [(Y - a - bX)^2]$

 $b^* = \frac{Cov(X,Y)}{\mathbb{V}[X]}, \quad a^* = \mathbb{E}[Y] - b^*\mathbb{E}[X]$

Noise: we model the noise of Y

around the regression line by a ran-

dom variable $\varepsilon = Y - a^* - b^*X$, such

 $\mathbb{E}[\varepsilon] = 0$, $Cov(X, \varepsilon) = 0$

We have to estimate a^* and b^* from the data. We have n random pairs

 $(X_1, Y_1), ..., (X_n, Y_n) \sim_{iid} (X, Y)$ such

 $Y_i = a^* + b^* X_i + \varepsilon_i$

The Least Squares Estimator (LSE)

of (a^*, b^*) is the minimizer of the squa-

 $\hat{b}_n = \frac{\overline{XY} - \overline{XY}}{\overline{Y^2} - \overline{Y}^2}, \quad \hat{a}_n = \overline{Y} - \hat{b}_n \overline{X}$

The Multivariate Regression is given

 $Y_i = \sum_{j=1}^p X_i^{(j)} \beta_j^* + \varepsilon_i = \underbrace{X_i^\top}_{1 \times p} \underbrace{\beta^*}_{p \times 1} + \varepsilon_i$

We can assuming that the $X_i^{(1)}$ are 1

the intercept.

 $Cov(X_i, \varepsilon_i) = 0$

the sum of square errors:

and $\epsilon = (\epsilon_1, \dots, \epsilon_n)^{\top}$.

regression is given by:

and the LSE is given by:

The Multivariate Least Squares Esti-

mator (LSE) of β^* is the minimizer of

 $\hat{\beta} = argmin_{\beta \in \mathbb{R}^p} \sum_{i=1}^n (Y_i - X_i^\top \beta)^2$

Matrix form: we can rewrite these ex-

pressions. Let $Y = (Y_1, ..., Y_n)^\top \in \mathbb{R}^n$,

 $X = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix} \in \mathbb{R}^{n \times p}$

X is called the **design matrix**. The

 $Y = X\beta^* + \epsilon$

• If $\beta^* = (a^*, b^* \top)^\top$, $\beta_1^* = a^*$ is

• the ε_i is the noise, satisfying

for the intercept.

The estimators are given by:

X is the line $a^* + b^*x$ where

Which gives:

 $\nabla F(\beta) = 2X^{\top}(Y - X\beta)$ Least squares estimator: setting

 $\nabla F(\beta) = 0$ gives us the expression of

 $\hat{\beta} = (X^\top X)^{-1} X^\top Y$

Geometric interpretation: $X\hat{\beta}$ is

the orthogonal projection of Y onto

the subspace spanned by the columns

 $X\hat{\beta} = PY$

where $P = X(X^{T}X)^{-1}X^{T}$ is the expres-

Statistic inference**: let us suppose

* The design matrix X is determini-

stic and rank(X) = p. * The model is

homoscedastic: $\varepsilon_1, \dots, \varepsilon_n$ are i.i.d. *

The noise is Gaussian: $\epsilon \sim N_n(0, \sigma^2 I_n)$.

 $Y \sim N_n(X\beta^*, \sigma^2 I_n)$

 $\hat{\beta} \sim N_p(\beta^*, \sigma^2(X^\top X)^{-1})$

 $\mathbb{E}\left[\|\hat{\beta} - \beta^*\|_2^2\right] = \sigma^2 Tr((X^\top X)^{-1})$

 $\mathbb{E}\left[||Y - X\hat{\beta}||_2^2\right] = \sigma^2(n-p)$

The prediction error is given by:

The unbiased estimator of σ^2 is:

 $\hat{\sigma^2} = \frac{1}{n-p} \|Y - X\hat{\beta}\|_2^2 = \frac{1}{n-p} \sum_{i=1}^n \hat{\varepsilon}_i^2$

 $(n-p)\frac{\hat{\sigma^2}}{2} \sim \chi^2_{n-p}, \quad \hat{\beta} \perp \hat{\sigma^2}$

Significance test: let us test H_0 : $\beta_j = 0$ against $H_1: \beta_j \neq 0$. Let us call

 $\gamma_i = ((X^T X)^{-1})_{i,i} > 0$

 $\frac{\hat{\beta}_j - \beta_j}{\sqrt{\hat{\sigma}^2 \gamma_j}} \sim t_{n-p}$

We can define the test statistic for our

By **Cochran's Theorem**:

sion of the projector.

We therefore have:

Properties of the LSE:

 $(\hat{a}_n,\hat{b}_n)=argmin_{(a,b)\in\mathbb{R}^2}\sum_{i=1}^n(Y_i-a-bX_i)$ The quadratic risk of $\hat{\beta}$ is given by:

 $R_{\alpha}^{(S)} = \bigcup R_{\alpha/K}^{(j)}$

 $\psi_{\alpha}^{(S)} = \max_{j \in S} \psi_{\alpha/K}^{(j)}$

where K = |S|. The rejection region

therefore is the union of all rejection

$$R_{\alpha}' = \bigcup_{j \in S} R_{\alpha/K}^{*}$$

This test has nonasymptotic level at

$$\P_{H_0}$$
 I

 $\P_{H_0}\left[R_{\alpha}^{(S)}\right] \leq \sum_{i \in S} \P_{H_0}\left[R_{\alpha/K}^{(j)}\right] = \alpha$

We relax the assumption that μ is linear. Instead, we assume that $g \circ \mu$

function. It maps the domain of the dependent variable to the entire real

it has to be strictly increasing, it has to be continuously differentiable and its range is all of R

13.1 The Exponential Family A family of distribution $\{P_{\theta}: \theta \in \Theta\}$

where the parameter space $\Theta \subset \mathbb{R}^k$

is -k dimensional, is called a k-parameter exponential family on

 $\mathbb{R}^{\bar{1}}$ if the pmf or pdf $f_{\Theta}: \mathbb{R}^q \to \mathbb{R}$ of P_{θ} can be written in the form:

 $h(\mathbf{y}) \exp (\eta(\boldsymbol{\theta}) \cdot \mathbf{T}(\mathbf{y}) - B(\boldsymbol{\theta}))$ where

 $\left| \eta(\theta) = \begin{bmatrix} \vdots \\ \eta_k(\theta) \end{bmatrix} : \mathbb{R}^k \to \mathbb{R}^k$ $: \mathbb{R}^q \to \mathbb{R}^k$

> $: \mathbb{R}^k \to \mathbb{R}$ $: \mathbb{R}^q \to \mathbb{R}$

Integration limits only have to be over the support of the pdf. Discrete

 $B(\boldsymbol{\theta})$

if k = 1 it reduces to: $f_{\theta}(y) = h(y) \exp(\eta(\theta)T(y) - B(\theta))$

14 Expectation

 $\mathbb{E}[X] = \int_{-inf}^{+inf} x \cdot f_X(x) dx$

 $\mathbb{E}\left[g\left(X\right)\right] = \int_{-inf}^{+inf} g\left(x\right) \cdot f_X\left(x\right) dx$

 $\mathbb{E}[X|Y=y] = \int_{-inf}^{+inf} x \cdot f_{X|Y}(x|y) dx$

r.v. same as continuous but with sums

Total expectation theorem:

Law of iterated expectation:

 $\mathbb{E}[a] = a$

 $\psi_{\alpha}^{(j)} = \mathbf{1}\{|T_n^{(j)}| > q_{\alpha/2}(t_{n-p})\}$

The test with non-asymptotic level α

Bonferroni's test: if we want to test the significance level of multiple tests

at the same time, we cannot use the same level α for each of them. We must use a stricter test for each of them. Let us consider $S \subseteq \{1, ..., p\}$. Let us consi-

 $\hat{\beta} = argmin_{\beta \in \mathbb{R}^p} ||Y - X\beta||_2^2$ Let us suppose $n \ge p$ and rank(X) = p.

 $H_0: \forall j \in S, \beta_i = 0, \quad H_1: \exists j \in S, \beta_i \neq 0$ If we write:

The *Bonferroni's test* with signifi- $F(\beta) = ||Y - X\beta||_2^2 = (Y - X\beta)^{\top}(Y - X\beta)$

cance level α is given by:

 $\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|X]]$

 $\mathbb{E}[X] = \int_{-inf}^{+inf} f_Y(y) \cdot \mathbb{E}[X|Y = y] dy$

Product of **independent** r.vs X and Y

 $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Product of **dependent** r.vs *X* and *Y* :

Expectation of constant a:

This test also works for implicit testing (for example, $\beta_1 \geq \beta_2$). 13 Generalized Linear Models

is linear, for some function g: $g(\mu(\mathbf{x})) = \mathbf{x}^T \boldsymbol{\beta}$ The function g is assumed to be known, and is referred to as the link

Capstone-Cheatsheet Statistics 1 by Blechturm, Page 3 of 2	$\mathbb{E}[X] = p$	Multinomial Parameters $n > 0$ and p_1, \ldots, p_r .	$f_{\theta}(y) = \exp(y\theta - (-\ln(-\theta)) + \underbrace{0})$	$\mathbb{E}[X^4] = \mu^4 + 6\mu^2\sigma^2 + 3\sigma^4$	"Out of <i>n</i> people, we want to form a committee consisting of a chair and	$\Sigma = Cov(X) = [\sigma_{11} \sigma_{12} \dots \sigma_{1d}]$
	Var(X) = p(1-p)	$p_x(x) = \frac{n!}{x_1!, \dots, x_n!} p_1, \dots, p_r$	$b(\theta)$ $c(y,\phi)$	Quantiles:	other members. We allow the commit- tee size to be any integer in the range	$\begin{bmatrix} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1d} \\ \sigma_{21} & \sigma_{22} & \dots & \sigma_{2d} \end{bmatrix}$
$\mathbb{E}[X \cdot Y] \neq \mathbb{E}[X] \cdot \mathbb{E}[Y]$	Likelihood n trials:	$\mathbb{E}[X_i] = n * p_i$	$\theta = -\lambda = -\frac{1}{\mu}$	Uniform Parameters <i>a</i> and <i>b</i> , continuous.	1,2,,n. How many choices do we have in selecting a committee-chair	
$\mathbb{E}[X \cdot Y] = \mathbb{E}[\mathbb{E}[Y \cdot X Y]] = \mathbb{E}[Y \cdot \mathbb{E}[X Y]]$	$L_n(X_1,\ldots,X_n,p) = \sum_{n=1}^n X_n$	$Var(X_i) = np_i(1 - p_i)$	$\phi = 1$ Shifted Exponential	$\mathbf{f_{\mathbf{v}}}(x) = \begin{cases} \frac{1}{b-a}, & \text{if } a < x < b \end{cases}$	combination?"	$[\sigma_{d1} \sigma_{d2} \dots \sigma_{dd}]$
Linearity of Expectation where a and	$= p^{\sum_{i=1}^{n} X_i} (1-p)^{n-\sum_{i=1}^{n} X_i}$	Likelihood:	Parameters $\lambda, a \in \mathbb{R}$, continuous	(0, o.w.	$\sum_{n=1}^{n} \binom{n}{n}$.	The covariance matrix Σ is a $d \times d$ matrix. It is a table of the pairwise covariances of the elements of the
c are given scalars:	Loglikelihood n trials:	$p_x(x) = \prod_{j=1}^n p_j^{T_j}, \text{ where}$	$f_x(x) = \begin{cases} \lambda exp(-\lambda(x-a)), & x >= a \\ 0, & x <= a \end{cases}$	$\mathbf{F}_{\mathbf{x}}(x) = \begin{cases} 0, & for x \le a \\ \frac{x-a}{b-a}, & x \in [a,b) \end{cases}$	$n2^{n-1} = \sum_{i=0}^{n} \binom{n}{i} i.$	random vector. Its diagonal elements are the variances of the elements of
$\mathbb{E}[aX + cY] = a\mathbb{E}[X] + c\mathbb{E}[Y]$	$\ell_n(p) = \\ = \ln(p) \sum_{i=1}^n X_i +$	$T^j = \mathbb{1}(X_i = j)$ is the count	$F_x(x) =$	$\begin{cases} 1, & x \ge b \\ \mathbb{E}[X] = \frac{a+b}{2} \end{cases}$	18.2 Finding Joint PDFS	the random vector, the off-diagonal elements are its covariances. Note
If Variance of X is known:	$\left(n - \sum_{i=1}^{n} X_i\right) \ln\left(1 - p\right)$	how often an outcome is seen in trials.	$\begin{cases} 1 - exp(-\lambda(x-a)), & if \ x >= a \\ 0, & x <= a \end{cases}$	$Var(X) = \frac{(b-a)^2}{12}$	$f_{X,Y}(x,y) = f_X(x)f_{Y X}(y \mid x)$	that the covariance is commutative e.g. $\sigma_{12} = \sigma_{21}$
$\mathbb{E}[X^2] = var(X) - \mathbb{E}[X]$	MLE:	Loglikelihood:	$\mathbb{E}[X] = a + \frac{1}{\lambda}$	Likelihood:	19 Random Vectors A random vector $\mathbf{X} = (X^{(1)}, \dots, X^{(d)})^T$	Alternative forms:
15 Variance Variance is the squared distance from	$\hat{p}_{MLE} = \frac{\sum_{i=1}^{n} (X_i)}{n}$	$\ell_n = \sum_{j=2}^n T_j \ln \left(p_j \right)$	$Var(X) = \frac{1}{\lambda^2}$	$L(x_1 \dots x_n; b) = \frac{1(\max_i (x_i \le b))}{b^n}$	of dimension $d \times 1$ is a vector-valued	$\Sigma = \mathbb{E}[XX^T] - \mathbb{E}[X]\mathbb{E}[X]^T =$
the mean.	Fisher Information:	Poisson Parameter λ . discrete, approximates	Likelihood:	Loglikelihood:	function from a probability space ω to \mathbb{R}^d :	$= \mathbb{E}[XX^T] - \mu_X \mu_X^T$
$Var(X) = \mathbb{E}[(X - \mathbb{E}(X))^{2}]$	$I(p) = \frac{1}{p(1-p)}$	the binomial PMF when n is large, p is small, and $\lambda = np$.	$L(X_1 X_n; \lambda, \theta) =$	Cauchy	$\mathbf{X}:\Omega\longrightarrow\mathbb{R}^d$	Let the random vector $X \in \mathbb{R}^d$ and A and B be conformable matrices of
$Var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$	Canonical exponential form:		$\lambda^n \exp\left(-\lambda \sum_{i=1}^n (X_i - a)\right) 1_{\min_{i=1,\dots,n}(X_i) \geq a}.$ Loglikelihood:	continuous, parameter m , $f_m(x) = \frac{1}{\pi} \frac{1}{1 + (x - m)^2}$	$(X^{(1)}(\omega))$	constants.
Variance of a product with constant <i>a</i> :	$f_{\theta}(y) = \exp(y\theta - \ln(1 + e^{\theta}) + 0)$	$\mathbf{p}_{\mathbf{x}}(k) = exp(-\lambda) \frac{\lambda^k}{k!}$ for $k = 0, 1,,$	$\ell(\lambda, a) := n \ln \lambda - \lambda \sum_{i=1}^{n} X_i + n \lambda a$	$\mathbb{E}[X] = notdefined!$	$\begin{pmatrix} X^{(1)}(\omega) \\ X^{(2)}(\omega) \end{pmatrix}$	Cov(AX + B) = Cov(AX) =
$Var(aX) = a^2 Var(X)$	$b(\theta) \qquad c(y,\phi)$	$\mathbb{E}[X] = \lambda$	MLE: $\hat{\lambda}_{MLE} = \frac{1}{\bar{X}_{n} - \hat{a}}$	Var(X) = notdefined!	$\omega \longrightarrow$.	$ACov(X)A^{T} = A\Sigma A^{T}$ Every Covariance matrix is positive
Variance of sum of two dependent r.v.:	$\theta = \ln\left(\frac{p}{1-p}\right)$	$Var(X) = \lambda$	$\hat{a}_{MLE} = \min_{i=1,\dots,n} (X_i)$	med(X) = P(X > M) = P(X < M) = 1/2 = $\int_{1/2}^{\infty} \frac{1}{\pi} \cdot \frac{1}{1 + (x - m)^2} dx$	$\left(egin{array}{c} dots \ X^{(d)}(\omega) \end{array} ight)$	definite. $\Sigma < 0$
Var(X + Y) = Var(X) + Var(Y) +	$\phi = 1$	Likelihood: $L_n(x_1,,x_n,\lambda) = \prod_{i=1}^n \frac{\lambda^{\sum_{i=1}^n x_i}}{\prod_{i=1}^n x_i!} e^{-n\lambda}$	Univariate Gaussians	Chi squared	where each $X^{(k)}$, is a (scalar) random variable on Ω .	Gaussian Random Vectors
2Cov(X,Y)	Binomial Parameters p and n , discrete.	Loglikelihood:	Parameters μ and $\sigma^2 > 0$, continuous $f(x) = \frac{1}{\sqrt{(2\pi\sigma^2)}} exp(-\frac{(x-\mu)^2}{2\sigma^2})$	The χ_d^2 distribution with d degrees of freedom is given by the distribution	PDF of X: joint distribution of its	A random vector $\mathbf{X} = (X^{(1)}, \dots, X^{(d)})^T$
Variance of sum/difference of two independent r.v.:	Describes the number of successes in n independent Bernoulli trials.	$\ell_n(\lambda) = \\ = -n\lambda + \log(\lambda)(\sum_{i=1}^n x_i) - \log(\prod_{i=1}^n x_i!)$	$\mathbb{E}[X] = \mu$	of $Z_1^2 + Z_2^2 + \dots + Z_d^2$, where $Z_1, \dots, Z_d \stackrel{iid}{\sim}$	components $X^{(1)}, \ldots, X^{(d)}$.	is a Gaussian vector, or multivariate Gaussian or normal variable, if any li-
Var(X+Y) = Var(X) + Var(Y)	$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}, k = 0,,n$	MLE:	$Var(X) = \sigma^2$	$\mathcal{N}(0,1)$ If $V \sim \chi_k^2$:	CDF of X:	near combination of its components is a (univariate) Gaussian variable or
Var(X - Y) = Var(X) + Var(Y)	$p_X(k) = \binom{k}{k} p^n (1-p) , k = 0,,n$ $\mathbb{E}[X] = np$	$\hat{\lambda}_{MLE} = \frac{1}{n} \sum_{i=1}^{n} (X_i)$	CDF of standard gaussian:	$\mathbb{E} = \mathbb{E}[Z_1^2] + \mathbb{E}[Z_2^2] + \dots + \mathbb{E}[Z_d^2] = d$	$\mathbb{R}^d \to [0,1]$	a constant (a "Gaussian" variable with zero variance), i.e., if $\alpha^T \mathbf{X}$ is (univaria-
16 Covariance	E[X] = np $Var(X) = np(1-p)$	Fisher Information:	$\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$	$Var(V) = Var(Z_1^2) + Var(Z_2^2) + \dots + Var(Z_n^2) + \dots +$	$\mathbf{x} \mapsto \mathbf{P}(X^{(1)} \le x^{(1)}, \dots, X^{(d)} \le x^{(d)}).$	te) Gaussian or constant for any con-
The Covariance is a measure of how much the values of each of	Likelihood:	$I(\lambda) = \frac{1}{\lambda}$	Likelihood:	$Var(Z_d^2) = 2d$	The sequence $X_1, X_2,$ converges	stant non-zero vector $\alpha \in \mathbb{R}^d$. Multivariate Gaussians
two correlated random variables determine each other	$L_n(X_1,,X_n,\theta) =$	Canonical exponential form:	$L(x_1X_n; \mu, \sigma^2) =$ $= \frac{1}{1 - \frac$	Student's T Distribution $T_n := \frac{Z}{\sqrt{V/n}}$ where $Z \sim \mathcal{N}(0,1)$, and Z	in probability to X if and only if each component of the sequence	The distribution of, X the d-dimensional Gaussian or nor-
$Cov(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$	$= \left(\prod_{i=1}^{n} {K \choose X_i}\right) \theta^{\sum_{i=1}^{n} X_i} (1-\theta)^{nK-\sum_{i=1}^{n} X_i}$	$f_{\theta}(y) = \exp(y\theta - e^{\theta} - \ln y!)$	$= \frac{1}{(\sigma\sqrt{2\pi})^n} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \mu)^2\right)$ Loglikelihood:	and V are independent	$X_1^{(k)}, X_2^{(k)}, \dots$ converges in probability	mal distribution, is completely specified by the vector mean
$Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$	Loglikelihood:	$b(\theta) = \exp(y\theta - \underbrace{b(\theta)}_{c(y,\phi)} - \frac{b(y,\phi)}{c(y,\phi)}$	$\ell_n(\mu, \sigma^2) =$	18.1 Useful to know 18.1.1 Min of iid exponential	to $X^{(k)}$. Expectation of a random vector	$\mu = \mathbb{E}[\mathbf{X}] = (\mathbb{E}[X^{(1)}], \dots, \mathbb{E}[X^{(d)}])^T$ and the $d \times d$ covariance matrix Σ . If Σ is
$Cov(X, Y) = \mathbb{E}[(X)(Y - \mu_Y)]$	$\ell_n(\theta) = C + \left(\sum_{i=1}^n X_i\right) \log \theta +$	$\theta = \ln \lambda$ $\phi = 1$	$=-nlog(\sigma\sqrt{2\pi})-\frac{1}{2\sigma^2}\sum_{i=1}^{n}(X_i-\mu)^2$	r.v Let $X_1,, X_n n$ be i.i.d. $Exp(\lambda)$ ran-	The expectation of a random vector is the elementwise expectation. Let X be	invertible, then the pdf of <i>X</i> is:
Possible notations:	$\left(nK - \sum_{i=1}^{n} X_i\right) \log(1-\theta)$		MLE:	dom variables. Distribution of $min_i(Xi)$	a random vector of dimension $d \times 1$.	$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^d \det(\Sigma)}} e^{-\frac{1}{2}(\mathbf{x}-\mu)^T \Sigma^{-1}(\mathbf{x}-\mu)},$
$Cov(X, Y) = \sigma(X, Y) = \sigma_{(X,Y)}$	MLE:	Poisson process: k arrivals in t slots	$\hat{\mu}_M LE = \overline{X}_n$ $\widehat{\sigma^2}_M LE = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2$	Distribution of $min_i(Xi)$	$\left(\mathbb{E}[X^{(1)}]\right)$	$\mathbf{x} \in \mathbb{R}^d$
Covariance is commutative:	Fisher Information:	$\mathbf{p}_{\mathbf{x}}(k,t) = \mathbb{P}(N_t = k) = e^{-\lambda t} \frac{(\lambda t)^k}{k!}$	Fisher Information:	$\mathbf{P}(\min_i(X_i) \le t) =$	$\mathbb{E}[\mathbf{X}] = $.	Where $det(\Sigma)$ is the determinant of Σ ,
Cov(X, Y) = Cov(Y, X)	$I(p) = \frac{n}{p(1-p)}$	$\mathbb{E}[N_t] = \lambda t$	$I(\mu, \sigma^2) = \begin{pmatrix} \frac{1}{\sigma^2} & 0\\ 0 & \frac{1}{2\sigma^4} \end{pmatrix}$	$=1-\mathbf{P}(\min_{i}(X_{i})\geq t)$	$\mathbb{E}[X^{(d)}]$	which is positive when Σ is invertible. If $\mu = 0$ and Σ is the identity matrix,
Covariance with of r.v. with itself is	Canonical exponential form:	$Var(N_t) = \lambda t$ Exponential	Canonical exponential form:	$= 1 - (\mathbf{P}(X_1 \ge t))(\mathbf{P}(X_2 \ge t))$ $= 1 - (1 - F_X(t))^n = 1 - t$	The expectation of a random matrix	then X is called a standard normal random vector.
variance:	$f_p(y) =$	Parameter λ , continuous	Gaussians are invariant under affine	22(7)	elements. Let $X = \{X_{ij}\}$ be an $n \times p$	If the covariant matrix Σ is diagonal, the pdf factors into pdfs of univariate
$Cov(X, X) = \mathbb{E}[(X - \mu_X)^2] = Var(X)$ Useful properties:	$exp(y(\ln(p) - \ln(1-p)) + n\ln(1-p) + \ln((1-p))$		transformation:	Differentiate w.r.t x to get the pdf of $min_i(Xi)$:	$n \times p$ matrix of numbers (if they exist):	Gaussians, and hence the components are independent.
Cov($aX + h, bY + c$) = $abCov(X, Y)$	$ heta ext{ } -b(heta) ext{ } c(y,$ Geometric	$\phi P(X > a) = exp(-\lambda a)$	$aX + b \sim N(X + b, a^2\sigma^2)$	$f_{\min}(x) = (n\lambda)e^{-(n\lambda)x}$	$\mathbb{E}[X]$ =	The linear transform of a gaussian
Cov(X, X + Y) = Var(X) + cov(X, Y)	Number of T trials up to (and inclu-	$F_x(x) = \begin{cases} 1 - exp(-\lambda x), & \text{if } x >= 0 \\ 0, & \text{o.w.} \end{cases}$	Sum of independent gaussians:	$J_{\min}(x) = (nx)e^{-x}$	$\begin{bmatrix} \mathbb{E}[X_{11}] & \mathbb{E}[X_{12}] & \dots & \mathbb{E}[X_{1p}] \\ \mathbb{E}[X_{21}] & \mathbb{E}[X_{22}] & \dots & \mathbb{E}[X_{2p}] \end{bmatrix}$	$X \sim N_d(\mu, \Sigma)$ with conformable matrices A and B is a gaussian:
Cov(aX + bY, Z) = aCov(X, Z) +	ding) the first success. $p_T(t) = (1 - p)^{t-1}, t = 1, 2,$	$\mathbb{E}[X] = \frac{1}{\lambda}$	Let $X \sim N(\mu_X, \sigma_X^2)$ and $Y \sim N(\mu_Y, \sigma_Y^2)$	18.1.2 Counting Committees		$AX + B = N_d(A\mu + b, A\Sigma A^T)$
bCov(Y,Z) = aCov(X,Z) + bCov(Y,Z)	$\mathbb{E}[T] = \frac{1}{p}$	$\mathbb{E}[X^2] = \frac{2}{12}$	If $Y = X + Z$, then $Y \sim N(\mu_X + \mu_Y, \sigma_X + \sigma_Y)$	Out of $2n$ people, we want to choose a committee of n people, one of whom will be its chair. In how many different ways can this be done?"	$\mathbb{E}[\dot{X}_{n1}]$ $\mathbb{E}[\dot{X}_{n2}]$ $\mathbb{E}[\dot{X}_{np}]$	Multivariate CLT Let $X_1,,X_d \in \mathbb{R}^d$ be independent
If $Cov(X, Y) = 0$, we say that X and Y are uncorrelated. If X and Y are in-	$var(T) = \frac{1-p}{p^2}$ Pascal	$Var(X) = \frac{1}{\lambda^2}$	If $U = X - Y$, then $U \sim N(\mu_X - \mu_Y, \sigma_X + \sigma_Y)$	will be its chair. In how many different ways can this be done?"	Let <i>X</i> and <i>Y</i> be random matrices of the same dimension, and let <i>A</i> and <i>B</i>	copies of a random vector X such that $\mathbb{E}[x] = \mu (d \times 1 \text{ vector of expectations})$
dependent their Covariance is zero	The negative binomial or Pascal distri-	Likelihood:	$U \sim N(\mu_X - \mu_Y, \sigma_X + \sigma_Y)$	$n\binom{2n}{n} = 2n\binom{2n-1}{n-1}.$	be conformable matrices of constants.	and $Cov(X) = \Sigma$
The converse is not always true. It is only true if <i>X</i> and <i>Y</i> form a gaussian vector, ie. any linear combination	bution is a generalization of the geometric distribution. It relates to the	$L(X_1 X_n; \lambda) = \lambda^n \exp\left(-\lambda \sum_{i=1}^n X_i\right)$	Symmetry:	$\binom{n}{n} = 2n \binom{n-1}{n-1}$	$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$ $\mathbb{E}[AXB] = A\mathbb{E}[X]B$	$\sqrt{(n)}(\overline{X_n} - \mu) \xrightarrow[n \to \infty]{(d)} N(0, \Sigma)$
$\alpha X + \beta Y$ is gaussian for all $(\alpha, \beta) \in \mathbb{R}^2$	random experiment of repeated inde- pendent trials until observing <i>m</i> suc- cesses. I.e. the time of the kth arrival.	Loglikelihood:	If $X \sim N(0, \sigma^2)$, then $-X \sim N(0, \sigma^2)$ $\mathbb{P}(X > x) = 2\mathbb{P}(X > x)$	"In a group of 2n people, consisting of n boys and n girls, we want to select a committee of n people. In how many		$\sqrt{(n)}\Sigma^{-1/2}\overline{X_n} - \mu \xrightarrow[n \to \infty]{(d)} N(0, I_d)$
without {0,0}. 17 correlation coefficient	$Y_k = T_1 + \dots T_k$	$\ell_n(\lambda) = nln(\lambda) - \lambda \sum_{i=1}^n (X_i)$	P(X > x) = 2P(X > x) Standardization:	committee of n people. In how many ways can this be done?"	Covariance Matrix Let <i>X</i> be a random vector of dimensi-	
$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$	$T_i \sim iidGeometric(p)$	MLE:		$(2n) \sum_{n=1}^{\infty} (n) (n)$	on $d \times 1$ with expectation μ_X . Matrix outer products!	Where $\Sigma^{-1/2}$ is the $d \times d$ matrix such that $\Sigma^{-1/2}\Sigma^{-1/2} = \Sigma^1$ and I_d is the identity matrix.
18 Important probability distributi- ons	$\mathbb{E}[Y_k] = \frac{k}{p}$	$\lambda_{MLE} = \frac{n}{\sum_{i=1}^{n} (X_i)}$ Fisher Information.	$Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$	$\binom{2n}{n} = \sum_{i=0}^{n} \binom{n}{i} \binom{n}{n-i}$	$\Sigma = \mathbb{E}[(X - \mu_X)(X - \mu_X)^T] =$	Multivariate Delta Method
Bernoulli Parameter $p \in [0,1]$, discrete	$Var(Y_k) = \frac{k(1-p)}{p^2}$	Fisher Information:	$P(X \le t) = P(Z \le \frac{t-\mu}{\sigma})$ Higher moments:	"How many subsets does a set with 2n elements have?"		20 Algebra
$p_x(k) = \begin{cases} p, & \text{if } k = 1\\ (1-p), & \text{if } k = 0 \end{cases}$	$Var(Y_k) = \frac{k(1-p)}{p^2}$ $p_{Y_k}(t) = \binom{t-1}{k-1} p^k (1-p)^{t-k}$	$I(\lambda) = \frac{1}{\lambda^2}$ Canonical exponential form:	$\mathbb{E}[X^2] = \mu^2 + \sigma^2$	2**	$\mathbb{E}\left[\begin{bmatrix} X_1 - \mu_1 \\ X_2 - \mu_2 \\ \dots \\ X_{d} - \mu_d \end{bmatrix} [X_1 - \mu_1, X_2 - \mu_2, \dots, X_d - \mu_d]$	$d f(x) < a \Rightarrow -a < f(x) < a$ $ f(x) > a \Rightarrow f(x) > a \text{ or } f(x) < a$
$(1-p), \text{if } \mathbf{k} = 0$	$t = k, k + 1, \dots$	Canonical exponential form:	$\mathbb{E}[X^3] = \mu^3 + 3\mu\sigma^2$	$2^{2n} = \sum_{i=1}^{2n} \binom{2n}{i}$	$\lfloor X_d - \mu_d \rfloor$	$ f(x) > u \Rightarrow f(x) > u \text{ or } f(x) < -a$

$$\Sigma = \mathbb{E}[(X - \mu_X)(X - \mu_X)^T]$$

$$= \mathbb{E}[XX^T] - \mathbb{E}[X]\mathbb{E}[X]^T$$

$$= \mathbb{E}[XX^T] - \mu_X \mu_X^T$$

21 Matrixalgebra

$$\|\mathbf{A}\mathbf{x}\|^2 = (\mathbf{A}\mathbf{x})^T(\mathbf{A}\mathbf{x}) = \mathbf{x}^T\mathbf{A}^T\mathbf{A}\mathbf{x} = \mathbf{x}^T\mathbf{A}^T\mathbf{A}\mathbf{x}$$

22 Calculus

Differentiation under the integral sign $\frac{\mathrm{d}}{\mathrm{d}x} \left(\int_{a(x)}^{b(x)} f(x,t) \mathrm{d}t \right) = f(x,b(x))b'(x) -$

$$f(x,a(x))a'(x) + \int_{a(x)}^{b(x)} f_x(x,t)dt.$$

Concavity in 1 dimension If $g: I \to \mathbb{R}$ is twice differentiable in the interval I:

concave:

if and only if $g''(x) \le 0$ for all $x \in I$

strictly concave: if g''(x) < 0 for all $x \in I$

convex: if and only if $g''(x) \ge 0$ for all $x \in I$

strictly convex if: g''(x) > 0 for all $x \in I$

Multivariate Calculus The Gradient ∇ of a twice differntiable function f is defined as:

$$7f : \mathbb{R}^d \to \mathbb{R}^d$$

$$\theta = \begin{pmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_d \end{pmatrix} \mapsto \begin{pmatrix} \frac{\partial}{\partial \theta_1} \\ \frac{\partial}{\partial \theta_2} \\ \vdots \\ \frac{\partial}{\partial \theta_d} \end{pmatrix}$$

Hessian

The Hessian of f is a symmetric matrix of second partial derivatives of f

$$\mathbf{H}h(\theta) = \nabla^2 h(\theta) =$$

A symmetric (real-valued) $d \times d$ matrix **A** is:

Positive semi-definite: $\mathbf{x}^T \mathbf{A} \mathbf{x} \ge 0$ for all $\mathbf{x} \in \mathbb{R}^d$.

Positive definite: $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for all non-zero vectors $\mathbf{x} \in \mathbb{R}^d$

Negative semi-definite (resp. negative definite):

 $\mathbf{x}^T \mathbf{A} \mathbf{x}$ is negative for all $\mathbf{x} \in \mathbb{R}^d - \{\mathbf{0}\}$.

Positive (or negative) definiteness implies positive (or negative) semi-definiteness.

If the Hessian is positive definite then f attains a local minimum at a(convex).

If the Hessian is negative definite at *a*, then f attains a local maximum at *a* (concave).

If the Hessian has both positive and negative eigenvalues then a is a saddle point for f.

23 Covariance Matrix

Let *X* be a random vector of dimension $d \times 1$ with expectation μ_X .

Matrix outer products!