1. τ - and λ -Bockstein spectral sequences

In this section, we prove results about the τ - and λ -Bockstein spectral sequences in \mathcal{B} isyn. Let $\nu^2: \mathbb{Sp} \to \mathcal{B}$ isyn denote the composition of the functors $\mathbb{Sp} \xrightarrow{\nu_E} \mathbb{Syn}_E \xrightarrow{\nu_F} \mathcal{B}$ isyn.

Remark 1.1. For this theorem, I'm using these assumptions:

- $\nu_F(\mathbb{S}_F^{k,w}) = \mathbb{S}^{k,w,k}$
- SES in $\nu_E F_{*,*}$ -homology induces cofiber sequence in ν^2
- ν^2 is symmetric monoidal on projective objects
- homotopy of $\nu^2(F)$ -module is λ -free
- λ^{-1} is symmetric monoidal and satisfies $\lambda^{-1} \circ \nu_F = \mathrm{id}$
- inclusion or equivalence $\operatorname{Mod}(\mathcal{B}\operatorname{isyn}; C\lambda) \simeq \operatorname{Stable}(\nu_E F_{*,*}\nu_E F)$

Theorem 1.2. For the bisynthetic spectrum $\nu_F(Y)$ with $Y \in \operatorname{Syn}_E$, the $\nu^2(F)$ -Adams spectral sequence is isomorphic to the λ -Bockstein spectral sequence.

Proof. Our proof of this follows very closely to the proofs in [BHS19, App. A]. Consider the canonical $\nu_E(F)$ -Adams tower

of $Y \in \operatorname{Syn}_E$. This tower is made up of cofiber sequences

$$Y_{n+1} \to Y_n \to Y_n \otimes \nu_E(F) \to \Sigma^{1,0} Y_{n+1}$$

such that the maps $Y_{n+1} \to Y_n$ induce the zero map on $\nu_E(F)_{*,*}$ -homology. By SES prop. of ν_F (!!!need this fact!!!), these become cofiber sequences

$$\Sigma^{-1}\nu_F(Y_{n+1}) \to \nu_F(Y_n) \to \nu_F(Y_n \otimes \nu_E(F)) \to \nu_F(\Sigma^{1,0}Y_{n+1}).$$

in Bisyn. By symmetric monoidality of ν_F on projective objects (!!!need this fact!!!), we can identify these cofiber sequences as

$$\Sigma^{0,0,1}\nu_F(Y_{n+1}) \to \nu_F(Y_n) \to \nu_F(Y_n) \otimes \nu^2(F) \to \Sigma^{1,0,1}\nu_F(Y_{n+1}).$$

Hence, the canonical $\nu^2(F)$ -Adams tower for $\nu_F(Y)$ can be written as

In the usual way, we get the Adams E_1 -page

$$\nu^{2} F E_{1}^{f,k,w,v} = \pi_{k,w,v} (\Sigma^{0,0,f} \nu_{F}(Y_{f}) \otimes \nu^{2}(F))
\cong \pi_{k,w,v-f} (\nu_{F}(Y_{f}) \otimes \nu^{2}(F))$$

Because of the equivalence

$$\nu_F(Y_n \otimes \nu_E(F)) \simeq \nu_F(Y_n) \otimes \nu^2(F),$$

and the fact that the homotopy of a $\nu^2(F)$ -module is λ -free (!!!need this fact!!!), we can identify the E_1 -page as

$$_{\nu^2 F} E_1^{f,k,w,v} \cong _{\nu_E F} E_1^{f,k,w} \otimes \mathbb{Z}[\lambda],$$

where $x \in \nu_{EF} E_1^{f,k,w}$ lives in quad-degree (f,k,w,k+f) (I'm pretty sure, but this is just a guess!!! double check when we know about homotopy of $\nu^2 F$ -modules better).

The differentials in this spectral sequence are of the form

$$d_r: {}_{\nu^2 F}E_1^{f,k,w,v} \to {}_{\nu^2 F}E_1^{f+r,k-1,w,v}.$$

Since $\lambda^{-1} \circ \nu_F = \operatorname{id}$ and λ is symmetric monoidal, the λ -inverted $\nu^2(F)$ -Adams tower is the $\nu_E(F)$ -Adams tower, and, in particular, the λ -inverted differentials

$$d_{r,\lambda^{-1}}: {}_{\nu_E F} E_1^{f,k,w} \to {}_{\nu_E F} E_1^{f+r,k-1,w}$$

are exactly the differentials of the $\nu_E(F)$ -Adams spectral sequence. Just as in [BHS19], this implies that if $d_{r,\lambda^{-1}}(x)=y$ is a $\nu_E(F)$ -Adams differential, then

$$d_r(x) = \lambda^{r-1}y.$$

Using the equivalence (inclusion?)

$$\operatorname{Mod}(\operatorname{\mathcal{B}isyn}; C\lambda) \simeq \operatorname{Stable}(\nu_E F_{*,*} \nu_E F),$$

we see that the λ -Bockstein E_1 -page

$$_{\beta}E_{1}^{f,k,w,v} = \pi_{k,w,v}(\Sigma^{0,0,-f}\nu_{F}(Y) \otimes C\lambda)$$

and Adams E_2 -page are, up to a degree shift, isomorphic. Because they have the same formula for differentials, they must be isomorphic as spectral sequences.

Remark 1.3. We might actually need to prove a little bit more. [BHS19] cites their Thm. 9.19(1) when they prove their version of this, but I'm not sure how exactly they're using that. Probably need to assume everything is nilpotent/lambda complete too, but don't feel like thinking about this for now. They also prove that the *filtrations* are literally the same, not just that the spectral sequences are isomorphic.

Remark 1.4. For the next lemma and theorem, I need these assumptions:

- $\nu_F(\mathbb{S}_E^{k,w}) = \mathbb{S}^{k,w,k}$
- ullet E Adams-type and ring map $E \to F$
- $\nu_E P$, with P finite E_* -projective, is "finite" in Syn_E
- ν^2 is symmetric monoidal on projective objects
- SES in $\nu_E F_{*,*}$ -homology induces cofiber sequence in ν^2
- Commuting diagram of functors

$$\begin{array}{ccc} \operatorname{Bisyn} & \xrightarrow{\tau^{-1}} & \operatorname{Syn}_{F} \\ \nu_{F} & & \uparrow \nu_{F} \\ \operatorname{Syn}_{E} & \xrightarrow{\tau^{-1}} & \operatorname{Sp} \end{array}$$

Lemma 1.5. The synthetic spectrum $\nu_E E \in \operatorname{Syn}_E$ is a filtered colimit of finite, $\nu_E F$ -projectives. In particular, for $Y \in \operatorname{Syn}_E$,

$$\nu_E(Y \otimes \nu_E E) \simeq \nu_E(Y) \otimes \nu^2(E)$$
.

Proof. Let $E \simeq \operatorname{colim}_{\alpha} E_{\alpha}$ where each E_{α} is a finite, E_* -projective spectrum. Since $\nu_E(E) \simeq \operatorname{colim}_{\alpha} \nu_E E_{\alpha}$, it suffices to show that each $\nu_E E_{\alpha}$ is a finite, $\nu_E F$ -projective synthetic spectrum. Now, $\nu_E E_{\alpha}$ is automatically finite (!!!make sure we define what this means!!!). For projectivity, we see that

$$\nu_E E_\alpha \otimes \nu_E F \simeq \nu_E (E_\alpha \otimes F),$$

with homotopy $\pi_{*,*}(\nu_E E_\alpha \otimes \nu_E F) \cong F_* E_\alpha[\tau]$. By a Kunneth spectral sequence argument,

$$F_*E_\alpha \cong E_*E_\alpha \otimes_{E_*} F_*$$
.

In particular, since E_*E_α is projective over E_* , then F_*E_α is projective over F_* . Tensoring with $\mathbb{Z}[\tau]$ preserves projectivity, so that $F_*E_\alpha[\tau]$ is projective over $\nu_E F_{*,*} \cong F_*[\tau]$.

Theorem 1.6. For the bisynthetic spectrum $\nu^2(X)$ with $X \in \operatorname{Sp}$, the $\nu^2(E)$ -Adams spectral sequence is isomorphic to the τ -Bockstein spectral sequence.

REFERENCES 3

Proof. Consider the canonical E-Adams tower

of $X \in \operatorname{Sp}$. This tower is made up of cofiber sequences

$$X_{n+1} \to X_n \to X_n \otimes E \to \Sigma X_{n+1}$$

such that the maps $X_{n+1} \to X_n$ induce the zero map on E_* -homology. Applying ν_E to these cofiber sequences, as in [BHS19] we get cofiber sequences

$$\Sigma^{0,1}\nu_E(X_{n+1}) \to \nu_E(X_n) \to \nu_E(X_n) \otimes \nu_E(E) \to \Sigma^{1,1}\nu_E(X_{n+1}).$$

Since $F_*(-) \cong E_*(-) \otimes_{E_*} F_*$ and the maps $\Sigma^{0,1} \nu_E(X_{n+1}) \to \nu_E(X_n)$ induce the zero map on $\nu_E(E)_{*,*}$ -homology, the maps $\Sigma^{0,1} \nu_E(X_{n+1}) \to \nu_E(X_n)$ also induce zero on $\nu_E(F)_{*,*}$ -homology. This, together with Lemma 1.5, implies that there are cofiber sequences

$$\Sigma^{0,1,1}\nu^2(X_{n+1}) \to \nu^2(X_n) \to \nu^2(X_n) \otimes \nu^2(E) \to \Sigma^{1,1,1}\nu^2(X_{n+1})$$

which build up the canonical $\nu^2(E)$ -Adams tower

for $\nu^2(X) \in \mathcal{B}$ isyn. The $\nu^2(E)$ -Adams E_1 -page has the form

$$\begin{split} \nu^{2} E^{f,k,w,v}_{1} &= \pi_{k,w,v}(\Sigma^{0,f,f} \nu^{2}(X_{f}) \otimes \nu^{2}(E)) \\ &\cong \pi_{k,w-f,v-f}(\nu^{2}(X_{f}) \otimes \nu^{2}(E)). \end{split}$$

We aim to show that this is τ -free.

REFERENCES

[BHS19] Robert Burklund, Jeremy Hahn, and Andrew Senger. *On the boundaries of highly connected, almost closed manifolds.* 2019. arXiv: 1910.14116.