Electric Circuits I Laboratory 3: Wheatstone Bridge

Objective:

 To experimentally verify the operation of a typical bridge circuit to measure the resistance of an unknown resistor.

BACKGROUND & THEORY

The circuit diagram of a Wheatstone bridge is shown in the figure below. The resistor R_k is known, and the two resistors R_1 and R_2 have a known ratio R_2/R_1 , although their individual values may not be known. The unknown resistor is R_x . A DMM measures the voltage difference V_{AB} between nodes A and B. Either the known resistor R_k or the ratio R_2/R_1 is adjusted until the voltage difference V_{AB} is zero and no current flows through G. When $V_{AB} = 0$, the bridge is said to be "balanced".

LABORATORY PROCEDURE:

1. Build the circuit above using the following specific component values:

$$V = 10 V_{DC}$$
, $R_1 = 1 k\Omega$, $R_2 = 10 k\Omega$,

- 2. You will use a decade resistance box for R_k and you will be provided with a resistor of unknown value, R_x .
- 3. Using this circuit, find the value of R_k that makes VAB zero. Determine the value of the "unknown" resistor.
- 4. Measure R_x using a DMM.
- 5. Compare the measured value to what you determined using the Wheatstone Bridge. If there is a large discrepancy, recheck all measurements.
- 6. Get another R_x which has the same theoretical resistance (same color code) and repeat Steps 3-4.
- 7. Compare the value measured to what you determined using the Wheatstone Bridge in Step 6. If there is a large discrepancy, recheck all measurements.
- 8. Compare the values from Steps 5 and 7. If they are different, explain.
- 9. Calculate the total power delivered by the voltage source and the power absorbed by each resistor, using the expressions derived in the pre-lab.

Laboratory Report:

Include the measurements, computations, and answers to questions from the laboratory procedure. Clearly label all steps.

Pre-Lab:

Answer the following questions and complete the derivations **prior to coming to the lab**.

- On which circuit laws is the operation of this bridge based?
- Derive the Wheatstone bridge expression, $R_x/R_k = R_2/R_1$.
- Derive expressions for the total power delivered by the voltage source and the power absorbed by each resistor.