

JD79676AA

Data Sheet

All-in-one driver with TCON for Color application

Version 1.0.4 2023/07/06

Table of Contents

		Page
1.	GENERAL DESCRIPTION	4
2. 3.	FEATURESBLOCK DIAGRAM	
3. 4.		
٦.	4.1 External GPIO Control	
5.	APPLICATION POWER CIRCUIT	_
-	5.1 Power Generation	
6.	PIN DESCRIPTION	12
	6.1 Pin define	
	6.2 I/O Pin Structure	
_	6.3 Value of wiring resistance to each pin	
7.	SPI COMMAND DESCRIPTION	
	7.1 "3-Wire" Serial Port Interface	
8	SPI CONTROL REGISTERS:	
Ο.	8.1 Register Table	
	8.2 Register Description	
	8.2.1 ROOH (PSR): Panel setting Register	
	8.2.2 R01H (PWR): Power setting Register	
	8.2.3 R02H (POF): Power OFF Command	
	8.2.4 R04H (PON): Power ON Command	26
	8.2.5 R06H (BTST): Booster Soft Start Command	
	8.2.6 R07H (DSLP): Deep Sleep Command	29
	8.2.7 R10H (DTM): Data Start transmission Register	30
	8.2.9 R12H (DSP): Data Stop Command	
	8.2.10 R17H (AUTO): Auto Sequence	
	8.2.11 R30H (PLL): PLL Control Register	34
	8.2.12 R40H (TSC): Temperature Sensor Command	
	8.2.13 R41H (TSE): Temperature Sensor Calibration Register	
	8.2.14 R42H (TSW): Temperature Sensor Write Register	37
	8.2.15 R43H (TSR): Temperature Sensor Read Register	38
	8.2.16 R50H (CDI): VCOM and DATA interval setting Register	
	8.2.17 R51H (LPD): Lower Power Detection Register	
	8.2.18 R61H (TRES): Resolution setting	
	8.2.19 R65H (GSST): Gate/Source Start Setting Register	
	8.2.21 R80H (AMV): Auto Measure VCOM register	
	8.2.22 R81H (VV): VCOM Value register	
	8.2.23 R82H (VDCS): VCOM_DC Setting Register	
	8.2.24 R83H (PTL): Partial Window Register	
	8.2.25 R90H (PGM): Program Mode	49
	8.2.26 R91H (APG): Active Program	
4	8.2.27 R92H (RMTP): Read MTP Data	
	8.2.28 RA2 (PGM_CFG): MTP Program Config Register (E Ink use only)	
	8.2.29 RE0H (CCSET): Cascade Setting (E Ink use only)	
	8.2.30 RE3H (PWS): Power Saving Register	
	8.2.31 RE4H (LVSEL): LVD Voltage Select Register	
	8.2.33 Register Restriction	
9.	· · · · · · · · · · · · · · · · · · ·	
٥.	9.1 Power On/Off and DSLP Sequence	
	9.2 MTP LUT Definition	
	9.3 Default Setting Format in MTP	
	9.1 Data transmission waveform	
10		
	10.1 Absolute Maximum Rating	66

10.2 Digital DC Characteristic	67
10.3 Analog DC Characteristics	
10.4 AC Characteristics	
11. CHIP OUTLINE DIMENSIONS	
11.1 Circuit/Bump View	
11.2 Bump information	
12. ALIGNMENT MARK INFORMATION	
12.1 Location	
12.2 Pad coordinates	

V1.0.4

JD79676AA

All-in-one driver with TCON for Color application

1. GENERAL DESCRIPTION

This driver is an all-in-one driver with timing controller for color application. The outputs have 2-bit output per pixel. The timing controller provides control signals for the source driver and gate drivers.

The DC-DC controller allows to generate the source output voltage VSP_0/VSN_0(+/-15V), VSP_1/VSPL_0/VSPL_1/VSN_1 (+/-3V~+/-15V) and VGP/VGN(+/-20V, +/-17V, +/-15V, +/-10V). The chip also includes an output buffer for the supply of the common electrode (VCOMAC or VCOMDC). The system is configurable through a 3-wire/4-wire(SPI) serial.

2. FEATURES

- System-on-chip (SOC) for color application
- Timing controller support several all resolution (maximum resolution 128x250)
- Support source & gate driver function:
 - 128 Outputs source driver with 2-bit black/white/red/yellow per pixel:
 - Output dynamic range(Voltage step:100mV):
 - Mode 0: 0V & VSP_0(+15V) & VSN_0(-15V) & VSPL_0(+3V~+15V)
 - Mode 1: 0V & VSP_1 (+3V ~ +15V) & VSN_1(-3V ~ -15V) & VSPL_1 (+3V ~ +15V)
 - Mode 0 & 1 can be switched frame by frame (panel scanning frame)
 - Left and Right shift capability
 - 250 Output gate driver:
 - Output dynamic range: VGP and VGN(+/-20V, +/-17V, +/-15V, +/-10V)
 - Up and Down shift capability
- Common electrode level
 - AC-VCOM and DC-VCOM
 - Support sensing function (7-bit digital status)
 - Support LUT
- Charge Pump: On-chip booster and regulator
- Built in Frame memory maximum: 128 x 250 x 2 bit SRAM
- Built in temperature sensor:
 - On-Chip: -25 °C ~ 50 °C ± 2.0 °C / 8-bit status
 - Off-Chip: $-55\sim125^{\circ}C \pm 2.0^{\circ}C / 11$ -bit status ($I^{2}C/LM75$)
- Support LPD, Low Power detection (VDD< 2.2V~2.5V)
- PLL : On-chip RC oscillator
- 3-wire/4-wire (SPI) serial interface for system configuration
- Digital supply voltage: 2.3~3.6V
- 4.0 K-byte MTP for LUT, User command
- Partial update

- Support cascade
- Package-COG

3. BLOCK DIAGRAM

Cascade type (CSB independent / cascade sync with sync_C + sync_D+sync_E)

4. APPLICATION CIRCUIT

Reference table of the device:

Device no.	Value	Reference
C1,C2,C3, C4, C6, C7, C8	1uF	0603, X5R/X7R, voltage rating : 25V
C9, C10	1uF	0603, X5R/X7R, voltage rating : 50V
C5	0.1uF	0603, X5R/X7R, voltage rating : 25V
R1	2.2Ω	0603, +/-1% variation
		Si1308EDL \ Si1304BDL
04	NMOS	- Drain-source break volatage≥30V
Q1	NIVIOS	- Gate-source threshold voltage ≤ 1.5V
		- Drain-source on-state resistance<400mΩ
		NR4018T470M \ CDRH2D18/LDNP-470NC
L1	47uH	- Fixed
-1	4/un	- Maximum DC current~420mA
		- Maximum DC resistance~650mΩ
		MBR0530
D1~D3	Diode	- Reverse DC voltage≥30V
D1~D3	Diode	- Forward current≥500mA
		- Forward voltage≦430mV

4.1 External GPIO Control

Note:

TSDA: I²C data for external temperature sensor **TSCL:** I²C clock for external temperature sensor

(I²C interface need external pull high resistance. Pull low or floating If not used.)

APPLICATION POWER CIRCUIT

5.1 **Power Generation**

6. PIN DESCRIPTION

6.1 Pin define

Pin Name	Pin Type	I/O Structure	Description
		Serial	Communication Interface
CSB	I	Type 5	Serial communication chip select.
SDA	I/O	Type 4	Serial communication data input.
SCL	I	Type 5	Serial communication clock input.
DC	I	Type 5	Serial communication Command/Data input L: Command H: data Connect to VDD if BS=High.
			Control Interface
RST_N	1	Type 2	Global reset pin. Low reset. (normal pull high) When RST_N become low, driver will reset. All register will reset to default value. all driver function will disable. SD output and VCOM will be released to floating.
BUSY_N	0	Type1	This pin indicates the driver status. BUSY_N= "0": Driver is busy, data/VCOM is transforming. BUSY_N= "1": non-busy. Host side can send command/data to driver.
BS	I	Type 5	Input interface setting. Select 3 wire/ 4 wire SPI interface L: 4-wire IF H:3-wire IF
TSCL	I/O	Type 4	 I²C clock for external temperature sensor (I²C interface need external pull high resistance.) Must pull high or low if not used. (Default low)
TSDA	I/O	Type 4	I ² C data for external temperature sensor (I ² C interface need external pull high resistance.) Must pull high or low if not used.(Default low)
MS	I	Type 5	Master/Slave selection for cascade mode Low: Slave High: Master In single-chip mode, MS should be connect to VDD
			Output Driver
S[127:0]	0	-	Source driver output signals.
G[249:0]	0	-	Gate driver output signals
			Border
VBD[2:1]	0	-	Border output pins. It outputs black WF.
		V	COM GENERATOR
VCOM	0	Type 1	VCOM output. VCOM has follow four voltage state: 1. (-VCM_DC) V 2. (15 +(- VCM_DC)) V or (-15 +(- VCM_DC)) V 3. Floating
			Power Circuit
GDR	0	-	This pin is N-MOS gate control.
RESE	P	-	Current sense input for control loop.
FB	Р	-	Keep open
VGP	Р		Positive gate voltage
VGN VSP	P P	-	Negative gate voltage.
VSN	P P	-	Positive source voltage Negative source voltage.
VSPL	P	<u> </u>	Positive source voltage
	•		. com co conago

Pin Name	Pin Type	I/O Structure	Description
			Power Supply
VDDP	Р	-	DCDC power input
VDD	Р	-	Digital/Analog power.
VSS	Р	-	Digital ground
VSSA	Р		Analog Ground
VDDIO	Р	-	IO voltage supply
VDD_15V	Р	-	1.5V voltage input &output
VMTP	Р	-	MTP program power (10.1V)
			Reserved Pins
T_N18V	I/O	-	Test pin.Leave open or pull gnd.
T_LDON5V	I/O	-	Test pin.Leave open or pull gnd.
T_VCOM	I/O	-	Test pin.Leave open or pull gnd.
T_VSPD_REF	I/O	-	Test pin.Leave open or pull gnd.
T_IBIAS	I/O	-	Test pin.Leave open or pull gnd.
T_VREF	I/O	-	Test pin.Leave open or pull gnd.
T_EN_LSH	I/O	-	Test pin.Leave open or pull gnd.
T_VTSEN	I/O	-	Test pin.Leave open or pull gnd.
T_SAR_REF	I/O	-	Test pin.Leave open or pull gnd.
T_IN[2:0]	I/O	-	Test pin.Leave open or pull gnd.
T_DEBUG[8:0]	I/O	-	Test pin.Leave open or pull gnd.
T_EX_SYSCLK	I/O	-	Test pin.Leave open or pull gnd.
T_EX_REFCLK	I/O	-	Test pin.Leave open or pull gnd.
T_EN_DIG	I/O	-	Test pin.Leave open or pull gnd.
SyncD	I/O	Type 4	Cascade data signal. Leave open or pull gnd if it is not used.
SyncE	I/O	Type 4	Cascade data2 signal. Leave open or pull gnd if it is not used.
SyncC	I/O	Type 4	Cascade clock signal. Leave open or pull gnd if it is not used.
Pckl	l	Type 3	Break panel check input. Leave open or gnd if it is not used.
PckO	0	Type 1	Break panel check output. Leave open or gnd if it is not used.
DUMMY[5:0]	D	-	Dummy pin. Leave open or pull gnd.

Note: I: Input, O: Output, P: Power, D: Dummy, S: Shorted line, M: Mark, PI: Power input, PO: Power output, I/O: Input / Output. PS: Power Setting, C: Capacitor pin.

6.2 I/O Pin Structure

6.3 Value of wiring resistance to each pin

Pin name	Wiring resistance value(Ω)	Pin name	Wiring resistance value(Ω)
VCOM	5ohm	TSDA	100ohm
VGP	5ohm	TSCL	100ohm
VGN	5ohm	BS	100ohm
VSP	5ohm	RESE	5ohm
VSN	5ohm	GDR	5ohm
VSPL	5ohm	SDA	100ohm
VMTP	5ohm	SCL	100ohm
VDD_15V	5ohm	CSB	100ohm
VSSA	5ohm	DC	100ohm
VDDIO	5ohm	RST_N	100ohm
VSS	5ohm	SyncE	100ohm
VDDP	5ohm	SyncD	100ohm
VDD	5ohm	SyncC	100ohm
MS	100ohm	PCKI	100ohm
Test pin	100ohm	PCKO	100ohm
BUSY N	100ohm		

7. SPI COMMAND DESCRIPTION

JD79676 use the 3-wire/4-wire serial port as communication interface for all the function and command setting.

JD79676 3-wire/4-wire engine act as a "slave mode" for all the time, and will not issue any command to the 3-wire/4-wire bus itself.

Under read mode, 3-wire/4-wire engine will return the data during "Data phase". The returned data should be latched at the rising edge of SCL by external controller. Data in the "Hi-Z phase" will be ignored by 3-wire/4-wire engine during write operation, and should be ignored during read operation also. During read operation, external controller should float SDA pin under "Hi-Z phase" and "Data phase".

7.1 "3-Wire" Serial Port Interface

3 pin serial interface characteristics (write mode)

3 pin serial interface characteristics (read mode)

7.2 "4-Wire" Serial Port Interface

4 pin serial interface characteristics(write mode)

4 pin serial interface characteristics(read mode)

8. SPI CONTROL REGISTERS:

8.1 Register Table

Following table list all the SPI control registers and bit name definition for JD79676. Refer to the next section for detail register function description.

۸ ddraac	aammand								E	3it		
Address	command	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
		W	0	0	0	0	0	0	0	0	0	00H
R00H	Panel setting (PSR)	W	1	RES[1]	RES[0]	PST_MODE	-	UD	SHL	SHD_N	RST_N	0Fh
	, , , , , , , , , , , , , , , , , , ,	W	1	LUT_EN	-	FOPT	VCMZ	TS_AUTO	TIEG	NORG	VC_LUTZ	09h
		W	0	0	0	0	0	0	0	0	1	01H
		W	1	-	-		-	-	VSC_EN	VDS_EN	VDG_EN	07h
		W	1	-	-	-	-	-	-	VGPN [1]	VGPN [0]	00h
R01H	Power setting (PWR)	W	1	-	VSPL_0[6]	VSPL_0[5]	VSPL_0[4]	VSPL_0[3]	VSPL_0[2]	VSPL_0[1]	VSPL_0[0]	00h
	,	W	1	-	VSP_1[6]	VSP_1 [5]	VSP_1 [4]	VSP_1 [3]	VSP_1 [2]	VSP_1 [1]	VSP_1 [0]	00h
		W	1	-	VSN_1[6]	VSN_1[5]	VSN_1[4]	VSN_1[3]	VSN_1[2]	VSN_1[1]	VSN_1[0]	00h
		W	1	_	VSPL_1[6]	VSPL_1[5]	VSPL_1[4]	VSPL_1[3]	VSPL_1[2]	VSPL_1[1]	VSPL_1[0]	00h
		W	0	0	0	0	0	0	0	1	0	02H
R02H	Power OFF(POF)	w	1	-	-	-		-		-	-	00h
DOALL	Dawer ON (DON)											
R04H	Power ON (PON)	W	0	0	0	0	0	0	1	0	0	04H
		W	0	0	0	0	0	0	1	1	0	06H
		W	1	-	-		-	l	SFT[1:0]	PHA_S	FT[1:0]	00h
		W	1	-	-			PHA_	ON[5:0]			02h
R06H	Booster Soft Start (BTST)	W	1	-				PHA_0	OFF[5:0]			07h
		W	1		<u> </u>				02h			
		W	1	-		PHB_OFF[5:0]						
		W	1	-	-	PHC_ON[5:0]						
		W	1	-				PHC_0	OFF[5:0]			07h
R07H	Deep Sleep(DSLP)	W	0	0	0	0	0	0	1	1	1	07H
R07H	Deep oleep(DOLI)	W	1	1	0	1	0	0	1	0	1	A5h
R10H	Data Start	W	0	0	0	0	1	0	0	0	0	10H
	transmission (DTM)	W	1	#	#	#	#	#	#	#	#	00H
R11H	Data Stop (DSP)	W	0	0	0	0	1	0	0	0	1	11H
		R	1	Data_flag	-	-	-	-	-	-	-	
R12H	Display Refresh	W	0	0	0	0	1	0	0	1	0	12H
	(DRF)	W	1	-	-	-	-	-	-	-	-	00H
R17H	Auto sequence (AUTO)	W	0	0 Codo[7]	0	0	1	0	1	1	1	17H
	(A010)	W	1	Code[7]	Code[6]	Code[5]	Code[4]	Code[3]	Code[2]	Code[1]	Code[0]	A5h
R30H	PLL control (PLL)	W	0	-	0	1 -	-	0 Dyna	0	0	2:0]	30H 02h
		W	0	0	1	0	0	Dyna 0	0	0 0	2:0]	40H
R40H	Temperature Sensor	R	1	D10/TS[7]	D9/TS[7]	D8/TS[6]	D7/TS[5]	D6/TS[4]	D5/TS[3]	D4/TS[2]	D3/TS[1]	40H
114011	Command (TSC)	R	1	D10/13[7]	D9/TS[7]	D0/13[0]	-	-	-		-	
	Temperature Sensor	W	0	0	1	0	0	0	0	0	1	41H
R41H	Calibration (TSE)	W	1	TSE	-	-	TO[4]	TO[3]	TO[2]	TO[1]	TO0]	00h
	- ()	W	0	0	1	0	0	0	0	1	0	42H
	Temperature Sensor	W	1	WATTR[7]	WATTR[6]	WATTR[5]	WATTR[4]	WATTR[3]	WATTR[2]	WATTR[1]	WATTR[0]	00h
R42H	Write (TSW)	W	1	WMSB[7]	WMSB[6]	WMSB[5]	WMSB[4]	WMSB[3]	WMSB[2]	WMSB[1]	WMSB[0]	00h
	, ,	W	1	WLSB[7]	WLSB[6]	WLSB[5]	WLSB[4]	WLSB[3]	WLSB[2]	WLSB[1]	WLSB[0]	00h
		W	0	0	1	0	0	0	0	1	1	43H
R43H	Temperature Sensor	R	1	RMSB[7]	RMSB[6]	RMSB[5]	RMSB[4]	RMSB[3]	RMSB[2]	RMSB[1]	RMSB[0]	
	Read (TSR)	R	1	RLSB[7]	RLSB[6]	RLSB[5]	RLSB[4]	RLSB[3]	RLSB[2]	RLSB[1]	RLSB[0]	
	VCOM and DATA	W	0	0	1	0	1	0	0	0	0	50H
R50H	interval setting (CDI)	W	1	VBD[2]	VBD[1]	VBD[0]	DDX	CDI[3]	CDI[2]	CDI[1]	CDI[0]	97h

V1.0.4

JD79676AA

R51H	Lower Power	W	0	0	1	0	1	0	0	0	1	51H
1.0111	Detection (LPD)	R	1	-	-	-	-	-	-	-	LPD	
		W	0	0	1	1	0	0	0	0	1	61H
	Decelution	W	1	-	-	-	-	-	-	HRES(9)	HRES(8)	00h
R61H	Resolution setting(TRES)	W	1	HRES(7)	HRES(6)	HRES(5)	HRES(4)	HRES(3)	HRES(2)	0	0	00h
	oounig(TTLEO)	W	1	-	-	-	-	-	-	VRES(9)	VRES(8)	00h
		W	1	VRES(7)	VRES(6)	VRES(5)	VRES(4)	VRES(3)	VRES(2)	VRES(1)	VRES(0)	00h
		W	0	0	1	1	0	0	1	0	1	65H
		W	1	-	-	-	-	-	-	S_start(9)	S_start(8)	00h
R65H	Gate/Source Start	W	1	S_start(7)	S_start(6)	S_start(5)	S_start(4)	S_start(3)	S_start(2)	0	0	00h
	Setting(GSST)	W	1	-	-	-	-	-	-	G_start(9)	G_start(8)	00h
		W	1	G_start(7)	G_start(6)	G_start(5)	G_start(4)	G_start(3)	G_start(2)	G_start(1)	G_start(0)	00h
		W	0	0	1	1	1	0	0	0	0	70H
D=011	DE: ((0.01) (DE) ()	R	1	0	0	0	0	1	0	0	1	09h
R70H	REVISION (REV)	R	1	0	0	0	0	0	0	1	0	02h
		R	1	0	0	0	0	0	0	0	1	01h
Danii	Auto Measure Vcom	w	0	1	0	0	0	0	0	0	0	80 H
R80H	(AMV)	W	1	P[1]	P[0]	AMVT[1]	AMVT[0]	XON	AMVS	AMV	AMVE	00h
_		w	0	1	0	0	0	0	0	0	1	81H
R81H	Vcom Value (VV)	R	1	-	VV[6]	VV[5]	VV[4]	VV[3]	VV[2]	VV[1]	VV[0]	
	Vcom_DC Setting	W	0	1	0	0	0	0	0	1	0	82H
R82H	register(VDCS)	w	1	-	VDCS[6]	VDCS[5]	VDCS[4]	VDCS[3]	VDCS[2]	VDCS[1]	VDCS[0]	00h
		W	0	1	0	0	0	0	0	1	1 83H	
	Partial Window	W	1	-	-	-	PTH_ENB	-	-	HRST(9)	HRST(8)	00h
		W	1	HRST(7)	HRST(6)	HRST(5)	HRST(4)	HRST(3)	HRST(2)	0	0	00h
		W	1	-	-		-	-	-	HRED(9)	HRED(8)	00h
Doold		W	1	HRED(7)	HRED(6)	HRED(5)	HRED(4)	HRED(3)	HRED(2)	0	0	00h
R83H	(PTLW)	W	1	-	7 - 🔻) -	-	-	-	VRST(9)	VRST(8)	00h
		W	1	VRST(7)	VRST(6)	VRST(5)	VRST(4)	VRST(3)	VRST(2)	VRST(1)	VRST(0)	00h
		W	1	-	-	-	-	-	-	VRST(9)	VRST(8)	00h
		W	1	VRST(7)	VRST(6)	VRST(5)	VRST(4)	VRST(3)	VRST(2)	VRST(1)	VRST(0)	00h
		W	1		-	-	-	-	-	-	PMOD	00h
R90H	Program mode(PGM)	W	0	1	0	0	1	0	0	0	0	90H
R91H	Active Program(APG)	W	0	1	0	0	1	0	0	0	1	91H
R92H	Read MTP data	W	0	1	0	0	1	0	0	1	0	92H
Nazii	(RMTP)	R	1	#	#	#	#	#	#	#	#	-
		W	0	1	0	1	0	0	0	1	0	A2H
		W	1	-	-	-	VMTPSEL	-	-	M_dis	S_dis	00h
RA2H	MTP Program Config	W	1				PGM_SAE	DDR[15:8]				00h
10 (211	Register(PGM_CFG)	W	1				PGM_SA	DDR[7:0]				00h
		W	1				PGM_DS	IZE[15:8]				0Fh
		W	1			ı	PGM_DS		Ī	ı	I	00h
RE0H	CASCADE setting	W	0	1	1	1	0	0	0	0	0	E0H
	(CCSET)	W	1	-	-	-	-	-	-	TSFIX	CCEIN	00h
RE3H	Power saving(PWS)	W	0	1 VCOM_W	1 VCOM_W	1 VCOM_W	0 VCOM_W	0	0	1	1	E3H
	17/2	W	0	[3]	[2]	[1]	[0]	SD_W[3] 0	SD_W[2]	SD_W[2] 0	SD_W[0] 0	00h E4H
RE4H	LVD voltage Select(LVSEL)	W	1	-	-	-	-	-	-	LVD_SEL	LVD_SEL	03h
	` '	W	0	1	1	1	0	0	1	[1] 0	[0] 1	E5H
RE5H	CASCADE setting select (CCS_SEL)	w	1	-	-	-	-	cascade_syn	-	-	-	00h
		L	l			l	L	С		l		

8.2 Register Description

R/W: 0:Write Cycle 1:Read Cycle D/CX:0:Command/1:Data

D7~D0:-:Don't Care

8.2.1R00H (PSR): Panel setting Register

R00H		Bit											
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code		
PSR	W	0	0	0	0	0	0	0	0	0	00H		
1 st Parameter	W	1	RES[1]	RES[0]	PST_MODE	-	UD	SHL	SHD_N	RST_N	0Fh		
2 nd Parameter	W	1	LUT_EN	-	FOPT	VCMZ	TS_AUTO	TIEG	NORG	VC_LUTZ	09h		

NOTE: "-" Don't care, can be set to VDD or GND level

Description	-The commar	nd defines as :	
	1 st paramete	ar ar	
	Bit	Name	Description
	0	DOT N	RST_N function 1: no effect. (default) 0: Booster OFF, Register data are set to their default values, and Source/Boder/Vcom: floating
	1	SHD_N	SHD_N function 0 : Booster OFF, register data are kept, and Source / Border / Vcom are kept 0V or floating. 1 : Booster on. (default)
	2	SHL	SHL function 0: Shift left; First data=Sn→Sn-1 →→S2→Last data=S1. 1: Shift right: First data=S1→S2 →→Sn-1→Last data=Sn. (default)
	3	UD	UD function 0:Scan down; First line=Gn→Gn-1 →→G2→Last line=G1. 1:Scan up; First line=G1→G2 →→Gn-1→Last line=Gn. (default)
	5		Power switch operation mode 0:Power switching time in the period of frame scanning.(default) 1:Power switching time in the external period before frame scanning.
	7-6		Resolution setting 00: Display resolution is 128x250(default) 01: Display resolution is 96x250 10: Display resolution is 64x250 11: Display resolution is 32x250

2 nd paramet	er	
Bit	Name	Description
0	VC_LUTZ	VCOM status function 0 : No effect 1 : After refreshing display, the output of VCOM is set to floating automatically (default)
1	NORG	VCOM status function O: No effect (default) 1: After refreshing display, VCOM is tied to GND before power off
2	TIEG	VGN power off status function 0 : No effect (default) 1 : Power off, VGN will be tied to GND
3	TS_AUTO	Temperature sensing will be activated automatically one time 0: Before enabling booster, Temperature Sensor will be activated automatically one time. 1: When RST_N low to high, Temperature Sensor will be activated automatically one time. (default)
4	VCMZ	VCOM status function O: No effect (default) 1: VCOM is always floating
5	FOPT	FOPT function O: Scan 1 frame after waveform finished(default) 1: No scan after waveform finished and switch the source channel output to Hiz.
7	LUT_EN	LUT selection setting 0: Using LUT from MTP(default) 1: Using LUT from register

Priority of VCOM setting: VCMZ > NORG > FOPT > VC_LUTZ

FOPT setting is part of refreshing display.

FOPT: Power off floating.

Notes:

- 1. Non-select gate line keep at VGN for DSP/DRF and AMV
- 2. Dummy source line follow LUTC for DSP/DRF
- 3. When SHD_N become low, DCDC will turn off. Register and SRAM data will keep until VDD turn off.SD output and VCOM will base on previous condition. It may have two condition:0V or floating.
- 4. When RST_N become low, driver will reset. All register will reset to default value. All of the driver's functions will disable. Source/Gate/Border/VCOM will be released to floating

Restriction

8.2.2 R01H (PWR): Power setting Register

R01H		Bit										
Inst/Para	R/W	D/CX	D7	D6	D6 D5 D4 D3 D2 D1 D0							
PWR	W	0	0	0	0	0	0	0	0	1	01h	
1 st Parameter	W	1	-	1	VSC_EN VDS_EN VDG_EN							
2 nd Parameter	W	1	-	-	VGPN [1] VGPN [0]							
3 rd Parameter	W	1	-			V	'SPL_0 [6:0	0]			00h	
4 th Parameter	W	1	1			,	/SP_1 [6:0]			00h	
5 th Parameter	W	1	-		VSN_1 [6:0]							
6 th Parameter	W	1	-			١	/SPL_1 [6:0	0]			00h	

NOTE: "-" Don't care, can be set to VDD or GND level

Description	-The command defines as
-------------	-------------------------

1st Parameter:

i raiaillete	l.	
Bit	Name	Description
0		Gate power selection. 0 : External gate power from VGP/VGN pins. 1 : Internal DCDC function for generate VGP/VGN. (default)
1		Source power selection. 0 : External source power from VSP/VSN pins. 1 : Internal regulator function for generate VSP/VSN (default)
2		Source LV power selection. 0 : External source power from VSPL pins. 1 : Internal regulator function for generate VSPL (default)

2nd Parameter:

Bit	Name	Description
		VGPN Voltage Level.
		00: VGP=20 v, VGN=-20v (default)
1-0	VGPN	01: VGP=17 v, VGN=-17v
		10: VGP=15 v, VGN=-15v
		11: VGP=10 v, VGN=-10v

3rd & 4th & 6th Parameter: Internal VSP_1/VSPL_0/ VSPL_1 power selection

Bit	Name	Description Internal VSP & VSPL power selection.											
		Internal VS	P & \	/SPL power									
		bit[6:0	11	Voltage(V)	bit [6:0	11	Voltage(V)	bit [6:0	11	Voltage(\			
		0000000	00h	3	0101001	29h	7.1	1010010	52h	11.2			
		0000000	01h	3.1	0101001	2Ah	7.1	1010010	53h	11.3			
		0000001	02h	3.2		2Bh		1010011	54h	11.4			
		0000010	0211 03h	3.3	0101011	2Ch	7.3 7.4	1010100	55h	11.5			
		0000100	04h	3.4	0101101	2Dh	7.5	1010110	56h	11.6			
		0000101	05h	3.5	0101110	2Eh	7.6	1010111	57h	11.7			
		0000110	06h	3.6	0101111	2Fh	7.7	1011000	58h	11.8			
		0000111	07h	3.7	0110000	30h	7.8	1011001	59h	11.9			
		0001000	08h	3.8	0110001	31h	7.9	1011010	5Ah	12			
		0001001	09h	3.9	0110010	32h	8	1011011	5Bh	12.1			
		0001010	0Ah	4	0110011	33h	8.1	1011100	5Ch	12.2			
		0001011	0Bh	4.1	0110100	34h	8.2	1011101	5Dh	12.3			
		0001100	0Ch	4.2	0110101	35h	8.3	1011110	5Eh	12.4			
		0001101	0Dh	4.3	0110110	36h	8.4	1011111	5Fh	12.5			
		0001110	0Eh	4.4	0110111	37h	8.5	1100000	60h	12.6			
	V0D 4	0001111	0Fh	4.5	0111000	38h	8.6	1100001	61h	12.7			
		0010000	10h	4.6	0111001	39h	8.7	1100010	62h	12.8			
		0010001	11h	4.7	0111010	3Ah	8.8	1100011	63h	12.9			
	VSP_1 &	0010010	12h	4.8	0111011	3Bh	8.9	1100100	64h	13			
0.0	VSPL_0	0010011	13h	4.9	0111100	3Ch	9	1100101	65h	13.1			
6-0	&	0010100	14h	5	0111101	3Dh	9.1	1100110	66h	13.2			
	VSPL_1	0010101	15h	5.1	0111110	3Eh	9.2	1100111	67h	13.3			
		0010110	16h	5.2	0111111	3Fh	9.3	1101000	68h	13.4			
		0010111	17h	5.3	1000000	40h	9.4	1101001	69h	13.5			
		0011000	18h	5.4	1000001	41h	9.5	1101010	6Ah	13.6			
		0011001	19h	5.5	1000010	42h	9.6	1101011	6Bh	13.7			
		0011010	1Ah	5.6	1000011	43h	9.7	1101100	6Ch	13.8			
		0011011	1Bh	5.7	1000100	44h	9.8	1101101	6Dh	13.9			
		0011100	1Ch	5.8	1000101	45h	9.9	1101110	6Eh	14			
		0011101	1Dh	5.9	1000110	46h	10	1101111	6Fh	14.1			
		0011110	1Eh	6	1000111	47h	10.1	1110000	70h	14.2			
		0011111	1Fh	6.1	1001000	48h	10.2	1110001	71h	14.3			
		0100000	20h	6.2	1001001	49h	10.3	1110010	72h	14.4			
		0100001	21h	6.3	1001010	4Ah	10.4	1110011	73h	14.5			
		0100010	22h	6.4	1001011	4Bh	10.5	1110100	74h	14.6			
		0100011	23h	6.5	1001100	4Ch	10.6	1110101	75h	14.7			
1		0100011	24h	6.6	1001100	4Dh	10.7	11101110	76h	14.8			
		0100100	25h	6.7	1001110	4Eh	10.8	1110111	77h	14.9			
		0100101	26h	6.8	1001110	4Fh	10.9	1111000	78h	15			
		0100110	27h		1010000			1111000	7 011	10			
		0100111	28h	6.9 7	1010000	50h	11	other		15			
		0101000	2011	/	1010001	51h	11.1						

5th Parameter: Internal VSN_1 power selection

Bit	Name	Description Internal VSN power selection.										
		Internal VS	N po	wer selection								
									_			
		bit[6:0		Voltage(V)	bit [6:0	_	Voltage(V)	bit [6:0		Voltage(
		0000000	00h	-3	0101001	29h	-7.1	1010010	52h	-11.2		
		0000001	01h	-3.1	0101010	2Ah	-7.2	1010011	53h	-11.3		
		0000010	02h	-3.2	0101011	2Bh	-7.3	1010100	54h	-11.4		
		0000011	03h	-3.3	0101100	2Ch	-7.4	1010101	55h	-11.5		
		0000100	04h	-3.4	0101101	2Dh	-7.5	1010110	56h	-11.6		
		0000101	05h	-3.5	0101110	2Eh	-7.6	1010111	57h	-11.7		
		0000110	06h	-3.6	0101111	2Fh	-7.7	1011000	58h	-11.8		
		0000111	07h	-3.7	0110000	30h	-7.8	1011001	59h	-11.9		
		0001000	08h	-3.8	0110001	31h	-7.9	1011010	5Ah	-12		
		0001001	09h	-3.9	0110010	32h	-8	1011011	5Bh	-12.1		
		0001010	0Ah	-4	0110011	33h	-8.1	1011100	5Ch	-12.2		
		0001011	0Bh	-4.1	0110100	34h	-8.2	1011101	5Dh	-12.3		
		0001100	0Ch	-4.2	0110101	35h	-8.3	1011110	5Eh	-12.4		
		0001101	0Dh	-4.3	0110110	36h	-8.4	1011111	5Fh	-12.5		
		0001110	0Eh	-4.4	0110111	37h	-8.5	1100000	60h	-12.6		
		0001111	0Fh	-4.5	0111000	38h	-8.6	1100001	61h	-12.7		
		0010000	10h	-4.6	0111001	39h	-8.7	1100001	62h	-12.8		
		0010001	11h	-4.7	0111010	3Ah	-8.8	1100010	63h	-12.9		
	0010001	12h	-4.8	0111010	3Bh	-8.9	1100011		-12.9			
			1211 13h			3Ch			64h	-13.1		
6-0	VSN_1	0010011		-4.9	0111100		-9 0.1	1100101	65h			
		0010100	14h	-5 -5	0111101	3Dh	-9.1	1100110	66h	-13.2		
		0010101	15h	-5.1	0111110	3Eh	-9.2	1100111	67h	-13.3		
		0010110	16h	-5.2	0111111	3Fh	-9.3	1101000	68h	-13.4		
		0010111	17h	-5.3	1000000	40h	-9.4	1101001	69h	-13.5		
		0011000	18h	-5.4	1000001	41h	-9.5	1101010	6Ah	-13.6		
		0011001	19h	-5.5	1000010	42h	-9.6	1101011	6Bh	-13.7		
		0011010	1Ah	-5.6	1000011	43h	-9.7	1101100	6Ch	-13.8		
		0011011	1Bh	-5.7	1000100	44h	-9.8	1101101	6Dh	-13.9		
		0011100	1Ch	-5.8	1000101	45h	-9.9	1101110	6Eh	-14		
		0011101	1Dh	-5.9	1000110	46h	-10	1101111	6Fh	-14.1		
		0011110	1Eh	-6	1000111	47h	-10.1	1110000	70h	-14.2		
		0011111	1Fh	-6.1	1001000	48h	-10.2	1110001	71h	-14.3		
		0100000	20h	-6.2	1001001	49h	-10.3	1110010	72h	-14.4		
		0100001		-6.3	1001010	4Ah	-10.4	1110011	73h	-14.5		
		0100010	22h	-6.4	1001011	4Bh	-10.5	1110100	74h	-14.6		
		0100011	23h	-6.5	1001100	4Ch	-10.6	1110101	75h	-14.7		
		0100100	24h	-6.6	1001101	4Dh	-10.7	1110110	76h	-14.8		
	-	0100101	25h	-6.7	1001110	4Eh	-10.8	1110111	77h	-14.9		
		0100110	26h	-6.8	1001111	4Fh	-10.9	1111000	78h	-15		
		0100111	27h	-6.9	1010000	50h	-11	04h		4.5		
		0101000	28h	-7	1010001	51h	-7.1	other		-15		

Notes:

- 1. VSP 0/VSN 0 voltage output is ±15 V fixed value.
- 2. When switching Mode0 or Mode1,the voltage output is:
 Mode0: VSP_0(+15) / VSN_0 (-15) / VSPL_0 (+3~+15)
 Mode1: VSP_1(+3~+15) / VSN_1(-3~-15) / VSPL_1(+3~+15)

	Mode0	Mode1
VSP	VSP_0(+15)	VSP_1(+3~+15)
VSN	VSN_0(-15)	VSN_1(-3~-15)
VSPL	VSPL_0(+3~+15)	VSPL_1(+3~+15)

3. If gate voltage is set to +/-15v, +/-10v, IC will auto correct source voltage as follows
I. VGP- VSP_0 / VSPL_0 / VSP_1 / VSPL_1 >= 2v
II. VGN- VSN_0 / VSN_1 >= -2v
For example:

	symbol	Voltage setting	Real Voltage		
	VGP	+10v	+10v		
	VGN	-10v	-10v		
	VSP_0	+15v	+8v		
	VSN_0	-15v	-8v		
Voltogo	VSP_1	+5v	+5v		
Voltage	VSN_1	-5v	-5v		
	VSPL	+15v	+8v		
	VCOMH	+15v+(-2v)	+8v +(-2v)		
	VCOML	-15v+(-2v)	-8v +(-2v)		
	VCOMDC	-2v	-2v		

Restriction

8.2.3 R02H (POF): Power OFF Command

R02H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
POF	W	0	0	0	0	0	0	0	1	0	02H
1 st Parameter	W	0	-	-	-	-	-	-	-	-	00

NOTE: "-" Don't care, can be set to VDD or GND level

Description	-The command defines as: After power off command, driver will power off base on power off sequence.
	 After power off command, BUSY_N signal will drop from high to low. When finish the power off sequence, BUSY_N singal will rise from low to high. Power off command will turn off charge pump, T-con, source driver, gate driver, VCOM, temperature sensor, but register and SRAM data will keep until VDD off.
	SD output and VCOM will base on previous condition. It may have two conditions: 0v or floating.
Restriction	This command only active when BUSY_N = "1".

8.2.4 R04H (PON): Power ON Command

R04H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
PON	W	0	0	0	0	0	0	1	0	0	04H

NOTE: "-" Don't care, can be set to VDD or GND level

Description	-The command defines as :
	 After power on command, driver will power on base on power on sequence. After power on command, BUSY_N signal will drop from high to low. When finishing the power on sequence (base on PWR command), BUSY_N signal will rise from low to high.
Restriction	This command only active when BUSY_N = "1".

8.2.5 R06H (BTST): Booster Soft Start Command

R06H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D5 D4 D3 D2 D1 D0					
BTST	W	0	0	0	0	0 0 0 1 1 0					06H
1 st Parameter	W	1	-	-	-	-	PHB_S	FT [1:0]	PHA_S	FT [1:0]	00h
2 nd Parameter	W	1	-	-			PHA_O	N [5:0]			02h
3 rd Parameter	W	1	ı	-			PHA_O	FF [5:0]			07h
4 th Parameter	W	1	-	-			PHB_O	N [5:0]			02h
5 th Parameter	W	1	-	-		PHB_OFF [5:0]					
6 th Parameter	W	1	-	-	PHC_ON [5:0]						02h
7 th Parameter	W	1	-	-			PHC_OI	FF [5:0]			07h

-The command define as follows:

Boost Current mode and Constant On Time mode setting by JD CMD

1st Parameter:

1 1 drainote		
Bit	Name	Description
1-0	PHA_SFT	Soft start period of phase A: 00: 10mS (default) 01: 20mS 10: 30mS 11: 40mS
3-2	PHB_SFT	Soft start period of phase B: 00: 10mS (default) 01: 20mS 10: 30mS 11: 40mS

Bit[5:0] Description Bit[5:0] Description Bit[5:0] Description 000000 strength1 010110 strength23 101100 strength45 000001 strength2 010111 strength24 101101 strength46 000010 011000 101110 strength47 strength3 strength25 000011 strength4 011001 strength26 101111 strength48 Description 000100 011010 110000 strength5 strength27 strength49 000101 strength6 011011 strength28 110001 strength50 000110 011100 110010 strength51 strength7 strength29 000111 strength8 011101 strength30 110011 strength52 001000 strength9 011110 strength31 110100 strength53 Driving 001001 110101 strength10 011111 strength32 strength54 strength of 001010 100000 110110 strength11 strength33 strength55 PHA ON & 001011 strength12 100001 strength34 110111 strength56 PHB ON & 001100 100010 111000 PHC ON strength13 strength35 strength57 001101 strength14 100011 strength36 111001 strength58 001110 strength15 100100 strength37 111010 strength59 001111 100101 111011 strength16 strength38 strength60 010000 strength17 100110 strength39 111100 strength61 010001 100111 111101 strength62 strength18 strength40 010010 strength19 101000 111110 strength63 strength41 010011 101001 111111 strength20 strength42 strength64 010100 strength21 101010 strength43 010101 strength22 101011 strength44

V1.0.4

JD79676AA

Description		Bit[5:0]	Description	Bit[5:0]	Description	Bit[5:0]	Description	
2 00011111011		000000	Period1	010110	Period23	101100	Period45	
		000001	Period2	010111	Period24	101101	Period46	
		000010	Period3	011000	Period25	101110	Period47	
		000011	Period4	011001	Period26	101111	Period48	
		000100	Period5	011010	Period27	110000	Period49	
		000101	Period6	011011	Period28	110001	Period50	
		000110	Period7	011100	Period29	110010	Period51	
		000111	Period8	011101	Period30	110011	Period52	
	Minimum	001000	Period9	011110	Period31	110100	Period53	
	OFF time setting of	001001	Period10	011111	Period32	110101	Period54	
	PHA_OFF	001010	Period11	100000	Period33	110110	Period55	
	&	001011	Period12	100001	Period34	110111	Period56	
	PHB_OFF	001100	Period13	100010	Period35	111000	Period57	
	PHC OFF	001101	Period14	100011	Period36	111001	Period58	
		001110	Period15	100100	Period37	111010	Period59	
		001111	Period16	100101	Period38	111011	Period60	
		010000	Period17	100110	Period39	111100	Period61	
		010001	Period18	100111	Period40	111101	Period62	
		010010	Period19	101000	Period41	111110	Period63	
		010011	Period20	101001	Period42	111111	Period64	
		010100	Period21	101010	Period43			
		010101	Period22	101011	Period44			
	6.0							
Restriction								

8.2.6 R07H (DSLP): Deep Sleep Command

	R07H						Bit					
ĺ	Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
	DSLP	W	0	0	0	0	0	0	1	1	1	07H
	1 st Parameter	W	1	1	0	1	0	0	1	0	1	A5h

NOTE: "-" Don't care, can be set to VDD or GND level

Description	The command define as follows:
	After this command is transmitted, the chip would enter the deep-sleep mode to save power.
	The deep sleep mode would return to standby by hardware reset.
	The only one parameter is a check code, the command would be excited if check code = 0xA5.
Restriction	This command only active when BUSY_N = "1".

8.2.7 R10H (DTM): Data Start transmission Register

R10H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
DTM_master	W	0	0	0	0	1	0	0	0	0	10H
1 st Parameter	W	1	Pixel1		Pixel2		Pixel3		Pixel4		00h
:	W	1		:		:		:		:	
:	• •	'	:			:		:		:	
M th Parameter	W	1	Pixel	I(n-3)	Pixel(n-2)		Pixel(n-1)		Pixel(n)		00h

NOTE: "-" Don't care, can be set to VDD or GND level

	1									
Description	The command	define as follows:								
	The register is	s indicates that use	er start to transmit da	ata, then write to SR	AM. While data					
		transmission complete, user must send command 12H. Then chip will start to send								
	data/VCOM fo	or panel.								
	Pixel [1~n][1:0]: 2-bit/pixel								
	Image Data	DDX=	1(default)	DD	X=0					
	Pixel[1:0]	Gray level select	IP output LUT select	Gray level select	IP output LUT select					
	00b	Gray0	ogray00	Gray3	ogray03					
	01b	Gray1 ogray01 Gray2 ogray								
	10b	Gray2	ogray02	Gray1	ogray01					
	11b	Gray3	ogray03	Gray0	ogray00					
	Data mapping	example:								
	When DDX=1,	Pixel[1:0]=01 ->GI	ay level select=Gray	1,follow LUT data of	utput from IP output					
	port"ogray01".									
	When DDX=0,	When DDX=0,Pixel[1:0]=11 ->Gray level select=Gray0,follow LUT data output from IP output								
	port"ogray00"		·		·					
Restriction										

8.2.8 R11H (DSP): Data Stop Command

R11H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
DSP	W	0	0	0	0	1	0	0	0	1	11H
1 st Parameter	R	1	Data_flag	=	=	-	-	-	-	-	-

NOTE: "-" Don't care, can be set to VDD or GND level

Description	■ While	 -The command defines as: While finished the data transmitting, user must send this command to driver and read Data_flag information. 								
	1st Parameter:									
	Bit	Bit Name Description								
	7	Data_flag	0: Driver didn't receive all the data. 1: Driver has already received all of the one frame data.							
	After "Data Start" (10h) or "Data Stop" (11h) commands and when data_flag=1, BUSY_N signal will become "0" and the refreshing of panel starts.									
Restriction	This comm	nand only actives	when BUSY_N = "1".							

8.2.9R12H (DRF): Display Refresh Command

R12H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
DRF	W	0	0	0	0	1	0	0	1	0	12H
1 st Parameter	W	1	-	-	-	-	-	-	-	-	00h

NOTE: "-" Don't care, can be set to VDD or GND level

Description	-The command defines as :
	R12h=0x00
	While users send this command, driver will refresh display (data/VCOM) base on SRAM data and
	LUT.
	After display refresh command, BUSY_N signal will become "0"
Restriction	This command only actives when BUSY_N = "1"

8.2.10 R17H (AUTO): Auto Sequence

R17H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
Auto Sequence	W	0	0	0	0	1	0	1	1	1	17H
1 st Parameter	W	1	Code[7]	Code[6]	Code[5]	Code[4]	Code[3]	Code[2]	Code[1]	Code[0]	A5h

Description	The command can enable the internal sequence to execute several commands continuously. The successive execution can minimize idle time to avoid unnecessary power consumption and reduce the complexity of host's control procedure. The sequence contains several operations, including PON, DRF, POF, DSLP. AUTO (0x17) + Code(0xA5) = (PON→DRF→POF) AUTO (0x17) + Code(0xA7) = (PON→DRF→POF→DSLP)
Restriction	This command only actives when BUSY_N = "1".

8.2.11 R30H (PLL): PLL Control Register

R30H	Bit										
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
PLL	W	0	0	0	1	1	0	0	0	0	30H
1 st Parameter	W	1	-	-	-	-	Dyna	FR[2]	FR[1]	FR[0]	02h

NOTE: "-" Don't care, can be set to VDD or GND level

Description	-The command defines as:									
	The command controls the PLL clock frequency. The PLL structure must support the following frame rates:									
	Г	bit3	Dynamic frame rate							
		0	Disable(default)							
		1	Enable							
	Note: Dynamic frame rate 0: Frame rate will being defined in R30h. 1: Frame rate will being defined by R20h(LUT).									
		FR[2:0]	Frame rate							
		000	12.5 Hz							
		001	25 Hz							
		010	50 Hz(default)							
		011	65 Hz							
	-	100	75 Hz 85 Hz							
		110	100 Hz							
		111	120 Hz							
remark	-Horizental									
	hsync	H a	ctive							
	de		183 clk							
	-Vertical		·							
	vsync V active									
Doods'-t'-	de	3	05 lines							
Restriction										

8.2.12 R40H (TSC): Temperature Sensor Command

R40H	Bit										
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
TSC	W	0	0	1	0	0	0	0	0	0	40H
1 st Parameter	R	1	D10/TS[7]	D9/TS[6]	D8/TS[5]	D7/TS[4]	D6/TS[3]	D5/TS[2]	D4/TS[1]	D3/TS[0]	-
2 nd Parameter	R	1	D2/ TS[9]	D1/TS[8]	D0	1	-	-	-	-	-

NOTE: "-" Don't care, can be set to VDD or GND level

Description	-The command define as follows:													
	This command indicates the temperature value.													
		If R41H(TSE) bit7 set to 0, this command reads internal temperature sensor value. If R41H(TSE) bit7 set to 1, this command reads external (LM75) temperature sensor value												
	, ,	et to 1, thi	s command reads e	xternal (L	.M75) temperature	sensor value								
	SPI TSC TSC parameters													
	CSB													
	scl		000000											
	П	П	TSC value											
	SDA BUSY_N		value											
		T (°C)	TC[7:0]/D[40:2]	T (°C)	TC[7:0]/D[40:2]	T (°C)								
	TS[7:0]/D[10:3]	T (°C)	TS[7:0]/D[10:3]	T (°C)	TS[7:0]/D[10:3]	T (°C)								
	11100111 11101000	-25 -24	00000000 0000001	0 00011001		25 26								
	11101000	-24	0000001	2	00011010 00011011	27								
	11101001	-23	00000010	3	00011011	28								
	11101010	-22	0000011	4	00011100	29								
	11101100	-20	00000100	5	00011101	30								
	11101101	-19	00000101	6	00011111	31								
	11101110	-18	00000111	7	00100000	32								
	11101111	-17	00001000	8	00100001	33								
	11110000	-16	00001001	9	00100010	34								
	11110001	-15	00001010	10	00100011	35								
	11110010	-14	00001011	11	00100100	36								
	11110011	-13	00001100	12	00100101	37								
	11110100	-12	00001101	13	00100110	38								
	11110101	-11	00001110	14	00100111	39								
	11110110	-10	00001111	15	00101000	40								
	11110111	-9	00010000	16	00101001	41								
	11111000	-8	00010001	17	00101010	42								
	11111001	-7	00010010	18	00101011	43								
	11111010	-6	00010011	19	00101100	44								
	11111011	-5	00010100	20	00101101	45								
	11111100	-4	00010101	21	00101110	46								
	11111101	-3	00010110	22	00101111	47								
	11111110	-2	00010111	23	00110000	48								
	11111111	-1	00011000	24	00110001	49								
	TC[0,0]	T (9C)												
		T (°C)												
	00	+0												
		+0.25												
	10	+0.5												
	11	+0.75												
Restriction	This command only a	actives who	en BUSY_N = "1".											

8.2.13 R41H (TSE): Temperature Sensor Calibration Register

R41H	Bit										
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
TSE	W	0	0	1	0	0	0	0	0	1	41H
1 st Parameter	W	1	TSE	-	-	TO[4]	TO[3]	TO[2]	TO[1]	TO[0]	00h

NOTE: "-" Don't care, can be set to VDD or GND level

Description

-The command defines as:

This command indicates the driver IC temperature sensor enable and calibration function.

Reserve one temperature offset TO[3:0] for calibration

- 1. TO[3]: mean '+' or '-' , while 0 is '+' ; 1 is '-'
- 2. TO[2:0]: mean temperature offset value

	Bit	Name	Description
	3-0	TO[3:0]	Temperature level: 0000: +0°C (default) 0001: +0.5°C 0010: +1°C 0011: +1.5°C 0100: +2°C 0101: +2.5°C 0110: +3°C 0111: +3.5°C 1000: -4°C 1001: -3.5°C 1011: -2.5°C 1110: -2°C 1111: -0.5°C
	4	TO[4]	0: +0.0°C (default) 1: +0.25°C
	7	TSE	Internal temperature sensor enable 0: Internal temperature sensor enable.(default) 1: Internal temperature sensor disable, using external temperature sensor.
n T	hic com	mand only active	s after R04H(PON)

8.2.14 R42H (TSW): Temperature Sensor Write Register

R42H		Bit										
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code	
TSW	W	0	0	1	0	0	0	0	1	0	42H	
1 st Parameter	W	1	WATTR[7]	WATTR[6]	WATTR[5]	WATTR[4]	WATTR[3]	WATTR[2]	WATTR[1]	WATTR[0]	00h	
2 nd Parameter	W	1	WMSB[7]	WMSB[6]	WMSB[5]	WMSB[4]	WMSB[3]	WMSB[2]	WMSB[1]	WMSB[0]	00h	
3 rd Parameter	W	1	WLSB[7]	WLSB[6]	WLSB[5]	WLSB[4]	WLSB[3]	WLSB[2]	WLSB[1]	WLSB[0]	00h	

Description	-The con	nmand defines	as:
	This con	nmand writes tl	he temperature.
	1 st Paraı	meter:	
	Bit	Name	Description
	2-0	WATTR[2:0]	Pointer setting
	5-3	WATTR[5:3]	User-defined address bits (A2, A1, A0)
			I2C Write Byte Number
			00: 1 byte (head byte only)
	7-6	WATTR[7:6]	01: 2 bytes (head byte + pointer)
			10: 3 bytes (head byte + pointer + 1 st parameter)
			11: 4 bytes (head byte + pointer + 1 st parameter + 2 nd parameter)
	2 nd Para	meter:	
	Bit	Name	Description
	7-0	WMSB[7:0]	MSByte of write-data to external temperature sensor
	3 nd Para	meter:	
	Bit	Name	Description
	7-0	WLSB[7:0]	LSByte of write-data to external temperature sensor
Restriction	This con	nmand only act	tives after R04H(PON)

8.2.15 R43H (TSR): Temperature Sensor Read Register

R43H		Bit										
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code	
TSR	W	0	0	1	0	0	0	0	1	1	43H	
1 st Parameter	R	1	RMSB[7]	RMSB[6]	RMSB[5]	RMSB[4]	RMSB[3]	RMSB[2]	RMSB[1]	RMSB[0]	-	
2 nd Parameter	R	1	RLSB[7]	RLSB[6]	RLSB[5]	RLSB[4]	RLSB[3]	RLSB[2]	RLSB[1]	RLSB[0]	-	

8.2.16 R50H (CDI): VCOM and DATA interval setting Register

R50H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
CDI	W	0	0	1	0	1	0	0	0	0	50H
1 st Parameter	W	1	VBD[2]	VBD[1]	VBD [0]	DDX	CDI[3]	CDI[2]	CDI[1]	CDI[0]	97h

Description		mand defines a	
	This comr	mand can set 2	kinds of parameters, 1.VCOM to data output interval(CDI)
	CDII3·01·	This command	Lindicates the interval of VCOM and data sutput. When setting the vertical
	hack nore	h the total hlar	I indicates the interval of VCOM and data output. When setting the vertical hking will be keep (55hsync).
	Bit	Name	Description
		110.1110	Vcom and data interval
	3-0	CDI[3:0]	0000: 17 hsync 0001:16 hsync 0010:15 hsync 0010:13 hsync 0100:13 hsync 0101:12 hsync 0110:11 hsync 0111:10 hsync(default) 1000:9 hsync 1001:8 hsync 1010:7 hsync 1110:5 hsync 1101:4 hsync 1110:3 hsync 1111:2 hsync
	Internalvsync		COM need to be ready fore source data output
	Internal _ hsync		
	Internal de	VCOM output	
	VCOM-	location (fixed)	Frame N VCOM Frame N+1 VCOM
	Source data Output	- -	Frame N data
		i	CDI catting
		(CDI setting 55 hsync-CDI setting (fixed)

VBD[2:0]: Border data selection. (from LUT output by IP port border_w[1:0])

This register will make boarder pin output being mapped to a certain gray scale.

Bit 4	Bit7-5	Description	IP setting for Border LUT
DDX	VBD[2:0]	Gray level	select
	000	Floating	N/A
	001	Gray3	border_buf=011
0	010	Gray2	border_buf=010
	011	Gray1	border_buf=001
	100	Gray0	border_buf=000
	000	Gray0	border_buf=000
	001	Gray1	border_buf=001
1 (default)	010	Gray2	border_buf=010
	011	Gray3	border_buf=011
	100	Floating	N/A

Border output voltage level: The level selection is based on mapping LUT data.

Ex: Gray 1 waveform is mapping to 15V, without VCOM offset, the real output on Boarder pin shall be 15V.

Boarder output will follow FOPT definition being defined in R00h.

Restriction

8.2.17 R51H (LPD): Lower Power Detection Register

R51H						Bit					
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
LPD	W	0	0	1	0	1	0	0	0	1	51H
1 st Parameter	R	1	-	-	-	-	-	-	-	LPD	

Description	This comm battery's co When LPD	ondition. ="1", system input power is no	condition. Host can read this data to understand the rmal. wer (VDD<2.5v, which could be select in RE4H (LVSEL)).
	1 st Parame	eter:	
	Bit 0	LPD	
	0	Low power input.	
	1	Normal status.	
	CMD	LPD command	LPD parameter
	CSB		
	SCL		
	SDA		value
	BUSY_N		
Restriction	This comm	and only actives when BUSY_	N = "1".

8.2.18 R61H (TRES): Resolution setting

R61H		Bit									
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
TRES	W	0	0	1	1	0	0	0	0	1	61H
1 st Parameter	W	1	-	-	-	-	-	-	HRES(9)	HRES(8)	00h
2 nd Parameter	W	1	HRES(7)	HRES(6)	HRES(5)	HRES(4)	HRES(3)	HRES(2)	0	0	00h
3 th Parameter	W	1	-	-	-	-	-	-	VRES(9)	VRES(8)	00h
4 th Parameter	W	1	VRES(7)	VRES(6)	VRES(5)	VRES(4)	VRES(3)	VRES(2)	VRES(1)	VRES(0)	00h

Description	-The command define as follows: When using register: Horizontal display resolution(source) = HRES Vertical display resolution(gate) = VRES Note: No matter HRES[9:8],HRES[1:0],VRES[9:8] value being filled, it's always be 00b. Channel disable calculation: GD: First G active = G0; LAST active GD= first active +VRES[9:0] -1 SD: First active channel: =S0; LAST active SD= first active +HRES[9:2]*4-1 EX:128x250 GD: First G active = G0 LAST active GD= 0+250-1= 249; (G249) SD: First active channel: =S0 LAST active SD=0+32*4-1=127; (S127)
Restriction	Horizontal resolution should be 4-multiple.

8.2.19 R65H (GSST): Gate/Source Start Setting Register

R65H		Bit										
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code	
GSST	W	0	0	1	1	0	0	1	0	1	65H	
1 st Parameter	W	1	-	-	-	-	-	-	S_start[9]	S_start[8]	00h	
2 nd Parameter	V	1	S_start[7]	S_start[6]	S_start[5]	S_start[4]	S_start[3]	S_start[2]	0	0	00h	
3 rd Parameter	W	1	-				-	-	G_start[9]	G_start[8]	00h	
4 th Parameter	W	1	G_start[7]	G_start[6]	G_start[6]	G_start[4]	G_start[3]	G_start[2]	G_start[1]	G_start[0]	00h	

NOTE: "-" Don't care, can be set to VDD or GND le	NOTE: "-	VDD or GND leve	an be set to	əl
---	----------	-----------------	--------------	----

	-The command define as follows: Note:
Description	No matter S_start[9:8], S_start [1:0], G_start [9:8] value being filled, it's always be 00b. 1.S_Start [8:0] describe which source output line is the first date line 2.G_Start[8:0] describe which gate line is the first scan line
Restriction	S_Start should be the multiple of 4

8.2.20 R70H (REV): REVISION register

R70H		Bit											
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code		
REV	W	0	0	1	1	1	0	0	0	0	70H		
1 st Parameter	R	1	0	0	0	0	1	0	0	1	09h		
2 nd Parameter	R	1	0	0	0	0	0	0	1	0	02h		
3 rd Parameter	R	1	0	0	0	0	0	0	0	1	01h		

Description		nd defines as: rd Parameter:			
	Bit	T drainotor.	Description		
	7-0	CHIP_REV			
Restriction				A 6	

8.2.21 R80H (AMV): Auto Measure VCOM register

R80H		Bit											
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code		
AMV	W	0	1	0	0	0	0	0	0	0	80H		
1 st Parameter	W	1	P[1]	P[0]	AMVT[1]	AMVT[0]	XON	AMVS	AMV	AMVE	00h		

NOTE: "-" Don't care, can be set to VDD or GND level

Description -The command defines as:

This command indicates the IC status. Host can read this data to understand the IC status.

1st Parameter:

Bit	Name	Description
0	AMVE	AMVE: Auto Measure Vcom Setting O: Auto measure VCOM disable (default) 1: Auto measure VCOM enable
1	AMV	AMV: Analog signal O:Get Vcom value from R81h(default) 1:Get Vcom value in analog signal
2	AMVS	AMVS: setting for Source output of AMV 0: Source output 0V during Auto Measure VCOM period. (default) 1: Source output VSPL_0 during Auto Measure VCOM period.
3	XON	XON: setting for all Gate ON of AMV O: Gate normally scan during Auto Measure VCOM period. (default) 1: All Gate ON during Auto Measure VCOM period.
5-4	AMVT[1:0]	The sensing time of VCOM detection O0: 5s (default) O1: 10s 10: 15s 11: 20s
7-6	P[1:0]	The sensing points of sampling time 00: 2 (default) 01: 4 10: 8 11: 16 Sampling time = the last quarter of sensing time (T) VCOM = average of N points. N=2,4,8,16

This command only actives when BUSY_N = "1". Restriction

8.2.22 R81H (VV): VCOM Value register

R81H		Bit											
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code		
VV	W	0	1	0	0	0	0	0	0	1	81H		
1 st Parameter	R	1	-	VV[6]	VV[5]	VV[4]	VV[3]	VV[2]	VV[1]	VV[0]			

Description		nmand defines																				
	This com	nmand could ge	t the VCOM	value																		
	1 st Parar	meter																				
	Bit	Name				Des	scription															
			VCOM value		ı		•															
			VV [6:0]	Voltage(V)	VV [6:	0]	Voltage(V)			Voltage(V)												
			0000000 00	n 0	0011100	1Ch	-1.4	0111000	38h	-2.8												
			0000001 01	n -0.05	0011101	1Dh	-1.45	0111001	39h	-2.85												
			0000010 02	n -0.1	0011110	1Eh	-1.5	0111010	3Ah	-2.9												
			0000011 03	n -0.15	0011111	1Fh	-1.55	0111011	3Bh	-2.95												
			0000100 04	n -0.2	0100000	_	-1.6	0111100	3Ch	-3												
			0000101 05	n -0.25	0100001	21h	-1.65	0111101	3Dh	-3.05												
			0000110 06	n -0.3	0100010	22h	-1.7	0111110	3Eh	-3.1												
			0000111 07	n -0.35	0100011	23h	-1.75	0111111	3Fh	-3.15												
			0001000 08	n -0.4	0100100	24h	-1.8	1000000	40h	-3.2												
			0001001 09	-0.45	0100101	25h	-1.85	1000001	41h	-3.25												
		VV[6:0]	0001010 0A	n -0.5	0100110	26h	-1.9	1000010	42h	-3.3												
			\/\/[6:0]	\/\/[6:0]	\/\/[6:0]	0001 <mark>011</mark> 0B	n -0.55	0100111	27h	-1.95	1000011	43h	-3.35									
	6.0					\/\/[6:0]	\/\/[6:0]	0001100 0C	-0.6	0101000	28h	-2	1000100	44h	-3.4							
	6-0	(٥:٥)٧٧	0001101 0D	n -0.65	0101001	29h	-2.05	1000101	45h	-3.45												
			0001110 0E	n -0.7	0101010	2Ah	-2.1	1000110	46h	-3.5												
			0001111 0F		0101011	2Bh	-2.15	1000111	47h	-3.55												
								0010000 10	n -0.8	0101100	2Ch	-2.2	1001000	48h	-3.6							
														0010001 11	n -0.85	0101101	2Dh	-2.25	1001001	49h	-3.65	
														0010010 12	n -0.9	0101110	2Eh	-2.3	1001010	4Ah	-3.7	
														0010011 13	n -0.95	0101111	2Fh	-2.35	1001011	4Bh	-3.75	
																0010100 14	n -1	0110000	30h	-2.4	1001100	4Ch
			0010101 15	n -1.05	0110001	31h	-2.45	1001101	4Dh	-3.85												
			0010110 16	n -1.1	0110010	32h	-2.5	1001110	4Eh	-3.9												
			0010111 17	n -1.15	0110011	33h	-2.55	1001111	4Fh	-3.95												
			0011000 18	n -1.2	0110100	34h	-2.6	1010000	50h	-4												
			0011001 19	n -1.25	0110101	35h	-2.65	other		-4												
			0011010 1A	n -1.3	0110110	36h	-2.7															
			0011011 1B	n -1.35	0110111	37h	-2.75															
Restriction																						

8.2.23 R82H (VDCS): VCOM_DC Setting Register

Ī	R82H		Bit												
	Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code			
ĺ	VDCS	W	0	1	0	0	0	0	0	1	0	82H			
	1 st Parameter	W	1	-	VDCS[6]	VDCS[5]	VDCS [4]	VDCS [3]	VDCS [2]	VDCS [1]	VDCS [0]	00h			

Description		mmand defines																		
		nmand set the '	VCOM DO	C val	ue. Drive	er will ba	ase o	on this va	lue for \	√CM	_DC.									
	1 st Para																			
	Bit	Name	VCOM va	luo			Des	cription												
			VDCS [6		Voltage(V)	VDCS I	8·01	Voltage(V)	VDCS [6:01	Voltage(V)									
			0000000		0(default)			• • •	0111000		-2.8									
			0000001		, ,	0011101			0111001		-2.85									
			0000010			0011110			0111010		-2.9									
			0000011			0011111		-1.55	0111011	_	-2.95									
			0000100			0100000		-1.6	0111100		-3									
			0000101			0100001		-1.65	0111101		-3.05									
				06h	-0.3	0100010	22h	-1.7	0111110	3Eh	-3.1									
			0000111	07h	-0.35	0100011	23h	-1.75	0111111	3Fh	-3.15									
			0001000	08h	-0.4	0100100	24h	-1.8	1000000	40h	-3.2									
			0001001	09h	-0.45	0100101	25h	-1.85	1000001	41h	-3.25									
			0001010	0Ah	-0.5	0100110	26h	-1.9	1000010	42h	-3.3									
					0001011	0Bh	-0.55	0100111	27h	-1.95	1000011	43h	-3.35							
	0.0	VDCS[6:0]	0001100	0Ch	-0.6	0101000	28h	-2	1000100	44h	-3.4									
	6-0		0001101	0Dh	-0.65	0101001	29h	-2.05	1000101	45h	-3.45									
					0001110	0Eh	-0.7	0101010	2Ah	-2.1	1000110	46h	-3.5							
							0001111	0Fh	-0.75	0101011	2Bh	-2.15	1000111	47h	-3.55					
					0010000	10h		0101100		-2.2	1001000	48h	-3.6							
										0010001	11h		0101101		-2.25	1001001	49h	-3.65		
														0010010	12h	-0.9	0101110	2Eh	-2.3	1001010
								0010011	13h	-0.95	0101111	2Fh	-2.35	1001011	4Bh	-3.75				
															0010100	14h	-1	0110000	30h	-2.4
			0010101	15h	-1.05	0110001	31h	-2.45	1001101	4Dh	-3.85									
			0010110			0110010	-	-2.5	1001110		-3.9									
			0010111			0110011		-2.55	1001111		-3.95									
			0011000			0110100		-2.6	1010000	50h	-4									
			0011001			0110101		-2.65	other		-4									
			0011010			0110110		-2.7												
			0011011	1Bh	-1.35	0110111	37h	-2.75												
Restriction		7																		

8.2.24 R83H (PTL): Partial Window Register

R83H						Bit					
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
PTL	W	0	1	0	0	0	0	0	1	1	83H
1 st Parameter	W	1	-	-	-	PTH_ENB	-	-	HRST[9]	HRST[8]	00h
2 nd Parameter	W	1	HRST[7]	HRST[6]	HRST[5]	HRST[4]	HRST[3]	HRST[2]	-	-	00h
3 rd Parameter	W	1	-	-	-	-	-	-	HRED[9]	HRED[8]	00h
4 th Parameter	W	1	HRED[7]	HRED[6]	HRED[5]	HRED[4]	HRED[3]	HRED[2]	1	-	00h
5 th Parameter	W	1	-	-	-	-	-	-	VRST[9]	VRST[8]	00h
6 th Parameter	W	1	VRST[7]	VRST[6]	VRST[5]	VRST[4]	VRST[3]	VRST[2]	VRST[1]	VRST[0]	00h
7 th Parameter	W	1	-	-	-	ı	ı	-	VRED[9]	VRED[8]	00h
8 th Parameter	W	1	VRED[7]	VRED[6]	VRED[5]	VRED[4]	VRED[3]	VRED[2]	VRED[1]	VRED[0]	00h
9 th Parameter	W	1	-	-	-	-	-	-	A	PMODE	00h

Description	-This command sets	partial window.
	Name	Description
	HRST[9:2]	Horizontal start address
	HRED[9:2]	Horizontal end address. HRED must be greater than HRST.
	VRST[9:0]	Vertical start address.
	VRED[9:0]	Vertical end address. VRED must be greater than VRST.
	PMODE	0: disable partial mode(default) 1: enable partial mode
	PTH_ENB	0:Source output enable follow HRST and HRED 1:Source output disable
	Note:	
	No matter HRST[1:0] always be 00b.	,HRST[9:8],HRED[9:8],VRST[9:8],VRED[9:8] value being filled, it's
		value being filled, it's always be 11b.
	Gates scan both ins	side and outside of the partial window.
	Note :No matter PTH	_ENB setting , master/slave need define partial window
Restriction		

8.2.25 R90H (PGM): Program Mode

R90H		Bit											
Inst/Para	R/W	R/W D/CX D7 D6 D5 D4 D3 D2 D1								D0	Code		
PGM	W	0	1	0	0	1	0	0	0	0	90H		

NOTE: "-" Don't care.	can he set to	VDD or	CND level
NOTE: - DUITICATE:	Call DE SELIO	יוט טטעעיי	(31) ICVCI

Description	-The command define as follows: After this command is issued, the chip would enter the program mode. The mode would return to standby by hardware reset.	
Restriction		

8.2.26 R91H (APG): Active Program

R91H		Bit										
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code	
APG	W	0	1	0	0	1	0	0	0	1	91H	

Description	-The command define as follows:
	After this command is transmitted, the programming state machine would be activated.
Restriction	The BUSY flag would change state from 0 to 1 while the programming is completed.

8.2.27 R92H (RMTP): Read MTP Data

R92H						Bit								
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code			
RMTP	W	0	1	1 0 0 1 0 0 1 0										
1 st Parameter	R	1		Dummy										
2 nd Parameter	R	1		The data of address 0x000 in the MTP										
3 rd Parameter	R	1		The data of address 0x001 in the MTP										
4 th Parameter	R	1		:										
5 th Parameter	R	1			The da	ta of addres	ss (n-1) in th	ne MTP	\		-			
6 th ~(m-1) th Parameter	R	1												
m th Parameter	R	1			The da	ata of addre	ess (n) in the	e MTP			-			

NOTE: "-" Don't care, can be set to VDD or GND level

8.2.28 RA2 (PGM_CFG): MTP Program Config Register (E Ink use only)

RA2H		Bit										
Inst/Para	R/W	D/CX	D7	D7 D6 D5 D4 D3 D2 D1 D0								
PGM_CFG	W	0	1	0	1	0	0	0	1	0	A2H	
1 st Parameter	W	1	-	VMTPSEL M_dis S_dis								
2 nd Parameter	W	1		PGM_SADDR[15:8]								
3 rd Parameter	W	1		PGM_SADDR[7:0]								
4 th Parameter	W	1		PGM_DSIZE[15:8]								
5 th Parameter	W	1				PGM_DS	SIZE[7:0]		\	9	00h	

NOTE: "-" Don't care, can be set to VDD or GND level

This command is used for setting configuration of MTP

1st Parameter:

Bit	Name	Description
0		Slave enable some command (default) slave disable some command
1		master enable some command (default) master disable some command
4		0:External VMTP (default) 1:Internal VMTP

Bit[0] enable/disable some command when IC sets slave (MS pin is low)
Bit[1] enable/disable some command when IC sets master (MS pin is high)

Note:

Some command define: R00H(Parameter 1) (PSR), R10H(DTM), R90H(PGM), R91H(APG), R83H(PTLW)

Command read

Description

M_dis	S_dis	Description
0	0	command read from master
0	1	command read from master
1	0	command read from slave
1	1	command read from slave

2nd & 3rd Parameters: Program and Read MTP start address PGM_SADDR[15:0] 4th & 5th Parameters: Program data size PGM_DSIZE[15:0]

Note:

If user program Area0 (0x00 \sim 0x017F), PGM_SADDR[15:0] will be set 0x0000, PGM_DSIZE[15:0] will be set 0x0180.

8.2.29 RE0H (CCSET): Cascade Setting (E Ink use only)

RE0H		Bit											
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code		
CCSET	W	0	1	1	1	0	0	0	0	0	E0H		
1 st Parameter	W	1	-	-	=	-	=	-	TSFIX	CCEIN	00h		

NOTE: "-" Don't care, can be set to VDD or GND level

	This co	mmand is us	sed for cascade.							
	1 st Para	ameter:	Description							
	DIL	INAITIE	'							
Description	0	CCEIN	Output clock enable/disable. 0: for single mode. (default) 1: for cascade mode.							
= ===:(p.10 :)	1	Let the value of slave's temperature is same as the master's. 1 TSFIX Let the value of slave's temperature is same as the master's. 0: Temperature value is defined by internal temperature sens LM75. (default)								
		1: Temperature value is defined by TS_SET [7:0] registers.								
Restriction										

8.2.30 RE3H (PWS): Power Saving Register

RE3H		Bit											
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code		
PWS	W	0	1	1	1	0	0	0	1	1	E3H		
1 st Parameter	W	1		VCOM	_W[3:0]			00h					

NOTE: "-" Don't care, can be set to VDD or GND level

8.2.31 RE4H (LVSEL): LVD Voltage Select Register

RE4H	Bit											
Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code	
LVSEL	W	0	1	1	1	0	0	1	0	0	E4H	
1 st Parameter	W	1	-	-	-	-	-	-	LVD_SEL[1:0]		03h	

NOTE: "-" Don't care, can be set to VDD or GND level

Description	LVD_SEL[1:0]: Low Power V		
	LVD_SEL[1:0]	LVD value	
	00	< 2.2 V	
	01	< 2.3 V	* * * * * * * * * *
	10	< 2.4 V	
	11	< 2.5 V (default)	
Restriction			

8.2.32 RE5H (CCS_SEL): Cascade Setting Select

	RE5H		Bit									
	Inst/Para	R/W	D/CX	D7	D6	D5	D4	D3	D2	D1	D0	Code
	CCS_sel	W	0	1	1	1	0	0	1	0	1	E5H
Ī	1 st Parameter	W	1	-	-	-	-	cascade_ sync	-	-	-	00h

NOTE: "-" Don't care, can be set to VDD or GND level

		ommand is us		
	1 st Para	ameter:		
Description	Bit	Name	Description	
Description	3	cascade_sync	0: cascade mode: sync_C / TSCL / TSDA (default) 1: cascade mode: sync_C / sync_D / sync_E	
				W
Restriction				

8.2.33 Register Restriction

Following table will indicate the register restriction:

Following table will indicate th	ie register restriction.	
Register	Refresh Restriction	BUSY_N flag
R00H(PSR)	X	No action
R01H(PWR)	X	No action
R02H(POF)	X	Flag
R04H(PON)	X	Flag
R06H(BTST)	X	No action
R07H(DSLP)	X	Flag
R10H(DTM)	X	No action
R11H(DSP)	Valid only read	Flag
R12H(DRF)	X	Flag
R17H(AUTO)	Valid in standby	Flag
R30H(PLL)	X	No action
R40H(TSC)	Valid only read	Flag
R41H(TSE)	X	No action
R42H(TSW)	X	Flag
R43H(TSR)	Valid only read	Flag
R50H(CDI)	X	No action
R51H(LPD)	Valid only read	Flag
R61H(TRES)	X	No action
R65H(GSST)	X	No action
R70H(REV)	Valid only read	No action
R80H(AMV)	X	Flag
R81H(VV)	Valid	No action
R82H(VDCS)	X	No action
R83H(PTL)	X	No action
R90H(PGM)	X	No action
R91H(APG)	X	Flag
R92H(RMTP)	X	Flag
RA2H(PGM_CFG)	X	No action
RE0H(CCSET)	X	No action
RE3H(PWS)	X	No action
RE4H(LVSEL)	X	No action
RE5H(CCS_SEL)	X	No action

9. FUNCTION DESCRIPTION

9.1 Power On/Off and DSLP Sequence

In order to prevent IC fail in power on resetting, the power sequence must be followed as below.

Power on Sequence

Figure 1: Power on sequence

Power off Sequence

Figure 2: Power off sequence

DSLP sequence

Figure 3: DSLP sequence

9.2 MTP LUT Definition

The MTP size would be 4096Bytes.

MTP bank 0 (4K bytes)							
Address(Hex) Content							
0x000~0xEFF	LUT compress data						
0xF00~0xF58	Reserved						
0xF59~0xF84	Default setting (44bytes)						
0xF85~0xFFF	JD setting (123bytes)						

9.3 Default Setting Format in MTP

	Addr. (Dec)	Addr. (Hex)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value (Hex)	
	-	- 1				User Rese	erved bytes				00	
	3929	F59				Enable MTP	Setting (0xA5)				A5	
R85H	3930	F5A				Rese	erved				-	
Кооп	3931	F5B				Res	erved				-	
R00H	3932	F5C	RES	[1:0]	PST_MODE	-	UD	SHL	SHD_N	RST_N	0F	
KUUH	3933	F5D	LUT_EN	-	FOPT	VCMZ	TS_AUTO TIEG NORG VC_LUT				09	
	3934	F5E	-	=	-	VSC_EN VDS_EN VDG_E						
	3935	F5F	-	=	VGP[1:0]							
DOTL	3936	F60	-				VSPL_0[6:0]				00	
R01H	3937	F61	=				VSP_1[6:0]		A (C		00	
	3938	F62	=				VSN_1[6:0]				00	
	3939	F63	=				VSPL_1[6:0]				00	
	3940	F64				Res	erved				00	
	3941	F65				Rese	erved				00	
-	3942	F66				Res	erved				54	
	3943	F67				Rese	erved				44	
	3944	F68	-	=	-	=	PHB_S	FT[1:0]	PHA_S	FT[1:0]	00	
	3945	F69	-	-			PHA_C	ON[5:0]			06	
	3946	F6A	-	=			PHA_O	FF[5:0]			02	
R06H	3947	F6B	-	- PHB_ON[5:0]								
	3948	F6C	-	- PHB_OFF[5:0]								
	3949	F6D	-	-				07				
	3950	F6E	-	-			PHC_C	FF[5:0]			02	
-	3951	F6F			•	Rese	erved				00	
R30H	3952	F70	-	-	-	-	Dyna		FR[2:0]		02	
R50h	3953	F71		VBD[2:0]		DDX		CDI	[3:0]		97	
	3954	F72				Rese	erved				02	
-	3955	F73				Res	erved				02	
	3956	F74	-	=	-	=	-	-	HRES[9]	HRES[8]	00	
DC4LL	3957	F75			HRE	S[7:2]			0	0	00	
R61H	3958	F76	-	-	-	-	-	-	VRES[9]	VRES[8]	00	
	3959	F77				VRE	S[7:0]				00	
	3960	F78	-	-	-	-	-	•	S_start(9)	S_start(8)	00	
R65H	3961	F79	S_start(7)	S_start(6)	S_start(5)	S_start(4)	S_start(3)	S_start(2)	0	0	00	
Коэп	3962	F7A	-		-	-	-	•	G_start(9)	G_start(8)	00	
	3963	F7B	G_start(7)	G_start(6)	G_start(5)	G_start(4)	G_start(3)	G_start(2)	G_start(1)	G_start(0)	00	
R82H	3964	F7C		VDCS[6]	VDCS[5]	VDCS[4]	VDCS[3]	VDCS[2]	VDCS[1]	VDCS[0]	00	
RE5H	3965	F7D	-	-	-	-	cascade_sync	-	-	-	00	
R41H	3966	F7E	-	-	-	TO[4]	TO[3]	TO[2]	TO[1]	TO[0]	00	
RE0H	3967	F7F	-	-								
RE3H	3968	F80		VCOM_W[3:0] SD_W[3:0]								
RE4H	3969	F81	LVD_SEL[1:0]								03	
	3970	F82				Rese	erved		-	-	03	
- 3971 F83 Reserved									1C			
	3972	F84				Rese	erved				00	
	3973-4095	F85-FFF				JD s	etting				FF	

9.1 Data transmission waveform

Example1: The driver will scan 1 frame to GND after waveform finished.(FOPT=0)

Figure 1: Data transmission example1 waveform

Figure 2: Display refresh example2 waveform

10. ELECTRICAL SPECIFICATIONS

10.1 Absolute Maximum Rating

Parameter	Symbol	Min.	Max.	Unit
Logic supply voltage	VDD, AVDD, VDDIO, VDD1, VPP	-0.3	+6.0	V
Digital input voltage	VI	-0.3	VDDIO+0.3	V
Supply range	VGP-VGN	VGN-0.3	VGP+0.3	V
Analog supply	VSP_0	+15	+15	V
Analog supply	VSN_0	-15	-15	V
Analog supply	VSPL_0	+3	+15	٧
Analog supply	VSP_1	+3	+15	V
Analog supply	VSN_1	-3	-15	V
Analog supply	VSPL_1	+3	+15	V
Supply voltage	VGP	+10	+20	V
Supply voltage	VGN	-20	-10	V
Storage temperature	T _{STG}	-55	125	$^{\circ}\!\mathbb{C}$

Note:

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this data sheet is not implied.

Exposing device to the absolute maximum ratings in a long period of time may degrade the device and affect its reliability.

10.2 Digital DC Characteristic

DC electrical characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
IO Supply Voltage	VDDIO	2.3	3.3	3.6	V	
Digital/Analog supply voltage	VDD	2.3	3.3	3.6	V	
DCDC power input voltage	AVDD	2.3	3.3	3.6	V	
1.5V output voltage	VDD_15	1.35	1.5	1.65		
1.5V input voltage	VDD_15	1.35	1.5	1.65		
MTP program power	VMTP	9.8	10.1	10.2		
Digital ground	VSS		0			
DCDC ground	VSSP		0			
Low Level Input Voltage	Vil	GND	-	0.3Xvdd	V	Digital input pins
High Level Input Voltage	Vih	0.7Xvio	-	VIO	V	Digital input pins
High Level Output Voltage	Voh	VIO-0.4	-	-	V	Digital output pins; IOH = 400Ma
High Level Output Voltage	Vohd	VDD1-0.4	-	-	V	Digital output pins; IOH = 400Ma DRVD, DRVU
Low Level Output Voltage	Vol	GND	-	GND+0.4	V	Digital output pins; IOL = -400Ma
Input Leakage Current	lin	-1.0	-	+1.0	Ua	Digital input pins, except pull-up, pull-down pin
Pull-up/down impedance	Rin	-	200K		ohm	
Digital Stand-by Current (power off mode)	IstVDD*	-	0	1	Ua	All stopped
Digital Operating Current	IVDD*	-	0.5	2.0	Ма	
IO Stand-by Current (power off mode)	IstVDDIO*	-	0.4	1.0	Ua	All stopped
IO Operating Current	IVDDIO*	-		0.2	Ma	No load
Operating Current	IVDD1*	-	-	TBD	Ма	
Operating temperature	T op	-30	-	85	$^{\circ}\mathbb{C}$	

NOTE: typ. And max. values to be confirmed by design

10.3 Analog DC Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Positive Source voltage	VSP	-	15	-	V	For source driver/VCOM
Positive Source voltage dev	Dvsp	-100	0	+100	Mv	
Negative Source voltage	VSn	-	-15	-	V	For source driver/VCOM
Negative Source voltage dev	Dvsn	-100	-	+100	Μv	
Positive Source voltage	VSPL_0	3		15		<u> </u>
Positive Source voltage dev.	Dvspl_0	-100	-	+100	Μv	
Positive Source voltage	VSP_1	3		15		
Positive Source voltage dev.	Dvsp_1	-100	-	+100	Μv	A (0)
Positive Source voltage	VSPL_1	3		15		
Positive Source voltage dev.	Dvspl_1	-100	-	+100	Μv	
VCOM voltage dev.	Dvcom	-200	-	+200	Μv	
Positive gate voltage dev	Dvgp	-500	-	+500	My	
Dynamic Range of Output	Vdr	0.1	-	VSP-0.1	V	
Voltage Range of VGP – VGN	VGP-VGN	-	-	41	V	
Negative Gate voltage	VGN	-10	-	-20	V	For gate driver
Positive Gate voltage	VGP	10		20	V	For gate driver
Positive HV Stand-by Current (power off mode)	IstVGP*	-	0	0.2	Ua	Include VSP power With load
Positive HV Operating Current	IVGP*	-	0.7	1.1	Ма	Include VSP power With load all SD=L VCOM external resistor divider not included
Positive HV Operating Current	IVGP*		0.8	1.2	Ма	Include VSP power With load all SD=H VCOM external resistor divider not Included
Negative HV Stand-by Current (power off mode)	IstVGN*		0	0.2	Ма	Include VSP power With load
Negative HV Operating Current	IVGN*	-	0.8	1.2	Ма	Include VSN power With load all SD=L
Negative HV Operating Current	IVGN*	-	0.9-	1.3	Ма	Include VSN power With load all SD=H
VINT1 Stand-by Current (power off mode)	IstVINT1*	-	0	0.01	Ма	
VINT1 Operating Current	IVINT1*	-	-	0.3	Ма	
Voltage	IVINT1*	-	-	0.3	Ма	

10.4 AC Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
SERIAL COMMUNICATION						
	Tcss	60			ns	Chip select setup time
CSB	Тсѕн	65			ns	Chip select hold time
COB	Tscc	20			ns	Chip select CSB setup time
	Тснw	40			ns	Chip select setup time
	Tscycw	100			ns	Serial clock cycle (Write)
	Tshw	35			ns	SCL "H" pulse width (Write)
201	Tslw	35			ns	SCL "L" pulse width (Write)
SCL	Tscycr	250			ns	Serial clock cycle (Read)
	Tshr	60			ns	SCL "H" pulse width (Read)
	T _{SLR}	60			ns	SCL "L" pulse width (Read)
	Tsds	30			ns	Data setup time
SDA	T _{SDH}	30			ns	Data hold time
(DIN)	Tacc			50	ns	Access time
(DOUT)	Тон	15			ns	Output disable time
D/C	Tocs	20			ns	DC setup time
D/C	Тосн	20			ns	DC hold time

3 pin serial interface characteristics (write mode)

3 pin serial interface characteristics (read mode)

4 pin serial interface characteristics(write mode)

4 pin serial interface characteristics(read mode)

Figure 9: SPI interface timing

11. CHIP OUTLINE DIMENSIONS

11.1 Circuit/Bump View

G1 G3 G5 ...G249 S127 ~ S0 G248... G4 G2 G0

JD79676
(face up)

Die Size:7586um * 846um (including scribe line 60um)

Die Size:7526um * 786um

Die Thickness:230 µm ± 20µm

Die TTV: $(D_{MAX} - D_{MIN})$ within die $\leq 2\mu m$

Bump Height:9 µm ± 2µm

 $(H_{MAX} - H_{MIN})$ within die $\leq 2\mu m$

Hardness: 75 Hv ±25Hv
Coordinate origin:Chip center

11.2 Bump information

Bump type	Pitch	Space_A	Space_B	Space_C	W	Н	area(um2)	Q'ty	Total are	a(um2)
Input PAD	46	15	-	-	31	63	1953	155	302715	
Source PAD	26	14	19	1	12	89	1068	132	140976	717687
Gate PAD	42	24	19	3	18	59	1062	258	273996	

12. ALIGNMENT MARK INFORMATION

12.1 Location

Shapes and Points:

Point Coordinates:

	Upper-L	eft Mark	Upper-Ri	Upper-Right Mark		
Point	X	Υ	X	Υ		
Center	-3627	-327	3627	-327		
1	-3637	-297	3617	-297		
2	-3617	-297	3637	-297		
3	-3617	-317	3637	-317		
4	-3597	-317	3657	-317		
5	-3597	-337	3657	-337		
6	-3617	-337	3637	-337		
7	-3617	-357	3637	-357		
8	-3637	-357	3617	-357		
9	-3637	-337	3617	-337		
10	-3657	-337	3597	-337		
11	-3657	-317	3597	-317		
12	-3637	-317	3617	-317		
13	-3657	-297	3597	-297		
14	-3647	-297	3607	-297		
15	-3647	-307	3607	-307		
16	-3657	-307	3597	-307		

12.2 Pad coordinates

No.	Name	X-axis	Y-axis	w	Н
1	T_EN_LSH	-3542	-327.5	31	63
2	VGN	-3496	-327.5	31	63
3	VGN	-3450	-327.5	31	63
4	VGN	-3404	-327.5	31	63
5	VGN	-3358	-327.5	31	63
6	VGN	-3312	-327.5	31	63
7	VGN	-3266	-327.5	31	63
8	VGN	-3220	-327.5	31	63
9	VGN	-3174	-327.5	31	63
10	VGN	-3128	-327.5	31	63
11	VGN	-3082	-327.5	31	63
12	VGN	-3036	-327.5	31	63
13	VSSA	-2990	-327.5	31	63
14	VSN	-2944	-327.5	31	63
	_				
15	VSN	-2898	-327.5	31	63
16	VSN	-2852	-327.5	31	63
17	VSN	-2806	-327.5	31	63
18	VSN	-2760	-327.5	31	63
19	VSN	-2714	-327.5	31	63
20	VSN	-2668	-327.5	31	63
21	VSSA	-2622	-327.5	31	63
22	VGP	-2576	-327.5	31	63
23	VGP	-2530	-327.5	31	63
24	VGP	-2484	-327.5	31	63
25	VGP	-2438	-327.5	31	63
26	VGP	-2392	-327.5	31	63
27	VGP	-2346	-327.5	31	63
28	VSSA	-2300	-327.5	31	63
29	VSP	-2254	-327.5	31	63
30	VSP	-2208	-327.5	31	63
31	VSP	-2162	-327.5	31	63
32	VSP	-2116	-327.5	31	63
33	VSP	-2070	-327.5	31	63
34	VSP	-2024	-327.5	31	63
35	VSSA	-1978	-327.5	31	63
36	VMTP	-1932	-327.5	31	63
37	VMTP	-1886	-327.5	31	63
38	VMTP	-1840	-327.5	31	63
39	VDD 15V	-1794	-327.5	31	63
40	VDD_15V	-1748	-327.5	31	63
41	VDD_15V	-1748	-327.5	31	63
42	VDD_15V	-1656	-327.5	31	63
42	VDD_15V VDD 15V	-1610	-327.5	31	63
43		-1564	-327.5		
				31	63
45	VSSA	-1518	-327.5	31	63
46	VSSA	-1472	-327.5	31	63
47	VSSA	-1426	-327.5	31	63
48	VSSA	-1380	-327.5	31	63
49	VSSA	-1334	-327.5	31	63
50	VSSA	-1288	-327.5	31	63
51	VSSA	-1242	-327.5	31	63
52	VSSA	-1196	-327.5	31	63
53	VSS	-1150	-327.5	31	63
54	VSS	-1104	-327.5	31	63
55	VSS	-1058	-327.5	31	63
56	VSS	-1012	-327.5	31	63
57	VSS	-966	-327.5	31	63
58	VSS	-920	-327.5	31	63
	•				

No.	Name	X-axis	Y-axis	w	н
59	VSS	-874	-327.5	31	63
60	VSS	-828	-327.5	31	63
61	VDDP	-782	-327.5	31	63
62	VDDP	-736	-327.5	31	63
63	VDDP	-690	-327.5	31	63
64	VDDP	-644	-327.5	31	63
65	VDDP	-598	-327.5	31	63
66	VDDP	-552	-327.5	31	63
67	VDDP	-506	-327.5	31	63
68	VDDP	-460	-327.5	31	63
69	VDD	-414	-327.5	31	63
70	VDD	-368	-327.5	31	63
71	VDD	-322	-327.5	31	63
72	VDD	-276	-327.5	31	63
73	VDD	-230	-327.5	31	63
74	VDD	-184	-327.5	31	63
75	VDD	-138	-327.5	31	63
76	T_VREF	-92	-327.5	31	63
77	T_VTSEN	-46	-327.5	31	63
78	T_SAR_REF SYNCE	0	-327.5	31	63
79		46	-327.5	31	63
80 81	T_DEBUG[8] T_IN[2]	92 138	-327.5 -327.5	31 31	63 63
82	T DEBUG[7]	184	-327.5	31	63
83	T_DEBUG[6]	230	-327.5	31	63
84	T EN DIG	276	-327.5	31	63
85	VDDIO	322	-327.5	31	63
86	VDDIO	368	-327.5	31	63
87	VDDIO	414	-327.5	31	63
88	VDDIO	460	-327.5	31	63
89	T IBIAS	506	-327.5	31	63
90	SDA	552	-327.5	31	63
91	SCL	598	-327.5	31	63
92	VSS	644	-327.5	31	63
93	CSB	690	-327.5	31	63
94	VDDIO	736	-327.5	31	63
95	T_DEBUG[5]	782	-327.5	31	63
96	T_IN[1]	828	-327.5	31	63
97	DC	874	-327.5	31	63
98	VDDIO	920	-327.5	31	63
99	T_DEBUG[4]	966	-327.5	31	63
100	VSS	1012	-327.5	31	63
101	RST_N	1058	-327.5	31	63
102	BUSY_N	1104	-327.5	31	63
103	SYNCC	1150	-327.5	31	63
104	VDDIO	1196	-327.5	31	63
105	T_DEBUG[3]	1242	-327.5	31	63
106	T_EX_REFCLK	1288 1334	-327.5	31	63 63
107 108	T_DEBUG[2] VDDIO	1380	-327.5 -327.5	31 31	63
109	BS	1426	-327.5	31	63
110	T IN[0]	1472	-327.5	31	63
111	T_DEBUG[1]	1518	-327.5	31	63
112	VDDIO VDDIO	1564	-327.5	31	63
113	PCKI	1610	-327.5	31	63
114	T EX SYSCLK	1656	-327.5	31	63
115	MS	1702	-327.5	31	63
116	VDDIO	1748	-327.5	31	63
	•				

No.	Name	X-axis	Y-axis	W	Н
117	TSDA	1794	-327.5	31	63
118	TSDA	1840	-327.5	31	63
119	TSCL	1886	-327.5	31	63
120	TSCL	1932	-327.5	31	63
121	PCKO	1978	-327.5	31	63
122	SYNCD	2024	-327.5	31	63
123	VSS	2070	-327.5	31	63
124	T DEBUG[0]	2116	-327.5	31	63
125	VSPL	2162	-327.5	31	63
126	VSPL	2208	-327.5	31	63
127	VSPL	2254	-327.5	31	63
128	VSPL	2300	-327.5	31	63
129	VSPL	2346	-327.5	31	63
130	VSPL	2392	-327.5	31	63
131	VSSA	2438	-327.5	31	63
132	FB	2484	-327.5	31	63
133	FB	2530	-327.5	31	63
134	VSSA	2576	-327.5	31	63
135	RESE	2622	-327.5	31	63
136	RESE	2668	-327.5	31	63
137	VSSA	2714	-327.5	31	63
138	GDR	2760	-327.5	31	63
139	GDR	2806	-327.5	31	63
140	GDR	2852	-327.5	31	63
141	GDR	2898	-327.5	31	63
142	GDR	2944	-327.5	31	63
143	GDR	2990	-327.5	31	63
144	VSSA	3036	-327.5	31	63
145	VSSA	3082	-327.5	31	63
146	VCOM	3128	-327.5	31	63
147	VCOM	3174	-327.5	31	63
148	VCOM	3220	-327.5	31	63
149	VCOM	3266	-327.5	31	63
150	VCOM	3312	-327.5	31	63
151	VCOM	3358		31	63
		_	-327.5		
152	VCOM	3404	-327.5	31	63
153	VCOM	3450	-327.5	31	63
154	VCOM	3496	-327.5	31	63
155	T_VCOM	3542	-327.5	31	63
156	T_LDON5V	3645	354.5	18	59
157	T_VSPD_REF	3624	276.5	18	59
158	G[0]	3603	354.5	18	59
159	G[2]	3582	276.5	18	59
160	G[4]	3561	354.5	18	59
161	G[6]	3540	276.5	18	59
162	G[8]	3519	354.5	18	59
163	G[10]	3498	276.5	18	59
164	G[12]	3477	354.5	18	59
165	G[14]	3456	276.5	18	59
166	G[16]	3435	354.5	18	59
167	G[18]	3414	276.5	18	59
168	G[20]	3393	354.5	18	59
169	G[22]	3372	276.5	18	59
170	G[24]	3351	354.5	18	59
171	G[26]	3330	276.5	18	59
172	G[28]	3309	354.5	18	59
173	G[30]	3288	276.5	18	59
174	G[32]	3267	354.5	18	59
175	G[34]	3246	276.5	18	59
176	G[36]	3225	354.5	18	59

No.	Name	X-axis	Y-axis	W	Н
177	G[38]	3204	276.5	18	59
178	G[40]	3183	354.5	18	59
179	G[42]	3162	276.5	18	59
180	G[44]	3141	354.5	18	59
181	G[46]	3120	276.5	18	59
182	G[48]	3099	354.5	18	59
183	G[50]	3078	276.5	18	59
184	G[52]	3057	354.5	18	59
185	G[54]	3036	276.5	18	59
186	G[56]	3015	354.5	18	59
187	G[58]	2994	276.5	18	59
188	G[60]	2973	354.5	18	59
189	G[62]	2952	276.5	18	59
190	G[64]	2931	354.5	18	59
191	G[66]	2910	276.5	18	59
192	G[68]	2889	354.5	18	59
193	G[70]	2868	276.5	18	59
194	G[72]	2847	354.5	18	59
195	G[74]	2826	276.5	18	59
196	G[76]	2805	354.5	18	59
197	G[78]	2784	276.5	18	59
198	G[80]	2763	354.5	18	59
199	G[82]	2742	276.5	18	59
200	G[84]	2721	354.5	18	59
201	G[86]	2700	276.5	18	59
202	G[88]	2679	354.5	18	59
203	G[90]	2658	276.5	18	59
204	G[92]	2637	354.5	18	59
205	G[94]	2616	276.5	18	59
206	G[96]	2595	354.5	18	59
207	G[98]	2574	276.5	18	59
208	G[100]	2553	354.5	18	59
209	G[102]	2532	276.5	18	59
210	G[104]	2511	354.5	18	59
211	G[106]	2490	276.5	18	59
212	G[108]	2469	354.5	18	59
213	G[110]	2448	276.5	18	59
214	G[112]	2427	354.5	18	59
215	G[114]	2406	276.5	18	59
216	G[116]	2385	354.5	18	59
217	G[118]	2364	276.5	18	59
218	G[120]	2343	354.5	18	59
219	G[122]	2322	276.5	18	59
220	G[124]	2301	354.5	18	59
221	G[126]	2280	276.5	18	59
222	G[128]	2259	354.5	18	59
223	G[130]	2238	276.5	18	59
224	G[132]	2217	354.5	18	59
225	G[134]	2196	276.5	18	59
226	G[136]	2175	354.5	18	59
227	G[138]	2154	276.5	18	59
228	G[140]	2133	354.5	18	59
229	G[142]	2112	276.5	18	59
230	G[144]	2091	354.5	18	59
231	G[146]	2070	276.5	18	59
232	G[148]	2049	354.5	18	59
233	G[150]	2028	276.5	18	59
234	G[152]	2007	354.5	18	59
235	G[154]	1986	276.5	18	59
236	G[156]	1965	354.5	18	59

Colorable Colorab Co	No.	Nome	V avia	Y-axis	w	ш
238		Name	X-axis			Н
239 G[162] 1902 276.5 18 59 240 G[164] 1881 354.5 18 59 241 G[166] 1860 276.5 18 59 242 G[168] 1839 354.5 18 59 243 G[170] 1818 276.5 18 59 244 G[172] 1797 354.5 18 59 245 G[174] 1776 276.5 18 59 246 G[176] 1755 354.5 18 59 247 G[178] 1734 276.5 18 59 248 G[180] 1713 354.5 18 59 249 G[182] 1692 276.5 18 59 250 G[184] 1671 354.5 18 59 251 G[186] 1650 276.5 18 59 252 G[188] 1629 354.5 18 59 253 G[190] 1608 276.5 18 59 254 G[192] 1587 354.5 18 59 255 G[194] 1566 276.5 18 59 256 G[196] 1545 354.5 18 59 257 G[198] 1524 276.5 18 59 258 G[200] 1503 354.5 18 59 259 G[202] 1482 276.5 18 59 260 G[204] 1461 354.5 18 59 261 G[206] 1440 276.5 18 59 262 G[208] 1419 354.5 18 59 263 G[210] 1398 276.5 18 59 264 G[212] 1377 354.5 18 59 265 G[214] 1356 276.5 18 59 266 G[216] 1336 276.5 18 59 267 G[218] 1314 276.5 18 59 268 G[220] 1293 354.5 18 59 269 G[222] 1272 276.5 18 59 269 G[222] 1272 276.5 18 59 269 G[222] 1272 276.5 18 59 270 G[224] 1251 354.5 18 59 271 G[226] 1230 276.5 18 59 272 G[228] 1209 354.5 18 59 273 G[234] 1146 276.5 18 59 274 G[232] 1167 354.5 18 59 275 G[234] 1146 276.5 18 59 276 G[234] 1146 276.5 18 59 277 G[228] 1290 354.5 18 59 278 G[240] 1083 354.5 18 59 279 G[242] 1062 276.5 18 59 279 G[242] 1062 276.5 18 59 279 G[242] 1062 276.5 18 59 280 G[244] 1041 354.5 18 59 281 G[246] 1020 276.5 18 59 282 G[248] 999 354.5 18 59 283 DUMMY[0] 978 276.5	_					
240 G 164 1881 354.5 18 59 241						
241 G[166] 1860 276.5 18 59 242 G[168] 1839 354.5 18 59 243 G[170] 1818 276.5 18 59 244 G[172] 1797 354.5 18 59 245 G[174] 1776 276.5 18 59 246 G[176] 1755 354.5 18 59 247 G[178] 1734 276.5 18 59 248 G[180] 1713 354.5 18 59 249 G[182] 1692 276.5 18 59 250 G[184] 1671 354.5 18 59 251 G[188] 1629 354.5 18 59 252 G[188] 1629 354.5 18 59 253 G[190] 1608 276.5 18 59 255 G[194] 1566 276.5						
242 G[168] 1839 354.5 18 59 243 G[170] 1818 276.5 18 59 244 G[172] 1797 354.5 18 59 246 G[176] 1755 354.5 18 59 247 G[178] 1734 276.5 18 59 248 G[180] 1713 354.5 18 59 248 G[182] 1692 276.5 18 59 250 G[184] 1671 354.5 18 59 250 G[184] 1671 354.5 18 59 251 G[186] 1660 276.5 18 59 252 G[188] 1629 354.5 18 59 253 G[190] 1608 276.5 18 59 255 G[194] 1566 276.5 18 59 255 G[194] 1566 276.5						
243 G[170] 1818 276.5 18 59 244 G[172] 1797 354.5 18 59 246 G[176] 1755 354.5 18 59 247 G[178] 1734 276.5 18 59 248 G[180] 1713 354.5 18 59 248 G[182] 1692 276.5 18 59 250 G[184] 1671 354.5 18 59 250 G[186] 1650 276.5 18 59 251 G[186] 1650 276.5 18 59 251 G[186] 1660 276.5 18 59 253 G[190] 1608 276.5 18 59 254 G[192] 1587 354.5 18 59 255 G[194] 1566 276.5 18 59 256 G[194] 1566 276.5						
244 G[172] 1797 354.5 18 59 245 G[174] 1776 276.5 18 59 246 G[176] 1755 354.5 18 59 247 G[178] 1734 276.5 18 59 248 G[180] 1713 354.5 18 59 249 G[182] 1692 276.5 18 59 250 G[184] 1671 354.5 18 59 250 G[188] 1629 354.5 18 59 251 G[186] 1650 276.5 18 59 252 G[188] 1629 354.5 18 59 253 G[190] 1608 276.5 18 59 254 G[192] 1587 354.5 18 59 255 G[196] 1545 354.5 18 59 256 G[198] 1524 276.5						
245 G[174] 1776 276.5 18 59 246 G[176] 1755 354.5 18 59 247 G[178] 1734 276.5 18 59 248 G[180] 1713 354.5 18 59 249 G[182] 1692 276.5 18 59 250 G[184] 1671 354.5 18 59 250 G[186] 1650 276.5 18 59 251 G[186] 1669 354.5 18 59 252 G[188] 1629 354.5 18 59 253 G[190] 1608 276.5 18 59 255 G[194] 1566 276.5 18 59 255 G[194] 1566 276.5 18 59 256 G[196] 1545 354.5 18 59 257 G[188 1524 276.5 <						
246 G[176] 1755 354.5 18 59 247 G[178] 1734 276.5 18 59 248 G[180] 1713 354.5 18 59 249 G[182] 1692 276.5 18 59 250 G[184] 1671 354.5 18 59 251 G[186] 1650 276.5 18 59 252 G[188] 1629 354.5 18 59 253 G[190] 1608 276.5 18 59 254 G[192] 1587 354.5 18 59 255 G[194] 1566 276.5 18 59 255 G[198] 1524 276.5 18 59 256 G[196] 1545 354.5 18 59 257 G[198] 1524 276.5 18 59 259 G[202] 1482 276.5						
247 G[178] 1734 276.5 18 59 248 G[180] 1713 354.5 18 59 249 G[182] 1692 276.5 18 59 250 G[186] 1650 276.5 18 59 251 G[186] 1650 276.5 18 59 252 G[188] 1629 354.5 18 59 253 G[190] 1608 276.5 18 59 254 G[192] 1587 354.5 18 59 255 G[196] 1545 354.5 18 59 255 G[196] 1545 354.5 18 59 256 G[198] 1524 276.5 18 59 257 G[198] 1524 276.5 18 59 258 G[200] 1503 354.5 18 59 259 G[206] 1440 276.5						
248 G[180] 1713 354.5 18 59 249 G[182] 1692 276.5 18 59 250 G[184] 1671 354.5 18 59 251 G[186] 1650 276.5 18 59 252 G[188] 1629 354.5 18 59 253 G[190] 1608 276.5 18 59 254 G[192] 1587 354.5 18 59 255 G[196] 1545 354.5 18 59 256 G[196] 1545 354.5 18 59 257 G[198] 1524 276.5 18 59 258 G[200] 1482 276.5 18 59 259 G[202] 1482 276.5 18 59 260 G[204] 1461 354.5 18 59 261 G[208] 1440 276.5						
249 G[182] 1692 276.5 18 59 250 G[184] 1671 354.5 18 59 251 G[186] 1650 276.5 18 59 252 G[188] 1629 354.5 18 59 253 G[190] 1608 276.5 18 59 254 G[192] 1587 354.5 18 59 255 G[196] 1545 354.5 18 59 256 G[196] 1545 354.5 18 59 257 G[198] 1524 276.5 18 59 258 G[200] 1503 354.5 18 59 259 G[202] 1482 276.5 18 59 259 G[202] 1482 276.5 18 59 260 G[204] 1440 354.5 18 59 261 G[206] 1440 276.5						
250 G[184] 1671 354.5 18 59 251 G[186] 1650 276.5 18 59 252 G[188] 1629 354.5 18 59 253 G[190] 1608 276.5 18 59 254 G[192] 1587 354.5 18 59 255 G[194] 1566 276.5 18 59 256 G[196] 1545 354.5 18 59 257 G[198] 1524 276.5 18 59 258 G[200] 1503 354.5 18 59 259 G[202] 1482 276.5 18 59 260 G[204] 1461 354.5 18 59 261 G[206] 1440 276.5 18 59 261 G[208] 1419 354.5 18 59 263 G[210] 1398 276.5						
251 G[186] 1650 276.5 18 59 252 G[188] 1629 354.5 18 59 253 G[190] 1608 276.5 18 59 254 G[192] 1587 354.5 18 59 255 G[196] 1545 354.5 18 59 256 G[196] 1545 354.5 18 59 257 G[198] 1524 276.5 18 59 258 G[200] 1482 276.5 18 59 259 G[202] 1482 276.5 18 59 260 G[204] 1461 354.5 18 59 261 G[206] 1440 276.5 18 59 262 G[208] 1419 354.5 18 59 263 G[210] 1398 276.5 18 59 264 G[212] 1377 354.5						
252 G[188] 1629 354.5 18 59 253 G[190] 1608 276.5 18 59 254 G[192] 1587 354.5 18 59 255 G[194] 1566 276.5 18 59 256 G[196] 1545 354.5 18 59 257 G[198] 1524 276.5 18 59 258 G[200] 1503 354.5 18 59 259 G[202] 1482 276.5 18 59 260 G[204] 1461 354.5 18 59 260 G[206] 1440 276.5 18 59 261 G[206] 1440 276.5 18 59 262 G[208] 1419 354.5 18 59 263 G[210] 1398 276.5 18 59 264 G[212] 1377 354.5						
253 G[190] 1608 276.5 18 59 254 G[192] 1587 354.5 18 59 255 G[194] 1566 276.5 18 59 256 G[196] 1545 354.5 18 59 257 G[198] 1524 276.5 18 59 258 G[200] 1503 354.5 18 59 259 G[202] 1482 276.5 18 59 260 G[204] 1461 354.5 18 59 260 G[206] 1440 276.5 18 59 261 G[206] 1440 276.5 18 59 261 G[208] 1419 354.5 18 59 262 G[208] 1419 354.5 18 59 263 G[210] 1398 276.5 18 59 264 G[212] 1377 354.5						
255 G[194] 1566 276.5 18 59 256 G[196] 1545 354.5 18 59 257 G[198] 1524 276.5 18 59 258 G[200] 1503 354.5 18 59 259 G[202] 1482 276.5 18 59 260 G[204] 1461 354.5 18 59 261 G[206] 1440 276.5 18 59 262 G[208] 1419 354.5 18 59 263 G[210] 1398 276.5 18 59 263 G[210] 1398 276.5 18 59 264 G[212] 1377 354.5 18 59 265 G[214] 1356 276.5 18 59 266 G[216] 1335 354.5 18 59 267 G[218] 1314 276.5			1608		18	59
256 G[196] 1545 354.5 18 59 257 G[198] 1524 276.5 18 59 258 G[200] 1503 354.5 18 59 259 G[202] 1482 276.5 18 59 260 G[204] 1461 354.5 18 59 261 G[206] 1440 276.5 18 59 262 G[208] 1419 354.5 18 59 263 G[210] 1398 276.5 18 59 264 G[212] 1377 354.5 18 59 265 G[214] 1356 276.5 18 59 266 G[216] 1335 354.5 18 59 266 G[218] 1314 276.5 18 59 269 G[222] 1272 276.5 18 59 270 G[224] 1251 354.5	254	G[192]	1587	354.5	18	59
257 G[198] 1524 276.5 18 59 258 G[200] 1503 354.5 18 59 259 G[202] 1482 276.5 18 59 260 G[204] 1461 354.5 18 59 261 G[206] 1440 276.5 18 59 261 G[208] 1419 354.5 18 59 262 G[208] 1419 354.5 18 59 263 G[210] 1398 276.5 18 59 264 G[212] 1377 354.5 18 59 265 G[214] 1356 276.5 18 59 266 G[218] 1314 276.5 18 59 267 G[218] 1314 276.5 18 59 269 G[222] 1272 276.5 18 59 270 G[224] 1251 354.5	255	G[194]	1566	276.5	18	59
258 G 200 1503 354.5 18 59 259 G 202 1482 276.5 18 59 260 G 204 1461 354.5 18 59 261 G 206 1440 276.5 18 59 262 G 208 1419 354.5 18 59 263 G 210 1398 276.5 18 59 264 G 212 1377 354.5 18 59 265 G 214 1356 276.5 18 59 266 G 216 1335 354.5 18 59 267 G 218 1314 276.5 18 59 268 G 220 1293 354.5 18 59 269 G 222 1272 276.5 18 59 270 G 224 1251 354.5 18 59 271 G 226 1230 276.5	256	G[196]	1545	354.5	18	59
259 G[202] 1482 276.5 18 59 260 G[204] 1461 354.5 18 59 261 G[206] 1440 276.5 18 59 262 G[208] 1419 354.5 18 59 263 G[210] 1398 276.5 18 59 264 G[212] 1377 354.5 18 59 265 G[214] 1356 276.5 18 59 266 G[216] 1335 354.5 18 59 266 G[218] 1314 276.5 18 59 267 G[218] 1314 276.5 18 59 268 G[220] 1293 354.5 18 59 269 G[222] 1272 276.5 18 59 270 G[224] 1251 354.5 18 59 271 G[226] 1230 276.5	257	G[198]	1524	276.5	18	59
260 G 204 1461 354.5 18 59 261 G 206 1440 276.5 18 59 262 G 208 1419 354.5 18 59 263 G 210 1398 276.5 18 59 264 G 212 1377 354.5 18 59 265 G 214 1356 276.5 18 59 266 G 216 1335 354.5 18 59 266 G 218 1314 276.5 18 59 267 G 218 1314 276.5 18 59 268 G 220 1293 354.5 18 59 269 G 222 1272 276.5 18 59 270 G 224 1251 354.5 18 59 271 G 226 1230 276.5 18 59 273 G 230 1188 276.5	258	G[200]	1503	354.5	18	59
261 G[206] 1440 276.5 18 59 262 G[208] 1419 354.5 18 59 263 G[210] 1398 276.5 18 59 264 G[212] 1377 354.5 18 59 265 G[214] 1356 276.5 18 59 266 G[216] 1335 354.5 18 59 267 G[218] 1314 276.5 18 59 268 G[220] 1293 354.5 18 59 269 G[222] 1272 276.5 18 59 270 G[224] 1251 354.5 18 59 270 G[224] 1251 354.5 18 59 271 G[226] 1230 276.5 18 59 271 G[228] 1209 354.5 18 59 273 G[230] 1188 276.5	259	G[202]	1482	276.5	18	59
262 G[208] 1419 354.5 18 59 263 G[210] 1398 276.5 18 59 264 G[212] 1377 354.5 18 59 265 G[214] 1356 276.5 18 59 266 G[216] 1335 354.5 18 59 267 G[218] 1314 276.5 18 59 268 G[220] 1293 354.5 18 59 269 G[222] 1272 276.5 18 59 270 G[224] 1251 354.5 18 59 270 G[226] 1230 276.5 18 59 271 G[226] 1230 276.5 18 59 271 G[228] 1209 354.5 18 59 273 G[230] 1188 276.5 18 59 274 G[233] 1167 354.5	260	G[204]	1461	354.5	18	59
263 G[210] 1398 276.5 18 59 264 G[212] 1377 354.5 18 59 265 G[214] 1356 276.5 18 59 266 G[216] 1335 354.5 18 59 267 G[218] 1314 276.5 18 59 268 G[220] 1293 354.5 18 59 269 G[222] 1272 276.5 18 59 270 G[224] 1251 354.5 18 59 270 G[228] 1209 354.5 18 59 271 G[228] 1209 354.5 18 59 271 G[228] 1209 354.5 18 59 273 G[230] 1188 276.5 18 59 274 G[232] 1167 354.5 18 59 275 G[234] 1146 276.5		G[206]	1440	276.5	18	59
264 G[212] 1377 354.5 18 59 265 G[214] 1356 276.5 18 59 266 G[216] 1335 354.5 18 59 267 G[218] 1314 276.5 18 59 268 G[220] 1293 354.5 18 59 269 G[222] 1272 276.5 18 59 270 G[224] 1251 354.5 18 59 270 G[228] 1209 354.5 18 59 271 G[228] 1209 354.5 18 59 272 G[228] 1209 354.5 18 59 273 G[230] 1188 276.5 18 59 274 G[232] 1167 354.5 18 59 275 G[236] 1125 354.5 18 59 276 G[238] 1104 276.5	262	G[208]	1419	354.5	18	59
265 G[214] 1356 276.5 18 59 266 G[216] 1335 354.5 18 59 267 G[218] 1314 276.5 18 59 268 G[220] 1293 354.5 18 59 269 G[222] 1272 276.5 18 59 270 G[224] 1251 354.5 18 59 270 G[228] 1209 354.5 18 59 271 G[228] 1209 354.5 18 59 272 G[230] 1188 276.5 18 59 273 G[230] 1188 276.5 18 59 274 G[232] 1167 354.5 18 59 275 G[234] 1146 276.5 18 59 276 G[238] 1104 276.5 18 59 278 G[240] 1083 354.5	263		1398	276.5	18	59
266 G[216] 1335 354.5 18 59 267 G[218] 1314 276.5 18 59 268 G[220] 1293 354.5 18 59 269 G[222] 1272 276.5 18 59 270 G[224] 1251 354.5 18 59 270 G[228] 1209 354.5 18 59 271 G[228] 1209 354.5 18 59 272 G[230] 1188 276.5 18 59 273 G[230] 1188 276.5 18 59 274 G[232] 1167 354.5 18 59 275 G[234] 1146 276.5 18 59 276 G[236] 1125 354.5 18 59 277 G[238] 1104 276.5 18 59 278 G[240] 1083 354.5	264	G[212]	_	354.5	18	
267 G[218] 1314 276.5 18 59 268 G[220] 1293 354.5 18 59 269 G[222] 1272 276.5 18 59 270 G[224] 1251 354.5 18 59 271 G[226] 1230 276.5 18 59 271 G[228] 1209 354.5 18 59 272 G[230] 1188 276.5 18 59 273 G[230] 1188 276.5 18 59 274 G[232] 1167 354.5 18 59 275 G[234] 1146 276.5 18 59 276 G[236] 1125 354.5 18 59 277 G[238] 1104 276.5 18 59 279 G[240] 1083 354.5 18 59 280 G[244] 1041 354.5			1356	276.5	18	59
268 G[220] 1293 354.5 18 59 269 G[222] 1272 276.5 18 59 270 G[224] 1251 354.5 18 59 271 G[226] 1230 276.5 18 59 272 G[228] 1209 354.5 18 59 273 G[230] 1188 276.5 18 59 274 G[232] 1167 354.5 18 59 275 G[234] 1146 276.5 18 59 276 G[236] 1125 354.5 18 59 276 G[238] 1104 276.5 18 59 277 G[238] 1104 276.5 18 59 278 G[240] 1083 354.5 18 59 279 G[242] 1062 276.5 18 59 280 G[244] 1041 354.5	266					
269 G[222] 1272 276.5 18 59 270 G[224] 1251 354.5 18 59 271 G[226] 1230 276.5 18 59 272 G[228] 1209 354.5 18 59 273 G[230] 1188 276.5 18 59 274 G[232] 1167 354.5 18 59 275 G[234] 1146 276.5 18 59 276 G[236] 1125 354.5 18 59 276 G[238] 1104 276.5 18 59 277 G[238] 1104 276.5 18 59 278 G[240] 1083 354.5 18 59 279 G[242] 1062 276.5 18 59 280 G[244] 1041 354.5 18 59 281 G[248] 999 354.5 <		G[218]				
270 G[224] 1251 354.5 18 59 271 G[226] 1230 276.5 18 59 272 G[228] 1209 354.5 18 59 273 G[230] 1188 276.5 18 59 274 G[232] 1167 354.5 18 59 275 G[234] 1146 276.5 18 59 276 G[236] 1125 354.5 18 59 276 G[238] 1104 276.5 18 59 277 G[238] 1104 276.5 18 59 278 G[240] 1083 354.5 18 59 279 G[242] 1062 276.5 18 59 280 G[244] 1041 354.5 18 59 281 G[248] 999 354.5 18 59 282 G[248] 999 354.5 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
271 G[226] 1230 276.5 18 59 272 G[228] 1209 354.5 18 59 273 G[230] 1188 276.5 18 59 274 G[232] 1167 354.5 18 59 275 G[234] 1146 276.5 18 59 276 G[236] 1125 354.5 18 59 276 G[238] 1104 276.5 18 59 277 G[238] 1104 276.5 18 59 278 G[240] 1083 354.5 18 59 279 G[242] 1062 276.5 18 59 280 G[244] 1041 354.5 18 59 281 G[246] 1020 276.5 18 59 282 G[248] 999 354.5 18 59 283 DUMMY[0] 978 276.5						
272 G[228] 1209 354.5 18 59 273 G[230] 1188 276.5 18 59 274 G[232] 1167 354.5 18 59 275 G[234] 1146 276.5 18 59 276 G[236] 1125 354.5 18 59 277 G[238] 1104 276.5 18 59 278 G[240] 1083 354.5 18 59 279 G[242] 1062 276.5 18 59 280 G[244] 1041 354.5 18 59 281 G[246] 1020 276.5 18 59 282 G[248] 999 354.5 18 59 283 DUMMY[0] 978 276.5 18 59 284 DUMMY[1] 957 354.5 18 59 285 DUMMY[2] 851.5 339.5						
273 G[230] 1188 276.5 18 59 274 G[232] 1167 354.5 18 59 275 G[234] 1146 276.5 18 59 276 G[236] 1125 354.5 18 59 277 G[238] 1104 276.5 18 59 278 G[240] 1083 354.5 18 59 279 G[242] 1062 276.5 18 59 280 G[244] 1041 354.5 18 59 281 G[246] 1020 276.5 18 59 282 G[248] 999 354.5 18 59 283 DUMMY[0] 978 276.5 18 59 284 DUMMY[1] 957 354.5 18 59 285 DUMMY[2] 851.5 339.5 12 89 286 VBD[1] 838.5 231.5						
274 G[232] 1167 354.5 18 59 275 G[234] 1146 276.5 18 59 276 G[236] 1125 354.5 18 59 277 G[238] 1104 276.5 18 59 278 G[240] 1083 354.5 18 59 279 G[242] 1062 276.5 18 59 280 G[244] 1041 354.5 18 59 281 G[246] 1020 276.5 18 59 282 G[248] 999 354.5 18 59 283 DUMMY[0] 978 276.5 18 59 284 DUMMY[1] 957 354.5 18 59 285 DUMMY[2] 851.5 339.5 12 89 286 VBD[1] 838.5 231.5 12 89 288 S[1] 812.5 231.5						
275 G[234] 1146 276.5 18 59 276 G[236] 1125 354.5 18 59 277 G[238] 1104 276.5 18 59 278 G[240] 1083 354.5 18 59 279 G[242] 1062 276.5 18 59 280 G[244] 1041 354.5 18 59 281 G[246] 1020 276.5 18 59 282 G[248] 999 354.5 18 59 283 DUMMY[0] 978 276.5 18 59 284 DUMMY[1] 957 354.5 18 59 285 DUMMY[2] 851.5 339.5 12 89 286 VBD[1] 838.5 231.5 12 89 287 S[0] 825.5 339.5 12 89 288 S[1] 812.5 231.5						
276 G[236] 1125 354.5 18 59 277 G[238] 1104 276.5 18 59 278 G[240] 1083 354.5 18 59 279 G[242] 1062 276.5 18 59 280 G[244] 1041 354.5 18 59 281 G[246] 1020 276.5 18 59 282 G[248] 999 354.5 18 59 283 DUMMY[0] 978 276.5 18 59 284 DUMMY[1] 957 354.5 18 59 285 DUMMY[2] 851.5 339.5 12 89 286 VBD[1] 838.5 231.5 12 89 287 S[0] 825.5 339.5 12 89 288 S[1] 812.5 231.5 12 89 289 S[2] 799.5 339.5						
277 G[238] 1104 276.5 18 59 278 G[240] 1083 354.5 18 59 279 G[242] 1062 276.5 18 59 280 G[244] 1041 354.5 18 59 281 G[246] 1020 276.5 18 59 282 G[248] 999 354.5 18 59 283 DUMMY[0] 978 276.5 18 59 284 DUMMY[1] 957 354.5 18 59 285 DUMMY[2] 851.5 339.5 12 89 286 VBD[1] 838.5 231.5 12 89 287 S[0] 825.5 339.5 12 89 288 S[1] 812.5 231.5 12 89 289 S[2] 799.5 339.5 12 89 290 S[3] 786.5 231.5						
278 G[240] 1083 354.5 18 59 279 G[242] 1062 276.5 18 59 280 G[244] 1041 354.5 18 59 281 G[246] 1020 276.5 18 59 282 G[248] 999 354.5 18 59 283 DUMMY[0] 978 276.5 18 59 284 DUMMY[1] 957 354.5 18 59 285 DUMMY[2] 851.5 339.5 12 89 286 VBD[1] 838.5 231.5 12 89 287 S[0] 825.5 339.5 12 89 288 S[1] 812.5 231.5 12 89 289 S[2] 799.5 339.5 12 89 290 S[3] 786.5 231.5 12 89 291 S[4] 773.5 339.5						
279 G[242] 1062 276.5 18 59 280 G[244] 1041 354.5 18 59 281 G[246] 1020 276.5 18 59 282 G[248] 999 354.5 18 59 283 DUMMY[0] 978 276.5 18 59 284 DUMMY[1] 957 354.5 18 59 285 DUMMY[2] 851.5 339.5 12 89 286 VBD[1] 838.5 231.5 12 89 287 S[0] 825.5 339.5 12 89 288 S[1] 812.5 231.5 12 89 289 S[2] 799.5 339.5 12 89 290 S[3] 786.5 231.5 12 89 291 S[4] 773.5 339.5 12 89 292 S[5] 760.5 231.5 <						
280 G[244] 1041 354.5 18 59 281 G[246] 1020 276.5 18 59 282 G[248] 999 354.5 18 59 283 DUMMY[0] 978 276.5 18 59 284 DUMMY[1] 957 354.5 18 59 285 DUMMY[2] 851.5 339.5 12 89 286 VBD[1] 838.5 231.5 12 89 287 S[0] 825.5 339.5 12 89 288 S[1] 812.5 231.5 12 89 289 S[2] 799.5 339.5 12 89 290 S[3] 786.5 231.5 12 89 291 S[4] 773.5 339.5 12 89 291 S[4] 773.5 339.5 12 89 293 S[6] 747.5 339.5 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
281 G[246] 1020 276.5 18 59 282 G[248] 999 354.5 18 59 283 DUMMY[0] 978 276.5 18 59 284 DUMMY[1] 957 354.5 18 59 285 DUMMY[2] 851.5 339.5 12 89 286 VBD[1] 838.5 231.5 12 89 287 S[0] 825.5 339.5 12 89 288 S[1] 812.5 231.5 12 89 289 S[2] 799.5 339.5 12 89 290 S[3] 786.5 231.5 12 89 291 S[4] 773.5 339.5 12 89 292 S[5] 760.5 231.5 12 89 293 S[6] 747.5 339.5 12 89 294 S[7] 734.5 231.5 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
282 G[248] 999 354.5 18 59 283 DUMMY[0] 978 276.5 18 59 284 DUMMY[1] 957 354.5 18 59 285 DUMMY[2] 851.5 339.5 12 89 286 VBD[1] 838.5 231.5 12 89 287 S[0] 825.5 339.5 12 89 288 S[1] 812.5 231.5 12 89 289 S[2] 799.5 339.5 12 89 290 S[3] 786.5 231.5 12 89 291 S[4] 773.5 339.5 12 89 292 S[5] 760.5 231.5 12 89 293 S[6] 747.5 339.5 12 89 294 S[7] 734.5 231.5 12 89 295 S[8] 721.5 339.5						
283 DUMMY[0] 978 276.5 18 59 284 DUMMY[1] 957 354.5 18 59 285 DUMMY[2] 851.5 339.5 12 89 286 VBD[1] 838.5 231.5 12 89 287 S[0] 825.5 339.5 12 89 288 S[1] 812.5 231.5 12 89 289 S[2] 799.5 339.5 12 89 290 S[3] 786.5 231.5 12 89 291 S[4] 773.5 339.5 12 89 292 S[5] 760.5 231.5 12 89 293 S[6] 747.5 339.5 12 89 294 S[7] 734.5 231.5 12 89 295 S[8] 721.5 339.5 12 89)	
284 DUMMY[1] 957 354.5 18 59 285 DUMMY[2] 851.5 339.5 12 89 286 VBD[1] 838.5 231.5 12 89 287 S[0] 825.5 339.5 12 89 288 S[1] 812.5 231.5 12 89 289 S[2] 799.5 339.5 12 89 290 S[3] 786.5 231.5 12 89 291 S[4] 773.5 339.5 12 89 292 S[5] 760.5 231.5 12 89 293 S[6] 747.5 339.5 12 89 294 S[7] 734.5 231.5 12 89 295 S[8] 721.5 339.5 12 89						
285 DUMMY[2] 851.5 339.5 12 89 286 VBD[1] 838.5 231.5 12 89 287 S[0] 825.5 339.5 12 89 288 S[1] 812.5 231.5 12 89 289 S[2] 799.5 339.5 12 89 290 S[3] 786.5 231.5 12 89 291 S[4] 773.5 339.5 12 89 292 S[5] 760.5 231.5 12 89 293 S[6] 747.5 339.5 12 89 294 S[7] 734.5 231.5 12 89 295 S[8] 721.5 339.5 12 89						
286 VBD[1] 838.5 231.5 12 89 287 S[0] 825.5 339.5 12 89 288 S[1] 812.5 231.5 12 89 289 S[2] 799.5 339.5 12 89 290 S[3] 786.5 231.5 12 89 291 S[4] 773.5 339.5 12 89 292 S[5] 760.5 231.5 12 89 293 S[6] 747.5 339.5 12 89 294 S[7] 734.5 231.5 12 89 295 S[8] 721.5 339.5 12 89						
287 S[0] 825.5 339.5 12 89 288 S[1] 812.5 231.5 12 89 289 S[2] 799.5 339.5 12 89 290 S[3] 786.5 231.5 12 89 291 S[4] 773.5 339.5 12 89 292 S[5] 760.5 231.5 12 89 293 S[6] 747.5 339.5 12 89 294 S[7] 734.5 231.5 12 89 295 S[8] 721.5 339.5 12 89						
288 S[1] 812.5 231.5 12 89 289 S[2] 799.5 339.5 12 89 290 S[3] 786.5 231.5 12 89 291 S[4] 773.5 339.5 12 89 292 S[5] 760.5 231.5 12 89 293 S[6] 747.5 339.5 12 89 294 S[7] 734.5 231.5 12 89 295 S[8] 721.5 339.5 12 89						
289 S[2] 799.5 339.5 12 89 290 S[3] 786.5 231.5 12 89 291 S[4] 773.5 339.5 12 89 292 S[5] 760.5 231.5 12 89 293 S[6] 747.5 339.5 12 89 294 S[7] 734.5 231.5 12 89 295 S[8] 721.5 339.5 12 89						
290 S[3] 786.5 231.5 12 89 291 S[4] 773.5 339.5 12 89 292 S[5] 760.5 231.5 12 89 293 S[6] 747.5 339.5 12 89 294 S[7] 734.5 231.5 12 89 295 S[8] 721.5 339.5 12 89						
291 S[4] 773.5 339.5 12 89 292 S[5] 760.5 231.5 12 89 293 S[6] 747.5 339.5 12 89 294 S[7] 734.5 231.5 12 89 295 S[8] 721.5 339.5 12 89						
292 S[5] 760.5 231.5 12 89 293 S[6] 747.5 339.5 12 89 294 S[7] 734.5 231.5 12 89 295 S[8] 721.5 339.5 12 89						
293 S[6] 747.5 339.5 12 89 294 S[7] 734.5 231.5 12 89 295 S[8] 721.5 339.5 12 89						
294 S[7] 734.5 231.5 12 89 295 S[8] 721.5 339.5 12 89	293				12	
295 S[8] 721.5 339.5 12 89	294			231.5	12	89
						89
	296				12	89

No.	Name	X-axis	Y-axis	W	Н
297	S[10]	695.5	339.5	12	89
298	S[11]	682.5	231.5	12	89
299	S[12]	669.5	339.5	12	89
300	S[13]	656.5	231.5	12	89
301	S[14]	643.5	339.5	12	89
302	S[15]	630.5	231.5	12	89
303	S[16]	617.5	339.5	12	89
304	S[17]	604.5	231.5	12	89
305	S[18]	591.5	339.5	12	89
306	S[19]	578.5	231.5	12	89
307	S[20]	565.5	339.5	12	89
308	S[21]	552.5	231.5	12	89
309	S[22]	539.5	339.5	12	89
310	S[23]	526.5	231.5	12	89
311	S[24]	513.5	339.5	12	89
312	S[25]	500.5	231.5	12	89
313	S[26]	487.5	339.5	12	89
314	S[27]	474.5	231.5	12	89
315	S[28]	461.5	339.5	12	89
316	S[29]	448.5	231.5	12	89
317	S[30]	435.5	339.5	12	89
318	S[31]	422.5	231.5	12	89
319	S[32]	409.5	339.5	12	89
320	S[33]	396.5	231.5	12	89
321	S[34]	383.5	339.5	12	89
322	S[35]	370.5	231.5	12	89
323	S[36]	357.5	339.5	12	89
324	S[37]	344.5	231.5	12	89
325	S[38]	331.5	339.5	12	89
326	S[39]	318.5	231.5	12	89
327	S[40]	305.5	339.5	12	89
328	S[41] S[42]	292.5	231.5	12 12	89
329		279.5	339.5	12	89
	S[43] S[44]	266.5 253.5	231.5 339.5	12	89
331	S[44] S[45]	240.5	231.5	12	89
332					89
333 334	S[46] S[47]	227.5 214.5	339.5 231.5	12 12	89 89
335	S[47] S[48]	201.5	339.5	12	89
	S[46] S[49]		231.5	12	
336	S[50]	188.5	339.5	12	89
337 338	S[50] S[51]	175.5 162.5	231.5	12	89 89
339	S[51] S[52]	149.5	339.5	12	89
340	S[52] S[53]	136.5	231.5	12	89
341	-11		339.5	12	89
342	S[54] S[55]	123.5 110.5	231.5	12	89
343	S[56]	97.5	339.5	12	89
344	S[57]	84.5	231.5	12	89
345	S[58]	71.5	339.5	12	89
346	S[59]	58.5	231.5	12	89
347	S[60]	45.5	339.5	12	89
348	S[61]	32.5	231.5	12	89
349	S[62]	19.5	339.5	12	89
350	S[63]	6.5	231.5	12	89
351	S[64]	-6.5	339.5	12	89
352	S[65]	-19.5	231.5	12	89
353	S[66]	-32.5	339.5	12	89
354	S[67]	-45.5	231.5	12	89
355	S[68]	-58.5	339.5	12	89
356	S[69]	-71.5	231.5	12	89
000	<u> </u>	, 1.0	201.0	'-	00

No.	Name	X-axis	Y-axis	W	Н
357	S[70]	-84.5	339.5	12	89
358	S[71]	-97.5	231.5	12	89
359	S[72]	-110.5	339.5	12	89
360	S[73]	-123.5	231.5	12	89
361	S[74]	-136.5	339.5	12	89
362	S[75]	-149.5	231.5	12	89
363	S[76]	-162.5	339.5	12	89
364	S[77]	-175.5	231.5	12	89
365	S[78]	-188.5	339.5	12	89
366	S[79]	-201.5	231.5	12	89
367	S[80]	-214.5	339.5	12	89
368	S[81]	-227.5	231.5	12	89
369	S[82]	-240.5	339.5	12	89
370	S[83]	-253.5	231.5	12	89
371	S[84]	-266.5	339.5	12	89
372	S[85]	-279.5	231.5	12	89
373	S[86]	-292.5	339.5	12	89
374	S[87]	-305.5	231.5	12	89
375	S[88]	-318.5	339.5	12	89
376	S[89]	-331.5	231.5	12	89
377	S[90]	-344.5	339.5	12	89
378	S[91]	-357.5	231.5	12	89
379	S[92]	-370.5	339.5	12	89
380	S[93]	-383.5	231.5	12	89
381	S[94]	-396.5	339.5	12	89
382	S[95]	-409.5	231.5	12	89
383	S[96]	-422.5	339.5	12	89
384	S[97]	-435.5	231.5	12	89
385	S[98]	-448.5	339.5	12	89
386	S[99]	-461.5	231.5	12	89
387	S[100]	-474.5	339.5	12	89
388	S[101]	-487.5	231.5	12	89
389	S[102]	-500.5	339.5	12	89
390	S[103]	-513.5	231.5	12	89
391	S[104]	-526.5	339.5	12	89
392	S[105]	-539.5	231.5	12	89
393	S[106]	-552.5	339.5	12	89
394	S[107]	-565.5	231.5	12	89
395	S[108]	-578.5	339.5	12	89
396	S[109]	-591.5	231.5	12	89
397	S[110]	-604.5	339.5	12	89
398	S[111]	-617.5	231.5	12	89
399	S[112]	-630.5	339.5	12	89
400	S[113]	-643.5	231.5	12	89
401	S[114]	-656.5	339.5	12	89
402	S[115]	-669.5	231.5	12	89
403	S[116]	-682.5	339.5	12	89
404	S[117]	-695.5	231.5	12	89
405	S[118]	-708.5	339.5	12	89
406	S[119]	-721.5	231.5	12	89
407	S[120]	-734.5	339.5	12	89
408	S[121]	-747.5	231.5	12	89
409	S[122]	-760.5	339.5	12	89
410	S[123]	-773.5	231.5	12	89
411	S[124]	-786.5	339.5	12	89
412	S[125]	-799.5	231.5	12	89
413	S[126]	-812.5	339.5	12	89
414	S[127]	-825.5	231.5	12	89
415	VBD[2]	-838.5	339.5	12	89
416	DUMMY[3]	-851.5	231.5	12	89

423 G[241] -1083 354.5 18 424 G[239] -1104 276.5 18 425 G[237] -1125 354.5 18 426 G[235] -1146 276.5 18 427 G[233] -1167 354.5 18 428 G[231] -1188 276.5 18 429 G[229] -1209 354.5 18	59 59 59 59 59 59 59 59 59 59 59 59
419 G[249] -999 354.5 18 420 G[247] -1020 276.5 18 421 G[245] -1041 354.5 18 422 G[243] -1062 276.5 18 423 G[241] -1083 354.5 18 424 G[239] -1104 276.5 18 425 G[237] -1125 354.5 18 426 G[235] -1146 276.5 18 427 G[233] -1167 354.5 18 428 G[231] -1188 276.5 18 429 G[229] -1209 354.5 18	59 59 59 59 59 59 59 59 59 59 59
420 G[247] -1020 276.5 18 421 G[245] -1041 354.5 18 422 G[243] -1062 276.5 18 423 G[241] -1083 354.5 18 424 G[239] -1104 276.5 18 425 G[237] -1125 354.5 18 426 G[235] -1146 276.5 18 427 G[233] -1167 354.5 18 428 G[231] -1188 276.5 18 429 G[229] -1209 354.5 18	59 59 59 59 59 59 59 59 59 59
421 G[245] -1041 354.5 18 422 G[243] -1062 276.5 18 423 G[241] -1083 354.5 18 424 G[239] -1104 276.5 18 425 G[237] -1125 354.5 18 426 G[235] -1146 276.5 18 427 G[233] -1167 354.5 18 428 G[231] -1188 276.5 18 429 G[229] -1209 354.5 18	59 59 59 59 59 59 59 59 59
422 G[243] -1062 276.5 18 423 G[241] -1083 354.5 18 424 G[239] -1104 276.5 18 425 G[237] -1125 354.5 18 426 G[235] -1146 276.5 18 427 G[233] -1167 354.5 18 428 G[231] -1188 276.5 18 429 G[229] -1209 354.5 18	59 59 59 59 59 59 59 59
423 G[241] -1083 354.5 18 424 G[239] -1104 276.5 18 425 G[237] -1125 354.5 18 426 G[235] -1146 276.5 18 427 G[233] -1167 354.5 18 428 G[231] -1188 276.5 18 429 G[229] -1209 354.5 18	59 59 59 59 59 59 59
424 G[239] -1104 276.5 18 425 G[237] -1125 354.5 18 426 G[235] -1146 276.5 18 427 G[233] -1167 354.5 18 428 G[231] -1188 276.5 18 429 G[229] -1209 354.5 18	59 59 59 59 59 59
425 G[237] -1125 354.5 18 426 G[235] -1146 276.5 18 427 G[233] -1167 354.5 18 428 G[231] -1188 276.5 18 429 G[229] -1209 354.5 18	59 59 59 59 59
426 G[235] -1146 276.5 18 427 G[233] -1167 354.5 18 428 G[231] -1188 276.5 18 429 G[229] -1209 354.5 18	59 59 59 59
427 G[233] -1167 354.5 18 428 G[231] -1188 276.5 18 429 G[229] -1209 354.5 18	59 59 59
428 G[231] -1188 276.5 18 429 G[229] -1209 354.5 18	59 59
429 G[229] -1209 354.5 18	59
1 400 000071 4000 070 5 40	
430 G[227] -1230 276.5 18	59
431 G[225] -1251 354.5 18	59
432 G[223] -1272 276.5 18	59
433 G[221] -1293 354.5 18	59
	59
435 G[217] -1335 354.5 18	59
436 G[215] -1356 276.5 18	59
437 G[213] -1377 354.5 18	59
438 G[211] -1398 276.5 18	59
439 G[209] -1419 354.5 18	59
	59
441 G[205] -1461 354.5 18	59
442 G[203] -1482 276.5 18	59
443 G[201] -1503 354.5 18	59
	59
	59
446 G[195] -1566 276.5 18	59
447 G[193] -1587 354.5 18	59
448 G[191] -1608 276.5 18	59 50
449 G[189] -1629 354.5 18 450 G[187] -1650 276.5 18	59 50
450 G[187] -1650 276.5 18 451 G[185] -1671 354.5 18	59 59
451 G[183] -1671 334.5 18 452 G[183] -1692 276.5 18	59 59
453 G[181] -1713 354.5 18	59 59
454 G[179] -1734 276.5 18	59 59
455 G[177] -1755 354.5 18	59 59
	59
457 G[173] -1770 270.5 18	59
458 G[171] -1818 276.5 18	59
459 G[169] -1839 354.5 18	59
460 G[167] -1860 276.5 18	59
461 G[165] -1881 354.5 18	59
462 G[163] -1902 276.5 18	59
463 G[161] -1923 354.5 18	59
464 G[159] -1944 276.5 18	59
465 G[157] -1965 354.5 18	59
466 G[155] -1986 276.5 18	59
467 G[153] -2007 354.5 18	59
468 G[151] -2028 276.5 18	59
469 G[149] -2049 354.5 18	59
470 G[147] -2070 276.5 18	59
471 G[145] -2091 354.5 18	59
472 G[143] -2112 276.5 18	59
473 G[141] -2133 354.5 18	59
474 G[139] -2154 276.5 18	59
475 G[137] -2175 354.5 18	59
476 G[135] -2196 276.5 18	59

V1.0.4

JD79676AA

No.	Name	X-axis	Y-axis	w	н
477	G[133]	-2217	354.5	18	59
478	G[131]	-2238	276.5	18	59
479	G[129]	-2259	354.5	18	59
480	G[127]	-2280	276.5	18	59
481	G[125]	-2301	354.5	18	59
482	G[123]	-2322	276.5	18	59
483	G[121]	-2343	354.5	18	59
484 485	G[119]	-2364	276.5 354.5	18	59 59
486	G[117]	-2385 -2406	276.5	18 18	59
487	G[115] G[113]	-2406	354.5	18	59
488	G[111]	-2448	276.5	18	59
489	G[109]	-2469	354.5	18	59
490	G[109] G[107]	-2490	276.5	18	59
491	G[107]	-2511	354.5	18	59
492	G[103]	-2532	276.5	18	59
493	G[101]	-2553	354.5	18	59
494	G[99]	-2574	276.5	18	59
495	G[97]	-2595	354.5	18	59
496	G[95]	-2616	276.5	18	59
497	G[93]	-2637	354.5	18	59
498	G[91]	-2658	276.5	18	59
499	G[89]	-2679	354.5	18	59
00	G[87]	-2700	276.5	18	59
501	G[85]	-2721	354.5	18	59
502	G[83]	-2742	276.5	18	59
503	G[81]	-2763	354.5	18	59
504	G[79]	-2784	276.5	18	59
505	G[77]	-2805	354.5	18	59
506	G[75]	-2826	276.5	18	59
507	G[73]	-2847	354.5	18	59
508	G[71]	-2868	276.5	18	59
509	G[69]	-2889	354.5	18	59
510	G[67]	-2910	276.5	18	59
511	G[65]	-2931	354.5	18	59
512 513	G[63] G[61]	-2952 -2973	276.5 354.5	18 18	59 59
514	G[59]	-2973	276.5	18	59
515	G[59]	-3015	354.5	18	59
516	G[55]	-3036	276.5	18	59
517	G[53]	-3057	354.5	18	59
518	G[51]	-3078	276.5	18	59
519	G[49]	-3099	354.5	18	59
520	G[47]	-3120	276.5	18	59
521	G[45]	-3141	354.5	18	59
522	G[43]	-3162	276.5	18	59
523	G[41]	-3183	354.5	18	59
524	G[39]	-3204	276.5	18	59
525	G[37]	-3225	354.5	18	59
526	G[35]	-3246	276.5	18	59
527	G[33]	-3267	354.5	18	59
528	G[31]	-3288	276.5	18	59
529	G[29]	-3309	354.5	18	59
530	G[27]	-3330	276.5	18	59
531	G[25]	-3351	354.5	18	59
532	G[23]	-3372	276.5	18	59
533	G[21]	-3393	354.5	18	59
534	G[19]	-3414	276.5	18	59
535	G[17]	-3435	354.5	18	59
536	G[15]	-3456	276.5	18	59

No.	Name	X-axis	Y-axis	W	Н
537	G[13]	-3477	354.5	18	59
538	G[11]	-3498	276.5	18	59
539	G[9]	-3519	354.5	18	59
540	G[7]	-3540	276.5	18	59
541	G[5]	-3561	354.5	18	59
542	G[3]	-3582	276.5	18	59
543	G[1]	-3603	354.5	18	59
544	T_N18V	-3624	276.5	18	59
545	T_N18V	-3645	354.5	18	59
546	AL_L	-3627	-327	110	110
547	AL R	3627	-327	_110	110

13. REVISION HISTORY

Revision	Content	Page	Date
1.0.1	JD79666 datasheet 1 st version	-	2023/06/13
1.0.2	Updated Bump information		2023/06/14
1.0.3	Modify test pin name	-	2023/06/19
1.0.4	Modify project name: JD79676	-	2023/07/06

