

# **INDC International Nuclear Data Committee**

# TABLE OF NUCLEAR ELECTRIC QUADRUPOLE MOMENTS

# N.J. Stone

Oxford Physics, Clarendon Laboratory, Parks Road, Oxford U.K. OX1 3PU and Department of Physics and Astronomy, University of Tennessee, Knoxville, USA, TN 37996-1200

December 2013

IAEA Nuclear Data Section
Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria

Selected INDC documents may be downloaded in electronic form from <a href="http://www-nds.iaea.org/publications">http://www-nds.iaea.org/publications</a>

or sent as an e-mail attachment. Requests for hardcopy or e-mail transmittal should be directed to

 $\underline{\mathit{NDS}.\mathit{Contact-Point}@iaea.org}$ 

or to:

Nuclear Data Section
International Atomic Energy Agency
Vienna International Centre
PO Box 100
1400 Vienna
Austria

Printed by the IAEA in Austria

December 2013

# TABLE OF NUCLEAR ELECTRIC QUADRUPOLE MOMENTS

N.J. Stone

Oxford Physics, Clarendon Laboratory, Parks Road, Oxford U.K. OX1 3PU and Department of Physics and Astronomy, University of Tennessee, Knoxville, USA, TN 37996-1200

#### **ABSTRACT**

This Table is a compilation of experimental measurements of static electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. Experimental data from all quadrupole moment measurements actually provide a value of the product of the moment and the electric field gradient [EFG] acting at the nucleus. Knowledge of the EFG is thus necessary to extract the quadrupole moment. A single recommended value of the moment is given for each state, based, for each element, wherever possible, upon a standard reference moment for a nuclear state of that element studied in a situation in which the electric field gradient has been well calculated. For several elements one or more subsidiary reference EFG/moment references are required and their use is specified.

The literature search covers the period to mid-2013.

Research sponsored by the IAEA Nuclear Data Section, Vienna International Centre, 1400 Vienna

# **Table of Contents**

|    | INTRODUCTION AND MOTIVATION                 | 7  |
|----|---------------------------------------------|----|
|    | POLICIES                                    | 9  |
|    | Signs                                       | 9  |
|    | Results and Uncertainties                   |    |
|    | Electric Quadrupole Moments                 | 9  |
|    | ACKNOWLEDGEMENTS                            | 10 |
|    | REFERENCES FOR THE INTRODUCTION             | 10 |
|    | EXPLANATION OF THE TABLE                    | 11 |
|    | Experimental Method Abbreviations           | 12 |
|    | Journal Abbreviations                       | 13 |
|    |                                             |    |
| T. | ABLE OF NUCLEAR ELECTRIC QUADRUPOLE MOMENTS | 15 |
|    |                                             |    |

#### INTRODUCTION AND MOTIVATION

The electric quadrupole moment is a feature of atomic nuclei which finds relevance in a wide range of fields of research and more general measurement. Although the quadrupole moment is most obviously of value in the study of nuclei themselves, being a measure of the deviation of the nuclear charge distribution from a spherical shape, measurement of nuclear quadrupole interactions form a vital investigatory tool in many areas of condensed matter physics and, aiding into the elucidation of structures of complex molecules and their functions, extending into many areas of chemical, biological and medical science.

Establishing accepted values of the quadrupole moment of any nucleus faces a fundamental problem. The difficulty lies in the fact that what can actually be measured is the interaction energy of the quadrupole moment, eQ, with its surroundings, usually written as  $h\nu_Q = e^2qQ$ . This interaction involves the product of the moment with the electric field gradient [EFG], eq, acting at the nucleus. The situation can be contrasted to the challenge of measuring the nuclear magnetic dipole moment,  $\mu$ , which similarly involves its product with the magnetic field B acting at the nucleus,  $h\nu_M = \mu B$ . In the latter case it is a relatively simple matter to apply a known magnetic field, generated by a suitable arrangement of coils carrying a precisely measured current, which can be varied at the will of the experimenter. The nuclear magnetic moment, can be extracted from this product, and hence measured, by a wide range of methods.

However it is not possible to generate EFGs in the laboratory which are sufficiently large to produce measurable energy differences. Given the small scale of nuclear quadrupole moments, of order I barn [100 fm²], to provide an energy splitting between levels of order 10 MHz requires an EFG of order 10 <sup>17</sup> Vcm². However, such large gradients are to be found at nuclei when in atoms, ions or molecules and also in a wide range of non-cubic solids. This does not solve the problem of extracting the quadrupole moment since difficulty in calculation of the EFG from first principles has been a serious barrier to separation of the nuclear quadrupole moment from the measured product.

This is not the place to enter into a history of multi-electron electric field distribution theory, however until the advent of more powerful computers only the simplest atoms or ions, with few electrons, were open to accurate calculation. For this reason the study of quadrupole hyperfine interactions in muonic atoms, in which the muon wavefunction [and hence charge distribution and EFG] at the nucleus can be accurately predicted, was early seen as a fruitful way to establish reliable values of quadrupole moments, especially in heavier elements where the interaction can be readily resolved. For multi-electron atoms and ions, many delicate features of the calculation were beyond the power of computation until the past two decades or so. Prior to this, the best EFG estimates involved approximations and corrections related to the distortion of inner closed electron shells, collectively associated with the name Sternheimer shielding [or anti-shielding] factors, which could be uncertain to 10% or more. Thus, although experimentally the nuclear quadrupole interaction could be measured to very much better precision, the nuclear quadrupole moments extracted from the measurements were hard to pin down.

In recent years multi-electron computation has advanced to the extent that it is now possible to make calculations of EFGs in most atoms and ions and also in many molecules. The results show admirable self-consistency and are proving reliable to a degree comparable to that of the best muonic atom results. First in 1992 and again in 2001 and 2008 Pyykko, one of the pioneers in such

calculations, published a listing of recommended values of the quadrupole moments of selected, usually stable, nuclear states in the majority of elements, including those most commonly used in applications beyond the realm of nuclear structure physics. Adopting such a set of standard values allows measurements using the standard isotope to be used to calibrate EFGs in other environments and, by extension, to allow moments of other isotopes, and excited states in all isotopes, to be related to the single reference moment. The modern calculations include all effects previously grouped under the name of shielding.

There exist in the literature many excellent experimental results giving rise to values of nuclear quadrupole moments. Each measurement required the authors to specify the EFG at the nucleus in their particular experimental system. The published Q values depend upon the individual choice of EFG and can thus be difficult to compare consistently without considerable effort. This is especially true if the experiments were made many years apart, during which the reference value(s) adopted may have changed. Existing tabulations do not always specify adopted standards and where they do, the standard values can change over the years. Only recently has it been possible, with the aid of much improved EFG calculations, to prepare a tabulation in which the adopted standards are likely to prove stable over at least the medium term, trustworthy in many cases to a few percent or better.

This Table presents a listing of measured quadrupole moments normalized, as far as possible, to a set of identified reference moments, one or more for each element, which have been derived from measurement in a situation in which the EFG has been calculated either by a modern computation or in a simpler system such as a muonic atom. There are still some 17 elements, He, Si, P, Ar, Ag, Cd, Te, Ce, Tm, W, Pt, Tl, Po, At, Cm, Bk and Cf in the sequence to Einsteinium at Z = 99 for which no such basic reference standard has been adopted. For the majority of the remaining elements the reference values chosen by Pyykko in his most recent listing (2008Py02 Mol. Phys. 106 1965 (2008)) have been adopted. The few exceptions are noted in the Table.

Nevertheless it is frequently not possible to normalize all measurements to the adopted reference for an element. This arises most often in connection with excited state measurements when an equivalent measurement on the reference (usually stable) isotope in the same conditions is not possible. In such cases a secondary standard EFG has often been adopted. These are briefly specified in the Table in the heading for each element.

In contrast to the forgoing discussion there do exist methods of measurement of the quadrupole moment which are free of uncertainty of estimation of an associated EFG. These involve calculation of field gradients provided by free electric charges and thus nothing more than Coulomb's law. They include electron scattering [ES] and re-orientation of the angular distribution during coulomb excitation [CER] both of which have been extensively used in the study of short lived excited nuclear states. Calculation of the electromagnetic interaction of the charged projectile with the nucleus is straightforward in principle and the quadrupole moment can be readily extracted, although the experiments have limited accuracy. Results based on these methods are therefore not directly related to, or dependent upon, the value of the adopted standard quadrupole moment for that element.

The most recent entries in this tabulation were published in mid-2013.

# **POLICIES**

#### Signs

Signs are given when the sign can be determined from experimental data. Where the sign is not given by the measurement, no sign is given in the Table, although it can sometimes be inferred either from systematics or from the magnitude of the result.

#### Results and Uncertainties

Experimental values and their associated errors are as given by the authors subject to a policy of limiting significant figures. Numerical errors with digits above 15 have, in most cases, been rounded to 2 and errors with first digit 2 or greater rounded down if the second digit is 4 or lower, otherwise rounded up. Results have also been rounded to give no more significant figures than the rounded error would allow. Thus a published value 0.953(65) has been rounded to 0.95(7) and 0.25(16) rounded to 0.3(2).

# Electric Quadrupole Moments

These are listed in units of barns (1 b =  $10^{-28}$  m<sup>2</sup>). As explained in the introduction, with modern computations of the EFG, corrections relating shielding caused by polarization of atomic electrons, known as Sternheimer Corrections, are no longer needed. Where there is more than one reference isotope this is possible without causing any confusion since moment ratios are frequently determined to far greater precision than their individual values. References to original publication is given, both in the form of the Nuclear Structure Reference listing maintained at the National Nuclear Data Centre, Brookhaven National Laboratory, and the journal reference. A listing of journal abbreviations is given below.

#### Reference moments and EFGs.

Justification of the reference values should be sought in the reference(s) given, usually Pyykko [2], or, for the secondary standards, the measurements in which they have been used.

### Recommended Values

The Table gives, for each listed state, identified by energy [in keV], half-life and spin, a single value for the quadrupole moment. The method involved in its measurement is identified by one of the abbreviations listed below. Entries have been normalized to the given value of the reference isotope moment wherever possible, so values will in general differ from those in the original publications. Where several experimental results exist for the same state, attempts to make valid weighted averages have been avoided since frequently there exist non-statistical differences between experiments which cannot be properly taken into account. Most often one of the more recent results, with a relatively small estimated uncertainty, has been chosen. Readers who require a more extended listing of all results on a given state should consult the extended Table [3].

#### **ACKNOWLEDGEMENTS**

The author gratefully acknowledges help and advice from Pekka Pyykko and assistance from the staff of the National Nuclear Data Centre, Brookhaven National Laboratory, in particular Joann B. Totans, Boris Pritichenko and Jagdish Tuli.

# REFERENCES FOR THE INTRODUCTION

- 1. P. Pyykko, Molecular Physics 106 (2008) 1965 and Molecular Physics 99, 1617 (2001).
- 2. N.J. Stone, At. Data Nucl. Data Tables 90 (2005) 75.
- 3. N.J. Stone, INDC(NDS) -0594, IAEA, April 2011

#### EXPLANATION OF THE TABLE

The Table gives information as follows:

Element

Identifies the element for the following isotopes and specifies the reference isotope(s) for that element. Also, in the first row for each element, the system in which the EFG which has been calculated to obtain the reference moment(s) is given briefly. Secondary standards are listed in subsequent rows and identified by Letters A,B,C .... For more detail on the EFG calculations see [1] above.

Nucleus

Identifies the nucleus by mass number A and atomic number Z, with its chemical symbol. This is given once for each nucleus. Nuclei are grouped by element in increasing sequence of atomic number and by increasing mass number for each element.

E(level)

Gives the energy of the state on which the measurement is made, rounded to the nearest kilovolt, 0 being the ground state. Where placement of the level with respect to the ground state is unknown, this is denoted by addition of an offset *x* or *y*.

 $T_{1/2}$ 

Gives the half-life  $T_{1/2}$  of the state: Units y = years, d = days, h = hours, m = minutes, s = seconds, ms = milliseconds ( $10^{-3}$  s),  $\mu$ s = microseconds ( $10^{-6}$  s), ns = nanoseconds ( $10^{-9}$  s), ps = picoseconds ( $10^{-12}$  s) and fs = femtoseconds ( $10^{-15}$  s).

 $I^{\pi}$ 

Gives the spin (I) and parity  $(\pi)$  of the state. Uncertain values are given in brackets. Where the measurement was made on unresolved states, the average spin is given as  $I_{av}$ 

Q(b)

Gives the measured nuclear electric quadrupole moment Q in units of the barn (1 barn =  $10^{-28}$  m<sup>2</sup>). No sign is given if it was not determined by the experiment. The uncertainty in the result is given in brackets, subject to the policy declared in the introduction. Thus +1.27(10) means a value of +1.27 barns with uncertainty 0.10 barns.

Ref. Std.

In this column the reference standard upon which the listed result depends is given. There is no entry when the method used does not depend upon an adopted standard (i.e. a Coulomb Excitation Reorientation (CER) measurement).

Method

The method used in the measurement is briefly identified here. A list of abbreviations used is given below. In view of the great proliferation of specialized methods, this method description is limited and for detailed information reference should be made to the original publication. Re-evaluation of the published result, where it involves re-normalization to the adopted value of the reference standard by the tabulator, is not indicated specifically.

References 1. The NSR keyword reference is given. These can be further identified by reference

to the Brookhaven National Nuclear Data Centre website www.nndc.bnl.gov.

2. The original journal or other publication reference is given wherever possible.

# Experimental Method Abbreviations

AB Atomic beam magnetic resonance

AB/MS Atomic beam and molecular spectroscopy

ABLDF Atomic beam with laser double resonance detection

ABLFS Atomic beam with laser fluorescence spectroscopy

ABLS Atomic beam laser spectroscopy

 $\beta$ -NMR NMR of in-beam polarized nuclei with beta asymmetry detection

 $\beta$ -NQR Nuclear quadrupole resonance with beta detection

β-RadOP Beta-ray detection of optical pumping

B(E2) Value based on measured E2 transition probability

CER Coulomb excitation reorientation

CERP Precession of coulomb excitation reorientation

CFBLS Collinear fast beam laser spectroscopy

CFBLS/ β-NMR Collinear fast beam laser spectroscopy: NMR with beta detection

CLS Resonance cell laser spectroscopy
EPR Electron paramagnetic resonance

ES Electron scattering

IPAC Integral perturbed angular correlation

LEMS Level mixing spectroscopy

LRFS Laser resonance fluorescence spectroscopy

LRIS Laser resonance ionization spectroscopy

LS Laser spectroscopy

MA Microwave absorption in gases

MAPON Modulated adiabatic passage NMR on oriented nuclei

MB Molecular beam magnetic resonance

ME Mossbauer effect

MS Molecular spectroscopy

Mu-X Muonic X-ray hyperfine structure

NMR/ON Nuclear magnetic resonance on oriented nuclei

NO/ME Mossbauer effect on oriented nuclei

NO/S Static nuclear orientation with gamma detection

NQR Nuclear quadrupole resonance

NSLR Nuclear spin-lattice relaxation

O Optical spectroscopy

OD Optical double resonance

OP/RD Optical pumping with radiative detection

PAC Perturbed angular correlation
Pi-X Pionic X-ray Hyperfine Structure

Q Quadrupole resonance

QI-NMR/ON Quadrupole interaction resolved NMR on oriented nuclei
QIR Quadrupole Interaction deduced from Relaxation Time

R Re-evaluated data, or (for revised reference standard) adjusted by tabulator

RIMS/LS Resonant ionization mass spectrometry/laser spectroscopy

TDPAC Time-dependent perturbed angular correlation

TDPAD Time-dependent perturbed angular distribution

TF Transient field

TFLD Tilted foil time-differential perturbed gamma angular distribution

TLS Trap laser spectroscopy

# Journal Abbreviations

ADNDT Atomic data and Nuclear Data Tables

AECL Atomic Energy Commission, Chalk River Laboratories, Report

ARHMI Annual Report, Hahn-Meitner Institute, Berlin

AuJP Australian Journal of Physics

BAPS Bulletin of the American Physical Society

Bk88 NFFS Nuclei Far From Stability, AIP Conference 164, Rosseau Lake, Ont. Canada 1988

CERN EP CERN EP Division Report

CPL Chemical Physics Letters

CzJP Czech Journal of Physics

Eur Phys J European Physics Journal

HP Ac Helvetia Physica Acta
HFI Hyperfine Interactions

IoP Conf Institute of Physics Conference Series

IAN Izv. Akad. Nauk. SSSR Ser Fiz (trans. Bull. Acad. Sci. USSR, Phys. Ser.)

J Phys Journal of Physics (London)

J Phys Radium Journal de Physique et el Radium (Paris)

JCP Journal of Chemical Physics

JINC Journal of Inorganic and Nuclear Chemistry

JPCR Journal of Physical and Chemical Reference Data

JPJS Journal of the Physical Society of Japan

JPPa Journal de Physique (Paris)

LNPP Leningrad Nuclear Physics Institute preprint

Mol Phys Molecular Physics

NIM Nuclear Instruments and Methods

NIMPR Nuclear Instruments and Methods in Physics Research

NP Nuclear Physics

ORNL Oak Ridge National Laboratory Report

Ospk Opt. Spektrosk. (trans Optics and Spectroscopy (USSR))

PCNeugart R. Neugart, private communication

Phca Physica

PhMg Philosophical Magazine

PL Physics Letters
PR Physical Review
PRep Physics Reports

PRL Physical Review Letters

PS Physica Scripta

RIKEN Report of RIKEN Laboratory, Japan

Sol St Comm Solid State Communications

STMP Springer Texts in Modern Physics

Th 68 Cass. B. R. Casserberg, Thesis, Princeton, (1968)

UCRL University of California Lawrence Berkeley Report

UkrF Ukraine Fiz. Zh.

YadF Yadern Fys. (trans Soviet Journal of Nuclear Physics)

ZNat Zeitschrift fur Naturforschung

ZP Zeitschrift fur Physik

| Element            | Nucleus       | E(level)      | $T_{1/2}$          | I <sup>p</sup>    | Q(b)                        | Ref. Std. | Method    | NSR Keynumber         | Journal Reference                           |
|--------------------|---------------|---------------|--------------------|-------------------|-----------------------------|-----------|-----------|-----------------------|---------------------------------------------|
| Hydrogen           | Efg at the de | uterium nuc   | leus calculated f  | or HD and D2      |                             |           |           |                       |                                             |
|                    |               |               |                    |                   | 0.000.0(0)                  |           |           | 40-0014               | 22 122 221 (1222)                           |
| Reference isotope  | 1 H 2         | 0             | stable             | 1+                | +0.00286(2)                 |           | MB,R      | <u>1979Bi14</u>       | PR A20 381 (1979)                           |
|                    |               |               |                    |                   |                             |           |           |                       |                                             |
| Lithium            | Efg at the 7L | i nucleus ca  | lculated for the l | LiH molecule      |                             |           |           |                       |                                             |
|                    | 3 Li 6        | 0             | stable             | 1+                | -0.000806(6)                | [7Li]     | MB        | 2005Bo45/1998Ce04     | PR C72 044309 (2005)/PR A57 2539 (1998)     |
|                    | 5 2. 0        |               | Stable             |                   | 0.000000(0)                 | [7 = 1]   | 5         | 200350 10/ 23500001   | 672 6 1 1885 (2885), 1 171 2885 (2885)      |
| Reference isotope  | 3 Li 7        | 0             | stable             | 3/2-              | -0.0400(3)                  |           | MB        | 2008Py02              | Mol Phys 106 1965 (2008)/PR A57 2539 (1998) |
|                    | 3 Li 8        | 0             | 842 ms             | 2+                | +0.0314(2)                  | [7Li]     | β-NMR     | 2005Bo45              | PR C72 044309 (2005)                        |
|                    | 3 21 0        |               | 0421113            |                   | 10.0314(2)                  | [/ []     | p rviviix | 20038043              | 111 672 044303 (2003)                       |
|                    | 3 Li 9        | 0             | 178 ms             | 3/2-              | -0.0304(2)                  | [7Li]     | β-NMR     | <u>2011AV08</u>       | J Phys G 38 075102 (2011)                   |
|                    | 3 Li 11       | 0             | 8.5 ms             | 3/2-              | (-)0.0333(5)                | [7Li]     | β-NMR     | 2008Ne11              | PRL 101 132502 (2008)                       |
|                    | 3 11 11       | 0             | 0.0 1115           | 3/2-              | (-)0.0333(3)                | [/Li]     | p-MMX     | <u>2008NE11</u>       | FRE 101 132302 (2006)                       |
| Berylium           | Calculation o | of the quadru | ipole coupling co  | onstant for the   | 3P2 state of the 9Be aton   | 1         |           |                       |                                             |
| Deference instance | 4 Do 0        | 0             | stable             | 2/2               | .0.0530(4)                  |           | AB        | 1991Su05              | CPL 177 91 (1991)                           |
| Reference isotope  | 4 Be 9        | 0             | stable             | 3/2-              | +0.0529(4)                  |           | AB        | <u>19913u05</u>       | CPL 177 91 (1991)                           |
| Boron              | Calculation o | of the quadru | ipole coupling co  | onstant of the    | 2P3/2 ground state of the   | 11B atom  |           |                       |                                             |
|                    |               |               |                    |                   | 0.0540(4.4)                 | [140]     |           | 20052 40              | 22.22.22.22.22.2                            |
|                    | 5 B 8         | 0             | 0.77s              | 2+                | +0.0643(14)                 | [11B]     | β-NQR     | <u>2006Su13</u>       | PR C74 024327 (2006)                        |
|                    | 5 B 10        | 0             | stable             | 3+                | +0.0845(2)                  | [11B]     | AB        | 2008Py02/1970Ne21     | Mol Phys 106 1965 (2008)/PR A2 1208 (1970)  |
|                    |               |               |                    |                   |                             |           |           |                       |                                             |
| Reference isotope  | 5 B 11        | 0             | stable             | 3/2-              | +0.04059(10)                |           | AB        | 2008Py02/1970Ne21     | Mol Phys 106 1965 (2008)/PR A2 1208 (1970)  |
|                    | 5 B 12        | 0             | 20.4 ms            | 1+                | 0.0132(3)                   | [11B]     | β-NMR     | <u>1992Mi18</u>       | PRL 69 2058 (1992)                          |
|                    |               |               |                    |                   |                             |           |           |                       |                                             |
|                    | 5 B 13        | 0             | 17.4 ms            | 3/2-              | (+)0.0365(8)                | [11B]     | β-NMR     | 2004Na38              | NP A746 509c (2004)                         |
|                    | 5 B 14        | 0             | 13.8 ms            | 2-                | 0.0297(8)                   | [11B]     | β-NMR     | 1996lz01              | PL B366 51 (1996)                           |
|                    |               |               |                    | _                 | 3.023.(0)                   | []        | p         |                       | (                                           |
|                    | 5 B 15        | 0             | 10.3 ms            | 3/2-              | 0.0379(11)                  | [11B]     | β-NMR     | <u>1996Iz01</u>       | PL B366 51 (1996)                           |
|                    | 5 B 17        | 0             | 5.1 ms             | (3/2-)            | 0.0385(15)                  | [11B]     | β-NMR     | 2003Og03              | PR C67 064308 (2003)                        |
|                    | 551,          |               | 5.2 1115           | (5/ = /           | 0.0000(10)                  | [210]     | p.mix     | 2000000               | 55. 55 .550 (2505)                          |
| Carbon             | Calculation o | of the quadru | ipole coupling co  | onstant of the 3  | 3P2 state of the 11C atom   |           |           |                       |                                             |
| Reference isotope  | 6 C 11        | 0             | 20.4 m             | 3/2-              | 0.0333(2)                   |           | AB        | 2008Py02/1969Sc34     | PR 181 137 (1969)                           |
| nejerence isotope  | 0 0 11        | 0             | 20.4111            | 3/ 2-             | 0.0333(2)                   |           | Ab        | 20001 y02/13033C34    | 11/10113/(1303)                             |
|                    | 6 C 12        | 4438          | 45 fs              | 2+                | +0.06(3)                    | [12C]     | CER       | <u>1983Ve01</u>       | PL B122 23 (1983)                           |
| Nitrogen           | Calculation   | of the guade  | inale counting s   | anstant of the    | 1P1 state of the 14N+ ion   |           |           |                       |                                             |
| Nitrogen           | Culculation 0 | ine quadri    | арые соиринд СС    | nistant OJ trie . | rri state oj the 1414+ 1011 |           |           |                       |                                             |
|                    | 7 N 12        | 0             | 11.0 ms            | 1+                | +0.100(9)                   | [14N]     | β-NMR     | <u>1998Mi10</u>       | PL B420 31 (1998)                           |
| Deference inter-   | 7 N 1 4       | 0             | otol-1-            | 1.                | .0.02044/2\                 |           | A D /A 4C | 20000, 02 /40077 - 06 | Mal Dhys 40C 40CE /2000\/CDL 2CE CO /4007\  |
| Reference isotope  | 7 N 14        | 0             | stable             | 1+                | +0.02044(3)                 |           | AB/MS     | 2008Py02/1997To06     | Mol Phys 106 1965 (2008)/CPL 265 60 (1997)  |

| Element          | Nucleus       | E(level)     | $T_{1/2}$        | I <sup>p</sup>   | Q(b)                      | Ref. Std.    | Method | NSR Keynumber     | Journal Reference                                   |
|------------------|---------------|--------------|------------------|------------------|---------------------------|--------------|--------|-------------------|-----------------------------------------------------|
|                  | 7 N 16        | 0            | 7.13 s           | 2-               | (-)0.018(2)               | [14N]        | β-NMR  | 2001Ma42          | PRL 86 3735 (2001)                                  |
|                  |               |              |                  |                  |                           |              |        |                   |                                                     |
|                  | 7 N 18        | 0            | 624 ms           | 1-               | +0.027(4)                 | [14N]        | LMR    | 1999Ne01          | PRL 82 497 (1999) Q for this state is an unresolved |
|                  |               |              |                  |                  | (+)0.0123(12)             | [14N]        | β-NMR  | <u>1999Og03</u>   | PL B451 11 (1999) probler                           |
| кудеп            | Calculation o | f the quadru | pole coupling c  | onstant of the 3 | 3P2 state of the 17O ator | m            |        |                   |                                                     |
|                  | 8 O 13        | 0            | 86 ms            | 3/2-             | 0.0111(8)                 | [170]        | β-NQR  | <u>1999Ma46</u>   | PL B459 81 (1999)                                   |
| eference isotope | 8 O 17        | 0            | stable           | 5/2+             | -0.0256(2)                |              | R/EPR  | 2008Py02/1969Sc34 | Mol Phys 106 1965 (2008)/PR 181 137 (1969           |
|                  | 8 O 18        | 1982         | 2.07 ps          | 2+               | -0.036(9)                 | [170]        | CER    | <u>1983Gr28</u>   | NP A411 329 (1983)                                  |
|                  | 8 O 19        | 0            | 27 s             | 5/2+             | 0.00362(13)               | [170]        | β-NMR  | 1999Mi16          | PL B457 9 (1999)                                    |
| uorine           | Calculation o | f the quadru | pole coupling co | onstant of the I | -2 molecule               |              |        |                   |                                                     |
|                  | 9 F 17        | 0            | 64.5 s           | 5/2+             | 0.076(4)                  | [19F 197keV] | β-NMR  | <u>1974Mi21</u>   | NP A236 415 (1974)                                  |
|                  | 9 F 18        | 1121         | 153 ns           | 5+               | 0.071(6)                  | [19F 197keV] | β-NMR  | 1974Mi21          | NP A236 415 (1974)                                  |
| eference isomer  | 9 F 19        | 197          | 88.5 ns          | 5/2+             | -0.0942(9)                |              | PAC    | 2008Py02          | Mol Phys 106 1965 (2008)                            |
| ejerence isomer  | 3113          | 137          | 00.5 115         | 3,2.             | 0.0342(3)                 |              | 1710   | 20001 702         | 11011 1173 100 1303 (2000)                          |
|                  | 9 F 20        | 0            | 11 s             | 2+               | 0.056(4)                  | [19F 197keV] | β-NMR  | <u>1974Mi21</u>   | NP A236 415 (1974)                                  |
|                  | 9 F 21        | 0            | 4.16 s           | 5/2+             | 0.011(2)                  | [19F 197keV] | β-NMR  | <u>1999Mb13</u>   | HFI 120/121 673 (1999)                              |
|                  | 9 F 22        | 0            | 4.2 s            | 4+               | 0.003(2)                  | [19F 197keV] | β-NMR  | <u>2010Mi13</u>   | NP A834 75c (2010)                                  |
| eon              | Calculation o | f the quadru | pole coupling c  | onstant of the 3 | BP2 state of the 21Ne ato | om           |        |                   |                                                     |
|                  | 10 Ne 20      | 1634         | 0.7 ps           | 2+               | -0.23(3)                  | [21Ne]       | CER    | <u>1981Sp07</u>   | PRep 73 369 (1981)                                  |
| eference isotope | 10 Ne 21      | 0            | stable           | 3/2+             | +0.102(8)                 |              | O/AB   | 2008Py02/1972Du06 | Mol Phys 106 1965 (2008)/PR A5 1036(1972)           |
|                  | 10 Ne 22      | 1275         | 3.6 ps           | 2+               | -0.19(4)                  | [21Ne]       | CER    | 1981Sp07          | PRep 73 369 (1981)                                  |
|                  | 10 Ne 23      | 0            | 37.6 s           | 5/2+             | 0.145(13)                 | [21Ne]       | CFBLS  | <u>2005Ge06</u>   | PR C71 064319 (2005)                                |
| odium            | Muonic aton   | n HFS measu  | rements          |                  |                           |              |        |                   |                                                     |
|                  | 11 Na 20      | 0            | 0.446 s          | 2+               | +0.101(8)                 | [23Na]       | β-NMR  | 2009Mi04          | PL B672 120 (2009)                                  |
|                  | 11 Na 21      | 0            | 22.5 s           | 3/2+             | 0.138(11)                 | [23Na]       | β-NMR  | 2009Mi04          | PL B672 120 (2009)                                  |
|                  | 11 Na 22      | 0            | 2.60 y           | 3+               | +0.180(11)                | [23Na]       | ABLS   | <u>1998Ga44</u>   | Eur Phys J A3 313 (1998)                            |
|                  | 1             | 1            |                  |                  |                           | 1            |        | 1                 |                                                     |

| Element           | Nucleus         | E(level)        | T 1/2                                 | I <sup>p</sup>   | Q(b)                       | Ref. Std. | Method      | NSR Keynumber         | Journal Reference                            |
|-------------------|-----------------|-----------------|---------------------------------------|------------------|----------------------------|-----------|-------------|-----------------------|----------------------------------------------|
|                   | 11 Na 25        | 0               | 60 s                                  | 5/2+             | 0.0015(3)                  | [23Na]    | β-NMR       | 2004Og13              | HFI 159 235 (2004)                           |
|                   |                 |                 |                                       | -,               | (- /                       |           | r           |                       |                                              |
|                   | 11 Na 26        | 0               | 1.07 s                                | 3+               | -0.0053(2)                 | [23Na]    | CFBLS/β-NMR | <u>2000Ke09</u>       | Eur Phys J A8 31 (2000)                      |
|                   |                 | _               |                                       | - /-             |                            | foot 1    |             |                       | 5 Pl (1000)                                  |
|                   | 11 Na 27        | 0               | 0.29 s                                | 5/2+             | -0.0071(3)                 | [23Na]    | CFBLS/β-NMR | <u>2000Ke09</u>       | Eur Phys J A8 31 (2000)                      |
|                   | 11 Na 28        | 0               | 30.5 ms                               | 1+               | +0.389(11)                 | [23Na]    | CFBLS/β-NMR | 2000Ke09              | Eur Phys J A8 31 (2000)                      |
|                   | 11.10.20        |                 | 30.33                                 |                  | 10.005(11)                 | [25:10]   | 0. 525/p    | <u> </u>              | 23. 11. 1007 10 02 (2000)                    |
|                   | 11 Na 29        | 0               | 43 ms                                 | 3/2+             | +0.085(3)                  | [23Na]    | CFBLS/β-NMR | 2000Ke09              | Eur Phys J A8 31 (2000)                      |
|                   |                 |                 |                                       |                  |                            |           |             |                       |                                              |
| Magnesium         | Calculation of  | of the quadru   | upole coupling c                      | onstant of the   | 3P1 state of the 25Mg at   | om        |             |                       |                                              |
|                   | 12 Mg 23        | 0               | 11.3 s                                | 3/2+             | 0.114(3)                   | [25Mg]    | β-NMR       | 1999Mb13              | HFI 120/121 673 (1999)                       |
|                   | 12 IVIG 23      | - 0             | 11.5 5                                | 3/21             | 0.114(3)                   | [ZJIVIB]  | p-rvivir    | 1555WiD15             | 1111 120/121 073 (1333)                      |
|                   | 12 Mg 24        | 1369            | 1.45 ps                               | 2+               | -0.29(3)                   |           | CER         | <u>1990Gr11</u>       | PR C42 R471 (1990)                           |
|                   |                 |                 |                                       |                  |                            |           |             |                       |                                              |
| Reference isotope | 12 Mg 25        | 0               | stable                                | 5/2+             | +0.199(2)                  |           | AB          | <u>2008Py02</u>       | Mol Phys 106 1965 (2008)                     |
|                   | 12.14-26        | 1000            | 47C f-                                | 2.               | 0.21(2)                    |           | CER         | 100111-00             | PR C43 2546                                  |
|                   | 12 Mg 26        | 1809            | 476 fs                                | 2+               | -0.21(2)                   |           | CER         | <u>1991He09</u>       | PK C43 2540                                  |
| Aluminium         | Calculation of  | of the guadru   | Lupole coupling c                     | onstant of the   | 3P3/2 state of the 27Al at | tom       |             |                       |                                              |
|                   |                 | 1               | l service services                    |                  | ,                          |           |             |                       |                                              |
|                   | 13 Al 25        | 0               | 7.18 s                                | 5/2+             | 0.24(2)                    | [27AI]    | β-NQR       | <u>2007Ma94</u>       |                                              |
|                   |                 |                 |                                       | _                |                            |           |             |                       |                                              |
|                   | 13 Al 26        | 0               | 7x10*5 y                              | 5+               | +0.26(3)                   | [27AI]    | ABLS        | <u>1997Le19</u>       | JPhys G23 1145 (1997)                        |
| Reference isotope | 13 Al 27        | 0               | stable                                | 5/2+             | +0.1466(10)                |           | AB          | 2008Py02/1968Ma23     | Mol Phys 106 1965 (2008)/PRS A305 139 (1968) |
| nejerence isotope | 1371127         |                 | Stubic                                | 3/2:             | 10.1400(10)                |           | 7.0         | 20001 (02) 1300111023 | Morrings 100 1505 (2000)) No 7505 155 (1500) |
|                   | 13 Al 28        | 0               | 2.24 m                                | 3+               | 0.172(12)                  | [27AI]    | β-NMR       | <u>1978St31</u>       | HFI 4 170 (1978)                             |
|                   |                 |                 |                                       |                  |                            |           |             |                       |                                              |
|                   | 13 Al 31        | 0               | 644 ms                                | (5/2+)           | 0.134(2)                   | [27AI]    | β-NQR       | <u>2009De25</u>       | PL B678 344 (2009)                           |
|                   | 13 Al 32        | 0               | 22                                    | 1.               | 0.035(3)                   | [27AI]    | 0 NOD       | 2007Ka68              | HFI 180 61 (2007)                            |
|                   | 13 Al 32        | 0               | 33 ms                                 | 1+               | 0.025(2)                   | [Z/AI]    | β-NQR       | <u>2007 Nabo</u>      | HFI 160 61 (2007)                            |
|                   | 13 Al 33        | 0               | 44 ms                                 | (5/2+)           | 0.132(16)                  | [27AI]    | β-NMR       | 2012Sh22              | PL B714 246 (2012)                           |
|                   |                 |                 |                                       | , , ,            | , ,                        |           | ,           |                       | , ,                                          |
| Silicon           |                 |                 | rence efg for Si.                     |                  |                            |           |             |                       |                                              |
|                   | A. Efg at Si ii | n Al2O3 estin   | nated from ban                        | d structure cald | culations                  |           |             |                       |                                              |
|                   | 14 Si 27        | 0               | 4.1 s                                 | 5/2+             | 0.063(14)                  | A         | β-NQR       | <u>1999Mb13</u>       | HFI 120/121 673 (1999)                       |
|                   | 14 31 27        | U               | 4.15                                  | 3/4              | 0.003(14)                  | A         | p-ivQK      | <u>1333IVID13</u>     | 1111 120/121 0/3 (1333)                      |
|                   | 14 Si 28        | 1779            | 0.49 ps                               | 2+               | +0.16(3)                   |           | CER         | <u>1981Sp07</u>       | PRep 73 369 (1981)                           |
|                   |                 |                 |                                       |                  | · ·                        |           |             |                       | . , ,                                        |
|                   | 14 Si 30        | 2235            | 0.25 ps                               | 2+               | -0.05(6)                   |           | CER         | <u>1981Sp07</u>       | PRep 73 369 (1981)                           |
| Dh h              | Th              | ide into 1 C    |                                       |                  |                            |           |             |                       |                                              |
| Phosphorus        |                 |                 | rence efg for P. e in $\alpha$ -Al2O3 |                  |                            |           |             |                       |                                              |
|                   | A. Cuicuiatea   | a ejy ut r sitt | ι ι ι α-AI2U3                         |                  |                            |           |             |                       |                                              |
|                   | 15 P 28         | 0               | 270 ms                                | 3+               | 0.137(14)                  | Α         | β-NQR       | 2012Zh36              | Chin Phys Lett 29 092102 (2012)              |
|                   |                 |                 |                                       |                  |                            |           |             |                       |                                              |
|                   |                 | 1               | 1                                     | 1                |                            | 1         | 1           | 1                     |                                              |

| Element           | Nucleus        | E(level)      | T 1/2                 | I <sup>p</sup> | Q(b)                       | Ref. Std.    | Method      | NSR Keynumber     | Journal Reference                           |
|-------------------|----------------|---------------|-----------------------|----------------|----------------------------|--------------|-------------|-------------------|---------------------------------------------|
| Sulphur           |                |               | upole coupling co     | onstant of the | 33S- ion                   |              |             |                   |                                             |
|                   | A. Efg at S si | te in FeS2    |                       |                |                            |              |             |                   |                                             |
|                   | 16 S 32        | 2230          | 0.16 ps               | 2+             | -0.16(2)                   |              | CER         | <u>1982Ve09</u>   | NP A389 185 (1982)                          |
| Reference isotope | 16 S 33        | 0             | stable                | 3/2+           | -0.0678(13)                |              | MA          | 2008Py02          | Mol Phys 106 1965 (2008)                    |
|                   | 16 S 34        | 2128          | 0.32 ps               | 2+             | +0.04(3)                   |              | CER         | <u>1981Sp07</u>   | PRep 73 369 (1981)                          |
| Reference isotope | 16 S 35        | 0             | 87.4 d                | 3/2+           | +0.0471(9)                 |              | MA          | 2008Py02          | Mol Phys 106 1965 (2008)                    |
|                   | 16 S 43        | 320           | 415 ns                | 7/2-           | 0.23(3)                    | A            | TDPAD       | <u>2012Ch16</u>   | PRL 108 162501 (2012)                       |
| Chlorine          | Calculation o  | of the quadru | upole interaction     | at Cl in the H | Cl molecule                |              |             |                   |                                             |
| Reference isotope | 17 Cl 35       | 0             | stable                | 3/2+           | -0.0817(8)                 |              | AB          | 2008Py02          | Mol Phys 106 1965 (2008)                    |
|                   | 17 Cl 36       | 0             | 3.0x10 <sup>5</sup> y | 2+             | -0.178(4)                  | [35CI]       | MA          | <u>1972St38</u>   | PR A6 1702 (1972)                           |
| Reference isotope | 17 Cl 37       | 0             | stable                | 3/2+           | -0.0644(6)                 |              | AB          | 2008Py02          | Mol Phys 106 1965 (2008)                    |
| Argon             | Calculation o  | of the quadru | upole coupling co     | onstant in the | Ar atom                    |              |             |                   |                                             |
|                   | 18 Ar 35       | 0             | 1.78s                 | 3/2+           | -0.084(15)                 | [37Ar]       | CFBLS/β-NMR | <u>1996Kl04</u>   | NP A607 1 (1996)                            |
|                   | 18 Ar 36       | 1970          | 0.28 ps               | 2+             | +0.11(6)                   |              | CER         | <u>1971Na06</u>   | PL 34B 389 (1971)                           |
|                   | 18 Ar 37       | 0             | 35.0 d                | 3/2+           | +0.076(9)                  | calc B value | CFBLS/β-NMR | <u>1996KI04</u>   | NP A607 1 (1996)                            |
|                   | 18 Ar 39       | 0             | 269 y                 | 7/2-           | -0.12(3)                   | [37Ar]       | CFBLS       | <u>2008BI01</u>   | NP A799 30 (2008)                           |
|                   | 18 Ar 40       | 1461          | 1.12 ps               | 2+             | +0.01(4)                   |              | CER         | <u>1971Na05</u>   | PRL 24 903 (1970)                           |
|                   | 18 Ar 41       | 0             | 1.82 h                | 7/2-           | -0.042(4)                  | [37Ar]       | CFBLS       | 2008Bl01          | NP A799 30 (2008)                           |
|                   | 18 Ar 43       | 0             | 5.37 m                | 5/2-           | +0.142(14)                 | [37Ar]       | CFBLS       | <u>2008Bl01</u>   | NP A799 30 (2008)                           |
| Potassium         | Calculation o  | of the quadru | upole coupling co     | onstant of the | 4F9/2 state of the 39K ato | om           |             |                   |                                             |
|                   | 19 K 37        | 0             | 1.22 s                | 3/2+           | +0.106(4)                  | [39K]        | β-NQR       | <u>2008Mi07</u>   | PL B662 389 (2008)                          |
| Reference isotope | 19 K 39        | 0             | stable                | 3/2+           | +0.0585(6)                 |              | AB          | 2008Py02/1998Ke05 | Mol Phys 106 1965 (2008)/CPL 292 403 (1998) |
| Reference isotope | 19 K 40        | 0             | 1.3x10*9y             | 4-             | -0.073(1)                  |              | AB          | 2008Py02/1998Ke05 | Mol Phys 106 1965 (2008)/CPL 292 403 (1998) |
| Reference isotope | 19 K 41        | 0             | stable                | 3/2+           | +0.0711(7)                 |              | AB          | 2008Py02/1998Ke05 | Mol Phys 106 1965 (2008)/CPL 292 403 (1998) |
| Calcium           | Calculation o  | f the quadru  | upole coupling co     | onstant of the | 1D2 state of the Ca atom   |              |             |                   |                                             |

| Element           | Nucleus        | E(level)       | T 1/2                 | I P             | Q(b)                      | Ref. Std.    | Method | NSR Keynumber   | Journal Reference        |
|-------------------|----------------|----------------|-----------------------|-----------------|---------------------------|--------------|--------|-----------------|--------------------------|
|                   |                |                |                       |                 |                           |              |        |                 |                          |
|                   | 20 Ca 39       | 0              | 0.86 s                | 3/2+            | 0.036(7)                  | calc efg     | β-NMR  | <u>1999MaZI</u> | RIKEN 32 79 (1999)       |
| Reference isotope | 20 Ca 41       | 0              | 1.0x10 <sup>5</sup> y | 7/2-            | -0.0665(18)               |              | AB     | 2008Py02        | Mol Phys 106 1965 (2008) |
|                   | 20 Ca 42       | 1525           | 1.1 ps                | 2+              | -0.19(8)                  |              | CER    | <u>1973To07</u> | NP A204 574 (1973)       |
| Reference isotope | 20 Ca 43       | 0              | stable                | 7/2-            | -0.0408(8)                |              | AB     | 2008Py02        | Mol Phys 106 1965 (2008) |
|                   | 20 Ca 44       | 1157           | 3.0 ps                | 2+              | -0.14(7)                  |              | CER    | <u>1973To07</u> | NP A204 574 (1973)       |
|                   | 20 Ca 45       | 0              | 165 d                 | 7/2-            | +0.038(12)                | [41Ca]       | ABLFS  | <u>1983Ar25</u> | ZP A314 303 (1983)       |
| Scandium          | Calculation    | of the auadru  | ipole couplina co     | onstants in ScF | , ScCl and ScBr molecules | ;            |        |                 |                          |
|                   |                | 1              |                       |                 | •                         |              |        |                 |                          |
|                   | 21 Sc 41       | 0              | 0.59 s                | 7/2-            | -0.145(3)                 | [45Sc]       | β-NQR  | <u>2002Mi37</u> | ZNat 57a 595 (2002)      |
|                   | 21 Sc 43       | 0              | 3.89 h                | 7/2-            | -0.27(5)                  | [45Sc]       | CLS    | 2011Av01        | J Phys G38 025104 (2011) |
|                   |                | 3123           | 473 ns                | 19/2-           | 0.199(14)                 | [45Sc]       | TDPAD  | 1981Da06        | PR C23 1612 (1981)       |
|                   | 21 Sc 44       | 0              | 3.89 h                | 2+              | +0.10(5)                  | [45Sc]       | CLS    | 2011Av01        | J Phys G38 025104 (2011) |
|                   | 21 30 44       | 68             | 153 ns                | 1-              | 0.21(2)                   | [45Sc]       | TDPAC  | 1973Ha61        | JCP 58 3339 (1973)       |
|                   |                | 271            | 58.6 h                | 6+              | -0.19(2)                  | [45Sc]       | CLS    | 2011Av01        | J Phys G38 025104 (2011) |
| Reference isotope | 21 Sc 45       | 0              | stable                | 7/2-            | -0.220(2)                 |              | MS     | 2008Py02        | Mol Phys 106 1965 (2008) |
|                   |                | 12.4           | 318 ms                | 3/2+            | +0.28(5)                  | [45Sc]       | CLS    | 2011Av01        | J Phys G38 025104 (2011) |
|                   | 21 Sc 46       | 0              | 83.81 d               | 4+              | +0.119(6)                 | [45Sc]       | AB     | <u>1962Pe21</u> | PR 128 1740 (1962)       |
|                   | 21 Sc 47       | 0              | 3.42 d                | 7/2-            | -0.22(3)                  | [45Sc]       | AB     | <u>1966Co13</u> | PR 141 1106 (1966)       |
| Titanium          | Calculation    | of the quadru  | ipole coupling co     | onstants in sta | tes of the Ti+ ion        |              |        |                 |                          |
|                   | 22 Ti 43       | 3066           | 560 ns                | 19/2-           | 0.33(8)                   | [47Ti]       | TDPAD  | <u>1981Da06</u> | PR C23 1612 (1981)       |
|                   | 22 Ti 45       | 0              | 3.09 h                | 7/2-            | 0.015(15)                 | [47Ti][49Ti] | AB     | <u>1966Co19</u> | PR 148 1157 (1966)       |
|                   | 22 Ti 46       | 889            | 5.36 ps               | 2+              | -0.21(6)                  |              | CER    | 1975To06        | NP A250 381 (1975)       |
|                   | 22 11 40       | 003            | 3.30 p3               | 2.              | 0.21(0)                   |              | CER    | <u>13731000</u> | M A230 301 (1373)        |
| Reference isotope | 22 Ti 47       | 0              | stable                | 5/2-            | +0.302(10)                |              | AB     | <u>2008Py02</u> | Mol Phys 106 1965 (2008) |
|                   | 22 Ti 48       | 984            | 4.29 ps               | 2+              | -0.177(8)                 |              | ES     | <u>1972Li12</u> | PL B38 475 (1972)        |
| Reference isotope | 22 Ti 49       | 0              | stable                | 7/2-            | +0.247(11)                |              | AB     | 2008Py02        | Mol Phys 106 1965 (2008) |
|                   | 22 Ti 50       | 1554           | 1.12 ps               | 2+              | +0.08(16)                 |              | CER    | <u>1975To06</u> | NP A250 381 (1975)       |
| Vanadium          | Calculation of | f the quadru   | ipole coupling co     | onstants in sta | tes of the V atom         |              |        |                 |                          |
|                   | A. Calculated  | d efg in 3d/4: | s excited states (    | of the V atom   |                           |              |        |                 |                          |

| Element           | Nucleus       | E(level)      | T <sub>1/2</sub>       | I <sup>p</sup>  | Q(b)                      | Ref. Std.     | Method   | NSR Keynumber     | Journal Reference                          |
|-------------------|---------------|---------------|------------------------|-----------------|---------------------------|---------------|----------|-------------------|--------------------------------------------|
| Reference isotope | 23 V 50       | 0             | 1.5x10 <sup>17</sup> y | 6+              | +0.21(4)                  |               | ABLDF    | 2008Py02/1979Er04 | Mol Phys 106 1965 (2008)/PL B85 319 (1979) |
|                   | 23 V 51       | 0             | stable                 | 7/2-            | -0.043(5)                 | A             | LRFS     | 1989Un01          | ZP D11 259 (1989)                          |
|                   |               |               |                        | ·               |                           | A             | LNF3     | <u>156501101</u>  | ZF D11 239 (1909)                          |
| Chromium          | Calculation   | of the quadro | upole coupling co      | onstants in sta | ites of the Cr atom       |               |          |                   |                                            |
|                   | 24 Cr 50      | 783           | 9.2 ps                 | 2+              | -0.36(7)                  |               | CER      | <u>1975To06</u>   | NP A250 381 (1975)                         |
|                   | 24 Cr 52      | 1434          | 0.707 ps               | 2+              | -0.08(2)                  |               | ES       | <u>1989Ra17</u>   | JPJS 34 387 (1973)                         |
| Reference isotope | 24 Cr 53      | 0             | stable                 | 3/2-            | -0.15(5)                  |               | AB       | 2008Py02          | Mol Phys 106 1965 (2008)                   |
|                   | 24 Cr 54      | 835           | 8.0 ps                 | 2+              | -0.21(8)                  |               | CER      | <u>1975To06</u>   | NP A250 381 (1975)                         |
| Manganese         | Calculation   | of the quadr  | upole coupling co      | onstant for the | e 6D states of the Mn ato | om            |          |                   |                                            |
|                   | 25 Mn 50      | 229           | 1.75 m                 | 5+              | +0.83(12)                 | [Mn55]        | TLS      | <u>2010Ch15</u>   | PL B690 346 (2010)                         |
|                   | 25 Mn 51      | 0             | stable                 | 5/2-            | 0.41(8)                   | [Mn55]        | AB       | <u>1971Jo10</u>   | NP A166 306 (1971)                         |
|                   | 25 Mn 52      | 0             | 5.80 d                 | 6+              | +0.50(7)                  | [Mn55]        | NMR/ON   | <u>1970Ni11</u>   | Phca 50 259 (1970)                         |
|                   | 25 Mn 53      | 0             | 3.7x10 <sup>6</sup> y  | 7/2-            | +0.17(3)                  | [Mn55]        | TLS      | <u>2010Ch15</u>   | PL B690 346 (2010)                         |
|                   | 25 Mn 54      | 0             | 312 d                  | 3+              | +0.37(3)                  | [Mn55]        | TLS      | <u>2010Ch15</u>   | PL B690 346 (2010)                         |
| Reference isotope | 25 Mn 55      | 0             | stable                 | 5/2-            | +0.330(10)                |               | AB       | <u>2008Py02</u>   | Mol Phys 106 1965 (2008)                   |
|                   | 25 Mn 56      | 0             | 2.58 h                 | 3+              | +0.48(15)                 | [Mn55]        | TLS      | <u>2010Ch15</u>   | PL B690 346 (2010)                         |
| Iron              | Efg calculati | ons in many   | Fe compounds           |                 |                           |               |          |                   |                                            |
|                   | 26 Fe 54      | 1408          | 0.80 ps                | 2+              | -0.05(14)                 |               | CER      | <u>1981Le02</u>   | PR C23 244 (1981)                          |
|                   |               | 6527          | 367 ns                 | 10+             | +0.30(4)                  | [57Fe 14 keV] | TDPAD/TF | <u>1984Ha07</u>   | NP A414 316 (1984)                         |
|                   | 26 Fe 56      | 847           | 6.9 ps                 | 2+              | -0.23(3)                  |               | CER      | <u>1971Th14</u>   | PR C4 1699 (1971)                          |
| Reference isotope | 26 Fe 57      | 14            | 98 ns                  | 3/2-            | +0.160(8)                 |               | ME       | 2008Py02/1995Du17 | Mol Phys 106 1965 (2008)/PRL 75 3545 (1995 |
|                   | 26 Fe 58      | 811           | 6.7 ps                 | 2+              | -0.27(5)                  |               | CER      | <u>1981Le02</u>   | PR C23 244 (1981)                          |
|                   | 26 Fe 61      | 861           | 245 ns                 | (9/2+)          | 0.44(6)                   | [57Fe 14 keV] | TDPAD    | 2007Ve05          | PR C75 051302 (2007)                       |
| Cobalt            | Calculation o | of the quadro | upole coupling co      | onstants in sta | ites of the Co atom       |               |          |                   |                                            |
|                   | 27 Co 56      | 0             | 78.8 d                 | 4+              | +0.25(9)                  | [59Co]        | MAPON    | <u>1988Ba87</u>   | PR B37 4911 (1988)                         |
|                   | 27 Co 57      | 0             | 271 d                  | 7/2-            | +0.54(10)                 | [59Co]        | NMR/ON   | 1972Ni01          | Phca 57 1 (1972)                           |
|                   |               |               | 1                      | •               | - 1 -/                    | 1             | , -      |                   | V = 1                                      |

| Element           | Nucleus     | E(level)      | T 1/2              | I <sup>p</sup>  | Q(b)                   | Ref. Std.   | Method | NSR Keynumber        | Journal Reference                          |
|-------------------|-------------|---------------|--------------------|-----------------|------------------------|-------------|--------|----------------------|--------------------------------------------|
|                   |             | , ,           | 1/2                |                 |                        |             |        |                      |                                            |
|                   | 27 Co 58    | 0             | 70.8 d             | 2+              | +0.23(3)               | [59Co]      | NMR/ON | <u>1972Ni01</u>      | Phca 57 1 (1972)                           |
| Reference isotope | 27 Co 59    | 0             | stable             | 7/2-            | +0.42(3)               |             | AB     | 2008Py02             | Mol Phys 106 1965 (2008)                   |
|                   | 27 Co 60    | 0             | 5.271 y            | 5+              | +0.46(6)               | [59Co]      | NMR/ON | <u>1972Ni01</u>      | Phca 57 1 (1972)                           |
| Nickel            | Calculation | of the guadri | unale counting of  | onstants in st  | ates of the Ni atom    |             |        |                      |                                            |
| Nickei            | Culculation | ) the quadro  | ipole coupiling co | onstants in ste | ties of the Widtom     |             |        |                      |                                            |
|                   | 28 Ni 58    | 1454          | 0.644 ps           | 2+              | -0.10(6)               |             | CER    | <u>1974Le13</u>      | NP A223 563 (1974)                         |
|                   | 28 Ni 60    | 1332          | 0.713 ps           | 2+              | -0.10(2)               |             | ES     | <u>1972Li12</u>      | PL 38B 475 (1972)                          |
| Reference isotope | 28 Ni 61    | 0             | stable             | 3/2-            | +0.162(15)             |             | AB     | 2008Py02/1968Ch10    | Mol Phys 106 1965 (2008)/PR 170 136 (1968) |
|                   |             | 67            | 5.34 ns            | 5/2-            | -0.20(3)               | [61Ni]      | ME     | <u>1971Go31</u>      | ZNat 26a 1931 (1971)                       |
|                   | 28 Ni 62    | 1173          | 1.43 ps            | 2+              | +0.05(12)              |             | CER    | 1974Le13             | NP A223 563 (1974)                         |
|                   | 20 INI 02   | 11/3          | 1.45 μs            | 2+              | +0.03(12)              |             | CLN    | 1974LE13             | INF AZZ3 303 (1974)                        |
|                   | 28 Ni 64    | 1346          | 0.85 ps            | 2+              | +0.4(2)                |             | CER    | <u>1971ChZK</u>      | BAPS 16 625 (1971)                         |
| Copper            | Muonic aton | n X-ray hype  | rfine structure    |                 |                        |             |        |                      |                                            |
|                   | 29 Cu 58    | 0             | 3.2 s              | 1+              | -0.16(3)               | [65Cu]      | CLS    | <u>2011Vi03</u>      | PL B703 34 (2011)                          |
|                   | 29 Cu 59    | 0             | 81.5 s             | 3/2-            | -0.20(2)               | [65Cu]      | CLS    | 2011Vi03             | PL B703 34 (2011)                          |
|                   | 29 Cu 60    | 0             | 23.4 m             | 2+              | +0.121(13)             | [65Cu]      | CLS    | <u>2011Vi03</u>      | PL B703 34 (2011)                          |
|                   | 29 Cu 61    | 0             | 3.41 h             | 3/2-            | -0.221(10)             | [65Cu]      | CLS    | <u>2011Vi03</u>      | PL B703 34 (2011)                          |
|                   | 29 Cu 62    | 0             | 9.73 m             | 1+              | -0.022(4)              | [65Cu]      | CLS    | <u>2011Vi03</u>      | PL B703 34 (2011)                          |
| Reference isotope | 29 Cu 63    | 0             | stable             | 3/2-            | -0.220(15)             |             | Mu-X   | 2008Py02/1982Ef01    | Mol Phys 106 1965 (2008)/ZP A309 77 (1982) |
|                   | 29 Cu 64    | 0             | 12.7 h             | 1+              | +0.075(9)              | [65Cu]      | CLS    | <u>2010Vi07</u>      | PR C82 064311 (2010)                       |
| Reference isotope | 29 Cu 65    | 0             | stable             | 3/2-            | -0.204(14)             |             | Mu-X   | 2008Py02/1982Ef01    | Mol Phys 106 1965 (2008)/ZP A309 77 (1982) |
|                   | 29 Cu 66    | 0             | 5.1 m              | 1+              | +0.059(14)             | [65Cu]      | CLS    | 2010Vi07             | PR C82 064311 (2010)                       |
|                   |             | 1154          | 0.60 ms            | 6-              | (+)0.195(13)           | [63Cu,65Cu] | TDPAD  | 2011Lo01             | PL B694 316 (2011)                         |
|                   | 29 Cu 67    | 0             | 61.83 h            | 3/2-            | -0.182(8)              | [65Cu]      | CLS    | <u>2010Vi07</u>      | PR C82 064311 (2010)                       |
|                   | 29 Cu 68    | 0             | 31.1 s             | 1+              | 0.096(14)              | [65Cu]      | CLS    | 2010Vi07             | PR C82 064311 (2010)                       |
|                   | 25 CU 00    | 637           | 31.13<br>3.75 m    | 6-              | -0.086(14)<br>-0.46(2) | [65Cu]      | CLS    | 2010Vi07<br>2010Vi07 | PR C82 064311 (2010)                       |
|                   | 29 Cu 69    | 0             | 2.85 m             | 3/2-            | -0.154(17)             | [65Cu]      | CLS    | 2010Vi07             | PR C82 064311 (2010)                       |
|                   | 23 Cu 03    | U             | 2.03 111           | 3/ 4-           | 0.134(17)              | [oscu]      | CLJ    | 2010/10/             | 111 (02 007311 (2010)                      |
|                   | 29 Cu 70    | 0             | 44.5 s             | 6-              | -0.298(15)             | [65Cu]      | CLS    | <u>2010Vi07</u>      | PR C82 064311 (2010)                       |
|                   |             | 101           | 33 s               | 3-              | -0.14(4)               | [65Cu]      | CLS    | <u>2010Vi07</u>      | PR C82 064311 (2010)                       |

| Element           | Nucleus       | E(level)      | T 1/2            | I <sup>p</sup>   | Q(b)                     | Ref. Std.                    | Method | NSR Keynumber            | Journal Reference                                       |
|-------------------|---------------|---------------|------------------|------------------|--------------------------|------------------------------|--------|--------------------------|---------------------------------------------------------|
|                   |               | 242           | 6.6 s            | 1+               | -0.12(3)                 | [65Cu]                       | CLS    | 2010Vi07                 | PR C82 064311 (2010)                                    |
|                   |               |               |                  |                  |                          |                              |        |                          |                                                         |
|                   | 29 Cu 71      | 0             | 19.5 s           | 3/2-             | -0.200(17)               | [65Cu]                       | CLS    | 2010Vi07                 | PR C82 064311 (2010)                                    |
|                   |               | _             |                  |                  | 0.00(2)                  | [CFO ]                       | CL C   | 2040)/07                 | DD 002 054244 (2040)                                    |
|                   | 29 Cu 72      | 0             | 6.62 s           | 2-               | +0.08(2)                 | [65Cu]                       | CLS    | <u>2010Vi07</u>          | PR C82 064311 (2010)                                    |
|                   | 29 Cu 73      | 0             | 4.2 s            | 3/2-             | -0.210(10)               | [65Cu]                       | CLS    | 2010Vi07                 | PR C82 064311 (2010)                                    |
|                   |               |               |                  | -7-              | 5122(25)                 | [coon]                       |        |                          |                                                         |
|                   | 29 Cu 74      | 0             | 1.63 s           | 2-               | +0.27(3)                 | [65Cu]                       | CLS    | <u>2010Vi07</u>          | PR C82 064311 (2010)                                    |
|                   |               |               |                  |                  |                          |                              |        |                          |                                                         |
|                   | 29 Cu 75      | 0             | 1.22 s           | 5/2-             | -0.281(17)               | [65Cu]                       | CLS    | <u>2010Vi07</u>          | PR C82 064311 (2010)                                    |
| Zinc              | Calculation   | of the guadri | unale counling o | onstants in st   | ates of the Zn atom      |                              |        |                          |                                                         |
| ZIIIC             | culculation   | ine quadre    | apole coupling c | Jonstants in sti | ates of the 211 atom     |                              |        |                          |                                                         |
|                   | 30 Zn 63      | 0             | 38.1 m           | 3/2-             | +0.29(3)                 | [67Zn]                       | OD     | 1969La05                 | PR 177 1606 (1969)                                      |
|                   |               |               |                  |                  |                          |                              |        |                          |                                                         |
|                   | 30 Zn 64      | 992           | 1.85 ps          | 2+               | -0.14(2)                 |                              | ES     | <u>1981Ko06/1976Ne06</u> | JPhys G7 L63 (1981)/NP A263 249 (1976)                  |
|                   | 207.65        |               | 2444             | F /2             | 0.022(2)                 | [677-1                       | 0.0    | 10040-04                 | DD 424 A 47 /40C4\                                      |
|                   | 30 Zn 65      | 0             | 244.1 d          | 5/2-             | -0.023(2)                | [67Zn]                       | OD     | <u>1964By01</u>          | PR 134 A47 (1964)                                       |
|                   | 30 Zn 66      | 1039          | 1.56 ps          | 2+               | -0.081(13)               |                              | ES     | 1981Ko06/1976Ne06        | JPhys G7 L63 (1981)/NP A263 249 (1976)                  |
|                   | 30 2 00       | 1003          | 2.50 β5          |                  | 0.001(13)                |                              |        | 1301000, 137 0000        | 31 11/3 6 7 233 (2302))                                 |
| Reference isotope | 30 Zn 67      | 0             | stable           | 5/2-             | +0.150(15)               |                              | AB     | 2008Py02/1969La05        | Mol Phys 106 1965 (2008)/PR 177 1606 (1969)             |
|                   |               | 604           | 333 ns           | 9/2+             | +0.54(5)                 | [67Zn]                       | NQR    | 1976Ch37/1979Ka44        | ZP B24 177 (1976)/Sol St Comm 29 375 (1979)             |
|                   |               |               |                  |                  | 0.405/45)                |                              |        | 10041/ 05/107511 05      | IDI - 67   52   4004)   ND 4252 240   4075              |
|                   | 30 Zn 68      | 1077          | 1.61 ps          | 2+               | -0.106(16)               |                              | ES     | <u>1981Ko06/1976Ne06</u> | JPhys G7 L63 (1981)/NP A263 249 (1976)                  |
|                   | 30 Zn 69      | 439           | 13.72 h          | 9/2+             | -0.45(7)                 | [67Zn]                       | NO/S   | 1983Oe01                 | ZP A310 233 (1983)                                      |
|                   |               |               |                  | -,-              | 0.15(1)                  | [612.7]                      | ,.     |                          |                                                         |
|                   | 30 Zn 70      | 885           | 3.2 ps           | 2+               | -0.24(3)                 |                              | ES     | <u>1981Ko06/1976Ne06</u> | JPhys G7 L63 (1981)/NP A263 249 (1976)                  |
|                   |               |               |                  |                  |                          |                              |        |                          |                                                         |
| Gallium           | Calculation o | of the quadri | upole coupling o | onstants in Go   | aF, GaCl and GaBr molecu | ıles                         |        |                          |                                                         |
|                   | 31 Ga 63      | 0             | 32.4 s           | 3/2-             | +0.212(4)                | [69Ga]                       | CLS    | 2012Pr11                 | PR C85 034334 (2012)                                    |
|                   | 31 Ga 03      | 0             | 32.43            | 3/2-             | 10.212(4)                | [05Ga]                       | CLS    | 20121111                 | F N C65 054554 (2012)                                   |
|                   | 31 Ga 66      | 1464          | 57 ns            | 7-               | +0.78(4)                 | [69Ga][71Ga]                 | TDPAD  | 1985Ra33                 | HFI 26 855 (1985)/BAPS 24 632 (1979)                    |
|                   |               |               |                  |                  |                          |                              |        |                          |                                                         |
|                   | 31 Ga 67      | 0             | 78.3 h           | 3/2-             | +0.197(2)                | [69Ga][71Ga]                 | AB     | 1968Eh02/2001Py02        | PR 176 25 (1968)/Mol Phys 99 1617 (2001)                |
|                   | 21 Ca CO      | 0             | 60 1             | 1.               | 0.0277/14)               | [6065][7165]                 | AB     | 1972St38                 | PR A6 1702 (1972)                                       |
|                   | 31 Ga 68      | 0<br>1230     | 68.1 m<br>64 ns  | 1+<br>7-         | -0.0277(14)<br>+0.72(2)  | [69Ga][71Ga]<br>[69Ga][71Ga] | TDPAD  | 19725t38<br>1985Ra33     | PR A6 1702 (1972)  HFI 26 855 (1985)/BAPS 24 632 (1979) |
|                   |               | 1230          | 0+113            | 7-               | 10.72(2)                 | [0500][7100]                 | IDIAD  | 15051(855)               | 1111 20 000 (1500)) BM 0 24 002 (1570)                  |
| Reference isotope | 31 Ga 69      | 0             | stable           | 3/2-             | +0.171(2)                |                              | MS     | 2008Py02                 | Mol Phys 106 1965 (2008)                                |
|                   |               |               |                  |                  |                          |                              |        |                          |                                                         |
|                   | 31 Ga 70      | 0             | 21.1 m           | 1+               | +0.105(7)                | [69Ga]                       | CLS    | <u>2012Pr11</u>          | PR C85 034334 (2012)                                    |
| 0.6               | 24.6. =:      |               |                  | 2 /2             | .0.407/4)                |                              | N4C    | 20000 02                 | Mail Discret 40C 40CF (2000)                            |
| Reference isotope | 31 Ga 71      | 0             | stable           | 3/2-             | +0.107(1)                |                              | MS     | 2008Py02                 | Mol Phys 106 1965 (2008)                                |
|                   | 31 Ga 72      | 0             | 14.1 h           | 3-               | +0.530(6)                | [69Ga][71Ga]                 | AB     | 1968Eh02/2001Py02        | PR 176 25 (1968)/Mol Phys 99 1617 (2001)                |
|                   | 51 50 72      |               | A-1.4 II         | , ,              | 3.330(0)                 | [05 04][, 104]               | . 15   | 25552.152/25021 102      |                                                         |
|                   |               |               |                  |                  |                          |                              |        |                          |                                                         |

| Element          | Nucleus         | E(level)          | $T_{1/2}$                  | I <sup>p</sup> | Q(b)                 | Ref. Std.        | Method     | NSR Keynumber            | Journal Reference                                  |
|------------------|-----------------|-------------------|----------------------------|----------------|----------------------|------------------|------------|--------------------------|----------------------------------------------------|
|                  | 31 Ga 73        | 0                 | 4.86 h                     | 3/2-           | +0.209(2)            | [71Ga]           | CLS        | <u>2010Ch16</u>          | PRL 104 252502 (2010)                              |
|                  |                 |                   |                            |                |                      |                  |            |                          |                                                    |
|                  | 31 Ga 74        | 0                 | 8.12 m                     | 3- or 4-       | +0.55(4) or +0.60(4) | [71Ga]           | LRS        | <u>2011Ma45</u>          | PR C84 024303 (2011)                               |
|                  | 31 Ga 75        | 0                 | 126 s                      | 3/2-           | -0.285(17)           | [71Ga]           | CLS        | 2010Ch16                 | PRL 104 252502 (2010)                              |
|                  | 31 Ga /5        | U                 | 1263                       | 3/2-           | -0.265(17)           | [/IGa]           | CLS        | <u>2010CH16</u>          | PRL 104 232302 (2010)                              |
|                  | 31 Ga 76        | 0                 | 32.6 s                     | (2+)           | +0.33(2)             | [71Ga]           | LRS        | 2011Ma45                 | PR C84 024303 (2011)                               |
|                  |                 |                   |                            |                |                      |                  |            |                          |                                                    |
|                  | 31 Ga 77        | 0                 | 13.2 s                     | 3/2-           | -0.208(13)           | [71Ga]           | CLS        | <u>2010Ch16</u>          | PRL 104 252502 (2010)                              |
|                  | 31 Ga 78        | 0                 | 5.1 s                      | (2+)           | +0.33(2)             | [71Ga]           | LRS        | 2011Ma45                 | PR C84 024303 (2011)                               |
|                  |                 |                   |                            |                |                      |                  | -          |                          |                                                    |
|                  | 31 Ga 79        | 0                 | 2.85 s                     | 3/2-           | +0.158(10)           | [71Ga]           | CLS        | <u>2010Ch16</u>          | PRL 104 252502 (2010)                              |
|                  | 21.00.00        | 0?                | 02 17.                     | (2.)           | .0.20/2)             | [710]            | CLC        | 2010ChE0                 | DD C02 0F1202(D) /2010)                            |
|                  | 31 Ga 80        | 0?                | 0.2 - 1.7 s<br>0.2 - 1.7 s | (3-)<br>(6-)   | +0.38(2)<br>+0.48(3) | [71Ga]<br>[71Ga] | CLS<br>CLS | 2010Ch50<br>2010Ch50     | PR C82 051302(R) (2010) PR C82 051302(R) (2010)    |
|                  |                 | J:                | 0.2 1./ 3                  | (0-)           | 10.70(3)             | [,10a]           | CLS        | 201001130                | 1 11 CO2 031302(11) (2010)                         |
|                  | 31 Ga 81        | 0                 | 1.22 s                     | 5/2-           | -0.048(8)            | [71Ga]           | CLS        | <u>2010Ch16</u>          | PRL 104 252502 (2010)                              |
|                  | Calculation     | of the awade      | م ماد مدینمانیم م          | anatanta in Ca | O Cos malaculas      |                  |            |                          |                                                    |
| ermanium         | A. Efg of Ge    | <u> </u>          |                            | onstants in Ge | eO, GeS molecules    |                  |            |                          |                                                    |
|                  | 7.1. 2, g o, Gc | III Zii siiigie e | rystar                     |                |                      |                  |            |                          |                                                    |
|                  | 32 Ge 67        | 752               | 146 ns                     | 9/2+           | 0.92(9)              | [73Ge]           | TDPAD      | 1993Co17/1981Vi05        | HFI 80 1321 (1993)/HFI 10 1243 (1981)              |
|                  | 32 Ge 69        | 0                 | 39.0 h                     | 5/2-           | +0.027(5)            | [73Ge]           | AB         | <u>19700l02</u>          | PR C2 228 (1970)                                   |
|                  |                 | 398               | 2.8 ms                     | 9/2+           | 0.75(8)              | [73Ge]           | TDPAD      | <u>1993Co17/1981Vi05</u> | HFI 80 1321 (1993)/HFI 10 1243 (1981)              |
|                  | 32 Ge 70        | 1039              | 1.32 ps                    | 2+             | +0.03(6)             |                  | CER        | 1980Le16/2000To12        | PR C22 1530 (1980)/Eur Phys J A9 353 (2000)        |
|                  | 32 Ge 70        | 1039              | 1.32 μs                    | ZT             | +0.03(0)             |                  | CLK        | <u>1980LE10/20001012</u> | FN C22 1330 (1980)/ Eul Filys 1 A9 333 (2000)      |
|                  | 32 Ge 71        | 175               | 84 ns                      | 5/2+           | 0.18(4)              | Α                | TDPAD      | 1993Co17/1981Vi05        | HFI 80 1321 (1993)/HFI 10 1243 (1981)              |
|                  |                 | 199               | 20.2 ms                    | 9/2+           | 0.34(5)              |                  | QIR        | <u>1975Ri03/1976Br41</u> | PS 11 228 (1975)/HFI 2 265 (1976)                  |
|                  | 32 Ge 72        | 834               | 3.29 ps                    | 2+             | -0.13(6)             |                  | CER        | 1980Le16/2000To12        | PR C22 1530 (1980)/Eur Phys J A9 353 (2000         |
|                  | 32 Ge 72        | 034               | 5.29 ps                    | ZŦ             | -0.13(0)             |                  | CLK        | <u>1980Le10/20001012</u> | FN C22 1330 (1980)/ Eul Fillys 1 A9 333 (2000)     |
| eference isotope | 32 Ge 73        | 0                 | stable                     | 9/2+           | -0.196(1)            |                  | MS         | 2008Py02/1999Ke17        | Mol Phys 106 1965 (2008)/Mol Phys 96 275 (1999)    |
|                  |                 | 13                | 2.86 ms                    | 5/2+           | 0.70(8)              | Α                | TDPAC      | <u>1993Co17/1981Vi05</u> | HFI 80 1321 (1993)/HFI 10 1243 (1981)              |
|                  | 22.6-74         | 596               | 42 5                       | 2.             | 0.10(2)              |                  | CED        | 20007-42                 | Fur Phys. I AQ 252 (2000)                          |
|                  | 32 Ge 74        | 1204              | 12.5 ps<br>4.9 ps          | 2+<br>2+       | -0.19(2)<br>-0.26(6) |                  | CER<br>CER | 2000To12<br>2000To12     | Eur Phys J A9 353 (2000)  Eur Phys J A9 353 (2000) |
|                  |                 | 1204              | 4.5 μ3                     | 21             | 0.20(0)              |                  | CER        | 20001012                 | Eur 1 11/33 A3 333 (2000)                          |
|                  | 32 Ge 76        | 563               | 18.6 ps                    | 2+             | -0.19(6)             |                  | CER        | 1980Le16/2000To12        | PR C22 1530 (1980)/Eur Phys J A9 353 (2000         |
| senic            | Muonic ator     | n X-ray hypei     | rfine structure            |                |                      |                  |            |                          |                                                    |
|                  |                 |                   |                            | <del></del>    |                      |                  |            |                          |                                                    |
|                  | 33 As 70        | 0                 | 53 m                       | 4+             | +0.09(2)             | [75As]           | AB         | <u>1980Ho02</u>          | ZP A294 1 (1980)                                   |
|                  | 33 As 71        | 0                 | 65.3 h                     | 5/2-           | -0.021(6)            | [75As]           | NO/S       | <u>1988Wh03</u>          | HFI 43 205 (1988)                                  |
|                  |                 |                   |                            | -,-            |                      | 3                | -,-        |                          | 1                                                  |
|                  | 33 As 72        | 0                 | 26 h                       | 2-             | -0.08(2)             | [75As]           | AB         | <u>1980Ho02</u>          | ZP A294 1 (1980)                                   |
|                  |                 |                   |                            |                |                      |                  |            |                          |                                                    |

| Element           | Nucleus        | E(level)       | T <sub>1/2</sub>       | I <sup>p</sup>   | Q(b)                      | Ref. Std.        | Method   | NSR Keynumber                      | Journal Reference                             |
|-------------------|----------------|----------------|------------------------|------------------|---------------------------|------------------|----------|------------------------------------|-----------------------------------------------|
|                   | 33 As 73       | 66             | 5.0 ns                 | 5/2-             | +0.356(12)                | [75As]           | TDPAC    | <u>1992Sc21</u>                    | ZP A343 279 (1992)                            |
|                   |                |                |                        |                  |                           |                  |          |                                    |                                               |
| Reference isotope | 33 As 75       | 0              | stable                 | 3/2-             | +0.314(6)                 |                  | Mu-X     | 2008Py02/1982Ef01                  | Mol Phys 106 1965 (2008)/ZP A309 77 (1982)    |
| -1                | Coloulation    | -6+1           |                        |                  | +-1                       |                  |          |                                    |                                               |
| elenium           | Calculation    | of the quaar   | upole coupling co      | instant in Se n  | netai                     |                  |          |                                    |                                               |
|                   | 34 Se 74       | 635            | 7.08 ps                | 2+               | -0.36(7)                  |                  | CER      | <u>1978Le22</u>                    | PR C18 2801 (1978)                            |
|                   |                |                | · ·                    |                  | . ,                       |                  |          |                                    | ,                                             |
|                   | 34 Se 75       | 0              | 118.5 d                | 5/2+             | 1.1(2)                    | [77Se]           | MA       | <u>1955Aa06</u>                    | PR 98 1224 (1955)                             |
|                   | 246 76         | 550            | 12.2                   | 2 -              | 0.24/7)                   |                  | OF D     | 10771 11                           | ND 4204 422 (4077)                            |
|                   | 34 Se 76       | 559            | 12.3 ps                | 2+               | -0.34(7)                  |                  | CER      | <u>1977Le11</u>                    | NP A284 123 (1977)                            |
| Reference isotope | 34 Se 77       | 250            | 9.56 ns                | 5/2-             | +0.76(5)                  |                  | TDPAC    | 2008Py02/1983Un02                  | Mol Phys 106 1965 (2008)/HFI 14 119 (1983)    |
|                   |                |                |                        | -7-              | ··· · (0)                 |                  |          |                                    |                                               |
|                   | 34 Se 78       | 614            | 8.6 ps                 | 2+               | -0.26(9)                  |                  | CER      | <u>1977Le11</u>                    | NP A284 123 (1977)                            |
|                   |                |                |                        |                  |                           |                  |          |                                    |                                               |
|                   | 34 Se 79       | 0              | <6.5x10 <sup>4</sup> y | 7/2+             | +0.8(2)                   | [77Se]           | MA       | <u>1989Ra17</u>                    | ADNDT 42 189 (1989)/OSpk 12 163 (1962)        |
|                   | 24.5- 00       | 666            | 0.0                    | 2.               | 0.21/7\                   |                  | CER      | 10771 -11                          | NP A284 123 (1977)                            |
|                   | 34 Se 80       | 666            | 8.0 ps                 | 2+               | -0.31(7)                  |                  | CEN      | <u>1977Le11</u>                    | NP A284 123 (1977)                            |
|                   | 34 Se 82       | 654            | 11.3 ps                | 2+               | -0.22(7)                  |                  | CER      | 1977Le11                           | NP A284 123 (1977)                            |
|                   |                |                |                        |                  | · · ·                     |                  |          |                                    | ` ,                                           |
| Bromine           | Calculation of | of the quadr   | upole coupling co      | nstants in sta   | tes of the Br atom and in | HBr              |          |                                    |                                               |
|                   |                |                |                        | _                | 0.055(4)                  | rees 1           |          | 10001111                           | 22 440 4020 (4000)                            |
|                   | 35 Br 76       | 0              | 16.1 h                 | 1-               | +0.255(4)                 | [79Br]           | AB       | <u>1960Li11</u>                    | PR 119 1053 (1960)                            |
|                   | 35 Br 77       | 0              | 57 h                   | 3/2-             | +0.51(2)                  | m                | MAPON    | 1998Se09                           | PRL 80 5289 (1998)                            |
|                   | 33 2. 77       |                | <i>57</i>              | 3,2              | 10101(2)                  |                  |          | 2330000                            | 55 5255 (2556)                                |
| Reference isotope | 35 Br 79       | 0              | stable                 | 3/2-             | +0.313(3)                 |                  | AB/MS    | 2008Py02/2001Bi17                  | Mol Phys 106 1965 (2008)/PR A64 052507 (2001) |
|                   |                |                |                        |                  |                           |                  |          |                                    |                                               |
|                   | 35 Br 80       | 0              | 17.6 m                 | 1+               | +0.185(3)                 | [79Br]           | AB       | 1964Wh05                           | PR 136 B584 (1964)                            |
|                   |                | 37<br>86       | 7.4 ns<br>4.42 h       | 2-<br>5-         | 0.164(6)<br>+0.710(10)    | [79Br]<br>[79Br] | AB<br>AB | <u>1978Ta24</u><br><u>1964Wh05</u> | HP Ac 51 755 (1978)<br>PR 136 B584 (1964)     |
|                   |                | 80             | 4.42 11                | J-               | 10.710(10)                | [/361]           | AD       | <u>1504W105</u>                    | FR 130 B364 (1304)                            |
| Reference isotope | 35 Br 81       | 0              | stable                 | 3/2-             | +0.262(3)                 | [79Br]           | AB/MS    | 2008Py02/2001Bi17                  | Mol Phys 106 1965 (2008)/PR A64 052507 (2001) |
|                   |                |                |                        |                  |                           |                  |          |                                    |                                               |
|                   | 35 Br 82       | 0              | 35.3 h                 | 5-               | +0.707(10)                | [79Br]           | AB       | <u>1959Ga12</u>                    | PR 116 393 (1959)                             |
| /w.uaka.u         | Calculati      | of the outside |                        | netante in V     | 11.                       |                  |          |                                    |                                               |
| Crypton           | Calculation    | oj ine quaar   | upole coupling co      | iristants in Kri | Π+<br>                    |                  |          |                                    |                                               |
|                   | 36 Kr 75       | 0              | 4.3 m                  | 5/2+             | +1.137(13)                | [83Kr]           | CFBLS    | <u>1995Ke04</u>                    | NP A586 219 (1995)                            |
|                   |                |                |                        | -, -             | ()                        |                  |          |                                    | 1                                             |
|                   | 36 Kr 77       | 0              | 74.4 m                 | 5/2+             | +0.948(10)                | [83Kr]           | CFBLS    | <u>1995Ke04</u>                    | NP A586 219 (1995)                            |
|                   | 001/ ==        |                |                        | = /a             | 0 (- :/-)                 | ro               | 0.5-:-   | 400514 5 5                         | No. 400.05 111                                |
|                   | 36 Kr 79       | 130            | 50 s                   | 7/2+             | +0.404(5)                 | [83Kr]           | CFBLS    | 1995Ke04                           | NP A586 219 (1995)                            |
|                   |                | 147            | 77.7 ns                | 5/2-             | +0.45(3)                  | [83Kr]           | TDPAD    | <u>1978HaXP</u>                    | ARHMI 50 (1977)                               |
|                   | 36 Kr 81       | 0              | 2.3 x 10*5 y           | 7/2+             | +0.644(4)                 | [83Kr]           | LRFS     | <u>1993Ca41</u>                    | PR A47 1148 (1993)                            |
| -                 |                |                |                        | .,=.             |                           | [-5]             | =0       |                                    |                                               |

| Element           | Nucleus     | E(level)      | $T_{1/2}$         | I <sup>p</sup> | Q(b)                  | Ref. Std. | Method | NSR Keynumber        | Journal Reference                     |
|-------------------|-------------|---------------|-------------------|----------------|-----------------------|-----------|--------|----------------------|---------------------------------------|
| Reference isotope | 36 Kr 83    | 0             | stable            | 9/2+           | +0.259(1)             |           | MS     | 2008Py02             | Mol Phys 106 1965 (2008)              |
|                   |             | 9             | 147 ns            | 7/2+           | +0.507(3)             | [83Kr]    | ME     | <u>1977Ho33</u>      | JCP 66 2627 (1977)                    |
|                   |             |               |                   |                |                       |           |        |                      |                                       |
|                   | 36 Kr 84    | 3236          | 1.84 ms           | 8+             | +0.36(4)              | [83Kr]    | LEMS   | <u>2006Sc22</u>      | PR C74 034309 (2006)                  |
|                   | 36 Kr 85    | 0             | 10.76 y           | 9/2+           | +0.443(3)             | [83Kr]    | LRFS   | <u>1993Ca41</u>      | PR A47 1148 (1993)                    |
|                   |             |               |                   |                |                       |           |        |                      |                                       |
|                   | 36 Kr 87    | 0             | 76.3 m            | 5/2+           | -0.300(3)             | [83Kr]    | CFBLS  | <u>1995Ke04</u>      | NP A586 219 (1995)                    |
|                   | 36 Kr 89    | 0             | 3.15 m            | 3/2+           | +0.166(2)             | [83Kr]    | CFBLS  | <u>1995Ke04</u>      | NP A586 219 (1995)                    |
|                   | 36 Kr 91    | 0             | 8.57 s            | 5/2+           | +0.303(6)             | [83Kr]    | CFBLS  | <u>1995Ke04</u>      | NP A586 219 (1995)                    |
|                   | 2C V= 04    | CCC           | 0.7 ==            | 2.             | 0.5(3)                |           | CED    | 2012 4102            | DDI 400 0C2704 (2042)                 |
|                   | 36 Kr 94    | 666           | 8.7 ps            | 2+             | -0.5(3)               |           | CER    | 2012 Al03            | PRL 108 062701 (2012)                 |
| Rubidium          | Calculation | of the quadri | upole coupling c  | onstants in R  | l<br>bF               |           |        |                      |                                       |
|                   |             |               |                   |                |                       |           |        |                      |                                       |
|                   | 37 Rb 76    | 0             | 39 s              | 1(-)           | +0.46(20)             | [85Rb]    | ABLS   | <u>1981Th04</u>      | PR C23 2720 (1981)                    |
|                   | 37 Rb 77    | 0             | 3.8 m             | 3/2-           | +0.84(17)             | [85Rb]    | ABLS   | <u>1981Th04</u>      | PR C23 2720 (1981)                    |
|                   | 27.05.70    | 102           | 6.2               | 4              | .0.00(20)             | [OFD -]   | ADLC   | 100171-04            | DD C22 2720 (4004)                    |
|                   | 37 Rb 78    | 103           | 6.3 m             | 4-             | +0.99(20)             | [85Rb]    | ABLS   | <u>1981Th04</u>      | PR C23 2720 (1981)                    |
|                   | 37 Rb 79    | 0             | 23 m              | 5/2+           | -0.12(4)              | [85Rb]    | ABLS   | <u>1981Th04</u>      | PR C23 2720 (1981)                    |
|                   | 37 Rb 80    | 0             | 30 s              | 1+             | +0.42(8)              | [85Rb]    | ABLS   | <u>1981Th04</u>      | PR C23 2720 (1981)                    |
|                   | 37 Rb 81    | 0             | 4.58 h            | 3/2-           | +0.48(10)             | [85Rb]    | ABLS   | 1981Th04             | PR C23 2720 (1981)                    |
|                   | 37 115 01   | 86            | 32 m              | 9/2+           | -0.90(19)             | [85Rb]    | ABLS   | 1981Th04             | PR C23 2720 (1981)                    |
|                   |             |               |                   |                |                       |           |        |                      |                                       |
|                   | 37 Rb 82    | 0             | 1.25 m            | 1+             | +0.23(10)             | [85Rb]    | ABLS   | <u>1981Th04</u>      | PR C23 2720 (1981)                    |
|                   |             | ~100          | 6.47 h            | 5-             | +1.22(27)             | [85Rb]    | ABLS   | <u>1981Th04</u>      | PR C23 2720 (1981)                    |
|                   | 37 Rb 83    | 0             | 86.2 d            | 5/2-           | +0.24(5)              | [85Rb]    | ABLS   | <u>1981Th04</u>      | PR C23 2720 (1981)                    |
|                   |             |               |                   | _              | (-)                   |           |        |                      |                                       |
|                   | 37 Rb 84    | 0             | 33 d              | 2-             | -0.02(4)              | [85Rb]    | ABLS   | 1981Th04             | PR C23 2720 (1981)                    |
|                   |             | 465           | 20.4 m            | 6-             | +0.70(36)             | [85Rb]    | ABLS   | <u>1981Th04</u>      | PR C23 2720 (1981)                    |
| Reference isotope | 37 Rb 85    | 0             | stable            | 5/2-           | +0.276(1)             |           | MS     | 2008Py02             | Mol Phys 106 1965 (2008)              |
|                   |             | 514           | 1.02 ms           | 9/2+           | -0.9(3)               | [85Rb]    | OPD    | <u>1991Ma21</u>      | PRL 66 1681 (1991)                    |
|                   | 27 Dh 0C    | 0             | 10 (5 4           | 2              | +0.33(e)              | [85Rb]    | ABLS   | 1981Th04             | PR C23 2720 (1981)                    |
|                   | 37 Rb 86    | 0<br>556      | 18.65 d<br>1.02 m | 2-<br>(6-)     | +0.23(6)<br>+0.45(14) | [85Rb]    | ABLS   | 1981Th04<br>1981Th04 | PR C23 2720 (1981) PR C23 2720 (1981) |
|                   |             | 330           | 2.02.111          | ( )            | 3.15(14)              | [cono]    | , .523 | 250211107            | 020 2.20 (1501)                       |
| Reference isotope | 37 Rb 87    | 0             | 4.9 10*10y        | 3/2-           | +0.1335(5)            |           | MS     | 2008Py02             | Mol Phys 106 1965 (2008)              |
|                   | 37 Rb 88    | 0             | 17.7 m            | 2-             | -0.01(11)             | [85Rb]    | ABLS   | <u>1981Th04</u>      | PR C23 2720 (1981)                    |
|                   |             |               |                   |                |                       |           |        |                      |                                       |
|                   | 37 Rb 89    | 0             | 15.2 m            | 3/2-           | +0.17(3)              | [85Rb]    | ABLS   | <u>1981Th04</u>      | PR C23 2720 (1981)                    |
|                   |             |               |                   |                |                       |           |        |                      |                                       |

|                   | Nucleus        | E(level)      | $T_{1/2}$        | I <sup>p</sup>   | Q(b)                       | Ref. Std.          | Method | NSR Keynumber     | Journal Reference                            |
|-------------------|----------------|---------------|------------------|------------------|----------------------------|--------------------|--------|-------------------|----------------------------------------------|
|                   | 37 Rb 90       | 107           | 4.26 m           | 3-               | +0.25(7)                   | [85Rb]             | ABLS   | <u>1981Th04</u>   | PR C23 2720 (1981)                           |
|                   |                |               |                  |                  |                            |                    |        |                   |                                              |
|                   | 37 Rb 91       | 0             | 58 s             | 3/2(-)           | +0.19(5)                   | [85Rb]             | ABLS   | <u>1981Th04</u>   | PR C23 2720 (1981)                           |
|                   | 27.01.02       | 0             | 5.05             | 5 /2             | .0.24(6)                   | [OEDI-]            | ADLC   | 1001Th 0.4        | DD C22 2720 (4004)                           |
|                   | 37 Rb 93       | 0             | 5.85 s           | 5/2-             | +0.21(6)                   | [85Rb]             | ABLS   | <u>1981Th04</u>   | PR C23 2720 (1981)                           |
|                   | 37 Rb 94       | 0             | 2.73 s           | 3(-)             | +0.20(7)                   | [85Rb]             | ABLS   | <u>1981Th04</u>   | PR C23 2720 (1981)                           |
|                   | 371.231        |               | 2.755            | 3( )             | 10.20(1)                   | [comp]             | 7.020  | 2332              | 111 323 2723 (2332)                          |
|                   | 37 Rb 95       | 0             | 0.38 s           | 5/2-             | +0.26(9)                   | [85Rb]             | ABLS   | <u>1981Th04</u>   | PR C23 2720 (1981)                           |
|                   |                |               |                  |                  |                            |                    |        |                   |                                              |
|                   | 37 Rb 96       | 0             | 0.20 s           | 2+               | +0.30(9)                   | [85Rb]             | ABLS   | <u>1981Th04</u>   | PR C23 2720 (1981)                           |
|                   | 27.01.07       | 0             | 0.47             | 2/2              | 0.70\45\                   | [OEDL]             | ADLC   | 100171.01         | DD C22 2720 (4004)                           |
|                   | 37 Rb 97       | 0             | 0.17 s           | 3/2-             | +0.70)15)                  | [85Rb]             | ABLS   | <u>1981Th04</u>   | PR C23 2720 (1981)                           |
| Strontium         | Calculation    | of the quadru | inole counlina d | onstants in the  | 4d 2D5/2 and 5P3/2 sta     | tes of the Sr+ ion |        |                   |                                              |
|                   | Carcaration    | , the quadra  | poic couping c   | ionstants in the | -14 2D3/2 4114 31 3/2 3t41 |                    |        |                   |                                              |
|                   | 38 Sr 77       | 0             | 9 s              | 5/2+             | +1.27(5)                   | [87Sr]             | CFBLS  | <u>1992Li11</u>   | PR C46 797 (1992                             |
|                   |                |               |                  |                  |                            |                    |        |                   |                                              |
|                   | 38 Sr 79       | 0             | 2.25 m           | (3/2-)           | +0.661(6)                  | [87Sr]             | CFBLS  | <u>1990Bu12</u>   | PR C41 2883 (1990)                           |
|                   |                |               |                  | - 1-             |                            |                    |        |                   |                                              |
|                   | 38 Sr 83       | 0             | 32.4 h           | 7/2+             | +0.708(11)                 | [87Sr]             | CFBLS  | <u>1990Bu12</u>   | PR C41 2883 (1990)                           |
|                   | 38 Sr 85       | 0             | 64.8 d           | 9/2+             | +0.263(14)                 | [87Sr]             | CFBLS  | 1990Bu12          | PR C41 2883 (1990)                           |
|                   | 36 31 63       | U             | 04.8 u           | 3/21             | 10.203(14)                 | [6731]             | CIBES  | <u>1330Bd12</u>   | FN C41 2003 (1330)                           |
| Reference isotope | 38 Sr 87       | 0             | stable           | 9/2+             | +0.305(2)                  |                    | AB     | 2008Py02/2006Sa21 | Mol Phys 106 1965 (2008)/PR A73 062501 (2006 |
|                   |                |               |                  |                  |                            |                    |        |                   |                                              |
|                   | 38 Sr 89       | 0             | 50.5 d           | 5/2+             | -0.253(8)                  | [87Sr]             | CFBLS  | <u>1990Bu12</u>   | PR C41 2883 (1990)                           |
|                   |                | _             |                  |                  |                            |                    |        |                   |                                              |
|                   | 38 Sr 91       | 0             | 9.5 h            | 5/2+             | +0.042(10)                 | [87Sr]             | CFBLS  | <u>1990Bu12</u>   | PR C41 2883 (1990)                           |
|                   | 38 Sr 93       | 0             | 7.4 m            | 5/2+             | +0.240(10)                 | [87Sr]             | CFBLS  | 1990Bu12          | PR C41 2883 (1990)                           |
| -                 | 38 31 33       | U             | 7.4 111          | 3/21             | 10.240(10)                 | [0/31]             | CIBES  | 13300012          | 111 0-1 2003 (1330)                          |
|                   | 38 Sr 99       | 0             | 0.269 s          | 3/2+             | +0.76(4)                   | [87Sr]             | CFBLS  | 1991Li05          | PL B256 141 (1991)                           |
|                   |                |               |                  |                  |                            |                    |        |                   |                                              |
| Yttrium           | Calculation of | of the quadru | pole coupling o  | constants in the | 4d5s2 2D states of the Y   | atom               |        |                   |                                              |
|                   |                |               |                  |                  |                            |                    |        |                   |                                              |
|                   | 39 Y 87        | 381           | 13.4 h           | 9/2+             | -0.50(6)                   | [90Y]              | CLS    | <u>2007Ch07</u>   | PL B645 133 (2007)                           |
|                   | 39 Y 88        | 0             | 106 d            | 4-               | +0.16(3)                   | [90Y]              | CLS    | 2007Ch07          | PL B645 133 (2007)                           |
|                   | 33 1 00        | 675           | 100 u            | 8+               | +0.10(3)                   | [90Y]              | CLS    | 2007Ch07          | PL B645 133 (2007)                           |
|                   |                |               |                  |                  | (-)                        | [2-1]              |        |                   |                                              |
| ·                 | 39 Y 89        | 909           | 16.1 s           | 9/2+             | -0.43(6)                   | [90Y]              | CLS    | <u>2007Ch07</u>   | PL B645 133 (2007)                           |
|                   |                |               |                  |                  |                            |                    |        |                   |                                              |
| Reference isotope | 39 Y 90        | 0             | 64.1 h           | 2-               | -0.125(11)                 |                    | AB     | 2008Py02/1998Bi20 | Mol Phys 106 1965 (2008)/PR A58 4401 (1998)  |
|                   |                | 682           | 3.19 h           | 7+               | -0.65(8)                   | [90Y]              | CLS    | <u>2007Ch07</u>   | PL B645 133 (2007)                           |
|                   | 20 V 02        | 0             | 2 5 4 6          | 2                | 0.00(2)                    | [90Y]              | CLS    | 2007Ch07          | PL B645 133 (2007)                           |
|                   | 39 Y 92        | U             | 3.54 h           | 2-               | 0.00(2)                    | [901]              | CLS    | <u>2007CH07</u>   | PL 0043 133 (2007)                           |
|                   | 39 Y 93        | 758           | 0.82 s           | 9/2+             | -0.64(8)                   | [90Y]              | CLS    | 2007Ch07          | PL B645 133 (2007)                           |
|                   |                |               | 2.32 3           | -, -             | (-)                        | [2-1]              |        |                   | //                                           |

| Element           | Nucleus        | E(level)     | $T_{1/2}$               | I <sup>p</sup> | Q(b)                     | Ref. Std.        | Method     | NSR Keynumber            | Journal Reference                           |
|-------------------|----------------|--------------|-------------------------|----------------|--------------------------|------------------|------------|--------------------------|---------------------------------------------|
|                   | 39 Y 94        | 0            | 18.7 m                  | 2-             | -0.03(3)                 | [90Y]            | CLS        | 2007Ch07                 | PL B645 133 (2007)                          |
|                   |                |              |                         |                |                          |                  |            |                          |                                             |
|                   | 39 Y 96        | 1140         | 9.6 s                   | 8+             | -0.98(11)                | [90Y]            | CLS        | 2007Ch07                 | PL B645 133 (2007)                          |
|                   |                |              |                         |                |                          |                  |            |                          |                                             |
|                   | 39 Y 97        | 668          | 1.17 s                  | 9/2+           | -0.76(8)                 | [90Y]            | CLS        | <u>2007Ch07</u>          | PL B645 133 (2007)                          |
|                   |                | 3522         | 142 ms                  | (27/2)         | -1.21(14)                | [90Y]            | CLS        | <u>2007Bi14</u>          | PL B645 330 (2007)                          |
|                   | 39 Y 98        | 410          | 2.0 s                   | 4 or 5         | +1.7(2) or +1.8(2)       | [90Y]            | CLS        | <u>2007Bi14</u>          | PL B645 330 (2007)                          |
|                   | 39 Y 99        | 0            | 1.47 s                  | 5/2+           | +1.55(17)                | [90Y]            | CLS        | 2007Bi14                 | PL B645 330 (2007)                          |
|                   |                |              | 2.11                    | -,-            |                          |                  |            |                          | ,                                           |
|                   | 39 Y 100       | (143)        | 0.94 s                  | 4              | +1.85(20)                | [90Y]            | CLS        | 2007Bi14/2010Ba31        | PL B645 330 (2007)/J Phys G37 105103 (2010  |
|                   | 39 Y 101       | 0            | 0.45 s                  | 5/2+           | +1.53(17)                | [90Y]            | CLS        | <u>2007Bi14</u>          | PL B645 330 (2007)                          |
|                   | 39 Y 102       | 0 + x        | 0.3 s                   | 2 or 3         | +1.17(13) or +1.36(16)   | [90Y]            | CLS        | <u>2007Bi14</u>          | PL B645 330 (2007)                          |
| Zirconium         | Calculation of | f the quadru | upole coupling c        | onstants in ti | he ZrO and ZrS molecules |                  |            |                          |                                             |
|                   |                |              |                         |                |                          |                  |            |                          |                                             |
|                   | 40 Zr 87       | 0            | 1.68 h                  | 9/2+           | +0.42(5)                 | [91Zr]           | CLS        | <u>2003Th03</u>          | J Phys G29 2247 (2003)                      |
|                   | 40 Zr 88       | 2889         | 1.32 ms                 | 8+             | +0.44(3)                 | [91Zr]           | TDPAD/TFLD | <u>1985Ra09/1986Be06</u> | PRL 54 2592 (1985)/PR C33 1517 (1986)       |
|                   | 40 Zr 89       | 0            | 78.4 h                  | 9/2+           | +0.28(10)                | [91Zr]           | CLS        | <u>2003Th03</u>          | J Phys G29 2247 (2003)                      |
|                   | 40 Zr 90       | 3589         | 134 ns                  | 8+             | -0.44(3)                 | [91Zr]           | TDPAD/TFLD | 1985Ra09/1986Be06        | PRL 54 2592 (1985)/PR C33 1517 (1986)       |
| Reference isotope | 40 Zr 91       | 0            | stable                  | 5/2+           | -0.176(3)                |                  | MS         | 2008Py02/2000Ke03        | Mol Phys 106 1965 (2008)/CPL 318 222 (2000) |
| ,                 |                | 3167         | 3.6 ms                  | 21/2+          | 0.71(4)                  | [91Zr]           | TDPAD      | <u>1985Ra09</u>          | PRL 54 2592 (1985)                          |
|                   | 40 Zr 95       | 0            | 64.0 d                  | 5/2+           | +0.22(2)                 | [5- 90mZr calc]  | MAPON      | <u>1998Se01</u>          | PRL 80 924 (1998)                           |
|                   | 40 Zr 101      | 0            | 2.4s                    | 3/2+           | +0.81(6)                 | [91Zr]           | CLS        | 2002Ca37                 | PRL 89 082501 (2002)                        |
| Niobium           | Muonic ator    | n X-ray hype | rfine structure         |                |                          |                  |            |                          |                                             |
|                   |                | _            |                         |                |                          |                  |            |                          |                                             |
|                   | 41 Nb 90       | 0<br>125     | 14.6 h<br>18.8 s        | 8+<br>4-       | +0.01(4)<br>-0.26(4)     | [93Nb]<br>[93Nb] | CLS        | 2009Ch25<br>2009Ch25     | PRL 102 222501 (2009) PRL 102 222501 (2009) |
|                   |                |              |                         |                |                          |                  |            |                          |                                             |
|                   | 41 Nb 91       | 0            | 680 y                   | 9/2+           | -0.25(3)                 | [93Nb]           | CLS        | 2009Ch25                 | PRL 102 222501 (2009)                       |
|                   | 41 Nb 92       | 0            | 3.5 x 10 <sup>7</sup> y | 7+             | -0.35(3)                 | [93Nb]           | CLS        | 2009Ch25                 | PRL 102 222501 (2009)                       |
| Reference isotope | 41 Nb 93       | 0            | stable                  | 9/2+           | -0.32(2)                 |                  | Mu-X       | 2008Py02/1973Po15        | Mol Phys 106 1965 (2008)/NP A217 573 (1973) |
|                   | 41 Nb 99       | 0            | 15 s                    | 9/2+           | -0.41(14)                | [93Nb]           | CLS        | 2009Ch25                 | PRL 102 222501 (2009)                       |
|                   | 41 Nb 101      | 0            | 7.1 s                   | 5/2+           | +1.05(7)                 | [93Nb]           | CLS        | <u>2009Ch25</u>          | PRL 102 222501 (2009)                       |

| Element           | Nucleus       | E(level)      | T <sub>1/2</sub>   | I <sup>p</sup>  | Q(b)                      | Ref. Std.     | Method       | NSR Keynumber     | Journal Reference                    |
|-------------------|---------------|---------------|--------------------|-----------------|---------------------------|---------------|--------------|-------------------|--------------------------------------|
|                   | 41 Nb 103     | 0             | 1.5 s              | 5/2+            | +1.08(9)                  | [93Nb]        | CLS          | 2009Ch25          | PRL 102 222501 (2009)                |
|                   |               |               |                    |                 | , ,                       |               |              |                   | · , ,                                |
| Molybdenum        |               |               |                    |                 | es of the Mo atom         |               |              |                   |                                      |
|                   | A. Normalise  | d to Q of 92  | Mo 2760 keV st     | ate estimated   | from B(E2)                |               |              |                   |                                      |
|                   | 42.1400       | 2075          | 1.1                | 0.              | 0.64(2)                   |               | TDDAD        | 400FR-00          | DDI 54.3503./4005.\                  |
|                   | 42 Mo 90      | 2875          | 1.1 ms             | 8+              | 0.61(3)                   | Α             | TDPAD        | <u>1985Ra09</u>   | PRL 54 2592 (1985)                   |
|                   | 42 Mo 92      | 2760          | 190 ns             | 8+              | (-)0.36                   |               | not measured | <u>1991Ha04</u>   | PR C43 2140 (1991)                   |
|                   |               |               |                    |                 | 2 (2)                     |               |              |                   |                                      |
|                   | 42 Mo 94      | 871           | 2.9 ps             | 2+              | -0.13(8) or +0.01(8)      |               | CER          | <u>1976Pa13</u>   | PR C14 835 (1976)                    |
|                   |               | 2956          | 98 ns              | 8+              | 0.50(1)                   | Α             | TDPAD        | <u>1985Ra09</u>   | PRL 54 2592 (1985)                   |
| Reference isotope | 42 Mo 95      | 0             | stable             | 5/2+            | -0.022(1))                |               | AB           | 2008Py02/1982BuZE | Mol Phys 106 1965 (2008)/STMP vol 96 |
|                   |               |               |                    |                 | 2 22(2) 2 24(2)           |               |              | 40757 40          |                                      |
|                   | 42 Mo 96      | 778           | 3.7 ps             | 2+              | -0.20(8) or +0.04(8)      |               | CER          | <u>1976Pa13</u>   | PR C14 835 (1976)                    |
| Reference isotope | 42 Mo 97      | 0             | stable             | 5/2+            | +0.255(13)                |               | AB           | 2008Py02/1982BuZE | Mol Phys 106 1965 (2008)/STMP vol 96 |
|                   | 42 Mo 98      | 787           | 3.5 ps             | 2+              | -0.26(9)                  |               | CER          | 1979Pa11          | PR C20 1201 (1979)                   |
|                   | 42 1010 30    | 707           | 3.3 ps             |                 | 0.20(3)                   |               | 02.1         | 23731 022         | 111020 1201 (1575)                   |
|                   | 42 Mo 100     | 536           | 10.3 ps            | 2+              | -0.25(7)                  |               | CER          | <u>2011Wr01</u>   | Acta Phys Pol B42 803 (2011)         |
| Technetium        | Estimation of | the quadru    | pole coupling co   | nstant in state | es of the Tc atom         |               |              |                   |                                      |
|                   |               |               |                    |                 |                           |               |              |                   |                                      |
| Reference isotope | 43 Tc 99      | 0             | 2.1x10*5y          | 9/2+            | -0.129(6)                 |               | AB           | 2008Py02/1982BuZE | Mol Phys 106 1965 (2008)/STMP vol 96 |
| Ruthenium         | Calculated h  | yperfine stru | icture in the 5F i | multiplet of th | ne Ru atom                |               |              |                   |                                      |
|                   |               |               |                    | 21/2            | 0.04(1)                   |               |              |                   | 22 242 242 4224                      |
|                   | 44 Ru 93      | 2082          | 2.4 ms             | 21/2+           | +0.04(1)                  | [99Ru]        | TDPAD        | <u>1991Ha04</u>   | PR C43 2140 (1991)                   |
|                   | 44 Ru 96      | 833           | 2.7 ps             | 2+              | -0.15(8)                  |               | CER          | <u>1998Hi01</u>   | PR C57 (1998)                        |
|                   | 44 Ru 98      | 653           | F 0 ms             | 2+              | 0.21/9) or 0.01/0)        |               | CER          | 1998Hi01          | PR C57 (1998)                        |
|                   | 44 Ku 98      | 053           | 5.9 ps             | <u>Z</u> +      | -0.21(8) or -0.01(9)      |               | CEN          | <u>1996HIU1</u>   | by C21 (1330)                        |
| Reference isotope | 44 Ru 99      | 0             | stable             | 5/2+            | +0.079(4)                 |               | AB           | 2008Py02/1982BuZE | Mol Phys 106 1965 (2008)/STMP vol 96 |
| ,                 |               | 90            | 20.5 ns            | 3/2+            | +0.231(13)                | [99Ru]        | ME           | <u>1976Ki02</u>   | PR C13 1132 (1976)                   |
|                   | 44 Ru 100     | 540           | 12 ps              | 2+              | -0.44(4) or -0.27(7)      |               | CER          | 1998Hi01          | PR C57 (1998)                        |
|                   |               |               |                    |                 |                           |               |              |                   |                                      |
| Reference isotope | 44 Ru 101     | 0             | stable             | 5/2+            | +0.46(2)                  |               | AB           | 2008Py02/1982BuZE | Mol Phys 106 1965 (2008)/STMP vol 96 |
|                   | 44 Ru 102     | 475           | 18 ps              | 2+              | -0.63(4) or -0.34(3)      |               | CER          | <u>1998Hi01</u>   | PR C57 (1998)                        |
|                   | 44 Pr. 102    | 0             | 39.4 d             | 3/2+            | +0.62(2)                  | [99Ru 90 keV] | NO/S         | 1986Gr26          | HFI 30 355 (1986)                    |
|                   | 44 Ru 103     | U             | 59.4 U             | 3/4+            | +0.02(2)                  | [ABM OR MARK] | NU/S         | T2000170          | עני סככ חכ ואן (קאַסַרַ)             |
|                   | 44 Ru 104     | 358           | 58 ps              | 2+              | -0.78(7) or -0.20(12)     |               | CER          | <u>1998Hi01</u>   | PR C57 (1998)                        |
|                   |               |               |                    |                 |                           |               |              |                   |                                      |
| Rhodium           | Calculation o | f the quadru  | ipole coupling c   | onstants in Ri  | n intermettalic compounds |               |              |                   |                                      |
|                   |               |               |                    |                 |                           |               |              |                   |                                      |

| Element   Nucleus   Element   Victor   Trophy    | 1976)<br>1976)  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 45 Rh 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1976)           |
| 357   73 ps   5/2   -0.4(2)   CERP   19766e19   Z Phys A 279 183 (2 Phys A 279 183 (3 Phys A 279 183 (4 Phys A 279 183 (5 Phys A 279 183   | 1976)           |
| Palladium   Muonic atoms X-ray hyper/me structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |
| 46 Pd 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 77)             |
| 46 Pd 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 77)             |
| 46 Pd 104 556 9.7 ps 2+ -0.46(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 77)             |
| 46 Pd 104 556 9.7 ps 2+ -0.46(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 77)             |
| Reference isotope  46 Pd 105  0 stable  5/2+ +0.660(11)  Mu-X  2008Py02/1978 vu01  Mol Phys 106 1965 (2008)/NP  46 Pd 106  512  12 ps  2+ -0.51(7)  ES  1978 h005  PRI 30 388 (197  46 Pd 108  434  23 ps  2+ -0.58(4)  ES  1978 h07  J Phys 64 961 [19  A6 Pd 110  374  46 ps  2+ -0.47(3)  ES  1976 l19  PR C14 952 [197  Silver  Colculation of the quadrupole coupling constant in the Ag atom  47 Ag 101  0 11.4 m  9/2+ +0.35(5)  [110Ag 118 keV]  CLS  1989 D112  NP A503 331 [19  47 Ag 103  0 1.10 h  7/2+ +0.84(9)  [110Ag 118 keV]  CLS  1989 D112  NP A503 331 [19  47 Ag 105  25  7.2 m  7/2+ +0.85(11)  [110Ag 118 keV]  CLS  1989 D112  NP A503 331 [19  47 Ag 106  90  8.5 d  6+ 1.11(11)  [110Ag 118 keV]  CLS  1989 D112  NP A503 331 [19  47 Ag 107  93  44.3 s  7/2+ +0.85(11)  [110Ag 118 keV]  CLS  1989 D112  NP A503 331 [19  47 Ag 107  93  44.3 s  7/2+ 0.98(11)  [110Ag 118 keV]  CLS  1989 D112  NP A503 331 [19  47 Ag 107  93  44.3 s  7/2+ 0.98(11)  [110Ag 118 keV]  CLS  1986 P01/1984 P853  PR C33 390 (1986)/PR C30  47 Ag 109  88  39.8 s  7/2+ (+).102(12)  [110Ag 118 keV]  LMR  1986 P01/1984 P853  PR C33 390 (1986)/PR C30  47 Ag 109  88  39.8 s  7/2+ (+).102(12)  [110Ag 118 keV]  LMR  1986 P01/1984 P853  PR C33 390 (1986)/PR C30  CER  1972 T1.16  PL 418 585 (197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -               |
| Reference isotope  46 Pd 105  0 stable  5/2+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 77)             |
| 46 Pd 106 512 12 ps 2+ -0.51(7) ES 1973HoQ5 PRL 30 388 (197 46 Pd 108 434 23 ps 2+ -0.58(4) ES 1978ArO7 JPhys 64 961 (19 46 Pd 110 374 46 ps 2+ -0.47(3) ES 1976Li19 PR C14 952 (197  Silver Calculation of the quadrupole coupling constant in the Ag atom  47 Ag 101 0 11.4 m 9/2+ +0.35(5) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19 47 Ag 103 0 1.10 h 7/2+ +0.84(9) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19 47 Ag 104 0 69 m 5+ +1.06(11) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19 47 Ag 105 25 7.2 m 7/2+ +0.85(11) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19 47 Ag 107 93 44.3 s 7/2+ 0.98(11) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19 47 Ag 107 93 44.3 s 7/2+ 0.98(11) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19 47 Ag 108 110 418 y 6+ +1.32(7) [110Ag 118 keV] CLS 1989Di12 NP A503 390 (1986)/PR C30 47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] CLS 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] CLMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] CER 1927Ehi6 PL 41B 585 (197 415 35 ps 5/20.3(3) CER 1927Ehi6 PL 41B 585 (197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11)             |
| 46 Pd 106 512 12 ps 2+ -0.51(7) ES 1973HoQ5 PRL 30 388 (197 46 Pd 108 434 23 ps 2+ -0.58(4) ES 1978ArO7 JPhys 64 961 (19 46 Pd 110 374 46 ps 2+ -0.47(3) ES 1976Li19 PR C14 952 (197  Silver Calculation of the quadrupole coupling constant in the Ag atom  47 Ag 101 0 11.4 m 9/2+ +0.35(5) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19 47 Ag 103 0 1.10 h 7/2+ +0.84(9) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19 47 Ag 104 0 69 m 5+ +1.06(11) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19 47 Ag 105 25 7.2 m 7/2+ +0.85(11) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19 47 Ag 107 93 44.3 s 7/2+ 0.98(11) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19 47 Ag 107 93 44.3 s 7/2+ 0.98(11) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19 47 Ag 108 110 418 y 6+ +1.32(7) [110Ag 118 keV] CLS 1989Di12 NP A503 390 (1986)/PR C30 47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] CLS 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] CLMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] CER 1927Ehi6 PL 41B 585 (197 415 35 ps 5/20.3(3) CER 1927Ehi6 PL 41B 585 (197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A204 273 (1078) |
| 46 Pd 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A234 273 (1376, |
| 46 Pd 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |
| A6 Pd 110   374   46 ps   2+   -0.47(3)   ES   1976Li19   PR C14 952 (1976Li19   PR C14 9   | <u> </u>        |
| A6 Pd 110   374   46 ps   2+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |
| Silver Calculation of the quadrupole coupling constant in the Ag atom  47 Ag 101  0  11.4 m  9/2+  +0.35(5)  [110Ag 118 keV]  CLS  1989Di12  NP A503 331 (19  47 Ag 103  0  1.10 h  7/2+  +0.84(9)  [110Ag 118 keV]  CLS  1989Di12  NP A503 331 (19  47 Ag 104  0  69 m  5+  +1.06(11)  [110Ag 118 keV]  CLS  1989Di12  NP A503 331 (19  47 Ag 105  25  7.2 m  7/2+  +0.85(11)  [110Ag 118 keV]  CLS  1989Di12  NP A503 331 (19  47 Ag 106  90  8.5 d  6+  1.11(11)  [110Ag 118 keV]  CLS  1989Di12  NP A503 331 (19  47 Ag 107  93  44.3 s  7/2+  0.98(11)  [110Ag 118 keV]  CLS  1989Di12  NP A503 331 (19  47 Ag 108  110  418 y  6+  +1.32(7)  [110Ag 118 keV]  LMR  1986Be01/1984Be53  PR C33 390 (1986)/PR C30  47 Ag 109  88  39.8 s  7/2+  (+)1.02(12)  [110Ag 118 keV]  LMR  1986Be01/1984Be53  PR C33 390 (1986)/PR C30  47 Ag 109  88  39.8 s  7/2+  (+)1.02(12)  [110Ag 118 keV]  LMR  1986Be01/1984Be53  PR C33 390 (1986)/PR C30  47 Ag 109  88  39.8 s  7/2+  (+)1.02(12)  [110Ag 118 keV]  LMR  1986Be01/1984Be53  PR C33 390 (1986)/PR C30  47 Ag 109  88  39.8 s  7/2+  (+)1.02(12)  [110Ag 118 keV]  LMR  1986Be01/1984Be53  PR C33 390 (1986)/PR C30  47 Ag 109  88  39.8 s  7/2+  (+)1.02(12)  [110Ag 118 keV]  LMR  1986Be01/1984Be53  PR C33 390 (1986)/PR C30  47 Ag 109  88  39.8 s  7/2+  (+)1.02(12)  [110Ag 118 keV]  LMR  1986Be01/1984Be53  PR C33 390 (1986)/PR C30  47 Ag 109  88  39.8 s  7/2+  (+)1.02(12)  [110Ag 118 keV]  LMR  1986Be01/1984Be53  PR C33 390 (1986)/PR C30  47 Ag 109  88  39.8 s  7/2+  (+)1.02(12)  [110Ag 118 keV]  LMR  1986Be01/1984Be53  PR C33 390 (1986)/PR C30  47 Ag 109  88  39.8 s  7/2+  (+)1.02(12)  [110Ag 118 keV]  LMR  1986Be01/1984Be53  PR C33 390 (1986)/PR C30  47 Ag 109  88  39.8 s  7/2+  (+)1.02(12)  [110Ag 118 keV]  LMR  1986Be01/1984Be53  PR C33 390 (1986)/PR C30  47 Ag 109  88  39.8 s  7/2+  (+)1.02(12)  [110Ag 118 keV]  LMR  1986Be01/1984Be53  PR C33 390 (1986)/PR C30                                                                                                                                                            | <del></del>     |
| 47 Ag 101 0 11.4 m 9/2+ +0.35(5) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19 47 Ag 103 0 1.10 h 7/2+ +0.84(9) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19 47 Ag 104 0 69 m 5+ +1.06(11) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19 47 Ag 105 25 7.2 m 7/2+ +0.85(11) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19 47 Ag 106 90 8.5 d 6+ 1.11(11) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19 47 Ag 107 93 44.3 s 7/2+ 0.98(11) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19 47 Ag 108 110 418 y 6+ +1.32(7) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30                                                                                                                                                                                                                                                                                                                                                                                                    | ·(6)            |
| 47 Ag 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |
| 47 Ag 103 0 1.10 h 7/2+ +0.84(9) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19 47 Ag 104 0 69 m 5+ +1.06(11) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19 47 Ag 105 25 7.2 m 7/2+ +0.85(11) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19 47 Ag 106 90 8.5 d 6+ 1.11(11) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19 47 Ag 107 93 44.3 s 7/2+ 0.98(11) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19 47 Ag 107 93 44.3 s 7/2+ 0.98(11) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 108 110 418 y 6+ +1.32(7) [110Ag 118 keV] O 1984Be53 PR C30 2028 (1986)/PR C30 47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 109 87 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 109 87 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 109 87 39.8 s 7/2+ (-)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 109 88 39.8 s 7/2+ (-)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 109 88 39.8 s 7/2+ (-)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 109 88 39.8 s 7/2+ (-)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 109 88 39.8 s 7/2+ (-)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 109 88 39.8 s 7/2+ (-)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |
| 47 Ag 103 0 1.10 h 7/2+ +0.84(9) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19 47 Ag 104 0 69 m 5+ +1.06(11) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19 47 Ag 105 25 7.2 m 7/2+ +0.85(11) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19 47 Ag 106 90 8.5 d 6+ 1.11(11) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19 47 Ag 107 93 44.3 s 7/2+ 0.98(11) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19 47 Ag 107 93 44.3 s 7/2+ 0.98(11) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 108 110 418 y 6+ +1.32(7) [110Ag 118 keV] O 1984Be53 PR C30 2028 (1986)/PR C30 47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 109 87 39 39 39 39 39 39 39 39 39 39 39 39 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| 47 Ag 104 0 69 m 5+ +1.06(11) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19 47 Ag 105 25 7.2 m 7/2+ +0.85(11) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19 47 Ag 106 90 8.5 d 6+ 1.11(11) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19 47 Ag 107 93 44.3 s 7/2+ 0.98(11) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 108 110 418 y 6+ +1.32(7) [110Ag 118 keV] O 1984Be53 PR C33 390 (1986)/PR C30 47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 109 88 39.8 s 7/2+ (-)1.02(12) [110Ag 118 keV] CER 1972Th16 PL 418 585 (197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 89)             |
| 47 Ag 104 0 69 m 5+ +1.06(11) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19 47 Ag 105 25 7.2 m 7/2+ +0.85(11) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19 47 Ag 106 90 8.5 d 6+ 1.11(11) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19 47 Ag 107 93 44.3 s 7/2+ 0.98(11) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 108 110 418 y 6+ +1.32(7) [110Ag 118 keV] O 1984Be53 PR C33 390 (1986)/PR C30 47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 109 88 39.8 s 7/2+ (-)1.02(12) [110Ag 118 keV] CER 1972Th16 PL 418 585 (197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90)             |
| 47 Ag 106 90 8.5 d 6+ 1.11(11) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19  47 Ag 107 93 44.3 s 7/2+ 0.98(11) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30  47 Ag 108 110 418 y 6+ +1.32(7) [110Ag 118 keV] 0 1984Be53 PR C33 390 (1986)/PR C30  47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30  47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30  47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30  47 Ag 109 88 39.8 s 7/2+ (-)0.3(3) CER 1972Th16 PL 41B 585 (197  415 35 ps 5/20.3(3) CER 1972Th16 PL 41B 585 (197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29)             |
| 47 Ag 106 90 8.5 d 6+ 1.11(11) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19  47 Ag 107 93 44.3 s 7/2+ 0.98(11) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30  47 Ag 108 110 418 y 6+ +1.32(7) [110Ag 118 keV] 0 1984Be53 PR C33 390 (1986)/PR C30  47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30  47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30  47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30  47 Ag 109 88 39.8 s 7/2+ (-)0.3(3) CER 1972Th16 PL 41B 585 (197  415 35 ps 5/20.3(3) CER 1972Th16 PL 41B 585 (197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 89)             |
| 47 Ag 106 90 8.5 d 6+ 1.11(11) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19 47 Ag 107 93 44.3 s 7/2+ 0.98(11) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 108 110 418 y 6+ +1.32(7) [110Ag 118 keV] O 1984Be53 PR C30 2028 (1986) 47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 415 35 ps 5/2- 0.7(3) CER 1972Th16 PL 41B 585 (197 415 35 ps 5/2- 0.3(3) CER 1972Th16 PL 41B 585 (197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 331             |
| 47 Ag 106 90 8.5 d 6+ 1.11(11) [110Ag 118 keV] CLS 1989Di12 NP A503 331 (19  47 Ag 107 93 44.3 s 7/2+ 0.98(11) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30  47 Ag 108 110 418 y 6+ +1.32(7) [110Ag 118 keV] O 1984Be53 PR C30 2028 (1986)  47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30  47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30  47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30  47 Ag 109 88 39.8 s 7/2+ (-)-7(3) CER 1972Th16 PL 41B 585 (197  415 35 ps 5/20.3(3) CER 1972Th16 PL 41B 585 (197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 89)             |
| 47 Ag 107 93 44.3 s 7/2+ 0.98(11) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 47 Ag 108 110 418 y 6+ +1.32(7) [110Ag 118 keV] O 1984Be53 PR C30 2028 (1984Be53) PR C30 2028 (1984Be53) PR C33 390 (1986)/PR C30 2028 (1984Be53) PR C33 2028 (1984Be53) PR C33 2028 (1984 |                 |
| 47 Ag 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 89)             |
| 47 Ag 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |
| 47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 39 | 2028 (1984)     |
| 47 Ag 109 88 39.8 s 7/2+ (+)1.02(12) [110Ag 118 keV] LMR 1986Be01/1984Be53 PR C33 390 (1986)/PR C30 311 5.9 ps 3/20.7(3) CER 1972Th16 PL 41B 585 (197 415 35 ps 5/20.3(3) CER 1972Th16 PL 41B 585 (197 415 35 ps 5/20.3(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |
| 311   5.9 ps   3/2-   -0.7(3)   CER   1972Th16   PL 41B 585 (197   415   35 ps   5/2-   -0.3(3)   CER   1972Th16   PL 41B 585 (197   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   415   | 34)             |
| 311   5.9 ps   3/20.7(3)   CER   1972Th16   PL 41B 585 (1972Th16   PL 41B 585 (1972Th1      | 2020 (1004)     |
| 415 35 ps 5/20.3(3) CER <u>1972Th16</u> PL 41B 585 (197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 47 Ag 110 0 24.4 s 1+ 0.24(12) QIR <u>1981Do17</u> HFI 10 727 (198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>        |
| 9-22 7 2 222-222. 111110127 [226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .1)             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>=1</u>       |
| Reference isomer 118 252 d 6+ +1.44(10) O 1984Be53 PR C30 2028 (198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 84)             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| Cadmium There is no adopted reference efg for Cd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -               |
| A. Efg in 2P5/2 state of the Cd ion (PRL 110 192501 (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2013)           |
| B. For the efg used to obtain Q(109Cd)/Q(109Cd 463 keV) see 1969La06/1978Sp09 PR 177 1615 (1969)/HFI 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 229 (1978)      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 48 Cd 102 2718 56 ns 8+ 0.76(9) [efg Cd in Cd] TDPAD <u>1992Al17</u> Z Phys A344 1 (19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 192)            |
| 48 Cd 103 0 7.3 m 5/2+ -0.7(6) A CLS <u>1987Bu01</u> NP A462 305 (19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |

| Element      | Nucleus      | E(level)      | T 1/2                                   | I <sup>p</sup>  | Q(b)       | Ref. Std.     | Method       | NSR Keynumber        | Journal Reference                           |
|--------------|--------------|---------------|-----------------------------------------|-----------------|------------|---------------|--------------|----------------------|---------------------------------------------|
|              | 10.01.105    |               |                                         | - /0            | 0.0=(4)    |               |              | 10501.05             |                                             |
|              | 48 Cd 105    | 0             | 56 m                                    | 5/2+            | +0.37(4)   | A             | OD           | 1969La06             | PR 177 1615 (1969)                          |
|              |              | 2517          | 4.5 ms                                  | 21/2+           | +1.02(10)  | В             | TDPAC        | <u>1978Sp09</u>      | HFI 4 229 (1978)                            |
|              | 48 Cd 106    | 633           | 7.3 ps                                  | 2+              | -0.28(8)   |               | CER          | <u>1976Es02</u>      | NP A274 237 (1977)                          |
|              | 10 00 00     |               | 7.10                                    |                 | (- /       |               |              |                      |                                             |
|              | 48 Cd 107    | 0             | 6.50 h                                  | 5/2+            | +0.60(2)   | A             | CLS          | <u>2013Yo02</u>      | PRL 110 192501 (2013)                       |
|              |              | 846           | 70 ns                                   | 11/2-           | -0.94(10)  | В             | TDPAC        | <u>1978Sp09</u>      | HFI 4 229 (1978)                            |
|              |              | 2679          | 56 ns                                   | 21/2+           | +1.05(11)  | В             | TDPAC        | <u>1978Sp09</u>      | HFI 4 229 (1978)                            |
|              | 48 Cd 108    | 633           | 6.8 ps                                  | 2+              | -0.45(8)   |               | CER          | 1976Es02             | NP A274 237 (1977)                          |
|              | 46 Cu 106    | 055           | 0.6 μs                                  | 2+              | -0.43(8)   |               | CEN          | <u>1970ESUZ</u>      | NP A2/4 25/ (19//)                          |
|              | 48 Cd 109    | 0             | 453 d                                   | 5/2+            | +0.60(3)   | A             | CLS          | <u>2013Yo02</u>      | PRL 110 192501 (2013)                       |
|              |              | 463           | 10.9 ms                                 | 11/2-           | [-0.92(9)] | systematic    | not measured | 1978Sp09             | HFI 4 229 (1978)                            |
|              |              |               |                                         | ,               | [ (-/)     | extrapolation |              |                      | - 1 7                                       |
|              | 48 Cd 110    | 658           | 5.0 ps                                  | 2+              | -0.40(4)   | ·             | ES           | <u>1977Gi13</u>      | J Phys G3 L169 (1977)                       |
|              |              |               |                                         |                 |            |               |              |                      |                                             |
|              | 48 Cd 111    | 245           | 84 ns                                   | 5/2+            | +0.74(7)   | В             | TDPAC        | <u>1978Sp09</u>      | HFI 4 229 (1978)                            |
|              |              | 396           | 48.6 m                                  | 11/2-           | -0.75(3)   | A             | CLS          | <u>2013Yo02</u>      | PRL 110 192501 (2013)                       |
|              |              |               |                                         |                 |            |               |              |                      |                                             |
|              | 48 Cd 112    | 617           | 6.2 ps                                  | 2+              | -0.37(4)   |               | ES           | <u>1977Gi13</u>      | J Phys G3 L169 (1977)                       |
|              | 40 Cd 112    | 264           | 14                                      | 11/2            | 0.61(2)    | ^             | CLS          | 2012V-02             | DDI 440 403F04 (2042)                       |
|              | 48 Cd 113    | 264           | 14 y                                    | 11/2-           | -0.61(3)   | A             | CLS          | <u>2013Yo02</u>      | PRL 110 192501 (2013)                       |
|              | 48 Cd 114    | 558           | 9.0 ps                                  | 2+              | -0.348(12) |               | ES           | 1981Ko06             | J Phys G7 L63 (1981)                        |
|              | 10 00 00     |               | 0.0  00                                 |                 | 5.5 .5(==) |               |              |                      | ····/• ··· ()                               |
|              | 48 Cd 115    | 173           | 44.8 d                                  | 11/2-           | -0.48(2)   | Α             | CLS          | <u>2013Yo02</u>      | PRL 110 192501 (2013)                       |
|              |              |               |                                         |                 |            |               |              |                      |                                             |
|              | 48 Cd 116    | 514           | 15 ps                                   | 2+              | -0.42(4)   |               | ES           | <u>1977Gi13</u>      | J Phys G3 L169 (1977)                       |
|              |              |               |                                         |                 |            |               |              |                      |                                             |
|              | 48 Cd 117    | 136           | 3.36 h                                  | 11/2-           | -0.320(13) | A             | CLS          | <u>2013Yo02</u>      | PRL 110 192501 (2013)                       |
|              | 40 Cd 110    | 1.47          | 2 20                                    | 11/2            | 0.135(6)   | Δ.            | CLS          | 2013Yo02             | DDI 110 103E01 (2012)                       |
|              | 48 Cd 119    | 147           | 2.20 m                                  | 11/2-           | -0.135(6)  | A             | CLS          | 20131002             | PRL 110 192501 (2013)                       |
|              | 48 Cd 121    | 215           | 8.3 s                                   | 11/2-           | +0.009(6)  | A             | CLS          | 2013Yo02             | PRL 110 192501 (2013)                       |
|              | 40 Cu 121    | 213           | 0.5 3                                   | 11/2            | . 0.003(0) | 7.            | CLS          | 2015/1002            | THE 110 132301 (2013)                       |
|              | 48 Cd 123    | 317           | 1.82 s                                  | 11/2-           | +0.135(7)  | A             | CLS          | 2013Yo02             | PRL 110 192501 (2013)                       |
|              |              |               |                                         | ,               | , ,        |               |              |                      | , ,                                         |
|              | 48 Cd 125    | 0             | 0.68 s                                  | 3/2+            | +0.209(10) | A             | CLS          | <u>2013Yo02</u>      | PRL 110 192501 (2013)                       |
|              |              | х             | 0.48 s                                  | 11/2-           | +0.269(13) | A             | CLS          | <u>2013Yo02</u>      | PRL 110 192501 (2013)                       |
|              |              |               |                                         |                 |            |               |              |                      |                                             |
|              | 48 Cd 127    | 0             | 0.37 s                                  | 3/2+            | +0.239(11) | A             | CLS          | <u>2013Yo02</u>      | PRL 110 192501 (2013)                       |
|              |              | х             | -                                       | 11/2-           | +0.34(2)   | A             | CLS          | <u>2013Yo02</u>      | PRL 110 192501 (2013)                       |
|              | 48 Cd 129    | 0             | 0.27 s                                  | 3/2+            | +0.132(9)  | A             | CLS          | 2013Yo02             | PRL 110 192501 (2013)                       |
|              | 46 Cu 129    | x             | -                                       | 11/2-           | +0.132(9)  | A             | CLS          | 2013Y002<br>2013Y002 | PRL 110 192501 (2013) PRL 110 192501 (2013) |
| <br>]        |              | ^             | -                                       | 11/4-           | 10.37(3)   | A             | CLS          | 20131002             | T NE 110 132301 (2013)                      |
| Indium       | Calculated e | lectric auadr | upole interactio                        | ns in indium ha | lides      |               |              |                      |                                             |
| <del>-</del> |              | 4             | , : : ::::::::::::::::::::::::::::::::: |                 |            |               |              |                      |                                             |
|              | 49 ln 104    | 0             | 1.7 m                                   | 5+              | +0.63(10)  | [115ln]       | CFBLS        | <u>1987Eb02</u>      | NP A464 9 (1987)                            |

| Element           | Nucleus    | E(level) | T 1/2            | I <sup>p</sup> | Q(b)        | Ref. Std.           | Method         | NSR Keynumber        | Journal Reference                    |
|-------------------|------------|----------|------------------|----------------|-------------|---------------------|----------------|----------------------|--------------------------------------|
|                   | 401.405    |          | 5.07             | 0/2            | 0.70(5)     | [445] ]             | CEDI C         | 40075100             | ND 44540 (4007)                      |
|                   | 49 In 105  | 0        | 5.07 m           | 9/2+           | +0.79(5)    | [115In]             | CFBLS          | <u>1987Eb02</u>      | NP A464 9 (1987)                     |
|                   | 49 In 106  | 0        | 6.2 m            | 7+             | +0.92(6)    | [115ln]             | CFBLS          | 1987Eb02             | NP A464 9 (1987)                     |
|                   |            |          |                  |                | ,           |                     |                |                      | , ,                                  |
|                   | 49 In 107  | 0        | 32.4 min         | 9/2+           | +0.77(5)    | [115ln]             | CFBLS          | <u>1987Eb02</u>      | NP A464 9 (1987)                     |
|                   | 101 100    |          |                  |                | 0.055(7)    | [445]               | OFD! C         | 400751 02            | ND 44540 (4007)                      |
|                   | 49 In 108  | 0        | 58 m             | 7+             | +0.955(7)   | [115ln]             | CFBLS          | 1987Eb02             | NP A464 9 (1987)                     |
|                   |            | 29       | 40 m             | 2+             | '+0.444(13) | [115In]             | CFBLS          | <u>1987Eb02</u>      | NP A464 9 (1987)                     |
|                   | 49 In 109  | 0        | 4.2 h            | 9/2+           | +0.80(3)    | [115ln]             | CFBLS          | <u>1987Eb02</u>      | NP A464 9 (1987)                     |
|                   |            |          |                  |                |             |                     |                |                      |                                      |
|                   | 49 In 110  | 0*       | 69.1 m           | 2+             | +0.32(2)    | [113In]             | AB             | <u>1968CaZX</u>      | Th 68 Cass.                          |
|                   |            | 0*       | 4.9 h            | 7+             | +0.95(2)    | [115ln]             | CFBLS          | <u>1987Eb02</u>      | NP A464 9 (1987)                     |
|                   | 49 In 111  | 0        | 2.83 d           | 9/2+           | +0.76(2)    | [115In]             | CFBLS          | 1987Eb02             | NP A464 9 (1987)                     |
|                   | 49 111 111 | U        | 2.83 u           | 3/2+           | +0.70(2)    | [11311]             | CFBLS          | <u>1987LUU2</u>      | NF A404 5 (1507)                     |
|                   | 49 In 112  | 0*       | 14.4 m           | 1+             | +0.082(5)   | [113In]             | AB             | 1968CaZX             | Th 68 Cass.                          |
|                   |            | 157      | 20.9 m           | 4+             | +0.679(10)  | [115In]             | CFBLS          | 1987Eb02             | NP A464 9 (1987)                     |
|                   |            | 351      | 0.69 ms          | 7+             | 1.00(3)     | [117In 660 keV]     | TDPAD          | 1993lo02             | HFI 77 111 (1993)                    |
|                   |            | 614      | 2.82 ms          | 8-             | 0.092(3)    | [117In 660 keV]     | TDPAD          | <u>1993Io02</u>      | HFI 77 111 (1993)                    |
| 5.6               | 101 112    | -        |                  | 0/0            | 0.750(0)    |                     | 4 D /44C       | 20000 02             | M   D  405 4055 (2000)               |
| Reference isotope | 49 In 113  | 0        | stable           | 9/2+           | 0.759(8)    |                     | AB/MS          | 2008Py02             | Mol Phys 106 1965 (2008)             |
|                   | 49 In 114  | 190      | 49.5 d           | 5+             | +0.703(11)  | [115ln]             | CFBLS          | <u>1987Eb02</u>      | NP A464 9 (1987)                     |
|                   |            |          |                  |                |             |                     |                |                      |                                      |
| Reference isotope | 49 In 115  | 0        | 4.4x10*14 y      | 9/2+           | 0.770(8)    |                     | AB/MS          | <u>2008Py02</u>      | Mol Phys 106 1965 (2008)             |
|                   |            | 829      | 5.78 ns          | 3/2+           | -0.59(4)    | [117In 660 keV]     | TDPAC          | <u>1973Ha61</u>      | JCP 58 3339 (1973)                   |
|                   | 49 In 116  | 0        | 14.1 s           | 1+             | 0.11(1)     | [115In]             | NSLR           | 1982Gr17             | NP A386 56 (1982)                    |
|                   | .5 110     | 127      | 54.2 m           | 5+             | +0.762(11)  | [115In]             | CFBLS          | 1987Eb02             | NP A464 9 (1987)                     |
|                   |            | 290      | 2.18 s           | 8-             | +0.295(9)   | [115In]             | CFBLS          | <u>1987Eb02</u>      | NP A464 9 (1987)                     |
|                   |            |          |                  |                |             |                     |                |                      |                                      |
|                   | 49 In 117  | 0        | 42 m             | 9/2+           | +0.788(10)  | [115ln]             | CFBLS          | <u>1987Eb02</u>      | NP A464 9 (1987)                     |
|                   |            | 660      | 53.6 ns          | 3/2+           | -0.57(4)    | [115In]             | TDPAC          | <u>1972Ra27</u>      | PRL 28 54 (1972)                     |
|                   | 49 In 118  | ~60      | 4.45 m           | 5+             | +0.757(8)   | [115In]             | CFBLS          | <u>1987Eb02</u>      | NP A464 9 (1987)                     |
|                   | 43 111 110 | ~200     | 8.5 s            | 8-             | +0.419(7)   | [115III]            | CFBLS          | 1987Eb02             | NP A464 9 (1987)                     |
|                   |            |          |                  |                | , ,         |                     |                |                      | ` '                                  |
|                   | 49 In 119  | 0        | 2.4 m            | 9/2+           | +0.812(7)   | [115ln]             | CFBLS          | <u>1987Eb02</u>      | NP A464 9 (1987)                     |
|                   |            | 654      | 130 ns           | 3/2+           | 0.59(4)     | [115In]             | TDPAC          | <u>1980HaYW</u>      | ARHMI 1979 75 (1979)                 |
|                   | 49 In 120  | (0)      | 44.4 s           | 5+             | +0.770(16)  | [115ln]             | CFBLS          | 1987Eb02             | NP A464 9 (1987)                     |
|                   | 45 III 12U | (0)      | 44.4 s<br>47.3 s | 8-             | +0.770(16)  | [115III]<br>[115In] | CFBLS          | 1987Eb02             | NP A464 9 (1987)                     |
|                   |            | (-)      |                  | -              | \( \)       |                     |                |                      | . //                                 |
|                   | 49 ln 121  | 0        | 23.1 s           | 9/2+           | +0.774(10)  | [115ln]             | CFBLS          | <u>1987Eb02</u>      | NP A464 9 (1987)                     |
|                   | 40 In 122  | 0.14     | 0.2.5            | F.             | .0.77/2\    | [115]               | CEDIC          | 1007Fb02             | ND AACA O (4007)                     |
|                   | 49 In 122  | 0+x      | 9.2 s            | 5+             | +0.77(2)    | [115ln]             | CFBLS<br>CFBLS | 1987Eb02<br>1987Eb02 | NP A464 9 (1987)<br>NP A464 9 (1987) |
|                   |            | ~220     | 10.5s            | 8-             | +0.56(2)    | [115In]             | CLDT2          | <u>1907EUUZ</u>      | NY A404 3 (1307)                     |

| Element           | Nucleus        | E(level)      | $T_{1/2}$         | I <sup>p</sup>   | Q(b)                       | Ref. Std.               | Method                 | NSR Keynumber                   | Journal Reference                             |
|-------------------|----------------|---------------|-------------------|------------------|----------------------------|-------------------------|------------------------|---------------------------------|-----------------------------------------------|
|                   | 49 In 123      | 0             | 6.68 s            | 9/2+             | +0.720(9)                  | [115In]                 | CFBLS                  | <u>1987Eb02</u>                 | NP A464 9 (1987)                              |
|                   |                |               |                   |                  |                            |                         |                        |                                 |                                               |
|                   | 49 In 124      | 0             | 3.09 s            | 3+               | +0.58(7)                   | [115In]                 | CFBLS                  | <u>1987Eb02</u>                 | NP A464 9 (1987)                              |
|                   |                | 190           | 3.7 s             | 8-               | +0.631(9)                  | [115In]                 | CFBLS                  | <u>1987Eb02</u>                 | NP A464 9 (1987)                              |
|                   |                |               |                   |                  |                            |                         |                        |                                 |                                               |
|                   | 49 In 125      | 0             | 2.50 s            | 9/2+             | +0.68(3)                   | [115In]                 | CFBLS                  | <u>1987Eb02</u>                 | NP A464 9 (1987)                              |
|                   |                |               |                   |                  |                            |                         |                        |                                 |                                               |
|                   | 49 In 126      | (0)           | 1.60 s            | 3+               | +0.47(5)                   | [115ln]                 | CFBLS                  | <u>1987Eb02</u>                 | NP A464 9 (1987)                              |
|                   |                | (0)           | 1.64 s            | 8-               | +0.649(11)                 | [115ln]                 | CFBLS                  | <u>1987Eb02</u>                 | NP A464 9 (1987)                              |
|                   |                |               |                   |                  |                            |                         |                        |                                 |                                               |
|                   | 49 In 127      | 0             | 1.22 s            | 9/2+             | +0.56(3)                   | [115ln]                 | CFBLS                  | <u>1987Eb02</u>                 | NP A464 9 (1987)                              |
|                   |                |               |                   |                  |                            |                         |                        |                                 |                                               |
| Tin               | There is no o  | idopted refer | ence efg for Sn   |                  |                            |                         |                        |                                 |                                               |
|                   | A - relative t | o 119Sn 24 k  | eV - calculation  | of the quadrup   | ole coupling constants in  | n many molecular tin    | compounds.             |                                 |                                               |
|                   | B - relative t | o 117Sn 315   | keV - calculation | on of quadrupol  | e interaction in the 5p6s; | :3P1 state of the tin a | tom. At present this o | calculation is accurate only to | o, at best, +/- 10-20%.                       |
|                   | C-relative to  | 116Sn 3548    | keV 10+ mome      | nt estimated fro | m theory. Accuracy estir   | nated at 10%.           |                        |                                 |                                               |
|                   | D- relative to | 118Sn 3106    | keV 10+ mome      | ent estimated fr | om theory. Accuracy esti   | mated at 10%.           |                        |                                 |                                               |
|                   |                |               |                   |                  |                            |                         |                        |                                 |                                               |
|                   |                |               |                   |                  |                            |                         |                        |                                 |                                               |
|                   | 50 Sn 109      | 0             | 18.0 m            | 5/2+             | +0.33(11)                  | В                       | ABLFS                  | <u>1987Eb01</u>                 | ZP A326 121 (1987)                            |
|                   |                |               |                   |                  |                            |                         |                        |                                 |                                               |
|                   | 50 Sn 110      | 2480          | 5.6 ns            | 6+               | 0.30(4)                    | D                       | TDPAD                  | <u>1989Vo17</u>                 | IAN Ser Fiz 53 2188 (1989)                    |
|                   | 505 444        |               | 25                | 7/2              | .0.20(4.0)                 | D.                      | ADLEC                  | 400751-04                       | 70 4226 424 (4007)                            |
|                   | 50 Sn 111      | 0             | 35 m              | 7/2+             | +0.20(10)                  | В                       | ABLFS                  | <u>1987Eb01</u>                 | ZP A326 121 (1987)                            |
|                   | 50 Sn 112      | 1257          | 0.35 ps           | 2+               | -0.09(10)                  |                         | CER                    | 1975Gr30                        | PR C12 1462 (1975)                            |
|                   | 50 311 112     | 2550          | 13.7 ns           | 6+               | (-)0.25(5)                 | С                       | TDPAD                  | 1975Vi03                        | NP A243 29 (1973)                             |
|                   |                | 2330          | 13.7 113          | 01               | (-)0.23(3)                 |                         | TOTAD                  | 13731103                        | NF A243 23 (1373)                             |
|                   | 50 Sn 113      | 739           | 82 ns             | 11/2-            | (-)0.41(4)                 | С                       | TDPAD                  | 1975Di02                        | PL B55 293 (1975)                             |
|                   | 30 311 113     | 733           | 02 113            | 11/2             | ( )0.41(4)                 |                         | 101710                 | 13730102                        | 1 2 2 2 3 3 (1373)                            |
|                   | 50 Sn 114      | 3088          | 765 ns            | 7-               | (-)0.32(3)                 | С                       | TDPAD                  | 1975Di02                        | PL B55 293 (1975)                             |
|                   | 30 311 114     | 3000          | 705113            | ,                | ( )0.32(3)                 |                         | 101710                 | <u>15750102</u>                 | (12000 200 (1270)                             |
|                   | 50 Sn 115      | 613           | 3.26 ps           | 7/2+             | (-)0.26(3)                 | D                       | TDPAD                  | 1976Be59                        | HFI 2 326 (1976)                              |
|                   | 50 311 113     | 714           | 159 μs            | 11/2-            | 0.38(6)                    |                         | QIR                    | 1975Ri03                        | Phys Scr 11 228 (1975)                        |
|                   |                | ,             | 133 μ3            | /-               | 0.55(0)                    |                         | <u> </u>               | 257511105                       | 1.11/0 001 11 110 (1370)                      |
|                   | 50 Sn 116      | 1294          | 0.36 ps           | 2+               | -0.17(4)                   |                         | ES                     | 1976Li19                        | PR C14 952 (1976)                             |
|                   |                | 2366          | 370 ns            | 5-               | (-)0.26(3)                 | С                       | TDPAD                  | 1975Di02                        | PL B55 293 (1975)                             |
|                   |                | 3548          | 904 ns            | 10+              | [(-)0.41(4)]               | C                       | not measured           | 1975Di02                        | PL B55 293 (1975)                             |
|                   |                |               |                   |                  | L( / -                     | -                       |                        |                                 |                                               |
|                   | 50 Sn 117      | 315           | 13.6 d            | 11/2-            | -0.42(5)                   | В                       | ABLFS                  | 1986An24                        | PR C34 1052 (1986)                            |
|                   |                |               |                   | ,-               | V-1                        |                         |                        |                                 |                                               |
|                   | 50 Sn 118      | 1230          | 0.46 ps           | 2+               | -0.14(10)                  |                         | CER                    | 1975Gr30                        | PR C12 1462 (1975)                            |
|                   |                | 2321          | 21.7 ns           | 5-               | (-)0.22(3)                 | С                       | TDPAD                  | 1975Di02                        | PL B55 293 (1975)                             |
|                   |                | 2575          | 217 ns            | 7-               | 0.32(3)                    | D                       | TDPAD                  | 1976Be59                        | HFI 2 326 (1976)                              |
|                   |                | 3106          | 2.65 ms           | 10+              | [0.41(4)]                  | D                       | not measured           | 1976Be59                        | HFI 2 326 (1976)                              |
|                   |                |               |                   |                  | ,,                         |                         |                        |                                 | , ,                                           |
| Reference Isotope | 50 Sn 119      | 24            | 17.8 ns           | 3/2+             | -0.132(1)                  |                         | ME                     | 2008Py02/2008Ba56               | Mol Phys 106 1965 (2008)/JPC A112 1666 (2008) |
|                   |                | 90            | 293.1 d           | 11/2-            | -0.29(3)                   | Α                       | ME                     | 1972Be79                        | PL B42 349 (1972)                             |
|                   |                |               |                   |                  | , ,                        |                         |                        |                                 | ,                                             |
|                   | 50 Sn 120      | 1171          | 0.64 ps           | 2+               | +0.02(7)                   |                         | CER                    | <u>1975Gr30</u>                 | PR C12 1462 (1975)                            |
|                   |                |               |                   |                  |                            |                         |                        |                                 |                                               |

| Element  | Nucleus        | E(level)      | T 1/2          | I <sup>p</sup> | Q(b)      | Ref. Std. | Method      | NSR Keynumber   | Journal Reference                     |
|----------|----------------|---------------|----------------|----------------|-----------|-----------|-------------|-----------------|---------------------------------------|
|          |                | 2285          | 5.53 ns        | 5-             | 0.046(2)  | А         | TDPAC       | <u>1970Wo02</u> | ZP 232 256 (1970)                     |
|          |                |               |                |                |           |           |             |                 |                                       |
|          | 50 Sn 121      | 0             | 27.1 h         | 3/2+           | -0.02(2)  | В         | ABLFS       | <u>1986An24</u> | PR C34 1052 (1986)                    |
|          |                | 6.3           | 55 y           | 11/2-          | -0.14(3)  | В         | ABLFS       | <u>1986An24</u> | PR C34 1052 (1986)                    |
|          |                |               |                |                |           |           |             |                 |                                       |
|          | 50 Sn 122      | 1140          | 0.76 ps        | 2+             | -0.13(10) |           | CER         | <u>1975Gr30</u> | PR C12 1462 (1975)                    |
|          |                |               |                |                |           |           |             |                 |                                       |
|          | 50 Sn 123      | 0             | 129 d          | 11/2-          | +0.03(4)  | В         | ABLFS       | <u>1986An24</u> | PR C34 1052 (1986)                    |
|          |                |               |                |                |           |           |             |                 |                                       |
|          | 50 Sn 124      | 1132          | 0.97 ps        | 2+             | +0.03(13) |           | CER         | <u>1975Gr30</u> | PR C12 1462 (1975)                    |
|          |                |               |                |                |           |           |             |                 |                                       |
|          | 50 Sn 125      | 0             | 9.62 d         | 11/2-          | +0.2(2)   | В         | ABLFS       | <u>2005Le34</u> | PR C72 034305                         |
|          |                | 28            | 9.5 m          | 3/2+           | +0.86(8)  | В         | ABLFS       | <u>2004Le13</u> | NP A734 437 (2004)                    |
|          |                |               |                |                |           |           |             |                 |                                       |
|          | 50 Sn 126      | 1141          | 1.0 ps         | 2+             | 0.0(2)    |           | CER         | <u>2011Al35</u> | PR C84 1303 (2011)                    |
|          |                |               |                |                |           |           |             |                 |                                       |
|          | 50 Sn 127      | 0             | 2.1 h          | 11/2-          | +0.32(14) | В         | ABLFS       | <u>2005Le34</u> | PR C72 034305                         |
|          |                | 5             | 4.13 m         | 3/2+           | +0.65(7)  | В         | ABLFS       | 2004Le13        | NP A734 437 (2004)                    |
|          |                |               |                |                |           |           |             |                 |                                       |
|          | 50 Sn 128      | 2492          | 2.7 μs         | 10+            | -0.1(3)   |           | CER         | <u>2011Al35</u> | PR C84 1303 (2011)                    |
|          |                |               |                |                |           |           |             |                 |                                       |
|          | 50 Sn 129      | 0             | 2.23 m         | 3/2+           | +0.05(12) | В         | ABLFS       | 2004Le13        | NP A734 437 (2004)                    |
|          |                | 35            | 6.9 m          | 11/2-          | -0.20(19) | В         | ABLFS       | <u>2005Le34</u> | PR C72 034305                         |
|          |                |               |                |                |           |           |             |                 |                                       |
|          | 50 Sn 130      | 1947          | 1.7 m          | 7-             | -0.39(12) | В         | ABLFS       | <u>2005Le34</u> | PR C72 034305                         |
|          |                |               |                |                |           |           |             |                 |                                       |
|          | 50 Sn 131      | 0             | 56 s           | 3/2+           | -0.04(9)  | В         | ABLFS       | 2004Le13        | NP A734 437 (2004)                    |
|          |                | 242           | 58.4 s         | 11/2-          | 0.0(2)    | В         | ABLFS       | <u>2005Le34</u> | PR C72 034305                         |
|          |                |               |                |                |           |           |             |                 |                                       |
| Antimony | Calculated efg | g's in SbN, S | bP, SbF and Sb | CI molecues    |           |           |             | 2008Py02        | Mol Phys 106 1965 (2008)              |
|          |                |               |                |                |           |           |             |                 |                                       |
|          | 51 Sb 112      | 796           | 536 ns         | 8-             | 1.06(2)   | [121Sb]   | TDPAD       | <u>1982Ma29</u> | PR C26 493 (1982)                     |
|          |                |               |                |                |           |           |             |                 |                                       |
|          | 51 Sb 114      | 496           | 219 ms         | 8-             | 1.02(16)  | [121Sb]   | QIR,R       | <u>1982Ma29</u> | PR C26 493 (1982)                     |
|          |                |               |                |                |           |           |             |                 |                                       |
|          | 51 Sb 115      | 2796          | 152 ns         | 19/2-          | 0.79(4)   | [121Sb]   | TDPAD       | <u>1983Se04</u> | ZP A309 349 (1983)                    |
|          |                |               |                |                |           |           |             |                 |                                       |
|          | 51 Sb 116      | 1844          | 11.9 ns        | 7+             | 2.5(6)    | [121Sb]   | TDPAD(ampl) | <u>1992lo01</u> | ZP A343 21 (1992)                     |
|          |                |               |                |                |           |           |             |                 |                                       |
|          | 51 Sb 117      | 0             | 2.80 h         | 5/2+           | 0.2(12)   | [121Sb]   | AB          | <u>1974Ek01</u> | NP A226 219 (1974)                    |
|          |                | 3131          | 340 ms         | (25/2)+        | 1.14(5)   | [121Sb]   | QIR,R       | <u>1982Ma29</u> | PR C26 493 (1982)/JPhys G3 713 (1977) |
|          |                | 3231          | 290 ns         | 23/2-          | 3.7(4)    | [121Sb]   | TDPAD       | <u>1988lo01</u> | PL B 200 259 (1988)                   |
|          |                |               |                |                |           |           |             |                 |                                       |
|          | 51 Sb 118      | 51            | 20.6 ms        | (3)+           | 0.9(2)    | [121Sb]   | TDPAD       | <u>1982Ma29</u> | PR C26 493 (1982)                     |
|          |                | 270           | 13.4 ns        | 3-             | 0.39(8)   | [121Sb]   | TDPAD(ampl) | <u>1985Di07</u> | ZP A320 613 (1985)                    |
|          |                | 927           | 22.8 ns        | 7+             | 2.6(5)    | [121Sb]   | TDPAD(ampl) | <u>1988lo01</u> | PL B 200 259 (1988)                   |
|          |                |               |                |                |           |           |             |                 |                                       |
|          | 51 Sb 119      | 2554          | 128 ns         | 19/2-          | 3.18(13)  | [121Sb]   | TDPAD       | <u>1991lo02</u> | NP A531 112 (1991)                    |
|          |                |               |                |                |           |           | <u> </u>    |                 |                                       |

| Element           | Nucleus       | E(level)         | T 1/2             | I <sup>p</sup>  | Q(b)                 | Ref. Std.      | Method | NSR Keynumber        | Journal Reference                             |
|-------------------|---------------|------------------|-------------------|-----------------|----------------------|----------------|--------|----------------------|-----------------------------------------------|
|                   | 51 Sb 120     | 78               | 247 ns            | 3+              | 0.63(2)              | [121Sb]        | TDPAD  | 1982Ma29             | PR C26 493 (1982)                             |
|                   |               |                  |                   |                 | . ,                  |                |        |                      |                                               |
| eference Isotope  | 51 Sb 121     | 0                | stable            | 5/2+            | -0.543(11)           |                | 0      | 2008Py02/1978Bu24    | Mol Phys 106 1965 (2008)/JPC A112 1666 (2008) |
| ,                 |               | 37               | 3.5 ns            | 7/2+            | -0.727(16)           | [121Sb]        | ME     | 1970St13             | PL A32 91 (1970)                              |
|                   |               |                  |                   |                 | · , ,                |                |        |                      |                                               |
|                   | 51 Sb 122     | 0                | 2.68 d            | 2-              | +1.28(8)             | [121Sb]        | 0      | 1960Fe08             | PhMg 5 1309 (1960)                            |
|                   |               | 61               | 1.86 ms           | 3+              | 0.63(2)              | [121Sb]        | TDPAD  | 1982Ma29             | PR C26 493 (1982)                             |
|                   |               |                  |                   |                 |                      |                |        |                      |                                               |
| Reference Isotope | 51 Sb 123     | 0                | stable            | 7/2+            | -0.692(14)           |                | 0      | 2008Py02/1978Bu24    | Mol Phys 106 1965 (2008)/JPC A112 1666 (2008) |
|                   |               |                  |                   |                 |                      |                |        |                      |                                               |
|                   | 51 Sb 124     | 0                | 60.2 d            | 3-              | +2.8(2)              | [121Sb]        | NO/S   | <u>1985He16</u>      | ZP A322 281 (1985)                            |
|                   |               |                  |                   |                 |                      |                |        |                      |                                               |
| ellurium          | There is no a | idopted refe     | rence efg for Te. |                 |                      |                |        |                      |                                               |
|                   | A. Efg in the | lased state o    | of the Te atom co | alculated by se | mi-empirical methods |                |        |                      |                                               |
|                   |               |                  |                   |                 |                      |                |        |                      |                                               |
|                   | 52 Te 122     | 564              | 7.52 ps           | 2+              | -0.57(5)             |                | CER    | <u>1976Bo12</u>      | NP A261 498 A261                              |
|                   |               |                  |                   |                 |                      |                |        |                      |                                               |
|                   | 52 Te 124     | 603              | 6.25 ps           | 2+              | -0.45(5)             |                | CER    | <u>1976Bo12</u>      | NP A261 498 A261                              |
|                   |               |                  |                   |                 |                      |                |        |                      |                                               |
|                   | 52 Te 125     | 36               | 1.48 ns           | 3/2+            | -0.31(2)             | [1291]         | ME     | <u>1977La03</u>      | PR B15 2504                                   |
|                   |               | 145              | 58 d              | 11/2-           | 0.0(2)               | A              | CLS    | <u>2006Si40</u>      | HFI 171 173 (2006)                            |
|                   |               | 321              | 695 ps            | 9/2-            | 0.12(+5,-9)          | [125Te 36 keV] | IPAC   | <u>1976Va28</u>      | HFI 2 321 (1976)                              |
|                   |               |                  |                   |                 |                      |                |        |                      |                                               |
|                   | 52 Te 126     | 666              | 4.41 ps           | 2+              | -0.23(5)             |                | CER    | <u>1976Bo12</u>      | NP A261 498 A261                              |
|                   |               |                  |                   |                 |                      |                |        |                      |                                               |
|                   | 52 Te 127     | 88               | 109 d             | 11/2-           | 0.17(12)             | A              | CLS    | <u>2006Si40</u>      | HFI 171 173 (2006)                            |
|                   |               |                  |                   |                 |                      |                |        |                      |                                               |
|                   | 52 Te 128     | 743              | 3.2 ps            | 2+              | -0.22(5)             |                | CER    | <u>1976Bo12</u>      | NP A261 498 A261                              |
|                   |               |                  |                   | 2 /2            | 0.055(10)            | [4001]         |        | 100=0.00             | UTI 07 4000 (4007)                            |
|                   | 52 Te 129     | 0                | 69.5 m            | 3/2+            | 0.055(13)            | [1291]         | NO/ME  | <u>1987Be36</u>      | HFI 35 1023 (1987)                            |
|                   |               | 106              | 33.5 d            | 11/2-           | 0.40(3)              | Α              | CLS    | <u>2006Si40</u>      | HFI 171 173 (2006)                            |
|                   | 52.T. 420     | 0.40             | 2.2               | 2               | 0.42/5)              |                | CED    | 1976Bo12             | ND 4264 400 4264                              |
|                   | 52 Te 130     | 840              | 2.3 ps            | 2+              | -0.12(5)             |                | CER    | <u>19768012</u>      | NP A261 498 A261                              |
|                   | F2 T- 424     | 402              | 20 h              | 11/2            | 0.25(14)             | A              | CLS    | 20005:40             | UEL 171 172 /200C)                            |
|                   | 52 Te 131     | 182              | 30 h              | 11/2-           | 0.25(14)             | A              | CLS    | <u>2006Si40</u>      | HFI 171 173 (2006)                            |
|                   | F2 To 122     | 0                | 12 F m            | 2/2:            | 0.22(0)              | Δ.             | CLS    | <u>2006Si40</u>      | UEL 171 172 /200C)                            |
|                   | 52 Te 133     | 334              | 12.5 m<br>55.4 m  | 3/2+<br>11/2-   | 0.23(9)<br>0.28(14)  | A<br>A         | CLS    | 2006Si40<br>2006Si40 | HFI 171 173 (2006)<br>HFI 171 173 (2006)      |
|                   |               | 334              | 55.4 111          | 11/2-           | 0.20(14)             | A              | CLS    | 20063140             | HFI 1/1 1/3 (2000)                            |
|                   | 52 Te 135     | 0                | 19 s              | 7/2-            | 0.29(9)              | A              | CLS    | <u>2006Si40</u>      | HFI 171 173 (2006)                            |
|                   | 32 18 133     | U                | 132               | 112-            | 0.23(3)              | A              | CL3    | 20003140             | 1111 1/1 1/3 (2000)                           |
| dine              | Calculated e  | fa's in atomi    | c Land HI         |                 |                      |                |        | 2008Py02             | Mol Phys 106 1965 (2008)                      |
| wiiic             | Culculated e  | jy s iii atoiiii | c i dild i ii     |                 |                      |                |        | 20001 102            | 111011111/3 100 1303 (2000)                   |
|                   | 53   125      | 0                | 60.2 d            | 5/2+            | -0.761(17)           | [1271]         | MA     | <u>1958Fl39</u>      | PR 110 536 (1958)                             |
|                   | 331123        | 0                | 00.2 u            | 3/21            | -0.701(17)           | [12/1]         | IVIA   | 1930(139             | FN 110 550 (1550)                             |
| eference isotope  | 53   127      | 0                | stable            | 5/2+            | -0.696(12)           |                | AB     | 1976Fu06             | JPCR 5 835 (1976)                             |
| ejerence isotope  | 331127        | 58               | 1.95 ns           | 7/2+            | -0.624(11)           | [1271]         | ME     | 1964Pe15             | PL 13 198 (1964)                              |
|                   |               | 30               | 1.55 113          | 1121            | 0.027(11)            | [12/1]         | IVIL   | 150-11-015           | , r 12 120 (1204)                             |
|                   | 53   129      | 0                | 1.6x10*7 y        | 7/2+            | -0.488(8)            | [1271]         | Q,MA   | 1953Li16             | PR 90 609 (1953)                              |
|                   | 331123        | 28               | 16.8 ns           | 5/2+            | -0.604(10)           | [1271]         | ME     | 1972Ro41             | NIM 105 509 (1972)                            |
|                   |               | 20               | 10.0112           | J/ 4T           | -0.004(10)           | [14/1]         | IVIL   | 13/4NU41             | 141141 TOO 2002 (121/2)                       |

| Element           | Nucleus       | E(level)           | T 1/2           | I <sup>p</sup>  | Q(b)                      | Ref. Std.             | Method       | NSR Keynumber               | Journal Reference                        |
|-------------------|---------------|--------------------|-----------------|-----------------|---------------------------|-----------------------|--------------|-----------------------------|------------------------------------------|
|                   |               |                    |                 |                 |                           |                       |              |                             |                                          |
|                   | 53   131      | 0                  | 8.04 d          | 7/2+            | -0.34(2)                  | [1271]                | AB           | 1960Li13                    | PR 119 2022 (1960)                       |
|                   |               | 1797               | 5.9 ns          | (15/2)-         | 0.66(6)                   | [129I 28 keV]         | TDPAC        | <u>1973Ha61</u>             | JCP 58 3339 (1973)                       |
|                   |               |                    |                 |                 |                           |                       |              |                             |                                          |
|                   | 53   132      | 0                  | 2.28 h          | 4+              | 0.08(1)                   | [1271]                | AB           | <u>1960Wh06</u>             | BAPS 5 504 (1960)                        |
|                   |               | 50                 | 1.12 ns         | 3+              | 0.20(6)                   | [1291]                | IPAC         | <u>1979Oo01</u>             | NP A321 180 (1979)                       |
|                   |               | 278                | 1.42 ns         | 1+              | -0.150(5)                 | [1291]                | TDPAC        | <u>19790o01</u>             | NP A321 180 (1979)                       |
|                   |               |                    |                 |                 |                           |                       |              |                             |                                          |
|                   | 53   133      | 0                  | 20.9 h          | 7/2+            | -0.23(1)                  | [1271]                | AB           | <u>1961Al20</u>             | UCRL 9850 (1960)                         |
| Xenon             | Calculated e  | │<br>fg in XeH+ ar | d XeD+ except   | for (a) estimat | ed Q of this state giving | efq at Xe in Cd metal |              |                             |                                          |
|                   |               | ated from B        |                 |                 |                           |                       |              |                             |                                          |
|                   | B - Efg estin | nated from sy      | stematics in Te | metal           |                           |                       |              |                             |                                          |
|                   |               |                    |                 |                 |                           |                       |              |                             |                                          |
|                   | 54 Xe 117     | 0                  | 1.02 m          | 5/2+            | +1.14((4)                 | [131Xe]               | CLS          | <u>1990NeZY</u>             | PC Neugart (1990)                        |
|                   |               |                    |                 |                 |                           |                       |              |                             |                                          |
|                   | 54 Xe 119     | 0                  | 5.8 m           | 5/2+            | +1.29(5)                  | [131Xe]               | CLS          | <u>1990NeZY</u>             | PC Neugart (1990)                        |
|                   |               |                    |                 |                 |                           |                       |              |                             |                                          |
|                   | 54 Xe 121     | 0                  | 39 m            | 5/2+            | +1.31(5)                  | [131Xe]               | CLS          | <u>1990NeZY</u>             | PC Neugart (1990)                        |
|                   |               |                    |                 |                 |                           |                       |              |                             |                                          |
|                   | 54 Xe 123     | 180+x              | 5.2 ms          | 7/2(-)          | 1.4(3)                    | [125Xe 296 keV]       | TDPAD        | <u>1982Ze05</u>             | ZP A308 227 (1982)                       |
|                   |               | 201 + x            | 17 ns           | 9/2-            | 1.1(6)                    | [125Xe 296 keV]       | TDPAD(ampl)  | <u>1982Ze05</u>             | ZP A308 227 (1982)                       |
|                   | E4.V- 42E     | 252                | F7 -            | 0/2             | .0.417/15)                | [12170]               | CLC          | 1000No7V                    | DC Novement (1000)                       |
|                   | 54 Xe 125     | 253<br>296         | 57 s<br>140 ns  | 9/2-            | +0.417(15)                | [131Xe]               | CLS          | <u>1990NeZY</u><br>1982Ze05 | PC Neugart (1990)  ZP A308 227 (1982)    |
|                   |               | 296                | 140 ns          | 7/2+            | 1.40(15) (a)              | Α                     | not measured | <u>1982Ze05</u>             | ZP A308 227 (1982)                       |
|                   | 54 Xe 127     | 297                | 1.15 m          | 9/2-            | +0.68(2)                  | [131Xe]               | CLS          | 1990NeZY                    | PC Neugart (1990)                        |
|                   | 34 AE 127     | 231                | 1.13 111        | 3/2-            | +0.06(2)                  | [131Ve]               | CLS          | <u>1930NEZ1</u>             | FC Neugait (1990)                        |
|                   | 54 Xe 129     | 40                 | 0.98 ns         | 3/2+            | -0.393(10)                | [131Xe]               | ME           | 1964Pe06                    | PR 135B 1102 (1964)                      |
|                   | 5 . AC 123    | 236                | 8.89 d          | 11/2-           | +0.63(2)                  | [131Xe]               | CLS          | <u>1990NeZY</u>             | PC Neugart (1990)                        |
|                   |               | 200                | 0.03 0          | /-              | 10.05(2)                  | [252/tc]              | 020          | <u> </u>                    |                                          |
| Reference isotope | 54 Xe 131     | 0                  | stable          | 3/2+            | -0.114(1)                 |                       | CLS          | 1989Bo03                    | PL B216 7 (1989)                         |
| ,                 |               | 164                | 11.8 d          | 11/2-           | +0.72(3)                  | [131Xe]               | CLS          | 1990NeZY                    | PC Neugart (1990)                        |
|                   |               |                    |                 |                 | , ,                       |                       |              |                             | <u> </u>                                 |
|                   | 54 Xe 132     | 2214               | 90 ns           | 7-              | 0.010(5)                  | В                     | TDPAD        | <u>1987Le31</u>             | UkrF 32 1636 (1987)                      |
|                   |               |                    |                 |                 |                           |                       |              |                             |                                          |
|                   | 54 Xe 133     | 0                  | 5.24 d          | 3/2+            | +0.140(5)                 | [131Xe]               | CLS          | <u>1990NeZY</u>             | PC Neugart (1990)                        |
|                   |               | 233                | 2.19 d          | 11/2-           | +0.76(5)                  | [131Xe]               | CLS          | <u>1990NeZY</u>             | PC Neugart (1990)                        |
|                   |               |                    |                 |                 |                           |                       |              |                             |                                          |
|                   | 54 Xe 135     | 0                  | 9.10 h          | 3/2+            | +0.210(7)                 | [131Xe]               | CLS          | <u>1990NeZY</u>             | PC Neugart (1990)                        |
|                   |               | 527                | 15.3 m          | 11/2-           | +0.61(2)                  | [131Xe]               | CLS          | <u>1990NeZY</u>             | PC Neugart (1990)                        |
|                   |               |                    |                 | - 1-            |                           |                       |              |                             | 2, 22, 24, 22, 24, 22, 24, 24, 24, 24, 2 |
|                   | 54 Xe 137     | 0                  | 3.82 m          | 7/2-            | -0.47(2)                  | [131Xe]               | CLS          | <u>1989Bo03</u>             | PL B216 7 (1989)                         |
|                   | 54 Xe 139     | 0                  | 39.7 s          | 2/2             | ±0.30(3)                  | [12175]               | CLS          | 1989Bo03                    | DI D216 7 /10001                         |
|                   | 54 AE 139     | U                  | 39./5           | 3/2-            | +0.39(2)                  | [131Xe]               | CLS          | <u>5009EQET</u>             | PL B216 7 (1989)                         |
|                   | 54 Xe 141     | 0                  | 1.73 s          | 5/2+            | -0.57(2)                  | [131Xe]               | CLS          | 1989Bo03                    | PL B216 7 (1989)                         |
|                   | 24 VE 141     | U                  | 1./33           | 3/2+            | -0.37(2)                  | [TOTVE]               | CLS          | 19090003                    | LF D510 \ (1303)                         |
|                   | 54 Xe 143     | 0                  | 0.30 s          | 5/2-            | +0.91(3)                  | [131Xe]               | CLS          | 1989Bo03                    | PL B216 7 (1989)                         |
|                   | 3-1 NC 1-13   |                    | 0.50 3          | 5,2             | 3.31(3)                   | [232/c]               | 020          | 25555005                    | , (1505)                                 |
|                   |               |                    |                 |                 |                           |                       |              |                             |                                          |

| Caesium         Colculated etg in CsF molecule.         2008Pv02         Mol Phys 106 1965 (2           A - estimated etg ot Cs in Go metal         2008Pv02         Mol Phys 106 1965 (2           55 Cs 118         (0)         14 s         2         +1.31(17)         [133Cs]         ABLS         1987Co19         NP A468 1 (1987)           55 Cs 119         (0)         36 s         9/2+         +2.65(17)         [133Cs]         ABLS         1981Th06         NP A367 1 (1981)           (0)         28 s         3/2+         +0.85(12)         [133Cs]         ABLS         1981Th06         NP A367 1 (1981)           (0)         28 s         3/2+         +0.85(12)         [133Cs]         ABLS         1981Th06         NP A367 1 (1981)           (0)         2.27 m         3/2+         +0.79(4)         [133Cs]         ABLS         1981Th06         NP A367 1 (1981)           (0)         2.27 m         3/2+         +0.79(4)         [133Cs]         ABLS         1981Th06         NP A367 1 (1981)           (0)         4.2 m         3.2 corm         9/2+         +2.53(13)         [133Cs]         ABLS         1981Th06         NP A367 1 (1981)           (0)         4.2 m         8-         +3.09(8)         [133Cs]         ABLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| A - estimated efg at Cs in Ga metal    55 Cs 118   (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| S5 C5 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| S5 C5 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| 133cs   133cs   133cs   1381Th06   133cs   1381Th06   133cs   1381Th06   133cs   1381Th06   133cs   1381Th06   133cs   1381Th06   133cs   13 |            |
| 133cs   133cs   133cs   1381Th06   133cs   1381Th06   133cs   1381Th06   133cs   1381Th06   133cs   1381Th06   133cs   1381Th06   133cs   13 |            |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |
| S5 Cs 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| S5 Cs 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| The color of the |            |
| 55 Cs 122 (0) 21 s 1+ -0.179(10) [133Cs] ABLS 1981Th06 NP A367 1 (1981)  (0) 4.2 m 8- +3.09(8) [133Cs] ABLS 1981Th06 NP A367 1 (1981)  55 Cs 124 0 30.8 s 1+ -0.69(4) [133Cs] ABLS 1981Th06 NP A367 1 (1981)  55 Cs 126 0 1.64 m 1+ -0.64(3) [133Cs] ABLS 1981Th06 NP A367 1 (1981)  55 Cs 127 66 24.9 ns 5/2(+) 0.58(12) A TDPAC 1999Co22 NIM B152 357 (1991)  55 Cs 128 0 3.62 m 1+ -0.54(3) [133Cs] ABLS 1981Th06 NP A367 1 (1981)  55 Cs 128 0 3.62 m 1+ -0.056(6) [133Cs] ABLS 1981Th06 NP A367 1 (1981)  55 Cs 130 0 29.9 m 1+ -0.056(6) [133Cs] ABLS 1981Th06 NP A367 1 (1981)  55 Cs 131 0 9.69 d 5/2+ +0.59(2) [133Cs] ABLS 1981Th06 NP A367 1 (1981)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| (0)   4.2 m   8-   +3.09(8)   [133Cs]   ABLS   1981Th06   NP A367 1 (1981)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| (0)   4.2 m   8-   +3.09(8)   [133Cs]   ABLS   1981Th06   NP A367 1 (1981)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| 55 Cs 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| 55 Cs 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| 55 Cs 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| 55 Cs 127 66 24.9 ns 5/2(+) 0.58(12) A TDPAC 1999Co22 NIM B152 357 (199  55 Cs 128 0 3.62 m 1+ -0.54(3) [133Cs] ABLS 1981Th06 NP A367 1 (1981)  55 Cs 130 0 29.9 m 1+ -0.056(6) [133Cs] ABLS 1981Th06 NP A367 1 (1981)  0+x 3.7 m 5(-) +1.36(8) [133Cs] ABLS 1981Th06 NP A367 1 (1981)  55 Cs 131 0 9.69 d 5/2+ +0.59(2) [133Cs] ABLS 1975Ac01 NP A248 157 (1975)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |
| 55 Cs 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| 55 Cs 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| 55 Cs 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9)         |
| 0+x     3.7 m     5(-)     +1.36(8)     [133Cs]     ABLS     1981Th06     NP A367 1 (1981)       55 Cs 131     0     9.69 d     5/2+     +0.59(2)     [133Cs]     ABLS     1975Ac01     NP A248 157 (1975)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| 55 Cs 131 0 9.69 d 5/2+ +0.59(2) [133Cs] ABLS <u>1975Ac01</u> NP A248 157 (1975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <br>J      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| 134 8.7 ns 5/2+ 0.20(2) [133Cs 81 keV] TDPAC 2000De13 Eur Phys J A7 177 (20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100)       |
| 55 Cs 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br>5)     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · <u>'</u> |
| Reference isotope   55 Cs 133   0   stable   7/2+   -0.00343(10)   MB   <u>1998Pe18</u>   JCP 47 3896 (1967)/JCP 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6739 (1998 |
| 81 6.31 ns 5/2+ 0.30(2) [133Cs] ME <u>1977Ca30</u> PR B15 3318 (1977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>')</u>  |
| 55 Cs 134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| 55 Cs 134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| 155 2.50 II 8- 10.52(0) [155Cs] ABLS 1501HIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
| 55 Cs 135 0 3x10*6 y 7/2+ +0.048(3) [133Cs] ABLS <u>1975Ac01</u> NP A248 157 (1975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u>   |
| 1633 53 m 19/2- +0.83(7) [133Cs] ABLS <u>1981Th06</u> NP A367 1 (1981)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| 55 Cs 136 0 13.2 d 5+ +0.213(15) [133Cs] ABLS <u>1975AcO1</u> NP A248 157 (1975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •          |
| 0+x 19 s 8- +0.70(3) [133Cs] ABLS <u>1981Th06</u> NP A367 1 (1981)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| 55 Cs 137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5)         |
| NF A240 137 (137.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>'1</u>  |
| 55 Cs 138 0 32.2 m 3- +0.112(17) [133Cs] ABLS <u>1981Th06</u> NP A367 1 (1981)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <br>J      |
| 80 2.9 m 60.37(5) [133Cs] ABLS <u>1981Th06</u> NP A367 1 (1981)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |

| Element           | Nucleus       | E(level)      | T 1/2          | I <sup>p</sup> | Q(b)                   | Ref. Std. | Method | NSR Keynumber      | Journal Reference                     |
|-------------------|---------------|---------------|----------------|----------------|------------------------|-----------|--------|--------------------|---------------------------------------|
|                   | 55 Cs 139     | 0             | 9.4 m          | 7/2+           | -0.063(14)             | [133Cs]   | ABLS   | <u>1979Bo01</u>    | ZP A289 227 (1979)                    |
|                   |               |               |                |                |                        |           |        |                    |                                       |
|                   | 55 Cs 140     | 0             | 65 s           | 1-             | -0.094(15)             | [133Cs]   | ABLS   | <u>1981Th06</u>    | NP A367 1 (1981)                      |
|                   | FF C- 144     | 0             | 25.4 -         | 7/2:           | 0.42/7\                | [1220]    | ADLC   | 1091Th06           | ND A2C7 1 (1001)                      |
|                   | 55 Cs 141     | 0             | 25.1 s         | 7/2+           | -0.42(7)               | [133Cs]   | ABLS   | <u>1981Th06</u>    | NP A367 1 (1981)                      |
|                   | 55 Cs 143     | 0             | 1.78 s         | 3/2+           | +0.44(3)               | [133Cs]   | ABLS   | <u>1981Th06</u>    | NP A367 1 (1981)                      |
|                   | 33 63 143     |               | 1.703          | 3/2            | 10.44(3)               | [13363]   | ABES   | <u> </u>           | 111 7/307 1 (1301)                    |
|                   | 55 Cs 144     | 0             | 1.00 s         | 1              | +0.29(2)               | [133Cs]   | ABLS   | 1981Th06           | NP A367 1 (1981)                      |
|                   |               |               |                |                |                        |           |        |                    |                                       |
|                   | 55 Cs 145     | 0             | 0.59 s         | 3/2+           | +0.58(6)               | [133Cs]   | ABLS   | <u>1981Th06</u>    | NP A367 1 (1981)                      |
|                   |               |               |                |                |                        |           |        |                    |                                       |
|                   | 55 Cs 146     | 0             | 0.34 s         | 1              | +0.21(3)               | [133Cs]   | ABLS   | <u>1987Co19</u>    | NP A468 1 (1987)                      |
| Barium            | Efa calculati | ons in the En | 2P3/2 state of | the Ball spe   | ctrum                  |           |        | 2008Py02           | Mol Phys 106 1965 (2008)              |
| Darium            | Ejy culculati | uns in the op | 223/2 state of | тіе ви ії зрес | Ltrum                  |           |        | 2008PY02           | MIOI PITYS 100 1905 (2008)            |
|                   | 56 Ba 121     | 0             | 30 s           | 5/2(+)         | +1.96(13)              | [135Ba]   | CLS    | 1988We14           | PL B211 272 (1988)                    |
|                   | 30 30 121     |               | 300            | 5/2(1)         | -100(20)               | []        |        |                    | ()                                    |
|                   | 56 Ba 123     | 0             | 2.7 m          | 5/2+           | +1.63(13)              | [135Ba]   | CLS    | <u>1988We14</u>    | PL B211 272 (1988)                    |
|                   |               |               |                |                |                        |           |        |                    |                                       |
|                   | 56 Ba 127     | 80            | 1.9 s          | 7/2(-)         | +1.78(14)              | [135Ba]   | CLS    | <u>1992Da06</u>    | J Phys G 17 L67 (1992)                |
|                   |               |               |                |                | . == /                 |           |        |                    |                                       |
|                   | 56 Ba 129     | 8.4           | 2.16h          | 7/2+           | +1.75(14)              | [135Ba]   | CLS    | <u>1979Be25</u>    | ZP A291 219 (1979)                    |
|                   | 56 Ba 130     | 357           | 37 ps          | 2+             | -1.02(15) or -0.09(15) |           | CER    | 1989Bu07           | NP A494 102 (1989)                    |
|                   | 30 Ba 130     | 2476          | 9.54 ms        | 8-             | +2.40(6)               | [135Ba]   | CLS    | 2002Mo31           | PL B547 200 (2002)                    |
|                   |               | 2470          | 3.54 1113      |                | 12.40(0)               | [15550]   | CLS    | <u> 2002INIOSI</u> | 12 8547 200 (2002)                    |
|                   | 56 Ba 131     | 188           | 14.6 m         | 9/2-           | +1.60(14)              | [135Ba]   | CLS    | 1983Mu12           | NP A403 234 (1983)                    |
|                   |               |               |                |                |                        |           |        |                    |                                       |
|                   | 56 Ba 133     | 288           | 38.9 h         | 11/2-          | +0.96(6)               | [135Ba]   | CLS    | <u>1979Be25</u>    | ZP A291 219 (1979)                    |
|                   |               |               |                |                |                        |           |        |                    |                                       |
|                   | 56 Ba 134     | 605           | 5.1 ps         | 2+             | -0.26(12) or +0.15(12) |           | CER    | <u>1989Bu07</u>    | NP A494 102 (1989)                    |
| Poforonco icotono | E6 Do 12E     | 0             | stable         | 2/2:           | 10.160(2)              |           | CFBLS  | 1984We15           | ZP A318 125 (1984)                    |
| Reference isotope | 56 Ba 135     | 268           | 28.7 h         | 3/2+<br>11/2-  | +0.160(3)<br>+1.03(15) | [135Ba]   | CLS    | 1979Be25           | ZP AS16 125 (1964) ZP A291 219 (1979) |
|                   |               | 200           | 20.7 11        | 11/2-          | . 1.03(13)             | [15550]   | CLS    | 15755025           | 21 (122 223 (1373)                    |
|                   | 56 Ba 136     | 819           | 1.93 ps        | 2+             | -0.19(6) or +0.07(7)   |           | CER    | <u>1986Ro15</u>    | PR C34 732 (1986)                     |
|                   |               |               |                |                |                        |           |        |                    |                                       |
| Reference isotope | 56 Ba 137     | 0             | stable         | 3/2+           | +0.245(4)              |           | CFBLS  | <u>1984We15</u>    | ZP A318 125 (1984)                    |
|                   |               | 662           | 2.55 m         | 11/2-          | +0.85(10)              | [135Ba]   | CLS    | <u>1983Mu12</u>    | NP A403 234 (1983)                    |
|                   |               |               |                |                |                        |           |        |                    |                                       |
|                   | 56 Ba 138     | 1436          | 0.206 ps       | 2+             | -0.14(6) or +0.08(6)   |           | CER    | <u>1989Bu07</u>    | NP A494 102 (1989)                    |
|                   | FC Do 120     | 0             | 94.6           | 7/2            | 0.572/12)              | [1250]    | CEDIC  | 10000007           | 7D A220 407 (4000)                    |
|                   | 56 Ba 139     | 0             | 84.6 m         | 7/2-           | -0.573(13)             | [135Ba]   | CFBLS  | <u>1988We07</u>    | ZP A329 407 (1988)                    |
|                   | 56 Ba 140     | 602           | 7.2 ps         | 2+             | -0.5(3)                |           | CER    | 2012Ba40           | PR C86 034310 (2012)                  |
|                   | 30 20 170     | 302           | 7.2 p3         |                | 0.5(5)                 |           | CEN    | <u> </u>           | 111 000 004010 (2012)                 |
|                   | 56 Ba 141     | 0             | 18.7 m         | 3/2-           | +0.454(10)             | [135Ba]   | CFBLS  | 1988We07           | ZP A329 407 (1988)                    |
|                   |               |               |                | i i            | , ,                    |           |        |                    | ` '                                   |
|                   | 56 Ba 143     | 0             | 14.5 s         | 5/2(+)         | -0.88(2)               | [135Ba]   | CFBLS  | <u>1988We07</u>    | ZP A329 407 (1988)                    |
|                   |               |               |                |                |                        |           |        |                    |                                       |

| Element           | Nucleus       | E(level)          | T 1/2               | I P          | Q(b)                     | Ref. Std. | Method              | NSR Keynumber              | Journal Reference                                       |
|-------------------|---------------|-------------------|---------------------|--------------|--------------------------|-----------|---------------------|----------------------------|---------------------------------------------------------|
|                   |               | ,                 | 1/2                 |              |                          |           |                     |                            |                                                         |
|                   | 56 Ba 145     | 0                 | 4.31 s              | 5/2(-)       | +1.22(2)                 | [135Ba]   | CFBLS               | <u>1988We07</u>            | ZP A329 407 (1988)                                      |
| Lanthanum         | Calculated ef | fg's in La hai    | lides               |              |                          |           |                     | 2008Py02                   | Mol Phys 106 1965 (2008)                                |
|                   | 57 La 135     | 0                 | 19.5 h              | 5/2+         | -0.4(4)                  | [139La]   | CLS                 | 2003li03                   | PR C68 054328 (2003)                                    |
|                   |               |                   |                     |              |                          |           |                     |                            |                                                         |
|                   | 57 La 137     | 0                 | 6 x 10*4 y          | 7/2+         | +0.21(4)                 | [139La]   | CLS                 | <u>2003li03</u>            | PR C68 054328 (2003)                                    |
|                   | 57 La 138     | 0                 | 1.1x10*11 y         | 5+           | +0.39(3)                 | [139La]   | CLS                 | <u>2003li03</u>            | PR C68 054328 (2003)                                    |
| Reference isotope | 57 La 139     | 0                 | stable              | 7/2+         | +0.200(6)                |           | MB                  | 2007Ja16                   | JCP 127 204303 (2007)                                   |
|                   | 57 La 140     | 0                 | 40.3 h              | 3-           | +0.084(13)               | [139La]   | NO/S                | <u>1966Bl05</u>            | PR 143 911 (1966)                                       |
| Cerium            | There is no a | ⊥<br>dopted efg ( | calculation for cei | rium.        |                          |           |                     |                            |                                                         |
|                   | A. Normalise  | d to nuclear      | model estimate      | of Q 138Cs   | 3538 keV.                |           |                     |                            |                                                         |
|                   | 58 Ce 129     | 108               | 60 ns               | 9/2-         | 1.32(13)                 | А         | TDPAD               | <u>1998lo01</u>            | NP A633 459 (1998)                                      |
|                   | 58 Ce 130     | 2454              | 109 ns              | 7-           | 1.8(2)                   | A         | TDPAD               | <u>19991o02</u>            | PR C60 024316 (1999)                                    |
|                   | 58 Ce 131     | 162               | 88 ns               | 9/2-         | 0.92(10)                 | А         | TDPAD               | <u>1998lo01</u>            | NP A633 459 (1998)                                      |
|                   | 58 Ce 134     | 3209              | 308 ns              | 10+          | +1.32(12)                | А         | TDPAD               | <u>1983Da29</u>            | HFI 15/16 101 (1983)                                    |
|                   | 58 Ce 136     | 3095              | 2.2 ms              | 10+          | +1.11(11)                | А         | TDPAD               | <u>1983Da29</u>            | HFI 15/16 101 (1983)                                    |
|                   | 58 Ce 138     | 3538              | 82 ns               | 10+          | estimated +0.77 eb       |           | not measured        | 1983Da29                   | HFI 15/16 101 (1983)                                    |
|                   | 58 Ce 140     | 2084              | 3.4 ns              | 4+           | 0.35(7)                  | [139La]   | TDPAC               | <u>1973KIZV</u>            | JPJS 34 265 (1973)                                      |
|                   | 58 Ce 142     | 641               | 5.7 ps              | 2+           | -0.16(5) or -0.37(5)     |           | CER                 | 1988Ve08/1989Sp07          | PR C38 2982 (1988)/AuJP 42 345 (1989)                   |
| Praseodymium      | Efg calculate | d in the Pr i     | on with estimated   | d Sternheime | er correction (1994II01) |           | N.B. Deviation from | standard adopted by Pyykko | o (2008Py02) who gives Q <sup>141</sup> Pr -0.059(4) b. |
| Reference isotope | 59 Pr 141     | 0                 | stable              | 5/2+         | -0.077(6)                |           | CLS                 | <u>1994li01</u>            | PR C50 661 (1994)                                       |
|                   | 59 Pr 142     | 0                 | 19.2 h              | 2-           | 0.039(17)                | [141Pr]   | AB                  | <u>1962Ca10</u>            | PR 126 1004 (1962)                                      |
|                   | 59 Pr 143     | 0                 | 13.57 d             | 7/2+         | +0.77(16)                | [141Pr]   | CLS                 | <u>1994li01</u>            | PR C50 661 (1994)                                       |
| Neodymium         | Efg calculate | d in the Nd       | ion with estimate   | d Sternheim  | ner correction           |           | N.B. Deviation from | standard adopted by Pyykko | o (2008Py02) who gives Q <sup>143</sup> Nd -0.63(6) b.  |
|                   | 60 Nd 135     | 0                 | 12.4 m              | 9/2-         | +1.9(5)                  | [143Nd]   | CLS                 | <u>1992Le09</u>            | JPhys G18 1177 (1992)                                   |
|                   | 60 Nd 139     | 0                 | 30 m                | 3/2+         | +0.28(9)                 | [143Nd]   | CLS                 | <u>1992Le09</u>            | JPhys G18 1177 (1992)                                   |
|                   | 60 Nd 141     | 0                 | 2.49 h              | 3/2+         | +0.32(13)                | [143Nd]   | CLS                 | <u>1992Le09</u>            | JPhys G18 1177 (1992)                                   |

| Element           | Nucleus       | E(level)    | T 1/2           | I P   | Q(b)                 | Ref. Std.  | Method | NSR Keynumber            | Journal Reference                           |
|-------------------|---------------|-------------|-----------------|-------|----------------------|------------|--------|--------------------------|---------------------------------------------|
| Reference isotope | 60 Nd 143     | 0           | stable          | 7/2-  | -0.61(2)             |            | AB     | 1992Au04                 | ZP D23 19 (1992)                            |
| nejerence isotope | 00110113      |             | Stubic          | 7,2   | 0.01(2)              |            | 715    | <u>155271001</u>         | 2. 525 13 (1552)                            |
|                   | 60 Nd 144     | 697         | 4.51 ps         | 2+    | -0.15(6) or -0.28(6) |            | CER    | <u>1989Sp07</u>          | AuJP 42 345 (1989)                          |
|                   | 60 Nd 145     | 0           | stable          | 7/2-  | -0.314(12)           | [143Nd]    | AB     | <u>1992Au04</u>          | ZP D23 19 (1992)                            |
|                   | CO N 1 14C    | 454         | 27.5            | 2.    | 0.79(0)              |            | CER    | 10700-00                 | NP A151 252 (1970)                          |
|                   | 60 Nd 146     | 454         | 27.5 ps         | 2+    | -0.78(9)             |            | CER    | <u>1970Ge08</u>          | NP A151 252 (1970)                          |
|                   | 60 Nd 147     | 0           | 11.0 d          | 5/2-  | +0.9(3)              | [143Nd]    | AB     | <u>1970PiZR</u>          | BAPS 15 769 (1970)                          |
|                   | 60 Nd 148     | 302         | 78 ps           | 2+    | -1.46(13)            |            | CER    | <u>1970Ge08</u>          | NP A151 252 (1970)                          |
|                   | 60 Nd 149     | 0           | 1.73 h          | 5/2-  | +1.3(3)              | [143Nd]    | AB     | <u>1970PiZR</u>          | BAPS 15 769 (1970)                          |
|                   |               |             |                 |       |                      |            |        |                          |                                             |
|                   | 60 Nd 150     | 130         | 2142 ps         | 2+    | -2.0(5)              |            | CER    | <u>1970Ge08</u>          | NP A151 252 (1970)                          |
| Promethium        | Empirical efg | estimate in | Pm atom         |       |                      |            |        |                          |                                             |
|                   | 61 Pm 145     | 0           | 17.7 y          | 5/2+  | +0.23(8)             | [147Pm]    | CLS    | <u>1992Al03</u>          | JP B25 571 (1992)                           |
| Reference isotope | 61 Pm 147     | 0           | 2.623 y         | 7/2+  | +0.74(20)            |            | 0      | <u>1966Re04</u>          | PR 141 1123 (1966)                          |
|                   |               |             |                 |       |                      |            |        |                          |                                             |
|                   | 61 Pm 148     | 0           | 5.37 d          | 1-    | +0.2(2)              | [147Pm]    | AB     | <u>1963Bu14</u>          | PR 132 723 (1963)                           |
|                   | 61 Pm 151     | 0           | 28.4 h          | 5/2 + | 2.2(9)               | [147Pm]    | AB     | <u>1963Bu14</u>          | PR 132 723 (1963)                           |
| Samarium          | Muonic atom   | X-ray hype  | rfine structure |       |                      |            |        |                          |                                             |
|                   | 62 Sm 140     | 3172        | 19.4 ns         | 10+   | 1.7(5)               | [154Sm 82] | TDPAD  | <u>1985Be23</u>          | ZP A321 403 (1985)                          |
|                   | 02 0 1 10     | 3272        | 2311113         |       | 2.7 (5)              | [15 15 62] | .5.7.5 | 2505025                  | 2. 7.521 .00 (1505)                         |
|                   | 62 Sm 141     | 176         | 22.6 m          | 11/2- | +1.6(5)              | [147Sm]    | CLS    | <u>1992Le09</u>          | JPhys G18 1177 (1992)                       |
|                   | 62 Sm 142     | 2372        | 170 ns          | 7-    | +1.1(3)              | [154Sm 82] | TDPAD  | 1985Be23/1986Da22        | ZP A321 403 (1985)/PL B181 21 (1986         |
|                   | 62 Sm 143     | 0           | 8.83 m          | 3/2+  | +0.4(2)              | [147Sm]    | CLS    | <u>1992Le09</u>          | JPhys G18 1177 (1992)                       |
|                   | 62 Sm 145     | 0           | 340 d           | 7/2-  | -0.60(7)             | [147Sm]    | LRFS   | <u>1990En01</u>          | JPhys G16 105 (1990)                        |
|                   |               |             |                 | -,-   | 3.55(1)              | [=]        |        |                          | , ()                                        |
| Reference isotope | 62 Sm 147     | 0           | 1.1x10*11y      | 7/2-  | -0.26(3)             |            | Mu-X   | 2008Py02/1981Ba28        | Mol Phys 106 1965 (2008)/NP A364 446 (1981) |
|                   |               | 121         | 0.78 ns         | 5/2-  | -0.5(2)              | [147Sm]    | ME     | <u>1971Pa04</u>          | PR C3 841 (1971)                            |
|                   | 62 Sm 148     | 550         | 7.3 ps          | 2+    | -1.0(3)              |            | CER    | <u>1989Ra17</u>          | JPJS 34 443 (1973)                          |
|                   | 62 Sm 149     | 0           | > 2x10*15 y     | 7/2-  | +0.078(8)            | [147Sm]    | AB     | <u>1972Ch55/1992Le09</u> | PR A6 2011 (1972)/JPhys G18 1177 (1992      |
|                   |               | 23          | 7.6 ns          | 5/2-  | +1.01(9)             | [147Sm]    | Mu-X   | <u>1981Ba28</u>          | NP A364 446 (1981)                          |
|                   | 62 Sm 150     | 334         | 49 ps           | 2+    | -1.3(2)              |            | CER    | <u>1973Gr06</u>          | PRL 30 453 (1973)                           |
|                   |               | _           |                 | - /-  | 0.5:(=)              |            |        | 10005                    |                                             |
|                   | 62 Sm 151     | 0           | 90 y            | 5/2-  | +0.71(7)             | [147Sm]    | LRFS   | <u>1990En01</u>          | JPhys G16 105 (1990)                        |

| Element           | Nucleus     | E(level)      | T <sub>1/2</sub> | I <sup>p</sup> | Q(b)       | Ref. Std. | Method | NSR Keynumber   | Journal Reference    |
|-------------------|-------------|---------------|------------------|----------------|------------|-----------|--------|-----------------|----------------------|
| 2.6               | 62.6 452    | 422           | 4.40             | 2              | 4.555(4.5) |           | 14 V   | 40700.05        | ND 4245 205 (4070)   |
| Reference isotope | 62 Sm 152   | 122           | 1.40 ns          | 2+             | -1.666(16) |           | Mu-X   | <u>1979Po05</u> | NP A316 295 (1979)   |
|                   | 62 Sm 153   | 0             | 46.8 h           | 3/2+           | +1.30(12)  | [147Sm]   | LRFS   | <u>1990En01</u> | JPhys G16 105 (1990) |
| 2.6               | 62.6 45.4   | 02            | 2.04             | 2 .            | 4.07(4)    |           | 14 V   | 40700.05        | ND 4245 205 (4070)   |
| Reference isotope | 62 Sm 154   | 82            | 3.01 ns          | 2+             | -1.87(4)   |           | Mu-X   | <u>1979Po05</u> | NP A316 295 (1979)   |
|                   | 62 Sm 155   | 0             | 22.4 m           | 3/2-           | 1.13(13)   | [147Sm]   | AB     | <u>1976Fu06</u> | JPCR 5 835 (1976)    |
| Europium          | Muonic aton | n X-ray hypei | rfine structure  |                |            |           |        |                 |                      |
|                   | C2 F.: 140  | 0             | 1.54-            | 4(.)           | .0.21/4)   | [4525]    | CLC    | 10054602        | 7D A224 2F (400F)    |
|                   | 63 Eu 140   | 0 + x         | 1.54 s           | 1(+)           | +0.31(4)   | [153Eu]   | CLS    | <u>1985Ah02</u> | ZP A321 35 (1985)    |
|                   | 63 Eu 141   | 0             | 40 s             | 5/2+           | +0.85(4)   | [153Eu]   | CLS    | <u>1985Ah02</u> | ZP A321 35 (1985)    |
|                   |             |               |                  |                |            |           |        |                 |                      |
|                   | 63 Eu 142   | 0             | 2.4 s            | 1+             | +0.12(5)   | [153Eu]   | CLS    | 1985Ah02        | ZP A321 35 (1985)    |
|                   |             | 180           | 73 s             | 8-             | +1.41(6)   | [153Eu]   | CLS    | <u>1985Ah02</u> | ZP A321 35 (1985)    |
|                   | 63 Eu 143   | 0             | 2.6 m            | 5/2+           | +0.51(3)   | [153Eu]   | CLS    | <u>1985Ah02</u> | ZP A321 35 (1985)    |
|                   |             |               |                  |                |            |           |        |                 |                      |
|                   | 63 Eu 144   | 0             | 10 s             | 1+             | +0.10(3)   | [153Eu]   | CLS    | <u>1985Ah02</u> | ZP A321 35 (1985)    |
|                   | 63 Eu 145   | 0             | 5.93 d           | 5/2+           | +0.29(2)   | [153Eu]   | CLS    | <u>1985Ah02</u> | ZP A321 35 (1985)    |
|                   |             |               |                  |                |            |           |        |                 |                      |
|                   | 63 Eu 146   | 0             | 4.59 d           | 4-             | -0.18(6)   | [153Eu]   | CLS    | <u>1985Ah02</u> | ZP A321 35 (1985)    |
|                   | 63 Eu 147   | 0             | 24.1 d           | 5/2+           | +0.55(3)   | [153Eu]   | CLS    | 1985Ah02        | ZP A321 35 (1985)    |
|                   |             |               |                  |                |            |           |        |                 |                      |
|                   | 63 Eu 148   | 0             | 54.5 d           | 5-             | +0.35(6)   | [153Eu]   | CLS    | <u>1985Ah02</u> | ZP A321 35 (1985)    |
|                   | 63 Eu 149   | 0             | 93.1 d           | 5/2+           | +0.75(2)   | [153Eu]   | CLS    | 1985Ah02        | ZP A321 35 (1985)    |
|                   | 00 20 2 15  |               | 33.1 0           | 3/2            |            | [-55-2]   |        |                 |                      |
|                   | 63 Eu 150   | 0             | 35.8 y           | 5(-)           | +1.13(5)   | [153Eu]   | CLS    | <u>1985Ah02</u> | ZP A321 35 (1985)    |
|                   | 63 Eu 151   | 0             | stable           | 5/2+           | +0.903(10) | [153Eu]   | Mu-X   | 1984Ta04        | PR C29 1830 (1984)   |
|                   | 03 Lu 131   | 22            | 9.5 ns           | 7/2+           | +1.28(2)   | [133Eu]   | Mu-X   | 1984Ta05        | PR C29 1897 (1984)   |
|                   |             |               |                  |                | , ,        |           |        |                 | , , ,                |
|                   | 63 Eu 152   | 0             | 13.54 y          | 3-             | +2.72(3)   | [153Eu]   | CLS    | <u>1986Al33</u> | YadF 44 1134 (1986)  |
| Reference isotope | 63 Eu 153   | 0             | stable           | 5/2+           | +2.41(2)   |           | Mu-X   | <u>1984Ta04</u> | PR C29 1830 (1984)   |
| nejerence isotope | 33 Lu 133   | 83            | 0.80 ns          | 7/2+           | +0.44(2)   |           | Mu-X   | 1984Ta05        | PR C29 1897 (1984)   |
|                   |             | 103           | 3.9 ns           | 3/2+           | +1.253(12) | [153Eu]   | ME     | <u>1973Ar19</u> | PL A44 279 (1973)    |
|                   | 62 Eu 1E4   | 0             | 964              | 2              | ±2 0E/10\  | [1525]    | CLC    | 1006 4122       | VadE AA 1124 (1005)  |
|                   | 63 Eu 154   | 0             | 8.6 y            | 3-             | +2.85(10)  | [153Eu]   | CLS    | <u>1986Al33</u> | YadF 44 1134 (1986)  |
|                   | 63 Eu 155   | 0             | 4.68 y           | 5/2+           | +2.5(3)    | [153Eu]   | CLS    | <u>1990Al34</u> | ZP A337 257 (1990)   |
|                   | 63 Eu 157   | 0             | 15.2 h           | 5/2+           | +2.6(3)    | [153Eu]   | CLS    | 1990Al34        | ZP A337 257 (1990)   |
|                   | 03 LU 13/   | U             | 13.211           | J/ Z+          | ±2.0(3)    | [173En]   | CLS    | 133UAI34        | 7L M221 (T220)       |
|                   | 63 Eu 158   | 0             | 45.9 m           | 1(-)           | +0.66(14)  | [153Eu]   | CLS    | <u>1990Al34</u> | ZP A337 257 (1990)   |

| Element           | Nucleus       | E(level)       | T 1/2            | I <sup>p</sup> | Q(b)      | Ref. Std. | Method   | NSR Keynumber            | Journal Reference                       |
|-------------------|---------------|----------------|------------------|----------------|-----------|-----------|----------|--------------------------|-----------------------------------------|
|                   | 63 Eu 159     | 0              | 18.1 m           | 5/2+           | +2.7(3)   | [153Eu]   | CLS      | <u>1990Al34</u>          | ZP A337 257 (1990)                      |
| Gadolinium        | Muonic aton   | X-ray hypei    | rfine structure  |                |           |           |          |                          |                                         |
|                   |               |                |                  |                |           |           |          |                          |                                         |
|                   | 64 Gd 144     | 3433           | 130 ns           | 10+            | -1.40(6)  | [155Gd]   | TDPAD    | <u>1982Ha20/1985Da20</u> | NP A379 287 (1982)/NP A443 135 (1985)   |
|                   | 64 Gd 147     | 997            | 22.2 ns          | 13/2+          | -0.70(8)  | [155Gd]   | TDPAD    | 1982Ha20/1985Da20        | NP A379 287 (1982)/NP A443 135 (1985)   |
|                   |               | 3582           | 27 ns            | 27/2-          | -1.21(9)  | [155Gd]   | TDPAD    | 1982Ha20/1985Da20        | NP A379 287 (1982)/NP A443 135 (1985)   |
|                   |               | 8587           | 510 ns           | 49/2+          | -3.00(18) | [155Gd]   | TDPAD    | 1982Ha20/1985Da20        | NP A379 287 (1982)/NP A443 135 (1985)   |
|                   | 64 Gd 148     | 2695           | 16.5 ns          | 9-             | 0.96(5)   | [155Gd]   | TDPAD    | <u>1982Ha20</u>          | NP A379 287 (1982)                      |
|                   | 64 Gd 154     | 123            | 1.17 ns          | 2+             | -1.82(4)  |           | Mu-X     | <u>1983La08</u>          | PR C27 1772 (1983)                      |
|                   |               |                |                  |                |           |           |          |                          |                                         |
| Reference isotope | 64 Gd 155     | 0              | stable           | 3/2-           | +1.27(3)  |           | Mu-X     | <u>1983La08</u>          | PR C27 1772 (1983)                      |
|                   |               | 87             | 6.35 ns          | 5/2+           | +0.110(8) | [155Gd]   | ME       | <u>1974Ar23</u>          | NP A233 385 (1974)                      |
|                   |               | 105            | 1.18 ns          | 3/2+           | +1.27(5)  | [155Gd]   | ME       | <u>1974Ar23</u>          | NP A233 385 (1974)                      |
|                   | 64 Gd 156     | 89             | 2.21 ns          | 2+             | -1.93(4)  |           | Mu-X     | <u>1983La08</u>          | PR C27 1772 (1983)                      |
| eference isotope  | 64 Gd 157     | 0              | stable           | 3/2-           | +1.35(3)  |           | Mu-X     | 1983La08                 | PR C27 1772 (1983)                      |
| ejerence isotope  | 04 00 137     | 64             | 0.46 ms          | 5/2+           | +2.43(7)  | [157Gd]   | ME       | 1974Ar23                 | NP A233 385 (74)                        |
|                   |               | 04             | 0.40 1113        | 3/21           | 12.43(7)  | [13700]   | IVIL     | <u>1374A123</u>          | NI A255 505 (14)                        |
|                   | 64 Gd 158     | 80             | 2.52 ns          | 2+             | -2.01(4)  |           | Mu-X     | <u>1983La08</u>          | PR C27 1772 (1983)                      |
|                   | 64 Gd 160     | 75             | 2.70 ns          | 2+             | -2.08(4)  |           | Mu-X     | <u>1983La08</u>          | PR C27 1772 (1983)                      |
| Terbium Terbium   | Muonic aton   | X-ray hypei    | rfine structure  |                |           |           |          |                          |                                         |
|                   | A. Efg estimo | ite at Tb in y | ttrium ethylsupi | hate           |           |           |          |                          |                                         |
|                   | 65 Tb 148     | 0              | 60 m             | 2-             | -0.3(2)   | [159Tb]   | CLS      | <u>1990Al36</u>          | ZP A337 367 (1990)                      |
|                   | CE Th 450     | 0              | 2.40 h           | 2( )           | 0.00(12)  | [4507]    | CLC      | 10004126                 | 70 4227 267 (4000)                      |
|                   | 65 Tb 150     | 0 + x          | 3.48 h           | 2(-)           | 0.00(13)  | [159Tb]   | CLS      | <u>1990Al36</u>          | ZP A337 367 (1990)                      |
|                   | 65 Tb 152     | 0              | 17.5 h           | 2-             | +0.34(13) | [159Tb]   | CLS      | <u>1990Al36</u>          | ZP A337 367 (1990)                      |
|                   | 65 Tb 153     | 0              | 2.34 d           | 5/2+           | +1.08(14) | [159Tb]   | CLS      | <u>1990Al36</u>          | ZP A337 367 (1990)                      |
|                   | 65 Tb 154     | 0 + x          | 9.4 h            | 3-             | +2.4(13)  | [159Tb]   | NO/S     | <u>1983Be03</u>          | JPhys G9 213 (1983)                     |
|                   | 05 10 154     | 017            | 3.411            | 3              | 12.4(13)  | [13315]   |          | 13030003                 | 3. Hys 65 215 (1565)                    |
|                   | 65 Tb 155     | 0              | 5.32 d           | 3/2+           | +1.41(6)  | [159Tb]   | CLS      | <u>1990Al36</u>          | ZP A337 367 (1990)                      |
|                   | 65 Tb 156     | 0              | 5.35 d           | 3-             | +2.3(8)   | [159Tb]   | NO/S     | <u>1979Ri17/1983Be03</u> | CzJP B29 620 (1979)/JPhys G9 213 (1983) |
|                   | 65 Tb 157     | 0              | 99 y             | 3/2+           | +1.40(8)  | [159Tb]   | CLS      | <u>1990Al36</u>          | ZP A337 367 (1990)                      |
|                   | 65 Th 150     | 0              | 150 0            | 2              | +2 7/5\   | ^         | EDD/NO/S | 10695204                 | DD 170 1002 (40C0)                      |
|                   | 65 Tb 158     | 0              | 150 y            | 3-             | +2.7(5)   | A         | EPR/NO/S | <u>1968Ea04</u>          | PR 170 1083 (1968)                      |
| eference isotope  | 65 Tb 159     | 0              | stable           | 3/2+           | +1.432(8) |           | Mu-X     | <u>1984Ta04</u>          | PR C29 1830 (1984)                      |

| Element           | Nucleus       | E(level)      | T 1/2            | I <sup>p</sup> | Q(b)                     | Ref. Std.             | Method  | NSR Keynumber   | Journal Reference   |
|-------------------|---------------|---------------|------------------|----------------|--------------------------|-----------------------|---------|-----------------|---------------------|
|                   | CE TI 400     |               | 72.4.1           | 2              | 2.05/5)                  | [4507] ]              | NAD (ON | 400714 42       | DDI 50 4754 (4007)  |
|                   | 65 Tb 160     | 0             | 72.1 d           | 3-             | +3.85(5)                 | [159Tb]               | NMR/ON  | <u>1987Ma42</u> | PRL 59 1764 (1987)  |
|                   | 65 Tb 161     | 0             | 6.9 d            | 3/2+           | +1.3(6)                  | [159Tb]               | NO/S    | <u>1983Ri15</u> | HFI 15 83 (1(83)    |
| Dysprosium        | Muonic aton   | n X-ray hype  | rfine structure  |                |                          |                       |         |                 |                     |
|                   |               |               |                  |                | 1987). No information on | interaction analysis. |         |                 |                     |
|                   | B. Analysis o | f perturbatio | on of TDPAC in I | iquid sources  |                          |                       |         |                 |                     |
|                   | 66 Dy 147     | 751           | 59 s             | (11/2-)        | +0.67(10)                | Α                     | CLS     | 1989Ra17        | ADNDT 42 189 (1989) |
|                   | 66 Dy 149     | 0             | 4.23 m           | 7/2-           | -0.62(5)                 | A                     | CLS     | <u>1989Ra17</u> | ADNDT 42 189 (1989) |
|                   | 66 Dy 151     | 0             | 17 m             | 7/2-           | -0.30(5)                 | Α                     | CLS     | 1989Ra17        | ADNDT 42 189 (1989) |
|                   | 66 Dy 153     | 0             | 6.3 h            | 7/2-           | -0.15(9)                 | [163Dy]               | AB      | <u>1973Ek01</u> | PS 7 31 (1973)      |
|                   | 66 Dy 155     | 0             | 10.0 h           | 3/2-           | +0.96(2)                 | [163Dy]               | AB      | <u>1973Ek01</u> | PS 7 31 (1973)      |
|                   | 66 Dy 157     | 0             | 8.1 h            | 3/2-           | +1.29(2)                 | [163Dy]               | AB      | <u>1973Ek01</u> | PS 7 31 (1973)      |
|                   | 66 Dy 159     | 0             | 144 d            | 3/2-           | +1.37(2)                 | A                     | CLS     | <u>1989Ra17</u> | ADNDT 42 189 (1989) |
|                   | 66 Dy 160     | 87            | 1.96 ns          | 2+             | 1.8(4)                   | В                     | TDPAC   | <u>1970Wa25</u> | ZP A238 35 (1970)   |
|                   | 66 Dy 161     | 0             | stable           | 5/2+           | +2.51(2)                 | [163Dy]               | AB      | <u>1974Fe05</u> | PL A49 287 (1974)   |
|                   |               | 26            | 29 ns            | 5/2-           | +2.51(2)                 | [161Dy]               | ME      | <u>1973St23</u> | JPCR 5 1093 (1973)  |
|                   |               | 44            | 0.78 ns          | 7/2+           | +0.53(13)                | [161Dy]               | ME      | <u>1973Sy01</u> | PR C7 2056 (1973)   |
|                   |               | 75            | 3.2 ns           | 3/2-           | +1.45(6)                 | [161Dy]               | ME      | <u>1973St23</u> | JPCR 5 1093 (1973)  |
| Reference isotope | 66 Dy 163     | 0             | stable           | 5/2-           | +2.65(2)                 |                       | Mu-X    | <u>1984Ta04</u> | PR C29 1830 (1984)  |
|                   | 66 Dy 164     | 73            | 2.39 ns          | 2+             | -2.08(15)                | [161Dy]               | ME      | <u>1968Mu01</u> | ZP A208 184 (1968)  |
|                   | 66 Dy 165     | 0             | 2.33 h           | 7/2+           | +3.48(7)                 | [161Dy]               | AB      | 1968 Ra03       | PR 165 1360 (1968)  |
| Holmium           | Pionic atom   | X-ray hyperf  | ine structure    |                | n                        |                       |         |                 |                     |
|                   | 67 Ho 152     | 0             | 161.8 s          | 2-             | +0.1(2)                  | [165Ho]               | LRIS    | 1989Al27        | NP A504 549 (1989)  |
|                   |               | 160           | 49.5 s           | 9+             | -1.3(8)                  | [165Ho]               | LRIS    | 1989Al27        | NP A504 549 (1989)  |
|                   | 67 Ho 153     | 0             | 2.0 m            | 11/2-          | -1.1(5)                  | [165Ho]               | LRIS    | <u>1989Al27</u> | NP A504 549 (1989)  |
|                   | 67 Ho 154     | 0             | 11.76 m          | 2-             | +0.19(10)                | [165Ho]               | LRIS    | <u>1989Al27</u> | NP A504 549 (1989)  |
|                   |               | 320           | 3.10 m           | 8+             | -1.0(5)                  | [165Ho]               | LRIS    | 1989Al27        | NP A504 549 (1989)  |
|                   | 67 Ho 155     | 0             | 48 m             | 5/2+           | +1.56(12)                | [165Ho]               | LRIS    | <u>1989Al27</u> | NP A504 549 (1989)  |
|                   | 67 Ho 156     | 0             | 56 m             | 4(+)           | +2.40(18)                | [165Ho]               | LRIS    | <u>1989Al27</u> | NP A504 549 (1989)  |
|                   |               |               |                  |                |                          |                       |         |                 |                     |

| Element           | Nucleus      | E(level)    | T 1/2          | I <sup>p</sup> | Q(b)      | Ref. Std. | Method     | NSR Keynumber    | Journal Reference    |
|-------------------|--------------|-------------|----------------|----------------|-----------|-----------|------------|------------------|----------------------|
|                   | 67 Ho 157    | 0           | 12.6 m         | 7/2-           | +3.05(13) | [165Ho]   | LRIS       | 1989Al27         | NP A504 549 (1989)   |
|                   |              |             |                |                |           |           |            |                  |                      |
|                   | 67 Ho 158    | 0           | 11.3 m         | 5+             | +4.2(4)   | [165Ho]   | LRIS       | <u>1989Al27</u>  | NP A504 549 (1989)   |
|                   |              | 67.2        | 28 m           | 2-             | +1.66(17) | [165Ho]   | LRIS       | <u>1989Al27</u>  | NP A504 549 (1989)   |
|                   |              |             |                |                |           |           |            |                  |                      |
|                   | 67 Ho 159    | 0           | 35.05 m        | 7/2-           | +3.27(13) | [165Ho]   | LRIS       | <u>1989Al27</u>  | NP A504 549 (1989)   |
|                   |              |             |                |                |           |           |            |                  |                      |
|                   | 67 Ho 160    | 0           | 25.6 m         | 5+             | +4.0(2)   | [165Ho]   | LRIS       | <u>1989Al27</u>  | NP A504 549 (1989)   |
|                   |              | 60          | 5.02 h         | 2-             | +1.83(17) | [165Ho]   | LRIS       | <u>1989Al27</u>  | NP A504 549 (1989)   |
|                   |              |             |                | = 10           | 2.22(11)  | faceur 1  |            | 40004107         | NR 4504 540 (4000)   |
|                   | 67 Ho 161    | 0           | 2.48 h         | 7/2-           | +3.30(11) | [165Ho]   | LRIS       | <u>1989Al27</u>  | NP A504 549 (1989)   |
|                   | C7.Up 1C2    | 100         | C7 m           |                | .4.0/7\   | [1CFIIa]  | LDIC       | 10004127         | ND AFOA FAO (4000)   |
|                   | 67 Ho 162    | 106         | 67 m           | 6-             | +4.0(7)   | [165Ho]   | LRIS       | <u>1989Al27</u>  | NP A504 549 (1989)   |
|                   | 67 Ho 163    | 0           | 4570 y         | 7/2-           | +3.7(6)   | [165Ho]   | LRIS       | 1989Al27         | NP A504 549 (1989)   |
|                   | 07 110 103   | U           | 4370 y         | 1/2-           | +3.7(0)   | [103110]  | LNIS       | <u>1505AI27</u>  | NF A304 345 (1565)   |
| Reference isotope | 67 Ho 165    | 0           | stable         | 7/2-           | +3.58(2)  |           | Pi-X       | 1983Ol03         | NP A403 572 (1983)   |
| nejerence isotope | 07 110 103   | 95          | 22 ps          | 9/2-           | +3.52(4)  | [165Ho]   | Mu-X       | 1976Po05         | NP A262 493 (1976)   |
|                   |              | 33          | ps             | 3/2            | 10.02(1)  | [200110]  |            | 23707000         |                      |
| Erbium            | Muonic aton  | X-ray hyper | fine structure |                |           |           |            |                  |                      |
|                   | A - Estimate |             | -              |                |           |           |            |                  |                      |
|                   |              |             |                |                |           |           |            |                  |                      |
|                   | 68 Er 153    | 0           | 37.1 s         | (7/2-)         | -0.42(2)  | [167Er]   | CLS        | <u>1987OtZW</u>  | CERN EP 87/51 (1987) |
|                   |              |             |                |                |           |           |            |                  |                      |
|                   | 68 Er 155    | 0           | 5.3 m          | 7/2-           | -0.27(2)  | [167Er]   | CLS        | <u>1987OtZW</u>  | CERN EP 87/51 (1987) |
|                   |              |             |                |                |           |           |            |                  |                      |
|                   | 68 Er 157    | 0           | 25 m           | 3/2-           | +0.92(1)  | [167Er]   | CLS        | <u>1987OtZW</u>  | CERN EP 87/51 (1987) |
|                   |              |             |                |                |           |           |            |                  |                      |
|                   | 68 Er 159    | 0           | 36 m           | 3/2-           | +1.17(1)  | [167Er]   | CLS        | <u>1987OtZW</u>  | CERN EP 87/51 (1987) |
|                   |              |             |                | 2 /2           | 4.262(0)  | [4.675.]  | 4.5        | 40725102         | ND 4404 227 (4072)   |
|                   | 68 Er 161    | 0           | 3.21 h         | 3/2-           | +1.363(8) | [167Er]   | AB         | <u>1972Ek03</u>  | NP A194 237 (1972)   |
|                   | 68 Er 162    | 102         | 1.3 ns         | 2+             | <0        |           | CER        | 1981Hu02         | PR C23 240 (1981)    |
|                   | 06 EI 102    | 901         | 1.3 lis        | 2+             | 1.8(6)    |           | CER        | <u>1983Hu01</u>  | PR C27 550 (1983)    |
|                   |              | 301         | 1.24 μ3        | 21             | 1.0(0)    |           | CLIN       | <u>136311001</u> | FR C27 330 (1983)    |
|                   | 68 Er 163    | 0           | 75.1 m         | 5/2-           | +2.56(2)  | [167Er]   | CLS        | 1987OtZW         | CERN EP 87/51 (1987) |
|                   | 22 2. 200    |             |                | -,-            | ,         | [=0, =.]  | 320        |                  |                      |
|                   | 68 Er 164    | 92          | 1.48 ns        | 2+             | <0        |           | CER        | 1981Hu02         | PR C23 240 (1981)    |
|                   |              | 860         | 1.9 ps         | 2+             | 2.4(3)    |           | CER        | 1983Hu01         | PR C27 550 (1983)    |
|                   |              |             |                |                | · ·       |           |            |                  | ·                    |
|                   | 68 Er 165    | 0           | 10.36 h        | 5/2-           | +2.71(3)  | [167Er]   | CLS        | <u>1987OtZW</u>  | CERN EP 87/51 (1987) |
|                   |              |             |                |                |           |           |            |                  |                      |
|                   | 68 Er 166    | 81          | 1.85 ns        | 2+             | -1.9(4)   | A         | ME         | <u>1965Hu01</u>  | ZP 182 499 (1965)    |
|                   |              | 265         | 118 ps         | 4+             | -2.7(9)   |           | CER        | 1970McZQ         | ORNL 4513 56 (1970)  |
|                   |              | 786         | 4.6 ps         | 2+             | 2.2(3)    |           | CER        | <u>1983Hu01</u>  | PR C27 550 (1983)    |
|                   |              |             |                |                |           |           |            |                  |                      |
| Reference isotope | 68 Er 167    | 0           | stable         | 7/2+           | +3.57(3)  |           | Mu-X       | <u>1984Ta04</u>  | PR C29 1830 (1984)   |
|                   | C0 F= 1CC    | 264         | 121            | 4.             | 2.2/10\   |           | CED        | 1070Me70         | ODNII 4512 56 (1070) |
|                   | 68 Er 168    | 264<br>821  | 121 ps         | 4+             | -2.2(10)  |           | CER<br>CER | 1970McZQ         | ORNL 4513 56 (1970)  |
|                   |              | 821         | 2.9 ps         | 2+             | 2.3(2)    |           | CEK        | <u>1983Hu01</u>  | PR C27 550 (1983)    |

| Element   | Nucleus       | E(level)     | T <sub>1/2</sub> | I <sup>p</sup>   | Q(b)                      | Ref. Std.             | Method | NSR Keynumber   | Journal Reference     |
|-----------|---------------|--------------|------------------|------------------|---------------------------|-----------------------|--------|-----------------|-----------------------|
|           | CO F.: 170    | 70           | 1.00             | 2.               | 1.0(2)                    |                       | CED    | 4072102         | DD CO 204 (4072)      |
|           | 68 Er 170     | 79           | 1.90 ns          | 2+               | -1.9(2)                   |                       | CER    | <u>1973Lu02</u> | PR C8 391 (1973)      |
|           |               | 260          | ~135 ps          | 4+               | -2.2(10)                  |                       | CER    | <u>1970McZQ</u> | ORNL 4513 56 (1970)   |
|           |               | 932          |                  | 2+               | 2.0(3)                    |                       | CER    | <u>1983Hu01</u> | PR C27 550 (1983)     |
|           | 68 Er 171     | 0            | 7.52 h           | 5/2-             | 2.86(9)                   | [167Er]               | AB     | <u>1964Bu09</u> | PR 135 B1281 (1964)   |
| Thulium   | There is no a | donted refer | rence efg for Tm | 1                |                           |                       |        |                 |                       |
| munum     |               |              | used see 1973Ek  |                  |                           |                       |        |                 |                       |
|           |               |              | rnheimer correc  |                  |                           |                       |        |                 |                       |
|           | D. Melades e. | Jimatea Ste  |                  |                  |                           |                       |        |                 |                       |
|           | 69 Tm 153     | 0            | 1.48 s           | (11/2-)          | +0.5(10)                  | [169Tm]               | LRIS   | 2000Ba16        | PR C61 034304 (2000)  |
|           | 69 Tm 154     | 0            | 8.1 s            | (2-)             | +0.4(9)                   | A                     | LRIS   | 2000Ba16        | PR C61 034304 (2000)  |
|           | 03 1111 134   | 0 + x        | 3.30 s           | (9+)             | -0.2(4)                   | A                     | LRIS   | 2000Ba16        | PR C61 034304 (2000)  |
|           |               | 017          | 3.30 3           | (51)             | -0.2(4)                   | ^                     | LINIS  | <u>2000B810</u> | FIX CO1 034304 (2000) |
|           | 69 Tm 156     | 0            | 1.3 m            | 2-               | -0.48(11)                 | А                     | LRIS   | <u>1987AlZb</u> | LIYAF 1309 (1987)     |
|           |               |              |                  |                  | 0.74/44)                  |                       | LDIC   | 40004104        | ND A 477 37 (4000)    |
|           | 69 Tm 158     | 0            | 4.3 m            | 2-               | +0.74(11)                 | A                     | LRIS   | <u>1988Al04</u> | NP A477 37 (1988)     |
|           | 69 Tm 159     | 0            | 9.0 m            | 5/2+             | +1.93(7)                  | A                     | LRIS   | <u>1988Al04</u> | NP A477 37 (1988)     |
|           |               |              |                  |                  | ` '                       |                       |        |                 | . ,                   |
|           | 69 Tm 160     | 0            | 9.4 m            | 1-               | +0.58(4)                  | A                     | LRIS   | <u>1988Al04</u> | NP A477 37 (1988)     |
|           | 69 Tm 161     | 0            | 38 m             | 7/2+             | +2.90(7)                  | A                     | LRIS   | <u>1988Al04</u> | NP A477 37 (1988)     |
|           | 69 Tm 162     | 0            | 21 m             | 1-               | +0.69(3)                  | А                     | LRIS   | <u>1988Al04</u> | NP A477 37 (1988)     |
|           | 50.T. 454     |              | 2.0              | 4                | 0.74/5\                   |                       | LDIC   | 40004104        | ND A 477 27 (4000)    |
|           | 69 Tm 164     | 0            | 2.0 m            | 1+               | +0.71(5)                  | A                     | LRIS   | <u>1988Al04</u> | NP A477 37 (1988)     |
|           | 69 Tm 166     | 0            | 7.7 h            | 2+               | +2.14(3)                  | А                     | LRIS   | <u>1988Al04</u> | NP A477 37 (1988)     |
|           | CO Tro 1CO    | 0            | 0 F 4            | 2.               | +3.23(7)                  | A                     | LRIS   | 1988Al04        | NP A477 37 (1988)     |
|           | 69 Tm 168     | U            | 85 d             | 3+               | +3.23(7)                  | A                     | LKIS   | 1988AIU4        | NP A477 37 (1988)     |
|           | 69 Tm 169     | 8            | 3.9 ns           | 3/2+             | -1.2(1)                   | В                     | ME     | <u>1964Co08</u> | PR 134 A94 (1964)     |
|           | 69 Tm 170     | 0            | 128.6 d          | 1+               | +0.74(2)                  | A                     | LRIS   | <u>1988Al04</u> | NP A477 37 (1988)     |
|           |               |              |                  |                  | , ,                       |                       |        |                 | · /                   |
| Ytterbium |               |              | rfine structure  |                  |                           |                       |        |                 |                       |
|           | A. Assumes r  | elation Q(sp | ectroscopic) = 2 | Q(intrinsic)/7 a | nd Q(intrinsic) 2+ (84 ke | V) 170Yb = 7.63(9) b. |        |                 |                       |
|           | 70 Yb 155     | 0            | 1.59 s           | (7/2-)           | -0.5(3)                   | [173Yb]               | LRIS   | 2000Ba16        | PR C61 034304 (2000)  |
|           | 70 Yb 159     | 0            | 1.58 m           | 5/2(-)           | -0.22(2)                  | [173Yb]               | CLS    | 1983Ne13        | HFI 15 181 (1983)     |
|           | 70 10 133     | 0            | 1.30 111         | 3/2( )           | 0.22(2)                   | [1/3/0]               | CLS    | 150514C15       | 11112 101 (1203)      |
|           | 70 Yb 161     | 0            | 4.2 m            | 3/2-             | +1.03(2)                  | [173Yb]               | CLS    | <u>1983Ne13</u> | HFI 15 181 (1983)     |
|           | 70 Yb 163     | 0            | 11.0 m           | 3/2-             | +1.24(2)                  | [173Yb]               | CLS    | 1983Ne13        | HFI 15 181 (1983)     |
|           |               |              |                  |                  |                           |                       | _      |                 | 1 1                   |
|           | 70 Yb 165     | 0            | 9.9 m            | 5/2-             | +2.48(4)                  | [173Yb]               | CLS    | <u>1983Ne13</u> | HFI 15 181 (1983)     |

| Element           | Nucleus       | E(level)      | T <sub>1/2</sub> | I <sup>p</sup> | Q(b)        | Ref. Std.      | Method | NSR Keynumber   | Journal Reference         |
|-------------------|---------------|---------------|------------------|----------------|-------------|----------------|--------|-----------------|---------------------------|
|                   |               |               |                  | - /-           |             |                |        |                 |                           |
|                   | 70 Yb 167     | 0             | 17.5 m           | 5/2-           | +2.70(4)    | [173Yb]        | CLS    | <u>1983Ne13</u> | HFI 15 181 (1983)         |
|                   | 70 Yb 169     | 0             | 32.0 d           | 7/2+           | +3.54(6)    | [173Yb]        | CLS    | 1983Ne13        | HFI 15 181 (1983)         |
|                   | 70 10 203     |               | 32.0 0           | 7,2            | 3.3 .(0)    | [273.2]        | 010    | <u> </u>        | 10 101 (1333)             |
|                   | 70 Yb 170     | 84            | 1.57 ns          | 2+             | -2.18(3)    | А              |        | 2001Ra27        | ADNDT 78 1 (2001)         |
|                   |               |               |                  |                |             |                |        |                 |                           |
|                   | 70 Yb 171     | 67            | 0.81 ns          | 3/2-           | -2.34(7)    | [170Yb 84 keV] | ME     | <u>1971Pl03</u> | NP A165 97 (1971)         |
|                   |               | 76            | 1.64 ns          | 5/2-           | -2.22(7)    | [170Yb 84 keV] | ME     | <u>1971Pl03</u> | NP A165 97 (1971)         |
|                   | 70 Yb 172     | 79            | 1.6 ns           | 2+             | -2.22(4)    | [170Yb 84 keV] | ME     | 1971Pl03        | NP A165 97 (1971)         |
|                   | 70 10 172     | 260           | 0.122 ns         | 4+             | -2.3(12)    | [17010 64 KeV] | CER    | 1970McZQ        | ORNL-4513 56 (1970)       |
|                   |               | 1172          | 7.8 ns           | 3+             | -2.9(3)     | [170Yb 84 keV] | TDPAC  | 1970Wa25        | ZP A238 35 (1970)         |
|                   |               | 1757          | -                | (1-)           | -3.44(10)   | [2701201101]   | Mu-X   | 1979Ho23        | PR C20 1934 (1979)        |
|                   |               | 1822          | -                | (3-)           | +1.97(10)   |                | Mu-X   | <u>1979Ho23</u> | PR C20 1934 (1979)        |
|                   |               |               |                  | , ,            | ` ,         |                |        |                 |                           |
| Reference isotope | 70 Yb 173     | 0             | stable           | 5/2-           | +2.80(4)    |                | Mu-X   | <u>1975Ze04</u> | NP A254 315 (1975)        |
|                   |               |               |                  |                |             |                |        |                 |                           |
|                   | 70 Yb 174     | 77            | 1.79 ns          | 2+             | -2.18(5)    | [170Yb 84 keV] | ME     | <u>1971Pl03</u> | NP A165 97 (1971)         |
|                   |               | 253           | 144 ps           | 4+             | -1.8(12)    |                | CER    | <u>1970McZQ</u> | ORNL-4513 56 (1970)       |
|                   | 70 Yb 175     | 0             | 4.19 d           | 7/2-           | 12 E2/E)    | [173Yb]        | CLS    | 2012Fl05        | JPhys G39 125101 (2012)   |
|                   | 70 10 175     | U             | 4.19 u           | 7/2-           | +3.52(5)    | [1/510]        | CL3    | <u>2012FI05</u> | JPIIYS G59 125101 (2012)  |
|                   | 70 Yb 176     | 82            | 1.8 ns           | 2+             | -2.28(6)    | [170Yb 84 keV] | ME     | <u>1967Ec01</u> | PR 156 246 (1967)         |
|                   |               | 272           | 0.11 ns          | 4+             | -0.9(12)    |                | CER    | 1970McZQ        | ORNL-4513 56 (1970)       |
|                   |               | 1050          | 11.4 s           | 8-             | +5.30(8)    | [173Yb]        | CLS    | 2007Bi14        | PL B645 330 (2007)        |
|                   |               |               |                  |                |             |                |        |                 |                           |
|                   | 70 Yb 177     | 0             | 1.91 h           | 9/2+           | +4.03(6)    | [173Yb]        | CLS    | <u>2012Fl05</u> | JPhys G39 125101 (2012)   |
| 1                 | Muonio aton   | a V sau huna  | rfin a structura |                |             |                |        |                 |                           |
| Lutetium          | iviuonic aton | n x-ray nypei | rfine structure  |                |             |                |        |                 |                           |
|                   | 71 Lu 162     | 0             | 1.37 m           | 1-             | +0.519(8)   | [175Lu]        | CLS    | 1998Ge13        | Eur Phys J A3 225 (1998)  |
|                   |               |               |                  |                | 0.0 = 0 (0) | [2:020]        |        |                 |                           |
|                   | 71 Lu 164     | 0             | 3.14 m           | 1-             | +0.608(7)   | [175Lu]        | CLS    | <u>1998Ge13</u> | Eur Phys J A3 225 (1998)  |
|                   |               |               |                  |                |             |                |        |                 |                           |
|                   | 71 Lu 166     | 0             | 2.65 m           | 6-             | +4.33(4)    | [175Lu]        | CLS    | <u>1998Ge13</u> | Eur Phys J A3 225 (1998)  |
|                   |               | 34            | 1.41 m           | 3-             | +2.72(2)    | [175Lu]        | CLS    | <u>1998Ge13</u> | Eur Phys J A3 225 (1998)  |
|                   | 71 Lu 167     | 0             | E1 F             | 7/2+           | 12.20/2\    | [1751]         | CLS    | 1998Ge13        | Eur Dhys I A2 225 (4000)  |
|                   | /1 Lu 10/     | U             | 51.5 m           | //2+           | +3.28(2)    | [175Lu]        | CLS    | <u>1998GE13</u> | Eur Phys J A3 225 (1998)  |
|                   | 71 Lu 168     | 0             | 5.5 m            | 6-             | +4.77(6)    | [175Lu]        | CLS    | <u>1998Ge13</u> | Eur Phys J A3 225 (1998)  |
|                   |               | 220           | 6.7 m            | 3+             | +2.43(2)    | [175Lu]        | CLS    | 1998Ge13        | Eur Phys J A3 225 (1998)  |
|                   |               |               |                  |                | , ,         |                |        |                 |                           |
|                   | 71 Lu 169     | 0             | 34.1 h           | 7/2+           | +3.48(3)    | [175Lu]        | CLS    | <u>1998Ge13</u> | Eur Phys J A3 225 (1998)  |
|                   |               |               |                  |                |             |                |        |                 |                           |
|                   | 71 Lu 171     | 0             | 8.24 d           | 7/2+           | +3.53(3)    | [175Lu]        | CLS    | <u>1998Ge13</u> | Eur Phys J A3 225 (1998)  |
|                   | 71 Lu 172     | 0             | 6.70 d           | 4-             | +3.80(4)    | [175Lu]        | CLS    | <u>1998Ge13</u> | Eur Phys J A3 225 (1998)  |
|                   | / 1 LU 1/2    |               |                  |                | +3.00(4)    | [1/3Lu]        | CLS    | 13300E12        | Eni Liike 1 W2 552 (1230) |
|                   |               | 42            | 3.7 m            | 1-             | +0.76(3)    | [175Lu]        | CLS    | 1998Ge13        | Eur Phys J A3 225 (1998)  |

| Element           | Nucleus     | E(level)     | T 1/2           | 1 <sup>p</sup> | Q(b)       | Ref. Std. | Method       | NSR Keynumber    | Journal Reference        |
|-------------------|-------------|--------------|-----------------|----------------|------------|-----------|--------------|------------------|--------------------------|
|                   | 71 Lu 173   | 0            | 1.37 y          | 7/2+           | +3.53(2)   | [175Lu]   | CLS          | 1998Ge13         | Eur Phys J A3 225 (1998) |
|                   |             |              | ,               | ,              | , ,        |           |              |                  | , , ,                    |
|                   | 71 Lu 174   | 0            | 3.3 y           | 1-             | +0.773(7)  | [175Lu]   | CLS          | <u>1998Ge13</u>  | Eur Phys J A3 225 (1998) |
|                   |             | 171          | 142 d           | 6-             | +4.80(5)   | [175Lu]   | CLS          | <u>1998Ge13</u>  | Eur Phys J A3 225 (1998) |
|                   |             |              |                 |                |            |           |              |                  |                          |
| Reference isotope | 71 Lu 175   | 0            | stable          | 7/2+           | +3.49(2)   |           | Mu-X         | <u>1979De29</u>  | NP A326 418 (1979)       |
|                   | 71 Lu 176   | 0            | 3.6x10*10 y     | 7-             | +4.92(3)   | [175Lu]   | A            | 1985Br09         | NP A440 407 (1985)       |
|                   | 71 20 170   | 127          | 3.68 h          | 1-             | -1.450(12) | [175Lu]   | CLS          | 1998Ge13         | Eur Phys J A3 225 (1998) |
|                   |             | 127          | 3.00 11         | -              | 1.430(12)  | [17520]   | CLS          | <u> 13300C13</u> | Edi 111/33 A3 223 (1330) |
|                   | 71 Lu 177   | 0            | 6.71 d          | 7/2+           | +3.39(3)   | [175Lu]   | CLS          | <u>1998Ge13</u>  | Eur Phys J A3 225 (1998) |
|                   |             | 970          | 160 d           | 23/2           | +5.71(5)   | [175Lu]   | CLS          | <u>1998Ge13</u>  | Eur Phys J A3 225 (1998) |
|                   |             |              | 20.4            |                | 0.700(40)  |           | <b>a</b> . a | 10000 10         | 5 21 110 225 (1222)      |
|                   | 71 Lu 178   | 0            | 28.4 m          | 1+             | +0.708(10) | [175Lu]   | CLS          | <u>1998Ge13</u>  | Eur Phys J A3 225 (1998) |
|                   |             | 120          | 23.1 m          | 9-             | +5.39(10)  | [175Lu]   | CLS          | <u>1998Ge13</u>  | Eur Phys J A3 225 (1998) |
|                   | 71 Lu 179   | 0            | 4.59 h          | 7/2+           | +3.32(3)   | [175Lu]   | CLS          | 1998Ge13         | Eur Phys J A3 225 (1998) |
|                   |             |              |                 | .,_            | (-)        |           |              |                  | 7                        |
| Hafnium           | Muonic aton | n X-ray hype | rfine structure |                |            |           |              |                  |                          |
|                   | 72 Hf 171   | 0            | 12.1 h          | 7/2+           | +3.46(3)   | [177Hf]   | CLS          | 2000Ye02         | J Phys G26 839 (2000)    |
|                   | 72111171    | 0            | 12.111          | 7/2+           | +3.40(3)   | [1//11]   | CLS          | <u>20001E02</u>  | 3 Filys 020 639 (2000)   |
|                   | 72 Hf 175   | 0            | 70 d            | 5/2-           | +2.72(2)   | [177Hf]   | CLS          | 2002Ni12         | PRL 88 094801 (2002)     |
|                   |             |              |                 |                |            |           |              |                  |                          |
|                   | 72 Hf 176   | 88           | 1.47 ns         | 2+             | -2.10(2)   | [177Hf]   | Mu-X         | <u>1984Ta10</u>  | PR C30 350 (1984)        |
| Reference isotope | 72 Hf 177   | 0            | stable          | 7/2-           | +3.37(3)   |           | Mu-X         | 1984Ta04         | PR C29 1830 (1984)       |
| Rejerence isotope | 72111177    | 0            | 490 ps          | 9/2-           | +1.30(2)   | [177Hf]   | Mu-X         | 1984Ta10         | PR C30 350 (1984)        |
|                   |             |              | 450 ps          | 3/2            | 11.50(2)   | [1/////]  | Wid X        | 13041410         | 1 N C30 330 (1304)       |
|                   | 72 Hf 178   | 93           | 1.47 ns         | 2+             | -2.02(2)   | [177Hf]   | Mu-X         | <u>1984Ta10</u>  | PR C30 350 (1984)        |
|                   |             | 1147         | 4 s             | 23/2-          | +4.99(4)   | [177Hf]   | CLS          | <u>2007Bi14</u>  | PL B645 330 (2007)       |
|                   |             | 2446         | 31 y            | 16+            | +6.00(7)   | [177Hf]   | CLS          | <u>1994Bo15</u>  | PRL 72 2689 (1994)       |
| D. (              | 72 115 4 70 |              |                 | 0./2           | 2.70(2)    |           |              | 10047.04         | DD 020 4020 (4004)       |
| Reference isotope | 72 Hf 179   | 0            | stable          | 9/2+           | +3.79(3)   | [47714]   | Mu-X         | 1984Ta04         | PR C29 1830 (1984)       |
|                   |             | 123          | 37 ps           | 11/2+          | +1.88(3)   | [177Hf]   | Mu-X         | <u>1984Ta10</u>  | PR C30 350 (1984)        |
|                   | 72 Hf 180   | 93           | 1.53 ns         | 2+             | -2.00(2)   | [177Hf]   | Mu-X         | 1984Ta10         | PR C30 350 (1984)        |
|                   |             | 1142         | 5.5 h           | 8-             | +4.6(3)    | [177Hf]   | NO/S         | <u>1973Ka31</u>  | PL B46 62 (1973)         |
|                   |             |              |                 |                |            |           |              |                  |                          |
| Tantalum          | Pionic atom | X-ray hyperf | ine structure   |                |            |           |              |                  |                          |
|                   | 73 Ta 171   | 184          | 45 ns           | 9/2-           | (+)3.1(2)  | [181Ta]   | TDPAD        | 1995Do32         | HFI 96 223 (1995)        |
|                   | /3 10 1/1   | 104          | 43115           | 3/ 4-          | (1)3.1(2)  | [IOIIG]   | IDIAD        | 13930032         | 111130 223 (1333)        |
|                   | 73 Ta 173   | 0            | 3.14 h          | 5/2-           | -1.8(2)    | [181Ta]   | NO/S         | <u>1983Ed01</u>  | PL B133 44 (1983)        |
| -                 |             |              |                 |                |            |           |              |                  |                          |
|                   | 73 Ta 175   | 0            | 10.5 h          | 7/2+           | +3.5(3)    | [181Ta]   | NO/S         | <u>1983Ed01</u>  | PL B133 44 (1983)        |
|                   | 73 Ta 178   | 0 + x        | 9.3 m           | 1+             | +0.63(6)   | [181Ta]   | NO/S         | 1983Ha49         | HFI 15 105 (1983)        |
|                   | 73 10 170   | 0 1 1        | 5.5 111         | 1.             | 10.03(0)   | [10110]   | 140/3        | 150511045        | 1111 103 (1303)          |
|                   | 73 Ta 179   | 0            | 1.82 y          | 7/2+           | +3.27(4)   | [181Ta]   | CLS          | <u>1996Wa02</u>  | PR C53 611 (1996)        |
|                   |             |              |                 |                |            |           |              |                  |                          |

| Element           | Nucleus         | E(level)      | T 1/2           | I P   | Q(b)      | Ref. Std.      | Method | NSR Keynumber            | Journal Reference                    |
|-------------------|-----------------|---------------|-----------------|-------|-----------|----------------|--------|--------------------------|--------------------------------------|
|                   | 73 Ta 180       | 75            | >1.2x10*15y     | 9-    | +4.80(3)  | [181Ta]        | CLS    | 1994Wa34                 | PR C50 4639 (1994)                   |
|                   |                 |               |                 |       |           | [222.0]        |        |                          | (200 )                               |
| Reference isotope | 73 Ta 181       | 0             | stable          | 7/2+  | +3.17(2)  |                | Pi-X   | 1983Ol03                 | NP A 403 572 (1983)                  |
|                   |                 | 6             | 6.05 ms         | 9/2-  | +3.59(2)  | [181Ta]        | ME     | <u>1983Ei02</u>          | PL A93 259 (1983)                    |
|                   |                 | 482           | 10.8 ns         | 5/2+  | +2.28(2)  | [181Ta]        | ME     | <u>1983Bu11</u>          | PL A97 217 (1983)                    |
|                   | 73 Ta 182       | 0             | 115 d           | 3-    | 12.6(2)   | [181Ta]        | NO/S   | 1991Fa12                 | PL A159 421 (1991)                   |
|                   | /3 ld 182       | U             | 115 0           | 3-    | +2.6(3)   | [1011a]        | NO/3   | <u>1991Fd12</u>          | PL A159 421 (1991)                   |
| Tungsten          | There is no a   | dopted refe   | rence efg for W |       |           |                |        |                          |                                      |
|                   | A. Efg calculo  | ation in Tl m | etal            |       |           |                |        |                          |                                      |
|                   | 74 W 176        | 3746          | 41 ns           | 14+   | 6.0(8)    | A              | TDPAD  | <u>2002Io01</u>          | PL B541 219 (2002)                   |
|                   | 74 W 179        | 3348          | 750 ns          | 35/2- | +3.9(10)  | A              | LEMS   | 2001Ba04                 | PRL 86 604 (2001)                    |
|                   |                 |               |                 |       |           |                |        |                          |                                      |
|                   | 74 W 180        | 104           | 1.22 ns         | 2+    | -2.1(4)   | [182W 100 keV] | ME     | <u>1973Zi02</u>          | ZP 262 413 (1973)                    |
|                   | 74 W 182        | 100           | 1.37 ns         | 2+    | -2.1(4)   |                | CER    | <u>1977RuZV</u>          | BAPS 22 1032 (1977)                  |
|                   | 74 W 183        | 47            | 184 ps          | 3/2-  | -1.8(4)   | [182W 100 keV] | ME     | <u>1966Sh07</u>          | JPSJ 21 829 (1966)                   |
|                   | 74 103          | 99            | 0.71 ns         | 5/2-  | -2.0(3)   | [182W 100 keV] | ME     | 1967Ag02/1974Ge17        | PR 155 1342 (1967)/ZP 267 61 (1974)  |
|                   | 74 W 184        | 111           | 1.25 ns         | 2+    | -1.9(2)   | [182W 100 keV] | CER    | 1974Ge17/1977RuZV        | ZP 267 61 (1974)/BAPS 22 1032 (1977) |
|                   |                 | 904           | 1.73 ps         | 2+    | +0.1(4)   |                | CER    | <u>19770b02</u>          | NP A291 510 (1977)                   |
|                   | 74 W 186        | 123           | 1.05 ns         | 2+    | -1.6(3)   | [182W 100 keV] | CER    | 1977RuZV                 | BAPS 22 1032 (1977)                  |
|                   |                 | 396           | 36 ps           | 4+    | -2.6(13)  | ( 1 11 1 1     | CER    | 1970McZQ                 | ORNL-4513 56 (1970)                  |
|                   |                 | 737           | 4.4 ps          | 2+    | 1.3(3)    |                | CER    | <u>19770b02</u>          | NP A291 510 (1977)                   |
| Rhenium           | Pionic atom     | X-rav hvperi  | fine structure  |       |           |                |        |                          |                                      |
|                   |                 |               |                 |       |           |                |        |                          |                                      |
|                   | 75 Re 182       | 0             | 64.0 h          | 7+    | +4.1(3)   | [185,187Re]    | NO/S   | <u>1983Ha49</u>          | HFI 215 105 (1983)                   |
|                   |                 | 0 + x         | 12.7 h          | 2+    | +1.8(2)   | [185,187Re]    | NO/S   | <u>1985Ha41/1981Er01</u> | HFI 22 19 (1985)/PR C23 1739 (1981)  |
|                   | 75 Re 183       | 0             | 70.0 d          | 5/2+  | +2.3(2)   | [185,187Re]    | NO/S   | <u>1983Ha49</u>          | HFI 215 105 (1983)                   |
|                   |                 | 497           | 7 ns            | 9/2-  | (+)3.7(4) | [185,187Re]    | TDPAC  | <u>1978Ne14</u>          | HFI 4 211 (1978)                     |
|                   | 75 Re 184       | 0             | 38.0 d          | 3-    | +2.8(2)   | [185,187Re]    | NO/S   | <u>1983Ha49</u>          | HFI 215 105 (1983)                   |
| Deference inter-  | 7F D- 40F       |               | atal-1-         | F/2:  | 12.40(2)  |                | D: V   | 1001Vo11                 | ND A2CO 407 (4004)                   |
| Reference isotope | 75 Re 185       | 0             | stable          | 5/2+  | +2.18(2)  |                | Pi-X   | <u>1981Ko11</u>          | NP A360 187 (1981)                   |
|                   | 75 Re 186       | 0             | 90.6 h          | 1-    | +0.618(6) | [185,187Re]    | AB     | <u>1981Bu13</u>          | ZP A302 290 (1981)                   |
| Reference isotope | 75 Re 187       | 0             | 4 x 10*10 y     | 5/2+  | +2.07(2)  |                | Pi-X   | <u>1981Ko11</u>          | NP A360 187 (1981)                   |
|                   |                 | 206           | 555 ns          | 9/2-  | +3.04(5)  | [187Re]        | TDPAC  | <u>1973Ha61</u>          | JCP 58 3339 (1973)                   |
|                   | 75 Re 188       | 0             | 16.9 h          | 1-    | +0.572(6) | [185,187Re]    | AB     | <u>1981Bu13</u>          | ZP A302 290 (1981)                   |
| Osmium            | Muonicaton      | 2 Y-ray hung  | rfine structure |       |           |                |        |                          |                                      |
| Usitiiuiii        | iviuoliit utoli | TA-Tuy Hype   | ijine structure | L     | l .       |                |        |                          |                                      |

| Element           | Nucleus      | E(level)       | T 1/2            | I <sup>p</sup> | Q(b)          | Ref. Std.                        | Method             | NSR Keynumber               | Journal Reference                      |
|-------------------|--------------|----------------|------------------|----------------|---------------|----------------------------------|--------------------|-----------------------------|----------------------------------------|
|                   | 76 Os 182    | 7049           | 150 ns           | 25+            | 4.2(2)        | [1880s 155keV]                   | TDPAD              | 1991Br25                    | PL B264 17 (1991)                      |
|                   | 70 03 102    | 7043           | 130 113          | 23.            | -1.2(2)       | [10003 135%eV]                   | 1517.5             | 15515125                    | 1 2 3 2 3 1 7 (1331)                   |
|                   | 76 Os 183    | 0              | 13.0 h           | 9/2+           | +3.1(3)       | [1880s 155keV]                   | NO/S               | <u>1985Ha41</u>             | HFI 22 19 (1985)                       |
|                   | 76 Os 184    | 120            | 1.18 ns          | 2+             | -2.7(12)      | [188Os 155keV]                   | CER                | <u>1972La16</u>             | PR C6 613 (1972)                       |
|                   |              |                |                  | _              | 4 (2/4)       |                                  |                    | 400411.00                   | DD 00 4 400 (400 4)                    |
|                   | 76 Os 186    | 137            | 830 ps           | 2+             | -1.63(4)      |                                  | Mu-X               | <u>1981Ho22</u>             | PR C24 1667 (1981)                     |
| Reference isotope | 76 Os 188    | 155            | 710 ps           | 2+             | -1.46(4)      |                                  | Mu-X               | <u>1981Ho22</u>             | PR C24 1667 (1981)                     |
|                   |              | 633            | 6.3 ps           | 2+             | +1.0(3)       | [188Os 155keV]                   | CER                | <u>1980Ba42</u>             | PR C22 2383 (1980)                     |
|                   |              | 2121           | -                | (3-)           | +1.69(9)      |                                  | Mu-X               | <u>1979Ho23</u>             | PR C20 1934 (1979)                     |
|                   | 76 Os 189    | 0              | stable           | 2/2            | +0 9C(2)      | [1990a 155ka)/]                  | ME                 | 107214624                   | 70 425 4 442 (4072)                    |
|                   | 76 US 189    | 70             | 1.63 ns          | 3/2-<br>5/2-   | +0.86(3)      | [1880s 155keV]<br>[1880s 155keV] | ME                 | <u>1972Wa24</u><br>1972Wa24 | ZP A254 112 (1972) ZP A254 112 (1972)  |
|                   |              | 70             | 1.05115          | 3/2-           | -0.03(2)      | [10003 155kev]                   | IVIE               | <u>1972Wd24</u>             | ZP AZ54 112 (1972)                     |
|                   | 76 Os 190    | 187            | 366 ps           | 2+             | -1.18(3)      |                                  | Mu-X               | <u>1981Ho22</u>             | PR C24 1667 (1981)                     |
|                   |              | 558            | 12.5 ps          | 2+             | +0.8(5)       | [188Os 155keV]                   | CER                | <u>1980Ba42</u>             | PR C22 2383 (1980)                     |
|                   |              |                |                  | - 1-           |               |                                  |                    |                             |                                        |
|                   | 76 Os 191    | 0              | 15.4 d           | 9/2-           | +2.53(16)     | [188Os 155keV]                   | NO/S               | <u>1979Er09</u>             | NP A332 41 (1979)                      |
|                   | 76 Os 192    | 206            | 289 ps           | 2+             | -0.96(3)      |                                  | Mu-X               | <u>1981Ho22</u>             | PR C24 1667 (1981)                     |
|                   |              | 489            | 30.1 ps          | 2+             | -0.7(3)       | [188Os 155keV]                   | CER                | <u>1980Ba42</u>             | PR C22 2383 (1980)                     |
|                   |              |                |                  | - 1-           |               |                                  |                    |                             |                                        |
|                   | 76 Os 193    | 0              | 30.5 h           | 3/2-           | +0.48(6)      | [188Os 155keV]                   | NO/S,R             | <u>1985Be03/1979Er09</u>    | JPhys G11 287 (1985)/NP A332 41 (1979) |
| Iridium           | Muonic atom  | n X-ray hype   | rfine structure  |                |               |                                  |                    |                             |                                        |
|                   |              |                | ncp Co metal cry | stal           |               |                                  |                    |                             |                                        |
|                   | B. Estimated | efg at Ir in ( | Os metal polycry | stal           |               |                                  |                    |                             |                                        |
|                   | 77 lr 182    | 0              | 15 m             | 3+             | -1.7(6)       | [191Ir]                          | RIMS/LS            | 2006Ve10                    | Eur Phys J A30 489 (2006)              |
|                   |              |                |                  |                |               |                                  |                    |                             | , , ,                                  |
|                   | 77 lr 183    | 0              | 55 m             | 5/2-           | -1.8(7)       | [191Ir]                          | RIMS/LS            | <u>2006Ve10</u>             | Eur Phys J A30 489 (2006)              |
|                   | 77 Ir 184    | 0              | 3.14 h           | 5-             | +2.41(3)      | А                                | QI-NMR/ON          | <u>1996Se15</u>             | PRL 77 5016 (1996)                     |
|                   | 77 l= 10F    | 0              | 14.4 h           | F /2           | 1.94/12\      | Δ.                               | NIMAD (ONLD        | 10000h03                    | I Dhun C 14 2CE (4000)                 |
|                   | 77 lr 185    | 0              | 14.4 h           | 5/2-           | -1.84(12)     | A                                | NMR/ON R           | <u>1988Oh02</u>             | J Phys G 14 365 (1988)                 |
|                   | 77 lr 186    | 0              | 16.64 h          | 5+             | -2.55(3)      | A                                | QI-NMR/ON          | <u>1996Se15</u>             | PRL 77 5016 (1996)                     |
|                   |              | х              |                  | 2(-)           | +1.456(17)    | A                                | QI-NMR/ON          | <u>1996Se15</u>             | PRL 77 5016 (1996)                     |
|                   | 77 1- 407    | -              | 10.51            | 2/2:           | .0.044/44\    |                                  | OLNINAD/ON         | 10000-15                    | DDI 77 F04C (400C)                     |
|                   | 77 lr 187    | 0<br>434       | 10.5 h<br>152 ns | 3/2+<br>11/2-  | +0.941(11)    | A<br>[193lr]                     | QI-NMR/ON<br>TDPAC | <u>1996Se15</u><br>1978HaXO | PRL 77 5016 (1996)<br>ARHMI 52 1977    |
|                   |              | 434            | 132 113          | 11/4-          | 2.33(14)      | [13311]                          | IDFAC              | T3/01IQVO                   | AIMIIVII JZ 17//                       |
|                   | 77 Ir 188    | 0              | 40.5 h           | 1(-)           | +0.484(6)     | A                                | QI-NMR/ON          | <u>1996Se15</u>             | PRL 77 5016 (1996)                     |
|                   | 77 lr 100    | 0              | 12 1 4           | 2/2:           | +0.82(8)      | [191Ir]                          | RIMS/LS            | 2006Ve10                    | Eur Phys J A30 489 (2006)              |
|                   | 77 lr 189    | U              | 13.1 d           | 3/2+           | ['+0.878(10)] | [13111]                          | Estimated          | 1996Se15                    | PRL 77 5016 (1996)                     |
|                   |              | †              |                  |                | [ .0.0/0(10/] |                                  | Estimated          | <u>15565C15</u>             | 1 112 / / 3010 (1330)                  |
|                   | 77 Ir 190    | 0              | 11.8 d           | (4)+           | +2.87(16)     | А                                | NO/S               | <u>1980Mu07</u>             | HFI 7 481 (1980)                       |

| Element           | Nucleus       | E(level)          | T <sub>1/2</sub> | I <sup>p</sup> | Q(b)       | Ref. Std.      | Method    | NSR Keynumber            | Journal Reference                       |
|-------------------|---------------|-------------------|------------------|----------------|------------|----------------|-----------|--------------------------|-----------------------------------------|
|                   |               |                   |                  | 2 /2           | 0.04.5(0)  |                |           |                          | DD 200 (400 l)                          |
| Reference isotope | 77 Ir 191     | 0                 | stable           | 3/2+           | +0.816(9)  |                | Mu-X      | <u>1984Ta04</u>          | PR C29 1830 (1984)                      |
|                   | 77 Ir 192     | 0                 | 74.2 d           | 4-             | +2.15(6)   | А              | QI-NMR/ON | <u>1996Se15</u>          | PRL 77 5016 (1996)                      |
|                   |               | _                 |                  | - /-           |            |                |           |                          |                                         |
|                   | 77 Ir 193     | 0                 | stable           | 3/2+           | +0.751(9)  |                | Mu-X      | <u>1984Ta04</u>          | PR C29 1830 (1984)                      |
|                   | 77 Ir 194     | 0                 | 19.4 h           | 1-             | +0.339(12) | [191Ir]        | NMR/ON    | <u>1985Ed02</u>          | PR C32 582 (1985)                       |
| Platinum          | There is no d | <br> dopted refer | ence efg for Pt. |                |            |                |           |                          |                                         |
|                   |               |                   | sed see 1992Hi   |                |            |                |           |                          |                                         |
|                   | B. Estimatea  | l efg at Pt in    | osmium metal     |                |            |                |           |                          |                                         |
|                   | 78 Pt 183     | 35                | 43 s             | 7/2-           | +3.4(3)    | А              | LS        | 1999Le52/1992Hi07        | PR C60 054310 (1999)/ZP A342 1 (1992)   |
|                   | 78 Pt 185     | 0                 | 70.9 m           | 9/2+           | +3.73(17)  | A              | LS        | 1999Le52/1992Hi07        | PR C60 054310 (1999)/ZP A342 1 (1992)   |
|                   |               |                   |                  |                |            |                |           |                          |                                         |
|                   | 78 Pt 187     | 0                 | 2.35 h           | 3/2-           | -1.02(4)   | A              | RIMS/LS   | <u>1992Hi07/1989Du01</u> | ZP A342 1 (1992)/PL B217 401 (1989)     |
|                   | 78 Pt 189     | 0                 | 10.9 h           | 3/2-           | -0.95(4)   | А              | RIMS/LS   | <u>1992Hi07/1989Du01</u> | ZP A342 1 (1992)/PL B217 401 (1989)     |
|                   | 78 Pt 191     | 0                 | 2.9 d            | 3/2-           | -0.87(4)   | А              | RIMS/LS   | 1992Hi07/1989Du01        | ZP A342 1 (1992)/PL B217 401 (1989)     |
|                   | 78 Pt 192     | 317               | 43.7 ps          | 2+             | +0.6(2)    |                | CER       | <u>1987Gy01</u>          | NP A470 415 (1987)                      |
|                   | 78 Pt 194     | 328               | 41.8 ps          | 2+             | +0.48(14)  |                | CER       | <u>1986Gy04</u>          | NP A458 165 (1986)                      |
|                   |               |                   |                  |                |            |                |           |                          |                                         |
|                   | 78 Pt 195     | 259               | 4.02 d           | 13/2+          | +1.4(6)    | В              | NO/S      | <u>1985Ed05</u>          | PL B158 371 (1985)                      |
|                   | 78 Pt 196     | 356               | 34 ps            | 2+             | +0.62(8)   |                | CER       | <u>1992Li14</u>          | NP A548 308 (1992)                      |
|                   |               | 689               | 36.8 ps          | 2+             | -0.39(16)  |                | CER       | <u>1992Li14</u>          | NP A548 308 (1992)                      |
|                   |               | 877               | 3.6 ps           | 4+             | +1.03(12)  |                | CER       | <u>1992Li14</u>          | NP A548 308 (1992)                      |
|                   |               | 1526              | 0.98 ps          | 6+             | -0.2(3)    |                | CER       | <u>1992Li14</u>          | NP A548 308 (1992)                      |
|                   | 78 Pt 198     | 407               | 22.3 ps          | 2+             | +0.42(12)  |                | CER       | <u>1986Gy04</u>          | NP A458 165 (1986)                      |
| Gold              | Muonic ator   | n X-ray hype      | rfine structure  |                |            |                |           |                          |                                         |
|                   | 79 Au 184     | 0                 | 21 s             | 5              | +4.7(3)    | [197Au]        | CLS       | 1997Le22                 | PRL 79 2213 (1997)                      |
|                   | 73 AU 104     | U                 | 49 s             | 2              | +1.90(16)  | [197Au]        | CLS       | 1997Le22<br>1997Le22     | PRL 79 2213 (1997) PRL 79 2213 (1997)   |
|                   | 79 Au 185     | 0                 | 4.2 m            | 5/2-           | -1.10(10)  | [186Au, 197Au] | CLS       | 1992Ki30/1994Pa37        | NIMPR B70 537 (1992)/NP A580 173 (1994) |
|                   |               |                   |                  |                |            |                |           |                          |                                         |
|                   | 79 Au 186     | 0                 | 10.7 m           | 3-             | +3.10(6)   | [186Au, 197Au] | CLS       | 1992Ki30/1994Pa37        | NIMPR B70 537 (1992)/NP A580 173 (1994) |
|                   | 79 Au 191     | 0                 | 3.18 h           | 3/2+           | +0.72(2)   | [197Au]        | CLS       | <u>1994Pa37</u>          | NP A580 173 (1994)                      |
|                   | 79 Au 192     | 0                 | 5.0 h            | 1-             | -0.228(8)  | [197Au]        | CLS       | <u>1994Pa37</u>          | NP A580 173 (1994)                      |
|                   | 70.4 105      |                   | 47.051           | 2/2            | .0.55(2)   | [407: ]        |           |                          | ND AFOR (FE (1991)                      |
|                   | 79 Au 193     | 0                 | 17.65 h          | 3/2+           | +0.66(2)   | [197Au]        | CLS       | <u>1994Pa37</u>          | NP A580 173 (1994)                      |

| 79                   | 9 Au 194<br>9 Au 195 | 0 0           | 3.9 s<br>39.5 h  | 11/2-         | +1.98(6)               | [197Au]                    | MAPON      | 1996Se06                                    | NP A602 41 (1996)                                       |
|----------------------|----------------------|---------------|------------------|---------------|------------------------|----------------------------|------------|---------------------------------------------|---------------------------------------------------------|
| 79                   |                      |               | 39.5 h           | 1             |                        |                            |            |                                             | \ /                                                     |
| 79                   |                      |               | 39.5 h           | 1             |                        |                            |            |                                             |                                                         |
|                      | 9 Au 195             | 0             |                  | 1-            | -0.240(9)              | [197Au]                    | CLS        | <u>1994Pa37</u>                             | NP A580 173 (1994)                                      |
|                      | 9 Au 195             | U             | 183 d            | 2/2.          | +0.607(18)             | [197Au]                    | QI-NMR/ON  | 10034:10                                    | NP A562 205 (1993)                                      |
| 79                   |                      | 319           | 30.6 s           | 3/2+          |                        |                            | MAPON      | 1993Hi10                                    | NP A502 205 (1995)<br>NP A602 41 (1996)                 |
| 79                   |                      | 319           | 30.0 \$          | 11/2-         | +1.87(6)               | [197Au]                    | MAPON      | <u>1996Se06</u>                             | NP A602 41 (1996)                                       |
|                      | 9 Au 196             | 0             | 6.18 d           | 2-            | +0.81(7)               | [197Au]                    | NMR/ON     | <u>1987Oh11</u>                             | PR C36 2072 (1987)                                      |
| 0.6                  | 0.4.407              |               |                  | 2/2           | .0.547/46\             |                            | NA. V      | 10740-03                                    | ND 4220 442 (4074)                                      |
| Reference isotope 79 | 9 Au 197             | 0             | stable           | 3/2+          | +0.547(16)             | [4074 ]                    | Mu-X       | <u>1974Po02</u>                             | NP A230 413 (1974)                                      |
|                      |                      | 409           | 7.8 s            | 11/2-         | +1.68(5)               | [197Au]                    | MAPON      | <u>1996Se06</u>                             | NP A602 41 (1996)                                       |
| 79                   | 9 Au 198             | 0             | 2.696 d          | 2-            | +0.640(19)             | [197Au]                    | NMR/ON     | <u>1993Hi10</u>                             | NP A562 205 (1993)                                      |
| 79                   | 9 Au 199             | 0             | 3.14 d           | 3/2+          | +0.510(16)             | [197Au]                    | NMR/ON     | 1993Hi10                                    | NP A562 205 (1993)                                      |
|                      |                      |               |                  |               |                        |                            |            |                                             |                                                         |
| Mercury Efg          | tg calculation       | ns in the 3P. | 1 state of neutr | al Hg         |                        |                            |            |                                             |                                                         |
| 80                   | 0 Hg 185             | 99.3          | 27 s             | 13/2+         | +0.2(3)                | [201Hg]                    | β-RADOP    | <u>1979Da06</u>                             | PL B82 199 (1979)                                       |
| 0.5                  | 011 407              |               | 2.4              | 42/2          | 0.5(2)                 | [2041]                     | 0.04000    | 40700.00                                    | DI DOS 400 (4070)                                       |
| 80                   | 0 Hg 187             | 0             | 2.4 m            | 13/2+         | +0.5(3)                | [201Hg]                    | β-RADOP    | 1979Da06                                    | PL B82 199 (1979)                                       |
|                      |                      | 134           | 1.9 m            | 3/2-          | -0.75(18)              | [201Hg]                    | β-RADOP    | <u>1986Ul02/1979Da06</u>                    | ZP A325 247(1986)/PL B82 199 (1979)                     |
| 80                   | 0 Hg 188             | 2724          | 135 ns           | 12+           | 0.91(11)               | [199Hg 158 keV]            | TDPAD      | <u>1984Dr09</u>                             | PL B149 311 (1984)                                      |
|                      |                      |               |                  |               |                        |                            |            |                                             |                                                         |
| 80                   | 0 Hg 189             | 0             | 7.6 m            | 3/2-          | -0.8(3)                | [201Hg]                    | β-RADOP    | <u>1986Ul02/1979Da06</u>                    | ZP A325 247(1986)/PL B82 199 (1979)                     |
|                      |                      | 0 + x         | 8.6 m            | 13/2+         | +0.66(19)              | [201Hg]                    | β-RADOP    | <u>1979Da06</u>                             | PL B82 199 (1979)                                       |
| 80                   | 0 Hg 190             | 2621          | 21 ns            | 12+           | 1.17(14)               | [199Hg 158 keV]            | TDPAD      | <u>1984Dr09</u>                             | PL B149 311 (1984)                                      |
| 80                   | 0 11g 130            | 2021          | 21113            | 121           | 1.17(14)               | [13318 138 KeV]            | TUTAU      | 13640103                                    | F L D143 311 (1304)                                     |
| 80                   | 0 Hg 191             | 0             | 49 m             | 3/2-          | -0.80(13)              | [201Hg]                    | β-RADOP    | 1986Ul02/1979Da06                           | ZP A325 247(1986)/PL B82 199 (1979)                     |
|                      |                      | 140           | 50.8 m           | 13/2+         | +0.6(2)                | [201Hg]                    | β-RADOP    | <u>1979Da06</u>                             | PL B82 199 (1979)                                       |
| or.                  | 0 Ha 102             | 0             | 3.80 h           | 2/2           | 0.7(2)                 | [2014]                     | 0          | 1074Fu06/1066Da07                           | DD AO EO2 (4074)/DD 447 964 (4066)                      |
| 80                   | 0 Hg 193             | 0<br>141      | 11.8 h           | 3/2-<br>13/2+ | -0.7(3)<br>+0.92(2)    | [201Hg]<br>[201Hg]         | 0          | <u>1974Fu06/1966Da07</u><br><u>1974Re05</u> | PR A9 593 (1974)/PR 147 861 (1966)<br>PR A9 1776 (1974) |
|                      |                      | 141           | 11.011           | 15/2+         | +0.32(2)               | [ZOITIG]                   | 0          | <u>1974Re03</u>                             | FR A3 1770 (1374)                                       |
| 80                   | 0 Hg 195             | 176           | 41.6 h           | 13/2+         | +1.08(2)               | [201Hg]                    | 0          | <u>1965Sm01</u>                             | PR A137 330 (1965)                                      |
| 0.0                  | 0 Ha 107             | 124           | 0.1              | E /2          | LO 094/C)              | [100Hg 150 kg) [           | TDDAC      | 1000000                                     | ND A227 264 (4000)                                      |
| 80                   | 0 Hg 197             | 134<br>299    | 8.1 ns           | 5/2-<br>12/2+ | +0.081(6)<br>+1.25(3)  | [199Hg 158 keV]<br>[201Hg] | TDPAC<br>O | <u>1980He05</u><br>1961Br17                 | NP A337 261 (1980) J Phys Radium 22 412 (1961)          |
|                      |                      | 299           | 23.8 h           | 13/2+         | +1.23(3)               | [ZOIUR]                    | <u> </u>   | 1501011/                                    | J FIIYS Naululii 22 412 (1901)                          |
| 80                   | 0 Hg 198             | 412           | 23 ps            | 2+            | +0.68(12) or +0.84(12) |                            | CER        | <u>1979Bo16/1984Fe08</u>                    | ZP A291 245 (1979)/NP A425 373 (1984)                   |
| or                   | 0 Hg 199             | 158           | 2.45 ns          | 5/2-          | +0.95(7)               |                            | Mu-X       | 1979Ha08                                    | NP A314 361 (1979)                                      |
| 80                   | 0 116 ±33            | 208           | 69 ps            | 3/2-          | +0.62(15)              |                            | Mu-X       | <u>1979Ha08</u>                             | NP A314 301 (1979)                                      |
|                      |                      | 532           | 42.6 m           | 13/2+         | +1.2(3)                | [201Hg]                    | β-RADOP    | <u>1979Da06</u>                             | PL B82 199 (1979)                                       |
|                      |                      |               |                  |               | , ,                    |                            | -          |                                             |                                                         |
| 80                   | 0 Hg 200             | 368           | 46.6 ps          | 2+            | +0.96(11) or +1.11(11) |                            | CER        | <u>1979Bo16</u>                             | ZP A291 245 (1979)                                      |
| Reference isotope 80 | 0 Hg 201             | 0             | stable           | 3/2-          | +0.387(6)              |                            |            | 2005Bi03/1961Ko05                           | PR A71 012502 (2005)/PR 121 1104 (1961                  |

| Element  | Nucleus       | E(level)         | T 1/2                             | I <sup>p</sup> | Q(b)                       | Ref. Std.        | Method     | NSR Keynumber                      | Journal Reference                        |
|----------|---------------|------------------|-----------------------------------|----------------|----------------------------|------------------|------------|------------------------------------|------------------------------------------|
|          | 80 Hg 202     | 440              | 27.3 ps                           | 2+             | +0.87(13) or +1.01(13)     |                  | CER        | 1980Sp05                           | NP A345 252 (1980)                       |
|          | 60 Hg 202     | 440              | 27.5 μδ                           | 2+             | +0.87(13) 01 +1.01(13)     |                  | CEN        | <u>19603þ03</u>                    | NP A545 252 (1900)                       |
|          | 80 Hg 203     | 0                | 46.8 d                            | 5/2-           | +0.344(7)                  | [201Hg]          | 0          | <u>1970Re14</u>                    | PR A2 1135 (1970)                        |
|          | 80 Hg 204     | 437              | 40.2 ps                           | 2+             | +0.4(2)                    |                  | CER        | <u>1981Es03</u>                    | NP A362 227 (1981)                       |
|          | 2011 205      | 2402             | 2.45                              | _              | 0.74/45)                   | [4001]= 450 [1/] | TDDAD      | 100414-42                          | DD C20 4702 (4004)                       |
|          | 80 Hg 206     | 2102             | 2.15 ms                           | 5-             | 0.74(15)                   | [199Hg 158 keV]  | TDPAD      | <u>1984Ma43</u>                    | PR C30 1702 (1984)                       |
| Thallium |               |                  | rence efg for Th                  |                |                            |                  |            |                                    |                                          |
|          | A. For refere |                  |                                   | tudies see 19  | 87Bo44 (PR C36 2560 (1987) |                  |            |                                    |                                          |
|          | B. Estimatea  | ejg ili ili ilie | tui                               |                |                            |                  |            |                                    |                                          |
|          | 81 TI 187     | 335              | 15.6 s                            | (9/2-)         | -2.43(5)                   | Α                | CLS        | <u>1993ScZW</u>                    | IoP Conf 132 221 (1993)                  |
|          | 81 TI 188     | 0 + x            | 71 s                              | 7+             | +0.129(4)                  | A                | CLS        | <u>1992Me07</u>                    | ZP A341 475 (1992)                       |
|          | 01 TI 100     | 201              | 1 /                               | 0/2            | 2.20(4)                    |                  | CLS        | 1987Bo44                           | DD C26 2ECO (4007)                       |
|          | 81 TI 189     | 281              | 1.4 m                             | 9/2-           | -2.29(4)                   | A                | CLS        | <u>1987B044</u>                    | PR C36 2560 (1987)                       |
|          | 81 TI 190     | 0 + x            | 2.6 m                             | 2-             | -0.329(9)                  | А                | CLS        | <u>1992Me07</u>                    | ZP A341 475 (1992)                       |
|          |               | 0 + y            | 3.7 m                             | 7+             | +0.285(14)                 | A                | CLS        | <u>1992Me07</u>                    | ZP A341 475 (1992)                       |
|          | 81 TI 191     | 299              | 5.2 m                             | 9/2-           | -2.23(2)                   | Α                | CLS        | <u>1992Me07</u>                    | ZP A341 475 (1992)                       |
|          |               |                  |                                   |                |                            |                  |            |                                    |                                          |
|          | 81 TI 192     | 0 + x            | 9.6 m                             | 2-             | -0.328(11)<br>+0.46(2)     | A<br>A           | CLS        | <u>1992Me07</u><br><u>1992Me07</u> | ZP A341 475 (1992)<br>ZP A341 475 (1992) |
|          |               | 0 + y<br>251 + x | 10.8 m<br>296 ns                  | 7+<br>8-       | 0.44(7)                    | В                | TDPAD      | 1982Sc27                           | ZP A341 475 (1392)                       |
|          |               |                  |                                   |                |                            |                  |            |                                    |                                          |
|          | 81 Tl 193     | 365              | 2.11m                             | 9/2-           | -2.20(2)                   | A                | CLS        | <u>1987Bo44</u>                    | PR C36 2560 (1987)                       |
|          | 81 TI 194     | 0                | 34 m                              | 2-             | -0.282(7)                  | A                | CLS        | 1992Me07                           | ZP A341 475 (1992)                       |
|          | 01 11 23 1    | 0 + y            | 32.8 m                            | 7+             | +0.607(16)                 | A                | CLS        | <u>1992Me07</u>                    | ZP A341 475 (1992)                       |
|          | 04 TI 406     | 0                | 1.04 b                            | 2              | 0.470(4.4)                 |                  | CLC        | 400214-07                          | 70.4244.475./4003\                       |
|          | 81 TI 196     | 0<br>394         | 1.84 h<br>1.41 h                  | 2-<br>7+       | -0.178(14)<br>+0.76(2)     | A<br>A           | CLS<br>CLS | <u>1992Me07</u><br><u>1992Me07</u> | ZP A341 475 (1992)<br>ZP A341 475 (1992) |
|          |               | 331              | 21.12.11                          | 7.             | 511 G(2)                   |                  |            |                                    |                                          |
|          | 81 TI 205     | 204              | 1.5 ns                            | 3/2+           | +0.74(15)                  |                  | Mu-X       | <u>1972Ch07</u>                    | NP A181 25 (1972)                        |
|          |               | 2623             | short                             | (5/2)-         | -0.5(2)                    |                  | Mu-X       | <u>1972Ch07</u>                    | NP A181 25 (1972)                        |
| Lead     | Efg in 3P1 st | ate of neutro    | al Pb                             |                |                            |                  |            |                                    |                                          |
|          | A. Efg in 1D2 |                  |                                   |                |                            |                  |            |                                    |                                          |
|          |               |                  | ed Q of 206Pb<br>of relaxation in |                |                            |                  |            |                                    |                                          |
|          | c. Obtainea   | i on theory      | oj reiuxulion in                  | ny metai       |                            |                  |            |                                    |                                          |
|          | 82 Pb 191     | 138              | 2.18 m                            | 13/2+          | +0.085(5)                  | А                | CLS        | <u>1991Du07</u>                    | ZP A341 39 (1991)                        |
|          | 82 Pb 192     | 2581+d           | 1.07 ms                           | 12+            | 0.32(4)                    | В                | TDPAD      | 2007lo03                           | PL B650 141 (2007)                       |
|          |               | 2743             | 756 ns                            | 11-            | 2.9(3)                     | В                | TDPAD      | <u>2007lo03</u>                    | PL B650 141 (2007)                       |
|          | 82 Pb 193     | 100              | 5.8 m                             | 13/2+          | +0.195(10)                 | A                | CLS        | 1991Du07                           | ZP A341 39 (1991)                        |
|          | 02 LN 132     | 100              | ווו ט.כ                           | 13/ ∠⊤         | 10.133(10)                 | ^                | CL3        | 1331DUU/                           | 71 U241 22 (1221)                        |

| Element           | Nucleus    | E(level) | $T_{I/2}$ | I P     | Q(b)              | Ref. Std. | Method     | NSR Keynumber                | Journal Reference         |
|-------------------|------------|----------|-----------|---------|-------------------|-----------|------------|------------------------------|---------------------------|
|                   |            | 1586 + x | 22 ns     | (21/2-) | 0.22(2)           | В         | TDPAD      | 2004Ba31                     | Eur Phys J A20 191 (2004) |
|                   |            | 2585 + x | 9.4 ns    | (27/2-) | 2.6(3)            | В         | TDPAD      | <u>2011Ba02</u>              |                           |
|                   |            |          |           | (29/2-) | 2.8(3)            | В         | TDPAD      | 2004Ba31                     | Eur Phys J A20 191 (2004) |
|                   |            | 2613 + x | 135 ns    | (33/2+) | 0.45(4)           | В         | TDPAD      | 2004Ba31                     | Eur Phys J A20 191 (2004) |
|                   | 02 Pb 404  | 2620     | 250       | 12.     | 0.40(2)           |           | TDDAD      | 10055416                     | 70 4222 02 /4005)         |
|                   | 82 Pb 194  | 2628     | 350 ns    | 12+     | 0.49(3)           | В         | TDPAD      | <u>1985St16</u>              | ZP A322 83 (1985)         |
|                   |            | 2933     | 122 ns    | 11-     | 3.6(4)            | В         | TDPAD      | <u>2007lo03</u>              | PL B650 141 (2007)        |
|                   | 82 Pb 195  | 203      | 15.0 m    | 13/2+   | +0.306(15)        | Α         | CLS        | <u>1991Du07</u>              | ZP A341 39 (1991)         |
|                   | 82 Pb 196  | 2694     | 269 ns    | 12+     | 0.65(5)           | В         | TDPAD      | 1981Zy02                     | HFI 9 109 (1981)          |
|                   |            | 3191     | 85 ns     | 11-     | (-)3.4(7)         | В         | LEMS       | 2002Vy01                     | PRL 88 102502 (2002)      |
|                   |            |          |           |         |                   |           |            |                              |                           |
|                   | 82 Pb 197  | 0        | 8 m       | 3/2-    | -0.08(17)         |           | CLS        | <u>1986An06</u>              | ZP A451 471 (1986)        |
|                   |            | 319      | 43 m      | 13/2+   | +0.378(19)        | Α         | CLS        | <u>1991Du07</u>              | ZP A341 39 (1991)         |
|                   | 82 Pb 198  | 2820     | 212 ns    | 12+     | 0.75(5)           | В         | TDPAD      | <u>1981Zy02</u>              | HFI 9 109 (1981)          |
|                   |            |          |           |         |                   |           |            |                              |                           |
|                   | 82 Pb 199  | 0        | 1.5 h     | 3/2-    | '+0.08(9)         |           | CLS        | <u>1986An06</u>              | ZP A451 471 (1986)        |
|                   | 82 Pb 200  | 2154     | 44 ns     | 7-      | 0.32(2)           | В         | TDPAD      | ******                       | AECL-6680 27 (1979)       |
|                   |            | 2183     | 480 ns    | 9-      | 0.40(2)           | В         | TDPAD      | *****                        | AECL-6680 27 (1979)       |
|                   |            | 3006     | 152 ns    | 12+     | 0.79(3)           | В         | TDPAD      | <u>1979Ma37</u>              | PL B88 48 (1979)          |
|                   | 02 Ph 204  | 0        | 0.22 5    | F /2    | 0.01(4)           |           | CIC        | 10004-000                    | 70 4454 474 (4005)        |
|                   | 82 Pb 201  | 0        | 9.33 h    | 5/2-    | 0.01(4)           |           | CLS        | <u>1986An06</u><br>******etc | ZP A451 471 (1986)        |
|                   |            | 2719     | 63 ns     | 25/2-   | 0.46(2)           | В         | TDPAD      | <u>etc</u>                   | AECL-6680 27 (1979)       |
|                   | 82 Pb 202  | 2170     | 3.62 h    | 9-      | +0.58(9)          |           | CLS        | <u>1986An06</u>              | ZP A451 471 (1986)        |
|                   |            | 2208     | 65 ns     | 7-      | 0.28(2)           | В         | TDPAD      | *******etc                   | AECL-6680 27 (1979)       |
|                   | 02.01.202  |          | 54.01     | F /2    | .0.40(5)          |           | CIC        | 10004-000                    | 7D AAFA A74 (400C)        |
|                   | 82 Pb 203  | 0        | 51.9 h    | 5/2-    | +0.10(5)          |           | CLS        | <u>1986An06</u><br>******etc | ZP A451 471 (1986)        |
|                   |            | 1921     | 56 ns     | 21/2+   | 0.85(3)           | В         | TDPAD      | *********etc                 | AECL-6680 27 (1979)       |
|                   | 82 Pb 204  | 899      | 2.94 ps   | 2+      | +0.23(9)          |           | CER        | <u>1978Jo04</u>              | PL B72 307 (1978)         |
|                   |            | 1274     | 280 ns    | 4+      | 0.44(2)           | В         | TDPAD      | *******etc                   | AECL-6680 27 (1979)       |
|                   | 82 Pb 205  | 0        | 1.5x10*7y | 5/2-    | +0.23(4)          |           | CLS        | 1986An06                     | ZP A451 471 (1986)        |
|                   | 02 FU 2U3  | 1014     | 5.55 ms   | 13/2+   | 0.30(5)           | С         | QIR        | 1986A1106<br>1974Ri03        | PS 11 228 (1975)          |
|                   |            | 3196     | 217 ns    | 25/2-   | 0.63(3)           | В         | TDPAD      | ********etc                  | AECL-6680 27 (1979)       |
|                   |            |          | -         | -,      |                   |           |            |                              |                           |
|                   | 82 Pb 206  | 803      | 8.4 ps    | 2+      | +0.05(9)          |           | CER        | <u>1978Jo04</u>              | PL B72 307 (1978)         |
|                   |            | 2200     | 123 ms    | 7-      | 0.33(5)           | С         | QIR        | <u>1974Ri03</u>              | PS 11 228 (1975)          |
|                   |            | 4027     | 185 ns    | 12+     | estimated 0.51(2) |           | from B(E2) | <u>1979Ma37</u>              | PL B88 48 (1979)          |
|                   | 82 Pb 208  | 2615     | 15 ps     | 3-      | -0.34(15)         |           | CER        | 1984Ve07                     | AuJP 37 123 (1984)        |
|                   |            | 4086     | 0.74 fs   | 2+      | -0.7(3)           |           | CER        | <u>1984Ve07</u>              | AuJP 37 123 (1984)        |
|                   |            |          |           |         |                   |           |            |                              |                           |
| Reference isotope | 82 Pb 209  | 0        | 3.25 h    | 9/2+    | -0.27(17)         |           | CLS        | <u>1986An06</u>              | ZP A451 471 (1986)        |
|                   | 82 Pb 211  | 0        | 36.1 m    | 9/2+    | +0.09(6)          |           | CLS        | 1986An06                     | ZP A451 471 (1986)        |
| 1                 | 02 1 0 211 | U        | 30.1 111  | 2/21    | 10.03(0)          |           | CLJ        | 1300AH00                     | 21 (131 1/1 (1300)        |

| Birmuth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Element           | Nucleus       | E(level)      | T 1/2             | I <sup>p</sup> | Q(b)                                    | Ref. Std.             | Method               | NSR Keynumber            | Journal Reference                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|---------------|-------------------|----------------|-----------------------------------------|-----------------------|----------------------|--------------------------|---------------------------------------------|
| 8 8 8 120 0 1.72 h (5+) 1.00(9) [2098] LES 1996(197201823 NP ASS8 61 [1996)/PRL 87 133003 (2001 NP ASS8 61 [ | Bismuth           | Efa calculati | ons in the 4F | P3/2 state of neu | tral Bi        |                                         |                       |                      | 2001Bi23                 | PRL 87 133003 (2001)                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |               | , = 00000 0,      |                |                                         |                       |                      |                          | ()                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 83 Bi 202     | 0             | 1.72 h            | [5+]           | -1.00(9)                                | [209Bi]               | LFRS                 | 1996Ca02/2001Bi23        | NP A598 61 (1996)/PRL 87 133003 (2001)      |
| 615   3.04 ms   10-   0.14(2)   [2098]   TDPAD   1987/Ma65   Hill 34 47 [1987]     2607   310 ms   17+   0.45(2)   [2098]   TDPAD   1987/Ma65   Hill 34 47 [1987]     38 81203   0   11.8 h   9/2   -0.93[7]   [2098]   LFRS   1985(00/2001823   NP A598 61 (1996)/FRL 97 133003 (2001     38 81204   0   11.22 h   6+   -0.68(20)   [2098]   LFRS   1995(00/2001823   NP A598 61 (1996)/FRL 97 133003 (2001     38 81205   0   15.3 d   9/2   -0.81(3)   [2098]   LFRS   1995(00/2001823   JPhys G26 1829(2000)/PRL 87 133003 (2001     38 81206   0   6.243 d   6+   -0.54(4)   [2098]   LFRS   2000Pe30/2001823   JPhys G26 1829(2000)/PRL 87 133003 (2001     38 81206   0   6.243 d   6+   -0.54(4)   [2098]   LFRS   2000Pe30/2001823   JPhys G26 1829(2000)/PRL 87 133003 (2001     38 81207   0   32.2 y   9/2   -0.76(2)   [2098]   LFRS   2000Pe30/2001823   JPhys G26 1829(2000)/PRL 87 133003 (2001     38 81208   0   3.7107 sy   9/2   -0.76(2)   [2098]   LFRS   2000Pe30/2001823   JPhys G26 1829(2000)/PRL 87 133003 (2001     38 81208   0   3.7107 sy   5+   -0.70(8)   [2098]   LFRS   2000Pe30/2001823   JPhys G26 1829(2000)/PRL 87 133003 (2001     8 81 81208   0   3.7107 sy   5+   -0.70(8)   [2098]   LFRS   2000Pe30/2001823   JPhys G26 1829(2000)/PRL 87 133003 (2001     8 81 81208   0   3.7107 sy   5+   -0.70(8)   [2098]   LFRS   2000Pe30/2001823   JPhys G26 1829(2000)/PRL 87 133003 (2001     8 81 8120   0   3.7107 sy   5+   -0.70(8)   [2098]   LFRS   2000Pe30/2001823   JPhys G26 1829(2000)/PRL 87 133003 (2001     8 81 8120   0   3.7107 sy   5+   -0.70(8)   [2098]   LFRS   2000Pe30/2001823   JPhys G26 1829(2000)/PRL 87 133003 (2001     8 81 8120   0   3.7107 sy   9-   0.66(7)   [2098]   LFRS   2000Pe30/2001823   JPhys G26 1829(2000)/PRL 87 133003 (2001     8 81 8121   0   6.6 m   1(-1) - 1.0190(6)   [2098]   LFRS   2000Pe30/2001823   JPhys G26 1829(2000)/PRL 87 133003 (2001     8 81 8121   0   6.6 m   1(-1) - 1.0190(6)   [2098]   LFRS   2000Pe30/2001823   JPhys G26 1829(2000)/PRL 87 133003 (2001     8 81 81 212   0   6.6 m   1(-1) - 1.0190(6)    |                   |               |               |                   |                | • • • • • • • • • • • • • • • • • • • • |                       |                      |                          |                                             |
| 2807   310 ns   17+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |               | 615           | 3.04 ms           |                |                                         |                       | TDPAD                | 1987Ma65                 |                                             |
| S3 Bi 204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |               |               | l                 |                |                                         |                       |                      |                          |                                             |
| 83 Bi 204 0 11.22 h 6+ -0.68(20) [2098i] LFRS 1996(607,2001823   NP.A598 61 (1996)/PRL 87 133003 (2001) 806 13.0 ms 10- 0.074(2) [2098i] LEMS 19915(14   PR C43 2560 (1995)] 83 Bi 205 0 15.3 d 9/20.81(3) [2098i] LEMS 2000(1920)/2001823 J Phys G26 1829(2000)/PRL 87 133003 (2001) 83 Bi 206 0 6.243 d 6+ -0.54(4) [2098i] LEMS 2000(1920)/2001823 J Phys G26 1829(2000)/PRL 87 133003 (2001) 83 Bi 207 0 32.2 y 9/20.76(2) [2098i] LEMS 19915(14   PR C43 2560 (1993)] 83 Bi 207 0 32.2 y 9/20.76(2) [2098i] LEMS 19915(14   PR C43 2560 (1993)] 83 Bi 208 0 3.7x10*5 y 5+ -0.70(8) [2098i] LEMS 19915(14   PR C43 2560 (1993)] 83 Bi 208 0 3.7x10*5 y 5+ -0.70(8) [2098i] LEMS 19915(14   PR C43 2560 (1993)] 84 Bi 209 0 stable 9/20.516(15) AB 1970(1905/20018123 J Phys G26 1829(2000)/PRL 87 133003 (2001) 85 Bi 209 0 stable 9/20.516(15) AB 1970(1905/20018123 J Phys G26 1829(2000)/PRL 87 133003 (2001) 87 C2741 12 ps 15/2+ 0.0(5) [2098i] MuX 1972(407 RN A180 14 (1972) 88 Bi 200 0 5.01 d 1- +0.190(6) [2098i] MuX 1972(407 RN A180 14 (1972) 88 Bi 200 0 5.01 d 1- +0.190(6) [2098i] LERS 2000(1982) PR LESS 61952)/PRL 87 133003 (2001) 88 Bi 213 0 6.60 m 1(-) +0.14(1) [2098i] LERS 2000(1982) J Phys G26 1829(2000)/PRL 87 133003 (2001) 88 Bi 213 0 45.6 m 9/20.83(5) [2098i] LERS 2000(1982) J Phys G26 1829(2000)/PRL 87 133003 (2001) 89 Bi 210 0 5.01 d 1- +0.190(6) [2098i] LERS 2000(1982) J Phys G26 1829(2000)/PRL 87 133003 (2001) 81 Bi 210 0 5.01 d 1- +0.190(6) [2098i] LERS 2000(1982) J Phys G26 1829(2000)/PRL 87 133003 (2001) 82 Bi 213 0 45.6 m 9/20.83(5) [2098i] LERS 2000(1982) J Phys G26 1829(2000)/PRL 87 133003 (2001) 83 Bi 213 0 45.6 m 9/20.83(5) [2098i] LERS 2000(1982) J Phys G26 1829(2000)/PRL 87 133003 (2001) 84 Po 200 1774 61 ns 8+ (-)1.38(7) A TDPAD 1987Ma65 HFI 34 47 (1987)                                                                                                                                                                                                                                                                                   |                   |               |               |                   |                |                                         |                       |                      |                          |                                             |
| 806   13.0 ms   10-   0.074(2)   [2098]   LEMS   1991sc14   PR C43 2560 [1991)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | 83 Bi 203     | 0             | 11.8 h            | 9/2-           | -0.93(7)                                | [209Bi]               | LFRS                 | <u>1996Ca02/2001Bi23</u> | NP A598 61 (1996)/PRL 87 133003 (2001)      |
| 806   13.0 ms   10-   0.074(2)   [2098]   LEMS   1991sc14   PR C43 2560 [1991)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | 83 Bi 204     | 0             | 11.22 h           | 6+             | -0.68(20)                               | [209Bi]               | LFRS                 | 1996Ca02/2001Bi23        | NP A598 61 (1996)/PRL 87 133003 (2001       |
| 83 Bi 206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |               |               |                   |                |                                         |                       |                      |                          |                                             |
| 83 Bi 206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |               |               |                   |                |                                         |                       |                      |                          |                                             |
| 1045   0.89 ms   (10-)   0.057(11)   [209Bi]   LEMS   19915:14   PR C43 2560 (1991)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | 83 Bi 205     | 0             | 15.3 d            | 9/2-           | -0.81(3)                                | [209Bi]               | LRFS                 | 2000Pe30/2001Bi23        | J Phys G26 1829(2000)/PRL 87 133003 (2001)  |
| 1045   0.89 ms   (10-)   0.057(11)   [209Bi]   LEMS   19915:14   PR C43 2560 (1991)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | 92 Bi 206     | 0             | 6 2/12 d          | 6+             | 0.54(4)                                 | [2008]                | LDEC                 | 20000020/2001022         | L Phys. G26 1920/2000\/DDL 97 122002 /2001  |
| 83 Bi 207 0 32.2 y 9/20.76(2) [209Bi] LRFS 2000Pe30/2001Bi23 J Phys G26 1829(2000)/PRL 87 133003 (2001 182 ms 21/2+ 0.051(9) [209Bi] LEMS 1991Sc.14 PR C43 2560 (1991)  83 Bi 208 0 3.7x10*5 y 5+ -0.70(8) [209Bi] LRFS 2000Pe30/2001Bi23 J Phys G26 1829(2000)/PRL 87 133003 (2001 Reference isotope 3 Bi 209 0 stable 9/20.516(15) AB 1970Hu05/2001Bi23 PR A1 685 (1970)/PRL 87 133003 (2001)  82 S53 14 fs (9/2)+ +0.15(7) [209Bi] Mu-X 1972Le07 NP A180 14 (1972)  83 Bi 210 2741 12 ps 15/2+ 0.0(5) [209Bi] Mu-X 1972Le07 NP A180 14 (1972)  83 Bi 210 0 5.01 d 1- +0.190(6) [209Bi] AB 1962Al02/2001Bi23 PR 125 256 (1962)/PRL 87 133003 (2001 EVEN COMPANIAN SECONDARY SECOND       |                   | 65 BI 200     |               |                   |                |                                         |                       |                      |                          | , , , , , , , , , , , , , , , , , , , ,     |
| 2101   182 ms   21/2+   0.051(9)   [209Bi]   LEMS   1991Sc14   PR C43 2560 (1991)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |               | 1043          | 0.831118          | (10-)          | 0.037(11)                               | [203Bi]               | ELIVIS               | <u>15513C14</u>          | F N C43 2300 (1331)                         |
| 2101   182 ms   21/2+   0.051(9)   [209Bi]   LEMS   1991Sc14   PR C43 2560 (1991)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | 83 Bi 207     | 0             | 32.2 y            | 9/2-           | -0.76(2)                                | [209Bi]               | LRFS                 | 2000Pe30/2001Bi23        | J Phys G26 1829(2000)/PRL 87 133003 (2001)  |
| Reference isotope 83 Bi 209 0 stable 9/20.516(15) AB 1970Hu05/2001Bi23 PR A1 685 (1970)/PRL 87 133003 (2001) 2563 14 fs (9/2)+ +0.15(7) [209Bi] Mu-X 1972Le07 NP A180 14 (1972) 2741 12 ps 15/2+ 0.0(5) [209Bi] Mu-X 1972Le07 NP A180 14 (1972)  83 Bi 210 0 5.01 d 1- +0.190(6) [209Bi] AB 1962A102/2001Bi23 PR 125 256 (1962)/PRL 87 133003 (2001) 271 3.0x10*6 y 90.66(7) [209Bi] LRFS 2000Pe30/2001Bi23 J Phys G26 1829(2000)/PRL 87 133003 (2001) 83 Bi 212 0 60.6 m 1(-) +0.1(4) [209Bi] LRFS 2000Pe30/2001Bi23 J Phys G26 1829(2000)/PRL 87 133003 (2001) 83 Bi 213 0 45.6 m 9/20.83(5) [209Bi] LRFS 2000Pe30/2001Bi23 J Phys G26 1829(2000)/PRL 87 133003 (2001)  83 Bi 213 0 45.6 m 9/20.83(5) [209Bi] LRFS 2000Pe30/2001Bi23 J Phys G26 1829(2000)/PRL 87 133003 (2001)  84 Po 200 1774 61 ns 8+ (-)1.38(7) A TDPAD 1987Ma65 HFI 34 47 (1987)  84 Po 202 1712 110 ns 8+ (-)1.38(7) A LEMS 1997Ne06 NP A625 668 (1997)  84 Po 204 1639 158 ns 8+ (-)1.14(5) A TDPAD 1987Ma65 HFI 34 47 (1987)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |               |               |                   |                |                                         |                       |                      |                          |                                             |
| Reference isotope 83 Bi 209 0 stable 9/20.516(15) AB 1970Hu05/2001Bi23 PR A1 685 (1970)/PRL 87 133003 (2001) 2563 14 fs (9/2)+ +0.15(7) [209Bi] Mu-X 1972Le07 NP A180 14 (1972) 2741 12 ps 15/2+ 0.0(5) [209Bi] Mu-X 1972Le07 NP A180 14 (1972)  83 Bi 210 0 5.01 d 1- +0.190(6) [209Bi] AB 1962A102/2001Bi23 PR 125 256 (1962)/PRL 87 133003 (2001) 271 3.0x10*6 y 90.66(7) [209Bi] LRFS 2000Pe30/2001Bi23 J Phys G26 1829(2000)/PRL 87 133003 (2001) 83 Bi 212 0 60.6 m 1(-) +0.1(4) [209Bi] LRFS 2000Pe30/2001Bi23 J Phys G26 1829(2000)/PRL 87 133003 (2001) 83 Bi 213 0 45.6 m 9/20.83(5) [209Bi] LRFS 2000Pe30/2001Bi23 J Phys G26 1829(2000)/PRL 87 133003 (2001)  83 Bi 213 0 45.6 m 9/20.83(5) [209Bi] LRFS 2000Pe30/2001Bi23 J Phys G26 1829(2000)/PRL 87 133003 (2001)  84 Po 200 1774 61 ns 8+ (-)1.38(7) A TDPAD 1987Ma65 HFI 34 47 (1987)  84 Po 202 1712 110 ns 8+ (-)1.38(7) A LEMS 1997Ne06 NP A625 668 (1997)  84 Po 204 1639 158 ns 8+ (-)1.14(5) A LEMS 1997Ne06 NP A625 668 (1997)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |               |               |                   |                |                                         |                       |                      |                          |                                             |
| 2563 14 fs (9/2)+ +0.15(7) [209Bi] Mu-X 1972Le07 NP A180 14 (1972) 2741 12 ps 15/2+ 0.0(5) [209Bi] Mu-X 1972Le07 NP A180 14 (1972)  83 Bi 210 0 5.01 d 1- +0.190(6) [209Bi] AB 1962A[02/2001Bi23 PR 125 256 (1962)/PRL 87 133003 (2001) 271 3.0x10*6 y 90.66(7) [209Bi] LRFS 2000Pe30/2001Bi23 J Phys G26 1829(2000)/PRL 87 133003 (2001)  83 Bi 212 0 60.6 m 1(-) +0.1(4) [209Bi] LRFS 2000Pe30/2001Bi23 J Phys G26 1829(2000)/PRL 87 133003 (2001)  83 Bi 213 0 45.6 m 9/20.83(5) [209Bi] LRFS 2000Pe30/2001Bi23 J Phys G26 1829(2000)/PRL 87 133003 (2001)  Polonium There is no adopted reference efg for Po.  A. The moments quoted are based on a calculated value for the 1557 keV, 8+, state in 210Po [1991Be03, NPA522 483 (1991)].  84 Po 200 1774 61 ns 8+ (-)1.38(7) A TDPAD 1987Ma65 HFI 34 47 (1987)  84 Po 202 1712 110 ns 8+ (-)1.21(16) A LEMS 1997Ne06 NP A625 668 (1997)  84 Po 204 1639 158 ns 8+ (-)1.14(5) A TDPAD 1987Ma65 HFI 34 47 (1987)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | 83 Bi 208     | 0             | 3.7x10*5 y        | 5+             | -0.70(8)                                | [209Bi]               | LRFS                 | 2000Pe30/2001Bi23        | J Phys G26 1829(2000)/PRL 87 133003 (2001)  |
| 2563 14 fs (9/2)+ +0.15(7) [209Bi] Mu-X 1972Le07 NP A180 14 (1972) 2741 12 ps 15/2+ 0.0(5) [209Bi] Mu-X 1972Le07 NP A180 14 (1972)  83 Bi 210 0 5.01 d 1- +0.190(6) [209Bi] AB 1962A[02/2001Bi23 PR 125 256 (1962)/PRL 87 133003 (2001) 271 3.0x10*6 y 90.66(7) [209Bi] LRFS 2000Pe30/2001Bi23 J Phys G26 1829(2000)/PRL 87 133003 (2001)  83 Bi 212 0 60.6 m 1(-) +0.1(4) [209Bi] LRFS 2000Pe30/2001Bi23 J Phys G26 1829(2000)/PRL 87 133003 (2001)  83 Bi 213 0 45.6 m 9/20.83(5) [209Bi] LRFS 2000Pe30/2001Bi23 J Phys G26 1829(2000)/PRL 87 133003 (2001)  Polonium There is no adopted reference efg for Po.  A. The moments quoted are based on a calculated value for the 1557 keV, 8+, state in 210Po [1991Be03, NPA522 483 (1991)].  84 Po 200 1774 61 ns 8+ (-)1.38(7) A TDPAD 1987Ma65 HFI 34 47 (1987)  84 Po 202 1712 110 ns 8+ (-)1.21(16) A LEMS 1997Ne06 NP A625 668 (1997)  84 Po 204 1639 158 ns 8+ (-)1.14(5) A TDPAD 1987Ma65 HFI 34 47 (1987)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Reference isotope | 83 Bi 209     | 0             | stable            | 9/2-           | -0.516(15)                              |                       | AB                   | 1970Hu05/2001Bi23        | PR A1 685 (1970)/PRL 87 133003 (2001)       |
| 12 ps   15/2+   0.0(5)   [209Bi]   Mu-X   1972LeO7   NP A180 14 (1972)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -,                |               |               |                   |                |                                         | [209Bi]               | Mu-X                 |                          |                                             |
| 271   3.0x10*6 y   9-   -0.66(7)   [209Bi]   LRFS   2000Pe30/2001Bi23   J Phys G26 1829(2000)/PRL 87 133003 (2001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |               | 2741          | 12 ps             |                |                                         |                       | Mu-X                 | <u>1972Le07</u>          | NP A180 14 (1972)                           |
| 271   3.0x10*6 y   9-   -0.66(7)   [209Bi]   LRFS   2000Pe30/2001Bi23   J Phys G26 1829(2000)/PRL 87 133003 (2001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |               |               |                   |                |                                         |                       |                      |                          | <u> </u>                                    |
| 83 Bi 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | 83 Bi 210     |               |                   |                |                                         |                       |                      |                          |                                             |
| Ref   Sa Bi 213   0   45.6 m   9/2-   -0.83(5)   [209Bi]   LRFS   2000Pe30/2001Bi23   J Phys G26 1829(2000)/PRL 87 133003 (2001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |               | 2/1           | 3.0x10*6 y        | 9-             | -0.66(7)                                | [2098i]               | LRFS                 | 2000Pe30/2001Bi23        | J Phys G26 1829(2000)/PRL 87 133003 (2001   |
| Polonium  There is no adopted reference efg for Po.  A. The moments quoted are based on a calculated value for the 1557 keV, 8+, state in 210Po [1991Be03, NPA522 483 (1991)].  84 Po 200 1774 61 ns 8+ (-)1.38(7) A TDPAD 1987Ma65 HFI 34 47 (1987)  84 Po 202 1712 110 ns 8+ (-)1.21(16) A LEMS 1997Ne06 NP A625 668 (1997)  84 Po 204 1639 158 ns 8+ (-)1.14(5) A TDPAD 1987Ma65 HFI 34 47 (1987)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | 83 Bi 212     | 0             | 60.6 m            | 1(-)           | +0.1(4)                                 | [209Bi]               | LRFS                 | 2000Pe30/2001Bi23        | J Phys G26 1829(2000)/PRL 87 133003 (2001)  |
| Polonium  There is no adopted reference efg for Po.  A. The moments quoted are based on a calculated value for the 1557 keV, 8+, state in 210Po [1991Be03, NPA522 483 (1991)].  84 Po 200 1774 61 ns 8+ (-)1.38(7) A TDPAD 1987Ma65 HFI 34 47 (1987)  84 Po 202 1712 110 ns 8+ (-)1.21(16) A LEMS 1997Ne06 NP A625 668 (1997)  84 Po 204 1639 158 ns 8+ (-)1.14(5) A TDPAD 1987Ma65 HFI 34 47 (1987)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | 92 Di 212     | 0             | 45.6 m            | 0/2            | -0.83/5/                                | [200Ri]               | LRES                 | 2000Pe30/2001Bi23        | I Phys G26 1829/2000\/DPL 87 133003 (2001)  |
| A. The moments quoted are based on a calculated value for the 1557 keV, 8+, state in 210Po [1991BeO3, NPA522 483 (1991)].  84 Po 200 1774 61 ns 8+ (-)1.38(7) A TDPAD 1987Ma65 HFI 34 47 (1987)  84 Po 202 1712 110 ns 8+ (-)1.21(16) A LEMS 1997NeO6 NP A625 668 (1997)  84 Po 204 1639 158 ns 8+ (-)1.14(5) A TDPAD 1987Ma65 HFI 34 47 (1987)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 03 DI 213     | 0             | 45.0111           | 3/2-           | 0.03(3)                                 | [20381]               | ENIS                 | 20001 C30/2001Bi23       | 31 Hy3 G20 1025(2000)/1 H2 07 155005 (2001) |
| 84 Po 200 1774 61 ns 8+ (-)1.38(7) A TDPAD 1987Ma65 HFI 34 47 (1987)  84 Po 202 1712 110 ns 8+ (-)1.21(16) A LEMS 1997Ne06 NP A625 668 (1997)  84 Po 204 1639 158 ns 8+ (-)1.14(5) A TDPAD 1987Ma65 HFI 34 47 (1987)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Polonium          |               |               |                   |                |                                         |                       |                      |                          |                                             |
| 84 Po 202 1712 110 ns 8+ (-)1.21(16) A LEMS 1997Ne06 NP A625 668 (1997)  84 Po 204 1639 158 ns 8+ (-)1.14(5) A TDPAD 1987Ma65 HFI 34 47 (1987)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | A. The mom    | ents quoted   | are based on a c  | alculated valu | ie for the 1557 keV, 8+, st             | tate in 210Po [1991Be | 203, NPA522 483 (19: | 91)].                    |                                             |
| 84 Po 204 1639 158 ns 8+ (-)1.14(5) A TDPAD 1987Ma65 HFI 34 47 (1987)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | 84 Po 200     | 1774          | 61 ns             | 8+             | (-)1.38(7)                              | A                     | TDPAD                | <u>1987Ma65</u>          | HFI 34 47 (1987)                            |
| 84 Po 204 1639 158 ns 8+ (-)1.14(5) A TDPAD 1987Ma65 HFI 34 47 (1987)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |               |               |                   |                |                                         |                       |                      |                          |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 84 Po 202     | 1712          | 110 ns            | 8+             | (-)1.21(16)                             | A                     | LEMS                 | <u>1997Ne06</u>          | NP A625 668 (1997)                          |
| 84 Po 206 1586 212 ns 8+ (-)1.02(4) A TDPAD <u>1987Ma65</u> HFI 34 47 (1987)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | 84 Po 204     | 1639          | 158 ns            | 8+             | (-)1.14(5)                              | A                     | TDPAD                | <u>1987Ma65</u>          | HFI 34 47 (1987)                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 84 Po 206     | 1586          | 212 ns            | 8+             | (-)1.02(4)                              | A                     | TDPAD                | <u>1987Ma65</u>          | HFI 34 47 (1987)                            |
| 84 Po 208 1528 380 ns 8+ (-)0.90(4) A TDPAD <u>1987Ma65</u> HFI 34 47 (1987)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | 84 Po 208     | 1528          | 380 ns            | 8+             | (-)0.90(4)                              | A                     | TDPAD                | <u>1987Ma65</u>          | HFI 34 47 (1987)                            |
| 04.0-200 4472 004 (47/2) (10.20(0) 4 70.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | 04.0. 200     | 4.470         | 00.4              | (47/2)         | ( )0 20(0)                              |                       | TDDAD                | 40025 04                 | ND 4204 245 (4000)                          |
| 84 Po 209 1473 98.1 ns (17/2-) (-)0.39(8) A TDPAD <u>1983Da01</u> NP A394 245 (1983)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | 84 PO 209     | 14/3          | 98.1 ns           | (1//2-)        | (-)0.39(8)                              | A                     | IDPAD                | <u>1983DaU1</u>          | NP A394 245 (1983)                          |
| 84 Po 210 1557 96 ns 8+ -0.55(2) calculation from B(E2) <u>1991Be03</u> NP A522 483 (1991)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | 84 Po 210     | 1557          | 96 ns             | 8+             | -0.55(2)                                | calculation           | from B(E2)           | <u>1991Be03</u>          | NP A522 483 (1991)                          |

| Element  | Nucleus       | E(level)      | $T_{1/2}$         | I <sup>p</sup>   | Q(b)                    | Ref. Std.              | Method               | NSR Keynumber   | Journal Reference    |
|----------|---------------|---------------|-------------------|------------------|-------------------------|------------------------|----------------------|-----------------|----------------------|
|          |               | 2849          | 20.1 ns           | 11-              | (-)0.86(11)             | Α                      | TDPAD                | 1991Be03        | NP A522 483 (1991)   |
|          |               | 4372          | 51 ns             | 13-              | (-)0.90(7)              | Α                      | TDPAD                | 1991Be03        | NP A522 483 (1991)   |
|          |               | 5058          | 265 ns            | 16+              | (-)1.30(2)              | A                      | TDPAD                | <u>1991Be03</u> | NP A522 483 (1991)   |
| Astitine | There is no a | dopted refer  | ence efg for As   | :                |                         |                        |                      |                 |                      |
|          |               |               |                   |                  | for the 1417 keV, 21/2- | , state in 211At [1995 | Ba66 NP A591 104 (19 | 995)].          |                      |
|          |               |               |                   |                  |                         |                        |                      |                 |                      |
|          | 85 At 208     | 1090          | 48 ns             | 10-              | (-)1.67(18)             | A                      | LEMS                 | <u>1991Sc15</u> | PR C43 2566 (1991)   |
|          | 85 At 209     | 1428          | 26 ns             | 21/2-            | (-)0.78(6)              | A                      | TDPAD                | <u>1983Ma08</u> | PL B122 27 (1983)    |
|          |               | 2429          | 890 ns            | 29/2+            | (-)1.49(9)              | A                      | TDPAD                | <u>1983Ma08</u> | PL B122 27 (1983)    |
|          | 85 At 210     | 1363          | 28.4 ns           | 11+              | (-)0.64(5)              | A                      | TDPAD                | 1983Ma08        | PL B122 27 (1983)    |
|          |               | 2550          | 480 ns            | 15-              | (-)1.21(7)              | A                      | TDPAD                | 1983Ma08        | PL B122 27 (1983)    |
|          |               | 4028          | 5.9 ms            | 19+              | (-)2.16(18)             | А                      | LEMS                 | <u>1991Sc15</u> | PR C43 2566 (1991)   |
|          | 85 At 211     | 1417          | 35.1 ns           | 21/2-            | (-)0.524(10)            | calculation            | from B(E2)           | <u>1995Ba66</u> | NP A591 104 (1996)   |
|          | 03 At 211     | 2641          | 50.8 ns           | 29/2+            | (-)1.01(7)              | A                      | TDPAD                | 1983Ma08        | PL B122 27 (1983)    |
|          |               | 4816          | 4.2 ms            | 39/2-            | (-)1.88(19)             | A                      | LEMS                 | 1991Sc15        | PR C43 2566 (1991)   |
|          |               |               |                   | ,                |                         |                        |                      |                 | ,                    |
| Radon    |               |               | ence efg for Ro   |                  |                         |                        |                      |                 |                      |
|          |               |               | om [CERN EP/8     |                  |                         |                        |                      |                 |                      |
|          | B. Normalise  | d to Q of 169 | 94 keV, 8+ state  | e in 212Rn estim | nated from B(E2).       |                        |                      |                 |                      |
|          | 86 Rn 203     | 361           | 28 s              | (13/2+)          | +1.28(13)               | 209Rn                  | CLS                  | <u>19870tZW</u> | CERN EP/87 51 (1987) |
|          | 86 Rn 205     | 0             | 2.83 m            | 5/2-             | +0.062(6)               | 209Rn                  | CLS                  | <u>19870tZW</u> | CERN EP/87 51 (1987) |
|          | 0C Pm 207     | 0             | 0.2 m             | 5/2-             | .0.22/2\                | 2000-                  | CLS                  | 10070+7\\       | CERN EP/87 51 (1987) |
|          | 86 Rn 207     | U             | 9.3 m             | 5/2-             | +0.22(2)                | 209Rn                  | CLS                  | <u>19870tZW</u> | CERN EP/87 51 (1987) |
|          | 86 Rn 208     | 1826          | 490 ns            | 8+               | 0.41(5)                 | В                      | TDPAD                | <u>1986Be40</u> | PL B182 11 (1986)    |
| n        | 86 Rn 209     | 0             | 29 m              | 5/2-             | +0.31(3)                | A                      | CLS                  | 1987OtZW        | CERN EP/87 51 (1987) |
| •        |               |               |                   | 5,-              | (-)                     |                        |                      |                 | 72 - 12-7            |
|          | 86 Rn 210     | 1665+x        | 644 ns            | (8+)             | 0.32(4)                 | В                      | TDPAD                | <u>1986Be40</u> | PL B182 11 (1986)    |
|          |               | 3812+x        | 1.05 ms           | (17)-            | 0.89(10)                | В                      | TDPAD                | <u>1986Be40</u> | PL B182 11 (1986)    |
|          | 86 Rn 211     | 1578+x        | 596 ns            | 17/2-            | 0.19(2)                 | В                      | TDPAD                | <u>1985Da14</u> | PRL 55 1269 (1985)   |
| С        |               | 8855+y        | 201 ns            | 63/2-            | 1.6(2)                  | В                      | TDPAD                | 1985Da14        | PRL 55 1269 (1985)   |
|          | 06 B 242      | 4502          | 0.0               | 4.               |                         |                        |                      |                 |                      |
|          | 86 Rn 212     | 1502<br>1694  | 8.8 ns<br>0.91 ms | 4+<br>8+         | -0.18(2)                | from B(E2)             | not measured         | <u>1985Da13</u> | NP A441 501 (1985)   |
|          |               |               |                   |                  |                         |                        |                      |                 |                      |
|          | 86 Rn 219     | 0             | 3.96 s            | 5/2+             | +1.15(12)               | 209Rn                  | CLS                  | <u>1987OtZW</u> | CERN EP/87 51 (1987) |
|          | 86 Rn 221     | 0             | 25 m              | 7/2+             | -0.47(5)                | 209Rn                  | CLS                  | <u>19870tZW</u> | CERN EP/87 51 (1987) |
|          | 86 Rn 223     | 0             | 23.2 m            | 7/2              | +0.80(8)                | 209Rn                  | CLS                  | 1988NeZZ        | Bk88 NFFS 126 (1988) |
|          | 55 MI 225     |               | 23.2 111          |                  | 3.50(0)                 | 233111                 |                      |                 | 5.00 7 120 (1500)    |
|          | 86 Rn 225     | 0             | 4.5 m             | 7/2-             | +0.84(8)                | 209Rn                  | CLS                  | <u>1988NeZZ</u> | Bk88 NFFS 126 (1988) |

| Element           | Nucleus       | E(level)       | $T_{1/2}$        | I <sup>p</sup>    | Q(b)                    | Ref. Std.           | Method            | NSR Keynumber                      | Journal Reference                       |
|-------------------|---------------|----------------|------------------|-------------------|-------------------------|---------------------|-------------------|------------------------------------|-----------------------------------------|
| Francium          | Efa calculate | ed in the 2P3/ | 2 state of the   | Fr atom (PR A27   | 3332 (1983) revised (Pi | L B163 (1985)).     |                   |                                    |                                         |
|                   |               |                |                  | 38 keV 29/2+ stat |                         | , , , ,             |                   |                                    |                                         |
|                   | 87 Fr 207     | 0              | 14.8 s           | 9/2-              | -0.16(5)                | 223Fr               | ABLS              | <u>1985Co24</u>                    | PL B163 66 (1985)                       |
|                   | 67 FI 207     | U              | 14.0 3           | 9/2-              | -0.10(3)                | 22311               | ABLS              | <u>1583C024</u>                    | FL B103 00 (1983)                       |
|                   | 87 Fr 208     | 0              | 58.6 s           | 7+                | 0.00(4)                 | 223Fr               | ABLS              | <u>1985Co24</u>                    | PL B163 66 (1985)                       |
|                   | 87 Fr 209     | 0              | 50 s             | 9/2-              | -0.24(2)                | 223Fr               | ABLS              | <u>1985Co24</u>                    | PL B163 66 (1985)                       |
|                   | 87 Fr 210     | 0              | 3.2 m            | 6+                | +0.19(2)                | 223Fr               | ABLS              | <u>1985Co24</u>                    | PL B163 66 (1985)                       |
|                   | 07.5.244      | 0              | 2.4              | 0./2              | 0.40/2)                 | 2225                | ABLC              | 40050 24                           | DI DAGO 66 (4005)                       |
|                   | 87 Fr 211     | 0<br>2423      | 3.1 m<br>146 ns  | 9/2-<br>29/2+     | -0.19(3)<br>(-)1.07(18) | 223Fr<br>A          | ABLS<br>LEMS      | <u>1985Co24</u><br><u>1991Ha02</u> | PL B163 66 (1985)<br>PR C43 514 (1991)  |
|                   |               | 4657           | 123 ns           | 45/2-             | (-)2.0(6)               | A                   | LEMS              | 1991Ha02                           | PR C43 514 (1991)                       |
|                   |               | 1007           | 123              | .572              | ( )=10(0)               |                     | 229               | 255211002                          | 1110.0021(2002)                         |
|                   | 87 Fr 212     | 0              | 19.3 m           | 5+                | -0.10(1)                | 223Fr               | ABLS              | <u>1985Co24</u>                    | PL B163 66 (1985)                       |
|                   |               | 2492           | 604 ns           | (15-)             | (-)0.84(13)             | A                   | TDPAD             | <u>1990By03</u>                    | NP A516 145 (1990)                      |
|                   |               | 5854           | 312 ns           | (27-)             | (-)1.7(3)               | A                   | TDPAD             | <u>1990By03</u>                    | NP A516 145 (1990)                      |
|                   | 07 5- 212     | 0              | 247.0            | 0/2               | 0.14(2)                 | 2225*               | ADLC              | 10050-24                           | DI D4C3 CC (400F)                       |
|                   | 87 Fr 213     | 0<br>2538      | 34.7 s<br>243 ns | 9/2-<br>29/2+     | -0.14(2)<br>[-0.70(7)]  | 223Fr<br>calculated | ABLS not measured | 1985Co24<br>1990By03               | PL B163 66 (1985)<br>NP A516 145 (1990) |
|                   |               | 8095           | 3.1 ms           | 65/2-             | (-)2.2(5)               | A                   | LEMS              | 1991Ha02                           | PR C43 514 (1991)                       |
|                   |               | 0033           | 512 1115         | 55/2              | ( /=:=(3)               |                     | 229               | 255211002                          | 1110.0021(2002)                         |
|                   | 87 Fr 214     | 640            | 103 ns           | 11+               | 0.8(2)                  | А                   | LEMS              | <u>1995Ne06</u>                    | PR C51 3483 (1995)                      |
|                   |               | 6477+D'        | 108 ns           | 32+ or 33+        | 2.2(5)                  | A                   | LEMS              | <u>1995Ne06</u>                    | PR C51 3483 (1995)                      |
|                   | 87 Fr 220     | 0              | 27.4 s           | 1+                | +0.47(3)                | 223Fr               | ABLS              | 1985Co24/1987Co19                  | PL B163 66 (1985)/NP A468 1 (1987)      |
|                   | 67 FI 220     | U              | 27.45            | 1+                | +0.47(3)                | 22371               | ADLS              | <u>1963C024/1967C019</u>           | PL B103 00 (1303)/NP A400 1 (1307,      |
|                   | 87 Fr 221     | 0              | 4.8 m            | 5/2-              | -0.98(6)                | 223Fr               | ABLS              | 1985Co24/1987Co19                  | PL B163 66 (1985)/NP A468 1 (1987)      |
|                   | 87 Fr 222     | 0              | 14.2 m           | 2-                | +0.51(4)                | 223Fr               | ABLS              | <u>1985Co24</u>                    | PL B163 66 (1985)                       |
| Reference isotope | 87 Fr 223     | 0              | 21.8 m           | 3/2(-)            | +1.17(1)                |                     | ABLS              | <u>1985Co24</u>                    | PL B163 66 (1985)                       |
|                   |               |                |                  |                   |                         |                     |                   |                                    |                                         |
|                   | 87 Fr 224     | 0              | 3.3 m            | 1(-)              | +0.517(4)               | 223Fr               | ABLS              | <u>1985Co24</u>                    | PL B163 66 (1985)                       |
|                   | 87 Fr 225     | 0              | 3.9 m            | 3/2-              | "+1.32(5)               | 223Fr               | ABLS              | <u>1985Co24/1987Co19</u>           | PL B163 66 (1985)/NP A468 1 (1987)      |
|                   | 87 Fr 226     | 0              | 48 s             | 1                 | -1.35(2)                | 223Fr               | ABLS              | <u>1985Co24</u>                    | PL B163 66 (1985)                       |
|                   | 87 Fr 228     | 0              | 39 s             | 2-                | +2.38(5)                | 223Fr               | ABLS              | <u>1985Co24</u>                    | PL B163 66 (1985)                       |
| Radium            | Efa calculate | ed in 7s7p sta | tes of the Ra    | atom              |                         |                     |                   |                                    |                                         |
|                   | Ljy calculate |                | 5,               |                   |                         |                     |                   |                                    |                                         |
|                   | 88 Ra 209     | 0              | 4.7 s            | 5/2-              | +0.39(4)                | 223Ra               | CLS               | <u>1989Ne03</u>                    | ZP D11 105 (1989)                       |
|                   | 88 Ra 211     | 0              | 13s              | 5/2-              | +0.46(4)                | 223Ra               | CLS               | <u>1989Ne03</u>                    | ZP D11 105 (1989)                       |
|                   | 88 Ra 221     | 0              | 30 s             | 5/2-              | +1.92(6)                | 223Ra               | CLS               | 1989Ne03                           | ZP D11 105 (1989)                       |
|                   | 55 .1G ZZI    | J              | 555              | J, L              | 1.32(0)                 |                     | 313               | 2555.1005                          | 2. 212 100 (1000)                       |

| Element           | Nucleus       | E(level)       | T 1/2              | I <sup>p</sup>  | Q(b)       | Ref. Std. | Method | NSR Keynumber            | Journal Reference                          |
|-------------------|---------------|----------------|--------------------|-----------------|------------|-----------|--------|--------------------------|--------------------------------------------|
| Defenses instance | 00.0- 222     | 0              | 11 11 1            | 2/2.            | .4.24/2\   |           | CLC    | 2000D: 02/4000N=02       | Mal Div. 406 4065 (2000) 7D D44 405 (4000) |
| Reference isotope | 88 Ra 223     | 0              | 11.44 d            | 3/2+            | +1.21(3)   |           | CLS    | 2008Py02/1989Ne03        | Mol Phys 106 1965 (2008)/ZP D11 105 (1989) |
|                   | 88 Ra 227     | 0              | 42.2 m             | 3/2+            | +1.53(6)   | 223Ra     | CLS    | <u>1989Ne03</u>          | ZP D11 105 (1989)                          |
|                   | 88 Ra 229     | 0              | 4.0 m              | 5/2(+)          | +2.99(12)  | 223Ra     | CLS    | <u>1989Ne03</u>          | ZP D11 105 (1989)                          |
| Actinium          | There is no a | dopted refe    | rence efg for Ac.  |                 |            |           |        |                          |                                            |
|                   | The quoted    | value and it   | s error are both o | quite uncertain |            |           |        |                          |                                            |
|                   | 89 Ac 227     | 0              | 21.77 y            | 3/2-            | -1.7(2)    |           | 0      | <u>1955Fr26</u>          | PR 98 1514 (1955)                          |
| Thorium           |               |                | rence efg for Th.  |                 |            |           |        |                          |                                            |
|                   | A. Based on   | estimated e    | fg in the Th aton  | 1               |            |           |        |                          |                                            |
|                   | 90 Th 229     | 0              | 7340 y             | 5/2+            | +4.3(9)    | Α         | 0      | <u>1974Ge06</u>          | JPPa 35 483 (1974)                         |
| Protoactinium     | There is no a | dopted refe    | rence efg for Pa.  |                 |            |           |        |                          |                                            |
|                   | A. Estimated  |                |                    |                 |            |           |        |                          |                                            |
|                   | B. Based on   | estimated e    | fg in the Pr atom  | 1               |            |           |        |                          |                                            |
|                   | 91 Pa 231     | 0              | 3.3x10*4 y         | 3/2-            | [-1.72(5)] | A         |        | 1978Fr28                 | PL A69 225 (1975)                          |
|                   |               | 84.2           | 41 ns              | 5/2+            | +0.7(2)    | 231Pa     | ME     | <u>1978Fr28</u>          | PL A69 225 (1975)                          |
|                   | 91 Pa 233     | 0              | 27.0 d             | 3/2-            | -3.0(4)    | В         | AB     | <u>1961Ma42</u>          | NP 23 90 (1961)                            |
| Uranium           | Muonic aton   | n X-ray hype   | rfine structure    |                 |            |           |        |                          |                                            |
| Reference isotope | 92 U 233      | 0              | 1.6x10*5 y         | 5/2+            | +3.663(8)  |           | Mu-X   | 1984Zu02                 | PRL 53 1888 (1984)                         |
| nejerence isotope | 52 0 255      | 40             | 50 ps              | 7/2+            | +0.64(3)   |           | Mu-X   | 1984Zu02                 | PRL 53 1888 (1984)                         |
| Reference isotope | 92 U 235      | 0              | 7.0x10*8 y         | 7/2-            | +4.936(6)  |           | Mu-X   | <u>1984Zu02</u>          | PRL 53 1888 (1984)                         |
|                   |               | 46             | < 60 ps            | 9/2-            | +1.87(3)   |           | Mu-X   | <u>1984Zu02</u>          | PRL 53 1888 (1984)                         |
| Neptunium         | Muonic aton   | n X-ray hype   | rfine structure    |                 |            |           |        |                          |                                            |
| Reference isotope | 93 Np 237     | 0              | 2.1x10*6 y         | 5/2+            | +3.886(6)  |           | Mu-X   | <u>1987De10</u>          | PL B189 7 (1987)                           |
|                   |               | 60             | 68 ns              | 5/2-            | +3.85(4)   | 237Np     | ME     | <u>1968Pi01/1968St03</u> | BAPS 13 28 (1968)/PR 165 1319 (1968)       |
| Plutonium         |               |                | rfine structure    |                 |            |           |        |                          |                                            |
|                   | A. Calculated | l efg of the 8 | 3F3/2 state of Pu  | II              |            |           |        |                          |                                            |
| Reference isotope | 94 Pu 239     | 8              | 36 ps              | 3/2+            | -2.319(7)  |           | Mu-X   | <u>1986Zu01</u>          | PL B167 383 (1986)                         |
|                   |               | 57             | 101 ps             | 5/2+            | -3.345(13) |           | Mu-X   | <u>1986Zu01</u>          | PL B167 383 (1986)                         |
|                   |               | 76             | 83 ps              | 7/2+            | -3.83(3)   |           | Mu-X   | <u>1986Zu01</u>          | PL B167 383 (1986)                         |
|                   | 94 Pu 241     | 0              | 14.4 y             | 5/2+            | +6(2)      | А         | 0      | <u>1964Ch12</u>          | JPPa 25 825 (1964)                         |
| Americium         | Muonic aton   | 1 X-ray hype   | rfine structure    |                 |            |           |        |                          |                                            |
|                   |               |                |                    |                 |            |           |        |                          |                                            |

| Element           | Nucleus       | E(level)       | $T_{1/2}$ | I <sup>p</sup> | Q(b)      | Ref. Std. | Method | NSR Keynumber   | Journal Reference   |
|-------------------|---------------|----------------|-----------|----------------|-----------|-----------|--------|-----------------|---------------------|
| Reference isotope | 95 Am 241     | 0              | 432.7 y   | 5/2-           | +4.34(5)  |           | Mu-X   | <u>1985Jo04</u> | PL B161 75 (1985)   |
|                   |               |                | 46.01     |                | 2.44//2)  | 2444      | 4.5    | 10551.04        | DD 444 004 (4055)   |
|                   | 95 Am 242     | 0              | 16.0 h    | 1-             | -2.44((3) | 241Am     | AB     | <u>1966Ar04</u> | PR 144 994 (1966)   |
|                   |               | 49             | 152 y     | 5-             | +6.7(4)   | 241Am     | ABLS   | <u>1988Be30</u> | ZP A330 235 (1988)  |
|                   | 95 Am 243     | 0              | 7370 y    | 5/2-           | +4.32(6)  |           | Mu-X   | <u>1985Jo04</u> | PL B161 75 (1985)   |
|                   |               | 84             | 2.3 ns    | 5/2+           | +4.2(2)   | 241Am     | ME     | <u>1976Bo13</u> | JINC 38 1291 (1976) |
| Einsteinium       | Efg calculate | d in the Es at | om        |                |           |           |        |                 |                     |
| Reference isotope | 99 Es 253     | 0              | 20.4 d    | 7/2+           | +6.7(8)   |           | AB     | <u>1975Go05</u> | PR A11 499 (1975)   |
| Reference isotope | 99 Es 254     | 78             | 39.3 h    | 2+             | +3.7(5)   |           | AB     | <u>1975Go05</u> | PR A11 499 (1975)   |

Nuclear Data Section
International Atomic Energy Agency
Vienna International Centre, P.O. Box 100
A-1400 Vienna, Austria

E-mail: nds.contact-point@iaea.org

Telephone: (43-1) 2600 21725

Web: <a href="http://www-nds.iaea.org">http://www-nds.iaea.org</a>

Fax: (43-1) 26007