Programação Funcional 1º Ano – LEI/LCC

18 de Fevereiro de 2011 - Duração: 2 horas

Exame

Parte I

Esta parte do teste representa 12 valores da cotação total. Cada alínea está cotada em 2 valores. A não obtenção de uma classificação mínima de 8 valores nesta parte implica a reprovação no teste.

Um multiconjunto é um conjunto em que a multiplicidade é relevante.
 São por isso diferentes os multiconjuntos: {1,2,3,4,1,2,1} e {1,2,3,4}. Considere que se usa o seguinte tipo para representar multi-conjuntos:

```
type MSet a = [(a,Int)]
```

Neste tipo, o multiconjunto {'a', 'c', 'a', 'b', 'c', 'a'} é representado por [('a',3), ('b',1), ('c', 2)]. Considere ainda que estas listas estão ordenadas (pela primeira componente) e que não há pares cuja primeira componente coincida.

- (a) Defina a função add :: Ord a => a -> (MSet a) -> MSet a que acrescenta um elemento a um multiconjunto.
- (b) Defina uma função moda :: MSet a -> a que determina qual o elemento mais frequente de uma multiconjunto (não vazio).
- (c) Defina a função mIntersect :: (Ord a) => (MSet a) -> (MSet a) -> (MSet a) de intersecção de multiconjuntos. Note que se a e b forem os multiconjuntos a=[('a',3), ('b', 1), ('d',4)] b=[('b',2), ('c',2), ('d',2)] a intersecção destes dois multiconjuntos deverá corresponder a [('b',1),('d',2)].
- (d) O teorema fundamental da aritmética diz que todos os números inteiros positivos maiores que 1 podem ser decompostos num produto de números primos, sendo esta decomposição única a menos de permutações dos factores. Por outras palavras, a cada número inteiro está associado o multiconjunto dos seus divisores primos. Por exemplo, o número 36 (2 × 2 × 3 × 3) está associado ao multiconjunto [(2,2),(3,2)]. Considere a seguinte definição da função que, dado o multiconjunto dos divisores de um número, calcula esse número:

```
divNum :: MSet Integer -> Integer
divNum m = foldr (未) @i(map f m)
   where f ...
```

Complete a definição acima (fornencendo a definição da função f) e apresente uma definição alternativa e recursiva da função divNum.

2. Considere o seguinte tipo para representar árvores binárias de procura:

```
data BTree a = Vazia | Nodo a (BTree a) (BTree a)
```

- (a) Defina uma função limites:: BTree a -> (a,a) que, dada uma árvore de procura não vazia, calcule o menor e maior elementos dessa árvore.
- (b) Defina uma função media :: BTree Float -> Float que calcule a média dos elementos de uma árvore (de Floats).

Parte II

Uma forma de representar relações binárias consiste em armazenar um conjunto (ou lista) de pares. Outras formas alternativas consistem em armazenar estes pares agrupados segundo a sua primeira componente. Desta forma, a relação representada como a seguinte lista de pares

seria representada por

- [(1,['a','e']), (2,['b','f']), (5,['d']), (6,['a'])]
- \bullet ou por ([1,2,5,6], g) em que g é a função

```
g 1 = ['a','e']
g 2 = ['b','f']
g 5 = ['d']
g 6 = ['a']
```

Considere então os seguintes tipos correspondentes a estas três representações:

```
type Rel1 a b = [(a,b)]
type Rel2 a b = [(a,[b])]
type Rel3 a b = ([a], a -> [b])
```

1. Defina as funções de conversão entre as várias representações:

```
rel12 :: (Eq a) => (Rel1 a b) -> Rel2 a b
rel23 :: (Eq a) => (Rel2 a b) -> Rel3 a b
rel31 :: (Rel3 a b) -> Rel1 a b
```

 Defina uma função compoe :: (Eq c) => (Rel2 a c) -> (Rel2 c b) -> (Rel2 a b) que calcula a composição de relações.

A composição de relações é semelhante à composição de funções: sempre que a está relacionado com b na primeira relação e b está relacionado com c na segunda, então a está relacionado com c na composição das relações.

3. Defina uma função inverte :: (Eq b) => (Rel2 a b) -> (Rel2 b a) que calcula a inversa de uma relação.

Relembre que se a está relacionado com b numa relação, então b está relacionado com a na relação inversa.