Echtzeitsysteme - Übung 1

Maximilian Nothnagel

1.1a) Model Fitting

Model 1 is being trained on filled circles, and as such assumes that the triangle is also to be filled, coming to an incorrect result.

Model 2 is being trained on striped circles, and as such assumes that the triangle is also to be striped, coming to the correct conclusion.

1 1.2a) Matrix Algebra Refresher

1.1 Multiplication

$$A*B = \begin{pmatrix} A_{1,1}*B_{1,1} + A_{2,1}*B_{1,2} & A_{1,1}*B_{2,1} + A_{2,1}*B_{2,2} \\ A_{1,2}*B_{1,1} + A_{2,2}*B_{1,2} & A_{1,2}*B_{2,1} + A_{2,2}*B_{2,2} \end{pmatrix}$$

A*B is defined only when Columns of B equal rows of A.

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} * \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

BUT

$$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} * \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Matrixmultiplication is not Commutative.

$$A(B+C) = AB + AC$$

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} * \begin{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} * \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix}$$

Matrixmultiplication is Distributive.

$$\begin{split} (A*B)*C &= A*(B*C) \\ & \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} * \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}) * \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \\ & \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} * \begin{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} * \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}) = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \end{split}$$

1.2 Addition

Since matrix-addition is made up of simple additions, they are commutative and practically ignore parentheses, so are also distributive and associative.

The condition for any matrix-addition is that the matrices have both equal rows and columns.

$$A_{2,2} + B_{2,2} = \begin{pmatrix} C_{1,1} & C_{2,1} \\ C_{1,2} & C_{2,2} \end{pmatrix} = \begin{pmatrix} A_{1,1} + B_{1,1} & A_{2,1} + B_{2,1} \\ A_{1,2} + B_{1,2} & A_{2,2} + B_{2,2} \end{pmatrix}$$

1.2b) Matrix Inversion

$$A^{-1} =$$

$$\begin{pmatrix}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

...Via Gauß-Jordan. Under the condition that a=b=d=0; c=1

$$\begin{pmatrix} 2 & 2 & 3 \\ 0 & 1 & 0 \\ 8 & 3 & 12 \end{pmatrix}$$

Is not invertable, since it's Determinant Det = 0.

1.2c) Matrix Pseudoinverse

Left:
$$A^{\#} * A = (A^T * A)^{-1} * A^T$$

Right:
$$A * A^{\#} = A * A^{T} (A * A^{T})^{-1}$$

Since A_{2x3} has more rows than columns, the left Moore-Penrose exists. The equation is: $A_{3x2}^{\#}*A = (A_{3x2}^{T}*A_{2x3})_{2x2}^{-1}*A_{3x2}^{T}$

4 1.2d) Basis Transformation

Vector with new Basis $v^* = T^{-1} * v$

1)
$$T_v = E^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; T_w = B^{-1} = \begin{pmatrix} 2 & -1.5 \\ -1 & 1 \end{pmatrix}$$

$$2)\ 2*\begin{bmatrix}2\\-1\end{bmatrix}+5*\begin{bmatrix}-1,5\\1\end{bmatrix}=\begin{bmatrix}-3,5\\3\end{bmatrix}=v^*$$