2017 年全国硕士研究生入学统一考试

超越考研数学(一)模拟(一)

(科目代码: 301)

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定位置的边框区域内,写在其他地方无效。
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

超 选择题: 1~8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项是符合要求 的. 请将所选项前的字母填在答题纸指定位置上. (1) 设函数 f(x) 在点 x = 0 处连续,且 $\lim_{x \to 0} \frac{e^x - 1 - xf(x)}{\ln(1 + x^2)} = 0$,则(). (B) f(x) 在点 x = 0 处可导且 f'(0) = 0(A) f(x) 在点x=0处不可导 (C) f(x) 在点x = 0 处可导且 $f'(0) = \frac{1}{2}$ (D) f(x) 在点x = 0 处可导且 $f'(0) = -\frac{1}{2}$ (2) 设函数 f(x) 在[0,1] 上连续,则 $\int_0^1 \left[\int_x^1 [f(t) + f(x)] dt \right] dx = ($). (A) $\int_0^1 f(x)dx$ (B) $\int_0^1 x f(x)dx$ (C) $\int_0^1 (1-x)f(x)dx$ (D) $\int_0^1 (1-xf(x))dx$ (3) 设正项级数 $\sum_{n=1}^{\infty} a_n$ 收敛,记 $S_n = a_1 + a_2 + \dots + a_n, n = 1, 2, \dots$, θ 为常数,且 $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$,则级 数 $\sum_{i=1}^{\infty} S_n \sin^n \theta$ (). (A) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 敛散性不定 (4) 设函数 $f(x,y) = \begin{cases} \frac{\sqrt{|xy|}}{x^2 + y^2} \sin(x^2 + y^2), & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0, \end{cases}$ 则下列说法正确的是(). (A) f(x,y) 在点 (0,0) 处不连续,且偏导数 $f'_{x}(0,0), f'_{y}(0,0)$ 均不存在 (B) f(x,y) 在点(0,0) 处连续,且偏导数f'(0,0),f'(0,0) 均存在 (C) f(x,y) 在点(0,0) 处不连续,但偏导数 $f'_{x}(0,0), f'_{y}(0,0)$ 均存在 (D) f(x,y) 在点(0,0) 处可微 (5) 已知三阶矩阵 A 满足 $A^2 = E$,但 $A \neq \pm E$,则下列关系式成立的是 (). (A) r(A+E)=1(B) r(A+E)=2(C) $r(A-E)\cdot[r(A-E)-2]=0$ (D) $[r(A+E)-1]\cdot[r(A-E)-1]=0$ (6) 设三阶矩阵 A 的特征值为 0, 1, -1 ,则下列结论中正确的个数为 (). ① A 不可逆: ② A 的主对角线元素之和为0: ③ A 的特征值 1,-1 所对应的特征向量正交: 4 Ax = 0 的基础解系中含有两个解向量. (B) 2 (C) 3 (D) 4 (7) 设A,B,C为三个随机事件,则 $\overline{A \cup B - A \cup C} = ($). (A) $\overline{B} \cup C$ (B) $\overline{A}(\overline{B} \cup C)$ (C) $\overline{A}\overline{B} \cup C$ (D) $A \cup \overline{B} \cup C$

	-	超	越	考	研	
	(8)设二维随机	几变量(X,Y)~N($1,2;1,4;\frac{1}{2}$),	且 $P\{aX+bY$	$<1\}=\frac{1}{2}$,	$Cov(X,aX+bY)=0, \ \ \bigcup$
().	•				
	(A) $a = -1, b =$	=1 (B) $a=$	1, b = 1	(C) $a = 0, b$	$b = \frac{1}{2}$	(D) $a = 3, b = -1$
Ξ,	填空题:9~14 /	、题,每小题 4 分,	共 24 分. 请	将答案写在答	题纸指定位	<u>Z</u> 置上.
	(9)设函数 f(z	x)在点 $x=0$ 的某个	~邻域内二阶	可导, 其反函数	$y = \varphi($	(x) ,若 $\lim_{x\to 0} \frac{f(x)+x-1}{x^2} = 1$
则 φ	p"(1) =	•				
	(10)极坐标曲	线 $r = \sqrt{\cos \theta} \ (0 \le$	$\theta \leq \frac{\pi}{2}$) 与极	轴所围成的曲边	边扇形绕极	轴旋转一周所得旋转体的体
积为	J					
	(11)设方程 f	(u^2-x^2,u^2-y^2,u^2)	$(z^2-z^2)=0 \ \overline{W}$	角定了 u 为 x,y ,	z 的非零函	为,其中 f 为可微函数, $\mathbb F$
f_1' +	$+f_2'+f_3'\neq 0$,则	当 $xyz \neq 0$ 时, $\frac{u}{x}\frac{\partial}{\partial x}$	$\frac{\partial u}{\partial x} + \frac{u}{y} \frac{\partial u}{\partial y} + \frac{u}{y$	$\frac{u}{z}\frac{\partial u}{\partial z} = \underline{\qquad}$	·	
	(12) 设曲面Σ	为 $x^2 + y^2 + z^2 = 2$	y ,则 $\bigoplus_{\Sigma}(x^2)$	$+2y^2+3z^2)dS$	=	·
	(13)设 <i>A</i> 是三阶	介实对称矩阵,若存	在正交阵 $oldsymbol{\mathcal{Q}}$:	$=(q_{1},q_{2},q_{3}),$	吏得 <i>Q⁻¹AQ</i>	$Q = \begin{pmatrix} 2 & & \\ & 3 & \\ & & 4 \end{pmatrix}$,则 $A - q_1 q_1^{T}$
的特	持征值是	·				
	(14) 设随机变	量 X 的分布函数为	$F_X(x)$, $g(x)$	() 为单调递减函	函数,其反	函数为 $g^{-1}(x)$,则 $Y=g(X)$
的分	\hbar 不函数 $F_{Y}(y) = 1$	·				
		小题,共 94 分. 说	青将解答写在	答题纸指定位	置上. 解答	F应写出 文字 说明、证明过程
或 演	算步骤.			2		
	(15) (本题满分	分 10 分)(I)当x	:>0时,证	明: $x-\frac{x^2}{2} < \ln x$	n(1+x) < x	; ;
	(II)利用(I)的结论,求极限	$\lim_{n\to\infty}(1+\frac{1}{n^2})($	$1+\frac{2}{n^2})\cdots(1+\frac{2}{n^2})$	$(\frac{n}{n^2})$.	
	(16)(本题满分	分10分)利用变换	$x = \ln t$ 化简	ĭ微分方程 y" −	$y' + e^{2x}y =$	= e^{3x} ,并求此方程的通解.
	(17)(本题满分	分 10 分)求函数 z	=f(x,y)=	$3xy-7x-3y^{\frac{1}{2}}$	在由抛物线	$\partial_t y = 5 - x^2$ 与直线 $y = 1$ 所目

20、21全程考研资料请加群712760929

成的有界闭区域D上的最大值与最小值.

超越考研 (18) (本题满分 10 分) 设函数 f(x) 在 [a,b] 上可导,且 $f'(a)(b-a) < f(b) - f(a) < 2[f(\frac{a+b}{2}) - f(a)]$

- (I) 记 $F(x) = \frac{f(x) f(a)}{x a} \frac{f(b) f(a)}{b a}$, 证明存在 $x_0 \in (a, b)$, 使得 $F(x_0) = 0$;
- (II) 证明存在 $\xi \in (a,b)$, 使得 $f'(\xi) = \frac{f(\xi) f(a)}{\xi a}$.
- (19) (本题满分 10 分) (I) 设P 为曲面 Σ : $x^2+y^2+z^2=1$ 上任意一点,若点P 处切平面 π 与平面 $\pi_0: x-z=1$ 垂直,求点的P轨迹C;
 - (II) 若从z轴正向往负向看,C取逆时针方向,计算 $\oint_C zdx + 2xdy + ydz$.
 - (20) (**本题满分 11** 分) 设矩阵 $A = \begin{pmatrix} 1 & 1 \\ a & 1 \\ a+1 & a \end{pmatrix}$, $B = \begin{pmatrix} 0 & b \\ b & 0 \\ a & a \end{pmatrix}$, 且 $a \neq b$. 讨论 a = b 取何值时,矩

阵方程 AX = B 有解? 在 AX = B 有解时, 求其解.

(21) (本题满分 11 分) 设
$$A,B,C$$
 均为三阶矩阵,且 $AB = -B$, $CA^T = C$. 其中 $B = \begin{pmatrix} -1 & -2 & 1 \\ 1 & 2 & -1 \\ 1 & 2 & -1 \end{pmatrix}$,

$$C = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
. (I)求 A ; (II)证明对任意的 3 维列向量 ξ ,必有 $A^{100}\xi = \xi$.

- (22) (本题满分 11 分) 在区间[0,3]上随机地取一个实数 X. 若 $0 \le X \le 1$,则随机变量 Y 在 [0,X]上服从均匀分布,若 $1 < X \le 3$,则Y 在[X,3] 上服从均匀分布,(I) 求(X,Y) 的概率密度函数 f(x,y); (II) 求Y 的概率密度函数 $f_{v}(y)$.
 - (23) (本题满分 11 分) 设总体(X,Y) 的分布函数为 $F(x,y) = \begin{cases} 0, & x < 0$ 或 $y < 0, \\ p(1-e^{-\lambda y^2}), & 0 \le x < 1, y \ge 0, \\ 1-e^{-\lambda y^2}, & x \ge 1, y \ge 0. \end{cases}$

其中p, λ 为未知参数,且 $0 ,<math>\lambda > 0$.

- (I) 分别求 X 和 Y 的概率分布;
- (II) 利用来自总体X的简单随机样本 (X_1,X_2,\cdots,X_n) ,求p的矩估计量 \hat{p}_M ;
- (III) 利用来自总体Y的简单随机样本 (Y_1,Y_2,\cdots,Y_n) ,求 λ 的极大似然估计量 $\hat{\lambda}_L$.

20. 21全程考研资料请加群712760929

2017 年全国硕士研究生入学统一考试

超 越 考 研 数学(一)模拟(二)

(科目代码: 301)

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定位置的边框区域内,写在其他地方无效。
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

超	越	考	研
+ 4	-+-11/	- 	<i>1</i> 144
ᄯᄔ	11-9%	75	14/1

- 选择题: 1~8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项是符合要求 的. 请将所选项前的字母填在答题纸指定位置上.
 - (1) 设有曲线 $y = e^{\frac{1}{x}} \arctan \frac{|x|}{x-1}$,则下列结论不正确的是().

 - (A) 曲线有水平渐近线 $y = \frac{\pi}{4}$ (B) 曲线有水平渐近线 $y = -\frac{\pi}{4}$
 - (C) 曲线有铅直渐近线 x=0

- (D) 曲线有铅直渐近线 x=1
- (2) 当 $0 < a < \frac{1}{2\rho}$ 时,方程 $ax^2 = \ln x$ 的实根个数为 ().
- (A) 0
- **(B)** 1 **(C)** 2
- (D) 3
- (3) 设区域D是由直线 $x = \frac{\pi}{\Delta}$, y = -1 及曲线 $y = \tan x$ 所围成, D_1 是D 位于第三象限的部分,则

 $\iint\limits_{\Omega} (xy + x \tan xy) dx dy = ().$

(A) $2\iint_{D_1} xydxdy$

- (B) $2\iint_{D_1} x \tan xy dx dy$
- (C) $4\iint_{n} (xy + x \tan xy) dxdy$

- (A) 可微且必取极值

(B) 可微但未必取极值

(C) 不可微但必取极值

- (D) 不可微但未必取极值
- (5)设A为n阶方阵,将A的第二行加到第一行,再将第二列减去第一列得到矩阵B,则A,B(
- (A) 等价未必相似
- (B) 等价且相似
- (C) 行向量组等价 (D) 列向量组等价
- (6) 设A为四阶实对称矩阵,其特征值为 $\lambda_1 = \lambda_2 = 1$, $\lambda_3 = 2$, $\lambda_4 = 3$,相应的特征向量依次为

 p_1, p_2, p_3, p_4 ,且 p_1, p_2 线性无关,令 $P = (4p_4, 5p_3, p_1 + p_2, p_1 - p_2)$,则 $P^{-1}AP = (4p_4, 5p_3, p_1 + p_2, p_2 + p_3)$,则 $P^{-1}AP = (4p_4, 5p_3, p_1 + p_2, p_2 + p_3)$,则 $P^{-1}AP = (4p_4, 5p_3, p_1 + p_2, p_2 + p_3)$,则 $P^{-1}AP = (4p_4, 5p_3, p_1 + p_2, p_2 + p_3)$,则 $P^{-1}AP = (4p_4, 5p_3, p_1 + p_2, p_2 + p_3)$,则 $P^{-1}AP = (4p_4, 5p_3, p_3 + p_3)$

$$\text{(A)} \begin{pmatrix} 4 & & & \\ & 5 & & \\ & & 2 & \\ & & & 0 \end{pmatrix} \qquad \text{(B)} \begin{pmatrix} 4 & & & \\ & 5 & & \\ & & 1 & \\ & & & 1 \end{pmatrix} \qquad \text{(C)} \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & 2 & \\ & & & 3 \end{pmatrix} \qquad \text{(D)} \begin{pmatrix} 3 & & & \\ & 2 & & \\ & & & 1 & \\ & & & 1 \end{pmatrix}$$

数学一模拟二试题 第2页 (共4页)

数学一模拟二试题 第3页(共4页) 20、21全程考研资料请加群712760929

超 越 考 研

- (17) **(本题满分10分)** 在曲面 $x^2 + y^2 + \frac{1}{4}z^2 = 1$ (x > 0, y > 0, z > 0) 上求一点,使过该点的切平面在三个坐标轴上的截距平方和最小.
- (18) (本题满分 10 分) 计算曲线积分 $I = \int_L e^{\cos^2 y} dx x(2e^{\cos^2 y} \cos y \sin y + ye^{x^3}) dy$,其中 L 是从点 A(-1,0) 到点 B(1,0) 的上半圆 $x^2 + y^2 = 1$, $y \ge 0$.
 - (19) (**本题满分 10 分**) 求幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{(n+1)\cdot 2^n} (x-1)^n$ 的收敛域及和函数.
- (20)(**本题满分 11 分)**设A为三阶实方阵,三维列向量 $\alpha_1,\alpha_2,\alpha_3$ 满足 $A\alpha_1=\alpha_1+\alpha_2,A\alpha_2=\alpha_2+\alpha_3$, $A\alpha_3=\alpha_3,\alpha_3\neq 0$,(I)证明 $\alpha_1,\alpha_2,\alpha_3$ 线性无关;(II)证明A必不为实对称矩阵.

(21) (**本题满分 11 分**) 设
$$A = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3 \end{pmatrix}$$
, $P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$, $B = P^{-1}A^*P$, 其中 E 为三阶单位阵,

 A^* 为 A 的伴随矩阵,求 B^T 的特征值与特征向量.

(22) (本题满分 11 分) 设随机变量 X 和 Y 相互独立且同分布; X 的分布律为

$$P{X = k} = p(1-p)^{k-1}, k = 1, 2, \dots,$$

- (I) 求已知X+Y=n $(n \ge 2)$ 条件下,X 的分布律; (II) 求 $P\{X+Y \ge n\}$ $(n \ge 2)$.
 - (23)**(本题满分 11 分)** 设 (X_1,X_2,\cdots,X_9) 是来自总体 $X\sim \mathrm{N}(0,\sigma^2)$ 的简单随机样本, \overline{X} 和 S^2 分

别表示样本均值和样本方差.(I)判断统计量 $\frac{9\bar{X}^2}{S^2}$ 服从什么分布,并说明理由.(II)求 $E[(\bar{X}S^2)^2]$.

2017 年全国硕士研究生入学统一考试

超越考研数学(一)模拟(三)

(科目代码: 301)

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定位置的边框区域内,写在其他地方无效。
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

		超	越	考	研			
一、 的.	请将所选项前的字	母填在答题纸指	定位置上.			只有一个选项是符合要求,则当 $\Delta x ightarrow 0$ 时, Δy 是		
dy	_{c=0} 的().	. ,	,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	(A)等价无穷小 (2)关于定积分的		1不等价的无约	穷小 (C)	高阶无穷小	(D) 低阶无穷小		
		$\frac{1}{(x)}dx = \frac{a}{2}$, \sharp	中 f(x) 为正位	直连续函数 <i>, a</i>	> 0;			
	$2 \int_0^1 \sqrt[3]{1 - x^5} dx = \int_0^1 \sqrt[3]{1 - x^5} dx$	$\int_{0}^{1} \sqrt[5]{1-x^3} dx$,						
则有	î ().							
	(A) ①②均正确	(B) ①②埃	不正确	(C) ①正确,(②不正确	(D) ①不正确,②正确		
	(3) 设有无穷级数	$\sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n,$	则下列结论证	E确的是().			
	(A) 若 $\lim_{n\to\infty} a_n b_n =$	0 ,则 $\sum_{n=1}^{\infty}a_n$ 与	$\sum_{n=1}^{\infty} b_n$ 中至少	有一个收敛				
	(B) 若 $\lim_{n\to\infty} a_n b_n =$	$1, \bigcup \sum_{n=1}^{\infty} a_n 与 $	$\sum_{n=1}^{\infty} b_n$ 中至少有	有一个发散				
	(C) 若 $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$,则 $\sum_{n=1}^{\infty}b_n$ 收敛	可推出 $\sum_{n=1}^{\infty} a_n$	收敛				
	(D) 若 $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$,则 $\sum_{n=1}^{\infty}b_n$ 发散	可推出 $\sum_{n=1}^{\infty}a_n$	发散				
	$(4) \ \ \mathop{\mathcal{C}}\nolimits I_1 = \iint\limits_{D} (\sin$	$^2x + \cos^2 y)d\sigma$, $I_2 = \iint_D (\mathbf{si}$	$n x^2 + \cos y^2)a$	$d\sigma$, $I_3 = \iint_D d\sigma$	$(\sin^2 x + \cos y^2)d\sigma$,其		
中 D	$0 \le x \le 1, 0 \le y \le 1$,则 I_1,I_2,I_3 \equiv	者的大小关系	系为 ().				
	(A) $I_1 < I_2 < I_3$	(B) $I_3 < I_2$	$< I_1$ (C)	$I_1 < I_3 < I_2$	(D) $I_2 <$	$I_3 < I_1$		
	(5) 齐次线性方程统	组 $Bx = 0$ 的解都	3是 $Ax = 0$ 的	解的一个充分条	条件为 ().		
	(A) <i>B</i> 的列向量都	由 A 的列向量线	性表示	(B) A的列	刊向量都由 <i>B</i>	的列向量线性表示		
	(C) <i>B</i> 的行向量都	由 A 的行向量线	性表示	(D) A 的行	了向量都由 <i>B</i>	的行向量线性表示		
	(6) 设 $\alpha = (a_1, a_2,$	$a_3)^T, \beta = (b_1,$	$(b_2,b_3)^T$, α ,	β 线性无关,!	则二次型			
	$f(x_1, x_2, x_3) = (a_1x_1 + a_2x_2 + a_3x_3)(b_1x_1 + b_2x_2 + b_3x_3)$							

(A) y_1^2 (B) $y_1^2 + y_2^2$ (C) $y_1^2 - y_2^2$ (D) $y_1^2 + y_2^2 + y_3^2$

数学一模拟三试题 第 2 页 (共 4 页)

的规范型为().

(7) 设n(n>3) 个乒乓球中有3只黄球,n-3只白球,将其随机放入编号为1.2....n的n个盒子中, 一个盒子放入一个球. 现从第1号盒子开始逐个打开,直到出现两个黄球为止. 记X为所打开的盒子数, 则 EX = (). (A) $\frac{n-2}{2}$ (B) $\frac{n-1}{2}$ (C) $\frac{n}{2}$ (8) 设 (X_1, X_2, \dots, X_4) 是来自总体 $X \sim N(0,1)$ 的简单随机样本, $Y = \frac{X_1^2 + X_2^2}{X^2 + X^2}$. 对于给定的 $\alpha (0 < \alpha < 1)$,数 y_{α} 满足 $P\{|Y| < y_{\alpha}\} = \alpha$,则有((A) $y_{\alpha}y_{1-\alpha} = 1$ (B) $y_{\alpha} + y_{1-\alpha} = 1$ (C) $y_{\frac{\alpha}{2}}y_{1-\alpha} = 1$ (D) $y_{\frac{\alpha}{2}}y_{1-\frac{\alpha}{2}} = 1$ 二、填空题:9~14 小题,每小题 4 分,共 24 分. 请将答案写在答题纸指定位置上. (9) 设函数 $f(x) = \frac{1}{1+x^2}$,则 $f^{(100)}(0) = \underline{\hspace{1cm}}$ (10) $\int_{-1}^{1} x(1+x^{2017})(e^x-e^{-x})dx = \underline{\hspace{1cm}}.$ (11) 曲线 $y = \lim_{\lambda \to +\infty} \frac{x}{1 + x^2 - e^{\lambda x}}$ 及直线 $y = \frac{1}{2}x$ 及 x = 1 围成平面图形的面积为______. (12) 设函数 f(x,y) 在点 (x_0,y_0) 处的偏导数均存在,且 $f'_x(x_0,y_0)=1$, $f'_y(x_0,y_0)=2$,则极限 $\lim_{h\to 0} \frac{f(x_0+2h,y_0)-f(x_0,y_0-3h)}{h} = \underline{\hspace{1cm}}.$ (13) 若 $A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$,E 为三阶单位矩阵,则 $(E + A + A^2)^{-1} =$ ______ (14) 设随机变量 X 的密度函数为 $f_X(x) = \begin{cases} g(x), & |x| \le 1, \\ 0, & \text{其他}, \end{cases}$ 的密度函数为 $f_Y(y) = \begin{cases} g(-y), & |y| \le 1, \\ 0, & \text{其他}, \end{cases}$ 其中g(x)在[-1,1]上连续,若DX=1, $\rho_{XY}=-\frac{1}{2}$,则由切比雪夫不等式得 $P\{|X+Y|<2\}\geq$ ______. 三、解答题:15~23 小题,共 94 分. 请将解答写在答题纸指定位置上. 解答应写出文字说明、证明过程 或演算步骤. (15) (本题满分 10 分) 设 $x \ge a \ge 1$, 证明: (I) $\ln a \ge \frac{2(a-1)}{a+1}$; (II) $a(x+1) \ln a \ge (a+x)(a-1)$. (16) (**本题满分 10 分**) 设函数 f(x) 和 g(x) 可导,且满足条件 $f'(x) = \frac{1}{2}g(x)$, $g'(x) = \frac{1}{2}f(x)$, f(0) = 0, $g(x) \neq 0$. (I) 求 $y = \frac{f(x)}{g(x)}$ 的表达式; (II) 求曲线 $y = \frac{f(x)}{g(x)}$ ($x \geq 0$) 绕直线 y = 1 旋转一周

数学一模拟三试题 第 3 页 (共 4 页)

所生成立体的体积.

- 数 f(x, y) 的极值.
 - (18) (本题满分 10 分) 计算积分 $I = \int_{\frac{\sqrt{3}}{3}}^{\sqrt{3}} \frac{dx}{(1+e^{x-\frac{1}{x}})(1+x^2)}$.
- (19) (本题满分 10 分) 计算曲面积分 $I=\iint\limits_\Sigma (x+2)dydz+zdxdy$,其中 Σ 是球面 $x^2+y^2+z^2=1$ 位 于 $x \ge 0$, $y \ge 0$ 的部分,且取前侧.
 - (20) (本题满分 11 分) 已知三阶方阵 A 的第一行元素为 a,b,c $(a \neq 0)$, 且 AB = O, 其中

$$B = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 2 & 4 & 6 & 2 \\ 3 & 6 & 10 & 4 \end{pmatrix}$$
. 记 $\xi_1 = \begin{pmatrix} -b \\ a \\ 0 \end{pmatrix}$, $\xi_2 = \begin{pmatrix} -c \\ 0 \\ a \end{pmatrix}$. 证明(I) ξ_1, ξ_2 都为线性方程组 $Ax = 0$ 的解;

(II) B的列向量组与 ξ_1,ξ_2 等价.

- (21) (本题满分 11 分) 已知 A 为三阶实对称矩阵,r(A) = 2 , AB = 2B ,其中 $B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$.
- (I) 求正交阵Q, 使得 Q^TAQ 为对角阵; (II) 求 A^n .
- (22) (本题满分 11 分)设随机变量 X,Y,Z 相互独立,且 X 和 Y 均服从 N(0,1), Z 的分布律为 $P\{Z=0\} = P\{Z=1\} = \frac{1}{2}$, $T=(X^2+Y^2)Z$, (I) 求T的分布函数 $F_T(t)$; (II) 求ET.
- (23)(本题满分 11 分)设 (X_1,X_2,\cdots,X_n) 是来自总体 $X\sim N(0,\sigma^2)$ 的简单随机样本,(I)问常数 k_1 取何值时, $k_1\sum_{i=1}^n |X_i|$ 为 σ 的无偏估计?(II)问常数 k_2 取何值时, $k_2(\sum_{i=1}^n |X_i|)^2$ 为 σ^2 的无偏估计?

2017 年全国硕士研究生入学统一考试

超 越 考 研 数学(一)模拟(四)

(科目代码: 301)

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定位置的边框区域内,写在其他地方无效。
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

的. 请将所选项前的字母填在答题纸指定位置上.

(1)设函数 $f(x) = \frac{\sin x \cos \frac{\pi}{2} x}{|x|(x^2 + x - 2)}$,则 f(x) 的可去间断点、跳跃间断点、第二类间断点分别为().

(A) x = -2, x = 0, x = 1

(B) x = 0, x = 1, x = -2

- (C) x = 0, x = -2, x = 1
- (D) x = 1, x = 0, x = -2
- (2) 方程 $\int_{-1}^{x} te^{\cos t} dt = 0$ 的实根个数为 ().
- (A) 1
- (B) 2 (C) 3

(3) 曲线 $z = \frac{1}{4}(x^2 + y^2),$ 在点 (2,4,5) 处的切线与 x 轴的夹角 $\theta = ($). y = 4

- (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$

- (4) 设函数 f(x) 单调连续, f(0)=0 , $\varphi(x)$ 为 f(x) 的反函数,则对任意的 t ,有 (
- (A) $\int_0^t \varphi(x) dx = \int_0^t f(x) dx$ (B) $\int_0^{f(t)} \varphi(x) dx = \int_0^{\varphi(t)} f(x) dx$
- (C) $\int_0^{\varphi(t)} f(x) dx + \int_0^t f(x) dx = t\varphi(t)$ (D) $\int_0^{f(t)} \varphi(x) dx + \int_0^t f(x) dx = tf(t)$

(5) 设A合同于 $B = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \end{bmatrix}$,则().

- (A) |A| = |B| (B) $\lambda_1, \lambda_2, \dots, \lambda_n$ 为 A 的特征值 (C) A 为对称阵 (D) A 必合同于单位矩阵
- (6) 设A是 $m \times n$ 矩阵(n > m), r(A) = m, B是 $n \times (n m)$ 矩阵, r(B) = n m且AB = O, 若 η 是 Ax = 0 的解,则线性方程组 $By = \eta$ ().

- (A) 无解 (B) 有无穷多解 (C) 有唯一解 (D) 解的情况不能确定

超 越 考 研 (7) 设A,B为两个随机事件,0 < P(A) < 1,则必有 $1 - P(B|\overline{A})$ ((B) $\leq \frac{1 - P(B)}{P(\overline{A})}$ (C) $\leq 1 - \frac{P(B)}{P(\overline{A})}$ (D) $\leq 1 - \frac{P(\overline{A}|B)}{P(\overline{A})}$ (A) = P(B|A)(8) 设 $(\hat{\theta}_1, \hat{\theta}_2)$ 为未知参数 θ 的置信度为 $1-\alpha$ 的置信区间,即有 $P\{\hat{\theta}_1 < \theta < \hat{\theta}_2\} = 1-\alpha$,则下列说法 中正确的为(① $(\hat{\theta}_1, \hat{\theta}_2)$ 以 $1-\alpha$ 的概率包含 θ ; ② θ 以 $1-\alpha$ 的概率落入 $(\hat{\theta}_1, \hat{\theta}_2)$; ③ $(\hat{\theta}_1, \hat{\theta}_2)$ 不包含 θ 的概率为 α ; ④ θ 以 α 的概率落到 $(\hat{\theta}_1, \hat{\theta}_2)$ 之外. (A) ①234 (B) ①2 (C) ①3 (D) (2)(4) 、填空题:9~14 小题,每小题 4 分,共 24 分.请将答案写在答题纸指定位置上. (9) 设 f(x) 是以 4 为周期的奇函数,且 f'(0) = 2,则 $\lim_{x \to 2} \frac{f(x^3) + f(x^2)}{x - 2} = \underline{\qquad}$. (10) $\int e^x \frac{1+\sin x}{1+\cos x} dx =$ ______. (11) 设 $u = xye^{x+y}$,若m,n为自然数,则有 $\frac{\partial^{m+n}u}{\partial x^m\partial y^n} = \underline{\hspace{1cm}}$. (13) 设A 是 3 阶矩阵, 若线性方程组 $Ax = (3,3,3)^T$ 的通解为 $k_1(-1,2,-1)^T + k_2(0,-1,1)^T + (1,1,1)^T$, 其中 k_1,k_2 ,是任意常数,则A的特征值为_______. (14) 设随机变量 X_1, X_2, X_3 相互独立,均服从[0,1]上的均匀分布, $X = \min\{\max\{X_1, X_2\}, X_3\}$, 则当 $0 \le x \le 1$ 时,X的密度函数为 $f_x(x) =$ ______. 三、解答题:15~23 小题, 共 94 分. 请将解答写在答题纸指定位置上. 解答应写出文字说明、证明过程 或演算步骤. (15) (**本题满分 10 分**) 设非负函数 f(x) 在[a,b]上满足 $f''(x) \le 0$,且 f(x) 在点 $x = x_0 \in [a,b]$ 处 取得最大值.(I)对任意的 $x \in [a,b]$,证明 $f(x_0) \le f(x) + f'(x)(x_0 - x)$;(II)对任意的 $x \in [a,b]$, 证明 $f(x) \le \frac{2}{b} \int_a^b f(t) dt$.

20、21全程考研资料请加群712760929

第 3 页 (共 4 页)

数学一模拟四试题

- 超 越 考 研 $(16) (本题满分 10 分) 在曲面 <math>x^2 + y^2 + \frac{1}{4}z^2 = 1(x > 0, y > 0, z > 0)$ 上求一点,使过该点的切平面 在三个坐标轴上的截距平方和最小.
- (17) (本题满分 10 分) 设函数 f(x)=|x|+x, $-1 \le x \le 1$, 将 f(x) 展开成傅里叶级数,并求级数 $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$ 的和.
- (18) (本题满分 10 分) 设函数 $F(t) = \iiint_{\Omega} (2-3z^2) dv$,其中 $\Omega_t : \frac{x^2}{4} + \frac{y^2}{9} + z^2 \le t^2$, t > 0,求曲线 u = F(t) 的凹凸区间与拐点.
- (19) (本题满分 10 分) 设函数 y(x) 是微分方程 y''' 3y'' + 3y' y = 0 的解,且曲线 y = y(x) 在点 (0,0)的曲率圆为 $(x-1)^2 + (y-1)^2 = 2$, 求 y(x).
 - (20) (本题满分 11 分) 已知齐次线性方程组 Ax = 0 的基础解系为 $\alpha_1 = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$, $\alpha_2 = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$, Bx = 0 的

基础解系为
$$eta_1=egin{pmatrix}1\\2\\1\\0\end{pmatrix}$$
 , $eta_2=egin{pmatrix}-1\\1\\1\\1\end{pmatrix}$,求 $Ax=0$ 与 $Bx=0$ 的非零公共解 .

- (21) (本题满分 11 分) 已知三阶矩阵 A 满足 |A-E| = |A-2E| = |A+E| = a.
- (I) 当a = 0时,求|A + 3E|;
- (II) 当a=2时,求|A+3E|.
- (22) (本题满分 11 分) 设随机变量 $X_i \sim U[0,1]$, i=1,2,3,4, $N \sim \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0.1 & 0.2 & 0.3 & 0.4 \end{pmatrix}$, 且

 X_1, X_2, \dots, X_4, N 相互独立, $Y = X_1 + \dots + X_N$, 求 EY.

- (23) (本题满分 11 分) 某电子元件的寿命服从参数为 λ 的指数分布(单位:小时), λ 未知,从中 任取n只进行检测,结果有m(m < n)只电子元件寿命不超过k小时.
 - (I) 求 λ 的矩估计值 $\hat{\lambda}_{M}$;
- $(\, \mathrm{II} \,) \, \, \ddot{\mathrm{x}} \, \lambda \, \mathrm{n} \, \mathrm{k} \, \mathrm{k} \, \mathrm{k} \, \mathrm{k} \, \mathrm{k} \, \mathrm{th} \, \mathrm{i} \, \hat{\lambda}_{\mathrm{r}} \, .$

数学一模拟四试题

第 4 页 (共 4 页)

2017 年全国硕士研究生入学统一考试

超 越 考 研 数学(一)模拟(五)

(科目代码: 301)

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定位置的边框区域内,写在其他地方无效。
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

、选择题:1 \sim 8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项是符合要求 的. 请将所选项前的字母填在答题纸指定位置上.

- (1) 设f(x)为正值连续偶函数, $F(x) = \int_0^x t^2 f(x-t)dt$,则下列结论中正确的个数为 ().
- ① F(x) 为单增的奇函数;
- ②点(0,0)为y = F(x)唯一的拐点;
- ③ F'(x) 为非负的凹函数; ④ F'(x) 只在点 x = 0 处取得最小值.

- (A) 1 (B) 2 (C) 3 (D) 4

(2) 设函数 $f(x) = \begin{cases} 2+x, & 0 \le x \le 2, \\ 0, & 2 < x < 4, \end{cases}$ $S(x) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi}{4} x (-\infty < x < +\infty), 其中$ $b_n = \frac{1}{2} \int_0^4 f(x) \sin \frac{n\pi}{4} x dx \quad (n = 1, 2, \dots),$

则 S(2) + S(-9) = (

- (A) -1 (B) 1 (C) 5 (D) 7

(3) 设 $I_1 = \int_0^{\sqrt{\pi}} \cos x^2 dx$, $I_2 = \int_0^{\pi} \sqrt{x} \cos x dx$,则以下结论正确的是().

- (A) $I_1 > 0, I_2 > 0$ (B) $I_1 > 0, I_2 < 0$ (C) $I_1 < 0, I_2 > 0$ D) $I_1 < 0, I_2 < 0$

(4) $abla I_1 = \int_0^{+\infty} \max\{\frac{1}{\sqrt{r}}, \frac{1}{r^2}\} dx, \quad I_2 = \int_0^{+\infty} \min\{\frac{1}{\sqrt{r}}, \frac{1}{r^2}\} dx, \quad \boxed{0}$

- (A) I_1 和 I_2 都收敛 (B) I_1 和 I_2 都发散 (C) I_1 收敛, I_2 发散 (D) I_1 发散, I_2 收敛
- (5) 设n 阶方阵A,B 满足AB = 2A + 3B,则必有().
- (A) A-3E 可逆,B-2E 不可逆 (B) A-3E 不可逆,B-2E 可逆
- (C) A-3E, B-2E 都不可逆 (D) A-3E, B-2E 都可逆
- (6) 设A为三阶反对称非零矩阵, A^* 为A的伴随矩阵,则有().

- (A) $r(A^*) = 3$ (B) $r(A^*) = 2$ (C) $r(A^*) = 1$ (D) $r(A^*) = 0$

(7) 设随机变量X的方差存在,则下列结论中,正确的个数为().

- $\textcircled{1}|EX| \leq E|X| \leq \sqrt{E(X^2)};$

- (A) 1
- (B) 2 (C) 3
- (D) 4

数学一模拟五试题 第 2 页 (共 4 页)

- 超越考 研 (8) 某食品厂所生产罐头的重量服从正态分布,在正常情况下其方差 $\sigma^2 \leq \sigma_0^2$. 为判断生产线是否 工作正常,现对产品进行抽样检验,取显著性水平 $\alpha = 0.05$,则下列描述正确的是(
 - (A) 如果生产线实际工作正常,则检验结果认为生产线工作正常的概率为0.95
 - (B) 如果生产线实际工作不正常,则检验结果认为生产线工作不正常的概率为0.95
 - (C) 如果检验结果认为生产线工作正常,则生产线实际工作正常的概率为0.95
 - (D) 如果检验结果认为生产线工作不正常,则生产线实际工作不正常的概率为0.95
- 二、填空题:9~14 小题,每小题 4 分,共 24 分. 请将答案写在答题纸指定位置上.

(9) 设函数
$$z = z(x, y)$$
 由方程 $xz = \varphi(yz)$ 确定, $x - y\varphi' \neq 0$,则 $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = \underline{\qquad}$

- (10) 设函数 $p(x) = \max\{x,1\}$,则微分方程 y' + p(x)y = x 的通解为______
- (11) 已知函数 f(x,y) 的梯度为 $\{2x + \lambda xy, x^2 2y\}$, 其中 λ 为常数,则 f(x,y) 在点 (2,1) 处的最 大方向导数为
 - (12) 设函数 f(x, y) 连续,则将极坐标下二次积分

$$\int_0^{\frac{\pi}{6}} d\theta \int_0^1 f(r\cos\theta, r\sin\theta) r dr + \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} d\theta \int_0^{\frac{1}{2\sin\theta}} f(r\cos\theta, r\sin\theta) r dr$$

化为直角坐标系下的二次积分为

(13) 设三阶方阵
$$A 与 B$$
 相似, $A^2 - 3A + 2E = O$, 且 $|B| = 2$, 则 $\begin{vmatrix} (A+E)^{-1} & O \\ O & 2B^* \end{vmatrix} = \underline{\qquad}$

(14) 设随机变量 $X \sim P(100)$,则用中心极限定理计算 $P(80 < X < 110) = _____.$ $(\Phi(1) = 0.841, \Phi(2) = 0.977, 其中 \Phi(x) 为标准正态分布的分布函数.)$

- 三、解答题:15~23 小题, 共 94 分. 请将解答写在答题纸指定位置上. 解答应写出文字说明、证明过程 或演算步骤.
 - (15) (本题满分 10 分) 设数列 $\{a_n\}$ 满足 $a_0=1, a_{n+1}=\frac{1-2n}{1+n}a_n$ $(n=0,1,2,\cdots)$. 已知当 $|x|<\frac{1}{2}$ 时,

幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的和函数为 y(x). (I) 证明 y(x)满足 (1+2x)y'' + y' = 0; (II) 求 y(x)的表达式.

数学一模拟五试题 第 3 页 (共 4 页)

超 越 考 研

(16) (本题满分 10 分) 设函数 u(x,y) 具有二阶连续偏导数,若 $u(0,y) = \ln(1+y), u(x,0) = \sin x$,

- (17) (**本题满分 10 分**) 数列 $\{x_n\}$ 定义如下: $x_1 = 1$, $x_{n+1} = \frac{1}{2}(x_n + \sqrt{x_n^2 + \frac{1}{n^2}})$, $n = 1, 2, \cdots$. 证明数列 $\{x_n\}$ 收敛.
- (18) (本题满分 10 分) 设当 $0 \le x < 1$ 时,函数 $f(x) = (1-x)\ln(1+x)$. 当 $k \le x < k+1$ 时, $f(x) = a_k f(x-k), \quad k = 1, 2, \cdots. \quad \text{(I)}$ 求常数 $a_k \ (k = 1, 2, \cdots), \quad \text{使得} \ f(x)$ 在 $[0, +\infty)$ 上可导;(II)求曲 线 y = f(x) $(x \ge 0)$ 与 x 轴所围平面图形的面积 A .
- (19) (本题满分 10 分) 计算曲线积分 $I = \int_L \frac{(y^2+1)dx + \sin ydy}{2x^2 + y^2}$, 其中 L 是从点 A(-2,0) 到点 B(2,0) 的上半圆 $x^2 + y^2 = 4$ ($y \ge 0$).
- (20)**(本题满分 11 分)** 设 $A = \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix}$, X 是二阶方阵, E 是二阶单位阵,问方程 AX XA = E 是否有解?若有解,求满足方程 AX XA = E 的所有 X ,若无解,说明理由.
- (21) (**本题满分 11 分**) 设 A 为三阶实对称阵,r(A)=1, $\lambda_1=9$ 是 A 的一个特征值,对应的一个特征向量为 $\xi_1=(1,-2,2)^T$. (I) 问 $\eta=(-1,2,0)^T$ 是否为线性方程组 Ax=0 的解? 说明理由;(II) 求线性方程组 Ax=0 的通解;(III)求矩阵 A.
 - (22)(**本题满分 11 分**)设随机变量 X 的概率密度为 $f(x) = ke^{-\lambda|x|}$, $-\infty < x < +\infty$, $\lambda > 0$. 令 Y = |X|,
 - (I) 求常数k; (II) 求D(XY); (III) 求(X,Y)的分布函数.
 - (23) (本题满分 11 分)设 $(X_1, X_2, \cdots, X_{10})$ 是来自总体 $X \sim B(1, 0.2)$ 的简单随机样本.
 - (I) 问 $\sum_{i=1}^{10} X_i$ 和 $\sum_{i=1}^{10} X_i^2$ 分别服从何分布?
 - (II) 计算 $P\{\overline{X} \le \frac{1}{10}\}$ 和 $P\{S^2 = \frac{5}{18}\}$, 其中 \overline{X} 为样本均值, S^2 为样本方差.

数学一模拟五试题 第 4 页 (共 4 页)