

G1. QUÍMICA ORGÁNICA

- 1) Explicar en que consisten las hibridaciones de los orbitales del átomo de carbono cuando se une a otro átomo de carbono con enlaces covalentes simples, dobles o triples. Para ello representar la estructura electrónica del átomo de carbono no excitado y las hibridaciones en un diagrama de niveles de energía.
- 2) Nombrar cada compuesto y describir el tipo de hibridación del átomo de carbono subrayado. ¿Qué geometría molecular presenta?

a)
$$H_3C$$
 — CH_3

b)
$$H_2C = \underline{C}H_2$$

H₃C
$$-\underline{C}$$
H₂ $-C$ H₃

- **3)** Representar de la manera más desarrollada posible las formas espaciales de las moléculas de etano, eteno y etino.
- **4)** ¿Qué son los hidrocarburos y cómo se los clasifica? Dar ejemplos de cada clase y nombrarlos según nomenclatura IUPAC
- 5) Usando los prefijos numerales

Número	5	6	7	8	9	10	11	12	13	14
Prefijo	Pent	Hex	Нер	Oct	Non	Dec	Undec	Dodec	Tridec	Tetradec

- a) nombrar los hidrocarburos parafínicos lineales de C₅ y C₁₄
- b) escribir las fórmulas de los anteriores en la forma H₃C-(CH₂)_n-CH₃.
- 6) Escribir las fórmulas desarrolladas de los siguientes alcanos

- b) 2,2,4-trimetilpentano («isooctano»)
- **7)** Escribir las fórmulas desarrolladas y los nombres de todos los isómeros de cadena abierta de fórmula molecular C_5H_{10} (son 6 isómeros).
- 8) Escribir la fórmula desarrollada de todos los compuestos de fórmula molecular C₄H₈ e indicar los tipos de isomería que se presentan entre ellos (son 6 isómeros).
- 9) Escribir las fórmulas desarrolladas de los siguientes hidrocarburos cíclicos no aromáticos:
 - a) ciclopropano

b) metilciclopropano

c) ciclobutano

d) ciclopentano

e) metilciclohexano

- f) 1,3-ciclopentadieno
- 10) Escribir las fórmulas desarrolladas y los nombres de todos los isómeros de fórmula molecular
 - a) C₃H₄ (son 3 isómeros)

- **b)** C₄H₆ (son 9 isómeros).
- **11)** Escribir las distintas fórmulas con que habitualmente se representa al benceno y representar en una de ellas las fórmulas desarrolladas de los siguientes compuestos aromáticos:
 - a) tolueno (metilbenceno)

b) cumeno (isopropilbenceno, C₉H₁₂)

G1. ORGÁNICA

c) xilenos (dimetilbenceno, nombrar c/u)d) bifenilo (numerar sus átomos de carbono)e) naftaleno ($C_{10}H_8$)f) metilnaftalenos (nombrar c/u)g) antraceno ($C_{14}H_{10}$)h) 2,4,6-trinitrotolueno (TNT)

- **12)** Escribir las fómulas desarrolladas de 1-butanol y sus alcoholes isómeros, aclarando si son primarios, secundarios o terciarios (son 5 isómeros, incluyendo los ópticos).
- 13) Escribir las fórmulas de los polioles de cadena abierta C2 (es 1 compuesto) y de cadena abierta C3 (son 3 compuestos). Nombrarlos en forma sistemática y averiguar sus nombres triviales.
- **14)** Escribir las fórmulas desarrolladas del butanal (o butaraldehído), su aldehído isomero y su cetona isómera (nombrarlos).
- 15) Escribir las fórmulas y los nombres sistemáticos de los siguientes ácidos monocarboxílicos:

a) ácido metanoico (fórmico) b) ácido acético (acético)

c) ácido propanoico (propiónico) d) ácido propenoico (acrílico)

e) ácido metilpropenoico (metacrílico) f) ácido benzoico

g) ácido 2-hidroxipropanoico (láctico)

16) Escribir las fórmulas y los nombres sistemáticos de los siguientes ácidos policarboxílicos:

a) ácido etanodioico (oxálico) b) ácido hexanodioico (adípico)

c) ácido benceno-1,2-dicarboxílico (ftálico) d) ácido benceno-1,4-dicarboxílico (tereftálico)

e) ácido 3-carboxi-3-hidroxipentanodioico (cítrico)

- **17)** Los ésteres se pueden sintetizar por reacciones de condensación entre alcoholes y ácidos carboxílicos (reacciones de esterificiación).
 - **a)** Escribir la ecuación de formación del etanoato (acetato) de propilo a partir del alcohol y del ácido correspondiente.
 - **b)** Escribir la fórmula desarrollada y nombrar a todos los ésteres isómeros del anterior (son 7 isómeros sin contar al etanoato de propilo).
 - c) ¿Existe un isómero de estos ésteres que sea un ácido carboxílico? ¿Qué tipo de isomería sería?
- **18)** Las aminas pueden clasificarse en primarias, secundarias o terciarias de acuerdo a la posición del átomo de nitrógeno en la molécula.
 - a) Escribir la fórmula desarrollada y nombrar a las 4 aminas de fórmula C_3H_9N . Identificar las 2 aminas primarias, la amina secundaria y la amina tercicaria.
 - b) Escribir la fórmula desarrollada del aminobenceno (anilina) y de la 1,6-hexanodiamina.
 - c) Los términos «primario», «secundario» y «terciario» ¿tienen el mismo significado cuando se trata de aminas que cuando se trata de alcoholes?
- 19) La siguiente sustancia H_3C —C = N se llama indistintamente, cianometano, acetonitrilo o cianuro de metilo.
 - a) Deducir qué nombre se le puede dar a la sustancia H_2C CH C N
 - b) ¿Cuáles son las amidas de las cuales se los puede considerar derivados por deshidratación?

G1. ORGÁNICA Página 2 de 12

- **20)** Los aminoácidos son moléculas que contienen al menos un grupo amino y al menos un grupo carboxilo. Estas sustancias pueden reaccionar y condensarse en una única molécula a través de la formación de un enlace peptídico (grupo funcional amida).
 - a) Escribir la ecuación de condensación entre dos moléculas del aminoácido glicina (Ácido 2-aminoetanoico) ¿Es posible continuar la condensación de nuevas moléculas de glicina sobre el producto formado en la anterior reacción?
- 21) Escribir las fórmulas desarrolladas e identificar los grupos funcionales en los siguientes compuestos:
 - a) hidroxibenceno (fenol)
 - c) metanal (formaldehido)
 - e) propenonitrilo (acrilonitrilo)
 - g) ácido propenoico (ácido acrílico)
 - i) etanoato de metilo
 - k) propanamida

- b) ácido hexanodioico
- d) 1,3-butadieno
- f) fenileteno (estireno)
- h) 1,2-etanodiol (etilenglicol)
- j) 1,6-hexanodiamina
- 22) Nombrar los siguientes compuestos a partir de sus fórmulas desarrolladas:

b) CH₂ CH₂ CH

c) H₃C CH₂ C

$$h) \quad _{H_3C} \stackrel{CH_2}{\searrow} _{O} \stackrel{CH_3}{\searrow}$$

- 23) Completar las siguientes ecuaciones químicas:
 - a) $CH_2=CH-CH_3 + H_2 \rightarrow$

- b) CH₃-CH=CH-CH₃ + HCl →
- c) ácido 3-metil-butanoico + NH₃ →
- d) $H_2N-CH_2-COOH + H_2N-CH_2-COOH \rightarrow$
- e) etanodiol + ácido propanodioico →
- 24) Escribir la reacción química para la combustión de cada uno de los siguientes compuestos
 - a) decano

b) metilciclopentano

c) 2-metiloctano

- d) benceno
- **25)** Escribir las reacciones de obtención de los compuestos. Nombrar cada una de las sustancias que intervienen.

a) Butilmetileter

b) Propanamida

c) 3,3-dimetilpentanoato de etilo

- d) N-metil-hexanamida
- **26)** Complete las siguientes ecuaciones químicas, indicando las fórmulas y el nombre de cada sustancia que interviene:
 - a) _____ + $Cl_2 \rightarrow 1,2$ -dicloro-3-metilbutano
 - **b)** CH₃-CH=CH-CH=CH-CH $_3$ + H $_2$ \rightarrow ______
 - c) $CH_3-CH_2-CH_3 + O_2 \rightarrow ____ + ____$
 - d) ácido butanoico + etilamina → _____ + ____
 - e) 1-propanol + etanol → _____ + ____
 - f) _____ + ____ → metanoato de butilo + agua
- **27)** Escribir las ecuaciones químicas con las fórmulas desarrolladas correspondientes a la reacción con H₂ y Br₂ de los siguientes hidrocarburos, nombrando cada uno de los productos que se obtienen.
 - a) 3-metil-1-buteno

b) 3,5-dimetil-3-hepteno.

Respuestas

- 2) a) Etano Presenta geometría tetraédrica alrededor del carbono por poseer hibridación sp³.
 - b) Eteno Presenta geometría triangular plana alrededor del carbono por poseer hibridación sp².
 - c) Etino Presenta geometría lineal alrededor del carbono por poseer hibridación sp.
 - d) Propano Presenta geometría tetraédrica alrededor del carbono por poseer hibridación sp³.
 - **e)** 1-buten-3-ino (o 1-en-3-butino o but-1-en-3-ino) Presenta geometría lineal alrededor del carbono por poseer hibridación sp.

4) La química orgánica es la rama de la química que estudia los compuestos del carbono. Dentro de estos, los hidrocarburos son aquellos compuestos orgánicos que sólo contienen átomos de carbono e hidrógeno. En base a su estructura se los clasifica en hidrocarburos alifáticos o de cadena abierta, dentro de los cuales se encuentran los alcanos, los alquenos y los alquinos; sus equivalentes cíclicos y los hidrocarburos aromáticos.

6) a)
$$H_3C$$
 CH_2 CH_2 CH_3 C

7)
$$\begin{array}{c} \text{CH} \\ \text{CH}_2 \\ \text{CH}_2 \\ \text{CH}_3 \\ \text{1-penteno} \end{array} \begin{array}{c} \text{CH}_3 \\ \text{H}_3 \\ \text{C} \\ \text{CH}_3 \\ \text$$

G1. ORGÁNICA Página 5 de 12

Por su fórmula general (C₄H₈) se trata de alquenos con una insaturación o alcanos cíclicos. Hay isomería de función, de cadena, de posición y geométricos

Isómeros de función: ciclobutano y metilpropeno; ciclobutano y 2-trans-buteno; ciclobutano y 2-cis-buteno; ciclobutano y 1-buteno; metilciclopropano y metilpropeno; metilciclopropano y 2-trans-buteno; metilciclopropano y y 2-cis-buteno; metilciclopropano y 1-buteno;

Isómeros de cadena: ciclobutano y metilciclopropano; metilpropeno y 2-trans-buteno; metilpropeno y 2-cisbuteno; metilpropeno y 1-buteno.

Isómeros de posición: 2-trans-buteno y 1-buteno; 2-cis-buteno y 1-buteno.

Isómeros geométricos (cis-trans): 2-trans-buteno y 2-cis-buteno.

9) a)
$$H_2C$$
 CH_2 b) H_2C CH_3 c) H_2C CH_3 c) H_2C CH_3

d)
$$H_2C$$
 CH_2 H_2C CH_2 CH_3 CH_3 CH_4 CH_5 CH_5 CH_6 CH_7 CH_8 CH_8 CH_9 CH_9

$$\textbf{b)} \\ \textbf{H}_2\textbf{C} = \textbf{C} \\ \textbf{CH} \\ \textbf{CH}_3 \\ \textbf{H}_2\textbf{C} \\ \textbf{CH} \\ \textbf{CH}_2 \\ \textbf{CH}_$$

$$HC = C - CH_2$$
 $H_3C - C = C - CH_3$
 $HC - CH_2$
 $H_2C - CH_3$
 $H_2C - CH_3$
 $H_3C -$

G1. ORGÁNICA Página 6 de 12

G1. ORGÁNICA Página 7 de 12

1,3-propanodiol

1,2-propanodiol (propilenglicol) 1,2,3-propanotriol (glicerina)

14)
$$\begin{array}{c} O \\ HC \\ CH_2 \end{array} CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ Metilpropanal \end{array} H_3C \begin{array}{c} O \\ CH_2 \\ CH_2 \\ CH_3 \\ Metilpropanal \\ Dutanona \\ \end{array}$$

G1. ORGÁNICA Página 8 de 12

c) Si, existen 4 isómeros de $C_5H_{10}O_2$ que son ácidos carboxílicos. Por ejemplo, el ácido pentanoico. Entre estos 4 compuestos y los ésteres existe isomería de función.

c) No exactamente. En los alcoholes, los términos «primario», «secundario» y «terciario» hacen referencia al átomo de carbono al cual está unido el grupo oxhidrilo (es un alcohol primario si el hidroxilo está unido a un carbono primario, y así sucesivamente). En cambio, en las aminas los términos se aplican sobre el átomo de nitrógeno y hacen referencia a la cantidad de átomos de carbono que se encuentran unidos a éste (es una amina primaria si el nitrógeno está unido a un solo atómo de carbono, y así sucesivamente).

G1. ORGÁNICA Página 9 de 12

- **19)** a) cianoeteno, acrilonitrilo o cianuro de vinilo
 - b) se los puede considerar derivados por deshidratación de las amidas primarias

20) a)
$$H_2N$$
 CH_2 CH_2

Si es posible continuar la condensación de nuevas moléculas de glicina ya que en el producto formado quedan grupos carboxilo y amino que pueden continuar el proceso de reacción. De hecho, la condensación de varios aminoácidos (glicina y otros) da lugar a las proteínas.

- a) aromático y alcohol; b) ácido carboxílico; c) aldehído; d) alqueno; e) alqueno y nitrilo; f) aromático y alqueno; g) ácido carboxílico y alqueno; h) alcohol; i) ester; j) amina; k) amida
- a) metilbutano; b) 1-cloro-3-metilbutano; c) 2-bromohexeno; d) 1,3-pentanodiol; e) 3-hidroxibutanal; f) dietilamina; g) ciclopentanona; h) etilmetileter; i) 3-metilbutanoato de metilo; j) ácido 3-hidroxipropanoico; k) N-etiletanamida
- 23) a) $CH_2=CH-CH_3 + H_2 \rightarrow CH_3-CH_2-CH_3$
 - **b)** CH₃-CH=CH-CH₃ + HCl → CH₃-CHCl-CH₂-CH₃
 - c) ácido 3-metil-butanoico + NH₃ →
 CH₃-CHCH₃-CH₂-COOH + NH₃ → CH₃-CHCH₃-CH₂-CONH₂+ H₂O

G1. ORGÁNICA Página 10 de 12

- d) $H_2N-CH_2-COOH + H_2N-CH_2-COOH \rightarrow H_2N-CH_2-CONH-CH_2-COOH + H_2O$
- e) etanodiol + ácido propanodioico →

 HOCH₂-CH₂OH + HOOC-CH₂-COOH → HOOC-CH₂-COOCH₂-CH₂OH + H₂O

24) a)
$$C_{10}H_{22} + 31/2 O_2 \rightarrow 10 CO_2 + 11 H_2O$$

b)
$$C_6 H_{12} + 9 O_2 \rightarrow 6 CO_2 + 6 H_2 O_2$$

c)
$$C_9H_{20} + 14 O_2 \rightarrow 9 CO_2 + 10 H_2O$$

d)
$$C_6H_6 + 15/2 O_2 \rightarrow 6 CO_2 + 3 H_2O$$

25)

c)
$$H_3C$$
 CH_2 CH_3 CH_2 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5

acido 3,3-dimetilpentanoico

etanol

3,3-dimetilpentanoato de etilo

agua

- 26) a) $CH_2=CH-CH(CH_3)-CH_3 + Cl_2 \rightarrow CH_2Cl-CHCl-CH(CH_3)-CH_3$ 3-metil-1-buteno + cloro \rightarrow 1,2-dicloro-3-metilbutano
 - b) CH_3 -CH=CH-CH=CH-CH $_3$ + H_2 \Rightarrow CH_3 -CH $_2$ -CH $_2$ -CH $_2$ -CH $_3$ -CH $_3$ -CH $_4$ -CH $_4$ -CH $_5$ -CH
 - c) $CH_3-CH_2-CH_3 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O$ propano + oxígeno \rightarrow dióxido de carbono + agua
 - d) $CH_3-CH_2-CH_2-COOH + H_2NCH_2-CH_3 \rightarrow CH_3-CH_2-CH_2-CONHCH_2-CH_3 + H_2O$ ácido butanoico + etilamina \rightarrow N-etil-butanamida + agua

G1. ORGÁNICA Página 11 de 12

- e) $CH_3-CH_2-CH_2OH + CH_3-CH_2OH \rightarrow CH_3-CH_2-CH_2-O-CH_2-CH_2 + H_2O$ 1-propanol + etanol \rightarrow etilpropileter + agua
- f) $HCOOH + CH_3-CH_2-CH_2-CH_2OH \rightarrow HCOOCH_2-CH_2-CH_2-CH_3 + H_2O$ ácido metanoico + butanol \rightarrow metanoato de butilo + agua

$$H_3C$$
 CH_3
 CH_2
 CH_3
 CH_3
 CH_3
 CH_4
 CH_2
 CH_3
 CH_4
 CH_2
 CH_3
 CH_4
 CH_2
 CH_3
 CH_4
 CH_5
 CH_5
 CH_7
 CH_8
 CH_8
 CH_8
 CH_8
 CH_8
 CH_8
 CH_8
 CH_8
 CH_8
 CH_9
 CH_9

a) **27)**

$$H_3C$$
 CH_3
 CH_2
 CH_2
 CH_3
 CH_3
 CH_4
 CH_2
 CH_5
 CH_5
 CH_5
 CH_6
 CH_7
 CH_8
 CH_7
 CH_8
 CH_8

1,2-dibromo-3-metilbutano (2 isómeros ópticos por quiralidad de C2)

b)

$$H_3C$$
 CH_2
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_4
 CH_2
 CH_3
 CH_4
 CH_5
 CH_5
 CH_5
 CH_6
 CH_7
 CH_7

3,4-dibromo-3,5-dimetilheptano (4 nuevos isómeros ópticos por quiralidad de C3 y C4)

3,5-dimetilheptano

G1. ORGÁNICA