Revision: polynomial division with remainder I

Analysis 1

S.-J. Kimmerle

Consider a rational function

$$r: A \to \mathbb{R}, x \mapsto \frac{p(x)}{q(x)} := \frac{\sum_{i=0}^{n} a_i x^i}{\sum_{i=0}^{m} b_i x^i}, \quad a_n \neq 0, b_m \neq 0$$

where $A := \{x \in \mathbb{R} \mid \sum_{i=0}^{m} b_i x^i \neq 0\}.$

If $n \ge m$, then we set

$$p_1: \mathbb{R} \to \mathbb{R}, x \mapsto p(x) - \frac{a_n}{b_m} x^{n-m} \cdot q(x)$$

and obtain the following representation

$$r(x) = \frac{p(x)}{q(x)} = \frac{a_n}{b_m} x^{n-m} + \frac{p_1(x)}{q(x)}$$
 for all $x \in A$

where p_1 is either the zero function or a polynomial of degree smaller than n.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

This procedure may be iterated for k steps that produce a polynomial p_k

until the degree of p_k is less than n.

We end up with

$$\frac{p(x)}{q(x)} = g(x) + \frac{p_k(x)}{q(x)},$$

g a polynomial.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Before integrating a rational function $r : A \to \mathbb{R}$ as defined above,

we carry out a polynomial division:

$$\int r(x) dx = \int g(x) dx + \int \frac{p_k(x)}{q(x)} dx$$

We know how to integrate the polynomial g.

For the remainder $\frac{p_k(x)}{q(x)}$, we consider the partial fraction expansion, i.e., the rational function is decomposed into a sum of fractions (yielding only a short list of cases with explicit formulas).

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Partial fraction expansion II

Let again $r: A \to \mathbb{R}, x \mapsto \frac{p(x)}{q(x)}$ as defined above, but w.l.o.g. let degree p < degree q. Moreover, let

$$q(x) = x(x - b_1)^{k_1} \cdot (x - b_2)^{k_2} \cdot \ldots \cdot (x - b_r)^{k_r} \cdot q_1(x)^{l_1} \cdot \ldots \cdot q_s(x)^{l_2}$$

with pairwise distinct zeros b_i of multiplicity k_i and pairwise distinct quadratic polynomials q_i that do not have zeros in \mathbb{R} .

Then there exists real numbers $A_1^{[1]}, \dots, A_1^{[k_1]}, \dots, A_r^{[1]}, \dots, A_r^{[k_r]},$ $B_1^{[1]}, \dots, B_1^{[l_1]}, \dots, B_s^{[l_s]}, \dots, B_s^{[l_s]}, C_1^{[1]}, \dots, C_1^{[l_1]}, \dots, C_s^{[1]}, \dots, C_s^{[l_s]}$ s.t.

$$\frac{p(x)}{q(x)} = \sum_{i=1}^{r} \sum_{i=1}^{k_i} \frac{A_i^{[j]}}{(x-b_i)^j} + \sum_{i=1}^{s} \sum_{i=1}^{l_i} \frac{B_i^{[j]} + C_i^{[j]} x}{(q_i(x))^j} \quad \text{for all } x \in A.$$

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Thus we only have to figure out how to integrate functions of the type

$$\frac{\zeta}{(x-x_0)^k}, \quad \frac{\xi+\mu x}{(q_i(x))^{\tilde{k}}}, \quad k, \tilde{k} \in \mathbb{N}:$$

Let $[a, b] \subset A$:

1)

$$\int_{a}^{b} \frac{1}{x - x_{0}} dx = [\ln(|x - x_{0}|)]_{a}^{b}, \quad x_{0} \notin [a, b]$$

2)

$$\int_{a}^{b} \frac{1}{(x-x_0)^k} dx = \frac{-1}{k-1} \left[\frac{1}{(x-x_0)^{k-1}} \right]_{a}^{b}, \quad k > 1, x_0 \notin [a,b]$$

If $4\beta - \alpha^2 > 0$, then $q(x) = x^2 + \alpha x + \beta$ has no real zeros.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Summary - outlook and review

Let $4\beta - \alpha^2 > 0$ and k > 1.

3

$$\int_{a}^{b} \frac{1}{x^{2} + \alpha x + \beta} dx = \left[\frac{2}{\sqrt{4\beta - \alpha^{2}}} \arctan\left(\frac{2x + \alpha}{\sqrt{4\beta - \alpha^{2}}} \right) \right]_{a}^{b}$$

4)

$$\int_{a}^{b} \frac{ax+b}{x^2+\alpha x+\beta} dx = \left[\frac{a}{2} \ln\left(\left|x^2+\alpha x+\beta\right|\right)\right]_{a}^{b} + \left(b-\frac{a\alpha}{2}\right) \int_{a}^{b} \frac{1}{x^2+\alpha x+\beta} dx$$

5)

$$\int_{a}^{b} \frac{1}{(x^{2} + \alpha x + \beta)^{k}} dx = \left[\frac{2x + \alpha}{(k-1)(4\beta - \alpha^{2})(x^{2} + \alpha x + \beta)^{k-1}} \right]_{a}^{b} + \frac{2(2k-3)}{(k-1)(4\beta - \alpha^{2})} \int_{a}^{b} \frac{1}{(x^{2} + \alpha x + \beta)^{k-1}} dx$$

6)

$$\int_{a}^{b} \frac{ax+b}{(x^{2}+\alpha x+\beta)^{k}} dx = \left[\frac{-a}{2(k-1)(x^{2}+\alpha x+\beta)^{k-1}}\right]_{a}^{b} + \left(b-\frac{a\alpha}{2}\right) \int_{a}^{b} \frac{1}{(x^{2}+\alpha x+\beta)^{k}} dx$$

In many applications we find integrals over infinite intervals. This motivates to consider **improper integrals** in the following.

Definition (Improper integral (infinite interval))

Let $f:[a,\infty)\to\mathbb{R}$ a function, that is on any interval [a,R], $a< R<\infty$, integrable,

then, assuming that the limit exists, we call

$$\int_{a}^{\infty} f(x) dx := \lim_{R \to \infty} \int_{a}^{R} f(x) dx$$

the **improper integral** of f on $[a, \infty)$.

Analoguously we define

$$\int_{-\infty}^{a} f(x) dx := \lim_{R \to \infty} \int_{-R}^{a} f(x) dx.$$

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Definition (Improper integral (singularity))

Let $f:[a,b)\to\mathbb{R}$ a function, that is on any interval $[a,b-\varepsilon]$, $0<\varepsilon< b-a$, integrable (but not on [a,b]),

then, assuming that the limit exists,

we call

$$\int_{a}^{b} f(x) dx := \lim_{\varepsilon \downarrow 0} \int_{a}^{b-\varepsilon} f(x) dx$$

the **improper integral** of f on [a, b].

Analoguously we define

$$\int_{a}^{b} f(x) dx := \lim_{\varepsilon \downarrow 0} \int_{a+\varepsilon}^{b} f(x) dx.$$

Moreover, we may define improper integrals for infinity or singularities, resp., at both ends.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and

Primitive functions

Practical computation of integrals

Comparison criterion for series

Improper integrals may allow to decide on the convergence of series:

Theorem (Integral test)

Let $f:[1,\infty)\to\mathbb{R}_0^+$ a monotonically increasing function.

The series $\sum_{n=1}^{\infty} f(n)$ converges, iff the improper integral $\int_{1}^{\infty} f(x) dx$ exists.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

An improper integral important for stochastics is the integral over the Gauss bell curve, i.e. the probability density function

$$f(x) = \frac{1}{\sqrt{2\pi} \cdot \sigma} \exp\left(-\frac{(x-\mu)^2}{\sigma}\right), \quad \mu \in \mathbb{R}, \ \sigma > 0.$$

For a probability we have to check (see Analysis 2)

$$\int_{-\infty}^{\infty} f(x) \, dx = 1.$$

However, for f(x) there exists no closed form for a primitive. We define the **error function** (for the standard normal distribution) as

$$erf(x) = \frac{2}{\sqrt{\pi}} \int_{-\infty}^{x} \exp\left(-\frac{x^2}{2}\right) dx.$$

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Definition (Gamma function)

The function

$$\Gamma: \mathbb{R}^+ \to \mathbb{R}^+, \ x \mapsto \int_0^\infty t^{x-1} \exp(-t) \ dt$$

is called **gamma function**.

The gamma function interpolates the factorial:

$$\Gamma(x+1)=x\cdot\Gamma(x)$$
 for all $x\in\mathbb{R}^+,$ $\Gamma(1)=1,$ i.e. $\Gamma(n+1)=n!$ for all $n\in\mathbb{N}_0.$

Improper integrals of this type are important for the probability of failure (Weibull distribution).

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Summary

S.-J. Kimmerle

- Concepts: integral, integrand, integration bounds, integration variable
- Approximation by a Riemann sum
- Concepts: primitive/indefinite integral, definite integral
- Fundamental theorem of differential and integral calculus
 Integration is an "inverse operation" of differentiation
- Practical computation of integrals
- Improper integrals

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Further topics:

- Volumes of rotational bodies
- Path integrals, surface integrals, volume integrals Analysis 2
- Gauss divergence theorem, Stokes theorem Analysis 2 or later

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and

Primitive functions

Practical computation of integrals

