

Logika dla informatyków

Sprawdzian nr 1, 27 października 2010

Zadanie 1 (1 punkt). Powiemy, że formuła φ jest *uproszczeniem* formuły ψ jeśli φ i ψ są równoważne oraz φ zawiera mniej spójników logicznych niż ψ . Jeśli istnieje uproszczenie formuły

$$(p \lor q \lor r) \land (p \lor \neg q \lor r) \land (\neg p \lor q \lor r)$$

to w prostokąt poniżej wpisz dowolne takie uproszczenie. W przeciwnym przypadku wpisz słowo "NIE".

$$(p \vee r) \wedge (\neg p \vee q \vee r)$$

Zadanie 2 (1 punkt). Jeśli istnieją takie formuły φ i ψ , że formuła $((p \lor q) \Rightarrow p)$ $[p/\varphi, q/\psi]$ jest sprzeczna, to w prostokąty poniżej wpisz dowolne takie formuły. W przeciwnym przypadku w oba prostokąty wpisz słowo "NIE".

Zadanie 3 (1 punkt). W prostokąt poniżej wpisz formułę w dysjunkcyjnej postaci normalnej i równoważną formule $(\neg p \Leftrightarrow q) \land r$.

$$(p \wedge \neg q \wedge r) \vee (\neg p \wedge q \wedge r)$$

Zadanie 4 (1 punkt). W prostokąt poniżej wpisz formułę (o ile taka formuła istnieje), która jest prawdziwa dla dokładnie tych wartościowań zmiennych p, q, r, w których co najmniej dwie zmienne są prawdziwe. Jeśli taka formuła nie istnieje, to wpisz słowo "NIE".

$$(p \wedge q) \vee (p \wedge r) \vee (q \wedge r)$$

Zadanie 5 (1 punkt). Rozważmy spójnik logiczny \uparrow zdefiniowany tak, że formuła $p \uparrow q$ jest równoważna $\neg(p \land q)$. Jeśli istnieje formuła zbudowana ze zmiennych p, q, spójnika \uparrow i nawiasów, równoważna formule $p \Rightarrow q$, to w prostokąt poniżej wpisz dowolną dowolną taką formułę. W przeciwnym przypadku wpisz słowo "NIE".

$$p \uparrow (q \uparrow q)$$

Zadanie 6 (5 punktów). Rozważmy formuły zbudowane ze zmiennej p, spójnika \Leftrightarrow i nawiasów. Udowodnij, że jeśli w takiej formule zmienna p występuje parzystą liczbę razy, to formuła ta jest tautologią.

Dowód. Rozważmy dwa wartościowania σ_{F} i σ_{T} zdefiniowane tak, że $\sigma_{\mathsf{F}}(p) = \mathsf{F}$ oraz $\sigma_{\mathsf{T}}(p) = \mathsf{T}$. Pokażemy przez indukcję względem n, że dla każdej formuły φ głębokości n, zbudowanej ze zmiennej p, spójnika \Leftrightarrow i nawiasów zachodzą następujące trzy warunki.

- (a) $\hat{\sigma}_{\mathsf{T}}(\varphi) = \mathsf{T}$,
- (b) jeśli p występuje w φ parzystą liczbę razy, to $\hat{\sigma}_{\mathsf{F}}(\varphi) = \mathsf{T}$, oraz
- (c) jeśli p występuje w φ nieparzystą liczbę razy, to $\hat{\sigma}_{\mathsf{F}}(\varphi) = \mathsf{F}$.

Oczywiście teza zadania wynika bezpośrednio z punktów (a) i (b).

 $Podstawa\ indukcji\colon \varphi$ ma głębokość 1. Wtedy $\varphi=p$, zmienna p występuje w φ nieparzystą liczbę razy, $\hat{\sigma}_{\mathsf{F}}(\varphi)=\mathsf{F},\ \hat{\sigma}_{\mathsf{T}}(\varphi)=\mathsf{T},$ a zatem wszystkie trzy warunki są spełnione.

 $Krok\ indukcyjny$: Załóżmy, że warunki (a), (b) i (c) są spełnione dla wszystkich formuł głębokości nie większej niż n i rozważmy dowolną formułę φ głębokości n+1. Wtedy $\varphi=(\varphi_1 \Leftrightarrow \varphi_2)$, gdzie φ_1 i φ_2 są formułami głębokości nie większej niż n.

Warunek (a) jest spełniony, bo z założenia indukcyjnego $\hat{\sigma}_{\mathsf{T}}(\varphi_1) = \mathsf{T}$ oraz $\hat{\sigma}_{\mathsf{T}}(\varphi_2) = \mathsf{T}$, więc $\hat{\sigma}_{\mathsf{T}}(\varphi_1 \Leftrightarrow \varphi_2) = \mathsf{T}$.

Dla dowodu warunków (b) i (c) rozważmy dwa przypadki.

- 1. p występuje w φ parzystą liczbę razy. Mamy dwie możliwości
 - i p występuje w φ_1 parzystą liczbę razy. Wtedy p występuje w φ_2 parzystą liczbę razy; z założenia indukcyjnego $\hat{\sigma}_{\mathsf{F}}(\varphi_1) = \mathsf{T}$ oraz $\hat{\sigma}_{\mathsf{F}}(\varphi_2) = \mathsf{T}$, więc $\hat{\sigma}_{\mathsf{F}}(\varphi_1 \Leftrightarrow \varphi_2) = \mathsf{T}$.
 - ii p występuje w φ_1 nieparzystą liczbę razy. Wtedy p występuje w φ_2 nieparzystą liczbę razy; z założenia indukcyjnego $\hat{\sigma}_{\mathsf{F}}(\varphi_1) = \mathsf{F}$ oraz $\hat{\sigma}_{\mathsf{F}}(\varphi_2) = \mathsf{F}$, więc $\hat{\sigma}_{\mathsf{F}}(\varphi_1 \Leftrightarrow \varphi_2) = \mathsf{T}$.

Zatem w obu przypadkach warunki (b) i (c) są spełnione.

2. p występuje w φ nieparzystą liczbę razy. Wtedy parzystość liczby wystąpień zmiennej p w φ_1 jest inna niż parzystość tych wystąpień w φ_2 , czyli z założenia indukcyjnego $\hat{\sigma}_{\mathsf{F}}(\varphi_1) \neq \hat{\sigma}_{\mathsf{F}}(\varphi_2)$, a więc $\hat{\sigma}_{\mathsf{F}}(\varphi_1) \Leftrightarrow \varphi_2) = \mathsf{F}$.

Zatem we wszystkich możliwych przypadkach wszystkie trzy warunki są spełnione, co kończy dowód.