STEPS:

Basic Pipeline for solving a ML project:

- 1. Read in Dataset
- 2. Get to know your dataset using data vizualisation and other techniques
- 3. Preprocess your dataset:
 - o remove/impute null values
 - o remove outliers
 - o feature scaling
 - feature engineering
 - o feature selection
- 4. train/test split
- 5. choose and build (number of) machine learning algorithm
- 6. train model on training data
- 7. make prediction on test data
- 8. evaluate performance on test data
- 9. visualization of your results

Start coding or generate with AI.

https://www.kaggle.com/datasets/uciml/human-activity-recognition-with-smartphones

```
from google.colab import drive
drive.mount('/content/drive')

prive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

#importing necessary libraries
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

train_dataset = pd.read_csv('/content/drive/MyDrive/Datasets/train.csv')
train_dataset.shape

(7352, 563)

test_dataset = pd.read_csv('/content/drive/MyDrive/Datasets/test.csv')
```

Creating Dataframe

```
feature_names1 = list(train_dataset.keys())
train_frame = pd.DataFrame(train_dataset, columns=feature_names1)

feature_names2 = list(test_dataset.keys())
test_frame = pd.DataFrame(test_dataset, columns=feature_names2)
main_frame= pd.concat([train_frame, test_frame], ignore_index=True)
```

Data Analysis

```
main_frame.shape

→ (10299, 563)
```

```
null=train_dataset.isnull().sum().sum()
print(f"Total number of Null values in Dataset: {null}")

→ Total number of Null values in Dataset: 0
ac=main_frame['Activity'].unique()
for i in ac:
  print(i)
⇒ STANDING
     SITTING
     LAYING
     WALKING
     WALKING_DOWNSTAIRS
     WALKING_UPSTAIRS
non_numeric_columns = main_frame.select_dtypes(exclude='number').columns
# Count the number of non-numeric columns
num_non_numeric_columns = len(non_numeric_columns)
print(f'The number of columns with non-numeric values is: {num_non_numeric_columns}')
print('Non-numeric columns:', non_numeric_columns)
\longrightarrow The number of columns with non-numeric values is: 1
     Non-numeric columns: Index(['Activity'], dtype='object')
main frame.head(100)
\rightarrow
```

\Rightarrow		tBodyAcc- mean()-X	tBodyAcc- mean()-Y	tBodyAcc- mean()-Z	tBodyAcc- std()-X	tBodyAcc- std()-Y	tBodyAcc- std()-Z	tBodyAcc- mad()-X	tBodyAcc- mad()-Y	tBodyAcc- mad()-Z	tBodyAcc- max()-X	 fBodyBodyGyroI kur
	0	0.288585	-0.020294	-0.132905	-0.995279	-0.983111	-0.913526	-0.995112	-0.983185	-0.923527	-0.934724	 -
	1	0.278419	-0.016411	-0.123520	-0.998245	-0.975300	-0.960322	-0.998807	-0.974914	-0.957686	-0.943068	 -
	2	0.279653	-0.019467	-0.113462	-0.995380	-0.967187	-0.978944	-0.996520	-0.963668	-0.977469	-0.938692	 -
	3	0.279174	-0.026201	-0.123283	-0.996091	-0.983403	-0.990675	-0.997099	-0.982750	-0.989302	-0.938692	 -
	4	0.276629	-0.016570	-0.115362	-0.998139	-0.980817	-0.990482	-0.998321	-0.979672	-0.990441	-0.942469	 -
	95	0.327317	-0.022256	-0.149144	-0.248645	0.133229	-0.179547	-0.306979	0.113994	-0.159712	-0.114953	 -
	96	0.349059	-0.022004	-0.150052	-0.303125	0.152607	-0.174298	-0.356618	0.106512	-0.141309	-0.178067	 -
	97	0.264682	-0.008592	-0.102974	-0.363238	0.036867	-0.244159	-0.425625	-0.055041	-0.243230	-0.278328	 -
	98	0.284317	-0.027206	-0.212303	-0.183444	0.141076	-0.225689	-0.249080	0.110614	-0.221009	0.032522	 -
	99	0.221727	-0.024377	-0.075076	-0.111717	0.111130	-0.221833	-0.158887	0.074158	-0.212428	0.032522	 -

100 rows × 563 columns

Pre-Processing

Null Values: (As Dataset didn't have any null values to begin with, we are inserting null values for demonstration purposes)

```
np.random.seed(42)
# Insert 30 random null values (excluding 'Activity' and 'subject' columns)
for _ in range(30):
    random_row_index = np.random.randint(0, len(main_frame))
    random_column = np.random.choice(main_frame.columns[~main_frame.columns.isin(['Activity', 'subject'])])
    main_frame.at[random_row_index, random_column] = np.nan

# Display the number of null values
total_null_values = main_frame.isnull().sum().sum()
print(f"Total number of null values in the dataset: {total_null_values}")

# Replace null values based on the average value for the corresponding 'Activity'
for activity in main_frame['Activity'].unique():
    activity_rows = main_frame[main_frame['Activity'] == activity]
    for column in main_frame.columns[~main_frame.columns.isin(['Activity', 'subject'])]:
    column_avg = activity_rows[column].mean()
```

```
main_frame.loc[activity_rows.index, column] = activity_rows[column].fillna(column_avg)
# Verify that there are no null values after replacement
total_null_values_after_replace = main_frame.isnull().sum().sum()
print(f"Total number of null values in the dataset after replacement: {total_null_values_after_replace}")
Total number of null values in the dataset: 30
    Total number of null values in the dataset after replacement: 0
Categorical Value Encoding:
Since dataset didn't have any categorical values to encode, the subject column has been categorized for demonstration
main_frame['subject'] = 'subject_' + main_frame['subject'].astype(str)
main_frame['subject'].unique()
dtype=object)
Categorical Value, Solution 1: Encoding
main frame['subject'] = main frame['subject'].str.extract('(\d+)').astype(int)
main_frame['subject'].unique()
Categorical Value, Solution 1: Dropping the column
main_frame.drop('subject', axis=1, inplace=True)
```

Feature Scaling:

Was not required

Seperating Training Data and Test Data

```
from sklearn.model_selection import train_test_split

X = main_frame.drop('Activity', axis=1)
Y = main_frame['Activity']

# 70/30 split for training and testing data
train_set, test_set = train_test_split(main_frame, test_size=0.3, random_state=42,stratify=Y)

X_train = train_set.drop('Activity', axis=1)
Y_train = train_set['Activity']

X_test = test_set.drop('Activity', axis=1)
Y_test = test_set['Activity']
```

Data Visualization

Correlation Heatmap of the entire Dataset:

```
target_feature = 'Activity'
selected columns = main frame.columns[main frame.columns != target feature]
```

```
sampled_data = main_frame.groupby(target_feature, group_keys=False).apply(lambda x: x.sample(min(len(x), 50)))
correlation_matrix = sampled_data[selected_columns].corr(numeric_only=True)
plt.figure(figsize=(15, 12))
sns.heatmap(correlation matrix, cmap='coolwarm', vmin=-1, vmax=1, annot=False)
plt.show()
```

🛬 <ipython-input-22-6effdee7a97d>:7: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is dep

Correlation heatmap of 20 random features to understand the relations:

import random

```
target_feature = 'Activity'
selected_columns = main_frame.columns[main_frame.columns != target_feature]

random_columns = random.sample(selected_columns.tolist(), 20)
sampled_data = main_frame.groupby(target_feature, group_keys=False).apply(lambda x: x.sample(min(len(x), 50)))

correlation_matrix = sampled_data[random_columns].corr(numeric_only=True)

plt.figure(figsize=(15, 12))
sns.heatmap(correlation_matrix, cmap='coolwarm', vmin=-1, vmax=1, annot=False)

plt.show()
```

<ipython-input-23-4c6dfelb9564>:10: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is descripted_data = main_frame.groupby(target_feature, group_keys=False).apply(lambda x: x.sample(min(len(x), 50)))

Data Distribution of Trainning Set:

```
plt.figure(figsize=(35, 6))
plt.subplot(1, 2, 1)
sns.countplot(x='Activity', data=train_set)
plt.title('Training Set - Activity Distribution')
plt.show()
```


Data Distribution of Test Set:

```
plt.figure(figsize=(35, 6))
plt.subplot(1, 2, 2)
sns.countplot(x='Activity', data=test_set)
plt.title('Testing Set - Activity Distribution')
plt.show()
```


Trainning and Prediction Accuracy:

Model 1: Decision Tree (RandomForestClassifier)

from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, classification_report

```
model = RandomForestClassifier(n_estimators=500, random_state=42)
model.fit(X_train, Y_train)

Y_pred = model.predict(X_test)

accuracy = accuracy_score(Y_test, Y_pred)
print(f'Accuracy: {accuracy:.2f}')

print(classification_report(Y_test, Y_pred))

Accuracy: 0.98

precision__recall__f1-score__support
```

\equiv	Accuracy: 0.98				
		precision	recall	f1-score	support
	LAYING	1.00	1.00	1.00	583
	SITTING	0.97	0.96	0.96	533
	STANDING	0.97	0.97	0.97	572
	WALKING	0.99	0.98	0.99	517
	WALKING_DOWNSTAIRS	0.97	0.97	0.97	422
	WALKING_UPSTAIRS	0.96	0.98	0.97	463
	accuracy			0.98	3090
	macro avg	0.98	0.98	0.98	3090
	weighted avg	0.98	0.98	0.98	3090

Visualization:

```
from sklearn.metrics import confusion_matrix
conf_matrix = confusion_matrix(Y_test, Y_pred)

plt.figure(figsize=(20, 8))
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=model.classes_, yticklabels=model.classes_)
plt.title('Confusion Matrix For RandomForrestClassifier')
plt.xlabel('Predicted Label')
plt.ylabel('True Label')
```



```
class_accuracy = conf_matrix.diagonal() / conf_matrix.sum(axis=1)
# Create a bar chart
plt.figure(figsize=(18, 6))
sns.barplot(x=model.classes_, y=class_accuracy, color='skyblue')
plt.title('Prediction Accuracy for Each Class')
plt.xlabel('Activity')
plt.ylabel('Accuracy')
```

plt.ylim(0, 1) # Set y-axis limits to represent accuracy percentage plt.show()

Model 2: K-Nearest Neighbors (KNeighborsClassifier)

```
from \ sklearn.neighbors \ import \ KNeighbors Classifier
knn_model = KNeighborsClassifier(n_neighbors=5)
knn model.fit(X train, Y train)
Y_pred_knn = knn_model.predict(X_test)
accuracy_knn = accuracy_score(Y_test, Y_pred_knn)
print(f'K-Nearest Neighbors Accuracy: {accuracy_knn:.2f}')
print('Classification Report for K-Nearest Neighbors:')
print(classification_report(Y_test, Y_pred_knn))
→ K-Nearest Neighbors Accuracy: 0.96
     Classification Report for K-Nearest Neighbors:
                       precision recall f1-score
                                                       support
                                     1.00
                                                1.00
                LAYTNG
                             1.00
                                                            583
               STTTTNG
                             0.91
                                      0.90
                                                 0.91
                                                            533
              STANDING
                             0.91
                                      0.92
                                                 0.92
                                                            572
               WALKING
                             0.99
                                      1.00
                                                 0.99
                                                           517
     WALKING_DOWNSTAIRS
                             1.00
                                      0.98
                                                 0.99
                                                            422
      WALKING_UPSTAIRS
                             0.99
                                       1.00
                                                 0.99
                                                 0.96
              accuracy
                             0.97
                                      0.97
                                                 0.97
                                                           3090
             macro avg
          weighted avg
                             0.96
                                       0.96
                                                 0.96
                                                           3090
Visualization:
from sklearn.metrics import confusion_matrix
conf_matrix = confusion_matrix(Y_test, Y_pred_knn)
```

sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=model.classes_, yticklabels=model.classes_)

plt.figure(figsize=(20, 8))

plt.xlabel('Predicted Label')
plt.ylabel('True Label')

plt.show()

plt.title('Confusion Matrix For KNeighborsClassifier')


```
class_accuracy_knn = conf_matrix.diagonal() / conf_matrix.sum(axis=1)

# Create a bar chart
plt.figure(figsize=(18, 6))
sns.barplot(x=knn_model.classes_, y=class_accuracy_knn, color='lightcoral')
plt.title('K-Nearest Neighbors - Prediction Accuracy for Each Class')
plt.xlabel('Activity')
plt.ylabel('Accuracy')
plt.ylim(0, 1) # Set y-axis limits to represent accuracy percentage
plt.show()
```


Support Vector Machine (SVM)

```
from sklearn.svm import SVC

svm_model = SVC(kernel='linear', C=1.0)

svm_model.fit(X_train, Y_train)

Y_pred_svm = svm_model.predict(X_test)
```

```
accuracy_svm = accuracy_score(Y_test, Y_pred_svm)
print(f'Support Vector Machine Accuracy: {accuracy_svm:.2f}')
print('Classification Report for Support Vector Machine:')
print(classification_report(Y_test, Y_pred_svm))
```

Support Vector Machine Accuracy: 0.98 Classification Report for Support Vector Machine:

crassification Report for Support Vector Machine:							
	precision	recall	f1-score	support			
LAYING	1.00	1.00	1.00	583			
SITTING	0.96	0.96	0.96	533			
STANDING	0.96	0.96	0.96	572			
WALKING	1.00	1.00	1.00	517			
WALKING_DOWNSTAIRS	1.00	1.00	1.00	422			
WALKING_UPSTAIRS	1.00	1.00	1.00	463			
accuracy			0.98	3090			
macro avg	0.99	0.99	0.99	3090			
weighted avg	0.98	0.98	0.98	3090			

Visualization:

```
from sklearn.metrics import confusion_matrix
conf_matrix = confusion_matrix(Y_test, Y_pred_svm)

plt.figure(figsize=(18, 8))
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=model.classes_, yticklabels=model.classes_)
plt.title('Confusion Matrix FOR SVM')
plt.xlabel('Predicted Label')
plt.ylabel('True Label')
plt.show()
```



```
class_accuracy_knn = conf_matrix.diagonal() / conf_matrix.sum(axis=1)

# Create a bar chart
plt.figure(figsize=(18, 6))
sns.barplot(x=knn_model.classes_, y=class_accuracy_knn, color='lightgreen')
plt.title('Support Vector Machine - Prediction Accuracy for Each Class')
plt.xlabel('Acctivity')
plt.ylabel('Accuracy')
plt.ylim(0, 1)
plt.show()
```

