Example 2

DA and DB are tangent to circle O at A and B, respectively. AC is the diameter of circle O. Prove: $\angle ADB = 2\angle BAC$.

Since AC is the diameter, $\angle ABC = 90^\circ$. $\angle CAB + \angle ACB = \alpha + \beta = 180^\circ - 90^\circ = 90^\circ$. $\angle ACB = \angle BAD$ (both face the same arc AB). So $\angle BAD = \beta$. Note that $\triangle DAB$ is an isosceles triangle, $\angle DBA = \beta$.

Thus $\alpha = 90^{\circ} - \beta \implies 2\alpha = 180^{\circ} - 2\beta$ In triangle ADB, $\angle ADB = 180^{\circ} - 2\beta = 2\alpha = 2\angle BAC$.