Curso Corto de hidrogeología

Andrew S. Reeve

Day 2: Measuring Hydraulic Parameters and Solute Transport

Medir Propiedades Hidráulicas: Laboratorio: Tamaño de Granos

- Análisis de Tamaño de Grano, Material de Arena
- Ecuación de Hazen: $K = C(d_{10}^2)$
 - C constante de 100 a 150 $sec^{-1} \cdot cm^{-1}$
 - $-d_{10}$ tamaño (10% pasando) en cm
 - K está en cm/sec
 - asume la arena está mal clasificado (poorly sorted) $\frac{d_{60}}{d_{10}} < 5$
- Ecuación de Kozeny-Carmen para granos esférico (r=radios, n=porosidad)

$$-K = \frac{\rho g}{\mu} \frac{n^3}{(1-n)^2} \frac{d_{50}^2}{180}$$

 Φ -scale is a base 2 log scale in mm

Medir Propiedades Hidráulicas: Laboratorio: Permeámetro

Carga Hidráulica Constante

$$-K = \frac{QL}{AH}$$

· Carga Hidráulica Cayendo

$$-K \cdot A \frac{h(t) - H_o}{L} = a \frac{dh}{dt}$$
$$-K = \frac{aL}{A(t_2 - t_1)} \ln \left[\frac{h_2}{h_1} \right]$$

Medir Propiedades Hidráulicas: Piezometros

- Mide el nivel del agua en el pozo (antes de la prueba)
- Desplazar un volumen de agua en el pozo (cambio repentino en el nivel del agua)
- Mide e nivel del agua durante el periodo de recuperación
- Hay una relación entre el rato de recuperación y la conductividad hidráulica

- · Nivel del agua de equilibro
- · Niveles del agua por el recuperación
- Volumen del 'slug'
- · Geometría del pozo
 - Longitud de la sección perforada (1)
 - Radio del pozo/tubería ($r_{_G}$)
 - Radio del la sección perforada (r_s)
 - Distancia entre nivel freático y la sección perforada
- Ubicación de las capas de confinamiento

Medir Propiedades Hidráulicas: Piezometros: Ejemplo 1

Método de Hvorslev (1951)

- Hay no efectos de almacenamiento
- Se miden los datos después de insertar el 'slug'
- La carga hidráulica está cambiado a un valor normalizado
- El pendiente en una grafica semilog de los datos indica la conductividad hidráulica

Medir Propiedades Hidráulicas: Piezometros: Ejemplo 2

- Cooper, Bredehoeft, Papadopulus (1964)
 - Incluye los efectos de almacenamiento
 - La carga hidráulica está cambiado a un valor normalizado
 - el 'slug' se inserta instantáneamente
 - Hacer coincidir los datos a curvas estándar

Medir Propiedades Hidráulicas: Piezometros: Ejemplo 3

- En acuíferos con muy alta K, la respuesta al 'slug' podría ser una oscilación amortiguada
- se usa el rato de amortiguada para calcular las propiedades hidráulicas

Medir Propiedades Hidráulicas: Pruebas de Bombear

- Un cono de depresión formará alrededor del pozo bombeado
- Las propiedades del acuífero (T y S) controla la forma del cono
- La reducción = $h_0 h_t$
- r = distancia entre pozos bombeado y observación

وComo cambiará la forma del cono și 'T' augmenta? وComo cambiará la forma del cono și 'S' augmenta?

Medir Propiedades Hidráulicas: Pruebas de Bombear

- Puede medir la forma en un punto de tiempo con pozos en una linea
- Puede medir la forma en un pozo sobre tiempo

Medir Propiedades Hidráulicas: Pruebas de Bombear

- Dos metidos comunes para interpretar los datos de una prueba de bombear:
 - Metido de linea recta (straight line method)
 - Coincidencia de curva de tipa (type curve matching)
- Solución de ecuación para fluyo estado es-

$$-Q = -K \cdot A \frac{dh}{dr} = -T \cdot 2 \cdot \pi \cdot r \frac{dh}{dr}$$

Solución de ecuación para fluyo transitorio

$$-S_{S}\frac{\partial h}{\partial t} = K \cdot \frac{\partial^{2} h}{\partial r^{2}} + K \cdot \frac{1}{r} \frac{\partial h}{\partial r}$$

$$-W(u) = -.5772 - ln(u) + u - \frac{u^2}{2 \cdot 2!} + \frac{u^3}{3 \cdot 3!} \cdots$$

Solución de Theim (fluyo estado estable)

- Integrar ecuación: $Q = 2 \cdot \pi \cdot r \cdot b \cdot K \frac{dh}{dr}$
- Caso confinado

$$-h_2 - h_1 = \frac{Q}{2\pi T} \ln \left(\frac{r_2}{r_1}\right)$$

Caso no confinado sin recarga:

$$-h_2^2 - h_1^2 = \frac{Q}{\pi K} \ln \left(\frac{r_2}{r_1} \right)$$

Caso no confinado con recarga (W):

Solución de Theim (fluyo estado estable)

· si el acuífero es confinado por la capa verde, la capa gris es impermeable

$$- h_2 - h_1 = \frac{Q}{2 \cdot \pi \cdot T} \ln \left(\frac{r_2}{r_1} \right)$$

$$- 34.2 - 33.7 = \frac{.002}{2 \cdot \pi \cdot T} \ln \left(\frac{20}{.5} \right)$$

$$- T = 0.0023 \ m^2 \cdot sec^{-1} \ , \text{K=0.0007}$$

$$m \cdot sec^{-1}$$

si el acuífero no es confinado (ignora la capa verde), la capa gris es impermeable

$$-h_2^2 - h_1^2 = \frac{Q}{K \cdot \pi} \ln \left(\frac{r_2}{r_1} \right)$$

$$-4.2^2 - 3.7^2 = \frac{Q}{K \cdot \pi} \ln \left(\frac{20}{0.5} \right)$$

$$-K = 0.00059 \ m \cdot sec^{-1}$$

Ejemplo de Theim

Coincidencia de Curva de Tipa (Type Curve Matching)

Suposiciones de Metido de Theis

- · Homogeneous, Isotropic aquifer
- · Infinite extent
- No recharge
- · Constant pumping rate
- Fully penetrating well
- · Confined aquifer

$$\begin{array}{ccc} h_{t=0} - h_{r,t} &=& \frac{Q}{4\pi T} \int_u^{\infty} \frac{e^{-u}}{u} du &= \\ \frac{Q}{4\pi T} W(u) & & & \\ u = \frac{r^2 S}{4Tt} & & & & \end{array}$$

Coincidencia de Curva de Tipa (Type Curve Matching)

- Hace o descarga una curva de tipa (derecha) (hay diferente curvas para diferente situaciones)
- Plotea los datos, usa la misma escala (izquierda) (tamaño de ciclo de log)

Coincidencia de Curva de Tipa (Type Curve Matching)

- · superponer y unir los gráficos
- escoge un punto sobre ambos gráficos cuando están superpuesto
- encuentra los cuatro valores de los graficas (tiempo, reducción, u, W(u))

•
$$dd = \frac{Q \cdot W(u)}{4 \cdot \pi \cdot T}$$

• $0.08 = \frac{0.001 \cdot 1}{4 \cdot \pi \cdot T}$
• $T = 9.9 \cdot 10^{-4} m^2 \cdot sec^{-1}$

u =
$$\frac{100^2 \cdot S}{4 \cdot (9.9 \cdot 10^{-4}) \cdot 210}$$

- $S = 8.3 \cdot 10^{-5}$ sin unidades

Metido de Linea Recta (Cooper & Jacob)

 Basado en la aproximación del método de Theis:

$$-h_0 - h = \frac{Q}{4\pi T} W(u)$$

$$-u = \frac{r^2 S}{4Tt}$$

$$-W(u) = -.5772 - \ln(u) + u - \frac{u^2}{2 \cdot 2} + \dots$$

Substitute
$$-.5772 - \ln(u)$$
 for $W(u)$:
$$h_0 - h = \frac{Q}{4\pi T} \bigg(-.5772 - \ln(u) \bigg)$$

- Mide el cambia del carga hidráulica sobre un ciclo de log (log term becomes 1, log(10)=1): $\Delta h_{log\ c\ ycle} = {2.3Q\over 4\pi T}$
- · Cuando la reducción es cero:

$$- 0 = \log \left(\frac{2.25Tt_0}{r^2S} \right)$$
$$- 1 = \frac{2.25Tt_0}{r^2S}$$

5

Metido de Linea Recta (ejemplo)

- mide la tasa de bombear (Q), la reducción en nivel del agua, y la distancia entre los pozos (r)
 - Q = 0.001 $\frac{m^3}{sec}$ o 1 litro por segundo
 - r = 100 m

•
$$\Delta h = \frac{2.3 \cdot Q}{2 \cdot \pi \cdot T}$$

$$-0.19 = \frac{2.3 \cdot 0.001}{2 \cdot \pi \cdot T}$$

- T = 0.0019
$$m^2 \cdot sec^{-1}$$

$$\cdot 1 = \frac{2.25Tt_0}{r^2S}$$

$$-S = \frac{2.25Tt_0}{r^2}$$

$$-S = \frac{2.25 \cdot 0.002 \cdot 500}{100^2}$$

$$-S = \frac{2.25 \cdot 0.002 \cdot 500}{100^2}$$
$$-S = 2.2 \cdot 10^{-4} \text{ (sin unidades)}$$

Estimación Sencillo, Metido de Logan (1954)

- Un povo que está bombado por un tasa constante single (Q_{pump}) y está en un condición de estado estable
- Carga hidráulica antes de bombear: h_0)
- · Carga hidráulica de estado estible: h
- Transmisividad aproximada: T

$$T = \frac{Q_{pump} \cdot 1.22}{h - h_0}$$

Perdida de Carga Hidráulica de Pozo

- · La carga hidráulica en un pozo bombeado es más bajo que calculado
- Hay perdida de energía debido a:
 - turbulencia en el pozo
 - resistencia al fluyo por la reja del pozo
- La capacidad ($S.C. = \frac{Q}{s_{well}}$) del pozo cambia con la tasa de bombear

Condiciones No Ideal

Diferentes resultados no ideal para una prueba de bombear. Los lineas azules son cuervas de Theis.

Sección transversal que ilustra condiciones de bombear no ideales.

Transporte de solutos

Tres procesos que son responsable para el movimiento del materiales en un fluido.

Advección Material está llevado por el agua en movimiento.

$$v = \frac{-K}{n_e} \frac{dh}{dl}$$

Difusión Material se extiende por e Movimiento Browniano.

$$F = -D^o A \frac{dc}{dl}$$

Dispersión Material se esparce debido a la mezcla mecánica a la variación de velocidad.

Difusión por Media Poroso

- Los valores de difusión tabulado en los libros de textos son para un columna del agua abierta
- El área de la sección transversal de materiales geológicas reduce el espacio abierto [solo un flujo (F) en espacio amarillo la área (A, azul y amarillo])

$$F = -n \cdot A \cdot D^{o} \frac{dc}{dx}$$

 tortuosidad τ define un ratio del camino real (sinuoso, morado en la grafica) al camino recto (negro en la grafica)

$$\tau = \frac{\Delta x_{sinuoso}}{\Delta x_{recto}}$$

Difusión por Media Poroso

- Tortuosidad afecta: 1) el gradiente químico y 2) distancia de movimiento
- Relación entre la tortuosidad y porosidad (x = 2 a 3, n = porosidad)
 - Ley de Archie: $au^2 \, n^{1-x}$
 - Ecuación de Weissberg Modificado: $au^2 = 1 x \cdot ln(n)$
- \cdot Se necesita au^2 en la ecuación de difusión

$$F = -\frac{n \cdot A \cdot D^o}{\tau^2} \frac{dc}{dx}$$

$$F = -n \cdot A \cdot D_{sed} \frac{dc}{dx}$$

Dispersión en un fluido

- Mesclar debido a la variabilidad de velocidad
- La tarifa depende en la escala por la heterogeneidad de la conductividad hidráulica
 - cambias in el tamaño de los granos
 - las fracturas
 - cambias en los tipos de piedras (arenisca a esquisto)
 - cavernas

- La tarifa de mesclar es dirección (en dirección del flujo y perpendicular al flujo)
 - dispersión longitudinal y transversal

$$D_L' = v \cdot \alpha_L$$

$$D_T^{'} = v \cdot \alpha_T$$

 velocidades medias más grande pueden tener más variabilidad (cero a la velocidad)

Diferentes velocidades dan como resultado una mezcla química.

El Coeficiente de Dispersión Hidrodinámico

Es común agrupar dispersión y difusión en un valor.

$$D_L = v\alpha_L + D_s^o$$

$$D_T = v\alpha_T + D_s^o$$

El numero Peclet indica si dispersión o difusión domina mezclar en el agua. Es el ratio de advección a difusión.

$$Pe = rac{Q_{Adv.}}{Q_{Disp}} = rac{q \cdot l}{D^o}$$

- I es un largo característico

Peclet Number used to determine dominant transport process

Values of Dispersivity

- · Dependiente en la escala
- · Hay controversia sobre como D escala
- Se usa modelos sencillos para dispersión, reducido a tres componentes:
 - longitudinal
 - transversa horizontal
 - transversa vertical

¹Perkins, T.K., and O.C. Johnston. "A Review of Diffusion and Dispersion in Porous Media." SPE J. 3, 1963.

Figure 1: Medidads de dispersividad y una analisis de calidad de los medidas

Figures de Gelhar et al. ², léa la comenta de Nueman ³ pará enténder los hilos de la controversia.

Advection-Dispersion Equation

Advección

$$n\frac{\partial C}{\partial t} = -\frac{\partial (q_x C)}{\partial x}$$

Dispersión

$$n\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial C}{\partial x} \right)$$

ADE

$$n\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial C}{\partial x} \right) - \frac{\partial (q_x C)}{\partial x}$$

Soluciones Analíticas (funciona de error)

- hay muchos soluciones analíticas, y muchos de estas usan una funciona de error
- erf es integral de funciona exponencial

$$erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-(t^2)} dt$$

Gelhar, L. W., Welty, C., and Rehfeldt, K. R. (1992). A critical review of data on field-scale dispersion in aquifers, Water Resour. Res., 28(7), 1955—1974

³Neuman, S. Neuman, S. P. (1993), Comment on "A critical review of data on field-scale dispersion in aquifers" by L. W. Gelhar, C. Welty, and K. R. Rehfeldt, Water Resour. Res., 29: 1863—1865 • $erf(rac{a}{\sigma\sqrt{2}})$: la probabilidad que un medido aleatorio de una distribución normal $((ar{x}=0,\sigma=1)$ está entre a y -a.

Error function

- distribución de forma 'S'
- erf es 1 a $+\infty$, -1 a $-\infty$, 0 a 0
- erfc(x) = 1 erf(x) (rangos desde 2 a 0)
- $\cdot \ erf(-x) = -erf(x)$
- $\cdot erfc(-x) = 1 + erf(x)$

Figure 2: La funcion de error

Ogata-Banks Solution (1961) 4

- · Semi-infinito, 1-D
- constante V, heavyside step function (Constante C a x=0)
- constante D

$$C = \frac{C_O}{2} \left(erfc \left[\frac{x - vt}{2\sqrt{Dt}} \right] + e^{\frac{vx}{D}} erfc \left[\frac{x + vt}{2\sqrt{Dt}} \right] \right)$$

- segundo termo es importante cuando $\frac{x}{\alpha}$ as grande.
- Si ratio es 500, un error de 3% resulta cuando no incluye el segundo termo

⁴A. Ogata and R. B. Banks, "A Solution of the Differential Equation of Longitudinal Dispersion in Porous Media," US Geological Survey Professional Papers, No. 34, 1961.

Domenico Solutción

- Domenico (1987)⁵ proveyeron una solución de estado estable para concentraciones per una linea central de una pluma de contaminación.
- Srinivasan (2007)⁶ escribió:
 - 'the Domenico solution does not have a rigorous mathematical basis'
 - solo está valido cuando dispersividad longitudinal es cero
- está razonable cuando dispersividad longitudinal es pequeño, velocidad de agua as alto, y tiempo de simulación es larga
- hay mejor soluciones, pero la solución de Domenico es más fácil y mas rápido

Domenico Solución

$$C(x,0,0) = C_0 \cdot erf\left(\frac{Y}{4\sqrt{\alpha_y \cdot x}}\right) \cdot erf\left(\frac{Z}{4\sqrt{\alpha_z \cdot x}}\right) \text{ vest. Book 3 CH. B7}$$
 vest. Book 3 CH. B7 vest. Book 3 CH. B7 vest. Book 3 CH. B7

- · Y y Z son dimensiones de fuente parche (patch source),
- α es dispersividad,
- x es distancia a lo largo de la linea central de pluma.

1-D transporte con reacciones cinéticas

- reacciones de orden 0 o 1
- adsorción sencilla

$$C \cdot K_d = \frac{\text{sorbed}}{\text{aquifermass}} = C * \frac{n}{\rho_h}$$

 retardo (movimiento de química está ralentizada)

$$R = \frac{v}{v_c} = 1 + \frac{\rho_b \cdot K_d}{n}$$

Domenico, P.A. 1987. An analytical model for multidimensional transport of a decaying contaminant species. Journal of Hydrology 91:49-58.

⁶Srinivasan, V., Clement, T. and Lee, K. (2007), Domenico Solution—Is It Valid?. Ground Water, 45: 136-

1-D transporte con reacciones cinéticas

$$n\frac{\partial C}{\partial t} + \rho \frac{\partial C^*}{\partial t} = \frac{\partial}{\partial x} \left(n \cdot D \frac{\partial C}{\partial x} \right) - \frac{\partial (q_x C)}{\partial x} - n \cdot \lambda \cdot C - \rho$$

$$C^* = k_d \cdot C$$

$$C = \frac{C_0}{2} \left(e^{\frac{x(v-U)}{2D}} \cdot erfc\left(\frac{xR - Ut}{2\sqrt{DtR}} \right) + e^{\frac{x(v+U)}{2D}} \cdot erfc \right)$$

 λ es constante de 1° orden, v=velocidad de agua subterránea (Van Genuchten and Alves /)

3-D Soluciones Analíticas

- · Solutions available in various references
 - Leij et al., 1991. WRR 27:2719-2733
 - Wexler, USGS Tech of Water-Res. Invest. Book 3 CH. B7

usar soluciones numéricas

 Algunas requieren integración numéricas o evaluación de series infinitas

⁷van Genuchten, M.Th. and Alves, W.J. (1982) Analytical Solutions of the One-Dimensional Convective-Dispersive Solute Transport Equation. Technical Bulletin 1661, US Department of Agriculture, Washington DC