Acids And Bases

A. Introduction

.

B. Log Scales To Measure Proton Dissociation From Organic Molecules

Equilibria That Generate Protons

a <u>constant</u>, because an equilibrium <u>variable</u>, therefore <u>is not</u> a good parameter <u>will not</u> change

This <u>is</u> effectively the same as the statement:

may be represented as:

for <u>all</u> organic a <u>small</u> fraction a <u>strong</u> acid is <u>high</u>.

weak acid.

therefore a significantly <u>stronger</u> acid than methane.

$$O_{O}$$
H O_{O} H O

<u>does</u>

$$10^{60}$$
 10^6 10 10^{-60}

HO HO H H S H H O H F H

$$K_a = 5.4 \times 10^{-2}$$
1.8 × 10⁻⁵
1.1 × 10⁻⁷
1.0 × 10⁻¹⁴
1.8 × 10⁻⁴
6.6 × 10⁻⁴
1 4 5 6 3

1 would be a strong acid.

$$H \longrightarrow SEt$$
 H^+ and $[H^+] = \frac{K_a \ [CH_3COSEt]}{[^-CH_2COSEt]}$

$$\begin{array}{c} O \\ \hline \\ H \end{array}$$

$$\begin{array}{c} O \\ \hline \\ - \end{array} + \begin{array}{c} H^+ \end{array} \quad and \qquad [H^+] = \begin{array}{c} K_a \ [CH_3COCH_3] \\ \hline \\ [CH_3COCH_2^-] \end{array}$$

Simplifying The Scale: pKa

are less than the absolute differences

$$K_a = 5.4 \times 10^{-2}$$

$$logK_{a} = -1.27$$

$$logK_a = -1.27$$
 $logK_a = -4.74$

$$logK_a = -6.95$$

$$logK_a = -14$$

$$log K_a = -3.74$$

$$logK_a = -3.18$$

$$-\log K_a = 1.27$$

$$-\log K_a = 1.27$$
 $-\log K_a = 4.74$

$$-\log K_a = 6.95$$

$$-\log K_a = 14$$

$$-\log K_a = 3.74$$

$$-\log K_a = 3.18$$

called the <u>pK</u>_a value.

only a small amount of the compound

are *positive* for

<u>larger</u> K_a

<u>less</u>

smaller pKa values.

lactic acid $pK_a = 3.86$

2

oxalic acid 4.19

4.10 3

citric acid

10 times easier

10,000,000,000 times easier to

$$NH_4^+$$
 NH_3 H_3O^+ H_2O ammonium ammonia hydroxonium water $pK_a = 9.2$ 38 -1.7 15.7 2 4 1 3

more

less likely that water will dissociate into hydroxide and a proton

C. Acid-Base Equilibria

starting materials

$$NH_4^+$$
 + H_2O \longrightarrow NH_3 + H_3O^+ acid base base acid

side with the $\underline{\textit{weakest}}$ acid because $\underline{\textit{higher}}$ pK_a values

EtO- +
$$H_2O$$
 EtOH + OH -

base acid base

MeOH + Me_3NH + $MeOH_2$ + + Me_3N

base acid acid base

O+-H

acid base base acid

OH

 OH
 OH

called its <u>conjugate base</u>. formed by <u>protonating a base</u>. <u>acid</u> of ammonia. <u>acid</u> of water.

$$O_{O}$$
 + $H_{2}N$ + H_{3} + N weaker

favors products

favors starting materials

favors *products*

favors products

favors products

favors *products*

favors *products*

favors *products*

favors <u>starting</u> <u>materials</u>

D. Predicting Relative pKa Values

Ethanoic acid is a <u>weaker</u> stabilized by <u>electronegativity</u>

$$F_3C$$
 CF_3 F_3C CF_3 F_3C CF_3 CF_3

1,1,1,3,3,3-Hexafluoropropan-2-ol has a <u>lower</u> pK_a <u>stronger</u> acid.

<u>more</u> stable than that from propan-2-ol because of <u>electronegativity</u> effects.

Allyl anions are <u>more</u> stable <u>resonance</u> effects, <u>stronger</u> acid than propane.

more stable than allyl anions due to electronegativity effects, so ethanal has a lower pKa

<u>higher</u> pK_a <u>resonance</u> effects.

E. Predicting Sites Of Protonation

protonated form

protonated form

selectively at N^3 .

explanation:

because of resonance effect, electrons

can move from one N to another

F. Lewis Acids And Bases

All acids do not eg an empty p-orbital.

Lewis acids

acids because they have 6 electrons in their valence shell and an empty

can fit the definition of a Lewis acid.

Protons do fit

$$H^3C$$
 $C = 0$ M

two phosphorus atoms are \underline{sp}^3 hybridized.