# Hierarchical Clustering

TEAM YOLO
Zeqing Jin
Xianlin Shao
Yifei Zhang
Zilan Zhang



#### Introduction

 Hierarchical clustering is a general family of clustering algorithms that build clusters by merging or splitting them successively. [2]

- Two common hierarchy algorithms:
  - Agglomerative clustering
  - Divisive clustering



### Limitations of K-means Clustering

Non-spherical data points

Prior assumption of similar number of data points in each

cluster







### Dendrogram

• Dendrogram is a tree-like hierarchy which shows the relationship between objects.







#### Dendrogram

Dendrogram implicitly contains all possible values of the number of clusters

- Shows relative relations between clusters (points)
- Fails to show all the absolute distances between points





## Agglomerative Clustering

 Start with n clusters containing one single point.

• End up with one cluster containing n objects.





# Agglomerative Clustering [1]

#### **Algorithm 1:** Agglomerative Hierarchical Clustering

- **Input:** n data points
- Output: final clustering result over n data points
- 1 Initialize n clusters  $\mathbf{c_i}, i = 1, ..., n$ ;
- 2 Initialize the dissimilarity matrix;
- 3 for the number of clusters k decreases from n to 1 do
- Find the two clusters  $c_i$ ,  $c_j$  with the smallest dissimilarity according to dissimilarity matrix;
- Merge  $c_i$  with  $c_j$  and update the dissimilarity matrix;
- 6 end for



# Agglomerative Clustering

• Euclidean distance between points:

$$d(i,j) = \sqrt{\sum_{p=1}^{q} (x_{ip} - x_{jp})^2}$$

where q is dimension of the point

• Dissimilarity matrix:

$$S = \begin{bmatrix} d(1,1) & \cdots & d(1,n) \\ \vdots & \ddots & \vdots \\ d(n,1) & \cdots & d(n,n) \end{bmatrix}$$



#### Distance between clusters

- Complete linkage:
  - Maximum distance between clusters
- Single linkage:
  - Minimum distance between clusters
- Average linkage:
  - Average distance between clusters
- Centroid linkage:
  - Distance between centroids of clusters
- Ward's linkage:
  - Increase in sum of squares if two clusters are merged



### Agglomerative Clustering Example

- Start from 9 clusters
- Complete linkage
- 9 × 9 dissimilarity matrix

How many distances do we need to calculate? 81?





## Agglomerative Clustering Example





# Agglomerative Clustering Example







### Divisive Clustering (DIANA)

• Start with one cluster containing all n points.

• End up with n clusters containing one object.





# Divisive Clustering (DIANA) [1]

**Algorithm 2:** Divisive Analysis Clustering (DIANA)

```
Input: n data points
   Output: final clustering result
1 Initialize one cluster with all objects \mathbf{c}_1;
2 for the number of clusters k increases from 1 to n do
       Choose the cluster C_i with the largest diameter value;
       Within C_i, choose the object that has the maximum distance with the other objects as one
        cluster and split this object as a splinter cluster;
       Update C_i:
 5
       while True do
           for each data point j in C_i do
               Calculate the distance d_1 between the data j and the other objects in C_i as one
                 cluster:
               Calculate the distance d_2 between the data j and the splinter cluster;
               Calculate the difference \delta d_i = d_1 - d_2;
10
           end for
11
           if max \delta d_i is positive then
12
               Move the data j with positive \delta d_i to the splinter cluster and update C_i;
13
           else
14
               break;
15
           end if
16
       end while
17
18 end for
```



- Start from one cluster
- Complete linkage
- 6 × 6 dissimilarity matrix

$$S = \begin{bmatrix} 0 & 11 & 33 & 45 & 20 & 35 \\ 11 & 0 & 44 & 56 & 9 & 46 \\ 33 & 44 & 0 & 12 & 53 & 2 \\ 45 & 56 & 12 & 0 & 65 & 10 \\ 20 & 9 & 53 & 65 & 0 & 55 \\ 35 & 46 & 2 & 10 & 55 & 0 \end{bmatrix}$$





 Calculate the distance between each point and the other objects

| Point | Distance to other points |  |  |  |
|-------|--------------------------|--|--|--|
| 1     | 45                       |  |  |  |
| 2     | 56                       |  |  |  |
| 3     | 53                       |  |  |  |
| 4     | 65                       |  |  |  |
| 5     | 65                       |  |  |  |
| 6     | 55                       |  |  |  |



• Splinter cluster {4}



 Calculate the distance between each remaining point and the other objects

Also the distance to the splinter cluster

• Splinter cluster {4,6}

|    | 20 | )  | 30 |    | 40 | 50 | 6 | 0 | 70     | 80      |      |
|----|----|----|----|----|----|----|---|---|--------|---------|------|
|    |    |    |    |    |    |    |   |   |        |         |      |
| 5. |    | 2. |    | 1. |    |    |   |   | 36     | 4.      |      |
|    |    |    |    |    |    |    |   | S | Splint | er clus | ster |
| 1  |    |    |    |    |    |    |   |   |        |         |      |

| Point | Distance to other points | Distance to the splinter cluster | Difference |
|-------|--------------------------|----------------------------------|------------|
| 1     | 35                       | 45                               | -10        |
| 2     | 46                       | 56                               | -10        |
| 3     | 53                       | 12                               | 41         |
| 5     | 55                       | 65                               | -10        |
| 6     | 55                       | 10                               | 45         |



Repeat the previous step

• Splinter cluster {4,6,3}

• {1,2,3,4,5,6} into {1,2,5} and {4,6,3}



| Point | Distance to other points | Distance to the splinter cluster | Difference |
|-------|--------------------------|----------------------------------|------------|
| 1     | 33                       | 45                               | -12        |
| 2     | 44                       | 56                               | -12        |
| 3     | 53                       | 12                               | 41         |
| 5     | 53                       | 65                               | -12        |



# Divisive Clustering (DIANA)



#### Determination of k

- (General) Elbow method [2]
  - Total within-cluster sum of square (WSS)
- (Dendrogram) Cut at different dissimilarity levels gives multiple values of *k*
- Cut at the largest dissimilarity gap gives a roughly reasonable k
- Affected by the linkage type since dissimilarity may change after each iteration.





#### Specific Hierarchical Algorithms

- Linkage algorithm
  - Single linkage, average linkage, complete linkage
- CURE (Clustering Using REpresentatives)
- BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) (Optional)



# Linkage algorithm [4]

- Single linkage:
  - Time complexity  $O[n^3]$  (simplest implementation)
  - Sensitive to outliers
- Complete linkage
  - Time complexity can be reduced to  $O[n^2 \log n]$
  - Cluster similar objects
- Average linkage
  - Compromise between single and complete
  - Often fails in complicated cluster shapes



# CURE (Clustering Using REpresentatives) [4]

A hierarchical based clustering technique



- Representative points and shrinking factor
- Apply to outliers



#### Reference

- [1]. Leonard Kaufman and Peter J Rousseeuw. *Finding groups in data: an introduction to cluster analysis*. Vol. 344. John Wiley & Sons, 2009.
- [2]. Bradley Boehmke Brandon Greenwell. *Hands-On Machine Learning with R*. Feb. 2020. URL: https://bradleyboehmke.github.io/HOML/hierarchical.html # fig:dendrogram2.
- [3]. Godfrey and Kate. *Determining The Optimal Number Of Clusters: 3 Must Know Methods*. Feb. 2020. URL: https://bradleyboehmke.github.io/HOML/kmeans.html#eq:tot-within-ss.
- [4]. M Kuchaki Rafsanjani, Z Asghari Varzaneh, and N Emami Chukanlo. "A survey of hierarchical clustering algorithms". In: *The Journal of Mathematics and Computer Science* 5.3 (2012), pp. 229–240.

