

Complementi di Reti e Sistemi di Telecomunicazioni 8. Protocolli per la configurazione automatica dei nodi terminali: RARP, BOOTP, DHCP

Complementi di Reti e Sistemi C. Nobile

8.1

Configurazione

- Un nodo terminale (*host*) connesso ad una rete IP non è in grado di funzionare se non dopo che siano stati inseriti alcuni parametri di configurazione, in particolare:
 - o L'indirizzo IP.
 - o L'indirizzo del router di default.
 - o La subnet mask.
 - o Il nome.
 - o L'indirizzo del Domain Name Server (DNS).

Complementi di Reti e Sistemi

Nobile

8.2

Configurazione

- A parte la configurazione "manuale" esistono alcuni protocolli che operano per automatizzare le operazioni di configurazione dei nodi, tra cui si può citare:
 - o RARP (Reverse Address Resolution Protocol)
 - o BOOTP (Boot Protocol)
 - o DHCP (Dynamic Host Configuration Protocol)

Complementi di Reti e Sistemi C. Nobile

8.3

Configurazione

RARP

- Il problema iniziale che è stato affrontato dall'IETF è stato quello della "partenza" (boot) di macchine prive di memoria di massa
- Il protocollo RARP è stato definito proprio per le macchine "diskless". I suoi limiti principali sono
 - o È un processo utente ma opera direttamente sul livello di linea:
 - » Dipende da un server
 - » Deve accedere direttamente all'hardware
 - o Fornisce solo l'indirizzo IP corrispondente ad un certo indirizzo di linea
 - » Per completare le informazioni necessarie al funzionamento la macchina deve usare altri protocolli (ICMP e TFTP)
 - o Necessita di un server per ogni dominio di broadcast

Complementi di Reti e Sistemi C. Nobile

8.4

8 DHCP

Configurazione DHCP (BootP)

- Il diminuire dei costi delle memorie di massa ha reso poco interessante l'obiettivo originale del RARP
- Per contro, grazie alla diffusione delle LAN

 (aumento del numero di PC collegati in rete) e, più
 recentemente, all'avvento delle Wireless LAN, il
 problema è diventato assegnare in modo
 automatico i parametri agli host che vengono
 collegati alla rete.

Complementi di Reti e Sistemi C. Nob

8.5

Configurazione DHCP (BootP)

- DHCP (Dynamic Host Configuration Protocol)
- Definito nelle RFC 2131 e 2132 (la seconda specifica le possibili opzioni)
- E' impiegato per assegnare in modo automatico i principali parametri ad un host che si colleghi ad una rete TCP/IP
- E' una estensione di un protocollo precedente ossia del Boot IP (BootP)
- Usa il protocollo di trasporto UDP (porta 67)

Complementi di Reti e Sistemi

Nobile

8.6

Configurazione DHCP (BootP)

- Utilizza una architettura client- server in cui:
 - o L'host rappresenta il client e richiede i parametri usando l'indirizzo IP di Broadcast (255.255.255.255) e l'UDP
 - Una macchina deve avere funzioni da Server, ossia contenere le informazioni richieste e rispondere all'interrogazione delle macchine Client.
 - o La risposta avviene attraverso un unico pacchetto che contiene tutte le informazioni richieste
 - o Di principio, dovrebbe esserci un server per ogni sottorete (il broadcast è fatto a livello 3), ma attraverso un meccanismo di "relay" questo limite può essere superato

Complementi di Reti e Sistemi C. Nobile

8.7

Configurazione DHCP (BootP)

- DHCP può utilizzare tre diverse modalità per assegnare l'indirizzi
 - o **Manuale:** Il gestore definisce la corrispondenza fra indirizzi di livello 2 ed IP manualmente
 - o **Automatico**: Il server assegna in modo automatico ma permanente un indirizzo IP ad un corrispondente indirizzo di livello 2.
 - o **Dinamico**: L'assegnamento avviene per un periodo di tempo limitato

Complementi di Reti e Sistemi C

oblie

8.8

8. DHCP

Configurazione DHCP (BootP)

- Il protocollo usa l'UDP per rendere lo scambio più semplice ed efficiente.
- Per gestire condizioni di errore in trasmissione usa un meccanismo proprio di *timeout* e conferme (ACK).
- Imposta il bit di *Not Fragment* dell'IP a 1 (non frammentare).
- Usa il Checksum dell'UDP per la verifica della correttezza.
- Opera la trasmissione e ri-trasmissione aggiungendo un ritardo casuale (per evitare, ad esempio, che una mancanza di corrente porti contemporaneamente troppe richieste al server, generando anche collisioni a livello 2).

Complementi di Reti e Sistemi C. Nobile

8.9

DHCP (BootP) Formato del pacchetto OP: 1 Request, 2 Reply HTYPE: Tipo di hardware TRANSACTION ID (es. Ethernet 100 Mbps) SECONDS FLAGS HLEN: Lunghezza Ind. CLIENT IP ADDRESS Hw (6 byte Ethernet) YOUR IP ADDRESS SERVER IP ADDRESS HOPS: 0 per client, viene ROUTER IP ADDRESS incrementata solo dal chi **CLIENT HARDWARE ADDRESS (16 OCTETS)** propaga una richiesta TRANS.ID: Num. casuale SERVER HOST NAME (64 OCTETS) SECONDS: Numero sec. Da quando il client è **BOOT FILE NAME (128 OCTETS)** FLAGS: usato solo un bit. OPTIONS (VARIABLE) =1 se la risposta deve essere in broadcast Complementi di Reti e Sistemi C. Nobile 8.10

DHCP (BootP)
Formato del pacchetto

- Altri codici sono usati per indicare il trasporto di informazioni specifiche quali ad esempio:
 - o Code 1, Length 4, m1, m2, m3, m4 : Client Submask
 - o Code 3, Length 4, a1, a2, a3, a4 : Indirizzo del Router
 - o Code 15, Length n, d1, d2, : Nome del dominio
 - o Code 5, Length 4, m1, m2, m3, m4 : DNS (possono essercene 2, uno principale ed uno secondario

Complementi di Reti e Sistemi C. Nobile

8.12

8 DHCP

DHCP (BootP)

Diagramma degli stati del Client

- Si osservi che
 - o Possono esistere più DHCP Server che rispondono ad una richiesta, per questo esiste uno stato di SELECT
 - Una assegnazione con durata limitata serve a riutilizzare gli indirizzi quando degli utenti sono solo temporanei o non attivi contemporaneamente
 - o L'utente può rinunciare anticipatamente all'indirizzo (DHCPRELEASE)
 - o Il gestore può configurare il server per operare politiche particolari di assegnazione (per esempio limitare il numero di indirizzi MAC abilitati).

Complementi di Reti e Sistemi C. Nobile

8.14

DHCP (BootP)

Relay Agent

- Per accedere al DHCP Server, un host invia una richiesta (DHCPDISCOVER) in broadcast
- Il DHCP Relay Agent permette ad un client di contattare un DHCP server anche se questo è localizzato su un un diverso dominio di broadcast
- Quando un Relay Agent riceve la richiesta di un Client, inviata in broadcast, la inoltra ad un server e poi invia la risposta ricevuta al client
- Il DHCP Relay Agent deve tipicamente essere collocato presso i router

Complementi di Reti e Sistemi C. Nobile 8.15