

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/007881

International filing date: 26 April 2005 (26.04.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP
Number: 2004-143624
Filing date: 13 May 2004 (13.05.2004)

Date of receipt at the International Bureau: 26 May 2005 (26.05.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

PCT/JP2005/007831

27.04.2005

日本特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
with this Office.

出願年月日 2004年 5月13日
Date of Application:

出願番号 特願2004-143624
Application Number:

[ST. 10/C] : [JP2004-143624]

出願人 信越化学工業株式会社
Applicant(s):

2005年 3月14日

特許庁長官
Commissioner,
Japan Patent Office

小川

洋

出証番号 出証特2005-3021667

【書類名】 特許願
【整理番号】 2003-0377
【提出日】 平成16年 5月13日
【あて先】 特許庁長官 今井 康夫 殿
【国際特許分類】 H01F 1/16
【発明者】
【住所又は居所】 福井県武生市北府2-1-5 信越化学工業株式会社 磁性材料
【氏名】 島尾 正信
【発明者】
【住所又は居所】 福井県武生市北府2-1-5 信越化学工業株式会社 磁性材料
【氏名】 美濃輪 武久
【発明者】
【住所又は居所】 福井県武生市北府2-1-5 信越化学工業株式会社 磁性材料
【氏名】 長谷川 孝幸
【特許出願人】
【識別番号】 000002060
【氏名又は名称】 信越化学工業株式会社
【代理人】
【識別番号】 100093735
【弁理士】
【氏名又は名称】 荒井 鐘司
【選任した代理人】
【識別番号】 100105429
【弁理士】
【氏名又は名称】 河野 尚孝
【電話番号】 03-3270-0858
【連絡先】 担当
【選任した代理人】
【識別番号】 100108143
【弁理士】
【氏名又は名称】 嶋崎 英一郎
【手数料の表示】
【予納台帳番号】 172293
【納付金額】 16,000円
【提出物件の目録】
【物件名】 特許請求の範囲 1
【物件名】 明細書 1
【物件名】 図面 1
【物件名】 要約書 1
【包括委任状番号】 0006623

【書類名】特許請求の範囲**【請求項1】**

C : 0. 0001~2 質量%、Si : 0. 0001~5 質量%、Mn : 0. 001~2 質量%、P : 0. 0001~0. 1 質量%、S : 0. 0001~0. 2 質量%、Al : 0. 0001~5 質量%、O : 0. 001~0. 1 質量%、N : 0. 0001~0. 1 質量%、Ni : 0. 0001~1 質量%、Cr : 10. 5~30 質量%の各元素を含有し、さらに添加元素としてTi、Co、Cu、Zr、Nb、V、Mo、W、Ta、Bから選ばれる少なくとも一種以上の合金元素を合計で0. 0001~5 質量%含有し、その他実用上不可避の不純物以外には残部がFeからなるマルテンサイト系、フェライト系又は析出硬化系ステンレス鋼もしくはCr系耐熱鋼板材であって、板厚が0. 1 mm以上5 mm以下であり、その飽和磁束密度が1. 3 テスラ以上2. 3 テスラ以下、最大比透磁率が200以上22000以下、保磁力が20 A/m以上2000 A/m以下であり、且つ表面に耐蝕性金属皮膜を有さない板材から作製されるヨーク部材と、表面処理を施したNd-Fe-B系磁石は単極もしくは2極ないし4極に着磁したものであり、前記Nd-Fe-B系磁石を1つないし2つもしくは4つが、前記ヨーク部材に接着されて磁石-ヨーク部材接着体をなし、前記ヨーク部材と前記磁石-ヨーク部材接着体とが、または同数の磁石が接着された前記磁石-ヨーク部材接着体の対が、対向配置され、前記ヨーク部材と前記磁石-ヨーク部材接着体間に形成される対向ギャップ間、または前記磁石-ヨーク部材接着体の対間に形成される対向ギャップ間、と前記ヨーク部材内部に磁束が集中して流れ、漏れ磁束量と対向ギャップ間磁束量との比が50000 ppm以下で、且つ対向ギャップ間及びヨーク部材内部の磁界強度変動がないことを特徴とする磁気回路。

【請求項2】

請求項1に記載の磁気回路を用いたボイスコイルモータもしくはアクチュエーター。

【書類名】明細書

【発明の名称】耐食性に優れた磁気回路およびボイスコイルモータもしくはアクチュエーター

【技術分野】

【0001】

本発明は、ハードディスク等の磁気記録装置及び光ピックアップ装置に用いて好適な、安価で且つ高耐食性を有する磁気回路、および、ボイスコイルモータもしくはアクチュエーターに関する。

【背景技術】

【0002】

ハードディスクには、磁気記録膜を成膜したメディアとそのメディアを必要な回転数に回転させるスピンドルモータ、記録内容を読み書きする磁気ヘッドとそれを駆動するボイスコイルモータや、制御装置等が配置される。ボイスコイルモータの磁気回路は、磁束を発生させる永久磁石と、それらをつなぐヨークで構成され、ヘッド駆動用アクチュエーターとして使用される。また、CDやDVDドライブの磁気回路では、ピックアップ用レンズを駆動するアクチュエーターとして磁束を発生させる永久磁石とそれをつなぐヨークが使用される。近年、メーカーの激しい価格競争により、ボイスコイルモータやアクチュエーターにも更なる低コストが要求されている。

【0003】

これらに使用される部品においては、清浄で発塵性のないことが第一に求められる。ヨーク等の鉄部品で容易に錆びてしまう恐れのある部品においては、発生した錆がパーティクルコンタミネーションとなってハードディスクや光ピックアップ用のヘッドやレンズを汚染するため、各種の耐食性表面処理を行って使用されるのが通常である。さらに、部品それぞれをクリーンな製造工程にて作製し、コスト的に高価となることは不可避ではあつたが、磁気ヘッドとメディア間のクラッシュや、レンズの汚染を避けるために厳しいクリーン度管理が行われている。

【0004】

ボイスコイルモータやアクチュエーターを構成する磁気回路のヨーク材は、低コスト化の要求から、SPCC、SPCD、SPCEなどの安価な一般圧延鋼板が用いられる。これらの一般圧延鋼板は、打抜き、曲げ等の加工性が良く、安価なことが特長であるが、一般圧延鋼板である為に、錆の発生を抑制することはできず、前述の問題を解決するためにプレス機械等で加工後、高価な無電解Ni-Pメッキ等を施し、錆の発生を抑えているのが実状である。したがって、コスト的に高価となることは不可避であった。

【0005】

近年、コンピュータは持ち運び、携帯のし易さなどを考慮して大きさや重量を低減する傾向にあり、それに伴い、磁気記録装置および光ピックアップ装置もまた小型化、薄型化されている。さらにこの小型化、薄型化は、磁気回路を構成する永久磁石、ヨーク材部品にも波及している。

磁気回路の小型化、薄型化を実現するには、体積減少からくるギャップ間磁束密度の減少を、高性能磁石の高い磁束密度で補うことによって対応するのがこれまで一般的であった。

【0006】

しかし、高性能磁石の発生する磁束密度が年々高くなるのに対して、ヨーク材はSPCC、SPCD、SPCEなどの圧延鋼板を用いるために、磁石の磁束密度の向上に応じてヨーク材の飽和磁化を増大させることはできない。ヨークの厚み寸法も装置全体からの前述の小型化、薄型化の要請による制約によって制限されたため、部分的なVCM磁気回路において磁気飽和をさけることが困難であり、高磁束密度を有する永久磁石からの磁束を磁気回路に十分に導くことができず、結局高性能磁石の磁束すべてを有効に活用することができず、磁気回路の途中で部分的に飽和したり、磁束の漏れが発生したりする。

このような磁束の漏れは、磁気回路のギャップ間磁束密度を低下させるだけでなく、周辺

の磁気記録媒体や制御機器等に対して影響を及ぼすことになる。VCM磁気回路からの漏れ磁束量には一定の規定があり、製品の漏れ磁束量はこの規定値以下にしなければならない（以上、特許文献1～4参照）。

【特許文献1】特開2002-080945号公報

【特許文献2】特開2002-080946号公報

【特許文献3】特開2002-080947号公報

【特許文献4】特開2003-049251号公報

【発明の開示】

【発明が解決しようとする課題】

【0007】

したがって、永久磁石の持つ高磁束密度の特性をすべて活用し、かつ、安価に製造することができる小型化、薄型化したヨーク及び磁気回路の開発が強く求められていた。

本発明は、上記要望に応えるためになされたもので、磁束密度が高く、かつ耐食性に優れた材料を用いることにより、耐食性金属皮膜の形成を省略することができ、安価に製造することができる磁気回路およびボイスコイルモータもしくはアクチュエーターを提供することを目的とする。

【課題を解決するための手段】

【0008】

本発明の磁気回路は、上記目的を達成するため、C:0.0001～2質量%、Si:0.0001～5質量%、Mn:0.001～2質量%、P:0.0001～0.1質量%、S:0.0001～0.2質量%、Al:0.0001～5質量%、O:0.001～0.1質量%、N:0.0001～0.1質量%、Ni:0.0001～1質量%、Cr:10.5～30質量%の各元素を含有し、さらに添加元素としてTi、Co、Cu、Zr、Nb、V、Mo、W、Ta、Bから選ばれる少なくとも一種以上の合金元素を合計で0.0001～5質量%含有し、その他実用上不可避の不純物以外には残部がFeからなるマルテンサイト系、フェライト系又は析出硬化系ステンレス鋼もしくはCr系耐熱鋼板材であって、板厚が0.1mm以上5mm以下であり、その飽和磁束密度が1.3テスラ以上2.3テスラ以下、最大比透磁率が200以上22000以下、保磁力が20A/m以上2000A/m以下であり、且つ表面に耐食性金属皮膜を有さない板材から作製されるヨーク部材と、表面処理を施したNd-Fe-B系磁石とで構成される磁気回路であって、前記Nd-Fe-B系磁石は単極もしくは2極ないし4極に着磁したものであり、前記Nd-Fe-B系磁石を1つないし2つもしくは4つが、前記ヨーク部材に接着されて磁石-ヨーク部材接着体をなし、前記ヨーク部材と前記磁石-ヨーク部材接着体とが、または同数の磁石が接着された前記磁石-ヨーク部材接着体の対が、対向配置され、前記ヨーク部材と前記磁石-ヨーク部材接着体間に形成される対向ギャップ間、または前記磁石-ヨーク部材接着体の対間に形成される対向ギャップ間、と前記ヨーク部材内部に磁束が集中して流れ、漏れ磁束量と対向ギャップ間磁束量との比が50000ppm以下で、且つ対向ギャップ間及びヨーク部材内部の磁界強度変動がないことを特徴とする。

また、本発明のボイスコイルモータもしくはアクチュエーターは、前記磁気回路を用いて作製される。

【発明の効果】

【0009】

本発明によれば、上記鉄合金板材の耐食性が良好であるため、従来のヨークのように表面に耐食性金属皮膜、例えばNi、Cu、Sn、Au、Pt、Zn、Fe、Co、Al、Cr、Cd、Ag等の金属や、これらの金属を20質量%以上含む合金の皮膜の形成を省略することができる。

すなわち、上記鉄合金板材を用いることによって、高磁気回路特性を保持しつつ耐食性金属皮膜の形成を省略することができる安価な磁気回路及びボイスコイルモータもしくはアクチュエーターを製作することができる。特に、Crを添加することによって高耐食性を付加し、表面処理膜を必要としないために安価に製造できることが特徴である。

【発明を実施するための最良の形態】

【0010】

以下、本発明につき更に詳しく説明する。

図1は、本発明の第1の実施の形態のVCM磁気回路を示す斜視説明図である。

図2は、本発明の第2の実施の形態のVCM磁気回路を示す斜視説明図である。

図3は、本発明の第3の実施の形態のVCM磁気回路を示す斜視説明図である。

【0011】

図1において、1は、磁気回路を構成する上ヨーク、2は、磁気回路を構成する下ヨーク、3は、磁束を発生する永久磁石であり、1つないし2つもしくは4つ配置される。4は、磁気回路を構成する上下のヨークを連結する連結柱である。図1に示す本発明の第1の実施の形態のVCM磁気回路では、上下に2個のヨークを配置し、連結柱にて連結している。

図2において、5は、磁気回路を構成する上ヨーク、6は、下ヨークであり、3は、磁束を発生する永久磁石である。図2に示す本発明の第2の実施の形態のVCM磁気回路では、下ヨーク6に曲げ加工を行い連結部を兼ねて形成している。

図3において、7は、ヨーク、3は、磁束を発生する永久磁石である。図3に示す本発明の第3の実施の形態のVCM磁気回路では、ヨーク7に曲げ加工を行い連結部を兼ねて形成している。

【0012】

本発明の磁気回路は、上述したように、C、Si、Mn、P、S、Al、O、Nを特定量含有すると共に、好ましくはCrも特定量含有し、かつTi、Co、Cu、Zr、Nb、Mo、V、Ni、W、Ta、Bの1種又は2種以上を特定量含有するマルテンサイト系、フェライト系又は析出硬化系ステンレス鋼もしくはCr系耐熱鋼板材から作製されるヨークからなるものである。

【0013】

すなわち、本発明者らは、上述した目的を達成するべく種々の材料の検討を行い、耐食性を向上させる元素を調べた結果、SPCCなどの鉄鋼は空気中で加熱するとスケールを発生し酸化が早くなる。これは、FeO、 Fe_3O_4 が金属不足n型半導体で Fe^{++} の移動によって成長し、 Fe_2O_3 は金属過剰p型の半導体でOの移動によって成長するため、酸化物層を通して酸素が浸透し、酸化物層下の鉄の酸化を進める。酸化を進めないためには酸化物層が緻密で、割れなど生じることなく、よく密着して、内部への酸素の侵入・拡散を妨げるような作用を持たせればよい。

【0014】

Al、Cr、SiはFeよりも酸化しやすく、しかも安定な酸化物を作る金属を合金化するため、Feよりも選択的に酸化され、 Al_2O_3 、 Cr_2O_3 、 SiO_2 の薄い緻密な被膜をつくり、酸化の進行を妨げる。詳しくは、Al、Crは $FeO \cdot Al_2O_3$ 、 $FeO \cdot Cr_2O_3$ の複合酸化物を、Siは $2FeO \cdot SiO_2$ の複合酸化物を生成する。できた酸化物層は容積が小さく、表面を完全に覆わない場合は耐酸化性がなく、反対に容積が大きすぎると酸化物層が膨れたり、割れたりして同様に耐酸化性がない。適当な容積の緻密な酸化物層が表面を完全に覆う場合がもっとも良い。

【0015】

また、SPCC材等の成分から磁束密度の低下に影響を及ぼす元素を調べた。鉄に対しては、C、Al、Si、P、S、Mnは磁気モーメントを持っていないか、磁気モーメントが鉄母体と異なるために、これら元素の存在によって周囲の鉄の磁気モーメントを低下させる現象が起こる。特にP、Sは、磁束密度の低下以外に耐食性においても悪影響を及ぼす。しかし、これらの元素をむやみに低減させるのは、原料の製造コストの面から不利であり、性能的にも少量の範囲内であれば含有していても満足できる。

【0016】

以上の観点から、本発明のボイスコイルモータ磁気回路用ヨークは、C:0.0001～2質量%、Si:0.0001～5質量%、Mn:0.001～2質量%、P:0.0

0.01～0.1質量%、S:0.0001～0.2質量%、Al:0.0001～5質量%、Ni:0.0001～1質量%、残部がFeの範囲とするものであり、より好ましくはC:0.0005～1.2質量%、特に0.001～0.5質量%、Si:0.0005～3.5質量%、特に0.001～1.0質量%、Mn:0.001～1.5質量%、特に0.01～1.0質量%、P:0.0001～0.05質量%、特に0.001～0.05質量%、S:0.0001～0.15質量%、特に0.001～0.1質量%、A1:0.0005～4質量%、特に0.001～1.0質量%、Ni:0.0005～1質量%、特に0.001～0.6質量%とする。

【0017】

また、OおよびNは同様に磁気特性に影響し、O:0.0001～0.1質量%およびN:0.0001～0.1質量%とすることが好ましく、この範囲であれば、飽和磁束密度を特には劣化させない。より好ましくは、O:0.0005～0.09質量%、特に0.005～0.08質量%、N:0.0005～0.10質量%、特に0.0005～0.05質量%である。

【0018】

Crは、10.5～30質量%とする。特にFe-Cr合金はほぼ直線的に自発磁気モーメントを低下させることができており、多量の添加は磁束の低下につながる。また、この合金の31～80質量%組成のものは焼きなましによって物理的性質が著しく変化する。たとえば、475℃での焼きなましでは機械的に固く、脆くなり、切削や打抜き加工などの塑性加工能が著しく低下し、脆性と共に耐食性も劣化する。また、700℃前後で長時間加熱されると粒界に σ 相が析出し、耐粒界腐蝕性や機械強度が低下する。したがって、Crの範囲は31質量%以下とする。本発明のボイスコイルモータ磁気回路ヨーク用鉄合金板材およびボイスコイルモータ磁気回路用ヨークはその使用される環境がステンレス鋼が一般的に使用される塩害環境や薬品等が存在する環境とは異なるためにCr量は少なくて良い。より好ましくは、磁気特性の点から10.5～21質量%含有することが好みしい。

【0019】

前述の検討結果から、これらを満足する材料としてステンレス鋼もしくはCr系耐熱鋼を用いることが最も有効であることがわかった。コストを安価に抑えるために、一般的に製造されている圧延ステンレス鋼板を用いることができる。例えば鋼種として、マルテンサイト系及びフェライト系もしくは析出硬化系ステンレス鋼であれば、SUS403、405、409、410、414、416、420、429、430、431、434、436、440、444、446、630系、耐熱鋼であればSUH1、3、4、11、13、21、409、600、616などが適している。鋼種記号の右側に通常付されるLやLXは炭素含有量や、炭素及び窒素含有量が少ないことを示し、磁気特性、特に保磁力や磁束密度及び透磁率の低下に影響を及ぼすことが少ないほど望ましいため適している。鋼種記号の右側に通常付されるF、SeはSを添加しており、被削性が要求される場合には適している。オーステナイト系ステンレス鋼は非磁性であるために磁気回路ヨーク材には不適である。

【0020】

添加元素として添加されるTi、Zr、Nb、Mo、V、W、Taから選ばれる少なくとも一種以上の元素は、材料中のフェライト相内に固溶した場合、磁束密度の低下を起すが、不可避に混入するC、O、Nとの間で金属間化合物を生成し、炭化物、酸化物、窒化物を作る。その結果、これらの析出物は合金組織中に微細に均一に析出し、塑性加工中の転移の移動を阻害することができる。このため合金の過剰な延性が小さくなり、板材の打抜き時に、せん断面のバリ発生を抑えることができる。またこれらC、O、Nを固定化する元素を含有するものは焼きなまし温度から急冷しても銳敏化されることなく、耐粒界腐蝕性が良く且つ結晶粒の粗大化も起こりがたい。

【0021】

Mo、Vはステンレスなどの例に見られるように、鉄合金板材の耐食性を向上させる効

果がある。低炭素の場合、440～540℃の焼戻しで著しく脆化し、かつ2次硬化が生じるが焼戻し脆性はCrとの炭化物によるものであり、これら元素の添加による炭素トラップより焼戻し軟化抵抗性が改善される。W、Ta、Bは、板材の圧延加工性を向上させる効果があり、加工費の低減に貢献できる。しかし、これらの元素はいずれも飽和磁化を減少させるので、合計でも5質量%を超えて添加することは好ましくない。従って、これらの添加元素は、0.0001～5質量%の割合で添加される。

Feは残部であるが、鉄合金中、50質量%以上、特に80質量%以上含有することが好ましい。

【0022】

さらに、本発明では、飽和磁束密度を1.3～2.3テスラとすることが特徴であり、飽和磁束密度が高くても最大比透磁率が小さいか、または保磁力が大きすぎてしまつては、磁気回路の磁気抵抗が増大し、ギャップ磁束密度が低くなってしまう。このため、最大比透磁率は200以上22000以下の範囲とし、保磁力は20A/m以上2000A/m以下の範囲とする。より好ましくは、飽和磁束密度は1.5～2.3テスラ、特に1.7～2.3テスラであり、最大比透磁率は300～22000、特に400～22000であり、保磁力は20～1,600A/m、特に20～1,000A/mである。

【0023】

更にヨーク材の硬さが大きくなると、打抜きや曲げ等の加工に必要な力が大きくなるのでプレス機等の能力が不足する場合があり、また金型にかかる負担が大きくなるため金型の寿命が低下することを避けるために、硬さ（ロックウェル）をHRB100以下、好ましくは90以下にすることがよい。マルテンサイト系ステンレス鋼の成形性としては、SUS431< (SUS416、420) < (SUS403、410) の順に、打抜き、刻印、鍛造などに優れている。フェライトステンレス鋼においてCrは固溶強化元素でもあることから、低Crフェライトステンレス鋼は中でも強度が低く、延性に優れ、絞りや張出しなどに優れる。中でも低Crかつ低C（炭素）でTiを添加したSUH409Lは最も軟質且つ高延性を有し、型取り、エンボス、曲げなどに優れる。

【0024】

合金成分は、原料材料や製鋼方法によって目的とする範囲に調整されるが、生産性、品質上からは連続鋳造法が好ましく、また小ロット生産には真空溶解法などが適する。鋳造後、所定板厚の鋼材するために、熱間圧延、冷間圧延などが実施される。このようにして得られた鉄合金板材は、機械式プレスや、油圧式プレスもしくはファインプランギングプレス等にて、打抜き、型取り、穴あけ、曲げ、エンボスなどの塑性加工により、所定のヨーク形状に加工処理され、バリ取り、面取り、機械研磨、化学研磨、電解研磨などの後、ボイスコイルモータに用いる板厚が0.1mm以上5mm以下、好ましくは0.5～4.5mmであるヨーク材として製造することができる。

【0025】

ヨーク材の板厚が0.1mm未満の場合は、薄すぎて板材の飽和磁化を多少向上させても磁気回路の特性向上効果があまり見られず、また5mmを超える場合は、逆に充分に厚いため、磁気回路が飽和する問題は生じない。したがって、板材の磁気特性からその板厚を設計する事が必要となり、その際に対向ギャップ間の磁束が最大になるところの磁束と、磁気ディスクメディア外周、制御回路、磁気ヘッドの位置における漏れ磁束との比率の許容範囲は50000ppm以下となり、50000ppmより大きいと板材からの漏れ磁束が大きくなり周辺に悪影響を及ぼすため好ましくなく、装置全体からの制約によって漏れ磁束が制限されるため50000ppm以下となり、好ましくは30000ppm、以下特に25000ppm以下である。

また、対向ギャップ間の磁束やヨーク板材内部の磁界変動がある場合は渦電流の発生で磁石及びヨーク板材が加熱されるためそれらの温度変化から磁束の安定性に問題が生じ好ましくないため、対向ギャップ間の磁束やヨーク板材内部の磁界変動は無いことが必須である。そのため、本発明では耐蝕性に優れ、SPCC材等と同等の高い飽和磁束密度、最大比透磁率の高い材料をヨーク材として漏れ磁束を少なくしている。

【0026】

ここで、ヨーク材に発生するバリ取りには、爆発燃焼式、バレル研磨などが用いられる。仕上げには、機械研磨であるバフ研磨、化学研磨、電解研磨が採用される。特に、機械研磨を行った表面は無定形な極微粒子の集合体のペイルビー層、金属結晶が微細化された破碎結晶、加工によって変形した塑性変形の領域からなる数ミクロン程度以下の加工変質層が存在し、バフ研磨による鏡面加工のみでは、加工変質層が残存するために、所定の性能が得られないので、化学研磨、好ましくは電解研磨が必要となる。電解研磨は表面の突起を優先して溶解し、かつ全体にわたり溶解するために、加工変質層を完全に除去できる。これにより、平滑な面が得られ、記録情報を破壊してしまうパーティクル発生を低減するには最適の処理である。電解研磨液には、過塩素酸、硫酸、塩酸、硝酸、酢酸、リン酸、酒石酸、クエン酸、水酸化ナトリウム、酢酸ナトリウム、ロダンソーダ、尿素、硝酸コバルト、硝酸第二鉄などに、エタノール、プロパノールなどのアルコール類、ブチルセロソルブ、グリセリン、純水などを適宜調合する。

【0027】

以上の工程で作製されたボイスコイルモータ磁気回路用ヨークは、その耐食性が優れるために、ヨーク表面に耐食性皮膜をコーティングする必要がない。逆にこのヨークに金属あるいは各種合金からなる耐食性皮膜を、電気メッキ、無電解メッキ、イオンプレーティング等の各種方法でコートすることは、ヨークのコストアップを招くことから好ましくない。すなわち本発明の鉄合金においては、該板材合金の表面に Ni、Cu、Sn、Au、Pt、Zn、Fe、Co、Al、Cr、Cd、Ag 等の金属の皮膜又はこれらの金属の少なくとも一種以上の金属を 20 質量% 以上含む合金皮膜を存在させないことにより、製品のコストアップを防止することが出来る。

【0028】

磁気回路を構成するのに用いられる磁石は、Nd-Fe-B 系の高性能磁石であって、通常の防錆のための表面処理が施されたものであることが好ましい。防錆のための表面処理としては、電解（電気）メッキ、無電解メッキ、CVD、PVD、IP（イオンプレーティング）、蒸着、溶融メッキ、浸漬メッキ等がある。

磁石は、図 1～3 に示すように、ヨーク部材に接着される。磁石は一方のヨーク部材に接着されるのもあっても良いし、上下両方のヨーク部材に接着されるものであっても良い。また、磁石は、単極に着磁したもの、2 極に着磁したもの、4 極に着磁したものいずれも用いられる。さらに、一方のヨーク部材あるいは上下両方のヨーク部材に複数の磁石を接着する態様も用いられ得る。

ヨーク部材と磁石がヨーク部材に接着された磁石—ヨーク部材接着体との間の対向ギャップ間、または、上下に配した磁石—ヨーク部材接着体間の対向ギャップ間と、ヨーク部材内部に磁束が集中して流れ、漏れ磁束量と対向ギャップ間磁束量との比が 50000 p m 以下で、且つ対向ギャップ間及びヨーク部材内部の磁界強度変動がないことが必要である。

【実施例】**【0029】**

以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。

[実施例 1～7]

表 1 に示す実施例 1～7 に示す成分組成の鋼合金塊を溶解・連続鋳造して、幅 200 mm、長さ 500 mm、板厚 50 mm の合金塊を得た。

その合金塊を大気雰囲気で 1200 ℃ に加熱して熱間圧延を開始し、950 ℃ 以下で 60 % の累積圧下率とし、850 ℃ で熱間圧延を終了した。熱間圧延終了後は、室温まで空冷した。その後、冷間圧延した後、950 ℃ で仕上げ焼鈍、電解酸洗を実施し、厚さ 1.2 mm の鋼板とした。

【0030】

得られた鋼板を機械式打抜きプレス機にてヨーク形状に打抜きおよび曲げ加工し、上下

ヨーク 2 種のヨーク材を得た。

得られたヨークにバレル面取り、電解研磨を施した。それら上下ヨークの内側に、最大エネルギー積 382 kJ/m^3 の永久磁石をヨークの中央位置に接着し、磁気回路を作製した。

作製したヨーク材を約 4 mm 角に切断し、最大磁界 1.9 MA/m の振動試料型磁力計にて飽和磁束密度を測定した。

【0031】

また、ヨーク形状に打抜いた残りの板材から、外径 45 mm、内径 33 mm のリング試料を作製し、JIS C 2531 (1999) に記載される方法に準拠し、前述のリング試料を、間に紙を挟み 2 枚重ね、絶縁テープを巻いた後、励磁用コイル、磁化検出用コイルとしてそれぞれ $0.5 \text{ mm} \phi$ の銅線を 300 ターン、 $0.26 \text{ mm} \phi$ の銅線を 50 ターンづつ巻き、最大磁界 1.6 kA/m の直流磁化特性自動記録装置にて磁気ヒステリシス曲線を描き、最大比透磁率及び保磁力を測定した。

さらに、作製したボイスコイルモータ用磁気回路の性能を調べるために、実際の磁気記録装置に使用されている平面コイルを用い、磁束計 (Lakeshore 製 480 F1 uximeter) を用いて、その磁気回路ギャップ間の総磁束量を測定した。さらに、漏洩磁束はホール素子およびガウスマータにより測定し、ヨーク部材から外側に 10 mm 離れた位置 A と、VCM 磁気回路に隣接する磁気記録媒体の最外周部位置 B における漏洩磁束の最大値を記した。各位置における漏洩磁束の限度は、それぞれ、A < 10 mT、B < 8 mT である。

また、硬さについても JIS Z 2245 に準拠し、測定した。

耐食性を評価するために、温度 80°C 、相対湿度 90% の環境下で、200 時間試験し、発錆なしを○、変色を○、発錆ありを×とし、判定した。

【0032】

[比較例 1 ~ 4]

比較例として、一般的な市販の S P C C 品、板厚 1.2 mm の材料（比較例 1）と、表 1 に示す比較例 1 ~ 4 に示す成分組成の鋼合金塊を実施例 1 と同様にして得た厚さ 1.2 mm の鋼板について、実施例 1 と同様に、磁気特性を測定した。

実施例 1 ~ 7、比較例 1 ~ 4 の測定、判定結果を表 2 に示す。なお、表 2 において、対 S P C C は、比較例 1 の磁束量に対する増減率を示し、漏洩磁束における比はギャップ磁束に対する漏洩磁束の割合 (ppm) を示す。

【0033】

[表1] 實施例1～7、比較例1～4組成表

		合金組成(質量%)																				
		鋼種		C	Si	Mn	P	S	Al	O	N	Ni	Cr	Cu	Ti	Nb	Zr	Mo	V	Ta	B	Fe
実 施 例	1	SUS410	0.14	0.92	0.91	0.038	0.028	0.04	0.092	0.05	0.49	11.60	0.042	tr.	tr.	tr.	tr.	tr.	tr.	tr.	bal.	
	2	SUS416	0.13	0.93	1.22	0.052	0.160	0.05	0.085	0.04	0.52	12.30	tr.	tr.	tr.	0.530	tr.	tr.	tr.	tr.	bal.	
	3	SUS420J2	0.34	0.91	0.95	0.032	0.028	0.06	0.091	0.05	0.55	12.20	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	bal.	
	4	SUS430	0.09	0.56	0.38	0.044	0.004	0.01	0.088	0.05	0.12	16.80	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	bal.	
	5	SUS410L	0.03	0.38	0.52	0.021	0.003	0.01	0.082	0.04	0.25	11.85	0.010	0.013	tr.	tr.	0.004	tr.	tr.	tr.	bal.	
	6	SUH409	0.02	0.52	0.29	0.032	0.004	0.02	0.080	0.04	0.17	10.85	0.060	0.286	tr.	tr.	tr.	tr.	tr.	tr.	bal.	
	7	SUH409L	0.01	0.45	0.25	0.025	0.003	0.01	0.081	0.04	0.19	10.75	0.050	0.251	tr.	tr.	tr.	tr.	tr.	tr.	bal.	
比較 例	1	SPCC	0.10	0.03	0.54	0.020	0.010	0.06	0.040	0.01	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	bal.	
	2	SKD61	0.38	1.05	0.40	0.021	0.022	0.01	0.042	0.01	0.15	5.12	0.110	tr.	tr.	tr.	1.210	0.98	tr.	tr.	bal.	
	3	SUS304	0.07	0.97	1.85	0.040	0.030	0.11	0.080	0.05	10.40	18.50	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	bal.	
	4	SUS316	0.07	0.98	1.95	0.040	0.030	0.12	0.095	0.04	13.80	17.80	tr.	tr.	tr.	2.850	tr.	tr.	tr.	tr.	bal.	

【0034】

【表2】

	鋼種	飽和磁束密度 (T)	最大比透磁率	保磁力 (A/m)	ギヤップ磁束量 (T)	対SPCC (%)	漏洩磁束量 A(mT)	漏洩磁束量 A/mT の比 (ppm)	漏洩磁束量 B(mT)	漏洩磁束量 B/mT の比 (ppm)	ロックウエル硬度 HRB	発錆状態
実施例	1 SUS410	1.661	701	484	0.576	94.3	8.23	14288	7.70	1337	87.8	◎
	2 SUS416	1.602	640	662	0.571	93.5	8.56	14991	7.51	1315	91.7	◎
	3 SUS420J2	1.648	430	910	0.575	94.1	8.45	14696	8.30	1443	92.9	◎
	4 SUS430	1.663	694	480	0.576	94.3	8.23	14288	7.70	1337	94.8	◎
	5 SUS410L	1.793	867	393	0.587	96.1	7.03	11976	8.00	1363	80.4	◎
	6 SUH409	1.787	1275	172	0.586	95.9	6.56	11195	6.98	1191	77.2	○
	7 SUH409L	1.805	1495	150	0.588	96.2	6.05	10289	6.53	1111	71.2	○
比較例	1 SPCC	2.080	2475	420	0.611	100.0	5.03	8232	5.65	925	57.1	×
	2 SKD61	1.772	649	764	0.587	96.1	6.48	11039	6.55	1116	HRC53	×
	3 SUS304	0.062	4	470	0.230	37.6	13.65	59348	8.40	3652	83.8	◎
	4 SUS316	0.061	5	661	0.225	36.8	13.70	60889	8.50	3778	85.4	◎

[表2] 実施例1～7、比較例1～4性能表

【0035】

[実施例8～37]

同じく表3及び表5に示す実施例8～37の成分組成の鋼塊を電炉、転炉－脱ガス、連出証特2005-3021667

続铸造工程を経て溶解・铸造し、厚さ200mmのスラブを得た。溶銑はRH脱ガスおよびVOD法（真空一酸素脱炭法）により精製した。

得られた200mm板厚のスラブを1100～1200℃に加熱・均熱し、热間圧延機で圧延し、仕上げ温度850～950℃で板厚約10mmとした。再结晶焼純（800～1000℃）後、电解酸洗、冷間圧延により約4mmの板厚とした。その後約600～900℃で仕上げ焼戻し後酸洗して供試用鋼板を得た。

そして、実施例1～7と同様にして、上下ヨーク2種のヨーク材を得た。

【0036】

それら上下ヨークの内側に、最大エネルギー積493kJ/m³の永久磁石をヨークの中央位置に接着し、磁気回路を作製した。

作製したヨーク板材の磁気特性を実施例1～7と同様にして測定した。

以上の実験結果を表4および表6に示す。

【0037】

[比較例5～28]

比較例として、一般的な市販のSPCC品、板厚4mmの材料（比較例5）と、表7、表9に示す比較例6～28に示す成分組成の鋼合金塊を実施例と同様にして得た厚さ4mmの鋼板について、実施例1～7と同様に、磁気特性を測定した。

以上の実験結果を表8、表10に示す。

なお、表4、表6および表8、表10における対SPCCも、比較例5の磁束量に対するそれぞれの増加率を%で表し、漏洩磁束における比はギャップ磁束に対する漏洩磁束の割合(ppm)を示している。

【0038】

【表3】

鋼種	合金組成(質量%)																				
	C	Si	Mn	P	S	Al	O	N	Ni	Cr	Cu	Ti	Nb	Zr	Mo	V	Ta	B	W	Co	Fe
8 SUH409L	0.01	0.46	0.24	0.027	0.002	0.010	0.079	0.02	0.18	10.74	0.040	0.251	0.01	0.02	0.011	0.01	0.005	0.01	0.02	bal.	
9 SUH409	0.02	0.65	0.24	0.033	0.002	0.021	0.081	0.03	0.24	11.27	0.041	0.354	0.01	0.01	0.013	0.02	0.01	0.005	0.01	0.02	bal.
10 SUS410L	0.03	0.40	0.49	0.021	0.001	0.003	0.075	0.02	0.15	11.61	0.010	0.013	0.01	0.01	0.010	0.01	0.007	0.01	0.02	bal.	
11 SUS403	0.11	0.31	0.51	0.031	0.020	0.009	0.095	0.04	0.16	11.82	0.00	tr.	tr.	tr.	0.008	tr.	tr.	tr.	tr.	tr.	bal.
12 SUS410S	0.05	0.62	0.49	0.028	0.010	0.012	0.077	0.05	0.11	12.45	0.00	tr.	tr.	tr.	0.011	tr.	tr.	tr.	tr.	tr.	bal.
13 SUS410F2	0.12	0.65	0.57	0.029	0.018	0.011	0.080	0.03	0.15	12.26	0.00	tr.	tr.	tr.	0.009	tr.	tr.	tr.	tr.	tr.	bal.
14 SUS405	0.04	0.62	0.51	0.021	0.022	0.180	0.078	0.04	0.12	13.16	0.00	tr.	tr.	tr.	0.009	tr.	tr.	tr.	tr.	tr.	bal.
15 SUS410	0.14	0.92	0.91	0.038	0.028	0.040	0.092	0.05	0.49	11.60	0.042	0.020	0.01	0.01	0.010	0.01	0.006	0.01	0.02	bal.	
16 SUH11	0.51	1.55	0.35	0.021	0.021	0.035	0.098	0.08	0.20	8.64	0.00	tr.	tr.	tr.	0.008	tr.	tr.	tr.	tr.	tr.	bal.
17 SUS416	0.08	0.50	0.65	0.028	0.021	0.022	0.080	0.05	0.22	13.05	0.25	tr.	tr.	tr.	0.320	tr.	tr.	tr.	tr.	tr.	bal.
18 SUS410J1	0.13	0.65	0.61	0.027	0.020	0.015	0.083	0.06	0.16	12.75	0.00	tr.	tr.	tr.	0.440	tr.	tr.	tr.	tr.	tr.	bal.
19 SUS429	0.07	0.57	0.59	0.029	0.018	0.025	0.090	0.04	0.15	14.89	0.00	tr.	tr.	tr.	0.011	tr.	tr.	tr.	tr.	tr.	bal.
20 SUH1	0.46	3.32	0.28	0.019	0.023	0.033	0.097	0.09	0.28	8.55	0.00	tr.	tr.	tr.	0.011	tr.	tr.	tr.	tr.	tr.	bal.
21 SUS430J1L	0.01	0.45	0.45	0.018	0.012	0.005	0.081	0.01	0.10	16.85	0.29	0.120	0.54	0.51	0.005	0.01	0.005	0.01	0.02	bal.	
22 SUS430LX	0.02	0.41	0.25	0.025	0.009	0.019	0.082	0.02	0.11	17.14	0.00	0.326	0.02	0.010	0.02	0.004	0.01	0.004	0.01	0.02	bal.

[表3] 實施例8～22の組成表

【0039】

【表4】

	鋼種	飽和磁束密度 (T)	最大比透磁率	保磁力 (A/m)	ギヤップ磁束量 (T)	対SPCC (%)	漏洩磁束量 A(mT)	漏洩磁束量 A/ギヤップ磁束量の比 (ppm)	漏洩磁束量 B(mT)	漏洩磁束量 B/ギヤップ磁束量の比 (ppm)	発錆状態
8	SUH409L	1.794	2220	150	0.498	82.9	3.8	7659	3.1	6223	○
9	SUH409	1.759	1930	172	0.489	82.3	4.0	8188	3.2	6550	○
10	SUS410L	1.745	1520	393	0.485	82.3	4.1	8462	3.1	6398	◎
11	SUS403	1.700	1102	612	0.472	80.1	4.5	9534	3.5	7416	○
12	SUS410S	1.681	778	455	0.467	79.3	5.0	10711	3.6	7712	◎
13	SUS410F2	1.673	623	503	0.465	78.9	5.3	11405	3.8	8177	◎
14	SUS405	1.655	435	298	0.460	78.0	5.8	12622	4.5	9793	○
15	SUS410	1.638	601	484	0.455	77.2	5.5	12088	3.9	8572	○
16	SUH11	1.627	228	385	0.452	76.7	6.2	13722	4.8	10623	○
17	SUS416	1.616	820	661	0.449	76.2	5.7	12701	4.2	9358	○
18	SUS410J1	1.598	488	556	0.444	75.3	6.0	13523	4.9	11044	◎
19	SUS429	1.595	621	459	0.443	75.2	5.9	13323	5.1	11517	◎
20	SUH1	1.587	215	423	0.441	74.8	6.8	15434	5.2	11802	○
21	SUS430J1L	1.581	1650	201	0.439	74.5	5.9	13437	4.7	10704	○
22	SUS430LX	1.580	1102	235	0.439	74.5	6.2	14126	4.9	11164	○

[表4] 実施例8～22の性能表

【0040】

【表5】

合金組成(質量%)																								
	鋼種		C	Si	Mn	P	S	Al	O	N	Ni	Cr	Cu	Ti	Nb	Zr	Mo	V	Ta	B	W	Co	Fe	
23	SUH600	0.18	0.26	0.78	0.021	0.010	0.039	0.087	0.08	0.22	11.85	0.62	tr.	tr.	0.620	tr.	tr.	tr.	tr.	tr.	tr.	tr.	bal.	
24	SUS420J1	0.34	0.75	0.60	0.019	0.020	0.017	0.088	0.04	0.13	12.98	0.00	tr.	tr.	0.010	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	bal.
25	SUS420J2	0.35	0.72	0.58	0.020	0.019	0.018	0.085	0.05	0.14	12.85	0.00	tr.	tr.	0.012	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	bal.
26	SUS420F2	0.36	0.62	0.51	0.025	0.019	0.016	0.086	0.05	0.14	13.12	0.00	tr.	tr.	0.011	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	bal.
27	SUS430	0.07	0.45	0.42	0.021	0.011	0.031	0.091	0.04	0.15	16.94	0.00	tr.	tr.	0.009	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	bal.
28	SUS420F	0.35	0.57	0.72	0.026	0.088	0.015	0.089	0.06	0.18	13.20	0.00	tr.	tr.	0.012	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	bal.
29	SUS431	0.12	0.55	0.52	0.019	0.008	0.023	0.091	0.07	1.25	15.81	0.00	tr.	tr.	0.011	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	bal.
30	SUH616	0.23	0.64	0.77	0.021	0.022	0.041	0.096	0.08	0.72	11.95	0.95	tr.	tr.	1.010	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	bal.
31	SUS630	0.04	0.56	0.51	0.023	0.015	0.040	0.089	0.03	3.80	16.32	3.85	0.050	0.26	0.01	0.010	0.01	0.01	0.006	0.01	0.006	0.01	0.02	bal.
32	SUS430F	0.08	0.63	0.40	0.029	0.045	0.038	0.085	0.06	0.18	17.01	0.15	tr.	tr.	0.290	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	bal.
33	SUS436J1L	0.01	0.54	0.39	0.024	0.018	0.010	0.082	0.01	0.19	18.65	0.59	0.021	0.61	0.01	0.570	0.01	0.01	0.008	0.01	0.008	0.01	0.02	bal.
34	SUH3	0.41	2.21	0.32	0.019	0.020	0.035	0.094	0.09	0.27	10.85	0.88	tr.	tr.	0.950	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	bal.
35	SUS434	0.07	0.67	0.60	0.021	0.018	0.035	0.089	0.04	0.18	16.73	1.05	tr.	tr.	0.940	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	bal.
36	SUS436L	0.02	0.58	0.45	0.020	0.017	0.038	0.087	0.01	0.20	18.66	0.91	0.110	0.42	0.05	0.990	0.01	0.01	0.009	0.01	0.009	0.01	0.03	bal.
37	SUH21	0.08	0.95	0.65	0.023	0.020	0.036	0.098	0.08	0.23	18.58	0.00	tr.	tr.	0.012	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	bal.

[表5] 実施例23～37の組成表

【0041】

【表6】

[表6] 実施例23～37の性能表

実 施 例	鋼種	飽和磁束密度 (T)	最大比透磁率	保磁力 (A/m)	ギヤップ磁束量 (T)	対SPCC (%)	漏洩磁束量 A(mT)	漏洩磁束量 A/ギヤップ磁束量の比 (ppm)	漏洩磁束量 B(mT)	漏洩磁束量 B/Bギヤップ磁束量の比 (ppm)	発錆状態
23	SUH600	1.572	550	1056	0.437	74.1	6.4	14657	5.1	11680	◎
24	SUS420J1	1.571	458	943	0.436	74.1	6.7	15360	5.3	12150	◎
25	SUS420J2	1.567	423	1065	0.435	73.9	7.0	16083	5.5	12637	◎
26	SUS420F2	1.564	435	1154	0.434	73.7	7.2	16577	5.6	12893	◎
27	SUS430	1.543	688	675	0.429	72.8	7.4	17266	5.5	12833	◎
28	SUS420F	1.543	296	1516	0.429	72.8	8.2	19134	6.1	14234	◎
29	SUS431	1.534	365	992	0.426	72.3	7.9	18541	6.2	14551	◎
30	SUH616	1.509	321	1215	0.419	71.1	8.0	19095	6.0	14321	◎
31	SUS630	1.507	712	565	0.419	71.1	7.7	18397	5.9	14096	◎
32	SUS430F	1.496	267	718	0.415	70.5	9.0	21667	7.2	17333	◎
33	SUS436J1L	1.475	1319	656	0.410	69.6	7.5	18308	6.1	14891	◎
34	SUH3	1.474	201	1980	0.409	69.5	9.1	22238	8.1	19795	◎
35	SUS434	1.443	398	801	0.401	68.0	8.7	21714	8.2	20466	◎
36	SUS436L	1.428	850	671	0.397	67.3	9.6	24204	7.8	19666	◎
37	SUH21	1.424	461	821	0.396	67.2	9.8	24776	8.5	21489	◎

【0042】

【表7】

[表7] 比較例5~17の組成表

		合金組成(質量%)																				
鋼種		C	Si	Mn	P	S	Al	O	N	Ni	Cr	Cu	Ti	Nb	Zr	Mo	V	Ta	B	W	Co	Fe
5	SPCC	0.10	0.03	0.54	0.020	0.010	0.060	0.040	0.01	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	bal.	
6	S10C	0.10	0.25	0.45	0.022	0.025	0.050	0.065	0.02	0.15	0.11	0.15	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	bal.
7	S15C	0.16	0.23	0.51	0.021	0.026	0.056	0.058	0.03	0.12	0.09	0.18	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	bal.
8	S50C	0.50	0.25	0.83	0.023	0.025	0.044	0.061	0.02	0.11	0.13	0.16	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	bal.
9	SNCM420	0.20	0.22	0.65	0.022	0.025	0.021	0.045	0.02	1.85	0.82	0.15	tr.	tr.	tr.	0.220	tr.	tr.	tr.	tr.	tr.	bal.
10	SCM415	0.15	0.31	0.81	0.020	0.022	0.018	0.062	0.03	0.11	0.94	0.22	tr.	tr.	tr.	0.210	tr.	tr.	tr.	tr.	tr.	bal.
11	SNC415	0.16	0.26	0.46	0.022	0.023	0.022	0.070	0.03	2.31	0.75	0.20	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	bal.
12	SCM440	0.40	0.32	0.75	0.019	0.019	0.012	0.065	3.00	0.12	0.96	0.23	tr.	tr.	tr.	0.190	tr.	tr.	tr.	tr.	tr.	bal.
13	S35C	0.36	0.31	0.81	0.022	0.025	0.052	0.042	0.02	0.12	0.13	0.17	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	bal.
14	S30C	0.30	0.29	0.75	0.019	0.021	0.058	0.048	0.03	0.11	0.11	0.15	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	bal.
15	S38C	0.39	0.33	0.78	0.025	0.029	0.048	0.051	0.03	0.15	0.16	0.20	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	bal.
16	S20C	0.20	0.26	0.41	0.022	0.028	0.053	0.047	0.03	0.10	0.12	0.22	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	bal.
17	S55C	0.55	0.29	0.85	0.026	0.030	0.059	0.052	0.04	0.10	0.16	0.19	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	bal.

【0043】

出証特2005-3021667

【表8】

[表8] 比較例5～17の性能表

[0044]

	鋼種	飽和磁束密度 (T)	最大比透磁率	保磁力 (A/m)	ギャップ磁束量 (T)	対SPCC (%)	漏洩磁束量A(mT)	漏洩磁束量B(mT)	漏洩磁束量B/ギャップ磁束量の比(ppm)	発錆状態
5	SPCC	2.121	2475	420	0.589	100.0	3.5	5942	2.1	3565 X
6	S10C	2.045	2437	285	0.568	96.4	3.8	6691	2.1	3698 X
7	S15C	2.045	2099	284	0.568	96.4	4.0	7043	2.2	3874 X
8	S50C	1.958	689	720	0.544	92.3	4.5	8276	4.0	7356 X
9	SNCM420	1.894	626	793	0.526	89.3	5.3	10077	4.1	7795 X
10	SCM415	1.887	1108	576	0.524	89.0	5.2	9923	3.8	7252 X
11	SNC415	1.886	1175	444	0.524	88.9	5.8	11074	3.7	7064 X
12	SCM440	1.884	291	1370	0.523	88.8	6.5	12424	4.8	9174 X
13	S35C	1.860	1170	506	0.517	87.7	5.7	11035	4.0	7744 X
14	S30C	1.822	1201	502	0.506	85.9	6.0	11858	4.1	8103 X
15	S38C	1.811	1201	502	0.503	85.4	6.2	12328	4.1	8152 X
16	S20C	1.804	1425	447	0.501	85.1	6.1	12176	3.9	7785 X
17	S55C	1.796	536	797	0.499	84.7	7.0	14035	4.5	9022 X

【表9】

鋼種	合金組成(質量%)																			
	C	Si	Mn	P	S	Al	O	N	Ni	Cr	Cu	Ti	Nb	Zr	Mo	V	Ta	B	W	Co
18 SNC631	0.30	0.24	0.51	0.025	0.024	0.020	0.030	0.01	2.72	0.86	0.19	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	bal.
19 S45C	0.45	0.31	0.71	0.020	0.031	0.051	0.055	0.03	0.16	0.14	0.22	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	bal.
20 SNCM439	0.41	0.25	0.81	0.023	0.026	0.019	0.048	0.01	1.88	0.78	0.17	tr.	tr.	0.250	tr.	tr.	tr.	tr.	tr.	bal.
21 SK5	0.87	0.30	0.32	0.021	0.021	0.024	0.055	0.01	0.18	0.21	0.11	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	bal.
22 SKS3	0.96	0.27	1.02	0.025	0.021	0.027	0.062	0.02	0.19	0.78	0.08	tr.	tr.	tr.	tr.	tr.	tr.	tr.	0.81	tr.
23 S25C	0.25	0.30	0.56	0.024	0.030	0.050	0.041	0.03	0.13	0.15	0.23	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	bal.
24 SUP9	0.57	0.30	0.77	0.020	0.021	0.042	0.065	0.01	0.09	0.83	0.22	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	bal.
25 SK3	1.06	0.32	0.35	0.019	0.019	0.022	0.062	0.01	0.17	0.19	0.09	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	bal.
26 SKH55	0.91	0.29	0.35	0.022	0.026	0.013	0.052	0.01	0.21	4.25	0.16	tr.	tr.	tr.	tr.	tr.	tr.	tr.	6.22	4.75
27 SKH51	0.87	0.31	0.33	0.015	0.023	0.017	0.059	0.01	0.20	4.22	0.15	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	bal.
28 SKD11	1.51	0.30	0.51	0.021	0.022	0.010	0.045	0.01	0.08	11.80	0.12	tr.	tr.	0.850	0.35	tr.	tr.	tr.	tr.	bal.

[表9] 比較例18～28の組成表

【0045】
【表10】

[表10] 比較例18～28の性能表

	鋼種	飽和磁束密度 (T)	最大比透磁率	保磁力 (A/m)	ギャップ磁束量 (T)	漏洩磁束量A (mT)	漏洩磁束量B / ギャップ磁束量の比 (ppm)	漏洩磁束量B (mT)	漏洩磁束量B / ギャップ磁束量の比 (ppm)	発錆状態
18	SNC631	1.784	530	936	0.495	84.1	7.2	14533	4.7	9487
19	SG5C	1.781	655	703	0.495	84.0	7.5	15164	4.8	9705
20	SNCM439	1.706	252	1486	0.474	80.4	8.2	17308	5.4	11398
21	SK5	1.688	905	650	0.469	79.6	7.9	16853	5.7	12160
22	SKS3	1.683	533	965	0.467	79.4	8.7	18615	6.0	12838
23	S25C	1.677	482	404	0.466	79.1	8.8	18896	6.5	13957
24	SUP9	1.607	183	1724	0.446	75.8	9.5	21288	7.5	16806
25	SK3	1.593	527	936	0.442	75.1	9.2	20796	7.2	16275
26	SKH55	1.500	333	1202	0.417	70.7	9.8	23526	7.9	18965
27	SKH51	1.389	346	1073	0.386	65.5	11.5	29813	8.3	21518
28	SKD11	1.361	351	1043	0.378	64.2	12.2	32279	8.5	22489

【0046】

表1～10から、実施例の組成の鋼板は、いずれも、比較例に対して比透磁率は上昇、保磁力は減少し、磁気回路ギャップにおける総磁束量もSPCCに対し遜色ないことが判る。また、明らかな発錆はなく、パーティクルコンタミネーションは無いことが判る。

【産業上の利用可能性】

【0047】

以上述べたように、本発明は、厚さ0.1mmから5mmのヨーク材の磁気特性、及び、耐食性を向上させることによって、構成する磁気回路に磁石から投入される磁束を有効

に利用し対向ギャップ間及びヨーク板材内の磁束密度を維持し変動を抑え、バリ取り、面取り後の仕上げに化学研磨、電解研磨するだけで、耐食性金属皮膜の形成を必要としない安価で耐食性の優れた磁気記録装置もしくは光ピックアップ装置の磁気回路、及びボイスコイルモータ、アクチュエーターの提供が可能となる。

【図面の簡単な説明】

【0048】

【図1】本発明の第1の実施の形態のVCM磁気回路を示す斜視説明図である。

【図2】本発明の第2の実施の形態である、上下の内の方のヨークに曲げ連結する形態のVCM磁気回路を示す斜視説明図である。

【図3】本発明の第3の実施の形態のVCM磁気回路を示す斜視説明図である。

【符号の説明】

【0049】

- 1：上ヨーク
- 2：下ヨーク
- 3：永久磁石
- 4：連結柱
- 5：上ヨーク
- 6：下ヨーク
- 7：ヨーク

【書類名】 図面
【図 1】

【図 2】

【図3】

【書類名】要約書

【要約】

【課題】 耐食性金属皮膜の形成を省略することができ、安価に製造することができる磁気回路およびボイスコイルモータもしくはアクチュエーターを提供する。

【解決手段】 C : 0. 0001 ~ 2 % (質量%、以下同じ)、Si : 0. 0001 ~ 5 %、Mn : 0. 001 ~ 2 %、P : 0. 0001 ~ 0. 1 %、S : 0. 0001 ~ 0. 2 %、Al : 0. 0001 ~ 5 %、O : 0. 0001 ~ 0. 1 %、N : 0. 0001 ~ 0. 1 %、Ni : 0. 0001 ~ 1 %、Cr : 10. 5 ~ 30 %の各元素を含有し、さらに添加元素としてTi、Co、Cu、Zr、Nb、V、Mo、W、Ta、Bから選ばれる少なくとも一種以上の合金元素を合計で0. 0001 ~ 5 %含有し、残部がFeからなるマルテンサイト系及びフェライト系及び析出硬化系ステンレス鋼材もしくはCr系耐熱鋼材であって、板厚が0. 1 mm以上5 mm以下である板材から作製される磁気回路である。

【選択図】 図1

特願 2004-143624

出願人履歴情報

識別番号 [000002060]

1. 変更年月日 1990年 8月22日

[変更理由] 新規登録

住所 東京都千代田区大手町二丁目6番1号
氏名 信越化学工業株式会社