EasyCommit: A Non-blocking Two-phase Commit Protocol

Presentation for ECS 265: Distributed Database Systems

Presented by Likang Yin

October 4, 2018

Roadmap

- 1. Background
- 2. Two-phase Commit (2PC) Protocol
- 3. Three-phase Commit (3PC) Protocol
- 4. EasyCommit Protocol
- 5. Comparison and Analysis

Two-phase Commit (2PC) Protocol

Source: EasyCommit: A Non-blocking Two-phase Commit Protocol. EDBT'18.

Blocking Problem in 2PC Protocol

Coordinator C

Three-phase Commit (3PC) Protocol

(a) Time span of 2PC Protocol

(b) Time span of 3PC Protocol

Source: EasyCommit: A Non-blocking Two-phase Commit Protocol. EDBT'18.

EasyCommit Protocol

Source: EasyCommit: A Non-blocking Two-phase Commit Protocol. EDBT'18.

Termination Protocol

Three different situations:

- 1. Coordinator Timeout in WAIT State
- 2. Cohort Timeout in INITIAL State
- 3. Cohort Timeout in READY State

Independent Recovery

EasyCommit Protocol can do the independent recovery when:

- 1. If a cohort fails before transmitting its vote, then on recovery, it can simply abort the transaction.
- 2. If the coordinator fails before transmitting the global decision, then it aborts the transaction on recovery.
- 3. If either coordinator or participant fail after transmitting the global decision and writing the log, then on recovery they can use this entry to reach the consistent state.

Conclusion

The easy commit protocol takes the advantages of both 2PC Protocol and 3PC Protocol. It is able to:

- 1. Handle commit transactions efficiently (Two phases).
- 2. Resolve the transactions safely if the coordinator fails (Non-blocking).
- 3. Execute independent recovery in three different cases. (Independent recovery).