Assignment 4

Note to Graders

Scroll all the way to the bottom for the "solution" to this assignement. I ended up up asking two research questions because I felt that my first question would be biased by only selecting the Golden State Warriors. For my second question, I sampled from 6 different teams from each NBA region then created a Seaborn Jointplot that looks at player salary vs points per game for 2017-2018. To skip all the data munging and analysis, scroll all the way to the bottom for the chart I chose to answer my research question.

Question 1: How does player PPG correlate with Salary for the Golden State Warriors?

Question 1a: What is the breakdown of Salary and PPG by player? What does it look like?

Note #1: I am not a sports person but I'm going to guess that this question is pretty obvious...

Note #2: Sampling from just the Golden State Warriors is really not sufficient to answer the question whether player PPG is correlated with Salary, but for the purposes of this exercise let's just see what happens...

- Ho: there is no correlation between player PPG and salary
- H1: there is a correlation between player PPG and salary

You can find the data here:

- · Salary Data:
 - https://en.hispanosnba.com/salaries/golden-state-warriors
 (https://en.hispanosnba.com/salaries/golden-state-warriors)
 - http://www.spotrac.com/nba/golden-state-warriors/cap/ (http://www.spotrac.com/nba/golden-state-warriors/cap/)
 - https://www.basketball-reference.com/contracts/GSW.html (https://www.basketball-reference.com/contracts/GSW.html)
- Player Stats
 - https://basketball.realgm.com/nba/teams/Golden-State-Warriors/9/Stats
 (https://basketball.realgm.com/nba/teams/Golden-State-Warriors/9/Stats)

Region 1: Bay Area, Golden State Warriors

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   from scipy import stats
   plt.style.use('seaborn-white')
   # note: because of this course I've learned to loathe animations
   #%matplotlib notebook
   %matplotlib inline
```

In [2]: salary = pd.read_csv('GSW_Salaries_2017_2018.csv')
salary

Out[2]:

	PLAYER	2017-18	Unnamed: 2
0	Stephen Curry	34682550	NaN
1	Kevin Durant	25000000	NaN
2	Klay Thompson	17826150	NaN
3	Draymond Green	16400000	NaN
4	Andre Iguodala	14814815	NaN
5	Shaun Livingston	7692308	NaN
6	Nick Young	5192000	NaN
7	Zaza Pachulia	3477600	NaN
8	David West	2328652	NaN
9	JaVale McGee	2116955	NaN
10	Omri Casspi	2106470	NaN
11	Kevon Looney	1471382	NaN
12	Patrick McCaw	1312611	NaN
13	Damian Jones	1312611	NaN
14	Jason Thompson *	945126	NaN
15	Jordan Bell	815615	NaN
16	Quinn Cook	14832	NaN
17	Chris Boucher	75000	NaN

```
In [3]: salary.drop(salary.index[14], inplace=True) # Drop Thompson as he's no longe
    salary.drop(['Unnamed: 2'], axis=1, inplace=True)
    salary.reset_index(inplace=True)
    salary.drop('index', axis=1, inplace=True)
```

In [4]: salary

Out[4]:

	PLAYER	2017-18
0	Stephen Curry	34682550
1	Kevin Durant	25000000
2	Klay Thompson	17826150
3	Draymond Green	16400000
4	Andre Iguodala	14814815
5	Shaun Livingston	7692308
6	Nick Young	5192000
7	Zaza Pachulia	3477600
8	David West	2328652
9	JaVale McGee	2116955
10	Omri Casspi	2106470
11	Kevon Looney	1471382
12	Patrick McCaw	1312611
13	Damian Jones	1312611
14	Jordan Bell	815615
15	Quinn Cook	14832
16	Chris Boucher	75000

Out[5]:

	Player	Team	GP	MPG	FGM	FGA	FG%	3РМ	3РА	3P%	 FT%	TOV	PF	ORB
0	Stephen Curry	GSW	51	32.0	8.4	16.9	0.495	4.2	9.8	0.423	 0.921	3.0	2.2	0.7
1	Kevin Durant	GSW	68	34.2	9.3	18.0	0.516	2.5	6.1	0.419	 0.889	3.0	2.0	0.5
2	Klay Thompson	GSW	73	34.3	7.9	16.1	0.488	3.1	7.1	0.440	 0.837	1.8	1.6	0.4
3	Draymond Green	GSW	70	32.7	4.0	8.8	0.454	1.1	3.7	0.301	 0.775	2.9	2.6	1.1
4	Quinn Cook	GSW	33	22.4	3.7	7.6	0.484	1.4	3.2	0.442	 0.880	1.0	1.8	0.3
5	Nick Young	GSW	80	17.4	2.5	6.1	0.412	1.5	4.1	0.377	 0.862	0.5	1.2	0.2
6	David West	GSW	73	13.7	3.0	5.2	0.571	0.0	0.1	0.375	 0.759	1.1	1.6	0.9
7	Andre Iguodala	GSW	64	25.4	2.3	5.0	0.463	0.5	1.8	0.282	 0.632	1.0	1.5	0.8
8	Omri Casspi	GSW	53	14.0	2.3	3.9	0.580	0.2	0.4	0.455	 0.725	0.7	1.3	0.6
9	Shaun Livingston	GSW	71	15.9	2.4	4.8	0.501	0.0	0.1	0.000	 0.820	0.8	1.6	0.5
10	Zaza Pachulia	GSW	69	14.1	2.2	3.8	0.564	0.0	0.0	0.000	 0.806	1.0	1.8	1.3
11	JaVale McGee	GSW	65	9.5	2.1	3.4	0.621	0.0	0.1	0.000	 0.731	0.4	1.4	0.9
12	Jordan Bell	GSW	57	14.2	2.0	3.2	0.627	0.0	0.1	0.000	 0.682	0.9	1.6	1.1
13	Kevon Looney	GSW	66	13.8	1.7	2.9	0.580	0.0	0.1	0.200	 0.545	0.5	1.6	1.3
14	Patrick McCaw	GSW	57	16.9	1.6	3.9	0.409	0.3	1.4	0.237	 0.765	0.7	1.2	0.3
15	Damian Jones	GSW	15	5.9	0.7	1.5	0.500	0.0	0.0	0.000	 0.600	0.3	0.9	0.3
16	Chris Boucher	GSW	1	1.3	0.0	1.0	0.000	0.0	1.0	0.000	 0.000	0.0	0.0	0.0

17 rows × 22 columns

```
In [6]: df = pd.merge(salary, gsw_stats, how='inner', left_on='PLAYER', right_on='Pl
```

In [7]: | df.drop('Player', axis=1, inplace=True)

In [8]: df.rename(index=str, columns={"2017-18": "Salary"}, inplace=True)

In [9]: df.head()

Out[9]:

	PLAYER	Salary	Team	GP	MPG	FGM	FGA	FG%	3РМ	3РА	 FT%	TOV	PF	ORE
0	Stephen Curry	34682550	GSW	51	32.0	8.4	16.9	0.495	4.2	9.8	 0.921	3.0	2.2	0.7
1	Kevin Durant	25000000	GSW	68	34.2	9.3	18.0	0.516	2.5	6.1	 0.889	3.0	2.0	0.5
2	Klay Thompson	17826150	GSW	73	34.3	7.9	16.1	0.488	3.1	7.1	 0.837	1.8	1.6	0.4
3	Draymond Green	16400000	GSW	70	32.7	4.0	8.8	0.454	1.1	3.7	 0.775	2.9	2.6	1.1
4	Andre Iguodala	14814815	GSW	64	25.4	2.3	5.0	0.463	0.5	1.8	 0.632	1.0	1.5	3.0

5 rows × 23 columns

In [10]: df.describe().T

Out[10]:

	count	mean	std	min	25%	50%	75%	
Salary	17.0	8.037621e+06	1.016943e+07	14832.0	1312611.000	2328652.000	1.481482e+07	3.468
GP	17.0	5.682353e+01	2.149487e+01	1.0	53.000	65.000	7.000000e+01	8.000
MPG	17.0	1.868824e+01	9.973708e+00	1.3	13.800	15.900	2.540000e+01	3.430
FGM	17.0	3.300000e+00	2.678619e+00	0.0	2.000	2.300	3.700000e+00	9.300
FGA	17.0	6.594118e+00	5.335198e+00	1.0	3.400	4.800	7.600000e+00	1.8000
FG%	17.0	4.861765e-01	1.413441e-01	0.0	0.463	0.500	5.710000e-01	6.270
3РМ	17.0	8.705882e-01	1.284895e+00	0.0	0.000	0.200	1.400000e+00	4.200
3PA	17.0	2.300000e+00	2.967322e+00	0.0	0.100	1.000	3.700000e+00	9.800
3P%	17.0	2.324118e-01	1.906024e-01	0.0	0.000	0.282	4.190000e-01	4.550
FTM	17.0	1.294118e+00	1.598621e+00	0.0	0.600	0.700	1.100000e+00	5.500
FTA	17.0	1.582353e+00	1.710349e+00	0.0	0.800	1.100	1.300000e+00	5.900
FT%	17.0	7.193529e-01	2.128870e-01	0.0	0.682	0.765	8.370000e-01	9.210
TOV	17.0	1.152941e+00	9.500774e-01	0.0	0.500	0.900	1.100000e+00	3.000
PF	17.0	1.523529e+00	5.596086e-01	0.0	1.300	1.600	1.800000e+00	2.600
ORB	17.0	6.588235e-01	3.953777e-01	0.0	0.300	0.600	9.000000e-01	1.3000
DRB	17.0	2.758824e+00	1.734956e+00	0.6	1.400	2.400	3.400000e+00	6.6000
RPG	17.0	3.388235e+00	1.896998e+00	0.9	1.800	3.300	3.800000e+00	7.6000
APG	17.0	2.276471e+00	2.139372e+00	0.0	0.600	1.800	2.700000e+00	7.300
SPG	17.0	6.176471e-01	4.050236e-01	0.0	0.400	0.600	8.000000e-01	1.600
BPG	17.0	5.588235e-01	5.062840e-01	0.0	0.200	0.400	9.000000e-01	1.8000
PPG	17.0	8.770588e+00	7.921471e+00	0.0	4.600	5.700	9.500000e+00	2.640

In [11]: gsw_palette = ["#0000cc", "#0000ff", "#0066ff", "#ffff99", "#ffff00", "#ffccons.palplot(sns.color_palette(gsw_palette))

In [12]: p = df.sort_values(by='PPG', axis=0, ascending=False)

```
In [13]: plt.figure(figsize=(12,6))
    plt.ticklabel_format(style='plain', axis='y')
    gsw_palette = ["#0000cc", "#0000ff", "#0066ff", "#ffff99", "#ffff00", "#ffcccmap = sns.color_palette(gsw_palette)
    g = sns.barplot(x='PLAYER', y='PPG', data=p, palette=cmap, alpha = 1)
    sns.despine(left=True, bottom=True, right=True)
    g.set_xticklabels(g.get_xticklabels(), rotation=90)
    g.set_ylabel("Points per Game")
    g.set_xlabel("Player")
    g.set_title('2017-18 PPG for the Golden State Warriors');
```

2017-18 PPG for the Golden State Warriors


```
In [14]: plt.figure(figsize=(12,6))
    plt.ticklabel_format(style='plain', axis='y')
    gsw_palette = ["#0000cc", "#0000ff", "#0066ff", "#ffff99", "#ffff00", "#ffccccmap = sns.color_palette(gsw_palette)
    g = sns.barplot(x='PLAYER', y='Salary', data=df, palette=cmap, alpha = 1)
    sns.despine(left=True, bottom=True, right=True)
    g.set_xticklabels(g.get_xticklabels(), rotation=90);
    g.set_ylabel("Salary in USD")
    g.set_xlabel("Player")
    g.set_title('2017-18 Salary for the Golden State Warriors');
```



```
In [16]: (pearsonr, pval) = stats.pearsonr(df['Salary'], df['PPG'])
In [17]: print("Pearson R: {} P-Val: {}".format(pearsonr, pval))
```

Pearson R: 0.8978699035288137 P-Val: 1.0072497980930858e-06

Discussion part 1

Starting with a bit of exploratory data analysis, we can see that our top three scorers are Steph Curry, Kevin Durant and May Thompson. Looking further into our top scorers, we see that Steph Curry and Kevin Durant have the same number of points per game for the 2017-2018 season. Interestingly, Kevin Durant is making roughly 11 million less than Steph Curry. Not being a sports person, I have no idea why this is. Maybe Steph Curry has a better agent?

(https://basketball.realgm.com/info/agent-client-list/Jeff-Austin/31)

Also, just based on two data points, you'd think if they are scoring the same, their salaries would be closer. So how correlated is PPG to Salary? If we take a look at our Seaborn jointplot for PPG and Salary, there's a definite linear correlation. What's nice about Seaborn's jointplot functionality is that it will also give us Pearson's R and the associated p-value. We see that our Pearson's R is 0.898 which means that PPG and Salary are highly correlated. Our p-value is 0.000001 which means our correlation is significant at alpha = 0.05, 0.01 and even 0.001 So for the question of PPG and Salary being correlated, we would reject the Null Hypothese in favor of the Alternate.

Using such a small sample size (1 team being the Golden State Warriors or 17 players), makes me a bit uncomfortable. lets take this a bit further and include more teams, and rerun our test to see if we continue to see such a highly significant correlation.

Question 2: In General, how does player PPG correlate with Salary?

Question 2a: What is the breakdown of Salary and PPG by player? What does it look like?

- · Ho: there is no correlation between player PPG and salary
- H1: there is a correlation between player PPG and salary

You can find the data here:

- · Salary Data:
 - https://en.hispanosnba.com/salaries/golden-state-warriors
 (https://en.hispanosnba.com/salaries/golden-state-warriors)
 - http://www.spotrac.com/nba/golden-state-warriors/cap/ (http://www.spotrac.com/nba/golden-state-warriors/cap/)
 - https://www.basketball-reference.com/contracts/GSW.html (https://www.basketball-reference.com/contracts/GSW.html)
 - http://hoopshype.com/salaries/boston_celtics/ (http://hoopshype.com/salaries/boston_celtics/)
 - https://www.basketball-reference.com/contracts/BOS.html (https://www.basketball-reference.com/contracts/BOS.html)
 - https://en.hispanosnba.com/salaries/boston-celtics (https://en.hispanosnba.com/salaries/boston-celtics)
 - http://hoopshype.com/salaries/chicago_bulls/ (http://hoopshype.com/salaries/chicago_bulls/)
 - https://www.basketball-reference.com/contracts/CHI.html (https://www.basketball-reference.com/contracts/CHI.html)
 - https://en.hispanosnba.com/salaries/chicago-bulls (https://en.hispanosnba.com/salaries/chicago-bulls)
 - http://hoopshype.com/salaries/dallas mavericks/ (http://hoopshype.com/salaries/dallas mavericks/)
 - https://www.basketball-reference.com/contracts/DAL.html (https://www.basketball-reference.com/contracts/DAL.html)
 - https://en.hispanosnba.com/salaries/dallas-mavericks (https://en.hispanosnba.com/salaries/dallas-mavericks)

- http://hoopshype.com/salaries/atlanta_hawks/ (http://hoopshype.com/salaries/atlanta_hawks/)
- https://www.basketball-reference.com/contracts/ATL.html (https://www.basketball-reference.com/contracts/ATL.html)
- https://en.hispanosnba.com/salaries/atlanta-hawks (https://en.hispanosnba.com/salaries/atlanta-hawks)
- http://hoopshype.com/salaries/denver_nuggets/ (http://hoopshype.com/salaries/denver_nuggets/).
- https://www.basketball-reference.com/contracts/DEN.html (https://www.basketball-reference.com/contracts/DEN.html)
- https://en.hispanosnba.com/salaries/denver-nuggets (https://en.hispanosnba.com/salaries/denver-nuggets)
- · Player Stats
 - https://basketball.realgm.com/nba/teams/Golden-State-Warriors/9/Stats (https://basketball.realgm.com/nba/teams/Golden-State-Warriors/9/Stats)
 - https://basketball.realgm.com/nba/teams/Boston-Celtics/2/stats/ (https://basketball.realgm.com/nba/teams/Boston-Celtics/2/stats/)
 - https://basketball.realgm.com/nba/teams/Chicago-Bulls/4/Stats (https://basketball.realgm.com/nba/teams/Chicago-Bulls/4/Stats)
 - https://basketball.realgm.com/nba/teams/Dallas-Mavericks/6/stats (https://basketball.realgm.com/nba/teams/Dallas-Mavericks/6/stats)
 - https://basketball.realgm.com/nba/teams/Atlanta-Hawks/1/stats
 (https://basketball.realgm.com/nba/teams/Atlanta-Hawks/1/stats)
 - https://basketball.realgm.com/nba/teams/Denver-Nuggets/7/Stats (https://basketball.realgm.com/nba/teams/Denver-Nuggets/7/Stats)

Region 2:

- San Francisco Bay Area, Golden State Warriors
- Boston, Boston Celtics
- Chicago, Chicago Bulls
- Dallas, Dallas Mavericks
- Atlanta, Alanta Hawks
- Denver, Denver Nuggets

```
In [18]: salaries = pd.read_csv('Salaries_2017_2018.csv')
    salaries.rename(columns={"PLAYER":"Player"}, inplace=True)
In [19]: playerstats = pd.read_csv('2017_2018_Reg_Season_Stats_Averages.csv')
In [20]: df6 = pd.merge(playerstats, salaries, how='inner', left_on='Player', right_odf6.rename(columns={"2017-18":"Salary"}, inplace=True)
    df6.dropna(inplace=True)
```

In [21]: df6.sort_values(by='Salary', axis=0, inplace=True, ascending=False)

In [22]: df6.head()

Out[22]:

	Player	Team	GP	MPG	FGM	FGA	FG%	3PM	3PA	3P%	 TOV	PF	ORB	DRB	R
0	Stephen Curry	GSW	51	32.0	8.4	16.9	0.495	4.2	9.8	0.423	 3.0	2.2	0.7	4.4	
108	Paul Millsap	DEN	38	30.1	5.3	11.4	0.464	1.0	3.0	0.345	 1.9	2.6	1.7	4.7	
34	Gordon Hayward	BOS	1	5.2	1.0	2.0	0.500	0.0	1.0	0.000	 0.0	1.0	0.0	1.0	
22	Al Horford	BOS	72	31.6	5.1	10.5	0.489	1.3	3.1	0.429	 1.8	1.9	1.4	5.9	
1	Kevin Durant	GSW	68	34.2	9.3	18.0	0.516	2.5	6.1	0.419	 3.0	2.0	0.5	6.4	

5 rows × 23 columns

In [23]: df6.describe().T

Out[23]:

	count	mean	std	min	25%	50%	75%	
GP	119.0	4.261345e+01	2.788661e+01	1.0	15.0000	52.000	6.900000e+01	
MPG	119.0	1.813529e+01	9.380810e+00	1.3	10.2000	17.400	2.590000e+01	
FGM	119.0	2.808403e+00	2.079300e+00	0.0	1.2000	2.400	4.000000e+00	
FGA	119.0	6.228571e+00	4.413023e+00	0.0	2.6000	5.300	9.350000e+00	
FG%	119.0	4.220840e-01	1.601187e-01	0.0	0.3835	0.444	4.995000e-01	
3РМ	119.0	8.058824e-01	8.305904e-01	0.0	0.0000	0.600	1.400000e+00	
3PA	119.0	2.265546e+00	2.062927e+00	0.0	0.5000	1.600	3.700000e+00	
3P%	119.0	2.668403e-01	1.875304e-01	0.0	0.0680	0.324	3.740000e-01	
FTM	119.0	1.128571e+00	1.037038e+00	0.0	0.5000	0.800	1.600000e+00	
FTA	119.0	1.472269e+00	1.234801e+00	0.0	0.5500	1.200	2.150000e+00	
FT%	119.0	6.594622e-01	2.706756e-01	0.0	0.5950	0.750	8.225000e-01	
TOV	119.0	1.001681e+00	7.099753e-01	0.0	0.5000	0.900	1.300000e+00	
PF	119.0	1.526050e+00	7.615175e-01	0.0	1.0000	1.600	2.000000e+00	
ORB	119.0	7.050420e-01	6.114513e-01	0.0	0.2000	0.500	1.100000e+00	
DRB	119.0	2.488235e+00	1.670490e+00	0.0	1.0000	2.300	3.600000e+00	
RPG	119.0	3.190756e+00	2.120281e+00	0.0	1.3000	3.000	4.700000e+00	
APG	119.0	1.681513e+00	1.559387e+00	0.0	0.5500	1.200	2.400000e+00	
SPG	119.0	5.739496e-01	4.076519e-01	0.0	0.3000	0.500	8.000000e-01	
BPG	119.0	3.403361e-01	3.385711e-01	0.0	0.1000	0.200	5.000000e-01	
PPG	119.0	7.553782e+00	5.757821e+00	0.0	3.2000	6.300	1.080000e+01	
Salary	119.0	4.796410e+06	7.077447e+06	14832.0	309416.0000	2163006.000	5.000000e+06	34682

In [24]: ppg = df6.sort_values(by='PPG', axis=0, inplace=False, ascending=False)

```
In [25]: plt.figure(figsize=(12,6))
    plt.ticklabel_format(style='plain', axis='y')
    g = sns.barplot(x='Player', y='PPG', data=ppg.head(20), palette='coolwarm_r
    sns.despine(left=True, bottom=True, right=True)
    g.set_xticklabels(g.get_xticklabels(), rotation=90);
    g.set_ylabel("Points per Game")
    g.set_xlabel("Player")
    g.set_title('Top 20 Players for 6 NBA Teams');
```

Top 20 Players for 6 NBA Teams


```
In [26]: dfbyteam = df6.groupby(by='Team').mean()
    dfbyteam.sort_values(by='PPG', ascending=False, inplace=True)
```

```
In [27]: plt.figure(figsize=(12,6))
    plt.ticklabel_format(style='plain', axis='y')
    g = sns.barplot(x=dfbyteam.index, y='PPG', data=dfbyteam, palette='coolwarm_sns.despine(left=True, bottom=True, right=True)
    g.set_ylim(0,9)
    g.set_xticklabels(g.get_xticklabels(), rotation=90);
    g.set_ylabel("Avg Points per Game")
    g.set_xlabel("Team")
    g.set_title('Avg Points per Game by Team');
```



```
In [28]: plt.figure(figsize=(12,6))
    plt.ticklabel_format(style='plain', axis='y')
    g = sns.barplot(x='Player', y='Salary', data=df6.head(20), palette='coolwarn
    sns.despine(left=True, bottom=True, right=True)
    g.set_xticklabels(g.get_xticklabels(), rotation=90);
    g.set_ylabel("Salary in USD")
    g.set_xlabel("Player")
    g.set_title('Top 20 Paid Players for 6 NBA Teams');
```



```
In [30]: plt.figure(figsize=(12,6))
    plt.ticklabel_format(style='plain', axis='y')
    g = sns.barplot(x=dfbyteam.index, y='Salary', data=dfbyteamsalary, palette='
    sns.despine(left=True, bottom=True, right=True)
    g.set_ylim(0,8000000)
    g.set_xticklabels(g.get_xticklabels(), rotation=90);
    g.set_ylabel("Avg Salary per Team")
    g.set_xlabel("Team")
    g.set_title('Avg Salary by Team');
```


In [31]: l = sns.lmplot(x='PPG', y='Salary', data=df6, col='Team', col_wrap=3, size=0
plt.ticklabel_format(style='plain', axis='y')

Out[32]: Text(0.5,0.98,'Player Salary vs PPG for 2017-2018')


```
In [34]: (pearsonr, pval) = stats.pearsonr(df6['Salary'], df6['PPG'])
print("Pearson R: {} P-Val: {}".format(pearsonr, pval))
```

Pearson R: 0.5216031215014549 P-Val: 1.1818203195944583e-09

Discussion part 2

After sampling from a few more teams our picture of Salary and PPG changes a bit. Doing some exploratory data analysis we see that out of the 6 teams sampled, Steph Curry and Kevin Durant are still the top scorers with Kyrie Irving, Klay Thompson and Harrison Barnes not very far behind.

With more teams included in our dataset we can begin to investigate some groupby plots. Looking at PPG by team, we see that Golden State Warriors are the highest scoring team followed by the Denver Nuggets and Chicago Bulls.

Looking at Salary, we see that Steph Curry is still highest paid among the 6 teams selected. Paul Millsap and Gordon Hayward aren't too far behind Steph Curry in terms of salary.

When we groupby average salary, we see that the Golden State Warriors, followed by Denver and Chicago, are the highest paid team out of the 6 teams sampled.

Finally, looking at the correlation between salary and PPG we see that four Pearson's R correlation coefficent drops to about 0.52 which is lower than our original of 0.9 with GSW only. Interestingly, our p-value (1.182e-09) is much smaller when we include a larger sample. We would still reject the Null Hypothis in favor of the alternate, but this seems strange. You would think our p-value would be bigger. After doing some investigation (google, stackexchange, etc), it seems that this is fairly common. As the sample sizes increase you get a smaller p-value. If you have a large enough sample size, "everything becomes significant".

Good discussion here:

https://www.researchgate.net/post/Question about Correlation Analysis I got the significant p005 (https://www.researchgate.net/post/Question about Correlation Analysis I got the significant p005

Related: <u>https://stats.stackexchange.com/questions/93757/pearson-correlation-coefficient-test-low-r-and-low-p-value?</u>

utm medium=organic&utm source=google rich qa&utm campaign=google rich qa (https://stats.stackexchange.com/questions/93757/pearson-correlation-coefficient-test-low-r-and-low-p-value?utm medium=organic&utm source=google rich qa&utm campaign=google rich qa)

https://stats.stackexchange.com/questions/133488/interpreting-high-p-value-and-low-correlation-value (https://stats.stackexchange.com/questions/133488/interpreting-high-p-value-and-low-correlation-value)

Finally!

For the acutal Assignment, I chose the Seaborn Hexgrid-Jointplot to answer my research question.

Why not a simple linear regression plot? I could have done that but I think the hex plot is much more insightful, and functional than a standard linear regression jointplot. Looking at the plot we still get a scatter plot effect with the hex-points plus we are able to quickly determine the density of the salary vs ppg. We can see from the plot below, many players are making less than roughly 5 million and scoring rougly fewer than 10 points per game. We can also see that the distributions of player salary and player PPG are positively skewed. In addition to skewness we are presented with a rug plot to, again, show the desnity and spread of salary and PPG. Finally to answer my research question, Seaborn jointplots give us the Pearson's R score and a p-value. We can see from the original question, our correlation coefficient was 0.9. When we sampled from 6 different teams, the correlation coefficient went down to 0.52. So while we don't have as strong a correlation as before, we can still say that PPG and Salary are correlated.

