Exercice N°4(3 points)

Soit la suite U_n définie par $U_n = \int_0^1 x^{n+1} e^x dx$

- 1) En utilisant une intégration par partie calculer Uo.
- 2) Montrer que la suite U est décroissante.
- 3) On a représenté Cf et Cg ci-dessous dans un repère $(O; \vec{t}; \vec{j})$

où
$$f(x) = x^2 e^x$$
 et $g(x) = x e^x$

- 4) a- Résoudre graphiquement g(x) = f(x)
 - a- Comparer f et g sur l'intervalle [0,1].
 - b- Déterminer La valeur de la partie en couleur grise sur la figure ci-dessus (vous pouvez calculer U1).

- 2) Montrer que pour tout $x \in \left]0; +\infty\right[; f'(x) = -\frac{g(x)}{2x^2}$
- 3) Etudier alors le tableau des variations de f.
- 4) Calculer $\lim_{x \to +\infty} f(x) + \frac{1}{2}x$, que peut-on déduire?
- 5) Montrer que $f(\alpha) = -\alpha + \frac{2}{\alpha}$ puis donner un encadrement $f(\alpha)$.
- Tracer alors Cf.(on prendra α = 1.15)
- 7) Soit la fonction $h(x) = -\frac{1}{2}x + \frac{1}{x}(1 + 2\ln|x|)$ ou x est un réel non nul
 - a- Montrer h est une fonction impaire.
 - b- Vérifier si x est strictement positif on aura h(x) = f(x)
 - c- Déduire alors une construction de Ch où Ch est la courbe représentative de le même repère
- 8) Soit A l'aire de la partie du plan limitée par la courbe Cf, l'axe des abscisses et les axes x= 1, x=2
 - a- Hachurer la partie A
 - b- Vérifier que $\frac{1}{2}$ (lnx) ² est une primitive de de $\frac{\ln x}{x}$.
 - c- Déterminer la valeur de A.

Exercice N°3(4 points)

On considère l'équation (E):11x-7y=5 où x et y sont des entiers relatifs.

- 1) Justifiant que (E) admet au moins des solutions dans $\mathbb{Z}^*\mathbb{Z}$.
- 2) En utilisant l'algorithme d'Euclide déterminer une solution particulière de (E).
- Résoudre alors (E).
- On considère l'équation (F) 11x2-7y2=5 où x et y sont des entiers relatifs.
 - a- Démontrer que si le couple (x;y) est une solution de (F) alors $x = 2y^2[5]$
 - b- Soient x et y des entiers relatifs .Recopier et compléter les deux tableaux suivants.

Modulo 5, x est congru à	0	1	2	3	4
Modulo 5, x² est congru à		**	*	- 12	*

Modulo 5, y est congru à	0	1	2	3	4
Modulo 5, 2y² est congru à					

Quelles sont les valeurs possibles du reste de la division euclidienne de x^2 et de $2y^2$ par 5.

- c- En déduire que si le couple (x;y) est solution de (F) alors x et y sont multiples de 5.
- d- Démontrer que si x et y sont multiple de 5 alors le couple (x ;y) n'est pas solution de
 (F) .Que peut-on en déduire pour l'équation (F)

Lycée Utique -BIZERTE	Devoir de synthèse N°2	A.S 2020-2021
BAC info	JELASSI Adel	Durée : 3h

Exercice N°1(5 points)

La courbe (C) ci-dessous représente dans un repère orthonormé (O, \vec{t} , \vec{j}) une fonction

f définie sur IR par : $f(x) = \frac{ae^x + b}{e^x + 1}$ où a et b sont deux réels. Les droites d'équations : y = 1 et y = -1 sont des asymptotes à (C) respectivement au voisinage de $+\infty$ et au voisinage de $-\infty$. (L'unité graphique :

2cm)

- 1) a) A l'aide d'une lecture graphique déterminer : $\lim_{x \to \infty} f(x)$ et $\lim_{x \to \infty} f(x)$
 - b) En déduire que : a=1 et b=-1.
- 2) Montrer que la fonction f est impaire.
- 3) a) Vérifier que pour tout réel x on a : $f(x) = -1 + \frac{2e^x}{e^x + 1}$
- b) Calculer, en cm², l'aire A de la partie du plan limitée par la courbe (C), l'axe (O, \vec{i}) et les droites d'équations : x=0 et x=1.
- c) En déduire, en cm², l'aire \mathcal{A}' de la partie du plan limitée par la courbe (C), la droite d'équation y=1 et les droites d'équations x=0 et x=1.
- 4) a) Montrer que f réalise une bijection de IR sur un intervalle J que l'on précisera.
 - b) Déterminer l'expression de f ·1 (x); pour tout x de J.
 - c) Montrer que f⁻¹ est dérivable en 0 et Déterminer le signe de (f⁻¹)'(0).

Exercice N°2(6 points)

- A) Soit la fonction g définie sur $]0; +\infty[$ par $g(x) = 4 \ln x + x^2 2$.
- Calculer g'(x) puis déduire son tableau de variation (on doit calculer les limites au bornes de son domaine de définition)
- Montrer que l'équation g(x) = 0 admet une unique solution α puis vérifier que 1.1 < α < 1.2
- 3) Déduire le tableau de signe de g.
- B) Soit la fonction f définie sur $]0; +\infty[$ par $f(x) = -\frac{1}{2}x + \frac{1}{x}(1 + 2\ln x)$

et Cf sa courbe représentative de dans un repère orthonormé $(O; \vec{i}, \vec{j})$.

1) Calculer $\lim_{x \to +\infty} f(x)$, $\lim_{x \to 0^+} f(x)$

On pose pour tout $x \in]0, +\infty[$, $g(x) = f(x) + \frac{1}{\sqrt{e}}(x-e)$.

On donne ci-dessous le tableau de variation de la fonction g'

0	e	+0
	0	0 e

- (a) Montrer que g realise un bijection de $]0, +\infty[$ sur un intervalle que l'on déterminera.
- **b** Calculer g(e) et en déduire le signe de g(x) pour tout x > 0
- (c) En déduire la position relative de (\mathscr{C}_f) et la tangente T .
- **d** En déduire que A(e,0) est un point d'inflexion à la courbe (\mathscr{C}_f) .
- 5 Dans la figure de l'annexe jointe, on donne la courbe de la fonction logarithme népérien
 - (a) Vérifier que le point $C(0, \sqrt{e}) \in T$
 - **b** Placer les points A(e,0), $B\left(\frac{1}{e},\frac{2}{\sqrt{e}}\right)$ et $C(0,\sqrt{e})$ dans le repère $(O,\overrightarrow{i},\overrightarrow{j})$.
 - \bigcirc Tracer dans l'annexe la tangente T et (\mathscr{C}_f) .
- **6** On donne le réel $\lambda \in]0, e[$. On désigne par \mathcal{A}_{λ} (en ua) l'aire de la partie du plan limitée la courbe (\mathscr{C}_f) , l'axe des abscisses et les droites $x = \lambda$ et x = e
 - (a) À l'aide d'une intégration par partie montrer que $A_{\lambda} = \frac{-2}{3}(\lambda \lambda \ln \lambda)\sqrt{\lambda} + \frac{4}{9}(e\sqrt{e} \lambda\sqrt{\lambda})$
 - **b** Déterminer $\lim_{\lambda \to 0^+} A_{\lambda}$.

Soit f la fonction definie sur \mathbb{R} par $f(x) = \frac{2e^x - 1}{e^x + 1}$.

On désigne par (\mathscr{C}_f) sa courbe representative dans le repère $(O, \overrightarrow{i}, \overrightarrow{j})$

- 1 a Calculer $\lim_{x\to\infty} f(x)$. Interpréter graphiquement le résultat.
- (2) (a) Montrer que $f'(x) = \frac{3e^x}{(e^x + 1)^2}$ pour tout $x \in \mathbb{R}$
 - (b) Dresser le Tableau de variation de f
 - $\text{ Montrer que l'equation } f(x) = 0 \quad \text{ admet dans } \mathbb{R} \text{ une unique solution } \alpha \text{ .}$ Vérifier que $-1 < \alpha < \frac{-1}{2}.$
 - **d** Vérifier que $\alpha = -\ln(2)$.
- Tracer (\mathscr{C}_f) la courbe de f dans le repère $(O, \overrightarrow{i}, \overrightarrow{j})$.
- 4 a Montrer que f admet une fonction reciproque f^{-1} définie sur un intervalle J que l'on précisera
 - **(b)** Construire $(\mathscr{C}_{f^{-1}})$ la courbe de f^{-1} dans le même repére $(O, \overrightarrow{i}, \overrightarrow{j})$.
- (5) (a) Vérifier que $f(x) = \frac{3e^x}{e^x + 1} 1$ pour tout $x \in \mathbb{R}$
 - **(b)** Vérifier que $F(x) = 3 \ln (e^x + 1) x$ est une primitive de f.
- Soit λ un réel strictement inférieur à -1. On désigne par $A(\lambda)$ l'aire de la partie du plan limitée par la courbe (\mathscr{C}_f) et les droites d'équations respectives y=0, x=-1 et $x=\lambda$.
 - (a) Montrer que $A(\lambda) = 3\ln(e^{\lambda}+1) \lambda 3\ln(1+\frac{1}{e}) 1$.
 - **(b)** Calculer $\lim_{\lambda \to -\infty} A(\lambda)$.

7.5 pts

Exercice 3

Soit la fonction f définie sur $[0, +\infty[$ par : $f(x) = \begin{cases} \sqrt{x}(1 - \ln x) & \text{si } x > 0 \\ 0 & \text{si } x = 0 \\ \longrightarrow \longrightarrow \infty \end{cases}$

On désigne par (\mathscr{C}_f) sa courbe représentative dans un repère orthonormé $(O,\overrightarrow{i},\overrightarrow{j})$

- 1 a Vérifie que pour tout x > 0 , $f(x) = \sqrt{x}(1 2 \ln \sqrt{x})$
 - (b) Montrer que f est continue à droite en 0.
 - $\text{ Montrer que } \lim_{x \to 0^+} \frac{f(x)}{x} = +\infty \quad \text{et interpréter graphiquement le résultat }.$
- Calculer $\lim_{x \to +\infty} f(x)$ et Montrer que $\lim_{x \to +\infty} \frac{f(x)}{x} = 0$ et interpréter graphiquement le résultat .
- 3 (a) Montrer que pour tout $x \in]0, +\infty[$; $f'(x) = \frac{-1}{2\sqrt{x}}(1 + \ln x)$
 - **b** Dresser le tableau de variation de f.
 - Soit le point A(e,0) et T la tangente à (\mathcal{C}_f) en AMontrer que l'équation de la tangente T est : $y = \frac{-1}{\sqrt{e}}(x-e)$

Lycée cité Ibn khaldoun Tunis 2 Lycée Ben Guerdane 1 Ali Dhahbi ~ Neji Abdelkarim A.SC: 2023 - 2024

Le sujet comporte 4 pages numérotées 1/4 à 4/4

Exercice 1

6 pts

Une entreprise produit et commercialise des puces GPS.

Elle dispose de deux centres de production A et B qui produisent respectivement 60% et 40% des puces électroniques .

Après leur sortie des centres de production, ces puces sont regroupées dans les laboratoires de contrôle de qualité; où elles sont testées pour savoir si elles sont commercialisables. L'expérience à montré que :

- 80% des puces sortant du centre de production A sont commercialisables
- 75% de l'ensemble des puces produites sont sélectionnées à l'issue de ce test comme étant commercialisables.
- Un technicien de contrôle de qualité prélève une puce au hasard pour lui faire passer le test. On notera les évènements suivants :
 - A «la puce est issue du centre de production A»
 - B «la puce est issue du centre de production B»
 - T « la puce est sélectionnée à l'issue du test comme étant commercialisable » .
 - a Décrire la situation par un arbre pondéré.
 - **b** Déterminer $P(\mathbf{T})$.
 - © Sachant que la puce est issue du centre de production B . Calculer la probabilité que cette puce soit commercialisable .
- 2 Sachant que la puce est commercialisable. Calculer la probabilité que cette puce soit issue du centre de production A.
- Pour faire les tests, les techniciens reçoivent les puces par lots de 10.

 On note X la variable aléatoire qui à chaque lot choisi au hasard associe le nombre de puces commercialisables qu'il contient.
 - a Donner la loi de probabilité de X.
 - **b** Calculer la probabilité qu'au moins une puce du lot ne soit pas commercialisable.
 - © On envisage de modifier le nombre de puces par lot . (on note n le nombre de puces). Déterminer la taille minimale d'un lot pour que la probabilité que ce lot contienne au moins une puce non commercialisable soit supérieure à 0,98.
- On estime que la durée de vie de ces puces GPS suit une loi exponentielle de paramètre $\lambda=0.14$. On note Y la variable aléatoire qui à une puce choisie au hasard associe sa durée de vie en années
 - (a) Calculer la probabilité pour que la durée de vie de puce choisie soit supérieure à 5 ans .
 - **b** Une voiture est équipé d'un dispositif qui utilise une de ces puces et qui a été achetée neuve il y a 4 ans . quelle est la probabilité que la puce ne depasse pas 2 ans de plus?