Morphing Intro

Morphing in film: Willow

https://www.youtube.com/watch?v=IKzbsDG58pc

500 years of female portraits in western art

http://youtu.be/nUDIoN- Hxs

Morphing overview

- A morph from one image to another involves
 - Warping each image to an intermediate shape
 - Cross-dissolving (blending) the two warped image

Figure 13.1: A Step in a Morph of a Brick into a Ball

Cross-Dissolving

Blend images with over operator

blend(i,j) = (1-t)
$$src(i,j) + t dst(i,j)$$
 (0 $\leq t \leq$ 1)

Steps in a morph

- Morphing includes a series of warping/blending steps
- Typically use interpolation over some "time", t, to get them!

Steps in a morph

- Morphing includes a series of warping/blending steps
- Typically use interpolation over some "time", t, to get them!

The challenge

• Smoothly transform a face into another

Why not just blend?

- Interpolate whole images:
 - Image(t) = (1-t) * Image1 + t * Image2

Why not just blend?

- Interpolate whole images:
 - Image(t) = (1-t) * Image1 + t * Image2

Just blending is not enough

- Features (eyes, mouth, etc.) are not aligned
- It is probably not possible to get a global alignment
- We need to also interpolate the LOCATION of features (warp!)

How to average a dog?

- What to do?
 - Cross-dissolve doesn't work
 - Global alignment doesn't work
- Feature matching
 - Nose to nose, tail to tail, etc.
 - This is a local warp!

Morphing: warp first, then cross-dissolve

For an intermediate step t

- 1. Find the average shape (the "mean dog")
 - local warping
- 2. Find the average color
 - Cross-dissolve the warped images

Summary: morphing sequence

- How do we create a morphing sequence?
 - 1. Create an intermediate shape (by interpolation)
 - 2. Warp both images towards it
 - 3. Cross-dissolve the colors in the newly warped images

Morphing is object averaging

- The aim is to find "an average" between 2 objects
 - Not an average of two images of objects
 - ...but an image of the average object!
- How do we know what the average object looks like?
 - We haven't a clue!
 - But we can often fake something reasonable, usually with required user/artist input

Morphing Schemes

1. Mesh-based morph

Mesh-based warping

- 1. Specify a grid on top of each image
- 2. Deform grid vertices
- 3. At each time step
 - Interpolate the positions of vertices to get an intermediate mesh
 - Warp each image to this mesh (e.g., bilinear warp, separable mesh warp)
 - Blend the warped images

How to do the warp?

- Specify a grid on top of the image
- Deform vertices of the grid
- Warp image by treating each quadrilateral in the grid separately

Separable mesh warp

- Decompose the warp into
 - Horizontal pass
 - Vertical pass

b) full mesh warp in two steps

Figure 12.10: Mesh Warp Implementation Using Horizontal and Vertical Displacements

ullet Apply horizontal movement to each mesh point in the u direction

Construct vertical line segments

Intersect scanlines with line segments

- Resample across each scanline
 - Use box filter to account for overlapping

- Resample across each scanline
 - Use box filter to account for overlapping
 - Use tent filter to fill in gaps

Separable mesh warp

- Better results using splines
- After horizontal pass, repeat the process over image columns

Figure 12.13: Linear Interpolation vs. Cubic Polynomial Interpolation

Mesh-based warping

- How big of a grid is necessary?
- Really, we'd rather specify just a few points, not a grid

Morphing Schemes

2. Triangle-based morph

Sparse specification for morphs

- Specify corresponding points
- Interpolate to a complete warping function
- How do we go from feature points to pixels?

Use a triangle mesh

- 1. Input correspondences at key feature points
- 2. Define a triangular mesh over the points
 - Same mesh in both images!

3. Create an intermediate mesh and warp each triangle from source to destination

Warping a triangle: option #1

- Given two triangles: ABC and A'B'C' in 2D (12 numbers)
- Need to find transform T to transfer all pixels from one to the other
- What kind of transformation is T?

Warping a triangle: option #1

- Given two triangles: ABC and A'B'C' in 2D (12 numbers)
- Need to find transform T to transfer all pixels from one to the other
- What kind of transformation is T?
- How can we compute the transformation matrix?
 - Solve for it!

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ c & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Warping a triangle: option #2

- Use barycentric interpolation
- Each point P is an area-weighted average of the vertices of the triangle

Example: Triangle warping

The inverse map works the same way

Morphing Schemes

3. Segment-based morph

Michael Jackson's Black or White

http://youtu.be/F2AitTPI5U0?t=5m15s

The Beier & Neely algorithm

- Specify the warp by specifying corresponding vectors
- Interpolate to a complete warping function

The Beier & Neely algorithm

- Given images A and B, and their corresponding sets of vectors, V_A and V_B , for each time frame t:
 - Interpolate the positions of the corresponding vectors based on t to determine the destination (intermediate) shape
 - Warp image A to the destination shape
 - Warp image B to the destination shape
 - ullet Cross-dissolve using a blending factor of t

Warping with line segments

- Given **PQ** and **P'Q'**, warp a point **X** to a point **X'**
 - Measure distance u along the segment
 - The direction of ${\it PQ}$ defines a side, measure distance v from the right side

$$u = \frac{(X - P) \cdot (Q - P)}{||Q - P||^2}$$

$$v = \frac{(X - P) \cdot perp(Q - P)}{||Q - P||}$$

$$X' = P' + u \cdot (Q' - P') + \frac{v \cdot perp(Q' - P')}{||Q' - P'||}$$

One line segment (globally) warping an image

- For each X in the destination image:
 - Find the corresponding *u*, *v*
 - Find X' in the source image for that u, v
 - OUT(X) = IN(X')

Multiple line segments

See [Beier and Neely, 1992] for details

Comparison to mesh morphing

• Pros: More Expressive

• Cons: Speed and Control

Example from Black or White

initial

t=0.5 (warped)

Example from Black or White

initial

t=0.5 (warped)

Example from Black or White

