情報処理応用B 第9回

藤田 一寿

■ QC7つ道具

- ・QCとはQuality Controlの略で品質管理のこと.
- •QC7つ道具とは品質管理で有用な7つの手法のこと.
- QC手法は工業製品の品質管理の手法であったが、現在では仕事の問題解決に用いられている。

■ QC7つ道具

- グラフ
- ・パレート図
- 管理図
- 散布図
- 特性要因図
- チェックシート
- 層別
- ヒストグラム

グラフ

- データの可視化
- グラフは目的に応じて使い分ける
- 折れ線グラフ、棒グラフ、円グラフ、帯グラフ、など

商品	4月	5月	6月	7月	8月	9月
商品A	350	340	380	400	450	500
商品B	120	120	110	90	100	80
商品C	50	55	75	80	110	120
商品D	250	250	260	240	260	240

■折れ線グラフ

• 数量の時間的変化を見るために用いる。

- 数量の大小関係を見るために用いる。
- 時間変化を見る場合には用いない。

■ 円グラフ

- ・割合(占有率)を見る
- ・1周100%になるようにする。

帯グラフ

・総量、割合の変化をみる場合に使う。

■ その他

- ・レーダーチャート
 - 項目ごとの評価の把握
- ・ガントチャート
 - ・ 作業の流れと進捗状況の確認

(wikipedia)

■ パレート図

- 件数順に項目を並べ、グラフにしたもの
- ・最も問題(重要)な項目を分析するための手法

No.	不良項目	件数	累積件数	累積比率
1	寸法不良	12	12	38.7%
2	こすりキズ	6	18	58.1%
3	断面不良	5	23	74.2%
4	剃り	3	26	83.9%
5	光沢不良	2	28	90.3%
6	その他	3	31	100.0%
	合計	31		

■ パレート図の役割

- 重要な項目を見つける
 - パレートの法則(8対2の法則)
 - ・ 事象の8割は2割の要因から生じる。
 - 2割の人が全体の8割の富をしめる、など
 - 主要な項目に対し、改善をした方が効果的
- 視覚的に不具合の割合をみる

寸法不良とこすりキズの不良が全体の6割を占めることがわかる。

■ 管理図

- 工程の状態を時間推移により把握
- ・よい状態の維持と管理

	表:血压	Eの値	
月日	x1	x2	x3
3月1日	95	120	101
3月2日	150	117	122
3月3日	137	129	123
3月4日	143	140	102
3月5日	143	111	141
3月6日	141	116	161
3月7日	128	143	119
3月8日	93	111	101
3月9日	131	110	141
3月10日	116	129	147
3月11日	90	123	108
3月12日	129	95	119
3月13日	153	147	134
3月14日	162	132	131
3月15日	117	120	146
3月16日	128	105	110
3月17日	131	114	122
3月18日	116	117	81
3月19日	128	129	117
3月20日	93	123	96
3月21日	120	129	138
3月22日	117	123	87
3月23日	107	117	101
3月24日	141	132	119
3月25日	105	135	108

管理図と分布の関係

(QC数学の話 大村平より)

■ 管理図で必要な統計量

- 平均
- ・ 平均の平均
- 最大值、最小值
- 最大値最小値の差 R
- 最大値最小値の差の平均
- 管理限界線(UCL, LCL)

■管理限界の計算式

- X管理図
 - 上方管理限界
 - 下方管理限界

- R管理図
 - 上方管理限界
 - 下方管理限界

$$UCL = \bar{x} + A_2 \bar{R}$$
$$LCL = \bar{x} - A_2 \bar{R}$$

$$UCL = D_4 \bar{R}$$
$$LCL = D_3 \bar{R}$$

サンプルの 大きさ	A2	D3	D4
2	1.88		3.267
3	1.023		2.754
4	0.729		2.282
5	0.577		2.114
6	0.483		2.004
7	0.419	0.076	1.924
8	0.373	0.136	1.864
9	0.337	0.184	1.816
10	0.308	0.223	1.777

管理限界線の意味

- 管理限界線は平均±3*標準偏差
- ・管理限界線を超える可能性0.3%

統計的管理状態

• 基本的に管理限界線の間で状態が推移している状態

管理図から異常を判断

• 統計的にみて通常あり得ない状態を見つける

区間	確率
超A	0.00135
А	0.02134
В	0.1360
С	0.3413
С	0.3413
В	0.1360
А	0.02134
超A	0.00135

• 新宿の放射線量

• 要素の関係性をみる

メンバー	食事量(k Cal)	読書時間(分)	運動量(分)	ダイエット効果
スタッフA	1800	70	60	121.5
スタッフB	2200	44	20	95.7
スタッフC	2100	55	22	90.8
スタッフD	2500	66	12	86.7
スタッフE	2400	68	12	90.6
スタッフF	1900	54	22	106.9
スタッフG	1500	55	52	125.7
スタッフH	2200	60	47	112.4
スタッフI	2400	52	33	104.1
スタッフJ	1800	71	6	97.3

(QC数学の話 大村平より)

回帰直線をひいたもの

- ・2つのデータがどれくらい関係を持っているのかを表す統計量
- •-1から1までの数値

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

相関係数

$$r = -0.72$$

$$r = 0.9$$

特性要因図

・結果と原因との関係を1つの図に整理してわかりやすくしたもの

■ 余談

- 確率と統計ではどちらも確率を扱うのに別々に言葉があるのか?
 - ・確率は確率モデルが出発点、統計はデータが出発点という差がある.