A B $a \rightarrow o$ $b \rightarrow 1$ C

 $\begin{array}{ccc}
A & B \\
C & \rightarrow O \\
C & & \\
\end{array}$

 $\begin{array}{cccc}
A & B \\
C & \longrightarrow & O \\
C & & & \\
\end{array}$

A B

O

B

C

A

B

0 0

A 3

C

20. No. according to the define. injective is one to one
Since
$$f(0,0) = f(1,1) = 0$$
. $f(0) = f(1) = 0$. $0 \neq 1$

2b. Proof:
$$\emptyset f: \{0.1] \times 1N \rightarrow \mathbb{Z}$$
.

 $0=0$, $f(a.b) = b$, $b \in \mathbb{N}$, $f(a.b) \in \mathbb{N}$
 $0=1$. $f(a.b) = 1-b$, $b \in \mathbb{N}$. $f(a.b) \in (-\infty, 1]$

2 C: Not bijective because f is not injective.

3a: functions missing clements.
$$C_5 4^6 - C_5^2 3^6 + C_5^3 2^6 - C_5^4 1^6$$
.

Means missing 1, 2, 3, 4 elements respectively.

$$5$$
 a. $f = \{(0.01, (1.0), (2.11)\}$ if $w = \{0.1\}$, $\chi = \{1\}$

$$A = \{0, 17\}, B = \{0, 1\}, f(w) = \{0\}, f(x) = \{0\}.$$

Since cre hore:
$$f(w) \cap f(x) = \{0\}$$

$$f(w \cap x) = \emptyset$$
.

56:
$$f(f'(Y_1) = Y =) f$$
 is surjection.

Assume f is not surjective. domain of f is χ .

Then f(r) is not defined, Controdiction.

Thus $f(f^{-1}(r)) = r = f$ is surjective.

f is swietline => $f(f'(Y_1) = Y_1)$ Assume domain of f is X_1 f is surjecture. $f(X_1) = Y_1$ => $f(f'(Y_1)) = f(X_1) = Y_1$

- 6. meet the requirements.
- 7. finished, the Survey and Study the info sheet about final.