Azure Machine Learning

Instructor: Mithun Prasad, PhD

Email: miprasad@Microsoft.com

WHAT YOU WILL BE ABLE TO DO AFTER THIS TRAINING

Build a Data Science experiment using ML studio.

Gain familiarity with Data Science components of the studio.

Customize Data Science components in the studio.

MACHINE LEARNING 101

The first way of thinking about ML is by the type of information or input given to a system.

- **1. Supervised learning** we get the data and the labels e.g. linear regression
- 2. Unsupervised learning only get the data (no labels) e.g. clustering
- 3. Reinforcement learning reward/penalty based information (feedback)

Another way of categorizing ML approaches, is to the desired output:

- **1. Classification** (e.g. decision tree)
- **2. Regression** (e.g. linear regression)
- **3. Clustering** (e.g. k-means)
- **4. Density estimation** (e.g. histograms)
- **5. Dimensionality reduction** (e.g. principal component analysis

MACHINE LEARNING CAPABILITIES

How much/many (Regression)

Is it odd (Anomaly)

Which group (Clustering, Recommender)

Which action (Reinforcement Learning)

MACHINE LEARNING 101

Term	Definition
Training set	set of data used to learn a model
Test set	set of data used to test a model
Feature	a variable (continuous, discrete, categorical, etc.) aka column
Target	Label (associated with dependent variable, what we predict)
Learner	Model or algorithm
Fit, Train	Learn a model with an ML algorithm using a training set
Predict	w/ supervised learning, give a label to an unknown datum(data). w/unsupervised decide if new data is weird, in which group, or what to do next with the new data
Accuracy	percentage of correct predictions ((TP + TN)/ total)
Precision	Percentage of correct positive predictions (TP/ (FP + TP))
Recall	Percentage of positive cases caught (TP/ (FN + TP))

CORTANA INTELIGENCE IN A SENTENCE

Cortana Intelligence is a Platform and a Process to perform advanced analytics from start to finish

THE CORTANA INTELLIGENCE PLATFORM

AZURE ML ELEMENTS

AZURE ML STUDIO AND THE TEAM DATA SCIENCE PROCESS

CRISP-DM Business Understanding Data Understanding Data Preparation Deployment Modeling Data **Evaluation**

THE TEAM DATA SCIENCE PROCESS

CREATING AN EXPERIMENT

DATA INGESTION AND PREPARATION

DATA ACCESS (IMPORT)

▲ Import Data Data source Azure SQL Database Database server name irismldb3.database.windows.net Database name irisMLDB User name miprasad@irismldb3 Password ••••• Accept any server certificate (insecure) Database query 8 1 Select * from iris

DATA ACCESS (EXPORT)

Export Data	
Please specify data destination	
Azure SQL Database	\$
Database server name	=
irismldb3.database.windows.net	
Database name	=
irisMLDB	
Server user account name	=
miprasad@irismldb3	
Server user account password	=
•••••	
Accept any server certificate (insecure)	=
Comma separated list of columns to be saved	=
sepallength, petallength, Scored Labels	
Data table name	=
irisOutput	
Comma separated list of datatable columns	=
sepallength, petallength, scoredclass	

Data Format Conversion

ALGORITHMS

Microsoft Azure Machine Learning: Algorithm Cheat Sheet

This cheat sheet helps you choose the best Azure Machine Learning Studio algorithm for your predictive analytics solution. Your decision is driven by both the nature of your data and the question you're trying to answer.

CLUSTERING

Grouping items based on defined Features

- Initialize Model
 - Clustering

K-Means Clustering

CLASSIFICATION

Predicting the class or category for a single instance of data

■ Initialize Model

■ Classification

Multiclass Decision Forest	
Multiclass Decision Jungle	
Multiclass Logistic Regression	
Multiclass Neural Network	
One-vs-All Multiclass	
Two-Class Averaged Perceptron	
Two-Class Bayes Point Machine	
Two-Class Boosted Decision Tree	
Two-Class Decision Forest	
Two-Class Decision Jungle	
Two-Class Locally-Deep Support Vector Machine	
Two-Class Logistic Regression	
Two-Class Neural Network	
Two-Class Support Vector Machine	

ANOMAY DETECTION

Selecting items based on unusual or suspicious patterns

- Initialize Model
 - Anomaly Detection

One-Class Support Vector Machine

PCA-Based Anomaly Detection

REGRESSION

Predicting the value of a datum given its history

Initialize Model

Classification

Multiclass Logistic Regression	
Two-Class Logistic Regression	

Regression

Bayesian Linear Regression	
Boosted Decision Tree Regression	
Decision Forest Regression	
Fast Forest Quantile Regression	
Linear Regression	
Neural Network Regression	
Ordinal Regression	
Poisson Regression	

MODEL SCORING AND EVALUATION

SCORING A MODEL

Apply a trained model to:

- A list of recommended items
- Forecasts for time series models
- Estimates of projected demand, volume, or other numeric quantity, for regression models
- Cluster assignments
- A predicted class or outcome, for classification models
- Probability scores associated with these outputs

EVALUATING A MODEL

Metrics for Classification Models

- Accuracy, Recall, Precision, F1-Score
- AUC
- Average Log Loss
- Training Log Loss

Metrics for Regression Models

- Mean absolute error (MAE)
- Root mean squared error (RMSE)
- Relative absolute error (RAE)
- Relative squared error (RSE)
- Coefficient of determination

CROSS VALIDATION

▲ Partition and Sample

Partition or sample mode
Assign to Folds \$
Use replacement in th
Randomized split
Random seed
0
Specify the partitioner method Partition evenly
Partition evenly \$
Partition evenly Specify number of folds to

CUSTOMIZATION

CUSTOM TASKS

Integrate Ipython notebooks with Azure Machine Learning to perform custom tasks:

- Visualization
- Use Python client libraries to enumerate datasets and models in your workspace
- Read, load, and manipulate data

HOW TO USE EXECUTE PYTHON SCRIPT

- 1. Add the **Execute Python Script** module to your experiment.
- 2. Connect any datasets that you want to use for input. You can also provide a zipped file containing custom resources.

Dataset1. An optional dataset from your Machine Learning Studio workspace, containing input data or values.

Dataset2. A second dataset, also optional.

Script bundle. A zipped file containing custom resources.

