

PERT – Project Evaluation and Review Technique

- > Fornisce una rappresentazione grafica della timeline del progetto
- Permette di analizzare i task del progetto e stimare il tempo necessario al completamento di ciascun task
- Permette di stimare la durata massima necessaria al completamento del progetto.

Come Rappresentare il PERT: Background in Teoria dei Grafi

- > Un Grafo G=(V,E) consiste in:
 - O Un insieme $V = \{v_1, v_2, ..., v_n\}$ di vertici (nodi)
 - Un insieme $E = \{(v_i, v_j) \mid v_i, v_j \in V\}$ di coppie distinte di vertici detti archi
- Esempio: G = (V,E)
 - \circ V = {A, B, C, D, E, F}
 - o $E = \{ \{A,B\}, \{A,D\}, \{B,C\}, \{C,D\}, \{C,E\}, \{D,E\} \}$

Come Rappresentare il PERT: Background in Teoria dei Grafi

4

- > Grafo diretto D = (V,E) consiste in:
 - O Un insieme $V = \{v_1, v_2, ..., v_n\}$ di vertici (o nodi)
 - O Un insieme $E = \{(v_i, v_j) \mid v_i, v_j \in V\}$ di vertici distinti chiamati archi. L'arco (v_i, v_j) è detto uscente da v_i ed entrante in v_j .
- Esempio: D = (V,E)
 - \circ V = {A, B, C, D, E, F}
 - o $E = \{ (A,B), (A,D), (B,C), (D,C), (E,C), (D,E), (D,A) \}$

F

Esempio – Matrice delle Dipendenze

5

Attività	Predecessore	Durata (giorni)
А	-	3
В	Α	4
С	Α	2
D	В	5
E	С	1
F	С	2
G	D,E	4
Н	F,G	3

Date due attività, A e B, A è il predecessore di B se l'attività B può cominciare solo quando si è completata l'attività A!

Attività	Predecessore	Durata (giorni)
Α	-	3
В	Α	4
С	Α	2
D	В	5
E	С	1
F	С	2
G	D,E	4
Н	F,G	3

-	3
	3
Α	4
Α	2
В	5
С	1
С	2
D,E	4
F,G	3
	A B C C D,E

Attività	Predecessore	Durata (giorni)
А	-	3
В	Α	4
С	Α	2
D	В	5
E	С	1
F	С	2
G	D,E	4
Н	F,G	3

Attività	Predecessore	Durata (giorni)
Α	-	3
В	Α	4
С	Α	2
D	В	5
E	С	1
F	С	2
G	D,E	4
Н	F,G	3

Predecessore	Durata (giorni)
-	3
Α	4
А	2
В	5
С	1
С	2
D,E	4
F,G	3
	- A A B C C D,E

Attività	Predecessore	Durata (giorni)
А	-	3
В	Α	4
С	Α	2
D	В	5
E	С	1
F	С	2
G	D,E	4
Н	F,G	3

Attività	Predecessore	Durata (giorni)
А	-	3
В	Α	4
С	Α	2
D	В	5
E	С	1
F	С	2
G	D,E	4
Н	F,G	3

Predecessore	Durata (giorni)
-	3
Α	4
А	2
В	5
С	1
С	2
D,E	4
F,G	3
	- A A B C C D,E

Diagramma PERT – Forward Path

14

- > Farward Path:
 - O Permette di calcolare il *Tempo di Completamento* ovvero il tempo necessario a terminare il progetto
- Come si calcola: si stabiliscono Earl Start (Es) ed Earl Finish (Ef) del task e si considera la durata stimata del task (D).

 $Es_j = max(Ef_i)$

 $\mathsf{Ef}_{\mathsf{j}} = \mathsf{Es}_{\mathsf{j}} + \mathsf{D}_{\mathsf{j}}$

Diagramma PERT – Backward Path

22

- Backward Path:
 - O Permette di calcolare il *Massimo Tempo di Completamento* owero il tempo massimo necessario a terminare il progetto
- Come si calcola: si stabiliscono Late Start (Ls) ed Late Finish (Lf) del task e si considera la durata stimata del task (D).

 $Ls_i = Lf_i - D_i$

 $Lf_i = min(Ls_j)$

PERT – Total Float e Critical Path

29

> Total Float (Stack):

Critical path: sequenza di task critici per i quali lo sforamento del proprio tempo di completamento incide sul tempo totale di completamento del progetto.

Total Float = 0

Applicazione al Caso di Studio: Dashboard Alluvioni

32

Obiettivo: Realizzare una dashboard che permetta di monitorare in tempo reale dati provenienti da sensori distribuiti in zone a rischio alluvione all'interno di una città o di una regione. Questi sensori rileveranno parametri chiave come livello dell'acqua, intensità della pioggia, saturazione del suolo e velocità del vento. Ogni sensore avrà un codice identificativo univoco e sarà associato a una zona specifica soggetta a rischio idrogeologico.

Descrizione del sistema: I sensori, distribuiti in diverse aree geografiche come fiumi, canali, bacini di raccolta e aree urbane a rischio raccoglieranno periodicamente i seguenti parametri:

- Livello dell'acqua
- Velocità di flusso dei fiumi
- Pioggia cumulativa
- Saturazione del terreno
- Velocità e direzione del vento

Ogni sensore invierà periodicamente i dati al sistema centrale insieme allo stato di funzionamento del sensore stesso (0-1). La dashboard mostrerà i dati raccolti e informerà i gestori di eventuali superamenti delle soglie critiche predefinite, come ad esempio il supeamento del livello di allerta di un fiume o l'intensità delle piogge.

Applicazione al Caso di Studio

33

Attività	Predecessori
Z	V
	\overline{z}

Attività	Predecessori
7	UV

Forward Path	Backward Path
Esj = max(Efi)	Lsi = Lfi – Di
Efj = Esj + Dj	Lfi = min(Lsj)

ID	Attività	Predecessori	Durata (Ore)
Α	Analisi caso di studio	-	2
В	Assegnazione mansioni	А	1
С	Creazione database	А, В, Е	3
D	Analisi dei rischi	-	12
E	Formazione personale	A, D	2
F	Creazione Homepage	E, B, C, H	1
G	Integrazione sensori	С, Е, В	5
Н	Layout	А	3
1	Revisione	В, F	2
J	Testing	-	10
Duration Task Name			

Task Name
Early Start Earl Finish
Late Start Late Finish