Skrót przedmiotowy konkursu gCH - - 2018/2019

(numer porządkowy z kodowania)

Nr identyfikacyjny - wyjaśnienie

g – gimnazjum, symbol przedmiotu (np. BI – biologia), numer porządkowy wynika z numeru stolika wylosowanego przez ucznia

WOJEWÓDZKI KONKURS PRZEDMIOTOWY z Chemii dla uczniów dotychczasowych gimnazjów i klas dotychczasowych gimnazjów 2018/2019

TEST ELIMINACJE WOJEWÓDZKIE

•	Arkusz liczy 10 stron i zawiera 10 zadań oraz brudnopis.	Czas
•	Przed rozpoczęciem pracy sprawdź, czy Twój arkusz jest kompletny. Jeżeli zauważysz usterki, zgłoś je	
	Komisji Konkursowej.	pracy:
•	Zadania czytaj uważnie i ze zrozumieniem.	
•	Odpowiedzi wpisuj długopisem bądź piórem, kolorem czarnym lub niebieskim.	
•	Dbaj o czytelność pisma i precyzję odpowiedzi.	90 min.
•	W zadaniach zamkniętych prawidłową odpowiedź zaznacz stawiając znak X na odpowiedniej literze.	
•	Jeżeli się pomylisz, błędne zaznaczenie otocz kółkiem i zaznacz znakiem X inną odpowiedź.	
•	Oceniane będą tylko te odpowiedzi, które umieścisz w miejscu do tego przeznaczonym.	
•	Obok każdego numeru zadania podana jest maksymalna liczba punktów możliwa do uzyskania za prawidłową odpowiedź.	
•	Pracuj samodzielnie. Postaraj się udzielić odpowiedzi na wszystkie pytania.	
•	Nie używaj korektora. Jeśli się pomylisz, przekreśl błędną odpowiedź i wpisz poprawną.	
•	Nie używaj pomocy (np. kalkulator), jeżeli nie pozwala na to regulamin konkursu.	
	Powodzenia!	

Wypełnia Komisja Konkursowa po zakończeniu sprawdzenia prac

Imię i nazwisko ucznia					

Zadanie	1	2	3	4	5	6	7	8	9	10	Razem
Punkty możliwe do uzyskania											pkt.
Punkty uzyskane											pkt

D 1 '	1 1 /	1	1		1
Podnisy	członków	komisii	snrawo	Izaiacs	<i>i</i> ch nrace:
1 Oupisy	CZIOIIKOW	KOIIII	Sprand	ızaj qe j	on prace.

1	· ·			1	•	`
1	/ 1m1A	1 119700116120	1	$n \cap di$	กาต	١ ١
1.	(IIIII)	I Hazwisku)	pou	σ 10	, ,

^{2. (}imię i nazwisko).....(podpis)

Zadanie 1 (10 pkt)

1. Aby potwierdzić obecnoś	sć białka w wełn	nie owczej należy:			
A. użyć odczynnika Troi	nmera	B. użyć roztworu kwasu azotowego(V)			
C. użyć jodyny		D. użyć roztworu tlenku sreb	ora		
		zyna się od uranu – 238, a ko padów β [–] , która występuje w			
Α. 6 α i 8 β	Β. 7 α i 5 β	C. 8 α i 6 β ⁻	D. 8α i 4 β ⁻		
3. Węglowodór o nazwie 2,	2 – dimetylobuta	an jest izomerem:			
A. pentanu	B. heksanu	C. heptanu	D. oktanu		
	· ·	a liczba atomów tlenu jak w 6	5 molach P ₂ O ₅ ?		
A. 3 molach	B. 6 molach	C. 10 molach	D. 18 molach		
5. Jaką objętość w warunka i 22 g CO ₂ ?	ch normalnych z	ajmuje mieszanina zawierają	aca 0,2 mola NH ₃		
A. $15,68 \text{ dm}^3$	$B.17,92 \text{ dm}^3$	$C.16,82 \text{ dm}^3$	D. 24,64 dm ³		
6. Do całkowitego zobojętn	ienia jonów woo	dorowych zawartych w 0,3 m	nola H ₂ SO ₄ potrzeba:		
A. 0,3 mola NaOH	B. 0,6 mola N	aOH C. 0,8 mola NaOH	D. 0,4 mola NaOH		
7. W jakim stosunku molov związkiem nasyconym?	vym należy zmie	szać acetylen z bromem, aby	powstały produkt był		
A. 2:1	B. 1:1	C. 1: 2	D. 1:3		
8. Rozpuszczono 8 g tlenku kwasu siarkowego (VI) v		g wody. Stężenie procentow	re otrzymanego roztworu		
A. 8%	B. 12%	C. 15%	D. 9,8%		
9. Który zestaw substancji z	zawiera związki,	które ulegają reakcji hydroli:	zy?		
A. Skrobia i fruktoza		B. Celuloza i glukoza	ı		
C. Sacharoza i skrobi	a	D. Sacharoza i frukto	oza		
10. Aby odróżnić świecę wy	ykonaną z parafi	ny od świecy wykonanej z sto	earyny należy:		
C. Nie da się odróżnić	wiec ze stężony: tych świec	ec m roztworem wodorotlenku s m kwasu chlorowodorowego			

Zadanie 2 (5 pkt)

W czystym tlenie amoniak spala się do azotu zgodnie z równaniem;

$$4\ NH_{3(g)} \ + \ 3\ O_{2(g)} \quad \to \quad 2\ N_{2(g)} \quad + \quad 6\ H_2O_{(c)}$$

Odmierzono 13 dm³ mieszaniny amoniaku i tlenu (w warunkach normalnych). Objętość gazów po zakończeniu reakcji w tych samych warunkach wynosiła 5,5 dm³, a po przepuszczeniu przez płuczkę z wodą zmalała do 3 dm³.

Oblicz skład mieszaniny przed reakcją.

1		

zaprojektuj doswiadczenie, w ktorym można wykazac, że miedz jest metalem bardziej aktywnym niż srebro, mając do dyspozycji: blaszkę Cu i Ag oraz roztwory następujących substancji: CuSO ₄ , AgNO ₃ , HCl, H ₂ SO ₄ oraz odpowiedni sprzęt laboratoryjny.
Opis doświadczenia:
Przewidywane obserwacje:
Równanie reakcji:
Zadanie 4 (4 pkt)
Wykonano cztery doświadczenia, w których wspólnym substratem był kwas octowy. Zapisano następujące obserwacje:
Doświadczenie I – wydzieliła się substancja o zapachu zmywacza do paznokci Doświadczenie II – wydzielił się gaz, bezbarwny, bezwonny, lżejszy od powietrza
Doświadczenie III – wydzieliła się substancja o nieprzyjemnym zapachu
Doświadczenie IV - czarna substancja roztworzyła się i powstał roztwór o barwie niebieskiej
Napisz równania reakcji, które zaszły. Substraty wybierz z zestawu: Mg, Cu, C ₂ H ₅ OH, CuO, Cu(OH) ₂ , HCOONa, C ₃ H ₇ COONa
Doświadczenie I
Doświadczenie II
Doświadczenie III
Doświadczenie IV

Zadanie 3 (3 pkt)

Zadanie 5 (4 pkt)

Na zajęciach koła chemicznego uczniowie otrzymali za zadanie odróżnić roztwór glukozy od oztworu sacharozy. Projekt ma zawierać: N informacje, na jakich własnościach glukozy i sacharozy będzie opierał się projekt doświadczenia N rysunek - schemat eksperymentu z opisem								
nazwy lub wzory wybranych odczynników przewidziane obserwacje, w których uwzględnij barwy substratów i produktów.								

Zadanie 6 (6 pkt)

miareczkowano roztworu Wodorotlenku sodu dodano fenoloftalejnę, a następ miareczkowano roztworem HCl o stężeniu 0,2 mol/dm³. Odbarwienie roztworu nastąp po dodaniu 90 cm³ HCl. a/ Oblicz stężenie molowe badanego roztworu. Wynik podaj z dokładnością do dwóch mie po przecinku.	piło
b/ Podaj symbole lub wzory trzech jonów, których stężenie jest największe po dodaniu 120 cm³ kwasu solnego do badanego roztworu wodorotlenku sodu.	
c/ Jakie pH miał badany roztwór po dodaniu podanych objętości roztworu HCl • 60 cm³ pH 7 • 90 cm³ pH 7 • 120 cm³ pH 7 W miejsce kropek wstaw jedno ze stwierdzeń: mniejsze niż, wieksze niż lub równe	
d/ Oblicz stężenie molowe kwasu solnego po dodaniu 120 cm³ kwasu do roztworu NaOH.	

Zadanie 7 (4pkt)		
a/ Dobierz odpowiednie reagent	y i zapisz równania reakcji p	orzemian w podanym schemacie.
dioleinianostearynian glicerolu	→ tristearynian glicerolu1	→ stearynian sodu 2
1		
2		
b/ Oblicz, ile moli wodoru potrz	eba do reakcji z 0,8 mola di	oleinianostearynianu glicerolu.
c/ Podaj nazwy zwyczajowe pro	ocesów zachodzących zgodn	nie z zapisanymi w punkcie "a"

Zadanie 8 (3 pkt)

1.

2.

równaniami:

Oceń poprawność poniższych informacji, zakreślając literę P, jeśli uznasz ją za prawdziwą lub F jeśli uznasz ją za fałszywą.

1	W roztworze o odczynie kwasowym stężenie jonów H ⁺ jest mniejsze niż stężenie jonów OH ⁻	P	F
2	Dysocjacja elektrolityczna może być procesem odwracalnym	P	F
3	Reakcja ksantoproteinowa i biuretowa to reakcje charakterystyczne białek	P	F
4	Alkeny i alkiny odbarwiaja roztwór manganianu(VII) potasu	P	F
5	Sole mocnych kwasów i mocnych zasad ulegają reakcji hydrolizy.	P	F
6	Równe objętości różnych gazów w tych samych warunkach zawierają jednakowe liczby cząsteczek	P	F

Zadanie 9 (6 pkt)

Rozpuszczalność CuSO ₄ w temperaturze 293 K wynosi 24g/100g H ₂ O, a w temperaturze 353 K 56g/100g H ₂ O. Przygotowano 200 g roztworu nasyconego w 353 K, a następnie ochłodzono do 293 K. W wyniku tego wykrystalizowała sól pięciowodna. Masa molowa CuSO ₄ jest równa 160 g/mol, a hydratu 250 g/mol. a/ o ile zmalało stężenie procentowe CuSO ₄ ; b/ oblicz masę wykrystalizowanej soli.

Zadanie 10 (5 pkt)

Kwas mlekowy (kwas 2-hydroksypropanowy) jest organicznym związkiem chemicznym z grupy hydroksykwasów. Wzór kwasu mlekowego jest następujący: **CH3–CH(OH)–COOH**

Mleczan magnezu o wzorze (CH₃-CH(OH)-COO)₂Mg jest stosowany jako suplement diety uzupełniający niedobory magnezu.

a/ Mleczan magnezu otrzymuje się w wyniku reakcji weglanu magnezu z kwasem mlekowym

(sposób I) lub tlenku magnezu z kwasem mlekowym (sposób II).
Napisz w formie cząsteczkowej równania reakcji otrzymywania mleczanu magnezu opisanymi sposobami.

Sposób I:

Sposób II:

b/ W obecności kwasu siarkowego(VI) kwas mlekowy może reagować z alkoholami lub kwasami organicznymi.

Napisz równanie reakcji kwasu mlekowego z alkoholem etylowym i kwasem metanowym. Zastosuj wzory półstrukturalne (grupowe) związków organicznych.

Równanie reakcji z alkoholem etylowym:

c/ Kwas mlekowy powstaje między innymi w wyniku fermentacji fruktozy C₆H₁₂O₆ – jako jedyny

produkt tego procesu. Napisz równanie reakcji fermentacji mleczanowej fruktozy.

Zastosuj wzór półstrukturalny (grupowy) kwasu mlekowego.

BRUDNOPIS