Informed Search Algorithms

Chapter 3, Sections 5–6

Outline

- ♦ Best-first search
- ♦ A* search
- ♦ Heuristics
- ♦ Hill-climbing

ucs tree

Review: General search

```
 \begin{aligned} & \textit{function} \; \text{General-Search}(\; \textit{problem}, \text{Queuing-Fn}) \; \textbf{returns} \; \text{a solution, or failure} \\ & \textit{nodes} \leftarrow \text{Make-Queue}(\text{Make-Node}(\text{Initial-State}[\textit{problem}])) \\ & \textbf{loop do} \\ & \quad \text{if } \textit{nodes} \; \text{is empty then return failure} \\ & \textit{node} \leftarrow \text{Remove-Front}(\textit{nodes}) \\ & \quad \text{if } \text{Goal-Test}[\textit{problem}] \; \text{applied to State}(\textit{node}) \; \text{succeeds then return } \textit{node} \\ & \textit{nodes} \leftarrow \text{Queuing-Fn}(\textit{nodes}, \text{Expand}(\textit{node}, \text{Operators}[\textit{problem}])) \\ & \quad \text{end} \end{aligned}
```

A strategy is defined by picking the $order\ of\ node\ expansion$

Best-first search

Idea: use an *evaluation function* for each node – estimate of "desirability"

⇒ Expand most desirable unexpanded node

Implementation:

QUEUEINGFN = insert successors in decreasing order of desirability

Special cases:

greedy search

A* search

Romania with step costs in km

know the strange-line distance

Straight-line distance to Bucharest	
to Bucharest	
Arad	366
Bucharest	(
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

use in NP hard.

tree deepy

time cimitation

Greedy search

Evaluation function h(n) (heuristic) = estimate of cost from n to goal

E.g., $h_{SLD}(n) = \text{straight-line distance from } n \text{ to Bucharest}$

Greedy search expands the node that appears to be closest to goal

Properties of greedy search

Complete??

<u>Time</u>??

Space??

Optimal??

Properties of greedy search

Complete?? No – can get stuck in loops, e.g., lasi to Fagaras $\mathsf{lasi} \to \mathsf{Neamt} \xrightarrow{\mathsf{V}} \mathsf{lasi} \xrightarrow{\mathsf{Neamt}} \mathsf{Neamt} \xrightarrow{\mathsf{V}}$

Complete in finite space with repeated-state checking

<u>Time??</u> $O(b^m)$, but a good heuristic can give dramatic improvement

Space?? $O(b^m)$ —keeps all nodes in memory

Optimal?? No -> return what looks good rather than least cost solution

problem of UCS

A^* search

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

g(n) = cost so far to reach n (path cost)

h(n) =estimated cost to goal from n

f(n) =estimated total cost of path through n to goal

A* search uses an *admissible* heuristic

i.e., $h(n) \leq h^*(n)$ where $h^*(n)$ is the true cost from n.

E.g., $h_{\rm SLD}(n)$ never overestimates the actual road distance

Theorem: A* search is optimal

Optimality of A* (standard proof)

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G.

$$f(G_2) = g(G_2)$$
 since $h(G_2) = 0$
> $g(G)$ since G_2 is suboptimal
 $g(G)$ since $g(G)$ s

Since $f(G_2) > f(n)$, A* will never select G_2 for expansion

Optimality of A* (more useful)

Lemma: A^* expands nodes in order of increasing f value

Gradually adds "f-contours" of nodes (cf. breadth-first adds layers) Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$

Properties of A*

nave to expand all value ofig).

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

 \uparrow Time?? Exponential in [relative error in $h \times$ length of soln.]

Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand f_{i+1} until f_i is finished

The heuristic can control A*'s behaviour

- \diamondsuit If h(n) is very high relative to g(n), then only h(n) plays a role, and A* turns into . . . greedy search
- \Diamond If h(n) is 0, then only g(n) plays a role, and A* turns into ... \Diamond
- \diamondsuit If h(n) is always lower than (or equal to) the cost of moving from n to the goal, then A* . . .
- \diamondsuit If h(n) is sometimes greater than the cost of moving from n to the goal, then A* . . .
- \diamondsuit If h(n) is exactly equal to the cost of moving from n to the goal, then $A^*\dots$

The heuristic can control A*'s behaviour

- \diamondsuit If h(n) is very high relative to g(n), then only h(n) plays a role, and A* turns into Greedy Best-First-Search.
- \diamondsuit If h(n) is 0, then only g(n) plays a role, and A* turns into Uniform Cost Search, which finds the optimal solution.
- \diamondsuit If h(n) is always lower than (or equal to) the cost of moving from n to the goal, then A* is guaranteed to find a shortest path. The lower h(n) is, the more node A* expands, making it slower.
- \Diamond If h(n) is sometimes greater than the cost of moving from n to the goal, then A* is not guaranteed to find a shortest path, but it can run faster.
- \Diamond If h(n) is exactly equal to the cost of moving from n to the goal, then A* will only follow the best path and never expand anything else, making it very fast.

Examples of well-known heuristic functions

- \diamondsuit Manhattan distance (L_1) : On a square grid that allows 4 directions of movement.
- \diamondsuit Diagonal distance (L_∞) : On a square grid that allows 8 directions of movement.
- \diamondsuit Euclidean distance (L_2) : On a square grid that allows any direction of movement.

Admissible heuristics

E.g., for the 8-puzzle:

$$h_1(n) = ext{number of misplaced tiles}$$

 $h_2(n) = ext{total } \underline{ ext{Manhattan}} ext{ distance}$
(i.e., no. of squares from desired location of each tile)

$$\underline{\frac{h_1(S)=??}{h_2(S)=}??} \quad 7$$

$$\underline{\frac{h_2(S)=??}{2+3+3+2+4+2+0+2=1}}$$

Admissible heuristics

E.g., for the 8-puzzle:

$$h_1(n) = ext{number of misplaced tiles}$$

 $h_2(n) = ext{total } \underline{ ext{Manhattan}} ext{ distance}$
(i.e., no. of squares from desired location of each tile)

$$\underline{\frac{h_1(S) = ??}{h_2(S) =} ??}$$
 7 $\underline{\frac{h_2(S) = ??}{2+3+3+2+4+2+0+2}}$ 2+3+3+2+4+2+0+2 = 18

Dominance

If $h_2(n) \ge h_1(n)$ for all n (both admissible) then h_2 dominates h_1 and is better for search

Typical search costs:

$$d=14\ \ {
m IDS}=3,473,941\ {
m nodes}$$
 ${
m A}^*(h_1)=539\ {
m nodes}$ ${
m A}^*(h_2)=113\ {
m nodes}$ $d=24\ \ {
m IDS}={
m too\ many\ nodes}$ ${
m A}^*(h_1)=39,135\ {
m nodes}$ ${
m A}^*(h_2)=1,641\ {
m nodes}$

Relaxed problems

Admissible heuristics can be derived from the <u>exact</u> solution cost of a <u>relaxed</u> version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution

No other tiles

Iterative improvement algorithms

In many optimization problems, *path* is irrelevant; the goal state itself is the solution

Then state space = set of "complete" configurations; find optimal configuration, e.g., Travelling Salesperson Problem or, find configuration satisfying constraints, e.g., n-queens

In such cases, can use $iterative\ improvement$ algorithms; keep a single "current" state, try to improve it

Constant space, suitable for online as well as offline search

Example: Travelling Salesperson Problem

Find the shortest tour that visits each city exactly once

Relaxed problem: let path be any structure that connects all cities \implies use minimum spanning tree as heuristic for the TSP

calculate each loop and choose minimum

Example: n-queens

Put n queens on an $n\times n$ board with no two queens on the same row, column, or diagonal

Hill-climbing (or gradient ascent/descent)

"Like climbing Everest in thick fog with amnesia"

Hill-climbing contd.

Problem: depending on initial state, can get stuck on local maxima

Summary

Heurstics help reduce search cost, however, finding an optimal solution is still difficult.

Greedy best-first search is not optimal, but can be efficient.

A* search is complete and optimal, but is prohibitive in memory.

Hill-climbing methods operate on complete-state formulations, require less memory, but are not optimal.

Examples of skills expected:

- Demonstrate operation of search algorithms
- Discuss and evaluate the properties of search algorithms
- ♦ Derive and compare heuristics for a problem