Problem Set 7 Matheus Raka Pradnyatama

Exercise 1 (Book Exercise 5.1)

Continuous distributions: Normal, Uniform, and Exponential distributions

Discrete distributions: Binomial, Poisson distributions

Class Notes page 145: If v is absolutely continuous with respect to μ ($v \ll \mu$), then, if $\mu(A) = 0$, v(A) = 0, for all $A \in \mathcal{F}$

This means that for absolute continuity $(\mu_i \ll \mu_k)$:

If μ_k assign a zero probability for a set, μ_i must also assigns a zero probability for that set.

 X_1, X_4, X_5 follow continuous distributions

 X_2, X_3 follow discrete distributions

 X_6 follows a discrete distribution because it is a mixture of discrete and continuous random variables

X_1 and X_2 :

 μ_1 can assign probabilities to all numbers in $\mathbb R$ (continuous distribution)

 μ_2 can only assign probabilities to $\{0, 1, 2, ..., 6, 7\}$

There are sets where μ_2 assigns a 0 probability, but μ_1 assign a positive probability.

$$\mu_1 \text{ NOT} \ll \mu_2$$

A discrete distribution cannot be absolutely continuous to any distribution μ_2 is not absolutely continuous with respect to $\mu_1 \to \mu_2$ **NOT** $\ll \mu_1$

X_1 and X_3 :

 μ_1 can assign probabilities to all numbers in $\mathbb R$ (continuous distribution)

 μ_3 will assign 0 probabilities to non-integers (discrete distribution)

There are sets where μ_3 assigns a 0 probability, but μ_1 assign a positive probability.

$$\mu_1 \text{ NOT} \ll \mu_3$$

A discrete distribution cannot be absolutely continuous to any distribution μ_3 is not absolutely continuous with respect to $\mu_1 \to \mu_3$ NOT $\ll \mu_1$

X_1 and X_4 :

 X_4 derives its value from X_1 (a continuous random variable).

If μ_1 assign a 0 probability for a set, μ_4 must also assigns a 0 probability for that set.

Therefore, μ_4 is absolutely continuous with respect to $\mu_1 \rightarrow \mu_4 \ll \mu_1$

 μ_4 is an exponential distribution, which means it assigns 0 probabilities for negative values μ_1 can assign probabilities to all numbers in $\mathbb R$ (continuous distribution)

There are sets where μ_4 assigns a 0 probability, but μ_1 assigns a positive probability. μ_1 is NOT absolutely continuous with respect to $\mu_4 \rightarrow \mu_1 \text{NOT} \ll \mu_4$

X_1 and X_5 :

 μ_1 can assign probabilities to all numbers in \mathbb{R} (continuous distribution) μ_5 is continuous on [0,1].

If μ_1 assigns 0 probability for an set, μ_5 must also assign a 0 probability for that set. Therefore, μ_5 is absolutely continuous with respect to $\mu_1 \to \mu_5 \ll \mu_1$

There are sets where μ_5 assigns a zero probability (outside [0,1]), but μ_1 assigns a positive probability for those sets $\rightarrow \mu_1$ **NOT** $\ll \mu_5$

X_1 and X_6 :

 μ_1 can assign probabilities to all sets in $\mathbb R$ (continuous distribution) μ_6 cannot assign probabilities to all sets in $\mathbb R$ (has discrete properties) There are sets where μ_6 assigns 0 probability, but μ_1 assigns a positive probability μ_1 **NOT** $\ll \mu_6$

 μ_6 has both continuous and discrete properties μ_6 is not absolutely continuous with respect to $\mu_1 \to \mu_6$ NOT $\ll \mu_1$

X_2 and X_3 :

A discrete distribution cannot be absolutely continuous to any distribution Discrete vs discrete $\rightarrow \mu_2$ NOT $\ll \mu_3$ and μ_3 NOT $\ll \mu_2$

X_2 and X_4 :

A discrete distribution cannot be absolutely continuous to any distribution μ_2 is not absolutely continuous with respect to $\mu_4 \to \mu_2$ **NOT** $\ll \mu_4$

 μ_4 is a continuous distribution

 μ_2 can only assign probabilities to $\{0,1,2,...,6,7\}$ (discrete distribution) There are sets where μ_2 assigns 0 probability but μ_4 assign positive probability μ_4 is not absolutely continuous with respect to $\mu_2 \rightarrow \mu_4$ **NOT** $\ll \mu_2$

X_2 and X_5 :

A discrete distribution cannot be absolutely continuous to any distribution: μ_2 **NOT** $\ll \mu_5$

 μ_5 can assign probabilities to integers and non-integers in [0,1] μ_2 can only assign probabilities to integers $\{0,1,2,\ldots,6,7\}$

$$\mu_2(0.1) = \mu_2(0.3) = 0$$

There are sets where μ_2 assigns 0 probability but μ_5 assigns positive probability (Because μ_5 is continuous on all points between [0,1])

 $\mu_5 \text{ NOT} \ll \mu_2$

X_2 and X_6 :

A discrete distribution cannot be absolutely continuous to any distribution μ_2 NOT $\ll \mu_6$

 μ_6 has both continuous and discrete properties μ_6 is not absolutely continuous with respect to $\mu_2 o \mu_6$ NOT $\ll \mu_2$

X_3 and X_4 :

A discrete distribution cannot be absolutely continuous to any distribution μ_3 NOT $\ll \mu_4$

 μ_4 is a continuous distribution μ_3 cannot assign probabilities to all sets in $\mathbb R$ (discrete distribution) There are sets where μ_3 assigns 0 probability but μ_4 assign positive probability μ_4 is not absolutely continuous with respect to $\mu_3 \to \mu_4$ **NOT** $\ll \mu_3$

X_3 and X_5 :

A discrete distribution cannot be absolutely continuous to any distribution: μ_3 **NOT** $\ll \mu_5$

 μ_5 can assign probabilities to integers and non-integers in [0,1] μ_3 will assign 0 probabilities to non-integers (discrete distribution) There are sets where μ_3 assigns 0 probability but μ_5 assign positive probability μ_5 is not absolutely continuous with respect to $\mu_3 \rightarrow \mu_5$ **NOT** $\ll \mu_3$

X_3 and X_6 :

A discrete distribution cannot be absolutely continuous to any distribution μ_3 NOT $\ll \mu_6$

 μ_6 has both continuous and discrete properties μ_6 is not absolutely continuous with respect to $\mu_3 \rightarrow \mu_6$ **NOT** $\ll \mu_3$

X_4 and X_5 :

 μ_4 is continuous distribution that assigns 0 probabilities for negative values μ_5 can assign probabilities to numbers in [0,1] There are no sets where μ_4 assigns 0 probability but μ_5 assign positive probability

$$\mu_5 \ll \mu_4$$

 μ_5 assigns 0 probabilities for values not in [0,1] μ_4 is continuous distribution that assigns 0 probabilities for negative values There are sets where μ_5 assigns 0 probability but μ_4 assign positive probability μ_4 NOT $\ll \mu_5$

X_4 and X_6 :

 μ_4 is continuous distribution that strictly assigns positive probability for positive values μ_6 has both continuous and discrete properties There are sets where μ_6 assigns 0 probability but μ_4 assign positive probability μ_4 NOT $\ll \mu_6$

 μ_4 is assigns 0 probability for negative values μ_6 can assign positive probability for negative values There are sets where μ_4 assigns 0 probability but μ_6 assign positive probability μ_6 is not absolutely continuous with respect to $\mu_4 \rightarrow \mu_6$ **NOT** $\ll \mu_4$

X_5 and X_6 :

 μ_5 assigns 0 probability for sets not in [0,1] μ_6 has both continuous and discrete properties There are sets where μ_5 assigns 0 probability but μ_6 assign positive probability μ_6 NOT $\ll \mu_5$

 μ_6 can assign 0 probabilities for values in [0,1] μ_5 assigns positive probability for sets in [0,1] There are sets where μ_6 assigns 0 probability but μ_5 assign positive probability μ_5 NOT $\ll \mu_6$

Homework 7 - Matheus Raha - Stochastic Exercise 2

2) 1) Rage 13, for Martingale Betting Strategy:

[[Wn] = 0, Wn is a martingale: E[Wn+11Fn] = Wn

Mn+1 = 1 - Wn+1

E[MInt | Fn] = 1-E[Wn+1 | Fn] = 1-Wn = MIn → Mn is a mareingale

 $Mn = \begin{cases} |-W_n = |-1 = 0 \\ |-W_n = |-[-2^n+1] = 2^n \end{cases}$ $Mn = \begin{cases} |-W_n = |-[-2^n+1] = 2^n \\ |-W_n = |-[-2^n+1] = 2^n \end{cases}$ $Mn = \begin{cases} |-W_n = |-[-2^n+1] = 0 \\ |-W_n = |-[-2^n+1] = 0 \end{cases}$ $Mn = \begin{cases} |-W_n = |-[-2^n+1] = 0 \\ |-W_n = |-[-2^n+1] = 0 \end{cases}$

therefore, Mn is a nonnegative martingale

2) 2) From page 150 (5.4)

Qn (V) = E[1v.Mn] = E[E[1v Mn | Fm]] = E[1v E[Mn | Fm]]

because Mn is a martingale, E[Mn | Fm] = Mm, for m<n

 $Q_n(v) = E[1v \cdot Mm]$.

Qn(V) = Qm (V), for m(n and Vis Fm-measurable

$$Q \{ M_{n+1} = 2^{n+1} | M_n = 2^n \} = E[M_{n+1} = 2^{n+1} \cdot 1_{M_n = 2^n}]$$

$$E[M_n \cdot 1_{M_n = 2^n}]$$

$$W_{n} = \begin{cases} 1 & \text{with prob. } 1-2^{-n} \\ -\left[2^{n}-1\right] & \text{with prob. } \left(\frac{1}{2}\right)^{n} \end{cases}$$

$$M_{n} = \begin{cases} 0 & \text{with prob. } 1-2^{-n} \\ 2^{n} & \text{with prob. } \left(\frac{1}{2}\right)^{n} \end{cases}$$

If Mn = 2n, and at the (n+1)th round I loke again,

Mn+1 = 2n+1 with probability of losing again of 1/2

$$Q \{ M_{n+1} = 2^{n+1} | M_{n} = 2^{n} \} = \frac{2^{n}}{2^{n}} = 1$$

2)4) $Q(T<\infty) = ?$ The probability that the process reaches O? earlier, we saw that the process always grow from $Mn = 2^n$, to $Mn+1 = 2^{n+1}$ $Q\{Mn+1 = 2^{n+1} \mid Mn = 2^n\} = 1$. Therefore, there is O probability that the process will reach O. $Q(T<\infty) = O$

Q(T(00) = 0/

2) S) EQ[Mn+1 |Fn] = EQ[Mn+1 |Mn=2] = 2n+1 - the process always becomes 2n+1

ELIMA+1 |Fn] = 2.20 = 2.Mn, Mn = 20

EQ[Mn+1 | Fn] ≠ Mn

Mn is not a martingale with respect to the measure Q.

Landing Comments to the William

Exercise 3

Girsanov Theorem: Page 153-154 Mt = ext, where x = st AsdBs - I st AsdS , dQ = Mt dWt = - At dt + dBt where W is a Que Brownian motion under Q Cale 1 dXt = 2dt + dBt

$$\rightarrow At = -2 , f$$

$$-At = 2 \rightarrow At = -2, At^{2} = 4$$

$$4t = \int_{0}^{t} -2 dB_{5} - \int_{0}^{t} 4 dS = -2 \left[dB_{5} - 2 \left[dS_{5} - 2 \left[B_{1} - B_{0} + 1 - 0 \right] \right] \right]$$

$$\frac{dQ}{dP} = Mt = e^{1/2}$$
, at t=1) There is Q such that Motion under Q motion under Q

Cale 2

$$\frac{dXt=2dt+6dRt}{dXt=\frac{1}{3}dt+dRt=dWt} \begin{cases} -At=\frac{1}{3} \\ At=-\frac{1}{3} \end{cases}, At^2=\frac{1}{9}$$

$$Y_{t} = \int_{0}^{t} -\frac{1}{3} dB_{s} - \frac{1}{2} \int_{0}^{t} \frac{1}{9} B ds = -\frac{1}{3} (B_{1} - B_{0}) - \frac{1}{10} (1 - 6)$$

$$\frac{dQ}{dP} = Mt = exp\left[-\frac{1}{3}B_1 - \frac{1}{10}\right]_{10} \alpha + t = 1$$

Exercise 3) Case 3

dXt = 2 Be dt + dBt = dWt

-At = 2BtAt = -2Bt; $At^2 = 4Bt^2$

 $7t = \int_{0}^{t} As \, dBs - \frac{1}{2} \int_{0}^{t} As^{2} \, ds = \int_{0}^{t} -2 \, Bs \, dBs - \frac{1}{2} \int_{0}^{t} 4 \, Bs^{2} \, ds$ $7t = -2 \int_{0}^{t} Bs \, dBs - 2 \int_{0}^{t} Bs^{2} \, ds$

 $\frac{dQ}{dP} = \exp\left\{-2\int_0^t g_s dg_s - 2\int_0^t g_s^2 ds\right\}$

There is no equivalent probability measure Q such that Xt is a standard Brownian motion in a the new measure.

Exercise 4.1) Ito's Lemma: d(x,Y) + = At. Ct. dt = (dXt)(dYt) d(XtYt) = XtdYt + YtdXt + d(x,Y)t Mt = Xt Yt = Xt. exp (so g(Bs) ds) Xt = e-m.Bt2 = f(Bt) f'(Bt) = -m.2Bt e-m.Bt2 = -2mBt Xt f"(Be) = -2me-mBe2+ (-2mBe)2e-m.Bt2 = -2mXt +4m2Bt2Xt = $-2m \times t \left[1-2mBt^2\right] = 2m \times t \left[2mBt^2-1\right]$ dXe = f'(Bt)dBt + f f'(Bt)dt - Ito's formula I dXt = -2mBt XtdBt + m. Xt[2mBt2-1] dt Ye = exp{ so q(Bs) ds} → not Ito's integral dyt = 9 (Bt) · 1/4 dt , (1xt)(dyt)=0 + no dbe teron on dyt d (X+Y+) = X+ · 9(B+) Y+ dt + Y+ · [-2mB+ X+ dB+ + mX+[2mB+2-1] dt] d(Xt/t) = Xt/t [g(Bt) + 2m2Bt2-m]dt - 2 Xt/t · mBt dBt For Mt to be a local martingale, drift should be 0 (page S6): $9(Be) + 2m^2Be^2 - m = 0$ g(BE) = m-2m2BE2/

4.2) Mas If Me is a local mattingale, the SDE that Me saussfies is:

d(Mt)=-2 XtYt·m. Bt dBt

d(Mt)=-2 m. Bt. Mt dBt.

4.3) Using Girsand's theorem (page 154), since Mt is a nonnegotive martingale, $Mt = \frac{dQ}{dR}$

dMt = At Mt dBt = -2mBt Mt dBt

At= -2miBe

dBe = Atdt + dWt = -2 m. Btdt + dWt, where W is a Q-Brownian motion.

I this is the SDE satisfied by Bt with respect to a Q-Brownian motion.

4.4) (theorem 5.3.2) page 156

For Mt = ett to be a martingale, E (e4)+/2) <00

Page 110: $\langle Y \rangle_{t} = \int_{0}^{t} A_{s}^{2} ds$

For Mt = ett, Yt= Stards - 1 Stards

Yt = 50-2mBs dBs - 1 504m2Bs2 ds

(Y)+ = 5 As2ds = 5 4m2Bs2ds = 4m25 Bs2ds

 $\mathbb{E}\left[\exp\left\{\frac{1}{2}\cdot4m^{2}\int_{0}^{t}B_{s}^{2}ds\right\}\right]=\mathbb{E}\left[\exp\left\{2m^{2}\int_{0}^{t}B_{s}^{2}ds\right\}\right]<\infty$

the Novikov condition holds for finite t:

Mt is actually a martingale, not just a local martingale.

Exercise 5.1 Xt= Bt = f(Bt) f'(Be)= r. Bt -1, f"(Bt)= r(r-1) Bt -2 dXe = f'(Be) df+ 1 f"(Be) dt = r. Ber-1 dBe + 1 r(r-1) Ber-2 dt dXt = r. Xt . Bt-1 dBt + I Mr-1) Xt. Bt-2 dt 4= 05. 9(Bs) ds $dYt = g(Bt) \cdot Yt dt$, d(XY)t = (dXt)(dYt) = 0 because dYt has nodbe term d(X=Ye)= Xt dYt + Ytd Xt + d(x, Y)t = Xe. g(Be) Yede + Ye. Xt [r. Be dBt + I r(r-1) Be-2 de] d(X+4+) = X+4+ [g(B+)+1 r(r-1) B+2] d+ + X+4= [r.B+1 dB+] For Mt to be a local martingale, $9(Bt) + \frac{1}{2}r(r-1)Bt^{-2} = 0$

9(Bt)=-1 ((-1) Bt2/

5.2) Since Mt is a local martingale, the SDE that Mt satisfies is: dMt = Mt[rBt-1]dBt

5.3) Using Girsand's theorem, since Mt is a nonnegative martingale,

Mt = dQ

dP

dMt = At · MtdBt = [r·Bt] Mt dBt

At = r

Bt

dBt = At dt + dWt

dBt = r

Gt + dWt, where W is a Q-brownian motion

(sthis is the SDE satisfied by Bt with respect to a Q-brownian motion.

5.4) dBt = r

Gt + dWt is a Bessel process

2 Page 158

S.4) albe = $\frac{\Gamma}{Bt}$ dt + dWt is a Bessel process

For the Bessel process, for $\Gamma \gg 1$, $Q\{T=0\}=1$,

Therefore, that the process will never reach 0, for $T=\min\{t: Bt=0\}$.

Therefore, for $\Gamma \gg \frac{1}{2}$, $Q\{T<\infty\}=0$ Therefore, the process will never reach 0.