♡ Week 2 Extra ♡

Focus: LU decomposition (aka Gaussian elimination), orthogonal matrices.

LU factorization of a matrix A is a way of writing A as a product of two matrices A = LU, where L is a lower-diagonal matrix with units on the diagonal and U is an upper-diagonal matrix.

Definition. A square matrix A is called *orthogonal* if $A^TA = I$. (The unit matrix is denoted by I.)

1. Compute the result of multiplying a row $r = \begin{pmatrix} r_1 & \cdots & r_n \end{pmatrix}$ by a matrix M with rows M_1, \ldots, M_n .

Solution:

2. If R is a $k \times n$ matrix and M is a matrix with n rows M_1, \ldots, M_n , what are the rows of RM in terms of M_1, \ldots, M_n and the matrix coefficients of R?

Solution:

3. Bonus. LU factorization = Gaussian elimination. Solve the system of linear equations using LU factorization:

$$\begin{cases} x + 2y + 3z = 1, \\ y + z = 2, \\ 3x + y - z = 3. \end{cases}$$

Solution:

4.	Not all matrices can be written in LU form.	. Show directly why these matrix equations are both	h
	impossible (empty spaces mean zeroes):		

$$\mathrm{a)}\;\begin{pmatrix}0&1\\2&3\end{pmatrix}=\begin{pmatrix}1&0\\l&1\end{pmatrix}\begin{pmatrix}d&e\\0&f\end{pmatrix};$$

b)
$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 2 \\ 1 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & & & \\ l & 1 & & \\ m & n & 1 \end{pmatrix} \begin{pmatrix} d & e & g \\ & f & h \\ & & i \end{pmatrix}.$$

Solution:		

5. Orthogonal matrices. Find $A^T A$ if the columns of A are unit vectors, all mutually perpendicular (in this situation, we say that the vectors are orthonormal). What if we ask that the rows of A are orthonormal?

Solution:			

6. Bonus. Say that a square matrix A is factored as a product $A = B^{-1}C$. Perform the same row operation on both B and C, for example add the first row to the second: $B \mapsto B'$, $C \mapsto C'$. Show that this operation does not change the result, that is $A = B^{-1}C = (B')^{-1}C'$.

HIDE: Think about the first two problems.

Solution:

7. Binomial formula for matrices. Show that $(A+B)^2$ is different from $A^2+2AB+B^2$ when

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}, \, B = \begin{pmatrix} 1 & 0 \\ 3 & 0 \end{pmatrix}.$$

Write down the correct rule: $(A+B)^2 = A^2 + \cdots + B^2$. Can you generalize the rule to $(A+B)^n$?

Solution: