[Tytuł] Tabela adresowania

Urządzenie	Interfejs	Adres MAC	Interfejs przełącznika
Router0	Gg0/0	0001.6458.2501	G0/1
	S0/0/0	nd.	nd.
Router1	G0/0	00E0.F7B1.8901	G0/1
	S0/0/0	nd.	nd.
10.10.10.2	Wireless	0060.2F84.4AB6	F0/2
10.10.10.3	Wireless	0060.4706.572B	F0/2
172.16.31.2	F0	000C.85CC.1DA7	F0/1
172.16.31.3	F0	0060.7036.2849	F0/2
172.16.31.4	G0	0002.1640.8D75	F0/3

Cele

Część 1: Badanie zapytania ARP

Część 2: Badanie tablicy adresów MAC przełącznika

Część 3: Badanie procesu ARP w komunikacji zdalnej

Wprowadzenie

To ćwiczenie dotyczy przeglądania i analizy datagramów PDU. Wszystkie urządzenia zostały już skonfigurowane. Twoim zadaniem będzie zebranie informacji zawartych w datagramach PDU w trybie symulacji, ich analiza oraz udzielenie odpowiedzi na kilka pytań.

Instrukcje

Część 1: Zbadaj zapytanie ARP

Krok 1: Z adresu z 172.16.31.2 wygeneruj zapytania ARP za pomocą ping 172.16.31.3.

- a. Kliknij 172.16.31.2 i otwórz Command Prompt.
- b. Aby usunąć wszystkie wpisy z tabeli ARP wpisz polecenie arp -d.
- c. Przejdź do trybu **Simulation** i wykonaj polecenie **ping 172.16.31.3**. Zostaną wygenerowane dwa datagramy PDU. Polecenie **ping** nie może zostać zakończone, ponieważ pakiet ICMP nie zna adresu MAC miejsca docelowego. Dlatego komputer wysyła ramkę ARP w trybie broadcast, aby znaleźć adres MAC miejsca docelowego.
- d. Kliknij raz Capture/Forward. Datagramy ARP PDU przemieszczają się do Switch1 a datagramy ICMP PDU znikają, czekając na odpowiedź ARP. Otwórz datagram PDU i zanotuj adres MAC miejsca docelowego.

Czy ten adres znajduje się w powyższej tabeli?

Nie

e. Kliknij Capture/Forward, aby przenieść datagram PDU do następnego urządzenia.

Ile kopii datagramu PDU wykonał Switch1?

3

Jaki jest adres IP urządzenia, które zaakceptowało PDU?

172.16.31.3

f. Otwórz datagram PDU i zbadaj warstwę 2.

Co się stało ze źródłami i docelowymi adresami MAC?

Źródłowy adres stał się docelowym, a adres FFF.FFF.FFFF został przekształcony na adres MAC hosta o adresie IP 172.16.31.3.

g. Klikaj Capture/Forward aż datagram PDU wróci do 172.16.31.2.

Ile kopii datagramu PDU wykonał przełącznik podczas odpowiedzi ARP?

1

Krok 2: Sprawdź tablicę ARP.

a. Zauważ, że pakiet ICMP pojawia się ponownie. Otwórz datagram PDU i zbadaj adresy MAC.

Czy adresy MAC źródłowe i docelowe są zgodne ze swoimi adresami IP?

Tak

- b. Wróć do trybu Realtime i zobacz zakończenie testu ping.
- c. Kliknij 172.16.31.2 i wykonaj polecenie arp -a.

Do jakiego adresu IP przyporządkowany został wpis adresu MAC?

172.16.31.3

W ogóle, kiedy urządzenie końcowe wydaje żądanie ARP?

Kiedy nie zna adresu MAC odbiorcy.

Część 2: Sprawdź tablicę adresów MAC przełącznika.

Krok 1: Wygeneruj dodatkowy ruch w celu wypełnienia tablicy MAC przełącznika.

- a. W komputerze 172.16.31.2 wpisz polecenie ping 172.16.31.4.
- b. Kliknij 10.10.10. 2 i otwórz Command Prompt.
- c. Wpisz polecenie ping 10.10.10.3.

Ile zapytań zostało wysłanych i ile odpowiedzi zostało odebranych?

4 wysłane, 4 odebrane.

Krok 2: Sprawdź tablicę adresów MAC przełącznika.

a. Kliknij Switch1 a potem zakładkę CLI . Wpisz polecenie show mac-address-table .

Czy wpisy odpowiadają wpisom w powyższej tabeli?

Tak

b. Kliknij Switch0 a potem zakładkę CLI . Wpisz polecenie show mac-address-table .

Czy wpisy odpowiadają wpisom w powyższej tabeli?

Tak

Dlaczego dwa adresy MAC są związane z jednym portem?

Ponieważ oba urządzenia łączą się z jednym portem za pośrednictwem punktu dostępu.

Część 3: Zbadaj proces ARP w komunikacji zdalnej

Krok 1: Wygeneruj ruch ARP.

- a. Kliknij 172.16.31.2 i otwórz Command Prompt.
- b. Wpisz polecenie ping 10.10.10.1.
- c. Wpisz polecenie arp -a.

Jaki jest adres IP dla nowego wpisu w tablicy ARP?

172.16.31.1

- d. Wpisz arp -d, aby wyczyścić tablicę ARP i przełącz się w tryb Simulation.
- e. Powtórz ping do 10.10.10.1.

Ile pojawiło się datagramów PDU?

2

f. Kliknij Capture/Forward. Kliknij PDU, który znajduje się teraz na Switch1.

Jaki jest adres docelowy IP zapytania ARP?

172.16.31.1

g. Docelowy adres IP nie jest adresem 10.10.10.1.

Dlaczego?

Adres bramy interfejsu routera jest przechowywany w konfiguracji hosta. Jeżeli docelowy host nie jest w tej samej sieci, nadawca wykorzystuje proces ARP do określenia adresu MAC interfejsu routera pełniącego funkcję bramy.

Krok 2: Sprawdź tablicę ARP w routerze Router1.

- a. Przejdź do trybu Realtime . Kliknij Router1 a potem zakładkę CLI .
- b. Przejdź do uprzywilejowanego trybu EXEC i wpisz polecenie show mac-address-table .

lle adresów MAC znajduje się w tablicy? Dlaczego?

Zero. To polecenie ma zupełnie inne znaczenie niż polecenie przełącznika show mac addresstable.

c. Wpisz polecenie show arp .

Czy jest tam wpis dla 172.16.31.2?

Tak

Co dzieje się z pierwszym komunikatem ping w sytuacji, gdy router odpowiada na żądanie ARP?

Upłynie limit czasu.