(B) 日本国特許庁 (JP)

① 特許出願公開

⑩公開特許公報(A)

昭59—27802

⑤ Int. Cl.³A 01 N 37/02 37/06 識別記号

庁内整理番号 7419-4H 7419-4H **43**公開 昭和59年(1984)2月14日

発明の数 1 審査請求 未請求

(全10頁)

匈穂発芽防止剤

②特

願 昭57-137935

29出

願 昭57(1982)8月10日

0発

明 者 千葉馨

廢沢市计堂新町2-6-24

⑫発 明 者 山村三郎

藤沢市弥靱寺502平和荘D号

仰発 明 者 米村伸二

厚木市戸田2285

⑪出 願 人 北興化学工業株式会社

東京都中央区日本橋本石町 4丁

目2番地

砂代 理 人 弁理士 山下白

明 細 舊

1. 発明の名称

翻発芽防止剤

2. 特許諸 来の範囲

高級脂肪限アルキルエステルおよびアルケニルエステルの少くとも1種を有効成分として含有することを特徴とする、イネ、ムギ類の複発芽防止剤。

3. 発明の評細な説明

本発明は、高級脂肪酸のアルキルまたはアルケニルエステルを有効成分として含有するイネ、 ムギ類の観発芽防止剤に関する。

被発芽現象は登別期の前半が比較的低温に経 過し、後半はやや高温となり、しかも収穫期に 長雨に漁測した場合に発生しやすい。

収穫直前の砂発芽は、収益の減収と共に著しい品質の低下をもたらし、農家の収入にも重大な損失を与える。そのために従来から砲発芽抵

抗性品種を育成する試みとともに、例えばムギ 類の 観発芽防止にはアルフアナフタレン酢飯(NAA) やマレイン酸ヒドラジド(1,2 - ジヒドロ-3,6 - ピリダジンジオン、商品名 MH-30)などの植 物ホルモン剤を用いて種々の毎月化試験がなさ れてきた。しかしながら、これまで供試されて きたいずれの楽剤も徳発芽防止力が小さいか、 または他光芽防止力を有していても巣剤を処理 した後に不稳現象が起り、収穫した程(米粒ま たは炭粒)の品質を楽しく低下させるなどの欠 点があつた。さらには避発芽を防止するには、 収穫直前に聚剤散布しなければならないために、 主に食用となる米や変類には特別の安全性への 配慮(急性毒性および慢性毒性など)が要水さ れる。これまでの薬剤は、効果安全性の点から も満足すべきものがなく穂発芽防止剤として開 発されることはなかつた。したがつて、現在の

特開昭59-27802(2)

ところ観発芽防止剤として実用化されている薬剤は全くない。

本 発明の 高 級 脂 肪 酸 アルキルエステルおよび アルケニルエステルは、このような 穂 発芽 防止

ては何ら知られていない。

本発明の適用できるイネ、ムギの種類ならびに品種は特に限定されることはない。このような例をあげればイネ類としては、日本型(IR-8、T-126など)およびこれらの混合型(統一、密陽 2 3など)があり、またムギ類としては、コムギ(般林 6 1 号、ヒカリコムギ、コクムギ、コムギ(と)、カワムギ(アズマムギ、フクムギ、パクトムギなど)、ハダカムギ、エンバク、ライムギなどがある。

次に本発明で使用できる高級脂肪酸アルキル エステルおよびアルケニルエステルを第 1 表に 例示する。

作用を有すると共に、イオ、ムギ類の貯蔵中の 発芽防止作用をも併有している。

すなわち、一般にコメ、ムギ類には貯蔵中に 発芽しやすい温度、湿度に放衡されると発芽現 象がみられる。食用とする場合のいずれにおい てもこのような発芽現象は大きな損失となる。

本発明の高級脂肪酸アルキルエステルおよびアルケニルエステルは、このような場合の発芽防止剤として有用であり、本発明により染剤処理したイネ、ムギ類の種子は一定期間経過後は播種すれば正常な発芽をするために安心して使用しうる特徴を有する。

第 1

化合物系	脂肪酸(化学構造式)	エステル	物性值 (融点:m.p.(C) 游点:b.p.(mHg) 用折率np
1	カプリル酸 C7H15000H	メチル	m.p34
. 2	<i>"</i>	エチル	m.p43.2
3	,	プロピル	m.p45.0
4	,	イソプロピル	b.p.146.1(100)
5 .	,	ブチル	m.p4 3.0
6		アミル	m.p34.5
7	,	ヘキシル	n _D ¹⁵ 14323
8		ヘプチル	b.p. 2906
9	•	オクチル	b.p. 3068
10	•	ピニル	n 5 0 1.4256
11	ペラルゴン酸 C ₈ H _{1.7} COOH	メチル	b.p. 213-214(756)
12		エチル	m.p36.7
13	,	プロピル	m.p36.0
			•

メチル

m.p. -380

m.p. -18

m.p. -199

16

15 カプリン叙 OpH19000H

						特開昭 59-	27802 (3)
17	カプリン酸 CoH10COOH	n - プロピル	b.p. 114.2(5)	37	ミリスチン的。 C ₁₂ H ₂₇ 000H	n - ブチル	m.p. 1.0
18	<i>n</i>	1 - プロピル	b.p.106.8(5)	38	,	ヘプチル	n 20 1.4431
19	ø	n - ブチル	[*] m.p. 20	39	•	ピニル	n 5 0 1.4407
20	ウンデカン酸 C ₁₀ H ₂₁ 000H	メチル	b.p.123(9~10)	40	ベンタデカン設 C ₁₄ H ₂₉ COOH	メチル	m.p. 18.5
21	,	エチル	m.p14.7	41	n	エチル	m.p. 14
22	,,	ヘプチル	b.p.168(3)	42	バルミチン酸 C15H31000H	メチル	m.p. 3055
23	ラウリン(駅 C ₁₁ H ₂₅ COOH	メチル	m.p. 5	43	,	エチル	m.p. 25
24	"	エチル	m.p1.8	44	,	n - プロピル	m.p. 204
25	<i>"</i>	n - プロピル	b.p.143(5)	45	,	1 - プロピル	b.p. 180.6(5)
26	n	1 - プロピル	b.p.1358(5)	46	,	n - ブチル	m.p. 18.3
27	,,	n - ブチル	m.p48	47	,	アミル	ш.р. 19.4
28	,	ヘプチル	b.p.184(12)	48		ヘプチル	n 20 1.4481
29	<i>n</i>	オクタデシル	m.p. 37	49	,	オクチル	m.p. 225
30	,,	ピニル	b.p.142(10)	50	,	デシル	m.p. 30
3 1	トリデカン設 C ₁₂ H ₂₅ COOH	メチル		51	ø	ビニル	n ²⁰ 14431
32	,,	エチル	m.p4.8	52	マーガリン酸 C ₁₆ H ₃₅ 000H	メチル・	m.p. 29.7
33	ミリスチン畝 C _{1.5} H _{2.7} COOH	メチル	m.p. 18.5	53	,	エチル	m.p. 25.7
34	,	エチル	m.p. 123	54	ステアリン酸 C ₁₇ H ₃₅ 000H	メチル	m.p. 39.1
35	,	n - プロピル	b.p.1668(5)	55	,	エチル	m.p. 33.9
36	,	1-プロピル	b.p.1594	56	. ,	n - プロピル	m.p. 305
57	. ステアリン酸 C ₁₇ H ₃₅ COOH	1ープロピル	b.p.203.0(5)	75	エライジン段 CH ₃ (CH ₂) ₇ CH	n - ブチル	n ^{2,5} 1.14649
58	<i>"</i>	n - ブチル	m.p. 27.5		CH3(CH2)7CH HC(CH2)7COOH		
5 9	#	ピニル	n 4 D 1.4423	76		、メチル	m.p45
60	ノナデカン段 C18H37COOH	メチル	т.р. 393		OH I		
61	<i>y</i>	エチル	m.p. 36.1		. CH-CH ₂ -CH(CH ₂) ₅ CH ₃		
62	アラキン酸 C ₁₉ H ₃₉ COOH	メチル	m.p. 46.6	77	CH-(CH ₂) ₇ COOH		- 25 44505
63	. "	エチル	m.p. 4165	78		エチル	n 25 1.4595
64	オレイン酸	メチル	m.p. 199				n 22 1.4573
	CH ₃ (OH ₂) ₇ CH=CH(OH ₂) ₇ COOH			79	-		b.p. 233~236(11)
65	"		b.p. 216~217(15)	80 81			b.p. 239~240(10) n _D ² 1.4566
66	<i>"</i>	n - プロジル		01	. "		ከደተ 14566
		/ - 2/-	n 25 1.44719		11 11111111	ヘプチル	-
67	<i>π</i>		n _D ² 1.44488	82	リノレン版 CH ₅ (CH ₂ CH=CH) ₅ CH ₂ (CH ₂) ₆ OOOH	メチル	n 20 1.47 11
67 68	n n	i -プロピル	_		リノレン版 CH ₃ (CH ₂ CH=CH) ₅ CH ₂ (CH ₂) ₆ COOH	メチル	-
	ø	i - プロピル n - ブチル	n 2 1 1.44488	82	CH ₃ (CH ₂ CH=CH) ₃ CH ₂ (CH ₂) ₆ COOH # ステアロール設	メチル	n 20 1.47.11
68	π π	i - プロピル n - ブチル i - ブチル	n 21 1.44488 n 25 1.44799	82 83 84	CH ₃ (CH ₂ CH=CH) ₃ CH ₂ (CH ₂) ₆ COOH # ステアロール版 C ₈ H ₁ 70=C(CH ₂) ₇ COOH・	メチル エチル メチル	n _D ²⁰ 1.47 ₁ 11 b,p.173(25) m,p3
68 69	# # # # # # # # # # # # # # # # # # #	i - プロピル n - ブチル i - ブチル ヘプチル	n 21 1.44488 n 25 1.44799 n 25 1.44659	82 83 84 85	CH ₃ (CH ₂ CH=CH) ₃ CH ₂ (CH ₂) ₆ COOH # ステアロール版 C ₈ H ₁ 70=C(CH ₂) ₇ COOH・	メチル	n _D ²⁰ 14711 b _p 173(25)
68 69 70	# # # # # # # # # # # # # # # # # # #	i - プロピル n - ブチル i - ブチル ヘプチル	n 21 1.44488 n 25 1.44799 n 25 1.44659 n 20 1.4539	82 83 84	CH ₃ (CH ₂ CH=CH) ₃ CH ₂ (CH ₂) ₆ COOH # ステアロール酸 C ₈ H ₁ 70=C(CH ₂) ₇ COOH・ # リノール酸 CH-(CH ₂) ₇ COOH	メチル エチル メチル エチル	n _D ²⁰ 1.47 ₁ 11 b,p.173(25) m,p3
68 69 70	n n n	i - プロピル n - ブチル i - ブチル ヘプチル メチル	n 21 1.44488 n 25 1.44799 n 25 1.44659 n 20 1.4539	82 83 84 85	CH ₃ (CH ₂ CH=CH) ₃ CH ₂ (CH ₂) ₆ COOH # ステアロール設 C ₈ H ₁ 70=C(CH ₂) ₇ COOH・ # リノール設 CH-(CH ₂) ₇ COOH II CH-CH ₂ CH	メチル エチル メチル エチル	n 20 1.47.11 b, p. 173(25) m, p3 b, p. 215~216(20)
68 69 70 71	# # エライジン(報 CH ₃ (CH ₂) ₇ CH HC(CH ₂) ₇ COOH	i - プロピル n - ブチル i - ブチル ヘプチル メチル エチル	n 21 1.44488 n 25 1.44799 n 25 1.44659 n 20 1.4539 n 20 1.4522	82 83 84 85 86	CH ₃ (CH ₂ CH=CH) ₃ CH ₂ (CH ₂) ₆ COOH # ステアロール酸 C ₈ H ₁ 70=C(CH ₂) ₇ COOH・ # U U CH-(CH ₂) ₇ COOH U CH-CH ₂ CH U CH ₃ (CH ₂) ₄ -CH	メチル エチル メチル エチル	n 20 1.47.11 b, p. 173 (25) m, p3 b, p. 215~216(20) n 25 1.4594
68 69 70 71	# # エライジン(報 CH ₃ (CH ₂) ₇ CH HC(CH ₂) ₇ COOH	1 - プロピル n - ブチル 1 - ブチル ヘプチル メチル エチル n - プロピル	n 21 1.44488 n 25 1.44799 n 25 1.44659 n 20 1.4539 n 20 1.4522 n 25 1.44729	82 83 84 85	CH ₃ (CH ₂ CH=CH) ₃ CH ₂ (CH ₂) ₆ COOH # ステアロール設 C ₈ H ₁ 70=C(CH ₂) ₇ COOH・ # リノール設 CH-(CH ₂) ₇ COOH II CH-CH ₂ CH	メチル エチル メチル エチル	n 20 1.47.11 b, p. 173(25) m, p3 b, p. 215~216(20)

特開昭59-27802(4)

88 アラキドン松 CH3(CH2)4(CH=CHCH2)4(CH3)4COOH メチル n20 1.4813

(社) * は故間点を示す

本発明の破発芽防止剤には、常温で液体ののりの(例えばカブリル酸メチルエステル、ラウのシン酸エチルエステルなど)または固体のテアルなど)または固体のテアルなどが含まれる。液体を対して使用するが、水和関係を対して使用する。またのは液体のあるいはで使用する。またのは液体のからに変換して使用する。またのは液体のからに変換して使用する。またのは液体のからに変換して使用する。またのは液体のからに変換して使用する。またのは液体のがあるいは液体のがあるがあるがあるがあるがあるがあるがあるがあるがあるがあるがあるがある。

裕剤としてはアルコール類、アセトン、グリセリン、ベンゼン、エーテルなどの有機溶剤が挙げられる。

ポリビニルアルコール、ポリアクリル酸ソーダ、 メチルセルロース、エチルセルロースなどの水 密性高分子などがあげられる。

本発明の高級脂肪酸アルキルエステルおよび 高級脂肪酸アルケニルエステルを製剤化するに 当つては特別の方法や装置を使用することなく 均常の方法で製造することができる。

以下に実施例を示すが、本発明は実施例のみに限定されることはない。また実施例中で部とはすべて重量部を示す。

失施例 1 放剤

カブリルなメチルエステル原被をそのまま使 用する。

実施例-2 液剂

カプリル酸エチルエステル98部にポリオキ シエチレンノニルフエニルエーテル2部を加え、 ミキサーで充分批拌して独剤を得る。 脳性などを考慮して、各種の昇面活性剤、天然 高分子、合成高分子をはじめとする補助剤を添 加すると聴発芽防止効果を一層高めることがで きる。補助剤としては、アルキル(硫酸エステル 塩、アルキルペンゼンスルホン酸塩、ジアルキ ルスルホコハク酸エステル塩、ポリオキシエチ

レンアルキル硫酸エステル塩、ナフタレンスル

ホン酸ホルマリン縮合物、リグニンスルホン酸

製剤化の際には湿展性、浸透性、付着供、固

塩などの陰イオン性界面活性剤、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレ

ン脂肪酸エステル、蔗糖脂肪酸エステル、ソル

ビタン脂肪酸エステル、グリセリン脂肪酸エス テルなどの非イオン性界面活性剤、アラビアゴ

ム、カゼイン、カルボキシメチルセルローズ、 デンプン、ゼラチン、ボリエチレンオキシド、

実施例 3. 液剂

カプリン酸メチルエステル98部にソルビタンラウリン酸モノエステル2部を加え、ミキサーで充分攪拌して液剤を得る。

英施例 4 粉剤

ステアリン酸エチルエステル 3 0 部、ホワイトカーボン 3 0 部、イソプロピルアシッドホスフェート (物理性改良剤) 0.3 部およびクレー39.7 部を加え、ハンマーミルで粉砕混合して粉剤を得る。

奥施例 5 粉剤

オイレン酸メチルエステル30部、ホワイトカーボン30部、エチルセルローズ2部、インプロピルアシッドホスフエート (物理性改良剂) 0.3 部およびクレー37.7部を加え、ハンマーミルで粉砕混合して粉剤を得る。

奥施例 6 水和剤

ラウリン酸メチルエステル 4 0 部、ホワイトカーボン 4 0 部、ポリオキシエチレンノニルフエニルエーテル 2 部、リグニンスルホン酸カルシウム 5 部およびクレー 1 3 部を加え、ハンマーミルで初砕混合して水和剤を得る。

寒脑例7 水和剂

ラウリン酸エチルエステル40部、ホワイトカーボン40部、ポリオキシエチレンノニルフエニルエーテル2部、リグニンスルホン酸カルシウム5部、ポリビニルアルコール2部およびクレー11部を加え、ハンマーミルで物砕混合して水和剤を得る。

前記のように製剤化した本発明の複発芽防止 剤は、一般の農薬製剤と同様に使用すればよい。 そして粉剤の場合は通常の散粉機で散粉でき、 10アール当り製剤量で10粉前後を1回ない し数回散布すればよい。また液剤、水和剤など

用時に混用するか前もつて混合製剤として使用 することができる。

次に本発明の想発芽防止剤の効果について試験例を示す。

試験例1 コムギの椰子発芽防止試験

1) 昭和55年産のコムギ(品種: 農林61号) 柚子を下記の要領で本発明接発芽防止剤による 種子器芽助止試験に供した。

本発明の化合物の原液を直径9cmのシャーレに20ml注入し、この蒸剤液にコムギ種子30粒を所定時間浸潤した。浸质後のコムギ種子は
超紙上で一夜室温風乾し、そのコムギ種子を10粒ずつ原径6cmのシャーレ(ワットマン社製戸紙 Ma 4を3枚敷き蒸留水3mlを加えておく)に 搭種し、20℃において暗黒下の混室で7日間 培袋し、下配式により発芽率的を調査した。

の場合はそのままで散布にしてもよく、さらに水和剤は水であらゆる液度に希釈しても便用できる。この場合、イネ、ムが発量で107ール当り10月以上、望ましくは10月以上で所製の効果を放射は、10月以上で所製の強に力がある。またの本剤の使用時期は、イネるがにのでは、のからの降りやすい時季においては、のかがは、のかりをするの数類の発芽を防止するのがよい。または野類の数では、が、発酵のでは、が、などの数がありませんが、などの数がありませんが、などの数では、が、などの数では、が、などの数では、が、などの数では、が、などの数では、が、などの数では、が、などの数では、が、などの数では、からには、対して変が、ない。

また、本発明の穂発芽防止剤は他の穂発芽防止剤やそれ以外の植物生長ホルモン剤などと使

2) また、薬剤処理した種子が一定期間の経過後に正常な発芽をするかどうかを調べるために上記と同様な方法でコムギ種子30粒を10分間浸漬し、室温で30日、60日および120日間保存し、その後上記と同様な方法で発芽試験に供した。

本試験は1楽剤につき3シャーレ制で行い、 平均発芽率例を求めた。その結果は第2表のとお りである。

第 2 表_

		芽率(%)	(培養7	月月)	_
	菜液浸渍	時間(分)	來液没值	(10分階)後日数
化合物Na	1 0	6 0	3 0	60	120
		•			
1	0	0	O	4	9 1. 8
2	0	0	0	3	9 2.6
3	0	0	0	4	9 2.2
4	0	0	0	1	У 2.0
5	0	0	0	9	97.5
6	0	0	0	0	9 5.7
7	0	0	0	4	9 3.0

									特閒昭	59- 2	7802 (6)
8	0	0	0	9	9 3.8	36	, 0	0	1	4	9 5.0
9	0	0	0	4	9 0.7	37	0	0	0	1	9 4.2
10	0	0	0	6	9 5.6	38	0	0	0	2	9 1. 9
11	0	0	0	7	9 7. 1	39	0	U	Û	4	9 3.7
12	0	0	0	2	9 3.6	40	0	0	0	1	9 3. 2
13	0	U	1	5	9 7. 2	41	0	0	0	2	9 1. 1
14	U	0	0	1	9 6.3	43	0	0	0	2	9 0.5
15	0	0	0	9	9 4.8	4 4	0	0	1	8	9 0.9
16	0	0	1	3	9 2.3	45	0	0	0	9	9 2.0
17	0	G	0	7	9 1.0	46	0	0	0	9	9 5.6
18	0	O	0	4	9 5.5	47	0	0	0	1	9 3.5
19	U	0	0	3	9 2.0	48	0	0	0	2	9 1. 2
20	0	O	0	3	9 5.9	49	0	0	0	8	9 3. 9
21	0	0	0	8	9 4.0	5 1	0	0	1	4	9 1.8
22	0	0	1	9	9 3.6	57	0	0	0	4	9 5.0
23	0	0	0	3	9 1. 5	59	0	0	0	3	9 3.8
24	0	0	0	4	9 0.7	64	0	0	٥	1	9 1. 4
25	0	0	1	4	9 3.7	65	0	0	0	y	9 1. 3
26	0	0	0	8	9 0.2	66	0	0	. 0	2	9 1. 8
27	0	0	0	. 7	9 0.8	67	. 0	0	0	1	9 0.7
28	0	0	0	7	9 4.6	68	0	0	0	2	9 5.0
30	0	0	0	4	9 5.6	69	0	0	0	0	9 0.6
31	0	0	1	0	9 5.4	70	0	0	0	3	9 1. 2
32	0	0	0	8	9 1 2.	71	0	0	0	0	9 3.4
33	0	0	0	0	9 0.0	72	0	D	, 0	3	9 0.0
34	0	0	0	4	916	73	0	0	0	1	9 1. 1
35	0	0	0	4	9 3.5	74	0	0	0	4	9 2.5

無処理区	9 2	2. 5	9 3. 4	9 3.8	9 2.7
88	0	0	0	2	9 2.5
87	0	0	0	1	9 3.5
86	0	U	. 0	3	9 5.9
85	0	0	0	6	9 4. 3
84	Ú	U	U	1	9 4.4
83	0	U	1	6	9 0.8
82	0	Ü	0	2	9 3.7
81	0	U	1	5	9 3. 1
80	U	U	0	9	9 3. 3
79	0	O	0	3	9 5.4
78	0	0	0	2	9 4.2
77	0	0	0	3	9 5.0
76	U	0	1	6	9 5.3
75	Ò	0	0	2	9 5.8

試験例 2

出想30日後(収穫15日前)の立毛中のコムギ(品種:ヒカリコムギ)に常温で液体のものはそのまま、また常温で固体のものは実施例6に準じて調製した水和剤を水で20多濃度に希釈して有効成分量として10アール当り20万至100kpの割合で小穂全体に充分にかかるよ

う均一に噴霧散布した。そして1区のうちから 薬剤散布直後(出穂30日後)、10日後(出 穂40日後)にそれぞれコムギ小穂50個を刈 り収り、次のような常法によりシャーレでの楔 発芽試験に供した。

すなわち、直径15mの大きさのシャーレに 評紙を敷き、その上にコムギの小穂10個を復 床し、その上から湿つたカーゼで炒つて充分な 湿度を保つようにし、20℃の暗室に14日間 放置した。その後シャーレを取り出して発芽率 倒を調査した。

本試験は 1 渡度当り 5 シャーレ(1 シャーレ 3) 小穂 1 0 個) で行い平均穂発芽率(例を求めた。また楽剤散布 1 5 日後(出穂 4 5 日後) に同じ区のうちから小穂 5 0 個を刈り取り、収貨および品質調査を行つて楽客の有無を調べた。その結果は第 3 表のとおりである。

											特問日	¥59- 278	D2 (7)
			角	3 表			5* 10	0	0	0	4 7. 6	9 3	2 5.8
							6	0	0	0	4 7. 4	93	2 5.6
15	有効成	砂光芽	-		調査(出租4		2	Ū	0	0	4 7. 7	9 4	2 5.5
合	分量	率(多)	_		稳実歩合例	干粒重(9)	6 10	0	0	0	4 7. 6	93	2 5. 4
物	Kg/1U アール	<u>樂</u> 0 <u>1</u>	?间 .0	<u>処 選</u> 15	<u> </u>	<u>15</u>	6		0	0	4 7. 0	93	2 5.0
NO	1-10	<u> </u>	<u>.u</u>		1_3		2		0	U	4 7. 4	y 5	2 5. 2
1	1 0 0	0	0	4 7. 4	9 3	2 5. 6	7 10		0	U	4 7. 5	9 5	2 5. 9
	6 U	O	0	4 7. 0	93	2 5. 4	6		0	0	4 7. 1	9 4 9 4	2 5. 4 2 5. 4
	2 0	O	0	4 7. 3	95	2 5. 2	2 1 0		0 0	0	4 7. 4 -4 7. 1	94	2 5.8
1 *	_	. 0	0	4 7. 6	9 4	2 5. 9	6		0	Ü	4 7. 6	95	2 5. 9
	60	0	0	4 7. 1	9 4	2 5. 1	2		0	0	4 7. 3	94.	2 5. 6
	20	0	0	4 7. 0	93	2 5. 7	9 10		0	0	4 7. 1	9 3	2 5.5
2	100 60	υ 0	0	4 7. 2 4 7. 5	9 4 9 4	2 5.5 2 5.7	6		0	0	4 7. 0	9 4	2 5. 7
	20	Ü	0	4 7. 3	94	2 5. 9	2	0	0	0	4 7. 4	93	2 5. 2
2 *		0	0	4 7. 3	95	2 5.4	9* 10	0	0	0	4 7. 1	У 5	2 5.7
-	60	0	0	4 7. 4	9 4	2 5. 2	6	0	0	0	4 7. 2	93	2 5. 2
	2 0	0	0	4 7. 3	9 3	2 5. 7		0	0	0	4 7. 0	93	2 5.7
3	100	0	0	4 7. 5	9 5	2 5.0	10 10		0	0	4 7. 0	93	2 5. 1
	6 D	0	0	4 7. U	9 4	2 5.6		0	0	0	4 7. 6	95	2 5.7 2 5.3
	2 0	U	0	4 7. 3	94	2 5.6	11 10	0	0	0	4 7. 3 4 7. 1	95 94	2 5.8
4	100	O	0	4 7. 2	9 5	2 5. 9	, ,	0	0	0	4 7. 3	9 5	2 5. 3
	60	0	0	4 7. 6	9 4	2 5. 7		0	0	0	4 7. 3	9 5	2 5. 2
5	20 100	0	0	4 7. 2 4 7. 1	9 5 9 5	2 5. 1 2 5. 4	12 10		0	0	4 7. 4	9 5	2 5. 7
5	60	0	0	4 7. 1	93	2 5.0	. 6	0	0	0	4 7. 4	9 4	2 5. 4
	20	0	0	4 7. 3	93	2 5.8	2	0	0	0	4 7. 6	9 4	2 5. 9
13	100	0 0	0 ប	47.6 47.0	9 5 9 5	2 5. 3 2 5. 1	19* 1	00 60	0 0	0	4 7. 9 4 7. 9	9 5 9 5	2 5. 7 2 5. 6
	2 0	0	0	4 7. 6	95	2 5. 9		2 0	0	0	4 7. 3	95	2 5. 5
14		0	0	4 7. 1	9 4	2 5. 2	20 1	o o	0	0	4 7. 0	95	2 5.3
_	6 0	0	υ	4 7. 2	9 4	2 5. 1		6 0	0	U	4 7. 5	93	2 5. 6
	2 0	U	0	4 7. 1	9 3	2 5. 7		2 0	0	0	4 7. 5	93	2 5. 9
15	100	O	0	4 7. 0	9 4	2 5. 5	21 1	0 0	0	0	4 7. 0	95 95	2 5.8 2 5.0
	6 0	0	0	4 7. 1	9 4	2 5. 9		6 0	0	0	47.1 47.3	95	2 5. 7
	2 0	Ü	0	4 7. 6	9. 5	2 5. 0	22 1	20	0	0	4 7. 6	95	2 5. 7
15	* 100	Ü	0	4 7. 5	9 4	2 5. 1	22 1	60	0	0	4 7. 6	93	2 5.0
	6 U 2 O	0 U	0	4 7. 1 4 7. 6	9 4 9 5	2 5.8 2 5.5		20	0	0	4 7. 1	95	2 5.2
16		0	0	4 7. 0	94	2 5. 5	23 1	0 0	0	0	4 7. 3	9 5	2 5. 7
	60	0	0	4 7. 4	93	2 5.8		6 0	0	0	4 7. 3	95	2 5. 5
	2 0	0	0	4 7. 2	9 4	2 5. 1		2 0	0	0	4 7. 5	93	2 5.8
16	* 100	0	0	4 7. 2	9 3	2 5. 3	23* 1		0	Ü	4 7. 2	9 3	2 5. 2
	6 U	U	Ú	47.6	9 5	2 5.8		6 U	0	O	4 7. 3	9 4	2 5. 6
	20	0	0	4 7. 1	9 4	2 5. 2		2 0	0	0	4 7. 0	9 4	2 5. 2 2 5. 2
17		U	0	4 7. 1	93	2 5. 6	24 1	0 0	0	0	4 7. 8 4 7. 3	93 94	2 5. 2
	60	0	0	4 7. 1	9 4	2 5. 2		6 D 2 D	0	0	4 7. 3	9 4	2 5. 0
	20	0	0	47.3	94	2 5. 2	24* 1		0	0	4 7. 0	95	2 5. 5
18	3 100 60	0	0	47.6 47.0	95 94	2 5. 7 2 5. 3	24	60	0	0	4 7. 9	9 3	2 5. 7
	20	0	U	4 7. 0	.95	2 5. 6		2 0	0	0	4 7. 5	9 3	2 5.7
19		O	0	4 7. 0	93	2 5. 3	25 1	0 0	0	0	4 7. 4	. 93	2 5.8
• •	60		0	4 7. 5	9 4	2 5. 4		60	0	0	4 7. 1	9 4	2 5. 9
	2 0	0	0	.4 7. 6	9 5	2 5. 7		2 0	0	0	4 7. 1	93	2 5. 2

											358	38359- 2	7802 (8)
26	100	0	0	4 7. 8	9 5	2 5. 6	34	100	0	0	4 7. 0	93	2 5. 6
	60	0	0	4 7. 9	9 4	2 5. 3		.6 0	0	0	4 7. 0	9 5	2 5.8
2 7	2 0	0	0	4 7. 2	93	2 5. 2	7.5	20	0	U	4 7. 7	9 4	2 5. 3
2 /	10U 6U	0	0	47.0 47.8	93 94	2 5. 3 2 5. 9	35	100	0	0	47.3	95	2 5. 9
	20	0	0	4 7. 6	9 4 9 4	2 5. y 2 5. 5		6 0 2 0	0. 0	0	4 7. 9 4 7. 7	95 95	2 5. 6
27*	100	0	0	4 7. 8	93	2 5.8	3.4	100	0	0	4 7. 1	9°3	2 5. 6 2 5. 9
.,	60	0	0	4 7. 5	95	2 5. 6	30	60	0	. 0	4 7. 1	93	
	2 U	0	0	4 7. 8	94	2 5. 7		20	0	0	4 7. 3	9 4	2 5. 6 2 5. 9
28	100	Ü	0	4 7. 4	9 4	2 5. 2	3.7	100	0	0	4 7. 6	93	2 5.7
	6 U	0	0	4 7. 7	9 4	2 5. 6	37	60	0	0	4 7. 6	93	2 5. 6
	2 0	0	U	4 7. 0	9 5	2 5. 1		2 0	0	0	4 7. 1	95	2 5. 8
29*	100	U	0	4 7. 9	95	2 5. 6	38	100	0	0	4 7. 4	9 4	2 5. 1
	6 0	0	Ü	4 7. 7	93	2 5. 3	•	60	0	0	4 7. 5	95	2 5. 5
	2 0	U	0	4 7. 1	9 4	2 5. 1		2 0	0	0	4 7. 4	93	2 5. 5
30	100	0	0	4 7. 5	9 5	2 5. 2	39	100	0	O	4 7. 5	93	2 5. 1
	6 O	0	Û	4 7. 2	9 5	2 5. 9		6 D	0	0	4 7. 0	9 4	2 5. 9
	2 0	0	0	4 7. 5	9 3	2 5. 5		2 0	0	0	4 7. 4	9 4	2 5. 2
3 1	100	0	0	4 7. 4	9 5	2 5. 4	40	100	0	0	4 7. 9	9 3	2 5. 5
	6 U	0	0	47.6	9 3	2 5.3		60	0	0	4 7. 6	9 4	2 5.0
	2 0	0	0	4 7. 5	95	2 5. 1		2 0	0	0	4 7. 5	9 3	2 5. 1
3 2	100	. 0	O	4 7. 8	9 5	2 5. 3	41	100	0	0	4 7. 1	93	2 5.8
	6 0	0	G	4 7. 6	95	2 5. 6		6 O	0	0	4 7. 8	93	2 5. 2
	2 0	0	0	4 7. 5	9 3	2 5. 3		2 0	0	0	4 7. 0	9 5	2 5. 3
3 3	100	0	0	4 7. 2	9 4	2 5. 3	42*	100	0	0	4 7. 1	. 9 4	2 5. 9
	6 0	0	0	4 7. 7	9 4	2 5, 8		6 0	0	0	4 7. 6	9 3	2 5. 4
	2 0	0	0	4 7. 7	9 4	2 5. 1		20	0	0	47.6	9 4	2 5.8
43	100	0	0 0	4 7. 5 4 7. 3	9 3 9 4	2 5. 3 2 5. 2	50*	100	0	0	4 7. 5 4 7. 7	9 5 9 3	, 2 5. 4 2 5. 3
	2 0	0	0	4 7. 6	95	2 5.0		2 0	0	0	4 7. 4	9 3	2 5. 0
43*	100	U	0	4 7. 5	9 5	2 5.7	5 1	100	0.	0	4 7. 1	9 4	2 5.8
	6 U	U	0	4 7. 2	9 3	2 5. 2		6 0	0	0	4 7. 6	9 5	2 5.8
	2 0	O	0	4 7. 1	9 4	2 5. 3		2 0	0	0	4 7. 8	93	2 5. 2
44	100	0	0	4 7. 8	9 4	2 5.0	51*	100	0	0	4 7. 5	9 5	2 5. 1
	6 0	0	0	4 7. 4	9 4	2 5. 3		60	0	0	4 7. 4	9 3	2 5. 1
	2 U	0	0	4 7. 2	95	2 5.8	_	20	0	0	4 7. 3	9 5	2 5.8
45	100	0	0	4 7. 2	93	2 5.8	52*	100	0	0	4 7. 6	9 3	2 5.9
	60	0	0	4 7. 3	9 3	2 5. 9		6 O	0	0	4 7. 3	9 4	2 5.3
4 E #	2 0 1 0 0	0	0	4 7. 8	9 5	2 5. 1		2 0	0	0	4 7. 6	9 4	2 5.6
4.5	60	0	0	4 7. 0	9 4	2 5. 6	53	100	0	0	4 7. 9	9 4	2 5.8
	20	0	0	4 7. 0	93	2 5. 5		60	0	0	4 7. 5	9 4	2 5. 1
46	100	0	U	4 7. 9	93	2 5.0	c.*	20	0	0	4 7. 2	9 3	2 5.5
••	60	υ	_	4 7. 1	93	2 5. 2.	54	100	0	0	4 7. 6	9 4	2 5.9
	20	0	0	4 % 0	9 5	2 5.8		6 0	0	0	4 7. 6	9 5	2 5.4
47	100	0	0	4 7. 1 4 7. 9	93	2 5. 4	55*	2.0	0	0	4 7. 6	9 3	2 5. 2
• •	60	0,		4 7. 9 4 7. 8	93 93	2 5. 1	55		D	0	4 7. 2	9 4	2 5.8
	20	0,	0	4 7. 0	9 5	2 5.7		6 U	0	0	4 7. 8	9 5	2 5.8
98	100	0	0	4 7. 0	9 5 9 5	2 5. 9	56 *	20	0	0	4 7. 5	9 3	2 5. 7
	60	0	0	47.1	9 5 9 5	2 5. 4 2 5. 8	30	60	0	0	4 7. 0	9 5	2 5.9
	20	O	0	4 7. 1	93	2 5.8		2 U	0	0	47.6 47.5	95 93	2 5.9
19	100 .		0	4 7. 0	93	2 5. 4	57	100	0	0	4 7. 3	9 3 9 5	2 5. 2 2 5. 8
	. 6 0	O	0	4 7. 9	9 4	2 5. 3	٠.	60	0	0	4 7. 3	9 5 9 5	2 5.8
	2 0	0	0	4 7. 5	9 5	2 5. 3		2 O ·	0	0	4 7. 3	9 _. 5 94	2 5. 9 2 5. 7
			_	··· -	, ,	_ 5.5			J	J	7 % 1	/ 4	2 3. /
						-18	2	•					
						18	5—						

	•						•					開昭59- 27	
57	100	0	0	4 7. 9	9 4	2 5.9	64	100	0	0	4 7. 3	95	2 5.8
	60	0	0	4 7. 5	9 3	2 5.8		6 D	U	0.	4 7. 0	9 5	2 5. 4
c o '	20 100	0	0	4 7. U	9 4	2 5. 2		20	0	0	4 7. 3	93	2 5. 9
56	60	0	0	4 7. 1	93	2 5.8	65	100	0	0	4 7. 1	93	2 5. 2
	20	n n	0	4 7. 4	9 4	2 5.5		6 U 2 U	0	Ú	4 7. 5	95 95	2 5.0
59	100	_		4 7. 6	9 4	2 5.3	65 [*]		0	0	4 7. 2		2 5. 6
37	60	0	0	4 7. 2	9 5	2 5. 9	65		0	O	4 7. 1	9 4	2 5. 7
	20	0	0	4 7. 5	9 3	2 5. 3		6 U	0	0	47.4	ý 5 0 4	2 5.5
59*		0 0	0	4 7. 9	9 5	2 5. 4		2 U 1 O U	0	0	4 7. 5	9 4	2 5. 9
37	60		0	4 7. 5	9 3	2 5.8	66		0	O 	4 7. 5	93	2 5. 6
	2 0	0	O	4 7. 3	9 5	2 5. 2		60	0	Ü	4 7. 5	۶ 5 0 4	2 5. 6
40*	100	0	0	4 7. 2	9 4	2 5. 0	4.3	20	0	Ü	4 7. 7	9 4	2 5. 3
00	60	0	0	47.1 47.4	93	2 5. 7	67	100·	0	0	4 7. 1	9 4	2 5. 5
	. 20	0	0		93	2 5. 6		2 U	0	0	4 7. 1	94	2 5.9
۸1 *	100	0	0	4 7. 1 4 7. 1	9 4	2 5. 0	67*	100	0	0	47.8 47.5	94	2 5. 2
0.	60	0	0		9 4	2 5. 1	07	60	0	0		95	2 5.9
	20	0	0	47.8 47.9	94	2 5. 6		2 O	0	0	47.6	93 93	2 5.8
62*		0	0		93	2 5.0	68		-	_	47.6		2 5. 4
J.	60	Ú	Ü	4 7. 2 4 7. 0	93	2 5. 4	0.0	100 60	O Ó	0	4 7. U 4 7. 2	93	2 5.0
	2 0	0	0		9 4	2 5. 6				_		93	2 5. 2
63*	100	0	0	4 7. B	95	2 5. 0	68 *	20 100	0	0	47.8	93	2 5. 2
	60	0	0	4 7. 6 4 7. 4	95 93	2 5. 5	00	60	0	U O	47.8 47.0	93 94	2 5.7 2 5.5
	2 0	0	0	4 7. 7	9 3 9 3	2 5. 0		20	0	0	4 7. 4	93	2 5. 4
64	100	0	υ	4 7. 0	94	2 5. 5 2 5. 3	69	100	0	0	4 7. 5	93	2 5. 4
	6 0	0	0	4 7. 9	9. 4	2 5. 6	0,	60	0	0	4 7.5	95	2 5. 0
	2 0	0	0	4 7. 7	9.5	2 5.8		2 0	0	0	4 7. 8	93	2 5.5
							7.0	4.0.0	0	ο.	474	93	2 5. 6
70	100	0	0	4 7. 6	9 4	2 5.9	78	100.	0	0 1	47.6 47.1	9 4	2 5. 6
	6 0	0		. 47.7	9 5	2 5.9		6 0 2 0	0	0	4 7. 4	9 4	2 5. 3
	2 0	0	0	4 7. 2	9 4	2 5. 3	79	100	0	0	4 7. 5	95	2 5.3
70*	100	0	0	4 7. 3	9 4	2 5. 6	/ 9	60	0	0	4 7. 4	95	2 5.9
	6 0	0	0	4 7. 1	9 4	2 5. 5		20	0	0	4 7. 5	95	2 5. 2
	20	0	0	4 7. 6	9 3	2 5. 7	80	100	0	0	4 7. 0	95	2 5. 5
71	100	0	0	4 7. 2	95	2 5. 3	00	60	0	0	4 7. 4	95	2 5. 9
	6 0	0	0	4 7. 4	95	2 5. 5		20	0	0	4 7. 5	93	2 5.8
	2 0	0	0	4 7. 4	93	2 5.8	81	100	0	0	4 7. 8	94	2 5.4
72	100	0	0	4 7. 6	93	2 5. 6	O I	60	0	0	4 7. 8	9 4	2 5. 1
	60	0	0	4 7. 5	9 4	2 5. 2		20	0	0	4 7. 9	9 4	2 5. 7
	2 0	0	0	4 7. 8	95	2 5. 0	82	100	Ó	0	4 7. 5	93	2 5.8
73	100	0	0	4 7. 6	9 4	2 5. 5	02	60	0	0	4 7. 4	95	2 5.7
	60	0	0	4 7. 5	95	2 5. 2		20	Ü	0	4 7. 2	95	2 5. 6
	2 0	0	0	4 7. 2	9 4	2 5 5	83	100	0	0	4 7. 7	95	2 5.9
74	100	0	0	47.7	95	2 5. 5	55	60	0	0	4 7. 3	95	2 5.0
	6 U	0	0	4 7. 7	95	2 5. 5		20	0	0	4 7. 8	93	2 5. 9
7.	20	0	0	47.0	9 4	2 5.9	84	100	0	0	4 7. 8	93	2 5. 9
75	100 60	0	0	47.0	93	2 5.8 2 5.4		60.	0	0	4 7. 6	9 4	2 5. 1
	4 ()	0	0	47.7	9 3 0 z			2 0	0	0	4 7. 6	9 4	2 5. 9
			- 11	47.3	93	2 5. 4	85	100	0	0	4 7. 3	9 5	2 5. 9
,	2 0	0			0.7	7 5 7	(O SI						
76	2 0 1 U O	0	0	4 7. 9	93	2 5.7 2 5.8	03		0	0		9 4	
76	2 0 1 U 0 6 0	0	0 0	4 7. 9 4 7. 7	9 5	2 5.8	03	6 0 2 0			4 7. 6 4 7. 3		2 5. 2 2 5. 3
	2 0 1 0 0 6 0 2 0	0 0 0	0 0 0	4 7. 9 4 7. 7 4 7. 1	9 5 9 3	2 5.8 2 5.0	86	6 0	0	0	4 7. 6 4 7. 3	9 4	2 5. 2
76 77	2 0 1 0 0 6 0 2 0 1 0 0	0 0 0	0 0 0 0	4 7. 9 4 7. 7 4 7. 1 4 7. 6	95 93 93	2 5. 8 2 5. 0 2 5. 7		6 0 2 0	0	0 0	4 7. 6 4 7. 3 4 7. 3	9 4 9 5 9 5	2 5. 2 2 5. 3
	2 0 1 0 0 6 0 2 0	0 0 0	0 0 0	4 7. 9 4 7. 7 4 7. 1	9 5 9 3	2 5.8 2 5.0		6 0 2 0 1 0 0	0 0 0	0	4 7. 6 4 7. 3	9 4 9 5	2 5. 2 2 5. 3 2 5. 9

87	100	0	0	4 7. 1	93	2 5.4
	6 0	0	0	4 7. 1	95	2 5. 3
	2 0	0	0	4 7. 8	9 4	2 5. 4
88	100	0	0	4 7. 0	9 4	2 5 . 5
	60	O	0	4 7. 2	93	2 5. 1
	2 0	0	0	4 7. 8	93	2 5. 4
мн-30	2.32	8. 7	6. 3	2 9. 8	5 3	1 4. 1
	1.16	1 6.9	1 8.8	4 3. 7	8 2	1 9. 4
_	0.5 8	9 3. 9	9 3.5	4 6.8	9 1	2 4.2
無処	理区	9 7. 5	9 8.6	4 7. 1	93	2 5. 1

表中で化合物性の後に*印のあるものは実施 例 6 に基づいて調製した水和剤を供試し、その 他のものは実施例 1 に基づく液剤を供試した。

特許出願人 北 與 化 学 工 業 株 式 会 社 代 埋 人 弁 埋士 山 下 白

手 続 補 正 書

昭和58年 1 月28日

特許庁長官 若 杉 和 夫 殿

1.事件の表示

昭和 57 年特許願第 1 3 7 9 3 5 号

2. 発明の名称

穂 発 芽 防 止 剤

3. 補正をする者

事件との関係 特許出顧人 住所 東京都中央区日本橋本石町 4 丁目 2 番地

名称 北 舆 化 学 工 業 株 式 会 社

4. 代 理 人

住 所 東京都千代田区麹町3丁目2番地(相互第一ビル)

電話(261)2022 3 (6256) 山 /水

5. 補正命令の日付(自発)

昭和 年 月 日(発表日 昭

6.補正の対象

明細書の発明の詳細な説明の標

7. 補正の内容

- 1) 第 3 頁第 4 行の「入畜」を「人畜」と補正します。
- 2) 第7頁の表中、化合物 MG 19 に対する物性値「*m.p. 20」を「*m.p. 20」と補正します。
- 3) 第8頁の表中、化合物 M651 に対する物性値 In D 1.4431 」を「n D 1.4438」と補正します。

ます。

- 7) 第14頁第12行の「オイレン釵」を「オレイン酸」と補正します。
- 8) 第16頁下から第5行の「峨霧&後」を 「噴霧、及渡」と補正します。
- 9) 第24頁第10行において、化合物がの欄・ に「8.」を加入します。

以 上