

CLAIMS

What is claimed is:

- 1 1. A method for testing an electrical connection to a flat cable, comprising:
 - 2 creating a first electrical coupling between a conductor of a flat cable and a test
 - 3 system, wherein a second portion of the flat cable is electrically coupled to
 - 4 an electronic component, the conductor being in electrical communication
 - 5 with the component;
 - 6 introducing an electrical charge from the test system to the first electrical coupling
 - 7 for testing an electrical connection of the conductor to the component;
 - 8 creating a second electrical coupling between the conductor and the test system;
 - 9 introducing an electrical charge from the test system to the first electrical
 - 10 coupling; and
 - 11 determining a resistance across the first and second electrical couplings.
- 1 2. The method as recited in claim 1, wherein the first and second electrical couplings
- 2 are positioned on opposite sides of the flat cable.
- 1 3. The method as recited in claim 2, wherein the first and second electrical couplings
- 2 are positioned directly opposite each other relative to the flat cable.

- 1 4. The method as recited in claim 1, wherein the first and second electrical couplings
2 are positioned on a same side of the flat cable.

- 1 5. The method as recited in claim 4, wherein the first and second electrical couplings
2 are positioned within less than about 5 mm from each other.

- 1 6. The method as recited in claim 5, wherein the first and second electrical couplings
2 are positioned within less than about 3 mm from each other.

- 1 7. The method as recited in claim 1, wherein at least one of the first and second
2 electrical couplings includes a biased contact pin.

- 1 8. The method as recited in claim 1, wherein at least one of the first and second
2 electrical couplings includes a biased contact member having a generally arcuate
3 cross section.

- 1 9. The method as recited in claim 1, further comprising determining whether the
2 resistance across the first and second couplings is above a predetermined amount.

- 1 10. The method as recited in claim 1, wherein the flat cable has multiple conductors,
2 wherein multiple couplings are created between each of the conductors and the
3 test system.

- 1 11. The method as recited in claim 10, further comprising determining a resistance
- 2 across each of the couplings.

- 1 12. The method as recited in claim 10, further comprising determining a resistance
- 2 across only selected couplings, wherein the selected couplings are chosen based
- 3 on a result of the testing of the electrical connection of the conductor to the
- 4 component.

- 1 13. The method as recited in claim 1, wherein the fist and second electrical couplings
- 2 are created by connecting a quick connect type connector to the test system.

- 1 14. A method for testing an electrical connection to a flat cable, comprising:
 - 2 creating a first electrical coupling between a conductor of a flat cable and a test
 - 3 system;
 - 4 creating a second electrical coupling between the conductor and the test system;
 - 5 introducing an electrical charge from the test system to the first electrical
 - 6 coupling; and
 - 7 determining a resistance across the first and second electrical couplings.

- 1 15. The method as recited in claim 14, wherein the first and second electrical
- 2 couplings are positioned on opposite sides of the flat cable.

1 16. The method as recited in claim 15, wherein the first and second electrical
2 couplings are positioned directly opposite each other relative to the flat cable.

1 17. The method as recited in claim 15, wherein the first and second electrical
2 couplings are positioned on a same side of the flat cable.

1 18. The method as recited in claim 17, wherein the first and second electrical
2 couplings are positioned within less than about 5 mm from each other.

1 19. The method as recited in claim 18, wherein the first and second electrical
2 couplings are positioned within less than about 3 mm from each other.

1 20. The method as recited in claim 14, wherein at least one of the first and second
2 electrical couplings includes a biased, elongate, contact pin.

1 21. The method as recited in claim 14, wherein at least one of the first and second
2 electrical couplings includes a biased contact member having a generally arcuate
3 cross section.

1 22. The method as recited in claim 14, wherein the flat cable has multiple conductors,
2 wherein multiple couplings are created between each of the conductors and the
3 test system.

- 1 23. The method as recited in claim 22, further comprising determining a resistance
- 2 across each of the couplings.

- 1 24. The method as recited in claim 22, further comprising determining a resistance
- 2 across only selected couplings, wherein the selected couplings are chosen based
- 3 on a result of the testing of the electrical connection of the conductor to the
- 4 component.

- 1 25. The method as recited in claim 14, further comprising connecting an electronic
- 2 component to the flat cable, the conductor being in electrical communication with
- 3 the component; and introducing an electrical charge from the test system to the
- 4 first electrical connection for testing an electrical connection of the conductor to
- 5 the component.

- 1 26. The method as recited in claim 14, wherein the fist and second electrical
- 2 couplings are created by connecting a quick connect type connector to the test
- 3 system.

- 1 27. An electrical cable, comprising:
 - 2 a flexible sheath having first and second ends;
 - 3 multiple conductors embedded in the sheath;
 - 4 for each conductor, first and second electrical contacts in communication with the
 - 5 conductor; and

6 for each conductor, a third electrical contact in communication with the
7 conductor.

1 28. The cable as recited in claim 27, wherein the first and second electrical contacts
2 are positioned on opposite sides of the sheath.

1 29. The cable as recited in claim 28, wherein the first and second electrical contacts
2 are positioned directly opposite each other relative to the sheath.

1 30. The cable as recited in claim 27, wherein the first and second electrical contacts
2 are positioned on a same side of the sheath.

1 31. The cable as recited in claim 30, wherein the first and second electrical contacts
2 are positioned within less than about 5 mm from each other.

1 32. The cable as recited in claim 31, wherein the first and second electrical contacts
2 are positioned within less than about 3 mm from each other.

1 33. The cable as recited in claim 30 wherein the first and second electrical contacts
2 are formed from a single pad.

1 34. The cable as recited in claim 27, wherein at least one of the first and second
2 electrical contacts is adapted for contact by a biased, elongate, contact pin.

1 35. The cable as recited in claim 27, wherein at least one of the first and second
2 electrical contacts is adapted for contact by a biased contact member having a
3 generally arcuate cross section.

1 36. The method as recited in claim 27, wherein the first and second electrical contacts
2 are exposed via a quick connect type connector.

1 37. An electronic device, comprising:
2 a cable comprising:
3 a flexible sheath having first and second ends;
4 multiple conductors embedded in the sheath;
5 for each conductor, first and second electrical contacts in communication
6 with the conductor;
7 for each conductor, a third electrical contact in communication with the
8 conductor; and
9 a component coupled to the third electrical contacts.