Unidad IV: Diferenciación e Integración Numérica

Prof. José Luis Ramírez

March 8, 2025

Unidad IV: Diferenciación e Integración Numérica

Prof. José Luis Ramírez

March 8, 2025

Contenido

Introducción

2 Tema 1

Tema 2

El flujo de calor en la interfaz suelo-aire puede calcularse con la ley de Faraday

$$q = -k\rho C \frac{dT}{dz}$$

Donde q= flujo de calor, k= coeficiente de difusividad térmica, $\rho=$ la densidad del suelo, C= calor específico del suelo.

• Las situaciones en las cuales se requiere el uso de la diferenciación numérica, ocurren cuando el conjunto de datos está dado en la forma discreta y cuando la función que se va a derivar es complicada, por lo que la derivación analítica es difícil, cuando no imposible.

- Las situaciones en las cuales se requiere el uso de la diferenciación numérica, ocurren cuando el conjunto de datos está dado en la forma discreta y cuando la función que se va a derivar es complicada, por lo que la derivación analítica es difícil, cuando no imposible.
- Entonces, las soluciones numéricas son preferibles a las analíticas, siempre que la función sea fácil de evaluar.

- Las situaciones en las cuales se requiere el uso de la diferenciación numérica, ocurren cuando el conjunto de datos está dado en la forma discreta y cuando la función que se va a derivar es complicada, por lo que la derivación analítica es difícil, cuando no imposible.
- Entonces, las soluciones numéricas son preferibles a las analíticas, siempre que la función sea fácil de evaluar.
- Problemas que han sido estudiados, involucran en cierto modo el cálculo de la derivada de una función evaluada en un punto, como por ejemplo:

- Las situaciones en las cuales se requiere el uso de la diferenciación numérica, ocurren cuando el conjunto de datos está dado en la forma discreta y cuando la función que se va a derivar es complicada, por lo que la derivación analítica es difícil, cuando no imposible.
- Entonces, las soluciones numéricas son preferibles a las analíticas, siempre que la función sea fácil de evaluar.
- Problemas que han sido estudiados, involucran en cierto modo el cálculo de la derivada de una función evaluada en un punto, como por ejemplo:
 - 1 Interpolación Cúbica de Trazador Sujeto.

- Las situaciones en las cuales se requiere el uso de la diferenciación numérica, ocurren cuando el conjunto de datos está dado en la forma discreta y cuando la función que se va a derivar es complicada, por lo que la derivación analítica es difícil, cuando no imposible.
- Entonces, las soluciones numéricas son preferibles a las analíticas, siempre que la función sea fácil de evaluar.
- Problemas que han sido estudiados, involucran en cierto modo el cálculo de la derivada de una función evaluada en un punto, como por ejemplo:
 - 1 Interpolación Cúbica de Trazador Sujeto.
 - 2 Método de Newton-Raphson.

- Las situaciones en las cuales se requiere el uso de la diferenciación numérica, ocurren cuando el conjunto de datos está dado en la forma discreta y cuando la función que se va a derivar es complicada, por lo que la derivación analítica es difícil, cuando no imposible.
- Entonces, las soluciones numéricas son preferibles a las analíticas, siempre que la función sea fácil de evaluar.
- Problemas que han sido estudiados, involucran en cierto modo el cálculo de la derivada de una función evaluada en un punto, como por ejemplo:
 - 1 Interpolación Cúbica de Trazador Sujeto.
 - 2 Método de Newton-Raphson.
 - 3 Ecuaciones Diferenciales.

Hay distintas razones por la que la integración numérica se realiza.

Hay distintas razones por la que la integración numérica se realiza.

• El integrando f(x) puede ser conocido solamente en ciertos puntos, tales como: obtenidos por muestreo. Algunos sistemas encajados y otras aplicaciones informáticas pueden necesitar la integración numérica por esta razón.

Hay distintas razones por la que la integración numérica se realiza.

- El integrando f(x) puede ser conocido solamente en ciertos puntos, tales como: obtenidos por muestreo. Algunos sistemas encajados y otras aplicaciones informáticas pueden necesitar la integración numérica por esta razón.
- Un fórmula para el integrando puede ser conocido, pero puede ser difícil o imposible de encontrar su antiderivada. Un ejemplo de tal integrando es $f(x) = e^{-x^2}$, cuya antiderivada no se puede escribir en forma elemental.

Hay distintas razones por la que la integración numérica se realiza.

- El integrando f(x) puede ser conocido solamente en ciertos puntos, tales como: obtenidos por muestreo. Algunos sistemas encajados y otras aplicaciones informáticas pueden necesitar la integración numérica por esta razón.
- Un fórmula para el integrando puede ser conocido, pero puede ser difícil o imposible de encontrar su antiderivada. Un ejemplo de tal integrando es $f(x) = e^{-x^2}$, cuya antiderivada no se puede escribir en forma elemental.
- Puede ser posible encontrar una antiderivada simbólicamente, pero puede ser más fácil computar una aproximación numérica que computar la antiderivada. Ése puede ser el caso si la antiderivada se da como una serie o producto infinita, o si su evaluación requiere una función especial la cuál no está disponible.

Tema 1

- Contenido del tema 1
- Explicación

Tema 2

- Contenido del tema 2
- \bullet Explicación a