Cognitive Architecture: Past, Present, Future

John Laird

28th Soar Workshop University of Michigan May 7, 2008

What is Cognitive Architecture?

Fixed mechanisms and structures that underlie cognition

- Processors that manipulate data
- Memories that hold knowledge
- Interfaces that interact with an environment

Why is Cognitive Architecture Important?

- Turing equivalence isn't sufficient
 - Architectures have different complexity profiles

History of Cognitive Architecture 1970 1969-2000 1975 -GPS (Ernst & Newell, 1969) Means-ends analysis, recursive subgoals ACT (Anderson, 1976) Human semantic memory CAPS (Thibadeau, Just, Carpenter) Production system for modeling reading 1980 Soar (Laird, & Newell, 1983) Multi-method problem solving, production systems, and problem spaces Theo (Mitchell et al., 1985) Frames, backward chaining, and EBL PRS (Georgeff & Lansky, 1986) Procedural reasoning & problem solving 1985 BB1/AIS (Hayes-Roth & Hewitt 1988) Blackboard architecture, meta-level control Prodigy (Minton et al., 1989) Means-ends analysis, planning and EBL MAX (Kuokka, 1991) Meta-level reasoning for planning and learning 1990 Icarus (Langley, McKusick, & Allen, 1991) Concept learning, planning, and learning 3T (Gat, 1991) Integrated reactivity, deliberation, and planning CIRCA (Musliner, Durfee, & Shin, 1993) Real-time performance integrated with planning 1995 -AIS (Hayes-Roth 1995) Blackboard architecture, dynamic environment EPIC (Kieras & Meyer, 1997) Models of human perception, action, and reasoning 2000 APEX (Freed et al., 1998) Model humans to support human computer designs

Current State of Cognitive Architecture

- Explosion of different architectures
 - Developed with different goals in mind
- Lots of different components
- But some significant commonalities

Classification of Active Architectures

Classification of Active Architectures

Classification of Active Architectures

Common Architectural Structure

Soar

Common Processing Across Many Architectures

- Complex behavior arises from sequence of simple decisions over internal and external actions controlled by knowledge
 - No monolithic plans
 - Significant internal parallelism, limited external parallelism
 - For cognitive modeling, ~50msec is basic cycle time of cognition
- Knowledge access is assumed to be bounded to maintain reactivity
- Symbolic long- & short-term knowledge representation
 - Procedural & semantic (Clarion also has non-symbolic)
 - Relational representations (-Clarion)
- Non-symbolic representation for action selection
- Learning is incremental & on-line (-LIDA)

Future of Cognitive Architecture

Sideways

Evaluation

<u>Up</u> Toward General Intelligent Agents

- Many more complex, knowledge-rich capabilities
 - Natural language
 - Planning
 - Spatial, temporal, meta-reasoning, ...
 - Reflection to improve performance, develop strategies
- Interactions between those capabilities
 - Natural langue interaction to aid planning
 - Planning during natural language generation
- Social agents that exist for days and weeks perform many different tasks
- Learning is everywhere (wild learning)
 - From imitation, instruction, experience, reflection, ...
 - Transition from programming to training, learning by experience
- Model behavior outside standard psychology experiments

<u>Up</u> Applications

- ???
- Intelligent assistants
 - PAL: CALO/RADAR
 - Companions
- AI for computer games
- Intelligent robots
- AI for training & education

TacAir-Soar [1997]

Controls simulated aircraft in real-time training exercises (>3000 entities)

Flies all U.S. air missions

Dynamically changes missions as appropriate

Communicates and coordinates with computer and human controlled planes

>8000 rules

Down

Modeling: Map onto the Brain

- Map onto structure of human brain:
 - ACT-R & MRI

- Use neurologically inspired models of architecture components
 - ACT-R & Leabra
- Build up from models of neural circuits to cognitive processes
 - Arbib, Granger, Grossberg, ...

<u>Down</u> Functionality: Scaling up

- Challenge
 - Real applications will require *huge* knowledge bases
 - 8,000 rules in TacAir-Soar
 - 3,00,000 facts in OpenCyc
 - Real learning leads to lots of knowledge
 - Architectures assume constant time memory retrieval

- Common response:
 - "Don't worry, Moore's Law will save us."

Moore's Law

Down Parallelism for Scaling

- Coarse-grain:
 - Multi-core & multi-processor clusters [Companions]
 - But Amdahl's law still stuck with most costly process
- Fine-grain: New hardware architectures
 - FPGAs for memories
 - GPUs for imagery
 - **-** ???
- Available technology can (should?) impact cognitive architecture design

Sideways

- Expanding set of architectural components & capabilities
- Evaluation

Sideways Architectural (?) Capabilities

- Vision & motor control
- Categorization, classification, ...
- Analogy
- Emotion
- Drives and Motivation [origin of goals]
- Non-symbolic representations, reasoning, learning
 - Mental Imagery
 - Probability

Sideways: Evaluation

- No common tasks
- No common metrics
- No agreed upon evaluation methodology

- Need comparisons and tests for generality
 - Common tasks, metrics, evaluation methodology

Conclusion

- We are in a "Golden Age" of cognitive architecture
- Lots of exciting research ahead
 - Modeling: connections to the brain
 - Functionality: toward general human-level AI
- Many challenges:
 - Performance:
 - Ubiquitous learning
 - Scaling to large knowledge while maintaining reactivity
 - Applications
 - Do we really need human-level AI?
 - Evaluation
 - How do we get people to work on common problems and compare
 - Consolidation
 - Bring together best ideas
 - Connect to rest of AI