STT 465

Variable Selection in Multiple Linear Regression

Variable selection in linear models

Regression equation

$$y_i = \sum_{j=1}^p x_{ij} \delta_j b_j + \varepsilon_i$$

$$\beta_{j} = \delta_{j}b_{j}$$

$$\delta_{j} \sim Bernoulli(\pi)$$

$$b_{j} \sim N(0, \sigma_{b}^{2})$$

 \Rightarrow δ_j =0 amounts to remove the j^{th} predictor from the model.

⇒ Next, we will discuss a Gibbs sampler for this model.

Variable selection in linear models

Likelihood

$$y_{i} = \sum_{j=1}^{p} x_{ij} \delta_{j} b_{j} + \varepsilon_{i} \qquad \varepsilon_{i} \sim N\left(0, \sigma_{\varepsilon}^{2}\right)$$

$$p(y|\delta, b, \sigma_{\varepsilon}^{2}) = \prod_{i=1}^{n} \frac{e^{-\frac{\left(y_{i} - \sum_{j} x_{ij} \delta_{j} b_{j}\right)^{2}}{2\sigma_{\varepsilon}^{2}}}}{\sqrt{2\pi\sigma_{\varepsilon}^{2}}}$$
Prior

Prior

$$p\left(\delta,b\mid\sigma_{b}^{2},\pi\right) = \left[\prod_{j=1}^{p} \frac{e^{-\frac{b_{j}^{2}}{2\sigma_{b}^{2}}}}{\sqrt{2\pi\sigma_{b}^{2}}}\right] \times \left[\prod_{j=1}^{p} \pi^{\delta_{j}} \left(1-\pi\right)^{1-\delta_{j}}\right] \times p\left(\pi,\sigma_{b}^{2},\sigma_{\varepsilon}^{2}\right)$$

Variable selection in linear models

Joint Posterior

$$p(\delta, b, \sigma_{\varepsilon}^{2}, \sigma_{b}^{2}, \pi | y) \propto \left[\prod_{i=1}^{n} \frac{e^{-\frac{\left(y_{i} - \sum_{j} x_{ij} \delta_{j} b_{j}\right)^{2}}{2\sigma_{\varepsilon}^{2}}}}{\sqrt{2\pi\sigma_{\varepsilon}^{2}}} \right] \times \left[\prod_{j=1}^{p} \frac{e^{-\frac{b_{j}^{2}}{2\sigma_{b}^{2}}}}{\sqrt{2\pi\sigma_{b}^{2}}} \right] \times \left[\prod_{j=1}^{p} \frac{e^{-\frac{b_{j}^{2}}{2\sigma_{b}^{2}}}}{\sqrt{2\pi\sigma_{b}^{2}}} \right] \times \left[\prod_{j=1}^{p} \frac{e^{-\frac{b_{j}^{2}}{2\sigma_{b}^{2}}}}{\sqrt{2\pi\sigma_{b}^{2}}} \right]$$

Indicator Variables

$$p(\delta_{k}|ELSE) \propto \left[\prod_{i=1}^{n} \frac{e^{-\frac{\left(y_{i} - \sum_{j \neq k} x_{ij} \delta_{j} b_{j} - x_{ik} \delta_{k} b_{k}\right)^{2}}{2\sigma_{\varepsilon}^{2}}}}{\sqrt{2\pi\sigma_{\varepsilon}^{2}}} \right] \pi^{\delta_{k}} \left(1 - \pi\right)^{1 - \delta_{k}}$$

$$p(\delta_{k} = 1 | ELSE) \propto \left[\prod_{i=1}^{n} \frac{e^{-\frac{\left(y_{i} - \sum_{j \neq k} x_{ij} \delta_{j} b_{j} - x_{ik} b_{k}\right)^{2}}{2\sigma_{\varepsilon}^{2}}}}{\sqrt{2\pi\sigma_{\varepsilon}^{2}}} \right] \pi \qquad p(\delta_{k} = 0 | ELSE) \propto \left[\prod_{i=1}^{n} \frac{e^{-\frac{\left(y_{i} - \sum_{j \neq k} x_{ij} \delta_{j} b_{j}\right)^{2}}{2\sigma_{\varepsilon}^{2}}}}{\sqrt{2\pi\sigma_{\varepsilon}^{2}}} \right] (1 - \pi)$$

Indicator Variables

$$p(\delta_{k} = 1 | ELSE) = \frac{\left[\prod_{i=1}^{n} \frac{e^{\frac{\left(y_{i} - \sum_{j \neq k} x_{ij} \delta_{j} b_{j} - x_{ik} b_{k}}\right)^{2}}{\sqrt{2\pi\sigma_{\varepsilon}^{2}}}\right] \pi}{\left[\prod_{i=1}^{n} \frac{e^{\frac{\left(y_{i} - \sum_{j \neq k} x_{ij} \delta_{j} b_{j} - x_{ik} b_{k}}\right)^{2}}{\sqrt{2\pi\sigma_{\varepsilon}^{2}}}\right] \pi + \left[\prod_{i=1}^{n} \frac{e^{\frac{\left(y_{i} - \sum_{j \neq k} x_{ij} \delta_{j} b_{j}}\right)^{2}}{2\sigma_{\varepsilon}^{2}}}{\sqrt{2\pi\sigma_{\varepsilon}^{2}}}\right] (1 - \pi)$$

Effects

$$p(b_k|ELSE) \propto \left[\prod_{i=1}^n \frac{e^{-\frac{\left(y_i - \sum_{j \neq k} x_{ij} \delta_j b_j - x_{ik} \delta_k b_k\right)^2}{2\sigma_{\varepsilon}^2}}}{\sqrt{2\pi\sigma_{\varepsilon}^2}} \right] \times \left[\frac{e^{-\frac{b_k^2}{2\sigma_b^2}}}{\sqrt{2\pi\sigma_b^2}} \right]$$

Case 1 ($\delta_k = 0$)

$$p(b_k|ELSE) \propto \left[\frac{e^{-\frac{b_k^2}{2\sigma_b^2}}}{\sqrt{2\pi\sigma_b^2}}\right] = N(b_k|0,\sigma_b^2)$$

Case 2 ($\delta_k = 1$)

$$p(b_k|ELSE) \propto \left[\prod_{i=1}^n \frac{e^{-\frac{\left(y_i - \sum_{j \neq k} x_{ij} \delta_j b_j - x_{ik} b_k\right)^2}{2\sigma_{\varepsilon}^2}}}{\sqrt{2\pi\sigma_{\varepsilon}^2}} \right] \times \left[\frac{e^{-\frac{b_k^2}{2\sigma_b^2}}}{\sqrt{2\pi\sigma_b^2}} \right]$$

(same as in the linear model without indicator variables)

Other variables

- Variances have the same fully conditionals as those of the standard multiple linear regression model.
- If we assign either a beta prior to π , the fully conditional can be shown to be beta.

Example

In this example we simulate data using 1000 predictors, out of which only 10 have effects and fit the variable selection model using BGLR.

```
library(BGLR); data(mice)
X = mice.X[, 1:1000]
QTL=seq(from=50, to=950, length=10)
b=rep(0, ncol(X)); b[QTL]<-1
signal<-X%*%b
error=rnorm(n=nrow(X),sd=sd(signal))
y=error+signal
fm=BGLR(y=y)
       ETA=list(list( X=X, model='BayesC', saveEffects=T))
        ,nIter=12000,burnIn=200)
plot(fm$ETA[[1]]$b,cex=.5,type='o',col=2,
        vlab='Estimated Effects'); abline(v=QTL, col=4)
plot(fm$ETA[[1]]$d,cex=.5,type='o',col=2, ylab='p(dj=1)');
       abline (v=OTL, col=4)
```