## Interpreting logistic-regression coefficients as odds ratios

In logistic regression, we are fitting a model to predict binary outcomes  $y_i$ , conditional upon regressors  $\mathbf{x}_i = (x_{i1}, \dots, x_{ip})$ . This involves assuming that the probability of "success" for the *i*th observation is

$$\Pr(y_i = 1 \mid \mathbf{x}_i) = p_i = \frac{\exp(\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip})}{1 + \exp(\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip})}.$$
 (1)

Recall that odds are just a different way of expressing probabilities:

(Odds that 
$$y_i$$
 is 1) =  $O_i = \frac{p_i}{1 - p_i}$ .

If you churn through the algebra and re-express the logistic-regression equation (1) in terms of odds, you will see that the log-odds of success are being modeled as a linear function of the predictors:

$$\log O_i = \log \left( \frac{p_i}{1 - p_i} \right) = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}.$$

For the sake of simplicity, image a data set with only a single regressor  $x_i$  that can take the values 0 or 1 (a dummy variable). Perhaps, for example,  $x_i$  denotes whether someone received the new treatment (as opposed to the control) in a clinical trial.

For this hypothetical case, let's consider the ratio of two quantities: the odds of success for person i with  $x_i = 1$ , versus the odds of success for person

j with  $x_j = 0$ . Denote this ratio by  $R_{ij}$ . We can write this as

$$R_{ij} = \frac{O_i}{O_j}$$

$$= \frac{\exp\{\log(O_i)\}}{\exp\{\log(O_j)\}}$$

$$= \frac{\exp\{\beta_0 + \beta_1 \cdot 1\}}{\exp\{\beta_0 + \beta_1 \cdot 0\}}$$

$$= \exp\{\beta_0 + \beta_1 - \beta_0 - 0\}$$

$$= \exp(\beta_1).$$

Therefore, we can interpret the quantity  $e^{\beta_1}$  as an odds ratio. Since  $R_{ij} = O_i/O_j$ , we can also write this as:

$$O_i = e^{\beta_1} \cdot O_j \,.$$

In words: if we start with x = 0 and move to x = 1, our odds of success (y = 1) will change by a multiplicative factor of  $e^{\beta_1}$ .