Jacobi symbols, primality, and applications

september 2011

1 The group $(\mathbb{Z}/N\mathbb{Z})^*$

We review the structure of the abelian group $(\mathbb{Z}/N\mathbb{Z})^*$. Using Chinese remainder theorem, we can restrict to the case when $N=p^k$ is a prime power. If k=1 the group is cyclic. Assume $k\geq 2$.

The cardinality of $(\mathbb{Z}/p^k\mathbb{Z})^*$ is $p^{k-1}(p-1)$. Since p-1 and p^{k-1} are coprime, the group $(\mathbb{Z}/p^k\mathbb{Z})^*$ is the direct product of two subgroups with respective orders p-1 and p^{k-1} . One can be more precise.

We have the exact sequence

$$1 \to \mathbf{U}_1 \to (\mathbb{Z}/p^k\mathbb{Z})^* \to \mathbb{F}_p^* \to 1 \tag{1}$$

where \mathbf{U}_1 is the subgroup of all $x \mod p^k$ such that $x \equiv 1 \mod p$.

Let **V** be the group of solutions to the equation $x^{p-1} = 1$. According to Hensel lemma, there are at least p-1 such roots, and reduction modulo p is a bijection from **V** onto \mathbb{F}_p^* . The intersection of **V** and **U**₁ is trivial.

For every $n \ge 1$ let $\dot{\mathbf{U}}_n \subset (\mathbb{Z}/N\mathbb{Z})^*$ be the subgroup consisting of all residues congruent to 1 modulo p^n . So $\{1\} = \mathbf{U}_k \subset \mathbf{U}_{k-1} \subset \ldots \subset \mathbf{U}_1$.

For every $1 \le n \le k-1$, the quotient $\mathbf{U}_n/\mathbf{U}_{n+1}$ is cyclic of order p and $1+p^n$ is a generator of it. Indeed, the map

$$1 + ap^n \mod p^{n+1} \mapsto a \mod p$$

is and isomorphism from $(\mathbf{U}_n/\mathbf{U}_{n+1},\times)$ onto $(\mathbb{Z}/p\mathbb{Z},+)$.

Lemma 1 Let n be an integer such that $1 \le n \le k-2$ if $p \ge 3$ and $2 \le n \le k-2$ if p = 2. Let $x \in \mathbf{U}_n - \mathbf{U}_{n+1}$. Then $x^p \in \mathbf{U}_{n+1} - \mathbf{U}_{n+2}$.

Indeed $x = 1 + ap^n$ and a is prime to p. If $p \ge 3$ one computes

$$x^{p} = (1+ap^{n})^{p} = 1+ap^{n+1} + \sum_{2 \le m \le p-1} \binom{p}{m} a^{m} p^{nm} + a^{p} p^{np} \equiv 1+ap^{n+1} \bmod p^{n+2}$$

since $np \ge n + 2$.

If p=2 and $n\geq 2$ then

$$x^2 = (1 + a2^n)^2 = 1 + a2^{n+1} + a^2 2^{2n} \equiv 1 + a2^{n+1} \mod 2^{n+2}$$

since $2n \ge n + 2$.

We deduce that if $p \geq 3$ then \mathbf{U}_1 is cyclic of order p^{k-1} and 1+p is a generator.

For p=2, we only prove that \mathbf{U}_2 is cyclic of order 2^{k-2} and 5 is a generator. If p is odd the group $(\mathbb{Z}/p^k\mathbb{Z})^*$ is isomorphic to $\mathbb{Z}/(p-1)\mathbb{Z} \times \mathbb{Z}/p^{k-1}\mathbb{Z}$.

For p=2 one checks that $\mathbf{U}_1=\{1,-1\}\times\mathbf{U}_2$ so $\mathbb{Z}/2^k\mathbb{Z}$ is isomorphic to $(\mathbb{Z}/2\mathbb{Z})\times(\mathbb{Z}/2^{k-2}\mathbb{Z})$.

2 The Legendre symbol

Let p be and odd prime. For every integer x one defines the Legendre symbol $\left(\frac{x}{p}\right)$ as follows:

1.
$$\left(\frac{x}{p}\right) = 0$$
 if p divides x ,

2.
$$\left(\frac{x}{p}\right) = 1$$
 if x is a non-zero square modulo p,

3.
$$\left(\frac{x}{p}\right) = -1$$
 if x is not a square modulo p.

The map $x \mapsto \left(\frac{x}{p}\right)$ is a group homomorphism from \mathbb{F}_p^* onto $\{1,-1\}$.

One checks that $\left(\frac{x}{p}\right) = x^{\frac{p-1}{2}} \mod p$. So we obtain a first method to compute this Legendre symbol.

The famous quadratic reciprocity law states that

Theorem 1 If p and q are two odd positive distinct primes then

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{(p-1)(q-1)}{4}}.$$

There are many proofs for this theorem. For example set

$$\Phi_q(x) = 1 + x + \dots + x^{q-1}$$

and let $A(x) \in \mathbb{F}_p[x]$ be an irreducible factor of $\Phi_q(x)$ modulo p. Set

$$\mathbf{L} = \mathbb{F}_p[x]/A$$

and let $\zeta = x \mod A(x) \in \mathbf{L}$. This is a q-th root of unity in the field \mathbf{L} .

Question 1 Show that ζ is a primitive q-th root of unity (its multiplicative order is exactly q).

The so called Gauss sum

$$\tau = \sum_{x \in \mathbb{F}_q^*} \left(\frac{x}{q} \right) \zeta^x$$

is an element of the field L.

One can show that $\tau^2 = \left(\frac{-1}{q}\right)q \in \mathbf{L}$. So τ is a square root of $\left(\frac{-1}{q}\right)q$ in the algebraic closure of \mathbb{F}_p . This square root is in \mathbb{F}_p if and only if $\tau^p = \tau$. On checks that $\tau^p = \left(\frac{p}{q}\right)\tau$. So $\left(\frac{-1}{q}\right)q$ is a square modulo p if and only if $\left(\frac{p}{q}\right) = 1$. This finishes the proof.

We shall need also the following theorem

Theorem 2 For p an odd prime

$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2 - 1}{8}}. (2)$$

Observe that if x is an odd integer then x = 1 + 2k and

$$x^{2} = 1 + 4k(k+1) = 1 + 8\begin{pmatrix} k+1\\2 \end{pmatrix}$$

is congruent to 1 modulo 8. And k(k+1)/2 is even if and only if k is congruent to 0 or 3 modulo 4 that is x congruent to 1 or 7 modulo 8.

Now let $A(x) \in \mathbb{F}_p[x]$ be an irreducible factor of $x^4 + 1$ modulo p and set $\zeta = x \mod A(x)$ the class of x in $\mathbb{F}_p[x]/A$.

Question 2 Prove that ζ is a primitive 8-th root of 1.

One checks that $(\zeta + \zeta^{-1})^2 = 2$. So we have a square root of 2 in the algebraic closure of \mathbb{F}_p . So 2 is a square if and only if this square root is in \mathbb{F}_p that is $\alpha^p = \alpha$.

But $\alpha^p = \zeta^p + \zeta^{-p}$ where the exponents p only matter modulo 8. If p is congruent to 1 or -1 modulo 8 one deduces that $\alpha^p = \alpha$. If p is congruent to 3 or 5 modulo 8 one checks that $\alpha^p = -\alpha$. This proves formula (2) and the theorem.

3 The Jacobi symbol

Assume $N \geq 3$ is an odd integer and let $N = \prod_i p_i^{e_i}$ its prime decomposition. The Jacobi symbol is defined as a generalization of the Legendre symbol. One sets

$$\left(\frac{x}{N}\right) = \prod_{i} \left(\frac{x}{p_i}\right)^{e_i}.$$

This symbol only depends on the congruence class of x modulo N. It has many evident multiplicative properties (inherited from the Lengendre symbol). For example $\left(\frac{a}{b}\right) = 0$ if and only if a are b not coprime.

The $quadratic\ reciprocity\ law$ extends to this symbol.

Theorem 3 (Gauss) Let $M \ge 3$ and $N \ge 3$ two odd coprime integers. One has $\left(\frac{-1}{M}\right) = (-1)^{\frac{M-1}{2}}, \left(\frac{2}{M}\right) = (-1)^{\frac{M^2-1}{8}}, \text{ and}$ $\left(\frac{M}{N}\right) \left(\frac{N}{M}\right) = (-1)^{\frac{(M-1)(N-1)}{4}}.$

Thanks to this theorem we can quickly compute the Jacobi symbol by successive Euclidean divisions.

Note that if N is not a prime, the Jacobi symbol does not distinguish quadratic residues. For example if N=pq is the product of two odd primes and if x is prime to N then $\left(\frac{x}{N}\right)=1$ means that either x is a square modulo p and modulo q, or that is not a square modulo p nor modulo q. In the latter case one sometimes says that x is a false square.

4 The Solovay-Strassen primality test

Let N be an odd integer. Let $\chi_1: (\mathbb{Z}/N\mathbb{Z})^* \to (\mathbb{Z}/N\mathbb{Z})^*$ and $\chi_2: (\mathbb{Z}/N\mathbb{Z})^* \to (\mathbb{Z}/N\mathbb{Z})^*$ be the two group homomorphisms defined by

$$\chi_1: x \mapsto x^{\frac{N-1}{2}} \bmod N$$

and

$$\chi_2: x \mapsto \left(\begin{array}{c} x \\ \hline N \end{array}\right) \bmod N.$$

We set $\chi_0 = \chi_2/\chi_1$. It is evident that χ_0 is trivial if N is a prime. One has the

Lemma 2 If N is odd and composite, then there exists an x mod N in $(\mathbb{Z}/N\mathbb{Z})^*$ such that $\chi_0(x) \neq 1$.

Assume first that N is divisible by a non-trivial square: there exists an odd prime p and an integer $k \geq 2$ such that p^k divides exactly N. Set $M = N/p^k$. Let $G \subset (\mathbb{Z}/N\mathbb{Z})^*$ be the subgroup consisting of all residues congruent to 1 modulo Mp. This is a cyclic group of order p^{k-1} . The restriction of the Jacobi symbol to this sub-group is trivial. The restriction of χ_1 is not because $\frac{N-1}{2}$ is prime to p.

Assume now that N is square-free. Let p be an odd prime factor of N and set M=N/p. Let x be an integer congruent to 1 modulo M and which is not a square modulo p. Then $\chi_2(x)=-1$ and $\chi_1(x)=1$ mod M. So $\chi_1(x)\neq\chi_2(x)$. \sqcap

If N is an odd composite integer then the kernel of χ_0 is a strict subgroup of $(\mathbb{Z}/N\mathbb{Z})^*$. Its cardinality is $\leq \frac{N-1}{2}$. We have at least one chance over two to find $\chi_0(x) \neq 1$ if x is chosen at random uniformly in $(\mathbb{Z}/N\mathbb{Z})^*$. Since we have polynomial time algorithms to compute χ_1 and χ_2 we obtain a probabilistic primality test:

- 1. check that N is odd;
- 2. pick x at random in $(\mathbb{Z}/N\mathbb{Z})^*$ and compute $\chi_1(x)$ and $\chi_2(x)$;
- 3. if $\chi_1(x) \neq \chi_2(x)$, one knows that N is composite;
- 4. if $\chi_1(x) = \chi_2(x)$, one cannot conclude ... but one can try again!

If N is odd and composite and if $x \in (\mathbb{Z}/N\mathbb{Z})^*$ is such that $\chi_1(x) = \chi_2(x)$, one says that x is a false witness.

The proportion of false witnesses is at most 1/2.