# Introduction to mapping/alignment with short read sequence data

Ian Dworkin & Chris Chandler KBS June 8<sup>th</sup> 2011

#### The book!!!!

- Practical Computing for Biologists
   Steven Haddock and Casey Dunn 2010
- Sinauer

### goals

- Brief introduction to 2<sup>nd</sup> and 3<sup>rd</sup> generation sequencing platforms.
- Discuss how "aligning" or mapping reads occurs.
- Some basics of data structures needed.
- Options.
- Performance of gapped vs ungapped alignments. Paired end vs single end.

# What makes these sequencing technologies "next"?

- Large amount of sequencing possible, in a (relatively) short time and relatively cheaply.
- Infrastructure for the technologies is quite different than Sanger.
- Different chemistries.
- Library based sequencing (instead of individual unique amplicons).
- SCALING!
- Shorter read lengths (for now).

# Some general principles (Illumina/ Roche454/ABISolid)

1) Randomly fragment many molecules of target DNA



2) Immoblize individual DNA molecules on solid support



Fig. 2 A generalized description of the steps common to next-generation genome sequencing technologies. All these technologies involve genomic DNA random fragmentation, immobilization of single molecules on a solid support (a bead or planar solid surface), amplification by PCR, and subsequent *in situ* biochemical interrogation of the template DNA at each base in turn.

3) Amplify DNA in clonal 'polymerase colony'



 Sequence DNA by adding liquid reagents to immoblized DNA colonies



5) Interrogate sequence incorporation *in situ* after each cycle using fluorescence scanning or chemiluminescence



### A few general differences..



Fig. 3 A description of the key features of, and differences between, the three commercially available next-generation sequencing methods. The major steps in each procedure are arranged in the order in which they are performed by the operator or sequencing instrument. All three technologies share a common workflow, but differ greatly in the type of solid support used and the chemistry used to interrogate the DNA base pairs.

#### http://www.454.com/products-solutions/how-it-works/index.asp



Among the many useful things these technologies allow is to "overcome" the short read length by doing multiple short reads from the same PCR amplicon.



Glenn 2011

#### Illumina Paired end



Inserts on the order of 200-500bp

http://www.illumina.com/technology/paired\_end\_sequencing\_assay.ilmn

# The Roche454 FLX (or whatever version)...

- The mate pairs allow for larger inserts of different sizes.
- Currently ranging between 3-12kb (??).
- However with this approach the actual length of the read from each side is effectively cut in half (not true for PE with Illumina).

#### The technologies are changing so fast..

- We are all trying to keep up with latest developments.
- The good news is everything is getting better and cheaper very quickly.
- However it is still very important to pick the appropriate technology for your particular application (i.e. 454 for assembly, but Illumina for resequencing, chipSeq, RNAseq...).

### Comparison among platforms

Table 1 2<sup>nd</sup> and 3<sup>rd</sup> Generation DNA sequencing platforms listed in the order of commercial availability

| Platform    | Current company        | Former<br>company     | Sequencing<br>method                    | Amplification method | Claim to fame                                                | Primary applications     |
|-------------|------------------------|-----------------------|-----------------------------------------|----------------------|--------------------------------------------------------------|--------------------------|
| 454         | Roche                  | 454                   | Synthesis<br>(pyrosequencing)           | emPCR                | First Next-Gen Sequencer,<br>Long reads                      | 1*, 2, 3*, 4, 7, 8*      |
| Illumina    | Illumina               | Solexa                | Synthesis                               | BridgePCR            | First short-read sequencer;<br>current leader in advantages† | 1*, 2, 3*, 4, 5, 6, 7, 8 |
| SOLiD       | Life<br>Technologies   | Applied<br>Biosystems | Ligation                                | emPCR                | Second short-read sequencer;<br>low error rates              | 3*, 5, 6, 8              |
| HeliScope   | Helicos                | N/A                   | Synthesis                               | None                 | First single-molecule sequencer                              | 5, 8                     |
| Ion Torrent | Life<br>Technologies   | Ion Torrent           | Synthesis<br>(H <sup>+</sup> detection) | emPCR                | First Post-light sequencer;<br>first system <\$100 000       | 1, 2, 3, 4, 8            |
| PacBio      | Pacific<br>Biosciences | N/A                   | Synthesis                               | None                 | First real-time single-molecule<br>sequencing                | 1, 2, 3, 7, 8            |
| Starlight‡  | Life<br>Technologies   | N/A                   | Synthesis                               | None                 | Single-molecule sequencing<br>with quantum dots              | 1, 2, 7, 8               |

Glenn 2011

# Comparisons among platforms

Table 4 Primary advantages and disadvantages of each next-generation sequencing instrument

|                        | Primary                                                                                                                                                                                                                       |                                                                                                                                                         |  |  |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Instrument             | advantages                                                                                                                                                                                                                    | Primary disadvantages                                                                                                                                   |  |  |
| 3730xl (capillary)     | Low cost for very small studies                                                                                                                                                                                               | Very high cost for large amounts of data                                                                                                                |  |  |
| 454 GS Jr. Titanium    | Long-read length; low capital cost; low cost per<br>experiment                                                                                                                                                                | High cost per Mb                                                                                                                                        |  |  |
| 454 FLX Titanium       | Long-read length                                                                                                                                                                                                              | High capital cost and high cost per Mb                                                                                                                  |  |  |
| 454 FLX+               | Double the maximum read length of Titanium                                                                                                                                                                                    | High cost per Mb                                                                                                                                        |  |  |
| Helicos                | Large numbers of reads directly from single<br>molecules                                                                                                                                                                      | Length of reads and questionable longevity of<br>company                                                                                                |  |  |
| PacBio                 | Single molecule real-time sequencing, longest<br>available read length, strobed reads, each instru-<br>ment run = min, low cost per sample and many<br>methods being developed                                                | Error rates, low total number of reads per<br>run, high cost per Mb, high capital cost, and<br>many methods still in development                        |  |  |
| Ion Torrent            | Low-cost instrument upgraded through dispos<br>able chips (the chip is the machine), very simple<br>machine with few moving parts and clear trajec-<br>tory to improved performance                                           | New platform with a variety of unknowns, and<br>some known issues at the time of release                                                                |  |  |
| Ion Torrent – 314 chip | Low cost per sample for small studies, short time<br>needed on instrument, suitable for microbial<br>sequencing and targeted sequencing, and easily<br>upgraded with new chips                                                | Highest cost per Mb of all NextGen platforms and<br>sample preparation takes longer time than on the<br>instrument                                      |  |  |
| Ion Torrent – 316 chip | Same as above, upgraded because of higher<br>density chip                                                                                                                                                                     | Sample preparation time and similar cost per<br>Mb to 454                                                                                               |  |  |
| Ion Torrent – 318 chip | Same as above, upgraded because of higher den-<br>sity chip, lower cost per read and Mb allows<br>more applications                                                                                                           | Sample preparation time and similar cost to MiSeq                                                                                                       |  |  |
| SOLiD - 4              | EZ Bead simplifies emPCR, low-cost per Gb,<br>throughput = 5–6 Gb/day                                                                                                                                                         | Unusual informatics with 2-base colour space<br>encoding, relatively short reads and chip<br>runs all at once                                           |  |  |
| SOLID - 5500           | Each lane of Flow-Chip can be run independently,<br>highest accuracy*, output in bases (not colour<br>space); ability to rescue failed sequencing cycles,<br>96 validated barcodes per lane and throughput<br>of 10–15 Gb/day | Not available until spring 2011, relatively short<br>reads, more gaps in assemblies than Illumina<br>data and less even data distribution than Illumina |  |  |
| SOLID - 5500xl         | Same as 5500, but with double the throughput                                                                                                                                                                                  | Same as SOLiD 5500 and high capital cost                                                                                                                |  |  |
| Illumina MiSeq         | Low-cost instrument and runs, lowest cost/Mb for<br>small platforms and fastest Illumina run times                                                                                                                            | Relatively few reads and higher cost/Mb<br>compared to other Illumina platforms                                                                         |  |  |
| Illumina HiScanSQ      | Versatile instrument for full catalogue of Illumina<br>arrays and sequencing, and scalable in future                                                                                                                          | Higher cost/Mb than HiSeq for large amounts<br>of data                                                                                                  |  |  |
| Illumina GAIIx         | Lower capital cost than HiSeqs                                                                                                                                                                                                | Slightly higher cost per Mb than HiSeq and not<br>as scalable in the future                                                                             |  |  |
| Illumina HiSeq 1000    | Lower instrument cost than HiSeq 2000, same number<br>of reads/lane and cost/lane as HiSeq 2000, field<br>upgradable to HiSeq 2000 and future scalability                                                                     | Not as flexible as HiSeq2000 because of having<br>only 1 flow cell                                                                                      |  |  |
| Illumina HiSeq 2000    | Same as HiSeq 1000, but runs two flow cells simul-<br>taneously; Most reads, Gb per day and Gb per<br>run, lowest cost per Mb of all platforms*                                                                               | High capital cost and high computation needs                                                                                                            |  |  |

**Glenn 2011** 

# Ok... I now have 0.25Tb of sequence data... what do we do first

 For most applications, the unique short reads by themselves are of little use.

- In general most people try to "piece the data together" in some fashion.
- In general this is either de-novo assembly, or syntenic assembly (i.e. aligning/mapping reads).
- Hybrid approaches are becoming more common.

### Syntenic assembly

- **Syntenic** assembly *assumes* that you have some sort of **reference** genome that you can use as a scaffold to build your genome (or transcripts).
- You make an assumption that the locations of your new sequence reads are syntenic with that of the reference genome?
- How could this possibly go wrong?

# Assumptions/issues with syntenic assembly?

- Insertion/deletions (relative to reference genome).
- High levels of sequence variation (relative to reference).
- Low complexity DNA (repeats)
- Recombination
- Re-arrangements
- Gene duplication
- Quality of the reference genome
- (reference is incomplete, and order may be incorrect).

### So how do we map reads?

- We can start where we left off yesterday...
- As CTB described, Blast begins with a "seed" of length 11 (default).
- Blast generates a database of the reference genome data (genomic DNA, transcripts etc) of 11bp sequences, and looks for exact (?) matches.
- It then takes all matches (which is a small subset) and used the Smith-Waterman algorithm (CTB will explain later) to find the "best" matches.
- This needs to be done as SMA and other approaches are slow.

### Why not use Blast for NGS data?

- Too Slow!
- "homology" over short regions can be difficult for short reads.

# NGS alignment/mapping

- Most approaches still use this two step process of generating a subset of possible matches followed by a (slow) refinement step.
- The major differences is how they go about doing this.

#### Hash tables

- Some of software uses hash tables.
- These are also called associative arrays, maps and in python dictionaries.
- The basic idea is that instead of some sort of numerical indexing, the data structure (the hash table) uses a key-value pairing system.
- You used one yesterday in python {}.
- Pairs = {}

#### Hash table.



#### Burrows Wheeler.



#### Among the many software options...

Table 1: Popular short-read alignment software

| Program                | Algorithm     | SOLID | Longa | Gapped | PE  | Q   |
|------------------------|---------------|-------|-------|--------|-----|-----|
| Bfast                  | hashing ref.  | Yes   | No    | Yes    | Yes | No  |
| Bowtie                 | FM-index      | Yes   | No    | No     | Yes | Yes |
| BWA                    | FM-index      | Yesd  | Yese  | Yes    | Yes | No  |
| MAQ                    | hashing reads | Yes   | No    | Yesf   | Yes | Yes |
| Mosaik                 | hashing ref.  | Yes   | Yes   | Yes    | Yes | No  |
| Novoalign <sup>g</sup> | hashing ref.  | No    | No    | Yes    | Yes | Yes |

Work well for Sanger and 454 reads, allowing gaps and clipping. 
<sup>b</sup>Paired end mapping. 
<sup>c</sup>Make use of base quality in alignment. 
<sup>d</sup>BWA trims the primer base and the first color for a color read. 
<sup>e</sup>Long-read alignment implemented in the BWA-SW module. 
<sup>f</sup>MAQ only does gapped alignment for Illumina paired-end reads. 
<sup>g</sup>Free executable for non-profit projects only.

Li & homer 2011

# Some comparisons among gapped/ ungapped & Single vs. Paired end (se/



### How long a list?

 http://seqanswers.com/forums/ showthread.php?t=43

http://seqanswers.com/wiki/Software

- http://seqanswers.com/wiki/Software/list
- http://en.wikipedia.org/wiki/
   List of sequence alignment software

#### References

Flicek, P., & Birney, E. (2009). Sense from sequence reads: methods for alignment and assembly Nature Methods, 6(11 Suppl), S6–S12. doi:10.1038/nmeth.1376

Glenn, T. C. (2011). Field guide to next-generation DNA sequencers Molecular Ecology Resources. doi:10.1111/j.1755-0998.2011.03024.x

Hudson, M. E. (2008). Sequencing breakthroughs for genomic ecology and evolutionary biology Molecular Ecology Resources, 8(1), 3–17. doi:10.1111/j.1471-8286.2007.02019.x

Li, H., & Homer, N. (2010). A survey of sequence alignment algorithms for next-generation sequencing Briefings in bioinformatics, 11(5), 473–483. doi:10.1093/bib/bbq015



