计算机网络

高级网络互连

华中科技大学电信学院 2016

学习目标

- 理解无类别域间路由的路由转发实现机制
- 掌握互联网域内路由和域间路由的概念,理解BGP协议的实现机制
- 理解IPv6的设计目标,了解IPv6的主要技术特征
- 理解多播的概念
- 了解移动主机的路由实现机制

赢者通吃:如何支持新的应用?

互联网中年危机:思想狭隘,心宽体胖?

IP "hourglass"

Middle-age IP "hourglass"?

提纲

- 引言
 - 核心问题: 扩展到数十亿节点
 - 全球互联网
 - IPv6
 - 多播
 - 移动设备之间的路由
 - 总结

全球互联网

- 然而, 简单的网络互联并不足以满足扩展性的要求
- IP地址的简单分层仅能实现"一定程度"的扩展
 - 路由器有必要知道连在互联网上的所有网络,这在现实中完全不可能达到
- 存在一些大幅度提高可扩展性的技术使得Internet发展 到了当前的程度

全球互联网的实际情况

1990年时Internet的树形结构

全球互联网的实际情况

1990年时Internet的树形结构

=> 自治系统

互联网架构: 网络互联的网络

互联网架构: 网络互联的网络

- 网络中心: 少量充分互联的大型网络
 - 顶级商业ISPs (e.g., Level 3, Sprint, AT&T, NTT, China Telcom, Unicom), 全国 & 全球覆盖
 - 内容服务网络 (e.g, Google):建设私有网络将自己的数据中心直接连入互联网, 而不通过顶级或者区域网络服务提供商

域间路由选择(BGP)

- Internet和自治系统
- 域间路由选择
- 路径向量路由选择
- BGP

Internet 和自治系统

- Internet 按照自治系统(也称为路由选择域)进行组织
- 每一个自治系统(AS)在一个独立的管理实体的控制之下
 - 示例: 校园网络, 公司网络
- 为什么提出自治系统?
 - 从管理和安全的角度考虑
 - 扩展性: 将大型互联网中路由选择信息进行层次汇聚的 一种补充

自治系统

- 每一个自治系统(AS) 由一个单一的管理实体控制
- 每一个AS拥有一个AS号(ASN)
- AS 号
 - 16 bits 的整数
 - 公共AS号:1-64511
 - 私有 AS 号: 64512 65535
 - 示例
 - AT&T: 7018, 6431, ...
 - Sprint: 1239, 1240, ...
 - MIT: 3

AS号

- AS 号占有16-bit
 - 共存在65,536 个唯一的AS号
- 部分AS号被保留(例如, 私有AS号)
 - 只有64,510个AS号可以公共使用
- 由Internet Assigned Numbers Authority管理
 - 以1024为分配单元向区域性Internet注册中心(RIRs)进行分配
 - IANA 已向RIRs分配39,934个 AS号 (Jan'06)
- RIRs 向各机构分配AS号
 - RIRs 已分配AS号34,827个 (Jan'06)
 - 只有21,191号在域间路由选择过程中可见 (Jan'06)
- 近期已开始分配32-bit AS #s (2007)

域名管理权移交: 美国想干啥? 中国会受益么? http://www.edu.cn/xxh/focus/li_lun_yj/201608/t20160822_1441513.shtml

AS的类型

- 通信量类型
 - 本地流量: 在一个AS内部
 - 中转流量: 经过一个AS
- AS分类
 - 桩AS(Stub AS): 仅与一个其他AS相连, 因此仅包含本地流量
 - 多出口AS(Multi-home AS):与其它的自治系统具有多个连接,但拒绝承载中转流量
 - 中转AS(Transit AS):与其它的自治系统具有多个连接, 允许承载中转流量

域间路由选择(BGP)

• Internet和自制系统

- 域间路由选择
- 路径向量路由选择
- BGP

Internet 路由选择架构

示例

域内

域内路由选择协议又称为内部网关协议 (IGP), 例如 OSPF, RIP

域间

域间路由协议又称为外部网关协议 (EGP), 例如 BGP

两级路由

- 域内路由选择
 - 运行于一个特定的网络,即一个自治系统内
 - 网络内两个节点之间的最优路由
 - 内部网关协议(IGP)
 - 基于评价指标
 - 示例: OSPF, RIP, IS-IS
- 域间路由选择
 - 运行于多个网络之间,即自治系统之间(ASes)
 - 提供整个Internet的全连接
 - 外部网关协议(EGP)
 - 基于策略
 - 示例: EGP(外部网关协议), BGP (边界网关协议)

域间路由选择面临的挑战

- 目标
 - 寻求一条通往预定目的地的无环路径
 - 更关注可达性而非最优性
- 挑战
 - 规模
 - 前缀: 200,000, 仍在不断增长
 - ASes: 已分配40K, 其中20,000+在使用中
 - 路由器: 数量至少上百万…
 - 隐私
 - ASes 不希望泄露其拓扑信息
 - … 以及与邻节点之间的商业关系
 - 策略
 - 不存在全Internet通用的链路代价评价指标
 - 需要控制从哪里传送流量
 - … 谁能通过你中转流量

BGP路由表样例

	Network	Next Hop	Metric I	_ocPrf Weight	Path
*	3.0.0.0	193.0.0.56		0	3333 3356 701 703 80
*		203.62.252.186		0	1221 4637 703 80 i
*		134.222.87.1		0	286 3549 701 703 80 i
*		195.219.96.239		0	6453 701 703 80 i
*		65.106.7.139	3	0	2828 701 703 80 i
*>		129.250.0.11	6	0	2914 701 703 80 i
*		157.130.10.233		0	701 703 80 i
*>	4.4.4.0/30	4.68.1.166	0	0	3356 701 703 80 i
*		203.62.252.186		0	1221 4637 4766 9318 18305?

from route-views.routervies.org(AS6647)

BGP表构造AS拓扑图

根据路由表构造的AS级拓扑图

BGP路由监控系统扩展

• BGP路由服务器

- 解决了拓扑扩展问题,使BGP连接数从O(n²)降到O(n)
- 路由服务器为每个BGP会话维护各自的路由策略和路由表,可以通过show ip bgp等命令访问

Looking Glasses服务器

- · 运行Looking Glasses软件,对BGP路由信息进行有限查询进行故障排查
- · 只具有Ping、Traceroute、show bgp summary等简单命令

• IRR路由信息库

- · IRR机构受理IP和AS号申请
- · 通过路由策略规范语言(RPSL)记录ISP的BGP路由信息(不强制执行) ——不 完整、不具有实时性

IRR路由信息库查询样例

aut-num: AS23910

as-name: CNGI-CERNET2-AS-AP

descr: China Next Generation Internet CERNET2

descr: CNGI-CERNET

descr: Beijing 100084, China

country: CN

import: from AS4538

action pref=10;

accept ANY

export: to AS9406

announce AS23910 AS4538 AS9407 AS4839 AS4840

default: to AS4538

action pref=10;

networks ANY

admin-c: CER-AP tech-c: CER-AP

remarks: Multihome portion of CERNET

mnt-by: MAINT-CERNET-AP mnt-routes: MAINT-CERNET-AP

changed: hm-changed@apnic.net 20031014

source: APNIC

role: APNIC Hostmaster address: 6 Cordelia Street South Brisbane

address: QLD 4101

country: AU

phone: +61 7 3858 3100 fax-no: +61 7 3858 3199 e-mail: helpdesk@apnic.net

admin-c: AMS11-AP tech-c: AH256-AP nic-hdl: HM20-AP

Administrator for ADNIO

域间路由选择(BGP)

- Internet和自制系统
- 域间路由选择
- 路径向量路由选择
- BGP

最短路由选择的约束

- 所有的流量必须通过最短路由传送
- 所有节点需要拥有统一的链路代价标识
- 无法体现商业关系

链路状态路由选择的问题

- 洪泛拓扑信息
 - 较高的带宽和存储开销
 - 强迫节点通告敏感信息
- 每一个节点本地计算所有路由
 - 在大型网络中会产生较大的处理开销
- 最小化某种意义上的距离
 - 要求策略共享且统一
- 主要应用于AS内部路由选择
 - 例如, OSPF and IS-IS

距离向量: 讨论

- 优点
 - 隐藏了网络拓扑的细节
 - 节点仅确定通往目的地的"下一跳"
- 缺点
 - 最小化某种意义上的距离,这在域间设置上非常困难
 - 无穷计算问题导致的收敛慢("坏消息传递慢")
- 想法: 对距离向量进行扩展
 - 使其能够快速检测环路

路径向量路由选择

- 距离向量路由选择的扩展
 - 支持灵活的路由策略
 - 避免无穷计算问题
- 核心思想: 通告整个路径 距离向量: 发送到每一个目的d的距离向量
 - 路径向量: 发送到每一个目的d的路径向量

快速环路检测

- 节点可以很容的检测环路路径
 - 在路径中查询自己的节点标识
 - 例如, 节点1发现自己的标识存在于路径"3, 2, 1"中
- 节点丢弃环路路径
 - 例如, 节点1丢弃该通告

灵活的策略

- 每一个节点可以采取本地策略
 - 路径选择: 采用哪一条路径?
 - 路径通告:通告哪一条路径?
- 例如
 - 节点2更倾向于选择"2,3,1"而非"2,1"
 - 节点 1不允许节点知道路径"1,2"的存在

域间路由选择(BGP)

- Internet和自制系统
- 域间路由选择
- 路径向量路由选择
- BGP

边界网关协议

- Internet的域间路由选择协议
 - 基于前缀的路径向量路由选择协议
 - 基于策略进行路由选择构建AS路径
 - 过去的18年不断改进
 - 1989: BGP-1 [RFC 1105], 替代了最早的 EGP
 - 1990 : BGP-2 [RFC 1163]
 - 1991 : BGP-3 [RFC 1267]
 - 1995: BGP-4 [RFC 1771], 支持 CIDR
 - 2006: BGP-4 [RFC 4271], 修正

BGP的特点

- 允许Ases向其他 ASes"路由" that they are "responsible" for and how to reach them
 - BGP-代言人 之间进行通信
 - 采用"路由通告",或"promises" 也称为"NLRI"或"网络层可达信息"
 - 路径向量路由选择协议
- 基于策略: 允许ISPs表达其路由策略, 包括both in selecting outbound paths and in announcing internal routes
- 非常"简单"的协议,但是配置相当复杂

BGP Operations

增量协议

- 节点知道多条到达目的地的路径
 - 在路由表中存储所有的路由
 - 采用策略选择一条最好的路由
- 增量更新
 - 通告
 - 一旦选择一条新的路由,则将节点id加入路径向量
 - … 并(有选择性的)通告其他邻居
 - 撤销
 - 如果路由不再有效
 - … 发送撤销路由消息

Internet inter-AS routing: BGP

- BGP (Border Gateway Protocol): the de facto interdomain routing protocol
 - "glue that holds the Internet together"
- BGP provides each AS a means to:
 - eBGP: obtain subnet reachability information from neighboring ASs.
 - iBGP: propagate reachability information to all ASinternal routers.
 - determine "good" routes to other networks based on reachability information and policy.
- allows subnet to advertise its existence to rest of Internet: "I am here"

BGP basics

- BGP session: two BGP routers ("peers") exchange BGP messages:
 - advertising paths to different destination network prefixes ("path vector" protocol)
 - exchanged over semi-permanent TCP connections
- when AS3 advertises a prefix to AS1:
 - AS3 promises it will forward datagrams towards that prefix
 - AS3 can aggregate prefixes in its advertisement

BGP basics: distributing path information

- using eBGP session between 3a and 1c, AS3 sends prefix reachability info to AS1.
 - 1c can then use iBGP do distribute new prefix info to all routers in AS1
 - 1b can then re-advertise new reachability info to AS2 over 1b-to-2a eBGP session
- when router learns of new prefix, it creates entry for prefix in its forwarding table.

Path attributes and BGP routes

- advertised prefix includes BGP attributes
 - prefix + attributes = "route"
- two important attributes:
 - AS-PATH: contains ASs through which prefix advertisement has passed: e.g., AS 67, AS 17
 - NEXT-HOP: indicates specific internal-AS router to next-hop AS. (may be multiple links from current AS to next-hop-AS)
- gateway router receiving route advertisement uses import policy to accept/decline
 - e.g., never route through AS x
 - policy-based routing

BGP route selection

- router may learn about more than 1 route to destination AS, selects route based on:
 - 1. local preference value attribute: policy decision
 - shortest AS-PATH
 - 3. closest NEXT-HOP router: hot potato routing
 - additional criteria

BGP messages

- BGP messages exchanged between peers over TCP connection
- BGP messages:
 - OPEN: opens TCP connection to peer and authenticates sender
 - UPDATE: advertises new path (or withdraws old)
 - KEEPALIVE: keeps connection alive in absence of UPDATES; also ACKs OPEN request
 - NOTIFICATION: reports errors in previous msg; also used to close connection

BGP routing policy

- * A,B,C are provider networks
- X,W,Y are customer (of provider networks)
- * X is <u>dual-homed</u>: attached to two networks
 - X does not want to route from B via X to C
 - .. so X will not advertise to B a route to C

BGP routing policy (2)

- A advertises path AW to B
- B advertises path BAW to X
- Should B advertise path BAW to C?
 - No way! B gets no "revenue" for routing CBAW since neither W nor C are B's customers
 - B wants to force C to route to w via A
 - B wants to route only to/from its customers!

Why different Intra-, Inter-AS routing?

policy:

- inter-AS: admin wants control over how its traffic routed, who routes through its net.
- intra-AS: single admin, so no policy decisions needed

scale:

 hierarchical routing saves table size, reduced update traffic

performance:

- intra-AS: can focus on performance
- inter-AS: policy may dominate over performance

小结

- 路径向量路由选择协议
 - 快速收敛性(与距离向量路由选择协议)
 - 信息隐藏
 - 支持灵活的策略

- 域间路由
 - 自治系统(ASes)
 - 基于策略的路径向量路由选择协议

提纲

- 引言
 - 核心问题: 扩展到数十亿节点
- 全球互联网
- IPv6
 - 多播
 - 移动设备之间的路由
 - 总结

IPv6: motivation

- *initial motivation:* 32-bit address space soon to be completely allocated.
- additional motivation:
 - header format helps speed processing/forwarding
 - header changes to facilitate QoS

IPv6 datagram format:

- fixed-length 40 byte header
- no fragmentation allowed

IPv6 datagram format

priority: identify priority among datagrams in flow flow Label: identify datagrams in same "flow." (concept of flow not well defined).

next header: identify upper layer protocol for data

ver	pri	flow label		
payload len			next hdr	hop limit
source address (128 bits)				
destination address (128 bits)				
data				

- 32 bits

Other changes from IPv4

- checksum: removed entirely to reduce processing time at each hop
- options: allowed, but outside of header, indicated by "Next Header" field
- ICMPv6: new version of ICMP
 - additional message types, e.g. "Packet Too Big"
 - multicast group management functions

Transition from IPv4 to IPv6

- not all routers can be upgraded simultaneously
 - no "flag days"
 - how will network operate with mixed IPv4 and IPv6 routers?
- tunneling: IPv6 datagram carried as payload in IPv4 datagram among IPv4 routers

Tunneling

logical view:

physical view:

Tunneling

logical view:

physical view:

提纲

- 引言
 - 核心问题: 扩展到数十亿节点
- 全球互联网
- IPv6
- 多播
 - 移动设备之间的路由
 - 总结

Broadcast routing

- deliver packets from source to all other nodes
- source duplication is inefficient:

source duplication: how does source determine recipient addresses?

In-network duplication

- flooding: when node receives broadcast packet, sends copy to all neighbors
 - problems: cycles & broadcast storm
- controlled flooding: node only broadcasts pkt if it hasn't broadcast same packet before
 - node keeps track of packet ids already broadacsted
 - or reverse path forwarding (RPF): only forward packet if it arrived on shortest path between node and source
- spanning tree:
 - no redundant packets received by any node

Spanning tree

- first construct a spanning tree
- nodes then forward/make copies only along spanning tree

(a) broadcast initiated at A

(b) broadcast initiated at D

Spanning tree: creation

- center node
- each node sends unicast join message to center node
 - message forwarded until it arrives at a node already belonging to spanning tree

(a) stepwise construction of spanning tree (center: E)

(b) constructed spanning tree

Multicast routing: problem statemen

goal: find a tree (or trees) connecting routers having local meast group members

- tree: not all paths between routers used
- shared-tree: same tree used by all group members
- source-based: different tree from each sender to rcvrs

legend

group member

not group member

router with a group member

router without group member

shared tree

source-based trees

Approaches for building mcast trees

approaches:

- * source-based tree: one tree per source
 - shortest path trees
 - reverse path forwarding
- * group-shared tree: group uses one tree
 - minimal spanning (Steiner)
 - center-based trees

...we first look at basic approaches, then specific protocols adopting these approaches

Shortest path tree

- mcast forwarding tree: tree of shortest path routes from source to all receivers
 - Dijkstra's algorithm

LEGEND

Reverse path forwarding

- rely on router's knowledge of unicast shortest path from it to sender
- each router has simple forwarding behavior:

if (mcast datagram received on incoming link on shortest path back to center)

then flood datagram onto all outgoing linkselse ignore datagram

Reverse path forwarding: example

LEGEND

- router with no attached group member
- → datagram will be forwarded
- datagram will not be forwarded
- result is a source-specific reverse SPT
 - may be a bad choice with asymmetric links

Reverse path forwarding: pruning

- forwarding tree contains subtrees with no mcast group members
 - no need to forward datagrams down subtree
 - "prune" msgs sent upstream by router with no downstream group members

Shared-tree: steiner tree

- * steiner tree: minimum cost tree connecting all routers with attached group members
- problem is NP-complete
- excellent heuristics exists
- not used in practice:
 - computational complexity
 - information about entire network needed
 - monolithic: rerun whenever a router needs to join/ leave

Center-based trees

- single delivery tree shared by all
- one router identified as "center" of tree
- to join:
 - edge router sends unicast join-msg addressed to center router
 - join-msg "processed" by intermediate routers and forwarded towards center
 - join-msg either hits existing tree branch for this center, or arrives at center
 - path taken by join-msg becomes new branch of tree for this router

Center-based trees: example

suppose R6 chosen as center:

Internet Multicasting Routing: DVMRP

- DVMRP: distance vector multicast routing protocol, RFC1075
- flood and prune: reverse path forwarding, sourcebased tree
 - RPF tree based on DVMRP's own routing tables constructed by communicating DVMRP routers
 - no assumptions about underlying unicast
 - initial datagram to mcast group flooded everywhere via RPF
 - routers not wanting group: send upstream prune msgs

DVMRP: continued...

- *soft state:* DVMRP router periodically (1 min.) "forgets" branches are pruned:
 - mcast data again flows down unpruned branch
 - downstream router: reprune or else continue to receive data
- routers can quickly regraft to tree
 - following IGMP join at leaf
- odds and ends
 - commonly implemented in commercial router

Tunneling

Q: how to connect "islands" of multicast routers in a "sea" of unicast routers?

- mcast datagram encapsulated inside "normal" (non-multicastaddressed) datagram
- * normal IP datagram sent thru "tunnel" via regular IP unicast to receiving mcast router (recall IPv6 inside IPv4 tunneling)
- * receiving mcast router unencapsulates to get mcast datagram

PIM: Protocol Independent Multicast

- not dependent on any specific underlying unicast routing algorithm (works with all)
- two different multicast distribution scenarios :

dense:

- group members densely packed, in "close" proximity.
- bandwidth more plentiful

sparse:

- # networks with group members small wrt # interconnected networks
- group members "widely dispersed"
- bandwidth not plentiful

Consequences of sparse-dense dichotomy:

dense

- group membership by routers assumed until routers explicitly prune
- data-driven construction on mcast tree (e.g., RPF)
- bandwidth and non-grouprouter processing profligate

sparse:

- no membership until routers explicitly join
- receiver- driven construction of mcast tree (e.g., centerbased)
- bandwidth and non-grouprouter processing conservative

PIM- dense mode

flood-and-prune RPF: similar to DVMRP but...

- underlying unicast protocol provides RPF info for incoming datagram
- less complicated (less efficient) downstream flood than DVMRP reduces reliance on underlying routing algorithm
- has protocol mechanism for router to detect it is a leaf-node router

PIM - sparse mode

- center-based approach
- router sends join msg to rendezvous point (RP)
 - intermediate routers update state and forward join
- after joining via RP, router can switch to sourcespecific tree
 - increased performance: less concentration, shorter paths

PIM - sparse mode

sender(s):

- unicast data to RP, which distributes down RProoted tree
- RP can extend mcast tree upstream to source
- RP can send stop msg if no attached receivers
 - "no one is listening!"

Application Level Multicast

- Provide IP multicast functionality above the IP layer
- Challenge: do this efficiently
- ALM is to have applications self-organized into a logical overlay network, and transfer data along the edges of the overlay network using unicast transport services.
 - Each application communicates only with its neighbors in the overlay network.
 - Multicasting is implemented by forwarding messages along trees that are embedded in the virtual overlay network.

Pros and Cons of ALM

Pros:

- No requirement for multicast support in the network layer
- No need to allocate a global group identifier, such as an IP multicast address
- Unicast traffic engineering techniques can be applied, such as flow control, congestion control, and reliable delivery services

Cons:

- End-to-end latencies can be high
- Possible inefficient use of bandwidth

An Illustration of ALM

提纲

- 引言
 - 核心问题: 扩展到数十亿节点
- 全球互联网
- IPv6
- 多播
- 移动设备之间的路由
- 总结

什么是移动性?

• 从网络层观点说明用户移动性程度谱:

移动性:术语

移动性:术语

信

83

你如何与一个移动朋友联系?

考虑朋友频繁的改变地址, 你如何找到她?

• 查找所有的电话册?

• 打电话给她的父母?

• 希望她让你知道她在哪里?

我想知道爱丽丝 移动到了哪里?

移动性:方法

- 让路由处理:路由器通过路由表交换,通知在它网络中的移动节点的永久地址
 - 路由表指出了每个移动节点的位置
 - 不用对终端系统作改动
- 让终端系统处理:
 - 间接选路: 从通信者到移动节点的通信,通过归属代理,然后被转发到远端
 - 直接选路:通信者获得移动节点的外部地址/转交地址,直接发送给移动节点

移动性:方法

- 让路由处理:路由人 由表交换,通知在它网络中的移动节点的 百万节点时 扩展性不好 上黑
 - 路由表指出了每
 - 不用对终端系统
- 让终端系统处理:
 - 间接选路: 从通信者到移动节点的通信,通过归属代理,然后被转发到远端
 - 直接选路:通信者获得移动节点的外部地址/转交地址,直接 发送给移动节点

移动性: 注册

最终结果:

- 外部代理知道了移动节点
- 归属代理知道了移动节点的位置

间接选路

间接选路: 评论

- 移动节点使用两个地址:
 - 永久地址: 被通信者使用 (因此移动节点的位置对通信者是透明的)
 - 转交地址:被归属代理用来转发数据报给移动节点
- 外部代理的功能可能由移动节点自己完成
- 三角路由: 通信者-归属网络-移动节点
 - 当通信者、移动节点在同一网络时,效率很低

间接选路: 在网络间移动

- 假设移动用户移动到另一个网络
 - 向新的外部代理注册
 - 新的外部代理向归属代理注册
 - 归属代理更新移动节点的转交地址
 - 数据报继续被转发到移动节点 (但是通过新的转交地址)
- 移动性透明的改变外部: 可维护持续的连接!

直接选路

外部带来接收到数据 报,转发给移动节点 通信者转发给外部代理 被访网络 归属网络 通信者请求、接收移动 节点的外部地址 移动节点直接回复 通信者

直接选路:评价

- 克服了三角路由的问题
- 对通信者非透明:通信者必须从归属代理获得 转交地址
 - 当移动节点改变被访网络时会出现什么?

在直接选路下的移动性

- 锚外部代理: 第一个被访网络中的外部代理
- 数据总是首先被发送到锚外部代理
- 当移动节点移动时:新的外部代理接收从旧的外部代理 转发的数据

Implementation

- How can home agent get the packets for correspondent?
 - Proxy ARP: Host or router responds to ARP Request that arrives from one of its connected networks for a host that is on another of its connected networks.

Implementation

- How can home agent transmit packets to foreign agent?
 - IP tunnel: IP tunnel is a virtual point-to-point link between a pair of nodes that are actually separated by an arbitrary number of networks.

移动IP

- RFC 3344
- 包含我们考虑过的许多元素:
 - 归属代理,外部代理,外部代理注册,转交地址和封装
- 标准由三部分组成:
 - 数据报间接选路
 - 代理发现
 - 向归属代理注册

网络专题选讲》

移动IP:间接选路

外部代理到移动节点的数据报

数据报由归属代理发送到外部代理:

dest: 128.119.40.186

dest: 79.129.13.2 dest: 128.119.40.186

永久地址:

128.119.40.186

数据报

移动IP:代理发现

• 代理通告:外部代理或归属代理广播一个类型字段为9的ICMP 报文,来进行通告服务

H,F比特: 归属和/或外

部代理

R比特: 注册请求

移动IP: 注册示例

蜂窝网络体系结构

蜂窝网中的移动性处理

- 归属网络: 你提交请求的蜂窝网络 (如Sprint PCS, Verizon)
 - 归属位置注册器 (HLR): 归属网络中的数据库包含永久蜂窝电话号码,用户个人概要信息(服务,参数选择, 账单), 当前位置信息(可能是在另外的网络)
- 被访网络: 移动节点当前处于的网络
 - 访问者位置注册器 (VLR): 包含网络中的每个当前用户的访问入口
 - 可能是归属网络

GSM: 到移动节点的间接选路

GSM: 一般MSC的切换

- 切换的目标:通过新的基站选路到移动节点 (不发生中断)
- 导致切换的原因:
 - 来自新BSS的较强信号
 - 负载均衡:释放当前BSS中的通 道
 - GSM没有说明为什么执行切 换,仅仅说明了如何进行切换
- · 切换由旧的BSS初始化(启 动)

GSM: 一般MSC的切换

- 1. 旧的BSS通知被访MSC即将要进行一个 切换,通知移动用户切换时所涉及的新 的BSS
- 2. MSC 建立到新BSS的路径 (分配资源)
- 3. 新的BSS 分配一个无线信道供移动用户 使用
- 4. 新的BSS发出信令到MSC和旧的BSS: ready
- 5. 旧的BSS 告诉移动用户: 执行到新的BSS 的切换
- 6. 移动用户和新的BSS交换一个或多个报文,一激活新的BSS中的新信道
- 7. 移动用户通过新的BSS向MSC发送一个 切换完成报文,MSC重新选路正在进行 的到移动用户的呼叫
- 8 沿着到旧的BSS的资源被释放

GSM: MSC间的切换

• 锚MSC: 呼叫首次开始时移 动用户所访问的MSC

- 呼叫总是选路到锚MSC
- 当移动用户移动到新的 MSC时,新的MSC添加到 MSC链的末尾
- IS-41 使用最少的可选路径 来去除在锚MSC和当前被 访问MSC之间的MSC

GSM: MSC间的切换

(b) 切换后

- 锚MSC: 呼叫首次开始时移动 用户所访问的MSC
 - 呼叫总是选路到锚MSC
- 当移动用户移动到新的MSC 时,新的MSC添加到MSC链的 末尾
- IS-41 使用最少的可选路径来去 除在锚MSC和当前被访问MSC 之间的MSC

移动性: GSM vs 移动IP

GSM 元素	对GSM元素的评论	移动IP元素
归属系统	移动用户永久电话号码所归属的网络	归属网络
网关移动交换中心 (或简称归属 MSC),归属位置注 册器(HLR)	归属MSC: 获取移动用户路由地址的联系点。 HLR: 归属系统中包含移动用户永久电话号 码、个人信息、当前位置和定制信息的数据 库	归属代理
被访网络	移动用户当前所在的非归属网络	被访网络
被访移动服务交换中心,访问者位置注册器(VLR)	被访MSC:负责建立于MSC相关联的发射区中到/从移动节点的呼叫。VLR:被访网络中的临时数据库项,包含每个访问移动用户的订购信息。	外部代理
移动站点漫游号码 (MSRN),或简称漫 游号码	用于归属MSC和被访MSC之间电话呼叫的路由 地址,对移动用户和通信者均不可见	转交地址

无线,移动性:对高层协议的影响

- 目标是最小化可能带来的影响
 - 尽力而为服务模型应该保持不变
 - TCP和UDP可以运行在具有无线链路的网络中
- 但是,带来性能方面的影响:
 - 比特错误或者移动切换带来数据包丢失/时延
 - TCP将丢失解释为拥塞,将不必要的减小拥塞窗口
 - 延迟对实时流量有较大的不利影响
 - 无线链路带宽有限

提纲

- 引言
 - 核心问题: 扩展到数十亿节点
- 全球互联网
- 多播
- 移动设备之间的路由
- 总结

赢者通吃:如何支持新的应用?

互联网中年危机:思想狭隘,心宽体胖?

IP "hourglass"

Middle-age IP "hourglass"?

谢谢!

华中科技大学 电子信息与通信学院

Email: itec@hust.edu.cn

网址: http://itec.hust.edu.cn

参考资料

- Chapter 4 in L. L. Peterson and B. S. Davie, Computer Networking: A System Approach (5th edition), Morgan Kaufmann, 2012
- Chapter 4 in James F. Kurose and Keith W. Ross, Computer Networking: A Top-Down Approach (6th edition), Pearson Education Inc., 2012
- 吴功宜,计算机网络(第3版),清华大学出版 社,2011

附录