

ASSISTANT COMMISSIONER FOR PATENTS
Washington, DC 20231 jc930 U.S. PTO

Sir:

10/05/00

Transmitted herewith for filing is the patent application of

Inventor(s): Seiji Nabeshima, Yasuo Kishimoto and Shuji Takeuchi

For: RUST-RESISTANT CALCIUM STEEL

Also enclosed are:

Petition to Accept Photographs, 4 Sheets of drawings, Fig. 1 in triplicate, and \$130.00 Check

Recordation Form Cover Sheet - Patents Only and an Assignment of the invention to Kawasaki Steel Corporation

Postcard and Express Mail Certification

The filing fee has been calculated as shown below:

	NO. OF CLAIMS FILED		NO. OF CLAIMS FROM BASIC FEE	NO. OF EXTRA CLAIMS
TOTAL	4	-	20 =	0
INDEP.	2	-	3 =	0
First presentation of multiple dependent claim				

SMALL ENTITY

RATE	BASIC FEE \$355.
x 9 =	\$
x40 =	\$
+ 135 =	\$

OTHER THAN SMALL ENTITY

RATE	BASIC FEE \$710.
x18 =	\$
x80 =	\$
+ 270 =	\$

TOTAL FEE \$ OR \$710.00

A check in the amount of \$710.00 is enclosed to cover the official filing fee.

A check in the amount of \$40.00 is enclosed to cover the recordal fee.

Please charge my Deposit Account No. 13-3405 in the amount of \$. A duplicate copy of this sheet is enclosed.

In regard to this communication, the Commissioner is hereby authorized to charge payment of any additional filing fees required under 37 CFR §1.16 and any additional patent application processing fees under 37 CFR §1.17 or credit any overpayment to Deposit Account No. 13-3405. A duplicate copy of this sheet is enclosed.

During the pendency of this application, the Commissioner is hereby authorized to charge payment of any filing fees for presentation of extra claims under 37 CFR §1.16 and any patent application processing fees under 37 CFR §1.17 or credit any overpayment to Deposit Account No. 13-3405. A duplicate copy of this sheet is enclosed.

Respectfully submitted,

Austin R. Miller, Reg. No. 16,602
Schnader Harrison Segal & Lewis
1600 Market Street, 36th Floor
Philadelphia, PA 19103
Attorney for Applicant(s)

ARM:rb
(215) 563-1810

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Art Unit : 36th Floor
Examiner : 1600 Market Street
Serial No. : Philadelphia, PA 19103
Filed : Herewith
Inventors : Seiji Nabeshima
: Yasuo Kishimoto
: Shuji Takeuchi
Title : RUST-RESISTANT
: CALCIUM STEEL

Docket: 1396-00

Dated: October 5, 2000

Box Patent Applications

Assistant Commissioner for Patents
Washington, DC 20231

EXPRESS MAIL CERTIFICATION

37 C.F.R. §1.10

Express Mail Label No.: EL618696194US

Date of Deposit: October 5, 2000

Description of Contents: Postcard, \$710.00 Check, \$130.00 Check, \$40.00 Check, Application Transmittal Letter, in duplicate, Recordation Form Cover Sheet - Patents Only, executed Assignment, Specification including claims and abstract, executed Combined Declaration, Power of Attorney and Petition, Petition to Accept Photographs with 4 sheets of drawings, sheet 1 being triplicate.

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR §1.10 on the date indicated above and is addressed to Box Patent Applications, Assistant Commissioner for Patents, Washington, DC 20231.

Regina Belitz

(Typed or printed name of person mailing paper or fee)

(Signature of person mailing paper or fee)

RUST-RESISTANT CALCIUM STEEL

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to a Ca-containing
5 rust-resistant steel, containing Ca at a concentration of
about 5 ppm or more. In particular, it relates to the
concept of effectively reducing the formation of rust on
surfaces of steel products, such rust being caused by CaO-
containing oxide inclusions in the steel products, thereby
10 solving a problem which is often of concern when Ca or Ca
alloy is added to molten steel.

In accordance with this invention, the formation of
large cluster-like inclusions, which would otherwise
result due to the low melting point of the oxide
15 inclusions, is prevented.

This invention further prevents nozzle clogging
during the associated continuous casting process, and
reduces deformability during hot rolling of sulfide
inclusions.

20 Description of the Related Art

There has long been a demand for common steels such
as low carbon steels and extremely low carbon steels, as
well as for various stainless steels, particularly thin
steel sheets, to achieve esthetically pleasing exterior
25 surface appearances. These steel products can usually be
processed into low carbon steels by deoxidation treatments
using Al, Ti, or Si to combine with oxygen in the steel.

However, it is still impossible to avoid the formation of deleterious amounts of oxide inclusions in the steel products treated by Al-deoxidation or Ti-deoxidation. In fact, the oxide inclusions usually contain as their main components Al_2O_3 and Ti oxide, each in an amount corresponding to an oxygen content of 10 to 80 ppm.

The above oxide inclusions, mainly containing Al_2O_3 and Ti oxide, are likely to adhere to and thus form deposits on the internal surfaces of an immersion nozzle of the type usually employed in a continuous casting process for injecting molten steel from a tundish into a mold. As a result, the nozzle is likely to clog, making it impossible to ensure the performance of a stable casting process.

Moreover, flakes of deposited materials tend to come off the nozzle and mix into the steel product, resulting in defects in the physical properties of the steel product. Furthermore, due to the clogging of the continuous casting nozzle, the flow of the molten steel becomes deflected within the casting mold, thus resulting in the problem in that particles on the surface of the molten metal within the casting mold will be undesirably mixed into the molten metal. In addition, since Al_2O_3 and Ti oxide tend to form cluster-like inclusions, which usually remain on the surface of a thin steel sheet,

20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

striped defects form on the surface of the steel sheet, making it difficult to achieve a good external appearance.

In order to overcome these problems caused by Al_2O_3 and Ti oxide, it has been suggested to add Ca to molten steel treated by Al-deoxidation, to form an oxide composition consisting of CaO and Al_2O_3 . Such methods are disclosed in, for example, Japanese Unexamined Patent Application Publication Nos. 61-276756, 58-154447, 6-49523).

However, it has been found that if Ca is added and is caused to react with Al_2O_3 , some oxides having low melting points also form. These low melting oxides contain $\text{CaO} \cdot \text{Al}_2\text{O}_3$, $12\text{CaO} \cdot 7\text{Al}_2\text{O}_3$ and $3\text{CaO} \cdot \text{Al}_2\text{O}_3$ as their main components.

However, problems arise in MnS steels, including HIC resistant steels, and in steels required to possess a desired burring characteristic, and other steels containing MnS. Since the MnS contained in the steel tends to assert harmful influences on the desired HIC resistance and burring properties of the steel, it has also been suggested that Ca be added in order to inhibit the formation of MnS (For example, Japanese Unexamined Patent Application Publication No. 56-9317).

However, whenever Ca is added to a molten steel, the added Ca also reacts with the S contained in the steel,

undesirably forming CaS, which causes the subsequent formation of rust on the surfaces of the steel products.

In an attempt to solve these complicated problems, Japanese Unexamined Patent Application Publication No. 6-559 has suggested that the Ca content of a steel product be controlled within a range of 5 ppm to less than 10 ppm, so as to prevent the formation of rust on the surface of the steel product. However, even though the Ca content is controlled to a value which is less than 10 ppm, if the composition of the oxides remaining in the steel is not specifically controlled, and if the CaO concentration in a resulting inclusion is high, the problem remains that CaS cannot be prevented from forming in the areas around the CaO-containing oxides that remain in the steel, hence forming numerous starting points at which rust will subsequently develop.

As a result, the time period before rust forms on the surface of a steel product (after the steel product has been produced) is undesirably shortened, thus increasing the amount and speed of rust formation, rendering it impossible to avoid deterioration of the external appearance of the steel products.

SUMMARY OF THE INVENTION

Accordingly, it is an object of the present invention to prevent nozzle clogging, to render Al and Ti oxides

harmless, and to control the formation of sulfides, so as to produce an improved Ca-containing steel that is resistant to formation of the rust that is otherwise caused by inclusions formed on the steel surface.

As a result of extensive research, we have found that not every CaO-containing oxide inclusion causes formation of CaS in areas surrounding the oxide inclusions, nor will they all become the starting points for subsequent rust formation.

We have discovered that certain compositions of oxide inclusions actually create a situation in which the solubility of S in the oxides is decreased. We have further discovered that a solidification process conducted at a low temperature, as defined hereinafter, does not cause significant formation of CaS in areas around the oxide inclusions, whereby the oxides on the steel surface do not become effective starting points for future rust formation.

According to the present invention, we have provided an improved Ca-containing rust-resistant steel, wherein the composition of any oxide inclusions and the concentration of S contained in the steel are controlled so that among CaO-containing oxide inclusions about 80% of the oxide inclusions having particle diameters of at least 2 μm have an equilibrium S soluble amount (%S inc.) (to be

095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1

further defined) which is about 0.03 wt% or less.

Furthermore, according to the present invention, it is preferred to use an equilibrium S-soluble amount (%S inc.), determined in accordance with the following equation (1), including as parameters the optical basicity based upon the composition of the oxide inclusions, the casting temperature, and components forming the steel product, wherein:

$$\log (\%S \text{ inc.}) = (21920 - 54640\Lambda)/T + 43.6\Lambda - 23.9 - \log [aO] + \log [\text{wt\%S}] \dots (1)$$

wherein

T represents the casting temperature (K) during the continuous casting process,

[wt%S] represents the concentration by weight of S in the steel,

[aO] represents the oxygen activity of the molten steel at the casting temperature (T) during the continuous casting process, and wherein, during Al-deoxidation of the steel,

$$20 \quad \log aO = (-64000/T + 20.57 - 2\log[\text{wt\%Al}] - 0.086[\text{wt\%Al}] - 0.102[\text{wt\%Si}])/3,$$

and wherein, during Ti-deoxidation of the steel,

$$25 \quad \log aO = (-60709/T + 20.97 - 2\log[\text{wt\%Ti}] - 0.084[\text{wt\%Ti}])/3,$$

and provided that, when Al and Ti are present in the

steel, a smaller aO oxygen activity is provided, wherein
Λ represents optical basicity of oxide inclusions
according to the following equation (2) :

$$\begin{aligned} \Lambda = & 1.0 X(\text{CaO}) + 0.605 X(\text{Al}_2\text{O}_3) + 0.601 X(\text{TiO}_2) \\ 5 & + 0.78 X(\text{MgO}) + 0.48 X(\text{SiO}_2) + 0.55 X(\text{Cr}_2\text{O}_3) \\ & + 0.59 X(\text{MnO}), \end{aligned} \dots (2)$$

and wherein $X(MmOn)$ represents the cation equivalent of
the oxide present, according to the following equation
(3) :

$$X(MmOn) = n \times N(MmOn) / \sum (n \times N(MmOn)) \dots (3)$$

and wherein $N(MmOn)$ represents the mol fraction of oxide
present and

n represents the valence of the oxygen contained in
said oxide.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 shows EPMA measurement results of inclusions
contained in steel blocks, representing both an example of
the present invention and a comparative example.

Fig. 2 is a graph showing the relationship between

20 (a) the equilibrium S soluble amount (%S inc.) of
oxides at a certain casting temperature and

(b) the rust formation developed in areas around the
oxides during rust formation testing. This was prepared
using an experimental apparatus containing a chamber
having a constant temperature of 60°C and a constant

10 20 30 40 50 60 70 80 90 100

15 25 35 45 55 65 75 85 95

20

25

humidity of 95%.

Fig. 3 is a graph indicating the relationship between

(a) the equilibrium S soluble amount (%S inc.) of oxides at a specific casting temperature (the soluble amount being calculated from the average composition of oxides contained in a thin steel sheet) and

5 (b) the number of rust spots formed on the thin steel sheet during a standard indoor exposure test to determine the extent of formation of rust. The test period was two weeks; the average temperature was 18°C; the average humidity was 62%; and

Fig. 4 is a graph showing the relationship between

(a) the equilibrium S soluble amount (%S inc.) of oxides and

15 (b) the CaO concentration of the oxides.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The following detailed description explains the Examples and results of the experiments performed. The Examples are not intended to limit or define the scope of 20 the invention, which is defined in the appended claims.

A high frequency melting furnace filled with an Ar atmosphere was used to carry out the Si-deoxidation treatment (Si: 0.01 to 2.0 wt%) to treat an amount of an extremely low carbon steel having the following 25 composition: C: 0.0015 to 0.0025 wt%; Mn: 0.15 to 0.22

wt%; P: 0.008 to 0.015 wt%; S: 0.002 to 0.020 wt%. This was followed by Al-deoxidation treatment or Ti-oxidation treatment or Al-Ti deoxidation treatment. Afterwards, Ca was added (Fe-Ca, CaSi, wherein the amount of Ca was 5 0.0005 to 0.0040 wt%). The composition of the oxides was altered and controlled to convert the oxides from Al_2O_3 , Ti oxide, Al_2O_3 -Ti oxide, or SiO_2 -containing oxide to CaO-containing oxides.

Accordingly, the ingredients Al, Ti, Si, and Ca were reacted so as to alter the compositions of the oxides contained in the steel.

The molten steel was then cast, whereas the organization and characteristics of the inclusions contained in steel blocks, and having a particle diameter of 2 μm or larger, were measured by the known method referred to as "EPMA". EPA means "Electron probe microanalyzer." In the EPMA method of analyzing a composition in a microscopic area, accurately, an electron beam is irradiated at an oxide inclusion, and 20 characteristic X-rays are generated from elements in the oxide inclusion. Then the wave length and intensity of each of the X-rays are measured and analyzed with an X-ray spectroscope. Two distinct sets of analyzed results are obtained:

25 (i) Distribution of each of the elements by area-

analysis, as shown in Fig. 1.

(ii) Quantitative value of each oxide inclusion.

Especially, Λ , the optical basicity of the oxide inclusions in formula (ii) is calculated by using the quantitative value.

Furthermore, the steel block was rolled and a test piece was cut from the steel sheet formed by rolling the steel block. The test piece was then subjected to an exposure test for 24 hours in an experimental apparatus including a chamber having a constant temperature and a constant humidity (temperature: 60°C, humidity: 95%). Moreover, the organization and characteristics of the inclusions contained in the test piece treated in the above exposure test were also measured by EPMA, thereby determining the relationship between the compositions of the oxides and the probability of rust formation.

Fig. 1 of the drawings indicates the EPMA measurement results of inclusions present in the steel blocks.

As shown in Fig. 1, by observing the left-hand two columns, the presence of a CaO-Al₂O₃ inclusion had the formula (47wt%CaO-51wt%Al₂O₃-2wt%Ti₂O₃). It had a low melting point but a high CaO concentration. It can be seen from the formulation that considerable CaS has been precipitated inside the inclusion and in areas around the inclusion.

In contrast, by observing the right-hand two columns of Fig. 1, there is noted a $\text{CaO}-\text{Ti}_2\text{O}_3-\text{Al}_2\text{O}_3$ inclusion (23wt% CaO -28wt% Al_2O_3 -47wt% Ti_2O_3) having a low CaO concentration. In this case almost no CaS was precipitated inside the inclusion or in areas around the inclusion.

Furthermore, it has been clearly found that in a thin steel sheet made from a steel block in which CaS has been precipitated together with oxides, a large amount of rust forms. Points at which oxides exist have become rust points, with the points at which oxides exist acting as the rust starting points.

Furthermore, the compositions of many other steel blocks were investigated, and research was repeatedly conducted on the compositions of the oxides, the precipitation conditions of the CaS , and the rust formation conditions, thereby clearly demonstrating the discovery that a higher CaO concentration, i.e., a higher optical basicity of oxides, causes easier precipitation of CaS in the areas around the oxides, hence readily forming starting points which will later become points at which rust forms. In Fig. 1, 47% CaO resulted in 3% CaS , while 23% CaO resulted in only 1% CaS .

Moreover, as a result of repeated research, it has been clearly found that the resulting amount of CaS and

the amount of rust formed will be further increased if the oxides have a higher sulfide capacity and if the molten steel has a reduced oxygen activity at the casting temperature of the continuous casting process.

5 Accordingly, as an important index, we have investigated the equilibrium S soluble amount (%S inc.) by considering both the optical basicity of the oxides and the oxygen activity during the casting process, the oxygen activity being calculated from the Al or Ti concentration.

Specifically, the equilibrium S soluble amount (%S inc.) in the steel is the soluble amount of the oxides at the casting temperature, as calculated by the method of D. J. Sosinsky, et al., in accordance with the equation (1) which follows hereinafter. The reference is D. J. Sosinsky and I. D. Sommerville, Met. Trans. B., 1986, Vol. 17B, pp. 331 - 337, the disclosure of which is incorporated by reference herein. As a result, it was clearly found that a larger value of the equilibrium S soluble amount (%S inc.) causes more CaS to form and deposit in areas located around the oxide particles.

20 However, in the equation (1) which follows, the value of the optical basicity A of each oxide was established by considering the coefficient of each oxide, from the compositions of the oxides, in accordance with the equation (2) which follows. The coefficients of various

oxides can be obtained by the method of J. A. Duffy (J. A. Duffy and M.D. Ingram, J. Inor. Nuclear Chem., 1975, Vol. 37, pp, 1203 - 1206). The equations are:

5 $\log (\%S \text{ inc.}) = (21920 - 54640\Lambda)/T + 43.6\Lambda - 23.9 - \log [aO] + \log [\text{wt\%S}] \dots \text{ (Equation 1)}$

wherein

T represents the casting temperature (K) during the continuous casting process,

[wt%S] represents the concentration of S in the steel, and

[aO] represents the oxygen activity of the molten steel at the casting temperature (T) during the continuous casting process.

During Al-deoxidation, the log aO is expressed as follows:

20 $\log aO = (-64000/T + 20.57 - 2\log [\text{wt\%Al}] - 0.086[\text{wt\%Al}] - 0.102[\text{wt\%Si}])/3.$

During Ti-deoxidation, the log aO is expressed as follows:

25 $\log aO = (-60709/T + 20.97 - 2\log [\text{wt\%Ti}] - 0.084[\text{wt\%Ti}])/3.$

However, when both Al and Ti are present, a smaller aO value should be applied, as follows:

25 $\Lambda = 1.0 X(\text{CaO}) + 0.605 X(\text{Al}_2\text{O}_3) + 0.601 X(\text{TiO}_2) + 0.78 X(\text{MgO}) + 0.48 X(\text{SiO}_2) + 0.55 X(\text{Cr}_2\text{O}_3)$

$$+ 0.59 X(\text{MnO}), \quad \text{--- (2)}$$

wherein

Λ represents the optical basicity of the oxide

inclusions

5 $X(\text{MmOn})$ represents the cation equivalent of the
oxide, and

$$X(\text{MmOn}) = n \times N(\text{MmOn}) / \sum (n \times N(\text{MmOn})) \quad \text{--- (3)}$$

wherein

$N(\text{MmOn})$ represents the mol fraction of the oxide,
and

n represents the valence of oxygen contained in the
oxide.

However, most of the Ti oxides present in the
inclusions are present in the form of Ti_2O_3 , as shown in
the above-identified results of the EPMA measurements. On
the other hand, when the optical basicity Λ is to be
determined in accordance with the equation (2), it is also
allowable that Ti_2O_3 be converted to TiO_2 so as to
calculate $X(\text{TiO}_2)$.

20 Next, as shown by the graph comprising Fig. 2, it is
there shown that a relationship exists between (a) the
equilibrium S soluble amount (%S inc.) (calculated in
accordance with equations (1) and (2)) of the oxides at
the casting temperature, and (b) the amount of rust
formation in the areas around the oxides during the

standard rust formation tests. The tests were performed using an experimental apparatus including a chamber having a constant temperature and a constant humidity (temperature: 60°C, humidity: 95%).

As shown in the graph (Fig. 2), as the equilibrium S soluble amount (%S inc.) of the oxides increases, the amount of rust formation in the areas around the oxides also increases. In particular, the amount of rust formation suddenly and rapidly increases when the equilibrium S soluble amount (%S inc.) exceeds about 0.03 wt%.

In the areas around the inclusions having an equilibrium S soluble amount (%S inc.) (before the rust formation test) which is higher than about 0.03 wt%, CaS forms at an extremely high rate. The reason for this may be explained. The CaS, formed in the areas around the inclusions, is a hydrolyzable inclusion and is subjected to a hydrolysis reaction in a manner shown in the following chemical reactions (Iron & Steel, 1982, No. 13, p. 301).

Furthermore, the corrosion of steel has also been found to be accelerated by dissociation of the resulting H₂S.

The graph Fig. 3 shows a relationship between (a) the equilibrium S soluble amount (%S inc.) of the oxides at a certain casting temperature (the soluble amount being calculated from the average oxide composition of a thin steel sheet prepared for test use) and (b) the number of rust formation points in the thin steel sheet during an indoor exposure test for determining the amount of rust formation (test period: two weeks; average temperature: 18°C; average humidity: 62%).

As shown in the Fig. 3 graph, as the equilibrium S soluble amount (%S inc.) of the oxides increases, the number of rust points in a steel sheet also increases. In particular, the number of rust points suddenly and rapidly increases when the equilibrium S soluble amount (%S inc.) exceeds about 0.03 wt%.

Accordingly, it will be understood that the amount of rust formation in a steel product greatly depends upon the formation of CaS in the areas around the inclusions. The formation of CaS can be evaluated in accordance with the composition of the oxide inclusions, and the equilibrium S soluble amount (calculated from the temperature of the casting process and the oxygen activity of a molten steel) of the oxides at the casting temperature. Furthermore, it has been discovered from many experiments that once the equilibrium S soluble amount exceeds about 0.03 wt%, the

amount of CaS formed increases, resulting in a sudden increase in the amount of rust formed.

The present invention is beneficial for use in treating all kinds of Ca-containing steels obtained by adding Ca (usually in the form of a Ca alloy) to the molten steel. In particular, the present invention is suitable for use in treating any common steel such as high carbon steel, low carbon steel, and extremely low carbon steel; stainless steel such as a ferrite stainless steel, martensite stainless steel, and austenite stainless steel; and steel containing an oxide inclusion having a CaO content of 2 μm or more.

The term "Ca-containing steel" herein means a steel whose Ca concentration is 0.0005 wt% or more.

With regard to the above-defined Ca-containing steel, an oxide that comprises $\text{CaO-Al}_2\text{O}_3$ as its main component is present in an Al-deoxidized steel. An oxide that comprises CaO-Ti oxide as its main component exists in a Ti-deoxidized steel. An oxide that comprises $\text{CaO-Al}_2\text{O}_3-\text{Ti}$ oxide as its main component is present in an Al/Ti-deoxidized steel.

Furthermore, we have found that a low Al steel and a low Ti steel, each of which is an Si-deoxidized steel, also contains an oxide SiO_2 , a high Mn steel contains an oxide MnO ; a high Cr steel such as stainless steel

5

contains an oxide Cr_2O_3 ; and an Mn-containing steel contains an Mn-oxide. However, the present invention is suitable for treating even a complex oxide containing any combination of the above oxides. Moreover, the present invention is also suitable for use in treating steel containing as much as 5 wt% of other oxides.

In addition, the present invention is particularly beneficial for use in treating an oxide inclusion having a particle diameter of $2 \mu\text{m}$ or larger, since fine particles having a particle diameter of less than $2 \mu\text{m}$ are not likely to become starting points for development of rust. Here, the particle diameter is the average diameter obtained by averaging the diameters in both the rolling direction and the width direction of the sheet.

10

15

20

However, not all the oxide inclusions having a particle diameter of $2 \mu\text{m}$ or larger need necessarily to be within the above described composition ranges. It is only required that at least about 80% of the above oxide particles be within the above described appropriate ranges.

25

The present invention is characterized in that the composition of the inclusions and the S concentration of steel are controlled so that the equilibrium S soluble amount (%S inc.) of oxides, when calculated in the above equation (1) will become about 0.03 wt% or less. On the

other hand, the composition of oxides can also be controlled by using a selected deoxidant and controlling the amount of its addition.

5 Fig. 4 is a graph showing the relationship between the equilibrium S soluble amount (%S inc.) of oxides and their CaO concentration, in relation to rust formation.

10 As shown in Fig. 4, the relationship between equilibrium S soluble amount (%S inc.) of oxides and their CaO concentration changes to some extent, depending upon the S concentration in the steel and the kind of deoxidation means that is present. However, if the CaO concentrations of the oxides are controlled so that the equilibrium S soluble amount (%S inc.) becomes about 0.03 wt% or less, it is still possible to effectively control 15 the formation of rust on the steel surface.

20 On the other hand, in order to prevent the formation of large cluster-like inclusions and to prevent nozzle clogging during continuous casting, it is necessary that the oxide inclusions all have low melting points. In particular, the melting points of most oxide inclusions must be about 1650°C or less. For this reason, in order 25 to prevent the formation of the large cluster-like inclusions and nozzle clogging during the casting process and to inhibit rust formation on the surface of steel products, it is important to appropriately select the

THE IRVING RESEARCH CENTER
10
15
20
25

composition of oxides and S concentration of steel.

Furthermore, the casting temperature in the continuous casting process is typically controlled to a value about 10 to 80 degrees higher than the solidifying temperature of the steel.

Example 1

After removal of a molten steel from a converter, 300 tons of the molten steel were subjected to decarburization in an RH vacuum degassing apparatus. The amount of remaining C was adjusted to 0.0020 wt%. Mn was adjusted to 0.20 wt%, P was adjusted to 0.015 wt%, and S was adjusted to 0.010 wt%. The temperature was adjusted to 1600°C. Then, Al was added in an amount of 0.5 kg/ton to the molten steel, thereby reducing the dissolved oxygen content of the molten steel to 150 ppm.

Next, 70 wt% Ti-Fe alloy was added in an amount of 1.2 kg/ton to the molten steel, followed by deoxidation. Subsequently, an alloy wire containing 30 wt% of Ca and 60 wt% of Si was added in an amount of 0.3kg/ton into the molten steel, thereby adjusting the composition of the steel. After completion of the above steps, the Ti concentration was measured and determined to be 0.050 wt%. The Al concentration was measured as 0.002 wt% and the Ca concentration was measured as 15 ppm.

Next, casting was carried out in a two-strand

continuous slab casting equipment. At this time, the composition of the molten steel in the tundish was such that the Ti concentration was 0.050 wt%, the Al concentration was 0.002 wt%, the Ca concentration was 15 ppm, and the S concentration was 0.010 wt%, and the casting temperature was 1560°C. As a result, substantially nothing was found to have adhered to the immersion nozzle after 5 charges of continuous casting (without blowing any Ar gas).

Subsequently, a steel slab having a thickness of 220 mm was hot rolled until its thickness became 3.5 mm. Then, the steel slab was cold rolled to a thickness of 0.8 mm, followed by an annealing treatment at a temperature of 780°C for 45 seconds.

The final products were steel coils having a composition of Ti concentration 0.040 wt%, Al concentration 0.001 wt%, Ca concentration 15 ppm, and S concentration 0.010 wt%. The average oxide composition of 30 coils was measured by EPMA, and the measurement results were as follows: CaO 20 wt%, Al₂O₃ 20 wt%, and TiO₂ 60 wt%.

In this way, the oxygen activity of the molten steel at the casting temperature became $[aO] = 0.00076$, the optical basicity of the oxide inclusions became $\Lambda = 0.634$, and the S concentration in the steel became $[wt\%S] = 0.010$.

wt%. The equilibrium S soluble amount (%S inc.) of the oxides, in accordance with the aforementioned equation (1) was 0.0084 wt%.

The coils were subjected to an indoor exposure test for determining susceptibility to rust formation (test period: two weeks; average temperature: 20°C; average humidity: 65%). The number of rust points formed was counted, and it was found that there were 20 rust points/100 cm², which is the same level as that of an Al-deoxidized steel that does not contain Ca.

Comparative Example 1

After removal of molten steel from a converter, 300 tons of the molten steel was subjected to a decarburization treatment in an RH vacuum degassing apparatus. C was adjusted to 0.020 wt%, Mn was adjusted to 0.20 wt%, P was adjusted to 0.015 wt%, and S was adjusted to 0.010 wt%. The temperature was adjusted to 1600°C. Then, Al was added in an amount of 1.5 kg/ton to the molten steel. Furthermore, an alloy containing 75 wt% of Ti and 25 wt% of Fe was added in an amount of 0.6 kg/ton, followed by deoxidation. Subsequently, an alloy wire containing 30 wt% of Ca and 60 wt% of Si was added in an amount of 0.4 kg/ton to the molten steel. After completion of the above treatment, the Ti concentration was 0.050 wt%, the Al concentration was 0.035 wt% and the

Ca concentration was 20 ppm.

Next, a casting process was conducted in a two-strand continuous slab casting apparatus. At this time, the inclusions in the tundish were examined and were found to be spherical inclusions having a composition represented by the formula 2wt% Ti_2O_3 -52wt% CaO -46wt% Al_2O_3 .

Further, the composition of the molten steel within the tundish was investigated and it was found that its Ti concentration was 0.050 wt%, its Al concentration was 0.030 wt%, its Ca concentration was 25 ppm, and its S concentration was 0.010 wt%. The casting temperature was 1560°C. As a result, essentially nothing was found to have adhered to the immersion nozzle after 5 charges of continuous casting (without blowing any Ar gas).

Subsequently, a steel slab was hot rolled until its thickness was 3.5 mm. Then, the steel slab was cold rolled to a thickness of 0.8 mm, followed by annealing at a temperature of 780°C for 45 seconds.

The final products were steel coils having a Ti concentration of 0.040 wt%, an Al concentration of 0.030 wt%, a Ca concentration of 20 ppm, and an S concentration of 0.010 wt%. The average oxide composition of 30 coils, measured by EPMA, was CaO 50 wt%, Al_2O_3 48 wt%, and TiO_2 2 wt%.

The oxygen activity of the molten steel at the

casting temperature was $[a_0] = 0.00076$, the optical basicity of the oxide inclusions was $\Lambda = 0.6667$, and the S concentration in steel was $[wt\%S] = 0.010$ wt%. The equilibrium S soluble amount (%S inc.) of the oxides, in accordance with the aforementioned equation (1), was 0.106 wt%.

The coils were subjected to an indoor exposure test to determine the amount of rust formation (testing period: two weeks; average temperature: 20°C ; average humidity: 65%). When the number of rust points formed was counted, it was found that there were 252 rust points/ 100 cm^2 , indicating that the rust points were substantially more numerous than those of an Al-deoxidized steel not containing Ca, and also more numerous than those of Example 1.

In this way, with the benefit of the present invention, it is possible to effectively inhibit the rust formation which would otherwise be caused due to the oxide inclusions, thereby solving a problem which has long been of concern in Ca-containing steels.

WHAT IS CLAIMED IS:

1. A Ca-containing rust-resistant steel having controlled amounts of inclusions and S concentration, said Ca-containing steel comprising Ca at a concentration of 0.0005 wt% or more, characterized in that the composition of said inclusions and said S concentration in said steel are so controlled that the equilibrium S soluble amount (%S inc.) of CaO-containing oxide inclusions contained in said Ca-containing steel is about 0.03 wt% or less.

2. A Ca-containing rust-resistant steel according to claim 1, wherein the equilibrium S soluble amount (%S inc.) of at least 80% of said oxide inclusion particles, having a particle diameter of 2 μm or larger, is about 0.03 wt% or less.

3. A Ca-containing rust-resistant steel according to claim 1, wherein said equilibrium S soluble amount (%S inc.) value is determined in accordance with the following equation (1), including as its parameters the inclusions optical basicity calculated from the composition of said oxide inclusions, the casting temperature and the components forming the steel, such equation being

$$\log (\% \text{S inc.}) = (21920 - 54640\Lambda) / T$$

+ 43.6Λ - 23.9 - long [ao] + log [wt%S], ... (1)

10 wherein

T represents the casting temperature (K) during the continuous casting process,

[wt%S] represents the concentration of S contained in said steel,

15 [ao] represents the oxygen activity of said molten steel at said casting temperature (T) during a continuous casting process, and wherein during Al-deoxidation,

$$\log a_0 = (-64000/T + 20.57 - 2\log[wt\%Al] - 0.086[wt\%Al] - 0.102[wt\%Si]/3,$$

and wherein during Ti-deoxidation,

$$\log a_0 = (-60709/T + 20.97 - 2\log[wt\%Ti] - 0.084[wt\%Ti]/3,$$

and provided that, when Al and Ti are present in said steel a reduced a₀ oxygen activity is provided according 25 to the following equation (2):

$$\begin{aligned} \Lambda &= 1.0 X(CaO) + 0.605 X(Al_2O_3) + 0.601 X(TiO_2) \\ &+ 0.78 X(MgO) + 0.48 X(SiO_2) + 0.55 X(Cr_2O_3) \\ &+ 0.59 X(MnO) \end{aligned} \dots (2)$$

wherein

30 Λ represents the optical basicity of oxide inclusions, and

X (MmOn) represents the cation equivalent of the oxide present, according to the following equation (3):

$$X_{(MmOn)} = n \times N_{(MmOn)} / \sum (n \times N_{(MmOn)}), \dots \quad (3)$$

35

wherein

$N(MmOn)$ represents the mol fraction of oxide present and

n represents the valence of oxygen contained in said oxide.

4. A method for manufacturing a Ca-containing rust-resistant steel, said steel containing Ca at a concentration of about 5 ppm or more, comprising performing a refining process for refining said steel, wherein the composition of inclusions and the S concentration of steel are so controlled that the equilibrium S soluble amount (%S inc.) of CaO-containing oxide inclusions present in said Ca-containing steel is about 0.03 wt% or less.

ABSTRACT OF THE DISCLOSURE

The composition of inclusions and the S concentration in steel are controlled in a manner such that, among the CaO-containing oxide inclusions present in a Ca-containing steel, an equilibrium S soluble amount (%S inc.) of at least 80% of the oxide inclusion particles having a particle diameter of 2 μm or more are about 0.03 wt% or less, thereby inhibiting rust formation due to the inclusions, thus solving a problem which has long been of concern in Ca-containing steels.

DRAFTS ARE DRAFTS

4

DISCUSSIONS

FIG. 2

FIG. 3

FIG. 4

Express Mail Label EL618696194US
 Original Application

PCT National Application
U.S. Designated Office

Continuation or Divisional Application

Continuation-in-Part Application

**COMBINED DECLARATION,
POWER OF ATTORNEY AND PETITION**

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name,

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled RUST-RESISTANT CALCIUM STEEL

which is described in the specification and claims

attached hereto.

filed on _____

Application Serial No. _____

and was amended on _____

(if applicable)

which is described in International Application No. _____

filed _____ and as amended on _____

(if any),

which I have reviewed and for which I solicit a United States patent.

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations, §1.56.

I do not know and do not believe that this invention was ever known or used in the United States before my or our invention thereof or patented or described in any printed publication in any country before my or our invention thereof or more than one year prior to this application or said international application, or in public use or on sale in the United States of America more than one year prior to this application or said international application, or that the invention has been patented or made the subject of an inventor's certificate issued before the date of this application or said international application in any country foreign to the United States of America on an application filed by me or my legal representatives or assigns more than twelve months prior to this application or said international application, or that any application for patent or inventor's certificate on this invention has been filed in any country foreign to the United States of America prior to this application or said international application by me or my legal representatives or assigns except as identified below.

COMBINED DECLARATION, POWER OF ATTORNEY AND PETITION
(Page 2)

Attorney Docket No. 1396-00

I hereby claim foreign priority benefits under Title 35, United States Code, §119(a)-(d) or §365(b) of any foreign application(s) for patent or inventor's certificate, or §365(a) of any PCT International Application which designated at least one country other than the United States of America, listed below and have also identified below any foreign application(s) for patent or inventor's certificate or of any PCT International Application having a filing date before that of the application on which priority is claimed:

Number	Country	Date of Filing (day,month,year)	Priority Claimed
11-285471	Japan	06, 10, 1999	<input checked="" type="checkbox"/> yes <input type="checkbox"/> no
			<input type="checkbox"/> yes <input type="checkbox"/> no
			<input type="checkbox"/> yes <input type="checkbox"/> no
			<input type="checkbox"/> yes <input type="checkbox"/> no
			<input type="checkbox"/> yes <input type="checkbox"/> no

I hereby claim the benefit under Title 35, United States Code, §119(e) or §120 (as applicable) of any United States application(s) or §365(c) of any PCT International Application designating the United States of America, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International Application(s) in the manner provided by the first paragraph of Title 35, United States Code, §112:

(Application Serial No.) (Filing Date) (Status) (patented, pending, abandoned)

(Application Serial No.) (Filing Date) (Status) (patented, pending, abandoned)

POWER OF ATTORNEY: As a named inventor, I hereby appoint the registered attorneys listed under Customer No. 022469 and the following registered attorneys to prosecute this application and transact all business in the United States Patent and Trademark Office connected therewith:

T. Daniel Christenbury	Reg. No. 31,750	Patrick J. Farley	Reg. No. 42,524
Guy T. Donatiello	Reg. No. 33,167	Michael A. Patané	Reg. No. 42,982
Paul A. Taufer	Reg. No. 35,703	David A. Sasso	Reg. No. 43,084
James A. Drobile	Reg. No. 19,690	Robert A. McKinley	Reg. No. 43,793
Austin R. Miller	Reg. No. 16,602	Sharon Fenick	Reg. No. 45,269
Gerard J. Weiser	Reg. No. 19,763	Stewart M. Wiener	Reg. No. 46,201
Joan T. Kluger	Reg. No. 38,940		

SEND CORRESPONDENCE TO: IP Department Schnader Harrison Segal & Lewis 36th Floor, 1600 Market Street Philadelphia, PA 19103	DIRECT TELEPHONE CALLS TO ATTORNEY OF RECORD AT: (215) 563-1810
---	---

COMBINED DECLARATION, POWER OF ATTORNEY AND PETITION
(Page 3)

Attorney Docket No. 1396-00

I hereby petition for grant of a United States Letters Patent on this invention.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

1. FULL NAME OF SOLE OR FIRST INVENTOR Seiji Nabeshima		INVENTOR'S SIGNATURE <i>Seiji Nabeshima</i>	DATE Sep. 14, 2000
RESIDENCE Chiba, Japan		CITIZENSHIP Japanese	
POST OFFICE ADDRESS c/o Technical Research Laboratories, Kawasaki Steel Corporation, 1, Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba 260-0835 Japan			
2. FULL NAME OF JOINT INVENTOR, IF ANY Yasuo Kishimoto		INVENTOR'S SIGNATURE <i>Yasuo Kishimoto</i>	DATE Sep. 14, 2000
RESIDENCE Chiba, Japan		CITIZENSHIP Japanese	
POST OFFICE ADDRESS c/o Technical Research Laboratories, Kawasaki Ste. Corporation, 1, Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba 260-0835 Japan			
3. FULL NAME OF ADDITIONAL JOINT INVENTOR, IF ANY Shuji Takeuchi		INVENTOR'S SIGNATURE <i>Shuji Takeuchi</i>	DATE Sep. 14, 2000
RESIDENCE Chiba, Japan		CITIZENSHIP Japanese	
POST OFFICE ADDRESS c/o Technical Research Laboratories, Kawasaki Steel Corporation, 1, Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba 260-0835 Japan			
4. FULL NAME OF ADDITIONAL JOINT INVENTOR, IF ANY		INVENTOR'S SIGNATURE	DATE
RESIDENCE		CITIZENSHIP	
POST OFFICE ADDRESS			
5. FULL NAME OF ADDITIONAL JOINT INVENTOR, IF ANY		INVENTOR'S SIGNATURE	DATE
RESIDENCE		CITIZENSHIP	
POST OFFICE ADDRESS			
6. FULL NAME OF ADDITIONAL JOINT INVENTOR, IF ANY		INVENTOR'S SIGNATURE	DATE
RESIDENCE		CITIZENSHIP	
POST OFFICE ADDRESS			
7. FULL NAME OF ADDITIONAL JOINT INVENTOR, IF ANY		INVENTOR'S SIGNATURE	DATE
RESIDENCE		CITIZENSHIP	
POST OFFICE ADDRESS			