## Import pandas and numpy

```
In [1]: import numpy as np
         import pandas as pd
In [2]: kcd=pd.read csv("/home/placement/Downloads/fiat500.csv")
         kcd.info
Out[2]: <bound method DataFrame.info of</pre>
                                                   ID
                                                         model engine_power
                                                                                                 km previous o
                                                                               age_in_days
         wners
                     lounge
                                         51
                                                     882
                                                            25000
         0
                                                                                  1
                  2
                                        51
                                                    1186
                                                            32500
                                                                                  1
                         pop
                                                    4658
                                                          142228
                                                                                  1
                                         74
                      sport
         3
                                         51
                                                    2739
                                                           160000
                                                                                  1
                     lounge
                  5
                                         73
                                                    3074
                                                           106880
                                                                                  1
                         pop
                         . . .
                                                     . . .
         1533
                                        51
                                                    3712
                                                           115280
               1534
                      sport
                                                                                  1
               1535
                                                    3835
                                                           112000
                                                                                  1
                                         74
         1534
                     lounge
         1535
               1536
                                         51
                                                    2223
                                                            60457
                                                                                  1
                         pop
         1536
               1537
                     lounge
                                         51
                                                    2557
                                                            80750
                                                                                  1
         1537
              1538
                                         51
                                                    1766
                                                            54276
                                                                                  1
                         pop
                                 lon price
                     lat
               44.907242
                            8.611560
                                       8900
         0
               45.666359
                          12.241890
                                       8800
         1
               45.503300
                          11.417840
                                       4200
               40.633171
                          17.634609
                                       6000
         3
               41.903221
                          12.495650
                                       5700
         4
                                        . . .
               45.069679
         1533
                            7.704920
                                        5200
               45.845692
                            8.666870
         1534
                                        4600
         1535
               45.481541
                            9.413480
                                       7500
         1536
               45.000702
                            7.682270
                                        5990
               40.323410
                           17.568270
         1537
                                        7900
         [1538 rows \times 9 columns]>
```

In [3]: kcd

Out[3]:

|      | ID   | model  | engine_power | age_in_days | km     | previous_owners | lat       | lon       | price |
|------|------|--------|--------------|-------------|--------|-----------------|-----------|-----------|-------|
| 0    | 1    | lounge | 51           | 882         | 25000  | 1               | 44.907242 | 8.611560  | 8900  |
| 1    | 2    | pop    | 51           | 1186        | 32500  | 1               | 45.666359 | 12.241890 | 8800  |
| 2    | 3    | sport  | 74           | 4658        | 142228 | 1               | 45.503300 | 11.417840 | 4200  |
| 3    | 4    | lounge | 51           | 2739        | 160000 | 1               | 40.633171 | 17.634609 | 6000  |
| 4    | 5    | pop    | 73           | 3074        | 106880 | 1               | 41.903221 | 12.495650 | 5700  |
|      |      |        |              |             |        |                 |           |           |       |
| 1533 | 1534 | sport  | 51           | 3712        | 115280 | 1               | 45.069679 | 7.704920  | 5200  |
| 1534 | 1535 | lounge | 74           | 3835        | 112000 | 1               | 45.845692 | 8.666870  | 4600  |
| 1535 | 1536 | pop    | 51           | 2223        | 60457  | 1               | 45.481541 | 9.413480  | 7500  |
| 1536 | 1537 | lounge | 51           | 2557        | 80750  | 1               | 45.000702 | 7.682270  | 5990  |
| 1537 | 1538 | pop    | 51           | 1766        | 54276  | 1               | 40.323410 | 17.568270 | 7900  |
|      |      |        |              |             |        |                 |           |           |       |

1538 rows × 9 columns

In [4]: a=kcd.groupby(['model']).count()
a

Out[4]:

|        | ID   | engine_power | age_in_days | km   | previous_owners | lat  | lon  | price |
|--------|------|--------------|-------------|------|-----------------|------|------|-------|
| model  |      |              |             |      |                 |      |      |       |
| lounge | 1094 | 1094         | 1094        | 1094 | 1094            | 1094 | 1094 | 1094  |
| pop    | 358  | 358          | 358         | 358  | 358             | 358  | 358  | 358   |
| sport  | 86   | 86           | 86          | 86   | 86              | 86   | 86   | 86    |

Out[5]:

|      | model  | engine_power | age_in_days | km     | previous_owners | price |
|------|--------|--------------|-------------|--------|-----------------|-------|
| 0    | lounge | 51           | 882         | 25000  | 1               | 8900  |
| 1    | рор    | 51           | 1186        | 32500  | 1               | 8800  |
| 2    | sport  | 74           | 4658        | 142228 | 1               | 4200  |
| 3    | lounge | 51           | 2739        | 160000 | 1               | 6000  |
| 4    | рор    | 73           | 3074        | 106880 | 1               | 5700  |
|      |        |              |             |        |                 |       |
| 1533 | sport  | 51           | 3712        | 115280 | 1               | 5200  |
| 1534 | lounge | 74           | 3835        | 112000 | 1               | 4600  |
| 1535 | pop    | 51           | 2223        | 60457  | 1               | 7500  |
| 1536 | lounge | 51           | 2557        | 80750  | 1               | 5990  |
| 1537 | pop    | 51           | 1766        | 54276  | 1               | 7900  |

1538 rows × 6 columns

Out[6]:

|      | model | engine_power | age_in_days | km     | previous_owners | price |
|------|-------|--------------|-------------|--------|-----------------|-------|
| 0    | 1     | 51           | 882         | 25000  | 1               | 8900  |
| 1    | 2     | 51           | 1186        | 32500  | 1               | 8800  |
| 2    | 3     | 74           | 4658        | 142228 | 1               | 4200  |
| 3    | 1     | 51           | 2739        | 160000 | 1               | 6000  |
| 4    | 2     | 73           | 3074        | 106880 | 1               | 5700  |
|      |       |              |             |        |                 |       |
| 1533 | 3     | 51           | 3712        | 115280 | 1               | 5200  |
| 1534 | 1     | 74           | 3835        | 112000 | 1               | 4600  |
| 1535 | 2     | 51           | 2223        | 60457  | 1               | 7500  |
| 1536 | 1     | 51           | 2557        | 80750  | 1               | 5990  |
| 1537 | 2     | 51           | 1766        | 54276  | 1               | 7900  |
|      |       |              |             |        |                 |       |

1538 rows × 6 columns

In [8]: import seaborn as sb
sb.heatmap(cor1,vmax=1,vmin=-1,annot=True,linewidths=5,cmap='bwr')

Out[8]: <Axes: >



```
In [9]: y=drop['price']
x=drop.drop('price',axis=1)
x
```

Out[9]:

|      | model | engine_power | age_in_days | km     | previous_owners |
|------|-------|--------------|-------------|--------|-----------------|
| 0    | 1     | 51           | 882         | 25000  | 1               |
| 1    | 2     | 51           | 1186        | 32500  | 1               |
| 2    | 3     | 74           | 4658        | 142228 | 1               |
| 3    | 1     | 51           | 2739        | 160000 | 1               |
| 4    | 2     | 73           | 3074        | 106880 | 1               |
|      |       |              |             |        |                 |
| 1533 | 3     | 51           | 3712        | 115280 | 1               |
| 1534 | 1     | 74           | 3835        | 112000 | 1               |
| 1535 | 2     | 51           | 2223        | 60457  | 1               |
| 1536 | 1     | 51           | 2557        | 80750  | 1               |
| 1537 | 2     | 51           | 1766        | 54276  | 1               |

1538 rows × 5 columns

```
In [10]: y
Out[10]: 0
                  8900
                  8800
                  4200
                  6000
         3
                  5700
         1533
                  5200
         1534
                  4600
         1535
                  7500
         1536
                  5990
         1537
                  7900
         Name: price, Length: 1538, dtype: int64
```

#### In [11]: !pip3 install scikit-learn

Requirement already satisfied: scikit-learn in ./.local/lib/python3.8/site-packages (1.2.2) Requirement already satisfied: scipy>=1.3.2 in ./.local/lib/python3.8/site-packages (from scikit-learn) (1.10.1)

Requirement already satisfied: threadpoolctl>=2.0.0 in ./.local/lib/python3.8/site-packages (from scikit-learn) (3.1.0)

Requirement already satisfied: numpy>=1.17.3 in ./.local/lib/python3.8/site-packages (from scikit -learn) (1.24.3)

Requirement already satisfied: joblib>=1.1.1 in ./.local/lib/python3.8/site-packages (from scikit -learn) (1.2.0)

# In [12]: from sklearn.model\_selection import train\_test\_split x\_train,x\_test,y\_train,y\_test=train\_test\_split(x,y,test\_size=0.33,random\_state=42)

In [13]: x\_test.head(10)

#### Out[13]:

|      | model | engine_power | age_in_days | km     | previous_owners |
|------|-------|--------------|-------------|--------|-----------------|
| 481  | 2     | 51           | 3197        | 120000 | 2               |
| 76   | 2     | 62           | 2101        | 103000 | 1               |
| 1502 | 1     | 51           | 670         | 32473  | 1               |
| 669  | 1     | 51           | 913         | 29000  | 1               |
| 1409 | 1     | 51           | 762         | 18800  | 1               |
| 1414 | 1     | 51           | 762         | 39751  | 1               |
| 1089 | 1     | 51           | 882         | 33160  | 1               |
| 1507 | 1     | 51           | 701         | 17324  | 1               |
| 970  | 1     | 51           | 701         | 29000  | 1               |
| 1198 | 1     | 51           | 1155        | 38000  | 1               |

## LinearRegression

```
In [14]: from sklearn.linear model import LinearRegression
         reg=LinearRegression()
         reg.fit(x train,y train)
Out[14]:
          ▼ LinearRegression
         LinearRegression()
In [15]: y pred=reg.predict(x test)
         v pred
                 8012.599//099,
                                 9/49./11694//,
                                                 59/0.69892919, 103/4.19319599,
                 5505.37212671,
                                 9603.80845104, 10080.60444002, 10173.49549365,
                 9553.48664879,
                                 4886.66020447,
                                                  5826.86758437, 7127.78307449,
                 9986.09840714, 10375.1819333 ,
                                                 9936.20036211, 7755.07402414,
                 8820.32822581, 10009.77294687, 10261.12807264,
                                                                  9955.43106434,
                 8385.1116117 ,
                                 9441.36137497,
                                                  8621.10384346, 9719.70050582,
                 9767.12327701,
                                 9755.03033027,
                                                  6859.84033207, 7339.68592914,
                 8740.34003982,
                                 9898.84623968,
                                                  9788.7072129 , 10439.74281794,
                 8145.90808395,
                                 6767.15633519,
                                                  9962.57850061, 8846.92420399,
                 9927.58506055, 10279.88133318, 10205.11210182, 10065.46678709,
                 9343.97683092,
                                 9983.85933876,
                                                  9237.93178546, 10073.45985579,
                 7906.63849672,
                                 6017.75726035,
                                                  8780.77873324, 10211.55465771,
                                                              , 7747.41088806,
                 5737.35007744, 10190.21750673,
                                                  9661.444679
                 9396.65945773,
                                 7357.03908605, 10261.68730153, 10041.70922157,
                10525.09542651,
                                 9941.6915233 , 10042.87112799 , 6342.10368715 ,
                10588.92756092,
                                 9940.98736563, 10501.95046891,
                                                                  9697.00608104,
                 9642.20441674,
                                 6177.49903451, 8056.81304643, 10318.99744586,
                 6334.90676093,
                                 7347.76781534, 10049.18638926,
                                                                  6780.85650138,
                 7897.31981053,
                                  5062.64376289,
                                                 4656.55980585,
                                                                  8690.25433913,
                 6988.39956167,
                                 7416.44791638,
                                                  6784.57575877,
                                                                  7034.60046808,
```

# **Efficiency**

In [16]: from sklearn.metrics import r2\_score
 r2\_score(y\_test,y\_pred)

Out[16]: 0.8383895235218546

# Mean squared error

In [17]: from sklearn.metrics import mean\_squared\_error as kc
sq=kc(y\_test,y\_pred)
sq

Out[17]: 593504.2888137395

In [18]: import math as m
dp=m.sqrt(sq)
print(dp)

770.3922954013361

```
In [19]: y_pred
Out[19]: array([ 5994.51703157,
                                   7263.58726658,
                                                    9841.90754881,
                                                                    9699.31627673,
                 10014.19892635,
                                   9630.58715835,
                                                   9649.4499026 , 10092.9819664 ,
                  9879.19498711,
                                   9329.19347948, 10407.2964056,
                                                                    7716.91706011,
                  7682.89152522,
                                   6673.95810983,
                                                    9639.42618839, 10346.53679153,
                  9366.53363673,
                                  7707.90063494,
                                                    4727.33552438, 10428.17092937,
                 10359.87663878, 10364.84674179,
                                                   7680.16157493,
                                                                    9927.58506055,
                  7127.7284177 ,
                                   9097.51161986,
                                                    4929.31229715,
                                                                    6940.60225317,
                  7794.35120591,
                                   9600.43942019,
                                                    7319.85877519,
                                                                    5224.05298205,
                  5559.52039134,
                                   5201.35403287,
                                                   8960.11762682,
                                                                    5659.72968338,
                  9915.79926869,
                                  8255.93615893,
                                                   6270.40332834,
                                                                    8556.73835062,
                  9749.72882426.
                                   6873.76758364,
                                                    8951.72659758, 10301.95669828,
                  8674.89268564, 10301.93257222,
                                                    9165.73586068,
                                                                    8846.92420399,
                  7044.68964545,
                                   9052.4031418 ,
                                                    9390.75738772, 10267.3912561
                 10046.90924744,
                                  6855.71260655,
                                                    9761.93338967,
                                                                    9450.05744337,
                  9274.98388541, 10416.00474283,
                                                   9771.10646661,
                                                                    7302.96566423,
                 10082.61483093,
                                  6996.96553454,
                                                    9829.40534825,
                                                                    7134.21944391,
                  6407.26222178,
                                  9971.82132188,
                                                    9757.01618446,
                                                                    8614.84049875,
                  8437.92452169,
                                   6489.24658616,
                                                    7752.65456507,
                                                                    6626.60510856,
                  8329.88998217. 10412.00324329.
                                                    7342.77348105.
                                                                    8543.63624413.
                                                    7256 06706062
```

```
In [20]: results=pd.DataFrame(columns=['price','predicted'])
    results['price']=y_test
    results['predicted']=y_pred
    results.head(10)
```

### Out[20]:

|      | price | predicted    |
|------|-------|--------------|
| 481  | 7900  | 5994.517032  |
| 76   | 7900  | 7263.587267  |
| 1502 | 9400  | 9841.907549  |
| 669  | 8500  | 9699.316277  |
| 1409 | 9700  | 10014.198926 |
| 1414 | 9900  | 9630.587158  |
| 1089 | 9900  | 9649.449903  |
| 1507 | 9950  | 10092.981966 |
| 970  | 10700 | 9879.194987  |
| 1198 | 8999  | 9329.193479  |

In [21]: results['actual price']=results.apply(lambda column:column.price-column.predicted,axis=1)
 results

Out[21]:

|      | price | predicted    | actual price |
|------|-------|--------------|--------------|
| 481  | 7900  | 5994.517032  | 1905.482968  |
| 76   | 7900  | 7263.587267  | 636.412733   |
| 1502 | 9400  | 9841.907549  | -441.907549  |
| 669  | 8500  | 9699.316277  | -1199.316277 |
| 1409 | 9700  | 10014.198926 | -314.198926  |
|      |       |              |              |
| 291  | 10900 | 10007.364639 | 892.635361   |
| 596  | 5699  | 6390.174715  | -691.174715  |
| 1489 | 9500  | 10079.478928 | -579.478928  |
| 1436 | 6990  | 8363.337585  | -1373.337585 |
| 575  | 10900 | 10344.486077 | 555.513923   |
|      |       |              |              |

508 rows × 3 columns

In [ ]: