REPARED BY: DATE			SPEC No. LCY-10021
Sadamtru July 28,2010	SHA	/ISD	FILE No.
			ISSUE: July. 28. 2010
PROVED BY: DATE			PAGE: 25 pages
12 1 1 30 20/0	LIQUID		
Yalnuchi July 30 2010	DISPLAY		LIQUID CRYSTAL
·	SHARP COF SPECIFI		DISPLAY DIVISION III
	DI HOIF1	OATION	
I		CIFICATION F	
	1.60000		wa a
	MODEL N	o. LQ092B5DV	W02
)
	PART No.	8 928 554	058
			•
CUSTOMER'S APPROVAL			
COSTOMER S ALFROVAL			
DATE			
		PRESENTED	
DV		of on	aki
ВУ		TOSHIYUKI MA	
		TOSHIYUKI MA. Department Gene	
		Engineering Department Gene	
			splay Division III
		Liquid Crystal Di	splay Group
		SHARP CORPORATION	И

RECORDS OF REVISION

MODEL No: LQ092B5DW02

SPEC No.	Date	NO.	PAGE	SUMMARY	NOTE
LCY-10021	2010. 7.28	-	-	-	1st Issue
	1				
	<u> </u>				
		 			
		L			
		<u> </u>			
		<u> </u> 	 		

NOTICE

This publication is the proprietary of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.

The application circuit examples in this publication are provided to explain the representative applications of SHARP's devices and are not intended to guarantee any circuit design or permit any industrial property right or other rights to be executed. SHARP takes no responsibility for any problems related to any industrial property right or a third party resulting from the use of SHARP's devices, except for those resulting directly from device manufacturing processes.

In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP's device.

SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structures and other contents described herein at any time without notice in order to improve design or reliability. Contact SHARP in order to obtain the latest specification sheets before using any SHARP's device. Manufacturing locations are also subject to change without notice.

Observe the following points when using any device in this publication. SHARP takes no responsibility for damage caused by improper use of the devices.

The devices in this publication are designed for use in general electronic equipment designs, such as:

- · Car Navigation system · Automotive auxiliary information display
- · Automotive audio visual equipment

The appropriate design measures should be taken to ensure reliability and safety when SHARP's devices are used for equipment such as:

- · Transportation control and safety equipment(i.e.,aircraft,trains,automobiles,etc.)
- Traffic signals
- Gas leakage sensor breakers
- Alarm equipment
- · Various safety devices etc.

SHARP's devices shall not be used for equipment that requires extremely high level of reliability, such as:

- Military and space applications
- · Nuclear power control equipment
- · Medical equipment for life support

Contact a SHARP representative, in advance, when intending to use SHARP's devices for any "specific" applications other than those recommended by SHARP.

Contact and consult with a SHARP representative if there are any questions about the contents of this publication.

1. General

This TFT-LCD module is a color active matrix LCD (Liquid Crystal Display) module of transmissive type incorporating amorphous silicon TFT (Thin Film Transistor).

It is composed of TFT-LCD panel, driver ICs,FPC, shielding case and LED-backlight unit. (Driving circuit for LED-backlight is excluded.)

2. Features

- The 9.2 screen produces a high resolution image that is composed of 153,600 pixels elements in a stripe arrangement.
- Possible to indicate 262,144 colors by 18 bits (6 bits x RGB) data signal.
- · Wide viewing angle technology without gray scales inversion.
- · Reduced reflection as a result of low reflection black matrix and an antiglare (AG) polarizer being adopted.
- · By COG method, realized a slim, lightweight, and compact module.
- Realized a high quality picture of the natural color appearance by adopting the ASV-Normally black Mode.
- Built-in LED backlight with the high performance of start-up in the low temperature.

3. Mechanical specifications

Table 3-1

Parameter	Specifications	Units	Remarks
Display format	153,600	pixels	
	$960(W) \times RGB \times 160(H)$	dots	
Active area	230.4 (W) ×38.4 (H)	mm	
Screen size (Diagonal)	23.37[9.2 "]	cm	
Dot pitch	80.0 (W) $\times 240.0$ (H)	μ m	
Pixel configuration	R,G,B Stripe configuration		
Outline dimension	$242.0 \text{ (W)} \times 52.83 \text{ (H)} \times 10.3 \text{ (D)}$	mm	[Note 3-1]
Mass	170 ± 10	g	

[Note 3-1]

Excluding protrusions. Typical values are given.

For detailed measurements and tolerances, refer to Fig. 1, Outline Dimensions.

4.Input terminal4-1)TFT-LCD panel driving part
Table 4-1

Table 4			D 1
Pin No.	Symbol	Description	Remarks
1	VL	Gamma voltage	
2	V12	Gamma voltage	
3	V10	Gamma voltage	
4	V8	Gamma voltage	
5	V7	Gamma voltage	
6	V5	Gamma voltage	
7	V3	Gamma voltage	
8	VH	Gamma voltage	
9	VSHA	Power supply (+13.4V)	Far and A
10	SPIO	Start pulse output signal for source driver	[Note4-1]
11	LBR	Setting signal of horizontal display direction	[Note4-1]
12	GND	Ground	
13	CLD	Clock signal for source driver	
14	GND	Ground	
15	POL	Polarity reversing signal of LCD output	
16	LS	Source data transfer signal	
17	VSHD	Power supply(+3.3V)	
18	B5	Blue data signal (MSB)	
19	B4	Blue data signal	
20	B3	Blue data signal	
21	B2	Blue data signal	
22	B1	Blue data signal	
23	BO	Blue data signal (LSB)	
24	GND	Ground	
25	G5	Green data signal(MSB)	
26	G4	Green data signal	
27	G3	Green data signal	
28	G2	Green data signal	
29 30	G1 G0	Green data signal Green data signal(LSB)	
31	GND	Ground	
32	R5	Red data signal(MSB)	
33	R4	Red data signal	
34	R3	Red data signal	
35	R2	Red data signal	
36	R1	Red data signal	
37	R0	Red data signal(LSB)	
38	SPOI	Start pulse input signal for source driver	[Note4-1]
39	CS	CS signal	
40	VCOM	VCOM signal	
41	NC		
42	VGH	Power supply of gate ON(+25V)	
43	NC		-
44	MODE1	Output mode setting signal 1 of gate driver	[Note4-2]
45	MODE2	Output mode setting signal 2 of gate driver	[Note4-2]
46	TST	Setting signal for gate driver(Lo fixed)	
47	CLS	Clock signal for gate driver	
48	SPS	Start pulse Input for gate driver	
49	NC		
50	VGL	Power supply of gate OFF(-8.0V)	

[Note4-1] Horizontal direction of the scanning can be controlled according to this signal.

Table 4-2

Display mode	LBR	SPIO	SPOI
Normal displayed	Hi	Input mode	Output mode
Right/Left reverse mode	Lo	Output mode	Input mode

[Note4-2] The mode of the gate driver output can be selected by setting MODE1 and MODE2. Refer to item 6-1) power supply sequence.

Table4-3

MODE1	Hi
MODE2	Lo

Lo=GND , Hi=VSHD

4-2) Backlight driving part

Table4-4

Pin No.	Symbol	Description	Remarks
1	VLA	LED anode terminal (+)	
2	VLA	LED anode terminal (+)	
3	NC	NC	
4	VLC1	LED cathode terminal 1 (—)	[Note 4-3]
5	VLC2	LED cathode terminal 2 (—)	[Note 4-3]
6	VLC3	LED cathode terminal 3 (—)	[Note 4-3]
7	VLC4	LED cathode terminal 4 (—)	[Note 4-3]
8	NC	NC	
9	TH1	Thermal sensor for LED	[Note 4-4]
10	TH2	Thermal sensor for LED	[Note 4-4]

[Note4-3] $6 \text{ LEDs} \times 4 \text{ chains}$

[Note4-4] NTC: NSM3302J410J3 (OHIZUMI MFG. CO.,LTD.)

5. Absolute maximum rating

Teble5-1 Absolute maximum ratings

GND=0V

		0				
Param	neter	Symbol	MIN	MAX	Unit	Remark
Power supply	Analog	VSHA	-0.3	+14.0	V	Ta=25℃
of source driver	Digital	VSHD	-0.3	+4.0	V	"
Power supply		VGH	-0.3	+35.0	V	11
of gate driver		VGL	-20.0	+0.3	V	"
		VGH-VGL	-0.3	+38.0	V	11
Input signal D	igital	VID	-0.3	VSHD+0.3	V	" ,[Note5-1]
A	nalog	VIA	-0.3	VSHA+0.3	V	",[Note5-2]
Common electro	ode	VCOM,CS	-0.3	+14.0	V	"
driving signal						
Storage temper	ature	Tstg	-40	90	$^{\circ}$ C	[Note5-3,4]
Operating temperature		rating temperature Topr1		85	$^{\circ}$ C	[Note5-5,6]
(Panel temperature)						
Operating temperature		Topr2	-30	70	$^{\circ}$ C	[Note5-6]
(Ambient tempe	erature)					

- $[Note 5\text{-}1]\ SPIO, LBR, CLD, POL, LS, B5 \sim B0, G5 \sim G0, R5 \sim R0, SPOI, MODE1, MODE2, R/L, CLS, SPSCO, ROMBON CONTROL From Control F$
- [Note5-2] VH,V3,V5,V7,V8,V10,V12,VL
- [Note5-3] This rating applies to all parts of the module and should not be exceeded.
- [Note5-4] Maximum wet-bulb temperature is 57°C. Avoid dew condensation on the module. Otherwise electrical current leaks will occur, and it cannot meet the specifications.
- [Note5-5] The operating temperature guarantees only operation of the circuit. For contrast, speed of response, and other factors related to display quality are determined in the circumstances with $Ta=+25^{\circ}C$.
- [Note5-6] Ambient temperature when the backlight is lit. (Reference value)

6. Electrical characteristics

6-1) TFT-LCD panel driving section

Table 6-1 Recommended operating conditions

GND=0V, $Ta=25^{\circ}C$

- D	D							
Parameter		Symbol	MIN	TYP	MAX	Unit	Remarks	
Power supply	Analog		VSHA	+13.3	+13.4	+13.5	V	
of source driver	Digital		VSHD	+3.0	+3.3	+3.6	V	
Power supply	TFT	Hi	VGH	+24.8	+25.0	+25.2	V	
of gate driver	driving	Lo	VGL	-8.2	-8.0	-7.8	V	
Power supply of g	gray imag	е	VH,VL,V*	GND	_	VSHA	V	
Input voltage	Hi input		VIHS	$0.7 \times VSHD$	_	VSHD	V	[Note6-1]
of source driver	Lo input		VILS	GND	_	$0.3 \times VSHD$	V	
Input current	Hi input		IIHS	_	_	4	μA	[Note6-1]
of source driver	Lo input		IILS	-4	_		μA	
Input voltage	Hi input		VIHG	$0.8 \times VSHD$	_	VSHD	V	
of gate driver	Lo input		VILG	GND	_	$0.2 \times VSHD$	V	[Note6-2]
Input current	Hi input		IIHG	_	_	1	μA	
of gate driver	Lo input		IILG	-1	_		μA	
Common electrode driving signal		VCOM	+3.7	+5.2	+6.7	V		
CS drivi	ng signal		VCS	_	VCOM		V	

[Caution] Notes when power supply is turned on.

Please do a power supply on and the power-off in the following order.

Turn on $\;\;$ VSHD \rightarrow VGL, Logic signal \rightarrow VGH, VSHA, VH, VL, V*

Turn off $\,$ VSHA, VH, VL, V*, VGH \rightarrow Logic signal, VGL \rightarrow VSHD

Table 6-2 On-off conditions for supply voltage

symbol	MIN	MAX	UNIT
t1	0	20	ms
t2	0	_	ms
t3	0	10	ms
t4	0	_	ms
t5	0		ms
t6	0	_	ms
t7	0	50	ms
t8	0	10	ms

symbol	MIN	MAX	UNIT
t9	0	_	ms
t10	0	_	ms
t11	0	_	ms
t12	0	10	ms
t13	0		ms
t14	0	10	ms
t15	10	_	ms

[Note6-1] Apply to terminal of SPIO,LBR,CLD,POL,LS,B5 \sim B0,G5 \sim G0,R5 \sim R0 and SPOI.

[Note6-2] Apply to terminal of MODE1, MODE2, R/L, CLS and SPS.

[Note6-3] Input low voltage when turning on MODE1 terminal and keep low voltage for 2 vertical synchronizing periods or more after VGH has completely risen. After that, keep MODE1 terminal at high voltage until turning off the power.

[Note 6-4] Recommended gamma voltage

Table6-3

Pin No.	Symbol		Remarks
1	VL	Connected to GND	
2	V12	+2.68	
3	V10	+3.40	
4	V8	+4.60	
5	V7	+7.80	
6	V5	+9.00	
7	V3	+9.71	
8	VH	Connected to VSHA(13.4V)	

^(*) It may be necessary to input the DC voltage into these terminals to optimize gamma value of new NB panel.

6-2) Backlight unit driving section

Table 6-4

Parameter	Symbol	MIN	TYP	MAX	Unit	Remarks
LED voltage	Vf	_	18.5	21.0	V	Ta=25°C,If=60mA
LED voltage	Vf-30	_		22.0	V	Ta=-30°C,If=60mA
LED current	If	_	60	65	mA	
Power consumption	Wf	_	4.45	_	W	[Note6-5] Ta=25°C

[Note6-5] Reference, $Wf = Vf \times If \times parallel qty$.

6-3) Timing characteristics of input signals

Timing diagrams of input signal are shown in Fig2-1, Fig2-2.

 $Table 6\hbox{-}5$

VSHA=13.4V,VSHD=3.3V,GND=0V,Ta=25 $^{\circ}$ C

	Parameter	Symbol	MIN	TYP	MAX	Unit	Terminal		
	Operating Clock frequency	fcld	15.9	18.0	19.8	MHz			
	High level clock width	Tewh	4	_	_	ns			
	Low level clock width	Tcwl	4	_	_	ns	CLD [Note6-5]		
	Clock rise time	Ter	_	_	7	ns	[Noteo 5]		
	Clock fall time	Tcf	_		7	ns			
	Start pulse set up time	Tsusp	4			ns	SPOI		
70	Start pulse hold time	Thsp	2	_	_	ns	SPIO		
Source	Start pulse width	Twsp	1/fcld	_	_	ns	[Note6-6]		
се	LS pulse Start pulse time	Tlssp	5/fcld	_		ns			
	Last data LS time	Tldt	2/fcld	_	-	ns			
	LS pulse set up time(CLD)	Tsulscld	9	_	_	ns			
	High level LS pulse wide	Twls	5/fcld	36/fcld		ns	LS		
	LS pulse set up time (CL)	Tsuls	5.0		ı	μ s			
	POL LS pulse time	Tpolls	14			ns			
	LS CLS time	Tlscls	0	_	_	μ s			
	Data set up time	Tsud	4			ns	R0∼R5,G0∼		
	Data hold time	Thd	2	_	_	ns	G5,B0∼B5		
	Operating Clock frequency	fcls	14.46	14.83	16.04	kHz			
	Clock pulse with	Twl	500			ns	CLS		
	Clock rise time	Trcls	_	_	100	ns	CLS		
	Clock fall time	Tfcls	_	_	100	ns			
Gate	Start pulse frequency	fsps	59	60.03	61	Hz			
ıte	Start pulse set up time	Tsusps	100	_	_	ns			
	Start pulse hold time 1	Thsps1	300		_	ns	ana		
	Start pulse hold time 2	Thsps2	30	_	_	ns	SPS		
	Start pulse rise time	Trsps	_	_	100	ns			
	Start pulse fall time	Tfsps	_	_	100	ns			

[Note6-5] It is also possible that Tcr,Tcf exceeds the maximum value when the clock frequency doesn't reach the maximum value. But please confirm there is no problem.

[Note6-6] The rising pulse in CLD is existed only 1 time during Hi period (Twsp) on start pulse.

6-4) Electric power consumption

Table 6-4 Ta = 25° C

Symbol	Voltage conditiion	MIN	TYP	MAX	Unit
ISHA	VSHA=+13.4V		23	46	mA
ISHD	VSHD=+3.3V	_	8	16	mA
IGH	VDD=+25.0V	_	0.4	0.6	mA
IGL	VEE=-8.0V	_	-0.4	-0.6	mA

6-5) Input Data Signals and Display Position on the screen

Display position of input data (H,V)

7. Input Signals, Basic Display Color and Gray Scale of Each Color ${\it Table 7}$

1	able/																			
	Colors &						Data	signa	al		C	:Lov	v leve	l volt	age	1	High	leve	l volt	age
	Gray scale	Gray Scale	RO	R1	R2	R3	R4	R5	G0	G1	G2	G3	G4	G5	В0	B1	B2	ВЗ	B4	В5
	Black	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	_	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
В	Green	_	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic color	Cyan	_	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
colo	Red	_	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
r	Magenta	_	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	_	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	_	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	仓	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
iray	Darker	GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale of red	仓	↓			1	V					1	/					1	/		
le of	Û	↓			\	/					1	/					1	/		
$^{\circ}$ red	Brighter	GS61	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Û	GS62	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red	GS63	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gr	仓	GS1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
ay S	Darker	GS2	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Gray Scale of green	仓	V			1	V					1	L					1	/		
of g	Û	V			\	<u> </u>					1	<u> </u>					1	<u> </u>		
reei	Brighter	GS61	0	0	0	0	0	0	1	0	1	1	1	1	0	0	0	0	0	0
ב	Û	GS62	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0
	Green	GS63	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
G	仓	GS1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
ray	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
Gray Scale of bleu	仓	V			1	L					1	/					1	/		
e of	Û	V			\	<u> </u>					1	<u> </u>					1	/		
bleu	Brighter	GS61	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1
	Û	GS62	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	Bleu	GS63	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	0 . 1	level vol	.	1.	1. :1.	11	14.													

0 : low level voltage 1 : high level voltage

Each basic color can be displayed in 64 gray scales from 6 bit data signals. According to the combination of total 18 bit data signals, the 262,144-color display can be achieved on the screen.

8.Optical characteristics
Table 8 <u>Ta</u>=25°C

Parameter		Symbol	Condition	Min	Тур	Max	Unit	Remarks	
Viewing ar		range	$\Delta \theta 11$ $\Delta \theta 12$	CR≧100	30	40	_	°(degree)	[Note 8-1,2]
		$\Delta \theta 21, \\ \Delta \theta 22$	CR≧100	35	45	_	°(degree)	-	
Contrast ra	atio		CRp	Perpendicular θ=0°			_		[Note 8-2]
Response		Rise	τr	Black=>White	_	8	14	ms	[Note 8-3]
time	+25			$worst(L0 \rightarrow L8)$		71	90	ms	
	°C (∗)	Fall	τd	White=>Black	_	6	12	ms	(*) Ambient Temperature
				$worst(L16 \rightarrow L8)$	_	32	39	ms	
-		Rise	τr	Black=>White	_	25	34	ms	
	0℃			$worst(L0 \rightarrow L8)$	_	154	196	ms	
	(*)	Fall	τd	White=>Black		25	41	ms	
				$worst(L16\rightarrow L8)$	_	55	73	ms	
-		Rise	τr	Black=>White	_	55	77	ms	
	-20℃			worst(L0→L8)	_	521	719	ms	
		Fall	τd	White=>Black	_	68	106	ms	=
				worst(L16→L8)	_	208	306	ms	
			τr	Black=>White	_	111	151	ms	
	-30℃			worst(L0→L8)	_	1095	1095 1413	ms	
	(*)	Fall	τd	White=>Black	-	148	270	ms	
				worst(L16→L8)	_	431	606	ms	
White Lun	inai	nce	Y	$ IF=60 \text{mA} \\ \theta=0^{\circ} $	810	1,055	_	cd/m²	
Uniformity	7e			IF=60mA θ=0° Lmax/Lmin	_	1.35	1.4		[Note 8-7]
Chromaticit	у	hite	X	IF=60mA	0.264	0.304	0.344		[Note 8-4]
	VV	шие	У	$\theta = 0$ °	0.285	0.325	0.365		
		ed	X		0.596	0.636	0.676		4
	-		y x		0.268 0.312	0.308 0.352	0.348 0.392		-
		reen	У		0.512 0.520	0.560	0.600		1
	D	lue	X		0.118	0.158	0.198]
			у		0.044	0.084	0.124		
LED life time		+25°C	-	Continuation	10,000	_	_	hour	[Note 8-5]
me ume	-	-30℃	-	Intermittent	2,000	_	_	time	[Note 8-6]

*Measure after 30 minutes of power on. The optical measurement of the characteristic is to be done in the condition which is equal to the darkroom or use the measuring method described in the following Fig.(i).

Fig.(i) Measuring method of optical characteristics

[Note 8-1] Viewing angle range is defined as follows.

Fig.(ii) Definition for viewing angle

[Note 8-2] Contrast ratio is defined as follows:

 $\label{eq:Contrast ratio} \text{Contrast ratio(CR)=} \ \frac{\text{Photo detector output with LCD being "white"}}{\text{Photo detector output with LCD being "black"}}$

Measured by SR-3.

[Note 8-3] Response time is obtained by measuring the transition time of photo detector output, when input signals are applied so as to make the area "black" to and from "white".

[Note 8-4] Measured on the center area of the panel at a viewing cone 1° by TOPCON luminance meter SR-3.(After 30 minutes operation)

[Note 8-5] Backlight life time is defined as the time when the brightness of the panel not to become less than 50% of the original value in the continuous operation under the condition of LED forward current If=60mA.

[Note 8-6] The intermittent cycles is defined as a time when brightness is not become under 50% of the original value under the condition of following cycle.

Ambient temperature:-30°C

[Note 8-7] Measuring point is defined as follows.

The measurement of white luminance measures 9 points of the above figure.

The maximum and minimum luminance are chosen as a result.

Luminance uniformity = Maximum Luminance / Minimum Luminance

9. Display quality

The display quality of the color TFT-LCD module shall be in compliance with <u>Outgoing Inspection Standards for TFT-LCD</u>.

10. Mechanical characteristics

10-1) External appearance

Do not exist extreme defects. (See Fig. 1)

10-2) Input connector performance

1)Applicable connector: FH28-50S-0.5SH(05) (HRS)

2) FPC flexibility: One side wiring area with film cover coating

If it had been tested bending under radius nothingness and bending angle 180degrees, the FPC should not be cut.

(It should be bend by hand and only at once).

11. Handling instructions

- 11-1) Handling of FPC
 - ①FPC shall be bended only at one side wiring area with film cover coating.
 - ②Please do not hang a LCD module or do not apply excessive power for FPC.

11-2) Mounting of module

- ③This LCD module is designed to be mounted on equipment using the mounting tabs in the four corners of the module at the rear side.
- ④On mounting the module, be sure to fix the module on the same plane, taking care not to wrap or twist the module.
 - Don't reach the pressure of touch-switches of the set side to a module directly, because images may be disturbed.
- ⑤Please power off the module when you connect the input connector.

11-3) Precautions in mounting

- ①Polarizer which is made of soft material and susceptible to flaw must be handled carefully. Protection sheet is applied on the surface to protect it against scratches and dirties. It is recommended to remove off the protection sheet immediately before the use, taking care of static electricity.
- 2 Precautions in removing the protection sheet

A) Working environment

When the protection sheet is removed off, static electricity may cause dust to stick to the polarizer surface.

To avoid this, the following working environment is desirable.

- a) Floor: Conductive treatment of $1M\Omega$ or more on the tile (conductive mat or conductive paint on the tile)
- b) Clean room free form dust and with an adhesive mat on the doorway
- c) Advisable humidity: $50\% \sim 70\%$

Advisable temperature:15°C~27°C

d) Workers shall wear conductive shoes, conductive work clothes, conductive gloves and an earth band.

B) Working procedures

- a) Direct the wind of discharging blower somewhat downward to ensure that module is blown sufficiently.
 - Keep the distance between module and discharging blower within 20 cm.
- b) Attach adhesive tape to the protection sheet part near discharging blower so as to protect polarizer against flaw.
- c) Remove off the protection sheet, pulling adhesive tape slowly to your side.
- d) On removing the protection sheet, pass the module to the next work process to prevent the module to get dust.
- e) Method of removing dust from polarizer
 - · Blow off dust with N2 blower for which static electricity preventive measure has been taken.
 - Since polarizer is vulnerable, wiping should be avoided.
 But when the panel has stain or grease, we recommend to use adhesive tape to softly remove them from the panel.
- (3) When metal part of the TFT-LCD module (shielding lid and rear case) is soiled, wipe it with soft dry cloth. For stubborn dirties, wipe the part, breathing on it.
 - Wipe off water drop or finger grease immediately. Long contact with water may cause discoloration or spots.
- TFT-LCD module uses glass which breaks or cracks easily if dropped or bumped on hard surface. Handle with care.
- Since CMOS LSI is used in this module, take care of static electricity and earth your body when handling.

11-4) Caution of product design

- ①The LCD module shall be protected against water salt-water by the waterproof cover.
- ②Please take measures to interferential radiation from module, to do not interfere surrounding appliances.

11-5)Others

- ①Do not expose the module to direct sunlight or intensive ultraviolet rays for several hours; liquid crystal is deteriorated by ultraviolet rays.
- ②Store the module at a temperature near the room temperature. At lower than the rated storage temperature, liquid crystal solidifies, causing the panel to be damaged. At higher than the rated storage temperature, liquid crystal turns into isotropic liquid and may not recover.
- ③If LCD panel breaks, there may be a possibility that the liquid crystal escapes from the panel. Since the liquid crystal is injurious, do not put it into the eyes or mouth. When liquid crystal sticks to hands, feet or clothes, wash it out immediately with soap.
- (4) Adjust DC bias for Common electrode drive (COM DC) as final product. In case of no adjustment, the degradation of picture quality may happen.
- ⑤Observe all other precautionary requirements in handling general electronic components.

12.Packing form

- a) Piling number of cartons: MAX 10
- b) Package quantity in one carton 30 pcs
- c) Carton size: $573 \times 373 \times 203$ mm
- d) Total mass of one carton filled with full modules: 6.6kg
- e) Conditions for storage.

Environment

①Temperature: $0\sim40^{\circ}$ C

②Humidity : 60%RH or less (at 40%)

No dew condensation at low temperature and high humidity.

③Atmosphere : Harmful gas, such as acid or alkali which corrodes electronic

components and/or wires, must not be detected.

④Period : about 3 months

⑤Opening of the package: In order to prevent the LCD module from breakdown by

electrostatic charges, please control the room humidity over 50% RH and open the package taking sufficient countermeasures

against electrostatic charges, such asearth, etc.

13.Indication of lot number

(1)Attached location of the label

②Indicated contents of the label

contents of lot No. the 1st figure · · production year (ex. 2008:8)

the 2nd figure \cdots production month $1,2,3,\cdots,9,X,Y,Z$ the 3rd \sim 7th figure \cdots serial No. $00001\sim$

the 8th figure · · revision marks A,B,C · ·

13-2) Fab locations

Panel production: Sharp (Mie factory) — Mie tech

LCD assembly: WSEC(China)

9. Reliability test

Table 9

No.	Test items	Test conditions				
1	High temperature	Ta=+85°C 240h				
	storage test					
2	Low temperature	Ta=-40°C 240h				
	storage test					
3	High temperature And high humidity operating test	Tp=+60°C, 90%RH 240h				
4	High temperature operating test	Tp=+85°C 240h				
5	Low temperature operating test	Ta=-30°C 240h				
6	Electro static	± 200 V, 200 pF(0 Ω) 1 times for each terminals				
	discharge test					
7	Shock test	980m/s ² ·6ms, $\pm X$, $\pm Y$, $\pm Z$ 3times for each direction				
		(JIS C0041,A-7 condition C)				
8	Vibration test	Frequency range : $8\sim33.3 Hz$, Stroke : $1.3 mm$				
		Frequency range: $33.3 \text{Hz} \sim 400 \text{Hz}$, Acceleration: 29.4 m/s^2				
		Cycle: 15 minutes				
		X,Z 2 hours for each directions, 4 hours for Y direction				
		(total 8 hours)				
9	Heat shock test	Ta=-30~+85°C , 200cycles				
	storage test	(0.5h) $(0.5h)$				

Ta= Ambient temperature, Tp= Panel temperature

[Check items] In the standard condition, there shall be no practical problems that may affect the display function.

[Note] X,Y,Z directions are shown as follows:

Fig.2-1. Input signal waveform

Fig.2-2. Input signal waveform

Appendix1 Data sheet of themistor

Part No.: NSM3302J410J3 R 25 : 3000 Ω Tolerance is 5 % B 25/85 : 4100 K Tolerance is 5 %

Tx (° C)	Rmin. (Ω)	Rnom. (Ω)	Rmax. (Ω)
-40	124977	160521	205658
-39	116007	148416	189405
-38	107750	137318	174562
-37	100145	127135	160996
-36	93135	117786	148588
-35	86670	109195	137231
-34	80704	101297	126828
-33	75194	94030	117292
-32	70102	87340	108545
-31	65393	81176	100516
-30	61037	75494	93142
-29	57004	70252	86363
-28	53267	65414	80129
-27	49804	60945	74390
-26	46592	56814	69106
-25	43611	52994	64235
-24	40843	49459	59744
-23	38271	46186	55600
-22	35880	43154	51774
-21	33656	40343	48239
-20	31586	37736	44971
-19	29659	35316	41948
-18	27863	33069	39150
-17	26189	30981	36559
-16	24628	29041	34158
-15	23171	27235	31932
-14	21811	25555	29867
-13	20541	23991	27950
-12	19353	22533	26170
-11	18243	21175	24516
-10	17205	19908	22978
-9 -8	16233	18725	21547
-8	15322	17622	20216
-7	14469	16591	18976
-6	13670	15628	17820
-5	12921	14727	16744
-4	12217	13884	15739
-3	11557	13096	14802
-2	10938	12358	13927
-1	10355	11666	13110
0	9808. 1	11018	12347
1	9293. 6	10411	11633
2	8809. 6	9840. 8	10965
3	8354. 2	9306. 0	10340
4	7925. 4	8803. 9	9755. 3
5	7521. 5	8332. 3	9207. 4

Part No.: NSM3302J410J3

	:NSM3302J	<u>4 1 0 J 3</u>	
Tx (° C)	Rmin. (Ω)	Rnom. (Ω)	Rmax. (Ω)
6	7141. 0	7889. 2	8693. 9
7	6782. 3	7472. 6	8212. 5
8	6444. 0	7080. 8	7761. 0
9	6124. 9	6712. 2	7337. 4
10	5823. 7	6365. 2	6939. 7
11	5539. 4	6038. 5	6566. 2
12	5270. 9	5730. 8	6215. 2
13	5017. 1	5440. 7	5885. 4
14	4777. 3	5167. 3	5575. 2
15	4550. 5	4909. 4	5283. 4
16	4336.0	4666. 1	5008.8
17	4133.0	4436. 5	4750. 3
18	3940. 8	4219.6	4506.8
19	3758. 9	4014.8	4277. 4
20	3586. 5	3821. 2	4061.1
21	3423. 1	3638. 2	3857. 2
22	3268. 3	3465. 2	3664. 8
23	3121. 5	3301.5	3483. 2
24	2982. 2	3146. 6	3311.9
25	2850. 0	3000.0	3150. 0
26	2712. 5	2862. 0	3012. 2
27	2582. 6	2731. 3	2881.3
28	2459.8	2607. 5	2757. 1
29	2343. 7	2490. 1	2639. 1
30	2233. 9	2378. 9	2527. 0
31	2130. 0	2273. 4	2420. 4
32	2031. 6	2173. 3	2319. 0
33	1938. 5	2078. 3	2222. 6
34	1850. 2	1988. 1	2130. 9
35	1766. 6	1902. 5	2043. 6
36	1687. 4	1821. 1	1960. 5
37	1612. 2	1743. 8	1881. 3
38	1540. 9	1670. 2	1805. 9
39	1473. 3	1600. 3	1734. 0
40	1409. 0	1533. 8	1665. 4
41	1348. 0	1470. 5	1600. 1
42	1290. 1	1410. 2	1537. 7
43	1235. 0	1352. 9	1478. 2
44	1182. 7	1298. 2	1421. 4
45	1132. 9	1246. 1	1367. 2
46	1085. 6	1196. 5	1315. 4
47	1040. 5	1149. 1	1265. 9
48	997. 66	1104. 0	1218. 6
49	956. 83	1060. 9	1173. 4
50	917. 95	1019.8	1130. 2
51	880. 90	980. 59	1088. 8
52	845. 59	943. 12	1049. 3
53	811. 93	907. 33	1011. 4
54	779. 84	873. 14	975. 16
55	749. 22	840. 46	940. 45

Part No.: NSM3302J410J3

	:NSM3302J		
Tx (° C)	Rmin. (Ω)	Rnom. (Ω)	Rmax. (Ω)
56	720. 00	809. 22	907. 21
57	692. 12	779. 34	875. 36
58	665. 50	750. 76	844. 84
59	640. 07	723. 42	815. 58
60	615. 78	697. 25	787. 53
61	592. 57	672. 20	760. 63
62	570. 39	648. 21	734. 81
63	549. 18	625. 24	710. 05
64	528. 89	603. 22	686. 28
65	509. 49	582. 12	663. 45
66	490. 92	561. 90	641. 54
67	473. 14	542. 51	620. 49
68	456. 13	523. 91	600. 26
69	439. 83	506. 07	580. 83
70	424. 22	488. 95	562. 14
71	409. 27	472. 52	544. 18
72	394. 93	456. 74	526. 91
73	381. 19	441. 60	510. 29
74	368. 01	427. 05	494. 31
75	355. 38	413. 07	478. 92
76	343. 25	399. 63	464. 12
77	331. 62	386. 72	449. 86
78	320. 45	374. 31	436. 13
79	309. 73	362. 37	422. 91
80	299. 43	350. 89	410. 17
81	289. 57	339. 88	397. 93
82	280. 06	329. 24	386. 08
83	270. 92	319.00	374. 67
84	262. 14	309. 14	363. 66
85	253. 70	299. 65	353. 04
86	245. 57	290. 51	342. 80
87	237. 76	281. 70	332. 92
88	230. 25	273. 21	323. 39
89	223. 02	265. 03	314. 18
90	216. 05	257. 15	305. 30
91	209. 35	249. 55	296. 72
92	202. 90	242. 22	288. 43
93	196. 68	235. 14	280. 42
94	190. 70	228. 32	272. 69
95	184. 93	221. 74	265. 21
96	179. 37	215. 38	257. 99
97	174. 01	209. 25	251.00
98	168. 84	203. 33	244. 25
99	163. 86	197. 61	237. 72
100	159. 05	192. 08	231. 40
101	154. 41	186. 75	225. 29
102	149. 94	181. 59	219. 38
103	145. 62	176. 61	213. 65
104	141. 45	171. 79	208. 11
105	137. 43	167. 13	202. 75

Part No.: N S M 3 3 0 2 J 4 1 0 J 3

Tx (° C)	Rmin. (Ω)	Rnom. (Ω)	Rmax. (Ω)
106	133. 54	162. 63	197. 55
107		158. 27	192. 52
108	126. 16	154. 06	187. 65
109	122. 66	149. 98	182. 93
110	119. 28	146. 04	178. 36
111	116.00	142. 22	173. 92
112	112. 84	138. 52	169. 63
113	109. 78	134. 94	165. 46
114	106. 82	131. 48	161. 42
115	103. 96	128. 12	157. 51
116	101. 19	124. 87	153. 71
117		121. 72	150. 02
118		118. 67	146. 45
119	93. 415	115. 71	142. 98
120	90. 986	112. 85	139. 61
121	88. 635	110. 07	136. 34
122	86. 357	107. 37	133. 17
123	84. 151	104. 76	130. 09
124	82. 014	102. 22	127. 09
125	79. 943	99. 762	124. 19