Algorithms & Data Structures SoSe 25 Notes

Igor Dimitrov

2024 - 12 - 18

Table of contents

Preface			4
ı	Ру	thon	5
1	Itera	ables	6
	1.1	for Loops and Comprehensions	6
		Common Use Cases & Idioms:	6
		What Are Comprehensions?	7
	1.2	enumerate()	8
		Type:	8
		Basic Example:	8
		Common & Idiomatic Use Cases for enumerate()	9
		Summary:	10
	1.3	zip()	10
		Common Use Cases and Idiomatic Patterns	11
		Unified Understanding: Zip vs. "Unzip"	13
		Bonus: Visual Matrix Analogy	13
		Summary	14
	1.4	map() and filter()	14
		What is map()?	14
		Basic Use:	14
		What is filter()?	14
		Idiomatic Use Cases:	15
	1.5	Extended Unpacking in Python with * and **	16
		Sequence Unpacking (with *)	16
		Unpacking in Function Calls (with * and **)	17
		Function Definitions with *args and **kwargs	17
		Mixing Both *args and **kwargs	18
		Comparing Similar Function Calls	19
		Summary Table	19

П	Exam	20
2	Ex 2024	21
	2.1 Problem 1: Pseudocode	21
	2.2 Problem 2: Heaps	21
	2.3 Problem 3: Hashing	22
	2.4 Problem 4: \mathcal{O} -Notation and Code Analysis	23
	2.5 Problem 5: Short Proofs	24
	2.6 Problem 6: Induction \dots	24
	2.7 Problem 7: Graphs	24

Preface

Part I

Python

1 Iterables

1.1 for Loops and Comprehensions

for loops in Python are used to iterate over any iterable (like lists, tuples, strings, sets, dictionaries, generators, etc.).

Syntax:

```
for item in iterable:
    # do something with item
```

Common Use Cases & Idioms:

Basic Iteration

```
names = ["Alice", "Bob", "Charlie"]
for name in names:
    print(name)
```

Iterating with Index (use enumerate)

```
for i, name in enumerate(names):
    print(f"{i}: {name}")
```

Iterating Multiple Sequences (use zip)

```
ages = [25, 30, 22]
for name, age in zip(names, ages):
   print(f"{name} is {age} years old")
```

Iterating Over Dictionaries

```
person = {"name": "Alice", "age": 25}
for key, value in person.items():
    print(key, value)
```

Nested Loops

```
for i in range(3):
    for j in range(2):
        print(i, j)
```

What Are Comprehensions?

Comprehensions are **concise expressions** for generating new iterables (like lists, sets, or dicts) using the syntax of a **for** loop inside a single line.

Types and Idiomatic Patterns

List Comprehension (most common)

```
squares = [x**2 for x in range(5)]
# Output: [0, 1, 4, 9, 16]
```

Conditional List Comprehension

```
evens = [x for x in range(10) if x % 2 == 0]
# Output: [0, 2, 4, 6, 8]
```

Set Comprehension

```
unique_lengths = {len(word) for word in ["a", "ab", "abc", "ab"]}
# Output: {1, 2, 3}
```

Dict Comprehension

```
words = ["apple", "banana", "cherry"]
lengths = {word: len(word) for word in words}
# Output: {'apple': 5, 'banana': 6, 'cherry': 6}
```

Nested Comprehensions (2D lists)

```
matrix = [[i * j for j in range(3)] for i in range(3)]
# Output: [[0, 0, 0], [0, 1, 2], [0, 2, 4]]
```

1.2 enumerate()

enumerate() is a built-in Python function that adds a **counter** to any iterable (like a list, tuple, or string), returning an **enumerate object**, which yields (index, value) pairs on iteration.

Type:

```
type(enumerate(['a', 'b', 'c'])) # <class 'enumerate'>
```

Like zip, it's a lazy iterable, meaning it produces values on demand and can be turned into a list or looped over.

Basic Example:

```
fruits = ['apple', 'banana', 'cherry']

for i, fruit in enumerate(fruits):
    print(i, fruit)
```

Output:

- 0 apple
- 1 banana
- 2 cherry

Common & Idiomatic Use Cases for enumerate()

1. Avoid Manual Indexing with range(len(...))

Instead of:

```
for i in range(len(fruits)):
    print(i, fruits[i])
```

Do this:

```
for i, fruit in enumerate(fruits):
    print(i, fruit)
```

Cleaner, more Pythonic.

2. Start Index at a Custom Value

```
for i, fruit in enumerate(fruits, start=1):
    print(f"{i}. {fruit}")
```

Output:

- 1. apple
- 2. banana
- 3. cherry

Great for user-friendly numbering (e.g. starting from 1 instead of 0).

3. Tracking Position in File or Data

```
with open("file.txt") as f:
   for lineno, line in enumerate(f, start=1):
        print(f"Line {lineno}: {line.strip()}")
```

Common in data processing and log parsing.

4. Enumerate with Conditional Logic

```
colors = ['red', 'blue', 'green', 'blue']
for i, color in enumerate(colors):
   if color == 'blue':
        print(f"'blue' found at index {i}")
```

Helps track positions that meet a condition.

5. Use with zip() for Triple Iteration

```
a = ['x', 'y', 'z']
b = [10, 20, 30]
for i, (x, y) in enumerate(zip(a, b)):
    print(f"{i}: {x}-{y}")
```

Combines enumeration with parallel iteration.

Summary:

Function	What it does	Output form
zip(a, b) enumerate(x) enumerate(x, start=n)	Combines sequences Adds index to an iterable Like above, but starts at n	(a[i], b[i]) (i, x[i]) (n, x[0]), (n+1, x[1]),

1.3 zip()

The built-in zip() function takes two or more iterables (like lists, tuples, or strings) and aggregates elements from each iterable by position (i.e. index). It returns an iterator of tuples, where the *i-th* tuple contains the *i-th* element from each of the input iterables.

```
zip(iterable1, iterable2, ...)
```

It stops when the shortest input iterable is exhausted.

You can think of zip() as:

```
zip(A, B, C) [(A[0], B[0], C[0]), (A[1], B[1], C[1]), ...]
```

No matter the input shape, zip() always does the same thing: Group elements by position across multiple iterables.

zip() returns a zip object, which is an iterator. You need to explicitly convert it into a list or tuple to see the full output:

```
list(zip(...)) # common
tuple(zip(...)) # possible
```

Common Use Cases and Idiomatic Patterns

1. Combining Lists (Zipping)

```
letters = ['a', 'b', 'c']
numbers = [1, 2, 3]

zipped = list(zip(letters, numbers))
print(zipped)
# Output: [('a', 1), ('b', 2), ('c', 3)]
```

Useful for:

- Pairing related data.
- Iterating in parallel over multiple lists.
- 2. Looping Over Zipped Values

```
names = ['Alice', 'Bob']
scores = [85, 92]

for name, score in zip(names, scores):
    print(f"{name} scored {score}")

# Output:
# Alice scored 85
# Bob scored 92
```

This is an idiomatic way to loop over multiple sequences in sync.

3. Unzipping (Inverse of zip) with * Unpacking

```
pairs = [('a', 1), ('b', 2), ('c', 3)]

letters, numbers = zip(*pairs)

print(letters) # Output: ('a', 'b', 'c')
print(numbers) # Output: (1, 2, 3)
```

Explanation:

- *pairs unpacks the list into separate arguments: zip(('a', 1), ('b', 2), ...)
- zip() groups by position: first elements, second elements, etc.

This is effectively transposing a 2D structure.

4. Creating Dictionaries

```
keys = ['name', 'age']
values = ['Alice', 30]

dictionary = dict(zip(keys, values))
print(dictionary)
# Output: {'name': 'Alice', 'age': 30}
```

A common idiom when you have two separate sequences representing keys and values.

5. Zipping with Unequal Lengths

```
a = [1, 2, 3]
b = ['x', 'y']

print(list(zip(a, b)))
# Output: [(1, 'x'), (2, 'y')]
```

Only pairs up to the shortest iterable. (See itertools.zip_longest() if you want padding.)

Unified Understanding: Zip vs. "Unzip"

Why zip() seems to do two very different things:

- 1. **Zipping:** Combine separate lists into paired tuples.
- 2. Unzipping: Split paired tuples into separate lists.

clarification:

```
# Zipping
list1 = ['a', 'b', 'c']
list2 = [1, 2, 3]
zipped = list(zip(list1, list2))
# Output: [('a', 1), ('b', 2), ('c', 3)]

# Unzipping
pairs = [('a', 1), ('b', 2), ('c', 3)]
unzipped = list(zip(*pairs))
# Output: [('a', 'b', 'c'), (1, 2, 3)]
```

Even though the **intent** differs, the **operation** is identical:

Group elements by position across the given iterables.

- In *zipping*, the elements come from separate sequences.
- In *unzipping*, the unpacking * turns a list of tuples into separate positional iterables, and zip groups those.

So:

- zip(A, B) zips rows.
- zip(*rows) transposes the matrix an "unzip" operation in spirit, but still just zip applied to unpacked input.

Bonus: Visual Matrix Analogy

Consider this "table" of rows (a list of tuples):

If you do:

```
zip(*rows)
```

You're transposing it into:

```
[('a', 'b', 'c'), (1, 2, 3)]
```

This is **column-wise grouping**.

Summary

- zip() is a fundamental tool for working with multiple iterables in parallel.
- Always groups by index.
- Use it to zip, loop, unzip, transpose, and build dictionaries.
- When used with *, you can reverse its effect by unpacking rows into inputs.

It's simple, powerful, and highly idiomatic in Python.

1.4 map() and filter()

What is map()?

map(func, iterable) applies the function func to each item in the iterable, returning a map object (an iterator).

Basic Use:

```
nums = [1, 2, 3, 4]
squared = list(map(lambda x: x**2, nums))
# Output: [1, 4, 9, 16]
```

What is filter()?

filter(func, iterable) selects items from the iterable for which func(item) is true, returning a filter object (an iterator).

```
nums = [1, 2, 3, 4]
evens = list(filter(lambda x: x % 2 == 0, nums))
# Output: [2, 4]
```

Idiomatic Use Cases:

Apply Transformation to All Elements

```
uppercased = list(map(str.upper, ["a", "b", "c"]))
# Output: ['A', 'B', 'C']
```

Filter with Condition

```
short_words = list(filter(lambda w: len(w) < 4, ["a", "apple", "bat", "cat"]))
# Output: ['a', 'bat', 'cat']</pre>
```

Combine with zip

```
a = [1, 2, 3]
b = [4, 5, 6]
summed = list(map(lambda x: x[0] + x[1], zip(a, b)))
# Output: [5, 7, 9]
```

Equivalent List Comprehensions (more Pythonic)

```
# Instead of map
[x**2 for x in nums]

# Instead of filter
[x for x in nums if x % 2 == 0]
```

Note: While map and filter are perfectly valid, list comprehensions are often preferred in Python due to better readability.

Final Recap Table

Concept	Description	Common Use Cases
for loop Comprehension map(func, it) filter(func, it)	Iterates over any iterable Concise iterable construction Apply func to all items Keep items where func(item) is True	Basic iteration, nested loops List/set/dict creation, filtering Transform elements Selective filtering

1.5 Extended Unpacking in Python with * and **

Python allows powerful unpacking syntax to **distribute or collect values** in assignments and function calls.

Sequence Unpacking (with *)

Standard unpacking:

```
a, b, c = [1, 2, 3]
print(a, b, c)
```

Output:

1 2 3

Extended unpacking:

```
a, *b = [1, 2, 3, 4]
print(a, b)
```

Output:

1 [2, 3, 4]

```
*a, b = [1, 2, 3, 4]
print(a, b)
```

Output:

```
[1, 2, 3] 4
```

```
a, *b, c = [1, 2, 3, 4, 5]
print(a, b, c)
```

Output:

```
1 [2, 3, 4] 5
```

Unpacking in Function Calls (with * and **)

Positional unpacking with *:

```
def add(a, b, c):
    return a + b + c

nums = [1, 2, 3]
print(add(*nums))
```

Output:

6

Keyword unpacking with **:

```
def greet(name, greeting):
    return f"{greeting}, {name}!"

data = {'name': 'Alice', 'greeting': 'Hello'}
print(greet(**data))
```

Output:

Hello, Alice!

Function Definitions with *args and **kwargs

```
def show_args(*args):
    print(args)

show_args(1, 2, 3)

Output:

(1, 2, 3)

def show_kwargs(**kwargs):
    print(kwargs)

show_kwargs(a=1, b=2)

Output:
{'a': 1, 'b': 2}
```

Mixing Both *args and **kwargs

```
def demo(a, b, *args, **kwargs):
    print(f"a = {a}")
    print(f"b = {b}")
    print(f"args = {args}")
    print(f"kwargs = {kwargs}")

pos = [1, 2, 3, 4]
kw = {'x': 10, 'y': 20}
demo(*pos, **kw)
```

Output:

```
a = 1
b = 2
args = (3, 4)
kwargs = {'x': 10, 'y': 20}
```

Comparing Similar Function Calls

```
def mixed(a, *rest):
    print(f"a = {a}")
    print(f"rest = {rest}")

l = [1, 2, 3]
a = 0
mixed(a, *l)
```

Output:

```
a = 0
rest = (1, 2, 3)
```

```
mixed(a, 1)
```

Output:

```
a = 0
rest = ([1, 2, 3],)
```

Summary Table

Context	Syntax	What it Does	Example
Assignment	*var	collects excess items into a list	a, *b = $[1,2,3] \rightarrow$ b= $[2,3]$
Function call	*seq	unpacks iterable into positional arguments	$f(*[1,2]) \rightarrow f(1,2)$
Function call	**dict	unpacks dictionary into keyword arguments	$f(**{'x':1}) \rightarrow f(x=1)$
Function definition	*args	collects extra positional arguments as tuple	def f(*args)
Function definition	**kwargs	collects extra keyword arguments as dictionary	<pre>def f(**kwargs)</pre>

Part II

Exam

2 Ex 2024

2.1 Problem 1: Pseudocode

Let A be the adjacency matrix representation of a directed graph G with n nodes. A node u is called *balanced* if the in-degree and out-degree of the nodes are equal. Let N_A be the amount of balanced nodes in the graph G.

- a) Describe an algorithm CountBalanced in pseudocode, that computes N_A in optimal asymptotic time.
- b) Analyse the run-time of CountBalanced and show that it is optimal.

2.2 Problem 2: Heaps

In this problem we look at binary Minheaps and carry out depth first search starting form the root, considering two variants:

- incrDS: We visit the children of a node in increasing order, sorted w.r.t. the keys
- decrDS: We visit the children of a node in decreasing oder, sorted w.r.t. the keys
- a) Consider the following Min-Heap represented as an array H[1..10]:

Figure 2.1: heap

Provide the keys in the order that they are visited by decrDS:

Key-order: ...

b) In the above heap incrDS traverses the keys in a globally increasing order, i.e. it effectively 'sorts' the elements. Therefore we try to construct the following "sorting" algorithm:

Let A[1..n] be an array with n keys. (You may assume that the keys are distinct).

- 1. Transform A into a Min-Heap array representation
- 2. Traverse A with incrDS and output the elements in the order that they are visited

Prove that this algorithm can not always sort correctly. Provide a short analysis on the run-time of this algorithm.

2.3 Problem 3: Hashing

a) Consider the following hash table of size 13:

Figure 2.2: hash 1

You can assume that each empty cells corresponds to \perp .

We consider first open hashing with hash function f, defined as:

$$f(k) := 3k + 2 \mod 13$$

and we use linear search. Insert the elements 1, 2, 3, 4, 5 in this order in the provided table.

b) Consider another hash table of size 10:

Figure 2.3: hash 2

We again use open hashing this time with the hashing function g defined as:

$$g(k) := k \mod 10$$

Delete the element 22 and provide the state of the hash table after this operation:

2.4 Problem 4: *O*-Notation and Code Analysis

- a) for each of the following cases provide a function $f: \mathbb{N} \to \mathbb{R}$ that satisfies the given asymptotic constraints:
 - $f \in \omega\left(\frac{\log x}{\log\log x}\right)$ and $f \in o(\log x)$
 - $f \in \omega(\sqrt[3]{m})$ and $f \in o\left(\frac{m}{\log m}\right)$ $f \in \omega(\log t!)$ and $f \in o(t^2)$
- b) Solve the following recurive equations. For all the equations it holds that T(n) = 1and $n \leq 1$. Assume for simplicity that for all equations n is chosen s.t. divisions result without a rest.
 - T(n) = T(n-1) + 2n. \Rightarrow $T(n) \in \Theta($ $\begin{array}{lll} \bullet & T(n) = n \cdot T(n-1). \ \Rightarrow & T(n) \in \Theta\left(\right) \\ \bullet & T(n) = 16 \cdot T(\frac{n}{2}). \ \Rightarrow & T(n) \in \Theta\left(\right) \\ \bullet & T(n) = 2 \cdot T(\frac{n}{4}) + n. \ \Rightarrow & T(n) \in \Theta\left(\right) \end{array}$
- c) Provide the run-time complexit of the following pseudocode algorithms in Θ notation.
 - :

```
read(k)
for i = 1 to k:
 j = k^2
 while j > 1:
    j = j / 3
```

```
read(t)
k = 1
i = 1
while k \le t :
 i = i + 1
 k = k + i
```

• :

```
def fun(n) :
  read(n)
  if n < 10^6 : return
  f(n / 2)
  i = 0
  while i < n : i = i + 1
  f(n / 2)</pre>
```

2.5 Problem 5: Short Proofs

Show or refute following propositions:

- a) Let T = (V, E) be an arbitrary (a, b)-Tree. Then T is also a (a, b + 1)-Tree
- b) For any weighted, undirected, connected graph G = (V, E) any shortest-path tree is a minimal spanning tree.
- c) For any n > 1000 there is a binary search tree that stores $n \text{ keys } \{1, \dots, n\}$

2.6 Problem 6: Induction

For a set X, $\mathcal{P}(A)$ is the set of all subsets of X, called the power set.

Shows via mathematical induction that:

for any set X s.t.
$$|X| = n$$
 it holds that $|\mathcal{P}(X)| = 2^n$

2.7 Problem 7: Graphs

a) Consider the following graph G:

Figure 2.4: graph-1

Carry out the Dijkstra algorithm to find the shortest paths starting from the start node S.

Provide each (Predecessor, Distance)-combination that is assigned to the node T by the algorithm:

b) provide the adjacency field representation of the following graph (CSR). Use the 1 as the smallest index and sort the neighbours in increasing order w.r.t. the index.

Figure 2.5: graph-2

c) Describe in pseudocode how the k-th neighbor of the i-th node is represented in the adjacency-field representation, using 1 as the smallest index. Name the invariants in the code that guarantee that required entry exists in the data structure. Provide the asymptotic analysis of the Θ run-time of the algorithm.