VISÃO GERAL

Robusto DBMS Utilizado Mundialmente

Firebase

theguardian

craigslist

PRINCIPAIS CARACTERÍSTICAS DOS SGBDs NoSQL

SURGIRAM COMO UMA ALTERNATIVA AOS SGBDs RELACIONAIS

Principais Características dos Bancos NoSQL

- Habilidade de escalar horizontalmente operações de leitura e escrita em clusters distribuídos
- Habilidade de replicar e distribuir dados em um grande número de servidores;
- Suportar uma linguagem simples de consulta ou mesmo uma API para manipulação dos dados (ao invés de suportar a linguagem SQL);

Principais Características dos Bancos NoSQL

- O Teorema CAP é utilizado para definir os compromissos/tradeoffs na arquitetura do serviço de armazenamento de dados;
- Não aderem a um esquema rígido
- Não aderem a operações de junção

Principais Características dos Bancos NoSQL

- Uso de mecanismos de controle de concorrência mais permissivos do que os adotados pelo modelo ACID, que é implementado pela maioria dos SGBDs relacionais
- Utiliza abordagens eficientes para indexar e usar dados e também utiliza tecnologias main memory para aumentar o desempenho
- Developer Driven

SGBDs NoSQL são uma boa alternativa em relação à escalabilidade?

Bancos de Dados Relacionais são Escaláveis?

PRINCIPAIS CATEGORIAS NoSQL

Categorias de DBMS - NoSQL

Chave/Valor

DBMSs orientados a Grafos

DBMSs orientados a Documentos

Armazenamento em Coluna (Column Store)

Armazenamento em Linha (Row Store)

PRINCIPAIS DIFERENÇAS **ENTRE O MODELO RELACIONAL E O MODELO** ORIENTADO A DOCUMENTOS

Mudança de Paradigma: SGBD Relacional (Convencional) e Orientados a Documentos (Não Convencional)

Banco Relacional		MongoDB
Banco de Dados		Banco de Dados
Tabela, Visão		Coleção
Linha	\longrightarrow	Documento (JSON, BSON)
Coluna (Esquema Rígido)		Campo (Esquema Flexível)
Índice		Índice
Junção	\Longrightarrow	Documento Embutido
Chave Estrangeira		Referência
Partição		Sharding

TEOREMA CAP

Propriedades CAP

- Muitos hosts (nós)
- Os nós possuem réplicas das partições dos dados
- Consistência
 - Todas as réplicas contêm a mesma versão do dado
- Disponibilidade
 - O SGBD deve continuar operacional após a ocorrência de falha em nós problemáticos
- ► Tolerância ao Particionamento
 - Múltiplos Pontos de Entrada
 - SGBD continua operacional após uma falha que ocasiona o particionamento do sistema (ex.: partcionamento da rede)

Teorema CAP:

Não é possível satisfazer todas as três restrições ao mesmo tempo. **Propriedades CAP**

- Muitos hosts (nós)
- Os nós possuem réplicas das partições dos dados
- Consistência
 - Todas as réplicas contêm a mesma versão do dado
- Disponibilidade
 - O SGBD deve continuar operacional após a ocorrência de falha em nós problemáticos
- ► Tolerância ao Particionamento
 - Múltiplos Pontos de Entrada
 - SGBD continua operacional após uma falha que ocasiona o particionamento do sistema (ex.: partcionamento da rede)

Teorema CAP:

Não é possível satisfazer todas as três restrições ao mesmo tempo.

ACID x BASE

PRINCIPAIS DIFERENÇAS

ACID

X

BASE

- Atomicidade
- Consistencia
- Isolamento
- Durabilidade

- BasicallyAvailable (CP)
- Soft-state
- Eventually

consistent (AP)

PRINCIPAIS DIFERENÇAS

BASE:

Basically Available: algumas partes do sistema continuam disponíveis após uma falha.

Soft-state: a informação vai expirar a menos que a mesma seja atualizada. O sistema vai mudar o estado sem a intervenção do usuário devido a consistência eventual.

Eventually consistency: propagação assíncrona dentro de uma janela de consistência (consistancy window).

OBRIGADO!