Chapter 1

Elementary Spectral Theory

Problem 1. Let $(A_{\lambda})_{{\lambda}\in\Lambda}$ denote a family of Banach algebras. The *direct sum* $A=\oplus_{\lambda}A_{\lambda}$ is the set of all $(a_{\lambda})\in\prod_{\lambda}A_{\lambda}$ such that $\|(a_{\lambda})\|=\sup_{\lambda}\|a_{\lambda}\|$ is finite. Show that this is a Banach algebra under the pointwise-defined operations

$$(a_{\lambda}) + (b_{\lambda}) = (a_{\lambda} + b_{\lambda})$$
$$\mu(a_{\lambda}) = (\mu a_{\lambda})$$
$$(a_{\lambda})(b_{\lambda}) = (a_{\lambda}b_{\lambda}),$$

and norm given by $(a_{\lambda}) \mapsto ||(a_{\lambda})||$. Show that A is unital or abelian if this is the case for all of the algebras A_{λ} .

The restricted sum $B = \bigoplus_{\lambda}^{c_0} A_{\lambda}$ is the set of all elements $(a_{\lambda}) \in A$ such that for each $\varepsilon > 0$ there exists a finite subset F of Λ for which $||a_{\lambda}|| < \varepsilon$ if $\lambda \in \Lambda \setminus F$. Show that B is a closed ideal in A.

Solution. It is easily seen that A is a \mathbb{C} -algebra with the given norm being submultiplicative. To prove that it is complete, suppose that $\{a^m=(a^m_\lambda)\}$ is a Cauchy sequence. Then for any fixed λ , the pointwise sequence $\{a^m_\lambda\}$ is Cauchy in A_λ , and thus converges to some c_λ . Denote $c=(c_\lambda)$ and it is easy to see that $\sup_{\lambda}\|c_\lambda\|$ is finite, so $c\in A$. For any $\varepsilon>0$, there exists some N such that m,n>N implies $\|a^n-a^m\|\leqslant \varepsilon$, i.e. $\|a^n_\lambda-a^m_\lambda\|\leqslant \varepsilon$ for any $\lambda\in\Lambda$. Let $m\to\infty$, we get $\|a^n_\lambda-c_\lambda\|\leqslant \varepsilon$ for any $\lambda\in\Lambda$. This is exactly $\|a^n-c\|\leqslant \varepsilon$ when n>N,

so c is the limit of $\{a^m\}$ in A.

When all A_{λ} are unital with the identity e_{λ} , then $||e_{\lambda}|| = 1$ and $e = (e_{\lambda}) \in A$ must be the identity. When all A_{λ} are abelian, it is obvious that A is abelian.

Suppose $b=(b_{\lambda})\in B$ and $a=(a_{\lambda})\in A$ with $\|a\|\leqslant M<\infty$, then for each $\varepsilon>0$, there exists a finite subset F of Λ such that $\|b_{\lambda}\|<\varepsilon/M$ if $\lambda\in\Lambda\setminus F$. This implies that $\|a_{\lambda}b_{\lambda}\|<\varepsilon$ when $\lambda\in\Lambda\setminus F$, so $ab\in B$. Similarly, $ba\in B$. For a sequence $\{b^n=(b^n_{\lambda})\}\subseteq B$ converging to $a=(a_{\lambda})\in A$. For any $\varepsilon>0$, there exists by definition some n and a finite subset F of Λ such that $\|b^n-a\|<\varepsilon/3$ and $\|b^n_{\lambda}\|<\varepsilon/3$ when $\lambda\in\Lambda\setminus F$. So $\|a_{\lambda}\|<\varepsilon$ when $\lambda\in\Lambda\setminus F$. This means $a\in B$, i.e. B is closed in A.

Problem 2. Let A be a Banach algebra and Ω a non-empty set. Denote by $l^{\infty}(\Omega, A)$ the set of all bounded maps f from Ω to A. Show that $l^{\infty}(\Omega, A)$ is a Banach algebra with the pointwise-defined operations and the sup-norm $||f|| = \sup\{||f(\omega)|| : \omega \in \Omega\}\}$. If Ω is a compact Hausdorff space, show that the set $C(\Omega, A)$ of all continuous functions from Ω to A is a closed subalgebra of $l^{\infty}(\Omega, A)$.

Solution. For the first statement, it is just the case in Problem 1 where A_{λ} are all equal to A and the index set $\Lambda = \Omega$.

If Ω is compact Hausdorff, first see why $C(\Omega,A)$ is contained in $l^{\infty}(\Omega,A)$. It follows from considering the composition of two continuous maps $\Omega \xrightarrow{f} A \stackrel{\|\cdot\|}{\to} \mathbb{R}$. For algebraic operations, consider $\Omega \xrightarrow{f \times g} A \times A \xrightarrow{+,\cdot} A$. Every map is continuous (the first one follows from the universal property of product topology), so $C(\Omega,A)$ is closed under pointwise addition and multiplication. It is certainly closed under scalar multiplication.

The last thing is its completeness. Suppose $\{f_n\} \subseteq C(\Omega, A)$ converges to $f \in l^{\infty}(\Omega, A)$. For $\omega \in \Omega$ and $\varepsilon > 0$, there is some n and an open neighbourhood U of ω such that $||f_n - f|| < \varepsilon/3$ and $||f_n(\omega) - f_n(\omega')|| < \varepsilon/3$ when $\omega' \in U$. Then $||f(\omega') - f(\omega)|| < \varepsilon$ when $\omega' \in U$. So f is continuous.

(Actually, the proof is also similar to the last part of Problem 1, where we consider the continuity of the point at infinity with Λ equipped with discrete topology being a locally compact Hausdorff space.)

Problem 3. Give an example of a unital non-abelian Banach algebra A in which 0 and A are the only close ideals.

Solution. The matrix algebra $A = M_n(\mathbb{C})$ is an example when n > 1. The norm is given by the operator norm on the Hilbert space \mathbb{C}^n .

Suppose an ideal $I \leq A$ contains a non-zero element M, then there exist two matrices P,Q such that $PMQ = E_{1,1}$ where $E_{1,1}$ is the elementary matrix, i.e. its only non-zero entry lies at (1,1) and equals 1.

It is easy to see that $E_{1,1}$ generates the whole A as an ideal, so I = A.

Problem 4. Give an example of a non-modular maximal ideal in an abelian Banach algebra. (If A is the disc algebra, let $A_0 = \{f \in A : f(0) = 0\}$. Then A_0 is a closed subalgebra of A and admits an ideal of the type required.)

Solution. An ideal I of A is modular if there exist an element $u \in A$ such that a - au, $a - ua \in I$ for all $a \in A$.

Let
$$A_0 = \{ f \in C(\overline{\mathbb{D}}) : f|_{\mathbb{D}} \in \mathcal{O}(\mathbb{D}), f(0) = 0 \}$$
 and $J = \{ f \in A_0 : f'(0) = 0 \}.$

Consider the evaluation of derivative $A_0 \to \mathbb{C}$, $f \mapsto f'(0)$. This is a surjective linear map with kernel J. In other words, J is a linear subspace of A_0 with codimension 1, so J is maximal.

If J is modular, suppose $u \in A_0$ satisfy the definition. For any $a \in A_0$, we can calculate the derivative of au at 0: (au)'(0) = a'(0)u(0) + a(0)u'(0). By construction, a(0) = u(0) = 0, so (au)'(0) = 0, i.e. $au \in J$. By definition, $a - au \in J$, so $a \in J$ for all $a \in A_0$, which is absurd.

Problem 5. Let A be a unital abelian Banach algebra.

- (a) Show that $\sigma(a+b) \subseteq \sigma(a) + \sigma(b)$ and $\sigma(ab) \subseteq \sigma(a)\sigma(b)$ for all $a, b \in A$. Show that this is not true for *all* Banach algebras.
- (b) Show that if A contains an idempotent e (that is, $e = e^2$) other than 0 and 1, then $\Omega(A)$ is disconnected.
- (c) Let a_1, \ldots, a_n generate A as a Banach algebra. Show that $\Omega(A)$ is homeomorphic to a compact subset of \mathbb{C}^n . More precisely, set $\sigma(a_1, \ldots, a_n) = \{(\tau(a_1), \ldots, \tau(a_n)) : \tau \in \Omega(A)\}$. Show that the canonical map from $\Omega(A)$ to $\sigma(a_1, \ldots, a_n)$ is a homeomorphism.

Solution. (a) Since A is unital abelian, we can use characters to represent the spectrum and the statement is certainly true.

In detail,

$$\begin{split} \sigma(a+b) &= \{\tau(a+b) : \tau \in \Omega(A)\} \\ &= \{\tau(a) + \tau(b) : \tau \in \Omega(A)\} \\ &\subseteq \{\tau(a) : \tau \in \Omega(A)\} + \{\tau(b) : \tau \in \Omega(A)\} \\ &= \sigma(a) + \sigma(b). \end{split}$$

Similar for $\sigma(ab) \subseteq \sigma(a)\sigma(b)$.

In fact, the statement only requires ab=ba, since we can consider the subalgebra generated by $1, a, b, (\lambda-a)^{-1}, (\mu-b)^{-1}$ when taking inverse makes sense.

In general, for example $A = M_2(\mathbb{C})$, take $a = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $b = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. The spectrum is exactly the set of eigenvalues, so $\sigma(a+b) = \{1, -1\}$, $\sigma(a) = \sigma(b) = \{0\}$.

(b) Denote $A_1 = eA$, $A_2 = (1 - e)A$, then A_1 , A_2 are closed ideals. It can be seen from elementary linear algebra: consider two linear maps from A to A, $T_1: a \mapsto ea$ and $T_2: a \mapsto (1 - e)a$. Then $T_1^2 = T_1, T_2^2 = T_2, T_1 + T_2 = \mathrm{id}$. So $A_1 = \mathrm{ran}(T_1) = \ker(T_2), A_2 = \mathrm{ran}(T_2) = \ker(T_1)$ are closed. Since e is non-trivial, A_1, A_2 are non-trivial.

Note that A_1, A_2 are unital abelian with identities e and 1 - e respectively, so we can form $\Omega_1 := \Omega(A_1), \Omega_2 := \Omega(A_2)$. For any character τ_1 on A_1 , we can define τ to be 0 on A_2 , and linearly extend it to A, still denoted by τ_1 . It is easy to check that the extension is a character on A. We can think of it as an

inclusion map $\Omega_1 \subseteq \Omega(A)$, and the inclusion is obviously continuous. Similarly Ω_2 can be regarded as a subset of $\Omega(A)$.

Now observe that $\Omega(A) = \Omega_1 \cup \Omega_2$ is a decomposition into the union of two disjoint closed subsets. If $\tau \in \Omega_1 \cap \Omega_2$, then τ is zero on the whole A, which is not allowed as a character. Each $\Omega_i, i = 1, 2$ is the continuous image of a compact space, so each is a closed subset. And every $\tau \in \Omega(A)$ must take values 0 or 1 at e, 1 - e, 1, so the only possibilities are that $\tau(e) = 0, \tau(1 - e) = 1$ and $\tau(1 - e) = 0, \tau(1 - e) = 1$. These two cases are symmetric by interchanging e with 1 - e. WLOG, $\tau(e) = 0, \tau(1 - e) = 1$, so τ is zero on A_1 , i.e. $\tau \in \Omega_1$. The other case implies $\tau \in \Omega_2$.

This disjoint union decomposition shows that $\Omega(A)$ is disconnected.

(c) The given map $\Omega(A) \to \mathbb{C}^n$ is certainly continuous and injective. So it is a homeomorphism onto its image.

In detail, continuity follows from the definition of weak*-topology, and injectivity can be argued as follows: given $\tau_1, \tau_2 \in \Omega(A)$, the set $\{a \in A : \tau_1(a) = \tau_2(a)\}$ must form a Banach subalgebra which contains a_1, \ldots, a_n . But these elements generate the whole A, so $\tau_1 = \tau_2$.

Problem 6. Let A be a unital Banach algebra.

- (a) If a is invertible in A, show that $\sigma(a^{-1}) = {\lambda^{-1} : \lambda \in \sigma(a)}.$
- (b) For any element $a \in A$, show that $r(a^n) = (r(a))^n$.
- (c) If A is abelian, show that the Gelfand representation is isometric if and only if $||a^2|| = ||a||^2$ for all $a \in A$.

Solution. (a) If $\lambda \notin \sigma(a)$ and $\lambda \neq 0$, then $\lambda(\lambda^{-1} - a^{-1})a = a - \lambda$ is invertible, so $\lambda^{-1} \notin \sigma(a^{-1})$. By definition, $0 \notin \sigma(a^{-1})$, so $\sigma(a^{-1}) \subseteq \sigma(a)^{-1}$.

Interchange a and a^{-1} , and we get $\sigma(a) \subseteq \sigma(a^{-1})^{-1}$. Combine these two inclusions together, and we reach the conclusion.

(b) We invoke the formula of spectral radius $r(a) = \lim_{n \to \infty} \|a^n\|^{\frac{1}{n}}$. Therefore,

$$r(a^n) = \lim_{m \to \infty} \|a^{mn}\|^{\frac{1}{m}} = (\lim_{m \to \infty} \|a^{mn}\|^{\frac{1}{mn}})^n = (r(a))^n.$$

(c) By definition, the Gelfand representation is isometric if and only if $||a|| = r(a), \forall a \in A$.

If $||a^2|| = ||a||^2, \forall a \in A$, then $||a^{2^n}|| = ||a||^{2^n}$ and hence

$$r(a) = \lim_{n \to \infty} ||a^{2^n}||^{1/2^n} = ||a||.$$

Conversely, $||a^2|| = r(a^2) = (r(a))^2 = ||a||^2, \forall a \in A.$

Problem 7. Let A be a Banach algebra. Show that the spectral radius function $r:A\to\mathbb{R}$ is upper semi-continuous.

Solution. Since $r(a) = \lim_{n \to \infty} ||a^n||^{1/n} = \inf_n ||a^n||^{1/n}$ is the infimum of a family of continuous functions, it is upper semi-continuous.

Another proof is to use the definition. If $\lambda \in \mathbb{C}$, $|\lambda| > r(a)$, then $\lambda - a$ is invertible. Since the set of all invertible elements is open in A, so for any sequence $\{a_n\}$ converging to a, $\lambda - a_n$ is invertible for sufficiently large n. Therefore, $\lambda \notin \sigma(a_n)$ for n large enough, and $r(a_n) \leqslant r(a)$ for large n. This is the definition of upper semi-continuous function.

Problem 8. Show that if B is a maximal abelian subalgebra of a unital Banach algebra A, then B is closed and contains the unit. Show that $\sigma_A(b) = \sigma_B(b)$ for all $b \in B$.

Solution. It is easy to prove that \overline{B} is an abelian subalgebra which contains B, and the unitalization B^+ is too. Since B is maximal, it must be true that $B = \overline{B}$ and $B = B^+$, i.e. B is closed and contains the unit.

For $b \in B$, it is obvious by definition that $\sigma_A(b) \subseteq \sigma_B(b)$. Conversely, if $\lambda \notin \sigma_A(b)$, there exists in A an inverse of $\lambda - b$, denoted by a. Then a commutes with B.

To see this, we start from the assumption that B is abelian. For any $c \in B$, we know bc = cb and $(\lambda - b)c = c(\lambda - b)$. Then multiply this by a both on the left and the right, we get ca = ac. Now that a commutes with B and B is maximal abelian, we must have $a \in B$, i.e. the inverse of $\lambda - b$ lies in B. This proves the required statement.

Problem 9. Let (Ω, μ) be a measure space. Show that the linear span of the idempotents is dense in $L^{\infty}(\Omega, \mu)$. Show that the spectrum of the Banach algebra $L^{\infty}(\Omega, \mu)$ is totally disconnected, by showing that if A is and arbitrary abelian Banach algebra in which the idempotents have dense linear span, its spectrum $\Omega(A)$ is totally disconnected.

Solution. The first statement is routine in real analysis. An idempotent in $L^{\infty}(\Omega, \mu)$ is exactly a characteristic function of a measurable set, so for a bounded measurable function on Ω , we divide its range into finitely many parts such that the diameter of each part is sufficiently small. Then take a linear combination of characteristic functions like $\{\omega \in \Omega : f(\omega) \in D\}$ where D is a "small part".

A topological space is called disconnected if the only connected subsets are singletons. If a subset $X \subseteq \Omega(A)$ contains two different elements $\varphi \neq \psi$, then there exists an idempotent e such that $\varphi(e) \neq \psi(e)$. Obviously, such an idempotent cannot be trivial. WLOG, $\varphi(e) = 0, \psi(e) = 1$. In Problem 5(b), we have proved that φ is zero on eA and ψ is zero on (1-e)A. Moreover, ψ and φ are separated by two disjoint closed subsets $\Omega(eA)$ and $\Omega((1-e)A)$ whose union is $\Omega(A)$. Therefore, a subset containing more than one element cannot be connected.

Problem 10. Let $A = C^1[0,1]$, as in Example 1.2.6. Let $x : [0,1] \to \mathbb{C}$ be the inclusion. Show that x generates A as a Banach algebra. If $t \in [0,1]$, show that τ_t belongs to $\Omega(A)$, where τ_t is defined by $\tau_t(f) = f(t)$, and show that the map $[0,1] \to \Omega(A), t \mapsto \tau_t$ is a homeomorphism. Deduce that $r(f) = ||f||_{\infty}$ $(f \in A)$. Show that the Gelfand representation is not surjective for this example.

Solution. In Example 1.2.6, the norm is given by $||f|| = ||f||_{\infty} + ||f'||_{\infty}$. Obviously, A is a unital abelian Banach algebra.

By Weierstrass Theorem, for any complex-valued continuous function on [0,1], we can use polynomials with complex coefficients to approximate it uniformly. So if $f \in A$ and $\varepsilon > 0$, we find a polynomial p such that $||p - f'||_{\infty} < \varepsilon$. Then $q := f(0) + \int_0^t p(s) \mathrm{d}s$ is a polynomial, and $||q - f||_{\infty} \leqslant \varepsilon, q' = p$. This means that we can approximate f in the norm of A with polynomials, and x generates A as a Banach algebra.

 τ_t is surely a character, and $t \mapsto \tau_t$ is certainly a continuous injective map. If $\tau \in \Omega(A)$, then let $t = \tau(x)$. Since $\sigma(x) = \{\tau(x) : x \in \Omega(A)\}$, and we can directly calculate the spectrum of x- $\sigma(x) = [0,1]$ -we know that $t \in [0,1]$. Note that $\tau(x) = \tau_t(x)$ and x generates A as a Banach algebra, we have $\tau = \tau_t$. So the map $t \mapsto \tau_t$ is surjective. A continuous bijection between compact Hausdorff spaces must be a homeomorphism.

r(f) is the maximum modulus of the spectrum of f, and

$$\sigma(f) = \{\tau(f) : \tau \in \Omega(A)\} = \{\tau_t(f) : t \in [0, 1]\} = \{f(t) : t \in [0, 1]\}.$$

Therefore, $r(f) = ||f||_{\infty}$.

For the last statement, surely $C^1[0,1] \neq C[0,1]$.

Problem 11. Let A be a unital Banach algebra and set

$$\zeta(a) = \inf_{\|b\|=1} \|ab\| \qquad (a \in A).$$

We say that an element of a of A is a left topological zero divisor if there is a sequence of unit vectors (a_n) of A such that $\lim_{n\to\infty} aa_n = 0$. Equivalently, $\zeta(a) = 0$.

- (a) Show that left topological zero divisor are not invertible.
- (b) Show that $|\zeta(a)-\zeta(b)| \leq ||a-b||$ for all $a,b \in A$. Hence, ζ is a continuous function.
- (c) If a is a boundary point of the set $\operatorname{Inv}(A)$ in A, show that there is a sequence of invertible elements (v_n) converging to a such that $\lim_{n\to\infty} \|v_n^{-1}\|^{-1} = 0$. Using the continuity of ζ , deduce that $\zeta(a) = 0$. Thus, boundary points of $\operatorname{Inv}(A)$ are left topological zero divisors. In particular, if λ is a boundary point of the spectrum of an element a of A, then λa is a left topological zero divisor.
- (d) Let Ω be a compact Hausdorff space and let $A = C(\Omega)$. Show that in this case the topological zero divisors are precisely the non-invertible elements (if f is non-invertible, then 0 is a boundary point of the spectrum of $\overline{f}f$).
- (e) Give an example of a unital Banach algebra and a non-invertible element that is not a left topological zero divisor.

Solution. (a) If a is invertible, then given ||b|| = 1, we know that $||ab|| \cdot ||a^{-1}|| \ge ||b|| = 1$, so $||ab|| \ge ||a^{-1}||^{-1} > 0$ and $\zeta(a) \ge ||a^{-1}||^{-1}$.

(b) By definition,

$$\zeta(a) = \inf_{\|c\|=1} \|ac\|$$

$$\leq \inf_{\|c\|=1} (\|bc\| + \|(a-b)c\|)$$

$$\leq \inf_{\|c\|=1} (\|bc\| + \|a-b\|).$$

Taking infimum over c on the last term, we get $\zeta(a) \leq \zeta(b) + ||a-b||$. Interchange a and b, and we get the required inequality.

(c) If not, then there exists $\delta > 0, \varepsilon \in (0, \delta)$ such that whenever $||x - a|| < \varepsilon$ and x is invertible, $||x^{-1}||^{-1} > \delta$, i.e. $||x^{-1}|| < \delta^{-1}$. But it is well-known that if x is invertible and $||y|| < ||x^{-1}||^{-1}$, the element x - y is invertible. So if $||y|| < \delta$, then x - y is invertible. Now put y = x - a, then a is invertible. But Inv(A) is an open subset of A, which is a contradiction to a being a boundary point.

- (d) If f is not invertible, then f has a zero point ω . Using Urysohn's lemma, we can construct a continuous function g on Ω such that g is supported in an open neighbourhood U of ω and ||g|| = 1. Since $f(\omega) = 0$, we let U be such that whenever $\omega' \in U$, $|f(\omega')| < \varepsilon$ where $\varepsilon > 0$. Then $||fg|| \le \varepsilon$. It then follows that $\zeta(f) = 0$.
- (e) If some element is left invertible but not invertible, it will be an example. In B(H), there are plenty of examples.

Problem 12. A derivation on an algebra A is a linear map $d: A \to A$ such that d(ab) = adb + d(a)b. Show that the Leibnitz formula,

$$d^{n}(ab) = \sum_{r=0}^{n} \binom{n}{r} d^{r}(a) d^{n-r}(b) \qquad (n = 1, 2, ...),$$

holds.

Solution. We prove by induction. If the formula holds for n-1 where n>1, then

$$\begin{split} d^{n}(ab) &= dd^{n-1}(ab) \\ &= d\left(\sum_{r=0}^{n-1} \binom{n-1}{r} d^{r}(a) d^{n-1-r}(b)\right) \\ &= \sum_{r=0}^{n-1} \binom{n-1}{r} (d^{r+1}(a) d^{n-1-r}(b) + d^{r}(a) d^{n-r}(b)) \\ &= \sum_{r=0}^{n} \binom{n}{r} d^{r}(a) d^{n-r}(b). \end{split}$$

In the last equality, we use $\binom{n-1}{r-1} + \binom{n-1}{r} = \binom{n}{r}$.

Problem 13. Suppose that d is a bounded derivation on a unital Banach algebra A and $\lambda \in \mathbb{C} \setminus \{0\}$ such that $da = \lambda a$. Show that a is nilpotent, that is, that $a^n = 0$ for some positive integer n.

Solution. By induction, we find that $d(a^n) = n\lambda a^n$. Since $\lambda \neq 0$, when n is sufficiently large, $d - n\lambda$ is invertible. But $(d - n\lambda)(a^n) = 0$, so $a^n = 0$.

Problem 14. Suppose that d is a bounded derivation on a unital Banach algebra A, and that $a \in A$ and $d^2a = 0$. Show that da is quasinilpotent. For $a \in A$, the map $b \mapsto [a, b] = ab - ba$ is a bounded derivation on A. Therefore, the Kleinecke-Shirokov theorem holds: If [a, [a, b]] = 0, then [a, b] is nilpotent.

Solution. By Leibnitz formula, we have

$$d^{n}(a^{m}) = \sum_{r=0}^{n} \binom{n}{r} d^{r}(a) d^{n-r}(a^{m}-1).$$

Since $d^r(a) = 0$ when $r \ge 2$, the above equality is actually very simple:

$$d^{n}(a^{m}) = ad^{n}(a^{m-1}) + nd(a)d^{n-1}(a^{m-1}).$$

So by induction, whenever $n > m \ge 1$, we have $d^n(a^m) = 0$ and $d^n(a^n) = n!(da)^n$. Then the spectral radius of da is

$$\lim_n \|(da)^n\|^{1/n} = \lim_n \|d^n(a^n)/n!\|^{1/n} \leqslant \lim_n \|1/n!\|^{1/n} \|d\| \|a\| = 0,$$

i.e. da is quasinilpotent.

The Kleinecke-Shirikov theorem follows from the first statement where d is given by d(b) := ab - ba.

Problem 15. Let H be a Hilbert space with an orthonormal basis $(e_n)_{n=1}^{\infty}$, and let u be an operator in B(H) diagonal with respect to (e_n) with diagonal the sequence (λ_n) . Show that u is compact if and only if $\lim_{n\to\infty} \lambda_n = 0$.

Solution. It is easy to calculate that if u is of the given form, then $||u|| = \sup\{\lambda_n : n \ge 1\}$. Let p_n denote the orthogonal projection onto the space spanned by e_1, \ldots, e_n .

If $\lim_{n\to\infty} \lambda_n = 0$, then $p_n u p_n$ are finite-rank operators and by the observation in the beginning, $||p_n u p_n - u|| = \sup\{\lambda_k : k \leq n+1\}$ tends to zero when $n\to\infty$. So u is the norm limit of a sequence of finite-rank operators, and is hence compact.

Conversely, if u is compact, then for any subsequence (λ_{n_k}) of (λ_n) , the set $\{e_{n_k}\}$ consists of vectors of norm 1, so $\{ue_{n_k}\}$ contains a convergent (sub-)subsequence indexed by n_{k_l} . By assumption, $ue_{n_k} = \lambda_{n_k}e_{n_k}$. The e_{n_k} are orthogonal to each other, so by Cauchy criterion, we have $\lambda_{n_{k_l}} \to 0$. By a routine argument in mathematical analysis (proof by contradiction and Bolzano-Weierstrass theorem), $\lambda_n \to 0$.

Problem 16. Let X be a Banach space. If $p \in B(X)$ is a compact idempotent, show that its rank is finite.

Solution. By assumption, X can be decomposed into direct sum of pX and (1-p)X, both of which are closed subspace of X and are hence Banach space. Composing the maps $pX \xrightarrow{\text{inclusion}} X \xrightarrow{p} pX$ gives the identity map on pX, which is compact since p is. However, the identity map on a Banach space is compact if and only if the space is finite-dimensional. So pX is finite-dimensional, i.e. p is of finite rank.

Problem 17. Let $u: X \to Y$ be a compact operator between Banach spaces. Show that if the range of u is closed, then it is finite-dimensional.

Solution. If the range of u is closed, the map $X \stackrel{u}{\to} uX$ is a surjective, compact linear operator between Banach spaces. By the open mapping theorem, u is an open map. So the image under u of the closed unit ball of X must contain an open neighbourhood of $0 \in uX$, and since u is compact, the image of the closed unit ball is relatively compact. This implies that the chosen open neighbourhood of 0 is relatively compact, so uX is finite-dimensional.

Problem 18. Let X, Y be Banach spaces and suppose that $u \in B(X, Y)$ has compact transpose u^* . Show that u is compact using that fact that u^{**} is compact.

Solution. By Theorem 1.4.4 which says $u^* \in B(Y^*, X^*)$ is compact when $u \in B(X,Y)$ is compact, we know that in this exercise, $u^{**} \in B(X^{**}, Y^{**})$ is compact. Consider the natural inclusion $X \to X^{**}, Y \to Y^{**}$, denoted by ι_1, ι_2 respectively. A simple check by definition gives the following commuting diagram:

$$X \xrightarrow{u} Y$$

$$\iota_1 \downarrow \qquad \qquad \downarrow \iota_2$$

$$X^{**} \xrightarrow{u^{**}} Y^{**}$$

Now suppose (x_n) is a bounded sequence in X. Since ι_1 is an isometry and u^{**} is compact, we know that $(u^{**}\iota_1(x_n))$ admits a subsequence that converges in Y^{**} . So $(\iota_2 u(x_n))$ admits a subsequence that converges in Y^{**} . Now use that ι_2 is an isometry, and we know that the convergent subsequence in Y^{**} gives rise to a convergent subsequence of $(u(x_n))$ in Y with the same subscripts, so u is compact.

Problem 19. Let $u: X \to Y$ and $u': X' \to Y'$ be bounded operators between Banach spaces. Show that the linear map

$$u \oplus u' : X \oplus X' \to Y \oplus Y', (x, x') \mapsto (u(x), u'(x')),$$

is bounded with norm $\max\{\|u\|, \|u'\|\}$. Show that if u and u' are Fredholm operators, so is $u \oplus u'$, and $\operatorname{ind}(u \oplus u') = \operatorname{ind}(u) + \operatorname{ind}(u')$.

Solution. There are several choices for the norm of direct sum of Banach spaces, and I do not know whether the statement is true for all choices of norms. Now fix $||(x, x')|| := \max(||x||, ||x'||)$.

Then

$$||(u \oplus u')(x, x')|| = \max(||ux||, ||u'x'||) \leqslant \max(||u||, ||u'||) \max(||x||, ||x'||),$$

so $||u \oplus u'|| \leq \max(||u||, ||u'||)$. Conversely, $(u \oplus u')(x, 0) = (ux, 0)$ and ||(x, 0)|| = ||x||, ||(ux, 0)|| = ||ux||, so take supremum over $x \in X, ||x|| \leq 1$, and we get $||u \oplus u'|| \geq ||u||$. Do the same for u' and we prove the first statement.

The kernel of $u \oplus u'$ is $\ker u \oplus \ker u'$, and the cokernel is $(Y \oplus Y')/(uX \oplus u'X') \cong (Y/uX) \oplus (Y'/u'X')$. So the index of $u \oplus u'$ is the sum of those of u and u'.

Problem 20. If X is an infinite-dimensional Banach space and $u \in B(X)$, show that

$$\bigcap_{v \in K(X)} \sigma(u+v) = \sigma(u) \setminus \{\lambda \in \mathbb{C} : u-\lambda \quad \text{is Fredholm of index zero}\}.$$

Solution. If a is invertible and v is compact, then $\operatorname{ind}(a+v) = \operatorname{ind}(a) = 0$. This holds when a is Fredholm of index zero. We denote the set on the left by L and the one on the right by R.

If $\lambda \notin R$, then $u - \lambda$ is invertible or $u - \lambda$ is Fredholm of index zero. In both cases, $u - \lambda + v$ must be Fredholm of index zero for any compact v, by the observation in the beginning. Then by Remark 1.4.3, any Fredholm operator of index zero is a compact perturbation of an invertible element, so there exists $v \in K(X)$ such that $u + v - \lambda$ is invertible, i.e. $\lambda \notin L$. This shows that $L \subseteq R$.

Conversely, if $\lambda \notin L$, then there exists a $v \in K(X)$ such that $u + v - \lambda$ is invertible. Then the Fredholm index of $u + v - \lambda$ is zero, and thus the index of $u - \lambda$ is zero. This shows that $\lambda \notin R$ and $R \subseteq L$.