Interactive Speaker Recognition

Применение обучения с подкреплением для решения задачи распознавания диктора

Головин Вячеслав Сергеевич Шуранов Евгений Витальевич (руководитель)

Huawei CBG AI и ФКН ВШЭ СП6

07.06.2023

Задача распознавания диктора (Speaker Recognition)

Два типа задач:

- Идентификация по услышанной речи выбираем одного диктора из списка.
- **Верификация** по услышанной речи решаем, произнёс ли её конкретный диктор.

Фактически обе задачи сводятся к определению меры похожести между двумя наборами данных:

- Векторы признаков, вычисленные из полученных ранее аудиозаписей речи (эмбеддинги дикторов или голосовые подписи).
 - Обозначение: $G = [g^k]_{k=1}^K$, $K \in \mathbb{N}$.
- Векторы признаков аудиозаписей речи, полученных сейчас (эмбеддинги произнесенных слов).
 - Обозначение: $X = [x^t]_{t=1}^T, T \in \mathbb{N}.$

Область исследования

Зачем нам Interactive Speaker Recognition

Некоторые системы распознавания запрашивают у диктора произносимые фразы. Логично выбирать эти слова и фразы таким образом, чтобы

- точность распознавания была выше,
- количество запросов было меньше,
- они были разнообразными (боремся со спуфингом).

Исследуемый подход: использование нейросетевого RL-агента для выбора запрашиваемых слов.

Подход предложен в статье A Machine of Few Words — Interactive Speaker Recognition with Reinforcement Learning, Mathieu Seurin et al., INTERSPEECH 2020, arXiv:2008.03127v1.

Цель и задачи

Цель: повышение точности систем распознавания диктора при помощи выбора запрашиваемых у диктора слов.

Задачи:

- Воспроизведение результатов, достигнутых в исходной статье.
- Улучшение и модификация изначальной системы:
 - Переход от идентификации к верификации.
 - ▶ Использование произвольного набора запрашиваемых слов.
 - Проверка работы при добавлении шума.
 - ▶ Использование других эмбеддингов.

Interactive Speaker Recognition

Здесь и далее изображения из A Machine of Few Words — Interactive Speaker Recognition with Reinforcement Learning, Mathieu Seurin et al., INTERSPEECH 2020, arXiv:2008.03127v1.

Использовался датасет TIMIT (630 дикторов, 20 слов).

Важные особенности статьи:

- только идентификация
- фиксированный набор слов
- разные нейронные сети для запроса слов (Enquirer) и идентификации (Guesser)

Архитектура Guesser

Пытаемся угадать диктора

Входные данные:

- эмбеддинги дикторов $G = [g_1; g_2; \dots g_K]$
- эмбеддинги слов $X = [x_1; x_2; ... x_T]$

Выходные данные:

• вероятности $\{P(g_i = g^*) \mid i = 1..K\}$

Обозначения

- К количество гостей / дикторов
- Т количество запрашиваемых слов

Архитектура Enquirer

Выбираем, какое слово мы спрашиваем у диктора

Входные данные:

- среднее эмб. дикторов $\hat{g} = \frac{1}{K} \sum_{i=1}^{K} g_k$
- эмбеддинги слов $X = [x_1; x_2; ...; x_t]$

Выходные данные:

 вероятность выбрать каждое из слов

Обозначения

- К количество гостей / дикторов
- Т количество запрашиваемых слов
 - количество запрошенных слов, $0 \leq t \leq T$

Обучение и тестирование Guesser

K = 5 дикторов и T = 3 слова при обучении

В качестве эмбеддингов использовались x-vectors из фреймворка Kaldi.

Вероятно, главная причина расхождения результатов — увеличение размерности эмбеддингов (512 вместо 128). Как и зачем в статье производилось понижение размерности неизвестно.

Обучение и тестирование Enquirer

K = 5 дикторов и T = 3 слова при обучении

Для обучения использовался **PPO**. Выбор слова при обучении и тестировании проводился по-разному:

- train сэмплирование из распределения,
- test arg max по не использованным ранее словам.

Награда: 1.0 — Guesser угадал диктора, 0.0 — иначе.

Enquirer против эвристики

K = 5 дикторов и T = 3 слова при обучении

Эвристический агент не обращает внимание на контекст и (практически) всегда запрашивает одни и те же слова.

Для выбора слов используется средняя точность Guesser на валидационной выборке при использовании этого слова.

От идентификации к верификации

T = 3 слова

• Enquirer: не меняем ничего (даже веса)

От идентификации к верификации

T = 3 слова

• Enquirer: не меняем ничего (даже веса)

• Guesser: меняем softmax на sigmoid

От идентификации к верификации

T = 3 слова

- Enquirer: не меняем ничего (даже веса)
- Guesser: меняем softmax на sigmoid

Выбор слов	Точность
случайный	0.895
Enquirer	0.933
эвристика	0.917

Другие эксперименты

- Подбор режима обучения.
 - ightharpoonup Для улучшения точности можно обучать модели в более тяжелых режимах (например, $K=20,\ T=2$).
- ② CodebookEnquirer гибкая система выбора слов.
 - ► Модифицируем Enquirer таким образом, что выбор осуществляется не из фиксированного набора слов, а из списка эмбеддингов.
 - Работает (небольшое падение точности), даже если мы обучаем и тестируем модель на разных наборах слов.
- Добавление шума
 - ▶ Добавляем к аудиозаписям слов 6 видов шума из MUSAN.
 - Не меняем тип шума в течение игры.
 - Результаты принципиально не изменяются.
- Альтернативные эмбеддинги
 - Вместо x-vector используем нейронную сеть, обученную с помощью контрастного прогнозирующего кодирования (СРС).
 - ▶ Существенное увеличение точности, Enquirer обучается.

Выводы

- Исследованный подход работает точность идентификации существенно повышается при добавлении выбирающего слова агента.
- Модель можно сделать практически полезной: легко перейти от идентификации к верификации и от фиксированного набора слов к произвольному.
- В большинстве режимов (очень) простая эвристика оказывается не хуже нейросетевого агента для выбора слов (Enquirer).

Приложение

Псевдокод 1 итерации обучения Guesser

Обозначения

```
К количество гостей / дикторов
```

T количество запрашиваемых слов

V размер словаря — число доступных для запроса слов

Псевдокод 1 эпизода ISR-игры

```
speaker_ids = speakers.sample(size=K)
G = voice_prints.get(speaker_ids)
target = randrange(0, K)
g_hat = G.mean(dim=0)
x_i = start_tensor
X = \Gamma
for i in range(T):
    probs = enquirer.forward(g_hat, x_i)
    if training:
        word_inds = multinomial(probs).sample()
    else:
        word_ind = argmax(probs)
   x_i = word_vocab.get(speaker=speaker_ids[target], word=word_ind)
    X.append(x_i)
prediction = guesser.predict(G, X)
reward = 1 if prediction == target else 0
```

Результаты из статьи

K = 5 дикторов и T = 3 слова

RL-агент при выборе запрашиваемых слов учитывает контекст — он опережает не только случайного агента, но и эвристического, выбирающего из подмножества "лучших" слов.

Преимущество RL-агента невелико и проявляется только при небольшом числе запрашиваемых слов.

Эвристический агент

Алгоритм работы

- Рассчитываем точность на валидационной выборке.
- Сэмплируем из слов с самой высокой точностью.

Обучение в более тяжелом режиме

Выбор слов	Режим обучения	Точность
случайный Enquirer	<i>T</i> = 3	0.895 0.933
эвристика		0.917
случайный Enquirer	T=2	0.913 0.947
эвристика		0.945

Таблица: Точность верификации, T=3 запрашиваемых слова

Обучение в более тяжелом режиме

Выбор слов	Режим обучения	Точность
случайный Enquirer эвристика	K = 5 T = 3	0.937 0.982 0.984
случайный Enquirer эвристика	K = 20 T = 2	0.951 0.989 0.988

Таблица: Точность идентификации, K=5 дикторов, T=3 запрашиваемых слова

${\tt Codebook Enquirer}$

Мотивация и принцип работы

Очевидный недостаток архитектуры Enquirer — строго фиксированный набор слов, при любом его изменении нужно обучать заново или делать fine-tuning.

Предлагаемые изменения:

- MLP возвращает эмбеддинг слова, а не вероятности;
- добавляется Codebook набор (фиксированных) эмбеддингов слов;
- вероятность выбрать слово из Codebook обратно пропорциональна расстоянию между эмбеддингами.

CodebookEnquirer

Результаты

Выбор слов	Режим обучения	Точность
случайный		0.937
Enquirer	K = 5	0.982
CodebookEnquirer	T=3	0.964
CodebookEnquirer (половина слов)		0.970
случайный		0.951
Enquirer	K = 20	0.989
CodebookEnquirer	T=2	0.990
CodebookEnquirer (половина слов)		0.980

Таблица: Точность идентификации, K=5 дикторов, T=3 запрашиваемых слова

Добавление шума

- 6 различных вариантов шума из датасета MUSAN для каждого слова: rain, car, crowd, typing, hum, white а также исходная чистая аудиозапись.
- SNR 3 dB.
- Тип шума не меняется в течение эпизода.

Модель	Идентификация	Верификация
Guesser	0.887	0.895
Guesser + Enquirer	0.946	0.934
Guesser + эвристика (3 лучших)	0.957	0.938

Таблица: Точность идентификации и верификации в стандартных режимах (T=3 слова, K=5 гостей при идентификации)