Keystroke Level model

Olivier Georgeon & Frank Ritter, march 2012

The KLM: HCI's First Predictive Model

Card, S. K., Moran, T. P., & Newell, A. (1980). The keystroke-level model for user performance time with interactive systems. *Communications of the ACM*, 23, 396-410.

The Psychology of Human-Computer Interaction

> STUART K. CARD THOMAS P. MORAN ALLEN NEWELL

> > 兦

Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of human-computer interaction. Hillsdale, NJ: Erlbaum.

Outline

- Problem statement
- Model
- Empirical validation
- Applications

Problem Statement

- Goal
 - Develop simple model to describe time to do task with a given method on an interactive system
- $T_{task} = T_{acquire} + T_{execute}$ where $T_{task} = \text{total time to complete task}$ $T_{acquire} = \text{time to select method to complete task}$ $T_{execute} = \text{time to perform method}$
- Model predicts $T_{execute}$
- Assume expert users and no errors

Model

- $T_{execute} = \sum$ (time to execute primitive op)
- Primitive operations
 - Key/button press
 - − **P** point to target with mouse
 - − **H** home hands to keyboard or mouse
 - **− D** draw line with mouse
 - M mental preparation (pause)
 - **R** system response time

Model (cont.)

- Times for primitive operations are predicated from experiments
 - Time to press key/button ranges between
 - 0.08 sec/char fast typist
 - 0.28 sec/char average typist
 - 1.2 sec/char slow typist

Original parameters

Operator	Description	Time (s)
К	PRESS A KEY OR BUTTON	
	Pressing a modifier key (e.g., shift) counts as a separate operation, Time varies with typing skill:	
	Best typist (135 wpm)	.08
	Good typist (90 wpm)	.12
	Average skilled typist (55 wpm)	.20
	Average non-secretary typist (40 wpm)	.28
	Typing random letters	.50
	Typing complex codes	.75
	Worst typist (unfamiliar with keyboard)	1.20
Р	POINT WITH A MOUSE	
	Empirical value based on Fitts' law. Range from .8 to 1.5 seconds. Operator does <i>not</i> include the button click at the end of a pointing operation	1.10
Н	HOME HAND(S) ON KEYBOARD OR OTHER DEVICE	.40
$D(n_D.l_D)$	DRAW n_D STRAIGHT-LINE SEGMENTS OF TOTAL LENGTH l_D .	.9 n _D + .16 l _D
	Drawing with the mouse constrained to a grid.	
M	MENTALLY PREPARE	1.35
R(t)	RESPONSE BY SYSTEM	t
	Different commands require different response times. Counted only if the user must wait.	

Encoding Method

- Code method as sequence of primitive operations, sum up times
- Example: replace 5 letter word with another
- Editor 1: keyboard based

next line

substitute command

enter new word

terminate arg

enter old word

terminate arg

terminate command

• $T_{execute} = 4t_M + 15t_K = 8.4 \text{ sec}$

MK[(line feed)]

MK[s]

5K[xxxxx]

MK[(return)]

5K[zzzzz]

MK[(return)]

K[(return)]

Placement of M's

rule 0: place **M** before all **K**'s not part of arg strings and before all **P**'s that select commands for each **M** do

- rule 1: if operator fully anticipated, delete M
 (e.g. PMK → PK)
 rule 2: if string of MK's belongs to cognitive unit, delete all M's but first rule 3: if K is redundant terminator, delete M
 rule 4: if K terminates constant string (i.e. command), delete it
 - if **K** terminates variable string (i.e. arg), keep it

Placement of M's

Example: Mouse-based Editor 2 sequence

H[m]P[word]K[y]H[k]K[R]5K[...]K[(esc)]

 \Rightarrow H[m]P[word]K[y]H[k]MK[R]5K[...]MK[(esc)]

Placement of M's

Example: Keyboard-based Editor 1 sequence

Empirical Validation

- Conducted experiment on real systems to compare predictions to observations
- 14 tasks on 3 types of systems
 - text editors
 - graphics systems
 - command executers
- Users
 - practice using system
 - were tested to determine typing and drawing speed

Observation vs. prediction

Some Recent Applications of the KLM

- Balter, O. (2000). Keystroke level analysis of email message organization. Proceedings of the ACM Conference on Human Factors in Computing Systems – CHI 2000 105-112. New York: ACM
- Dunlop, M. & Crossan, A. (2000). Predictive text entry methods for mobile phones. *Personal and Ubiquitous Computing* 4, 134-143.
- Holleis, P., Otto, F., Hussmann, H., & Schmidt, A. (2007). Keystrokelevel model for advanced mobile phone interaction. *Proceedings of the ACM Conference on Human Factors in Computing Systems CHI 2007*, 1505-1514. New York: ACM.
- Pettitt, M., Brunett, G. & Stevens, A. (2007). An extended keystroke level model (KLM) for predicting visual demand on in-vehicle information systems. Proceedings of the ACM Conference on Human Factors in Computing Systems CHI 2007, 1515-1524. New York: ACM.

The KLM and Text Entry

- The KLM and Text Entry
 - The original experiment did not include a task such as:
 - Enter a 43-character phrase of text
- Why?
 - It's too simple for the KLM
 - Prediction reduces to 43 x tK
 - tK determined for each user in a pre-test
 - The KLM task just confirms the pre-test

T9 Entry of "beep"

2 a
23 be
233 bed
2337 beer
2337n beds
2337nn adds
2337nnn bees
2337nnn bees
2337nnnn beep

* 0
-

DEF

MNO

#

Model for T9 Entry of "beep"

2337 M_P n M_P n M_P n M_P n M_P 0

MP - the time for perform ing a physical match
between a stimulus (the presented

word) and a code stored in the user's

short-term memory (the desired word).

Summary

- $T_{task} = T_{acquire} + T_{execute}$
- $T_{execute}$ = Key + Point + Home + Draw + Mental + System
- Very low level
- Simplistic
- Famous reference
- Still useful 25 years later