SCT_DS_02

December 14, 2024

```
[259]: # Import required libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

0.0.1 Step 1: Load the Titanic dataset and display its first few rows to understand its structure.

```
[262]: # Load the dataset
data = pd.read_csv('task2.csv')

# Display the first few rows of the dataset
print("Dataset Preview:")
display(data.head())
```

Dataset Preview:

	PassengerId	Survived	Pclass	١
0	1	0	3	
1	2	1	1	
2	3	1	3	
3	4	1	1	
4	5	0	3	

	Name Sex Age	SibSp	/
0	Braund, Mr. Owen Harris male 22.0	1	
1	Cumings, Mrs. John Bradley (Florence Briggs Th female 38.0	1	
2	Heikkinen, Miss. Laina female 26.0	0	
3	Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0	1	
4	Allen, Mr. William Henry male 35.0	0	

F	Parch	Ticket	Fare	Cabin	Embarked
	0	A/5 21171	7.2500	NaN	S
	0	PC 17599	71.2833	C85	C
	0	STON/02. 3101282	7.9250	NaN	S
	0	113803	53.1000	C123	S
	0	373450	8.0500	NaN	S

0.0.2 Step 2: Use data.isnull().sum() to show the number of missing values in each column.

```
[265]: # Check for missing values
       print(data.isnull().sum())
      PassengerId
                        0
      Survived
                        0
      Pclass
                        0
      Name
                        0
      Sex
      Age
                     177
      SibSp
                        0
      Parch
                        0
      Ticket
                        0
```

Embarked dtype: int64

Fare

Cabin

0.0.3 step 3: Handle missing values

0

687

```
[175]: # Fill missing 'Age' values with the median
data['Age'] = data['Age'].fillna(data['Age'].median())

# Fill missing 'Embarked' values with the most frequent value (mode)
data['Embarked'] = data['Embarked'].fillna(data['Embarked'].mode()[0])

# Drop the 'Cabin' column due to a high number of missing values
data_cleaned = data.drop(columns=['Cabin'])
```

0.0.4 Step 4: check for any other missing values

```
[178]: # Check if there are any missing values remaining
missing_values_summary = data_cleaned.isnull().sum()
print(missing_values_summary)
```

PassengerId 0 Survived 0 Pclass 0 Name 0 0 Sex 0 Age SibSp 0 Parch 0 Ticket Fare 0 Embarked dtype: int64

0.0.5 step 5: Convert categorical variables to numeric values (if needed for analysis)

```
[181]: # Convert 'Sex' column to numeric (Male=0, Female=1)
data_cleaned['Sex'] = data_cleaned['Sex'].map({'male': 0, 'female': 1})
```

0.0.6 Step 6: Exploratory Data Analysis (EDA)

```
[184]: # 6.1 Descriptive Statistics
print("Descriptive Statistics:")
display(data.describe(include='all'))
```

Descriptive Statistics:

	${ t PassengerId}$	Survived	Pclass	Name	Sex	'
count	891.000000	891.000000	891.000000	891	891	
unique	NaN	NaN	NaN	891	2	
top	NaN	NaN	NaN	Braund, Mr. Owen Harris	male	
freq	NaN	NaN	NaN	1	577	
mean	446.000000	0.383838	2.308642	NaN	NaN	
std	257.353842	0.486592	0.836071	NaN	NaN	
min	1.000000	0.000000	1.000000	NaN	NaN	
25%	223.500000	0.000000	2.000000	NaN	NaN	
50%	446.000000	0.000000	3.000000	NaN	NaN	
75%	668.500000	1.000000	3.000000	NaN	NaN	
max	891.000000	1.000000	3.000000	NaN	NaN	

	Age	SibSp	Parch	Ticket	Fare	Cabin	\
count	891.000000	891.000000	891.000000	891	891.000000	204	
unique	NaN	NaN	NaN	681	NaN	147	
top	NaN	NaN	NaN	347082	NaN	B96 B98	
freq	NaN	NaN	NaN	7	NaN	4	
mean	29.361582	0.523008	0.381594	NaN	32.204208	NaN	
std	13.019697	1.102743	0.806057	NaN	49.693429	NaN	
min	0.420000	0.000000	0.000000	NaN	0.000000	NaN	
25%	22.000000	0.000000	0.000000	NaN	7.910400	NaN	
50%	28.000000	0.000000	0.000000	NaN	14.454200	NaN	
75%	35.000000	1.000000	0.000000	NaN	31.000000	NaN	
max	80.000000	8.000000	6.000000	NaN	512.329200	NaN	

	Embarked
count	891
unique	3
top	S
freq	646
mean	NaN
std	NaN
min	NaN
25%	NaN

```
50%
                  NaN
      75%
                  NaN
                  NaN
      max
[186]: # 6.2 Survival Rate
       survival_rate = data_cleaned['Survived'].mean()
       print(f"Survival Rate: {survival_rate * 100:.2f}%")
      Survival Rate: 38.38%
           Conclusion: The overall survival rate was about 38%.
[234]: # 6.3 Survival Rate by Gender
       survival_by_gender = data_cleaned.groupby('Sex')['Survived'].mean()
       print("Survival Rate by Gender:")
       print(survival_by_gender)
      Survival Rate by Gender:
      Sex
           0.188908
      0
           0.742038
      1
      Name: Survived, dtype: float64
[236]: # 6.4 Survival Rate by Pclass (Ticket Class)
       survival_by_class = data_cleaned.groupby('Pclass')['Survived'].mean()
       print("Survival Rate by Ticket Class:")
       print(survival_by_class)
      Survival Rate by Ticket Class:
      Pclass
           0.629630
      2
           0.472826
           0.242363
      Name: Survived, dtype: float64
[238]: # 5.5 Survival Rate by Embarked (Port of Embarkation)
       survival_by_embarked = data_cleaned.groupby('Embarked')['Survived'].mean()
       print("Survival Rate by Embarked Port:")
       print(survival_by_embarked)
      Survival Rate by Embarked Port:
      Embarked
      C
           0.553571
           0.389610
           0.339009
      Name: Survived, dtype: float64
```

0.2 6.6 Visualizations

```
[241]: # Plotting survival rate by gender
plt.figure(figsize=(8, 5))
sns.barplot(x=survival_by_gender.index, y=survival_by_gender.values)
plt.title('Survival Rate by Gender')
plt.xlabel('Gender (0 = Male, 1 = Female)')
plt.ylabel('Survival Rate')
plt.show()
```


0.3 Conclusion: Female passengers had a much higher survival rate compared to male passengers.

```
[243]: # Plotting survival rate by ticket class
plt.figure(figsize=(8, 5))
sns.barplot(x=survival_by_class.index, y=survival_by_class.values)
plt.title('Survival Rate by Ticket Class')
plt.xlabel('Ticket Class')
plt.ylabel('Survival Rate')
plt.show()
```


0.4 Conclusion: First-class passengers had the highest survival rates, followed by second and third-class passengers.

```
[245]: # Plotting survival rate by embarkation port
plt.figure(figsize=(8, 5))
sns.barplot(x=survival_by_embarked.index, y=survival_by_embarked.values)
plt.title('Survival Rate by Embarkation Port')
plt.xlabel('Embarked Port (C = Cherbourg, Q = Queenstown, S = Southampton)')
plt.ylabel('Survival Rate')
plt.show()
```


0.5 Conclusion: Passengers who embarked from Cherbourg had the highest survival rates, while Southampton passengers had the lowest.

```
[209]: # Age Distribution of Passengers
plt.figure(figsize=(8, 5))
sns.histplot(data_cleaned['Age'], kde=True, bins=30)
plt.title('Age Distribution of Passengers')
plt.xlabel('Age')
plt.ylabel('Frequency')
plt.show()
```


0.6 Conclusion: The majority of passengers were between 20-40 years old, with lower survival rates for older passengers.

```
[49]: # Step 2.8 Correlation Heatmap (fixing the issue)
    # Select only numeric columns for correlation
    numeric_columns = data_cleaned.select_dtypes(include=[np.number])

# Calculate the correlation matrix
    correlation_matrix = numeric_columns.corr()

# Plot the correlation heatmap
    plt.figure(figsize=(10, 6))
    sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.2f')
    plt.title('Correlation Heatmap')
    plt.show()
```


0.7 Conclusion: There is a clear correlation between ticket class and survival: higher class (first class) passengers had higher survival rates.