Matheus Paolo dos Anjos Mourão Paulo Chaves dos Santos Júnior

Modelagem matemática

Rio Branco, Acre 2017

Matheus Paolo dos Anjos Mourão Paulo Chaves dos Santos Júnior

Modelagem matemática

Resoluções dos problemas referentes a modelagem matemática, entregue para a composição parcial da nota da N1. Orientador : Marcos Fabiano Firbida Eduardo

Universidade Federal do Acre - UFAC Equações Diferenciais Ordinárias I

> Rio Branco, Acre 2017

Resumo

Neste trabalho, são apresentados problemas de modelagem matemática sugeridos pelo livro *Equações Diferenciais Ordinárias*, do autor Dennis G. Zill. O processo de modelagem é algo que pode ser bastante interdisciplinar, visto que, são utilizados conceitos das mais diversas áreas de estudo e conhecimento para estruturação e resolução do problema.

Palavras-chaves: capacitor, retificador de onda, diodo Zener

Sumário

	Modelagem matemática: o que é?	4
1	PROBLEMAS PROPOSTOS	5
1.1	Problema 1.3.22	5
1.1.1	Problematização	5
1.1.2	Dados	Ę
1.1.3	Construção do modelo	5
1.2	Problema 1.3.23	7
1.2.1	Dados	7
1.2.2	Lógica e modelagem	7
1.3	Problema 1.3.24	8
1.3.1	Lógica e modelagem	8
2	CONCLUSÃO	g
	REFERÊNCIAS	.(

Modelagem matemática: o que é?

A modelagem matemática é uma área de conhecimento que estuda a simulação de sistemas e situações reais, com o objetivo de prever como deve será o comportamento e o resultado dos mesmos. Abrange várias áreas de estudo, como física, biologia, engenharia, química, entre outros. Umas das formas que continuam sendo muito utilizadas para a modelagem desses problemas, é a partir das equações diferenciais.

1 Problemas propostos

1.1 Problema 1.3.22

Suponha que um buraco tenha sido feito através do centro da Terra, atravessando-a de ponta a ponta, e uma bola de boliche com massa m seja jogada no buraco, conforme mostra a figura abaixo. Construa um modelo matemático que descreve o movimento da bola. Em um dado instante t, seja r a distância do centro da Terra até a massa m, M a massa da Terra, M_r a massa da parte da Terra dentro de uma esfera de raio r e δ , a densidade constante da Terra.

1.1.1 Problematização

Devemos construir um modelo matemático que relacione o movimento que a bola de boliche, em queda, em um instante t á uma distância r do centro da terra.

1.1.2 Dados

 $m=massa\ da\ bola\ de\ boliche$ $M=massa\ da\ Terra$ $r=distância\ entre\ a\ bola\ e\ o\ centro\ da\ Terra$ $M_r=massa\ dentro\ do\ raio$ $R=raio\ da\ Terra$ $\delta=densidade\ constante\ da\ Terra$

1.1.3 Construção do modelo

Partindo da segunda lei de Newton, a qual afirma que a força resultante que atua sobre um corpo é proporcional ao produto da massa pela aceleração por ele adquirida.

Logo:

$$F_r = m \cdot a \tag{1.1}$$

É conhecido também, que a aceleração pode ser obtida a partir da derivada da velocidade em relação a um instante t, que por sua vez é a derivada de um espaço r em relação a um instante t. Assim, podemos definir a aceleração de um corpo, como a derivada de segunda ordem de r em relação a t:

$$a = \frac{d^2r}{dt^2} \tag{1.2}$$

Aplicando (1.2) em (1.1), obtém-se:

$$F_R = m \cdot \frac{d^2r}{dt^2} \tag{1.3}$$

Para obtermos as respectivas massas, podemos valer-nos da seguinte característica intrínseca dos sólidos:

$$d = \frac{M}{V}$$

Onde d é a densidade do sólido, M a massa e V o volume do mesmo. Logo:

$$M = d \cdot V$$

Como os objetos em questão possuem formato esférico, teremos:

$$V = \frac{4\pi R^3}{3}$$

Assim:

$$M = \frac{4\pi R^3}{3} \cdot \delta \to M_r = \frac{4\pi R^3}{3} \cdot \delta \tag{1.4}$$

Para fins de simplificação, podemos fazer o seguinte:

$$M = \frac{4\pi R^3}{3} \cdot \delta \to 4\pi \delta = \frac{3M}{R^3} \tag{1.5}$$

Aplicando (1.5) em (1.4), obteremos:

$$M_r = \frac{M \cdot r^3}{R^3}$$

Baseado na lei de gravitação universal, formulada por Isaac Newton, podemos afirmar que força de atração gravitacional entre dois corpos é diretamente proporcional a massa dos corpos em questão e inversamente proporcional ao quadrado da distância entre os dois corpos.

$$F_G = G \cdot \frac{m_1 \cdot m_2}{r^2}$$

A força gravitacional entre m e M_r , é dada então por:

$$F_G = G \cdot \frac{m \cdot \frac{M \cdot r^3}{R^3}}{r^2} \to F_G = G \cdot \frac{m \cdot M \cdot r^3}{R^3 \cdot r^2}$$

$$F_G = G \cdot \frac{m \cdot M \cdot r}{R^3} \tag{1.6}$$

Agora, pode-se fazer uma relação de igualdade entre as forças (1.3) e (1.6):

$$F_R = F_G$$

$$m \cdot \frac{d^2 r}{dt^2} = G \cdot \frac{m \cdot M \cdot r}{R^3}$$

$$\frac{d^2 r}{dt^2} = G \cdot \frac{M \cdot r}{R^3}$$
(1.7)

A Equação 1.7 é o modelo matemático que relaciona as grandezas necessárias, a uma distância r e um instante t.

1.2 Problema 1.3.23

Na teoria de aprendizagem, supõe-se que a taxa segundo a qual um assunto é memorizado é proporcional à quantidade a ser memorizada. Suponha que M denote a quantidade total de assunto a ser memorizado e A(t) a quantidade memorizada no instante t > 0. Determine uma equação diferencial para a quantidade A(t).

1.2.1 Dados

$$M = assunto\ total\ a\ ser\ memorizado$$
 $A(t) = quantidade\ memorizada,\ num\ instante\ t>0$

1.2.2 Lógica e modelagem

O primeiro passo é estipular uma constante de aprendizagem, tendo em vista que existem diferentes formas e níveis de aprendizagem. Essa constante é uma constante usual que torna o valor da E.D.O o mais próximo do real quanto seja possível.

k = constante proporcional de aprendizagem

Pensa-se agora nas relações e correlações entre os dados acima citados e, ainda, na utilidade dessas relações para a modelagem matemática deste problema.

"A taxa segundo a qual um assunto é memorizado é proporcional à quantidade a ser memorizada. " Logo:

$$\frac{dA}{dt} \propto M$$

Porém, deve se notar que A(t) denota quantidade já memorizada – num instante t; assim, a medida que A(t) cresce (quando t > 0) o total de assunto a ser memorizado decresce. Decrescendo junto, assim, a taxa de memorização. Para fins de entendimento, podemos fazer a seguinte projeção:

$$\lim_{t \to t_0} A(t) = M$$

Onde t_0 é o instante em que todo o assunto já foi memorizado. Tomando todas essas hipóteses, é fácil montar uma relação; a quantidade memorizada será proporcional a diferença entre o total que deve ser memorizado e a quantidade já memorizada, adicionando uma constante de proporcionalidade.

$$\frac{dA}{dt} = k(M - A(t)) \tag{1.8}$$

1.3 Problema 1.3.24

1.3.1 Lógica e modelagem

Assim como o problema anterior, devemos estipular uma constante de proporcionalidade, afim de obter resultados próximos a realidade:

$$c = constante proporcional de esquecimento$$

Percebendo que "a taxa segundo a qual o assunto é esquecido seja proporcional à quantidade memorizada no instante t > 0", podemos afirmar que a taxa de esquecimento cresce juntamente a quantidade já memorizada (A(t)) e é uma grandeza que se opõe ao total de assunto a ser memorizado (M). Tomando a modelagem anterior como uma verdade podemos apenas acrescentar a taxa de esquecimento na modelagem da problematização anterior:

$$\frac{dA}{dt} = k(M - A(t)) - c(A(t)) \tag{1.9}$$