

第三章 组合逻辑电路

3.1 组合逻辑电路的分析

逻辑电路的分析,就是找出给定逻辑电路输出和输入之间的逻辑关系,并指出电路的逻辑功能。

分析步骤:

- ① 根据给定的逻辑电路,从输入端开始,逐级推导出输出端的逻辑函数表达式。
 - ② 根据输出函数表达式列出真值表。
 - ③ 用文字概括出电路的逻辑功能。

西安电子科技大学国家级精品课程数字电路与系统设计

【例1】分析下图所示组合逻辑电路的逻辑功能。

①逐级推导,写出表达式

$$P1 = \overline{AB}$$
 $P2 = \overline{BC}$ $P3 = \overline{AC}$

$$F = \overline{P_1 P_2 P_3} = \overline{AB} \cdot \overline{BC} \cdot \overline{AC} = AB + BC + AC$$

西安电子科技大学国家级精品课程数字电路与系统设计

②列出真值表

$$F = AB + BC + AC$$

A	В	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

③分析功能

观察真值表,电路表示了一种"少数服从多数"的逻辑关系,

因此可以将该电路概括为:三变量 多数表决器。

【例2】分析下图所示组合逻辑电路的逻辑功能。

分析过程:

① 写出函数表达式

$$S_i = A_i \oplus B_i \oplus C_i$$

$$C_{i+1} = (A_i \oplus B_i)C_i + A_iB_i$$

② 列真值表

A_{i}	\boldsymbol{B}_i	C_i	C_{i+1}	S_i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

③ 分析功能

1位二进制全加器

$$S_i = A_i \oplus B_i \oplus C_i$$

$$C_{i+1} = (A_i \oplus B_i)C_i + A_iB_i$$

西安电子科技大学国家级精品课程数字电路与系统设计