DEVOIR SURVEILLÉ N°10

- ► La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ► Les calculatrices sont interdites.

Problème 1 -

Soient $n \in \mathbb{N}$ et $\sum_{n \geqslant n_0} a_n$ une série à termes réels. Dans le cas où cette série converge, on note R_n le reste de

rang n de cette série, c'est-à-dire $R_n=\sum_{k=n+1}^{+\infty}\alpha_k$ pour tout entier $n\geqslant n_0.$

On souhaite étudier la convergence de la série $\sum_{n\in\mathbb{N}}R_n$ dans plusieurs cas.

Partie I - Cas d'une série géométrique

On se donne $q\in\mathbb{R}$ et on pose $\alpha_n=q^n$ pour $n\in\mathbb{N}$ (on a donc $n_0=0).$

- 1. Pour quelles valeurs de q la série $\sum_{n\in\mathbb{N}} a_n$ convergent-elle? On suppose cette condition vérifiée dans la suite de cette partie.
- **2.** Exprimer R_n en fonction de q et n.
- 3. En déduire que la série $\sum_{n\in\mathbb{N}}R_n$ converge et calculer sa somme.

Partie II - Cas d'une série de Riemann

On se donne dans cette partie $\alpha \in \mathbb{R}$ et on pose $a_n = \frac{1}{n^\alpha}$ pour $n \in \mathbb{N}^*$ (on a donc $n_0 = 1$).

- 4. Pour quelles valeurs de α la série $\sum_{n\in\mathbb{N}^*} \alpha_n$ converge-t-elle ? On suppose cette condition vérifiée dans la suite de cette partie.
- 5. A l'aide d'une comparaison série/intégrale, montrer que $R_n \sim \frac{1}{(\alpha-1)n^{\alpha-1}}$.
- 6. En déduire une condition nécessaire et suffisante sur α pour que la série $\sum_{n\in\mathbb{N}^*}R_n$ converge.

Partie III - Cas de la série harmonique alternée

Dans cette partie, on pose $a_n=\frac{(-1)^n}{n}$ pour $n\in\mathbb{N}^*$ (on a donc $n_0=1$). On note également S_n la somme partielle de rang n de la série $\sum_{n\in\mathbb{N}^*}a_n$, c'est-à-dire $S_n=\sum_{k=1}^n\frac{(-1)^k}{k}$.

- 7. Calculer $\int_0^1 x^n dx$ pour $n \in \mathbb{N}$.
- **8.** En déduire que $S_n = -\ln(2) + (-1)^n \int_0^1 \frac{x^n}{1+x} dx$.
- 9. En déduire la convergence et la somme de la série $\sum_{n\in\mathbb{N}^*}\alpha_n.$
- $\begin{array}{ll} \textbf{10.} \;\; \text{Exprimer} \; R_n \; \grave{\text{a}} \; l'\text{aide} \; d'\text{une} \; \text{intégrale puis,} \; \grave{\text{a}} \; l'\text{aide} \; d'\text{une} \; \text{intégration par parties,} \; \text{déterminer deux constantes} \\ \text{réelles} \; \alpha \; \text{et} \; \beta \; \text{telles} \; \text{que} \; \alpha > 1 \; \text{et} \; R_n \; \underset{n \rightarrow +\infty}{=} \; \frac{(-1)^{n+1} \beta}{n+1} + \mathcal{O} \; \left(\frac{1}{n^{\alpha}}\right). \end{array}$
- 11. En déduire la nature de la série $\sum_{n\in\mathbb{N}^*}R_n.$

Problème 2 -

Partie I -

On note $\mathcal A$ l'ensemble des matrices $\left(egin{array}{ccc} a&0&0\\0&b&c\\0&-c&b \end{array}\right)$ avec $a,b,c\in\mathbb R.$

- **1.** Montrer que A est un \mathbb{R} -espace vectoriel et préciser sa dimension.
- **2.** Montrer que A est un anneau commutatif.
- 3. On pose $M = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix}$. Justifier que (I_3, M, M^2) est une base de \mathcal{A} .
- **4.** Exprimer M^3 en fonction de I_3 et M.

Partie II -

On définit une suite (u_n) par $u_0=3$, $u_1=0$, $u_2=4$ et par la relation de récurrence : $\forall n\in\mathbb{N}, u_{n+3}=2u_{n+1}-4u_n$.

- $\textbf{1. Justifier que pour tout } k \in \mathbb{N}, \text{il existe des réels } a_k, \, b_k, \, c_k \text{ tels que } M^k = \left(\begin{array}{ccc} a_k & 0 & 0 \\ 0 & b_k & c_k \\ 0 & -c_k & b_k \end{array} \right).$
- 2. Déterminer une relation de récurrence vérifiée par la suite (a_k) et deux relations de récurrence liant les suites (b_k) et (c_k) .
- **3.** Pour tout $k \in \mathbb{N}$, on appelle z_k le nombre complexe $z_k = b_k + ic_k$. Exprimer z_{k+1} en fonction de z_k et montrer que $b_k = \text{Re}\left((1+i)^k\right)$.
- 4. Retrouver ce dernier résultat en trouvant une relation de récurrence d'ordre 2 vérifiée par la suite (b_k) .
- **5.** Montrer que la suite (u_n) est à valeurs entières.
- **6.** Justifier que pour tout $n \in \mathbb{N}$, $u_n = tr(M^n)$.
- 7. Soit p un nombre premier. On rappelle que pour $k \in [1, p-1]$, p divise $\binom{p}{k}$ et que pour tout $a \in \mathbb{Z}$, p divise $a^p a$ (petit théorème de Fermat). Montrer que p divise u_p .