Übungsblatt 3

Abgabe: 29.10.2022

Codierungstheorie

Aufgabe 1.

a) Zeigen Sie, dass für zwei positive Zahlen m und n gilt

$$ggT(m, m + n) = ggT(m, n)$$

b) Die **Fibonacci–Zahlen** f_n sind definiert durh

$$f_0 = 0,$$
 $f_1 = 1$ $f_n = f_{n-1} + f_{n-2}$ für $n \ge 2$

Berechnen Sie $ggT(f_n, f_{n+1})$ für alle natürlichen Zahlen $n \ge 1$.

Aufgabe 2. Wir betrachten den endlichen Körper $k = \mathbb{F}_{461}$ mit 461 Elementen. Stellen Sie die folgenden Elemente

$$a = \frac{1}{144}$$
, $b = \frac{17}{365}$, $c = \frac{60}{420}$

von k mit den Repräsentanten $0, 1, \dots, 460$ dar.

Aufgabe 3. Wir betrachten den Körper $k = \mathbb{F}_{13}$. Bestimmen Sie die Lösungen x_1 , $x_2, x_3, x_4 \in \mathbb{F}_{13}$ des linearen Gleichungssystems

$$x_1 + x_2 + x_3 + x_4 = 0$$

 $x_1 + 2x_2 + 3x_3 + 4x_4 = 0$
 $x_1 + 4x_2 + 9x_3 + 3x_4 = 0$

Aufgabe 4. Wir betrachten den Körper $k = \mathbb{F}_4$ (gegeben durch die Relation $\alpha^2 = \alpha + 1$). Bestimmen Sie die Lösungen $x_1, x_2, x_3, x_4 \in \mathbb{F}_4$ des linearen Gleichungssystems