Calculus I

Tougaloo College

Calculating Limits Using the Limit Laws

Using one-sided limits

Theorem 1.

$$\lim_{x\to a} f(x) = L \text{ if and only if } \lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x) = L$$

Example: Show that $\lim_{x\to 0} |x| = 0$.

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

Take $\lim_{x\to 0^-} |x| = \lim_{x\to 0} (-x) = 0$. Then $\lim_{x\to 0^+} |x| = \lim_{x\to 0^+} x = 0$. Then limit is exist and 0.

Using one-sided limits (ii)

Example: Prove that $\lim_{x\to 0} \frac{|x|}{x}$ does not exist.

$$\frac{|x|}{x} = \begin{cases} \frac{x}{x} = 1 & \text{if } x > 0\\ -\frac{x}{x} = -1 & \text{if } x < 0 \end{cases}$$

Using one-sided limits (iii)

$$\lim_{x \to 0^{-}} \frac{|x|}{x} = \lim_{x \to 0^{-}} -1 = -1$$

$$\lim_{x \to 0^{+}} \frac{|x|}{x} = \lim_{x \to 0^{+}} 1 = 1$$

Limit does not exist, because $\lim_{x\to 0^-}\frac{|x|}{x}\neq \lim_{x\to 0^+}\frac{|x|}{x}.$

Using one-sided limits (iv)

Example: If

$$f(x) = \begin{cases} \sqrt{x-4} & \text{if } x > 4\\ 8-2x & \text{if } x < 4 \end{cases}$$

determine whether $\lim_{x\to 4} f(x)$ exists.

$$\lim_{x \to 4^-} f(x) = \lim_{x \to 4^-} 8 - 2x = 8 - 2(4) = 8 - 8 = 0$$

$$\lim_{x \to 4^+} f(x) = \lim_{x \to 4^+} \sqrt{x - 4} = \sqrt{4 - 4} = 0$$

We can see that $\lim_{x\to 4^-} f(x) = \lim_{x\to 4^+} f(x) = 0$. Therefore $\lim_{x\to 4} f(x)$ is exists.

The Squeeze Theorem

Theorem 2.

If $f(x) \leq g(x)$ when x is near a (except possibly at a) and the limits of f and g both exist as x approaches a, then

$$\lim_{x\to a} f(x) \leq \lim_{x\to a} g(x)$$

The Squeeze Theorem (ii)

Theorem 3: The Squeeze Theorem.

If $f(x) \le g(x) \le h(x)$ when x is near a (except possibly at a) and

$$\lim_{x\to a} f(x) = \lim_{x\to a} h(x) = L$$

then

$$\lim_{x\to a}g(x)=L$$

The Squeeze Theorem (iii)

Example: Show that $\lim_{x\to 0} x^2 \sin(\frac{1}{x}) = 0$

We know that $\lim_{x\to 0} \sin(\frac{1}{x})$ does not exist. However

$$-1 \le \sin\left(\frac{1}{x}\right) \le 1$$

 $-x^2 \le x^2 \sin\left(\frac{1}{x}\right) \le x^2$

Note that

$$\lim_{x \to 0} -x^2 = \lim_{x \to 0} x^2 = 0$$

By the Squeeze theorem,

$$\lim_{x \to 0} x^2 \sin\left(\frac{1}{x}\right) = 0$$

Precise Definition of Limit

Definition 1.

$$\lim_{x\to a} f(x) = L$$

if for every number $\varepsilon > 0$ there is a number $\delta > 0$ such that if $0 < |x - a| < \delta$ then $|f(x) - L| < \varepsilon$.

Precise Definition of Limit (ii)

Example: Prove that $\lim_{x\to 3} (4x-5) = 7$.

Choose $\varepsilon > 0$ such that $|(4x - 5) - 7| < \varepsilon$. Note that

$$\begin{aligned} |(4x-5)-7| &= |4x-12| \\ &= 4|x-3| < \varepsilon \\ |x-3| &< \frac{\varepsilon}{4} \end{aligned}$$

Then we can choose $\delta = \frac{\varepsilon}{4}$. For every $\varepsilon > 0$ we have if $0 < |x-3| < \frac{\varepsilon}{4}$, then $|(4x-5)-7| < \varepsilon$.

Precise Definition of Limit (iii)

Example: Prove that $\lim_{x\to 3} x^2 = 9$.