

Karnaugh Map(K-MAP)

Presented by Nabanita Das

Karnaugh Map

- Karnaugh maps provide an alternative way of simplifying logic circuits.
- Instead of using Boolean algebra simplification techniques, you can transfer logic values from a Boolean statement or a truth table into a Karnaugh map.
- A K-map is a matrix consisting of rows and columns that represent the output values of a Boolean function.
- The output values placed in each cell are derived from the minterms or maxterms of a Boolean function.
- The arrangement of o's and 1's within the map helps you to visualize the logic relationships between the variables and leads directly to a simplified Boolean statement.

The Karnaugh map uses the following rules for the simplification of expressions by grouping together adjacent cells containing *ones*.

1. Groups may not include any cell containing a zero.

2. Groups may be horizontal or vertical, but not diagonal.

3. In an n- variable K-map, there are 2^n cells. That is if n = 1, a group will contain two 1's since $2^1 = 2$. If n = 2, a group will contain four 1's since $2^2 = 4$.

4. Each group should be as large aspossible.

(Note that no Boolean laws broken, but not sufficiently minimal)

5. Each cell containing a one must be in at least one group.

6. Groups may overlap.

7.Groups may wrap around the table. The leftmost cell in a row may be grouped with the rightmost cell and the top cell in a column may be grouped with the bottom cell.

8. There should be as few groups as possible, as long as this does not contradict any of the previous rules

Summary:

- No zeros allowed.
- 2. No diagonals.
- 3. Only power of 2 number of cells in each group.
- 4. Groups should beas large as possible.
- 5. Every one must be in at least one group.
- 6. Overlapping allowed.
- 7. Wrap around allowed.
- 8. Fewest number of groups possible.

• In our example, we have two such groups.

 We see that both groups are powers of two and that the groups overlap.

Consider the function:

$$F(X,Y) = \overline{X}\overline{Y}Z + \overline{X}YZ + X\overline{Y}Z + XYZ$$

- Its K-map is given below.
 - What is the largest group of 1s that is a power of 2?

• Now we take a example for a more complicated K-map. Consider the function:

$$F(X,Y,Z) = \overline{X}\overline{Y}\overline{Z} + \overline{X}\overline{Y}Z + \overline{X}YZ + \overline{X}Y\overline{Z} + X\overline{Y}\overline{Z} + XY\overline{Z}$$

• Its K-map is shown below. There are (only) two groupings of 1s.

X	Z 00	01	11	10
0	1	1	1	1
1	1	0	0	1

- The green group in the top row tells us that only the value of x is significant in that group.
- We see that it is complemented in that row, so the other term of the reduced function is $\boxed{\overline{\mathbf{x}}}$
- Our reduced function is:

$$F(X,Y,Z) = \overline{X} + \overline{Z}$$

Recall that we had six minterms in our original function!

- Our model can be extended to accommodate the 16 minterms that are produced by a four-input function.
- This is the format for a 16-minterm K-map.

WX	z 00	01	11	10
0.0	W XŸZ	WXYZ	wxyz	WXYZ
01	WXŸZ	WXYZ	WXYZ	WXYZ
11	WXŢZ	WXŸZ	WXYZ	WXYZ
10	WŸŸŻ	WXYZ	WXYZ	WXYZ

4 variables K-map for Sum of Products

WX YZ	[00] Y'Z'	[01] Y'Z	[11] YZ	[10] YZ'
[00] W'X'	0	1	3	2
[01] W'X	4	5	7	6
[11] WX	12	13	15	14
[10] WX'	8	9	11	10

А	В	F	Minterm
0	0	0	$A'B' = m_0$
0	1	1	$A'B = m_1$
1	0	1	$AB' = m_2$
1	1	0	$AB = m_3$

4 variables K-map for Products of Sum

WX YZ	[00] Y+Z	[01] Y+Z'	[11] Y'+Z'	[10] Y'+Z
[00] W+X	0	1	3	2
[01] W+X'	4	5	7	6
[11] W'+X'	12	13	15	14
[10] W'+X	8	9	11	10

А	В	F	Maxterm
0	0	0	$A+B=M_0$
0	1	1	$A+B' = M_1$
1	0	1	$A' + B = M_2$
1	1	0	A'+B' = M ₃

• We have plotted the K-map which has shown below with the non zero minterms from the function:

$$F(W,X,Y,Z) = \overline{W}\overline{X}\overline{Y}\overline{Z} + \overline{W}\overline{X}\overline{Y}Z + \overline{W}\overline{X}Y\overline{Z} + \overline{W}XY\overline{Z} + W\overline{X}\overline{Y}\overline{Z} + W\overline{X}\overline{Y}Z + W\overline{X}Y\overline{Z}$$

Recall that groups can overlap.

WX	Z 00	01	11	10
00	1	1		1
01				1
11				
10	1	1		1

- Three groups consist of:
 - A purple group entirely within the K-map at the right.
 - A pink group that wraps the top and bottom.
 - A green group that spans the corners.
- Thus we have three terms in our final function:

F(W,X,Y,Z) = W'YZ' + X'Y' + X'Z'

- It is possible to have a choice as to how to pick groups within a K-map, while keeping the groups as large as possible.
- The (different) functions that result from the groupings below are logically equivalent.

Y WX	z 00	01	11	10
00	1		1	
01	1		(1)	1)
11	1			
10	1			

K-map Simplification for Four Variables by SOP and POS Form

• $F(A,B,C,D)=\sum(0,2,5,7,8,10,13,15)$

Final expression (BD+B'D')

K-map Simplification for Three Variables by POS Form

Final expression (A+B+C)(B'+C')(A'+B'+C)

