Application of TPAC method to TCGA liver cancer RNA-seq data using MSigDB Hallmark collection

H. Robert Frost

1 Load and process TCGA liver cancer RNA-seq data

The following logic loads FPKM normalized counts for The Cancer Genome Atlas (TCGA) [1] liver cancer (LIHC) cohort. The TPAC function tpacForCancer() leverages Human Protein Atlas (HPA) normal tissue gene expression data ("HPA.normal.FPKM.GDCpipeline.csv") that was specially processed by the HPA group as FPKM values using a pipeline similar to that employed by GDC for the TCGA data (this data was generated for the "Human Pathology Atlas" paper [2]). For consistency with this HPA normal tissue data, the TCGA data is retrieved from the HPA provided TCGA gene expression data file rna_cancer_sample.tsv, which contains FPKM normalized counts and can be downloaded from https://www.proteinatlas.org/download/rna_cancer_sample.tsv.zip.

Generation of the LIHC-specific matrix from the rna_cancer_sample.tsv data was performed using the following R code (which is not executed here given the size of the data and processing time):

2 Load the MSigDB Hallmark collection

The following logic loads the MSigDB Hallmark collection using the msigdbr R package. The data frame returned by msigdbr is then converted into a list of gene ID vectors (each list element corresponds to a gene set and is a vector of Ensembl IDs). The tpacForCancer() function automatically transforms this into a list of vectors of gene indices using the createGeneSetCollection() helper function.

```
> # Load the MSigDB Hallmark collection using the msigdbr package
> hallmark.collection = msigdbr::msigdbr(category="H")
> # Create a gene.set.collection list of Ensembl IDs
```

```
> gene.set.names = unique(hallmark.collection$gs_name)
> num.sets = length(gene.set.names)
> message("Number of sets in MSigDB Hallmark collection: ", num.sets)
> gene.set.names[1:5]
[1] "HALLMARK_ADIPOGENESIS"
                                   "HALLMARK_ALLOGRAFT_REJECTION"
[3] "HALLMARK_ANDROGEN_RESPONSE"
                                   "HALLMARK_ANGIOGENESIS"
[5] "HALLMARK_APICAL_JUNCTION"
> gene.set.collection = list()
> for (i in 1:num.sets) {
          gene.set.name = gene.set.names[i]
          gene.set.rows = which(hallmark.collection$gs_name == gene.set.name)
          gene.set.ensembl.ids = hallmark.collection$human_ensembl_gene[gene.set.rows]
          gene.set.collection[[i]] = unique(gene.set.ensembl.ids)
+ }
> names(gene.set.collection) = gene.set.names
```

3 Execute TPAC method

Since we are processing TCGA RNA-seq liver cancer data, we can execute TPAC using the tpacForCancer() wrapper function. Note that the cancer types supported by tpacForCancer() can be accessed via the getSupportedCancerTypes() function.

```
> TPAC::getSupportedCancerTypes()
 [1] "urothelial cancer"
                             "breast cancer"
                                                    "cervical cancer"
 [4] "colorectal cancer"
                             "glioma"
                                                    "head and neck cancer"
 [7] "renal cancer"
                             "liver cancer"
                                                    "lung cancer"
[10] "ovarian cancer"
                            "pancreatic cancer"
                                                    "prostate cancer"
[13] "colorectal cancer"
                            "melanoma"
                                                    "stomach cancer"
[16] "testis cancer"
                                                    "endometrial cancer"
                             "thyroid cancer"
> # Get the normal tissue corresponding to liver cancer
> cancer.type = "liver cancer"
> # Execute TPAC
> tpac.out = TPAC::tpacForCancer(cancer.gene.expr=liver.counts.fpkm,
                            cancer.type=cancer.type,
                           gene.set.collection=gene.set.collection)
```

> # Display the full list of cancer types supported by tpacForCancer()

Look at a subset of the TPAC scores in the generated S, S- and S+ matrices:

> tpac.out\$S[1:5,1:5]

```
HALLMARK_ADIPOGENESIS HALLMARK_ALLOGRAFT_REJECTION
TCGA-2Y-A9GS-01A
                          3.064720e-03
                                                        3.018793e-01
TCGA-2Y-A9GT-01A
                          7.926992e-14
                                                        7.994741e-05
TCGA-2Y-A9GU-01A
                          9.918417e-01
                                                        8.723984e-01
TCGA-2Y-A9GV-01A
                          0.000000e+00
                                                        1.707913e-04
TCGA-2Y-A9GW-01A
                          5.827508e-01
                                                        3.248046e-03
                 HALLMARK_ANDROGEN_RESPONSE HALLMARK_ANGIOGENESIS
```

TIGGA 037 A0GG 04A	0.000070 04	0.7500044404			
TCGA-2Y-A9GS-01A	2.386972e-01	0.7538041194			
TCGA-2Y-A9GT-01A	2.586985e-06	0.999999828			
TCGA-2Y-A9GU-01A	4.637972e-01	0.0003027669			
TCGA-2Y-A9GV-01A	5.906668e-04	0.9997277821			
TCGA-2Y-A9GW-01A	9.060539e-01	0.999999999			
HALLMARK_APICAL_JUNCTION					
TCGA-2Y-A9GS-01A	0.24475713				
TCGA-2Y-A9GT-01A	0.03069919				
TCGA-2Y-A9GU-01A	0.14960836				
TCGA-2Y-A9GV-01A	0.05386065				
TCGA-2Y-A9GW-01A	0.41299687				

> tpac.out\$S.neg[1:5,1:5]

	HALLMARK_ADIPOGENESIS HALLM	MARK_ALLOGRAFT_REJECTION
TCGA-2Y-A9GS-01A	1.642178e-03	0.4488871715
TCGA-2Y-A9GT-01A	2.716716e-13	0.0002430214
TCGA-2Y-A9GU-01A	9.848749e-01	0.9616570059
TCGA-2Y-A9GV-01A	0.00000e+00	0.0010408253
TCGA-2Y-A9GW-01A	6.410074e-01	0.0089029673
	${\tt HALLMARK_ANDROGEN_RESPONSE}$	HALLMARK_ANGIOGENESIS
TCGA-2Y-A9GS-01A	2.649604e-01	0.852475176
TCGA-2Y-A9GT-01A	6.135243e-06	0.99999997
TCGA-2Y-A9GU-01A	5.329255e-01	0.001090343
TCGA-2Y-A9GV-01A	9.895708e-04	0.999862611
TCGA-2Y-A9GW-01A	9.256814e-01	1.00000000
HALLMARK_APICAL_JUNCTION		
TCGA-2Y-A9GS-01A	0.05700461	
TCGA-2Y-A9GT-01A	0.01287834	
TCGA-2Y-A9GU-01A	0.56693484	
TCGA-2Y-A9GV-01A	0.01254875	
TCGA-2Y-A9GW-01A	0.16432979	

> tpac.out\$S.pos[1:5,1:5]

		HALLMARK_ADIPOGENESIS HALLM	MARK_ALLOGRAFT_REJECTION	
	TCGA-2Y-A9GS-01A	0.85091309	0.232426214	
	TCGA-2Y-A9GT-01A	0.08466006	0.190018804	
	TCGA-2Y-A9GU-01A	0.96036440	0.001615544	
	TCGA-2Y-A9GV-01A	0.36058713	0.072145624	
	TCGA-2Y-A9GW-01A	0.16157345	0.193789454	
		HALLMARK_ANDROGEN_RESPONSE	HALLMARK_ANGIOGENESIS	
	TCGA-2Y-A9GS-01A	0.37298345	0.1748558	
	TCGA-2Y-A9GT-01A	0.03279483	0.6134479	
	TCGA-2Y-A9GU-01A	0.02420909	0.3539980	
	TCGA-2Y-A9GV-01A	0.11124720	0.8844703	
	TCGA-2Y-A9GW-01A	0.20945836	0.3179549	
HALLMARK_APICAL_JUNCTION				
	TCGA-2Y-A9GS-01A	0.47087802		
	TCGA-2Y-A9GT-01A	0.10049191		
	TCGA-2Y-A9GU-01A	0.09223503		

```
TCGA-2Y-A9GV-01A 0.17151841
TCGA-2Y-A9GW-01A 0.61519815
```

Visualize the TPAC scores in the S matrix as a heatmap (this is generated using similar logic as the heatmaps included in the TPAC paper [3]).

```
> library(gplots)
> my_palette = colorRampPalette(c("steelblue", "seagreen3",
                                  "white", "orange", "orangered"))(n = 299)
> breaks = 300
> heatmap.2(t(tpac.out$S),
            col = my_palette, dendrogram="both", na.rm=T,
            symm=F, scale = "none", trace = "none",
            xlab=NA, ylab=NA, labCol=NA, sepcolor="white",
            sepwidth=c(0, .2), symkey=F,
            Rowv=T, Colv=T,
            breaks=breaks, margins=c(2,27),
            key.title=NA, key.ylab=NA, key.xlab=NA,
            key.ytickfun=function() {
              return(list(labels=FALSE, tick=FALSE))
            },
            lwid=c(.5,4), lhei=c(.5,4), main = NA)
```


References

- [1] Cancer Genome Atlas Research Network, Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.R.M., Ozenberger, B.A., Ellrott, K., Shmulevich, I., Sander, C., Stuart, J.M.: The cancer genome atlas pan-cancer analysis project. Nat Genet 45(10), 1113–20 (2013). doi:10.1038/ng.2764
- [2] Uhlen, M., Zhang, C., Lee, S., Sjöstedt, E., Fagerberg, L., Bidkhori, G., Benfeitas, R., Arif, M., Liu, Z., Edfors, F., Sanli, K., von Feilitzen, K., Oksvold, P., Lundberg, E., Hober, S., Nilsson, P., Mattsson, J., Schwenk, J.M., Brunnström, H., Glimelius, B., Sjöblom, T., Edqvist, P.-H., Djureinovic, D., Micke, P., Lindskog, C., Mardinoglu, A., Ponten, F.: A pathology atlas of the human cancer transcriptome. Science 357(6352) (2017). doi:10.1126/science.aan2507
- [3] Frost, H.R.: Tissue-adjusted pathway analysis of cancer (tpac). bioRxiv (2022). doi:10.1101/2022.03.17.484779. https://www.biorxiv.org/content/early/2022/03/19/2022.03.17.484779.full.pdf