§ 4. Механика жидкостей и газов

В задачах этого раздела используются данные таблицы 11 из приложения. Прежде чем приступать к числовым расчетам, необходимо представить все величины в единицах системы СИ.

4.1. Найти скорость v течения углекислого газа по трубе, если известно, что за время t=30 мин через поперечное сечение трубы протекает масса газа $m=0.51\,\mathrm{kr}$. Плотность газа $\rho=7.5\,\mathrm{kr/m}^3$. Диаметр трубы $D=2\,\mathrm{cm}$.

Решение:

За время t через поперечное сечение трубы проходит некоторый объем газа цилиндрической формы (масса этого объема газа нам известна). $V=\pi\frac{D^2}{4}l=\frac{m}{\rho}$ — (1). Скорость течения углекислого газа v=l/t. Из уравнения (1) найдем $l=\frac{4m}{\pi D^2\rho}$, тогда $v=\frac{4m}{\pi D^2\rho t}$; $v=0.12\,\mathrm{m/c}$.

4.2. В дне цилиндрического сосуда диаметром D=0.5 м имеется круглое отверстие диаметром d=1 см. Найти зависимость скорости понижения уровня воды в сосуде от высоты h этого уровня. Найти значение этой скорости для высоты h=0.2 м.

Решение:

По теореме Бернулли $\frac{\rho v_1^2}{2} + \rho g h_2 = \frac{\rho v_2^2}{2}$ или $v_1^2 + 2g h = v_2^2$ — (1), где v_1 — скорость понижения уровня воды в сосуде, v_2 — скорость вытекания воды из отверстия. В силу неразрывности струи $v_1 S_1 = v_2 S_2$, откуда $v_2 = \frac{v_1 S_1}{S_2}$ — (2), где S_1 — площадь поперечного сечения сосуда, S_2 —

площадь поперечного сечения отверстия. Подставляя (2) в (1), получим $v_1=\frac{S_2\sqrt{2gh}}{\sqrt{S_1^2-S_2^2}}$. Так как $S_1=\frac{\pi D^2}{4}$ и $S_2=\frac{\pi d^2}{4}$, то $v_1=\frac{d^2\sqrt{2gh}}{\sqrt{D^4-d^4}}$. Поскольку $d^4<< D^4$, то $v_1\approx\frac{d^2}{D^2}\sqrt{2gh}$. При h=0,2 м скорость $v_1=0,8$ мм/с.

4.3. На столе стоит сосуд с водой, в боковой поверхности которого имеется малое отверстие, расположенное на расстоянии h_1 от дна сосуда и на расстоянии h_2 от уровня воды. Уровень воды в сосуде поддерживается постоянным. На каком расстоянии l от сосуда (по горизонтали) струя воды падает на стол в случае, если: а) $h_1 = 25 \, \text{см}$, $h_2 = 16 \, \text{cm}$; б) $h_1 = 16 \, \text{cm}$, $h_2 = 25 \, \text{cm}$?

Решение:

182

По теореме Бернулли $\frac{\rho v_1^2}{2} + \rho g h_2 = \frac{\rho v_2^2}{2}$ или $v_1^2 + 2g h = v_2^2$ — (1), где v_1 — скорость понижения уровня воды в сосуде, v_2 — скорость вытекания воды из отверстия. По условию $v_1 = 0$, тогда $v_2 = \sqrt{2gh_2}$. Высота $h_1 = \frac{gt^2}{2}$. Откуда время $t = \sqrt{2h_1/g}$, тогда расстояние $l = v_2 t$; $l = \sqrt{4gh_1h_2/g} = 2\sqrt{h_1h_2}$; l = 0.4 м.

4.4. Сосуд, наполненный водой, сообщается с атмосферой через стекляниую трубку, закрепленную в горлышке сосуда. Кран K находится на расстоянии $h_2=2$ см от дна сосуда. Найти скорость v вытекания воды из крана в случае, если расстояние между нижним концом трубки и дном сосуда: а) $h_1=2$ см; б) $h_1=7.5$ см; в) $h_1=10$ см.

Решение:

По закону сохранения энергии $W_{\rm II} = W_{\rm K}$, где $W_{\rm II} = mg\Delta h = mg \times \times \left(h_{\rm I} - h_2\right)$ — потснциальная энергия водного столба над краном. $W_{\rm K} = \frac{mv^2}{2}$ — кинетическая энергия

вытекающей воды. $mg(h_1 - h_2) = \frac{mv^2}{2}$,

отсюда
$$v^2=2g(h_1-h_2)$$
 и $v=\sqrt{2g(h_1-h_2)}$. а) При $h_1=0.02$ м, $h_1=h_2$, следовательно, $\Delta h=0$ и $v=0$. б) При $h_1=0.075$ м, $v=1.04$ м/с. в) При $h_1=0.1$ м, $v=1.25$ м/с.

4.5. Цилиндрической бак высотой h=1 м наполнен до краев водой. За какое время t вся вода выльется через отверстие, расположенное у дна бака, если площадь S_2 поперечного сечения отверстия в 400 раз меньше площади поперечного сечения бака? Сравнить это время с тем, которое понадобилось бы для вытекания того же объема воды, если бы уровень воды в баке поддерживался постоянным на высоте h=1 м от отверстия.

Решение:

В задаче 4.2 была получена формула, выражающая скорость понижения уровня воды в баке $v_1 = \frac{S_2 \sqrt{2gx}}{\sqrt{S_*^2 - S_2^2}}$. Здесь

x — переменный уровень воды в баке. За время dt уровень воды в баке понизится на

$$dx = v \cdot dt = \frac{S_2 \sqrt{2g}}{\sqrt{S_1^2 - S_2^2}} \sqrt{x} dt$$
. Решаем это уравнение:

$$t = \frac{\sqrt{S_1^2 - S_2^2}}{S_2 \sqrt{2g}} \int_0^h \frac{dx}{\sqrt{x}} \; ; \quad t = \frac{\sqrt{S_1^2 - S_2^2}}{S_2 \sqrt{2g}} 2\sqrt{x} \Big|_0^h \; ; \quad t = \frac{2\sqrt{h}\sqrt{S_1^2 - S_2^2}}{S_2 \sqrt{2g}} \; .$$

Подставив числовые данные, получим t = 3 мин.

4.6. В сосуд льется вода, причем за единицу времени наливается объем воды $V_{r} = 0.2 \text{ л/c}$. Каким должен быть диаметр d отверстия в дне сосуда, чтобы вода в нем держалась на постоянном уровие h = 8.3 см?

Решение:

Чтобы вода в сосуде была на постоянном уровне, необходимо, чтобы за одинаковые промежутки времени втекало и вытекало одинаковое коли чество воды. $V_t = \frac{V}{t} = \frac{lS}{t} = vS$, отсюда $v = \frac{V_t}{S}$. Т. к. $S = \frac{\pi d^2}{4}$

отсюда
$$v = \frac{V_I}{S}$$
. Т. к. $S = \frac{\pi d^2}{4}$

площадь поперечного сечения

отверстия, то скорость вытекания жидкости $v = \frac{4V_I}{\pi d^2}$. Из

уравнения Бернулли $\frac{\rho v^2}{2} = \rho g h$, отсюда $v = \sqrt{2gh}$. Тогда $\sqrt{2gh} = \frac{4V_t}{\pi d^2}$; $d^2 = \frac{4V_t}{\pi \sqrt{2gh}}$; $d = \sqrt{\frac{4V_t}{\pi \sqrt{2gh}}} = 1.4 \text{ cm.}$

4.7. Какое давление p создает компрессор в краскопульте, если струя жидкой краски вылетает из него со скоростью v = 25 м/c? Плотность краски $\rho = 0.8 \cdot 10^3 \text{ кг/м}^3$.

Решение:

Бернулли для установившегося движения Уравнение идеальной несжимаемой жидкости $p + \frac{\rho v^2}{2} + \rho g h = const$.

В нашем случае при h = 0, $p = \frac{\rho v^2}{2} = 250$ кПа.

4.8. По горизонтальный трубе AB течет жидкость. Разность уровней этой жидкости в трубах a и b равна $\Delta h = 10$ см. Диаметры трубок a и b одинаковы. Найти скорость v течен жидкости в трубе AB

Решение:

Т. к. диаметры трубок $D_a = D_b$, то площади поперечного сечения $S_a = S_b$ — (1). В силу неразрывности струи $v_a S_a = v_b S_b$ — (2). Из (1) и (2) $v_a = v_b = v$. По формуле Торричелли $\rho g a + \frac{\rho v^2}{2} = v_b S_b$

= $\rho g b$, отсюда $v^2/2 = g b - g a = g (b - a)$. Т. к. $b - a = \Delta h$, то $v^2 = 2g\Delta h$ и $v = \sqrt{2g\Delta h} = 1,4$ м/с.

4.9. Воздух продувается через трубку AB. За единицу времени через трубку AB протекает объем воздуха $V_i = 5$ л/мин. Площадь поперечного сечения широкой части трубки AB равна $S_1 = 2$ см², а узкой ее части и трубки abc равна $S_2 = 0.5$ см². Найти разность уровней Δh воды, налитой в трубку abc. Плотность воздуха $\rho = 1.32$ кг/м³.

Решение:

Объем воздуха, протекающий за единицу времени через A_{-} трубку AB, $V_{t} = \frac{V}{t} = \frac{IS}{t} = vS$, a

отсюда $v = \frac{V_l}{S}$, где l — длина

струи, t — время, v = l/t — скорость движения воздуха.

$$v_1 = \frac{V_t}{S_1}$$
; $v_2 = \frac{V_t}{S_2}$; $V_t = 8.33 \cdot 10^{-6} \,\mathrm{m}^3/\mathrm{c}$. Из формулы

Торричелли имеем
$$\frac{\rho_{\text{воз}}v_1^2}{2} + \rho_{\text{вод}}g\Delta h = \frac{\rho_{\text{воз}}v_2^2}{2}\,, \quad \text{откуда}$$

$$\Delta h = \frac{\rho_{\text{воз}}V_t^2}{2\rho_{\text{вод}}g} \left(\frac{1}{S_2^2} - \frac{1}{S_1^2}\right) = \frac{\rho_{\text{воз}}V_t^2\left(S_1^2 - S_2^2\right)}{2\rho_{\text{вод}}gS_1^2S_2^2} = 1,75 \text{ мм}.$$

4.10. Шарик всплывает с постоянной скоростью v в жидкости, плотность ρ_1 которой в 4 раза больше плоскости материала шарика. Во сколько раз сила трения $F_{\tau p}$, действующая на всплывающий шарик, больше силы тяжести mg, действующей на этот шарик?

Решение:

По второму закону Ньютона $F_{\Lambda}-mg-F_{\rm Tp}=0$ — (1), где $F_{\Lambda}=\rho_{\rm I}Vg$ — (2); $m=\rho_{\rm 2}V$ — (3). Из (3) $V=\frac{m}{\rho_{\rm 2}}$, тогда $F_{\Lambda}=4\rho_{\rm 2}\frac{m}{\rho_{\rm 2}}g=4mg$ — (4). Преобразуя (1) е учетом (4), получим $F_{\rm Tp}=3mg$ или $\frac{F_{\rm Tp}}{mg}=3$.

4.11. Какой наибольшей скорости v может достичь дождевая капля диаметром d = 0.3 мм, если динамическая вязкость воздуха $\eta = 1.2 \cdot 10^{-5}$ Па·с?

Решение:

Во время падения на каплю действуют две противоположно направленные силы. Сила тяжести $m\vec{g}$ и сила сопротивления воздуха \vec{F} (силу Архимеда не учитываем). При увеличении скорости падения сила сопротивления растет. Максимальной скорости капля достигнет, когда сила тяжести и сила сопротивления воздуха станут равны, F = mg. По закону Стокса $F = 6\pi \eta rv = 3\pi \eta dv$, тогда 186

$$3\pi\eta dv = mg$$
. Поскольку $m = \rho V = \rho \frac{\pi d^3}{6}$, где ρ — плотность воды, то $3\pi\eta dv = \rho g \frac{\pi d^2}{6}$, откуда $v = \frac{\rho g d^2}{18\eta}$; $v = 4.1$ м/с.

4.12. Стальной шарик диаметром $d=1\,\mathrm{mm}$ падает с постоянной скоростью $v=0.185\,\mathrm{cm/c}$ в большом сосуде, наполненном касторовым маслом. Найти динамическую вязкость η касторового масла.

Решение:

Поскольку шарик движется равномерно, то по второму закону Ньютона $mg-F_A-F=0$ — (1), где масса шарика $m=\rho_c V=\rho_c \frac{\pi d^3}{6}$ —(2); сила Архимеда $F_A=\rho_{\rm M} V g=\rho_{\rm M} g \times \frac{\pi d^3}{6}$ — (3); сила сопротивления масла $F=3\pi\eta dv$ — (4) по закону Стокса. Подставляя уравнения (2) — (4) в (1), после несложных преобразований получим $18\eta v=d^2g\times (\rho_c-\rho_{\rm M})$, откуда $\eta=\frac{d^2g(\rho_c-\rho_{\rm M})}{1000}$; $\eta=2\,{\rm \Pi a\cdot c.}$

4.13. Смесь свинцовых дробинок с диаметрами $d_1 = 3$ мм и $d_2 = 1$ мм опустили в бак с глицерином высотой h = 1 м. На сколько позже упадут на дно дробинки меньшего диаметра по сравнению с дробинками большего диаметра? Динамическая вязкость глицерина $\eta = 1,47$ Па·с.

Решение:

Считая движение дробинок равномерным, запишем второй закон Ньютона в общем случае $mg - F_{\Lambda} - F = 0$ — (1), где

масса дробинки $m = \rho_c V = \rho_c \pi d^3 / 6$ — (2); сила Архимеда $F_A = \rho_r V g = \rho_r g \frac{\pi d^3}{6}$ — (3); сила сопротивления глицерина $F = 3\pi \eta dv$ — (4) по закону Стокса. Подставив уравнение (2) — (4) в (1), после несложных преобразований получим $18\eta v = d^2 g (\rho_c - \rho_r)$ — (5). Здесь ρ — плотность свинца, ρ_r — плотность глицерина. При равномерном движении скорость $v = \frac{h}{t}$ — (6). Подставив уравнение (6) в (5), выразим время t за которое дробинка достигнет дна $t = \frac{18\eta h}{d^2 g (\rho_c - \rho_r)}$. Тогда $\Delta t = t_2 - t_1 = \frac{18\eta h}{g (\rho_c - \rho_r)}$; $\Delta t = 4$ мин.

4.14. Пробковый шарик радиусом r = 5 мм всплывает в сосуде, наполненном касторовым маслом. Найти динамическую и кинематическую вязкости касторового масла, если шарик всплывает с постоянной скоростью v = 3.5 см/с.

Решение:

Поскольку шарик движется равномерно, то по второму закону Ньютона $F_{\rm A}-F-mg=0$ — (1), где масса шарика $m=\rho_{\rm n}V=\rho_{\rm n}\frac{4\pi r^3}{3}$ — (2); сила Архимеда $F_{\rm A}=\rho_{\rm M}Vg=\rho_{\rm M}g\frac{4\pi r^3}{3}$ — (3); сила сопротивления масла $F=6\pi\eta rv$ — (4) по закону Стокса. Подставляя уравнения (2) — (4) в (1), после несложных преобразований получим $18\eta v=4r^2g(\rho_{\rm n}-\rho_{\rm M})$, откуда динамическая вязкость $\eta=\frac{2r^2g(\rho_{\rm n}-\rho_{\rm M})}{9v}$; $\eta=1.09\,{\rm Ta}\cdot{\rm c}$. Кинематическая вязкость масла $v=\eta/\rho_{\rm M}$; $v=12.1\,{\rm cm}^2/{\rm c}$.

4.15. В боковую поверхность цилиндрического сосуда радиусом R=2 см вставлен горизонтальный капилляр, внутренний радиус r=1 мм которого и длина l=2 см. В сосуд налито касторовое масло, динамическая вязкость которого $\eta=1,2$ Па·с. Найти зависимость скорости ν понижения уровня касторового масла в сосуде от высоты h этого уровня над капилляром. Найти значение этой скорости при h=26 см.

Решение:

Объем масла, вытекающего за время t из сосуда через капилляр, определяется формулой Пуазейля: $V = \frac{\pi r^4 t \Delta P}{8l\eta}$ — (1), где разность давлений на концах капилляра $\Delta P = \rho g h$ — (2). С другой стороны, $V = S' v' t = \pi r^2 v' t$ — (3), где v' — скорость протекания масла через капилляр. Решая совместно (1) — (3), найдем $v' = \frac{r^2 \rho g h}{8l\eta}$. В силу неразрывности струи v' S' = v S, где S — площадь поперечного сечения сосуда, отсюда $v = \frac{v' S'}{S} = \frac{v' r^2}{R^2}$. Окончательно имеем $v = \frac{r^4 \rho g h}{8l\eta R^2}$. При h = 0.26 м скорость $v = 3 \cdot 10^{-5}$ м/с.

4.16. В боковую поверхность сосуда вставлен горизонтальный капилляр, внутренний радиус которого r=1 мм и длина l=1.5 см. В сосуд налит глицерин, динамическая вязкость которого $\eta=1.0$ Па·с. Уровень глицерина в сосуде поддерживается постоянным на высоте h=0.18 м выше капилляра. Какое время потребуется на то, чтобы из капилляра вытек объем глицерина V=5 см³?

Решение:

Объем глицерина, вытекающего за время t из сосуда через капилляр, определяется формулой Пуазейля

$$V = \frac{\pi r^4 t \Delta P}{8l \, \eta}$$
 — (1). Разность давлений на концах капилляра обусловлена гидростатическим давлением жидкости, $\Delta P = \rho g h$ — (2). Подставив (2) в (1), выразим t : $t = \frac{8V l \, \eta}{\pi r^4 \, \rho g h}$; $t = 1,5$ мин.

4.17. На столе стоит сосуд, в боковую поверхность которого вставлен горизонтальный капилляр на высоте $h_1 = 5$ см от дна сосуда. Внутренний радиус капилляра $r = 1 \,\mathrm{mm}$ и длина $l = 1 \,\mathrm{cm}$. машинное масло, плотность сосуд налито $ho = 0.9 \cdot 10^3 \, {\rm kr/m}^3$ и динамическая вязкость $\eta = 0.5 \, {\rm Ha\cdot c.}$ Уровень масла в сосуде поддерживается постоянным на высоте $h_2 = 50$ см выше капилляра. На каком расстоянии L от конца капилляра (по горизонтали) струя масла падает на стол?

Решение: По формуле Пуазейля $V = \frac{\pi r^4 t \Delta p}{8/n}$, где по закону Паскаля давления $\Delta p = \rho g \Delta h = \rho g (h_2 - h_1).$ $V = \frac{\pi r^4 t \rho g(h_2 - h_1)}{8ln}$, отсюда $V_t = \frac{V}{t} = \frac{\pi r^4 \rho g(h_2 - h_1)}{8ln}$. С другой стороны, $V_t = vS = v\pi r^2$ (см. задачи 4.6 и 4.9), следовательно, $v\pi r^2 = \frac{\pi r^4 \rho g(h_2 - h_1)}{8/n}$; $v = \frac{r^2 \rho g(h_2 - h_1)}{9/m}$ скорость вытекания струи из капилляра. Далее рассматриваем движения струй вдоль осей х и у, как независимые, причем по x движение равномерное, а по y равнопеременное, поэтому x = vt и $y = h_1 - \frac{gt^2}{2}$. В точке падения струи на стол y=0, соответственно $h_1 - \frac{gt^2}{2} = 0$;

$$t^2=rac{2h_{
m l}}{g}\;;\;\;t=\sqrt{rac{2h_{
m l}}{g}}\;.\;$$
 Тогда струя падает на стол на рас-
стоянии $L=x=vt=rac{r^2
ho g(h_2-h_{
m l})}{8l\,\eta}\sqrt{rac{2h_{
m l}}{g}}=1\,{
m cm}.$

4.18. Стальной шарик падает в широком сосуде, наполненном трансформаторным маслом, плотность которого $\rho = 0.9 \cdot 10^3 \, \mathrm{kr/m}^3$ и динамическая вязкость $\eta = 0.8 \, \mathrm{Ha\cdot c.}$ Считая, что закон Стокса имеет место при числе Рейнольдса $Re \leq 0.5$ (если при вычислении Re в качестве величины D взять диаметр шарика), найти предельное значение диаметра D шарика.

Решение:

Поскольку шарик движется равномерно, то по второму закону Ньютона $mg - F_{\Lambda} - F = 0$ — (1), где масса шарика $m=
ho_{\rm c}V=
ho_{\rm c}rac{\pi cl^3}{\kappa}$ — (2); сила Архимеда $F_{\rm A}=
ho_{\scriptscriptstyle {
m M}}Vg=
ho_{\scriptscriptstyle {
m M}} imes$ $\times g \frac{\pi d^3}{6}$ — (3); сила сопротивления масла $F = 3\pi \eta dv$ — (4) по закону Стокса. Подставляя уравнения (2) — (4) в (1), после несложных преобразований получим $18\eta v = d^2g \times$ $\times (\rho_{\rm c} - \rho_{\rm M})$, откуда $v = \frac{D^2 g(\rho_{\rm c} - \rho_{\rm M})}{18n}$ — (5). Число Рейнольдса определяется соотношением $Re = \frac{Dv\rho_{\text{м}}}{n}$. условию $Re \le 0.5$, тогда $\frac{Dv\rho_{_{\rm M}}}{n} \le 0.5$ или, с учетом (5), $\frac{D^3 g(\rho_{\rm c} - \rho_{_{
m M}})
ho_{_{
m M}}}{18 n^2} \le 0,5$. Отсюда $D \le \sqrt[3]{\frac{0,5 \cdot 18 \eta^2}{g
ho_{_{
m M}}(
ho_{_{
m c}} -
ho_{_{
m M}})}}$. Предельный диаметр шарика $D = 4.6 \, \text{мм}$.

4.19. Считая, что ламинарность движения жидкости (или газа) в цилиндрической трубе сохраняется при числе Рейнольдса $Re \le 3000$ (если при вычислении Re в качестве величины D взять диаметр трубы), показать, что условия задачи 4.1 соответствуют ламинарному движению. Кинематическая вязкость газа $v = 1,33 \cdot 10^{-6} \text{ м}^2/\text{c}$.

Решение:

Поскольку число Рейнольдса можно задать соотношением $Re = \frac{Dv}{v}$, то ламинарность течения жидкости сохранится при выполнении условия: $\frac{Dv}{v} \le 3000$. Подставив данные задачи 4.1, получим $1805 \le 3000$. Мы получили верное неравенство, следовательно, условия задачи 4.1 соответствуют ламинарному движению.

4.20. Вода течет по трубе, причем за единицу времени через поперечное сечение трубы протекает объем воды $V_r = 200 \, \mathrm{cm}^3/\mathrm{c}$. Динамическая вязкость воды $\eta = 0.001 \, \mathrm{Ha} \cdot \mathrm{c}$. При каком предельном значении диаметра D трубы движение воды остается ламинарным? (Смотри условие предыдущей задачи.)

Решение:

Ламинарность течения жидкости сохранится при выполнении условия: $\frac{Dv\rho}{\eta} \le 3000$ — (1). Скорость течения воды $v = \frac{l}{t}$, в единицу времени v = l, где l — высота

цилиндра объемом V_t . $V_t = \frac{\pi D^2 l}{4}$, откуда $l = \frac{4V_t}{\pi D^2}$. Тогда $v = \frac{4V_t}{\pi D^2}$, а неравенство (1) можно переписать: $\frac{4V_t \rho}{\pi D \eta} \le 3000$, откуда $D \le \frac{4V_t \rho}{3000\pi \eta}$; $D \le 0.085$ м.