Hop y formación de las rutas usando rmación acerca de una ruta en internet y al PSI proveedor. os: identificador,, más
rmación acerca de una ruta en internet y al PSI proveedor.
al PSI proveedor. s: identificador,, más
s: identificador,, más
r LANs de ordenadores y redes de
orsales, enrutadores de bode de sistema
ser: de información de los enrutadores de un área.
nlace los enrutadores vecinos deben
áscara
111111 11111111 11111100 00000000
111111 11111111 11110000 00000000
4.24.10.5. ¿Por qué línea de salida se
4.24.10.5. ¿Por qué línea de salida se
4.24.10.5. ¿Por qué línea de salida se 35.115 de abajo. (la tabla se indexa desde un mensaje con IP de destino 180.20.35.1 puerto de la fila número:
4.24.10.5. ¿Por qué línea de salida se 35.115 de abajo. (la tabla se indexa desde un mensaje con IP de destino 180.20.35.1
i

Ejercicio 3: (Capa de Enlace) Asuma A, B y C son nodos IEEE 802.11ac. Se transmite una trama de A hacia B, y una de B a C en modo DCF con RTS/CTS. El nodo A gana la disputa inicial. a) Haga una línea de tiempo con el intercambio de mensajes y su duración, b) Calcule la tasa de datos efectiva en Mbps y la eficiencia desde la perspectiva A→B y de B→C (*) para todo el período de conversación.

- Tasa: 1 Mbit/s (control) y 433 Mbit/s (datos).
- Trama de datos: A→B 1500 Bytes, B→C 100 Bytes.
- Trama de control: 20B (RTS), 14B (CTS) y 14B (ACK).
- Tiempos SIFS: 28 μs y DIFS: 128 μs .
- Tasa de datos efectiva perspectiva $A \rightarrow B$
- Tasa de datos efectiva perspectiva B→ C
- Diagrama y cálculos:

(*) La pregunta es cuántos Mbps perciben las aplicaciones corriendo en los nodos considerando el tiempo desde el inicio del primer RTS A→B hasta la recepción del último ACK C→B, y que porcentaje representa de la tasa de datos teórica.

Mbps (Eficiencia: _____%)
Mbps (Eficiencia: _____%)

Ejercicio 4: (Capa Física) Indique si las siguientes sentencias son Verdadero (V) o Falso (F) y justifique o profundice en no más de una sola frase.
a) La capa de enlace 802.11 implementa control de flujo con Go-back N.
b) Ethernet utiliza CSMA/CA mientras que 802.11 usa CSMA/CD.
c) A menor cantidad bits por símbolo de modulación, mayor es la chance de encontrar un error en los mismos.
d) En escaneo activo el nodo envía una trama de prueba que sólo es respondida por el AP más cercano.
e) En el modo PCF, el tiempo en el medio se divide entre PCF (sin disputa) y DCF (con disputa).
f) En 3G (CDMA) se requiere sincronismo entre la base y el móvil, pero no control de potencia.
g) En LTE, 4G, la voz se transmite por medio de IP, pero los datos de control usan otro protocolo de red específico de LTE.