3.9.13 Lemma. Jede absolut Konvergente Reihe ist auch
Konvergen.
Beweis. Laut Voraussetzung und gemeiß Lemma 3.9.11 gibt es
20 jedem ϵ > 0 ein N ϵ N, sodass $\Sigma_{k=m+1}$ $ a_k $ =
Zn=m=1 ax < e für alle n > m > N. Der Betrag bei lax
Reine, land Definition 3.9.12, ausmacht. Die Gleichheit gilt,
weil, wenn $a_k \in \mathbb{R}$, $\forall k \in \mathbb{N}$, $ a_1 + a_2 + = a_1 +$
laz +, da die an "nicht positiver" werden können, als
sie bereits sind, und wenn au e C, YKEN, au: * * xx + yui
dann auch Vxx2 + yx2 > 0, VKEN ist und die Betragsstriche
and dawn redundant and. De Ungleichheit folgt tatsachlich
aus Lemma 3.9.11, also (3.14)
$\forall \epsilon > 0 \exists N : \sum a_{\kappa} \leq \epsilon \text{ für alle } n > m \geq N.$
Daravs und aus der Dreiecksungleichung erhält man
$\left \begin{array}{c} n \\ \sum a_{\kappa} \right \leq \sum a_{\kappa} \leq \varepsilon.$ $k = m + i \qquad k = m + i$
Hier wird sie eben mehrmals angewendet. Wieder wegen. Lemma 3.9.11 Konvergiert damit die Reihe. Ok.
Johnson J. I. II Konvagiar Coomic One Regine . On.