1 Задание 3

1.1 Задача 1

Рассмотрим пример автоматов с картинок.

По предложенному способу построения автомата, получаем автомат:

Можно заметить, что слово ab не будет принято этим автоматом, т.к. сначала он перейдет в состояние (q_0, d_1) , из которого нет перехода по b. Следовательно слово ab не будет принято, хотя оно распознается первым автоматом, как валидное.

Поэтому ответ: Нет, неверно.

1 TPЯП

1.2 Задача 2

а) Докажем это утверждение по индукции,

База для $|\omega|=0$. Автомат должен распознавать слово, поэтому у него должно быть хотя бы одно принимающее состояние.

 $|\omega|=1$. Автомат для этого случая строится тривиально. Рассмотрим суффикс а. По букве а он переходит в принимающее состояния, по букве b остается в начальном. Из принимающего по букве а остается в принимающем, по букве b возвращается в начальное. База доказана.

Тогда для $|\omega|$ = n. По предположению нам нужно n состояний автомат. У нас появилась еще одна буква, по которой должен вести в новое состояние, иначе если оно ведет уже которое было, то можно будет привести контрпример с длиной суффикса меньше, чем $|\omega|$.

Доказано.

б) Построим такой автомат \mathcal{A} . $Q = \{q_0, q_1, ..., q_n\}$ $F = q_n, q_0$ - начальное состояние. А алфавит выберем $\Sigma = \{0,1\}$ между ним и алфавитом $\Sigma = \{a,b\}$ можно построить биекцию. Суффикс выглядит так: $m_{[0]}m_{[1]}...m_{[n-1]}$ Функция перехода будет устроена так: $\delta(q_0, \overline{m_{[0]}}) = q_0$

$$\delta(q_i, m_{[i]}) = q_{i+1}$$

$$\delta(q_i, \overline{m_{[i]}}) = q_k$$

Определим, что такое q_k . Пусть мы считали г букв, тогда мы этот массив из г букв сравниваем с суффиксом m, ища максимальное вхождение этого в массив в начало нашего суффикса. Сравнивая наши буквы массива и суффикса следующим образом: последнюю букву массива с первой буквы суффикса, предпоследнюю букву со второй буквой суффикса. Получаем, что k это позиция, до которой есть вхождение в суффикс k.

Теперь докажем, что автомат принимет слова с суффиксом m, а других не принимает.

Пусть автомат находится находится в q_i , то принимаю букву $m_{[i+1]}$ он переходит в состояние q_{i+1} , это следует из определения функции δ . Таким образом, принимая последовательно буквы $m_{[i+1]},...,m_{[n]}$, автомат перейдет в принимающее состояние. Если в состоянии q_i приходит $\overline{m_{[i+1]}}$ или в принимающем состоянии приходит еще одна буква, то автомат ищет максимальное наложение слова на суффикс. Тогда автомат переходит в новое состояние q_{l+1} и продолжает поиск считывание букв. Если подано слово без суффикса m, то автомат не дойдет до принимающешго состояния q_n , следует из определения функции перехода.

Доказано.

2 ТРЯП

1.3 Задача 3.

Можем представить это язык в виде: $(a|b)^{n-i}$ а $(a|b)^{i-1}$. Можем представить это слово, как суффикс, у которого есть а на n-i+1 позиции. Тогда получаем, что у нас 2^{i-1} различных состояний после а и 2^{n-i} различных состояний до а. Получаем количество различных суффиксов, которые мы можем сотавить будет равно $2^{n-i} \cdot 1 \cdot 2^{i-1} = 2^{n-1}$. По доказанной задаче 2 на каждый суффикс приходится n+1 состояние. И тогда получаем $2^{n-1} \cdot (n+1)$.

 $2^n \le 2^{n-1} \cdot (n+1)$, а это верно для всех $1 \le n$, а это верно из условия задачи.

А по условию задачи у нас i=n, поэтому у нас PB заменяется на $(a|b)^*$ а $(a|b)^{n-1}$, а сам вывод остается таким же. Доказано.

3 ТРЯП