教養物理化学

松本 正和

大学院自然科学研究科

この講義について

対象

理系学部にいて、将来化学に関連する 研究をする可能性があり、化学の基礎 を身につけたい人

● 目標

基本的な化学の語彙を身につける

講義の進め方

- 小テストと出席
- スライドと板書
- 数式と計算

教科書

化学の基礎 竹内敬人著 岩波書店 2800円ISBN4-00-007981-6

抽選

- ランダムに2桁の数字を黒板に書く。
- 学籍番号の下2桁が一致する人は、 名簿に記入する。
- 約60人で締切。

今日の目標

- 序: 化学とはどんな学問か
- 原子、分子、元素
- 物質量の計算

化学とは

●数学、物理、化学、生物

生物+物理+化学??

物理と化学の違い

- 物理は物体を扱い、化学は物質を扱う?
- 化学結合や化学反応を扱うのが化学?

$$2H_2 + O_2 \rightarrow 2H_2O$$

● 分子スケールのできごとを考える学問

原子、分子

http://www.sci.osaka-cu.ac.jp/phys/crys/ice/lect7.html

化学の祖先は?

- 化学 = CHEMistry
- 錬金術 = alCHEMy
- 冶金術
- 薬学

錬金術Alchemy

Picture from http://embryology.med.unsw.edu.au/History/page2001.htm

錬金術から化学へ

- 近代の物理や数学の確立
 - デカルト(1596-1650)
 - ニュートン(1642-1727)
- 分析技術の向上
 - 水銀温度計(I7I4)、メートル法(I792)

気体反応

$$2H_2O \rightarrow 2H_2 + O_2$$

 $2H_2 + O_2 \rightarrow 2H_2O$

"原子論"

- 反応によって質量は変化しない。(ラボアジエ)
- 反応する物質の質量比は簡単な整数比になる(ドルトン)
- 反応する気体の体積の比が非常に単純な整数比になる。 (ゲイ・リュサック)
- 同温度、同圧力、同体積の気体に含まれる分子数は同一 (アボガドロ)

化学

原子

• 物質を作る最小単位の粒子

● 原子 = 原子核 + 電子

● 中性子 + 陽子

原子のかたち

原子核の直径は原子の直径の1/10000

原子の成分

質量

電荷

[amu]

[e]

陽子

+|

中性子

0

電子

1/1800

__

元素番号A

- 陽子の個数。
- 原子の化学的な性質を決める。

元素

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

	1 H														2 He		
3 Li	4 Be											5 B	6 C	7 N	8	9 F	10 Ne
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	CI	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87 Fr	88 Ra		104 Du	105 Jo	106 Rf	107 Bh	108 Ha	109 Mt									

57 La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
89 Ac														103 Lr

質量数Z

- 中性子と陽子の個数の和。
- 原子核の質量(≒原子の質量)を示す。

元素記号

質量数 Z 原子番号 A

⁴He ⁴⁰Ar

練習問題

- 原子核の大きさを野球のボール(直径 7cm)とすると、原子の大きさは何に例えられるか。
- 鉄56の詳しい元素記号を書く。 (鉄の元素記号はFe、原子番号は26。)

指数表記

- \bullet 123456 = 1.23456×10⁵
- $6,000,000,000,000 = 6 \times 10^{12}$
- \bullet 0.00004 = 4 / 100000 = 4×10⁻⁵
- $(6 \times 10^{12}) \times (6 \times 10^{12}) = 36 \times 10^{24} = 3.6 \times 10^{25}$
- 精度、有効数字

練習問題

• $6.0 \times 10^3 + 1.2 \times 10^4 =$

● I0I325を、精度3桁の指数表記で表せ

同位体

- 中性子数だけが異なる原子。
- 核の中性子の個数が変わっても、化学的性質はほとんど変わらない。

原子量

- 炭素(陽子6、中性子6)の原子質量を12と し、それ以外の元素では炭素比で表す。
- 同位体がある場合は、同位体比で平均 した原子質量を原子量とする。

練習問題

 炭素の原子量を求めなさい。ただし、 同位体比は¹²Cが98.9%、¹³Cが1.1%。

元素、原子、単体

分子

http://book.geocities.jp/white_rime/bunshi.htm より転載

分子量

● 分子に含まれる原子の原子量の和。

アボガドロ数

● 桁数が大きすぎると何かと不便!

練習問題

● 2モルの炭素I2の質量は()gで、 その中には()個の原子が含まれている。

まとめ

- 原子、分子とは何か。
- 原子の構造と大きさ
- 原子量、分子量
- アボガドロ数、モル

まとめの問題