- 6. Para cada um dos conjuntos do Exercício 5, determine se {2} é um elemento do conjunto.
- Determine se cada uma das proposições abaixo é verdadeira ou falsa.
 - a) 0 ∈ Ø
- b) $\emptyset \in \{0\}$
- **c**) {0} ⊂ Ø
- d) Ø ⊂ {0}
- e) $\{0\} \in \{0\}$
- f) {0} ⊂ {0}
- g) $\{\emptyset\} \subseteq \{\emptyset\}$
- Determine se cada uma das proposições abaixo é verdadeira ou falsa.
 - a) $\emptyset \in \{\emptyset\}$
- b) $\emptyset \in \{\emptyset, \{\emptyset\}\}$
- c) $\{\emptyset\} \in \{\emptyset\}$
- d) $\{\emptyset\} \in \{\{\emptyset\}\}\$
- e) $\{\emptyset\} \subset \{\emptyset, \{\emptyset\}\}$
- f) $\{\{\emptyset\}\}\subset\{\emptyset,\{\emptyset\}\}$
- g) $\{\{\emptyset\}\}\subset\{\{\emptyset\},\{\emptyset\}\}\}$
- Determine se cada uma das proposições abaixo é verdadeira ou falsa.
 - a) $x \in \{x\}$
- $\mathbf{b)} \ \ \{x\} \subseteq \{x\}$
- c) $\{x\} \in \{x\}$
- d) $\{x\} \in \{\{x\}\}$ e) $\emptyset \subseteq \{x\}$
- e) $\emptyset \subseteq \{x\}$ f) $\emptyset \in \{x\}$
- Use um diagrama de Venn para ilustrar o subconjunto dos números inteiros ímpares no conjunto de todos os números inteiros positivos não excedentes a 10.
- 11. Use um diagrama de Venn para ilustrar o conjunto de todos os meses do ano cujos nomes não contêm a letra R no conjunto de todos os meses do ano.
- 12. Use um diagrama de Venn para ilustrar a relação $A\subseteq B$ e $B\subseteq C$.
- 13. Use um diagrama de Venn para ilustrar a relação $A \subset B$ e $B \subset C$.
- Use um diagrama de Venn para ilustrar a relação A ⊂ B e A ⊂ C.
- $A \subset C$. 15. Suponha que A, $B \in C$ sejam conjuntos, tal que $A \subseteq B$ e
- **16.** Encontre dois conjuntos $A \in B$, tal que $A \in B$ e $A \subseteq B$.
- Oual é a cardinalidade de cada um dos conjuntos abaixo?
 - a) {a}
 - **b)** {{a}}
 - c) $\{a, \{a\}\}$
 - **d)** $\{a, \{a\}, \{a, \{a\}\}\}$

 $B \subseteq C$. Mostre que $A \subseteq C$.

- 18. Qual é a cardinalidade de cada um dos conjuntos abaixo?
 - a) Ø
- **b)** {Ø}
- c) {Ø, {Ø}}}
- **d)** $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$
- 19. Encontre o conjunto de partes para cada um dos conjuntos abaixo, em que a e b são elementos distintos.
 - a) {a}
 - **b)** $\{a, b\}$
 - c) {Ø, {Ø}}
- 20. Você pode concluir que A = B se A e B são dois conjuntos com o mesmo conjunto de partes?
- 21. Quantos elementos cada um dos conjuntos abaixo têm, se a e b são elementos distintos?
 - a) $P(\{a, b, \{a, b\}\})$
 - **b)** $P(\{\emptyset, a, \{a\}, \{\{a\}\}\})$
 - c) $P(P(\emptyset))$

- Determine se cada um dos conjuntos abaixo é o conjunto de partes de um conjunto, em que a e b são elementos distintos.
 - **a)** \emptyset **b)** $\{\emptyset, \{a\}\}$
 - **c)** $\{\emptyset, \{a\}, \{\emptyset, a\}\}\$ **d)** $\{\emptyset, \{a\}, \{b\}, \{a, b\}\}\$
- 23. Considere $A = \{a, b, c, d\}$ e $B = \{y, z\}$. Encontre a) $A \times B$ b) $B \times A$
- 24. Qual o produto cartesiano de A × B, em que A é o conjunto de cursos oferecidos pelo departamento de matemática em uma universidade e B, o conjunto de professores de matemática nessa universidade?
- 25. Qual o produto cartesiano de A × B × C, em que A é o conjunto de todas as empresas aéreas e B e C são o conjunto de todas as cidades dos Estados Unidos?
- 26. Suponha que A × B = Ø, em que A e B são conjuntos. O que você pode concluir?
- 27. Considere A como um conjunto. Mostre que $\emptyset \times A = A \times \emptyset = \emptyset$.
- **28.** Considere $A = \{a, b, c\}, B = \{x, y\} \in C = \{0, 1\}$. Encontre **a)** $A \times B \times C$ **b)** $C \times B \times A$
 - c) $C \times A \times B$
- d) $B \times B \times B$
- **29.** Quantos elementos diferentes $A \times B$ tem, se A tem m elementos e B, n elementos?
- **30.** Mostre que $A \times B \neq B \times A$, em que $A \in B$ são conjuntos não vazios, a menos que A = B.
- 31. Explique por que $A \times B \times C$ e $(A \times B) \times C$ não são iguais.
- Explique por que (A × B) × (C × D) e A × (B × C) × D não são iguais.
- Transcreva cada uma das quantificações abaixo em português e determine seu valor-verdade.
 - a) $\forall x \in \mathbf{R} (x^2 \neq -1)$
- b) $\exists x \in \mathbf{Z} (x^2 = 2)$
- c) $\forall x \in \mathbf{Z} (x^2 > 0)$
- $\mathbf{d)} \quad \exists x \in \mathbf{R} \ (x^2 = x)$
- 34. Transcreva cada uma das quantificações abaixo em português e determine seu valor-verdade.
 - a) $\exists x \in \mathbf{R} \ (x^3 = -1)$
- $\mathbf{b)} \quad \exists x \in \mathbf{Z} \, (x + 1 > x)$
- c) $\forall x \in \mathbb{Z} (x-1 \in \mathbb{Z})$
- d) $\forall x \in \mathbf{Z} (x^2 \in \mathbf{Z})$
- 35. Encontre o conjunto-verdade de cada um dos predicados abaixo, em que o domínio é o conjunto dos números inteiros.
 - a) P(x): " $x^2 < 3$ "
 - **b)** Q(x): " $x^2 > x$ "
 - c) R(x): "2x + 1 = 0"
- 36. Encontre o conjunto-verdade de cada um dos predicados abaixo, em que o domínio é o conjunto dos números inteiros.
 - a) P(x): " $x^3 \ge 1$ "
 - **b)** Q(x): " $x^2 = 2$ "
 - c) R(x): " $x < x^2$ "
- *37. Para pares ordenados serem bem definidos, precisamos da propriedade de igualdade que diz que dois pares ordenados são iguais se e somente se os primeiros elementos dos pares forem iguais e os segundos elementos também. Surpreendentemente, em vez de o par ordenado ser tomado como um conceito primitivo, podemos construir pares ordenados usando noções básicas da teoria dos conjuntos. Mostre que se nós definirmos o par ordenado (a, b) como {{a}, {b}, {b}}, então (a, b) = (c, d) se e somente se a = c e b = d. [Dica: