Laboratory Journal

Paul Mendoza

paul.m.mendoza@gmail.com

This notebook begins 6 October 2016

Thursday, 6 October 2016			
	8:30	Dam - 11:00 am	
	1:30)pm - 3:30pm	1
	1	Isotopes we are looking for	1
	2	Experiment Notes	1
	3	Stock creation	2
Fri	_	7 October 2016	
		Dam - 12:00 am	_
		Opm - 4:00pm	4
	1	Stock creation	
	2	Preparation for Process 1	5
Sat		ay, 8 October 2016	
	10:0	00am - 2:00 pm	6
	1	Preparation for Process 1	6
Su	nday	, 9 October 2016	
	7:30) pm - 11:30 pm	8
	1	Preparation for Process 1	8
Mc	onda	y, 10 October 2016	
			10
	1	Process 1 Mistake experiment	10
	2	Counting for Process 1 Mistake experiment (Gamma)	
Tu	esda	y, 11 October 2016	
			13
	1	Counting for Process 1 Mistake experiment (Gamma)	
We	edne	sday, 12 October 2016	
		· · · · · · · · · · · · · · · · · · ·	15
	1		
Th	ursd	ay, 13 October 2016	
			17
	1	Counting for Process 1 Mistake experiment (Gamma)	17

2	Counting for Process 1 Mistake experiment (Alpha)	١7
Friday,	14 October 2016	
8:30	· · · · · · · · · · · · · · · · · · ·	١9
1	Counting for Process 1 Mistake experiment (Gamma)	19
2	Counting for Process 1 Mistake experiment (Alpha)	
3	Analysis for Process 1 Mistake (Gamma)	19
Monda		20
1	Analysis for Process 1 Mistake (Gamma)	20
Thursd	ay, 20 October 2016	22
1	Preparation for 3 Cycles	22
Friday,	21 October 2016	
9:30	Dam - 12:00 pm	
1:00) pm 6:00 pm	23
1	Preparation for 3 Cycles	23
2	Counting for Process 1 Mistake experiment (Alpha)	24
Saturda	ay, 22 October 2016	
3:30) pm - 3:45 pm	
8:00) pm - 8:30 pm	25
1	Preparation for 3 Cycles	25
Sunday	, 23 October 2016	26
1	Preparation for 3 Cycles	26
Monda	y, 24 October 2016	
	00 am - 12:00 pm	
3:00) pm - 8:00 pm	27
1	Preparation for 3 Cycles	27
2	Counting for Process 1 Mistake experiment (Alpha)	
3	Cycle experiment, replicate of 3	
4	Calculation Work	
Tuesda	y, 25 October 2016	
		30
1		30
$\frac{1}{2}$		30
3		31
4		32
Wedne	sday, 26 October 2016	
	•	33

1	Cycle experiment, replicate of 3	3
2	Contamination spill $10/25/16$	4
3	Details from research meeting	4
	day, 27 October 2016	
	0 am 3	
1	Cycle experiment, replicate of 3	6
Friday,	28 October 2016 3	7
1	Contamination spill $10/25/16$	7
2	Cycle experiment, replicate of 3	7
Monda	ay, 31 October 2016 3	8
1	Cycle experiment, replicate of 3	8
2	Contamination spill $10/25/16$	8
3	Minor Contamination of HPGe, found Monday 10/31/2016	
Tuesda	ay, 1 November 2016 4	0
1	Contamination spill $10/25/16$	
2	Minor Contamination of HPGe, found Monday 10/31/2016 4	
Wedne	esday, 2 November 2016 4	1
1	Cycle experiment, replicate of 3	
2	Details from research meeting	
Thurse	day, 3 November 2016 4	2
1	Cycle experiment, replicate of 3	2
2	Contamination spill 10/25/16	2
Friday	4 November 2016 4.	3
1	Cycle experiment, replicate of 3	3
2	Contamination spill 10/25/16	3
3	Cycle experiment, round 2, replicate of 3	3
Monda	ay, 7 November 2016 4	4
1	Cycle experiment, round 2, replicate of 3	
Tuesda	ay, 8 November 2016 4	7
1	Cycle experiment, round 2, replicate of 3	7
Wedne	esday, 9 November 2016 5	0
1	Cycle experiment, round 2, replicate of 3	
2	Details from research meeting	
Thurse	day, 10 November 2016 5	1
	Cycle experiment, round 2, replicate of 3	

2	Things to do for school	51
Friday	, 11 November 2016	52
1	Cycle experiment, round 2, replicate of 3	52
2	Things to do for school	52
Monda	ay, 14 November 2016	53
1	Cycle experiment, round 2, replicate of 3	53
Tuesd	ay, 15 November 2016	55
1	Cycle experiment, round 2, replicate of 3	55
2	Cycle experiment, round 2, replicate of 3, ALPHA preparation	55
3	Process Experiment (continuation from cycle experiment)	57
4	Cycle experiment, round 2, replicate of 3	60
Wedn	esday, 16 November 2016	61
1	Details from research meeting	61

Thursday, 6 October 2016 8:30am - 11:00 am 1:30pm - 3:30pm

1 Isotopes we are looking for

- Decay Monitors
 - $-\ ^{137}\mathrm{Cs}/^{133}\mathrm{Cs}$
- Burnup Monitor
 - $(^{154}Eu/^{153}Eu) [^{155}Eu]$
- Reactor type monitors
 - $(^{134}Cs/^{137}Cs)$
 - $-(^{150}\mathrm{Sm}/^{149}\mathrm{Sm})$
 - $-(^{242}Pu/^{239}Pu)$
 - $(^{135}Cs/^{137}Cs)$
 - $(^{136}Ba/^{138}Ba)$
- Isotope Solve list

$^{133}\mathrm{Cs}$	136 Ba	$^{153}\mathrm{Eu}$
$^{134}\mathrm{Cs}$	138 Ba	$^{154}\mathrm{Eu}$
$^{135}\mathrm{Cs}$	$^{149}\mathrm{Sm}$	239 Pu
$^{137}\mathrm{Cs}$	$^{150}\mathrm{Sm}$	$^{242}\mathrm{Pu}$

Table 1: Isotope solve list.

2 Experiment Notes

- Project Number: 504370-0001
- EHS Contact:

- d-imenchaca@tamu.edu
- -979-676-0590 For Dan
- 979-845-2132:General
- Files on computer saved in C:/Paul_Mendoza
- ¹⁵²Eu Liquid calibration source
 - Source 1577-22
 - $-497.0~{\rm nCi}$
 - Assy Date: 15 Feb 12
 - -1.00568g
- Stock HNO₃: Assuming Temp= $24.8+/-3 \rightarrow \boxed{Stock\ HNO_3}$
 - Molarity: 15.35 + /-0.13
 - pH: -1.186+/-0.004
 - Molality: 35.3+/-0.8
 - Wt Concentration: 69.0+/-0.5
 - Molar Mass: 63.0130+/-0.0012
 - Density: 1.402 + /-0.006
- Stock Iron Sulfamate $Fe(NH_2SO_3)_2 \rightarrow \boxed{Stock \ Fe(II)}$
 - Molarity: 2.302+/-0.009
 - Molality: 2.717+/-0.006
 - Wt Concentration : 40.26+/-0.05
 - Molar Mass: 248.022+/-0.017
 - Density: 1.418 + /-0.005

3 Stock creation

- Get stock solution from Troy room 18A, store near rad waste
- Grab 1000μ l pipett from glovebox
- Decontaminate with radic dump waste into glass aq rad outside glove box
- Practice pipetting 500μ l to glass vial setting $503~\mu$ l gives $500~\mu$ l
- Class/lunch Break
- Get alpha detector from Dr. Marianno

- Set up laboratory notebook
- Calculation To do calculation to determine the volumes needed for a final concentration of a particular volume, knowing the initial concentrations

$$V_2 = \frac{b_2 - \frac{M_1 b_1}{A}}{M_2 - \frac{M_1}{A}}$$
$$V_1 = \frac{b - BV_2}{A}$$

Where:

$$A = (1 - wt\%_1)\rho_1$$

$$B = (1 - wt\%_2)\rho_2$$

$$b_1 = (1 - wt\%_3)V_3\rho_3$$

$$b_2 = M_3V_3$$

With known Molarity and volume of a solution how much, and of what concentration do we need to combine with a second solution to get a final solution of known concentration and volume?

$$B = (1 - wt\%_3)V_3\rho_3 - (1 - wt\%_1)V_1\rho_!$$

$$A = M_3V_3 - M_1V_1$$

$$C = \frac{B}{A} = \frac{(1 - wt\%_2)\rho_2}{M_2}$$

Need iterative solution, choose:

$$M_2 = \frac{M_3 V_3 - M_1 V_1}{V_3 - V_1}$$
$$V_2 = V_3 - V_1$$

Use to determine molality $\to wt\%_2 \to \rho_2$. Then compare to C, iterate around the solution to find answer so that $C = \frac{(1-wt\%_2)\rho_2)}{M_2}$.

Friday, 7 October 2016 9:00am - 12:00 am 1:00pm - 4:00pm

1 Stock creation

- ✓ Program calculation for creation of stock some results shown below
- - Clean off and move leaded shielding in rad area to countertop next to fume-hood
 - Add diaper paper on countertop, and on shielding incase of contamination
 - Practice transfer

√ _

$$0.149+/\text{-}0.011 \text{ ml of } 15.43+/\text{-}0.06 \text{ M HNO}_3 \boxed{Stock\ HNO_3} \\ + \\ 1.91+/\text{-}0.08 \text{ ml of } 0.0+/\text{-}0 \text{ M solution } \boxed{DI\ Water} \\ = \\ 2.048+/\text{-}0.026 \text{ ml of } 1.12+/\text{-}0.08 \text{ M HNO}_3 \text{ solution } \boxed{\rightarrow Stock} \text{ (glass container)}$$

✓ -

- ✓ Put Source back in rad closet
- ☑ Clean up contamination added to pipette tip from transfer (for some reason, the contamination was added to the inside of the pipette itself, the tips used don't have the block, but still, none of the solution should have traveled up the shaft

- ☑ Dispose of diaper paper laid down for transfer (where the glass bottle was set down which contained closet solution, there was contamination (the outside of the bottle of the closet solution is contaminated)
- ✓ Move shielding back to where it was

2 Preparation for Process 1

- ☑ Count calibration standard Eu-152 in HPGe 3 hours 22 minutes at furtherest position from detector (26 cm)
 - Source 1577-22
 - 497.0 nCi
 - Assy Date: 15 Feb 12
 - 1.00568g
- Create Eu-152 Excel Counting sheet template for standards
- 🗹 Set up ROI (region of interest) file for Eu-152
- - Count lasted for 12 hours

Saturday, 8 October 2016 10:00am - 2:00 pm

✓ Finish background count, lasted 12 hours

1 Preparation for Process 1

centrifuging

- ✓ Remove 0.3 ml from Stock transfer to 1 for counting
 1 is a smaller tube, which will fit into a larger centrifuge tube for, well,
 - 1 tube cannot fit into centrifuge tube with white push cap (pushes on outside of tube), white push cap is necessary when votex mixing, so a blue push cap (pushes on inside of tube), was put on for counting, these smaller tubes will have to have two caps following them around, I can't wait till the second cycle when the bigger tubes will be used
 - \bullet Note for why smaller tubes are being used: when pipetting the smaller volume of 0.3 ml for aq/o phase separation it is much easier to have the smaller diameter tubes
 - Stock was removed from glovebox, and after was put into the safe
- Fix density calculation in code, was slightly wrong before, this means Stock and are slightly different from what they should be, but within error
- ✓ Calculation for creation of Fe(II) solution (next page)

$$V_1$$
 ml of $M_{1,Fe}$ Fe(II) in M_{1,HNO_3} HNO₃ + V_2 ml of $M_{2,Fe}$ Fe(II) in M_{2,HNO_3} HNO₃ = V_3 ml of $M_{3,Fe}$ Fe(II) in M_{3,HNO_3} HNO₃.

The knowns are:

$$M_{1,Fe}=2.302,~\rho_1=1.418,~M_{1,HNO_3}=0$$
 (Fe Stock soltuion) $M_{2,Fe}=0, \rho_2=\rho_{HNO_3}(M_{2,HNO_3})$ $V_3=4$ ml, $M_{3,Fe}=0.024,~M_{3,HNO_3}=4,~\rho_3=\rho_{HNO_3}(4M)$

Mols of Fe(II) constant:
$$V_1=\frac{M_{3,Fe}V_3}{M_{1,Fe}}=0.042$$

Mols of HNO₃ constant: $V_2=\frac{V_3M_{3,HNO_3}}{M_{2,HNO_3}}$
Mass Constant: $V_2=\frac{V_3\rho_3-V_1\rho_1}{\rho_2}$

Combine last two equations:
$$M_{2,HNO_3} - \frac{V_3 M_{3,HNO_3} \rho_2}{V_3 \rho_3 - V_1 \rho_1} = 0$$

Solve iteratively (where M_{2,HNO_3} determines ρ_2) with first guess of: $M_{2,HNO_3} = \frac{M_{3,HNO_3}V_3}{V_2}$

Sunday, 9 October 2016 7:30 pm - 11:30 pm

1 Preparation for Process 1

✓ Prepare for multi contact extraction and back extraction exp

- Make solution of 30 vol.% TBP with kerosene
- Make 40 ml of solution 4.06 M HNO₃ solution,
- Transfer two smaller vials (one for TBP phase), one for Fe phase, with two different lids into glovebox (with a larger vial to hold them in the centrifuge)
- Transfer two smaller vials with centrifuge vials for centrifuging, keep one with water 0.3 ml, and TBP mix 0.32 ml $\boxed{Vial~1~Budd}$, and the second with 1.2 ml of TBP mix and 1.25 ml water $\boxed{Vial~2~Budd}$
- Transfer Stock and $\boxed{1}$ to glovebox
- Transfer another vial to hold the Fe solution
- Make sure tweezers are in glovebox (they are) to remove smaller vials from centrifuge tubes
- Transfer slightly contaminated pipette to glovebox
- All above vials that would contain solution were rinsed with whatever they would hold for approximately 3 minutes

1 _

15+/-0.15 ml of TBP
$$\boxed{Stock\ TBP}$$
 + 35+/-0.35 ml of kerosene $\boxed{Stock\ kerosene}$ = 50+/-0.5 ml of 30 vol.% TBP. $\boxed{\rightarrow TBP}$

✓ _

$$10.579+/\text{-}0.011 \text{ ml of } 15.35+/\text{-}0.13 \text{ M HNO}_3 \boxed{Stock \ HNO_3} \\ + \\ 30.355+/\text{-}0.030 \text{ ml of } 0.0+/\text{-}0 \text{ M HNO}_3 \text{ solution } \boxed{DI \ Water} \\ = \\ 39.94+/\text{-}0.14 \text{ ml of } 4.07+/\text{-}0.04 \text{ M HNO}_3 \text{ solution } \boxed{\rightarrow Fe \ Prep}$$

To create an Fe solution for a back extraction, $Fe\ Prep$ should be combined in the following manner (Small portions created because this solution has a short half life with larger concentrations of HNO_3).

_ -

$$\begin{array}{c} 0.0417 + /\text{-}0.0018 \text{ ml of } 2.302 + /\text{-}0.009 \text{ M Fe(II) in } 0.0 + /\text{-}0 \text{ M HNO}_3 \\ & + \\ 3.941 + /\text{-}0.027 \text{ ml of } 0.0 + /\text{-}0 \text{ M Fe(II) in } 4.06 + /\text{-}0.05 \text{ M HNO}_3 \text{ solution } \\ & + \\ 4.000 + /\text{-}0.020 \text{ ml of } 0.0240 + /\text{-}0.0010 \text{ M Fe(II) in } 4.00 + /\text{-}0.05 \text{ M HNO}_3 \text{ solution } \\ & - \rightarrow Bk \ Ex \ Solution \end{array}$$

- Add Sodium Nitrite to 1, it will sit overnight, but it doesn't have to
 - Dropped 1, solution probably contaminated blue lid (crap), centrifuged on 1000 rpm for 2 minutes

Monday, 10 October 2016 12:30 pm - 4:30 pm

1 Process 1 Mistake experiment

✓ First contact - Extraction

- Add $0.32 \text{ ml } \boxed{TBP} \text{ to } \boxed{1}$
- Shake on Pulse Mode of 15 minutes on vortex mixer
- Change of plans (This occurred while sample settled for a bit while changes were implemented)
 - Put smaller tubes directly into centrifuge so we do not have to switch caps so often
 - Pulled out Vial 1 Budd and Vial 2 Budd Pulled out of glovebox the smaller tubes, changed their caps, labeled them, put back into glovebox (5-10 minutes)
- Centrifuge 1000 rpm for 10 minutes
- Attempted to pull out 0.30 ml of TBP phase
 - Utter Failure
 - Utter Failure again
 - Utter failure...difficult to pull out 0.3 ml and keep phases separate
- Added 1.08 ml \overline{TBP} to $\overline{1}$ (for 0.2 ml buffer)
 - All extractions at once (different from original exp)

$$p = \frac{1}{1 + \frac{1}{D} \frac{V_{aq}}{V_a}}$$

- $-V_o$ increased by fourfold
- Pipette slipped to 538 (instead of $540 \rightarrow 0.4\%$ increase in error)
- Vortex mix for 15 minutes on pulse mode
- Centrifuge 1000 cpm for 10 minutes
- Remove 1000 ml top phase (TBP), then remove another 200 ml of top phase (TBP) $\rightarrow 2$

 $0.0417 + /-0.0018 \text{ ml of } 2.302 + /-0.009 \text{ M Fe(II) in } 0.0 + /-0 \text{ M HNO}_3$ $Stock\ Fe(II)$

3.941+/-0.027~ml of 0.0+/-0 M Fe(II) in 4.06+/-0.05~M HNO $_3$ solution $\boxed{\textit{Fe Prep}}$

4.000+/-0.020 ml of 0.0240+/-0.0010 M Fe(II) in 4.00+/-0.05 M HNO₃ solution $\rightarrow Bk\ Ex\ Solution$.

- ☑ Back Extraction First Contact
 - Add 1.4 Bk Ex Solution to 2
 - Shake pulse mode for 15 minutes
 - Remove 1.2 ml of bottom phase (Fe(II)) $\rightarrow 3$
 - Lost two drops
 - While placing vial into centrifuge, cap shot off, spraying solution everywhere...great
- ☑ Back Extraction Second Contact
 - Add 1.2 $Bk \ Ex \ Solution$ to $\boxed{2}$
 - Shake pulse mode for 15 minutes
 - Remove 1.2 ml of bottom phase (Fe(II)) $\rightarrow 3$
- - Add 1.2 $Bk \ Ex \ Solution$ to $\boxed{2}$
 - Shake pulse mode for 15 minutes
 - Remove 1.2 ml of bottom phase (Fe(II)) $\rightarrow 3$

This experiment had sputtering of pipette at certain times.

2 Counting for Process 1 Mistake experiment (Gamma)

12

Figure 1: Process 1 Mess Up Experimental Overview

Tuesday, 11 October 2016 10:30 pm - 1:00 am

1 Counting for Process 1 Mistake experiment (Gamma)

Figure 1: First Three Counts

Figure 2: Second Three Counts

Wednesday, 12 October 2016 11:30 am - 1:30 pm

1 Counting for Process 1 Mistake experiment (Gamma)

- \square Finish count $\boxed{3P}$
- - Determined ¹³⁷Cs, ¹⁴⁴Ce, ¹⁰⁶Rh activities for first 4 counts Excel sheet
 - Used excel sheet from John Burns for efficiency calibration of Eu-152 source...will just use the sheet from now on
 - Also got from John, a templating file for GENIE, "AnalysisMG.tpi", which helps a lot for output from GENIE, again, something I do not want to modify
 - The template was in an algorithm from GENIE, had the following steps
 - 1. Peak Locate Unidentified 2nd Diff
 - Channels 1-16000
 - -2.50
 - 0.50 FWHM
 - Add to existing results
 - 2. Peak Area Sum/Non-linear LSQ Fit
 - Channels 1-16000
 - 4 channels, use fixed tail parameters
 - Channels, Step, 4.00, 4.00, 4.00
 - Output to screen and printer
 - 3. Reporting...
 - "AnalysisMG.tpi", "C:/GENIE2K/CTLFILES/"
 - PeakAnalysis, 1.000000
 - Start on: Page One, New File, μCi
- ✓ Notes for research meeting
 - Process dilutes by factor of 12, no matter what

- \bullet Concentrated stock by a factor of two
- Decreased initial volume
- Have to maintain, 0.2 ml excess volume to pipette from top
- \bullet Have to maintain, 0.1 ml excess from bottom
- \bullet Mistake in extraction all extractions at once

Thursday, 13 October 2016 12:30 am - 4:30 pm

1 Counting for Process 1 Mistake experiment (Gamma)

✓ Finish count 2W

2 Counting for Process 1 Mistake experiment (Alpha)

- ✓ Start count 2
- ✓ Fix alpha counter, reivew alpha counting
 - Alpha detector broken, fixed by plugging into proper port
 - Counted Calibration Alpha source
 - There are some details for determining what the alpha efficiency should be for the alpha detector, and I want to make sure I do it correctly, have not had time to look into it. I have a PDF file that shows what is in the sample
 - /notebook/Figures/Alpha_Copy.pdf
 - Pu-239 and Pu-240 are unresolved
 - Pu-238 and Am-241 are unresolved
 - Isotope Droduets Laboratories
 - 38.81 nCi
 - -1451-68-3
 - 1 Dec 10
 - Kevin also provided me with a Excel Sheet that does some of the calculations, probably will have to modify

- - From Jarrod's stock $10\mu l$ was dilluted to 1ml and 10 μl was taken

10
$$\mu$$
l of $Stock$ (4 M HNO₃) + 190 μ l of DI water (leftover in glovebox) 990 μ l of DI water (leftover in glovebox) = 0.2 ml of \sim 0 M HNO₃ 4 Dillution 1 ml of \sim 0 M HNO₃ \rightarrow 4 Dillution

- - Take 20 μ l of 4 Dillution, put onto concentric circle disk plates (innermost circle) $\boxed{D1}$
 - It should be noted that once an alpha source is placed on these disks and dried out, they look no different from other disks
 - Let dry in glovebox

Friday, 14 October 2016 8:30 am - 9:00 pm

Finish count 2

2 Counting for Process 1 Mistake experiment (Alpha)

 $\mathbf{\underline{\checkmark}}$ Finish count for $\boxed{D1}$

3 Analysis for Process 1 Mistake (Gamma)

☐ Attempt to understand our alpha efficiency (basically how much is in the calibration source)

Monday - Wednesday, 17-19 October 2016

1 Analysis for Process 1 Mistake (Gamma)

- \square Looked into alpha calibration math some more
- 🗹 Analyze and automate (somewhat) Gamma analysis
 - Program for pulling peak data from GENIE
 - Program for calculating efficiency from peak energy data using John Burn's Excel file
 - Determine Compton Edges for peaks

$$E_f = \frac{E_i}{1 + \frac{E_i}{511}(1 - \cos\theta)}$$

$$E_i = \frac{E_f}{1 - \frac{E_f}{511}(1 - \cos\theta)}$$

- Found that I do not have any back scatter peaks
- Program for finding sum peaks
 - Included backscatter peaks
 - Found some coincidence peaks, didn't know how to analyze
- Quantify most of the peaks in gamma spectrum (took the longest)

$$CPS = A\gamma\epsilon$$

$$CPS = A_1 \gamma_1 \epsilon_1 + A_2 \gamma_2 \epsilon_2$$

- Most peaks used the first equation, one peak had overlapping energies, so used the second equation, had to assume one of the activities
- Applied this analysis to 6 gamma spectrum (took second longest now more automated)
- Create graphics to help depict what work was actually done
- ✓ Note: Follow these steps when analyzing Gamma

- 1. Make sure Efficiency Excel Sheet is up to date
 - Run Eff Count and particular distance
 - Run: "Analyze Execute Sequence Analyze_Data" on GENIE
 - Save as a .PDF (not .pdf) file the spectra data : File Export Report to PDF from GENIE
 - Pull Peak information with Data_Pull.py program (direct program to directory with .PDF file)
 - Put data into spreed sheet "C:/Rad_Detection/Calibration/Gamma/Eff_cal_summary_Eu-152.xlsm"
- 2. Gather data in a similar manner as with the efficiency count will produce a bunch of plain Excel Sheets
- 3. Find the template from C:/Rad_Dection folder, update real Eff column with "Eff_Calc.py" (Make sure you copy paste energies into the gamma_energies file)
- 4. Copy this template over to the sheets you just made, and gamma analysis for the peaks will be complete
 - Note: Will have to copy, paste, remove peak columns that were not found or in excess from template, lining up everything and then delete was copied over, then paste again, janky, but not super slow - this list is a reminder for Paul, if anyone else is using this list, would probably need more explanation

✓ Notes for Research Meeting

- Showed activities for each of the solutions
- Found that D-values couldn't be found because of experimental setup
- Activity Balance seemed to match up
 - Although it wasn't perfect because the numbers weren't exactly close to zero, but within the error
- Results seemed to match up with previous experiment
- Moving Forward, John and Sunil and I discussed what these next experiments should entail

Thursday, 20 October 2016

1 Preparation for 3 Cycles

Note from John:

After the research meeting yesterday, I thought about Pauls project quite a bit and what the best path forward should be. In my opinion, it would be best for him to do a single-cycle (extraction/back extraction) in a replicate of 3 and determine the D-values for both the extraction and back extraction and show the reproducibility of this single-cycle experiment. I believe this is one of the goal you set for him as a part of his proposal. From there we can move into the whole process with confidence that we have consistent behavior for Cs-137 and Cs-134, as well as, a good understanding of the D-values for the isotopes of interest that can be seen by gamma-ray analysis. He and I spent some time this morning talking about this and we both agree that this week he will focus on completing all 3 single-cycle replicates, gamma counting all the solutions, alpha counting as many as possible (I do not believe alpha and gamma counts cannot be performed at the same time, as they both use the computer), and analyzing a majority of the data before next weeks research meeting. If you do not think this is plan of action in the best to pursue we can restructure it.

I spend the rest of the day doing homework, I aplogize, but it was due yesterday, I think its dumb that I should have to apologize for spending **ANY** time doing homework.

John also mentioned two good techniques, that should be noted:

- Pipetting with equal volumes using the plastic squish tops
 - Squeeze top while going through organic, suck up as much as possible
 - Then draw from top as well
- Measureing volume with pipette
 - The above technique would need some means for measuring volume using the pipette, you can vary the volume around what you thought you sucked up, and check if there is air at the bottom of the tip

Friday, 21 October 2016 9:30am - 12:00 pm 1:00 pm 6:00 pm

✓ Updated this lab notebook (most of this morning)

1 Preparation for 3 Cycles

- Practice pipetting out with squish tops like John Mentioned
 - Used Kerosene solution, used squish pipettes and variable pipettes settled upon using 500 μ l and taking out 350 μ l and then getting as much out as possible with the squish pipette I get about 450 μ l of bottom phase (HNO₃) and 425 μ l of top phase (TBP)
 - Determine if 0.3 ml is a good amount of solution to use
 - Switching to 0.5 ml, keeping smaller vials
- ✓ Create and label vials 5 6 and 7 to hold stock solution. Did not leech them, hopefully barium contamination wont be a huge deal, we will assume all the data for Cs can be gathered from ¹³³Cs.

- \checkmark Transfer 0.5 ml of \boxed{Stock} to $\boxed{7}$
- ✓ Add scoop of sodium nitrite to 6
- ✓ Add scoop of sodium nitrite to 7
- ${f C}$ Centrifuged ${f 5}$, ${f 6}$ and ${f 7}$ to push all solution to botttom of vials
- \square Start count of $\lceil 5 \rceil$ noticed bubbles in solution, might have to recount left overnight

2 Counting for Process 1 Mistake experiment (Alpha)

- - Moved chip too early (before drying, ruined detector volume)
 - Made another source with an additional 20 μ l, letting it dry over night

Saturday, 22 October 2016

3:30 pm - 3:45 pm

8:00 pm - 8:30 pm

1 Preparation for 3 Cycles

- ✓ Finished count for 5
- ✓ Started count of 6
 - Switching from push clear caps to blue push caps
 - This sample had less bubbles than the one yesterday
- ✓ Finished count of 6
 - Some liquid was not at the bottom of the vial, messing with geometry, centrifuged with 7 might have to recount
- ✓ Started count of 7

Sunday, 23 October 2016

1 Preparation for 3 Cycles

- ✓ Finished count 7
- - Did not like how 6 didn't fit with others
- ✓ Started recount of 6

Monday, 24 October 2016 10:00 am - 12:00 pm 3:00 pm - 8:00 pm

1 Preparation for 3 Cycles

- Finished count 6
- ✓ Transfer:
 - Vials labeled $\boxed{5\ Aq}$, $\boxed{5\ Or}$, $\boxed{6\ Aq}$, $\boxed{6\ Or}$, $\boxed{7\ Aq}$, $\boxed{7\ Or}$
 - With clear push lids, and blue push lids (named)
 - Squish pipettes

Into glovebox small antichamber

- [5], [6], and [7] already in antichamber
- ✓ Transfer vials with clear lids into glovebox, but leave the blue lids in the antichamber (lid transfer area)

2 Counting for Process 1 Mistake experiment (Alpha)

- - Saw energy smearing for counts
 - Preliminary results are what was expected if we take a larger range of counts

3 Cycle experiment, replicate of 3

- ☑ Shake 5 on Pulse mode for 15 minutes

☑ Shake 6 on Pulse mode for 15 minutes

☑ Shake 7 on Pulse mode for 15 minutes

 \mathbf{Z} Create EXBuddy so all samples can be centrifuged together

- 500 μ l of 4 M HNO₃ + 500 μ l of 30 vol.% TBP
- ✓ Centrifuge samples for 30,000 rpm for 5 minutes
- ✓ Separate phases for samples
 - A total of 4 drops were dropped in this process
 - 1. Sample 5 aqueous transfer
 - 2. Sample 6 organic transfer
 - 3. Sample 7 aqueous and organic transfer
 - Using a variable pipette and the squish pipette, as much of the top phase (organic) phase was removed as possible (turns out to be around 450 μ l and transferred to $\boxed{5~Or}$, $\boxed{6~Or}$, and $\boxed{7~Or}$.
 - Then as much of the bottom phase (aqueous) was removed as possible (turns out to be around 430 μ l) and transferred to $\boxed{5 \ Aq}$, $\boxed{6 \ Aq}$, and $\boxed{7 \ Aq}$.
- ${\bf Z}$ Measure Volumes of 9 vials (Aqueous, organic, and original units of μ l)
 - Clean outside of vials before taking volume measurements
 - Centrifuge vials before taking volume measurements
 - Google says that 1 drop of water is about 50 μ l

Series	Aqueous	Organic	Original	Should Add To	Missing
5	461+/-9.22	430+/-8.6	55+/-5	1000+/-7.1	54+/-15.3
6	469+/-9.38	430+/-8.6	53+/-5	1000+/-7.1	48+/-15.4
7	469+/-9.38	430 + / -8.6	57.5+/-5	1000+/-7.1	43.5+/-15.4

 ${\bf \Box{$\it C$}}$ Count ${\bf \Box{$\it T$}}$ 12:00 pm - 6:00 pm

• Will try and implement this:

$$CPS = A\epsilon_D\epsilon_G\gamma$$

Where:

$$\epsilon_D = \text{Detector eff}$$
 $\epsilon_G = \text{Geometric eff}$
 $\gamma = \text{yield}$
 $A = \text{activity}$

At two different distances 1 and 2:

$$CPS_1 = A\epsilon_D\epsilon_{G1}\gamma$$
$$CPS_2 = A\epsilon_D\epsilon_{G2}\gamma$$

Take ratio:

$$\frac{CPS_1}{CPS_2} = \frac{A\epsilon_D\epsilon_{G1}\gamma}{A\epsilon_D\epsilon_{G2}\gamma} = \frac{\epsilon_D\epsilon_{G1}}{\epsilon_D\epsilon_{G2}} = R$$

Kept both efficiencies because calibration lumps both together. If This ratio, R is known, then we can count at a closer distance and say:

$$CPS_2 = \frac{CPS_1}{R}$$

4 Calculation Work

- ✓ Modify program for analyzing spectra
 - Hopefully now analyzing gamma data will just be, run program, and copy a part of an excel spreedsheet

Tuesday, 25 October 2016 8:00 am

1 Cycle experiment, replicate of 3

2 Contamination spill 10/25/16

- \Box Go to count $\boxed{5 Or}$
 - Have $\boxed{7 \ Or}$ and $\boxed{7 \ Aq}$ in small antichamber
 - Put antichamber to vacuum to transfer vials into glovebox
 - Push caps exploded off vials due to large pressure difference...that is very dissapointing

- Dispose of counting vials, and caps for all vials rad waste
- Dispose of exploded vials in rad waste (after dried)
- Remove diaper paper from transfer plate
- Clean with radiac wipes
 - Clean antichamber
 - Clean antichamber
 - Swipe area, count on alpha detector, because our swipe counter is down
 - Clean antichamber
 - Dr. Chirayath brought someone by to talk, not a good time
 - Clean antichamber
 - Clean glass beaker that was in antichamber...lots
- Final areas swiped and counted for 10 minutes after decontamination
 - Tray ~ 0 counts in alpha realm
 - Top part of cylinder of antichamber ${\sim}3$ counts in alpha realm (around 20 for background)

- Top back part of cylinder ~ 100 still slightly contaminated, but no time for continued cleaning, because need to do experiment
- Left/Right side of cylinder (mid plane) \sim small
- Bottom back portion of cylinder of antichamber ~ 100
- Glass vial none

3 Cycle experiment, replicate of 3

- \square Count $\boxed{7 \ Aq} \ 9:00 \ \mathrm{pm} 11:00 \ \mathrm{pm}$ (Spilled)
- **Z** Count 6 Aq 7:00 pm 9:00 pm
- \square Count $\boxed{5 \ Aq} \ 9:00 \ \mathrm{pm}$ 8:00 am
- **✓** -

 $0.0417 + /-0.0018 \text{ ml of } 2.302 + /-0.009 \text{ M Fe(II) in } 0.0 + /-0 \text{ M HNO}_3$ $Stock\ Fe(II)$

 $3.941+/-0.027 \text{ ml of } 0.0+/-0 \text{ M Fe}(\text{II}) \text{ in } 4.06+/-0.05 \text{ M HNO}_3 \text{ solution } \boxed{Fe\ Prep}$

4.000+/-0.020 ml of 0.0240+/-0.0010 M Fe(II) in 4.00+/-0.05 M HNO₃ solution $\rightarrow Bk\ Ex\ Solution$.

- ${\bf \not\!\! Z}$ Add 430 $\mu {\rm l}$ Fe(II) solution to ${\bf \boxed{5}~Or}$
- \checkmark Add 430 μ l Fe(II) solution to $\boxed{6 \ Or}$
- \square Add XX μ l Fe(II) solution to $\boxed{7 \ Or}$ (spilled)
- \checkmark Shake $\boxed{6 \ Or}$ 15 minutes on pulse mode
- $\hfill \square$ Shake $\fbox{7~Or}$ 15 minutes on pulse mode (spilled)
- \square Remove XX μ l organic and XX μ l aqueous from Ex Buddy (No longer necessary)

✓ Separate phases for samples

- A total of 1 drops were dropped in this process
 - 1. Sample 5 Or aqueous or organic transfer
- Using a variable pipette and the squish pipette, as much of the bottom phase (aqueous) phase was removed as possible and transferred to $\boxed{5~OrII}$, $\boxed{6~OrII}$, and $\boxed{7~OrII}$.
- Then as much of the top phase (organic) was removed as possible and transfered to $\boxed{5~AqII}$, $\boxed{6~AqII}$, and $\boxed{7~AqII}$.
- \square Measure Volumes of 9 vials (Aqueous, organic, and original units in μ l)

	Series	Aqueous II	Organic II	Original II	Should Add to	Missing
Ī	5	407+/-8.14	380+/-7.6	38+/-5	860+/-12.2	35.0+/-17.2
Ī	6	402415+/-8.3	360380+/-7.6	35+/-5	860+/-12.2	30+/-17.3

4 Calculation Work

☑ Updated Spreedsheets to calculate activities based on available peaks, also if a particular peak has really large errors, this will be ignored. Also updated Excel sheets to calculate propagated error mass in each vial - for D-value calculations

$$grams = \frac{\text{Activity} \times \text{Molar Mass}}{\lambda_s N_A}$$

where λ is in seconds and N_A is avogadros number.

Wednesday, 26 October 2016 8:00 am

1 Cycle experiment, replicate of 3

- \mathbf{Z} Finish count $\boxed{5 Aq}$
- ✓ Start count 6 AqII
- Analyze current spectra
 - Calculate activity (with error) for vials $\boxed{5}$, $\boxed{6}$, $\boxed{7}$, $\boxed{5}$ A, $\boxed{5}$ O, $\boxed{6}$ A, $\boxed{6}$ O,
 - Calculate, for those same vials (with error, even including error on molar mass), mass of each radioactive species, and the concentration (g/L)
 - Compared all first solution activities and concentrations, they were all very similar
 - Compared ¹³⁷Cs ¹³⁴Cs ratio, and they agreed between vials
 - Determined activity balance, making sure each cycle had balance of activity (measured a part of the solution 459/500, found grams per liter, and multiplied by 400).
 - Agreed within the error
 - Determined D-values from aqueous and organic solutions, compared same elements different isotopes
 - The numbers did not look super similar, but sort of similar

$$O\% = \frac{1}{1 + \frac{V_A}{V_O D}} \Rightarrow D_O = \frac{1}{\frac{V_O}{V_A}(\frac{1}{O\%} - 1)}$$

$$A\% = \frac{1}{1 + \frac{V_O D}{V_A}} \Rightarrow D_A = \frac{V_A}{V_O} (\frac{1}{A\%} - 1)$$

Where O and A represent organic and aqueous, where V is volume and % refers to mass percent in a particular phase. The mass percent was determined via:

$$\% = \frac{\text{Mass Part}}{\text{Total Mass}} = \frac{c \left[\frac{g}{L}\right] \cdot V_{\text{contact}}}{\text{Mass in original}}$$

- Propagate error for D-value calculation (as well as for others)
 - Attempted to install uncertainties onto python on windows system, but failed epically, windows is terrible
 - Instead used uncertainties on linux based system to check my answers for the below codes

Aqueous D-value calculation

$$\sigma_{D_A}^2 = \left[\frac{\sigma_{V_A}}{V_O} \left(\frac{1}{A\%} - 1 \right) \right]^2 + \left[\frac{V_A \sigma_{V_O}}{V_O^2} \left(\frac{1}{A\%} - 1 \right) \right]^2 + \left[\frac{V_A \sigma_{A\%}}{V_O A\%^2} \right]^2$$

Organic D-value calculation

$$\sigma_{D_O} = \sqrt{\left[\frac{\sigma_{V_O}}{V_A} \left(\frac{1}{O\%} - 1\right)\right]^2 + \left[\frac{V_O \sigma_{V_A}}{V_A^2} \left(\frac{1}{O\%} - 1\right)\right]^2 + \left[\frac{V_O \sigma_{O\%}}{V_A O\%^2}\right]^2} \cdot D_O^2$$

✓ Create graphic to explain these results to research group

2 Contamination spill 10/25/16

- Treate graphic of all alpha spectra and locations of swipes
- Z Called EHS, talked to Dan Manchaka about contamination spill yesterday
 - d-imenchaca@tamu.edu
 - 979-676-0590
- ☑ EHS came by ~3:20pm to evaluate the contamination in the lab
 - Asked about the incident reported
 - Took pictures of glovebox and room
 - Swiped and surveyed

3 Details from research meeting

- Note that Dr. Chirayath needs a VGA to HDMI converter
- Discussed research results
 - Want the third experiment to be completed
- Discussed contaminaiton

– Specific Activity of $^{239}\text{Pu: }0.063~\frac{Ci}{g},$ largest amount of Pu released: 5 μg

$$0.063 \frac{Ci}{g} \cdot \frac{10^{-6}g}{\mu g} \cdot \frac{3.7 \times 10^{10}Bq}{Ci} = 2331 \frac{Bq}{\mu g}$$
$$2331 \cdot 5\mu g = 11655Bq$$

— Specific Activity of $^{238}\text{U}\text{: }12{,}445~\frac{Bq}{g},$ largest amount of U released: 0.000258 g

$$0.000258 \ g \cdot 12445 \frac{Bq}{g} = 3.21Bq$$

- Annual intake limits $\sim 300~\mathrm{Bq}$
- Say 40% was released to air: 4663 Bq
- Room size is about 72 cubic meters = 72000 liters
- 0.065 Bq/liter
- Human breathes 20 times per minute with 6 liter capacity
- 2 liters per second, 7200 liters per hour

$$0.065 \frac{Bq}{liter} \cdot 7200 \frac{liters}{Hr} = 468 \frac{Bq}{Hr}$$

- Things to discuss with Dan:
 - 1. Ask Dan if a spill procedure should exist for antichamber
 - 2. Remind Dan biggest concern is evaporation
 - 3. Should we get Masks

Thursday, 27 October 2016 9:30 am

- ✓ Update laboratory notebook
- \square Determine calculation for alpha samples
- ☐ Outline project for UQ
- ✓ Meet with Dan Menchaka about rad stuff
 - Called him on the phone
 - He said that swipes came back clean
 - That I could continue to decontaminate in the glovebox
- ✓ Installed uncertainties on windows computer
 - Go to start menu
 - cmd, run in administrator mode
 - type_path_to_pip install package
- ✓ Automated copy paste from Gamma_Template to excel sheet

1 Cycle experiment, replicate of 3

- \mathbf{Z} Finish counting 6 AqII

Friday, 28 October 2016

1 Contamination spill 10/25/16

- ✓ Clean contamination in glovebox
 - Swipe L Shoe clean
 - Swipe R Shoe clean
 - Swipe Top clean
 - Swipe Left Right Mid plane clean
 - Swipe around the top back portion clean
 - Swipe Back bottom clean

2 Cycle experiment, replicate of 3

- ☑ Checked math with John Burns
 - The math was correct, but we noticed that Series 6 had larger D-values across the board
 - If we assume a 10 μ l contamination of aqueous in the organic (a very small amount), the D-values line up a lot better
 - Eu-155 0.07 to 0.049 **☑**
 - Eu-155 0.09 to 0.073 **☒**
 - Eu-154 0.095 to 0.073 **☒**
 - Ce-144 0.045 to 0.022 **☑**
 - Rh 0.067 to 0.045 **☑**
 - Cs-137 0.024 to 0.001

Monday, 31 October 2016

1 Cycle experiment, replicate of 3

- ✓ Start Efficiency Count with Eu-152 Liquid source
- ✓ Stop Efficiency count once contamination was found need to clean HPGe

2 Contamination spill 10/25/16

- ☑ Luis Gonzolas and Daniel Menchaca both came by around 10:00 am to take swipes around the antechamber
 - They said they would get results after lunch
- ✓ Write up small report about contamination leak and give to Latha, in subdirectory "Indicent"
 - \bullet Assumed 90% of the 7 series in the antechamber, and the other 10% is in the original 7 vial that wasn't spilled

3 Minor Contamination of HPGe, found Monday 10/31/2016

- Clean HPGe, reduce background contamination
 - Clean all bricks
 - Count with bricks in different configurations
 - Found that source is coming from radiation storage closet
- Ask Troy if he moved sources around in closet, or if anyone did
 - He did say that someone moved stuff around
 - Shielded our source (probably strongest source around)
- ✓ Recount background, still high on Cs-137 source...
- ✓ Ask Marianno for doubloon reward...and if he aquired any sources recently, he said he did, he got 1.3 or so mCi of ¹³⁷Cs...that would explain it, I asked which day he got the source, to know when to subtract out the background from my samples...he said he would check

Dig around the roots Grace and Truth Next season will come

Tuesday, 1 November 2016

1 Contamination spill 10/25/16

- ☑ Dr. Latha Vasudevan contacted with questions, responded as well as I could
 - She said no more experiments until waste could be picked up
 - She said that vials should be in its own box
- ☑ Contacted EHS about Waste pickup, but need the PI's username and password
 - Sorry Dr. Folden, but I need to bother you about this
 - 1. Start at EHS Website
 - Safety Tab \rightarrow Radiological Safety
 - Request Waste Pickup (link)
 - Link for request at bottom of page
 - 2. Activities should be corrected to the date the smaple was added to the license, assume the date to be May 5th, 2014
 - 3. License number is 933
 - 4. Last time 0.00005 mCi removed, 0.657392 remains

2 Minor Contamination of HPGe, found Monday 10/31/2016

- ☑ Got Dr. Mariannos source list, last time he got ¹³⁷Cs, was in September, not during the time of our experiment he did say that sources were moved around two weeks ago on Thursday
- ☑ Calculation for MDA Modify pages 96-98 from Knoll to do in terms of CPS, not total counts
 - Also looked at Ludlums calculation Ludlum
 - Created a Excel Sheet for example calculations with equations
- ✓ Marianno said that he shielded the ¹³⁷Cs
- ✓ Started a new background count
 - It does look like he shielded ¹³⁷Cs
- ✓ Clean all outside vials

Wednesday, 2 November 2016

1 Cycle experiment, replicate of 3

- ✓ Finish background count
- ☑ Start Efficiency Count with Eu-152 Liquid source, again (on Monday we found the ¹³⁷Cs higher background)
- ☑ Background corrections for all calculations
 - Added Background Row to Gamma_Template, call it now Gamma_Template_BK, this will subtract background
 - Could automate subtraction, need to add this row based on background of background
- \mathbf{Z} Assuming 10μ l contamination what are D-values
- ☑ Checked calculation on why the error for D-values from Aqueous are so bad, mostly due to how its calculated. Calculated a different way, gave same answer, but slightly larger error, I guess I'll have to abandon that type of calculation.
- \square Make Easy to read power point
- ✓ Automate Decay corrections

2 Details from research meeting

- \bullet Showed results, at first Chirayath, thought that $^{137}\mathrm{Cs}$ was not behaving the same, but showed it was
- Said we need to do the experiment three times again, only the extraction

Thursday, 3 November 2016

1 Cycle experiment, replicate of 3

- - The Weighted Mean

$$\hat{\mu} = \frac{\sum x_i / \sigma_i^2}{\sum 1 / \sigma_i^2}$$

$$\sigma^2(\hat{\mu}) = \frac{1}{\Sigma 1/\sigma_i^2}$$

 \square Automate background calculation and decay corrections

2 Contamination spill 10/25/16

- ✓ Talked with Evgeny Tereshatov: ETereshatov@tamu.edu
 - Said 52.50 \pm 0.5 μ Ci decay corrected to 5 May, 2014 ¹⁴⁴Ce is to be disposed
 - RSO 0079436
 - Need Waste Disposal Report Form
 - \bullet Made estimates on $^{137}\mathrm{Cs},\,^{134}\mathrm{Cs}$
 - Accidentally added ⁹⁰Sr, it should have been ¹²⁵Sb
- ☑ Called EHS three times, left message once no response

Friday, 4 November 2016

1 Cycle experiment, replicate of 3

- ☐ He also suggested to do the correction calculation at an earlier stage, like in the CPS arena, which would take a lot more work honestly I don't think it will change things much, probably the same about as above
- ✓ Automate background correction
 - Will do background correction based on most recent background
 - Should probably change to search for a background date
 - Okay now changed to search for a specific background date
- ✓ Automate Decay corrections

2 Contamination spill 10/25/16

- ✓ Called EHS, no response, found old waste dissposal sheet, filled it in
- ✓ Called Innocent, he said he would come, please come!
- \mathbf{Z} EHS came! Thank you Innocent, he picked up the waste, took the sheet, and gave us new waste bags

3 Cycle experiment, round 2, replicate of 3

- 🗹 Aaron Kruger let me into the Radiation source closet (so I can get more sample)
 - Grabed our source, stored in the back of lab with shielding
- ☑ Complete ¹⁵²Eu count
- ✓ Start background (make sure things are okay)

Monday, 7 November 2016

1 Cycle experiment, round 2, replicate of 3

- ✓ Finish background count
- \square Practice transfer with 300 μ l.
 - A little frustrating
 - Take a lunch break for headache, maybe second practice will go better
 - Settled on 400 μ l instead of 500 μ l or 300 μ l (happy medium)
- ☑ Create and label vials [8], [9], [10], and [Buddy], to hold stock solution. Did not leech them, hopefully barium contamination wont be a huge deal, we will assume all the data for Cs can be gathered from ¹³³Cs. also, still using smaller vials, but will make sure to have double containment for transfer into glovebox
- \square Create \boxed{Buddy} with 0.5 0.4 (removed 0.1) ml of 4 M HNO₃ solution
- ${\bf \not\!\! C}$ Put $\overline{|Buddy|}$ inside a 15 ml vial, parafilm wrap
- **✓** _

2.048+/-0.026 ml of 1.12+/-0.08 M HNO₃ solution $\longrightarrow Stock\ Add$ (glass container)

- Transfer Stock Add, [8], [9], [10], [Buddy], and [closet] to glove box, (with additional 15 ml vials for containers that will need them)
- **✓** -

Combine 0.500+/-0.005 ml of 15.43+/-0.06 M HNO₃ solution
$$\boxed{closet}$$
 + 2.048+/-0.026 ml of 1.12+/-0.08 M HNO₃ solution $\boxed{Stock\ Add}$ = 2.500+/-0.025 ml of 4.00+/-0.05 M HNO₃ solution. $\boxed{\rightarrow\ Stock\ Add}$

_ -

Combine 2.500+/ 0.025 ml of 4.00+/ 0.05 M HNO $_3$ solution. Stock Add + 0.700+/ 0.028 ml of 4.00+/ 0.05 M HNO $_3$ solution Stock = 3.2+/-0.038 ml of 4.00+/-0.05 M HNO $_3$ solution. \rightarrow Stock

- A problem...I am not sure how this happened, and I kind of don't want to bring it up, but I was able to get only, 400 μ l out of \boxed{Stock} , I would expect to get 690 μ l out of \boxed{Stock} ..where did 290 μ l go? Did it evaporate? Do we need to parafilm wrap it?
- As a precaution, I will parafilm wrap it
- \blacksquare Transfer 400 μ l Stock to Stock Add
 - Also switched caps (because aluminum foil cap was removed on Stock and I liked having it off)
- ✓ Transfer *closet* out of glovebox
- \checkmark Transfer 0.4 ml of $\boxed{Stock \ Add}$ to $\boxed{8}$
- \blacksquare Transfer 0.4 ml of $\boxed{Stock \ Add}$ to $\boxed{9}$
- ✓ Transfer 0.4 ml of Stock Add to 10
- ✓ Add scoop of sodium nitrite to 9
- ✓ Add scoop of sodium nitrite to 10
- $\ensuremath{ \mathbb{Z} }$ Put $\ensuremath{ 8}$, $\ensuremath{ 9}$, and $\ensuremath{ 10}$ into 15 ml centrifuge tubes
- ✓ Centrifuged [8], [9] and [10] to push all solution to bottom of vials
- - Retake background and efficiency count
- \square Note when ¹³⁷Cs will be floating around lab
 - T, Th 1-4 pm, and Wed 2-5, this week and next week
 - Do not count during this time
- ☑ Background Count

Monday, 7 November 2016

√	Eff Count
	Practice extraction with 400 μ l while doing counts to night
√	Count 8
1	Count 9
	Count 10
	• Alarm didn't wake me updidn't count 10

Tuesday, 8 November 2016

1 Cycle experiment, round 2, replicate of 3

- ☑ Count 10
- ✓ Label vials 8 mix, 9 mix, 10 mix (smaller 1 ml tubes from John Burns, have conical bottoms, makes more minute separations easier)
- Transfer [8], [9], and [10] into glovebox. With: [8] [aq], [8] [aq], [8] [aq], [8] [aq], [9] [aq], [9] [aq], [9] [aq], [10] [aq], [10] [aq], [10] [aq], [10] [aq], [10] [aq], [aq],
- \checkmark Add 400 μ l of \boxed{TBP} to $\boxed{8}$, $\boxed{9}$, and $\boxed{10}$ each
- ✓ Vortex mix 8 for 15 minutes on pulse mode
- ✓ Vortex mix 9 for 15 minutes on pulse mode
- ✓ Vortex mix 10 for 15 minutes on pulse mode
 - Switched to push caps for each of the above
- \mathbf{Z} Centrifuge [8], [9], and [10] with [Buddy] on 3300 rpm, for 5 minutes
- \square During the vortex mixing and the centrifuge practice the transfer in the fumehood
 - Was able to get about 395 ml of aqueous phase and 365 ml of organic phase
- Pipette with disposable pipette the aqueous phase first, then the organic (for all three vials), as much as so that there is no mixing. Then transferred the boundary to a smaller vial, centrifuged, and separated further. Counting solutions were also prepared of 250 μ l of each of the solutions **Should have centrifuged final solutions before this**. A picture will be provided for the whole process for $\boxed{8}$ on the following page, below are specific notes about what occured during the experiment.

Tuesday, 8 November 2016

- 10 had to be centrifuged again with Buddy (shock the phases too much so they mixed again accidentally pipetted organic phase during aqueous phase first separation)
- 9 mix, 10 mix had to be recentrifuged (accidentally dropped these two small(!) vials (no place to put them)
- 8 mix Lost a drop while making 250 μ l Aq sample
- 9 mix Lost a drop while making 250 μ l Aq sample
- 10 mix Lost a drop while making 250 μ l Aq sample
- \square Measure volumes of everything

- ✓ Clean stuff in glovebox

- ✓ Create graphic for experiment

Figure 1: Extraction three times round 2 experimental setup

Wednesday, 9 November 2016

1 Cycle experiment, round 2, replicate of 3

- \mathbf{Z} Finish count $\boxed{10 \text{ or } C}$
 - Gave decent results for everything but ¹³⁷Cs

- ✓ Analyze results from experiment, display in a single excel sheet
 - Note GENIE corrects for dead time, but if you had to do it by hand, here is the equation for small corrections

$$CPS_f = \frac{CPS_i}{1 - \frac{DT}{100}}$$

2 Details from research meeting

- Perfect ¹³⁷Cs
- $\bullet~{\rm Fix}~^{154}{\rm Eu}$
- MARLAP, Stat teaching, look up MDA
- Submit Degree plan, put a policy course on there
- Subtracting BK is why I go negative sometimes, another reason for negative values in the D-value is because sometimes I take a difference
- Covariance data is MT133

Thursday, 10 November 2016

1 Cycle experiment, round 2, replicate of 3

- ✓ Finish count 9 or C
- ${\bf Z}$ Start count $\boxed{8 \ or \ C}$ on face of detector ($\sim 4 \ {\rm pm}$)
- ☑ Check if a geometric constant correction factor can be applied for the second geometry
 - It can kind of be applied...but not really
- ☑ Looking at CPS for ¹³⁴Cs between aqueous before extraction, and after (need to include volumes in calculation because each solution had different volumes)
 - Did calculation for MDA, visually showed why we cant use the information...unless we count for a longer time

2 Things to do for school

- ☐ Alpha analysis
- ☐ Respond to McClarren email
- ☐ Review McClarrens notes email
- \square Learn how to use ORIGEN

Friday, 11 November 2016

1 Cycle experiment, round 2, replicate of 3

 \square Finish count 8 or C

 \square Start Efficiency count on face of detector

2 Things to do for school

 \square Find variances

✓ Learn how to use ORIGEN, and run it

 \Box Come up with chaos polynomial plan

Do a write up for McClarren...so it looks like I am doing work for his class

Monday, 14 November 2016

1 Cycle experiment, round 2, replicate of 3

- Finish Efficiency count on face of detector
- ✓ Analyze results...something is very fishy
 - \bullet The $^{137}\mathrm{Cs}$ results look very small $10^{\text{-}5}.$ Which we were hoping they would be around 0.01
 - The other results had higher D-values across the board maybe due to geometric differences, maybe not
- - To check and see if geometry is the issue (although these high dead times would probably give incorrect results as Dr. Burns pointed out)
- - Also noticed that Series 9 is a little funky...its always higher in D calculations by a large portion (except for Cs, where its lower)
 - Frustrating!
 - Dr. Kitcher brought up the issue that could be correcting to the wrong value (in series 6) should find literature values
 - Dr. Burns brought up that the fact that I didn't centrifuge the samples during the last step could be the issue
 - Web of Knowledge, Web of Science, Periodic Table.com
- \mathbf{Z} Recreate organic samples of \mathbf{S} or \mathbf{C} , \mathbf{S} , and \mathbf{S} , and \mathbf{S} or \mathbf{C} . and count \mathbf{S} overnight
 - Transfered above vials into glovebox after parafilm wrapping
 - Took all solution out of above vials, and put into original containers (labeled the same without the C $\boxed{8\ or}$ as opposed to $\boxed{8\ or\ C}$)
 - Centrifuged both C and non-C containers for 5 minutes on highest setting (33)

- Repipetted out 250 μ l out of non-C containers into C containers
- Put C containers into 15 ml centrifuge tube
- Transfer out of glovebox and clean
- ☑ Dr. Burns found a reference with some useful data, Link, table from reference below

Quick calculation for molarity of uranium in samples

$$\begin{aligned} \frac{0.0129 \text{ g DUO}_2 \cdot 0.88}{0.005 \text{ Liters}} = & 2.27 \\ = & 2.2704 \text{ M} \cdot \frac{0.5 \text{ } ml}{5 \text{ } ml} \\ = & 0.23 \text{ M U} \end{aligned}$$

Table 1: Values from Paper, 1.4 M U (much higher than ours), and 3 M HNO $_3$ (ours is at 4 M)

Element	D-Value
Ru	0.04
Rh	0.01
Pd	0.09
Nd	0.04
Ce	0.02
Sr	0.00
Sm	0.07
Cs	0.01

- Ru, and Ce match from our experimental results from the first experiment, and Cs is around 0.01...which is what we are looking for, Sr there is no number (except that its small, which is in line with our first experiments). I also want to point out, no error bars, Dr. Folden would be not be happy, these numbers don't mean anything
- - Noticed there is a trend, might be able to use
 - Also noticed that I counted my ¹⁵²Eu source at 26 cm for a short time (1.9 live time hours)... will start count for that in the morning and count while doing the experiment, maybe that will fix some problems. The reason for this short count time, is I feel lots of pressure to finish

Tuesday, 15 November 2016

1 Cycle experiment, round 2, replicate of 3

- ${\bf { \vec { 2}}}$ Start efficency count at 26 cm around 5:50 am
- - Counts for Ce, look better, Eu look better, Ru look worse, Cs look better (but still one order of magnitude off
 - Looking into the count rates, some peaks change by alot between the first and second count of 10 or C and the second...WHY!?

2 Cycle experiment, round 2, replicate of 3, ALPHA preparation

- ☐ Transfer all above vials into glovebox
- \square Make alpha sample of stock, make 3 (Pipette Errors assume 20 μ l error 1%, 10 μ l error 1.2%, 390 μ l error 2%, 890 μ l error 1%)

10+/-0.12
$$\mu$$
l of Stock Add (4 M HNO₃) [smaller pipette] + 990+/-9.9 μ l of DI water (leftover in glovebox) = 1+/-9.9 ml of \sim 0 M HNO₃ $8, 9, 10$ Dillution

$$20+/-0.2~\mu l$$
 of $\boxed{8,9,19~aq~Dillution}$ dropped onto $\boxed{8~Chip}$ $20+/-0.2~\mu l$ of $\boxed{8,9,19~aq~Dillution}$ dropped onto $\boxed{9~Chip}$

Tuesday, 15 November 2016

$$20+/-0.2 \; \mu l \text{ of } \boxed{8,9,19 \; aq \; Dillution} \text{ dropped onto } \boxed{10 \; Chip}$$

$$\square$$
 Make alpha sample of each aqueous
$$\square - \boxed{8 \; aq}$$

$$10+/-0.12 \; \mu l \text{ of } \boxed{8 \; aq} \; (4 \; \text{M HNO}_3) \; [\text{smaller pipette}] + \\ 390+/-7.8 \; \mu l \text{ of DI water (leftover in glovebox)} = \\ 0.4+/-0.0078 \; \text{ml of} \sim 0 \; \text{M HNO}_3 \; \boxed{8 \; aq \; Dillution}$$

$$20+/-0.2 \; \mu l \text{ of } \boxed{9 \; aq} \; (4 \; \text{M HNO}_3) \; [\text{smaller pipette}] + \\ 390+/-7.8 \; \mu l \text{ of DI water (leftover in glovebox)} = \\ 0.4+/-0.0078 \; \text{ml of} \sim 0 \; \text{M HNO}_3 \; \boxed{9 \; aq \; Dillution}$$

$$20+/-0.2 \; \mu l \text{ of } \boxed{9 \; aq \; Dillution} \; \text{dropped onto } \boxed{9 \; aq \; Chip}$$

$$\square - \boxed{10 \; aq}$$

$$10+/-0.12 \; \mu l \text{ of } \boxed{10 \; aq} \; (4 \; \text{M HNO}_3) \; [\text{smaller pipette}] + \\ 390+/-7.8 \; \mu l \text{ of DI water (leftover in glovebox)} = \\ 0.4+/-0.0078 \; \text{ml of} \sim 0 \; \text{M HNO}_3 \; \boxed{10 \; aq \; Dillution}$$

$$20+/-0.2 \; \mu l \; \text{of } \boxed{10 \; aq \; Dillution} \; \text{dropped onto } \boxed{10 \; aq \; Chip}$$

$$\square \text{ Make alpha sample of each organic phase}$$

$$\square - \boxed{8 \; or}$$

$$10+/-0.12 \; \mu l \; \text{of } \boxed{8 \; or} \; (4 \; \text{M HNO}_3) \; [\text{smaller pipette}] + \\ 890+/-8.9 \; \mu l \; \text{of DI water (leftover in glovebox)} = \\ 0.9+/-0.0089 \; \text{ml of} \sim 0 \; \text{M HNO}_3 \; \boxed{8 \; or \; Dillution}$$

$$20+/-0.2 \; \mu l \; \text{of } \boxed{8 \; or \; Dillution} \; \text{dropped onto} \; \boxed{8 \; or \; Dillution}$$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 10+/\text{-}0.12 \ \mu \text{l} \ \text{of} \ \boxed{9 \ or} \ (4 \ \text{M HNO}_3) \ [\text{smaller pipette}] \\ + \\ 890+/\text{-}8.9 \ \mu \text{l} \ \text{of DI water (leftover in glovebox)} \\ \end{array} \\ \begin{array}{c} = \\ 0.9+/\text{-}0.0089 \ \text{ml of} \sim 0 \ \text{M HNO}_3 \ \boxed{9 \ or \ Dillution} \end{array} \\ \begin{array}{c} \begin{array}{c} 20+/\text{-}0.2 \ \mu \text{l} \ \text{of} \ \boxed{9 \ or \ Dillution} \ \text{dropped onto} \ \boxed{9 \ or \ Chip} \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} - \ \boxed{10 \ or} \end{array} \\ \end{array} \\ \begin{array}{c} 10+/\text{-}0.12 \ \mu \text{l} \ \text{of} \ \boxed{10 \ or} \ (4 \ \text{M HNO}_3) \ [\text{smaller pipette}] \\ + \\ 890+/\text{-}8.9 \ \mu \text{l} \ \text{of DI water (leftover in glovebox)} \\ \end{array} \\ \begin{array}{c} = \\ 0.9+/\text{-}0.0089 \ \text{ml of} \sim 0 \ \text{M HNO}_3 \ \boxed{10 \ or \ Dillution} \end{array} \\ \begin{array}{c} 20+/\text{-}0.2 \ \mu \text{l} \ \text{of} \ \boxed{10 \ or \ Dillution} \ \text{dropped onto} \ \boxed{10 \ or \ Chip} \end{array}$$

3 Process Experiment (continuation from cycle experiment)

- \Box Combine all aqueous phases together
 - \square $8 \ aq \ C$ \rightarrow $8 \ aq$ (take all of first and add to second)
 - $\square \ \boxed{9 \ aq \ C} \ \rightarrow \ \boxed{9 \ aq}$
 - $\square \boxed{10 \ aq \ C} \rightarrow \boxed{10 \ aq}$
- \square Measure volumes of all aqueous phases

Table 1: Volumes for combined aqueous phases

Second Contact...

$$\Box \text{ Label vials, } \boxed{8 \ aqII \ , \boxed{8 \ aqII \ C}, \boxed{8 \ orII \ , \boxed{8 \ orII \ C}} \boxed{9 \ aqII \ , \boxed{9 \ aqII \ C}, \boxed{9 \ orII}, }$$

Tuesday, 15 November 2016

Will reuse $\boxed{8\ mix}$, $\boxed{9\ mix}$, $\boxed{10\ mix}$ (smaller 1 ml tubes from John Burns, have conical bottoms, makes more minute separations easier)			
Transfer: $ 8 \ aqII $, $ 8 \ aqII \ C $, $ 8 \ orII $, $ 8 \ orII \ C $ $ 9 \ aqII $, $ 9 \ aqII \ C $, $ 9 \ orII $, $ 9 \ aqII \ C $, $ 10 \ aqII \ C $, $ 10 \ orII $, $ 10 \ orII \ C $. (3 clear push caps, and 9 blue push caps). Also with 6 15 ml centrifuge tubes			
Add 400 μ l of BP to B , 9 , and 10 each			
Vortex mix 8 for 15 minutes on pulse mode			
Vortex mix 9 for 15 minutes on pulse mode			
Vortex mix 10 for 15 minutes on pulse mode			
• Switched to push caps for each of the above			
Centrifuge $\boxed{8}$, $\boxed{9}$, and $\boxed{10}$ with \boxed{Buddy} on 3300 rpm, for 5 minutes			
During the vortex mixing and the centrifuge practice the transfer in the fumehood			
\bullet Was able to get about XX ml of a queous phase and XX ml of organic phase			
Pipette with disposable pipette the aqueous phase first, then the organic (for all three vials), as much as so that there is no mixing. Then transferred the boundary to a smaller vial, centrifuged, and separated further. Counting solutions were also prepared of 250 μ l of each of the solutions Remember to centrifuge . A picture will be provided for the whole process for $\boxed{8}$ on the following page Modify picture for this provess , below are specific notes about what occured during the experiment. \blacksquare			
☐ Measure volumes of everything			
Transfer out $\fbox{8\ or II\ C}$, $\fbox{8\ aq II\ C}$, $\fbox{9\ or II\ C}$, $\fbox{9\ aq II\ C}$, $\fbox{10\ or II\ C}$, $\fbox{10\ aq II\ C}$ in 15 ml centrifuge tubes			
Radiac wash the above tubes, and store in fumehood behind lead - wait to count			
Clean stuff in glovebox			
Start count XXXXX ?? pm			

Figure 1: Extraction three times round 2 experimental setup

4 Cycle experiment, round 2, replicate of 3

- $\hfill\Box$ Finish Eff Count
- \square Start $\boxed{8 \ or}$ count

Wednesday, 16 November 2016

1 Details from research meeting

• Just present D-Values at research meeting