Homework 10

1. Study the following knowledge points by heart, and copy them to your answer sheet: (50') Standards on hypothesis testing for a parameter in a normal population $X \sim N(\mu, \sigma^2)$.

parameters	conditions	H_0	H_1	the rejection	involved statistic
to be tested				region for H_0	
		$\mu = \mu_0$	$\mu \neq \mu_0$	$ Z > z_{\alpha/2}$	
μ	σ^2 is known	$\mu \leq (\text{or} =)\mu_0$	$\mu > \mu_0$	$Z > z_{\alpha}$	$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$
		$\mu \geq (\text{or} =)\mu_0$	$\mu < \mu_0$	$Z < -z_{\alpha}$	
		$\mu = \mu_0$	$\mu \neq \mu_0$	$ t > t_{\alpha/2}(n-1)$	
μ	σ^2 is unknown	$\mu \leq (\text{or} =)\mu_0$	$\mu > \mu_0$	$t > t_{\alpha}(n-1)$	$t = \frac{\overline{X} - \mu_0}{S / \sqrt{n}} \sim t(n - 1)$
		$\mu \geq (\text{or} =)\mu_0$	$\mu < \mu_0$	$t < -t_{\alpha}(n-1)$	
		$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$	$\chi^2 > \chi^2_{\alpha/2}(n)$	
				$\operatorname{or} \chi^2 < \chi^2_{1-\alpha/2}(n)$	
σ^2	μ is known	$\sigma^2 \le (\text{or} =) \sigma_0^2$	$\sigma^2 > \sigma_0^2$	$\chi^2 > \chi^2_{\alpha}(n)$	$\chi^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\sigma_{0}^{2}} \sim \chi^{2}(n)$
		$\sigma^2 \ge (\text{or} =)\sigma_0^2$	$\sigma^2 < \sigma_0^2$	$\chi^2 < \chi^2_{1-\alpha}(n)$	v
		$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$	$\chi^{2} < \chi^{2}_{1-\alpha}(n)$ $\chi^{2} > \chi^{2}_{\alpha/2}(n-1)$	
				or $\chi^2 < \chi^2_{1-\alpha/2}(n-1)$	
σ^2	μ is unknown	$\sigma^2 \le (\text{or} =)\sigma_0^2$	$\sigma^2 > \sigma_0^2$	$\chi^2 > \chi_\alpha^2(n-1)$	$\chi^{2} = \frac{(n-1)S^{2}}{\sigma_{0}^{2}} \sim \chi^{2}(n-1)$
		$\sigma^2 \ge (\text{or} =)\sigma_0^2$	$\sigma^2 < \sigma_0^2$	$\chi^2 < \chi^2_{1-\alpha}(n-1)$	

when the signs " \leq " and " \geq " in H_0 are replaced by " = ", the rejection regions for H_0 keep unchanged.

- 2. Suppose that the measurement accuracy of a range finder is $\sigma = 10m$. Now, a set of 9 measurements about the distance of an object which is 500m away is obtained with sample mean $\overline{X} = 510m$. Given the significance level $\alpha = 0.05$, whether the range finder has systems errors or not? (Hint: $\sigma = 10m$ is known, and test if $\mu = 500$ or not. $\Phi(1.96) = 0.975$)? (20')
- 3. Suppose that the heights of a kind animal in a region obey a normal distribution. Now 36 animals are randomly selected, and the measured mean height is $\overline{X} = 67.5$, the sample variance $S^2 = 13^2$. Given the significance level $\alpha = 0.05$. (It is known that the critical points $t_{0.025}(35) = 2.0301$, $t_{0.025}(36) = 2.2081$, $t_{0.05}(35) = 1.6896$, $\chi^2_{0.025}(35) = 53.203$, $\chi^2_{1-0.025}(35) = 20.569$). (30')
 - (1) Can we say that the mean height of this kind of animal in this region is 71.5?
 - (2) Can we say that the variance of this kind of animals' heights in this region is 12^2 ?