

AD-A065 416 ARMY MISSILE RESEARCH AND DEVELOPMENT COMMAND REDSTO--ETC F/G 20/4
THEORETICAL ANALYSIS OF THE FLOW FIELD OVER A FAMILY OF OGIVE B--ETC(U)
JAN 79 R L RICHARDSON, B Z JENKINS

UNCLASSIFIED

DRDMI-T-79-15

NL

1 OF 2
AD 065416

END
DATA
FILED
4-79
DDC

Cont

UUC FILE COPY

AD A0 65416

**U.S. ARMY
MISSILE
RESEARCH
AND
DEVELOPMENT
COMMAND**

Redstone Arsenal, Alabama 35809

DMI FORM 1000, 1 APR 77

REF ID:
MAR 8 1979
C

(2)

TECHNICAL REPORT T-79-15

LEVEL ^{A048477} ~~III~~

THEORETICAL ANALYSIS OF THE FLOW FIELD OVER
A FAMILY OF OGIVE BODIES – A SUPPLEMENT TO
MIRADCOM TECHNICAL REPORT TD-CR-77-5

R.L. Richardson and B. Z. Jenkins
Systems Simulation Directorate
Technology Laboratory

12 January 1979

Approved for public release; distribution unlimited.

79 03 05 029

DISPOSITION INSTRUCTIONS

**DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT
RETURN IT TO THE ORIGINATOR.**

DISCLAIMER

**THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN
OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIG-
NATED BY OTHER AUTHORIZED DOCUMENTS.**

TRADE NAMES

**USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT DOES
NOT CONSTITUTE AN OFFICIAL INDORSEMENT OR APPROVAL OF
THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE.**

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER T-79-15	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) THEORETICAL ANALYSIS OF THE FLOW FIELD OVER A FAMILY OF OGIVE BODIES. SUPPLEMENT TO MIRADCOM TECHNICAL REPORT TD-CR-77-5		5. TYPE OF REPORT & PERIOD COVERED Technical Report.
6. AUTHOR(s) R.L. Richardson B.Z. Jenkins		7. PERFORMING ORG. REPORT NUMBER 16
8. PERFORMING ORGANIZATION NAME AND ADDRESS Commander US Army Missile Research and Development Command Attn: DRDMI-TDK Redstone Arsenal, Alabama 35809		9. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS DA 1L162303A214 AMCMS 612303.2140511.03
10. CONTROLLING OFFICE NAME AND ADDRESS Commander US Army Missile Research and Development Command Attn: DRDMI-TI Redstone Arsenal, Alabama 35809		11. REPORT DATE 12 January 1979
12. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) 14 DRDMI-T-79-15		13. NUMBER OF PAGES 35P.
15. SECURITY CLASS. (of this report) UNCLASSIFIED		
15a. DECLASSIFICATION/DOWNGRADING SCHEDULE		
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Tangent ogive bodies Surface pressure coefficients Mach number Angle-of-attack		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Local body surface pressure coefficients and Mach numbers are presented for tangent ogive bodies at Mach numbers from 2 to 4.5 and at 0° and 2° angle-of-attack. These data were obtained using the US Army Missile Research and Development Command three-dimensional method of characteristics computer code. This volume is intended to supplement MIRADCOM Technical Report TD-CR-77-5, published August 1977.		

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

CONTENTS

	Page
I. INTRODUCTION	3
II. DISCUSSION	3
REFERENCES	27

LIST OF ILLUSTRATIONS

Figure	Title	Page
1.	Surface pressure data versus axial direction (BS = 14, M = 2, L/D = 4)	4
2.	Surface pressure data versus axial direction (BS = 14, M = 2.5, L/D = 4)	5
3.	Surface pressure data versus axial direction (BS = 14, M = 3, L/D = 4)	6
4.	Surface pressure data versus axial direction (BS = 14, M = 3.5, L/D = 4)	7
5.	Surface pressure data versus axial direction (BS = 14, M = 4, L/D = 4)	8
6.	Surface pressure data versus axial direction (BS = 14, M = 4.5, L/D = 4)	9
7.	Surface pressure data versus axial direction (BS = 15, M = 2, L/D = 3)	10
8.	Surface pressure data versus axial direction (BS = 15, M = 2.5, L/D = 3)	11
9.	Surface pressure data versus axial direction (BS = 15, M = 3, L/D = 3)	12
10.	Surface pressure data versus axial direction (BS = 15, M = 3.5, L/D = 3)	13
11.	Surface pressure data versus axial direction (BS = 15, M = 4, L/D = 3)	14
12.	Surface pressure data versus axial direction (BS = 15, M = 4.5, L/D = 3)	15
13.	Surface pressure data versus axial direction (BS = 16, M = 2.0, L/D = 2.0)	16
14.	Surface pressure data versus axial direction (BS = 16, M = 2.5, L/D = 2)	17

15.	Surface pressure data versus axial direction (BS = 16, M = 3, L/D = 2)	18
16.	Surface pressure data versus axial direction (BS = 16, M = 3.5, L/D = 2)	19
17.	Surface pressure data versus axial direction (BS = 16, M = 4, L/D = 2)	20
18.	Surface pressure data versus axial direction (BS = 16, M = 4.5, L/D = 2)	21
19.	Surface pressure coefficients versus local Mach numbers (BS = 14, L/D = 4)	22
20.	Surface pressure coefficients versus local Mach numbers (BS = 15, L/D = 3)	23
21.	Surface pressure coefficients versus local Mach numbers (BS = 16, L/D = 2)	24
22.	Forebody drag coefficient versus free stream Mach number at $\alpha = 0^\circ$	25

ACCESSION NO. 74-10000	
NTIS	White Section <input checked="" type="checkbox"/>
DOC	Blue Section <input type="checkbox"/>
TRANSMISSION CODE	
J S - 1000	
BY	
DISTRIBUTION AVAILABILITY CODES	
Dist:	Special
A	

I. INTRODUCTION

The plots presented in this report are for body shapes 14, 15, and 16, and partly replace and complete the data on BS 14, 15, and 16 given in Technical Report TD-CR-77-5, Theoretical Analysis of the Flow Field over a Family of Ogive Bodies, dated 16 August 1977 [1].

II. DISCUSSION

The plots shown in this report give values of surface pressure coefficients (CP) (Figures 1-18) and local Mach numbers (Figures 19-21) as they vary with X/D (axial direction). The free stream Mach numbers considered are $M = 2, 2.5, 3, 3.5, 4$, and 4.5 . There are two angles-of-attack: $\alpha = 0^\circ$ and $\alpha = 2^\circ$. For $\alpha = 2^\circ$ data, five different locations on the periphery of the ogive have their pressure coefficient values given. They are $\theta = 0^\circ, 45^\circ, 90^\circ, 135^\circ$, and 180° . Zero degrees is located in the center of the windward side and the θ values advance in increments of 45° to 180° , which is the center of the leeward side. At the right side of the $\alpha = 2^\circ$ plots, θ values are listed. The bottom line is $\theta = 0$ when the θ values on the right increase from bottom to top, and vice versa for θ values increasing in the opposite direction. When there is a crossover of a CP line, θ is labeled to avoid confusion. For the CP versus ogive length (X/D) plots (Figures 1-18), the $\alpha = 0^\circ$ data are subtracted from the 2° angle-of-attack data. This is done to obtain greater resolution. For the local Mach number versus X/D at $\alpha = 0^\circ$, (Figures 19-21), the free stream Mach numbers are labeled increasing in the same direction as the lines.

The US Army Missile Research and Development Command (MIRADCOM) three-dimensional method of characteristics computer code for bodies of revolution [2] was used to obtain the flow-field solutions. This program was provided initial value data by representing the first 5% of the forebody as a right-circular cone and using the Jones cone at angle-of-attack (CONEAL) program [3]. The $\alpha = 2^\circ$ data for local Mach number versus X/D is not given because an incompatibility between program CONEAL and the three-dimensional program was discovered. The incompatibility was that the CONEAL program refined its calculation to resolve the thin vortical layer with its large velocity gradients and accompanying entropy changes, while the three-dimensional program did not do this. In actual flows the boundary layer destroys this vortical layer anyway.

There is also one graph (Figure 22) showing the forebody (ogive) drag coefficient (C_D) versus free stream Mach number (M_∞) for body shapes 14, 15, and 16. The values for Mach numbers below 2.0 were obtained from the MIRADCOM program for transonic flow fields about bodies of revolution including thrust effects and small angles-of-attack. This program is described in MICOM TR-76-23 by Wu, Moulden, and Uchiyama [4].

Figure 1. Surface pressure data versus axial direction (BS = 14, M = 2, L/D = 4).

Figure 2. Surface pressure data versus axial direction ($BS = 14$, $M = 2.5$, $L/D = 4$).

Figure 3. Surface pressure data versus axial direction ($BS = 14$, $M = 3$, $L/D = 4$).

Figure 4. Surface pressure data versus axial direction (BS = 14, M = 3.5, L/D = 4).

Figure 5. Surface pressure data versus axial direction (BS = 14, M = 4, L/D = 4).

Figure 6. Surface pressure data versus axial direction (BS = 14, M = 4.5, L/D = 4).

Figure 7. Surface pressure data versus axial direction ($BS = 15$, $M = 2$, $L/D = 3$).

Figure 8. Surface pressure data versus axial direction (BS = 15, M = 2.5, L/D = 3).

Figure 9. Surface pressure data versus axial direction (BS = 15, M = 3, L/D = 3).

Figure 10. Surface pressure data versus axial direction ($BS = 15$, $M = 3.5$, $L/D = 3$).

Figure 11. Surface pressure data versus axial direction (BS = 15, M = 4, L/D = 3).

Figure 12. Surface pressure data versus axial direction (BS = 15, M = 4.5, L/D = 3).

Figure 13. Surface pressure data versus axial direction (BS = 16, M = 2.0 L/D = 2.0).

Figure 14. Surface pressure data versus axial direction ($BS = 16$, $M = 2.5$, $L/D = 2$).

Figure 15. Surface pressure data versus axial direction (BS = 16, M = 3, L/D = 2).

Figure 16. Surface pressure data versus axial direction ($BS = 16$, $M = 3.5$, $L/D = 2$).

Figure 17. Surface pressure data versus axial direction (BS = 16, M = 4, L/D = 2).

Figure 18. Surface pressure data versus axial direction (BS = 16, M = 4.5, L/D = 2).

Figure 19. Surface pressure coefficients versus local Mach numbers (BS = 14, $L/D = 4$).

Figure 20. Surface pressure coefficients versus local Mach numbers ($BS = 15$, $L/D = 3$).

Figure 21. Surface pressure coefficients versus local Mach numbers ($BS = 16$, $L/D = 2$).

Figure 22. Forebody drag coefficient versus free stream Mach number at $\alpha = 0^\circ$.

REFERENCES

1. Guy, Ronnie M., Theoretical Analysis of the Flow Field Over a Family of Ogive Bodies, Science Applications, Inc., Huntsville, Alabama, August 1977, Technical Report TD-CR-77-5.
2. Weilerstein, Gertrude, The Addition of Secondary Shock Capability and Modifications to the GASL Three-Dimensional Characteristics Program, Part II: User's and Programmer's Manual, General Applied Science Lab., Inc., August 1967, Technical Report No. 653.
3. Jones, D. J., Numerical Solutions of the Flow Field for Conical Bodies in a Supersonic Stream, National Research Council of Canada, July 1968, Aeronautical Report LR-507, NRC No. 10361.
4. Wu, J. M., Moulden, T. H., and Uchiyama, N., Aerodynamic Performance of Missile Configurations at Transonic Speeds Including the Effects of a Jet Plume, US Army Missile Command, Redstone Arsenal, Alabama, March 1976, Report No. TR-RD-76-23.

DISTRIBUTION

	No. of Copies
Defense Documentation Center Cameron Station Alexandria, Virginia 22314	12
Commander US Army Material Research and Development Command ATTN: DRCRD DRCDL Alexandria, VA 22314	1 1
Commanding Officer US Army Picatinny Arsenal ATTN: SMUPA-VC3, Mr. A. Loeb Dover, New Jersey 07801	1
Director US Army Mobility Research and Development Laboratory ATTN: SAVDL-AS Ames Research Center Moffett Field, California 94035	1
Commanding Officer Research Laboratories ATTN: SMUEA-RA, Mr. Abraham Flatau Edgewood Arsenal, Maryland 21010	1
Commanding Officer Air Force Armament Laboratory ATTN: Mr. C. Butler Mr. F. Howard Mr. F. Findley Eglin Air Force Base, Florida 32542	1 1 1
Arnold Engineering and Development Center ATTN: Dr. McKay Library Arnold Air Force Station, Tennessee 37389	1 1
Air Force Flight Dynamics Laboratory ATTN: FDMM, Mr. Gene Fleeman Wright-Patterson Air Force Base, Ohio 45433	1

	No. of Copies
Commanding Officer Ballistic Research Laboratories ATTN: DRXRD-BEL, Mr. R. Krieger Aberdeen Proving Ground, Maryland 21005	1
Commanding Officer US Naval Ordnance Laboratories ATTN: Mr. S. Hastings Mr. R. T. Hall Library White Oak Silver Spring, Maryland 20910	1 1 1 1
NASA-Langley Reserach Center ATTN: Mr. Leroy Spearman Mr. Charles Jackson Technical Library Hampton, Virginia 23665	1 1 1
Commanding Officer and Director Naval Ship Research and Development Center ATTN: Aerodynamic Laboratory Craderock, Maryland 20007	1
Naval Weapons Center ATTN: Mr. R. Meeker China Lake, California 93555	1
NASA-Ames Research Center ATTN: Technical Library Moffett Field, California 94035	1
NASA-Lewis Research Center ATTN: Technical Library Cleveland, Ohio 44135	1
NASA-Marshall Space Flight Center ATTN: Mr. K. Blackwell Mr. H. Struck Mr. J. Sims Technical Library Marshall Space Flight Center, Alabama 35812	1 1 1 1
US Air Force Academy ATTN: Lt. Col. W. A. Edgington DFAN USAF Academy, Colorado 80840	1

	No. of Copies
Philco Corporation Aeronutronic Division ATTN: Technical Information Services-Acquisitions Mr. L. E. Horowitz Ford Road Newport Beach, California 92663	1
Rockwell International Columbus Aircraft Division ATTN: Mr. Fred Hessman 4300 East Fifth Avenue Columbus, Ohio 43216	1
Sandia Corporation Sandia Base Division 9322 ATTN: Mr. W. Curry Box 5800 Albuquerque, New Mexico 87115	1
Purdue University ATTN: Dr. J. Hoffman, Propulsion Center Lafayette, Indiana 47907	1
University of Tennessee Space Institute ATTN: Dr. J. M. Wu Tullahoma, Tennessee 37388	1
University of Alabama Department of Aerospace Engineering ATTN: Dr. Zien Dr. J. O. Doughty University, Alabama 35486	1 1
Jet Propulsion Laboratory California Institute of Technology ATTN: Mr. R. Martin 4800 Oak Grove Drive Pasadena, California 91109	1
University of Missouri at Columbia Department of Mechanical Engineering ATTN: Dr. D. E. Wollersheim Columbia, Missouri 65201	1

	No. of Copies
University of Illinois College of Engineering ATTN: Dr. A. L. Addy Dr. H. H. Korst Dr. R. A. White Engineering Library Urbana, Illinois 61801	1 1 1 1
John Hopkins University Applied Physics Laboratory ATTN: Dr. L. Cronvich Mr. Gordon Dugger Mr. R. Walker Silver Spring, Maryland 20910	1 1 1
University of Notre Dame Department of Aerospace Engineering ATTN: Dr. T. J. Mueller Notre Dame, Indiana 46556	1
Naval Air Systems Command ATTN: Mr. William Volz Air 320-C, Room 778, JP-1 Washington, D.C. 20361	6
Boeing Company ATTN: Library Unit Chief Mr. R. J. Dixon Mr. H. L. Giles P. O. Box 3707 Seattle, Washington 98124	1 1 1
Convair, A Division of General Dynamics Corporation ATTN: Division Library Pomona, California 91776	1
Nielsen Engineering and Research, Inc. ATTN: Dr. Jack N. Nielsen 510 Clyde Avenue Mountain View, California 94043	1
Hughes Aircraft Company ATTN: Documents Group Technical Library Florence Avenue at Teale Street Culver City, California 90230	1

	No. of Copies
Ling-Temco-Vought Aerospace Corporation ATTN: Mr. Dick Ellison P.O. Box 404 Warren, Michigan 48090	1
Vought Corporation ATTN: D.B. Schoelerman, Chief of Flight Technologies P.O. Box 5907 Dallas, Texas 75222	1
Lockheed Missiles and Space Company Huntsville R&E Center ATTN: Mr. Morris Penney 4800 Bradford Boulevard, N.W. Huntsville, Alabama 35805	1
Lockheed Aircraft Corporation Missile and Space Division ATTN: Technical Information Center P.O. Box 504 Sunnyvale, California 94086	1
The Martin-Marietta Corporation Orlando Division ATTN: D. Tipping L. Gilbert Orlando, Florida 32804	1 1
McDonnel-Douglas Company-West ATTN: Library A3-328 5301 Bolsa Avenue Huntington Beach, California 92646	1
McDonnel-Douglas Corporation P.O. Box 516 St. Louis, Missouri 63166	1
Rensselaer Polytechnic Institute ATTN: Mr. Leone Troy, New York 12181	1
Northrop Corporation Electro-Mechanical Division ATTN: Mr. E. Clark 500 East Orangethorpe Y20 Anaheim, California 92801	1

	No. of Copies
Emerson Electric Company ATTN: Mr. Robert Bauman 8100 Florissant ST. Louis, Missouri 73136	1
Southern Technologies, Inc. ATTN: G. C. Renfroe 1013 Meridian Street N Huntsville, Alabama 35801	1
DRSMI-LP, Mr. Voigt	1
DRDMI-X, Mr. McKinley	1
-T, Dr. Kobler	1
-TDK, Mr. Deep	1
Mr. Henderson	20
Mr. Batiuk	10
Mr. Dahlke	4
-TD, Mr. Jenkins	10
-C, Mr. Sullivan	1
-TBD	3
-TI (Record Set) (Reference Copy)	1

AD-A065 416

ARMY MISSILE RESEARCH AND DEVELOPMENT COMMAND REDSTO--ETC F/G 20/4
THEORETICAL ANALYSIS OF THE FLOW FIELD OVER A FAMILY OF OGIVE B--ETC(U)
JAN 79 R L RICHARDSON, B Z JENKINS
REPORT NO. AF-1

UNCLASSIFIED

DRDMI-T-79-15

NL

**SUPPLEMENTARY
INFORMATION**

END
DATE
FILMED
7-80
RTIC

SUPPLEMENTARY

INFORMATION

DEPARTMENT OF THE ARMY
UNITED STATES ARMY MISSILE COMMAND
REDSTONE ARSENAL, ALABAMA 35809

DRSMI-TI (R&D)

11 Sep 79

SUBJECT: Technical Report T-79-15 - Theoretical Analysis
of the Flow Field Over a Family of Ogive Bodies -
A Supplement to MIRADCOM Technical Report

TO: Recipients of Subject Report

The inclosed sheets are forwarded as replacement pages in
subject report.

1 Incl
as

John W. Chambers
JOHN W. CHAMBERS
C, Technical Info Ofc
Technology Laboratory

79 10 25 054

15.	Surface pressure data versus axial direction (BS = 16, M = 3, L/D = 2)	18
16.	Surface pressure data versus axial direction (BS = 16, M = 3.5, L/D = 2)	19
17.	Surface pressure data versus axial direction (BS = 16, M = 4, L/D = 2)	20
18.	Surface pressure data versus axial direction (BS = 16, M = 4.5, L/D = 2)	21
19.	Local Mach number versus axial direction (BS = 14, L/D = 4)	22
20.	Local Mach number versus axial direction (BS = 15, L/D = 3)	23
21.	Local Mach number versus axial direction (BS = 16, L/D = 2)	24
22.	Forebody drag coefficient versus free stream Mach number at $\alpha = 0^\circ$	25

Figure 19. Local Mach number versus axial direction (BS = 14, L/D = 4).

Figure 20. Local Mach number versus axial direction ($BS = 15$, $L/D = 3$).

Figure 21. Local Mach number versus axial direction ($BS = 16$, $L/D = 2$).