COMP3221: Distributed

Systems

Assignment Project Exam Help

Communication (Topps://powcoder.com

Add WeChat powcoder

Dr Nguyen Tran School of Computer Science

Previously...

- Previous lecture:
 - Message-based communication is complex (e.g., routing towards destination, subject to message losses)

Assignment Project Exam Help

- Today's lecture:
 - How to avoid many to avoid m
 - How to give the impression that everything happens locally (not remotely)?
 Add WeChat powcoder
 - One to many communication

Outline

- The Problem of Message Loss
- The TCP/IP Solution
 Assignment Project Exam Help
- Multicast communication https://powcoder.com

Add WeChat powcoder

The Problem of Message Loss

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Cause

- Networks are in general unreliable
- Messages can be lost (never been delivered even if sent)
 Assignment Project Exam Help
- Examples:
- https://powcoder.com
- A server receive Acommycle quastspinwhone enty so it cannot treat all
- A router drops the message because its queue is full

Message losses may impact the computation of a distributed system

Coordinated Attack Problem

- Constraints of the problem Assignment Project Exam Help
 - Two armies, each led by a general on separate mountains surrounding a battlefield (distributed system wooder.com
 - Can only communicate via messengers (message passing)
 - Messengers can be killed before reaching destination (message losses)

- Goal: they want to coordinate an attack
 - If they attack at different times, they both die
 - If they attack at the same time, they win

Coordinated Attack Problem (con't)

There is no protocols to make sure they will win!

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Coordinated Attack Problem (con't)

There is no protocols to make sure they will win!

Analogy in networking

- Constraints of the problem
 - Two remote entities of a distributed system
 Assignment Project Exam Help
 Can only communicate through messages

 - The network is untitipste/pewgeder.compped
- Goal: they want to make sure to do something simultaneously Add WeChat powcoder

This is impossible, even if all messages go through

TCP/IP

Communication 2/2 Assignment Project Exam Help

Week 4, COMP3221

https://powcoder.com

Add WeChat powcoder

TCP: Overview RFCs: 793,1122,1323, 2018, 2581

- Point-to-point:
 - one sender, one receiver
- Connection Assignment of the jet of the property of the prop
- Full duplex data:

 https://powcoder.com
 bi-directional data flow in same connection
- Flow controlled: Add WeChat powcoder
 - sender will not overwhelm receiver
- Congestion controlled:
 - TCP congestion and flow control set window size

TCP seq. numbers, ACKs

sequence numbers:

-byte stream "number" of first byte in segment's data Assignment Project Examille le

outgoing segment from sender

acknowledgements:

-seq # of next bytetps://powc expected from other_side

-cumulative ACK

Q: how receiver handles outof-order segments

-A: TCP spec doesn't say, up to implementor

sent **ACKed**

sent, notusable not yet ACKed usable but not vet sent ("inflight")

sender sequence number space

incoming segment to sender

source port #	ŧ	dest port #	
sequence number			
acknowledgement number			
A		rwnd	
checksum		urg pointer	

TCP seq. numbers, ACKs

simple telnet scenario

TCP sender events:

data rcvd from app:

- create segment with seq #
- seq # is byte-stream
 number of first data byte number of first data byte restart timer in segment
 in segment
- start timer if not placed poweoder previously unacked
 - think of timer And tho We Chat provider oldest unacked
 update visegment
 update visegment
 - expiration interval:
 TimeOutInterval

timeout:

retransmit segment that caused timeout

- update what is known to be ACKed
- start timer if there are still unacked segments

TCP round trip time, timeout

Q: how to set TCP timeout value?

Q: how to estimate RTT?

SampleRTT: measured

- longer than ARTI gnment Project Exam Helm transmission until ACK receipt
 - but RTT varies
- too short: premature https://powcoder.com/re retransmissions timeout, unnecessary WeChat powcoder -- " will vary, want retransmissions
- too long: slow reaction to segment loss

average several recent measurements, not just current SampleRTT

TCP round trip time, timeout

EstimatedRTT = $(1-\alpha)$ *EstimatedRTT + α *SampleRTT

- exponential weighted moving average
- influence of past sample decreases exponentially fast
- typical Askienoment. Project Exam Help

TCP round trip time, timeout

- timeout interval: EstimatedRTT plus "safety margin"
 - large variation in EstimatedRTT -> larger safety margin
- estimate SampleRII devion from Estimated RIT:

DevRTT =
$$(1-\beta)$$
 *DevRTT + $https:/pqweedersonmatedRTT|$

Add WeChat powcoder

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT

ا "safety margin"

TCP: retransmission scenarios

TCP: retransmission scenarios

cumulative ACK

TCP fast retransmit

- time-out period often relatively long:
 - long delay before resending soit project Ekanfoldshme data
- duplicate ACKs. https://powcoder.com detect lost segments via
 - sender often sends many segments backto-back
 - if segment is lost, there will likely be many duplicate ACKs.

TCP fast retransmit

if sender receives 3

- segment with smallest seq#
 - likely that unacked segment lost, so don't wait for timeout

TCP fast retransmit

TCP flow control

TCP flow control

to application process

TCP segment payloads

- receiver "advertises" free

buffer space by including

rwnd value in TCP header of
receiver-to-sensels entire Project Exam

RcvBuffer buffered data

rwnd
rwnd
ect Exam Help

- RcvBuffer size set via socket options (typical default is coder.com 4096 bytes)

- many operating systems auto Chat powcodreceiver-side buffering adjust RcvBuffer

- sender limits amount of unacked ("in-flight") data to receiver's rwnd value
- guarantees receive buffer will not overflow

source poi	rt#	dest port #			
sequence number					
acknowle	acknowledgement number				
		rwnd			
checksur	m	urg pointer			

Principles of congestion control

congestion:

- informally: "too many sources sending too much data too fast for networkignmente Project Exam Help
- different from flattps://powcoder.com
- manifestations:
 - lost packets (buffer overflow at routers)
 - long delays (queueing in router buffers)
- a top-10 problem!

TCP congestion control

- approach: sender increases transmission rate (window size), probing for usable bandwidth, until loss occurs
 - additive increase: increase cwnd by 1 MSS (Maximum Segment Size) was present From the Board Better and Board Better and Board Better Board Better Board Board Better Board B
 - multiplicative decrease: cut cwndmin half after loss

AIMD saw tooth behavior: probing for bandwidth

TCP Congestion Control: details

 Congestion window (cwnd) is dynamic function of perceived network congestion

TCP Slow Start

when connection begins, increase rate exponentially until first loss event:

 initially Acting mem SProject Exam Help (Maximum Segment Size)
 double cwndteper / Rowcoder.com

 done by incrementing chat powcoder cwnd for every ACK

Host A

Host B

time

<u>summary:</u> initial rate is slow but ramps up exponentially fast

received

TCP: detecting, reacting to loss

- Loss indicated by timeout:
 - cwnd set to 1 MSS;
 - window then grows exponentially (as in slow start) to threshold, then grows linearly grows linearly exponentially (as in slow start) to threshold, then

- https://powcoder.com Loss indicated by 3 duplicate ACKs: TCP RENO
 - dup ACKs indicqhet Worl Chappe of challering some segments
 - cwnd is cut in half window then grows linearly

TCP Tahoe always sets cwnd to 1 (timeout or 3 duplicate acks)

TCP: switching from slow start to Congestion Avoidance

Q: when should the exponential increase switch to linear?

A: when cwnd gets to 1/2 of its value ssignment Project Exam Help before timeout.

https://powcoder.com ssthresh

variable ssthresh

Implementation:

on loss event, ssthresh
 is set to 1/2 of cwnd just
 before loss event

The University of Sydney Page 29

Transmission round

Connection Management

before exchanging data, sender/receiver "handshake":

- agree to establish connection (each knowing the other willing to establish connection)
- agree on connection parameters, e.g. MSS, rwnd, etc.
- connection Assignment Project Exam Help


```
Socket clientSocket =
  newSocket("hostname","port
  number");
```

Socket connectionSocket =
 welcomeSocket.accept();

TCP 3-way handshake

TCP: closing a connection

HTTP Overview

HTTP: hypertext transfer protocol

Web's application layer protocol

- client/server model - client: browser that requests

- client: browser that requests, receives, (using Hatters of the Wooder.com and "displays" Web objects

Add WeChat powcoder

- server: Web server sends (using

 server: Web server sends (using HTTP protocol) objects in response to requests er.com

Owcoder

HTTP response running

Apache Web

server

iPhone running Safari browser

HTTP overview

Uses TCP:

■ client initiates TCP connection — server maintains no (creates socket) to server, information about port 80 Assignment Project Exam Helprequests

HTTP is "stateless"

server accepts TGP https://powcoder.com connection from client
What is HTTPS ?

- HTTP messages (Apalicove Chat power TLS layer protocol messages) (Transport Layer exchanged between browser (HTTP client) and Web server
 (HTTP server)
- TCP connection closed

Related terminology

- Broadcast: one-to-all communication
 - Action of sending a message to all nodes of the system
 - Typically used for relatively small systems, like IP broadcast as part of Ethernet in LANs
- Unicast: one-passing mountidationect Exam Help
 - In contrast with broadcast, describe a special form of distribution to a single receiver
 - Used generally in the context of multimedia or streaming applications
- Anycast: one-to-randam-one communication Add WeChat powcoder
 - Send a message to an IP address range from to obtain a response from any potential receiver, whose IP address belongs to this range
 - Used with UDP and TCP
- Multicast: one-to-many communication
 - Action of sending a message to multiple nodes of the system (not necessarily all nodes)
 - This term is used in many contexts (network, algorithm)

Conclusion (Transportation layer)

- Message losses can have dramatic consequences
- TCP/IP protocol suite hides these losses from the application level Assignment Project Exam Help
- Socket, RPC, use https://powcoder.com
 - Sockets are completed WeChat powcoder
 - RPC is more transparent for the client

Multicast communication scales well for large distributed systems