Université Paris-Saclay - L3 Mathématiques Analyse théorique et numérique des EDO - Année 2023-2024

TD3: Théorème de Cauchy-Lipschitz (existence et unicité de solution du problème de Cauchy) et théorème des bouts (temps de vie de la solution maximale).

Théorème des bouts.

Soient $I =]a, b [\subseteq \mathbb{R}$ un intervalle (avec $a, b \in \mathbb{R} \cup \{-\infty, +\infty\}), f : I \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$ une fonction continue et localement Lipschitzienne par rapport à sa deuxième variable, et $t_0 \in I$, $y_0 \in \mathbb{R}^n$ donnés. Soit (J, y), avec $J \subseteq I$, la solution maximale du problème de Cauchy

$$\begin{cases} y' = f(t, y), \\ y(t_0) = y_0. \end{cases}$$

On suppose que $J =]T^-, T^+[$. Alors on a que

1. si
$$T^+ < b$$
, $\lim_{t \to T^+} ||y(t)|| = +\infty$;

2. si
$$T^- > a$$
, $\lim_{t \to T^-} ||y(t)|| = +\infty$.

Remarque : ce théorème ne traite pas le cas d'une fonction $f: I \times U \longrightarrow \mathbb{R}^n$, avec U un ouvert strictement inclus dans \mathbb{R}^n (donc différent de \mathbb{R}^n).

Exercice 1. [Application directe du théorème des bouts].

Soit $f:]a,b[\times\mathbb{R}^n\longrightarrow\mathbb{R}^n$ $(a,b\in\mathbb{R}\cup\{-\infty,+\infty\})$ une fonction dans les conditions du théorème de Cauchy-Lipschitz.

Soit (J, y) une solution maximale de l'EDO y' = f(t, y). Supposons que J est un intervalle de la forme $]T^-, T^+[$ (rappel : d'après le théorème de Cauchy-Lipschitz, la solution maximale est définie dans un intervalle ouvert de]a, b[), avec $T^- \ge a$ et $T^+ \le b$. Que peut-on dire de l'intervalle J si :

- 1. y est bornée sur J?
- 2. $||y(t)|| \le |t|$, pour tout $t \in J$, ou, plus généralement, si $||y(t)|| \le g(t)$, où $g : \mathbb{R} \longrightarrow \mathbb{R}$ est une fonction continue?
- 3. $\lim_{t\to T^+}\|y(t)\|=+\infty \text{ ou } \lim_{t\to T^-}\|y(t)\|=+\infty\,?$

Exercice 2. Soit l'équation différentielle

$$\frac{du}{dt} = (1 + \cos(t))u - u^3. \tag{1}$$

- 1. Soient $t_0 \in \mathbb{R}$, $u_0 \in \mathbb{R}$. Justifier que le problème de Cauchy pour (1), de donnée initiale $u(t_0) = u_0$, admet une unique solution maximale.
- 2. Soit (J, u) une solution maximale de (1). Supposons qu'il existe $t \in J$ tel que u(t) = 0. Justifier que $u \equiv 0$ sur J.
- 3. Soient $t_0 \in \mathbb{R}$ et $u_0 \neq 0$. Considérons (J, u) la solution maximale du problème de Cauchy pour (1), de donnée initiale $u(t_0) = u_0$. Montrer qu'il existent C_1 , $C_2 > 0$ tel que

$$u^{2}(t) \leq C_{1}e^{C_{2}t}$$
, pour tout $t \in J$, $t > t_{0}$.

Conclure que la solution u est globale à droite, c'est-à-dire que J est de la forme $]T^-, +\infty[$, avec $T^- \in \mathbb{R} \cup \{-\infty\}$.

Remarque: on ne conclut rien sur T^- , ni que $T^- = -\infty$, ni que T^- est fini.

Exercice 3. On considère le système d'équations

(*)
$$\begin{cases} x' = x + 2ty + e^t xy^2 \\ y' = -2tx + y - e^t x^2 y \end{cases}$$

- 1. Écrire le système sous la forme X' = F(t, X), avec $X = (x, y)^T$, en précisant la fonction F et son domaine. Justifier l'existence et l'unicité de solution maximale d'un problème de Cauchy associé à (*).
- 2. En considérant $g(t) = x(t)^2 + y(t)^2$, démontrer que toute solution maximale d'un problème de Cauchy associée au système (*) est globale.

Exercice 4. Soit le système d'équations différentielles

(S)
$$\begin{cases} x' = x(1 - x - y/2) \\ y' = y(1 - y - x/2). \end{cases}$$

- 1. Écrire le système (S) sous la forme Y' = F(t, Y), avec $Y = \begin{pmatrix} x \\ y \end{pmatrix}$ et $F(t, Y) = \begin{pmatrix} F_1(t, Y), F_2(t, Y) \end{pmatrix}$, en explicitant la fonction F et son domaine de définition.
- 2. Soit $\left(J, t \in J \mapsto \left(\begin{array}{c} x(t) \\ y(t) \end{array}\right)\right)$ une solution maximale de (S). Montrer que $\left(J, t \in J \mapsto \left(\begin{array}{c} y(t) \\ x(t) \end{array}\right)\right)$ est aussi solution maximale de (S).
- 3. Soit $(x_0, y_0) \in \mathbb{R}^2$. Justifier l'existence et l'unicité d'une solution maximale du problème de Cauchy pour (S), de donnée initiale $(x(0), y(0)) = (x_0, y_0)$.
- 4. On va maintenant analyser le problème de Cauchy pour le système (S), de donnée initiale $(x(0), y(0)) = (x_0, y_0)$, pour différentes valeurs de (x_0, y_0) .
 - (a) Supposons $x_0 \in \mathbb{R}$, $y_0 = 0$. On considère (J, x(t)) la solution maximale du problème de Cauchy

$$\begin{cases} x' = x(1-x) \\ x(0) = x_0. \end{cases}$$

Montrer que $\left(J, t \in J \mapsto \left(\begin{array}{c} x(t) \\ 0 \end{array}\right)\right)$ est la solution maximale du problème de Cauchy pour (S), de donnée initiale $(x(0), y(0)) = (x_0, 0)$. Justifier que si $x_0 \geq 0$, alors $[0, +\infty[\subseteq J]$. Que vaut la limite $\lim_{t \to +\infty} x(t)$ (On pourra considérer séparément les cas $0 \leq x_0 \leq 1$ et $x_0 > 1$).

- (b) Supposons $x_0 = y_0 > 0$. Soit $\left(J, t \in J \mapsto \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}\right)$ la solution maximale du problème de Cauchy pour (S), de donnée initiale $(x(0), y(0)) = (x_0, y_0)$. Justifier que x(t) = y(t) pour tout $t \in J$, puis que $[0, +\infty[\subseteq J]$. Que vaut la limite $\lim_{t \to +\infty} x(t)$? (On pourra étudier l'équation différentielle vérifiée par x = y).
- (c) Supposons $x_0 > y_0 > 0$. Soit $\left(J, t \in J \mapsto \left(\begin{array}{c} x(t) \\ y(t) \end{array}\right)\right)$ la solution maximale du problème de Cauchy pour (S), de donnée initiale $(x(0), y(0)) = (x_0, y_0)$.
 - i. Justifier que pour tout $t \in J$, x(t) > y(t) > 0.
 - ii. Soit

$$A = \{(x, y) \in \mathbb{R}^2 \ x > y > 0 \text{ et } x \ge 1 - \frac{y}{2}\}.$$

Montrer que $(x(t), y(t)) \in A$ si et seulement si $x'(t) \leq 0$. Conclure que $[0, +\infty[\subseteq J]$.

2