Método	P(-6.1333)	P(-1.4142)	Error relativo (-6.1333)	Error relativo (-1.4142)
F(x)	-0.023716	0.46564	0	0
Vander (grado 49)	0.036465	0.46368	2.5374	0.0042093
Newton (linspace, g3)	0.013036	-0.21483	1.5495	1.4614
Newton (linspace, g7)	0.068535	-0.13976	3.8896	1.3001
Newton (linspace, g13)	0.064742	-6.2320	3.7297	14.384
Newton (Chebyshev, g3)	-0.96764	-0.20508	39.801	1.4404
Newton (Chebyshev, g7)	8.8410	1.3546	373.79	1.9091
Newton (Chebyshev, g13)	-10596.83749	-152.50	446821.29273	326.51

Conclusiones:

Como apreciamos en la tabla y también en las graficas, el mejor método para aproximar la función fue usando la matrix de Vandermonde. Esto podría deberse a la simplicidad del método, pues solo es necesario construir la matriz, calcular su inversa y luego un producto de una matriz con un vector. Al ser necesarias muy pocas operaciones complejas, se reduce al mínimo posible la acumulación de errores debida a los métodos más elaborados, como chebyshev, donde ameritamos el uso de diferencias entre números muy parecidos o funciones trascendentales (el coseno), y multiplicación por irracionales. Por otro lado, obtuvimos mejores resultados con el conjunto de 30 puntos, tal vez por tener una muestra mejor distribuida y con números no tan parecidos entre sí. Hubieron diferencias importantes entre cada método, pero el método de Vandermonde con grado 49 y el de Newton con espaciado uniforme y grado 3 dieron resultados bastante más aceptables que el resto de métodos de la tabla.

Así, concluimos que el método de Vandermonde ofrece grandes ventajas debido a su simplicidad, sin embargo en otro contexto podríamos combinar mejor nuestros métodos dada la naturaleza del problema. Además, la función a la que querpiamos aproximar era bastante complicada, así que no es de extrañar que haya sido dificil para cada método lograr una buena aproximación.