Theoretische Informatik I, Übung 13

Universität Potsdam, WiSe 2024/25

Dieses Übungsblatt behandelt Themen der Vorlesung 13 und 14!

1 Kontextfreiheit mit Abschlusseigenschaften

Zeigen Sie mithilfe von Abschlusseigenschaften:

- 1. $L = \{ a^n b^{n+m} c^m \mid n, m \ge 0 \}$ ist kontextfrei.
- 2. $L = \{ a^n b^m \mid n \neq m \}$ ist kontextfrei.

Sie dürfen davon ausgehen, dass $\{a^nb^n \mid n \geq 0\}$, sowie alle regulären Sprachen kontextfrei sind.

2 Nicht-kontextfreiheit mit Abschlusseigenschaften

Zeigen Sie mithilfe von Abschlusseigenschaften:

- 1. $L_1 = \{0^n 1^{2m} 0^{2n} 1^m \mid n, m \ge 0\}$ ist nicht kontextfrei.
- 2. $L_2 = \{ ww^R w \mid w \in \{0,1\}^* \}$ ist nicht kontextfrei.

Sie dürfen davon ausgehen, dass $\{a^nb^mc^nd^m \mid n,m \geq 0\}$ nicht kontextfrei ist.

3 Reguläre Grammatiken und endliche Automaten

Finden Sie jeweils rechtsreguläre Grammatiken für folgende Sprachen:

- 1. Sprache aller Wörter (über dem Alphabet {0, 1}), die das Teilwort 101 enthalten.
- 2. $L((ab)^*(b+aa)(a+b)^*)$

Nutzen Sie das Verfahren aus der Vorlesung, um diese Grammatiken in äquivalente ε -NEA umzuwandeln.

4 Allgemeine Grammatiken und Turing-Maschinen

Gegeben sei folgende DTM $M = (\{q_0, q_1, q_2, q_3, q_4, f\}, \{a\}, \{a, b, *\}, \delta, q_0, *, \{f\})$ mit

ð	a	b	*
q_0	(q_1, b, R)	(q_0, b, R)	$(q_2, *, L)$
q_1	(q_0, a, R)	(q_1, b, R)	$(q_3, *, L)$
q_2	/ T\	(q_2, b, L)	$(q_0, *, R)$
q_3		(q_3,b,L)	(f, *, R)

- 1. Beschreiben Sie kurz, was in jedem Zustand passiert.
- 2. Was ist die akzeptiere Sprache L(M)?
- 3. Nutzen Sie das Verfahren aus der Vorlesung, um diese DTM in eine äquivalente Grammatik umzuwandeln.
- 4. Geben Sie eine Ableitung des Wortes aa mit dieser Grammatik an.
- 5. Handelt es sich bei L(M) um eine Typ-1 Sprache? Begründen Sie warum (nicht)?