

Alineamientos de genoma completo, su uso en la identificación taxonómica de aislados bacterianos y especiación de cepas del género *Bifidobacterium*

Trabajo de Fin de Máster en bioinformática

Autor: Antonio Bahilo Gómez

Tutores: Alfonso Benítez Páez y Rosario Gil García

Índice

- **►**Introducción
 - Características del género Bifidobacterium
 - Diversidad dentro de Bifidobacterium
 - Análisis de la diversidad genética
 - Análisis de genomas completos
- ➤ Objetivos
- Diseño metodológico
- > Resultados y discusión
- **≻** Conclusión
- ➤ Agradecimientos

Características del género Bifidobacterium

Diversidad dentro de Bifidobacterium

Genomic insights into bifidobacteria

Ju-Hoon Lee ¹, Daniel J O'Sullivan

Species no. ⁸	Name ^b	Subspecies	Origin ^c
1	B. adolescentis		Intestine of adult
2	B. angulatum		Human feces
3	B. animalis	B. animalis subsp. animalis	Animal feces
		B. animalis subsp. lactis	Yogurt
4	B. asteroides		Intestine of honeybee
5	B. bifidum		Infant feces
6	B. bombi		Intestine of bumblebee
7	B. boum		Rumen of cattle
8	B. breve		Intestine of infant
9	B. catenulatum		Intestine of adult
10	B. choerinum		Porcine feces
11	B. coryneforme		Intestine of honeybee
12	B. crudilactis		Raw milk
13	B. cuniculi		Feces of rabbit
14	B. dentium		Human dental caries
15	B. gallicum		Human feces
16	B. gallinarum		Chicken cecum
17	B. indicum		Intestine of honeybee
18	B. longum	B. longum subsp. infantis	Intestine of infant
		B. longum subsp. longum	Intestine of adult
		B. longum subsp. suis	Porcine feces
19	B. magnum		Rabbit feces
20	B. merycicum		Bovine rumen
21	B. minimum		Sewage
22	B. pseudocatenulatum		Infant feces
23	B. pseudolongum	B. pseudolongum subsp. globosum	Bovine rumen
		B. pseudolongum subsp. pseudolongum	Porcine feces
24	B. pyschraerophilum		Porcine feces
25	B. pullorum		Chicken feces
26	B. ruminantium		Bovine rumen
27	B. saeculare		Rabbit feces
28	B. scardovii		Human blood
29	B. subtile		Sewage
30	B. thermophilum		Porcine feces
31	B. thermacidophilum	B. thermacidophilum subsp. porcinum	Porcine feces
		B. thermacidophilum subsp. thermacidophilum	Sewage

Análisis de la diversidad biológica

Análisis de genomas completos

ANIm VS ANIb

- -ANIm comete errores en rangos <90% de ANI.
- -ANIm es 4,7x más rápido que ANIb.

FastANIVS ANIb

- -FastANI misma precisión que ANIb.
- -FastANI 782x más rápido que ANIb.
- -FastANI permite comparar genomas incompletos.

Objetivos

- El objetivo general es realizar un análisis comparativo de más de 800 genomas de cepas pertenecientes al género Bifidobacterium con el estándar ANI. Los objetivos específicos son:
 - Establecer relaciones filogenéticas más robustas entre las diferentes especies de bifidobacterias con la herramienta FastANI.
 - **Detectar inconsistencias** generadas a partir de **anotaciones taxonómicas erróneas** entre los genomas descargados de la base de datos BV-BCR.
 - Establecer distribución de valores ANI intra- e interespecie en el grupo de datos analizado.

Diseño metodológico

Valores ANI para los outgroups = NA

Eliminación de 14 genomas identificados dentro del género *Enterococcus* y *Cutibacterium*.

Eliminación de 5 genomas de B.scardovii, B.gallicum y B.thermophilum.

Detección de 24 genomas no descritos (Bifidobacterium spp.)

Se reasignaron a las especies B. adolescentis, B. longum y B. kashiwanohense según valores de ANI > 94%

N = 10609 Bandwidth = 0.0173

\mathbf{n}			•
\sim	INCIANAC	Intraespeci	\sim
17 -	14000000	111111111111111111111111111111111111111	_
	iacioi ico	mici acopec	$\overline{}$

	B.breve	B.kashiwanohense	B.animalis	B.bifidum	B.adolescentis	B.longum
Tamaño_N	10000	16	1444	10609	7225	133956
Media_ANI_intra	98,57	96,31	99,60	99,05	98,22	97,89
Desviación	0,39	2,40	1,19	0,24	0,36	2,59
CI 95%	98,56-98,57	95,13-97,48	99,53-99,65	99,04-99,05	98,21-98,22	97,87-97,90
Mínimo	97,54	93,99	95,95	98,56	97,15	70,00
Mediana	98,59	95,04	99,99	99,01	98,22	98,53
Cuartil Q1	98,29	94,53	99,99	98,93	98,01	98,36
Cuartil Q3	98,80	98,03	100,00	99,09	98,39	98,66
	B.pseudocatenulatum	B.pseudolongum	B.angulatum	B.catenulatum	B.dentium	B.stercoris
Tamaño_N	4900,00	4,00	9,00	49,00	529,00	1,00
Media_ANI_intra	98,47	98,97	99,37	98,22	99,01	100,00
Desviación	0,42	1,19	0,74	1,34	0,45	NA
CI 95%	98,45-98,48	97,79-100	98,88-99,85	97,83-98,59	98,97-99,05	NA-NA
Mínimo	96,73	97,92	98,56	96,01	98,14	100,00
Mediana	98,50	98,97	99,99	98,40	98,82	100,00
Cuartil Q1	98,26	97,94	98,60	98,13	98,70	100,00
Cuartil Q3	98,69	100,00	100,00	98,61	99,17	100,00

Relaciones Interespecie

	B.breve	B.catenulatum	B.animalis	B.bifidum	B.adolescentis
Tamaño_N	70000,00	8679,00	28956,00	71791,00	61404,00
Media_ANI_inter	83	81	78	80	81
Desviación	3,57	3,83	0,34	0,94	1,50
CI 95%	83,14-83,20	80,85-81,01	77,60-77,61	80,13-80,14	80,51-80,53
Mínimo	76,80	77,12	76,74	77,45	77,35
Mediana	85,98	79,37	77,58	80,50	80,17
Cuartil Q1	79,75	79,08	77,47	79,78	79,81
Cuartil Q3	86,53	80,24	77,68	80,74	80,43
	B.longum	B.pseudocatenulatum	B.pseudolongum	B.angulatum	B.dentium
Tamaño_N	158704,00	51100,00	1596,00	2391,00	17871,00
Media_ANI_inter	81	80	78	80	80
Desviación	2,98	2,25	0,75	0,90	1,53
CI 95%	81,43-81.46	80,17-80,21	78,08-78,15	79,92-79,99	79,54-79,59
Mínimo	76,99	77,19	77,00	77,60	77,2
Mediana	80,51	79,55	77,95	79,82	78,97
Cuartil Q1	79,60	79,28	77,76	79,52	78,76
Cuartil Q3	81,20	79,85	78,31	80,09	79,18

Relaciones Intraespecie

	B.breve	B.catenulatum	B.animalis	B.bifidum	B.adolescentis
Tamaño_N	10000,00	121,00	1444,00	10609,00	7396,00
Media_ANI_intra	98 <i>,</i> 57	96,44	99,60	99,05	98,22
Desviación	0,39	2,10	1,19	0,24	0,36
CI 95%	98,56-98,57	96,06-96,81	99,53-99,65	99,04-99,05	98,21-98,22
Mínimo	97,5	94,0	95,9	98,6	97,1
Mediana	98,59	96,25	99,99	99,01	98,22
Cuartil Q1	98,29	94,44	99,99	98,93	98,01
Cuartil Q3	98,80	98,37	100,00	99,09	98,39
	B.longum	B.pseudocatenulatum	B.pseudolongum	B.angulatum	B.dentium
Tamaño_N	132496,00	4900,00	4,00	9,00	529,00
Media_ANI_intra	98,12	98,47	98,97	99,37	99,01
Desviación	1,19	0,42	1,19	0,74	0,45
CI 95%	98,11-98,12	98,45-98,48	97,79-100,13	98,88-99,85	98,97-99,05
Mínimo	94,1	96,7	97,9	98,6	98,1
Mediana	98,54	98,50	98,97	99,99	98,82
Cuartil Q1	98,37	98,26	97,94	98,60	98,70
Cuartil Q3	98,66	98,69	100,00	100,00	99,17

CONCLUSIÓN

- I. Debería de ser necesario realizar siempre un filtrado inicial antes de realizar cualquier estudio genómico.
- 2. El uso de la herramienta bioinformática FastANI ha resultado ser un excelente método de análisis para las relaciones intraespecies, siendo el valor ANI obtenido en este estudio mayor a 94% para la clasificación de genomas dentro de una misma especie, y de 97-98% para las especies con menor diversidad entre sus genomas.
- 3. La reasignación de especies será una fase necesaria para cualquier análisis genómico que use genomas descargados de repositorios públicos.
- 4. El establecimiento de la distribución de valores ANI interespecie en el grupo de datos analizado, ha mostrado que el intervalo de (80-94%) podría ser útil para distinguir la variación género específica.

Agradecimientos

