Cryptography — Day 4

One Time Pad and Optimality

Review

Private-key encryption

A private-key encryption scheme is defined by a message space \mathcal{M} and algorithms (Gen, Enc, Dec)

- Gen determines a probability distribution over Key Space.
- Message space has some fixed probability distribution.
- Key Space and Message Space are independent.

Private-key encryption

A private-key encryption scheme is defined by a message space \mathcal{M} and algorithms (Gen, Enc, Dec)

Crypto definitions (generally)

- Security guarantee/goal
 - What we want to achieve

- Threat model
 - What (real-world) capabilities the attacker is assumed to have

Crypto definitions (generally)

- Security guarantee/goal
 - What we want to achieve
 - Regardless of any prior information the attacker has about the plaintext, the ciphertext should leak no additional information about the plaintext
- Threat model
 - What (real-world) capabilities the attacker is assumed to have
 - Attacker Observes only one Ciphertext.

Perfect secrecy (formal)

Encryption scheme (Gen, Enc, Dec) with message space M and ciphertext space C is perfectly secret if for every distribution over M, every m ∈ M, and every c ∈ C with Pr[C=c] > 0, it holds that

$$Pr[M = m \mid C = c] = Pr[M = m].$$

Concept Check

Consider the shift cipher, and the distribution;

```
Pr[M='hi'] = 0.3,
Pr[M='no'] = 0.2,
Pr[M='in']= 0.5
```

What is the Pr[M = 'hi' | C = 'xy']?
 = Pr[C = 'xy' | M = 'hi'] · Pr[M = 'hi']/Pr[C = 'xy']

Perfectly Secret Encryption

- The shift cipher is not perfectly secret!
 - At least not for 2-character messages

How to construct a perfectly secret scheme?

- Patented in 1917 by Vernam
 - Recent historical research indicates it was invented (at least) 35 years earlier

Proven perfectly secret by Shannon (1949)

- Let $\mathcal{M} = \{0,1\}^n$
- Gen: choose a uniform key $k \in \{0,1\}^n$
- $Enc_k(m) = k \oplus m$
- $Dec_k(c) = k \oplus c$

Correctness:
 Dec_k(Enc_k(m)) = m

Perfect secrecy of one-time pad

- Note that any observed ciphertext can correspond to any message (why?)
 - (This is necessary, but not sufficient, for perfect secrecy)
- So, having observed a ciphertext, the attacker cannot conclude for certain which message was sent

Implementing the one-time pad

Key generation

- Read desired number of bytes from /dev/urandom
- Output the result to a file

Encryption

- Plaintext = sequence of ASCII characters
- Key = sequence of hex digits

Read them; XOR them to get the ciphertext

Decryption

- Reverse encryption
- Read ciphertext and key; XOR them to recover the message

Limitations and Optimality

The one-time pad achieves perfect secrecy!

- One-time pad has historically been used in the real world
 - E.g., "red phone" between DC and Moscow

- Not currently used!
 - Why not?

Several limitations

- Several limitations
 - The key is as long as the message

- Several limitations
 - The key is as long as the message
 - Only secure if each key is used to encrypt a single message
 - (Trivially broken by a known-plaintext attack)

- Several limitations
 - The key is as long as the message
 - Only secure if each key is used to encrypt a single message
 - (Trivially broken by a known-plaintext attack)
- ⇒ Parties must share keys of (total) length equal to the (total) length of all the messages they might ever send

Using the same key twice?

• Say
$$c_1 = k \oplus m_1$$

 $c_2 = k \oplus m_2$

Attacker can compute

$$c_1 \oplus c_2 = (k \oplus m_1) \oplus (k \oplus m_2) = m_1 \oplus m_2$$

This leaks information about m₁, m₂!

Hex	Dec	Char	Hex	Dec	Char	Hex	Dec	Char
0x20	32	Space	0x40	64	9	0x60	96	
0x21	33	1	0x41	65	A	0x61	97	a
0x22	34	"	0x42	66	В	0x62	98	b
0x23	35	#	0x43	67	C	0x63	99	C
0x24	36	\$	0×44	68	D	0x64	100	d
0x25	37	%	0x45	69	E	0x65	101	е
0x26	38	&	0x46	70	F	0x66	102	f
0x27	39	*	0x47	71	G	0x67	103	g
0x28	40	(0x48	72	H	0x68	104	h
0x29	41)	0x49	73	I	0x69	105	i
0x2A	42	*	0x4A	74	J	0x6A	106	j
0x2B	43	+	0x4B	75	K	0x6B	107	k
0x2C	44	,	0x4C	76	L	0x6C	108	1
0x2D	45	_	0x4D	77	M	0x6D	109	m
0x2E	46		0x4E	78	N	0x6E	110	n
0x2F	47	/	0x4F	79	0	0x6F	111	0
0x30	48	0	0x50	80	P	0x70	112	p
0x31	49	1	0x51	81	Q	0x71	113	q
0x32	50	2	0x52	82	R	0x72	114	r
0x33	51	3	0x53	83	S	0x73	115	S
0x34	52	4	0x54	84	T	0x74	116	t
0x35	53	5	0x55	85	U	0x75	117	u
0x36	54	6	0x56	86	V	0x76	118	V
0x37	55	7	0x57	87	W	0x77	119	W
0x38	56	8	0x58	88	X	0x78	120	x
0x39	57	9	0x59	89	Y	0x79	121	У
0x3A	58	:	0x5A	90	Z	0x7A	122	Z
0x3B	59	;	0x5B	91	[0x7B	123	{
0x3C	60	<	0x5C	92	1	0x7C	124	
0x3D	61	=	0x5D	93]	0x7D	125	}
0x3E	62	>	0x5E	94	^	0x7E	126	0-11
0x3F	63	?	0x5F	95	_	0x7F	127	DEL

- Letters all begin with 01...
- The space character begins with 00...
- XOR of two letters gives 00...
- XOR of letter and space gives 01...

 Easy to identify XOR of letter and space!

Source: http://benborowiec.com/2011/07/23/better-ascii-table/

In pictures

01	01	01	00	•••

00... 00... 00... 01... ...

In pictures

01	01	01	00	•••

01... 01... 01... 01... ...

00... 00... 01010000 ...

01010000 = **00100000** ⊕ **??**

- Drawbacks
 - Key as long the message
 - Only secure if each key is used to encrypt once
 - Trivially broken by a known-plaintext attack

These limitations are inherent for schemes achieving perfect secrecy

Optimality of the one-time pad

• Theorem: if (Gen, Enc, Dec) with message space \mathcal{M} is perfectly secret, then $|\mathcal{K}| \ge |\mathcal{M}|$.

• Intuition:

- Given any ciphertext, try decrypting under every possible key in ${\mathcal K}$
- This gives a list of up to $|\mathcal{K}|$ possible messages
- If $|\mathcal{K}| < |\mathcal{M}|$, some message is not on the list