Threshold-VAR-Modell

TODO: Der Random-Walk Metropolis-Hastings-Algorithmus für Threshold-VAR-Modelle

Tim Baumann

29. April 2016

Threshold-VAR-Modell

 $\label{lem:condition} \mbox{Der Random-Walk Metropolis-Hastings-Algorithmus f\"ur Threshold-VAR-Modelle}$

Das Threshold-VAR-Modell

$$\begin{aligned} \text{(TVAR)} & \begin{cases} Y_t = \textbf{c}_1 + \sum_{j=1}^P \beta_1 Y_{t-j} + v_t, & \text{Var}(v_t) = \Omega_1 \quad \text{wenn } S_t \leq Y^* \\ Y_t = \textbf{c}_2 + \sum_{j=1}^P \beta_2 Y_{t-j} + v_t, & \text{Var}(v_t) = \Omega_2 \quad \text{wenn } S_t > Y^* \\ \text{wobei } S_t \coloneqq Y_{j,t-d} \quad \text{(Threshold-Variable)} \\ Y_t, v_t, c_1, c_2 \in \mathbb{R}^T, & \beta_1, \beta_2 \in \mathbb{R}^{T \times T}, & \Omega_1, \Omega_2 \in \mathbb{R}^{T \times T} \end{aligned}$$

Dabei wird die Threshold-Komponente j von Y und die Verzögerung d vom Anwender gewählt.

Das Threshold-VAR-Modell

$$\begin{split} \text{(TVAR)} & \begin{cases} Y_t = \textbf{\textit{c}}_1 + \sum_{j=1}^P \beta_1 Y_{t-j} + \textbf{\textit{v}}_t, \; \; \mathsf{Var}(\textbf{\textit{v}}_t) = \Omega_1 & \mathsf{wenn} \; S_t \leq Y^* \\ Y_t = \textbf{\textit{c}}_2 + \sum_{j=1}^P \beta_2 Y_{t-j} + \textbf{\textit{v}}_t, \; \; \mathsf{Var}(\textbf{\textit{v}}_t) = \Omega_2 & \mathsf{wenn} \; S_t > Y^* \\ \mathsf{wobei} \; S_t := Y_{j,t-d} \; \; \text{(Threshold-Variable)} \\ Y_t, \textbf{\textit{v}}_t, \textbf{\textit{c}}_1, \textbf{\textit{c}}_2 \in \mathbb{R}^T, \; \; \beta_1, \beta_2 \in \mathbb{R}^{T \times T}, \; \; \Omega_1, \Omega_2 \in \mathbb{R}^{T \times T} \end{split}$$

Dabei wird die Threshold-Komponente j von Y und die Verzögerung d vom Anwender gewählt.

Beispiel

Makroökonomische Modellierung, wobei vermutet wird, dass die Stärke wirtschaftlicher Zusammenhänge (z.B. Multiplikator für Staatsausgaben) in Wirtschaftkrisen unterschiedlich groß ist wie in wirtschaftlich normalen oder guten Zeiten.

Prior-Verteilung

$$p(Y^*) \sim \mathcal{N}(\overline{Y}^*, \sigma_{Y^*})$$
 TODO: Prior für die VAR-Parameter

Inferenz

- 1. Wähle Startwerte für die VAR-Parameter und den Treshold Y^* (z.B. den Durschnitt oder den Median der Werte S_t).
- 2. Gibbs-Sampling: Wiederhole die Schritte
 - ▶ Teile die Daten in die zwei Regime $S_t \leq Y^*$ und $S_t > Y^*$ auf.

Ist Y^* ebenfalls bekannt, so zerfällt das Modell in zwei einfache VAR-Modelle, eines für das Regime $S_t \leq Y^*$, eines für $S_t > Y^*$.