Universidade de Aveiro Departamento de Matemática

Cálculo II - Agrupamento 4

2020/21

Folha 3: Soluções

1. (a) É aberto e não é fechado.

(b) Não é aberto nem fechado.

- (c) Não é aberto nem fechado.
- (d) É fechado e não é aberto.
- (e) É fechado e não é aberto.

2. (a) $D_f = \{(x, y) \in \mathbb{R}^2 : y \ge x^2\}.$

(b) $D_f = \{(x, y, z) \in \mathbb{R}^3 : y \ge x^2\}.$

(c) $D_f = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 4 \land (x,y) \ne (0,0)\} = \{(x,y) \in \mathbb{R}^2 : 0 < x^2 + y^2 \le 4\}.$

(d) $D_f = \{(x, y) \in \mathbb{R}^2 : xy > 0\} = \{(x, y) \in \mathbb{R}^2 : (x > 0 \land y > 0) \lor (x < 0 \land y < 0)\} = (\mathbb{R}^+ \times \mathbb{R}^+) \cup (\mathbb{R}^- \times \mathbb{R}^-).$

(e) $D_f = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1 \land y \neq x \land y \neq -x\}.$

(f)
$$D_f = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \neq 0\} = \mathbb{R}^3 \setminus \{(0, 0, z) : z \in \mathbb{R}\}.$$

(g)
$$D_f = \{(x, y) \in \mathbb{R}^2 : 1 < x^2 + y^2 \le 9\}.$$

- (h) $D_f = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \neq (0, 0) \land z^2 \le x^2 + y^2\}.$
- 3. (a) $\mathcal{N}_1=\{(0,0)\}$ é um ponto. Para cada $k\in]1,+\infty[$, $\mathcal{N}_k=\{(x,y)\in\mathbb{R}^2:x^2+y^2=\frac{k^2-1}{k^2}\}$ é uma circunferência de centro (0,0) e raio $\frac{\sqrt{k^2-1}}{k}$.
 - (b) $\mathcal{N}_1 = Ox \cup Oy$ é a união de duas retas concorrentes (cónica degenerada). Para $k \in \mathbb{R}^+ \setminus \{1\}$, $\mathcal{N}_k = \{(x,y) \in \mathbb{R}^2 : xy = \ln(k)\}$ é uma hipérbole.
 - (c) Para $k \in \mathbb{R}$, $\mathcal{N}_k = \{(x, y, z) \in \mathbb{R}^3 : x + y + 3z = k\}$ é o plano ortogonal ao vetor (1,1,3) que contém o ponto (k,0,0).
 - (d) $\mathcal{N}_0 = \{(x,y,z) \in \mathbb{R}^3 : x^2 = y^2 + z^2\}$ é uma superfície cónica; para $k \in \mathbb{R}^+$, $\mathcal{N}_k = \{(x,y,z) \in \mathbb{R}^3 : x^2 y^2 z^2 = k\}$ é um hiperbolóide de duas folhas; para $k \in \mathbb{R}^-$, $\mathcal{N}_k = \{(x,y,z) \in \mathbb{R}^3 : x^2 y^2 z^2 = k\}$ é um hiperbolóide de uma folha.
 - (e) $\mathcal{N}_0 = \{(0,0,0)\}$ é um ponto (quádrica degenerada). Para cada $k \in \mathbb{R}^+$, $\mathcal{N}_k = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = k\}$ é uma superfície esférica de centro (0,0,0) e raio \sqrt{k} .
- 4. $\{(x,y):T(x,y)=T(3,2)\}=\{(x,y):x^2+y^2=13\}$ (circunferência de centro em (0,0) e raio $\sqrt{13}$).
- 5. Para todo $(x, y, z) \in \mathbb{R}^3$, temos $\frac{\partial f}{\partial x}(x, y, z) = e^x(\operatorname{sen} x + \cos x),$ $\frac{\partial f}{\partial y}(x, y, z) = 3\operatorname{sen}(z 3y),$ $\frac{\partial f}{\partial z}(x, y, z) = -\operatorname{sen}(z 3y).$
- 6. (a) $\frac{\partial f}{\partial x}(2,2) = \frac{1}{2}$; $\frac{\partial f}{\partial y}(2,2) = \frac{1}{2}$.
 - (b) $\frac{\partial f}{\partial x}(2,0) = 0$; $\frac{\partial f}{\partial y}(2,0)$ não existe.
 - (c) $\frac{\partial f}{\partial x}(0,0)$ não existe; $\frac{\partial f}{\partial y}(0,0) = 0$.

7. Para
$$y > -x$$
 e $x > y$, temos
$$\frac{\partial f}{\partial x}(x,y) = \frac{2y}{y^2 - x^2}; \quad \frac{\partial f}{\partial y}(x,y) = \frac{2x}{x^2 - y^2},$$

$$\frac{\partial^2 f}{\partial x^2}(x,y) = \frac{\partial^2 f}{\partial y^2}(x,y) = \frac{4xy}{(x^2 - y^2)^2}; \quad \frac{\partial^2 f}{\partial x \partial y}(x,y) = \frac{\partial^2 f}{\partial y \partial x}(x,y) = -\frac{2(x^2 + y^2)}{(x^2 - y^2)^2}.$$

8.
$$f(x,y) = x^3y^2 - 6xy + \frac{1}{2}\ln(1+y^2)$$
.

- 9. –
- 10. -
- 11. –

12. (a)
$$D_f = \{(x, y) \in \mathbb{R}^2 : x > 0\} = \mathbb{R}^+ \times \mathbb{R}$$

(b) Plano tangente: 5x+4y-z-9=0. Reta normal: $(x,y,z)=(1,2,4)+\alpha(5,4,-1),\ \alpha\in\mathbb{R} \ (\text{equação vetorial}) \ \text{ou}$ $\frac{x-1}{5}=\frac{y-2}{4}=4-z \ \ (\text{equações cartesianas}).$

13. (a)
$$\nabla f(x, y, z) = (\operatorname{sen}(yz), xz \cos(yz), xy \cos(yz)).$$

(b)
$$D_{\frac{1}{\sqrt{6}}(1,2,-1)}f(1,3,0) = -\frac{3}{\sqrt{6}} = -\frac{\sqrt{6}}{2}$$
.

14. (a)
$$D_f = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 > 0\} = \mathbb{R}^2 \setminus \{(0,0)\}$$
 (é aberto e não é fechado).

- (b) As curvas de nível $k \in \mathbb{R}$ de f são $C_k = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = e^k\}$ (circunferências de centro (0,0)).
- (c) $D_{(u,v)}f(1,0) = 2u$.

15. Reta normal:
$$(x, y, z) = (3, 4, -2) + \alpha(3, 4, 5), \ \alpha \in \mathbb{R}$$
.
Plano tangente: $3x + 4y + 5z - 15 = 0$.

16. (a)
$$\nabla f(x, y, z) = (3y, 3x, 2z)$$
.

(b)
$$3x + 3y + 2z - 8 = 0$$
.

- 17. (a) D é um losango centrado na origem com os vértices situados nos eixos coordenados.
 - (b) A função é do tipo polinomial, logo contínua no seu domínio de definição \mathbb{R}^2 e, consequentemente, também é contínua em D. Por outro lado, este conjunto é fechado e limitado. Nestas condições, o Teorema de Weierstrass garante a existência de $\alpha, \beta \in \mathbb{R}$ que são, respetivamente, o menor e o maior valor que f atinge.

Observar que f(x, y) expressa o quadrado da distância de um ponto P = (x, y) à origem. Assim, o máximo absoluto é 1, atingido nos pontos (1, 0), (0, 1), (-1, 0) e (0, -1), e o mínimo absoluto é 0, atingido no ponto (0, 0).

- 18. Não. O Teorema de Weierstrass não é aplicável, porque S não é fechado.
- 19. Como $f(x,y) = -x^2 \le 0 = f(0,y)$ para todo $(x,y) \in \mathbb{R}^2$, então todos os pontos da forma (0,y), com $y \in \mathbb{R}$, são maximizantes da função.
- 20. (a) Não. O Teorema de Weierstrass não é aplicável, porque \mathbb{R}^3 não é limitado.
 - (b) Como $f(0,0,0) = 0 \le x^2 + y^2 + z^2 = f(x,y,z)$ para todo $(x,y,z) \in \mathbb{R}^3$, então (0,0,0) é (o único) minimizante global de f.

- 21. (a) f não é diferenciável em (0,0), porque não existe $f'_x(0,0)$.
 - (b) Tem-se $f(x,y) = -\sqrt{x^2 + y^2} \le 0 = f(0,0)$ para todo $(x,y) \in \mathbb{R}^2$. Portanto, (0,0) é (o único) maximizante absoluto de f.
- 22. (a) Como g é contínua e o conjunto B é fechado e limitado, o Teorema de Weierstrass garante a existência de extremos globais de g em B.
 - (b) g é diferenciável e não possui pontos críticos no interior de B, logo os extremantes situam-se na fronteira. Claramente (0, -1) é minimizante global e (0, 1) é maximizante global.
 - (c) Não, pois g é diferenciável no aberto A e não possui pontos críticos nesse conjunto (notar que $\nabla g(x,y) = (0,1) \neq (0,0)$). Portanto, g não tem extremantes globais em A (nem em \mathbb{R}^2).
- 23. Na origem a função h vale $\frac{1}{2}$, enquanto que, por exemplo, em $(\sqrt{3\pi/2},0)$ vale $\frac{3}{2}$ que é um valor maior.
- 24. (a) (1,0), (0,1), (-1,0), (0,-1);
 - (b) (2,3) e todos os pontos situados nos eixos coordenados;
 - (c) (0,0,0), (-1,-1,1), (-1,1,-1), (1,-1,-1), (1,1,1).
- 25. Como $(x-1)^2+(y-2)^2\geq 0$ então $f(x,y)=(x-1)^2+(y-2)^2-1\geq -1$. Ora f(1,2)=-1 e para todo $(x,y)\neq (1,2)$ tem-se $f(x,y)=(x-1)^2+(y-2)^2-1>-1$.
- 26. (a) O gradiente de f, se considerado no seu domínio de definição, anula-se apenas em (-4,6). No entanto, $(-4,6) \notin int(D)$. Consequentemente, f não possui pontos críticos em $int(D) =]0,1[\times]0,2[$.
 - (b) A existência de extremos absolutos é garantida pelo Teorema de Weierstrass, uma vez que D é fechado e limitado e f é contínua neste conjunto. Os extremos são então atingidos na fronteira (recordar a conclusão obtida na alínea anterior).
 - O máximo absoluto de f em D é 17 e é atingido no ponto (1,2); o mínimo absoluto de f em D é -3 e é atingido no ponto (1,0).
- 27. (a) Os pontos críticos são (0,0) e (1,1). A função f é de classe C^2 em \mathbb{R}^2 . Como $det(H_f(0,0))=-1<0$, então (0,0) não é extremante (é ponto de sela). Como $det(H_f(1,1))=e^{-4}>0$ e $\frac{\partial^2 f}{\partial x^2}(1,1)=-e^{-2}<0$, então $f(1,1)=e^{-2}$ é máximo local.
 - (b) Os pontos críticos de g são (0,0), (2,1) e (1,1/4). Aplicando o teste das segundas derivadas, conclui-se que os dois primeiros são pontos de sela e o terceiro ponto é minimizante local.
- 28. -
- 29. -
- 30. Tratando-se de uma função contínua definida num conjunto fechado e limitado, o Teorema de Weierstrass garante que f tem extremos globais em D. (0,0) é o único ponto crítico no interior de D, mas não é extremante (o hessiano é negativo neste ponto). Usando o método dos multiplicadores de Lagrange identificamos os candidatos (1,0), (-1,0), (0,1) e (0,-1). Calculando o valor de f nestes pontos, conclui-se que o máximo global de f é 2 (atingido nos pontos (1,0) e (-1,0)) e o mínimo global de f é -2 (atingido nos pontos (0,1) e (0,-1)).

31. Tratando-se de uma função contínua definida num conjunto fechado e limitado, o Teorema de Weierstrass garante que f tem extremos globais em D. Não existem pontos críticos no interior de D (ambas as derivadas parciais anulam-se (0,0), mas este ponto situa-se na fronteira). A fronteira fr(D) é constituída pela semicircunferência D_1 e pelo segmento de reta D_2 :

$$D_1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1 \land y \ge 0\}; \quad D_2 = \{(x, y) \in \mathbb{R}^2 : y = 0 \land -1 \le x \le 1\}.$$

Como f é constante em D_2 (pois f(x,0)=0) todos os pontos situados neste segmento são candidatos a extremantes. Os candidatos em D_1 são $\left(-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)$ e $\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)$ (obtidos através do método dos multiplicadores de Lagrange). Como

$$f\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) = -\frac{1}{2}, \quad f\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) = \frac{1}{2}, \quad f(x,0) = 0,$$

o máximo global de $f \in 1/2$ e o mínimo global $\in -1/2$.

- 32. (4,8) é o que se encontra mais próximo (à distância $3\sqrt{5}$) e (-4,-8) é o que se encontra mais afastado (à distância $5\sqrt{5}$).
- 33. $(\frac{2}{3}, \frac{4}{3}, \frac{2}{3})$.
- 34. A distância entre um qualquer ponto (x, y, z) e o ponto (1, 0, -2) é dada por $d(x, y, z) = \sqrt{(x-1)^2 + y^2 + (z+2)^2}$. Para pontos (x, y, z) do plano dado temos z = 4 x 2y. Assim, podemos minimizar d(x, y, z), ou mais simplesmente $d(x, y, z)^2$, tendo em conta esta última relação. Considerando

$$f(x,y) = (x-1)^2 + y^2 + (6-x-2y)^2$$

vemos que o único ponto crítico de f é $(\frac{11}{6}, \frac{5}{3})$ e que este é um minimizante local (atendendo ao teste das segundas derivadas). A distância mais curta pretendida é $f(\frac{11}{6}, \frac{5}{3}) = \frac{5\sqrt{6}}{6}$.

35. Aplicando o métodos dos multiplicadores de Lagrange identificamos os pontos

$$\left(\frac{6}{\sqrt{11}}, \frac{2}{\sqrt{11}}, -\frac{2}{\sqrt{11}}\right)$$
 e $\left(-\frac{6}{\sqrt{11}}, -\frac{2}{\sqrt{11}}, \frac{2}{\sqrt{11}}\right)$.

O primeiro é o mais próximo e o segundo ponto é o mais distante.

- 36. (a) -
 - (b) (0.1)
 - (c) f(0,1) = 0 é mínimo global e f(0,4) = 9 é máximo global.
- 37. (a) -
 - (b) $D = \{(x,y) \in \mathbb{R}^2 : 0 < x < 1, 1-x < y < 1\}; f$ não possui pontos críticos em int(D).
 - (c) f(1/2, 1/2) = 1 é mínimo global e f(1, 1) = 4 é máximo global.
- 38. O lucro máximo da empresa é 100 (milhões de euros), sendo realizado (ou atingido) com um gasto de 11 em investigação e de 9 em publicidade.
- 39. O custo mínimo para uma produção de 12 unidades é C(4,16) = 56.