Evaluate Model Performance

Mingcheng Hu

Table of contents

Load Models 2
Load Data 3
Model Performance Evaluation and Comparison5Cox Models5RSF Model7XGBoost Model7Summary7
<pre>library(tidyverse) library(survival) library(survcomp) # general way to calculate concordance index library(glmnet) library(randomForestSRC) library(xgboost) library(kableExtra) # include knitr automatically source("/work/users/y/u/yuukias/BIOS-Material/BIOS992/utils/csv_utils.r") # * Don't use setwd() for Quarto documents! # setwd("/work/users/y/u/yuukias/BIOS-Material/BIOS992/data") adjust_type <- ifelse(exists("params"), params\$adjust_type, "minimal") #</pre>

[1] "Model Adjustment Type: minimal"

```
impute_type_str <- switch(impute_type,
    unimputed = "unimputed",
    imputed = "imputed"
)
print(paste0("Data Imputation Type: ", impute_type_str))</pre>
```

[1] "Data Imputation Type: unimputed"

Load Models

Load Data

```
if (include_statin == "yes") {
   data_test <-
→ read.csv(paste0("/work/users/y/u/yuukias/BIOS-Material/BIOS992/data/test_data_",

→ impute_type_str, "_statin.csv"),
       header = TRUE
} else {
   data_test <-
→ read.csv(paste0("/work/users/y/u/yuukias/BIOS-Material/BIOS992/data/test_data_",
→ impute_type_str, ".csv"),
        header = TRUE
}
data_test <- data_test[, -1] # the first column is the index generated by

→ sklearn

(dim(data_test))
[1] 7032 100
data <- select_subset(data_test, type = adjust_type)</pre>
(dim(data))
[1] 7032
           48
colnames(data)
 [1] "event"
                                     "time"
 [3] "HRV_SD1"
                                     "HRV_SD2"
                                     "HRV_S"
 [5] "HRV_SD1SD2"
 [7] "HRV_CSI"
                                     "HRV_CVI"
 [9] "HRV_CSI_Modified"
                                     "HRV_PIP"
[11] "HRV_IALS"
                                     "HRV_PSS"
```

```
[13] "HRV_PAS"
                                     "HRV_GI"
[15] "HRV_SI"
                                     "HRV_AI"
[17] "HRV_PI"
                                     "HRV_C1d"
[19] "HRV_C1a"
                                     "HRV_SD1d"
[21] "HRV SD1a"
                                     "HRV C2d"
[23] "HRV_C2a"
                                     "HRV_SD2d"
[25] "HRV SD2a"
                                     "HRV Cd"
[27] "HRV_Ca"
                                     "HRV_SDNNd"
[29] "HRV_SDNNa"
                                     "HRV_ApEn"
[31] "HRV_ShanEn"
                                     "HRV_FuzzyEn"
[33] "HRV_MSEn"
                                     "HRV_CMSEn"
[35] "HRV_RCMSEn"
                                     "HRV_CD"
[37] "HRV_HFD"
                                     "HRV_KFD"
[39] "HRV_LZC"
                                     "HRV_DFA_alpha1"
[41] "HRV_MFDFA_alpha1_Width"
                                     "HRV_MFDFA_alpha1_Peak"
[43] "HRV_MFDFA_alpha1_Mean"
                                     "HRV_MFDFA_alpha1_Max"
[45] "HRV_MFDFA_alpha1_Delta"
                                     "HRV_MFDFA_alpha1_Asymmetry"
[47] "HRV MFDFA alpha1 Fluctuation" "HRV MFDFA alpha1 Increment"
data <- tibble::as_tibble(data)
# * It is very hard to compare the HR as different predictors are on
→ different magnitudes, so we need to normalize them.
time col <- data$time
event col <- data$event
data <- data %>%
    select(-c(time, event)) %>%
   mutate(across(where(is.numeric), scale)) %>%
   mutate(
        time = time_col,
```

Note now the interpretation of HR is different! For example, if HR=1.16 for the predictor in the univariate model fitted using scaled data, it means that each standard deviation increase is associated with 16% higher risk of event.

event = event_col

)

```
# For Cox model:
data_complete <- na.omit(data)
# For RSF model: We don't need to exclude the missing values</pre>
```

Model Performance Evaluation and Comparison

Cox Models

[1] "Concordance of Multivariate Cox Model: 0.552"

[1] "Concordance of Multivariate Cox Model: 0.552 (0.518, 0.586)"

Both approaches give the same result.

```
# LASS0
# * Now we should use Cindex() instead of concordance()
x_test <- as.matrix(data_complete %>% select(-c(time, event)))
y_test <- cbind(time = data_complete$time, status = data_complete$event)
pred_lasso <- predict(cox_model_lasso, newx = x_test, s = "lambda.1se")
concord_lasso1 <- apply(pred_lasso, 2, Cindex, y = y_test)
print(paste0("Concordance of LASSO Cox Model: ", round(concord_lasso1, 3)))</pre>
```

[1] "Concordance of LASSO Cox Model: 0.54"

[1] "Concordance of LASSO Cox Model: 0.54 (0.505, 0.574)"

Both approaches give the same result.

[1] "Concordance of Stepwise Cox Model: 0.55"

[1] "Concordance of Stepwise Cox Model: 0.55 (0.515, 0.584)"

Both approaches give the same result.

RSF Model

XGBoost Model

[1] "Concordance of XGBoost Model: 0.539 (0.504, 0.573)"

Summary

```
concord_table %>%
   kbl(
        caption = "Concordance Index of Different Models",
        align = c("|1", "c", "c", "c|"),
        col.names = c("Model", "Concordance", "Lower", "Upper")
) %>%
   kable_styling(
        bootstrap_options = c("striped", "hover", "condensed", "responsive"),
        position = "center",
        latex_options = c("striped", "HOLD_position")
)
```

Table 1: Concordance Index of Different Models

Model	Concordance	Lower	Upper
Multivariate Cox Model	0.552	0.518	0.586
LASSO Cox Model	0.552	0.505	0.574
Stepwise Cox Model	0.550	0.515	0.584
RSF Model	NA	NA	NA
XGBoost Model	0.539	0.504	0.573