$$(-n^2 + 2n) + (2n^3 + n^2 + n + 12)$$

$$\left[-2n^3+n-12\right]$$

$$(5r^5)^3 \cdot r^{-2}$$

$$\frac{125r^{15}}{r^2} = 125r^{13}$$

$$-3c^{2}(c+11) + (4c-5)(3c-2)$$

$$-3c^{3}-33c^{2}+(-4c+5)(3c-2)$$

$$-3c^{3}-33c^{2}-12c^{2}+8c+15c-10$$

$$-3c^{3}-45c^{2}+23c-10$$

$$\frac{6x^{2}-15xy}{3x} = 6x^{2}-15xy$$

$$3x(2x-5y) = 6x^{2}-15xy$$

$$(x + a)(x+b) = x^{a} + ax+bx+ab$$

= $x^{a}+(a+b)x+ab$

FACTORING POLYNOMIALS -

in the form
$$\left[\frac{x^2+bx+c}{x^2+bx+c}=(x+p)(x+g)\right]$$

If we know b &c, how do we figure out

$$x^2 + bx + c = (x+p)(x+q)$$

1. Make a table show all possible factors of c

2. Pick the numbers that add to b

$$\chi^{2} + 1/\chi + 18$$
 $(\chi + 2)(\chi + 9)$

Factor the trinomial.

1.
$$x^2 + 8x + 7$$
 $(x + 1)(x + 7)$

4.
$$p^2 + 10p + 25$$
 $(p+5)(p+5)$
 $1,25 = 26$
 $5,5 = 10$

7.
$$a^2 + 13a + 36$$
 $(a+4)(a+9)$
 $1,36 = 37$
 $2,18 = 20$
 $3,12 = 15$
 $4,9 = 13$

$$x^{3}-bx+c \longrightarrow (x-p)(x-q)$$
 $x^{2}+bx-c \longrightarrow (x-p)(x+q)$
 -30
 $-1,30=29$
 $-2,15=13$
 $-3,10=7$
 $10,-3=-7$
 $2,-15=-13$
 $1,-30=-29$

2.
$$b^2 = 7b + 10$$

1, $10 = 2$

2, $5 = 7$

(x - 2) (x - 5)

5. $m^2 - 10m + 24$

-1, -24 = -25

-3, -12 = -10

(M - 4) (M - 6)

6. $y^2 - 5y - 24$

-1, 24 = 23

-2, 12 = 10

-3, 8 = -2

-4, 6 = -2

3, -8 = -5

2, -12

1, -24

(Y - 8) (Y + 3)

3.
$$w^2 - 12w - 13$$
 $-1, 13 = 12$
 $1, -13 = -12$
 $(x+1)(x-13)$
8. $n^2 + 2n - 48$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 40 = 41$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 48 = 20$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 $-1, 40 = 14$
 -1

```
Homework:

p. 586 #3-17 (odd)
p. 587 #47-55 (all)
```