

Safe Semi-Supervised Learning of Sum-Product Networks

Martin Trapp^{1,2}, Tamas Madl², Robert Peharz³, Franz Pernkopf¹, and Robert Trappl²

¹Signal Processing and Speech Communication Lab., Graz University of Technology, Austria

²Austrian Research Institute for Artificial Intelligence, Austria

³Computational and Biological Learning Lab., University of Cambridge, UK

Motivation

- In several domains, obtaining class labels is expensive
- Most semi-supervised approaches enforce restrictive assumptions on the data distribution
- Goal: Non-restrictive semi-supervised learning

Sum-Product Networks (SPNs)

- Deep probabilistic model capturing expressive variable interactions, while guaranteeing exact and efficient inference
- Generative parameter learning using efficient Expectation Maximisation (EM) [1, 2]
- Discriminative parameter learning using backpropagation for cond. Ilh maximisation [3]

Contrastive Pessimistic Likelihood Estimation [4]

- Semi-supervised learning for generative linear models
- Maintains soft-labels for each unlabelled observation
- Alternates between optimistic parameter updates and pessimistic soft-label updates

$$\theta^* = \underset{\theta \in \Theta}{\operatorname{argmin}} L(\theta | \mathcal{X}, \mathcal{U}, \boldsymbol{q}) - L(\theta^+ | \mathcal{X}, \mathcal{U}, \boldsymbol{q})$$

 Results in a safe solution, since the supervised solution can allways be used in the worst case

Our Approach (MCP-SPN)

- First semi-supervised learning approach for SPNs
- Allows generative and discriminative learning of non-linear decision boundaries
- Guarantees that adding unlabelled data can increase, but not degrade, the training performance (safe)

$$L(\theta^*|\mathcal{X},\mathcal{U},\boldsymbol{q}) \geqslant L(\theta^+|\mathcal{X},\mathcal{U},\boldsymbol{q})$$

- Is computationally efficient (scales linearly)
- Does not enforce restrictive assumptions on the data distribution

Generative Training

- SPNs with soft-labels $\mathbb{S}[m{u}, m{q} | \theta] = \sum_{k=1}^K q_k w_k S_k [m{u} | m{q}, \theta]$
- Optimisation given labelled and unlabelled data

$$L(\theta|\mathfrak{X}, \mathfrak{U}, \boldsymbol{q}) = \sum_{n=1}^{N} \log \mathcal{S}[\boldsymbol{x}_n, \boldsymbol{y}_n|\theta] + \sum_{m=1}^{M} \log \mathcal{S}[\boldsymbol{u}_m, \boldsymbol{q}_m|\theta]$$

Pessimistic update of soft-labels

$$\nabla q_{mk} = \frac{\partial L(\theta^* | \mathcal{X}, \mathcal{U}, \mathbf{q})}{\partial q_{mk}} - \frac{\partial L(\theta^+ | \mathcal{X}, \mathcal{U}, \mathbf{q})}{\partial q_{mk}}$$

Discriminative Training

• Optimisation of conditional log likelihood given labelled and unlabelled data using backpropagation

$$CL(\theta|X, \mathcal{U}, \boldsymbol{q}) = \sum_{n=1}^{N} \log \mathcal{S}[\boldsymbol{y}_n|\boldsymbol{x}_n, \theta] + \sum_{m=1}^{M} \log \mathcal{S}[\boldsymbol{q}_m|\boldsymbol{u}_m, \theta]$$

- Pessimistic update of soft-labels as in the generative setting
- Initialisation of soft-labels using optimistic labelling for discriminative training and random draws from a Dirichlet distribution for generative training

Qualitative Results

Quantitative Results

Data Set	Supervised	\mathbf{SSL}	Oracle	MCPLDA
BUPA	$-438.75\pm7\cdot10^{0}$	$-7.31 \pm 6 \cdot 10^{-2}$	$-8.80\pm2\cdot10^{-1}$	$-9.07 \pm 3 \cdot 10^{-}$
Fertility	$-3.31 \pm 3 \cdot 10^{-2}$	$-3.06\pm7\cdot10^{-3}$	$-3.00\pm6\cdot10^{-3}$	$-12.68 \pm 5 \cdot 10^{-1}$
Haberman	$-138.63 \pm 4 \cdot 10^{0}$	$-5.05\pm6\cdot10^{-2}$	$-5.14\pm6\cdot10^{-2}$	$-7.83 \pm 1 \cdot 10^{-}$
ILPD	$-5.62 \pm 3 \cdot 10^{0}$	$-1.15 \pm 2 \cdot 10^{-2}$	$-1.00\pm1\cdot10^{-2}$	$-37.54 \pm 1 \cdot 10^{-1}$
Ionosphere	$-2.83 \pm 5 \cdot 10^{-2}$	$-1.61 \pm 1 \cdot 10^{-2}$	$-1.52\pm9\cdot10^{-3}$	$-46.12 \pm 5 \cdot 10^{-2}$
Iris	$-20.65\pm9\cdot10^{-1}$	$-3.78 \pm 3 \cdot 10^{-2}$	$-2.17\pm1\cdot10^{-2}$	$-2.65 \pm 5 \cdot 10^{-1}$
Parkinsons	$-1.32 \pm 4 \cdot 10^{-3}$	$-1.34 \pm 4 \cdot 10^{-3}$	$-1.30\pm2\cdot10^{-3}$	$-2.27 \pm 5 \cdot 10^{-2}$
WDBC	$-1.90 \pm 1 \cdot 10^{-3}$	$-1.93\pm2\cdot10^{-3}$	$-1.88 \pm 3 \cdot 10^{-4}$	$-10.75\pm1\cdot10^{-}$
Wine	$-2.47 \pm 4 \cdot 10^{-3}$	$-2.47 \pm 2 \cdot 10^{-3}$	$-2.44 \pm 9 \cdot 10^{-4}$	$-15.28 \pm 2 \cdot 10^{-}$

BUPA $0.41\pm1\cdot10^{-2}$ $0.40\pm1\cdot10^{-2}$ $0.48\pm5\cdot10^{-3}$ $0.36\pm2\cdot10^{-2}$ $0.47\pm7\cdot10^{-3}$ 0.42 ± 1 Fertility $0.07\pm2\cdot10^{-2}$ $0.03\pm1\cdot10^{-2}$ $0.06\pm2\cdot10^{-2}$ $0.07\pm2\cdot10^{-2}$ $0.07\pm2\cdot10^{-2}$ 0.12 ± 2 Haber. $0.23\pm2\cdot10^{-2}$ $0.28\pm2\cdot10^{-2}$ 0.25 ± 0 . $0.20\pm2\cdot10^{-2}$ $0.33\pm1\cdot10^{-2}$ 0.27 ± 1 ILPD $0.17\pm2\cdot10^{-2}$ $0.20\pm1\cdot10^{-2}$ $0.24\pm4\cdot10^{-3}$ $0.23\pm2\cdot10^{-2}$ $0.29\pm1\cdot10^{-2}$ 0.33 ± 2 Ionos. $0.79\pm4\cdot10^{-3}$ $0.82\pm4\cdot10^{-3}$ 0.87 ± 0 . $0.66\pm9\cdot10^{-3}$ $0.61\pm9\cdot10^{-3}$ 0.70 ± 7 Iris $0.73\pm1\cdot10^{-2}$ $0.88\pm1\cdot10^{-2}$ 0.93 ± 0 . $0.72\pm1\cdot10^{-2}$ $0.74\pm2\cdot10^{-2}$ 0.80 ± 6	
Haber. $0.23 \pm 2 \cdot 10^{-2}$ $0.28 \pm 2 \cdot 10^{-2}$ 0.25 ± 0 . $0.20 \pm 2 \cdot 10^{-2}$ $0.33 \pm 1 \cdot 10^{-2}$ 0.27 ± 10^{-2} ILPD $0.17 \pm 2 \cdot 10^{-2}$ $0.20 \pm 1 \cdot 10^{-2}$ $0.24 \pm 4 \cdot 10^{-3}$ $0.23 \pm 2 \cdot 10^{-2}$ $0.29 \pm 1 \cdot 10^{-2}$ $0.33 \pm 2 \cdot 10^{-2}$ $0.33 \pm 1 \cdot 10^{-2}$ $0.33 \pm 2 \cdot 10^{-2}$ $0.33 \pm 1 \cdot 10^{-2}$ 0.33 ± 1	$2 \cdot 10^{-}$
ILPD $0.17 \pm 2 \cdot 10^{-2}$ $0.20 \pm 1 \cdot 10^{-2}$ $0.24 \pm 4 \cdot 10^{-3}$ $0.23 \pm 2 \cdot 10^{-2}$ $0.29 \pm 1 \cdot 10^{-2}$ 0.33 ± 2 Ionos. $0.79 \pm 4 \cdot 10^{-3}$ 0.82 $\pm 4 \cdot 10^{-3}$ 0.87 ± 0 . $0.66 \pm 9 \cdot 10^{-3}$ $0.61 \pm 9 \cdot 10^{-3}$ 0.70 ± 7 Iris $0.73 \pm 1 \cdot 10^{-2}$ 0.88 $\pm 1 \cdot 10^{-2}$ 0.93 ± 0 . $0.72 \pm 1 \cdot 10^{-2}$ $0.74 \pm 2 \cdot 10^{-2}$ 0.80 ± 6	
Ionos. $0.79 \pm 4 \cdot 10^{-3}$ $0.82 \pm 4 \cdot 10^{-3}$ $0.87 \pm 0.$ $0.66 \pm 9 \cdot 10^{-3}$ $0.61 \pm 9 \cdot 10^{-3}$ 0.70 ± 7 Iris $0.73 \pm 1 \cdot 10^{-2}$ $0.88 \pm 1 \cdot 10^{-2}$ $0.93 \pm 0.$ $0.72 \pm 1 \cdot 10^{-2}$ $0.74 \pm 2 \cdot 10^{-2}$ 0.80 ± 6	10^{-1}
Iris $0.73\pm1\cdot10^{-2}$ $0.88\pm1\cdot10^{-2}$ $0.93\pm0.$ $0.72\pm1\cdot10^{-2}$ $0.74\pm2\cdot10^{-2}$ 0.80 ± 6	2·10 ⁻
	$7 \cdot 10^{-}$
	$3 \cdot 10^{-}$
Parkins. $0.72 \pm 1 \cdot 10^{-2}$ $0.77 \pm 4 \cdot 10^{-3}$ $0.82 \pm 4 \cdot 10^{-3}$ $0.74 \pm 1 \cdot 10^{-2}$ $0.66 \pm 2 \cdot 10^{-2}$ 0.68 ± 1	10^{-1}
PID $0.38 \pm 1 \cdot 10^{-2}$ $0.45 \pm 1 \cdot 10^{-2}$ $0.64 \pm 8 \cdot 10^{-4}$ $0.45 \pm 1 \cdot 10^{-2}$ $0.54 \pm 7 \cdot 10^{-3}$ 0.57 ± 9	· 10 ⁻
WDBC $0.85\pm3\cdot10^{-3}$ $0.90\pm2\cdot10^{-3}$ $0.92\pm3\cdot10^{-4}$ $0.91\pm4\cdot10^{-3}$ $0.88\pm4\cdot10^{-3}$ 0.92 ±3	3·10 ⁻
Wine $0.82\pm7\cdot10^{-3}$ $0.97\pm2\cdot10^{-3}$ $0.97\pm4\cdot10^{-3}$ $0.96\pm2\cdot10^{-3}$ $0.95\pm7\cdot10^{-3}$ 0.95 ± 9)·10 ⁻

[1] Poon, Hoifung and Domingos, Pedro. "Sum-product networks: a new deep architecture." In proceedings of UAI. 2011.
[2] Peharz, Robert, et al. "On the latent variable interpretation in sum-product networks." IEEE TPAMI (2016).
[3] Gens, Robert, and Pedro Domingos. "Discriminative learning of sum-product networks." In proceedings of NIPS. 2012.
[4] Loog, Marco. "Contrastive pessimistic likelihood estimation for semi-supervised classification." IEEE TPAMI (2016).