

دانشگاه صنعتی اصفهان دانشکده مهندسی برق و کامپیوتر

> درس کامپایلر تکلیف تئوری سوم

تاریخ تحویل: ۱۱ خرداد

Q1) Determine the correctness of each statement below. for correct ones, briefly explain why, and for wrong ones, provide a counterexample

- A) $LR(0) \subset LALR(1) \subset LR(2) \subset LR(1)$
- B) any CFG can be parsed in $O(n^3)$
- C) all unambiguous grammars can be parsed using LR(1)

Q2) compare LR(1), LALR(1) and SLR(1) based on number of states and power

Q3) consider the following grammar

1:
$$S \rightarrow A B C$$

1 - 2: $A \rightarrow a q A \mid \epsilon$
3 - 4: $B \rightarrow b B q A \mid \epsilon$
5 - 6: $C \rightarrow c C \mid \epsilon$

- A) draw the $SLR(\mathbf{1})$ state automata and build the parsing table of this grammar
- B) **parse** the following input and show the step-by-step status of **stack**, **input line** and **actions taken**

$$aqbbqcc$$
\$

Q4) consider the following grammar

$$S' \rightarrow S$$

 $S \rightarrow 0A0 \mid 1A1 \mid 0B1 \mid 1B0$
 $A \rightarrow 2$
 $B \rightarrow 2$

- A) draw the LR(1) state automata
- B) build the LR(1) parsing table of this grammar
- C) is this grammar LALR(1)? If not, briefly describe **why**, otherwise combine states from part A to build the LALR(1) **automata**.

Q5) Over the alphabet {0}, provide a grammar that...

A)

has **exactly one** shift/reduce conflict and **exactly one** reduce/reduce conflict in SLR(1). Also, provide the sets and GOTO transitions of **state automata** (**starting from set 0**) that reaches those conflicts (you don't need to draw the whole automata)

B)

has **exactly 2** shift/reduce conflicts and **no** reduce/reduce conflict in LR(1). Also, provide the sets and GOTO transitions of **state automata (starting from set 0)** that reaches those conflicts (you don't need to draw the whole automata)

Q6) Below is the SLR(1) parsing table of a grammar, along with the size of each production. find the whole grammar, explain with detail.

SLR table											
State	ACTION						GOTO				
	0	1	а	b	С	\$	S'	S	Α	В	С
0			s4		s3			1	2		
1						acc					
2	s5										
3						r_2					
4	r ₄		s4						6		
5				s8						7	
6	r ₃										
7		s9		s10							
8		r ₆		r ₆							
9					s12						11
10		r ₅		r ₅							
11						r ₁					
12						r ₇					

#	LHS	Size of RHS
0	S'	1
1	S	5
2	S	1
3	Α	2
4	Α	1
5	В	2
6	В	1
7	С	1

Q7) Consider the following grammar

$$S' \rightarrow S$$

 $S \rightarrow L = R ; \mid R$
 $L \rightarrow id \mid *R$
 $R \rightarrow L$

- A) draw its LR(1) state automata
- B) using the answer for part A, tell which states should be **merged** together to get to *LALR*(1)
- C) construct LALR(1) parsing table
- D) **parse** the following input and show the step-by-step status of **stack**, **input line** and **actions taken**

$$id = id$$
;

E) show that this grammar is **not** SLR(1), you don't need to draw the whole state diagram, start from state 0 and reach a conflict.