hence so is $g_{\lambda}(z;\mu)$. According to Lemma 6, each element in the set $S_{\mu_0}\setminus\{0\}$ is a zero of the function $g_{\lambda}(z;\mu_0)$.

Next we show that for any bounded interval L of \mathbb{R} , $S_{\mu_0} \cap L$ is a finite set. Suppose, to the contrary, $S_{\mu_0} \cap L$ is infinite, then it has a limit point in \mathbb{R} by the Bolzano-Weierstrass Theorem [18] and hence, $g_{\lambda}(z; \mu_0) = 0$ on the whole complex plane \mathbb{C} by the Identity Theorem [20]. Then, by (16), (54) and (57), for every $x \in \mathbb{R}$,

$$\int_{-\infty}^{\infty} \phi(y-x)r(y)\mathrm{d}y = 0 \tag{69}$$

where

$$r(y) = \log p_Y(y; \mu_0) + \lambda y^2 + c$$
 (70)

and $c=\frac{1}{2}\log(2\pi e)+I(\mu_0)-\frac{q}{1-q}d(0)-\lambda(\gamma+1)$ is a constant.

As in the proof of Lemma 2, there exist $a,b \in \mathbb{R}$ such that $|\log p_Y(y;\mu_0)| \leq \frac{1}{2}y^2 + ay + b$. As a result, there exist some $\alpha,\beta>0$ such that $|r(y)|\leq \alpha y^2+\beta$. Since the convolution of r(y) and the Gaussian density is equal to the zero function by (69), r(y) must be the zero function according to [10, Corollary 9]. This requires the capacity-achieving output distribution $p_Y(y;\mu_0)$ be Gaussian, which cannot be true unless X is Gaussian, which contradicts the assumption that X has a probability mass at 0. Therefore, $S_{\mu_0} \cap L$ must be a finite set for any bounded interval L, which further implies that S_{μ_0} is at most countable.

Finally, we show that S_{μ_0} is countably infinite. Suppose, to the contrary, $S_{\mu_0} = \{x_i\}_{i=1}^N$ is a finite set with $\mu_0(\{x_i\}) = p_i$ and $|x_i| \leq B_1$ for all i = 1, 2, ..., N. For any $y > B_1$,

$$p_Y(y; \mu_0) = \sum_{i=1}^{N} p_i \phi(y - x_i) \le e^{-\frac{(y - B_1)^2}{2}} . \tag{71}$$

For any $\epsilon > 0$, choose $B_2 > 0$ such that $\int_{-B_2}^{B_2} \phi(x) dx > 1 - \epsilon$. By (16), (54), (57) and (58), for any