SS 2018 Marc Kegel

Kirby-Kalkül

Übungsblatt 2

Aufgabe 1.

- (a) Fertigen Sie Skizzen von allen Henkelaufhebungen und Henkelbewegungen in den Dimensionen 1, 2 und 3 an. Markieren Sie in Ihren Skizzen auch die Anklebesphären, Gürtelsphären, Kerne, Kokerne und Ankleberegionen.
- (b) Sei M eine kompakte n-Mannigfaltigkeit mit nicht-leerem Rand. Zeigen Sie, dass es eine Henkelzerlegung von M mit genau einem 0-Henkel und keinem n-Henkel gibt.

Aufgabe 2.

Wir betrachten den 3-Torus $T^3 := S^1 \times S^1 \times S^1$.

- (a) Zeigen Sie, dass man T^3 aus dem Würfel $I \times I \times I$ durch identifizieren von gegenüberliegenden Seiten erhalten kann.
- (b) Beschreiben Sie eine (möglichst einfache) Henkelzerlegung von T^3 .
- (c) Zeichnen Sie ein planares Heegaard-Diagramm von T^3 .

Aufgabe 3.

Sei M eine zusammenhängende, geschlossene, orientierbare 3-Mannigfaltigkeit präsentiert in einem Heegaard-Diagramm $(\Sigma_q; \beta_1, \dots, \beta_q)$.

- (a) Beschreiben Sie eine Präsentation der Fundamentalgruppe $\pi_1(M)$ von M ausgehend von ihrem Heegaard-Diagramm.
- (b) Berechnen Sie die Fundamentalgruppen von $S^3,\ S^1\times S^2$ und T^3 ausgehend von ihren Heegaard-Diagrammen.
- (c) Welche 3-Mannigfaltigkeit wird durch das Heegaard-Diagramm in Abbildung 1 beschrieben? Hinweis: Sie können benutzen, dass die 3-dimensionale Poincaré-Vermutung äquivalent ist zu der Aussage, dass jede geschlossene 3-Mannigfaltigkeit mit trivialer Fundamentalgruppe homöomorph zur 3-Sphäre ist.

Abbildung 1: Die Anklebescheiben der 1-Henkel werden paarweise mittels einer Spiegelung an der horizontalen Mittelline diese planaren Heegaard-Diagramms identifiziert.

Aufgabe 4 (Falls Sie aus Ihrer Topologievorlesung noch nicht mit dem Begriff der Homologiegruppen vertraut sind, bearbeiten Sie statt Aufgabe 4 bitte die Alternativaufgabe weiter unten). Sei M eine zusammenhängende, geschlossene, orientierbare 3-Mannigfaltigkeit präsentiert in einem Heegaard-Diagramm $(\Sigma_q; \beta_1, \ldots, \beta_q)$.

- (a) Leiten Sie eine Präsentation der ersten Homologiegruppe $H_1(M; \mathbb{Z})$ her, die nur die homologischen Informationen des Heegaard-Diagramms benutzt.
- (b) Wie berechnet man die anderen Homologiegruppen von M?
- (c) Zeigen Sie, dass die Eulercharakteristik χ einer geschlossenen, orientierbaren 3-Mannigfaltigkeit verschwindet.
- (d) **Bonusaufgabe:** Wie berechnet man die Eulercharakteristik χ einer allgemeinen kompakten n-Mannigfaltigkeit aus einer ihrer Henkelzerlegungen?
- (e) **Bonusaufgabe:** Wie berechnet man die Homologiegruppen einer allgemeinen kompakten *n*-Mannigfaltigkeit aus einer ihrer Henkelzerlegungen?

Alternativaufgabe (zu Aufgabe 4).

Machen Sie sich Mit Hilfe einer Referenz Ihrer Wahl mit den Definitionen der Homologiegruppen vertraut und fassen Sie diese sehr kurz zusammen.

Bonusaufgabe.

Welche Bedingungen muss ein System von einfach geschlossenen Kurven auf Σ_g erfüllen, damit es als Heegaard-Diagramm einer geschlossenen 3-Mannigfaltigkeit auftreten kann?