In \mathbb{R}^3 , we can see that a tetrahedron consists of four triangular faces, each adjacent to each other, six edges, each adjacent to two other lines, and four vertices. First, we will show that Δ^3 contains the previously mentioned shapes, and then show that these shapes are adjacent, and thus Δ^3 is a tetrahedron.

Given the following definition of Δ^3

$$\Delta^3 = \left\{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : \sum_{i=1}^4 x_i = 1 \text{ and } x_i \ge 0 \right\}$$

Let $S \subset \{1, 2, 3, 4\}$ where $S \neq \emptyset$ and define $\Delta_S^3 = \{x \in \Delta^3 : i \in S \implies x_i = 0\}$. We can show that for each $S, \Delta_S^3 \cong \Delta^{3-|S|}$. (Am I using \cong right here?)

Proof: let $S \subset \{1,2,3,4\}$ where $S \neq \emptyset$. Consider the case where |S| = 1. Without loss of generality, let $S = \{1\}$, then every point in Δ_S^3 is $(0, x_1, x_2, x_3)$ for $a, b, c \in \mathbb{R}$. Consider the mapping $f: \Delta_S^3 \to \Delta^2$ where $(0, x_1, x_2, x_3) \mapsto (x_1, x_2, x_3)$. We can show that f is bijective, and thus $\Delta_S^3 \cong \Delta^2$. Suppose $a, b \in \Delta_S^3$ where $a = (0, a_1, a_2, a_3)$ and $b = (0, b_1, b_2, b_3)$, and where f(a) = f(b), thus $(a_1, a_2, a_3) = (b_1, b_2, b_3)$, and thus $(0, a_1, a_2, a_3) = (0, b_1, b_2, b_3)$, thus f is injective. Next, suppose $a \in \Delta^2$ where $a = (a_1, a_2, a_3)$ and consider $b = (0, b_1, b_2, b_3)$,