CS 310

SEVERAL HOURS LATER ...

Quick refresher!

Graphs

- Fundamental and expressive structure.

Wide range of problems can be modeled with clarity and precision

- Pairwise relationships between objects.

Road networks

Ebola spread

Framingham heart study

Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.

Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle is proportional to the person's body-mass index. The interior color of the circles indicates the person's obesity status: yellow denotes an obese person (body-mass index, ≥30) and green denotes a nonobese person. The colors of the ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange denotes a familial tie.

Some graph applications

graph	node	edge
communication	telephone, computer	fiber optic cable
circuit	gate, register, processor	wire
mechanical	joint	rod, beam, spring
financial	stock, currency	transactions
transportation	street intersection, airport	highway, airway route
internet	class C network	connection
game	board position	legal move
social relationship	person, actor	friendship, movie cast
neural network	neuron	synapse
protein network	protein	protein-protein interaction
molecule	atom	bond

Web graph

Node: webpage

Edge: hyperlink

Ecological food graph

Customer graphs

Social Media

Some directed graph applications

directed graph	node	directed edge
transportation	street intersection	one-way street
web	web page	hyperlink
food web	species	predator-prey relationship
WordNet	synset	hypernym
scheduling	task	precedence constraint
financial	bank	transaction
cell phone	person	placed call
infectious disease	person	infection
game	board position	legal move
citation	journal article	citation
object graph	object	pointer
inheritance hierarchy	class	inherits from
control flow	code block	jump

How is a graph specified?

How is a graph specified?

Formally, a graph is specified by a set of vertices (also called nodes) V and by edges E between select pairs of vertices.

Undirected graph.

$$G = (V, E)$$

V =nodes or V =rodes of nodes.

Graph size parameters: n = |V|, m = |E|.

$$V = \{ 1, 2, 3, 4, 5, 6, 7, 8 \}$$

$$E = \{ 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 \}$$

$$n = 8$$

$$m = 11$$

Degree of a vertex?

How is a graph represented?

Adjacency Matrix

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0

Graph representation: adjacency matrix

Adjacency matrix. n-by-n matrix with $A_{uv} = 1$ if (u, v) is an edge.

- Two representations of each edge.
- Space proportional to
- Checking if (u, v) is an edge takes time.
- Identifying all edges takes time.

						6		
1	0 1	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0

Graph representation: adjacency matrix

Adjacency matrix. n-by-n matrix with $A_{uv} = 1$ if (u, v) is an edge.

- Two representations of each edge.
- Space proportional to n^2 .
- Checking if (u, v) is an edge takes $\Theta(1)$ time.
- Identifying all edges takes $\Theta(n^2)$ time.

							7	
1	0	1	1	0	0	0	0	0
2	0 1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0 1	1
8	0	0	1	0	0	0	1	0

Adjacency List

Graph representation: adjacency lists

Adjacency lists. Node indexed array of lists.

- Two representations of each edge.
- Space is
- Checking if (u, v) is an edge takes ______ time.
- Identifying all edges takes time.

Graph representation: adjacency lists

Adjacency lists. Node indexed array of lists.

- Two representations of each edge.
- Space is $\Theta(m+n)$.
- Checking if (u, v) is an edge takes O(degree(u)) time.
- Identifying all edges takes $\Theta(m+n)$ time.

degree = number of neighbors of u

Efficiency of operations depends on the choice of

data-structures

Adjacency list is

representation,

unless stated

the default

Useful

vertex.

representation

neighbors of a

for finding

otherwise.

What is a path in a graph?

What is a path in a graph?

Def. A path in an undirected graph G = (V, E) is a sequence of nodes $v_1, v_2, ..., v_k$ with the property that each consecutive pair v_{i-1}, v_i is joined by an edge in E.

What is a simple path in a graph?

What is a path in a graph?

Def. A path in an undirected graph G = (V, E) is a sequence of nodes $v_1, v_2, ..., v_k$ with the property that each consecutive pair v_{i-1}, v_i is joined by an edge in E.

What is a simple path in a graph?

Def. A path is simple if all nodes are distinct.

What is a connected graph?

What is a connected graph?

Def. An undirected graph is connected if for every pair of nodes u and v, there is a path between u and v.

What is a tree?

Trees

Undirected graph is a tree if it is connected and does not contain a cycle.

Phylogeny trees

Describe evolutionary history of species.

GUI containment hierarchy

Describe organization of GUI widgets.

Homework: Due beginning of class on Monday, Sept. 16th.

Suppose you are given a **connected undirected** weighted graph G(V,E) with no cycles.

How will you find the shortest path between two vertices 'u' and 'v' in G?