Санкт - Петербургский государственный университет Математико - механический факультет

Отчёт по практике $N_{2}5$

Частичная проблема собственных значений

Выполнила: Карасева У.П.

451 группа

Постановка задачи 1

Исследуем задачу поиска собственных чисел матрицы A. Если нас интересует максимальное по модулю собственное число, то удобно пользоваться степенным методом поиска и методом скалярных произведений.

Степенной метод 2

Пусть наша матрица A имеет полную о.н.с. собственных векторов $e_i, i=1, \ldots, n$

$$Ae_i = \lambda_i e_i \tag{1}$$

причем $|\lambda_1|>|\lambda_2|\geqslant |\lambda_3|\geqslant ...\geqslant |\lambda_n|$ Любой вектор $x^{(0)}$ представляется следующим образом

$$x^{(0)} = c_1 e_1 + c_2 e_2 + \dots + c_n e_n \tag{2}$$

Можно построить итерационный процесс

$$x^{(k+1)} = Ax^{(k)} = A^k x^{(0)} = c_1 \lambda_1^k e_1 + \dots + c_n \lambda_n^k e_n$$
(3)

Можем свести к виду

$$x^{(k+1)} = A^k x^{(0)} = c_1 \lambda_1^k e_1 + O\left(\left(\frac{\lambda_2}{\lambda_1}\right)^k\right)$$

$$\tag{4}$$

Таким образом, увеличивая k, будем приближаться вектором x^{k+1} к с.вектору матрицы A, соответствующему наибольшему с. числу. Само же собственное число в таком случае (с учетом более точного приближения) может быть приближенно вычислено так

$$|\lambda_1| \approx \sqrt{\frac{\left(x^{(k+1)}, x^{(k+1)}\right)}{\left(x^{(k)}, x^{(k)}\right)}}$$
 (5)

В силу того, что алгоритм сводится к последовательному умножению заданной матрицы на вектор, при правильной реализации он хорошо работает для больших разреженных матриц. Метод применяется в первую очередь для разреженных матриц. Haпример, Google использует его для расчёта рангов страниц в Интернете, а Twitter использует его для рекомендаций «за кем следовать».

3 Метод скалярных произведений

Наряду с матрицей A рассматриваем матрицу A^T с о.н.с. собственных векторов $v_i, i = 1, ..., n$

Так же раскладываем вектор $y^{(0)}$

$$y^{(0)} = d_1 v_1 + d_2 v_2 + \dots + d_n v_n \tag{6}$$

И запускаем итерационный процесс

$$y^{(k+1)} = A^T y^{(k)} = A^{Tk} y^{(0)}$$
(7)

Тогда имеем

$$\left(x^{(k)}, y^{(k)}\right) = \left(A^k x^{(0)}, A^{Tk} y^{(0)}\right) = c_1 d_1 \lambda_1^{2k} + \dots + c_n d_n \lambda_n^{2k} \tag{8}$$

В случае симметричности матрицы A при $x^{(0)}=y^{(0)}$ аналогичным способом получаем

$$|\lambda_1| \approx \frac{\left(A^k x^{(0)}, A^k x^{(0)}\right)}{\left(A^{k-1} x^{(0)}, A^k x^{(k)}\right)}$$
 (9)

Метод скалярных произведений является методом ускорения сходимости степенного метода. Образование скалярного произведения сокращает число шагов итерации. В случае симметричной матрицы применение метода скалярных произведений наиболее целесообразно.

4 Описание численного эксперимента

Берем симметричную матрицу А. Будем искать ее собственное число точным методом, а так же степенным методом и методом скалярных произведений, будем отслеживать число итераций. Будем сравнивать полученные результаты. К тому же возьмем данные, полученные методом вращений Якоби, описанным в прошлом отчете, и добавим к общему сравнению.

Выберем точность $1e^{-9}$ для всех тестов.

5 Тесты

5.1 Tect 1

$$A = \begin{pmatrix} -1.00449 & -0.38726 & 0.59047 \\ -0.38726 & 0.73999 & 0.12519 \\ 0.59047 & 0.12519 & -1.08660 \end{pmatrix}$$
 (10)

Результаты поиска наибольшего (по модулю) с.ч различными методами

Метод	Точный	Степенной	Скалярный	Якоби
С.ч	-1.6902	-1.6902	-1.6902	-1.6902
Кол-во итераций	-	31	17	7

5.2 Tect 2

$$A = \begin{pmatrix} -5 & -0.5 & 2 & 3\\ -0.5 & 16 & 0.44 & 10\\ 2 & 0.44 & -1.4 & -5\\ 3 & 10 & -5 & 8 \end{pmatrix}$$
 (11)

Результаты поиска наибольшего (по модулю) с.ч различными методами

Метод	Точный	Степенной	Скалярный	Якоби
С.ч	23.0678	23.0678	23.0678	23.0678
Кол-во итераций	_	28	12	17

5.3 Тест 3

Возьмем матрицу Гильберта размерностью 5×5 Результаты поиска наибольшего (по модулю) с.ч различными методами

Метод	Точный	Степенной	Скалярный	Якоби
С.ч	1.5671	1.5671	1.5671	1.5671
Кол-во итераций	-	11	8	29

Сводная таблица времени

Обратим внимание на время выполнения каждого из методов в различных тестах

Тест	Точный, сек	Степенной, сек	Скалярный, сек	Якоби, сек
1	0.0045	0.0095	0.0087	0.0068
2	0.0041	0.011	0.0066	0.0084
3	0.0045	0.0086	0.0069	0.0079

6 Вывод

По полученным данным можно сделать вывод, что все используемые методы очень точно находят максимальное по модулю собственное число симметричной матрицы A. В случае с матрицей Гильберта 5×5 метод Якоби не выгоден, т.к. число итераций наибольшее. Остальные же данные говорят, что для степенного и скалярного методов количество шагов различается практически в два раза, скалярный метод оказывается все же наиболее выгодным.

Так же было оценено время выполнения каждого метода. Точный метод для всех тестов выполняется быстрее остальных, а скалярный метод всегда быстрее степенного.