User's Guide: CyberneticTrader Class

1 Introduction

This document provides a comprehensive guide to the CyberneticTrader class, a Python implementation of Norbert Wiener's cybernetic principles for financial forecasting and trading. The class embodies Wiener's vision from Cybernetics: Or Control and Communication in the Animal and the Machine (1948) by creating an adaptive trading system that processes information, maintains homeostasis, and learns from feedback.

2 Theoretical Foundations

2.1 Wiener's Cybernetics in Finance

Wiener defined cybernetics as "the scientific study of control and communication in the animal and the machine." Key concepts applied:

- Feedback Control (Ch. IV): $\dot{x} = Ax + Bu$ with u = -Kx
- Information Theory (Ch. III): $H(X) = -\sum p_i \log_2 p_i$
- Wiener Filter (Ch. III): $H(\omega) = \frac{\Phi_{ss}}{\Phi_{ss} + \Phi_{nn}}$
- Learning Systems (Ch. IX): $\Delta w = \eta \delta x$

2.2 Mathematical Framework

2.2.1 Information-Entropy Relationship

Market uncertainty as measurable entropy:

$$H(X) = -\sum_{i=1}^{n} p(x_i) \log_2 p(x_i)$$
$$I = 1 - \frac{H(X)}{H_{\text{max}}} \quad (0 \le I \le 1)$$

where $I \to 1$ indicates predictable markets.

2.2.2 Wiener-Kolmogorov Filter

Optimal frequency-domain filter:

$$H(\omega) = \frac{\Phi_{ss}(\omega)}{\Phi_{ss}(\omega) + \Phi_{nn}(\omega)} \tag{1}$$

Minimizes MSE $E[(s - \hat{s})^2]$.

2.2.3 Market Homeostasis

Regime classification via autocorrelation:

$$\rho_1 = \frac{\sum_{t=2}^{T} (r_t - \bar{r})(r_{t-1} - \bar{r})}{\sum_{t=1}^{T} (r_t - \bar{r})^2}$$
 (2)

 $|\rho_1| < 0.2 \Rightarrow \text{Homeostatic}$ $\rho_1 > 0.3 \Rightarrow \text{Trending}$ $\rho_1 < -0.3 \Rightarrow \text{Mean-reverting}$

2.2.4 Adaptive Learning

Weight update rule:

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \eta \cdot r_t \cdot \mathbf{f}_t \tag{3}$$

where $\eta = \text{learning rate}, r_t = \text{reward}.$

3 Class Architecture

3.1 Initialization

__init__(data, initial_capital=100000)

- Precomputes returns: $r_t = \frac{p_t p_{t-1}}{p_{t-1}}$
- Estimates noise variance: $\sigma_n^2 = \text{Var}(r_t \hat{r}_t)$
- Applies Wiener filter to prices

3.2 Core Methods

3.2.1 Information Processing

compute_market_information(returns, bins=20)

$$\begin{array}{l} p_i \leftarrow \operatorname{histogram}(r_t) / \sum \operatorname{hist} \\ H \leftarrow - \sum p_i \log_2 p_i \\ \mathbf{return} \quad 1 - H / \log_2(\operatorname{bins}) \end{array}$$

Figure 1: System architecture implementing Wiener's principles

3.2.2 Signal Filtering

wiener_filter(signal) $F \leftarrow \text{RFFT(signal)}$ $\Phi_{ss} \leftarrow |F|^2/N$

 $H \leftarrow \Phi_{ss}/(\Phi_{ss} + \sigma_n^2)$ return IRFFT $(F \odot H)$

3.2.3 Decision Engine

decide(features, price)

$$score = \sum_{i=1}^{4} w_i f_i$$

$$\label{eq:continuous} \begin{split} & \textbf{if score} > 0.1 \land \text{capital} > 0 \textbf{ then} \\ & \text{Execute BUY} \\ & \textbf{else if score} < -0.1 \land \text{position} > 0 \textbf{ then} \end{split}$$

```
Execute SELL end if
```

4 Usage Guide

4.1 Initialization

```
import yfinance as yf
from CyberneticTrader import CyberneticTrader

data = yf.download('SPY', '2010-01-01', '2020-12-31')
trader = CyberneticTrader(data, 100000)
```

4.2 Backtesting

```
portfolio, trades = trader.backtest(
start_idx=50,
transaction_cost=0.0005
)

performance = trader.evaluate_performance()
print(f"Sharpe: {performance['sharpe_ratio']:.2f}")
```

4.3 Live Simulation

```
def live_data_handler():
  return pd.DataFrame(...) # OHLCV data
  trader.simulate(live_data_handler, steps=100)
```

5 Diagnostic Metrics

Metric	Formula	Target
Sharpe Ratio	$\frac{\mu_r}{\sigma_r}$	> 1.5
Information Coefficient	$ ho_{f,r}$	> 0.05
Homeostasis Ratio	$\frac{T_{\mathrm{homeo}}}{T_{\mathrm{total}}}$	> 0.3
Noise-Signal Ratio	$\frac{\sigma_n}{\sigma_s}$	< 0.5

6 Parameter Tuning

Parameter	Description	Range
Learning Rate (η)	Weight adaptation speed	0.001-0.05
Autocorrelation Window	Regime detection sensitivity	20-50 bars
Information Bins	Entropy calculation resolution	15-30
Filter Threshold	Overreaction prevention	2.0 - $3.0~\sigma$

7 Troubleshooting

Problem: Poor performance in trending markets **Fix:** Increase ρ_1 threshold for anti-homeostatic regime

Problem: Overtrading

Fix: Increase decision thresholds $(0.1 \rightarrow 0.15)$

Problem: Laggy response

Fix: Reduce Wiener filter window size

8 Conclusion

This system operationalizes Wiener's cybernetics through:

• Information Processing: Quantifying market entropy

• Feedback Control: Regime-adaptive behavior

• Signal Extraction: Noise filtering via Wiener-Kolmogorov

• Learning: Continuous performance optimization

The complete implementation is available at:

https://github.com/cybernetic-trading/CyberneticTrader