TALLER ECONOMETRÍA I

Profesor: Erika R. Badillo Facultad de Economía

Universidad Autónoma Latinoamericana

PREGUNTAS

Nota: En todos los contrastes o pruebas de hipótesis es necesario definir: Ho, Ha, estadístico de prueba, distribución que sigue el estadístico y criterio de decisión

Hay personas que dicen que el peso de los bebes al nacer es diferente según su género, por lo que las niñas pesan menos. Con el fin de analizar esta hipótesis y utilizando una muestra de bebes de los Estados Unidos, se estima por el método de mínimos cuadrados ordinarios (MCO) el siguiente modelo de regresión:

$$PESO_i = \beta_1 MALE_i + \beta_2 FEMALE_i + u_i \pmod{1}$$

donde PESO es el peso (en onzas) de los bebes, FEMALE es una variable binaria que toma valor 1 cuando se trata de una niña y 0 cuando es un niño, y MALE es una variable binaria que toma valor 1 cuando se trata de un niño y 0 cuando es una niña. Los resultados obtenidos son los siguientes:

Cuadro 1						
Source	22	df		MS		Number of obs = 1388
Model Residual	19559346.2 571612.84	2 1386	9779 412.	673.08 419077 		F(2, 1386) =23712.95 Prob > F = 0.0000 R-squared = 0.9716 Adj R-squared = 0.9716 Root MSE = 20.308
peso	Coef.	Std.	 Err.	t	P> t	[95% Conf. Interval]
male female	120.1093 117.1669	.7552 .7875		159.03 148.78	0.000	118.6277 121.5909 115.6221 118.7118

Estimación de la matriz Var-Cov de los estimadores

```
symmetric covB[2,2]
male female
male
female 0.0000
```

- 1. A partir de los resultados recogidos en el cuadro 1, contraste si existen diferencias en el peso de los bebes según su género
- 2. A partir de los resultados recogidos en el cuadro 1, obtenga los parámetros estimados del modelo: $PESO_i = \alpha_1 + \alpha_2 FEMALE_i + u_i$
- 3. Hay expertos que argumentan que el hecho de que la madre sea fumadora puede provocar problemas y, entre otros efectos, puede hacer que el peso al nacer sea inferior. Además, añaden que la renta familiar también es una variable que influye en el peso de los bebes, ya que a mayor renta hay un mejor seguimiento del embarazo. Para recoger estas ideas se incluyen en el modelo las variable CIGS (número de cigarrillos que la madre fuma al día) y FAMINC (renta familiar, en miles de dólares) y se estima el siguiente modelo por MCO:

$$PESO_i = \beta_1 + \beta_2 FEMALE_i + \beta_3 CIGS_i + \beta_4 FAMINC_i + u_i \pmod{2}$$

Los resultados obtenidos son los siguientes: Cuadro 2

Source	SS S	df	MS	Number of obs F(3, 1384)	1000
Model Residual		-	6825.70666 400.386272	Prob > F R-squared Adj R-squared	= = 0.0356
Total	574611.72	1387	414.283864	Root MSE	= 20.01
peso			Err. t	 	Interval]
female cigs faminc _cons	-3.113968 4610457 .0968798			-5.225513 -	-1.002423 2818702 .1540535 120.5938

Estimación de la matriz Var-Cov de los estimadores

symmetr	ic covB2[4,4]			
	female	cigs	faminc	_cons
female	1.1586294			
cigs	00087878	.0083426		
faminc	00153112	.00046125	.00084945	
_cons	50882941	03038	02488572	1.318004

Contraste individualmente la significación estadística del parámetro asociado a la variable CIGS y la significación conjunta (global) del modelo

- 4. A partir de los resultados obtenidos al estimar el modelo 2, cuál es el peso esperado para un bebe niño cuya madre fuma cinco cigarrillos al día y la renta familiar es de 10,000 dólares?
- 5. Interprete el parámetro estimado β_2 asociado a la variable FEMALE tanto en el modelo 1 como en el modelo 2
- 6. A veces, también se ha argumentado que la renta familiar y el número de cigarrillos que fuma una mujer embarazada tienen una fuerte e inversa relación, dado que las familias que tienen una mayor renta son también más conscientes de los efectos negativos que supone fumar en el embarazo. ¿Qué estadístico permitiría determinar si esto es asi? Si realmente se demostrara que existe una intensa relación entre estas variables, ¿este hecho afectaría a la estimación del modelo 2? ¿Cómo?
- 7. A partir del modelo 2, se pretende analizar si, además, el nivel educativo de la madre (variable MOTHEDUC, medido en años de escolarización de la madre) y el número de orden de nacimiento del bebe entre sus hermanos (variable PARITY según sea el primer hijo, segundo, etc) tienen relevancia para explicar el peso de los bebes al nacer. Por ello se estima el siguiente modelo por MCO:

Cuadro 3

Source	SS	df	MS	Number of ob	
Model Residual	23394.1746 551080.567	_	4678.83492 399.044581	Prob > F R-squared Adj R-square	= =
Total	574474.741	1386	414.48394	Root MSE	= 19.976
bwght	Coef.		Err. t	 [95% Conf	f. Interval]
female cigs	-3.145091 472656		-2.92 -5.12	 -5.254964 6538645	-1.035218 2914475
	-3.145091		-2.92		2914475 .162376 .5587174 2.838106

A partir del contraste que considere oportuno, elija entre el modelo 2 y el modelo 3