ALA 02 (HA) zum 18.04.2013

Paul Bienkowski, Hans Ole Hatzel

25. April 2013

(b)

nachweisen

10 TODO: stetigkeit für $x \notin \mathbb{Z}$

2. a)

	(i) a_n	s_n	(ii) a_n	s_n	(iii) a_n	s_n
0	1	1	1	1	1	1
1	$\frac{2}{5}$	$\frac{7}{5}$	$\frac{5}{2}$	$\frac{7}{2}$	$-\frac{2}{5}$	$\frac{3}{5}$
2	$\frac{4}{25}$	$\frac{39}{25}$	$\frac{25}{4}$	$\frac{39}{4}$	$\frac{4}{25}$	$\frac{19}{25}$
3	$\frac{8}{125}$	$\frac{203}{125}$	$\frac{125}{8}$	$\frac{203}{8}$	$-\frac{8}{125}$	$\frac{87}{125}$
4	$\frac{16}{625}$	$\frac{1031}{625}$	$\frac{625}{16}$	$\frac{1031}{16}$	$\frac{16}{625}$	$\frac{451}{625}$

(i) Geometrische Reihe mit $q = \frac{2}{5} \Rightarrow |q| < 1$:

$$\sum_{i=0}^{\infty} \left(\frac{2}{5}\right)^i = \frac{1}{1 - \frac{2}{5}} = \frac{5}{3}$$

- (ii) Geometrische Reihe mit $q=\frac{5}{2}\Rightarrow |q|>1$, gemäß der Regel zur geometrischen Reihe divergiert diese also.
- (iii) Geometrische Reihe mit $q=-\frac{2}{5} \Rightarrow |q|<1$:

$$\sum_{i=0}^{\infty} \left(-\frac{2}{5} \right)^i = \frac{1}{1 + \frac{2}{5}} = \frac{5}{7}$$

- b) (i)
 - (ii)
- **3.** Zu zeigen ist das $g(f(x_n)) \to g(f(x_0))$ die Nacheinanderausführung also stetig sind. Eine Folge $x_n \to x_0$ wobei x_n und x_0 jeweils im Definitionsbereich von $g \circ f$ liegen. Da f in x_0 stetig ist folgt daraus das $f(x_n) \to f(x_0)$ g ist für $f(x_0)$ stetig also gilt:

$$g(f(x_n)) \to g(f(x_0))$$

Stetigkeit der Nacheinanderausführung ist somit bewiesen.