Sequence-to-Sequence Learning as Beam-Search Optimization

Sam Wiseman and Alexander M. Rush

SEASLogo.png

Seq2Seq as a General-purpose NLP/Text Generation Tool

- Machine Translation ?????
- Question Answering ?
- Conversation ?
- Parsing ?
- Sentence Compression ?
- Summarization ?
- Caption Generation ?
- Video-to-Text ?
- Grammar Correction ?

Room for Improvement?

Despite its tremendous success, there are some potential issues with standard Seq2Seq [??]:

- (1) Train/Test mismatch
- (2) Seq2Seq models next-words, rather than whole sequences

Goal of the talk: describe a simple variant of Seq2Seq — and corresponding beam-search training scheme — to address these issues.

Review: Sequence-to-sequence (Seq2Seq) Models

- ullet Encoder RNN (red) encodes source into a representation x
- Decoder RNN (blue) generates translation word-by-word

Review: Seq2Seq Generation Details

• Probability of generating *t*'th word:

$$p(w_t|w_1,\ldots,w_{t-1},\boldsymbol{x};\theta) = \operatorname{softmax}(\mathbf{W}_{out}\,\mathbf{h}_{t-1} + \mathbf{b}_{out})$$

Review: Train and Test

Train Objective: Given source-target pairs $(x, y_{1:T})$, minimize NLL of each word independently, conditioned on *gold* history $y_{1:t-1}$

$$NLL(\theta) = -\sum_{t} \ln p(w_t = y_t | y_{1:t-1}, \boldsymbol{x}; \theta)$$

Test Objective: Structured prediction

$$\hat{y}_{1:T} = \underset{w_{1:T}}{\operatorname{arg\,max}} \sum_{t} \ln p(w_t | w_{1:t-1}, \boldsymbol{x}; \theta)$$

ullet Typical to approximate the $rg \max$ with beam-search

For $t = 1 \dots T$:

• For all k and for all possible output words w:

$$s(w_t = w, \hat{y}_{1:t-1}^{(k)}) \leftarrow \ln p(\hat{y}_{1:t-1}^{(k)} | \boldsymbol{x}) + \ln p(w_t = w | \hat{y}_{1:t-1}^{(k)}, \boldsymbol{x})$$

$$\hat{y}_{1:t}^{(1:K)} \leftarrow \text{K-arg max } s(w_t, \hat{y}_{1:t-1}^{(k)})$$

For $t = 1 \dots T$:

• For all k and for all possible output words w:

$$s(w_t = w, \hat{y}_{1:t-1}^{(k)}) \leftarrow \ln p(\hat{y}_{1:t-1}^{(k)} | \boldsymbol{x}) + \ln p(w_t = w | \hat{y}_{1:t-1}^{(k)}, \boldsymbol{x})$$

$$\hat{y}_{1:t}^{(1:K)} \leftarrow \text{K-arg max } s(w_t, \hat{y}_{1:t-1}^{(k)})$$

For $t = 1 \dots T$:

• For all k and for all possible output words w:

$$s(w_t = w, \hat{y}_{1:t-1}^{(k)}) \leftarrow \ln p(\hat{y}_{1:t-1}^{(k)} | \boldsymbol{x}) + \ln p(w_t = w | \hat{y}_{1:t-1}^{(k)}, \boldsymbol{x})$$

$$\hat{y}_{1:t}^{(1:K)} \leftarrow \text{K-arg max } s(w_t, \hat{y}_{1:t-1}^{(k)})$$

For $t = 1 \dots T$:

• For all k and for all possible output words w:

$$s(w_t = w, \hat{y}_{1:t-1}^{(k)}) \leftarrow \ln p(\hat{y}_{1:t-1}^{(k)} | \boldsymbol{x}) + \ln p(w_t = w | \hat{y}_{1:t-1}^{(k)}, \boldsymbol{x})$$

$$\hat{y}_{1:t}^{(1:K)} \leftarrow \text{K-arg max } s(w_t, \hat{y}_{1:t-1}^{(k)})$$

For $t = 1 \dots T$:

• For all k and for all possible output words w:

$$s(w_t = w, \hat{y}_{1:t-1}^{(k)}) \leftarrow \ln p(\hat{y}_{1:t-1}^{(k)} | \boldsymbol{x}) + \ln p(w_t = w | \hat{y}_{1:t-1}^{(k)}, \boldsymbol{x})$$

$$\hat{y}_{1:t}^{(1:K)} \leftarrow \text{K-arg max } s(w_t, \hat{y}_{1:t-1}^{(k)})$$

For $t = 1 \dots T$:

• For all k and for all possible output words w:

$$s(w_t = w, \hat{y}_{1:t-1}^{(k)}) \leftarrow \ln p(\hat{y}_{1:t-1}^{(k)} | \boldsymbol{x}) + \ln p(w_t = w | \hat{y}_{1:t-1}^{(k)}, \boldsymbol{x})$$

$$\hat{y}_{1:t}^{(1:K)} \leftarrow \mathbf{K}\text{-}\underset{w_{1:t}}{\operatorname{arg\,max}} \ s(w_t, \hat{y}_{1:t-1}^{(k)})$$

For $t = 1 \dots T$:

• For all k and for all possible output words w:

$$s(w_t = w, \hat{y}_{1:t-1}^{(k)}) \leftarrow \ln p(\hat{y}_{1:t-1}^{(k)} | \boldsymbol{x}) + \ln p(w_t = w | \hat{y}_{1:t-1}^{(k)}, \boldsymbol{x})$$

$$\hat{y}_{1:t}^{(1:K)} \leftarrow \text{K-arg max } s(w_t, \hat{y}_{1:t-1}^{(k)})$$

For $t = 1 \dots T$:

• For all k and for all possible output words w:

$$s(w_t = w, \hat{y}_{1:t-1}^{(k)}) \leftarrow \ln p(\hat{y}_{1:t-1}^{(k)} | \boldsymbol{x}) + \ln p(w_t = w | \hat{y}_{1:t-1}^{(k)}, \boldsymbol{x})$$

$$\hat{y}_{1:t}^{(1:K)} \leftarrow \text{K-arg max } s(w_t, \hat{y}_{1:t-1}^{(k)})$$

For $t = 1 \dots T$:

• For all k and for all possible output words w:

$$s(w_t = w, \hat{y}_{1:t-1}^{(k)}) \leftarrow \ln p(\hat{y}_{1:t-1}^{(k)} | \boldsymbol{x}) + \ln p(w_t = w | \hat{y}_{1:t-1}^{(k)}, \boldsymbol{x})$$

$$\hat{y}_{1:t}^{(1:K)} \leftarrow \text{K-arg max } s(w_t, \hat{y}_{1:t-1}^{(k)})$$

For $t = 1 \dots T$:

• For all k and for all possible output words w:

$$s(w_t = w, \hat{y}_{1:t-1}^{(k)}) \leftarrow \ln p(\hat{y}_{1:t-1}^{(k)} | \boldsymbol{x}) + \ln p(w_t = w | \hat{y}_{1:t-1}^{(k)}, \boldsymbol{x})$$

$$\hat{y}_{1:t}^{(1:K)} \leftarrow \text{K-arg max } s(w_t, \hat{y}_{1:t-1}^{(k)})$$

For $t = 1 \dots T$:

• For all k and for all possible output words w:

$$s(w_t = w, \hat{y}_{1:t-1}^{(k)}) \leftarrow \ln p(\hat{y}_{1:t-1}^{(k)} | \boldsymbol{x}) + \ln p(w_t = w | \hat{y}_{1:t-1}^{(k)}, \boldsymbol{x})$$

$$\hat{y}_{1:t}^{(1:K)} \leftarrow \text{K-arg max } s(w_t, \hat{y}_{1:t-1}^{(k)})$$

Issue #1: Train/Test Mismatch (cf., ?)

$$NLL(\theta) = -\sum_{t} \ln p(w_t = y_t | y_{1:t-1}, \boldsymbol{x}; \theta)$$

- (a) Training conditions on true history ("Exposure Bias")
- (b) Train with word-level NLL, but evaluate with BLEU-like metrics

Idea #1: Train with beam-search

Issue #1: Train/Test Mismatch (cf., ?)

$$NLL(\theta) = -\sum_{t} \ln p(w_t = y_t | \mathbf{y_{1:t-1}}, \mathbf{x}; \theta)$$

- (a) Training conditions on true history ("Exposure Bias")
- (b) Train with word-level NLL, but evaluate with BLEU-like metrics

Idea #1: Train with beam-search

Issue #1: Train/Test Mismatch (cf., ?)

$$NLL(\theta) = -\sum_{t} \ln p(w_t = y_t | y_{1:t-1}, \boldsymbol{x}; \theta)$$

- (a) Training conditions on true history ("Exposure Bias")
- (b) Train with word-level NLL, but evaluate with BLEU-like metrics

Idea #1: Train with beam-search

Issue #1: Train/Test Mismatch (cf., ?)

$$NLL(\theta) = -\sum_{t} \ln p(w_t = y_t | y_{1:t-1}, \boldsymbol{x}; \theta)$$

- (a) Training conditions on *true* history ("Exposure Bias")
- (b) Train with word-level NLL, but evaluate with BLEU-like metrics

Idea #1: Train with beam-search

$$\mathcal{L}(\theta) = \sum_{t} \Delta(\hat{y}_{1:t}^{(K)}) \left[1 - s(y_t, y_{1:t-1}) + s(\hat{y}_t^{(K)}, \hat{y}_{1:t-1}^{(K)}) \right]$$

- $y_{1:t}$ is the gold prefix; $\hat{y}_{1:t}^{(K)}$ is the K'th prefix on the beam
- $s(\hat{y}_t^{(k)}, \hat{y}_{1:t-1}^{(k)})$ is the score of history $(\hat{y}_t^{(k)}, \hat{y}_{1:t-1}^{(k)})$
- ullet $\Delta(\hat{y}_{1:t}^{(K)})$ allows us to scale loss by badness of predicting $\hat{y}_{1:t}^{(K)}$

$$\mathcal{L}(\theta) = \sum_{t} \Delta(\hat{y}_{1:t}^{(K)}) \left[1 - s(y_t, y_{1:t-1}) + s(\hat{y}_t^{(K)}, \hat{y}_{1:t-1}^{(K)}) \right]$$

- $y_{1:t}$ is the gold prefix; $\hat{y}_{1:t}^{(K)}$ is the K'th prefix on the beam
- $s(\hat{y}_t^{(k)}, \hat{y}_{1:t-1}^{(k)})$ is the score of history $(\hat{y}_t^{(k)}, \hat{y}_{1:t-1}^{(k)})$
- $\Delta(\hat{y}_{1:t}^{(K)})$ allows us to scale loss by badness of predicting $\hat{y}_{1:t}^{(K)}$

$$\mathcal{L}(\theta) = \sum_{t} \Delta(\hat{y}_{1:t}^{(K)}) \left[1 - s(y_t, y_{1:t-1}) + s(\hat{y}_t^{(K)}, \hat{y}_{1:t-1}^{(K)}) \right]$$

- $y_{1:t}$ is the gold prefix; $\hat{y}_{1:t}^{(K)}$ is the K'th prefix on the beam
- $s(\hat{y}_t^{(k)}, \hat{y}_{1:t-1}^{(k)})$ is the score of history $(\hat{y}_t^{(k)}, \hat{y}_{1:t-1}^{(k)})$
- $\Delta(\hat{y}_{1:t}^{(K)})$ allows us to scale loss by badness of predicting $\hat{y}_{1:t}^{(K)}$

$$\mathcal{L}(\theta) = \sum_{t} \Delta(\hat{y}_{1:t}^{(K)}) \left[1 - s(y_t, y_{1:t-1}) + s(\hat{y}_t^{(K)}, \hat{y}_{1:t-1}^{(K)}) \right]$$

- $y_{1:t}$ is the gold prefix; $\hat{y}_{1:t}^{(K)}$ is the K'th prefix on the beam
- $s(\hat{y}_t^{(k)}, \hat{y}_{1:t-1}^{(k)})$ is the score of history $(\hat{y}_t^{(k)}, \hat{y}_{1:t-1}^{(k)})$
- $\Delta(\hat{y}_{1:t}^{(K)})$ allows us to scale loss by badness of predicting $\hat{y}_{1:t}^{(K)}$

Issue #2: Seq2Seq models next-word probabilities:

$$s(w_t = w, \hat{y}_{1:t-1}^{(k)}) \leftarrow \ln p(\hat{y}_{1:t-1}^{(k)} | \boldsymbol{x}) + \ln p(w_t = w | \hat{y}_{1:t-1}^{(k)}, \boldsymbol{x})$$

- (a) Sequence score is sum of locally normalized word-scores; gives rise to "Label Bias" [?]
- (b) What if we want to train with sequence-level constraints?

Issue #2: Seq2Seq models next-word probabilities:

$$s(w_t = w, \hat{y}_{1:t-1}^{(k)}) \leftarrow \ln p(\hat{y}_{1:t-1}^{(k)} | \boldsymbol{x}) + \ln p(w_t = w | \hat{y}_{1:t-1}^{(k)}, \boldsymbol{x})$$

- (a) Sequence score is sum of locally normalized word-scores; gives rise to "Label Bias" [?]
- (b) What if we want to train with sequence-level constraints?

Issue #2: Seq2Seq models next-word probabilities:

$$s(w_t = w, \hat{y}_{1:t-1}^{(k)}) \leftarrow \ln p(\hat{y}_{1:t-1}^{(k)} | \boldsymbol{x}) + \ln p(w_t = w | \hat{y}_{1:t-1}^{(k)}, \boldsymbol{x})$$

- (a) Sequence score is sum of locally normalized word-scores; gives rise to "Label Bias" [?]
- (b) What if we want to train with sequence-level constraints?

Issue #2: Seq2Seq models next-word probabilities:

$$s(w_t = w, \hat{y}_{1:t-1}^{(k)}) \leftarrow \ln p(\hat{y}_{1:t-1}^{(k)} | \boldsymbol{x}) + \ln p(w_t = w | \hat{y}_{1:t-1}^{(k)}, \boldsymbol{x})$$

- (a) Sequence score is sum of locally normalized word-scores; gives rise to "Label Bias" [?]
- (b) What if we want to train with sequence-level constraints?

$$s(w, \hat{y}_{1:t-1}^{(k)}) = \ln p(\hat{y}_{1:t-1}^{(k)} | \boldsymbol{x}) + \ln \operatorname{softmax}(\mathbf{W}_{out} \mathbf{h}_{t-1}^{(k)} + \mathbf{b}_{out})$$

$$s(w, \hat{y}_{1:t-1}^{(k)}) = \frac{\ln p(\hat{y}_{1:t-1}^{(k)} | \boldsymbol{x}) + \ln \operatorname{softmax}(\mathbf{W}_{out} \mathbf{h}_{t-1}^{(k)} + \mathbf{b}_{out})}{\mathbf{W}_{out} \mathbf{h}_{t-1}^{(k)} + \mathbf{b}_{out}}$$

$$= \mathbf{W}_{out} \mathbf{h}_{t-1}^{(k)} + \mathbf{b}_{out}$$

Idea #2: Don't locally normalize

$$s(w, \hat{y}_{1:t-1}^{(k)}) = \ln p(\hat{y}_{1:t-1}^{(k)} | \boldsymbol{x}) + \ln \operatorname{softmax}(\mathbf{W}_{out} \mathbf{h}_{t-1}^{(k)} + \mathbf{b}_{out})$$
$$= \mathbf{W}_{out} \mathbf{h}_{t-1}^{(k)} + \mathbf{b}_{out}$$

 \bullet Can set $s(w, \hat{y}_{1:t-1}^{(k)}) = -\infty$ if $(w, \hat{y}_{1:t-1}^{(k)})$ violates a hard constraint

$$\mathcal{L}(\theta) = \sum_{t} \Delta(\hat{y}_{1:t}^{(K)}) \left[1 - s(y_t, y_{1:t-1}) + s(\hat{y}_t^{(K)}, \hat{y}_{1:t-1}^{(K)}) \right]$$

- Color Gold: target sequence y
- Color Gray: violating sequence $\hat{y}^{(K)}$

$$\mathcal{L}(\theta) = \sum_{t} \Delta(\hat{y}_{1:t}^{(K)}) \left[1 - s(y_t, y_{1:t-1}) + s(\hat{y}_t^{(K)}, \hat{y}_{1:t-1}^{(K)}) \right]$$

- Color Gold: target sequence y
- Color Gray: violating sequence $\hat{y}^{(K)}$

$$\mathcal{L}(\theta) = \sum_{t} \Delta(\hat{y}_{1:t}^{(K)}) \left[1 - s(y_t, y_{1:t-1}) + s(\hat{y}_t^{(K)}, \hat{y}_{1:t-1}^{(K)}) \right]$$

- Color Gold: target sequence y
- Color Gray: violating sequence $\hat{y}^{(K)}$

$$\mathcal{L}(\theta) = \sum_{t} \Delta(\hat{y}_{1:t}^{(K)}) \left[1 - s(y_t, y_{1:t-1}) + s(\hat{y}_t^{(K)}, \hat{y}_{1:t-1}^{(K)}) \right]$$

- Color Gold: target sequence *y*
- Color Gray: violating sequence $\hat{y}^{(K)}$

$$\mathcal{L}(\theta) = \sum_{t} \Delta(\hat{y}_{1:t}^{(K)}) \left[1 - s(y_t, y_{1:t-1}) + s(\hat{y}_t^{(K)}, \hat{y}_{1:t-1}^{(K)}) \right]$$

- ullet Need to BPTT for both $y_{1:t}$ and $\hat{y}_{1:t}^{(K)}$, which is O(T)
- Worst case: violation at each t gives $O(T^2)$ backward pass
- Idea: use LaSO [?] beam-update

$$\mathcal{L}(\theta) = \sum_{t} \Delta(\hat{y}_{1:t}^{(K)}) \left[1 - s(y_t, y_{1:t-1}) + s(\hat{y}_t^{(K)}, \hat{y}_{1:t-1}^{(K)}) \right]$$

- ullet Need to BPTT for both $y_{1:t}$ and $\hat{y}_{1:t}^{(K)}$, which is O(T)
- Worst case: violation at each t gives $O(T^2)$ backward pass
- Idea: use LaSO [?] beam-update

$$\mathcal{L}(\theta) = \sum_{t} \Delta(\hat{y}_{1:t}^{(K)}) \left[1 - s(y_t, y_{1:t-1}) + s(\hat{y}_t^{(K)}, \hat{y}_{1:t-1}^{(K)}) \right]$$

- ullet Need to BPTT for both $y_{1:t}$ and $\hat{y}_{1:t}^{(K)}$, which is O(T)
- Worst case: violation at each t gives $O(T^2)$ backward pass
- Idea: use LaSO [?] beam-update

$$\mathcal{L}(\theta) = \sum_{t} \Delta(\hat{y}_{1:t}^{(K)}) \left[1 - \frac{s(y_t, y_{1:t-1})}{s(y_t, y_{1:t-1})} + s(\hat{y}_t^{(K)}, \hat{y}_{1:t-1}^{(K)}) \right]$$

LaSO [?]:

- If no margin violation at t-1, update beam as usual
- ullet Otherwise, update beam with sequences prefixed by $y_{1:t-1}$

$$\mathcal{L}(\theta) = \sum_{t} \Delta(\hat{y}_{1:t}^{(K)}) \left[1 - \frac{s(y_t, y_{1:t-1})}{s(y_t, y_{1:t-1})} + s(\hat{y}_t^{(K)}, \hat{y}_{1:t-1}^{(K)}) \right]$$

LaSO [?]:

- If no margin violation at t-1, update beam as usual
- ullet Otherwise, update beam with sequences prefixed by $y_{1:t-1}$

Backpropagation over Structure

- Margin gradients are sparse, only violating sequences get updates.
- Backprop only requires 2x time as standard methods.

(Recent) Related Work and Discussion

- Recent approaches to Exposure Bias, Label Bias:
 - Data as Demonstrator, Scheduled Sampling [??]
 - Globally Normalized Transition-Based Networks [?]
- RL-based approaches
 - MIXER [?]
 - Actor-Critic [?]
- Training with beam-search attempts to offer similar benefits
 - Uses fact that we typically have gold prefixes in supervised text-generation to avoid RL

Experiments

Experiments run on three Seq2Seq baseline tasks:

Word Ordering, Dependency Parsing, Machine Translation

We compare with Yoon Kim's implementation¹ of the Seq2Seq architecture of ?.

- Uses LSTM encoders and decoders, attention, input feeding
- All models trained with Adagrad [?]
- ullet Pre-trained with NLL; K increased gradually
- "BSO" uses unconstrained search; "ConBSO" uses constraints

¹https://github.com/harvardnlp/seq2seq-attn

Word Ordering Experiments

	Word Ordering (BLEU)		
	$K_{te}=1$	$K_{te} = 5$	$K_{te} = 10$
Seq2Seq	25.2	29.8	31.0
BSO	28.0	33.2	34.3
ConBSO	28.6	34.3	34.5

- Map shuffled sentence to correctly ordered sentence
- Same setup as ?
- BSO models trained with beam of size 6

Word Ordering Experiments

	Word Ordering (BLEU)			
	$K_{te} = 1$	$K_{te} = 5$	$K_{te} = 10$	
Seq2Seq	25.2	29.8	31.0	
BSO	28.0	33.2	34.3	
ConBSO	28.6	34.3	34.5	

- Map shuffled sentence to correctly ordered sentence
- Same setup as ?
- BSO models trained with beam of size 6

Word Ordering Experiments

	Word Ordering (BLEU)			
	$K_{te} = 1$ $K_{te} = 5$ $K_{te} = 10$			
Seq2Seq	25.2	29.8	31.0	
BSO	28.0	33.2	34.3	
ConBSO	28.6	34.3	34.5	

- Map shuffled sentence to correctly ordered sentence
- Same setup as ?
- BSO models trained with beam of size 6

Dependency Parsing Experiments

Source: Ms. Haag plays Elianti .

Target: Ms. Haag @L_NN plays @L_NSUBJ Elianti @R_DOBJ . @R_PUNCT

Dependency Parsing (UAS/LAS)			
	$K_{te}=1$	$K_{te}=5$	$K_{te} = 10$
Seq2Seq	87.33/82.26	88.53/84.16	88.66/84.33
BSO	86.91/82.11	91.00/ 87.18	91.17/ 87.41
ConBSO	85.11/79.32	91.25 /86.92	91.57 /87.26

- BSO models trained with beam of size 6
- Same setup and evaluation as ?
- Certainly not SOA, but reasonable for word-only, left-to-right model

Machine Translation: Impact of Non-0/1 Δ

	Machine Translation (BLEU)		
	$K_{te}=1$ $K_{te}=5$ $K_{te}=1$		
$\Delta(\hat{y}_{1:t}^{(k)}) = 1\{ ext{margin violation}\}$	25.73	28.21	27.43
$\Delta(\hat{y}_{1:t}^{(k)}) = 1 - \text{SentBLEU}(\hat{y}_{r+1:t}^{(K)}, y_{r+1:t})$	25.99	28.45	27.58

- IWSLT 2014, DE-EN, development set
- BSO models trained with beam of size 6
- Nothing to write home about, but nice that we can tune to metrics

Machine Translation Experiments

	Machine Translation (BLEU)		
	$K_{te}=1$	$K_{te} = 5$	$K_{te} = 10$
Seq2Seq	22.53	24.03	23.87
BSO	23.83	26.36	25.48
NLL	17.74	20.10	20.28
DAD [?]	20.12	22.25	22.40
MIXER/RL [?]	20.73	21.81	21.83

- IWSLT 2014, DE-EN
- BSO models trained with beam of size 6
- $\Delta(\hat{y}_{1:t}^{(k)}) = 1 \text{SentBLEU}(\hat{y}_{r+1:t}^{(K)}, y_{r+1:t})$
- Results in bottom sub-table from ?
- Note similar improvements to MIXER

Machine Translation Experiments

	Machine Translation (BLEU)		
	$K_{te} = 1$	$K_{te} = 5$	$K_{te} = 10$
Seq2Seq	22.53	24.03	23.87
BSO	23.83	26.36	25.48
NLL	17.74	20.10	20.28
DAD [?]	20.12	22.25	22.40
MIXER/RL [?]	20.73	21.81	21.83

- IWSLT 2014, DE-EN
- BSO models trained with beam of size 6
- $\Delta(\hat{y}_{1:t}^{(k)}) = 1 \text{SentBLEU}(\hat{y}_{r+1:t}^{(K)}, y_{r+1:t})$
- Results in bottom sub-table from ?
- Note similar improvements to MIXER

Conclusion

Introduced a variant of Seq2Seq and training procedure that:

- Attempts to mitigate Label Bias and Exposure Bias
- Allows tuning to test-time metrics
- Allows training with hard constraints
- Doesn't require RL
- **N.B.** Backprop through search is a thing now/again:
 - One piece of the CCG parsing approach of Lee et al. (2016), an EMNLP 2016 Best Paper!

Training with Different Beam Sizes

	Word Ordering Beam Size (BLEU)			
	$K_{te} = 1$ $K_{te} = 5$ $K_{te} = 10$			
$K_{tr} = 2$	30.59	31.23	30.26	
$K_{tr} = 6$	28.20	34.22	34.67	
$K_{tr}=11$	26.88	34.42	34.88	

ConBSO model, development set results

Pseudocode

```
1: procedure BSO(x, K_{tr}, succ)
 2:
              Init empty storage \hat{y}_{1:T} and \hat{h}_{1:T}; init S_1
 3:
              r \leftarrow 0; violations \leftarrow \{0\}
             for t = 1, \dots, T do \triangleright Forward
 4:
                    K = K_{tr} if t \neq T else \arg \max f(\hat{y}_{t}^{(k)}, \hat{\boldsymbol{h}}_{t-1}^{(k)})
 5:
                                                               k: \hat{y}_{1:t}^{(k)} \neq y_{1:t}
                    if f(y_t, \boldsymbol{h}_{t-1}) < f(\hat{y}_t^{(K)}, \hat{\boldsymbol{h}}_{t-1}^{(K)}) + 1 then
 6:
                           \hat{\boldsymbol{h}}_{r:t-1} \leftarrow \hat{\boldsymbol{h}}_{r:t-1}^{(K)}
 7:
                           \hat{y}_{r+1:t} \leftarrow \hat{y}_{r+1:t}^{(K)}
 8:
 9:
                           Add t to violations; r \leftarrow t
10:
                             S_{t+1} \leftarrow \text{topK}(\text{succ}(y_{1:t}))
11:
                     else
                             S_{t+1} \leftarrow \text{topK}(\bigcup_{k=1}^{K} \text{succ}(\hat{y}_{1:t}^{(k)}))
12:
13:
               grad_{-}h_{T} \leftarrow 0; grad_{-}\widehat{h}_{T} \leftarrow 0
14:
               for t = T - 1, \dots, 1 do \triangleright Backward
15:
                      grad_{-}h_{t} \leftarrow BRNN(\nabla_{h_{t}}\mathcal{L}_{t+1}, grad_{-}h_{t+1})
                     grad_{-}\hat{\boldsymbol{h}}_{t} \leftarrow \text{BRNN}(\nabla_{\hat{\boldsymbol{h}}_{t}}\mathcal{L}_{t+1}, grad_{-}\hat{\boldsymbol{h}}_{t+1})
16:
17:
                     if t-1 \in violations then
18:
                             grad_{-}h_{t} \leftarrow grad_{-}h_{t} + grad_{-}h_{t}
                            qrad_{-}\widehat{h}_{t} \leftarrow \mathbf{0}
19:
```

Backpropagation over Structure

- Margin gradients are sparse, only violating sequences get updates.
- Backprop only requires 2x time as standard methods.