Untitled

Mike Marin 2019-09-17

The Gapminder Data

Variables Collected

Here, we can see the variables collected in the data set:

```
## [1] "country" "continent" "year" "lifeExp" "pop" "gdpPercap"
```

Some Basic Summaries

The data dimensions are as follows:

```
dim(gapminder)
## [1] 1704 6
```

The Full Data

To explore the full data, you can play around here:

```
# the datatable makes it easier to do something in HTML
datatable(as_tibble(gapminder))
```

Some Univariate Summaries

It is of interest to take a look at each of the variables, and provide a quick summary, both numerically as well as graphically

A Quick Glance

Following are basic univariate summaries for each of the variables:

```
##
           country
                          continent
                                                       lifeExp
                                          year
                                                            :23.60
##
   Afghanistan: 12
                      Africa:624
                                     Min.
                                            :1952
                                                    Min.
##
   Albania
                 12
                      Americas:300
                                     1st Qu.:1966
                                                    1st Qu.:48.20
## Algeria
                 12
                       Asia
                               :396
                                     Median:1980
                                                    Median :60.71
  Angola
               : 12
                      Europe
                              :360
                                     Mean
                                             :1980
                                                    Mean
                                                           :59.47
                       Oceania: 24
                                                     3rd Qu.:70.85
##
  Argentina :
                 12
                                      3rd Qu.:1993
   Australia :
                                     Max.
                                             :2007
                                                           :82.60
##
                                                    Max.
##
   (Other)
               :1632
                         gdpPercap
        pop
                                  241.2
## Min. :6.001e+04
                       Min.
                              :
##
   1st Qu.:2.794e+06
                       1st Qu.:
                                 1202.1
  Median :7.024e+06
                       Median: 3531.8
```

```
## Mean :2.960e+07 Mean : 7215.3
## 3rd Qu.:1.959e+07 3rd Qu.: 9325.5
## Max. :1.319e+09 Max. :113523.1
##
```

Countires and Continents

Which countries are represented in the data?

- In total there are 142 countries represented. They are not all listed here for the sake of space.
- There are a total of 5 geopolitical continents recorded:
 - Africa
 - Asia
 - Europe
 - Americas (made up of North America and South America are combined)
 - Oceania (Australia, New Zealand, and surrounding island countries)
 - Antarctica is not included in the data

Years Recorded

The data was collected for a number of years. The years the data was collected for were:

```
## [1] "1952" "1957" "1962" "1967" "1972" "1977" "1982" "1987" "1992" "1997" ## [11] "2002" "2007"
```

Life Expectancy, GDPperCap, and Population

These are all numeric variables, and all likely related to one another. Following are basic summaries and plots for each:

Life Expectancy

summary(gapminder\$lifeExp)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 23.60 48.20 60.71 59.47 70.85 82.60
```

Wow, 23 years life expectancy?! Where did that come from?

```
## # A tibble: 1 x 6
## country continent year lifeExp pop gdpPercap
## <fct> <fct> <int> <dbl> <int> <dbl>
## 1 Rwanda Africa 1992 23.6 7290203 737.
```

Oh, ok, we all know that there was a \boldsymbol{LOT} going on there at that time!

GDP Per Capita

boxplot(gapminder\$gdpPercap, ylab="GDP/cap", las=1)

summary(gapminder\$gdpPercap)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 241.2 1202.1 3531.8 7215.3 9325.5 113523.1
```

And a quick note that since GDP/cap is a rate, it may be better to be exploring it on the log(ln)-scale boxplot(log(gapminder\$gdpPercap), ylab="log-GDP/cap", las=1)

summary(log(gapminder\$gdpPercap))

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 5.485 7.092 8.170 8.159 9.141 11.640
```

Population

boxplot(gapminder\$pop, ylab="Population", las=1)

summary(gapminder\$pop)

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 6.001e+04 2.794e+06 7.024e+06 2.960e+07 1.959e+07 1.319e+09

Again, it may be better to examine this on the log-scale, as populations tend to grow exponentially boxplot(log(gapminder\$pop), ylab="Population", las=1)


```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 11.00 14.84 15.76 15.77 16.79 21.00
```

Some Bivariate Summaries

We may be interested in examining relationships between some of the variables. Following are a few of interest.

Note, we are ignoring the fact that the same countires have measurements taken for multiple years, for the time being. . .

Life Expectancy and GDP

It is reasonable to hypothesize that these would be related. Following is a visual examination of their relationship

Pearson's correlation:

cor(gapminder\$gdpPercap, gapminder\$lifeExp)

[1] 0.5837062

It's not surprising to see they are associated. It also isn't surprising to see that it is a non-liear relationship. First, let's calculate Spearman's correlation to address the non-linearity, as it does appear a monotonic association:

cor(gapminder\$gdpPercap, gapminder\$lifeExp, method="spearman")

[1] 0.8264712

yup, it looks much more reasonable

Let's look at the same plot, but this time using the log-GDP-per-capita, as it makes sense to examine it on this scale

That looks like it would be easier to model. Let's also take a quick look at Pearson's correlation when we use \log -GDP...

```
cor(log(gapminder$gdpPercap), gapminder$lifeExp, method="pearson")
```

[1] 0.8076179

Let's not get carried away...we will stop here

Continent and GDP

It is also reasonable to explore if GDP per captia varies by continent (again, ignoring the fact that we have measurements for multiple years)

Let's look at a plot of this

We can see an associaition. And as before, it may be more reasonable to examine GDP per capita on the log-scale as this variable is a ${\bf rate}$

Let's look at that here...

No More...

I wont get carried away, as the point of this exercise is working with R Markdown and Git(Hub), and not the actual data analysis... although, this is a VERY interesting dataset, and I will be exploring it further on my own, for myself:)