

Meetup Breizh Data Club Avril 2018 - Rennes

TAC ECONOMICS

- Société de recherche appliquée en économie et en finance, qui accompagne les groupes à l'international au travers de notes, de signaux d'alerte et d'échanges.
- Une société qui existe depuis 25 ans. Une équipe d'économistes,
 « analystes » et « quant ».
- Une clientèle de banques au départ, puis des industriels (gros et moins gros) et des gestionnaires d'actifs.
- Environ 20 salariés, installés au nord de Rennes... et en Inde!
- Quatre grands domaines d'activité: (1) les abonnements aux outils de mesure du risque pays, (2) les études stratégiques, (3) les développements spécifiques, (4) les études pour la Commission Européenne et les Nations Unies... et l'enseignement.

Plan de l'intervention

- 1. Intérêt du machine learning en macroéconomie
- 2. Risque pays
- Marchés financiers
- 4. Conjoncture : croissance du PIB, pétrole
- 5. Taux de change EUR/USD
- 6. Text mining pour mesurer sentiment économique, élections etc.

Machine Learning en Macroéconomie

Evolution rapide du métier d'économiste « quant »

- Plus grande accessibilité aux données grâce à l'open Data. Malgré des historiques parfois courts, de plus en plus d'indicateurs sont disponibles
- Construction d'une base de données TACSTAT mise à jour en temps réel englobant un grand nombre de sources (Eurostat, ECB, IMF, FRED, OECD, EIA, Yahoo etc.) et différents types d'indicateurs (macro, sectoriel, financier) et même des news!
- Utilisation de la base directement sur R et Excel
- Plus de puissance de calcul, plus de puissance de stockage

Pourquoi utiliser du machine learning en macroéconomie?

- Performance des modèles avec différents types de cible (cible « équilibrée », signaux « faibles » etc)
- Performance pour identifier des patterns, des combinaisons critiques nonlinéaires parmi un grand ensemble d'indicateurs
- Beaucoup d'entre eux sont presque entièrement « automatisables » (à la différence des approches économétriques traditionnelles)
- Attention au risque de sur-apprentissage, au « machine learning sauvage », aux risques de bases de données « poubelles » (données erronées, pas de notion d'intégration/stationnarité, liens économiques), phénomènes de « taches solaires », attention au sampling, etc...
- Certains algorithmes sont des « boites noires »... mais pas tous !
- Meilleure compréhension des interactions non-linéaires entre les variables économiques, aide à l'analyse!

Machine Learning et Risque Pays

Prévoir les crises économiques et financières

- De nombreuses études empiriques sur le risque pays et les indicateurs avancés de crises économiques et financières: Krugman (1979), Obstfeld (1994), Cantor and Packer (1996), Eichengreen et al. (1996), Frankel and Rose (1996), Goldstein (1996), Goldstein and Turner (1996), Kaminsky and Reinhart (1999), Komulainen and Lukkarila (2003), ...
- Mais malgré les classifications existantes, un très grand nombre de crises économiques et financières ont laissé les observateurs perplexes.
- Le manque de relations causales homogènes et des interactions complexes rendent l'identification ex-ante des facteurs de risque extrêmement difficile.

RiskMonitor

 Outil de détection avancée de crises financières dans les économies émergentes et calcul de rating (développé il y a 25 ans!)

Early Warning à différents horizons

- L'outil « Early Warning » fonctionne à l'aide d'une combinaison de méthodes de data-mining à apprentissage supervisé:
 - Réseau de Neurones
 - SVM
 - Random Forest
 - Recursive Partitioning
 - Logit
- Les outils sont calibrés sur des historiques de crises observées sur la totalité de l'échantillon depuis 1970 (bootstrapping/cross validation pour sélection)

Performances de notre outil de « Early Warning »

Signaling power of different models on exchange rate crises

Horizon	Model	Sensitivity (%)	PPV (%)	Accuracy (%)
≤1 year	LDA	0.7	16.7	94.6
1–3 years	LDA	6.1	46.7	90.0
3–5 years	LDA	_	_	_
≤1 year	SVM	19.1	100.0	95.7
1–3 years	SVM	34.2	97.5	93.4
3–5 years	SVM	34.6	100.0	93.8
≤1 year	KNN	90.1	85.8	98.7
1–3 years	KNN	94.3	93.5	98.8
3–5 years	KNN	91.8	91.8	98.4
≤1 year	CDM-Model	97.2	100.0	99.9
1–3 years	CDM-Model	97.8	100.0	99.8
3–5 years	CDM-Model	91.8	99.4	99.2

The signaling power of the different models is calculated using different models of supervised learning over the sample of 50 countries covered by RiskMonitor. This sample contains more than 2000 observations of macroeconomic data and a low percentage of crises (from 5% for the ≤ 1 year horizon to 10% for the 3 to 5 years horizon).

Exemple sur la crise de la Thaïlande en 1997

Crisis signals of the CDM-Model on Thailand from 1991 to 1997

Year	≤1 year	From 1 to 3 years	From 3 to 5 years	
1991	stability	stability	stability	
1992	stability	stability	warnings	
1993	stability	stability	crisis signal	
1994	stability	warnings	crisis signal	
1995	stability	crisis signal	warnings	
1996	crisis signal	crisis signal	stability	
1997	-The exchange rate po	-The exchange rate policy was abandoned on July 2-		

This table presents the crisis signals (within the forecasted horizon) that the CDM-Model rises on Thailand before the financial crisis of 1997, when the Baht depreciated for more than 83% over 6 months.

Machine Learning et Marchés financiers

Summary of Early Warning Signals

Legend:

Strong improvement Strong deterioration Double signal No sudden change

 $[\]searrow$ \nearrow Medium term outlook compared to the current market level / extstyle extsty

Gini index sur baisse forte du S&P500 à 1 mois

cible	sp500.l.21	
train	01/01/2003	31/12/2014
valid	0.2*Train/50	
test	01/01/2015	31/12/2017

				in	valid
Importance	Category	nb vars	model	gini	gini
			logit	86.00	58.40
	All	225	cart	90.38	64.73
			rf	100.00	92.35
			logit	95.12	90.22
	Financière	73	cart	91.96	76.55
			rf	100.00	92.12
			logit	60.28	61.03
All	Macroéconomique	139	cart	87.77	93.49
			rf	97.71	88.02
			logit	20.58	46.11
	chartisme	6	cart	77.08	43.29
			rf	100.00	41.45
			logit	38.73	59.36
	déclencheur	7	cart	85.99	56.74
			rf	99.99	83.56
			logit	89.02	73.45
	All	65	cart	94.08	75.32
			rf	100.00	90.69
			logit	81.54	66.62
	Financière	38	cart	93.77	58.59
			rf	100.00	89.38
			logit	66.79	65.49
1	Macroéconomique	18	cart	87.85	70.76
			rf	88.38	80.79
			logit	20.58	46.11
	chartisme	6	cart	77.08	43.29
			rf	100.00	41.45
		•	logit	37.01	50.27
	déclencheur	3	cart	86.61	51.58
			rf	92.68	66.06

Performances DTO 1 mois, 2012-2017 « out of sample »

Taux de « bonnes réponses » S&P500

Accuracy Out-Of-Sample

S&P 500, from 2012-01-01 to 2017-09-30

Gini index sur baisse forte du S&P500 à 1 mois

		Observé	
		1	0
Prédit	1	240	55
Pré	0	78	67

Sensibilité	75.5%
Spécificité	54.9%
Accuracy	69.8%
PPV	81.4%
NPV	46.2%

Indicateurs pertinents

Machine Learning et Conjoncture Economique

Méthodes quantitatives d'analyse conjoncturelle

CART pour prévoir la croissance économique en zone Euro

EU GDP growth - Model 2 quarters: 84.1 %

Machine Learning et Prix du pétrole (Brent)

	Average accuracy (training dataset)	Average accuracy (testing, dataset 1)
Naive Bayes	96 %	88 %
Tree Bagging	99.9 %	90 %
Gradient Boosted Machine	100 %	90 %
Supervised SOM	86 %	75 %
Neural Network multilayer perceptron	82 %	74 %
Random Forest	100 %	90 %
Support Vector Machine	96 %	88 %
k-nearest neighbors	84 %	74 %

Modèle intégrant des variables macroéconomiques, d'offre et de demande sur le marché du pétrole et des variables financières

TAC Brent short-term Projections (\$/bl)

Mixte Econométrie / CART pour prévoir EUR/USD

EUR/USD growth - Markov Switching model

Source: TAC ECONOMICS

Factors for regime-switching- Coincident Quarter

Source: TAC ECONOMICS

Text Mining sur la Presse Internationale

Text mining

The database of news & tweets

- A list of 1000 websites, newspapers, information providers and blogs, in different languages.
- Every 3 hours our web-crawlers store the information published on these websites on internal databases (approx. 20,000 per day).
- A different set of crawlers extract and store tweets on a pre-defined list of keywords or corporates.

Sentiment Analysis by Country & Corporate

- Every day, internal algorithms estimate the sentiment using different techniques, on all "articles" and tweets.
- With the number of news and tweets, we also calculate a "buzz index" for each country, corporate or theme analysed.

Extraction of Hot Topics in the News

- An internal algorithm to extract most important articles and topics, on a daily, weekly and monthly basis.
- The list of key topics is available on a large sample of countries and some multinational companies.
- The list can be modified to include any theme or keyword.
- Topics automatically published on our portal in real-time.

TAC Mood Index by Country

Sentiment Analysis: Turkey

Sentiment Analysis: Macron

Conclusion

Des mutations profondes

- Plus de données, de meilleurs modèles, plus de puissance de calcul, plus de puissance de stockage.
- L'économétrie a aussi évolué depuis 30 ans, mais ces nouvelles méthodes, outils et données changent notre métier plus profondément encore.
- Les systèmes vont continuer à s'automatiser de plus en plus dans les années qui viennent.
- Les « acteurs » de l'analyse et de la prévision ne sont plus les mêmes qu'il y a 10 ans et le « data scientist » devient roi.

Une opportunité qu'il faut savoir saisir

- Le « data scientist » informaticien, statisticien, économiste existe-til vraiment ?
- Plutôt que des menaces, ces évolutions sont aussi de formidables opportunités.
- Il faudra toujours des analystes pour concevoir, estimer et contrôler les systèmes... et éviter qu'un Random Forest ne prévoit une ère glacière car vous avez placé la sonde de température dans un frigo par erreur.
- La connaissance « métier » va (re-)devenir fondamentale. L'analyste qui sait marier sa compréhension des données, ses connaissances théoriques, ses connaissances du métier à une meilleure connaissance des principes généraux des méthodes du machine learning « moderne », aura un avantage comparatif considérable...
- ... mais il ne faut pas rater le train!

Merci de votre Attention!

Nous Contacter

Sandrine Lunven

sandrine.lunven@taceconomics.com

Commercial et Communication

taceconomics@taceconomics.com

Tel: +33 (0)2 99 39 31 40 – www.taceconomics.com