

(3)

⑨ 日本国特許庁 (JP)

⑩ 特許出願公開

⑪ 公開特許公報 (A)

昭63-124384

⑫ Int.CI.

H 01 R 43/00

識別記号

府内整理番号

B-6901-5E

⑬ 公開 昭和63年(1988)5月27日

審査請求 未請求 発明の数 1 (全4頁)

⑭ 発明の名称 電線の結合部に保護被覆層を形成する方法

⑮ 特願 昭61-267667

⑯ 出願 昭61(1986)11月12日

⑰ 発明者 沢木淳	愛知県豊田市福受町大字上ノ切159-1
⑰ 発明者 小野守	愛知県豊田市福受町大字上ノ切159-1
⑰ 発明者 岡崎敏夫	愛知県豊田市福受町大字上ノ切159-1
⑰ 発明者 成瀬鋼二	愛知県豊田市福受町大字上ノ切159-1
⑰ 出願人 矢崎総業株式会社	東京都港区三田1丁目4番28号
⑰ 代理人 弁理士 滝野秀雄	

明細書

1. 発明の名称

電線の結合部に保護被覆層を形成する方法

2. 特許請求の範囲

電線の分歧を形成するかまたは形成せずに該電線を結合し、該電線の結合部分及び絶縁被覆部分の外側に光透過性材料で形成したチューブを接着固定し、次いで該チューブと該電線との間隙部分に光硬化性樹脂を充填し、該チューブの外部から該光硬化性樹脂を重合硬化させるに充分な光照射を加えることを特徴とする、電線の結合部に保護被覆層を形成する方法。

3. 発明の詳細な説明

〔発明の目的〕

産業上の利用分野

本発明は、絶縁電線を用いて各種の配線を行なうに当り電線の結合部を保護固定する方法に関する。

從来の技術

從来、ビニル樹脂シース等の絶縁被覆を有する

電線を固定的に結合しようとする場合には、電線の接続予定部位の絶縁被覆を除去して導体を露出させ、導体相互を捻り合せるかまたは並べてその部に導体スリーブ等を被着し更に圧着するか、あるいはハンダ付などにより導体の結合を完成させ、導体露出部を絶縁テープなどを巻きつけて保護することが行われていた。

しかし、この方法では接続部の絶縁性が完全を期し難く、形状も一定せず強度面でも信頼性が不足するところから、絶縁テープを巻きつける代りに樹脂モールド法によって絶縁層を形成することが提案された。この方法においては、導体の接続部分およびその近傍の絶縁シース部を成形用金型内に接着し、たとえば塩化ビニル樹脂などを金型内に射出成形して導体部分を密封すると共に絶縁シース部にも新しい樹脂絶縁層を密着させるようしている。

しかしながら、この方法では電線シースと新しい絶縁層とが同材質のたとえば軟質の塩化ビニル樹脂のものであっても、金型内で成形する際には

温度差などがあって接着することができないから、それらの界面は完全には密着せず、湿気の侵入などが防止できなかった。そこで、金型内成形をする前に電線シース部の表面に接着剤などを塗布することにより密着性を改善する方法が採られていた。

解決しようとする問題点

このような従来技術による電線の接続方法においては、電線を結合したのち接着剤を塗布して成形金型内に接着するという手順を踏むため、工程数が多いばかりでなく作業性が悪いうえ、密着も完全でないという問題があり、樹脂の絶縁層に偏肉が生じやすいという問題もあった。

そこで、本発明は上述のような欠点のない、すなわち作業が容易で不良品等の発生が少く、かつ丈夫な電線の結合部を形成する方法を提供しようとするものである。

【発明の構成】

問題点を解決するための手段

かかる目的を達成するために、本発明においては、電線結合部分を被覆するための樹脂として光

硬化性の樹脂を用い、その成形のためのモールドとして光透過性材料で形成されたチューブを用いることとしたものである。すなわち、本発明の電線の結合部に保護被覆層を形成する方法は、電線に分岐を形成するかまたは形成せずに該電線を結合し、該電線の結合部分および絶縁被覆部分の外側に光透過性材料で形成したチューブを接着固定し、次いで該チューブと該電線との間隙部分に光硬化性樹脂を充填し、該チューブの外部から該光硬化性樹脂を重合硬化させるに充分な光照射を加えることを特徴とする、新規な方法である。

本発明の方法において使用する光硬化性樹脂は、たとえばビニル系やアクリル系などの単量体とたとえば紫外線感受性の重合開始剤とを含み、必要に応じて单量体可溶性の重合体、充填剤、可塑剤などを配合したものなど、公知のものを用いることができる。かかる光硬化性樹脂としては電線被覆との密着性や機械的強度、湿気絶縁性などの絶縁材料として必要とされる物理特性を有するものであれば、どのようなものであってもよい。

また、本発明において用いられる光透過性の樹脂成形用チューブは、使用する光硬化性樹脂と接触しても侵蝕されることなくまた光硬化性樹脂の硬化に有効な波長の光を効率的に透過させることができ可能な材料、たとえば塩化ビニル系樹脂やポリオレフィン系樹脂などの透明な材料で形成されたものであってよい。かかるチューブは、光硬化性樹脂の硬化後にそのまま保護被覆層の一部とすることができる。

光透過性チューブと電線の結合部との間に充填された光硬化性樹脂を硬化させるには、硬化反応を促進するに有効な波長の光たとえば紫外線などを充分な強さで発する光源を用いるべきである。しかし、ここでいう光とは、輻射エネルギーが熱等に変換されることが少なく、樹脂の硬化反応の開始エネルギーとして直接に利用される放射線であればよく、必ずしも紫外線などに限定されるものではない。

かかる光によって電線の結合部分の周囲に光硬化性樹脂の被覆層を形成するには、たとえば紫外

線ランプなどの光源を必要数設置した硬化室内に、光硬化性樹脂を注入充填した電線結合部分を送り込み、硬化に必要な時間光に曝露する。こうして、電線の絶縁被覆と密着した樹脂被覆層を有する電線の結合部が形成される。

作用

本発明の方法によって保護被覆層を形成した電線結合部は、電線の絶縁被覆とその周囲に形成された保護被覆層とが完全に密着して強固に接着されており、外部からの湿気の侵入は起らない。

実施例1

本発明の方法のひとつの実施例を第1～5図によって説明する。

塩化ビニル被覆電線1の絶縁被覆1aの長さ約1.5mm程度を除去し導体1bを露出させ、また別の塩化ビニル被覆電線2の末端部の絶縁被覆2aを約1.0mm程度除去して導体2bを露出させた。次いで導体1bと導体2bとを隣接させ、導体スリーブ3を嵌着し、かしめによって電線1に対し電線2が分岐するように結合した（第1図）。

次いでこの電線結合部分を熱収縮性の光透過性チューブ4の中に挿通し(第2図)、チューブ4の電線1のみが出ている端部4aを加熱して収縮させ、絶縁被覆1aの外面と密着させた(第3図)。その後、チューブ4の開口端部4bを上方に向けて、注入ノズル5から光硬化性樹脂を注入し(第4図)、15cmの距離から出力2kWの紫外線ランプ1個で10~15秒照射して樹脂を硬化させ、第5図に示すような保護被覆層Bを有する電線結合部Aを得たが、耐湿性および機械的強度の優れたものであった。

実施例2

実施例1において用いた熱収縮性の光透過性チューブの代りに、あらかじめ一端を校った半硬質の光透過性チューブ6を用い、電線結合部分を挿通したのち校り部6aに透明な接着テープ7を巻き付けて電線の絶縁被覆との隙間を封止した(第6図)。

以後実施例1と同様にして得た保護被覆層を有する電線結合部は耐湿性および機械的強度において優れたものであった。

て優れたものであった。

実施例3

実施例1において用いた熱収縮性の光透過性チューブの代りに半硬質の光透過性チューブ8を用い、これに電線結合部分を挿通したのち端8aを超音波溶接機によって電線の絶縁被覆部分の外面に溶着させた(第7図)。

以後実施例1と同様にして得た保護被覆層を有する電線結合部は、優れた耐湿性と機械的強度を示した。

[発明の効果]

本発明の方法によれば、電線の結合部を光透過性のチューブに挿通するので外部から接着状態が正常であることを肉眼で確認でき、被覆層に偏肉などが生じるおそれがない。

また、流動性の高い光硬化性樹脂が使用できるので、電線の絶縁被覆との密着性がよく、湿気の侵入がないことと相俟ってすぐれた絶縁性と機械的強度が得られる。

さらに、樹脂の硬化は常温常圧で実施するので

光透過性チューブは簡単なものでよく、作業性がよくて高能率で作業ができるほか、電線の径等に応じて多種のチューブを用意してもモールドとは異り経済的な負担にならない利点がある。

4. 図面の簡単な説明

第1~5図は本発明の電線の結合部に保護被覆を形成する方法の一実施例における各工程での電線結合部の外観図、第6、7図はそれぞれ別な実施例における光透過性チューブの接着状態の外観図である。

1. 2…電線、3…導体結合用スリーブ、4. 6. 8…光透過性チューブ、5…光硬化性樹脂組成物注入ノズル、A…電線結合部、B…保護被覆層。

特許出願人 矢崎総業株式会社

代理人 鹿野秀雄

第1図

第2図

第3図

第4図

第5図

第6図

第7図