Moving as a Leader: Detecting Emergent Leadership in Small Groups using Body Pose

Cigdem Beyan¹, Vasiliki-Maria Katsageorgiou¹, Vittorio Murino^{1,2}

¹ Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy

² Department of Computer Science, University of Verona, Ca' Vignal 2, Strada Le Grazie 15, 37134, Verona, Italy

{Cigdem.Beyan, Vasiliki.Katsageorgiou, Vittorio.Murino}@iit.it

Contact: Cigdem.Beyan@iit.it

www.iit.it/pavis/datasets/leadershipCorpus

MOTIVATION

- > Identification of emergent leaders (ELs) in small groups is
 - > A substantial topic for social and organizational psychology,
 - > Becoming popular in social signal processing.
- > Visual activity is a useful cue to investigate the social interactions.
 - ➤ Previous works [1,2]: head /body activity (Head/Body Act)
 - Not performing well enough.

CONTRIBUTIONS

- ➤ Introducing novel visual activity-based nonverbal features (NF) using 2D-body pose.
 - First time: Body pose used for leadership (ELship) detection.
- ➤ Investigating the effect of unsupervised feature learning.
 - First time: this is applied for ELship.
- > Improved performance as compared to SoA of visual activity-based NFs [1,2].

DATASET

> 16 meetings (12-30 minutes).

DI TECNOLOGIA

- ➤ Video: 4 frontal cameras and a standard camera.
- > Audio: 4 wireless lapel microphones.
- > Survival Task
- > Annotation: The most & least emergent leaders.
- > 75 meeting segments, 300 samples in total.

Publicly Available

PROPOSED METHOD

2D-Body Pose Estimation [3]

- ➤ Based on Convolutional Neural Networks.
- > Applied to the frames having significant activity.
- 12 body parts used (i.e. ears, eyes, feet discarded).
- Missing body parts: Spline interpolation.

2) Nonverbal Feature Extraction

- 10 angles between body parts: the cosine value of the two vectors.
- > 8 statistical measures: mean, standard deviation, skewness, the number of zero crossings, etc.
- 3) Classification: the most EL, the least EL, not-a-leader
 - > Support Vector Machines (SVM)
 - Localized Multiple Kernel Learning (LMKL) [4]

Detection Rate	Most EL	Least EL	Not-a-leader
Head/Body_Act_SVM	0.57	0.36	0.70
Pose_SVM (Proposed)	0.46	0.54	0.55
Head/Body_Act_LMKL	0.52	0.42	0.94
Pose_LMKL (Proposed)	0.54	0.46	0.92

- > Overall, the *proposed body pose-based NFs* performed better than existing visual activity-based NFs.
- > It is possible to improve classification results by applying unsupervised feature learning (DBMs).
- The *proposed NFs* were able to advance the EL identification performances of other types of NFs when they were used together.
 - > VFOA Pose performed better than VFOA only and VFOA Head/Body Act.
 - > Any fusion w/SpeakAct performed worse than SpeakAct only.

BUT

> VFOA Pose (also best of all) performed better than SpeakAct and any combinations with SpeakAct.

RESEARCH QUESTIONS

Are the *Proposed pose-based NFs* better than *Head/Body Act*?

Feature Learning:

- 2) Are the *Proposed NFs* w/Deep Boltzmann Machines (DBMs) better than *Proposed* only?
 - Are the *Proposed NFs* w/DBMs better than *Head/Body Act* w/DBMs?

Fusion with other NFs:

- 3) Are the fusions of *proposed NFs* w/speaking activity-based NFs (*SpeakAct*) and visual focus of attention-based NFs (VFOA) better than SpeakAct only and VFOA only?
 - Are the fusions of *proposed NFs* w/other NFs **better than** fusion of Head/Body Act w/other NFs?

Detection Rate	Most EL	Least EL	Not-a-leader
Head/Body_Act_DBM_SVM	0.52	0.30	0.65
Pose_DBM_SVM (Proposed)	0.54	0.48	0.52
Head/Body_Act_DBM_LMKL	0.68	0.27	0.85
Pose_DBM_LMKL (Proposed)	0.55	0.50	0.94

Detection Rate	Most EL	Least EL	Not-a-leader
SpeakAct_SVM	0.73	0.59	0.73
SpeakAct_Head/Body_Act_SVM	0.69	0.52	0.74
SpeackAct_Pose_SVM (Proposed)	0.71	0.52	0.76

Detection Rate	Most EL	Least EL	Not-a-leader
VFOA_SVM	0.71	0.59	0.75
VFOA_Head/Body_Act_SVM	0.70	0.64	0.78
VFOA Pose SVM (Proposed)	0.72	0.66	0.74

References:

- [1] C. Beyan et al., Identification of Emergent Leaders in a Meeting Scenario Using Multiple Kernel Learning, ACM ICMI-ASSP4MI, 2016.
- [2] D. Sanchez-Cortes et al., A Nonverbal Behavior Approach to Identify Emergent Leaders in Small Groups, IEEE Trans. Multimedia, 2012.
- [3] Z. Cao et al., Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. CoRR abs/1611.08050, 2016.
- [4] M. Gonen et al., Localized Multiple Kernel Learning, ICML, 2008.