Regresión múltiple y otras técnicas multivariadas

Tarea 02

Rivera Torres Francisco de Jesús Rodríguez Maya Jorge Daniel Samayoa Donado Víctor Augusto Trujillo Bariios Georgina

Febrero 20, 2019

Ejercicio 1

Mostrar que los EMCO de β_0 y β_1 son lineales e insesgados.

Ejercicio 2

Mostrar que $\hat{\mu}_0 = \hat{\beta}_1 + \hat{\beta}_1 x_0$ es un estimador insesgado de $\hat{\mu}_0 = \beta_1 + \beta_1 x_0$ y que

$$V(\hat{\mu}_0) = \sigma^2 \left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right)$$
 (1)

Ejercicio 3

Suponer que se ajusta un modelo RLS por MCO a las observaciones $(x_i, y_i), i = 1, ..., n$. Verificar que se cumplen las siguientes igualdades:

Inciso (a)

$$\sum_{i=1}^{n} e_i = 0 \tag{2}$$

Inciso (b)

$$\sum_{i=1}^{n} x_i e_i = 0 \tag{3}$$

Inciso (c)

$$\sum_{i=1}^{n} \hat{y}_i e_i = 0 \tag{4}$$

Inciso (d)

$$\sum_{i=1}^{n} \hat{y}_i = \sum_{i=1}^{n} y_i \tag{5}$$

Inciso (e)

$$\sum_{i=1}^{n} y_i e_i = \sum_{i=1}^{n} e_i^2 \tag{6}$$

Inciso (f)

$$\sum_{i=1}^{n} (\hat{y}_i - \bar{y}_i)^2 = \hat{\beta}_1^2 S_{xx} \tag{7}$$

Ejercicio 4

Calcular el error cuadrático medio de $\hat{\sigma}_{\text{MCO}}^2$ y de $\hat{\sigma}_{\text{MV}}^2$. A partir de los resultados decidir que estimador de σ^2 es mejor.

Ejercicio 5

El conjunto de datos mtcars del paquete datasets de R contiene información sobre el rendimiento y otras características de 32 vehículos. El rendimiento se encuentra en la variable mpg y está medido en millas por galón y el peso del vehículo está en la variable wt que está medida en miles de libras.

Inciso (a)

Ajustar un modelo RLS para explicar mpg en términos de wt. Reportar las estimaciones de β_0 y β_1 .

Inciso (b)

Transformar la variable wt a toneladas y repetir el inciso anterior. ¿Cómo se relacionan estas estimaciones de β_0 y β_1 con las anteriores?

Inciso (c)

Repetir el inciso anterior pero ahora con mpg transformada a kilómetros por litro y wt en las unidades originales (miles de libras).

Inciso (d)

Concluir sobre el efecto de los cambios de escala en las estimaciones de los parámetros del modelo RLS.

Ejercicio 6

Con el conjunto de datos mtcars ajustar un modelo RLS para explicar mpg en términos de wt

Inciso (a)

Reportar las estimaciones de $V(\hat{\beta}_0)$ y $V(\hat{\beta}_1)$.

Inciso (b)

Reportar la estimación de la medida del rendimiento de un vehículo con peso de 4,300 libras.

Inciso (c)

Reportar la estimación de la varianza de la estimación del inciso anterior.