

Table of contents

- 1) Dataset Overview
 - a) Data Visualization
 - b) Data Preparation

2) Models & Algorithms

3) Future Work

4) Conclusion

01

Data Overview

Data Overview

User and Music Data contained in several 'Parquet' files

 Required an external library - Arrow

Turned into CSV

Dataset Visualization

•	user_id ‡	artist_name \$	release_name	recording_name	date ‡	time ‡
1	16493	Greg MacPherson Band	Good Times Coming Back Again	Numbers	2006-11-29	13:19:10
2	8793	Wolfgang Amadeus Mozart	The World of Sacred Music	Ave Verum Corpus	2006-11-29	13:52:16
3	6263	Japan	Tin Drum	Ghosts	2006-11-29	13:59:42
4	5838	Enigma	The Cross of Changes	Age of Loneliness (Carly's Song)	2006-11-29	13:55:42
5	1061	Paul Simon	Graceland	All Around the World or the Myth of Fingerprints (early versi	2006-11-29	14:04:29
6	5838	Enigma	The Cross of Changes	Age of Loneliness (Carly's Song)	2006-11-29	14:39:42
7	8115	Pixies	Surfer Rosa	I'm Amazed	2006-11-29	14:44:38
8	1061	Paul Simon	Graceland	All Around the World or the Myth of Fingerprints (early versi	2006-11-29	15:07:16
9	6419	Partizani	Unknown Album	Pociva jezero v tihoti	2006-11-29	15:14:45
10	4685	Red Hot Chili Peppers	Stadium Arcadium	Dani California	2006-11-29	15:26:37

First 10 entries from file

Data Preparation

Encoded each categorical column:

	user_id	artist_name	release_name
0	16493	Greg MacPherson Band	Good Times Coming Back Again
1	8793	Wolfgang Amadeus Mozart	The World of Sacred Music
2	6263	Japan	Tin Drum
3	5838	Enigma	The Cross of Changes
4	1061	Paul Simon	Graceland


```
4 df['artist name'] = df['artist name'].astype('category').cat.codes
  5 df['release name'] = df['release name'].astype('category').cat.codes
  6 df['recording name'] = df['recording name'].astype('category').cat.codes
  8 #print new head and shape of df
  9 print(df.head(), "\n", df.shape)
 13 print(dict(zip(df['artist name'].astype('category').cat.categories, df['artist na
  user id artist name release name recording name
                                                          date
                                                                    time
                                               9463 2006-11-29 13:19:10
    16493
                               4240
                              10764
                                                     2006-11-29 13:52:16
                              10945
                 4286
     5838
                                                676 2006-11-29 13:55:42
     1061
                 6645
                               4260
                                                759 2006-11-29 14:04:29
(66936, 6)
{0: 3665, 1: 9899, 2: 4286, 3: 2913, 4: 6645, 5: 2913, 6: 6797, 7: 6645, 8: 6593, 9: 712
```

User Interaction Matrix

USERS\ARTISTS	Artist 1	Artist 2	Artist 3
User 1	1	0	1
User 2	0	1	0
User 3	0	1	1

O2Models & Algorithms

ı

I

Collaborative Filtering

CF (ALS) - Overview

Step 1

Step 2

Step 3

Analyze smaller k-sized matrices

Optimize User & Item matrices independently

Iterate until convergence

CF (ALS) - Code Explanation

(User_ID, Artist)

```
(5, 3617)
(5, 4580)
(5, 8272)
(5, 10094)
(6, 344)
(6, 1396)
(6, 2571)
(6, 2685)
(6, 3431)
(6, 4560)
(6, 5746)
(6, 6133)
(6, 6346)
```

Feeds into

Training

Hyper-parameters:

- Factors (k)
- Regularization (λ)
- Iterations
- Alpha (not seen in the above image)

CF (ALS) - Code Explanation

Testing

```
1  #model predictions
2  import implicit.evaluation
3
4  implicit.evaluation.AUC_at_k(model, train_user_items = user_artist_train_matrix, test_user_items = user_artist_test_matrix, K = 10,
5
6  #AUC score of 0.5210884671362229 ~ random === guessing

100%| | 1330/1330 [00:00<00:00, 10472.59it/s]
0.5202834576915786</pre>
```

Using AUC for performance

How to improve performance?

Grid Search

CF (ALS) - Code Explanation

Grid Search

```
param_grid = {
    'factors' : [8, 10, 15],
    'regularization' : [0.15, 0.18, 0.2, 0.23, 0.27, 0.3],
    'iterations' : [60, 65, 75, 80, 85],
    'alphas' : [10]
}
```

Adjust all parameters to improve performance

```
perform Grid Search
for factor in param grid['factors']:
    for reg in param grid['regularization']:
        for iter in param_grid['iterations']:
            for alp in param grid['alphas']:
                #define model with given params
                #utilizing 4 cores on my CPU to speed up process
                model = implicit.als.AlternatingLeastSquares(factors = factor, regularization = reg, iterations = iter, alpha = alp, num_threads = 4)
                model.fit(user artist train matrix)
                #obtain AUC (eval)
                #k = 10 => model bases performance on recommendation for top 10 artists
                auc = implicit.evaluation.AUC at k(model, train user items = user artist train matrix, test user items = user artist test matrix, K = 10
                #compare AUC score and if auc is better, we update current stored bests
                if auc > best_AUC:
                    best AUC = auc
                    best_params = {'factor' : factor, 'reg' : reg, 'iter' : iter, 'alpha' : alp}
print(f"Best hyperparams via grid search: {best_params}\nBest AUC: {best_AUC}")
 forder for best params is: factor, reg, iter, alpha
```

CF (ALS) – Performance Evaluation

```
Best hyperparams via grid search: {'factor': 8, 'reg': 0.2, 'iter': 75, 'alpha': 10} Best AUC: 0.5472981589956554
```

~0.55 AUC score... Not good

Slightly better than randomly guessing

Take Aways from CF (ALS)

Avg run time on smaller dataset was < 5 mins per train and test

Easy Tuning

Grid Search allowed for highly varied values to be tried in sequence

Poor Prediction

Such a low AUC means it is not learning well. This would require many more iterations of Grid Search to find optimal solutions

Neural Collaborative Filtering

NCF - Overview

Step 1

Step 2

Step 3

User Matrix and Item
Matrix are fed. Then
performs Dot product to
create input matrix

Run through Hidden Layers

Output Binary Classifier (0;1) for interactions

NCF - Code Explanation

```
1 import tensorflow as tf
      if tf.config.list physical devices('GPU'):
          print("GPU is available")
          print("GPU is not available")
   8 # List the available GPUs and their memory information
      gpus = tf.config.get_visible_devices('GPU')
  10 for gpu in gpus:
          memory info = tf.config.experimental.get memory info('GPU:0')
          print(f"GPU: {gpu.name}")
          print(f"Current memory usage: {memory info['current']} bytes";
          print(f"Peak memory usage: {memory_info['peak']} bytes")
  16 #ensure we're able to use the GPU for processing the stuff
  17 #I'm utilizing my home PC which has an NVIDIA RTX 3070
GPU is available
GPU: /physical device:GPU:0
Current memory usage: 0 bytes
Peak memory usage: 0 bytes
```

Use GPU for faster processing

Setup

```
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Embedding, Dot, Dense, Flatten, Dropout

#create NCF model structure

#input layers for user and item
user_input = Input(shape=(1,), name='user_input')
item_input = Input(shape=(1,), name='item_input')

#embedding layers to flatten the information from user-item interaction matrix
user_embedding = Embedding(input_dim=len(user_ids_flat), output_dim=5, name='user_embedding')(user_input)
item_embedding = Embedding(input_dim=len(item_ids_flat), output_dim=5, name='item_embedding')(item_input)

#flatten embedding layers for dot product
user_vec = Flatten()(user_embedding)
item_vec = Flatten()(item_embedding)

#dot product between user and item vectors (matrices)
dot_product = Dot(axes=1)([user_vec, item_vec])
```

Input → Embedding → Dot product

NCF - Code Explanation

Model Structure

```
#hidden layer with 2048 neurons
h1 = Dense(2048, activation = 'relu') (dot_product)
#add 20% dropout to reduce overfitting
h1 = Dropout(0.2)(h1)

#hidden layer with 1024 neurons
h2 = Dense(1024, activation = 'relu')(h1)

#add 20% dropout to reduce overfitting
h2 = Dropout(0.2)(h2)
```

```
#hidden layer with 512 neurons
h3 = Dense(512, activation = 'relu')(h2)

#add 20% dropout to reduce overfitting
h3 = Dropout(0.2)(h3)

#output with sigmoid activation function for binary classification (user likes artist)
output = Dense(1, activation='sigmoid')(h3)

#defining the model
ncf_model = Model(inputs=[user_input, item_input], outputs=output)
```

Dot Product \rightarrow Hidden layers $1 \rightarrow 2 \rightarrow 3 \rightarrow$ output

NCF - Code Explanation

Compile then Train model

```
from tensorflow.keras import metrics
  4 ncf_model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy', metrics.Precision(), metrics.Recall()]
    ncf model.summary()
lodel: "model
Layer (type)
                              Output Shape
                                                                Connected to
user_input (InputLayer)
                              [(None, 1)]
item input (InputLayer)
                              [(None, 1)]
user embedding (Embedding)
                              (None, 1, 5)
                                                                ['user input[0][0]']
item_embedding (Embedding)
                              (None. 1. 5)
                                                               ['item_input[0][0]']
flatten (Flatten)
                                                                ['user embedding[0][0]']
                               (None, 5)
flatten_1 (Flatten)
                                                                ['item_embedding[0][0]']
                               (None, 5)
dot (Dot)
                                                                ['flatten[0][0]'.
                               (None, 1)
                                                                  'flatten_1[0][0]']
dense (Dense)
                               (None, 2048)
                                                                ['dense[0][0]']
dropout (Dropout)
                               (None, 2048)
dense 1 (Dense)
                               (None, 1024)
dropout 1 (Dropout)
                                                                ['dense_1[0][0]']
                              (None, 1024)
dense_2 (Dense)
                              (None, 512)
                                                    524800
                                                                ['dropout_1[0][0]']
dropout_2 (Dropout)
                              (None, 512)
                                                                ['dense_2[0][0]']
dense_3 (Dense)
                               (None, 1)
                                                                ['dropout_2[0][0]']
```

Model Training

Note: I printed Precision and Recall to get a better idea of performance

Model summary

NCF - Performance Evaluation

```
pred = pred.reshape(len(user artist test.index.to numpy()).len(user artist test.columns.to numpy())
  3 print(pred.shape)
  4 print(pred)
  7 np.savetxt("test.csv", pred, delimiter=',')
[[6.41770894e-05 1.50387571e-03 1.14942246e-04 ... 3.81117308e-04
 6.41770894e-05 6.85204053e-03]
 [3.93285554e-05 4.01007431e-03 6.11971179e-03 ... 3.90591379e-03
 2.04896159e-03 2.10656915e-02]
 [3.27590038e-03 1.05575717e-03 2.87834046e-05 ... 7.01974437e-04
 1.40420525e-04 1.94723054e-03]
[1.51610207e-02 3.65556101e-03 9.83655264e-05 ... 3.49230453e-04
 5.85206086e-04 4.67651896e-03]
 [4.98800888e-04 1.44600589e-02 9.85409133e-04 ... 1.17245328e-03
 2.76998297e-04 9.75499395e-031
 [1.29936016e-04 8.16146086e-04 8.52018013e-04 ... 2.89623014e-04
 2.62918533e-04 8.34032334e-0311
```

Very low probability for interactions (< 0.2)

Take Aways from NCF

Slower than CF

Despite me running many different models using both my CPU and GPU, NCF would run slower on average for training and testing

High PC Req's

I frequently would run out of Memory (VRAM) when using the GPU. Using the CPU it would take many hours (>6 hours) per training session

Poor Learning

High Accuracy but Extremely low Precision and Recall indicates model is overfitting

K-Nearest Neighbors

Algorithm - Overview

Step 1

Songs are put into an interaction matrix where columns=songs and rows=users

Step 2

Cosine Similarity is used to determine distance between songs

Step 3

Smaller vectors represent closer songs

The K nearest songs are recommended

Algorithm - Explanation

Step 1

USERS \ ARTISTS	Artist 1	Artist 2	Artist 3
User 1	1	0	1
User 2	0	1	0
User 3	0	1	1

Algorithm - Explanation

Step 2

Each user's interactions constitute a vector.

Similarity between vectors approach 1.

No similarity equals 0.

Opposition approaches -1.

Algorithm - Explanation

Step 3

Vectors are sorted according to value.

The top K values are returned as recommendations

Algorithm - Performance Evaluation

K-fold cross-validation is used to determine performance

The data in the test set is compared to actual user interactions to determine precision

Take Aways from Algorithm

Memory Intensive

KNN is computationally heavy and should be used with smaller datasets unless an effective method of data preparation can be used.

Tunability

While the KNN Algorithm is simplistic and easy, implementation has its own problems.

03

Future Work

Future Work

- Utilize Cloud Services for DL models
- Obtain dataset with user ratings
- Pick alternative algorithms
- Utilize Hybrid Methods

04

Conclusion

ı

Conclusion

This was a fun yet challenging project. Our models' performance wasn't great, but demonstrates the difficulty with building an implicit recommender system.

References

- Neural Collaborative Filtering (2017) He, Liao, Zhang, et. al.
 - https://developers.google.com/machinelearning/recommendation/collaborative/basicshttps://developers.google.com/machine-learning/recommendation/collaborative/basics
 - https://towardsdatascience.com/alternating-least-square-for-implicit-dataset-withcode-8e7999277f4b
 - https://towardsdatascience.com/recommendation-system-matrix-factorizationd61978660b4b
 - AUTHOR (YEAR). Title of publication. Publisher

Questions?

Thank you for your time and attention

CREDITS: This presentation template was created by including icons by , infographics & images by

 $Please\,keep\,th is\,slide\,for\,attribution$