CONCORDIA UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING

MATHEMATICS FOR COMPUTER SCIENCE COMP232 ASSIGNMENT 2 FALL 2015

PROBLEM 2a: Direct proof: assume that the LHS is True. Thus each of the following is True:

- (1) $(\neg p \lor q) \to r$ (2) $s \lor \neg q$ (3) $\neg t$ (4) $p \to t$ (5) $(\neg p \land r) \to \neg s$

From (3) it follows that t is False.

From (4) it then follows that p is False.

From (1) it then follows that r is True.

From (5) it then follows that s is False.

From (2) it then follows that q is False.

PROBLEM 2b: Direct proof: assume that the LHS is True. Thus each of the following is True:

- $(1) \neg p \to (r \land \neg s) \qquad (2) \ t \to s \qquad (3) \ u \to \neg p \qquad (4) \ \neg w \qquad (5) \ u \lor w$

From (4) it follows that w is False.

From (5) it then follows that u is True.

From (3) it then follows that p is False.

From (1) it then follows that r is True and s is False.

From (2) it then follows that t is False.

Hence $\neg t \lor w$ is True.

PROBLEM 2c: Direct proof: assume that the LHS is True. Thus each of the following is True:

- (1) $p \lor q$ (2) $q \to r$ (3) $(p \land s) \to t$ (4) $\neg r$ (5) $\neg q \to (u \land s)$

From (4) it follows that r is False.

From (2) it then follows that q is False.

From (1) it then follows that p is True.

From (5) it then follows that u and s are True.

From (3) it then follows that t is True.

PROBLEM 3a: Direct proof:

Suppose that (1) $\forall x [R(x) \to (S(x) \lor Q(x))]$ and (2) $\exists x [\neg S(x)]$ are True.

From (2), it follows that $S(x_1)$ is False for some x_1 .

Next, note that (1) is equivalent to $\forall x [\neg R(x) \lor S(x) \lor Q(x)].$

Thus, in particular $\neg R(x_1) \lor S(x_1) \lor Q(x_1)$ is True.

Since $S(x_1)$ is False it follows that $\neg R(x_1) \lor Q(x_1)$ must be True, i.e., $R(x_1) \to Q(x_1)$ is True.

Thus $\exists x[R(x) \to Q(x)]$ is True, namely for $x = x_1$.

PROBLEM 3b: Proof by contradiction:

Suppose that (1) $\forall x [P(x) \lor Q(x)]$ and (2) $\forall x [(\neg P(x) \land Q(x)) \to R(x)]$ are True,

but that the conclusion (3) $\forall x [\neg R(x) \rightarrow P(x)]$ is False.

If (3) is False it then $\neg R(x_1) \rightarrow P(x_1)$ is False for some x_1 .

Equivalently, we have that $R(x_1) \vee P(x_1)$ is False for some x_1 .

Thus both $P(x_1)$ and $R(x_1)$ are False.

From (2) it then follows that $Q(x_1)$ must be False.

Hence both $P(x_1)$ and $Q(x_1)$ are False, which contradicts (1).