- 1. Verify that the Δs having the following measures of sides are right-angled.
- (i) a = 5 cm, b = 12 cm, c = 13 cm

Ans.
$$(Hyp)^2 = (Perp.)^2 + (Base)^2$$

 $(13)^2 = (12)^2 + (5)^2$
 $169 = 144 + 25$
 $169 = 169$

- .. The triangle is right angled.
- (ii) a = 1.5 cm, b = 2 cm, c = 2.5 cm

Ans.
$$(Hyp)^2 = (Perp.)^2 + (Base)^2$$

 $(2.5)^2 = (1.5)^2 + (2)^2$
 $625 = 2.25 + 4$
 $6.25 = 6.25$

:. The triangle is right angled.

(iii)
$$a = 9 \text{ cm}, b = 12 \text{ cm}, c = 15 \text{ cm}$$

Ans. $(\text{Hyp})^2 = (\text{Perp.})^2 + (\text{Base})^2$
 $(15)^2 = (12)^2 + (9)^2$
 $225 = 144 + 81$
 $225 = 225$

.. The triangle is right angled.

1156 = 900 + 256

(iv)
$$a = 16 \text{ cm}, b = 30 \text{ cm}, c = 34 \text{ cm}$$

Ans. $(\text{Hyp})^2 = (\text{Perp.})^2 + (\text{Base})^2$
 $(34)^2 = (30)^2 + (16)^2$

$$1156 = 1156$$

- .. The triangle is right angled.
- 2. Verify that $a^2 + b^2$, $a^2 b^2$ and 2ab are the measures of the sides of a right angled triangle where a and b are any two real numbers (a > b).

Ans. In right angle triangle.

Comparing (i) and (iv), we get
$$(a^2 - b^2)^2 + (2ab)^2 = (a^2 + b^2)^2$$

Hence $a^2 + b^2$, $a^2 - b^2$ and 2ab are measures of the sides of a right angled triangle where $a^2 + b^2$ is Hypotenuse.

3. The three sides of a triangle are of measure 8, x and 17 respectively. For what value of x will it become base of a right angled triangle?

Ans:

Consider a right angled triangle

With
$$\overline{AB} = x$$

 $\overline{BC} = 8$
and $\overline{AC} = 17$

If x is the base of right angled $\triangle ABC$ then we know by Pythagoras theorem that

$$(hyp)^2 = (Base)^2 + (perp)^2$$

 $(17)^2 = x^2 + (8)^2$
 $289 = x^2 + 64$
 $x^2 + 64 = 289$
 $x^2 = 289 - 64$
 $x^2 = 225$
 $x = \sqrt{225}$
As x is measure of side
So $x = 15$ units

4. In an isosceles Δ , the base $\overline{BC} = 28$ cm, and $\overline{AB} = AC = 50$ cm.

If $\overline{AD} \perp \overline{BC}$, then find:

- Length of AD (i)
- (ii) Area of AABC

Given

$$\frac{\overline{AC} = \overline{MAB} = 50 \text{ cm}}{\overline{BC} = 28 \text{ cm}}$$

$$\frac{\overline{MBC} = 28 \text{ cm}}{\overline{AD} \perp \overline{BC}}$$

To Prove

$$\overline{AD} = ?$$

Area of $\triangle ABC = ?$

Proof

Statements

In right angled triangle mCD =14cm

 $m\overline{AC} =$ 50cm

 $(mAD)^2 = (mAC)^2 - (mCD)^2$

 $(mAD)^2$

 $= (50)^2 - (14)^2$ 2500-196

= 2304

 $\sqrt{2304}$ $\sqrt{(\text{mAD})^2}$

mAD 18 cm

Area of $\triangle ABC = \frac{Base \times Altitude}{2}$ (ii)

 $= 14 \times 28$

=672 sq.cm

Reasons

Given

 $(mAC)^2 = (mAD)^2 - (mCD)^2$ (by

Pythagoras theorem)

Taking square root of both sides

In a quadrilateral ABCD, the diagonals \overline{AC} and \overline{BD} are perpendicular to each other. Prove that:

$$m\overline{AB}^2 + m\overline{CD}^2 = m\overline{AD}^2 + m\overline{BC}^2$$
.

Given: Quadrilateral ABCD diagonal \overline{AC} and \overline{BD} are perpendicular to each other.

To Prove:

$$m(\overline{AB})^2 + m(\overline{CD})^2 = m(\overline{AD})^2 + m(\overline{BC})^2$$

Proof

Statements	Reasons
In right triangle AOB	
$m\left(\overline{AB}\right)^2 = m\left(\overline{AO}\right)^2 + m\left(\overline{OB}\right)^2 \dots,(i)$	By Pythagoras theorem
In right triangle COD	
$m\left(\overline{CD}\right)^2 = m\left(\overline{OC}\right)^2 + m\left(\overline{OD}\right)^2 \dots,(ii)$	By Pythagoras theorem
In right triangle AOD	
$m(\overline{AD})^2 = m(\overline{AO})^2 + m(\overline{OD})^2 \dots (iii)$	By Pythagoras theorem
In right triangle BOC	
$m(\overline{BC})^2 = m(\overline{OB})^2 + m(\overline{OC})^2$,(iv)	By Pythagoras theorem
$m(\overline{AB})^2 + m(\overline{CD})^2 = m(\overline{AO})^2 + m(\overline{OB})^2 + m(\overline{OC})^2 + m(\overline{OD})^2.$,(v) By adding (i) and (ii)
$m(\overline{AD})^2 + m(\overline{BC})^2 = m(\overline{AO})^2 + m(\overline{OD})^2 + m(\overline{OB})^2 + m(\overline{OC})^2$	(vi) By adding (ii) and (iv)
$\left(m\overline{AB}\right)^2 + \left(m\overline{CD}\right)^2 = \left(m\overline{BC}\right)^2 + \left(m\overline{AD}\right)^2$ (i) In the AABC as shown in the figure metaCB = 00	By adding (v) and (vi)

.....(ii)

6. (i) In the $\triangle ABC$ as shown in the figure, m $\angle ACB = 90^{\circ}$ and $CD \perp AB$. Find the lengths a, h and b if mBD = 5 units and mAD = 7 units.

In right angled $\triangle BDC$ $a^2 = 25 + h^2$ (i)

in right angled $\triangle ADC$ $b^2 = 49 + h^2$

in right angled $\triangle ABC$ $a^2+b^2=144$ (iii)

adding (i) and (ii) $a^2+b^2 = 74+2h^2$ (iv)

from (iii) and (iv)

$$74 + 2h^2 = 144$$

 $2h^2 = 144-74$
 $2h^2 = 70$
 $h^2 = 35$
 $h = \sqrt{35}$

Now we will find a and b

 $h^2 = 35$ (in Eq. 1)

 $a^2 = 25 + 35$

 $b = 2\sqrt{21}$

$$a^{2} = 60$$

$$a = \sqrt{60}$$

$$= \sqrt{4 \times 15}$$

$$a = 2\sqrt{15}$$
now put
$$h^{2} = 35 \text{ (in Eq. 2)}$$

$$b^{2} = 49 + 35$$

$$b^{2} = 48$$

$$b = \sqrt{84}$$

$$b = \sqrt{4 \times 21}$$

SO
$$a = 2\sqrt{15}$$

 $h = \sqrt{35}$
 $b = 2\sqrt{21}$

Put

(ii) Find the value of x in the shown in the figure.

In right angled triangle ADC

$$m(\overline{AC})^2 = m(\overline{AD})^2 + m(\overline{DC})^2$$

(13)²= (AD)² + (5)²
169 = (AD)² + 25

$$(AD)^2 = 169 - 25$$

 $(AD)^2 = 144$
 $AD = \sqrt{144}$
 $AD = 12cm$
In right angled triangle ABD
 $(AB)^2 = (AD)^2 + (BD)^2$
 $(15)^2 = (12)^2 + x^2$
 $225 = 144 + x^2$
 $x^2 = 225 - 144$
 $x^2 = 81$
 $x = 9 cm$

7. A plane is at a height of 300 m and is 500 m away from the airport as shown in the figure. How much distance will it travel to land at the airport?

Here A be the position of plane and B be the position of airport.

$$\overrightarrow{mAC} = 500m$$

 $\overrightarrow{mBC} = 300m$
 $\overrightarrow{mAB} = ?$

Applying Pythagoras theorem on right angled triangle ABC

$$|\overline{AB}|^2 = |\overline{AC}|^2 + |\overline{BC}|^2$$

$$= (500)^2 + (300)^2$$

$$= 250000 + 90000$$

$$= 34000$$

$$|\overline{AB}|^2 = 34 \times 10000$$
so
$$|\overline{AB}| = \sqrt{34 \times 10000}$$

$$= \sqrt{34 \times 100 \times 100}$$

$$=100\sqrt{34}m$$

So required distance is $100\sqrt{34}m$

8. A ladder 17 m long rests against a vertical wall. The foot of the ladder is 8m away from the base of the wall. How high up the wall will the ladder reach?

Ans. Let the height of ladder = x m

in right angled triangle

9. A student travels to his school by the route as shown in the figure. Find mAD, the direct distance from his house to school.

According to figure,
$$m\overline{AB} = 2km$$

 $m\overline{BC} = 6km$
 $m\overline{CD} = 3km$

Here mAB and mCD are perpendicular Perpendicular = $\overline{AB} + \overline{CD}$ = 2 + 3

=5km

According to Pythagoras theorem $(H)^2 = P^2 + B^2$

$$(m \overline{AD})^2 = (5)^2 + (6)^2 = 25 + 36$$

 $(m \overline{AD})^2 = 61$
 $m \overline{AD} = \sqrt{61} \text{ Km}$

10. Which of the following are true and which are false?

- (i) In a right angled triangle greater angle is 90°. (T)
- (ii) In a right angled triangle right angle is 60°. (F)
- (iii) In a right triangle hypotenuse is a side opposite to right angle. (T)
- (iv) If a, b, c are sides of right angled triangle with c as longer side then $c^2 = a^2 + b^2$. (T)
- (v) If 3 cm and 4 cm are two sides of a right angled triangle, then hypotenuse is 5 cm. (T)
- (vi) If hypotenuse of an isosceles right triangle is $\sqrt{2}$ cm then each of other side is of length 2 cm.(F)
- 11. Find the unknown value in each of the following figures.

By Pythagoras theorem

$$(Hyp)^2 = (Perp.)^2 + (Base)^2$$

 $x^2 = (4)^2 + (3)^2$
 $x^2 = 16 + 9$

$$X^{-} = 10 + 9$$

$$x^2 = 25 \Rightarrow x = \sqrt{25}$$

$$x = 5cm$$

(ii)

By Pythagoras theorem

$$(Hyp)^2 = (Perp.)^2 + (Base)^2$$

 $(10)^2 = (6)^2 + (x)^2$

$$100 = 36 + x^2$$

$$x^2 = 64$$

$$x = \sqrt{64}$$

$$X = 8cm$$

(iii)

By Pythagoras theorem $(Hyp) = (Perp.)^2 + (Base)^2$

$$(13)^2 = (x)^2 + (2)^2$$

$$169 = x^2 + 25$$

$$x^2 = 169 - 25$$

$$x^2 = 144$$

$$x = \sqrt{144}$$

$$x = 12cm$$

(iv)

By Pythagoras theorem

$$(Hyp.)^2 = (Perp.)^2 + (Base)^2$$

$$(\sqrt{2})^2 = (x)^2 + (1)^2$$

$$(\sqrt{2})^2 = (x)^2 + (1)^2$$

$$2 = x^2 + 1$$

$$x^2 = 2 - 1$$

$$x^2 = 1$$

$$x = \sqrt{1} = 1$$
cm