"自然语言处理导论"课程讲义

# 语义角色标注

孙栩

信息科学技术学院

xusun@pku.edu.cn

http://xusun.org

### 大纲

□语义角色标注

□ PropBank与FrameNet

# □ 解决方案

- □句法树方法
- □序列标注方法

# □语义角色标注



□ PropBank与FrameNet

# □ 解决方案

- □句法树方法
- □序列标注方法

# 语义

□ 这些句子是否有同样的含义?

- □ Yesterday, Kristina hit Scott with a baseball
- Scott was hit by Kristina yesterday with a baseball
- Yesterday, Scott was hit with a baseball by Kristina
- With a baseball, Kristina hit Scott yesterday
- Yesterday Scott was hit by Kristina with a baseball
- □ Kristina hit Scott with a baseball yesterday

# 语义

### □ 何为语义?

- □ 哲学性问题,目前语言学领域未有定论
- □ 提出了众多的语义表示方法

### □ 代表理论: 一<mark>阶谓词逻辑</mark>[Neo-Davidsonian事件表示]

- □ 对一个事件的形式化表示(一阶谓词逻辑), 例如
  - Sasha broke the window
    - $\exists e, x, y \ Breaking(e) \land Breaker(e, Sasha) \land BrokenThing(e, y) \land Window(y)$
  - Pat opened the door
    - $\exists e, x, y \ Opening(e) \land Opener(e, Pat) \land OpenedThing(e, y) \land Door(y)$
- □ 谓词需要人工定义、且无法穷尽
- □ 这种表示很难分析得到,更难以进行有效推理

### 一阶谓词逻辑 到 语义角色标注

### □ 一阶谓词逻辑没有考虑语义的共性

- □ Breaker和Opener虽然对应了不同的事件,但有语义共同之处
  - 主动行动者(volitional actor)
  - 有生命的(animate)
  - 事件的直接原因(direct causal responsibility)

### □ 语义角色(semantic roles)

- □ 通过捕捉语义间的共性,降低分析的难度和复杂度
- □ 在上一例子中,两者可以统一:
  - Breaker和Opener都是 AGENTS (施事)
  - BrokenThing 和OpenedThing 都是 THEMES (客体)

除了施事和客体 还有很多其它 类型的语义角色!

# 语义角色标注

- □ 语义角色标注 (Semantic Role Labeling, SRL)
  - □ 一种浅层语义分析技术
  - □ 确定作为谓语变元的名词性短语所扮演的语义角色
- **回例子:** The student solved problems with a calculator in the classroom this morning
  - □ 谓语(Predicate): solved
  - □ 施事(Agent): the student
  - □ 客体(Theme): problems
  - □ 工具(Instrument): a calculator
  - □ 地点(Location): the classroom
  - □ 时间(Time): this morning

语义角色的类型 是人工确定的, 有很多不同的划 分方式

- □ 语义角色标注的应用非常广泛
- □ 问答系统
  - □ 同一类问题的答案往往对应同一种语义角色
  - Who -> agent / experiencer
  - What -> force / theme / content
  - How -> instrument
  - Where -> goal / source
  - For whom -> beneficiary

- □ 语义角色标注的应用非常广泛
- □ 问答系统
- □ 信息抽取
  - □ 同一类信息往往对应同一种语义角色
  - London gold fell \$4.70 to \$ 308.45

| Slot          | Filler      | Semantic Role |
|---------------|-------------|---------------|
| Product       | London gold | Experiencer   |
| Price change  | -\$4.70     | Theme         |
| Current price | \$308.45    | Goal          |

- □ 语义角色标注的应用非常广泛
- □ 问答系统
- □ 信息抽取
- □ 文档摘要
  - □ 层级化摘要
  - □ 需要归纳不同文档中同一语义角色





- □ 语义角色标注的应用非常广泛
- □ **问答系统** [Hendrix et al., 1973; Shen & Lapata, 2007; Surdeanu et al., 2011]
- □ 信息抽取
- □ 文档摘要
- □ 知识获取
- □ 机器翻译 [Wilks, 1973; Liu & Gildea, 2010; Lo et al., 2013]
- □ 对话系统 [Bobrow et al., 1977]
- □ **口语理解** [Nash-Webber, 1975]
- ...

# 语义角色

- □ 语义角色 (Semantic Roles)的语言学定义
  - □ 一种**浅层**的语义表示
  - □ 语义由一句话描述的事件(event)表示
  - □ 事件由谓语(predicate)表示
  - □ 谓语可以携带多个论元(arguments),表示与事件相关的对象
  - □ **语义角色是论元**在**事件**中充当的**抽象角色**

□ 语义角色同样有多种粒度

更具体

更一般

Tom likes the ball. (Experiencer,感事)

原型施事是对施事的一般化:

The sky is blue. (Theme,主事)

以下均是原型施事

Tom hits the ball. (施事)

Hitter (打击者)

Agent (施事) Proto-agent (原型施事) 12

# 题旨角色 (Thematic Role)

### □ 语义角色由题旨角色发展而来

- □ 最古老的语言学模型之一
  - 印度语法学家Panini [7th to 4th BCE]

对依存句法在语义上的进一步细化!

- □ 现代阐述
  - Fillmore的格理论(case theory) [1966, 1968], Gruber [1965]
    - Fillmore受Lucien Tesnière的Éléments de Syntaxe Structurale [1959] 启 发,起初称这些角色为actant [1966]后改为case
    - 中心动词与名词短语作为句法的深层结构,之间的语义关系被称为深层格
- □示例

| Thematic Role | Definition                                          | Example                                                     |
|---------------|-----------------------------------------------------|-------------------------------------------------------------|
| AGENT         | The volitional causer of an event                   | The waiter spilled the soup.                                |
| EXPERIENCER   | The experiencer of an event                         | John has a headache.                                        |
| FORCE         | The non-volitional causer of the event              | The wind blows debris from the mall into our yards.         |
| THEME         | The participant most directly affected by an event  | Only after Benjamin Franklin broke the ice                  |
| RESULT        | The end product of an event                         | The city built a regulation-size baseball diamond           |
| CONTENT       | The proposition or content of a propositional event | Mona asked "You met Mary Ann at a supermarket?"             |
| INSTRUMENT    | An instrument used in an event                      | He poached catfish, stunning them with a shocking device    |
| BENEFICIARY   | The beneficiary of an event                         | Whenever Ann Callahan makes hotel reservations for her boss |
| SOURCE        | The origin of the object of a transfer event        | I flew in from Boston.                                      |
| GOAL          | The destination of an object of a transfer event    | I drove to Portland.                                        |

# 题旨角色的问题

- □ 难以建立标准的角色集合或准确定义题旨角色
  - □ 粒度 与 原子性 常常冲突
  - □ 角色通常需要被分裂才能被准确定义

- □ 例如,题旨角色中的INSTRUMENTS(工具)并包含了两种类型的角色[Levin & Hovav, 2015]:
  - □ 媒介工具(intermediary instruments): 可作主语
    - The cook opened the jar with the new gadget
    - The new gadget opened the jar
  - □ 赋能工具(enabling instruments): 不可做主语
    - Shelly ate the sliced banana with a fork
    - \*The fork ate the sliced banana.

# 语义角色的粒度

□ 实际中处理的语义角色有两类

- □ 更一般化的、更少角色(一般所说的语义角色)
  - □ 基于原型施事、原型受事 [Dowty 1991]
  - □ PropBank语料库为代表(语义角色标注所用的语料)

- □ 更细粒度的、更多角色(框架语义)
  - frames [Fillmore 1968, 1977]
  - □ 根据一类谓语定义特定的角色
  - □ FrameNet语料库为代表

# 语义角色标注的特性

### □ 语义角色与句法的关系

- □ 常见情况下, 语义角色可以通过特定句法位置确定
  - Agent: subject
  - Patient: direct object
  - Instrument: object of with
  - Beneficiary: object of for
  - Source: object of from
- □ 但以上泛化规则不是绝对的,至多也只是倾向
  - The hammer hit the window (这里不是Agent, 是Instrument)
  - The ball was passed to Mary from John (这里不是Agent, 是 Patient)
  - John went to the movie with Mary (不是instrument)
  - John bought the car for \$20K. (不是受益者Beneficiary)

### 语义角色标注的特性

### □ 语义角色与选择限制(Selectional Restrictions)的关系

- □ 选择限制: 比如一个动词只能跟有限的名词搭配, 比如 "吃手机"不太可能出现
- □ 语义角色标注可以帮助解决选择限制的问题

### □ 例子: I want to eat *someplace nearby*.

- Two interpretations
  - a) sensible: eat is intransitive and someplace nearby is a location adjunct
  - B) speaker is Godzilla: eat is transitive and someplace nearby is a direct object
- □ 通过语义角色标注: a > b

### 选择限制 与 选择倾向

- □ 选择限制(selectional restrictions)或选择倾向 (selectional preferences)?
- □ 早期,选择限制是严格约束[Katz and Fodor, 1963]
- □ 很快,人们明白选择限制其实只是倾向[Wilks, 1975]
  - □ 目前的语义分析还难以解决

### □ 例子

- But it fell apart in 1931, perhaps because people realized you can' t eat gold for lunch if you' re hungry.
- In his two championship trials, Mr. Kulkarni ate glass on an empty stomach, accompanied only by water and tea.

□语义角色标注

□ PropBank与FrameNet ←



# □ 解决方案

- □句法树方法
- □序列标注方法

### □ The Proposition Bank (PropBank) [Palmer et al. 2005]

- □ 采用粗粒度的角色定义[Dowty 1991]
- □ 使用原型施事(proto-agent)和原型受事(proto-patient)

### □ PropBank中根据动词的词义标注以下几类论元

- ARG0: PROTO-AGENT
- ARG1: PROTO-PATIENT
- ARG2: benefactive, instrument, attribute, end state
- ARG3: start point, benefactive, instrument or attribute
- ARG4: end point
- ARGM: modifiers or adjuncts of the predicate
  - TMP, LOC, DIR, MNR, ADV, ...

### □ 标注示例

- □ 根据动词确定每个Arg的具体含义
  - Predicate accept<sub>1</sub> "take willingly"
    - Arg0: acceptor
    - Arg1: thing accepted
    - Arg2: accepted-from
    - ► Arg3: attribute
  - ►  $[A_{rg0}He]$   $[A_{rgM-mod}would]$   $[A_{rgM-neg}n't]$  accept  $[A_{rg1}anything]$  of value  $[A_{rg2}from those he was writing about]$ .
  - Predicate kick<sub>1</sub> "drive or impel with the foot"
    - Arg0: kicker
    - Arg1: thing kicked
    - Arg2: instrument (defaults to foot)
  - ▶  $[A_{rg0}$ John] tried  $[A_{rg0}$ \*trace\*] to kick  $[A_{rg1}$ the football].

### □ PropBank的标注可以很好的表示语义上的共性

- □ 0, 1规律比较明显, 2之后根据具体词有变化
- □ ☑ dicate increase 1 "go up incrementally"
  - > Arg0: causer of increase
  - > Arg1: thing increasing
  - > Arg2: amount increased by, EXT or MNR
  - ➤ Arg3: start point (升高的起点)
  - ➤ Arg4: end point (升高的终点)
  - ► [Arg0 Big Fruit Co.] increased [Arg1 the price of bananas].
  - ► [Arg1 The price of bananas] was increased again [Arg0 by Big Fruit Co.]

### □ PropBank 中也包含一些名词和轻动词(light verb)

□ 如decision和make a decision中的make

Example Noun: Decision

▶ Roleset: Arg0: decider, Arg1: decision...

对比make a decision 和make a toy: 是否是实际的制作?

```
"...[your<sub>ARG0</sub>] [decision<sub>REL</sub>]
[to say look I don't want to go through this anymore<sub>ARG1</sub>]"
```

Example within an LVC: Make a decision

```
"...[the President<sub>ARG0</sub>] [made<sub>REL-LVB</sub>]
the [fundamentally correct<sub>ARGM-ADJ</sub>]
[decision<sub>REL</sub>] [to get on offense<sub>ARGI</sub>]"
```

### ■ NomBank

- PropBank以动词为主
- □ 在PropBank的基础上进一步扩充了名词和形容词

### FrameNet

- Baker et al. 1998, Fillmore et al. 2003, Fillmore and Baker 2009, Ruppenhofer et al. 2006
- □ PropBank中的角色根据**动词**定义
- □ FrameNet中的角色根据**框架**定义
- □ 框架的定义
  - □ 可以理解成,把同一类动词进行了聚类,这个类就是一个框架(比如"拿"、"取"可以属于一个框架;而且还确定了框架间的层级关系,比如"继承"、"原因"
  - □ 框架元素: A background knowledge structure that defines a set of frame-specific semantic roles, called frame elements (就是后一页的加黑部分,黑框部分是必须的元素,白框部分是可选元素)
  - □ 谓语(一般是动词,但也可以是名词):Includes **a set of predicates** that use these roles (就是后一页的最底下的那些词)
  - □ 实际分析过程中,每个词都要找到其对应的框架,然后获取部分框架元素

### □ 为何是Frame Net

- □ 框架通过关系相连构成网络 (框架上的箭头)
- □ 框架元素之间同样由关系相连构成网络 (加黑部分的箭头)
- □ 箭头来自父类,指向子类;比如"继承"是出现最多的一个类型,代表"语义的细化"



### □ 与PropBank相比,FrameNet的复杂度更高

- □ 下例,粗黑线代表单词触发了一个语义框架,一行是一个语义框架
- □ 比如对于ring,左边的是agent,右边的是sound maker

But there still are n't enough ringers to ring more than six of the eight bells .



Noise\_makers bell.n

Cause\_to\_make\_noise ring.v

Sufficiency enough.a

Existence there be.v

### □ Frame示例

- 框架里面除了结构化的元素和谓词,还有非结构化的自然语言解释,以下是非结构化的解释举例
- apply heat: situation involving a cook, food and a heating instrument evoked by bake, blanch, boil, broil, brown, simmer, etc.
- change position on a scale: situation involving the change of an items's position on a scale (the attribute) from a starting point (initial value) to an end point (final value) evoked by decline, decrease, gain, rise, etc.
- damaging: situation involving an agent that affects a patient in such a way that the patient (or some sub-region of the patient) ends up in a non-canonical state evoked by damage, sabotage, scratch, tear, vandalise, etc.

### □ 标注示例

- □ frameNet除了标注了之前说的结构化知识库,还标注了非结构化的 训练语料(就像propBank的训练语料一样),以下为样例
- □ 但是语料还是偏少,几万句,这是frameNet准确度还是偏低的原因 之一
- Verbs:
  - [Cook Matilde] fried [Food the catfish] [HeatingInstrument in an iron skillet]
  - ► [Item Colgate's stocks] rose [Difference \$3.64] to [FinalValue \$49.94]
- Nouns:
  - ... the **reduction** of [ $_{Item}$ debt levels] to [ $_{Value2}$ \$25] from [ $_{Value1}$ \$2066]
- Adjectives:
  - [Sleeper They] were asleep [Duration for hours]

### □ FrameNet可以更好的表示同一类事件之间的共性

- □ PropBank针对同一动词之间的共性
- □ 比如以下几个句子,用了不同的动词,但是item和agent都能成功分析出
- ► [Agent Big Fruit Co.] increased [Item the price of bananas].
- [Item The price of bananas] rose [Agent by Big Fruit Co.]
- ➤ There has been a [Difference 5%] rise in [Item the price of bananas].

# FrameNet与PropBank

□ FrameNet vs. PropBank (上图是propBank,它是由句法树细化标 注得到的)



□语义角色标注

□ PropBank与FrameNet

# □ 解决方案

□句法树方法(



□序列标注方法

### 语义角色标注方法

# □ 目标: 寻找句子中每个谓语的每个论元的语义角色(因为是以动词为中心)

- □ 识别谓语
- □ 识别论元
- □ 标定论元角色
- □ 对象: FrameNet vs. PropBank (上面是frameNet, 下面是propBank)

```
[You] can't [blame] [the program] [for being unable to identify it]

COGNIZER TARGET EVALUEE REASON

[The San Francisco Examiner] issued [a special edition] [yesterday]

ARGO TARGET ARG1 ARGM-TMP
```

### □ 两大类方法

- □ 序列标注方法
- □ 句法树方法

### 序列标注方法

- □ 语义角色标注视为Segmenting类的序列标注任务
- □ 标签含有两个属性
  - □ 边界属性: BIO, BIO2, BIOSE
  - □ 角色属性: Arg0, Arg1, ...
- □ 可以使用任意序列标注模型
- □ 有效的特征包括:中心词、窗口词、词性等

- □ 在没有神经网络的时代,效果极差
- 在深度学习时代,主要用LSTM进行序列标注,效果跟句法 树方法相当,大概是80-85%左右

### □ 借助句法树完成分类任务

- □ 句法树提供了大量的语义线索
- □ 下例是CFG句法分析,在句法树结构上识别arg0, arg1等



### □ 一个简单的算法框架

□ 遍历一棵树,在每个节点上提 取特征,做分类



### **function** SEMANTICROLELABEL(words) **returns** labeled tree

parse ← PARSE(words)

for each predicate in parse do

for each node in parse do

featurevector ← FXTRACTEE

featurevector ← EXTRACTFEATURES(node, predicate, parse)
CLASSIFYNODE(node, featurevector, parse)

- □ 第一步: What is a predicate?
- PropBank verbs
  - □ 选定所有动词
  - □ 可以排除light verbs (表)
- □ FrameNet verbs/nouns/adjectives
  - □ 选定训练数据中所有标为中心词的词

function SEMANTICROLELABEL(words) returns labeled tree

parse ← PARSE(words)

for each predicate in parse do

for each node in parse do

featurevector ← EXTRACTFEATURES(node, predicate, parse)

CLASSIFYNODE(node, featurevector, parse)

□ 基本型Features

- Headword
  - □ (通过规则确定,如Examiner
- Headword POS
- □ 单词的主动、被动形态

function SEMANTICROLELABEL(words) returns labeled tree

 $parse \leftarrow PARSE(words)$ 

for each predicate in parse do

for each node in parse do

 $feature vector \leftarrow \text{EXTRACTFEATURES}(node, predicate, parse)$ 

CLASSIFYNODE(node, featurevector, parse)



- Subcategorization of predicate
- Named Entity type of constituent
- First and last words of constituent
- Linear position, clause w.r.t. predicate

□ 特殊型Features

### Path

从当前节点到谓语词在句法树上的路径

function SEMANTICROLELABEL(words) returns labeled tree

 $parse \leftarrow PARSE(words)$ 

for each predicate in parse do

for each node in parse do

 $feature vector \leftarrow \text{EXTRACTFEATURES}(node, predicate, parse)$ 

CLASSIFYNODE(node, featurevector, parse)



# $NP\uparrow S\downarrow VP\downarrow VBD$

| Frequency | Path             | Description                      |
|-----------|------------------|----------------------------------|
| 14.2%     | VB↑VP↓PP         | PP argument/adjunct              |
| 11.8      | VB↑VP↑S↓NP       | subject                          |
| 10.1      | VB↑VP↓NP         | object                           |
| 7.9       | VB↑VP↑VP↑S↓NP    | subject (embedded VP)            |
| 4.1       | VB↑VP↓ADVP       | adverbial adjunct                |
| 3.0       | NN↑NP↑NP↓PP      | prepositional complement of noun |
| 1.7       | VB↑VP↓PRT        | adverbial particle               |
| 1.6       | VB↑VP↑VP↑VP↑S↓NP | subject (embedded VP)            |
| 14.2      |                  | no matching parse constituent    |
| 31.4      | Other            | 38                               |

function SEMANTICROLELABEL(words) returns labeled tree

□ 分类的实现: 3-step version

parse ← PARSE(words)

for each predicate in parse do

for each node in parse do

featurevector ← EXTRACTFEATURES(node, predicate, parse)

CLASSIFYNODE(node, featurevector, parse)

□ 1, 过滤: Pruning

- Simple heuristics to prune unlikely constituents
- □ 2, 识别是否跟谓词有关系: Identification
  - 是否问题: Binary classification of each node as an argument to be labeled or a NONE
- □ 3, 具体是属于哪种关系: Classification
  - 多分类问题: 1-of-N classification of all the constituents that were labeled as arguments

- □ 过滤的重要性: Why Pruning?
- □ 大量的词都跟谓词无关: One predicate at a time, Imbalance data
  - Very few of the nodes in the tree could possible be arguments of that one predicate
  - Positive samples vs negative samples
- Prune the very unlikely first, and then use a classifier to get rid of the rest

- □ 过滤的重要性: Pruning heuristics [Xue and Palmer, 2004]
- □ 比如下例,and代表了并列关系,如果找warned的论元,则先找兄弟节点,再找叔父节点,再找祖父节点,然后把左边的分支全部裁掉



- □ 怎么分类: 先局部分类, 然后re-ranking
- □ 局部分类: The algorithm classifies everything locally
- But lots of global or joint interactions
  - Non-overlapping
  - No Multiple identical arguments
- □ 重排序: 通过Reranking捕捉全局的信息
  - Possible labels -> classifier -> best global label
  - Takes all the input along with other features

- □ FrameNet更复杂一些:还需要判断是那个框架,因为不是 arg0, arg1的分类问题了,还需要判定是具体的那个框架
  - We need an extra step to find the frame
  - Features for frame identification [Das et al, 2014]

the POS of the parent of the head word of  $t_i$  the set of syntactic dependencies of the head word<sup>21</sup> of  $t_i$  if the head word of  $t_i$  is a verb, then the set of dependency labels of its children the dependency label on the edge connecting the head of  $t_i$  and its parent the sequence of words in the prototype,  $w_\ell$  the lemmatized sequence of words in the prototype the lemmatized sequence of words in the prototype and their part-of-speech tags  $\pi_\ell$  WordNet relation<sup>22</sup>  $\rho$  holds between  $\ell$  and  $t_i$  wordNet relation<sup>22</sup>  $\rho$  holds between  $\ell$  and  $t_i$ , and the prototype is  $\ell$  WordNet relation<sup>22</sup>  $\rho$  holds between  $\ell$  and  $t_i$ , the POS tag sequence of  $\ell$  is  $\pi_\ell$ , and the POS tag sequence of  $t_i$  is  $\pi_\ell$ 

### 总结: 语义角色标注

- □ 任务: who does what to whom when where how
- □ 对象: thematic roles -> Frame or Proto-A/P (propBank)
- □ 资源: PropBank, FrameNet, CoNLL shared tasks
- □ 特性: 句法线索syntactic, 选择限制selection
- □方法
  - Sequence labelling: very bad before DL
  - Syntactic: very good before DL
  - □ DL: Bi-LSTM作序列标注反而效果好

### 深度学习方法

- □ 扩展阅读:
- End-to-end Learning of Semantic Role Labelling Using Recurrent Neural Networks (E2E)
  - ACL 2015
  - Jie Zhou and Wei Xu, Baidu Research
- Deep Semantic Role Labelling: What Works and What's Next (Deep)
  - ACL 2017
  - Luheng He, Kenton Lee, Univ. of Washington
  - Mike Lewis, FAIR
  - Luke Zettlemoyer, Allen Institute for Al

# THANKS!