CSCI 2100C Data Structures

2nd Term, 2021/2022

http://course.cse.cuhk.edu.hk/~csci2100c/

Teacher: LEUNG Ho Fung

Teacher

LEUNG Ho Fung Room 1011, Ho Sin-hang Engineering Building

E-mail: lhf@cuhk.edu.hk

Tel.: 3943 8428

Assessment Scheme:

Assignments: 25% (6.25% each)

Quizzes: 25% (12.5% each)

Examination: 50%

- Each assignment includes written and programming parts.
- There is no mid-term examination.
- There will be two quizzes on 22 February and 22 March (45 min each).
- The final examination lasts for 2 hours.

What Will You Learn in this Course

- Data Structures and Their implementations
- Applications of Data Structures
- Abstract Data Types and Their Implementations in C
- Introduction to Complexity Analysis
- Advanced Programming

Stacks

- → Push
- → Pop
- → Implementation

Queues

- → Enqueue
- → Dequeue
- → Implementation

Symbol Tables

- → Enter
- → Lookup
- → Implementation: Hashing; callback functions

Lists (not linked list!)

- → Head
- → Tail
- → Implementation: Cons, Empty Lists
- → Recursive programming

Sorting

- → Selection sort
- → Merge sort
- → Quicksort
- → Recursive programming

Complexity

→ Big-O notation

Trees

- → Binary search trees
 - **◆**Implementation
 - ◆ Node insertion; node deletion
 - **♦**Searching
- → AVL trees
 - ◆ Node insertion: single / double rotations
 - **♦**Searching

Expression trees

- → Evaluation
- → Tree traversals: pre-order; in-order; post-order

Tries

→ Cost of a trie; Huffman's algorithm

B-Trees

- → Order of a B-tree
- → Key insertion

Priority Queues

- → Priority-Enqueue
- → Priority-Dequeue
- → Implementation: partially ordered tree, heap

Splay Trees

→ Splaying at a node

Disjoint Sets

- → Union: Union-by-height
- → Find

Red-black Trees

→ Node insertion

Graphs

- → Implementation: adjacency matrices; adjacency lists
- → Topological sort
- → Traversal: Breadth-first, Depth-first
- → Shortest paths: Dijkstra's algorithm
- → Minimum spanning trees: Kruskal's algorithm
- → Minimum spanning trees: Prim's algorithm