Umělá inteligence pro deskovou hru Patchwork

Michal Chudoba

Univerzita Karlova, Matematicko-fyzikální fakulta

Úvod a cíl práce

Patchwork je desková hra dvou hráčů, ve které se hráči snaží pomocí kartiček, zvaných záplaty, pokrýt svůj hrací plán. Hráči přicházejí na tah podle speciální hodnoty zvané čas.

Hra končí, jakmile obou hráčům dojde čas. Cílem práce bylo implementovat hru, analyzovat její asymetrii a následně přidat počítačem řízeného hráče.

Implementace

Implementace byla provedena rozdělením logické částí a GUI.

Veškerá komunikace, jak s uživatelem, tak s počítačem řízeným hráčem, je vedena přes rozhraní hry.

Program byl napsán v jazyce C++.

Typy hráčů

- Náhodný Náhodně vybírá tahy.
- Hladový Vybírá aktuálně nejlepší tah.
- Minimaxový Prohledává strom hry pro nejlepší tah.
- Monte Carlo tree search Zkouší různé náhodné hry pro nalezení nejlepšího tahu.
- Frekvenční Počítá nejlepší tah z minulých her.

Dále mohou mít hráči modifikace vzhledem k typu pokládání záplat na své hrací kartě.

Byla implementována dvě různá pokládání.

První (jednoduché) hledá první volné místo, druhé (složité) se snaží zacelit díry.

GUI

Pro vizuální stránku bylo zvoleno textové zobrazení, které je podpořeno barevným podtextem zobrazujícím správnost tahu.

Ovládání je hybridní, tlačítkové i klávesové.

Asymetrie

Pro lepší pochopení výsledků bylo otestováno, zda je hra nějakým způsobem asymetrická.

Provedené testy naznačují, že hra preferuje hráče, který nezačíná.

Hráč	Poměr výher k prohrám
Hladový + složité pokládání	457/543
Náhodný + složité pokládání	484/516
Náhodný + náhodné pokládání	459/541
Frekvenční + 0 naučených her	479/521
Frekvenční + 1 000 naučených her	470/530
Minimax + protivník složité pokládání	45/55
Minimax + protivník neznámé pokládání	47/53
Monte Carlo + složité pokládání	43/57

Pozn: Poměr výher je uvažován ze strany začínajícího

Výsledky hráčů

Nejlepší byl hráč hladový. Je to překvapivý závěr, ale počet možných položení je moc velký a časově moc náročný na to, aby měli Minimaxový a Monte Carlo tree search hráči možnost dobře prohledat strom hry.

Hráč 1	Hráč 2	Procento výher 1. hráče
Minimax + složité	Hladový + složité	37,5 %
Minimax + neznámé	Hladový + složité	39,0 %
Minimax + neznámé	Minimax + složité	55,0 %
Monte Carlo + složité	Minimax + složité	40,5 %
Monte Carlo + složité	Hladový + složité	20,0 %

U frekvenčního hráče je vidět postupné zlepšení, které vychází z většího množství her, ze kterého hráč bere informace. Graf vychází z hraní proti hladovému hráči.

Hráč 1	Hráč 2	Procento výher 1. hráče
Frekvenční + 0 her	Hladový + složité	30,5 %
Frekvenční $+$ 1 000 her	Hladový + složité	44,0 %
Frekvenční $+$ 5 000 her	Hladový + složité	44,0 %
Frekvenční $+$ 10 000 her	Hladový + složité	42,5 %
Frekvenční $+$ 1 000 her	Minimax + složité	60,0 %
Frekvenční $+$ 1 000 her	Monte Carlo + složité	65,5 %

Závěr

V práci jsme ukázali možnou implementaci deskové hry.

Analyzovali jsme, zda je výhodné začínat.

Nakonec jsme se zabývali různými typy hráčů a ukázali, že za určitých podmínek mohou jednodušší algoritmy porážet algoritmy složité.