Міністерство освіти та науки України Київський національний університет імені Тараса Шевченка

Звіт

До лабораторної роботи №1 «Розв'язок граничної задачі для звичайного диференціального рівняння другого порядку методом Бубнова-Гальоркіна»

> Студента 4 курсу Факультету кібернетики Групи ОМ-4 Кравця Олексія

1. Постановка Задачі

Методом Бубнова-Гальоркіна розв'язати граничну задачу для звичайного диференціального рівняння другого порядку.

$$\begin{cases}
-\frac{d}{dx}(p(x)\frac{du}{dx}) + a(x)\frac{du}{dx} + q(x)u = f(x) \\
h_1y(0) - h_2y'(0) = 0 \\
H_1y(1) - H_2y'(1) = 0 \\
0 < x < 1
\end{cases} \tag{1}$$

$$p(x) = 2 - \sin(\pi x) \tag{2}$$

$$a(x) = \sin(\pi x) \tag{3}$$

$$q(x) = 5 (4)$$

$$f(x) = 2x^2 + \sin(2x) \tag{5}$$

$$h_1 = 0, h_2 = 1 (6)$$

$$H_1 = 1, H_2 = 4 \tag{7}$$

Для розв'язку задачі використати систему власних функцій відповідної задачі Штурма-Ліувілля, для N=5, N=10. Побудувати графіки отриманих результатів.

2. Теоретичні відомості

Розглянемо систему 1, помножимо диференціальне рівняння на v(x) та проінтегруємо.

$$\int_0^1 \left[-(pu')' + au' + qu \right] v dx = \int_0^1 f v dx \tag{8}$$

Проінтегруємо ліву частину 8 за частинами.

$$\int_0^1 \left[pu'v' + au'v + quv \right] dx - pu'v \Big|_0^1 = \int_0^1 fv dx \tag{9}$$

$$\int_0^1 \left[pu'v' + au'v + quv \right] dx - pu'v \Big|_0^1 = \int_0^1 fv dx \tag{10}$$

Нехай $h_2 \neq 0, H_2 \neq 0$

$$\int_0^1 \left[pu'v' + au'v + quv \right] dx + p(1)u(1)v(1)\frac{H_1}{H_2} + p(0)u(0)v(0)\frac{h_1}{h_2} = \int_0^1 fv dx \quad (11)$$

Потрібно вибрати базис.

- 1) $\{w_i(x)\}_{i=\overline{1,\infty}} \subset W_2^1(0,1)$
- (2) $w_i(x)$ лінійно незалежні
- 3) $\{w_i(x)\}_{i=\overline{1,\infty}}$ повна
- 4) Сильна мінімальність

Запишемо задачу у операторному вигляді.

$$(Lu, v) = (f, v) \tag{12}$$

$$u \approx u_N = \sum_{i=1}^{N} (c_i w_i) \tag{13}$$

Отже

$$\left(L\sum_{i=1}^{N} (c_i w_i), w_j\right) = (f, w_j), \forall j = \overline{1, N}$$
(14)

$$\sum_{i=1}^{N} c_i (Lw_i, w_j) = (f, w_j), \forall j = \overline{1, N}$$
(15)

Отримали систему лінійних алгебраїчних рівнянь Ac = F, де $A = [a_{ji}] = [(Lw_i, w_j)], F_j = (f, w_j), i, j = \overline{1, N}$ В якості w_i візьмемо нормовані власні функції задачі Штурма-Ліувілля.

$$\begin{cases} y'' + \lambda y = 0 \\ h_1 y(0) - h_2 y'(0) = 0 \\ H_1 y(1) - H_2 y'(1) = 0 \\ 0 < x < 1 \end{cases}$$
 (16)

Тоді при $\lambda > 0$ $y(x) = c_1 \cos(\sqrt{\lambda}x) + c_2 \sin(\sqrt{\lambda}x)$. Для нормування ділимо y(x) на $\sqrt{\int_0^1 y(x)^2 dx}$, тоді отримаємо ортонормовану систему функцій.

3. Практична частина

Маємо систему.

$$\begin{cases}
-\frac{d}{dx}(2 - \sin(\pi x)\frac{du}{dx}) + \sin(\pi x)\frac{du}{dx} + 5u = 2x^2 + \sin(2x) \\
-y'(0) = 0 \\
y(1) - 4y'(1) = 0 \\
0 < x < 1
\end{cases}$$
(17)

Для неї вирішуємо задачу Штурма-Ліувілля.

$$\begin{cases} y'' + \lambda y = 0 \\ -y'(0) = 0 \\ y(1) - 4y'(1) = 0 \\ 0 < x < 1 \end{cases}$$
 (18)

Тоді розв'язок 18.

$$\begin{cases} y = c_1 \cos(\sqrt{\lambda}x) + c_2 \sin(\sqrt{\lambda}x) \\ c_1 \sqrt{\lambda} \sin(\sqrt{\lambda} * 0) - c_2 \sqrt{\lambda} \cos(\sqrt{\lambda} * 0) = 0 \\ c_1 \cos(\sqrt{\lambda}x) + c_2 \sin(\sqrt{\lambda}x) - 4c_1 \sqrt{\lambda} \sin(\sqrt{\lambda}x) + 4c_2 \sqrt{\lambda} \cos(\sqrt{\lambda}x) = 0 \\ \lambda > 0 \end{cases}$$
(19)

Маємо.

$$\begin{cases}
-c_2\sqrt{\lambda} = 0 \\
c_1\cos\sqrt{\lambda} - c_1\sqrt{\lambda}\sin\sqrt{\lambda} = 0 \\
\lambda > 0
\end{cases}$$
(20)

Отже.

$$\begin{cases}
c_2 = 0 \\
c_1 = const \\
\cos\sqrt{\lambda} = 4\sqrt{\lambda}\sin\sqrt{\lambda} \\
\lambda > 0
\end{cases} \tag{21}$$

Зробимо заміну $\mu = \sqrt{\lambda}$, тоді знайдемо власні значення задачі Штурма-Ліувілля. Це будуть розв'язки рівності $\tan \mu = \frac{1}{4\mu}$. Розв'язки будемо шукати на перетині графіків цих двох функцій.

Рис. 1. Пошук μ

Виведемо 10 перших знайдених розв'яків. Вони будуть використані для N=10, для N=5 беремо тілько 5 перших значень.

Номер	μ
0	0.4800944369573904
1	3.219098575278102
2	6.322704760794114
3	9.451223396108258
4	12.586230978439472
5	15.723861330900382
6	18.862808739125725
7	22.002510426000537
8	25.142684151278477
9	28.283172830147695

Знайдемо коефіцієнти c_i для N=5. Виведемо іх у вигляді таблиці.

Номер	μ
0	0.22732327267869532
1	-0.04898313696260203
2	0.0013834687499639166
3	0.001300261796753781
4	-9.213418347932191e-05

Знайдемо коефіцієнти c_i для N=10. Виведемо іх у вигляді таблиці.

Номер	μ
0	0.2273232942707949
1	-0.048983049256815105
2	0.0013843854161456144
3	0.0013072697700308989
4	-9.496965903037512e-05
5	-3.1577236920915394e-05
6	6.5950854646228584e-06
7	6.098982888175799e-06
8	-4.361425317466653e-08
9	1.3782836552094404e-06

Виведемо графіки u_5, u_{10} .

Виведемо усі графіки, а саме u_5, u_10 та розв'язок, що знайшла програма Maple 2018.

Рис. 5. усі графіки

Подивимося на граничні умови для u_5, u_10 .

$$-u_5'(0) = -0. (22)$$

$$u_5(1) - 4u_5'(1) = -6.7 * 10^{-9}$$

$$-u_{10}'(0) = -0.$$
(23)

$$-u_{10}'(0) = -0. (24)$$

$$u_{10}(1) - 4u'_{10}(1) = -6.9 * 10^{-9}$$
(25)

(26)

Подивимося на різницю між u_5, u_{10} .

x	$u_5(x)$	$u_{10}(x)$	$u_5(x) - u_{10}(x)$
0	0.1713507664	0.1713332926	0.174738e-4
0.1	0.1735473749	0.1735434184	$3.9565 * 10^{-6}$
0.2	0.1804278860	0.1804645575	0.366715e-4
0.3	.1924957935	.1925036369	$7.8434 * 10^{-6}$
0.4	.2095726745	.2095143195	0.583550e-4
0.5	.2299759548	.2299618135	0.141413e-4
0.6	.2504923902	.2505522291	0.598389e-4
0.7	.2674131306	.2674252264	0.120958e-4
0.8	.2780112201	.2779665577	0.446624e-4
0.9	.2813304910	.2813289100	$1.5810 * 10^{-6}$
1.0	.2776886120	.2777192195	0.306075e-4

4. Висновок

Ми побудували методом Бубнова-Гальоркіна розв'язок для N=5, N=10.При N=5 розв'язок шукається швидше, але точність меньше. При N=10розв'язок точніший, але рахується довше.