

ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES

Recherche Opérationelle

Projet

Nicolas Bessin Erwann Esteve Tidiane Polo

1 Questions

On veut linéariser des contraintes :

1. Contrainte de la forme : $\mu = \alpha\beta$ (1) avec $\alpha \in \{0,1\}$ et $\beta \in [0,M]$ On a

(1)
$$\iff$$
 $0 \le \mu \le \alpha M$ et $\beta - (1 - \alpha)M \le \mu \le \beta$

2. Contrainte de la forme : $\mu = [\beta]^+$ avec $\beta \in [-M, M]$ On introduit une variable binaire α qui vaut 1 si $\beta > 0$ et 0 sinon. Pour cela, on introduit les contraintes suivantes :

$$1 + \frac{\beta}{M} \ge \alpha \ge \frac{\beta}{M}$$

La contrainte initiale s'écrit alors :

$$\mu = \alpha \beta$$

et on peut la linéariser comme dans la question précédente.

Cas limite : $\beta = 0$, on a alors $1 \ge \alpha \ge 0$.

Ce n'est pas un problème puisque $\mu=\alpha\beta=0$ quel que soit la valeur prise par α

3. Contrainte de la forme : $\gamma = min(\alpha, \beta)$ avec $\alpha, \beta \in [-M, M]$ On introduit une variable binaire δ qui vaut 1 si $\beta < \alpha$ et 0 sinon. Pour cela, on introduit les contraintes suivantes :

$$\frac{\alpha - \beta}{2M} \le \delta \le 1 + \frac{\alpha - \beta}{2M}$$

La contrainte initiale s'écrit alors :

$$\gamma = \delta \beta + (1 - \delta) \alpha$$

et on peut la linéariser comme dans la question 1.

Autre méthode:

Toujours avec $\alpha, \beta \in [-M, M]$.

On introduit les variables binaires y_{α} et y_{β} , et la variable continue y. Le problème s'écrit alors :

$$\min_{\alpha,\beta,y_{\alpha},y_{\beta},y} y$$
s.c. $y \leq \alpha$

$$y \leq \beta$$

$$y \geq \alpha - 2My_{\alpha}$$

$$y \geq \beta - 2My_{\beta}$$

$$y_{\alpha} + y_{\beta} = 1$$
(1)

La contrainte $y_{\alpha} + y_{\beta} = 1$ assure que l'un des y_{α} ou y_{β} vaut zéro, c'est-à-dire que l'on a bien y qui prend la valeur α ou β . De plus, puisque c'est un problème de minimisation, on a bien $y = min(\alpha, \beta)$. (J'ai pu trouver cette élégante méthode dans https://doi.org/10.3390/math10020283)

4. On a le problème suivant :

$$\min_{\alpha,\beta,\gamma} \max(\alpha,\beta) + \gamma
\text{s.c. } A(\alpha,\beta,\gamma)^T \le b$$
(2)

On introduit la variable continue δ et les contraintes suivantes :

$$\delta \ge \alpha$$
$$\delta \ge \beta$$

Le problème initial s'écrit alors :

$$\min_{\alpha,\beta,\gamma,\delta} \delta + \gamma$$
s.c. $A(\alpha,\beta,\gamma)^T \leq b$

$$\alpha \leq \delta$$

$$\beta \leq \delta$$
(3)

5. Considérons le problème suivant :

$$\min_{a,b,c}[a - \min(b,c)]^+ \tag{4}$$

On a $\forall b, c : -\min(b, c) = \max(-b, -c)$

Puisque c'est un problème de minimisation, on peut écrire :

$$\min_{\substack{a,b,c,d,e}} d \\
\min_{\substack{a,b,c,d}} d \\
\text{s.c. } d \ge 0 \\
d \ge a - \min(b,c) \qquad e \ge -b \\
e \ge -c$$

$$\min_{\substack{a,b,c,d,e}} d \\
\text{s.c. } d \ge 0 \\
d \ge a + e \\
e \ge -c$$
(5)