Министерство образования и науки Российской Федерации

Севастопольский государственный университет

Методические указания

«Исследование алгоритмов вычислительной математики»

для студентов дневной и заочной форм обучения направления 09.03.02 - "Информационные системы и технологии"

Севастополь

2015

УДК 681.3

Методические указания к выполнению задания «Исследование алгоритмов вычислительной математики»» / Сост. Е.М. Шалимова. - Севастополь: Изд-во СевНТУ, 2015. -10с.

Цель методических указаний — оказание помощи студентам в выполнении задания. Методические указания содержат краткое изложение основных теоретических положений, задания на лабораторные работы, порядок их выполнения и требования к отчетам, а также список рекомендованной литературы.

Методические указания рассмотрены и утверждены на заседании кафедры информационных систем, протокол № 1 от 31 августа 2015 года.

Рецензент:

Допущено учебно-методическим центром в качестве методических указаний.

1. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ

Пусть функция f(x) задана на некотором интервале [a, b]. Разобьем этот интервал произвольным образом на части $\Delta x_i = x_{i+1} - x_i$ (i=0, 1, 2, ..., n-1). Возьмем в каждой из частей произвольную точку ξ_i (i=0, 1, 2, ..., n-1). Тогда определенным интегралом $\int_a^b f(x) dx$ функции f(x)

на интервале **[a, b]** называется $\lim_{\max \Delta x_i \to 0} \sum_{i=0}^{n-1} f(\xi_i) \Delta x_i$ [1].

Геометрическая интерпретация определенного интеграла состоит в следующем. Если $f(x) \ge 0$ на отрезке [a,b], то $\int_a^b f(x) dx$ есть площадь области, ограниченной графиком функции f(x), осью абсцисс и двумя прямыми x=a и x=b (рисунок 1).

Рисунок 1-Геометрическая интерпретация определенного интеграла

Другими словами, задача вычисления значения определенного интеграла сводится к нахождению площади криволинейной трапеции. Очевидно, справедливо и обратное утверждение: площадь любой плоской фигуры можно представить как алгебраическую сумму соответствующих интегралов. Но при этом надо учитывать, что если f(x)≤0 на отрезке [a,b], то площадь соответствующей фигуры равна

$$-\int_{a}^{b} f(x)dx.$$

Поясним сказанное с помощью рисунка. Пусть имеет место ситуация, представленная на рисунке 2. В этом случае на отрезке **[a,c]** функция положительна, а на отрезке **[c,b]**-отрицательна, следовательно, площадь заштрихованной фигуры определяется выражением

Рисунок 2- Пример вычисления площади фигуры

Рассмотрим еще один пример. Пусть задана плоская фигура, ограниченная четырьмя кривыми y=f1(x), y=f2(x), y=f3(x) и y=f4(x) (рисунок 3).

Рисунок 3- Пример плоской фигуры, ограниченной кривыми y=f1(x), y=f2(x), y=f3(x) u y=f4(x)

Площадь рассматриваемой фигуры может быть представлена как алгебраическая сумма интегралов

S=I1+I2+I3-I4,

где **I1=**
$$\int_{a}^{b} f1(x)dx$$
, **I2=** $\int_{b}^{c} f2(x)dx$, **I3=** $\int_{a}^{d} f3(x)dx$, **I4=** $\int_{a}^{d} f4(x)dx$.

В этих выражениях неизвестны границы интегрирования a,b,c,d. Для их определения следует построить и решить соответствующие уравнения. Из рисунка очевидно, что границы интегрирования - это абсциссы точек пересечения заданных кривых. К примеру, для нахождения a надо рассмотреть уравнение f1(x)=f4(x). Корень уравнения и есть искомое значение левой границы интегрирования a.

2. ПОСТАНОВКА ЗАДАЧИ

Задана плоская фигура, ограниченная тремя кривыми, уравнения которых y1=f1(x), y2=f2(x) и y3=f3(x) определяются вариантом задания. Требуется разработать программу для вычисления площади указанной фигуры.

В решении этой задачи выделим три основных этапа.

<u>Первый этап.</u> Получить графическое изображение рассматриваемой фигуры, т.е. построить графики функций y1=f1(x), y2=f2(x) и y3=f3(x).

<u>Второй этап</u>. Вычислить абсциссы точек пересечения кривых (отрезки, где находятся точки пересечения определить из графической иллюстрации), т.е. построить и решить соответствующие уравнения.

<u>Третий этап.</u> Представить площадь заданной фигуры как алгебраическую сумму определенных интегралов.

3. ВАРИАНТЫ ИНДИВИДУАЛЬНЫХ ЗАДАНИЙ

1)
$$y1=2^x+1$$
 $y2=x^5$ $y3=(1-x)/3$

2)
$$y1=3(0.5/(x+1)+1)$$
 $y2=2.5x-9.5$ $y3=5/x$ $(x>0)$

3)
$$y1=e^{-x}+3$$
 $y2=2x-2$ $y3=1/x$

4)
$$y1=e^{x}+2$$
 $y2=-1/x$ $y3=-2(x+1)/3$

5)
$$y1=0.35x^2-0.95x+2$$
 $y2=3^x+1$ $y3=1/(x+2)$

6)
$$y1=0.6x+3$$
 $y2=(x-2)^3-1$ $y3=3/x$

7)
$$y1=ln(x)$$
 $y2=-2x+140$ $y3=1/(2-x)+6$

8)
$$y1=e^x +2$$
 $y2=-2x+8$ $y3=5/x$

9)
$$y1=3/((x-1)^2+1)$$
 $y2=\sqrt{(x+0.5)}$ $y3=e^{-x}$

10)
$$y1=1+4/(x^2+1)$$
 $y2=x^3$ $y3=2^x+2$

11)
$$y1=2^{x}+2$$
 $y2=1+x^{5}$ $y3=(1-x)/3$

12)
$$y1=1.5/(x+1)+2$$
 $y2=2.5x-10$ $y3=4/x$ $(x>0)$

13)
$$y1=e^{-x}+2$$
 $y2=2x-5$ $y3=2/x$

14)
$$y1=e^{x}+1$$
 $y2=-1/x$ $y3=-2(x+3)/2$

15)
$$y1=0.35x^2-0.95x+2$$
 $y2=3^x y3=1/(x+1)+3$

1 6)
$$y1=0.5x+5$$
 $y2=(x-2)^3-2$ $y3=3/x$

17)
$$y1=ln(x)+3$$
 $y2=-2x+100$ $y3=x-12$

18)
$$y1=e^x+2$$
 $y2=-2x+10$ $y3=-5/x+1$

19)
$$y1=5/(x^2+1)$$
 $y2=\sqrt{(x+0.5)}+2$ $y3=1+e^{-x}$

20)
$$y1=4/(x^2+1)$$
 $y2=x^3$ $y3=1+2^x$

21)
$$y1=2^x$$
 $y2=2+x^5$ $y3=(4-x)/2$

22)
$$y1=3(0.5/(x+1))+2$$
 $y2=2.5x-9.5$ $y3=3/x$ $(x>0)$

23)
$$y1=-e^{-x}+2$$
 $y2=2x-5$ $y3=1/x$

24)
$$y1=e^{x}+2$$
 $y2=-3/x$ $y3=-(x+1)/3$

25)
$$y1=3^{x}+2$$
 $y2=-2/x+0.5$ $y3=-(x+2)/3$

26)
$$y1=3^x+1$$
 $y2=(2+x)^5$ $y3=(1-x)/5$

27)
$$y1=2^x$$
 $y2=x^5/2$ $y3=(1-x)/2$

 $y2=x^{5}/2+3$

y3=1-x

28) $y1 = e^x$

29)
$$y1=e^x$$
 $y2=(x/3)^3+2$ $y3=5-x$

30)
$$y1=e^{x+1}$$
 $y2=x^2-2$ $y3=3-x$

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Никольский С.М. Курс математического анализа. Том 1/ С.М. Никольский.-М.:Наука, 1990.-528с.
- 2. Дьяконов В.А. Mathcad 2000: учебный курс/ В.А.Дьяконов.-СПб.:Питер, 2001.-592с.
- 3. Дьяконов В.А. Mathcad 8/2000: Специальный справочник/ В.А. Дьяконов.-СПб.:Питер, 2002.-586с.
- 4. Плис А.И. Mathcad: математический практикум для экономистов и инженеров/ А.И. Плис, Н.А. Сливина.-М.:Финансы и статистика, 1999.-656 с.