TD 3 : Réduction des endomorphsimes

Les exercices ou les questions marqués d'une étoile ne sont pas prioritaires.

Exercice 1. Vrai/Faux

- 1. En dimension finie, un endomorphisme admet un nombre fini de vecteurs propres.
- 2. Si A est diagonalisable, alors A^2 est diagonalisable.
- 3. Si A^2 est diagonalisable, alors A est diagonalisable.
- 4. Tout endomorphisme d'un espace vectoriel réel de dimension impaire admet au moins une valeur propre.
- 5. La somme de deux matrices diagonalisables est diagonalisable.

Exercice 2.

Diagonaliser les matrices suivantes :

1.
$$A = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}$$

$$2. B = \begin{pmatrix} 0 & 3 & 2 \\ -2 & 5 & 2 \\ 2 & -3 & 0 \end{pmatrix}.$$

1.
$$A = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}$$
.
2. $B = \begin{pmatrix} 0 & 3 & 2 \\ -2 & 5 & 2 \\ 2 & -3 & 0 \end{pmatrix}$.
3. $C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 1 & \sin \theta & \cos \theta \end{pmatrix}$, avec $\theta \in \mathbb{R}$.

Exercice 3. Rang 1

Soit
$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 \end{pmatrix}$$
.

Déterminer, sans calculer le polynôme caractéristique, les valeurs propres de A. A est-elle diagonalisable?

Exercice 4.

On considère la matrice $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$. A est-elle diagonalisable? Montrer que A est

semblable à la matrice $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

Exercice 5.*

Soit E un vectoriel et u, v deux endomorphismes de E.

- 1. Démontrer que si $u \circ v = v \circ u$, alors $\mathsf{Im}(u)$ et $\mathsf{Ker}(u)$ sont stables par v. La réciproque est-elle vraie?
- 2. On suppose désormais que u est un projecteur. Démontrer que $u \circ v = v \circ u$ si et seulement si Ker(u) et Im(u) sont stables par v.