Московский государственный технический университет им. Н.Э. Баумана Факультет «Информатика и системы управления» Кафедра «Системы обработки информации и управления»

Лабораторная работа №2 «Обработка признаков (часть 1)»

по дисциплине

«Методы машинного обучения»

исполнитель:	
--------------	--

		Крюков Г.М. Группа ИУ5-21М
"	"	2022 г.

Цель: Изучение продвинутых способов предварительной обработки данных для дальнейшего формирования моделей.

Задание:

- 1. Выбрать набор данных (датасет), содержащий категориальные и числовые признаки и пропуски в данных. Для выполнения следующих пунктов можно использовать несколько различных наборов данных (один для обработки пропусков, другой для категориальных признаков и т.д.)
- 2. Для выбранного датасета (датасетов) на основе материалов лекций решить следующие задачи:
 - устранение пропусков в данных;
 - кодирование категориальных признаков;
 - нормализацию числовых признаков.

Ход выполнения:

This dataset is used to predict whether a patient is likely to get stroke based on the input parameters like gender, age, various diseases, and smoking status. Each row in the data provides relevant information about the patient.

Поля:

id: unique identifier

gender: "Male", "Female" or "Other"

age: age of the patient

hypertension: 0 if the patient doesn't have hypertension, 1 if the patient has

hypertension

heart disease: 0 if the patient doesn't have any heart diseases, 1 if the patient

has a heart

disease

ever married: "No" or "Yes"

work_type: "children", "Govt_jov", "Never_worked", "Private" or "Self-employed"

Residence_type: "Rural" or "Urban"

avg_glucose_level: average glucose level in blood

bmi: body mass index

smoking_status: "formerly smoked", "never smoked", "smokes" or "Unknown"*

stroke: 1 if the patient had a stroke or 0 if not

"Unknown" in smoking_status means that the information is unavailable for this patient

Текст программы:

```
import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
   import scipy.stats as stats
[ ] data = pd.read_csv('/Users/user/Downloads/data_stroke.csv')
[ ] data.head()
         id gender age hypertension heart_disease ever_married
                                                              work_type Residence_type avg_glucose_level bmi smoking_status stroke
                                                                                              228.69 36.6
                                                                                                         formerly smoked
    1 51676 Female 61.0
                                                        Yes Self-employed
                                                                                              202.21 NaN
                                                                                                           never smoked
                                                                                              105.92 32.5
    2 31112
             Male 80.0
                                                       Yes
                                                                 Private
                                                                               Rural
                                                                                                           never smoked
    3 60182 Female 49.0
                                                                 Private
                                                                               Urban
                                                                                              171.23 34.4
                                                                                                                smokes
                                                        Yes
    4 1665 Female NaN
                                                        Yes Self-employed
                                                                                              174.12 24.0 never smoked
[ ] data = data.drop('id', 1)
    data.head()
       gender age hypertension heart_disease ever_married
                                                        work_type Residence_type avg_glucose_level bmi smoking_status stroke
        Male NaN
                                                           Private
                                                                         Urban
                                                                                        228.69 36.6 formerly smoked
    1 Female 61.0
                           0
                                        0
                                                  Yes Self-employed
                                                                         Rural
                                                                                        202.21 NaN
                                                                                                     never smoked
        Male 80.0
                                                  Yes
                                                           Private
                                                                         Rural
                                                                                         105.92 32.5
                                                                                                     never smoked
    3 Female 49.0
                           0
                                                                         Urban
                                                                                         171.23 34.4
    4 Female NaN
                                                                                        174.12 24.0 never smoked
                                        0
                                                  Yes Self-employed
                                                                         Rural
[ ] data_features = list(zip(
       # признаки
       [i for i in data.columns],
       zip(
            # типы колонок
            [str(i) for i in data.dtypes],
            # проверим есть ли пропущенные значения
            [i for i in data.isnull().sum()]
       )))
       # Признаки с типом данных и количеством пропусков
       data features
       [('gender', ('object', 0)),
        ('age', ('float64', 16)),
        ('hypertension', ('int64', 0)),
        ('heart_disease', ('int64', 0)), ('ever_married', ('object', 0)),
        ('work_type', ('object', 0)),
        ('Residence_type', ('object', 0)),
        ('avg_glucose_level', ('float64', 0)),
        ('bmi', ('float64', 201)),
        ('smoking_status', ('object', 0)),
        ('stroke', ('int64', 0))]
```

Устранение пропусков

```
[ ] # Доля (процент) пропусков
         [(c, data[c].isnull().mean()) for c in data.columns]
         [('gender', 0.0),
          ('age', 0.0031311154598825833),
          ('hypertension', 0.0),
          ('heart_disease', 0.0),
          ('ever_married', 0.0),
          ('work_type', 0.0),
          ('Residence_type', 0.0),
          ('avg_glucose_level', 0.0),
          ('bmi', 0.03933463796477495),
          ('smoking_status', 0.0),
          ('stroke', 0.0)]
   [] # Заполним пропуски
         data.dropna(subset=['age'], inplace=True)
   [ ] data['gender'] = data['gender'].astype(str).str[0]
   [ ] # Заполним пропуски возраста средними значениями
         def impute_na(df, variable, value):
              df[variable].fillna(value, inplace=True)
         impute na(data, 'bmi', data['bmi'].mean())
[ ] # Убедимся что нет пустых значений
   data.isnull().sum()
   age
hypertension
    heart_disease
   ever_married
work_type
    Residence_type
    avg_glucose_level
    smoking_status
   stroke
dtype: int64
[ ] data.head()
       gender age hypertension heart_disease ever_married
                                                    work_type Residence_type avg_glucose_level
                                                                                            bmi smoking_status stroke
                         0
          F 61.0
                                     0
                                              Yes Self-employed
                                                                    Rural
                                                                                  202.21 28.886269
                                                                                                  never smoked
          M 80.0
                         0
                                                       Private
                                                                                  105.92 32.500000
                                               Yes
                                                                     Rural
                                                                                                  never smoked
          F 49.0
                                               Yes
                                                       Private
                                                                    Urban
                                                                                  171.23 34.400000
                                                                                                      smokes
                                                                                  186.21 29.000000 formerly smoked
          M 74.0
                                                       Private
                                                                                  70.09 27.400000 never smoked
```

Кодирование категориальных признаков

```
[ ] from sklearn.preprocessing import LabelEncoder
  [ ] le = LabelEncoder()
       cat_enc_le = le.fit_transform(data['work_type'])
  [ ] data['work_type'].unique()
       array(['Self-employed', 'Private', 'Govt_job', 'children', 'Never_worked'],
             dtype=object)
 [ ] np.unique(cat_enc_le)
       array([0, 1, 2, 3, 4])
  [ ] le.inverse_transform([0, 1, 2, 3,4])
       array(['Govt_job', 'Never_worked', 'Private', 'Self-employed', 'children'],
             dtype=object)
  [ ] data['smoking_status'].unique()
       array(['never smoked', 'smokes', 'formerly smoked', 'Unknown'],
             dtype=object)
 [ ] #TargetEncoder
       from category_encoders.target_encoder import TargetEncoder as ce_TargetEncoder
[ ] ce_TargetEncoder1 = ce_TargetEncoder()
   data_MEAN_ENC = ce_TargetEncoder1.fit_transform(data[data.columns.difference(['stroke'])], data['stroke'])
[ ] data_MEAN_ENC.head()
       Residence_type age avg_glucose_level
                                            bmi ever_married gender heart_disease hypertension smoking_status work_type
          0.044258 61.0
                                   202.21 28.886269 0.063136 0.045896
                                                                                                     0.046178 0.076074
                                                                                             0
    2
            0.044258 80.0
                                   105.92 32.500000
                                                      0.063136 0.048387
                                                                                 1
                                                                                             0
                                                                                                     0.046178
                                                                                                              0.048747
            0.049497 49.0
                                  171.23 34.400000 0.063136 0.045896
                                                                                             0
                                                                                                     0.052030
                                                                                                              0.048747
                                                      0.063136 0.048387
            0.049497 81.0
                                  186.21 29.000000
                                                                                 0
                                                                                                     0.075000
                                                                                                              0.048747
            0.044258 74.0
                                  70.09 27.400000 0.063136 0.048387
                                                                                                     [ ] def check_mean_encoding(field):
       for s in data[field].unique():
           data_filter = data[data[field]==s]
           if data_filter.shape[0] > 0:
              prob = sum(data_filter['stroke']) / data_filter.shape[0]
              print(s, '-' , prob)
[ ] check_mean_encoding('gender')
    F - 0.04589614740368509
    M - 0.04838709677419355
    0 - 0.0
```

```
[ ] check_mean_encoding('smoking_status')
    never smoked - 0.04617834394904458
          - 0.05203045685279188
    formerly smoked - 0.075
    Unknown - 0.029182879377431907
[ ] check_mean_encoding('work_type')
    Self-employed - 0.07607361963190185
    Private - 0.04874699622382424
Govt_job - 0.0502283105022831
    children - 0.002911208151382824
    Never_worked - 0.0
[ ] #Weight of evidence (WoE) encoding
    from category_encoders.woe import WOEEncoder as ce_WOEEncoder
[ ] ce WOEEncoder1 = ce WOEEncoder()
    data_WOE_ENC = ce_WOEEncoder1.fit_transform(data[data.columns.difference(['stroke'])], data['stroke'])
[ ] data_WOE_ENC.head()
       Residence_type age avg_glucose_level
                                              bmi ever_married gender heart_disease hypertension smoking_status work_type
     1
            -0.060512 61.0 202.21 28.886269
                                                       0.310539 -0.024090
                                                                                   0
                                                                                                       -0.013714 0.521122
    2
             -0.060512 80.0
                                    105.92 32.500000
                                                       0.310539 0.033712
                                                                                               0
                                                                                                       -0.013714 0.038900
    3
            0.055682 49.0
                                   171.23 34.400000
                                                       0.310539 -0.024090
                                                                                   0
                                                                                               0
                                                                                                       0.123646 0.038900
     5
             0.055682 81.0
                                    186.21 29.000000
                                                       0.310539 0.033712
                                                                                   ٥
                                                                                               0
                                                                                                       0.504884 0.038900
            -0.060512 74.0
                                 70.09 27.400000 0.310539 0.033712
                                                                                               1
                                                                                                       -0.013714 0.038900
                                                                                   1
[ ] def check_woe_encoding(field):
         data_ones = data[data['stroke'] == 1].shape[0]
         data_zeros = data[data['stroke'] == 0].shape[0]
         for s in data[field].unique():
             data_filter = data[data[field]==s]
              if data_filter.shape[0] > 0:
                  filter_data_ones = data_filter[data_filter['stroke'] == 1].shape[0]
                  filter_data_zeros = data_filter[data_filter['stroke'] == 0].shape[0]
                  good = filter data ones / data ones
                  bad = filter_data_zeros / data_zeros
                 woe = np.log(good/bad)
                  print(s, '-' , woe)
[ ] check_woe_encoding('gender')
     F - -0.023090517909826913
     M - 0.032375673556304815
     /anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:15: RuntimeWarning: divide by zero encountered in log
       from ipykernel import kernelapp as app
[ ] check_woe_encoding('smoking_status')
     never smoked - -0.01666493933506075
     smokes - 0.10880771036540528
     formerly smoked - 0.49899520481779985
     Unknown - -0.4932550658553942
[ ] check_woe_encoding('work_type')
     Self-employed - 0.5143699860391127
     Private - 0.040164341532197056
     Govt_job - 0.07165802189096712
     children - -2.8249708289083655
     Never_worked - -inf
     /anaconda3/lib/python3.6/site-packages/ipykernel launcher.py:15: RuntimeWarning: divide by zero encountered in log
       from ipykernel import kernelapp as app
```

Нормализация числовых признаков

```
[ ] def diagnostic_plots(df, variable):
    plt.figure(figsize=(15,6))
    # гистограмма
    plt.subplot(1, 2, 1)
    df[variable].hist(bins=30)
    ## Q-Q plot
    plt.subplot(1, 2, 2)
    stats.probplot(df[variable], dist="norm", plot=plt)
    plt.show()
```

[] data.hist(figsize=(20,20)) plt.show()


```
[] #Квадратный корень
data['bmi_sqr'] = data['bmi']**(1/2)
diagnostic_plots(data, 'bmi_sqr')
                                                                                                                                         Probability Plot
          800
                                                                                                       2.1
          700
          600
                                                                                                       2.0
          500
                                                                                                    Ordered Values
          400
          300
                                                                                                       1.7
          200
                                                                                                       1.6
          100
                                                                                                       1.5
                          1.6
                                    1.7
                                                1.8
                                                            1.9
                                                                       2.0
                                                                                  2.1
                                                                                                                                       -1 0 1
Theoretical quantiles
[ ] #Возведение в степень data['bmi_exp1'] = data['bmi']**(1/1.5) diagnostic_plots(data, 'bmi_exp1')
                                                                                                                                   Probability Plot
         700
                                                                                                  2.6
                                                                                               Ordered Values
         500
         400
         300
                                                                                                  2.0
         200
         100
                                                                                                  1.8
                                                                                                                                  -1 0 1
Theoretical quantiles
                                             2.2
Probability Plot
         800
                                                                                                   20
         700
         600
                                                                                                   16
         500
                                                                                                Ordered \
         400
         300
                                                                                                   10
        100
                                                     14
                                                                      18
                                                                                                                                 -1 0 1
Theoretical quantiles
```


Вывод:

При выполнении работы выбран датасет для предсказания вероятности проявления у человека сердечного приступа и выполнены следующие задачи: устранение пропусков в данных, кодирование категориальных признаков, нормализация числовых признаков.