Theorem 1.29. Let A be the generator of a strongly continuous semigroup $(T(t))_{t\geq 0}$ and let B $\in L(E)$. Then A + B with domain D(A+B) = D(A) is the generator of a strongly continuous semigroup $(S(t))_{t\geq 0}$.

It is possible to express the new semigroup $(S(t))_{t\geq 0}$ by known objects. The product formula

(1.8)
$$S(t) f = \lim_{n \to \infty} (T(t/n) e^{t/n \cdot B})^n f$$

holds for all $t \ge 0$ and $f \in E$.

Moreover, S(t) is the solution of the following integral equation (1.9) S(t) $f = T(t) f + \int_0^t T(t-s)BS(s) f ds$ ($t \ge 0, f \in E$).

Let $S_{O}(t) = T(t)$ and

(1.10)
$$S_n(t)f = \int_0^t T(t-s)BS_{n-1}(s)f ds \quad (f \in E) \text{ for } n \in \mathbb{N}. \text{ Then}$$

(1.11)
$$S(t) = \sum_{n=0}^{\infty} S_n(t)$$
,

where the series converges in the operator norm uniformly on bounded intervals. We refer to [Davies (1980), III.1], [Goldstein (1985a), I.6] or [Pazy (1983), Chap.3] for these results.

Several special properties discussed above are preserved by bounded perturbations.

Theorem 1.30. Let $(T(t))_{t\geq 0}$ be a strongly continuous semigroup with generator A. Let $B\in L(E)$. If $(T(t))_{t\geq 0}$ is holomorphic or norm continuous or compact, then so is the semigroup $(S(t))_{t\geq 0}$ generated by A+B.

If A has a compact resolvent then so has A+B.

Let $t_0 \ge 0$. If $(T(t))_{t\ge 0}$ is norm continuous for $t > t_0$ and if B is compact, then $(S(t))_{t\ge 0}$ is also norm continuous for $t > t_0$.

<u>Proof.</u> If $(T(t))_{t \ge 0}$ is norm continuous for $t \ge 0$, then $S_n(t)$ in (1.10) is norm continuous in $t \ge 0$ for every n. Thus $(S(t))_{t \ge 0}$ is norm continuous in $t \ge 0$ by (1.11). There exists $\lambda_0 \in \mathbb{R}$ such that $\|R(\lambda,A)\| \le (2\|B\|)^{-1}$ for $Re\lambda \ge \lambda_0$. Hence $(Id - BR(\lambda,A))^{-1}$ exists for $Re\lambda \ge \lambda_0$. Since $(\lambda-(A+B))f = (Id-BR(\lambda,A))(\lambda-A)f$ for all $f \in D(A)$ it follows that $(\lambda-(A+B))^{-1}$ exists and is given by

(1.12)
$$R(\lambda,A+B) = R(\lambda,A) (Id-BR(\lambda,A))^{-1}$$

whenever $\operatorname{Re} \lambda \ge \lambda_0$. Now if A generates a holomorphic semigroup,