*Programa Académico de Fisica, Universidad Distrital Francisco José de Caldas

I. OBJETIVOS

- Determinar la carga específica del electrón.
- Calcular el campo magnético de un par de bobinas de Helmholtz.
- Medir el diámetro de la órbita circular del haz de electrones.

II. MARCO TEÓRICO

Para determinar la carga especifica del electrón, se emplea un haz de electrones que se desplaza con una velocidad v perpendicular a un campo magnético generado por un par de Bobinas de Helmholtz. Estas bobinas representan la configuración más simple capaz de generar un campo magnético prácticamente uniforme y constante. La configuración consiste en dos bobinas circulares coaxiales de igual radio, con una separación entre sus planos igual al radio de las mismas.

Figura 1. Campo magnético de una espira.

Para calcular el campo magnético generado por estas bobinas, primero se determina el campo producido por una de ellas. En este caso, se considera una espira por la que circula una corriente eléctrica constante I en el tiempo. Partimos de la expresión diferencial de la ley de Biot-Savart [1]:

$$d\mathbf{B}(\mathbf{r}) = \frac{\mu_0 I}{4\pi} \frac{d\mathbf{l} \times \mathbf{R}}{R^3} \tag{1}$$

Donde:

- $\mathbf{dl} = ad\phi\hat{\phi}$
- $\mathbf{R} = \mathbf{r} \mathbf{r}'$
- $\mathbf{r} = z\hat{e_z} a\hat{e_z}$
- $R = \sqrt{z^2 + a^2}$

Laura Herrera: 20212107011 Bryan Martínez: 20212107008 Julian Avila: 20212107030 Juan Acuña: 20212107034 Por lo que reemplazando se tiene que:

$$d\mathbf{B}(\mathbf{r}) = \frac{\mu_0 I}{4\pi} \frac{(ad\phi z\hat{\rho}) + (a^2 d\phi \hat{z})}{(z^2 + a^2)^{3/2}}$$
(2)

Al integrar se obtiene el valor de $\mathbf{B}(\mathbf{r})$ y por la simetría del problema se evidencia que $\mathbf{B}(\mathbf{r})=B(r)\hat{z}$, por lo que se obtiene:

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0 I}{4\pi} \frac{a^2}{(z^2 + a^2)^{3/2}} \hat{e_z} \int_0^{2\pi} d\phi$$
 (3)

Lo que da como resultado:

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0 I}{2} \frac{a^2}{(z^2 + a^2)^{3/2}} \hat{e}_z \tag{4}$$

Figura 2. Corriente en dos espiras.

Figura 3. Campo magnético entre dos espiras circulares.

El campo magnético ${\bf B}$ producido por dos espiras, como se observa en la figura 2, donde circula una corriente estática I en cada una de las espiras, se calcula sumando dos componentes

del vector **B** de acuerdo al resultado de la ecuación (4). Como resultado, se obtendrán dos términos iguales, considerando que las espiras se encuentran localizadas en z = -d/2 y z = d/2.

$$\mathbf{B}_{z}(\rho=0,z) = \frac{\mu_{0}Ia^{2}}{2} \left[\frac{1}{\left((z-\frac{d}{2})^{2}+a^{2}\right)^{3/2}} + \frac{1}{\left((z+\frac{d}{2})^{2}+a^{2}\right)^{3/2}} \right] \hat{e}_{z}$$
(5)

Para el caso del montaje experimental, las bobinas tienen una separación igual a su radio, por lo que d=a. Además, el haz de electrones se ubica en el centro de las bobinas, es decir, z=0. Teniendo en cuenta todas estas consideraciones, se llega a que el campo magnético producido por las bobinas en el haz de electrones es:

$$\mathbf{B}_{z}(\rho = 0, z = 0) = \frac{8n\mu_{0}I}{5\sqrt{5}R} \tag{6}$$

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0 I}{2} \frac{a^2}{(z^2 + a^2)^{3/2}} \hat{e}_z \tag{7}$$

donde R = a.

Figura 4. Trayectoria del haz de electrones

Dado que el electrón, con carga e, se mueve perpendicularmente al campo magnético, está sujeto a la fuerza de Lorentz, cuya magnitud está dada por:

$$F = evB \tag{8}$$

Debido a que la fuerza de Lorentz es perpendicular a la velocidad y al campo magnético, genera un movimiento circular en el haz de electrones, por lo que también actúa como una fuerza centrípeta:

$$F = m_e \frac{v^2}{r} \tag{9}$$

Igualando las ecuaciones (8) y (9), se obtiene una relación carga-masa en función de la velocidad, el campo magnético y el radio del haz de electrones:

$$\frac{e}{m_e} = \frac{v}{rB} \tag{10}$$

Sin embargo, la velocidad con la que viaja el haz de electrones es desconocida. Para determinarla, se recurre a la conservación de la energía. En el experimento, los electrones son acelerados en un tubo de rayo electrónico filiforme por una diferencia de potencial U, de modo que la energía eléctrica se transforma en energía cinética:

$$eU = \frac{1}{2}m_e v^2$$

$$\Rightarrow \frac{e}{m_e} = \frac{v^2}{2U}$$
(11)

Igualando las ecuaciones ecuaciones (10) y (11), se obtiene que la velocidad es $v = \frac{2U}{rB}$, y finalmente, se llega a que la carga específica del electrón es:

$$\frac{e}{m_e} = \frac{2U}{(rB)^2} \tag{12}$$

III. Materiales y métodos

IV. RESULTADOS Y ANÁLISIS

7. CONCLUSIONES

REFERENCIAS

- [1] John David Jackson. *Classical Electrodynamics*. John Wiley & Sons, 14 de ago. de 1998.
- [2] Rafael Boix, Alberto Pérez y Francisco Medina. Práctica 2: Medida del campo magnético de bobinas de Helmholtz y del campo magnético terrestre. Accessed: 2024-05-30. 2023. URL: https://personal.us.es/boix/uploads/pdf/ tecnicas_electrodinamica/helmholtz_prot.pdf.
- [3] Leybold. Guía de Física Atómica y Nuclear: Experimentos Introductorios. Práctica P6.1.3.1: Determinación de la Carga Específica del Electrón. Leybold.