

A Unified Approach to Differentially Private Bayes Point Estimation

Braghadeesh Lakshminarayanan and Cristian R. Rojas

Division of Decision and Control Systems KTH Royal Institute of Technology Stockholm, Sweden

> 22nd IFAC WC, Yokohama July 13, 2023

Motivation and Background

▶ Goal: Estimate unknown θ by observing $X = (X_1, \dots, X_N)$

Physical process
$$M(\theta) \equiv \mathbb{P}(\cdot | \theta) \stackrel{i.i.d.}{\sim} X_1, \dots, X_N$$

- Goal: Estimate unknown θ by observing $X = (X_1, \dots, X_N)$
- Point estimate: $\hat{\theta}:=\hat{\theta}(\mathsf{X})$ Single quantity that is a possible value of θ

Physical process
$$M(\theta) \equiv \mathbb{P}(\cdot | \theta) \stackrel{i.i.d.}{\sim} X_1, \dots, X_N$$

- Goal: Estimate unknown θ by observing $X = (X_1, \dots, X_N)$
- Point estimate: $\hat{\theta} := \hat{\theta}(X)$ Single quantity that is a possible value of θ
- Examples:
 - $\blacktriangleright \text{ Ber}(\theta): \hat{\theta} = \frac{1}{N} \sum_{i=1}^{N} X_i$

Need for Privacy in Point Estimates

- Aggregate statistics: Sample mean, sample covariance,...
- Possible to infer an individual¹

¹Homer, N. et al. "Resolving individuals contributing trace amounts of DNA to highly complex mixtures using high-density SNP genotyping microarrays". PLOS Genetics, 2008.

II. Differential Privacy

DP definition²: $\Pr[\mathscr{A}(\mathbf{x}) \in T] \leq e^{\varepsilon} \Pr[\mathscr{A}(\mathbf{x}') \in T]$

²C. Dwork and A. Roth. "The Algorithmic Foundations of Differential Privacy". Foundations and Trends in Theoretical Computer Science. 2014

DP definition: $\Pr[\mathscr{A}(\mathbf{x}) \in T] \leq e^{\varepsilon} \Pr[\mathscr{A}(\mathbf{x}') \in T]$

How to design A?

Deterministic function

$$\eta_i \sim \mathsf{Lap}(\mathtt{0}, rac{\sigma_g}{arepsilon})$$

$$\eta_i \sim \mathsf{Lap}(0, \mathcal{C}_{arepsilon})$$

$$\eta_i \sim \mathsf{Lap}(\mathtt{0}, rac{\sigma_g}{arepsilon})$$

$$\sigma_g = \sup_{\mathbf{x},\mathbf{x}' \in \mathcal{X}: d(\mathbf{x},\mathbf{x}')=1} \left\| g(\mathbf{x}) - g(\mathbf{x}')
ight\|_1$$
 l₁ sensitivity

Laplace mechanism enforces DP³

DP via Laplace mechanism encounters accuracy-privacy trade off

³C. Dwork and A. Roth. "The Algorithmic Foundations of Differential Privacy". Foundations and Trends in Theoretical Computer Science. 2014

Outline

Unified Approach (UBaPP Estimator)

UBaPP Estimator for Finite Case

Numerical Example

Conclusion

Outline

Unified Approach (UBaPP Estimator)

UBaPP Estimator for Finite Case

Numerical Example

Conclusion

Earlier,

Earlier,

Instead, we propose

Earlier,

Instead, we propose

Randomized estimator (our approach)

DP is enforced by randomizing the estimator directly

Non-private Bayes risk minimization:

Minimize risk

$$R\left(\mathbf{\delta},\pi
ight) = \int_{\mathbf{\theta}\in\Theta} \int_{\mathbf{y}\in\mathcal{Y}} L(\mathbf{\theta},\mathbf{\delta}) q_{\mathbf{\theta}}(\mathbf{y}) \pi(\mathbf{\theta}) d\mathbf{\theta} d\mathbf{y}$$

Non-private Bayes risk minimization:

Minimize risk

$$R(\boldsymbol{\delta}, \pi) = \int_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \int_{\mathbf{y} \in \mathcal{Y}} L(\boldsymbol{\theta}, \boldsymbol{\delta}) q_{\boldsymbol{\theta}}(\mathbf{y}) \pi(\boldsymbol{\theta}) d\boldsymbol{\theta} d\mathbf{y}$$

Solution: Deterministic estimate!

Private-Bayes risk minimization:

Minimize randomized risk

$$R\left(\delta_{p,\varepsilon},\pi\right) = \int_{\theta\in\Theta} \int_{\mathbf{y}\in\mathcal{Y}} \int_{\tilde{\theta}\in\Theta} L(\theta,\tilde{\theta}) q_{\theta}(\mathbf{y}) \pi(\theta) d\theta d\mathbf{y} \delta_{p,\varepsilon}(\tilde{\theta}\mid\mathbf{y}) d\tilde{\theta}$$

Solution: Randomized estimate

Private-Bayes risk minimization:

Minimize randomized risk

$$\left| R\left(\delta_{\boldsymbol{p},\varepsilon}, \pi \right) = \int_{\theta \in \Theta} \int_{\mathbf{y} \in \mathcal{Y}} \int_{\tilde{\theta} \in \Theta} L(\theta, \tilde{\theta}) q_{\theta}(\mathbf{y}) \pi(\theta) d\theta d\mathbf{y} \delta_{\boldsymbol{p},\varepsilon}(\tilde{\theta} \mid \mathbf{y}) d\tilde{\theta} \right|$$

subject to

$$\delta_{p,arepsilon}(ilde{ heta}\mid \mathbf{y}) \leq e^{arepsilon}\delta_{p,arepsilon}\left(ilde{ heta}\mid \mathbf{y}'
ight), ext{ for each } ilde{ heta}\in\Theta$$

DP constraint

Solution: UBaPP estimate

Private-Bayes risk minimization:

Minimize randomized risk

$$R\left(\delta_{\boldsymbol{p},\varepsilon},\pi\right) = \int_{\theta\in\Theta} \int_{\mathbf{y}\in\mathcal{Y}} \int_{\tilde{\theta}\in\Theta} L(\theta,\tilde{\theta}) q_{\theta}(\mathbf{y}) \pi(\theta) d\theta d\mathbf{y} \delta_{\boldsymbol{p},\varepsilon}(\tilde{\theta}\mid\mathbf{y}) d\tilde{\theta}$$

subject to

$$\delta_{p,arepsilon}(ilde{ heta}\mid \mathbf{y}) \leq e^{arepsilon}\delta_{p,arepsilon}\left(ilde{ heta}\mid \mathbf{y}'
ight), ext{ for each } ilde{ heta}\in\Theta$$

DP constraint

UBaPP estimator is the solution to following convex program:

$$\min_{\delta_{p,\varepsilon} \in \mathcal{P}(\mathcal{Y},\Theta)} \int_{\Theta} \int_{\mathcal{Y}} \int_{\Theta} L(\theta,\tilde{\theta}) \delta_{p,\varepsilon}(\tilde{\theta} \mid \mathbf{y}) q_{\theta}(\mathbf{y}) \pi(\theta) d\theta d\mathbf{y} d\tilde{\theta}$$
s.t.
$$\delta_{p,\varepsilon}(\tilde{\theta} \mid S(\mathbf{x})) \leq e^{\varepsilon} \delta_{p,\varepsilon} \left(\tilde{\theta} \mid S(\mathbf{x}')\right), \text{ for each } \tilde{\theta} \in \Theta$$
and $\mathbf{x}, \mathbf{x}' \in \mathcal{X} \text{ s.t. } d(\mathbf{x}, \mathbf{x}') = 1$

$$\int_{\Theta} \delta_{p,\varepsilon}(\tilde{\theta} \mid \mathbf{y}) d\mathbf{y} = 1, \text{ for each } \mathbf{y} \in \mathcal{Y}$$

$$\delta_{p,\varepsilon}(\tilde{\theta} \mid \mathbf{y}) \geq 0, \text{ for each } \mathbf{y} \in \mathcal{Y}, \tilde{\theta} \in \Theta$$

UBaPP estimator is the solution to following convex program:

$$\min_{\delta_{p,\varepsilon} \in \mathcal{P}(\mathcal{Y},\Theta)} \int_{\Theta} \int_{\mathcal{Y}} \int_{\Theta} L(\theta,\tilde{\theta}) \delta_{p,\varepsilon}(\tilde{\theta} \mid \mathbf{y}) q_{\theta}(\mathbf{y}) \pi(\theta) d\theta d\mathbf{y} d\tilde{\theta}$$
s.t.
$$\delta_{p,\varepsilon}(\tilde{\theta} \mid S(\mathbf{x})) \leq e^{\varepsilon} \delta_{p,\varepsilon} \left(\tilde{\theta} \mid S(\mathbf{x}') \right), \text{ for each } \tilde{\theta} \in \Theta$$
and $\mathbf{x}, \mathbf{x}' \in \mathcal{X} \text{ s.t. } d\left(\mathbf{x}, \mathbf{x}'\right) = 1$

$$\int_{\Theta} \delta_{p,\varepsilon}(\tilde{\theta} \mid \mathbf{y}) d\mathbf{y} = 1, \text{ for each } \mathbf{y} \in \mathcal{Y}$$

$$\delta_{p,\varepsilon}(\tilde{\theta} \mid \mathbf{y}) \geq 0, \text{ for each } \mathbf{y} \in \mathcal{Y}, \tilde{\theta} \in \Theta$$

UBaPP estimator is the solution to following convex program:

$$\min_{\delta_{p,\varepsilon} \in \mathcal{P}(\mathcal{Y},\Theta)} \int_{\Theta} \int_{\mathcal{Y}} \int_{\Theta} \mathsf{L}(\theta,\tilde{\theta}) \delta_{p,\varepsilon}(\tilde{\theta} \mid \mathbf{y}) q_{\theta}(\mathbf{y}) \pi(\theta) d\theta d\mathbf{y} d\tilde{\theta}$$

s.t.
$$\delta_{p,\varepsilon}(\tilde{\theta} \mid S(\mathbf{x})) \leq e^{\varepsilon} \delta_{p,\varepsilon} \left(\tilde{\theta} \mid S(\mathbf{x}') \right), \text{ for each } \tilde{\theta} \in \Theta$$
 and $\mathbf{x}, \mathbf{x}' \in \mathcal{X} \text{ s.t. } d\left(\mathbf{x}, \mathbf{x}'\right) = 1$

$$\int_{m{\Theta}} \delta_{p,arepsilon}(ilde{ heta} \mid \mathbf{y}) d\mathbf{y} =$$
 1, for each $\mathbf{y} \in \mathcal{Y}$

$$\delta_{p,arepsilon}(ilde{ heta}\mid \mathbf{y})\geq \mathsf{0}, ext{ for each } \mathbf{y}\in\mathcal{Y}, ilde{ heta}\in\Theta$$

UBaPP estimator is the solution to following convex program:

$$\min_{\delta_{p,\varepsilon} \in \mathcal{P}(\mathcal{Y},\Theta)} \int_{\Theta} \int_{\mathcal{Y}} \int_{\Theta} L(\theta,\tilde{\theta}) \delta_{p,\varepsilon}(\tilde{\theta} \mid \mathbf{y}) q_{\theta}(\mathbf{y}) \pi(\theta) d\theta d\mathbf{y} d\tilde{\theta}$$
s.t.
$$\delta_{p,\varepsilon}(\tilde{\theta} \mid S(\mathbf{x})) \leq e^{\varepsilon} \delta_{p,\varepsilon} \left(\tilde{\theta} \mid S(\mathbf{x}') \right), \text{ for each } \tilde{\theta} \in \Theta$$

$$\text{and } \mathbf{x}, \mathbf{x}' \in \mathcal{X} \text{ s.t. } d\left(\mathbf{x}, \mathbf{x}'\right) = 1$$

$$\int_{\Theta} \delta_{p,\varepsilon}(\tilde{\theta} \mid \mathbf{y}) d\mathbf{y} = 1, \text{ for each } \mathbf{y} \in \mathcal{Y}$$

$$\delta_{p,\varepsilon}(\tilde{\theta} \mid \mathbf{y}) \geq 0, \text{ for each } \mathbf{y} \in \mathcal{Y}, \tilde{\theta} \in \Theta$$

Randomization constraint

UBaPP estimator is the solution to following convex program:

$$\begin{aligned} & \min_{\delta_{p,\varepsilon} \in \mathcal{P}(\mathcal{Y},\Theta)} \int_{\Theta} \int_{\mathcal{Y}} \int_{\Theta} L(\theta,\tilde{\theta}) \delta_{p,\varepsilon}(\tilde{\theta} \mid \mathbf{y}) q_{\theta}(\mathbf{y}) \pi(\theta) d\theta d\mathbf{y} d\tilde{\theta} \\ & \text{s.t.} \quad \delta_{p,\varepsilon}(\tilde{\theta} \mid S(\mathbf{x})) \leq e^{\varepsilon} \delta_{p,\varepsilon} \left(\tilde{\theta} \mid S(\mathbf{x}') \right), \text{ for each } \tilde{\theta} \in \Theta \\ & \text{and } \mathbf{x}, \mathbf{x}' \in \mathcal{X} \text{ s.t. } d\left(\mathbf{x}, \mathbf{x}'\right) = 1 \\ & \int_{\Theta} \delta_{p,\varepsilon}(\tilde{\theta} \mid \mathbf{y}) d\mathbf{y} = 1, \text{ for each } \mathbf{y} \in \mathcal{Y} \\ & \delta_{p,\varepsilon}(\tilde{\theta} \mid \mathbf{y}) \geq 0, \text{ for each } \mathbf{y} \in \mathcal{Y}, \tilde{\theta} \in \Theta \end{aligned}$$

UBaPP is optimal by construction!

UBaPP estimator is the solution to following convex program:

$$\begin{split} \min_{\delta_{p,\varepsilon} \in \mathcal{P}(\mathcal{Y},\Theta)} & \int_{\Theta} \int_{\mathcal{Y}} \int_{\Theta} ||\theta - \tilde{\theta}||^2 \delta_{p,\varepsilon}(\tilde{\theta} \mid \mathbf{y}) q_{\theta}(\mathbf{y}) \pi(\theta) d\theta d\mathbf{y} d\tilde{\theta} \\ \text{s.t.} & \delta_{p,\varepsilon}(\tilde{\theta} \mid S(\mathbf{x})) \leq e^{\varepsilon} \delta_{p,\varepsilon} \left(\tilde{\theta} \mid S(\mathbf{x}') \right), \text{ for each } \tilde{\theta} \in \Theta \\ & \text{and } \mathbf{x}, \mathbf{x}' \in \mathcal{X} \text{ s.t. } d\left(\mathbf{x}, \mathbf{x}'\right) = 1 \\ & \int_{\Theta} \delta_{p,\varepsilon}(\tilde{\theta} \mid \mathbf{y}) d\mathbf{y} = 1, \text{ for each } \mathbf{y} \in \mathcal{Y} \\ & \delta_{p,\varepsilon}(\tilde{\theta} \mid \mathbf{y}) \geq 0, \text{ for each } \mathbf{y} \in \mathcal{Y}, \tilde{\theta} \in \Theta \end{split}$$

UBaPP is optimal by construction!

Outline

Unified Approach (UBaPP Estimator)

UBaPP Estimator for Finite Case

Numerical Example

Conclusion

UBaPP Estimator for Finite Case

UBaPP estimator \equiv solution to a linear program:

$$\begin{aligned} & \min_{\mathbf{P} \in \mathbb{R}^{|\Theta| \times |\mathcal{Y}|}} \operatorname{tr}(\mathbf{Q} \operatorname{diag}(\boldsymbol{\pi}) \mathbf{LP}) \\ & \text{s.t.} \quad \mathbf{P}_{k,i} \leq e^{\varepsilon} \mathbf{P}_{k,i'}, \text{ for all } k \in \{1, \dots, |\Theta|\} \\ & \text{ and } i, i' \in \{1, \dots, |\mathcal{Y}|\} \text{ s.t. } d\left(\mathbf{x}_i, \mathbf{x}_{i'}\right) = 1 \\ & \mathbf{1}^T \mathbf{P} = \mathbf{1}^T \\ & \mathbf{P} \geq 0 \end{aligned}$$

UBaPP Estimator for Finite Case

UBaPP estimator \equiv solution to a linear program:

$$\begin{aligned} & \min_{\mathbf{P} \in \mathbb{R}^{|\Theta| \times |\mathcal{Y}|}} \operatorname{tr}(\mathbf{Q} \operatorname{diag}(\boldsymbol{\pi}) \mathbf{LP}) \\ & \text{s.t.} \quad \mathbf{P}_{k,i} \leq e^{\varepsilon} \mathbf{P}_{k,i'}, \text{ for all } k \in \{1, \dots, |\Theta|\} \\ & \text{ and } i, i' \in \{1, \dots, |\mathcal{Y}|\} \text{ s.t. } d\left(\mathbf{x}_i, \mathbf{x}_{i'}\right) = 1 \\ & \mathbf{1}^T \mathbf{P} = \mathbf{1}^T \\ & \mathbf{P} \geq 0 \end{aligned}$$

Solved using CVXPY!

Outline

Unified Approach (UBaPP Estimator)

UBaPP Estimator for Finite Case

Numerical Example

Conclusion

$$ightharpoonup \Theta = [0,1]$$

$$\Theta = [0,1] \stackrel{\text{discretize}}{\Longrightarrow} \theta_j \stackrel{i.i.d.}{\sim} \pi, j \in \{1,\ldots,M\}$$

$$ightharpoonup \mathcal{Y} = \{0, \ldots, K\}$$

Private estimation of Bernoulli parameter (θ) using K trials

$$\blacktriangleright \mathcal{Y} = \{0, \dots, K\}$$

Laplace Bayes Private Point (LBaPP) estimator for this setup:

$$\delta_{lpb,\varepsilon} = \frac{1}{K+2} \left(\sum_{i=1}^{K} x_i + 1 \right) + \text{Lap} \left(0, \frac{1}{(K+2)\varepsilon} \right)$$

Private estimation of Bernoulli parameter (θ) using K trials

$$\Theta = [0,1] \stackrel{\text{discretize}}{\Longrightarrow} \theta_j \stackrel{i.i.d.}{\sim} \pi, j \in \{1,\ldots,M\}$$

$$\blacktriangleright \ \mathcal{Y} = \{0, \dots, K\}$$

Laplace Bayes Private Point (LBaPP) estimator for this setup:

$$\delta_{lpb,\varepsilon} = \underbrace{\frac{1}{K+2} \left(\sum_{i=1}^{K} x_i + 1 \right)}_{\text{non-private estimate}} + \text{Lap}\left(0, \frac{1}{(K+2)\varepsilon} \right)$$

Private estimation of Bernoulli parameter (θ) using K trials

$$\triangleright \mathcal{Y} = \{0, \ldots, K\}$$

Laplace Bayes Private Point (LBaPP) estimator for this setup:

$$\delta_{lpb,\varepsilon} = \underbrace{\frac{1}{K+2} \left(\sum_{i=1}^{K} x_i + 1 \right)}_{\text{non-private estimate}} + \underbrace{\text{Lap} \left(0, \frac{1}{(K+2)\varepsilon} \right)}_{\text{Laplace noise}}$$

Plots (MSE v.s. ε)

For a fixed K (K = 100)

High privacy regime

High accuracy is achieved by our approach!

Plots (MSE v.s. ε)

For a fixed K(K = 100)

Low privacy regime

Comparable performance!

Heat Maps

- $\varepsilon = 10^{-4}$: Deterministic estimate, independent of **y**, no inference about **x**
- $\varepsilon = 10^{-1}$: Randomized estimate, still independent of ${\it y}$, still no inference about ${\it x}$
- ε = 5: Deterministic estimate, strongly dependent on ${\it y}$, complete inference about ${\it x}$

Outline

Unified Approach (UBaPP Estimator)

UBaPP Estimator for Finite Case

Numerical Example

Conclusion

Conclusion

- Provided a unified approach to yield Bayes point estimate subject to differential privacy
- The "noise" is implicitly "added" by randomizing the estimator directly
- Demonstrated promising result in the limiting case (high-privacy regime) for the finite case via a numerical example
- ► Future work: Analyze the UBaPP estimator for high dimensional parameter and observation space

Thank You

Plots (MSE v.s. K)

High privacy regime ($\varepsilon = 10^{-3}$)

High gain in sample complexity!

Plots (MSE v.s. K)

Low privacy regime ($\varepsilon = 5$)

Comparable sample complexity!