Exercise 3.1. Explain why a linear functional is either surjective or 0.

Proof. Cause dim F = 1.

Exercise 3.6. Let $\varphi, \beta \in V'$, show that null $\varphi \subseteq \text{null } \beta \iff \exists c \in F, \beta = c\varphi$. *Proof.*

• (\Rightarrow) For any $v \notin \text{null } \beta$, we have $\beta(v) = \beta(v)(\varphi(v))^{-1}\varphi(v)$ we claim that $\beta = \beta(v)(\varphi(v))^{-1}\varphi$. We may denote $\beta(v)(\varphi(v))^{-1}$ by c. For any $v, w \notin \text{null } \beta$, we have $\beta(v) = a\varphi(v)$ and $\beta(w) = b\varphi(w)$, we want to show that a = b, which can be proven by:

$$a = b$$

$$\frac{\beta(v)}{\varphi(v)} = \frac{\beta(w)}{\varphi(w)}$$

$$\beta(v)\varphi(w) = \beta(w)\varphi(v)$$

$$\beta(\varphi(w)v) = \beta(\varphi(v)w)$$

which is equivalent to $\varphi(w)v - \varphi(v)w \in \text{null }\beta$, then:

$$\varphi(\varphi(w)v - \varphi(v)w)$$

$$= \varphi(\varphi(w)v) - \varphi(\varphi(v)w)$$

$$= \varphi(w)\varphi(v) - \varphi(v)\varphi(w)$$

$$= 0$$

therefore $\varphi(w)v - \varphi(v)w \in \text{null } \varphi \subseteq \text{null } \beta$, thus a = b. The case $v \in \text{null } \beta$ is trivial.

• (\Leftarrow) For any $v \in \text{null } \varphi$, $\beta(v) = c\varphi(v) = 0$, therefore $v \in \text{null } \beta$, thus $\text{null } \varphi \subseteq \text{null } \beta$.

Exercise 3.7. Let V_0, \dots, V_{m-1} are vector spaces, show that $V'_0 \times \dots \times V'_{m-1}$ and $(V_0 \times \dots \times V_{m-1})'$ are isomorphic.

Proof. Define $\psi(\varphi) = v_0 \mapsto \varphi(v_0, 0, \cdots), \cdots, v_{m-1} \mapsto \varphi(\cdots, 0, v_{m-1})$ and $\psi^{-1}(\varphi_0, \cdots, \varphi_{m-1}) = (v_0, \cdots, v_{m-1}) \mapsto \varphi_0(v_0) + \cdots + \varphi_{m-1}(v_{m-1}).$ For any $\alpha, \beta \in (V_0 \times \cdots \times V_{m-1})'$ and $\lambda \in F$, we have

$$\psi(\alpha + \beta)_{i}$$

$$=v_{i} \mapsto (\alpha + \beta)(\cdots, v_{i}, \cdots)$$

$$=v_{i} \mapsto \alpha(\cdots, v_{i}, \cdots) + \beta(\cdots, v_{i}, \cdots)$$

$$=(v_{i} \mapsto \alpha(\cdots, v_{i}, \cdots)) + (v_{i} \mapsto \beta(\cdots, v_{i}, \cdots))$$

$$=\psi(\alpha)_{i} + \psi(\beta)_{i}$$

and $(\lambda \psi(\alpha))_i = \lambda(v_i \mapsto \alpha(v_i)) = v_i \mapsto \lambda \alpha(v_i) = \psi(\lambda \alpha)_i$ Therefore ψ is a linear map.

For any $\alpha, \beta \in V'_0 \times \cdots \times V'_{m-1}$ and $\lambda \in F$, we have:

$$\psi^{-1}(\alpha + \beta)
= (v_0, \dots, v_{m-1}) \mapsto (\alpha + \beta)(v_0) + \dots + (\alpha + \beta)(v_{m-1})
= (v_0, \dots, v_{m-1}) \mapsto \alpha(v_0) + \beta(v_0) + \dots
= ((v_0, \dots, v_{m-1}) \mapsto \alpha(v_0) + \dots) + ((v_0, \dots, v_{m-1}) \mapsto \beta(v_0) + \dots)
= \psi^{-1}(\alpha) + \psi^{-1}(\beta)$$

and

$$\lambda \psi^{-1}(\alpha)$$

$$= \lambda((v_0, \dots, v_{m-1}) \mapsto \alpha(v_0) + \dots)$$

$$= (v_0, \dots, v_{m-1}) \mapsto \lambda(\alpha(v_0) + \dots)$$

$$= (v_0, \dots, v_{m-1}) \mapsto (\lambda \alpha(v_0)) + \dots$$

$$= \psi^{-1}(\lambda \alpha)$$

thus ψ^{-1} is a linear map.

We will show that ψ^{-1} is the inverse of ψ then ψ is an isomorphism. For any $\varphi \in (V_0 \times \cdots \times V_{m-1})'$,

$$\psi^{-1}(\psi(\varphi))$$

$$=v_0, \dots, v_{m-1} \mapsto \psi(\varphi)_0(v_0) + \dots$$

$$=v_0, \dots, v_{m-1} \mapsto \varphi(v_0, 0, \dots) + \dots + \varphi(\dots, 0, v_{m-1})$$

$$=v_0, \dots, v_{m-1} \mapsto \varphi(v_0, \dots, v_{m-1})$$

$$=\varphi$$

and for any $\varphi \in V'_0 \times \cdots \times V'_{m-1}$,

$$\psi(\psi^{-1}(\varphi))$$

$$=v_0 \mapsto \psi^{-1}(\varphi)(v_0, 0, \cdots), \cdots$$

$$=v_0 \mapsto \varphi_0(v_0), \cdots$$

$$=\varphi_0, \cdots, \varphi_{m-1}$$

$$=\varphi$$

Exercise 3.16. Let W a finite vector space, $T \in \mathcal{L}(V, W)$, show that

$$T' = 0 \iff T = 0$$

Proof.

- (\Rightarrow) Suppose $T \neq 0$, then we can always find $\varphi \in \mathcal{L}(W, F)$ which $\varphi(\operatorname{range} T) \neq 0$, then $\varphi \circ T \neq 0$.
- (⇐) Trivial.

Exercise 3.17. Let V, W are finite vector spaces, $T \in \mathcal{L}(V, W)$. Show that T is invertible $\iff T'$ is invertible.

Proof. Since T is invertible, then T is injective, therefore T' is surjective. Similarly, T' is injective since T is surjective. Therefore T' is invertible.

Exercise 3.18. Let V, W are finite vector spaces, show that the mapping $\varphi(T) = T'$ is an isomorphism between $\mathcal{L}(V, W)$ and $\mathcal{L}(W', V')$.

Proof. Since V and W are finite, we only need to show that φ is injective or surjective. We will show that φ is injective.

For any $\varphi(T) = T' \in \mathcal{L}(W', V')$, we know $T = 0 \iff T' = 0$, therefore null $\varphi = \{0\}$, thus φ is injective.

I was wonder if I can prove this by $\varphi(S)(\mathrm{id}) = \varphi(T)(\mathrm{id}) \Longrightarrow S = T$. This may work if the codomain restriction doesn't lose information, i.e. only restrict to a superset of its range, therefore the restriction is one-to-one.

Exercise 3.21. Let V finite and $U, W \subseteq V$ are subspaces.

- 1. Show that $W^0 \subseteq U^0 \iff U \subseteq W$
- 2. Show that $W^0 = U^0 \iff U = W$

Proof. The second statement can be easy proved by the first one.

- (\Rightarrow) We can always find a $f \in \mathcal{L}(W, F)$ such that null f = W, then $f(U) = \{0\}$ since $f \in W^0 \subseteq U^0$, therefore $U \subseteq \text{null } f = W$.
- (\Leftarrow) For any $\varphi \in W^0$, we know $W \subseteq \text{null } \varphi$, then $U \subseteq W \subseteq \text{null } \varphi$, therefore φinU^0 , thus $W^0 \subseteq U^0$.

Exercise 3.22. Let V finite and $U, W \subseteq V$ are subspaces. Show that:

- $\bullet \ (U+W)^0 = U^0 \cap W^0$
- $(U \cap W)^0 = U^0 + W^0$

Proof.

• For any $\varphi \in (U+W)^0$ we have $U+W \subseteq \operatorname{null} \varphi$, then $U \subseteq U+W \subseteq \operatorname{null} \varphi$ and $W \subseteq U+W$, therefore $\varphi \in U^0 \cap W^0$.

For any $\varphi \in U^0 \cap W^0$, we have $U \subseteq \text{null } \varphi$ and $W \subseteq \text{null } \varphi$. For any $u+w \in U+W$, we have $\varphi(u+w)=\varphi(u)+\varphi(w)=0+0=0$, therefore $U+W \subseteq \text{null } \varphi$, thus $\varphi \in (U+W)^0$.

• For any $su + tw \in U^0 + W^0$, for any $v \in U \cap W$, we have su(v) + tw(v) = s0 + t0 since $v \in U$ and $v \in W$. Therefore we have an injective map (also linear, this map just produce what it receive) from $U^0 + W^0$ to $(U \cap W)^0$. We have:

$$\dim(U^0 + W^0)$$

$$= \dim U^0 + \dim W^0 - \dim(U^0 \cap W^0)$$

$$= \dim V - \dim U + \dim V - \dim W - \dim(U + W)^0$$

$$= \dim V - \dim U + \dim V - \dim W - (\dim V - \dim(U + W))$$

$$= \dim V - \dim U - \dim W + (\dim U + \dim W - \dim(U \cap W))$$

$$= \dim V - \dim(U \cap W)$$

$$= \dim(U \cap W)^0$$

therefore $(U \cap W)^0 = U^0 + W^0$.

Exercise 3.23. Let V finite and $\varphi_0, \dots, \varphi_{m-1} \in V'$. Show that the following sets are equal to each others:

- span $(\varphi_0, \cdots, \varphi_{m-1})$
- $((\text{null }\varphi_0)\cap\cdots\cap(\text{null }\varphi_{m-1}))^0$
- { $\varphi \in V' \mid (\text{null } \varphi_0) \cap \cdots \cap (\text{null } \varphi_{m-1}) \subseteq \text{null } \varphi$ }

Proof.

• $((\text{null }\varphi_0) \cap \cdots \cap (\text{null }\varphi_{m-1}))^0 = (\text{null }\varphi_0)^0 + \cdots + (\text{null }\varphi_{m-1})^0$, then $\text{span}(\varphi_i) \subseteq (\text{null }\varphi_i)^0$ therefore $\text{span}(\varphi_0, \cdots, \varphi_{m-1}) \subseteq ((\text{null }\varphi_0) \cap \cdots \cap (\text{null }\varphi_{m-1}))^0$.

For any $\varphi \in \text{span}(\varphi_0, \dots, \varphi_{m-1})$, we have $\varphi(v) = \varphi_0(v) + \dots + \varphi_{m-1}(v) = 0 + \dots + 0 = 0$ for any $v \in (\text{null } \varphi_0) \cap \dots \cap (\text{null } \varphi_{m-1})$, therefore $\varphi \in ((\text{null } \varphi_0) \cap \dots \cap (\text{null } \varphi_{m-1}))^0$.

• Last two sets are definitional equal.

Exercise 3.24. Let V finite and $v_0, \dots, v_{m-1} \in V$. Define $\Gamma(\varphi) = (\varphi(v_0), \dots \varphi(v_{m-1})) : V' \to F^m$, show that:

- v_0, \dots, v_{m-1} spans $V \iff \Gamma$ is injective.
- v_0, \dots, v_{m-1} is linear independent $\iff \Gamma$ is surjective.

Proof.

- (\Rightarrow) Suppose $\Gamma(\alpha) = \Gamma(\beta)$, then for all $v \in V$ can be factorized into $\lambda_0 v_0 + \cdots + \lambda_{m-1} v_{m-1}$, then $\alpha(v) = \alpha(\lambda_0 v_0 + \cdots + \lambda_{m-1} v_{m-1}) = \beta(\lambda_0 v_0 + \cdots + \lambda_{m-1} v_{m-1}) = \beta(v)$ since $\Gamma(\alpha) = \Gamma(\beta)$ and α and β are linear map, thus $\alpha = \beta$.
 - (\Rightarrow) We first make v_0, \dots, v_{m-1} linear independent, say v_0, \dots, v_{k-1} , then for any $w \in V$ such that v_0, \dots, v_{k-1}, w is linear independent, then we have its dual basis $\varphi_0, \dots, \varphi_{k-1}, \psi$. Consider $\Gamma(\psi)$, by definition, we know $\Gamma(\psi) = (\psi(v_0), \dots) = (0, \dots)$ then $\psi = 0$ since Γ is injective, which contradicts our assumption. Therefore v_0, \dots, v_{k-1} spans V.

- (\Rightarrow) Consider the dual basis of v_0, \dots, v_{m-1} , then Γ is surjective since we have the standard basis of F^m .
 - (\Leftarrow) Γ is surjective implies we have $\varphi_0, \dots, \varphi_{m-1}$ such that $\Gamma(\varphi_i) = (\dots, 1, \dots)$, which means v_0, \dots, v_{m-1} is linear independent.

Exercise 3.25. Let V finite and $\varphi_0, \dots, \varphi_{m-1} \in V'$. Define $\Gamma(v) = (\varphi_0(v), \dots, \varphi_{m-1}(v)) : V \to F^m$. Show that

- $\varphi_0, \cdots, \varphi_{m-1} \text{ spans } V' \iff \Gamma \text{ is injective}$
- $\varphi_0, \cdots, \varphi_{m-1}$ is linear independent $\iff \Gamma$ is surjective

Proof.

- (\Rightarrow) Suppose $\Gamma(v) = \Gamma(w)$, then $\varphi_i(v) = \varphi_i(w)$, which means $\varphi_i(v-w) = 0$ for all i. If $v w \neq 0$, then $((\text{null }\varphi_0) \cap \cdots \cap (\text{null }\varphi_{m-1}))^0 \neq \{0\}$, thus $\varphi_0, \cdots, \varphi_{m-1}$ doesn't span V'.
 - (\Leftarrow) (null φ_0) $\cap \cdots \cap$ (null φ_{m-1}) = $\{0\}$ since Γ is injective. therefore $\operatorname{span}(\varphi_0, \cdots, \varphi_{m-1}) = ((\operatorname{null} \varphi_0) \cap \cdots \cap (\operatorname{null} \varphi_{m-1}))^0 = (\{0\})^0 = V'$
- (\Rightarrow) We may treat Γ as the following matrix:

$$\left[\begin{array}{c} \varphi_0 \\ \vdots \\ \varphi_{m-1} \end{array}\right]$$

which line rank is m since $\varphi_0, \dots, \varphi_{m-1}$ is linear independent, therefore its column rank is m, thus dim range $\Gamma = m = \dim F^m$, then Γ is surjective.

 (\Leftarrow) It seems the proof of (\Rightarrow) also works here.

Exercise 3.26. Let V finite, and $\Omega \subseteq V'$ a subspace. Show that

$$\Omega = \{ v \in V \mid \varphi(v) = 0 \quad \forall \varphi \in \Omega \}^0$$

Proof. This construction looks like an inverse of $-^0$.

We may rewrite the equation to $\Omega = (\bigcap_{\varphi \in \Omega} \operatorname{null} \varphi)^0$, then $\Omega = \operatorname{span}(\varphi) \forall \varphi \in$

 Ω , which is trivial.

Exercise 3.28. Let V finite and $\varphi_0, \dots, \varphi_{m-1}$ is linear independent. Show that

$$\dim((\operatorname{null}\varphi_0)\cap\cdots\cap(\operatorname{null}\varphi_{m-1}))=\dim V-m$$

Proof.

$$m = \dim \operatorname{span}(\varphi_0, \dots, \varphi_{m-1})$$

$$= \dim((\operatorname{null} \varphi_0) \cap \dots \cap (\operatorname{null} \varphi_{m-1}))^0$$

$$= \dim V - \dim((\operatorname{null} \varphi_0) \cap \dots \cap (\operatorname{null} \varphi_{m-1}))$$

Exercise 3.30. Let V finite and $\varphi_0, \dots, \varphi_{m-1}$ a basis of V'. Show that there is a basis of V which dual basis is $\varphi_0, \dots, \varphi_{m-1}$.

Proof. Since $\varphi_0, \dots, \varphi_{m-1}$ spans V' and linear independent, we know Γ is both injective and surjective. Consider v_0, \dots, v_{m-1} such that $\Gamma(v_i) = (\dots, 0, 1, 0, \dots)$. We claim v_0, \dots, v_{m-1} is a basis of V and which dual basis if $\varphi_0, \dots, \varphi_{m-1}$.

The second part is trivial by the way construct them. For the first part, v_0, \dots, v_{m-1} is linear independent since $(\dots, 0, 1, 0 \dots)$ is linear independent, and v_0, \dots, v_{m-1} spans V since dim $V = \dim V' = m$.

Exercise 3.31. Let $U \subseteq V$ a subspace and $i(u) = u : U \to V$. Then $i' \in \mathcal{L}(V', U')$, show that:

- 1. null $i' = U^0$
- 2. range i' = U' if V is finite
- 3. \tilde{i}' is an isomorphism between V'/U^0 and U' if V is finite

Proof.

• For any $\varphi \in \text{null } i'$, $\varphi \circ i = 0$, therefore range $i = U \subseteq \text{null } \varphi$, thus $\varphi \in U^0$.

For any $\varphi \in U^0$, $\varphi \circ i = 0$ since range $i = U \subseteq \text{null } \varphi$.

- Suppose V is finite, then i' is surjective since i' is injective, therefore range i' = U'.
- $\tilde{i}'(\varphi + U^0) = i'(\varphi)$ is surjective since i' is surjective. Then $\dim(V'/U^0) = \dim V' \dim U^0 = \dim V (\dim V \dim U) = \dim U = \dim U'$, therefore \tilde{i}' is an isomorphism.

Exercise 3.32. We denote V'' as the **double dual space of** V, defined by V'' = (V')'. Define $\Lambda(v)(\varphi) = \varphi(v) : V \to V''$ Show that:

- 1. $\Lambda \in \mathcal{L}(V, V'')$
- 2. Let $V \in \mathcal{L}(V)$, then $T'' \circ \Lambda = \Lambda \circ T$ where T'' = (T')'.
- 3. A is an isomorphism if V is finite.

Proof.

- For any $v, w \in V$ and $\lambda \in F$, we have $(\Lambda(v) + \Lambda(w))(\varphi) = \Lambda(v)(\varphi) + \Lambda(w)(\varphi) = \varphi(v) + \varphi(w) = \varphi(v+w) = \Lambda(v+w)(\varphi)$ and $(\lambda \Lambda(v))(\varphi) = \lambda(\Lambda(v)(\varphi)) = \lambda(\varphi(v)) = \varphi(\lambda v) = \Lambda(\lambda v)(\varphi)$.
- For any $v \in V$,

$$(T'' \circ \Lambda)(v)(\varphi)$$

$$=(T''(\Lambda(v)))(\varphi)$$

$$=((\Lambda(v)) \circ T')(\varphi)$$

$$=\Lambda(v)(T'(\varphi))$$

$$=\Lambda(v)(\varphi \circ T)$$

$$=(\varphi \circ T)(v)$$

$$=\varphi(T(v))$$

$$=\Lambda(T(v))(\varphi)$$

$$=(\Lambda \circ T)(v)(\varphi)$$

• Suppose $\Lambda(v) = \Lambda(w)$, that is, $\Lambda(v)(\varphi) = \varphi(v) = \varphi(w) = \Lambda(w)(\varphi)$ for all $\varphi \in V'$. Let $\varphi_0, \dots, \varphi_{m-1}$ the dual basis of some basis of V, then $v = \varphi_0(v)v_0 + \dots + \varphi_{m-1}(v)v_{m-1} = \varphi_0(w)v_0 + \dots + \varphi_{m-1}(w)v_{m-1} = w$. Therefore Λ is injective, thus surjective and isomorphism since dim $V = \dim V''$.

Exercise 3.33. Let $U \subseteq V$ a subspace and $\pi: V \to V/U$ the quotient map, then $\pi' \in \mathcal{L}((V/U)', V')$.

- 1. Show that π' is injective.
- 2. Show that range $\pi' = U^0$.
- 3. Conclude that π' is an isomorphism between (V/U)' and U^0 .

Proof.

• π is surjective, therefore π' is injective. The statement is true even V or V/U may be infinite, cause the proof about surjective-impliesepimorphism doesn't require that the codomain is finite but epimorphism-implies-surjective does.

We may prove those theorem again, but with weaker assumption. For any $\pi'(\varphi) = \pi'(\psi)$, we have $\varphi \circ \pi = \psi \circ \pi$. For any $v + U \in V/U$, there is $v \in V$ such that $\pi(v) = v + U$ since π is surjective. Therefore $\varphi(\pi(v)) = \psi(\pi(v))$ for all $\pi(v) = v + U \in V/U$, thus $\varphi = \psi$.

Therefore π' is injective.

- range $\pi' = (\operatorname{null} \pi)^0 = U^0$.
- Trivial.