Ajay Kumar Garg Engineering College, Ghaziabad Department of Information Technology (IT)

Computer Organization and Architecture Lab (BCS352)

Lab Manual

		Experiment Number < 1 >
1	Aim / Objective / problem statement	Study and verify the outputs of the logic gates (AND, OR, NOT, NAND, NOR, Ex-OR, and Ex-NOR).
	sample input	Input for all gates: A=0, B=1
	expected output	Suppose the output of all gates dented by symbol X, then Output of NOT Gate: X=1 {for input A} Output of AND Gate: X=0 Output of OR Gate: X=1 Output of NAND Gate: X=1 Output of NOR Gate: X=0 Output of XOR Gate: X=1 Output of XOR Gate: X=1
2	Theory	AND Gate: A multi-input circuit in which the output is 1 only if all inputs are 1. A dot (.) is used to show the AND operation i.e. (A.B). The symbolic representation and truth table of the 2-input AND gate are given below:
		A B AB 0 0 0 0 0 1 0 1 0 0 1 1 1 1
		OR Gate: A multi-input circuit in which the output is 1 when any input is 1. A plus (+) is used to show the OR operation i.e. (A+B). The symbolic representation and truth table of 2-input OR gate are given below:
		A B A+B O O O O 1 1 1 0 1 1 1 1

NOT Gate:

The output is 0 when the input is 1, and the output is 1 when the input is 0. It is also known as an inverter. If the input variable is A, the inverted output is known as NOT A. This is also shown as A', or A with a bar over the top, as shown at the outputs. The symbolic representation and truth table of an inverter are given below:

NOT (gate
Α	M
0	1
1	0

NAND Gate:

AND followed by an INVERTER. The output of a NAND gate is high if any of the inputs are low. It is also known as universal gate. The symbolic representation and truth table of 2-input NAND gate are given below:

2 Input NAND gate				
Α	В	Ā.B		
0	0	1		
0	1	1		
1	0	1		
1	1	0		

NOR Gate:

OR followed by inverter. The outputs of a NOR gate is low if any of the inputs are high. It is also known as universal gate. The symbolic representation and truth table of 2-input NOR gate are given below:

2 Input NOR gate			
Α	В	A+B	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

Ex-OR Gate:

The output of the Exclusive-OR gate is 0 when its two inputs are the same and its output is 1 when its two inputs are different. **X-OR gate is a digital logic gate that gives a true (1 or HIGH)output when the number of true inputs is odd.** An encircled plus sign () is used to show the XOR operation. The symbolic representation and truth table of 2-input XOR gate are given below:

2 Input EXOR gate				
Α	В	A⊕B		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

		Ex-NOR Gate: The output of the Exclusive-NOR gate, is 1 when its two inputs are the same and its output is 0 when its two inputs are different. X-NOR gate is a digital logic gate that gives a true (1 or HIGH) output when the number of true inputs is even. An encircled dot sign is used to show the Ex-NOR operation. The symbolic representation and truth table of 2-input XNOR gate are given below:
		A B Out O 1 O 1 O 1 1 1 1
3	Procedure	 Steps: Start the simulator by using https://circuitverse.org/simulator link Design the circuit as shown in the theory section. Set the inputs as shown in the Input section And verify the output as mentioned in the output section Take the screenshot and create a PDF document Upload this PDF document on the given assignment link onto the moodle.
4	Viva questions	 How many AND gates are required to realize Y = CD + EF + G? How many NAND gates are required to design a XOR gate? Draw XOR gate using NAND gate.
		3. Which gates are the universal gates? Why these gates are called universal gates?

						Experiment Number < 2>			
1	Aim / Objective / problem statement	Impleme	ent H	alf Ado	der, F	Full Adder, Half Subtractor and Full Subtractor.			
	sample input	A=0, B= Inputs fo	Inputs for Half Adder and Half Subtractor A=0, B=1 Inputs for Full Adder and Full Subtractor A=0, B=1, C=1						
	expected output	Output o Sum S= Output o Diff D= Output o Sum S= Output o Diff D=	1, Car f Hal 1, Bo f Full 0, Car f Full	rry C=0 f Subtr rrow B l Adder rry C=1 . Subtra	actor o =1				
2	Theory	outputs a shown be	f Addas Suelow: tts 0 1 Truth	m(S) a	nd C	mbinational digital circuit that adds two binary digits and produces two Carry (C). The circuit, Block diagram and truth table of Half Adder are			
		Full Add		er is a	comb	nbinational digital circuit that adds three binary digits and produces two			

outputs as Sum (S) and Carry (C_{out}). The first two inputs are A and B and the third input is an

input carry designated as C_{in}. The circuit diagram and Truth Table of a full adder are given below:

Input(A)	Input(B)	Input(Cin)	Sum(S)	Carry(Cout)
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Half Subtractor:

The Half-Subtractor is a combinational circuit which is used to perform subtraction of two bits. It has two inputs, A (minuend) and B (subtrahend) and two outputs D (difference) and Bo (borrow). The circuit diagram and Truth Table of a half subtractor are given below:

Full Subtractor:

A combinational circuit which performs the subtraction of three input bits is called full subtractor. The three input bits include two significant bits and a previous borrow bit. A full subtractor circuit can be implemented with two half subtractors and one OR gate. The circuit diagram and Truth Table of a full subtractor are given below:

Input(A)	Input(B)	Input(C)	Diffence	Borrow(Bout)
			D	
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

3 **Procedure** Steps:

- 1. Start the simulator by using https://circuitverse.org/simulator link
- 2. Design the circuit as shown in the theory section.
- 3. Set the inputs as shown in the Input section
- 4. And verify the output as mentioned in the output section
- 5. Take the screenshot and create a PDF document
- 6. Upload this PDF document on the given assignment link onto the moodle.

4 Viva questions

Draw the full adder using half adders.

Draw the full subtractor using half subtractor.

What is a major limitation of a half adder?

	Experiment Number < 3 >			
1	Aim / Objective / problem statement	Implement 3-bit parallel Binary Adder/Subtractor.		
	sample input	$A_2A_1A_0 = 110$ $B_2B_1B_0 = 101$		
	expected output	When M=0, $S_2S_1S_0 = 011$, $C_3 = 1$ When M=1, $S_2S_1S_0 = 001$ $C_3 = 1$		
2	Theory	Binary Adder/Subtractor:		
		A 3-bit Binary Adder-Subtractor is a digital circuit for both addition and subtraction of two 3-bit binary numbers in one circuit itself. The operation being performed depends upon the binary value the control signal M.		
		The circuit consists of 3 full adders. There is a control line M that holds a binary value of either 0 or 1. M=0 determines that the operation is addition. M=1 determines that the operation is subtraction.		
		XOR gate complements its input if the other input is 1. The XOR gate properties given below.		
		$X \oplus 1 = X'$		
		$X \oplus 0 = X$		
		The 3-bit Binary Adder/Subtractor is shown below:		
		$\begin{bmatrix} B_2 & A_2 & B_1 & A_1 & B_0 & A_0 \\ & & & & & & & & & & & & & \end{bmatrix}$		
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
3	Procedure	Steps: 1. Start the simulator by using https://circuitverse.org/simulator link 2. Design the circuit as shown in the theory section. 3. Set the inputs as shown in the Input section 4. And verify the output as mentioned in the output section 5. Take the screenshot and create a PDF document 6. Upload this PDF document on the given assignment link onto the moodle.		

4	Viva questions	How many full adders and XOR gates are required to make 4-bit Binary Adder/Subtractor?
		What is the disadvantage of a ripple adder?
		Draw the 4-bit parallel Binary Adder/Subtractor

Aim / Objective / problem statement	Implement 3-bit carry look-ahead adder.			
sample input	$A_2A_1A_0 = 110$ $B_2B_1B_0 = 101$			
expected output	$S_2S_1S_0 = 011$, $C_3 = 1$			
Theory	Carry look ahead Adder: Carry look-ahead adder utilizes the logic gates to look at the lower order bits of augmend and addend to see if a higher order carry is to be generated or not. Carry look-ahead uses the two concepts of carry propagate and carry generate functions. This adder uses the following equations for i th stage: Carry propagate P _i =A _i ⊕B _i Carry generate Gi=A _i .B _i Sum S _i = P _i ⊕ C _i Carry C _{i+1} =Gi+Pi.Ci The circuit diagram of 3-bit Carry Look-Ahead Adder is shown in the following figure:			
	Ao Po Po Co			
Procedure	Steps: 1. Start the simulator by using https://circuitverse.org/simulator lnk. 2. Design the circuit as shown in the theory section. 3. Set the inputs as shown in the Input section 4. And verify the output as mentioned in the output section 5. Take the screenshot and create a PDF document 6. Upload this PDF document on the given assignment link onto the moodle.			
4 Viva questions 1. What property distinguishes a look-ahead-carry adder from ripple adder?				

2. What are the two functions Carry look-ahead logic uses to create carry look-ahead generator circuit?
3. What is carry propagation delay?

Implement 4-bit Binary -to -Gray, Gray -to -Binary code converter. Input: For circuit 1: Binary code $(B_3B_2B_1B_0) = 0101$ Input: For circuit 2: Gray code $(G_3G_2G_1G_0) = 0111$ Output: For circuit 1: Gray code $(G_3G_2G_1G_0) = 0111$ Output: For circuit 2: Binary code $(B_3B_2B_1B_0) = 0101$ Gray Code: Gray code is a binary numeral system where two successive values differ in only one bit. Binary to Gray:
Input: For circuit 2: Gray code $(G_3G_2G_1G_0)=0111$ Output: For circuit 1: Gray code $(G_3G_2G_1G_0)=0111$ Output: For circuit 2: Binary code $(B_3B_2B_1B_0)=0101$ Gray Code: Gray code is a binary numeral system where two successive values differ in only one bit. Binary to Gray:
Output: For circuit 2: Binary code $(B_3B_2B_1B_0) = 0101$ Gray Code: Gray code is a binary numeral system where two successive values differ in only one bit. Binary to Gray:
Gray code is a binary numeral system where two successive values differ in only one bit. Binary to Gray:
Binary to gray code converter is a combinational circuit that converts a binary number into a gray code. The circuit diagram of Binary to Gray Converter is shown in the following figure: Barry

Truth table for conversion:

			-
	N.T.	D:	G 1
S	. No	Binary code	Gray code
		$(B_3B_2B_1B_0)$	$(G_3G_2G_1G_0)$
			0000
0		0000	0000
1		0001	0001
2		0010	0011
3		0011	0010
4		0100	0110
5		0101	0111
6		0110	0101
7		0111	0100
8		1000	1100
9		1001	1101
10	0	1010	1111
1	1	1011	1110
12	2	1100	1010
1.	3	1101	1011
14	4	1110	1001
1:	5	1111	1000
teps:	Stort	the cimulator	by using bttps:
1. 2.			by using <u>https:</u> as shown in the
3.			own in the Inp
4.			out as mentione
5. 6			t and create a I
`	LINIO	an thic PLIH do	acument on the

5. Take the screenshot and create a PDF document 6. Upload this PDF document on the given assignment link onto the moodle. What is the property of gray code? What are the applications of gray code? What are the weighted and un-weighted codes? Is gray code weighted?

Procedure

		Exper	iment N	umber <	6>			
1	Aim / Objective / problem statement	Implement a 2x	x2 Binary	y Multip	lier.			
	sample input	Inputs: $A_1A_0 = 1$ $B_1B_0 = 1$						
	expected output	$P_5P_4P_3P_2P_1P_0 =$	101010					
2	Theory	A binary multiple A binary multiple numbers. The binary multiperformed as gi	lier is a co	of two 2	2-bit num	bers A (A		y two binary $B (B_1 B_0)$ can be
					B2	2 B1	BO	
					A2B0	A1B0	A0B0	
				A2B1	A1B1	A0B1	×	
			A2B2	A1B2	A0B2	X	×	
		B	PA	3	P2	R	Po	
		The circuit diagimage.	ram of 3x	x3 bit bin	ary multi	plier has	been show	n in the following

	Experiment Number < 7 >					
1 Aim / Objective / problem statement Implement (4 to 2) line and (8 to 3) line Encoders.						
	sample input	Input for (4 to 2) line Encoder: $D_0D_1D_2D_3 = 0001$ Input for (8 to 3) line Encoder: $D_0D_1D_2D_3D_4D_5D_6D_7 = 00010000$				
	expected output	Output for (4 to 2) line Encoder: AB=11 Output for (8 to 3) line Encoder: ABC=011				
2	Theory	Encoder				

An Encoder is a combinational circuit that has maximum of 2ⁿ input lines and 'n' output lines; hence it encodes the information from 2ⁿ inputs into an n-bit code. It will produce a binary code equivalent to the input, which is active High.

(4 to 2) line Encoder:

The 4 to 2 Encoder consists of four inputs D₀ D₁ D₂ D₃, and two outputs A and B. (4 to 2) Encoder encodes the information from 4 inputs into a 2-bit code. The circuit diagram and truth table of (4 to 2) line Encoder are shown below:

	Inp		Outputs		
D0	D1	D2	D3	A	В
1	0	0	0	0	0
0	1	0	1	0	1
0	0	1	0	1	0
0	0	1	1	1	1

(8 to 3) line Encoder:

The 8 to 3 Encoder or octal to Binary encoder consists of 8 inputs: D7 to D0 and 3 outputs A, B and C. Each input line corresponds to each octal digit and three outputs generate corresponding binary code. The circuit diagram and truth table of (8 to 3) line Encoder are shown below:

Truth table for (8 to 3) line Encoder:

D_0	D_1	D_2	D_3	D_4	D_5	D_6	D_7	\boldsymbol{A}	\boldsymbol{B}	C
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

Steps: Start the simulator by using https://circuitverse.org/simulator Design the circuit as shown in the theory section. Set the inputs as shown in the Input section And verify the output as mentioned in the output section Take the screenshot and create a PDF document Upload this PDF document on the given assignment link onto the moodle.

What is Priority Encoder? What is decimal to BCD encoder? What are the applications of an encoder circuit?

		Experiment Number < 8 >						
1	1 Aim / Objective / problem statement Implement (2 to 4) line and (3 to 8) line Decoders.							
	sample input	Input for (2 to 4) line decoder: B ₁ B ₀ =11 Input for (3 to 8) line decoder: ABC=011						
	expected output	Output for (2 to 4) line Encoder: $D_0D_1D_2D_3 = 0001$ Output for (3 to 8) line Encoder: $D_0D_1D_2D_3D_4D_5D_6D_7 = 00010000$						
2	Thoopy	Donadow						

2 Theory

Decoder:

In Digital Electronics, discrete quantities of information are represented by binary codes. A binary code of n bits is capable of representing up to 2ⁿ distinct elements of coded information.

A decoder is a combinational circuit that converts binary information from n input lines to a maximum of 2^n unique output lines.

(2 to 4) Decoder:

The (2 to 4) decoder consists of **two** inputs B_1 and B_0 , and four outputs $D_0 D_1 D_2 D_3$. (4 to 2) decoder decodes the information from 2 inputs into a 4-bit code.

The circuit diagram and truth table of (2 to 4) line decoder are given below:

Truth Table for (2 to 4) line decoder:

In	puts		Outputs					
B1	B0	D0	D1	D2	D3			
0	0	1	0	0	0			
0	1	0	1	0	1			
1	0	0	0	1	0			
1	1	0	0	1	1			

(3 to 8) line DECODER:

The (3 to 8) decoder consists of **three** inputs A, B, and C, and eight outputs $D_0 D_1 D_2 D_3 D_4 D_5 D_6 D_7$. (3 to 8) decoder decodes the information from 2 inputs into a 4-bit code.

The circuit diagram and truth table of (2 to 4) line decoder are given below:

Truth Table of (3 to 8) line DECODER:

	INPUTS	6				OUTF	PUTS			
Α	В	С	D ₀	D ₁	D ₂	D ₃	D ₄	D ₅	D ₆	D ₇
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

3	Procedure	Steps:
		1. Start the simulator by using https://circuitverse.org/simulator link
		2. Design the circuit as shown in the theory section.
		3. Set the inputs as shown in the Input section
		4. And verify the output as mentioned in the output section
		5. Take the screenshot and create a PDF document
		6. Upload this PDF document on the given assignment link onto the moodle.
4	Viva questions	Draw the 3x8 decoder using 2x4 decoders.
		What is a binary decoder?
		What are the applications of a decoder?

	Experiment Number < 9 >							
1	Aim / Objective / problem statement	Implement 4x1 and 8x1 Multiplexers.						
	sample input	Inputs For 4x1Mux: S1S0 = 00, Inputs For 8x1Mux: S2S1S0 = 000						
	expected output	When I_0 =0, then Y=0 When I_0 =1, then Y=1 {in both the circuits}						
2	Theory	Multiplexer:						
		Multiplexers are circuits that can select one of many inputs.						
		4x1 Multiplexer:						
		4:1-Mux has 4 inputs with only 1 output. It has 2 data selector inputs namely S0 and S1, at which the control bits are applied. I ₀ , I ₁ , I ₂ , and I ₃ represent the inputs bits. Only one of these will be transmitted to the output. But which one of the inputs will be transmitted will depend on the values of the controls. The selection						

S.No	SELECTI	OUTPUT	
3.110	S1 S0		Y
1.	0	0	I_0
2.	0	1	I_1
3.	1	0	I_2
4.	1	1	I_3

The following circuit diagram shows 4x1 multiplexer:

8x1 Multiplexer:

It has 8 inputs with only 1 output Y. It has 3 data selector inputs namely S0, S1, and S_2 at which the control bits are applied.

I₀, I₁, I₂, I₃, I₄, I₅, I₆, and I₇ represent the inputs bits. Only one of these will be transmitted to the output Y. But which one of the inputs will be transmitted will depend on the values of the controls. The circuit diagram and the selectiontable (truth table) of 8x1 Multiplexer are given below:

SEI	OUTPUT		
S2	S 1	S0	Y
0	0	0	I_0
0	0	1	I_1
0	1	0	I_2
0	1	1	I_3
1	0	0	I_4
1	0	1	I_5
1	1	0	I_6
1	1	1	I_7

3 Procedure

Steps:

- 1. Start the simulator by using https://circuitverse.org/simulator link
- 2. Design the circuit as shown in the theory section.
- 3. Set the inputs as shown in the Input section
- 4. And verify the output as mentioned in the output section

		5. Take the screenshot and create a PDF document6. Upload this PDF document on the given assignment link onto the moodle.
4	Viva questions	1. Draw the block diagram of 8 input multiplexer using 2-input multiplexer, 16 input multiplexer using 2-input multiplexer.
		2. What are the applications of a multiplexer?
		3. Implement the following function using 4x1 Mux. $F(A, B, C) = \sum (2, 4,7)$

	Experiment Number < 10>						
1	Aim / Objective / problem statement 1x4 and 1x8 De-multiplexers.						
	sample input	Inputs For 1x4 De-Mux: S1S0 = 00, Inputs For 1x8 De-Mux: S2S1S0 = 000					
	expected output	When I=0, then Y_0 =0 When I=1, ten Y_0 =1					
2	Theory	Demultiplexer: A demultiplexer is a combinational logic circuit with an input line, 2 ⁿ output lines and n select lines. It routes the information present on the input line to any of the output lines. The output line that gets the information present on the input line is decided by the bit status of the selection lines. 1x4 Demultiplexer: It has only data input I with 4 outputs namely Y ₀ , Y ₁ , Y ₂ , and Y ₃ . It has two data selector inputs namely S ₀ and S ₁ , at which control bits are applied. The data bit is transmitted to any of the data bit Y ₀ , Y ₁ , Y ₂ , and Y ₃ of the output lines. Which particular output line will be chosen will depend on the value of S ₁ and S ₀ the control input. The circuit diagram and the selection table (truth table) of 1x4 Demultiplexer are given below:					

Selection table:

I	INPUT			OUTPUT			
S 1	S2	I	Y0	Y1	Y2	Y3	
0	0	0	0	0	0	0	
0	0	1	1	0	0	0	
0	1	0	0	0	0	0	
0	1	1	0	1	0	0	
1	0	0	0	0	0	0	
1	0	1	0	0	1	0	
1	1	0	0	0	0	0	
1	1	1	0	0	0	1	

1x8 Demultiplexer:

It has only data input I with 8 outputs namely Y_0 , Y_1 , Y_2 , Y_3 , Y_4 , Y_5 , Y_6 , and Y_7 . It has three data selector inputs namely S0, S1 and S2, at which control bitsare applied. The data bit is transmitted to any of the Y_0 , Y_1 , Y_2 , Y_3 , Y_4 , Y_5 , Y_6 , and Y_7 output lines. Which particular output line will be chosen will depend on the value of S0, S1, and S2 the control input. The circuit diagram and the selection table (truth table) of 1x8 Demultiplexer are given below:

		Selection Table						
				Selection In	put	Output Selected		
			S2	S1	S 0	Y		
			0	0	0	Y_0		
			0	0	1	Y_1		
			0	1	0	Y_2		
			0	1	1	Y ₃		
			1	0	0	Y_4		
			1	0	1	Y_5		
			1	1	0	Y ₆		
			1	1	1	Y_7		
3	Procedure	2. Design to3. Set the in4. And ver5. Take the	 Start the simulator by using https://circuitverse.org/simulator link Design the circuit as shown in the theory section. Set the inputs as shown in the Input section And verify the output as mentioned in the output section Take the screenshot and create a PDF document Upload this PDF document on the given assignment link onto the 					
4	Viva questions	1. Draw a 1x8 d	emultiplexe	r using 1x4	-demultiplex	er.		
		2. Why a demul	2. Why a demultiplexer is called a data distributor?					
		3. How many selection lines are required in 1x64 demultiplexer.						

		Experiment Number < 11 >			
1	Aim / Objective / problem statement	Verify the characteristic/state tables of SR and D FLIP-FLOPS using NAND gates			
	sample input	Input for SR Flip Flop: S=1, R=0 Input for D Flip Flop: D=1, En=1,			
	expected output	Q=1 { output for both the circuits}			
2	Theory	Flip Flop: Flip Flop is a sequential digital circuit that stores one bit. Types of the flip flops are: • SR Flip Flop • D Flip Flop • JK Flip Flop • T Flip Flop • Master-Slave JK Flip Flop SR Flip Flop			
		SR flip flop is a circuit with two cross coupled NAND gates or NOR gates, and two input labeled S for set and R for Reset. The flip flop has two useful states. When output Q=1 and Q'=0 the flip flop is said to be in set state and when output Q=0 and Q'=1, it is in the reset state. Outputs Q and Q' are normally complement of each other. However, when both inputs are equal to 1 at the same time, a condition in which both outputs are equal to 0 occurs. If both the inputs are then switched to 0 simultaneously, the device will enter an			

unpredictable or undefined state. In practical applications, setting both inputs to 1 is forbidden. The logic diagram of SR flip flop using NAND gate and its characteristic table are given below:

Operation Mode	S	R	Q _{n+1}
No change	0	0	Qn
SET	1	0	1
RESET	0	1	0
Forbidden	1	1	-

D Flip Flop:

The D input goes directly to the S input and its complement is applied to R input. As long as the enable is at 0, the cross-coupled SR latch has both inputs at the level 1 and the circuit cannot change state regardless of the value of D. The D input is sampled when En =1. If D =1, the Q output goes to 1, placing the circuit in the set state. If D=0, output Q goes to 0, placing the circuit in the reset state. The logic diagram of D flip flop using NAND gate and its characteristic table are given below:

		En Q					
3	Procedure	Steps: 1. Start the simulator by using https://girauityorse.org/simulator link					
		 Start the simulator by using https://circuitverse.org/simulator link Design the circuit as shown in the theory section. 					
		3. Set the inputs as shown in the Input section.					
		4. And verify the output as mentioned in the output section					
		5. Take the screenshot and create a PDF document					
		6. Upload this PDF document on the given assignment link onto the moodle.					
4	Viva questions	1. What is difference between the flip flop and latch?					
		2. Draw the SR flip flop and D flip flop using NOR gates					
		3. What is a sequential digital circuit?					

		Experiment Number < 12 >
1	Aim / Objective / problem statement	Design a 2-bit Arithmetic Logic Unit.
	sample input	S1S0=00 A1A0=11 B1B0=01
	expected output	Output of Arithmetic Unit: When $C_0 = 0$ D1D0=00, C2=1 When $C_0 = 1$ D1D0= 01, C2=1 Output of Logic Unit: $E0 = A_0 \cdot B_0 = 1$
2	Theory	Arithmetic Unit:

The circuit diagram of arithmetic unit given below can perform the arithmetic microoperations listed in the given table. By controlling the data inputs to the adder, it is possible to obtain different types of arithmetic operations. The diagram of a 4-bit arithmetic circuit shown below. It has two full adders and two multiplexers for selecting different operations.

There are two 2-bit inputs A and B and 2-bit output D. the input A directly goes to X inputs of the binary adders.

The multiplexer takes input B, Complement of B, 0 and 1 as input. The selection of inputs is controlled by S1 and S0 selection lines.

The output of the binary adder is calculated by D = A + Y + Cin. The possible generated microperations using this equation for different combinations of inputs are given in the arithmetic function table.

The arithmetic function table:

Select		Input	Output			
S_1	S_0	$C_{\rm in}$	Y	$D = A + Y + C_{\rm in}$	Microoperation	
0	0	0	В	D = A + B	Add	
0	0	1	B	D = A + B + 1	Add with carry	
0	1	0	\overline{B}	$D = A + \overline{B}$	Subtract with borrow	
0	1	1	\overline{B}	$D = A + \overline{B} + 1$	Subtract	
1	0	0	0	D = A	Transfer A	
1	0	1	0	D = A + 1	Increment A	
1	1	0	1	D = A - 1	Decrement A	
1	1	1	1	D = A	Transfer A	

One Stage of Logic Unit:

One stage of logic unit given in the following figure generates the four basic logic microoperations. It consists of four gates and a multiplexer. The outputs of the logic gates are applied to the input of multiplexer. The selection inputs S1 and S0 choose one of the data inputs. The diagram of one stage of logic unit and the corresponding function table are given below:

The Final ALU circuit design:

3 Procedure Steps:

- 1. Start the simulator by using https://circuitverse.org/simulator link
- 2. Design the circuit as shown in the theory section.
- 3. Set the inputs as shown in the Input section
- 4. And verify the output as mentioned in the output section
- 5. Take the screenshot and a PDF document
- 6. Upload this PDF document on the given assignment link onto the moodle.

4 Viva questions

- 1. Draw the 4-bit arithmetic unit:
- 2. Register A holds the 8-bit binary 11011001. Determine the B operand and the logic microoperation to be performed in order to change the value in A to 01101101
- 3. What is the purpose of ALU?