Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Отчёт по лабораторной работе № 3

Дисциплина: Вычислительная математика

Выполнил студент гр. 3530901/10001	(подпись)	_ Д.Л. Симоновский
Руководитель _	(подпись)	В.Н. Цыган

"<u>28</u>" февраля 2023 г.

Санкт-Петербург

Оглавление

Задание:	2
Инструменты:	2
Ход выполнения работы:	2
Порядок действий:	2
Первая задача:	2
Полная формулировка:	2
Решение:	3
Вторая задача:	3
Полная формулировка:	3
Решение:	3
Результат:	6
Вывод:	10
Листинг кода:	12
Correction	15

Задание:

Вариант 11:

Привести дифференциальное уравнение: ty'' - (t+1)y' - 2(t-1)y = 0 к системе двух дифференциальных уравнений первого порядка.

Начальные условия: $y(t = 1) = e^2$; $y'(t = 1) = 2e^2$

Точное решение: $y(t) = e^{2t}$

Решить на интервале: $1 \le t \le 2$

- 1. Используя программу RKF45 с шагом печати h_{print} = 0.1 и выбранной вами погрешностью EPS в диапазоне 0.001-0.00001, а также составить собственную программу и решить с шагом интегрирования h_{int} = 0.1
- 2. Используя метод Рунге-Кутты 3-й степени точности.

Сравнить результаты, полученные заданными приближенными способами, с точным решением.

Исследовать влияние величины шага интегрирования h_{int} на величины локальной и глобальной погрешностей решения заданного уравнения для чего решить уравнение, используя 2-3 значения шага интегрирования, существенно меньшие исходной величины 0.1 (например, $h_{int} = 0.05$; $h_{int} = 0.025$; $h_{int} = 0.0125$)

Инструменты:

Для работы был выбран язык программирования Python версии 3.11 по причине удобства его использования для поставленной задачи. Были выбраны следующие библиотеки:

- NumPy для большей скорости расчетов и простоты обработки
- SciPy для функции расчета решения дифура
- PrettyTable для красивого вывода таблицы в консоль
- MatPlotLib для вывода графиков

Ход выполнения работы:

Порядок действий:

Поставленное задание легко можно разбить на две глобальные задачи:

- 1. Сведение поставленной задачи к системе двух дифференциальных уравнений первого порядка.
- 2. Получить решение используя RKF45 и методы Рунге-Кутты 3-й степени

Первая задача:

Полная формулировка:

Привести дифференциальное уравнение: ty'' - (t+1)y' - 2(t-1)y = 0 к системе двух дифференциальных уравнений первого порядка.

Решение:

В начале сделаем коэффициент при старшей степени равным 1, для этого поделим уравнение на t:

$$y''-\frac{(t+1)}{t}y'-\frac{2(t-1)}{t}y=0$$
 Возьмем $\alpha_1=-\frac{(t+1)}{t}$ и $\alpha_2=-\frac{2(t-1)}{t}$, получим:
$$y''+\alpha_1y'+\alpha_2y=0$$

Решение этого уравнение эквивалентно решению системы $\frac{dx}{dt} = Ax + f(t)$, где f(t) = 0, А — матрица Фробениуса вида: $A = \begin{pmatrix} -\alpha_1 & -\alpha_2 \\ 1 & 0 \end{pmatrix}$, $x = \begin{pmatrix} x^{(1)} \\ x^{(2)} \end{pmatrix} = \begin{pmatrix} y' \\ y \end{pmatrix}$. Таким образом получим систему:

$$\begin{cases} x^{(2)'} = x^{(1)} \\ x^{(1)'} = \alpha_1 x^{(1)} + \alpha_2 x^{(2)} \end{cases}$$

Вторая задача:

Полная формулировка:

Решить систему дифференциальных уравнений перового порядка.

Начальные условия: $y(t = 1) = e^2$; $y'(t = 1) = 2e^2$

Точное решение: $y(t) = e^{2t}$

Решить на интервале: $1 \le t \le 2$

- 1. Используя программу RKF45 с шагом печати h_{print} = 0.1 и выбранной вами погрешностью EPS в диапазоне 0.001-0.00001, а также составить собственную программу и решить с шагом интегрирования h_{int} = 0.1
- 2. Используя метод Рунге-Кутты 3-й степени точности.

Сравнить результаты, полученные заданными приближенными способами, с точным решением.

Исследовать влияние величины шага интегрирования h_{int} на величины локальной и глобальной погрешностей решения заданного уравнения для чего решить уравнение, используя 2-3 значения шага интегрирования, существенно меньшие исходной величины 0.1 (например, $h_{int} = 0.05$; $h_{int} = 0.025$; $h_{int} = 0.0125$)

Решение:

Для дальнейшего использования сразу же зададим функцию, для получения значений системы уравнений:

```
def f(t, X):
    dX = np.zeros(X.shape)
    dX[0] = X[1]
    dX[1] = (t + 1) / t * X[1] + 2 * (t - 1) / t * X[0]
    return dX
```

Так же нам понадобится функция для получения точно значения решения (чтоб сравнивать погрешности):

```
def g(T):
    return np.e ** (2 * T)
```

Далее нам понадобится функция, которая будет моделировать RKF45, к счастью, в библиотеке scipy уже имеется подходящий вариант, правда требующий дополнительной настройки, а конкретно передачу параметра 'dopri5' для настройки интегратора и выставления параметра погрешности atol на значение 0.0001:

```
def rkf45(f, T, X0):
    runge = ode(f).set_integrator('dopri5', atol=0.0001).set_initial_value(X0, T[0])
    X = [X0, *[runge.integrate(T[i]) for i in range(1, len(T))]]
    return np.array([i[0] for i in X])
```

Метод Рунге-Кутты по заданию необходимо написать самостоятельно. Для начала вспомним, как выглядит метод Рунге-Кутты третьей степени:

$$\begin{cases} x_{n+1} = x_n + \frac{2k_1 + 3k_2 + 4k_3}{9}, \\ k_1 = hf(t_n, x_n), \\ k_2 = hf(t_n + \frac{h}{2}, x_n + \frac{k_1}{2}), \\ k_3 = hf(t_n + \frac{3h}{4}, x_n + \frac{3k_2}{4}) \end{cases}$$

Теперь необходимо реализовать его в виде метода:

```
def Runge_Kutta(f, T, X0):
    X = np.zeros((len(T), len(X0)))
    X[0] = X0
    h = T[1] - T[0]
    for i in range(0, len(T) - 1):
        k_1 = h * f(T[i], X[i])
        k_2 = h * f(T[i] + h / 2, X[i] + k_1 / 2)
        k_3 = h * f(T[i] + 3 * h / 4, X[i] + 3 * k_2 / 4)
        X[i + 1] = (X[i] + (2 * k_1 + 3 * k_2 + 4 * k_3) / 9)
    return X[:, 0]
```

Все методы, необходимые для подсчета реализованы. Создадим отдельную функцию для подсчета решения с разным шагом (т.к. этого требует задание), в ней сразу же зададим начальные значения, узлы, по которым будет искаться решение и значение функции в этих точках (для дальнейшего подсчета погрешности):

```
def evaluate(h):
    # Начальные значения
    X0 = np.array([np.e ** 2, 2 * np.e ** 2])
    # Значения в узлах
    T = np.arange(1, 2 + h, h)
    Y = g(T)
```

Воспользовавшись методами, которые были приведены выше, выполним расчеты:

```
# Расчет RKF45
Y_RKF45 = rkf45(f, T, X0)
# Расчет Рунге-Кутты
Y_Runge_Kutta = Runge_Kutta(f, T, X0)
# Погрешности
Y_RKF45_error = Y - Y_RKF45
Y_Runge_Kutta_error = Y - Y_Runge_Kutta
```

Далее необходимо вывести полученные значения на экран, используем для этого библиотеку MatPlotLib. Отдельно выведем графики погрешности и полученные значения:

```
def print_one_graph(t, y, title, id, count_graphs):
      Функция для отрисовки одного графика
      plt.subplot(1, count_graphs, id)
plt.xlabel('t')
      plt.ylabel('y')
      plt.grid()
      plt.title(title)
       plt.plot(t, y, '-o')
  def print_graph(t_find, y_real, Y_RKF45, Y_Runge_Kutta, h):
      Функция для отрисовки всех графиков
      mpl.use('TkAgg')
      plt.figure(figsize=(15, 4))
      print_one_graph(t_find, y_real, 'Исходный график', 1, 3)
print_one_graph(t_find, Y_RKF45, 'График RKF45', 2, 3)
print_one_graph(t_find, Y_Runge_Kutta, 'График Рунге-Кутты', 3, 3)
       plt.savefig(f"Graphs_{h}.jpg")
       plt.show()
  def print_error_graph(t_find, Y_RKF45_error, Y_Runge_Kutta_error, h):
      Функция для отрисовки погрешности
      mpl.use('TkAgg')
      plt.figure(figsize=(15, 4))
       # Собственно сам график
       print_one_graph(t_find, Y_RKF45_error, 'Погрешность RKF45', 1, 2)
       print_one_graph(t_find, Y_Runge_Kutta_error, 'Погрешность Рунге-Кутты', 2, 2)
       plt.savefig(f"Error_{h}.jpg")
       plt.show()
```

Вызовем их из функции evaluate, для отрисовки всех графиков:

```
# Рисуем графики
print_graph(T, Y, Y_RKF45, Y_Runge_Kutta, h)
print_error_graph(T, Y_RKF45_error, Y_Runge_Kutta_error, h)
```

Далее для дополнительного анализа выведем значения в консоль, используя библиотеку prettytable:

```
def print_table(t_find, y_real, Y_RKF45, Y_RKF45_error, Y_Runge_Kutta, Y_Runge_Kutta_error,
  h):
       print(f'h = \{h\}')
       koef = {0.1: 1, 0.05: 2, 0.025: 4, 0.0125: 8}.get(h)
       pt = PrettyTable()
       pt.add_column('t', [f'{i:.1f}' for i in t_find[::koef]])
       pt.add_column('real y', [f'{i:.15f}' for i in y_real[::koef]])
pt.add_column('RKF45 y', [f'{i:.15f}' for i in Y_RKF45[::koef]])
       pt.add_column('Delta RKF45 y', [f'{i:.15f}' for i in Y_RKF45_error[::koef]])
pt.add_column('Runge Kutta y', [f'{i:.15f}' for i in Y_Runge_Kutta[::koef]])
       pt.add_column('Delta Runge Kutta y', [f'{i:.15f}' for i in
  Y_Runge_Kutta_error[::koef]])
       print(pt)
       print('First step of RKF45:', Y_RKF45_error[1])
       print('First step of Runge Kutta:', Y_Runge_Kutta_error[1])
       print('Global of RKF45:', Y_RKF45_error[::koef].sum())
       print('Global of Runge Kutta:', Y_Runge_Kutta_error[::koef].sum())
       print('h^4 is about:', h ** 4)
       print('h^4 / Runge Kutta first step:', h ** 4 / Y_Runge_Kutta_error[1])
       print('=' * 110)
```

Еще необходимо выполнить анализ погрешности, для этого будем сохранять её при вызове функции evaluate, а после выведем все это на экран в виде таблицы, используя уже известную библиотеку:

```
def print_table_error(Y_RKF45_error, Y_Runge_Kutta_error, h_list):
    pt = PrettyTable()
    pt.add_column('h', [f'{i:.4f}' for i in h_list])
    pt.add_column("Runge Kutta Error local", [f'{i[1]:.15f}' for i in Y_Runge_Kutta_error])
    pt.add column('h**4 / Runge Kutta Error local'
                     [f'{i ** 4 / j[1]:.15f}' for i, j in zip(h_list, Y_Runge_Kutta_error)])
    print(pt)
    pt.clear()
    pt.add_column('h', [f'{i:.4f}' for i in h_list])
    pt.add_column("Runge Kutta Error global", [f'{i.sum():.15f}' for i in
Y_Runge_Kutta_error])
    pt.add column('h**2 / Runge Kutta Error global',
                     [f'{i ** 2 / j.sum():.15f}' for i, j in zip(h_list, Y_Runge_Kutta_error)])
    print(pt)
    pt.clear()
    pt.add_column('h', [f'{i:.4f}' for i in h_list])
    pt.add_column("RKF45 Error local", [f'{i[1]:.15f}' for i in Y_RKF45_error])
pt.add_column("RKF45 Error global", [f'{i.sum():.15f}' for i in Y_RKF45_error])
    pt.add_column("Runge Kutta Error local", [f'{i[1]:.15f}' for i in Y_Runge_Kutta_error]) pt.add_column("Runge Kutta Error global", [f'{i.sum():.15f}' for i in
Y_Runge_Kutta_error])
    print(pt)
```

Результат:

Как и ожидалось, полученные графики практически не отличаются:

Рис. 1. График решения при h = 0.1

Рис. 4. График решения при h = 0.0125

Больший интерес представляют графики погрешности:

Рис. 5. График погрешности при h = 0.1

Рис. 8. График погрешности при h = 0.0125

Как можно заметить, форма самого графика остается одинаковой, однако порядок сильно меняется, при изменении шага.

Так же даже по графику заметно, что погрешность метода Рунге-Кутты третьей степени значительно проигрывает программе RKF45, что достаточно ожидаемо, ведь в основе этой программы лежат методы Рунге-Кутты четвертой и пятой степени точности.

Для анализа зависимости шага интегрирования h_{int} и величины локальной и глобальной погрешностей решения заданного уравнения обратимся к численным результатам исследования:

First step of RKF45: -1.743556410360725e-08 First step of Runge Kutta: 0.0005129839401529779 Global of RKF45: -1.937042049959814e-05

Global of Runge Kutta: 0.10432030445312179 h^4 is about: 0.00010000000000000000

h^4 / Runge Kutta first step: 0.1949378765545347

Рис. 9. Результат исследования при h = 0.1

h	_	0 05
п		כט.ט

t	real y	RKF45 y	Delta RKF45 y	Runge Kutta y	Delta Runge Kutta y
1.0 1.1 1.2 1.3	7.389056098930650 9.025013499434122 11.023176380641605 13.463738035001695 16.444646771097059	7.389056098930650 9.025013501625160 11.023176388458154 13.463738050827361 16.444646798095160	0.0000000000000000 -0.000000002191038 -0.000000007816549 -0.000000015825666 -0.000000026998102	7.389056098930650 9.024944064111462 11.023006764304872 13.463427281404844 16.444140699310093	0.0000000000000000 0.000069435322660 0.000169616336732 0.000310753596851 0.00056071786965
1.5 1.6 1.7 1.8 1.9 2.0	20.085536923187682 24.532530197109370 29.964100047397046 36.598234443678031 44.701184493300886 54.598150033144321	20.085536965529673 24.532530260266185 29.964100138510030 36.598234572030442 44.701184670916255 54.598150275544839	-0.000000042341991 -0.000000063156815 -0.000000091112984 -0.000000128352411 -0.000000177615370 -0.000000242400517	20.084764279314374 24.531397750236174 29.962486350914514 36.595981911389273 44.698089349913182 54.593949586335228	0.000772643873308 0.001132446873196 0.001613696482533 0.002252532288757 0.003095143387704 0.004200446809094

First step of RKF45: -7.847944516470307e-11 First step of Runge Kutta: 3.1413899460375205e-05 Global of RKF45: -1.4647554884561487e-06 Global of Runge Kutta: 0.025995142229312762

h^4 is about: 6.250000000000001e-06

 $\ensuremath{\text{h}^{\text{4}}}$ / Runge Kutta first step: 0.1989565162988954

Рис. 10. Результат исследования при h = 0.05

h = 0.025

1	t	real y	RKF45 y	Delta RKF45 y	+ Runge Kutta y	Delta Runge Kutta y
Ĭ	1.0	7.389056098930650	7.389056098930650	0.0000000000000000	7.389056098930650	0.0000000000000000
ĺ	1.1	9.025013499434113	9.025013499577801	-0.000000000143688	9.025004466700494	0.000009032733619
ĺ	1.2	11.023176380641585	11.023176380992583	-0.000000000350997	11.023154315441113	0.000022065200472
	1.3	13.463738035001660	13.463738035644724	-0.000000000643064	13.463697609276819	0.000040425724841
ĺ	1.4	16.444646771097002	16.444646772144257	-0.000000001047255	16.444580936340852	0.000065834756150
	1.5	20.085536923187593	20.085536924786492	-0.000000001598899	20.085436409796969	0.000100513390624
ĺ	1.6	24.532530197109239	24.532530199452719	-0.000000002343480	24.532382876383917	0.000147320725322
	1.7	29.964100047396858	29.964100050736249	-0.000000003339391	29.963890119904967	0.000209927491891
	1.8	36.598234443677775	36.598234448339191	-0.000000004661416	36.597941408375718	0.000293035302057
ĺ	1.9	44.701184493300531	44.701184499705683	-0.000000006405152	44.700781840110089	0.000402653190442
	2.0	54.598150033143838	54.598150041836362	-0.000000008692524	54.597603587064640	0.000546446079198
+					+	++

First step of RKF45: -3.091749078976136e-11

First step of Runge Kutta: 1.9436371978542866e-06

Global of RKF45: -1.0308740350239987e-07 Global of Runge Kutta: 0.006480486576304401 h^4 is about: 3.906250000000007e-07

h^4 / Runge Kutta first step: 0.2009762935342242

Рис. 11. Результат исследования при h = 0.025

+	t	t real y	+ RKF45 y	Delta RKF45 y	+ Runge Kutta y	++ Delta Runge Kutta y
	1.0 1.1 1.2 1.3 1.4 1.5	7.389056098930650 9.025013499434113 11.023176380641585 13.463738035001660 16.444646771097002 20.085536923187593 24.532530197109239	7.389056098930650 9.025013499438806 11.023176380653045 13.463738035022654 16.444646771131190 20.085536923239793 24.532530197185743	0.000000000000000000000000000000000000	7.389056098930650 9.025012347561770 11.023173566841647 13.463732879827486 16.444638375705598 20.085524105495647 24.532511410433283	0.00000000000000000000000000000000000
	1.7 1.8 1.9 2.0	29.964100047396858 36.598234443677775 44.701184493300531 54.598150033143838	29.964100047505873 36.598234443829952 44.701184493509636 54.598150033427601	-0.000000000076304 -0.0000000000109015 -0.0000000000152177 -0.0000000000209106 -0.0000000000283762	29.964073276951098 36.598197075112964 44.701133145977167 54.598080348967869	0.000018786873933 0.000026770445761 0.000037368564811 0.000051347323364 0.000069684175969

First step of RKF45: -4.920508445138694e-13

First step of Runge Kutta: 1.2086842193781422e-07

Global of RKF45: -6.880966907374386e-09 Global of Runge Kutta: 0.001689689679643891 h^4 is about: 2.4414062500000004e-08

h^4 / Runge Kutta first step: 0.201988758590402

Рис. 12. Результат исследования при h = 0.0125

Можно заметить, что локальная погрешность первого шага метода Рунге-Кутты пропорциональна четвертой степени шага интегрирования, как и было предсказано:

h	Runge Kutta Error local	h**4 / Runge Kutta Error local
0.1000	0.000512983940153	0.194937876554535
0.0500	0.000031413899460	0.198956516298895
0.0250	0.000001943637198	0.200976293534224
0.0125	0.000000120868422	0.201988758590402

Из анализа результатов глобальной погрешности заметна её зависимость от квадрата шага интегрирования, что явно сильно хуже, чем если рассматривать локальную погрешность:

+	4	L
j h	Runge Kutta Error global	h**2 / Runge Kutta Error global
0.1000	0.104320304453122 0.025995142229313	0.095858615946560 0.096171814639311
0.0250	0.006480486576304 0.001689689679644	0.096443375453517
+	+	++

Так же из приведенных результатов (рис. 5-12) более заметна разница между методами Рунге-Кутты 3 степени точности и программой RKF45, как после первого шага, так и при подсчете глобальной погрешности, что сильнее проявляется при уменьшении шага:

	h	RKF45 Error local	RKF45 Error global	Runge Kutta Error local	Runge Kutta Error global
0.0	1000 0500 0250 0125	-0.000000017435564 -0.000000000078479 -0.000000000030917 -0.0000000000000492	-0.000019370420500 -0.000001464755488 -0.000000103087404 -0.000000006880967	0.000512983940153 0.000031413899460 0.000001943637198 0.000000120868422	0.104320304453122 0.025995142229313 0.006480486576304 0.001689689679644

Вывод:

В ходе выполненной работы мы привели линейное дифференциальное уравнение к системе двух дифференциальных уравнений первого порядка, после чего решили эту систему при заданных НУ, используя методы Рунге-Кутты третьей степени точности, а также программу RKF45. Была найдена зависимость шага интегрирования h и величины глобальной и

локальной погрешности а также наглядно продемонстрирована разница между используемыми методами.

Листинг кода:

```
import numpy as np
from scipy.integrate import ode
import matplotlib as mpl
import matplotlib.pyplot as plt
from prettytable import PrettyTable
def rkf45(f, T, X0):
   Решает x' = f(t, x) для каждого t B T
   С начальным значением `X0`, используя аналог rkf45
   return np.array([i[0] for i in X])
def Runge_Kutta(f, T, X0):
   Решает x' = f(t, x) для каждого t B T
   С начальным значением `ХО`, используя формулы Рунге-Кутты 3 степени
   X = np.zeros((len(T), len(X0)))
   X[0] = X0
h = T[1] - T[0]
   for i in range(0, len(T) - 1):
       k_1 = h * f(T[i], X[i])
       k_2 = h * f(T[i] + h / 2, X[i] + k_1 / 2)
       k_3 = h * f(T[i] + 3 * h / 4, X[i] + 3 * k_2 / 4)
       X[i + 1] = (X[i] + (2 * k 1 + 3 * k 2 + 4 * k 3) / 9)
   return X[:, 0]
def f(t, X):
   Правая часть x' = f(t, x).
   dX = np.zeros(X.shape)
   dX[0] = X[1]
   dX[1] = (t + 1) / t * X[1] + 2 * (t - 1) / t * X[0]
   return dX
def g(T):
   Точное решение
   return np.e ** (2 * T)
def print_one_graph(t, y, title, id, count_graphs):
   Функция для отрисовки одного графика
   plt.subplot(1, count_graphs, id)
   plt.xlabel('t')
   plt.ylabel('y')
   plt.grid()
   plt.title(title)
   plt.plot(t, y, '-o')
```

```
def print graph(t find, y real, Y RKF45, Y Runge Kutta, h):
    Функция для отрисовки всех графиков
    mpl.use('TkAgg')
    plt.figure(figsize=(15, 4))
    print_one_graph(t_find, y_real, 'Исходный график', 1, 3)
    print_one_graph(t_find, Y_RKF45, 'График RKF45', 2, 3)
print_one_graph(t_find, Y_Runge_Kutta, 'График Рунге-Кутты', 3, 3)
    plt.savefig(f"Graphs_{h}.jpg")
    plt.show()
def print_error_graph(t_find, Y_RKF45_error, Y_Runge_Kutta_error, h):
    Функция для отрисовки погрешности
    mpl.use('TkAgg')
    plt.figure(figsize=(15, 4))
    # Собственно сам график
    print_one_graph(t_find, Y_RKF45_error, 'Погрешность RKF45', 1, 2)
    print_one_graph(t_find, Y_Runge_Kutta_error, 'Погрешность Рунге-Кутты', 2, 2)
    plt.savefig(f"Error_{h}.jpg")
    plt.show()
def print_table(t_find, y_real, Y_RKF45, Y_RKF45_error, Y_Runge_Kutta,
Y_Runge_Kutta_error, h):
    Функция для отрисовки таблицы
    print(f'h = \{h\}')
    koef = {0.1: 1, 0.05: 2, 0.025: 4, 0.0125: 8}.get(h)
    pt = PrettyTable()
    pt.add_column('t', [f'{i:.1f}' for i in t_find[::koef]])
    pt.add_column('real y', [f'{i:.15f}' for i in y_real[::koef]])
pt.add_column('RKF45 y', [f'{i:.15f}' for i in Y_RKF45[::koef]])
    pt.add_column('Delta RKF45 y', [f'{i:.15f}' for i in Y_RKF45_error[::koef]])
pt.add_column('Runge Kutta y', [f'{i:.15f}' for i in Y_Runge_Kutta[::koef]])
    pt.add_column('Delta Runge Kutta y', [f'{i:.15f}' for i in
Y_Runge_Kutta_error[::koef]])
    print(pt)
    print('First step of RKF45:', Y_RKF45_error[1])
print('First step of Runge Kutta:', Y_Runge_Kutta_error[1])
    print('Global of RKF45:', Y_RKF45_error.sum())
    print('Global of Runge Kutta:', Y_Runge_Kutta_error.sum())
    print('h^4 is about:', h ** 4)
    print('h^4 / Runge Kutta first step:', h ** 4 / Y_Runge_Kutta_error[1])
    print('=' * 110)
```

```
def evaluate(h):
    Получение решения при разных шагах
    # Начальные значения
    X0 = np.array([np.e ** 2, 2 * np.e ** 2])
    # Значения в узлах
    T = np.arange(1, 2 + h, h)
    Y = g(T)
    # Расчет RKF45
    Y_RKF45 = rkf45(f, T, X0)
    # Расчет Рунге-Кутты
    Y Runge Kutta = Runge Kutta(f, T, X0)
    # Погрешности
    Y_RKF45_error = Y - Y_RKF45
    Y_Runge_Kutta_error = Y - Y_Runge_Kutta
    # Рисуем графики
    print_graph(T, Y, Y_RKF45, Y_Runge_Kutta, h)
    print_error_graph(T, Y_RKF45_error, Y_Runge_Kutta_error, h)
    # Выводим данные в консоль
    print_table(T, Y, Y_RKF45, Y_RKF45_error, Y_Runge_Kutta, Y_Runge_Kutta_error, h)
    return Y RKF45 error, Y Runge Kutta error
def print_table_error(Y_RKF45_error, Y_Runge_Kutta_error, h_list):
    pt = PrettyTable()
    pt.add_column('h', [f'{i:.4f}' for i in h_list])
    pt.add_column("Runge Kutta Error local", [f'{i[1]:.15f}' for i in
Y Runge Kutta error])
    pt.add_column('h**4 / Runge Kutta Error local',
                  [f'{i ** 4 / j[1]:.15f}' for i, j in zip(h list, Y Runge Kutta error)])
    print(pt)
    pt.clear()
    pt.add_column('h', [f'{i:.4f}' for i in h_list])
    pt.add_column("Runge Kutta Error global", [f'{i.sum():.15f}' for i in
Y_Runge_Kutta_error])
    pt.add_column('h**2 / Runge Kutta Error global',
                   [f'{i ** 2 / j.sum():.15f}' for i, j in zip(h_list,
Y_Runge_Kutta_error)])
    print(pt)
    pt.clear()
    pt.add_column('h', [f'{i:.4f}' for i in h_list])
    pt.add_column("RKF45 Error local", [f'{i[1]:.15f}' for i in Y_RKF45_error])
pt.add_column("RKF45 Error global", [f'{i.sum():.15f}' for i in Y_RKF45_error])
    pt.add_column("Runge Kutta Error local", [f'{i[1]:.15f}' for i in
Y Runge Kutta error])
    pt.add column("Runge Kutta Error global", [f'{i.sum():.15f}' for i in
Y_Runge_Kutta_error])
    print(pt)
def main():
    h_list = [0.1 / (2 ** i) for i in range(4)]
    Y RKF45 error = [1]
    Y Runge Kutta error = []
    for h in h_list:
        error = evaluate(h)
        Y RKF45 error.append(error[0])
        Y_Runge_Kutta_error.append(error[1])
    print_table_error(Y_RKF45_error, Y_Runge_Kutta_error, h_list)
if __name__ == '__main__':
    main()
```

Ссылки:

Листинг код: github.com

Документация по SciPy: docs.scipy.org