k-Nearest Neighborhood

Instructor: Junghye Lee

Department of Industrial Engineering

junghyelee@unist.ac.kr

Simple Analogy

• Tell me about your friends (who your neighbors are) and I will tell you who you are.

What is k-Nearest Neighborhood (k-NN)?

- A powerful classification algorithm used in pattern recognition.
- k-nearest neighbors stores all available cases and classifies new cases based on a *similarity measure* (e.g., distance function)
- A non-parametric lazy learning algorithm (i.e., instance-based learning, memory-based reasoning, example-based Reasoning)

k-NN

• k-nearest neighbors of a record x are data points that have the k smallest distance to x

k-NN: Classification Approach

- An object (a new instance) is classified by a majority votes for its neighbor classes.
- The object is assigned to the most common class amongst its *k*-nearest neighbors (measured by a distance function).

Distance Measure

Distance Measure for Continuous Variables

Euclidean

$$\sqrt{\sum_{i=1}^{p} (x_i - y_i)^2}$$

Manhattan

$$\sum_{i=1}^{p} |x_i - y_i|$$

Minkowski

$$(\sum_{i=1}^{p} (|x_i - y_i|)^q)^{1/q}$$

Distance between Neighbors

- Calculate the distance between new example (E) and all examples in the training set.
- Euclidean distance between two examples.

$$X = [x_1, x_2, x_3, ..., x_p]$$

$$Y = [y_1, y_2, y_3, ..., y_p]$$

– The Euclidean distance between X and Y is defined as:

$$D(X,Y) = \sqrt{\sum_{i=1}^{p} (x_i - y_i)^2}$$

k-Nearest Neighbor Algorithm

- All the instances correspond to points in an p-dimensional feature space.
- Each instance is represented with a set of numerical attributes.
- Each of the training data consists of a set of vectors and a class label associated with each vector.
- Classification is done by comparing feature vectors of different k-nearest points.
- Select the *k*-nearest examples to E in the training set.
- Assign E to the most common class among its k-nearest neighbors.

3-NN: Example

Customer	Age	Income	No. credit cards	Class	Distance from John
George	35	35K	3	No	sqrt [(35-37) ² +(35-50) ² +(3- 2) ²]=15.16
Rachel	22	50K	2	Yes	sqrt [(22-37) ² +(50-50) ² +(2- 2) ²]=15
Steve	63	200K	1	No	sqrt [(63-37) ² +(200-50) ² +(1- 2) ²]=152.23
Tom	59	170K	1	No	sqrt [(59-37) ² +(170-50) ² +(1- 2) ²]=122
Anne	25	40K	4	Yes	sqrt [(25-37) ² +(40-50) ² +(4- 2) ²]=15.74
John	37	50K	2	YES	

How to choose *k*?

- If *k* is too small it is sensitive to noise points.
- Larger *k* works well, but too large *k* may include majority points from other classes.

• Rule of thumb is $k < \sqrt{n}$, n is number of examples.

Example

Example

• k acts as a smother

k-NN Feature Weighting

Scale each feature by its importance for classification

$$D(X,Y) = \sqrt{\sum_{i=1}^{p} w_i (x_i - y_i)^2}$$

- 1. Can use our **prior knowledge** about which features are more important
- 2. Can learn the weights w_k using cross-validation

Feature Normalization

- Distance between neighbors could be dominated by some attributes with relatively large numbers.
 - e.g., income of customers in our previous example.

$$X_S = \frac{X - \min X}{\max X - \min X}$$

- Arises when two features are in different scales.
- Important to normalize those features.
 - Mapping values to numbers between 0-1.

Nominal/Categorical Data

- Distance works naturally with numerical attributes.
- Binary value categorical data attributes can be regarded as 1 or 0.

$$D_{H}(X,Y) = \sum_{i=1}^{k} |x_{i} - y_{i}|$$

$$x = y \Rightarrow D = 0$$

$$x \neq y \Rightarrow D = 1$$

No.	X	Y	Distance
1	Male	Male	0
2	Male	Female	1

k-NN Classification

k-NN Classification – Distance

Age	Loan	Default	Distance
25	\$40,000	N	102000
35	\$60,000	N	82000
45	\$80,000	N	62000
20	\$20,000	N	122000
35	\$120,000	N	22000
52	\$18,000	N	124000
23	\$95,000	Υ	47000
40	\$62,000	Υ	80000
60	\$100,000	Υ	42000
48	\$220,000	Υ	78000
33	\$150,000	Υ ←	8000
48	\$142,000	?	

Euclidean Distance
$$D = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

k-NN Classification – Standardized Distance

Age	Loan	Default	Distance
0.125	0.11	N	0.7652
0.375	0.21	N	0.5200
0.625	0.31	_ N ←	0.3160
0	0.01	N	0.9245
0.375	0.50	N	0.3428
0.8	0.00	N	0.6220
0.075	0.38	Υ	0.6669
0.5	0.22	Υ	0.4437
1	0.41	Υ	0.3650
0.7	1.00	Υ	0.3861
0.325	0.65	Υ	0.3771
0.7	0.61	ذ ر ا	

Standardized Variable
$$X_S = \frac{X - \min X}{\max X - \min X}$$

Strengths and Weaknesses of k-NN

Strengths

- Very simple and intuitive.
- Can be applied to the data from any distribution.
- Good classification if the number of samples is large enough.
- Training is very fast
- Learn complex target functions
- Do not lose information

Weaknesses

- Takes more time to classify a new example.
 - need to calculate and compare distance from new example to all other examples.
- Choosing k may be tricky.
- Need large number of samples for accuracy.
- Easily fooled by irrelevant attributes

k-NN

- Estimate conditional probability Pr(y|x)
 - Count of data points in class y in the neighborhood of x
- Bias and variance tradeoff
 - A small neighborhood → large variance → unreliable estimation
 - A large neighborhood → large bias → inaccurate estimation

Distance-Weighted k-NN

- Weight the contribution of each close neighbor based on their distances
- Weight function

$$w(x, x_i) = \frac{\exp(-|x - x_i|_2^2)}{\sum_{j \in \phi_x}^k \exp(-|x - x_j|_2^2)}$$

where all $i \in \phi_x$

• Then,

$$\sum_{j \in \phi_x}^k w(x, x_j) = 1$$

• Prediction of x_{new}

$$y_{new} = \sum_{j \in \phi_{x_{new}}}^{k} w(x_{new}, x_j) y_j$$

Distance-Weighted k-NN

Another notation

$$\hat{f}(\boldsymbol{x_{new}}) = \frac{\sum_{j \in \phi_{x_{new}}}^{k} w_j f(x_j)}{\sum_{j \in \phi_{x_{new}}}^{k} w_j}$$
 where $w_j = \frac{1}{|x_{new} - x_j|_2^2}$

- Other variants
 - Different weight functions
 - Variable-weighted k-NN

Nonparametric Methods

- Parametric distribution models are restricted to specific forms, which may not always be suitable; for example, consider modelling a multimodal distribution with a single, unimodal model.
- Nonparametric approaches make few assumptions about the overall shape of the distribution being modelled.

Curse of Dimensionality

- Imagine instances described by 20 attributes, but only 2 are relevant to target function
- Curse of dimensionality: nearest neighbor is easily mislead when high dimensional \boldsymbol{X}
 - "Neighborhood" grows apart.
- Consider N data points uniformly distributed in a p-dimensional unit ball centered at origin.
- Consider the NN estimate at the original. The mean distance from the origin to the closest data point is:

$$d(p, N) = \left(1 - 2^{-\frac{1}{N}}\right)^{\frac{1}{p}} \approx 1 - \frac{\log N}{p}$$

Eg. 1)
$$N=10$$
, $p=2$, $d=0.5$

Curse of Dimensionality

- Assume 5000 points uniformly distributed in the unit hypercube and we want to apply 5-NN.
- Suppose our query point is to capture 5 nearest neighbors at the origin ($p \approx 0.001$)
 - In 1-dim.: we must go a distance of 0.001 on the average
 - In 2-dim.: we must go $\sqrt{0.001}$ to get a square that contains 0.001 of the volume
 - In *d*-dim.: we must go $(0.001)^{1/d}$

k-NN

• Given a data set with N_l data points from class C_l and $\sum_l N_l = N$, we have

$$p(\mathbf{x}) = \frac{L}{NV}$$

where L is the number of data points of x, and V is the total volume of the region $(\int_{\mathbb{R}} p(x)dx \approx p(x)V)$.

Correspondingly

$$p(\mathbf{x}|C_l) = \frac{L_l}{N_l V}$$

where L_l is the number of data points of \boldsymbol{x} from class C_l .

• Since $p(C_l) = N_l/N$, Bayes' theorem gives

$$p(C_l|\mathbf{x}) = \frac{p(\mathbf{x}|C_l)p(C_l)}{p(\mathbf{x})} = \frac{L_l}{L}$$

Appendix

• A class label corresponds to a set of points which belong to some region in the feature space R. If you draw sample points from the actual probability distribution, p(x), independently, then the probability of drawing a sample from that class is,

$$P = \int_{R} p(\mathbf{x}) d\mathbf{x}$$

 What if you have N points? The probability that L points of those N points fall in the region R follows the binomial distribution,

$$Prob(L) = \binom{N}{L} P^{L} (1 - P)^{N - L}$$

Appendix

• As $N \to \infty$ this distribution is sharply peaked, so that the probability can be approximated by its mean value L/N. An additional approximation is that the probability distribution over R remains approximately constant, so that one can approximate the integral by,

$$P = \int_{R} p(\mathbf{x}) d\mathbf{x} \approx p(\mathbf{x}) V$$

where V is the total volume of the region. Under this approximations $p(x) \approx \frac{L}{NV}$.

Appendix

 Now, if we had several classes, we could repeat the same analysis for each one, which would give us,

$$p(x|C_l) = \frac{L_l}{N_l V}$$

- where L_l is the amount of points from class C_l which falls within that region and N_l is the total number of points which fall in that region. Notice $\sum_l N_l = N$.
- Repeating the analysis with the binomial distribution, it is easy to see that we can estimate the prior $p(C_l) = N_l/N$.
- Using Bayes rule,

$$p(C_l|\mathbf{x}) = \frac{p(\mathbf{x}|C_l)p(C_l)}{p(\mathbf{x})} = \frac{L_l}{L}$$