Московский физико-технический институт (госудраственный университет)

Лабораторная работа по РТ лабам

Безынерционные линейные цепи [24]

Талашкевич Даниил Александрович Группа Б01-009

Содержание

1	Дел	итель напряжения	1	
	1.1	Измерение R^*	1	
		Оценка коэффициента передачи K		
2	Пар	раллельный сумматор	1	
	2.1	Выбираем компоненты сумматора по заданным весовым коэффициентам	1	
	2.2	Проверка работы схемы		
3	Н-параметры 3.1 Проверка основной формулы			
	3.1	Проверка основной формулы	2	
		Снятие данных		
4	Звезда и треугольник 4.1 Проверка основной формулы			
	4.1	Проверка основной формулы	2	
		Снятие данных		
5	Лестничные структуры			
	5.1	Исследование лестничной структуры	S	
		Исследование ЦАП		

1 Делитель напряжения

1.1 Измерение R^*

Собрали на макетной плане делитель напряжения, с $E^*=2B$, при напряжении питания E=10B. Резистор R_1 выбрали 7.5 кОм, тогда $R_2=1,87\approx 1,8$ кОм (ближайшее значение сопротивления, которые было в лаборатории на момент выполнения). При заданных R_1,R_2 получаем $E^*_{\text{теор}}=1,94B$. Экспериментально было получено значение 1,98 В.

 R_l был выбран 1кОм, отсюда, при полученном $U_l = 0.8B$, следует значение для $R^* = 1.45$ кОм.

1.2 Оценка коэффициента передачи K

Теперь задействуем генератор, а именно подадим синусоидальное напряжение e. Измерив эффективные значение u,e получаем значение для K=0,193. Посчитаем теоретическое значение коэффициента передачи $K_{\text{теор}}=\frac{R_2}{R_1+R_2}=0,194$.

2 Параллельный сумматор

2.1 Выбираем компоненты сумматора по заданным весовым коэффициентам

После сборки соответствующей схемы рассчитаем R_1, R_2, R для того, чтобы выполнялось $\alpha = 0, 4, \beta = 0, 2$. Так как это система уравнений с 3-мя неизвестными 2-го ранга, то одну переменную можно выбрать произвольно: $R_1 = 1$ кОм $\Rightarrow R_2 = 2$ кОм, а $R_2 = 1$ кОм.

2.2 Проверка работы схемы

Собираем схему, подаем на вход E_2 постоянное напряжение +5B, а на вход E_1 синусоидальное с амплитудой 2B.

Далее, снимая показания с осциллографа, получаем значение для амплитуды переменной составляющей в сумматоре $U=\frac{0.74}{2}=0,37B$. Далее поочередно подав сигналы на первый и второй входы сумматора при K3 измерим $\alpha;\beta\approx 0,42;0,21$. Из полученных результатов видно, что результаты измерений совпали с теоретическими оценками.

3 Н-параметры

3.1Проверка основной формулы

Если $U_2=0$, то коэффициент h_{11} очевиден: $h_{11}=R_1+R_2||R_3$. Аналогич-

но $h_{21}=\frac{R_3}{R_2+R_3}$ – из закона Ома. Если $I_1=0$, то $h_{12}=\frac{U_1}{U_2}=-\frac{R_3}{R_2+R_3},\ h_{22}=\frac{I_2}{U_2}=\frac{1}{R_2+R_3}$ – получается из предыдущих результатов.

3.2 Снятие данных

Полученные значения для *h*-параметров с помощью Micro-Cap:

$$h_{11}=rac{U_1}{I_1}=rac{2,2}{10^{-3}}=2,2$$
к
Ом (при K3 на выходе, т.е. $U_2=0$)

$$h_{21}=rac{I_1}{I_2}=rac{0,6\cdot 10^{-3}}{10^{-3}}=0,6$$
 (при КЗ на выходе, т.е. $U_2=0$)

$$h_{22} = \frac{I_2}{U_2} = \frac{0, 2 \cdot 10^{-3}}{1} = 0, 2 \cdot 10^{-3}$$
 (при холостом ходе на источнике, т.е. $I_1 = 0$)

$$h_{22}=rac{U_1}{U_2}=rac{0,6}{1}=0,6$$
 (при холостом ходе на источнике, т.е. $I_1=0$)

Проверка прямым расчетом ($R_1 = 1$ кОм, $R_2 = 2$ кОм, $R_3 = 3$ кОм) дает верные результаты \Rightarrow формулы для H-параметров T-образной схемы верны.

Звезда и треугольник 4

4.1 Проверка основной формулы

Уравнение $U_1 = (R_1 + R_3)I_1 + R_3I_2$ следует из закона Ома для контура. Аналогично $U_2 = (R_2 + R_3)I_2 + R_3I_1$.

4.2 Снятие данных

Пересчитаем параметры звезды в параметры треугольника:

$$R_{13} = 5,5$$
 кОм, $R_{12} = 11/3$ кОм, $R_{23} = 11$ кОм

Вычислим параметры X_{ij} из схемы в программе Micro-Cap.

$$X_{11} = \frac{U_1}{I_1} = \frac{4 \text{ B}}{1 \text{ мA}} = 4 \text{ кОм}$$
 $X_{12} = \frac{U_2}{I_1} = \frac{3 \text{ B}}{1 \text{ мA}} = 3 \text{ кОм}$
 $X_{21} = \frac{U_2}{I_2} = \frac{3 \text{ B}}{1 \text{ мA}} = 3 \text{ кОм}$
 $X_{22} = \frac{U_2}{I_1} = \frac{5 \text{ B}}{1 \text{ мA}} = 5 \text{ кОм}$

5 Лестничные структуры

5.1 Исследование лестничной структуры

Рассмотрим лестничную структуру с параметрами $\alpha=2,\,\gamma=1/2,\,\omega=2$ к Ом.

Рис. 1: Лестничная структура

Для напряжений и сил тока для рассматриваемой конфигурации имеем:

Далее пусть $\alpha = 6, \ \gamma = 2/3$, сопротивления $R_{2j} = 6$ кОм.

Далее пусть $\alpha = 12, \, \gamma = 3/4$, сопротивления $R_{2j} = 12$ кОм.

Пусть $\alpha = 1, \, \gamma = 0.38$, сопротивления $R_{2j} = 1$ кОм.

Рис. 2: Напряжения лестничной структуры (1 вариант)

Рис. 3: Силы тока лестничной структуры (1 вариант)

Рис. 4: Напряжения лестничной структуры (2 вариант)

Рис. 5: Силы тока лестничной структуры (2 вариант)

5.2 Исследование ЦАП

Исследуем схему АЦП, показанную на рисунке.

Рис. 6: Напряжения лестничной структуры (3 вариант)

Рис. 7: Силы тока лестничной структуры (3 вариант)

Рис. 8: Напряжения лестничной структуры (4 вариант)

Рис. 9: Силы тока лестничной структуры (4 вариант)

Таблица зависимости выходящего напряжения OUT в зависимости от двоичного кода (X1, X2, X3, X4):

Число	OUT, B
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	10
1011	11
1100	12
1101	13
1110	14
1111	15

Рис. 10: Схема АЦП