Report: Review Summarization using GPT-2

Objective:

The goal was to fine-tune a GPT-2 model using the Amazon Fine Food Reviews dataset to generate concise summaries of reviews. This included preprocessing the data, training the model, and evaluating it using ROUGE scores.

1. Data Preprocessing

Dataset:

- **Source:** Amazon Fine Food Reviews dataset.
- Columns Used:
 - o Text (review text)
 - o Summary (provided summary).
- **Initial Dataset Size:** 568,401 entries.

Cleaning Steps:

- 1. **Removing duplicates:** Used drop duplicates().
- 2. Handling null values: Removed rows with NaN in Text or Summary.
- 3. **Preprocessing Functions:**
 - o Removed HTML tags using BeautifulSoup.
 - Converted text to lowercase.
 - o Removed punctuation and numbers.
 - o Stripped whitespace.

Final Preprocessed Dataset:

• Saved as a pickle file (Preprocessed Reviews.pkl).

2. Model Training

Model and Tokenizer:

- **Model:** GPT-2 (via Hugging Face).
- **Tokenizer:** GPT-2 tokenizer with EOS token added.

Dataset Preparation:

- Combined Text and Summary into a single column using "TL;DR" as a separator.
- Split into **training** (75%) and **testing** (25%) sets.
- Average sequence length: 84 words. Maximum length was set to 100 tokens.

Custom Dataset Class:

A PyTorch dataset class was created to:

- 1. Tokenize and encode input data.
- 2. Pad or truncate reviews to ensure uniform input size.

Training Configuration:

- Batch Size: 32.
- Learning Rate: 3e-4 (AdamW optimizer).
- **Epochs:** 1 (for demonstration).
- Hardware: GPU (if available).

Observations:

- Initial loss: ~8.23
- Loss reduced significantly to ~2.38 during training.

Model Saving:

• Model and tokenizer saved to fine_tune_gpt2_model1.

3. Evaluation

Inference:

- Custom model infer function:
 - o Generates summaries using top-k sampling for diversity.
 - o Stops when max length or EOS token is reached.

Metrics:

- ROUGE Scores:
 - o Precision, Recall, F1-Score for ROUGE-1, ROUGE-2, and ROUGE-L.
 - Example results:
 - **ROUGE-1:** Precision: 0.75, Recall: 0.80, F1-Score: 0.77.
 - **ROUGE-2:** Precision: 0.50, Recall: 0.67, F1-Score: 0.57.
 - **ROUGE-L:** Precision: 0.67, Recall: 0.75, F1-Score: 0.71.

User Input Testing:

For user-provided reviews, the model generates summaries, and ROUGE scores are computed. Example:

- Review: "i'm italian and i lived in italy for years. i used to buy these cookies for my everyday breakfast with an italian espresso."
- Actual Summary: "great cookies"

- Generated Summary: "iced mocha cookies"
- **ROUGE-1 Score:** Precision: 0.33, Recall: 0.50, F1-Score: 0.40.

4. Challenges and Recommendations

Challenges:

- **Computational Resources:** Limited fine-tuning due to GPU/CPU constraints.
- Dataset Size: Large dataset led to subsampling.
- **Evaluation Quality:** ROUGE scores showed variability depending on review length and complexity.

Recommendations:

- 1. **Hyperparameter Tuning:** Experiment with batch sizes, learning rates, and epochs for better performance.
- 2. **Increase Epochs:** Train for multiple epochs to improve generalization.
- 3. **Data Augmentation:** Use paraphrased summaries to enhance training diversity.
- 4. **Evaluation Metrics:** Complement ROUGE scores with human evaluations.

5. Conclusion

The project demonstrated the feasibility of fine-tuning GPT-2 for review summarization. Despite computational limitations, the model achieved reasonable performance. Further optimization can yield more accurate summaries and better evaluation metrics.