Questão 4

Quando $p=p_{\infty}$, então $C_p=0$. Então, o coeficiente de pressão sob a superfície de um cilindro circular é:

$$C_p = 0 = 1 - 4 \cdot \sin^2 \theta$$

Por isso,
$$sin\theta = \pm \frac{1}{2}$$
,

$$\theta = 30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}$$

Esses pontos, assim como os pontos de estagnação e os pontos de pressão mínima, estão ilustrados na figura abaixo. Observe que no ponto de estagnação, onde C_p =1, a pressão é:

 p_{∞} + q_{∞} ; a pressão diminui para p_{∞} nos primeiros $30\,^{\circ}$ de expansão ao redor do corpo, e a pressão mínima no topo e na parte inferior do cilindro, consistente com C_p = $\dot{\iota}$ 3 , é p_{∞} - $3\,q_{\infty}$.