Sequências e Progressões II

Mickael Lima

Dezembro, 2021

Sumário

1	\mathbf{Pro}	gressão Geométrica	3
	1.1	Classificação	3
	1.2	Notações Úteis	4
	1.3	Fórmula do enésimo termo	4
		1.3.1 Demonstração por Indução Finita	5

1 Progressão Geométrica

A progressão geométrica é outro tipo de progressão, semelhante à aritmética. É definida pela fórmula de recorrência ilustrada por

$$\begin{cases} a_1 \\ a_n = a_{n-1} \cdot q \end{cases}$$

Sendo a, q números reais fornecidos (ou pelo menos implicito, no caso de q). Sendo assim, uma P.G é toda sequência a qual o próximo termo a_n seja igual ao termo anterior a_{n-1} multiplicado por uma constante q (que equivale ao r da P.A).

1.1 Classificação

As P.Gs são classificadas de 5 modos diferentes.

• Crescente: o próximo termo é maior que o anterior

$$a_n > a_{n-1}$$

$$a_{n-1} \cdot q > a_{n-1}$$

$$q > \frac{a_{n-1}}{a_{n-1}}$$

$$q > 1$$

Nesse caso, a P.G será crescente quando q > 1 e somente para sequências positivas. Para casos em que a_1 é negativo, vale a relação 0 < q < 1.

- Constante: Há duas situações em que isso acontece.
 - Quando q=1 (já que não haverá variação na multiplicação de a_n e $a_{n-1} \cdot q$).
 - Quando $a_1 = 0$ (já que multiplicar por zero a deixará constante).
- Decrescente: há dois casos para se analisar (semelhante à crescente).
 - P.G positiva: será decrescente para 0 < q < 1
 - P.G negativa: será decrescente para q > 1
- Alternantes: o próximo termo tem sinal contrário ao anterior. Isso ocorre sempre que q<0, forçando a alternância de sinais.
- Estacionárias: Quando q=0 e $a_1\neq 0$, forçando-a a ficar constante após o primeiro termo.

1.2 Notações Úteis

Tal qual descrito nas notas sobre P.A, as notações úteis da P.G podem ser escritas (como exemplo, os 3 primeiros termos da P.G) como.

$$\left(x, x \cdot q, x \cdot q^2\right)$$
$$\left(\frac{x}{q}, x, x \cdot q\right)$$

Para 4 termos, têm-se (x, xq, xq^2, xq^3) , para n termos, $(x, xq, xq^2, \dots, xq^{n-1})$

 Qual número deverá ser somado a 1, 9 e 15 para termos, nessa ordem, três números em P.G.

A sequência em P.G f terá a forma de $f = \{(1+x), (9+x), (15+x)\}$. O próximo termo deverá ser igual ao produto entre o termo anterior com uma constante q. Para que essa constante q exista, é estabelecida a seguinte relação.

$$q = \frac{9+x}{1+x} = \frac{15+x}{9+x}$$

Portanto, constrói-se a seguinte expressão

$$(9+x)^{2} = (15+x)(1+x)$$

$$81 + 18x + x^{2} = 15 + 15x + x + x^{2}$$

$$81 + 18x = 15 + 16x$$

$$2x = -66$$

$$x = -33$$

1.3 Fórmula do enésimo termo

Semelhante à progressão aritmética, a P.G pode ser armada do termo a_1 até a_n ($a_1 \neq 0$, $q \neq 0$, n conhecido) da seguinte forma.

$$\begin{cases} a_2 = a_1 \cdot q \\ a_3 = a_2 \cdot q \\ \dots \\ a_n = a_{n-1} \cdot q \end{cases}$$

Caso o primeiro lado $(a_2, ...)$ seja multiplicado, e o segundo lado $(a_1 \cdot q), (a_2 \cdot q), ...$ também, é evidente que a igualdade se manterá, formando a seguinte equação.

$$a_2 \cdot a_3 \dots a_n = (a_1 \cdot q) \cdot (a_2 \cdot q) \cdot (a_3 \cdot q) \dots (a_{n-1} \cdot q)$$

É possível pôr o q em evidência, visto que ele aparece n-1 vezes $(a_n$ não é contado) no segundo membro.

$$[a_2 \cdot a_3 \dots, a_{n-1}] \cdot a_n = (a_1[\cdot a_2 \cdot a_3 \dots a_{n-1}]) \cdot q^{n-1}$$

O que está destacado por colchetes se cancelam, formando a equação final em função de n.

$$a_n = a_1 \cdot q^{n-1}$$

1.3.1 Demonstração por Indução Finita

• Checa-se a validade para n=1

$$a_1 = a_1 \cdot q^{1-1}$$
$$a_1 = a_1$$

• Admite-se válido para n = p

$$a_p = a_1 \cdot q^{p-1}$$

• Checa-se a validade para n = p + 1

$$a_{p+1} = a_1 \cdot q^{(p+1)-1} \Leftrightarrow a_1 \cdot q^{p-1} \cdot q$$