

SOLVING BAYESIAN INVERSE PROBLEM VIA VARIATIONAL AUTOENCODER

Gabriele Bruni Riccardo Rota Nicola Zanetti

INVERSE PROBLEM

Classical inverse problem:

$$y = F(u) + e$$

y observed variable;

 \boldsymbol{u} parameter of interest (PoI);

e error;

F parameter to observable map (PtO).

Goal: to determine the Pol u given the observed data y.

Bayesian inverse problem:

$$p(\boldsymbol{U}|\boldsymbol{Y}) \propto p(\boldsymbol{Y}|\boldsymbol{U}) * p(\boldsymbol{U})$$

 $m{Y}$ and $m{U}$ are random variables representing the observed variable and the parameter of interest.

Goal: to determine the distribution of U|Y given the distribution of Y.

AUTOENCODER

Key Idea: to obtain a lower-dimensional representation of the input space.

- Encoder: a neural network h with parameter Φ that takes a vector, x, compress it into a smaller vector, z.
- **Decoder**: f with parameters θ that takes z and decompress it back into a vector x'.
- z is called **latent variable** and it is a lower-dimensional representation of the data.

VARIATIONAL AUTOENCODER

The encoder takes x and generates the parameters of the latent distribution z.

z is sampled from the distribution with the parameters given by the encoder.

The decoder maps **z** into the parameters of the distrbution used to reconstruct the original input.

x' is sampled from the distribution with the parameters given by the decoder.

VAE IN BAYESIAN INVERSE PROBLEMS

Key Idea: one-to-one correspondence between the frameworks of **inverse problem** and **VAE**.

- The observation y corresponds to the input x of the encoder.
- The latent variable ${m z}$ corresponds to the Pol ${m u}$.

In the **Bayesian framework**:

- $p(\boldsymbol{U}|\boldsymbol{Y})$ is given by the encoder: from \boldsymbol{Y} we estimate the parameters of the distribution from which we sample \boldsymbol{U} .
- p(Y|U) is given by the decoder: from U we compute the parameters to reconstruct the distribution of Y.

OUR APPLICATION

$$\begin{cases} -\nabla \cdot (q(\mathbf{x})\nabla y(\mathbf{x})) = f(\mathbf{x}) & in \Omega = [0,1]^2 \\ y(\mathbf{x}) = g(\mathbf{x}) & on \partial \Omega \end{cases}$$

- Steady state heat equation with non-constant diffusion coefficient q(x).
- Observed variable: solution y(x).
- We generate y(x) using a Finite Element Method starting from a given prior distribution of q(x).
- Goal: to estimate the posterior distribution of q(x) given y(x).
- **Result**: we will be able to make prediction on q(x) from the observation of y(x), and to estimate the accuracy of such prediction.

THANK YOU!

REFERENCES:

 Solving Bayesian Inverse Problems via Variational Autoencoders, H. Goh, S. Sheriffdeen, J. Wittmer, T. Bui-Thanh

1912.04212 (arxiv.org)

Variational autoencoders - Matthew
 N. Bernstein (mbernste.github.io)