Machine Learning > Week 4 > Examples and Intuitions II

- Representation I 6 min
- Video: Model
 Representation II
 11 min
- Reading: Model
 Representation II
 6 min

Applications

- Video: Examples and Intuitions I
 7 min
- Reading: Examples and Intuitions I
 2 min
- Uideo: Examples and Intuitions II

 10 min
- Peading: Examples and Intuitions II
 3 min
- Video: Multiclass
 Classification

Examples and Intuitions II

The $\Theta^{(1)}$ matrices for AND, NOR, and OR are:

$$AND$$
: $\Theta^{(1)} = [-30 \quad 20 \quad 20]$ NOR : $\Theta^{(1)} = [10 \quad -20 \quad -20]$ OR : $\Theta^{(1)} = [-10 \quad 20 \quad 20]$

We can combine these to get the XNOR logical operator (which gives 1 if x_1 and x_2 are both 0 or both 1).

$$egin{bmatrix} x_0 \ x_1 \ x_2 \end{bmatrix}
ightarrow egin{bmatrix} a_1^{(2)} \ a_2^{(2)} \end{bmatrix}
ightarrow egin{bmatrix} a_0^{(3)} \ a_2^{(2)} \end{bmatrix}
ightarrow egin{bmatrix} a_0^{(3)} \ a_2^{(3)} \end{bmatrix}
ightarrow h_{\Theta}(x)$$

For the transition between the first and second layer, we'll use a $\Theta^{(1)}$ matrix that combines the values for AND and NOR:

$$\Theta^{(1)} = \begin{bmatrix} -30 & 20 & 20 \end{bmatrix}$$

$$h_{\Theta}(x) = a^{(3)}$$

And there we have the XNOR operator using a hidden layer with two nodes! The following summarizes the above algorithm:

