CS557: Cryptography

Modern Ciphers (AES-XTS)

S. Tripathy IIT Patna

AES Encryption/ Decryption

AES Key Expansion

- takes 128/192/256-bit (16/24/32-byte) key and expands into array of 44/52/60 32-bit words
- start by copying key into first 4 words
- then loop creating words that depend on values in previous and 4 places back

- in 3 of 4 cases just XOR these together

every 4th has S-box + rotate + XO

Key Words	Auxiliary Function
w0 = 0f 15 71 c9 w1 = 47 d9 e8 59 w2 = 0c b7 ad w3 = af 7f 67 98 w4 = w0 ⊕ z1 = dc 90 37 b0 w5 = w4 ⊕ w1 = 9b 49 df e9 w6 = w5 ⊕ w2 = 97 fe 72 3f w7 = w6 ⊕ w3 = 38 81 15 a7	RotWord(w3)= 7f 67 98 af = x1 SubWord(x1)= d2 85 46 79 = y1 Rcon(1)= 01 00 00 00 y1 ⊕ Rcon(1)= d3 85 46 79 = z1 RotWord(w7)= 81 15 a7 38 = x2 SubWord(x4)= 0c 59 5c 07 = y2 Rcon(2)= 02 00 00 00 y2 ⊕ Rcon(2)= 0e 59 5c 07 = z2
w9 = w8 ⊕ w5 = 49 80 b4 5e	SubWord(x2)= 16 66 b4 8e = y3
w10 = w9 ⊕ w6 = de 7e c6 61	Rcon(3)= 04 00 00 00
w11 = w10 ⊕ w7 = e6 ff d3 c6	y3 Rcon(3)= 12 66 b4 8e = z3
w12 = w8 \oplus z3 = c0 af df 39	RotWord(w15)= ae 7e c0 b1 = x4
w13 = w12 \oplus w9 = 89 2f 6b 67	SubWord(x3)= e4 f3 ba c8 = y4
w14 = w13 \oplus w10 = 57 51 ad 06	Rcon(4)= 08 00 00 00
w15 = w14 \oplus w11 = b1 ae 7e c0	y4 Rcon(4)= ec f3 ba c8 = 4

Round 1

AES Diffusion: Single Byte

Note: AddRoundKey has no impact on diffusion

Avalanche effect

- Key: 0f1571c947d9e8590cb7add6af7f6798
- Plaintext:

0123456789abcdeffedcba9876543210 0023456789abcdeffedcba9876543210

Ciphertext

ffob844a0853bf7c6934ab4364148fb9 612b89398d0600cde11627ce72433f0

- Plaintext:
 - 0123456789abcdeffedcba9876543210
- Key:

Of1571c947d9e8590cb7add6af7f6798 Oe1571c947d9e8590cb7add6af7f6798

Ciphertext:

ffob844a0853bf7c6934ab4364148fb9 fc8923ee501a7d207ab670686839996b

Strength against known attacks

- Brute-Force Attack
 - AES is definitely more secure than DES due to the larger-size key.
- Differential cryptanalysis(DC)
 - > Necessary condition to be resistant against DC: No DT with predicated PR > 2^{-n+1} , n the block length.
 - For Rijndael: No 4-round DT with predicated PR above 2^{-150} (no 8-round trails with PR above 2^{-300})
- Linear cryptanalysis(LC)
 - > Necessary condition to be resistant against LC: No LTs with a correlation coefficients > 2^{n/2}
 - For Rijndael: No 4-round LTs with a correlation above 2^{-75} (no 8-round trails with a correlation above 2^{-150}).

Modes of Encryption

- ECB:
 - Using the same key on multiple blocks makes it easier to break
 - Identical Plaintext Identical Ciphertext Does not change pattern:
- *CBC*:
 - Previous cipher blocks is chained with current plaintext block. Use an Initial Vector (IV) to start process.
 - Any change to a block affects all following ciphertext blocks
 - attacker can change bits of first block, and change IV to compensate
- OFB:
- CFB:
- · CTR

Storage Encryption

- If IV is predictable, CBC is not usable in storage because the plain text is chosen by the writer
 - Ciphertext is easily available to other users of the same disk
 - Two messages with the first blocks=b \oplus IV1 and b \oplus IV2 will both encrypt to the same ciphertext
- Last block may be shorter than others → Pad (size of CT ++)
- Need to be able to read/write blocks without reading/writing other blocks

Cipher Text Stealing (CTS)

- Alternative to padding
- Last 2 blocks are specially coded
- Tail bits of (n-1)st encoded block are added to nth block and order of transmission of the two blocks is interchanged

XEX (xor-encrypt-xor)

Xor Encrypt Xor (XEX) mode encryption

AES-XTS

- XTS = XEX-based Tweaked Codebook mode with Cipherstealing
 - A mode, for block oriented storage use
 - in IEEE Std 1619-2007
 - Stealing (XEX = Xor-Encrypt-xor)
- Creates a unique IV for each block using AES and 2 keys
 - Tj = EK2(i) \oplus a^j Size of K2 = size of block
 - Cj = EK1(Pj ⊕ Tj) ⊕ Tj K1 256 bit for AES-256
 - where i is logical sector # & j is block # (sector = n blocks)
 - a = primitive element in $GF(2^{128})$ defined by polynomial x

XTS-AES Mode per block

- Efficiency
 - Can do parallel encryptions in h/w or s/w
 - Random access to encrypted data blocks
- Has both nonce & counter

XTS-AES Mode Overview

13

Stream Ciphers

- process the message bit by bit (as a stream)
- typically have a (pseudo) random stream key
- combined (XOR) with plaintext bit by bit
- randomness of stream key completely destroys any statistically properties in the message

Never reuse stream key

- Stream cipher outputs keystream, KS
 - KS produced by a function, F, that is initialized with a key, k
 - $C = E_k(P) = P \oplus KS$
 - $P = C \oplus KS$
- k can be used only once
 - $C1 = E_{k1}(P1)$; $C2 = E_{k2}(P2)$
 - C1 ⊕ C2 = P1 ⊕ KS1 ⊕ P2 ⊕ KS2 = P1 ⊕ P2 if KS1 = KS2
 - Will know when P1 and P2 have identical bits
 - If know part of P1 (if packet headers, format information), then can obtain part of P2
- Period how long is KS before it starts repeating?
 - repeating is equivalent to reusing a key

Thanks