Comunicaciones Ópticas

CAPÍTULO III

FUENTES Y DETECTORES ÓPTICOS

NOMBRES:

- Ashqui Balseca Michelle Ivette
- Coello Ibáñez Antony Josue
- Gavilanez Jimenez Marlon Abel
- Manobanda Jimenez Kevin Andres
- Valverde Sanchez Edwin David
- Vargas Zambrano Kleber Santiago

Tabla de contenidos

3. Introducción

- **3.1.** Fuentes de Luz
- **3.2.** Diodos emisores de luz
- **3.3.** Diodos laser de inyección ILD
- **3.4.** Comparativa Laser Emisor de Luz
- **3.5.** Detectores ópticos
- 3.6. Características de los detectores de luz
- **3.7.** Diagrama de flujo de receptor óptico
- **3.8.** Diagrama de flujo de transmisor óptico
- 3.9. Bibliografía

1. Fuentes de Luz

Determinada por su patrón de radiación, mientras más direccional sea el patrón, más fácil será que la potencia emitida quede dentro del cono de aceptación de la fibra.

El patrón de radiación relaciona el ángulo sólido del haz que forma el rayo de luz al propagarse (Ω A), α y β son dos ángulos de los $\Omega_A = \alpha_{HP} \times \beta_{HP} \ (Gr^2)$ patrones

a directividad indica la concentración de potencia de luz dentro del ángulo sólido. Está

lada por

 $D = \frac{4\pi}{\Omega_A} \quad (A \dim ensional)$ $4\pi \text{ Sr} = 41253 \text{ gr}^2$

PATRON DE RADIACION

DIODO LED

DIODO LASER

- a. Mínima anchura espectral
- b. Maxima coherencia espacia
- c. Potencia óptica suficiente

CARACTERISTICAS

FUENTES DE LUZ

El ojo humano solo puede detectar longitudes de onda de frecuencias luminosas entre 400 nm y 780 nm, es decir frecuencias del color rojo al indigo.

El fin de una fuente óptica es optimizar la potencia lumínica que se entrega a la fibra óptica y permitir que la energía se propague a través de ella sin distorsiones en el receptor

POTENCIA O INTENSIDAD LUMINOSA

FOTOMETRIA

Mide las ondas luminosas visibles al ojo humano Potencia de la luz: Densidad de flujo luminoso Unidad. lúmenes por metro cuadrado

RADIOMETRIA Mide la luz en todo el espectro

electromagnético

Potencia óptica: Es el flujo de energía luminosa que atraviesa determinado punto en un tiempo dado. Unidades dBm y el dBµ

DEFINICION

CTRA

ESPE(

NCHURA

La diferencia relativa en manómetros (nm) entre les puntos donde la potencia emitida se reduce en el 50% con relación a la máxima Los LED y los LD (Diodos laser) tienen anch ra espectral diferente,

$$P = \frac{dE}{dt}$$

$$P = \frac{dQ}{dt} (w)$$

P = Potencia óptica (vatios)

dQ = Carga instantánea (julios)dt = Cambio instantáneo de tiempo (seg)

2. Diodos emisores de luz

Diodos emisores de luz LED (Light Emitting Diode)

Es un diodo de unión PN, fabricado de AlGaAs o GaAsP. Estos diodos emiten por emisión espontánea (la luz se emite como resultado de la recombinación de electrones y huecos)

LED HOMOLINION

Es la unión PN formada con dos mezclas distintas de igual tipo de átomos

Desventaja:ondas luminosas se emiten en todas las direcciones y solo una pequeña fracción del total de la luz producida se acopla a la fibra. eficiencia en la transducción eléctrica es baja.

LED HETEROUNION Estos diodos se fabrican con material semiconductor tipo P de un conjunto de átomos y material tipo N de otro conjunto. Se fabrican montando capas en forma de emparedado, acentuando así el efecto de concentración de los electrones, los huecos y la luz producida en un área mucho menor.

LED de superficie emisora y pozo grabado de Burrus

Usado en aplicaciones para telecomunicaciones, donde se requieren velocidades de datos mayores a 100 Mbps y desarrollado por Burrus y Dawson de laboratorios Bell. Es un LED homounión pero con dirección de la luz en un área menor.

LED emisores de borde Estos LED emiten una distribución más direccional de luz que los LED de superficie emisora. La luz se emite desde una banda activa (ventana) y forma un haz elíptico o cono. La potencia de luz de estos emisores es menor que los de superficie, pero da una mayor concentración. La corriente aplicada al LED y la temperatura inciden directamente en la potencia de luz emitida por el LED.

[2]

3. Diodos laser de invección ILD

4. Comparativa Laser Emisor de Luz

TIPO DE EMISOR	LASER DE INYECCIÓN O DIODO LASER	FOTODIODO EMISOR DE LUZ (LED)
PARÁMETRO	(LD)	(LLD)
DIAGRAMA	Laser Diode Anode Partially reflective end pn junction n (b) Partially reflective end (c)	ACTIVE AREA p* AREA DEPLETION REGION n TYPE SILICON MATERIAL (FOR CONTACT) METAL CONTACT
USO	Fibras monomodo	Fibras multimodo
POTENCIA DE SALIDA	20 mW	1 mW
FRECUENCIA DE MODULACIÓN	Hasta 10 GHz.	Hasta 50 MHz
ANCHURA ESPECTRAL	o.7 nm	50 nm
VENTANAS DE OPERACIÓN	1310 y 1550 nm.	850 y 1310 nm.
FUENTE	Coherente	Incoherente
VIDA ESTIMADA	100 000 horas.	1 000 000 horas.
COSTO	Elevado	Bajo
CARACTERÍSTICAS	 Manejo de velocidades binarias mayores. Mayor eficiencia de acoplamiento a la fibra. Requiere enfriamiento y control de potencia 	 Potencia baja acoplada Mejor linealidad, mayor confiabilidad

7. Diagrama de flujo de receptor óptico

8. Diagrama de flujo de transmisor óptico.

9. BIBLIOGRAFIA

- [1] J. Pallo, FUENTES Y DETECTORES ÓPTICOS, Amabto: Universidad Técnica de Ambato, 2021.
- [2] W. Tomasi, Sistemas de comunicaciones electrónicas. Capítulo 11: Comunicaciones por fibra óptica, Ciudad de México: Prentice Hall, 2003.
- [3] W. Tomasi, Sistemas de Comunicaciones Electronicas, Mexico: Pearson Education, 2003.
- [4] J. M. y. A. L. C. Vega, Sistemas de Telecomunicacion, Cantabria: Universidad de Cantabria, 2007.
- [5] M. Guerrero, Diseño y desarrollo de practicas de laboratorio para comunicaciones analogicas basadas en modulacion AM, Cuenca: Universidad de Cuenca, 2016.
- [6] Wikipedia, 4 Agosto 2021. [En línea]. Available: https://en.wikipedia.org/wiki/Double-sideband_suppressed-carrier_transmission#:~:text=Double%2Dsideband%20suppressed%2Dcarrier%20transmission.
- [7] E. Coach, 04 Agosto 2021. [En línea]. Available: https://electronicscoach.com/single-sideband-modulation.html..
- [8] M. Zapater, Modulacion y demodulacion lineal, Madrid: Universidad Complutense, 2015.
- [9] A. R. y. E. P. A. Blanco, Amplificadores de pequeña señal RF y FI, Venezuela: UNEFA, 2013.
- [10] Anonimo, Transmisores de AM, FACET, 2017.
- [11] E. Ayarachi, DIAGRAMA A BLOQUES DE UN RECEPTOR DE AM, Academia Edu, 2015.
- [12] J. Pallo, Multiplexación en fibra óptica, Ambato: Universidad Tecnica de Ambato, 2021.
- J. Pallo, Multiplexación en fibra óptica, Ambato: Universidad Tecnica de Ambato, 2021.