

CitySense An Open, City-Wide Wireless Sensor Network

Matt Welsh

Harvard University

School of Engineering and Applied Sciences

Josh Bers

BBN, Inc.

CitySense Concept

100+ Linux PCs with 802.11a/b/g on buildings and streetlights throughout a city (current target is Cambridge, MA)

Sensors for monitoring air quality, weather,

road traffic, contaminants,...

The network is programmable by anyone

Why CitySense?

Expand sensor networking testbeds beyond indoor deployments with resource-constrained nodes

- Outdoor testbed with large coverage area
- Powered nodes with substantial CPU/memory/radio bandwidth
- Provide blueprint for future sensor network designs and deployments

Shared resource open to research community

Leverage experience with Harvard's MoteLab to provide shared experimental facility

Provide bridge to broader scientific communities

- Partnership with Harvard School of Public Health
- NSF GENI initiative
- Educational impact at graduate, undergraduate, and K-12 levels

CitySense Node Design

Soekris net4826 embedded PC running Linux

- 256 MB of RAM+flash, I GB USB flash drive
- Two Atheros 802. I Ia/b/g radios, 8.5 dBi omni antennas

Various sensors driven by app requirements

- Vaisala Weather Sensor (temp, humidity, pressure, wind, rain, ...)
- Air particulate sensor (PMI0 for air quality studies)
- Gas sensors (CO₂, CO, NOX,...)
- Microphones? Cameras?

Early Node Prototype

Current Node Prototype

BBN Rooftop Deployment

- Bidirectional Links
- Sensor Nodes
- Gateway Server
- 3 Indoor nodes plus gateway
- 2 nodes on roof of buildings
 - Racing
 - Rosario
 - Fully connected except for Gateway

CitySense Networking

- Most nodes will use wireless mesh for connectivity
 - A few nodes will have wired connectivity and act as gateways
- Dual radio node design
 - "Backhaul" radio for management and monitoring mesh
 - "Experimental" radio for user applications
- Backhaul radio
 - Ubiquiti SR9 radio: 900 MHz, 802.11 b/g, 700 mW tx power
 - > I km range possible
 - Mesh configured using OLSR or other existing protocol
- Experimental radio
 - Wistron CM9 802.1 la/b/g: 2.4/5.3 Ghz, 60 mW tx power

Some non-goals of this project...

Reinvent mesh networking

- Great deal of work has been invested in this; commercial solutions are out there.
- Let's build upon the best work in this area and look at what can be done using mesh network as a foundation.
- We will support other research groups wanting to experiment with new mesh routing protocols

Provide public Wifi access

- That is one possible application for our testbed
- Focusing on this alone will constrain us in many ways

Vaisala weather sensor

Weather Transmitter WXT510

- Wind speed and direction
- Precipitation
- Barometric pressure
- Temperature
- Relative humidity

Well-calibrated sensor, robust packaging for outdoor use

- Designed for precise measurement of environmental conditions
- More accurate than typical component sensors used on motes

RS232 interface for configuration and data access

Other sensors

Air quality: PMI0 particle concentration

TSI SidePak personal aerosol monitor

- Noise pollution
 - Want to avoid use of microphones: Use specialized hardware just to measure overall dB level

- Gases: CO₂, NO, O₃ etc.
 - Vaisala CO₂ sensor
 - Siemens GasFET sensor array on a chip based on semiconducting metal oxides

Some Research Challenges

Resource management and sharing

How to support many applications? Fairness? Security? Sandboxing?

Programming models and languages

• What is the right programming abstraction for a city-wide sensor network? ssh into every node? SQL? Something in between?

Robustness and administration

 How to administer and maintain a network of 100+ nodes over a wireless mesh, without physical access?

More Research Challenges

Security and privacy

- How to prevent script kiddies from taking over the network?
- Access to raw data may be limited by various policies

Interfacing to mobile and low-power sensors

 Tie-in with data collected by cell phones, mote networks, vehicular sensors

Extensibility and customization

Tension between supporting many users and customizing for specific application needs

Application Programming Model

- What is the right programming model for CitySense applications?
- Option #1: Bare Linux plus ssh
 - Very inefficient, every user must built up own monitoring, management, and directory services
- Option #2: pwn the node...
 - One user at a time, flash new custom OS+app environment for each user
- Option #3: Managed application environment
 - Common service responsible for deploying, starting, stopping, and decommissioning applications
 - Scheduling dictated by global management policies

Resource Management

- As an open testbed, CitySense will be subject to widely varying demands from different users.
 - How can we provide these users with "good enough" service while still permitting some degree of timesharing?
- Node resources are somewhat scarce:
 - Slow CPU, limited RAM, poor network connectivity, no disk
- Best-effort timesharing unlikely to work
 - Not enough resources to just let users "go at it"
- Should we do batch scheduling?
 - Appropriate for short-running experiments requiring high fidelity
 - But shuts out users doing lightweight data-gathering

Remote Maintenance

- We will not have physical access to nodes once deployed!
 - Need to ensure that nodes can be recovered to "known good" state in case of software crash or hang
- Soekris supports on-board hardware watchdog
 - Daemon checks node health and clears watchdog register only if things seem to be OK
 - Force reboot if network connectivity lost, memory leak, etc.
- Grenade timer
 - Use cheap lamp timer to do hard reset once a day
 - (Nearly) foolproof and no need for fancy software support

Software updates

- Must periodically upgrade base node OS and frequently push out new application code
 - Doing this in a naïve way, i.e., scp to each node, will perform very poorly on the wireless mesh
- Possible approaches:
 - Network coding (Vlah and Kung approach), Bittorrent, etc.
- Must work correctly in the face of node failures and network connectivity loss
 - · Cannot assume all nodes are up all the time
 - Our approach: rsync over spanning tree
 - Permits asynchronous updates; can extend to leverage multipath

Data Visualization

- Microsoft SensorMap infrastructure
 - http://atom.research.microsoft.com/sensormap/
 - Shows real-time sensor data; performs spatial aggregation

Node monitoring

- Currently using Ganglia to monitor node status
 - Daemon runs on each node and gathers statistics on CPU, memory, bandwidth usage, number of processes, etc.
 - Data reported to central server for storage and visualization
 - Uses 'rrdtool' rather than persisent storage of raw node reports
 - Multicast UDP support for sending status: May work well on a wireless mesh

Collaborators

Majid Ezzati: Co-Pl Harvard School of Public Health -> Urban pollution studies

Ken Mandl: Director of CHIP's program Childrens Hospital, Boston → real-time tracking of ER symptom reports

David Gute: Tufts University EE department: water quality sensors

Tom Little: BU EECS: video sensors

Chris Rogers & Marina Bers: Tufts EE: Educational Outreach → K-12 curriculum in sensor nets.

Summary

- CitySense presents huge opportunity for the sensor network community
 - Develop, deploy, and experiment with sensor networks at scale in complex real-world outdoor urban environment
 - Shared research facilities for supporting diverse research groups
- Planned 100-node outdoor testbed in Cambridge
 - Linux-based embedded PCs with 802.11 and professional weather sensor
 - Planned future sensors include pollution/smog sensors.

Thanks

CitySense is supported by grants from the National Science Foundation and Microsoft Corporation.

Contact: mdw@eecs.harvard.edu

http://www.citysense.net

