BIOPHYSIQUE DE LA CIRCULATION SANGUINE

ORGANISATION GÉNÉRALE DU SYTÈME CARDIOVASCULAIRE :

Les cavités du cœur :

- Deux ventricules droit et gauche, VD et VG dont le rôle est d'éjecter le sang
- Deux oreillettes gauche et droite OD et OG dont le rôle est de remplir les
- OG reçoit le sang oxygéné du poumon via les veines pulmonaires
- VG renvoie le sang oxygéné à l'ensemble du corps par l'aorte
- OD reçoit le sang pauvre en O2 du corps via les veines cave
- VD renvoie le sang pauvre en O2 aux poumons par les artères pulmonaires Réseau artériel, réseau veineux :

Le réseau sanguin de la circulation systémique se distribue en deux :

- Réseau artériel:
 - > transporte le sang riche en oxygène provenant du ventricule gauche
 - Le sang arrive du poumon dans OG via les veines pulmonaires
 - Il repart du VG par l'aorte, avec une pression de 100 mm Hg
 - destination: les différents organes du corps
- Réseau veineux, ou retour veineux :
 - récupère le sang pauvre en O2 de tous les organes du corps
 - Le sang arrive dans OD par les veines caves, 2 à 4 mm Hg
 - Il repart du VD par les artères pulmonaires
 - destination: les poumons pour se recharger en oxygène

ACTIVITÉ MÉCANIQUE DES VENTRICULES:

Les étapes d'un cycle de l'activité mécanique :

- > La systole ventriculaire en deux phases
 - Contraction isovolumétrique des ventricules: toutes les valvules sont fermées, les ventricules sont pleins. La pression augmente dans les ventricules
 - Éjection brutale vers l'aorte et l'artère pulmonaire: les valvules sigmoïdes s'ouvrent dès que P_V>P_{aorte} laissant passer le sang.
- > Diastole ventriculaire en deux phases
 - Relaxation iso-volumétrique: la pression ventriculaire diminue et provoque la fermeture des valves sigmoïdes: FS dès que PV<Paorte (bruit)
 - Phase de remplissage passif: dès que Po>Pv les VAV s'ouvrent, le sang s'écoule dans les ventricules.

La diastole ventriculaire se termine par une contraction auriculaire qui complète le remplissage (systole auriculaire).

PV devient > à PO, les VAV se ferment: FVAV (bruit)

Régime discontinu-régime continu :

- · Le cœur propulse le sang de façon discontinue
- or le flux sanguin dans le réseau artériel est continu.
- La continuité est assurée grâce à la compliance ou élasticité: vl P de l'aorte et des gros vaisseaux sanguins:
 - la paroi des vaisseaux se distend pendant la systole
 - se rétracte à la fin de la systole après la fermeture des valvules sigmoïdes.
 - elle restitue une partie de l'énergie emmagasinée, pour pulser le sang. (elle prend la relève de la systole ventriculaire.)
- La compliance permet :
 - la transformation d'un flux pulsé en flux continu
 - une économie de la puissance cardiaque

Relation pression/volume ventriculaire: travail du cœur :

- L'activité mécanique nécessite une dépense d'énergie.
- Travail cardiaque (Wc) = Pression · Volume
- Graphiquement, Wc → surface comprise entre les courbes pression-volume particulières:
 - contraction isovolumétrique
 - éjection systolique
 - relaxation isovolumétrique
 - remplissage diastolique
- Or, Wc = Wo + WvD + WvG ≈ WvG
- Nous allons donc décrire le travail du ventricule gauche.

- A : fin de la diastole, remplissage maximal du ventricule volume télédiastolique \approx 125ml, pression est proche de 0
- D: fin de la contraction isovolumétrique pression proche de 90mmHg ouverture de la valve aortique
- S: fin de l'éjection volume éjecté 65 à 70 ml la valve aortique se ferme
- V: volume télésystolique ≈ 60ml.

Dans les conditions physiologiques normales, l'énergie totale est composée de:

- travail mécanique de pression (W):
 - phases de remplissage diastolique et d'éjection systolique
 - utilise une puissance de 1,3 watt
- tension qui met sous pression le volume ventriculaire,
 - phases isovolumétriques
 - utilise une puissance de 11,7 watt
- Le rendement mécanique est assez faible mais augmente à l'effort ou en cas de pathologie

Exemple de situation d'augmentation de Wc:

- en cas d'hypertension artérielle
 - la postcharge se trouve augmentée (car PA élevée)
 - nécessite une augmentation de la contractilité
 - entraine l'augmentation du travail cardiaque
- en cas d'augmentation de la contractilité (prise de médicament, effort)
 - les valves sigmoïdes s'ouvrent à PV élevée, mais volume normal
 - ou les valves sigmoïdes s'ouvrent à PV norm ale, mais volume élevé
 - dans les deux situations le travail cardiaque est augmenté

ÉCOULEMENT ET DÉBIT SANGUINS

Rappels sur les écoulements des fluides

Section d'un cylindre → coupe ⊥ sa longueur

Vitesse d'écoulement = distance parcourue/temps: m/s

Débit (D) = volume de fluide qui passe à travers une canalisation/temps: m3/s

Relation entre débit et vitesse: D= S . V

Dans un conduit avec ramifications en parallèle, circuit fermé : débit entrant = sommes des débits sortants

Dans une canalisation, s'il y a conservation de la matière: D= cte ⇒ S1 . V1 = S2 . V2

S1 = 10cm2 S2 = 2cm2 D= 10ml/s

Liquide parfait: s'écoule sans frottement entre les particules pas de perte d'énergie durant l'écoulement entre deux points

$$p_1 + \frac{1}{2}\rho v_1^2 + \rho g h_1 \neq p_2 + \frac{1}{2}\rho v_2^2 + \rho g h_2$$

(Théorème de Bernoulli)

Liquide réel: les particules se frottent entre elles \rightarrow viscosité η

perte d'énergie pendant l'écoulement $[\eta]$ = Kg.m-1.s-1 =Pa . s = poiseuille (SI)

$$p_1 + \frac{1}{2}\rho v_1^2 + \rho g h_1 \neq p_2 + \frac{1}{2}\rho v_2^2 + \rho g h_2$$

on pose
$$p1$$
 $p2 = \Delta p$

la loi de poiseuille stipule que:

$$D = \Delta p \frac{\pi R^4}{8nl}$$

 Δ p: perte de charge = énergie que perd le système à cause de la viscosité η canalisation horizontale:

$$\Delta p = D\left(\frac{8\eta l}{\pi R^4}\right)$$

$$h = \text{cte} \to \rho \text{gh} = \text{cte}$$

 $D = \text{s v} = \text{cte} \to \frac{1}{2}\rho \text{v}^2 = \text{cte}$

Dans un liquide **réel** les couches en contact avec le contenant s'accrochent→ <u>vitesses variables</u>

Écoulement laminaire: vitesse d'écoulement relativement faible

- vecteurs vitesse parallèles avec profil parabolique
- vitesse maximale au centre et V≈0 pour une mince couche périphérique **écoulement turbulent**: vitesse relativement élevée
- vecteurs vitesse désordonnés, pas de règles générales

Limite entre les 2 régimes: nombre de Reynolds = $(\rho d v)/\eta$

ou vitesse critique $Vc = 2400 \, \eta / (\rho \, d)$

- < 2400: écoulement strictement laminaire.
- > 10000: écoulement strictement turbulent.

Entre les deux: régime instable, mélange des deux régimes.

Quand la vitesse d'écoulement > la vitesse critique le régime cesse d'être laminaire.

(VOIR APPLICATION DIAPO PAGE 14)

Particularités du réseau vasculaire

- Architecture du réseau vasculaire
 - réseau parallèle
 - section → somme des sections de tous les vaisseaux de la catégorie concernée
- Le nombre des vaisseaux:
 - augmente de l'aorte (1) aux capillaires (5.109)
 - décroit des capillaires à la veine cave
- La vitesse d'écoulement (D= s.v = cte):
 - Décroit de l'aorte (30cm/s) aux capillaires (<0,1cm/s) (échanges)
 - augmente des capillaires aux veines cave (5 à 20cm/s)

Valeurs approximatives des diamètres, épaisseurs de paroi et section des vaisseaux

Représentation de la vitesse d'écoulement/section :

- •La vitesse est élevée à l'éjection: écoulement turbulent
- ⇒ bruyant ⇒ profitable à l'auscultation des vaisseaux.
- Dans le reste de la circulation l'écoulement est laminaire
- Dans les artérioles et les veines, la circulation du sang n'est jamais turbulente.
- Sauf dans les cas de rétrécissement ⇒Thrill à la palpation et souffle à l'auscultation

Souffles liés à des turbulences

- Les turbulences sont rencontrées quand la vitesse d'écoulement > la vitesse critique
- Situations non physiologique où l'écoulement devient turbulent:
 - anémie ⇒baisse de l'hématocrite ⇒ η↓ et Vc ↓
 - Sténose vasculaire. D = S . V si S↓ V↑ et V peut devenir >Vc
 - En systole: fuite dans la valve mitrale (normalement fermée) ou rétrécissement de la valve aortique.
 - En diastole: rétrécissement de la valve mitrale (normalement ouverte) ou fuite dans la valve aortique.

(VOIR APPLICATION PAGE 19)

- Composition du sang
 - Plasma= solution macromoléculaire \rightarrow fluide newtonien de viscosité η = 10-3 poiseuille
 - Cellules en suspension
- · Viscosité du sang: 4.10-3 poiseuille
 - n varie en fonction de dv/dx: à vitesse élevée la viscosité diminue (rhéofluidification)
 - à hématocrite (Volume de cellules / volume total) élevé, viscosité élevée
 - si la concentration de macromolécules linéaires augmente dans le sang, η augmente
 - si calibre des vaisseaux diminue, la viscosité diminue (couche de glissement)
 - quand la température augmente, η diminue quand

Le sang est un fluide non newtonien et anormalement visqueux

Application de la Loi de Poiseuille pour la circulation sanguine

Pressions moyennes (mm Hg) le long du réseau vasculaire:

VG: 120-130 Aorte: 100 Artères: 40 Capillaires: 25 Veine cave: 2-4

• Importance de la différence de pression: existence et maintien d'un débit

$$D = \Delta p \frac{\pi r^4}{8\eta l}$$
 loi de Poiseulle

- le débit peut varier dans des situations physiologiques exceptionnelles ou dans des situations pathologiques quand l'une de ces composantes varie.
- Dans des conditions de fonctionnement normales ces composantes ont des valeurs précises qui permettent un débit constant.

Résistance à l'écoulement :

- · La résistance d'un vaisseau dépend donc de
 - calibre du vaisseau: r↑, ↓
 - longueur: L↑ frictions ↑ et ↑
 - viscosité: η ↑ ↑
- Dans des canalisation en II on additionne les 1I g

Pour n canalisations parallèles: 1/ $g=\Sigma 1/i$

Résistance globale d'un secteur: g = i/n

La conséquence de cette architecture: réseau //, r ↓, nb↑, L↓

⇒ une diminution progressive de la pression

la perte de charge au niveau d'un secteur $\rightarrow p = g \cdot D$

Exemple de calcul de la perte de charge le long d'un secteur vasculaire

Pour le secteur artériel, on suppose:

• r d'une artère = 0,05cm/ l d'une artère = 0,09m/ n = 600/ D = 5l/min/ η = 4. 10-3 kPa

$$\mathbb{R}i = \frac{8 \cdot 4 \cdot 10^{-3} \cdot 9 \cdot 10^{-2}}{3 \cdot 14 \cdot (5 \cdot 10^{-4})^4} = 0,146 \cdot 10^{11} \quad \text{or} \quad \mathbb{R}_g = \frac{\mathbb{R}_i}{n} = 2,44 \cdot 10^7$$

$$\text{et} \quad \Delta p = \mathbb{R}_g \cdot D = 2,44 \cdot 10^7 \cdot 8,3 \cdot 10^{-5} = 20,25 \cdot 10^2 \, \text{Pa}$$

Pression artérielle:

Définitions:

- Pression artérielle ou pression sanguine
- pression du sang dans les artères de la circulation systémique
- Mesure de la pression artérielle
- utilisation d'un sphygmomanomètre →pression élevée sur artère humérale
- dégonfler progressivement → apparition d'un bruit : pression systolique
- continuer à dégonfler, le bruit augmente puis s'estampe: pression diastolique

En station debout PA varie en fonction de la hauteur

- En considérant que la vitesse d'écoulement du sang est lente et cte le long d'une artère, on pourra appliquer le théorème de Bernoulli:
- La relation de conservation d'énergie $p_{\rm 1}$ + $\rho g_{\rm 1}$ + 1/2 $\rho v_{\rm 1}$ 2 = $p_{\rm 2}$ + $\rho g_{\rm 2}$ + 1/2 $\rho v_{\rm 2}$ 2 devient $p_{\rm 1}$ + $\rho g_{\rm 1}$ = $p_{\rm 2}$ + $\rho g_{\rm 2}$ 2
- $\Rightarrow p\mathbf{1} \quad p\mathbf{2} = \rho g \quad \mathbf{2} \quad \mathbf{1}$
- En prenant le cœur comme référence on notera: pc $pi = \rho g(i c)$
- Estimation, par le calcul, de PA au point i: $PAi = Pc \rho g(i c)$
- Exemple pour la tête t = 1.8m et le cœur étant à une hauteur c = 1.3m $PAt = Pc ext{ } \rho g ext{ (} t ext{ } c ext{)}$

donc
$$PAt = 13kPa - \rho(1.8 \ 1.3) = 13kPa$$
 (1050 . 9.81.0.5)
 $PAt = 13kPa$ 5.15 $kPa = 7.85kPa$

• Autre exemple, les pieds se trouvent au sol, donc à une hauteur p = 0m

$$PAp = 13kPa \quad \rho g \text{ 0} \quad 1.3 = 13kPa \quad (1050.9.81.(1.3))$$

donc PAp = 13kPa + 13.39kPa = 26.39kPa

En station allongée PA est globalement identique en tous points, tous les points du corps étant à la même hauteur

Conclusion: la PA doit toujours être mesurée à la hauteur du cœur ou en position allongée

Ressources : Diapos du professeur de Biophysique Hjiyej

Mise en page : Filali Mohamed (étudiant de la promo médecine 2022)