- On peut également éviter une énumération exponentielle
 - exemple avec T=3: $\max_{h^*_{1:3}} P(h^*_1) P(s_1 | h^*_1) P(h^*_2 | h^*_1) P(s_2 | h^*_2) P(h^*_3 | h^*_2) P(s_3 | h^*_3)$ $= \max_{h^*_3} P(s_3 | h^*_3) \max_{h^*_2} P(s_2 | h^*_2) P(h^*_3 | h^*_2) \max_{h^*_3} P(h^*_2 | h^*_1) P(h^*_1) P(s_1 | h^*_1)$
- Solution: programmation dynamique, avec un max au lieu de la somme
 - on définit $\alpha^*(i,t) = P(S_{1:t} = S_{1:t}, H_{1:t-1} = h^*_{1:t-1}, H_t = i)$
 - on note la récursion

$$\alpha^*(i,t+1) = \max_{j} P(S_{1:t+1} = s_{1:t+1}, H_{1:t-1} = h^*_{1:t-1}, H_t = j, H_{t+1} = i)$$

$$= \max_{j} P(S_{t+1} = s_{t+1} \mid H_{t+1} = i) P(H_{t+1} = i \mid H_t = j) P(S_{1:t} = s_{1:t}, H_{1:t-1} = h^*_{1:t-1}, H_t = j)$$

$$= P(S_{t+1} = s_{t+1} \mid H_{t+1} = i) \max_{j} P(H_{t+1} = i \mid H_t = j) \alpha^*(j,t)$$

- on a les valeurs initiales: $\alpha^*(i,1) = P(S_1 = s_1 \mid H_1 = i) P(H_1 = i) \forall i$
- On a alors que $P(S_{1:T} = S_{1:T}, H_{1:T} = h^*_{1:T}) = \max_i \alpha^*(j,T)$
- On retrouve $h^*_{1:T}$ à partir de tous les argmax_i

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

• initialisation: $\alpha^*(i,1) = P(S_1 = s_1, H_1 = i) = P(S_1 = s_1 \mid H_1 = i) P(H_1 = i)$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

j,t)	it	1	2	3	4
χ*(i,	0	0.45			
J	1				

• initialisation: $\alpha^*(0,1) = P(S_1=0 | H_1=0) P(H_1=0) = 0.9 \times 0.5 = 0.45$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

i,t)	it	1	2	3	4
χ*(i,	0	0.45			
J	1	0.1			

• initialisation: $\alpha^*(1,1) = P(S_1=0 | H_1=1) P(H_1=1) = 0.2 \times 0.5 = 0.1$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

• récursion (t=1): $\alpha^*(i,t+1) = P(S_{t+1} = s_{t+1} \mid H_{t+1} = i) \max_j P(H_{t+1} = i \mid H_t = j) \alpha^*(j,t)$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

• récursion: $\alpha^*(0,2) = P(S_2=0|H_2=0) \max\{P(H_2=0|H_1=0) \alpha^*(0,1), P(H_2=0|H_1=1) \alpha^*(1,1)\}$

- Exemple: décoder un message binaire avec canal bruité (*T*=4)
 - message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

(i,t)	it	1	2	3	4
;) *	0	0.45	0.1215		
	1	0.1			

• récursion: $\alpha^*(0,2) = 0.9 \text{ max} \{ 0.3 \times 0.45, 0.6 \times 0.1 \} = 0.1215$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

(t,	it	1	2	3	4
λ*(i,1	0	0.45	0.1215		
	1	0.1-	\rightarrow		

• récursion: $\alpha^*(1,2) = P(S_2=0|H_2=1) \max\{P(H_2=1|H_1=0) \alpha^*(0,1), P(H_2=1|H_1=1) \alpha^*(1,1)\}$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

(t,	it	1	2	3	4
x*(i,	0	0.45	0.1215		
	1	0.1	0.063		

• récursion: $\alpha^*(1,2) = 0.2 \text{ max} \{ 0.7 \times 0.45, 0.4 \times 0.1 \} = 0.063$

- Exemple: décoder un message binaire avec canal bruité (*T*=4)
 - \bullet message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

• récursion (t=2): $\alpha^*(i,t+1) = P(S_{t+1} = S_{t+1} \mid H_{t+1} = i) \max_j P(H_{t+1} = i \mid H_t = j) \alpha^*(j,t)$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

,t)	it	1	2	3	4
χ*(i,1	0	0.45	0.1215	0,03402	
	1	0.1	0.063		

• récursion: $\alpha^*(0,3) = 0.9 \text{ max} \{ 0.3 \times 0.1215, 0.6 \times 0.063 \} = 0.03402$

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

,t,	it	1	2	3	4
χ*(i,	0	0.45	0.1215	0.03402	0:001021
	1	0.1	0.063	0.01701	0.019051

on continue d'appliquer la récursion jusqu'à la fin (t=4)...

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - \bullet message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

,t,	it	1	2	3	4
χ*(i,	0	0.45	0.1215	0.03402	0:001021
	1	0.1	0.063	0.01701	0.019051

• on trouve le maximum à la dernière colonne...

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

(t,	it	1	2	3	4
χ*(i,	0	0.45	0.1215	0.03402	0.001021
	1	0.1	0.063	0.01701	0.019051

... puis on retrouve le chemin qui a mené là

- Exemple: décoder un message binaire avec canal bruité (T=4)
 - message observé: $S_1=0$, $S_2=0$, $S_3=0$, $S_4=1$

Modèle d'observation

	H _t =0	H _t =1
$P(S_t=0 \mid H_t)$	0.9	0.2
$P(S_t=1 \mid H_t)$	0.1	0.8

Modèle de transition

	H _{t-1} =0	H _{t-1} =1
$P(H_{t}=0 \mid H_{t-1})$	0.3	0.6
$P(H_t=1 \mid H_{t-1})$	0.7	0.4

Distribution initiale

	H ₁ =0	H ₁ =1
$P(H_1)$	0.5	0.5

,t,	it		1	2		3	4
α*(i,t)	0		0.45	0.1215	0.034	402	0.001021
	1		0.1	0.063	0.017	701	0.019051
		H_1	=0	$H_2 = 1$	$H_3 = 0$		$H_4=1$

 \bullet ce chemin nous donne la séquence des H_t la plus probable