

SEQUENCE LISTING

<110> NAKARI-SETALA, Tiina et al.

<120> A METHOD FOR DECREASING THE FOAM FORMATION DURING CULTIVATION OF A MICROORGANISM

<130> 0365-0529P

<140> US 10/050,000

<141> 2002-05-03

<160> 9

<170> PatentIn Ver. 2.1

<210> 1

<211> 2868

<212> DNA

<213> Trichoderma reesei

<220>

<221> gene

<222> (1523)..(1950)

<223> hfb1

<400> 1

tttgttatggc tggatctcga aaggcccttg tcatacgccaa gcgtggctaa tatcaatga 60
gggacaccga gttgcataatc tcctgatcat tcaaacgaca agtgtgaggt aggcaatcct 120
cgtatccat tgctggctg aaagcttcac acgtatcgca taagcgtctc caaccagtgc 180
ttaggtgacc cttaaggata cttagactaa gactgttata agtcagtcac tctttcactc 240
gggcttgaa tacgatccctc aataactcccg ataacagtaa gaggatgata cagcctgcag 300
ttggcaaattg taagcgtaat taaactcagc tgaacggccc ttgttgaag tctctctcga 360
tcaaagcaaa gctatccaca gacaagggtt aagcaggctc actcttccta cgcccttggat 420
atgcagcttgcgccatcg cgcatggcca atgatgcacc cttcacggcc caacggatct 480
cccgtaaac tccccctgtaa ctggcatca ctcatctgtg atcccaacag actgagttgg 540
gggctgcggc tggcggatgt cgagcaaaag gatcacttca agagcccaga tccggttgg 600
ccattgccaa tggatctaga ttccggcacct tgatctcgat cactgagaca tggtagttg 660
cccgacgc ccacaactcc ccctgtgtca ttgagttccc atatgcgtt tctcagcgtg 720
caactctgag acggattagt cctcacgatg aaattaacctt ccagcttaag ttcgttagcct 780
tgaatgagtg aagaaatttc aaaaacaaaac tgagtagagg tcttgagcag ctgggttgg 840
acgcccctcc tcgactcttgc gacatcgta cggcagagaa tcaacggatt cacacctttg 900
ggtcgagatg agctgatctc gacagatacg tgcttcacca cagctgcagc taccttgcc 960
caaccattgc gttccaggat ctgtatctac atcaccgcag caccgcggcc aggacggaga 1020
gaacaatccg gccacagagc agcaccgcct tccaactctg ctccctggcaa cgtcacacaa 1080
cctgatattt gatatccacc tgggtgattt ccattgcaga gaggtggcag ttggtagatac 1140
cgactggcca tgcaagacgc ggccgggcta gctgaaatgt ccccgagagg acaattggga 1200
gcgtctatga cggcggtggag acgacgggaa aggactcagc cgtcatgtt tggttgc当地 1260
ttgagattgt tgaccggaa agggggggac aagagatgg ctgggtgagg tggtagttgg 1320
aggatgcattt attcgactca gtgagcgtatg tagagctcca agaatataaa tatcccttct 1380
ctgtcttctc aaaatctctt tccatcttgc cttcatcag caccagagcc agcctgaaca 1440
cctccaggatca acttccctta ccagatcatac tgaatcaaca tccattctt gaaatctcac 1500
cacaaccacc atcttcttca aaatgaagtt ctccggcattc gccgctctt ttgcggccgc 1560
tgccgttgcc cagcctctcg aggacccgac caacgcaac gcaatgtt gcccctccgg 1620
cctcttccatc aaccccccagt gctgtgccac ccaagtcctt ggcctcatcg gccttgactg 1680
caaagtccgt aagttgagcc ataacataag aatcccttgc acggaaatat gccttctcac 1740
tccttaccc ctgaacagcc tccagaacacg tttacgacgg caccgacttc cgcaacgtct 1800

gcgcacaaac cggcgccccag cctctctgct gcgtggcccc cgttgtaaat ttagcccca 1860
 gctcaagctc cagtcttgg caaacccatt ctgacaccca gactgcaggc cggccaggct 1920
 cttctgtgcc agaccggcgt cggtgcttga gatgcccggc cggggtaaag gtgtggccgt 1980
 gagaaaagccc acaaagtgtt gatgaggacc atttcggta ctgggaaagt tggctccacg 2040
 tgtttggca gttttggca agttgtgttag atattccatt cgtacggcat tcttattctc 2100
 caatatttca gtacactttt cttcataaat caaaaagact gctattctt ttgtgacatg 2160
 ccggaaaggga acaattgctc ttggctctg ttatttgc aaatggatgg gagattcgcc 2220
 ttagagaaag tagagaagct gtgcttgacc gtgggtgtgac tcgacgagga tggactgaga 2280
 gtgttaggat taggtcgaac gttgaagtgt atacaggatc gtctggcaac ccacggatcc 2340
 tatgacttga tgcaatggta aagatgaatg acagtgtaa aggaaaagga aatgtccgccc 2400
 ttcagctgat atccaccca atgatacagc gatatacctc caatatctgt gggaaacgaga 2460
 catgacatat ttgtggaaac aacttcaaac agcgagccaa gacctaata tgcacatcca 2520
 aagccaaaca ttggcaagac gagagacagt cacattgtcg tcgaaagatg gcatcgtaacc 2580
 caaatcatca gctctcatta tcgcctaaac cacagattgt ttggcgccccc ccaactccaa 2640
 aacgttacta caaaagacat gggcgaatgc aaagacctga aagcaaacc ttttgcgac 2700
 tcaattccct cctttgtcct cgaatgtat atccttcacc aagtaaaaaga aaaagaagat 2760
 tgagataata catgaaaagc acaacggaaa cggaaagacc aggaaaagaa taaatctatc 2820
 acgcacccctg tcccccacact aaaagcaaca ggggggtaa aatgaaat 2868

<210> 2
 <211> 3585
 <212> DNA
 <213> Trichoderma reesei

<220>
 <221> gene
 <222> (1191)...(1593)
 <223> hfb2

<220>
 <221> unknown
 <222> (1917)..(1917)
 <223> n = a, c, t, g, unknown, or other

<220>
 <221> unknown
 <222> (2160)..(2160)
 <223> n = a, c, t, g, unknown, or other

<220>
 <221> unknown
 <222> (3515)..(3515)
 <223> n = a, c, t, g, unknown, or other

<400> 2
 ctcgagcagc tgaagcttgc atgcctgcat cctttgttag cgactgcata cattttgcac 60
 acactgcccgt cgacgtctct ctccgacct tggccagctg gacaaggcaac acaccaatga 120
 cgctttgtat tattagatgta tatgcaagtc tcaggactat cgactcaact ctacccaccc 180
 aggacgatcg cggcacgata cggccctcggtt ctcattggcc caagcagacc aactgccccct 240
 ggagcaagat tcagcccaag ggagatggac ggcaggccac gccaggcccc caccaccaag 300
 ccactccctt tggccaaatc agcttgcatt tcaagagaca tcgagctgtg ccttggaaatt 360
 actaacaacc agggatggaa aacgaaggct gctttggaa agacaacaat gagagagaga 420
 gagagaggaa gagagacaat gagtgcacca aacctggtag tgctccgcca atgcgtctga 480
 aatgtcacat ccgagtcttgc gggcctctgt gagaatgtcc agagtaatac gtgtttgcg 540
 aatagtccctc ttcttgagg actggatacc tacgataacc ttttggatt gatgcgggtgc 600
 ttctcaatgtt gatagaagac gtcttagttaa ctacacaaaaa ggcctataact 660

```
<210> 3
<211> 63
<212> DNA
<213> Artificial Sequence
```

<220>

<223> Description of Artificial Sequence: 5' primer

<400> 3
actacacgga ggagctcgac gacttcgagc agcccgagct gcacgcagag caacggcaac 60
ggc 63

<210> 4
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: 3' primer

<400> 4
tcgtacggat cctcaagcac cgacggcggt 30

<210> 5
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: linker

<400> 5
Pro Gly Ala Ser Thr Ser Thr Gly Met Gly Pro Gly Gly
1 5 10

<210> 6
<211> 14
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: linker

<400> 6
Gly Thr Leu Val Pro Arg Gly Pro Ala Glu Val Asn Leu Val
1 5 10

<210> 7
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: 5' primer

<400> 7
gaattcggta ccctcggtccc tcgcggtccc gccgaagtga acctggtg 48

```
<210> 8
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: 3'primer

<400> 8
tgaattccat atgctaaccc cgtttcatct ccag 34

<210> 9
<211> 157
<212> PRT
<213> Artificial Sequence

<220>
<223> Hydrophobin protein derived from fungi

<220>
<221> misc_feature
<222> (1)..(38)
<223> Xaa can be any naturally occurring amino acid and at least
      2 and up to 38 amino acids can either be present or absent

<220>
<221> misc_feature
<222> (40)..(48)
<223> Xaa can be any naturally occurring amino acid and at least
      5 and up to 9 amino acids can either be present or absent

<220>
<221> misc_feature
<222> (51)..(89)
<223> Xaa can be any naturally occurring amino acid and at least
      11 and up to 39 amino acids can either be present or absent

<220>
<221> misc_feature
<222> (91)..(113)
<223> Xaa can be any naturally occurring amino acid and at least
      8 and up to 23 amino acids can either be present or absent

<220>
<221> misc_feature
<222> (115)..(123)
<223> Xaa can be any naturally occurring amino acid and at least
      5 and up to 9 amino acids can either be present or absent

<220>
<221> misc_feature
<222> (126)..(143)
<223> Xaa can be any naturally occurring amino acid and at least
      6 and up to 18 amino acids can either be present or absent
```

<220>
<221> misc_feature
<222> (145)..(157)
<223> Xaa can be any naturally occurring amino acid and at least
2 and up to 13 amino acids can either be present or absent

<400> 9

Xaa
1 5 10 15

Xaa
20 25 30

Xaa Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
35 40 45

Cys Cys Xaa
50 55 60

Xaa
65 70 75 80

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa
85 90 95

Xaa
100 105 110

Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys Cys Xaa Xaa Xaa
115 120 125

Xaa Cys
130 135 140

Xaa
145 150 155