Measurments taken 93 calendar days since BOC. Data Passes (pass id, power [MWt], boron [ppm], control bank A/B/C/D/E positions [step])

- 1 3400.2 712. 228. 228. 228. 209. 230.
- 2 3406.8 712. 228. 228. 228. 209. 230.
- 3 3401.7 712. 228. 228. 228. 209. 230.
- 4 3401.4 712. 228. 228. 228. 209. 230.
- 5 3407.4 712. 228. 228. 228. 209. 230.
- 6 3404.9 712. 228. 228. 228. 209. 230.
- 7 3405.7 712. 228. 228. 228. 209. 230.
- 8 3408.8 712. 228. 228. 228. 209. 230.
- 9 3408.4 712. 228. 228. 228. 209. 230.
- 10 3407.1 712. 228. 228. 228. 209. 230.
- 11 3414.7 712. 228. 228. 228. 209. 230.
- 12 3416.1 712. 228. 228. 228. 209. 230.
- 13 3410.4 712. 228. 228. 228. 209. 230.
- 14 3410.7 712. 228. 228. 228. 210. 230.

Average Power [MWt]: 3407.45

Inlet Coolant Temperature [°F]: 561.425

Core Burnup [MWD/MT]: 3198.7

Average Boron [ppm]: 712.0

Figure 1: Renormalized data after spline

Figure 2: Unnormalized data after spline

Figure 3: Radial detector measurements (axially integrated).

J1	0.872	F1	0.758
N2	0.508	K2	1.067
H2	1.038	Н3	1.048
F3	1.077	D3	1.074
В3	0.511	P4	0.834
N4	1.065	H4	
L5	1.226	G5	1.188
E5	1.235	C5	1.202
R6	0.765	N6	1.063
K6	1.221	Н6	1.080
B6	1.081	M7	
J7	1.080	F7	1.124
C7		R8	0.859
N8	1.051	L8	1.097
J8		F8	
D8	1.144	C8	
B8	1.060	G9	1.094
E9	1.201	A9	0.887
L10	1.091	J10	1.122
D10	1.226	R11	0.520
L11	1.232	H11	1.101
E11	1.229	A11	0.535
K12		G12	1.109
D12	1.124	N13	
L13	1.176	H13	1.068
N14	0.504	J14	1.068
F14		L15	0.522
H15	0.863		

Table 1: Full core radial detector measurements (axially integrated).

Figure 4: Quarter core (full core folded) radial measurements.

D10	1.226	I	D12	1.124
E11	1.230]	E13	1.202
E15	0.520]	312	0.834
B13	0.504	(C12	1.070
C11	1.176	(C10	1.070
F9	1.122		F8	1.080
C14	0.509]	F11	1.091
A11	0.529	1	410	0.761
F14	1.074		E8	1.099
E9	1.195	I	H10	1.080
H11	1.099	I	H12	1.144
H13	1.056	I	H14	1.049
H15	0.861		D8	1.144
C8	1.056		В9	1.068
B8	1.049	(G15	0.872
G12	1.109	(G10	1.124
A8	0.861		A9	0.887
F10	1.221		G9	1.087

Table 2: Quarter core radial detector measurements (axially integrated).

Figure 5: Radial detector measurements (tilt corrected).

Figure 6: Radial detector measurements (simulate normalized to tilt corrected data).

Figure 7: Radial detector absolute difference (simulate minus tilt corrected data).

Figure 8: Radial detector measurements (simulate normalized to detector data).

Figure 9: Radial detector absolute difference (simulate minus detector data).