Lecture 1b. Probability Review

COMP90051 Statistical Machine Learning

Sem2 2020 Lecturer: Ben Rubinstein

This lecture

- About COMP90051
- Review: Probability theory
- Review: Linear algebra
- Review: Sequences and limits

Data is noisy (almost always)

• Example:

- * given mark for Intro ML (IML)
- predict mark for Stat Machine Learning (SML)

^{*} synthetic data:)

Types of models

$$\hat{y} = f(x)$$

IntroML mark was 95, SML mark is predicted to be 95

P(y|x)

IntroML mark was 95, SML mark is likely to be in (92, 97)

P(x, y)

probability of having (IML = x, SML = y)

Basics of probability theory

- A probability space:
 - * Set Ω of possible outcomes
 - Set F of events (subsets of outcomes)
 - * Probability measure P: $F \rightarrow \mathbf{R}$

- Example: a die roll
 - * {1, 2, 3, 4, 5, 6}
 - * { φ, {1}, ..., {6}, {1,2}, ..., {5,6}, ..., {1,2,3,4,5,6} }
 - * P(φ)=0, P({1})=1/6, P({1,2})=1/3, ...

Axioms of probability*

- 1. F contains all of: Ω ; all complements $\Omega \setminus f$, $f \in F$; the union of any countable set of events in F.
- 2. $P(f) \ge 0$ for every event $f \in F$.
- 3. $P(\bigcup_f f) = \sum_f P(f)$ for all countable sets of pairwise disjoint events.
- **4.** $P(\Omega) = 1$

^{*} We won't delve further into advanced probability theory, which starts with measure theory – a beautiful subject and the only way to "fully" formulate probability.

Random variables (r.v.'s)

- A random variable X is a numeric function of outcome $X(\omega) \in \mathbf{R}$
- P(X ∈ A) denotes the probability of the outcome being such that X falls in the range A

- Example: X winnings on \$5 bet on even die roll
 - * X maps 1,3,5 to -5 X maps 2,4,6 to 5
 - * $P(X=5) = P(X=-5) = \frac{1}{2}$

Discrete vs. continuous distributions

- Discrete distributions
 - Govern r.v. taking discrete values
 - Described by probability mass function p(x) which is P(X=x)
 - * $P(X \le x) = \sum_{a=-\infty}^{x} p(a)$
 - * Examples: Bernoulli, Binomial, Multinomial, Poisson

- Continuous distributions
 - Govern real-valued r.v.
 - Cannot talk about PMF but rather probability density function p(x)
 - * $P(X \le x) = \int_{-\infty}^{x} p(a)da$
 - * Examples: Uniform, Normal, Laplace, Gamma, Beta, Dirichlet

Expectation

- Expectation E[X] is the r.v. X's "average" value
 - * Discrete: $E[X] = \sum_{x} x P(X = x)$
 - * Continuous: $E[X] = \int_{x} x p(x) dx$
- Properties
 - * Linear: E[aX + b] = aE[X] + bE[X + Y] = E[X] + E[Y]
 - * Monotone: $X \ge Y \Rightarrow E[X] \ge E[Y]$
- Variance: $Var(X) = E[(X E[X])^2]$

Multivariate distributions

- Specify joint distribution over multiple variables
- Probabilities are computed as in univariate case, we now just have repeated summations or repeated integrals
- Discrete: $P(X, Y \in A) = \sum_{(x,y)\in A} p(x,y)$
- Continuous: $P(X, Y \in A) = \int_A p(x, y) dx dy$

Independence and conditioning

- X, Y are independent if
 - * $P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$
 - * Similarly for densities: $p_{X,Y}(x,y) = p_X(x)p_Y(y)$
 - Intuitively: knowing value of Y reveals nothing about X
 - * **Algebraically**: the joint on *X,Y* factorises!

Conditional probability

*
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

- * Similarly for densities $p(y|x) = \frac{p(x,y)}{p(x)}$
- * Intuitively: probability event A will occur given we know event B has occurred
- * X,Y independent equiv to P(Y = y | X = x) = P(Y = y)

Inverting conditioning: Bayes' Theorem

In terms of events A, B

*
$$P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$$

*
$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

Bayes

- Simple rule that lets us swap conditioning order
- Probabilistic and Bayesian inference make heavy use
 - Marginals: probabilities of individual variables
 - * Marginalisation: summing away all but r.v.'s of interest $P(A) = \sum_b P(A, B = b)$

Summary

- Probability spaces, axioms of probability
- Discrete vs continuous; Univariate vs multivariate
- Expectation, Variance
- Independence and conditioning
- Bayes rule and marginalisation

Next: Linear algebra primer/review