

Digitized by the Internet Archive in 2011 with funding from LYRASIS members and Sloan Foundation; Indiana Department of Transportation http://www.archive.org/details/trafficspeedrepo00schu

Progress Report

"Traffic Speed Report No. 78"

TO: K. B. Woods, Director

Joint Highway Research Project

December 17, 1963

FROM: H. L. Michael, Associate Director Joint Highway Research Project

File: 8-3-4 Project: C-36-10D

Attached is a Progress Report entitled "Traffic Speed Report No. 78". The results of the 1963 study of the relationship between truck weights and truck speeds are contained herein. The report has been prepared by Mr. L. L. Schulman, graduate assistant on our staff, and was prepared from data obtained during the annual truck study performed by the Highway Planning Survey Section of the Indiana State Highway Commission. The Project has cooperested in this study in a similar manner for many years.

Participation in this study by personnel of the Project was not as great this year as in previous years as the study was conducted about one month later this year thereby causing many conflicts with the beginning of classes for our personnel.

This report will be distributed in the usual manner to the Highway Commission, the Bureau of Public Roads, the State Police, the Office of Traffic Safety and the Traffic Safety Foundation. It is presented to the Board for information and for the record and for approval of such distribution.

Respectfully submitted,

Throld 2 Mustant

Harold L. Michael, Secretary

HIM:bc

Attachment

Copy:

F. L. Ashbaucher

J. R. Cooper

W. L. Dolch

W. H. Goetz

F. F. Havey

F. S. Hill

G. A. Leonards

J. F. McLaughlin

R. D. Miles

R. E. Mills

M. B. Scott

J. V. Smythe

E. J. Yoder

Progress Report

TRAFFIC SPEED REPORT NO. 78

by

Lawrence Schulman Graduate Assistant

Joint Highway Research Project

File No: 8-3-4

Project No: C-36-10D

Purdue University

Lafayette, Indiana

December 17, 1963

- - I - I - I -

TRAFFIC SPEED REPORT NO. 78

Introduction

This report is an analysis of the 1963 annual truck speedweight study conducted during the months of August and September in
conjunction with the Highway Planning Survey Unit of the Indiana
State Highway Commission. The Highway Planning Survey Unit makes
annual studies of truck weights, size, material hauled and this year
included an origin and destination study. Personnel of the Joint
Highway Research Project observe the speeds of the trucks at some
point along the road and by use of an identical method of classification
match the truck weight and speed. Although the Highway Planning Survey
Unit makes its observations at twenty locations throughout the state,
nine stations have been used annually for the speed-weight study by the
Project.

This year, due to a very late data collection schedule, the Project was unable to collect data at all nine of the usual stations. Consequently this report is for only six of the nine stations usually observed. The stations utilized are shown on Figure 1 and are further described as follows:

Station	Highway	Location	Date of obs.	No. of Lanes
58B	v.s. 31	0.2 mi S of Southport Road	Aug. 20	4
75	U.S. 41	0.2 mi S of U.S. 41 Bus.	Aug. 21	4
81	U.S. 150	0.5 mi E of S.R. 56	Aug. 23	2
45B	S.R. 67	1.0 mi SW of Muncie	Aug. 29	2
5** 4*	U.S. 30	1.3 mi E of Burbon	Sept. 23	2
48	U.S. 31	0.2 ml S of U.S. 6	Sept. 24	2
2*	U.S. 20	0.3 ml W of S.R. 2	Sept. 20	4
14	U.S. 41	0.5 ml S of S.R. 2	Sept. 11	**
42	U.S. 52	at Jct. of S.R. 38	Sept. 16	4

^{*}Not observed in 1963.

0.2 td 9 of U.S Bus 3 0.5 11 11 0. 2 1. Louis to Ma ... O. 3 EL E OF POPE JE 3.0 10 8 in 3 THE WEST

Equipment and Field Procedure

The speed data were collected by use of the Electromatic Radar Speed Meter-Model No. S-5. Prior to conducting the study, the Meter had been checked for accuracy by use of a fifth wheel device, and during the study the meter was periodically tested to insure continued accuracy by use of 30 mph and 45 mph tuning forks.

To lessen the effect of the observer on the traffic stream, the meter was placed in a cardboard barrel near the roadway and the observer and recording unit were stationed at least twenty feet from the edge of the roadway. Complete concealment was not found to be practical on modern highways having wide shoulders. The meter was placed approximately three feet from the edge of the pavement at an angle of less than 10° with the centerline of the roadway. Speed inaccuracies are negligible at small angles and corrections were unnecessary.

The speed observations were made on level, tangent sections of the highway between one and three miles from the weighing stations. In all cases, sufficient distance was allowed for the trucks to regain normal cruising speeds since data were desired for "free-moving vehicles." For this report "freemoving vehicle" refers to one which is not hampered by other traffic or effected by a change in speed due to stopping or turning. Care was also taken to minimize the opportunity for the vehicle to turnoff the road.

The speed stations were operated during the same hours as the weighing stations, 8 a.m. to 4 p.m. During the four morning hours the observations were made on vehicles moving in one direction and during the four afternoon hours the apparatus was moved to the other side of the roadway to observe vehicles in the opposite direction.

r le to manon -וו נד וו ב בנו בפרמנו. עובו בוו וויי

Procedure and Analysis

For purpose of the analysis the data were classified by truck type - single unit or multi-unit - and by road type - two lane or four lane. The single unit trucks were further classified into those less than 5000 lbs. and those over 5000 lbs. This weight classification corresponds to the existing Indiana speed limits for trucks which are as follows:

- 65 mph for light (less than 5000 lbs.) trucks
- 55 mmh for heavy (over 5000 lbs.) trucks on 4-lane highways with a median of 20 ft. or more
- 50 mph for heavy trucks on other roadways

 This classification allowed a comparison of the observed speeds with
 the legal and "enforced" speed limits. These results are presented
 in tabular form in Table III.

A breakdown of the data is presented in Tables I and II. The observed values are separated into weight classes and the number observed and average speed within each weight class is shown. The tables also show the average weight, average speed and 95% confidence limits for each truck classification at each station and summaries by truck classification on both types of highway facility. Table IV is a tabulation of the number of observations and average speeds and weights by truck classification for the last fifteen years.

Figures II, III, and IV are cumulative frequency curves by truck classification and by facility type. Figures V and VI indicates the trends in 85th percentile speeds. Figures VII-IX show simple regression curves of truck speed to truck weight.

I V: 6-12 - 15 15 31 E the samp one VY and the transfer अद्भार कि सम्मान कर कर के कि का कि का

Summary of Results

Analysis of Tables I and II show the following average characteristics for the various road and truck classifications:

Single Unit

	2-lane	4-lane	All
No. of Vehicles	167	321	488
Average Speed - mph	41.7	462	44.9
Average Weight - 1bs	10,300	12,000	11,500

Multi-unit

	2-lane	4-lane	All
No. of Vehicles	126	610	736
Average Speed - mph	42.9	46.4	45.9
Average Weight - lbs	40,170	44,280	43,600

Table III shows that the following percentages of trucks exceeded the existing and enforced speed limits (where the enforced speed limit is 5 miles faster than the legal speed limit).

		Single Unit		Multi-unit
		Light	Heavy	
4-lane 2-lane	Speed Limit	0	7.2	7.9
	Enforced limit	0	.7	.8
	Speed limit	0	.8	5.3
	Enforced limit	0	2.1	•5

From the above table one can conclude that there is a negligible percentage of trucks exceeding the "enforced" speed limit on Indiana highways.

Observation of the steepness of the central portion of the cumulative frequency curves (Fig. II, III, IV) for the heavier trucks indicates that a smaller variation in speeds exist between heavy trucks than between light trucks. These figures also show that the greatest variation in the confidence band for the calculated means occurs for light, single-unit trucks. This may be an indication of too small a sample size in comparison with the other classifications.

Figures V and VI show the plots of the 85th percentile speeds on 2-lane and 4-lane. No trend regression lines have been drawn since the data are widely scattered.

Figures VII-IX show the computed regression lines and equations for the simple linear regression analysis of the speed and weight data. This analysis was done on the IGP-30. These figures show that there is a slight decrease in speed for an increase in weight, but the decrease in most cases is insignificant. Furthermore the r² values or the correlation coefficient show that there is little correlation between speed and weight. If a perfect correlation existed, the r² value would be 1. In this study the computed r² s between speed and weight were as follows:

Equation	r	r ²
2-lane single unit	•0355	.0012
4-lane single unit	.2092	.0437
2-lane multi unit	.0972	.0094
4-lane multi unit	.1853	.0343
Multi unit (total)	.1465	.0214
Single unit (total)	.1048	.0109

J.J. (-1)

It should be noted that the sample size for many of the weight classifications was too small to give a reliable regression line for sample unit trucks and that the largest correlation coefficient observed for multi-unit or total truck classifications was .0343. This indicates little correlation. It can, therefore, be concluded that increasing weight apparently accounts for only a very small part of the observed speed differences.

Table IV indicates that the average speeds of single unit and multi-unit trucks have decreased 3.8 and 3.3 mph respectively from the last observation. This represents a substantial decrease from the slowly rising trend in average speeds which has been occurring. Closer observation also shows that speeds at each of the six stations were in most cases 2-5 mph less for all classes of trucks then they were last year.

Because of this unusual decrease, the radar meter was again calibrated after the study to determine if any operational error was present. The calibration was made by running a vehicle at known speeds past the meter. The results showed that no error existed.

Part of the decrease in the overall average may be due to not observing the three stations in Northern Indiana which in the past have given slightly higher speeds. This is especially true of the 2-lane roadways. However, no explanation is apparent for the observed decrease at each of the individual stations.

THE RESIDENCE OF A STATE OF THE PARTY OF THE personal and the second The state of the s · · · · · · · · · . *3 V (II.) * (II.) * (II.) * (II.) is a supply of the supply of t to the straight of the straigh 2 2 14 2 1 te grant to the total and the second

each of the indistant of to does

FIGURE II

FIGURE III

FIGURE IV

PIGURE V TRENDS IN THE 85th PERCENTILE TRUCK SPEED ON TWO-LANE HIGHWAY (1953-1963)

FIGURE VI TRENDS IN 85th PERCENTILE TRUCK SPEEDS ON FOUR-LANE HIGHWAYS (1953-1963)

82FF PERCENTILE SPEED (MPH)

FIGURE VII REGRESSION ANALYSIS: SINGLE UNIT TRUCKS BY ROADWAY TYPE

FIGURE VIII REGRESSION ANALYSIS: MULTI UNIT TRUCKS BY ROADWAY TYPE

FIGURE IX REGRESSION ANALYSIS: ALL TRUCKS BY TRUCK TYPE

									ā.	
					*71		Ch.L	iwo-lare in i		
Station		5B	of		75 Ave. 50. of		los of			
.egent(ng.ps)	Ave.	No. of Emigks	- 75	Speed	Thicks	ue.	Prices	1012	En imi	
J-4;	0	0	3	47.7	3	47.9	6	42.5	14	
,−5	46.0	6	P	46.2	14	48.2	29	45.5	49	
. Potal tricks	6				17	3	5	6	3	
Ave.K.t.(lbs,	4300	,		44	00	430	0.	420)O	
Ave. Coest	40	5.0		4	6.5		8.1	44	.8	
531.f. 113161		5%		+	5%	9	5%	9:	5%	
y conf. typer		8:4		1	8,2		50.3	46.8		
Limit Lover		3.6		1	44.8		45.9	42.8		
& Empty										
5-4	46.7	. 13	1	45.9	23	47.8	79	45.4	117	
2-17	46.6	19	4	44.3	28	45.5	75	46.3	124	
12-16	46.7	11	11	44.9	10	44.6	39	44.2	59	
10-0	43.6	5	19	44.6	7	47.0	38	45.0	54	
20-24	46.5	2	4	37.9	14	40.5	23	39.9	37	
24-08	0	0	1	40.0	3	45.4	12	45.1	13	
28 - 32	52.0	1	0	51.0	1	51.0	1	51.5	2	
32-36			1	38.0	1	38.0	2	38.0	2	
J5-4-Q			5	32.0	1	43.1	7	43.1	7	
20-144			6	0	0	45.3	7	45.3	7	
44-148			2	35.0	1	44.7	3	44.7	3	
48-52										
52-56 50-60										
Total Trucks	5	1		8	39	28	36	4	25	
Ave. At. (3bs.	-	300		10,	200	13	,100	12,	600	
.ve. Spece		.5		43	3.4	4	6.3	44	•9	
Conf. Davel	95			95	5%	9.	5%	95	%	
Conf. Upper		7.9		4	5.0	47	٦	45.5		
				4	1.8	45	.5	44.	.3	
Mirit Lower	4	5:1					- 4-4			
# Empty	L									

		Tv	o-lare High	ways		Four-lane Highways											
Station	<i>1</i> ,5 ['] B	ز	1,	81	Total Two-lane	2	14	,2	58B	75	Total Four-lane	Total Pwo-lane .n:					
unt(nimy)	Ave. No. of	ave. No. of	Age. Lo.		f Ave. wo. of	Ave. w. of	we. No. of	Av. No. of	Ave. to. of	Ave. No. of	ave. lo. of						
J-4,	0 0	., 114415		38.5 8	38'.5 8		0 0	0 0	48.0 3	47.7 , 3	47.9 6	42.5 14					
·-5	46.0 6			39.5 14	41.5 20		43.0 1	50.8 4	50.4 10	46.2 14	48.2 29	45.5 49					
. Potest triens	6			22	28		1	4	. 13	17	35	63					
Ave. N.L. (1.53)	4300			4000	4100		4200	4500	4300	4400	4300	4200					
155 y 2376.	46.0			39.1	40.6		43.0	50.8	49.8	46.5	48.1	44.8					
out a marel	95%			95%	95%		95%	95%	95%	95%	95%	95%					
Lord's Tipur	48:4			43.0	43.9		43.0	58,3	53.3	48,2	50-3	46.8					
limit loor	43.6			35.2	37.3		43.0	43.3	46,3	44.8	45.9	42.8					
« Empty								-									
ئ-ز_	46.7 . 13			39.0 25	40.5 38		50.1 7	52.4 8	48.9 41	45.9 23	47.8 79	45.4 117					
2,000	46.6 19			40.3 30	42.8 49		51.6 8	47.8 25	47.8 14	44.3 28	45.5 75	46.3 124					
13-16	46.7 11			39.1 9	43.3 20		46.0 7	44.7 11	43.5 11	44.9 10	44.6 39	44.2 59					
10-10	43.6 5			38.5 11	40.1 16		52.8 4	47.4 8	46.5 19	44.6 7	47.0 38	45.0 54					
.::-::-	46.5 2			37.5 12	38.8 14		45.3 3	44.5 2	44.0 4	37.9 14	40.5 23	39.9 37					
24-08	0 0			41.0 1	41.0 1		47.2 5	47.7 3	46.0 1	40.0 3	45.4 12	45.1 13 51.5 2					
. 8-32	52.0 1		-		52.0 1			0 0	0 0	51.0 1	51.0 1						
32-30								0 0	38.0 1	38.0 1	38.0 2	38.0 2					
<u> </u>							-	50.0 1	44.0 5	32.0 1	43.1 7	43.1 7					
. >-144					 			41.0 1	46.0 6	0 0	45.3 7	45.3 7					
1									49.5 2	35.0 1	44.7 3	44.7 3					
48-52												+					
52-50				_		-											
50-60	52			88	120		21	59	104	89	286	425					
Formi Trucks	51				139		34		15,000	10,200	13,100	12,600					
	46.5	11,300		11,700 39.2	41.9		14,500	13,200 47.6	47.0	43.4	46.3	44.9					
So f yes	95%			95%	95%		95%	95%	95%	95%	95%	95%					
	47.9			40.4	43.1		51,8	48.8	54,09	45.0	47.2	45.5					
Conf. Upper							47.0	40.0	39,1	41.8	45.5	44.3					
Litt Lower	45:1			38.0	40.7		4/20	4)O,, 4)	2/5-								
6 3 1 W			L							l	L						

				<u> </u> -								
				L					101	tal		
					-			al	Two-lane and			
Station	45			of	Ave.	No. of		-lune		-lane		
meight (Kips)	apeed	No. of Trucks	in."	CKS		Trucks	apsed	no. of Trucks	Ave. Lr.ed	No. of		
6-1:						1						
12+16												
16-4	44.5	4			42.0	1	48.1	11	46.3	17		
50-514	46.5	6			48.4	10	47.6	65	46.7	79		
24-28	44.4	14		Ì	45.0	9	47.2	84	46.1	108		
28-32	46.3	12		-	43.9	10	45.6	53	46.6	65		
32-36	48.6	10			44.3	4	48.0	44	47.5	59		
36-40	47.7	3		9	45.3	4	47.5	35	47.5	38		
40-14	38.0	5		3			46.2	27	44.6	33		
41-48	45.0	4		b	46.0	2	45.9	34	45.8	38		
4,6-50	45.5	4		þ	47.0	1	47.0	36	46.1	43		
52-50	44.6	3		7	45.3	3	48.0	32	46.5	38		
56-60	43.0	2		6	42.7	7	45.2	55	44.3	63.		
61-04	48.8	4		4	46.0	9	45.3	32	45.6	36		
04-68	43.5	4		4	48.7	6	45.1	23	44.5	29		
68-72	45.3	3		5	44.4	5	43.9	31	43.9	35		
72-76	53.0	1		6	42.5	2	44.3	19	43.6	24		
76-80	46.5	2			45.8	5	45.0	19_	45.1	21		
20-84					46.5	2	46.1	8	46.1	8		
84-88							39.0	1	39.0	1		
88-92							50.0	1	50.0	1		
92-96												
96-100												
Total Trucks	8	1				30	61	0	73	6		
Ave. At. (Lbs.	39,	600			46,	900	44,		43,6	00		
Ave. Speed	45.5				45		46	-	45.			
Conf. Level	95%				95	8	95	%	95%			
Conf. Upper	47.5				46	.4	46.	8	46.	3		
Limit Lower		.5			41	4	46.	0	45.	5		
% Empty		1										
To Ent Dog												

TABLE I MULTI-UNIT TROOK SCHOOL (HPh)

		Tw.—lane Highways										Four-lane Highways											lotal	
Station	45B		. 5			+	81		Total Two-lane		2		1/4		42		5EB		75		Pota Four-1		Pwo-la	
eight (Kips)		No. of Trucks	Ave.	No.o.	Aye. Speed	No. of Trucks		No. of Trucks		Ivo. of		No. of Trucks		No. of Trucks	Ave. Speed	No. of Trucks		No.of Trucks		No. of		ko, of Prucks	Ave.	ivo.
6 -1 1			-									•												1
1:-16									<u> </u>		=					+		+ -		· 				-
16-2	44.5	4					40.0	2	43.0	6			51.0	6	45.0	2	45.5	2	42.0	1	48.1	11	46.3	1
0-24	46.5	6				; 	40.1	8	42.9			 	47.4	16	47.6	22	47.2	17	48.4	10	47.6	65	46.7	
24-28	44.4	14					39.3	10	42.3				47.4	30	45.7	26	50.2	19	45.0	9	47.2	84	46.1	1
28-32	46.3	12							46.3	12			47.1	. 14	48.4	18	45.5	11	43.9	10	45.6	53	46.6	
32-30	48.6	10					40.1	5	46.1	15			50.9	12	47.1	22	48.0	6	44.3	4	48.0	44	47.5	-
10-4	47.7	3							47.7	3			50.1	14	48.6	8	43.2	9	45.3	4	47.5	35	47.5	
	38.0	5					34.0	. 1	37.3	6			45.0	8	45.7	11	48.0	8			46.2	27	44.6	
44-4E	45.0	4					,		45.0	4			46.9	12	44.1	10	46.3	10	46.0	2	45.9	34	45.8	
6-5	45.5	4	•			! L	36.0	3	41.4	7_			48.7	14	48.0	11	43.6	10	47.0	1	47.0	36	46.1	
52-50	44.6	3					32.0	3	38.3	6			49.5	13	46.8	9	48.0	7	45.3	3	48.0	32	46.5	1
56-6	43.0	2					36.3	6	38.0	8			47.9	20	45.8	12	42.4	16	42.7	7	45.2	55	44.3	4
i/ -04	48.8	4							48.8	4		,	45.8	13	46.3	6	40.2	4	46.0	9	45.3	32	45.6	
04-68	43.5	4	1				39.0	2	42.0	6			46.7	11	40.0	2	38.0	4	48.7	6	45.1	23	44.5	
8-72	45.3	3					39.0	1	43.8	4			47.3		47.7	3	41.3	15	44.4	5	43.9	31	43.9	1
72-7'	53.0	1					38.0	4	41.0				47.9	8	41.3	3	41.7	6	42.5	2	44.3	19	43.6	,
16-2	46.5	2				!		· -	46.			1	44.5		44.9	8	7	1	45.8		45.0	19	45.1	+
	40.7								40.	~			45.3		47.5	2		 	46.5		46.1	8	46.1	-
81 <u>~84</u> 84 ~8 8						 							42.2		39.0	1		†	70.2	-	39.0	1	39.0	-
											 		50.0		57.0			-		 	50.0	1	50.0	
85-92						1						-	,,,,,			 				1				
15-96													-							ļ				
96-100	5	1					. 4	<u> </u>	12	6	-		2.	10	17	76	1.	44	F-08	80	610)	7	736
Total Trucks		600					41,				 		45,		41,4		44,		46,		44,3		43,	
.vet. (i.ts.		600					38			200			47		41,2		4/4 5		45		46.		45	
ve. Speed	94						95			5%			95		959		959		95		95%		95	-
Conf. Level		·															46			.4	468		40.	
onf. Upper		7.5					39			4.3			1.8		4.7					4	46.0		45.	
Linia Lower	4	3.5					36	۰9	4	1.5			47	.0	45	.9	43	1.7	1,7	+• 4	400		420	

			s Á i	swfg.	tH ət	red-c	IM		SYS	wdgle	eue	-I-T	For		
		Station	45-B	5	4	81	Total		cv	14	24	58-B	22	Total	Summary
	Trucks	No.	9	1	;	প্র	28	No. Obs.	1	1	4	13	17	35	63
	Weighing Under 5000 lbs.	% Exceed	0	;		1 1	0	% Exceed 65 mph	1	0	0	0	0	0	0
Stnole Hatte	5000 lbs.	& Exceed	0	i	1	1	0	% Exceed 70 mph	8 8	0	0	0	0	0	0
There	Trucks	No.	51	i	!	88	139	No.		34	59	104	89	586	425
	Trucks Weighing Over 5000 lbs.	& Exceed	17.6	ł	:	1.1	7.2	% Exceed 55 mph	1	14.7	5.1	2.9	10.1	4.8	8.0
	5000 lbs.	& Exceed	2.0	:	ł	0	2.	& Exceed		5.9	3.4	1.9	0	2.1	1.6
		No.	81	i	1	45	126	No.		210	176	144	8	610	736
	Multiple Units	% Exceed	20 mph		;	0	. 7.9	% Exceed		8.1	2.3	4.2	2.5	8.4	5.3
	**	% Exceed	55 mph			0	, «	& Exceed	ndm oo	0.5	9.0	7.0	0	0.5	0.5
- 1		1						_							

TABLE III

PERCENT OF TRUCKS VIOLATING SPEED LIMITS

