Latent Variable Graphical Modeling in Generalized Linear Models

Armeen Taeb (Caltech)

Joint with

Venkat Chandrasekaran (Caltech), Parikshit Shah (Facebook)

CA Water Reservoir Network

Reservoirs are central source of water

o buffer against severe drought

Question: what is the likelihood of system-wide catastrophe (i.e. multiple reservoirs exhausting)?

To answer this question, must characterize

- 1. effect of external factors
- 2. reservoir interdependencies

Graphical Modeling

Nodes: random variables ; Edges: conditional dependencies

Graphical Modeling

Nodes: random variables ; Edges: conditional dependencies

Challenge: many external factors are not observed or latent

Graphical Modeling

Nodes: random variables ; Edges: conditional dependencies

Challenge: many external factors are not observed or latent

o Not accounting for them leads to false negatives and false positives

Gaussian Graphical Modeling with Latent Vars.

Gaussian graphical models with latent vars [C et al '12]

- Precision matrix = sparse + low-rank
- Convex estimator to find conditional graph structure + latent effect
- \circ Approach to interpret latent vars. [T & Chandrasekaran '18]

Gaussian Graphical Modeling with Latent Vars.

Gaussian graphical models with latent vars [C et al '12]

- Precision matrix = sparse + low-rank
- Convex estimator to find conditional graph structure + latent effect
- o Approach to interpret latent vars. [T & Chandrasekaran '18]

Model findings [T et al '18]

- o reservoir dependency structure
- o external factors: drought index, hydropower, snowpack
- o system-wide response to these factors

Validity of the Gaussian Approximation

Some of the variables might deviate strongly from Gaussianity

o Reservoirs

Validity of the Gaussian Approximation

Some of the variables might deviate strongly from Gaussianity

Voter records data

Validity of the Gaussian Approximation

Some of the variables might deviate strongly from Gaussianity

RNA sequence count data

Beyond Gaussian Graphical Models

State of the art suffers from at least one of these deficiencies:

- o unable to handle non-Gaussianity
- o non convexity (e.g. EM) or computationally intractable
- o cannot account for latent variables

We address all three:

o based on Generalized linear models

Modeling Framework

Observed $x \in \mathbb{R}^p$; latent variables $z \in \mathbb{R}^k$ from the class

$$\mathcal{P} = \left\{ \Pr(\boldsymbol{x} | \boldsymbol{z}) = \exp \left(\left[\alpha^T \boldsymbol{x} + \sum_{s=1}^p \Lambda_{s,s} f(\boldsymbol{x}_s) \right] + \frac{1}{2} \boldsymbol{x}^T K \boldsymbol{x} + \boldsymbol{x}^T B \boldsymbol{z} + A \right) \right\}$$

- $\circ \ \alpha \in \mathbb{R}^p$: parameters encoding linear effect of observed vars.
- $\circ \Lambda \in \mathbb{R}^{p \times p}$: node potential
- o K: graph structure $K_{s,s} = 0$ and $K_{s,t} = 0$ when s,t disconnected
- \circ $B \in \mathbb{R}^{p \times k}$ encoding latent effect
- \circ $A(\alpha, \Gamma, K, B)$ is a normalization constant

Modeling Framework

Observed $x \in \mathbb{R}^p$; latent variables $z \in \mathbb{R}^k$ from the class

$$\mathcal{P} = \left\{ \Pr(\boldsymbol{x} | \boldsymbol{z}) = \exp \left(\left[\alpha^T \boldsymbol{x} + \sum_{s=1}^p \Lambda_{s,s} f(\boldsymbol{x}_s) \right] + \frac{1}{2} \boldsymbol{x}^T K \boldsymbol{x} + \boldsymbol{x}^T B \boldsymbol{z} + A \right) \right\}$$

- Gaussian: $f(x_s) = x_s^2$, Λ diagonal encoding conditional variance
- Bernoulli: $f(x_s) = 0$
- ∘ Poisson: $f(x_s) = -\log(x_s)$, $K \le 0$, $B \le 0$, Λ identity
- ∘ Exponential: $f(x_s) = 0$, $K \le 0$, $B \le 0$, $\alpha < 0$, Λ identity

Modeling Framework

Observed $x \in \mathbb{R}^p$; latent variables $z \in \mathbb{R}^k$ from the class

$$\mathcal{P} = \left\{ \Pr(x|z) = \exp\left(\left[\alpha^T x + \sum_{s=1}^p \Lambda_{s,s} f(x_s) \right] + \frac{1}{2} x^T K x + x^T B z + A \right) \right\}$$

Conditional distribution is a Generalized Linear Model

$$\mathscr{P}_{\mathsf{cond}} = \left\{ p(x_{\mathsf{s}}|x_{\sim \mathsf{s}},z) = \exp(\Lambda_{\mathsf{s},\mathsf{s}}f(x_{\mathsf{s}}) + x_{\mathsf{s}}\eta_{\mathsf{s}} - D(\eta_{\mathsf{s}})) \right\}$$

- \circ predictor: $\eta_s = \alpha_s + e_s^T Kx + e_s^T Bz$
- o convex link function: $\mathcal{D}(\eta_s)$

Naive Inference

Given observations x, z, minimize the negative log-likelihood

$$\hat{\theta} = \arg\min_{\theta} - \log \left[\Pr(x|z) \right]$$

Where

$$-\log\left[\Pr(x|z)\right] = \left[\alpha^T x + \sum_{s=1}^p \Lambda_{s,s} f(x_s)\right] + \frac{1}{2} x^T K x + x^T B z + A$$

Naive Inference

Given observations x, z, minimize the negative log-likelihood

$$\hat{\theta} = \operatorname*{arg\,min}_{\theta} - \log\left[\Pr(x|z)\right]$$

Where

$$-\log\left[\Pr(x|z)\right] = \left[\alpha^T x + \sum_{s=1}^p \Lambda_{s,s} f(x_s)\right] + \frac{1}{2} x^T K x + x^T B z + A$$

Challenge: norm. constant $A(K, B, z, \alpha)$ intractable to compute \circ e.g. 2^p computations with Bernoulli variables

Psuedo-likelihood

Exact inference for full likelihood may be computationally costly

Psuedo-likelihood MLE [Besag '75]

$$\underbrace{\frac{\min_{\theta} - \log(\Pr(x|\theta))}{\max}}_{\text{MLE}} \approx \underbrace{\min_{\theta} \sum_{s=1}^{p} - \log\left(\Pr(x_{s}|x_{-s};\theta)\right)}_{\text{psuedo-MLE}}$$

Psuedo-likelihood

Exact inference for full likelihood may be computationally costly

Psuedo-likelihood MLE [Besag '75]

$$\underbrace{\frac{\min_{\theta} - \log(\Pr(x|\theta))}_{\text{MLE}}} \approx \underbrace{\min_{\theta} \sum_{s=1}^{p} - \log\left(\Pr(x_{s}|x_{-s};\theta)\right)}_{\text{psuedo-MLE}}$$

Computational and statistical tradeoff:

- Pseudo-MLE statistically consistent but may be less efficient than MLE [Liang & Jordan '08]
- Pseudo-MLE computationally more efficient

Commonly employed for graphical modeling without latent variables

o e.g. neighborhood selection [Meinshausen & Buhlmann '08]

Psuedo-likelihood Formulation

Psuedo-likelihood approximation for $\theta = (B, z, K, \alpha)$:

$$\min_{\theta} - \log(\Pr(x|z;\theta)) \approx \min_{\theta} \sum_{s=1}^{p} -x_s \eta_s(\theta) + D(\eta_s(\theta))$$

- linear predictor $\eta_s(\theta) = \alpha_s + e_s^T Kx + e_s^T Bz$
- o convex link $D(\eta_s(\theta))$

Psuedo-likelihood Formulation

Psuedo-likelihood approximation for $\theta = (B, z, K, \alpha)$:

$$\min_{\theta} - \log(\Pr(x|z;\theta)) \approx \min_{\theta} \sum_{s=1}^{p} -x_s \eta_s(\theta) + D(\eta_s(\theta))$$

- linear predictor $\eta_s(\theta) = \alpha_s + e_s^T Kx + e_s^T Bz$
- convex link $D(\eta_s(\theta))$

Psuedo-likelihood estimator for observations $X \in \mathbb{R}^{p \times n}$ and $Z \in \mathbb{R}^{k \times n}$

$$\begin{array}{ll} \mathop{\rm arg\;min}_{\theta,M} & \frac{1}{n} \sum_{i=1}^n \sum_{s=1}^p -X_{s,i} M_{s,i} + D(M_{s,i}) \\ \\ \mathop{\rm subject-to} & M = KX + BZ + \alpha \mathbf{1}' \;\; ; \quad K \; \text{symmetric} \;\; ; \quad K_{s,s} = 0 \\ \end{array}$$

Psuedo-likelihood Formulation

Psuedo-likelihood approximation for $\theta = (B, z, K, \alpha)$:

$$\min_{\theta} - \log(\Pr(x|z;\theta)) \approx \min_{\theta} \sum_{s=1}^{p} -x_{s} \nabla_{x_{s}} \mathcal{L}(\theta;x) + D(\mathcal{L}(\theta;x))$$

- linear predictor $\eta_s(\theta) = \alpha_s + e_s^T Kx + e_s^T Bz$
- o convex link $D(\eta_s(\theta))$

Psuedo-likelihood estimator for observations $X \in \mathbb{R}^{p \times n}$ and $Z \in \mathbb{R}^{k \times n}$

convex objective but not a convex program

Convex Estimator

Observation: L = BZ has rank less than or equal to k

Convex estimator:

$$\begin{array}{ll} \underset{K,\alpha,L,M}{\arg\min} & \frac{1}{n} \sum_{i=1}^n \sum_{s=1}^p -X_{s,i} M_{s,i} + D(M_{s,i}) + \lambda (\|K\|_1 + \gamma \|L\|_\star) \\ \text{subject-to} & M = KX + L + \alpha \mathbf{1}' \; ; \quad K \; \text{symmetric} \; ; \quad K_{s,s} = 0 \end{array}$$

Convex Estimator

Observation: L = BZ has rank less than or equal to k

Convex estimator:

Loss function: Bregman divergence d w.r.t. function ψ and map g

$$X_{s,i}M_{s,i} + D(M_{s,i}) = d_{\psi}(X_{s,i}, g(M_{s,i}))$$

 \circ e.g. for Poisson: ψ is relative entropy, g is exponential map

$\begin{array}{c} \textbf{Incorporating Latent Variables} \rightarrow \textbf{Better} \\ \textbf{Structure Recovery} \end{array}$

$$\mathsf{FDR} = \mathbb{E}\left[\frac{\# \ \mathsf{false} \ \mathsf{edges}}{\# \ \mathsf{estimated} \ \mathsf{edges}}\right] \quad ; \quad \mathsf{PWR} = \mathbb{E}\left[\frac{\# \ \mathsf{correct} \ \mathsf{edges}}{\# \ \mathsf{estimated} \ \mathsf{edges}}\right]$$

Consistency Experiment

Synthetic data: cycle graph structure and varying # latent variables

U.S. Senate Voter Records Dataset

108th Senate Voting Records: 44 democrats, 55 republicans

RNA Sequence

Dataset: Dataset: Level III breast cancer miRNA expression

- count data n = 544,
 p = 262
- processed: n = 544,
 p = 40 [Allen & Liu,
 '13]

Latent Variable Model:

- o 5 latent variables and 32.5% sparsity
- $\circ\,$ approximate likelihood ratio test against null: 34 p-values ≤ 0.05
- \circ approximate likelihood ratio test: 32 p-values $\leq \frac{0.05}{40}$

L = BZ may have additional structure beyond low-rank

For example: Z has positive entries for Poisson, ± 1 for Bernoulli

Tailored regularizers for latent structure:

o Gaussian: nuclear norm; Bernoulli: max-2 norm

Poisson: complete positive norm

L = BZ may have additional structure beyond low-rank

For example: Z has positive entries for Poisson, ± 1 for Bernoulli

Tailored regularizers for latent structure:

- Gaussian: nuclear norm ; Bernoulli: max-2 norm
 Poisson: complete positive norm
- Natural semidefinite relaxation in each case

Example with Bernoulli:

$$\begin{split} \|L\|_{\mathsf{relax}} &= \min_{W_1 \in \mathbb{S}^p, \, W_2 \in \mathbb{S}^n} \quad \frac{1}{2} \mathsf{trace}(W_1) + \frac{n}{2} \mathsf{max}(\mathsf{diag}(W_2)) \\ & \mathsf{subject\text{-}to} \qquad \begin{pmatrix} W_1 & L \\ L' & W_2 \end{pmatrix} \succeq 0 \end{split}$$

L = BZ may have additional structure beyond low-rank

For example: Z has positive entries for Poisson, ± 1 for Bernoulli

Tailored regularizers for latent structure:

- Gaussian: nuclear norm ; Bernoulli: max-2 norm
 Poisson: complete positive norm
- Natural semidefinite relaxation in each case

Example with Poisson:

$$\begin{split} \|L\|_{\mathsf{relax}} &= \min_{W_1 \in \mathbb{S}^p, W_2 \in \mathbb{S}^n} \quad \frac{1}{2} \mathsf{trace}(W_1) + \frac{1}{2} \mathsf{trace}(W_2) \\ & \mathsf{subject\text{-to}} \quad \begin{pmatrix} W_1 & L \\ L' & W_2 \end{pmatrix} \succeq 0; \, W_2 \geq 0 \end{split}$$

L = BZ may have additional structure beyond low-rank

For example: Z has positive entries for Poisson, ± 1 for Bernoulli

Tailored regularizers for latent structure:

- Gaussian: nuclear norm ; Bernoulli: max-2 norm
 Poisson: complete positive norm
- Natural semidefinite relaxation in each case

Example with Poisson with positive latent effects:

$$\begin{split} \|L\|_{\mathsf{relax}} &= \min_{W_1 \in \mathbb{S}^p, W_2 \in \mathbb{S}^n} & \frac{1}{2}\mathsf{trace}(W_1) + \frac{1}{2}\mathsf{trace}(W_2) \\ & \mathsf{subject\text{-to}} & \begin{pmatrix} W_1 & L \\ L' & W_2 \end{pmatrix} \succeq 0; W_2 \geq 0; W_1 \geq 0 \end{split}$$

Model
$$x = B^*z + \epsilon$$
 for $p = 30$ where

- ∘ z Poisson random vector; $B^* \ge 0$
- \circ ϵ Gaussian random vector with independent entries

Let $C^* = \text{col-space}(B^*)$, \hat{C} estimated column space

Regularizer	n = 30	n = 50
Nuclear norm FDR;PWR	0.61 ; 0.40	0.51; 0.48
Tailored FDR;PWR	0.38; 0.61	0.31; 0.68

$$\mathrm{FDR} = \mathbb{E}\left[\frac{\mathrm{trace}\left(\mathcal{P}_{\hat{\mathcal{C}}}\mathcal{P}_{\mathcal{C}^{\star\perp}}\right)}{\dim(\hat{\mathcal{C}})}\right] \hspace{3mm} ; \hspace{3mm} \mathsf{PWR} = \mathbb{E}\left[\frac{\mathrm{trace}\left(\mathcal{P}_{\hat{\mathcal{C}}}\mathcal{P}_{\mathcal{C}^{\star}}\right)}{\dim(\hat{\mathcal{C}})}\right]$$

How to Chose Regularization Parameters?

Cross-validation techniques are not appropriate

o will select models that are full-rank

Idea: choose low complexity and stable models

Approach to quantify stability:

- 1. obtain many subsampled bags of data
- 2. obtain model structure : tangent spaces to determinantal/sparse varieties at estimates for each bag
- 3. compute variability of the tangent spaces across bags

Come to my talk at MS195, part 3: 3pm-5pm!

Summary

Approach to identify a latent variable graphical model for GLM's

- o a psuedo-likelihood approach based on convex optimization
- o tailored regularizers based on the type of latent variable

Future: exact goodness of fit tests

Future: testing for presence of latent variables

Future: mixed latent variable graphical model

users.cms.caltech.edu/~ataeb