Office européen des brevets

(12)

EUROPEAN PATENT SPECIFICATION

- B Date of publication of patent specification: 07.01.87
- (5) int. Cl.4: C 11 D 3/386

- ② Application number: 84200584.5
- 2 Date of filing: 25.04.84

- Aqueous enzyme-containing compositions with improved stability.
- (3) Priority: 26.04.83 GB 8311314
- Date of publication of application: 28.11.84 Bulletin 84/48
- Publication of the grant of the patent: 07.01.87 Bulletin 87/02
- Designated Contracting States: AT BE CH DE FR GB IT LI NL SE
- References cited: EP-A-0 080 223 FR-A-2 532 324 GB-A-2 021 142

- (7) Proprietor: UNILEVER NV Burgemeester s'Jacobplein 1 P.O. Box 760 NL-3000 DK Rotterdam (NL)
- BE CH DE FR
- Proprietor: UNILEVER PLC
 Unilever House Blackfriars P.O. Box 68
 London EC4P 4BQ (GB)
- (₩ GB
- (7) Inventor: Boskamp, Jelles Vincent Kastanjedreef 12 NL-3137 PG Vlaardingen (NL)
- (ii) Representative: Van Gent, Jan Paulus et al Unilever N.V. Patent Division P.O. Box 137 NL-3130 AC Vlaardingen (NL)

5 B1

0 126 505

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filled in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 1981) European patent convention.)

Description

The present invention relates to a stabilizing agent for aqueous enzyme-containing compositions. It is well-known that enzymes, when included in aqueous media, often tend to loss their activity on storage over longer periods. This is particularly so when the aqueous media contain other ingredients as well, which may accelerate the deactivation of enzymes. Such is for instance often the case if the aqueous

media are aqueous liquid detergent compositions.

In the prior art numerous proposals have been made concerning enzyme stabilizers in aqueous enzyme-containing liquid detergent compositions. Such enzyme-stabilizing systems often comprise a polyol, such as glycerol or sorbitol. Recently were have proposed as enzyme-stabilizing system a mixture of a polyol and a boron compound in our Dutch patent application No. 7711925, laid open to public inspection on 3 May 1978.

Another proposal is made in UK Patent Specification Nr 2,021,142 (Economics Laboratories Inc.) to use a mixture of a polyol and a sulphur-containing anti-oxidant salt as enzyme-stabilizing mixture.

We have now found that the use of certain dicarboxylic acids instead of the polyol in the above systems equally provides for an enzyme-stabilisation effect. In some instances this effect is even superior to that which is obtained with the polyol-containing systems.

The present invention therefore relates to an aqueous, enzymatic liquid detergent composition comprising, in an aqueous medium an active detergent material, a detergent builder, enzymes and an enzyme-stabilizing system which contains a component (a) comprising boric acid, boric oxide or an alkali metal borate, and/or a reducing alkali metal salt having an oxygenated sulphur anion, S₂O_p, in which a and be are whole numbers from 1 to 8, characterized in that the enzyme-stabilizing system further comprises from 0.5—15% by weight of a component (b) selected from a dicarboxylic acid of the formula COOH—(CHOH)—(CHOH)—(CHOH)—COOH, wherein a, b, c and d are whole numbers from O—4, and the sum of a, b, c and d is from 0 to 4 maleio or furnaric acid as well as the alkali metal, ammonium, alkanolamine or alkaline earth metal salts thereof, or the anhydrides thereof.

Typical examples of alkali metal borates are sodium and potassium, ortho-, pyro- and meta-borates, -polyborates, and borax. Borax is the preferred alkali metal borate.

If component (a) comprises, or consists of, boric acid, boric oxide, or an alkali metal borate, the amount thereof ranges preferably from 1 to 15, more preferably from 3 to 10% by weight of the final aqueous enzyme-ontaining composition.

Component (a) also complies, or consists of, a reducing alkali metal sait having an oxygenated sulphur anion \$,0, in wich a and b are whole numbers from 1 to 8. Typical examples of such reducing saits (which have an anti-oxidant effect) are sodium and potassium sulphites, -bisulphites, -metabisulphites and 35 -thiosulphates. Sodium sulphite is the preferred reducing alkall metal sait.

If component (a) comprises, or consists of, the reducing alkali metal salt, the amount thereof ranges preferably from 2 to 20, more preferably from 5 to 15% by weight of the final aqueous, enzyme-containing composition.

Component (a) may also consist of mixtures of the various recited ingredients.

Component (b) consists of a dicarboxylic acid of the above general formula or mixtures of these acids; instead of the acids, the annydrides can be used, or the alkall metal, ammonium, alkanolamine or alkalle earth metal saits of these acids. Typical examples of suitable dicarboxylic acids are oxalic acid, malonic acid, subtractic acid, adplicatic acid, and as a constant acid, and acid, acid, and acid, and acid, and acid, and acid, ac

The amount of the acid(s) used ranges from 0.5—15, preferably from 2—10% by weight of the final aqueous enzyme-containing composition. Succinic acid or saccharic acid or the alkali metal or alkanolamine salts thereof are the preferred compounds, since they provide for an enzyme-stabilizing effect which is equal or superior to the effect obtained with the corresponding polyol-containing systems. As alkanolamine salts the mono-.di- or triethanolamine salts can be used as well as the corresponding isopropanol amine salts. The salts of the acids can also be formed in situ in the final composition by neutralization with the required base.

The preferred enzyme-stabilizing system according to the present invention comprises a mixture of sodium sulphite, borax and disodium succinate.

The aqueous liquid compositions in which the stabilizing systems of the invention are incorporated are aqueous, liquid enzymatic detergent compositions further comprising as essential ingredients enzymes, active detergents and a detergent builder.

The enzymes to be incorporated can be proteolytic, polytic, amylolytic and cellulolytic enzymes as well as mitures thereof. They may be of any suitable origin, such as vegetable, animal, bacterial ingual and yeast origin. However, their choice is governed by several factors such as pH activity and/or stability optima, thermostability, stability versus active detergents, builders and so on. In this respect bacterial or fungal enzymes are preferred, such as bacterial amylases and proteases, and fungal cellulases. Although the fluid compositions of the present invention may have a near-neutrial pH value, the present invention

of particular benefit for enzymatic liquid detergents with a pH of 7.5 or above, especially those incorporating bacterial proteases of which the pH-optima lie in the range between 8.0 and 11.0, but it is to be understood that enzymes with a somewhat lower or higher pH-optimum can still be used in the compositions of the invention, benefiting from it.

Suitable examples of proteases are the subtilisins which are obtained from particular stains of B. suitilis and B. licheniformis, such as the commercially available subtilisins Maxatase[®] (ex Gist-Brocades N.V. Delft, Holland) and Alcalase[®] (ex Novo Industri A/S. Copenhagen, Denmark).

As stated above, the present invention is of particular benefit for enzymatic liquid detergents incorporating enzymas with pH-activity and/or stability optima of above 8.0, such enzymas being commonly called high-alkaline enzymas.

Particularly suitable are proteases obtained from strains of Bacillus, having maximum activity throughout the pH-range of 8—12, developed and sold by Novo Industri A/S under the registered trade name of Esorases* and Savinase*

The preparation of this enzyme and analogous enzymes is described in British Patent Specification No. 15 1,243,784 of Novo.

1,243,784 or Novo. High-alkaline amylases and cellulase can also be used, e.g. alpha-amylases obtained from a special strain of B. licheniformis, described in more detail in British Patent Specification No. 1,296,839 (Novo).

strain of B. licheniformis, described in more detail in British Patent Specification No. 1,296,839 (Novo).

The enzymes can be incorporated in any suitable form, e.g. as a granulate (marumes, prills etc.), or as a liquid concentrate. The granulate form has often advantages.

The amount of enzymes present in the liquid composition may vary from 0.001 to 10% by weight, and preferably from 0.01 to 5% by weight.

The liquid detengent compositions of the invention furthermore comprise as essential Ingredient an active detergent material, which may be an alkali metal or alkanol amine scap or a C_c—C_{cx} fatty acid, including polymerized fatty acids, or an anionic, nonionic, cationic, zwitterionic or amphoteric synthetic 25 determent material, or mixtures of any of these.

Examples of anionic synthetic detergents are salts (including sodium, potassium, ammonium, and substituted ammonium salts, such as mono. di- and triethanolamine salts) of C.—C., allyleherzene sulphonates, c.—C.

Examples of nonionic synthetic detergents are the condensation products of ethylene oxide, propylene oxide and/or butyleneoxide with C₈—C₁₈ alkiphenois, C₈—C₁₈ primary or secondary alliphatic alcohols, C₆—C₁₈ trity acid amides; further examples of nonionics include tertiary amine oxides with one C₉—C₁₁

alkyt chain and two C₁₋₁ alkyt chains. The above reference also describes further examples of nonionics. The average number of molecules of ethylene oxide and/or propylene oxide present in the above nonionics varies from 1—30; mixtures of verious nonionics, including mixtures of nonionics with a lower and a higher degree of alkoviation, may also be used.

Examples of cationic detergents are the quaternary ammonium compounds such as alkyldimethylammonium halogenides, but such cationics are less preferred for inclusion in enzymatic detergent compositions.

Examples of amphotaric or zwitterionic detergents are N-alkylamino acids, sulphobetaines, condensation products of fatty acids, with protein hydrolysates, but owing to their relatively high costs they are usually used in combination with an anionic or a nonionic detergent. Mixtures of the various types of active detergents may also be used, and preference is given to mixtures of an anionic and a nonionic detergent active. Soaps (in the form of their sodium, potassium, and substituted ammonium salts) or fatty acids may also be used, preferably in conjunction with an anionic and/or a nonionic synthetic detergent.

The amount of the active detergent material may vary from 1 to 60%, preferably from 2-40 and specially preferably from 2-5%; when mixtures of e.g. anionics and nonionics are used, the relative weight ratio varies from 10:1 to 1:10, preferably from 6:1 to 1:6. When a soap is also incorporated, the amount thereof is from 1-40% by weight.

The liquid compositions of the invention may further contain up to 80% of a suitable builder, such as sodium, potassium and amnonium or substituted ammonium pro- and tripolyphosphates, erithyleadiamine tetrasectates, -nitrilottriscetates, -etherpolycarboxylates, -citrates, -carbonates, -orthophosphatesles, collites, carboxymethyloxysuccinate, etc. Particularly preferred are the polyphosphate builder slatsi, nitrilotriscetates, citrates, zeolites, carboxymethyloxysuccinate, etc. Particularly preferred by end by the polyphosphate builder site, nitrilotriscetates, citrates, zeolites, and mixtures thereof. In general the builders are present in an amount of 1–60, preferably 5–50%, and particularly preferably 5–50% by weight of the final composition.

The amount of water present in the detergent compositions of the invention may vary from 5 to 70% by 60 weight.

weight.

Other conventional materials may also be present in the liquid detergent compositions of the invention, for example soil-suspending agents, hydrotropes, corrosion inhibitors, dyes, perfumes, silicates, optical brighteners, suds depressants such as silicones, germicides, anti-tamishing agents, opacificates, fabric softening agents, oxygen-liberating bleaches such as hydrogen peroxide, sodium perborate or encarbonate, dipersobnthalic anhydride, with or without bleach precursors. buffers and the like. When the

0 126 505

compositions contains a builder, it may sometimes be advantageous to include a suspension stabilizer in the composition to provide a satisfactory phase-stability. Such stabilizers include natural or synthetic polymers.

Suitable examples of such suspension stabilizers are polyacrylates, copolymers of maleic anhydride and ethylene or vinylmethylether, and polymers of acrylic acid, cross-linked with not more than 10% of a rinyl-group containing cross-linking agent, e.g. polymers of arvivile acid, cross-linked with about 1% of a polyallyl ether of sucrose having an average of about 5.8 alkylgroups for each sucrose molecule. Examples of the latter are commercially available products, available under the registered trade name of Carbopol of B. F. Goodrich Co. Ltd.

10 In general, if a suspension stabilizer is required, it will be included in an amount of 0.1—2, usually 0.25—1% by weight of the final composition.

The invention will now be further illustrated by way of Example. In the examples, all the percentages are percentages by weight of the final composition.

The pH of the final composition is near neutral, preferably 7.5 or higher, and is, if necessary, buffered to a value within that range by addition of a suitable buffer system. The pH of the weah liquor, when using the composition, is about 1 pH unit higher than the above values at an in-use concentration of about 1%.

Example 1

The following composition was prepared:

20		% by weight
	Sodium dodecylbenzene sulphonate	5
25	C ₁₅ —C ₁₅ linear primary alcohol condensed with 7 moles of ethylene oxide, which is a mixture of ethylene and propylene oxide in a weight ratio of 92:8	2
30	Pentasodium triphosphate (anhydrous)	21
	Sodium carboxymethyl cellulose	0.2
35	Carbopol® 941 (a polymer of acrylic acid crosslinked with about 1% of a poly- alkylether of sucrose having an average of about 5.8 alkyl groups for each sucrose molecule)	. 0.4
40	Fluorescer	0.1
	Alcalase® marumes (activity 1.5 Anson unit/g)	0.7
45	Enzyme stabilizer or dicarboxylic acid	x
	Borax	У
50	Sodium sulphite (anhydrous)	z
50	Water to	100.0%
55	рН	7.5

x, y and z were varied, yielding a series of compositions 1-5.

The products were stored at 37°C and the residual enzymatic activity (RA) was determined at weekly intervals.

60

0 126 505

The following results were obtained:

5

Composition 1: x = 5% Succinic acid RA after y = 3.5% 8 weeks:

z = 8.0% 100%

The same composition, but with 5% glycerol instead of succinic acid, had an RA after 8 weeks of 80%.

The system, where y = z = 0%, had an RA of 36% after 1 week, and when x = z = 0%, an RA of 1% after 1 week.

Composition 2: x = 5% Succinic acid RA after

15 y = 3.5% 4 weeks:

z = 0 45%

The same composition, but with 5% glycerol instead of succinic acid, had an RA after 4 weeks of 27%.

The same composition, but with 5% adiptor of plurate acid instead of succinic acid, had an RA after one week of 40%. (The glutaric acid was added as glutaric acid anhydride).

Composition 3: x = 2% or 5% RA after 4 weeks = 100%

y = 0

z = 8%

30 Composition 4: x = 1% RA after 4 weeks = 75%

y = 0

z = 8%

For comparison, the same products but with 2.5 or 5% glycerol instead of succinic acid and 7.5 sodium sulphite:

x = 2.5 or 5

v = 0

z = 7.5

45 had an RA after 4 weeks of 60%; the same composition but with only 7.5% sulphite:

x = 0

y = 0

z = 7.5

had an RA of 32% after 1 week.

55 Composition 5: x = 5% of saccharic acid RA after

v = 3.5% 8 weeks:

z = 8% 80%

The same composition, but with 5% of glycerol instead of saccharic acid, had an RA after 8 weeks of 80%

35

40

50

0 126 505

Claims

25

- 15 1. An aqueous, enzymatic liquid detergent composition comprising, in an aqueous medium en active detergent material, a detergent builder, enzymes and an enzyme-stabilizing system which contains brotic acid, boric oxide or an alkali metal borate, and/or a reducing alkali metal salt having an oxygenated sulphur anion, S₂O₂, in which a and b are whole numbers from 1 to 8, characterized in that the enzyme-stabilization system further comprises from 0.5—15% by weight of a dicarboxylic acid of the formula 20 COH—(CHOH)—(CHOH
 - A composition according to claim 1 characterized in that from 2—10% by weight of the dicarboxylic acid is present.
 - 3. A composition according to claim 1, characterized in that the dicarboxylic acid is succinic or saccharic acid.
 - 4. A composition according to claim 3, characterized in that the enzyme-stabilizing agent comprises a mixture of borax, sodium sulphite and succinic acid.

30 Patentansprüche

- 1. Wäßrige enzymhaltige flüssige Detergens-Zusammensetzung umfassend in einem wäßrigen Medium ein aktives Detergens-Material, einen Detergens-Builder, Enzyme und ein Enzym-stablisierendes System, das Borsäure, Boroxid oder ein Alkalimetallborat und/oder ein reduzierendes Alkalimetallsalz mit siemen Sauerstoff-haltigen Schwerlelanion S,O, in dem a bud b ganze Zahlen zwischen 1 und 8 sind, enthält, dadurch gekennzeichnet, daß das Enzymstablisierendes System außerdem 0,5 bis 15 Gew.-% einer Dicarbonsäure der Formel COOH—(CHOH)...—(CHoH)...—(CHOH)...—(C
 - 2. Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, daß 2—10 Gew.-% der Dicarbonsäure vorhanden sind.
 - 3. Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, daß die Dicarbonsäure Bernsteinsäure oder Zuckersäure ist.
 - Zusammensetzung nach Anspruch 3, dadurch gekennzeichnet, daß das Enzym-stabilisierende Mittel eine Mischung von Borax. Natriumsulfit und Bernsteinsäure umfaßt.

Revendications

50

- 1. Composition détergente liquide aqueuse enzymatique comprenant, dans un milieu aqueux, une maitire détergente active, un adjuvant de détergence, des enzymes qui contient de l'acide borique, l'oxyde borique ou un borate de métal alcalin et/ou un sel réducteur de métal alcalin ayant un anion soufre oxygéné S₂O₆ dans leque de et bont des nombres entiers de 1 à 8. carcérárisée en ce que le système stabilisateur d'enzymes contient en outre de 0, 5 à 15% en poids of un acide dicarboxylique de formule COOH—(CHOH),—(CHOH),—(CHOH),—(CH),—(COOH, dens laquelle a, b, c et d'est des nombres entiers de 0 à 4, et a somme de a, b, c et d'est de 0, à 4, o ut d'acide mâléque ou fumarique aussi bien que leurs sels de métaux alcalins, d'ammonium, d'alcanol-amines, ou de métaux alcalino-terroux ou leurs anhudrides.
- 2. Composition selon la revendication 1, caractérisée en ce que l'acide dicarboxylique est présent à raison de 2 à 10% en poids.
 - 3. Composition selon la revendication 1, caractérisée en ce que l'acide dicarboxylique est l'acide succinique ou l'acide saccharique.
- Composition selon la revendication 3, caractérisée en ce que l'agent de stabilisation des enzymes
 comprend un mélange de borax, de sulfite de sodium et d'acide succinique.