Strings

Na programação em linguagem C, uma string é uma sequência de caracteres terminada com um caractere nulo \0. Por exemplo:

```
char str[20] = "Linguagem C";
```

Quando o compilador encontra uma sequência de caracteres entre aspas duplas, ele acrescenta um caractere nulo \(\)0 no final por padrão.

0	1	2	3	4	5	6	7	8	9	10	11
L	i	n	g	u	а	g	е	m		С	\0

1 - Declaração de strings

O exemplo a seguir declara um string com capacidade para 10 caracteres.

```
char str[10];
```

2 - Inicializar strings

É possível inicializar strings de várias maneiras.

```
char str[5] = "abcd";
char str[] = "abcd";
char str[5] = {'a', 'b', 'c', 'd', '\0'}
char str[] = {'a', 'b', 'c', 'd', '\0'}
```

Assim como vetores, as strings não suportam o operador de atribuição depois que ela é declarada.

```
char str[5];
str = "abcd" /* Erro */
```

3 - Ler uma string do usuário

É possivel usar a função <code>scanf()</code> com a especificação <code>%s</code> para ler uma string do usuário. No entanto, a função <code>scanf()</code> fará a leitura até encontrar um espaço em branco. Repare que é utilizado apenas <code>nome</code> ao invés de <code>&nome</code>. Isso porque o <code>nome</code> no <code>scanf()</code> aponta para o endereço de memória do primeiro elemento da string apenas.

```
#include <stdio.h>

int main()
{
   char nome[21];

   printf("Informe seu nome: ");
   scanf("%s", nome);

   printf("Seu nome é %s.", nome);

   return 0;
}
```

Uma forma mais eficiente de ler uma string do usuário é apresentada a seguir. Aqui, a string é lida até que seja encontrada uma quebra de linha.

```
#include <stdio.h>

int main()
{
   char nome[21];

   printf("Informe seu nome: ");
   scanf(" %20[^\n]", nome);

   printf("Seu nome é %s.", nome);

   return 0;
}
```

4 - Funções de string

A linguagem C oferece a biblioteca padrão string.h para manipulação de strings. Algumas das funções presentes nessa biblioteca são apresentadas a seguir.

4.1 - Tamanho da string

A função strlen calcula o comprimento de uma determinada string. Observe que a função strlen() não conta o caractere nulo \0 ao calcular o comprimento da string.

Sintaxe: strlen(string)

```
#include <stdio.h>
#include <string.h>

int main()
{
   char str[] = "Universidade Positivo";

   printf("Tamanho da string: %d caracteres.", strlen(str));

   return 0;
}
```

4.2 - Copiar strings

A função stropy copia toda a string de origem (incluindo o caracter nulo) para uma string de destino.

Sintaxe: strcpy(string destino, string origem)

```
#include <stdio.h>
#include <string.h>

int main()
{
   char str1[31] = "Universidade Positivo";
   char str2[31];

strcpy(str2, str1);

printf("%s", str2);

return 0;
}
```

4.3 - Concatenar strings

A função streat concatena uma cópia da segunda string ao final da primeira string.

Sintaxe: strcat(str destino, str origem)

```
#include <stdio.h>
#include <string.h>

int main()
{
   char str1[20] = "Universidade";
   char str2[30] = " Positivo";

   strcat(str1, str2);
```

```
printf("%s", strl);

return 0;
}
```

4.4 - Comparar strings

A função strcmp() compara duas strings, caractere por caractere, e retorna um valor. Caso o valor de retorno seja 0, as strings são iguais. Caso o valor de retorno seja menor que 0, a string str1 é alfabeticamaente menor que a string str2. Caso o valor de retorno seja maior que 0, a string str1 é alfabeticamaente maior que a string str2.

Sintaxe: strcmp(str1, str2)

```
#include <stdio.h>
#include <string.h>

int main()
{
   char str[30] = "Universidade Positivo";

   if(strcmp(str, "Universidade Positivo") == 0){
      printf("As strings são iguais.");
   }
   else{
      printf("As strings são diferentes.");
   }

   return 0;
}
```

5 - Tabela ASCII

ASCII foi o primeiro conjunto de caracteres (padrão de codificação) usado entre computadores na Internet e significa "American Standard Code for Information Interchange".

Foi projetado no início dos anos 60, como um conjunto de caracteres padrão para computadores e dispositivos eletrônicos e contém os números de 0 a 9, as letras maiúsculas e minúsculas do inglês de A a Z e alguns caracteres especiais.

Coluna 1	Coluna 2	Coluna 3	Coluna 4	Coluna 5
32 = space	33 = !	34 = "	35 = #	36 = \$
37 = %	38 = &	39 = '	40 = (41 =)
42 = *	43 = +	44 = ,	45 = -	46 = .
47 = /	48 = 0	49 = 1	50 = 2	51 = 3
52 = 4	53 = 5	54 = 6	55 = 7	56 = 8
57 = 9	58 = :	59 = ;	60 = <	61 = =
62 = >	63 = ?	64 = @	65 = A	66 = B
67 = C	68 = D	69 = E	70 = F	71 = G
72 = H	73 = I	74 = J	75 = K	76 = L
77 = M	78 = N	79 = O	80 = P	81 = Q
82 = R	83 = S	84 = T	85 = U	86 = V
87 = W	88 = X	89 = Y	90 = Z	91 = [
92 = \	93 =]	94 = ^	95 = _	96 = `
97 = a	98 = b	99 = c	100 = d	101 = e
102 = f	103 = g	104 = h	105 = i	106 = j
107 = k	108 = I	109 = m	110 = n	111 = o
112 = p	113 = q	114 = r	115 = s	116 = t
117 = u	118 = v	119 = w	120 = x	121 = y
122 = z	123 = {	124 =	125 = }	126 = ~
127 = del				

O código a seguir gera a tabela ASCII em linguagem C.

```
#include <stdio.h>
int main() {
  int i, count;
  printf("32 = space\t");
  count = 1;
```

```
for(i = 33;i < 127; i++){
    printf("%d = %c\t\t", i, i);
    count++;

if(count == 5){
    printf("\n");
    count = 0;
    }
}

printf("127 = del");

return(0);
}</pre>
```

6 - Atividades

- 1. Escreva um programa que mostre o tamanho de uma string informada pelo usuário (utilize a função apropriada).
- 2. Escreva um programa que mostre o tamanho de uma string informada pelo usuário (não utilize funções).
- 3. Escreva um programa para exibir os caracteres de A a Z.
- 4. Escreva um programa que receba a string = "Hello, World!" e a apresente invertida.
- 5. Escreva um programa que verifique se duas strings são iguais.
- 6. Escreva um programa que leia uma frase de até 50 caracteres. Em seguida, escreva a frase sem os espaços em branco.
- 7. Escreva um programa que receba uma string e um caractere, e retorne o número de vezes que esse caractere aparece na string.
- 8. Escreva um programa para contar a quantidade de vogais em uma string.
- 9. Um hospital local está fazendo uma campanha para receber doação de sangue. O propenso doador deve inicialmente se cadastrar informando o seu primeiro nome, sua idade, seu peso, responder a um breve questionário e apresentar um documento oficial com foto. Faça um programa em C que permita ao hospital avaliar a aptidão de um voluntário quanto à doação de sangue. Para estar apto a doar sangue, o voluntário deve ter idade entre 16 e 69 anos, pesar pelo menos 50 kg, estar bem alimentado e não estar resfriado. O programa deve ler os dados e imprimir no final o nome do voluntário e se ele está apto ou não.
- 10. Escreva um programa que, dada uma string, diga se ela e um palíndromo ou não. Lembrando que um palíndromo é um texto que tenha a propriedade de poder ser lida tanto da direita para a esquerda como da esquerda para a direita. **Exemplos:** ovo, arara, anotaram a data da maratona.