Draught

CS181 Final Project 周守琛 叶柯成 张郅睿 王鹏豪

Settings

- 8*8 grids
- 24 pieces (12 per side)
- $5^32 \approx 10^22$ states

Implement methods

- Random
- Greedy
- Adversarial search (minimax, alpha-beta pruning)
- Reinforcement learning
 - MCTS
 - Q-learning
 - Approximate Q-learning

Score function

$$\begin{split} f(s) &= \omega_1 * (N_{\text{our-survived}} - N_{\text{opponent-survived}}) \\ &+ \omega_2 * (N_{\text{our-kings}} - N_{\text{opponent-kings}}) \\ &+ \omega_3 * \sum_{\text{our normal pieces}} \frac{1}{L_{\text{dis-to-bottom}}} \\ &+ \omega_4 * \sum_{\text{our pieces}} \frac{1}{\min(L_{\text{dis-to-left}}, L_{\text{dis-to-right}}) + 1} \end{split}$$

$$\omega_1 = 1, \omega_2 = 2, \omega_3 = 1, \omega_4 = 0.5$$

Basic methods

- Random
- Greedy
- Adversarial search (minimax, alpha-beta pruning)

Monte-Carlo Tree Search

UCT

Exploitation

$$\underset{v' \in \text{children of } v}{\operatorname{arg\,max}} \, \frac{Q(v')}{N(v')} + c \sqrt{\frac{2 \ln N(v)}{N(v')}}$$

Exploration

Monte-Carlo Tree Search

Repeat until meet stop criterion

Q-learning

r1(s, a, W) = f(s, W) - f(s', W)r2(s, a, W) = [f(s, W) - f(s', W)] - [f(s', B) - f(s'', B)]

$$sample = r1(s, a, W) + \gamma \max_{a'} Q(s', a')$$

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha(sample)$$

Q-learning

- $\gamma = 0.8, 0.9, 1.0, 1.1$?
- Unvisited Q-value $\rightarrow 0$

Approximate Q-learning

$$f(s) = \omega_1 * (N_{\text{our-survived}} - N_{\text{opponent-survived}}) \qquad \qquad f_1$$

$$+ \omega_2 * (N_{\text{our-kings}} - N_{\text{opponent-kings}}) \qquad \qquad f_2$$

$$+ \omega_3 * \sum_{\text{our normal pieces}} \frac{1}{L_{\text{dis-to-bottom}}} \qquad \qquad f_3$$

$$+ \omega_4 * \sum_{\text{our pieces}} \frac{1}{\min(L_{\text{dis-to-left}}, L_{\text{dis-to-right}}) + 1} \qquad \qquad f_4$$

$$difference = sample - Q(s, a)$$
$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha(sample)$$
$$w_i \leftarrow w_i + \alpha(difference)f_i(s, a)$$

Approximate Q-learning

 f_5 : 2-classification $\{+1,-1\}$

Results

Sente:先手

Gote:后手

Sente	Random	Search	Monte-Carlo Tree Search	Q-Learning	Approximate Q-Learning
Random	52%	100%	93%	85%	89%
Monte-Carlo Tree Search	19%	87%	81%	59%	63%

Gote Sente	Random	Search	Monte-Carlo Tree Search	Q-Learning	Approximate Q-Learning
Random	48%	87%	82%	74%	68%
Monte-Carlo Tree Search	7%	39%	19%	16%	19%

Sente Gote	Approximate Q-Learning w/o neural prior	Approximate Q-Learning with neural prior
Random	89%	91%
MCTS	63%	67%

Gote Sente	Approximate Q-Learning w/o neural prior	Approximate Q-Learning with neural prior
Random	68%	76%
MCTS	19%	18%

Thank you