Notes and exercises from The Cauchy-Schwarz Master Class

John Peloquin

Introduction

This document contains notes and exercises from [1].

Chapter 1

Exercise (1.1). For any real numbers $r_1, ..., r_n$,

$$\sum_{k} r_k \le \sqrt{n} \left(\sum_{k} r_k^2 \right)^{1/2} \tag{a}$$

and

$$\sum_{k} r_{k} \le \left(\sum_{k} |r_{k}|^{2/3}\right)^{1/2} \left(\sum_{k} |r_{k}|^{4/3}\right)^{1/2} \tag{b}$$

Proof. Both inequalities are obtained from Cauchy-Schwarz, the first by taking $a_k = 1$ and $b_k = r_k$ for all k and the second by taking $a_k = r_k^{1/3}$ and $b_k = r_k^{2/3}$ for all k, recalling that $r^2 = |r|^2$ for any real number r.

Exercise (1.2). Suppose $p_k \ge 0$ for $1 \le k \le n$ and $p_1 + \cdots + p_n = 1$. If $a_k \ge 0$, $b_k \ge 0$, and $1 \le a_k b_k$ for $1 \le k \le n$, then

$$1 \le \left(\sum_{k} p_k a_k\right) \left(\sum_{k} p_k b_k\right)$$

Proof. $1 \le \sqrt{a_k b_k}$, so $p_k \le p_k \sqrt{a_k b_k} = \sqrt{p_k a_k} \sqrt{p_k b_k}$. By Cauchy-Schwarz,

$$1 = \sum_{k} p_{k} \le \sum_{k} (p_{k} a_{k})^{1/2} (p_{k} b_{k})^{1/2} \le \left(\sum_{k} p_{k} a_{k}\right)^{1/2} \left(\sum_{k} p_{k} b_{k}\right)^{1/2}$$

The result now follows from squaring both sides of the outer inequality. \Box

¹This refers to the first inequality in [1], p. 1.

Exercise (1.3). For any real sequences (a_k) , (b_k) , (c_k) of length n,

$$\left(\sum_{k} a_k b_k c_k\right)^4 \le \left(\sum_{k} a_k^2\right)^2 \sum_{k} b_k^4 \sum_{k} c_k^4 \tag{a}$$

and

$$\left(\sum_{k} a_k b_k c_k\right)^2 \le \sum_{k} a_k^2 \sum_{k} b_k^2 \sum_{k} c_k^2 \tag{b}$$

Proof. By Cauchy-Schwarz,

$$\left| \sum_{k} a_{k} b_{k} c_{k} \right| \le \left(\sum_{k} a_{k}^{2} \right)^{1/2} \left(\sum_{k} b_{k}^{2} c_{k}^{2} \right)^{1/2}$$

so

$$\left(\sum_{k} a_k b_k c_k\right)^2 \le \left(\sum_{k} a_k^2\right) \left(\sum_{k} b_k^2 c_k^2\right) \tag{c}$$

By Cauchy-Schwarz again,

$$\sum_{k} b_{k}^{2} c_{k}^{2} \leq \left(\sum_{k} b_{k}^{4}\right)^{1/2} \left(\sum_{k} c_{k}^{4}\right)^{1/2}$$

which together with (c) implies

$$\left(\sum_{k} a_{k} b_{k} c_{k}\right)^{2} \leq \left(\sum_{k} a_{k}^{2}\right) \left(\sum_{k} b_{k}^{4}\right)^{1/2} \left(\sum_{k} c_{k}^{4}\right)^{1/2}$$

which implies (a). Also, clearly

$$\sum_{k} b_k^2 c_k^2 \le \left(\sum_{k} b_k^2\right) \left(\sum_{k} c_k^2\right)$$

which together with (c) implies (b).

Exercise (1.4). For all x, y, z > 0,

$$\left(\frac{x+y}{x+y+z}\right)^{1/2} + \left(\frac{x+z}{x+y+z}\right)^{1/2} + \left(\frac{y+z}{x+y+z}\right)^{1/2} \le 6^{1/2}$$
 (a)

and

$$x + y + z \le 2\left(\frac{x^2}{y+z} + \frac{y^2}{x+z} + \frac{z^2}{x+y}\right)$$
 (b)

Proof. Both inequalities are obtained from Cauchy-Schwarz, the first by taking $a_1 = (x+y)^{1/2}$, $a_2 = (x+z)^{1/2}$, $a_3 = (y+z)^{1/2}$, and $b_1 = b_2 = b_3 = (x+y+z)^{-1/2}$, and the second by first writing

$$x + y + z = \frac{x}{\sqrt{y+z}}\sqrt{y+z} + \frac{y}{\sqrt{x+z}}\sqrt{x+z} + \frac{z}{\sqrt{x+y}}\sqrt{x+y}$$

to obtain

$$(x+y+z)^2 \le 2\left(\frac{x^2}{y+z} + \frac{y^2}{x+z} + \frac{z^2}{x+y}\right)(x+y+z)$$

from which the result follows.

Exercise (1.5). If $p_k \ge 0$ for $1 \le k \le n$ and $p_1 + \cdots + p_n = 1$, then

$$g(x) = \sum_{k} p_k \cos(\beta_k x)$$
 satisfies $g^2(x) \le \frac{1}{2} (1 + g(2x))$

Proof. By Cauchy-Schwarz and the identity $\cos^2(\alpha) = (1 + \cos(2\alpha))/2$,

$$g^{2}(x) = \left(\sum_{k} \sqrt{p_{k}} \sqrt{p_{k}} \cos(\beta_{k} x)\right)^{2}$$

$$\leq \left(\sum_{k} p_{k}\right) \left(\sum_{k} p_{k} \cos^{2}(\beta_{k} x)\right)$$

$$= \sum_{k} p_{k} \cos^{2}(\beta_{k} x)$$

$$= \frac{1}{2} \sum_{k} p_{k} \left(1 + \cos(2\beta_{k} x)\right)$$

$$= \frac{1}{2} \left(1 + g(2x)\right)$$

Exercise (1.6). If $p_k > 0$ for $1 \le k \le n$ and $p_1 + \cdots + p_n = 1$, then

$$\sum_{k} \left(p_k + \frac{1}{p_k} \right)^2 \ge n^3 + 2n + \frac{1}{n}$$

Moreover, equality holds if and only if $p_k = 1/n$ for all k.

Proof. By Cauchy-Schwarz,

$$n^2 = \left(\sum_k \sqrt{p_k} \frac{1}{\sqrt{p_k}}\right)^2 \le \left(\sum_k p_k\right) \left(\sum_k \frac{1}{p_k}\right) = \sum_k \frac{1}{p_k}$$
 (a)

so

$$n^2 + 1 \le \sum_{k} \frac{1}{p_k} + \sum_{k} p_k = \sum_{k} \left(p_k + \frac{1}{p_k} \right)$$

and by applying Exercise 1.1(a) to the last sum,

$$\frac{(n^2+1)^2}{n} \le \sum_{k} \left(p_k + \frac{1}{p_k}\right)^2$$
 (b)

which is just the desired inequality. If equality holds in (b), then equality holds in (a), so $p_k = 1/n$ for all k by (1.11); the converse is trivial.

Exercise (1.7). For any real numbers α , β , x, y,

$$(5\alpha x + \alpha y + \beta x + 3\beta y)^2 \le (5\alpha^2 + 2\alpha\beta + 3\beta^2)(5x^2 + 2xy + 3y^2)$$

Proof. In \mathbb{R}^2 , the product

$$\langle (x_1, y_1), (x_2, y_2) \rangle = 5x_1x_2 + x_1y_2 + x_2y_1 + 3y_1y_2$$

is clearly symmetric and bilinear. Moreover,

$$||(x, y)||^2 = \langle (x, y), (x, y) \rangle = 5x^2 + 2xy + 3y^2$$

Fixing y and considering the quadratic polynomial $p(x) = 5x^2 + (2y)x + 3y^2$, note $p(x) \ge 0$ since 5 > 0 and $(2y)^2 - 4 \cdot 5 \cdot 3y^2 = -56y^2 \le 0$, and in fact p(x) = 0 if and only if x = y = 0. Therefore the product is positive definite and so an inner product. The desired inequality is now just

$$\langle (\alpha,\beta),(x,y)\rangle^2 \leq \|(\alpha,\beta)\|^2 \|(x,y)\|^2$$

which is Cauchy-Schwarz (1.16).

Exercise (1.8). The following inequalities hold:

$$\sum_{k=0}^{\infty} a_k x^k \le \frac{1}{\sqrt{1-x^2}} \left(\sum_{k=0}^{\infty} a_k^2 \right)^{1/2} \tag{0} \le x < 1$$

$$\sum_{k=1}^{n} \frac{a_k}{k} < \sqrt{2} \left(\sum_{k=0}^{n} a_k^2 \right)^{1/2}$$
 (b)

$$\sum_{k=1}^{n} \frac{a_k}{\sqrt{n+k}} < (\log 2)^{1/2} \left(\sum_{k=0}^{n} a_k^2\right)^{1/2}$$
 (c)

$$\sum_{k=0}^{n} \binom{n}{k} a_k \le \binom{2n}{n}^{1/2} \left(\sum_{k=0}^{n} a_k^2\right)^{1/2} \tag{d}$$

Proof. The inequalities all follow from Cauchy-Schwarz, together with suitable bounds for $\sum_k b_k^2$. For (a), note $0 \le x^2 < 1$, so $\sum_k (x^k)^2 = \sum_k (x^2)^k = (1-x^2)^{-1}$ by convergence of the geometric series. For (b), recall

$$\sum_{k=1}^{n} \frac{1}{k^2} < \sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6} < 2$$

For (c), note

$$\sum_{k=1}^{n} \frac{1}{n+k} < \int_{n}^{2n} \frac{1}{x} dx = \log(2n) - \log(n) = \log(2n/n) = \log(2)$$

For (d), recall for any $0 \le m \le n$,

$$\binom{n}{k} = \sum_{j=0}^{k} \binom{m}{j} \binom{n-m}{k-j}$$

so

$$\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k} \binom{n}{n-k} = \sum_{k=0}^{n} \binom{n}{k}^{2}$$

References

[1] Steele, J. Michael. The Cauchy-Schwarz Master Class. Cambridge, 2004.