零死角玩转STM32—M3系列

STM32中断应用概览

淘宝: firestm32.taobao.com

论坛: www.firebbs.cn

扫描进入淘宝店铺

主讲内容

01 异常类型

02 NVIC简介

03 优先级的定义

04 中断编程

参考资料:《零死角玩转STM32》 "STM32中断概览" 章节

中断简介

□ STM32 中断非常强大,每个外设都可以产生中断,所以中断的讲解放在哪一个外设里面去讲都不合适,这里单独抽出一章来做一个总结性的介绍。

□ 本章如无特别说明,异常就是中断,中断就是异常。

中断简介

中断类型

□ 系统异常,体现在内核水平

□ 外部中断,体现在外设水平

有关系统异常和外部中断的清单可查阅参考手册第9章的向量表部分。

NVIC简介

NVIC:嵌套向量中断控制器,属于内核外设,管理着包括内核和片上所有外设的中断相关的功能。

两个重要的库文件:core_cm3.h和misc.h

NVIC寄存器

NVIC寄存器简介, core_cm3.h定义

```
1 typedef struct {
      __IO uint32_t ISER[8]; // 中断使能寄存器
      uint32 t RESERVED0[24];
                               // 中断清除寄存器
     IO uint32 t ICER[8];
    uint32 t RSERVED1[24];
      IO uint32 t ISPR[8];
                               // 中断使能悬起寄存器
      uint32 t RESERVED2[24];
                               // 中断清除悬起寄存器
      IO uint32 t ICPR[8];
      uint32 t RESERVED3[24];
                             // 中断有效位寄存器
10
     IO uint32 t IABR[8];
11
    uint32 t RESERVED4[56];
  __IO uint8_t IP[240];
12
                               // 中断优先级寄存器(8Bit wide)
13
  uint32 t RESERVED5[644];
                               // 软件触发中断寄存器
14
     O uint32 t STIR;
15 }
     NVIC Type;
```

中断优先级的定义

优先级设定:NVIC->IPRx

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
用于表达优先级				未使用,读回为0			

优先级分组:SCB->AIRCR:PRIGROUP[10:8]

优先级分组	主优先级	子优先级	描述	
NVIC_PriorityGroup_0	0	0-15	主-0bit,子-4bit	
NVIC_PriorityGroup_1	0-1	0-7	主-1bit,子-3bit	
NVIC_PriorityGroup_2	0-3	0-3	主-2bit,子-2bit	
NVIC_PriorityGroup_3	0-7	0-1	主-3bit,子-1bit	
NVIC_PriorityGroup_4	0-15	0	主-4bit,子-0bit	

中断编程的顺序

- 1-使能中断请求
- 2-配置中断优先级分组
- 3-配置NVIC寄存器,初始化NVIC_InitTypeDef;
- 4-编写中断服务函数

使能中断请求

如何使能,需要配置哪个寄存器?

中断优先级分组

如何配置,需要配置哪个寄存器

NVIC_InitTypeDef

- 1-NVIC_IRQChannel:中断源
- 2-NVIC_IRQChannelPreemptionPriority:抢占优先级
- 3-NVIC_IRQChannelSubPriority: 子优先级
- 4-NVIC_IRQChannelCmd:使能或者失能

编写中断服务函数

- 1-中断服务函数名要怎么写?写错了怎么办?
- 2-中断服务函数要写在什么地方?

零死角玩转STM32—M3系列

论坛: www.firebbs.cn

淘宝: firestm32.taobao.com

扫描进入淘宝店铺