1 Convergence of Series

Consider $\sum_{n=1}^{\infty} a_n (x-a)^n$.

Suppose the series converges at $x = x_0$.

The terms $a_n(x_0-a)^n$ must go to 0.

So there exists $M \in \mathbb{R}$ such that $|a_n(x_0 - a)^n| < M$ for all $n \in \mathbb{N}$.

Consider a point r such that $|r-a| < |x_0-a|$:

$$\sum_{i=1}^{\infty} a_n (r-a)^n = \sum_{i=1}^{\infty} a_n (x_0 - a)^n \cdot (\frac{r-a}{x_0 - a})^n.$$
 (1)

Then $\left| a_n (r-a)^n \right| = \left| a_n (x_0 - a)^n \left(\frac{r-a}{x_0 - a} \right)^n \right| \le M \left| \frac{r-a}{x_0 - a} \right|^n$.

Thus, $\sum_{i=1}^{\infty} a_n (r-a)^n$ converges absolutely.

Now consider the series as a function:

$$f_n(x) = \sum_{n=0}^{n} a_n (x-a)^n.$$

As n goes to infinity, what is its derivative?

Note that $f'_n(x) = \sum_{n=0}^{\infty} na_n(x-a)^{n-1}$.

Then the ratio test says that $\frac{f'_{n+1}(x)}{f'_n(x)} = \frac{n+1}{n} \frac{a_{n+1}}{a_n} (x-a)$.

Suppose $f_n(x) \to f(x)$ for all $x \in [a, b]$. Suppose that $f_n(x)$ is continuous for all $n \in \mathbb{N}$. On [0, 1], as $n \to \infty$, x^n tends to zero for x < 1 and to one for x = 1.

Example 1.1

Let $f_n(x)$ be such that $f_n(x) = \begin{cases} n \le x \le n+1 \\ \text{otherwise} \end{cases}$

Suppose now that $\lim_{n\to\infty} g_n(x) = 0$ for all $x \in \mathbb{R}$ such that

$$\frac{1}{2} = \lim_{n \to \infty} \int_0^1 g_n(x) \, \mathrm{d}x + \int_0^1 \lim_{n=1}^\infty g_n = 0$$

Definition 1.2. A sequence of functions f_n converges uniformly to f(x) if, given $\epsilon > 0$, there exists $N \in \mathbb{R}$ such that $|f_n(x) - f(x)| < \epsilon$ for any n > N and for any $x \in D(f)$.

Remark 1.3. We can also define postive convergence, if $\lim_{n\to\infty} f_n(x) = f(x)$ for all $x \in D(f)$.

Theorem 1.4

Suppose that f_n and f are integrable.

If $f_n \to f$ uniformly on [a, b], then $\lim_{n \to \infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx = \int_a^b \lim_{n \to \infty} f_n(x) dx$.

Proof.

Given $\epsilon > 0$, we can find N such that $\left| f_n(x) - f(x) < \frac{\epsilon}{b-a} \right|$ for all $x \in [a,b]$ and for all n > N.

Then
$$\left| \int_a^b f_n(x) dx - \int_a^b f(x) dx \right| \le \int_a^b \left| f_n(x) - f(x) \right| dx < \frac{\epsilon}{b-a} \int_a^b dx = \epsilon.$$