

ALGÈBRE LINÉAIRE

Année Académique 2022-2023

ÉVALUATION FINALE

UNE APPLICATION LINEAIRE DE $\mathbb{R}3$	3
UNE PROJECTION DANS \mathbb{R}^3	3
	. •
UNE MATRICE DE $\mathcal{M}3\mathbb{R}$. 3
	UNE APPLICATION LINEAIRE DE $\mathbb{R}3$

1 Une application linéaire de \mathbb{R}^3

Soit f l'application linéaire de \mathbb{R}^3 dans \mathbb{R}^3 définie par

$$f\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} y - z \\ x + y \\ x + z \end{pmatrix}$$

- 1. Calculer la matrice de f dans la base canonique de \mathbb{R}^3 .
- 2. Déterminer une base de ker(f) et de Im(f).
- 3. L'application f est-elle injective ? Surjective ? Bijective ?

2 Une projection dans \mathbb{R}^3

Soit
$$u = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$
. Soit $D = \text{Vect}(u)$.

- 1. Calculer la matrice de p_D , la projection orthogonale sur D.
- 2. Quel est le carré de cette matrice ?
- 3. Calculer la matrice de S_D , la symétrie orthogonale par rapport à D.
- 4. Quel est le carré de cette matrice ?
- 5. Donner une équation de D^{\perp} .

3 Une matrice de $\mathcal{M}_3(\mathbb{R})$

Soit
$$A = \begin{pmatrix} 0 & 2 & 2 \\ 2 & 0 & -2 \\ 2 & -2 & 0 \end{pmatrix}$$
.

- 1. Calculer le déterminant de A.
- 2. Calculer le polynôme caractéristique de A. On pourra faire apparaître un 0 sur la troisième ligne et première colonne, puis sur la troisième ligne et deuxième colonne afin d'obtenir une expression directement factorisée.
- 3. Les valeurs propres de A sont -4 de multiplicité algébrique 1 et 2 de multiplicité algébrique 2. Justifier ce résultat à l'aide de la question précédente. Si vous n'avez pas réussi la question précédente vous pourrez vous servir de ces valeurs dans la suite de l'exercice.
- 4. Déterminer les sous-espaces propres de A.
- 5. Présenter deux arguments pour affirmer que A est diagonalisable. Donner les matrices D et P associées.

- 6. Calculer les produits scalaires deux à deux des vecteurs propres de A. Était-ce prévisible ?
- 7. Calculer P^{-1}