Dichtetransformationssatz

Problem

- Gelte $X \sim f_X$ mit Dichte f_X .
- Relevant: Y = g(X).
- Gesucht: Dichte f_Y von Y.

Dichtetransformationssatz

Dichtetransformationssatz

X sei eine stetige Zufallsvariable mit Werten in $\mathcal{X} = (a, b)$, a < b, und mit Dichtefunktion $f_X(x)$.

Weiter sei y = g(x) eine stetig differenzierbare Funktion mit Umkehrfunktion $x = g^{-1}(y)$, so dass $(g^{-1})' \neq 0$ gilt.

Dann hat die Zufallsvariable Y = g(X) die Dichtefunktion

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{dg^{-1}(y)}{dy} \right|.$$

Beispiele: Dichtetransformation

Beispiel

Beispiele zur Dichtetransformation

Zwei Zufallsvariablen X und Y heißen **stochastisch unabhängig**, wenn die Ereignisse $\{X \in A\}$ und $\{Y \in B\}$ stochastisch unabhängig sind, für alle Ereignisse $A \subset \mathbb{R}$ und $B \subset \mathbb{R}$, d.h.

$$P(X \in A, Y \in B) = P(\{X \in A\} \cap \{Y \in B\}) = P(X \in A) \cdot P(Y \in B)$$

Geg: n Zufallsvariablen X_1, \ldots, X_n mit Werten in Mengen $\mathcal{X}_1, \ldots, \mathcal{X}_n$. X_1, \ldots, X_n heißen (total) **stochastisch unabhängig**, wenn für alle Ereignisse $A_1 \subset \mathcal{X}_1, \ldots, A_n \subset \mathcal{X}_n$ die Ereignisse

$$\{X_1\in A_1\},\ldots,\{X_n\in A_n\}$$

stochastisch unabhängig sind. D.h.: Für alle $i_1,\ldots,i_k\in\{1,\ldots,n\}$ gilt:

$$P(X_{i_1} \in A_{i_1}, \dots, X_{i_k} \in A_{i_k}) = P(X_{i_1} \in A_{i_1}) \cdots P(X_{i_k} \in A_{i_k})$$

Kurz: Stets gilt der Produktsatz für gemeinsame Wahrscheinlichkeiten (d.h. von Schnitten)

Kriterium für diskrete Zufallsvariablen:

Zwei diskrete Zufallsvariablen X und Y sind stochastisch unabhängig, wenn für alle Realisationen x_i von X und y_j von Y die Ereignisse $\{X = x_i\}$ und $\{Y = y_i\}$ stochastisch unabhängig sind, d.h.

$$P(X = x_i, Y = y_j) = P(X = x_i)P(Y = y_j).$$

Dann gilt ferner

$$P(X = x_i | Y = y_j) = P(X = x_i), \text{ und } P(Y = y_j | X = x_i) = P(Y = y_j).$$

Beispiel: X, Y seien unabhängig und es gelte:

$$P(X = 1) = 0.1$$
, $P(X = 2) = 0.5$, $P(X = 3) = 0.4$
 $P(Y = 0) = 0.2$, $P(Y = 1) = 0.8$

Gemeinsame Verteilung:

$Y \setminus X$	1	2	3	
0				0.2
1				8.0
	0.1	0.5	0.4	1

Jedes Kästchen ist das Produkt der Randeinträge! Beispielsweise:

$$P(Y = 0, X = 1) = 0.2 \cdot 0.1 = 0.02$$

Beispiel: X, Y seien unabhängig und es gelte:

$$P(X = 1) = 0.1, \quad P(X = 2) = 0.5, \quad P(X = 3) = 0.4$$

 $P(Y = 0) = 0.2, \quad P(Y = 1) = 0.8$

Gemeinsame Verteilung:

$Y \setminus X$	1	2	3	
0	0.02	0.1	0.08 0.32	0.2
1	0.08	0.4	0.32	8.0
	0.1	0.5	0.4	1

Jedes Kästchen ist das Produkt der Randeinträge!

Es gelte

$$P(X = k) = {10 \choose k} 0.2^k \cdot 0.8^{10-k}, \qquad k = 0, \dots, 10,$$

und

$$P(Y = j) = \frac{e^{-0.2}0.2^{j}}{j!}, \quad j = 0, 1, ...$$

Sind X und Y unabhängig, dann folgt für alle $k=0,\ldots,10$ und $j\geq 0$

$$P(X = k, Y = j) = {10 \choose k} 0.2^k \cdot 0.8^{10-k} \frac{e^{-0.2} 0.2^j}{j!}$$

(Formeln multiplizieren!)

Kriterium für stetige Zufallsvariablen:

Zwei stetige Zufallsvariablen X und Y sind stochastisch unabhängig, wenn für alle Intervalle (a, b] und (c, d] die Ereignisse

$${a < X \le b}$$
 und ${c < Y \le d}$

unabhängig sind, d.h.

$$P(a < X \le b, c < Y \le d) = \int_a^b f_X(x) dx \int_c^d f_Y(y) dy$$
$$= \int_a^b \int_c^d f_X(x) f_Y(y) dy dx.$$

• X, Y seinen unabhängig und **standardnormalverteilt** nach der Dichte $f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$. Es gelte also für $-\infty < a \le b < \infty$

$$P(a \le X \le b) = P(a \le Y \le b) = \int_a^b \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$

• Dann gilt für $-\infty < a \le b < \infty$ und $-\infty < a \le b < \infty$:

$$P(a \le X \le b, c \le Y \le d) = \int_{a}^{b} \frac{1}{\sqrt{2\pi}} e^{-x^{2}/2} dx \cdot \int_{c}^{d} \frac{1}{\sqrt{2\pi}} e^{-y^{2}/2} dy$$
$$= \int_{a}^{b} \int_{c}^{d} \frac{1}{2\pi} e^{-(x^{2}+y^{2})/2} dy$$

da
$$e^{-x^2/2}e^{-y^2/2} = e^{-x^2/2-y^2/2} = e^{-(x^2+y^2)/2}$$

Also: $(X, Y) \sim f(x, y) = \frac{1}{2\pi} e^{-(x^2+y^2)/2}$.

(Das Doppelintegral ist das Volumen unter der Funktion $\frac{1}{2\pi}e^{-(x^2+y^2)/2}$ über dem Rechteck $[a,b]\times[c,d]$.)

Zufallsstichprobe

Das Gesamtexperiment sei wie folgt beschrieben:

- *n*-fache Wiederholung eines Zufallsexperiments beschrieben durch $X:\Omega \to \mathcal{X}$.
- Die Wiederholungen erfolgen unter identischen Bedingungen.
- Die Ergebnisse hängen nicht voneinander ab.

Stochastisches Modell:

- *n* Zufallsvariablen $X_1, \ldots, X_n : \Omega \to \mathcal{X}$.
- X_i repräsentiert das Ergebnis der i-ten Wiederholung.

Zufallsstichprobe

Zufallsstichprobe

 X_1, \ldots, X_n bilden eine (einfache) Zufallsstichprobe, wenn gilt:

- X_1, \ldots, X_n sind identisch verteilt, d.h. alle X_i besitzen dieselbe Verteilung:

$$P(X_i \in A) = P(X_1 \in A), i = 1, ..., n,$$
 für alle Ereignisse A .

Sei $F(x) = F_X(x)$ die Verteilungsfunktion der X_i , so schreibt man kurz:

$$X_1,\ldots,X_n \overset{i.i.d.}{\sim} F(x).$$

i.i.d. (engl.: *independent and identically distributed*) steht hierbei für **unabhängig und identisch verteilt**.

Zufallsstichprobe

Sprechweisen:

- X_1, \ldots, X_n unabhängige Kopien von X.
- X_1, \ldots, X_n i.i.d. oder i.i.d.(F).
- X_1, \ldots, X_n (random) sample.

Erinnerung: Realisation $\mathbf{x} = (x_1, \dots, x_n)$, wobei

$$x_i = X_i(\omega), \qquad i = 1, \ldots, n.$$

von den Zufallsvariablen X_1, \ldots, X_n .

Literatur: Auch x_1, \ldots, x_n wird oftmals als Stichprobe bezeichnet. Achte also auf den Kontext!

Erwartungswert

Naiv: Arithmetisches Mittel $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$.

Frage

Was ist das theoretische Pendant?

Heuristik:

 P_n empirisches W-Maß, Masse $\frac{1}{n}$ auf den Datenpunkten x_1, \ldots, x_n :

$$P_n(\{x_i\}) = \frac{1}{n}, \quad i = 1, ..., n.$$

Arithmetisches Mittel:

$$\overline{x} = x_1 \cdot \frac{1}{n} + \cdots + x_n \cdot \frac{1}{n}.$$

Die Trägerpunkte x_i werden mit den zugehörigen Wkeiten gewichtet.

Erwartungswert

Erwartungswert

 $X \sim p_X$ diskrete ZV mit Werten in \mathcal{X} , verteilt nach der Zähldicht p_X . Dann heißt die reelle Zahl

$$E(X) = \sum_{x \in \mathcal{X}} x \cdot p_X(x)$$

Erwartungswert von X, sofern $\sum_{x \in \mathcal{X}} |x| p_X(x) < \infty$. Wichtiger Spezialfall: $\mathcal{X} = \{x_1, \dots, x_k\}$ endlich. Dann ist

$$E(X) = x_1 \cdot p_X(x_1) + x_2 \cdot p_X(x_2) + \cdots + x_k \cdot p_X(x_k).$$

Erwartungswert

Erwartungswert

 $X \sim f_X$ stetige ZV, verteilt nach der Dichtefunktion $f_X(x)$.

Die reelle Zahl

$$E(X) = \int_{-\infty}^{\infty} x \cdot f_X(x) \, dx$$

Erwartungswert von X (sofern $\int_{-\infty}^{\infty} |x| f_X(x) dx < \infty$).

Bernoulli-Verteilung

Bernoulli-Experiment

A ein Ereignis. Beobachte, ob A eintritt oder nicht:

$$X = \mathbf{1}_A = \left\{ egin{array}{ll} 1, & A ext{ tritt ein} \ 0, & A ext{ tritt nicht ein.} \end{array}
ight.$$

Träger: $\mathcal{X} = \{0,1\}$ (binär). Verteilung gegeben durch

$$p = P(X = 1) = P(A),$$
 $q = 1 - p = P(X = 0)$

p: Erfolgswahrscheinlichkeit.

$$X \sim \mathsf{Ber}(p), \qquad X \sim \mathsf{Bin}(1,p)$$

Erwartungswert: E(X) = p,

Varianz: Var(X) = p(1-p),

Erwartungswert: Rechenregeln

Rechenregeln

Seien X, Y ZVen (mit $E|X|, E|Y| < \infty$) und $a, b \in \mathbb{R}$.

- E(X + Y) = E(X) + E(Y),
- 2 E(aX + b) = aE(X) + b,
- **3** $E|X + Y| \le E|X| + E|Y|$.
- **3 Jensen-Ungleichung**: Ist g(x) konvex, dann gilt: $E(g(X)) \ge g(E(X))$ und E(g(X)) > g(E(X)), falls g(x) strikt konvex ist. Ist g(x) konkav bzw. strikt konkav, dann kehren sich die Ungleichheitszeichen um.

Erwartungswert: Rechenregeln

Produkteigenschaft

Seien X, Y stochastisch unabhängige ZVen.

Für alle Funktionen f(x) und g(y) (mit $E|f(X)| < \infty$ und $E|g(Y)| < \infty$) gilt:

$$E(f(X)g(Y)) = E(f(X)) \cdot E(g(Y)).$$

Insbesondere: $E(XY) = E(X) \cdot E(Y)$.

Notiz

$$X, Y$$
 unabhängig $\Rightarrow E(XY) - E(X)E(Y) = 0$.

$$C(X,Y) = E(XY) - E(X)E(Y)$$

ist ein gängiges Maß für Abhängigkeit (später mehr dazu...)

Erwartungswert: Beispiele

Beispiele zu den Rechenregeln.

- X sei ZV mit P(X = 1) = p und P(X = 0) = 1 p, $p \in [0, 1]$. X_1, X_2 unabhängig mit derselben Verteilung wie X.
 - (a) $E(X_1X_2) = ?$
 - (b) $E((X_1-p)X_2)=?$
 - (c) $E(3X_1 + X_2^2) = ?$

Erwartungswert bzgl. des empirischen Maßes

Erwartungswert bzgl. des empirischen Maßes P_n (Deskriptive Statistik): Sei $X \sim P_n$, d.h. $P(X = x_i) = \frac{1}{n}$, i = 1, ..., n. Dann gilt:

$$E_{P_n}f(X)=\frac{1}{n}\sum_{i=1}^n f(x_i).$$

Für $f(x) = (x - \mu)^2$ erhält man $\mu = E_{P_n}(X) = \overline{x}$:

- $\bullet E_{P_n} f(X)$
- $= E_{P_n}(X E_{P_n}(X))^2$

Dies ist die Stichprobenvarianz aus der deskriptiven Statistik! Stichprobenvarianz: Unter P_n erwartete quadratische Abweichung von \overline{x} .

Varianz, Standardabweichung

Varianz

Sei X eine Zufallsvariable. Dann heißt

$$\sigma_X^2 = \mathsf{Var}(X) = E\big((X - E(X))^2\big)$$

Varianz von X, sofern $E(X^2) < \infty$. Die Wurzel aus der Varianz,

$$\sigma_X = \sqrt{\mathsf{Var}(X)},$$

heißt Standardabweichung von X.

Erlaubte Schreibweisen: Mit $\mu = E(X) = EX$.

$$Var(X) = E((X - \mu)^2) = E(X - \mu)^2$$

(Tipp: Lieber mehr Klammern und E(X) sowie $E((X - \mu)^2)$ schreiben!)

Verschiebungssatz

Verschiebungssatz

$$Var(X) = E(X^2) - (E(X))^2$$
.

Varianz: Rechenregeln

Rechenregeln

X, Y Zufallsvariablen mit existierenden Varianzen und $a \in \mathbb{R}$.

- 2 Falls E(X) = 0, dann gilt: $Var(X) = E(X^2)$.
- 3 Sind X und Y stochastisch unabhängig, dann gilt:

$$Var(X + Y) = Var(X) + Var(Y).$$