

$\tau_{1^{-}\alpha}^{\#2}$	0	0	0	0	0	0	0
$\mathfrak{r}_{1^{^{-}}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1^{-}}^{\#1}{}_{lpha}\;\sigma_{1^{-}}^{\#2}{}_{lpha}\; au_{1^{-}}^{\#1}{}_{lpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#1}{}_{lpha}$	0	0	0	$\frac{1}{k^2 r_5}$	0	0	0
$\tau_{1}^{\#1}{}_{\!$	$-\frac{i\sqrt{2}}{kr_5+k^3r_5}$	$\frac{i(3k^2r_5+2t_2)}{k(1+k^2)^2r_5t_2}$	$\frac{3k^2r_5+2t_2}{(1+k^2)^2r_5t_2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{+}\alpha\beta$	$-\frac{\sqrt{2}}{k^2 r_5 + k^4 r_5}$	$\frac{3k^2r_5+2t_2}{(k+k^3)^2r_5t_2}$	$-\frac{i(3k^2r_5+2t_2)}{k(1+k^2)^2r_5t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{k^2 r_5}$	$-\frac{\sqrt{2}}{k^2 r_5 + k^4 r_5}$	$\frac{i\sqrt{2}}{kr_5+k^3r_5}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#2} + ^{\alpha \beta}$	$\tau_{1}^{\#1} + ^{\alpha \beta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$

$f_{1}^{\#2}$	0	0	0	0	0	0	0
$f_{1}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{lpha}$	0	0	0	0	0	0	0
$\omega_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	$k^2 r_5$	0	0	0
$f_{1}^{\#1}$	$\frac{1}{3}\vec{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#2}{}_+^2$	$\frac{\sqrt{2} t_2}{3}$	t 2 3	$-\frac{1}{3}ikt_2$	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$k^2 r_5 + \frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
	$\omega_1^{\#1} + \alpha \beta$	$\omega_1^{\#_2} + \alpha^{\beta}$	$f_{1}^{\#1} \dagger^{\alpha\beta}$	$\omega_{1}^{\#_{1}} \dagger^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1}^{\#1} +^{\alpha}$	$f_1^{\#2} +^{\alpha}$

	<u> </u>			
$J^P = 0$	Pole residue:	$-\frac{1}{r_2}$ >		
3 = 0	Polarisations:	1		
$\overrightarrow{k^{\mu}}$	Square mass:	$-\frac{t_2}{r_2}$ >		
?	Spin:	0		
·	Parity:	Odd		

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$

(No massless particles)