Minimax Lower Bounds

Jiuzhou Miao

School of Statistics and Mathematics, Zhejiang Gongshang University

April 23, 2025

- Basic framework
- 2 Binary testing and LeCam's method
- Fano's method

- Basic framework
- 2 Binary testing and LeCam's method
- Fano's method

• Given a family of distributions \mathcal{P} , let $\theta: \mathcal{P} \to \Omega$ be a functional.

4 / 23

- Given a family of distributions \mathcal{P} , let $\theta : \mathcal{P} \to \Omega$ be a functional.
- Let X be a random variable taking values on $\mathcal X$ drawn according to a distribution $\mathbb P\in\mathcal P$ for which $\theta(\mathbb P)=\theta^*.$

- Given a family of distributions \mathcal{P} , let $\theta: \mathcal{P} \to \Omega$ be a functional.
- Let X be a random variable taking values on $\mathcal X$ drawn according to a distribution $\mathbb P\in\mathcal P$ for which $\theta(\mathbb P)=\theta^*.$
- An estimator $\hat{\theta}$ can be viewed as a measurable function from the domain $\mathcal X$ to the parameter space $\Omega.$

- Given a family of distributions \mathcal{P} , let $\theta: \mathcal{P} \to \Omega$ be a functional.
- Let X be a random variable taking values on $\mathcal X$ drawn according to a distribution $\mathbb P\in\mathcal P$ for which $\theta(\mathbb P)=\theta^*.$
- An estimator $\hat{\theta}$ can be viewed as a measurable function from the domain $\mathcal X$ to the parameter space Ω .
- In order to assess the quality of any estimator, let $\varrho:\Omega\times\Omega\to\mathbb{R}_+$ be a semi-metric.

- Given a family of distributions \mathcal{P} , let $\theta: \mathcal{P} \to \Omega$ be a functional.
- Let X be a random variable taking values on \mathcal{X} drawn according to a distribution $\mathbb{P} \in \mathcal{P}$ for which $\theta(\mathbb{P}) = \theta^*$.
- An estimator $\hat{\theta}$ can be viewed as a measurable function from the domain \mathcal{X} to the parameter space Ω .
- In order to assess the quality of any estimator, let $\rho: \Omega \times \Omega \to \mathbb{R}_+$ be a semi-metric.
- The quantity

$$\sup_{\mathbb{P}\in\mathcal{P}}\mathbb{E}_{\mathbb{P}}\big\{\varrho(\hat{\theta},\theta^*)\big\}$$

reflects the worst-case performance of the estimators.

 The minimax risk is the smallest worst-case risk over all possible estimators:

$$\mathfrak{M}\big(\theta(\mathcal{P}),\varrho\big) = \inf_{\hat{\theta}} \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{E}_{\mathbb{P}} \Big\{\varrho\big(\hat{\theta},\theta(\mathbb{P})\big)\Big\}.$$

5 / 23

 The minimax risk is the smallest worst-case risk over all possible estimators:

$$\mathfrak{M}\big(\theta(\mathcal{P}),\varrho\big) = \inf_{\hat{\theta}} \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{E}_{\mathbb{P}} \Big\{\varrho\big(\hat{\theta},\theta(\mathbb{P})\big)\Big\}.$$

• Let $\phi: \mathbb{R}_+ \to \mathbb{R}_+$ be an increasing function, one can define a slight generalization of the ϱ -minimax risk

$$\mathfrak{M}\big(\theta(\mathcal{P}), \phi \circ \varrho\big) = \inf_{\hat{\theta}} \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{E}_{\mathbb{P}} \bigg\{ \phi\Big(\varrho\big(\hat{\theta}, \theta(\mathbb{P})\big)\Big) \bigg\}.$$

5 / 23

 The minimax risk is the smallest worst-case risk over all possible estimators:

$$\mathfrak{M}\big(\theta(\mathcal{P}),\varrho\big) = \inf_{\hat{\theta}} \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{E}_{\mathbb{P}} \Big\{ \varrho\big(\hat{\theta},\theta(\mathbb{P})\big) \Big\}.$$

• Let $\phi: \mathbb{R}_+ \to \mathbb{R}_+$ be an increasing function, one can define a slight generalization of the ϱ -minimax risk

$$\mathfrak{M}\big(\theta(\mathcal{P}), \phi \circ \varrho\big) = \inf_{\hat{\theta}} \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{E}_{\mathbb{P}} \bigg\{ \phi\Big(\varrho\big(\hat{\theta}, \theta(\mathbb{P})\big)\Big) \bigg\}.$$

• A particularly common choice is $\phi(t)=t^2$, which can be used to obtain minimax risks for the MSE associated with ϱ .

• Let $\{\theta_1, \dots, \theta_M\}$ be a 2δ -separated set contained in the space $\theta(\mathcal{P})$, meaning that $\varrho(\theta_j, \theta_k) \geq 2\delta$ for all $j \neq k$.

6 / 23

- Let $\{\theta_1, \dots, \theta_M\}$ be a 2δ -separated set contained in the space $\theta(\mathcal{P})$, meaning that $\varrho(\theta_j, \theta_k) \geq 2\delta$ for all $j \neq k$.
- For each θ_j , let us choose some representative distribution \mathbb{P}_{θ_j} such that $\theta(\mathbb{P}_{\theta_j}) = \theta_j$.

- Let $\{\theta_1, \dots, \theta_M\}$ be a 2δ -separated set contained in the space $\theta(\mathcal{P})$, meaning that $\varrho(\theta_j, \theta_k) \geq 2\delta$ for all $j \neq k$.
- For each θ_j , let us choose some representative distribution \mathbb{P}_{θ_j} such that $\theta(\mathbb{P}_{\theta_j}) = \theta_j$.
- ullet We generate a random variable Z by the following procedure:

- Let $\{\theta_1, \dots, \theta_M\}$ be a 2δ -separated set contained in the space $\theta(\mathcal{P})$, meaning that $\varrho(\theta_j, \theta_k) \geq 2\delta$ for all $j \neq k$.
- For each θ_j , let us choose some representative distribution \mathbb{P}_{θ_j} such that $\theta(\mathbb{P}_{\theta_j}) = \theta_j$.
- ullet We generate a random variable Z by the following procedure:
 - (1) Sample a random integer J from the uniform distribution over $\{1,\ldots,M\}$.

- Let $\{\theta_1, \dots, \theta_M\}$ be a 2δ -separated set contained in the space $\theta(\mathcal{P})$, meaning that $\varrho(\theta_j, \theta_k) \geq 2\delta$ for all $j \neq k$.
- For each θ_j , let us choose some representative distribution \mathbb{P}_{θ_j} such that $\theta(\mathbb{P}_{\theta_j}) = \theta_j$.
- ullet We generate a random variable Z by the following procedure:
 - (1) Sample a random integer J from the uniform distribution over $\{1, \ldots, M\}$.
 - (2) Given J = j, sample $Z|J = j \sim \mathbb{P}_{\theta_j}$.

• Denote $\mathbb Q$ as the joint distribution of (Z,J) and $\bar{\mathbb Q}=M^{-1}\sum_{j=1}^M\mathbb P_{\theta_j}$ as the marginal distribution of Z.

7 / 23

- Denote $\mathbb Q$ as the joint distribution of (Z,J) and $\bar{\mathbb Q}=M^{-1}\sum_{j=1}^M\mathbb P_{\theta_j}$ as the marginal distribution of Z.
- ullet Consider the M-ary hypothesis testing problem of determining the randomly chosen index J.

- Denote $\mathbb Q$ as the joint distribution of (Z,J) and $\bar{\mathbb Q}=M^{-1}\sum_{j=1}^M\mathbb P_{\theta_j}$ as the marginal distribution of Z.
- ullet Consider the M-ary hypothesis testing problem of determining the randomly chosen index J.
- Let $\psi: \mathcal{Z} \to \{1,\dots,M\}$ be the testing function for this problem, and the associated probability of error is given by $\mathbb{Q}\{\psi(Z) \neq J\}$.

Proposition 1 (From estimation to testing)

For any increasing function ϕ and and choice of 2δ -separated set the minimax risk is lower bounded as

$$\mathfrak{M}(\theta(\mathcal{P}), \phi \circ \varrho) \ge \phi(\delta) \inf_{\psi} \mathbb{Q}\{\psi(Z) \ne J\}.$$

ullet By choosing δ such that $\mathbb{Q}\big\{\psi(Z) \neq J\big\} \geq 1/2$, then

$$\mathfrak{M}(\theta(\mathcal{P}), \phi \circ \varrho) \ge 2^{-1}\phi(\delta).$$

• Let $\mathbb P$ and $\mathbb Q$ be two probability measures and ν be a σ -finite measure on a measurable space $(\mathcal X,\mathcal A)$.

9 / 23

- Let $\mathbb P$ and $\mathbb Q$ be two probability measures and ν be a σ -finite measure on a measurable space $(\mathcal X,\mathcal A)$.
- Suppose that $\mathbb{P} \ll \nu$ and $\mathbb{Q} \ll \nu$ and define $p = d\mathbb{P}/d\nu$ and $q = d\mathbb{Q}/d\nu$.

- Let $\mathbb P$ and $\mathbb Q$ be two probability measures and ν be a σ -finite measure on a measurable space $(\mathcal X,\mathcal A)$.
- Suppose that $\mathbb{P} \ll \nu$ and $\mathbb{Q} \ll \nu$ and define $p = d\mathbb{P}/d\nu$ and $q = d\mathbb{Q}/d\nu$.
- Total variation (TV) distance:

$$\mathrm{TV}(\mathbb{P}\|\mathbb{Q}) = \sup_{A \in \mathcal{A}} \left| \mathbb{P}(A) - \mathbb{Q}(A) \right| = \sup_{A \in \mathcal{A}} \left| \int_A (p - q) \mathrm{d}\nu \right|.$$

- Let $\mathbb P$ and $\mathbb Q$ be two probability measures and ν be a σ -finite measure on a measurable space $(\mathcal X,\mathcal A)$.
- Suppose that $\mathbb{P} \ll \nu$ and $\mathbb{Q} \ll \nu$ and define $p = d\mathbb{P}/d\nu$ and $q = d\mathbb{Q}/d\nu$.
- Total variation (TV) distance:

$$TV(\mathbb{P}||\mathbb{Q}) = \sup_{A \in \mathcal{A}} |\mathbb{P}(A) - \mathbb{Q}(A)| = \sup_{A \in \mathcal{A}} \left| \int_A (p - q) d\nu \right|.$$

ullet Kullback-Leibler (KL) divergence: Assume that $\mathbb{P} \ll \mathbb{Q}$,

$$\mathrm{KL}(\mathbb{P}\|\mathbb{Q}) = \int \log \frac{\mathrm{d}\mathbb{P}}{\mathrm{d}\mathbb{Q}} \mathrm{d}\mathbb{P} = \int_{\mathcal{X}} p \log \frac{p}{q} \mathrm{d}\nu.$$

- Let $\mathbb P$ and $\mathbb Q$ be two probability measures and ν be a σ -finite measure on a measurable space $(\mathcal X,\mathcal A)$.
- Suppose that $\mathbb{P} \ll \nu$ and $\mathbb{Q} \ll \nu$ and define $p = d\mathbb{P}/d\nu$ and $q = d\mathbb{Q}/d\nu$.
- Total variation (TV) distance:

$$TV(\mathbb{P}||\mathbb{Q}) = \sup_{A \in \mathcal{A}} |\mathbb{P}(A) - \mathbb{Q}(A)| = \sup_{A \in \mathcal{A}} \left| \int_{A} (p - q) d\nu \right|.$$

 \bullet Kullback-Leibler (KL) divergence: Assume that $\mathbb{P} \ll \mathbb{Q}$,

$$\mathrm{KL}(\mathbb{P}\|\mathbb{Q}) = \int \log \frac{\mathrm{d}\mathbb{P}}{\mathrm{d}\mathbb{Q}} \mathrm{d}\mathbb{P} = \int_{\mathcal{X}} p \log \frac{p}{q} \mathrm{d}\nu.$$

Squared Hellinger distance:

$$\mathrm{H}^2(\mathbb{P}\|\mathbb{Q}) = \int (\sqrt{\mathrm{d}\mathbb{P}} - \sqrt{\mathrm{d}\mathbb{Q}})^2 = \int_{\mathcal{X}} (\sqrt{p} - \sqrt{q})^2 \mathrm{d}\nu.$$

Properties of TV distance

• $TV(\mathbb{P}||\mathbb{Q})$ satisfies the axioms of distance.

Proposition 2 (Scheffé)

$$\mathrm{TV}(\mathbb{P}||\mathbb{Q}) = 2^{-1} \int_{\mathcal{X}} |p - q| \mathrm{d}\nu = 1 - \int_{\mathcal{X}} (p \wedge q) \mathrm{d}\nu.$$

Properties of TV distance

- TV(P||Q) satisfies the axioms of distance.
- $0 \leq \mathrm{TV}(\mathbb{P}||\mathbb{Q}) \leq 1$.

Proposition 2 (Scheffé)

$$\mathrm{TV}(\mathbb{P}||\mathbb{Q}) = 2^{-1} \int_{\mathcal{X}} |p - q| \mathrm{d}\nu = 1 - \int_{\mathcal{X}} (p \wedge q) \mathrm{d}\nu.$$

Properties of KL divergence

• $KL(\mathbb{P}||\mathbb{Q})$ is not a distance.

11 / 23

Properties of KL divergence

- $KL(\mathbb{P}||\mathbb{Q})$ is not a distance.
- $\mathrm{KL}(\mathbb{P}\|\mathbb{Q}) \geq 0$.

Properties of KL divergence

- $\mathrm{KL}(\mathbb{P}||\mathbb{Q})$ is not a distance.
- $\mathrm{KL}(\mathbb{P}\|\mathbb{Q}) \geq 0$.
- Let $\mathbb{P}^{1:n} = \bigotimes_{i=1}^n \mathbb{P}_i$ and $\mathbb{Q}^{1:n} = \bigotimes_{i=1}^n \mathbb{Q}_i$. Then

$$\mathrm{KL}(\mathbb{P}^{1:n} \| \mathbb{Q}^{1:n}) = \sum_{i=1}^{n} \mathrm{KL}(\mathbb{P}_i \| \mathbb{Q}_i).$$

• $H(\mathbb{P}||\mathbb{Q}) = \sqrt{H^2(\mathbb{P}||\mathbb{Q})}$ satisfies the axioms of distance.

- $H(\mathbb{P}\|\mathbb{Q}) = \sqrt{H^2(\mathbb{P}\|\mathbb{Q})}$ satisfies the axioms of distance.
- $0 < H^2(\mathbb{P}||\mathbb{Q}) < 2$.

- $H(\mathbb{P}||\mathbb{Q}) = \sqrt{H^2(\mathbb{P}||\mathbb{Q})}$ satisfies the axioms of distance.
- $0 < H^2(\mathbb{P}||\mathbb{Q}) < 2$.

•

$$\mathrm{H}^2(\mathbb{P}\|\mathbb{Q}) = 2\Big(1 - \int \sqrt{\mathrm{d}\mathbb{P}\mathrm{d}\mathbb{Q}}\Big) = 2\Big(1 - \int \sqrt{pq}\mathrm{d}\nu\Big).$$

- $H(\mathbb{P}||\mathbb{Q}) = \sqrt{H^2(\mathbb{P}||\mathbb{Q})}$ satisfies the axioms of distance.
- $0 < H^2(\mathbb{P}||\mathbb{Q}) < 2$.

•

$$\mathrm{H}^2(\mathbb{P}\|\mathbb{Q}) = 2\Big(1 - \int \sqrt{\mathrm{d}\mathbb{P}\mathrm{d}\mathbb{Q}}\Big) = 2\Big(1 - \int \sqrt{pq}\mathrm{d}\nu\Big).$$

• Let $\mathbb{P}^{1:n} = \bigotimes_{i=1}^n \mathbb{P}_i$ and $\mathbb{O}^{1:n} = \bigotimes_{i=1}^n \mathbb{O}_i$. Then

$$H^{2}(\mathbb{P}^{1:n}||\mathbb{Q}^{1:n}) = 2\left[1 - \prod_{i=1}^{n} \left\{1 - 2^{-1}H^{2}(\mathbb{P}_{i}||\mathbb{Q}_{i})\right\}\right].$$

Two inequalities

Proposition 3 (Pinsker-Csiszár-Kullback inequality)

$$TV(\mathbb{P}||\mathbb{Q}) \le \sqrt{2^{-1}KL(\mathbb{P}||\mathbb{Q})}.$$

Proposition 4 (Le Cam's inequality)

$$TV(\mathbb{P}\|\mathbb{Q}) \le H(\mathbb{P}\|\mathbb{Q})\sqrt{1 - 4^{-1}H^2(\mathbb{P}\|\mathbb{Q})}.$$

- Basic framework
- 2 Binary testing and LeCam's method
- 3 Fano's method

• In a binary testing problem with equally weighted hypotheses, assume that Z drawn according to the distribution $\bar{\mathbb{Q}} = 2^{-1}(\mathbb{P}_0 + \mathbb{P}_1)$.

- In a binary testing problem with equally weighted hypotheses, assume that Z drawn according to the distribution $\bar{\mathbb{Q}} = 2^{-1}(\mathbb{P}_0 + \mathbb{P}_1)$.
- ullet For a given decision rule $\psi:\mathcal{Z} \to \{0,1\}$, the associated probability of error is given by

$$\mathbb{Q}\{\psi(Z) \neq J\} = 2^{-1}\mathbb{P}_0\{\psi(Z) \neq 0\} + 2^{-1}\mathbb{P}_1\{\psi(Z) \neq 1\}.$$

- In a binary testing problem with equally weighted hypotheses, assume that Z drawn according to the distribution $\bar{\mathbb{Q}} = 2^{-1}(\mathbb{P}_0 + \mathbb{P}_1)$.
- For a given decision rule $\psi: \mathcal{Z} \to \{0,1\}$, the associated probability of error is given by

$$\mathbb{Q}\{\psi(Z) \neq J\} = 2^{-1}\mathbb{P}_0\{\psi(Z) \neq 0\} + 2^{-1}\mathbb{P}_1\{\psi(Z) \neq 1\}.$$

• Let $A = \{x \in \mathcal{X} : \psi(x) = 1\}$, one has that

$$\sup_{\psi} \mathbb{Q} \{ \psi(Z) = J \} = \sup_{A \subseteq \mathcal{X}} \{ 2^{-1} \mathbb{P}_0(A^c) + 2^{-1} \mathbb{P}_1(A) \}$$
$$= 2^{-1} \{ \text{TV}(\mathbb{P}_1 || \mathbb{P}_0) + 1 \}.$$

Then

$$\begin{split} \inf_{\psi} \mathbb{Q} \big\{ \psi(Z) \neq J \big\} &= 1 - \sup_{\psi} \mathbb{Q} \big\{ \psi(Z) = J \big\} \\ &= 2^{-1} \big\{ 1 - \mathrm{TV}(\mathbb{P}_1 || \mathbb{P}_0) \big\}. \end{split}$$

Then

$$\inf_{\psi} \mathbb{Q} \{ \psi(Z) \neq J \} = 1 - \sup_{\psi} \mathbb{Q} \{ \psi(Z) = J \}$$
$$= 2^{-1} \{ 1 - \text{TV}(\mathbb{P}_1 || \mathbb{P}_0) \}.$$

• By using Proposition 1, for any pair of distributions $\mathbb{P}_0, \mathbb{P}_1 \in \mathcal{P}$ such that $\rho(\theta(\mathbb{P}_0), \theta(\mathbb{P}_1)) \geq 2\delta$,

$$\mathfrak{M}(\theta(\mathcal{P}), \phi \circ \varrho) \ge 2^{-1}\phi(\delta) \{ 1 - \mathrm{TV}(\mathbb{P}_1 || \mathbb{P}_0) \}.$$

Le Cam's convex hull method

Theorem 5 (Le Cam's convex hull method)

For any 2δ -separated classes of distributions \mathcal{P}_0 and \mathcal{P}_1 contained within \mathcal{P} in the sense that $\varrho\big(\theta(\mathbb{P}_0),\theta(\mathbb{P}_1)\big)\geq 2\delta$ for all $\mathbb{P}_0\in\mathcal{P}_0$ and $\mathbb{P}_1\in\mathcal{P}_1$, one has that

$$\inf_{\hat{\theta}} \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{E}_{\mathbb{P}} \Big\{ \varrho(\hat{\theta}, \theta(\mathbb{P})) \Big\} \ge \delta \sup_{\mathbb{P}_{j} \in \operatorname{conv}(\mathcal{P}_{j}), j = 0, 1} \Big\{ 1 - \operatorname{TV}(\mathbb{P}_{1} || \mathbb{P}_{0}) \Big\}.$$

- Basic framework
- 2 Binary testing and LeCam's method
- Fano's method

Fano's lower bound

Theorem 6 (Fano)

Let $\{\theta_1,\ldots,\theta_M\}$ be a 2δ -separated set in the ϱ semi-metric on $\theta(\mathcal{P})$ and suppose that J is uniformly distributed over $\{1,\ldots,M\}$, and $Z|J=j\sim\mathbb{P}_{\theta_j}$. Then for any increasing function $\phi:\mathbb{R}_+\to\mathbb{R}_+$, the minimax risk is lower bounded by

$$\mathfrak{M}(\theta(\mathcal{P}), \phi \circ \varrho) \ge \phi(\delta) \Big\{ 1 - \frac{\mathcal{I}(Z, J) + \log 2}{\log M} \Big\},$$

where
$$\mathcal{I}(Z,J)=M^{-1}\sum_{j=1}^{M}\mathrm{KL}(\mathbb{P}_{\theta_{j}}\|\bar{\mathbb{Q}})$$
 and $\bar{\mathbb{Q}}=M^{-1}\sum_{j=1}^{M}\mathbb{P}_{\theta_{j}}$.

By using Jensen's inequality, one has that

$$\mathcal{I}(Z,J) \le M^{-2} \sum_{j=1}^{M} \sum_{k=1}^{M} \mathrm{KL}(\mathbb{P}_{\theta_{j}} || \mathbb{P}_{\theta_{k}}).$$

• By using Jensen's inequality, one has that

$$\mathcal{I}(Z,J) \leq M^{-2} \sum_{j=1}^{M} \sum_{k=1}^{M} \mathrm{KL}(\mathbb{P}_{\theta_j} || \mathbb{P}_{\theta_k}).$$

• If one can construct a 2δ -separated set of parameter space Ω such that for some c>0, $\mathrm{KL}(\mathbb{P}_{\theta_j}\|\mathbb{P}_{\theta_k})\leq c^2\delta^2$ for all $j\neq k$, then one has that $\mathcal{I}(Z,J)\leq c^2\delta^2$.

• By using Jensen's inequality, one has that

$$\mathcal{I}(Z,J) \leq M^{-2} \sum_{j=1}^{M} \sum_{k=1}^{M} \mathrm{KL}(\mathbb{P}_{\theta_j} || \mathbb{P}_{\theta_k}).$$

- If one can construct a 2δ -separated set of parameter space Ω such that for some c>0, $\mathrm{KL}(\mathbb{P}_{\theta_j}\|\mathbb{P}_{\theta_k})\leq c^2\delta^2$ for all $j\neq k$, then one has that $\mathcal{I}(Z,J)\leq c^2\delta^2$.
- ullet By taking $M=M(2\delta)$ such that

$$2^{-1}\log M(2\delta) \ge \log 2 + c^2\delta^2$$
,

then

$$\mathfrak{M}(\theta(\mathcal{P}), \phi \circ \varrho) \ge 2^{-1}\phi(\delta).$$

Yang-Barron version of Fano's method

Proposition 7 (Yang-Barron)

Let $\mathcal{N}_{\mathrm{KL}}(\epsilon, \mathcal{P})$ be the ϵ -covering number of \mathcal{P} in the square-root KL divergence. Then

$$\mathcal{I}(Z, J) \le \inf_{\epsilon > 0} \{ \epsilon^2 + \log \mathcal{N}_{\mathrm{KL}}(\epsilon, \mathcal{P}) \}.$$

• By choosing ϵ such that $\epsilon^2 \ge \log \mathcal{N}_{\mathrm{KL}}(\epsilon, \mathcal{P})$, then

$$\frac{\epsilon^2 + \log \mathcal{N}_{\mathrm{KL}}(\epsilon, \mathcal{P}) + \log 2}{\log M} \le \frac{2\epsilon^2 + \log 2}{\log M}.$$

• By choosing ϵ such that $\epsilon^2 > \log \mathcal{N}_{\mathrm{KL}}(\epsilon, \mathcal{P})$, then

$$\frac{\epsilon^2 + \log \mathcal{N}_{\mathrm{KL}}(\epsilon, \mathcal{P}) + \log 2}{\log M} \le \frac{2\epsilon^2 + \log 2}{\log M}.$$

• By taking $M = M(2\delta)$ such that

$$2^{-1}\log M(2\delta) \ge 4\epsilon^2 + 2\log 2,$$

then

$$\mathfrak{M}(\theta(\mathcal{P}), \phi \circ \varrho) \ge 2^{-1}\phi(\delta).$$

Thank You