Semaine du 23/09 au 27/09

1 Cours

Sommes et produits

 $\textbf{Techniques de calcul} \ \ \text{Symbole} \ \sum \ \text{et règles de calcul, sommes t\'elescopiques, changement d'indice, sommation par paquets.}$

Sommes classiques Suites arithmétiques et géométriques, factorisation de $a^n - b^n$, coefficients binomiaux et formule du binôme de Newton.

Sommes doubles Définition, règles de calcul, interversion des signes \sum (cas de sommes triangulaires), sommation par paquets.

Produits Symbole et règles de calcul, produits télescopiques, passage au logarithme.

Systèmes linéaires

Notion de système linéaire Définition et exemples.

Résolution de systèmes linéaires Méthode du pivot de Gauss.

Systèmes linéaires à paramètres Exemples.

Trigonométrie

Congruence Définition et propriétés.

Fonctions trigonométriques Définition de cos, sin, tan et propriétés de symétries.

Formules usuelles Addition/soustraction, duplication, linéarisation, factorisation.

Equations et inéquations trigonométriques Exemples.

2 Méthodes à maîtriser

- ▶ Méthode du pivot de Gauss pour la résolution des systèmes linéaires.
- ► Résolution de $\cos x = \cos a$, $\sin x = \sin a$, $\tan x = \tan a$.
- ► Changement d'indice.
- ► Calcul de sommes : il n'y a guère que deux techniques a priori :
 - faire apparaître une somme télescopique;
 - faire apparaître des sommes connues (somme des termes d'une suite arithmétique ou géométrique ou somme provenant d'un développement via la formule du binôme de Newton).
- ▶ Interversion des symboles \sum pour les sommes doubles.

3 Questions de cours

Le formulaire de trigonométrie est à connaître dans son intégralité et pourra faire l'objet de questions à tout moment de la colle.

- ▶ Résolution d'un système linéaire de trois équations à trois inconnues au choix de l'examinateur.
- ▶ Soit $n \in \mathbb{N}^*$. Exprimer les produits suivants à l'aide de factorielles.

$$P_n = 2 \times 4 \times 6 \times \cdots \times 2n$$

$$Q_n = 1 \times 3 \times 5 \times \cdots \times (2n-1)$$

En déduire une expression de $\frac{\mathbf{Q}_n}{\mathbf{P}_n}$ à l'aide d'un coefficient binomial.

► Soit
$$n \in \mathbb{N}^*$$
. Calculer $S_n = \sum_{k=0}^n k \binom{2n}{2k}$ et $T_n = \sum_{k=0}^{n-1} k \binom{2n}{2k+1}$.

► Soit
$$n \in \mathbb{N}$$
. Calculer $S_n = \sum_{k=0}^n \frac{1}{k+1} \binom{n}{k}$.