

Universidade do Minho Escola de Engenharia

Cálculo de Programas

Trabalho Prático (2024/25)

Lic. em Engenharia Informática

Grupo G2

a104356	João d'Araújo Dias Lobo
a90817	Mariana Rocha Cristino
a104439	Rita da Cunha Camacho

Preâmbulo

Em Cálculo de Programas pretende-se ensinar a programação de computadores como uma disciplina científica. Para isso parte-se de um repertório de *combinadores* que formam uma álgebra da programação e usam-se esses combinadores para construir programas *composicionalmente*, isto é, agregando programas já existentes.

Na sequência pedagógica dos planos de estudo dos cursos que têm esta disciplina, opta-se pela aplicação deste método à programação em Haskell (sem prejuízo da sua aplicação a outras linguagens funcionais). Assim, o presente trabalho prático coloca os alunos perante problemas concretos que deverão ser implementados em Haskell. Há ainda um outro objectivo: o de ensinar a documentar programas, a validá-los e a produzir textos técnico-científicos de qualidade.

Antes de abordarem os problemas propostos no trabalho, os grupos devem ler com atenção o anexo A onde encontrarão as instruções relativas ao *software* a instalar, etc.

Valoriza-se a escrita de *pouco* código que corresponda a soluções simples e elegantes que utilizem os combinadores de ordem superior estudados na disciplina.

Problema 1

Esta questão aborda um problema que é conhecido pela designação '*H-index of a Histogram*' e que se formula facilmente:

O h-index de um histograma é o maior número n de barras do histograma cuja altura é maior ou igual a n.

Por exemplo, o histograma

$$h = [5, 2, 7, 1, 8, 6, 4, 9]$$

que se mostra na figura

tem $hindex\ h=5$ pois há 5 colunas maiores que 5. (Não é 6 pois maiores ou iguais que seis só há quatro.)

Pretende-se definida como um catamorfismo, anamorfismo ou hilomorfismo uma função em Haskell

$$hindex :: [Int] \rightarrow (Int, [Int])$$

tal que, para (i,x) = hindex h, i é o H-index de h e x é a lista de colunas de h que para ele contribuem.

A proposta de *hindex* deverá vir acompanhada de um **diagrama** ilustrativo.

Problema 2

Pelo teorema fundamental da aritmética, todo número inteiro positivo tem uma única factorização prima. For exemplo,

```
primes 455
[5,7,13]
primes 433
[433]
primes 230
[2,5,23]
```

1. Implemente como anamorfismo de listas a função

primes ::
$$\mathbb{Z} \rightarrow [\mathbb{Z}]$$

que deverá, recebendo um número inteiro positivo, devolver a respectiva lista de factores primos. A proposta de *primes* deverá vir acompanhada de um **diagrama** ilustrativo.

2. A figura mostra a "árvore dos primos" dos números [455, 669, 6645, 34, 12, 2].

Com base na alínea anterior, implemente uma função em Haskell que faça a geração de uma tal árvore a partir de uma lista de inteiros:

$$prime_tree :: [\mathbb{Z}] \to Exp \mathbb{Z} \mathbb{Z}$$

Sugestão: escreva o mínimo de código possível em *prime_tree* investigando cuidadosamente que funções disponíveis nas bibliotecas que são dadas podem ser reutilizadas.¹

Problema 3

A convolução $a \star b$ de duas listas $a \in b$ — uma operação relevante em computação — está muito bem explicada neste vídeo do canal **3Blue1Brown** do YouTube, a partir de t = 6:30. Aí se mostra como, por exemplo:

¹ Pense sempre na sua produtividade quando está a programar — essa atitude será valorizada por qualquer empregador que vier a ter.

$$[1,2,3] \star [4,5,6] = [4,13,28,27,18]$$

A solução abaixo, proposta pelo chatGPT,

```
convolve :: Num a \Rightarrow [a] \rightarrow [a] \rightarrow [a]
convolve xs ys = [sum $ zipWith (*) (take n (drop i xs)) ys | i \leftarrow [0...(length xs - n)]]
where n = length ys
```

está manifestamente errada, pois *convolve* [1, 2, 3] [4, 5, 6] = [32] (!).

Proponha, explicando-a devidamente, uma solução sua para *convolve*. Valorizar-se-á a economia de código e o recurso aos combinadores *pointfree* estudados na disciplina, em particular a triologia *ana-cata-hilo* de tipos disponíveis nas bibliotecas dadas ou a definir.

Problema 4

Considere-se a seguinte sintaxe (abstrata e simplificada) para **expressões numéricas** (em b) com variáveis (em a),

```
data Expr\ b\ a = V\ a\ |\ N\ b\ |\ T\ Op\ [Expr\ b\ a] deriving (Show, Eq) data Op = ITE\ |\ Add\ |\ Mul\ |\ Suc\ deriving\ (Show, Eq)
```

possivelmente condicionais (cf. ITE, i.e. o operador condicional "if-then-else"). Por exemplo, a árvore mostrada a seguir

representa a expressão

- i.e. if x then 0 else y * (3 + y) - assumindo as "helper functions":

soma
$$x y = T Add [x, y]$$

multi $x y = T Mul [x, y]$
ite $x y z = T ITE [x, y, z]$

No anexo E propôe-se uma base para o tipo Expr (baseExpr) e a correspondente algebra inExpr para construção do tipo Expr.

- 1. Complete as restantes definições da biblioteca *Expr* pedidas no anexo F.
- 2. No mesmo anexo, declare *Expr b* como instância da classe *Monad*. **Sugestão**: relembre os exercícios da ficha 12.

3. Defina como um catamorfismo de Expr a sua versão monádia, que deverá ter o tipo:

$$mcataExpr :: Monad \ m \Rightarrow (a + (b + (Op, m \ [c])) \rightarrow m \ c) \rightarrow Expr \ b \ a \rightarrow m \ c$$

4. Para se avaliar uma expressão é preciso que todas as suas variáveis estejam instanciadas. Complete a definição da função

let
$$exp :: (Num \ c) \Rightarrow (a \rightarrow Expr \ c \ b) \rightarrow Expr \ c \ a \rightarrow Expr \ c \ b$$

que, dada uma expressão com variáveis em a e uma função que a cada uma dessas variáveis atribui uma expressão ($a \rightarrow Expr\ c\ b$), faz a correspondente substituição. Por exemplo, dada

$$f$$
 "x" = N 0
 f "y" = N 5
 f _ = N 99

ter-se-á

$$let_{exp} f e = T ITE [N 1, N 0, T Mul [N 5, T Add [N 3, N 1]]]$$

isto é, a árvore da figura a seguir:

5. Finalmente, defina a função de avaliação de uma expressão, com tipo

evaluate :: (Num a, Ord a)
$$\Rightarrow$$
 Expr a b \rightarrow Maybe a

que deverá ter em conta as seguintes situações de erro:

(a) *Variáveis* — para ser avaliada, *x* em *evaluate x* não pode conter variáveis. Assim, por exemplo,

evaluate
$$e = Nothing$$

evaluate $(let_exp f e) = Just 40$

para f e e dadas acima.

(b) *Aridades* — todas as ocorrências dos operadores deverão ter o devido número de sub-expressões, por exemplo:

evaluate
$$(T \text{ Add } [N 2, N 3]) = Just 5$$

evaluate $(T \text{ Mul } [N 2]) = Nothing$

¹ Cf. expressões **let** ... **in**....

Sugestão: de novo se insiste na escrita do mínimo de código possível, tirando partido da riqueza estrutural do tipo *Expr* que é assunto desta questão. Sugere-se também o recurso a diagramas para explicar as soluções propostas.

Anexos

A Natureza do trabalho a realizar

Este trabalho teórico-prático deve ser realizado por grupos de 3 alunos. Os detalhes da avaliação (datas para submissão do relatório e sua defesa oral) são os que forem publicados na página da disciplina na *internet*.

Recomenda-se uma abordagem participativa dos membros do grupo em **todos** os exercícios do trabalho, para assim poderem responder a qualquer questão colocada na *defesa oral* do relatório.

Para cumprir de forma integrada os objectivos do trabalho vamos recorrer a uma técnica de programação dita "literária" [1], cujo princípio base é o seguinte:

Um programa e a sua documentação devem coincidir.

Por outras palavras, o **código fonte** e a **documentação** de um programa deverão estar no mesmo ficheiro.

O ficheiro cp2425t.pdf que está a ler é já um exemplo de programação literária: foi gerado a partir do texto fonte cp2425t.lhs¹ que encontrará no material pedagógico desta disciplina descompactando o ficheiro cp2425t.zip.

Como se mostra no esquema abaixo, de um único ficheiro (*lhs*) gera-se um PDF ou faz-se a interpretação do código Haskell que ele inclui:

Vê-se assim que, para além do GHCi, serão necessários os executáveis pdflatex e lhs2TeX. Para facilitar a instalação e evitar problemas de versões e conflitos com sistemas operativos, é recomendado o uso do Docker tal como a seguir se descreve.

B Docker

Recomenda-se o uso do container cuja imagem é gerada pelo Docker a partir do ficheiro Dockerfile que se encontra na diretoria que resulta de descompactar cp2425t.zip. Este container deverá ser usado na execução do GHCi e dos comandos relativos ao LATEX. (Ver também a Makefile que é disponibilizada.)

¹ O sufixo 'lhs' quer dizer *literate Haskell*.

Após instalar o Docker e descarregar o referido zip com o código fonte do trabalho, basta executar os seguintes comandos:

```
$ docker build -t cp2425t .
$ docker run -v ${PWD}:/cp2425t -it cp2425t
```

Pretende-se então que visualize/edite os ficheiros na sua máquina local e que os compile no container, executando:

```
$ lhs2TeX cp2425t.lhs > cp2425t.tex
$ pdflatex cp2425t
```

lhs2TeX é o pre-processador que faz "pretty printing" de código Haskell em La eque faz parte já do container. Alternativamente, basta executar

```
$ make
```

para obter o mesmo efeito que acima.

Por outro lado, o mesmo ficheiro cp2425t.lhs é executável e contém o "kit" básico, escrito em Haskell, para realizar o trabalho. Basta executar

```
$ qhci cp2425t.lhs
```

Abra o ficheiro cp2425t.lhs no seu editor de texto preferido e verifique que assim é: todo o texto que se encontra dentro do ambiente

```
\begin{code}
...
\end{code}
```

é seleccionado pelo GHCi para ser executado.

C Em que consiste o TP

Em que consiste, então, o *relatório* a que se referiu acima? É a edição do texto que está a ser lido, preenchendo o anexo F com as respostas. O relatório deverá conter ainda a identificação dos membros do grupo de trabalho, no local respectivo da folha de rosto.

Para gerar o PDF integral do relatório deve-se ainda correr os comando seguintes, que actualizam a bibliografia (com BibT_FX) e o índice remissivo (com makeindex),

```
$ bibtex cp2425t.aux
$ makeindex cp2425t.idx
```

e recompilar o texto como acima se indicou. (Como já se disse, pode fazê-lo correndo simplesmente make no container.)

No anexo E disponibiliza-se algum código Haskell relativo aos problemas que são colocados. Esse anexo deverá ser consultado e analisado à medida que isso for necessário.

Deve ser feito uso da programação literária para documentar bem o código que se desenvolver, em particular fazendo diagramas explicativos do que foi feito e tal como se explica no anexo D que se seque.

D Como exprimir cálculos e diagramas em LaTeX/lhs2TeX

Como primeiro exemplo, estudar o texto fonte (lhs) do que está a ler¹ onde se obtém o efeito seguinte:²

$$id = \langle f,g \rangle \\ \equiv \qquad \{ \text{ universal property } \} \\ \left\{ \begin{array}{l} \pi_1 \cdot id = f \\ \pi_2 \cdot id = g \end{array} \right. \\ \equiv \qquad \{ \text{ identity } \} \\ \left\{ \begin{array}{l} \pi_1 = f \\ \pi_2 = g \end{array} \right. \\ \Box$$

Os diagramas podem ser produzidos recorrendo à package xymatrix, por exemplo:

$$\begin{array}{c|c} \mathbb{N}_0 & \longleftarrow & \text{in} & 1 + \mathbb{N}_0 \\ \text{(g)} & & & \downarrow id + \text{(g)} \\ B & \longleftarrow & g & 1 + B \end{array}$$

E Código fornecido

Problema 1

h :: [*Int*]

Problema 4

Definição do tipo:

$$inExpr = [V, [N, \widehat{T}]]$$

 $baseExpr\ g\ h\ f = g + (h + id \times map\ f)$

Exemplos de expressões:

$$e = ite(V "x")(N 0) (multi(V "y") (soma(N 3)(V "y")))$$

 $i = ite(V "x")(N 1) (multi(V "y") (soma(N (3 / 5))(V "y")))$

Exemplo de teste:

teste = evaluate (let_exp
$$f$$
 i) \equiv Just (26 / 245)
where f "x" = N 0; f "y" = N (1 / 7)

¹ Procure e.g. por "sec:diagramas".

² Exemplos tirados de [?].

F Soluções dos alunos

Os alunos devem colocar neste anexo as suas soluções para os exercícios propostos, de acordo com o "layout" que se fornece. Não podem ser alterados os nomes ou tipos das funções dadas, mas pode ser adicionado texto ao anexo, bem como diagramas e/ou outras funções auxiliares que sejam necessárias.

Importante: Não pode ser alterado o texto deste ficheiro fora deste anexo.

Problema 1

```
hindex = \bot
```

Problema 2

Primeira parte:

```
\begin{split} \textit{smallestPrimeFactor} &:: (\mathbb{Z}, \mathbb{Z}) \to \mathbb{Z} \\ \textit{smallestPrimeFactor} &= \textit{cond} \ (\widehat{(>)} \cdot ((\uparrow 2) \times \textit{id})) \ \pi_2 \\ &\quad (\textit{cond} \ ((\equiv 0) \cdot \widehat{\textit{mod}} \cdot \textit{swap}) \ \pi_1 \ (\textit{smallestPrimeFactor} \cdot (\textit{succ} \ \times \textit{id}))) \\ \textit{g} \ 1 &= \textit{i}_1 \ () \\ \textit{g} \ n &= \textit{i}_2 \ (\textit{smallestPrimeFactor} \ (2, n), n \div \textit{smallestPrimeFactor} \ (2, n)) \\ \textit{primes} &= \ [\![ \textit{g} \ ]\!] \end{split}
```

Segunda parte:

```
-- mergeTrees
mergeTrees :: (Exp \mathbb{Z} \mathbb{Z}, Exp \mathbb{Z} \mathbb{Z}) \to Exp \mathbb{Z} \mathbb{Z}
mergeTrees (Var v1, Var v2) = Term 1 [Var v1, Var v2]
mergeTrees (Var v, Term o sub) = Term o (Var v : sub)
mergeTrees\ (Term\ o\ sub, Var\ v) = Term\ o\ (sub\ ++ \lceil Var\ v \rceil)
mergeTrees (Term o1 sub1, Term o2 sub2)
    | o1 \equiv o2 = Term \ o1 \ (mergeSubtrees \ sub1 \ sub2)
   | otherwise = Term 1 [Term o1 sub1, Term o2 sub2]
mergeSubtrees :: [Exp \mathbb{Z} \mathbb{Z}] \rightarrow [Exp \mathbb{Z} \mathbb{Z}] \rightarrow [Exp \mathbb{Z} \mathbb{Z}]
mergeSubtrees [] t2 = t2
mergeSubtrees\ t1\ [\ ]=t1
mergeSubtrees (x : xs) ys =
   case find (sameRoot x) ys of
     Just y \to mergeTrees(x, y) : mergeSubtrees(x)(filter(\neq y))(x)
     Nothing \rightarrow x: mergeSubtrees xs ys
  -- Checks if two trees have the same root
sameRoot :: Exp \mathbb{Z} \mathbb{Z} \rightarrow Exp \mathbb{Z} \mathbb{Z} \rightarrow Bool
sameRoot (Term o1 \_) (Term o2 \_) = o1 \equiv o2
sameRoot \_ \_ = False
   -- Generate a tree with a prime number as root and its prime factors as children
primeTree :: \mathbb{Z} \to Exp \mathbb{Z} \mathbb{Z}
primeTree\ n = Term\ 1\ (myfoldr\ buildTree\ [Var\ n]\ (primes\ n))
     buildTree\ prime\ acc = [Term\ prime\ acc]
```

```
geneCata :: () + (Exp \ \mathbb{Z} \ \mathbb{Z}, Exp \ \mathbb{Z} \ \mathbb{Z}) \to Exp \ \mathbb{Z} \ \mathbb{Z}
geneCata = [\underline{Term \ 1 \ []}, mergeTrees]
geneAna :: [\mathbb{Z}] \to () + (Exp \ \mathbb{Z} \ \mathbb{Z}, [\mathbb{Z}])
geneAna \ [] = i_1 \ ()
geneAna \ (x : xs) = i_2 \ (primeTree \ x, xs)
prime \ tree = hyloList \ geneCata \ geneAna
```

Problema 3

```
convolve :: Num a \Rightarrow [a] \rightarrow [a] \rightarrow [a] convolve = \bot
```

Problema 4

Definição do tipo:

```
outExpr: Expr \ b \ a \rightarrow a + (b + (Op, [Expr \ b \ a]))
outExpr \ (V \ n) = i_1 \ n
outExpr \ (N \ n) = (i_2 \cdot i_1) \ n
outExpr \ (T \ op \ exprs) = (i_2 \cdot i_2) \ (op, exprs)
recExpr: (a \rightarrow b1) \rightarrow b2 + (b3 + (b4, [a])) \rightarrow b2 + (b3 + (b4, [b1]))
recExpr = baseExpr \ id \ id
Ana + cata + hylo:
cataExpr: (b2 + (b3 + (Op, [b1])) \rightarrow b1) \rightarrow Expr \ b3 \ b2 \rightarrow b1
cataExpr \ g = g \cdot recExpr \ (cataExpr \ g) \cdot outExpr
anaExpr: (a1 \rightarrow a2 + (b + (Op, [a1]))) \rightarrow a1 \rightarrow Expr \ b \ a2
anaExpr \ g = inExpr \cdot recExpr \ (anaExpr \ g) \cdot g
hyloExpr: (b2 + (b3 + (Op, [c])) \rightarrow c) \rightarrow (a \rightarrow b2 + (b3 + (Op, [a]))) \rightarrow a \rightarrow c
hyloExpr \ h \ g = cataExpr \ h \cdot anaExpr \ g
```

Monad:

```
instance Functor (Expr b) where fmap f(V|a) = V(f|a) fmap _{-}(N|b) = N|b fmap _{-}(N|b) = N|b fmap f(T|a) op exprs) = T|a op (map (fmap f) exprs) instance Applicative (Expr b) where pure :: a \rightarrow Expr|_{-}b|_{-}a pure = V (V|f) < * > x = fmap|_{-}f|_{-}x (N|b) < * > _{-} = N|b|_{-}(N|b) < * > x = T|a|a op (map (< * > x)|_{-}fs) instance Monad (Expr b) where return :: a \rightarrow Expr|_{-}b|_{-}a return = pure (\gg) :: Expr b|_{-}a \rightarrow (a \rightarrow Expr|_{-}b|_{-}b1) \rightarrow Expr|_{-}b|_{-}b1
```

```
t \gg g = muExpr \text{ (fmap } g \text{ } t)
muExpr :: Expr \text{ } b \text{ } (Expr \text{ } b \text{ } a) \rightarrow Expr \text{ } b \text{ } a
muExpr = cataExpr \text{ } [id, inExpr \cdot i_2]
u :: a \rightarrow Expr \text{ } b \text{ } a
u = V
```

Maps: Monad: Let expressions:

$$let_exp = \bot$$

Catamorfismo monádico:

$$mcataExpr\ g = \bot$$

Avaliação de expressões:

$$evaluate = \bot$$

Index

```
∆TEX, 3, 4
    bibtex,4
    lhs2TeX, 3-5
    makeindex, 4
    pdflatex, 3
    xymatrix, 5
Cálculo de Programas, 1, 3
    Material Pedagógico, 3
Combinador "pointfree"
    cata
      Naturais, 5
    split, 5
Docker, 3
    container, 3, 4
Função
    \pi_1, 5
    \pi_2, 5
Haskell, 1, 3, 4
    interpretador
      GHCi, 3, 4
    Literate Haskell, 3
Números naturais (N), 5
Programação
    literária, 3, 4
```

References

- [1] D.E. Knuth. *Literate Programming*. CSLI Lecture Notes Number 27. Stanford University Center for the Study of Language and Information, Stanford, CA, USA, 1992.
- [2] J.N. Oliveira. Program Design by Calculation, 2024. Draft of textbook in preparation. First version: 1998. Current version: Sep. 2024. Informatics Department, University of Minho (pdf).