XMAC02 Métodos Matemáticos para Análise de Dados

- Condições
 - Amostra aleatória
 - Observações independente
 - Dados devem obedecer uma distribuição normal

- Teste Chi-square
 - Usado para testar variância populacional em relação a um valor específico

- Teste F
 - Usado para testar a igualdade de duas variâncias de diferentes populações
 - Usado para testar a igualdade de várias médias utilizando a técnica ANOVA

Exemplo 1: Uma amostra de 51 frascos de perfume foi coletada. O desvio padrão desses 51 frascos foi 2,35 ml. Houve um aumento no desvio padrão, estabelecido como 2 ml? (nível de confiança: 90%)

Ho:
$$s^2 <= \sigma^2$$

Ha:
$$s^2 > \sigma^2$$

$$\chi^2 = \frac{(n-1)s^2}{\sigma^2}$$

4

Exemplo 1: Uma amostra de 51 frascos de perfume foi coletada. O desvio padrão desses 51 frascos foi 2,35 ml. Houve um aumento no desvio padrão, estabelecido como 2 ml? (nível de confiança: 90%)

$$\chi^2(cal.) = \frac{(n-1)s^2}{\sigma^2} = \frac{(50) \times 2.35^2}{2^2} = 69.03$$

- □ Qual é o valor crítico de Chi-square (df = 50)?
 - □ df = degree of freedom

Percentage Points of the Chi-Square Distribution

Degrees of Freedom	Probability of a larger value of x 2									
	0.99	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.01	
1	0.000	0.004	0.016	0.102	0.455	1.32	2.71	3.84	6.63	
2	0.020	0.103	0.211	0.575	1.386	2.77	4.61	5.99	9.21	
3	0.115	0.352	0.584	1.212	2.366	4.11	6.25	7.81	11.3	
4	0.297	0.711	1.064	1.923	3.357	5.39	7.78	9.49	13.2	
5	0.554	1.145	1.610	2.675	4.351	6.63	9.24	11.07	15.0	
6	0.872	1.635	2.204	3.455	5.348	7.84	10.64	12.59	16.8	
7	1.239	2.167	2.833	4.255	6.346	9.04	12.02	14.07	18.4	
8	1.647	2.733	3.490	5.071	7.344	10.22	13.36	15.51	20.0	
9	2.088	3.325	4.168	5.899	8.343	11.39	14.68	16.92	21.6	
10	2.558	3.940	4.865	6.737	9.342	12.55	15.99	18.31	23.2	
11	3.053	4.575	5.578	7.584	10.341	13.70	17.28	19.68	24.7	
12	3.571	5.226	6.304	8.438	11.340	14.85	18.55	21.03	26.2	
13	4.107	5.892	7.042	9.299	12.340	15.98	19.81	22.36	27.6	
14	4.660	6.571	7.790	10.165	13.339	17.12	21.06	23.68	29.1	
15	5.229	7.261	8.547	11.037	14.339	18.25	22.31	25.00	30.5	
16	5.812	7.962	9.312	11.912	15.338	19.37	23.54	26.30	32.0	
17	6.408	8.672	10.085	12.792	16.338	20.49	24.77	27.59	33.4	
18	7.015	9.390	10.865	13.675	17.338	21.60	25.99	28.87	34.8	
19	7.633	10.117	11.651	14.562	18.338	22.72	27.20	30.14	36.1	
20	8.260	10.851	12.443	15.452	19.337	23.83	28.41	31.41	37.5	
22	9.542	12.338	14.041	17.240	21.337	26.04	30.81	33.92	40.2	
24	10.856	13.848	15.659	19.037	23.337	28.24	33.20	36.42	42.9	
26	12.198	15.379	17.292	20.843	25.336	30.43	35.56	38.89	45.6	
28	13.565	16.928	18.939	22.657	27.336	32.62	37.92	41.34	48.2	
30	14.953	18.493	20.599	24.478	29.336	34.80	40.26	43.77	50.8	
40	22.164	26.509	29.051	33.660	39.335	45.62	51.80	55.76	63.6	
50	27.707	34.764	37.689	42.942	49.335	56.33	63.17	67.50	76.1	
60	37.485	43.188	46.459	52.294	59.335	66.98	74.40	79.08	88.3	

- \Leftrightarrow $\alpha = 0.10$ One Tail
- \Rightarrow Df = 50
- \star χ^2 crítico = 63.17

$$\chi^2(cal.) = \frac{(n-1)s^2}{\sigma^2} = \frac{(50) \times 2.35^2}{2^2} = 69.03$$

Ho: $s^2 <= \sigma^2$

Ha: $s^2 > \sigma^2$

- \Leftrightarrow $\alpha = 0.10$ One Tail
- **❖** Df = 50
- \star χ^2 crítico = 63.17

Exemplo 2: Uma amostra de 51 frascos de perfume foi coletada. O desvio padrão desses 51 frascos foi 2,35 ml. Houve uma mudança no desvio padrão, estabelecido como 2 ml? (nível de confiança: 90%)

$$\chi^2(cal.) = \frac{(n-1)s^2}{\sigma^2} = \frac{(50) \times 2.35^2}{2^2} = 69.03$$

Ho: $s^2 = \sigma^2$

Ha: $s^2 \neq \sigma^2$

Percentage Points of the Chi-Square Distribution

Degrees of Freedom	Probability of a larger value of x 2									
	0.99	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.01	
1	0.000	0.004	0.016	0.102	0.455	1.32	2.71	3.84	6.63	
2	0.020	0.103	0.211	0.575	1.386	2.77	4.61	5.99	9.21	
3	0.115	0.352	0.584	1.212	2.366	4.11	6.25	7.81	11.3	
4	0.297	0.711	1.064	1.923	3.357	5.39	7.78	9.49	13.2	
5	0.554	1.145	1.610	2.675	4.351	6.63	9.24	11.07	15.0	
6	0.872	1.635	2.204	3.455	5.348	7.84	10.64	12.59	16.8	
7	1.239	2.167	2.833	4.255	6.346	9.04	12.02	14.07	18.4	
8	1.647	2.733	3.490	5.071	7.344	10.22	13.36	15.51	20.0	
9	2.088	3.325	4.168	5.899	8.343	11.39	14.68	16.92	21.6	
10	2.558	3.940	4.865	6.737	9.342	12.55	15.99	18.31	23.2	
11	3.053	4.575	5.578	7.584	10.341	13.70	17.28	19.68	24.7	
12	3.571	5.226	6.304	8.438	11.340	14.85	18.55	21.03	26.2	
13	4.107	5.892	7.042	9.299	12.340	15.98	19.81	22.36	27.6	
14	4.660	6.571	7.790	10.165	13.339	17.12	21.06	23.68	29.1	
15	5.229	7.261	8.547	11.037	14.339	18.25	22.31	25.00	30.5	
16	5.812	7.962	9.312	11.912	15.338	19.37	23.54	26.30	32.0	
17	6.408	8.672	10.085	12.792	16.338	20.49	24.77	27.59	33.4	
18	7.015	9.390	10.865	13.675	17.338	21.60	25.99	28.87	34.8	
19	7.633	10.117	11.651	14.562	18.338	22.72	27.20	30.14	36.1	
20	8.260	10.851	12.443	15.452	19.337	23.83	28.41	31.41	37.5	
22	9.542	12.338	14.041	17.240	21.337	26.04	30.81	33.92	40.2	
24	10.856	13.848	15.659	19.037	23.337	28.24	33.20	36.42	42.9	
26	12.198	15.379	17.292	20.843	25.336	30.43	35.56	38.89	45.6	
28	13.565	16.928	18.939	22.657	27.336	32.62	37.92	41.34	48.2	
30	14.953	18.493	20.599	24.478	29.336	34.80	40.26	43.77	50.8	
40	22.164	26.509	29.051	33.660	39.335	45.62	51.80	55.76	63.6	
50	27.707	34.764	37.689	42.942	49.335	56.33	63.17	67.50	76.1	
60	37.485	43.188	46.459	52.294	59.335	66.98	74.40	79.08	88.3	

- \Leftrightarrow $\alpha = 0.10$ Two Tail
- **❖** Df = 50
- χ^2 crítico = 34,76 e 67,50

$$\chi^2(cal.) = \frac{(n-1)s^2}{\sigma^2} = \frac{(50) \times 2.35^2}{2^2} = 69.03$$

Falha em rejeitar H₀

Ho: $s^2 = \sigma^2$

Ha: $s^2 \neq \sigma^2$

- \Leftrightarrow $\alpha = 0.10$ Two Tail
- **❖** Df = 50
- χ^2 crítico = 34,76 e 67,50

