Lycée Berthollet MPSI² 2023-24

Exercices de calculs algébriques

Exercice 1 Soit $(u_n)_{n\in\mathbb{N}}$ la suite réelle définie par $u_0=3$ et $(\forall n\in\mathbb{N}, u_{n+1}=6-2u_n)$.

1. Pour $n \in \mathbb{N}$, calculer le terme général u_n .

2. Pour $n \in \mathbb{N}$, calculer $\sum_{k=0}^{n} u_k$.

Exercice 2 Donner l'expression du terme général de la suite récurrente complexe (u_n) définie par : $u_0 = 0$, $u_1 = 1 + 4i$ et $(\forall n \in \mathbb{N}, u_{n+2} = (3 - 2i)u_{n+1} - (5 - 5i)u_n)$.

Exercice 3 Simplifier les expressions suivantes :

$$\frac{1}{3} + \sum_{k=1}^{n} \frac{(-1)^k}{2^k}, \sum_{i=0}^{n} \frac{3^{2i}}{2^{i+1}}, \sum_{i=1}^{n+1} \frac{2^i}{3^{2i-1}}, \sum_{j=1}^{n} (2j-1), \sum_{i=0}^{n} i(i-1), \sum_{1 \le i \le j \le n} (i+j), \prod_{1 \le i \le j \le n} x^{i+j}.$$

Exercice 4 Pour $n \in \mathbb{N}$, calculer $\sum_{k=1}^{n} \sum_{i=k}^{n} \frac{k}{i}$.

Exercice 5 Pour $n \in \mathbb{N}$, calculer $\sum_{1 \le i,j \le n} \min(i,j)$ et en déduire l'égalité avec une somme connue (on pourra découper la somme en deux sommes triangulaires).

Exercice 6

- **1.** Trouver un réel C > 0 tel que $\left(\forall n \in \mathbb{N}^*, \sum_{k=1}^n \frac{1}{n+k} \ge C \right)$.
- **2.** En déduire que la suite de terme général $u_n = \sum_{k=1}^n \frac{1}{k}$ tend vers $+\infty$.
- **3.** Montrer que $\left(\forall n \in \mathbb{N}^*, \sum_{k=1}^{2n} \frac{(-1)^{k-1}}{k} = \sum_{k=1}^n \frac{1}{n+k} \right)$.

Exercice 7 En remarquant que pour $k \in \mathbb{N}^*$, $\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$, montrer que la suite de terme général $v_n = \sum_{k=1}^n \frac{1}{k^2}$ est bornée, puis convergente, et donner un encadrement de sa limite.

Exercice 8 Pour $n \in \mathbb{N}$, calculer les sommes $\sum_{k=0}^{n} \binom{n}{k}$ et $\sum_{k=0}^{n} (-1)^k \binom{n}{k}$.

Exercice 9 Calculer $\sum_{k=0}^{n} \frac{\binom{n}{k}}{k+1}$ et $\sum_{k=0}^{n} k(k-1)(k-2) \binom{n}{k}$ pour $n \in \mathbb{N}$.

Exercice 10 Pour $x \in \mathbb{R}$, on pose $f(x) = \sum_{k=0}^{n} \binom{n}{k} \frac{x^{k+1}}{k+1}$. Retrouver le premier résultat de l'exercice précédent en dérivant f, puis en donnant une expression de f sans signe Σ .

Exercice 11 Calculer de différentes manières les sommes $\sum_{k=1}^{n} k^{p}$, pour p=1, 2 et 3.

Exercice 12 Pour $0 \le p \le n$, montrer que $\sum_{k=p}^{n} \binom{k}{p} = \binom{n+1}{p+1}$.

Exercice 13 Montrer que $\forall n \in \mathbb{N}, \ \prod_{k=0}^{n} (2k+1)! \ge ((n+1)!)^{n+1}.$