H를 한빛이카데미

IT세상을만나는 **컴퓨터 개론**

인공지능, 빅데이터, 확장현실까지

Chapter 03. 디지털 정보의 표현

목차

- 1. 컴퓨터의 단위
- 2. 진법 변환
- 3. 컴퓨터의 데이터 표현
- 4. 연산과 논리 게이트

학습목표

- 컴퓨터의 용량 단위와 속도 단위를 알아본다.
- 2진법, 16진법의 특징과 진법 변환 방법을 이해한다.
- 정수, 실수, 문자 등 데이터의 종류와 처리 방식을 이해한다.
- 연산자를 이해하고, 논리 연산자를 사용하는 간단한 논리 게이트를 살펴본다.

01 컴퓨터의 단위

1. 용량 단위

- 2진법: 모든 수를 0과 1(숫자 2개)로 표현
- 10진법: 모든 수를 0부터 9까지(숫자 10개)로 표현
- 10진법을 사용하는 컴퓨터를 만들지 않는 이유

그림 3-2 **2진 식당과 10진 식당**

5 / 56

01. 컴퓨터의 단위

1. 용량 단위

■ 비트와 바이트

• 비트 bit : 컴퓨터에서 사용하는 데이터의 최소 단위

• 바이트 byte : 비트 8개를 묶은 단위

바이트

그림 3-3 비트와 바이트

비트

1. 용량 단위

- ■워드
 - 64비트 CPU에는 64비트 운영체제가 설치됨
 - 워드 word : 컴퓨터가 한 번에 처리할 수 있는 데이터 크기의 단위

그림 3-4 32비트 CPU와 64비트 CPU의 워드

7 / 56

01. 컴퓨터의 단위

1. 용량 단위

표 3-1 컴퓨터의 용량 단위

용량 단위	설명
비트	데이터를 표현하는 최소 단위
바이트	8비트를 묶은 단위
워드	컴퓨터가 한 번에 처리할 수 있는 데이터 단위

1. 용량 단위

■ 큰 용량을 나타내는 단위

표 3-2 큰 용량을 나타내는 단위

용량 단위	표기	2진 크기	10진 크기	바이트 단위로 나타낸 크기	10진 단위
바이트	В	1	1	1B	일
킬로바이트	KB	2 ¹⁰	10 ³	1,000B	천
메가바이트	MB	2 ²⁰	10 ⁶	1,000,000B	백만
기가바이트	GB	2 ³⁰	10°	1,000,000,000B	십억
테라바이트	TB	2 ⁴⁰	10 ¹²	1,000,000,000,000B	일조
페타바이트	PB	2 ⁵⁰	10 ¹⁵	1,000,000,000,000,000B	천조

9 / 56

01. 컴퓨터의 단위

1. 용량 단위

■ 파일과 패킷

• **파일** file : 데이터가 모인 단위

• 패킷 packet : 네트워크가 다루는 일정 크기의 데이터

2. 속도 단위

■ 헤르츠

- 클록 clock : 컴퓨터에서 일정한 박자를 만들어내는 장치
- 클록 틱 clock tic
- 컴퓨터 내 모든 부품은 클록 틱에 맞추어 작업

11 / 56

01. 컴퓨터의 단위

2. 속도 단위

■ 헤르츠

• 헤르츠 Hertz : CPU 성능의 단위, 1초 동안 클록 틱 발생 횟수

01. 컴퓨터의 단위 2. 속도 단위 • 헤르츠의 활용 • 모니터의 주사율 • 가정용 전기 규격 1초동안화면을 120번 기점용 전기 규격은 220V, 이건 사야 돼.

그림 3-7 모니터의 성능과 전기 규격을 나타내는 헤르츠

13 / 56

01. 컴퓨터의 단위

2. 속도 단위

- **bps** bit per second
 - 1초 동안 보내는 데이터의 양
 - 10MB인 파일을 10Mbps 네트워크에서 전송하면 몇 초?

그림 3-8 **파일 크기와 네트워크 전송량의 표기 차이**

- rpm rotate per minute
 - 하드디스크가 데이터를 저장하거나 읽는 속도의 단위
 - 디스크 원반이 1분 동안 회전하는 수

02. 진법 변환

1. 2진법

- 2진수 → 10진수 변환
 - 2진수 각 자릿수를 곱한 후 모두 더하면 10진수로 변환됨

그림 3-10 **10진수 표현**

17 / 56

02. 진법 변환

1. 2진법

- 2진수 → 10진수 변환
 - 2진수 각 자릿수를 곱한 후 모두 더하면 10진수로 변환됨

그림 3-10 **10진수 표현**

02. 진법 변환 1. 2진법 ■ 10진수 → 2진수 변환 237 = 11101101₂ 2)237 • 10진수를 계속 2로 나누면서 몫은 아래에, 2)118 ---- 1 나머지는 오른쪽에 기록 2) 59 ---- 0 • 더 이상 나누어지지 않을 때 나머지를 거꾸로 읽기 2) 29 ---- 1 2) 14 ---- 1 2) 7 ---- 0 10진수를 2로 계속 나누고 나머지를 밑에서부터 거꾸로 읽으면 돼. 2) 3 ---- 1 그림 3-12 **10진수** → **2진수 변환** 19 / 56

02. 진법 변환

2. 16진법

■ 16진수 → 10진수 변환

 $ED_{16} = E \times 16^{1} + D \times 16^{0}$ $= 14 \times 16 + 13 \times 1$ = 224 + 13= 237

그림 3-14 **16진수** → **10진수 변환**

■ 16진수 → 10진수 변환

16 <u>) 237</u> 14 ····· 13 237 = ED₁₆

그림 3-15 **10진수** → **16진수 변환**

21 / 56

02. 진법 변환

2. 16진법

- 16진수의 활용
 - 컴퓨터의 색상 표현: 빛의 삼원색인 RGB를 조합
 - R, G, B 각 자리가 1바이트이며 값은 0~255
 - RGB 값 (255, 0, 255)는 어떤 색상?
 - #(ff00ff)

1. 숫자 표현

- ■실수
 - 프로그래밍 언어에서 실수는 부동 소수점 방식인 float로 저장
 - 정규화 normalization
 - 숫자를 일정한 단위로 맞춤

그림 3-22 실수의 정규화

29 / 56

30 / 56

03. 컴퓨터의 데이터 표현

1. 숫자 표현

- ■실수
 - 실수의 정규화는 모든 수를 한자리수.XXXX로 표현
 - 컴퓨터에 저장할 때 가수(멘티사)와 지수를 보관

15

1. 숫자 표현

- ■정수 표현법과 실수 표현법의 한계
 - 비트 수가 큰 실수는 비트 수가 작은 실수보다 정밀한 값을 저장

그림 3-26 실수의 크기와 정밀도

33 / 56

03. 컴퓨터의 데이터 표현

2. 불린

- 값이 참 또는 거짓인 데이터 형식
- 프로그래밍에서 반복문이나 분기에 많이 사용
 - if X then A, else B
 - while(X)
- C 언어에서는 0이 거짓, 나머지 모든 숫자가 참
- 파이썬의 불린 자료형 bool은 True or False

03. 컴퓨터의 데이터 표현 표 3-3 아스키코드 제어 문자 출력 가능한 문자 10진수 16진수 부호 10진수 16진수 부호 10진수 16진수 부호 10진수 16진수 부호 NULL SOH ! Α а STX В b ETX С EOL \$ D d **ENQ** % Ε е ACK F BEL G g BS Н h HT LF J 0A 2A 4A 6A 36 / 56

03. 컴퓨터의 데이터 표현											
제어 문자 출력 기능한 문자											
10진수	16진수	부호	10진수	16진수	부호	10진수	16진수	부호	10진수	16진수	부호
011	OB	VT	043	2B	+	075	4B	K	107	6B	k
012	OC	FF	044	2C		076	4C	L	108	6C	1
013	0D	CR	045	2D	-	077	4D	М	109	6D	m
014	OΕ	SO	046	2E		078	4E	Ν	110	6E	n
015	OF	SI	047	2F	/	079	4F	0	111	6F	0
016	10	DLE	048	30	0	080	50	Р	112	70	р
017	11	DC1	049	31	1	081	51	Q	113	71	q
018	12	DC2	050	32	2	082	52	R	114	72	r
019	13	DC3	051	33	3	083	53	S	115	73	s
020	14	DC4	052	34	4	084	54	Т	116	74	t
021	15	NAK	053	35	5	085	55	U	117	75	u
022	16	SYN	054	36	6	086	56	V	118	76	V
											37 /

3. 문자 표현

- ■유니코드 unicode
 - 컴퓨터에서 세계 각국의 문자를 통일되게 표현하고 다룰 수 있도록 만든 국제적인 코드 규약
 - 2바이트로 구성됨
 - 10만 개가 넘는 문자를 표현하여 거의 모든 언어를 표현

	AC0	AC1	AC2	AC3	AC4	AC5	AC6	AC7	AC8	AC9	ACA	ACB	ACC	ACD	ACE	ACF
0	가	감	갠	갰	걀	걐	걠	거	검	겐	겠	결	곀	곐	고	곰
	AC00	AC10	AC20	AC30	AC40	AC50	A060	AC70	AC80	AC90	ACA0	ACB0	ACC0	ACD0	ACE0	ACF0
1	각	갑	갡	갱	걁	걑	걡	걱	겁	겑	겡	겱	곁	곑	곡	곱
	AC01	AC11	AC21	AC31	AC41	AC51	AO61	AC71	AC81	AC91	ACA1	ACB1	ACC1	ACD1	ACE1	ACF1
2	갂	값	갢	갲	걂	걒	걢	걲	겂	겒	겢	겲	곂	곒	곢	끖 ACF2
	AC02	AC12	AC22	AC32	AC42	AC52	A062	AC72	AC82	AC92	ACA2	ACB2	ACC2	ACD2	ACE2	

그림 3-30 **한글 유니코드**

39 / 56

04 연산과 논리 게이트

03. 컴퓨터의 데이터 표현 1. 컴퓨터의 연산 ■컴퓨터의 사칙연산 • 덧셈 하나로 사칙연산을 모두 처리함 • 뺄셈은 보수(음수)를 더하여 처리 1 1 1 1 1 0 0 음수를 더하면 뺄셈이 되지. 오버플는 버려! 0 0 1 1

오버플로 버림

그림 3-34 **컴퓨터의 뺄셈 연산**

03. 컴퓨터의 데이터 표현

- 1. 컴퓨터의 연산
 - ■컴퓨터의 사칙연산
 - 곱셈은 덧셈을 반복하여 계산
 - 나눗셈은 뺄셈을 반복하여 계산

44 / 56

1. 컴퓨터의 연산

- ■컴퓨터의 사칙연산
 - 자리 이동(시프트)
 - 2의 거듭제곱인 수를 곱하거나 2의 거듭제곱으로 나눌 때 쉽게 처리
 - 2의 지수만큼 모든 자릿수를 이동시킴

03. 컴퓨터의 데이터 표현

2. 논리 연산자

• 논리 연산 logical operation : 불린 자료형인 참과 거짓의 연산

■ AND 연산자

• 두 조건이 모두 참(True)일 때만 결과가 참

영자	미숙	부산
OK	OK	간다
OK	NO	못 간다
NO	OK	못 간다
NO	NO	못 간다

영자 그리고(AND) 미숙이 OK 하면 부산에 간다.

그림 3-38 AND 논리 연산

46 / 56

2. 논리 연산자

- OR 연산자
 - 두 조건이 모두 거짓(False)일 때만 결과가 거짓

영자	미숙	부산
OK	OK	간다
OK	NO	간다
NO	OK	간다
NO	NO	못 간다

영자 또는(OR) 미숙이 OK 하면, 부산에 간다.

그림 3-39 OR 논리 연산

47 / 56

03. 컴퓨터의 데이터 표현

2. 논리 연산자

- XOR 연산자
 - 두 조건이 서로 다를 때만 결과가 참

영자	미숙	부산
OK	OK	못 간다
OK	NO	간다
NO	OK	간다
NO	NO	못 간다

영자와 미숙 중 한 사람과(XOR) 부산에 가거나, 아니면 못 간다.

그림 3-40 XOR 논리 연산

2. 논리 연산자

- ■NOT 연산자
 - 참과 거짓을 바꾸는 연산자

미숙	부산
OK	못 간다
NO	간다

영자는 미숙과 반대로(NOT) 한다.

그림 3-41 NOT 논리 연산

49 / 56

03. 컴퓨터의 데이터 표현

2. 논리 연산자

표 3-5 **논리 연산 진리표 1**

AND 연산				OR 연산			XOR 연신	NOT 연산		
입력		출력	입력		출력	입력		출력	입력	출력
Т	Т	Т	Т	Т	Т	Т	Т	F	Т	F
Т	F	F	Т	F	Т	Т	F	Т	F	Т
F	Т	F	F	Т	Т	F	Т	Т		
F	F	F	F	F	F	F	F	F		

3. 논리 게이트

- 논리 게이트 logic gate : 논리 연산을 사용하여 만든 컴퓨터의 논리회로
- 컴퓨터의 모든 작업은 논리 게이트에 의해 이루어짐

■논리 게이트의 종류

03. 컴퓨터의 데이터 표현

3. 논리 게이트

■논리 게이트의 종류

표 3-6 논리 연산 진리표 2

	NAND 연산			NOR 연산		XNOR 연산			
입	입력		입력		출력	입력		출력	
Т	Т	F	Т	Т	F	Т	Т	Т	
Т	F	Т	Т	F	F	Т	F	F	
F	Т	Т	F	Т	F	F	Т	F	
F	F	Т	F	F	Т	F	F	Т	

3. 논리 게이트

- ■논리 게이트의 종류
 - (1) 자동차 문이 열려 있을 때 문 열림 경고등을 켜는 회로
 - 어느 문이든지 하나 이상 열려있으면 경고등이 작동해야 함
 - (2) 자동차가 후진할 때 후방 경고등이 켜지는 회로
 - _ 엔진이 작동 중이어야 하고 동시에 후진 기어가 작동해야 함

53 / 56

03. 컴퓨터의 데이터 표현

3. 논리 게이트

- 가산기
 - 한 자리 2진수 A와 B의 덧셈 연산

Thank You! Copyright© 2024 Hanbit Academy, Inc. All rights reserved.