Московский Государственный Университет им. М. В. Ломоносова Факультет Вычислительной Математики и Кибернетики Кафедра Суперкомпьютеров и Квантовой Информатики

Практикум на ЭВМ

Отчёт № 3 Анализ параллельной программы на MPI, реализующей зашумленное преобразование n-Адамар

Работу выполнил **Малмыгин Г. А.**

Алгоритмы работы программы

Алгоритм работы программы аналогичен второму заданию при применении однокубитного преобразования. При проведении n — кубитного преобразования просто используется цикл по всем кубитам. Для зашумления вентилей используется матрица поворота, аргументом в которой выступает нормально распределенная случайная величина, умноженная на заданный уровень шума EPS.

Полученные результаты

Все измерения производились на Bluegene, для каждого измерения, полученного в таблице используются усредненные значения, полученные с нескольких измерений.

Таблицы

Таблица 1 Время работы с зашумленной матрицей и количество кубитов 28

Число вычислительных узлов	Время	Ускорение
8	82.632	1
16	42.8512	1.9283473975057877
32	21.8369	3.7840535973512726
64	75.4228	1.0955838287626554
128	48.1509	1.7161049949222134

Таблица 2 Среднее значение потерь точности при EPS = 0.01, число измерений для каждой ячейки больше либо равно 60

Количество кубитов	Среднее значение потерь точности
24	0.00010607435036500001
25	0.00011029965777966102
26	0.00011196550483538461
27	0.00013188244768945945
28	0.00010340143875890411

Таблица 3 Среднее значение потерь точности при различных EPS, число кубитов 26, число измерений для каждой ячейки больше либо равно 60

EPS	Среднее значение потерь точности
0.1	0.008517377756065574
0.01	0.00011196550483538461
0.001	1.1588551316440678e-06

Графики и гистограммы

График 1 Число кубитов 24, зашумление 0.01, число столбцов гистограммы 20, число измерений больше либо равно 60

График 2 Число кубитов 25, зашумление 0.01, число столбцов гистограммы 20, число измерений больше либо равно 60

График 3 Число кубитов 26, зашумление 0.01, число столбцов гистограммы 20, число измерений больше либо равно 60

График 4 Число кубитов 24, зашумление 0.01, число столбцов гистограммы 27, число измерений больше либо равно 60

 Γ рафик 5 Число кубитов 28, зашумление 0.01, число столбцов гистограммы 20, число измерений больше либо равно 60

График 6 Число кубитов 26, зашумление 0.1, число столбцов гистограммы 20, число измерений больше либо равно 60

График 7 Число кубитов 26, зашумление 0.01, число столбцов гистограммы 20, число измерений больше либо равно 60

График 8 Число кубитов 24, зашумление 0.001, число столбцов гистограммы 20, число измерений больше либо равно 60

Выводы

Падение ускорение с повышением числа процессов связано с возрастанием количества пересылок, что и оказывает влияние на скорость работы параллельной программы. Из полученных результатов ясно, что среднее значение потерь точности возрастает с ростом количества кубитов и падает при уменьшении уровня шума (EPS).