Formulario di fisica

DI GIANLUCA MONDINI E DI CHIUNQUE ALTRO MI AIUTI

ATTENZIONE: il seguente formulario potrebbe contenere errori. Non mi assumo nessuna responsabilità sui contenuti. Il formulario è ancora in costruzione e necessita una revisione.

Sono contenute alcune brevi descrizioni delle formule, che molto probabilmente saranno eliminate prima della stampa.

A destra di alcune formule è indicata l'unità di misura del valore corrispondente all'interno di parentesi quadre (es. $V = I \cdot R[v]$)

1 Cinematica

1 Calcolo del centro di massa

1.1 In un sistema di N punti materiali

(da verificare)

$$R_x = \frac{m_1 r_{1_x} + m_2 r_{2_x} + \dots + m_n r_{n_x}}{M} = \frac{\sum_{i=1}^n m_i r_{i_x}}{\sum_{i=1}^n m_i}$$

dove $M = m_1 + m_2 + ... m_n$, R_x è la componente x del vettore centro di massa, r_{i_x} è la componente x del vettore del centro di massa m_i

1.2 In un sistema continuo

$$M(\Omega) = \int_{\Omega} \rho(r) \, dV$$

Dove $\rho(r)$ è una funzione scalare rappresentante la densità

2 Energia meccanica

2.1 Energia cinetica del centro di massa

$$E_c = \frac{1}{2} m v^2$$

2.2 Energia cinetica di rotazione

$$E_{\rm rot} = \frac{1}{2} m v^2 = \frac{1}{2} m r^2 w^2$$

a questo punto si pone $m r^2 = I$ e si ottiene

$$E_{\rm rot} = \frac{1}{2} I w^2$$

3 Impulso

(da verificare)

$$F=m\;a \quad \ a=\frac{v_2-v_1}{t_2-t_1} \quad \ F\left(t_2-t_1\right)=m\;v_2-m\;v_1 \quad \ q=m\;v \quad \ I=F\left(t_2-t_1\right)$$

dove I è l'impulso, che rappresenta il prodotto della forza applicata ad un corpo per l'intervallo di tempo in cui tale forza viene applicata.

Si ha quindi che l'impulso è la variazione della quantità di moto

$$\Delta \vec{p} = \int_{t_0}^{t_1} \vec{F} \, \mathrm{dt}$$

1

3.1 Teorema dell'impulso

Il teorema dell'impulso (o della variazione della quantità di moto) consiste nell'affermazione: il secondo principio della dinamica comporta che l'impulso corrisponde alla variazione della quantità di moto del sistma in un intervallo temporale. Infatti per il secondo principio:

$$\vec{F} = \frac{d\vec{p}}{dt}$$

Sfruttando la definizione di differenziale di una funzione

$$d\vec{p} = \vec{F}dt$$

Integrando entrando ambo i membri tra due istanti t_0 e t_1 otteniamo:

$$\int_{\vec{p}(t_0)}^{\vec{p}(t_1)} d\vec{p} = \int_{t_0}^{t_1} \vec{F} dt$$

ma la primitiva di un differenziale è la grandezza differenziata, e in base al teorema di Torricelli:

$$\vec{p}(t_1) - \vec{p}(t_0) = \int_{t_0}^{t_1} \vec{F} \, dt$$

Nel caso in cui la forza sia costante, la si può portare fuori dal segno d'integrale, cosicché:

$$\Delta \vec{p} = \vec{F} \, \Delta t$$

4 Pendolo

4.1 Periodo di oscillazione

4.1.1 Pendolo semplice

$$T = 2 \pi \sqrt{\frac{l}{g}}$$

4.1.2 Pendolo fisico

$$T=2\,\pi\,\sqrt{\frac{I}{m\,g\,d}}$$

2 Elettromagnetismo

1 Campo elettrico

"Definizione': 'Forza per unità di carica che una carica sonda percepisce per la presenza delle cariche sorgenti

1.1 Legge di Coulomb

$$|F_e| = k_e \cdot \frac{|q_1| \cdot |q_2|}{r^2}$$

dove $k_e = 8.9876 \times 10^9 \, N \cdot m^2 / C^2$. k_e si può indicare anche come $\frac{1}{4 \, \pi \, \varepsilon_0}$

1.2 Vettore campo elettrico

$$\vec{E} \equiv \frac{\vec{F}_e}{q_0} \left[\frac{N}{C} \right]$$

2

Da questo ricaviamo che, presa una carica q_0 immersa in un campo elettrico \vec{E} , la forza che spinge la carica è uguale a

$$\vec{F}_e = q_0 \vec{E}$$

1.3 Lavoro per spostare una carica

Il lavoro necessario per spostare una carica dalla posizione r_A alla posizione r_B è pari a

$$W = \int_{r_A}^{r_B} F_t \, dr$$

dove F_t è la forza tangente che compie lo spostamento. Siccome F_t è sempre tangente, abbiamo

$$W = \int_{r_A}^{r_B} q E dr$$

Sostituendo e semplificando otteniamo

$$W = \frac{q_1 \, q_2}{4 \, \pi \, \varepsilon_0} \left(\frac{1}{r_A} - \frac{1}{r_B} \right)$$

1.4 Energia potenziale elettrica

Un campo conservativo ammette energia potenziale.

Partendo dalla relazione

$$W_{\rm cons} = -\Delta U_E = U_{\rm finale} - U_{\rm iniziale}$$

Abbiamo che l'energia potenziale associata al campo elettrico è uguale a

$$U_E = \frac{q_1 \, q_2}{4 \, \pi \, \varepsilon_0} \, \frac{1}{r}$$

dove r è la distanza tra le due cariche

1.5 Momento di dipolo elettrico

Dato un sistema di cariche, il momento elettrico (o momento di dipolo) è una grandezza vettoriale che quantifica la separazione tra le cariche positive e negative, ovvero la polarità del sistema, e si misura in Coulomb per metro.

Date due cariche di segno opposto e uguale modulo q, il momento elettrico p è definito come

$$\vec{p} = q \cdot \vec{d}$$

dove \vec{d} è il vettore spostamento dell'uno rispetto all'altro, orientato dalla carica negativa alla carica positiva.

1.6 Flusso elettrico

È proporzionale al numero di linee di campo elettrico che attraversano una superficie. Se il campo elettrico è uniforme e forma un angolo con la normale ad una superficie di area A, il flusso elettrico attraverso la superficie è

$$\Phi_E = E A \cos(\theta) \left[\frac{N m^2}{C} \right]$$

1.7 Flusso elettrico (legge di Gauss)

Data una superficie chiusa,

$$\Phi_S(\vec{E}) = \oint \vec{E} \cdot d\vec{A} = \frac{\sum q_{\rm in}}{\varepsilon_0}$$

dove $\sum q_{\rm in}$ è la carica totale contenuta all'interno della superficie.

In pratica, il flusso attraverso una superficie è uguale alla somma delle cariche interne diviso ε_0 . Le cariche esterne non danno un contributo al flusso in quanto le linee di forza entrano ed escono, quindi la somma dei contributi è nulla.

1.7.1 Scelta della superficie E

 $\dot{\mathbf{E}}$ fondamentale che la superficie chiusa E soddisfi una o più delle seguenti condizioni:

- 1. Da considerazioni di simmetria si può arguire che il valore del campo elettrico deve essere costante sulla porzione di superficie
- 2. Il prodotto scalare E dA che compare nella formula può essere espresso come un semplice prodotto algebrico E dA in quanto \vec{E} e \vec{dA} sono paralleli.
- 3. Il prodotto scalare E dA che compare nella formula è nullo, in quanto \vec{E} e \vec{dA} sono perpendicolari.
- 4. Il campo elettrico è nullo sulla porzione di superficie.

1.8 Relazione con il campo magnetico

Un campo magnetico variabile genera un campo elettrico

$$\oint_L (\vec{E}) = -\frac{d}{dt} \Phi_S(\vec{B})$$

1.9 Equilibrio elettrostatico

Un conduttore in equilibrio elettrostatico ha le seguenti proprietà:

- 1. Il campo elettrico all'interno del conduttore è ovunque nullo sia che il conduttore sia pieno sia che sia cavo
- 2. Un qualunque eccesso di carica su un conduttore isolato deve risiedere interamente sulla sua superficie
- 3. Il campo elettrico in un punto nelle immediate vicinanze del conduttore è perpendicolare alla sua superficie ed ha intensità σ/ε_0 , dove σ è la densità di carica superficiale in quel punto
- 4. Su un conduttore di forma irregolare la densità di carica è massima dove il raggio di curvatura della superficie è minimo.

1.10 Differenza di potenziale

$$\Delta V_{AB} = V_A - V_B \equiv \frac{\Delta U}{q_2} = -\int_A^B \vec{E} \cdot d\vec{s}$$

$$\Delta V_{AB} = \frac{q_1}{4\,\pi\,\varepsilon_0} \bigg(\frac{1}{r_A} - \frac{1}{r_B}\bigg)$$

Ponendo, per convenzione, potenziale nullo all'infinito, abbiamo che

$$V = \frac{q_1}{4\pi\,\varepsilon_0} \, \frac{1}{r} \bigg[v = \frac{J}{C} \bigg]$$

1.11 Variazione di energia potenziale

Quando una carica di prova positiva q_1 si sposta dal punto (A) al punto (B) in un campo elettrico \vec{E} , la variazione di energia potenziale del sistema carica-campo è

$$\Delta U = -q_1 \int_A^B \vec{E} \cdot d\vec{s}$$

1.12 Condensatore

$$C = \frac{Q}{\Delta V} \left[\frac{C}{v} = F \right]$$

dove Q è la carica (per convenzione quella positiva) depositata sul condensatore.

L'energia potenziale del campo elettrostatico contenuta nel condensatore è uguale a

$$U = \frac{1}{2}C \,\Delta V = \frac{1}{2} \,\frac{Q^2}{C}$$

2 Campo magnetico

Il campo magnetico è costituito da linee chiuse

2.1 Flusso magnetico attraverso una superficie

Il flusso magnetico Φ_B attraverso una superficie è definito dall'integrale di superficie

$$\Phi_B = \int \vec{B} \cdot \vec{d} \, \vec{A}$$

2.2 Teorema di Ampère

È il duale del teorema di Gauss per il campo magnetico

La circuitazione del campo magnetico lungo una linea γ è uguale a μ_0 moltiplicata per la somma delle correnti I_i concatenate con la linea stessa

$$\oint_{\gamma} B \cdot d \, l = \mu_0 \sum_{i} I_i$$

2.3 Legge di Biot-Sabart

Il campo magnetico \vec{dB} prodotto, in un punto P, da un elemento \vec{ds} percorso da una corrente continua I è

$$\overrightarrow{dB} = \frac{\mu_0}{4\pi} \frac{I \overrightarrow{ds} \times \hat{r}}{r^2}$$

dove r è la distanza del punto P dall'elemento di corrente e \hat{r} è il versore orientato da \vec{ds} verso il punto P. Per calcolare il campo risultante nel punto P è necessario integrare questa espressione vettoriale su tutta la distribuzione di corrente.

2.4 Alcuni campi magnetici salienti

2.4.1 Filo rettilineo uniforme

Si applica nel caso di un filo rettilineo indefinito percorso da corrente stazionaria I. Supponendo di essere nel vuoto, il modulo di B è inversamente proporzionale alla distanza dal filo r secondo l'espressione:

$$B = \mu_0 \cdot \frac{I}{2\pi r}$$

Si ricava dal teorema di Ampère integrando dl lungo la circonferenza di raggio r e considerando la corrente I come l'unica corrente concatenata alla linea γ .

2.4.2 Toroide

$$B = \frac{\mu_0 \, N \, I}{2 \, \pi \, r}$$

2.4.3 Solenoide

$$B = \mu_0 \frac{N}{\ell} I = \mu_0 \, n \, I$$

dove N è il numero totale di spire, n il numero di spire per unità di lunghezza, ℓ è la lunghezza del solenoide

2.5 Alcuni flussi magnetici salienti

2.5.1 Solenoide

$$\Phi = B \cdot S \cdot N$$

dove S è la sezione del solenoide

2.6 Teorema di Ampère-Maxwell

Rispetto al teorema di Ampère tiene conto anche delle variazioni di campo elettrico

$$\oint_{\gamma} B = \mu_0 \left(I_{\text{conc}} + \varepsilon_0 \frac{\partial \Phi_S(\vec{E})}{\partial t} \right)$$

La superficie S ha come bordo γ

Il termine $\varepsilon_0 \frac{\partial \Phi_S(\vec{E})}{\partial t}$ prende il nome di **corrente di spostamento**

2.7 Legge di Gauss per il campo magnetico

$$\Phi_S(\vec{B}) = 0$$

Ovvero non è possibile isolare un monopolo magnetico. Un ulteriore conseguenza è che il campo magnetico \vec{B} è solenoidale, ovvero è composto da linee chiuse.

2.8 Particella in movimento in un campo magnetico uniforme

La traiettoria della particella è circolare, ed il piano del cerchio è perpendicolare al campo magnetico. Il raggio r della traiettoria circolare è

$$r = \frac{m\,v}{q\,B}$$

dove m è la massa della particella e q la sua carica. La velocità angolare della particella carica è

$$\omega = \frac{q B}{m}$$

2.9 Momento di dipolo magnetico

Il momento magnetico di un magnete è una grandezza che quantifica la forza che l'oggetto esercita su una corrente elettrica e la torsione che il campo magnetico produce interagendo con esso.

$$\vec{m} = I \cdot S \left[A \cdot m^2 = J / T = \text{Joule / Tesla} \right]$$

La direzione è data dalla direzione positiva di attraversamento di S, che viene individuata tramite la regola della mano destra (ponendo il pollice nella direzione della corrente I che scorre lungo il "contorno" di S)

2.9.1 Tipologie di sostanze magnetiche

Dimagnetiche. Il momento magnetico è debole ed opposto rispetto al campo magnetico applicato.

Paramagnetiche. Il momento magnetico è debole e nello stesso verso del campo applicato

Ferromagnetiche. Le interazioni tra atomi provocano l'allineamento dei momenti magnetici e generano una forte magnetizzazione che permane anche rimuovendo il campo magnetico esterno.

2.10 Energia potenziale magnetica

L'energia potenziale del sistema formato da un momento di dipolo magnetico in un campo magnetico è [da verificare]

$$U = -\vec{\mu} \cdot \vec{B}$$

2.10.1 Energia magnetica in un solenoide

L'energia magnetica U immagazzinata in un solenoide in cui scorre una corrente elettrica i vale

$$U = \frac{1}{2} L i^2 [J]$$

2.11 Legge di Faraday dell'induzione

Stabilisce che la f.e.m indotta lungo una linea chiusa è direttamente proporzionale alla derivata temporale del flusso magnetico che attraversa la linea chiusa, cioè

$$E = -\frac{d\,\Phi_B}{d\,t}$$

dove $\Phi_B = \oint \vec{B} \cdot \vec{d} \vec{A}$

2.11.1 Forma generale

$$\oint \vec{E} \cdot \vec{d\,s} = -\frac{d\,\Phi_B}{d\,t}$$

dove \vec{E} è il campo elettrico non conservativo che è prodotto dalla variazione di flusso magnetico.

2.12 Legge di Lenz

La legge di Lenz stabilisce che la f.e.m. e la corrente indotte in un conduttore hanno direzioni tali da produrre un campo magnetico che si oppone alla variazione che le ha prodotte.

2.13 F.e.m. indotta dal moto

Quando una sbarretta conduttrice di lunghezza ℓ si muove con velocità \vec{v} attraverso un campo magnetico \vec{B} , perpendicolare alla sbarretta e a \vec{v} , la f.e.m. indotta dal moto nella sbarretta è

$$E = -B \ell v$$

3 Circuiti in corrente continua

3.1 F.e.m. autoindotta

Quando in un circuito la corrente varia nel tempo in accordo alla legge di Faraday, viene indotta una f.e.m.. La f.e.m. autoindotta è

$$E_L = -L \frac{dI}{dt}$$

dove L è l'induttanza del circuito.

3.2 Induttanze salienti

3.2.1 Bobina

$$L = \frac{N \Phi_B}{I}$$

3.2.2 Solendoie (in aria)

$$L = \mu_0 \frac{N^2}{\ell} A$$

3.3 Densità di energia

La densità di energia in un punto in cui il campo magnetico è B è

$$u_B = \frac{B^2}{2 \,\mu_0}$$

7

3.4 Circuito RL

3.4.1 Corrente nel circuito

$$I = \frac{E}{R} \left(1 - e^{-t/\tau} \right)$$

dove $\tau = L/R$. Se la batteria che generava E viene sostituita con un filo di resistenza trascurabile, la corrente diminuisce esponenzialmente nel tempo con la legge

$$I = \frac{E}{R} e^{-t/\tau}$$

3.5 Circuito LC

3.5.1 Frequenza di oscillazione

$$\omega = \frac{1}{\sqrt{L \, C}}$$

L'energia in un circuito LC è continuamente convertita tra energia immagazzinata nel condesantore ed energia immagazzinata nell'induttore.

3.6 Circuito RLC

3.6.1 Carica sul condensatore

$$Q = Q_{\text{max}} \cdot e^{-R \cdot t/2L} \cdot \cos(\omega_d t)$$

dove

$$\omega_d = \left[\frac{1}{LC} - \left(\frac{R}{2L} \right)^2 \right]^{1/2}$$

4 Circuiti in corrente alternata

4.1 Reattanze

4.1.1 Reattanza induttiva

$$X_L = \omega L \quad [\Omega]$$

4.1.2 Reattanza capacitiva

$$X_C = \frac{1}{\omega C} \quad [\Omega]$$

3 Costanti

• Costante dielettrica (o permittività) del vuoto

$$\varepsilon_0 = 8.8542 \times 10^{-12} \, C^2 / N \cdot m^2$$

Permeabilità magnetica del vuoto

$$\mu_0 = 4 \pi \times 10^{-7} H/m$$

(necessita di revisione)

$$\mu_0 \cong 1.25663706144 \times 10^{-6} \, H/m$$

si può anche esprimere in $T \cdot m/A$

• Costante di Coulomb

$$k_e = 8.9876 \times 10^9 \, N \cdot m^2 / C^2$$

Massa dell'elettrone

$$m_e \cong 9.1093826 \times 10^{-31} \,\mathrm{kg}$$

4 Momenti d'inerzia

1 Massa puntiforme

Una massa puntiforme non ha momento di inerzia intorno al proprio asse. Nel caso in cui l'asse di rotazione sia ad una distanza r dal centro di massa si ha

$$I=m\,r^2$$

2 Asta

Se un asta (infinitamente sottile ma rigida) di lunghezza L e di massa m ruota attorno ad una sua estremità si ha che

$$I_{\text{estremità}} = \frac{m L^2}{3}$$

altrimenti, se l'asse di rotazione è al centro

$$I_{\text{centrale}} = \frac{m L^2}{12}$$

3 Circonferenza

Circonferenza sottile (quindi anche un toro sottile) di raggio r e di massa m che ruota attorno all'asse z ha

$$I_z = m r^2$$

$$I_x = I_y = \frac{m r^2}{2}$$

4 Disco

Disco solido e sottile (in pratica è un cilindro spiaccicato) di raggio r e di massa m che ruota attorno all'asse z

$$I_z = \frac{m \, r^2}{2}$$

$$I_x = I_y = \frac{m \, r^2}{4}$$

5 Cilindro

Superficie cilindrica sottile con estremità aperte, di raggio r e di massa m

$$I = m r^2$$

Cilindro solido di raggio r, altezza h e massa m

$$I_z = \frac{m \, r^2}{2}$$

$$I_x = I_y = \frac{1}{12} m (3 r^2 + h^2)$$

Tubo cilindrico con pareti spesse ed estremità aperte, di raggio interno r_1 , raggio esterno r_2 , lunghezza h e massa m

$$I_z = \frac{1}{2} m (r_1^2 + r_2^2)$$

$$I_x = I_y = \frac{1}{12} m \left[3 \left(r_2^2 + r_1^2 \right) + h^2 \right]$$

6 Sfera

Sfera cava di raggio r e massa m

$$I = \frac{2 m r^2}{3}$$

(una sfera cava può essere considerata come costituita da due pile di cerchi infinitamente sottili, uno sopra l'altro, con i raggi che aumentano da 0 a r)

Sfera piene di raggio r e massa m

$$I = \frac{2 m r^2}{5}$$

7 Cono

Cono cavo circolare retto con raggio r, altezza h e massa m

$$I_z = \frac{3}{10} \, m \, r^2$$

$$I_x = I_y = \frac{3}{5} m \left(\frac{r^2}{4} + h^2 \right)$$

8 Toro

Toro con raggio del tubo a, distanza dal centro del tubo al centro del toro b e massa m.

Il momento di inerzia intorno al diametro vale

$$I_{\text{diametro}} = \frac{1}{8} (4 a^2 + 5 b^2) m$$

mentre quello attorno all'asse verticale

$$I_{\text{verticale}} = \left(a^2 + \frac{3}{4}b^2\right)m$$

9 Ellissoide

Ellissoide solido di semiassi α, β e ς con asse di rotazione a e massa m

$$I_{\alpha} = \frac{m(\beta^2 + \varsigma^2)}{5}$$

10 Piastra

Piastra rettangolare sottile di altezza h, larghezza w e massa m.

Con asse di rotazione all'estremità della piastra

$$I_{\text{estremit}} = \frac{m h^2}{3} + \frac{m w^2}{12}$$

Con asse di rotazione centrale

$$I_{\text{centrale}} = \frac{m \left(h^2 + w^2\right)}{12}$$

11 Parallelepipedo

Parallelepipedo solido di altezza h,larghezza w,profondità de massa m

$$I_h = \frac{1}{12} m (w^2 + d^2)$$

$$I_w = \frac{1}{12} m (h^2 + d^2)$$

$$I_d = \frac{1}{12} m (h^2 + w^2)$$

se fosse stato un cubo di lato \boldsymbol{s}

$$I = \frac{m \, s^2}{6}$$

Parallelepipedo solido di altezza D, larghezza W, lunghezza L e massa m lungo la diagonale più lunga.

$$I_{\rm diagonale\,pi\dot{u}\,lunga}\!=\!\!\frac{m\,(W^2\,D^2\!+\!L^2\,D^2\!+\!L^2\,W^2)}{6\,(L^2\!+\!W^2\!+\!D^2)}$$

se fosse stato un cubo di lato \boldsymbol{s}

$$I = \frac{m \, s^2}{6}$$