

Schletter, Inc.		20° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	2000 mm	Height =	1900 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 20°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eight Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, P_g =	30.00 psf	
Sloped Roof Snow Load, P _s =	20.62 psf	(ASCE 7-10, Eq. 7.4-1)
I _s =	1.00	
C _s =	0.91	
$C_e =$	0.90	

1.20

 $C_t =$

2.3 Wind Loads

Design Wind Speed, V = 115 mph Exposure Category = C
Height < 15 ft Importance Category = II

Peak Velocity Pressure, q_z = 20.76 psf Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

2.4 Seismic Loads

$S_S = S_{DS} =$	1.67	R = 1.25 $C_S = 0.8$	ASCE 7, Section 12.8.1.3: A maximum S $_{\rm s}$ of 1.5 may be used to calculate the base shear, C $_{\rm s}$, of
$S_1 = S_{D1} =$		$\rho = 1.3$ $\Omega = 1.25$	structures under five stories and with a period, T , of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to calculate C_s .
T _a =	0.39	$C_{d} = 1.25$	carourate og.

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>784.03</u>	<u>4550.94</u>	k
Compressive Load =	4252.95	<u>4782.65</u>	k
Lateral Load =	353.67	2057.86	k
Moment (Weak Axis) =	0.72	0.41	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 237987.5 in-lbs Resisting Force Required = 2735.49 lbs A minimum 174in long x 27in wide x S.F. = 1.67 12in tall ballast foundation is required Weight Required = 4559 15 lbs to resist overturning. Minimum Width = 27 in Weight Provided = 4730.63 lbs Sliding Force = 949.12 lbs Friction = Use a 174in long x 27in wide x 12in tall 0.4ballast foundation to resist sliding. Weight Required = 2372.80 lbs Resisting Weight = 4730.63 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 949.12 lbs Cohesion = 130 psf Use a 174in long x 27in wide x 12in tall 32.63 ft² Area = ballast foundation. Cohesion is OK. Resisting = 2365 31 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. f'c = 2500 psi Length = 8 in

Bearing Pressure (Meyerhof, 1953)

 $P_{ftg} = (145 \text{ pcf})(14.5 \text{ ft})(1 \text{ ft})(2.25 \text{ ft}) =$

ASD LC	1.0D + 1.0S 1.0D + 0.6W			+ 0.6W	1.0D + 0.75L + 0.45W + 0.75S				0.6D + 0.6W							
Width	27 in	28 in	29 in	30 in	27 in	28 in	29 in	30 in	27 in	28 in	29 in	30 in	27 in	28 in	29 in	30 in
FA	1582 lbs	1582 lbs	1582 lbs	1582 lbs	1273 lbs	1273 lbs	1273 lbs	1273 lbs	2012 lbs	2012 lbs	2012 lbs	2012 lbs	-352 lbs	-352 lbs	-352 lbs	-352 lbs
FB	1703 lbs	1703 lbs	1703 lbs	1703 lbs	1550 lbs	1550 lbs	1550 lbs	1550 lbs	2302 lbs	2302 lbs	2302 lbs	2302 lbs	-2090 lbs	-2090 lbs	-2090 lbs	-2090 lbs
F _V	170 lbs	170 lbs	170 lbs	170 lbs	855 lbs	855 lbs	855 lbs	855 lbs	756 lbs	756 lbs	756 lbs	756 lbs	-949 lbs	-949 lbs	-949 lbs	-949 lbs
P _{total}	8016 lbs	8192 lbs	8367 lbs	8542 lbs	7554 lbs	7729 lbs	7904 lbs	8080 lbs	9045 lbs	9220 lbs	9395 lbs	9571 lbs	396 lbs	501 lbs	607 lbs	712 lbs
М	7412 lbs-ft	7412 lbs-ft	7412 lbs-ft	7412 lbs-ft	4946 lbs-ft	4946 lbs-ft	4946 lbs-ft	4946 lbs-ft	8660 lbs-ft	8660 lbs-ft	8660 lbs-ft	8660 lbs-ft	2127 lbs-ft	2127 lbs-ft	2127 lbs-ft	2127 lbs-ft
е	0.92 ft	0.90 ft	0.89 ft	0.87 ft	0.65 ft	0.64 ft	0.63 ft	0.61 ft	0.96 ft	0.94 ft	0.92 ft	0.90 ft	5.37 ft	4.24 ft	3.51 ft	2.99 ft
L'	12.65 ft	12.69 ft	12.73 ft	12.76 ft	13.19 ft	13.22 ft	13.25 ft	13.28 ft	12.59 ft	12.62 ft	12.66 ft	12.69 ft	3.76 ft	6.02 ft	7.49 ft	8.52 ft
A'	28.5 sqft	29.6 sqft	30.8 sqft	31.9 sqft	29.7 sqft	30.8 sqft	32.0 sqft	33.2 sqft	28.3 sqft	29.5 sqft	30.6 sqft	31.7 sqft	8.5 sqft	14.0 sqft	18.1 sqft	21.3 sqft
fmey erhof	281.6 psf	276.6 psf	272.0 psf	267.7 psf	254.5 psf	250.6 psf	246.9 psf	243.4 psf	319.4 psf	313.1 psf	307.2 psf	301.7 psf	46.8 psf	35.7 psf	33.5 psf	33.4 psf

28 in

27 in

Ballast Width

4731 lbs 4906 lbs 5081 lbs 5256 lbs

<u>29 in</u>

30 in

Maximum Bearing Pressure = 319 psf Allowable Bearing Pressure = 1500 psf Use a 174in long x 27in wide x 12in tall ballast foundation for an acceptable bearing pressure.

Seismic Design

Overturning Check

 $M_0 =$ 2432.4 ft-lbs

Resisting Force Required = 2162.13 lbs S.F. = 1.67 Weight Required = 3603.55 lbs

Minimum Width = <u>27 in</u> in Weight Provided = 4730.63 lbs

Bearing Pressure (Meyerhof, 1953)

A minimum 174in long x 27in wide x 12in tall ballast foundation is required to resist overturning.

ASD LC	1	.238D + 0.875	ĒΕ	1.1785	D + 0.65625E	+ 0.75S	0.362D + 0.875E				
Width		27 in			27 in			27 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	290 lbs	663 lbs	224 lbs	956 lbs	2694 lbs	904 lbs	108 lbs	194 lbs	42 lbs		
F _V	222 lbs	217 lbs	226 lbs	164 lbs	158 lbs	177 lbs	223 lbs	219 lbs	224 lbs		
P _{total}	6147 lbs	6519 lbs	6080 lbs	6531 lbs	8269 lbs	6479 lbs	1821 lbs	1906 lbs	1755 lbs		
М	793 lbs-ft	782 lbs-ft	801 lbs-ft	598 lbs-ft	598 lbs-ft	633 lbs-ft	790 lbs-ft	779 lbs-ft	793 lbs-ft		
е	0.13 ft	0.12 ft	0.13 ft	0.09 ft	0.07 ft	0.10 ft	0.43 ft	0.41 ft	0.45 ft		
B'	1.99 ft	2.01 ft	1.99 ft	2.07 ft	2.11 ft	2.05 ft	1.38 ft	1.43 ft	1.35 ft		
A'	28.9 sqft	29.1 sqft	28.8 sqft	30.0 sqft	30.5 sqft	29.8 sqft	20.0 sqft	20.8 sqft	19.5 sqft		
f _{mey erhof}	212.8 psf	223.7 psf	211.1 psf	217.9 psf	270.9 psf	217.5 psf	90.8 psf	91.7 psf	89.9 psf		

Maximum Bearing Pressure = 271 psf Allowable Bearing Pressure = 1500 psf

Use a 174in long x 27in wide x 12in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 174in long x 27in wide x 12in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the front end of girder to a center section of the steel post. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut
Maximum Axial Load =	3.272 k	Maximum Axial Load = 3.448 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>44%</u>	Utilization = $\frac{46\%}{}$
Diagonal Strut		
Maximum Axial Load =	1.579 k	
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)
Utilization =	<u>21%</u>	

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ll} \text{Mean Height, h}_{\text{sx}} = & 51.89 \text{ in} \\ \text{Allowable Story Drift for All Other} \\ \text{Structures, } \Delta = \{ & 0.020 \text{h}_{\text{sx}} \\ \text{1.038 in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.699 \text{ in} \\ \hline 0.699 \leq 1.038, \text{OK.} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 108 \text{ in}$$

$$J = 0.432$$

$$298.779$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L}_b &= 108 \\ \mathsf{J} &= 0.432 \\ 190.005 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= 1701.56 \\ \varphi \mathsf{F}_L &= \varphi \mathsf{b}[\mathsf{Bc-1.6Dc*} \sqrt{(\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))}] \\ \varphi \mathsf{F}_L &= 28.9 \end{split}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 27.7 \text{ ksi}$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

$$Rb/t =$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

25.1 ksi

2.155 in⁴

41.015 mm

1.335 in³

2.788 k-ft

 $lx = 897074 \text{ mm}^4$

S1.18
$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 23.1 \text{ ksi}$$

$$\phi F_L W k = 23.1 \text{ ksi}$$

$$\phi F_L W k = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

Sy=

 $M_{max}Wk =$

45.5 mm

0.599 in³

1.152 k-ft

 $M_{max}St =$

 $\varphi F_L St =$

y = Sx =

Compression

3.4.9

$$b/t = 32.195 \\ S1 = 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = 25.1 \text{ ksi} \\ b/t = 37.0588 \\ S1 = 12.21 \\ S2 = 32.70 \\ \phi F_L = (\phi c k2^* \sqrt{(BpE))}/(1.6b/t) \\ \end{cases}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

 $\varphi F_L = 21.9 \text{ ksi}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: 3.4.14

$$L_b = 104.56 \text{ in}$$
 $J = 1.08$
 179.85

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\phi F_L =$$

$$\phi F_1 = 29.0 \text{ ksi}$$

$$L_b = 104.56$$
 $J = 1.08$
 190.335

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$φF_L$$
= $φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))$
 $φF_I$ = 28.9

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 1.6Dp$$

 $S2 = 46.7$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

 $\phi F_L = 31.6 \text{ ksi}$

Weak Axis:

$$J = 104.56$$
 $J = 1.08$
 190.335

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S2 = \left(\frac{c_c}{1.6}\right)$$

$$S2 = 1701.56$$

$$\phi F_L \text{= } \phi b [\text{Bc-1.6Dc*} \sqrt{((\text{LbSc})/(\text{Cb*} \sqrt{(\text{lyJ})/2}))]}$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

S2 =
$$\frac{1}{46.7}$$

 $\varphi F_L = \varphi y F c y$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = \phi b[Bt-Dt^* \sqrt{(Rb/t)}]$$

16.2

36.9

0.65

77.3

43.2 ksi

33.3 ksi

2.219 in⁴

1.409 in³

3.904 k-ft

 $M_{max}Wk =$

40 mm

mDbr

40

 $\frac{\theta_y}{2}$ 1.3Fcy

Compression

 $M_{max}St =$

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$ $\varphi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 =

3.323 k-ft

 $\phi F_L = \phi y F c y$

 $\varphi F_L =$ 33.3 ksi

3.4.10

Rb/t =18.1 S1 = 6.87 S2 = 131.3 $\varphi F_L = \varphi c[Bt-Dt^*\sqrt{(Rb/t)}]$ $\varphi F_L =$ 31.09 ksi

 $\phi F_1 =$ 31.09 ksi $A = 1215.13 \text{ mm}^2$ 1.88 in² 58.55 kips $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = **55x55**

Strong Axis:

3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$(R_{C} - \frac{\theta_{y}}{2} F_{C} y)^{2}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L \text{= } \phi b [\text{Bc-1.6Dc*} \\ \text{$\sqrt{(\text{LbSc})/(\text{Cb*} \\ \sqrt{(\text{lyJ})/2)})}]}$$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_{b} = 24.8$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

$\phi F_L = 31.4$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\phi F_1 = 28.2 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_I = 28.2 \text{ ksi}$$

Not Used 0.0 3.4.16.1

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S1 = 1.1$$

$$S2 = C_t$$

S2 =
$$141.0$$

 $\phi F_1 = 1.17 \phi y F c y$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$c_2 = \frac{k_1 Bbr}{m}$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi y F_C y$$

$$\phi F_1 = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$Ix = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

Sx = 0.621 in³

$$M_{max}St = 1.460 \text{ k-ft}$$

3.4.18

S.4.16
$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \end{array}$$

 $M_{max}Wk = 1.460 \text{ k-ft}$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

0.0

28.85 kips

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

 $P_{max} =$

Strong Axis:	Weak Axis:
3.4.14	3.4.14
$L_b = 98.03 \text{ in}$	$L_{\rm b} = 98.03$
J = 0.942 152.985	J = 0.942 152.985
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}]}$	$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})]}$
$\varphi F_L = 29.4 \text{ ksi}$	$\varphi F_L = 29.4$

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

4.16.1 Not Used
Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
S1 = 1.1
$$S2 = C_t$$
S2 = 141.0
$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

3.4.16.1

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\lambda = 2.26776$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.89749$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_I = 6.10803 \text{ ksi}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$SI = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = \frac{36.9}{m} = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

x =

Sy=

 $M_{max}Wk =$

0.672 in⁴

0.621 in³

1.460 k-ft

27.5 mm

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\phi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 6.11 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{\text{max}} = 6.29 \text{ kips}$$

28.2 ksi

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis: Weak Axis: 3.4.14 $L_b =$ 61.10 in $L_b =$ 61.1 0.942 0.942 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_L =$ $\phi F_L = 30.2 \text{ ksi}$ 30.2

3.4.16

$$SA.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$SA.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

 $\phi F_L = 1.3 \phi y F c y$

 $\phi F_L = 43.2 \text{ ksi}$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$k = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

$$Sx = 0.621 \text{ in}^3$$

$$M_{max} St = 1.460 \text{ k-ft}$$

$$3.4.18 \\ h/t = 24.5 \\ S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr} \\ S1 = 36.9 \\ m = 0.65 \\ C_0 = 27.5 \\ Cc = 27.5 \\ S2 = \frac{k_1Bbr}{mDbr} \\ S2 = 77.3 \\ \phi F_L = 1.3\phi y Fcy \\ \phi F_L = 43.2 \text{ ksi} \\ \phi F_L Wk = 28.2 \text{ ksi} \\$$

$$\begin{split} \phi F_L W k &= & 28.2 \text{ ksi} \\ ly &= & 279836 \text{ mm}^4 \\ & & 0.672 \text{ in}^4 \\ x &= & 27.5 \text{ mm} \\ Sy &= & 0.621 \text{ in}^3 \\ M_{max} W k &= & 1.460 \text{ k-ft} \end{split}$$

Compression

3.4.7

$$\lambda = 1.41345$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.77788$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 13.6277 \text{ ksi}$$

3.4.9

b/t = 24.5
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c [Bp-1.6Dp^*b/t]$$

 $\phi F_L = 28.2 \text{ ksi}$
b/t = 24.5
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi c [Bp-1.6Dp^*b/t]$
 $\phi F_L = 28.2 \text{ ksi}$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \text{ψF}_L \text{ψF}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

: Schletter, Inc.

: HCV :

: Standard PVMax Racking System

Nov 3, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(MeS	Surface(
1	Dead Load, Max	DĽ		-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-9.843	-9.843	0	0
2	M14	Υ	-9.843	-9.843	0	0
3	M15	Υ	-9.843	-9.843	0	0
4	M16	Υ	-9.843	-9.843	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-5.454	-5.454	0	0
2	M14	Υ	-5.454	-5.454	0	0
3	M15	Υ	-5.454	-5.454	0	0
4	M16	Υ	-5.454	-5.454	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-63.565	-63.565	0	0
2	M14	Υ	-63.565	-63.565	0	0
3	M15	Υ	-63.565	-63.565	0	0
4	M16	Υ	-63 565	-63 565	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-71.531	-71.531	0	0
2	M14	V	-71.531	-71.531	0	0
3	M15	V	-112.406	-112.406	0	0
4	M16	V	-112.406	-112.406	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	163.5	163.5	0	0
2	M14	V	125.35	125.35	0	0
3	M15	V	68.125	68.125	0	0
4	M16	У	68.125	68.125	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	7.874	7.874	0	0
2	M14	Ζ	7.874	7.874	0	0
3	M15	Ζ	7.874	7.874	0	0
4	M16	Ζ	7.874	7.874	0	0
5	M13	Z	0	0	0	0
6	M14	Ζ	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:___

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	390.238	2	1131.52	1	.941	1	.005	1	0	1	0	1
2		min	-516.826	3	-1089.649	3	-66.827	5	312	4	0	1	0	1
3	N7	max	.033	9	1180.671	1	588	12	001	12	0	1	0	1
4		min	123	2	-167.954	3	-272.055	4	555	4	0	1	0	1
5	N15	max	0	15	3271.5	1	0	3	0	3	0	1	0	1
6		min	-1.444	2	-603.098	3	-258.245	4	536	4	0	1	0	1
7	N16	max	1485.979	2	3678.961	1	0	9	0	1	0	1	0	1
8		min	-1582.967	3	-3500.724	3	-66.632	5	315	4	0	1	0	1
9	N23	max	.041	14	1180.671	1_	12.274	1	.025	1	0	1	0	1
10		min	123	2	-167.954	3	-263.959	4	542	4	0	1	0	1
11	N24	max	390.238	2	1131.52	1	058	12	0	12	0	1	0	1
12		min	-516.826	3	-1089.649	3	-67.499	5	314	4	0	1	0	1
13	Totals:	max	2264.766	2	11574.842	1	0	1						
14		min	-2617.07	3	-6619.029	3	-988.792	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	80.62	4	477.427	1	-6.843	12	0	15	.214	1	0	4
2			min	3.882	12	-532.854	3	-168.665	1	014	1	.011	12	0	3
3		2	max	76.717	1	333.296	1	-5.415	12	0	15	.106	4	.454	3
4			min	3.882	12	-375.238	3	-129.223	1	014	1	.005	12	405	1
5		3	max	76.717	1	189.165	1	-3.987	12	0	15	.06	5	.75	3
6			min	3.882	12	-217.623	3	-89.781	1	014	1	044	1	667	1
7		4	max	76.717	1	45.033	1	-2.56	12	0	15	.033	5	.889	3
8			min	3.882	12	-60.008	3	-50.339	1	014	1	114	1	784	1
9		5	max	76.717	1	97.608	3	606	10	0	15	.008	5	.87	3
10			min	3.882	12	-99.098	1	-26.734	4	014	1	145	1	757	1
11		6	max	76.717	1	255.223	3	28.545	1	0	15	005	12	.694	3
12			min	3.26	15	-243.23	1	-21.628	5	014	1	136	1	585	1
13		7	max	76.717	1	412.838	3	67.987	1	0	15	004	12	.36	3
14			min	-6.759	5	-387.361	1	-19.455	5	014	1	088	1	27	1
15		8	max	76.717	1	570.454	3	107.429	1	0	15	.002	2	.189	1
16			min	-18.559	5	-531.492	1	-17.282	5	014	1	055	4	132	3
17		9	max	76.717	1	728.069	3	146.871	1	0	15	.127	1	.793	1
18			min	-30.36	5	-675.624	1	-15.108	5	014	1	069	5	781	3

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		Axial[lb]						Torque[k-ft]					
19		10	max	76.717	1	885.685	3	186.313	1	.014	1_	.294	1	1.54	1
20			min	3.882	12	-819.755	_1_	-110.782	14	002	3	.007	12	-1.588	3
21		11	max	76.717	1	675.624	_1_	-4.58	12	.014	_1_	.127	1	.793	1
22			min	3.882	12	-728.069	3	-146.871	1	0	15	.002	12	781	3
23		12	max	76.717	1	531.492	_1_	-3.152	12	.014	_1_	.054	4	.189	1
24			min	3.882	12	-570.454	3	-107.429	1_	0	15	003	3	132	3
25		13	max	76.717	1	387.361	1_	-1.724	12	.014	1_	.025	5	.36	3
26			min	3.882	12	-412.838	3	-67.987	1_	0	15	088	1	27	1
27		14	max	76.717	1	243.23	_1_	296	12	.014	_1_	0	15	.694	3
28			min	2.193	15	-255.223	3	-31.128	4	0	15	136	1	585	1
29		15	max	76.717	1	99.098	_1_	10.897	_1_	.014	_1_	005	12	.87	3
30			min	-8.448	5	-97.608	3	-22.553	5	0	15	145	1	757	1
31		16	max	76.717	1	60.008	3	50.339	1_	.014	_1_	003	12	.889	3
32			min	-20.249	5	-45.033	1	-20.38	5	0	15	114	1	784	1
33		17	max	76.717	1	217.623	3	89.781	1	.014	1	0	3	.75	3
34			min	-32.049	5	-189.165	1	-18.207	5	0	15	076	4	667	1
35		18	max	76.717	1	375.238	3	129.223	1	.014	1	.065	1	.454	3
36			min	-43.85	5	-333.296	1	-16.033	5	0	15	082	5	405	1
37		19	max	76.717	1	532.854	3	168.665	1	.014	1	.214	1	0	1
38			min	-55.65	5	-477.427	1	-13.86	5	0	15	097	5	0	3
39	M14	1	max	56.561	4	529.876	1	-7.085	12	.009	3	.254	1	0	1
40			min	2.036	12	-426.053	3	-175.215	1	015	1	.012	12	0	3
41		2	max	44.76	4	385.745	1	-5.657	12	.009	3	.159	4	.366	3
42			min	2.036	12	-306.587	3	-135.773	1	015	1	.006	12	458	1
43		3	max	44.496	1	241.613	1	-4.229	12	.009	3	.092	5	.613	3
44			min	2.036	12	-187.122	3	-96.331	1	015	1	018	1	771	1
45		4	max	44.496	1	97.482	1	-2.801	12	.009	3	.051	5	.741	3
46			min	2.036	12	-67.657	3	-56.889	1	015	1	095	1	941	1
47		5	max	44.496	1	51.809	3	-1.233	10	.009	3	.013	5	.748	3
48			min	.067	15	-46.649	1	-42.166	4	015	1	132	1	966	1
49		6	max	44.496	1	171.274	3	21.995	1	.009	3	005	12	.637	3
50			min	-11.692	5	-190.781	1	-35.329	5	015	1	13	1	848	1
51		7	max	44.496	1	290.739	3	61.437	1	.009	3	004	12	.406	3
52			min	-23.493	5	-334.912	1	-33.155	5	015	1	088	1	585	1
53		8	max	44.496	1	410.205	3	100.879	1	.009	3	0	10	.055	3
54		0	min	-35.294	5	-479.044	1	-30.982	5	015	1	094	4	178	1
55		9	max	44.496	1	529.67	3	140.321	1	.009	3	.114	1	.373	1
		9		-47.094	5	-623.175	1	-28.809	5	015	1	12	5	414	3
56		10	min		_		_				1		1		1
57		10	max	72.643	4	649.135	3	179.763	1	.015		.274		1.068	
58		4.4	min	2.036	12	-767.306	1_	-114.472	14	009	3	.007	12	-1.004	3
59		11	max		4	623.175	1_	-4.338	12	.015	1_	.159	4	.373	
60		40	min	2.036	12	-529.67	3	-140.321	1	009	3	.002	12	414	3
61		12	max	49.042	4	479.044	1	-2.91	12	.015	1_	.09	4	.055	3
62		40	min	2.036	12	-410.205	3	-100.879		009	3	007	1	178	1
63		13	max	44.496	1	334.912	_1_	-1.482	12	.015	1_	.048	5	.406	3
64			min	2.036	12	-290.739	3	-61.437	1	009	3	088	1_	585	1
65		14	max	44.496	1	190.781	_1_	.038	3	.015	_1_	.01	5	.637	3
66			min	2.036	12	-171.274	3	-43.128	4	009	3_	13	1	848	1
67		15	max	44.496	1	46.649	1_	17.447	1	.015	_1_	004	12	.748	3
68			min	2.036	12	-51.809	3	-35.532	5	009	3	132	1_	966	1
69		16	max	44.496	1	67.657	3	56.889	1	.015	_1_	002	12	.741	3
70			min	-7.46	5	-97.482	1_	-33.359	5	009	3	095	1	941	1
71		17	max	44.496	1	187.122	3	96.331	1	.015	_1_	.002	3	.613	3
72			min	-19.261	5	-241.613	1	-31.185	5	009	3	1	4	771	1
73		18	max	44.496	1	306.587	3	135.773	1	.015	1	.098	1	.366	3
74			min	-31.061	5	-385.745	1	-29.012	5	009	3	124	5	458	1
75		19	max	44.496	1	426.053	3	175.215	1	.015	1	.254	1	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	
76			min	-42.862	5	-529.876	1	-26.839	5	009	3	152	5	0	3
77	M15	1	max	88.81	5	598.817	1	-7.022	12	.015	_1_	.303	4	0	2
78			min	-47.367	1	-233.412	3	-175.17	1	008	3	.012	12	0	3
79		2	max	77.01	5	434.248	1	-5.594	12	.015	1	.211	4	.202	3
80			min	-47.367	1	-171.172	3	-135.728	1	008	3	.006	12	517	1
81		3	max	65.209	5	269.68	1	-4.166	12	.015	1	.129	5	.342	3
82			min	-47.367	1	-108.931	3	-96.286	1	008	3	018	1	868	1
83		4	max	53.409	5	105.111	1	-2.738	12	.015	1	.074	5	.42	3
84			min	-47.367	1	-46.691	3	-66.903	4	008	3	095	1	-1.056	1
85		5	max	41.608	5	15.549	3	-1.259	10	.015	1	.021	5	.436	3
86			min	-47.367	1	-59.458	1	-56.578	4	008	3	132	1	-1.079	1
87		6	max	29.808	5	77.79	3	22.04	1	.015	1	005	12	.389	3
88			min	-47.367	1	-224.027	1	-49.724	5	008	3	13	1	937	1
89		7	max	18.007	5	140.03	3	61.482	1	.015	1	004	12	.28	3
90			min	-47.367	1	-388.596	1	-47.551	5	008	3	098	4	631	1
91		8	max	6.207	5	202.27	3	100.924	1	.015	1	0	10	.109	3
92			min	-47.367	1	-553.165	1	-45.378	5	008	3	129	4	16	1
93		9	max	-2.441	12	264.511	3	140.366	1	.015	1	.114	1	.476	1
94			min	-47.367	1	-717.734	1	-43.204	5	008	3	169	5	124	3
95		10	max	-2.441	12	326.751	3	179.808	1	.008	3	.302	4	1.276	1
96			min	-47.367	1	-882.303	1	-121.809		015	1	.007	12	42	3
97		11	max	.084	15	717.734	1	-4.401	12	.008	3	.208	4	.476	1
98			min	-47.367	1	-264.511	3	-140.366	1	015	1	.002	12	124	3
99		12	max	-2.441	12	553.165	1	-2.973	12	.008	3	.125	4	.109	3
100		12	min	-47.367	1	-202.27	3	-100.924	1	015	1	007	1	16	1
101		13	max	-2.441	12	388.596	1	-1.545	12	.008	3	.069	5	.28	3
102		10	min	-47.367	1	-140.03	3	-67.896	4	015	1	088	1	631	1
103		14	max	-2.441	12	224.027	1	066	3	.008	3	.015	5	.389	3
104		17	min	-47.367	1	-77.79	3	-57.571	4	015	1	13	1	937	1
105		15	max	-2.441	12	59.458	1	17.402	1	.008	3	004	12	.436	3
106		13	min	-57.954	4	-15.549	3	-49.929	5	015	1	132	1	-1.079	1
107		16	max	-2.441	12	46.691	3	56.844	1	.008	3	002	12	.42	3
108		10	min	-69.755	4	-105.111	1	-47.756	5	015	1	106	4	-1.056	1
109		17	max	-2.441	12	108.931	3	96.286	1	.008	3	.002	3	.342	3
110		1 /	min	-81.555	4	-269.68	1	-45.582	5	015	1	137	4	868	1
111		18	max	-2.441	12	171.172	3	135.728	1	.008	3	.098	1	.202	3
112		10	min	-93.356	4	-434.248	1	-43.409	5	015	1	176	5	517	1
113		19	max	-2.441	12	233.412	3	175.17	1	.008	3	.253	1	0	2
114		19	min	-105.156		-598.817	1	-41.236	5	015	1	218	5	0	5
115	M16	1	max	84.586	5	547.015	1	-6.651	12	.012	1	.217	1	0	1
116	IVITO		min	0-1-0	1	-203.944		-169.118		01	3	.01	12	0	3
117		2	max	72.785	5	382.446	1	-5.223	12	.012	1	.143	4	.173	3
118			min	-85.179	1	-141.704		-129.676		01	3	.004	12	465	1
119		3	max		5	217.877	1	-3.795	12	.012	<u> </u>	.087	5	.283	3
120			min	-85.179	1	-79.464	3	-90.234	1	01	3	043	1	765	1
121		4	max		5	53.308	1	-2.367	12	.012	<u> </u>	.05	5	.332	3
122		4		-85.179	-	-17.223	3	-50.792	1		3	113	1		1
123		5	min	37.384	1		3	751		01 .012	<u> </u>	.015	5	9	3
		5	max		5	45.017			10				1	.318	
124 125		G	min	-85.179 25.583	1 5	-111.261	1	-37.059	4	01	3	144		872	1
		6	max		5	107.258	3	28.092	1	.012	1	005 136	12	.242	3
126		7	min	-85.179	1 -	-275.829	1	-31.812	5	01	3		1	678	
127		7	max	13.783	5	169.498	3	67.534	1	.012	1	004	12	.103	3
128		0	min	-85.179	1	-440.398		-29.638	5	01	3	088	1	32	1
129		8	max	1.982	5	231.738	3	106.975	1	.012	1	.001	2	.203	1
130		_	min	-85.179	1	-604.967	1	-27.465	5	01	3	079	4	097	3
131		9	max	-4.007	12	293.979	3	146.417	1	.012	1	.126	1	.89	1
132			min	-85.179	1	-769.536	1	-25.292	5	01	3	103	5	36	3

Model Name

Schletter, Inc. HCV

TICV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC		LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
133		10	max	-4.007	12	356.219	3	185.859	1	.01	3	.292	1_	1.742	1
134			min	-85.179	1	-934.105	1	-115.801	14	012	1	.008	12	685	3
135		11	max	.552	5	769.536	1	-4.772	12	.01	3	.145	4	.89	1
136			min	-85.179	1	-293.979	3	-146.417	1	012	1	.003	12	36	3
137		12	max	-4.007	12	604.967	1	-3.344	12	.01	3	.078	4	.203	1
138			min	-85.179	1	-231.738	3	-106.975	1	012	1	002	3	097	3
139		13	max	-4.007	12	440.398	1	-1.916	12	.01	3	.039	5	.103	3
140			min	-85.179	1	-169.498	3	-67.534	1	012	1	088	1	32	1
141		14	max	-4.007	12	275.829	1	488	12	.01	3	.003	5	.242	3
142			min	-85.179	1	-107.258	3	-41.281	4	012	1	136	1	678	1
143		15	max	-4.007	12	111.261	1	11.35	1	.01	3	005	12	.318	3
144			min	-85.179	1	-45.017	3	-32.714	5	012	1	144	1	872	1
145		16	max	-4.007	12	17.223	3	50.792	1	.01	3	003	12	.332	3
146			min	-85.179	1	-53.308	1	-30.54	5	012	1	113	1	9	1
147		17	max	-4.007	12	79.464	3	90.234	1	.01	3	0	3	.283	3
148			min	-88.966	4	-217.877	1	-28.367	5	012	1	102	4	765	1
149		18	max	-4.007	12	141.704	3	129.676	1	.01	3	.067	1	.173	3
150			min	-100.766	4	-382.446	1	-26.194	5	012	1	119	5	465	1
151		19	max	-4.007	12	203.944	3	169.118	1	.01	3	.217	1	0	1
152			min	-112.567	4	-547.015	1	-24.02	5	012	1	145	5	0	5
153	M2	1		1099.328	1	2.211	4	.906	1	0	3	0	3	0	1
154			min	-975.26	3	.543	15	-58.845	4	0	1	0	1	0	1
155		2		1099.744	1	2.202	4	.906	1	0	3	0	1	0	15
156			min	-974.948	3	.541	15	-59.205	4	0	1	017	4	0	4
157		3	max	1100.16	1	2.194	4	.906	1	0	3	0	1	0	15
158			min	-974.636	3	.539	15	-59.566	4	0	1	033	4	001	4
159		4		1100.575	1	2.185	4	.906	1	0	3	0	1	0	15
160			min	-974.324	3	.537	15	-59.926	4	0	1	05	4	002	4
161		5		1100.991	1	2.176	4	.906	1	0	3	.001	1	0	15
162			min	-974.012	3	.535	15	-60.287	4	0	1	067	4	002	4
163		6		1101.407	1	2.168	4	.906	1	Ö	3	.001	1	0	15
164			min	-973.7	3	.533	15	-60.647	4	0	1	084	4	003	4
165		7		1101.823	1	2.159	4	.906	1	0	3	.002	1	0	15
166			min	-973.388	3	.531	15	-61.008	4	0	1	101	4	004	4
167		8		1102.239	1	2.15	4	.906	1	0	3	.002	1	001	15
168			min	-973.077	3	.529	15	-61.368	4	0	1	118	4	004	4
169		9		1102.655	1	2.141	4	.906	1	0	3	.002	1	001	15
170			min	-972.765	3	.527	15	-61.729	4	0	1	135	4	005	4
171		10		1103.071	1	2.133	4	.906	1	0	3	.002	1	001	15
172		10	min	-972.453	3	.525	15	-62.089	4	0	1	153	4	005	4
173		11		1103.487	1	2.124	4	.906	1	0	3	.003	1	001	15
174			min		3	.523	15	-62.45	4	0	1	17	4	006	4
175		12		1103.902	1	2.115	4	.906	1	0	3	.003	1	002	15
176		14		-971.829		.521	15	-62.81	4	0	1	188	4	002	4
177		13		1104.318	1	2.107	4	.906	1	0	3	.003	1	007	15
178		13		-971.517	3	.518	15	-63.171	4	0	1	205	4	002	4
179		14		1104.734	1	2.098	4	.906	1	0	3	.003	1	007	15
180		14	min	-971.205	3	.516	15	-63.531	4	0	1	223	4	002	4
181		15		1105.15	<u> </u>	2.089	4	.906	1	0	3	.004	_ 4 _	002	15
		10									1		4		
182		16	min		3	.514	15	-63.892	4	0	_	241		008	15
183		16		1105.566	1	2.08	4	.906	1	0	3	.004	1_1	002	15
184		17		<u>-970.581</u>	3	.512	15	-64.252	4	0	1	259	4_	009	4
185		17		1105.982	1	2.072	4	.906	1	0	3	.004	1_1	002	15
186		40		-970.269	3	.51	15	-64.613	4	0	1	277	4_	01	4
187		18		1106.398	1	2.063	4	.906	1	0	3	.004	1_	003	15
188		40		-969.957	3	.508	15	-64.973	4	0	1	295	4	01	4
189		19	max	1106.814	_1_	2.054	4	.906	_1_	0	3	.005	<u>1</u>	003	15

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

190	1 4 3 15 7 4 2 12 3 2 12 2 02 3 15 03 6 01 15 06 6 02 15 09 6 02 15 1 6 03 15 1 6
192	3 15 7 4 2 12 3 2 12 2 02 3 15 6 01 15 06 6 02 15 08 6 02 15 1 6 03 15 1 6 03 15 1 6 03 15
193	7 4 2 12 3 2 12 2 02 3 15 03 6 01 15 06 6 02 15 08 6 02 15 109 6 02 15 1 6 03 15
194	2 12 3 2 12 2 02 3 15 03 6 01 15 06 6 02 15 08 6 02 15 09 6 02 15 1 6 03 15 1 6
195	3 2 12 2 02 3 15 03 6 01 15 06 6 02 15 08 6 02 15 09 6 02 15 1 6 03 15 1 6
196	12 2 3 15 3 6 01 15 06 6 6 02 15 08 6 02 15 09 6 02 15 15 15 16 03 15 15 15 15 15 15 15 15 15 15 15 15 15
197	2 02 3 15 03 6 01 15 06 6 02 15 08 6 02 15 09 6 02 15 15 16 03 15 15 16 16 17 18 18 18 18 18 18 18 18 18 18
198	02 3 15 03 6 01 15 06 6 02 15 08 6 02 15 09 6 02 15 1 6 03 15 1 6 03 15 1 5
199	15 03 6 01 15 06 6 02 15 08 6 02 15 09 6 02 15 1 6 03 15 1 6
200	03 6 01 15 06 6 02 15 08 6 02 15 09 6 02 15 1 6 03 15 1 6
201	01 15 06 6 02 15 08 6 02 15 09 6 02 15 1 6 03 15 1 6 03 15
202	06 6 02 15 08 6 02 15 09 6 02 15 1 6 03 15 1 6
203	02 15 08 6 02 15 09 6 02 15 1 6 03 15 1 6 03 15
204	08 6 02 15 09 6 02 15 1 6 03 15 1 6
205 8 max 385.907 2 3.012 4 .907 4 0 12 0 1 00 206 min -516.781 3 .722 15 .01 12 0 4 009 5 00 207 9 max 385.737 2 2.137 4 1.516 4 0 12 0 1 00 208 min -516.908 3 .516 15 .01 12 0 4 009 5 00 209 10 max 385.567 2 1.263 4 2.125 4 0 12 0 1 00 210 min -517.036 3 .311 15 .01 12 0 4 008 5 0 211 11 max 385.396 2 .399 2 2.733 4 0 12 .0	15 19 6 12 15 1 6 13 15 1 6 13 15
Decoration Color Color	09 6 02 15 1 6 03 15 1 6
207 9 max 385.737 2 2.137 4 1.516 4 0 12 0 1 00 208 min -516.908 3 .516 15 .01 12 0 4 009 5 0 209 10 max 385.567 2 1.263 4 2.125 4 0 12 0 1 00 210 min -517.036 3 .311 15 .01 12 0 4 008 5 0 211 11 max 385.396 2 .399 2 2.733 4 0 12 .001 1 00 4 008 5 0 213 12 max 385.226 2 1 15 3.342 4 0 12 .001 1 0 214 min -517.292 3 487 6 <t< td=""><td>15 1 6 03 15 1 6 03 15</td></t<>	15 1 6 03 15 1 6 03 15
207 9 max 385.737 2 2.137 4 1.516 4 0 12 0 1 00 208 min -516.908 3 .516 15 .01 12 0 4 009 5 0 209 10 max 385.567 2 1.263 4 2.125 4 0 12 0 1 00 210 min -517.036 3 .311 15 .01 12 0 4 008 5 0 211 11 max 385.396 2 .399 2 2.733 4 0 12 .001 1 00 212 min -517.164 3 .037 12 .01 12 0 4 007 5 0 213 12 max 385.226 2 1 15 3.342 4 0 12	1 6 03 15 1 6 03 15
208 min -516.908 3 .516 15 .01 12 0 4 009 5 0 209 10 max 385.567 2 1.263 4 2.125 4 0 12 0 1 00 210 min -517.036 3 .311 15 .01 12 0 4 008 5 0 211 11 max 385.396 2 .399 2 2.733 4 0 12 .001 1 00 212 min -517.164 3 .037 12 .01 12 0 4 007 5 0 212 min -517.164 3 .037 12 .01 12 0 4 007 5 0 213 12 max 385.226 2 1 15 3.342 4 0 12 .001	1 6 03 15 1 6 03 15
209 10 max 385.567 2 1.263 4 2.125 4 0 12 0 1 00 210 min -517.036 3 .311 15 .01 12 0 4 008 5 0 211 11 max 385.396 2 .399 2 2.733 4 0 12 .001 1 00 212 min -517.164 3 .037 12 .01 12 0 4 007 5 0 213 12 max 385.226 2 1 15 3.342 4 0 12 .001 1 00 214 min -517.292 3 487 6 .01 12 0 4 006 5 0 215 13 max 385.056 2 306 15 3.951 4 0 12	03 15 1 6 03 15
210 min -517.036 3 .311 15 .01 12 0 4 008 5 0 211 11 max 385.396 2 .399 2 2.733 4 0 12 .001 1 001 1 001 1 001 1 001 1 001 1 001 1 007 5 007 5 007 5 007 5 007 5 007 5 007 2 001 1 1 .001 1 007 5 007 5 007 2 001 1 001 1 001 1 001 1 001 1 001 1 001 1 001 1 001 1 001 1 001 1 001 1 001 1 001 1 001 1 001 1 001	1 6 3 15
211 11 max 385.396 2 .399 2 2.733 4 0 12 .001 1 007 5 0 212 min -517.164 3 .037 12 .01 12 0 4 007 5 0 213 12 max 385.226 2 1 15 3.342 4 0 12 .001 1 00 214 min -517.292 3 487 6 .01 12 0 4 006 5 0 215 13 max 385.056 2 306 15 3.951 4 0 12 .001 1 00 216 min -517.419 3 -1.362 6 .01 12 0 4 004 5 0 217 14 max 384.885 2 512 15 4.56 4 0 12 .001 1 00 218 min -517.547	3 15
212 min -517.164 3 .037 12 .01 12 0 4 007 5 007 213 12 max 385.226 2 1 15 3.342 4 0 12 .001 1 006 5 007 2 006 5 006 5 006 5 006 5 006 5 006 5 006 5 006 5 006 5 006 5 007 2 001 1 2 0 4 006 5 007 2 001 1 2 0 4 006 5 007 2 001 1 2 0 4 004 5 007 2 1 1 .001 1 2 .001 1 2 .001 1 2 .001 1 2 .001 1 2 .001 1	
213 12 max 385.226 2 1 15 3.342 4 0 12 .001 1 006 5 00 214 min -517.292 3 487 6 .01 12 0 4 006 5 00 215 13 max 385.056 2 306 15 3.951 4 0 12 .001 1 00 216 min -517.419 3 -1.362 6 .01 12 0 4 004 5 00 217 14 max 384.885 2 512 15 4.56 4 0 12 .001 1 00 218 min -517.547 3 -2.236 6 .01 12 0 4 002 5 0 219 15 max 384.715 2 717 15 5.168 4 0 12 .001 1 00 220 min -517.675 </td <td>2 6</td>	2 6
214 min -517.292 3 487 6 .01 12 0 4 006 5 00 215 13 max 385.056 2 306 15 3.951 4 0 12 .001 1 00 216 min -517.419 3 -1.362 6 .01 12 0 4 004 5 0 217 14 max 384.885 2 512 15 4.56 4 0 12 .001 1 00 218 min -517.547 3 -2.236 6 .01 12 0 4 002 5 0 219 15 max 384.715 2 717 15 5.168 4 0 12 .001 1 00 220 min -517.675 3 -3.111 6 .01 12 0 4 0	
215 13 max 385.056 2 306 15 3.951 4 0 12 .001 1 00 216 min -517.419 3 -1.362 6 .01 12 0 4 004 5 0 217 14 max 384.885 2 512 15 4.56 4 0 12 .001 1 00 218 min -517.547 3 -2.236 6 .01 12 0 4 002 5 0 219 15 max 384.715 2 717 15 5.168 4 0 12 .001 1 00 220 min -517.675 3 -3.111 6 .01 12 0 4 0 12 .001 221 16 max 384.545 2 923 15 5.777 4 0 12 .003 4 00 222 min -517.803 3 -3.985 </td <td></td>	
216 min -517.419 3 -1.362 6 .01 12 0 4 004 5 00 217 14 max 384.885 2 512 15 4.56 4 0 12 .001 1 00 218 min -517.547 3 -2.236 6 .01 12 0 4 002 5 0 219 15 max 384.715 2 717 15 5.168 4 0 12 .001 1 00 220 min -517.675 3 -3.111 6 .01 12 0 4 0 12 .001 221 16 max 384.545 2 923 15 5.777 4 0 12 .003 4 00 222 min -517.803 3 -3.985 6 .01 12 0 4 0	
217 14 max 384.885 2512 15 4.56 4 0 12 .001 100 218 min -517.547 3 -2.236 6 .01 12 0 4002 50 219 15 max 384.715 2717 15 5.168 4 0 12 .001 100 220 min -517.675 3 -3.111 6 .01 12 0 4 0 12 .003 400 221 16 max 384.545 2923 15 5.777 4 0 12 .003 400 222 min -517.803 3 -3.985 6 .01 12 0 4 0 12 .006 400 223 17 max 384.374 2 -1.128 15 6.386 4 0 12 .006 400 224 min -517.93 3 -4.859 6 .01 12 0 4 0 12 .009 4 0 225 18 max 384.204 2 -1.334 15 6.994 4 0 12 .009 4 0 226 min -518.058 3 -5.734 6 .01 12 0 4 0 12 .013 4 0 227 19 max 384.034 2 -1.539 15 7.603 4 0 12 .013 0 12 .013 4 0	
218 min -517.547 3 -2.236 6 .01 12 0 4 002 5 0 219 15 max 384.715 2 717 15 5.168 4 0 12 .001 1 00 220 min -517.675 3 -3.111 6 .01 12 0 4 0 12 .00 221 16 max 384.545 2 923 15 5.777 4 0 12 .003 4 00 222 min -517.803 3 -3.985 6 .01 12 0 4 0 12 .00 223 17 max 384.374 2 -1.128 15 6.386 4 0 12 .006 4 00 224 min -517.93 3 -4.859 6 .01 12 0 4 0	
219 15 max 384.715 2 717 15 5.168 4 0 12 .001 1 00 220 min -517.675 3 -3.111 6 .01 12 0 4 0 12 .00 221 16 max 384.545 2 923 15 5.777 4 0 12 .003 4 00 222 min -517.803 3 -3.985 6 .01 12 0 4 0 12 .00 223 17 max 384.374 2 -1.128 15 6.386 4 0 12 .006 4 00 224 min -517.93 3 -4.859 6 .01 12 0 4 0 12 .00 225 18 max 384.204 2 -1.334 15 6.994 4 0 12 .009 4 0 226 min -518.058 3 -5.734	
220 min -517.675 3 -3.111 6 .01 12 0 4 0 12 00 221 16 max 384.545 2 923 15 5.777 4 0 12 .003 4 00 222 min -517.803 3 -3.985 6 .01 12 0 4 0 12 .00 223 17 max 384.374 2 -1.128 15 6.386 4 0 12 .006 4 00 224 min -517.93 3 -4.859 6 .01 12 0 4 0 12 00 225 18 max 384.204 2 -1.334 15 6.994 4 0 12 .009 4 0 226 min -518.058 3 -5.734 6 .01 12 0 4 0 12 00 227 19 max 384.034 2 -1.539 15 7.603 4 0 12 .013 4 0	
221 16 max 384.545 2 923 15 5.777 4 0 12 .003 4 00 222 min -517.803 3 -3.985 6 .01 12 0 4 0 12 00 223 17 max 384.374 2 -1.128 15 6.386 4 0 12 .006 4 00 224 min -517.93 3 -4.859 6 .01 12 0 4 0 12 00 225 18 max 384.204 2 -1.334 15 6.994 4 0 12 .009 4 0 226 min -518.058 3 -5.734 6 .01 12 0 4 0 12 00 227 19 max 384.034 2 -1.539 15 7.603 4 0 12 .013 4 0	
222 min -517.803 3 -3.985 6 .01 12 0 4 0 12 00 223 17 max 384.374 2 -1.128 15 6.386 4 0 12 .006 4 00 224 min -517.93 3 -4.859 6 .01 12 0 4 0 12 00 225 18 max 384.204 2 -1.334 15 6.994 4 0 12 .009 4 0 226 min -518.058 3 -5.734 6 .01 12 0 4 0 12 00 227 19 max 384.034 2 -1.539 15 7.603 4 0 12 .013 4 0	
223 17 max 384.374 2 -1.128 15 6.386 4 0 12 .006 4 00 224 min -517.93 3 -4.859 6 .01 12 0 4 0 12 00 225 18 max 384.204 2 -1.334 15 6.994 4 0 12 .009 4 0 226 min -518.058 3 -5.734 6 .01 12 0 4 0 12 00 227 19 max 384.034 2 -1.539 15 7.603 4 0 12 .013 4 0	
224 min -517.93 3 -4.859 6 .01 12 0 4 0 12 00 225 18 max 384.204 2 -1.334 15 6.994 4 0 12 .009 4 0 226 min -518.058 3 -5.734 6 .01 12 0 4 0 12 00 227 19 max 384.034 2 -1.539 15 7.603 4 0 12 .013 4 0	
225 18 max 384.204 2 -1.334 15 6.994 4 0 12 .009 4 0 226 min -518.058 3 -5.734 6 .01 12 0 4 0 12 00 227 19 max 384.034 2 -1.539 15 7.603 4 0 12 .013 4 0	
226 min -518.058 3 -5.734 6 .01 12 0 4 0 12 00 227 19 max 384.034 2 -1.539 15 7.603 4 0 12 .013 4 0	
227	15
	1
228 min -518.186 3 -6.608 6 .01 12 0 4 0 12 0	1
229 M4 1 max 1177.604 1 0 1587 12 0 1 .008 4 0	1
230 min -170.254 3 0 1 -270.895 4 0 1 0 12 0	1
231 2 max 1177.775 1 0 1587 12 0 1 0 12 0	1
232 min -170.126 3 0 1 -271.043 4 0 1023 4 0	1
233 3 max 1177.945 1 0 1587 12 0 1 0 12 0	1
234 min -169.998 3 0 1 -271.191 4 0 1055 4 0	1
235 4 max 1178.115 1 0 1587 12 0 1 0 12 0	1
236 min -169.871 3 0 1 -271.338 4 0 1086 4 0	1
237 5 max 1178.286 1 0 1587 12 0 1 0 12 0	1
238 min -169.743 3 0 1 -271.486 4 0 1117 4 0	1
239 6 max 1178.456 1 0 1587 12 0 1 0 12 0	1
240 min -169.615 3 0 1 -271.634 4 0 1148 4 0	1
241 7 max 1178.626 1 0 1587 12 0 1 0 12 0	1
242 min -169.487 3 0 1 -271.781 4 0 1179 4 0	1
243 8 max 1178.797 1 0 1587 12 0 1 0 12 0	1
244 min -169.359 3 0 1 -271.929 4 0 1211 4 0	1
245 9 max 1178.967 1 0 1587 12 0 1 0 12 0	
246 min -169.232 3 0 1 -272.077 4 0 1242 4 0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
247		10	max	1179.137	1	0	1	587	12	0	1	0	12	0	1
248			min	-169.104	3	0	1	-272.224	4	0	1	273	4	0	1
249		11	max	1179.308	1	0	1	587	12	0	1	0	12	0	1
250			min	-168.976	3	0	1	-272.372	4	0	1	304	4	0	1
251		12	max	1179.478	1	0	1	587	12	0	1	0	12	0	1
252			min	-168.848	3	0	1	-272.519	4	0	1	336	4	0	1
253		13	max	1179.648	1	0	1	587	12	0	1	0	12	0	1
254			min	-168.721	3	0	1	-272.667	4	0	1	367	4	0	1
255		14	max	1179.819	1	0	1	587	12	0	1	0	12	0	1
256			min	-168.593	3	0	1	-272.815	4	0	1	398	4	0	1
257		15	max	1179.989	1	0	1	587	12	0	1	0	12	0	1
258			min	-168.465	3	0	1	-272.962	4	0	1	43	4	0	1
259		16	max	1180.159	1	0	1	587	12	0	1	0	12	0	1
260			min	-168.337	3	0	1	-273.11	4	0	1	461	4	0	1
261		17	max		1	0	1	587	12	0	1	001	12	0	1
262			min	-168.21	3	0	1	-273.258	4	0	1	492	4	0	1
263		18	max		1	0	1	587	12	0	1	001	12	0	1
264				-168.082	3	0	1	-273.405	4	0	1	524	4	0	1
265		19		1180.671	1	0	1	587	12	0	1	001	12	0	1
266			min	-167.954	3	0	1	-273.553	4	0	1	555	4	0	1
267	M6	1		3440.295	1	2.428	2	0	1	0	1	0	4	0	1
268			min	-3129.045	3	.31	12	-59.48	4	0	4	0	1	0	1
269		2	max	3440.711	1	2.422	2	0	1	0	1	0	1	0	12
270		_	min	-3128.733	3	.306	12	-59.841	4	0	4	017	4	0	2
271		3		3441.127	1	2.415	2	0	1	0	1	0	1	0	12
272			min	-3128.421	3	.303	12	-60.201	4	0	4	034	4	001	2
273		4	1	3441.543	1	2.408	2	0	1	0	1	0	1	0	12
274			min	-3128.109	3	.3	12	-60.562	4	0	4	05	4	002	2
275		5		3441.959	1	2.401	2	0	1	0	1	0	1	0	12
276			min	-3127.797	3	.296	12	-60.922	4	0	4	068	4	003	2
277		6		3442.375	1	2.394	2	0	1	0	1	0	1	0	12
278			min	-3127.485	3	.293	12	-61.283	4	0	4	085	4	003	2
279		7		3442.791	1	2.388	2	0	1	0	1	0	1	0	12
280			min	-3127.173	3	.289	12	-61.643	4	0	4	102	4	004	2
281		8		3443.206	1	2.381	2	0	1	0	1	0	1	0	12
282			min	-3126.861	3	.286	12	-62.004	4	0	4	119	4	005	2
283		9		3443.622	1	2.374	2	0	1	0	1	0	1	0	12
284			min	-3126.549	3	.283	12	-62.364	4	0	4	137	4	005	2
285		10		3444.038	1	2.367	2	0	1	0	1	0	1	0	12
286		10	min		3	.279	12	-62.725	4	0	4	154	4	006	2
287		11		3444.454	1	2.36	2	0	1	0	1	0	1	0	12
288			min		3	.276	12	-63.085	4	0	4	172	4	007	2
289		12		3444.87	1	2.354	2	0	1	0	1	0	1	0	12
290			min		3	.272	12	-63.446	4	0	4	19	4	007	2
291		13		3445.286	1	2.347	2	0	1	0	1	0	1	0	12
292		10	min	-3125.302	3	.269	12	-63.806	4	0	4	207	4	008	2
293		14		3445.702	1	2.34	2	0	1	0	1	0	1	001	12
294				-3124.99	3	.266	12	-64.167	4	0	4	225	4	009	2
295		15		3446.118	1	2.333	2	0	1	0	1	0	1	001	12
296			min		3	.262	12	-64.527	4	0	4	243	4	009	2
297		16		3446.533	1	2.327	2	0	1	0	1	0	1	001	12
298			min		3	.259	12	-64.888	4	0	4	262	4	01	2
299		17		3446.949	1	2.32	2	0	1	0	1	0	1	001	12
300			min		3	.255	12	-65.248	4	0	4	28	4	011	2
301		18		3447.365	1	2.313	2	0	1	0	1	0	1	001	12
302		10	min		3	.252	12	-65.609	4	0	4	298	4	011	2
303		19		3447.781	1	2.306	2	0	1	0	1	0	1	001	12
JUJ		13	πιαλ	וטו.ודדט		2.000		U		U				<u>001</u>	14

Model Name

Schletter, Inc. HCV

. : Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
304			min	-3123.43	3	.249	12	-65.969	4	0	4	317	4	012	2
305	M7	1	max	1485.025	2	9.141	6	0	1	0	1	0	1	.012	2
306			min	-1576.74	3	2.145	15	-3.631	5	0	4	005	4	.001	12
307		2	max	1484.854	2	8.267	6	0	1	0	1	0	1_	.009	2
308			min	-1576.867	3	1.939	15	-3.023	5	0	4	007	4	0	3
309		3	max	1484.684	2	7.392	6	0	1	0	1	0	1	.005	2
310			min	-1576.995	3	1.734	15	-2.414	5	0	4	008	4	002	3
311		4	max	1484.514	2	6.518	6	0	1	0	1	0	1	.003	2
312			min	-1577.123	3	1.528	15	-1.805	5	0	4	009	4	004	3
313		5	max	1484.343	2	5.643	6	0	1	0	1	0	1	0	2
314			min	-1577.251	3	1.323	15	-1.197	5	0	4	01	4	005	3
315		6	max	1484.173	2	4.769	6	0	1	0	1	0	1	001	15
316			min	-1577.378	3	1.117	15	588	5	0	4	01	4	007	3
317		7	max	1484.003	2	3.895	6	.031	4	0	1	0	1	002	15
318			min	-1577.506	3	.912	15	0	1	0	4	01	4	008	4
319		8	max	1483.832	2	3.02	6	.639	4	0	1	0	1	002	15
320			min	-1577.634	3	.706	15	0	1	0	4	01	4	009	4
321		9	max	1483.662	2	2.146	6	1.248	4	0	1	0	1	002	15
322			min	-1577.762	3	.5	15	0	1	0	4	01	4	011	4
323		10	max	1483.491	2	1.402	2	1.857	4	0	1	0	1	003	15
324			min	-1577.89	3	.165	12	0	1	0	4	009	4	011	4
325		11	max	1483.321	2	.721	2	2.466	4	0	1	0	1	003	15
326			min	-1578.017	3	316	3	0	1	0	4	008	4	012	4
327		12	max	1483.151	2	.039	2	3.074	4	0	1	0	1	003	15
328			min	-1578.145	3	827	3	0	1	0	4	007	4	012	4
329		13	max	1482.98	2	322	15	3.683	4	0	1	0	1	003	15
330			min	-1578.273	3	-1.352	4	0	1	0	4	005	4	011	4
331		14	max	1482.81	2	527	15	4.292	4	0	1	0	1	002	15
332			min	-1578.401	3	-2.227	4	0	1	0	4	003	4	01	4
333		15	max	1482.64	2	733	15	4.9	4	0	1	0	1	002	15
334			min	-1578.528	3	-3.101	4	0	1	0	4	001	4	009	4
335		16	max	1482.469	2	938	15	5.509	4	0	1	.001	5	002	15
336			min	-1578.656	3	-3.975	4	0	1	0	4	0	1	008	4
337		17		1482.299	2	-1.144	15	6.118	4	0	1	.004	5	001	15
338			min	-1578.784	3	-4.85	4	0	1	0	4	0	1	005	4
339		18	max	1482.129	2	-1.35	15	6.726	4	0	1	.007	5	0	15
340			min	-1578.912	3	-5.724	4	0	1	0	4	0	1	003	4
341		19	max	1481.958	2	-1.555	15	7.335	4	0	1	.011	5	0	1
342			min	-1579.039	3	-6.599	4	0	1	0	4	0	1	0	1
343	M8	1	max	3268.434	1	0	1	0	1	0	1	.006	5	0	1
344			min	-605.398	3	0	1	-260.932	4	0	1	0	1	0	1
345		2		3268.604	1	0	1	0	1	0	1	0	1	0	1
346			min		3	0	1	-261.08	4	0	1	024	4	0	1
347		3	max	3268.774	1	0	1	0	1	0	1	0	1	0	1
348			min		3	0	1	-261.228	4	0	1	054	4	0	1
349		4	max	3268.945	1	0	1	0	1	0	1	0	1	0	1
350				-605.015	3	0	1	-261.375	4	0	1	084	4	0	1
351		5		3269.115	1	0	1	0	1	0	1	0	1	0	1
352			min		3	0	1	-261.523	4	0	1	114	4	0	1
353		6		3269.285	1	0	1	0	1	0	1	0	1	0	1
354				-604.759	3	0	1	-261.671	4	0	1	144	4	0	1
355		7		3269.456		0	1	0	1	0	1	0	1	0	1
356				-604.631	3	0	1	-261.818		0	1	174	4	0	1
357		8		3269.626	1	0	1	0	1	0	1	0	1	0	1
358		Ĭ		-604.504	3	0	1	-261.966		0	1	204	4	0	1
359		9		3269.796	1	0	1	0	1	0	1	0	1	0	1
360				-604.376		0	1	-262.114		0	1	234	4	0	1
									•	_					

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

004	Member	Sec	1	Axial[lb]						Torque[k-ft]	LC	1 -	LC	_	
361		10		3269.967	1	0	1	0	1_1	0	1	0	1	0	1
362		4.4	min	-604.248	3	0	1	-262.261	4_	0	1_1	264	4	0	1
363		11		3270.137	1	0	1	0	1_1	0	1	0	1_4	0	1
364		40	min	-604.12	3	0	1	-262.409	4	0	1	294	4	0	1
365		12		3270.307	1	0	1	0 -262.556	<u>1</u> 4	0	1	0	1	0	1
366		12		-603.993	3	0	•			0		324	1	0	-
367		13		3270.478	1	0	1	0	1_1	0	1	0	_	0	1
368		4.4	min	-603.865	3	0	1	-262.704	4	0	1_	355	4	0	1
369		14		3270.648	1_	0	1	0	1_	0	1_	0	1	0	1
370		4.5	min	-603.737	3	0	1	-262.852	<u>4</u> 1	0	1_	385	1	0	1
371		15		3270.818	1	0	1	0		0	1	0		0	_
372		4.0	min	-603.609	3_	0	1	-262.999	4	0	1_	415	4	0	1
373		16		3270.989	1_	0	1	0	1_1	0	1_	0	1	0	1
374		47		-603.482	3	0	1	-263.147	4	0	1_	445	4	0	1
375		17		3271.159	1_	0	1	0	1_	0	1_	0	1	0	1
376		40	min	-603.354	3	0	1	-263.295	4	0	1_	475	4	0	1
377		18	max		1_	0	1	0	1	0	1	0	1	0	1
378		40	min	-603.226	3	0	1	-263.442	4	0	1_	506	4	0	1
379		19	max	3271.5	1_	0	1	0	1	0	1	0	1	0	1
380	N440	4	min	-603.098	3	0	1	-263.59	4	0	1_	536	4	0	1
381	M10	1_	max		1_	2.103	6	044	12	0	_1_	0	4	0	1
382			min	-975.26	3_	.471	15	-59.323	4	0	5	0	3	0	1_
383		2		1099.744	_1_	2.095	6	044	12	0	_1_	0	10	0	15
384				-974.948	3	.469	15	-59.683	4_	0	5	017	4	0	6
385		3	max	1100.16	1_	2.086	6	044	12	0	_1_	0	12	0	15
386			min	-974.636	3	.467	15	-60.044	4	0	5	033	4	001	6
387		4	max	1100.575	_1_	2.077	6	044	12	0	_1_	0	12	0	15
388			min	-974.324	3	.465	15	-60.404	4_	0	5	05	4	002	6
389		5		1100.991	_1_	2.068	6	044	12	0	1_	0	12	0	15
390			min	-974.012	3	.463	15	-60.764	4	0	5	067	4	002	6
391		6		1101.407	_1_	2.06	6	044	12	0	_1_	0	12	0	15
392			min	-973.7	3_	.461	15	-61.125	4	0	5	084	4	003	6
393		7		1101.823	_1_	2.051	6	044	12	0	_1_	0	12	0	15
394				-973.388	3	.459	15	-61.485	4	0	5	102	4	003	6
395		8		1102.239	_1_	2.042	6	044	12	0	_1_	0	12	0	15
396				-973.077	3	.457	15	-61.846	4	0	5	119	4	004	6
397		9	max	1102.655	_1_	2.034	6	044	12	0	_1_	0	12	001	15
398			min	-972.765	3	.455	15	-62.206	4	0	5	136	4	005	6
399		10		1103.071	1_	2.025	6	044	12	0	_1_	0	12	001	15
400				-972.453	3	.452	15	-62.567	4	0	5	154	4	005	6
401		11		1103.487	_1_	2.016	6	044	12	0	_1_	0	12	001	15
402				-972.141	3	.45	15	-62.927	4	0	5	171	4	006	6
403		12		1103.902	_1_	2.007	6	044	12	0	_1_	0	12	001	15
404				-971.829	3	.448	15	-63.288	4	0	5	189	4	006	6
405		13		1104.318	_1_	1.999	6	044	12	0	1	0	12	002	15
406				-971.517	3	.446	15	-63.648	4	0	5	207	4	007	6
407		14		1104.734	_1_	1.99	6	044	12	0	_1_	0	12	002	15
408				-971.205	3	.444	15	-64.009	4	0	5	225	4	007	6
409		15		1105.15	1_	1.981	6	044	12	0	_1_	0	12	002	15
410				-970.893	3	.442	15	-64.369	4	0	5	243	4	008	6
411		16		1105.566	_1_	1.973	6	044	12	0	1	0	12	002	15
412			min	-970.581	3	.44	15	-64.73	4	0	5	261	4	009	6
413		17	max	1105.982	1	1.964	6	044	12	0	1	0	12	002	15
414				-970.269	3	.438	15	-65.09	4	0	5	279	4	009	6
415		18		1106.398	1	1.955	6	044	12	0	1	0	12	002	15
416				-969.957	3	.436	15	-65.451	4	0	5	297	4	01	6
417		19	max	1106.814	1	1.946	6	044	12	0	1	0	12	002	15

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

110	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]				z-z Mome	
418	1111	_	min		3	.434	15	-65.811	4	0	5_	316	4	01	6
419	M11	1	max	387.1	2	9.069	6	01	12	0	1_	0	12	.01	6
420			min	-515.886	3	2.118	15	-3.464	4	0	4	005	4	.002	15
421		2	max	386.93	2	8.195	6	01	12	0	1	0	12	.006	6
422			min	-516.014	3	1.912	15	-2.855	4	0	4_	007	4	.001	15
423		3	max	386.759	2	7.32	6	01	12	0	1	0	12	.003	2
424			min	-516.142	3	1.707	15	-2.246	4	0	4	008	4	0	12
425		4	max	386.589	2	6.446	6	01	12	0	1_	0	12	0	2
426			min	-516.27	3	1.501	15	-1.638	4	0	4	009	4	002	3
427		5	max	386.419	2	5.571	6	01	12	0	_1_	0	12	0	15
428			min	-516.397	3	1.296	15	-1.029	4_	0	4	01	4	004	4
429		6	max	386.248	2	4.697	6	01	12	0	_1_	0	12	002	15
430			min	-516.525	3	1.09	15	42	4	0	4	01	4	006	4
431		7	max	386.078	2	3.822	6	.215	5	0	_1_	0	12	002	15
432			min	-516.653	3	.885	15	21	1	0	4	01	4	008	4
433		8	max	385.907	2	2.948	6	.824	5	0	1	0	12	002	15
434			min	-516.781	3	.679	15	21	1	0	4	01	4	01	4
435		9	max	385.737	2	2.074	6	1.432	5	0	1	0	12	003	15
436			min	-516.908	3	.473	15	21	1	0	4	009	4	011	4
437		10	max	385.567	2	1.199	6	2.041	5	0	1	0	12	003	15
438			min	-517.036	3	.268	15	21	1	0	4	008	4	012	4
439		11	max	385.396	2	.399	2	2.65	5	0	1	0	12	003	15
440			min	-517.164	3	.037	12	21	1	0	4	007	4	012	4
441		12	max	385.226	2	143	15	3.259	5	0	1	0	12	003	15
442			min	-517.292	3	551	4	21	1	0	4	006	4	012	4
443		13	max	385.056	2	349	15	3.867	5	0	1	0	12	003	15
444			min	-517.419	3	-1.425	4	21	1	0	4	004	4	012	4
445		14	max	384.885	2	554	15	4.476	5	0	1	0	12	003	15
446				-517.547	3	-2.3	4	21	1	0	4	002	4	011	4
447		15	max	384.715	2	76	15	5.085	5	0	1	0	5	002	15
448		10	min	-517.675	3	-3.174	4	21	1	0	4	001	1	009	4
449		16	max	384.545	2	965	15	5.693	5	0	1	.003	5	002	15
450		10	min	-517.803	3	-4.049	4	21	1	0	4	002	1	008	4
451		17	max	384.374	2	-1.171	15	6.302	5	0	1	.002	5	001	15
452		17	min	-517.93	3	-4.923	4	21	1	0	4	002	1	005	4
453		18	max	384.204	2	-1.376	15	6.911	5	0	1	.002	5	0	15
454		10	min	-518.058	3	-5.798	4	21	1	0	4	002	1	003	4
		19		384.034	2	-1.582	15	7.52	5	0	1	.012	5		1
455		19	max		3	-6.672			<u> </u>	_			1	0	1
456	N440	4		-518.186			4	21		0	4	002		0	
457	M12	1		1177.604	1_	0	1	12.717	1_1	0	1	.007	5	0	1
458				-170.254	3_	0	1	-264.151	4_	0	1_	001	1	0	1
459		2		1177.775	1	0	1	12.717	11	0	1	0	1	0	1
460		_		-170.126	3	0	1	-264.299	4_	0	1_	023	4	0	1
461		3		1177.945	1_	0	1	12.717	1_	0	1_	.002	1	0	1
462				-169.998	3	0	1	-264.447	4_	0	1_	054	4	0	1
463		4		1178.115	1_	0	1	12.717	_1_	0	1_	.003	1	0	1
464				-169.871	3	0	1	-264.594	4	0	1_	084	4	0	1
465		5		1178.286	_1_	0	1_	12.717	_1_	0	_1_	.005	1_	0	1
466				-169.743	3	0	1	-264.742	4	0	1	114	4	0	1
467		6		1178.456	_1_	0	1	12.717	_1_	0	1_	.006	1	0	1
468				-169.615	3	0	1	-264.89	4	0	1_	145	4	0	1
469		7		1178.626	1_	0	1	12.717	1_	0	1	.008	1	0	1
470				-169.487	3	0	1	-265.037	4	0	1_	175	4	0	1
471		8	max	1178.797	1	0	1	12.717	1	0	1	.009	1_	0	1
472			min	-169.359	3	0	1	-265.185	4	0	1	206	4	0	1
473		9	max	1178.967	1	0	1	12.717	1	0	1	.011	1	0	1
474			min	-169.232	3	0	1	-265.332	4	0	1	236	4	0	1

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10		1179.137	_1_	0	1	12.717	1	0	1	.012	1_	0	1
476			min	-169.104	3	0	1	-265.48	4	0	1	267	4	0	1
477		11	max	1179.308	<u>1</u>	0	1	12.717	1	0	1	.014	1	0	1_
478			min		3	0	1	-265.628	4	0	1	297	4	0	1
479		12	max	1179.478	_1_	0	1	12.717	1	0	1	.015	1	0	1
480			min	-168.848	3	0	1	-265.775	4	0	1	328	4	0	1
481		13	max	1179.648	1_	0	1	12.717	1	0	1	.016	1	0	1
482			min	-168.721	3	0	1	-265.923	4	0	1	358	4	0	1
483		14	max	1179.819	1	0	1	12.717	1	0	1	.018	1	0	1
484			min	-168.593	3	0	1	-266.071	4	0	1	389	4	0	1
485		15		1179.989	1	0	1	12.717	1	0	1	.019	1	0	1
486			min	-168.465	3	0	1	-266.218	4	0	1	419	4	0	1
487		16		1180.159	1	0	1	12.717	1	0	1	.021	1	0	1
488			min	-168.337	3	0	1	-266.366	4	0	1	45	4	0	1
489		17	max	1180.33	1	0	1	12.717	1	0	1	.022	1	0	1
490			min	-168.21	3	0	1	-266.514	4	Ö	1	48	4	0	1
491		18	max	1180.5	1	0	1	12.717	1	0	1	.024	1	0	1
492		10	min	-168.082	3	0	1	-266.661	4	0	1	511	4	0	1
493		19		1180.671	1	0	1	12.717	1	0	1	.025	1	0	1
494		19	min	-167.954	3	0	1	-266.809	4	0	1	542	4	0	1
495	M1	1		168.67	<u> </u>	532.823	3	55.613	5		1	.214	1	0	15
	IVI I		max				1		1	0	_				1
496		2	min	-13.86	5_	-475.27		-76.595		0	3	097	5	014	_
497		2	max	169.246	1	531.636	3	57.073	5	0	1	.167	1	.281	1
498			min	-13.591	5	-476.853	1	<u>-76.595</u>	1	0	3	062	5	332	3
499		3	max	330.584	3_	556.181	1	1.297	5	0	3	.119	1	.566	1
500			min	-224.245	2	-393.223	3	-75.945	1_	0	1	027	5	652	3
501		4	max	331.016	3	554.598	1	2.757	5	0	3	.072	1	.221	1
502			min	-223.669	2	-394.41	3	-75.945	1	0	1	026	5	407	3
503		5	max	331.448	3	553.015	1	4.217	5	0	3	.025	1	005	15
504			min	-223.093	2	-395.597	3	-75.945	1	0	1	024	5	162	3
505		6	max	331.88	_3_	551.432	1	5.678	5	0	3	001	12	.084	3
506			min	-222.517	2	-396.785	3	-75.945	1	0	1	025	4	465	1
507		7	max	332.313	3	549.848	1	7.138	5	0	3	003	12	.331	3
508			min	-221.941	2	-397.972	3	-75.945	1	0	1	069	1	807	1
509		8	max	332.745	3	548.265	1	8.598	5	0	3	006	12	.578	3
510			min	-221.364	2	-399.16	3	-75.945	1	0	1	116	1	-1.147	1
511		9	max	343.924	3	35.288	2	52.783	5	0	9	.073	1	.676	3
512			min	-152.515	2	.475	15	-120.49	1	0	3	142	5	-1.306	1
513		10	max	344.356	3	33.705	2	54.243	5	0	9	0	10	.659	3
514			min	-151.939	2	006	5	-120.49	1	0	3	109	4	-1.318	1
515		11		344.788	3	32.121	2	55.703	5	0	9	004	12	.643	3
516			min		2	-1.977	4	-120.49	1	0	3	09	4	-1.329	1
517		12	max		3	260.249	3	151.361	5	0	1	.114	1	.561	3
518			min		5	-586.552	1	-73.163	1	0	3	234	5	-1.174	1
519		13		356.296	3	259.062	3	152.821	5	0	1	.069	1	.4	3
520			min		5	-588.135	1	-73.163	1	0	3	14	5	809	1
521		14	max		3	257.874	3	154.281	5	0	1	.023	1	.24	3
522		17	min	-94.25	5	-589.718	1	-73.163	1	0	3	044	5	444	1
523		15	max		3	256.687	3	155.741	5	0	1	.052	5	.08	3
524		13	min	-93.982	5	-591.302	1	-73.163	1	0	3	022	1	077	1
525		16				255.5	_	157.202	5		<u> </u>	.149			2
		10	max		3		3			0			5	.29	
526		17	min	-93.713	<u>5</u>	-592.885	1	-73.163	1	0	3	068	1	079	3
527		17	max		_3_	254.312	3	158.662	5	0	1	.247	5	.659	1
528		40	min		5_	-594.468	1	-73.163	1	0	3	113	1	237	3
529		18	max		5_	550.643	1	-4.007	12	0	5	.203	5	.329	1
530		4.0	min		1_	-202.821	3	-114.076		0	1_	164	1_	117	3
531		19	max	24.02	<u>5</u>	549.06	1	-4.007	12	0	5	.145	5	.01	3

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
532			min	-169.114	1	-204.009	3	-112.616	4	0	1	217	1	012	1
533	M5	11	max		1	1771.315	3	92.765	5	0	_1_	0	1	.029	1
534			min	12.016	12	-1629.299	1	0	1	0	4	204	4	0	15
535		2	max	373.191	1	1770.127	3	94.226	5	0	_1_	0	1	1.041	1
536			min	12.304	12	-1630.882	1	0	1	0	4	146	4	-1.096	3
537		3	max	1039.71	3	1583.667	1	42.373	4	0	4	0	1	2.018	1
538			min	-762.014	2	-1206.521	3	0	1	0	1_	089	4	-2.161	3
539		4	max	1040.142	3	1582.084	1	43.833	4	0	4	0	1	1.036	1
540			min	-761.438	2	-1207.708	3	0	1	0	1	062	4	-1.412	3
541		5	max	1040.574	3	1580.5	1	45.294	4	0	4	0	1	.054	1
542			min	-760.862	2	-1208.895	3	0	1	0	1	034	4	662	3
543		6	max	1041.006	3	1578.917	1	46.754	4	0	4	0	1	.089	3
544			min	-760.285	2	-1210.083	3	0	1	0	1	006	5	926	1
545		7	max	1041.438	3	1577.334	1	48.214	4	0	4	.024	4	.84	3
546			min	-759.709	2	-1211.27	3	0	1	0	1	0	1	-1.906	1
547		8	max	1041.871	3	1575.751	1	49.674	4	0	4	.054	4	1.592	3
548			min	-759.133	2	-1212.458	3	0	1	0	1_	0	1	-2.884	1
549		9	max	1059.362	3	117.681	2	173.735	4	0	_1_	0	1	1.838	3
550			min	-615.609	2	.48	15	0	1	0	1	203	4	-3.271	1
551		10	max	1059.794	3	116.098	2	175.195	4	0	_1_	0	1_	1.775	3
552			min	-615.033	2	.002	15	0	1	0	1	095	5	-3.311	1
553		11	max	1060.226	3	114.515	2	176.655	4	0	_1_	.014	4	1.713	3
554			min	-614.457	2	-1.727	6	0	1	0	1	0	1	-3.349	1
555		12	max	1077.926	3	771.72	3	206.298	4	0	_1_	0	1	1.499	3
556			min	-470.98	2	-1702.959	1	0	1	0	4	33	4	-2.979	1
557		13	max	1078.358	3	770.533	3	207.758	4	0	1	0	1	1.021	3
558			min	-470.404	2	-1704.542	1	0	1	0	4	201	4	-1.921	1
559		14	max	1078.79	3	769.345	3	209.218	4	0	_1_	0	1	.543	3
560			min	-469.827	2	-1706.125	1	0	1	0	4	072	4	863	1
561		15	max	1079.222	3	768.158	3	210.678	4	0	_1_	.058	4	.248	2
562			min	-469.251	2	-1707.708	1	0	1	0	4	0	1	0	15
563		16	max	1079.654	3	766.97	3	212.139	4	0	_1_	.19	4	1.257	1
564			min	-468.675	2	-1709.291	1	0	1	0	4	0	1	411	3
565		17	max	1080.086	3	765.783	3	213.599	4	0	_1_	.322	4	2.318	1
566			min	-468.099	2	-1710.875	1	0	1	0	4	0	1	886	3
567		18	max	-12.688	12	1879.209	1	0	1	0	4	.314	4	1.191	1
568			min	-372.303	1	-711.551	3	-35.51	5	0	1_	0	1	461	3
569		19	max	-12.4	12	1877.626	1	0	1	0	4	.293	4	.025	1
570			min	-371.727	1	-712.738	3	-34.05	5	0	1	0	1	019	3
571	<u>M9</u>	1_	max	168.67	1_	532.823	3	80.8	4	0	3	011	12	0	15
572			min	6.843	12	-475.27	1	3.881	12	0	4	214	1	014	1
573		2	max		1	531.636	3	82.26	4	0	3	008	12	.281	1
574			min	7.131	12	-476.853	1	3.881	12	0	4	167	1	332	3
575		3	max		3	556.181	1	75.945	1	0	1_	006	12	.566	1
576			min	-224.245	2	-393.223	3	3.835	12	0	3	119	1	652	3
577		4		331.016	3	554.598	1_	75.945	1	0	_1_	004	12	.221	1
578			min		2	-394.41	3	3.835	12	0	3	072	1	407	3
579		5	max		3	553.015	1	75.945	1	0	1	001	12	005	15
580			min	-223.093	2	-395.597	3	3.835	12	0	3	032	4	162	3
581		6	max		3	551.432	1	75.945	1	0	1_	.022	1	.084	3
582			min	-222.517	2	-396.785	3	3.835	12	0	3	018	5	465	1
583		7		332.313	3	549.848	1_	75.945	1_	0	1	.069	1	.331	3
584			min		2	-397.972	3	3.835	12	0	3	009	5	807	1
585		8	max		3	548.265	1	75.945	1	0	1_	.116	1	.578	3
586			min	-221.364	2	-399.16	3	3.835	12	0	3	0	15	-1.147	1
587		9	max		3	35.288	2	120.49	1	0	3	004	12	.676	3
588			min	-152.515	2	.488	15	5.868	12	0	9	167	4	-1.306	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	344.356	3	33.705	2	120.49	1	0	3	.001	1	.659	3
590			min	-151.939	2	.011	15	5.868	12	0	9	109	4	-1.318	1
591		11	max	344.788	3	32.121	2	120.49	1	0	3	.076	1	.643	3
592			min	-151.363	2	-1.869	6	5.868	12	0	9	066	5	-1.329	1
593		12	max	355.863	3	260.249	3	177.323	4	0	3	005	12	.561	3
594			min	-84.391	10	-586.552	1	3.43	12	0	1	274	4	-1.174	1
595		13	max	356.296	3	259.062	3	178.783	4	0	3	003	12	.4	3
596			min	-83.911	10	-588.135	1	3.43	12	0	1	163	4	809	1
597		14	max	356.728	3	257.874	3	180.243	4	0	3	001	12	.24	3
598			min	-83.431	10	-589.718	1	3.43	12	0	1	052	4	444	1
599		15	max	357.16	3	256.687	3	181.703	4	0	3	.06	4	.08	3
600			min	-82.951	10	-591.302	1	3.43	12	0	1	0	12	077	1
601		16	max	357.592	3	255.5	3	183.163	4	0	3	.174	4	.29	2
602			min	-82.47	10	-592.885	1	3.43	12	0	1	.003	12	079	3
603		17	max	358.024	3	254.312	3	184.623	4	0	3	.288	4	.659	1
604			min	-81.99	10	-594.468	1	3.43	12	0	1	.005	12	237	3
605		18	max	-6.939	12	550.643	1	85.295	1	0	1	.259	4	.329	1
606			min	-169.69	1	-202.821	3	-86.222	5	0	3	.008	12	117	3
607		19	max	-6.651	12	549.06	1	85.295	1	0	1	.217	1	.01	3
608			min	-169.114	1	-204.009	3	-84.762	5	0	3	.01	12	012	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.193	1	.007	3	1.29e-2	1	NC	1	NC	1
2			min	727	4	032	3	003	2	-2.024e-3	3	NC	1	NC	1
3		2	max	0	1	.153	3	.031	1	1.417e-2	1	NC	5	NC	2
4			min	727	4	.003	15	017	5	-1.872e-3	3	1162.051	3	7129.355	1
5		3	max	0	1	.304	3	.073	1	1.544e-2	1	NC	5	NC	3
6			min	727	4	053	1	021	5	-1.72e-3	3	641.39	3	3018.857	1
7		4	max	0	1	.397	3	.107	1	1.672e-2	1	NC	5	NC	3
8			min	727	4	108	1	016	5	-1.569e-3	3	503.323	3	2032.006	1
9		5	max	0	1	.42	3	.124	1	1.799e-2	1	NC	5	NC	3
10			min	727	4	102	1	006	5	-1.417e-3	3	477.875	3	1750.8	1
11		6	max	0	1	.374	3	.119	1	1.926e-2	1	NC	5	NC	3
12			min	727	4	037	1	.004	15	-1.265e-3	3	530.949	3	1832.248	1
13		7	max	0	1	.275	3	.092	1	2.053e-2	1	NC	5	NC	3
14			min	727	4	.003	15	.003	10	-1.114e-3	3	702.207	3	2367.038	1
15		8	max	0	1	.204	1	.052	1	2.181e-2	1	NC	1	NC	2
16			min	727	4	.006	15	002	10	-9.622e-4	3	1194.322	3	4221.718	1
17		9	max	0	1	.319	1	.021	3	2.308e-2	1	NC	5	NC	1
18			min	727	4	.009	15	006	10	-8.105e-4	3	1706.33	1	NC	1
19		10	max	0	1	.371	1	.02	3	2.435e-2	1	NC	3	NC	1
20			min	727	4	019	3	014	2	-6.589e-4	3	1215.001	1	NC	1
21		11	max	0	12	.319	1	.021	3	2.308e-2	1	NC	5	NC	1
22			min	727	4	.009	15	013	5	-8.105e-4	3	1706.33	1	NC	1
23		12	max	0	12	.204	1	.052	1	2.181e-2	1	NC	1	NC	2
24			min	727	4	.006	15	013	5	-9.622e-4	3	1194.322	3	4221.718	1
25		13	max	0	12	.275	3	.092	1	2.053e-2	1	NC	5	NC	3
26			min	727	4	.002	15	005	5	-1.114e-3	3	702.207	3	2367.038	1
27		14	max	0	12	.374	3	.119	1	1.926e-2	1	NC	5	NC	3
28			min	727	4	037	1	.005	15	-1.265e-3	3	530.949	3	1832.248	1
29		15	max	0	12	.42	3	.124	1	1.799e-2	1	NC	5	NC	3
30			min	727	4	102	1	.007	10	-1.417e-3	3	477.875	3	1750.8	1
31		16	max	0	12	.397	3	.107	1	1.672e-2	1	NC	5	NC	3
32			min	727	4	108	1	.007	10	-1.569e-3	3	503.323	3	2032.006	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/v Ratio	LC	(n) L/z Ratio	LC
33		17	max	0	12	.304	3	.073	1 1.544e-2	1	NC	5	NC	3
34			min	727	4	053	1	.004	10 -1.72e-3	3	641.39	3	3018.857	1
35		18	max	0	12	.153	3	.031	1 1.417e-2	1	NC	5	NC	2
36			min	727	4	.002	15	0	10 -1.872e-3	3	1162.051	3	7129.355	1
37		19	max	0	12	.193	1	.007	3 1.29e-2	1	NC	1	NC	1
38			min	727	4	032	3	003	2 -2.024e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.276	3	.006	3 7.746e-3	1	NC	1_	NC	1
40			min	551	4	593	1	003	2 -4.264e-3	3	NC	1_	NC	1
41		2	max	0	1	.488	3	.021	1 9.043e-3	1	NC	5	NC	1
42			min	551	4	899	1	025	5 -5.068e-3	3	704.823	1	9095.888	
43		3	max	0	1	.672	3	.056	1 1.034e-2	1	NC	15	NC	2
44			min	551	4	-1.171	1	031	5 -5.872e-3	3	373.998	1	3936.24	1
45		4	max	0	1	.808	3	.089	1 1.164e-2	1	NC	15	NC	3
46			min	551	4	-1.381	1	022	5 -6.676e-3	3	273.987	1	2453.401	1
47		5	max	0	1	.885	3	.108	1 1.294e-2	1_	8959.341	15	NC	3
48			min	551	4	-1.518	1	005	5 -7.48e-3	3	233.399	1	2025.446	1
49		6	max	0	1	.905	3	.106	1 1.423e-2	1_	8431.965	15	NC	3
50			min	551	4	-1.58	1	.005	10 -8.285e-3	3	218.888	1	2061.958	1
51		7	max	0	1	.874	3	.084	1 1.553e-2	1_	8513.678	15	NC	3
52			min	551	4	-1.575	1	.002	10 -9.089e-3	3	219.995	1	2610.638	
53		8	max	0	1	.812	3	.049	1 1.683e-2	_1_	9024.689	<u>15</u>	NC	2
54			min	<u>551</u>	4	-1.524	1	002	10 -9.893e-3	3	231.905	1_	4430.574	4
55		9	max	0	1	.746	3	.032	4 1.812e-2	_1_	9740.108	15	NC	1
56			min	551	4	-1.461	1	006	10 -1.07e-2	3	248.898	1_	6550.764	4
57		10	max	0	1	.715	3	.018	3 1.942e-2	1_	NC	<u>15</u>	NC	1
58			min	<u>551</u>	4	-1.428	1	012	2 -1.15e-2	3	258.743	1_	NC	1
59		11	max	0	12	.746	3	.018	3 1.812e-2	_1_	9740.077	<u>15</u>	NC	1_
60			min	<u>551</u>	4	<u>-1.461</u>	1	025	5 -1.07e-2	3	248.898	1_	9075.895	
61		12	max	0	12	.812	3	.049	1 1.683e-2	1	9024.595	15	NC	2
62			min	<u>551</u>	4	-1.524	1	03	5 -9.893e-3	3	231.905	1_	4571.851	1
63		13	max	0	12	.874	3	.084	1 1.553e-2	_1_	8513.515	15	NC	3
64			min	551	4	<u>-1.575</u>	1	02	5 -9.089e-3	3	219.995	1_	2610.638	
65		14	max	0	12	.905	3	.106	1 1.423e-2	_1_	8431.728	<u>15</u>	NC	3
66			min	551	4	-1.58	1	002	5 -8.285e-3	3	218.888	1_	2061.958	
67		15	max	00	12	.885	3	.108	1 1.294e-2	_1_	8959.005	<u>15</u>	NC	3
68			min	551	4	-1.518	1	.006	10 -7.48e-3	3	233.399	1_	2025.446	
69		16	max	0	12	.808	3	.089	1 1.164e-2	_1_	NC	15	NC	3
70			min	551	4	-1.381	1	.005	10 -6.676e-3	3	273.987	_1_	2453.401	1
71		17	max	0	12	.672	3	.056	1 1.034e-2	_1_	NC	15	NC	2
72		4 -	min	<u>551</u>	4	<u>-1.171</u>	1	.003	10 -5.872e-3	3	373.998	1_	3936.24	1
73		18	max	0	12	.488	3	.033	4 9.043e-3	1	NC	5_	NC	1
74		4.0	min	<u>551</u>	4	899	1	0	10 -5.068e-3	3_	704.823	1_	6321.922	
75		19	max	0	12	.276	3	.006	3 7.746e-3	1_	NC	1_	NC NC	1
76			min	<u>551</u>	4	<u>593</u>	1	003	2 -4.264e-3	3	NC	1_	NC	1
77	M15	1	max	0	12	.283	3	.005	3 3.56e-3	3	NC NC	1_	NC NC	1
78			min	448	4	<u>592</u>	1	003	2 -7.887e-3	1_	NC NC	1_	NC NC	1
79		2	max	0	12	.43	3	.021	1 4.227e-3	3	NC 054.000	5_	NC	1
80			min	448	4	922	1	037	5 -9.217e-3	1_	654.399	1_	6083.432	
81		3	max	0	12	.562	3	.056	1 4.894e-3	3	NC	<u>15</u>	NC 0044.574	2
82		4	min	448	4	-1.212	1	046	5 -1.055e-2	1_	348.248	1_	3914.574	
83		4	max	0	12	.667	3	.09	1 5.561e-3	3	NC	<u>15</u>	NC	3
84		-	min	448	4	<u>-1.435</u>	1	034	5 -1.188e-2	1_	256.353	1_	2442.542	
85		5	max	0	12	.738	3	.108	1 6.228e-3	3	8973.129	<u>15</u>	NC 0047 044	3
86			min	448	4	<u>-1.574</u>	1	011	5 -1.321e-2	1_	219.908	1_	2017.011	1
87		6	max	0	12	.776	3	.107	1 6.895e-3	3_	8446.649	<u>15</u>	NC OOFO CCO	3
88		-	min	448	4	<u>-1.63</u>	1	.006	10 -1.454e-2	1_	208.221	1_	2052.662	
89		7	max	0	12	.783	3	.085	1 7.562e-3	3_	8530.76	<u>15</u>	NC	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r LC (n) L/y Ratio LC (n) L/z Ratio L
90			min	448	4	<u>-1.611</u>	1	.003	10 -1.587e-2 1 211.926 1 2595.452
91		8	max	0	12	.768	3	.06	4 8.229e-3 3 9045.701 15 NC 2
92			min	449	4	<u>-1.544</u>	1	001	10 -1.72e-2 1 226.86 1 3573.206 4
93		9	max	0	12	.745	3	.042	4 8.895e-3 3 9765.94 15 NC
94		40	min	449	4	<u>-1.466</u>	1	005	10 -1.852e-2 1 247.297 1 5056.653 4
95		10	max	0	1	.733	3	.016	3 9.562e-3 3 NC 15 NC 1
96		4.4	min	449	4	<u>-1.426</u>	1	011	2 -1.985e-2 1 259.119 1 NC
97		11	max	0	4	.745	3	.017	3 8.895e-3 3 9765.916 15 NC 5 -1.852e-2 1 247.297 1 6417.854 5
98		12	min	449	1	<u>-1.466</u>		035	
99		12	max	0 448	4	<u>.768</u> -1.544	3	.049 041	1 8.229e-3 3 9045.633 15 NC 2 5 -1.72e-2 1 226.86 1 4525.672
101		13	min max	440	1	.783	3	.085	1 7.562e-3 3 8530.645 15 NC 3
102		13	min	448	4	-1.611	1	028	5 -1.587e-2 1 211.926 1 2595.452
103		14	max	440	1	<u>-1.011</u> .776	3	.107	1 6.895e-3 3 8446.485 15 NC 3
103		14	min	448	4	-1.63	1	003	5 -1.454e-2 1 208.221 1 2052.662
105		15	max	440	1	.738	3	.108	1 6.228e-3 3 8972.9 15 NC 3
106		13	min	448	4	-1.574	1	.007	10 -1.321e-2 1 219.908 1 2017.011
107		16	max	440	1	.667	3	.09	1 5.561e-3 3 NC 15 NC 3
107		10	min	448	4	-1.435	1	.005	10 -1.188e-2 1 256.353 1 2442.542
109		17	max	440	1	.562	3	.066	4 4.894e-3 3 NC 15 NC 2
110		17	min	448	4	-1.212	1	.003	10 -1.055e-2 1 348.248 1 3241.9 4
111		18	max	0	1	.43	3	.045	4 4.227e-3 3 NC 5 NC
112		10	min	448	4	922	1	0	10 -9.217e-3 1 654.399 1 4705.75 4
113		19	max	0	1	.283	3	.005	3 3.56e-3 3 NC 1 NC
114		13	min	448	4	592	1	003	2 -7.887e-3 1 NC 1 NC
115	M16	1	max	<u>.++0</u>	12	.187	1	.005	3 6.556e-3 3 NC 1 NC
116	14110		min	143	4	098	3	002	2 -1.212e-2 1 NC 1 NC
117		2	max	0	12	.023	9	.031	1 7.402e-3 3 NC 5 NC 2
118			min	143	4	046	3	026	5 -1.321e-2 1 1315.942 1 7209.674
119		3	max	0	12	0	15	.072	1 8.248e-3 3 NC 5 NC 3
120			min	143	4	13	2	033	5 -1.43e-2 1 738.481 1 3034.32
121		4	max	0	12	.011	3	.107	1 9.094e-3 3 NC 5 NC 3
122			min	144	4	198	2	026	5 -1.539e-2 1 597.95 1 2034.945
123		5	max	0	12	.004	12	.125	1 9.94e-3 3 NC 5 NC 3
124			min	144	4	201	2	011	5 -1.648e-2 1 600.655 1 1747.634
125		6	max	0	12	0	13	.12	1 1.079e-2 3 NC 5 NC 3
126			min	144	4	138	2	.004	15 -1.757e-2 1 736.08 2 1821.522
127		7	max	0	12	.03	9	.094	1 1.163e-2 3 NC 3 NC 3
128			min	144	4	083	3	.004	10 -1.866e-2 1 1193.801 2 2336.661
129		8	max	0	12	.166	1	.054	1 1.248e-2 3 NC 1 NC 2
130			min	144	4	143	3	0	10 -1.975e-2 1 4804.841 3 4091.558
131		9	max	0	12	.295	1	.027	4 1.332e-2 3 NC 5 NC
132			min	144	4	195	3	004	10 -2.084e-2 1 1986.893 1 7895.664 4
133		10	max	0	1	.353	1	.014	3 1.417e-2 3 NC 5 NC
134			min	144	4	218	3	01	2 -2.193e-2 1 1297.245 1 NC
135		11	max	0	1	.295	1	.015	3 1.332e-2 3 NC 5 NC
136			min	144	4	195	3	02	5 -2.084e-2 1 1986.893 1 NC
137		12	max	0	1	.166	1	.054	1 1.248e-2 3 NC 1 NC 2
138			min	143	4	143	3	021	5 -1.975e-2 1 4804.841 3 4091.558
139		13	max	0	1	.03	9	.094	1 1.163e-2 3 NC 3 NC 3
140			min	143	4	083	3	01	5 -1.866e-2 1 1193.801 2 2336.661
141		14	max	0	1	0	13	.12	1 1.079e-2 3 NC 5 NC 3
142			min	143	4	138	2	.005	15 -1.757e-2 1 736.08 2 1821.522
143		15	max	0	1	.004	12	.125	1 9.94e-3 3 NC 5 NC 3
144			min	143	4	201	2	.009	10 -1.648e-2 1 600.655 1 1747.634
145		16	max	0	1	.011	3	.107	1 9.094e-3 3 NC 5 NC 3
146			min	143	4	198	2	.007	10 -1.539e-2 1 597.95 1 2034.945

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/v Ratio	LC	(n) L/z Ratio	LC
147		17	max	0	1	0	15	.072	1	8.248e-3	3	NC	5	NC	3
148			min	143	4	13	2	.005	10	-1.43e-2	1	738.481	1	3034.32	1
149		18	max	0	1	.023	9	.037	4	7.402e-3	3	NC	5	NC	2
150			min	143	4	046	3	0	10	-1.321e-2	1	1315.942	1	5760.585	4
151		19	max	0	1	.187	1	.005	3	6.556e-3	3	NC	1	NC	1
152			min	143	4	098	3	002	2	-1.212e-2	1	NC	1	NC	1
153	M2	1	max	.006	1	.005	2	.01	1	2.538e-3	5	NC	1	NC	2
154			min	006	3	009	3	683	4	-2.246e-4	1	NC	1_	88.728	4
155		2	max	.006	1	.004	2	.009	1	2.546e-3	5	NC	1	NC	2
156			min	005	3	009	3	626	4	-2.104e-4	1	NC	1	96.695	4
157		3	max	.006	1	.004	2	.008	1	2.553e-3	5	NC	1	NC	2
158			min	005	3	009	3	57	4	-1.961e-4	1	NC	1	106.173	4
159		4	max	.005	1	.003	2	.008	1	2.56e-3	5	NC	1	NC	2
160			min	005	3	008	3	515	4	-1.819e-4	1	NC	1	117.558	4
161		5	max	.005	1	.002	2	.007	1	2.567e-3	5	NC	1	NC	2
162			min	004	3	008	3	461	4	-1.677e-4	1	NC	1	131.391	4
163		6	max	.005	1	.001	2	.006	1	2.575e-3	5	NC	_1_	NC	1
164			min	004	3	008	3	408	4	-1.535e-4	1	NC	1	148.426	4
165		7	max	.004	1	0	2	.005	1	2.584e-3	4	NC	1	NC	1
166			min	004	3	007	3	357	4	-1.392e-4	1	NC	1	169.731	4
167		8	max	.004	1	0	2	.004	1	2.595e-3	4_	NC	_1_	NC	1
168			min	003	3	007	3	308	4	-1.25e-4	1_	NC	1_	196.874	4
169		9	max	.004	1	0	15	.004	1	2.606e-3	4	NC	1_	NC	1
170			min	003	3	007	3	261	4	-1.108e-4	1	NC	1	232.222	4
171		10	max	.003	1	0	15	.003	1	2.617e-3	4	NC	1_	NC	1_
172			min	003	3	006	3	217	4	-9.653e-5	1	NC	1_	279.496	4
173		11	max	.003	1	0	15	.003	1	2.628e-3	4_	NC	<u>1</u>	NC	1
174			min	003	3	006	3	176	4	-8.229e-5	1_	NC	1_	344.818	4
175		12	max	.002	1	0	15	.002	1	2.639e-3	4	NC	_1_	NC	1
176			min	002	3	005	3	138	4	-6.806e-5	1	NC	1	438.855	4
177		13	max	.002	1	00	15	.001	1	2.65e-3	4_	NC	_1_	NC	1
178			min	002	3	005	3	104	4	-5.383e-5	1	NC	1_	581.592	4
179		14	max	.002	1	0	15	.001	1	2.661e-3	4_	NC	_1_	NC	1
180			min	002	3	004	3	074	4	-3.96e-5	1	NC	1_	814.188	4
181		15	max	.001	1	0	15	0	1	2.672e-3	_4_	NC	_1_	NC	1_
182			min	001	3	004	3	049	4	-2.537e-5	1_	NC	1_	1233.136	4
183		16	max	.001	1	0	15	00	1	2.683e-3	_4_	NC	_1_	NC	1
184			min	0	3	003	3	029	4	-1.114e-5	_1_	NC	<u>1</u>	2111.894	
185		17	max	0	1	0	15	0	1	2.694e-3	_4_	NC	_1_	NC	1
186			min	0	3	002	6	013	4	-3.291e-7	3	NC	1_	4506.999	
187		18	max	0	1	0	15	0	1	2.705e-3	4	NC	1_	NC	1
188			min	0	3	001	6	<u>004</u>	4	5.474e-7	12	NC	1_	NC	1
189		19	max	0	1	0	1	0	1	2.716e-3	4_	NC	1_	NC NC	1
190			min	0	1	0	1	0	1	1.282e-6	12	NC	1_	NC	1
191	<u>M3</u>	1	max	0	1	0	1	0	1	-4.104e-7	12	NC	_1_	NC	1
192			min	0	1	0	1	0	1	-5.239e-4	4_	NC	1_	NC	1
193		2	max	0	3	0	15	.015	4	1.806e-4	4_	NC	1	NC NC	1
194			min	0	2	002	6	0	12	8.913e-7	12	NC	1_	NC NC	1
195		3	max	0	3	001	15	.03	4	8.851e-4	4	NC	1_	NC NC	1
196			min	0	2	005	6	0	12	2.193e-6	12	NC	1_	NC NC	1
197		4	max	0	3	002	15	.044	4	1.59e-3	4	NC	1	NC NC	1
198			min	0	2	008	6	0	12	3.495e-6	12	NC	1_	NC NC	1
199		5	max	.001	3	002	15	.057	4	2.294e-3	4	NC	1_	NC	1
200			min	0	2	011	6	0	12	4.796e-6	12	9469.175	6	8933.566	5
201		6	max	.001	3	003	15	071	4	2.999e-3	4	NC 7504.45	1_	NC 7046 404	1
202		-	min	001	2	014	6	0	12	6.098e-6	12	7584.45	6	7816.494	
203		7	max	.002	3	004	15	.083	4	3.703e-3	4	NC	5	NC	_1_

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		
204			min	001	2	016	6	0	12	7.4e-6	12	6454.681	6	7218.288	
205		8	max	.002	3	004	15	.095	4	4.408e-3	_4_	NC	5	NC	1_
206			min	001	2	018	6	0	12	8.702e-6	12	5757.275	6	6957.64	5
207		9	max	.002	3	004	15	.107	4	5.112e-3	4	NC	5	NC	1
208			min	002	2	019	6	0	12	1.e-5	12	5340.857	6	6961.465	5
209		10	max	.003	3	004	15	.118	4	5.817e-3	4	NC	5	NC	1_
210			min	002	2	02	6	0	12	1.131e-5	12	5131.57	6	7214.749	5
211		11	max	.003	3	004	15	.128	4	6.521e-3	4	NC	5	NC	1
212			min	002	2	02	6	0	12	1.261e-5	12	5098.089	6	7748.077	5
213		12	max	.003	3	004	15	.139	4	7.225e-3	4_	NC	5_	NC	1_
214			min	002	2	02	6	0	12	1.391e-5	12	5239.533	6	8646.525	5
215		13	max	.003	3	004	15	.148	4	7.93e-3	_4_	NC	5	NC	1_
216			min	003	2	018	6	0	12	1.521e-5		5586.601	6	NC	1
217		14	max	.004	3	004	15	.158	4	8.634e-3	4	NC	5	NC	1
218			min	003	2	017	6	0	12	1.651e-5	12	6217.903	6	NC	1
219		15	max	.004	3	003	15	.168	4	9.339e-3	4_	NC	3	NC	1_
220			min	003	2	014	6	0	12	1.781e-5	12	7309.298	6	NC	1
221		16	max	.004	3	002	15	.177	4	1.004e-2	4	NC	_1_	NC	1_
222			min	003	2	011	6	0	12	1.912e-5	12	9287.94	6	NC	1
223		17	max	.005	3	002	15	.187	4	1.075e-2	4	NC	1_	NC	1_
224			min	003	2	008	1	0	12	2.042e-5	12	NC	1	NC	1
225		18	max	.005	3	0	15	.197	4	1.145e-2	4	NC	_1_	NC	1_
226			min	004	2	006	1	0	12	2.172e-5	12	NC	1	NC	1
227		19	max	.005	3	0	5	.208	4	1.216e-2	4	NC	1_	NC	1
228			min	004	2	003	1	0	12	2.302e-5	12	NC	1	NC	1
229	M4	1	max	.003	1	.003	2	0	12	7.75e-5	1_	NC	1_	NC	3
230			min	0	3	005	3	208	4	-1.06e-3	4	NC	1	119.197	4
231		2	max	.003	1	.003	2	0	12	7.75e-5	_1_	NC	1_	NC	3
232			min	0	3	005	3	191	4	-1.06e-3	4	NC	1	129.797	4
233		3	max	.003	1	.003	2	0	12	7.75e-5	1_	NC	1_	NC	3
234			min	0	3	005	3	174	4	-1.06e-3	4	NC	1	142.402	4
235		4	max	.002	1	.003	2	0	12	7.75e-5	1_	NC	1_	NC	3
236			min	0	3	004	3	157	4	-1.06e-3	4	NC	1	157.534	4
237		5	max	.002	1	.003	2	0	12	7.75e-5	_1_	NC	1_	NC	2
238			min	0	3	004	3	141	4	-1.06e-3	4	NC	1	175.904	4
239		6	max	.002	1	.002	2	0	12	7.75e-5	1_	NC	1_	NC	2
240			min	0	3	004	3	125	4	-1.06e-3	4	NC	1	198.496	4
241		7	max	.002	1	.002	2	0	12	7.75e-5	_1_	NC	1_	NC	2
242			min	0	3	003	3	109	4	-1.06e-3	4	NC	1	226.708	4
243		8	max	.002	1	.002	2	0	12	7.75e-5	<u>1</u>	NC	1_	NC	2
244			min	0	3	003	3	094	4	-1.06e-3	4	NC	1	262.579	4
245		9	max	.002	1	.002	2	0	12	7.75e-5	1_	NC	_1_	NC	2
246			min	0	3	003	3	08	4	-1.06e-3	4	NC	1	309.179	4
247		10	max	.001	1	.002	2	0	12	7.75e-5	1_	NC	1	NC	2
248			min	0	3	003	3	067	4	-1.06e-3	4	NC	1	371.309	4
249		11	max	.001	1	.001	2	0	12	7.75e-5	_1_	NC	_1_	NC	1
250			min	0	3	002	3	054	4	-1.06e-3	4	NC	1	456.82	4
251		12	max	.001	1	.001	2	0	12	7.75e-5	_1_	NC	_1_	NC	1
252			min	0	3	002	3	043	4	-1.06e-3	4	NC	1_	579.3	4
253		13	max	0	1	.001	2	0	12	7.75e-5	1_	NC	1_	NC	1_
254			min	0	3	002	3	032	4	-1.06e-3	4	NC	1	763.973	4
255		14	max	0	1	0	2	0	12	7.75e-5	1_	NC	1_	NC	1
256			min	0	3	001	3	023	4	-1.06e-3	4	NC	1	1062.166	4
257		15	max	0	1	0	2	0	12	7.75e-5	1	NC	1	NC	1
258			min	0	3	001	3	016	4	-1.06e-3	4	NC	1	1592.228	4
259		16	max	0	1	0	2	0	12	7.75e-5	1	NC	1	NC	1
260			min	0	3	0	3	009	4	-1.06e-3	4	NC	1	2681.428	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
261		17	max	0	1	0	2	0	12	7.75e-5	1	NC	1	NC	1
262			min	0	3	0	3	004	4	-1.06e-3	4	NC	1	5543.77	4
263		18	max	0	1	0	2	0	12	7.75e-5	1	NC	1	NC	1
264			min	0	3	0	3	001	4	-1.06e-3	4	NC	1	NC	1
265		19	max	0	1	0	1	0	1	7.75e-5	1	NC	1	NC	1
266			min	0	1	0	1	0	1	-1.06e-3	4	NC	1	NC	1
267	M6	1	max	.02	1	.02	2	0	1	2.654e-3	4	NC	3	NC	1
268			min	018	3	027	3	69	4	0	1	2984.363	2	87.821	4
269		2	max	.019	1	.018	2	0	1	2.658e-3	4	NC	3	NC	1
270			min	017	3	026	3	633	4	0	1	3284.413	2	95.708	4
271		3	max	.018	1	.017	2	0	1	2.662e-3	4	NC	3	NC	1
272			min	016	3	025	3	576	4	0	1	3648.54	2	105.089	4
273		4	max	.017	1	.015	2	0	1	2.665e-3	4	NC	3	NC	1
274			min	015	3	023	3	52	4	0	1	4095.908	2	116.359	4
275		5	max	.016	1	.013	2	0	1	2.669e-3	4	NC	3	NC	1
276			min	014	3	022	3	466	4	0	1	4653.671	2	130.052	4
277		6	max	.014	1	.011	2	0	1	2.673e-3	4	NC	3	NC	1
278			min	013	3	02	3	412	4	0	1	5361.362	2	146.913	4
279		7	max	.013	1	.01	2	0	1	2.677e-3	4	NC	1_	NC	1_
280			min	012	3	019	3	36	4	0	1	6278.413	2	168.003	4
281		8	max	.012	1	.008	2	0	1	2.68e-3	4	NC	_1_	NC	1
282			min	011	3	017	3	311	4	0	1	7497.673	2	194.871	4
283		9	max	.011	1	.007	2	0	1	2.684e-3	4	NC	<u>1</u>	NC	1
284			min	01	3	016	3	263	4	0	1_	9171.131	2	229.863	4
285		10	max	.01	1	.005	2	0	1	2.688e-3	4	NC	1_	NC	1
286			min	009	3	014	3	219	4	0	1_	NC	1_	276.66	4
287		11	max	.009	1	.004	2	0	1	2.692e-3	4	NC	<u>1</u>	NC	1
288			min	008	3	013	3	177	4	0	1_	NC	1_	341.323	4
289		12	max	.008	1	.003	2	0	1	2.695e-3	4	NC	1	NC	1
290			min	007	3	011	3	139	4	0	1	NC	1_	434.413	4
291		13	max	.007	1	.002	2	0	1_	2.699e-3	4	NC	_1_	NC	1
292			min	006	3	01	3	105	4	0	1_	NC	1_	575.714	4
293		14	max	.006	1	.001	2	0	1	2.703e-3	_4_	NC	_1_	NC	1
294			min	005	3	008	3	075	4	0	1_	NC	1_	805.976	4
295		15	max	.004	1	00	2	0	1_	2.707e-3	_4_	NC	_1_	NC	1
296			min	004	3	007	3	05	4	0	_1_	NC	1_	1220.731	4
297		16	max	.003	1	0	2	0	1	2.71e-3	_4_	NC	1_	NC	1
298			min	003	3	005	3	029	4	0	_1_	NC	1_	2090.727	4
299		17	max	.002	1	0	2	0	1	2.714e-3	4	NC	1_	NC	1
300			min	002	3	003	3	014	4	0	_1_	NC	1_	4462.112	4
301		18	max	.001	1	0	2	0	1.	2.718e-3	4	NC	1_	NC	1
302		4.0	min	<u>001</u>	3	002	3	004	4	0	_1_	NC	1_	NC NC	1
303		19	max	0	1	0	1	0	1	2.721e-3	4	NC	1	NC NC	1
304	N 4-7		min	0	1	0	1	0	1	0	1	NC NC	1_	NC NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC NC	1_	NC NC	1
306			min	0	1	0	1	0	1	-5.238e-4	4	NC NC	1_	NC NC	1
307		2	max	0	3	0	15	.015	4	1.607e-4	4	NC NC	1_	NC NC	1
308			min	0	2	003	3	0	1	0 450- 4	1	NC NC	1_	NC NC	1
309		3	max	.002	3	001	15	.03	4	8.452e-4	4	NC NC	1_	NC NC	1
310		A	min	002	2	006	3	0	1	1 520 2	1_1	NC NC	1	NC NC	1
311		4	max	.003	3	002	15	.044	4	1.53e-3	4	NC NC	1_	NC 0004 000	1
312		-	min	002	2	009	3	0	1	0	1_1	NC NC	1_	9881.833	4
313		5	max	.003	3	003	15	.058	4	2.214e-3	4	NC 0F37 FF7	1_	NC 7060 201	1
314		_	min	003	2	011	3	071	1	0	1_1	9537.557	4	7969.381	4
315		6	max	.004	3	003	15	.071	4	2.899e-3	4	NC 7633.744	1_1	NC 6022 FOE	1
316		7	min	004		014	4	0	1	0	1_1		4	6932.505	
317		7	max	.005	3	004	15	.083	4	3.583e-3	4	NC	<u>1</u>	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		_		(n) L/y Ratio			
318			min	005	2	016	4	0	1	0	1_	6492.93	4	6358.687	
319		8	max	.006	3	004	15	.095	4	4.268e-3	4	NC	2	NC	1
320			min	006	2	<u>018</u>	4	0	1	0	1_	5788.72	4_	6080.532	4
321		9	max	.007	3	005	15	.106	4	4.952e-3	4	NC	5	NC	1
322		10	min	006	2	02	4	0	1	0	_1_	5367.992	4_	6027.033	4
323		10	max	.008	3	005	15	.117	4	5.637e-3	4	NC 5450.040	5_	NC 0470.050	1
324		4.4	min	007	2	021	4	0	1	0	1_	5156.019	4_	6176.853	
325		11	max	.009	3	005	15	.127	4	6.321e-3	4	NC	5_	NC 0544,000	1
326		10	min	008	2	021	4	0	1	0	1_	5121.034	4_	6544.606	
327		12	max	.009	3	005	15	.137	4	7.006e-3	4_	NC	5_	NC 7400.00	1
328		10	min	009	2	02	4	0	1	0	1_	5261.958	4_	7183.89	4
329		13	max	.01	3	004	15	.147	4	7.69e-3	4	NC	5	NC 0007.000	1
330		144	min	01	2	019	4	0	1	0	1_	5609.482	4_	8207.683	
331		14	max	.011	3	004	15	.156	4	8.375e-3	4	NC 0040 404	2	NC 2040.005	1
332		4.5	min	011	2	017	4	0	1	0	1_1	6242.421	4_	9842.225	4
333		15	max	.012	3	003	15	.165	4	9.059e-3	4	NC 7007.045	1_	NC NC	1
334		4.0	min	011	2	01 <u>5</u>	4	0	1	0 744 - 0	1_	7337.215	4	NC NC	1
335		16	max	.013	3	003	15	.173	4	9.744e-3	4	NC	1_	NC NC	1
336		47	min	012	2	012	4	0	1	0	1_1	9322.513	4_	NC NC	1
337		17	max	.014	3	002	15	.182	4	1.043e-2	4	NC NC	1	NC NC	1
338		4.0	min	013	2	01	1	0	1	0	1_1	NC NC	_	NC NC	•
339		18	max	.015	3	001	15	.191	4	1.111e-2	4	NC NC	1_1	NC NC	1
340		40	min	014	2	008	1	0	1	0	1_1	NC NC	1_	NC NC	1
341		19	max	.016	3	0	15	.201	4	1.18e-2	4	NC	1_	NC NC	1
342	MO	4	min	015	2	006	2	0	1	0	<u>1</u> 1	NC NC	1_1	NC NC	1
343	<u>M8</u>	1	max	.008	1	.013		0		0	<u> </u>	NC NC	1_	NC	
344			min	001	3	016	3	201	4	-1.178e-3	4	NC NC	1_	123.351	4
345		2	max	.007	1	.013	2	<u> </u>	1	0	1_1	NC NC	1	NC	1
346		2	min	001	3	015	3	185	4	-1.178e-3	4_	NC NC	•	134.332	4
347		3	max	.007 001	3	.012 014	3	0 168	4	0 -1.178e-3	<u>1</u> 4	NC NC	1	NC 147.388	4
349		4	min	.007	1	014 .011	2	166 0	1	0	1	NC NC	1	NC	1
350		4	max	001	3	013	3	152	4	-1.178e-3	4	NC NC	1	163.063	4
351		5	max	.006	1	<u>013</u> .01	2	132 0	1	0	_ 4 _	NC NC	1	NC	1
352		1	min	001	3	012	3	136	4	-1.178e-3	4	NC	1	182.09	4
353		6	max	.006	1	.012 .01	2	<u>130</u> 0	1	0	1	NC	1	NC	1
354		10	min	001	3	011	3	121	4	-1.178e-3	4	NC	1	205.49	4
355		7	max	.005	1	.009	2	0	1	0	1	NC	1	NC	1
356		- '	min	0	3	01	3	106	4	-1.178e-3	4	NC	1	234.711	4
357		8	max	.005	1	.008	2	0	1	0	1	NC	1	NC	1
358			min		3	01	3	091		-1.178e-3		NC	1	271.865	
359		9	max	.004	1	.007	2	0	1	0	1	NC	1	NC	1
360			min	0	3	009	3	077	4	-1.178e-3	4	NC	1	320.132	4
361		10	max	.004	1	.007	2	0	1	0	1	NC	1	NC	1
362		1.0	min	0	3	008	3	065	4	-1.178e-3	4	NC	1	384.483	4
363		11	max	.003	1	.006	2	0	1	0	1	NC	<u> </u>	NC	1
364			min	0	3	007	3	052	4	-1.178e-3	4	NC	1	473.054	4
365		12	max	.003	1	.005	2	0	1	0	1	NC	1	NC	1
366		T	min	0	3	006	3	041	4	-1.178e-3	4	NC	1	599.918	4
367		13	max	.003	1	.004	2	0	1	0	1	NC	1	NC	1
368		1.0	min	0	3	005	3	031	4	-1.178e-3	4	NC	1	791.204	4
369		14	max	.002	1	.004	2	0	1	0	1	NC	1	NC	1
370			min	0	3	004	3	023	4	-1.178e-3	4	NC	1	1100.081	4
371		15	max	.002	1	.003	2	0	1	0	1	NC	1	NC	1
372			min	0	3	003	3	015	4	-1.178e-3	4	NC	1	1649.147	4
373		16	max	.001	1	.002	2	0	1	0	1	NC	1	NC	1
374			min	0	3	003	3	009	4	-1.178e-3	4	NC	1	2777.434	4

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r			LC		
375		17	max	0	1	.001	2	0	1	0	_1_	NC	1_	NC	1
376			min	0	3	002	3	004	4	-1.178e-3	4	NC	1_	5742.618	4
377		18	max	0	1	0	2	0	1	0	_1_	NC	_1_	NC	1
378		40	min	0	3	0	3	001	4	-1.178e-3	4	NC	1_	NC	1
379		19	max	0	1	0	1	0	1	0	1_	NC	1_	NC NC	1
380	M40	4	min	0	1	0	1	0	1	-1.178e-3	4	NC NC	1_	NC NC	1
381	M10	1	max	.006	1	.005	2	0	12	2.636e-3	4	NC	1_	NC 00.040	2
382		_	min	006	3	009	3	688	4	1.195e-5	12	NC NC	1_	88.049	4
383		2	max	.006	1	.004	2	0	12	2.639e-3	4	NC	1_	NC OF OFF	2
384		2	min	005	3	009	2	<u>631</u>	12	1.121e-5	12	NC NC	1	95.955 NC	2
385		3	max	.006	3	.004 009		<u> </u>		2.643e-3	4	NC NC	<u>1</u> 1	105.361	4
386		1	min	005			3	<u>575</u>	4	1.048e-5	12				2
387		4	max	.005	1	.003	2	0	12	2.646e-3	4	NC	1	NC 440.00	
388		-	min	005	3	008	3	<u>519</u>	4	9.742e-6	12	NC NC		116.66	4
389		5	max	.005	3	.002	3	0 464	12	2.65e-3	<u>4</u> 12	NC NC	1	NC	2
390		6	min	004		008			4	9.007e-6			_	130.388	
391		6	max	.005	3	.001	2	0	12	2.653e-3	4	NC NC	1_1	NC 147.293	1
392		7	min	004		008	3	<u>411</u>	4	8.272e-6	12	NC NC	1_		4
393		-	max	.004	1	0	2	0	12	2.657e-3	4	NC	1_	NC	1
394 395		0	min	004	3	007 0	2	36	12	7.537e-6	12	NC NC	1	168.437 NC	1
		8	max	.004	3	007	3	0	4	2.66e-3 6.802e-6	4	NC NC	<u>1</u> 1	195.375	4
396			min	003				31			12				_
397		9	max	.004	3	0	2	0	12	2.664e-3	4	NC	1	NC 220 457	1
398		10	min	003		007	3	263	4	6.067e-6	12	NC NC	•	230.457	4
399 400		10	max	.003	3	001 006	3	0 218	12	2.667e-3 5.332e-6	4	NC NC	1	NC 277.375	4
		11	min	003 .003		006 002	2		4	2.671e-3	12	NC NC	1	NC	1
401			max		3		3	0 177	12		<u>4</u> 12	NC NC	1	342.206	
		12	min	003 .002	1	006	15		4	4.597e-6 2.674e-3		NC NC	1		1
403		12	max min	002	3	001 005	3	0 139	12	3.862e-6	<u>4</u> 12	NC NC	1	NC 435.538	4
405		13	max	.002	1	005 001	15	<u>139</u> 0	12	2.678e-3	4	NC NC	1	NC	1
406		13	min	002	3	005	4	105	4	3.127e-6	12	NC	1	577.207	4
407		14	max	.002	1	005 001	15	<u>105</u> 0	12	2.682e-3	4	NC	1	NC	1
408		14	min	002	3	005	4	075	4	2.392e-6	12	NC	1	808.071	4
409		15		.002	1	005 001	15	<u>075</u> 0	12	2.685e-3	4	NC	1	NC	1
410		15	max min	001	3	001	4	049	4	1.657e-6	12	NC	1	1223.916	_
411		16	max	.001	1	0	15	043	12	2.689e-3	4	NC	1	NC	1
412		10	min	0	3	003	4	029	4	8.347e-7	10	NC	1	2096.217	4
413		17	max	0	1	003	15	<u>029</u> 0	12	2.692e-3	4	NC	1	NC	1
414		17	min	0	3	002	4	014	4	-3.096e-6	1	NC	1	4473.982	4
415		18	max	0	1	0	15	0		2.696e-3		NC	1	NC	1
416		10	min	0	3	001	4	004	4	-1.733e-5	1	NC	1	NC	1
417		19	max	0	1	0	1	<u>.00-</u>	1	2.699e-3	4	NC	1	NC	1
418		10	min	0	1	0	1	0	1	-3.156e-5	1	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	9.62e-6	1	NC	1	NC	1
420		<u>'</u>	min	0	1	0	1	0	1	-5.187e-4	4	NC	1	NC	1
421		2	max	0	3	0	15	.015	4	1.706e-4	4	NC	1	NC	1
422			min	0	2	003	4	0	1	-1.903e-5	1	NC	1	NC	1
423		3	max	0	3	003 001	15	.029	4	8.598e-4	4	NC	1	NC	1
424			min	0	2	006	4	0	1	-4.767e-5	1	NC	1	NC	1
425		4	max	0	3	002	15	.044	4	1.549e-3	4	NC	1	NC	1
426			min	0	2	002	4	0	1	-7.632e-5	1	NC	1	NC	1
427		5	max	.001	3	003	15	.057	4	2.238e-3	4	NC	1	NC	1
428			min	0	2	012	4	0	1	-1.05e-4	1	9036.891	4	8570.361	4
429		6	max	.001	3	004	15	.07	4	2.928e-3	4	NC	1	NC	1
430			min	001	2	014	4	001	1	-1.336e-4	1	7271.191	4	7486.056	_
431		7	max	.002	3	004	15	.083	4	3.617e-3	4	NC	5	NC	1
TUI			παλ	.002		.00+	IU	.000		0.0176-0		110	<u> </u>	110	

Model Name

Schletter, Inc.HCV

_ . . . _ . .

: Standard PVMax Racking System

Nov 3, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
432			min	001	2	017	4	001	1	-1.623e-4	1_	6210.585	4	6899.013	
433		8	max	.002	3	005	15	.094	4	4.306e-3	4	NC	5	NC	1
434			min	001	2	<u>019</u>	4	002	1	-1.909e-4	1_	5555.921	<u>4</u>	6633.487	4
435		9	max	.002	3	005	15	.106	4	4.995e-3	4_	NC 5400 044	5	NC	1
436		40	min	002	2	02	4	002	1	-2.196e-4	1_	5166.611	4_	6617.332	4
437		10	max	.003	3	005	15	.117	4	5.685e-3	4	NC 4974.2	5	NC 6933 303	4
438 439		11	min	002 .003	3	021 005	15	002 .127	4	-2.482e-4	<u>1</u> 4	4974.2 NC	<u>4</u> 5	6833.202 NC	1
440			max	002	2	005 021	4	003	1	6.374e-3 -2.768e-4	1	4950.115	4	7305.594	
441		12	max	.002	3	005	15	.137	4	7.063e-3	4	NC	5	NC	1
442		12	min	002	2	021	4	003	1	-3.055e-4	1	5094.676	4	8107.389	-
443		13	max	.002	3	005	15	.146	4	7.753e-3	4	NC	5	NC	1
444		10	min	003	2	02	4	004	1	-3.341e-4	1	5438.596	4	9388.906	
445		14	max	.004	3	004	15	.156	4	8.442e-3	4	NC	5	NC	1
446			min	003	2	018	4	005	1	-3.628e-4	1	6059.123	4	NC	1
447		15	max	.004	3	004	15	.165	4	9.131e-3	4	NC	3	NC	1
448			min	003	2	015	4	005	1	-3.914e-4	1	7128.341	4	NC	1
449		16	max	.004	3	003	15	.174	4	9.82e-3	4	NC	1	NC	1
450			min	003	2	012	4	006	1	-4.201e-4	1	9063.678	4	NC	1
451		17	max	.005	3	002	15	.183	4	1.051e-2	4	NC	1	NC	1
452			min	003	2	009	4	007	1	-4.487e-4	1	NC	1	NC	1
453		18	max	.005	3	001	15	.193	4	1.12e-2	4	NC	1	NC	1
454			min	004	2	006	1	008	1	-4.774e-4	1	NC	1	NC	1
455		19	max	.005	3	0	10	.203	4	1.189e-2	4	NC	1	NC	1
456			min	004	2	003	1	009	1	-5.06e-4	1	NC	1	NC	1
457	M12	1_	max	.003	1	.003	2	.009	1	-3.862e-6	12	NC	_1_	NC	3
458			min	0	3	005	3	203	4	-1.101e-3	4	NC	1_	122.099	4
459		2	max	.003	1	.003	2	.009	1	-3.862e-6	12	NC	_1_	NC	3
460			min	0	3	005	3	187	4	-1.101e-3	4	NC	1_	132.961	4
461		3	max	.003	1	.003	2	.008	1	-3.862e-6	<u>12</u>	NC	_1_	NC_	3
462			min	0	3	005	3	17	4	-1.101e-3	4	NC	1_	145.877	4
463		4	max	.002	1	.003	2	.007	1	-3.862e-6	12	NC	1_	NC 404 000	3
464		+-	min	0	3	004	3	<u>154</u>	4	-1.101e-3	4	NC NC	1_	161.382	4
465		5	max	.002	1	.003	2	.006	1	-3.862e-6	12	NC NC	1_	NC 400,005	2
466		6	min	.002	3	<u>004</u>	2	138	4	-1.101e-3	4	NC NC	1	180.205 NC	2
467 468		6	max	.002	3	.002 004	3	.006 122	4	-3.862e-6 -1.101e-3	<u>12</u> 4	NC NC	1	203.353	4
469		7	min	.002	1	.002	2	.005	1	-3.862e-6	12	NC NC	1	NC	2
470			max min	0	3	003	3	107	4	-3.002e-0	4	NC NC	1	232.261	4
471		8	max	.002	1	.002	2	.004	1		12	NC	1	NC	2
472			min		3	003	3	092		-1.101e-3		NC	1	269.016	
473		9	max	.002	1	.002	2	.004	1	-3.862e-6		NC	1	NC	2
474		Ť	min	0	3	003	3	078	4	-1.101e-3		NC	1	316.765	4
475		10	max	.001	1	.002	2	.003	1	-3.862e-6		NC	1	NC	2
476			min	0	3	003	3	065	4	-1.101e-3	4	NC	1	380.426	4
477		11	max	.001	1	.001	2	.002	1	-3.862e-6		NC	1	NC	1
478			min	0	3	002	3	053	4	-1.101e-3	4	NC	1	468.045	4
479		12	max	.001	1	.001	2	.002	1	-3.862e-6		NC	1	NC	1
480			min	0	3	002	3	042	4	-1.101e-3	4	NC	1	593.545	4
481		13	max	0	1	.001	2	.001	1	-3.862e-6	12	NC	1	NC	1
482			min	0	3	002	3	032	4	-1.101e-3		NC	1	782.772	4
483		14	max	0	1	0	2	.001	1	-3.862e-6	12	NC	1	NC	1
484			min	0	3	001	3	023	4	-1.101e-3		NC	1	1088.32	4
485		15	max	0	1	0	2	0	1	-3.862e-6	12	NC	1	NC	1
486			min	0	3	001	3	015	4	-1.101e-3	4	NC	1	1631.46	4
487		16	max	0	1	0	2	0	1	-3.862e-6		NC	1_	NC	1
488			min	0	3	0	3	009	4	-1.101e-3	4	NC	1	2747.547	4

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 3, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC			(n) L/y Ratio L		LC
489		17	max	0	1	0	2	0	1	-3.862e-6	12	NC 1	l NC	1
490			min	0	3	0	3	004	4	-1.101e-3	4	NC 1	5680.587	4
491		18	max	0	1	0	2	0	1	-3.862e-6	12	NC 1	I NC	1
492			min	0	3	0	3	001	4	-1.101e-3	4	NC 1	I NC	1
493		19	max	0	1	0	1	0	1	-3.862e-6	12	NC 1	I NC	1
494			min	0	1	0	1	0	1	-1.101e-3	4	NC 1		1
495	M1	1	max	.007	3	.193	1	.727	4	1.206e-2	1	NC 1		1
496		<u> </u>	min	003	2	032	3	0	12	-1.607e-2		NC 1		1
497		2	max	.007	3	.096	1	.705	4	9.579e-3	4	NC 5		1
498				003	2	016	3	007	1	-7.977e-3	3	1390.803		1
		3	min		3		3		4	1.658e-2		NC 5		1
499		3	max	.007		.009		.682			4			
500		-	min	003	2	008	1	01	1	-2.197e-4	1_	668.391	00001110	5
501		4	max	.006	3	.051	3	.659	4	1.444e-2	4_		5 NC	1
502			min	003	2	127	1	009	1	-3.423e-3	3	420.727 1	1200.100	
503		5	max	.006	3	.104	3	.636	4	1.23e-2	_4_		5 NC	1_
504			min	003	2	251	1	006	1	-6.763e-3	3	302.735		5
505		6	max	.006	3	.161	3	.612	4	1.44e-2	<u>1</u>		5 NC	1
506			min	003	2	373	1	003	1	-1.01e-2	3	237.844	2820.695	5
507		7	max	.006	3	.216	3	.587	4	1.928e-2	1	6393.297 1	5 NC	1
508			min	003	2	481	1	0	3	-1.344e-2	3	199.61	2446.132	4
509		8	max	.006	3	.262	3	.562	4	2.415e-2	1		5 NC	1
510			min	003	2	567	1	0	12	-1.678e-2	3	177.027		4
511		9	max	.006	3	.292	3	.534	4	2.649e-2	1		5 NC	1
512			min	003	2	621	1	0	1	-1.707e-2	3	165.263		4
513		10	max	.006	3	.303	3	.504	4	2.713e-2	1		5 NC	1
514		10	min	003	2	639	1	0	12	-1.531e-2	3	161.732		
		11		.006	3					2.777e-2				
515		11	max			.296	3	.47	4		1	5324.968 1		1
516		40	min	003	2	621	1	0	12	-1.356e-2	3	165.466		
517		12	max	.005	3	.271	3	.433	4	2.611e-2	1_	5691.591 1		1
518		4.0	min	003	2	566	1	001	1	-1.158e-2	3	177.643		
519		13	max	.005	3	.231	3	.39	4	2.101e-2	1_		5 NC	1
520			min	003	2	478	1	0	1	-9.262e-3	3	201.106		4
521		14	max	.005	3	.18	3	.344	4	1.591e-2	_1_		5 NC	1
522			min	003	2	368	1	0	12	-6.947e-3	3	241.024 1	0.00.000	4
523		15	max	.005	3	.121	3	.297	4	1.082e-2	1	9581.57 1	5 NC	1
524			min	002	2	245	1	0	12	-4.633e-3	3	309.222	5635.695	4
525		16	max	.005	3	.061	3	.251	4	1.001e-2	4	NC 1	5 NC	1
526			min	002	2	121	1	0	12	-2.318e-3	3	434.225	I NC	1
527		17	max	.005	3	.003	3	.209	4	1.114e-2	4	NC 5		1
528			min	002	2	005	2	0	12	-3.164e-6	3	698.411		1
529		18	max	.005	3	.096	1	.173	4	7.345e-3	1	NC 5		1
530		1.0	min	002	2	049	3	0	12			1466.467		1
531		19	max	.005	3	.187	1	.143	4	1.428e-2	1	NC 1		1
532		13	min	002	2	098	3	0	1	-4.613e-3	3	NC 1		1
	NAE	1								0				
533	<u>M5</u>		max	.02	3	.371	1	.727	4		1_1	NC 1		1
534			min	014	2	019	3	0	1	-7.597e-6	4	NC 1		1
535		2	max	.02	3	.186	1	.71	4	8.486e-3	4_	NC 5		1
536			min	014	2	011	3	0	1	0	_1_	729.577	0.00	4
537		3	max	.02	3	.027	3	.689	4	1.678e-2	_4_	NC 1		1
538			min	014	2	028	1	0	1	0	1	338.251	10211100	
539		4	max	.02	3	.12	3	.666	4	1.367e-2	4		5 NC	1
540			min	014	2	292	1	0	1	0	1	203.36	3728.13	4
541		5	max	.019	3	.253	3	.64	4	1.056e-2	4	4996.902 1	5 NC	1
542			min	013	2	584	1	0	1	0	1	141.005		4
543		6	max	.019	3	.403	3	.613	4	7.456e-3	4		5 NC	1
544		Ĭ	min	013	2	878	1	0	1	0	1	107.785		4
545		7	max	.018	3	.551	3	.587	4	4.35e-3	4		5 NC	1
UTU			πιαλ	.010	J	.001		.001	1 7	T.UUU-U	т_	U 104.004 1	<u> </u>	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:____

546	- 10	Member	Sec		x [in]	LC	y [in]	LC	z [in]		_	LC	(n) L/y Ratio LO		
548	546			min	013	2	-1.146	1	0	1	0	_1_	88.711 1	2462.831	4
550			8												
550										•		•			
			9												
552									_			_			
FS5			10						.503	4					
555				min				_	_	1					4
5556			11	max	.017			3	.469	4		14	2575.769 15		
	554			min	012		-1.498	1	0	1		5			4
557	555		12	max	.016			3	.434	4	7.938e-4	4	2774.795 15		1
S558	556			min	011	2	-1.359	1	0	1	0	1	78.008 1	2102.021	4
559	557		13	max	.016	3	.592	3	.392	4	2.777e-3	4	3163.295 15	NC NC	1
Secondary Seco	558			min	011	2	-1.137	1	0	1	0	1	89.593 1	2485.557	4
561	559		14	max	.015	3	.456	3	.344	4	4.761e-3	4	3833.566 15	NC NC	1
561	560			min	011	2	863	1	0	1	0	1	109.796 1	3516.958	4
S62			15		.015	3		3	.293	4	6.745e-3	4			
Feb Feb				min	011				0	1		1		6625,102	5
S664			16					3	.245	4	8.728e-3	4			
565 17 max .014 3 .009 3 .202 4 1.071e-2 4 NC 15 NC 1 567 18 max .014 3 .186 1 .168 4 5.419e-3 4 NC 5 NC 1 568 min 01 2 .111 3 0 1 0 1 797.729 1 NC 1 569 19 max .014 3 .353 1 .144 4 0 1 NC 1 NC 1 570 min 001 2 .218 3 0 1 -3.659e-6 4 NC 1										1		1			1
Se66			17					3	.202	4	1.071e-2	4			1
18 max												1			
Se8			18						_	4	5 419e-3	4			1
The color of the															
S70			19									•			
571 M9			13												
572		MQ	1						_			_			
573		IVIO													
574 min 003 2 016 3 0 12 -5.823e-3 1 1390.803 1 9186.789 4 575 3 max .007 3 .009 3 .687 4 1.671e-2 4 NC 5 NC 1 576 min 008 1 0 12 -6.84e-6 10 668.391 1 5220.028 4 577 4 max .006 3 .051 3 .664 4 1.311e-2 5 NC 15 NC 1 578 min 003 2 251 1 0 12 -9.53e-3 1 420.727 1 3867.147 4 579 5 max .006 3 .161 3 .639 4 9.887e-3 5 9549.065 15 NC 1 580 min 003 2 251 1			2						_						
575 3 max .007 3 .009 3 .687 4 1.671e-2 4 NC 5 NC 1								_							
576 min 003 2 008 1 0 12 -6.84e-6 10 668.391 1 5220.028 4 577 4 max .006 3 .051 3 .664 4 1.311e-2 5 NC 15 NC 1 5 NC 10 12 -4.655e-3 1 420.727 1 3867.147 4 579 5 max .006 3 .104 3 .639 4 9.887e-3 5 9549.065 15 NC 1 580 min .003 2 -251 1 0 12 9.53e-3 1 302.735 1 3179.344 4 581 6 max .006 3 .161 3 .613 4 1.01e-2 3 7551.258 15 NC 1 582 min .003 2 -373 1 0 12-1.44e-2 1 297.844 1 2751.258 <td< td=""><td></td><td></td><td>2</td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			2						•						
577 4 max .006 3 .051 3 .664 4 1.311e-2 5 NC 15 NC 1 578 min 003 2 127 1 0 12 -4.655e-3 1 420.727 1 3867.147 4 5 579 5 max .006 3 .104 3 .639 4 9.887e-3 5 9549.065 15 NC 1 580 min 003 2 251 1 0 12 -9.53e-3 1 302.735 1 3179.344 4 581 6 max .006 3 .216 3 .587 4 1.01e-2 3 7551.258 15 NC 1 582 min 003 2 373 1 0 12 -1.44e-2 1 237.844 1 2751.8 4 1.344e-2 3 6371.263 15			3						_						
578 min 003 2 127 1 0 12 -4.655e-3 1 420.727 1 3867.147 4 579 5 max .006 3 .104 3 .639 4 9.887e-3 5 9549.065 15 NC 1 580 min 003 2 251 1 0 12 -9.53e-3 1 302.735 1 3179.344 4 581 6 max .006 3 .161 3 .613 4 1.01e-2 3 .7551.258 15 NC 1 582 min 003 2 373 1 0 12 -1.44e-2 1 237.844 1 2751.8 4 583 7 max .006 3 .262 3 .567 4 1.344e-2 3 .6371.263 15 NC 1 584 min 003 2 <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>			1						_						-
579 5 max .006 3 .104 3 .639 4 9.887e-3 5 9549.065 15 NC 1 580 min 003 2 251 1 0 12 -9.53e-3 1 302.735 1 3179.344 4 581 6 max .006 3 .161 3 .613 4 1.01e-2 3.7551.258 15 NC 1 582 min -0.003 2 373 1 0 12 -1.44e-2 1 237.844 1 2751.8 4 583 7 max .006 3 .216 3 .587 4 1.344e-2 3 6371.263 15 NC 1 584 min 003 2 481 1 0 1 -1.928e-2 1 199.61 1 2442.706 4 585 8 max .006 3			4												
580 min 003 2 251 1 0 12 -9.53e-3 1 302.735 1 3179.344 4 581 6 max .006 3 .161 3 .613 4 1.01e-2 3 7551.258 15 NC 1 582 min 003 2 373 1 0 12 -1.44e-2 1 237.844 1 2751.8 4 583 7 max .006 3 .216 3 .587 4 1.344e-2 3 .6371.263 15 NC 1 584 min 003 2 481 1 0 1 -1.928e-2 1 199.61 1 2442.706 4 585 8 max .006 3 .292 3 .535 4 1.707e-2 3 5307.39 15 NC 1 586 min 003 2			-					_							
581 6 max .006 3 .161 3 .613 4 1.01e-2 3 7551.258 15 NC 1 582 min 003 2 373 1 0 12 -1.44e-2 1 237.844 1 2751.8 4 583 7 max .006 3 .216 3 .587 4 1.344e-2 3 6371.263 15 NC 1 584 min 003 2 481 1 0 1 -1.928e-2 1 199.61 1 2442.706 4 585 8 max .006 3 .262 3 .561 4 1.678e-2 3 5672.827 15 NC 1 586 min 003 2 567 1 0 1 -2.415e-2 1 177.027 1 2188.763 4 587 9 max .006			5												
582 min 003 2 373 1 0 12 -1.44e-2 1 237.844 1 2751.8 4 583 7 max .006 3 .216 3 .587 4 1.344e-2 3 6371.263 15 NC 1 584 min 003 2 481 1 0 1 -1.928e-2 1 199.61 1 2442.706 4 585 8 max .006 3 .262 3 .561 4 1.678e-2 3 5672.827 15 NC 1 586 min 003 2 -567 1 0 1 -2.415e-2 1 17.027 1 2188.763 4 587 9 max .006 3 .292 3 .535 4 1.707e-2 3 5307.39 15 NC 1 588 min 003 2			_					_	•			•			
583 7 max .006 3 .216 3 .587 4 1.344e-2 3 6371.263 15 NC 1 584 min 003 2 481 1 0 1 -1.928e-2 1 199.61 1 2442.706 4 585 8 max .006 3 .262 3 .561 4 1.678e-2 3 5672.827 15 NC 1 586 min 003 2 567 1 0 1 -2.415e-2 1 177.027 1 2188.763 4 587 9 max .006 3 .292 3 .535 4 1.707e-2 3 5307.39 15 NC 1 588 min 003 2 621 1 0 12 -2.649e-2 1 165.263 1 1995.858 4 589 10 max .006			О												
584 min 003 2 481 1 0 1 -1.928e-2 1 199.61 1 2442.706 4 585 8 max .006 3 .262 3 .561 4 1.678e-2 3 5672.827 15 NC 1 586 min 003 2 567 1 0 1 -2.415e-2 1 177.027 1 2188.763 4 587 9 max .006 3 .292 3 .535 4 1.707e-2 3 5307.39 15 NC 1 588 min 003 2 621 1 0 12 -2.649e-2 1 165.263 1 1995.858 4 589 10 max .006 3 .303 3 .504 4 1.531e-2 3 5195.698 15 NC 1 590 11 max .006 <td></td> <td></td> <td>7</td> <td></td>			7												
585 8 max .006 3 .262 3 .561 4 1.678e-2 3 5672.827 15 NC 1 586 min 003 2 567 1 0 1 -2.415e-2 1 177.027 1 2188.763 4 587 9 max .006 3 .292 3 .535 4 1.707e-2 3 5307.39 15 NC 1 588 min 003 2 621 1 0 12 -2.649e-2 1 165.263 1 1995.858 4 589 10 max .006 3 .303 3 .504 4 1.531e-2 3 5195.698 15 NC 1 590 min 003 2 639 1 0 1 -2.713e-2 1 161.732 1 1951.644 4 591 11 max .006 3 .296 3			/												
586 min 003 2 567 1 0 1 -2.415e-2 1 177.027 1 2188.763 4 587 9 max .006 3 .292 3 .535 4 1.707e-2 3 5307.39 15 NC 1 588 min 003 2 621 1 0 12 -2.649e-2 1 165.263 1 1995.858 4 589 10 max .006 3 .303 3 .504 4 1.531e-2 3 5195.698 15 NC 1 590 min 003 2 639 1 0 1 -2.713e-2 1 161.732 1 1951.644 4 591 11 max .006 3 .296 3 .47 4 1.356e-2 3 5307.19 15 NC 1 592 min 003 2 <td></td>															
587 9 max .006 3 .292 3 .535 4 1.707e-2 3 5307.39 15 NC 1 588 min 003 2 621 1 0 12 -2.649e-2 1 165.263 1 1995.858 4 589 10 max .006 3 .303 3 .504 4 1.531e-2 3 5195.698 15 NC 1 590 min 003 2 639 1 0 1 -2.713e-2 1 161.732 1 1951.644 4 591 11 max .006 3 .296 3 .47 4 1.356e-2 3 5307.19 15 NC 1 592 min 003 2 621 1 0 1 -2.777e-2 1 165.466 1 2001.444 4 593 12 max .005 <td></td> <td></td> <td>8</td> <td></td>			8												
588 min 003 2 621 1 0 12 -2.649e-2 1 165.263 1 1995.858 4 589 10 max .006 3 .303 3 .504 4 1.531e-2 3 5195.698 15 NC 1 590 min 003 2 639 1 0 1 -2.713e-2 1 161.732 1 1951.644 4 591 11 max .006 3 .296 3 .47 4 1.356e-2 3 5307.19 15 NC 1 592 min 003 2 621 1 0 1 -2.777e-2 1 165.466 1 2001.444 4 593 12 max .005 3 .271 3 .433 4 1.158e-2 3 5672.454 15 NC 1 594 595 13 max <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								_							
589 10 max .006 3 .303 3 .504 4 1.531e-2 3 5195.698 15 NC 1 590 min 003 2 639 1 0 1 -2.713e-2 1 161.732 1 1951.644 4 591 11 max .006 3 .296 3 .47 4 1.356e-2 3 5307.19 15 NC 1 592 min 003 2 621 1 0 1 -2.777e-2 1 165.466 1 2001.444 4 593 12 max .005 3 .271 3 .433 4 1.158e-2 3 5672.454 15 NC 1 594 min 003 2 566 1 0 12 -2.611e-2 1 177.643 1 2126.559 4 595 13 max .005 </td <td></td> <td></td> <td>9</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			9						_						
590 min 003 2 639 1 0 1 -2.713e-2 1 161.732 1 1951.644 4 591 11 max .006 3 .296 3 .47 4 1.356e-2 3 5307.19 15 NC 1 592 min 003 2 621 1 0 1 -2.777e-2 1 165.466 1 2001.444 4 593 12 max .005 3 .271 3 .433 4 1.158e-2 3 5672.454 15 NC 1 594 min 003 2 566 1 0 12 -2.611e-2 1 177.643 1 2126.559 4 595 13 max .005 3 .231 3 .39 4 9.262e-3 3 6370.706 15 NC 1 596 min 003 2 <td></td> <td></td> <td>4 -</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			4 -					_							
591 11 max .006 3 .296 3 .47 4 1.356e-2 3 5307.19 15 NC 1 592 min 003 2 621 1 0 1 -2.777e-2 1 165.466 1 2001.444 4 593 12 max .005 3 .271 3 .433 4 1.158e-2 3 5672.454 15 NC 1 594 min 003 2 566 1 0 12 -2.611e-2 1 177.643 1 2126.559 4 595 13 max .005 3 .231 3 .39 4 9.262e-3 3 6370.706 15 NC 1 596 min 003 2 478 1 0 12 -2.101e-2 1 201.106 1 2549 4 597 14 max .005			10												
592 min 003 2 621 1 0 1 -2.777e-2 1 165.466 1 2001.444 4 593 12 max .005 3 .271 3 .433 4 1.158e-2 3 5672.454 15 NC 1 594 min 003 2 566 1 0 12 -2.611e-2 1 177.643 1 2126.559 4 595 13 max .005 3 .231 3 .39 4 9.262e-3 3 6370.706 15 NC 1 596 min 003 2 478 1 0 12 -2.101e-2 1 201.106 1 2549 4 597 14 max .005 3 .18 3 .343 4 6.947e-3 3 7550.45 15 NC 1 598 min 003 2								_		-					
593 12 max .005 3 .271 3 .433 4 1.158e-2 3 5672.454 15 NC 1 594 min 003 2 566 1 0 12 -2.611e-2 1 177.643 1 2126.559 4 595 13 max .005 3 .231 3 .39 4 9.262e-3 3 6370.706 15 NC 1 596 min 003 2 478 1 0 12 -2.101e-2 1 201.106 1 2549 4 597 14 max .005 3 .18 3 .343 4 6.947e-3 3 7550.45 15 NC 1 598 min 003 2 368 1 002 1 -1.591e-2 1 241.024 1 3537.51 5 599 15 max .005 <td></td> <td></td> <td>11</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td>_</td>			11									3			_
594 min 003 2 566 1 0 12 -2.611e-2 1 177.643 1 2126.559 4 595 13 max .005 3 .231 3 .39 4 9.262e-3 3 6370.706 15 NC 1 596 min 003 2 478 1 0 12 -2.101e-2 1 201.106 1 2549 4 597 14 max .005 3 .18 3 .343 4 6.947e-3 3 .7550.45 15 NC 1 598 min 003 2 368 1 002 1 -1.591e-2 1 241.024 1 3537.51 5 599 15 max .005 3 .121 3 .294 4 6.381e-3 5 9547.858 15 NC 1 600 min 002 2 </td <td></td> <td></td> <td></td> <td>min</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>				min						1					
595 13 max .005 3 .231 3 .39 4 9.262e-3 3 6370.706 15 NC 1 596 min 003 2 478 1 0 12 -2.101e-2 1 201.106 1 2549 4 597 14 max .005 3 .18 3 .343 4 6.947e-3 3 7550.45 15 NC 1 598 min 003 2 368 1 002 1 -1.591e-2 1 241.024 1 3537.51 5 599 15 max .005 3 .121 3 .294 4 6.381e-3 5 9547.858 15 NC 1 600 min 002 2 245 1 006 1 -1.082e-2 1 309.222 1 6111.485 5 601 16 max .005			12	max							1.158e-2	3			_
596 min 003 2 478 1 0 12 -2.101e-2 1 201.106 1 2549 4 597 14 max .005 3 .18 3 .343 4 6.947e-3 3 7550.45 15 NC 1 598 min 003 2 368 1 002 1 -1.591e-2 1 241.024 1 3537.51 5 599 15 max .005 3 .121 3 .294 4 6.381e-3 5 9547.858 15 NC 1 600 min 002 2 245 1 006 1 -1.082e-2 1 309.222 1 6111.485 5 601 16 max .005 3 .061 3 .246 4 8.569e-3 5 NC 15 NC 1									_		-2.611e-2	•			
597 14 max .005 3 .18 3 .343 4 6.947e-3 3 7550.45 15 NC 1 598 min 003 2 368 1 002 1 -1.591e-2 1 241.024 1 3537.51 5 599 15 max .005 3 .121 3 .294 4 6.381e-3 5 9547.858 15 NC 1 600 min 002 2 245 1 006 1 -1.082e-2 1 309.222 1 6111.485 5 601 16 max .005 3 .061 3 .246 4 8.569e-3 5 NC 15 NC 1			13									3			
598 min 003 2 368 1 002 1 -1.591e-2 1 241.024 1 3537.51 5 599 15 max .005 3 .121 3 .294 4 6.381e-3 5 9547.858 15 NC 1 600 min 002 2 245 1 006 1 -1.082e-2 1 309.222 1 6111.485 5 601 16 max .005 3 .061 3 .246 4 8.569e-3 5 NC 15 NC 1				min				_		12		1			4
598 min 003 2 368 1 002 1 -1.591e-2 1 241.024 1 3537.51 5 599 15 max .005 3 .121 3 .294 4 6.381e-3 5 9547.858 15 NC 1 600 min 002 2 245 1 006 1 -1.082e-2 1 309.222 1 6111.485 5 601 16 max .005 3 .061 3 .246 4 8.569e-3 5 NC 15 NC 1	597		14	max	.005		.18	3	.343	4	6.947e-3	3	7550.45 15	NC NC	1
599 15 max .005 3 .121 3 .294 4 6.381e-3 5 9547.858 15 NC 1 600 min 002 2 245 1 006 1 -1.082e-2 1 309.222 1 6111.485 5 601 16 max .005 3 .061 3 .246 4 8.569e-3 5 NC 15 NC 1									002	1		1		3537.51	5
600 min 002 2 245 1 006 1 -1.082e-2 1 309.222 1 6111.485 5 601 16 max .005 3 .061 3 .246 4 8.569e-3 5 NC 15 NC 1			15					3		4		5			
601 16 max .005 3 .061 3 .246 4 8.569e-3 5 NC 15 NC 1										1					5
			16					3		4		5			

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 3, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	o LC
603		17	max	.005	3	.003	3	.204	4	1.083e-2	4	NC	5	NC	1
604			min	002	2	005	2	009	1	-6.247e-4	1	698.411	1	NC	1
605		18	max	.005	3	.096	1	.17	4	5.196e-3	5	NC	5	NC	1
606			min	002	2	049	3	007	1	-7.345e-3	1	1466.467	1	NC	1
607		19	max	.005	3	.187	1	.143	4	4.613e-3	3	NC	1	NC	1
608			min	002	2	098	3	0	12	-1.428e-2	1	NC	1	NC	1

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			•

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1020.0	27.0	565.0	565.6	
Sum	1020.0	27.0	565.0	565 6	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1020

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_t)$	Nc / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4))			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247.75	0.967	1.00	1.000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

rt-term K _{sat} τ _{k,cr} (psi)
0 1.00 1035
. D-16f)
(in) h_{ef} (in) N_{a0} (lb)
0 6.000 9755
Ψ _{ed,Na} Ψ _{p,Na} N _{a0} (Sec. D.4.1 & Eq. D-16a)
$\Psi_{\text{ed},Na}$ $\Psi_{\text{p},Na}$

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	7.00	6947			
$\phi V_{cby} = \phi (A_V)$	/c / A vco) \(\mathcal{P}_{ed, V} \(\mathcal{P}_{c, V} \)	$ \sqrt{\Psi_{h,V}V_{by}} $ (Sec.	D.4.1 & Eq. D-2	1)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934	

 V_{bx} (lb)

8282

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/c$	$(d_a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}$				
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	
4.00	0.50	1.00	2500	7.87	

 $\phi V_{cbx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$ (Sec. D.4.1 & Eq. D-21)

Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$ $\frac{I_e \text{ (in)} \qquad d_a \text{ (in)} \qquad \lambda \qquad \qquad f'_c \text{ (psi)} \qquad c_{a1} \text{ (in)} \qquad V_{by} \text{ (lb)}}{4.00 \qquad 0.50 \qquad 1.00 \qquad 2500 \qquad 7.00 \qquad 6947}$ $\phi V_{cbx} = \phi (2) (A_{Vc}/A_{Vc}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by} \text{ (Sec. D.4.1, D.6.2.1(c) \& Eq. D-21)}$

$\varphi \mathbf{v} \cos \varphi \left(\frac{2}{3} \right) (11)$	ωχ ψ (2)(11νε) 11νεο) 1 εα, ν 1 ε, ν 1 η, ν ν μ (333. Β. π. η, Β.3.2. η (3) α Ε η. Β Σ 1)						
Avc (in ²)	$Av\infty$ (in ²)	$\varPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a \; ; \; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \, \Psi_{ed,Na} \, \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc}/A_{Nco}) \, \Psi_{ed,N} \, \Psi_{c,N} \, \Psi_{cp,N} N_b| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
Anc (in²)	Ανω (in²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ	$\phi V_{c ho}$ (lb)
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:			_		

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1020	6071	0.17	Pass
Concrete breakout	1020	5710	0.18	Pass
Adhesive	1020	5365	0.19	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	566	3156	0.18	Pass (Governs)
T Concrete breakout y+	565	3934	0.14	Pass
T Concrete breakout x+	27	3018	0.01	Pass
Concrete breakout y+	27	8508	0.00	Pass
Concrete breakout x+	565	6875	0.08	Pass
Concrete breakout, combined	-	-	0.14	Pass
Pryout	566	12298	0.05	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rat	io Permissible	Status
Sec. D.7.1 0.1	9 0.00	19.0 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	1/5		
Project:	Standard PVMax - Worst Case, 21-31 Inch Width				
Address:					
Phone:					
E-mail:					

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No

Anchors subjected to sustained tension: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

Ψ_{c,V}: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016					
Engineer:	HCV	Page:	2/5					
Project:	Standard PVMax - Worst Case, 21	Standard PVMax - Worst Case, 21-31 Inch Width						
Address:								
Phone:								
E-mail:								

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21-	-31 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2495.5	1558.5	0.0	1558.5
2	2495.5	1558.5	0.0	1558.5
Sum	4991.0	3117.0	0.0	3117.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4991

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

<i>k</i> _c	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_c)$	Nc / A Nco) $\Psi_{ec,N}$ Ψ_{ec}	$_{I,N} \varPsi_{c,N} \varPsi_{cp,N} N_{b}$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324.00	1.000	0.972	1.00	1.000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f short-term	K _{sat}	τ _{k,cr} (psi)
1.00	1.00	1035
nef (Eq. D-16f)		
d _a (in)	h _{ef} (in)	N _{a0} (lb)
0.50	6.000	9755
	1.00 nef (Eq. D-16f) de (in)	1.00 1.00 nef (Eq. D-16f) d _a (in) h _{ef} (in)

 $\phi N_{ag} = \phi \left(A_{Na} / A_{Na0} \right) \varPsi_{ed,Na} \varPsi_{g,Na} \varPsi_{ec,Na} \varPsi_{\rho,Na} N_{a0} \left(\text{Sec. D.4.1 \& Eq. D-16b} \right)$

A_{Na} (in ²)	A_{Na0} (in ²)	$arPsi_{\sf ed,Na}$	$arPsi_{g,Na}$	$arPsi_{ec,Na}$	$arPsi_{p,Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)	
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093	

Company:	Schletter, Inc.	Date:	8/1/2016				
Engineer:	HCV	Page:	4/5				
Project:	Standard PVMax - Worst Case, 21-31 Inch Width						
Address:							
Phone:							
E-mail:							

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ extit{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Avc / Avco) Vec, v Ve	$_{ed,V} \varPsi_{c,V} \varPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
Avc (in ²)	$Av \infty$ (in ²)	$\Psi_{ec,V}$	$\varPsi_{\sf ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (Ib)
378.00	648.00	1.000	0.836	1.000	1.000	15593	0.70	5323

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

le (in)	da (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (Ib)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cpg} = \phi \min |k_{cp} N_{ag} \; ; \; k_{cp} N_{cbg}| = \phi \min |k_{cp} (A_{Na} / A_{Nao}) \; \Psi_{ed,Na} \; \Psi_{g,Na} \; \Psi_{ec,Na} \; \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc} / A_{Nco}) \; \Psi_{ed,N} \; \Psi_{e,N} \; \Psi_{c,N} \;$

,			(,	-, 3,,	μ, ,μ (,	,,,	(-1)
<i>k</i> _{cp}	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A_{Nc} (in ²)	A _{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2496	6071	0.41	Pass
Concrete breakout	4991	9208	0.54	Pass
Adhesive	4991	8093	0.62	Pass (Governs)
Shear	Factored Load, Vua (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1559	3156	0.49	Pass
T Concrete breakout x+	3117	5323	0.59	Pass (Governs)

Company:	Schletter, Inc.	Date:	8/1/2016	
Engineer:	HCV	Page:	5/5	
Project:	Standard PVMax - Worst Case, 21-31 Inch Width			
Address:				
Phone:				
E-mail:				

Concrete break	out y- 1559	12241	0.	13	Pass (Governs)	
Pryout	3117	19833	0.	16	Pass	
Interaction check	Nua/φNn	Vua/ ϕ Vn	Combined Ratio	Permissible	Status	
Sec. D.7.3	0.62	0.59	120.2 %	1.2	Pass	

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.