

دانشگاه صنعتی شریف

دانشکده مهندسی صنایع

پروژه درس کنترل کیفیت آماری

استاد درس: دکتر رفیعی

اميرحسين قناعتيان

941.4014

زمستان ۴۰۰

فهرست

٣	سوال ۱
٣	الف)
۴	ب)
۴	چ)
۵	(ა
Υ	سوال ۲
Υ	الف)
Y	ب)
٩	(ა
٩	(o
1•	ه)

شماره گروه ۲

سوال ۱

برای تولید داده تصادفی از مسیر زیر را طی میکنیم:

Calc -> Random data -> Normal

و سپس در پنجره باز شده میانگین را 4.7 و انحراف معیار را 1.09544511501 وارد میکنیم. با توجه به اینکه در صورت سوال ذکر شده ۲۰۰ بار نمونه گیری و در هر نمونه گیری اندازه نمونه ۵ است فرایند بالا را ۵ بار تکرار میکنیم.

الف) برای رسم نمودار Xbar-S مسیر زیر را طی میکنیم:

Stat -> Control Charts -> Variable Charts for Subgroups -> X bar-S

شکل فوق نمودار X bar-S است. در نمودار X bar تمام نقاط در محدوده هستند اما در نمودار S دو نمونه شماره ۱۳۰ و ۱۷۷ خارج از کنترل هستند که باید این دو نمونه را پس از یافتن دلیل خارج از محدوده بودن حذف کرد و حدود کنترلی را مجدد محاسبه کرد.

پس از تکرار این فعالیت برای ۱ دفعه نمودار زیر حاصل می شود که تمام نقطه ها در حالت کنترل هستند:

ب)

MEAN	STDE
4.719721378	1.091927207

برای محاسبه میانگین و انحراف معیار استاندارد فرایند تحت کنترل پس از رفتن به مسیر زیر:

Stat -> Control Charts -> Variable Charts for Subgroups -> X bar-S

گزینه X bar-S Option را می زنیم و به بخش Storage رفته و دو گزینه میانگین و انحراف معیار استاندار را فعال می کنیم.

ج) برای رسم حدود کنترل ۲ و ۳ انحراف معیار مسیر زیر را طی می کنیم:

Stat -> Control Charts -> Variable Charts for Subgroups -> X bar-S -> X bar-S Option -> Limits از بخش Display Additional sigma limits اعداد ۲ و π را وارد می کنیم:

د) در این قسمت ابتدا داده های داده شده را وارد نرم افزار میکنیم و به بخش زیر می رویم:

Stat -> Control Charts -> Variable Charts for Subgroups -> X bar-S

سپس در بخش X bar-S Option به بخش Parameters رفته و میانگین و انحراف معیار استاندارد به دست آمده از مرحله قبل را وارد کرده تا نمودار را برای داده های فاز دوم داشته باشیم:

بجز داده های ۱ و ۳ و ۱۱ و ۱۲ سایر داده ها خارج از حدود هستند و می توانیم نتیجه بگیریم که فرایند خارج از کنترل است.

سوال ۲

الف)

برای دست یافتن به اینکه داده ها از چه توزیعی پیروی می کند از شکل زیر کمک می گیریم:

Goodness of Fit Test

Distribution	AD	P	LR7 P
Normal	0.223	0.786	\checkmark
Box-Cox Transformation	0.223	0.786	
Lognormal	0.241	0.721	
3-Parameter Lognormal	0.249	*	0.546
Exponential	4.390	< 0.003	
2-Parameter Exponential	1.250	0.022	0.000
Weibull	0.261	>0.250	
3-Parameter Weibull	0.247	>0.500	0.487
Smallest Extreme Value	0.314	>0.250	
Largest Extreme Value	0.302	>0.250	
Gamma	0.251	>0.250	
3-Parameter Gamma	0.758	*	1.000
Logistic	0.267	>0.250	
Loglogistic	0.265	>0.250	
3-Parameter Loglogistic	0.267	*	0.688

توزیعی را انتخاب می کنیم که بیشترین مقدار P و کمترین مقدار AD را داشته باشد. یعنی $\frac{r}{r}$ و کمترین مقدار P و کمترین مقدار P افزار Minitab موجود است

ب)

برای مشخص کردن این موضوع که آیا روند تصادفی در داده ها یافت می شود کافیست از بخش زیر مقادیر مشخص شده را بررسی کرد و اگر این مقادیر از 0.05 بیشتر باشد می توان این فرض که داده ها تصادفی هستند را پذیرفت.

Number of runs about median:	7	Number of runs up or down:	9
Expected number of runs:	8.0	Expected number of runs:	9.0
Longest run about median:	4	Longest run up or down:	3
Approx P-Value for Clustering:	0.289 🗸	Approx P-Value for Trends:	0.500
Approx P-Value for Mixtures:	0.711 🗸	Approx P-Value for Oscillation:	0.500

در این ابزار ۴ فرض گرایشات، نوسانات، ترکیبات و دسته بندی ها بررسی می شوند. فرض صفر برابر است با اینکه هیچگونه روند غیر تصادفی در فرایند دیده نمیشود و فرض یک برابر با وجود حداقل یکی از چهار روند غیر تصادفی ذکر شده است و در صورتی که P-Value بزرگ تر از 0.05 شود، فرض صفر قبول می شود.

ج) نمودار فوق را با طول دامنه متحرک ۲ رسم میکنیم. خروجی به شکل زیر خواهد بود:

تمام نقاط در محدوده ی کنترل شده است.

نمودار مشاهدات انفرادی را با میانگین و انحراف معیار استاندارد بدست آمده در قسمت های قبل و با استفاده از داده های قسمت د رسم میکنیم و شاهد نمودار زیر خواهیم بود:

تمام نقاط درون حدود کنترلی هستند.

ه)

برای افزایش حساس سازی تمام موارد زیر را فعال می کنیم:

(9

برای این بخش داده ی شماره ۵ که اکنون ۹٬۷۱۲۴ هست را با مقدار ۸٬۳۵۰۳ جایگزین می کنیم. میانگین در حالت قبل برابر ۱۰٬۲۸۱۴ بوده و در حالت جدید برابر ۹٬۱۰۳۰۹ می باشد. یعنی تغییر میانگین به اندازه منفی 1.17831 می باشد.

داده های ورودی به شکل زیر خواهند بود:

Statistics

Variable	N	N*	Mean	SE Mean	StDev	Minimum	Q1	Median	Q3	Maximum
C1	14	0	9.103	0.463	1.732	6.195	7.386	9.674	10.485	11.610

منحنی OC به شکل رو به رو خواهد بود:

Results

Difference	Sample Size	Power
-1.17831	100	1.00000

