Paper ID: RT-09

A Study on the Effect of Textile Effluents and Best Effective Effluent Treatment Plant in Bangladesh Textile Industry

Farhana Momotaz¹, Md. Rashedul Hasan²

¹ Lecturer, Dept. of Textile Engineering, Khulna University of Engineering and Technology, Khulna-9203, Bangladesh.

² Lecturer, Dept. of Apparel Manufacturing, College of Fashion Technology and Management, Dhaka-1230, Bangladesh.

Email: farhanatex@yahoo.com

Abstract

Textile Effluents are unavoidable in most of the Textile Production. Despite having proper treatment of these effluents many people are severely affected by cancer, skin diseases, allergy, and respiratory problems. It also has adverse impact on animal, fish, plant growth and soil chemistry. Present study aimed to find more cost effective and eco safe treatments of textile effluents. In this study we report a comparison and analyze the performance between different ETP methods i.e. Physico-chemical, biological activated sludge method, combined physyco-chemical and biological method according to many testing parameters. We find Biological treatment method as best among them in economic, efficiency and ecologic perspective. Biological effluent treatment plant (ETP) optimizes effluent generation and toxicity of dye house. It needs less chemical cost as well as total running cost. We find that only Biological ETP can satisfy discharging standard as owners are very much interested to run it 24 hours in 365 days for additional economic benefits.

Keywords: Textile Effluents, ETP, Testing parameters, Discharging standard, Economic benefits.

"1. Introduction"

Textile Effluents are the stream of excess chemical liquor extracted from textile industry after using in original operations like pretreatments, dyeing and finishing. The risk factors of textile effluents are primarily associated with the wet processes - scouring, desizing, mercerizing, bleaching, dyeing and finishing that produce large quantities of wastewater. The major chemical pollutants present on textiles are dyes containing carcinogenic amines, toxic heavy metals, pentachlorophenol, chlorine bleaching, halogen carriers, free formaldehyde, biocides, fire retardants, and softeners. Heavy metals used as oxidizing agents, as metal complex dyes, dye stripping agents, fastness improvers, and finishers (water repellents, flame retardants, anti-fungal and odor preventive agents) are not only poisonous to humans but also found toxic to aquatic life (WHO, 2002) and they may result in food contamination (Novick, 1999). Dyeing process usually contributes chromium, lead, zinc and copper to wastewater. Copper is toxic to aquatic plants at concentrations below 1.0 mg/l while concentration nears this level can be toxic to some fish (Sawyer and McCarty, 1978). Studies indicate that effluents have harmful effects on a wide variety of aquatic organisms. Table 1 represents the effluent characteristics from textile industry. Experiment shows that the presence of metals and other dye compounds in textile effluents inhibit microbial activity, damages of organs, disorders in the respiratory tract and lung diseases, dysfunction of the heart and blood producing organs, disorders in the nervous system, skin diseases, and abnormalities in fertility and pregnancy are reported. Contaminated air, soil, and water by effluents from the industries are associated with heavy disease burden (WHO, 2002) and this could be part of the reasons for the current shorter life expectancy in the country, (WHO, 2003) when compared to the developed nations.

Effluent can be treated in a number of different ways depending on the level of treatment required. These levels are known as preliminary, primary, secondary and tertiary (or advanced). The mechanisms for treatment can be divided into three broad categories: physical, chemical and biological, which all include a number of different processes like Physico- chemical, biological activated sludge method, combined physico-chemical and biological method.

Several pollutants in Textile effluent can be removed with the help of an effluent treatment plant (ETP). Effluent from textile dyeing industries must meet the national effluent discharge quality standards set by the Government of Bangladesh, including the "Quality Standards for Classified Industries" (Tables 2 and 3), and may also need to meet additional standards set by international textile buyers. Consequently any ETP must be designed and operated in such a way that it treats the wastewater to these standards. Some

others information are needed for planning an ETP. They are volume of the effluent, chemical cost & concentration, any plan to increase production, if any increase to the amount of effluent to be treated, affordability to spend on constructing & running ETP, availability of the land for ETP, ETP expert or designer, best suited plant, capacity in the factory to manage ETP, requirement of hiring and training staff. Present research will help textile industry personnel to select the most suitable, profitable and eco-friendly ETP considering above factors.

Table 1. Effluent characteristics from textile industry

Process	Effluent Composition	Nature of pollution
Sizing	Starch, waxes, Carboxymethyl cellulose (CMC),	High in BOD, COD
	Polyvinyl alcohol (PVA), wetting agents.	
Desizing	Starch, CMC, PVA, fats, waxes, pectin.	High in BOD, COD, SS,
		dissolved solids (DS)
Bleaching	Sodium hypochlorite, C12, NaOH, H ₂ O ₂ , acids,	High alkalinity, high SS
	Surfactants, NaSiO ₃ , sodium phosphate, short cotton	
	fiber.	
Mercerizing	Sodium Hydroxide, Cotton wax	High pH, low BOD, high DS
Dyeing	Dyestuffs urea, reducing agents, oxidizing agents,	Strongly coloured, high
	Acetic acid, detergents, wetting agents.	BOD, DS, low SS, heavy
		Metals,
Printing	Pastes, urea, starches, gums, oils, binders, acids,	Highly coloured, high BOD,
	thickeners, cross-linkers, reducing agents, alkali.	oily appearance, SS slightly
		alkaline, low BOD

Source: AEPA (Australian Environmental Protection Authority, 1998).

Table 2. National Standards - Waste Discharge Quality Standards for Industrial Units and Projects

(quality standard at discharge point)

Parameter	Unit	Inland surface water	Public sewer secondary treatment plant	Irrigated land
Ammoniacal Nitrogen(N molecule)	mg/l	50	75	75
Ammonia(free ammonia)	mg/l	5	5	15
Arsenic	mg/l	.2	.5	.2
BOD ₅ 200C	mg/l	50	250	100
Boron(B)	mg/l	2	2	2
Cadmium(Cd)	mg/l	.005	.5	.5
Chloride(Cl ⁻)	mg/l	600	600	600
Chromium	mg/l	.5	1	1
COD	mg/l	200	400	400
Copper(CU)	mg/l	.5	3	3
Dissolved Oxygen(DO)	mg/l	4.5-8	4.5-8	4.5-8
Electrical Conductivity		1200	1200	1200
Total Dissolved Solids(TDS)	mg/l	2100	2100	2100
Fluoride(F)	mg/l	7	15	10
Sulfide(S)	mg/l	1	2	2
Iron(Fe)	mg/l	2	2	2
Lead(Pb)	mg/l	.1	.1	.1
Manganese(Mn)	mg/l	5	5	5
Mercury(Hg)	mg/l	.001	.001	.001
Nickel(Ni)	mg/l	1	1	1
Nitrate(N molecule)	mg/l	10	undermined	10
Oil and Grease	mg/l	10	20	10
Phenol Compounds(C ₂ H ₅ OH)	mg/l	1	5	1
Dissolved Phosphorous(P)	mg/l	8	8	10
Radioactive materials	As	determined by Banglac	lesh Atomic Energy Con	nmission

P^{H}	mg/l	6-9	6-9	6-9	
Zn	mg/l	5	10	10	
Temperature	Centigrade				
Summer	mg/l	40	40	40	
Winter	mg/l	45	45	45	
Total Suspended	mg/l	150	500	100	
Solid(TSS)					
Cyanide(CN)	mg/l	.1	2		

Table 3. Discharge Quality Standard for Classified Industries - Composite Textile Plant and Large Processing Units (investment over Tk 30,000,000)

Parameter	Limit (mg/l)
Total Suspended Solid (TSS)	100
BOD ₅ 20° C	150*
Oil and Grease	10
Total Dissolved Solid (TDS)	2100
Waste Water Flow	100 l/kg of fabric processing
Ph	6.5-9
Special parameters based on classification of o	lyes used
Total Chromium (as Cr molecule)	2
Sulfide (as S molecule)	2
Phenolic compounds as C ₆ H ₅ OH	5

^{*} BOD limit of 150 mg/l will be applicable only for physico-chemical processing method.

"2. Methodology"

In this study we have collected information about the harmful effects of textile effluents from several journals, books, publications and investigating from different textile factories and their surrounding inhabitants. In addition, we have also compared and analyzed the performance of various types of effluent treatment plants by collecting information from some textile factory in Bangladesh where ETP is running. Our findings about different types of ETP are presented here which will help us to decide the most suitable type of ETP for Bangladeshi Textile Industry.

"Effluent Treatment Methods"

Table 4. Wastewater Treatment Levels, Mechanism, and Processes

Treatment level	Description	Process
Preliminary	Removal of large solids such as rags, sticks, grit	Physical
	and grease that may damage equipment or result	
	in operational problems.	
Primary	Removal of floating and settle able materials such	Physical and chemical
	as suspended solids or organic matter.	
Secondary	Removal of biodegradable organic matter and	Biological and chemical
	suspended solids	
Tertiary/advanced	Removal of residual suspended/Dissolved solids	Physical biological and
		chemical

"Biological Treatment Processes"

The basic units needed for biological treatment are: screening; an equalization unit; a pH control unit; an aeration unit; and a settling unit. A sludge dewatering unit may also be included. Biological treatment plants require the presence of microorganisms that are adapted to degrade the components of the effluent to be treated.

Textile industry waste will not contain suitable microorganisms so these must be added to the ETP when it is set up. Traditionally in Bangladesh cow dung is used as a source of microorganisms. Evidence shows that output quality from biological treatment can satisfy the national standards for most of the required parameters except colour. A properly designed biological ETP can efficiently satisfy BOD, pH, TSS, oil and grease requirements (Metcalf & Eddy, 2003). A sludge recycle line is essential for activated sludge systems but is not needed for fixed film systems. The aeration unit can be either activated sludge or a fixed film reactor.

"Physico-chemical Treatment Plant"

The basic units needed for a stand-alone physico-chemical treatment plant are screening, an equalization unit, a pH control unit, chemical storage tanks, a mixing unit, a flocculation unit, a settling unit and a

sludge dewatering unit. With physico-chemical treatments generally used in Bangladesh (coagulation and flocculation) it is possible to remove much, possibly all of the colours depending on the process used. It is however difficult to reduce BOD and COD to the value needed to meet the national effluent discharge standard, and impossible to remove TDS. The removal rate is dependent on the influent wastewater quality. The removal efficiency of this type of treatment has been found to be 50% and 70% for BOD_5 and COD respectively.

"Physico-chemical and Biological Treatment"

In this type of treatment a combination of physical operations, and physico-chemical and biological processes are used. The basic units needed for a physico-chemical and biological treatment plant are screening, an equalization unit, a pH control unit, chemical storage tanks, mixing units, flocculation units, a primary settling unit, an aeration unit, and a secondary settling unit. The physico-chemical unit always comes before the biological unit. A sludge recycle line is essential for activated sludge systems but is not needed for fixed film systems. The aeration unit can be either activated sludge or a fixed film reactor.

"3. Result and Discussion"

"Cost Comparison"

The installation costs of ETPs can vary greatly depending on such factors as the materials used, including the quality and source of the equipment (e.g. pumps and air blowers), and dimensions for construction, the quality and quantity of wastewater to be treated, and the quality of the required output. In addition, the operating costs of ETPs can also vary greatly depending on quality and quantity of inputs such as chemicals, the efficiency and size of motors and therefore the energy required the method of treatment and the efficiency of ETP management.

Biological plant incurs 12 times less chemical cost than other plants. Generally in combined method-1 chemical treatment (coagulation & flocculation) is done before biological treatment. By modifying (first biological then chemical treatment) i.e. in combined method-2 running cost per m³ is 28% reduced due to less chemical cost, sludge treatment and disposal cost (Courtesy: Interstoff Apparels Ltd).

Table 5. Chemical Consumption of different ETP

Process	Peak	Chemicals	Dosing	Consump-	Price	Cost	Total
	flow		Rate	tion	tk/kg	tk/m ³	tk/m ³
	m ³ /hr		kg/day	kg/ m ³			
Physico-		Lime	600-650	0.38-0.42	10-12	3.86-5.04	15.5-
chemical	65	FeSO ₄	1000-1200	0.64-0.77	14-16	8.97-12.32	22.5
	0.5	Polyelectrolyte	8-10	0.005-0.01	260-280	1.33-2.80	
		H ₂ SO ₄	250-300	0.16-0.19	8-12	1.28-2.28	
Biological		H ₂ SO ₄ (98%)	150-200	0.10-0.139	8-12	0.83-1.6	1.5-
		Polyelectrolyte	1.5-2	0.001-	260-300	0.27-0.36	2.0
	60			0.0013			
	60	Antifoam	Occasional	-	200-250	-	
		Decolorant	Occasional	-	95-100	-	
		Nutrient	0ccasional	-	150-300	-	
Combined		Lime	650-800	0.49-0.61	10-12	4.92-7.32	17-
chemical-		FeSO ₄	1000-1300	0.75-0.98	14-16	10.6-15.68	25
biological	55	Polyelectrolyte	2-3	0.0015-	260-280	0.39-0.64	
-1	33			0.002			
		HCl	120-150	0.09-0.11	8-12	0.72-1.32	
		Nutrient	Occasional	-	150-300	-	
Combined		Lime	600-700	0.33-0.39	10-12	3.33-4.68	12-
chemical-		FeSO ₄	1050-1200	0.58-0.67	14-16	8.16-10.72	17
biological	75	Polyelectrolyte	1.5-2	0.0008-	260-280	0.22-0.3	
-2	13			0.001			
		HCl	120-150	0.06-0.08	8-12	0.53-0.96	
		Nutrient	Occasional	-	150-300	-	

Chemical consumption can fluctuate according to effluent composition and concentration.

Table 6. Man Power Cost:

Process	Peak flow m³/hr	No of labour	Salary/month Tk	Treatment/month m ³	Cost tk/m³
Physico-chemical	65	9	60000	46800	1.28

Biological	60	6	45000	43200	1.04
Combined-1	55	9	58000	39600	1.46
Combined-2	75	10	80000	54000	1.48

"Performance Analysis"

In Biological method the average BOD removal efficiency gained the highest value (84%) compared to other methods. In combined bio-chemical method the average COD removal efficiency gained the highest value (70.8%), in biological method 59.1%. Among all methods highest average TSS removal efficiency (81.7%) found in biological method. Before treatment TDS level was under discharging standard (2100 mg/l) in ETPs A1, A2, C1, C2, C3. Physico chemical based ETP A3 cannot maintain discharging standard. Except biological method, TDS value increased after treatment in physico-chemical based ETP A2 and combined bio-chemical ETP C3. Biological treatment reduces TDS significantly and satisfy discharging standard.

Table 7. Performance Analysis of Active ETP

BOD5 mg/l 50/150 125 65 48 147 69 53.1 115 56 51.3 50.8 COD mg/l 200 340 135 60.3 290 110 62.1 295 153 48.1 56.8 TSS mg/l 150 170 62.9 63 276 80 71 210 53.88 74.3 69.5 TDS mg/l 2100 1956 1795 8.2 1600 1820 -13.8 3045 2245 26.2 6.9 DO mg/l 4.5-8 0 4.9 0 5.1 0 4.9 PH - 6-9 11.5 8.6 11.2 7.3 10 7.72 TEMP °C 40 37 29 41 30 40 29 Facts Unit Standard BT AT RE% BT AT RE% BT AT RE% RE% BOD5 mg/l 50 110 29 73.6 145 19.45 86.6 281 23 91.8 84 COD mg/l 200 320 128 60 304 102 66.4 356 174 51.1 59.15 TSS mg/l 150 130 18 86.2 230 54 76.5 204 36 82.4 81.7 TDS mg/l 2100 4950 2010 59.4 2492 1135 54.5 3200 1580 50.6 54.8 DO mg/l 4.5-8 0 4.5 0 4.7 0.1 4.6 DO mg/l 200 284 110 61.3 372 95 74.5 292 68 76.7 70.8 TSS mg/l 150 150 170 43 60.9 144 36 75 112 24 78.6 71.5 COD mg/l 200 284 110 61.3 372 95 74.5 292 68 76.7 70.8 TSS mg/l 150 150 1610 17.9 180 1600 14.9 840 1050 -25 2.6 DO mg/l 4.5-8 0 4.4 0 4.4 0 5.9 DO mg/l 4.5-8 0 4.4 0 4.4 0 5.9 DO mg/l 4.5-8 0 4.4 0 4.4 0 0 5.9 DO mg/l 4.5-8 0 4.4 0 4.4 0 0 5.9 DO mg/l 4.5-8 0 4.4 0 0 4.4 0 0 5.9 DO mg/l 4.5-8 0 4.4 0 0 4.4 0 0 5.9 DO mg/l 4.5-8 0 4.4 0 0 4.4 0 0 5.9 DO mg/l 4.5-8 0 4.4 0 0 4.4 0 0 5.9 DO mg/l 4.5-8 0 4.4 0 0 4.4 0 0 5.9 DO mg/l 4.5-8 0 4.4 0 0 4.4 0 0 5.9 DO mg/l 4.5-8 0 4.4 0 0 4.4 0 0 5.9 DO mg/l 4.5-8 0 4.4 0 0 4.4 0 0 5.9 DO mg/l 4.5-8 0 4.4 0	<u> Fable 7.</u>	Perforr	nance Anal	ysis of A	ctive E	TP							
Facts						Physic	o-chemi	cal					
BODs mg/l 50/150 125 65 48 147 69 53.1 115 56 51.3 50.8 COD mg/l 200 340 135 60.3 290 110 62.1 295 153 48.1 56.8 TSS mg/l 150 170 62.9 63 276 80 71 210 53.88 74.3 69.5 TDS mg/l 2100 1956 1795 8.2 1600 1820 -13.8 3045 2245 26.2 6.9 DO mg/l 4.5-8 0 4.9 0 5.1 0 4.9 PH - 6-9 11.5 8.6 11.2 7.3 10 7.72 TEMP °C 40 37 29 41 30 40 29 Facts Unit Standard BT AT RE% BT AT RE% BT AT RE% RE% BODs mg/l 50 110 29 73.6 145 19.45 86.6 281 23 91.8 84 COD mg/l 200 320 128 60 304 102 66.4 356 174 51.1 59.15 TSS mg/l 150 130 18 86.2 230 54 76.5 204 36 82.4 81.7 TDS mg/l 2100 4950 2010 59.4 2492 1135 54.5 3200 1580 50.6 54.8 DO mg/l 4.5-8 0 4.5 0 4.7 0.1 4.6 DO mg/l 50 110 43 60.9 144 36 75 112 24 78.6 71.5 TSS mg/l 50 110 43 60.9 144 36 75 112 24 78.6 71.5 COD mg/l 200 284 110 61.3 372 95 74.5 292 68 76.7 70.8 TSS mg/l 150 150 1610 17.9 180 1600 14.9 840 1050 -25 2.6 DO mg/l 4.5-8 0 4.4 0 4.4 0 5.9 BOD mg/l 4.5-8 0 4.4 0 4.4 4.4 0 0 5.9 BOD mg/l 4.5-8 0 4.4 0 4.4 0 0 5.9 BOD mg/l 4.5-8 0 4.4 0 4.4 0 0 5.9 DO mg/l 4.5-8 0 4.4 0 0 4.4 0 0 5.9 BOD mg/l 4.5-8 0 4.4 0 0 4.4 0 0 5.9 BOD mg/l 4.5-8 0 4.4 0 0 4.4 0 0 5.9 BOD mg/l 4.5-8 0 4.4 0 0 4.4 0 0 5.9 0 BOD mg/l 4.5-8 0 4.4 0 0 4.4 0 0 5.9 0 BOD mg/l 4.5-8 0 4.4 0 0 4.4 0 0 5.9 0 BOD mg/l 4.5-8 0 4.4 0 0 4.4 0 0 5.9 0 BOD mg/l 4.5-8 0 4.4 0 0 4.4 0 0 5.9 0 BOD					A1 A2			A2		A3			
COD mg/l 200 340 135 60.3 290 110 62.1 295 153 48.1 56.8 TSS mg/l 150 170 62.9 63 276 80 71 210 53.88 74.3 69.5 TDS mg/l 2100 1956 1795 8.2 1600 1820 -13.8 3045 2245 26.2 6.9 DO mg/l 4.5-8 0 4.9 0 5.1 0 4.9 0 7.72 1 7.72 1 7.72 1 7.72 1 7.72 1 7.72 1 7.72 1 7.72 1 7.72 1 7.72 1 7.73 10 7.72 1 7.72 1 7.72 1 7.73 10 7.72 1 7.72 1 7.72 1 7.72 1 7.72 1 7.72 7.72 7.72 7.72 7.72	Facts	Unit	Standard	BT	AT		BT	AT	RE%	BT	AT	RE%	Avg. RE%
TSS mg/l 150 170 62.9 63 276 80 71 210 53.88 74.3 69.5 TDS mg/l 2100 1956 1795 8.2 1600 1820 -13.8 3045 2245 26.2 6.9 DO mg/l 4.5-8 0 4.9 0 5.1 0 4.9 P PH - 6-9 11.5 8.6 11.2 7.3 10 7.72 7.72 7.72 7.72 7.72 7.72 7.72 7.72 7.72 7.72 7.72 7.72 7.73 7.72 7.72 7.72 7.72 7.73 7.72 7.72 7.72 7.72 7.72 7.72 7.72 7.72 7.72 7.72 7.73 7.72 7.72 7.72 7.72 7.72 7.72 7.72 7.72 7.72 7.72 7.72 7.72 7.72 7.72 7.72 7.72 7.72 7.72 7	BOD ₅	mg/l	50/150	125	65	48	147	69	53.1	115	56	51.3	50.8
TDS mg/l 2100 1956 1795 8.2 1600 1820 -13.8 3045 2245 26.2 6.9 DO mg/l 4.5-8 0 4.9 0 5.1 0 4.9 1 20 4.9 1 27.3 10 7.72 1 7.72 1 1 7.72 1 1 7.72 1 1 1 7.72 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 3 1 1 1 2 2 1 2 1 2 1 3 1 1	COD	mg/l	200	340	135	60.3	290	110	62.1	295	153	48.1	56.8
DO	TSS	mg/l	150	170	62.9	63	276	80	71	210	53.88	74.3	69.5
PH - 6-9 11.5 8.6 11.2 7.3 10 7.72 7.72 7.72 7.72 7.72 7.73 10 7.72 7.72 7.73 7.72 7.73 7.72 7.72 7.73 7.72 7.73 7.72 7.73 7.72 7.73 7.74 7.72 7.74 7.72 7.74 7.74 7.74 7.75 7.74 7.75	TDS	mg/l	2100	1956	1795	8.2	1600	1820	-13.8	3045	2245	26.2	6.9
TEMP °C 40 37 29 41 30 40 29 Biological B1 B2 B3 Facts Unit Standard BT AT RE% BT AT BC 281 23 91.8 84 230 11.0 266.4 356 174 51.1 59.15 59.15 350 150.6 54.8<	DO	mg/l	4.5-8	0	4.9		0	5.1		0	4.9		
Biological B1 B2 B3 R5 AVg. R6 B5 B7 B7 B7 B7 B8 B8 B8 B8	P^{H}	-	6-9	11.5	8.6		11.2	7.3		10	7.72		
B1	TEMP	°C	40	37	29		41	30		40	29		
Facts Unit Standard BT AT RE% BT AT RE% BT AT RE% Avg. RE% BOD5 mg/l 50 110 29 73.6 145 19.45 86.6 281 23 91.8 84 COD mg/l 200 320 128 60 304 102 66.4 356 174 51.1 59.19 TSS mg/l 150 130 18 86.2 230 54 76.5 204 36 82.4 81.7 TDS mg/l 2100 4950 2010 59.4 2492 1135 54.5 3200 1580 50.6 54.8 DO mg/l 4.5-8 0 4.5 0 4.7 0.1 4.6 9.0 10.3 8.1 1.7 10.1 4.6 1.0 10.3 8.1 1.0 10.3 8.1 1.0 1.0 10.3 8.1 1.0 <td colspan="9">Biological</td>	Biological												
BOD ₅ mg/l 50 110 29 73.6 145 19.45 86.6 281 23 91.8 84 COD mg/l 200 320 128 60 304 102 66.4 356 174 51.1 59.19 TSS mg/l 150 130 18 86.2 230 54 76.5 204 36 82.4 81.7 TDS mg/l 2100 4950 2010 59.4 2492 1135 54.5 3200 1580 50.6 54.8 DO mg/l 4.5-8 0 4.5 0 4.7 0.1 4.6 PH - 6-9 10.5 8.03 9.76 7.69 10.3 8.1 TEMP °C 40 41 35 43 34 50 35 Facts Unit Standard BT AT RE BT AT RE BT AT RE% RE% BOD ₅ mg/l 200 284 110 61.3 372 95 74.5 292 68 76.7 70.8 TSS mg/l 150 75 52 30.7 192 30 84.4 62 34 45.2 53.401 TDS mg/l 2100 1960 1610 17.9 1880 1600 14.9 840 1050 -25 2.6 DO mg/l 4.5-8 0 4.4 0 4.4 0 5.9 PH - 6-9 8 7.5 11 6.4 9.2 7.7					B1			B2			В3		
COD mg/I 200 320 128 60 304 102 66.4 356 174 51.1 59.19 TSS mg/I 150 130 18 86.2 230 54 76.5 204 36 82.4 81.7 TDS mg/I 2100 4950 2010 59.4 2492 1135 54.5 3200 1580 50.6 54.8 DO mg/I 4.5-8 0 4.5 0 4.7 0.1 4.6 10.3 8.1	Facts	Unit	Standard	BT	AT	RE%	BT	AT	RE%	BT	AT	RE%	Avg. RE%
TSS mg/l 150	BOD ₅	mg/l	50	110	29	73.6	145	19.45	86.6	281	23	91.8	84
TDS mg/l 2100 4950 2010 59.4 2492 1135 54.5 3200 1580 50.6 54.8 DO mg/l 4.5-8 0 4.5 0 4.7 0.1 4.6 PH - 6-9 10.5 8.03 9.76 7.69 10.3 8.1 TEMP °C 40 41 35 43 34 50 35	COD	mg/l	200	320	128	60	304	102	66.4	356	174	51.1	59.19
DO mg/l 4.5-8 0 4.5 0 4.7 0.1 4.6 P PH - 6-9 10.5 8.03 9.76 7.69 10.3 8.1 1 TEMP °C 40 41 35 43 34 50 35 1 Combined chemical & biological Combined chemical & biological C1 C2 C3 C3 RE% Facts Unit Standard BT AT RE BT AT RE BT AT RE% BW Avg. RE% BODs mg/l 50 110 43 60.9 144 36 75 112 24 78.6 71.5 COD mg/l 200 284 110 61.3 372 95 74.5 292 68 76.7 70.8 TSS mg/l 150 75 52 30.7 192<	TSS	mg/l	150	130	18	86.2	230	54	76.5	204	36	82.4	81.7
PH - 6-9 10.5 8.03 9.76 7.69 10.3 8.1 Percentage TEMP °C 40 41 35 43 34 50 35 35 Combined chemical & biological Combined chemical & biological C1 C2 C3 AT RE% Avg. RE% BODs mg/l 50 110 43 60.9 144 36 75 112 24 78.6 71.5 COD mg/l 200 284 110 61.3 372 95 74.5 292 68 76.7 70.8 TSS mg/l 150 75 52 30.7 192 30 84.4 62 34 45.2 53.401 TDS mg/l 2100 1960 1610 17.9 1880 1600 14.9 840 1050 -25 2.6 DO mg/l 4.5-8 0 4.4<	TDS	mg/l	2100	4950	2010	59.4	2492	1135	54.5	3200	1580	50.6	54.8
PH - 6-9 10.5 8.03 9.76 7.69 10.3 8.1	DO	mg/l	4.5-8	0	4.5		0	4.7		0.1	4.6		
Combined chemical & biological C1	P^H	-	6-9	10.5	8.03		9.76	7.69		10.3	8.1		
Facts Unit Standard BT AT RE % BT AT RE% Avg. RE% BOD5 mg/l 50 110 43 60.9 144 36 75 112 24 78.6 71.5 COD mg/l 200 284 110 61.3 372 95 74.5 292 68 76.7 70.8 TSS mg/l 150 75 52 30.7 192 30 84.4 62 34 45.2 53.401 TDS mg/l 2100 1960 1610 17.9 1880 1600 14.9 840 1050 -25 2.6 DO mg/l 4.5-8 0 4.4 0 4.4 0 5.9 PH - 6-9 8 7.5	TEMP	°C	40	41	35		43	34		50	35		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					Comb	ined che	emical &	biologic	al		-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					C1		C2			C3			
COD mg/l 200 284 110 61.3 372 95 74.5 292 68 76.7 70.8 TSS mg/l 150 75 52 30.7 192 30 84.4 62 34 45.2 53.401 TDS mg/l 2100 1960 1610 17.9 1880 1600 14.9 840 1050 -25 2.6 DO mg/l 4.5-8 0 4.4 0 4.4 0 5.9 5.9 PH - 6-9 8 7.5 11 6.4 9.2 7.7 7.7	Facts	Unit	Standard	BT	AT		BT	AT		BT		RE%	
TSS mg/l 150 75 52 30.7 192 30 84.4 62 34 45.2 53.401 TDS mg/l 2100 1960 1610 17.9 1880 1600 14.9 840 1050 -25 2.6 DO mg/l 4.5-8 0 4.4 0 4.4 0 5.9 PH - 6-9 8 7.5 11 6.4 9.2 7.7	BOD ₅	mg/l	50	110	43	60.9	144	36	75	112	24	78.6	71.5
TDS mg/l 2100 1960 1610 17.9 1880 1600 14.9 840 1050 -25 2.6 DO mg/l 4.5-8 0 4.4 0 4.4 0 5.9 PH - 6-9 8 7.5 11 6.4 9.2 7.7	COD	mg/l	200	284	110	61.3	372	95	74.5	292	68	76.7	70.8
TDS mg/l 2100 1960 1610 17.9 1880 1600 14.9 840 1050 -25 2.6 DO mg/l 4.5-8 0 4.4 0 4.4 0 5.9 PH - 6-9 8 7.5 11 6.4 9.2 7.7	TSS	mg/l	150	75	52	30.7	192	30	84.4	62	34	45.2	53.401
P ^H - 6-9 8 7.5 11 6.4 9.2 7.7	TDS		2100	1960	1610	17.9	1880	1600	14.9	840	1050	-25	2.6
P ^H - 6-9 8 7.5 11 6.4 9.2 7.7	DO	mg/l	4.5-8	-			0	4.4		0	5.9		
TEMP °C 40 35 29 36 27 38 32	P^{H}	-	6-9	8	7.5		11	6.4		9.2	7.7		
	TEMP	°C	40	35	29		36	27		38	32		

^{*}BT-before treatment value, AT-after treatment value, RE (removal efficiency)={(BT-AT)/BT}*100

Table 8. Sludge Characterization

Parameters	Physico-chemical	Biological	Combined chemical & biological
Sludge quantity	$2-5 \text{ kg/m}^3$	$300-400 \text{ gm/m}^3$	$2-5 \text{ kg/m}^3$
Sludge toxicity	Highly toxic	Non-toxic	Toxic
Sludge disposal problem	Severe	Slight	Medium
Sludge disposal cost	High	Very low	High
Sludge utilization	Brick	Fertilizer,brick	Brick

"4. Conclusion"

There is wide variation between actual efficiency and typical efficiency except Biological method. Considering chemical consumption, Biological treatment plant needs very less amount of money to do treatment of waste water compared to other treatment plants. Biological treatment plant needs low manpower cost that is 1.04 tk/m³ whereas more cost is essential for other treatment plants. Physico-

chemical treatment shows average removal efficiency of BOD, COD, TSS from 51% to 70%, Whereas it is between 60 % to 84% for Biological treatment plant. Besides after doing biological treatment we can get non toxic and less amount of sludge(300-400 gm/m³) form discharging water, while it is toxic and more amount(2-5 kg/m³) for other treatments. To run the plant regularly and efficiently and to bring business profit, owners prefer Biological ETP. So by considering the economic, ecologic and functionality perspective Biological ETP perform best than any other Effluent Treatment Plants (ETP).

"5. References"

- [1] Government of the People's Republic of Bangladesh (2000), The Environment Conservation Rules 1997, (unofficial translation), Ministry of Environment and Forests, Dhaka.
- [2] Novick R (1999), Overview and the Health in Europe in the 1990s, World Health Organization, Europe Regional Office, Copenhagen, EUR/ICP/EH/CO 02 02 05/6, pp 20.
- [3] Sawyer C.C. and McCarty P.L. (1978), Chemistry for Environmental Engineers, McGraw Hill, New York. pp 331-514.
- [4] AEPA (Australian Environmental Protection Authority) (1998), Environmental Guidelines for the Textile dyeing and Finishing Industry, State Government of Victoria, Melbourne, Victoria, Australia.
- [5] EPA (1974), Wastewater-Treatment Systems: Upgrading Textile Operations to Reduce Pollution, United States Environmental Protection Agency, Washington DC, USA, In: EPA Technology Transfer, EPA-625/3-74-004, pp 1- 12.
- [6] Metcalf and Eddy (2003) Wastewater Engineering Treatment and Reuse McGraw Hill, New York.
- [7] Nicolaou M. and Hadjivassilis I. (1992), Treatment of wastewater from the textile industry, Water Science and Technology, Vol. 25, No. 1, pp 31-35.
- [8] Tamburlini G., Ehrenstein O.V. and Bertollini R (2002), Children's Health and Environment: A Review of Evidence, In: Environmental Issue Report. No. 129, "WHO/European Environment Agency, WHO Geneva, pp 223.
- [9] Kupechella C.E. and Hyland M;C. (1989), Environmental Science, Allyn and Baron, London.
- [10] Salami Taibat Abosede (2001), Nigerian Handcrafted Textiles: ~ources of Designs and Contemporary Techniques used by Egba Dyers, University of Agriculture, Abeokuta, Ogun State, Nigeria.
- [11] Yusuff RO and Sonibare IA (2005), Characterization of Textile Industries' Effluents in Kaduna, Nigeria and Pollution Implications, Environmental Engineering Research Laboratory, Department of Chemical Engineering, Obafemi Awolowo University IIe-Ife, Nigeria.
- [12] Zeiner M., Rezic I. and Steffan I. (2007), Analytical Methods for the Determination of Heavy Metals in the Textile Industry, Department of Analytical and Food Chemistry, University of Vienna, Wahringerstr. 38, 1090 Vienna, Austria.
- [13] Er. N. Sateesh Babu Paper on "Effective management of TDS containing wastewater in Bulk Drug, Tanneries and Textile Industries in Proceedings of the International Seminar on Combined Waste Water Treatment"
- [14] "Common Effluent Treatment Plant", A Solution or a Problem in Itself, Toxics Link, November 2000.
- [15] "Common Effluent Treatment Plant", State-of-the-Art, National Environmental Engineering Research Institute and Ministry of Environmental and Forests, July 1992.
- [16] Sangeeth Aiyappa, Svaraj, "Common Effluent Treatments Plants, Technology & Treatment Process: The Alternative Strategies", Working Paper Series, No.2. (www.svaraj.in/html/pdf/Final_Alternt_Strgs.pdf)
- [17] A.K. Biswas & S.N. Kaul, "Sustainable Environmental Sanitation and Water Services, Prospects of Common Effluent Treatment Plant (CETP) in Industrial Sector", India, 28th WEDC Conference, Kolkata, India, 2002.