Tutorial 4

Q.1.

Compute Q_0 and ζ for a simple parallel *RLC* network if (a) $R = 1 \text{ k}\Omega$, C = 10 mF, and L = 1 H; (b) $R = 1 \Omega$, C = 10 mF, and L = 1 H; (c) $R = 1 \text{ k}\Omega$, C = 1 F, and L = 1 H.

Q.2.

The circuit of Fig. 16.1 is built using component values L=1 mH and $C=100 \mu F$. If $Q_0=15$, determine the bandwidth and estimate the magnitude and angle of the input impedance for operation at (a) 3162 rad/s; (b) 3000 rad/s; (c) 3200 rad/s; (d) 2000 rad/s. (e) Verify your estimates using an exact expression for $\mathbf{Y}(j\omega)$.

■ FIGURE 16.1

Q.3.

A series *RLC* circuit is constructed employing component values $R = 100 \Omega$ and L = 1.5 mH along with a sinusoidal voltage source v_s . If $Q_0 = 7$, determine (a) the magnitude of the impedance at 500 Mrad/s; (b) the current which flows in response to a voltage $v_s = 2.5 \cos(425 \times 10^6 t)$ V.

Q.4.

After deriving $\mathbf{Z}_{in}(\mathbf{s})$ in Fig. 16.54, find (a) ω_0 ; (b) Q_0 .

■ FIGURE 16.54

Q.5.

For the network represented in Fig. 16.55, determine the resonant frequency and the corresponding value of $|\mathbf{Z}_{in}|$.

■ FIGURE 16.55