Batch: A3 Experiment Number:4

Roll Number:16010423099 Name: Suryanshu Banerjee

Aim of the Experiment: To perform exploratory data analysis using python NUMPY

# **Program/Steps:**

```
import pandas as pd
import numpy as np
df = pd.read csv('C:/Users/SuryanshuBanerjee/myFiles/college/steam.csv')
print("Dataset Info:")
print(df.info())
print("\nBasic Statistics:")
print(df.describe())
print("\nMissing Values:")
print(df.isnull().sum())
df['publishers'] = df['publishers'].fillna("Unknown")
df['developers'] = df['developers'].fillna("Unknown")
print("\nMissing Values After Cleaning:")
print(df.isnull().sum())
print("Summary of 'price' column:")
print(df['price'].describe())
print("\nSummary of 'copiesSold' column:")
print(df['copiesSold'].describe())
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df = pd.read csv('C:/Users/SuryanshuBanerjee/myFiles/college/steam.csv')
plt.figure(figsize=(10, 6))
df['price'].plot(kind='density', color='blue', linewidth=2)
plt.title("Density Plot of Game Prices")
plt.xlabel("Price")
plt.show()
plt.figure(figsize=(10, 6))
df['copiesSold'].plot(kind='hist', bins=30, color='orange', edgecolor='black')
plt.title("Frequency Plot of Copies Sold")
plt.xlabel("Copies Sold")
plt.show()
print("Measures of Central Tendency:")
print("Price Mean:", df['price'].mean())
print("Price Median:", df['price'].median())
print("Copies Sold Mean:", df['copiesSold'].mean())
print("Copies Sold Median:", df['copiesSold'].median())
plt.figure(figsize=(8, 6))
```

```
plt.boxplot(df['price'].dropna(), vert=False, patch artist=True,
boxprops=dict(facecolor='skyblue'))
plt.title("Boxplot of Game Prices")
plt.xlabel("Price")
plt.show()
plt.figure(figsize=(10, 6))
plt.scatter(df['price'], df['copiesSold'], color='green', marker='o', s=10)
plt.title("Scatter Plot of Price vs Copies Sold")
plt.xlabel("Price")
plt.ylabel("Copies Sold")
plt.legend(["Price vs Copies Sold"], loc="upper right")
plt.show()
df['releaseDate'] = pd.to datetime(df['releaseDate'], errors='coerce')
df sorted = df.sort values('releaseDate')
plt.figure(figsize=(12, 6))
plt.plot(df sorted['releaseDate'], df sorted['price'], linestyle='--', color='purple')
plt.title("Line Plot of Release Date vs Price")
plt.xlabel("Release Date")
plt.ylabel("Price")
plt.legend(["Release Date vs Price"], loc="upper right")
plt.show()
plt.figure(figsize=(10, 6))
```

```
plt.bar(df['name'][:10], df['price'][:10], color='c', label='Price')
plt.bar(df['name'][:10], df['copiesSold'][:10], bottom=df['price'][:10], color='orange',
label='Copies Sold')
plt.title("Bar Plot Comparison of Price and Copies Sold for Top 10 Games")
plt.xlabel("Game Name")
plt.ylabel("Values")
plt.legend(loc="upper left")
plt.xticks(rotation=45, ha="right")
plt.tight layout()
plt.show()
plt.figure(figsize=(10, 6))
plt.plot(df sorted['releaseDate'], df sorted['copiesSold'], linestyle='-', color='teal', marker='*',
markersize=5)
plt.title("Styled Line Plot of Release Date vs Copies Sold")
plt.xlabel("Release Date")
plt.ylabel("Copies Sold")
plt.legend(["Styled Line Plot"], loc="upper right")
plt.show()
```

### **Output/Result:**

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1500 entries, 0 to 1499
Data columns (total 11 columns):
    Column Non-Null Count Dtype
   name 1500 non-null
releaseDate 1500 non-null
copiesSold 1500 non-null
                                    object
0
                                    object
1
                                    int64
2
                 1500 non-null
1500 non-null
    price
                                    float64
    revenue
                                    float64
4
   avgPlaytime 1500 non-null reviewScore 1500 non-null
                                    float64
6
                                   int64
    publisherClass 1500 non-null
                                    object
    publishers 1499 non-null
                                    object
    developers
                    1498 non-null
                                    object
                1500 non-null
10 steamId
                                    int64
dtypes: float64(3), int64(3), object(5)
memory usage: 129.0+ KB
None
Basic Statistics:
        copiesSold
                          price
                                      revenue avgPlaytime reviewScore
                                                                             steamId
count 1.500000e+03 1500.000000 1.500000e+03 1500.000000 1500.000000 1.500000e+03
      1.414826e+05 17.519513 2.632382e+06
                                                 12.562704 76.201333 2.183788e+06
mean
      1.132757e+06 12.646612 2.781024e+07 21.542173 24.319438 6.067725e+05
std
min
      5.930000e+02
                     0.000000 2.067400e+04
                                                0.000000
                                                              0.000000 2.488000e+04
25%
      4.918750e+03
                       9.990000 4.550425e+04
                                                  3.564848
                                                              72.000000 1.792795e+06
      1.192850e+04
50%
                      14.990000 1.090530e+05
                                                  6.762776
                                                             83.000000 2.321985e+06
75%
      3.786975e+04 19.990000 4.551568e+05
                                                13.104473
                                                             92.000000 2.693228e+06
                                                296.332852
                                                             100.000000 3.107330e+06
max
      3.073915e+07
                      99.990000 8.377934e+08
```

```
Missing Values:
name
                 0
releaseDate
copiesSold
                 0
price
                 0
revenue
                 0
avgPlaytime
reviewScore
publisherClass
                 0
publishers
developers
steamId
                 0
dtype: int64
Missing Values After Cleaning:
releaseDate
copiesSold
price
                 0
revenue
                 0
avgPlaytime
reviewScore
publisherClass 0
publishers
                 0
developers
                 0
steamId
dtype: int64
```

```
Summary of 'price' column:
count
         1500.000000
mean
           17.519513
std
           12.646612
min
            0.000000
25%
            9.990000
50%
           14.990000
75%
           19.990000
max
           99.990000
Name: price, dtype: float64
Summary of 'copiesSold' column:
count
         1.500000e+03
mean
         1.414826e+05
std
         1.132757e+06
min
         5.930000e+02
25%
         4.918750e+03
50%
         1.192850e+04
75%
         3.786975e+04
         3.073915e+07
max
Name: copiesSold, dtype: float64
```

#### 5 observations:

- 1. <u>Dataset Composition:</u> The dataset has 1,500 rows with both numeric and non-numeric columns, providing a broad set of variables, including game details like price, copies sold, and developer information.
- 2. <u>Missing Data:</u> Several columns, notably publishers and developers, had missing values, which have been addressed by filling them with "Unknown" to maintain data consistency.
- 3. <u>Price Distribution:</u> The price column shows a significant variation, with some games priced at zero (likely free games) and others priced significantly higher. The average price can give insight into general pricing trends.
- 4. <u>Popularity Measure:</u> The copiesSold column also shows a wide range, from very few copies to highly popular games with large sales numbers, indicating a mix of niche and popular games in the dataset.
- 5. <u>Data Structure:</u> After minimal EDA, the dataset is confirmed as suitable for further detailed analysis, including visualizations and correlation analysis, particularly for understanding the impact of price on copies sold or reviews.















| Post Lab Question-Answers:                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| None.                                                                                                                                   |
| Outcomes:                                                                                                                               |
| <b>CO3:</b> Inculcate the knowledge of python libraries like NumPy, pandas, Matplotlib for scientific computing and data visualization. |
|                                                                                                                                         |

## Conclusion (based on the Results and outcomes achieved):

Successfully applied python libraries on a dataset and executed the program.

## **References:**

## **Books/ Journals/ Websites referred:**

- 1. Reema Thareja, *Python Programming: Using Problem Solving Approach*, Oxford University Press, First Edition 2017, India
- 2. Sheetal Taneja and Naveen Kumar, *Python Programming: A modular Approach*, Pearson India, Second Edition 2018,India