HW1 & HW2 Reference

HW1

1. Calculate
$$\frac{\partial \ln \det(\mathbf{A})}{\partial x}$$

Solve: 在我们的课程中,我们已经证明了

$$\frac{\partial \ln \det(\mathbf{A})}{\partial \mathbf{A}} = \mathbf{A}^{-T}$$

右边的矩阵代表当 A_{ij} 变动时, $\ln \det(\mathbf{A})$ 将会变动 $(\mathbf{A}^{-T})_{ij} \cdot d\mathbf{A}_{ij}$.

我们又知道

$$\frac{\partial \mathbf{A}}{\partial x}$$

也是一个 $i \times j$ 的矩阵,当x变动时, \mathbf{A}_{ij} 将变动 $(\frac{\partial \mathbf{A}}{\partial x})_{ij} \cdot dx$

综上, $\frac{\partial \ln \det(\mathbf{A})}{\partial x}$ 为以下矩阵的元素和

$$\mathbf{A}^{-T} * \frac{\partial \mathbf{A}}{\partial x}$$

其中*代表 Hadamard Product, 即两个矩阵对应元素乘积

因此最终结果可以表述为(这里可以)

$$\frac{\partial \ln \det(\mathbf{A})}{\partial x} = tr(\mathbf{A}^{-1} \cdot \frac{\partial \mathbf{A}}{\partial x})$$

另外,永停姐姐提供了一个证法,利用等式 $\ln(\det(A)) = tr(\ln(A))$ 。 易得

$$\frac{\partial \ln \det(\mathbf{A})}{\partial x} = \frac{\partial tr(\ln(\mathbf{A}))}{\partial x} = tr(\frac{\partial \ln(\mathbf{A})}{\partial x}) = tr(\mathbf{A}^{-1} \cdot \frac{\partial \mathbf{A}}{\partial x})$$

其中 $\ln \mathbf{A}$ 満足 $\exp(\ln \mathbf{A}) = \mathbf{A}, \exp(\mathbf{M}) = \mathbf{I} + \mathbf{M} + \frac{1}{2}\mathbf{M}^2...$

2. 书习题1.2

Solve: 略, 言之有理即可

3. 已知随机变量 $\mathbf{x}=[\mathbf{x}_1,\mathbf{x}_2]\sim\mathcal{N}(\mu,\Sigma)$,计算 $P(\mathbf{x}_1),P(\mathbf{x}_1|\mathbf{x}_2)$

Solve: 我们先假设
$$\mathbf{x}\in\mathbb{R}^n,\mathbf{x}_1\in\mathbb{R}^{n_1},\mathbf{x}_2\in\mathbb{R}^{n_2},n_1+n_2=n,\Sigma\in\mathbb{R}^{n\times n},\Sigma=\begin{pmatrix}\Sigma_{11}&\Sigma_{12}\\\Sigma_{12}^T&\Sigma_{22}\end{pmatrix},\mu=\begin{pmatrix}\mu_1\\\mu_2\end{pmatrix}$$

由于 Σ 正定,顺序主子式 $|\Sigma_{11}|>0$,因此 Σ_{11} 可逆,我们对 Σ 进行分解

$$\Sigma = egin{pmatrix} \Sigma_{11} & \Sigma_{12} \ \Sigma_{12}^T & \Sigma_{22} \end{pmatrix} = egin{pmatrix} I_{n_1} & 0 \ \Sigma_{12}^T \Sigma_{11}^{-1} & I_{n_2} \end{pmatrix} egin{pmatrix} \Sigma_{11} & 0 \ 0 & \Sigma_{22} - \Sigma_{12}^T \Sigma_{11}^{-1} \Sigma_{12} \end{pmatrix} egin{pmatrix} I_{n_1} & \Sigma_{11}^{-1} \Sigma_{12} \ 0 & I_{n_2} \end{pmatrix}$$

取逆得到

$$\Sigma^{-1} = egin{pmatrix} I_{n_1} & -\Sigma_{11}^{-1}\Sigma_{12} \ 0 & I_{n_2} \end{pmatrix} egin{pmatrix} \Sigma_{11}^{-1} & 0 \ 0 & (\Sigma_{22} - \Sigma_{12}^T\Sigma_{11}^{-1}\Sigma_{12})^{-1} \end{pmatrix} egin{pmatrix} I_{n_1} & 0 \ -\Sigma_{12}^T\Sigma_{11}^{-1} & I_{n_2} \end{pmatrix}$$

记 $\Sigma_{22} - \Sigma_{12}^T \Sigma_{11}^{-1} \Sigma_{12} = \Sigma_*$

写出概率密度函数

$$f(x) = \frac{1}{(\sqrt{2\pi})^n \det(\Sigma)} \exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu))$$

对于指数部分, 我们可以得到

$$egin{aligned} (x-\mu)^T \Sigma^{-1}(x-\mu) = & (x_1-\mu_1)^T \Sigma_{11}^{-1}(x_1-\mu_1) \ & + [(x_2-\mu_2) - \Sigma_{12}^T \Sigma_{11}^{-1}(x_1-\mu_1)]^T \Sigma_*^{-1} [(x_2-\mu_2) - \Sigma_{12}^T \Sigma_{11}^{-T}(x_1-\mu_1)] \end{aligned}$$

当我们求 $P(x_1)$ 时候,实际是对 $x_2\in\mathbb{R}^{n_2}$ 求积分,由于 x_1 不变,可以认为求了一个 $\mathcal{N}(\mu_2+\Sigma_{12}^T\Sigma_{11}^{-1}(x_1-\mu_2),\Sigma_*)$ 的积分,可以求得对含 x_2 的指数部分求积分结果为 $|\Sigma|/|\Sigma_{11}|$,也可以分析得出

$$x_1 \sim \mathcal{N}(\mu_1, \Sigma_{11}).$$

当计算条件分布的时候, 我们利用公式

$$P(x_1|x_2) = rac{P(x_1,x_2)}{P(x_2)}$$

再利用之前得到的结果(注意需要将 Σ^{-1} 对于 Σ_{22} 分解),可以得到结果

$$P(x_1|x_2) = \sqrt{rac{|\Sigma_{22}|}{(2\pi)^{n_2}|\Sigma|}} \exp(-rac{1}{2}([(x_1-\mu_1)^T-(x_2-\mu_2)^T\Sigma_{22}^{-1}\Sigma_{12}^T](\Sigma_{11}-\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{12}^T)^{-1} \ [(x_1-\mu_1)-\Sigma_{12}\Sigma_{22}^{-1}(x_2-\mu_2)])$$

4. 证明 $||x||_n$ 是凸函数

一个说明, $p<1,p\neq 1$ 时,不能满足向量范数要求的三角不等式,因此不能算范数,我们只需考虑 p>1 的情况. (p=0,p=1 显然)

Proof. 对于 $\forall t \in (0,1), u,v \in \mathbb{R}^n$,有

$$||tu + (1-t)v||_p \le ||tu||_p + ||(1-t)v||_p = t||u||_p + (1-t)||v||_p$$

其中用到了向量范数必须满足的三角不等式和正齐次性

5. 证明判定凸函数的0阶和1阶条件相互等价

Proof. 充分性:设满足
$$orall t \in [0,1], f(tx+(1-t)y) \leq tf(x)+(1-t)f(y)$$

令
$$g(t)=tf(x)+(1-t)f(y)-f(tx+(1-t)y)$$
, 显然 $g(0)=0, g(t)\geq 0, t\in [0,1]$. 易得 $\lim_{t\to 1-}g'(t)\leq 0$

而

$$g'(t) = f(x) - f(y) - \nabla f(tx + (1-t)y)^T (x-y) \ \lim_{t \to 1-} g'(t) = f(x) - f(y) - \nabla f(x)^T (x-y) \le 0 \ f(y) \ge f(x) + \nabla f(x)^T (y-x)$$

必要性: 设满足 $f(y) \geq f(x) + \nabla f(x)^T (y-x)$. 易得 $\lim_{t\to 0+} g'(t) \geq 0$, $\lim_{t\to 1-} \leq 0$. 倘若我们可以证明 $g''(t) \leq 0$, 0阶条件得证.

$$g''(t) = -(x-y)^T \nabla^2 f(tx + (1-t)y)(x-y)$$

只需证明 ∇f 是正定的即可. 而对于任意向量 x, y

$$f(y) - f(x) -
abla f(x)^T (y - x) = (y - x)^T
abla^2 f(x) (y - x) + O(\|y - x\|^3) \geq 0$$

当 $\|y-x\|\to 0$ 时,可以发现 $(y-x)^T\nabla^2 f(x)(y-x)\geq 0$,由于 x,y 任意取, $\nabla^2 f$ 正定,证毕

HW₂

1. 习题2.2

Solve:

10折交叉验证要求我们保证每个子集尽可能保持数据分布的一致性,即正反例数量相同,所以最终只会判断为正确/错误(或者认为50%随机选择),错误率期望为50%

留一法的训练集中数量较多的 label 必然不是留出的样本的 label,必定预测错误,错误率为100%

2. 习题2.4

Solve:

回顾混淆矩阵 confusion matrix

	预测为正	预测为反
真实为正	TP	FN
真实为反	FP	TN

真假:对于预测的准确性而言,正反:对于预测的结果而言

真正例率:
$$TPR=rac{TP}{TP+FN}$$
, 假正例率: $FPR=rac{FP}{FP+FN}$

查准率:
$$R = \frac{TP}{TP + FN}$$
, 查全率: $P = \frac{TP}{TP + FP}$

就数值而言, TPR = R, 其他没有直接的数值关系

3. 习题2.5

Solve:

先回顾 ROC 曲线。我们不妨将 ROC 曲线的横坐标扩大 m^- 倍,纵坐标扩大 m^+ 倍,这样绘制 ROC 曲线图时每一步都走一个单位长度,方便说明.

Step 1. 用分类器对所有数据分类,得到结果为一个[0,1]的值,值越大说明越容易被判定为正.

Step 2. 将所有数据按预测结果降序排列

Step 3. 从最大预测结果开始,如果实际为真,向上走一步,如果实际为假,向右走一步

Step 4. 如果有若干样本预测结果相同,先同时向右、上走相应的步数,将起点终点直接相连

下证明 l_{rank} 对应 ROC 曲线上的面积。

对于每一个反样本(即向右走),我们假设没有样本预测结果与之相同。在正样本中:比其预测结果大的,已经在其之前绘制(即已经向上走过了),在 ROC 曲线中表现为曲线之下的部分;反之,比其预测结果小的,还未绘制,且终将在其之后绘制,在 ROC 曲线中表现为曲线之上的部分。曲线之上的部分对应 $\sum_{x^+} \mathbb{I}(f(x^+) < f(x^-))$

假如有 p,q 个正、反样本预测结果相同,除了 $\mathbb{I}(f(x^+) < f(x^-))$ 部分,这对应的是 ROC 曲线纵向方向上对应的矩形,我们还需要计算起点终点直接相连的三角形部分 $\frac{1}{2}pq$. 在 loss 中对应为 $\sum_{x^+}\sum_{x^-}\frac{1}{2}\mathbb{I}(f(x^+)=f(x^-))$.

只需对应缩放, 即得到我们的证明。

4. 习题2.9

Solve:

Step 1. 提出原假设和备择假设,离散情况下 $H_0: P(X=x_i)=p_i, i=1,2,\ldots$, 连续情况下 $H_0: X\sim F(x)$

Step 2. 将 X 的取值范围划分为 k 个互不相交的子区间 A_1, \ldots, A_k 按照习惯, $k \geq 5$.

Step 3. 记落入 A_i 区间的样本个数为 n_i , $\sum_{i=1}^k n_i = n$

Step 4. 记随机样本落入 A_i 区间的概率为 q_i

Step 5. 计算

$$\chi^2 = \sum_{i=1}^k rac{(n_i - nq_i)^2}{nq_i}, \chi^2 \sim \chi^2_{k-1}$$