PHS1101 – Mécanique pour ingénieurs Aide-mémoire

Moment d'une force :	$\vec{M}_O = \vec{r} \times \vec{F}$	Mouvement uniformément accéléré :	$\vec{v} = \vec{v}_0 + \vec{a}t$
Moment d'une force par rapport à un axe :	$\vec{M}_{OO'} = (\vec{M}_O \cdot \hat{u}_{OO'}) \hat{u}_{OO'}$		$\vec{r} = \vec{r}_0 + \vec{v}_0 t + \frac{1}{2} \vec{a} t^2$
Moment d'un couple :	M = Fd		$v^2 = v_0^2 + 2\vec{a} \cdot (\vec{r} - \vec{r}_0)$
Système force-couple équivalent :	$\vec{R} = \sum \vec{F}_i$	Accélération non uniforme :	$\int_0^t dt = \int_{v_0}^v \frac{dv}{a(v)}$
	$\vec{M}_O^R = \sum \vec{M}_i + \sum \vec{r}_{Oi} \times \vec{F}_i$		$\int_{v_0}^v v dv = \int_{x_0}^x a(x) dx$
Équilibre statique :	$\sum \vec{F} = \vec{0}, \qquad \sum \vec{M}_O = \vec{0}$	Coordonnées polaires :	$ec{r}=r\widehat{u}_r$
Loi de Hooke :	$\vec{F} = -k(\vec{L} - \vec{L}_0)$		$\vec{v} = \dot{r}\hat{u}_r + r\dot{\theta}\hat{u}_t$
Frottement sec :	$f_{s,\max} = \mu_s N,$ $f_k = \mu_k N$		$\vec{a} = (\ddot{r} - r\theta^2)\hat{u}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\hat{u}_t$
Pression :	$p = F_n/A$, $\tilde{p} = p - p_0$	Coordonnées normale et tangentielle :	$\vec{v} = v\hat{u}_t$
Principe de Pascal :	$p_2 = p_1 + \rho g h$		$\vec{a} = (v^2/\rho)\hat{u}_n + (dv/dt)\hat{u}_t$
Poussée d'Archimède :	$P_A = \rho g V$		$\rho(x) = \frac{[1 + (dy/dx)^2]^{3/2}}{ d^2y/dx^2 }$
Force hydrostatique sur une paroi :	$F_H = \frac{\rho g h A}{2}$	Deuxième loi de Newton :	$\sum ec{F} = m ec{a}_{CM}$
Variables du mouvement :	$\vec{v} = \frac{d\vec{r}}{dt}, \qquad \vec{a} = \frac{d\vec{v}}{dt}$	Mouvement contraint :	$\sum \Delta \ell_i = 0$
	$\vec{r} = \vec{r}_0 + \int_0^t \vec{v} dt$	Travail d'une force :	$U = \int \vec{F} \cdot d\vec{r}$
	$\vec{v} = \vec{v}_0 + \int_0^t \vec{a} dt$	Énergie cinétique (particule) :	$T = \frac{1}{2}mv^2$
Variables du mouvement (angulaires) :	$\omega = \frac{d\theta}{dt}, \qquad \alpha = \frac{d\omega}{dt}$	Énergie potentielle :	$V_g = mgh$
	$\theta = \theta_0 + \int_0^t \omega dt$		$V_{res} = \frac{1}{2}k(L - L_0)^2$
	$\omega = \omega_0 + \int_0^t \alpha dt$	Énergie mécanique :	E = T + V
Mouvement relatif :	$ec{r}_{B/A} = ec{r}_B - ec{r}_A$	Principe travail- énergie :	$\sum U = \Delta T$, $\sum U_{nc} = \Delta E$
	$\vec{v}_{B/A} = \vec{v}_B - \vec{v}_A$	Puissance :	$ar{P} = U/\Delta t$, $P = dU/dt = \vec{F} \cdot \vec{v}$
	$\vec{a}_{B/A} = \vec{a}_B - \vec{a}_A$	Rendement	$\eta = P_{\text{sortie}}/P_{\text{entrée}}$

PHS1101 – Mécanique pour ingénieurs Aide-mémoire

Quantité de mouvement (QM) :	$ec{L} = m ec{v} \ ec{L} = M ec{v}_{CM}$	Vitesse de rotation :	$ec{v} = ec{\omega} imes ec{r}$
Principe impulsion- QM :	$\sum \vec{F} = \frac{d\vec{L}}{dt}$	Décomposition translation-rotation :	$\vec{v}_B = \vec{v}_A + \vec{\omega} \times \vec{r}_{B/A}$
	$\Delta \vec{L} = \int \sum \vec{F} \ dt$	Centre instantané de rotation :	$\omega = \frac{v_A}{r_{A/CIR}} = \frac{v_B}{r_{B/CIR}}$
Force moyenne :	$\vec{F}_{ m moy} \Delta t = \int \vec{F} dt$		$\Delta r = R\Delta \theta$
Centre de masse :	$ec{r}_{\!\scriptscriptstyle CM} = rac{\sum m_i ec{r}_i}{\sum m_i}$	Roulement sans glissement :	$v = \omega R$
	$ec{v}_{\mathit{CM}} = rac{\sum m_i ec{v}_i}{\sum m_i}$		$a = \alpha R$
	$ec{a}_{\mathit{CM}} = rac{\sum m_i ec{a}_i}{\sum m_i}$	Deuxième loi de	$\sum \vec{M}_O = \vec{r}_{CM/O} \times M\vec{a}_{CM} + \mathbf{I}_{CM}\vec{\alpha}$
Moment d'inertie d'une particule :	$I_O = mR^2$	Newton en rotation :	$\sum \vec{M}_O = \mathbf{I}_O \vec{\alpha}$
Rayon de giration :	$\kappa_O = \sqrt{I_O/m}$	Énergie cinétique	$T = \frac{1}{2}Mv_{CM}^2 + \frac{1}{2}I_{CM}\omega^2$
Théorème des axes parallèles :	$I_{O'} = I_{O,CM} + md_{OO'}^2$	d'un corps rigide :	$T = \frac{1}{2}I_0\omega^2$
Moment cinétique :	$\vec{H}_0 = \vec{r} \times m\vec{v}$	Travail d'un couple :	$U = \int \vec{M} \cdot d\vec{\theta}$
	$\vec{H}_O = I_O \vec{\omega}$		$\vec{M}_{res} = -\kappa \Delta \vec{\theta}$
	$\vec{H}_O = \vec{r}_{CM} \times M \vec{v}_{CM} + \mathbf{I}_{CM} \vec{\omega}$	Ressort de torsion :	$V_{res} = \frac{1}{2}\kappa(\Delta\theta)^2$
Principe impulsion-MC :	$\sum \vec{M}_O = \frac{d\vec{H}_O}{dt}$	Puissance d'un couple :	$P = \overrightarrow{M} \cdot \overrightarrow{\omega}$
	$\Delta \vec{H}_O = \int \sum \vec{M}_O dt$		
Système à masse variable :	$\sum \vec{F} + \frac{dm}{dt} (\vec{v}_p - \vec{v}) = m\vec{a}$		
Débit dans une conduite :	dV/dt = Sv,		
	$ dm/dt = \rho Sv$		
Masse en fonction du temps :	$m = m_0 + \int_0^t \frac{dm}{dt} dt$		
Force exercée par un courant de particules :	$\vec{F}_e = dm/dt \vec{v}_e$		
	$\vec{F}_{S} = - dm/dt \vec{v}_{S}$		