CMPS 101

Homework Assignment 3 Solutions

1. The last exercise in the handout entitled *Some Common Functions*.

Use Stirling's formula to prove that $\binom{2n}{n} = \Theta\left(\frac{4^n}{\sqrt{n}}\right)$.

Proof: By Stirling's formula

$$\binom{2n}{n} = \frac{(2n)!}{n!(2n-n)!} = \frac{(2n)!}{(n!)^2} = \frac{\sqrt{2\pi \cdot 2n} \cdot \left(\frac{2n}{e}\right)^{2n} \cdot \left(1 + \Theta(1/2n)\right)}{\left(\sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n \cdot \left(1 + \Theta(1/n)\right)\right)^2}$$

$$= \frac{2^{2n}}{\sqrt{\pi n}} \cdot \frac{1 + \Theta(1/2n)}{\left(1 + \Theta(1/n)\right)^2} = \frac{1}{\sqrt{\pi}} \cdot \frac{4^n}{\sqrt{n}} \cdot \frac{1 + \Theta(1/2n)}{\left(1 + \Theta(1/n)\right)^2}$$

so that

$$\frac{\binom{2n}{n}}{\frac{4^n}{\sqrt{n}}} = \frac{1}{\sqrt{\pi}} \cdot \frac{1 + \Theta(1/2n)}{\left(1 + \Theta(1/n)\right)^2} \to \frac{1}{\sqrt{\pi}} \quad \text{as} \quad n \to \infty$$

The result now follows since $0 < \frac{1}{\sqrt{\pi}} < \infty$.

///

2. Let f(n) be a positive, increasing function that satisfies $f(n/2) = \Theta(f(n))$. Show that

$$\sum_{i=1}^{n} f(i) = \Theta(nf(n))$$

(Hint: follow the **Example** on page 4 of the handout on asymptotic growth rates in which it is proved that $\sum_{i=1}^{n} i^{k} = \Theta(n^{k+1})$ for any positive integer k.)

Proof: Since f(n) is increasing we have $\sum_{i=1}^{n} f(i) \le \sum_{i=1}^{n} f(n) = nf(n) = O(nf(n))$. Note also that

$$\sum_{i=1}^{n} f(i) \ge \sum_{i=\lceil n/2 \rceil}^{n} f(i)$$
 by discarding some positive terms

$$\ge \sum_{i=\lceil n/2 \rceil}^{n} f(\lceil n/2 \rceil)$$
 since $f(n)$ is increasing

$$= (n - \lceil n/2 \rceil + 1) f(\lceil n/2 \rceil)$$
 by counting terms

$$= (\lfloor n/2 \rfloor + 1) f(\lceil n/2 \rceil)$$
 since $n = \lfloor n/2 \rfloor + \lceil n/2 \rceil$

$$> ((n/2) - 1 + 1) f(n/2)$$
 since $f(n)$ is increasing, $\lceil x \rceil \ge x$, and $\lfloor x \rfloor > x - 1$

$$= (n/2) f(n/2)$$

$$= \Omega(nf(n))$$
 since $f(n/2) = \Theta(f(n))$, whence $f(n/2) = \Omega(f(n))$

It follows from an exercise in the handout on Asymptotic Growth rates that $\sum_{i=1}^{n} f(i) = \Theta(nf(n))$, as claimed.

3. Use the result of the preceding problem to give an alternate proof of $\log(n!) = \Theta(n\log(n))$ that does not use Stirling's formula.

Proof:

Observe that $\log(n/2) = \log(n) - \log(2) = \Theta(\log(n))$. We may therefore apply the result of the preceding problem with $f(n) = \log(n)$, and properties of logarithms to get

$$\log(n!) = \sum_{i=1}^{n} \log(i) = \Theta(n\log(n))$$

as claimed.

4. Let g(n) be an asymptotically non-negative function. Prove that $o(g(n)) \cap \Omega(g(n)) = \emptyset$.

Proof:

Assume to get a contradiction that $f(n) \in o(g(n)) \cap \Omega(g(n))$. Then since $f(n) = \Omega(g(n))$ we have

(1)
$$\exists c_1 > 0, \ \exists n_1 > 0, \ \forall n \ge n_1: \ 0 \le c_1 g(n) \le f(n)$$

Also, since f(n) = o(g(n)) we have

(2)
$$\forall c_2 > 0, \exists n_2 > 0, \forall n \ge n_2: 0 \le f(n) < c_2 g(n)$$

Let $c_2 = c_1$. Then $c_2 > 0$, and by (2) there exists $n_2 > 0$ such that $0 \le f(n) < c_1 g(n)$ for all $n \ge n_2$. Pick any $m \ge \max(n_1, n_2)$. Then by (1) we have $0 \le c_1 g(m) \le f(m) < c_1 g(m)$, and hence $c_1 g(m) < c_1 g(m)$, a contradiction. Our assumption was therefore false, and no such function f(n) can exist. We conclude that $o(g(n)) \cap \Omega(g(n)) = \emptyset$.

5. Exercise 1 from the induction handout.

Prove that for all $n \ge 1$: $\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$. Do this twice:

- a. Using form IIa of the induction step.
- b. Using form IIb of the induction step.

Proof: Let P(n) be the equation $\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$.

I. Observe that $\sum_{i=1}^{1} i^3 = 1^3 = 1^2 = \left(\frac{1 \cdot (1+1)}{1}\right)^2$, whence P(1) is true.

IIa. Let $n \ge 1$ and assume P(n) is true, i.e. for this n, we assume that $\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$. We must

show that
$$P(n+1)$$
 holds:
$$\sum_{i=1}^{n+1} i^3 = \left(\frac{(n+1)((n+1)+1)}{2}\right)^2.$$
 Thus
$$\sum_{i=1}^{n+1} i^3 = \sum_{i=1}^n i^3 + (n+1)^3$$
$$= \left(\frac{n(n+1)}{2}\right)^2 + (n+1)^3 \text{ (by the induction hypothesis)}$$
$$= \frac{n^2(n+1)^2 + 4(n+1)^3}{4} = \frac{(n+1)^2 \left[n^2 + 4n + 4\right]}{4}$$
$$= \frac{(n+1)^2(n+2)^2}{4} = \left(\frac{(n+1)(n+2)}{2}\right)^2$$

showing that P(n+1) is true.

IIb. Let n > 1 and assume P(n-1) is true, i.e. for this n, we assume that $\sum_{i=1}^{n-1} i^3 = \left(\frac{(n-1)n}{2}\right)^2$. We

///

///

must show that P(n) holds: $\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$. Thus

$$\sum_{i=1}^{n} i^{3} = \sum_{i=1}^{n-1} i^{3} + n^{3}$$

$$= \left(\frac{(n-1)n}{2}\right)^{2} + n^{3} \qquad \text{(by the induction hypothesis)}$$

$$= \frac{(n-1)^{2}n^{2} + 4n^{3}}{4} = \frac{n^{2}\left[(n^{2} - 2n + 1) + 4n\right]}{4}$$

$$= \frac{n^{2}\left[n^{2} + 2n + 1\right]}{4} = \frac{n^{2}(n+1)^{2}}{4} = \left(\frac{n(n+1)}{2}\right)^{2}$$

showing that P(n) is true.

6. Exercise 2 from the induction handout.

Define S(n) for $n \in \mathbb{Z}^+$ by the recurrence:

$$S(n) = \begin{cases} 0 & \text{if } n = 1\\ S(\lceil n/2 \rceil) + 1 & \text{if } n \ge 2 \end{cases}$$

Prove that $S(n) \ge \lg(n)$ for all $n \ge 1$, and hence $S(n) = \Omega(\lg n)$.

Proof: Let P(n) be the inequality $S(n) \ge \lg(n)$.

I. The inequality $S(1) \ge \lg(1)$ reduces to $0 \ge 0$, which is obviously true, so P(1) holds.

IId. Let n > 1 and assume for all k in the range $1 \le k < n$ that $S(k) \ge \lg(k)$. Then

$$S(n) = S(\lceil n/2 \rceil) + 1$$
 (by the definition of $S(n)$)

$$\geq \lg \lceil n/2 \rceil + 1$$
 (by the induction hypothesis with $k = \lceil n/2 \rceil$)
 $\geq \lg(n/2) + 1$ (since $\lceil x \rceil \geq x$ for any x)
 $= \lg(n) - \lg(2) + 1$
 $= \lg(n)$

showing that P(n) holds. Therefore $S(n) \ge \lg(n)$ for all $n \ge 1$, as claimed.

7. Let T(n) be defined by the recurrence formula:

$$T(n) = \begin{cases} 1 & n=1 \\ T(\lfloor n/2 \rfloor) + n^2 & n \ge 2 \end{cases}$$

Show that $\forall n \ge 1$: $T(n) \le \frac{4}{3}n^2$, and hence $T(n) = O(n^2)$. (Hint: follow Example 3 on page 3 of the induction handout.)

Proof:

Let P(n) be the statement $T(n) \le (4/3)n^2$. Then P(1) is true, since $T(1) = 1 \le 4/3 = (4/3) \cdot 1^2$, and the base case is satisfied.

Let n > 1 be chosen arbitrarily, and suppose for all k in the range $1 \le k < n$ that $T(k) \le (4/3)k^2$. We must show as a consequence that $T(n) \le (4/3)n^2$. Observe

$$T(n) = T(\lfloor n/2 \rfloor) + n^2$$
 by the recurrence formula for $T(n)$
 $\leq (4/3)\lfloor n/2 \rfloor^2 + n^2$ by the induction hypothesis with $k = \lfloor n/2 \rfloor$
 $\leq (4/3)(n/2)^2 + n^2$ since $\lfloor x \rfloor \leq x$ for any x
 $= n^2/3 + n^2$
 $= (4/3)n^2$,

as required.

8. Let T(n) be defined by the recurrence formula:

$$T(n) = \begin{cases} 2 & n = 1, 2 \\ 9T(\lfloor n/3 \rfloor) + 1 & n \ge 3 \end{cases}$$

Show that $\forall n \ge 1$: $T(n) \le 3n^2 - 1$, and hence $T(n) = O(n^2)$. (Hint: emulate Example 4 on page 4 of the induction handout. I. Base: check the two cases n = 1, and n = 2. II. Induction step: show that for all $n \ge 3$, if for any k in the range $1 \le k < n$ we have $T(k) \le 3k^2 - 1$, then $T(n) \le 3n^2 - 1$.)

Proof:

Let P(n) be the statement $T(n) \le 3n^2 - 1$. P(1) is true since $T(1) = 2 = 3 \cdot 1^2 - 1$, and P(2) is true because $T(2) = 2 \le 11 = 3 \cdot 2^2 - 1$.

Let n > 2 be arbitrary, and assume for all k in the range $1 \le k < n$ that $T(k) \le 3k^2 - 1$. Note that in particular $1 \le \lfloor n/3 \rfloor < n$ (since $n \ge 3 \implies n/3 \ge 1 \implies \lfloor n/3 \rfloor \ge 1$) and hence $T(\lfloor n/3 \rfloor) \le 3 \lfloor n/3 \rfloor^2 - 1$. We must show as a consequence that $T(n) \le 3n^2 - 1$.

$$T(n) = 9T(\lfloor n/3 \rfloor) + 1$$
 by the recurrence formula for $T(n)$

$$\leq 9(3\lfloor n/3 \rfloor^2 - 1) + 1$$
 by the induction hypothesis

$$= 9 \cdot 3\lfloor n/3 \rfloor^2 - 9 + 1$$
 since $\lfloor x \rfloor \leq x$ for any x

$$= 9 \cdot 3(n/3)^2 - 9 + 1$$

$$= 9 \cdot 3(n^2/3^2) - 9 + 1$$

$$= 3n^2 - 8$$

$$\leq 3n^2 - 1$$
 since $-8 \leq -1$

///

and therefore $T(n) \le 3n^2 - 1$, as required.