

EXAMINATIONS — 2011

END-OF-YEAR

COMP 261 ALGORITHMS and DATA STRUCTURES

Time Allowed: 3 Hours

Instructions: Attempt ALL Questions.

Answer in the appropriate boxes if possible — if you write your answer elsewhere,

make it clear where your answer can be found.

The exam will be marked out of 180 marks.

Non-programmable calculators without a full alphabetic key pad are permitted.

Non-electronic foreign language dictionaries are permitted.

Useful formulas are listed on the last page of the exam.

Questions		Marks
1.	Shortest Path in Graphs	[15]
2.	Minimum Spanning Tree	[13]
3.	String Search	[12]
4.	Text Processing	[25]
5.	Graphics Rendering	[30]
6.	File Structures	[33]
7.	B-Trees	[32]
8.	Hashing	[20]

COMP 261 continued...

Question 1. Shortest Path in Graphs

[15 marks]

(a) [8 marks] Suppose you are using Dijkstra's algorithm to find the shortest path from **S** to **G** in the graph below. Show the order in which nodes will be *added* to the queue, and the order in which they are *removed* from the queue. In case of a tie, visit the nodes in alphabetic order. When visiting a node, consider the neighbours of the node in alphabetic order.

Hint: Keep track of the queue, along with the priority for each node on the queue.

Nodes Added to Queue:
Nodes Removed from Queue:

Student ID:				
(b) [7 marks] The A* algorithm for shortest path finding is similar to Dijkstra's algorithm. Explain the key way in which A* differs from Dijkstra's algorithm, and explain why A* is usually better. Give an example to show a special case where A* fails to find the shortest path.				

Question 2. Minimum Spanning tree

[13 marks]

(a) [8 marks] Suppose you are using Prim's algorithm to find a minimum spanning tree in the graph below, starting from node **S**. Show the order in which *edges* will be added to the tree.

Hint: Keep track of a queue, along with the priority for each edge on the queue. In case of a tie, visit the nodes in alphabetic order. When visiting a node, consider the neighbours of the node in alphabetic order.

Edges added to queue:
Edges added to the tree in this order:

			Student ID:	
(b) [5 marks] Use	e an example to explain v	why Prim's algorithm	does not work on a dire	cted graph.

trie of the Note: T	he words. Dra	aw a trie for the	e following se	et of words.	of words, it is effici	
	cat car	bat clean	bath clerk	bin cars	candy hat	

[12 marks]

Question 3. String Searching

Student ID:	• •
(b) [5 marks] Suppose you are using the KMP algorithm to search for all occurrences of a give string in a text file consisting of 10000 characters with many a 's.	en
Consider each of the following three strings as the input:	
(i) aaaaaaaaab (ii) ababcabcde (iii) abcdefghij	
Which string is more likely to take the most time? Explain why.	
	٦

Cross out rough working that you do not want marked. Specify the question number for work that you do want marked.

	Student ID:
Question 4. Text Processing	[25 marks]
Consider the following grammar where nonterminals are in quotation marks. Assume that tokens will be separated to uses a regular expression to express the kinds of terminals are in BAZ ::= "!" BAR "end" "world" BAR "end" BAR ::= "bca" FOO SMTH FOO ::= SMTH BAR SMTH ::= a+b*c+	by spaces. Note that nonterminal SMTH it accepts.
(a) [10 marks] For each of the following sentences, state whe by this grammar.	nether it belongs to the language defined
! bca abc end world	
bca ac end world	
! ac end	
bca ! bca bca abc end world	
bca ! bca bca abc abc end wor	ld
(b) [5 marks] Can the grammar above be parsed by a predict (LL(1)) parser? Explain why or why not.	tive, one symbol lookahead, left-to-right

(Question 4 continued on next page)

function calls is a function call itself. All function calls contains at least one argument.
Here are some sample programs in this language:
a
f(g(c(aB,ba),d(a)))
(i) [5 marks] Write a grammar for this language that is parseable by an LL(1) (single character lookal head only) top down recursive descent parser.

(c) Consider a very simple functional programming language defined as follows. An identifier always starts with a character and can be followed by either more characters or digits. An identifier on its own is a variable. An identifier followed by a comma separated list of variables and other

(Question 4 continued)

Student ID:
(Question 4 continued)
(ii) [5 marks] For each of the two examples on the previous page, draw a concrete parse tree derived using your grammar.

Cross out rough working that you do not want marked. Specify the question number for work that you do want marked.

Question 5. Graphics Rendering

[30 marks]

(a) [10 marks] Show the values in the edge-lists that would be constructed when rendering the polygon shown below. The (x, y, z) coordinates of the vertices are shown.

(Note that the *z* values are chosen carefully to make the interpolation easy.)

	Edge-Lists					
	x _{left}	z _{left}	x _{right}	Z _{right}		
11						
12						
13						
14						

(b) [5 marks] In constructing and using the edge-lists, you had to convert floating point numbers to integers. Explain how this can introduce errors unless you are careful.

Question 5 continued) c) [10 marks] List all the steps in the 3D Rendering Algorithm described in the	
$\it oth$ the Z-Buffer and the Edge Lists and explain the purpose of each step. lescription for each major step would do.	One sentence or so

	Student ID:
(Question 5 c	ontinued)
(d) [5 marks] graphics.	Explain what affine transformation means and why they are preferred in computer

Question 6. File Structures	[33 marks]
Suppose a file contains 65,536 fixed length records describing individual patients. the following fields: PatientID: (length = 5 characters), Name: (length = 30 characters), Illness: (length = 100 characters), Prescription: (length = 15 characters).	Each record has
Assume that the file blocks are stored contiguously and that the block size for the fiters.	le is 600 charac-
(a) [2 marks] Calculate the record size <i>L</i> in characters. Show your working.	
(b) [3 marks] Calculate the blocking factor f and the number of file blocks b . Assum file organisation. Show your working.	e an unspanned
(c) [5 marks] Calculate the <i>worst case</i> number of block accesses needed to perform for a random record in the file given its PatientID. Assume the file is ordered by I your working.	

	Student ID:	• • •
(Question 6 con	atinued)	
(d) [5 marks] Exsation.	xplain the differences between primary file organisation and secondary file orga	ıni-

(e) [10 marks] For each of the following file structures, discuss their advantages and disadvantages.
You can do it by:
• explaining the efficiency of the different file operations (insertion, deletion, search, sequential access) with different structures, and
• giving examples of when it is appropriate to use each kind of file.
(i) Heap file:
(ii) Sequential file.
(iii) Hash file.

(Question 6 continued)

Student ID:	•••••
(Question 6 continued)	
(f) [4 marks] Describe in detail (with pictures) the sort and merge stages involved algorithm.	d in the Sort-Merge
(g) [4 marks] What problems would arise if you try to do it "in place"?	

Question 7. B-Trees	[32 marks]
(a) [10 marks] Draw an example of a 2-3 Tree with at least 1 explain the 2-3 Tree properties that make them distinct from bin	

(Question 7 continued)

(b) [12 marks] Consider the *B*-tree of order 7 illustrated below.

Update the *B*-tree by successively deleting the key values 62, 34, 21, 18. In your answer, show the *B*-tree after each deletion and briefly describe what you have done.

Note, the empty trees below are to save you time; you may modify their structure if you choose.

(Question 7 continued)

with the root node contains the values: 5, 10, and 15 (the root node doesn't have any children begin with). Draw a <i>B</i> -tree after the following values are inserted in this order: 1, 2, 3, 4.	en to
The <i>B</i> -tree after adding key value 1:	
The <i>B</i> -tree after adding key values 1 and 2:	
The b tree unter adding key values I and 2.	
The <i>B</i> -tree after adding key values 1, 2, and 3:	
The <i>B</i> -tree after adding key value 1, 2, 3, and 4:	
The <i>B</i> -tree arter adding key value 1, 2, 3, and 4.	

(c) [10 marks] Imagine a *B*-tree that has order 5 and starts only a root node. Assume that to begin

(Question 7 continued)

Student ID:

Cross out rough working that you do not want marked. Specify the question number for work that you do want marked.

	Student ID: .							
Question 8.	. Hashing					[20 marks]		
(a) [5 marks]	What is a secondar	<i>y index</i> and wl	nat can it be u	used for?				
(b) [5 marks]	What is the differ	ence between s	static hashing	g and dynamic l	hashing?			

(Question 8 continued) (c) [10 marks] Describe how extendible hash files work.								

COMP 261 26

Student ID:																								
-------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Cross out rough working that you do not want marked. Specify the question number for work that you do want marked.

COMP 261 27

Useful Formulas

You may tear off this page if you wish. You do not need to hand it in.

File Performance Formulas

- blocking factor: $f = \lfloor \frac{B}{L} \rfloor$
- number of blocks: $b = \left\lceil \frac{r}{f} \right\rceil$
- external sort-merge: $N = 2b \cdot (1 + \lceil (\log_{n-1} b) 1 \rceil) = 2b \cdot (1 + \lceil (\frac{\log_{10} b}{\log_{10} (n-1)} 1 \rceil)$ (where n is the number of buffers)

B-tree (worst case)

- height: $h = 1 + \lfloor \log_{m+1} \frac{r+1}{2} \rfloor = 1 + \lfloor \log_{10} \frac{\frac{r+1}{2}}{\log_{10} (m+1)} \rfloor$
- number of leaves: $N_{leaves} = 2(m+1)^{h-2} \le N_{leaves} \le (2m+1)^{h-1}$

B^+ -tree (worst case)

- height: $h = 2 + \lfloor \log_{m+1} \frac{r}{2m} \rfloor = 2 + \lfloor \frac{\log_2 \frac{r}{2m}}{\log_2 (m+1)} \rfloor$
- number of leaves: $N_{leaves} = \left\lceil \frac{r}{m} \right\rceil$

Index-Sequential File with a *B*-tree

• number of sequence sets: $s = \left\lceil \frac{r}{f} \right\rceil \le s \le \left\lceil \frac{2r}{f} \right\rceil$

Logs to base 2

п	1	2	4	8	16	32	64	128	256	512	1,024	4096	16384	65536	1,048,576
$\log_2 n$	0	1	2	3	4	5	6	7	8	9	10	12	14	16	20

Logs to base 10

n	5	10	50	100	500	1000	5000	10,000	10^{6}	5×10^{6}	10×10^{6}	50×10^{6}
$\log_{10} n$	0.7	1	1.7	2	2.7	3	3.7	4	6	6.7	7	7.7

28