Aula 4

Conjuntos e Inteiros

4.1 Conjuntos

A, B: conjuntos

Notação 1. Ø denota o conjunto vazio.

 $a \in A$ denota o predicado

"a é elemento de A"

ou

"a pertence a A".

 $a \notin A \ denota$

$$n\tilde{a}o\ (a\in A).$$

 $A \subseteq B \ denota \ a \in B$, para todo $a \in A$.

 $A \not\subseteq B$ denota não $(A \subseteq B)$.

 $A = B \ denota \ (A \subseteq B) \ \mathbf{e} \ (B \subseteq A).$

 $A \cup B = \{x \mid x \in A \text{ ou } x \in B\}.$

$$A \cap B = \{x \mid x \in A \ \mathbf{e} \ x \in B\}.$$

|A| denota o número de elementos do conjunto A.

 2^A denota o conjunto de todos os subconjuntos de A, isto é

$$2^A = \{ S \mid S \subseteq A \}.$$

Exercício 8.

Teorema 11. A união de conjuntos é uma operação associativa.

Demonstração. Exercício 9

Comentário 2. Se a operação é associativa, não é necessário usar parênteses, pois

$$A \cup (B \cup C) = (A \cup B) \cup C = A \cup B \cup C.$$

Notação 2. Se n > 0 é um inteiro e A_1, A_2, \ldots, A_n são conjuntos, denotamos

$$\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \ldots \cup A_n$$

Se n=0,

$$\bigcup_{i=1}^{n} A_i = \emptyset.$$

Teorema 12. A interseção de conjuntos é uma operação associativa.

Demonstração. Exercício 10

Notação 3. Se n > 0 é um inteiro e A_1, A_2, \ldots, A_n são conjuntos, denotamos

$$\bigcap_{j=1}^{n} A_j = A_1 \cap A_2 \cap \ldots \cap A_n$$

Se n=0,

$$\bigcap_{j=1}^{n} A_j = \emptyset.$$

Definição 6. A diferença entre os conjuntos A e B, denotada por A – B, é o conjunto formado pelos elementos de A que não são elementos de B, ou seja,

$$A-B=\{a\mid a\in A\ \mathbf{e}\ a\notin B\},$$

Exercício 11.

Definição 7. Se n > 0 é um inteiro e A_1, A_2, \ldots, A_n são conjuntos, o produto cartesiano de A_1, A_2, \ldots, A_n é o conjunto das n-uplas ordenadas de elementos de A_1, A_2, \ldots, A_n respectivamente, ou seja,

$$\{(a_1, a_2, \dots, a_n) \mid a_j \in A_j, \text{ para todo } 1 \le j \le n\}.$$

Denota-se

$$A_1 \times A_2 \times \ldots \times A_n$$

ou

$$\prod_{j=1}^{n} A_j = A_1 \times A_2 \times \ldots \times A_n.$$

4.2 Inteiros

No que segue:

$$A$$
 : conjunto $z_1, z_2, z_3 \in \mathbb{Z}$ $q \in \mathbb{Q}$ $x \in \mathbb{R}$

Definição 8. O intervalo de z_1 a z_2 é o conjunto dos inteiros entre z_1 e z_2 , ou seja

$$[z_1..z_2] = \{ z \in \mathbb{Z} \mid z_1 \le z \le z_2 \}.$$

Definição 9. Dado $A \subseteq \mathbb{R}$,

• o mínimo de A é um elemento m de A satisfazendo

$$m < a$$
, para todo $a \in A$.

• o máximo de A de A é um elemento m de A satisfazendo

$$m \geq a$$
, para todo $a \in A$.

O mínimo e o máximo de A são denotados $\min A$ e $\max A$, respectivamente.

Comentário 3. Conjuntos podem não ter mínimo ou máximo, como por exemplo,

$$A = \{ x \in \mathbb{Q} \mid 0 < x < 1 \}.$$

Definição 10. Dado $x \in \mathbb{R}$,

• o chão de x é o maior inteiro menor ou igual a x, ou seja,

$$\lfloor x \rfloor = \max \{ z \in \mathbb{Z} \mid z \le x \}.$$

• o teto de x é o menor inteiro maior ou igual a x, ou seja,

$$\lceil x \rceil = \min \{ z \in \mathbb{Z} \mid z \ge x \}.$$

Exemplo 3.

$$\begin{bmatrix}
2 \end{bmatrix} &= 2; \\
[2] &= 2; \\
[z] &= z, \text{ para todo } z \in \mathbb{Z}; \\
[z] &= z, \text{ para todo } z \in \mathbb{Z}; \\
\left[\frac{35}{23}\right] &= 1; \\
\left[\frac{35}{23}\right] &= 2; \\
\left[\frac{-35}{23}\right] &= -2 \\
\left[\frac{-35}{23}\right] &= -1.$$

Teorema 13. Para todo $x \in \mathbb{R}$, $\lfloor x \rfloor$ é o único inteiro que satisfaz

$$x - 1 < \lfloor x \rfloor \le x$$
.

Demonstração. É imediato que existe um único inteiro z no conjunto

$$\{y \in \mathbb{R} \mid x - 1 < y \le x\}.$$

Conseqüentemente, todo inteiro maior que z será também maior que x. Noutras palavras, z é o maior inteiro menor ou igual a x e, portanto, z = |x|. \square

Teorema 14. Para todo $x \in \mathbb{R}$, $\lceil x \rceil$ é o único inteiro que satisfaz

$$x \leq \lceil x \rceil < x+1.$$

Demonstração. Exercício 12

Corolário 15. Para todo $x \in \mathbb{R}$ e todo $z \in \mathbb{Z}$ temos

$$\lfloor x \rfloor + z = \lfloor x + z \rfloor$$
.

Demonstração. Sejam $x \in \mathbb{R}$ e $z \in \mathbb{Z}$. Do Teorema 13 temos que

$$x - 1 < |x| \le x,$$

e, portanto, para todo $z \in \mathbb{Z}$,

$$(x-1) + z < |x| + z \le x + z,$$

e, portanto,

$$(x+z) - 1 < |x| + z \le x + z.$$

Como $\lfloor x \rfloor + z$ é inteiro, temos do Teorema 13 que

$$|x| + z = |x + z|.$$

Teorema 16. Para todo $x \in \mathbb{R}$ temos

$$-\lceil x \rceil = |-x|$$
.

Demonstração. Seja $x \in \mathbb{R}$. Do Teorema 14 temos que

$$x \leq \lceil x \rceil < x + 1$$
,

e, portanto,

$$-x \ge -\lceil x \rceil > -(x+1),$$

ou seja,

$$(-x) - 1 < -\lceil x \rceil \le -x,$$

e daí, do Teorema 13 temos que

$$-\lceil x \rceil = \lfloor -x \rfloor$$

Corolário 17. Para todo $x \in \mathbb{R}$ e todo $z \in \mathbb{Z}$ temos

$$z - \lfloor x \rfloor = \lceil z - x \rceil$$

Demonstração. Sejam $x \in \mathbb{R}$ e $z \in \mathbb{Z}$. Temos que

$$|z - |x| = -(|x| - z).$$

Pelo Teorema 15 temos que

$$|x| - z = |x - z|$$

e, portanto,

$$|z - |x| = -|x - z|,$$

e daí, pelo Teorema 16

$$-\lfloor x - z \rfloor = \lceil -(x - z) \rceil = \lceil z - x \rceil.$$

Teorema 18. Se $f: \mathbb{R} \to \mathbb{R}$ é uma função crescente e contínua satisfazendo

$$f(x) \in \mathbb{Z} \Rightarrow x \in \mathbb{Z}$$
, para todo $x \in \mathbb{R}$,

 $ent ilde{a}o$

para todo $x \in \mathbb{R}$.

Demonstração. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função contínua e crescente satisfazendo

$$f(x) \in \mathbb{Z} \Rightarrow x \in \mathbb{Z}$$
, para todo $x \in \mathbb{R}$,

e seja $x \in \mathbb{R}$. Vamos provar que

Se x é inteiro, então

$$|x| = x = \lceil x \rceil,$$

e portanto,

$$f(\lfloor x \rfloor) = f(x),$$

$$f(\lceil x \rceil) = f(x).$$

e

$$\lfloor f(\lfloor x \rfloor) \rfloor = \lfloor f(x) \rfloor,
\lceil f(\lceil x \rceil) \rceil = \lceil f(x) \rceil.$$

Se x não é inteiro, então

$$\lfloor x \rfloor < x < \lceil x \rceil$$

e como f é crescente, então

$$f(|x|) < f(x) < f(\lceil x \rceil).$$

Além disso, não pode haver nenhum inteiro z tal que

$$f(\lfloor x \rfloor) < z < f(\lceil x \rceil),$$

pois como f é contínua, teríamos z = f(a) para algum a tal que

$$|x| < a < \lceil x \rceil$$

e como f(a) é inteiro, então a seria inteiro, o que não é possível.

Como x não é inteiro, então f(x) não pode ser inteiro e então

$$\lfloor f(x) \rfloor < f(x) < \lceil f(x) \rceil$$
,

Como |f(x)| e [f(x)] são inteiros, então

$$|f(x)| \le f(|x|) < f(x) < f(\lceil x \rceil) \le \lceil f(x) \rceil$$

e portanto,

$$|f(|x|)| \le |f(x)| \le f(|x|) < f(x) < f(\lceil x \rceil) \le \lceil f(x) \rceil \le \lceil f(\lceil x \rceil) \rceil$$
.

Se f(|x|) é inteiro, então

$$f(|x|) = |f(|x|)|$$

e consequentemente,

$$|f(|x|)| = |f(x)|$$

Por um argumento análogo, podemos concluir que se Se $f(\lceil x \rceil)$ é inteiro, então

$$\lceil f(\lceil x \rceil) \rceil = \lceil f(x) \rceil.$$

Se $f(\lfloor x \rfloor)$ não é inteiro, então $\lfloor f(\lfloor x \rfloor) \rfloor$ é o maior inteiro menor que $f(\lfloor x \rfloor)$, e neste caso temos

$$\lfloor f(\lfloor x \rfloor) \rfloor = \lfloor f(x) \rfloor$$
.

Por um argumento análogo, podemos concluir que se Se $f(\lceil x \rceil)$ é inteiro, então

$$\lceil f(\lceil x \rceil) \rceil = \lceil f(x) \rceil.$$

Corolário 19. Para todo $x \in \mathbb{R}$ e todo inteiro positivo k

$$\begin{bmatrix} \frac{\lfloor x \rfloor}{k} \end{bmatrix} = \begin{bmatrix} \frac{x}{k} \end{bmatrix},$$
$$\begin{bmatrix} \frac{\lceil x \rceil}{k} \end{bmatrix} = \begin{bmatrix} \frac{x}{k} \end{bmatrix}.$$

Demonstração. Seja kum inteiro positivo e seja $f\colon \mathbb{R} \to \mathbb{R}$ a função dada por

 $f(x) = \frac{x}{k}.$

Basta provar (Exercício 35) que f é uma função crescente e contínua satisfazendo

$$f(x) \in \mathbb{Z} \Rightarrow x \in \mathbb{Z}$$
, para todo $x \in \mathbb{R}$,

e daí, pelo Teorema 18 temos

ou seja

$$\frac{\lfloor x \rfloor}{k} = \left\lfloor \frac{x}{k} \right\rfloor,$$

$$\frac{\lceil x \rceil}{k} = \left\lceil \frac{x}{k} \right\rceil.$$

Notação 4. $\lg x \ denota \log_2 x$.

Exercícios 13 e 14.

4.3 Somatórios e Produtórios

 $f \colon A \to \mathbb{C}$

X: subconjunto de A.

a, b: inteiros.

Notação 5.

$$\sum_{x \in X} f(x)$$

denota a soma de f(x) para todo $x \in X$.

 $Se X = \emptyset, \ ent \tilde{a}o$

$$\sum_{x \in X} f(x) = 0.$$

$$\sum_{i=a}^{b} f(i)$$

denota

$$\sum_{x \in [a..b]} f(x).$$

Teorema 20. Dados um conjunto $X e c \in \mathbb{C}$,

$$\sum_{x \in X} c = c|X|.$$

Demonstração. Exercicio 15

Teorema 21. Dados $f, g: A \to \mathbb{C}$ $e X \subseteq A$,

$$\sum_{x \in X} (f(x) + g(x)) = \sum_{x \in X} f(x) + \sum_{x \in X} g(x).$$

Demonstração. Exercicio 16

Teorema 22. Dada $f: A \to \mathbb{C}, X \subseteq A \ e \ c \in \mathbb{C},$

$$\sum_{x \in X} cf(x) = c \sum_{x \in X} f(x).$$

Demonstração. Exercicio 17

Notação 6.

$$\prod_{x \in X} f(x)$$

denota o produto de f(x) para todo $x \in X$.

$$Se X = \emptyset, \ ent \tilde{a}o$$

$$\prod_{x \in X} f(x) = 1.$$

$$\prod_{i=a}^b f(i)$$

$$denota$$

$$\prod_{x \in [a..b]} f(x),$$

Exercício 18.