(16.4) Reductions from Label Cover

1805006 - Tanjeem Azwad Zaman

Overview

- 1. Problem Definition
- 2. Optimization Problems
 - a. Minimization Version
 - b. Maximization Version
- 3. Hard to approximate the Maximization Problem (Reduction from MAX E3SAT)
- 4. Some Theorems

1. Problem Definition

- Bipartite Graph (V_1, V_2, E)
- L_1 : Set of possible labels for $u \in V_1$
- L_2 : Set of possible labels for $w \in V_2$
- $\bullet \quad R_{(u,w)} \subseteq L_1 \times L_2$
 - A set of acceptable assignments for each edge (u,w) ∈ E
- An edge (u,w) is "satisfied" if
 - u is assigned label l₄ and
 - w is assigned label 4 s.t.
 - $\circ \quad \textit{\textbf{l}}_{1} \in \textit{\textbf{L}}_{1} \; ; \textit{\textbf{l}}_{2} \in \textit{\textbf{L}}_{2} \quad \text{and} \quad$
 - $\circ \quad (l_1, l_2) \in R_{(u,w)}$

- Bipartite Graph (V₁, V₂, E)
- L_1 : Set of possible labels for $u \in V_1$
- L₂: Set of possible labels for w ε V₂
- $\bullet \quad R_{(u,w)} \subseteq L_1 \times L_2$
 - A set of acceptable assignments for each edge (u,w) ∈ E
- An edge (u,w) is "satisfied" if
 - u is assigned label l₄ and
 - w is assigned label l_2 s.t.
 - $\circ \quad \textit{\textbf{l}}_{1} \in \textit{\textbf{L}}_{1} \; ; \textit{\textbf{l}}_{2} \in \textit{\textbf{L}}_{2} \quad \text{and} \quad$
 - $\circ \quad (l_1, l_2) \in R_{(u,w)}$

- Bipartite Graph (V_1, V_2, E)
- L_1 : Set of possible labels for $u \in V_1$
- L₂: Set of possible labels for w ∈ V₂
- $\bullet \quad R_{(u,w)} \subseteq L_1 \times L_2$
 - A set of acceptable assignments for each edge (u,w) ∈ E
- An edge (u,w) is "satisfied" if
 - u is assigned label l₄ and
 - w is assigned label 4, s.t.
 - \circ $l_1 \in L_1$; $l_2 \in L_2$ and
 - $\circ \quad (l_1, l_2) \in R_{(u,w)}$

- Bipartite Graph (V_1, V_2, E)
- L₁: Set of possible labels for u ε V₁
- L₂: Set of possible labels for w ε V₂
- $\bullet \quad R_{(u,w)} \subseteq L_1 \times L_2$
 - A set of acceptable assignments for each edge (u,w) ∈ E
- An edge (u,w) is "satisfied" if
 - u is assigned label l₄ and
 - w is assigned label 4, s.t.
 - \circ $l_1 \in L_1$; $l_2 \in L_2$ and
 - $\circ \quad (l_1, l_2) \in R_{(u,w)}$

- Bipartite Graph (V₁, V₂, E)
- L₁: Set of possible labels for u ε V₁
- L_2 : Set of possible labels for $w \in V_2$
- $\bullet \quad R_{(u,w)} \subseteq L_1 \times L_2$
 - A set of acceptable assignments for each edge (u,w) ∈ E
- An edge (u,w) is "satisfied" if
 - u is assigned label l₄ and
 - w is assigned label l₂ s.t.
 - \circ $l_1 \in L_1$; $l_2 \in L_2$ and
 - $\circ \quad (l_1, l_2) \in R_{(u,w)}$

- Bipartite Graph (V₁, V₂, E)
- L_1 : Set of possible labels for $u \in V_1$
- L₂: Set of possible labels for w ∈ V₂
- $\bullet \quad R_{(u,w)} \subseteq L_1 \times L_2$
 - A set of acceptable assignments for each edge (u,w) ∈ E
- An edge (u,w) is "satisfied" if
 - u is assigned label l₄ and
 - w is assigned label 4, s.t.
 - \circ $l_1 \in L_1$; $l_2 \in L_2$ and
 - $\circ \quad (l_1, l_2) \in R_{(u,w)}$

$$R_{(1,1)} = \{(a,x), (a,z)\}; R_{(1,2)} = \{(b,x), (a,z)\}$$

 $R_{(2,2)} = \{(b,z)\}; R_{(m,3)} = \{(a,z)\}; R_{(m,n)} = \{(a,x)\};$

- Bipartite Graph (V₁, V₂, E)
- L_1 : Set of possible labels for $u \in V_1$
- L_2 : Set of possible labels for $w \in V_2$
- $\qquad \qquad R_{(u,w)} \subseteq L_1 \times L_2$
 - A set of acceptable assignments for each edge (u, w) ∈ E
- An edge (u,w) is "satisfied" if
 - u is assigned label l₄ and
 - w is assigned label 4, s.t.
 - o $l_1 \in L_1$; $l_2 \in L_2$ and
 - $\circ \quad (l_1, l_2) \in R_{(u,w)}$

$$R_{(1,1)} = \{(a,x), (a,z)\}; R_{(1,2)} = \{(b,x), (a,z)\}$$

 $R_{(2,2)} = \{(b,z)\}; R_{(m,3)} = \{(a,z)\}; R_{(m,n)} = \{(a,x)\};$

- Bipartite Graph (V₁, V₂, E)
- L_1 : Set of possible labels for $u \in V_1$
- L_2 : Set of possible labels for $w \in V_2$
- $\bullet \quad R_{(u,w)} \subseteq L_1 \times L_2$
 - A set of acceptable assignments for each edge (u,w) ∈ E
- An edge (u,w) is "satisfied" if
 - ∘ **u** is assigned label **l**₄ and
 - **w** is assigned label **l**, s.t.
 - \circ $l_1 \in L_1$; $l_2 \in L_2$ and
 - $(l_1, l_2) \in R_{(u,w)}$

$$R_{(1,1)} = \{(a,x), (a,z)\}; R_{(1,2)} = \{(b,x), (a,z)\}$$

 $R_{(2,2)} = \{(b,z)\}; R_{(m,3)} = \{(a,z)\}; R_{(m,n)} = \{(a,x)\};$

- Bipartite Graph (V_1, V_2, E)
- L_1 : Set of possible labels for $u \in V_1$
- L_2 : Set of possible labels for $w \in V_2$
- $R_{(u,w)} \subseteq L_1 \times L_2$
 - A set of acceptable assignments for each edge $(u, w) \in E$
- An edge (u,w) is "satisfied" if
 - **u** is assigned label **L** and
 - **w** is assigned label **4**, s.t.
 - $l_1 \in L_1$; $l_2 \in L_2$ and
 - $(\boldsymbol{\ell}_1,\,\boldsymbol{\ell}_2) \in R_{(u,w)}$

$$R_{(1,1)} = \{(a,x), (a,z)\}; R_{(1,2)} = \{(b,x), (a,z)\}$$

 $R_{(2,2)} = \{(b,z)\}; R_{(m,3)} = \{(a,z)\}; R_{(m,n)} = \{(a,x)\};$

(d_1, d_2) - Regular instances

- Each vertex u ∈ V₁ has degree d₁
- Each vertex $w \in V_2$ has degree d_2

- Each vertex $u \in V_1$ has degree d_1
- Each vertex $w \in V_2$ has degree d_2

- Each vertex $u \in V_1$ has degree d_1
- Each vertex $w \in V_2$ has degree d_2

- Each vertex $u \in V_1$ has degree d_1
- Each vertex $\mathbf{w} \in \mathbf{V}_2$ has degree \mathbf{d}_2

- Each vertex $u \in V_1$ has degree d_1
- Each vertex $w \in V_2$ has degree d_2

d - Regular instances

- All vertices have degree **d**
- $\bullet \quad d_1 = d_2 = d$

$$d_1 = d_2 = d = 2$$

2.a Optimization Problems: Minimization Version

- Assign each vertex a <u>subset of labels</u>.
 - All u in V_1 is assigned its own $L_u \subseteq L_1$
 - All \mathbf{w} in \mathbf{V}_2 is assigned its own $\mathbf{L}_{\mathbf{w}} \subseteq \mathbf{L}_2$
- Such that, for all edges, at least one pair of its vertex labels is in its $R_{(u,w)}$
- *Minimize* total number of labels used

- Example: Cost = 7
- Alternate: Cost = 8

$$R_{(1,1)} = \{(a,x)\}; R_{(1,2)} = \{(b,y)\}$$

 $R_{(2,2)} = \{(c,z)\}; R_{(2,3)} = \{(c,x), (b,y)\}$

- Assign each vertex a <u>subset of labels.</u>
 - All u in V_1 is assigned its own $L_{u} \subseteq L_1$
 - All \mathbf{w} in $\mathbf{V_2}$ is assigned its own $\mathbf{L_w} \subseteq \mathbf{L_2}$
- Such that, for all edges, at least one pair of its vertex labels is in its $R_{(u,w)}$
- *Minimize* total number of labels used $\nabla \Sigma_{u,e} = |L_u| + \sum_{w,e} |L_w|$
- Example: Cost = 7
- Alternate: Cost = 8

$$R_{(1,1)} = \{(a,x)\}; R_{(1,2)} = \{(b,y)\}$$

 $R_{(2,2)} = \{(c,z)\}; R_{(2,3)} = \{(c,x), (b,y)\}$

- Assign each vertex a <u>subset of labels</u>.
 - All u in V_1 is assigned its own $L_{u} \subseteq L_1$
 - All \mathbf{w} in $\mathbf{V_2}$ is assigned its own $\mathbf{L_w} \subseteq \mathbf{L_2}$
- Such that, for all edges, at least one pair of its vertex labels is in its $R_{(u,w)}$
- *Minimize* total number of labels used

$$\circ \sum_{u \in |L_u|} + \sum_{w \in |L_w|}$$

- Example: Cost = 7
- Alternate: Cost = 8

$$R_{(1,1)} = \{(a,x)\}, R_{(1,2)} = \{(b,y)\}$$

 $R_{(2,2)} = \{(c,z)\}; R_{(2,3)} = \{(c,x), (b,y)\}$

 $L_1 = \{ a, b, c \}$ $L_2 = \{ x, y, z \}$

- Assign each vertex a **subset of labels**.
 - All u in V_1 is assigned its own $L_{ii} \subseteq L_1$
 - All \mathbf{w} in \mathbf{V}_2 is assigned its own $\mathbf{L}_{\mathbf{w}} \subseteq \mathbf{L}_2$ $\{a,b\}$
- Such that, for all edges, at least one pair of its vertex labels is in its $R_{(u,w)}$
- Minimize total number of labels used

$$\circ \sum_{u \in |L_u|} + \sum_{w \in |L_w|}$$

- Example: Cost = 7
- Alternate: Cost = 8

$$R_{(1,1)} = \{(a,x)\}; R_{(1,2)} = \{(b,y)\}$$

 $R_{(2,2)} = \{(c,z)\}; R_{(2,3)} = \{(c,x), (b,y)\}$

- Assign each vertex a <u>subset of labels.</u>
 - All u in V_1 is assigned its own $L_u \subseteq L_1$
 - All \mathbf{w} in \mathbf{V}_2 is assigned its own $\mathbf{L}_{\mathbf{w}} \subseteq \mathbf{L}_2$
- Such that, for all edges, at least one pair of its vertex labels is in its $R_{(u,w)}$
- *Minimize* total number of labels used

- Example: Cost = 7
- Alternate: Cost = 8

$$R_{(1,1)} = \{(a,x)\}; R_{(1,2)} = \{(b,y)\}$$

 $R_{(2,2)} = \{(c,z)\}; R_{(2,3)} = \{(c,x), (b,y)\}$

- Assign each vertex a <u>subset of labels.</u>
 - All u in V_1 is assigned its own $L_u \subseteq L_1$
 - All \mathbf{w} in $\mathbf{V_2}$ is assigned its own $\mathbf{L_w} \subseteq \mathbf{L_2}$
- Such that, for all edges, at least one pair of its vertex labels is in its $R_{(u,w)}$
- Minimize total number of labels used

$$\circ \sum_{u \in V_1} |L_u| + \sum_{w \in V_2} |L_w|$$

• Example: Cost = 7

 $L_2 = \{ x, y, z \}$ $L_1 = \{ a, b, c \}$ V_1

$$R_{(1,1)} = \{(a,x)\}; R_{(1,2)} = \{(b,y)\}$$

 $R_{(2,2)} = \{(c,z)\}; R_{(2,3)} = \{(c,x), (b,y)\}$

Alternate: Cost = 8

- Assign each vertex a <u>subset of labels.</u>
 - All u in V_1 is assigned its own $L_{ij} \subseteq L_1$
 - All \mathbf{w} in \mathbf{V}_2 is assigned its own $\mathbf{L}_{\mathbf{w}} \subseteq \mathbf{L}_2$
- Such that, for all edges, at least one pair of its vertex labels is in its $R_{(u,w)}$
- Minimize total number of labels used

$$\circ \sum_{u \in V_1} |L_u| + \sum_{w \in V_2} |L_w|$$

- Example: Cost = 7
- Alternate: Cost = 8

$$R_{(1,1)} = \{(a,x)\}; R_{(1,2)} = \{(b,y)\}$$

 $R_{(2,2)} = \{(c,z)\}; R_{(2,3)} = \{(c,x), (b,y)\}$

2.b Optimization Problems: Maximization Version

- Assign each vertex <u>exactly one label</u>
- Try to satisfy as many edges as possible

$$R_{(1,1)} = \{(a,x)\}; R_{(1,2)} = \{(b,y), (a,z)\}$$

 $R_{(2,2)} = \{(c,z)\}; R_{(2,3)} = \{(a,x), (b,y)\}$

- Assign each vertex <u>exactly one label</u>
- Try to satisfy as many edges as possible

$$R_{(1,1)} = \{(a,x)\}; R_{(1,2)} = \{(b,y), (a,z)\}$$

 $R_{(2,2)} = \{(c,z)\}; R_{(2,3)} = \{(a,x), (b,y)\}$

- Assign each vertex <u>exactly one label</u>
- Try to satisfy as many edges as possible

$$R_{(1,1)} = \{(a,x)\}; R_{(1,2)} = \{(b,y), (a,z)\}$$

 $R_{(2,2)} = \{(c,z)\}; R_{(2,3)} = \{(a,x), (b,y)\}$

- Assign each vertex <u>exactly one label</u>
- Try to satisfy as many edges as possible

$$R_{(1,1)} = \{(a,x)\}; R_{(1,2)} = \{(b,y), (a,z)\}$$

 $R_{(2,2)} = \{(c,z)\}; R_{(2,3)} = \{(a,x), (b,y)\}$

- Assign each vertex <u>exactly one label</u>
- Try to satisfy as many edges as possible

$$R_{(1,1)} = \{(a,x)\}; R_{(1,2)} = \{(b,y), (a,z)\}$$

 $R_{(2,2)} = \{(c,z)\}; R_{(2,3)} = \{(a,x), (b,y)\}$

- Assign each vertex <u>exactly one label</u>
- Try to satisfy as many edges as possible

$$R_{(1,1)} = \{(a,x)\}; R_{(1,2)} = \{(b,y), (a,z)\}$$

 $R_{(2,2)} = \{(c,z)\}; R_{(2,3)} = \{(a,x), (b,y)\}$

- Assign each vertex exactly one label
- Try to satisfy as many edges as possible

• SCORE = 3

$$R_{(1,1)} = \{(a,x)\}; R_{(1,2)} = \{(b,y), (a,z)\}$$

 $R_{(2,2)} = \{(c,z)\}; R_{(2,3)} = \{(a,x), (b,y)\}$

Example: Unique Games Problem

In short:

- A <u>binary constraint satisfaction problem</u>, where
- If there is a constraint on x_i and x_i , then
 - o for one assignment of X_i there will be exactly one assignment of X_j that satisfies the constraint, and vice versa

Unique Games as a Label Cover (Maximization)

- $\bullet \quad L_1 = L_2 = L$
- Each $R_{(u,w)}$ will be $L \to \pi$ (L), ie
 - a function from **L** to a permutation of **L**
- So that one label assignment to a vertex u allows exactly one assignment to w where (u,w) is an edge.

$$L = \{a,b,c\}$$

 $R_{(1,1)} = \{(a,c), (b,a), (c,b)\}$

3. Hardness of Approximating the Maximization Problem

Main Idea

MAX E3SAT

Gap-preserving Reduction

Label Cover (Maximization)

Short Recap 1 (Gap-preserving Reduction)

For a (*Constraint satisfying, NP-Complete*) Problem A:

- Distinguishing between *instances* with
 - $\circ \geq U_{\Delta}$ satisfiable constraints and
 - \circ ≤ L_A satisfiable constraints in poly time,
- will lead to solving decision versions of Problem A in poly time.

Short Recap 1 (Gap-preserving Reduction)

If problem A is "gap-preserve reduced" to problem B

- We get similar upper (U_B) and lower (L_B) bounds for problem B, such that
 - $\circ \qquad \boldsymbol{U}_{\boldsymbol{B}} = \boldsymbol{f}(\boldsymbol{U}_{\boldsymbol{A}})$
 - $\circ \qquad L_B = f(L_A)$
- That is, the "gap"s $[(u_A, L_A)$ and $(u_B, L_B)]$ are preserved

Short Recap 2 (MAX E3SAT)

SAT: Satisfiability Problem (CNF)

E3: Exactly 3 literals per clause

MAX: Maximize number of clauses satisfied

Given: a MAX E3 SAT problem

- **X** = set of variables
- **C** = set of clauses in an E3 CNF
 - o *m* total clauses

$$X = \{x_{1}, x_{2}, x_{3} \dots x_{n}\}$$

$$E3CNF: (x_{1} V x_{2} V x_{3}) \land (x_{2}' V x_{5} V x_{6}') \land \dots \land (x_{8}' V x_{9} V x_{10}')$$

$$C = \{C_{1}, C_{2}, \dots, C_{n}\}$$

Reduce to: A Label Cover instance (maximization)

- Bipartite graph (V₁, V₂, E)
- Label sets L₁, L₂
- Edge Relations $R_{(u,w)}$ for all edges $(u,w) \in E$

 V_1 : Set of vertices u_i for each variable $x_i \in X$

 V_2 : Set of vertices w_j for each clause $C_i \in C$

E: Join vertices u_i and w_j if i^{th} variable, x_i occurs in jth clause, C_j (+vely or -vely)

Intuition:

- L₁: value of corresponding *variable*
- L₂: value of corresponding *clause*

V₁: represent variables

V₂: represent clauses

E: represent variable belonging to clause

$$R_{(u,w)} \subset L_1 \times L_2$$

- Only L₂ values that satisfy clause (7 values)
- L₁ value corresponding to variable value in clause
- Let $C_1 = (x_1 V x_2' V x_3')$ [(F,T,T) will not satisfy]
- So, the following edges exist:
- For edge (u_1, w_1) ,

No (F,(F,T,T))

V₁: represent variables

V₂: represent clauses

E: represent variable belonging to clause

 L_1 : represent variable assignment

L₂: represent clause assignment

Intuition:

- We see, edge connecting a clause with its first
 variable will allow R values in the form (b₁, (b₁, b₂, b₃))
- For edge (u_1, w_1) , $[w_1 \text{ represent } (x_1 V x_2' V x_3')]$

- similarly, an edge connecting a *clause* with its *second variable* will allow R values in the form $(b_2, (b_1, b_2, b_3))$
- and, an edge connecting a *clause* with its *third variable* will allow R values in the form $(b_3, (b_1, b_2, b_3))$

 V_1 : represent variables

V₂: represent clauses

E: represent variable belonging to clause

L₁: represent variable assignment

L₂: represent clause assignment

Important Property:

Given an edge, if a clause is labelled only <u>one value for</u> the variable will satisfy that edge.

Eg.

- Edge: (u₁, w₁)
- $R_{11} = \{ b_1, (b_1, b_2, b_3) \}$ = $\{ (T,(T,T,T)), (T,(T,T,F)), (T,(T,F,T)), (T,(T,F,F)), (F,(F,F,F)), (F,(F,F,F)), (F,(F,F,F)) \}$
- Clause Label: (T, F, F)
- Variable label must be T

V₁: represent variables

V₂: represent clauses

E: represent variable belonging to clause

 L_1 : represent variable assignment

L₂: represent clause assignment

• If there are **m clauses** in the E3SAT, there are **3m edges** in the label cover instance (per clause 3 edges to its 3 variables)

• Claim:

- Given: An assignment to variables of E3SAT st. k clauses satisfied
- \circ **Can get:** A solution to corresponding label cover that satisfies 3k + 2(m-k) edges

- Example:
 - E3SAT: $(x_1 V x_2 V x_3) \land (x_1' V x_2' V x_3') \dots$
 - Given Assignment: $x_1 = x_2 = x_3 = T$

- For all variables
 - Label each $v_i \in V_1$ with value of corresponding variable x_i
- For all clauses
 - Primarily assign all $w_i \in V_2$ with triplet of values of constituent *variables*

V₁: represent variables

V₂: represent clauses

 ${\it E}\,$: represent variable belonging to clause

L₁: represent **variable assignment**

 $\boldsymbol{L_2}$: represent clause assignment

For satisfied clauses:

- The aforementioned assignment of labels ensure 3 satisfied edges each
- If number of satisfied clauses = k, then 3k edges are satisfied

For unsatisfied clauses:

- Initially no edges satisfied
- Flip 1 element of tuple
- 2 edges satisfied per tuple
- o 2 (m-k) edges satisfied overall

E3SAT: $(x_1 V x_2 V x_3) \wedge (x_1' V x_2' V x_3') \dots$

For unsatisfied clauses:

- Initially no edges satisfied
- Flip 1 element of tuple
- 2 edges satisfied per tuple
- o 2 (m-k) edges satisfied overall

• Example:

- \circ $C_2 = (x_1' V x_2' V x_3')$ evaluates to false for (T, T, T)
- So, R₁₂, R₂₂, R₃₂ does not have (*T*, (*T*,*T*,*T*))
- Suppose, change w₂ label to **(F,T,T)**
 - R₁₂ does not have (T, (F,T,T))
 - But R_{22} has (T,(F,T,T)) and R_{32} has (T,(F,T,T))

E3SAT: $(x_1 V x_2 V x_3) \land (x_1' V x_2' V x_3') \dots$

- Thus total edges satisfied
 - From sat clauses + unsat clauses

E3SAT: $(x_1 V x_2 V x_3) \wedge (x_1' V x_2' V x_3') \dots$

Conversely,

- Each $\mathbf{w}_{j} \in \mathbf{V}_{2}$ with 3 satisfied incident edges MUST correspond to a satisfied clause \mathbf{C}_{i}
- If a label cover problem is solved with 3k + 2(m-k) satisfied edges, then
- we can construct a corresponding solution to the E3SAT problem instance with 3m clauses satisfied

Thus completing the reduction

E3SAT: $(x_1 V x_2 V x_3) \wedge (x_1' V x_2' V x_3') \dots$

4. Some Theorems

Theorem 16.25

Statement: If for any constant $\alpha > \frac{23}{24}$, there is an α - approximation algorithm for the maximization version of the Label Cover problem, then **P = NP**

Proof:

- Hard to distinguish between MAX E3SAT problems where all m clauses satisfiable and $\left(\frac{7}{8} + \delta\right)m$ clauses are satisfiable
- From reduction above, hard to distinguish between [3m + 2 (m-m)] = **3m edges** and $[3(\frac{7}{8} + \delta)m + 2(m (\frac{7}{8} + \delta)m)] = (\frac{23}{8} + \delta)m$ edges
- Fraction = $((\frac{23}{8} + \delta) m / 3m) = (\frac{23}{24} + \frac{\delta}{3})$
- Thus hard to get an approx algo with $\alpha > \frac{23}{24}$ [**Proved**]

Other Theorems

Theorem 16.26. If for a particular constant $\alpha < 1$ there is an α -approximation algorithm for the maximization version of the label cover problem on (5,3)-regular instances, then P = NP.

Remark: Similar reduction as before

Theorem 16.27. If for a particular constant $\alpha < 1$ there is an α -approximation algorithm for the maximization version of the label cover problem on 15-regular instances, then P = NP.

Remark: Follows from a construction based on **Theorem 16.26**

Other Theorems

Theorem 16.28. There is a constant c > 0, such that for any label cover instance I with m edges and $L = |L_1| + |L_2|$ total labels, if $OPT(I) = |E|(1 - \delta)$, then $OPT(I') \leq |E'|(1 - \delta)^{\frac{ck}{\log L}}$.

Remark: Proof deemed "Highly non-trivial" and thus not provided

Theorem 16.29. There is a constant c > 0, such that for any positive integer k, we cannot distinguish between d-regular instances I of the maximization label cover problem in which OPT(I) = |E| and $OPT(I) = |E|(1 - \delta)^{\frac{ck}{\log 10}}$ for some constant $\delta > 0$ unless each problem in NP has an algorithm running in time $O(n^{O(k)})$.

Remark: Follows from applying **Theorem 16.28** for a fixed k

Corollary 16.30. There is no α -approximation algorithm for any constant $\alpha \leq 1$ for the maximization version of the label cover problem unless P = NP.

Remark: Follows from applying **Theorem 16.29**

Other Theorems

Theorem 16.31. For any $\epsilon > 0$, there is no $2^{-\log^{1-\epsilon} m}$ -approximation algorithm for the maximization version of the label cover problem with d-regular instances unless NP has quasipolynomial-time algorithms.

Remark: Uses Theorem 16.29

Theorem 16.32. There is no $(\frac{1}{32} \log N)$ -approximation algorithm for the unweighted set cover problem (where N is the size of the ground set of elements) unless each problem in NP has an algorithm running in time $O(n^{O(\log \log n)})$.