Limite de uma função

Noção Intuitiva

O nosso objetivo é desenvolver uma linguagem que nos permita descrever o comportamento dos valores de uma função nas proximidades de um ponto.

Dada a função y = f(x), conforme ilustrado no gráfico abaixo, e seja "a" a abscissa do ponto.

Verifique o que acontece quando o valor de x se aproxima de a.

Quando ${\bf x}$ se aproxima de ${\bf a}$ pela direita (representamos por: $x\to a^+$) verificamos que a função se aproxima do valor L_1 . Então podemos dizer que:

 $\lim_{x\to a^+} f(x) = L_{_1}\text{, } \textbf{L_1} \text{ \'e o limite lateral direito da função no ponto de abscissa } x=a$

Quando **x** se aproxima de **a** pela esquerda (representamos por: $x \rightarrow a^-$) verificamos que a função se aproxima do valor L_2 . Então podemos dizer que:

 $\lim_{x\to a^-} f(x) = L_2 \text{, } \textbf{L_2} \text{ \'e o limite lateral esquerdo da função no ponto de abscissa } x = a$

Observamos no gráfico, que quando " \mathbf{x} " assume valores que se aproximam de " \mathbf{a} " pela direita ($\mathbf{x} > \mathbf{a}$), os correspondentes valores da função se aproximam do valor " $\mathbf{L_1}$ ". Para descrever esse comportamento dizemos que o limite lateral direito da função no ponto de abscissa " \mathbf{a} " é " $\mathbf{L_1}$ ". Analogamente, quando " \mathbf{x} " assume valores que se aproximam de " \mathbf{a} " pela esquerda ($\mathbf{x} < \mathbf{a}$), os correspondentes valores da função se aproximam do valor " $\mathbf{L_2}$ " e este é chamado de limite lateral esquerdo da função no ponto de abscissa " \mathbf{a} ".

Exemplo

Calcular os limites laterais da função $y = \begin{cases} 2x+1, se & x \geq 1 \\ -x^2, se & x < 1 \end{cases}$, no ponto de abscissa x = 1.

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (2x + 1) = 2(1) + 1 = 2 + 1 = 3$$

3 é o limite lateral direito da função no ponto de abscissa x = 1

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (-x^{2}) = -(1)^{2} = -1$$

-1 é o limite lateral esquerdo da função no ponto de abscissa x = 1

Exercício

Calcular os limites laterais da função $y = \begin{cases} x^2, \text{se } x \ge 2 \\ 5 - 2x, \text{se } x < 2 \end{cases}$ no ponto de abscissa x = 2.

FUNÇÃO CONTÍNUA

Vejamos agora a função y = f(x), conforme ilustrado no gráfico abaixo, e seja "**a**" a abscissa do ponto.

Quando **x** se aproxima de **a** pela direita (representamos por: $x \rightarrow a^+$) verificamos que a função se aproxima do valor L. Então podemos dizer que:

 $\lim_{x \to a^+} f(x) = L$, **L** é o limite lateral direito da função no ponto de abscissa

x = a

Quando **x** se aproxima de **a** pela esquerda (representamos por: $x \rightarrow a^-$) verificamos que a função se aproxima do valor L. Então podemos dizer que:

 $\lim_{x\to 0} f(x) = L$, **L** é o limite lateral esquerdo da função no ponto de

abscissa x = a

Como neste caso os limites laterais, à direita e à esquerda, convergiram para o mesmo resultado L, podemos então dizer que o limite da função quando \mathbf{x} se aproxima de \mathbf{a} , existe, é único, e igual a L (Teorema da unicidade do Limite).

$$Se\lim_{x\to a^+} f(x) = \lim_{x\to a^-} f(x) \Leftrightarrow \exists \lim_{x\to a} f(x) = L$$

Se **a** pertencer ao domínio desta função, então podemos afirmar que a função é contínua neste ponto, então:

$$\lim_{\mathsf{x}\to\mathsf{a}}\mathsf{f}(\mathsf{x})=f(a)=L$$

REGRA PRÁTICA:

Para determinar o valor do limite de uma função num dado ponto, basta substituir o valor de x da função pelo número ao qual se tende. Se o resultado dessa operação for um número determinado e finito, então a função é contínua neste ponto e o valor obtido será o valor limite da função.

Exemplos:

Verificar, usando limites, se a função é contínua no ponto em cada caso:

a)
$$f(x) = x^2 + 1$$
 e o ponto de abscissa $x = 2$

$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (x^2 + 1) = (2)^2 + 1 = 4 + 1 = 5,$$

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (x^{2} + 1) = (2)^{2} + 1 = 4 + 1 = 5$$

$$e f(2) = (2)^2 + 1 = 5$$

Logo a função é contínua em x = 2.

b)
$$f(x) = x^2$$
 e o ponto de abscissa $x = 2$

$$\lim_{x\to 2^+} f(x) = \lim_{x\to 2^+} (x^2) = (2)^2 = 4,$$

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (x^{2}) = (2)^{2} = 4$$

$$E f(2) = (2)^2 = 4$$

Logo a função é contínua em x = 2.

c)
$$f(x) = \frac{x^2 - 4}{x - 2}$$
 e o ponto de abscissa x = 2

Atenção: O denominador da função não pode ser zero, então $D = R - \{2\}$

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} \frac{x^{2} - 4}{x - 2} = \frac{(2)^{2} - 4}{(2) - 2} = \frac{0}{0} (F.I.)$$

$$\lim_{x \to 2^{+}} \frac{x^{2} - 4}{x - 2} = \lim_{x \to 2^{+}} \frac{(x - 2)(x + 2)}{x - 2} = \lim_{x \to 2^{+}} (x + 2) = (2) + 2 = 4$$
(Forma Indeterminada)

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} \frac{x^{2} - 4}{x - 2} = \frac{(2)^{2} - 4}{(2) - 2} = \frac{0}{0} (F.I.)$$

$$\lim_{x \to 2^{-}} \frac{x^{2} - 4}{x - 2} = \lim_{x \to 2^{-}} \frac{(x - 2)(x + 2)}{x - 2} = \lim_{x \to 2^{-}} (x + 2) = (2) + 2 = 4$$
 (Forma Indeterminada)

Neste caso embora os limites laterais sejam iguais a quatro, a função não está definida para x = 2, logo ela não é contínua no ponto.

IMPORTANTE:

É importante lembrar que no cálculo do $\lim_{x\to a} f(x)$, o que interessa é o comportamento da função f(x) quando \mathbf{x} se aproxima de \mathbf{a} e não o que acontece com a função em $\mathbf{x} = \mathbf{a}$.

ATENÇÃO: Limite de uma constante: $\lim_{x\to a} k = k$

Exemplo: $\lim_{x\to 3} 5 = 5$

EXERCÍCIOS PROPOSTOS:

1. Calcule os seguintes limites:

a)
$$\lim_{x\to -1} (x^3 - 2x^2 - 4x + 3) =$$

$$b)\lim_{x\to -1}\frac{3x^2-5x+4}{2x+1}=$$

c)
$$\lim_{x\to 4} \left(\frac{x^3 - 3x^2 - 2x - 5}{2x^2 - 9x + 2} \right)^2 =$$

$$d)\lim_{x\to -1}\sqrt{\frac{2x^2+3x-4}{5x-4}} =$$

e)
$$\lim_{x\to -2} \sqrt[3]{\frac{3x^3 - 5x^2 - x + 2}{4x + 3}} =$$

$$f)\lim_{x\to -2}\frac{\sqrt{2x^2+3x+2}}{6-4x} =$$

2. Calcule os limites:

Exemplo:
$$\lim_{x\to 2} \frac{x^2-4}{x^2-2x} = \frac{(2)^2-4}{(2)^2-2(2)} = \frac{0}{0}$$
 (F. I.)

 $\frac{0}{0}$ é uma indeterminação, como os polinômios

 $\mathbf{x^2 - 4}$ e $\mathbf{x^2 - 2x}$ anulam-se para $\mathbf{x} = 2$, portanto pelo *Teorema de D'Alembert*, são divisíveis por $\mathbf{x - 2}$, logo:

$$\frac{x^2-4}{x^2-2x} = \frac{(x-2)(x+2)}{x(x-2)} = \frac{(x+2)}{x}$$

Considerando que no cálculo do limite de uma função, quando x tende a **a**, interessa o comportamento da função quando x se aproxima de **a** e não o que ocorre com a função quando x = a, concluímos que:

$$\lim_{x \to 2} \frac{x^2 - 4}{x^2 - 2x} = \lim_{x \to 2} \frac{(x + 2)}{x} = 2$$

$$a)\lim_{x\to 1}\frac{x^2-1}{x-1}=$$

b)
$$\lim_{x \to -2} \frac{4 - x^2}{x + 2} =$$

$$c)\lim_{x\to \frac{3}{2}}\frac{4x^2-9}{2x-3}=$$

d)
$$\lim_{x\to 1} \frac{x^3-1}{x^2-1} =$$

$$e)\lim_{x\to 3}\frac{x^2-4x+3}{x^2-x-6}=$$

$$f) \lim_{x \to -\frac{3}{2}} \frac{6x^2 + 11x + 3}{2x^2 - 5x - 12} =$$

3.. Calcule os limites:

Exemplo:

$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1} = \frac{0}{0} \quad (forma \ in \det er \min ada)$$

Multiplicando o numerador e o denominador da fração pelo "conjugado" do numerador, temos :

$$\frac{\sqrt{x}-1}{x-1} = \frac{(\sqrt{x}-1)(\sqrt{x}+1)}{(x-1)(\sqrt{x}+1)} = \frac{(\sqrt{x})^2 - (1)^2}{(x-1)(\sqrt{x}+1)} = \frac{x-1}{(x-1)(\sqrt{x}+1)} = \frac{1}{\sqrt{x}+1}$$
e então:

$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1} = \lim_{x \to 1} \frac{1}{\sqrt{x} + 1} = \frac{1}{2}$$

$$a) \lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4} =$$

$$b)\lim_{x\to 0}\frac{1-\sqrt{1-x}}{x}=$$

$$c)\lim_{x\to 0}\frac{\sqrt{1+x}-\sqrt{1-x}}{x}=$$

$$d) \lim_{x \to 3} \frac{2 - \sqrt{x+1}}{x^2 - 9} =$$

$$e)\lim_{x\to 1}\frac{\sqrt{x+3}-2}{x^2-3x+2}=$$

LIMITES NO INFINITO E LIMITES INFINITOS

Limites dos tipos $\lim f(x)$ e $\lim f(x)$ são denominados **LIMITES NO**

<u>INFINITO</u>. A notação simbólica $x \to +\infty$, que se lê: x tendendo a mais infinito, é usada para traduzir a idéia de que x vai se tornando cada vez maior e tão grande quanto se possa imaginar. Por outro lado, a notação $x \to -\infty$, que se lê: x tendendo a menos infinito significa que x vai se tornando cada vez menor que qualquer numero negativo que se possa imaginar.

Por um <u>LIMITE INFINITO</u>, entendemos um limite da forma $\lim_{x\to p} f(x) = +\infty$ (ou $-\infty$), onde $\mathbf{x}\to\mathbf{p}$, pode ser substituído por $\mathbf{x}\to\mathbf{p}_+$, $\mathbf{x}\to\mathbf{p}_-$, $\mathbf{x}\to\mathbf{+}\infty$ ou $\mathbf{x}\to\mathbf{p}_+$. De forma intuitiva, a notação simbólica $\lim_{x\to p} f(x) = +\infty$ traduz a seguinte

idéia: para x tendendo a p, o valor de f(x) vai se tornando cada vez maior e ultrapassando o valor de qualquer número positivo, por maior que seja tal número.

Exemplo 1

Seja a função $f(x) = \frac{1}{x}$, com $x \ne 0$.

Calcule:

a)
$$\lim_{x \to +\infty} \frac{1}{x}$$

Solução:

Х	10	100	1000	100.000	1.000.000	X→+∞
1/x	0,1	0,01	0,001	0,00001	0,000001	$1/x \rightarrow 0$

Quando o denominador x vai se tornando cada vez maior, o valor da fração 1/x vai se aproximando cada vez mais de zero. Ou seja, $\lim_{x\to +\infty}\frac{1}{x}=\frac{1}{+\infty}=0$

Raciocinando intuitivamente como no exemplo 1, teremos

 $\lim_{x\to +\infty}\frac{1}{x^2}=0\ e\ \lim_{x\to +\infty}\frac{1}{x^3}=0\ e,\ \text{genericamente,}\ \lim_{x\to +\infty}\frac{1}{x^n}=0,\ \text{onde n\'e um}$ número positivo qualquer.

$$\lim_{x\to 0^+} \frac{1}{x}$$

Χ	1	0,1=1/10	0,01=1/100	0,001=1/1000	0,000001=1/1.000.000	x→0
1/x	1	10	100	1000	1.000.000	1/x→ +∞

Assim,
$$\lim_{x \to 0+} \frac{1}{x} = \frac{1}{0_{+}} = +\infty$$

Exemplo 2

Calcule

a)
$$\lim_{x\to +\infty} \frac{1000}{x^5}$$

Sabendo que $\lim_{x\to p} k.f(x) = k.\lim_{x\to p} f(x) = k.L$, temos:

$$\lim_{x \to +\infty} \frac{1000}{x^5} = 1000. \lim_{x \to +\infty} \frac{1}{x^5} = 1000.0 = 0$$

Assim, $\lim_{x\to +\infty} \frac{1000}{x^5} = 0$. Quando x vai se tornando cada vez maior, $1000/x^5$ vai ficando cada vez mais próximo de zero.

Logo, podemos concluir que: $\lim_{x\to\infty}\frac{k}{x^n}=0$

Operando com o símbolo ∞.

 $(\infty = + \infty e L \acute{e} um n\'umero real)$

1.
$$\infty + \infty = \infty$$

2.
$$-\infty - \infty = -\infty$$

3. Se L > 0, L
$$\infty = \infty$$

4. Se L < 0, L
$$.\infty = -\infty$$

5. Se L > 0, L .(-
$$\infty$$
) =- ∞

6. Se L < 0, L .
$$(-\infty) = \infty$$

7. L +
$$\infty$$
 = ∞

8. L -
$$\infty$$
 = - ∞

9.
$$\infty$$
 . ∞ = ∞

10.
$$(-\infty)$$
. $(-\infty) = \infty$

11.
$$\infty \cdot (-\infty) = -\infty$$

Indeterminações:

$$\infty$$
 - ∞ , 0. ∞ , $\frac{\infty}{\infty}$

Exemplo 3

Calcule
$$\lim_{x\to +\infty} (x^2 - 5x + 3)$$
.

$$\lim_{x \to \infty} (x^2 - 5x + 3) = \infty - \infty + 3 = \infty - \infty$$
 (Forma Indeterminada)

$$\lim_{x \to +\infty} (x^2 - 5x + 3) = \lim_{x \to +\infty} x^2 \left(\frac{x^2}{x^2} - \frac{5x}{x^2} + \frac{3}{x^2} \right) = \lim_{x \to +\infty} x^2 \left(1 - \frac{5}{x} + \frac{3}{x^2} \right) = \left[\lim_{x \to +\infty} x^2 \right] \left[\lim_{x \to +\infty} \left(1 - \frac{5}{x} + \frac{3}{x^2} \right) \right] = \infty \cdot [1 - 0 + 0] = \infty \cdot 1 = \infty$$

Dica: Para calcular um limite no infinito, o truque, na maioria das vezes é colocar a mais alta potência de x em evidência ou, então raciocinar com os valores das potências.

Exemplo 4

Calcule
$$\lim_{x \to +\infty} \frac{x^3 + 3x - 4}{x^2 + 5}$$
.

$$\lim_{x \to +\infty} \frac{x^3 + 3x - 4}{x^2 + 5} = \frac{\infty}{\infty}$$
 que é uma indeterminação

$$\lim_{x \to +\infty} \frac{x^3 + 3x - 4}{x^2 + 5} = \lim_{x \to +\infty} \frac{x^3 \left(\frac{x^3}{x^3} + \frac{3x}{x^3} - \frac{4}{x^3}\right)}{x^2 \left(\frac{x^2}{x^2} + \frac{5}{x^2}\right)} = \lim_{x \to +\infty} x \cdot \frac{\left(1 + \frac{3}{x^2} - \frac{4}{x^3}\right)}{\left(1 + \frac{5}{x^2}\right)} = \left[\lim_{x \to +\infty} x\right] \left[\lim_{x \to +\infty} \frac{\left(1 + \frac{3}{x^2} - \frac{4}{x^3}\right)}{\left(1 + \frac{5}{x^2}\right)}\right] = \lim_{x \to +\infty} \left[\lim_{x \to +\infty} \frac{\left(1 + \frac{3}{x^2} - \frac{4}{x^3}\right)}{\left(1 + \frac{5}{x^2}\right)}\right] = \lim_{x \to +\infty} \left[\lim_{x \to +\infty} \frac{\left(1 + \frac{3}{x^2} - \frac{4}{x^3}\right)}{\left(1 + \frac{5}{x^2}\right)}\right] = \lim_{x \to +\infty} \left[\lim_{x \to +\infty} \frac{\left(1 + \frac{3}{x^2} - \frac{4}{x^3}\right)}{\left(1 + \frac{5}{x^2}\right)}\right] = \lim_{x \to +\infty} \left[\lim_{x \to +\infty} \frac{\left(1 + \frac{3}{x^2} - \frac{4}{x^3}\right)}{\left(1 + \frac{5}{x^2}\right)}\right] = \lim_{x \to +\infty} \left[\lim_{x \to +\infty} \frac{\left(1 + \frac{3}{x^2} - \frac{4}{x^3}\right)}{\left(1 + \frac{5}{x^2}\right)}\right] = \lim_{x \to +\infty} \left[\lim_{x \to +\infty} \frac{\left(1 + \frac{3}{x^2} - \frac{4}{x^3}\right)}{\left(1 + \frac{5}{x^2}\right)}\right] = \lim_{x \to +\infty} \left[\lim_{x \to +\infty} \frac{\left(1 + \frac{3}{x^2} - \frac{4}{x^3}\right)}{\left(1 + \frac{5}{x^2}\right)}\right] = \lim_{x \to +\infty} \left[\lim_{x \to +\infty} \frac{\left(1 + \frac{3}{x^2} - \frac{4}{x^3}\right)}{\left(1 + \frac{5}{x^2}\right)}\right] = \lim_{x \to +\infty} \left[\lim_{x \to +\infty} \frac{\left(1 + \frac{3}{x^2} - \frac{4}{x^3}\right)}{\left(1 + \frac{5}{x^2}\right)}\right] = \lim_{x \to +\infty} \left[\lim_{x \to +\infty} \frac{\left(1 + \frac{3}{x^2} - \frac{4}{x^3}\right)}{\left(1 + \frac{5}{x^2}\right)}\right] = \lim_{x \to +\infty} \left[\lim_{x \to +\infty} \frac{\left(1 + \frac{3}{x^2} - \frac{4}{x^3}\right)}{\left(1 + \frac{5}{x^2}\right)}\right] = \lim_{x \to +\infty} \left[\lim_{x \to +\infty} \frac{\left(1 + \frac{3}{x^2} - \frac{4}{x^3}\right)}{\left(1 + \frac{5}{x^2}\right)}\right] = \lim_{x \to +\infty} \left[\lim_{x \to +\infty} \frac{\left(1 + \frac{3}{x^2} - \frac{4}{x^3}\right)}{\left(1 + \frac{5}{x^2}\right)}\right] = \lim_{x \to +\infty} \left[\lim_{x \to +\infty} \frac{\left(1 + \frac{3}{x^2} - \frac{4}{x^3}\right)}{\left(1 + \frac{5}{x^2}\right)}\right] = \lim_{x \to +\infty} \left[\lim_{x \to +\infty} \frac{\left(1 + \frac{3}{x^2} - \frac{4}{x^3}\right)}{\left(1 + \frac{5}{x^2}\right)}\right] = \lim_{x \to +\infty} \left[\lim_{x \to +\infty} \frac{\left(1 + \frac{3}{x^2} - \frac{4}{x^3}\right)}{\left(1 + \frac{5}{x^2}\right)}\right] = \lim_{x \to +\infty} \left[\lim_{x \to +\infty} \frac{\left(1 + \frac{3}{x^2} - \frac{4}{x^3}\right)}{\left(1 + \frac{5}{x^2}\right)}\right] = \lim_{x \to +\infty} \left[\lim_{x \to +\infty} \frac{\left(1 + \frac{3}{x^2} - \frac{4}{x^3}\right)}{\left(1 + \frac{5}{x^2}\right)}\right] = \lim_{x \to +\infty} \left[\lim_{x \to +\infty} \frac{\left(1 + \frac{3}{x^2} - \frac{4}{x^3}\right)}{\left(1 + \frac{5}{x^2}\right)}\right] = \lim_{x \to +\infty} \left[\lim_{x \to +\infty} \frac{\left(1 + \frac{3}{x^2} - \frac{4}{x^3}\right)}{\left(1 + \frac{5}{x^2}\right)}\right] = \lim_{x \to +\infty} \left[\lim_{x \to +\infty} \frac{\left(1 + \frac{3}{x^2} - \frac{4}{x^3}\right)}{\left(1 + \frac{5}{x^2}\right)}\right] = \lim_{x \to +\infty} \left[\lim_{x \to +\infty} \frac{\left(1 + \frac{3}{x^2} - \frac{4}{x^3}\right)}{\left(1 + \frac{5}{x^2}\right)}\right]$$

$$\infty \cdot \frac{1+0-0}{1+0} = \infty \cdot 1 = \infty$$

Exemplo 5

Calcule
$$\lim_{x\to +\infty} \frac{2x+3}{x-1}$$
.

$$\lim_{x\to +\infty} \frac{2x+3}{x-1} = \frac{\infty}{\infty}, \text{ que é uma indeterminação}$$

$$\lim_{x \to +\infty} \frac{2x+3}{x-1} = \lim_{x \to +\infty} \frac{x\left(\frac{2x}{x} + \frac{3}{x}\right)}{x\left(\frac{x}{x} - \frac{1}{x}\right)} = \lim_{x \to +\infty} \frac{\left(2 + \frac{3}{x}\right)}{\left(1 - \frac{1}{x}\right)} = \frac{2+0}{1-0} = \frac{2}{1} = 2$$

Exercícios propostos

1. Calcular:

$$a)\lim_{x\to +\infty}x^2=$$

$$b)\lim_{x\to -\infty}x^2=$$

$$c)\lim_{x\to+\infty}\left(\frac{1}{x}+1\right)=$$

$$d)\lim_{x\to+\infty}x^3=$$

$$e)\lim_{x\to-\infty}x^3=$$

$$f)\lim_{x\to +\infty}2x^3=$$

$$g)\lim_{x\to-\infty}2x^3=$$

$$h) \lim_{x \to +\infty} (-2x^3 + 4x^2 + 3) =$$

$$i) \lim_{x \to -\infty} (-4x^5 - 2x^3 + x + 3) =$$

$$j) \lim_{x \to -\infty} (2x^3 - 4x^2 + 3x + 8) =$$

$$k) \lim_{x \to +\infty} \frac{4x^2 - 5x + 3}{2x^2 - x} =$$

$$l) \lim_{x \to -\infty} \frac{2x^5 - 4x^3 + 1}{4x^2 - 5x + 3} =$$

$$m) \lim_{x \to +\infty} \frac{4x^2 - 3}{3x^5 + 4x + 1} =$$

$$n)\lim_{x\to\infty}\left(3x+\frac{4}{x^2}\right)=$$

$$o)\lim_{x\to+\infty}\frac{1}{x-5}=$$

$$p)\lim_{x\to-\infty}\frac{1}{x-5}=$$

$$q)\lim_{x\to+\infty}\frac{2x+4}{x-5}=$$

$$a)\lim_{x\to 1+}\frac{4}{x-1}=$$

$$b) \lim_{x \to 1^{-}} \frac{4}{x - 1} =$$

c)
$$\lim_{x\to 2+} \frac{x}{x^2-4} =$$

$$d) \lim_{x \to 2^{-}} \frac{x}{x^2 - 4} =$$

$$e)\lim_{x\to 2^+}\frac{x}{2-x}=$$

$$f)\lim_{x\to 2^-}\frac{x+2}{2-x}=$$

$$g) \lim_{x \to -3-} \frac{2x-1}{x+3} =$$

$$h) \lim_{x \to -3+} \frac{2x-1}{x+3} =$$

$$i) \lim_{x \to 2+} \frac{x^2 + 3x}{x^2 - 4} =$$

EXERCÍCIOS DE FIXAÇÃO

Calcule:

a)
$$\lim_{x \to -1} \left(\frac{x^3 + 3x^2 + 5x - 4}{x^2 - 3x + 1} \right) =$$
e)
$$\lim_{x \to -\infty} \left(\frac{x^4 + x^2 + 4}{x^6 - x^7 + 8x^8} \right) =$$
b)
$$\lim_{x \to -2} \left(\frac{8 + x^3}{x^2 - 4} \right) =$$
f)
$$\lim_{x \to -2} \left(\frac{5 - x}{x + 4} \right) =$$
g)
$$\lim_{x \to -3_{-}} \left(\frac{2 - x}{x^2 - 9} \right) =$$
d)
$$\lim_{x \to \infty} \left(\frac{2 - 3x + 4x^2 - 5x^3}{x^2 + 5x + 7} \right) =$$

Respostas: a) -7/5; b) -3; c) 0; d) $-\infty$; e) 0; f) $+\infty$; g) $+\infty$