Campaña de descubrimiento de moléculas diana-dirigidas contra SARS-CoV2

miércoles, 27 de julio de 2022 9:30 (15 minutos)

La actual pandemia causada por SARS-CoV-2 puso en evidencia la necesidad imperiosa de contar con fármacos antivirales que contribuyan a mitigar las consecuencias fatales de las infecciones respiratorias agudas. El genoma de SARS-CoV-2 codifica para dos proteasas de cisteína (MPro: endopeptidasa con plegamiento tipo quimotripsina, y PLPro: proteasa tipo papaína) que son indispensables para la replicación del virus y/o subvertir la respuesta inmune del huésped.

Este proyecto multi-institucional y -disciplinario tuvo por objetivo la identificación de compuestos con actividad inhibitoria contra MPro y SARS-CoV2 a partir de una quimioteca generada por contribuciones de las instituciones participantes. Se aplicaron las siguientes estrategias de cribado: i) in silico (extendidas a quimiotecas de fármacos) complementada con la validación experimental de los hits y ii) dirigido a inhibidores mecanísticos. Se identificaron 122 hits de MPro (IC50 MPro \leq 25 μ M) de un total de 457 moléculas analizadas (tasa de positividad del 29%), los cuales incluyen compuestos pertenecientes a 8 familias diferentes y varios singletons (incluyendo fármacos de reposicionamiento). Los análisis de relación estructura-actividad permitieron identificar los determinantes moleculares responsables de la inhibición enzimática. Ciertos inhibidores mecanísticos de la MPro inhibieron también a la PLPro. La mayoría de los compuestos (77%) presentaron baja citotoxicidad contra células de epitelio pulmonar o intestinal humano (CC50 \leq 100-200 μ M).

A la fecha se estudió la actividad anti-viral de 96 de los 122 hits de MPro. De 37 moléculas que afectaron la replicación de SARS-CoV2 (cepa Wuhan) en células de mamífero, 24 de ellas lo lograron a concentraciones comparables o inferiores a las de los fármacos control: Lopinavir, Remdesivir y Cloroquina (IC50 = 10-14 μ M). Para gran parte de los inhibidores mecanísticos se observó una buena correlación entre inhibición del blanco molecular y actividad anti-viral.

Estos resultados sientan las bases para la optimización bio-guiada de inhibidores de las proteasas de SARS-CoV2.

Palabras clave

inhibidores, actividad antiviral, proteasas

Características de la colaboración

Este trabajo se generó a partir de autores y coautores que ya colaboraban antes de la pandemia

Interinstitucionalidad

Si

Interdisciplina

Si

Este trabajo fue presentado ante la Comité de Ética de Investigación en Seres Humanos

No corresponde

Este trabajo fue presentado ante la Comisión de Experimentación Animal

No corresponde

Autores primarios: Dr FLÓ, Martín (Institut Pasteur de Montevideo); Dr RUATTA, Santiago (Universidad Nacional del Litoral, Santa Fé, Argentina); Dr MEDEIROS, Andrea (Universidad de la República); Dr LÓPEZ, Virginia (Universidad de la República); PERELMUTER, Karen (Institut Pasteur de Montevideo); Dr INCERTI, Marcelo (Universidad de la República); LORENZELLI, Franca (Institut Pasteur de Montevideo); Dr SERRA, Gloria (Universidad de la República); Dr MAHLER, Graciela (Universidad de la República); IRABUENA, Camila (Universidad de la República); Dr SCARONE, Laura (Universidad de la República); MARCO, Micaela (Universidad de la República); Dr OTERO, Lucía (Universidad de la República); ROSTÁN, Santiago (Universidad de la República); Dr MANTA, Eduardo (Universidad de la República); Dr ALVAREZ, Guzman (Universidad de la República); AGUILERA, Elena (Universidad de la República); Dr ROMERO, Ángel (Universidad de la República); MELÍAN GARCÍA, Fernanda (Universidad de la República); COUTO, Marcos (Universidad de la República); Dr CERECETTO, Hugo (Universidad de la República); Dr PORCAL, Williams (Universidad de la República); Dr BONILLA, Mariana (Institut Pasteur de Montevideo); Dr BOLLATI-FOGOLÍN, Mariela (Institut Pasteur de Montevideo); Dr SZILÁGYI, László (University of Debrecen, Hungría); Dr ALBERCA, Lucas (Laboratorio de Investigación y Desarrollo de Bioactivos, Universidad Nacional de la Plata, Argentina); PRADA, Denis (Laboratorio de Investigación y Desarrollo de Bioactivos, Universidad Nacional de la Plata, Argentina); Dr LLANOS, Manuel (Laboratorio de Investigación y Desarrollo de Bioactivos, Universidad Nacional de la Plata, Argentina); RODRIGUEZ, Santiago (Laboratorio de Investigación y Desarrollo de Bioactivos, Universidad Nacional de la Plata, Argentina); GARTNER, Melisa (Laboratorio de Investigación y Desarrollo de Bioactivos, Universidad Nacional de la Plata, Argentina); Dr GAVERNET, Luciana (Laboratorio de Investigación y Desarrollo de Bioactivos, Universidad Nacional de la Plata, Argentina); Dr BELLERA, Carolina (Laboratorio de Investigación y Desarrollo de Bioactivos, Universidad Nacional de la Plata, Argentina); Dr TALEVI, Alan (Laboratorio de Investigación y Desarrollo de Bioactivos, Universidad Nacional de la Plata, Argentina); Dr PARK, Soonju (Institut Pasteur Korea); Dr LEE, Nakyung (Institut Pasteur Korea); Dr BYUN, Sooyoung (Institut Pasteur Korea); Dr KYUHO, Paul Park (Institut Pasteur Korea); Dr SHUM, David (Institut Pasteur Korea); COMINI, Marcelo (Institut Pasteur de Montevideo)

Presentador: COMINI, Marcelo (Institut Pasteur de Montevideo)

Session Classification: Eje 7 2 Investigación básica. Presentaciones orales

Track Classification: .