Networking the phtsical world notes

Peiwen Hu

July 19, 2012

Contents

1	Introduction			2
	1.1	Key design challenge		
		1.1.1	Extended lifetime	2
		1.1.2	Responsiveness	2
		1.1.3	Robustness	2
		1.1.4	Synergy	2
		1.1.5	Scalability	2
		1.1.6	Heterogeneity	2
		1.1.7	Self-configuration	2
		1.1.8	Self-optimization and adaptation	2
		1.1.9	Systematic design	2
		1.1.10	Privacy and security	2
	1.2		rk deployment	2
		1.2.1	Coverage	2
		1.2.2	Connectivity	3
		1.2.3		3

Chapter 1

Introduction

- 1.1 Key design challenge
- 1.1.1 Extended lifetime
- 1.1.2 Responsiveness
- 1.1.3 Robustness
- 1.1.4 Synergy
- 1.1.5 Scalability
- 1.1.6 Heterogeneity
- 1.1.7 Self-configuration
- 1.1.8 Self-optimization and adaptation
- 1.1.9 Systematic design
- 1.1.10 Privacy and security

Chapter 2

Network deployment

2.1 Overview

Coverage: Coverage pertains to the application-specific quality of information obtained from the environment by the neworked sensor devices.

Connectivity: Connectivity pertains to the network topology over which information routing can take place.

2.1.1 basic consideration

Structured versus randomized deployment

The randomized deployment approach is appealing for futuristic applications of a large scale.

However, many small-medium-scale WSNs are likely to be deployed in a structured manner via careful hand placement of network nodes.

Randomized sensor deployment can be even more challenging since there is no way to configure a priori the exact location of each device. Additional post-deployment self-configuration mechanisms are required.

Random Graph Theory in Section 2.4.

Power-based topolgy control techniques in Section 2.5

Over-deployment versus incremental deployment

Robustness vs arising needs. Refer to chapter 7.

Network topology

Single-hop star Multi-hop mesh and grid Two-tier hierarchical cluster

[width=12cm][topology.jpg]

Figure 2.1: topology

Homogeneous versus heterogeneous deployment

Are all sensor nodes of the same type? If not, there may be multiple gate-way/sink devices.

Coverage metrics

What is the kind of sensor information desired from the environment and how is the coverage measured?

2.2 Connectivity in geometric random graphs

A random graph model is essentially a systematic description of some random experiment that can be used to generate graph instances.

The Bernoulli random graphs G(n,p) are formed by taking n vertices and placing random edges between each pair of vertices independently with probability p.