62 mm C-Series module

Final datasheet

62 mm C-Series module with CoolSiC™ Trench MOSFET

Features

- · Electrical features
 - V_{DSS} = 1200 V
 - $I_{DN} = 280 \text{ A} / I_{DRM} = 560 \text{ A}$
 - High current density
 - Low switching losses
 - Suitable Infineon gate drivers can be found under https://www.infineon.com/gdfinder
- Mechanical features
 - 2.5 kV AC 1 minute insulation

Potential applications

- UPS systems
- Solar applications
- DC/DC converter
- High-frequency switching application
- Energy storage systems
- DC charger for EV

Product validation

• Qualified for industrial applications according to the relevant tests of IEC 60747, 60749 and 60068

Description

62 mm C-Series module

Table of contents

Table of contents

	Description	1
	Features	1
	Potential applications	1
	Product validation	1
	Table of contents	2
1	Package	3
2	MOSFET	3
3	Body diode (MOSFET)	6
4	Characteristics diagrams	7
5	Circuit diagram	14
6	Package outlines	15
7	Module label code	. 16
	Revision history	. 17
	Disclaimer	18

62 mm C-Series module

1 Package

Table 1 Insulation coordination

Parameter	Symbol	Note or test condition	Values	Unit
Isolation test voltage	V _{ISOL}	RMS, f = 50 Hz, t = 60 s	2.5	kV
Material of module baseplate			Cu	
Internal isolation		basic insulation (class 1, IEC 61140)	Al ₂ O ₃	
Creepage distance	$d_{\text{Creep nom}}$	terminal to baseplate, nom.	29.0	mm
Creepage distance	$d_{\text{Creep nom}}$	terminal to terminal, nom.	23.0	mm
Clearance	d _{Clear nom}	terminal to baseplate, nom.	23.0	mm
Clearance	$d_{\text{Clear nom}}$	terminal to terminal, nom.	11.0	mm
Comparative tracking index	СТІ		> 400	
Relative thermal index (electrical)	RTI	housing	140	°C

Table 2 Characteristic values

Parameter	arameter Symbol Note or test condition		ote or test condition		Values		Unit
				Min.	Тур.	Max.	
Stray inductance module	L _{sCE}				20		nH
Module lead resistance, terminals - chip	R _{AA'+CC'}	$T_C = 25$ °C, per switch			0.465		mΩ
Storage temperature	$T_{\rm stg}$			-40		125	°C
Mounting torque for module mounting	М	- Mounting according to valid application note	M6, Screw	3		6	Nm
Terminal connection torque	М	- Mounting according to valid application note	M6, Screw	2.5		5	Nm
Weight	G				340		g

Note:

The electrical characterization was performed in NPC2 topology, which combines the modules FF3MR12KM1H and FF3MR12KM1H_S.

It has to be considered, that the commutation in this configuration takes place between both modules

2 MOSFET

Table 3 Maximum rated values

Drain-source voltage V_{DSS} $T_{vj} = 25 ^{\circ}\text{C}$ 1200VImplemented drain current I_{DN} 280A	Parameter	Symbol	Note or test condition	Values	Unit
Implemented drain current I _{DN} 280 A	Drain-source voltage	V _{DSS}	T _{vj} = 25 °C	1200	V
	Implemented drain current	I _{DN}		280	А

62 mm C-Series module

2 MOSFET

(continued) Maximum rated values Table 3

Parameter	Symbol	Note or test condition		Values	Unit
Continuous DC drain current	I _{DDC}	$T_{\rm vj}$ = 175 °C, $V_{\rm GS}$ = 18 V	T _C = 115 °C	200	А
Repetitive peak drain current	I _{DRM}	verified by design, t _p lim	verified by design, t _p limited by T _{vjmax}		А
Gate-source voltage, max. transient voltage	V_{GS}	D < 0.01		-10/23	V
Gate-source voltage, max. static voltage	V_{GS}			-7/20	V

Table 4 **Recommended values**

Parameter	Symbol	Note or test condition	Values	Unit
On-state gate voltage	V _{GS(on)}		1518	V
Off-state gate voltage	V _{GS(off)}		-50	V

Characteristic values Table 5

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Мах.	
Drain-source on-resistance	R _{DS(on)}	I _D = 280 A	V _{GS} = 18 V, T _{vj} = 25 °C		2.9	4.4	mΩ
			$V_{\rm GS}$ = 18 V, $T_{\rm vj}$ = 125 °C		4.8		
			$V_{\rm GS}$ = 18 V, $T_{\rm vj}$ = 175 °C		6.3		
			$V_{\rm GS}$ = 15 V, $T_{\rm vj}$ = 25 °C		3.5		
Gate threshold voltage	V _{GS(th)}	I_D = 112 mA, V_{DS} = V_{GS} , T_{vj} = 25 °C, (tested after 1ms pulse at V_{GS} = +20 V)		3.5	4.3	5.1	V
Total gate charge	Q _G	$V_{\rm DD} = 800 \text{ V}, V_{\rm GS} = -3/18 \text{ V}$, T _{vj} = 25 °C		0.8		μC
Internal gate resistor	R _{Gint}	T _{vj} = 25 °C			1.9		Ω
Input capacitance	C _{ISS}	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		24.2		nF
Output capacitance	C _{OSS}	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		1.2		nF
Reverse transfer capacitance	C _{rss}	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		0.079		nF
C _{OSS} stored energy	E _{OSS}	$V_{\rm DS} = 800 \text{ V}, V_{\rm GS} = -3/18 \text{ V},$, T _{vj} = 25 °C		473		μJ
Drain-source leakage current	I _{DSS}	$V_{\rm DS}$ = 1200 V, $V_{\rm GS}$ = -3 V	T _{vj} = 25 °C		0.16	378	μA

(table continues...)

FF3MR12KM1H_S 62 mm C-Series module

2 MOSFET

(continued) Characteristic values Table 5

Parameter	Symbol	Note or test condition		Values		Unit	
			Min.		Тур. Мах.		
Gate-source leakage current	I _{GSS}	$V_{\rm DS} = 0 \text{ V}, T_{\rm vj} = 25 ^{\circ}\text{C}$	V _{GS} = 20 V			400	nA
Turn-on delay time	t _{d on}	$I_{\rm D} = 280 \text{ A}, R_{\rm Gon} = 5.6 \Omega,$	T _{vj} = 25 °C		118		ns
(inductive load)		$V_{DD} = 600 \text{ V}, V_{GS} = -3/18 \text{ V},$ $t_{dead} = 1000 \text{ ns}, 0.1 \text{ V}_{GS}$	T _{vj} = 125 °C		113		
		to 0.1 I _D	T _{vj} = 175 °C		108		
Rise time (inductive load)	t_{r}	$I_{\rm D} = 280 \text{ A}, R_{\rm Gon} = 5.6 \Omega,$	T _{vj} = 25 °C		116		ns
		$V_{DD} = 600 \text{ V}, V_{GS} = -3/18 \text{ V},$ $t_{dead} = 1000 \text{ ns}, 0.1 \text{ I}_{D} \text{ to}$	T _{vj} = 125 °C		126		
		0.9 I _D	T _{vj} = 175 °C		131		
Turn-off delay time	$t_{ m d\ off}$	$I_{\rm D} = 280 \text{ A}, R_{\rm Goff} = 2 \Omega,$	T _{vj} = 25 °C		110		ns
(inductive load)		$V_{DD} = 600 \text{ V}, V_{GS} = -3/18 \text{ V},$ 0.9 V_{GS} to 0.9 I_{D}	T _{vj} = 125 °C		121		
		ore regard one rip	T _{vj} = 175 °C		127		
Fall time (inductive load)	t_{f}	1/ - 600 1/ 1/ - 2/10 1/	T _{vj} = 25 °C		30		ns
			T _{vj} = 125 °C		32		
		T _{vj} = 175 °C		34			
Turn-on energy loss per	/ - 21 nU // - 2/10 //	T _{vj} = 25 °C		8		mJ	
pulse		T _{vj} = 125 °C		9.1			
		3.4 kA/ μ s (T _{vj} = 175 °C), t_{dead} = 1000 ns	T _{vj} = 175 °C		9.7		
Turn-on energy loss per	$E_{\rm on,o}$	$I_{\rm D}$ = 280 A, $V_{\rm DD}$ = 600 V,	T _{vj} = 25 °C		2.3		mJ
pulse, optimized		$L_{\sigma} = 31 \text{ nH}, V_{GS} = -3/18 \text{ V},$ $R_{Gon,o} = 0.68 \Omega, \text{ di/dt} =$	T _{vj} = 125 °C		2.3		
		6.9 kA/ μ s (T_{vj} = 175 °C), t_{dead} = 100 ns	T _{vj} = 175 °C		2.4		
Turn-off energy loss per	$E_{\rm off}$	$I_{\rm D}$ = 280 A, $V_{\rm DD}$ = 600 V,	T _{vj} = 25 °C		7		mJ
pulse		$L_{\sigma} = 31 \text{ nH}, V_{GS} = -3/18 \text{ V},$ $R_{Goff} = 2 \Omega, \text{ dv/dt} = 15.7$	T _{vj} = 125 °C		7.1		
		$kV/\mu s (T_{vj} = 175 °C)$	T _{vj} = 175 °C		7.5		
Thermal resistance, junction to case	R_{thJC}	per MOSFET				0.176	K/W
Thermal resistance, case to heat sink	R_{thCH}	per MOSFET			0.049		K/W
Temperature under switching conditions	$T_{\rm vjop}$			-40		175	°C

62 mm C-Series module

3 Body diode (MOSFET)

Note:

The selection of positive and negative gate-source voltages impacts losses and the long-term behavior of the MOSFET and body diode. The design guidelines described in Application Notes AN 2018-09 and AN 2021-13 must be considered to ensure sound operation of the device over the planned lifetime.

Tvj,op > 150°C is allowed for operation at overload conditions for MOSFET and body diode. For detailed specifications, please refer to AN 2021-13.

3 Body diode (MOSFET)

Table 6 Maximum rated values

Parameter	Symbol	Note or test condition		Values	Unit
DC body diode forward	I _{SD}	$T_{\rm vj}$ = 175 °C, $V_{\rm GS}$ = -3 V	T _C = 115 °C	90	A
current					

Table 7 Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Forward voltage	V _{SD}	$I_{SD} = 280 \text{ A}, V_{GS} = -3 \text{ V}$	T _{vj} = 25 °C		4.22	5.59	V
			T _{vj} = 125 °C		3.95		1
			T _{vj} = 175 °C		3.85		
Peak reverse recovery	/ _{rrm}	$I_{SD} = 280 \text{ A, di}_{s}/\text{dt} =$	T _{vj} = 25 °C		111		Α
current		3.4 kA/ μ s, V_{DD} = 600 V, V_{GS} = -3 V, t_{dead} = 1000 ns	T _{vj} = 125 °C		155		
		VGS5 V, t _{dead} - 1000 Hs	T _{vj} = 175 °C		184		
Recovered charge	Q _{rr}	3.4 kA/ μ s, V_{DD} = 600 V, V_{GS} = -3 V, t_{dead} = 1000 ns	T _{vj} = 25 °C		5.3		μC
			T _{vj} = 125 °C		6.9		
			T _{vj} = 175 °C		9.1		
Reverse recovery energy	E _{rec}	I_{SD} = 280 A, di _s /dt =	T _{vj} = 25 °C		1		mJ
		3.4 kA/ μ s (T _{vj} = 175 °C), V_{DD} = 600 V, V_{GS} = -3 V,	T _{vj} = 125 °C		1.8		
		$t_{\text{dead}} = 1000 \text{ ns}$	T _{vj} = 175 °C		2.6		
Reverse recovery energy, optimized	E _{rec,o}	$I_{SD} = 280 \text{ A, di}_{s}/\text{dt} =$	T _{vj} = 25 °C		3.1		mJ
	,	6.9 kA/ μ s ($T_{vj} = 175$ °C),	T _{vj} = 125 °C		3.1		
		$V_{\rm DD}$ = 600 V, $V_{\rm GS}$ =-3 V, $t_{\rm dead}$ = 100 ns	T _{vj} = 175 °C		4.6		

4 Characteristics diagrams

4 Characteristics diagrams

Output characteristic (typical), MOSFET

 $I_D = f(V_{DS})$

 $V_{GS} = 18 V$

Output characteristic (typical), MOSFET

 $I_D = f(V_{DS})$

 $V_{GS} = 15 V$

Output characteristic field (typical), MOSFET

 $I_D = f(V_{DS})$

 $T_{vj} = 175 \,^{\circ}\text{C}$

Drain source on-resistance (typical), MOSFET

 $R_{DS(on)} = f(I_D)$

 $V_{GS} = 18 V$

62 mm C-Series module

4 Characteristics diagrams

Drain source on-resistance (typical), MOSFET

 $R_{DS(on)} = f(T_{vj})$ $I_D = 280 \text{ A}$

Transfer characteristic (typical), MOSFET

 $I_D = f(V_{GS})$

 $V_{DS} = 20 V$

Gate-source threshold voltage (typical), MOSFET

 $V_{GS(th)} = f(T_{vj})$

Gate charge characteristic (typical), MOSFET

 $V_{GS} = f(Q_G)$

 $I_D = 280 \text{ A}, T_{vi} = 25 ^{\circ}\text{C}$

62 mm C-Series module

4 Characteristics diagrams

Capacity characteristic (typical), MOSFET

 $C = f(V_{DS})$

f = 100 kHz, $T_{vi} = 25 \,^{\circ}\text{C}$, $V_{GS} = 0 \,^{\circ}\text{V}$

Switching times (typical), MOSFET

 $t = f(I_D)$

 R_{Gon} = 5.6 $\Omega,\,V_{DD}$ = 600 V, $R_{Gon,o}$ = 0.68 $\Omega,\,T_{vj}$ = 175 °C, V_{GS} = -3/18 V

Switching times (typical), MOSFET

 $t = f(R_c)$

 V_{DD} = 600 V, t_{dead} = 1000 ns, I_{D} = 280 A, T_{vj} = 175 °C, V_{GS} = -3/18 V

Switching times (typical), MOSFET

 $t = f(I_D)$

 $R_{Goff} = 2 \Omega$, $V_{DD} = 600 V$, $T_{vj} = 175 °C$, $V_{GS} = -3/18 V$

62 mm C-Series module

4 Characteristics diagrams

Current slope (typical), MOSFET

 $di/dt = f(R_G)$

 V_{DD} = 600 V, t_{dead} = 1000 ns, I_{D} = 280 A, V_{GS} = -3/18 V

Voltage slope (typical), MOSFET

 $dv/dt = f(R_G)$

 $V_{DD} = 600 \text{ V}, I_D = 280 \text{ A}, V_{GS} = -3/18 \text{ V}$

Switching losses (typical), MOSFET

 $E_{on} = f(I_D)$

 $R_{Gon} = 5.6 \Omega$, $V_{DD} = 600 V$, $R_{Gon,o} = 0.68 \Omega$, $V_{GS} = -3/18 V$

Switching losses (typical), MOSFET

 $E = f(R_G)$

 t_{dead} = 1000 ns, V_{DD} = 600 V, I_{D} = 280 A, V_{GS} = -3/18 V

62 mm C-Series module

4 Characteristics diagrams

Switching losses (typical), MOSFET

$$E_{off} = f(I_D)$$

$$R_{Goff} = 2 \Omega, V_{DD} = 600 V, V_{GS} = -3/18 V$$

Switching losses (typical), MOSFET

$$E_{on} = f(V_{GS(off)})$$

$$R_{Goff}$$
 = 2 Ω , V_{DD} = 600 V, R_{Gon} = 5.6 Ω , $V_{GS(on)}$ = 18 V, I_D = 280 A, $R_{Gon,o}$ = 0.68 Ω , T_{vj} = 175 °C

Switching losses (typical), MOSFET

$$E_{on} = f(t_{dead})$$

$$R_{Gon} = 5.6 \Omega$$
, $I_D = 280 A$, $V_{DD} = 600 V$, $V_{GS} = -3/18 V$

Reverse bias safe operating area (RBSOA), MOSFET

$$I_D = f(V_{DS})$$

$$R_{Goff} = 2 \Omega$$
, $T_{vi} = 175 \, ^{\circ}$ C, $V_{GS} = -3/18 \, V$

62 mm C-Series module

4 Characteristics diagrams

Transient thermal impedance, MOSFET

 $Z_{th} = f(t)$

Forward characteristic body diode (typical), MOSFET

 $I_{SD} = f(V_{SD})$

 $T_{vj} = 25 \, ^{\circ}C$

Forward voltage of body diode (typical), MOSFET

 $V_{SD} = f(T_{vj})$

 $I_{SD} = 280 \text{ A}$

Switching losses body diode (typical), MOSFET

 $E_{rec} = f(I_{SD})$

 $R_{Gon} = 5.6 \Omega$, $R_{Gon,o} = 0.68 \Omega$, $V_{DD} = 600 V$

62 mm C-Series module

4 Characteristics diagrams

Switching losses body diode (typical), MOSFET

 $E_{rec} = f(V_{GS(off)})$

 R_{Goff} = 2 $\Omega,\,R_{Gon}$ = 5.6 $\Omega,\,T_{vj}$ = 175 °C, $V_{GS(on)}$ = 18 V, $R_{Gon,o}$ = 0.68 $\Omega,\,V_{DD}$ = 600 V, I_{SD} = 280 A

Switching losses body diode (typical), MOSFET

 $E_{rec} = f(R_G)$

 t_{dead} = 1000 ns, V_{DD} = 600 V, I_{SD} = 280 A

Switching losses body diode (typical), MOSFET

 $E_{rec} = f(t_{dead})$

 R_{Gon} = 5.6 Ω , I_{SD} = 280 A, V_{DD} = 600 V, V_{GS} = -3/18 V

infineon

5 Circuit diagram

5 Circuit diagram

Figure 1

6 Package outlines

Package outlines 6

Figure 2

62 mm C-Series module

7 Module label code

7 Module label code

Code format	Data Matrix		Barcode C	Code128
Encoding	ASCII text		Code Set	Ą
Symbol size	16x16		23 digits	
Standard	IEC24720 and IEC16022		IEC8859-1	
Code content	Content Module serial number Module material number Production order number Date code (production year) Date code (production week)	Module serial number 1 - 5 Module material number 6 - 11 Production order number 12 - 19 Date code (production year) 20 - 21		Example 71549 142846 55054991 15 30
Example	71549142846550549911530			6550549911530

Figure 3

62 mm C-Series module

Revision history

Revision history

Document revision	Date of release	Description of changes
1.00	2025-07-30	Final datasheet

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2025-07-30 Published by Infineon Technologies AG 81726 Munich, Germany

© 2025 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-ABM389-001

Important notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.