Approximations to two real numbers

by Igor D. Kan and Nicky G. Moshchevitin¹

Abstract. Probably we have observed a new simple phenomena dealing with approximations to two real numbers.

1. The result.

For a real ξ denote the irrationality measure function

$$\psi_{\xi}(t) = \min_{1 \le x \le t} ||x\xi||.$$

Here we suppose x to be an integer number and $||\cdot||$ stands for the distance to the nearest integer.

The main result of this note is the following

Theorem 1. For any two different irrational numbers α, β such that $\alpha \pm \beta \notin \mathbb{Z}$ the difference function

$$\psi_{\alpha}(t) - \psi_{\beta}(t)$$

changes its sign infinitely many times as $t \to +\infty$.

The phenomenon observed in Theorem 1 cannot be generalized to any dimension greater than one. In [2] the following two statements were proven.

Theorem 2. (A. Khintchine, 1926) Let function $\psi(t)$ decreses to zero as $t \to +\infty$. Then there exist two algebraically independent real numbers α^1, α^2 such that for all t large enough one has

$$\psi_{(\alpha^1,\alpha^2)}(t) := \min_{1 \leq \max(|x_1|,|x_2|) \leq t} ||x_1\alpha^1 + x_2\alpha^2|| \leq \psi(t).$$

Theorem 3. (A. Khintchine, 1926) Let $\psi_1(t)$ decreases to zero as $t \to +\infty$ and the function $t \mapsto t\psi_1(t)$ increases to infinity as $t \to +\infty$. Then there exist two algebraically independent real numbers α_1, α_2 such that for all t large enough one has

$$\psi_{\left(\begin{array}{c}\alpha_1\\\alpha_2\end{array}\right)}(t) := \min_{1 \leqslant x \leqslant t} \max_{j=1,2} ||x\alpha_j|| \leqslant \psi_1(t).$$

Of course in Theorems 2,3 we suppose x_1, x_2, x to be integers.

Take $\psi(t) = o(t^{-2})$, $t \to +\infty$. Take (β^1, β^2) to be numbers algebraically independent of α^1, α^2 such that they are badly approximable (in the sense of a linear form):

$$\inf_{(x_1,x_2)\in\mathbb{Z}^2\setminus\{(0,0)\}} \left(||x_1\beta^1+x_2\beta^2||\cdot \max(|x_1|,|x_2|)^2\right) > 0.$$

We see that for all t large enough one has

$$\psi_{(\alpha^1,\alpha^2)}(t) < \psi_{(\beta^1,\beta^2)}(t).$$

¹research is supported by RFBF grant No. 09-01-00371a

The similar situation holds in the case of simultaneous approximations. Take $\psi_1(t) = o(t^{-1/2})$, $t \to +\infty$. Take $\begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$ to be numbers algebraically independent of α^1 , α^2 such that they are badly simultaneously approximable:

$$\inf_{x \in \mathbb{Z} \setminus \{0\}} \left(\max_{j=1,2} ||x\beta_j|| \cdot |x|^{1/2} \right) > 0.$$

We see that

$$\psi_{\left(\begin{array}{c}\alpha_1\\\alpha_2\end{array}\right)}(t) < \psi_{\left(\begin{array}{c}\beta_1\\\beta_2\end{array}\right)}(t)$$

for all t large enough. (Of course here $\psi_{(\beta^1,\beta^2)}, \psi_{\left(\begin{array}{c}\beta_1\\\beta_2\end{array}\right)}$ are defined analogously to $\psi_{(\alpha^1,\alpha^2)}, \psi_{\left(\begin{array}{c}\alpha_1\\\alpha_2\end{array}\right)}$.)

1. Proof of Theorem 1.

We can assume that $0 < \alpha, \beta < 1$. We consider continued fraction expansions

$$\alpha = [0; a_1 a_2, \dots, a_n, \dots], \ \beta = [0; b_1, b_2, \dots, b_n, \dots].$$

Define

$$\alpha_n = [a_n; a_{n+1}, a_{n+2}, \dots], \quad \alpha_n^* = [0; a_n, a_{n-1}, \dots, a_1],$$

$$\beta_n = [b_n; b_{n+1}, b_{n+2}, \dots], \quad \beta_n^* = [0; b_n, b_{n-1}, \dots, b_1],$$

$$\frac{r_n}{q_n} = [0; a_1, \dots, a_n], \quad \frac{s_n}{p_n} = [0; b_1, \dots, b_n].$$

Lemma 1. For $n \ge 2$ one has

$$||q_{n-1}\alpha||q_{n+1} = \frac{\alpha_{n+1}(a_{n+1} + \alpha_n^*)}{\alpha_{n+1} + \alpha_n^*}.$$

Proof.

It is a well known fact (see [1], Ch.1) that

$$\left| \alpha - \frac{r_{n-1}}{q_{n-1}} \right| = \frac{1}{q_{n-1}^2(\alpha_n + \alpha_{n-1}^*)},\tag{1}$$

and

$$\alpha_n^* = \frac{q_{n-1}}{q_n}.$$

Instead of (1) we can write

$$||q_{n-1}\alpha|| = \frac{1}{q_{n-1}\alpha_n + q_{n-2}}.$$
 (2)

So we see that

$$||q_{n-1}\alpha||q_{n+1} = ||q_{n-1}\alpha||q_{n-1}\frac{q_n}{q_{n-1}}\frac{q_{n+1}}{q_n} = \frac{1}{(\alpha_n + \alpha_{n-1}^*)\alpha_n^*\alpha_{n+1}^*}.$$

But as

$$\alpha_n = a_n + \frac{1}{\alpha_{n+1}}, \quad a_n + \alpha_{n-1}^* = \frac{1}{\alpha_n^*}$$

we see that

$$\alpha_n + \alpha_{n-1}^* = \frac{1}{\alpha_n^*} + \frac{1}{\alpha_{n+1}}.$$

So

$$||q_{n-1}\alpha||q_{n+1} = \frac{1}{\alpha_n^* \alpha_{n+1}^* \left(\frac{1}{\alpha_n^*} + \frac{1}{\alpha_{n+1}}\right)} = \frac{\alpha_{n+1}}{\alpha_{n+1}^* (\alpha_n^* + \alpha_{n+1})} = \frac{\alpha_{n+1}(a_{n+1} + \alpha_n^*)}{\alpha_{n+1} + \alpha_n^*}.$$

Lemma is proved.

As $a_{n+1} \ge 1$ and $\alpha_{n+1} > 1$ we obtain the following

Corollary. For $n \ge 2$ one has

$$||q_{n-1}\alpha||q_{n+1} > 1. (3)$$

Lemma 2. Suppose that $m, n \ge 2$ and

$$q_{n+1} \leqslant p_{m+1}. \tag{4}$$

Then

$$||q_{n-1}\alpha|| > ||p_m\beta||. \tag{5}$$

Proof.

Suppose that (5) is not true. Then from (4) and (3) we see that

$$1 < ||q_{n-1}\alpha||q_{n+1} \leqslant ||p_m\beta||p_{m+1}.$$

As (see [1], Ch.1)

$$||p_m\beta||p_{m+1} = \frac{1}{1 + \frac{\beta_{m+1}^*}{\beta_{m+2}}} < 1$$

we have a contradiction. Lemma 2 is proved.

Now we are able to prove theorem 1.

Consider the sequences

$$q_0 \leqslant q_1 < \dots < q_n < q_{n+1} < \dots, \quad p_0 \leqslant p_1 < \dots, < p_m < p_{m+1} < \dots$$

of convergents' denominators to α, β correspondingly. Suppose that the statement of theorem 1 is false for certain irrationalities α, β . Without loss of generality assume that for all $t \geqslant p_{m_0} \geqslant q_{n_0-1}$ one has

$$\psi_{\beta}(t) \geqslant \psi_{\alpha}(t).$$
 (6)

From Lemma 2 and the asymption (6) we see that between two consecutive denominators $p_m, p_{m+1}, m \ge m_0$ not more than one denominator of the form q_n may occur. Here we give a proof of this fact. Let $q_{n-1} \le p_m < q_n < q_{n+1} < ... < q_{n+t} \le p_{m+1}$ and $t \ge 1$. Then

$$||p_m\beta|| = \psi_\beta(p_m) \geqslant \psi_\alpha(p_m) = \psi_\alpha(q_{n-1}) = ||q_{n-1}\alpha||$$

and

$$q_{n+1} \leqslant q_{n+t} < p_{n+1}$$
.

This contradicts to Lemma 2.

So we can define the sequence of integers

$$m_0 \geqslant 1, \ m_i \geqslant m_{i-1} + 1$$

such that

$$p_{m_0} < q_{n_0} \leqslant p_{m_0+1} < \ldots < p_{m_1} < q_{n_0+1} \leqslant p_{m_1+1} < \ldots < p_{m_2} < q_{n_0+1} \leqslant p_{m_2+1} < \ldots$$

$$< p_{m_{i-1}} < q_{n_0+j-1} \le p_{m_{i-1}+1} < \dots < p_{m_i} < q_{n_0+j} \le p_{m_i+1} < \dots < p_{m_{i+1}} < q_{n_0+j+1} \le p_{m_{i+1}+1} < \dots$$

By (6) we see that for all $j \ge 0$ one has

$$||q_{n_0+j-1}\alpha|| = \psi_{\alpha}(q_{n_0+j-1}) = \psi_{\alpha}(p_{m_j}) \leqslant \psi_{\beta}(p_{m_j}) = ||p_{m_j}\beta||.$$
(7)

From (6) we also have

$$||q_{n_0+j}\alpha|| = \psi_{\alpha}(q_{n_0+j}) = \psi_{\alpha}(p_{m_i+1}) \leqslant \psi_{\beta}(p_{m_i+1}) = ||p_{m_i+1}\beta||. \tag{8}$$

We distinguish two cases. In the **first case** we suppose that for infinitely many j at least one of the inequalities in (7,8) is strict, that is there is the sign < insead of \le . In the **second case** for all j large enough we have equalities in both (7,8).

Consider the **first case**. Without loss of generality we assume that

$$||q_{n_0+j-1}\alpha|| = \psi_{\alpha}(q_{n_0+j-1}) = \psi_{\alpha}(p_{m_i}) < \psi_{\beta}(p_{m_i}) = ||p_{m_i}\beta||. \tag{9}$$

From (2) we have

$$||q_{n_0+j-1}\alpha|| = \frac{1}{q_{n_0+j-1}\alpha_{n_0+j} + q_{n_0+j-2}}, \quad ||p_{m_j}\beta|| = \frac{1}{p_{m_j}\beta_{m_j+1} + p_{m_j-1}}.$$

So

$$p_{m_j}\beta_{m_j+1} + p_{m_j-1} < q_{n_0+j-1}\alpha_{n_0+j} + q_{n_0+j-2}$$
(10)

As

$$\beta_{m_j+1} = b_{m_j+1} + \frac{1}{\beta_{m_j+2}}, \quad \alpha_{n_0+1} = a_{n_0+j} + \frac{1}{\alpha_{n_0+j+1}}$$

from (10) we deduce that

$$p_{m_j}\left(b_{m_j+1}+\frac{1}{\beta_{m_j+2}}\right) < q_{n_0+j-1}\left(a_{n_0+j}+\frac{1}{\alpha_{n_0+j+1}}\right) + q_{n_0+j-2}$$

or

$$p_{m_j+1} + \frac{p_{m_j}}{\beta_{m_j+2}} < q_{n_0+j} + \frac{q_{n_0+j-1}}{\alpha_{n_0+j+1}}.$$

But

$$p_{m_j+1} \geqslant q_{n_0+j}, \quad p_{m_j} \geqslant q_{n_0+j-1}.$$

So

$$\beta_{m_j+2} > \alpha_{n_0+j-1}. \tag{11}$$

From the other hand from (8) we deduce that

$$\frac{1}{q_{n_0+j}\alpha_{n_0+j+1}+q_{n_0+j-1}}=||q_{n_0+j}\alpha||=\psi_{\alpha}(q_{n_0+j})=\psi_{\alpha}(p_{m_j+1})\leqslant$$

$$\leq \psi_{\beta}(p_{m_j+1}) = ||p_{m_j+1}\beta|| = \frac{1}{p_{m_j+1}\beta_{m_j+2} + p_{m_j}}.$$

So

$$p_{m_j+1}\beta_{m_j+2} + p_{m_j} \leqslant q_{n_0+j}\alpha_{n_0+j+1} + q_{n_0+j-1}.$$

As

$$q_{n_0+j-1} \leqslant p_{m_j}, \quad q_{n_0+j} \leqslant p_{m_j+1}$$

we see that

$$\beta_{m_i+2} \leqslant \alpha_{n_0+j+1}$$
.

This contradicts (11).

In the **second case** we see that for j large enough one has

$$\psi_{\beta}(p_{m_j+1}) = \psi_{\alpha}(q_{n_0+j}) = \psi_{\beta}(p_{m_{j+1}}).$$

Hence

$$m_j + 1 = m_{j+1}.$$

But in the case under consideration we see that there exist m_0, n_0 such that

$$p_{m_0+j}\beta - q_{n_0+j}\alpha = \pm r_{n_0+j} \pm s_{m_0+j},$$

$$p_{m_0+j+1}\beta - q_{n_0+j+1}\alpha = \mp r_{n_0+j+1} \mp s_{m_0+j+1},$$

where the choise of the signs \pm depends on the lengths of the corresponding continued fractons. Remind that α, β are irrational numbers. So

$$p_{m_0+j}q_{n_0+j+1} - p_{m_0+j+1}q_{n_0+j} = 0$$

and

$$\frac{p_{m_0+j}}{p_{m_0+j+1}} = [0; b_{m_0+j+1}, b_{m_0+j}, ..., b_1] = \frac{q_{n_0+j}}{q_{n_0+j+1}} = [0; a_{m_0+j+1}, a_{m_0+j}, ..., a_1], \quad j = 1, 2, 3, ...$$

and so $\alpha = \pm \beta$.

The proof of Theorem 1 is complete.

References

- [1] W.M. Schmidt, Diophantine Approximations, Lect. Not. Math., 785 (1980).
- [2] A.Y. Khinchine, Uber eine klasse linear Diophantine Approximationen // Rendiconti Circ. Math. Palermo, 50 (1926), p.170 195.