Abstract Algebra Homework 6

Zachary Meyner

5. Show that the intersection of two normal subgroups is a normal subgroup.

Proof. Let G be a group with $X, Y \leq G$. In homeowrk 3 we proved that $(X \cap Y) \leq G$. So we only need to prove that $(X \cap Y) \leq G$. Let $n \in (X \cap Y)$. So $\forall g \in G \ gng^{-1} \in X \ and \ gng^{-1} \in Y \ \forall n \in (X \cap Y)$. Thus $gng^{-1} \in (X \cap Y)$ so $(X \cap Y) \leq G$.

6. If G is abelian, prove that G/H must also be abelian.

Proof. Let G be abelian and $G/H = \{gH | g \in G\}$. Let $g_1, g_2 \in G$, then

$$(g_1H)(g_2H) = g_1g_2H$$

= g_2g_1H G is abelian
= $(g_2H)(g_1H)$

Therefore G/H is abelian.

8. If G is cyclic, prove that G/H must also be cyclic.

Proof. Let G be cyclic and
$$G/H = \{gH|g \in G\}$$
. Because G is cyclic $\langle x \rangle = G$. So $gH = x^n H = (xH)^n = \langle xH \rangle$. Therefore G/H is cyclic.

4. Let $\varphi : \mathbb{Z} \to \mathbb{Z}$ be given my $\varphi(n) = 7n$. Prove that φ is a group homomorphism. Find the kernal and the image of φ .

Proof. Let $a, b \in \mathbb{Z}$. Then

$$\varphi(a+b) = 7(a+b)$$

$$= 7a + 7b$$

$$= \varphi(a) + \varphi(b)$$

Therefore φ is a homomorphism.

$$\ker(\varphi) = \{a \in \mathbb{Z} | \varphi(a) = 0\} = 0.$$

The image of φ is $\{7n | n \in \mathbb{Z}\}.$