Plan du cours

I.	Div	ision euclidienne	
П.	Mu	Iultiples, diviseurs et nombres premiers	
	1.	Multiples et diviseurs	
	2.	Critères de divisibilité (Rappel de 6ème)	
	3.	Nombres premiers	
	4.	Diviseurs communs	
Ш.	Dé	composition en produit de facteurs premiers	
	1.	Définition	
	2.	Notion de PGCD	
	3.	Application aux fractions irréductibles	

Mes objectifs :

- → Je dois savoir si un entier est ou n'est pas multiple ou diviseur d'un autre entier. Et savoir reconnaître un nombre premier,
- → Je dois connaître et savoir utiliser les critères de divisibilité (par exemple par 2, 3, 5, 4, 9 ou 10),

I. Division euclidienne

Propriété

Effectuer la division euclidienne d'un entier **a (le dividende)** par un entier **b (le diviseur)** non nul, c'est trouver deux entiers **q (le quotient)** et **r (le reste)** tels que :

$$a = b \times q + r$$

Exemple : Effectuer la division euclidienne de 185 par 7.

II. Multiples, diviseurs et nombres premiers

1. Multiples et diviseurs

Définition

Un entier naturel est un nombre entier positif ou nul.

 $\mathbb{N} = \{0; 1; 2; 3; ...\}$

Définition

Dire que l'entier naturel a est **un multiple** de l'entier naturel b signifie qu'il existe un entier k tel que $a = k \times b$. On dit aussi que b est **un diviseur** de a et a est **divisible** par b.

Exemple: $15 = 3 \times 5$ donc 15 est un **multiple** de 5

- 15 est un **multiple** de 3.
- 5 et 3 sont des **diviseurs** de 15.

Remarque:

- Tout nombre est multiple de 1 donc 1 est un diviseur de tout nombre entier naturel.
- Tout nombre est multiple de lui-même donc tout nombre est divisible par lui-même.

2. Critères de divisibilité (Rappel de 6ème)

• Un nombre est divisible par 2 si il est pair, donc si il se termine par 0, 2, 4, 6 ou 8.

Exemple: 326 est divisible par 2 mais pas 987.

• Un nombre est divisible par 5 si il se termine par 0 ou 5.

Exemple: 125 est divisible par 5 mais pas 431.

• Un nombre est divisible par 3 si la somme de ses chiffres est un multiple de 3.

Exemple: $43\ 281\ est\ divisible\ par\ 3,\ car\ 4+3+2+8+1=18\ et\ 18\ est\ un\ multiple\ de\ 3.$

• Un nombre est divisible par 9 si la somme de ses chiffres est un multiple de 9.

Exemple : 738 est divisible par 9, car 7 + 3 + 8 = 18 et 18 est un multiple de 9.

• Un nombre est divisible par 10 si il se termine par 0.

Exemple: 350 est divisible par 10.

3. Nombres premiers

Définition

Un nombre premier est un entier naturel qui admet exactement 2 diviseurs distincts, 1 et lui-même.

Attention, 1 n'est pas un nombre premier car il n'a qu'un seul diviseur, lui-même.

Exemple : Début de la liste des nombres premiers : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, . . . (Pour une liste plus détaillée voir l'activité sur le crible d'Erathostène)

4. Diviseurs communs

Définition

Dire que d est un diviseur commun de deux nombres a et b signifie que a et b sont divisibles par d.

Exemple: Quels sont les diviseurs communs de 12 et 18?

$$D_{18} = \{1; 2; 3; 6; 9; 18\}$$
 et $D_{12} = \{1; 2; 3; 4; 6; 12\}$ Les diviseurs communs de 12 et de 18 sont : 1, 2, 3 et 6.

Définition

Dire que deux nombres entiers naturels sont premiers entre eux signifie que leur seul diviseur commun est 1.

Exemple: Montrer que 12 et 35 sont premiers entre eux.

$$D_{12} = \{1; 2; 3; 4; 6; 12\}$$
 et $D_{35} = \{1; 5; 7; 35\}$

Le seul diviseur commun de 12 et 35 est 1 donc 12 et 35 sont premiers entre eux.

III. Décomposition en produit de facteurs premiers

1. Définition

Propriété

Un nombre entier supérieur ou égal à 2 se décompose en produit de facteurs premiers. cette décomposition est unique, à l'ordre des facteurs près.

Exemple: Décomposons 1014 en produit de facteurs premiers:

```
\begin{array}{l} 1014 = 2 \times 507 \\ 1014 = 2 \times (3 \times 169) \\ 1014 = 2 \times (3 \times (13 \times 13)) \\ 1014 = 2 \times 3 \times 13 \times 13. \\ \text{Donc, } \boxed{1014 = 2 \times 3 \times 13^2} \end{array}
```


Exercice d'application 1 Décomposer les nombres suivants en produit de facteurs premiers. 24 2 100 588

2. Notion de PGCD

Soient a et b deux entiers naturels. Leur plus grand diviseur commun est noté PGCD(a; b).

Exemple : 1. Donner le PGCD de 35 et 60 à l'aide de la liste des diviseurs de chacun des nombres.

Arithmétique : Diviseurs communs et nombres premiers		
2. Donner le PGCD de 144 et 48 en utilisant la décomposition en produit de facteurs premiers.		
Exercice d'application 2		
On a 126 croissants et 180 pains au chocolat que l'on veut répartir dans des corbeilles ayant toutes le même contenu.		
Combien de corbeilles peut-on prévoir au maximum?		
3. Application aux fractions irréductibles Définition Soient a et b deux entiers. On dit que la fraction $\frac{a}{b}$ est irréductible lorsque a et b sont premiers entre eux.		
Exemple : $\frac{5}{7}$ est une fraction irréductible car 5 et 7 sont premiers entre eux.		

Remarque : On peut simplifier facilement une fraction et la rendre irréductible en décomposant son numérateur et son dénominateur en produits de facteurs premiers.

Exemple: On veut simplifier la fraction $\frac{120}{84}$:

On sait que $120 = 12 \times 10 = 2 \times 2 \times 2 \times 3 \times 5$

et
$$84 = 2 \times 42 = 2 \times 2 \times 21 = 2 \times 2 \times 3 \times 7$$

Donc
$$\frac{120}{84} = \frac{2 \times 2 \times 2 \times 3 \times 5}{2 \times 2 \times 3 \times 7} = \frac{2 \times 5}{7} = \frac{10}{7}$$

Exercices 27, 34 et 33 du livres