

Statistical Signal Processing

Lecture 2

chapter 1: parameter estimation stochastic parameters

- the parameter estimation problem
- Bayes estimation: the MMSE, absolute value and uniform cost functions
- examples: Gaussian mean in Gaussian noise, Poisson process
- vector parameters
- Fischer Information Matrix

Vector Parameters

$$\bullet \; \theta \; = \; \begin{bmatrix} \theta_1 \\ \vdots \\ \theta_m \end{bmatrix} \; , \; \; \widehat{\theta}(Y) \; = \; \begin{bmatrix} \widehat{\theta}_1(Y) \\ \vdots \\ \widehat{\theta}_m(Y) \end{bmatrix} \; , \quad \widetilde{\theta} \; = \; \widetilde{\theta}(\theta,Y) \; = \; \theta - \widehat{\theta}(Y)$$

- problem formulation:
 - a prior distribution $f_{\boldsymbol{\theta}}(\theta)$
 - a conditional distribution $f_{\mathbf{Y}|\boldsymbol{\theta}}(Y|\boldsymbol{\theta})$
 - Bayes' rule : joint distribution $f_{\mathbf{Y}.\pmb{\theta}}(Y,\theta) = f_{\mathbf{Y}|\pmb{\theta}}(Y|\theta) f_{\pmb{\theta}}(\theta)$

Bayes Risk Function

- cost $\mathcal{C}(\theta, \widehat{\theta}(Y))$
- $\mathcal{C}(\theta, \widehat{\theta}(Y))$ often directly a funtion of the estimation error $\widetilde{\theta}$ and in fact often a function of the length of the estimation error $\|\widetilde{\theta}\| = \sqrt{\widetilde{\theta}^T \widetilde{\theta}} = \sqrt{\Sigma_{i=1}^n \widetilde{\theta}_i^2}$
- We obtain the estimator function $\widehat{\theta}(.)$ by minimizing the risk, which is the expected value of the cost:

$$\begin{split} \min_{\widehat{\theta}(.)} \mathcal{R}(\widehat{\theta}(.)) &= \min_{\widehat{\theta}(.)} E \, \mathcal{C}(\theta, \widehat{\theta}(Y)) = \min_{\widehat{\theta}(.)} E_{\mathbf{Y}, \boldsymbol{\theta}} \mathcal{C}(\theta, \widehat{\theta}(Y)) \\ &= \min_{\widehat{\theta}(.)} E_{\mathbf{Y}} E_{\boldsymbol{\theta} \mid \mathbf{Y}} \mathcal{C}(\theta, \widehat{\theta}(Y)) = E_{\mathbf{Y}} \left[\min_{\widehat{\theta}(Y)} E_{\boldsymbol{\theta} \mid \mathbf{Y}} \mathcal{C}(\theta, \widehat{\theta}(Y)) \right] \\ &= E_{\mathbf{Y}} \left[\min_{\widehat{\theta}(Y)} \mathcal{R}(\widehat{\theta}(Y) \mid Y) \right] \; . \end{split}$$

- $\mathcal{R}(\widehat{\theta}(.))$ is a weighted average of $\mathcal{R}(\widehat{\theta}(Y)|Y)$, weighted by the nonnegative weighting function $f_{\mathbf{Y}}(Y)$. The minimum of $\mathcal{R}(\widehat{\theta}(.))$ w.r.t. $\widehat{\theta}(.)$ will hence be obtained by minimizing $\mathcal{R}(\widehat{\theta}(Y)|Y)$ w.r.t. $\widehat{\theta}(Y)$ for every Y.
- ullet again $\mathcal{R}(\widehat{\theta}(Y)|Y)$ depends on the posterior distribution $f_{\pmb{\theta}|\mathbf{Y}}(\theta|Y)$.

Optimization w.r.t. Vector Parameters

• $g(\theta) = [g_1(\theta) \cdots g_l(\theta)]$: $1 \times l$ row vector function, its gradient w.r.t. θ :

$$\frac{\partial g(\theta)}{\partial \theta} = \begin{bmatrix} \frac{\partial g(\theta)}{\partial \theta_1} \\ \vdots \\ \frac{\partial g(\theta)}{\partial \theta_m} \end{bmatrix} = \begin{bmatrix} \frac{\partial g_1(\theta)}{\partial \theta_1} & \cdots & \frac{\partial g_l(\theta)}{\partial \theta_1} \\ \vdots & & \vdots \\ \frac{\partial g_1(\theta)}{\partial \theta_m} & \cdots & \frac{\partial g_l(\theta)}{\partial \theta_m} \end{bmatrix} \quad m \times l$$

If $g(\theta)$ is a scalar (l=1), then $\frac{\partial g(\theta)}{\partial \theta}$ is a column vector of the same dimensions as θ .

- in particular: $\frac{\partial \theta^T}{\partial \theta} = \left[\frac{\partial \theta_j}{\partial \theta_i}\right] = \left[\delta_{ij}\right] = I_m$
- The gradient operator commutes with linear operations. Let X be $m \times 1$

$$\frac{\partial}{\partial \theta} (\theta^T X) = \left(\frac{\partial \theta^T}{\partial \theta} \right) X = I_m X = X.$$

• Since a scalar equals its transpose, we get

$$\frac{\partial}{\partial \theta} (X^T \theta) = \frac{\partial}{\partial \theta} (\theta^T X) = X$$

Optimization w.r.t. Vector Parameters (2)

- If A is $m \times l$: $\frac{\partial}{\partial \theta} (\theta^T A) = (\frac{\partial \theta^T}{\partial \theta}) A = I_m A = A$
- scalar case: (uv)' = u'v + uv'
- vector case: let $g(\theta)$ and $h(\theta)$ be $l \times 1$. Since

$$g^{T}(\theta)h(\theta) = (g^{T}(\theta)h(\theta))^{T} = h^{T}(\theta)g(\theta)$$

we get

$$\frac{\partial}{\partial \theta} \left(g^T(\theta) h(\theta) \right) \; = \; \left(\frac{\partial g^T(\theta)}{\partial \theta} \right) h(\theta) + \left(\frac{\partial h^T(\theta)}{\partial \theta} \right) g(\theta)$$

• Particular application with $g(\theta) = \theta$ and $h(\theta) = A\theta$:

$$\frac{\partial}{\partial \theta} \left(\theta^T A \theta \right) = \left(\frac{\partial \theta^T}{\partial \theta} \right) A \theta + \left(\frac{\partial \theta^T A^T}{\partial \theta} \right) \theta = \left(A + A^T \right) \theta$$

• When A is symmetric, this gradient reduces to $2 A\theta$.

MMSE Criterion: Vector Parameters

- quadratic cost function $C_{MMSE}(\theta, \widehat{\theta}) = \|\widehat{\theta}\|_2^2 = \widehat{\theta}^T \widetilde{\theta} = \sum_{i=1}^n \widehat{\theta}_i^2$
- minimizing the conditional Bayes risk :

$$\min_{\widehat{\theta}(Y)} \mathcal{R}_{MMSE}(\widehat{\theta}(Y)|Y) = \min_{\widehat{\theta}(Y)} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(\theta|Y) \left(\theta - \widehat{\theta}\right)^{T} \left(\theta - \widehat{\theta}\right) d\theta_{1} \cdots d\theta_{m}$$

• extrema:

$$\frac{\partial}{\partial \widehat{\theta}} \mathcal{R}_{MMSE}(\widehat{\theta}|Y) = \frac{\partial}{\partial \widehat{\theta}} \int f(\theta|Y) \left(\theta - \widehat{\theta}\right)^T \left(\theta - \widehat{\theta}\right) d\theta
= \int f(\theta|Y) \left(\frac{\partial}{\partial \widehat{\theta}} \left(\theta - \widehat{\theta}\right)^T \left(\theta - \widehat{\theta}\right)\right) d\theta = 2 \int f(\theta|Y) \left(\widehat{\theta} - \theta\right) d\theta = 0$$

- $\widehat{\theta}(Y) \ \underbrace{\int f(\theta|Y) \, d\theta}_{\cdot} \ = \ \int \theta \, f(\theta|Y) \, d\theta \quad \Rightarrow \quad \widehat{\theta}_{MMSE}(Y) \ = \ E(\theta|Y)$ which is again the *mean* of the a posteriori distribution of θ given Y.
- extremum = minimum?

$$Hessian = \left[\frac{\partial^{2}}{\partial \hat{\theta}_{i} \, \partial \hat{\theta}_{j}} \mathcal{R}_{MMSE}(\hat{\theta}|Y)\right] = \frac{\partial}{\partial \hat{\theta}} \left(\frac{\partial}{\partial \hat{\theta}} \mathcal{R}_{MMSE}(\hat{\theta}|Y)\right)^{T}$$

$$= 2 \int f(\theta|Y) \left[\frac{\partial \hat{\theta}^{T}}{\partial \hat{\theta}} - \frac{\partial \theta^{T}}{\partial \hat{\theta}}\right] d\theta = 2I \int f(\theta|Y) d\theta = 2I > 0$$

MMSE Criterion: Vector Parameters (2)

• MMSE estimation commutes over linear transformations: with $\phi = A\theta$

$$\widehat{\phi}_{MMSE} = E(\phi|Y) = E(A\theta|Y) = A E(\theta|Y) = A \widehat{\theta}_{MMSE}$$

orthogonality property of MMSE estimators:

$$\widehat{\theta}(\mathbf{Y}) \ = \ E(\boldsymbol{\theta}|\mathbf{Y}) \quad \text{iff} \quad E((\boldsymbol{\theta}-\widehat{\theta}(\mathbf{Y})) \ g(\mathbf{Y})) \ = \ 0 \ , \quad \forall \ g(.)$$

where g(.) is a scalar function. Equivalently:

$$E(\widehat{\theta}(\mathbf{Y}) g(\mathbf{Y})) = E(\boldsymbol{\theta} g(\mathbf{Y})), \forall g(.)$$

which represents an alternative way of defining $E(\boldsymbol{\theta}|\mathbf{Y})$.

• use orthogonality to show optimality: let $\widehat{\theta}(Y)$ be any function of Y,

$$\begin{split} E \| \theta - \widehat{\theta}(Y) \|_{2}^{2} &= E \| \theta - E(\theta|Y) + E(\theta|Y) - \widehat{\theta}(Y) \|_{2}^{2} \\ &= E \| \theta - E(\theta|Y) \|_{2}^{2} + \underbrace{E \| E(\theta|Y) - \widehat{\theta}(Y) \|_{2}^{2}}_{\geq 0} + 2 \underbrace{E \left((\theta - E(\theta|Y))^{T} (E(\theta|Y) - \widehat{\theta}(Y)) \right)}_{= 0} \\ &> E \| \theta - E(\theta|Y) \|_{2}^{2} \end{split}$$

• correlation matrices: $E(\theta - E(\theta|Y))(\theta - E(\theta|Y))^T \leq E(\theta - \widehat{\theta})(\theta - \widehat{\theta})^T = R_{\widetilde{\theta}\widetilde{\theta}}$

MAP Estimators: Vector Parameters

• introduce: a ball centered around θ_o with radius δ

$$\mathcal{B}_{\delta}(\theta_o) = \{ \theta \in \Theta : \|\theta - \theta_0\|_2 \le \delta \}$$

• Then the natural extension to the vector case of the uniform cost function is

$$C_{UNIF}(\theta, \widehat{\theta}) = \begin{cases} 0 , \theta \in \mathcal{B}_{\delta}(\widehat{\theta}) \\ 1 , \theta \in \Theta \setminus \mathcal{B}_{\delta}(\widehat{\theta}) \end{cases}$$

• The conditional Bayes risk becomes

$$\mathcal{R}_{UNIF}(\widehat{\theta}(Y)|Y) = \int_{\Theta} f(\theta|Y) \, \mathcal{C}_{UNIF}(\theta,\widehat{\theta}) d\theta = \int_{\Theta \setminus \mathcal{B}_{\delta}(\widehat{\theta})} f(\theta|Y) \, d\theta$$
$$= \int_{\Theta} f(\theta|Y) \, d\theta - \int_{\mathcal{B}_{\delta}(\widehat{\theta})} f(\theta|Y) \, d\theta = 1 - \int_{\mathcal{B}_{\delta}(\widehat{\theta})} f(\theta|Y) \, d\theta$$

ullet The optimization problem $\min_{\widehat{\theta}(Y)} \mathcal{R}_{UNIF}(\widehat{\theta}(Y)|Y)$ hence leads to

$$\max_{\widehat{\theta}(Y)} \int_{\mathcal{B}_{\delta}(\widehat{\theta})} f(\theta|Y) d\theta \approx \operatorname{Vol}(\mathcal{B}_{\delta}(0)) \max_{\widehat{\theta}(Y)} f(\widehat{\theta}|Y)$$

the approximation becomes arbitrarily accurate as δ becomes small

MAP Estimators: Vector Parameters (2)

• This leads to the Maximum A Posteriori (likelihood) estimator

$$\widehat{\theta}_{MAP}(Y) = \arg\max_{\theta \in \Theta} f(\theta|Y)$$
 posterior likelihood

• The same remarks as in the scalar case hold here also. In particular, one may equivalently obtain $\widehat{\theta}_{MAP}(Y)$ from the optimization problem

$$\widehat{\theta}_{MAP}(Y) = \arg \max_{\theta \in \Theta} \ln f(\theta|Y)$$
 posterior log likelihood

• Under certain regularity conditions, $\widehat{\theta}_{MAP}(Y)$ can be found from

$$\frac{\partial}{\partial \theta} \ln f(\theta|Y) = 0 = \frac{\partial}{\partial \theta} \ln f(Y|\theta) + \frac{\partial}{\partial \theta} \ln f(\theta)$$

• Also MAP commutes over linear transformations: $\phi = A\theta$ (A invertible)

$$\begin{split} \widehat{\phi}_{MAP}(Y) &= \arg \max_{\phi} f_{\mathbf{\phi}|\mathbf{Y}}(\phi|Y) = A \arg \max_{\theta} f_{\mathbf{\phi}|\mathbf{Y}}(A\theta|Y) \\ &= A \arg \max_{\theta} \frac{1}{|\det A|} f_{\mathbf{\theta}|\mathbf{Y}}(\theta|Y) = A \widehat{\theta}_{MAP}(Y) \;. \end{split}$$

This argument can be extended to the case in which $\dim \phi \neq \dim \theta$

Fisher Information Matrix

There exists a lower bound on the correlation matrix of the estimator errors. It is independent of the Bayes estimator (cost) used; it depends only on the posterior distribution. The lower bound is specified in terms of the *information matrix*, which should express in quantitive terms the information carried by the posterior distribution about the parameters θ . For such an information measure, the following properties are desirable:

- The information should increase as the *sensitivity* of $f(\theta|Y)$ to changes in θ increases. Hence, the information should be an increasing function of $\frac{\partial f(\theta|Y)}{\partial \theta}$ or of $\frac{\partial \ln f(\theta|Y)}{\partial \theta}$.
- The information should be *additive* in the sense that it should be the sum of the informations from the prior distribution $(f(\theta))$ and from the data $(f(Y|\theta))$. Furthermore if, given θ , Y_1 and Y_2 are independent $(f(Y_1, Y_2|\theta) = f(Y_1|\theta)f(Y_2|\theta))$, then the informations in Y_1 and Y_2 should add up.
- The information should be positive and should be insensitive to a change of sign of θ .
- The information should be a *deterministic* quantity.

Fisher Information Matrix (2)

• The information matrix is defined as

$$J = E \left(\frac{\partial \ln f(\theta|Y)}{\partial \theta} \right) \left(\frac{\partial \ln f(\theta|Y)}{\partial \theta} \right)^{T}$$

It can be shown to satisfy all the properties mentioned above.

- The perturbation of Mutual Information (Information Theory) w.r.t. a parameter can be expressed in terms of its Fisher Information.
- With $\frac{\partial \ln f(\theta|Y)}{\partial \theta} = \frac{1}{f(\theta|Y)} \frac{\partial f(\theta|Y)}{\partial \theta}$ we can write the Hessian of $\ln f(\theta|Y)$ as

$$\frac{\partial}{\partial \theta} \left(\frac{\partial \ln f(\theta|Y)}{\partial \theta} \right)^{T} = \frac{1}{f^{2}(\theta|Y)} \left[f(\theta|Y) \frac{\partial}{\partial \theta} \left(\frac{\partial f(\theta|Y)}{\partial \theta} \right)^{T} - \left(\frac{\partial f(\theta|Y)}{\partial \theta} \right) \left(\frac{\partial f(\theta|Y)}{\partial \theta} \right)^{T} \right]$$

$$= \frac{1}{f(\theta|Y)} \frac{\partial}{\partial \theta} \left(\frac{\partial f(\theta|Y)}{\partial \theta} \right)^{T} - \left(\frac{\partial \ln f(\theta|Y)}{\partial \theta} \right) \left(\frac{\partial \ln f(\theta|Y)}{\partial \theta} \right)^{T}$$

• For the expectation of the first term, we get

$$E \frac{1}{f(\theta|Y)} \frac{\partial}{\partial \theta} \left(\frac{\partial f(\theta|Y)}{\partial \theta} \right)^{T} = \int d\theta \int dY f(Y) \frac{\partial}{\partial \theta} \left(\frac{\partial f(\theta|Y)}{\partial \theta} \right)^{T}$$
$$= \frac{\partial}{\partial \theta} \left(\frac{\partial}{\partial \theta} \int d\theta \int dY f(Y) f(\theta|Y) \right)^{T} = \frac{\partial}{\partial \theta} \left(\frac{\partial}{\partial \theta} 1 \right)^{T} = 0$$

Fisher Information Matrix (3)

• It follows that we can rewrite the information matrix as

$$J = -E \frac{\partial}{\partial \theta} \left(\frac{\partial \ln f(\theta|Y)}{\partial \theta} \right)^{T}$$

This expression will often allow us to obtain J more easily.

Note also that

$$\frac{\partial \ln f(Y,\theta)}{\partial \theta} = \frac{\partial \ln f(\theta|Y)}{\partial \theta} + \underbrace{\frac{\partial \ln f(Y)}{\partial \theta}}_{=0} = \frac{\partial \ln f(\theta|Y)}{\partial \theta}$$

so that as long as derivatives are taken, we can interchange $f(Y,\theta)$ and $f(\theta|Y)$. Hence

$$\frac{\partial \ln f(Y,\theta)}{\partial \theta} = \frac{\partial \ln f(\theta|Y)}{\partial \theta} = \frac{\partial \ln f(Y|\theta)}{\partial \theta} + \frac{\partial \ln f(\theta)}{\partial \theta}$$

and

$$J = -E \frac{\partial}{\partial \theta} \left(\frac{\partial \ln f(\theta, Y)}{\partial \theta} \right)^{T} = \underbrace{-E \frac{\partial}{\partial \theta} \left(\frac{\partial \ln f(Y|\theta)}{\partial \theta} \right)^{T}}_{J_{data}} \underbrace{-E \frac{\partial}{\partial \theta} \left(\frac{\partial \ln f(\theta)}{\partial \theta} \right)^{T}}_{J_{prior}}$$

Conditions on the Estimator Bias

• The (conditional) bias of an estimator $\widehat{\theta}(Y)$ of θ is defined as

$$b_{\widehat{\theta}}(\theta) \ = \ -E_{\mathbf{Y}|\boldsymbol{\theta}}\widetilde{\theta} \ = \ E_{\mathbf{Y}|\boldsymbol{\theta}}\left(\widehat{\theta}(Y) - \theta\right) \ = \ E_{\mathbf{Y}|\boldsymbol{\theta}}\widehat{\theta}(Y) \ - \ \theta$$

• An estimator will be called *unbiased* if either

$$E_{\boldsymbol{\theta}}b_{\widehat{\theta}}(\theta) = 0 \Leftrightarrow E_{\boldsymbol{\theta},\mathbf{Y}}\widetilde{\theta} = 0$$

which means that the unconditional or average bias is zero, or

$$\lim_{\theta \to \partial \Theta} f(\theta) b_{\widehat{\theta}}(\theta) = 0$$

where Θ is the domain for θ and $\partial\Theta$ is its boundary.

• Lemma 0.1 (Unit Cross Correlation) If either condition above is satisfied, then

$$E \frac{\partial \ln f(Y, \theta)}{\partial \theta} (\widehat{\theta} - \theta)^{T} = I.$$

In words, the cross correlation matrix between $\frac{\partial \ln f(Y,\theta)}{\partial \theta}$ and the estimation error of any unbiased estimator is the identity matrix.

Inner Products

- An inner product < .,. > associates a real number $< x,y > \in \mathcal{R}$ with two vectors x and y of the vector space \mathcal{V} we are considering, and it has the following properties:
 - 1. linearity: $\forall \alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathcal{R}, \forall x, x_1, x_2, y, y_1, y_2 \in \mathcal{V}$:

- 2. symmetry: < x, y > = < y, x >
- 3. non-degeneracy (of the norm induced by the inner product):

$$\langle x, x \rangle = ||x||^2 \ge 0$$
. If $||x|| = 0$, then $x = 0$.

• One particular example is a space of random variables with the correlation as inner product: $\langle x, y \rangle = E xy$. Non-degeneracy subtlety:

$$E x^2 = 0 \Rightarrow x = 0$$
 in m.s.

x=0 "in mean square". Indeed, $Ex^2=m_x^2+\sigma_x^2=0 \Rightarrow m_x=0, \sigma_x^2=0$. This often (not always) implies x=0 "almost surely" (a.s.) or "almost everywhere" (a.e.) or "with probability 1" (w.p. 1): $\Pr(x=0)=1$.

Matrix Inner Products

- ullet We now consider a vector space $\mathcal V$ in which the vectors have multiple components such that the inner product is a real matrix.
- Example 1: consider a vector space of random vectors with inner product $\langle X,Y \rangle = EXY^T$ where X and Y are column vectors of random variables (not necessarily with the same number of rows).
- Example 2: a vector space in which the "vectors" are $* \times k$ real matrices where k is fixed and $* (\geq k)$ is arbitrary. Inner product: $< X, Y >= XY^T$.
- Matrix valued inner products satisfy the following properties, which are natural generalizations of the scalar case.
 - 1. linearity: let $X, X_1, X_2 \in \mathcal{V}$ have m rows and $Y, Y_1, Y_2 \in \mathcal{V}$ have n rows. Then $\forall \alpha_1, \alpha_2 \in \mathcal{R}^{k \times m}, \forall \beta_1, \beta_2 \in \mathcal{R}^{l \times n}$, for any k and l,

$$<\alpha_1 X_1 + \alpha_2 X_2, Y> = \alpha_1 < X_1, Y> +\alpha_2 < X_2, Y>$$

 $< X, \beta_1 Y_1 + \beta_2 Y_2> = < X, Y_1> \beta_1^T + < X, Y_2> \beta_2^T$ (2)

- 2. symmetry: $\langle X, Y \rangle = \langle Y, X \rangle^{T}$
- 3. non-degeneracy: $\langle X, X \rangle = ||X||^2 \ge 0$. If $||X||^2 = 0$, then X = 0.

Schur Complements

• Lemma 0.2 (Schur Complements) Let X_1 and X_2 be vectors in a certain vector space with a certain inner product and denote $R_{ij} = \langle X_i, X_j \rangle$, i, j = 1, 2 so that $R_{ij} = R_{ji}^T$. Assume that R_{11} is nonsingular. Then, because of property 3 of the inner product (non-degeneracy), we have

$$||X_{2} - R_{21}R_{11}^{-1}X_{1}||^{2} = \langle X_{2} - R_{21}R_{11}^{-1}X_{1}, X_{2} - R_{21}R_{11}^{-1}X_{1} \rangle$$

$$= R_{22} - 2R_{21}R_{11}^{-1}R_{12} + R_{21}R_{11}^{-1}R_{11}R_{11}R_{11}^{-1}R_{12}$$

$$= R_{22} - R_{21}R_{11}^{-1}R_{12} \ge 0$$

with equality iff $X_2 = R_{21}R_{11}^{-1}X_1$.

(matrix version of Cauchy-Schwarz inequality)

• The name for this lemma stems from the following congruence relation

$$< \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}, \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} > = \begin{bmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{bmatrix} = \begin{bmatrix} I & O \\ R_{21}R_{11}^{-1} & I \end{bmatrix} \begin{bmatrix} R_{11} & 0 \\ 0 & R_{22} - R_{21}R_{11}^{-1}R_{12} \end{bmatrix} \begin{bmatrix} I & R_{11}^{-1}R_{12} \\ O & I \end{bmatrix}$$

$$= \begin{bmatrix} I \\ R_{21}R_{11}^{-1} \end{bmatrix} R_{11} \begin{bmatrix} I \\ R_{21}R_{11}^{-1} \end{bmatrix}^T + \begin{bmatrix} 0 & 0 \\ 0 & R_{22} - R_{21}R_{11}^{-1}R_{12} \end{bmatrix} .$$

(block LDU triangular factorization). The matrix $R_{22} - R_{21}R_{11}^{-1}R_{12}$ is called the *Schur complement* of R_{11} within the big matrix on the LHS.