DeepIntoDeep 1. Machine Learning and MLP

Seongchan Kim

2020320120@korea.ac.kr Artificial Intelligence in KU (AIKU)

Department of Computer Science and Engineering, Korea University

Part 1. Deep

Seongchan Kim

2020320120@korea.ac.kr
Artificial Intelligence in KU (AIKU)

Department of Computer Science and Engineering, Korea University

What is Intelligence?

Al vs. Machine Learning vs. Deep Learning

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Al vs. Machine Learning vs. Deep Learning

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Al vs. Machine Learning vs. Deep Learning

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

What is Deep Learning?

Papers With Code: https://paperswithcode.com/

Computer Vision

Machine

Text

Question

Deep Learning Component: Data, Model, Loss

Data

Deep Learning Component: Data, Model, Loss

Model

Deep Learning Component: Data, Model, Loss

Loss

(a) image

(b) semantic segmentation

(c) instance segmentation

(d) panoptic segmentation

Neural Radiance Fields (NeRF)

긴 문서를 요약하여 핵심 문장을 알려주는 문서 요약 API

What is Model?

Regression은 Input Variables와 Output Variables의 관계를 통해

새로운 Input에 대한 Output을 예측하거나

Output에 대한 Input의 영향을 이해할 수 있다.

원인이 아니라 연관 관계

Linear Regression의 한계

MLP

MLP

Activation

ReLU

Sigmoid

Linear

Activation

Part 2. Learning

Seongchan Kim

2020320120@korea.ac.kr

Artificial Intelligence in KU (AIKU)

Department of Computer Science and Engineering, Korea University

What is Loss?

What is Loss?

What is Loss?

Gradient Descent

손실을 어떻게 감소시킬 것인가?

Gradient Descent

Deep Learning Pipeline

- 1. Dataset
- 2. Model
- 3. Cost function
- 4. Train until converge
 - 1. Forward
 - 2. Compute Loss
 - 3. Backward
 - 4. Gradient Descent

$$W := W - \alpha \frac{\partial}{\partial W} cost(W)$$

Underfitting and Overfitting

Underfitting and Overfitting

Bias and Variance

$$\begin{split} E[(y-\hat{f})^2] &= E[y^2 + \hat{f}^2 - 2y\hat{f}] \\ &= E[y^2] + E[\hat{f}^2] - 2E[y\hat{y}] \\ &= Var[y] + \{E[y]\}^2 + Var[\hat{f}] + \{E[\hat{f}]\}^2 - 2E[(f+e)\hat{f}] \\ &= Var[y] + Var[\hat{f}] + f^2 + \{E[\hat{f}]\}^2 - 2E[f\hat{f}] \\ &= \sigma^2 + Var[\hat{f}] + (f - E[\hat{f}])^2 \\ &= \sigma^2 + Var[\hat{f}] + bias[\hat{f}]^2 \end{split}$$

Bias and Variance

Bias and Variance

Underfitting and Overfitting

How to solve underfitting

- 복잡한 모델 사용
- 학습 시간 증가

• 더 좋은 특성 (Machine Learning)

Underfitting and Overfitting

How to solve overfitting

- 더 많은 데이터 수집
- 데이터의 Noise 감소
- Regularization
- Early Stopping
- 불필요한 특성 제거 (Machine Learning)

Regularization

1. L1 Regularization

$$\Omega(W) = \lambda ||W||_1 = \sum_i |W_i|$$

2. L2 Regularization

$$\Omega(W) = \lambda ||W||_2^2 = \sum_i W_i^2$$

3. Loss + Regularization

$$\underset{W}{\arg\min}(L(W)+\Omega(W))$$

Regularization: Dropout

Regularization: Dropout

Forces the network to have a redundant representation; Prevents co-adaptation of features

Regularization: Dropout

Dropout이 파라미터를 공유하는 큰 Ensemble 모델을 학습하는 것과 같다고 보는 관점도 있다.

Loss

- 1. L1 Loss
- 2. MSE Loss
- 3. CrossEntropy Loss
- 4. NLL Loss
- 5. BCE Loss
- 6. CosineEmbedding Loss
- 7. HuberLoss

L1 Loss

L1LOSS

CLASS torch.nn.L1Loss(size_average=None, reduce=None, reduction='mean') [SOURCE]

Creates a criterion that measures the mean absolute error (MAE) between each element in the input x and target y.

The unreduced (i.e. with reduction set to 'none') loss can be described as:

$$\ell(x,y) = L = \{l_1,\ldots,l_N\}^ op, \quad l_n = |x_n-y_n|\,,$$

where N is the batch size. If reduction is not 'none' (default 'mean'), then:

$$\ell(x,y) = egin{cases} ext{mean}(L), & ext{if reduction} = ext{`mean'}; \ ext{sum}(L), & ext{if reduction} = ext{`sum'}. \end{cases}$$

L1 Loss

MSE Loss

MSELOSS

CLASS torch.nn.MSELoss(size_average=None, reduce=None, reduction='mean') [SOURCE]

Creates a criterion that measures the mean squared error (squared L2 norm) between each element in the input x and target y.

The unreduced (i.e. with reduction set to 'none') loss can be described as:

$$\ell(x,y) = L = \{l_1,\ldots,l_N\}^ op, \quad l_n = \left(x_n - y_n
ight)^2,$$

where N is the batch size. If reduction is not 'none' (default 'mean'), then:

$$\ell(x,y) = egin{cases} ext{mean}(L), & ext{if reduction} = ext{`mean'}; \ ext{sum}(L), & ext{if reduction} = ext{`sum'}. \end{cases}$$

MSE Loss

Huber Loss

HUBERLOSS

CLASS torch.nn.HuberLoss(reduction='mean', delta=1.0) [SOURCE]

Creates a criterion that uses a squared term if the absolute element-wise error falls below delta and a delta-scaled L1 term otherwise. This loss combines advantages of both L1Loss and MSELoss; the delta-scaled L1 region makes the loss less sensitive to outliers than MSELoss, while the L2 region provides smoothness over L1Loss near 0. See Huber loss for more information.

For a batch of size N, the unreduced loss can be described as:

$$\ell(x,y) = L = \{l_1,...,l_N\}^T$$

with

$$l_n = egin{cases} 0.5(x_n - y_n)^2, & ext{if } |x_n - y_n| < delta \ delta*(|x_n - y_n| - 0.5*delta), & ext{otherwise} \end{cases}$$

If reduction is not none, then:

$$\ell(x,y) = egin{cases} ext{mean}(L), & ext{if reduction} = ext{`mean';} \ ext{sum}(L), & ext{if reduction} = ext{`sum'}. \end{cases}$$

Huber Loss

Loss for Regression

Loss for Regression

Demo: zero-shot depth estimation with DPT

Demo for Intel's DPT, a Dense Prediction Transformer for state-of-the-art dense prediction tasks such as semantic segmentation and depth estimation.

CrossEntropy Loss

CROSSENTROPYLOSS

CLASS torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean', label_smoothing=0.0) [SOURCE]

This criterion computes the cross entropy loss between input logits and target.

It is useful when training a classification problem with C classes. If provided, the optional argument weight should be a 1D *Tensor* assigning weight to each of the classes. This is particularly useful when you have an unbalanced training set.

CrossEntropy Loss

where t_i is the truth label and p_i is the Softmax probability for the i^{th} class.

BCE Loss

BCELOSS

CLASS torch.nn.BCELoss(weight=None, size_average=None, reduce=None, reduction='mean') [SOURCE]

Creates a criterion that measures the Binary Cross Entropy between the target and the input probabilities:

The unreduced (i.e. with reduction set to 'none') loss can be described as:

$$\ell(x,y) = L = \{l_1,\ldots,l_N\}^ op, \quad l_n = -w_n\left[y_n\cdot\log x_n + (1-y_n)\cdot\log(1-x_n)
ight],$$

where N is the batch size. If reduction is not 'none' (default 'mean'), then

$$\ell(x,y) = egin{cases} ext{mean}(L), & ext{if reduction} = ext{`mean'}; \ ext{sum}(L), & ext{if reduction} = ext{`sum'}. \end{cases}$$

BCE Loss

Loss for Classification

Loss for Classification

(a) Image

(b) Semantic Segmentation

(c) Instance Segmentation

(d) Panoptic Segmentation

CosineEmbedding Loss

COSINEEMBEDDINGLOSS

CLASS torch.nn.CosineEmbeddingLoss(margin=0.0, size_average=None, reduce=None, reduction='mean') [SOURCE]

Creates a criterion that measures the loss given input tensors x_1, x_2 and a *Tensor* label y with values 1 or -1. This is used for measuring whether two inputs are similar or dissimilar, using the cosine similarity, and is typically used for learning nonlinear embeddings or semi-supervised learning.

The loss function for each sample is:

$$\mathrm{loss}(x,y) = egin{cases} 1-\mathrm{cos}(x_1,x_2), & ext{if } y=1 \ \mathrm{max}(0,\mathrm{cos}(x_1,x_2)-\mathrm{margin}), & ext{if } y=-1 \end{cases}$$

CosineEmbedding Loss

Thank you! Q&A