

Universidad Autónoma de Baja California

Maestría y Doctorado en Ciencias e Ingeniería Ingeniería en Computación

5. Clasificación

Minería de Datos

¿Qué es clasificación?

Es una forma de análisis de datos que extreae modelos que describen clases importantes a partir de datos. Tales modelos, llamado clasificadores, predicen etiquetas de clases categóricas (discretas y no ordenadas)

Conceptos básicos

- Ejemplos de clasificadores y sus usos...
- ¿Cómo funciona la clasificación? Se realiza en dos pasos, que consisten en un paso de entrenamiento (donde se construye el modelo de clasificación) y uno de clasificación (donde el modelo es utilizado para predecir clases etiquetadas para un conjunto dado de datos).

Ejemplos de clasificadores

Conceptos básicos

Aprendizaje supervisado, clasificadores y regresión

Aprendizaje no supervisado, agrupación

Hay que separar el conjunto de datos de prueba del de entrenamiento para

evitar el *overfitting*

La precisión de un clasificador se da a través del porcentaje de clasificaciones correcta que realiza con el conjunto de datos de prueba

Ejemplos de clasificadores

- Árboles de decisión
- Redes de Bayes
- A base de reglas
- Reglas de asociación
- Neuronales
- Deep learning
- Difusos
- KNN
- SVM
- ► Etc...

Validación

Métricas para evaluar el desempeño de clasificadores

- Aunque *exactitud* es una medida específica, la palabra también puede ser usada como un término que refiere a las habilidades predictivas de un clasificador.
- Términos básicos para medir exactitud en clasificadores:
 - ► True Positives (TP): Tuplas positivas que fueron etiquetadas correctamente por el clasificador.
 - ► True Negatives (TN): Tuplas negativas que fueron etiquetadas correctamente por el clasificador.
 - False Positives (FP): Tuplas negativas que fueron incorrectamente etiquetadas por el clasificador como positivas.
 - ► False negatives (FN): Tuplas positivas que fueron incorrectamente etiquetadas por el clasificador como negativas.
 - **Positives (P):** Tuplas positivas que refieren a la clase de interés.
 - Negatives (N): Tuplas negativas que refieren al resto de las clases.

Matriz de confusión

Predicted class

Total

P + N

N

Actual class

	yes	no
yes	TP	FN
по	FP	TN
Total	P'	N'

Ejemplo de matriz de confusión:

Classes	buys_computer = yes	buys_computer = no	Total	Recognition (%)
buys_computer = yes	6954	46	7000	99.34
buys_computer = no	412	2588	3000	86.27
Total	7366	2634	10,000	95.42

Exactitud

La exactitud de un clasificador en una dada prueba es el porcentaje de las tuplas de conjunto de prueba que fueron correctamente clasificados por el clasificador.

$$accuracy = \frac{TP + TN}{P + N}$$

Tasa de error

La tasa de error o tasa de mala clasificación de un clasificador, M, donde 1-precisión(M), donde precisión(M) es la precisión del clasificador M.

$$error \ rate = \frac{FP + FN}{P + N}$$

Otras medidas

Precisión. Es una medida de exactitud (¿qué porcentaje de las tuplas etiquetadas como positivas realmente lo son?)

$$precision = \frac{TP}{TP + FP}$$

Recuerdo. Es una medida de completitud (¿qué porcentaje de las tuplas positivas están etiquetadas de esa manera?)

$$recall = \frac{TP}{TP + FN} = \frac{TP}{P}$$

Otras medidas

Sensitivity. Mide la probabilidad de tener actuales positivos.

$$sensitivity = \frac{TP}{P}$$

Specificity. Mide la probabilidad de tener actuales negativos.

$$specificity = \frac{TN}{N}$$

El problema de clases mal balanceadas

¿Cuál es éste problema?

Undersampling

Oversampling

Resumen de medidas de clasificación

Measure	Formula		
accuracy, recognition rate	$\frac{TP + TN}{P + N}$		
error rate, misclassification rate	$\frac{FP + FN}{P + N}$		
sensitivity, true positive rate, recall	$\frac{TP}{P}$		
specificity, true negative rate	$\frac{TN}{N}$		
precision	$\frac{TP}{TP + FP}$		
F, F ₁ , F -score, harmonic mean of precision and recall	$\frac{2 \times precision \times recall}{precision + recall}$		
F_{β} , where β is a non-negative real number	$\frac{(1+\beta^2) \times precision \times recall}{\beta^2 \times precision + recall}$		

- ► Hold-Out
- Random subsampling
- K-Fold
- Stratified cross-validation
- Leave-one-out
- Bootstrap

► Hold-Out. Los datos aleatoriamente se particionan en dos conjuntos independientes, un conjunto de entrenamiento y un conjunto de prueba.

▶ Random subsampling. Es una variación del método Hold-Out en donde el método Hold-Out se repite N veces. Y la exactitud general se estima promediando las exactitudes obtenidas en cada iteración.

▶ **K-Fold.** Los datos se separan en K particiones, donde se va la primer partición se usa para prueba y el resto para entrenamiento, y se va recorriendo dicha partición de prueba hasta ejecutar K experimentos. Al final se promedia el resultado de exactitud.

Leave-one-out. Igual que K-fold, pero K es igual al número de tuplas.

Stratified cross-validation. Igual que K-fold, pero las tuplas de clases dentro de cada K está balanceada para toda K.

▶ **Bootstrap.** La selección aleatoria de tuplas asigna probabilidades a que en cada selección de muestras se repitan algunas tuplas previamente seleccionadas. *Nota. Aplica a cualquier otra técnica de separación de datos*.

Técnicas para mejorar la precisión de clasificación

- Métodos ensemble. K modelos se combinan para tomar una mejor decisión.
- **Bagging**. K modelos clasifican, donde el voto mayoritario gana.
- ▶ **Boosting.** Basado en el desempeño durante entrenamiento y validación de cada modelo, un peso se le asigna para ponderar su decisión final.
- AdaBoost. Similar al anterior, pero el peso es asignado de manera dinámica durante el entrenamiento y validación de cada modelo.
- ▶ Random forest. Comportamiento similar a Bagging, pero se limita exclusivamente a los clasificadores árboles de decisión.

Actividad

- ► Trabajar con 1 dataset previamente ► utilizada (no el del Iris)
- Aplicar validación a cada dataset
 - Utilizar 5 métricas diferentes
- Separando los datos mediante:
 - ► Hold-Out (60/40)
 - ► Hold-Out (100/100) Para comprobar overfitting
 - Random subsampling (N=30)
 - K-fold (K=10)
 - Leave-one-out
 - Stratified cross-validation (K=10)

- Utilizar 5 clasificadores diferentes para cada caso
- De los experimentos realizados, exponer:
 - Descripción de las técnicas utilizadas (ponerse de acuerdo en el foro de Bb para no repetir)
 - Explicar el procedimiento para la experimentación completa
 - Mostrar una tabla con toda la información para encontrar qué dio el mejor resultado
 - Resultados obtenidos