Math 1431, Section 17699

EMCF 3 (10 points)

Due 2/10 at 11:59pm

instructions

- Submit this assignment at http://www.casa.uh.cdu.under."EMCF. and choose EMCF.3.

1.
$$\lim_{r\to 0} \frac{\sin rr}{r} =$$
a. -1
b. 0
b. $\frac{1}{2}$
d. 1
c. DNE
f. None of these.

2.
$$\lim_{r\to 0} \frac{r}{\sin(r)} =$$
a. -1
b. 0
c. 1
d. 2
e. DNE
f. None of these.

1.
$$\lim_{x\to 0} \frac{\tan(x_0)}{x} = \lim_{x\to 0} \frac{\sin(x)}{\cos(5x)}$$
2. $\lim_{x\to 0} \frac{\sin(5x)}{x} = \lim_{x\to 0} \frac{\sin(5x)}{5} \cdot x$
2. $\lim_{x\to 0} \frac{\sin(5x)}{5} \cdot x$
3. $\lim_{x\to 0} \frac{\sin(5x)}{5} \cdot x$
4. $\lim_{x\to 0} \frac{\sin(5x)}{5} \cdot x$
5. $\lim_{x\to 0} \frac{\sin(5x)}{5} \cdot x$
5. $\lim_{x\to 0} \frac{\sin(5x)}{5} \cdot x$
5. $\lim_{x\to 0} \frac{\sin(5x)}{5} \cdot x$
6. $\lim_{x\to 0} \frac{(x+1)}{5} \cdot x$
6. $\lim_{x\to 0} \frac{(x+1)}{5} \cdot x$
6. $\lim_{x\to 0} \frac{(x+1)}{5} \cdot x$
6. $\lim_{x\to 0} \frac{(x+2)}{5} \cdot x$
7. Let $f(x) = x^2 - 2x$. Give the value of $\lim_{x\to 0} \frac{(x+3)}{5} \cdot x$
6. $\lim_{x\to 0} \frac{(x+5)^2 + 2(x+5) + (x+2) + (x+2)}{5} \cdot x$
7. Let $f(x) = x^2 - 2x$. Give the value of $\lim_{x\to 0} \frac{(x+5)^2 + 2(x+5) + (x+5) + (x+2) + (x+2) + (x+5) + (x+5) + (x+2) + (x+5) + (x+5)$

Give the slope of the tangent line to the graph of $f(x) = x^2 - 3x$ at the point x = 1

- $c_{*} = 2$
- d. DNE
- $e_{-} 2$
- f. None of these

Differentiability implies continuity.

- b. False

10. Continuity implies differentiability a True

- b False

Counter example:

f is continuous @x=0

but is NOT differentiable @x=0.