PAYG, Current Account and Fertility Rates: Consequences for Savings

Jeff Clawson

December 6, 2017

Overview

- Motivating Graphs
- Quick Literature Review
- Endgame Model
- Current Model
- Steady State Calculations

US Budget

Japan Budget

Government Debt and Fertility

Current Account and Fertility

Underlying Question

- What is the impact of a Pay-As-You-Go Pension System and a shrinking population on international financial allocation?
- I will begin this exploration by building a model. This will be an overlapping generations model (OLG).

A Brief Review

OLG in International Trade/Finance

- Stavely-O'Carroll and Stavely-O'Carroll (2017): Comparing two countries with and without PAYG system.
- Eugeni (2015): Differences in PAYG execution lead to impact on current accounts
- Sayan (2005): Two Countries growing at different rates

OLG/Pension and Saving

 Samwick (2000): Pension system's impact on savings, Empirical

Unique Features

I am working to build a two good, two country OLG Trade Model with the following features:

- Both countries have a Pay-As-You-Go (PAYG) pension system and exhibit population growth.
- However, one will have stochastic population growth and the other will grow at a constant rate.
- The governments will be permitted to borrow to finance pensions
- Households can purchase good from either firms. They could be subject to trade costs.

Full Model Diagram

Starting from the Ground Up (Households)

First, I'll focus on the stochastic population mechanic before adding the other features. The Household's problem is:

$$\max_{s_t, c_t^y, c_{t+1}^o} u(c_t^y) + \beta \mathbb{E}_t u(c_{t+1}^o)$$

$$c_t^y = w_t - x_t - s_t$$

$$c_{t+1}^o = p_{t+1} + (1 + r_{t+1})s_t$$

Where the population grows:

$$N_t = (1 + g_t e^{z_t}) N_{t-1}$$

Where
$$z_t = \rho z_{t-1} + \epsilon_t \; \epsilon_t \sim N(0, \sigma_t^2)$$

Firm and Government

Pensions must equal contributions

$$N_t x_t = N_{t-1} p_t \implies p_t = (1 + e^{z_t} g_t) x_t$$

Then the firm's problem is:

$$\max_{k_t} k_t^{\alpha} - w_t - r_t k_t$$

With the standard factor prices:

$$r_t = \alpha k_t^{\alpha - 1}$$

$$w_t = f(k_t) - k_t f'(k_t)$$

Equilibrium Conditions

Given (Assuming CRRA utility) factor prices (w_t, r_t) , x_t and k_t satisfy:

$$(c_t^y)^{-\sigma} = \beta \mathbb{E}_t (1 + r_{t+1}) (c_{t+1}^o)^{-\sigma}$$
$$k_t^\alpha = c_t^y + c_t^o + k_t + x_t$$

Using the constraints defined before.

"Calibrations"

Parameter	Value
g	.03
β	.95
α	.35
δ	.04

"Results"

 k_{ss} : 0.0108942393752 x_{ss} : 0.0521844807871 r_{ss} : 6.60526202666 w_{ss} : 0.133638710501 c_{ss}^{y} : 0.0705599903384 c_{ss}^{o} : 0.13660356024

Next Stage

- Need to figure Constraint with the c_t^o
- Next, I'll incorporate bond markets.
- Then, I'll add trade.