Epreuve disponible sur www.emergencetechnocm.com

	OFFICE DU BA	ACCALAURÉAT	DU CAM	EROUN	
Examen:	PROBATOIRE/ESG	Série :	D et TI	Session:	2019
Épreuve :	PHYSIQUE	Coefficient:	2	Durée :	2 heures

Exercice 1 : Énergie mécanique (6 points)

Cet exercice comporte deux parties A et B indépendantes

Partie A - Déplacement d'un solide sur un plan incliné / 3 points

On lance vers le haut d'un plan incliné d'un angle $\alpha = 30^{\circ}$ sur l'horizontale, un solide (S) de masse m = 0.25 kg. Le solide effectue un mouvement de translation rectiligne le long d'une ligne de plus grande pente du plan incliné. On donne son énergie cinétique initiale $E_{C_1} = 4.0$ J.

- 1- Énoncer le théorème de l'énergie cinétique.
- 2- Calculer en négligeant les frottements, la distance théorique (dth) que parcourt le solide sur le plan incliné avant de redescendre. On prendra g = 10 N.kg⁻¹.
 1pt
- 3- En réalité, le solide n'effectue sur le plan qu'une distance d = 1,7 m. Déterminer la valeur f de la force de frottement supposée constante, qui s'exerce sur le solide au cours de son déplacement sur le plan.
 1pt

Partie B Mouvement d'un rotor / 3 points

Le rotor d'un alternateur tourne autour d'un axe (Δ) passant par son centre d'inertie. Son moment d'inertie par rapport à cet axe vaut $J_{\Delta} = 1,6 \times 10^6 \text{ kg.m}^2$.

- 1- A plein régime, le rotor tourne avec une fréquence de rotation constante N = 1500 tr/min.
 Déterminer la vitesse angulaire ω (en radians par seconde) du rotor et calculer son énergie cinétique.
 1pt
- 2- Le rotor est initialement au repos. On lui applique un couple moteur de moment constant $M = 6 \times 10^6$ N.m. Il effectue alors n tours avant d'atteindre le plein régime (1500 tr/min).
 - **2-1-**Exprimer la variation de l'énergie cinétique du rotor entre le repos et le plein régime en fonction de M et n.
 - 2-2-En déduire le nombre de tours n effectué par le rotor du repos jusqu'au plein régime.

1pt

1pt

1pt

1,5pt

Exercice 2 : Optique géométrique (7 points)

L'exercice comporte deux parties indépendantes

Partie A: Lentilles minces / 5,5 points

- 1- Qu'appelle-t-on distance focale d'une lentille mince?
- 2- Décrire brièvement une méthode expérimentale permettant de mesurer la distance focale d'une lentille mince.
- 3- Un objet lumineux assimilable à une flèche verticale \overrightarrow{AB} de hauteur 3 cm est placé à 20 cm en avant d'une lentille (L) de distance focale $\overrightarrow{OF}' = -30$ cm, A étant sur l'axe optique.
 - 3-1-Construire sur le papier millimétré de l'annexe à rendre avec la copie l'image $\overrightarrow{A'B'}$ de \overrightarrow{AB} , donnée par la lentille.

Échelle : en abscisse 1cm pour 5 cm ; en ordonnées : 1cm pour 1cm.

2pt
3-2-Quelle est la nature de cette image ?

0,5pt

3-3-Lire sur le graphique construit précédemment, les valeurs de la position et de la grandeur de l'image.

OBC. Probatoire/ESG. Séries D & TI Épreuve de physique Page 1/3

一人では、「大人は一日の日の日の日の日	Partie B: L'œil réduit /1,5 point Un œil myope voit nettement les objets situés en deçà de 1 m de lui. 1- Définir le terme myopie. 2- Quelle lentille de contact (on donnera son type et sa distance focale) faut-il placer devant cet œil pour qu'il puisse voir nettement à l'infini?	0,5pt 1pt
	Exercice 3: Énergie électrique (6 points) L'exercice comporte trois parties indépendantes. Partie A: Accumulateur /2 points 1- Qu'appelle-t-on capacité d'un accumulateur? 2- La capacité d'un accumulateur au plomb est Q = 50 Ah. Calculer la durée de son fonctionnement s'il débite un courant de 10 A.	
	 Partie B: Production d'une tension alternative /2,5 points 1- Donner le principe des alternateurs. 2- On admet que le flux magnétique à travers une bobine d'un alternateur de bicyclette, varie suivant l'expression Φ (t) = 0,2 cos (1,57 t) en webers. 2-1-Déterminer l'expression de la f.é.m. induite dans cette bobine en fonction du temps. 2-2-En déduire sa valeur maximale. On rappelle que la dérivée par rapport au temps de la fonction cos (at) est égale à – asin (at) 	1pt 1pt 0,5pt
	Partie C: Bilan énergétique dans un circuit (1,5 point) Un moteur à courant continu dont le rendement énergétique vaut 80 %, est utilisé pour soulev petite charge. Il fournit une puissance mécanique P _m = 144 W lorsque la tension électrique à sommes est U = 50 V. Déterminer: 1- La puissance électrique consommée par le moteur. 2- L'intensité I du courant qui le traverse.	ver une ses 1pt 0,5pt

Epreuve disponible sur www.emergencetechnocm.com

Le pôle de l'innovation