

Fundamentos de Matemática

Lista de Exercícios Humberto José Bortolossi http://www.professores.uff.br/hjbortol/

Somas e Exercícios de Revisão

- [01] Calcule as somas abaixo.
 - (a) $\sum_{i=1}^{5} (i+1)$.
 - (b) $\sum_{j=0}^{4} (-2)^{j}$.
 - (c) $\sum_{i=1}^{3} 1$.
 - (d) $\sum_{j=0}^{8} (2^{j+1} 2^j)$.
- [02] Calcule as somas abaixo onde $S = \{1, 3, 5, 7\}$.
 - (a) $\sum_{j \in S} j$.
 - (b) $\sum_{j \in S} j^2$.
 - (c) $\sum_{j \in S} (1/j)$
 - (d) $\sum_{j \in S} 1$.
- [03] Calcule as somas abaixo.
 - (a) $\sum_{j=0}^{8} (1 + (-1)^j)$.
 - (b) $\sum_{j=0}^{8} (3^j 2^j)$.
 - (c) $\sum_{j=0}^{8} (2 \cdot 3^j + 3 \cdot 2^j)$.
 - (d) $\sum_{j=0}^{8} (2^{j+1} 2^j)$.
- [04] Calcule as somas duplas abaixo.
 - (a) $\sum_{i=1}^{2} \sum_{j=1}^{3} (i+j)$.
 - (b) $\sum_{i=0}^{2} \sum_{j=0}^{3} (2 \cdot i + 3 \cdot j)$.
 - (c) $\sum_{i=1}^{3} \sum_{j=0}^{2} i$.
 - (d) $\sum_{i=0}^{2} \sum_{j=1}^{3} i \cdot j$.
- [05] Encontre e demonstre uma fórmula fechada para $\sum_{i=1}^{n} i^{2}$. Sugestão: use a técnica apresentada em sala de aula para deduzir a fórmula fechada para $\sum_{i=1}^{n} i$.
- [06] Encontre e demonstre uma fórmula fechada para $\sum_{i=1}^{n} i^{3}$. Sugestão: use a técnica apresentada em sala de aula para deduzir a fórmula fechada para $\sum_{i=1}^{n} i$.
- [07] Demonstre o seu entendimento da notação de somatórios escrevendo as somas

$$\sum_{0 \le i \le 5} a_i \qquad e \qquad \sum_{0 \le i^2 \le 5} a_{i^2}$$

explicitamente (por exemplo, $\sum_{i=1}^{5} i = 1 + 2 + 3 + 4 + 5$).

[08] Considere o seguinte programa escrito em Python:

```
for i in range(1, 124):
for j in range(1, 16):
    print "FGV"
```

Quantas vezes a palavra FGV vai aparecer na tela? Caso você não queira trabalhar com Python (ainda), responda a questão traduzindo o programa acima para a linguagem de programação de sua escolha.

[09] Considere o seguinte programa escrito em Python:

```
for i in range(1, 124):
for j in range(1, i + 1):
    print "FGV"
```

Quantas vezes a palavra FGV vai aparecer na tela? Caso você não queira trabalhar com Python (ainda), responda a questão traduzindo o programa acima para a linguagem de programação de sua escolha.

- [10] Mostre que se $n \in \mathbb{N}$, então $1 + 3 + 5 + \dots + (2n 1) = \sum_{k=1}^{n} (2k 1) = n^2$.
- [11] Considere uma sequência de números definida recursivamente pelas seguintes condições: $x_0 = 1$, $x_1 = 2$, $x_2 = 3$ e

$$x_k = x_{k-1} + x_{k-2} + x_{k-3}$$
, para todo $k \ge 3$.

Mostre que $x_n \leq 3^n$ para todo $n \geq 0$.

- [12] (Sequência de Luca) Defina a sequência $(a_n)_{n\in\mathbb{N}}$ como se segue: $a_1=1,\ a_2=3$ e $a_k=a_{k-1}+a_{k-2}$ para todo $k\geq 3$. Use o segundo princípio da indução para mostrar que $a_n\leq (7/4)^n$ para todo $n\geq 1$.
- [13] Defina a sequência $(a_n)_{n\in\mathbb{N}}$ como se segue: $a_1=2, a_2=8$ e $a_k=4$ $(a_{k-1}-a_{k-2})$ para todo $k\geq 3$. Use o segundo princípio da indução para mostrar que $a_n=n$ 2^n para todo $n\geq 1$.
- [14] Seja a um número real diferente de zero. Encontre o erro na seguinte "demonstração" por indução para o "fato" de que $a^n = 1$ para todo $n \ge 0$:

Passo básico:
$$a^0=1$$
. Passo indutivo: $a^{n+1}=a^n\cdot a^n/a^{n-1}=1\cdot 1/1=1$.

- [15] Seja $f: \mathbb{R} \to \mathbb{R}$ uma função tal que $f(x_1 + x_2) = f(x_1) + f(x_2)$ para todo $x_1, x_2 \in \mathbb{R}$.
 - (a) Mostre que f(0) = 0.
 - (b) Mostre que f(n) = n f(1) para todo $n \in \mathbb{N}$.
- [16] (Princípio da Boa Ordenação) O Princípio da Boa Ordenação afirma que todo subconjunto X não-vazio do conjunto \mathbb{N} dos números naturais possui um menor elemento.
 - (a) Usando o segundo princípio da indução, demonstre que o Princípio da Boa Ordenação é verdadeiro. Use como predicado: P(n): se $n \in X$, então X possui um menor elemento.

- (b) Assumindo o Princípio da Boa Ordenação, demonstre que o Primeiro Princípio da Indução é verdadeiro.
- Dos Itens (a) e (b), concluímos que o Princípio da Indução e o Princípio da Boa Ordenação são equivalentes.
- [17] Desenvolva a expressão $(\sum_{i=1}^n x_i)^2$ e escreva sua resposta usando somatórios.
- [18] Demonstre usando o Princípio da Indução: se $n \geq 2$ pessoas estão em uma fila de modo que a primeira pessoa da fila é uma mulher e a última pessoa da fila é um homem, então em algum lugar da fila existe um homem imediatamente atrás de uma mulher.