STM32-mini底盘小车

STM32-mini底盘小车

- 1.实验准备
- 2.小车接线
 - 2.1 stm32和双路驱动板接线部分
 - 2.2 STM32RCT6和红外传感器的接线 (此例程使用串口通信)
- 主要程序
- 实验现象:

1.实验准备

- 1. 知识储备
- 具有有良好的编程能力(主要是C语言)
- 对stm32的架构比较熟悉
- 2. 材料准备
- 智能小车mini底盘 *1
- stm32F103RCT6 *1 (需要亚博板的板子,其它的板子,需要改源码)
- 亚博版的双路电机驱动板 *2 (其它的电机驱动板可能不适合本教程提供的源码,需自己移植)
- 八路循迹模块 *1
- 310电机 *4
- 7.4V电池 *1
- 杜邦线若干
- M3铜柱、M3螺丝若干

2.小车接线

把小车组装好后,如下图所示

2.1 stm32和双路驱动板接线部分

1. stm32F103RCT6 和双路电机板 (最上层板子) 的接线

STM32RCT6	最上层双路电机板
PA11	AIN1
PA8	AIN2
PC6	BIN1
PC7	BIN2
3V3	3V3
GND	GND
PA0	E1A

STM32RCT6	最上层双路电机板
PA1	E1B
PA15	E2A
PB3	E2B
5V	5V

2. stm32F103RCT6 和双路电机板 (最下层板子) 的接线

STM32RCT6	最下层双路电机板
PB0	AIN1
PB1	AIN2
PC8	BIN1
PC9	BIN2
3V3	3V3
GND	GND
PA7	E1A
PA6	E1B
PB7	E2A
PB6	E2B

- 3. 最上层的电机驱动板子是接靠近红外传感器的两轮子的电机(即前面的电机), motorA--->左电机、motorB--->右电机
- 4. 最下层的电机驱动板子是接远离红外传感器的两轮子的电机(即后面的电机),motorA--->左电机、motorB--->右电机

2.2 STM32RCT6和红外传感器的接线 (此例程使用串口通信)

STM32RCT6	红外传感器
PC10	RX
PC11	TX
不接	VCC和最上层双路电机板5V接口相连
GND	GND

主要程序

```
int main(void)
{
//硬件初始化
```

```
BSP_init();

while(!Key1_State(1));//等待按键按下

TIM6_Init();//定时器6初始化

send_control_data(0,0,1); //设置只接收数值型数据

while(1)
{
    LineWalking(); //加快响应
}
```

主函数就是根据红外探头的的值,进行巡线的PID处理,从而能在黑线白底的地图是完成巡线。

在app_irtrackin.c里面有一个调节pid巡线的参数,如果想要增加或减少速度 优化效果,可以调节里面的宏定义值

```
#define IRTrack_Trun_KP (490) //P
#define IRTrack_Trun_KI (0.0001) //I
#define IRTrack_Trun_KD (5) //D
#define IRR_SPEED 400 //巡线速度
```

IRTrack_Trun_KP:pid巡线的P值IRTrack_Trun_KI: pid巡线的I值

• IRTrack_Trun_KD: pid巡线的D值

• IRR_SPEED: 巡线的速度

当要检测电机接线是否正确,可以给一个正值速度,然后巡线PID的值置0,如果接线正确,按下RCT6 开发板上的key按键后,小车是会往前跑的,4个电机都会往前。

实验现象:

在确保接线和安装无误的前提下,8路巡线模块进行的校准后, (如果使用的是教程一样的地图)需要把小车放到如下图的起点示意图下,按下key1的按键就能开始巡线了。

如果8路模块探头还无法正常检测黑白线,需要等待模块正常工作后,再按下key1键如果地板是黑色的,需要把一张白纸放到我们的地图下方,盖住黑色,主要原因是地图的材质比较透

光,对8路巡线传感器的影响较大。

