ROYAUME DU MAROC

Ministère de l'Éducation Nationale Enseignement Secondaire et Technique Ministère de l'Enseignement Supérieur, de la Formation des Cadres et de la Recherche Scientifique

Concours National Commun d'Admission aux Grandes Écoles d'Ingénieurs

Session 2002

ÉPREUVE DE CHIMIE

Durée 2 heures

Concours MP

L'énoncé de cette épreuve comporte 4 pages. L'usage de la calculatrice est **autorisé**.

On veillera à une présentation claire et soignée des copies. Il convient en particulier de rappeler avec précision les références des questions abordées.

Autour du manganèse

On se propose dans ce problème d'étudier quelques aspects de la chimie du manganèse. En particulier son application dans un procédé de dosage du dioxygène dissous dans l'eau. Ce procédé peut être facilement réalisé dans un laboratoire d'enseignement. Aucune connaissance préalable de la chimie du manganèse n'est requise pour aborder les différentes parties du problème.

Données numériques

- Données générales
 - Constante des gaz parfaits : $R \approx 8,314 \text{ J.K}^{-1}.\text{mol}^{-1}$.
 - $\frac{RT}{F}\ln 10 \approx 0,06~{
 m V}$ à 298 K, F désignant la constante de FARADAY et \ln le logarithme népérien.
- Enthalpies standard de formation et entropies standard absolues à 298 K (g : gaz, s : solide)

	$O_{2(g)}$	Al _(s)	$Mn_{(s)}$	$\mathrm{MnO}_{2\mathrm{(s)}}$	$\mathrm{Mn_3O_{4(s)}}$	Al_2O_3 (s)
$\Delta_r H_f^{\circ} \left(\text{kJ.mol}^{-1} \right)$	-	-	-	-522, 1	-1387	-1674
S° (J.K ⁻¹ .mol ⁻¹)	205	27,75	32	53, 1	149, 4	51

- Masses molaires atomiques

Potentiels standard d'oxydoréduction en solution aqueuse à 298 K

- Tous les gaz rencontrés dans le problème seront considérés parfaits.

1^{ère} partie Quelques propriétés structurales

Le manganèse Mn a pour numéro atomique Z=25.

- 1.1. Quelle est la configuration électronique de l'atome de manganèse dans son état fondamental?
- 1.2. En déduire sa position (ligne et colonne) dans la table périodique des éléments. À quel bloc d'éléments appartient-il? Comment s'appellent les éléments de ce bloc? Donner un autre élément du même bloc et de la même période que le manganèse.

1.3. Le manganèse possède plusieurs degrés d'oxydation dont le plus stable est le degré +II. Donner la configuration électronique dans son état fondamental de l'ion Mn^{2+} et justifier sa stabilité relative.

2ème partie

Métallurgie du manganèse

La source principale du manganèse est le bioxyde de manganèse MnO_2 . Le métal pur s'obtient par aluminothermie de $\mathrm{Mn}_3\mathrm{O}_4$ provenant de la réduction par chauffage de MnO_2 .

2.1. Diagramme d'Ellingham

On se propose, dans le cadre de l'approximation d'Ellingham, de tracer le diagramme représentant l'enthalpie libre standard $\Delta_r G^\circ$ de formation des oxydes $\mathrm{MnO_2}$, $\mathrm{Mn_3O_4}$ et $\mathrm{Al_2O_3}$ en fonction de la température.

- **2.1.1**. Écrire les équations des réactions de formation des oxydes MnO_2 , Mn_3O_4 et Al_2O_3 . Ces équations seront rapportées à *une mole de dioxygène*.
- **2.1.2**. Établir l'expression de l'enthalpie libre standard $\Delta_r G^{\circ}(T)$ de réaction pour chacune des réactions précédentes.
- **2.1.3**. Tracer le diagramme d'Ellingham correspondant limité à l'intervalle de température [300 K, 1200 K]. On calculera les valeurs des enthalpies libres $\Delta_r G^\circ$ aux limites de l'intervalle de traçage. On ne tiendra pas compte des éventuels changements d'état qui peuvent avoir lieu dans cet intervalle de température.
- 2.2. Montrer que le chauffage de ${\rm MnO_2}$ à une température supérieure à une valeur minimale $T_{\rm min}$ que l'on déterminera permet d'obtenir ${\rm Mn_3O_4}$. On justifiera la réponse et on écrira l'équation de la réaction chimique correspondante.
- 2.3. Montrer que l'aluminium métallique permet de réduire $\mathrm{Mn_3O_4}$ en Mn . Écrire l'équation de la réaction chimique correspondante et calculer la variance du système. Interpréter *complètement* la valeur obtenue. Comment pourrait-on déterminer la température d'équilibre?

3^{ème} partie

Procédé WINKLER de dosage du dioxygène dissous dans l'eau

La méthode de WINKLER de dosage du dioxygène dissous dans l'eau utilise les propriétés oxydoréductrice du manganèse.

3.1. Mode opératoire (Cette section ne comporte aucune question)

Le procède permet de déterminer la concentration molaire volumique $c_0(\mathcal{O}_2)$ du dioxygène dissous dans l'eau. Il comporte trois étapes principales :

- étape 1) on remplit d'eau à doser un flacon de volume $V_{\rm tot}=250~\rm mL$ et on y ajoute quelques pastilles d'hydroxyde de sodium puis environ $2~\rm g$ de chlorure de manganèse II. La solution devient alors trouble. On agite énergiquement et on laisse reposer pendant $15~\rm mn$ environ.
- étape 2) on ajoute ensuite environ $3~{\rm g}$ d'iodure de potassium puis quelques gouttes d'acide sulfurique concentré et on vérifie que, après homogénéisation, la solution obtenue est limpide et très acide $(pH\approx 2)$.

étape 3) On prélève exactement $V_0 = 50 \text{ mL}$ de la solution du flacon et on la dose avec une solution de thiosulfate de sodium de concentration molaire volumique $c = 2, 25 \times 10^{-3} \text{ mol.L}^{-1}$.

3.2. Diagramme potentiel-pH

Pour comprendre ce mode opératoire on se sert du diagramme potentiel-pH du manganèse. La figure 1 du document-réponse donne un diagramme simplifié limité aux seuls degrés d'oxydation (+III), (+II) et (0). Le degré d'oxydation (+II) est représenté par l'ion Mn^{2+} et par l'hydroxyde de manganèse $\mathrm{Mn}(\mathrm{OH})_2$. Le degré d'oxydation (+III) est représenté par l'ion Mn^{3+} et par l'oxyde $\mathrm{Mn}_2\mathrm{O}_3$ hydraté que l'on écrit simplement $\mathrm{Mn}(\mathrm{OH})_3$. La concentration totale en élément manganèse en solution est de 10^{-2} $\mathrm{mol.L}^{-1}$.

3.2.1. Lecture du diagramme

- 3.2.1.1. Quelles espèces chimiques représentent les lettres <u>A</u>, <u>B</u> et <u>C</u>?
- 3.2.1.2. En utilisant le diagramme, déterminer le produit de solubilité K_s de $Mn(OH)_2$.
- 3.2.1.3. Déterminer de même le produit de solubilité K'_s de $Mn(OH)_3$.
- **3.2.1.4.** Que peut-on dire de la précision de cette méthode de détermination des constantes K_s et K_s' ?

3.2.2. Stabilité en solution aqueuse

On fera tous les tracés sur le diagramme du document-réponse que l'on n'oubliera pas de rendre avec la copie.

- 3.2.2.1. Écrire l'équation de la demi-réaction redox du couple O_2/H_2O et en déduire l'expression du potentiel redox correspondant. On prendra à la frontière $p(O_2)=1$ bar et on tracera le segment de droite correspondant sur le diagramme potentiel-pH du manganèse.
- 3.2.2.2 Écrire de même l'équation de la demi-réaction redox du couple $\mathrm{H^+/H_2}$ et en déduire l'expression du potentiel redox correspondant. On prendra à la frontière $p(\mathrm{H_2})=1$ bar. Tracer le segment de droite correspondant sur le diagramme potentiel-pH du manganèse.
- 3.2.2.3. Écrire l'équation de la demi-réaction redox du couple I_2/I^- et en déduire l'expression du potentiel redox correspondant. On prendra à la frontière $[I_2]=2\,[I^-]=2\times\,10^{-2}\,\mathrm{mol.L^{-1}}$ et on tracera le segment de droite correspondant sur le diagramme potentiel-pH du manganèse.
- 3.2.2.4. Que peut-on dire des solutions aqueuses de ${\rm Mn}^{3+}$? Justifier la réponse et écrire l'équation de la réaction qui a éventuellement lieu dans la solution.
- 3.2.2.5. On introduit un morceau de manganèse dans de l'eau à laquelle ont été ajoutées quelques gouttes d'un acide non oxydant. Que se passe-t-il? Justifier la réponse et écrire l'équation de la réaction qui a éventuellement lieu dans la solution.
- 3.2.2.6. Indiquer sur le diagramme les domaines de prédominance du dioxygène et du dihydrogène ainsi que celui de stabilité de l'eau.

3.3. Justification du mode opératoire

Pour répondre aux questions de cette section on s'aidera au besoin du diagramme potentiel-pH du manganèse.

3.3.1. Étape 1

- 3.3.1.1. Écrire l'équation de la réaction de l'hydroxyde de sodium sur les ions ${\rm Mn}^{2+}$ et calculer sa constante d'équilibre. Commenter.
- 3.3.1.2. Écrire l'équation de la réaction de l'oxygène dissous sur le composé obtenu. Cette réaction est relativement lente. Pourquoi ? Comment pourrait-on l'accélérer ?
- 3.3.1.3. Quelle relation y a-t-il entre la quantité de matière $n(O_2)$ de dioxygène initialement dissous dans l'eau et la quantité de matière $n_{\rm III}$ du manganèse au degré d'oxydation (+III) formé ?

3.3.2. Étape 2

- 3.3.2.1. Écrire l'équation de la réaction des ions iodures sur les ions Mn^{3+} .
- 3.3.2.2. Quelle relation y a-t-il entre la quantité de matière $n({\rm I}_2)$ du diiode formé et celle $n_{\rm III}$ de la solution ?
- 3.3.2.3. Quelle autre réaction peut avoir lieu dans la solution? A-t-elle une incidence sur le dosage? Justifier.

3.3.3. Étape 3

- 3.3.3.1. Écrire l'équation de la réaction de dosage de $\rm I_2$ par $\rm S_2O_3{}^{2-}$ et calculer sa constante d'équilibre. Commenter.
- 3.3.3.2. Exprimer la concentration molaire volumique $c_0(\mathcal{O}_2)$ du dioxygène dans l'eau initiale en fonction de la concentration c de la solution de thiosulfate de sodium, du volume V_e de cette solution versé à l'équivalence et du volume V_0 prélevé pour réaliser le dosage.
 - 3.3.3. Comment peut-on repérer dans ce cas le point d'équivalence ?

3.4. Dosage du dioxygène dissous et discussion

- **3.4.1**. Le dosage d'une eau de robinet distribuée dans une ville donne $V_e=21,2~\mathrm{mL}$.
 - 3.4.1.1 Déterminer la concentration molaire volumique du dioxygène dans l'eau distribuée.
- 3.4.1.2. Cette eau vérifie-t-elle les normes en vigueur qui imposent, entre autres, une concentration *massique* volumique de dioxygène dissous comprise entre $5~\mathrm{mg.L^{-1}}$ et $8~\mathrm{mg.L^{-1}}$?
- **3.4.2**. Pour que le dosage précédent soit possible, il faut avoir opéré en présence d'un excès de chlorure de manganèse II lors de l'étape 1 et un excès d'iodure de potassium lors de l'étape 2.
 - 3 4 2 1 Justifier ces deux affirmations.
- 3.4.2.2. Calculer les masses minimales de chlorure de manganèse II et d'iodure de potassium à utiliser pour que le dosage de l'eau de distribution précédente soit possible. On rappelle que l'iode dissous se trouve sous forme d'ions I_3^- .

FIN DE L'ÉPREUVE

Épreuve de Chimie 4 / 4 FIN