S-MI-1

Concours EAMAC	Cycle INGENIEUR	EPREUVE DE :
2019		MATHEMATIQUES

Durée: 04h

S-MI-1.1 (5 points):

Soit \star la loi de composition sur \mathbb{R} définie par $x \star y = x + y - xy$.

- 1. Montrer que la loi * est commutative et associative.
- 2. Montrer que la loi * admet un élément neutre e que l'on précisera.
- 3. Montrer que tout élément $x \in \mathbb{R} \setminus \{1\}$ admet pour inverse x/(x-1).
- 4. L'ensemble (\mathbb{R} , \star , e) est-il un groupe?
- 5. L'ensemble ($\mathbb{R}\setminus\{1\}$, \star , e) est-il un groupe?

S-MI-1.2 (5 pts):

Soit f l'application de \mathbb{R}^3 dans \mathbb{R}^3 définie par : f(x, y, z) = (x, -3y + 4z, -2y + 3z).

- 1. Montrer que f est linéaire.
- 2. Soit (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 . Montrer que la famille $(f(e_1), f(e_2), f(e_3))$ est une base de \mathbb{R}^3 .
- 3. En déduire que f est bijective.
- 4. Calculer fof.
- 5. En déduire l'expression de f⁻¹.

S-MI-1.3 (5 pts)

Etudier la convergence et calculer la somme des séries dont les termes généraux sont définis par :

1)
$$u_n = \ln(1 + \frac{1}{n}) \quad (n \ge 1)$$

2)
$$v_n = \frac{n+4}{n(n^2-4)}$$
 (n \ge 3)

3)
$$w_n = \frac{n^3}{n!}$$
 (n ≥ 1)

S-MI-1.4 (5 pts)

On considère la matrice

$$A = \begin{pmatrix} 1 & 2-k & -1 \\ 2-k & 1 & 2 \\ 0 & 0 & 3 \end{pmatrix}$$

où k est un réel.

- 1) Déterminer les valeurs de k pour lesquelles la matrice A est diagonalisable.
- 2) Pour k=2, calculer l'exponentielle de la matrice A et A^n où n ≥ 1 est un entier naturel.