CH S. I eigenvectors & eigenvalues

ex:
$$A\vec{x} = \begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \end{pmatrix} = 2\vec{x}$$
!

 $\frac{\text{Def: An eigenvector for } A \in \text{Mart}(n,n) \text{ is } \vec{x} \neq \vec{0} \in \mathbb{R}^n \text{ s. } \epsilon A \vec{x} = \lambda \vec{x}}{\text{for some } \lambda \in \mathbb{R} \text{ called the eigenvalue}}$

ex: $A = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$ has no eigen values in \mathbb{R}^2

ex: A= (52), = (6), = (3)

AU = (-24) = -44

 $\overrightarrow{A} = \begin{pmatrix} -9 \\ 11 \end{pmatrix} \xrightarrow{\text{Theres } no \ \lambda \text{ s.f.}} C_1^9 \cdot \lambda \begin{pmatrix} 3 \\ -2 \end{pmatrix}$

Q: is $\lambda = 7$ on eigenvalue of A $A\vec{x} = 7\vec{x} \implies A\vec{x} - 7\vec{x} = 0 \implies (A-7E)\vec{x} = 0$ Subtract
7 from original matrix Augment: $\begin{pmatrix} -6 & 6 & 0 \\ 5 & -5 & 0 \end{pmatrix}$ Reduce $\begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \implies \vec{x} = x_2(1)$ solves $A\vec{x} = 7\vec{x}$!

so (1) is an evec for the eval $\lambda = 7$

Note: say you have $A\vec{x} = \lambda \vec{x}$. Then $A(\lambda \vec{x}) = \lambda A \vec{x} = \lambda^2 \vec{x}$.

Idea: every vector on the line = x = x2(1) is an ever for A w1 eval 2=7

Num of free voriouses is dimension of solution, ex: I free voriable creates a line

Def: The eigenspace of A corresponding to λ is $E\left(A,\lambda\right):=Nul\left(A-\lambda I\right)$

ex: Above, $E(A,7) = spun \{(1)\}$

Let $A = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}$. $\lambda = 2$ is an eigenvalue of A, find a basis for E(A, 2)

(A-2I:0)

$$\begin{pmatrix}
2 & -1 & 6 & 0 \\
2 & -1 & 6 & 0 \\
2 & -1 & 6 & 0
\end{pmatrix}$$
Reduce
$$\begin{pmatrix}
2 & -1 & 6 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
2 & -1 & 6 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
2 & -1 & 6 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
3 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
7 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
7 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
7 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
7 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
7 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
7 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
7 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
7 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
7 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
7 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
7 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$= \chi_{2}\left(\frac{1}{2}\right) + \chi_{3}\left(\frac{-3}{0}\right) \Longrightarrow F(A,2) = Span\left\{\left(\frac{1}{2}\right), \left(\frac{-3}{0}\right)\right\}$$

Thm: The eigenvalues of a tringular matrix are the entries on its diagonal

I.e., $(A-\lambda I | \vec{0})$ has a nonzero solution iff at least one of the diagnal entries $(a_{ij} - \lambda = 0)$

Thm: O is an eval of A iff A is not invertible

thm: $IF \left\{ \begin{array}{c} \vec{v}_1, \dots, \vec{v}_r \end{array} \right\}$ one every of A corresponding to distinct evals $\left\{ 2, \dots, 2r \right\}$ then the set $\left\{ \vec{v}_1, \dots, \vec{v}_r \right\}$ is LI

5.2) The Characteristic Equation

ex: Find the evals of $A = (3-6) \implies find all <math>\lambda$ s.t. $(A-\lambda \pm) \stackrel{?}{\times} = \stackrel{?}{\circ}$ has non- $\stackrel{?}{\circ}$ solutions

ET Find all & s.E. A-2I is not inv.

E) Find all 2 s.t. det(A-2I)=0

Graphe: $\det\left(\frac{2-\lambda}{3}, \frac{3}{-6-\lambda}\right) - \left(2-\lambda\right)(6+\lambda)^{-9} = -(12+2\lambda-6\lambda-\lambda^2)-9 = \lambda^2 + 4\lambda - 21 = 0$

Fact:
$$\lambda$$
 is an eval of A iff $det(A-\lambda I) = 0$

Nomen cloture: PA (2):= det (A- 2I) is A's Characteristic Polynomial

 $(\lambda+7)(\lambda-3)=0$ $P_A(\lambda)=\det(A-\lambda I)=0$ is A's Characteristic equation $\lambda=-7$. $\lambda=3$

	(6 -2 6 -1)		2	
ex:	A= 0 3 -8 0 0 0 5 4	>> det(A-ZI) =	(5-2)2 (3-2) (1-2). 7 important, there are 2	
	[000]		important, there are 2	