

Đăng nhập

CHUYÊN ĐỀ 23_KHOẢNG CÁCH TRONG KHÔNG GIAN

A. KIẾN THỨC CƠ BẢN CẦN NẮM

B. CÂU HỎI TRẮC NGHIỆM

1. Khoảng cách từ điểm đến mặt

Khoảng cách từ điểm $M(x_M; y_M; z_M)$ đến mặt phẳng (P): ax + by + cz + d = 0 được xác định bởi công

thức:
$$d(M;(P)) = \frac{|ax_M + by_M + cz_M + d|}{\sqrt{a^2 + b^2 + c^2}}.$$

2. Khoảng cách giữa hai mặt phẳng song song

$$(\alpha)/(\beta)_{\text{thi}} d((\alpha);(\beta)) = d(A,(\beta))_{\text{v\'oi}} A \in (\alpha)$$

Nhận xét:

$$\begin{split} N &\acute{e}u \ m \breve{a}t \ ph \mathring{a}ng \ \left(P\right) : ax + by + cz + d \quad _{v \grave{a}} \left(Q\right) : ax + by + cz + d \quad _{\left(a^2 + b^2 + c^2 > 0\right)} \ song \ song \ v \acute{o}i \ nhau \\ & \left(d \neq d'\right) \quad _{th\grave{a}} d \left(\left(P\right); \left(Q\right)\right) = \frac{\left|d - d'\right|}{\sqrt{a^2 + b^2 + c^2}}. \end{split}$$

3. Khoảng cách giữa đường thẳng và phẳng song song

$$d / / (\beta)$$
 thì $d(d;(\beta)) = d(A,(\beta))$ với $A \in d$

4. Khoảng cách từ một điểm đến đường thẳng – Khoảng cách giữa hai đường thẳng

Khoảng cách từ điểm M đến một đường thẳng d qua điểm M có vécto chỉ phương u_d được xác

định bởi công thức

định bởi công thức
$$d(M,d) = \frac{\left[M \cdot M, u_d\right]}{\left|u_d\right|}.$$

Khoảng cách giữa hai đường thẳng song song là khoảng cách từ một điểm thuộc đường thẳng này đến đường thẳng kia.

Khoảng cách giữa hai đường thẳng chéo nhau: d đi qua điểm M và có véctơ chỉ phương u và d' M'

 $d(d,d') = \frac{\left| [u,u'].M.M \right|}{\left| [u,u'] \right|}.$ và có vécto chỉ phương đi qua điểm

B. CÂU HỎI TRẮC NGHIỆM

Câu 1: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) có phương trình: 3x+4y+2z+4=0 và điểm A(1;-2;3). Tính khoảng cách d từ A đến (P).

A.
$$d = \frac{5}{9}$$

B.
$$d = \frac{3}{29}$$

$$d = \frac{5}{9}$$
. $d = \frac{5}{29}$. $C. d = \frac{5}{\sqrt{29}}$. $D. d = \frac{\sqrt{5}}{3}$.

D.
$$d = \frac{\sqrt{5}}{3}$$

Chon C

$$\frac{d}{\text{Khoang cách từ đến là}} \frac{A}{\text{dén là}} \frac{(P)}{dA} d(A, (P)) = \frac{\left|3x_A + 4y_A + 2z_A + 4\right|}{\sqrt{3^2 + 4^2 + 2^2}} = \frac{\left|3 - 8 + 6 + 4\right|}{\sqrt{29}}$$

$$\Rightarrow d(A, (P)) = \frac{5}{\sqrt{29}}$$

Câu 2: Trong không gian Oxyz, tính khoảng cách từ M(1;2;-3) đến mặt phẳng (P): x + 2y + 2z - 10 = 0.

 $\frac{11}{A}$. $\frac{3}{B}$. $\frac{7}{C}$. $\frac{4}{3}$. $\frac{4}{3}$.

Chon A

$$d(M;(P)) = \frac{|1+2.2+2.(-3)-10|}{\sqrt{1^2+2^2+2^2}} = \frac{|-11|}{3} = \frac{11}{3}.$$

Trong không gian Oxyz, khoảng cách giữa hai mặt phẳng (P): x+2y+2z-8=0va(Q): x + 2y + 2z - 4 = 0 bằng

A. 1.

B. $\frac{4}{3}$.

C. 2.

Lời giải

Chon B

$$\frac{\left\{ (P)//(Q) \right\}}{A(8;0;0) \in (P)} \Rightarrow d\left((P);(Q) \right) = d\left(A;(Q) \right) = \frac{\left| 8 + 2.0 + 2.0 - 4 \right|}{\sqrt{1^2 + 2^2 + 2^2}} = \frac{4}{3}.$$

Trong không gian Oxyz Trang 2 / giữa hai mặt phảng (‡): x + 2y - 2z - 16 = 0 và Câu 4:

Trong không gian Oxyz, khoảng cách giữa hai mặt phẳng (P): x+2y-2z-16=0 và Câu 4: (Q): x+2y-2z-1=0 bằng

A. 5.

 $\frac{17}{3}$.

C. 6.

Lời giải

Chon A

$$\begin{cases}
(P)//(Q) \\
A(16;0;0) \in (P)
\end{cases} \Rightarrow d(P);(Q) = d(A;(Q)) = \frac{|16+2.0-2.0-1|}{\sqrt{1^2+2^2+2^2}} = 5.$$

Câu 5: Trong không gian Oxyz khoảng cách giữa hai mặt phẳng (P): x+2y+3z-1=0 và (Q): x+2y+3z+6=0 là

A. $\frac{7}{\sqrt{14}}$ B. $\frac{8}{\sqrt{14}}$

D. $\frac{5}{\sqrt{14}}$

Lời giải

Chon A

$$(P): x + 2y + 3z - 1 = 0 \quad (Q): x + 2y + 3z + 6 = 0 \qquad \frac{1}{-} = \frac{2}{3} \neq \frac{-1}{6}$$

$$(P): (Q): x + 2y + 3z - 1 = 0 \quad (Q): x + 2y + 3z + 6 = 0 \qquad \frac{1}{-} = \frac{2}{3} \neq \frac{-1}{6}$$

$$(P): (Q): (P): (Q): x + 2y + 3z + 6 = 0 \qquad \frac{1}{-} = \frac{2}{3} \neq \frac{-1}{6}$$

$$(P): (Q): x + 2y + 3z - 1 = 0 \quad (Q): x + 2y + 3z + 6 = 0 \qquad \frac{1}{-} = \frac{2}{3} \neq \frac{3}{3} \neq \frac{-1}{6}$$

$$(P): (Q): x + 2y + 3z - 1 = 0 \quad (Q): x + 2y + 3z + 6 = 0 \qquad \frac{1}{-} = \frac{2}{3} \neq \frac{3}{3} \neq \frac{-1}{6}$$

$$(P): (Q): x + 2y + 3z - 1 = 0 \quad (Q): x + 2y + 3z + 6 = 0 \qquad \frac{1}{-} = \frac{2}{3} \neq \frac{3}{3} \neq \frac{-1}{6}$$

$$(P)$$
 (Q)

Ta có:
$$1 2 3 6$$

$$\frac{(P) (Q)}{\text{//}} = \frac{(P);(Q)}{\sqrt{1^2 + 2^2 + 3^2}} = \frac{\sqrt{14}}{2}.$$

- Câu 6: Trong không gian Oxyz, khoảng cách giữa hai mặt phẳng (P): 6x + 3y + 2z 1 = 0 và $(Q): x + \frac{1}{2}y + \frac{1}{3}z + 8 = 0$ bằng
 - **A.** 7.
 - **B.** 8.

D. 6.

Lời giải

Chon A

$$\frac{6}{1} = \frac{3}{\frac{1}{2}} = \frac{2}{\frac{1}{2}} \neq \frac{-1}{8} \Rightarrow (P)//(Q) \qquad d\left((P);(Q)\right) = d\left(M;(Q)\right) \qquad M\left(0;1;-1\right) \in (P)$$
Vì nên với

$$d((P);(Q)) = d(M;(Q)) = \frac{\left|x_M + \frac{1}{2}y_M + \frac{1}{3}z_M + 8\right|}{\sqrt{1^2 + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{3}\right)^2}} = \frac{\left|0 + \frac{1}{2} - \frac{1}{3} + 8\right|}{\sqrt{\frac{49}{36}}} = 7$$

- Câu 7: Trong không gian Oxyz khoảng cách giữa hai mặt phẳng (P): x+2y+3z-1=0 và (Q): x+2y+3z+6=0 là:
 - $\frac{7}{\sqrt{14}}$. $\frac{8}{\sqrt{14}}$. $\frac{14}{C}$.

D. $\frac{5}{\sqrt{14}}$.

Chon A

$$C\acute{o}(P)//(Q) \Rightarrow d(P)^{\mathsf{Trang}} = 3 \left(A/(Q)^{\mathsf{8}}\right) \quad \forall \quad \text{with thunce} P)$$

$$C\acute{o}(P)/(Q) \Rightarrow d((P),(Q)) = d(A,(Q))_{v\acute{o}i} A_{b\acute{a}t \ ki \ thuộc}(P).$$

$$A(1;0;0) \in (P) \atop \text{Chon} d((P),(Q)) = d(A,(Q)) = \frac{|7|}{\sqrt{14}} = \frac{7}{\sqrt{14}}.$$

- Trong không gian với hệ tọa độ Oxyz, tính khoảng cách giữa hai mặt phẳng song song Câu 8: $(\alpha): x-2y-2z+4=0$ $_{\text{Va}}(\beta): -x+2y+2z-7=0$
 - **A.** 0.

- **B.** 3.
- **C.** -1.

D. 1.

Lời giải

Chọn D

Ta có $M(0;1;1) \in (\alpha)$, khoảng cách giữa hai mặt phẳng $(\alpha), (\beta)$ là:

$$h = d\left(M, (\beta)\right) = \frac{\left|-0 + 2.1 + 2.1 - 7\right|}{\sqrt{\left(-1\right)^2 + 2^2 + 2^2}} = 1$$

Tìm trên trục Oz điểm M cách đều điểm A(2;3;4) và mặt phẳng (P): 2x+3y+z-17=0

- **A.** M(0;0;-3). **B.** M(0;0;3). **C.** M(0;0;-4). **D.** M(0;0;4).

Lời giải

Chon B

$$M \in Oz \implies M\left(0,0$$
 Triang 3 MA 8 $\sqrt{2^2 + 3^2} + \left(\mathbb{Q}_{-m}\right)^{\frac{1}{4}}$ $d\left(M,(P)\right) = \frac{|m-17|}{\sqrt{14}}$.

Chọn B

$$M \in Oz \implies M(0;0;m)$$

Vì $MA = \sqrt{2^2 + 3^2 + (4 - m)^2}$; $d(M,(P)) = \frac{|m - 17|}{\sqrt{14}}$.

M cách đều điểm A(2;3;4) và mặt phẳng (P): 2x+3y+z-17=0 khi và chỉ khi

$$\sqrt{2^2 + 3^2 + (4 - m)^2} = \frac{|m - 17|}{\sqrt{14}} \Leftrightarrow 13(m - 3)^2 = 0 \Leftrightarrow m = 3$$
. Vậy.

Câu 10: Trong không gian Oxyz, tìm tập hợp các điểm cách đều cặp mặt phẳng sau đây: 4x-y-2z-3=0, 4x-y-2z-5=0.

A.
$$4x - y - 2z - 6 = 0$$
.

B.
$$4x - y - 2z - 4 = 0$$

C.
$$4x-y-2z-1=0$$
.

D.
$$4x - y - 2z - 2 = 0$$

Lời giải

Chọn B

Gọi điểm $A(0;-3;0) \in 4x - y - 2z - 3 = 0$ $(\alpha)_{và} B(0;-5;0) \in 4x - y - 2z - 5 = 0$ $(\beta)_{.}$

Mặt phẳng cách đều hai mp trên có dạng: 4x-y-2z+m=0 (γ) .

$$d\left(A;\left(\beta\right)\right) = 2d\left(A;\left(\gamma\right)\right) \Leftrightarrow \left|m+3\right| = 1 \Leftrightarrow \begin{bmatrix} m=-2 \\ m=-4 \end{bmatrix}$$

Để mp cách đều hai mp trên thì

Mặt khác điểm hai điểm A , B phải nằm về hai phía của mp (γ) . Do đó:

+) Với
$$m = -2$$
 ta có: $(4.0 + 3 - 2.0 - 2)(4.0 + 5 - 2.0 - 2) > 0$ nên $A; B$ cùng phía.

+) Với
$$m = -4$$
 ta có: $(4.0 + 3 - 2.0 - 4)(4.0 + 5 - 2.0 - 4) < 0$ nên $A; B$ khác phía.

Vậy phương trình mặt phẳng cần tìm là 4x-y-2z-4=0 (γ) .

Câu 11: Trong không gian
$$P: x + y + z + 2 = 0$$
Trang hoảng pách giữa đường thẳng
$$(P): x + y + z + 2 = 0$$
Trang hoảng pách giữa đường thẳng
$$(P): x + y + z + 2 = 0$$
Trang hoảng pách giữa đường thẳng

Câu 11: Trong không gian , khoảng cách giữa đường thẳng $d: \frac{x-1}{1} = \frac{y}{1} = \frac{z}{-2}$ và mặt phẳng (P): x + y + z + 2 = 0 bằng

$$\frac{2\sqrt{3}}{3}$$
. **D.**

Lời giải

Chon D

Đường thẳng $\overset{d}{\text{di qua điểm}} M(1;0;0)$ và có véc tơ chỉ phương $\overset{\frown}{u} = (1;1;-2)$. Mặt phẳng (P) có véc tơ pháp tuyến n = (1;1;1).

$$\operatorname{Ta c\acute{o}} \begin{cases} u.n = 0 \\ M \notin (P) \end{cases} \Rightarrow d / / (P).$$

$$\Rightarrow d(d,(P)) = d(M,(P)) = \frac{|1+0+0+2|}{\sqrt{1+1+1}} = \sqrt{3}$$

Câu 12: Trong không gian với hệ tọa độ Oxyz, khoảng cách giữa đường thẳng

$$d: \frac{x-1}{2} = \frac{y-3}{2} = \frac{z-2}{1} \text{ và mặt phẳng} (P): x-2y+2z+4 = 0$$

A. 1.

B. 0.

C. 3.

D. 2.

Lời giải

Chon A

Vì đường thẳng d song song với mặt phẳng nên : Chọn $M(1;3;2) \in d$

Chon A

Vì đường thẳng d song song với mặt phẳng nên : Chọn $M(1;3;2) \in d$

$$d(d;(P)) = d(M;(P)) = \frac{|1-6+4+4|}{\sqrt{1^2 + (-2)^2 + 2^2}} = 1$$

Câu 13: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x-2y-z+1=0 và đường thẳng $\Delta: \frac{x-1}{2} = \frac{y+2}{1} = \frac{z-1}{2}$. Tính khoảng cách giữa và (P).

d = 2 **B.** $d = \frac{5}{3}$ **C.** $d = \frac{2}{3}$ **D.** $d = \frac{1}{3}$

Lời giải

Chon A

A.

(P) có vecto pháp tuyến n(2;-2;-1) và đường thẳng Δ có vecto chỉ phương u(2;1;2) thỏa mãn n.u = 0 nên $\Delta //(P)$ hoặc $\Delta \subset (P)$.

$$A(1;-2;1) \in \Delta$$

Do đó: lấy ta có: $d(\Delta(P)) = d(A;(P)) = \frac{|2.1-2.(-2)-1+1|}{\sqrt{4+4+1}} = 2$.

Oxyz

Câu 14: Trong không gian , khoảng cách giữa đường thẳng $d: \frac{x-1}{1} = \frac{y}{1} = \frac{z}{-2}$ và mặt phẳng (P): x + y + z + 2 = 0 bằng:

A.

 $2\sqrt{3}$. $\frac{\sqrt{3}}{3}$. $\frac{2\sqrt{3}}{3}$.

Lời giải

Chon D

Chọn D

Đường thẳng d qua M(1;0;0) và có vec-tơ chỉ phương a = (1;1;-2).

Mặt phẳng (P) có vec-tơ pháp tuyến n = (1;1;1).

Ta có:
$$\begin{cases} a.n = 1.1 + 1.1 - 2.1 = 0 \\ M \notin (P) \end{cases} \Rightarrow d / / (P).$$

$$d(d,(P)) = d(M,(P)) = \frac{|1+0+0+2|}{\sqrt{1^2+1^2+1^2}} = \sqrt{3}.$$

Oxyz

 $\Delta : \begin{cases} x = 2 + t & (t \in) \\ y = 5 + 4t \\ z = 2 + t \end{cases},$

Câu 15: Trong không gian với hệ tọa độ , khoảng cách giữa đường thẳng và mặt phẳng (P): 2x - y + 2z = 0 bằng

A. 1.

B. 0.

C. 2.

D. 3.

Lời giải

Chọn A

Xét phương trình $2(2+t)-(5+4t)+2(2+t)=0 \Leftrightarrow 0t+3=0$ Trang $5/(P^8)$ — \oplus +

Xét phương trình
$$2(2+t)-(5+4t)+2(2+t)=0 \Leftrightarrow 0t+3=0$$
.

Phương trình này vô nghiệm nên $\Delta //(P)$.

Chọn $M(2;5;2) \in \Delta$.

Khi đó:

$$d(\Delta,(P)) = d(M,(P)) = \frac{|2.2 - 5 + 2.2|}{\sqrt{2^2 + (-1)^2 + 2^2}} = 1.$$

Câu 16: Tính khoảng cách giữa hai đường thẳng : $\frac{d_1}{1} = \frac{y-3}{2} = \frac{z-2}{1}$ và : $\frac{d_2}{1} = \frac{y+1}{-2} = \frac{z-2}{1}$

A.
$$\frac{\sqrt{2}}{3}$$
 .

B.
$$\frac{12}{5}$$

$$\frac{\sqrt{2}}{3}$$
. $\frac{12}{5}$. $\frac{3\sqrt{2}}{2}$. $\frac{3}{2}$. $\frac{3}{2}$.

Chon C

$$d_{1} \text{ qua } M(0;3;2) \text{ có vtcp } \vec{u} = (1;2;1), d_{2} \text{ qua } N(3;-1;2) \text{ có vtcp } \vec{v} = (1;-2;1),$$

$$[\vec{u},\vec{v}] = (4;0;-4), MN = (3;-4;0).$$

$$d(d_{1},d_{2}) = |[\vec{u},\vec{v}].MN| = \frac{12}{4\sqrt{2}} = \frac{3\sqrt{2}}{2}.$$

$$Oxyz$$

$$M(2;-4;-1)$$

, khoảng cách từ điểm

B.
$$\sqrt{6}$$
.

C.
$$2\sqrt{14}$$
.

D.
$$2\sqrt{6}$$
.

tới đường thẳng

A. $\sqrt{14}$.. Lời giải

Chon C

Chọn C Trang 6 / 8 — \oplus + Dường thẳng Δ đi qua N(0;2;3), có véc tơ chỉ phương u=(1;-1;2)

Đường thẳng Δ đi qua N(0;2;3), có véc tơ chỉ phương u = (1;-1;2) $MN = (-2; 6; 4); \lceil MN, u \rceil = (16; 8; -4)$

$$d(M,\Delta) = \frac{\left[MN,u\right]}{\left|u\right|} = \frac{\sqrt{336}}{\sqrt{6}} = 2\sqrt{14}.$$

OxyzCâu 18: Trong không gian với hệ tọa độ , cho đường thẳng $(d): \frac{x-3}{-2} = \frac{y}{-1} = \frac{z-1}{1}$ và điểm A(2;-1;0). Khoảng cách từ điểm A đến đường thẳng A bằng

$$\sqrt{7}$$

$$\frac{\sqrt{7}}{2}$$

$$\sqrt{7}$$
 A. . $\frac{\sqrt{7}}{2}$ C. $\frac{\sqrt{21}}{3}$ D. $\frac{\sqrt{7}}{3}$.

$$\frac{\sqrt{7}}{3}$$
.

Lời giải

Chọn C

Gọi $M(3;0;1) \in d$.

$$AM(1;1;1); u_d(-2;-1;1) \Rightarrow \left[AM; u_d\right] = (2;-3;1) \Rightarrow \left[AM; u_d\right] = \sqrt{14}$$

Vây khoảng cách từ điểm đến đường thẳng bằng
$$\frac{d}{d(A,d)} = \frac{AM; u_d}{u_d} = \frac{\sqrt{14}}{\sqrt{6}} = \frac{\sqrt{21}}{3}$$

A
$$d(A,d) = \frac{\begin{bmatrix} AM; u_d \end{bmatrix}}{\begin{vmatrix} u_d \end{vmatrix}} = \frac{\sqrt{14}}{\sqrt{6}} = \frac{\sqrt{21}}{3}$$
Afán đường thẳng bằng

Vậy khoảng cách từ điểm đến đường thẳng

$$d:\begin{cases} x=1+t\\ y=-3-t,\ d':\frac{x}{3}=\frac{y-3}{-1}=\frac{z-1}{1}\\ z=2+2t \end{cases}$$
. Khi đó khoảng cách giữa

Câu 19: Cho

Cho z = 2 + 2t . Khi đó khoảng cách giữa và $\frac{13\sqrt{30}}{30}$. $\frac{\sqrt{30}}{30}$. $\frac{9\sqrt{30}}{10}$. $\frac{9\sqrt{30}}{10}$. D. . . Khi đó khoảng cách giữa

A.
$$\frac{13\sqrt{30}}{30}$$
.

$$\frac{\sqrt{3}}{3}$$
.

$$\frac{9\sqrt{30}}{10}$$
.

d'

Chon C

Ta có $A(1;-3;2) \in d$, $B(0;3;1) \in d'$ và u(1;-1;2), u'(3;-1;1) lần lượt là vectơ chỉ phương của d,d'

$$d(d,d') = \frac{\left[u,u' \right] \cdot AB \right]}{\left[u,u' \right]} = \frac{27}{\sqrt{30}} = \frac{9\sqrt{30}}{10}$$

Câu 20: Trong không gian Oxyz, tìm tất cả các giá trị thực của tham số m để khoảng cách từ điểm I(2;-1;-2) đến mặt phẳng (P): 4x-3y-m=0 bằng 2.

A.
$$m = 1$$
.

B.
$$m = -1$$
 hoặc $m = -21$.

C.
$$m = 1$$
 hoặc $m = 21$.

D.
$$m = -9$$
 hoặc $m = 31$.

Lời giải

Chon C

$$d(I;(P)) = 2 \Leftrightarrow \frac{|11-m|}{5} = 2 \Leftrightarrow \begin{bmatrix} m=1\\ m=21 \end{bmatrix}$$

Trang mat phang 8 P hoảng cách từ gốc Câu 21: Trong không gian tọa độ O đến mặt phẳng (P) bằng

, cho mặt phẳng $(P): \frac{x}{1} + \frac{y}{2} + \frac{z}{3} = 1$. Khoảng cách từ gốc Câu 21: Trong không gian tọa độ O đến mặt phẳng (P) bằng

A. .

Lời giải

Chọn D

$$d = \frac{\left| \frac{0}{1} + \frac{0}{2} + \frac{0}{3} - 1 \right|}{\sqrt{1^2 + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{3}\right)^2}} = \frac{6}{7}.$$

Khoảng cách từ điểm đến

Câu 22: Trong không gian với hệ trục tọa độ Oxyz, cho A(1;2;3), B(3;4;4). Tìm tất cả các giá trị của tham số m sao cho khoảng cách từ điểm A đến mặt phẳng 2x + y + mz - 1 = 0bằng độ dài đoạn thẳng AB.

A. m = 2.

B. m = -2. **C.** m = -3. **D.** $m = \pm 2$.

Lời giải

Chon A

Ta có
$$\overrightarrow{AB} = (2;2;1) \Rightarrow AB = \sqrt{2^2 + 2^2 + 1^2} = 3$$
 (1).

Khoảng cách từ đến Trặnghắi 82 / : 8
$$\frac{|2.1+2+m.3-1|}{|2.1+2+m.3-1|} = \frac{|3m+3|}{\sqrt{5+m^2}}$$
 (2)
$$AB = A(A(B)) \Rightarrow 3 = \frac{|3m+3|}{3} \Leftrightarrow 9(5+m^2) = 9(m+1)^2 \Leftrightarrow m = 2$$

Khoảng cách từ đến mặt phẳng:
$$d(A,(P)) = \frac{|2.1+2+m.5-1|}{\sqrt{2^2+1^2+m^2}} = \frac{|3m+5|}{\sqrt{5+m^2}}$$
(2).
$$AB = d(A,(P)) \Rightarrow 3 = \frac{|3m+3|}{\sqrt{5+m^2}} \Leftrightarrow 9(5+m^2) = 9(m+1)^2 \Leftrightarrow m=2$$
.

