Pile 6x6 General Spring Manual

v 1.0.0

1. 탭 구성

1) 말뚝 정보: 말뚝 설정 및 배치

2) 지반 정보: 지반 정보 입력 및 저감 계수(액상화, 사면 효과, 군말뚝 효과) 설정

3) Import: Midas Civil 로 6x6 general spring 입력

2. 탭 별 입력값

1) 말뚝 정보

A) 프로젝트 명

프로젝트 명을 입력합니다. Plug In에서 입력한 input 값들을 다운로드 시, '프로젝트명.json' 파일로 다운로드 됩니다.

B) 말뚝 정보

a) 기초 제원

재하방향폭, 측면길이:

기초의 크기를 지정합니다. 해당 제원들은 말뚝을 배치하기 위한 기준점이 됩니다. 말뚝 배치도에서 제원 별 기초의 형상을 확인 할 수 있습니다.

Plug In 에서의 모든 입력은 '도로교설계기준 2010'에서의 좌표계를 따르며, Midas Civil 로 Import 시 Civil 의 좌표계로 변환하여 입력됩니다.

저면 표고: 말뚝 머리(기초 하단)의 Level 을 입력합니다. 저면표고와 지반 정보 탭 내의 '설계 지반면 표고'를 비교하여 노출 말뚝인지, 근입 말뚝인지 판별하게 됩니다.

외력 작용점 : 외력 작용점의 위치를 지정합니다. 해당 위치로부터 각 말뚝 중심까지의 거리로 축직각방향 스프링정수(K1 ~ K4)를 산정합니다.

B) 말뚝 설정

a) 기본설정

기본 설정에서는 말뚝의 길이 및 종류, 시공방법 등에 대하여 정의합니다.

말뚝 명칭: 말뚝의 명칭을 입력합니다. 말뚝의 배치는 열 단위로 설정하며, 각 열에 해당하는 말뚝의 명칭을 입력합니다.

말뚝 길이: 총 말뚝의 길이를 m 단위로 입력합니다.

말뚝 종류: 말뚝의 종류를 선택합니다. 지원하고 있는 말뚝의 종류는 아래와 같습니다.

<현장타설말뚝>, <PHC말뚝>, <SC말뚝>, <강관말뚝>, <소일시멘트 말뚝>

시공 방법: 말뚝 시공 방법을 선택합니다. 지원하고 있는 시공 방법은 아래와 같습니다.

<타격말뚝(타격 공법)>, <타격말뚝(바이브러 해머공법)>, <현장타설말뚝>, <중굴착말뚝>, <preboring 말뚝>, <강관 소일시멘트 말뚝>, <회전말뚝>

말뚝머리 접합조건: 말뚝머리 접합조건을 '강결', '힌지' 중 선택합니다.

말뚝 선단 조건: 말뚝 선단 조건을 '자유', '힌지', '고정' 중 선택합니다.

b) 하부 말뚝 설정

상,하부로 서로 다른 말뚝을 배치하거나, 단면 제원이 바뀌는 경우 '하부 말뚝 설정'을 체크 하여 하부 말뚝에 대한 제원을 입력 할 수 있습니다. 하부 말뚝을 설정하지 않을 경우, 단일 말뚝으로 고려됩니다.

제공하고 있는 말뚝 종류는 '기본설정' 내의 말뚝 종류와 동일합니다.

말뚝 위치: 하부 말뚝이 시작되는 위치를 말뚝머리로부터 상대거리(m) 로 입력합니다.

C) 단면 설정

말뚝의 단면 제원을 입력합니다. 기본 말뚝 단면(필수), 하부 말뚝 단면(옵션), 보강 단면(옵션) 을 입력합니다.

선택한 말뚝 종류에 따라 입력할 수 있는 값은 아래와 같습니다.

		콘크리트		철근/PC강재/강관				
	직경	두께	탄성계수/ 변형계수	단면적/ 직경	두께	탄성계수	배치반경/ 부식대	
(단위계)	(mm)	(mm)	(N/mm^2)	(cm ²)/ (mm)	(mm)	(N/mm^2)	(mm)	
현장타설말뚝	0		0	0		0		
PHC말뚝	0	0	0	0		0	0	
SC말뚝	0	0	0		0	0	0	
강관말뚝				0	0	0	0	
소일시멘트말뚝	0		0	0	0	0	0	

^{*} 단면 입력값에 따른 단면 특성치 계산은 Appendix 참고

a) 기본 말뚝 단면 (필수)

'기본 설정'에서 선택한 말뚝 종류에 따라, 말뚝 단면에 대한 제원을 입력합니다.

b) 하부 말뚝 단면 (옵션)

'하부 말뚝 설정'을 체크하면 활성화됩니다. 하부 말뚝 종류에 따라 단면 제원을 입력합니다.

C) 단면 설정

c) 보강단면 (옵션)

단면 보강이 있을 경우 입력합니다. 보강 위치의 시점부/종점부에 값을 입력할 경우 보강 단면으로 고려됩니다.

보강 방법: '피복' 또는 '피복+충진' 을 선택합니다.

보강 위치: 보강 위치를 입력합니다. 말뚝 머리로부터 떨어진 거리로 보강 시점부와 종점부 위치를 m 단위로 입력합니다.

피복부, 충진부 : 피복부와 충진부에 대한 두께와 탄성계수를 입력합니다. 단위계는 (mm) 와 (N/mm^2) 입니다.

D) 말뚝 배치

말뚝을 열 단위로 배치합니다. 입력 방법은 아래와 같습니다.

참조 기준:

지하 방향의 경우 '우측' 또는 '좌측' 을 선택 재하 직각 방향의 경우 '상단' 또는 '하단'을 선택

위치: 첫번째 말뚝의 배치 위치를 지정합니다.

간격: 재하 방향으로 말뚝을 추가합니다. '개수@간격'으로 입력합니다.

각도: 경사 말뚝의 경우 각도를 입력합니다. 각도 입력 순서는 **재하 방향의 참조 기준에 따른 방향**을 따릅니다.

* 입력한 말뚝의 개수만큼 각도를 입력하여야 합니다. 위 예시에서, 하나의 열에 3개의 말뚝이 배치되었으므로, 각도는 '3@0'을 입력합니다.

최종적으로, 말뚝의 배치가 완료 되면 '추가' 를 클릭하여 말뚝을 배치합니다.

E) 배치 정보

현재 입력된 말뚝 정보를 확인 할 수 있습니다.

Table 열을 클릭하여, 말뚝 정보를 확인하거나 수정, 삭제 할 수 있습니다.

2) 지반 정보

A) 지반 정보

설계 지반면 표고 : 지층 최상단 레벨을 입력합니다. '저면표고'와 '설계 지반면 표고'를 비교하여 노출 말뚝인지, 근입 말뚝인지 판별하게 됩니다.

B) 지층 설정

Vsi 의 자동 계산:

선택한 층 종류에 따라 도로설계편람에 따른 Vsi 를 자동 계산합니다.

점성토 층의 경우,

$$V_{si} = 100N^{1/3}, (1 \le N \le 25)$$

사질토, 사력토 층의 경우,

$$V_{si} = 80N^{1/3}, (1 \le N \le 50)$$

만약, 해당 옵션을 체크하지 않을 경우, 지층 테이블 내에서 Vsi 값을 직접 입력할 수 있습니다.

2) 지반 정보

B) 지층 설정

수평지반 반력계수 KH의 저감:

액상화 층에 대한 저감, 사면효과에 의한 저감, 군말뚝 효과에 의한 저감 계수를 고려할 지 선택합니다.

선택에 따라 각 지층의 수평지반 반력계수 KH 계산시 해당 저감 계수가 고려되며, 말뚝의 특성치(β) 산정에 적용됩니다. (액상화 층에 대한 저감은 지진시 스프링정수를 산정할 시 적용됩니다)

액상화 층에 대한 저감 : 체크하지 않을시 1로 고려됩니다. 체크 시 각 지층 테이블에 (DE) 입력란이 활성화 됩니다. 해당 지층에 대한 액상화 저감 계수를 0에서 1 사이로 입력할 수 있습니다.

사면 효과에 의한 저감: 사면 효과에 따른 저감 계수를 고려합니다. 계수는 아래와 같이 산정됩니다.

※사면을 고려한 수평방향 지반반력계수 보정

$$K_{H\theta} = \alpha_{H\theta} \cdot K_H$$

여기서, $K_{H\theta}$: 사면의 영향을 고려한 수평방향지반반력계수

 $\alpha_{H\theta}$: 사면의 영향을 고려한 수평방향 지반반력계수에 관한 보정계수

 K_H : 수평방향지반반력계수

$$\begin{aligned} \alpha_{H\theta} &= 0 & (0 \leq \alpha_H \leq 0.5) \\ \alpha_{H\theta} &= 0.3 \log \alpha_H + 0.7 & (0.5 \leq \alpha_H \leq 10) \\ \alpha_{H\theta} &= 1.0 & (10 \leq \alpha_H) \end{aligned}$$

 α_{H} : 사면까지의 수평토 피복과 기초 직경 D와의 비율

만약, 해당 옵션을 체크하지 않을 경우, $\alpha_{H\theta}$ 는 1로 고려됩니다.

해당 옵션을 체크할 경우 $\alpha_H D$ **값**을 지층 테이블 내의 '**전면길이'** 란에 입력하실 수 있습니다.

군말뚝 효과에 의한 저감 : 군말뚝 효과를 고려하여 수평방향지반반력계수를 저감합니다. 해당 옵션을 체크 할 Λ μ 값을 직접 입력 하실 수 있습니다. 만약 check off 라면, 1로 고려됩니다.

※무리말뚝효과를고려한수평방향지반반력계수보정

$$\mu = 1 - 0.2 \left(2.5 - \frac{L}{D_B} \right)$$
, $L < 2.5 D_B$ 도로교 설계기준 2010 해설 (5.8.37)

여기서, L: 말뚝 중심 간격 (m)

D_R: 말뚝 지름 (m)

[상시, 7	디진시]											
• 수평	저항에 관여	하는 지반의	.l 깊이1/β	0.18	0.184589							
· 1/β ξ	범위의α·Ε	0의 평균값		464	4649.456		2)					
· 말뚝	의 환산 재히	녹 BH		2.32	2.328 (m)							
• 수평	방향 지반반	력계수 kHC)	154	98.186	(kN/m3	3)					
• 수평	방향 지반반	력계수 kH		311	7.171	(kN/m3	3)					
• 군말	뚝 효과에 의	한 저감계:	수μ	0.93	35							
층 No.	층 상면 표고	층 두께 (m)	저감계수 DE	αΗΘ	αE0 (kN/m2)		kH0 (k	N/m3)		kH (kN/m3)		
140.	(m)	(11)	0.		상시	지진시	상시	지진시	상시	지진시	지진시(액상화)	
1	50.000	3.4	0.667	0.626	5258.00	10517.00	17528.00	35056.00	3770.51	7541.00	5030.00	
2	46.600	7	1.000	0.647	3623.00	7246.00	12077.00	24155.00	2598.00	5196.00	5196.00	
3	39.600	8.2	0.667	0.753	29518.00	59035.00	98392.00	196784.00	21165.47	42331.00	28235.00	
4	31.400	2	1.000	1.000	14000.00	28000.00	46667.00	93333.00	10038.64	20077.00	20077.00	
5	29.400	9.1	1.000	1.000	56000.00	112000.00	186667.00	373333.00	40154.56	80309.00	80309.00	
6	20.300	1.2	1.000	1.000	140000.00	280000.00	466667.00	933333.00	100386.40	200773.00	200773.00	

2) 지반 정보

C) 지층 테이블

지층 정보를 입력합니다. 지층 테이블에서 입력하는 값은 아래와 같습니다.

층 종류 : '점성토', '사질토', '사력토' 중 선택합니다. ' V_{si} 의 자동 계산'에 체크하였을 경우, 층 종류에 따라 '평균 N' 값을 이용해 Vsi 값을 계산합니다.

충 상면 표고: 입력값이 아닌, 입력한 '층 두께'에 따라 층 상편 표고가 자동으로 계산됩니다. '설계 지반면 표고' 값이 첫번째 층의 상면 Level 이 됩니다.

충 두께: 각 층의 두께를 m 단위로 입력합니다. 총 층 두께는 말뚝의 전체 길이보다 길어야 합니다.

평균 N값 : . 'Vsi의 자동 계산'에 체크하였을 경우, 층 종류에 따라 '평균 N' 값을 이용해 V_{si} 값을 계산합니다.

 \mathbf{y} : 흙의 습윤단위체적 중량을 입력합니다. 지반의 동적변형계수 (E_{D}) 값을 계산하는데 사용합니다.

 αE_0 (상시) : 상시의 αE_0 값을 kN/m^2 단위로 입력합니다.

 αE_0 (지진시): 지진시의 αE_0 값을 kN/m^2 단위로 입력합니다.

 ν_d (지진시) : 흙의 동적 포아송비를 입력합니다.

 V_{si} : 지층의 평균 전단파속도를 m/s 로 입력합니다. ' V_{si} 의 자동 계산'을 체크하였을 경우, 자동 계산됩니다.

 E_D : 지반의 동적변형계수를 자동계산합니다. 사용자가 입력할 수 없습니다.

 D_E : 액상화 층에 대한 저감계수를 입력합니다. '액상화 층에 대한 저감'을 체크하였을 경우 활성화 되며, 비활성화 될 경우 1의 값이 입력됩니다.

전면길이: 사면효과에 의한 저감계수를 계산하기 위한 전면 길이 $\alpha_H D$ 값을 m 단위로 입력합니다. '사면효과에 의한 저감'을 체크하였을 경우 활성화 되며, 비활성화 될 경우 1의 값이 입력됩니다. 표층부 지층이 아닌, 내부 지층의 경우 충분히 큰 값(100)을 입력하면 표층부 지층에만 사면효과를 고려하게 됩니다.

※ En (지반의 동적변형계수) 산정

$$V_{
m Sdi} = c_{
m v} \cdot V_{
m si}$$
 여기서, $V_{
m si}$: 지층의 평균 전단파속도 $c_{
m v}$: 전단파 속도 보정 계수 $c_{
m v} = 0.8 \ \ (V_{si} < 300m/s)$ $c_{
m v} = 1.0 \ \ (V_{si} \ge 300m/s)$

$$E_D = 2(1 + \nu_d)G_{\rm D}$$

여기서, ν_d : 흙의 동적 포아송비

 G_D : 지반 동적전단탄성계수 = $\frac{Y}{g}V_{SD}^2$

D) 데이터 저장 및 계산서 출력

Project	다운로드	업로드	계산	계산서출력	Import General Spring

입력 데이터를 저장하거나, 말뚝 특성치, 6x6 강성 매트릭스를 계산합니다.

다운로드/업로드: 입력 정보를 JSON 파일 형태로 다운로드 받거나, 업로드 할 수 있습니다.

계산: 말뚝 특성치와 6x6 matrix를 계산합니다.

계산서 출력:계산서를 출력합니다.

3) IMPORT

Midas Civil 로 6x6 Matrix를 Import 합니다.

Type 1과 Type 2 중 타입을 선택하여 Midas Civil로 Import합니다. 각 Type에 대한 설명은 아래와 같습니다.

Type 1 : Plug In 에서 입력한 재하 방향을 Midas Civil의 Global X 축과 일치시킵니다.

Type 2: Plug In 에서 입력한 재하 방향을 Midas Civil의 Global Y 축과 일치시킵니다.

'Import General Spring' 버튼을 클릭하면, midas Civil에 6x6 Matrix 가 general spring으로 입력됩니다. 상시, 지진시, 지진시(액상화), 고유주기 산정시의 매트릭스가 생성되며, 각각 ProjectName + '_Normal' 과 같이 생성됩니다.

말뚝 모델링의 방향(재하 방향, 재하직각방향) 에 따라 재하방향과 재하직각방향의 스프링 정수값이 달라지게 됩니다. Civil 로 6x6 Matrix를 입력할 때 Type 1과 Type 2의 방향이 달라짐에 유의해주시기 바랍니다.

각 Type 별 6x6 matrix 조합 방법의 차이는 Appendix를 참고하여주시기 바랍니다.

Appendix A.

1) 단면 특성치 계산 방법

현장타설말뚝 단면 특성치 계산

		콘크리트			철근			
	직경	-	탄성계수	단면적	-	탄성계수	-	
(단위계)	(mm)		(N/mm^2)	(cm ²)	-	(N/mm^2)	-	
현장타설말뚝	D	-	E_C	A_S	-	E_S	-	

단면적: $A = \frac{\pi}{4} D^2$

탄성계수: $E = E_C$

2차단면모멘트: $I = \frac{\pi}{64} D^4$

PHC말뚝 단면 특성치 계산

		콘크리트		PC 강재				
	직경	두께	탄성계수	단면적	-	탄성계수	배치반경	
(단위계)	(mm)	(mm)	(N/mm^2)	(cm ²)	_	(N/mm^2)	(mm)	
PHC말뚝	D	t_C	E_C	A_S	-	E_S	r	

단면적: $A = \pi (D - t_C) t_C + (\frac{E_S}{E_C} - 1) A_S$

탄성계수: $E = E_C$

2차단면모멘트: $I = \frac{\pi}{64}(D^4 - (D - 2t_C)^4) + \frac{1}{2}(\frac{E_S}{E_C} - 1)A_S r^2$

SC말뚝 단면 특성치 계산

	콘크리트			강관				
	직경	두께	탄성계수	1	두께	탄성계수	부식대	
(단위계)	(mm)	(mm)	(N/mm^2)	-	(mm)	(N/mm^2)	(mm)	
SC말뚝	D	t_C	E_C	-	t_S	E_S	r	

* 콘크리트 두께는 강관 + 콘크리트 두께를 입력

단면적: $A = \frac{\pi}{4}((D-2r)^2 - (D-2t_C)^2) + \frac{\pi}{4}(\frac{E_S}{E_C} - 1)((D-2r)^2 - (D-2t_S)^2)$

탄성계수: $E = E_C$

2차단면모멘트: $I = \frac{\pi}{64}((D-2r)^4 - (D-2t_C)^4) + \frac{\pi}{64}(\frac{E_S}{E_C} - 1)((D-2r)^4 - (D-2t_S)^4)$

Pile 6x6 General Spring Manual

강관말뚝 단면 특성치 계산

		콘크리트			강관			
		-	-	-	직경	두께	탄성계수	부식대
	(단위계)	-	-	-	(mm)	(mm)	(N/mm^2)	(mm)
Γ	강관말뚝	-	-	-	D	t_S	E_S	r

단면적: $A = \frac{\pi}{4}((D-2r)^2 - (D-2t_S)^2)$

탄성계수: $E = E_S$

2차단면모멘트: $I = \frac{\pi}{4}((D-2r)^4 - (D-2t_S)^4)$

소일시멘트 단면 특성치 계산

	소일시멘트			강관			
	직경	-	탄성계수	직경	두께	탄성계수	부식대
(단위계)	(mm)	-	(N/mm^2)	(mm)	(mm)	(N/mm^2)	(mm)
소일시멘트	D_C	-	E_C	D_S	t_S	E_S	r

<강관> <소일시멘트>

단면적: $A_S = \frac{\pi}{4}((D_S - 2r)^2 - (D_S - 2t_S)^2)$ 단면적: $A_C = \frac{\pi}{4}D_C^2 - A_S$

탄성계수: $E_S = E_S$ 탄성계수: $E_C = E_C$

2차단면모멘트: $I_S = \frac{\pi}{4}((D_S - 2r)^4 - (D_S - 2t_S)^4)$ 2차단면모멘트: $I_C = \frac{\pi}{4}{D_C}^4 - I_S$

보강 단면 (피복, 충진) 단면 특성치 계산

피복, 충진 보강 단면 특성치는 기존 단면 특성치에, 콘크리트 기준의 환산단면으로 고려하여 보강 단면의 특성치를 계산합니다.

※ 피복 보강 PHC 말뚝 단면 특성치 예

$$A = A_{org} + (\frac{E_S}{E_C} - 1)A_S$$

 A_{org} : 무:보강 PHC 단면적

 E_S : 보강 강재 탄성계수

 E_C : 콘크리트 탄성계수

 A_S : 보강강재 단면적

Appendix B. 말뚝 특성치 계산 방법

※ 말뚝 특성치 (β) 계산 흐름도

위와 같은 방법으로, 상시, 지진시, 고유주기 산정시의 말뚝 특성치 β 를 계산합니다.

특정 깊이까지의 평균 단면 특성치 값 (D, EI) 는 보강부를 고려한 값을 사용합니다.

Appendix C. 축방향 스프링정수 K_V 계산 방법

축방향 스프링정수 K_{V}

$$K_V = a \frac{A_p E_p}{I}$$

 A_p : 말뚝 순단면적 E_p : 말뚝 탄성계수

L : 말뚝 길이

소일 시멘트 말뚝의 경우

$$K_V = a(\frac{A_{sp}E_{sp} + A_{sc}E_{sc}}{L})$$

 A_{sp} : 강관 순단면적

 E_{sp} : 강관 탄성계수

 A_{sc} : 소일시멘트 순단면적

 E_{sc} : 소일시멘트 변형계수

L: 말뚝길이

a 는 도로교설계기준 2010 해설 (5.8.38a) 참조

% 노출 말뚝의 경우 a 를 고려하지 않음

※ 상, 하부 말뚝 타입이 같을 경우, 축방향 스프링정수는 최상단 단면의 제원을 적용

※ SC + PHC 말뚝의 경우 PHC 말뚝의 단면 제원을 적용

※ 그 외 혼합 말뚝의 경우, 직렬 연결 스프링 강성을 적용

$$K_V = \frac{1}{\sum 1/K_{Vi}} = \frac{1}{\frac{1}{K_{V1}} + \frac{1}{K_{V2}} + \frac{1}{K_{V3}}}$$

11

Appendix D. 말뚝 축직각방향 스프링정수 $(K_1 \sim K_4)$ 계산 방법

 K_1, K_2 : 말뚝머리부에 회전이 생기지 않도록 하고 말뚝머리부를 축직각방향으로 단위량만큼 변위시킬 때 말뚝머리부에 작용해야 할 축직각방향력 및 휨모멘트

 K_3, K_4 : 말뚝머리가 이동하지 않도록 하고 말뚝머리를 단위량만큼회전시킬 때, 말뚝머리부에 작용해야 할 축직각방향력 및 휨모멘트

아래와 같은 프레임 해석 방법으로 각 말뚝에 대한 축직각방향 스프링 정수를 산정합니다.

- 1) 보강부 단면 특성을 고려하여, 단면 특성치 E 와 I 를 계산합니다.
- 2) 사용자가 선택한 저감 계수를 고려하여, 각 지층의 수평방향지반반력계수를 사정합니다.
- 3) 말뚝 선단 조건('자유', '힌지', '고정')에 따라 마지막 요소의 자유도를 사정합니다.
- 4) 말뚝 머리 절점에 단위 수평력 및 모멘트를 재하하여 변위(수평 변위 및 회전각)을 산정합니다.
- 5) $K_1 \sim K_4$ 의 정의에 따라, 축직각방향 스프링정수를 산정합니다.

※ 도로교 설계기준 2010 의 해설 표 5.8.25 의 스프링정수 산정식은, 수평방향 지반반력계수와 말뚝의 단면 특성치가 모두 일정할 때의 일반식이므로 본 Plug In 에서는 해당 식을 적용하지 않았습니다.

Appendix E. 변위법에 따른 연성스프링 매트릭스 계산 방법

※ 연성 스프링 매트릭스 계산방법은 도로교 설계기준 2010 과 동일합니다.

'도로교 설계기준 2010 5.8.9 말뚝반력과 확대기초변위량의 계산법'을 참고해주세요.

Appendix F. 6x6 Matrix 조합 방법

재하방향 연성스프링 매트릭스

재하직각방향 연성스프링 매트릭스

$$\begin{bmatrix} A_{xx} & A_{xy} & A_{x\alpha} \\ A_{yx} & A_{yy} & A_{y\alpha} \\ A_{\alpha x} & A_{\alpha y} & A_{\alpha \alpha} \end{bmatrix}$$

$$\begin{bmatrix} A_{xx}{}' & A_{xy}{}' & A_{x\alpha}{}' \\ A_{yx}{}' & A_{yy}{}' & A_{y\alpha}{}' \\ A_{\alpha x}{}' & A_{\alpha y}{}' & A_{\alpha\alpha}{}' \end{bmatrix}$$

Type 1 선택 시,

	SD_X	SD_Y	SD_Z	SR_X	SR_Y	SR_Z
SD_X	A_{xx}	0	A_{xy}	0	$A_{x\alpha}$	0
SD_Y	0	A_{xx}'	A_{xy}'	$-A_{x\alpha}'$	0	0
SD_Z	A_{yx}	A_{yx}'	$(=A_{yy}')$	A_{ylpha}'	$-A_{ylpha}$	0
SR_X	0	$-A_{\alpha x}'$	$A_{\alpha y}'$	$A_{lphalpha}{}'$	0	0
SR_Y	$A_{\alpha x}$	0	$-A_{\alpha y}$	0	$A_{lphalpha}$	0
SR_Z	0	0	0	0	0	∞

Type 2 선택 시, 재하 방향과 재하 직각방향의 매트릭스를 바꾸어 조합합니다.

	SD_X	SD_Y	SD_Z	SR_X	SR_Y	SR_Z
SD_X	A_{xx}'	0	A_{xy}'	0	$A_{x\alpha}'$	0
SD_Y	0	A_{xx}	A_{xy}	$-A_{x\alpha}$	0	0
SD_Z	A_{yx}'	A_{yx}	$(=A_{yy}')$	A_{ylpha}	$-A_{y\alpha}'$	0
SR_X	0	$-A_{\alpha x}$	$A_{\alpha y}$	$A_{lphalpha}$	0	0
SR_Y	$A_{\alpha x}{}'$	0	$-A_{\alpha y}'$	0	$A_{lphalpha}{}'$	0
SR_Z	0	0	0	0	0	∞