QCM : Vacances d'Hiver

N°	Question	Vrai	Faux
1	L'onde électromagnétique plane, progressive, monochromatique, associée au champ électrique $\vec{E} = E_0 \cos(\omega t + ky)\vec{e}_x + E_0 \sin(\omega t + ky)\vec{e}_z$ est polarisée rectilignement selon $\vec{e}_x + \vec{e}_z$		
2	L'onde électromagnétique plane, progressive, monochromatique, associée au champ électrique $\vec{E} = E_0 \cos(\omega t + ky)\vec{e}_x + E_0 \sin(\omega t + ky)\vec{e}_z$ se propage dans le sens des y décroissants		
3	Le champ magnétique associé à l'onde électromagnétique plane, progressive, se propageant dans le vide dont le champ électrique a pour expression $\vec{E} = E_0 \sin(\frac{n\pi x}{L})\cos(\omega t - ky)\vec{e}_z$ est le suivant $\vec{B} = \frac{E_0}{c}\sin(\frac{n\pi x}{L}\cos(\omega t - ky))\vec{e}_x$		
4	Le vide est un milieu dispersif		
5	Les hautes couches de l'atmosphère (ionosphère) forment un plasma de faible densité		
6	Dans un plasma peu dense, les électrons ne sont soumis qu'à la composante électrique de la force de Lorentz.		
7	La puissance moyenne transportée à travers une surface perpendiculaire à la direction de propagation d'une OPPM est indépendante de son état de polarisation.		
8	La relation de structure $\vec{B} = \frac{\vec{k} \wedge \vec{E}}{\omega}$ concerne toute onde électromagnétique dans le vide		
9	Le vecteur de Poynting attaché à un OPPM traitée en notation complexe est donné par $\underline{\vec{\Pi}} = \frac{\vec{\underline{E}} \wedge \underline{\vec{B}}}{\mu_0}$. La densité volumique d'énergie électromagnétique est $u_{em} = \frac{\epsilon_0}{2} \underline{\vec{E}} ^2 + \frac{1}{2\mu_0} \underline{\vec{B}} ^2$		
10	La propagation d'une onde électromagnétique dans le vide se fait toujours sans atténuation et sans dispersion.		
11	L'onde lumineuse émise par un laser hélium-néon est assez bien représentée localement par une onde plane.		
12	La lumière naturelle n'est pas polarisée. Il est possible d'agir sur son état de polaristaion pour produire une lumière polarisée rectilignement.		
13	Pour des champs de la forme $\underline{\vec{E}} = \underline{\vec{E}}_0 \exp(i(\vec{k}.\vec{r} - \omega t))$ où $\underline{\vec{E}}_0 = \vec{E}_0 \exp(i\phi_0)$ et $\underline{\vec{B}} = \underline{\vec{B}}_0 \exp(i(\vec{k}.\vec{r} - \omega t))$ où $\underline{\vec{B}}_0 = \vec{B}_0 \exp(i\phi_0)$ les équations de Maxwell pour des champs complexes prennent la forme suivante : $i\vec{k}.\vec{\underline{E}} = 0$, $i\vec{k} \wedge \underline{\vec{E}} = i\omega\underline{\vec{B}}$, $i\vec{k}.\underline{\vec{B}} = 0$, $i\vec{k} \wedge \underline{\vec{B}} = -i\omega E_0 u E_0$		
14	$-i\omega\epsilon_0\mu_0\vec{E}$ Il est plus rapide d'obtenir la relation de structure d'une OPPM en complexe qu'en réel		
15	Les deux sens possibles de propagation d'une OPPM (onde progressive et régressive) apparaissent comme deux solutions de la relation de dispersion.		

16	La variation d'énergie électromagnétique peut être liée à deux		
10	choses: les échanges avec la matière chargée et le transfert d'éner-		
	gie.		
	-		
17	Le vecteur de Poynting a pour expression $\vec{\Pi} = \frac{\vec{B} \wedge \vec{E}}{\mu_0}$		
18	Seul le champ électrique a une contribution à la densité volumique		
	d'énergie électromagnétique.		
19	Seul le champ électrique a une contribution à la puissance volu-		
	mique cédée à la matière chargée		
20	La puissance cédée par le champ électromagnétique aux particules		
	chargées est toujours positive		
21	La puissance cédée par le champ électromagnétique à un conduc-		
	teur ohmique est toujours positive.		
22	Dans l'ARQS, tout se passe comme s'il y avait propagation instan-		
	tanée de l'information portant sur la variation des sources entre		
	un point P de la distribution et un point M de l'espace.		
23	Dans le cadre de l'ARQS, le courant de déplacement est toujours		
	négligeable dans l'équation de MA.		
24	Dans un conducteur dans le cadre de l'ARQS, la conductivité est		
	identique à la conductivité statique et on peut écrire la loi d'Ohm		
	sous forme locale $\vec{j} = \sigma_0 \vec{E}$		
25	Un signal électrique transporté à 50 Hz sur une ligne électrique		
	entre le Havre et Nice est identique entre l'émetteur et le récep-		
	teur.		
26	Un condensateur occasionne une coupure physique dans un circuit		
	puisque l'espace entre ces armatures ne conduit pas le courant		
	électrique.		
27	Les équations de Maxwell sont compatibles avec l'équation locale		
	de conservation de la charge.		
28	Les équations de Maxwell ont la même écriture en ARQS et en		
	régime permanent		
29	Le théorème de Gauss est toujours valable		
30	Le théorème d'Ampère est toujours valable		
31	Le champ électrique est à flux conservatif		
32	En régime permanent, le champ magnétique est à circulation		
	conservative		
33	Deux types de charges de signe opposé soumise à l'action d'un		
	champ électrique, contribuent à une même densité volumique de		
	courant \vec{j}		
34	Dans un milieu localement neutre comportant des charges posi-		
	tives et négatives soumises à l'action d'un champ électrique $\rho = 0$		
	$et \vec{j} = \rho \vec{v} = \vec{0}$		
35	Les équations de Maxwell relient les champs et leurs sources et		
	traduisent le couplage entre \vec{E} et \vec{B} qui conduit à parler de champ		
	électromagnétique noté (\vec{E}, \vec{B}) .		
		I	

36	Les équations de Maxwell décrivent totalement l'intéraction entre	
	champ électromagnétique et matière.	
37	Le vecteur de Poynting est un vecteur densité volumique de cou-	
	rant d'énergie électromagnétique, il s'exprime en W.m ⁻² . La puis-	
	sance rayonnée est égale au flux algébrique de $\vec{\Pi}$ à travers une	
	surface S en W.	
38	La densité d'énergie électromagnétique est quadratique en champ.	
39	Dans le vide local, le vecteur de Poynting et la densité volumique	
	d'énergie électromagnétique sont liés par une équation aux déri-	
	vées partielles formellement identique à celle satisfaite localement	
	par le vecteur densité volumique de courant et la densité volu-	
	mique de charge.	
40	Le rapport d'un champ électrique et d'un champ magnétique à la	
	dimension d'une vitesse.	
41	Deux particules de charges différentes auront nécessairement des	
	mouvements différents dans un champ magnétique ou électrosta-	
	tique.	
42	Un électron-volt est une unité de tension.	
43	Le module de la vitesse d'une particule dans un champ électrique	
	uniforme est constant	
44	L'accélération d'une particule chargée soumise à la seule force ma-	
	gnétique peut être non nulle	
45	La trajectoire d'une particule chargée dans un champ magnétique	
	uniforme est toujours circulaire	
46	Le module de la vitesse d'une particule dans un champ magnétique	
	uniforme est constant	
47	La pulsation cyclotron dans un champ magnétique uniforme est	
	indépendante de la charge	
48	Le rayon de la trajectoire d'une particule dans un champ magné-	
	tique uniforme est croissant avec la charge	
49	Pour observer des franges d'égales inclinaison, on éclaire l'interfé-	
F 0	romètre en incidence normale	
50	La différence de chemin optique pour la lame d'air vaut $2ne\cos(i)$	
51	L'opération de chariotage consiste à translater le miroir mobile	
52	La compensatrice peut être fabriquée dans un verre différent de	
F0.	la séparatrice	
53	Lorsqu'on diminue l'angle alpha d'un coin d'air, les franges recti-	
	lignes s'élargissent	
54	La zone de localisation des franges se trouven à l'intersection de	
	deux rayons émergents issus du même rayon incident	
55	L'observation en lumière blanche avec un coin d'air permet de	
F.0.	s'approcher au plus près du contact optique	
56	Dans la limite de l'optique géométrique (pas de diffraction) le	
	dispositif des trous d'Young ne permet pas d'obtenir un champ	
	d'interférences.	

57	Si les trous d'Young sont disposés dans la direction horizontale, les franges d'interférences produites sont verticales	
58	Les anneaux d'égale inclinaison sont observés lorsque la lumière incidente a une inclinaison unique sur le dispositif interférentiel	
59	Les franges d'égale épaisseur formées sur une lame d'épaisseur constante sont équidistantes	
60	Lorsque je veux régler un interféromètre de Michelson au contact optique, si j'observe des franges rectilignes j'en déduis que je dois agir sur l'orientation des miroirs de façon à augmenter l'interfrange.	
61	Si les franges de coin d'air données par un interféromètre de Mi- chelson sont courbées, cela signifie que l'un des miroirs n'est pas plan à l'échelle de la longueur d'onde de la lumière	
62	Une figure d'interférence donnée par un dispositif à division de front d'onde peut manquer de contraste pour trois raisons : les ondes qui interfèrent n'ont pas la même intensité, ou elles ne sont pas monochromatiques, ou la source n'est pas ponctuelle	
63	Si la différence de marche introduite par un dispositif interférentiel est supérieure à la longueur de cohérence temporelle de la source lumineuse, le contraste des interférences chute brutalement à 0.	
64	Si le contraste d'une figure d'interférence devient mauvais à grande différence de marche, j'en déduis que la source n'est pas ponctuelle	
65	Si j'allume deux lampes dans une pièce et que j'observe un éclai- rement homogène, cela prouve qu'elles ne sont pas cohérentes	
66	Pour déplacer de 10 µm le miroir d'un interféromètre de Michelson, je peux utiliser un laser de longueur d'onde 633 nm dans l'air et tourner la vis de translation du miroir jusqu'à voir défiler près de 32 franges.	
67	Les phénomènes d'interférences ne peuvent se produire que dans le domaine des ondes lumineuses.	
68	Un réseau, contrairement à un prisme, dévie plus fortement un rayon lumineux de couleur rouge que bleu.	
69	Les dispositifs d'Young sont des diviseurs de front d'onde qui utilisent la diffraction.	
70	Les franges obtenues avec des trous d'Young S_1 et S_2 , sont rectilignes et parallèles à la direction S_1S_2	
71	L'interfrange est d'autant plus grande que l'écran est éloigné	
72	Si on opère dans un milieu plus réfringent que l'air, l'interfrange augmente.	
73	Il est possible d'éclairer les fentes d'Young avec une source étendue quelconque	
74	On peut observer l'effet spectral du doublet jaune du sodium avec le dispositif des fentes d'Young	

-

