MLDS HW2-2

TAs ntu.mldsta@gmail.com

HW2-2 UPDATE(4/27)

- 1. baseline code release (<u>link</u>)
- Testing data release (<u>link</u>)
- 3. Perplexity baseline release <= 100 Correlation baseline release >= 0.45
- 4. Whole dataset download: (link)

重要:本次 model evaluation 的結果都僅供參考而已,請同學不要在這上面做太多琢磨,只是給同學們寫報告時有個量化依據。

Outline

- Timeline
- Task Descriptions
- Q&A

Timeline

Two Parts in HW2

- (2-1) Video caption generation
 - Sequence-to-sequence model
 - Training Tips
- (2-2) Chatbot

Schedule

- 3/30:
 - Release HW2-1
- 4/13:
 - o Release HW2-2
- 4/27:
 - Midterm
 - o HW1 上台分享
- 5/4:
 - All HW2 due (including HW2-1, HW2-2)

Task Descriptions

HW2-2: Chinese Chatbot

- Introduction
- Sequence-to-sequence model
- Training Tips
 - Attention
 - Schedule Sampling
 - Beamsearch
- How to reach the baseline?

HW2-2 Introduction

- Chatbot
 - a. Input: A sentence
 - b. Output: The corresponding reply.

- There are several difficulties including:
 - a. Variable length of I/O

HW2-2 Sequence-to-sequence 1/5

Two recurrent neural networks (RNNs)
 an encoder that processes the input
 a decoder that generates the output

HW2-2 Sequence-to-sequence 2/5

• Data preprocess:

- Dictionary most frequently word or min count
- o other tokens: <PAD>, <BOS>, <EOS>, <UNK>
 - <PAD> : Pad the sentencen to the same length
 - <BOS> : Begin of sentence, a sign to generate the output sentence.
 - <EOS> : End of sentence, a sign of the end of the output sentence.
 - <UNK> : Use this token when the word isn't in the dictionary or just ignore the unknown word.

HW2-2 Sequence-to-sequence 3/5

• Text Input:

reference

- One-hot Vector encoding

 (1-to-N coding, N is the size of the vocabulary in dictionary)
- o e.g.
 - neural = [0, 0, 0, ..., 1, 0, 0, ..., 0, 0, 0]
 - network = [0, 0, 0, ..., 0, 0, 1, ..., 0, 0, 0]

• LSTM unit:

cell output than project to a vocabulary-size vector

HW2-2 Training Tips - Attention 1/3

- Attention on encoder hidden states :
 - Allow model to peek at different sections of inputs at each decoding time step

HW2-2 Training Tips - Schedule Sampling 2/3

- Schedule Sampling:
 - To solve "exposure bias" problem,
 When training, we feed (groundtruth) or (last time step's output) as input at odds

HW2-2 Training Tips - Beam search 3/3

- Beam search:
 - keep a fixed number of paths

Demo: http://dbs.cloudcv.org/captioning

HW2-2 How to reach the baseline? 1/3

• Baseline:

Perplexity < 100 Correlation Score >0.45

Baseline model vocab

baseline code release (<u>link</u>)

重要:本次 model evaluation 的結果都僅供參考而已 ,請同學不要在這上面做太多琢磨,只是給同學們寫 報告時有個量化依據。

• Baseline model:

Training iteration = 750000

- Batchsize = 100
- GRU dimension = 256 2 layers
- Learning rate = 0.001
- Sgd Optimizer
- Training time = 8hrs on GTX1060

HW2-2 How to reach the baseline? 2/3

• Evaluation: Perplexity

$$\begin{split} &H(S) = -\sum_{i} p(x_{_{i}}) log[p(x_{_{i}})] \\ &PP(S) = 2^{_{H(S)}} \\ &\text{where H = entropy, PP= Perplexity} \end{split}$$

o **e.g.**:

$$\prod_{i=1}^{n} p(w_i) = p(\text{'NLP'}|\text{'I'}, \text{'love'}) * p(\text{'love'}|\text{'I'}) * p(\text{'I'})$$

$$log_2 \prod_{i=1}^{n} p(w_i) = \sum_{i=1}^{n} log_2 p(s_i)$$

$$PP = 2^{\frac{-1}{N}} \sum_{i=1}^{n} log_2 p(s_i)$$

- Language Model will be released soon.
- o 數位語音處理概論 lesson6

HW2-2 How to reach the baseline? 3/3

- Evaluation : Correlation Score
 - Decided by Model.
 - The model is training by given dataset.
 - A kind of Discriminator.

- Model detail:
 - Correct scored 1, incorrect scored 0
 - Activation function sigmoid

Data & format

- Dataset:
 - 語音實驗室的電影字幕
 - 500萬句對話
- Format:
 - 一行一句話
 - 對話跟對話中間用+++\$+++分隔
 - <u>Download</u> clr_conversation.txt

這 不是 一時 起意 的 行刺而是 有 政治 動機上校 , 這種 事 +++\$+++ 他 的 口袋 是 空 的 沒有 皮夾 , 也 沒有 身分證 手錶 停 在 4 點 15 分 大概 是 墜機 的 時刻 他 的 降落傘 被 樹枝 纏住 了

Extra Data:

- 以下為未整理data不符合上列格式
- o <u>連續劇data</u>
- o 電影data(完整版)
- <u>簡體corpus</u> (baseline的language model不認得簡體 請自行轉換)

I/O Format

- Input:
 - 一行一句話

- 1 你好
- 2 今天天氣如何?
- 3 作業好多

- Output:
 - 一行一句話

- 1 你好
- 2 今天天氣很好
- 3 活該笑你

Submission & Rules

- Please implement one seq-to-seq model (or it's variant) to fulfill the task
- Extra dataset is allowed to use.
- Allow package:
 - o python 3.6
 - TensorFlow r1.6 ONLY (CUDA 9.0)
 - PyTorch 0.3 / torchvision
 - Keras 2.0.7 (TensorFlow backend only)
 - MXNet 1.1.0, CNTK 2.4
 - matplotlib, Python Standard Library
 - If you want to use other packages, please ask TAs for permission first!
 - new allowed package:
 Gensim, pandas, tqdm

Submission & Rules

- Deadline: 2018/5/4 23:59 (GMT+8)
- Upload code and report of HW2-1, HW2-2 to Github in different directory.
- For HW2-2:
 - Your github must have directory hw2/hw2_2/, and there should be:
 - (1) report.pdf (2) your_seq2seq_model (3) hw2_seq2seq.sh
 - **(4)** model_seq2seq.py (training code should include)
 - If your model are too big for github, upload to a cloud space and write it in your script to download the model.
 - Please write shell script "hw2_seq2seq.sh" to run your code and follow the script usage below:
 - bash hw2_seq2seq.sh \$1 \$2
 - \$1: input filename (format:.txt), \$2: output filename (format:.txt)
 - Example bash hw2_seq2seq.sh input.txt output.txt
 - Your script should be done within 10 mins excluding model donwloading.
 - Please do not upload any dataset to Github (include external dataset).

Grading Policy

- HW2-1:15%
- HW2-2:10%
 - Baseline (2%):
 - Perplexity(1%)
 - Correlation Score(1%)
 - TAs review (2%):
 - Grammar score (1%)
 - Relative score (1%)
 - Report (6%)
- 分工表:0.5%
- 上台分享:1%
- 上台分享前三名:1%

Grading Policy - Report (6%)

- Do not exceed 4 pages and written in Chinese.
- Model description (2%)
 - Describe your seq2seq model
- How to improve your performance (3%)
 - (Please do the method different with hw2-1)
 - (e.g. Attention, Schedule Sampling, Beamsearch...)
 - Write down the method that makes you outstanding (1%)
 - Why do you use it (1%)
 - Analysis and compare your model without the method. (1%)
- Experimental results and settings (1%)
 - parameter tuning, schedual sampling ... etc
- README: please specify library and the corresponding version in README

Grading Policy - NOTICE

Late submission (link):

- Please fill the late submission form first only if you will submit HW late.
- Please push your code before you fill the form
- There will be 25% penalty per day for late submission, so you get
 0% after four days

• Bug:

- You will get 0% in Baseline and TAs review if the required script has bug.
- If the error is due to the format issue, please come to fix the bug at the announced time, or you will get 10% penalty afterwards.

Q&A

ntu.mldsta@gmail.com