Exercice 1*

Soit ABC un triangle équilatéral dont la mesure des côtés vaut $1 \, cm$.

On note I le milieu du segment [BC].

	\widehat{CIA}	\widehat{CAB}	\widehat{CAI}	\widehat{IAC}
Mesure en radian				

a. A l'aide du théorème de Pythagore, démontrer que : $AI = \frac{\sqrt{3}}{2} cm.$

b. Dans le triangle AIC, déterminer le sinus, le cosinus et la tangente des angles \widehat{IAC} et \widehat{ICA} . Puis, compléter le tableau suivant :

orear sarvarre .					
	α	$\frac{\pi}{6}$ rad	$\frac{\pi}{3}$ rad		
	$\cos \alpha$				
	$\sin \alpha$				
	$\tan \alpha$				

Exercice 2*

On considère le triangle rectangle-isocèle en C tel que BC=1 cm

1. Compléter le tableau suivant :

	\widehat{ACB}	\widehat{CAB}
Mesure en radian		

a. A l'aide du théorème de Pythagore, déterminer la mesure du côté [AB].

- b. A l'aide du théorème de Pythagore, montrer que : $AB = \sqrt{2} \, cm$.
- c. Dans le triangle rectangle ABC, déterminer le sinus, le cosinus et la tangente de l'angle CAB, puis compléter le tableau suivant:

ie tablead balvalle .							
	α	$\cos \alpha$	$\sin \alpha$	$\tan \alpha$			
	$\frac{\pi}{4}$ rad						

Exercice 3

On considère le cercle trigonométrique $\mathscr C$ dans le plan muni d'un repère (O; I; J)

c. Placer le point M'' symétrique du point M par la symétrie d'axe (OI). Donner les coordonnées cartésiennes du point M''. Puis, donner l'angle repérant le point M'' dans le cercle \mathscr{C} .

a. Déterminer les coordonnées cartésienne du point N.

b. Placer le point N' symétrique du point N par la symétrie d'axe (OJ). Donner les coordonnées cartésiennes du point N'. Puis, donner l'angle repérant le point N'dans le cercle \mathscr{C} .

Placer le point N'' symétrique du point N par la symétrie d'axe (OI). Donner les coordonnées cartésiennes du point N''. Puis, donner l'angle repérant le point N''dans le cercle \mathscr{C} .

Exercice 4

1. Tracer un cercle trigonométrique et placer les points suivants dont le repérage par leur mesure principale :

a.
$$A\left(\frac{2\pi}{3}\right)$$
 b. $B\left(-\frac{3\pi}{4}\right)$ c. $C\left(\frac{5\pi}{6}\right)$ d. $D\left(\frac{\pi}{4}\right)$ e. $E\left(-\frac{\pi}{4}\right)$ f. $F\left(-\frac{\pi}{6}\right)$

b.
$$B\left(-\frac{3\pi}{4}\right)$$

c.
$$C\left(\frac{5\pi}{6}\right)$$

d.
$$D\left(\frac{\pi}{4}\right)$$

e.
$$E\left(-\frac{\pi}{4}\right)$$

f.
$$F\left(-\frac{\pi}{6}\right)$$

2. Préciser les valeurs du cosinus et du sinus associées à chacun des angles repérant les points précédents.

Exercice 5

1. Simplifier chacune des expressions suivantes :

a.
$$\cos(x-\pi)$$

a.
$$\cos(x-\pi)$$
 b. $\sin(x-\frac{\pi}{2})$

c.
$$\sin\left(x+\frac{\pi}{2}\right)$$
 d. $\cos\left(x+\frac{\pi}{2}\right)$

d.
$$\cos\left(x+\frac{\pi}{2}\right)$$

2. A l'aide de la relation : $\tan x = \frac{\sin x}{\cos x}$ où $x \neq \frac{\pi}{2} + k \cdot \pi$ simplifier les expressions suivantes

a.
$$\tan(x+\pi)$$

a.
$$\tan (x+\pi)$$
 b. $\tan (\frac{\pi}{2}-x)$

Exercice 6

1. Etablir l'égalité : $\cos\frac{\pi}{6} + \cos\frac{5\pi}{6} = 0$

2. Déterminer la valeur des coefficients α et β réalisant l'égalité suivante :

 $2 \cdot \cos\left(-\frac{\pi}{7}\right) + 3 \cdot \cos\frac{8\pi}{7} - 2 \cdot \sin\frac{6\pi}{7} + \sin\left(-\frac{\pi}{7}\right) = \alpha \cdot \cos\frac{\pi}{7} + \beta \cdot \sin\frac{\pi}{7}$

Exercice 7*

Simplifier l'écriture de chacune des expressions ci-dessous :

a.
$$\sin(3\pi+x)$$

a.
$$\sin(3\pi+x)$$
 b. $\cos(\frac{5\pi}{2}-x)$

c.
$$\cos\left(x-\frac{\pi}{2}\right)$$

c.
$$\cos\left(x-\frac{\pi}{2}\right)$$
 d. $\cos\left(\frac{\pi}{2}+x\right)$

e.
$$\sin(\pi - x) + \cos(\frac{\pi}{2} - x)$$

f.
$$3 \cdot \sin(\pi + x) - 2 \cdot \sin(\pi - x) + 4 \cdot \sin(x - \pi)$$

Exercice 8

1. Déterminer les valeurs exactes des expressions cidessous:

a.
$$\sin\left(\frac{7\pi}{3}\right)$$

b.
$$\cos\left(-\frac{5\pi}{4}\right)$$
 c. $\cos\left(\frac{5\pi}{6}\right)$

c.
$$\cos\left(\frac{5\pi}{6}\right)$$

Exprimer l'expression suivante à l'aide des rapports trigonométriques de $\frac{\pi}{\epsilon}$:

$$A = 2 \cdot \cos \frac{4\pi}{5} + 3 \cdot \sin \frac{6\pi}{5} - 4 \cdot \sin \frac{3\pi}{10}$$

Exercice 9

1. On donne la valeur exacte ci-dessous :

$$\cos\frac{\pi}{8} = \frac{\sqrt{2+\sqrt{2}}}{2}$$

- a. En utilisant la formule $(\cos x) + (\sin x)^2 = 1$, déterminer la valeur exacte de $\sin \frac{\pi}{8}$
- b. En déduire la valeur exacte de $\cos \frac{5\pi}{8}$ en justifiant votre démarche.
- c. Etablir l'égalité : $\tan \frac{\pi}{8} = \sqrt{3 2\sqrt{2}}$.
- 2. On considère l'expression suivante :

$$A = \cos\frac{9\pi}{8} - 3\cdot\sin\frac{5\pi}{8} + 2\cdot\cos\frac{7\pi}{8}$$

Déterminer une écriture de l'expression de A en fonction des rapports trigonométriques de l'angle $\frac{\pi}{8}$

Exercice 10

Dans le plan muni d'un repère (O; I; J), on considère le cercle trigonométrique représenté ci-dessous :

a. Sur le cercle trigonométrique, placer les deux points M et M'ayant pour abscisse

b. Dans l'intervalle des mesures principales, résoudre l'équation:

$$\cos x = -\frac{\sqrt{2}}{2}$$

2. Dans l'intervalle des mesures principales, résoudre les équations suivantes :

a.
$$\sin x = \frac{1}{2}$$

b.
$$\cos x = \frac{1}{2}$$

a.
$$\sin x = \frac{1}{2}$$
 b. $\cos x = \frac{1}{2}$ c. $\sin x = -\frac{\sqrt{3}}{2}$

3. Résoudre dans \mathbb{R} , l'équation suivante :

$$\cos x = \frac{\sqrt{3}}{2}$$

Exercice 11

Résoudre dans \mathbb{R} les équations suivantes :

a.
$$\sin x = \frac{\sqrt{\xi}}{2}$$

a.
$$\sin x = \frac{\sqrt{3}}{2}$$
 b. $\cos x = \frac{\sqrt{2}}{2}$

Exercice 12

1. Résoudre dans l'ensemble $]-\pi;\pi]$ des mesures principales, les équations suivantes :

a.
$$\cos x = \frac{\sqrt{2}}{2}$$
 b. $\sin x = -\frac{1}{2}$

b.
$$\sin x = -\frac{1}{2}$$

c.
$$\sin x = \frac{\sqrt{3}}{2}$$
 d. $\cos x = -\frac{1}{2}$

d.
$$\cos x = -\frac{1}{3}$$

2. Résoudre dans \mathbb{R} les équations suivantes :

a.
$$\cos x = \frac{\sqrt{3}}{2}$$

a.
$$\cos x = \frac{\sqrt{3}}{2}$$
 b. $\sin x = -\frac{\sqrt{2}}{2}$