Exercise Set 2

1. Consider the figure below on the left where $\{A,B,C\} \cap \{A',B',C'\} = \emptyset$. Define ratios $r := \frac{\overline{AB'}}{\overline{AC}}, \ s := \frac{\overline{BC'}}{\overline{BA}}, \ \text{and} \ t := \frac{\overline{CA'}}{\overline{CB}}.$ Define an IFS $(\triangle(A,B,C);\{f_1,f_2,f_3\})$ by requiring

that $(A, B, C) \xrightarrow{f_1} (C', A, B')$, $(A, B, C) \xrightarrow{f_2} (C', A', B)$, and $(A, B, C) \xrightarrow{f_3} (C, A', B')$. Choosing A := (0,0), B := (1,0), and C := (0.5,1), derive formulae for the maps f_1 , f_2 , and f_3 . The attractor $\mathfrak{S}(r, s, t)$ is a three-parameter family of Sierpiński triangles. A representative of this family is depicted on the right.

- 2. Let (X, d) be a complete metric space and let $f: [0,1] \times X \to X$ be a parameterized contraction on X, i.e., $f(t, \cdot)$, $t \in [0,1]$, is a contraction on X. Assume that for fixed $x \in X$, f is continuous on [0,1]. Prove that the fixed point x_f^* of f depends continuously on f, that is, f is continuous.
- 3. Let (X, d) be a complete metric space, let $1 < N \in \mathbb{N}$, and let $f_i : [0, 1] \times X \to X$, i = 1, ..., N, be a family of contractions on X depending continuously on a parameter $t \in [0, 1]$. Show that the mapping $F : [0, 1] \times \mathcal{H}(X) \to \mathcal{H}(X)$ defined by

$$F(t,A) := \bigcup_{i=1}^{N} f_i(t,A)$$

is continuous in t (in the metric space $(\mathcal{H}(X), d_{\mathcal{H}})$).

- 4. Combining the previous two problems, prove the following: Let (X, d) be a complete metric space and let $(X, \{f_1, \ldots, f_N\})$ be an IFS whose mappings $f_i : [0, 1] \times X \to X$, $i = 1, \ldots N$ depend continuously on the parameter $t \in [0, 1]$. Then the attractor $\mathfrak{A}(t)$ of this IFS also depends continuously on $t \in [0, 1]$, with respect to the Hausdorff metric $d_{\mathcal{H}}$.
- 5. Consider the IFS $(\mathbb{C}, \{f_1 = \lambda(\cdot) 1, f_2 = \lambda(\cdot) + 1\}), \lambda \in \mathbb{C}$. Show that for $\lambda = \frac{1}{2}(1+i)$, the fractal set generated by this IFS is the famous *twin dragon*. What happens with the attractor when $\frac{1}{2}$ is replaced by α with $0 < \alpha < \frac{1}{2}$?