Total No.	o. of Questions : 10] SEA	Г No. :
P3716		[Total No. of Pages : 3
	[5461]-526	
	B.E. (Mechanical)	
HEA	ATING VENTILATION AND AIR-COM	NDITIONING
	(2015 Pattern) (Elective - I)	
Time: 25	2½ Hours	[Max. Marks: 70
	tions to the candidates:	
1)		~
2)		book and attach extra
3)	supplements if required. Draw diagrams wherever necessary.	3
4)	` V	Q'
5)	Assume suitable data wherever necessary.	7
	26.	
<i>Q1</i>) In	n HFC-134a 1 TR ejector refrigeration system, the moti	ve vapour is saturated
~ /	t 80°C has following data :	[10]
a)) Temperature of in the evaporator = -5° C	
b)	The pressure at which the condenser is operated 10) bar
c)) Nozzle efficiency = 86%	
d)	Entrainment efficiency = 64%	
e)	Compression efficiency = 80%	
f)	Quality of refrigerant at the beginning of compress	ion = 0.96
De	Determine the following:	,63
i)	Mass of motive fluid required per kg of secondary	fluid
ii)) The quantity of secondary fluid	0, 3.
iii)	i) Refrigerating effect per kg	28
iv	v) COP of the system	
	OR	,

a) Explain parallel compression transcritical system. Q2)

[6]

b) Discuss classification of cooling tower.

[4]

- Q3) A two cylinder single acting reciprocating compressor with 5% clearance is used in a R 22 refrigeration cycle to take refrigeration capacity of 7.2 TR at 5°C (3.6 bar) refrigeration temp. & 40°C (9.6 bar) condensing temperature. The compressor index is 1.15. The speed of the piston is limited to 3 m/s. Take L/D = 0.8 specific volume as 0.0525 m³/kg. [10]
 - Determine:
 a) power
 - b) Volumetric efficience
 - c) COP
 - d) Bore & stroke
 - e) RPM

Temp PT	\mathbf{h}_{f}	\mathbf{h}_{g}
5°C 3.6	40.69	189.65
40°C 9.6	74.59	203.2
.9.		OR

Q4) a) Draw various arrangements of suction line.

- [4]
- b) Discuss the various methods of capacity controls of centrifugal compressor. [6]
- Q5) a) Write a short note on "thermodynamics of human body" and explain comfort-discomfort diagrams with neat sketch.[8]
 - b) The following table shows the measurements made at 9 points in the occupied zone of an air conditioned building. Evaluate the design parameters of the air distribution system. Consider Supply air temperature as 17°C and exhaust temperature as 25°C. [8]

Measuring point	DBT (°C)	Air velocity (m/s)
1.0	24.1	0.3
2.	23	0.25
3.	24	0.16
4.	22.3	0.21
5.	23.1	0.1
6.	22.5	0.09
7.	21.7	0.11
8.	24.1	0.19
9.	20.4	0.24

<i>Q6)</i>	a)	Discuss types	of air	distribution	devices.
------------	----	---------------	--------	--------------	----------

[8]

b) State factors affecting thermal comforts.

[8]

Q7) a) A 25 cm thick wall is exposed to the periodic temperature and incident radiant variation on an hourly basis between 7 am and 6 pm is given in the table. Determine average heat gain of the room per unit area of the wall. The outdoor maximum and minimum temperatures are 40°C and 22°C respectively. The outside and inside design temperatures are 40 and 25°C respectively. What is the maximum heat gain and time of maximum heat gain from the wall?

Density of material, $\rho = 2400 \text{ kg/m}^3$

Thermal conductivity, k = 1.5 W/mK

Outside wall coefficient, $h_0 = 23 \text{ W/m}^2\text{K}$

Inside wall coefficient, $h_i = 7 \text{ W/m}^2\text{K}$.

	Time	7	8	9	10	11	12	1	2	3	4	5	6
×		am	am	am	am	am	noon	pm	pm	pm	pm	pm	pm
	Wall Mass (kg/m²)	Equivalent Temperature Difference (ΔT_E) °C											
	500	3.9	3.3	3.3	3.3	3.3	3.3	3.9	4.4	5.5	6.7	9.4	11.1
	600	6.1	5.5	5.0	4.4	4.4	4.4	5.0	5.5	5.5	5.5	6.1	6.7

b) Write a short note on

[6]

- i) Sol-air temperature
- ii) Air Spaces.

OR

Q8) a) Explain Energy Conservation Building Code.

[8]

b) Explain the term "Decrement factor & time lag".

[10]

- Q9) a) Explain with schematic diagram Indirect Evaporative-Cooling Air Conditioning Systems.[8]
 - b) Draw and explain water-to-water heat pump circuit.

[8]

OR

Q10) a) Write a short note on "Clean Room".

[8]

b) Explain Hybrid Desiccant air-conditioning system.

[8]

* * *