$ au_1^{\#2} lpha$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$-\frac{i\sqrt{2}k(2k^2(r_1+r_5)-t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4(r_1+r_5)+2k^2t_1}{(t_1+2k^2t_1)^2}$	
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0	
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$ $\frac{-2k^2(r_1 + r_5) + t_1}{(t_1 + 2k^2t_1)^2}$		$\frac{i\sqrt{2}k(2k^2(r_1+r_5)\cdot t_1)}{(t_1+2k^2t_1)^2}$	
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$	
${\mathfrak l}_1^{\#1}_+ \alpha \beta$	$\frac{i}{\sqrt{2} (k+k^3) (2 r_1 + r_5)}$	$\frac{i(6k^2(2r_1+r_5)+t_1)}{2k(1+k^2)^2(2r_1+r_5)t_1}$	$\frac{6k^2(2r_1+r_5)+t_1}{2(1+k^2)^2(2r_1+r_5)t_1}$	0	0	0	0	
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\frac{1}{\sqrt{2} \; (k^2 + k^4) (2 r_1 + r_5)}$	$\frac{6k^2(2r_1+r_5)+t_1}{2(k+k^3)^2(2r_1+r_5)t_1}$	$-\frac{i(6k^2(2r_1+r_5)+t_1)}{2k(1+k^2)^2(2r_1+r_5)t_1}$	0	0	0	0	
$\sigma_{1}^{\#1}{}_{\alpha\beta}$		$\frac{1}{\sqrt{2} (k^2 + k^4) (2 r_1 + r_5)}$	$-\frac{i}{\sqrt{2} (k+k^3) (2 r_1 + r_5)}$	0	0	0	0	
	$\frac{\#1}{1} + \alpha \beta$	$_{1}^{\#2}$ $+^{\alpha\beta}$	$_{1}^{#1}+^{\alpha\beta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1^{\bar{-}1}}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + \alpha$	

	$\omega_0^{\sharp 1}$	$f_{0}^{#1}$	$f_{0+}^{#2}$	$\omega_{0}^{#1}$
$\omega_{0^+}^{\#1}\dagger$	-t ₁	$i \sqrt{2} kt_1$	0	0
$f_{0}^{#1}\dagger$	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0}^{\#2}\dagger$	0	0	0	0
$\omega_{0^{-}}^{\#1}$ †	0	0	0	0

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2}^{\#1}{}_{lphaeta\chi}$
$\omega_{2}^{\sharp 1} \dagger^{\alpha \beta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2}^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_{2^{-}}^{\sharp 1}\dagger^{lphaeta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$

_	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1^{-}~lpha}^{$ #1}	$\omega_{1-\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{\#2}$
$\omega_1^{\#1} \dagger^{\alpha\beta}$	$k^2 (2r_1 + r_5) + \frac{t_1}{6}$	$-\frac{t_1}{3\sqrt{2}}$	$-\frac{ikt_1}{3\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	- , -	<u>t1</u> 3	<u>i k t 1</u> 3	0	0	0	0
$f_{1}^{#1} \dagger^{\alpha\beta}$	$\frac{ikt_1}{3\sqrt{2}}$	$-\frac{1}{3}ikt_1$	$\frac{k^2t_1}{3}$	0	0	0	0
$\omega_{1}^{#1}\dagger^{lpha}$	0	0	0	$k^2 (r_1 + r_5) - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	īkt ₁
$\omega_1^{\#2} \uparrow^{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	-	0	0	0

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2^{-}\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1}\dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_2^{\#1} \dagger^{lphaeta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

$\sigma_{0^{\text{-}}}^{\#1}$	0	0	0	0
$\tau_{0}^{\#2}$	0	0	0	0
$\tau_0^{\#1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$\sigma_0^{\#1}$	$-\frac{1}{(1+2k^2)^2t_1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
	$\sigma_{0}^{\#1}$	$\tau_{0}^{\#1} +$	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1} \dagger$

Lagra	ngian	density

$-t_1 \; \omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$
$\omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} - r_5 \partial_{\iota} \omega^{\kappa\lambda}_{\ \ \kappa} \partial^{\iota} \omega_{\lambda\ \alpha}^{\ \alpha} - \frac{2}{3} r_1 \partial^{\beta} \omega^{\theta\alpha}_{\ \ \kappa} \partial_{\theta} \omega_{\alpha\beta}^{\ \ \kappa} - \frac{2}{3} r_1 \partial_{\theta} \omega_{\alpha\beta}^{\ \ \kappa} \partial_{\kappa} \omega^{\alpha\beta\theta} +$
$\frac{2}{3} r_1 \partial_{\theta} \omega_{\alpha\beta}^{ \kappa} \partial_{\kappa} \omega^{\theta\alpha\beta} - r_5 \partial_{\alpha} \omega_{\lambda}^{ \alpha}_{ \theta} \partial_{\kappa} \omega^{\theta\kappa\lambda} + r_5 \partial_{\theta} \omega_{\lambda}^{ \alpha}_{ \alpha} \partial_{\kappa} \omega^{\theta\kappa\lambda} - r_5 \partial_{\alpha} \omega_{\lambda}^{ \alpha}_{ \theta} \partial_{\kappa} \omega^{\kappa\lambda\theta} +$
$2r_5\partial_\theta\omega_{\lambda\alpha}^{\alpha}\partial_\kappa\omega^{\kappa\lambda\theta}-\tfrac{1}{3}t_1\partial^\alpha f_{\theta\kappa}\partial^\kappa f_{\alpha}^{\theta}-\tfrac{2}{3}t_1\partial^\alpha f_{\kappa\theta}\partial^\kappa f_{\alpha}^{\theta}-\tfrac{1}{3}t_1\partial^\alpha f_{\kappa}\partial^\kappa f_{\alpha\lambda}+$
$t_1 \omega_{\kappa\alpha}^{ \alpha} \partial^{\kappa} f'_{\ \prime} + t_1 \omega_{\kappa\lambda}^{ \lambda} \partial^{\kappa} f'_{\ \prime} + 2 t_1 \partial^{\alpha} f_{\kappa\alpha} \partial^{\kappa} f'_{\ \prime} - t_1 \partial_{\kappa} f^{\lambda}_{\ \lambda} \partial^{\kappa} f'_{\ \prime} +$
$\frac{1}{3} t_1 \omega_{i\theta\kappa} \partial^{\kappa} f^{i\theta} + \frac{4}{3} t_1 \omega_{i\kappa\theta} \partial^{\kappa} f^{i\theta} - \frac{1}{3} t_1 \omega_{\thetai\kappa} \partial^{\kappa} f^{i\theta} + \frac{2}{3} t_1 \omega_{\theta\kappa} \partial^{\kappa} f^{i\theta} - \frac{1}{3} t_1 \omega_{\thetai\kappa} \partial^{\kappa} f^{i\theta} + \frac{2}{3} t_1 \omega_{\theta\kappa} \partial^{\kappa} f^{i\theta} - \frac{1}{3} t_1 \omega_{\thetai\kappa} \partial^{\kappa} f^{i\theta} + \frac{2}{3} t_1 \omega_{\thetai\kappa} \partial^{\kappa} f^{i\theta} - \frac{1}{3} t_1 \omega_{\thetai\kappa} \partial^{\kappa} f^{i\theta} + \frac{2}{3} t_1 \omega_{\thetai\kappa} \partial^{\kappa} f^{i\theta} - \frac{1}{3} t_1 \omega_{\thetai\kappa} \partial^{\kappa} f^{i\theta} + \frac{2}{3} t_1 \omega_{\thetai\kappa} \partial^{\kappa} f^{i\theta} - \frac{1}{3} t_1 \omega_{\theta$
$t_1 \omega_{\prime \alpha}^{\ \alpha} \partial^{\kappa} f^{\prime}_{\ \kappa} - t_1 \omega_{\prime \lambda}^{\ \lambda} \partial^{\kappa} f^{\prime}_{\ \kappa} + \frac{1}{3} t_1 \partial^{\alpha} f^{\lambda}_{\ \kappa} \partial^{\kappa} f_{\lambda \alpha} + \frac{1}{3} t_1 \partial_{\kappa} f_{\theta}^{\ \lambda} \partial^{\kappa} f_{\lambda}^{\ \theta} +$
$\frac{2}{3} t_1 \partial_{\kappa} f^{\lambda}_{\theta} \partial^{\kappa} f_{\lambda}^{\theta} - t_1 \partial^{\alpha} f^{\lambda}_{\alpha} \partial^{\kappa} f_{\lambda \kappa} + \frac{2}{3} r_1 \partial_{\kappa} \omega^{\alpha \beta \theta} \partial^{\kappa} \omega_{\alpha \beta \theta} - \frac{2}{3} r_1 \partial_{\kappa} \omega^{\theta \alpha \beta} \partial^{\kappa} \omega_{\alpha \beta \theta} +$
$\frac{2}{3} r_1 \partial^{\beta} \omega_{I}^{\alpha \lambda} \partial_{\lambda} \omega_{\alpha \beta}^{\ \ \prime} - \frac{8}{3} r_1 \partial^{\beta} \omega_{I}^{\lambda \alpha} \partial_{\lambda} \omega_{\alpha \beta}^{\ \ \prime} + r_5 \partial_{\alpha} \omega_{\lambda}^{\ \alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\ \ \kappa} - r_5 \partial_{\theta} \omega_{\lambda}^{\ \alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\ \ \kappa}$

Source constraints			
SO(3) irreps	#		
$\sigma_{0^{-}}^{\#1} == 0$	1		
$\tau_{0+}^{\#2} == 0$	1		
$\tau_{0+}^{\#1} - 2 \bar{\imath} k \sigma_{0+}^{\#1} == 0$	1		
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3		
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3		
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3		
$\tau_{2+}^{\#1\alpha\beta} - 2 i k \sigma_{2+}^{\#1\alpha\beta} == 0$	5		
Total #:	17		

?	Massive particl	le
	Pole residue:	$-\frac{1}{r_1} > 0$
	Polarisations:	5
	Square mass:	$-\frac{t_1}{2r_1} > 0$
	Spin:	2
	Parity:	Odd

