Categorías. Parte 3.

Silvio Reggiani

Complementos de Matemática II (LCC) Facultad de Ciencias Exactas, Ingeniería y Agrimensura Universidad Nacional de Rosario

19 de noviembre de 2020

Límites

Diagramas (definición informal)

Un diagrama en una categoría es una colección "consistente" de vértices (objetos) y flechas (morfismos). O sea, se supone que si

 $A \xrightarrow{f} B$ es parte del diagrama, entonces $f \in \text{Hom}(A, B)$. Dos diagramas se dice que tienen el mismo *tipo* o la misma *forma*

Dos diagramas se dice que tienen el mismo *tipo* o la misma *forma* si el "grafo" subyacente es el mismo.

Observación 1

En la definición de diagrama no pedimos que los diagramas sean conmutativos.

Observación 2

Usando funtores (veremos más adelante) es posible dar una definicón formal de diagrama.

Conos

Un **cono** para un diagrama $\mathbb D$ consiste de

- ▶ un objeto X,
- ▶ un morfismo $f_D: X \to D$ para cada $D \in \text{ob } \mathbb{D}$ tales que si $f: A \to B$ está en mor \mathbb{D} (o sea, es una flecha del diagrama) entonces el siguiente triángulo conmuta:

Límites

Un **límite** para un diagrama \mathbb{D} es un cono

 $\{f_A:X\to A:A\in\operatorname{ob}\mathbb{D}\}\$ con la siguiente propiedad universal: si $\{f_A':X'\to A:A\in\operatorname{ob}\mathbb{D}\}\$ es otro cono sobre $\mathbb{D},\$ entonces existe un único morfismo $k:X'\to X$ tal que el triángulo

conmuta para todo $A \in ob \mathbb{D}$.

Observación/Ejercicio

Un límite para \mathbb{D} es un objeto terminal en $\mathbf{Cone}(\mathbb{D})$, la categoría de conos de \mathbb{D} . Consecuentemente, los límites son únicos salvo isomorfismo. (Pensar también por qué $\mathbf{Cone}(\mathbb{D})$ es una categoría.)

Si $\mathbb{D} = \emptyset$, un límite para \mathbb{D} es un objeto terminal en \mathscr{C} .

$$X'$$
 $\forall X', \exists ! X' \to X \text{ (cualquier objeto } X' \text{ es}$ un cono sobre $\mathbb{D} = \varnothing$)

Si $\mathbb D$ es el diagrama sin flechas

A

un límite para \mathbb{D} es... un producto entre A y B:

Observación

Si $\mathbb D$ es un diagrama sin flechas, lím $\mathbb D$ es un producto entre los objetos de $\mathbb D$. En particular, esto nos dice que no siempre existen los límites para un diagrama dado.

Ejemplo (importante)

Para el diagrama \mathbb{D} :

un cono es un cuadrado conmutativo

El cono (X, f', g') es un límite para $\mathbb D$ si tiene la siguiente propiedad universal: para todo cono (X', f'', g'') existe un único morfismo $k: X' \to X$ tal que conmuta el siguiente diagrama:

El límite para este tipo de diagramas se llama pull-back de f y g.

Ejercicio

Encontrar el pull-back en Set.

La noción dual de límite de un diagrama \mathbb{D} es la de **colímite**. Como ejercicio, definir

- co-cono,
- colímite.
- coCone(D). (Un colímite será un objeto inicial en la categoría de co-conos de \mathbb{D} .)

co-Ejemplos

- $ightharpoonup \mathbb{D} = \varnothing$, colím $\mathbb{D} =$ objeto inicial
- $ightharpoonup \mathbb{D}$: A B, $\operatorname{colim} \mathbb{D} = \operatorname{coproducto}$

$$4 \longrightarrow 6$$

Teorema

Si existen todos los productos y los ecualizadores, entonces existen todos los límites.

coTeorema

Si existen todos los coproductos y los coecualizadores, entonces existen todos los colímites.

Exponenciales

Ejemplo En **Set**,

$$B^A = \operatorname{\mathsf{Hom}}(A,B) = \{f: A \to B\} \simeq \prod_{a \in A} B$$

es un conjunto.

Pregunta: ¿cómo definiríamos B^A sin recurrir a sus elementos?

$$\begin{array}{ccc}
B^{A} & B^{A} \times A \xrightarrow{\varepsilon} B \\
\exists ! \tilde{g} \uparrow & \tilde{g} \times id_{A} \uparrow & g \\
C & C \times A
\end{array}$$

- ► En este caso es importante que $B^A = \prod_{a \in A} B$ sea un producto.
- $ightharpoonup \varepsilon: B^A \times A \to B$ es la evaluación

$$\varepsilon(f,a)=f(a)=\pi_a(f).$$

- ▶ Para construir $\tilde{g}: C \to B^A$ a partir de $g: C \times A \to B$ procedemos como sigue:
- ▶ Para cada $a \in A$, tenemos $g_a : C \to B$ definida por $g_a(c) = g(c, a)$.
- ▶ La propiedad universal del producto dice que existe una única $\tilde{g}: C \to B^A$ que "conmuta" con todas las proyecciones π_a :

$$\varepsilon(\tilde{g}(c),a)=\tilde{g}(c)(a)=g(c,a).$$

Definición

Sea $\mathscr C$ una categoría con productos binarios y sean $A,B\in \operatorname{ob}\mathscr C$. Un objeto B^A es un **exponencial** si existe un morfismo $\varepsilon:B^A\times A\to B$ tal que para todo morfismo $g:C\times A\to B$ existe un único morfismo $\tilde g:C\to B^A$ tal que el siguiente diagrama conmuta:

$$B^{A} \times A \xrightarrow{\varepsilon} B$$

$$\tilde{g} \times id_{A} \uparrow \qquad g$$

$$C \times A$$

$$\varepsilon \circ (\tilde{g} \times id_{A}) = g$$

Notación: $\tilde{g} = \text{curry}(g)$.

Definición

Una categoría cartesiana cerrada (CCC) es una categoría $\mathscr C$ con objeto terminal, productos binarios y exponenciales (es decir, para todos $A, B \in \text{ob } \mathscr C$, existe B^A).

Set es CCC: $B^A = \text{Hom}(A, B)$.

Ejercicio*

Grp no es CCC, ¿es **Ab** CCC?

Ejercicio

En una CCC:

 \triangleright B^A es único salvo isomorfismo;

 $ightharpoonup 1^A \simeq 1$;

 \triangleright $B^1 \simeq B$.

Un álgebra de Boole es una CCC:

- ► $(B, \lor, \land, 0, 1, ()^c) = (B, \le)$ es una categoría (poset);
- ▶ objeto terminal: $1 = \max B$;
- ▶ productos: $a \times b = ??? = a \land b = \inf\{a, b\};$

▶ exponenciales: $b^a = \neg a \lor b$ (implicación lógica " $a \implies b$ "). Estamos cambiando la notación ()^c por ¬ para no hacer lío en la siguiente slide.

$$\begin{array}{c}
b^{a} \times a \xrightarrow{\varepsilon} b \\
\tilde{g} \times id_{a} \downarrow g \\
c \times a
\end{array}$$

La unicidad de las flechas está garantizada porque estamos trabajando en un postet (a lo sumo una flecha entre dos objetos), pero tenemos que verificar su existencia.

- ▶ $g: c \land a \leq b \text{ (dato)}.$
- id_a: a ≤ a √
- ▶ \tilde{g} : $c \leq b^a = \neg a \lor b$. En efecto,

$$c \lor b^{a} = c \lor \neg a \lor b = [c \land (a \lor \neg a)] \lor \neg a \lor b$$
$$= (c \land a) \lor (c \land \neg a) \lor \neg a \lor b$$
$$= [(c \land \neg a) \lor \neg a] \lor [(c \land a) \lor b]$$
$$= \neg a \lor b = b^{a} \quad \checkmark$$

La unicidad de las flechas está garantizada porque estamos trabajando en un postet (a lo sumo una flecha entre dos objetos), pero tenemos que verificar su existencia.

- ▶ $g: c \land a \leq b$ (dato).
- id_a: a ≤ a √
- $ightharpoonup ilde{g}$: $c \leq b^a = \neg a \lor b$. En efecto,

$$c \lor b^{a} = c \lor \neg a \lor b = [c \land (a \lor \neg a)] \lor \neg a \lor b$$

$$= (c \land a) \lor (c \land \neg a) \lor \neg a \lor b$$

$$= [(c \land \neg a) \lor \neg a] \lor [(c \land a) \lor b]$$

$$= \neg a \lor b = b^{a} \quad \checkmark$$