Q

AE 03: Joining prognosticators

Suggested answers

```
APPLICATION EXERCISE ANSWERS
```

MODIFIED

September 13, 2024

Important

These are suggested answers. This document should be used as reference only, it's not designed to be an exhaustive key.

```
library(tidyverse)
library(scales)

seers <- read_csv("data/prognosticators.csv")
weather <- read_csv("data/weather-region.csv")</pre>
```

Prognosticator success

We previously examined the accuracy rate of Groundhog Day prognosticators. Today we want to work with the original dataset to understand how those accuracy metrics were generated and answer the question: How does prognosticator accuracy vary by climatic region?

¹ See ae-01

Let's start by looking at the seens data frame.

```
glimpse(seers)
```

We have the predictions, but our goal is to make a visualization by climate region.²

Climatic regions in the United States

Source: National Climatic Data Center

Join the data frames

Let's take a look at the weather data frame.

```
glimpse(weather)
```

```
Rows: 5,568
Columns: 13
                <chr> "Northeast", "Northeast", "Northeast", "Northeast", "No...
$ region
                <chr> "CT", "CT", "CT", "CT", "CT", "CT", "CT", "CT", "CT", "...
$ state_abb
                $ id
                <dbl> 1909, 1910, 1911, 1912, 1913, 1914, 1915, 1916, 1917, 1...
$ year
$ avg_temp
                <dbl> 28.00, 29.20, 24.90, 23.15, 28.05, 22.05, 27.50, 21.55,...
                <dbl> 25.58333, 26.09000, 26.16667, 25.85667, 25.63333, 25.52...
$ temp_hist
$ temp_hist_sd
                <dbl> 4.245360, 4.241218, 4.103158, 4.124311, 3.907804, 4.016...
                <dbl> 4.154767, 4.154767, 4.154767, 4.154767, 4.154767, 4.154...
$ temp_sd
$ precip
                <dbl> 4.005, 2.520, 2.810, 3.570, 3.765, 2.920, 2.330, 3.425,...
$ precip_hist
                <dbl> 3.476667, 3.526667, 3.378000, 3.411000, 3.446333, 3.352...
$ precip_hist_sd <dbl> 1.1784719, 1.2081292, 1.1442431, 1.1620681, 1.2039309, ...
```

² Source: National Weather Service Climate Prediction Center

- Your turn (2 minutes):
 - Which variable(s) will we use to join the seers and weather data frames?
 - We want to keep all rows and columns from seers and add columns for corresponding weather data. Which join function should we use?
- Demo: Join the two data frames and assign the joined data frame to seers weather.

```
seers_weather <- inner_join(
  x = seers, y = weather,
  by = join_by(state == state_abb, year)
)</pre>
```

Calculate the variables

• **Demo:** Take a look at the updated seers data frame. First we need to calculate for each prediction whether or not the prognostication was correct.

```
seers_weather <- seers_weather |>
mutate(correct_pred = prediction == outcome)
```

Demo: Calculate the accuracy rate (we'll call it preds_rate) for weather predictions using the summarize() function in dplyr. Note that the function for calculating the mean is mean() in R.

```
seers_weather |> # start with seers data frame
group_by(region) |> # group by region
summarize(preds_rate = mean(correct_pred)) # calculate accuracy rate
```

```
# A tibble: 9 \times 2
  region
                                preds_rate
  <chr>>
                                      <dbl>
1 Northeast
                                      0.491
2 Northern Rockies and Plains
                                      0.574
3 Northwest
                                      0.442
4 Ohio Valley
                                      0.557
5 South
                                      0.506
6 Southeast
                                      0.568
7 Southwest
                                      0.667
8 Upper Midwest
                                      0.5
9 West
                                      0.286
```

• Your turn (5 minutes): Now expand your calculations to also calculate the number of predictions in each region and the standard error of accuracy rate. Store this data frame as seers_summary. Recall the formula for the standard error of a sample proportion:

$$SE(\hat{p}) pprox \sqrt{rac{(\hat{p})(1-\hat{p})}{n}}$$

```
seers_summary <- seers_weather |>
group_by(region) |>
summarize(
   preds_rate = mean(correct_pred),
   preds_n = n(),
   preds_se = sqrt((preds_rate * (1 - preds_rate)) / preds_n)
)
seers_summary
```

```
# A tibble: 9 × 4
                               preds_rate preds_n preds_se
  region
  <chr>
                                    <dbl>
                                            <int>
                                                     <dbl>
                                    0.491
1 Northeast
                                              696
                                                    0.0189
2 Northern Rockies and Plains
                                    0.574
                                               47
                                                    0.0721
3 Northwest
                                    0.442
                                               52
                                                    0.0689
4 Ohio Valley
                                    0.557
                                              280
                                                    0.0297
5 South
                                    0.506
                                              79
                                                    0.0562
6 Southeast
                                    0.568
                                                    0.0373
                                              176
7 Southwest
                                    0.667
                                              36
                                                    0.0786
                                    0.5
8 Upper Midwest
                                              104
                                                    0.0490
9 West
                                    0.286
                                                7
                                                    0.171
```

• Demo: Take the seers_summary data frame and order the results in descending order of accuracy rate.

```
seers_summary |> # start with seers_summary data frame
arrange(desc(preds_rate)) # order in descending order of preds_rate
```

```
# A tibble: 9 \times 4
  region
                               preds_rate preds_n preds_se
  <chr>>
                                    <dbl>
                                             <int>
                                                      <dbl>
1 Southwest
                                    0.667
                                                     0.0786
                                                36
2 Northern Rockies and Plains
                                    0.574
                                                47
                                                     0.0721
3 Southeast
                                    0.568
                                               176
                                                     0.0373
4 Ohio Valley
                                    0.557
                                               280
                                                     0.0297
                                    0.506
                                               79
                                                     0.0562
5 South
6 Upper Midwest
                                    0.5
                                               104
                                                     0.0490
7 Northeast
                                    0.491
                                               696
                                                     0.0189
8 Northwest
                                    0.442
                                                52
                                                     0.0689
9 West
                                    0.286
                                                7
                                                     0.171
```

Recreate the plot

Demo: Recreate the following plot using the data frame you have developed so far.

Prognosticator accuracy rate for late winter/early spring By climate region

Source: Countdown to Groundhog Day & NOAA

```
seers_summary |>
 mutate(region = fct_reorder(.f = region, .x = preds_rate)) |>
  ggplot(mapping = aes(x = preds_rate, y = region)) +
  geom_point(mapping = aes(size = preds_n)) +
  geom_linerange(mapping = aes(
   xmin = preds_rate - preds_se,
   xmax = preds_rate + preds_se
  ))+
  scale_x_continuous(labels = label_percent()) +
  labs(
   title = "Prognosticator accuracy rate for late winter/early spring",
   subtitle = "By climate region",
   x = "Prediction accuracy",
   y = NULL
   size = "Total number\nof predictions",
    caption = "Source: Countdown to Groundhog Day & NOAA"
  theme_minimal()
```

Source: Countdown to Groundhog Day & NOAA

Prognosticator accuracy rate for late winter/early spring By climate region

Your turn (time permitting): Make any other changes you would like to improve it.

add your code here

Session information

This page is built with Quarto.

Cookie Preferences