Propagation d'une maladie infectieuse

A. Feehan — R. Ilbert — E. Merone

Introduction

2014 West Africa Ebola Epidemic

Comment éviter une pandémie ?

Sommaire

- I. Modèles d'une épidémie
- II. Simulations avec Python
- III. Évaluation des modèles

I. Modéliser une épidémie

Modèle SIS

I. Modéliser une épidémie

Modèle SIR

Populations

structures et représentation

Maladies

et matrices de transmission

constante	transmission	guérison	mortalité
description	nombre moyen de	probabilité de guérir	probabilité de décéder
	voisins infectés	spontanément	spontanément

Propagation

Propagation

Propagation

Propagation

Propagation

Vaccination

stratégies et taux d'utilisation

Vaccination

stratégies et taux d'utilisation

Vaccination

stratégies et taux d'utilisation

Évaluer une stratégie

cas 0 : propagation naturelle, sans mort ou guérison

III. Évaluer les modèles

Évaluer une stratégie

effet d'un confinement

Tous les états pour une expérience

Maladie moyenne pour un échantillon d'expériences

Évaluer une stratégie

l'effet d'une vaccination aléatoire

Confrontation au modèle

convergence des effectifs

Confrontation au modèle

convergence des effectifs

Conclusion

- La vaccination aléatoire est efficace s'il y en a beaucoup
- Le confinement est largement plus efficace
- Problème : il faut assurer un "bon confinement", ce qui est difficile pour les maladies très mobiles
- On distingue deux cas :
 - la maladie se propage de proche-en-proche → confinement
 - la maladie se transmet par voie aérienne → vaccination
- En réalité, tout dépend du coût des procédures (en R&D, en fabrication, en infrastructures,...)

Bilan technique

- Modélisation réussie et il reste des équations à résoudre dans les cas sophistiqués
- II. Simulations satisfaisantes, à complexifier
- III. Évaluation des modèles fonctionnelle et accélérable