SVKM'S NMIMS

MUKESH PATEL SCHOOL OF TECHNOLOGY MANAGEMENT& ENGINEERING SCHOOL OF TECHNOLOGY MANAGEMENT& ENGINEERING

Academic Year: 2022-2023

Program/s: B. Tech/MBA Tech

Year: II Semester: IV

Stream/s: Computer Engineering/Computer Science

Subject: Theoretical Computer Science

Time: 03 hrs (10:00 AM to 01:00 PM)

MPSTME LIBRARY

Date: 03 July 2023

No. of Pages:03

Marks: 100

Re-Examination (2021-22/2022-23)

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover of the Answer Book, which is provided for their use.

1) Question No. 1 is compulsory.

2) Out of remaining questions, attempt any 4 questions.

3) In all 5 questions to be attempted.

4) All questions carry equal marks.

5) Answer to each new question to be started on a fresh page.

6) Figures in brackets on the right-hand side indicate full marks.

7) Assume Suitable data if necessary.

Q1		Solve the following		
CO-1; SO-1; BL-1	a.	Define the following terms with examples. i. Alphabet ii. String iii. Language	[05]	
CO-1,2; SO-1,2; BL-2,4	b.	What are Finite Automata (FA)? How is FA without output different from FA with output? Explain		
- CO-3; SO-2; BL-3	c.	Give CFG for the language containing all the strings (over $\Sigma = \{0, 1\}$) in which the first and last symbols differ.		
CO-2; SO-1,2; BL-3	d.	Consider the languages L1 and L2 are context-free. Prove that context-free languages are closed under union operation. $L1 = \{a^n \mid n \ge 1\}$ $L2 = \{b^n \mid n \ge 1\}$		
Q2				
CO-2,3; SO-1,2; BL-2,6	a	Design a finite state machine over the alphabet {a,b}, such that strings accepted satisfies the following condition. Also, give initial strings in the language and explain all the tuples of constructed machines.	[10]	
		Condition: Set of strings with even number of a's and odd number of b's.		

	Ъ	Write a short note on the fo	llowing				4 A A A A A A A A A A A A A A A A A A A						
CO-2; SO-1,2;			_	rely enum	erable lance	1200	X. T	[10]					
BL-2,4	2.4							[10]					
2		ii. Power of TM o	ver PDA		<i>a</i> a	· · · · · · · · · · · · · · · · · · ·							
Q3								G.					
***	a	Give the formal definition	of Mealy	and Moore	machines. T	hen, conve	rt the						
		following Mealy Machine to Moore Machine.											
CO-3; SO-2; BL-2,4		q ₁ 1/0 q ₂ 0/1											
		-		q ₃	21								
CO-3; SO-2; BL-6	b	Construct pushdown automata to accept palindrome over $\Sigma = \{a,b\}$						[10]					
Q4					5								
CO-2,3; SO-1,2; BL-3	a	Let G be given by the following grammar: G: S → ASA aB A → B S B → b ε. Convert grammar G into to Chamely, Narroal Forms (CNE)						[10]					
CO-3; SO-2; BL-6	b	Convert grammar G into to Chomsky Normal Form (CNF). Design a Turing Machine to find the reverse of a string over $\Sigma = \{0,1\}$.						[10]					
Q5		2				T	* *** %*-						
	a	Consider the following NFA with ϵ -transitions. Assume 'p' as the initial and 'r' as the final state. Convert the following NFA with epsilon moves to equivalent DFA.											
CO-3; SO-2;		Σ Q	E	a	ь	С		[10]					
BL-3		p	ф	{p}	{q}	{r}							
		q	{p}	{q}	{r}	ф	1						
		r	{q}	{r}	ф	{p}							
								.,					

CO-2; SO-1,2;	b	What is grammar simplification? Simplify the following Context Free Grammar?	[10]
BL-2,3		$G = \{(S,A,B),(a,b,\epsilon),S,P\}$: productions are given below.	190
		$S\rightarrow ASB \mid \epsilon$	- 1
		$A\rightarrow aAS \mid \epsilon$	
		$B \rightarrow SbS \mid A \mid bb$	
Q6			
CO-1; 3O-1; BL-3,4	a	 i. Compare DFA and NFA. ii. Design a regular expression that represent all strings over the alphabet ∑ = {a, b}, - where every accepted string 'w' starts with substring "abb". - where every accepted string 'w' ends with substring "bab". - where every accepted string 'w' contains sub string "aba". - string start and end with same symbols. - string start and end with different symbols. 	[10]
CO-1; SO-1; BL-2	ь	What is Push Down Automata (PDA)? What are the two different ways to define PDA acceptability?	[05]
	С	Let $G = \{(S,A),(a,b),P,S\}$ where P consist of :	
CO-2;		$S \rightarrow aAS \mid a$	
SO-1,2;		$A \rightarrow SbA \mid SS \mid ba$	[05]
BL-3		Derive string "aabbaa" using right most derivation and give derivation tree for same.	
Q7			
CO-2; SQ-1,2; BL-1,2	a	State and explain closure properties of regular language	[05]
CO-2; SO-1,2; BL-2	b	Write down the syntax for recognizing Type-2 Grammar and justify your answer with the help of a suitable example.	
CO-3; SO-2; BL-6	С	Construct a Moore machine that determines whether an input string contains an even or odd number of 1's. The machine should give 1 as output if an even number of 1's are in the string and 0 otherwise.	
	1	Design a Turing machine to add two unary numbers.	