DAM lecture 11:

Logistic Regression 14.03.2016

Aasa Feragen aasa@diku.dk

After today's lecture you should

- be able to explain the model defined in logistic regression
- understand how gradient descent solves logistic regression
- be able to implement a gradient descent solver for logistic regression

Change in Assignment 3

- ➤ You will be allowed to use built-in solvers for logistic regression in Assignment 3
- ▶ In the exam assignment, you will be given a choice of using the built-in solver or implementing your own — using the built-in solver will be worth fewer points.

Case: Predicting college admittance

- 400 American collage applicants
- Features: High school GPA and results of the pre-college GRE test (Graduate Record Examinations)
- ► Labels: Admittance (1) or not (0)
- ► Task: Predict a probability of being admitted based on GPA and GRE score¹

¹Data from: http://www.ats.ucla.edu/stat/r/dae/logit.htm

Case: Predicting college admittance

Let's take a look at the data

The meaning of $\mathbf{w}^T \mathbf{x}$

Assume that your data lives in \mathbb{R}^d , that $\mathbf{x} \in \mathbb{R}^d$ is a variable, and that $\mathbf{w} \in \mathbb{R}^d$ is some vector. What does the equation $\mathbf{w}^T \mathbf{x}$

describe?

The meaning of $\mathbf{w}^T \mathbf{x}$

Assume that your data lives in \mathbb{R}^d , that $\mathbf{x} \in \mathbb{R}^d$ is a variable, and that $\mathbf{w} \in \mathbb{R}^d$ is some vector.

What does the equation

 $\mathbf{w}^T \mathbf{x}$

describe?

Reminder: Linear regression

What happens when your point x moves away from the boundary defined by $w^T x$?

What happens when your point x moves away from the boundary defined by w^Tx?

▶ The value of $\mathbf{w}^T \mathbf{x}$ gets either larger or smaller

What happens when your point x moves away from the boundary defined by w^Tx?

- ▶ The value of $\mathbf{w}^T \mathbf{x}$ gets either larger or smaller
- Logistic regression returns a probability $h(x) = \theta(w^T x)$ of belonging to either the red or blue class, such that either |h(x)| approaches either 0 or 1 as $|w^T x|$ becomes large.

What happens when your point x moves away from the boundary defined by w^Tx?

- ▶ The value of $w^T x$ gets either larger or smaller
- Logistic regression returns a probability $h(\mathbf{x}) = \theta(\mathbf{w}^T \mathbf{x})$ of belonging to either the red or blue class, such that either $|h(\mathbf{x})|$ approaches either 0 or 1 as $|\mathbf{w}^T \mathbf{x}|$ becomes large.
- How could you obtain that?

How do we obtain that?

Logistic regression makes use of the logistic function

$$\theta(s) = \frac{e^s}{1 + e^s}$$

WARNING

In the following, we shall use classification labels ± 1 . The textbook uses classification labels 0/1. This makes the formulas incompatible; do not mix them.

 Our goal is to learn a target probability of belonging to each of the two classes,

$$P(y|\mathbf{x}) = \begin{cases} h(\mathbf{x}) & \text{for } y = +1, \\ 1 - h(\mathbf{x}) & \text{for } y = -1. \end{cases}$$

 Our goal is to learn a target probability of belonging to each of the two classes,

$$P(y|\mathbf{x}) = \begin{cases} h(\mathbf{x}) & \text{for } y = +1, \\ 1 - h(\mathbf{x}) & \text{for } y = -1. \end{cases}$$

▶ We define $h(x) = \theta(w^T x)$. Determined completely by w.

 Our goal is to learn a target probability of belonging to each of the two classes,

$$P(y|\mathbf{x}) = \begin{cases} h(\mathbf{x}) & \text{for } y = +1, \\ 1 - h(\mathbf{x}) & \text{for } y = -1. \end{cases}$$

- ▶ We define $h(x) = \theta(w^T x)$. **Determined completely by** w.
- Substituting $h(\mathbf{x}) = \theta(\mathbf{w}^T \mathbf{x})$, since $1 \theta(s) = \theta(-s)$, we get $P(\mathbf{y}|\mathbf{x}) = \theta(\mathbf{y}\mathbf{w}^T \mathbf{x})$.
- P(y|x) is called the *likelihood* of observing the output class y given the input x.

- ► Assume independent data points $(x_1, y_1), \dots, (x_N, y_N)$.
- Probability of observing all these y_n , given the inputs x_n :

$$\prod_{n=1}^{N} P(y_n|\mathbf{x}_n).$$

- ► Assume independent data points $(x_1, y_1), \dots, (x_N, y_N)$.
- ▶ Probability of observing all these y_n , given the inputs x_n :

$$\prod_{n=1}^N P(y_n|\mathbf{x}_n).$$

A good choice of model parameters **w** maximizes the probability of observing the data, that is

$$\operatorname{argmax}_{\boldsymbol{w}} \prod_{n=1}^{N} P(y_n | \boldsymbol{x}_n)$$

A maximum likelihood model!

▶ Maximizing $\prod_{n=1}^{N} P(y_n | x_n)$ is equivalent to minimizing

$$-\frac{1}{N}\ln\left(\prod_{n=1}^{N}P(y_{n}|\mathbf{x}_{n})\right)=\frac{1}{N}\sum_{n=1}^{N}\ln\left(\frac{1}{P(y_{n}|\mathbf{x}_{n})}\right).$$

Since

$$P(y_n|\mathbf{x}_n) = \theta(y_n\mathbf{w}^T\mathbf{x}_n), \text{ and } \theta(s) = \frac{e^s}{1 + e^s}$$

we end up minimizing

$$E_{in} = \frac{1}{N} \sum_{n=1}^{N} \ln \left(\frac{1}{\theta(y_n \mathbf{w}^T \mathbf{x}_n)} \right) = \frac{1}{N} \sum_{n=1}^{N} \ln \left(1 + e^{-y_n \mathbf{w}^T \mathbf{x}_n} \right).$$

▶ Pointwise log likelihood: $ln(1 + e^{-y_n \mathbf{w}^T \mathbf{x}_n})$

Maximizing $\prod_{n=1}^{N} P(y_n | x_n)$ is equivalent to minimizing

$$-\frac{1}{N}\ln\left(\prod_{n=1}^{N}P(y_{n}|\mathbf{x}_{n})\right)=\frac{1}{N}\sum_{n=1}^{N}\ln\left(\frac{1}{P(y_{n}|\mathbf{x}_{n})}\right).$$

Since

$$P(y_n|\mathbf{x}_n) = \theta(y_n\mathbf{w}^T\mathbf{x}_n), \text{ and } \theta(s) = \frac{e^s}{1 + e^s}$$

we end up minimizing

$$E_{in} = \frac{1}{N} \sum_{n=1}^{N} \ln \left(\frac{1}{\theta(y_n \mathbf{w}^T \mathbf{x}_n)} \right) = \frac{1}{N} \sum_{n=1}^{N} \ln \left(1 + e^{-y_n \mathbf{w}^T \mathbf{x}_n} \right).$$

- ▶ Pointwise log likelihood: $\ln(1 + e^{-y_n \mathbf{w}^T x_n})$
- ► How can I minimize E_{in}?

Reminder: Solving linear regression

Minimize in-sample error:

$$E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} (h(x_n) - y_n)^2$$

- ▶ Compute gradient $\nabla_{\boldsymbol{w}} E_{in}(\boldsymbol{w})$
- ▶ Solve $\nabla_{\boldsymbol{w}} E_{in}(\boldsymbol{w}) = 0$
- Obtain an analytic solution:

$$\mathbf{w} = (X^T X)^{-1} X^T \mathbf{y}$$

Need to minimize

$$E_{in} = \frac{1}{N} \sum_{n=1}^{N} \ln \left(\frac{1}{\theta(y_n \mathbf{w}^T \mathbf{x}_n)} \right) = \frac{1}{N} \sum_{n=1}^{N} \ln \left(1 + e^{-y_n \mathbf{w}^T \mathbf{x}_n} \right).$$

Need to minimize

$$E_{in} = \frac{1}{N} \sum_{n=1}^{N} \ln \left(\frac{1}{\theta(y_n \mathbf{w}^T \mathbf{x}_n)} \right) = \frac{1}{N} \sum_{n=1}^{N} \ln \left(1 + e^{-y_n \mathbf{w}^T \mathbf{x}_n} \right).$$

Can compute:

$$\nabla_{\mathbf{w}} E_{in} = \frac{1}{N} \sum_{n=1}^{N} -y_n \mathbf{x}_n \theta(-y_n \mathbf{w}^T \mathbf{x}_n)$$

▶ Need to minimize

$$E_{in} = \frac{1}{N} \sum_{n=1}^{N} \ln \left(\frac{1}{\theta(y_n \mathbf{w}^T \mathbf{x}_n)} \right) = \frac{1}{N} \sum_{n=1}^{N} \ln \left(1 + e^{-y_n \mathbf{w}^T \mathbf{x}_n} \right).$$

Can compute:

$$\nabla_{\mathbf{w}} E_{in} = \frac{1}{N} \sum_{n=1}^{N} -y_n \mathbf{x}_n \theta(-y_n \mathbf{w}^T \mathbf{x}_n)$$

▶ Unfortunately, setting $\nabla_w E_{in} = 0$ does not make us much wiser!!

Need to minimize

$$E_{in} = \frac{1}{N} \sum_{n=1}^{N} \ln \left(\frac{1}{\theta(y_n \mathbf{w}^T \mathbf{x}_n)} \right) = \frac{1}{N} \sum_{n=1}^{N} \ln \left(1 + e^{-y_n \mathbf{w}^T \mathbf{x}_n} \right).$$

Can compute:

$$\nabla_{\mathbf{w}} E_{in} = \frac{1}{N} \sum_{n=1}^{N} -y_n \mathbf{x}_n \theta(-y_n \mathbf{w}^T \mathbf{x}_n)$$

- ▶ Unfortunately, setting $\nabla_w E_{in} = 0$ does not make us much wiser!!
- Numerical optimization (gradient descent)

Let's start implementing the function and its gradient!

Fill in the functions

- ► E = logistic_insample(X,y,w)
- g = logistic_gradient(X, y, w)

where

- X is an N by (d+1) data matrix with a column of ones appended
- w is a (d+1)-dimensional weight vector
- y is a N-dimensional output vector

Remember:

$$E_{in} = \frac{1}{N} \sum_{n=1}^{N} \ln \left(\frac{1}{\theta(y_n \mathbf{w}^T \mathbf{x}_n)} \right) = \frac{1}{N} \sum_{n=1}^{N} \ln \left(1 + e^{-y_n \mathbf{w}^T \mathbf{x}_n} \right)$$
$$\nabla_{\mathbf{w}} E_{in} = \frac{1}{N} = \sum_{n=1}^{N} -y_n \mathbf{x}_n \theta(-y_n \mathbf{w}^T \mathbf{x}_n)$$

Walk downhill until you hit bottom

- ▶ Where do I start?
- How long steps?
- When have I hit bottom?

Walk downhill until you hit bottom

- ► Where do I start? Common: Initialize with random sample from normal distribution
- How long steps?
- When have I hit bottom?

Walk downhill until you hit bottom

- Where do I start? Common: Initialize with random sample from normal distribution
- ► How long steps? Common: $\eta_t = \eta \|\nabla E_{in}\|$; η called *learning* rate
- When have I hit bottom?

Walk downhill until you hit bottom

- Where do I start? Common: Initialize with random sample from normal distribution
- ▶ How long steps? Common: $\eta_t = \eta \|\nabla E_{in}\|$; η called *learning* rate
- When have I hit bottom? Threshold on ♯ steps or step size

Let's implement gradient descent for logistic regression!

Goal: Weights w that define optimal classifier minimizing $E_{in}(w)$.

- 1. Initialize weights
- 2. For t = 0, 1, 2, ...
 - 3. Compute the gradient

$$\boldsymbol{g}_t = -\frac{1}{N} \sum_{n=1}^{N} \frac{y_n \boldsymbol{x}_n}{1 + e^{y_n \boldsymbol{w}^T \boldsymbol{x}_n}},$$

- 4. Set direction to step: $\mathbf{v}_t = -\mathbf{g}_t$
- 5. Update the weights: $\mathbf{w}(t+1) = \mathbf{w}(t) + \eta \mathbf{v}_t$
- 6. Iterate until the next step until stopping
- 7. Return the final weights w.

Once you have the optimal model

Let's visualize the output!

- Define function log_pred which, given w and x, returns P(y|x).
- Threshold into classes

Next time:

► Lecture with Christian on decision trees