Data Analytics EEE 4774 & 6777

Module 4 - Classification

Deep Learning, Convolutional Neural Network

Spring 2022

Artificial Neural Network

- Origins in attempts to find mathematical representations of information processing in biological systems (MLP): fully connected neural network
- Also known as Multilayer Perceptron / Can be also regarded as Multilayer Logistic Regression
- Finds basis functions $\phi(x)$ adaptive to the training data

Mostly black-box approaches

Extensions

Applications

Deep Neural Networks (Deep Learning), e.g.,

Learning Learning

Convolutional Neural Network (CNN)

image processing

Recurrent Neural Network (RNN) Module 5
sequential data

Transformer (self-attention)

• Deep Generative Models_ Module 6

Deep Reinforcement Learning

- Image Classification

 Object Recognition
- Action Recognition
- Face Recognition
- Speech Recognition
- Natural Language Processing (ペレヤ)
- Video Understanding
- Time-series Prediction
 - Anomaly Detection
- Robotics
- Autonomous Driving
- •

Convolutional Neural Networks ((NN)

• Uses convolution in place of general matrix multiplication in at least one of the layers

Convolution is a specialized kind of linear operation:

pecialized kind of linear operation:
$$s(t) = x(t) * w(t) = \sum_{a=-\infty}^{\infty} x(a)w(t-a)$$

• Used for processing data that has a grid-like topology, e.g., time-series data (1-D grid), image data (2-D grid)

Very successful in practice

Convolution

3x3x	2x3 image 3 filter w
ry.	

$$3 \times 5 + (-2) 10 + (-1) = -8$$

Stride =
$$\mathcal{V}$$

Convolutional Neural Networks

- 3 stages:
 - convolutional stage: linear activations
 - detector stage: nonlinear activation function such as Rectified Linear Unit (ReLU)
 - pooling stage: modify the output with a summary statistic of nearby outputs, e.g.,
- Max Pooling: reports the maximum output within a rectangular neighborhood
- Average Pooling: average of a rectangular neighborhood
- Pooling helps to make the representation approximately invariant (i.e., robust) to small translations of the input

CNN Architectures

- LeNet-5 [LeCunn et al. 1998]
- AlexNet [Krizhevsky et al. 2012]
- VGG [Simonyan et al. 2014]
- GoogLeNet [Szegedy et al. 2015]
- ResNet [He et al. 2016]

• ...

• ...

<u>LeNet-5:</u> Conv filters were 5x5, applied at stride 1 Subsampling (Pooling) layers were 2x2 applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]

4 layers

Rise of Deep Learning

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

AlexNet

reuse diversity deboret

First use of ReLU

Used Norm layers

- Data augmentation (overfitting)
- Dropout (overfitting)
 - Randomly drop neurons for each training instance in feedforward and backpropagation with probability 0.5
 - "Every time an input is presented, the neural network samples a different architecture, but all these architectures share weights"
 - "At test time, use all the neurons but multiply their outputs by 0.5"
- SGD for weight update in training

 - Momentum 0.9 0.01 While O.9Wy + 0.01 Jule Learning rate 1
 - Learning rate 1e-2, reduced by 10

manually when validation accuracy plateaus

7 CNN ensemble: 18.2% -> 15.4%

ImageNet Classification with Deep Convolutional **Neural Networks**

Alex Krizhevsky University of Toronto

kriz@cs.utoronto.ca

Ilya Sutskever University of Toronto ilva@cs.utoronto.ca

Geoffrey E. Hinton University of Toronto hinton@cs.utoronto.ca

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overfitting in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

ResNet

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

- Very deep networks using residual connections
- 152-layer model for ImageNet
 - Outperformed the human-level performance
- Now focus shifted to Efficient Networks:
 - Lots of tiny networks aimed at mobile devices: MobileNet, ShuffleNet, etc.

Trained en new data

FC-1000 (Cassification)		1	1
FC-1000 FC-4096 FC-4096 MaxPool		very similar dataset	very different dataset
Conv-512 MaxPool Conv-512 MaxPool Conv-512 MaxPool Conv-256 Conv-256 MaxPool MaxPool	very little data	Finetune linear classifier on top layer	You're in trouble Try data augmentation / collect more data
Conv-128 MaxPool Conv-64 Conv-64 Image	quite a lot of data	Finetune a few layers	Finetune a larger number of layers

Transfer Learning with CNNs

1. Train on Imagenet

FC-1000 FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64 **Image**

2. Small Dataset (C classes)

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

3. Bigger dataset

Transfer Learning

In practice:

- Take a pretrained model
 - Trained on a very large dataset such as ImageNet
 - "Model Garden" of pretrained models:

https://github.com/tensorflow/models

https://github.com/pytorch/vision

Train only a few last layers on your dataset