February 10, 2012

Instructions: Show all your work, and draw a box around your final answer. **No calculators** are allowed. If your answer would be an imaginary number, write "imaginary" as your answer.

- **1.** Convert $(-10)^{\frac{4}{5}}$ to radical form: _____
- **2.** Convert $\sqrt[5]{29}$ to exponential form:
- **3.** Simplify the following radical expressions:
 - (a) $\sqrt[3]{(-5) \times (-5) \times (-5) \times (-5)}$
 - (b) $\sqrt[5]{y^{13}}$
 - (c) $\sqrt{54}$
 - (d) $\sqrt[3]{9} \cdot \sqrt[3]{9x^3}$
 - (e) $\sqrt{14} \cdot \sqrt{12}$
 - (f) $\sqrt{2^5 \cdot 3^7}$
 - (g) $\frac{\sqrt{24}}{\sqrt{2}}$
 - (h) $\sqrt[3]{2} \cdot \sqrt[3]{2} \cdot \sqrt[3]{-4}$

- 4. Evaluate:
 - (a) $\sqrt{-25}$
 - (b) $16^{\frac{3}{2}}$
 - (c) $(-8)^{\frac{1}{3}}$
 - (d) $(\frac{1}{3})^{-2}$
 - (e) |-7| |-8|
 - (f) |1-9+2|-|1-11|
 - (g) $\sqrt[3]{-1}$
- **5.** Fill in the blank: $\sqrt[]{\cdot \sqrt[4]{27}} = 3$.

Extra credit: The number of bacteria in a culture after t hours has the equation $P(t) = A \cdot B^t$, where A and B are numbers. You don't know A and B. You do know that the population after 1 hour is 50, and the population after 4 hours is 400. Find the population after 2 hours (In other words, find P(2)).

Hint: first solve for *A* and *B*.