

ALGORITHMEN UND DATENSTRUKTUREN

ÜBUNG 2: SYNTAXDIAGRAMME & EBNF

Eric Kunze
eric.kunze@tu-dresden.de

TU Dresden, 25. Oktober 2021

VIDEOEMPFEHLUNG

Prof. Dr. Markus Krötzsch hat im vergangenen Wintersemester 2020/21 die Vorlesung "Formale Systeme" (3. Semester) in Form von YouTube-Videos gehalten. Diese Vorlesung beschäftigt sich vertieft mit formalen Sprachen.

Die Einleitung entspricht ungefähr dem Inhalt der ersten Übung:

► https://youtu.be/Lma6jaPnD-I

Syntaxdiagramme

SYNTAXDIAGRAMME

Beispiel eines Syntaxdiagrammsystems mit Startdiagramm S:

- 🖹 . . . Nichtterminalsymbol = syntaktische Variable
- ⓐ ... Terminalsymbol

RÜCKSPRUNGALGORITHMUS

Rücksprungalgorithmus

- Ziel: Nachweis von Zugehörigkeit eines Wortes zu einer Sprache
- jedes Kästchen bekommt eindeutige Marke (Rücksprungadresse)
- beim Betreten eines Syntaxdiagramms wird eine Marke auf den Keller gelegt

Hauptaugenmerk:

Protokollierung von Wortentstehung & Markenkeller

- jede Zeile entspricht dem Aufenthalt in einem Syntaxdiagramm
- ▶ jede Zeile führt eine Operation auf dem Markenkeller durch

Gegeben sei das folgende Syntax-diagrammsystem $\,\mathcal{U}\,$ mit Startdiagramm \mathcal{S} :

Gegeben sei das folgende Syntax-diagrammsystem $\mathcal U$ mit Startdiagramm $\mathcal S$:

Beispiele für Wörter, die das System \mathcal{U} erzeugt:

- \triangleright a accb b
- ► a a accb b b
- \triangleright a a accb d b
- ► a a a accb d d b
- ► a a a accb b d b

Wort: aaaaccbdbb

- jeder Aufenthalt in einem Syntaxdiagramm entspricht einer Zeile
- jede Zeile führt eine Operation auf dem Markenkeller aus
- ► 3 = Rücksprung zu Marke 3

Wort	Markenkeller

Wort: aaaaccbdbb

- jeder Aufenthalt in einem Syntaxdiagramm entspricht einer Zeile
- jede Zeile führt eine Operation auf dem Markenkeller aus
- ► 3 = Rücksprung zu Marke 3

Wort: aaaaccbdbb

Wort	Markenkeller
а	1

- jeder Aufenthalt in einem Syntaxdiagramm entspricht einer Zeile
- jede Zeile führt eine Operation auf dem Markenkeller aus
- ► 3 = Rücksprung zu Marke 3

Wort: aaaaccbdbb

Wort	Markenkeller
a	1
a	31

- jeder Aufenthalt in einem Syntaxdiagramm entspricht einer Zeile
- jede Zeile führt eine Operation auf dem Markenkeller aus
- ► 3 = Rücksprung zu Marke 3

Wort: aaaaccbdbb	Wort	Markenkeller
	a	1
	a	31
Protokollierungszeitpunkte:	aa	131

- jeder Aufenthalt in einem Syntaxdiagramm entspricht einer Zeile
- jede Zeile führt eine Operation auf dem Markenkeller aus
- ► 3 = Rücksprung zu Marke 3

Wort: aaaaccbdbb

Wort	Markenkeller
а	1
a	31
aa	131
aaa	2131

- jeder Aufenthalt in einem Syntaxdiagramm entspricht einer Zeile
- jede Zeile führt eine Operation auf dem Markenkeller aus
- ► 3 = Rücksprung zu Marke 3

144	Wort	Markenkeller
Wort: aaaaccbdbb	a	1
	a	31
Protokollierungszeitpunkte:	aa	131
► jeder Aufenthalt in einem	aaa	2131
Syntaxdiagramm entspricht	aaa	32131
einer Zeile		

- jede Zeile führt eine Operation auf dem Markenkeller aus
- ► 3 = Rücksprung zu Marke 3

Wort: aaaaccbdbb	Wort	Markenkeller
	a	1
	a	31
Protokollierungszeitpunkte:	aa	131
► jeder Aufenthalt in einem	aaa	2131
Syntaxdiagramm entspricht	aaa	32131

aaaaccb

 jede Zeile führt eine Operation auf dem Markenkeller aus

einer Zeile

► 3 = Rücksprung zu Marke 3

*3*2131

M	Wort	Markenkeller
Wort: aaaaccbdbb	a	1
	a	31
Protokollierungszeitpunkte:	aa	131
▶ jeder Aufenthalt in einem	aaa	2131
Syntaxdiagramm entspricht	aaa	32131
einer Zeile	aaaaccb	<i>3</i> 2131
▶ jede Zeile führt eine	aaaaccb	<i>2</i> 131
Operation auf dem		
Markenkeller aus		

► 3 = Rücksprung zu Marke 3

Alauta 2.32.2	Wort	Markenkeller
Wort: aaaaccbdbb	a	1
	a	31
Protokollierungszeitpunkte:	aa	131
► jeder Aufenthalt in einem	aaa	2131
Syntaxdiagramm entspricht	aaa	32131
einer Zeile	aaaaccb	<i>3</i> 2131
▶ jede Zeile führt eine	aaaaccb	2 131
Operation auf dem	aaaaccbd	1⁄31
Markenkeller aus		

► 3 = Rücksprung zu Marke 3

147	Wort	Markenkeller
Wort: aaaaccbdbb	a	1
	a	31
Protokollierungszeitpunkte:	aa	131
► jeder Aufenthalt in einem	aaa	2131
Syntaxdiagramm entspricht	aaa	32131
einer Zeile	aaaaccb	<i>3</i> 2131
► jede Zeile führt eine	aaaaccb	<i>2</i> 131
Operation auf dem	aaaaccbd	<i>1</i> /31
Markenkeller aus	aaaaccbdb	<i>3</i> 1

► 🔰 = Rücksprung zu Marke 3

200	Wort	Markenkeller
Wort: aaaaccbdbb	a	1
	a	31
Protokollierungszeitpunkte:	aa	131
► jeder Aufenthalt in einem	aaa	2131
Syntaxdiagramm entspricht	aaa	32131
einer Zeile	aaaaccb	<i>3</i> 2131
► jede Zeile führt eine	aaaaccb	<i>2</i> 131
Operation auf dem	aaaaccbd	<i>1</i> /31
Markenkeller aus	aaaaccbdb	<i>3</i> 1
► 3 = Rücksprung zu Marke 3	aaaaccbdb	χ

Wort: aaaaccbdbb
Protokollierungszeitpunkte:
▶ ieder Aufenthalt in einem

- jeder Aufenthalt in einem Syntaxdiagramm entspricht einer Zeile
- jede Zeile führt eine Operation auf dem Markenkeller aus
- ► 3 = Rücksprung zu Marke 3

Wort	Markenkeller
а	1
a	31
aa	131
aaa	2131
aaa	32131
aaaaccb	<i>3</i> 2131
aaaaccb	<i>2</i> 131
aaaaccbd	1⁄31
aaaaccbdb	<i>3</i> 1
aaaaccbdb	X
aaaaccbdbb	_

$$L = L_A \cdot L_B$$

$$L = L_A \cdot L_B$$

$$L = L_A \cdot L_B$$
 S:

$$L = \{a^n L_A b^n : n \ge 0\}$$

$$L = L_A \cdot L_B$$
 S:

$$L = \{a^n L_A b^n : n > 0\}$$

$$L = L_A \cdot L_B$$
 S:

$$L = L_A \cdot L_B$$
 S:

$$L = \{a^n L_A b^n : n > 0\}$$
s:
$$s = \begin{cases} s & b \end{cases}$$

kleine Tricks:

$$ightharpoonup a^{2n} = (a^2)^n = (aa)^n$$

$$ightharpoonup a^{2n+1} = a a^{2n} = a (aa)^n$$

$$L = \left\{ a^{2i}cb^{3i}c^kd^{2k+1} \mid i > 0, k \ge 0 \right\}$$

$$L = \left\{ a^{2i}cb^{3i}c^{k}d^{2k+1} \mid i > 0, k \ge 0 \right\}$$

$$= \left\{ a^{2i}cb^{3i} \mid i > 0 \right\} \cdot \left\{ c^{k}d^{2k+1} \mid k \ge 0 \right\}$$

$$= \left\{ (aa)^{i}c(bbb)^{i} \mid i > 0 \right\} \cdot \left\{ c^{k}d(dd)^{k} \mid k \ge 0 \right\}$$

$$L = \left\{ a^{2i}cb^{3i}c^{k}d^{2k+1} \mid i > 0, k \ge 0 \right\}$$

$$= \left\{ a^{2i}cb^{3i} \mid i > 0 \right\} \cdot \left\{ c^{k}d^{2k+1} \mid k \ge 0 \right\}$$

$$= \left\{ (aa)^{i}c(bbb)^{i} \mid i > 0 \right\} \cdot \left\{ c^{k}d(dd)^{k} \mid k \ge 0 \right\}$$

$$S: \qquad A \qquad B$$

$$A: \qquad A \qquad b \qquad b \qquad b$$

$$E: \qquad C \qquad B \qquad d$$

Extended Backus-Naur-Form

EBNF-DEFINITION

Jede **EBNF-Regel** besteht aus einer linken und einer rechten Seite, die rechte Seite ist ein **EBNF-Term**.

Nichtterminal symbol ::= EBNF-Term

EBNF-DEFINITION

Jede **EBNF-Regel** besteht aus einer linken und einer rechten Seite, die rechte Seite ist ein **EBNF-Term**.

Nichtterminal symbol ::= EBNF-Term

Definition (EBNF-Terme): Seien V (syntaktische Variablen) und Σ (Terminalsymbole) endliche Mengen mit $V \cap \Sigma = \emptyset$. Die Menge der EBNF-Terme über V und Σ (notiere: $T(\Sigma,V)$), ist die *kleinste* Menge $T \subseteq \left(V \cup \Sigma \cup \left\{\hat{\{},\hat{\}},\hat{[},\hat{]},\hat{(},\hat{)},\hat{|}\right\}\right)$ mit $V \subseteq T$, $\Sigma \subseteq T$ und

- ▶ Wenn $\alpha \in T$, so auch $(\alpha) \in T$, $(\alpha) \in T$, $(\alpha) \in T$, $(\alpha) \in T$.
- ▶ Wenn $\alpha_1, \alpha_2 \in T$, so auch $(\alpha_1 | \alpha_2) \in T$, $\alpha_1 \alpha_2 \in T$.

ÜBERSETZUNG EBNF ↔ SYNTAXDIAGRAMME

Sei
$$v \in V$$
 und $w \in \Sigma$. $trans(v) = -v$; $trans(w) = -w$.
Sei $\alpha \in T(\Sigma, V)$ ein EBNF-Term.

►
$$trans(\hat{\alpha}) = \frac{1}{trans(\alpha)}$$

$$ightharpoonup$$
 trans($\hat{[} \alpha \hat{]}$) = $\frac{\text{trans}(\alpha)}{}$

▶
$$trans(\hat{\alpha}) = trans(\alpha)$$

Seien $\alpha_1, \alpha_2 \in T(\Sigma, V)$ zwei EBNF-Terme.

$$\blacktriangleright$$
 trans($\alpha_1\alpha_2$) = ——(trans(α_1))—(trans(α_2))

AUFGABE 2 — TEIL (A)

EBNF-Definition
$$\mathcal{E} = (V, \Sigma, A, R)$$
 mit $\Sigma = \{a, b, c, d\}$,
$$V = \{A, B, C\} \quad \text{und} \quad R = \Big\{A ::= BC,$$

$$B ::= (aBc | \hat{b}),$$

$$C ::= d[C]c$$

AUFGABE 2 — TEIL (A)

EBNF-Definition
$$\mathcal{E} = (V, \Sigma, A, R)$$
 mit $\Sigma = \{a, b, c, d\}$,
$$V = \{A, B, C\} \quad \text{und} \quad R = \Big\{A ::= BC, \\ B ::= (aBc \hat{|} (b \hat{|} b)), \\ C ::= d(C) C := A$$

Übersetzung in ein Syntaxdiagrammsystem:

Wir wollen die von \mathcal{E} beschriebene Sprache L_A beschreiben und wenden dafür die Grundkonstruktionen "rückwärts" an.

Wir wollen die von \mathcal{E} beschriebene Sprache L_A beschreiben und wenden dafür die Grundkonstruktionen "rückwärts" an.

$$L_A = L_B \cdot L_C$$

= $\{a^n \ w \ c^n : w \in \{b\}^*, n \ge 0\} \cdot \{d^m c^m : m \ge 1\}$

Der Teil $w \in \{b\}^*$ beschreibt dabei, dass wir ein beliebiges Wort w aus $\{b\}^*$ zwischen die a's und c's schreiben. Diese Sprache $\{b\}^*$ wird durch

beschrieben.

AUFGABE 2 — TEIL (C)

Gegeben sei die Sprache

$$L = \left\{ a^{n+\ell} cb^n (cd)^{\ell} : n, \ell \in \mathbb{N}, n \ge 1 \right\}$$

Gesucht ist eine zugehörige EBNF-Definition.

AUFGABE 2 — TEIL (C)

Gegeben sei die Sprache

$$L = \left\{ a^{n+\ell} cb^n (cd)^{\ell} : n, \ell \in \mathbb{N}, n \ge 1 \right\}$$

Gesucht ist eine zugehörige EBNF-Definition.

$$L = \left\{ a^{\ell} a^{n} cb^{n} (cd)^{\ell} : n, \ell \in \mathbb{N}, n \ge 1 \right\}$$

AUFGABE 2 — TEIL (C)

Gegeben sei die Sprache

$$L = \left\{ a^{n+\ell} cb^n (cd)^{\ell} : n, \ell \in \mathbb{N}, n \ge 1 \right\}$$

Gesucht ist eine zugehörige EBNF-Definition.

$$L = \left\{ a^{\ell} a^{n} cb^{n} (cd)^{\ell} : n, \ell \in \mathbb{N}, n \ge 1 \right\}$$

Lösungsweg: via Syntaxdiagrammsystem & Übersetzung

EBNF-Definition:
$$\mathcal{E}' = (V, \Sigma, S, R)$$
 mit $\Sigma = \{a, b, c, d\}$,

$$V = \{S, A\}$$
 und $R = \{S := (aScd | A),$
 $A := a(A | c)b$