MATH5301 Elementary Analysis. Homework 11. Due: 11/20/2021, $11:59~\mathrm{pm}$

First Name: Last Name:

11.1

Prove that the closure and the interior of a convex set $A \subset \mathbb{R}^n$ are also convex.

Prove that the intersection of an arbitrary collection of convex sets $\bigcap_{i \in I} C_i$ is also convex.

Let $\{C_i\}_{i\in\mathbb{N}}$ be a sequence of nested convex sets in \mathbb{R}^n , i.e. $C_i\subset C_{i+1}$. Prove that $\bigcup_{i=1}^{\infty}C_i$ is also convex.

- (a) Show that the convex hull of any open set in \mathbb{R}^n is open.
- (b) Provide an example of a closed set $A \subset \mathbb{R}^n$, such that its convex hull is not closed.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function and $A \subset \mathbb{R}^n$ be a bounded set. Prove that f(A) is bounded in \mathbb{R} .

Show that the convex hull of a compact set $A \subset \mathbb{R}^n$ is compact. (*Hint:* Caratheodory theorem)