

Dispositivi per non udenti

Giuseppe Carmina
Giovanni Arestia

Indice

- Tipi di sordità
- Dispositivi esterni
- Vibrato di Shane Kerwin
- Sveglia per non udenti
- Dispositivi e software in fase di progettazione
- Storia della sordità
- Trasformazione del suono in vibrazione
- Trasformazione del suono in immagine
- Trasformazione del suono in testo scritto
- Segnale in uscita

Tipi di sordità con relative problematiche di udito

- Lieve: soglia tra 20 e 40 decibel
 - decibel
- Media: soglia tra 40 e 70 decibel
- Grave: soglia tra 70 e 90 decibel
- Profonda: soglia uguale o maggiore di 90 decibel

- sviluppo del linguaggio normale
- nessun problema di comprensione del significato delle parole
- difficoltà nel discriminare alcuni fonemi (li trascura/altera)
- ritardo dello sviluppo del linguaggio
- danno riguardante sia il significante che il significato
- protesi e intervento logopedico indispensabili prima che la componente linguistica venga compromessa
- miglioramento del linguaggio vocale in caso di aumento dell'intensità della voce
- nessuna percezione del parlato
- intervento logopedico indispensabile per imparare a parlare
- educazione complessa
- difficoltà nel raggiungere la competenza linguistica completa sia nello scritto che nel parlato
- parola assolutamente non udita
- impossibilità di apprendimento del linguaggio verbale senza l'ausilio protesico associato alla lettura del labiale

Dispositivi esterni per migliorare la vita e le relazioni dei non udenti

- Sveglie per non udenti: sfruttano la vibrazione e i suoni acuti per aiutare nelle attività quotidiane più semplici come lo svegliarsi o il percepire il pianto dei propri figli.
- **Vibrato di Shane Kerwin**: è in grado di trasformare suoni in vibrazioni percepibili con il tatto.
- Sistemi di avvisi per la domotica: avvisano quando vi è un pericolo, una chiamata o il campanello che suona. Lo fanno attraverso fasci di luce che si proiettano e si intensificano grazie ad una luce stroboscopica.
- Dispositivi di ascolto assistito (ALD): questi dispositivi migliorano il rapporto segnale-rumore per l'ascoltatore e amplificano i suoni.
- Impianto cocleare: è a tutti gli effetti un orecchio artificiale elettronico in grado di ripristinare la percezione uditiva nelle persone con sordità profonda.
- Text-telephone (DTS): sono composti da una tastiera e da uno schermo o da un display. Il loro funzionamento è, per certi versi, simile alle attuali applicazioni di messaggistica istantanea.
- **Cellulari Video (ASL Mobile)**: consentono ai non udenti di comunicare con il linguaggio dei segni per mezzo di smartphone e tablet.
- Apparecchi acustici: sono degli amplificatori di suoni per coloro che non hanno una sordità profonda, consentendo loro di captare le parole e i suoni.

Vibrato di Shane Kerwin

- Altoparlante rivoluzionario progettato da Shane Kerwin che permette alle persone sorde di "sentire" la musica attraverso le loro dita
- Trasmette la vibrazione degli strumenti musicali su cinque differenti cuscinetti
- Le differenti vibrazioni permettono di individuare le note, il ritmo e le combinazioni di queste in modo tale che le dita riescano a distinguere suoni diversi
- Connettendo il dispositivo al PC, si potrà utilizzare un software specifico per esplorare diversi tipi di produzione musicale
- Impatto positivo nelle scuole: stimola i bambini con problemi di udito a divertirsi durante le lezioni di musica
- Utilizzato dai musicisti sordi e, in generale, per scopi di svago
- Permette di far scoprire ai non udenti la bellezza della musica

Sveglia per non udenti

- Sveglia digitale che, grazie alle sue funzionalità, consente di scegliere l'allarme più adatto alle esigenze dei non udenti
- Funzionalità principali: allarme sonoro, spia
 lampeggiante a luce stroboscopica e vibrazione trasmessa dal cuscinetto

 Display grande [A], illuminazione dei numeri digitali regolabile in diversi livelli di intensità [B]

- Allarme sonoro regolabile su livelli di frequenza che vanno da 800 Hz a 1,5 kHz [C]
- Volume della suoneria regolabile fino a +90/95 dB SPL [D]
- Il cuscinetto [E] (collegato con la sveglia e collocato sotto il cuscino/materasso) trasmette la vibrazione, regolabile su due diversi livelli di intensità [F]
- Funzionalità secondarie: funzione "snooze" (9 minuti); installazione di una batteria
 come riserva che si attiva nel caso in cui si abbia un'interruzione della corrente elettrica

Wakenshake

(9)

Dispositivi e software in fase di progettazione

- Impianto cocleare invisibile: sottocutaneo, completamente invisibile e in grado di autoricaricarsi con i movimenti del corpo.
- StorySign: è una nuova applicazione che aiuta i bambini non udenti ad imparare a leggere insieme ai genitori.
- Apparecchi acustici ReSound: possono trasmettere qualunque suono sotto forma di sottotitoli o immagini direttamente sullo smartphone utilizzando accessori come un trasmettitore FM o un microfono.
- Transcense: si tratta di un'applicazione che sarà in grado di trascrivere conversazioni tra non udenti con diversi partecipanti in tempo reale.
- MotionSavvy: utilizzerà una fotocamera specializzata per tracciare i movimenti del dito di un utente e trascriverli pronunciando la traduzione a voce alta per gli udenti che non conoscono la LIS.
- Occhio bionico intelligente: un non udente che indosserà uno di questi dispositivi vedrebbe la vita come nei più famosi film di fantascienza, dove ogni suono e gesto viene trasposto in sottotitoli e indicazioni visive.
- Heli: è un dispositivo che permetterà ai non udenti di interagire con una o più persone contemporaneamente in chat, indossando un bracciale Bluetooth chiamato "Myo", che in real-time riconosce ed interpreta, attraverso dei sensori elettromiografici, la LIS e la invia in formato testuale ad un app del telefono.

Storia e analisi della sordità

· · · · · · · · · · · · · · · · · · ·	
Antichità	 non vi era consapevolezza del legame tra sordità e mutismo i sordi non godevano di alcun diritto perché considerati persone con problemi mentali l'amore per la perfezione fisica indusse l'uccisione di tutti i neonati con problemi
753 a. C.	 un decreto di Romolo allargò la fascia temporale sino ai tre anni: questo permise di identificare e sopprimere anche i bambini sordi
527 - 565 d.C.	 Sotto l'Imperatore Giustiniano si cominciò a distinguere tra sordità e mutismo ai sordi che fossero in grado di scrivere e di parlare vennero attribuiti pieni diritti legali
Umanesimo (1400-1492)	 il campo dell'educazione dei sordi subì un effetto benefico prime notizie dalla Spagna: i monaci, per aggirare la regola del silenzio, comunicarono con i segni e ogni monastero sviluppò al suo interno una personale versione di questa lingua
Seconda metà del 700	 in Francia venne fondata la prima scuola pubblica per sordomuti successivamente, con la diffusione della lingua dei segni, vennero fondati diversi istituti
1880	 in Italia il Congresso di Milano impedì che la lingua dei segni avesse un'ampia diffusione soprattutto in ambito educativo: proibita nelle classi si diffondeva nei corridoi con un conseguente impoverimento linguistico e con la mancata consapevolezza che la lingua dei segni costituisca la lingua madre dei sordi, non inferiore alla lingua degli udenti
Anni 70	- negli altri paesi la lingua dei segni iniziò ad essere studiata dal punto di vista linguistico

Trasformazione del suono in vibrazione

Ontenna del marchio Fujitsu

- dispositivo wearable (fermacapelli)
- funzione: è in grado di trasformare i suoni/rumori provenienti dall'ambiente esterno in vibrazioni; un microfono integrato cattura i rumori dell'ambiente che si trovano nel range 30-90 dB e li converte in segnali elettrici che attivano un piccolo motore interno
- capacità di convertire la pressione sonora in 256 livelli diversi di vibrazioni con l'obiettivo di rendere ogni rumore/suono in maniera distinta

Vybe Haptic Gaming Pad

- sorta di sedile
- funzione: è in grado di trasformare i suoni provenienti da film, videogiochi e musica in vibrazioni; i segnali audio sono tradotti dal processore in vibrazioni dinamiche che possono essere localizzate nelle varie parti del dispositivo
- compatibile con qualsiasi fonte sonora (console, schermi televisivi, PC, smartphone) grazie a un semplice cavo audio incluso nella confezione

Nota: l'idea è quella di rendere il ritmo, i pattern e l'intensità dei suoni permettendo di percepire con la vibrazione, per esempio, i diversi strumenti musicali all'interno di un brano oppure i diversi effetti sonori all'interno di un videogioco.

Trasformazione del suono in ımmagıne

- Cimatica: tecnica scoperta da Robert Hooke nel 1680. Attraverso le frequenze generate dai suoni e le conseguenti vibrazioni si generano delle immagini in base
 - proprio alla frequenza uscente. Questo, sostanzialmente, è il funzionamento di un vibrato visivo.
- Windows Media Player e Serum: entrambi mostrano il funzionamento virtuale della

Vi: costituito da un cono di vetro capovolto in grado di trasformare il suono in qualcosa di tangibile e visibile a chi non può sentire. Il dispositivo trasforma le canzoni in stimoli visivi e tattili.

Nota: al di là della cimatica, il primo modo di trasformare in maniera funzionale un suono in immagini fu con l'invenzione della lingua dei segni nel lontano 1700.

Trasformazione del suono in testo scritto

Gli esempi più classici sono i sottotitoli di un film o di un programma televisivo, ma questi stanno diventando sempre più sofisticati raggiungendo piattaforme e usi difficilmente immaginabili fino a pochi anni fa.

- Respeaking o rispeakeraggio: sono bot e intelligenze artificiali che permettono l'inserimento di traduzioni e sottotitoli in tempo reale in programmi come Skype, YouTube, dispositivi mobili e programmi Tv.
- Convertio o Media.io: effettuano il missaggio audio, ovvero registrano i suoni riprodotti dal sistema in uso e li convertono in formato testuale. Recentemente anche Google e Microsoft hanno implementato questa funzione.

Nota: in precedenza il respeaking veniva svolto da un sottotitolatore professionista (o respeaker) che in tempo reale trascriveva ciò che veniva detto in un programma televisivo.

Segnale in uscita in base al dispositivo di output utilizzato

Finora si è osservato come da uno stesso dispositivo di input possono essere generati diversi segnali di output quali immagini, testi o vibrazioni.

In ogni caso il futuro degli output vede l'implementazione dell'intelligenza artificiale e a livello hardware dei **memristori** (ReRAM). In questo modo è possibile rivoluzionare un intero comparto predisponendo l'utilizzo dei microchip in qualità di veri e propri neuroni dotati di una loro intelligenza.

Nasce quindi un sistema all'avanguardia della tecnica, pronto a stravolgere la nostra idea di tecnologia così come oggi la conosciamo. Tutto ciò agisce come una sorta di micro-cervello elettronico con capacità avanzate di calcolo ed interpretazione. Un apparato in grado non soltanto di "ricordare", ma anche di eseguire complessi calcoli matematici tramite sistemi a transistor. In poche parole, i dispositivi si potranno auto-adattare in base al paziente e alle sue problematiche.

Conclusioni

In conclusione, "Dispositivi per non udenti" è un progetto ambizioso, che pone tra le sue priorità quella di normalizzare il più possibile i canali di accesso alla comunicazione e all'informazione per il regolare svolgimento delle attività quotidiane da parte di persone non udenti o ipoudenti. Un modo, insomma, per far sì che i non udenti possano acquisire una maggiore autonomia e dipendere sempre meno da parenti, amici o estranei in certi casi.

L'obiettivo principale è quello di abbattere le barriere ancora esistenti e dare la possibilità alle persone con disabilità di poter gestire anche da sole la propria vita, utilizzando appieno le opportunità offerte dalle nuove tecnologie.

- Giovanni Arestia
 - Facebook
 - LinkedIn

- Giuseppe Carmina
 - Facebook
 - Instagram

GRAZIE PER L'ATTENZIONE