Digital System Design Module 4 - SEQUENTIAL LOGIC CIRCUITS

Dr. Deepthi Sasidharan

Assistant Professor, Department of Information Technology GEC Barton Hill, Thiruvananthapuram

November 10, 2020

DESIGN PROCEDURE

- From the word description and specifications of the desired operation, derive a state diagram for the circuit.
- Reduce the number of states if necessary.
- Assign binary values to the states.
- Obtain the binary-coded state table.
- Choose the type of flip-flops to be used.
- Derive the simplified flip-flop input equations and output equations.
- Draw the logic diagram.

State Table

Reducing the State Table

Present State	Next State		Output	
	x = 0	x = 1	x = 0	x = 1
а	а	b	0	0
b	c	d	0	0
C	a	d	0	0
d	e	f	0	1
e	a	f	0	1
f	e	f	0	1

Reduced State Table

Reduced State Table

	Next State		Output	
Present State	x = 0	<i>x</i> = 1	x = 0	x = 1
а	a	b	0	0
b	C	d	0	0
c	a	d	0	0
d	e	d	0	1
e	a	d	0	1

State diagram

State Assignment

Three Possible Binary State Assignments

State	Assignment 1, Binary	Assignment 2, Gray Code	Assignment 3, One-Hot
а	000	000	00001
b	001	001	00010
c	010	011	00100
d	011	010	01000
e	100	110	10000

State Assignment

Reduced State Table with Binary Assignment 1

Present State	Next State		Output	
	x = 0	<i>x</i> = 1	x = 0	<i>x</i> = 1
000	000	001	0	0
001	010	011	0	0
010	000	011	0	0
011	100	011	0	1
100	000	011	0	1