MATH112 TOC

MATH112 - 2024-01-09

#notes #math112 #math #calc

General Plan for semester

- Doing vectors now, instead of later, so that we're actually prepped for physics
 - Also gonna be working with coordinate systems
 - Wrap back around to integration
 - Integration by parts
 - Apparently, lots of people don't like sequences

Holy moly, we're actually doin stuff now

$$s(t)=\sin(2\pi t), t\geq 0$$
 velocity $v(t)=rac{d}{dt}\sin(2\pi t)2\pi, t\geq 0$

- Normal convention is that positive velocity is towards the right
- Let's say we have an object moving on a plane over time
- If we take the derivative of a pos vector, we get a velocity vector!

MATH112 - 2024-01-10

#notes #math112 #math #calc

General Goals Today

- Into to vectors
 - Geometry of vectors
 - (Triangles)
 - Trig Calls.
 - Bracket notation for vectors

Alright, so we're back to our object wiggly woogling its way along

- We had our position vector, $\vec{s}(t) = x(t)\hat{\imath} + y(t)\hat{\jmath}$
 - I and J are our unit position vectors
- So if we want a velocity vector, in that case we're going to have to take derivative of the pos vector
- $\frac{d}{dt}(x(t)\hat{\imath} + y(t)\hat{\jmath})$
 - Rewrite that shit
 - $ullet rac{d}{dt}x(t)\hat{\imath} + rac{d}{dt}y(t)\hat{\jmath}$
- If you have a vector valued function and want to take derivatives, you just take em separately

$$ec{V}(t) = V_x(t) \hat{\imath} + V_y(t) \hat{\jmath}$$

- If have velocity and we want to get back around to pos, gonna have to integrate that
 - To do that, integrate the x portion and add it to the y portion
- If both components are positive, we're going northeast (towards quad 1)
- So let's say we just have a vector $V = V_x \hat{\imath} + V_y \hat{\jmath}$
 - Rember to draw vectors with an arrow on the end
 - Tail is the end, tip is the other side
 - Magnitude is actually written as $|ec{V}|$

•
$$\sqrt{Vx^2+Vy^2}$$

Bracket Notation

$$< a,b>$$
 = $a\hat{\imath}+b\hat{\jmath}$

- A is just the length, if it's positive we're a straight line to the right, if it's negative we're in a straight line to the left
- This is known as the x component0. b >
- In this case, b is just the length, so if it's positive we goin up, if it's negative we're going down

Triangle Representation

- Triangle representation, you draw the components tip to tail
 - Start at the original tail, go to the last tip, you get < a, b >
- Parallellogram is the same thing, except the tails are touching and you send your vector off into the aether

Vector Addition

$$< a, b > + < c, d > = < a + c, b + d >$$

Go tip to tail

Scalar Multiplication

- Scaling a vector by some number
- Direction stays the same, but magnitude is scaled by the scalar
- In general, if there's a constant hanging out in front of the vector, you "distribute" to all the components

Aaaaand now we peace out of vectors

Parametric Equations

- Parametrics represent an x-y curve in terms of t
- We need to know how to sketch a parametric (parametrized) equation
- We'll learn parameter elimination
 - Sometimes you can kill the parameter and just get back to like, y = f(x)
- Orientation of a curve
- Some special cases, like
 - Lines
 - Circles

If we're given a function like $y=x^2$, we know how to plot that

- If we're given like, a goldfish lookin function, we can try to parameterize that
 - Usually we're going to use t

- Let x = cos(t)
- and let y = sin9t)
- and t is between $[0, 2\pi]$
- Went around counterclockwise

0

MATH112 - 2024-01-12

#notes #math112 #math #calc x=f(t) y=g(t) $t(-\infty,\infty)$

Gives us x and y coordinates

- If an eye diagram actually has distinct points, yippee, you can probably get data out
 - (Eye is open)
- If you really kinda can't tell and get crazy stuff when parametrically plotting, you probably can't
 - The eye is closing

Parametrics

- Parameter elimination
 - •
- Orientation
- Lines n Circles
- Alright, back to yesterday
 - When we have $x=\cos(t),y=\sin(t),t[0,2\pi],$ we end up with a unit circle counterclockwise
 - Well, y'know what, what if $x = \cos(-t), y = \sin(-t), t[0, 2\pi]$
 - Remember, $\cos(-t)$ is the exact same damn thing as $\cos(t)$
 - $\sin(-t) = -\sin(t)$
 - Now we'll end up with a clockwise drawn circle
- Almost certainly going to get problems about restricting the domain of the parameter

Now les talk about LINES

- · We're chilling in slope intercept form
- Turning it into a parametric equation
 - Technique we're going to use works for any y = f(x)
 - Let x = t
 - y = 3t + 1
- · Going back the other way
 - Given x = 2 + 2t
 - y = 7 + 6t
 - And that $t(-\infty, \infty)$
 - $t = \frac{x}{2} 1$
 - $y = 7 + 6(\frac{x}{2} 1)$
 - y = 7 6 + 3x
 - y = 3x + 1
 - And just like that, we've successfully murdered the t
- Parameterization is not unique
 - There is no one right answer, but that's also kinda fun
- Note, for parameter elimination:
 - Find the domain of x
 - We have $x = \cos(t)$ and $y = \sin^2(t)$
 - Anddd let's say $t[0,2\pi]$
 - To kill t, we could try to set $t \arccos(x)$, which will work, but it does take a fair amount of work
 - We could also just use the pythagorean identity, and get $y=1-x^2$
- Lines in general
 - Line in point slope
 - $y y_0 = m(x x_0)$
 - This line will go through the point (x_0, y_0)
 - Let $x = x_0 + \Delta xt$
 - $ullet \ y=y_0+\Delta yt$
 - $t\epsilon(-\infty,\infty)$
- Find a segment from Point (3,4) to (-1,-3)
 - And we want to parameterize this
 - We've got our parameter t, and $t\epsilon[0,1]$
 - Let x = 3t + (1-t)(-1)
 - When t is =0, x=-1, but when t=1, x=3, so now we've successfully got our x covered

• Let y=4t(1-t)(-3), and now y will equal -3 when t=0, and y=-4 when t=1

Circles

•
$$x^2 + y^2 = 1$$

- This is our friendly neighborhood unit circle, with a radius of 1 and centered at the origin
- The generic circle equation, centered at x_0,y_0 , would be $(x-x_0)^2+(y-y_0)^2=r^2$
- Let $x = x_0 + r \cos(t)$
- $\bullet \ \ y = y_0 + r\sin(t)$

MATH112 - 2024-01-17

#notes #math112 #math #calc

Polar Coordinates!

- Given any point on the plane, you can represent it with cartesian coordinates (x_0, y_0)
- Polar coordinates are represented with (r, θ) , where r is the radius and θ is the angle
- $(r,\theta)=(2,\frac{\pi}{4})$
 - Alright, so to get to this point, we go up to the angle $\frac{\pi}{4}$, then we go out a distance
- Anytime you want to convert from polar to cartesian, $x = r \cos \theta, y = r \sin \theta$
- $\frac{y}{x} = \tan(\theta)$
- Polar coordinates are not unique!
 - You can wrap 2π around and be fine, or you can have a negative radius
 - $(r,\theta)=(-r,\theta+\pi)$
- · Alright, going from cartesian to polar is noticeably more fun
 - Radius would just be $\sqrt{x_0^2+y_0^2}$
 - Figure out quadrant from cartesian coordinates
 - Find θ_0 in the right quadrant such that $\tan(\theta_0) = \frac{y_0}{x_0}$

Polar Equations!

$$r = f(\theta)$$

Circles centered at the origin are easy squeezy!

- ullet They would just be like, r=6, which makes a circle of radius 6 at the origin
- Spirals!

•
$$r=rac{1}{2\pi} heta$$

• For theta ≥ 0

Cardioid

•
$$r = 1 + \sin \theta$$

- Alright, now how do we get around to converting polar equations to cartesian?
 - If you see $r\cos\theta$, replace it with x
 - If you see $r \sin \theta$, replace it with y
 - Recognize lines

$$ullet r=rac{c}{a\cos heta+b\sin heta}$$
 is the same thing as $ax+by=c$

- Recognize circles
 - $r=2a\cos heta+2b\sin heta$
 - This is a circle $r=\sqrt{a^2+b^2}$
 - center is at (a,b)
- If we had something like $r=\sin \theta$, that's actually a circle, with a=0 and $b=\frac{1}{2}$
- Example

•
$$r = \frac{1}{2\cos\theta + 3\sin\theta}$$

- b=3
- 2x + 3y = 1 is what we could splice out of that
- So to get x

•
$$y = r \sin \theta = \frac{\sin \theta}{2 \cos \theta + 3 \sin \theta}$$

•
$$2x + 3y = \frac{2\cos\theta + 3\sin\theta}{2\cos\theta + 3\sin\theta}$$

Integrate the two parts

$$\int_1^4 t^{rac{-1}{2}} = 2\sqrt{t}, 4-2=2$$

$$\int_{1}^{4}t^{rac{1}{2}}=rac{2t^{rac{3}{2}}}{3}=rac{2(4)^{rac{2}{3}}}{3}-rac{2(1)^{rac{3}{2}}}{3}=rac{14}{3}$$

Final answer of
$$ec{r}'=2\hat{i}+rac{14}{3}\hat{j}$$

V-v-vectors!

- The main types of vector problems are planes and boats with vectors
 - Balanced net forces
- x tends to go down to left, y down to right, z straight up
- The point (4,3,5)
- Distance between two points
 - Big shock, it's basically the same, but you just add in the z component
- Midpoint between two points is just averaging them

0

MATH112 - 2024-01-19

#notes #math112 #math #calc

Reading Assignment

13.1

Applications of vectors, pages 811-813

13.2

Example 7, p.832

Alright apparently 6c is fun

ullet If you're given a problem, feel free to parametrize y=t instead

realzies notes

- Distance is the \surd of all the differences between components squared
- So now let's define a 2d circle rq

•
$$(x-x_0)^2 + (y-y_0)^2 = r^2$$

- Radius r, centered at (x_0, y_0)
- If it's less than or equal to, it's a disk
 - ullet \geq is everything outside the circle
- a 3d circle is known as... a sphere!

•
$$(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = r^2$$

- Astoundingly, it still has radius r, and is now centered at (x_0,y_0,z_0)

Example

- Find the sphere centered at the point (1,2,0) that passes through the point (3,4,5)
 - We need our radius, which is really just finding the distance between the two points it passes through $r^2=\sqrt{(3-1)^2+(4-2)^2+(5-0)^2}=r^2=\sqrt{4+4+25}|||r^2=33||$
 - $r=\sqrt{33}$
- Equation for the sphere is now $(x-1)^2 + (y-2)^2 + (z)^2 = 33$

Alright, that was fun with coords, back to vectors

- Vectors, again, have magnitude and direction
 - Let's say we have the point $P = (x_0, y_0)$
 - and $Q = (x_1, y_1)$
 - And we want \vec{PQ}
 - This is the vector with tail at P and tip at Q
 - ullet So $ec{PQ}$ would just be $< x_1 x_0, y_1 y_0 >$
- Vectors do not give a single damn about position
 - You can toss a vector anywhere in space
 - P = (3,4), Q = (2,7)
 - S = (2, -3), T = (1, 0)
 - Find the vector \vec{PQ}
 - This would end up as like, $ec{PQ}=<-1,3>$
 - Find the vector \vec{ST}
 - Get like, < −1, 3 >
 - $\bullet \ \ \hbox{Oh hey, } \vec{PQ} = \vec{ST}$
 - Even though we got here different ways and they're vaguely different points in space, they're actually like, the same vector
- It's convention if you have the vector $\langle a,b \rangle$, that this vector would be from the origin
 - Convention to call that a position vector
 - Rounded brackets are for points

.

- Common notations
 - | < a, b > | = || < a, b > ||
 - Textbook tends to use single bar like it's an absolute value
 - These are both equal to $\sqrt{a^2 + b^2}$
 - Mildly shockingly, this works no matter how many dimensions your vectors have, which is a little surprising
- Scalar multiplication
 - c < a, b >, where c is a scalar and < a, b > is our vector
 - Scalar just means that we scale each component by it
 - so resultant would just be < ca, cb >
 - if we want the magnitude of |c < a, b > |

$$ullet | < ca, cb > | = \sqrt{ca^2 + cb^2}$$

- Could also just be $\sqrt{c^2(a^2+b^2)}$
- We could drag that out $|c|\sqrt{a^2+b^2}$
 - Abs is to force positive of the c, since any magnitude has to be positive
 - You're just scaling the mag, same as the rest of the vector! It's not hard!

Examples?

- $\quad \hbox{if } |c|>1 \hbox{ then magnitude increases} \\$
- if $\left|c\right|<1$ then we're going to shrink it
- if just straight up c>0, then we keep the same direction
- if c < 0, we're looking like a family business based out of waco (flipping)
- if c=0, then we end up with the vector <0,0>, that's just a point, it's kinda boring
 - it is technically still a vector though

Vector Addition

- $ullet < a,b,c> + < c,e,d> \ = < a+c,b+e,c+d>$
 - This works the exact same for subtraction
 - ullet Let's say that first vector was $ec{u}$ and the second was the $ec{v}$
- $ec{u} + ec{v} = ec{v} + ec{u}$ commutative property goes WILD
- This is the algebraic approach to adding vectors together
- There is also the geometric point of view for vectors
 - This is what we in the business call "tip to tail"

- The final resultantant is the original tail to final tip
- Parallelogram also exists but like. bRuh.
- ullet Easiest way to think about subtraction is like a scalar of -1
- Oh boy, one final definition
 - $ec{v}$ is a unit vector is $|ec{v}|=1$
 - $\hat{\imath} = <1,0,0>$
 - $\hat{j} = <0,1,0>$
 - $\hat{k} = <0,0,1>$
 - These are all referred to as the standard or coordinate unit vectors
 - If I have some vector $ec{v}$, I can make a unit vector $ec{u}$ in the same direction ad $ec{v}$
 - Let $\vec{u} = \frac{1}{|\vec{v}|} * \vec{v}$

.

MATH112 - 2024-01-22

#notes #math112 #math #calc

- Cute n' quirky little aside $ec{0}$ is parallel to all vectors, since $ec{a}=cec{b}$
- Quote from industry best way not to have typos is to not type

readings

- 827 first page
- 832-833
 - work n' forces

- Defined algebraically and geometrically
- Projection of some vector \vec{u} onto some other vector \vec{v}
- Dot product can be used to calculate work
 - Or decomposing forces

algebra way

•
$$\vec{u} = \langle u_1, u_2, u_3 \rangle$$

•
$$\vec{v} = < v_1, v_2, v_3 >$$

$$\bullet \quad \vec{u}\cdot\vec{v}=u_1v_1+u_2v_2+u_3v_3$$

- Dot product spits out a scalar
- $\vec{v} \cdot \vec{u}$ is the same thing as $\vec{u} \cdot \vec{v}$
 - Dot products are commutative
 - as previously stated, commutative property goes WILD

$$\vec{u} \cdot \vec{u} = u_1^2 + u_2^2 + u_3^2$$

• This is the same thing as $|\vec{u}|^2$

Example

$$<-3,2,1>\cdot<2,0,1>$$

$$-3*2+2*0+1*1=-6+0+1=-5$$

geometric way

• Law of cosines (affectionately referred to as Pythagorean's Theorem on steroids)

$$\quad a^2 + b^2 - 2ab\cos\theta = c^2$$

- You can toss in any number for θ
- Let's say I have a vector \vec{v} and a vector \vec{u} and I want to connect their heads together
- Hey ho, law of cosines kicks in
- a^2 is just the magnitude of $ec{u}$ squared, + $|ec{v}|^2 2|ec{u}||ec{v}|\cos heta = |ec{u} ec{v}|^2$
 - · Let's do some quirky little aglebra

•
$$|\vec{u} - \vec{v}|^2 = (\vec{u} - \vec{v}) * (\vec{u} - \vec{v})$$

$$oldsymbol{ec{u}}\cdotec{u}\cdotec{u}-ec{u}\cdotec{v}-ec{v}\cdotec{u}+ec{v}\cdotec{v}$$

$$ullet |ec{u}|^2-2ec{u}\cdotec{v}+|ec{v}|^2$$

•
$$ec{u} \cdot ec{v} = |ec{u}| |ec{v}| \cos heta$$

•
$$\theta \epsilon [0,\pi]$$

Alternate forms

•
$$\cos heta = rac{ec{u} \cdot ec{v}}{|ec{u}| |ec{v}|}$$
 where $\epsilon[-1,1]$

$$ullet \ heta = \cos^{-1}(rac{ec{u}\cdotec{v}}{|ec{u}||ec{v}|})$$

example

$$ec{u} = <-3, 2, 1> \ ec{v} = <2, 0, 1>$$

Now to find the angle between these vectors

So the dot product here would just be -5

And then we need to find the mag

$$|\vec{u}|=\sqrt{9+4+1}=\sqrt{14}$$

$$|\vec{v}| = \sqrt{4+1} = \sqrt{5}$$

$$\theta = \cos^- 1(\tfrac{-5}{\sqrt{14}*5})$$

$$\cos^{-1}\bigl(\tfrac{-5}{\sqrt(70)}\bigr)$$

Roundabout 2.21 radians, or 126.7 degrees

Sure, let's go with that

examples

- ullet Find all vectors of the form <0,a,b> that are orthogonal to <4,8,-2>
 - Orthogonal same thing as perpendicular / normal
- The angle θ between the two vectors
- $<0, a, b>\cdot <4, 8, -2>=0=\cos(\frac{\pi}{2})$
- (0)(4) + (a)(8) + (b)(-2)
- 8a 2b = 0
 - This is just algebra
 - b=4a
- Any vector of the form <0,a,4a is going to be orthogonal to <4,8,-2>, and its dot product will be... 0
 - for any \mathbb{R} (real number)
- Last topic of the day is

orthogonal projections

Projection is like a "shadow

This is the (orthogonal) projection of \vec{u} onto \vec{v}

$$\mathrm{proj}_{ec{v}}(ec{u}) = |ec{u}|\cos heta * rac{ec{v}}{|ec{v}|}$$

This is just getting the unit vector for \vec{v} multiplied by some trig fun to get the angl

$$\mathrm{Proj}_{ec{v}}(ec{u}) = |ec{u}| * rac{ec{u} \cdot ec{v}}{|ec{u}||ec{v}|} * rac{ec{v}}{|ec{v}|}$$

MATH112 - 2024-01-23

#notes #math112 #math #calc

Today is $ec{u} imes ec{v}$

- (cross product)
 - Both algebraically and geometrically

- Right Hand Rule
- Determinants are going to pop up
 - Conditions for parallel / orthogonal vectors
- Mayhaps area of a parallelogram
- Uses
 - Torque is cute n quirky
 - So are magnetic forces
- Bar Stool math
 - If you have three non colinear points, you can determine a plane
- Let's take some friendly neighborhood vectors, \vec{u} and \vec{v} that are not equal to each other and are not parallel
 - Alright, let's say that $ec{u} = \hat{i}$ and that $ec{v} = \hat{j}$
 - These two together create the x-y plane
 - Ok smart guy, let's say we have $\hat{j}\&\hat{k}$
 - That forms the y-z plane
- Given some plane, find vectors orthogonal to the plane
 - Anything on the y-z plane that's orthogonal would be $\pm \hat{k}$
- Given the plane from $ec{u}, ec{v}$, find $ec{w}$ that is ot to $ec{u}$ and ot to $ec{v}$
 - $oldsymbol{ec{w}} = ec{u} imes ec{v}$
 - $led ec u = < u_1, u_2, u_3 >$
 - $\vec{v} = < v_1, v_2, v_3 >$
 - $ullet ec w = < u_2 v_3 u_3 v_2, u_3 v_1 u_1 v_3, u_1 v_2 u_2 v_1 > 0$
 - 23 32 31 13 12 21
 - Hey obligatory question, are we commutative?
 - Ehh, we're close
 - ullet $ec{u} imesec{v}=-ec{v} imesec{u}$
 - What we in the business call "anti-commutative"
 - Assorted other properties (left as exercises to the reader to prove)
 - $(a \vec{u}) imes (b \vec{v}) = (ab) (\vec{u} imes \vec{v})$ Associative
 - $ec{u} imes (ec{v} + ec{w}) = ec{u} imes ec{v} + ec{u} imes ec{w}$ Distributive
 - $\vec{u} imes \vec{u}$ spits out the zero vector
 - I mean, that one makes sense without a proof
- Show that $ec{u} \perp ec{w}$
 - $\vec{a}*\vec{b}=|\vec{a}||\vec{b}|\cos(heta)=0$

```
• \vec{u} \cdot \vec{w} = u_1(u_2v_3 - u_3v_2) + u_2(u_3v_1 - u_1v_3) + u_3(u_1v_2 - u_2v_1)

• Okie dokie expansion time

• = u_1u_2v_3 - u_1u_3v_2 + u_2u_3v_1 - u_1u_2v_3 + u_1u_3v_2 - u_2u_3v_1

• wtf did I just write

• 0 = 0 skip skip hooray

• this does indeed imply that \vec{u} \perp \vec{w}

• Let \vec{u} = <1,0,0>=\hat{\imath}

• Let \vec{v} = <0,1,0>=\hat{\jmath}

• \vec{u} \times \vec{v} = <0*0-0*1,0*0-1*0,1-0>

• u_2v_3 - u_3v_2

• u_3v_1 - u_1v_3

• u_1v_2 - u_2v_1

• We end up with <0,0,1>=\hat{k}
```

Right Hand Rule

• Curl your fingers from the first term to the second (ie, $\vec{u} \times \vec{v}$), and thumb will point in the direction of the cross product

Determinants

- Let's use determinants to calculate $\vec{u} imes \vec{v}$
- Let's say we have an n by n set of numbers

• Determinant is ad - bc

$$egin{array}{ccccc} a & b & c \ d & e & f \ g & h & i \end{array}$$

- Determinant would be \$\$a |\begin{matrix}

```
e & f \ h & i
\end{matrix} | - b |\begin{matrix}
d & f \ g & i
\end{matrix}| + c |\begin{matrix}
```

Which is the same thing as a(ei-fh)-b(di-fg)+c(dh-eg)

$$ec{u} imesec{v} = egin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \ ec{u}_1 & ec{u}_2 & u_3 ert\$\$\$\$ \hat{\imath} ert_{v_2} & v_3 ert - \hat{\jmath} ert_{v_1} & v_3 ert + \hat{k} ert_{v_1} & v_3 ert \ v_1 & v_2 & v_3 ert \end{pmatrix}$$

Magnitude of a cross product is the $\sin \theta$ instead of the $\cos \theta$ that it was for dot products

The cross product of two colinear vectors is always going to be a big of

0

The dot product though is $\pm |\vec{u}|\vec{v}|$

If they're perpendicular though,

MATH112 - 2024-01-24

#notes #math112 #math #calc

• You could break force vectors into magnitude * $< \cos \theta, \sin \theta >$

today

- In the past, we've parametrized curves in 2d space
 - So let's get to parametrizing curves in 3d space as vector valued functions (VVF)
- Find domain of parameter
- Find VVF of a line ℓ
- Relationship between ℓ_1 and ℓ_2
- Collision?

movin around

- okie dokies, so we have some object moving in space
- represent pos as a function of t
- (x(t), y(t), z(t))

- For instance, it'd start at $(x(t_0), y(t_0), z(t_0))$
- and move on to t_1 , etc, etc
- Oh hey, if we're going in some direction \vec{r} , then t is just a scalar

example

$$ec{r}(t)=<\sqrt{t+2},\sqrt{2-t}>$$

Find domain of t

Uh, we have a problem if we try and \surd a negative number, so our domain ends up just being $-2 \le t \le 2$

moving back on

- Any parametric can be expressed as a VVF
- x = t
- $y = t^2$
- Domain is any real number ${\mathbb R}$
- Range is a vector of the form $< t, t^2 >$ for any $\mathbb R$
- Vector is pointing from tail at the origin to all the tips at all the points on a curve

lines in 3d

- A line could be two distinct points
 - $ullet p = (x_0, y_0, z_0), \, \mathsf{q} = (x_1, y_1, z_1)$
 - Hey ho, line
- You could also have a point, ie, $p=\left(x_{0},y_{0},z_{0}
 ight)$
 - and a slope direction $ec{v} = < a,b,c>$
 - $led ec r(t) = < x_0, y_0, z_0 > + t < a, b, c >$
- Spoilers: these are basically just the same thing, you just produce a direction vector by doing $\vec{PQ}=< x_1-x_0, y_1-y_0, z_1-z_0>$

example

$$p = (-3, 5, 8), q = (4, 2, -1)$$

okie, let's say that we're using p as our base

$$\vec{PQ} = <4--3, 2-5, -1-8> = <7, -3, -9>$$

Oh hey now we just have a dir

$$ec{r}(t)=<-3,5,8>+t<7,-3,-9>$$

Find where this line crosses the x-z plane

- So we gotta find where y = 0
- t*-3=5
- $t = \frac{5}{3}$
- Now that we know t, we could go ahead and plug it in
- ullet $<-3+7*rac{5}{3},0,8-9(rac{5}{3})>$

relationships between ℓ_1 and ℓ_2

they're in a relationship??? 💿 💿 😳

This is NOT going to render right

매 MATH112 Line Flowchart

$$\ell_1 = \vec{r}(t) = < t, 1+t, 1+2t >$$

$$\ell_2 = ec{r}_2(t) = <2+t, 4t, 3+4t>$$

- Alright, let's dice out some directions
 - Gotta find where things change with our parameter, t
 - $\vec{v}_1 = <1,1,2>$, it's just whatever scalar is sittin on t
 - $ec{v}_2=<1,4,4>$
 - Hey uh, those are NOT the same
 - Not even if you try *really* hard to scale them, there is no way of gettin there
- Alright, so we are NOT parallel, now to check for a common point

• Can I find t and s such that $\vec{r}_1(t) = \vec{r}_2(s)$

$$ullet < t, 1+t, 1+2t>^?=^?<2+s, 4s, 3+4s>$$

Equation one is look at the x components

•
$$t = 2 + s$$

y

$$ullet$$
 $1+t=4s$

Z

•
$$1+2t=3+4s$$

· uhhh, doing some math

•
$$1+2+s=4s$$

- s = 1
- which then makes it so t=3
- 7 = 7 mmm, yes

MATH112 - 2024-01-26

#notes #math112 #math #calc

"Algebra errors are like mold, they grow in cramped dark spaces"

notes

- so we have some line like x = 5t + 4, y = 3t 1, z = t + 1
 - So you can solve for t and get all those
- you'll more likely be given like $\frac{x-4}{5} = \frac{y+1}{3} = z 1 = t$
 - And then solve for t in all of those, and suddenly you have a parametrized function

Torque

- you torque me right round baby right round like a fulcrum baby right round right round
 - i'm going insane.
- fulcrum is some center, and then you have a lever arm (conventionally a wrench, in most of the problems we're going to have)
 - You'll have some force \vec{F} being applied to the end of the wrench
 - Moments are momenting
- Put the tails together (at your fulcrum), and then your torque $ec{ au} = ec{r} imes ec{F}$

- Obligatory reminder for cross products that θ is between 0 and π
- · Lots of problems ask for magntitude
 - Which would just be $|ec{ au}| = |ec{r}| |ec{F}| \sin heta$
 - That $\sin \theta$ does make sense, because your mag can't exactly be negative

alright back to lines

- Let's say $l_1 = <-1, 4t, 2-2t>$
- $l_2 = <2t, 1, 1+t>$
 - 1. Let's find directions

1.
$$\vec{V}_1 = <0,4,-2>$$

2.
$$ec{V}_2 = <2,0,1>$$

- 3. Not possible to make em parallel (womp womp)
- 2. Direction is no dice, do they share a common point?

$$1.x - 1 = 2s$$

2.
$$4t = 1$$

3. z
$$2-2t=1+s$$

4.
$$s = -0.5$$
, $t = 0.25$

5.
$$2 - (0.25)2 = 1 - 0.5$$

6.
$$1.5 = 0.5$$

- 1. Those are NOT the same.
- 3. no intersections, we're skew

planes

- equation for planes (not the kind that fly)
- Representation of planes
 - Can be shown by a point and a normal direction
- Calculate a plane from three points
- Intersections
 - intersections of a line and a plane
 - Planes and planes and planes
 - Angle between planes
- Backing up to 2 dimensional

•
$$3x + 2y = 1$$

•
$$3x + 2y = 4$$

Parallel, but with different intercepts

- Big shocker, we can do it in 3dim as well
 - ax + by + cz = d
 - While the similar equation was a line in 2d, it's a plane here in 3d
 - Previously on calc 2
 - We said that two vectors \vec{u} and \vec{v} , they *generally* represent a plane
 - Put tails together, connect the heads, get a triangle, yadayada
 - The cross product $ec{n} = ec{u} imes ec{v}$
 - $\vec{n} \perp \vec{u}$ & $\vec{n} \perp \vec{v}$
- The direction of a plane is the normal vector (what direction is perpendicular to it)

example

- Normal vector is $\vec{n} = \langle a, b, c \rangle$
 - If I pick some point Q in the plane, and there's some other point P, I make \vec{PQ} , I know that $\vec{n} \perp \vec{PQ}$
 - Rember we do have a 0 dot product from two orthogonal vectors
 - $a(x-x_0) + b(y-y_0) + c(z-z_0) = 0$
 - $\quad ax + by + cz = ax_0 + by_0 + cz_0$
 - That other half is just going to be some number d, oh hey, we're back to ax+by+cz=d
 - and the abc is the normal vector
 - $\vec{n} \cdot = \langle x, y, z \rangle = \vec{n} \cdot \langle x_0, y_0, z_0 \rangle$

examplier example (with numbers)

- Find the plane through the point p=(-1,-6,-4) w/ direction $\vec{n}=<-5,2,-2>$
- We can just deadass use the equation

•
$$<-5,2,-2>\cdot< x,y,z>=<-5,2,-2>\cdot<-1,-6,-4>$$

•
$$-5x + 2y - 2z = -5(-1) + 2(-6) + (-2)(-4)$$

$$\bullet \quad -5x + 2y - 2z = 1$$

the less ideal case example

- Find the plane through
 - p = (-1, 2, 1)
 - -q = (0, -3, 2)
 - -R = (1, 1, -4)

$$egin{aligned} - ec{pq} = <1, -5, 1> \ - ec{pr} = <2, -1, -5> \ - ec{pq} imes ec{pr} = ec{n} = \end{aligned}$$

 $\frac{5}{\hbar t}(25-(-1))$, $-\hbar t (-5-2)$, $\hbar t (-1-(-10))$ \$\$\$26 $\hbar t + 7\hbar t + 7\hbar t + 9\hbar t k=10$

MATH112 - 2024-01-29

#notes #math112 #math #calc

previously on

- plane is ax + by + cd = d
- Angle between two intersecting planes
 - When planes intersect, their intersection is a line
 - Convention is to choose the smaller angle, so generally $\theta[0,\frac{\pi}{2}]$
- do remember that $ec{n_1} \cdot ec{n_1} = |ec{n_1}| |ec{n_2}| \cos heta$

$$ullet$$
 $heta = \cos^{-1}(rac{ec{n_1}\cdotec{n_2}}{|ec{n_1}||ec{n_2}|})$

- If the directions are the same (or a scalar multiple), then the planes are parallel
- If the direction vectors are orthogonal, then they'll be orthogonal

•
$$\theta = \frac{\pi}{2}$$

example

- find the plane through the point P=(3,0,8), I want this plane to be parallel to 2x+5y+8z=17
 - We need a point (P) and a direction <2,5,8>, from the coefficients of the previous

$$\quad <2, 5, 8>\cdot < x, y, z> = <2, 5, 8>\cdot <3, 0, 8>$$

•
$$2x + 5y + 8z = (6 + 0 + 64) = 70$$

other example

Given plane 1 = 2x + 5y - 3z = 0 and plane 2 = -x + 5y + 2z = 8Find a plane orthogonal to plane 1 and plane 2

$$\vec{n_1} = <2, 5, -3>$$

$$ec{n_2} = <-1, 5, 2>$$

Find $\vec{n_3}$

Let
$$\vec{n}= imes$$

not even going to tex this matrix

ijk

25-3

-152

$$10 - -15 = 25\hat{\imath} + 4 - 3 = 1\hat{\jmath} + 10 + 5 = 15\hat{k}$$

25x - y + 15z = d where d is any value

intersections

- line and a plane
 - either it lives in the plane or it punches through in exactly one point

•
$$x + y + z = 14$$
, $\vec{r}(t) = <1, 1, 0 > +t < 0, 2, 4 >$

•
$$x = 1 + 0(t)$$

•
$$y = 1 + 2t$$

•
$$z = 0 + 4t$$

Sub allat into the plane formula

•
$$1+1+2t+4t=14$$

•
$$2+6t=14$$

•
$$t = 2$$

•
$$x = 1$$
, $y = 5$, $z = 8$

- That's out intersection point
- plane and a plane (oh no)
 - 1. They could just be identical
 - 1. When those intersect, they overlap completely

1.
$$2x + 3y + z = 6$$

2.
$$4x + 6z + 2z = 12$$

- 3. Smells like scalar up in here.
- 2. Parallel planes
 - 1. Those are just where the point (number) at the end is not the same

- Intersecting planes
 - 1. These spit out a line, which is cute
 - 2. Ex
 - 1. p = x + 2y + z = 5
 - 2. p2 = 2x + y z = 7
 - 3. Yeah there is not a chance in hell to scale the two of em, so they're definitely intersecting
 - 4. < 1, 2, 1 >
 - 5. < 2, 1, -1 >
- 2. The direction of the intersection line is given by $\vec{v} = \vec{n_1} \times \vec{n_2}$
 - 1. alright, so back to our cross shit, direction ends up as $ec{v}=<-3,3,-3>$
 - 2. Picking any x (go with 0. it makes it easiest)
 - 3. Plane 1 = 0 + 2y + z = 5
 - 4. Plane 2 = 0 + y z = 7
 - 1. this smells like algebra, two equations, two unknowns
 - 2. y = 7 + z, 2(7 + z) + z = 5, 14 + 3z = 5, z = -3, y = 4
 - 1. So our line ends up as $\vec{r}(t) = <0,4,-3>+t<-3,3,3>$

14.1

- Get more practice with vector valued functions
- match some function $\vec{r}(t)$ with assorted sketches
- Intersections of VVF's
- Multivariate limits and continuity
 - we can apply all that fun stuff from calc to what we did
 - spoiler: you just do them all separately and off you pop
- for the preclass, we had $\vec{r}(t) = <4\cos(t), \sin(t), \frac{t}{2\pi}>$
 - in order to do this, we projected
 - turns out if we want to, say, project onto the x-y plane
 - we just.... set *z* to 0
 - ullet $< 4\cos(t),\sin(t),0>$
 - same if we want to project it onto literally any other view, just.. ignore it

- In three dimensions, you have octants, instead of quadrants
 - quirky
- $x^2 + y^2 = z^2$ spits out a double cone
- www.geogebra.org

notesises

- Find $\vec{r}(t) = ?$
 - for a circle centered at 0,2,1 with a radius of 2 that is parallel to the x-z plane
 - ullet For that whole parallel to the x-z and centered bit, we need y=2
 - · y doesn't change when we're hanging out on the other plane
- $\vec{r}(t) = <\cos(t), 2, \sin(t) >$
 - for that radius, scale the terms (that change) $< 2\cos(t), 2, 2\sin(t) >$
 - $< 2\cos(t), 2, 2\sin(t) + 1 >$
- Find the intersection of $y=\frac{1}{2}$ and $x^2+y^2+z^2=1$
 - $y = \frac{1}{2}$ is actually a plane
 - Just sub that in, $x^2+(\frac{1}{2})^2+z^2=1$

•
$$x^2 + z^2 = \frac{3}{4}$$

Aight vector valued

•
$$\vec{r}(t) = <\frac{\sqrt{3}}{2}\sin(t), \frac{1}{2}, \frac{\sqrt{3}}{2}\cos(t) >$$

- Find the intersection of $x^2 + y^2 + z^2 = 1$ and y = z
 - $x^2 + 2z^2 = 1$
 - hey dummy remember that they don't scale the same if they're an ellipse
- Writing a VVF

•
$$\vec{r}(t) = <\cos(t), \sqrt{2}\sin(t), \sqrt{2}\sin(t)$$

•
$$x^2 + y^2 = z^2$$
, $y = z^2$

•
$$x^2 + (z^2)^2 = z^2$$

•
$$x^2 + z^4 = z^2$$

•
$$x^2 = z^2 - z^4$$

•
$$x=\pm\sqrt{z^2-z^4}$$

- Let z=t, and let $y=t^2$, which makes $x=\pm \sqrt{t^2-t^4}$
- That \pm really makes it so we have two VVFs
 - ullet The + is the intersection of the upper cone, and the is the lower cone
 - The domain on that is just t is between $\left[-1,1\right]$

$$\lim_{t o a} < f(t), g(t), h(t) > = \lim_{t o a} ec{r}(t)$$

Which is the same thing as

$$<\lim_{x o a}f(t),\lim_{x o a}g(t),\lim_{x o a}h(t)>$$

This overall limit exists if each limit exists

$$\lim_{t o 0}<1+t^3, te^{-t}, rac{\sin(t)}{t}$$

which is

$$<1,0,\lim_{t o 0}rac{\sin(t)}{t}>$$

use a quick trip to the hospital

Do anotha one

$$\lim_{t o\infty}<\cos(\pi t),\sin(\pi t),e^{-t}>$$

- Well, the z term goes to 0
- $\lim_{t \to \infty} \sin(\pi t) DNE$ because it just oscillates the whole time
 - round n round n
- So this whole thing does not exist. womp womp.
- Quick reminder that to be continuous, we need to have the limits from both sides be the same, and equal the value at that point
- $ec{r}(t)$ is continuous at t=a if f(t),g(t),h(t) are all continuous at the point
 - So if any of the x/y/z components are not continuous, we toss the whole thing out.
 zoinkers.

4.2 is derivatives n fun stuff

- Do a derivative of VVF
 - You do the derivative of each component
- Two new derivative rules
 - One for dots, one for cross products
- Tangent lines were calc 1, tangent vectors are what we're doing now

Integrals are also just component by component

$$ec{r}'(t) = \lim_{h o 0} rac{ec{r}(t+h) - ec{r}(t)}{h}$$

MATH112 - 2024-01-31

#notes #math112 #math #calc

$$ec{r}(t) = < f(t), g(t), h(t) >$$

- you're really just doing component wise derivatives
 - $\vec{r}'(t) = < f'(t, g'(t), h'(t)) >$
 - this is the derivative (duh)
 - also known as the tangent vector
 - if (t) is time and this is position, then we get velocity
 - |r'(t)| is the magnitude of the derivative vector, also known as SPEEEEEED
 - you could also divide the vector by this, which gives you the unit direction vector
 - $\vec{r}''(t) = \langle f''(t), g''(t), h''(t) \rangle$
 - r"', etc, etc

example

- find the line tangent to $ec{r}(t) = <\ln(t), \sqrt{2t+1}, 4>$
 - when t=4
 - so we'll get some point, which is $\vec{r}(4) = <\ln(4), 3, 4>$
 - aaaand now we need a direction
 - $led ec r'(t) = <rac{1}{t},rac{1}{2}(2t+1)^{rac{-1}{2}}2,0>$
 - and we want that at 4

$$\bullet < \frac{1}{4}, \frac{1}{3}, 0$$

- $\ell(t) = < \ln(4), 3, 4 > +t < \frac{1}{4}, \frac{1}{3}, 0 >$
- $ullet \ \ell(t) = < \ln(4) rac{+t}{4}, 3 + rac{t}{3}, 4 >$

new derivative rules kicking it around

dot product

$$rac{d}{dt}(ec{u}(t)\cdotec{v}(t))=ec{u}(t)\cdot\left(rac{d}{dt}ec{v}(t)
ight)+\left(rac{d}{dt}ec{u}(t)
ight)\cdotec{v}(t)$$

cross product

$$rac{d}{dt} = (ec{u}(t) imes ec{v}(t)) = ec{u}(t) imes \left(rac{d}{dt} ec{v}(t)
ight) + \left(rac{d}{dt} ec{u}(t)
ight) imes ec{v}(t)$$

integrals

indefinite integrals

$$\int ec{r}(t)dt = <\int f(t)dt, \int g(t)dt, \int h(t)dt> \ = < F(t)+c_1, G(t)+c_2, H(t)+c_3>$$

definite integrals

$$\int_a^b ec{r}(t)dt = <\int_a^b f(t)dt, \int_a^b g(t)dt, \int_a^b h(t)dt>$$

14.3

- applying the 14.2 stuff (that we just did) to motion
- velocity, acceleration, gravity, yadayayayada

deribatibs

- let's say that the path is $\vec{r}(t) = \langle t, e^t, te^t \rangle$
 - so the velocity, $\vec{v}(t) = <1, e^t, te^t + e^t >$
 - so the acceleration, $\vec{a}(t)=<0, e^t, te^t+e^t+e^t>$ e^t does not sound like a real term anymore

integrals

- Given $\vec{a}(t) = <\cos(t), 2\sin(t) >$
- We have that $\vec{v}(0) = <0, 1>$
- and that $\vec{r}(0) = <1, 0>$

math time

$$ec{v}(t) = <\sin(t), -2\cos(t) + 3>$$

• alright so now we need to find r

•
$$ec{r}(t) = <-\cos(t), -2\sin(t) + 3t > +ec{c}$$

$$ullet <1,0>=<-1,0>+ec c$$

$$ullet$$
 $ec{c}=<2,0>$

• so the pos function, fully written out, would be

$$ec{r}(t) = <-\cos(t)+2, -2\sin(t)+3t>$$

example (trajectory problem with gravity)

- you'll be given some initial position, (x_o,y_o) and we'll probably get some v_0 and some α launch angle
 - Determine the range and max height

$$ec{v}_0 = |v_0| < \cos(lpha), \sin(lpha)$$

•
$$\vec{a}(t) = <0, -g>$$

•
$$g$$
 is a constant, $32\frac{ft}{s^2}$, or more commonly $9.8\frac{m}{s^2}$

• so
$$ec{v}(t)=\int ec{a}(t)dt>$$

• so we have
$$<0, -gt>+\vec{c}$$
, so \vec{c} is just going to be $< u_o, v_o>$

$$ec{v}(t)=< u_o, -gt+v_o>$$

alrighty now we need to integrate (again)

$$ullet < u_o t, rac{-g t^2}{2} + v_o t > + ec c$$

$$ullet$$
 so $ec{c}$ is just going to be $< x_o, y_o>$

$$ullet$$
 end function is that $ec{r}(t) = < u_o t + x_o, rac{-g t^2}{2} + v_o t + y_o >$

and you can replace things with sin and cos as they should be

MATH112 - 2024-02-02

#notes #math112 #math #calc

"One of the quiz problems this weekend is graded wrong by Pearson

- Domain of $<\sqrt{8+t},\sqrt{8-t}>$ is graded as |t|>=8
- should be \leq 8, for the record
 - Last time on calc, we were doing trajectories
 - Given an initial posistion of <0,0> and a $|V_o|=150 rac{m}{s}$

•
$$\alpha = 30^\circ = \frac{\pi}{6}$$

- Find the Range
 - we wanna find when y(t) = 0

$$ullet$$
 $rac{-9.8t^2}{2}+V_ot=0$

• that's 0 when t is 0, yipee skippee

$$\bullet \ \ t(-4.9t+V_o)=0$$

•
$$t = \frac{V_0}{4.9}$$

•
$$t = \frac{150\sin(\frac{\pi}{6})}{49}$$

- that spits out 15.3 seconds
- max height occurs at half that, 7.65 seconds
 - you could either do this when y velocity is 0, or half the time
- "don't trick yourself into thinking in only one dimension"
- If the magnitude of your path is some constant R, you're on a circle (or a sphere, if you're chilling in 3d)
 - if $\vec{r}(t)$ is such that its magnitude is constant, then $\vec{r}(t) \cdot \vec{v}(t) = 0$

6.2

previous on calc 1

- we have some function $f(x) \geq 0$ on $x\epsilon[a,b]$
 - ullet we want the area under the curve, we do $\int_a^b f(x) dx = ext{area}$
- now in calc 2 land
 - $ullet f(x) \geq g(x) ext{ on } x\epsilon[a,b]$
 - Our integral here is going to be $\int_a^b (f(x)-g(x))dx$

example

$$f(x) = \frac{x}{x^2+1}$$
, $g(x) = \frac{x}{5}$

To find the "area between curves," make sure you pick the function that is on "top" to be f(x)

:raised_eyebrow:

So we have $\int_{-a}^0\Big(rac{x}{5}-rac{x}{x^2+1}\Big)dx+\int_0^a\Big(rac{x}{x^2+1}rac{-x}{5}\Big)$ a is 2 and -2, respectively

#notes #math112 #math #calc

- If shit don't work out vertically, why not just flip it?
 - You can integrate over y, and that works out more or less the same
 - You integrate the right over the left instead of the top bottom
 - I mean you could always just swap x and y, but it's waaaaaay easier to just flip it

$$Vpprox \sum_{k=1}^n A(x_k^*)\Delta x$$

- A is the 2 dimensional area of some given cross section, and Δx is the width of the slice
- So, you end up doing the limit, which just gets a nice integral of the area
- So, the area if we had a semicircle would be

$$\int_{-1}^{1} \left(\frac{(1-x^2)^2 * \pi}{2} \right) dx$$

 $\int_{-1}^{1} \left(\frac{\pi * r^2}{2} \right) dx$

MATH112 - 2024-02-06

#notes #math112 #math #calc

volume (of pyramids / cones)

- They start off with some base shape
 - They proceed to get smaller and smaller up to a point
 - For instance, if you were to slice parallel to the base, you would just get smaller and smaller squares
- Truncated cone is basically a loft (or a cone with the top sliced off)
- Size of shape changes linearly as you go up
- For square bases, you need one side, for circles, you need the radius, etc

step by step (yippeee)

- 1. Find length of side s_{base}
- 2. Find length of side s_{top} (which could very well be 0, in a lot of cases)
- 3. Evaluate $s(y) = rac{s_{top} s_{base}}{h} y + s_{base}$
- 4. Find A(y)
 - 1. For a square, $A(y) = (s(y))^2 R$
 - 2. For a circle, $A(y) = \pi(s(y))^2$
- 5. Integrate, $\int_0^h A(y)dy$

example

- Some square pyramid, 6m by 6m, with a height of 10m
- Following our steps

•
$$s_{base}=6$$

$$ullet \ s_{top}=0$$

$$\bullet \ \ s(y) = \tfrac{-6}{10}y + 6$$

•
$$\frac{-3}{5}y + 6$$

•
$$A(y) = (\frac{-3}{5}y + 6)^2$$

•
$$V = \int_0^{10} (\frac{-3}{5}y + 6)^2 dy$$

Spits out like, 120m³

today, find volumes by revolution

show those bourgeoise bastards

- Slices are disks
- oooor, slices that are washers (hole in the middle)
- Alright, so i have some curve $f(x) \geq 0$ on x[a,b]
 - You integrate, find the area under the curve
 - Revolve that shape about the x axis, and wham bam, shape
- The y of f(x) becomes your radius, so $A(x) = \pi(f(x))^2$
- So then we just $\int_a^b \pi(f(x))^2 dx$

example

- $\quad f(x) = 4 x^2, x\epsilon[-2,2]$
- Revolve about the x axis

•
$$V = \int_{-2}^{2} \pi (4 - x^2)^2 dx$$

•
$$V = \int_{-2}^{2} (16x - 8)$$

512/15 pi unit^3

Say $f(y) \geq 0$ for $y\epsilon[a,b]$ it's the same as about the x axis, $V = \int_a^b \pi(f(y))^2 dy$

$$V=\int_0^4(\pi)(frac{1}{2}y)^2dy$$

Alright, for making donuts between two functions It's basically outer - inner, which works out to be

$$\int_a^b \pi((f(x))^2 - (g(x))^2) dx$$

If you're revolving around a weird line, just do inner vs outer

MATH112 - 2024-02-07

#notes #math112 #math #calc

We're going to make more revolute solids, but now we're going to start shelling em

· holy shit, war is hell

Revolving some rectangle about the same axis, that would make some cylinder as part of the objecet

So we have a can with no top, and no bottom, surface area would just be $2\pi rh$ Let's say that the thickness of the can's wall is Δx

 $V \approx 2\pi r h \Delta x$

that approximately is because the radius changes

We could have some f(x) that goes from a to b, some g(x) that goes from a to b as well Revolve ourselves about the y axis

$$V\int_a^b 2\pi x*(f(x)+g(x))$$

hershey kith

$$\begin{split} f(x) &= 1 - (x-1)^3 \\ g(x) &= 0 \\ x \epsilon [0,2] \\ v \int_0^2 2\pi x (1-(x-1)^3) dx \end{split}$$
 We're actually going to integrate this one $u=x-1$
$$\frac{du}{dx} = 1, \ du = dx \\ \int_0^2 2\pi x (1-(u)^3) \\ \text{alternative, x = u+1} \\ 2\pi \int_{-1}^1 (u+1)(1-u^3) du \\ 2\pi \int_{-1}^1 1(u-u^4+1-u^3) du \\ 2\pi \left(\frac{u^2}{2} \frac{-u^5}{5} + u - \frac{u^4}{4}\right) \end{split}$$

example... but again

 $rac{16}{5}\pi$ units 3

These intersect at (0,0) and (9,3), and we're revolving around the y axis Limits of integration are going to be 0 and 9

$$\int_{0}^{9}2\pi x(\sqrt{x}-rac{1}{3}x) \ 2\pi\int_{0}^{9}igg(x^{rac{3}{2}}-rac{1}{3}x^{2}igg)dx \ 2\pi*rac{x^{rac{5}{2}}}{rac{5}{2}}-rac{rac{1}{3}x^{3}}{3}$$

....

that works out to like, $\frac{162}{5}\pi$

Region;

$$y = 6$$

$$y = x^2 + 2$$

$$x \ge 0$$

So our integral setup would be $V=\int_0^6 2\pi (x+1)(6-(x^2+2))dx$

$$2\pi \int_0^6 (x+1)(4-x^2) dx$$

$$2\pi\int_0^6 (4x-x^3+4-x^2)$$

Integrate that, get some garbage about

$$2\pi*(2x^2-rac{1}{4}x^4+4x-rac{x^3}{3})$$

$$2\pi*(72-rac{1296}{4}+24-72)$$

go backwards

$$V = \int_0^3 2\pi (3-x)(3-x) dx$$

Alright, so the first (3 - x) is the radius, the second is the height

MATH112 - 2024-02-13

#notes #math112 #math #calc

what's up with today

- all kinds of fun applications of integrals
 - mass/density
 - work integrals

 - lifting things
 - Pumping water

starting off with mass

- Start with density $ho(x) = rac{mass}{lenath}$ at posistion x
 - Have some rod, where one end is 0, and going around the length is x
 - Mass of chunk $\mathsf{k} \approx \rho(x_k) * \Delta x$
- Suppose $\rho(x) = \rho$ for all x
 - That's a uniform rod, so then the mass is just $\rho * \Delta x$
- Generally, mass = $\sum_{k=1}^{n} \rho(x_k) \Delta x$
 - Now, calc wants a limit, so $\lim_{n o \infty} \sum\limits_{k=1}^n
 ho(x_k) \Delta x = \int_a^b
 ho(x) dx$
- Given a 2 meter bar, with a density equal to $ho(x)=1+x^2~rac{kg}{m}$, find mass of bar
 - $\int_{0}^{2} (1+x^{2}) dx$ $1x + \frac{x^{3}}{3} from 0^{2}$ $2 + \frac{8}{3} = \frac{14}{3} kg$

work

- Generally, work = force * distance (yeah, I didn't make it \text, sue me)
- w = F * d

Common units

Metric

- Force, N- Newtons
- Distance, meter
- Work is N*M, also known as a Joule

Imperial

- Force, pounds
- Distance, feet
- Work is just ft lb

 $\lim_{n o\infty}F(x_k)*\Delta x$, you sum all those up, yadayadayada, you get an integral. $\int_a^bF(x)dx$

first up on the chopping block is springs

Hooke's Law says that for a spring, F(x) = kx

- where k is just our quirky silly little spring constant
- which is conventionally in like Joules
 - spring starts at some distant equilibrium point called 0

example

40n is required to stretch a spring 20cm beyond equilibrium 40N is required to stretch a spring 0.2m

- Find the spring constant
 - 200 N*M
- So the force equation would be 200x
- Find the work required to stretch from 20cm to 40cm
 - $\int_{0.2}^{0.4} (200x) dx$
 - $200 \int_{0.2}^{0.4} (x) dx$
 - $100x^2$ from 0.2 to 0.4
 - That's some number alright (16 4 = 12J)

.

example but again

find work to compress a spring from 50cm to 80cm

$$W = \int_{-0.5}^{-0.8} (200x) dx$$
 $W = 100x^2$ from -0.5 to -0.8

which will just come out to 39J

lifting problems

Gravity g

- we have some 70lb object
- (we generally use y)
 - if we're up at 60ft, calculate the work required to lift the bucket and the rope
 - There's generally two parts, getting the work of the bucket and the work of the rope
 - That bucket's super easy, it's constant, and is just going to be 70*60=4200ftlb
 - Say the rope has density $ho = 0.5 rac{lbs}{ft}$

MATH112 - 2024-02-14

Use the shell method to find the volume of the solid generated by revolving the region bounded by the given curves about the given lines.

y equals 25 minus x squaredy=25-x2,nbsp yequals=2525,nbsp xequals=55;

revolve about the line y equals 25#notes #math112 #math #calc

homework problem

So if we have some hemispherical tank (basically #6 on the worksheet)

- If we take some horizontal cross section, we have some circular cross section, and we need to find the area
 - So the area is $A(y) = \pi r^2$
 - $r^2 = 8^2 (8 y)^2$
 - $A(y) = (\pi)(8^2 (8 y)^2)$
 - So the integral would be $\int_0^8 \pi
 ho * g(8^2 (8-y)^2)(8+2-y)dy$

"basic" integration

u sub

$$I=\int x^{rac{1}{2}}\cos(x^{rac{3}{2}})dx \ u=x^{rac{3}{2}} \ du=rac{3}{2}x^{rac{1}{2}}dx$$

Oh hop skiddly bop, we've got that floating around

$$\int \cos(u)rac{2}{3}du \ = rac{2}{3}\sin\left(x^{rac{3}{2}}
ight) + C$$

Splitting Fractions

$$I = \int rac{x+2}{x^2+4} dx$$
 $= \int rac{x}{x^2+4} dx + \int rac{2}{x^2+4} dx$
 $= I_1 + I_2$
For $I_1, u = x^2 + 4, du = 2x dx$
 $I_1 = \int rac{1}{2} rac{1}{2} du = rac{1}{2} \ln |u| + C, rac{1}{2} \ln |x^2+4| + C$
 $I_2 = 2 \int rac{dx}{x^2+4} = \int rac{rac{1}{4} dx}{rac{x^2}{4} + 1}$
For $I_2, u = rac{x}{2}, u^2 = rac{x^2}{4}, du = rac{1}{2} dx$
 $rac{1}{2} \int rac{2du}{u^2+1} = \int rac{du}{u^2+1} = an^{-1}(u) + C$
 $an^{-1} \left(rac{x}{2}
ight) + C$

Completing the Square

$$(x-1)^2 = x^2 - 2x + 1$$
 $I = \int \frac{dx}{x^2 - 2x + 10}$
 $\int \frac{dx}{x^2 - 2x + 10 + 1 - 1}$
 $\int \frac{dx}{(x-1)^2 + 9} * \frac{\frac{1}{9}}{\frac{1}{9}}$

$$\int rac{rac{1}{9}dx}{rac{(x-1)^2}{9}+1} \ u = rac{x-1}{3}, u^2 = rac{(x-1)^2}{9}, du = rac{1}{3}dx \ rac{1}{9}\int rac{3du}{u^2+1} \ rac{1}{3}\int rac{du}{u^2+1}, = rac{1}{3} an^{-1}(u) + C \ rac{1}{3} an^{-1}\left(rac{x-1}{3}
ight) + C$$

rational division

· we're basically doing long division

$$I = \int \frac{x^2 + 2}{x - 1}$$

aside: this could be done with u-sub

you sub, you call it a day, yippeee skippy

long division time

FUCK I cannot type that

$$\int (x+1+rac{3}{x-1})dx \ = rac{x^2}{2} + x + 3\ln(|x-1|)$$

some hints for worksheet

- 1. split fraction
- 2. u-sub (denominator)
- 3. u sub (argument of $\sqrt{\ }$)
- 4. same usub as 3 but tricksy
- 5. You can do long division for that
- 6. uses a technique called "multiply by 1".
 - 1. I will give you ONE guess how that works

MATH112 - 2024-02-21

#notes #math112 #math #calc

Integration by Parts

$$\int u dv = uv - \int v du$$

Steps

- 0. Uh, try an easier way. This shit is a pain.
 - 1. $\int vdu$ must be easier than what you started with $(\int udv)$
 - You must be able to integrate dv
 - 3. How to pick u
 - 1. LIPET
 - 1. Logarithms
 - 2. Inverse Trig
 - 3. Powers
 - 4. Exponentials
 - 5. Trig

example time

$$I=\int x^2e^{3x}dx$$
 $u=x^2, dv=e^{3x}dx, v=rac{1}{3}e^{3x}, du=2xdx$

$$I=(x^2)\left(rac{1}{3}e^{3x}
ight)-\intrac{1}{3}e^{3x}2xdx$$
 $I=rac{1}{3}x^2e^{3x}-rac{2}{3}\int xe^{3x}dx$ $I_1=\int xe^{3x}dx$ $u=x,du=dx,dv=e^{3x}dx,v=rac{1}{3}e^{3x}$ $I_1=rac{1}{3}xe^{3x}-rac{1}{3}\int e^{3x}dx$ $I_1=rac{1}{3}xe^{3x}-rac{1}{9}e^{3x}+C$ $I=rac{1}{3}x^2e^{3x}-rac{2}{3}(rac{1}{3}xe^{3x}-rac{1}{9}e^{3x})+C$

$$I=\int \ln(x)dx$$
 $u=\ln(x), du=rac{1}{x}, dv=1, v=x$ $\int \ln(x)dx=\ln(x)x+\int rac{x}{x}dx$ $\int \ln(x)dx=\ln(x)x-\int 1$ $\int \ln(x)dx=\ln(x)x-x$

$$I=\int \sin^{-1}(x)dx$$
 $u=\sin^{-1}(x), dv=dx, du=rac{1}{\sqrt{1-x^2}}dx, v=x$ $I=x\sin^{-1}(x)-\intrac{x}{\sqrt{1-x^2}}dx$ $I_1= ext{that bullshit up there, } u=1-x^2, du=-2xdx$

$$\int rac{-rac{1}{2}du}{\sqrt{u}}, -rac{1}{2}\int u^{-rac{1}{2}}du = rac{-1}{2}rac{u^{rac{1}{2}}}{rac{1}{2}} = -(1-x^2)^{rac{1}{2}}$$

$$I = x \sin^{-1}(x) + (1 - x^2)^{\frac{1}{2}} + C$$

$$I = \int an^{-1} dx$$
 $u = an^{-1}(x), dv = dx, v = x, du = rac{1}{x^2 + 1}$ $I = x an^{-1}(x) - \int rac{x}{x^2 + 1} dx$ $I_1 = \int rac{x}{x^2 + 1} dx$ $u = x^2 + 1, du = 2x$ $I_1 = \int rac{1}{2} du, = rac{1}{2} \int rac{du}{u}$ $I_1 = rac{1}{2} \ln(|u|) + C$ $I_1 = rac{1}{2} \ln(|x^2 + 1|) + C$ $I_2 = x an^{-1}(x) - rac{1}{2} \ln(|x^2 + 1|) + C$

$$I = \int e^x \sin(2x) dx$$
 $u = e^x, dv = \sin(2x) dx, du = e^x dx, v = -\frac{1}{2}\cos(2x)$
 $I = \frac{-1}{2}e^x \cos(2x) + \frac{1}{2}\int e^x \cos(2x) dx$
 $I_1 = \int e^x \cos(2x) dx$
 $u = e^x, dv = \cos(2x) dx, du = e^x dx, v = \frac{1}{2}\sin(2x)$
 $I_1 = \frac{1}{2}e^x \sin(2x) - \frac{1}{2}\int e^x \sin(2x)$
 $I = \frac{1}{2}e^x \cos(2x) + \frac{1}{4}e^x \sin(2x) - \frac{1}{4}I$
 $1.25(I) = \frac{1}{2}e^x \cos(2x) + \frac{1}{4}e^x \sin(2x)$

$$I = rac{rac{1}{2}e^x\cos(2x) + rac{1}{4}e^x\sin(2x)}{rac{5}{4}}$$

MATH112 - 2024-02-27

#notes #math112 #math #calc

Powers of trig functions, integrations

First up are sines and cosines

$$I = \int \sin^5(x) \cos^4(x) dx$$
 $I = \int (\sin(x))^5 (\cos(x))^4 dx$
 $\int \sin^4(x) \cos^4(x) \sin(x) dx$
 $I = \int (1 - \cos^2(x))^2 \cos^4(x) \sin(x) dx$
 $u = \cos(x), du = -\sin(x)$
 $I = -1 * \int (1 - u^2)^2 u^4 du$

Expand all that garbage out

$$egin{split} -1\int (u^4-2u^6+u^8)du \ &-rac{u^5}{5}-rac{2u^7}{7}-rac{u^9}{9}+C \ &-rac{\cos^5{(x)}}{5}+rac{2}{7}{\cos^7{(x)}}-rac{1}{9}{\cos^9{(x)}}+C \ &\int \sin^m(x)\cos^n(x)dx \end{split}$$

general steps

Case (1): Powers are such that m is positive and odd, and $n \in \mathbb{R}$

Case (2): Powers are such that n is positive and odd, and $m \in \mathbb{R}$

Case (3): Powers are such that m and n are positive and even

case 1 or 2

- 1. Separate one term from an odd power
 - 1. $I = \int \sin^3(x) \cos^3(x) dx$
 - 1. oh hey, this is Case 1 and Case 2
 - 1. Ain't that neat.

2.
$$I = \int \sin^2(x) \cos^3(x) \sin(x) dx$$

1.
$$u = \cos(x), du = \sin(x)$$

2.
$$\int (1 - \cos^2(x)) \cos^3(x) \sin(x) dx$$

3.

3.
$$I = \int \sin^3(x) \cos^2(x) \cos(x) dx$$

- 2. Convert the remaining even power to the other trig function
 - 1. $I = \int \sin^3(x)(1 \sin^2(x))\cos(x)dx$
- 3. u-sub? Sure!

1.
$$u = \sin(x), du = \cos(x)$$

2.
$$I = \int u^3 (1 - u^2) du$$

1.
$$I = \int u^3 - u^5$$

4. Expand + Integrate

1.
$$I = \frac{u^4}{4} - \frac{u^6}{6} + C$$

- 2. Aaaand get back out of u land
- 3. $I = \frac{1}{4}\sin^4(x) \frac{1}{6}\sin^6(x) + C$

So, fun fact

$$I = \int \cos^3(x) dx$$

This is a quirky little case 2 where the power on $\sin(x)$ is 0

time for....

case 3

$$I=\int \sin^4(x)\cos^2(x)dx$$

$$I=\int (\sin^2(x))^2\cos^2 dx$$

$$I = \int \left(rac{1-\cos(2x)}{2}
ight)^2 \left(rac{1+\cos(2x)}{2}
ight) dx$$

$$I=rac{1}{8}\int(1-2\cos(2x)+\cos^2(2x))(1+\cos(2x))dx$$
 $I=rac{1}{8}\int(1-\cos(2x)-\cos^2(2x)+\cos^3(2x))dx$ $I=rac{1}{8}\int\left(1-\cos(2x)-\left(rac{1+\cos(4x)}{2}
ight)+ ext{more bullshit with case }2
ight)dx$

This shit is a pain in the ass

- official notes say "tedious" but let's be honest. pain.
- · Luckily, there's an easier way
- We've got Reduction Formulas

$$\cos^n(x)=rac{1}{n} \cos^{n-1}(x) \sin(x) + rac{n-1}{n} \int \cos^{n-2}(x) dx$$

· Yeah uh, don't memorize that, but get with the idea

just when you thought the water was safe

$$\int \tan^m(x) \sec^n(x) dx$$

MATH112 - 2024-02-28

#notes #math112 #math #calc

today is fun with tangents and secants

- quick review of what we should already know
 - $\int \sec^2(x) dx = \tan(x) + C$
 - $\int \sec(x)\tan(x)dx = \sec(x) + C$
 - Activity Sheet 8.1

$$egin{array}{c|c} \int an(x) dx \ & -1|\cos(x)| + C \ & \int \sec(x) dx \ & \ln(\sec(x) + \tan(x)) + C \end{array}$$

$$\int \tan^m(x) \sec^n(x) dx$$

• Just like yesterday, we're going to have case 1, case 2, and the pain in the ass :(

cases for $\int an^m(x) \sec^n(x) dx$

Case 1

• n (sec) is positive even, m is $\mathbb R$

Case 2

- m is positive odd
- n is \mathbb{R}

Case 3 ⁽²⁾

- m is positive even
- n is positive odd
- this is a pain

brief aside

$$\tan^2(x) + 1 = \sec^2(x)$$

$$I=\int an^3(x) \sec^4(x) dx$$

 hey ho, this is actually both case 1 and case 2, but we're going to treat it as a case 1 for examples sake

case 1

step one!

• separate out a $sec^2(x)$

$$I=\int an^3(x)\sec^2(x)\sec^2(x)dx$$

step two!

• get back to tangent from our $\sec^2(x)$

$$I=\int an^3(x)(an^2(x)+1)(\sec^2(x))dx$$

step three!

• u-sub, yippeee

$$u= an(x), du=\sec^2(x)dx$$
 $I=\int u^3(u^2+1)du$ $I=\int (u^5+u^3)du$

step four!

• expand and integrate, have fun

$$rac{1}{6}u^6 + rac{1}{4}u^4 + C$$
 $rac{1}{6} an^6(x) + rac{1}{4} an^4(x) + C$

case 2

$$I=\int an^3(x)\sec^3(x)dx$$

step 1

• rip out a sec(x) tan(x)

$$I = \int an^2(x) \sec^2(x) \sec(x) an(x) dx$$

step 2

replace

$$I = \int ((\sec^2(x)-1)\sec^2(x))\sec(x)\tan(x)dx$$

step 3

• u sub, hipee

$$u=\sec(x), du=\sec(x)\tan(x)dx$$
 $I=\int (u^2-1)u^2du$

step 4

· expand, solve, blah blah blah

$$I=\int (u^4-u^2)du$$
 $I=rac{1}{5}u^5-rac{1}{3}u^3+C$

Replace the u, and there you go

$$\frac{1}{5}\mathrm{sec}^5(x) - \frac{1}{3}\mathrm{sec}^3(x) + C$$

trig sub

usable if like

$$f(x) \text{ has } \sqrt{a^2 - x^2}, \sqrt{x^2 + a^2}, \sqrt{x^2 - a^2}$$

Some generally important things Half angle formulas

$$\sin^2(heta) = rac{1-\cos(2 heta)}{2}, \cos^2(heta) = rac{1+\cos(2 heta)}{2}$$

Also have double angle

$$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$$

 $\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$

In a given right triangle with θ over to the right,

$$\sin(heta) = rac{y}{\sqrt{x^2 + y^2}} \ \cos(heta) = rac{x}{\sqrt{x^2 + y^2}} \ an(heta) = rac{y}{x}$$

case 1

$$\sqrt{a^2-x^2}$$

take a> 0, given that we're squaring it

trig sub

$$x = a \sin(heta)$$
 $dx = a \cos(heta) d heta$ $I = \int rac{dx}{16 - x^2}$

In this case, a=4

$$x=4\sin(\theta), dx=4\cos(\theta)d\theta$$

$$I = \int \frac{4\cos(\theta)}{\sqrt{16 - (4\sin(\theta))^2}}$$

$$I = \int \frac{4\cos(\theta)}{\sqrt{16 - 16\sin^2(\theta)}}$$

$$\sqrt{16(1 - \sin^2(\theta))}$$

$$4\sqrt{\cos^2(\theta)}$$

$$I = \int \frac{4\cos(\theta)d\theta}{4\cos(\theta)}$$

$$I = \theta + C$$

$$I = \sin^{-1}(\frac{x}{4}) + C$$

example with triangle

$$I = \int x^3 \sqrt{4 - x^2} dx$$

$$x = 2\sin(\theta)$$

$$dx = 2\cos(\theta)d\theta$$

$$\theta = \arcsin(\frac{x}{2})$$

$$I = \int (8\sin^3\theta)\sqrt{4 - 4\sin^2\theta}(2\cos(\theta)d\theta)$$

$$I = \int (8\sin^3\theta)(2\cos(\theta))(2\cos(\theta)d\theta)$$

$$I = 32 \int \sin^3(\theta)\cos^2(\theta)d\theta$$

$$I = 32 \int \sin^2\theta\cos^2\theta\sin\theta d\theta$$

$$I = 32 \int (1 - \cos^2(\theta))\cos^2\theta\sin(\theta)d\theta$$

$$u = \cos(\theta), du = -\sin(\theta)d\theta$$

$$I = 32 \int (1 - u^2)u^2(-1)du$$

$$I = -32 \int u^2 - u^4du$$

$$I = -32(\frac{1}{3}u^3 - \frac{1}{5}u^5) + C$$

$$I = -32(\frac{1}{3}\cos^3(\theta) - \frac{1}{5}\cos^5(\theta)) + C$$

$$I = -32(\frac{1}{3}(\frac{\sqrt{4 - x^2}}{2})^3 - \frac{1}{5}(\frac{\sqrt{4 - x^2}}{2})^5) + C$$

#notes #math112 #math #calc

previously on

• have some shenanigans like $\sqrt{a^2-x^2}$, we let $x=a\sin(heta)$

today

- some shenanigans like $\sqrt{x^2 + a^2}$
- Let $x = a \tan(\theta)$
- $dx = a \sec^2(\theta) d\theta$

example

$$I = \int rac{dx}{(x^2+9)^2}$$
 $I = rac{dx}{(\sqrt{x^2+9})^4}$
 $x = 3 an heta, heta = an^{-1}(rac{x}{3})$
 $dx = 3\sec^2(heta)d heta$
 $\int rac{3\sec^2(heta)d heta}{(9 an^2(heta)+9)^2}$

Factor out a 9, get a +1

$$= \int \frac{3 \sec^2(\theta)}{81 \sec^4(\theta)} d\theta$$
$$\frac{1}{27} \int \frac{1}{\sec^2(\theta)} d\theta$$
$$I = \frac{1}{27} \int \cos^2(\theta) d\theta$$

pythagorean squared bullshit woo!

$$I = rac{1}{27} \int rac{1\cos(2 heta)}{2}$$

$$I = rac{1}{54}(heta + rac{1}{2} \sin(2 heta)) + C$$
 $I = rac{1}{54}(an^{-1}(rac{x}{3}) + rac{1}{2} \sin(2 heta)) + C$ $I = rac{1}{54}(an^{-1}(rac{x}{3}) + rac{1}{2} 2 \sin heta \cos heta) + C$

double angle bullshit WOO!

$$\frac{1}{54}(\tan^{-1}(\frac{x}{3}) + \frac{1}{2}\frac{x}{\sqrt{x^2+9}} * \frac{3}{\sqrt{x^2+9}}) + C$$

• this might be off by a factor of two. i don't really care.

more bullshit (case 3)

$$\sqrt{x^2 - a^2}$$

$$\operatorname{Let} x = a \sec \theta$$

$$\theta = \sec^{-1}(\frac{x}{a})$$

$$dx = a \sec(\theta) \tan(\theta) d\theta$$

$$I = \int \frac{x^3}{(x^2 - 9)}$$

$$\operatorname{Let} x = 3 \sec(\theta)$$

$$dx = 3 \sec(\theta) \tan(\theta) d\theta$$

$$I = \int \frac{\sec^3(\theta)}{(9 \sec^2(\theta) - 9)^{\frac{3}{2}}}$$

$$I = \int \frac{(3 \sec(\theta))^3}{9(\sec^2(\theta) - 1)} dx$$

$$I = \int \frac{27 \sec^3(\theta) * 3 \sec(\theta) \tan(\theta)}{27 \tan^3(\theta)} d\theta$$

$$I = 3 \int \sec^4(\theta) \tan^{-2}(\theta) d\theta$$

$$I = 3 \int (\tan^2(\theta) + 1) \tan^{-2}(\theta) d\theta$$

$$u = \tan(\theta), du = \sec^2(\theta) d\theta$$

$$I = 3\int (u^2+1)u^{-2}du$$
 $3(u-u^{-1})+C$ $3(an(heta))-\cot(heta)+C$ $3(rac{\sqrt{x^2-9}}{3}-rac{3}{\sqrt{x^2-9}})+C$ $\sqrt{x^2-9}-rac{9}{\sqrt{x^2-9}}+C$

$$\frac{5x-2}{x^2-x}$$

$$\frac{2}{x} + \frac{3}{x-1} = \frac{5x-2}{x^2-x}$$

Start out with some rational f(x), defined as $\frac{P(x)}{Q(x)}$

Case 1 is the easiest. this is my thirty-fourth reason why.

- · Proper rational function with linear factors
- Proper: Degree of P(x) < Q(x) (largest power)
- Linear factor: $(x-a_1)(x-a_2)...$ blah blah blah
- Ideally, we want to rewrite as $Prac{P(x)}{Q(x)}$ as constant over factors

example

$$rac{P(x)}{Q(x)} = rac{3x-1}{x^2-1}$$
 $rac{3x-1}{(x-1)(x+1)} = rac{A}{x-1} + rac{B}{x+1}$

we're unfortunately gonna need a common denominator, assorted other fractions

$$rac{3(x-1)}{(x-1)(x+1)} = rac{A(x+1) + B(x-1)}{(x-1)(x+1)}$$
 $3x - 1 = A(x+1) + B(x-1)$
 $3x - 1 = Ax + A + Bx - B$

$$3x = Ax + Bx$$

$$3 = A + B$$

$$A = 3 - B$$

$$A - B = -1$$

$$3 - B - B = -1, 3 - 2B = -1$$

$$-1 + 2B = 3$$

$$4 = 2B, B = 2, A = 1$$

$$\frac{(x+1) + 2(x-1)}{(x-1)(x+1)} = \frac{x + 2x + 1 - 2}{(x-1)(x+1)} = \frac{3x - 1}{(x-1)(x+1)}$$

MATH112 - 2024-03-05

#notes #math112 #math #calc

quick worksheet aside

4a.

$$\int (2x)^2 \cos(3x) dx$$

· thiiiis is gonna need integration by parts

 $u=(2x)^2$

we'll need a gross repeated integration by parts

example

$$\int x^3 e^{3x} dx$$
 $u = x^{3,} dv = e^{3x}$ $du = 3x^2 dx, v = rac{1}{3} e^{3x}$ $x^3 * rac{1}{3} e^{3x} - \int 3x^2 rac{1}{3} e^{3x} dx$

u	dv
x^3	e^{3x}

u	dv
$3x^2$	$\frac{1}{3}e^{3x}$
6x	$\frac{1}{9}e^{3x}$
6	$\frac{1}{27}e^{3x}$
0	$\frac{1}{81}e^{3x}$

$$I = +\left(x^3*rac{1}{3}e^{3x}
ight) - (3x^2*rac{1}{9}e^{3x}) + (6x*rac{1}{27}e^{3x}) - (6*rac{1}{81}e^{3x})$$

There are two end cases - either you have to take a derivative of 0, or I shows up again

today's fresh torture

$$rac{3x-1}{(x+1)(x-1)} = rac{A}{(x-1)} + rac{B}{(x+1)} = rac{A(x+1) + B(x-1)}{(x-1)(x+1)}$$

- solving it the way we did yesterday is generally known as matching coefficients
- This method is always gonna work, no if ands or buts about it, and it all makes sense

Method 2: Convenient Values of x

$$rac{3x-1}{(x-1)(x+1)}(x-1) = A + rac{B(1-1)}{1+1}$$
 $A = rac{3(1)-1}{(1+1)}$

$$\frac{(3x-1)}{(x-1)(x+1)} = \frac{A}{(x-1)} + \frac{B}{(x+1)}$$

$$\frac{(3x-1)}{(x-1)(x+1)} (x+1) = \frac{A(x+1)}{(x-1)} + \frac{B}{(x+1)} (x+1)$$

$$\frac{3(-1)-1}{-1-1} = 0 + B$$

$$B = 2$$

What happens if

$$\frac{P(x)}{Q(x)}$$

is not proper?

If the degree of p is the same or greater than that of the denominator

Say we have

$$\frac{x^3-1}{x^2-x}$$

We're uh, we're sent to long division hell.

$$x+1$$
 $x^2-x)\overline{x^3+0x^2+0x-1}$
 $-(x^3-x^2)$
 $x^2+0x-(x^2-x)$
 $+x-1$

is our remainder

$$\frac{x^3 - 1}{x^2 - x} = x + 1 + \frac{x - 1}{x^2 - x}$$

Oh hey, now we're proper, so we can actually do partial fractions (isn't that neat)

case 2 (the suffering never ends)

repeated linear factors

Now our denominator Q(x), can be represented by $(x-a_1)^{M_1}(x-a_2)^{M_2}.\dots (x-a_n)^{M_n}$

Example: $Q(x) = x^2(x-1)$

$$egin{aligned} Q &= (x-0)^2 (x-1)^1 \ & a_1 = 0, m_1 = 2 \ & a_2 = 1, M_2 = 1 \end{aligned}$$

For each
$$(x-a)^M$$
 we will use $(\frac{A_1}{(x-a)^1}) + (\frac{A_2}{(x-a)^2}) + \dots + (\frac{A_M}{(x-a)^M})$

$$rac{P(x)}{Q(x)} = rac{x^2 - x + 3}{x^2(x - 1)} = rac{A_1}{(x - 0)^1} + rac{A_2}{(x - 0)^2} + rac{B}{x - 1}$$
 $B = rac{x^2 - x + 3}{x^2}, = rac{1 - 1 + 3}{1^2} = 3$

• Here we multiplied everything by (x-1), the linear factor associated with B

$$A_2=rac{x^2-x+3}{x-1}|_0, A_2=-3$$

- Multiplied everything by x^2
- go home and find A_1

•

MATH112 - 2024-03-06

#notes #math112 #math #calc

- If you're in a situation where you have a transcendental * a transcendental, pretty good odds you end up in some cyclical bullshit
- Exam statistics
 - Median of 72, maxium of 97, mean of 73.25, Standard Deviation of 14.36

$$\int 12\cos^4(3x)dx$$

$$12\int \cos^2(3x)\cos^2(3x)$$

$$12\int \frac{1+\cos(6x)}{2} * \frac{1+\cos(6x)}{2}$$

$$12\int \frac{1+2\cos(6x)+\cos^2(6x)}{4}$$

$$3\int 1+2\cos(6x)+\cos^2(6x)$$

$$12\int \frac{1+2\cos(6x)+\cos^2(6x)}{4}$$

$$3\int 1+2\cos(6x)+\frac{1+\cos(12x)}{2}$$

In a situation where you end up with irreducible quadratic factors (ie, x^2+1) has no real roots

• For irreducible $x^2 + bx + c$,

$$\frac{Ax+b}{x^2+bx+c}$$

$$I = \int rac{3x^2 - 4x + 5}{(x - 1)(x^2 + 1)} dx$$

• this is proper, we sure cannot factor the base

•

$$rac{A}{x-1} + rac{Bx+c}{x^2+1}dx \ A = rac{3x^2-4x+5}{x^2+1} \ A = rac{3-4+5}{1+1} = 2$$

for B and C we're.... gonna need to do more work

$$rac{3x^2-4x+5}{(x-1)(x^2+1)} = rac{2}{x-1} + rac{Bx+c}{x^2+1}$$

Let x = 0, because that lets us find C by killing B (naur)

$$\frac{0-0+5}{-1(1)} = \frac{2}{-1} + \frac{C}{1}$$

$$-5+2 = C$$

$$C = -3$$

$$\frac{3x^2 - 4x + 5}{(x-1)(x^2+1)} = \frac{2}{x-1} + \frac{-3x + C}{x^2+1}$$

Let x = -1

$$\frac{3+4+5}{(-2)(2)} = \frac{12}{-4} = -1$$

look, don't question it, you actually set it equal to the other sdie

Repeated irreducible Quadratics

$$\int rac{dx}{x(x^2+1)^3} = \int rac{A}{x} + rac{B_1x+C_1}{x^2+1} + rac{B_2x+C_2}{(x^2+1)^2} + rac{B_3x+C_3}{(x^2+1)^3}$$

worksheet 2.7 # 2

$$rac{1}{x^4-1} = rac{1}{(x^2+1)(x^2-1)} = rac{1}{(x^2+1)(x+1)(x-1)} = rac{A}{(x+1)} + rac{B}{(x^2+1)} + rac{Cx+d}{(x^2+1)}$$

Briggs 8.9 - Improper integrals

type 1

Happen when at least one end of the limit of integration is unbounded

$$\int_0^\infty e^{-2x} dx$$

The function is getting rather close to 0, as we go towards infinity

type 2

happens when the integrand is unbounded

$$\int_0^1 \frac{1}{x} dx$$

that's fine, as it goes past 1

FTOC

$$\int_a^b f(x)dx = F(b) - F(a)$$

- where F is the antiderivative of f
- that's wonderful. toss that shit out. does not apply to improper integrals

type 1 (but again)

Definition
$$\int_a^\infty f(x)dx = \lim_{n \to \infty} \int_a^n f(x)dx$$

- Hey, if we use n as a finite upper limit, we can evaluate *that* using the FTOC
 - so yeah, do that, evaluate with FTOC
- aaand then take the limit
- we kinda need f(x) to be continuous on $x \ge a$, just as a note
- If the limit exists (spits a number out)
 - theeen, the improper integral converges on some value
- If the limit does not exist
 - · then the improper integral diverges

example

$$\begin{split} \int_0^\infty e^{-2x} dx &= \lim_{n \to \infty} \int_0^n e^{-2x} dx = \lim_{n \to \infty} \frac{-1}{2} e^{-2x} |_0^n \\ &= \lim_{n \to \infty} (-\frac{1}{2} e^{-2n} + \frac{1}{2} e^0) \\ &= \lim_{n \to \infty} (-\frac{1}{2} * \frac{1}{e^{2n}} + \frac{1}{2}) \\ &= \frac{1}{2} \end{split}$$

example 2

$$egin{aligned} &\int_1^\infty rac{1}{x} dx \ &= \lim_{n o\infty} \int_1^n rac{1}{x} dx = \lim_{n o\infty} \ln(x)|_1^n \ &= \lim_{n o\infty} \ln(n) = \infty \end{aligned}$$

MATH112 - 2024-03-08

#notes #math112 #math #calc

time for type 2 improper integrals

just as a reminder, type 1 was

$$\int_0^\infty f(x)dx = \lim_{n o\infty} \int_0^n f(x)dx$$

WE can show that

$$\int_1^p rac{1}{x^p} dx = \left(rac{1}{p-1} ext{if p} \geq 1
ight)$$

• Diverges if $p \le 1$

Gabriel's horn shenanigans

$$\int_{1}^{\infty} \pi (\frac{1}{x})^{2} dx = \pi \int_{1}^{\infty} \frac{1}{x^{2}} dx = \pi * (\frac{1}{1}) = \pi$$

other versions of type 1

Defn:
$$\int_{-\infty}^b=\lim_{n\to-\infty}\int_n^bf(x)dx$$

Definition: $\int^\infty f(x)dx=\int^af(x)dx+\int^\infty f(x)dx$

You can pick any number you please for \boldsymbol{a}

example

$$\int_{-\infty}^{\infty}xe^{-x^2}dx=\int_{-\infty}^{0}xe^{-x^2}+\int_{0}^{\infty}xe^{-x^2}dx$$

First one is I_1 , second one is I_2

$$egin{aligned} I_2 &= \int_0^\infty x e^{-x^2} dx \ &u = x^2, du = 2x dx \ &\int rac{1}{2} e^{-u} du = rac{1}{2} \int e^{-u} du \ &= rac{1}{2} (-1) e^{-u} + C \end{aligned}$$

$$egin{aligned} I_2 &= -rac{1}{2}e^{-x^2} + C \ &\lim_{n o \infty} \int_0^n x e^{-x^2} dx \ &\lim_{n o \infty} -rac{1}{2}e^{-x^2} \Big|_{(0)}^n \ &\lim_{n o \infty} (-rac{1}{2}e^{-n^2} + rac{1}{2}) \ &= rac{1}{2} \end{aligned}$$

$$egin{aligned} I_1 &= \int_{-\infty}^0 x e^{-x^2} dx = \lim_{n o \infty} \int_n^0 x e^{-x^2} dx \ &\lim_{n o \infty} -rac{1}{2} e^{-x^2} \Big|_n^0 \ &\lim_{n o \infty} = (rac{-1}{2} + rac{1}{2} e^{-n^2}) \ &\lim_{n o \infty} = -rac{1}{2} \ &I = -rac{1}{2} + rac{1}{2} = 0 \end{aligned}$$

$$\int_{-\infty}^{\infty} x dx$$
 $\int_{-\infty}^{\infty} x dx = \int_{-\infty}^{0} x dx + \int_{0}^{\infty} x dx$ $= \lim_{n \to -\infty} \frac{x^2}{2} \Big|_{n}^{0} + \lim_{n \to \infty} \frac{x^2}{2} \Big|_{0}^{n}$ $\lim_{n \to -\infty} (-\frac{n^2}{2}) + \lim_{n \to \infty} \frac{n^2}{2}$ $-\infty + \infty = \text{Womp womp}$

This one diverges. Awesome!

$$\int_0^\infty \cos(x) dx = \lim_{n o \infty} \int_0^n \cos(x) dx$$

$$=\lim_{n o\infty}\sin(x)\Big|_0^n \ =\lim_{n o\infty}\sin(n)= ext{ DNE, oscillates}$$

This one diverges

ok now it's actually time for type 2 improper

$$\int_{a}^{b} f(x) dx$$

where f(x) is unbounded as x goes to b^-

Pick some variable of t between a and b, and then we're going to move t infinitely close to b

$$\int_a^b f(x) dx = \lim_{t o b^-} \int_a^t f(x) dx$$

example time

$$\int_0^1 (1-x)^{-rac{1}{2}} dx \ -2(1-x)^{1/2} + C \ \lim_{t o 1^-} \sqrt{(-2(1-x))} \Big|_0^t \ \lim_{t o 1^-} (-2(1-t)^{1/2} + 2) \ 0 + 2 = 2$$

is the final answer for area under the curve

It can also blow up on the other end, you'd do the limit as $t o a^+$

If it blows up in the middle, just split the difference and integrate on both sides

MATH112 - 2024-03-11

#notes #math112 #math #calc

sequences and series.

be not afraid.

just kidding. be afraid.

A sequence is an ordered list of numbers

$$\{a_{1,}a_{2,}a_{3,}\dots\}=\{a_{n}\}_{n=1}^{\infty}$$

Couple ways to define a sequence

- Explicity
 - The sequence

$$\{\frac{1}{n}\} = \{\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\}$$

The sequence

$$\{-1^n*2^n\} = \{-2, 4, -8....\}$$

- Define by recurrence
 - Given intial values
 - then we define new terms by a formula that depends on past terms

Initial value $a_1 = 1$

$$a_n = rac{1}{2} a_{n-1}$$
 $a_1 = 1, a_2 = rac{1}{2}, a_3 = rac{1}{4}$

You could explicitly write that as

$$a_n = \frac{1}{2^{n-1}}$$

$$a_1=1$$
 $a_2=1$ $a_n=a_{n-2}+a_{n-1}$ $a_1=1,a_2=1,a_2=2,a_3=3,a_4=5,8,13,21,34,55,89,144$

That's a Fibonacci just hangin out there. (explicit would just be times 1.618181)

Explicit =

$$a_n=rac{(rac{1+\sqrt{5}}{2})^n-(rac{1+\sqrt{5}}{2})^{-n}}{\sqrt{5}}$$

Important question for a sequence is, does it converge?

$$\{a_n\}=\{rac{n+1}{n}\}=\{rac{2}{1},rac{3}{2},rac{4}{3},rac{5}{4}\}$$

We could do a plot, with the "x" actually being the n axis along discrete integer values Those are called stem plots!

$$\{a_n\} = \{\cos(n\pi)\}\$$

Is the same as

$$\{(-1)^n\}$$

For some reason, people like to write these things with cosines and sines Start with some series $\{a_1,a_2,a_3,\}$

Let
$$s_1 = a_1$$

and

$$s_2 = a_1 + a_2 \ s_3 = a_1 + a_2 + a_3$$

and so on and so forth

These are what we call partial sums - we're summing together terms from the a series, but not all of em at once

Recursive definitions are a thing that exist and make sense

$$\{s_1, s_2, s_3, \dots\} = \{s_n\}$$

This is called a series, a sum of some other thing

The limit of the series

$$L = \lim_{n o \infty} = \lim_{n o \infty} \sum_{k=1}^n a_k = \sum_{n=1}^\infty S_n$$

Is L a number?

If so, this thing converges (ie, does it converge)

It could diverge to some infinity, or it could diverge by just oscillating

$$\operatorname{Find} \sum_{k=1}^{\infty} \frac{1}{k(k+1)} = \frac{1}{1(2)} + \frac{1}{2(3)} + \frac{1}{3(4)}$$

Conjecture is that

$$s_n=rac{n}{n=1}=\lim_{n o\infty}s_n=\lim_{n o\infty}rac{n}{n+1}=1$$

MATH112 - 2024-03-12

#notes #math112 #math #calc

10.2 sequences

- ullet Find $\lim_{n o\infty}$ an $\{a_n\}$
- geometric sequences
- growth rates

Given the sequence $\{a_n\}$, does it converge (or have a $\lim_{n o \infty}$ of $\{a_n\}$)

function matching

· Let's say we have our sequence

$$\{a_n\}=\{rac{3n^3}{n^3+1}\}$$

- Consider letting $f(x)=rac{3x^3}{x^3+1}$, domain can't be -1
- note that $f(n) = a_n$ for n = 1, 2, 3...
- Find the limit

$$\lim_{n o\infty}a_n=\lim_{n o\infty}f(n)=\lim_{x o\infty}f(x)=\lim_{n o\infty}rac{3x^3}{x^3+1}$$

- · Yeah that's three.
 - you can do it using ye olde divide same (highest) power of x
- Alternatively, hopital that shit

$$=\frac{9x^2}{3x^2}$$

aaaaand that's three.

theorem

- Suppose f(x) is such that $f(n) = a_n$ for $n = 1, 2, 3, \ldots$
- If $\lim_{x o \infty} f(x) = L$, then the limit $\lim_{n o \infty} a_n = L$
- ullet L can be a number, and this theorem actually still works if $L=+\infty \ {
 m or} \ -\infty$

example

$$\{a_n\}=\{rac{e^n}{n^2}\}$$

$$\mathrm{Let}\ f(x) = \frac{e^x}{x^2}$$

aaand that'll work out with the theorem

$$\lim_{x o\infty}rac{e^x}{x^2}=rac{\infty}{\infty}$$

Hopital that shit

$$\lim_{n o\infty}rac{e^x}{2x}$$

This... doesn't help. Do it again!

$$\lim_{x o\infty}rac{e^x}{2}=\infty$$

By the theorem, this means that the $\lim_{n \to \infty} a_n = \infty$ Matching function theorem

$$egin{aligned} \{a_n\} &= \{rac{rctan(n)}{n}\} \ f(x) &= rac{rctan(x)}{x} = rac{rac{\pi}{2}}{\infty} = 0 \ &\lim_{n o\infty} a_n = 0 \end{aligned}$$

$$\{a_n\} = \{\sin(\pi n)\} = \{0, 0, 0, 0\}$$

$$\lim_{n o\infty}\sin(\pi n)=0$$

Try using the theorem, dne by oscillation

$$\{a_n\}=\{3igg(-rac{1}{2}igg)^n\}$$

has a limit equal to 0, does some bouncy shenanigans Let

$$f(x) = 3(\frac{-1}{2})^x$$

Geometric Sequence

$$\{ar^n\}=\{ar,ar^2,ar^3,\dots \}$$

 $\it r$ and $\it a$ are both nonzero, if they are zero it gets pretty darn boring $\it r$ is known as the common ratio

Theorem

$$\lim_{n o\infty} ar^n =$$

0 if |r| < 1

Situation like $\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \}$

a if r=1

DNE if r=-1

Also DNE if |r|>1

Say we have the sequence

$$\{a_n\} = \{rac{e^n + (-3)^n}{5^n}\} = rac{e^n}{5^n} + rac{(-3)^n}{5n}$$
 $= \left(rac{-3}{5}
ight)^n + \left(rac{e}{5}
ight)^n$

Just need to look at our theorem

$$= (\frac{-3}{5})^n + (0)$$

$$\lim_{n o\infty}a_n=0+0=0$$

growth rates

- How fast sequences grow relative to each other
- This only well and truly matters with divergent functions

Logs: $a_n = (\ln(n))^2 = \ln^2(n)$

Power: $a_n = n^4$

Power x Log: $a_n = n^3 \ln^4(n)$

Exponentials: 6^n

Factorial: *n*!

n to the n: $a_n = n^n$

$$\{a_n\},\{b_n\}$$

$$\lim_{n o\infty}rac{a_n}{b_n}=0$$

if b_n is growing faster, then the limit will be 0

Equivalent:

$$\lim_{n o\infty}rac{b_n}{a_n}=\inf$$

$$\{a_n\}<<\{b_n\}$$

theorem

For any p, q, r, s > 0 and b > 1, then the following holds

$$\{\ln^q(n)\} << \{n^p\} << \{n^p \ln^r(n)\} << \{n^{p+s}\} << \{b^n\} << n! << \{n^n\}$$

MATH112 - 2024-03-13

#notes #math112 #math #calc

previously on

$$\{a_n\} \{b_n\}$$

$$\lim_{n o\infty}rac{a_n}{b_n}=0=\{a_n\}<<\{b_n\}$$

theorem

For any p, q, r, s > 0 and b > 1, then the following holds

$$\{\ln^q(n)\} << \{n^p\} << \{n^p \ln^r(n)\} << \{n^{p+s}\} << \{b^n\} << \{n!\} << \{n^n\}$$

$${3n}_{n=1}^{\infty}, {6n}_{n=1}^{\infty}$$

$${3n} \not \sim {6n}$$

$${n^2} << {1.1^n}$$

briggs 10.3

- infinite series
 - geometric series
 - (last time we did geometric sequences)
- An infinite series is a sum of the form $\sum\limits_{k=1}^{\infty}a_k=a_1+a_2+a_3\dots$
- ullet Upper limit is unbounded, usually we have a lower bound of k=1 or k=0
- Sometimes we go elsewhere, but like, not normally
 - hasn't seen a negative start, but that is legal

Question, does $\sum\limits_{k=1}^{\infty}a_k$ converge or diverge

we generally want to know what it converges to

Another definition: Partial sums

$$s_n=\sum_{k=1}^n a_k=a_1+a_2+\ldots +a_n$$

 s_n generally means you're summing the first n terms of your sequence

• If you start at 0, you go to n-1

Another another definition:

We say that $\sum k=1^\infty a_k$ converges to L if $\lim_{n o\infty}\sum k=1^n=L$

$$\sum_{k=0}^{\infty(rac{1}{2})^k=} (1) + rac{1}{2} + rac{1}{4} + rac{1}{8}. \ldots.$$

$$s_1=1, s_2=rac{3}{2}, s_3=rac{7}{4}, s_4=rac{15}{8},$$

We can rewrite as

$$rac{2^2-1}{2^2},rac{2^3-1}{2^2},rac{2^4-1}{2^3}$$
 $s_n=rac{2^n-1}{2^{n-1}}$ $\sum_{l=0}^{\infty}s_n=\lim_{n o\infty}rac{2^n-1}{2^{n-1}}$

There's a bunch of tricks but algebra is easiest

$$\lim_{n o\infty}rac{2-rac{1}{2^{n-1}}}{1}=2$$

Generalizing this, we get...

$$Find \sum_{k=0}^{\infty} ar^k \ s_n = ar^0, ar^1, ar^2, \ldots + ar^{n+1} \ rsn = ar^1 + ar^2 + ar^3 + \ldots + ar^n \ s_n - rs_n = ar_0 - ar^n \ s_n (1-r) = ar^0 - ar^n \ s_n = rac{ar^0 - ar^n}{1-r}$$

Valid if r
eq 1

$$\lim_{n o\infty}rac{ar^0-ar^n}{1-r}$$

If, for example, $r=\frac{1}{2}$, n would head to 0 If it's greater than 1, it blows up off to ∞

So that limit would be equal to $\frac{a}{1-r}$ if |r|<1 Diverges if $|r|\geq 1$

Find
$$5 - \frac{5}{4} + \frac{5}{16} - \frac{5}{64}$$

$$\sum_{k=0}^{\infty}ar^k \ a=5, r=rac{1}{4} \ rac{5}{rac{5}{4}}=4$$

MATH112 - 2024-03-25

#notes #math112 #math #calc

We have some geometric series as k goes to infinity of ar^k

- Which converges upon some value $\frac{a}{1-r}$ if |r|<1
- For literally any other situation it diverges

$$\sum_{k=3}^{\infty} 3(\frac{3}{4})^k$$

Let
$$l = k - 3$$

Which sets

$$k = l + 3$$

$$s = \sum_{l=0}^{\infty} 3(rac{3}{4})^{l+3}$$

Works as

$$3*\left(\left(rac{3}{4}
ight)^{l}*\left(rac{3}{4}
ight)^{3}
ight)$$
 $a=rac{81}{64}, r=rac{3}{4}$ $\sum_{l=0}^{\infty}rac{81}{64}(rac{3}{4})^{l}$ $S=rac{rac{81}{64}}{rac{1}{4}}$

$$S = \frac{81}{64} * 4 = \frac{81}{16}$$

Alternatively,

$$s = \sum_{k=0}^{\infty} 3(rac{3}{4})^k - ext{all the terms from 0 to 2}$$

When k = 1, it just ends up being

$$\frac{ar}{r-1}$$

telescoping series

$$s = \sum_{k=1}^{\infty} (\cos(\frac{1}{k}) - \cos(\frac{1}{k+1}))$$

So the partial sum at any given point is just

$$\cos(1) - \cos(\frac{1}{n+1})$$

So our limit is just

$$\cos(1)-\cos(0), \cos\cos(1)-1$$

$$s = \sum_{k=1}^{\infty} \frac{1}{k(k+1)}$$

MATH112 - 2024-03-26

#notes #math112 #math #calc

So, what's been going on with geometric series

$$\sum_{k=0}^{\infty} ar^k = rac{a}{1-r}, if|r| < 1$$

$$\sum_{l=1}^{\infty} ar^{l-1} = rac{a}{1-r}if|r| < 1$$

does $\sum\limits_{k=1}^{\infty}a_k$ converge?

- We've been doing a bunch of nice sequences that have nice formulas, aaand now we're going into the jungle.
 - At least they've got fun and games.
- We're going to focus on $a_k > 0$

got some tests

- The divergence test
 - Warm up:
 - If object A is a dog, then it is a mammal.
 - If object A is not a mammal, then it is not a dog.
 - They're the same statement! \equiv
 - If object A is a mammal, then inconclusive if dog.
 - The DT
 - ullet If $\sum\limits_{k=1}^{\infty}a_k$ converges, then $\lim\limits_{k o\infty}a_k=0$
 - If $\lim_{k o \infty} a_k
 eq 0$, then $\sum_{k=1}^\infty a_k$ diverges
 - If $\lim_{k o \infty} a_k = 0$, then we have absolutely no idea whether or not it converges
 - Example

•
$$s = \sum_{k=1}^{\infty} \cos(rac{1}{k})$$

• So the
$$\lim_{k o \infty} \cos(rac{1}{k}) = \cos(0) = 1$$

- So, this diverges
- Slightly different

•
$$\sum_{k=1}^{\infty} \sin(1/k)$$

•
$$\lim_{k \to \infty} \sin(\frac{1}{k})\sin(0) = 0$$

- That... might diverge! We dunno!
- The integral test

- harmonic
- p-series

misc other examples

Classic Series

Harmonic Series

$$\sum_{k=1}^{\infty} \frac{1}{k}$$

$$\lim_{k o\infty}rac{1}{k}=0$$

2 Series

$$\sum_{k=1}^{\infty} \frac{1}{k^2}$$

$$\lim_{k o\infty}rac{1}{k^2}=0$$

- Actually just a special case of the p series
- Divergence test tells us all of jack squat

I need something stronger!

- To test my series, of course. Not to drink...
- Let f(x) be continous on $x\epsilon[1,\infty]$
 - Such that f(x) > 0
 - f(x) is decreasing
 - ullet le, $x_2 > x_1$, then $f(x_2) < f(x_1)$
 - Let $a_k = f(k)$ for k = 1, 2, 3...
- then
 - if $\int_1^\infty f(x) dx$ converges, then $\sum\limits_{k=1}^\infty a_k$ converges
 - If that integral instead diverges then the series also diverges.

• We know (from right rectangle)
$$\sum\limits_{k=2}^{\infty} \leq \int_{1}^{\infty} f(x) dx \leq \sum\limits_{k=1}^{\infty} a_{k}$$

Applying this to our classic series

$$\sum_{k=1}^{\infty}rac{1}{k}$$
 $f(x)=rac{1}{x}$ $\int_{1}^{\infty}rac{1}{x}dx=\ln(x)\Big|_{1}^{\infty}= ext{ diverges!}$

This implies, from the integral test, that this also diverges.

Applying this to the 2 series

$$\sum_{k=1}^{\infty}rac{1}{k^2}$$
 $f(x)=rac{1}{x^2}$ $\int_1^{\infty}rac{1}{x^2}dx=\int_1^{\infty}x^{-2}dx=-x^{-1}\Big|_1^{\infty}$ $=0--1=1$

This integral converges, which implies that

$$\sum_{k=1}^{\infty} \frac{1}{k^2}$$
 converges.... to something

That apparently converges to

$$\frac{\pi^2}{6}$$

Thanks Euler, I guess

$$s = \sum_{k=1}^{\infty} rac{1}{k^p} ext{where } p > 0$$

p = 1 is the harmonic series $\frac{1}{k}$ p = 2 is the 2 series $\frac{1}{k^2}$

So
$$f(x)=rac{1}{x^p}$$

$$\int_1^\infty rac{1}{x^p} dx =
onumber \ \int_1^\infty rac{1}{x} dx ext{ if } p = 1
onumber \ \int_1^\infty x^{-p} dx ext{ if } p
eq 1
onumber \ = rac{x^{-p+1}}{-p+1} \Big|_1^\infty$$

$$\sum_{k=1}^{\infty} rac{1}{k^p} ext{ diverges if } 0 1$$

MATH112 - 2024-03-27

#notes #math112 #math #calc

Briggs 10.5

comparison tests

Given $\sum a_k$ and $\sum b_k$ series w both greater then zero

- If $a_k \leq b_k$ and $\sum b_k$ converges, then $\sum a_k$ converges
- If $b_k \leq a_k$ and $\sum b_k$ diverges, then $\sum a_k$ diverges

Given
$$\sum a_k, \sum\limits_{k=1}^\infty rac{1}{\sqrt{k}+2^k}$$
 Intuition for a large k, $rac{1}{\sqrt{k}+2^k}pprox rac{1}{2^k}$ Let $b_k=rac{1}{2^k}$

$$\sum_{k=1}^{\infty} \frac{1}{2^k} = \sum_{k=1}^{\infty} (\frac{1}{2})^k$$

that all converges somewhere

lemme give you a word of warning

• if you pick the wrong b_k , your result could be inconclusive

Example

$$\sum_{k=1}^{\infty} \frac{k^3}{2k^4 - 1}$$

Intuition, vibe check a large k

$$rac{k^3}{2k^4}pproxrac{k^3}{2k^4}=rac{1}{2k}$$

Sure, let's go let $b_k = \frac{1}{2k}$

$$rac{1}{2}\sum^{\infty_{k=1}}rac{1}{k}=diverges!$$

MATH112 - 2024-04-01

#notes #math112 #math #calc

Limit Comparison Tests

- Good for p-lookin series
- Given $\sum a_k$ and $\sum b_k$ when they're both greater than 0, $\lim_{n \to \infty} L = \lim_{n \to \infty} rac{a_k}{b_k}$
- If it's between 0 and infinity, then they either both converge or both diverge
- If the limit is 0 and $\sum b_k$ converges, then $\sum a_k$ converges
- If the limit is infinity and $\sum b_k diverges$ then a_k diverges
- L=0 and b_k diverges inconclusive
- L = inf and b_k converges is inconclusive

briggs 10.6, alternating series

- defining them, doing the alternating series test
- The Electric Koolaide Acid Test
- Remainder Estimation
- Absolute convergence vs conditional convergence

. 1

alternating series

starting with a harmonic series

• Diverges
$$\sum\limits_{k=1}^{\infty} rac{1}{k} = 1 + rac{1}{2} + rac{1}{3} + rac{1}{4} + \ldots$$

• Alternating Harmonic Series,
$$\sum\limits_{k=1}^{\infty}(-1)^{k+1}rac{1}{k}=1-rac{1}{2}+rac{1}{3}-rac{1}{4}$$

•
$$\{a_k\}, a_k > 0$$

$$\bullet \ \ \textstyle\sum_{k=1}^{\infty} (-1)^{k+1} a_k$$

You can just kinda smack the alternating term on front

AST: Alternating Series Test

- Given some sequence $\{a_k\}$ w/
 - 1. $a_k > 0$
 - 2. $\lim_{n o\infty}a_k=0$
 - 3. a_k is decreasing for k > N where N is some finite integer
- Then that'll converge
- Recall
 - $\{a_k\}$ w/ $a_k > 0$
 - $ullet \lim_{n o\infty}a_k=0$
- Classic example

•
$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k}$$

- 1. That's greater than 0
- 2. Limit goes to 0
- 3. $\frac{1}{k+1} < \frac{1}{k}$
- 4. AST tells us that this converges! sick!

why in the world does this shit work

- S = 100 90 + 80 70 + 60 50...
- Partial sums, it basically keeps bouncing around till it eventually makes its way to the limit

example

$$\sum_{k=2}^{\infty} (-1)^k \frac{\ln(k)}{k}$$

- 1. That's positive!
- 2. Limit is heading down to 0 (k is growing faster than $\ln(k)$)
- 3. Uhhh, derivative!

1.
$$f(x) = \frac{\ln(x)}{x}, f'(x) = \frac{x * \frac{1}{x} - \ln(x) * 1}{x^2}$$

- $1 \ln(x) < 0, 1 < \ln(x)$
- 3. If k is larger than 3, we're gonna be negative

example (reprise)

$$S = \sum_{k=1}^{\infty} (-1)^k k^{-4} 2^k$$

$$a_k = \frac{2^k}{k^4}$$

- 1. Positive!
- 2. Limit is NOT 0.
 - 1. AST does not apply. Womp womp

3.

MATH112 - 2024-04-02

#notes #math112 #math #calc

previously on

we were doing alternating series

$$\sum_{k=1}^{\infty} (-1)^{k+1} a_k$$

All of that garbage before a_k is just the alternating series definition

- Those converge when $a_k > 0$
- $ullet \lim_{n o\infty}=0$
- Decreasing

today

remainder estimation theorem

- Suppose that I have the series $\sum\limits_{k=1}^{\infty} (-1)^{k+1} a_k$
- Define remainder $R_k = S S_k$
 - Where S is the final limit of converge and S_k is the kth partial sum
 - Then $|R_k| = |S S_k| \le a_{k+1}$

example

$$S = \sum_{k=1}^{\infty} (-1)^{k+1} rac{1}{k}$$

Find # of terms required to estimate S within 10^{-6}

$$|R_k| = |S - S_k| \le a_{k+1} < 10^{-6}$$
 $rac{1}{k+1} < 10^{-6}$ $k > 10^6$

That's, uh, a million terms (that's fun)

quickly converging example

$$S = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k!}$$

$$|R_k| = |S - s_k| \leq rac{1}{(k+1)!} < 10^{-6}$$

Yeah, that checks out for nine

If $\sum |a_k|$ converges, (it doesn't matter what terms converge to), we say $\sum a_k$ converges absolutely

So just as an example,

$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k^2} = \sum_{k=1}^{\infty} |(-1)^{k+1} \frac{1}{k^2}| = \sum_{k=1}^{\infty} 1/k^2$$

that's a series and therefore converges absolutely

If $\sum\limits_{k=1}^{\infty}|a_k|$ diverges and $\sum\limits_{k=1}^{\infty}a_k$ converges, then we say $\sum a_k$ converges conditionally

example

$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k}$$

$$\sum_{k=1}^{\infty} |(-1)^{k+1} \frac{1}{k}| = \sum_{k=1}^{\infty} \frac{1}{k}$$

that's a conditional convergence! Signs of the terms affect convergence

review problems

(1) Use tabular integration to solve $\int x^3 \sin(x) dx$

u dv

- 2. Use u-sub to evaluate $\int_0^{\pi/3} \sin(x) \ln(\cos(x))$
 - 1. Use IBP to evaluate $\int_0^{\frac{\pi}{3}} \sin(x) \ln(\cos(x)) dx$
- 3. Evaluate $\int \sin^2(\theta) \cos^5(\theta) d\theta$
- 4. Evaluate $\int 10 \tan^9(x) \sec^2 x dx$
- 5. $\int \frac{\sqrt{9-x^2}}{x} dx$
- 6. $\int_0^6 \frac{z^2}{(z^2+36)^2} dz$
- 7. $\int \frac{dx}{\sqrt{x^2-81}}$

8

MATH112 - 2024-04-03

#notes #math112 #math #calc

today: brigg's 10.7

- Not on exam 2
- Ratio Test
 - Works well with series that have exponentials and factorials

- Given the infinite series $\sum a_k$, (we know nothing about alternating, negative, positive, whatever), let $r=\lim_{k\to\infty}|\frac{a_{k+1}}{a_k}|$
 - If r < 1, then the series converges absolutely, so $\sum a_k$ converges
 - If r>1, including ∞ , then $\sum a_k$ diverges
 - If r=1, inconclusive

example

$$egin{aligned} \lim_{n o\infty}rac{2k}{k!}&=0 ext{ womp womp} \ \lim_{n o\infty}rac{rac{2^{k+1}}{(k+1)!}}{rac{2^k}{k!}} \ \lim_{n o\infty}rac{2^{k+1}k!}{(k+1)!2^k} \end{aligned}$$

 $\lim_{n\to\infty}\frac{2}{k+1}=0$, series converges absolutely since r<1

$$\lim_{n o\infty}rac{a_{k+1}}{a_k}=r$$

Suppose r is just some number As we get a whole ways out, $a_{k+1} \approx r a_k$ And then you just keep multiplying by r

$$r^2 a_k pprox r a_{k+2}$$

And you can just keep smacking powers on

Hey, that tail is starting to look like a geometric series

aaaand that's why the ratio test works. The tail becomes a geometric series, which we know
how to handle.

MATH112 - 2024-04-05

root test

• Given $\sum a_k$, let $ho = \lim_{n o\infty} |a_k|^{1/k}$

- If ho<1, then $\sum a_k$ converges absolutely If ho>1, then $\sum a_k$ diverges If ho=1, then we're inconclusive

example

$$\sum_{k=1}^{\infty} \left(\frac{3}{4}\right)^k$$
 $ho = \lim_{n o \infty} \left(\left(\frac{3}{4}\right)^k\right)^{rac{1}{k}}$ $ho = \lim_{n o \infty} rac{3}{4} = rac{3}{4}$

Which is less than one, so that sure looks like it converges absolutely

trickier example

$$\sum_{k=1}^\infty (1+\frac{2}{k})^{k^2}$$

Power depends on k, so good canidate to get rooty with it

$$ho = \lim_{n o\infty} \left(\left(1+rac{2}{k}
ight)^{k^2}
ight)^{rac{1}{k}} \ \ \lim_{n o\infty} (1+rac{2}{k})^k = 1^\infty$$

That's a problem

$$\ln
ho = \lim_{n o \infty} \ln \left(\left(1 + rac{2}{k}
ight)^k
ight)$$
 $\ln (
ho) = \lim_{n o \infty} k \ln (1 + rac{2}{k}) = \infty * 0$

That's a problem, again

$$\ln
ho = \lim_{n o \infty} rac{\ln(1+rac{2}{k})}{rac{1}{k}} = rac{0}{0}$$

That's a problem again

$$egin{array}{c} rac{1}{1+rac{2}{k}}*rac{-2}{k^2} \ \hline rac{-2}{1} \ -1 \ \hline \ln(
ho)=2 \
ho=e^2 \end{array}$$

P-like series are absolutely going to come out to be one

$$\int \frac{\sqrt{9-x^2}}{x} dx$$
$$x = 3\sin(\theta)$$

You can get a triangle, hypotenuse is three, you end up with $\sqrt{9-x^2}$ for the missing side

$$dx = 3\cos(\theta)d\theta$$

$$\int \frac{\sqrt{9 - 9\sin^2\theta}}{3\sin(\theta)} (3\cos(\theta)d\theta)$$

$$\int 3\frac{\cos\theta}{\sin(\theta)} 3\cos\theta d\theta$$

$$\int \cos^2\theta * (\sin(\theta))^{-1}d\theta$$

$$3\int \cos^2\theta (\sin(\theta))^{-2}\sin(\theta)d\theta$$

$$u = \cos\theta, du = -\sin\theta d\theta$$

$$3\int \frac{u^2}{1 - u^2} (-du)$$

$$3\int \frac{u^2}{u^2 - 1} du$$

$$\int 1 + \frac{1}{u^2 - 1}$$

$$\int (1 + \frac{1}{(u + 1)(u - 1)}) du$$

$$\frac{A}{u + 1} + \frac{B}{u - 1}$$

$$A = \frac{1}{2}, B = \frac{-1}{2}$$

oooooor, less annoying way

$$3\int (1-\sin^2\theta)\frac{1}{\sin\theta}d\theta$$
$$3\int (\frac{1}{\sin\theta}-\sin\theta)d\theta$$
$$3\int (\csc\theta-\sin\theta)d\theta$$

$$\int \frac{z^2}{(z^2+36)^2}$$

$$z = 6\tan(\theta)$$

$$\int \frac{36\tan^2\theta}{(36\tan^2\theta+36)^2} (6\sec^2\theta d\theta)$$

$$(36(\tan^2\theta)+1))^2 \$\$\$ \int \frac{36\tan^2\theta}{(36\sec^2\theta)^2} \$\$\$ \frac{36*6}{36^2} \int \frac{\tan^2\theta\sec^2\theta}{\sec^4\theta} d\theta \$\$\$ \frac{1}{6} \int \frac{\sin^2\theta}{\cos^2\theta} *\cos^2\theta = \frac{1}{6}$$

MATH112 - 2024-04-08

#notes #math112 #math #calc

Find Σ notation for

$$s = 3e^{-1} + 3e^{-2} + 3^{-3} \dots$$

$$\sum_{k=1}^{\infty} 3e^{-k}$$

$$S = \frac{1}{16} + \frac{3}{64} + \frac{4}{256} + \frac{5}{1024}$$

$$\sum_{k=0}^{\infty} \frac{3^k}{2^{2k+2}}$$

$$\sum_{k=1}^{\infty} \frac{3^{k-1}}{2^{2k+2}}$$

$$s = \frac{-1}{2} + \frac{4}{4} - \frac{9}{8} + \frac{16}{16} - \frac{25}{32}$$

$$\sum_{k=1}^{\infty} \frac{(-1)^k k^2}{2^k}$$

$$\sum_{n=1}^{\infty} \frac{1}{2+3^n}$$

At extrema, this is basically

$$\frac{1}{3^n},=3^{-n}$$

so using direct comparison

Which is a geometric series with r < 1, so converges

$$\sum_{n=1}^{\infty} \frac{2^n}{n^3}$$

$$\lim_{n o\infty}rac{2^n}{n^3}=\infty, ext{diverges by divergence test}$$
 (with growth rates)

$$\sum_{n=1}^{\infty}rac{1}{\left(n^2+2n
ight)^{rac{1}{3}}}$$

MATH112 - 2024-04-09

#notes #math112 #math #calc

Reminder of ratio n root tests:

- You don't need a b_k , you just have some series $\sum a_k$
- For ratio

• Let
$$r = \lim_{n \to \infty} \left| \frac{a_{k+1}}{a_k} \right|$$

- If r < 1, converges (absolutely)
- ullet if r>1 diverges
- For root

• let
$$p=\lim_{n o\infty}|a_k|^{rac{1}{k}}$$

• if
$$p < 1 \operatorname{\mathsf{conv}}$$

• If
$$p>1$$
 diverge

ratio practice

$$egin{aligned} \sum_{n=1}^{\infty} rac{n^2}{e^{n^2}} \ &\lim_{n o\infty} rac{(n+1)^2}{e^{n+1^2}} \ &\lim_{n o\infty} rac{n^2+2n+1}{e^{n+1^2}} \cdot rac{e^{n^2}}{n^2} \end{aligned}$$

Growth rates,

$$e^{n^2} >> n^2 + 2n + 1, so \lim_{n o \infty} = 0$$

Converges

$$\sum_{n=1}^{\infty} \frac{(-1)^n n!}{(2n-1)!}$$

Alternating series test here?

$$\lim_{n o\infty}rac{n!}{(2n-1)!}=0, ext{growth rates}$$

Positive, yes

$$rac{n!}{(2n-1)!} >> rac{(n+1)!}{(2n)!}$$

Decreasing, yes

So, by alternating series it converges

$$\lim_{n o\infty}rac{rac{(-1)^{n+1}(n+1)!}{(2n)!}}{rac{(-1)^n n!}{(2n-1)!}} \ \lim_{n o\infty}\cdotrac{(-1)^{n+1}(n+1)!}{(2n)!}\cdotrac{(2n-1)!}{(-1)^n n!}$$

$$\lim_{n \to \infty} \frac{(-1)^{n+1}(n+1)!}{(-1)^n n!} \cdot \frac{(2n-1)!}{(2n+1)!}$$

$$n = 4, \frac{7!}{(8)!} = \frac{1}{8}$$

$$\frac{(7)!}{(9!)} = \frac{7*6*5*4*3*2*1}{9*8*7*6*5*4*3*2*1} = \frac{1}{9*8}$$

$$= \frac{1}{(2n)(2n+1)}$$

$$2nd \ term \ goes \ to \ \frac{1}{2n}$$

$$\lim_{n \to \infty} \frac{(-1)^{n+1}}{(-1)^n} \cdot \frac{(n+1)!}{n!} * \frac{1}{n}$$

$$\lim_{n \to \infty} \frac{(-1)^n(-1)^1}{(-1)^n} * \frac{(n+1)!}{n!} * \frac{1}{n}$$

$$\lim_{n \to \infty} *(n+1) * \frac{1}{2n}$$

$$\lim_{n \to \infty} \frac{n+1}{n}$$

= 0, converges

$$\sum_{n=1}^{\infty} \frac{e^n}{n!}$$

$$\lim_{n \to \infty} \frac{\frac{e^{n+1}}{(n+1)!}}{\frac{e^n}{n!}}$$

$$\lim_{n \to \infty} \frac{e^{n+1}}{(n+1)!} \cdot \frac{n!}{e^n}$$

$$\lim_{n \to \infty} e \cdot \frac{1}{n+1}$$

$$= 0 \text{ converges}$$

$$\sum_{n=1}^{\infty} \left(1 - \frac{1}{n}\right)^{n^2}$$

$$\lim_{n o\infty}\left(\left(1-rac{1}{n}
ight)^{n^2}
ight)^{rac{1}{n}}$$
 $\lim_{n o\infty}\left(1-rac{1}{n}
ight)^{rac{n^2}{n}}$
 $\lim_{n o\infty}\left(1-rac{1}{n}
ight)^n$
 $\lim_{n o\infty}=1^\infty$
 $\lim_{n o\infty}1 \ln(l)=\lim_{n o\infty}n\ln(rac{1-1}{n})=\infty*0=:($
 $\lim_{n o\infty}rac{(\ln(1-rac{1}{n}))}{rac{1}{n}}$
 $\lim_{n o\infty}rac{rac{1-rac{1}{n}}{n}*rac{1}{n^2}}{-1rac{1}{n^2}}$
 $\lim_{n o\infty}-rac{1}{rac{1-1}{n}}=\ln(
ho)=-1$
 $ho=e^{-1}$

MATH112 - 2024-04-15

#notes #math112 #math #calc

- Linear approximation
 - Given $f(x) = e^{1-x}$
 - Approximate this with a linear function centered at $x=1\,$
 - SO the slope, $f'(x) = -e^{1-x}$
 - $f'(1) = -e^0 = -1$

.

- Quadratic Approximation
- Polynomial Approximation
 - Taylor polynomials
- point

$$(1, f(1)) = (1, 1)$$

 $y - f(1) = f'(1)(x - 1)$

$$L(x) = 2 - x \approx e^{1-x}$$

Most accurate for x near 1

Lettuce approximate $e^{\frac{1}{4}}$

Evaluate L at $\frac{3}{4}$, so then we get L = $\frac{5}{4}$, which has an error of 0.034025

Now we're up to

quadratic approximation

(we're generally going to x^n , eventually to approximate at x=a

$$P_0(x) = f(a)$$
 $P_1(x) = f(a) + f'(a)(x-a)$ $P_2(x) = f(a) + f'(a)(x-a) + rac{f''(a)}{2}(x-a)^2$ $P_2(a) = f(a) + 0 + 0$ $P_2''(x) = rac{f''(a)2}{2} = f''(a)$

$$f(x) = e^{1-x}$$
 $f(1) = 1$ $f'(x) = -e^{1-x}$ $f'(1) = -1$ $f''(x) = e^{1-x}$ $f''(1) = 1$

$$egin{align} P_2(x) &= 1 + (-1)(x-1) + rac{1}{2}(x-1)^2 \ &P_2(x) = rac{5}{2} - 2x + rac{1}{2}x^2 \ &e^{rac{1}{4} = rac{1}{5}}2 - 2\left(rac{3}{4}
ight) + rac{1}{2}igg(rac{3}{4}igg)^2 \ &e^{rac{1}{4} = rac{1}{5}}2 - 2\left(rac{3}{4}
ight) + rac{1}{2}igg(rac{3}{4}igg)^2 \ &e^{rac{1}{4} = rac{1}{5}}2 - 2\left(rac{3}{4}
ight) + rac{1}{2}igg(rac{3}{4}igg)^2 \ &e^{rac{1}{4} = rac{1}{5}}2 - 2\left(rac{3}{4}
ight) + rac{1}{2}igg(rac{3}{4}igg)^2 \ &e^{rac{1}{4} = rac{1}{5}}2 - 2\left(rac{3}{4}
ight) + rac{1}{2}igg(rac{3}{4}igg)^2 \ &e^{rac{1}{4} = rac{1}{5}}2 - 2\left(rac{3}{4}
ight) + rac{1}{2}igg(rac{3}{4}igg)^2 \ &e^{rac{1}{4} = rac{1}{5}}2 - 2\left(rac{3}{4}
ight) + rac{1}{2}\left(rac{3}{$$

Taylor Polynomials

Given f(x) with derivatives

- · these are all going to be things that we can keep taking derivatives of
 - $f'(x) = f^1(x)$
 - We're going to keep using power notation, because we're throwing a lot of primes on
 - Base function is $f^{(0)}(x)$
 - 0! = 1 lol, bozo, L, does that shit make sense? no. eat shit.
- Polynomial centered at x = a

$$ullet P_n(x) = f(a) + f^{(1)}(a)(x-a) + f^{(2)} rac{a}{2!} (x-a)^2 + \ldots rac{f^{(n)(a)}}{n!} (x-a)^n$$

$$P_n(x) = \sum_{k=0}^n rac{f^{(k)}(a)}{k!} (x-a)^k$$

$f^{(0)}=\cos(x)$	$f(\pi/2)=0$
$f^{(1)} = -\sin(x)$	$f'(\pi/2) = -1$
$f^{(2)} = -\cos(x)$	$f''(\pi/2)=0$
$f^{(3)}=\sin(x)$	$f'''(\pi/2)=1$
$f^{(0)} = \sin(x)$	$f^{\prime\prime\prime}(\pi/2)=1$

$$P_3 = frac{\pi}{2} + f'\left(rac{\pi}{2}
ight)\left(x - rac{\pi}{2}
ight) + f''rac{rac{\pi}{2}}{2!}(rac{x - \pi}{2})^2 + rac{f'''(\pi/2)}{3!}(x - \pi/2)^3 \ P_3 = -1(x - \pi/2) + 1/6(x - \pi/2)^3$$

MATH112 - 2024-04-16

#notes #math112 #math #calc

k	k!	$f^{(k)}(x)$	$f^{(k)}(\pi/2)$	$rac{1}{k!}f^{(k)}(\pi/2)$
0	1	$f^{(0)}=\cos(x)$	$f(\pi/2)=0$	0
1	1	$f^{(1)} = -\sin(x)$	$f'(\pi/2) = -1$	-1
2	2	$f^{(2)} = -\cos(x)$	$f''(\pi/2)=0$	0
3	6	$f^{(3)}=\sin(x)$	$f'''(\pi/2)=1$	1/6
4	24	$f^{(4)}=\cos(x)$	$f''''(\pi/2)=0$	0
5	120	$f^{(5)} = -\sin(x)$	$f'''''(\pi/2)=-1$	-1 / 120
6	720	$f^{(6)} = -\cos(x)$	$f'''''(\pi/2)=0$	0

How accurate is our approximation?

Remainder

$$R_n(x) = f(x) - P_n(x)$$

Which is just actual - approximation

Theorem: Taylor's Inequality

$$|R_n(x)| = |f(x) - P_n(x)| \leq M rac{|x-a|^{n+1}}{(n+1)!}$$

where M is any number such that $|f'^{(n+1)}(c)| \leq M$ for all c between a and x inclusive where a is the center value

Note: Tricky to prove, so we're just going to use it

Apply to our problem from earlier, estimating the $\cos(3\pi/4)$

$$|R_5(x)| = |\cos(x) - P_5(x)| \leq M rac{|x - \pi/2|^6}{6!}$$

where

$$|f^{(6)}(x)| < M$$

for x between a = $\frac{\pi}{2}$ and $x = \frac{3\pi}{4}$

$$egin{aligned} |-\cos(x)| & \leq M \ |-\cos(x)| & \leq M \ |\cos(x)| & \leq M \end{aligned}$$

$$|R_5(x)| \leq rac{\sqrt{2}}{2} rac{rac{|3\pi}{4} - rac{\pi}{2}|^6}{6!} = rac{\sqrt{2}}{2} rac{(\pi/4)^6}{6!}$$

2

Find $p_2(x)$ for $f(x)=\sqrt{x}$, centered at x = 4

k	k!	$f^{(k)}(x)$	$f^{(k)}(4)$	$rac{1}{k!}f^{(k)}(4)$
0	1	\sqrt{x}	2	2
1	1	$\frac{1}{2\sqrt{x}}$	$\frac{1}{4}$	$\frac{1}{4}$
2	2	$-rac{1}{4}x^{-3/2}$	$-\frac{1}{32}$	$-\frac{1}{64}$
3	6	$rac{3}{8}x^{-5/2}$	$\frac{3}{256}$	$\frac{1}{512}$

$$p_2(x) = 2 + rac{1}{4}(x-4) - rac{1}{64}(x-4)^2$$

Approximate $\sqrt{4.2}$

Minor problem, $P_2(x)$ is centered at x=4

Evaluate $p_2(4.2)$

$$p_2(4.2) = 2 + rac{1}{4}(4.2 - 4) - rac{1}{64}()$$

MATH112 - 2024-04-22

#notes #math112 #math #calc

Given that

$$f(x) = \sum c_k (x-a)^k$$

If the series converges for x= b, then it converges for all x such that

$$|x-a|<|b|$$

where a is the center

If it diverges for x=d, then it diverges for all x such that |(x-a)>|d|

Time to start representing various f(x) as power series

Start with some base series that we know, and then build off of it That base series is

$$f(x) = \frac{1}{1-x} = \sum_{k=0}^{\infty} x^k$$

Use algebra tools and calculus tools to build new power series

Given
$$f(x) = \sum\limits_{k=0}^{\infty} d_k x^k$$

both w/ IOC = I

$$f(x)\pm g(x)=\sum_{k=0}^{\infty}(c_k\pm d_k)x^k$$

IOC = I

multiply by x^m

m is an integer, and $m+k\geq 0$ for all $c_k
eq 0$

$$egin{aligned} x^m f(x) &= x^m \sum_{k=0}^\infty c_k x^{k+m} \ &= \sum c_k x^{k+m} \end{aligned}$$

composistion

Let
$$h(x) = bx^m$$

 $f(h(x))$

$$egin{aligned} &\sum_{k=0}^{\infty} c_k (h(x))^k \ &= \sum_{k=0}^{\infty} c_k b^k x^{mk} \end{aligned}$$

IOC: All x such that h(x) is in I (the original IOC)

$$f(x) = rac{1}{1+x^4} = rac{1}{1-(-x^4)}$$
 $h(x) = (-1)x^4$

Use composition

$$f(x) = \sum_{k=0}^{\infty} = (-x^4)^k$$

$$\sum_{k=0}^{\infty} (-1)^k (x^{4k})$$

$$|x|<1^{rac{1}{4}}$$
 $IOC=(-1,1)$

$$f(x) = rac{x^5}{1+2x}$$
 $f(x) = x^5 * rac{1}{1-(-2x)}$
 $h(x) = -2x$
 $x^5 \sum_{k=0}^{\infty} (-2x)^k$
 $= x^5 \sum_{k=0}^{\infty} (-2)^k x^k$
 $\sum -2^k x^{k+5}$
 $IOC: |-2x| < 1 => 2|x| < 1 => |x| < rac{1}{2} => (rac{-1}{2}, rac{1}{2})$

the calculus tools

- Calculus
- Derivative

$$f(x)=\sum_{k=0}^{\infty}c_kx^k=c_0+c_1x$$

$$f(x)=c_0+c_1(x-a)+c_2(x-a)^2\ldots$$

$$f'(x) = 0 + c_1 + c_2 2(x-a) + c_3 3(x-a)^2$$

$$f'(x) = \sum_{k=1}^\infty c_k k(x-a)^{k-1}$$

- With the same ROC = R
- We could also reindex $\ell=k-1$

$$k=\ell+1$$

$$\sum_{\ell=0}^{\infty} c_{\ell+1}(\ell+1)(x-a)^{\ell}$$

Example

Previously, we had

$$f(x) = \sum_{k=0}^{\infty} rac{1}{k!} x^k$$
 $IOC = (-\infty, \infty)$
 $f(x) = rac{1}{0!} x^0 + rac{1}{1!} x^1 + rac{1}{2!} x^2$
 $f'(x) = 0 + 1 + rac{2}{2!} x + rac{3}{3!} x^2 + \dots$
 $f'(x) = 1 + x + rac{1}{2!} x^2 + rac{1}{3!} x^3$
 $f(x) = e^x$

MATH112 - 2024-04-23

#notes #math112 #math #calc

Last time, we had our starting series

$$f(x) = \frac{1}{1-x} = \sum_{k=0}^{\infty} x^k$$

Which had an IOC of

$$(-1,1)$$

Derivative Tool

$$f(x) = \sum_{k=0}^{\infty} c_k (x-a)^k$$

We went on and derived that, and got

$$f'(x) = \sum_{k=1}^\infty c_k k (x-a)^{k-1}$$

example (similar to worksheet)

Find the power series of $g(x)=rac{1}{(1-x)^2}$

$$f'(x)=rac{d}{dx}igg(rac{1}{1-x}igg)=rac{d}{dx}(1-x)^{-1}=-(1-x)^{-2}=rac{-1}{(1-x)^2}$$
 $g(x)=-f'(x)$ $g(x)=-rac{d}{dx}\sum_{k=0}^{\infty}$ $g(x)=-\sum_{k=1}^{\infty}kx^{k-1}$ $f(x),ROC=1$ ROC is in fact, still 1

Integration

$$f(x) = \sum_{k=0}^{\infty} c_k (x-a)^k \ \int f(x) dx = \int \sum_{k=0}^{\infty} c_k (x-a)^k \ \int f(x) dx = \sum_{k=0}^{\infty} c_k \int (x-a)^k dx \ c_0 \int (1) + c_1 \int (x-a) + c_2 \int (x-a)^2 \ c_0 x + \frac{c_1 (x-a)^2}{2} + \frac{c_2 (x-a)^3}{3} \dots + C \ = c_0 x - c_0 a + c_0 a$$

Toss that c_0a in the constant

$$=\sum_{k=0}^{\infty}rac{c_k(x-a)^{k+1}}{k+1}$$

example

Find the power series of

$$g(x) = rac{1}{1+x}$$
 $g(x) = rac{1}{1-(-x)}$
 $h(x) = -x$
 $\sum_{k=0}^{\infty} (-x)^k$
 $\sum_{k=0}^{\infty} (-1)^k x^k$
 $\int rac{1}{1+x} dx = \ln(1+x) + C$
 $\int \sum_{k=0}^{\infty} (-1)^k x^k dx = \sum_{k=0}^{\infty} (-1)^k rac{x^{k+1}}{k+1} + C$

Usually we "lock teh constant"

$$\ln(1+0) = \sum_{k=0}^{\infty} (-1)^k \frac{0^{k+1}}{k+1} + C$$
 $C = 0$
 $\ln(1+x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{k+1}}{k+1}$
 $= x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} \dots$

Let's go test an endpoint, for shits and gigs

$$x = 1$$

$$\ln(1+1) = \sum_{k=0}^{\infty} \frac{(-1)^k 1}{k+1}$$

$$g(x) = an^{-1}(x)$$

$$g'(x) = rac{d}{dx} an^{-1}(x) = rac{1}{1+x^2}$$
 $g'(x) = rac{1}{1-(-x^2)}$ $\sum_{k=0}^{\infty} (-x^2)^k$ $\sum_{k=0}^{\infty} (-1)^k (x^2)^k$ $\sum_{k=0}^{\infty} (-1)^k x^{2k}$ $an^{-1}(x) = \sum_{k=0}^{\infty} (-1)^k rac{x^{2k+1}}{2k+1} + C$

lockdown constant

$$an^{-1}(0) = 0 = 0 + C$$
 $an^{-1}(1) = rac{\pi}{4} = 1 - rac{1}{3} + rac{1}{5} - rac{1}{7}$

Taylor Series

Theorem: If f(x) has a power series representation, then

$$f(x)=\sum_{k=0}^{\infty}f^{(k)}rac{a}{k!}(x-a)^k$$

- unique
- When a=0, it is also called a MacLauren series

MATH112 - 2024-04-24

#notes #math112 #math #calc $\frac{x}{1-x} = x * \frac{1}{1-x} = x(1+x+x^2)$

just to reiterate

$$f(x)=\sum_{k=0}^{\infty}rac{f^{(k)}(a)}{k!}(x-a)^k$$

A is the center Power series are unique Find ioc

$$f(x) = e^x$$

$$f^{(0)}=e^x$$

$$f^{(1)}=e^x$$

and so on and so forth

Center at x = 0, which is also a maclauren series

$$f^{(0)}(0) = 1$$

$$f^{(1)}(0) = 1$$

yadayadayadayada

$$=\sum_{k=0}^\inftyrac{1}{k!}(x-0)^k$$

IOC for $e^x=(-\infty,\infty)$

We also might get something like approximate e^1 with five terms of the taylor series

$$e^x \approx 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!}$$

Plugging in x=1

$$1+1+\frac{1}{2}+\frac{1}{6}+\frac{1}{24}$$

Alright, we're still doing e^x , but now we're going to center at like, four

So they're all going to be e^4

$$e^x = \sum_{k=0}^{\infty} rac{e^4(4)}{k!} (x-a)^k$$

Find IOC

Let
$$L = \lim_{k o \infty}$$

$$L = \lim_{k o \infty} rac{e^4 (x-4)^{k+1}}{(k+1)!} * rac{k!}{e^4 (x-4)^k} \ \lim_{n o \infty} rac{(x-4)}{k+1} \ |(x-4)| \lim_{k o \infty} rac{1}{k+1} = 0 < 1$$

Use five terms to estimate e^1

$$e^xpprox e^4+e^4(x-4)+rac{e^4(x-4)^2}{2!}+rac{e^4(x-4)^3}{3!}+rac{e^4(x-4)^4}{4!}$$

MATH112 - 2024-04-26

#notes #math112 #math #calc

$$f(x)=\sum_{k=0}^{\infty}rac{f^{(k)}(a)}{k!}(x-a)^k$$

Find Taylor series for different functions

Starting with $f(x) = \frac{1}{x}$, centered at x = 3

$f^{(k)}$	Evaluate at $x=3$
x^{-1}	
$-x^{-2}$	
$2x^{-3}$	
$-6x^{-4}$	
$f^{(k)} = (-1)^k k! x^{-k-1}$	$(-1)^k$

$$\frac{1}{x} = \sum_{k=0}^{\infty} \frac{(-1)^k k! 3^{-k-1}}{k!} (x-3)^k$$

$$\frac{1}{x} = \sum_{k=0}^{\infty} (-1)^k 3^{-k-1} (x-3)^k = a_k$$

Ok, generally we need to find the IOC So.... let's get to ratio testing

$$egin{align} L = \lim_{k o \infty} rac{(x-3)^{k+1}}{3^{k+2}} \cdot rac{3^{k+1}}{(x-3)^k} \ L = \lim_{n o \infty} rac{(x-3)}{3} = rac{|x-3|}{3} < 1 \ |x-3| < 3 \ -3 < x - 3 < 3 \ 0 < x < 6 \ \end{array}$$

So IOC is from 0 to 6, not including the endpoints (0,6) we need to go test the endpoints separately to figure out what's going on

testing the endpoints

$$\sum_{k=0}^{\infty} (-1)^k \frac{(0-3)^k}{3^{k+1}} \ \sum_{k=0}^{\infty} \frac{3^k}{3^{k+11}} \ \sum_{k=0}^{\infty} \frac{1}{3}$$

6 diverges by oscillation

Find MacLauren series of $f(x) = \sin(x)$

k	$f^{(k)}$	$f^{(k)}(0)$
0	$\sin(x)$	0
1	$\cos(x)$	+1
2	$-\sin(x)$	0
3	$-\cos(x)$	-1
4	$\sin(x)$	0
k		

$$\sin(x) = \sum_{k=0}^{\infty} \frac{(-1)^k 1}{(2k+1)!} x^{2k+1}$$
 $IOC = (-\infty, \infty)$
 $ROC = \infty$

What is the f(x) for

$$\sum_{k=0}^{\infty} \frac{(-1)^k 1}{(2k+1)!} (3x)^{2k+1}$$

That's literally just $\sin(3x)$

Find T.S. of cos(x) centered at 0 (MacLauren series)

$$\sin(x) = \sum_{k=0}^{\infty} \frac{(-1)^k 1}{(2k+1)!} x^{2k+1}$$
 $\frac{d}{dx} \sin(x) = \frac{d}{dx} \sum_{k=0}^{\infty} (-1)^k \frac{1}{(2k+1)!} x^{2k} + 1$ $\cos(x) = \sum_{k=0}^{\infty} (-1)^k \frac{1}{(2k+1)!} \frac{d}{dx} x^{2k+1}$ $\cos(x) = \sum_{k=0}^{\infty} (-1)^k \frac{1}{(2k+1)!} (2k+1) x^{2k}$ $\sum_{k=0}^{\infty} (-1)^k \frac{1}{(2k)!} x^{2k}$ $= 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$

Hey that's quirky, cos is even and sine is odd

$$ROC = \infty => IOC = (-\infty, \infty)$$

We will have the taylor series for $e^{(x)},\sin(x),\cos(x),rac{1}{1-x},\ln(1+x)$

Applying TS

Approximate

$$\int_0^1 e^{-x^2} dx$$

to within 0.001 of its true value

$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!}$$
 $e^{-x^{2}} = \sum_{k=0}^{\infty} \frac{(-x^{2})^{k}}{k!}$
 $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} x^{2k}$
 $\int_{0}^{1} e^{-x^{2}} dx = \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} x^{2k} dx$
 $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} \int_{0}^{1} x^{2k} dx$
 $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} \frac{x^{2k+1}}{2k+1} \Big|_{0}^{1}$
 $[x - \frac{x^{3}}{3} + \frac{x^{5}}{2!5} - \frac{x^{7}}{3!7}]$
 $= 1 - \frac{1}{3} + \frac{1}{10} - \frac{1}{42}$

Use AST to show converge

$$|R_k| < |a_{k+1}|$$
 $a_k = rac{1}{(k!)(2k+1)} < 0.001$

MATH112 - 2024-04-29

#notes #math112 #math #calc

previously on

$$\int_0^1 e^{-x^2} = \int_0^1 \sum_{k=0}^\infty rac{(-x^2)^k}{k!} = \sum_{k=0}^\infty rac{(-1)^k}{k!} \int_0^1 x^{2k} dx$$
 $I = \sum_{k=0}^\infty rac{(-1)^k}{k!} rac{x^{2k+1}}{2k+1}$

$$Q = (2, -1, 0)$$
 $R = (-1, -3, 1)$
 $Ax + By + Cz = D$
 $PQ = (-1, -4, -1)$
 $PR = (-4, -6, 0)$

Cross product o those fellers, and you should end up with

$$x=2+s$$
 $y=21+7s$ $z=15+4s$

bloop

$$x = -5 + 2t$$
$$y = -18 + 9t$$
$$z = -11 + 7t$$

one

Circle with radius r=2Center at (-1,2)

CCW

Ok, so if we have

$$x = \cos(\theta)$$

and

$$y = \sin(\theta)$$

that's just our unit circle, but let's do some modifications

$$x=2\cos(\theta), y=2\sin(\theta)$$

that gets our radius of two
Aaaand then we just want to shift it over

$$x = 2\cos(\theta) - 1, y = 2\sin(\theta) + 2$$

$$egin{aligned} heta \epsilon [0,2\pi] \ & x = e^t + 1 \ & y = e^{3t} - 2 \ & x - 1 = e^t \ & \ln(x-1) = t \ & y = e^{3\ln(x-1)} - 2 \ & y = e^{\ln(x-1)^3} - 2 \ & y = (x-1)^3 - 2 \end{aligned}$$

MATH112 - 2024-04-30

#notes #math112 #math #calc

$$u = <3, 5, 0>$$
 $v = <0, 3, -6>$

Find the projection of u onto v

$$egin{align} & \mathrm{proj}_v(u) = c \cdot ec{v} \ & \mathrm{proj}_v(u) = rac{ec{u} \cdot ec{v}}{|ec{v}|^2} ec{v} \ & ec{u} \cdot ec{v} = (0) + 15 + 0 \ & |v| = \sqrt{9 + 36} = \sqrt{45}^2 = 45 \ & \mathrm{proj}_v(u) = rac{15}{45} ec{v} = rac{1}{3} ec{v} \ & \mathrm{proj}_v(u) = < 0, 1, -2 > \ \end{matrix}$$

$$\int \frac{x}{\sqrt{x-5}} dx$$

$$u=x-5, du=dx$$
 $\int rac{x}{\sqrt{u}} du = \int rac{u+5}{\sqrt{u}} du$

$$\int rac{u}{\sqrt{u}} + rac{5}{\sqrt{u}} \ \int rac{u}{\sqrt{u}} + 5 \int rac{1}{\sqrt{u}} \ \int rac{u}{\sqrt{u}} + 5 \int u^{rac{-1}{2}} \ \int rac{u}{\sqrt{u}} + 5 (rac{1}{2}u^{rac{1}{2}})$$

$$\int u^{rac{1}{2}} + 5u^{rac{-1}{2}}du \ rac{u^{rac{3}{2}}}{rac{3}{2}} + 5rac{u^{rac{1}{2}}}{rac{1}{2}} + C$$

and y'know, plug u back in

$$\int (x)(x-5)^{rac{1}{2}}dx$$
 $u=x$ $dv=(x-5)^{rac{-1}{2}}dx$

u	dv
х	$(x-5)^{-1/2}$
dx	$-2(x-5)^{1/2}$
0	$3(x-5)^{3/2}$

$$egin{aligned} (2x)(x-5)^{rac{1}{2}} - rac{4}{3}(x-5)^{rac{3}{2}+}C \ & (2x)(x-5)^{rac{1}{2}} - 3(x-5)^{rac{3}{2}} \end{aligned}$$

$$\sum_{k=0}^{\infty} (-1)^k rac{3^{2k} x^{2k}}{(2k)!}$$
 $\cos(x) = \sum_{k=0}^{\infty} rac{(-1)^k x^{2k}}{(2k)!}$

$$\cos(3x) = \sum_{k=0}^{\infty} rac{(-1)^k (3x)^{2k}}{(2k!)}$$

$$\ln(1-x) = \sum_{k=0}^{\infty} (-1)^{k+1} \frac{(-x)^k}{k}$$
 $\sum_{k=1}^{\infty} \frac{(-1)^{k+1} (-1)^k x^k}{k}$

$$p1: x + y - z = 1$$

 $p2: 2x - 3y + 4z$

There's a roundabout solving method, or

$$egin{aligned} <1,1,-1> imes<2,-3,4>\ &<1,1,-1\ &<2,-3,4>\ &=<(4)-3,-(4+2),(-3-2)>\ &<1,-6,-5> \end{aligned}$$

Try something like x=0

$$y-z=1$$
 $-3y+4z=5$
 $y=1+z$
 $-3(1+z)+4z=5$
 $-3-3z+4z=5$
 $-3+z=5$
 $z=8$
 $y=9$
 $<0,9,8>$
 $x=0+1t$
 $y=9-6t$
 $z=8-5t$

converges absolutely or conditionally?

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{1 + n^{\frac{1}{2}}}$$

AST says we converge, but conditional or absolute?

$$\sum_{n=1}^{\infty} \frac{1}{1+n^{\frac{1}{2}}}$$

$$\int_{-1}^{1} e^{\frac{-x^{2}}{2}}$$

$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!}$$

$$e^{\frac{-x^{2}}{2}} = \sum_{k=0}^{\infty} \frac{(\frac{-x^{2}}{2})^{k}}{k!} = \sum_{k=0}^{\infty} \frac{(-1)^{k} (\frac{1}{2})^{k} x^{2k}}{k!}$$

$$\int_{-1}^{1} e^{\frac{-x^{2}}{2}} dx = \int_{-1}^{1} \sum_{k=0}^{\infty} (-1)^{k} a_{k} x^{2k} dx$$

$$\sum_{k=0}^{\infty} \int_{-1}^{1} (-1)^{k} a_{k} x^{2k}$$

$$= \sum_{k=0}^{\infty} (-1)^{k} a_{k} \int_{-1}^{1} x^{2k} = \sum_{k=0}^{\infty} (-1)^{k} a_{k} \frac{x^{2k+1}}{2k+1}$$

$$\sum_{k=0}^{\infty} (-1)^{k} a_{k} \frac{1}{2k+1} - \sum_{k=0}^{\infty} (-1)^{k} a_{k} \frac{-1}{2k+1}$$

$$2 \sum_{k=0}^{\infty} (-1)^{k} \frac{(\frac{1}{2})^{k}}{k!} \cdot \frac{1}{2k+1}$$

$$2 \sum_{k=0}^{\infty} (-1)^{k} \frac{(\frac{1}{2})^{k}}{k!} \cdot \frac{1}{2k+1}$$

Use alternating series remainder

$$k_5 = -0.000047, \text{so use first 5 terms (k=0 -> k=4)}$$

find t.s of $\sin(x)$ centered at x=0

$$\sin(x) = \sum_{k=0}^{\infty} rac{f^{(k)}(0)}{k!} (x-0)^k$$

k	$f^k(x)$	$f^k(0)$
0	$\sin(x)$	0
1	$\cos(x)$	1
2	$-\sin(x)$	0
3	$-\cos(x)$	-1
4	$\sin(x)$	0

$$\sin(x) = rac{f^{(0)}(0)}{0!}x^0 + f^{(1)}rac{0}{1!}x^1 + rac{f^{(2)}(0)}{2!}x^2 \ = 0 + rac{1}{1!}x^1 + 0 - rac{1}{3!}x^3 + 0 \dots \ = x - rac{x^3}{6} + \dots$$