

WHAT IS CLAIMED IS:

- 1 1. A method for producing a fucosylated glycoprotein, the method
2 comprising:
 - 3 contacting a recombinant fucosyltransferase protein with a mixture comprising
4 a donor substrate comprising a fucose residue, and an acceptor substrate on a glycoprotein,
5 under conditions where the fucosyltransferase catalyzes the transfer of the fucose residue
6 from a donor substrate to the acceptor substrate on the glycoprotein, thereby producing a
7 fucosylated glycoprotein,
8 wherein the recombinant fucosyltransferase protein comprises a polypeptide
9 having greater than 90% identity to an amino acid sequence selected from the group
10 consisting of SEQ ID NO:2, 4, 6, and 8.
- 1 2. The method of claim 1, wherein the polypeptide comprises an amino
2 acid sequence selected from the group consisting of SEQ ID NO: 2, 4, 6, and 8.
- 1 3. The method of claim 1, wherein the polypeptide comprises SEQ ID
2 NO: 2.
- 1 4. The method of claim 1, wherein the polypeptide further comprises an
2 amino acid tag.
- 1 5. The method of claim 1, wherein the method further comprises a step of
2 purifying the fucosylated glycoprotein.
- 1 6. The method of claim 1, wherein the acceptor substrate is a glucose
2 residue, and wherein the recombinant fucosyltransferase protein comprises a polypeptide
3 having greater than 90% identity to SEQ ID NO:6.
- 1 7. The method of claim 1, wherein the acceptor substrate is an N-
2 acetylglucosamine residue, and wherein the recombinant fucosyltransferase protein
3 comprises a polypeptide having greater than 90% identity to an amino acid sequence selected
4 from the group consisting of SEQ ID NO:2, 4, and 8.
- 1 8. The method of claim 1, wherein an acceptor substrate on the
2 glycoprotein comprises Gal β 1-OR, Gal β ,3/4GlcNAc-OR, NeuAc α 2,3Gal β 1,3/4GlcNAc-Or,

- 3 wherein R is an amino acid, a saccharide, an oligosaccharide, or an aglycon group having at
- 4 least one carbon atom.