

Komunikacja sieciowa dziś Podstawy konfiguracji przełącznika i urządzenia końcowego Protokoły i modele Wprowadzenie Reguly 3.1 Protokołv Zestawy protokołów 3.3.1 Zestawy protokołów sieciowych 3.3.2 Ewolucja zestawów protokołów Przykład protokołu TCP/IP 3.3.3 Zestaw protokołów TCP/IP 3.3.4 Proces komunikacji TCP/IP 3.3.5 Sprawdź, czy zrozumiałeś -3.3.6 Zestawy protokołów Organizacje normalizacyjne 3.4.1 Otwarte standardy

🍙 / Protokoły i modele / Moduł ćwiczeń i quizu

Moduł ćwiczeń i quizu

3.8.1

Czego się nauczyłem przerabiając ten moduł?

Reguly

Wszystkie metody komunikacji mają trzy wspólne elementy: źródło wiadomości (nadawca), cel wiadomości (odbiorca) i kanał. Wysyłanie wiadomości podlega regułom nazywanym *protokołem*. Protokoły muszą zawierać: zidentyfikowanego nadawcę i odbiorcę, wspólny język i gramatykę, szybkość i czas dostawy oraz wymagania dotyczące potwierdzenia. Typowe protokoły komputerowe obejmują następujące wymagania: kodowanie wiadomości, formatowanie i enkapsulację, rozmiar, czas i opcje dostawy. Kodowanie to proces konwersji informacji do postaci, która jest odpowiednia dla stosowanej transmisji danych. Dekodowanie jest procesem odwrotnym realizowanym w celu interpretacji odebranych informacji. Format wiadomości zależy od jej typu oraz kanału komunikacyjnego, który zostanie wykorzystany do jej przesłania. Czas wiadomości obejmuje kontrolę przepływu, limit czasu reakcji i metodę dostępu. Opcje dostarczania wiadomości obejmują emisję pojedynczą (unicast), grupową (multicast) i rozgłoszeniową (broadcast).

Protokoły

Protokoły są implementowane przez urządzenia końcowe i urządzenia pośredniczące w oprogramowaniu, sprzęcie lub obu. Wiadomość wysyłana przez sieć komputerową zazwyczaj wymaga użycia kilku protokołów, z których każdy ma swoje własne funkcje i format. Każdy protokół sieciowy ma swoją własną funkcję, format i zasady komunikacji. Rodzina protokołów Ethernet angażuje IP, TCP, HTTP i wiele innych. Protokoły zabezpieczają dane w celu zapewnienia uwierzytelniania, zapewnienia integralności i szyfrowania danych: SSH, SSL i TLS. Protokoły umożliwiają routerom wymianę informacji o trasie, porównywanie informacji o ścieżce, a następnie wybranie najlepszej ścieżki do sieci docelowej: OSPF i BGP. Protokoły są używane do automatycznego wykrywania urządzeń lub usług: DHCP i DNS. Komputery i urządzenia sieciowe używają uzgodnionych protokołów, które zapewniają następujące funkcje: adresowanie, niezawodność, kontrola przepływu, sekwencjonowanie, wykrywanie błędów i interfejs aplikacji.

Zestawy protokołów

Zestaw protokołów to grupa powiązanych ze sobą protokołów niezbędnych do wykonywania funkcji komunikacyjnej. Stos protokołów jasno pokazuje, w jaki sposób poszczególne protokoły z całego zestawu są implemetowane na różnych urządzeniach. Od 1970 roku istniało kilka różnych zestawów protokołów, niektóre opracowane przez organizację normalizacyjną, a inne opracowane przez różnych dostawców. Protokoły TCP/IP występują w warstwach aplikacji, transportu i Internetu. TCP/IP

1	Komunikacja sieciowa dziś		
2	Podstawy konfiguracji przełącznika i urządzenia końcowego	~	
3	Protokoły i modele	^	
3.0	Wprowadzenie	~	
3.1	Reguły	~	
3.2	Protokoły	~	
3.3	Zestawy protokołów	~	
3.3.1	Zestawy protokołów sieciowyc	ch	
3.3.2	Ewolucja zestawów protokołów	N	
3.3.3	Przykład protokołu TCP/IP		
3.3.4	Zestaw protokołów TCP/IP		
3.3.5	Proces komunikacji TCP/IP		
3.3.6	Sprawdź, czy zrozumiałeś - Zestawy protokołów		
3.4	Organizacje normalizacyjne	~	
3.4.1	Otwarte standardy		

to zestaw protokołów używany dzisiaj przez Internet. TCP/IP oferuje dwa ważne aspekty dla dostawców i producentów: otwarty zestaw protokołów standardowych i pakiet protokołów opartych na standardach. Proces komunikacji pakietu protokołów TCP/IP umożliwia takie procesy jak, serwer sieciowy enkapsulujący i wysyłający stronę internetową do klienta, a także klient dokonujący dekapsulacji strony internetową do wyświetlania w przeglądarce internetowej.

Organizacje normalizacyjne

Otwarte standardy wspierają interoperacyjność, konkurencyjność i innowację. Zazwyczaj organizacje standaryzujące są neutralnymi organizacjami typu non-profit utworzonymi w celu rozwijania i promowania koncepcji otwartych standardów. Różne organizacje mają różne obowiązki w zakresie promowania i tworzenia standardów dla Internetu: ISOC, IAB, IETF i IRTF. Organizacje normalizacyjne, które rozwijają i obsługują TCP/IP: ICANN i IANA. Organizacje standardów elektronicznych i komunikacyjnych: IEEE, EIA, TIA i ITU-T.

Modele odniesienia

Dwa modele referencyjne używane do opisywania operacji sieciowych to OSI i TCP/IP. Model OSI ma siedem warstw:

- 7 Aplikacji
- 6 Prezentacji
- 5 Sesji
- 4 Transportu
- 3 Sieci
- 2 Łącza danych
- 1 Fizyczna

Model TCP/IP składa się z następujących czterech warstw:

- 4 Aplikacji
- 3 Transportu
- 2 Internetu
- 1 Dostępu do sieci

Enkapsulacja danych

Segmentacja wiadomości posiada dwie podstawowe zalety:

- Przesyłając mniejsze, odrębne części danych od źródła do celu, sieć może obsługiwać wiele przeplatających się różnych konwersacji. Taki proces jest nazywany multipleksowaniem.
- Segmentacja może zwiększyć wydajność komunikacji sieciowej. Jeżeli część wiadomości nie dotrze do celu, to tylko ta jej część musi być wysłana ponownie.

1	Komunikacja sieciowa dziś	~
2	Podstawy konfiguracji przełącznika i urządzenia końcowego	~
3	Protokoły i modele	^
3.0	Wprowadzenie	~
3.1	Reguly	~
3.2	Protokoły	~
3.3	Zestawy protokołów	~
3.3.1	Zestawy protokołów sieciowyc	ch
3.3.2	Ewolucja zestawów protokołów	N
3.3.3	Przykład protokołu TCP/IP	
3.3.4	Zestaw protokołów TCP/IP	
3.3.5	Proces komunikacji TCP/IP	
3.3.6	Sprawdź, czy zrozumiałeś - Zestawy protokołów	
3.4	Organizacje normalizacyjne	~
3.4.1	Otwarte standardy	

TCP jest odpowiedzialny za sekwencjonowanie poszczególnych segmentów. Forma jaką przyjmują dane w każdej z warstw nazywana jest jednostką danych protokołu *PDU*. Podczas enkapsulacji każda z kolejnych warstw enkapsuluje PDU, które otrzymała z wyższej warstwy zgodnie z użytym protokołem. Podczas wysyłania wiadomości w sieci proces enkapsulacji działa od góry do dołu. Proces ten, realizowany na hoście odbiorczym jest odwrotny do procesu wysyłania danych i nazwany jest *dekapsulacją*. Dekapsulacja jest procesem używanym przez urządzenia odbierające w celu usuwania jednego lub kilku nagłówków protokołów. Dane są dekapsulowane podczas przesłania w górę przez stos protokołów w kierunku aplikacji użytkownika.

Dostęp do danych

Warstwy sieci i łącza danych są odpowiedzialne za dostarczanie danych z urządzenia źródłowego do urządzenia docelowego. Protokoły obydwu warstw zawierają adresy nadawcy i odbiorcy, ale mają one różne przeznaczenie.

- Adresy źródłowe i docelowe warstwy sieci Odpowiedzialna za dostarczenie pakietu IP z oryginalnego źródła do końcowego miejsca docelowego, które może znajdować się w tej samej sieci lub w sieci zdalnej.
- Adres źródłowy i docelowy warstwy łącza danych Odpowiedzialne za dostarczenie ramki łącza danych z jednej karty interfejsu sieciowego do innej karty sieciowej w tej samej sieci.

Adresy IP wskazują pierwotny źródłowy adres IP i końcowy docelowy adres IP. Adres IP zawiera dwie część: część sieciową (IPv4) lub prefiks (IPv6) oraz część hosta (IPv4) lub identyfikator interfejsu (IPv6). Gdy nadawca i odbiorca pakietu IP znajdują się w tej samej sieci, ramka łącza danych jest wysyłana bezpośrednio do urządzenia odbiorczego. W sieci Ethernet, adresy łącza danych znane są jako Ethernetowe adresy MAC. Gdy nadawca pakietu znajduje się w innej sieci niż jego odbiorca, adresy IP źródła i celu będą reprezentować hosty w różnych sieciach. W takim przypadku ramkę Ethernet należy przesłać do innego urządzenia znanego jako brama domyślna lub router.

3.8.2

Moduł quizu - Protokoły i modele

Które trzy akronimy i inicjalizmy reprezentują organizacje normalizacyjne? (Wybierz trzy odpowiedzi).
OSI
MAC
☐ IETF
TCP/IP
IEEE
IANA
Jaki rodzaj komunikacji wyśle wiadomość do wszystkich urządzeń w sieci lokalnej?

1	Komunikacja sieciowa dziś		
2	Podstawy konfiguracji przełącznika i urządzenia końcowego	~	
3	Protokoły i modele	^	
3.0	Wprowadzenie		
3.1	Reguły	~	
3.2	Protokoły	~	
3.3	Zestawy protokołów	~	
3.3.1	Zestawy protokołów sieciowyc	ch	
3.3.2	Ewolucja zestawów protokołów	v	
3.3.3	Przykład protokołu TCP/IP		
3.3.4	Zestaw protokołów TCP/IP		
3.3.5	Proces komunikacji TCP/IP		
3.3.6	Sprawdź, czy zrozumiałeś - Zestawy protokołów		
3.4	Organizacje normalizacyjne	~	
3.4.1	Otwarte standardy		

	broadcast
	Allcast
	multicast
	unicast
3.	W komunikacji komputerowej, jaki jest cel kodowania wiadomości?
	do wynegocjowania właściwego czasu dla udanej komunikacji
	by podzielić duże wiadomości na mniejsze ramki
	do konwersji informacji na odpowiedni format do przesyłania
	by interpretować informacje
4.	Która opcja dostarczania wiadomości jest stosowane w przypadku, gdy wszystkie urządzenia muszą otrzymać taką samą wiadomość jednocześnie?
	multicast
	unicast
	duplex,
	broadcast
5.	Jakie są dwie zalety korzystania z warstwowego modelu sieci? (Wybierz dwie odpowiedzi).
	Przyspiesza dostawę pakietów.
	Zapewnia, że urządzenie z jednej warstwy może funkcjonować w następnej wyższej warstwie.
	Uniemożliwia projektantom tworzenie własnego modelu.
	Pomaga w projektowaniu protokołów.
	Zapobiega wpływowi technologii jednej warstwy na inne warstwy.
6.	Jakie jest przeznaczenie protokołów transmisji danych?
	określanie przepustowości kanału lub medium dla każdego rodzaju komunikacji
	określanie systemów operacyjnych dla urządzeń, które obsługują komunikację
	dyktowanie treści wiadomości wysłanej podczas komunikacji
	dostarczenie reguł wymaganych dla konkretnego typu komunikacji, który może wystąpić

W

/prowadzenie do sieci			numer portu docelowego
			docelowy adres MAC
			źródłowy adres IP
1	Komunikacja sieciowa dziś	~	8. Jakie jest ogólne określenie, które stosowane jest do opisania elementu danych w każdej warstwie modelu sieci?
2	Podstawy konfiguracji przełącznika i urządzenia końcowego	~	pakiet ramka
			Segment
3	Protokoły i modele	^	jednostka danych protokołu
3.0	Wprowadzenie	~	 Które dwa protokoły działają w warstwie internetowej? (Wybierz dwie odpowiedzi).
3.1	Reguly	~	☐ IP
			ВООТР
3.2	Protokoły	~	ICMP
3.3	Zestawy protokołów	~	POP PPP
3.3.1	3.1 Zestawy protokołów sieciowych		10. Która visyatus madalu OCI defeixia valuri a amantavania i nanavyana
3.3.2	2 Ewolucja zestawów protokołów		10. Która warstwa modelu OSI definiuje usługi segmentowania i ponownego scalania danych dla indywidualnej komunikacji między urządzeniami końcowymi?
3.3.3	Przykład protokołu TCP/IP		_ aplikacji
			transportu
3.3.4	Zestaw protokołów TCP/IP		prezentacji
3.3.5	Proces komunikacji TCP/IP		sieci
	,		sesji
3.3.6	Sprawdź, czy zrozumiałeś - Zestawy protokołów		11. Jaki rodzaj komunikacji wyśle wiadomość do grupy docelowych hostów jednocześnie?
3.4	Organizacje normalizacyjne	~	unicast
3.4.1	Otwarte standardy		broadcast

7. Który adres logiczny jest używany w celu dostarczenia danych do zdalnej sieci?

odocelowy adres IP

źródłowego adresu MAC

vpro	wadzeriie do sieci		enkapsulacja
			kontrola dostępu
1	Komunikacja sieciowa dziś	~	dekodowanie
•		·	kontrola przepływu
2	Podstawy konfiguracji przełącznika i urządzenia	~	13. Co się dzieje z pakietem IP, zanim zostanie on przekazany fizycznym medium?
	końcowego		Jest dzielony na mniejsze pojedyncze kawałki.
2	Destalate i assista		Jest oznaczany informacjami gwarantującymi niezawodną dostawę.
3	Protokoły i modele	^	Jest enkapsulowany w segment TCP.
3.0	Wprowadzenie	~	Jest enkapsulowany w ramce warstwy 2.
3.1	Reguly	~	14. Jaki proces jest używany, aby umieścić jedną wiadomość wewnątrz innej wiadomości do transferu ze źródła do miejsca docelowego?
3.2	Protokoły	~	kontrola przepływu
			kontrola dostępu
3.3	Zestawy protokołów	~	dekodowanie
3.3.1	Zestawy protokołów sieciowy	rch	enkapsulacja
3.3.2	3.2 Ewolucja zestawów protokołów		15. Klient wysyła żądanie strony internetowej do serwera WWW. Z punktu widzenia klienta, jaka jest poprawna kolejność stosu protokołów, które użyte są do przygotowania żądania transmisji?
3.3.3	.3 Przykład protokołu TCP/IP		HTTP, TCP, IP, Ethernet
3.3.4	Zestaw protokołów TCP/IP		Ethernet, IP, TCP, HTTP
			HTTP, IP, TCP, Ethernet
3.3.5	Proces komunikacji TCP/IP		Ethernet, TCP, IP, HTTP
3.3.6	Sprawdź, czy zrozumiałeś - Zestawy protokołów		
3.4	Organizacje normalizacyjne	~	Obstęp do danych
3.4.1	Otwarte standardy		

anycast multicast

czytelnej wiadomości?

12. Jaki proces jest używany do odbierania przesyłanych danych i konwersji go do

Sprawdź	
Rozwiązanie	
Resetuj	
4. Wprowadzeni	.0 >