Técnicas de Demonstração

Felipe Augusto Lima Reis felipe.reis@ifmg.edu.br

Sumário

- Introdução
- 2 Conceitos
- 3 Técnicas de Prova
- 4 Erros Comuns
- 5 Estratégias

Introdução

0000

• Esta seção será dedicada a introduzir alguns conceitos necessários a prova de argumentos:

Técnicas de Prova

- Teoremas:
- Corolários:
- Axiomas:
- Fatos:
- Proposições;
- Lemas:
- Conjecturas;
- A seção também irá a apresentar métodos para construção de provas.

0000

- Demonstrações podem ser formais ou informais:
 - Demostrações formais: aquelas em que todos os passos são tomados e regras para cada passo são dadas
 - Demonstrações formais podem ser longas e difíceis de serem seguidas [Rosen, 2019]:
 - Demonstrações informais: aquelas em que mais de uma regra de inferência pode ser usada em cada etapa
 - Alguns passos podem também ser pulados;
 - Axiomas podem ser assumidos;
 - Regras de inferência nem sempre podem ser demonstradas;
 - Alguns argumentos não são universalmente verdadeiros, sendo apenas em certos contextos [Rosen, 2019] [Cavalcanti, 2020].

Demonstrações informais não constituem um método de prova! Devem ter um mínimo de formalidade para serem aceitas. Somente alguns passos podem ser inferidos.

Tipos de Prova

Introdução

000

- Serão estudados os seguintes métodos de prova:
 - Prova Direta;
 - Prova por Contraposição;
 - Prova por Contradição;
 - Prova Trivial.
 - Prova por Exaustão;
 - Prova por Contra-Exemplo;
 - Prova por Vacuidade;
 - Prova por Equivalência.

Conceitos

Introdução

0000

Estratégias

0000000

- Axioma ou Postulado: proposição que não é provada, mas é considerada óbvia e aceita como verdade na construção de deduções
 - "Dados quaisquer dois pontos distintos, A e B, existe uma única reta que os contém." [Manfio, 2020].
 - "Para quaisquer três pontos distintos colineares¹, apenas um deles está entre os outros dois." [Manfio, 2020].

Teorema

- Teorema: sentença que pode ser demonstrada como verdadeira [Rosen, 2019];
 - Pode ser definido também como uma afirmação específica que deve ser provada;
 - A dedução de q a partir de p é feita com uso de axiomas, definições, regras de inferência e resultados já provados.

Teorema

Introdução

• Teoremas possuem, em geral, a forma:

se
$$p$$
, então q

- São utilizados para representar resultados matemáticos ou deduções matemáticas;
- Forma:
 - p e q: sentenças simples ou compostas;
 - p: hipótese;
 - q: conclusão.

- As sentenças para proposição de teoremas necessitam de inclusão de um quantificador universal²
 - Ex. 1: "Para todos os números reais positivos x e y, se x > y, então $x^2 > y^2$." [Rosen, 2019];
 - Ex. 2: "Para todos os números inteiros positivos x e y, se $x \ge y$, então $x^n \ge y^n$ ";
- Passos:
 - O primeiro passo de um teorema, em geral, consiste em selecionar um elemento do domínio;
 - Os passos seguintes, demonstram uma propriedade em questão;
 - A generalização indica que o elemento é válido em todo o domínio.

 $^{^{2}}$ Na prática, no entanto, muitas delas não utilizam essa convenção [Rosen, 2019].

 $^{^3}$ Informalmente: "Se x>y, em que x e y são números reais positivos, então $x^2>y^2$ ".

Teoremas - Exemplos

Introdução

- Teorema de Pitágoras:
 - "Em qualquer triângulo retângulo, o quadrado do comprimento da hipotenusa é igual à soma dos quadrados dos comprimentos dos catetos."

$$c^2 = b^2 + a^2$$

Teorema Fundamental da Aritmética:

Técnicas de Proya

- "Todo número inteiro maior do que 1, decompõe-se de forma única, exceto pela ordem dos fatores, em produto de fatores primos." [Fonseca, 2015]
- Teorema Fundamental da Álgebra:
 - Uma equação algébrica de grau n tem exatamente n raízes, reais ou complexas [Justo et al., 2020].

Curiosidade (link): Teorema de Etiene.

Teoremas - Exemplos

- Teorema do Valor Intermediário⁴⁵
 - Seja f uma função real contínua no intervalo [a, b]. Se existe um valor d, tal que $f(a) \le d \le f(b)$, ou $f(b) \le d \le f(a)$, então existe um valor c tal que f(c) = d [Justo et al., 2020].

⁴ Também chamado de Teorema de Bolzano.

⁵ Este teorema será estudado posteriormente na disciplina de Matemática Computacional.

Prova

- Prova: argumento válido que estabelece a verdade de um teorema (ou declaração matemática) [Rosen, 2019].
 - Itens necessários à prova de um argumento:
 - Definições;
 - Hipóteses;
 - Axiomas (ou postulados);
 - Resultados de teoremas prévios;

Teoremas - Conceitos Relacionados

- Fato: teorema de importância limitada
 - Ex: "5 + 2 = 7" [da Silva, 2012b].
 - Proposição: teorema de importância secundária
 - Mais importante que um fato e menos que um teorema;
 - Faz parte de um teorema maior;
 - Lema: teoremas menos importantes usados na demonstração de teoremas mais complexos
 - Ex.: "Se f(x) e g(x) são polinômios primitivos, então $f(x) \cdot g(x)$ é um polinômio primitivo" (Lema de Gauss) [Medeiros Jr., 2015] ⁶⁷.

 $^{^6}$ Um polinômio $f(x)=a_0+a_1x+a_2x^2+\ldots+a_nx^n$, onde a_0,a_1,\ldots,a_n são inteiros é chamado primitivo se o máximo divisor comum de a_0,a_1,\ldots,a_n for 1 (coeficientes são primos entre si) [Anna Carolina Lafetá, 2017]

⁷Lema utilizado em teoremas de fatoração única de polinômios.

Teoremas - Conceitos Relacionados

- Corolário: teoremas estabelecidos sobre outros teoremas provados; é a decorrência imediata de um teorema
 - "Uma equação algébrica de grau ímpar com coeficientes reais tem, no mínimo, uma raiz real." (Corolário do Teorema Fundamental da Álgebra) [Justo et al., 2020];
 - "A diagonal de um quadrado cujos lados medem n unidades é $n\sqrt{2}$ (Corolário do Teorema de Pitágoras) [da Silva, 2012b].

- Conjectura: proposição que ainda não foi provada e nem refutada
 - Afirmação que propõe-se ser verdadeira baseada em:
 - evidências parciais;
 - argumentos heurísticos;
 - intuições de um especialista.
 - Ex.: Conjectura de Goldbach⁸
 - "Qualquer número par maior que 2 pode ser expresso pela soma de dois números primos."
 - Ex.: 2+2=4; 3+3=6; 3+5=8; 5+5=10; ...
 - Verificado até 35×10^{17} [Silva, 2015].

⁸Link: Goldbach conjecture verification.

0000

Estratégias

Construção de Provas

- A demonstração de teoremas nem sempre é fácil
 - A demonstração de um teorema pode necessitar de múltiplas técnicas de provas:
- Prova de um teorema:
 - Forma: $\forall x (P(x) \rightarrow Q(x))$;
 - Prova específica: mostrar que $P(c) \rightarrow Q(c)$ é verdadeiro, onde c é arbitrário (prova específica);
 - Generalização: mostrar para que qualquer x, a prova é verdadeira.

Construção de Provas

- Implicação ou Declaração Condicional (lógica):
 - Se p, então q;
 - O resultado é falso somente quando *p* é verdadeiro e *q* é falso;
 - ullet Devemos mostrar que q é verdadeiro se p também o for.
- Omissão de detalhes da prova:
 - Em alguns momentos, pode haver omissão de informações⁹
 - Ex. 1: Obviamente temos que...;
 - Ex. 2: Claramente podemos concluir que...

⁹ Em casos de dúvidas, perguntar ao professor quando houver omissões.

Prova Direta

Prova Direta

- Prova direta pode ser resumida em 3 passos:
 - **1** Em uma declaração condicional $p \rightarrow q$, supõe-se que p é verdadeiro:
 - São construídas regras de inferência, de forma consecutiva;
 - **6** É demonstrado que q também é verdadeiro [Rosen, 2019].

Processo:

- Ao demonstrar que p é verdadeiro, deve-se demonstrar que q é obrigatoriamente verdadeiro;
- Deve-se demonstrar que a combinação de p verdadeiro e q falso é impossível.
 - Podem ser utilizadas definicões, teoremas anteriores, regras de inferência, regras de equivalência, entre outros.

22 / 64

- Ex. 1: "Se n for um número inteiro ímpar, então n^2 é ímpar."
 - Proposições
 - p: "n é um número inteiro ímpar";
 - q: "n² é ímpar"
 - Sequência de prova
 - ① Supomos que n seja um número ímpar (n = 2k + 1)
 - 2 Podemos substituir: n = (2k + 1);
 - **3** Temos, então: $n^2 = (2k+1)^2 = (4k^2 + 4k + 1)$;
 - ① Colocando em função de 2: $2(2k^2 + 2k) + 1$
 - **5** Suponha: $t = (2k^2 + 2k)$;
 - **6** Temos: $n^2 = (2t + 1)$
 - Fim¹⁰.

 $^{^{10}}$ Explicação: Como (2t+1) é (mpar, logo n^2 também é (mpar

- Ex. 1: "Se n for um número inteiro ímpar, então n^2 é ímpar."
 - Proposições:
 - p: "n é um número inteiro ímpar";
 - q: " n^2 é ímpar".
 - Sequência de prova:
 - ① Supomos que n seja um número ímpar (n = 2k + 1)
 - 2 Podemos substituir: n = (2k + 1);
 - 3 Temos, então: $n^2 = (2k+1)^2 = (4k^2 + 4k + 1)$;
 - Olocando em função de 2: $2(2k^2 + 2k) + 1$;
 - **5** Suponha: $t = (2k^2 + 2k)$;
 - **6** Temos: $n^2 = (2t + 1)$
 - Fim¹⁰.

 $^{^{10}}$ Explicação: Como (2t+1) é ímpar, logo $\it n^2$ também é ímpar

- Ex. 1: "Se n for um número inteiro ímpar, então n^2 é ímpar."
 - Proposições:
 - p: "n é um número inteiro ímpar";
 - q: " n^2 é ímpar".
 - Sequência de prova:
 - ① Supomos que n seja um número ímpar (n = 2k + 1);
 - 2 Podemos substituir: n = (2k + 1);
 - **3** Temos, então: $n^2 = (2k+1)^2 = (4k^2 + 4k + 1)$;
 - 4 Colocando em função de 2: $2(2k^2 + 2k) + 1$;
 - **6** Suponha: $t = (2k^2 + 2k)$;
 - **6** Temos: $n^2 = (2t + 1)$
 - Fim¹⁰.

 $^{^{10}}$ Explicação: Como (2t+1) é ímpar, logo n^2 também é ímpar.

- Ex. 2: "Se *n* e *m* são quadrados perfeitos¹¹, então *nm* também é um quadrado perfeito."
 - Proposições:
 - p: "n e m são quadrados perfeitos";
 - q: "nm é um quadrado perfeito".
 - Sequência de prova
 - ① Pela definição de quadrado perfeito: $m = s^2$ e $n = t^2$;
 - 2 Temos então: $nm = s^2 t^2$
 - 3 Desenvolvendo: $s^2t^2 = (ss)(tt) = (st)(st) = (st)^2$;
 - 4 Suponha z = st
 - **6** Logo, $nm = z^2$, um quadrado perfeito
 - 6 Fim

¹¹Um inteiro a é um quadrado perfeito se existe um inteiro b no qual $a = b^2$. Ex.: a = 4, pois $4 = 2^2$.

- Ex. 2: "Se *n* e *m* são quadrados perfeitos¹¹, então *nm* também é um quadrado perfeito."
 - Proposições:
 - p: "n e m são quadrados perfeitos";
 - q: "nm é um quadrado perfeito".
 - Sequência de prova:
 - ① Pela definição de quadrado perfeito: $m = s^2$ e $n = t^2$;
 - 2 Temos então: $nm = s^2 t^2$
 - ③ Desenvolvendo: $s^2t^2 = (ss)(tt) = (st)(st) = (st)^2$;
 - 4 Suponha z = st
 - **5** Logo, $nm = z^2$, um quadrado perfeito
 - 6 Fim

¹¹Um inteiro a é um quadrado perfeito se existe um inteiro b no qual $a = b^2$. Ex.: a = 4, pois $4 = 2^2$.

- Ex. 2: "Se *n* e *m* são quadrados perfeitos¹¹, então *nm* também é um quadrado perfeito."
 - Proposições:
 - p: "n e m são quadrados perfeitos";
 - q: "nm é um quadrado perfeito".
 - Sequência de prova:
 - **1** Pela definição de quadrado perfeito: $m = s^2$ e $n = t^2$;
 - 2 Temos então: $nm = s^2 t^2$;
 - **3** Desenvolvendo: $s^2t^2 = (ss)(tt) = (st)(st) = (st)^2$;
 - 4 Suponha z = st;
 - **5** Logo, $nm = z^2$, um quadrado perfeito;
 - 6 Fim.

¹¹Um inteiro a é um quadrado perfeito se existe um inteiro b no qual $a = b^2$. Ex.: a = 4, pois $4 = 2^2$.

- Ex. 3: "Para $n \in \mathbb{Z}^+$, se n é ímpar, então (3n+2) é ímpar."
 - Proposições
 - p: "n é ímpar'
 - q: "3n + 2 'e impar"
 - Sequência de prova
 - ① Supomos que n seja um número ímpar (n = 2k + 1);
 - 2 Podemos substituir: n = (2k + 1);
 - 3 Temos, então: 3n + 2 = 3(2k + 1) + 2 = 6k + 3 + 2 = 6k + 5;
 - ① Desenvolvendo: 6k + 5 = (6k + 4) + 1 = 2(3k + 2) + 1;
 - **6** Suponha: t = (3k + 2)
 - **6** Temos: 3n + 2 = 2t + 1
 - Fim¹².

¹²Explicação: Como (2t + 1) é impar, logo 3n + 2 também é impar

- Ex. 3: "Para $n \in \mathbb{Z}^+$, se n é ímpar, então (3n+2) é ímpar."
 - Proposições:
 - p: "n é ímpar".
 - q: "3n + 2 é ímpar";
 - Sequência de prova
 - ① Supomos que n seja um número ímpar (n = 2k + 1)
 - 2 Podemos substituir: n = (2k + 1)
 - 3 Temos, então: 3n + 2 = 3(2k + 1) + 2 = 6k + 3 + 2 = 6k + 5;
 - ① Desenvolvendo: 6k + 5 = (6k + 4) + 1 = 2(3k + 2) + 1;
 - **5** Suponha: t = (3k + 2);
 - **6** Temos: 3n + 2 = 2t + 1
 - Fim¹².

¹²Explicação: Como (2t+1) é ímpar, logo 3n+2 também é ímpar.

- Ex. 3: "Para $n \in \mathbb{Z}^+$, se n é ímpar, então (3n+2) é ímpar."
 - Proposições:
 - p: "n é ímpar".
 - q: "3n + 2 é ímpar";
 - Sequência de prova:
 - **①** Supomos que n seja um número ímpar (n = 2k + 1);
 - 2 Podemos substituir: n = (2k + 1);
 - **3** Temos, então: 3n + 2 = 3(2k + 1) + 2 = 6k + 3 + 2 = 6k + 5;
 - **4** Desenvolvendo: 6k + 5 = (6k + 4) + 1 = 2(3k + 2) + 1;
 - **5** Suponha: t = (3k + 2);
 - **6** Temos: 3n + 2 = 2t + 1
 - Fim¹².

¹²Explicação: Como (2t+1) é ímpar, logo 3n+2 também é ímpar.

Prova por Contraposição

Introdução

0000

Estratégias

0000000

Prova por Contraposição

- Provas por Contraposição são aquelas que utilizam proposição contrapositiva
 - Utilizam a equivalência $p \to q \equiv \neg q \to \neg p$;
 - Podemos provar que $p \rightarrow q$ se conseguirmos provar que $\neg q \rightarrow \neg p$;
 - Podemos inverter a declaração e provar por prova direta;
- Esse método pode ser considerada um tipo de prova indireta
 - Constituem em uma alternativa às provas diretas, que muitas vezes não são capazes de chegar a conclusões [Rosen, 2019];

Prova por Contraposição - Exemplo

• Ex. 1: "Se n^2 for um número inteiro par, então n é par."

- Proposições:
 - p: "n² é um número inteiro par"
 - q: "n é par":
 - $\neg p$: " n^2 é um número inteiro ímpar"
 - ¬*q*: "*n* é ímpar";
- Sequência de prova
 - ① Se n é ímpar, temos: n = 2k + 1;
 - ② Temos, então: $n^2 = (2k+1)^2 = (4k^2 + 4k + 1)$
 - 3 Colocando em função de 2: $2(2k^2 + 2k) + 1$
 - **1** Suponha: $t = (2k^2 + 2k)$;
 - **1** Temos: $n^2 = (2t + 1)$
 - **6** Como $\neg a \rightarrow \neg p$, a proposição é verdadeira:
 - **6** Fim

Prova por Contraposição - Exemplo

- Ex. 1: "Se n^2 for um número inteiro par, então n é par."
 - Proposições:
 - p: "n² é um número inteiro par".
 - q: "n é par";

Prova por Contraposição - Exemplo

- Ex. 1: "Se n^2 for um número inteiro par, então n é par."
 - Proposições:
 - p: "n² é um número inteiro par".
 - q: "n é par";
 - $\neg p$: " n^2 é um número inteiro ímpar".
 - $\neg q$: "n é ímpar";

Prova por Contraposição - Exemplo

- Ex. 1: "Se n^2 for um número inteiro par, então n é par."
 - Proposições:
 - p: "n² é um número inteiro par".
 - *q*: "*n* é par":
 - $\neg p$: " n^2 é um número inteiro ímpar".
 - $\neg q$: "n é ímpar";
 - Sequência de prova:
 - **1** Se $n \in \text{impar}$, temos: n = 2k + 1;
 - 2 Temos, então: $n^2 = (2k+1)^2 = (4k^2 + 4k + 1)$:
 - 3 Colocando em função de 2: $2(2k^2 + 2k) + 1$;
 - **4** Suponha: $t = (2k^2 + 2k)$;
 - **1** Temos: $n^2 = (2t + 1)$
 - **6** Como $\neg a \rightarrow \neg p$, a proposição é verdadeira;
 - Fim.

- Ex. 2: "Para $n \in \mathbb{Z}^+$, se (3n+2) for impar, então n é impar."
 - - ¬*a*: "*n* é par".

Erros Comuns

- Ex. 2: "Para $n \in \mathbb{Z}^+$, se (3n+2) for impar, então n é impar."
 - Proposições:
 - p: "3n + 2 é ímpar";
 - q: "n é ímpar".

- Ex. 2: "Para $n \in \mathbb{Z}^+$, se (3n+2) for impar, então n é impar."
 - Proposições:
 - p: "3n + 2 é ímpar";
 - q: "n é ímpar".
 - $\neg p$: "3n + 2 é par";
 - $\neg q$: "n é par".
 - Sequência de prova:
 - ① Pela definição, um número par é dado como: n = 2k
 - ② Logo, para 3n + 2, temos: 3(2k) + 2 = 6k + 2 = 2(3k + 1)
 - **3** Suponha t = 3k + 1;
 - 4 Logo, n = 2t, ou seja, é par
 - **6** Como $\neg q \rightarrow \neg p$, a proposição é verdadeira;
 - 6 Fim.

- Ex. 2: "Para $n \in \mathbb{Z}^+$, se (3n+2) for impar, então n é impar."
 - Proposicões:
 - p: "3n + 2 é ímpar";
 - q: "n é ímpar".
 - $\neg p$: "3n + 2 é par":
 - ¬q: "n é par".
 - Sequência de prova:
 - **1** Pela definição, um número par é dado como: n = 2k;
 - 2 Logo, para 3n + 2, temos: 3(2k) + 2 = 6k + 2 = 2(3k + 1);
 - \bigcirc Suponha t = 3k + 1;
 - **1** Logo, n = 2t, ou seja, é par;
 - **6** Como $\neg a \rightarrow \neg p$, a proposição é verdadeira:
 - 6 Fim.

Prova por Contradição

Introdução

0000

Estratégias

0000000

Prova por Contradição

- Provas por contradição são aquelas que utilizam uma contradição q, tal qual $(p \land \neg q \rightarrow 0)$.
 - Tem-se que $(p \land \neg q \to 0) \to (p \to q)$ é uma tautologia;
 - Supõe-se p e ¬q são verdadeiros;
 - Tentamos mostrar que p e $\neg p$ são verdadeiros ao mesmo tempo, para $\neg q$ verdadeiro, gerando uma contradição [Gersting, 2014].

Prova por Contradição

- A prova por contradição também pode ser feita da seguinte forma:
 - Considerando uma proposição r, se $r \land \neg r$ é uma contradição, podemos fazer $\neg p \rightarrow (r \land \neg r)$:
 - Se pudermos provar que p é verdadeiro para essa contradição, conseguimos provar por contradição [Rosen, 2019].

Prova por Contradição - Exemplo [Rosen, 2019]

Técnicas de Proya

- Ex. 1: "Se (3n+2) é ímpar, então n é ímpar."

Prova por Contradição - Exemplo [Rosen, 2019]

Técnicas de Proya

- Ex. 1: "Se (3n+2) é ímpar, então n é ímpar."
 - Proposições:
 - p: "3n + 2 é ímpar";
 - q: "n é ímpar";

Erros Comuns

- Ex. 1: "Se (3n+2) é ímpar, então n é ímpar."
 - Proposições:
 - p: "3n + 2 é ímpar";
 - q: "n é ímpar";
 - $\neg q$: "n é par".
 - Sequência de prova
 - 1 Suponha que p e $\neg q$ são verdadeiros
 - ② Se n é par, então n = 2k;
 - 3 Temos então, 3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1);

 - **3** Substituindo, temos 3n + 2 = 2t (definição número par);
 - **6** Se 3n + 2 é par, temos que $\neg p$ é verdadeiro;
 - **7** Se $p \in \neg p$ são verdadeiros, então, temos uma contradição;
 - 8 Fim

- Ex. 1: "Se (3n+2) é ímpar, então n é ímpar."
 - Proposições:
 - p: "3n + 2 é ímpar";
 - q: "n é ímpar";
 - $\neg q$: "n é par".
 - Sequência de prova:
 - **1** Suponha que $p \in \neg q$ são verdadeiros;
 - 2 Se n é par, então n = 2k;
 - **3** Temos então, 3n+2 = 3(2k)+2 = 6k+2 = 2(3k+1);
 - Podemos fazer 3k + 1 = t:
 - **5** Substituindo, temos 3n + 2 = 2t (definição número par);
 - **6** Se 3n + 2 é par, temos que $\neg p$ é verdadeiro;
 - **1** Se $p \in \neg p$ são verdadeiros, então, temos uma contradição;
 - Fim.

Prova por Contradição - Exemplo [Gersting, 2014]

- Ex. 2: "Se um número adicionado a si mesmo resulta no próprio número, então esse número é zero."
 - Proposições:
 - p: "n + n = n"
 - q: "n = 0";
 - $\neg q$: " $n \neq 0$ "
 - Sequência de prova
 - Suponha que p e ¬q são verdadeiros
 - Se n + n = n, temos 2n = n;
 - Como, $n \neq 0$, podemos dividir ambos os lados da equação;
 - Dividindo os dois lados de 2n = n, temos 2 = 1:
 - Tal resultado é uma contradição!:
 - Logo, $(n+n=n) \rightarrow (n=0)$
 - o Eim

Prova por Contradição - Exemplo [Gersting, 2014]

- Ex. 2: "Se um número adicionado a si mesmo resulta no próprio número, então esse número é zero."
 - Proposições:
 - p: "n + n = n";
 - q: "n = 0";
 - $\neg q$: " $n \neq 0$ ".
 - Sequência de prova
 - Suponha que p e ¬q são verdadeiros;
 - Se n + n = n. temos 2n = n
 - Como, $n \neq 0$, podemos dividir ambos os lados da equação;
 - Dividindo os dois lados de 2n = n, temos 2 = 1:
 - Tal resultado é uma contradição!:
 - Logo, $(n+n=n) \rightarrow (n=0)$
 - a Eim

Prova por Contradição - Exemplo [Gersting, 2014]

- Ex. 2: "Se um número adicionado a si mesmo resulta no próprio número, então esse número é zero."
 - Proposições:

•
$$p$$
: " $n + n = n$ ";

•
$$q$$
: " $n = 0$ ";

•
$$\neg q$$
: " $n \neq 0$ ".

- Sequência de prova
 - Suponha que p e $\neg a$ são verdadeiros
 - Se n + n = n. temos 2n = n
 - Como, $n \neq 0$, podemos dividir ambos os lados da equação;
 - Dividindo os dois lados de 2n = n, temos 2 = 1:
 - Tal resultado é uma contradição!:

• Logo,
$$(n+n=n) \rightarrow (n=0)$$

a Fim

Prova por Contradição - Exemplo [Gersting, 2014]

- Ex. 2: "Se um número adicionado a si mesmo resulta no próprio número, então esse número é zero."
 - Proposições:
 - p: "n + n = n":
 - a: "n = 0":
 - $\bullet \neg a$: " $n \neq 0$ ".
 - Sequência de prova:
 - Suponha que $p \in \neg q$ são verdadeiros;
 - Se n + n = n, temos 2n = n;
 - Como, $n \neq 0$, podemos dividir ambos os lados da equação;
 - Dividindo os dois lados de 2n = n, temos 2 = 1;
 - Tal resultado é uma contradição!;
 - Logo, $(n + n = n) \to (n = 0)$;
 - Fim.

- Ex. 3: "Mostre que pelo menos quatro de cada 22 dias devem cair no mesmo dia da semana."
 - Sequência de prova:
 - Temos somente uma proposição, p;
 - p: "pelo menos quatro de cada 22 dias devem cair...";
 - Suponha ¬p verdadeiro: "no máximo três de cada 22 dias...";
 - Sabemos que a semana tem 7 dias;
 - Portanto, 3 semanas têm 21 dias (cada dia repete 3 vezes);
 - No 22° dia, há uma 4ª repetição de um dia;
 - Logo, o a afirmação ¬p, que supomos verdadeira, é falsa;
 - Se considerarmos r o argumento que 22 dias foram escolhidos, temos que $\neg p \rightarrow (r \land \neg r)$;
 - Fim¹³

¹³Explicação: se $\neg p \rightarrow (r \land \neg r)$, está provado por contradição

- Ex. 3: "Mostre que pelo menos quatro de cada 22 dias devem cair no mesmo dia da semana."
 - Sequência de prova:
 - Temos somente uma proposição, p;
 - p: "pelo menos quatro de cada 22 dias devem cair...";
 - Suponha ¬p verdadeiro: "no máximo três de cada 22 dias...";
 - Sabemos que a semana tem 7 dias;
 - Portanto, 3 semanas têm 21 dias (cada dia repete 3 vezes);
 - No 22° dia, há uma 4ª repetição de um dia;
 - Logo, o a afirmação ¬p, que supomos verdadeira, é falsa;
 - Se considerarmos r o argumento que 22 dias foram escolhidos, temos que $\neg p \rightarrow (r \land \neg r)$;
 - Fim¹³

¹³**Explicação**: se $\neg p \rightarrow (r \land \neg r)$, está provado por contradição.

OUTROS TIPOS DE PROVAS

Introdução

0000

- Prova Trivial¹⁴ ocorre quando, ao saber que q é verdadeiro, podemos demonstrar que a proposição p o q é verdadeira [Rosen, 2019]
 - Pela tabela verdade da operação de Implicação, sabemos que se q é verdadeiro, então o resultado é verdadeiro.

Prova Trivial - Exemplo [Rosen, 2019]

- Ex.: "Seja P(n) a proposição: 'Se a e b são inteiros positivos com $a \ge b$, então $a^n \ge b^n$ ', em que o domínio consiste em todos os inteiros não negativos. Mostre que $\underline{P(0)}$ é verdadeira".
 - Sequência de prova:
 - Somente devemos analisar o caso onde n = 0;
 - Sabemos que: $a^0 = b^0 = 1$;
 - Logo, a proposição será válida independentemente de p ($a \ge b$) ser verdadeiro ou falso¹⁵.

 $^{^{15}}$ Explicação: Independente da premissa p, o resultado será sempre igual a 1

- Ex.: "Seja P(n) a proposição: 'Se a e b são inteiros positivos com $a \ge b$, então $a^n \ge b^n$ ', em que o domínio consiste em todos os inteiros não negativos. Mostre que $\underline{P(0)}$ é verdadeira".
 - Sequência de prova:
 - Somente devemos analisar o caso onde n = 0;
 - Sabemos que: $a^0 = b^0 = 1$;
 - Logo, a proposição será válida independentemente de p (a ≥ b) ser verdadeiro ou falso¹⁵.

¹⁵Explicação: Independente da premissa p, o resultado será sempre igual a 1.

- Prova por Exaustão é aquela em que opta-se pela prova de um teorema a partir de um conjunto de exemplos que esgotem todas as possibilidades possíveis.
 - Somente deve ser utilizada caso a quantidade de itens do conjunto seja finita;
 - Todos os itens devem ser analisados se faltar um único item, a prova estará incompleta (e incorreta);
 - Para conjuntos muito grandes, podem ser utilizados algoritmos.

Prova por Exaustão - Exemplo [da Silva, 2012b]

- Ex.: "Se n é um inteiro positivo e $n \le 4$, então $(n+1)^3 \ge 3^n$."
 - Sequência de prova:
 - Avaliam-se todas as possibilidades possíveis;

•
$$n = 1$$
: $(1+1)^3 > 3^1 \longrightarrow 8 > 3$

•
$$n = 2 \cdot (2+1)^3 > 3^2 \longrightarrow 27 > 9$$

•
$$n = 3$$
: $(3+1)^3 > 3^3 \longrightarrow 64 > 27$

•
$$n = 4$$
: $(4+1)^3 > 3^4 \longrightarrow 125 > 8$

Prova por Exaustão - Exemplo [da Silva, 2012b]

- Ex.: "Se n é um inteiro positivo e $n \le 4$, então $(n+1)^3 \ge 3^n$."
 - Sequência de prova:
 - Avaliam-se todas as possibilidades possíveis;

•
$$n = 1$$
: $(1+1)^3 \ge 3^1 \longrightarrow 8 \ge 3$

•
$$n = 2$$
: $(2+1)^3 > 3^2 \longrightarrow 27 > 9$

•
$$n = 3$$
: $(3+1)^3 > 3^3 \longrightarrow 64 > 27$

•
$$n = 4$$
: $(4+1)^3 > 3^4 \longrightarrow 125 > 81$

Prova por Contra-Exemplo

- Prova por Contra-Exemplo é aquela onde é necessário encontrar somente um contra-exemplo x para o qual P(x) é falso [Rosen, 2019].
 - A prova busca indicar que um argumento é inválido;
 - Ao encontrar esse exemplo, todo o argumento será invalidado;
 - Assim, o argumento $\forall P(x)$ é falso.

Prova por Contra-Exemplo - Ex. [Rosen, 2019]

- Ex.: Prove que a afirmação "cada inteiro positivo é a soma dos quadrados de dois inteiros (quaisquer)" é falsa.

•
$$n = 1$$
: $0^2 + (-1)^2$ (ok);

•
$$n = 2$$
: $1^2 + (-1)^2$ (ok):

Prova por Contra-Exemplo - Ex. [Rosen, 2019]

- Ex.: Prove que a afirmação "cada inteiro positivo é a soma dos quadrados de dois inteiros (quaisquer)" é falsa.
 - Sequência de prova:
 - Procura-se um exemplo que desrespeite a afirmação:
 - $n = 1: 0^2 + (-1)^2$ (ok);
 - n = 2: $1^2 + (-1)^2$ (ok);
 - n = 3: impossível;
 - Como n = 3 desrespeita a afirmação, provando, por contra-exemplo, que a afirmação é falsa.

Prova por Vacuidade

Introdução

• Prova por Vacuidade é aquela na qual, sabendo que p é falso, mostramos que $p \rightarrow q$ é verdadeiro [Rosen, 2019]

Técnicas de Prova

- Ocorre quando a hipótese da implicação é sempre falsa;
- Pela tabela verdade da operação de Implicação, sabemos que se p é falso e q é verdadeiro, o resultado é verdadeiro;
- Essas demonstrações são utilizadas em casos especiais de teoremas [Rosen, 2019]¹⁶;
- Nesse tipo de prova, a consequência da hipótese não tem muito significado, pois é falsa.

 $^{^{16}}$ [Rosen, 2019] indica que esse método é especificamente usado em teoremas que indicam "que uma condicional é verdadeira para todos os números inteiros positivos".

Prova por Vacuidade - Exemplo [Hokama, 2021]

- Ex. 1: "Para todo número inteiro n, se $n^2 = 5$ então n é par"
 - Proposições

•
$$p$$
: " $n^2 = 5$ ";

- Sequência de prova
 - Se $n^2 = 5$, logo $n = \sqrt{5}$
 - Como $n = \sqrt{5}$ não é inteiro, a hipótese é falsa
 - Como p é falso, então é q é automaticamente verdadeiro

Prova por Vacuidade - Exemplo [Hokama, 2021]

- Ex. 1: "Para todo número inteiro n, se $n^2 = 5$ então n é par"
 - Proposições:
 - p: " $n^2 = 5$ ";
 - q: "n é par";
 - Sequência de prova
 - Se $n^2 = 5$, logo $n = \sqrt{5}$
 - Como $n = \sqrt{5}$ não é inteiro, a hipótese é falsa
 - Como p é falso, então é q é automaticamente verdadeiro

Prova por Vacuidade - Exemplo [Hokama, 2021]

- Ex. 1: "Para todo número inteiro n, se $n^2 = 5$ então n é par"
 - Proposições:
 - p: " $n^2 = 5$ ":
 - q: "n é par";
 - Sequência de prova:
 - Se $n^2 = 5$, logo $n = \sqrt{5}$;
 - Como $n = \sqrt{5}$ não é inteiro, a hipótese é falsa;
 - Como p é falso, então é q é automaticamente verdadeiro.

Prova por Vacuidade - Exemplo [Rosen, 2019]

- Ex. 2: "Mostre que a proposição P(0) é verdadeira, em que P(n) é 'Se n > 1, então $n^2 > n$ ' e o domínio consiste em todos os números inteiros."
 - Proposições:
 - p: "n > 1";
 a: "n² > n";
 - Sequência de prova
 - Temos: P(0), ou seja, n=0
 - Substituindo na proposição p, temos 0 > 1
 - Como 0 > 1 é falso, então é n² > n é automaticamente verdadeiro.

O fato da conclusão $0^2 > 0$ ser falsa é irrelevante. Deve-se atentar para o valor verdade da sentença condiciona onde F[T=T] [Rosen, 2019]

Frros Comuns

Técnicas de Proya

- Ex. 2: "Mostre que a proposição P(0) é verdadeira, em que P(n) é 'Se n > 1, então $n^2 > n'$ e o domínio consiste em todos os números inteiros."
 - Proposições:
 - p: "n > 1":
 - a: " $n^2 > n$ ":

Prova por Vacuidade - Exemplo [Rosen, 2019]

- Ex. 2: "Mostre que a proposição P(0) é verdadeira, em que P(n) é 'Se n > 1, então $n^2 > n$ ' e o domínio consiste em todos os números inteiros."
 - Proposições:
 - p: "n > 1":
 - a: " $n^2 > n$ ":
 - Seguência de prova:
 - Temos: P(0), ou seja, n=0;
 - Substituindo na proposição p, temos 0 > 1;
 - Como 0 > 1 é **falso**, então é $n^2 > n$ é automaticamente verdadeiro.

O fato da conclusão $0^2 > 0$ ser falsa é irrelevante. Deve-se atentar para o valor verdade da sentença condicional, onde FIT=T [Rosen, 2019]

Prova por Equivalência

- ullet Prova por Equivalência é aquela que utilizamos para provar uma declaração bicondicional $p\leftrightarrow q$
 - ullet Devemos mostrar que p o q e q o p são ambos verdadeiros;
 - Baseado na seguinte tautologia:

$$\boxed{(p \leftrightarrow q) \leftrightarrow ((p \rightarrow q) \land (q \rightarrow p))}$$

Prova por Equivalência - Exemplo [Rosen, 2019]

- Ex.: "Para $n \in \mathbb{Z}^+$, se (3n+2) for impar, então n é impar."
 - Proposições
 - p: "n é ímpar";
 q: "n² é ímpar";
 - Sequência de prova
 - Devemos provar $p \leftrightarrow q$
 - $p \rightarrow a$: Ver Slide 25 (prova direta)
 - $q \rightarrow p$: Ver Slide 29 (prova por contraposição)

Prova por Equivalência - Exemplo [Rosen, 2019]

- Ex.: "Para $n \in \mathbb{Z}^+$, se (3n+2) for impar, então n é impar."
 - Proposições:
 - p: "n é ímpar";
 - q: "n² é ímpar";
 - Sequência de prova
 - Devemos provar $p \leftrightarrow q$
 - $p \rightarrow a$: Ver Slide 25 (prova direta)
 - $q \rightarrow p$: Ver Slide 29 (prova por contraposição)

Prova por Equivalência - Exemplo [Rosen, 2019]

- Ex.: "Para $n \in \mathbb{Z}^+$, se (3n+2) for impar, então n é impar."
 - Proposições:
 - p: "n é ímpar";
 - q: " n^2 é ímpar";
 - Sequência de prova:
 - Devemos provar $p \leftrightarrow q$;
 - $p \rightarrow q$: Ver Slide 25 (prova direta);
 - $q \rightarrow p$: Ver Slide 29 (prova por contraposição).

Prova por Casos

- Prova por Casos é aquela que ao invés de utilizar um único argumento que cubra todos os casos possíveis, analisa múltiplos casos, separadamente [Rosen, 2019];
 - A prova deve cobrir todos os casos possíveis;
 - Caso uma única situação não seja coberta pela prova, esta será considerada inválida;
- Para prova por casos, devemos analisar a seguinte tautologia:

$$\boxed{[(p_1 \vee p_2 \vee p_n) \rightarrow q] \leftrightarrow [(p_1 \rightarrow q) \wedge (p_2 \rightarrow q) \wedge ... \wedge (p_n \rightarrow q)]}$$

Prova por Casos - Exemplo [Rosen, 2019]

- Ex.: "Prove que se n for um número inteiro, então $n^2 \ge n$."
 - Proposições
 - p: "n é inteiro";
 - $q: "n^2 \ge n";$
 - Sequência de prova
 - Caso 1 (n = 0): $0^2 \ge 0$ (verdadeiro)
 - Caso 2 (n > 0): Suponha $n \ge 1$. Se multiplicarmos ambos os lados por n, então $n^2 > n$ (verdadeiro);
 - Caso 3 (n < 0): Temos $n \le -1$. Se $n^2 \ge 0$ (multiplicação de mesmo sinal), logo $n^2 > n$ (verdadeiro).

Prova por Casos - Exemplo [Rosen, 2019]

- Ex.: "Prove que se n for um número inteiro, então $n^2 > n$."
 - Proposições:
 - p: "n é inteiro":
 - $q: "n^2 > n"$;

Prova por Casos - Exemplo [Rosen, 2019]

- Ex.: "Prove que se n for um número inteiro, então $n^2 \ge n$."
 - Proposições:
 - p: "n é inteiro";
 - $q: "n^2 \ge n";$
 - Sequência de prova:
 - Caso 1 (n = 0): $0^2 \ge 0$ (verdadeiro);
 - Caso 2 (n > 0): Suponha $n \ge 1$. Se multiplicarmos ambos os lados por n, então $n^2 \ge n$ (verdadeiro);
 - Caso 3 (n < 0): Temos $n \le -1$. Se $n^2 \ge 0$ (multiplicação de mesmo sinal), logo $n^2 > n$ (verdadeiro).

Erros Comuns em Demonstrações

Frros Comuns

- Segundo [Rosen, 2019], são comuns os erros durante a construção de provas matemáticas
 - Erros podem ser causadas por operações incorretas ou condições não observadas durante o processo de prova;
- Erros, obviamente, invalidam a prova matemática
 - Cada passo precisa ser correto;
 - A conclusão deve seguir logicamente os passos anteriores.

"Prova" que 2=1 [Rosen, 2019]

Considere o "método de prova" abaixo:

	Passo	Descrição
1.	a = b	Condição inicial.
2.	$a^2 = ab$	Multiplicação dos dois lados por a.
3.	$a^2 - b^2 = ab - b^2$	Subtração de b^2 dos dois lados.
4.	(a-b)(a+b)=b(a-b)	Fatoração de ambos os lados.
5.	a+b=b	Divisão dos dois lados por $a-b$.
6.	2b = b	Substituição de a por b (condição inicial).
7.	2 = 1	Divisão dos dois lados por b.

- Qual o erro do "método de prova" acima?
 - Passo 5: Se a = b, o passo corresponderia a dividir por zero.
 Essa condição é inválida para manutenção da igualdade.

"Prova" que 2=1 [Rosen, 2019]

Considere o "método de prova" abaixo:

	Passo	Descrição
1.	a = b	Condição inicial.
2.	$a^2 = ab$	Multiplicação dos dois lados por a.
3.	$a^2 - b^2 = ab - b^2$	Subtração de b^2 dos dois lados.
4.	(a-b)(a+b)=b(a-b)	Fatoração de ambos os lados.
5.	a+b=b	Divisão dos dois lados por $a - b$.
6.	2b = b	Substituição de a por b (condição inicial).
7.	2 = 1	Divisão dos dois lados por b.

- Qual o erro do "método de prova" acima?
 - Passo 5: Se a = b, o passo corresponderia a dividir por zero
 Essa condição é inválida para manutenção da igualdade.

• Considere o "método de prova" abaixo:

Passo Descrição $1 \quad a = b$ Condição inicial. 2. $a^2 = ab$ Multiplicação dos dois lados por a. $3 \quad a^2 - b^2 = ab - b^2$ Subtração de b^2 dos dois lados. 4. (a-b)(a+b) = b(a-b)Fatoração de ambos os lados. 5. a + b = bDivisão dos dois lados por a - b. 6. 2b = bSubstituição de a por b (condição inicial). 7. 2 = 1Divisão dos dois lados por b.

- Qual o erro do "método de prova" acima?
 - Passo 5: Se a = b, o passo corresponderia a dividir por zero.
 Essa condição é inválida para manutenção da igualdade.

• Considere o "método de prova" abaixo:

Passo Descrição 1. 0 = 1 Condição inicial. 2. $0 = 0 + 0 + 0 + 0 + \dots$ Uso de uma série igual ao valor 0. 3. $0 = (1-1) + (1-1) + \dots$ Substituição do valor 0 por (1-1). 4. $0 = 1 + (-1+1) + (-1+1) + \dots$ Alteração da posição dos parênteses. 5. $0 = 1 + 0 + 0 + 0 \dots$ Substituição de (-1+1) por 0. 6. 0 = 1 Fim.

- Qual o erro do "método de prova" acima?
 - A série tem infinitos números e não pode ser simplificada dessa forma

"Prova" que 0=1

Introdução

• Considere o "método de prova" abaixo:

	Passo	Descrição
1.	0 = 1	Condição inicial.
2.	$0 = 0 + 0 + 0 + 0 + \dots$	Uso de uma série igual ao valor 0.
3.	$0 = (1-1) + (1-1) + \dots$	Substituição do valor 0 por (1-1).
4.	$0 = 1 + (-1 + 1) + (-1 + 1) + \dots$	Alteração da posição dos parênteses.
5.	0 = 1 + 0 + 0 + 0	Substituição de $(-1+1)$ por 0 .
6.	0 = 1	Fim.

- Qual o erro do "método de prova" acima?

• Considere o "método de prova" abaixo:

	Passo	Descrição
1.	0 = 1	Condição inicial.
2.	$0 = 0 + 0 + 0 + 0 + \dots$	Uso de uma série igual ao valor 0.
3.	$0 = (1-1) + (1-1) + \dots$	Substituição do valor 0 por (1-1).
4.	$0 = 1 + (-1 + 1) + (-1 + 1) + \dots$	Alteração da posição dos parênteses.
5.	0 = 1 + 0 + 0 + 0	Substituição de $(-1+1)$ por 0 .
6.	0 = 1	Fim.

- Qual o erro do "método de prova" acima?
 - A série tem infinitos números e não pode ser simplificada dessa forma.

Raciocínio Circular

- Ocorre quando um ou mais passos da demonstração baseiam-se na própria sentença a ser demonstrada;
 - Pode ser considerado um tipo de erro desonesto [Rosen, 2019].
- Exemplo¹⁷:
 - Suponha n^2 é ímpar.
 - Então, $n^2 = 2k + 1$, para um inteiro k qualquer;
 - Do mesmo modo, n = 2l + 1 para um inteiro l qualquer;
 - Logo, n é ímpar.

¹⁷Erro de Raciocínio Circular

Estratégias para Prova de Teoremas

Estratégias para Prova de Teoremas

- Não existe um método pré-definido, que se aplique a qualquer tipo de prova matemática;
 - O ideal é ter conhecimento de diferentes técnicas:
 - Fatores pessoais podem influenciar na escolha do método
 - A percepção de características do problema é individual;
- A resolução de muitos exercícios pode fornecer conhecimento para escolha da técnica mais promissora.

0000

Sequência Sugerida de Prova 1/2

Fonte: Próprio autor

Link: Imagem completa e ampliada.

0000

Sequência Sugerida de Prova 2/2

Fonte: Próprio autor

Link: Imagem completa e ampliada.

- Avaliar primeiramente o método de Prova Direta
 - Tente expandir as definições existentes nas hipóteses;
 - Raciocine sobre as hipóteses (avalie suas características e faça inferência possíveis cenários);
 - Avalie postulados e teoremas relacionados¹⁸;
 - Caso a Prova Direta não gere resultados, avalie outros métodos, como Contraposição e Contradição;
- No Método da Contraposição, tente inverter a conclusão, para verificar se o resultado fica mais claro;
- No Método da Contradição, verifique se é possível gerar uma contradição a respeito do resultado inicial.

¹⁸Também proposições, lemas, corolários, etc.

Adaptação de Provas Existentes [Rosen, 2019]

- Uma abordagem para construção de provas é analisar possíveis provas anteriores
 - Adequar uma prova já existente ao problema atual pode ser um procedimento mais rápido e efetivo;
- Na escrita de um novo teorema (ou prova), procure avaliar teoremas ou provas semelhantes
 - O conhecimento prévio de problemas e a repetição, com exercícios, pode facilitar esta etapa.

- Corresponde a uma análise inteligente e esperta a respeito do problema;
- Ao analisar o problema, busca-se observar e tirar conclusões secundárias
 - Conclusões secundárias podem auxiliar na generalização;
 - Nem sempre esse passo é trivial.

¹⁹Tradução da palavra em inglês serendipity, definida por [Gersting, 2014]. Pode ser também traduzida como "acontecimento fortuito", "acaso", "coincidência", "feliz coincidência", "sorte", etc.

Referências I

Introdução

Anna Carolina Lafetá, Elaine Silva, J. L. (2017).

Teoria dos Números Transcendentes: Do Teorema de Liouville à Conjectura de Schanuel.

Sociedade Brasileira de Matemática, 1 edition.

[Online]; acessado em 22 de Setembro de 2021. Disponível em

http://www.im.ufrj.br/walcy/Bienal/textos/TEORIA%20DOS%20NUMEROS.pdf.

Cavalcanti, J. (2020).

Matemática discreta - 04.

Disponível em http://www.univasf.edu.br/jorge.cavalcanti/Mat Disc Parte04.pdf.

da Silva, D. M. (2012a).

Notas de Aula 1: Lógica, Predicados, Quantificadores e Inferência.

IFMG - Instituto Federal de Minas Gerais, Campus Formiga.

da Silva, D. M. (2012b).

Slides de aula.

Fonseca, R. V. (2015).

Números primos e o Teorema Fundamental da Aritmética: uma investigação entre estudantes de licenciatura em Matemática.

PhD thesis

Disponível em https://tede2.pucsp.br/handle/handle/11036.

Gersting, J. L. (2014).

Mathematical Structures for Computer Science.

W. H. Freeman and Company, 7 edition.

Referências II

Introdução

Hokama, P. (2021).

Matemática discreta.

[Online]; acessado em 28 de Setembro de 2021. Disponível em

https://www.hokama.com.br/disciplinas/mat017_2021s1/aula07-handout.pdf.

Justo, D., Sauter, E., Azevedo, F., Guidi, L., and Konzen, P. H. (2020).

Cálculo Numérico, Um Livro Colaborativo - Versão Python.

UFRGS - Universidade Federal do Rio Grande do Sul. https://www.ufrgs.br/reamat/CalculoNumerico/livro-py.pdf.

Levin, O. (2019).

Discrete Mathematics - An Open Introduction.

University of Northern Colorado, 7 edition.

[Online] Disponível em http://discrete.openmathbooks.org/dmoi3.html.

Manfio, F. (2020).

Fundamentos da geometria.

Disponível em https://sites.icmc.usp.br/manfio/GeoAxiomatica.pdf.

Medeiros Jr., N. N. d. (2015).

O lema de gauss.

Online]; acessado em 22 de Setembro de 2021. Disponível em https://www.professores.uff.br/nmedeiros/wp-content/uploads/sites/88/2017/08/Algebra-II-2015 1-lemagauss.pd.

Rosen, K. H. (2019).

Discrete Mathematics and Its Applications.

McGraw-Hill, 8 edition.

Referências III

Introdução

0000

Silva, T. O. e. (2015).

Goldbach conjecture verification.

[Online]; acessado em 22 de Setembro de 2021. Disponível em http://sweet.ua.pt/tos/goldbach.html.