Chiffrement par blocs

HackademINT

23 novembre 2021

Chiffrement

CC-BY-SA-4.0
https://commons.wikimedia.org/wiki/File:
Alice-bob-mallory.jpg

Figure – Représentation d'une attaque

Chiffrement asymétrique

https://commons.wikimedia. org/wiki/File:Asymmetric_ cryptography_-_step_1.svg

(a) Création des clés

https://commons.wikimedia. org/wiki/File:Asymmetric_ cryptography_-_step_2.svg

(b) Envoi d'un message

Pas de panique!

Principe du RSA

Soit:

- Des entiers p et q premiers distincts. On pose $n = p \times q$
- La fonction indicatrice d'Euler φ : ici, $\varphi(n) = (p-1) \times (q-1)$
- Un entier e tel que :
 - **1** $1 < e < \varphi(n)$
 - **2** e et $\varphi(n)$ sont premiers entre eux.

(n, e) est la clé publique

Clé privée

$$\mathsf{Rappel}: \varphi(\mathit{n}) = (\mathit{p}-1) \times (\mathit{q}-1)$$

Clé publique : (n, e). Comment obtenir la clé privée?

On choisit *d* tel que :

$$d \times e \equiv 1 [\varphi(n)]$$

C'est à dire qu'on cherche un couple (d, k) tel que :

$$de + k\varphi(n) = 1$$

Clé privée : (n, d)

Chiffrement et déchiffrement

Soit m un message à chiffrer. On pose c ainsi :

$$c = m^e \mod n$$

c est le message chiffré

Opération inverse :

$$m = c^d \mod n$$