SSC-237 Redes de Alto Desempenho

Na aula passada...

- sinais: natureza, caracterização, decomposição em harmônicas (fourier)
- diferença baud-rate & bit rate
- como conseguimos passar 56 kps em um canal de 3,4 KHz
- Porque ADSL "matou" os modems?
- Nyquist & Shannon
- Digitalização de áudio: amostragem & quantização
- Compressão = eliminação de redundâncias (e, muitas vêzes, inserção de distorções)

- a qualidade do áudio é influenciada pelo atraso imposto na transmissão
- jitter (variação do atraso) pode influênciar também
- e a taxa de erro!
- na provinha...
 - qual a diferença em usar circuit-switching ou packetswitching?
 - em que condições haverá congestionamento?
 - tem como transformar um fluxo variável de bit num outro razoávelmente constante?

Nesta aula

- Vídeo digital
- Parâmetros de qualidade
- Transmissão em redes de comunicação
- ATM (Assincronous Transfer Mode)

1. Vídeo

- Por quê estudar vídeo analógico?
 - Indústria da TV.
 - Digitalização = passo posterior.
- O que é necessário saber?
 - Varredura.
 - Parâmetros.
 - Padrões para sistemas em cores.
- Como transmitir vídeo em redes (ATM)

Provinha 14.09.2009

- Porque ATM é uma boa tecnologia para transporte multimídia? Porque não temos ATM_to_the_Desk?
- Quais as vantagens em usar ATM para fazer a alocação dos streams da provinha da semana passada? Que tipo de serviço deveria ser usado? O desempenho de um canal CBR é melhor que um VBR? Porque?
- Porque alguém contrataria canais UBR?

- Uma imagem na natureza é um fenômeno paralelo todos os objetos na imagem estão refletindo a luz ao mesmo tempo.
- O olho humano é também um sensor paralelo, isto porque os receptores bastonetes e cones da retina são todos ativados simultaneamente. O nervo óptico contém milhões de conexões para levar a informação em paralelo até o cérebro.
- Contudo, no mundo eletrônico, uma conexão paralela requerendo milhões de ligações é impraticável. Uma conexão única, ou algumas poucas conexões, são fáceis de manusear. Um sensor de vídeo (câmera) implementa um esquema para converter uma imagem que é basicamente paralela, através de uma voltagem elétrica que gera um sinal de vídeo

- Uma imagem pode ser capturada eletricamente através de uma leitura seqüencial dos valores de brilho de uma série de pontos que a compõem, convertendo assim a imagem inteira.
- Isso é chamado de rastreamento ou varredura (scanning). Um sinal analógico (voltagem) é gerado, representando o brilho de um ponto da imagem. Se o processo é feito rapidamente (30 a 60 vezes por segundo), os olhos vêem uma imagem contínua.

1.1 Varredura

- Quadro
- Retraço
 - HorizontalBlanking Interval
 - Vertical Blanking Interval (VBI).
- Sensores são desligados durante um retraço.

1.1 Varredura

- Quadro = seqüência de linhas separadas por intervalos em branco.
- Informações extras nos retraços.
 - Closed caption, p.e. (VBI 21).

- 1.2 Parâmetros de varredura.
 - Taxa de Aspecto (Aspect ratio).
 - Também chamada de razão de aspecto.
 - É definida como a razão entre a largura e a altura do quadro.
 - A taxa de aspecto define o "formato" da imagem (linhas x colunas).
 - A razão de aspecto dos sistemas de televisão convencionais é padronizada em 4:3.
 - HDTV = 16:9.

1.2 Parâmetros de varredura.

- 1.2 Parâmetros de varredura.
 - Número de linhas.
 - É o número de linhas de varredura em um quadro.
 - Quanto mais linhas, maior a resolução.
 - 525 (EUA), 625 (Europa).

- 1.2 Parâmetros de varredura.
 - Taxa de quadros.
 - Em sistemas convencionais: 25 ou 30 fps.
 - Depende do país.
 - Essas taxas produzem flickering.
 - > 50 fps.
 - Entrelaçamento (interlace).
 - Permite aumentar a taxa de refresh sem aumentar a quantidade de amostras.

■ 1.3 Padrões para sistemas em cores.

 Vídeo composto (composite video): informações do vídeo são combinadas em um único sinal composto de vídeo.

- Vídeo componente (component video): possui vários canais.
 - Ex. um para a luminância e outro para a crominância
 - Ex. R, G, B

- 1.3 Padrões para sistemas em cores.
 - Sistemas de transmissão (terrestre) de TV utilizam vídeo composto.
 - Requer menos canais que RGB -> menos banda.
 - Padrões para cores em vídeo composto mais comuns: NTSC, SECAM e PAL.

- 1.3 Padrões para sistemas em cores.
 - NTSC (National Television Standards Committee) -Criado nos Estados Unidos em 1953. Conhecido como: Never Twice the Same Color, devido à susceptibilidade do sinal. Taxa de quadros é de 29.97/segundo com 525 linhas/quadro.
 - SECAM (Systeme En Coleur Avec Memoire) Criado na França no final dos anos 60, e usado por alguns outros países. Taxa de quadros é 25/segundo com 625 linhas/quadro. Alguns chamam o padrão de System Essentially Contrary to the American Method.
 - PAL (Phase Alternate Line) Desenvolvido pela Alemanha/Inglaterra no final dos anos 60. Usado na Inglaterra e em muitos países da Europa. Taxa de quadros 25/segundo com 625 linhas/quadro. Também chamado de Perfect At Last.

- Antes de poder ser utilizado em um computador um sinal analógico de vídeo precisa ser digitalizado.
 - Armazenamento, edição, transmissão.
- Muitas vezes, o vídeo também sofre um processo chamado codificação.

- Codificação de vídeo.
 - Processo de compressão e descompressão de sinais digitais de vídeo.
 - Para melhor entender codificação é necessário entender alguns conceitos fundamentais.

- Vídeo digital é uma representação de uma cena visual natural (mundo real), amostrada espacial e temporalmente.
- Uma cena é amostrada em um ponto no tempo para produzir um quadro ou um campo.
- A amostragem é repetida em intervalos regulares (1/25, 1/30) para reproduzir a sensação de movimento.
- Três conjuntos de amostras (componentes) são geralmente necessária para representar cenas em cores.
- Formatos padrões para representar vídeo digital.

- 2.1 Cenas de vídeo naturais
 - Uma cena é composta de vários objetos com características próprias (forma, textura, iluminação,...)
 - Cor e brilho variam seus graus de suavidade pela cena (tom contínuo).
 - Características relevantes:
 - Características espaciais: variação na textura, número e forma dos objetos, cor, ...).
 - Características temporais: movimento do objeto e da câmera, mudanças na iluminação, ...).

2.2 Captura

 Envolve amostragem espacial (uma área retangular da cena) e temporal (uma série de quadros).

Temporal samples

Spatial samples

2.2 Captura

- Cada amostra espaço-temporal é representada como um conjunto de números que descreve o brilho e a cor da amostra.
- Responsável por obter a amostra: CCD.
 - Sensor fotossensível de câmeras.

- 2.2.1 Amostragem espacial
 - Saída do CCD = sinal analógico de vídeo.
 - Amostragem = obter valores do sinal em um ponto no tempo.
 - Formato mais comum de amostragem = grid.

- 2 grids soprepostos.
- Pixel (picture element).
- Quantas amostras?

- 2.2.1 Amostragem espacial
 - 'Coarse' sampling grid = baixa resolução

- 2.2.2 Amostragem temporal
 - Vídeo é capturado tomando amostras retangulares do sinal em intervalos regulares.
 - O 'play back' da série de amostras produz a sensação de movimento.
 - Quanto maior a taxa de amostragem, mais suave o movimento parece. Contudo, mais amostras são capturadas e armazenadas.
 - Taxas:
 - < 10 fps very low bit rate. Movimentos não naturais.
 - Ente 10 e 20 não 'capta' corretamente movimentos rápidos.
 - Entre 25 e 30 padrão de TV.
 - Entre 50 e 60 qualidade muito boa. Muitas amostras.

2.2.3 Quadros e campos

- Amostragem progressiva produz quadros completos.
- Amostragem entrelaçada produz uma série de campos entrelaçados.
 - Dois campos: linhas pares e linhas ímpares.

- 2.2.3 Quadros e campos
 - Dois campos = 1 quadro. Cada campo contém metade da informação do quadro.
 - Vantagem: é possível enviar o dobro de campos por segundo que quadros por segundo, com a mesma taxa de dados, produzindo movimentos suaves.
 - Desvantagens: ruído, flikering.

2.2.3 Quadros e campos

- 2.3 Espaços de cores
 - Espaço de cor refere-se ao método escolhido para representar luminância e cor em cada amostra espacial de vídeo.
 - Os mais comuns para vídeo colorido:
 - RGB
 - YCrCb

2.3.1 RGB

- Necessita de três valores para indicar a proporção relativa das cores primárias.
- Bom para captura e exibição de imagens.

- 2.3.2 YCrCb
 - ou YCbCr, ou YUV.
 - É um modo mais eficiente de se representar cor.
 - Baseado no HVS (Human Visual System).
 - Luminância (Y) e Crominância (Cr, Cg e Cb).

$$Y = {}_{Kr}R + {}_{Kq}G + {}_{Kb}B$$

2.3.2 YCrCb

$$Y = {_{Kr}R} + {_{Kg}G} + {_{Kb}B}$$

$$Cr = R - Y$$

$$\mathbf{c}$$
 Cg = G - Y

•
$$Cb = B - Y$$

- YCrCb tem 4 componentes e RGB tem 3!
 - Eficiência?

- 2.3.2 YCrCb
 - Cr + Cg + Cb é uma constante!
 - Cg não é armazenado.
 - Kr + Kg + Kg = 1.
 - G pode ser extraído de YCrCb.
 - G não é representado. Menos informação.
 - Cr e Cb são representados com resolução menor que Y (HVS).

2.3.2 YCrCb

- Normalmente converte-se de RGB p/ YCrCb antes de armazenar dados de vídeo.
- Fórmulas padronizadas:

$$Y = 0.299R + 0.587G + 0.114B$$

•
$$Cb = 0.564(B - Y)$$

•
$$Cr = 0.713(R - Y)$$

$$R = Y + 1.402Cr$$

$$G = Y - 0.344Cb - 0.714Cr$$

•
$$B = Y + 1.772Cb$$

- 2.3.3 Formatos de amostragem YCrCb
 - **4:4:4**
 - **4:2:2**
 - **4:2:0**

- 2.3.3 Formatos de amostragem YCrCb
 - **4:4:4**
 - Um componente Y, um Cr e um Cb para cada pixel.

- 2.3.3 Formatos de amostragem YCrCb
 - 4:2:2 (YUY2)
 - Para cada 4 Y (na horizontal) existem 2 Cr e 2
 Cb.

- 2.3.3 Formatos de amostragem YCrCb
 - 4:2:0 (YV12)
 - Para 4 Y, 1 Cr e 1 Cb.

0	0	O ©	0
0	0	0	0
0	0	0	0
0	0	©	Ω

- 2.4 Formatos de Vídeo
 - Formatos intermediários
 - Úteis antes de codificar ou transmitir.
 - Common Intermediate Format (CIF).

Format	Luminance resolution (horiz. × vert.)	Bits per frame (4:2:0, eight bits per sample)
Sub-QCIF Quarter CIF	128 × 96 176 × 144	147456 304128
(QCIF) CIF 4CIF	352 × 288 704 × 576	1216512 4866048

2.4 Formatos de Vídeo

- 2.5 Codificação
 - (compressão)
 - enCOder/DECoder
 - Remover redundâncias (espaciais e teporais).

2.5 Codificação

spatial correlation

- 2.5 Codificação
 - Modelo Temporal
 - Predição temporal (do quadro anterior)
 - Estimativa de movimento
 - Compensação de movimento

- 2.5 Codificação
 - Modelo Temporal

- Modelo Espacial
 - Codificação preditiva
 - Codificação por transformada
 - Quantização
 - Codificação por entropia
 - Estatística
 - Diferencial

Para Saber Mais

- Multimedia Systems. Buford, J. F. K.,
 Addison-Wesley, 1994. (capítulos 5 e 6).
- Luther, A. C. Using Digital Video. AP Professional, 1995. (capítulo 2 e apêndice A).
- Richardson, L. E. G. H.264 and MPEG-4 Video Compression, Wiley, 2003. (capítulos 2 e 3).

ATM: *Uma* introdução

Porque ATM?

- O curso de Redes de Alto Desempenho busca mostrar as capacidades requeridas das redes de computadores para a transmissão de tráfego que exige determinada *Qualidade de Serviço*.
- Depois da avaliação das características básicas que a representação eletrônica de mídias contínuas apresentam, vamos olhar como podemos prover um meio de transmissão destas mídias sem alterar (significantemente) seu significado. ATM é uma destas tecnologias.

A Transmissão Assíncrona

- Características
 - comutação rápida de células de tamanho pequeno e fixo
 - multiplexação estatística
 - aproveita o fato de que a largura de banda requerida para uma conexão pode variar com o tempo
 - banda sob demanda
 - Controle de Admissão de Conexão CAC
 - Qualidade de Serviço QoS

ATM = Cells

53 Bytes

Uma das maiores diferenças entre ATM e outras tecnologias convencionais é que ATM usa unidades de informação simples, de tamanho fixo, chamadas células.

- Controle de Admissão de Conexão -CAC
 - mecanismos pelos quais se decide aceitar ou não uma nova conexão levando-se em consideração a carga atual na rede e as características da nova conexão a ser admitida
 - Descritores de tráfego
 - taxa de bits
 - pico da taxa de bits
 - tamanho médio das rajadas
 - probabilidade de chegada de células

Qualidade de Serviço no ATM

- Qualidade de Serviço QoS é a parametrização, para o sistema, da vontade ou necessidade do usuário
- Os parâmetros de QoS são passados ao sistema no momento do estabelecimento da conexão através do CAC

QoS no ATM

- Essencialmente, faz-se um "contrato" com a rede, baseando-se em parâmetros QoS, onde se descreve o tráfego que se pretende transportar através de parâmetros como:
 - o pico de largura de banda
 - a média da largura de banda
 - duração média das rajadas no caso de taxas de bits variáveis,
 - o delay máximo entre as células, etc.

- É de responsabilidade dos dispositivos ATM aderir a este "contrato" através do que é chamado de "traffic shaping"
 - utilização de filas para acomodar as rajadas de dados, limitar o pico da taxa de dados e "suavizar" o delay entre células, de modo a fazer com que o tráfego seja adequado ao especificado no "contrato"
- A rede deve manter os níveis de QoS especificados até o final da conexão

- A camada de adaptação ATM AAL
 - montagem das células na origem e desmontagem no destino
 - fornece uma interface para as aplicações
 - composta de 2 subcamadas
 - camada de convergência CS
 - camada de segmentação e remontagem SAR
 - Existem 4 AALs AAL1, AAL2, AAL3/4, AAL5

A camada ATM

- Estabelece as conexões virtuais e passa as células ATM através da rede, utilizando-se das informações contidas no header de cada célula
- Multiplexa e demultiplexa as células de diferentes conexões virtuais, que são identificadas pelos seus rótulos VCI e VPI
- Traduz os valores de VCI e VPI nos switches ATM
- Extrai o header e identifica a qual AAL a célula deve ser enviada e insere o header após receber o PDU do AAL;
- Gerencia o controle de fluxo no UNI.

- responsável pela transmissão das células
- existem dois tipos de interfaces para estabelecimento de conexões - UNI e NNI

- Classes de serviços e respectivos AALs
 - AALs desenvolvidos a partir de classes de serviços

	Α		В	С				D
Timing	Real Time	None	Real Time	None	Real Time	None	Real Time	None
Bit Rate	Constant		Variable		Constant		Variable	
Mode	Connection Oriented			Conectionless				

- rt-CBR
 - taxa constante de bits (pico)
 - análogo ao STM
 - orientado a conexão
 - aplicações sensíveis a perdas e atrasos
 - Parâmetros de QoS :
 - PCR Peak Cell rate
 - CDV Cell Delay Variation
 - CTD Cell Transfer Delay

- rt-VBR
 - taxa de bits variável
 - orientado a conexão
 - transmisão de áudio e vídeo comprimidos
 - parâmetros de QoS
 - PCR Peak Cell Rate
 - MBS Maximum Burst Size
 - CTD Cell Transfer Delay
 - CLR Cell Loss Ratio

- nrt-VBR
 - taxa variável de bits
 - não real-time
 - utilizado para transferência de dados
 - orientado a conexão
 - parâmetros de QoS
 - PCR Peak Cell Rate
 - MBS Maximum Burst Size
 - CLR Cell Loss Ratio

ABR

- utiliza a largura de banda disponível
- transferência de dados em rajadas (LANs)
- aplicações onde seja possível alterar a taxa de bits
- feedback da rede
- parâmetros de Qos
 - PCR Peak Cell Rate
 - MCR Minimum Cell Rate

UBR

- taxa de bits não especificável
- "best effort service"
- não há garantias específicas quanto ao tráfego
- não há negociação de banda
- não há feedback da rede

Classes e AALs

	AAL1	AAL2	AAL3/4	AAL5
Real Time	sim	sim	não	não
Bit Rate	constante	variável	variável	variável
Orientado a conexão	sim	sim	sim	não
Tipo de tráfego	áudio e emulação de	áudio e	dados	dados e
	circuito	vídeo		outros

Parâmetros especificáveis por classe

	CBR	rt-VBR	nrt-VBR	ABR	UBR
Delay entre células	especificável	especificável	não	não	não
			especificável	especificável	especificável
taxa de erros de bit	especificável	especificável	para estudos	não	não
			futuros	especificável	especificável
perda de células (% de perda)	especificável	especificável	especificável	especificável	não
					especificável
Taxa de erros de célula	especificável	especificável	especificável	especificável	não
					especificável

- O transporte de vídeo sobre ATM divide-se em duas classes
 - Video em pacotes ou vídeo VBR
 - compressão com taxa variável de bits
 - herança de LANs tradicionais
 - Vídeo CBR
 - compressão com taxa de bits constante
 - varia-se o nível de compressão

Video CBR versus Video VBR

Provinha 14.09.2009

- Porque ATM é uma boa tecnologia para transporte multimídia? Porque não temos ATM_to_the_Desk?
- Quais as vantagens em usar ATM para fazer a alocação dos streams da provinha da semana passada? Que tipo de serviço deveria ser usado? O desempenho de um canal CBR é melhor que um VBR? Porque?
- Porque alguém contrataria canais UBR?