

Rapport Tp1 Calcul Scientifique - Analyse de Données

Mdaa Saad // El Bennouri Abdeslam // Dahhoumi Mouad

D
partement Sciences du Numérique - 1 A $2019\mbox{-}2020$

Pendant le premier Tp analyse de Donneés on a eu $X = [R(:) \ V(:) \ B(:)]$. Donc X a 3 colonnes qui correspondent aux niveaux de vert , rouge, bleu par pixel . le tableau X est de taille (71070,3) puisque l'image est de taille 206*345 = 71070 (ie l'image contient 71070 pixels)

Question 2

voir visualisation.m

Question 3

On remarque que la projection des données centreés sur l'axe principale nous permet de bien les distinguer (ie les données sont dispersées) contrairement à la projection des données centreés sur l'axe canonique qui est bien compacte donc moins claire.

Question 4

On peut quantifier l'information contenue dans les q premières composantes principales à partir de la matrice Σ en calculant la contraste conservé par les q Composantes Principales :

$$\frac{\sum_{j=1}^{q} \lambda_j}{\sum_{j=1}^{p} \lambda_j}$$

On remarque que la projection sur le premier axe principale nous permet de distinguer les 2 classes clairement contrairement à la projection sur l'axe canonique

Avec la 1er composante on est capable de constater 2 classes , avec la 2eme composante on est capable de constater 2 classes , avec la 3eme composante on est capable de constater 3 classes , et avec touts les trois on peut constater les 4 classes.

Dans le plan on peut distinguer les 4 classes mais la classe 3 et 4 sont un peu confondue

Dans l'espace on distingue clairement les 4 classes

On constate que dans la donneè quatre classes la plus part de l'information est contenue dans les 3 premieres composantes contrairement aux donneè deux classes

Dans le jeu des données dataset.mat On peut distinguer 6 classes d'individus

Proj. des donnees sur 3 1ers axes ppaux

Dans le jeu des données dataset.mat On peut distinguer 1 classe de variables

Question 8

soit (λ,x) un couple propre de H^TH donc : $H(H^TH).x = (HH^T)H.x = \lambda.H.x$ on pose y = H.x donc

$$\boxed{HH^T.y = \lambda.y}$$

Donc connaître les elements propres de $H^T H$ permet de connaître les elements propres de $H H^T$

```
Erreur relative pour la methode avec la grande matrice = 9.996e-09
Erreur relative pour la methode avec la petite matrice = 9.651e-09
Ecart relatif entre les deux valeurs propres trouvees = 5.47e-04
Temps pour une ite avec la grande matrice = 3.378e-03
Temps pour une ite avec la petite matrice = 1.274e-04
```

Question 10

Lien avec l'ACP : à ce qui concerne l'ACP on cherche seulement a reduire les dimensions d'un espace ,donc on a pas besoin de savoir touts les valeurs propres mais seulement les q-premieres vap selon l'ordre croissant.

Question 11

Si on choisit d'utiliser la méthode de la puissance itérée pour calculer les éléments propres de Σ on doit appliquer la méthode sur la matrice Xc^TXc