Supplementary Methods

Amos Apreku

```
library(tidyverse)
-- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
v dplyr 1.1.4 v readr
                               2.1.5
v lubridate 1.9.3
                  v tidyr
                             1.3.1
         1.0.2
v purrr
-- Conflicts ----- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()
                masks stats::lag()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become
library(dplyr)
library(ggrepel)
dat <- readRDS("../data/dat.rds")</pre>
names(dat)
 [1] "date"
                     "mmwr_year"
                                     "mmwr_week"
                                                      "state"
 [5] "state_name"
                     "population"
                                     "region"
                                                      "region_name"
 [9] "cases"
                     "hosp"
                                     "deaths"
                                                      "series_complete"
[13] "booster"
head(dat)
       date mmwr_year mmwr_week state state_name population region
1 2020-01-25 2020
                                AK
                                       Alaska 732441
```

```
AK
2 2020-02-01
                  2020
                                5
                                            Alaska
                                                       732441
                                                                   10
3 2020-02-08
                  2020
                                                       732441
                                6
                                     ΑK
                                            Alaska
                                                                   10
4 2020-02-15
                  2020
                                7
                                     AK
                                            Alaska
                                                       732441
                                                                   10
5 2020-02-22
                  2020
                               8
                                     ΑK
                                            Alaska
                                                       732441
                                                                   10
6 2020-02-29
                  2020
                                9
                                     AK
                                            Alaska
                                                       732441
                                                                   10
        region_name cases hosp deaths series_complete booster
1 Pacific Northwest
                             NA
2 Pacific Northwest
                             NA
                                                    NΑ
                                                             NA
3 Pacific Northwest
                             NA
                                     0
                                                    NA
                                                             NA
4 Pacific Northwest
                        0
                             NA
                                     0
                                                    NA
                                                             NA
5 Pacific Northwest
                                                    NA
                        0
                             NA
                                     0
                                                             NA
6 Pacific Northwest
                                     0
                                                     NA
                             NA
                                                             NA
# Load required libraries
library(dplyr)
library(knitr)
library(kableExtra)
```

Attaching package: 'kableExtra'

The following object is masked from 'package:dplyr':

group_rows

```
# Assuming your data is loaded into a dataframe called 'dat'
# Summarize metrics by region and state
summary_table <- dat %>%
group_by(region_name, state_name) %>%
summarize(
    Total_Cases = sum(cases, na.rm = TRUE),
    Total_Hospitalizations = sum(hosp, na.rm = TRUE),
    Total_Deaths = sum(deaths, na.rm = TRUE),
    Avg_Vaccination_Complete = mean(series_complete, na.rm = TRUE),
    .groups = 'drop'
)

# Create a formatted table
summary_table %>%
kbl(caption = "Descriptive Summary of COVID-19 Metrics by State and Region") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"), full_width = FALSE)
```

Table 1: Descriptive Summary of COVID-19 Metrics by State and Region $\,$

region_name	state_name	Total_Cases	Total_Hospitalizations	Total_Deaths	Avg_Vac
Central Plains	Iowa	908936	59833	11516	_
Central Plains	Kansas	945923	62167	10418	
Central Plains	Missouri	1790763	144374	24614	
Central Plains	Nebraska	575134	35319	5809	
Mid-Atlantic	Delaware	333772	22056	3049	
Mid-Atlantic	District of Columbia	178904	18098	1803	
Mid-Atlantic	Maryland	1379385	105562	19494	
Mid-Atlantic	Pennsylvania	3559331	270480	56413	
Mid-Atlantic	Virginia	2310846	138398	24954	
Mid-Atlantic	West Virginia	650556	47718	8621	
Midwest	Illinois	4136659	254531	40821	
Midwest	Indiana	2076326	151659	28472	
Midwest	Michigan	3106362	211790	39289	
Midwest	Minnesota	1795771	87985	16543	
Midwest	Ohio	3441458	284963	52592	
Midwest	Wisconsin	2030717	137940	18018	
Mountain States	Colorado	1783663	106829	16228	
Mountain States Mountain States	Montana	333959	32324	3563	
Mountain States Mountain States	North Dakota	291093	$\frac{32324}{16657}$	2605	
Mountain States Mountain States	South Dakota	282895	21397	3031	
Mountain States	Utah	1097475	51431	5769	
Mountain States	Wyoming	187034	12198	1454	
NY/NJ/PR/VI	New Jersey	3075271	192382	37375	
NY/NJ/PR/VI	New York	3572043	422486	45110	
NY/NJ/PR/VI	Puerto Rico	1122076	32013	6885	
New England	Connecticut	982335	72554	13040	
New England	Maine	322982	17137	3079	
New England	Massachusetts	2242176	119380	22699	
New England	New Hampshire	382013	20544	2791	
New England	Rhode Island	441466	14945	3641	
New England	Vermont	154243	7354	447	
Pacific	Arizona	2451004	165278	31618	
Pacific	California	12251820	674498	115326	
Pacific	Hawaii	374264	22461	1474	
Pacific	Nevada	898164	68699	12504	
Pacific Northwest	Alaska	297588	10553	1066	
Pacific Northwest	Idaho	526118	30883	5464	
Pacific Northwest	Oregon	975856	52436	9945	
Pacific Northwest	Washington	1957759	85807	16432	
South Central	Arkansas	995043	73224	13083	
South Central	Louisiana	1566171	103105	18346	
South Central	New Mexico	681242	41362	9103	
South Central	Oklahoma	3 1306350	117246	19548	
South Central	Texas	8508204	642929	108446	
Southeast	Alabama	1659936	128837	22441	
Southeast	Florida	7572282	610281	86809	
Southeast	Georgia	3080929	256882	38284	
Southeast	Kentucky	1743117	165575	21936	
	ı	i .	* =		1

1000415

59403

15791

Southeast

Mississippi

```
dat <- dat %>%
 mutate(wave = case_when(
    date >= as.Date("2020-01-01") & date <= as.Date("2020-06-30") ~ "Wave 1",
    date >= as.Date("2020-07-01") & date <= as.Date("2021-02-28") ~ "Wave 2",
   date >= as.Date("2021-03-01") & date <= as.Date("2021-12-31") ~ "Wave 3",
   date >= as.Date("2022-01-01") & date <= as.Date("2022-06-30") ~ "Wave 4",
   date >= as.Date("2022-07-01") & date <= as.Date("2024-12-31") ~ "Wave 5",</pre>
   TRUE ~ NA character
 ))
# Calculate death rates by state and wave
death_rates <- dat %>%
  group_by(state_name, wave) %>%
 summarize(
    total_deaths = sum(deaths, na.rm = TRUE),
   population = max(population, na.rm = TRUE)
 ) %>%
 mutate(death_rate_per_100k = (total_deaths / population) * 100000)
```

`summarise()` has grouped output by 'state_name'. You can override using the `.groups` argument.

```
# View the death rates
print(death_rates)
```

```
# A tibble: 260 x 5
# Groups:
            state_name [52]
  state_name wave
                     total_deaths population death_rate_per_100k
  <chr>
                                       <dbl>
              <chr>
                            <dbl>
                                                            <dbl>
              Wave 1
                                      5024803
                                                             23.2
 1 Alabama
                             1168
2 Alabama
              Wave 2
                             8905
                                     5039877
                                                            177.
3 Alabama
              Wave 3
                             6273
                                     5039877
                                                            124.
4 Alabama
             Wave 4
                             3184
                                     5073903
                                                             62.8
5 Alabama
             Wave 5
                             2911
                                     5108468
                                                             57.0
6 Alaska
             Wave 1
                                     732441
                                                              0
                                0
7 Alaska
              Wave 2
                              194
                                      732673
                                                             26.5
8 Alaska
             Wave 3
                              713
                                      732673
                                                             97.3
                              159
9 Alaska
              Wave 4
                                      733276
                                                             21.7
10 Alaska
              Wave 5
                                0
                                      733406
                                                              0
# i 250 more rows
```

COVID-19 Death Rates by State and Wave


```
library(ggplot2)
library(dplyr)
library(maps)
```

Attaching package: 'maps'

The following object is masked from 'package:purrr':

map

```
Loading required package: viridisLite
Attaching package: 'viridis'
The following object is masked from 'package:maps':
    unemp
state_summary <- dat %>%
  group_by(state_name) %>%
  summarize(
    case_rate = sum(cases, na.rm = TRUE) / sum(population, na.rm = TRUE) * 100000,
    death rate = sum(deaths, na.rm = TRUE) / sum(population, na.rm = TRUE) * 100000,
    hosp_rate = sum(hosp, na.rm = TRUE) / sum(population, na.rm = TRUE) * 100000
  ) %>%
  arrange(desc(case_rate))
library(dplyr)
library(DT)
# Calculate total counts and rates per 100,000 for each state
state_summary <- dat %>%
  group_by(state_name) %>%
  summarize(
    total_cases = sum(cases, na.rm = TRUE),
    total_deaths = sum(deaths, na.rm = TRUE),
    total_hosp = sum(hosp, na.rm = TRUE),
    case_rate = round(sum(cases, na.rm = TRUE) / sum(population, na.rm = TRUE) * 100000),
    death_rate = round(sum(deaths, na.rm = TRUE) / sum(population, na.rm = TRUE) * 100000),
    hosp_rate = round(sum(hosp, na.rm = TRUE) / sum(population, na.rm = TRUE) * 100000)
  ) %>%
  arrange(desc(case_rate))
# Load US map data
us_states <- map_data("state")</pre>
# Prepare the data by converting state names to lowercase for matching
```

library(viridis)

Total COVID-19 Cases by State

Total COVID-19 Deaths by State


```
library(dplyr)
library(ggplot2)
library(naniar)

# Check the overall missingness in the dataset
miss_summary <- dat %>%
summarise(
    missing_cases = sum(is.na(cases)),
    missing_hosp = sum(is.na(hosp)),
    missing_deaths = sum(is.na(deaths)),
    missing_series_complete = sum(is.na(series_complete)),
    missing_booster = sum(is.na(booster))
)

print(miss_summary)
```

```
missing_cases missing_hosp missing_deaths missing_series_complete
4264 3122 3098 6708
missing_booster
6708
```

```
# Visualize missing data patterns
gg_miss_upset(dat)
```



```
# Calculate the percentage of missing data by state and variable
missing_by_state <- dat %>%
  group_by(state) %>%
  summarise(
    missing_cases = mean(is.na(cases)) * 100,
    missing_hosp = mean(is.na(hosp)) * 100,
    missing_deaths = mean(is.na(deaths)) * 100,
    missing_series_complete = mean(is.na(series_complete)) * 100,
    missing_booster = mean(is.na(booster)) * 100
)
```

A tibble: 52 x 6

state missing_cases missing_hosp missing_deaths missing_series_complete <dbl> <dbl> <dbl> <dbl> <chr>> 1 AK 32.2 65.1 50.6 23.5 2 AL 32.2 23.5 11.4 50.6 3 AR 32.2 23.5 20 50.6 4 AZ 32.2 23.5 3.53 50.6 5 CA 32.2 23.5 1.57 50.6 50.6 32.2 23.5 6 CO 12.2 7 CT 32.2 23.5 24.3 50.6 8 DC 32.2 23.5 59.6 50.6

```
9 DE 32.2 23.5 54.1 50.6

10 FL 32.2 23.5 0.784 50.6

# i 42 more rows

# i 1 more variable: missing_booster <dbl>
```

```
# Plot missing data by state for each variable
missing_by_state_long <- missing_by_state %>%
 pivot_longer(
    cols = c(missing_cases, missing_hosp, missing_deaths, missing_series_complete, missing_be
   names_to = "variable",
   values_to = "percent_missing"
  )
ggplot(missing_by_state_long, aes(x = state, y = percent_missing, fill = variable)) +
  geom_bar(stat = "identity", position = "dodge") +
  labs(
   title = "Percentage of Missing Data by State and Variable",
   x = "State",
   y = "Percentage of Missing Data",
   fill = "Variable"
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
  theme_minimal()
```

Percentage of Missing Data by State and Variable


```
dat <- dat %>%
 mutate(wave = case_when(
    date >= as.Date("2020-01-01") & date <= as.Date("2020-06-30") ~ "Wave 1",
    date >= as.Date("2020-07-01") & date <= as.Date("2021-02-28") ~ "Wave 2",
   date >= as.Date("2021-03-01") & date <= as.Date("2021-12-31") ~ "Wave 3",
   date >= as.Date("2022-01-01") & date <= as.Date("2022-06-30") ~ "Wave 4",
   date >= as.Date("2022-07-01") & date <= as.Date("2024-12-31") ~ "Wave 5",</pre>
   TRUE ~ NA character
 ))
# Calculate death rates by state and wave
death_rates <- dat %>%
  group_by(state_name, wave) %>%
 summarize(
    total_deaths = sum(deaths, na.rm = TRUE),
   population = max(population, na.rm = TRUE)
 ) %>%
 mutate(death_rate_per_100k = (total_deaths / population) * 100000)
```

`summarise()` has grouped output by 'state_name'. You can override using the `.groups` argument.

```
# View the death rates
print(death_rates)
```

```
# A tibble: 260 x 5
# Groups:
            state_name [52]
  state_name wave
                     total_deaths population death_rate_per_100k
  <chr>
                                        <dbl>
              <chr>
                            <dbl>
                                                            <dbl>
              Wave 1
                                      5024803
                                                             23.2
 1 Alabama
                             1168
2 Alabama
              Wave 2
                             8905
                                     5039877
                                                            177.
3 Alabama
              Wave 3
                             6273
                                     5039877
                                                            124.
4 Alabama
             Wave 4
                             3184
                                     5073903
                                                             62.8
5 Alabama
             Wave 5
                             2911
                                     5108468
                                                             57.0
6 Alaska
             Wave 1
                                     732441
                                                              0
                                0
7 Alaska
              Wave 2
                              194
                                      732673
                                                             26.5
8 Alaska
             Wave 3
                              713
                                      732673
                                                             97.3
                              159
9 Alaska
              Wave 4
                                      733276
                                                             21.7
10 Alaska
              Wave 5
                                0
                                      733406
                                                              0
# i 250 more rows
```

```
library(ggplot2)

# Create a heatmap of death rates by state and wave
ggplot(death_rates, aes(x = wave, y = reorder(state_name, -death_rate_per_100k), fill = deat.
geom_tile(color = "white") +
scale_fill_gradient(low = "lightblue", high = "darkred") +
labs(
    title = "COVID-19 Death Rates by State and Wave",
    x = "Wave",
    y = "State",
    fill = "Death Rate\n(per 100k)"
) +
theme_minimal() +
theme(
    axis.text.y = element_text(size = 6),
    axis.text.x = element_text(size = 10),
    plot.title = element_text(hjust = 0.5)
)
```

COVID-19 Death Rates by State and Wave


```
# Use the existing wave definitions in your dataset
dat <- dat %>%
  mutate(wave = case_when(
    date >= as.Date("2020-01-01") & date <= as.Date("2020-06-30") ~ "Wave 1",</pre>
```

```
date >= as.Date("2020-07-01") & date <= as.Date("2021-02-28") ~ "Wave 2",
    date >= as.Date("2021-03-01") & date <= as.Date("2021-12-31") ~ "Wave 3",</pre>
   date >= as.Date("2022-01-01") & date <= as.Date("2022-06-30") ~ "Wave 4",
   date >= as.Date("2022-07-01") & date <= as.Date("2024-12-31") ~ "Wave 5",
   TRUE ~ NA character
 ))
# Compute case fatality rates for Waves 1 to 4 only
cfr_data <- dat %>%
  filter(wave %in% c("Wave 1", "Wave 2", "Wave 3", "Wave 4")) %>%
  group_by(wave) %>%
  summarize(
   total_cases = sum(cases, na.rm = TRUE),
   total_deaths = sum(deaths, na.rm = TRUE),
   case_fatality_rate = ifelse(total_cases > 0, total_deaths / total_cases * 100, NA), # Ave
    .groups = "drop"
  )
# Visualize CFR across Waves 1 to 4
library(ggplot2)
ggplot(cfr_data, aes(x = wave, y = case_fatality_rate, fill = wave)) +
  geom_bar(stat = "identity", width = 0.6) + # Set bar width for better spacing
  geom_text(aes(label = sprintf("%.2f%%", case_fatality_rate)), vjust = -0.5, size = 4) + #
 labs(
   title = "Case Fatality Rate by Wave Period",
   x = "Wave Period",
   y = "Case Fatality Rate (%)"
  scale fill manual(values = c("Wave 1" = "orange", "Wave 2" = "yellow", "Wave 3" = "red", "
  theme_minimal() +
  theme(
   legend.position = "none", # Remove legend since fill is self-explanatory
   axis.text.x = element_text(size = 12),
   axis.title = element_text(size = 14)
```

Case Fatality Rate by Wave Period

Warning: Removed 1664 rows containing missing values or values outside the scale range (`geom_line()`).


```
#Figure 6
# Calculate deaths per day per 100,000 people and booster rate
time_period_booster <- dat |>
 filter(date >= "2021-03-01" & date <= "2021-09-01") |>
 group_by(state) |>
 summarize(
    deaths_per_100k = sum(as.numeric(deaths), na.rm = TRUE) /
                      sum(as.numeric(population), na.rm = TRUE) * 100000 / n_distinct(date),
    booster_rate = max(as.numeric(booster) / as.numeric(population) * 100, na.rm = TRUE)
 )
# Scatter plot with color indicating death rate and ggrepel for state labels
ggplot(time_period_booster, aes(x = booster_rate, y = deaths_per_100k, label = state, color:
 geom_point(size = 3) +
 geom_text_repel() +
 scale_color_gradient(low = "cyan", high = "red") + # Gradient from low to high
 labs(
   title = "Booster Vaccination Rate vs COVID-19 Death Rate (Mar-Sep 2021)",
   x = "Booster Vaccination Rate (%)",
   y = "Deaths per Day per 100,000 People",
    color = "Death Rate\n(Per 100,000)"
```

theme_minimal()

Booster Vaccination Rate vs COVID-19 Death Rate (Mar-Ser


```
#Figure 5
# Calculate deaths per day per 100,000 people and vaccination rate
time_period_1 <- dat |>
      filter(date >= "2021-03-01" & date <= "2021-09-01") |>
      group_by(state) |>
      summarize(
             deaths_per_100k = sum(as.numeric(deaths), na.rm = TRUE) /
                                                                        sum(as.numeric(population), na.rm = TRUE) * 100000 / n distinct(date),
             vax_rate = max(as.numeric(series_complete) / as.numeric(population) * 100, na.rm = TRUE)
      )
# Scatter plot with color indicating death rate and ggrepel for state labels
ggplot(time_period_1, aes(x = vax_rate, y = deaths_per_100k, label = state, color = deaths_per_100k, label = deaths_
      geom_point(size = 3) +
      geom_text_repel() +
      scale_color_gradient(low = "blue", high = "red") + # Gradient from low to high
      labs(
            title = "Vaccination Rate vs COVID-19 Death Rate (Mar-Sep 2021)",
             x = "Vaccination Rate (%)",
             y = "Deaths per Day per 100,000 People",
             color = "Death Rate\n(Per 100,000)"
```

```
) +
theme_minimal()
```

Warning: ggrepel: 3 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Vaccination Rate vs COVID-19 Death Rate (Mar-Sep 2021)


```
#Figure 2
# Vaccination Progress Over Time in US
dat |>
    filter(!is.na(series_complete),
        !is.na(booster),
        !is.na(population)) |>
    select(date,state, population, series_complete, booster) |>
    mutate(booster = as.numeric(booster))|>
    mutate(series_complete= as.numeric(series_complete)) |>
    group_by(date) |>
    mutate(
        vax_perc = (sum(series_complete) / sum(population)) * 100,
        booster_perc = (sum(booster) / sum(population)) * 100
) |>
```

```
ggplot(aes(x=date)) +
geom_line(aes(y=vax_perc, colour = "vax")) +
geom_line(aes(y = booster_perc, colour = "booster")) +
labs( y = "Percentage", color = "Vaccination Type")
```


theme_minimal()

```
List of 136
                                    :List of 6
 $ line
  ..$ colour
                   : chr "black"
  ..$ linewidth
                    : num 0.5
  ..$ linetype
                    : num 1
  ..$ lineend
                    : chr "butt"
                    : logi FALSE
  ..$ arrow
  ..$ inherit.blank: logi TRUE
  ..- attr(*, "class")= chr [1:2] "element_line" "element"
                                    :List of 5
 $ rect
  ..$ fill
                    : chr "white"
  ..$ colour
                    : chr "black"
  ..$ linewidth
                    : num 0.5
  ..$ linetype
                    : num 1
  ..$ inherit.blank: logi TRUE
```

```
..- attr(*, "class")= chr [1:2] "element_rect" "element"
$ text
                                 :List of 11
                 : chr ""
 ..$ family
 ..$ face
                 : chr "plain"
 ..$ colour
               : chr "black"
 ..$ size
                : num 11
 ..$ hjust
                : num 0.5
 ..$ vjust
                 : num 0.5
 ..$ angle
               : num 0
 ..$ lineheight : num 0.9
               : 'margin' num [1:4] Opoints Opoints Opoints
 ..$ margin
 .. ..- attr(*, "unit")= int 8
 ..$ debug
                : logi FALSE
 ..$ inherit.blank: logi TRUE
 ..- attr(*, "class")= chr [1:2] "element_text" "element"
$ title
                                 : NULL
$ aspect.ratio
                                 : NULL
$ axis.title
                                 : NULL
$ axis.title.x
                                 :List of 11
 ..$ family
                : NULL
 ..$ face
                : NULL
 ..$ colour
                : NULL
 ..$ size
                : NULL
 ..$ hjust
                : NULL
 ..$ vjust
                : num 1
                : NULL
 ..$ angle
 ..$ lineheight : NULL
               : 'margin' num [1:4] 2.75points Opoints Opoints
 ..$ margin
 .. ..- attr(*, "unit")= int 8
 ..$ debug
                 : NULL
 ..$ inherit.blank: logi TRUE
 ..- attr(*, "class")= chr [1:2] "element_text" "element"
$ axis.title.x.top
                                 :List of 11
 ..$ family
                : NULL
 ..$ face
                 : NULL
 ..$ colour
                 : NULL
 ..$ size
                : NULL
 ..$ hjust
                 : NULL
 ..$ vjust
                 : num 0
 ..$ angle
                 : NULL
 ..$ lineheight : NULL
                 : 'margin' num [1:4] Opoints Opoints 2.75points Opoints
 ..$ margin
 .. ..- attr(*, "unit")= int 8
```

```
..$ debug
             : NULL
 ..$ inherit.blank: logi TRUE
 ..- attr(*, "class")= chr [1:2] "element_text" "element"
$ axis.title.x.bottom
                                 : NULL
                                  :List of 11
$ axis.title.y
 ..$ family
                 : NULL
 ..$ face
                 : NULL
 ..$ colour
                : NULL
 ..$ size
                : NULL
                : NULL
 ..$ hjust
 ..$ vjust
                 : num 1
 ..$ angle
                : num 90
 ..$ lineheight : NULL
                 : 'margin' num [1:4] Opoints 2.75points Opoints
 ..$ margin
 .. ..- attr(*, "unit")= int 8
 ..$ debug
                 : NULL
 ..$ inherit.blank: logi TRUE
 ..- attr(*, "class")= chr [1:2] "element_text" "element"
$ axis.title.y.left
                                 : NULL
                                 :List of 11
$ axis.title.y.right
 ..$ family
                 : NULL
 ..$ face
                  : NULL
 ..$ colour
                : NULL
 ..$ size
                : NULL
 ..$ hjust
                : NULL
 ..$ vjust
                : num 1
                : num -90
 ..$ angle
 ..$ lineheight : NULL
                 : 'margin' num [1:4] Opoints Opoints Opoints 2.75points
 ..$ margin
 .. ..- attr(*, "unit")= int 8
 ..$ debug
                  : NULL
 ..$ inherit.blank: logi TRUE
 ..- attr(*, "class")= chr [1:2] "element_text" "element"
$ axis.text
                                 :List of 11
 ..$ family
                 : NULL
                 : NULL
 ..$ face
 ..$ colour
                : chr "grey30"
 ..$ size
                : 'rel' num 0.8
 ..$ hjust
                 : NULL
 ..$ vjust
                 : NULL
 ..$ angle
                : NULL
 ..$ lineheight : NULL
 ..$ margin
                 : NULL
```

```
..$ debug
            : NULL
 ..$ inherit.blank: logi TRUE
 ..- attr(*, "class")= chr [1:2] "element_text" "element"
$ axis.text.x
                                 :List of 11
 ..$ family
                 : NULL
 ..$ face
                 : NULL
 ..$ colour
                : NULL
 ..$ size
                 : NULL
 ..$ hjust
                : NULL
 ..$ vjust
                : num 1
                 : NULL
 ..$ angle
 ..$ lineheight : NULL
 ..$ margin
                 : 'margin' num [1:4] 2.2points Opoints Opoints
 .. ..- attr(*, "unit")= int 8
 ..$ debug
                 : NULL
 ..$ inherit.blank: logi TRUE
 ..- attr(*, "class")= chr [1:2] "element_text" "element"
$ axis.text.x.top
                                 :List of 11
 ..$ family
                 : NULL
 ..$ face
                 : NULL
 ..$ colour
                : NULL
 ..$ size
                 : NULL
 ..$ hjust
                : NULL
 ..$ vjust
                : num 0
 ..$ angle
                : NULL
 ..$ lineheight : NULL
                 : 'margin' num [1:4] Opoints Opoints 2.2points Opoints
 ..$ margin
 .. ..- attr(*, "unit")= int 8
 ..$ debug
                 : NULL
 ..$ inherit.blank: logi TRUE
 ..- attr(*, "class")= chr [1:2] "element_text" "element"
                                 : NULL
$ axis.text.x.bottom
                                 :List of 11
$ axis.text.y
 ..$ family
                 : NULL
 ..$ face
                 : NULL
 ..$ colour
                : NULL
 ..$ size
                : NULL
 ..$ hjust
                 : num 1
 ..$ vjust
                 : NULL
 ..$ angle
                 : NULL
 ..$ lineheight : NULL
                 : 'margin' num [1:4] Opoints 2.2points Opoints
 ..$ margin
 .. ..- attr(*, "unit")= int 8
```

```
..$ debug
             : NULL
 ..$ inherit.blank: logi TRUE
 ..- attr(*, "class")= chr [1:2] "element_text" "element"
$ axis.text.y.left
                                 : NULL
$ axis.text.y.right
                                 :List of 11
 ..$ family
               : NULL
 ..$ face
                 : NULL
 ..$ colour
                : NULL
 ..$ size
                : NULL
                : num 0
 ..$ hjust
 ..$ vjust
                : NULL
 ..$ angle
                : NULL
 ..$ lineheight : NULL
                : 'margin' num [1:4] Opoints Opoints Opoints 2.2points
 ..$ margin
 .. ..- attr(*, "unit")= int 8
 ..$ debug
                 : NULL
 ..$ inherit.blank: logi TRUE
 ..- attr(*, "class")= chr [1:2] "element_text" "element"
$ axis.text.theta
                                 : NULL
$ axis.text.r
                                 :List of 11
 ..$ family
                : NULL
 ..$ face
                 : NULL
 ..$ colour
                : NULL
 ..$ size
                : NULL
 ..$ hjust
                : num 0.5
                : NULL
 ..$ vjust
 ..$ angle
                : NULL
 ..$ lineheight : NULL
                 : 'margin' num [1:4] Opoints 2.2points Opoints 2.2points
 ..$ margin
 .. ..- attr(*, "unit")= int 8
 ..$ debug
                 : NULL
 ..$ inherit.blank: logi TRUE
 ..- attr(*, "class")= chr [1:2] "element_text" "element"
$ axis.ticks
                                  : list()
 ..- attr(*, "class")= chr [1:2] "element_blank" "element"
$ axis.ticks.x
                                 : NULL
$ axis.ticks.x.top
                                 : NULL
$ axis.ticks.x.bottom
                                 : NULL
$ axis.ticks.y
                                 : NULL
$ axis.ticks.y.left
                                : NULL
$ axis.ticks.y.right
                                : NULL
$ axis.ticks.theta
                                : NULL
$ axis.ticks.r
                                 : NULL
```

```
$ axis.minor.ticks.x.top
                                 : NULL
$ axis.minor.ticks.x.bottom
                                 : NULL
$ axis.minor.ticks.y.left
                                 : NULL
$ axis.minor.ticks.y.right
                                 : NULL
$ axis.minor.ticks.theta
                                 : NULL
$ axis.minor.ticks.r
                                 : NULL
$ axis.ticks.length
                                 : 'simpleUnit' num 2.75points
 ..- attr(*, "unit")= int 8
$ axis.ticks.length.x
                                 : NULL
$ axis.ticks.length.x.top
                                 : NULL
$ axis.ticks.length.x.bottom
                                : NULL
$ axis.ticks.length.y
                                 : NULL
$ axis.ticks.length.y.left
                                 : NULL
$ axis.ticks.length.y.right
                                 : NULL
$ axis.ticks.length.theta
                                 : NULL
$ axis.ticks.length.r
                                 : NULL
$ axis.minor.ticks.length
                                 : 'rel' num 0.75
$ axis.minor.ticks.length.x
                                 : NULL
$ axis.minor.ticks.length.x.top : NULL
$ axis.minor.ticks.length.x.bottom: NULL
$ axis.minor.ticks.length.y
                                  : NULL
$ axis.minor.ticks.length.y.left : NULL
$ axis.minor.ticks.length.y.right : NULL
$ axis.minor.ticks.length.theta : NULL
$ axis.minor.ticks.length.r
                                  : NULL
$ axis.line
                                  : list()
..- attr(*, "class")= chr [1:2] "element_blank" "element"
$ axis.line.x
                                 : NULL
$ axis.line.x.top
                                  : NULL
$ axis.line.x.bottom
                                 : NULL
$ axis.line.y
                                 : NULL
$ axis.line.y.left
                                 : NULL
$ axis.line.y.right
                                 : NULL
$ axis.line.theta
                                 : NULL
$ axis.line.r
                                 : NULL
$ legend.background
                                  : list()
 ..- attr(*, "class")= chr [1:2] "element_blank" "element"
$ legend.margin
                                  : 'margin' num [1:4] 5.5points 5.5points 5.5points
 ..- attr(*, "unit")= int 8
$ legend.spacing
                                  : 'simpleUnit' num 11points
 ..- attr(*, "unit")= int 8
$ legend.spacing.x
                                  : NULL
$ legend.spacing.y
                                  : NULL
```

```
$ legend.key
                                  : list()
 ..- attr(*, "class")= chr [1:2] "element_blank" "element"
$ legend.key.size
                                  : 'simpleUnit' num 1.2lines
 ..- attr(*, "unit")= int 3
$ legend.key.height
                                  : NULL
$ legend.key.width
                                  : NULL
$ legend.key.spacing
                                  : 'simpleUnit' num 5.5points
 ..- attr(*, "unit")= int 8
$ legend.key.spacing.x
                                 : NULL
$ legend.key.spacing.y
                                 : NULL
                                  : NULL
$ legend.frame
$ legend.ticks
                                 : NULL
$ legend.ticks.length
                                 : 'rel' num 0.2
$ legend.axis.line
                                 : NULL
                                  :List of 11
$ legend.text
 ..$ family
                  : NULL
 ..$ face
                  : NULL
 ..$ colour
                 : NULL
 ..$ size
                 : 'rel' num 0.8
 ..$ hjust
                 : NULL
 ..$ vjust
                 : NULL
 ..$ angle
                  : NULL
 ..$ lineheight : NULL
 ..$ margin
                  : NULL
 ..$ debug
                  : NULL
 ..$ inherit.blank: logi TRUE
 ..- attr(*, "class")= chr [1:2] "element_text" "element"
$ legend.text.position
                                  : NULL
$ legend.title
                                  :List of 11
 ..$ family
                  : NULL
 ..$ face
                  : NULL
 ..$ colour
                 : NULL
 ..$ size
                 : NULL
 ..$ hjust
                 : num 0
 ..$ vjust
                 : NULL
 ..$ angle
                  : NULL
 ..$ lineheight : NULL
 ..$ margin
                  : NULL
 ..$ debug
                  : NULL
 ..$ inherit.blank: logi TRUE
 ..- attr(*, "class")= chr [1:2] "element_text" "element"
$ legend.title.position
                                  : NULL
$ legend.position
                                  : chr "right"
```

```
$ legend.position.inside
                            : NULL
                                 : NULL
 $ legend.direction
$ legend.byrow
                                 : NULL
$ legend.justification
                                 : chr "center"
$ legend.justification.top
                                 : NULL
$ legend.justification.bottom
                                 : NULL
$ legend.justification.left
                                 : NULL
$ legend.justification.right
                                 : NULL
$ legend.justification.inside
                                 : NULL
$ legend.location
                                  : NULL
                                  : NULL
$ legend.box
$ legend.box.just
                                  : NULL
$ legend.box.margin
                                  : 'margin' num [1:4] Ocm Ocm Ocm Ocm
 ..- attr(*, "unit")= int 1
 $ legend.box.background
                                  : list()
  ..- attr(*, "class")= chr [1:2] "element_blank" "element"
$ legend.box.spacing
                                  : 'simpleUnit' num 11points
  ..- attr(*, "unit")= int 8
 [list output truncated]
- attr(*, "class")= chr [1:2] "theme" "gg"
- attr(*, "complete") = logi TRUE
- attr(*, "validate")= logi TRUE
# Figure 4
# Exploring Regional Variations: Insights on Vaccination Differences Across Regions
dat |>
 filter(mmwr_week == epiweek(as_date("2021-07-01")),
        mmwr_year == epiyear(as_date("2021-07-01"))) |>
 mutate(booster = as.numeric(booster)) |>
 mutate(series_complete = as.numeric(series_complete)) |>
 mutate(vax_perc = (series_complete / population) * 100,
        region_name = reorder(as.factor(region_name), vax_perc)) |>
 ggplot(aes(x = region_name, y = vax_perc, fill = region_name)) +
 geom_boxplot() +
 theme_minimal() +
 theme(axis.text.x = element text(angle = 45, hjust = 1, vjust = 1)) +
 ggtitle("COVIV-19 Vaccination Rate Accross Regions in US")
```

