ATMAM Mathematics Methods

Test 1 2019 Calculator Free

Teacher (Please circle name) Ai Friday Smith

Time Allowed: 30 minutes | Marks |

Materials allowed: Formula Sheet.

Attempt all questions. Questions 1,2,3,4 and 5 are contained in this section. All necessary working and reasoning must be shown for full marks. Where appropriate, answers should be given as exact values. Marks may not be awarded for unitdy or poorly arranged work.

[2,2,2,2]

Differentiate each of the following with respect to x, clearly showing the appropriate use of rules. Do not simplify answers.

$$(\xi - {}^{t}x)^{\xi}(\zeta + x\xi) = \chi \quad (d) \qquad \qquad \chi \frac{1}{\zeta} + \frac{\zeta}{\zeta} - \xi \chi + \chi = \chi \quad (D)$$

 $\frac{x \operatorname{uis}}{(z+x\varepsilon)\operatorname{soo}} = \lambda \quad (2)$

 $(\mathfrak{p} - \mathfrak{x}\mathfrak{S}) \wedge = \mathfrak{K} \quad (p)$

2. [4,6]

Consider the function $f(x) = x^3(4-x)$

(a) Use calculus to determine the location of all stationary points.

(b) Use the second derivative to determine the nature of the stationary points and the coordinates of any points of inflection.

(b) If h = 6 cm, then $V = 6\pi r^2 + \frac{2}{3}\pi r^3$.

For
$$r = 4 cm$$
,

show that a small increase of k cm in the radius results in an approximate increase of $80\pi k\ cm^3$ in the volume.

8. [4 marks]

If $y=5t^3$ use differentiation to determine the approximate percentage change in y when t changes by 4%.

End of Questions

3. [3 marks]

If
$$\gamma = 3 \sin 2x + 2\cos 2x$$
 show that $4 \sin 2x + 2\cos 2x + \cos 2x$

A solid wooden peg consists of a cylinder of length h cm and a hemispherical cap of radius r cm. The volume, V cm 3 , of the peg is given by $V=\pi r^2 h + \frac{2}{3}\pi r^3$.

(a) If the surface area of the peg is $100\pi~{\rm cm}^2$.

$$\frac{2\pi \epsilon - 001}{72} = h \text{ that work? (i)}$$

[5,1,4,3]

(ii) Determine V as a function of r.

4. [4 marks] Determine $\frac{dy}{dx}$ if $y = \sqrt{u}$, $u = v^2 + 1$ and $v = x + x^{-1}$. Do not simplify your answer.

- (iii) Show the use of calculus to determine the dimensions required to obtain the maximum volume
- and state the maximum volume.

5. [1,1,1,4]

The table below contains information about the sign of f(x), f'(x) and f''(x) at seven points on the graph of the continuous function f(x). Apart from those in the table, there are no other points where f(x), f'(x) or f''(x) are equal to zero.

x	-3	-1	0	1	2	3	4
f(x)	-	0	+	+	+	0	-
f '(x)	+	0	+	+	0	_	_
f "(x)	-	0	+	0	-	_	_

- (a) Describe the nature of the graph when x=2
- (b) At what value(s) of x is f(x) concave up?
- (c) Describe the nature of the graph when x = -1.
- (d) Sketch the function on the axes below.

ATMAM Mathematics Methods Test 1 2019 Calculator Assumed

0 L	. L E G E	Name:			
		Teacher (Please circle name)	Ai	Friday	Smith
	Tim	e Allowed : 20 minutes	S	Mark	s /19
	Materials all	owed: Classpad calculator, Formula Sl	heet.		
	All necessary Where appro	uestions. Questions 6, 7 and 8 are con working and reasoning must be show priate, answers should be given as exact of be awarded for untidy or poorly arro	v n for full ct values.	marks.	
6.	[1,1,1,2]				
		ng in a straight line so that at time t , $= 7.2 - 3\cos(0.65t)$ metres, $t \ge 0$, in secon	ds, its positi	on from the origin <i>0</i>
(a)	State the init	ial position of the particle.			
(b)	Determine th	ne velocity function for this particle.			
(c)	At what time	does the particle first come to rest	after $t=0$	0?	
(d)	At what time	does the particle first reach its max	kimum vel	ocity? Justif	y your choice.