

4조

독하게데이터사이언스

김태영 류채환 박준영 신해솔 홍성희

Introduction

Data and Purpose
Problems of Prior Research
Our Improvement

분석 수행 목적: y = f(X)

X: 와인의 화학적 성분 데이터로

type	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
white	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.0010	3.00	0.45	8.8
white	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.9940	3.30	0.49	9.5

타입, 알코올, 밀도, pH, 산도, 구연산, 잔류 설탕, 염화물, 이산화황, ...

y: 와인의 품질 등급 맞추기

quality	품질(0~10점) → <u>실질적으로는 3~9의 값</u>
7	

선행 연구 Workflow

모델 평가 결과

최종모델선택: Extra Trees

Accuracy: 89.9

선행 연구의 문제점 1: 불완전한 전처리

선행 연구의 문제점 2: 비합리적 오버샘플링

 등급	개수
3	2836
4	2836
5	2836
6	2836
7	2836
8	2836
9	2836

선행 연구 재평가

F1 89 2

F1 66 9

		_		
	type			type
0	white		0	1.0
1	white		1	1.0
2	white		2	1.0
3	white		3	1.0
4	white		4	1.0
•••				
6492	red		6414	0.0
6493	red		6415	0.0
6494	red		6416	0.0
6495	red		6417	0.0
6496	red		6418	0.0

Histogram / Box plot : residual sugar

quality 3, 4 → quality 4

quality 8, 9 → quality 8

quality	quality_4	quality_5	quality_6	quality_7	quality_8
6.0	0.0	0.0	1.0	0.0	0.0
6.0	0.0	0.0	1.0	0.0	0.0
6.0	0.0	0.0	1.0	0.0	0.0
6.0	0.0	0.0	1.0	0.0	0.0
6.0	0.0	0.0	1.0	0.0	0.0
***		•••			•••
5.0	0.0	1.0	0.0	0.0	0.0
6.0	0.0	0.0	1.0	0.0	0.0
6.0	0.0	0.0	1.0	0.0	0.0
5.0	0.0	1.0	0.0	0.0	0.0
6.0	0.0	0.0	1.0	0.0	0.0

quality 이진 처리

전처리기: scikit-learn 방식 구현

```
from sklearn.pipeline import Pipeline
preproc_pipeline = Pipeline([
   ('binary type', TypeBinaryConverter()),
   ('drop outliers', DropOutliers(scope=5)),
   ('merge quality', MergeQuality()),
   ('quality groups', QualityGroups()),
   ('log scaler', LogScaler()),
    ('knn imputer', KNNImputer(n neighbors=2, weights="uniform")),
   ('format dataframe', FormatDataFrame())
# 각단계 전처리를 끄고 싶으면(하지 않고 싶으면), 각 라인을 주석처리하면 됨.
# 예를 들어, 두 번째 줄 ('drop outliers', DropOutliers(scope=5))을 주석처리하면 극단치 제거가 되지 않음.
```

```
# 다음과 같이 일반적인 estimator처럼 fit_transform() 메소드로 전처리 가능
df_preproc = preproc_pipeline.fit_transform(df_wine.copy())
```

선행 연구 개선 2: 오버샘플링

1. Train set 분할 후 Train set에 대해서만 오버샘플링

2. 오버샘플링/언더샘플링/기본샘플 모델 분석 x3 수행 (샘플링 방식에 따른 모델 학습 편향 방지)

선행 연구와의 비교: Workflow Diagram

수행한 연구

수행한 분석 Workflow (1/2)

수행한 분석 Workflow (2/2)

Models (Supervised Machine Learning)

Logistic Regression Random Forest

SVM | Gradient Boost | XGBoost

Trial 1. Multi Classification

Multi Classification

X: Wine Features

	type	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide		density	рН	sulphates	alcohol	
1	1.0	6.3	0.30	0.34	0.955511	0.047837	14.0	132.0	0.9940	3.30	0.49	9.5	Ī
2	1.0	8.1	0.28	0.40	2.066863	0.048790	30.0	97.0	0.9951	3.26	0.44	10.1	

Y: Wine Quality

4 | 5 | 6 | 7 | 8

Multi Classification Workflow

Multi Classification Workflow

Multi Classification Workflow

Logistic Regression (oversampling)

Confusion Matrix:

pred
[26 15 0 3 5]
[94 174 38 30 63]
[63 141 69 157 134]
[14 23 16 96 79]
[3 4 2 19 16]

Total Accuracy:

0.2967

Class 4

Accuracy: 0.5306 Precision: 0.13

Recall: 0.5306

f1: 0.2088

Class 5

Accuracy: 0.436 Precision: 0.4873

Recall: 0.436

f1: 0.4603

Class 6

Accuracy: 0.1223
Precision: 0.552

Recall: 0.1223

f1: 0.2002

Class 7

Accuracy: 0.421 Precision: 0.3147

Recall: 0.4210

f1: 0.3602

Class 8

Accuracy: 0.3636

Precision: 0.0538

Recall: 0.3636

Random Forest (oversampling)

Confusion Matrix:

pred
[8 20 17 3 0]
[6 296 104 9 0]
[9 [3 108 383 85 5]
[0 10 82 119 3]
[0 0 9 17 12]

Total Accuracy:

0.6297

Class 4

Accuracy: 0.1666 Precision: 0.4444 Recall: 0.1632

f1: 0.2388

Class 5

Accuracy: 0.7132 Precision: 0.6833 Recall: 0.7518

f1: 0.7159

Class 6

Accuracy: 0.6558 Precision: 0.6557 Recall: 0.7092

f1: 0.6814

Class 7

Accuracy: 0.556 Precision: 0.6414

Recall: 0.5570

f1: 0.5962

Class 8

Accuracy: 0.3157

Precision: 0.7894

Recall: 0.3409

Gradient Boost (oversampling)

Confusion Matrix:

pred
[8 20 10 0 0]
[10 292 128 3 1]
[10 4 109 437 25 1]
[10 4 98 107 0]
[10 0 14 13 9]

Total Accuracy:

0.6597

Class 4

Accuracy: 0.2105 Precision: 0.3636 Recall: 0.2105

f1: 0.2666

Class 5

Accuracy: 0.6728 Precision: 0.6870 Recall: 0.6728

14. 0.072

f1: 0.6798

Class 6

Accuracy: 0.7586 Precision: 0.6360

Recall: 0.7586

f1: 0.6920

Class 7

Accuracy: 0.5119 Precision: 0.7229

Recall: 0.5119

f1: 0.5994

Class 8

Accuracy: 0.25

Precision: 0.8181

Recall: 0.25

XGBoost (orign)

Confusion Matrix:

pred
[1 31 17 0 0]
[2 274 121 2 0]
[0 96 439 29 0]
[0 9 117 102 0]
[0 2 20 8 14]

Total Accuracy:

0.6464

Class 5

Accuracy: 0.6867 Precision: 0.6650

Recall: 0.6867

f1: 0.6757

Class 7

Accuracy: 0.4473 Precision: 0.7234

Recall: 0.4473

f1: 0.5528

Class 4

Accuracy: 0.0204

Precision: 0.3333

Recall: 0.0204

f1: 0.0384

Class 6

Accuracy: 0.7783

Precision: 0.6148

Recall: 0.7783

1: 0.6870

Class 8

Accuracy: 0.3181

Precision: 1.0 Recall: 0.3181

KPCA_SVC (orign)

Confusion Matrix:

pred
[3 1 44 0 0]
[0 129 286 0 0]
[0 16 567 1 0]
[0 1 149 64 0]
[0 0 25 1 12]

Total Accuracy:

0.5966

Class 4

Accuracy: 0.0625

Precision: 1.0

Recall: 0.0625

f1: 0.1176

Class 5

Accuracy: 0.3108 Precision: 0.8775

Recall: 0.3108

f1: 0.4590

Class 6

Accuracy: 0.9708

Precision: 0.5294

Recall: 0.9708

f1: 0.6851

Class 7

Accuracy: 0.2990

Precision: 0.9696 Recall: 0.2990

f1: 0.4571

Class 8

Accuracy: 0.3157

Precision: 1.0 Recall: 0.3157

모델 성능 비교 (Accuracy)

	Logistic Regression (over)	Random Forest (over)	Gradient Boost (over)	XGBoost (orign)	KPCA-SVM (orign)
Total	0.2967	0.6297	0.6597	0.6464	0.5966
quality 4 -	0.5306	0.1666	0.2105	0.0204	0.0625
quality 5	0.436	0.7132	0.6728	0.6867	0.3108
quality 6	0.1223	0.6558	0.7586	0.7783	0.9708
quality 7	0.421	0.556	0.5119	0.4473	0.2990
quality 8 +	0.3636	0.3157	0.25	0.3181	0.3157

Model Essemble

Trial 2. Binary classification

Binary Classification

X: Wine Features

	type	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide		density	рН	sulphates	alcohol	
1	1.0	6.3	0.30	0.34	0.955511	0.047837	14.0	132.0	0.9940	3.30	0.49	9.5	Ī
2	1.0	8.1	0.28	0.40	2.066863	0.048790	30.0	97.0	0.9951	3.26	0.44	10.1	

Y_4: Wine Quality
4 or else

Binary Classification Workflow

class별로 이진화한 목적변수 5 개

quality 4 quality 5 quality 6 quality 7 or or or or else else else

uality 7 quality 8 or or else else

Binary Classification Workflow

Random Forest (class 7)

Logistic Regression (class 4)

	Accuracy	Precision	Recall	F1-score	AUC
original	0.7438	0.0977	0.6939	0.1713	0.7198
oversample	0.7461	0.0962	0.6735	0.1684	0.7112
undersample	0.6869	0.0808	0.6939	0.1447	0.6903

Logistic Regression (class 4)

	Accuracy	Precision	Recall	F1-score	AUC
original	0.7438	0.0977	0.6939	0.1713	0.7198
oversample	0.7461	0.0962	0.6735	0.1684	0.7112
undersample	0.6869	0.0808	0.6939	0.1447	0.6903

Random Forest (class 5)

	Accuracy	Precision	Recall	F1-score	AUC
original	0.8146	0.7218	0.6566	0.6877	0.7713
oversample	0.8115	0.6725	0.7669	0.7166	0.7993
undersample	0.7788	0.6055	0.8271	0.6992	0.7921

Random Forest (class 5)

	Accuracy	Precision	Recall	F1-score	AUC
original	0.8146	0.7218	0.6566	0.6877	0.7713
oversample	0.8115	0.6725	0.7669	0.7166	0.7993
undersample	0.7788	0.6055	0.8271	0.6992	0.7921

KPCA-SVC (class 6)

	Accuracy	Precision	Recall	F1-score	AUC
original	0.5958	0.5919	0.3253	0.4199	0.5711
oversample	0.5566	0.5073	0.4777	0.4921	0.5494
undersample	0.5789	0.5885	0.2106	0.3102	0.5452

KPCA-SVC (class 6)

	Accuracy	Precision	Recall	F1-score	AUC
original	0.5958	0.5919	0.3253	0.4199	0.5711
oversample	0.5566	0.5073	0.4777	0.4921	0.5494
undersample	0.5789	0.5885	0.2106	0.3102	0.5452

Gradient Boost (class 7)

	Accuracy	Precision	Recall	F1-score	AUC
original	0.8692	0.7000	0.4605	0.5556	0.7090
oversample	0.8575	0.6154	0.5263	0.5674	0.7276
undersample	0.7360	0.3856	0.8202	0.5245	0.7690

Gradient Boost (class 7)

	Accuracy	Precision	Recall	F1-score	AUC
original	0.8692	0.7000	0.4605	0.5556	0.7090
oversample	0.8575	0.6154	0.5263	0.5674	0.7276
undersample	0.7360	0.3856	0.8202	0.5245	0.7690

XGBoost (class 8)

	Accuracy	Precision	Recall	F1-score	AUC
original	0.9751	0.7727	0.3864	0.5152	0.6912
oversample	0.965	0.4839	0.3409	0.4	0.664
undersample	0.7399	0.0904	0.7273	0.1608	0.7338

XGBoost (class 8)

	Accuracy	Precision	Recall	F1-score	AUC
original	0.9751	0.7727	0.3864	0.5152	0.6912
oversample	0.965	0.4839	0.3409	0.4	0.664
undersample	0.7399	0.0904	0.7273	0.1608	0.7338

Ensemble Model

VotingClassifier StackingClassifier

Model Ensemble

Trial 2

Trial 1

VotingClassifier

StackingClassifier

VotingClassifier

VotingClassifier

index weight	Accuracy	Precision	Recall	F1-score
uniformly	0.5522	0.5412	0.5522	0.5426
f1-score	0.5428	0.5473	0.5428	0.5361
precision	0.5405	0.5442	0.5405	0.5297
best	0.5506	0.5763	0.5506	0.5478

Poor prediction

StackingClassifier

		Accuracy	Precision	Recall	F1-score
	orign	0.6838	0.6936	0.6838	0.6725
log	over	0.6745	0.6761	0.6745	0.6678
	under	0.4455	0.5281	0.4455	0.4538
	orign	0.6776	0.688	0.6776	0.6675
rnf	over	0.6628	0.6728	0.6628	0.6487
	under	0.4587	0.549	0.4587	0.4755
	orign	0.6854	0.7239	0.6854	0.6678
svm	over	0.6783	0.6783	0.6783	0.6742
	under	0.4587	0.5283	0.4587	0.4635

StackingClassifier

		Accuracy	Precision	Recall	F1-score
	orign	0.6745	0.6897	0.6745	0.6657
xgb	over	0.655	0.6899	0.655	0.6362
	under	0.3894	0.5179	0.3894	0.4098
	orign	0.6838	0.6994	0.6838	0.6766
gdb	over	0.641	0.676	0.641	0.6259
	under	0.4073	0.5126	0.4073	0.4244
	orign	0.6822	0.6969	0.6822	0.6723
ext	over	0.6846	0.6933	0.6846	0.6752
	under	0.4478	0.5438	0.4478	0.4584

결론

Quality grade

Result

Unsupervised learning

Accurate +Tolerance

Prediction						
	4-	5	6	7	8+	
4-	5	34	15	0	0	
5	3	286	108	2	0	
6	2	84	462	29	1	
7	0	13	103	109	3	
8+	0	0	14	12	15	

	4-	5	6	7	8+
4-	7	32	8	0	0
5	3	363	71	0	0
6	3	153	381	1	2
7	0	19	121	75	1
8+	0	1	25	3	15

(ExtraTreesClassifier, oversampling)

(StackingClassifier, oversampling)

	Tutorial		StackingClassifier		
	(ExtraTrees, oversampling)		(SVM, original)	(XGB, oversampling)	
	Accurate	Tolerance	Accurate	Tolerance	
Accuracy	0.6746	0.7232	0.6854	0.8012	
Precision	0.6746	0.8747	0.7239	0.9036	
Recall	0.6746	0.8300	0.6854	0.8731	
F1	0.6590	0.8431	0.6678	0.8822	

Result - Binary

Loss Expected Gain

이진화하면 순서정보 상실

이진화하면 모델별로 잘 예측하는 변수의 결과만 **十** 취합 가능

클래스별 over/undersampling 적용 가능

Result - Ordinal

Recall

0.6854

F1-score

0.6678

Precision

0.7239

Accuracy

0.6854

• 트리기반 모델의 성능이 전반적으로 우수한 이유

- 트리모델은 분기 기준에 따라 이산적인 결정을 내리므로 각 클래스의 상대적인 순서 파악 가능
- 특히 Extratrees의 경우 데이터 불균형 문제를 가중치를 부여하는 방식으로 해결하여 클래스간 imbalance의 문제를 효과적으로 해결
- 트리모델은 샘플별로 차이가 없었음

SVM

- svm은 가장 수가 많은 중간 등급에 대해서 예측을 진행하므로써 성능을 높이려고 시도한 것으로 보임
- 즉, 가장 수가 적은, 그리고 극단의 등급(ordered class이므로) 에 대해서 decision boundary를 좁게 설정하여 자연스럽게 중간 등급으로 예측하는 오류가 있었을 것으로 보임

• StackingClassifier에서 Final Estimator에 트리기반 외 SVM등 다른 모델들이 우수한 성능을 보였던 이유

- 멀티클래스의 분류가 아닌 기초모델들의 결과를 취합하는 역할의 수행이라는 점에서 멀티클래스 분류의 역할보다는 더 좋은 결과
- Final estimator가 다루는 샘플은 사실상 6개이므로, 트리와 부스팅 모델은 샘플이 적은 상황에서는 svm보다 불리한 것으로 판단, svm이 최종 평가자인 모형이 좀 더 나은 결과를 도출한 것으로 보임

Unsupervised

K-Means Clustering

- 1. 5 clusters vs 15 clusters and re-clustering(by fcluster())
- No Dimension Reduction vs PCA vs Kernel PCA
- 3. Origin / Oversampling / Undersampling Data

basic_ros_pred	quality	
1	4	842
	7	642
	6	615
	5	529
	8	512
2	8	986
	7	891
	6	756
	5	725
	4	501
3	5	430
	4	321
	6	316
	8	190
	7	152
4	4	9
	5	4
	7	3
	6	1
5	4	15

감사합니다.

