1 WHAT IS CLAIMED IS:

_	A process for producing a very high viscosity polyalphaolefin pro	oduct
2	A process for producing a very high viscosity perycharacter in	
3	comprising contacting a feed consisting essentially of at least of	те
4	comprising contacting a feed consisting essentially of at least or alphaolefin having from 4 to about 14 carbon atom with an effect	tive
5	oligomerizing amount of an acidic ionic liquid oligomerization ca	talyst,
6	maintaining said feed and oligomerization catalyst under presel	ected
7	oligomerization conditions for a sufficient time to oligomerize the	е
8	alphaolefin to the polyalphaolefin product, and recovering the h	igh
9	viscosity polyalphaolefin product.	

- 10 2. The process of claim 1 wherein the feed comprises 1-decene.
- 11 3. The process of claim 1 wherein the feed comprises 1-dodecene.
- The process of claim 1 wherein the acidic ionic oligomerization catalyst comprises a first component and a second component, said first component comprising a compound selected from the group consisting of aluminum halide, alkyl aluminum halide, gallium halide, and alkyl gallium halide, and said second component is an ionic liquid comprising a liquid salt containing quaternary ammonium, quaternary phosporium, or quaternary sulfonium.
- The process of claim 4 wherein said first component is aluminum
 halide or alkyl aluminum halide.
- 21 6. The process of claim 5 wherein said first component is aluminum trichloride.
- 7. The process of claim 4 wherein said second component is selected from one or more of hydrocarbyl substituted ammonium halide,

1		veridinium halide, alkylene substituted pyridinium dihalide, or			
2		hydrocarbyl substituted phosphonium halide.			
3	8.	The process of claim 7 wherein the second component is an alkyl			
4		substituted ammonium halide containing one or more alkyl moieties			
5	having from 1 to about 9 carbon atoms.				
6	9.	The process of claim 8 wherein the second component comprises at			
7	least trimethyl amine hydrochloride.				
8	10.	The process of claim 7 wherein the second component is an alkyl			
9		substituted imidazolium halide.			
10	11.	The process of claim 10 wherein the second component comprises at			
11		least 1-ethyl-3-methyl-imidazolium chloride.			
		/ \			
12	12.	The process of claim 4 wherein the ratio of first component to the			
13		second component of the oligomerization catalyst is within the range of			
14		from about 1:1 to about 5:1.			
15	13.	The process of claim 5 wherein the ratio of the first component to the			
16		second component is within the range of from about 1:1 to about 2:1.			
17	14.	The process of claim 1 including the additional step of hydrogenating			
18		the unsaturated double bonds present in the polyalphaolefin product.			
· · · · · · · · · · · · · · · · · · ·	~				
19	15.	The process of claim 1 wherein the dimer in the product is reduced to			
20		less than 2 weight percent.			

21 16. A polyalphaolefin product having a viscosity of not less than
22 centistokes at 100°C made using the process of claim 1

25

chloride.

1	17.	The product of claim 16 having a viscosity of not less than
2		30 centistokes at 100°C.
3	18.	The product of claim 17 wherein the product contains less than
4		2 weight percent of dimer.
5	180	A process for producing a very high viscosity polyalphaolefin product
6		which is characterized by a viscosity of at least 22 centistokes at
7	\	المام°C, said process comprising contacting a feed consisting
8		essentially of at least one alphaolefin having from 4 to about 14 carbon
9		atom with an effective oligomerizing amount of a acidic binary ionic
10		liquid aligomerization catalyst having a first component consisting of ar
11		aluminum halide or an alkyl aluminum halide and a second component
12	•	consisting of a quaternary ammonium selected from selected from a
13		quaternary ammonium halide containing one or more alkyl moieties
14		having from 1 to about 9-carbon atoms or a hydrocarbyl substituted
15		imidazolium halide; maintaining said feed and oligomerization catalyst
16		under preselected oligomerization conditions for a sufficient time to
17		oligomerize the alphaciefin to the polyalphaolefin product; and
18		recovering the high viscosity polyalphaolefin product.
19	20.	The process of claim 19 wherein the acidic binary ionic liquid
20		oligomerization catalyst comprises a first component of aluminum
21		trichloride and a second component of trimethylamine hydrochloride.
22_	21	The-process-of-claim-19-wherein-the-acidic-binary-ionic-liquid-
23		oligomerization catalyst comprises a first component of aluminum
24		trichloride and a second component of 1-ethyl-3-methyl-imidazolium

1	22.	The process according to clai	ms	20 or 21 wherein the mole ratio of
2		aluminum trichloride to the se	cer	nd component is within the range o
		/	1	

3 from about 1:1 and 2:1.

W (NA)

が