Notes on implementing b-splines

Jeffrey J. Early

May 14, 2018

This is an attempt to clean-up the notation in Carl de Boor's b-spline notes, The m-th B-spline of order K = 1 is defined as,

$$X_m^1(t) \equiv \begin{cases} 1 & \text{if } \tau_m \le t < \tau_{m+1}, \\ 0 & \text{otherwise.} \end{cases}$$
 (1)

All higher order B-splines are defined by recursion,

$$X_m^K(t) \equiv \frac{t - t_m}{t_{m+K-1} - t_m} X_m^{K-1}(t) + \frac{t_{m+K} - t}{t_{m+K} - t_{m+1}} X_{m+1}^{K-1}(t).$$
 (2)

and a path is represented as $x(t) \equiv X_m^K(t) \xi^m$ where ξ^m are the coefficients.

The j-th derivative of this path is,

$$\left(\frac{d}{dt}\right)^{j} \left(X_{m}^{K}(t)\xi^{m}\right) = \xi_{j+1}^{m} X_{m}^{K-j}(t) \tag{3}$$

where

$$\xi_{j+1}^{m} \equiv \begin{cases} \xi^{m} & \text{for } j = 0, \\ \frac{\xi_{j}^{m} - \xi_{j}^{m-1}}{(t_{m+K-j} - t_{m})/(K-j)} & \text{otherwise.} \end{cases}$$
 (4)

So you compute the coefficients of the higher order derivatives, by differencing the coefficients. So, de Boor's algorithm is the following sum over K-j non-zero splines for position t,

$$x^{(j)}(t) = \sum_{m=1}^{K-j} \xi_{j+1}^m X_m^{K-j}(t)$$

$$= \sum_{m=1}^{K-j} \xi_{j+1}^m \left[\frac{t - t_m}{t_{m+K-1} - t_m} X_m^{K-j-1}(t) + \frac{t_{m+K} - t}{t_{m+K} - t_{m+1}} X_{m+1}^{K-j-1}(t) \right]$$
(6)

$$= \sum_{m=1}^{K-j} \xi_{j+1}^{m} \left[\frac{t - t_m}{t_{m+K-1} - t_m} X_m^{K-j-1}(t) \right] + \sum_{m=0}^{K-j-1} \xi_{j+1}^{m-1} \left[\frac{t_{m+K-1} - t}{t_{m+K-1} - t_m} X_m^{K-j-1}(t) \right]$$
(7