

ACTIVIDAD:

🔐 Derivación, Visualización y Optimización de Funciones en Python

Objetivo: Aplicar los conceptos fundamentales del cálculo diferencial en una variable a través de la derivación simbólica, la identificación de puntos críticos y la optimización de funciones.

Instrucciones:

- 1. Definición y Derivación Simbólica de la Función:
 - Función a Analizar:
 - Definir $f(x) = (x-3)^2$ Derivación:
 - Usar la librería Sympy para calcular la derivada simbólica de f(x) (aplicando la regla de la cadena) y resolver la ecuación f'(x) = 0 para identificar el punto crítico esperado (x = 3).
- 2. Visualización de la Función y su Derivada:
 - Rango de Análisis: Generar valores de x en el intervalo [-5,10][-5, 10].
 - Gráficos: Utilizar Matplotlib para:
 - Graficar la función f(x)f.
 - Graficar la derivada f'(x) en el mismo plano o en gráficos separados.
 - Marcar claramente el punto crítico (x = 3) en los gráficos, indicando que allí se alcanza el mínimo.

3. Optimización Numérica con SciPy:

- o Problema de Minimización: Emplear la función minimize de SciPy para encontrar el valor de xx que minimiza f(x).
- o Comparación y Verificación: Comparar el resultado obtenido numéricamente con el punto crítico hallado mediante derivación simbólica, comprobando que ambos coinciden en x=3.

4. Documentación y Evidencias:

- o Cada función o bloque de código deberá incluir docstrings y comentarios explicativos que detallen su propósito, los parámetros y el resultado esperado.
- o Se debe incluir un breve resumen o README que explique la estructura del proyecto, las decisiones de diseño y la relevancia de cada paso en el proceso de optimización en Machine Learning.
- o Se deben generar capturas de pantalla del código ejecutado y de los gráficos generados.

5. Entrega:

- o Tiempo estimado de desarrollo: 1 hora 30 minutos.
- o Formato de ejecución: individual.

