## 一、程式架構

這次作業要實作 longest common subsequence (LCS),假設有兩個序列分別為<2,4,6,8,10>和<1,2,5,4,9,10>,則其 LCS 為<2,4,10>。

課本提供的演算法是用來找出兩個序列的 LCS,然而這次作業需要輸入三個序列 (X,Y,Z),一開始想到兩種方法,第一種是建立三維的 c 和 b , 並 print 出結果,第二種則是先將前兩個序列 (X,Y)的 LCS 找出並設為 XY,再找出 XY和 Z 的 LCS 並 print 結果。最後我選擇使用後者。

```
使用者輸入 seq.的大小和值。

↓

LCS_Length(): 建立 X 和 Y 的 c and b table.

↓

Produce(): 做出 X 和 Y 的 LCS, 並存入新的 seq.(XY)。

↓

LCS_Length(): 建立 XY 和 Z 的 c and b table.

↓

Print_LCS(): 算出 XY 和 Z 的 LCS, 即 X, Y, Z 的 LCS。
```

## 二、執行範例

```
Input N1, N2, N3 (1<=length<1000)</pre>
N1: 3
N2: 5
N3: 2
x[1] = 1.90
x[2] = 2.3
x[3] = 5.0
y[1] = 1.9
y[2] = 2
v[3] = 5
y[4] = 6
y[5] = 7
z[1] = 1.900
z[2] = 5
LCS: 1.9 5
Length of LCS: 2
```

## 三、時間複雜度

前面有提及我選擇使用第二種方法,原因為下,當時考量前者可能會讓 LCS\_Length 的時間複雜度升至 $\theta(n1\cdot n2\cdot n3)$ (其中 n1 為 X 的 size、n2 是 Y 的、n3 是 Z 的),所以最後選擇後者,希望把時間複雜度縮小到 $\theta(n1\cdot n2+n4\cdot n3)$ (其中 n4 是 XY 的 size)。但原先 Print\_LCS 的時間複雜度為 $\theta(n1+n2+n3)$ ,可能會增加到 $\theta((n1+n2)+(n3+n4))$ 。不過 n<sup>3</sup> 降為 2n<sup>2</sup> 和 3n 升成 4n 相比,可以發現降低 LCS\_Length 的時間複雜度會有較大效益。

LL: LCS\_Length, PL: Print\_LCS(PL X and Y 用來做出 XY)

| Size |      |      | Running time |          |       |         |          |         |
|------|------|------|--------------|----------|-------|---------|----------|---------|
| N1   | N2   | N3   | LL           | LL       | Total | PL      | PL       | Total   |
|      |      |      | X and Y      | XY and Z | LL    | X and Y | XY and Z | PL      |
| 16   | 16   | 16   | 0            | 0        | 0     | 0       | 0        | 0       |
| 32   | 32   | 32   | 0            | 0        | 0     | 0.014   | 0.009    | 0.023   |
| 64   | 64   | 64   | 0.002        | 0        | 0.002 | 0.092   | 0.057    | 0.149   |
| 100  | 100  | 100  | 0.002        | 0.002    | 0.004 | 0.136   | 0.311    | 0.447   |
| 150  | 150  | 150  | 0.011        | 0.005    | 0.016 | 0.561   | 0.667    | 1.228   |
| 200  | 200  | 200  | 0.02         | 0.006    | 0.026 | 1.396   | 0.544    | 1.94    |
| 250  | 250  | 250  | 0.017        | 0.024    | 0.041 | 4.338   | 2.016    | 6.354   |
| 300  | 300  | 300  | 0.036        | 0.025    | 0.061 | 6.003   | 0.839    | 6.842   |
| 350  | 350  | 350  | 0.045        | 0.037    | 0.082 | 10.329  | 1.599    | 11.928  |
| 400  | 400  | 400  | 0.066        | 0.045    | 0.111 | 17.578  | 1.89     | 19.468  |
| 1000 | 1000 | 1000 | 0.226        | 0.5      | 0.726 | 508.655 | 24.456   | 533.111 |



除了上面表格所列,有另外測試其他 seq. size 導致的不同執行時間,觀察下發現在一定 size 之內,整個程式在生成 XY 會花最多時間,猜測是因為一開始 n1 和 n2 都很大,所以從 c and b table 要找出 XY 就會花大量時間,而當 XY 的大小遠小於 n3,就會讓找出 XY 和 Z 的 LCS 的時間減少許多。由此可以推測當 n1, n2, n3 不大時,用三維陣列做出 c and b table 並 print 可能會有較好的 performance,因為儘管三維會讓 LCS\_Length 的時間複雜度變成 $\theta(n^3)$ ,但在 size<104 前不會明顯上升,反而是 $\theta(n)$ 的 Print LCS 會上升許多。



老師上課提供的方法可以讓時間複雜度大幅下降,原先窮舉法要列出所有子序列並比較,需要 $O(2^{n_1}\cdot 2^{n_2}\cdot 2^{n_3})$ ,如果改成前兩者先比較,再取後兩者比較會降成 $O(2^{n_1}\cdot 2^{n_2}+2^{n_1+n_2}\cdot 2^{n_3})$ ,依舊比老師上課教的 DP 方法的 $O(n_1\cdot n_2+n_3\cdot n_1)$ (假設 worst case,X 和 Y 完全相同且 X.size()較小)大不少。在 Print\_LCS 方面,時間複雜度難以從O(n)上獲得改善,不過空間複雜度能藉由 c and b table 的建立方法變小。