Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

РЕФЕРАТ

по дисциплине «Основы операционных систем» Файловая система FAT

> Работу выполнил: Ильин В.П. Группа: 35300901/10005 Преподаватель: Малышев И.А.

Санкт-Петербург 2023

Содержание

1	Вступление	2
2	Сравнение с NTFS	2
3	Устройство файловой системы	2
4	Практическая часть	4
5	Список использованных источников	5

1. Вступление

Файловая система FAT изначально была разработана в 1970-х годах Марком Мак-Дональдом и Биллом Гейтсом для использования на дискетах, и стала стандартом в MS-DOS и ранних версиях Windows. Несмотря на свой довольно большой возраст, FAT до сих пор используется на флэшках и некоторых других твердотельных накопителях. За всю свою историю она подверглась множеству изменений, однако сохранила свои ключевые идеи.

2. Сравнение с NTFS

Стандартом в Windows сейчас является современная файловая система NTFS, которая по многим характеристикам заметно обгоняет наиболее популярные версии FAT. Разница в характеристиках представлена в таблице 2.1

	NTFS	FAT32	FAT16	FAT12
Максимальный	2ТБ	32ГБ	4ГБ	16Мб
размер раздела	2110	021 D	H D	101/10
Максимальный	16ТБ	4ГБ	2ГБ	<16Мб
размер файла	1011	41 D	21 D	\ 101VIO
Размер блока	4КБ	4 - 32 KB	2 - 64 KB	0.5 - 4 KB
Отказоустойчивость	Да	Нет	Нет	Нет
Сжатие	Да	Нет	Нет	Нет
	Windows	Windows	Windows	Windows
Совместимость	$10/8/7/{ m XP}/$	$\mathrm{ME}/2000/$	$\mathrm{ME}/2000/$	$\mathrm{ME}/2000/$
	Vista/2000	XP/7/8.1/10	XP/7/8.1/10	XP/7/8.1/10

Таблица 2.1: Сравнение FAT и NTFS

3. Устройство файловой системы

Первоначально следует отметить, что система FAT обладает высокой надежностью и эффективностью в хранении данных благодаря своей основной идее – представлению

каждого файла в виде списка связанных блоков. Эта концепция позволяет оптимально распределить информацию в файловой системе, обеспечивая быстрый доступ к данным, а также возможность быстрого обнаружения и устранения ошибок при их возникновении.

В связи с этим, важной ролью в системе FAT играет таблица размещения файлов, которая содержит информацию о последовательности соединенных блоков. Таким образом, каждый файл имеет свой уникальный адрес, который помогает системе быстро находить его и обеспечивать управление им.

Рис. 3.1: Пример работы таблицы размещения

В целях расширения функциональности системы разработчики добавили в нее таблицу каталогов, которая содержит информацию о том, какой блок в файле является первым. Эта таблица выступает важной связующей позицией между таблицей размещения файлов и фактическим расположением данных на диске.

Filename	Starting block	Metadata
my_folder	1	
Директория: /my	_folder	
Директория: /my Filename	_folder Starting block	Metadata

Рис. 3.2: Пример работы таблицы каталогов

Однако при использовании системы FAT возникает некоторое количество вопросов, которые требуют дополнительных разъяснений. К примеру, как система определяет адрес гооt-директории? В данном случае стоит отметить, что адрес гооt-директории является зарезервированным и всегда известен системе. Это позволяет обеспечить корректную работу всей файловой системы, гарантированный доступ к данным и защиту от ошибок.

Следовательно, использование системы FAT - это надежный и эффективный способ хранения информации, который обеспечивает быстрый доступ к данным, а также возможность быстрого обнаружения и устранения ошибок. Однако для полного понимания ее работы стоит изучить особенности ее устройства и принципов функционирования.

4. Практическая часть

Устройство файловой системы можно просмотреть на живом примере с помощью специализированных hex-редакторов.

С помощью ASCII-дешифратора справа от таблицы байтов можно сразу увидеть знакомые слова. В самой первой строчке присутствует запись «MSDOS5.0», которая обозначает операционную систему, на которой проводилось форматирование файловой системы. В целях сохранения обратной совместимости, обычно в этом поле указываются более старые системы, как, например, в данном случае, несмотря на то, что последнее форматирование проводилось на Windows 10. На строке 50 видно обозначение файловой системы — FAT32.

В байтах $0B_{16}$ и $0C_{16}$ записан размер сектора системы в байтах. В данном случае $-200_{16}=512_{10}$. В байтах $0E_{16}$ и $0F_{16}$ содержится информация о количестве секторов, выделенных под резервную область файловой системы $-0A68_{16}=2664_{10}$. С

помощью этой информации можно узнать местонахождение самой файловой таблица, которая будет находится в секторе под номером $A68_{16}$. Прежде чем перейти к самой таблице, стоит обратить внимание ещё на некоторые значения: в байтах 32 и 33 хранится информация о местонахождении резервной копии метаданных — 0006.

Перейдя в сектор с номером 6 можно действительно увидеть копию той информации, которая только что рассматривалась.

5. Список использованных источников

- https://www.udacity.com/course/gt-refresher-advanced-os--ud098
- https://shorturl.at/hnFWZ
- https://www.youtube.com/watch?v=FQ_xeYOeCpA&ab_channel=AlekOS