## Curve caratteristiche motori



## Quesito 4

Si consideri il sistema di acquisizione dati illustrato in Figura X, facente parte del sistema meccatronico mostrato in Figura 1 e finalizzato a misurare la posizione angolare  $\varphi_i$  di ogni meccanismo biella-manovella.

Ogni linea di sensing, consiste in un sensore  $S_i$  angolare, un primo blocco di condizionamento  $c_i$ , un secondo blocco di condizionamento  $c_0$  e un ADC. Sia inoltre presente un multiplexer (MUX) al fine di convogliare le linee di ingresso su unico stadio di acquisizione



## Figura X

 $S_i$  sia lineare,  $x_i$  variabile nel range  $180^{\circ}$ - $360^{\circ}$  e output range [-90, 90] mV,  $c_1$  un blocco per l'adattamento di scala con offset  $Y_1$  e guadagno  $k_1$  e  $c_0$  anch'esso blocco per l'adattamento di scala con offset  $Y_0$  e guadagno  $k_0$ . Il MUX accetti al suo ingresso segnali nel range [0,3]V, l'ADC abbia campo di valori di ingresso [-9, 9] V e B di 6 bit.

- Si determini la sensibilità del sensore.
- Si determinino i valori di k<sub>1</sub> e Y<sub>1</sub> ottimali per l'acquisizione digitale in corso.
- Si determinino i valori di k<sub>0</sub> e Y<sub>0</sub> ottimali per l'acquisizione digitale in corso.

- Si determini la risoluzione del sensore
- Quanti bit dovrebbe avere l'ADC per una risoluzione inferiore a 1°?
- Si desideri elaborare i campioni acquisiti dall'ADC per visualizzarli su un diagramma posizione angolare x<sub>i</sub>-tempo. Si indichi l'operazione matematica necessaria da effettuarsi sui campioni di uscita v<sub>O</sub> per ottenere un diagramma di questo tipo.
- Nel caso il MUX passi da una linea di ingresso alla successiva ogni 20 ms, si indichi il valore minimo di frequenza di campionamento R<sub>S</sub> dell'ADC necessario per raccogliere almeno 10 campioni per ogni scansione dei tre ingressi.