REMARKS

Status of the Claims

Claims 1-17 are pending in this application.

Claims 1-17 are rejected.

Claim 1 has been amended. Support for these amendments can be found throughout the specification, claims, and drawings, as originally filed.

Rejection of Claims 1-6, 10, and 16-17 Under 35 U.S.C. § 102(b)

Claims 1-6, 10, and 16-17 stand rejected under 35 U.S.C. § 102(b) as being unpatentable over U.S. Patent No. 4,737,896 to Mochizuki (hereafter Mochizuki). Applicant respectfully traverses the rejection and requests reconsideration based on the following remarks.

Anticipation requires that a single prior art reference disclose each and every limitation of the claim sought to be rejected. The law is clear that a claim in dependent form shall be construed to incorporate all the limitations of the claim from which it depends.

The Office Action calls the minute planes (22) of Mochizuki a reflecting structure. See Office Action page 2. However, amended independent claim 1 of the present invention requires that, "viewed in the direction of the rays," the reflecting surfaces are "... offset from each other whereby the offset arrangement of the reflecting surfaces generates a continuous luminous field. By stark contrast, the specification and figures of Mochizuki disclose that, viewed in the direction of the light rays, each individual plane (22) extends across the entire width of the prism array; thus, they

are not offset from each other. See Col. 2, lines 25-28 and Fig. 3 of Mochizuki. Further, since Mochizuki's planes (22) have a non-reflective **dead-zone (41)** between them, the planes (22) **do not generate a continuous luminous field** of reflected light rays. See Col. 2, lines 25-28, 32-36 and Fig. 4 of Mochizuki. Thus, the minute planes (22) of Mochizuki are not the reflecting surfaces required by the present invention.

Furthermore, independent claim 1 of the present invention requires ". . . at least one connection side for at least one light source" By contrast, Mochizuki discloses a light source 11 located some distance apart from the device, not connected to it. See Fig. 2 of Mochizuki.

For at least these reasons, Mochizuki does not disclose each and every element of independent claim 1 of the present invention. Therefore, Applicant respectfully requests removal of the rejection and allowance of independent claim 1 and claims 2-17 depending therefrom.

In addition, Mochizuki does not render claims 1-17 of the present invention obvious. The standard for obviousness is that there must be some teaching, either in the reference or in the relevant art, of how to modify what is disclosed to arrive at the claimed invention. The law is clear that a claim in dependent form shall be construed to incorporate all the limitations of the claim from which it depends.

Applicant respectfully submits that Mochizuki does not render obvious independent claim 1 from which claims 2-17 depend. As previously argued, Mochizuki does not teach reflecting surfaces "... offset from each other; ... whereby the offset arrangement of the reflecting surfaces generates a continuous luminous field" as required by claim 1 of the present invention. By contrast, Mochizuki teaches that each

plane (22) **extends across the entire width of the prism array**, not offset from each other; and that there are dead-zones (41) interrupting the planes (22), thus preventing them from generating a continuous luminous field. See Figs. 3-4 of Mochizuki. Furthermore, as previously argued, Mochizuki teaches a remotely located light source (11), not a connection side for at least one light source as required by claim 1 of the present invention. Thus, Mochizuki does not teach the limitations of independent claim 1 of the present invention and claims 2-17 depending therefrom.

Furthermore, the prior art reference must be "in the field of the applicant's endeavor or be reasonably pertinent to the problem with which the inventor was concerned." *In re Kahn*, 441 F.3d 977, 987, 78 USPQ2d 1329 (Fed. Cir. 2006). Mochizuki is not in the same field of endeavor as the present invention. Mochizuki teaches a back light device for illuminating particular picture elements on a liquid crystal television panel. See Col 1, lines 7-9, Col 2, lines 65-68, Col. 3, lines 1-2 and Fig. 2. Mochizuki clearly has nothing to do with a light guide for lighting of a vehicle, in particular a motor vehicle, including creating a continuous luminous field, as required by the present invention. Thus, Applicant submits that independent claim 1 and claims 2-17 depending therefrom are not rendered obvious by Mochizuki.

Rejection of Claims 1, 7-9, and 11-15 Under 35 U.S.C. § 102(b)

Claims 1, 7-9, and 11-15 stand rejected under 35 U.S.C. § 102(b) as being unpatentable over European Patent Application No. EP184619A2 to Tarne et al. (hereafter Tarne). Applicant respectfully traverses the rejection and requests reconsideration based on the following remarks.

Anticipation requires that a single prior art reference disclose each and every limitation of the claim sought to be rejected. The law is clear that a claim in dependent form shall be construed to incorporate all the limitations of the claim from which it depends.

The Office Action calls the faces (43) and concentric rings (71) of Tarne reflective surfaces. See Office Action page 3. However, amended independent claim 1 of the present invention requires that, "viewed in the direction of the rays," the reflecting surfaces are ". . . offset from each other whereby the offset arrangement of the reflecting surfaces generates a continuous luminous field. By stark contrast, the specification and figures of Tarne disclose that, viewed in the direction of the light rays, each individual face (43) extends across the entire width of a spoke; not offset from each other. See Col. 2, lines 47-49 and Figs. 1-3. Further, since Tarne's faces (43) have a non-reflective dead-zone (46) between them, the faces (43) do not generate a continuous luminous field of reflected light rays. See Col. 3, lines 32-36 and Fig. 3. In addition, the rings (71) of Tarne are not offset from each other either; instead, viewed in the direction of the rays, the rings (71) are concentric. See Col. 4, lines 40-42 and Fig. 5. Furthermore, the concentric rings (71) are separated by a non-reflective deadzone (72) preventing a continuous luminous field of reflected light rays. See Col. 4, lines 45-46 and Fig. 6. Thus, the reflective faces (43) and rings (71) of Tarne are not the reflecting surfaces required by the present invention. Therefore, Applicant respectfully requests removal of the rejection and allowance of independent claim 1 and claims 2-17 depending therefrom.

In further regard to claim 7, claim 7 requires "at least two light guide parts which, viewed in the direction of the rays, lie side-by-side . . . each comprising at least one light source" See claim 7 of the present invention depending from independent claim 1. By stark contrast, the specification and figures of Tarne disclose spokes (34) branching out in all directions from a common hub in a radial manner, not located side by side. See Col. 2, lines 34-36 and Figs. 1 and 4. Furthermore, the office action indicates that figure 6 of Tarne discloses light guide parts lying side-by-side. However, figure 6 is merely a cross-sectional view of figure 5 along line 6-6. As clearly shown in figure 5, light openings are located on the circumference of a single circular lens (66), instead of at least two light guide parts each comprising a light source. Further, the rings (71) and connecting faces (72) are disposed in a circular manner within the lens (66), not side-by-side. Therefore, Applicant respectfully submits that Tarne does not disclose light guide parts which, viewed in the direction of the rays, lie "side-by-side." See claim 7 depending from independent claim 1 and claims 8-9, 11, and 12-15 directly and ultimately depending from claims 7 and 1 respectively. Thus, removal of the rejection and allowance of claims 7-9, 11, and 12-15 is respectfully requested.

In addition, Tarne does not render the claims of the present invention obvious.

The standard for obviousness is that there must be some teaching, either in the reference or in the relevant art, of how to modify what is disclosed to arrive at the claimed invention. The law is clear that a claim in dependent form shall be construed to incorporate all the limitations of the claim from which it depends

Applicant respectfully submits that Tarne does not render obvious independent claim 1 from which claims 2-17 depend. As previously argued, Tarne does not teach

reflecting surfaces "... offset from each other; ... whereby the offset arrangement of

the reflecting surfaces generates a continuous luminous field" as required by claim 1

of the present invention. By contrast, Tarne teaches faces (43) that extend across the

entire width of the spoke and rings (71) that are concentric, not offset from each

other; and Tarne teaches dead-zones (46,72) between each (43,71) respectfully

preventing a continuous luminous field of reflected light rays. See Figs. 1-6 of Tarne.

Thus, Tarne does not teach the limitations of independent claim 1 of the present

invention. Therefore, Applicant respectfully submits that independent claim 1 and

claims 2-17 depending therefrom are not rendered obvious by Tarne.

CONCLUSION

It is respectfully submitted that in view of the above amendments and remarks

the claims 1-17, as presented, are patentably distinguishable because the cited patents,

whether taken alone or in combination, do not disclose each and every element of the

present invention. Therefore, Applicant submits that the pending claims are properly

allowable, which allowance is respectfully requested.

The Examiner is invited to telephone the Applicant's undersigned attorney at

(248) 364-4300 if any unresolved matters remain.

Respectfully submitted,

WARN PARTNERS, P.C.

Attorneys for Applicant(s)

Philip Warn, Reg. No. 32775

Dated: Deg 21, 2007

691 North Squirrel

Suite 140

Auburn Hills, MI

Application No. 10/534,269

Page 11

Please replace the Specification with the following (marked up) Substitute Specification:

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is a National Stage of International Application No. PCT/DE2003/003546 filed October 25, 2003, which claims priority to German Patent Application No. DE 102 51 849.1 filed on November 7, 2002. The disclosures of the above applications are incorporated herein by reference.

TECHNICAL FIELD

[0002] The invention relates to a light guide for lighting vehicles, preferably motor vehicles.

BACKGROUND

[0003] There are known light guides essentially rectangular in shape and comprising lighting means in the form of LEDs arranged in series side-by-side on one narrow end. With them, light is fed into the light guide, and reflected from reflecting surfaces towards the light exit side. A uniform illumination is thus not assured.

[0004] The object of the invention is to configure the generic light guide such that an optimum illumination of the light guide is assured with simple design conformation.

[0005] This object is accomplished according to the invention, in the light guide, of the present invention.

SUMMARY OF THE INVENTION

[0006] In the light guide according to the invention, the reflecting surfaces, viewed in the direction of the rays, are offset from each other. The reflecting surfaces are so arranged that, viewed in the direction of the rays, they adjoin each other essentially without gaps. Thus, between the individual reflecting surfaces, no shadows are cast, so that the light emitted by the lighting means is optimally utilized. As a result of the configuration according to the invention, the light exit side is fully illuminated.

[0007] Other features of the invention will appear from the additional claims, the description and the drawings.

DESCRIPTION OF THE DRAWINGS

[0008] The invention will be illustrated in more detail in terms of an embodiment represented in the drawings by way of example. In the drawings,

[0009] Fig. 1 shows a view of a light guide according to the invention, its light guide parts being represented separately,

[0010] Fig. 2 shows the light guide of Fig. 1 in perspective representation,

[0011] Fig. 3 shows the light guide in a view in the direction of the arrow III in Fig. 1.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0012] The light guide 1 is intended for lighting of motor vehicles, and consists in known manner of light-conducting material. The light guide 1 has a rectangular outline in top view, with two plane side walls 2, 3 parallel to each other. On their long

side, the side walls 2, 3 are connected to each other by a light exit surface 4, having a rectangular outline in top view.

[0013] The light guide 1 is made in one piece, but consists of two light guide parts 5 and 6 each having a rectangular shape in top view. The light guide parts 5, 6 are essentially of like configuration, but arranged lying rotated at 180° to each other. The two light guide parts 5, 6 have a common light exit surface 4. The light guide part 5 is provided at one end with a plane face 7, extending over the entire width and height of the light guide part 5, to which a lighting means 8, preferably an LED, is connected. From this face 7 on out, the height of the light guide part 5 decreases in the direction of the opposed face 9, which extends over the entire width of the light guide part 5.

[0014] The other light guide part 6 likewise comprises a face 10, rectangular in the view, which like the face 7 is of plane configuration, and to which an additional lighting means 11, preferably an LED, is connected. The height of the light guide part 6 diminishes from this face 10 on as far as the opposed face 12. It is of but little height, but it extends over the entire width of the light guide part 6. As may be seen in Fig. 2, the faces 7, 12 and 9, 10 each lie in a common plane. The faces 7, 10, like the faces 9, 12, lie diagonally opposed to each other.

[0015] The side of the two light guide parts 5, 6 opposed to the light exit surface 4 is provided with reflecting surfaces 13, 14, on which the light emitted from each lighting means 8, 11 is reflected to the light exit surface 4. The reflecting surfaces 13, 14 are arranged so inclined relative to the direction of the rays that the rays of light exit from the light exit surface 4 at an angle of 90°. Depending on the application, it is of

course possible to arrange the reflecting surfaces 13, 14 inclined at other angles, so that the light rays will exit the light exit surface 4 at angles other than 90°.

[0016] The reflecting surfaces 13, 14 are each plane and extend, as Fig. 2 shows, over the width of the light guide part 5, 6 in question. The reflecting surfaces of the light guide part 5 are moreover inclined in opposed direction to the reflecting surfaces 14 of the light guide part 6. In this embodiment by way of example, the reflecting surfaces 14 of the light guide part 6 lie parallel to each other.

[0017] The reflecting surfaces 13 each adjoin oblique surfaces 15 inclined in opposition to them, which in turn adjoin, at acute angles, side surfaces 16 lying perpendicular to the light exit surface 4. These side surfaces 16 adjoin the respective reflecting surfaces 13 at obtuse angles. The oblique surfaces 15 and the side surfaces 16 form the side walls of projections 14, triangular in cross-section.

[0018] In like manner, the reflecting surfaces 14 of the light guide part 6 adjoin side surfaces 18 lying perpendicular to the light exit surface 4 at obtuse angles, which surfaces 18 in turn pass over into oblique surfaces 19 at acute angles. They adjoin the reflecting surfaces 14. The side surfaces 18 and the oblique surfaces 19 form side walls of triangular projections 20, triangular in cross-section.

[0019] The reflecting surfaces 13, as may be seen in Figs. 1 and 2, lie at gap to the reflecting surfaces 14. Accordingly, the width, measured in the direction of the rays, of the reflecting surfaces 13 is equal in size to the width, measured in the same direction, of the oblique surfaces 19. Conversely, the width, measured in the direction of the rays, of the reflecting surfaces 14, is equal to the width of the oblique surfaces 15, measured in the same direction.

[0020] The reflecting surfaces 13, arranged one behind another, of the light guide part 5, from the face 7 on, have increasingly smaller distance from the light exit surface 4. The reflecting surfaces 14 of the light guide part 6, starting from the face 10 of this light guide part 6, also have increasingly smaller distance from the light exit surface 4. The reflecting surface 13' of the light guide part 5, located at half-length of the light guide 1, passes over into the oblique surface 19' of the light guide part 6, with which it lies in a common plane. From this common surface 13', 19' on, in the direction of the face 7, the light guide part 5 outreaches the light guide part 6, while conversely, from the common surface 13', 19' on, towards the face 10, the light guide part 6 outreaches the light guide part 5. The light guide part 5, 6, in its respective overreaching portion, has a plane side wall 21, 22 parallel to the side wall 2, 3 of the light guide 1.

[0021] On the basis of the stepped arrangement of the reflecting surfaces 13, 14 and their offset arrangement to each other, it is brought about that the rays emitted by the LEDs 8, 11 are reflected at the reflecting surfaces 13, 14 to the light exit surface 4. Thus, each light guide part 5, 6 generates luminous bands 23, 24 at the reflecting surfaces 13, 14, of which three luminous bands are represented in Fig. 1. The luminous bands 23, 24 of each light guide part 5, 6 lie at a distance from each other. Owing to the offset arrangement of the reflecting surfaces 13, 14 to each other, the luminous band 24, in side view as in Fig. 1, shines into the area between luminous bands 23 of the light guider part 5. This, seen in side view, generates a continuous luminous field.

[0022] The reflecting surfaces 13, 14 are each so arranged that, seen in the direction of the rays, they adjoin each other. This means that the edge 25, anterior in

the direction of the rays, of the reflecting surface 13 adjoining the face 7, viewed in the direction of the rays, lies at the same level as the margin 25, posterior in the direction of the rays, of the next reflecting surface 13. In this way, the reflecting surfaces 13 of the light guide part 5 and the reflecting surfaces 14 of the light guide part 6 are arranged one behind another.

[0023] Since the two lighting means 8, 11 are provided at the two ends of the light guide 1, an optimal luminous yield results, with compact structure of the light guide 1. The light is so fed into the light guide 1 that the light rays in the light guide 1 are propagated almost parallel. The stair-like reflecting surfaces 13, 14 with the projections 17, 20 located between them guide the light rays in the manner described to the light exit surface 4. The subdivision of the deflecting optics into contrary profiles makes possible a very uniform illumination of the light exit surface 4. It may be additionally provided with scattering and/or refracting elements to achieve a desired distribution of light. In the embodiment by way of example (Fig. 3), the light exit surface 4 is provided with cushion-shaped optics 27, immediately adjoining each other by way of the said area of the light exit surface 4.

[0024] The two light sources 8, 11 emit light of like color. Alternatively, it is possible for the two sources 8, 11 to emit light of different colors. Then the light exit surface 4, owing to the arrangement of the reflecting surfaces 13, 14 as described, is illuminated checkerboard-fashion by the color in question.

[0025] It is also possible, instead of the two light guide parts 5, 6, to provide additional light guide parts, in that case arranged each rotated 180° to the respective neighboring light guide parts.

ABSTRACT

[0026] The present invention relates to a light guide for lighting vehicles, preferably motor vehicles. Light rays emitted from the light source of the light guide are reflected off of reflecting surfaces toward a light exit surface. The reflected surfaces are arranged to allow full illumination of the light exit surface.