Some underlying foundations for RL

Dale Schuurmans

The RL problem

The RL problem

- 1. multi-agent interaction

 → non-stationarity
- 2. partial observability construct memory
- 3. exploration

 → explore/exploit
- 4. sequential decisions

 temporal credit assignment
- 5. exploitation policy optimization

Optimizing one step decision making

Batch policy optimization

Optimize policy $\pi: X \to \Delta^n$ to maximize expected reward on **test** contexts $\pi(a \mid x) = e^{q(x)_a - F(q(x))}$ $F(q(x)) = \log \sum_a e^{q(x)_a}$ $q: X \to \Re^n \quad \text{neural network}$

Three key issues

- 1. generalization
- 2. optimization
- 3. missing data

Optimize policy $\pi: X \to \Delta^n$ to matrix $\pi(a \mid x) = e^{q(x)_a - F(q(x))}$ $F(q(x)) = \log \sum_a e^{q(x)_a}$ $q: X \to \Re^n \quad \text{neural network}$

Isn't this a solved problem?

We know how to do this, right?

Default answer

- maximize importance corrected expected reward
- (assume have proposal probabilities)

$$\max \sum_{i} \frac{\pi(a_i | x_i)}{\beta_i} r_i$$

Optimize policy
$$\pi: X \to \Delta^n$$
 to matrix $\pi(a \mid x) = e^{q(x)_a - F(q(x))}$
$$F(q(x)) = \log \sum_a e^{q(x)_a}$$

$$q: X \to \Re^n \quad \text{neural network}$$

Optimize policy $\pi: X \to \Delta^n$ to matrix $\pi(a \,|\, x) = e^{q(x)_a - F(q(x))}$ $F(q(x)) = \log \sum_a e^{q(x)_a}$ $q: X \to \Re^n \quad \text{neural network}$

Given data

Optimize policy $\pi: X \to \Delta^n$ $\pi(a \mid x) = e^{q(x)_a - F(q(x))}$ $F(q(x)) = \log \sum_a e^{q(x)_a}$

 $q: X \to \Re^n$ neural network

Now assume given **complete** data

	a_1	<i>a</i> ₂	• • •	a_n
<i>x</i> ₁	r_{11}	r_{12}	<i>r</i> ₁	r_{1n}
<i>X</i> ₂	<i>r</i> ₂₁	<i>r</i> ₂₂	<i>r</i> ₂	r_{2n}
<i>X</i> 3	<i>r</i> ₃₁	<i>r</i> ₃₂	<i>r</i> ₃	<i>r</i> _{3<i>n</i>}
<i>X</i> ₄	<i>r</i> ₄₁	<i>r</i> ₄₂	<i>r</i> ₄	<i>r</i> _{4<i>n</i>}
<i>X</i> ₅	<i>r</i> ₅₁	<i>r</i> ₅₂	<i>r</i> ₅	<i>r</i> _{5<i>n</i>}
<i>X</i> ₆	<i>r</i> ₆₁	<i>r</i> ₆₂	<i>r</i> ₆	<i>r</i> _{6<i>n</i>}
:	<i>r</i> :1	<i>r</i> _{:2}	<i>r</i> :	$r_{:n}$
x_m	r_{m1}	r_{m2}	<i>r</i> _m	r _{mn}

Optimize policy $\pi: X \to \Delta^n$ $\pi(a \mid x) = e^{q(x)_a - F(q(x))}$ $F(q(x)) = \log \sum_a e^{q(x)_a}$

 $q: X \to \Re^n$ neural network

Now assume given **complete** data

	<i>a</i> ₁	<i>a</i> ₂	• • •	a_n
x_1	r_{11}	r_{12}	<i>r</i> ₁	r_{1n}
<i>X</i> ₂	<i>r</i> ₂₁	<i>r</i> ₂₂	<i>r</i> ₂	r_{2n}
<i>X</i> 3	<i>r</i> ₃₁	<i>r</i> ₃₂	<i>r</i> ₃	<i>r</i> 3 <i>n</i>
<i>X</i> ₄	<i>r</i> ₄₁	<i>r</i> ₄₂	<i>r</i> ₄	r_{4n}
<i>X</i> ₅	<i>r</i> ₅₁	<i>r</i> ₅₂	<i>r</i> ₅	<i>r</i> ₅ <i>n</i>
<i>x</i> ₆	<i>r</i> ₆₁	<i>r</i> ₆₂	<i>r</i> ₆	<i>r</i> _{6<i>n</i>}
	<i>r</i> :1	<i>r</i> _{:2}	<i>r</i> :	<i>r</i> : <i>n</i>
<i>X</i> _m	r_{m1}	r_{m2}	<i>r</i> _m	r _{mn}

Optimize policy $\pi: X \to \Delta^n$ $\pi(a \mid x) = e^{q(x)_a - F(q(x))}$ $F(q(x)) = \log \sum_a e^{q(x)_a}$

Target objective

• expected reward: $\max \sum_{i} \mathbf{r}_{i} \cdot \boldsymbol{\pi}(x_{i})$

Done, right? Not so fast ...

This objective has serious problems

- actually trying to solve: $\max \sum_{i} \mathbf{r}_{i} \cdot \mathbf{f}(q(x_{i}))$
- plateaus everywhere
- can have exponentially many local maxima
- nearly impossible to reach a global optima

Also: you already know not to train this way!

to maximize expected reward on test contexts

 $q: X \to \Re^n$ neural network

Special case: supervised classification

	a_1	<i>a</i> ₂	• • •	a_n
<i>x</i> ₁	0	1	0	0
<i>X</i> ₂	0	0	0	1
<i>X</i> 3	1	0	0	0
<i>X</i> ₄	0	0	1	0
<i>X</i> 5	1	0	0	0
<i>x</i> ₆	0	1	0	0
:	0	0	1	0
X _m	0	0	0	1

Optimize policy $\pi: X \to \Delta^n$ $\pi(a \mid x) = e^{q(x)_a - F(q(x))}$ $F(q(x)) = \log \sum_{i=1}^n e^{q(x)_a}$

 $F(q(x)) = \log \sum_{a} e^{q(x)_a}$

 $q: X \to \Re^n$ neural network

to maximize expected accuracy on test contexts

Special case: supervised classification

	a_1	<i>a</i> ₂	• • •	a_n
<i>x</i> ₁	0	1	0	0
<i>X</i> ₂	0	0	0	1
<i>X</i> 3	1	0	0	0
<i>X</i> ₄	0	0	1	0
<i>X</i> 5	1	0	0	0
<i>x</i> ₆	0	1	0	0
:	0	0	1	0
x _m	0	0	0	1

Target objective

• expected accuracy: $\max \sum_{i} \mathbf{r}_{i} \cdot \boldsymbol{\pi}(x_{i})$

But you have never trained with this objective Instead, you used a surrogate objective

$$\max \sum_{i} \mathbf{r}_{i} \cdot \log \boldsymbol{\pi}(x_{i})$$

What's going on?

- $\mathbf{r}_i \cdot \boldsymbol{\pi}(x_i)$ is differentiable, that's not the issue
- training with $\mathbf{r}_i \cdot \log \boldsymbol{\pi}(x_i)$ actually achieves better values of $\mathbf{r}_i \cdot \boldsymbol{\pi}(x_i)$ on the training data

Optimize policy $\pi: X \to \Delta^n$ to maximize expected **accuracy** on **test** contexts

 $\pi(a \mid x) = e^{q(x)_a - F(q(x))}$ $F(q(x)) = \log \sum_a e^{q(x)_a}$ $q: X \to \Re^n \quad \text{neural network}$

Special case: supervised classification

	a_1	<i>a</i> ₂	• • •	a _n
<i>x</i> ₁	0	1	0	0
<i>X</i> ₂	0	0	0	1
<i>X</i> 3	1	0	0	0
<i>X</i> ₄	0	0	1	0
<i>X</i> 5	1	0	0	0
<i>x</i> ₆	0	1	0	0
:	0	0	1	0
x _m	0	0	0	1

Why?

- expected accuracy: $\max \sum_{i} \mathbf{r}_{i} \cdot \boldsymbol{\pi}(x_{i})$
- maximum likelihood: $\max \sum_{i} \mathbf{r}_{i} \cdot \log \pi(x_{i})$

Useful properties of maximum likelihood

- $\mathbf{r}_i \cdot \log \boldsymbol{\pi}(x_i)$ is concave in $\mathbf{q}(x_i)$
- it is also calibrated w.r.t. $\mathbf{r}_i \cdot \boldsymbol{\pi}(x_i)$:

$$\forall \epsilon > 0 \, \exists \delta > 0 \ \mathbf{r} \cdot \log \pi^* - \mathbf{r} \cdot \log \pi < \delta \Rightarrow \mathbf{r} \cdot \pi^* - \mathbf{r} \cdot \pi < \epsilon$$

Optimize policy $\pi: X \to \Delta^n$ $\pi(a \mid x) = e^{q(x)_a - F(q(x))}$

 $F(q(x)) = \log \sum_{a} e^{q(x)_a}$

 $q: X \to \Re^n$ neural network

to maximize expected accuracy on test contexts

Misclassification error on MNIST training data

Back to **general** rewards

	a_1	<i>a</i> ₂	• • •	a_n
<i>x</i> ₁	r_{11}	r_{12}	<i>r</i> ₁	r_{1n}
<i>X</i> ₂	<i>r</i> ₂₁	<i>r</i> ₂₂	<i>r</i> ₂	r_{2n}
<i>X</i> 3	<i>r</i> ₃₁	<i>r</i> ₃₂	<i>r</i> ₃	<i>r</i> 3 <i>n</i>
<i>X</i> ₄	<i>r</i> ₄₁	<i>r</i> ₄₂	<i>r</i> ₄	<i>r</i> _{4<i>n</i>}
<i>X</i> 5	<i>r</i> ₅₁	<i>r</i> ₅₂	<i>r</i> ₅	<i>r</i> _{5<i>n</i>}
<i>X</i> ₆	<i>r</i> ₆₁	<i>r</i> ₆₂	<i>r</i> ₆	<i>r</i> _{6<i>n</i>}
	<i>r</i> :1	<i>r</i> _{:2}	<i>r</i> :	<i>r</i> : <i>n</i>
X_{m}	r_{m1}	r_{m2}	<i>r</i> _m	r _{mn}

Optimize policy $\pi: X \to \Delta^n$ $\pi(a \mid x) = e^{q(x)_a - F(q(x))}$ $F(q(x)) = \log \sum_a e^{q(x)_a}$

 $q: X \to \Re^n$ neural network

Back to **general** rewards

	<i>a</i> ₁	<i>a</i> ₂	• • •	a_n
<i>x</i> ₁	r ₁₁	<i>r</i> ₁₂	<i>r</i> ₁	r_{1n}
<i>X</i> ₂	<i>r</i> ₂₁	<i>r</i> ₂₂	<i>r</i> ₂	r_{2n}
<i>X</i> 3	<i>r</i> ₃₁	<i>r</i> ₃₂	<i>r</i> ₃	<i>r</i> 3 <i>n</i>
<i>X</i> ₄	<i>r</i> ₄₁	<i>r</i> ₄₂	<i>r</i> ₄	r_{4n}
<i>X</i> ₅	<i>r</i> ₅₁	<i>r</i> ₅₂	<i>r</i> ₅	<i>r</i> _{5<i>n</i>}
<i>X</i> ₆	<i>r</i> ₆₁	<i>r</i> ₆₂	<i>r</i> ₆	<i>r</i> ₆ <i>n</i>
	<i>r</i> :1	<i>r</i> _{:2}	<i>r</i> :	$r_{:n}$
X _m	r_{m1}	r_{m2}	<i>r</i> _m	r _{mn}

Target objective

• expected reward: $\max \sum_{i} \mathbf{r}_{i} \cdot \boldsymbol{\pi}(x_{i})$ "cost sensitive classification"

Calibrated surrogates exist for $\mathbf{r}_i \cdot \boldsymbol{\pi}(x_i)$ (Pires et al. ICML-2013)

Interesting alternative

• entropy regularized expected reward $\max \sum_{i} \mathbf{r}_{i} \cdot \boldsymbol{\pi}(x_{i}) - \tau \boldsymbol{\pi}(x_{i}) \cdot \log \boldsymbol{\pi}(x_{i})$

Optimize policy $\pi: X \to \Delta^n$ $\pi(a \mid x) = e^{q(x)_a - F(q(x))}$ $F(q(x)) = \log \sum_a e^{q(x)_a}$

 $q: X \to \Re^n$ neural network

Back to **general** rewards

	<i>a</i> ₁	<i>a</i> ₂	• • •	a_n
x_1	r_{11}	r_{12}	<i>r</i> ₁	r_{1n}
<i>X</i> ₂	<i>r</i> ₂₁	<i>r</i> ₂₂	<i>r</i> ₂	r_{2n}
<i>X</i> 3	<i>r</i> ₃₁	<i>r</i> ₃₂	<i>r</i> ₃	<i>r</i> _{3<i>n</i>}
<i>X</i> ₄	<i>r</i> ₄₁	<i>r</i> ₄₂	<i>r</i> ₄	<i>r</i> _{4<i>n</i>}
<i>X</i> ₅	<i>r</i> ₅₁	<i>r</i> ₅₂	<i>r</i> ₅	<i>r</i> _{5<i>n</i>}
<i>X</i> ₆	<i>r</i> ₆₁	<i>r</i> ₆₂	<i>r</i> ₆	<i>r</i> _{6<i>n</i>}
	<i>r</i> :1	<i>r</i> _{:2}	<i>r</i> :	r _{:n}
X _m	r_{m1}	r_{m2}	<i>r</i> _m	r _{mn}

Entropy regularized expected reward

 $\arg\max\mathbf{r}\cdot\boldsymbol{\pi}-\tau\boldsymbol{\pi}\cdot\log\boldsymbol{\pi}$

- = arg min $\tau F(\mathbf{r}/\tau) \mathbf{r} \cdot \boldsymbol{\pi} + \tau F^*(\boldsymbol{\pi})$
- = arg min $F(\mathbf{r}/\tau) \mathbf{r} \cdot \boldsymbol{\pi}/\tau + F^*(\boldsymbol{\pi})$
- = arg min KL($\pi || \mathbf{p}$) where $\mathbf{p} = e^{\mathbf{r}/\tau F(\mathbf{r}/\tau)}$

Suggests a natural surrogate

 $\arg\min KL(\mathbf{p}||\boldsymbol{\pi}) = \arg\min F(\mathbf{q}) - \mathbf{q} \cdot \mathbf{p}$

convex in q

Optimize policy
$$\pi: X \to \Delta^n$$

$$\pi(a \mid x) = e^{q(x)_a - F(q(x))}$$

$$F(q(x)) = \log \sum_a e^{q(x)_a}$$

 $q: X \to \Re^n$ neural network

Let
$$F^*(\pi) = \pi \cdot \log \pi$$

Back to **general** rewards

	<i>a</i> ₁	<i>a</i> ₂	• • •	a_n
<i>x</i> ₁	r ₁₁	<i>r</i> ₁₂	<i>r</i> ₁	r_{1n}
<i>X</i> ₂	<i>r</i> ₂₁	<i>r</i> ₂₂	<i>r</i> ₂	r_{2n}
<i>X</i> 3	<i>r</i> ₃₁	<i>r</i> ₃₂	<i>r</i> ₃	<i>r</i> 3 <i>n</i>
<i>X</i> ₄	<i>r</i> ₄₁	<i>r</i> ₄₂	<i>r</i> ₄	r_{4n}
<i>X</i> ₅	<i>r</i> ₅₁	<i>r</i> ₅₂	<i>r</i> ₅	<i>r</i> _{5<i>n</i>}
<i>X</i> ₆	<i>r</i> ₆₁	<i>r</i> ₆₂	<i>r</i> ₆	<i>r</i> ₆ <i>n</i>
	<i>r</i> :1	<i>r</i> _{:2}	<i>r</i> :	$r_{:n}$
X _m	r_{m1}	r_{m2}	<i>r</i> _m	r _{mn}

Comparison to maximum likelihood

before
$$-\mathbf{r} \cdot \log \boldsymbol{\pi} = F(\mathbf{q}) - \mathbf{q} \cdot \mathbf{r}$$

now $\mathbf{KL}(\mathbf{p} || \boldsymbol{\pi}) \equiv F(\mathbf{q}) - \mathbf{q} \cdot \mathbf{p}$

If $r = 1_a$ is an indicator

- become equivalent as $\tau \to 0$
- $\lim_{\tau \to 0} \mathbf{p} = \mathbf{r} = \mathbf{1}_a$
- but $\tau > 0$ gives soft targets for **KL** "label smoothing" improves generalization in practice

Optimize policy $\pi: X \to \Delta^n$ $\pi(a \mid x) = e^{q(x)_a - F(q(x))}$ $F(q(x)) = \log \sum_a e^{q(x)_a}$

 $q: X \to \Re^n$ neural network

Back to **general** rewards

	a_1	<i>a</i> ₂	•••	a_n
<i>x</i> ₁	r_{11}	r_{12}	<i>r</i> ₁	r_{1n}
<i>X</i> ₂	<i>r</i> ₂₁	<i>r</i> ₂₂	<i>r</i> ₂	r_{2n}
<i>X</i> 3	<i>r</i> ₃₁	<i>r</i> ₃₂	<i>r</i> ₃	<i>r</i> _{3<i>n</i>}
<i>X</i> ₄	<i>r</i> ₄₁	<i>r</i> ₄₂	<i>r</i> ₄	<i>r</i> _{4<i>n</i>}
<i>X</i> 5	<i>r</i> ₅₁	<i>r</i> ₅₂	<i>r</i> ₅	<i>r</i> _{5<i>n</i>}
<i>x</i> ₆	<i>r</i> ₆₁	<i>r</i> ₆₂	<i>r</i> ₆	<i>r</i> _{6<i>n</i>}
	<i>r</i> :1	<i>r</i> _{:2}	<i>r</i> :	$r_{:n}$
X _m	r_{m1}	r_{m2}	<i>r</i> _m	r _{mn}

A convex, calibrated upper bound

$$\mathsf{KL}(\boldsymbol{\pi} \| \mathbf{p}) \le \mathsf{KL}(\mathbf{p} \| \boldsymbol{\pi}) + \frac{\tau}{4} \| \mathbf{r} / \tau - \mathbf{q} \|^2$$

Optimize policy $\pi: X \to \Delta^n$ $\pi(a \mid x) = e^{q(x)_a - F(q(x))}$ $F(q(x)) = \log \sum_a e^{q(x)_a}$ $q: X \to \Re^n \quad \text{neural network}$

	<i>a</i> ₁	a_2	•••	a_n
<i>x</i> ₁	<i>r</i> ₁₁	<i>r</i> ₁₂	<i>r</i> ₁	r_{1n}
<i>X</i> ₂	r_{21}	<i>r</i> ₂₂	<i>r</i> ₂	r_{2n}
<i>X</i> 3	<i>r</i> ₃₁	<i>r</i> ₃₂	<i>r</i> ₃	<i>r</i> _{3<i>n</i>}
<i>X</i> ₄	<i>r</i> ₄₁	<i>r</i> ₄₂	<i>r</i> ₄	<i>r</i> _{4<i>n</i>}
<i>X</i> ₅	<i>r</i> ₅₁	<i>r</i> ₅₂	<i>r</i> ₅	<i>r</i> _{5<i>n</i>}
<i>X</i> ₆	<i>r</i> ₆₁	<i>r</i> ₆₂	<i>r</i> ₆	<i>r</i> _{6<i>n</i>}
:	<i>r</i> :1	<i>r</i> _{:2}	<i>r</i> :	$r_{:n}$
X _m	r_{m1}	r_{m2}	<i>r</i> _m	r _{mn}

Three key issues

- 1. generalization
- 2. optimization
- 3. missing data

training objective ≠

target objective

Three key issues

- 1. generalization
- 2. optimization
- 3. missing data

Supervised vs reinforcement learning

supervised classification

batch policy optimization

Optimize policy $\pi: X \to \Delta^n$ to maximize expected reward on **test** contexts

key difference is missing data

How to handle missing data?

Optimize policy $\pi: X \to \Delta^n$

	a_1	<i>a</i> ₂	• • •	a_n
x_1	911	r_1	91	q_{1n}
<i>X</i> ₂	921	922	92	<i>r</i> ₂
<i>X</i> 3	<i>r</i> 3	932	93	<i>q</i> ₃ <i>n</i>
<i>X</i> ₄	941	942	<i>r</i> ₄	q_{4n}
<i>X</i> 5	<i>r</i> ₅	<i>9</i> 52	<i>9</i> 5	<i>9</i> 5 <i>n</i>
<i>x</i> ₆	961	r_6	96	96n
:	9:1	9:2	<i>r</i> :	<i>9</i> : <i>n</i>
<i>X</i> _m	q_{m1}	q_{m2}	<i>q</i> _m	r _m

Simple idea

imputation

- fill in guesses for missing values
- reduce to fully observed case

Might sound naive

but this is actually a dominant approach

Optimize policy $\pi: X \to \Delta^n$

Optimize policy $\pi: X \to \Delta^n$

Example

importance corrected expected reward

$$\max \sum_{i} \frac{\pi(a_i | x_i)}{\beta_i} r_i$$

where β are proposal probabilities from behavior strategy

We already know this is a poor objective but what about missing data inference?

Equivalent to $\max_{\hat{\mathbf{r}}} \hat{\mathbf{r}} \cdot \boldsymbol{\pi}$ using $\hat{\mathbf{r}}_i = \mathbf{1}_{a_i} \frac{r_i}{\beta_i}$

That is

- exaggerate observed values by $1/\beta_i$
- fill in all unobserved values with 0

This is a pretty lame inference principle

- altering the data we do see
- to compensate for a bad guess about the data we don't see

But ... its unbiased!

$$\mathbb{E}[\hat{\mathbf{r}} \mid x] = \sum_{a} \beta_{a} \mathbf{1}_{a} \frac{r_{a}}{\beta_{a}} = \sum_{a} \mathbf{1}_{a} r_{a} = \mathbf{r}$$

Optimize policy $\pi: X \to \Delta^n$

	a_1	<i>a</i> ₂	• • •	a _n
<i>x</i> ₁	τq_{11}	$\lambda(r_1 - \tau q_{12})$	τq_{1}	τq_{1n}
<i>X</i> ₂	τq_{21}	τq_{22}	τq_{2}	$\lambda(r_2 - \tau q_{2n})$
<i>X</i> 3	$\lambda(r_3- au q_{31})$	τq_{32}	τq_{3}	τq_{3n}
<i>X</i> ₄	τq_{41}	τq_{42}	$\lambda(r_4 - \tau q_4)$	τq_{4n}
<i>X</i> 5	$\lambda(r_5- au q_{51})$	τq_{52}	τq_{5}	τq_{5n}
<i>x</i> ₆	τq_{61}	$\lambda(r_6\!\!-\!\!\tau q_{62})$	τq_{6}	τq_{6n}
:	$ au q_{:1}$	$\tau q_{:2}$	$\lambda(r_{:}-\tau q_{:})$	$\tau q_{:n}$
<i>X</i> _m	τq_{m1}	τq_{m2}	τq_{m}	$\lambda(r_m - \tau q_{mn})$

Optimize policy $\pi: X \to \Delta^n$

Improvement

"douby robust estimation"

- instead of filling in with 0s
- fill in with guesses from a model $\mathbf{q}(x)$

$$\hat{\mathbf{r}} = \tau \mathbf{q} + \lambda \mathbf{1}_a (r - \tau q_a)$$

Also unbiased

• as long as $\lambda = 1/\beta_i$ but still alters observed data

Where should the model come from?

- could use a separate critic
- train via least squares, then optimize π
- works okay, but not great

Note

- there is only one action value function for single-step decision making, r(x, a)
- actor-critic approaches trivialized

	a_1	a_2	• • •	a _n
<i>x</i> ₁	$ au q_{11}$	$\lambda(r_1 - \tau q_{12})$	τq_{1}	τq_{1n}
<i>X</i> ₂	τq_{21}	τq_{22}	τq_{2}	$\lambda(r_2-\tau q_{2n})$
<i>X</i> 3	$\lambda(r_3-\tau q_{31})$	T 932	τ q 3	τq_{3n}
<i>X</i> ₄	τq_{41}	τq_{42}	$\lambda(r_4 - \tau q_4)$	τq_{4n}
<i>X</i> ₅	$\lambda(r_5- au q_{51})$	τq_{52}	τq_{5}	τq_{5n}
<i>X</i> ₆	T 961	$\lambda(r_6\!\!-\!\!\tau q_{62})$	τq_{6}	τq_{6n}
	$ au q_{:1}$	$\tau q_{:2}$	$\lambda(r_{:}-\tau q_{:})$	$\tau q_{:n}$
<i>X</i> _m	τq_{m1}	τq_{m2}	τq_{m}	$\lambda(r_m - \tau q_{mn})$

Optimize policy $\pi: X \to \Delta^n$

Unified approach

- actor and critic are same model
- $\pi = e^{\mathbf{q} F(\mathbf{q})}$ where $F(\mathbf{q}) = \log \mathbf{1} \cdot e^{\mathbf{q}}$
- use logits $\tau \mathbf{q}(x)$ to predict rewards

$$q(x,a) \approx \frac{r(x,a)}{\tau}$$

Can combine with previous objectives

- KL $(\boldsymbol{\pi} \| \hat{\mathbf{p}})$ where $\hat{\mathbf{p}} = e^{\hat{\mathbf{r}}/\tau F(\hat{\mathbf{r}}/\tau)}$
- KL $(\hat{\mathbf{p}} || \boldsymbol{\pi})$
- $\mathsf{KL}(\boldsymbol{\pi} \| \hat{\mathbf{p}}) \le \mathsf{KL}(\hat{\mathbf{p}} \| \boldsymbol{\pi}) + \frac{\tau}{4} \| \hat{\mathbf{r}} / \tau \mathbf{q} \|^2$

these are somewhat sensitive to ranking, unlike least squares

Even more principled approach

- back to first principles
- how do we reason about missing data in the rest of ML and statistics?

Optimize policy
$$\pi: X \to \exp\text{-family}(\Re)$$

$$\pi(a \mid x) = e^{q(x)_a - F(q(x))}$$

$$F(q(x)) = \log \int e^{q(x)_a} \mu(da)$$

$$q: X \to \Re^k \quad \text{neural network}$$

Optimize policy $\pi: X \to \exp\text{-family}(\Re)$ $\pi(a \mid x) = e^{q(x)_a - F(q(x))}$ $F(q(x)) = \log \int e^{q(x)_a} \mu(da)$ $q: X \to \Re^k \quad \text{neural network}$

Even more principled approach

- back to first principles
- how do we reason about missing data in the rest of ML and statistics?

Bayesian inference

postulate a generative model of reward

$$q \to \xi \to r$$

- e.g. Gaussian
 - prior $\xi \sim \mathcal{N}(q, Q)$
 - likelihood $r \mid a, \xi \sim \mathcal{N}(\phi(a) \cdot \xi, \sigma^2)$
 - posterior $\xi \mid r_0, a_0 \sim \mathcal{N}(\mu, C)$

$$\mu = C(\phi(a_0)r_0\sigma^{-2} + Q^{-1}q)$$

$$C = (Q^{-1} + \sigma^{-2}\phi(a_0)\phi(a_0)^{\top})^{-1}$$

• predictive $r \mid a, r_0, a_0 \sim \mathcal{N}(\hat{\mu}, \hat{\sigma}^2)$

$$\hat{\mu} = \phi(a) \cdot \mu$$

$$\hat{\sigma}^2 = \sigma^2 + \phi(a_0)^{\mathsf{T}} C \phi(a_0)$$

Optimize policy $\pi: X \to \exp\text{-family}(\Re)$ $\pi(a \mid x) = e^{q(x)_a - F(q(x))}$ $F(q(x)) = \log \int e^{q(x)_a} \mu(da)$ $q: X \to \Re^k \quad \text{neural network}$

Empirical Bayes estimation

- optimize hyperparameters q (neural network)
- integrate out parameters ξ

Example

marginal likelihood

$$-\log p(r_0 | a_0, \mathbf{q})$$

$$= -\log \int p(r_0 | a_0, \xi) p(\xi | \mathbf{q}) d\xi$$

$$= \frac{1}{2\sigma^2} (\phi(a_0) \cdot q - r_0)^2 + \frac{1}{2} \log \sigma^2 + c$$

essentially least squares regression

Can alternatively use surrogates

min **KL**(prior||posterior) min **KL**(posterior||prior) $\approx \min I(\xi; r_0)$

Sum of squared test error on continuous action MNIST ($a \in \Re^{10}$)

Three key issues

1. generalization

2. optimization

3. missing data

training objective ≠

target objective

classical methods still help

The RL problem

- 1. multi-agent interaction

 → non-stationarity
- 2. partial observability construct memory
- 3. exploration

 → explore/exploit
- 4. sequential decisions

 temporal credit assignment
- 5. exploitation

 policy optimization

4. Fundamentals of sequential decision making

approximate dynamic programming

- be afraid, be very afraid policy optimization with simple value estimates
- surrogate objectives and missing data inference show promise RL in the dual
- avoid the deadly triad
- new approaches to MCMC stationary distribution inference