

Advanced Data Processing and Visualization of Python

Python高级数据处理与可视化

Department of Computer Science and Technology
Department of University Basic Computer Teaching

用Dython玩转数据

聚类分析

聚类

聚类分析(cluster analysis)

以相似性为基础把相似的对象通过静态 分类的方法分成不同的组别或者更多的子集

- 特性
 - 基于相似性
 - 有多个聚类中心

K-MEANS

K-均值算法表示以空间中k个点为中心进行聚类,对最靠近他们的对象归类。

一个日常小例子

	古米九	本;五	t连 Dython					
	高数	英语	Python	音乐				
小明	88	64	96	85				
大明	92	99	95	94				
小朋	91	87	99	95				
大朋	78	99	97	81				
小萌	88	78	98	84				
大萌	100	95	100	92				

Output:

[0 1 1 1 0 1]


```
# Filename: kmeansStu.py
from pylab import *
from scipy.cluster.vg import *
list1 = [88,74,96,85]
                           scipy.cluster.vq更新
list2 = [92,99,95,94]
                            后其参数只支持
list3 = [91,87,99,95]
                           float和double,所
list4 = [78,99,97,81]
                           以此处的数字都要
list5 = [88,78,98,84]
                           +.0改成浮点数形式
list6 = [100,95,100,92]
data = vstack((list1,list2,list3,list4,list5,list6))
centroids, = kmeans(data,2)
result,_= vq(data,centroids)
print result
```

另一个例子

按相邻两天的收盘价涨跌规律对2014年第3季度(7月-9月)构成道琼斯工业指数的30只股票聚类

```
# Filename: kmeansDJI.py
listDji = ['AXP','BA','CAT','CSCO',..., 'VZ','WMT','XOM']
quotes = [ [0 for col in range(90)] for row in range(30)]
listTemp = [ [0 for col in range(90)] for row in range(30)]
for i in range(30):
    quotes[i] = quotes_historical_yahoo_ochl(listDji[i], start, end)
listTemp[i][j] = 1 or -1_#1 if the latter is larger than former, otherwise the result is -1
data = vstack(listTemp)
centroids,_ = kmeans(data,4)
result,_= vq(data,centroids)
```

另一个例子

Output:

 $[0\ 3\ 3\ 2\ 0\ 3\ 0\ 1\ 1\ 3\ 2\ 2\ 0\ 1\ 2\ 0\ 1\ 2\ 2\ 1\ 1\ 3\ 2\ 1\ 3\ 0\ 1\ 2\ 0\ 0]$

第0类

AXP,CVX,DIS,JNJ,MCD,UTX,WMT,XOM

第1类

GE,GS,JPM,MMM,NKE,PFE,TRV,V

第2类

CSCO,IBM,INTC,KO,MRK,MSFT,T,VZ

第3类

BA,CAT,DD,HD,PG,UNH

用Dython玩转数据

MATDLOTLIB 绘图基础

Matplotlib绘图

Matplotlib绘图

最著名Python绘图库,

主要用于二维绘图

- 画图质量高
- 方便快捷的绘图模块
 - 绘图API——pyplot模块
 - 集成库——pylab模块(包含NumPy和 pyplot中的常用函数)

数据源

可口可乐公司近一 年来股票收盘价的 月平均价

>>> closeMeansKO = tempkodf.groupby('month').mean().close

>>> closeMeansKO

month

1 38.589524

2 37.047368

3 37.795238

...

10 42.488261

11 41.429500

12 39.201905

Name: close, dtype: float64

折线图

将可口可乐公司近一 年来股票收盘价的月 平均价绘制成折线图

```
# Filename: closeMeansKO.py
import matplotlib.pyplot as plt
...
listKO = []
for i in range(1,13):
    listKO.append(closeMeansKO[i])
listKOIndex = closeMeansKO.index
plt.plot(listKOIndex,listKO)
plt.show()
```


折线图

NumPy数组也可以作为 Matplotlib的参数

- >>> import numpy as np
- >>> import matplotlib.pyplot as plt
- >>> t=np.arange(0.,4.,0.1)
- >>> plt.plot(t,t,t,t+2,t,t**2)
- >>> plt.show()

散点图

plt.plot(listKOIndex,listKO)

plt.plot(listKOIndex,listKO, 'o')

柱状图

plt.plot(listKOIndex,listKO)

plt.bar(listKOIndex,listKO)

pylab绘图

numpy数组也可以作为 matplotlib的参数

- >>> import numpy as np
- >>> import pylab as pl
- >>> t=np.arange(0.,4.,0.1)
- >>> pl.plot(t,t,t,t+2,t,t**2)
- >>> pl.show()

用Dython玩转数据

MATDLOTLIB 图像属性控制

Matplotlib属性

Matplotlib可以控制的默认属性

色彩和样式

绘图颜色 和线条类 型和样式 可以更改 吗?

色彩和样式

符号	颜色
b	blue
g	green
r	red
С	cyan
m	magenta
Υ	yellow
k	black
W	white

线型	描述				
1_1	solid				
11	dashed				
11	dash_dot				
1,1	dotted				
'None'	draw nothing				
1.1	draw nothing				
11	draw nothing				

标记	描述
"o"	circle
"v"	triangle_down
"s"	square
"p"	pentagon
''*''	star
"h"	hexagon1
"+"	plus
"D"	diamond
•••	

文字

加标题:图、横轴和纵轴

```
# Filename: closeMeansKO.py
import matplotlib.pyplot as plt
listKO = []
for i in range(1,13):
  listKO.append(closeMeansKO[i])
listKOIndex = closeMeansKO.index
plt.plot(listKOIndex,listKO)
plt.title('Stock Statistics of Coca-Cola')
plt.xlabel('Month')
plt.ylabel('Average Close Price')
plt.show()
```


其他属性

```
# Filename: multilines.py
import pylab as pl
import numpy as np
pl.figure(figsize=(8,6),dpi=100)
t=np.arange(0.,4.,0.1)
pl.plot(t,t,color='red',linestyle='-',linewidth=3,label='Line 1')
pl.plot(t,t+2,color='green',linestyle='',marker='*',linewidth=3,label='Line 2')
pl.plot(t,t**2,color='blue',linestyle='',marker='+',linewidth=3,label='Line 3')
pl.legend(loc='upper left')
```

子图-subplots

plt.subplot(211) plt.subplot(212)

plt.subplot(121) plt.subplot(122)

plt.subplot(221) plt.subplot(222) plt.subplot(223) plt.subplot(224)

子图-subplots

将可口可乐公司和IBM公司近一年来股票收盘价的月平均价绘制在 一张图中

... #The data of Coca-Cola and IBM is ready

>>> subplot(211)

<matplotlib.axes.AxesSubplot object at 0x08B90CD0>

>>> plt.plot(listKOIndex,listKO,color='r',marker='o')

[<matplotlib.lines.Line2D object at 0x04BA5310>]

>>> subplot(212)

<matplotlib.axes.AxesSubplot object at 0x08B90110>

>>> plt.plot(listIBMIndex,listIBM,color='green',marker='o')

[<matplotlib.lines.Line2D object at 0x08917830>]

子图-axes

将可口可乐公司和IBM公司近一年来股票收盘价的月平均价绘制在 一张图中

... #The data of Coca-Cola and IBM is ready

>>> plt.axes([.1,.1,0.8,0.8])

<matplotlib.axes.Axes object at 0x08926210>

>>> plt.plot(listIBMIndex,listIBM,color='green',marker='o')

[<matplotlib.lines.Line2D object at 0x0887EF70>]

>>> plt.axes([.3,.15,0.4,0.4])

<matplotlib.axes.Axes object at 0x08E0C690>

>>> plt.plot(listKOIndex,listKO,color='r',marker='o')

[<matplotlib.lines.Line2D object at 0x08AF3910>]

axes([left,bottom,width,height]) 参数范围为(0,1)

用Dython玩转数据

DANDAS作图

Python实例

pandas绘图

pandas绘图

绘制IBM公司2014年一年的 股票收盘价折线图

```
# Filename: quotesdfbar.py
...

start = datetime(2014,1,1)
end = datetime(2014,12,31)
quotes = quotes_historical_yahoo_ochl('IBM', start, end)
fields = ['date','open','close','high','low','volume']
...
```


quotesdfIBM = pd.DataFrame(quotesIBM, index = list1, columns = fields) quotesdfIBM = quotesdfIBM.drop(['date'], axis = 1) quotesdfIBM.close.plot()

pandas控制图像形式

用柱状图比较Intel和GE两家 科技公司2014年10月上旬的 股票收盘价

... #The data of Coca-Cola and IBM is ready

- >>> quotesdf = pd.DataFrame()
- >>> quotesdf['closeINTC'] = quotesdfINTC.close
- >>> quotesdf['closeGE'] = quotesdfGE.close
- >>> quotesdf.plot(kind='bar')

pandas控制图像形式

quotesdf.plot(kind='bar')

quotesdf.plot(kind='barh')

pandas控制图像形式

用柱状图比较Intel和 GE两家科技公司2014 年10月的股票收盘价

quotesdf.plot(kind='bar')

quotesdf.plot(kind='scatter',x='closeI NTC',color='g',y='closeGE')

pandas控制图像属性

- ... #The data of Coca-Cola and IBM is ready
- >>> closeMeansKO.plot(color='r',marker='D',label='Coco-Cola')
- <matplotlib.axes.AxesSubplot object at 0x08D5C650>
- >>> closeMeansIBM.plot(color='g',marker='D',label='IBM')
- <matplotlib.axes.AxesSubplot object at 0x08D5C650>
- >>> plt.legend(loc='best')
- <matplotlib.legend.Legend object at 0x08CBB2F0>

pandas控制图像属性

绘图显示Intel和GE两家科技公司2014年10 例的股票收盘价的概率分布

quotesdf.plot(kind='bar')

quotesdf.plot(kind='kde')

用Dython玩转数据

数据存取

csv格式数据存取


```
# Filename: to_csv.py
from matplotlib.finance import quotes_historical_yahoo_ochl
from datetime import date
import pandas as pd
today = date.today()
start = (today.year-1, today.month, today.day)
quotes = quotes_historical_yahoo_ochl('IBM', start, today)
df = pd.DataFrame(quotes)
df.to_csv('stockIBM.csv')
```

csv格式数据存取

A1	*	: ×	$\checkmark f_x$														
4	A	В	С	D	E	F	G										
1		0	1	2	3	4	5										
2	0	735214	170.9099	169.26	171.6324	169.1917	5671600										
3	1	735215	169.4029	168.7	170.2425	168.6317	4184400										
4	2	735218	169.1099	173.63	174.1181	168.6315	7517000										
5	3	735219	173.152	171.59		170.9652	5471900										
6	4		172. 2634	174. 46	174. 49), 1, 2, 3, 4, 5							-:	-:			
7	5		173.6654	175.95	176. 2620,	735214.0,1	70.9099359 60.4090166	7508216,	169.26, 1	.7	1.63	1.63239314	1.6323931476033	1.63239314760338,16	1.63239314760338,169.1	1.63239314760338,169.191659	1.63239314760338,169.1916594566533
8	6		175.8476	175.75	177. 681,	735218. 0. 1	.09. 4029100 69. 1098599	9437727.	173. 63. 1	74	242 1. 11	242011079 4. 11813606	-24251157407400, 4. 1181360697216	-24251157407400, 100 4. 11813606972166. 16	-24251157407400, 100.03 4. 11813606972166, 168.6	-24251157407400, 106, 0510000 4. 11813606972166, 168, 631486	24251157407406, 168. 6316608796296, 4. 11813606972166, 168. 6314866460500 27895482476106, 170. 96518434228494
9	7	735225		177. 91	178. 5913,	735219.0, 1	73. 1520391	442877, 1	71. 59, 17	'3 .	278	. 1101555. 278954824	27895482476106	27895482476106, 170	27895482476106, 170. 96	27895482476106, 170. 9651843	27895482476106, 170. 96518434228494
10	8		177.6498	178.88	179.1534,	735220.0,1	.72. 2633855	623951, 1	74. 46, 17	4.	199	199050923	19905092333523,	19905092333523, 170	19905092333523, 170 . 70	1 9905092333523, 170 . 7013 4 86	1 9905092333523, 170 . 70134862898715
11	9		179. 2124	180.96													2624181555876, 173. 66544223726555
12	10	735229			182.07(6,	735222.0, 1	76.8476280 76.7579734	4132873, 4015805	175.75,1	78. !	ებ 50	083030 <u>2</u> 1 59340559	0830352183090 5934055863469	08303521830907,17 59340558634693-17	08303521830907,175.7 59340558634693-176-2	083U352183U9U7,175.75,766 59340558634693 176 328404	68303521830907, 175. 75, 7653500. 0 59340558634693, 176, 3284042144542
13	11		180.9258	181.99	182. 27: 8,	735226.0, 1	77. 6498460	8667177,	178. 88, 1	79. 1	5	5336753	533675362951	5336753629518, 17	5336753629518, 177. 6	5336753629518, 177. 601030	9340558634693, 176. 3284042144542 5336753629518, 177. 6010304551904
14	12		182.0656	183.12	183.3349,	735228.0,1	.79. 2123960	075533, 1	80.96,18	31. 16	5	5026166	502616671164,	502616671164, 179	502616671164, 179. 16	502616671164, 179. 1635802	502616671164, 179. 16358025357434
15	13		182.7702	181.13	182.95;10), 735229.0,	181. 431973	20077803	, 180. 69,	182. (C	0763183	076318348822:	0763183488221, 18	0763183488221, 180. 1	0763183488221, 180. 182334	0763183488221, 180. 1823341257834
16	14		181. 4292	182. 22	182. 91 11	l,735232.0,	180.925845	17997963 4249019	, IXI. 99, 192-19-1	182.7	4	2731237 2479061	2731237594549 247906159260	27312375945496,I 2479061592608 19	27312375945496,180. 2479061592608 181 (27312375945496,180.29125 2479061592609 191 990126	27312375945496, 180. 291257443270 3478061523698, 181. 8801300847683
17	15		182. 7127		13	., 135233.0, 3. 735235.0.	182. 770157	38694553	. 181. 13.	.03. 3 182.	ç	3416001 9556513	955651377135'	95565137713578. 1	95565137713578. 180.	95565137713578, 180, 80782	3478001323098, 181. 8801300847083 95565137713578, 180. 807826227564
18	16	735240	181.9688	185. 21	185. 83 14	i, 735236. 0,	181. 429182	38319763	, 182. 22,	182.	Ĉ	9131858	913185812258	9131858122589, 18	9131858122589, 180. 9	9131858122589, 180. 911733	9131858122589, 180. 9117338191170
																	9177548387097, 180. 9065967741935
																	83481893416266, 181. 958988983184 2559557376174, 182. 8168463052614

csv格式数据存取

```
Source
>>> result = pd.read csv('stockIBM.csv')
>>> result
  Unnamed: 0
          735214 170.909936 169.26 171.632393 169.191659 5671600
          735215 169.402917 168.70 170.242512 168.631661 4184400
         735218 169.109860 173.63 174.118136 168.631487 7517000
          735219 173.152039 171.59 173.278955 170.965184 5471900
>>> print result['2']
   169.26
   168.70
   173.63
   171.59
...
```

xls格式数据存取

Filename: to_excel.py from datetime import date import pandas as pd

from matplotlib.finance import quotes_historical_yahoo_ochl

today = date.today()

start = (today.year-1, today.month, today.day)

quotes = quotes_historical_yahoo_ochl('IBM', start, today)

df = pd.DataFrame(quotes)

df.to_excel('stockIBM.xls', sheet_name='IBM')

新版pandas已经支持 读写xlsx格式文件

用Dython玩转数据

DYTHON的 理工类应用

简单的三角函数计算

```
# Filename: mathA.py
import numpy as np
import pylab as pl
x = np.linspace(-np.pi, np.pi, 256)
s = np.sin(x)
                                        0.0
c = np.cos(x)
pl.title('Trigonometric Function')
                                        -0.5
pl.xlabel('X')
pl.ylabel('Y')
                                        -1.0
pl.plot(x,s)
pl.plot(x,c)
```


一组数据的傅里叶变换

数组:[1,1,...,1,-1,-1,...,1,1,1...,1]

```
# Filename: mathB.py
import scipy as sp
import pylab as pl
listA = sp.ones(500)
listA[100:300] = -1
f = sp.fft(listA)
pl.plot(f)
pl.show()
```


Biopython

Biopython

序列、字母表和染色体图

>>> from Bio.Seq import Seq

>>> my_seq = Seq("AGTACACTGGT")

>>> my_seq.alphabet

Alphabet()

>>> print my_seq

AGTACACTGGT

用Dython玩转数据

DYTHON的 人文社科类应用

NTLK语料库

古滕堡项目

• 计算NTLK中目前收录的古滕堡项目的书

>>> from nltk.corpus import gutenberg

>>> gutenberg.fileids()

[u'austen-emma.txt', u'austen-persuasion.txt', u'austen-sense.txt', u'bible-kjv.txt', u'blake-poems.txt', u'bryant-stories.txt', u'burgess-busterbrown.txt', u'carroll-alice.txt', u'chesterton-ball.txt', u'chesterton-brown.txt', u'chesterton-thursday.txt', u'edgeworth-parents.txt', u'melville-moby_dick.txt', u'milton-paradise.txt', u'shakespeare-caesar.txt', u'shakespeare-hamlet.txt', u'shakespeare-macbeth.txt', u'whitman-leaves.txt']

古滕堡项目

一些简单的计算

```
>>> from nltk.corpus import gutenberg
>>> allwords = gutenberg.words('shakespeare-hamlet.txt')
>>> len(allwords)
37360
>>> len(set(allwords))
5447
>>> all words.count('Hamlet')
99
>>> A = set(allwords)
>> longwords = [w for w in A if len(w) > 12]
>>> print sorted(longwords)
```

Output:

[u'Circumstances', u'Guildensterne', u'Incontinencie', u'Recognizances', u'Vnderstanding', u'determination', u'encompassement', u'entertainment', u'imperfections', u'indifferently', u'instrumentall', u'reconcilement', u'stubbornnesse', u'transformation', u'vnderstanding']

古滕堡项目

Filename: freqG20.py

from nltk.corpus import gutenberg

from nltk.probability import *

fd2 = FreqDist([sx.lower() for sx in allwords if sx.isalpha()])

print fd2.B()

print fd2.N()

fd2.tabulate(20)

fd2.plot(20)

fd2.plot(20, cumulative = True)

Output:

4699

30266

the and to of i you a my it in that ham is not his this with your but for

993 863 685 610 574 527 511 502 419 400 377 337 328 300 285 276 254 253 249 245

就职演说语料库

```
>>> from nltk.corpus import inaugural
>>> fd3 = FreqDist([s for s in inaugural.words()])
>>> print fd3.freq('freedom')
0.00119394791917
```

```
新版NLTK需要加上
                              这行,并且要保证
                              语料库的下载
# Filename: inaugural.py
from nltk.corpus import inaugural
from nltk.probability import ConditionalFreqDist
cfd = ConditionalFreqDist(
           (fileid, len(w))
           for fileid in inaugural.fileids()
           for w in inaugural.words(fileid)
           if fileid > '1950')
print cfd.items()[:40]
cfd.plot()
```

就职演说语料库

Output:

```
[(u'1965-Johnson.txt', FreqDist({3: 355, 2: 301, 1: 256, 4: 255, 5: 138, 7: 133, 6: 127, 8: 68, 9: 45, 10: 30, ...})), (u'1997-Clinton.txt', FreqDist({3: 534, 2: 378, 4: 352, 1: 350, 5: 225, 6: 179, 7: 171, 8: 117, 9: 70, 10: 45, ...})), (u'2009-Obama.txt', FreqDist({3: 599, 2: 441, 4: 422, 1: 350, 5: 236, 6: 225, 7: 198, 8: 96, 9: 63, 10: 59, ...})), ...
```

