

We claim:

1. A method for screening to identify a selective anxiolytic agent comprising contacting a candidate molecule with the α 2-GABA_A receptor and the α 1-GABA_A receptor and determining whether the candidate molecule selectively or preferentially binds to or activates the α 2-GABA_A receptor as compared to the α 1-GABA_A receptor, wherein a molecule that selectively or preferentially binds to or activates the α 2-GABA_A receptor as compared to the α 1-GABA_A receptor is a selective anxiolytic agent.
- 10 2. A method for screening to identify a selective anxiolytic agent comprising contacting a candidate molecule with the α 2-GABA_A receptor and the α 3-GABA_A receptor and determining whether the candidate molecule selectively or preferentially binds to or activates the α 2-GABA_A receptor as compared to the α 3-GABA_A receptor, wherein a molecule that selectively or preferentially binds to or activates the α 2-GABA_A receptor as compared to the α 3-GABA_A receptor is a selective anxiolytic agent.
- 15 3. A method for screening to identify a selective anxiolytic agent comprising contacting a candidate molecule with the α 2-GABA_A receptor and the α 5-GABA_A receptor and determining whether the candidate molecule selectively or preferentially binds to or activates the α 2-GABA_A receptor as compared to the α 5-GABA_A receptor, wherein a molecule that selectively or preferentially binds to or activates the α 2-GABA_A receptor as compared to the α 5-GABA_A receptor is a selective anxiolytic agent.
- 20 4. A selective anxiolytic agent which selectively or preferentially binds to or activates the α 2-GABA_A receptor as compared to the α 1-GABA_A receptor.
- 25 5. A selective anxiolytic agent which selectively or preferentially binds to or activates the α 2-GABA_A receptor as compared to the α 3-GABA_A receptor.
- 30 6. A selective anxiolytic agent which selectively or preferentially binds to or activates the α 2-GABA_A receptor as compared to the α 5-GABA_A receptor.
7. The selective anxiolytic agent according to claim 4, 5 or 6, wherein the agent binds to the benzodiazepine binding site of the receptor.

8. The selective anxiolytic agent according to claim 4, 5 or 6, wherein the agent binds to the neurosteroid binding site of the receptor.
9. The selective anxiolytic agent according to claim 4, 5 or 6, wherein the agent binds to the barbiturate binding site of the receptor.
10. A method of treating an anxiety-related disorder comprising administering a therapeutically effective amount of a selective anxiolytic agent and a pharmaceutically acceptable carrier to a patient in need thereof.
11. The method according to claim 10 in which the selective anxiolytic agent is identified by the method of claim 1, 2 or 3.
12. The method according to claim 10 in which the selective anxiolytic agent binds to the benzodiazepine binding site of the receptor.
13. The method according to claim 10 in which the selective anxiolytic agent binds to the neurosteroid binding site of the receptor.
14. The method according to claim 10 in which the selective anxiolytic agent binds to the barbiturate binding site of the receptor.
15. The method according to claim 10 in which the selective anxiolytic agent is a pro-drug.
16. A method of identifying a molecule that decreases the ability of a non-selective benzodiazepine to bind to the α_1 -GABA_A receptor but does not substantially decrease the ability of the non-selective benzodiazepine to bind to the α_2 -GABA_A receptor comprising contacting the α_1 -GABA_A receptor and the α_2 -GABA_A receptor with a non-selective benzodiazepine and a candidate molecule and detecting the ability of the candidate molecule to decrease the ability of the benzodiazepine to bind to the α_1 -GABA_A receptor but not substantially decrease the ability of the benzodiazepine to bind to the α_2 -GABA_A receptor.
17. A method of identifying a molecule that decreases the ability of a non-selective benzodiazepine to bind to the α_3 -GABA_A receptor but does not substantially decrease the

ability of the non-selective benzodiazepine to bind to the α 2-GABA_A receptor comprising contacting the α 3-GABA_A receptor and the α 2-GABA_A receptor with a non-selective benzodiazepine and a candidate molecule and detecting the ability of the candidate molecule to decrease the ability of the benzodiazepine to bind to the α 3-GABA_A receptor
5 but not substantially decrease the ability of the benzodiazepine to bind to the α 2-GABA_A receptor.

18. A method of identifying a molecule that decreases the ability of a non-selective benzodiazepine to bind to the α 5-GABA_A receptor but does not substantially decrease the
10 ability of the non-selective benzodiazepine to bind to the α 2-GABA_A receptor comprising contacting the α 5-GABA_A receptor and the α 2-GABA_A receptor with a non-selective benzodiazepine and a candidate molecule and detecting the ability of the candidate molecule to decrease the ability of the benzodiazepine to bind to the α 5-GABA_A receptor but not substantially decrease the ability of the benzodiazepine to bind to the α 2-GABA_A
15 receptor.

20

25

30

35