第5章 触发器

- 5.1 基本 RS 触发器
- 5.2 时钟触发器
- 5.3 主从触发器
- 5.4 正边沿触发器
- 5.5 触发器间的相互转换
- 5.6 触发器的典型应用

第五章 触发器 (FF)

• 组合电路:

基本单元 — 逻辑门— 无记忆函数 在数字系统中,信息

运算或处理

还需要存储 存储器件或单元

• 时序电路:

基本单元 — 触发器 — 存储器

触发器定义: 存储部件

能存储一位二进制信息的基本单元,也称 作锁存器。

(a) 双稳态: 1和 0(b) 置1, 置 0(c) 在信号消失后,保持新状态

§ 5.1 基本RS触发器

5.1.1 由与非门构成的基本RS触发器

 \bar{S} : 置位(置1)端

R: 复位(置0)端

逻辑功能

正常情况下,两输出端的状态。通知,还有相反。通常的逻辑电以Q端的逻辑电的逻辑。即Q=1,即Q=1,即Q=1,称为"1"态;反之为"0"态。

触发器输出与输入的逻辑关系

$$(1) \, \overline{S}_{D} = 1, \quad \overline{R}_{D} = 0$$

设触发器原态为"1"态。

翻转为"0"态

设原态为"0"态

结论:不论 触发器原来 为(\overline{\bar{K}_D}=1), \overline{\bar{K}_D}=0时, 将使触发器 置"0"或称 为复位。 触发器保持"0"态不变

(2)
$$\overline{S}_D = 0$$
, $\overline{R}_D = 1$

设原态为"1"态

触发器保持"1"态不变

(3)
$$\overline{S}_{D} = 1$$
, $\overline{R}_{D} = 1$

设原态为"0"态

保持为"0"态

设原态为"1"态

当 $\overline{S}_D=1$, $\overline{R}_D=1$ 时, 做发器保持, 原来的状态,即触发器,即触发器具有保持、记忆功能。

触发器保持"1"态不变

$$(4) \, \overline{S}_{D} = 0, \quad \overline{R}_{D} = 0$$

当信号 $S_{D} = R_{D} = 0$ 同时变为1时, 于与非门的翻转 时间不可能完全 触发器状 态可能是"1"态, 也可能是"0"态, 不能根据输入信 号确定。

若G₁先翻转,则触发器为"0"态

基本R-S触发器次型

$\overline{S}_{\mathrm{D}}$	$\overline{R}_{\mathrm{D}}$	Q^{n+1}	功能
1	0	0	置0
0	1	1	置1
1	1	Q^n	保持
0	0	1*	不定
			现态

低电平有效

R_D(Reset Direct)-直接置"0"端(复位端)

S_D(Set Direct)-直接置"1"端(置位端)

注意: 1*表示不正常状态, 0信号消失后, 触发器状态不定。

5.1.2 基本RS触发器的逻辑功能描述方法

逻辑功能描述方法

 Q^{n+1} 下一个稳定状态 Q^n 当前稳定状态 输入信号 (RS触发器为 \overline{S} \overline{R})

状态转移真值表(状态表) 状态方程(特征方程) 状态转移图和激励表 波形图(时序图)

基本RS-FF触发器的功能描述

1. 状态表

真值表

\overline{R}	\overline{S}	Q^n	Q^{n+1}
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1
0	0	0	不确定
0	0	1	不确定

\overline{R}	\overline{S}	<i>Q</i> ⁿ⁺¹
0	1	0
1	0	1
1	1	Q ⁿ
0	0	不确定

定义:

$$\begin{cases} Q^n & \text{--- 原状态} \\ Q^{n+1} & \text{--- 新状态,次态} \end{cases}$$

2. 状态方程(特征方程)

\overline{R}	\overline{S}	Q^n	Q^{n+1}
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1
0	0	0	不确定
0	0	1	不确定

状态方程 (特征方程)

$$\begin{cases} Q^{n+1} = \overline{\overline{S}} + \overline{R}Q^n \\ \overline{\overline{S}} + \overline{\overline{R}} = 1 \end{cases}$$

不同时为0

注意: 将 R和 S 看作整体输入信号 符号上面的横线表示低电平有效

3. 状态转移图和激励表

用图形表示输出状态转换的条件和规律

状态转移图

描述状态间的转换和转换条件

组合电路: 真值表 —— 输入和输出的关系

时序电路: 状态转移图 —— 状态转换及其条件

激励表

列出已知状态转换和所需要的输入条件的表称为激励表。激励表是以现态 Q^n 和次态 Q^{n+1} 为变量,以对应的输入 \overline{R} 为 函数的关系表.

表示出在什么样的激励下,才能使现态 Q^n 转换到次态 Q^{n+1} .

$$Q^n \longrightarrow Q^{n+1}$$

\overline{R}	\overline{S}	Q^n	Q^{n+1}
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1
0	0	0	不确定
0	0	1	不确定

基本RS触发器激励表

输出》	激励表	华	俞入
Q^n	$\rightarrow Q^{n+1}$	\overline{R}	\overline{S}
0	0	Ф	1
0	1	1	0
1	0	0	1
1	1	1	Ф

4. 时序图 (波形图)

根据输入波形确定输出波形 (初始状态Q=0)

	V			t
\overline{S}	R	Q	Q	触发器状态
0	0	1	1	 S R 0→1不定_
0	1	1	0	置位 (1) S≠R 复位 (0) Q=R
1	0	0	1	复位 (0) J Q=R
1	1	NC	NC	不变

不确定

5.1.3 由或非门组成的基本RS触发器

真值表

S	R	Q^{n+1}
0	0	Q^n
0	1	0
1	0	1
1	1	不确定

输入S,R: 高电平有效

S = 1, R = 0, Q = 1, S: 置 1

R = 1, S = 0, Q = 0, R: 置 0

§ 5.2 时钟触发器(同步触发器)

在数字系统中,为协调各部分动作,需要某些触发器在同一时刻动作。引入一同步信号,使这些触发器只有在同步信号到达时才按输入信号改变状态。同步信号被称时钟脉冲信号。

CLK信号: 时钟

CLK是周期矩形波

5.2.1 同步RS触发器

将 G_3 、 G_4 加到基本 RS 触发器中,仅当时钟脉冲 CLK=1时, G_3 和 G_4 打开。当 CLK=0, G_3 和 G_4 封锁。

讨论时钟脉冲CLK=1时的情况

$$Q^n$$
 在 CLK 之前 Q^{n+1} 在 CLK 之后 Q^n , Q^{n+1} 针对每个 CLK

真值表

0 0 1 1 SR 0→1不足	$\frac{1}{S}$	$\frac{-}{R}$	Q	\bar{Q}	触发器状态
0 1 1 0 互似 (1) 1 0 0 1 复位 (0) 1 1 NC NC 不变	0 (0 1 1 (1 1 1 1	0 1 0	1 1 0	1 0 1	 SR 0→1不定 置位 (1) 复位 (0)

S R Q ⁿ	Q^{n+1}	说明
0 0 0	0) S=R=0
0 0 1	1	
0 1 0	0	
0 1 1	0	R≠S
1 0 0	1	$Q^{n+1}=S$
1 0 1	1	
1 1 0	ф	R=S=1, Q=Q=1
1 1 1	ф	$\int \mathbf{S} \mathbf{R} 1 \to 0 \ \mathbf{\Phi}$

$$S=0, R=1$$
 $G_3=1, G_4=0$ $Q^{n+1}=0$

$$\bullet$$
S=1, R=0
 G_3 =0, G_4 =1 Q^{n+1} =1

$$\circ$$
S=1, R=1 G_3 = G_4 =0, Q=Q=1 S 和 R 1→0, Q 状态不定

输入和输出的关系

同步RS-FF特征方程

$$\begin{cases} Q^{n+1} = S + \overline{R}Q^n \\ S \cdot R = 0 \qquad (不同时为1) \end{cases}$$

符号

缺点:

有不确定状态

5.2.2 时钟 D 触发器 (同步 D 触发器)

符号

在S 和 R 之间有一个非门 $S \neq R$

S=D, **R= D** 无不确定状态 运算:

CLK = 0, 触发器状态改变 *CLK* = 1, 触发器工作

$$\int D=1, (S=1, R=0) Q^{n+1}=1$$

D=0, (S=0, R=1)
$$Q^{n+1}=0$$

时钟 D 触发器的状态方程:

$$O^{n+1} = D$$

5.2.3 时钟JK触发器

在输入端添加两个反馈线

$$S = J\overline{Q}^n$$
, $R = KQ^n$

 \mathbf{Q} , \mathbf{Q} 不同时为1,R S不同时1→0 没有不确定状态

两个输入端: J, K

CLK=0, 停止; CLK=1, 工作

J K Q ⁿ	Q^{n+1}	说明
0 0 0	0	J=K=0
0 0 1	1	$\int Q^{n+1} = Q^n$
0 1 0	0	
0 1 1	0	J≠K
1 0 0	1	$Q^{n+1} = J$
1 0 1	1	
1 1 0	1	J=K= <u>1</u>
1 1 1	0	$P = \overline{Q}^n$

时钟触发器的JK状态方程

从RS 触发器得到:

$$Q^{n+1} = S + \overline{R}Q^{n}$$

$$= J\overline{Q}^{n} + \overline{K}Q^{n}Q^{n}$$

$$= J\overline{Q}^{n} + \overline{K}Q^{n}$$

$$Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$$

逻辑符号:

CLK正边沿有效

状态表

J	K	Q ⁿ	Q^{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

JK触发器激励表

状态转移	激励输入	
$Q^n \rightarrow Q^{n+1}$	J	K
0 0	0	Φ
0 1	1	Φ
1 0	Φ	1
1 1	Ф	0

JK触发器状态图

5.2.4 时钟 T触发器

T触发器状态方程

$$Q^{n+1} = T\overline{Q}^n + \overline{T}Q^n = T \oplus Q^n$$

5.2.5 时钟触发器的特点

当 CLK=1, 触发器状态 Q^{n+1} 根据输入R, S, D, J, K, T 改变 出现 空翻

空翻:

一个 CLK 周期内, Q 端只能变化一次, 变化一次以上称 触发器的空翻。

时钟触发器都存在空翻问题 要克服,用新结构

§ 5.3 主从触发器

为了克服触发器的空翻,出现了几种结构的触发器

原理都是: 边沿触发

触发器在时钟脉冲边缘改变状态

边沿到来的瞬间触发,缩短触发时间 主从触发器是其中的一种

5.3.1 主从 RS 触发器

两个相同的门 RS 触发器 在两个CLK中有一个非门 (一个触发器工作,另一个保持)

从触发器 Q 的状态是触发器 的状态

主触发器输出是 Q'

CLK=0,主触发器保持,Q'不改变 \overline{CLK} =1,从触发器工作,

CLK=1, 主触发器工作, S,R→ Q' \overline{CLK} =0, 从触发器保持

·:'Q'不变::Q 不变

∴**Q** 不变

∴ 当 CLK=0 和 CLK=1时, Q 没有改变

在CLK从1变为0的瞬间(CLK下降沿),状态从主触发器反应到从触发器Q

∴主从 RS 触发器是 CLK 在下降沿时触发的触发器

Q与CLK有效边沿到来之前Q'的最后状态一致

5.3.2 主从 JK 触发器

在主从RS触发器上接两条反馈线构成主从JK触发器。

真值表 与JK触发器相同
$$JK \mid Q^{n+1} \mid 00 \mid Q^n \mid J=K=0,$$
保持 $01 \mid 0 \mid 10 \mid 10 \mid 11 \mid Q^n \mid J=K=1,$ 翻转 $Q^{n+1}=J\overline{Q}^n+\overline{K}Q^n$

主从JK触发器特点: 无空翻, 无不定状态

练习

5.3.3 触发器的直接输入端

触发器 { 同步输入: *CLK*, J, K, D, T, R, S 异步输入: (直接输入)

Q R_D & & CLKK

直接置位输入 (置为 1) \overline{S}_D 强制 直接复位输入 (置位 0) \overline{R}_D

直接输入端强制改变触发器的状态, 有最高优先级, 独立于J, K, CLK

$\bar{S}_D \bar{R}_D$	$CLK J K Q^n$	Q^{n+1}	
0 1	фффф	$1 \overline{S}_D$ 直接置1	低电平有效
1 0	φ φ φ φ	$\begin{pmatrix} 1 & S_D & -S_D \\ 0 & \overline{R}_D & $ 直接清 $0 \end{pmatrix}$	版·巴丁·
1 1		触发器工作	
0 0		不允许	

$$\begin{cases} \mathbf{Q}^{n+1} = \mathbf{J}\mathbf{Q}^{n} + \mathbf{K}\mathbf{Q}^{n} \\ \overline{S}_{D} = \overline{R}_{D} = 1 \end{cases}$$

 $Q, J, \overline{S}_D \rightarrow 同侧$ $\overline{Q}, K, \overline{R}_D \rightarrow 同侧$

无 \overline{S}_D , \overline{R}_D 波形时, $\overline{S}_D = \overline{R}_D = 1$

5.3.4 主从 D 触发器

主从JK触发器输入端加非门:

特征方程
$$\begin{cases} Q^{n+1} = D \\ \overline{S}_D = \overline{R}_D = 1 \end{cases}$$

D-FF 是 JK-FF 中J≠K 的部分,是JK-FF 的特例

在 CLK 下降沿之前,D=0 (D=1),那么CLK 下降沿到来之后 $Q^{n+1}=0$ ($Q^{n+1}=1$)

练习

5.3.5 主从 T 触发器

T触发器的特征方程:

$$Q^{n+1} = T\overline{Q}^n + \overline{T}Q^n = T \oplus Q^n$$

$$\overline{S}_D = \overline{R}_D = 1$$

$$T=0, \quad Q^{n+1} = Q^n$$

$$T=1, \quad Q^{n+1} = \overline{Q}^n$$

CLK下降沿触发

T-FF 是 JK-FF 中J=K 的部分,是JK-FF 的特例

5.3.6 主从触发器的特点

CLK=1期间,输入信号数据(J、K、D、T)不允许变化,否则会出现"一次变化"现象,使触发器输出状态不能反映 CLK 从1到0前瞬间 J、K端的状态,破坏了逻辑关系。

主从式FF只适用于具有窄时钟脉冲的场合。

§ 5.4 边沿触发器

正常工作时要求主从 触发器 在CLK=1期间 输入信号不变,但干扰信号仍能进入。

5.4.1 维持阻塞结构D触发器

$$Q^{n+1}=D$$

运算:
$$(\overline{S}_D = \overline{R}_D = 1)$$

D过
$$G_6$$
、 G_5 等在 G_3 、 G_4 入口

当 CLK 上升沿到来

如果
$$D=0$$
, $G_6=1$, $G_5=0$,

$$G_3=1, G_4=0, \qquad \therefore Q=0$$

如果
$$D=1$$
, $G_6=0$, $G_5=1$,

$$G_3=0, G_4=1, \qquad \therefore Q=1$$

维持-阻塞式FF在CLK上升沿触发 CLK上升沿前D的数据为CLK上升沿到时 Q^{n+1} 的状态

例: 画出上升边沿触发的D-FF波形

5.4.2 上升沿触发 JK 触发器

符号:

除了上升沿触发,其它与主 从JK 触发器相同

$$\begin{cases} Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n \\ \overline{S}_D = \overline{R}_D = 1 \end{cases}$$

J K

$$Q^{n+1}$$

 0 0
 Q^n
 $J=K=0$, 保持

 0 1
 0
 1

 1 0
 $\frac{1}{Q^n}$
 $J \neq K$, $Q^{n+1}=J$

 1 1
 Q^n
 $J=K=1$, 翻转

5.4.3 上升沿触发的T触发器

符号:

$$\begin{cases} Q^{n+1} = T \oplus Q^n \\ \overline{S}_D = \overline{R}_D = 1 \end{cases}$$

CLK上升沿触发

6 种常用边沿触发器电路:

下降沿触发 JK触发器, D触发器, T触发器 上升沿触发 JK触发器, D触发器, T触发器

练习:

分别画出上升沿JK触发器和下降沿JK触发器的波形图

§ 5.5 触发器间的相互转换

1. JK 触发器转换为 D 触发器

给定触发器: $Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$

目标触发器: $Q^{n+1} = D$

$$J\overline{Q}^{n} + \overline{K}Q^{n} = D \left(\overline{Q}^{n} + Q^{n}\right)$$
$$= D\overline{Q}^{n} + DQ^{n}$$

$$\therefore$$
 J=D, K= \overline{D}

添加非门

2. JK 触发器转换为 T 触发器

给定触发器: $Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$

目标触发器: $Q^{n+1} = T \oplus Q^n = T\overline{Q}^n + \overline{T}Q^n$

3. T触发器转换为 D触发器

给定触发器: $Q^{n+1} = T \oplus Q^n$

目标触发器: $Q^{n+1} = D$

$$T \oplus Q^n =\!\! D$$

$$T=D\oplus Q^n$$

4. T 触发器转换为 JK 触发器

给定触发器: $Q^{n+1} = T \oplus Q^n$

目标触发器: $Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$

$$T \oplus Q^n = J\overline{Q}^n + \overline{K}Q^n$$

$$T = (J\overline{Q}^n + \overline{K}Q^n) \oplus Q^n$$

$$= J\overline{Q}^n + KQ^n$$

- 5. D 触发器转换为 JK 触发器
- 6. D 触发器转换为 T 触发器

§ 5.6 触发器典型应用

例 1: 通过图中CLK, \overline{R}_D , T的波形图画出Q的波形图

$$Q^{n+1} = T \oplus Q^n$$

$$T=1, Q^{n+1}=\overline{Q}^n$$

电路: 二分频电路

$$CLK$$
 T_{CLK}
 T_{CLK}
 T_{CLK}
 T_{CLK}

$$T_Q = 2T_{CLK}$$

$$f_Q = \frac{1}{2} f_{CLK}$$

例 2: 如图所示电路,根据输入画出Q的波形图。

例 3: 根据以下电路CLK 和 K_1 的波形,画出 Q_1 和 Q_2 的波形,假设 Q_1 和 Q_2 初始为高电平

例 4: 无震颤开关电路

机械开关在静止到新的位置 之前其机械触头将要震颤几次。图示电路可以解决震颤问题。

设初始时 K 接 R 端,基本原理如下:

- a.K由右扳向左端,并且震颤几次,相当于 $\bar{R}\bar{S}=1$ 0(或11)
- **b.**K 由左扳向右端,并且震颤几次,相当于 $R \overline{S} = 0.1$ (或 1 1)原理如图

小结

- RS, JK, D, T触发器
 - 工作原理、符号、特征方程、波形
- 时钟触发器
- 主从触发器
- 边沿触发器
- · JK, D, T触发器之间的转换
- 触发器应用

作业:

5.7 5.9

5.10 5.14

5.17 5.18

5.21

作业题

维持阻塞 \underline{D} 触发器接成如图所示电路, R_d 为异步复位端,CP、 R_d 、A的波形图如图所示,写出状态方程,画出的Q的波形图,并指出电路构成何种触发器。

