Problem solving: kinematics (II)

Physics 211 Syracuse University, Physics 211 Spring 2015 Walter Freeman

February 2, 2017

Announcements

- Homework 2 due date is **tomorrow**
- Exam 1 is next Tuesday
 - No homework due next week
 - HW2 problems are similar to those on Exam 1
 - Recitation Friday is your group practice exam
 - If you must miss Friday, notify your TA in advance
 - Weekend: Exam review in Stolkin, 4-7 PM

Exam 1

- The exam covers kinematics in one and two dimensions
- Kinematics: how are an object's position, velocity, and acceleration related?

Exam 1

- The exam covers kinematics in one and two dimensions
- Kinematics: how are an object's position, velocity, and acceleration related?
- The exam will be somewhat easier than the homework.

Exam 1

- The exam covers kinematics in one and two dimensions
- Kinematics: how are an object's position, velocity, and acceleration related?
- The exam will be somewhat easier than the homework.
- You are allowed to bring one page of notes that you handwrite yourself
 - No typed notes unless you have a disability that prevents you from writing
 - Your friend can't write it
 - You can't photocopy stuff from the book
 - It won't help you as much anyway

Exam 1, promises

- There will be one problem where you need the quadratic formula
 - ... this means interpreting the two values it spits out
- There will be at least one instance where you need to interpret or sketch position, velocity, and acceleration graphs
- You will *not* need to compute derivatives or integrals algebraically
- The exam will be four or five problems

Problem solving: 2D kinematics, constant acceleration

- 1. If you have vectors in the "angle and magnitude" form $(\vec{a}, \vec{v}, \vec{s})$, convert them to components
- **2** Write down the kinematics relations, separately for x and y
 - Many terms will usually be zero
 - Freefall: $a_x = 0$, $a_y = -g$ (with conventional choice of axes)
- 3. Understand what instant in time you want to know about: ask the right question
- 4. Put in what you know; solve for what you don't (using substitution, if necessary)
- 5. Think about the physical meaning of your solution

Problem solving: 2D kinematics, constant acceleration

- 1. If you have vectors in the "angle and magnitude" form $(\vec{a}, \vec{v}, \vec{s})$, convert them to components
- \circ 2. Write down the kinematics relations, separately for x and y
 - Many terms will usually be zero
 - Freefall: $a_x = 0$, $a_y = -g$ (with conventional choice of axes)
- **3**. Understand what instant in time you want to know about: ask the right question
- 4. Put in what you know; solve for what you don't (using substitution, if necessary)
- 5. Think about the physical meaning of your solution

Throwing a rock off a cliff

A hiker throws a rock horizontally off of a h = 100 m tall cliff. If the rock strikes the ground d = 30 m away, how hard did she throw it? How fast was it going when it hit the ground? (Choose the origin at the base of the cliff, up/direction of throw as positive)

What is $v_{0,x}$ here?

A: 0

B: 10/3 m/s

C: You don't know a priori

What is $v_{0,y}$ here?

A: 0

B: 9.81 m/s

C: You don't know a priori

What is a_x here?

A: 0

B: -g

C: +g

D: You don't know a priori

Problem solving: kinematics

What is a_y here?

A: 0

B: -g

C: +g

D: You don't know a priori

Problem solving: kinematics

What is x_0 here?

A: 0

B: h

C: d

D: You don't know a priori

What is y_0 here?

A: 0

B: h

C: d

D: You don't know a priori

13 / 1

What question do you ask to find "how hard did she throw it?"

A: What value of $v_{x,0}$ makes it such that x = d when y = 0?

B: What value of $v_{y,0}$ makes it such that x = d when y = h?

C: What is the value of v_x when y = 0?

D: What is the magnitude of \vec{v} when y = 0?

E: What is the magnitude of \vec{v}_x when y = h?

What question do you ask to find "how fast is it going when it hits the ground?"

- A: What is v_x at the time when $v_y = 0$?
- B: What is v_x at the time when y = 0?
- C: What is v_y at the time when y = h?
- D: What is the magnitude of \vec{v} when y = 0?
- E: What is the magnitude of \vec{v} when y = h?

What's the magnitude of \vec{v} ?

A: $v\cos\theta$

B: $v \sin \theta$

C: $\tan^{-1} \frac{v_x}{v_y}$

A: $\sqrt{v_x^2 + v_y^2}$

Throwing a stone onto a slope

A hiker kicks a stone off of a mountain slope with an initial velocity of v_0 3 m/s horizontally. If the mountain has a slope of 45 degrees, how far down the slope does it land? (Choose the origin as the starting point.)

```
A: What is the magnitude of \vec{s} when x = y?
```

B: What is the magnitude of \vec{s} when x = -y?

C: What is the magnitude of \vec{s} when y = 0?

D: What is y when x = -y?

E: What is y when x = 0?

A rocket

A rocket is launched from rest on level ground. While its motor burns, it accelerates at 10 m/s at an angle 30 degrees below the vertical. After $\tau=10$ s its motor burns out and it follows a ballistic trajectory until it hits the ground.

How far does it go?