Um Cluster Para Evitar Enchentes

Por Desconhecido Brasil

Timelimit: 0

A Academia de Ciências da República Tcheca, preocupada com as inundações ocorridas durante os últimos verões em Praga, está fomentando o desenvolvimento de um novo cluster computacional para, entre outras tarefas, promover uma previsão do tempo mais acurada. Este novo cluster é composto por m máquinas iguais operando em paralelo. Por razões orçamentárias, cada máquina pode processar uma única tarefa por vez, e cada tarefa não pode ser processada em mais de uma máquina simultaneamente. O cluster permite, no entanto, preempção. Ou seja, é possível interromper a execução de uma tarefa e retorná-la posteriormente, em outra máquina inclusive.

Por estar em Praga para a realização de um evento relativo à Ciência da Computação, você foi convidado a desenvolver uma versão preliminar do escalonador de tarefas do cluster. Nesta versão, é fornecido um conjunto de tarefas T, em que cada tarefa t ∈ T possui:

- Um requisito de processamento p_t que denota o número de unidades de tempo necessárias para realizar tal tarefa;
- Um instante de liberação r_t, que representa a unidade de tempo a partir da qual a tarefa está disponível para processamento (ela poderia estar aguardando dados, por exemplo);
- E um valor d_t ≥ p_t + r_t que indica o primeiro instante, em unidades de tempo, em que a tarefa deve, impreterivelmente, ter sido completada. Isto é, a tarefa t deve ser realizada no intervalo [r_t, d_t).

Seu escalonador deve receber estes dados, de acordo com o formato descrito abaixo e dizer se existe ou não um escalonamento viável, isto é, um escalonamento que complete todas as tarefas nos intervalos de tempo permitidos.

Entrada

Seu escalonador deve estar preparado para trabalhar com diversas instâncias de entrada. Cada instancia segue o formato que segue. Na primeira linha, são fornecidos os números de máquinas, $0 \le m \le 100$, e de tarefas, $0 \le n \le 1000$, respectivamente. Nas próximas n linhas são fornecidos os valores $p_t \ge 0, r_t \ge 0$ e $d_t \ge 0$ (uma tripla por linha) para as tarefas $t \in T$. Os instantes r_t e d_t são inteiros, e p_t é decimal. Valores m = 0 e n = 0 indicam o término do processamento das instâncias e não devem ser processados. Todos os valores da entrada que constem em uma mesma linha são separados por um número qualquer de espaços em branco.

Saída

Para cada instância solucionada, você deverá imprimir um identificador Instance h, em que h é um número inteiro, sequencial e crescente a partir de 1. Na linha seguinte deve ser impresso Viable ou Not Viable, dependendo do escalonamento para a instância ser ou não viável, respectivamente. Uma linha em branco deve separar a saída de cada instância.

Exemplo de Entrada	Exemplo de Saída
3 4	Instance 1
1.5 3 5	Viable
1.25 1 3	
2.1 3 7	Instance 2
3.6 5 9	Not Viable

3 1	Exemplo de Entrada	Exemplo de Saída
3 1 2		
0 0		

VII Maratona de Programação IME-USP 2003.