PROBLEM STATEMENT: How best fit the Dataset?

```
##step 1:importing all required libraries

In [2]: | import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn import preprocessing,svm from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression
```

##step 2: Reading the dataset

C:\Users\MY HOME\AppData\Local\Temp\ipykernel_16540\76021945.py:1: DtypeWarning: Columns (47,73) have mixed typ
es. Specify dtype option on import or set low_memory=False.
 df=pd.read_csv(r"C:\Users\MY HOME\Downloads\bottle.csv.zip")

Out[3]:

	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	Salnty	O2ml_L	STheta	O2Sat	 R_PHAEO	R_PRES	R_SAMP	DIC1
0	1	1	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0000A-3	0	10.500	33.4400	NaN	25.64900	NaN	 NaN	0	NaN	NaN
1	1	2	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0008A-3	8	10.460	33.4400	NaN	25.65600	NaN	 NaN	8	NaN	NaN
2	1	3	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0010A-7	10	10.460	33.4370	NaN	25.65400	NaN	 NaN	10	NaN	NaN
3	1	4	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0019A-3	19	10.450	33.4200	NaN	25.64300	NaN	 NaN	19	NaN	NaN
4	1	5	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0020A-7	20	10.450	33.4210	NaN	25.64300	NaN	 NaN	20	NaN	NaN
864858	34404	864859	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0000A-7	0	18.744	33.4083	5.805	23.87055	108.74	 0.18	0	NaN	NaN

	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	Salnty	O2ml_L	STheta	O2Sat	 R_PHAEO	R_PRES	R_SAMP	DIC1
864859	34404	864860	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0002A-3	2	18.744	33.4083	5.805	23.87072	108.74	 0.18	2	4.0	NaN
864860	34404	864861	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0005A-3	5	18.692	33.4150	5.796	23.88911	108.46	 0.18	5	3.0	NaN
864861	34404	864862	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0010A-3	10	18.161	33.4062	5.816	24.01426	107.74	 0.31	10	2.0	NaN
864862	34404	864863	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0015A-3	15	17.533	33.3880	5.774	24.15297	105.66	 0.61	15	1.0	NaN

_			
7.1	111	1 /1 1	
v	uL	141	

	Salnty	T_degC
0	33.4400	10.500
1	33.4400	10.460
2	33.4370	10.460
3	33.4200	10.450
4	33.4210	10.450
864858	33.4083	18.744
864859	33.4083	18.744
864860	33.4150	18.692
864861	33.4062	18.161
864862	33.3880	17.533

```
In [5]: #Renamin columns for easier process(OPTIONAL)
df.columns=['sal','temp']
df
```

Out[5]:

	sal	temp
0	33.4400	10.500
1	33.4400	10.460
2	33.4370	10.460
3	33.4200	10.450
4	33.4210	10.450
864858	33.4083	18.744
864859	33.4083	18.744
864860	33.4150	18.692
864861	33.4062	18.161
864862	33.3880	17.533

In [6]: ▶ df.head(10)

-			
Out[6]:		sal	temp
	0	33.440	10.50
	1	33.440	10.46
	2	33.437	10.46
	3	33.420	10.45
	4	33.421	10.45
	5	33.431	10.45
	6	33.440	10.45
	7	33.424	10.24
	8	33.420	10.06
	9	33.494	9.86

###step 3: Exploring to data scatter-pltting the data

In [7]: In sns.lmplot(x="sal",y="temp",order=2,data=df,ci=None)
plt.show()


```
In [13]:

▶ df.describe()

    Out[13]:
                              sal
                                          temp
               count 814247.000000 814247.000000
                         33.841337
                                      10.860287
               mean
                          0.461636
                                       4.224930
                 std
                min
                         28.431000
                                       1.440000
                25%
                         33.489000
                                       7.750000
                50%
                         33.866000
                                      10.110000
                                      13.930000
                75%
                         34.197000
                                      31.140000
                         37.034000
                max

    df.info()

In [14]:
              <class 'pandas.core.frame.DataFrame'>
              Index: 814247 entries, 0 to 864862
              Data columns (total 2 columns):
                   Column Non-Null Count
                                              Dtype
                   sal
                            814247 non-null float64
                   temp
                            814247 non-null float64
              dtypes: float64(2)
              memory usage: 18.6 MB
```

###step 4:Data cleaning-Eliminating Nan/missing values

C:\Users\MY HOME\AppData\Local\Temp\ipykernel_16540\2729279820.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#ret urning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.fillna(method="ffill",inplace=True)

Out[15]:

	sal	temp
0	33.4400	10.500
1	33.4400	10.460
2	33.4370	10.460
3	33.4200	10.450
4	33.4210	10.450
864858	33.4083	18.744
864859	33.4083	18.744
864860	33.4150	18.692
864861	33.4062	18.161
864862	33.3880	17.533

###step 5:Training our model

C:\Users\MY HOME\AppData\Local\Temp\ipykernel_16540\1980608945.py:6: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#ret urning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.dropna(inplace=True)

Out[16]:

	sal	temp
0	33.4400	10.500
1	33.4400	10.460
2	33.4370	10.460
3	33.4200	10.450
4	33.4210	10.450
864858	33.4083	18.744
864859	33.4083	18.744
864860	33.4150	18.692
864861	33.4062	18.161
864862	33.3880	17.533

```
In [17]: #Splitting the data into training and testing data
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
regr=LinearRegression()
regr.fit(x_train,y_train)
print(regr.score(x_test,y_test))
```

0.25789802084759594

###step 6:Exploring our results

```
In [18]:  #Data scatter to predict the values
    y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```


###step 7:Working with the smaller dataset

In [19]: #selecting the first 500 rows df500=df[:][:500] df500

Out[19]:

	sal	temp
0	33.440	10.50
1	33.440	10.46
2	33.437	10.46
3	33.420	10.45
4	33.421	10.45
502	33.310	12.00
503	33.260	11.88
504	33.265	11.74
505	33.280	11.66
506	33.296	11.55


```
In [21]:
            df500
   Out[21]:
                   sal temp
              0 33.440 10.50
               1 33.440 10.46
               2 33.437 10.46
               3 33.420 10.45
               4 33.421 10.45
             502 33.310 12.00
             503 33.260 11.88
             504 33.265 11.74
             505 33.280 11.66
             506 33.296 11.55
            500 rows × 2 columns
         x=np.array(df500['sal']).reshape(-1,1)
In [22]:
            y=np.array(df500['temp']).reshape(-1,1)
            df500.dropna(inplace=True)
            x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
            regr=LinearRegression()
            regr.fit(x train,y train)
            print("regression:",regr.score(x_test,y_test))
```

regression: 0.831953305245337

###step 8:Evaluation of model

r2 Score: 0.831953305245337

conclusion:

The dataset we have taken is not best fit.but,if we take small amount of data in this dataset it maybe fit