SCHOOL OF MANAGEMENT

MSIN0095: Operations Analytics

Class 1-4: Process Analysis

Class 5,7: Waiting Time Analysis

Class 6: Inventory Management I: Newsvendor Model

Class 8: Inventory Management II: Newsvendor 2 and

Replenishable Inventory

1

Example 1

Crazy Jo runs a tube rental on Huron River (Class 0.5 Rapids). He currently leases tubes from a dealer in Ann Arbor at a cost of \$10 per day. On Saturdays, he picks up the tubes and drives to a launching point on the river, where he rents tubes to white-water enthusiasts for \$30 per day. Crazy Jo records the Saturday demand for tubes and finds the experience below for the past 20 Saturdays:

How many tubes should Crazy Jo lease from the dealer?

$$C_o = $10$$
 $C_u = $30 - $10 = 20
 $SL^* = \frac{C_u}{C_u + C_o} = \frac{$20}{$20 + $10} = 0.667$ $Q^* = ?$

Example 2

• During the Final Four, demand for basketball jerseys is expected to be normally distributed with mean 1,000 and standard deviation 300. Each jersey costs \$30. The selling price is \$50 per jersey. How many jerseys should be ordered?

$$\begin{array}{ll} C_o = ~\$30 & C_u = ~50 - 30 = \$20 \\ \\ \text{SL*=} & \frac{C_u}{C_u + C_o} = \frac{\$20}{\$20 + \$30} = 0.4 \\ \\ z = -0.25 & \mathbf{Q*=} ~1000 + (-0.25) \times 300 = 925 \end{array}$$

What if the unsold jerseys can be sold off at half price?

$$\begin{array}{ll} C_o = \ 30 - 25 = \$5 & C_u = \ 50 - 30 = \$20 \\ \\ \text{SL*=} & \frac{C_u}{C_u + C_o} = \frac{\$20}{\$20 + \$5} = 0.8 \\ \\ z = \ 0.84 & Q*= \ 1000 + 0.84 \times 300 = 1252 \end{array}$$

3

Newsvendor Summary

- When Balancing costs of overstocking and understocking is crucial?
 - Commit quantity before knowing demand, limited flexibility in ramping up capacity with short notice
 - Inventory loses value sharply at the end of one period (e.g. perishable goods, <u>but not limited to</u>)
 - Unmet demand will be lost (<u>can be relaxed later</u>)
- Newsvendor logic determines
 - Optimal service level
 - Optimal stock level

Which other firms or industries can you see a "newsvendor problem"?

Not Just Newsvendors

5

Not Just Newsvendors

Q: How many rooms should be set aside for last-minute customers?

Hotel problem:

- number of last minute customers is normally distributed with mean 75 and standard deviation 25
- Advance booking: \$200/night
- Late booking: \$500/night

Not Just Newsvendors

Usually take more reservations than they can actually take because of "no-shows"

Hotel problem: The number of no-shows is normally distributed with mean 5 and standard deviation 2

- Room rate is \$200/night
- It costs hotel \$300 to "bump" a customer How many reservations should you take?

8

Not Just Newsvendors

10

Replenishable inventory models

Continuous review

- Place an order from the supplier <u>at any time</u> if inventory is running low
- Event-triggered restocking
- Requires continuous monitoring of inventory levels

Periodic review

- Place an order from the supplier <u>only during</u> <u>scheduled times</u> (e.g. every 3 days or weekly).
- Time-triggered restocking
- Only requires to monitor inventory periodically

Motivation Example

- Zara orders a particular clothing item every Friday morning and it is delivered from a warehouse immediately after ordering
- Unmet demand is lost
- Mean daily demand is 10, standard deviation is 9.45, Normal
- Daily demand are independently and identically distributed
- Wholesale cost is \$10 each, retail price is \$25 each
- Holding cost has been set at \$0.5 per week for each item (to reflect obsolescence, damage, etc.)
- Question: How should Zara set order amounts?
- How to apply newsvendor logic?
 - It decides the target stock level by balancing the overage and underage cost.

12

Motivation Example

- Zara orders a particular clothing item every Friday morning and it is delivered from a warehouse Monday morning
- Unmet demand is lost
- Mean daily demand is 10, standard deviation is 9.45
- Daily demand are independently and identically distributed
- Wholesale cost is \$10 each, retail price is \$25 each
- Holding cost has been set at \$0.5 per week for each item (to reflect obsolescence, damage, etc.)
- Question: How should Zara set order amounts?

13

Periodic Review Model

- Key features and assumptions:
 - Review & place orders every T days
 - Positive lead time L days
 - Unmet demand can either be backordered or lost
 - Holding cost
 - Demand distribution every day is independent and identical
 - There is no setup cost associated with placing an order
- How much to order each time?
 - Your order should bring the inventory position (on hand inventory + in transit – backorders) up to a desired target stock level using the newsvendor logic

14

