

SCAN 1st

Mechanics test 2

Wednesday 12th May 2021 – Duration: 1h30 2-page personal formula sheet authorised.

Exercise 1:

The satellite P in Figure 1 has a <u>circular</u> orbit of radius R (measured from the centre of the Earth). The masses of the satellite and the Earth are m_s and M_E respectively, the radius of the Earth is r_E and the universal constant of attraction if G.

Using Newton's 2nd law,

- 1 Prove that the speed of the satellite is constant
- 2 Determine the time for the satellite to complete one orbit around the Earth
- 3 Deduce from the previous question, the altitude h_{geo} measured from the surface of the Earth for a geostationary orbit (i.e., the satellite is fixed with respect to the Earth surface). Give the numerical value in km knowing that $r_E = 6371km$ and $g = 9.81m/s^2$

Figure 1.

Exercise 2:

Mass m slides with <u>negligible friction</u> on the cylindrical surface (Figure 2). The spring attached to the mass has a stiffness of k, and its free (unstretched) length is L_0 .

1 - If the mass is released from rest at A, determine its speed at B in terms of the problem variables. Hint: Use energies.

2 - Numerical application: calculate the speed using the following data $m=0.6\,\mathrm{kg}$, $k=110\,\mathrm{N/m}$, $L_0=0.08\,\mathrm{m}$, $R=0.4\,\mathrm{m}$, $r=0.2\,\mathrm{m}$, $\alpha=30^\circ$

Figure 2.

Exercise 3:

Determine the horizontal force P required to keep the homogeneous 30-kg cylinder in equilibrium on the rough inclined surface in Figure 4.

Figure 3

Exercise 4:

Three identical springs, each of stiffness k, support a block of mass m as shown in Figure 4. Bar AB is rigid.

- Prove that the three stiffness elements can be replaced by one equivalent stiffness $k_{eq} = \frac{2}{3}k$
- 2 Find the expression of the static displacement, the circular natural frequency, the natural frequency and period of the system.

- 3 Numerical application: m = 0.2 kg; k = 875 N/m
- 4 A force $F = F_0 \sin(\omega t)$ is applied to mass m. Find the maximum displacement downwards in terms of m, k, F_0 , ω and g.

Figure 4.