

What is claimed is:

1. A compound of the formula:

or a pharmaceutically acceptable salt thereof, wherein:

each --- independently represents a single or double bond;

B and E are independently CR_1 , $\text{C}(\text{R}_1)_2$, NR_1 or N; or B and E are taken together to form a fused 5- to 7-membered partially saturated ring that is substituted with from 0 to 3 substituents independently selected from R_1 ;

D and G are independently CR_1 , $\text{C}(\text{R}_1)_2$, NR_1 or N;

W, X, Y and Z are independently CR_1 or N;

Q, T and V are independently CR_1 , $\text{C}(\text{R}_1)_2$, N or NH; or Q is taken together with V or R_3 to form a fused 5- to 7-membered carbocycle or heterocycle that is substituted with from 0 to 4 substituents independently selected from R_b ;

R_1 is independently chosen at each occurrence from hydrogen, halogen, hydroxy, amino, cyano, nitro, and groups of the formula L-M;

R_2 is halogen, hydroxy, amino, cyano, nitro or a group of the formula L-M;

R_3 is hydrogen, halogen, cyano, $\text{C}_1\text{-C}_8$ alkyl, $\text{C}_2\text{-C}_8$ alkenyl, $\text{C}_2\text{-C}_8$ alkynyl, $\text{C}_3\text{-C}_8$ cycloalkyl $\text{C}_0\text{-C}_4$ alkyl, $\text{C}_1\text{-C}_8$ haloalkyl, $\text{C}_2\text{-C}_8$ alkyl ether, $\text{C}_1\text{-C}_8$ alkylsulfonyl, $\text{C}_1\text{-C}_8$ alkylsulfonamido or taken together with Q to form a fused, optionally substituted, 5- to 7-membered carbocycle or heterocycle;

L is independently chosen at each occurrence from a single covalent bond, O, $\text{C}(=\text{O})$, $\text{OC}(=\text{O})$, $\text{C}(=\text{O})\text{O}$, $\text{OC}(=\text{O})\text{O}$, $\text{S}(\text{O})_m$, $\text{N}(\text{R}_x)$, $\text{C}(=\text{O})\text{N}(\text{R}_x)$, $\text{N}(\text{R}_x)\text{C}(=\text{O})$, $\text{N}(\text{R}_x)\text{S}(\text{O})_m$, $\text{S}(\text{O})_m\text{N}(\text{R}_x)$ and $\text{N}[\text{S}(\text{O})_m\text{R}_x]\text{S}(\text{O})_m$; wherein m is independently selected at each occurrence from 0, 1 and 2; and R_x is independently selected at each occurrence from hydrogen and $\text{C}_1\text{-C}_8$ alkyl;

M is independently selected at each occurrence from (a) hydrogen and hydroxy; and (b) $\text{C}_1\text{-C}_8$ alkyl, $\text{C}_2\text{-C}_8$ alkenyl, $\text{C}_2\text{-C}_8$ alkynyl, mono- and di- $(\text{C}_1\text{-C}_4$ alkyl)amino $\text{C}_0\text{-C}_4$ alkyl, phenyl $\text{C}_0\text{-C}_4$ alkyl, $\text{C}_3\text{-C}_8$ cycloalkyl $\text{C}_0\text{-C}_4$ alkyl and (5- to 7-membered heterocycloalkyl) $\text{C}_0\text{-C}_4$ alkyl, each of which is substituted with from 0 to 5 substituents independently selected from R_b ;

J_1 chosen from O, NH and S;

U is $\text{C}_1\text{-C}_3$ alkyl, substituted with from 0 to 3 substituents independently chosen from oxo and $\text{C}_1\text{-C}_3$ alkyl or two substituents are taken together to form a 3- to 7-membered cycloalkyl or heterocycloalkyl;

Either: (a) J_2 is O or S,

n is 1, and

R_z is hydrogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl or C_2 - C_6 alkyl ether; or

(b) J_2 is N,

n is 2, and

(i) R_z is independently chosen at each occurrence from hydrogen and C_1 - C_6 alkyl substituted with from 0 to 3 substituents selected from R_b ; or

(ii) both R_z moieties are joined to form, with J_2 , a 5- to 8-membered heterocycloalkyl that is substituted with from 0 to 3 substituents selected from R_b ; and

R_b is independently chosen at each occurrence from halogen, hydroxy, cyano, nitro, amino, oxo, COOH, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl C_0 - C_4 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_2 - C_6 alkyl ether, aminocarbonyl, C_1 - C_6 hydroxyalkyl, C_1 - C_6 aminoalkyl and mono- and di-(C_1 - C_6 alkyl)amino.

2. A compound or salt according to claim 1, wherein each $==$ represents a double bond.

3. A compound or salt according to claim 1 or claim 2, wherein B, E, D, Y and W are CH.

4. A compound or salt according to any one of claims 1-3, wherein T and V are independently N or CH.

5. A compound or salt according to any one of claims 1-4, wherein G is N.

6. A compound or salt according to any one of claims 1-5, wherein R_2 is cyano, nitro, NH₂, amino, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 hydroxyalkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkanoyl, C_4 aminoalkyl, mono- or di-(C_1 - C_4 alkyl)amino C_0 - C_4 alkyl, (C_5 - C_6 cycloalkyl)amino, (5- or 6-membered heterocycloalkyl) C_0 - C_4 alkyl, - $N(R_x)SO_2C_1$ - C_4 alkyl or - $N(SO_2C_1$ - C_4 alkyl)₂.

7. A compound or salt according to claim 6, wherein R_2 is cyano, CHO, amino, nitro, C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_1 - C_4 alkylthio, C_1 - C_4 hydroxyalkyl, C_4 aminoalkyl, mono- and di-(C_1 - C_4 alkyl)amino C_0 - C_4 alkyl, oxadiazolyl, cyclopentylamino, - $N(H)SO_2C_4$ alkyl, - $N(CH_3)SO_2C_1$ - C_4 alkyl or - $N(SO_2C_1$ - C_2 alkyl)₂.

8. A compound or salt according to claim 7, wherein R_2 is cyano, CHO, amino, nitro, methyl, propyl, hydroxymethyl, trifluoromethyl, methoxy, ethoxy, propoxy, methylthio, ethylthio, C_4 alkylamino, (C_1 - C_4 alkyl)aminomethyl, cyclopentylamino, - $N(H)SO_2C_1$ - C_4 alkyl, - $N(CH_3)SO_2CH_3$ or $N(SO_2CH_3)_2$.

9. A compound or salt according to claim 6, wherein R_2 is halogen, methyl, cyano or trifluoromethyl.

10. A compound or salt according to any one of claims 1-9, wherein J_1 is O.

11. A compound or salt according to any one of claims 1-10, wherein U is C_2 alkyl substituted with from 0 to 2 substituents independently chosen from oxo and C_1 - C_3 alkyl.

12. A compound or salt according to claim 11, wherein U is $-CH_2-CH_2-$.

13. A compound or salt according to claim 11, wherein U is $-CH_2-C(O)-$.

14. A compound or salt according to any one of claims 1-13, wherein $-J_2-(R_2)_n$ is chosen from: (i) -OH and -NH₂, and (ii) C_1 - C_4 alkoxy, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl and mono- and di-(C_1 - C_6 alkyl)amino, each of which is substituted with from 0 to 3 substituents independently chosen from hydroxy, halogen, amino, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy and C_1 - C_4 alkylthio.

15. A compound or salt according to any one of claims 1-14, wherein R_3 is halogen, C_1 - C_4 alkyl, C_2 - C_4 alkyl ether, C_1 - C_4 haloalkyl, C_1 - C_4 hydroxyalkyl, $-SO_2CF_3$ or taken together with Q to form a fused 5- or 6-membered carbocycle or heterocycle.

16. A compound or salt according to claim 15, wherein R_3 is halogen, *tert*-butyl or trifluoromethyl.

17. A compound or salt according to claim 1, wherein the compound has the formula:

wherein:

G and T are independently CH or N;

R_2 is cyano, CHO, amino, nitro, methyl, ethyl, propyl, trifluoromethyl, methoxy, ethoxy, propoxy methylthio, ethylthio, $-N(H)SO_2C_1-C_4$ alkyl, $-N(CH_3)SO_2C_1-C_4$ alkyl or $-N(SO_2CH_3)_2$;

R_3 is halogen, cyano, C_1 - C_6 alkyl or C_1 - C_6 haloalkyl;

X and Z are independently N, CH, C-OH, C-NH₂, C(C_1 - C_3 alkyl) or C(C_1 - C_3 haloalkyl);

J_1 is O or NH; and

$-J_2-(R_2)_n$ is chosen from: (i) $-OH$ and $-NH_2$, and (ii) C_1-C_4 alkoxy, pyrrolidinyl, piperidinyl, piperazinyl morpholinyl and mono- and di- $(C_1-C_6$ alkyl)amino, each of which is substituted with from 0 to 3 substituents independently chosen from hydroxy, halogen, amino, C_1-C_4 alkyl, C_1-C_4 haloalkyl, C_1-C_4 alkoxy, C_1-C_4 haloalkoxy and C_1-C_4 alkylthio.

18. A compound or salt according to claim 17, wherein J_1 is O.

19. A compound or salt according to claim 18, wherein:

X and Z are independently N or CH;

G is N; and

R_2 and R_3 are independently halogen, C_1-C_4 alkyl or C_1-C_4 haloalkyl.

20. A compound or salt according to claim 1, wherein the compound is selected from:

N-[4-*tert*-Butyl-3-(2-hydroxy-ethoxy)-phenyl]-4-(3-trifluoromethyl-pyridin-2-yl)-benzamide;

N-[4-*tert*-Butyl-3-(2-morpholin-4-yl-ethoxy)-phenyl]-4-(3-trifluoromethyl-pyridin-2-yl)-benzamide;

N-[4-*tert*-Butyl-3-[2-(2,6-dimethyl-morpholin-4-yl)-ethoxy]-phenyl]-4-(3-trifluoromethyl-pyridin-2-yl)-benzamide (cis);

N-[4-*tert*-Butyl-3-(2-piperidin-1-yl-ethoxy)-phenyl]-4-(3-trifluoromethyl-pyridin-2-yl)-benzamide;

N-[3-{2-[Bis-(2-methoxy-ethyl)-amino]-ethoxy}-4-*tert*-butyl-phenyl]-4-(3-trifluoromethyl-pyridin-2-yl)-benzamide;

N-[4-*tert*-Butyl-3-[2-(3,3-dimethyl-piperidin-1-yl)-ethoxy]-phenyl]-4-(3-trifluoromethyl-pyridin-2-yl)-benzamide;

N-[4-*tert*-Butyl-3-(2-hydroxy-ethoxy)-phenyl]-2-hydroxy-4-(3-trifluoromethyl-pyridin-2-yl)-benzamide;

N-[4-*tert*-Butyl-3-[2-(2,6-dimethyl-morpholin-4-yl)-ethoxy]-phenyl]-2-hydroxy-4-(3-trifluoromethyl-pyridin-2-yl)-benzamide (cis); and

N-[4-*tert*-Butyl-3-(2-piperidin-1-yl-ethoxy)-phenyl]-2-hydroxy-4-(3-trifluoromethyl-pyridin-2-yl)-benzamide.

21. A compound or salt according to any one of claims 1-20, wherein the compound exhibits no detectable agonist activity an *in vitro* assay of capsaicin receptor agonism.

22. A compound or salt according to any one of claims 1-20, wherein the compound has an IC_{50} value of 1 micromolar or less in a capsaicin receptor calcium mobilization assay.

23. A compound or salt according to claim 22, wherein the compound has an IC_{50} value of 100 nanomolar or less in a capsaicin receptor calcium mobilization assay.

24. A pharmaceutical composition, comprising at least one compound or salt according to any one of claims 1-20, in combination with a physiologically acceptable carrier or excipient.

25. A pharmaceutical composition according to claim 24 wherein the composition is formulated as an injectible fluid, an aerosol, a cream, a gel, a pill, a capsule, a syrup or a transdermal patch.

26. A method for reducing calcium conductance of a cellular capsaicin receptor, comprising contacting a cell expressing a capsaicin receptor with at least one compound of the formula:

or a pharmaceutically acceptable salt thereof, wherein:

each $=$ independently represents a single or double bond;

either: (a) A, B and E are independently CR_1 , $C(R_1)_2$, NR_1 or N; or

(b) B is joined with A or E to form a fused 5- to 8-membered partially saturated ring that substituted with from 0 to 3 substituents independently selected from R_1 , and the other of A or E CR_1 , $C(R_1)_2$, NR_1 or N;

D and G are independently CR_1 , $C(R_1)_2$, NR_1 or N;

W, X, Y and Z are independently CR_1 or N;

P, Q, T and V are independently CR_1 , $C(R_1)_2$, N or NH; or Q is taken together with V or P to form a fused to 7-membered carbocycle or heterocycle that is substituted with from 0 to 4 substituents independently chosen from R_b ;

R_1 is independently chosen at each occurrence from hydrogen, halogen, hydroxy, amino, cyano, nitro, and groups of the formula L-M;

L is independently chosen at each occurrence from a single covalent bond, O, $C(=O)$, $OC(=O)$, $C(=O)O$, $OC(=O)O$, $S(O)_m$, $N(R_x)$, $C(=O)N(R_x)$, $N(R_x)C(=O)$, $N(R_x)S(O)_m$, $S(O)_mN(R_x)$ and $N[S(O)_mR_x]S(O)_m$; wherein m is independently selected at each occurrence from 0, 1 and 2; and R_x is independently selected at each occurrence from hydrogen and C_1-C_8 alkyl;

M is independently selected at each occurrence from (a) hydrogen; and (b) C_1-C_8 alkyl, C_2-C_8 alkenyl, C_2-C_8 alkynyl, mono- and di- $(C_1-C_4$ alkyl)amino C_0-C_4 alkyl, phenyl C_0-C_4 alkyl, C_3-C_8 cycloalkyl C_0-C_4 alkyl, (5-membered heteroaryl) C_0-C_4 alkyl and (5- to 7-membered heterocycloalkyl) C_0-C_4 alkyl, each of which is substituted with from 0 to 5 substituents independently selected from R_b ;

J_1 chosen from O, NH and S;

U is C₁-C₃alkyl, substituted with from 0 to 3 substituents independently chosen from oxo and C₁-C₃alkyl, or two substituents are taken together to form a 3- to 7-membered cycloalkyl or heterocycloalkyl;

Either: (a) J₂ is O or S,

n is 1, and

R_z is hydrogen, C₁-C₆alkyl, C₁-C₆haloalkyl or C₂-C₆alkyl ether; or

(b) J₂ is N,

n is 2, and

(i) R_z is independently chosen at each occurrence from hydrogen and C₁-C₆alkyl substituted with from 0 to 3 substituents selected from R_b; or

(ii) both R_z moieties are joined to form, with J₂, a 5- to 8-membered heterocycloalkyl that is substituted with from 0 to 3 substituents selected from R_b; and

R_b is independently chosen at each occurrence from halogen, hydroxy, cyano, nitro, amino, oxo, COOH, C₁-C₆alkyl, C₃-C₈cycloalkylC₀-C₄alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₂-C₆alkyl ether, aminocarbonyl, C₁-C₆hydroxyalkyl, C₁-C₆aminoalkyl and mono- and di-(C₁-C₆alkyl)amino; and thereby reducing calcium conductance of the capsaicin receptor.

27. A method according to claim 26, wherein the compound is a compound according to claim any one of claims 1-20.

28. A method according to claim 26, wherein the cell is contacted *in vivo* in an animal.

29. A method according to claim 28, wherein the cell is a neuronal cell.

30. A method according to claim 28, wherein the cell is a urothelial cell.

31. A method according to claim 28, wherein during contact the compound is present within a body fluid of the animal.

32. A method according to claim 31, wherein the compound is present in the blood of the animal at a concentration of 1 micromolar or less.

33. A method according to claim 28, wherein the animal is a human.

34. A method according to claim 28, wherein the compound is administered orally.

35. A method for inhibiting binding of vanilloid ligand to a capsaicin receptor *in vitro*, the method comprising contacting capsaicin receptor with at least one compound of the formula:

or a pharmaceutically acceptable salt thereof, wherein:

each --- independently represents a single or double bond;

either: (a) A, B and E are independently CR_1 , $\text{C}(\text{R}_1)_2$, NR_1 or N; or

(b) B is joined with A or E to form a fused 5- to 8-membered partially saturated ring that is substituted with from 0 to 3 substituents independently selected from R_1 , and the other of A or E is CR_1 , $\text{C}(\text{R}_1)_2$, NR_1 or N;

D and G are independently CR_1 , $\text{C}(\text{R}_1)_2$, NR_1 or N;

W, X, Y and Z are independently CR₁ or N;

P, Q, T and V are independently CR_1 , $\text{C}(\text{R}_1)_2$, N or NH; or Q is taken together with V or P to form a fused to 7-membered carbocycle or heterocycle that is substituted with from 0 to 4 substituents independently chosen from R_b ;

R_1 is independently chosen at each occurrence from hydrogen, halogen, hydroxy, amino, cyano, nitro, and groups of the formula L-M;

L is independently chosen at each occurrence from a single covalent bond, O, $\text{C}=\text{O}$, $\text{OC}=\text{O}$, $\text{C}(\text{=O})\text{O}$, $\text{OC}(\text{=O})\text{O}$, $\text{S}(\text{O})_m$, $\text{N}(\text{R}_x)$, $\text{C}(\text{=O})\text{N}(\text{R}_x)$, $\text{N}(\text{R}_x)\text{C}(\text{=O})$, $\text{N}(\text{R}_x)\text{S}(\text{O})_m$, $\text{S}(\text{O})_m\text{N}(\text{R}_x)$ and $\text{N}[\text{S}(\text{O})_m\text{R}_x]\text{S}(\text{O})_m$; wherein m is independently selected at each occurrence from 0, 1 and 2; and R_x is independently selected at each occurrence from hydrogen and $\text{C}_1\text{-C}_8\text{alkyl}$;

M is independently selected at each occurrence from (a) hydrogen; and (b) $\text{C}_1\text{-C}_8\text{alkyl}$, $\text{C}_2\text{-C}_8\text{alkenyl}$, $\text{C}_2\text{-C}_8\text{alkynyl}$, mono- and di- $(\text{C}_1\text{-C}_4\text{alkyl})\text{aminoC}_0\text{-C}_4\text{alkyl}$, phenyl $\text{C}_0\text{-C}_4\text{alkyl}$, $\text{C}_3\text{-C}_8\text{cycloalkylC}_0\text{-C}_4\text{alkyl}$, $(5\text{-membered heteroaryl})\text{C}_0\text{-C}_4\text{alkyl}$ and $(5\text{- to 7-membered heterocycloalkyl})\text{C}_0\text{-C}_4\text{alkyl}$, each of which is substituted with from 0 to 5 substituents independently selected from R_b ;

J_1 chosen from O, NH and S;

U is $\text{C}_1\text{-C}_3\text{alkyl}$, substituted with from 0 to 3 substituents independently chosen from oxo and $\text{C}_1\text{-C}_3\text{alkyl}$, or two substituents are taken together to form a 3- to 7-membered cycloalkyl or heterocycloalkyl;

Either: (a) J_2 is O or S,

n is 1, and

R_2 is hydrogen, $\text{C}_1\text{-C}_6\text{alkyl}$, $\text{C}_1\text{-C}_6\text{haloalkyl}$ or $\text{C}_2\text{-C}_6\text{alkyl}$ ether; or

(b) J_2 is N,

n is 2, and

(i) R_z is independently chosen at each occurrence from hydrogen and C₁-C₆alkyl substituted with from 0 to 3 substituents selected from R_b; or

(ii) both R_z moieties are joined to form, with J₂, a 5- to 8-membered heterocycloalkyl that is substituted with from 0 to 3 substituents selected from R_b; and

R_b is independently chosen at each occurrence from halogen, hydroxy, cyano, nitro, amino, oxo, COOH, C₁-C₆alkyl, C₃-C₈cycloalkylC₀-C₄alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₂-C₆alkyl ether, aminocarbonyl, C₁-C₆hydroxyalkyl, C₁-C₆aminoalkyl and mono- and di-(C₁-C₆alkyl)amino; under conditions and in an amount sufficient to detectably inhibit vanilloid ligand binding to capsaicin receptor.

36. A method according to claim 35, wherein the compound is a compound according to claim any one of claims 1-20.

37. A method for inhibiting binding of vanilloid ligand to capsaicin receptor in a patient, comprising contacting cells expressing capsaicin receptor with at least one compound of the formula:

or a pharmaceutically acceptable salt thereof, wherein:

each --- independently represents a single or double bond;

either: (a) A, B and E are independently CR₁, C(R₁)₂, NR₁ or N; or

(b) B is joined with A or E to form a fused 5- to 8-membered partially saturated ring that is substituted with from 0 to 3 substituents independently selected from R₁, and the other of A or E CR₁, C(R₁)₂, NR₁ or N;

D and G are independently CR₁, C(R₁)₂, NR₁ or N;

W, X, Y and Z are independently CR₁ or N;

P, Q, T and V are independently CR₁, C(R₁)₂, N or NH; or Q is taken together with V or P to form a fused to 7-membered carbocycle or heterocycle that is substituted with from 0 to 4 substituents independently chosen from R_b;

R₁ is independently chosen at each occurrence from hydrogen, halogen, hydroxy, amino, cyano, nitro, and groups of the formula L-M;

L is independently chosen at each occurrence from a single covalent bond, O, C(=O), OC(=O), C(=O)O, OC(=O)O, S(O)_m, N(R_x), C(=O)N(R_x), N(R_x)C(=O), N(R_x)S(O)_m, S(O)_mN(R_x) and

$N[S(O)_mR_x]S(O)_m$; wherein m is independently selected at each occurrence from 0, 1 and 2; and R_x is independently selected at each occurrence from hydrogen and C_1 - C_8 alkyl;

M is independently selected at each occurrence from (a) hydrogen; and (b) C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, mono- and di- $(C_1$ - C_4 alkyl)amino C_0 - C_4 alkyl, phenyl C_0 - C_4 alkyl, C_3 - C_8 cycloalkyl C_0 - C_4 alkyl, (5-membered heteroaryl) C_0 - C_4 alkyl and (5- to 7-membered heterocycloalkyl) C_0 - C_4 alkyl, each of which is substituted with from 0 to 5 substituents independently selected from R_b ;

J_1 chosen from O, NH and S;

U is C_1 - C_3 alkyl, substituted with from 0 to 3 substituents independently chosen from oxo and C_1 - C_3 alkyl, or two substituents are taken together to form a 3- to 7-membered cycloalkyl or heterocycloalkyl;

Either: (a) J_2 is O or S,

n is 1, and

R_z is hydrogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl or C_2 - C_6 alkyl ether; or

(b) J_2 is N,

n is 2, and

(i) R_z is independently chosen at each occurrence from hydrogen and C_1 - C_6 alkyl substituted with from 0 to 3 substituents selected from R_b ; or

(ii) both R_z moieties are joined to form, with J_2 , a 5- to 8-membered heterocycloalkyl that is substituted with from 0 to 3 substituents selected from R_b ; and

R_b is independently chosen at each occurrence from halogen, hydroxy, cyano, nitro, amino, oxo, COOH, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl C_0 - C_4 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_2 - C_6 alkyl ether, aminocarbonyl, C_1 - C_6 hydroxyalkyl, C_1 - C_6 aminoalkyl and mono- and di- $(C_1$ - C_6 alkyl)amino;

and thereby inhibiting binding of vanilloid ligand to the capsaicin receptor in the patient.

38. A method according to claim 37, wherein the compound is a compound according to claim any one of claims 1-20.

39. A method according to claim 37, wherein the patient is a human.

40. A method for treating a condition responsive to capsaicin receptor modulation in a patient, comprising administering to the patient a therapeutically effective amount of at least one compound of the formula:

or a pharmaceutically acceptable salt thereof, wherein:

each --- independently represents a single or double bond;

either: (a) A, B and E are independently CR_1 , $\text{C}(\text{R}_1)_2$, NR_1 or N; or

(b) B is joined with A or E to form a fused 5- to 8-membered partially saturated ring that substituted with from 0 to 3 substituents independently selected from R_1 , and the other of A or E CR_1 , $\text{C}(\text{R}_1)_2$, NR_1 or N;

D and G are independently CR_1 , $\text{C}(\text{R}_1)_2$, NR_1 or N;

W, X, Y and Z are independently CR_1 or N;

P, Q, T and V are independently CR_1 , $\text{C}(\text{R}_1)_2$, N or NH; or Q is taken together with V or P to form a fused to 7-membered carbocycle or heterocycle that is substituted with from 0 to 4 substituents independent chosen from R_b ;

R_1 is independently chosen at each occurrence from hydrogen, halogen, hydroxy, amino, cyano, nitro, and groups of the formula L-M;

L is independently chosen at each occurrence from a single covalent bond, O, $\text{C}(=\text{O})$, $\text{OC}(=\text{O})$, $\text{C}(=\text{O})\text{O}$, $\text{OC}(=\text{O})\text{O}$, $\text{S}(\text{O})_m$, $\text{N}(\text{R}_x)$, $\text{C}(=\text{O})\text{N}(\text{R}_x)$, $\text{N}(\text{R}_x)\text{C}(=\text{O})$, $\text{N}(\text{R}_x)\text{S}(\text{O})_m$, $\text{S}(\text{O})_m\text{N}(\text{R}_x)$ and $\text{N}[\text{S}(\text{O})_m\text{R}_x]\text{S}(\text{O})_m$; wherein m is independently selected at each occurrence from 0, 1 and 2; and R_x is independently selected at each occurrence from hydrogen and $\text{C}_1\text{-C}_8\text{alkyl}$;

M is independently selected at each occurrence from (a) hydrogen; and (b) $\text{C}_1\text{-C}_8\text{alkyl}$, $\text{C}_2\text{-C}_8\text{alkenyl}$, $\text{C}_2\text{-C}_8\text{alkynyl}$, mono- and di- $(\text{C}_1\text{-C}_4\text{alkyl})\text{aminoC}_0\text{-C}_4\text{alkyl}$, $\text{phenylC}_0\text{-C}_4\text{alkyl}$, $\text{C}_3\text{-C}_8\text{cycloalkylC}_0\text{-C}_4\text{alkyl}$, $(5\text{-membered heteroaryl})\text{C}_0\text{-C}_4\text{alkyl}$ and $(5\text{- to 7-membered heterocycloalkyl})\text{C}_0\text{-C}_4\text{alkyl}$, each of which is substituted with from 0 to 5 substituents independently selected from R_b ;

J_1 chosen from O, NH and S;

U is $\text{C}_1\text{-C}_3\text{alkyl}$, substituted with from 0 to 3 substituents independently chosen from oxo and $\text{C}_1\text{-C}_3\text{alkyl}$, or two substituents are taken together to form a 3- to 7-membered cycloalkyl or heterocycloalkyl;

Either: (a) J_2 is O or S,

n is 1, and

R_z is hydrogen, $\text{C}_1\text{-C}_6\text{alkyl}$, $\text{C}_1\text{-C}_6\text{haloalkyl}$ or $\text{C}_2\text{-C}_6\text{alkyl}$ ether; or

(b) J_2 is N,

n is 2, and

(i) R_z is independently chosen at each occurrence from hydrogen and $\text{C}_1\text{-C}_6\text{alkyl}$ substituted with from 0 to 3 substituents selected from R_b ; or

(ii) both R_z moieties are joined to form, with J_2 , a 5- to 8-membered heterocycloalkyl that is substituted with from 0 to 3 substituents selected from R_b ; and

R_b is independently chosen at each occurrence from halogen, hydroxy, cyano, nitro, amino, oxo, COOH, $\text{C}_1\text{-C}_6\text{alkyl}$, $\text{C}_3\text{-C}_8\text{cycloalkylC}_0\text{-C}_4\text{alkyl}$, $\text{C}_1\text{-C}_6\text{haloalkyl}$, $\text{C}_1\text{-C}_6\text{alkoxy}$, $\text{C}_1\text{-C}_6\text{haloalkoxy}$, $\text{C}_2\text{-C}_6\text{alkyl}$ ether, aminocarbonyl, $\text{C}_1\text{-C}_6\text{hydroxyalkyl}$, $\text{C}_1\text{-C}_6\text{aminoalkyl}$ and mono- and di- $(\text{C}_1\text{-C}_6\text{alkyl})\text{amino}$;

and thereby alleviating the condition in the patient.

41. A method according to claim 40, wherein the compound is a compound according to claim any one of claims 1-20.

42. A method according to claim 40, wherein the patient is suffering from (i) exposure to capsaicin, (ii) burn or irritation due to exposure to heat, (iii) burns or irritation due to exposure to light, (iv) burn, bronchoconstriction or irritation due to exposure to tear gas, air pollutants, infectious agents or pepper spray, or (v) burn or irritation due to exposure to acid

43. A method according to claim 40, wherein the condition is asthma or chronic obstructive pulmonary disease.

44. A method for treating pain in a patient, comprising administering to a patient suffering from pain a therapeutically effective amount of at least one compound of the formula:

or a pharmaceutically acceptable salt thereof, wherein:

each --- independently represents a single or double bond;

either: (a) A, B and E are independently CR_1 , $\text{C}(\text{R}_1)_2$, NR_1 or N; or

(b) B is joined with A or E to form a fused 5- to 8-membered partially saturated ring that is substituted with from 0 to 3 substituents independently selected from R_1 , and the other of A or E is CR_1 , $\text{C}(\text{R}_1)_2$, NR_1 or N;

D and G are independently CR_1 , $\text{C}(\text{R}_1)_2$, NR_1 or N;

W, X, Y and Z are independently CR_1 or N;

P, Q, T and V are independently CR_1 , $\text{C}(\text{R}_1)_2$, N or NH; or Q is taken together with V or P to form a fused to 7-membered carbocycle or heterocycle that is substituted with from 0 to 4 substituents independently chosen from R_b ;

R_1 is independently chosen at each occurrence from hydrogen, halogen, hydroxy, amino, cyano, nitro, and groups of the formula L-M;

L is independently chosen at each occurrence from a single covalent bond, O, $\text{C}=\text{O}$, $\text{OC}=\text{O}$, $\text{C}(\text{=O})\text{O}$, $\text{OC}(\text{=O})\text{O}$, $\text{S}(\text{O})_m$, $\text{N}(\text{R}_x)$, $\text{C}(\text{=O})\text{N}(\text{R}_x)$, $\text{N}(\text{R}_x)\text{C}(\text{=O})$, $\text{N}(\text{R}_x)\text{S}(\text{O})_m$, $\text{S}(\text{O})_m\text{N}(\text{R}_x)$ and $\text{N}[\text{S}(\text{O})_m\text{R}_x]\text{S}(\text{O})_m$; wherein m is independently selected at each occurrence from 0, 1 and 2; and R_x is independently selected at each occurrence from hydrogen and $\text{C}_1\text{-C}_8$ alkyl;

M is independently selected at each occurrence from (a) hydrogen; and (b) C₁-C₈alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl, mono- and di-(C₁-C₄alkyl)aminoC₀-C₄alkyl, phenylC₀-C₄alkyl, C₃-C₈cycloalkylC₀-C₄alkyl, (5-membered heteroaryl)C₀-C₄alkyl and (5- to 7-membered heterocycloalkyl)C₀-C₄alkyl, each of which is substituted with from 0 to 5 substituents independently selected from R_b;

J₁ chosen from O, NH and S;

U is C₁-C₃alkyl, substituted with from 0 to 3 substituents independently chosen from oxo and C₁-C₃alkyl, or two substituents are taken together to form a 3- to 7-membered cycloalkyl or heterocycloalkyl;

Either: (a) J₂ is O or S,

n is 1, and

R_z is hydrogen, C₁-C₆alkyl, C₁-C₆haloalkyl or C₂-C₆alkyl ether; or

(b) J₂ is N,

n is 2, and

(i) R_z is independently chosen at each occurrence from hydrogen and C₁-C₆alkyl substituted with from 0 to 3 substituents selected from R_b; or

(ii) both R_z moieties are joined to form, with J₂, a 5- to 8-membered heterocycloalkyl that is substituted with from 0 to 3 substituents selected from R_b; and

R_b is independently chosen at each occurrence from halogen, hydroxy, cyano, nitro, amino, oxo, COOH, C₁-C₆alkyl, C₃-C₈cycloalkylC₀-C₄alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₂-C₆alkyl ether, aminocarbonyl, C₁-C₆hydroxyalkyl, C₁-C₆aminoalkyl and mono- and di-(C₁-C₆alkyl)amino; and thereby alleviating pain in the patient.

45. A method according to claim 44, wherein the compound is a compound according to claim any one of claims 1-20.

46. A method according to claim 44, wherein the compound is present in the blood of the patient at a concentration of 1 micromolar or less.

47. A method according to claim 44, wherein the patient is suffering from neuropathic pain.

48. A method according to claim 44, wherein the pain is associated with a condition selected from: postmastectomy pain syndrome, stump pain, phantom limb pain, oral neuropathic pain, toothache, postherpetic neuralgia, diabetic neuropathy, reflex sympathetic dystrophy, trigeminal neuralgia, osteoarthritis, rheumatoid arthritis, fibromyalgia, Guillain-Barre syndrome, meralgia paresthetica, burning-mouth syndrome, bilateral peripheral neuropathy, causalgia, neuritis, neuronitis, neuralgia, AIDS-related neuropathy, MS-related neuropathy, spinal cord injury-related pain, surgery-related pain, musculoskeletal pain, back pain, headache, migraine, angina, labor, hemorrhoids, dyspepsia, Charcot's

pains, intestinal gas, menstruation, cancer, venom exposure, irritable bowel syndrome, inflammatory bowel disease and trauma.

49. A method according to claim 44, wherein the patient is a human.

50. A method for treating itch in a patient, comprising administering to a patient a therapeutically effective amount of a compound of the formula:

or a pharmaceutically acceptable salt thereof, wherein:

each --- independently represents a single or double bond;

either: (a) A, B and E are independently CR_1 , $\text{C}(\text{R}_1)_2$, NR_1 or N; or

(b) B is joined with A or E to form a fused 5- to 8-membered partially saturated ring that substituted with from 0 to 3 substituents independently selected from R_1 , and the other of A or E CR_1 , $\text{C}(\text{R}_1)_2$, NR_1 or N;

D and G are independently CR_1 , $\text{C}(\text{R}_1)_2$, NR_1 or N;

W, X, Y and Z are independently CR_1 or N;

P, Q, T and V are independently CR_1 , $\text{C}(\text{R}_1)_2$, N or NH; or Q is taken together with V or P to form a fused to 7-membered carbocycle or heterocycle that is substituted with from 0 to 4 substituents independent chosen from R_8 ;

R_1 is independently chosen at each occurrence from hydrogen, halogen, hydroxy, amino, cyano, nitro, and groups of the formula L-M;

L is independently chosen at each occurrence from a single covalent bond, O, $\text{C}(=\text{O})$, $\text{OC}(=\text{O})$, $\text{C}(=\text{O})\text{O}$, $\text{OC}(=\text{O})\text{O}$, $\text{S}(\text{O})_m$, $\text{N}(\text{R}_x)$, $\text{C}(=\text{O})\text{N}(\text{R}_x)$, $\text{N}(\text{R}_x)\text{C}(=\text{O})$, $\text{N}(\text{R}_x)\text{S}(\text{O})_m$, $\text{S}(\text{O})_m\text{N}(\text{R}_x)$ and $\text{N}[\text{S}(\text{O})_m\text{R}_x]\text{S}(\text{O})_m$; wherein m is independently selected at each occurrence from 0, 1 and 2; and R_x is independently selected at each occurrence from hydrogen and $\text{C}_1\text{-C}_8$ alkyl;

M is independently selected at each occurrence from (a) hydrogen; and (b) $\text{C}_1\text{-C}_8$ alkyl, $\text{C}_2\text{-C}_8$ alkenyl, $\text{C}_2\text{-C}_8$ alkynyl, mono- and di- $(\text{C}_1\text{-C}_4$ alkyl)amino $\text{C}_0\text{-C}_4$ alkyl, phenyl $\text{C}_0\text{-C}_4$ alkyl, $\text{C}_3\text{-C}_8$ cycloalkyl $\text{C}_0\text{-C}_4$ alkyl, (5-membered heteroaryl) $\text{C}_0\text{-C}_4$ alkyl and (5- to 7-membered heterocycloalkyl) $\text{C}_0\text{-C}_4$ alkyl, each of which is substituted with from 0 to 5 substituents independently selected from R_b ;

J_1 chosen from O, NH and S;

U is $\text{C}_1\text{-C}_3$ alkyl, substituted with from 0 to 3 substituents independently chosen from oxo and $\text{C}_1\text{-C}_3$ alkyl, or two substituents are taken together to form a 3- to 7-membered cycloalkyl or heterocycloalkyl;

Either: (a) J_2 is O or S,
 n is 1, and
 R_2 is hydrogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl or C_2 - C_6 alkyl ether; or
(b) J_2 is N,
 n is 2, and
(i) R_2 is independently chosen at each occurrence from hydrogen and C_1 - C_6 alkyl substituted with from 0 to 3 substituents selected from R_b ; or
(ii) both R_2 moieties are joined to form, with J_2 , a 5- to 8-membered heterocycloalkyl that is substituted with from 0 to 3 substituents selected from R_b ; and
 R_b is independently chosen at each occurrence from halogen, hydroxy, cyano, nitro, amino, oxo, COOH, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl C_0 - C_4 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_2 - C_6 alkyl ether, aminocarbonyl, C_1 - C_6 hydroxyalkyl, C_1 - C_6 aminoalkyl and mono- and di- $(C_1$ - C_6 alkyl)amino; and thereby alleviating itch in the patient.

51. A method according to claim 50, wherein the compound is a compound according to claim any one of claims 1-20.

52. A method for treating cough or hiccup in a patient, comprising administering to a patient a therapeutically effective amount of a compound of the formula:

or a pharmaceutically acceptable salt thereof, wherein:

each $---$ independently represents a single or double bond;

either: (a) A, B and E are independently CR_1 , $C(R_1)_2$, NR_1 or N; or

(b) B is joined with A or E to form a fused 5- to 8-membered partially saturated ring that is substituted with from 0 to 3 substituents independently selected from R_1 , and the other of A or E is CR_1 , $C(R_1)_2$, NR_1 or N;

D and G are independently CR_1 , $C(R_1)_2$, NR_1 or N;

W, X, Y and Z are independently CR₁ or N;

P, Q, T and V are independently CR₁, C(R₁)₂, N or NH; or Q is taken together with V or P to form a fused to 7-membered carbocycle or heterocycle that is substituted with from 0 to 4 substituents independently chosen from R_b;

R₁ is independently chosen at each occurrence from hydrogen, halogen, hydroxy, amino, cyano, nitro, and groups of the formula L-M;

L is independently chosen at each occurrence from a single covalent bond, O, C(=O), OC(=O), C(=O)O, OC(=O)O, S(O)_m, N(R_x), C(=O)N(R_x), N(R_x)C(=O), N(R_x)S(O)_m, S(O)_mN(R_x) and N[S(O)_mR_x]S(O)_m; wherein m is independently selected at each occurrence from 0, 1 and 2; and R_x is independently selected at each occurrence from hydrogen and C₁-C₈alkyl;

M is independently selected at each occurrence from (a) hydrogen; and (b) C₁-C₈alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl, mono- and di-(C₁-C₄alkyl)aminoC₀-C₄alkyl, phenylC₀-C₄alkyl, C₃-C₈cycloalkylC₀-C₄alkyl, (5-membered heteroaryl)C₀-C₄alkyl and (5- to 7-membered heterocycloalkyl)C₀-C₄alkyl, each of which is substituted with from 0 to 5 substituents independently selected from R_b;

J₁ chosen from O, NH and S;

U is C₁-C₃alkyl, substituted with from 0 to 3 substituents independently chosen from oxo and C₁-C₃alkyl, or two substituents are taken together to form a 3- to 7-membered cycloalkyl or heterocycloalkyl;

Either: (a) J₂ is O or S,

n is 1, and

R_z is hydrogen, C₁-C₆alkyl, C₁-C₆haloalkyl or C₂-C₆alkyl ether; or

(b) J₂ is N,

n is 2, and

(i) R_z is independently chosen at each occurrence from hydrogen and C₁-C₆alkyl substituted with from 0 to 3 substituents selected from R_b; or

(ii) both R_z moieties are joined to form, with J₂, a 5- to 8-membered heterocycloalkyl that is substituted with from 0 to 3 substituents selected from R_b; and

R_b is independently chosen at each occurrence from halogen, hydroxy, cyano, nitro, amino, oxo, COOH, C₁-C₆alkyl, C₃-C₈cycloalkylC₀-C₄alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₂-C₆alkyl ether, aminocarbonyl, C₁-C₆hydroxyalkyl, C₁-C₆aminoalkyl and mono- and di-(C₁-C₆alkyl)amino; and thereby alleviating cough or hiccup in the patient.

53. A method according to claim 52, wherein the compound is a compound according to claim any one of claims 1-20.

54. A method for treating urinary incontinence or overactive bladder in a patient, comprising administering to a patient a therapeutically effective amount of a compound of the formula:

or a pharmaceutically acceptable salt thereof, wherein:

each --- independently represents a single or double bond;

either: (a) A, B and E are independently CR_1 , $\text{C}(\text{R}_1)_2$, NR_1 or N; or

(b) B is joined with A or E to form a fused 5- to 8-membered partially saturated ring that is substituted with from 0 to 3 substituents independently selected from R_1 , and the other of A or E is CR_1 , $\text{C}(\text{R}_1)_2$, NR_1 or N;

D and G are independently CR_1 , $\text{C}(\text{R}_1)_2$, NR_1 or N;

W, X, Y and Z are independently CR_1 or N;

P, Q, T and V are independently CR_1 , $\text{C}(\text{R}_1)_2$, N or NH; or Q is taken together with V or P to form a fused 5- to 7-membered carbocycle or heterocycle that is substituted with from 0 to 4 substituents independently selected from R_b ;

R_1 is independently chosen at each occurrence from hydrogen, halogen, hydroxy, amino, cyano, nitro, and groups of the formula L-M;

L is independently chosen at each occurrence from a single covalent bond, O, $\text{C}=\text{O}$, $\text{OC}(\text{=O})$, $\text{C}(\text{=O})\text{O}$, $\text{OC}(\text{=O})\text{O}$, $\text{S}(\text{O})_m$, $\text{N}(\text{R}_x)$, $\text{C}(\text{=O})\text{N}(\text{R}_x)$, $\text{N}(\text{R}_x)\text{C}(\text{=O})$, $\text{N}(\text{R}_x)\text{S}(\text{O})_m$, $\text{S}(\text{O})_m\text{N}(\text{R}_x)$ and $\text{N}[\text{S}(\text{O})_m\text{R}_x]\text{S}(\text{O})_m$; wherein m is independently selected at each occurrence from 0, 1 and 2; and R_x is independently selected at each occurrence from hydrogen and $\text{C}_1\text{-C}_8$ alkyl;

M is independently selected at each occurrence from (a) hydrogen; and (b) $\text{C}_1\text{-C}_8$ alkyl, $\text{C}_2\text{-C}_8$ alkenyl, $\text{C}_2\text{-C}_8$ alkynyl, mono- and di- $(\text{C}_1\text{-C}_4$ alkyl)amino $\text{C}_0\text{-C}_4$ alkyl, phenyl $\text{C}_0\text{-C}_4$ alkyl, $\text{C}_3\text{-C}_8$ cycloalkyl $\text{C}_0\text{-C}_4$ alkyl, (5-membered heteroaryl) $\text{C}_0\text{-C}_4$ alkyl and (5- to 7-membered heterocycloalkyl) $\text{C}_0\text{-C}_4$ alkyl, each of which is substituted with from 0 to 5 substituents independently selected from R_b ;

J_1 chosen from O, NH and S;

U is $\text{C}_1\text{-C}_3$ alkyl, substituted with from 0 to 3 substituents independently chosen from oxo and $\text{C}_1\text{-C}_3$ alkyl, or two substituents are taken together to form a 3- to 7-membered cycloalkyl or heterocycloalkyl;

Either: (a) J_2 is O or S,

n is 1, and

R_z is hydrogen, $\text{C}_1\text{-C}_6$ alkyl, $\text{C}_1\text{-C}_6$ haloalkyl or $\text{C}_2\text{-C}_6$ alkyl ether; or

(b) J_2 is N,

n is 2, and

(i) R₂ is independently chosen at each occurrence from hydrogen and C₁-C₆alkyl substituted with from 0 to 3 substituents selected from R_b; or

(ii) both R₂ moieties are joined to form, with J₂, a 5- to 8-membered heterocycloalkyl that is substituted with from 0 to 3 substituents selected from R_b; and

R_b is independently chosen at each occurrence from halogen, hydroxy, cyano, nitro, amino, oxo, COOH C₁-C₆alkyl, C₃-C₈cycloalkylC₀-C₄alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₂-C₆alky ether, aminocarbonyl, C₁-C₆hydroxyalkyl, C₁-C₆aminoalkyl and mono- and di-(C₁-C₆alkyl)amino; and thereby alleviating urinary incontinence or overactive bladder in the patient.

55. A method according to claim 54, wherein the compound is a compound according to claim any one of claims 1-20.

56. A method promoting weight loss in an obese patient, comprising administering to a patient a therapeutically effective amount of a compound of the formula:

or a pharmaceutically acceptable salt thereof, wherein:

each --- independently represents a single or double bond;

either: (a) A, B and E are independently CR₁, C(R₁)₂, NR₁ or N; or

(b) B is joined with A or E to form a fused 5- to 8-membered partially saturated ring that is substituted with from 0 to 3 substituents independently selected from R₁, and the other of A or E is CR₁, C(R₁)₂, NR₁ or N;

D and G are independently CR₁, C(R₁)₂, NR₁ or N;

W, X, Y and Z are independently CR₁ or N;

P, Q, T and V are independently CR₁, C(R₁)₂, N or NH; or Q is taken together with V or P to form a fused to 7-membered carbocycle or heterocycle that is substituted with from 0 to 4 substituents independently chosen from R_b;

R₁ is independently chosen at each occurrence from hydrogen, halogen, hydroxy, amino, cyano, nitro, and groups of the formula L-M;

L is independently chosen at each occurrence from a single covalent bond, O, C(=O), OC(=O), C(=O)O, OC(=O)O, S(O)_m, N(R_x), C(=O)N(R_x), N(R_x)C(=O), N(R_x)S(O)_m, S(O)_mN(R_x) and

$N[S(O)_mR_x]S(O)_m$; wherein m is independently selected at each occurrence from 0, 1 and 2; and R_x is independently selected at each occurrence from hydrogen and C_1 - C_8 alkyl;

M is independently selected at each occurrence from (a) hydrogen; and (b) C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, mono- and di- $(C_1$ - C_4 alkyl)amino C_0 - C_4 alkyl, phenyl C_0 - C_4 alkyl, C_3 - C_8 cycloalkyl C_0 - C_4 alkyl, (5-membered heteroaryl) C_0 - C_4 alkyl and (5- to 7-membered heterocycloalkyl) C_0 - C_4 alkyl each of which is substituted with from 0 to 5 substituents independently selected from R_b ;

J_1 chosen from O, NH and S;

U is C_1 - C_3 alkyl, substituted with from 0 to 3 substituents independently chosen from oxo and C_1 - C_3 alkyl or two substituents are taken together to form a 3- to 7-membered cycloalkyl or heterocycloalkyl;

Either: (a) J_2 is O or S,

n is 1, and

R_z is hydrogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl or C_2 - C_6 alkyl ether; or

(b) J_2 is N,

n is 2, and

(i) R_z is independently chosen at each occurrence from hydrogen and C_1 - C_6 alkyl substituents with from 0 to 3 substituents selected from R_b ; or

(ii) both R_z moieties are joined to form, with J_2 , a 5- to 8-membered heterocycloalkyl that is substituted with from 0 to 3 substituents selected from R_b ; and

R_b is independently chosen at each occurrence from halogen, hydroxy, cyano, nitro, amino, oxo, COOH, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl C_0 - C_4 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_2 - C_6 alkyl ether, aminocarbonyl, C_1 - C_6 hydroxyalkyl, C_1 - C_6 aminoalkyl and mono- and di- $(C_1$ - C_6 alkyl)amino; and thereby promoting weight loss in the patient.

57. A method according to claim 56, wherein the compound is a compound according to claim any one of claims 1-20.

58. A compound or salt according to any one of claims 1-20, wherein the compound or salt is radiolabeled.

59. A method for determining the presence or absence of capsaicin receptor in a sample comprising the steps of:

- (a) contacting a sample with a compound or salt according to any one of claims 1-20, under conditions that permit binding of the compound to capsaicin receptor; and
- (b) detecting a level of the compound bound to capsaicin receptor, and therefrom determining the presence or absence of capsaicin receptor in the sample.

60. A method according to claim 60, wherein the compound is a radiolabeled compound according to claim 58, and wherein the step of detection comprises the steps of:

- (i) separating unbound compound from bound compound; and
- (ii) detecting the presence or absence of bound compound in the sample.

61. A packaged pharmaceutical preparation, comprising:

- (a) a pharmaceutical composition according to claim 24 in a container; and
- (b) instructions for using the composition to treat pain.

62. A packaged pharmaceutical preparation, comprising:

- (a) a pharmaceutical composition according to claim 24 in a container; and
- (b) instructions for using the composition to treat cough or hiccup.

63. A packaged pharmaceutical preparation, comprising:

- (a) a pharmaceutical composition according to claim 24 in a container; and
- (b) instructions for using the composition to treat obesity.

64. A packaged pharmaceutical preparation, comprising:

- (a) a pharmaceutical composition according to claim 24 in a container; and
- (b) instructions for using the composition to treat urinary incontinence or overactive bladder.

65. The use of a compound or salt according to any one of claims 1-20 for the manufacture of a medicament for the treatment of a condition responsive to capsaicin receptor modulation.

66. A use according to claim 65, wherein the condition is pain, asthma, chronic obstructive pulmonary disease, cough, hiccup, obesity, urinary incontinence or overactive bladder, exposure to capsaicin, burn or irritation due to exposure to heat, burn or irritation due to exposure to light, burn, bronchoconstriction or irritation due to exposure to tear gas, air pollutants, infectious agents or pepper spray, or burn or irritation due to exposure to acid.