Org: Serial Communication

Alex Chi

Update: April 21, 2020

Contents

1	Data	a Communication	1
2	Para	allel & Serial	2
3	Who	ole Picture	2
4	Seri	al Communication	2
	4.1	Data Transfer Rate	2
	4.2	Synchronization Methods	2
		4.2.1 Asynchronous serial communication	2
		4.2.2 Synchronous serial communication	3
	4.3	Communication Modes	3
	4.4	Error Detection	3
	4.5	Modulation and Demodulation	4
5	8251	USART Chip	4

1 Data Communication

• transfer of data as electromagnetic signal over physical communication channel

2 Parallel & Serial

- parallel data transfer, use a separate wire for each bit, often 8 or more lines
- fast, expensive, short-distance communication
- serial data transfer, over single data line
- bits sent one by one
- no dedicated lines for signal controls
- cheap, slow, long-distance communication

3 Whole Picture

- DTE, DCE, channel, DCE, DTE
- t: terminal
- c: communication
- e: equipment
- DCE: usally MODEM

4 Serial Communication

4.1 Data Transfer Rate

- (S) symbol rate, (baud, or baud rate)
 - number of distinct symbol or pulse changes
 - each symbol can represent one or more bits of data
- bit rate
 - $\bullet B = S \times \log_2 N$

4.2 Synchronization Methods

4.2.1 Asynchronous serial communication

- crystals may not be exactly the same
- phase may not be the same
- start each byte with start bit
- end with one or more stop bits

- e.g. idle and stop = high, start = low, parity bit
- starting of each byte is async
- what if clock not aligned?
 - amplitude / phase distortion
- bit synchronization
 - receiver clock N times faster
 - first 1-0 transition is start bit
 - each bit sampled at the center
 - signal sampled after N/2 cycles, then N*bits, therefore finding center value
- character synchronization
 - after start bit detected, receiver counts programmed number of bits

4.2.2 Synchronous serial communication

- transfer a block of data at a time
- find synchronous character
- bit synchronization
 - clock encoding and extraction
 - manchester encoded signal
 - rising edge = 1, falling edge = 0
 - bit stream transmitter clock encoded data
 - extracted clock received data
 - bit oriented synchronous transmission
 - opening flag + frame contents + closing flag
 - insert 0 after five consecutive 1s (bit stuffing)

4.3 Communication Modes

- simplex
- half-duplex
- full-duplex
- refer to figures on slides

4.4 Error Detection

- parity bit
- CRC calculation

4.5 Modulation and Demodulation

- long distance
 - signal distortion
- FM, AM, PSK

5 8251 USART Chip

- full duplex, double buffered
- error checking
- async + sync
- signals: refer to slides
 - **⋄** TxRDY, TxEMPTY, RxRDY