First Hit

Previous Doc

Next Doc Go to Doc#

L16: Entry 67 of 88

File: DWPI

Primi

Sep 12, 1984

DERWENT-ACC-NO: 1984-226579

DERWENT-WEEK: 198437

COPYRIGHT 2005 DERWENT INFORMATION LTD

TITLE: <u>Aluminium hydroxide</u> filler, pigment and flame retardant for plastics - esp. epoxide or unsatd. polyester resin of surface dehydrated granular hydrargillite

INVENTOR: BRAUN, D J; ROHLMANN, R

PRIORITY-DATA: 1983DE-3308023 (March 7, 1983)

Search Selected	Search ALL	Clear

PAT	rent-	FAMT	T.Y .

PUB-NO	PUB-DATE	LANGUAGE	PAGES	MAIN-IPC
EP 118031 A	September 12, 1984	G	011	
DE 3308023 A	September 13, 1984		000	
DE 3308023 C	November 12, 1987		000	
DE 3461195 G	December 11, 1986		000	
EP 118031 B	November 5, 1986	G	000	
JP 59168041 A	September 21, 1984 .		000	

INT-CL (IPC): C01F 7/44; C08K 3/22; C09C 1/40

ABSTRACTED-PUB-NO: DE 3308023A

BASIC-ABSTRACT:

Filler based on <u>aluminium hydroxide</u> (I) (Al203.xH2O, , x = 1-3), with an endothermal heat of decomposition of over 900 kJ/kg, consists of hydrargillite granules, in which the surface of the crystallites is dehydrated.

Pref. the crystallites have a refractive index of over 1.65 on the surface, which has boehmite structure; an average particle size of over 15 microns; and an intrinsic surface area (BET) of under 2 m2/g.. The filler has flame retardant properties if the proportion of chemically bound water exceeds 30%.

USE/ADVANTAGE - (I) is used as filler in plastics, esp. epoxide and unsatd. polyester resins. It has white pigment properties in addn. to imparting flame retardancy and reducing smoke generation. It can be used in large amts. without unacceptable redn. in the flexural strength of the prod., amts. of 50-70 wt.% being used for flame retardant resins.

ABSTRACTED-PUB-NO:

DE 3308023C EQUIVALENT-ABSTRACTS:

Hydrargillite crystals are dewatered on their surface by either (A) a hydrothermal

treatment at 180-220 deg.C for 3-0.5 hr. followed by drying for 2 hrs. or (B) in air at 180-220 deg.C for 24-0.5 hrs. Al(OH)3 is pref. dewatered at 180 deg.C (24 hrs) to 220 deg.C (0.5 hr.) esp. filter moist Al(OH)3 is dried to reduce the chemically bound water content by 0.6-4.6%.

USE/ADVANTAGE - As filler, esp. for synthetic resins, to improve their flame resistance; opaque, whitish resins can be obtd. without addn. of a white pigment filler.

(2pp)

Hydrargillite crystals are dewatered on their surface by either (A) a hydrothermal treatment at 180-220 deg.C for 3-0.5 hr. followed by drying for 2 hrs. or (B) in air at 180-220 deg.C for 24-0.5 hrs. Al(OH)3 is pref. dewatered at 180 deg.C (24 hrs) to 220 deg.C (0.5 hr.) esp. filter moist Al(OH)3 is dried to reduce the chemically bound water content by 0.6-4.6%.

USE/ADVANTAGE - As filler, esp. for synthetic resins, to improve their flame resistance; opaque, whitish resins can be obtd. without addn. of a white pigment filler. (2pp)

EP 118031A

EP 118031B

Aluminium hydroxide filler (Al203.xH20, x=1-3) with an endothermic heat of decomposition greater than 900 kj/kg, characterised by the filler consisting of gibbsite grains with a mean grain size of more than 15 microns to 28 microns and a BET-surface of less than 2 m2/g of which the crystallites at the surface are dehydrated and contain 30-34 wt.% chemically bound water.

(5pp)

Previous Doc Next Doc Go to Doc#

```
ANSWER 1 OF 1 CA COPYRIGHT 2005 ACS on STN
L3
     102:25659 CA
AN
     Entered STN: 26 Jan 1985
ED
     Filler based on aluminum hydroxide and its use
ΤI
     Braun, Dieter; Rohlmann, Reinhold
IN
     Vereinigte Aluminium-Werke A.-G., Fed. Rep. Ger.
PA
     Ger. Offen., 10 pp.
SO
     CODEN: GWXXBX
     Patent
DT
LA
     German
     C09C001-40; C08K003-22
IC
     37-6 (Plastics Manufacture and Processing)
CC
FAN.CNT 1
     PATENT NO.
                         KIND
                                DATE
                                            APPLICATION NO.
                                                                   DATE
     -----
                         ----
PΙ
     DE 3308023
                          A1
                                19840913
                                            DE 1983-3308023
                                                                   19830307
     DE 3308023
                          C2
                                19871112
     EP 118031
                          A1
                                19840912
                                            EP 1984-101045
                                                                   19840202 <--
     EP 118031
                          B1
                                19861105
         R: AT, BE, CH, DE, FR, GB, IT, LI, LU, NL, SE
     AT 23355
                         E
                                19861115
                                            AT 1984-101045
                                                                   19840202
     JP 59168041
                          A2
                                            JP 1984-41486
                                19840921
                                                                   19840306
PRAI DE 1983-3308023
                          Α
                                19830307
     EP 1984-101045
                          Α
                                19840202
CLASS
 PATENT NO.
                 CLASS PATENT FAMILY CLASSIFICATION CODES
                 ----
                        -----
 DE 3308023
                 IC
                        C09C001-40IC
                                         C08K003-22
AB
     Fireproofing agents which also act as white pigments to decrease the
     translucency of plastics are manufactured by heating Al203.xH20 (x = 1-3)
     particles of average diameter (.hivin.d) >15 \mu and sp. surface (s) <2 m<sup>2</sup>/g to
     remove water from crystallites on their surfaces and increase the
     refractive index of the surface crystallites to >1.65. Thus, Al hydroxide
     prepared by the Bayer process, with water content 34.6%, .hivin.d 28 µ,
     and s 0.2 m2/g, was heated 4 h at 180° to decrease the water
     content to 34.0%, then mixed with an equal amount of unsatd. polyester
     resin. The cured resin had flexural strength 65 N/mm2, whiteness 55%, and
     limiting O index 32.1%, vs. 16.8% without the filler.
st
     aluminum hydroxide fireproofing pigment plastic; dried aluminum hydroxide
     fireproofer whiteness; polyester fireproofing aluminum hydroxide whiteness
ΙT
     Fireproofing agents
        (pigments, dried aluminum hydroxide, for plastics)
ΙT
     Pigments
        (fire-resistant, dried aluminum hydroxide, for plastics)
IT
     Polyesters, uses and miscellaneous
     RL: USES (Uses)
        (unsatd., fireproofing pigments for, partially dried aluminum hydroxide
        as)
IT
     14762-49-3
                  21645-51-2, uses and miscellaneous
     RL: USES (Uses)
        (dried, fireproofing pigments, for plastics)
```

(1) Veröffentlichungsnummer:

0 118 031

A₁

12

EUROPÄISCHE PATENTANMELDUNG

- (21) Anmeldenummer: 84101045.7
- 2 Anmeldetag: 02.02.84

(51) Imt. Cl.³: **C 09 C 1/40** C 01 F 7/44, C 08 K 3/22

- 30 Priorität: 07.03.83 DE 3308023
- (3) Veröffentlichungstag der Anmeldung: 12.09.84 Patentblatt 84/37
- Benannte Vertragsstaaten:
 AT BE CH DE FR GB IT LI LU NL SE
- 7) Anmelder: VEREINIGTE ALUMINIUM-WERKE AKTIENGESELLSCHAFT Postfach 2468 Georg-von-Boeselager-Strasse 25 D-5300 Bonn 1(DE)
- (7) Erfinder: Braun, Dieter J., Dr. Dipi.-Chem. Reichensteinstrasse 47C D-5210 Kriegsdorf(DE)
- (2) Erfinder: Rohlmann, Reinhold Brüsseler Strasse 37 D-5300 Bonn 1(DE)
- (2) Vertreter: Müller-Wolff, Thomas, Dipl.-Ing. Georg-von-Boeselager-Strasse 25 Postfach 2468 D-6300 Bonn 1(DE)
- Füllstoff auf Basis von Aluminiumhydroxid und Verfahren zu seiner Herstellung.
- (5) Füllstoff auf Basis von Aluminiumhydroxid ($Al_2O_3 \times H_2O$, x=1-3) mit einer endothermen Zersetzungswärme >900 Ki/kg, der aus Hydrargillitkörnern besteht, deren Krystallite an der Oberfläche entwässert sind, und der insbesondere weiß-pigmentierende Eigenschaften aufweist.

Füllstoff auf Basis von Aluminiumhydroxid und Verfahren zu seiner Herstellung

Die Erfindung betrifft einen Füllstoff auf Basis von Aluminiumhydroxid (Al $_2$ O $_3$ · xH $_2$ O) und Verfahren zu seiner Herstellung.

Es ist bekannt, Aluminiumhydroxid in Kunststoffmassen zur Verbesserung der Flammwidrigkeit und Verringerung der Rauchgasbildung einzusetzen (DE-OS 28 53 827 und DE-OS 30 26 709). Dabei wird die Tatsache ausgenutzt, daß Aluminiumhydroxid chemisch gebundenes Wasser enthält, welches im Falle des Brandes bei höheren Temperaturen freigesetzt wird.

Als Kunststoffe werden häufig ungesättigte Polyesterharze, ABS, Acrylate, Epoxidharze, Phenolharze, Polycarbonate, Polystyrol u. a. eingesetzt. Diese Kunststoffe sind von Natur aus farblos und z. T. durchsichtig (transluzent). Aluminiumhydroxid weist mit n_D = 1,58 annähernd den Brechungsindex dieser Kunststoffe auf. Daher bleibt bei der Verwendung von Al(OH), als Füllstoff die Transluzenz erhalten. Zur Herstellung deckend weißer, flammhemmender Kunststoffe ist es erforderlich, zusätzlich zu Aluminiumhydroxid pigmentierende Zusätze wie z. B. Kalziumcarbonat zu verwenden.

15

20

Die Menge an flammhemmenden und pigmentierenden Zusätze

können daher bei den verschiedenen Kunststoffmassen bis zu

80 Gew.-% betragen. An die Zuschlagstoffe werden folgende
Anforderungen gestellt:

- Hoher Weißgrad (>88%) und möglichst hohe Herabsetzung der Lichtdurchlässigkeit von Kunststoffen.
- Hohe endotherme Zersetzungswärme, die im Bereich von 150° - 700°C mehr als 900 Kj/kg beträgt; keine Freisetzung giftiger Gase beim Brand.
- 3. Gute Einmischbarkeit in polymere Materialien durch niedrige BET-Oberfläche.

. 4. Erreichung guter Festigkeitswerte in ausgehärteten Kunststoffmatrices.

Aufgabe der vorliegenden Erfindung ist es, einen Füllstoff anzugeben, der alle genannten Eigenschaften in
hohem Maße aufweist und insbesondere weißpigmentierende
Eigenschaften hat. Die Aufgabe wird durch die in den
Ansprüchen angegebenen Merkmale gelöst.

Normalerweise wird Aluminiumhydroxid aus Natriumaluminatlauge ausgefällt, durch Trocknen von physikalisch anhaftendem Wasser befreit und als pulverförmige Substanz verkauft. In diesem Zustand weist es einen Brechungsindex von etwa n_D^- = 1.58 auf.

25

30

35

5

10

Häufig wird zur Verwendung in der Aluminiumelektrolyse oder in keramischen Materialien in einem Kalzinierofen auch der chemisch gebundene Wasseranteil vollständig entfernt. Dieses Produkt besteht aus $\gamma'-\text{Al}_2O_3$ und $\alpha-\text{Al}_2O_3$. Die wasserhaltigen Verbindungen Hydrargillit Al $_2O_3$ · 3H $_2O$ oder Böhmit Al $_2O_3$ · 1H $_2O$ sind nicht mehr enthalten. Der Brechungsindex der wasserfreien, kalzinierten Produkte beträgt n $_D$ = 1.74. In keinem Fall wird eine teilweise oberflächliche Entwässerung angestrebt oder erreicht, bei der gleichzeitig ein hoher Wassergehalt erhalten bleibt, der Brechungsindex an der Oberfläche der einzelnen Kristallite jedoch bereits deutlich über n $_D$ = 1.58

5

10

15

20

angestiegen ist. Dies wird durch das erfindungsgemäße Verfahren in allen aufgeführten Beispielen erreicht $(n_D > 1.65)$.

Die dort aufgeführte Entwässerung kann auf verschiedene Weise erfolgen. Als vorteilhafte Durchführungsform hat sich die Entwässerung an Luft bei Temperaturen zwischen 180 und 220°C erwiesen. Bei Hydrargillitkörnern mit einer mittleren Korngröße von über 15 µm wird bei Einbettung in ein Medium mit einem Brechungsindex zwischen 1,5 und 1,65 eine Erhöhung der Remission der Normlichart C (Absolutweißgrad) um 250% gegenüber unbehandelten Aluminiumhydroxidqualitäten erreicht. Trotz hoher Füllstoffanteile bis zu 75% bleibt die Biegefestigkeit bei über 60 N/mm², so daß die üblichen Festigkeitsanforderungen der Kunststoffverarbeiter erfüllt werden.

Im folgenden wird die Erfindung anhand von acht Beispielen näher erläutert, wobei ein Beispiel mit abweichenden Korndurchmesser und vier Beispiele mit abweichender Entwässerung zum Vergleich herangezogen wurden.

-4-

Beispiel 1

5

10

15

20

Aluminiumhydroxid aus dem Bayer-Prozeß mit einer mittleren Korngröße von 28 um wird für 4 Stunden auf 180°C an Luft erhitzt. Der chemisch gebundene Wassergehalt war durch die Behandlung um 0,6% erniedrigt worden. Der Ausgangswert war nach vorheriger Trocknung von physikalisch anhaftender Feuchte 34,6%, Endwert nach der Entwässerung 34,0%. Die BET-Oberfläche der Probe betrug 0,2 m²/g. Die Probe wurde mit einem ungesättigten Polyesterharz im Verhältnis 1:1 gemischt und ausgehärtet.

Viskosität der Mischung 1: 7,0 Pa.s Weißgrad der ausgehärteten Mischung 1: 55%
Biegefestigkeit der ausgehärteten
Mischung 1: 65 N/mm²
Flammfestigkeit LOI nach ASTM D 2863: 32,1%

Zur Charakterisierung der Flammfestigkeit wurde der LOI (Limiting Oxygen Index) benutzt, der das Brennverhalten der Probe in einem Gemisch aus Sauerstoff und Stickstoff bestimmt. Der LOI-Wert ist dabei definiert als der %-Gehalt an Sauerstoff, der das Brennen der Probe gerade noch unterhält. Zum Vergleich beträgt der LOI des reinen Harzes 16,8%.

25 <u>Beispiel 2</u>

Das gleiche Hydroxid wie in Beispiel 1 wurde für 2 Stunden auf 220^oC erhitzt. Die charakterisierenden Daten der Probe wurden in gleicher Weise bestimmt wie in Beispiel 1.

30	Erniedrigung des chemisch	
•	gebundenen Wassergehalts:	4%
·	Viskosität:	7,8 Pa.s
	LOI:	31,5%
	Absolutweißgrad:	70%
35	Biegefestigkeit:	65 N/mm ²

_ 5 _

Beispiel 3

Aluminiumhydroxid aus dem Bayer-Prozeß mit einer Korngröße von 28 µm wurde in einem Autoklaven hydrothermal mit Wasser im Gew.-Verhältnis 1:4 bei 180°C für 3 Stunden behandelt. Das nach dem Aufschluß erhaltene Produkt wurde bei 105°C getrocknet (2 Stunden). Die analog Beispiel 1 ermittelten charakteristischen Daten betrugen:

Erniedrigung des chemisch gebundenen

	Wasseranteils:	4%
10	Viskosität:	7,6 Pa.s
	LOI:	31,0%
	Absolutweißgrad der Harz-Hydroxid-	•
	Mischung:	71%
	BET-Oberfläche:	$0.3 \text{ m}^2/\text{g}$

15

20

5

Beispiel 4

Aluminiumhydroxid aus dem Bayer-Prozeß mit einer mittleren Korngröße von 9 µm wurde analog Beispiel 2 behandelt (an Luft erhitzt für 2 h bei 180°C). Das Hydroxid wurde im Verhältnis 1 : 1 mit dem ungesättigten Polyesterharz gemäß Beispiel 1 vermischt. Es ergaben sich folgende Werte:

Erniedrigung des chemisch gebundenen

		<pre>Wassergehalts:</pre>	0,6%
25	Viskosität:		17,5 Pa.s
	LOI:	•	31,5%
••	Absolutweißgrad:		63%
	BET-Oberfläche:	· .	$2.9 \text{ m}^2/\text{g}$
	Biegefestigkeit:		65 N/mm ²

30

Ein Vergleich der Mischungen 1 und 4 zeigt, daß Materialen geringerer Korngröße bei gleichen Erniedrigungen des Glühverlustes geringere pigmentierende Eigenschaften aufweisen als gröbere Materialien. Dieses Beispiel 4 zeigt, daß bei Verwendung von Materialien mit geringem mittleren Korndurchmesser (9 μ m) ein schlechterer Absolutweißgrad erreicht wird, als bei gleichem Probenmaterial von 28 μ m Korndurchmesser.

Ergänzende Versuche haben gezeigt, daß eine kritische Abnahme des Weißgrades bei weniger als 15 μm eintritt.

Vergleichsbeispiele 1.-4

Zum Vergleich der Eigenschaften des erfindungsgemäß hergestellten Aluminiumhydroxids mit üblicherweise eingesetzten 10 Aluminiumhydroxidqualitäten wurden ein handelsübliches, bezüglich der Viskosität besonders günstiges Aluminiumhydroxid $(d_{50}:28~\mu\text{m})$ sowie ein handelsübliches gemahlenes Hydroxid $(d_{50}:15~\mu\text{m})$ in unbehandelter sowie in zu stark entwässerter Form in Harz eingebettet. Die Verminderung des chemisch ge-15 bundenen Restwassers betrug in diesen Proben 7%. Die Ergebnisse sind in untenstehender Tabelle angegeben. Aus einem Vergleich der Tabelle mit den Beispielen 1 und 2 ist ersichtlich, daß die erfindungsgemäß hergestellten Hydroxide 20 den handelsüblichen Hydroxiden in Biegefestigkeit sowie der Viskosität ebenbürtig sind. Die Viskosität des gemahlenen Hydroxids liegt sogar wesentlich höher. Auch das Brennverhalten, hier dokumentiert durch den LOI, ist nahezu gleich. Der Weißgrad der ausgehärtetem Harz-Hydroxid-Mischung hat 25 jedoch durch die erfindungsgemäße Behandlung um bis zu 250% zugenommen. Das Produkt mit einer Verminderung des Glühverlustes um 7% zeigt bereits eine deutliche Erhöhung der Viskosität und Verringerung des LOI-Index, die durch die weitgehende Herabsetzung der endothermen Zersetzungswärme auf 30 unter 900 Kj/kg infolge übermäßiger Entwässerung verursacht wurde.

Eine derart weitgehende Entwässerung sollte daher in einer vorteilhaften Ausführung des erfindungsgemäßen Verfahrens vermieden werden.

•		•		
·	Al (OH) 3 ungemahlen		Al (OH) 3 gemahlen	
mittl. Korndurch- messer	a 28 / um	b 28 um	a 15 / um	b 15/um
Entwässerung	96	7%	O\$	7%
Viskosität	7,0 Pa.s	10 Pa.s.	14,5 Pa.s	17 Pa.s
LOI (limiting		٠		
oxygen index)	32,1%	29,5%	33,0%	30,1%
Absolutweißgrad				
der Harz-Hydroxid-				
Mischung	29%	72%	29%	70%
Biegefestigkeit	66 N/mm ²	63 N/mm ²	55 N/mm ²	52 N/mm ²
BET-Oberfläche	$0.2 \text{ m}^2/\text{g}$	2,6 m ² /g	1,3 m ² /g	$3.5 \text{ m}^2/\text{g}$

Patentansprüche:

- Füllstoff auf der Basis von Aluminiumhydroxid (Al₂O₃·xH₂O, x = 1 3) mit einer endothermen Zersetzungswärme
 > 900 Kj/kg, dadurch gekennzeichnet, daß der Füllstoff aus Hydrargillitkörnern besteht, deren Kristallite an der Oberfläche entwässert sind.
- 2. Füllstoff nach Anspruch 1, dadurch gekennzeichnet, daß die Kristallite an der Oberfläche einen Brechungsindex von mehr als 1,65 aufweisen.
- 3. Füllstoff nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine mittlere Korngröße von über 15 um und eine innere Oberfläche (BET) von weniger als 2 m²/g.
- 4. Füllstoff nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Kristallite an der Oberfläche böhmitische Struktur aufweisen.
- 5. Füllstoff nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß er bei einem chemisch gebundenen Wasseranteil von mehr als 30% flammhemmende Eigenschaften aufweist.
- 6. Verfahren zur Herstellung eines Füllstoffs nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß filterfeuchtes Aluminiumhydroxid so getrocknet wird, daß der chemisch gebundene Wasseranteil um 0,6 bis 4,6% reduziert wird.

- 7. Verwendung eines Füllstoffs auf Basis von Aluminiumhydroxid in Kunststoffen, insbesondere Epoxidharzen und
 ungesättigten Polyesterharzen, wobei der Füllstoff aus
 Hydrargillitkörnern besteht, deren Kristallite an der

 Oberfläche entwässert sind.
- 8. Füllstoff auf der Basis von Aluminiumhydroxid (Al₂O₃·xH₂O, x = 1 3) enthaltender flammhemmender Kunststoff, dadurch gekennzeichnet, daß der Kunststoff ein Epoxid und/oder ungesättigtes Polyesterharz ist, in das 50 70 Gew.-% Hydrargillitkörner eingemischt sind, die an der Oberfläche böhmitische Struktur aufweisen.
- 9. Verfahren zur Herstellung eines Füllstoffs nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Entwässerung des Aluminiumhydroxids an Luft erfolgt, wobei die Temperaturen zwischen 180°C (24 Std.) und 220°C (0,5 Std.) liegen.
- 20 10. Verfahren zur Herstellung eines Füllstoffs nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Entwässerung des Aluminiumhydroxids durch hydrothermale Behandlung bei 180 - 220°C für 3 - 0,5 Stunden erfolgt.