## Лабораторная работа № 7

Эффективность рекламы

Тарусов Артём Сергеевич

## Содержание

| Цель работы                    | 4  |
|--------------------------------|----|
| Задание                        | 5  |
| Теоретическое введение         | 6  |
| Выполнение лабораторной работы | 7  |
| Выводы                         | 16 |
| Список литературы              | 17 |

## Список иллюстраций

| 1  | Начальные значения на языке Julia                                        | 7  |
|----|--------------------------------------------------------------------------|----|
| 2  | Дифференциальное уравнение для первого случая на языке Julia             | 7  |
| 3  | Решение дифференциального уравнения для первого случая на языке Julia    | 8  |
| 4  | Построение графика распространения рекламы для первого случая на         |    |
|    | языке Julia                                                              | 8  |
| 5  | График распространения рекламы для первого случая, построенный на Julia  | 9  |
| 6  | Дифференциальное уравнение для второго случая на языке Julia             | 9  |
| 7  | Определение момента времени, когда скорость распространения рекламы      |    |
|    | будет иметь максимальное значение, на языке Julia                        | 10 |
| 8  | График распространения рекламы для второго случая, построенный на Julia  | 11 |
| 9  | Дифференциальное уравнение для третьего случая на языке Julia            | 11 |
| 10 | График распространения рекламы для третьего случая, построенный на Julia | 12 |
| 11 | Построение модели для первого случая на языке OpenModelica               | 12 |
| 12 | График распространения рекламы для первого случая, построенный на        |    |
|    | языке OpenModelica                                                       | 13 |
| 13 | Построение модели для второго случая на языке OpenModelica               | 13 |
| 14 | График распространения рекламы для второго случая, построенный на        |    |
|    | языке OpenModelica                                                       | 14 |
| 15 | Построение модели для третьего случая на языке OpenModelica              | 14 |
| 16 | График распространения рекламы для третьего случая, построенный на       |    |
|    | языке OpenModelica                                                       | 15 |

# Цель работы

Целью данной работы является построение модели распространения рекламы.

### Задание

Построить графики распространения рекламы для трех случаев. При этом объем аудитории N=810, в начальный момент о товаре знает 11 человек. Для случая 2 определить, в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

#### Теоретическое введение

Мальтузианская модель роста (англ. Malthusian growth model), также называемая моделью Мальтуса — это экспоненциальный рост с постоянным темпом. Модель названа в честь английского демографа и экономиста Томаса Мальтуса. [1]

Модель рекламной кампании описывается следующими величинами. Считаем, что dn/dt - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, nt() - число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом:  $\alpha_1(t)(N-n(t))$ , где N - общее число потенциальных платежеспособных покупателей,  $\alpha_1(t)>0$  - характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной  $\alpha_2(t)n(t)(N-n(t))$ , эта величина увеличивается с увеличением потребителей, унавших о товаре. [2]

### Выполнение лабораторной работы

1. Опишем начальные значения согласно варианту 8 на языке Julia (fig. 1).

```
N ::Int64 = 810 # объем аудитории
n0 ::Int64 = 11 # уже знающие о товаре люди
```

Рис. 1: Начальные значения на языке Julia

2. Опишем дифференциальное уравнение для первого случая(fig. 2).

```
function ode_fn(du, u, p, t)

(n) = u

du[1] = (0.64 + 0.00014*u[1])*(N - u[1])

lend
```

Рис. 2: Дифференциальное уравнение для первого случая на языке Julia

3. Получим решение дифференциального уравнения (fig. 3).

```
v0 ::Array{Int64} = [n0]
tspan = (0.0, 30.0)
prob = ODEProblem(ode_fn, v0, tspan)
sol = solve(prob, dtmax = 0.05)
n = [u[1] for u in sol.u]
T = [t for t in sol.t]
```

Рис. 3: Решение дифференциального уравнения для первого случая на языке Julia

4. Построим график распространения рекламы для первого случая (fig. 4 - fig. 5).

```
plt = plot(
    dpi = 300,
    title = "Эффективность рекламы ",
    legend = false)
plot!(
    plt,
    T,
    n,
    color = :blue)

savefig(plt, "out/lab07_1.png")
```

Рис. 4: Построение графика распространения рекламы для первого случая на языке Julia



Рис. 5: График распространения рекламы для первого случая, построенный на Julia

5. Изменим дифференциальное уравнение для второго случая(fig. 6).

```
function ode_fn(du, u, p, t)

(n) = u

du[1] = (0.000014 + 0.63*u[1])*(N - u[1])
```

Рис. 6: Дифференциальное уравнение для второго случая на языке Julia

6. Определим, в какой момент времени скорость распространения рекламы будет иметь максимальное значение(fig. 7).

```
max_dn ::Int64 = 0;
max_dn_t ::Int64 = 0;
max_dn_n ::Int64 = 0;
for (i, t) in enumerate(T)
    if sol(t, Val{1})[1] > max_dn
        global max_dn = sol(t, Val{1})[1]
        global max_dn_t = t
        global max_dn_n = n[i]
    end
end
```

Рис. 7: Определение момента времени, когда скорость распространения рекламы будет иметь максимальное значение, на языке Julia

7. По аналогии с предыдущим построением получим получим график для второго случая (fig. 8).



Рис. 8: График распространения рекламы для второго случая, построенный на Julia

8. Изменим дифференциальное уравнение для третьего случая(fig. 9).

```
function ode_fn(du, u, p, t)
     (n) = u
     du[1] = (0.7 + 0.4*cos(t)*u[1])*(N - u[1])
end
```

Рис. 9: Дифференциальное уравнение для третьего случая на языке Julia

9. Получим получим график для третьего случая (fig. 10).



Рис. 10: График распространения рекламы для третьего случая, построенный на Julia

10. Построим модель для первого случая на языке OpenModelica (fig. 11 - fig. 12).

```
1  model lab07_1
2  Real N = 810;
3  Real n;
4  initial equation
5  n = 11;
6  equation
7  der(n) = (0.64 + 0.00014*n)*(N-n);
8  end lab07_1;
```

Рис. 11: Построение модели для первого случая на языке OpenModelica



Рис. 12: График распространения рекламы для первого случая, построенный на языке OpenModelica

11. Построим модель для второго случая на языке OpenModelica. Находить, в какой момент времени скорость распространения рекламы будет иметь максимальное значение, не будем, так как реализовать это базовыми средствами OpenModelica довольно затруднительно (fig. 13 - fig. 14).

```
1  model lab07_2
2  Real N = 810;
3  Real n;
4  initial equation
5  n = 11;
6  equation
7  der(n) = (0.000014 + 0.63*n)*(N-n);
8  end lab07_2;
```

Рис. 13: Построение модели для второго случая на языке OpenModelica



Рис. 14: График распространения рекламы для второго случая, построенный на языке OpenModelica

12. Построим модель для третьего случая на языке OpenModelica (fig. 15 - fig. 16).

```
1  model lab07_3
2  Real N = 810;
3  Real n;
4  initial equation
5  n = 11;
6  equation
7  der(n) = (0.7 + 0.4*cos(time)*n)*(N-n);
8  end lab07_3;
```

Рис. 15: Построение модели для третьего случая на языке OpenModelica



Рис. 16: График распространения рекламы для третьего случая, построенный на языке OpenModelica

#### Выводы

В итоге проделанной работы мы построили графики распространения рекламы для трех случаев на языках Julia и OpenModelica. Построение модели распространения рекламы на языке OpenModelica занимает значительно меньше строк, чем аналогичное построение на Julia. Кроме того, построения на языке OpenModelica проводятся относительно значения времени t по умолчанию, что упрощает нашу работу. Но при этом вычисление момент времени, когда скорость распространения рекламы будет иметь максимальное значение, довольно затруднительно на OpenModelica.

### Список литературы

- [2] Руководство к лабораторной работе: https://esystem.rudn.ru/pluginfile.php/1971668/mod\_resource/cont