

DTVseries

(CRT HORIZONTAL DEFLECTION) HIGH VOLTAGE DAMPER DIODE

MAIN PRODUCTS CHARACTERISTICS

I _{F(AV)}	5 A to 10 A
V _{RRM}	1500 V
V _F	1.3 V to 1.5 V

FEATURES AND BENEFITS

- HIGH BREAKDOWN VOLTAGE CAPABILITY
- VERY FAST RECOVERY DIODE
- SPECIFIED TURN ON SWITCHING CHARACTERISTICS
- LOW STATIC AND PEAK FORWARD VOLTAGE DROP FOR LOW DISSIPATION
- SUITED TO 32-110kHz MONITORS AND 16kHz TV DEFLECTION
- INSULATED VERSION (ISOWATT220AC): Insulating voltage = 2000V DC Capacitance = 12pF
- PLANAR TECHNOLOGY ALLOWING HIGH QUALITY AND BEST ELECTRICAL CHARACTERISTICS

DESCRIPTION

High voltage diode with high current capability dedicated to horizontal deflection. DTV16 is optimized to TV meanwhile DTV32 to DTV110 are covering the full range of monitors from the low end to the professional hi-definition SXGA CAD display units.

These devices are packaged either in TO220-AC or in ISOWATT220AC.

ABSOLUTE RATINGS

Symbol	Parameter	Value	Unit	
V _{RRM}	Repetitive peak reverse voltage	1500	V	
I _{F(RMS)}	RMS forward current		15	Α
I _{FSM}	Surge non repetitive forward current	DTV16	50	Α
	tp = 10ms half sine wave	DTV32	75	
		DTV56	80	
		DTV64	80	
		DTV82	80	
			80	
T _{stg}	Storage temperature range	-65 to 150	°C	
Tj	Maximum operating junction temperature		150	℃

August 1999 - Ed: 2B 1/10

DTVseries

THERMAL RESISTANCES

Symbol	Parameter		Va	Unit	
Symbol			TO-220AC	ISOWATT220AC	Offic
R _{th(j-c)}	Junction to case thermal	DTV16	3	5.5	°C/W
	resistance	DTV32	2.5	4.75	
		DTV56	2	4	
		DTV64	1.8	4	
		DTV82	1.6	3.7	
		DTV110	1.3	3.5	

STATIC ELECTRICAL CHARACTERISTICS

	Test Conditions			Va	lue		
Symbol			Tj =	25℃	Tj = 1	125°C	Unit
			Тур	Max	Тур	Max	
V _F *	I _F = 5 A	DTV16		1.6	1.0	1.5	V
	I _F = 6 A	DTV32		1.5	1.1	1.35	
	I _F = 6 A	DTV56		1.8	1.1	1.5	
	I _F = 6 A	DTV64		1.7	1.1	1.4	
	I _F = 6 A	DTV82		1.8	1.0	1.3	
	I _F = 10 A	DTV110		2.3	1.15	1.5	
I _R **	$V_R = V_{RRM}$	DTV16		60	100	500	μΑ
		DTV32		100	100	1000	
		DTV56		100	100	1000	
		DTV64		100	100	1000	
		DTV82		100	100	1000	
		DTV110		100	100	1000	

pulse test : * tp = 380 μ s, δ < 2% ** tp = 5 ms, δ < 2%

RECOVERY CHARACTERISTICS

Symbol	Test Con	Тур	Max	Unit			
t _{rr}	I _F = 100m A	Tj = 25℃	DTV16	1500		ns	
	IR = 100mA		DTV32	850			
	I _{RR} = 10mA		DTV56	750			
			DTV64	750			
		D	DTV82	675			
			DTV110	625			
t _{rr}	$dI_F/dt = -50A/μs$ $V_R = 30V$	t_{rr} $I_F = 1 A$ $Tj = 25$ °C	Tj = 25℃	DTV16	200	300	ns
		DTV32	130	175			
		DT	DTV56	110	135		
			DTV64	110	135		
			DTV82	105	125		
			DTV110	95	115		

TURN-ON SWITCHING CHARACTERISTICS

Symbol	Test Con	Тур	Max	Unit		
t _{fr}	I _F = 6 A	Tj = 100°C	DTV16	350		ns
	$dI_F/dt = 80 A/\mu s$		DTV32	570		
	V _{FR} =3V		DTV56	350		
			DTV64	350		
			DTV82	270		
			DTV110	250		
V _{FP}	I _F = 6A	Tj = 100°C	DTV16	25	34	V
	dl _F /dt = 80 A/μs		DTV32	21	28	
			DTV56	19	26	
			DTV64	18	22	
			DTV82	14	18	
			DTV110	11	14	

To evaluate the maximum conduction losses use the following equation :

 $\begin{array}{lll} \text{DTV16} & \text{P=} \ 1.14 \ \text{JF(AV)} + 0.072 \ \text{V IF}^2(\text{RMS}) \\ \text{DTV32} & \text{P=} \ 1.069 \ \text{x IF(AV)} + 0.047 \ \text{x IF}^2(\text{RMS}) \\ \text{DTV56} & \text{P=} \ 1.15 \ \text{x IF(AV)} + 0.059 \ \text{x IF}^2(\text{RMS}) \\ \text{DTV64} & \text{P=} \ 1.06 \ \text{x IF(AV)} + 0.053 \ \text{x IF}^2(\text{RMS}) \\ \text{DTV82} & \text{P=} \ 1.01 \ \text{x IF(AV)} + 0.048 \ \text{x IF}^2(\text{RMS}) \\ \text{DTV110} & \text{P=} \ 1.12 \ \text{x IF(AV)} + 0.038 \ \text{x IF}^2(\text{RMS}) \\ \end{array}$

Fig. 1-1: Power dissipation versus peak forward current (triangular waveform, δ =0.45).

Fig. 1-2: Power dissipation versus peak forward current (triangular waveform, δ =0.45).

Fig. 1-3: Power dissipation versus peak forward current (triangular waveform, δ =0.45).

Fig. 2-1: Average current versus case temperature $(\delta=0.5)$ (TO-220AC).

Fig. 2-2: Average current versus case temperature (δ =0.5) (ISOWATT220AC).

Fig. 3-1: Forward voltage drop versus forward current (DTV16D/F).

Fig. 3-2: Forward voltage drop versus forward current (DTV32D/F).

Fig. 3-3: Forward voltage drop versus forward current (DTV56D/F).

Fig. 3-4: Forward voltage drop versus forward current (DTV64D/F).

Fig. 3-5: Forward voltage drop versus forward current (DTV82D/F).

Fig. 3-6: Forward voltage drop versus forward current (DTV110D/F).

57

Fig. 4-1: Non repetitive surge peak forward current versus overload duration (TO-220AC) (DTV16D / DTV32D / DTV56D).

Fig. 4-2: Non repetitive surge peak forward current versus overload duration (ISOWATT220AC) (DTV16F / DTV32F / DTV56F).

Fig. 4-3: Non repetitive surge peak forward current versus overload duration (TO-220AC) (DTV64D / DTV82D / DTV110D).

Fig. 4-4: Non repetitive surge peak forward current versus overload duration (ISOWATT220AC) (DTV64F / DTV82F / DTV110F).

Fig. 5.1: Reverse recovery charges versus dIF/dt (DTV16D/F).

 $\textbf{Fig. 5.2:} \ \ \text{Reverse recovery charges versus dIF/dt}.$

Fig. 5.3: Reverse recovery charges versus dIF/dt.

Fig. 6.1: Reverse recovery current versus dIF/dt.

Fig. 6.2: Reverse recovery current versus dIF/dt.

Fig. 6.3: Reverse recovery current versus dIF/dt.

Fig. 7-1: Transient peak forward voltage versus dIF/dt.

Fig. 7.2: Transient peak forward voltage versus dIF/dt.

57

Fig. 8.1: Forward recovery time versus dIF/dt.

Fig. 8-2: Forward recovery time versus dIF/dt.

Fig. 9: Dynamic parameters versus junction temperature.

Fig. 10: Junction capacitance versus reverse voltage applied (typical values).

Fig. 11-1: Relative variation of thermal impedance junction to case versus pulse duration (ISOWATT220AC).

Fig. 12-2: Relative variation of thermal impedance junction to case versus pulse duration (TO-220AC).

PACKAGE DATA

TO-220AC (plastic) (JEDEC outline)

Cooling method : c.

■ Torque value : 0.55 m.N typ (0.70 m.N max).

PACKAGE DATA

ISOWATT220AC (plastic)

	DIMENSIONS					
REF.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	4.40		4.60	0.173		0.181
В	2.50		2.70	0.098		0.106
D	2.40		2.75	0.094		0.108
Е	0.40		0.70	0.016		0.028
F	0.75		1.00	0.030		0.039
F1	1.15		1.70	0.045		0.067
G	4.95		5.20	0.195		0.205
Н	10.00		10.40	0.394		0.409
L2		16.00			0.630	
L3	28.60		30.60	1.125		1.205
L6	15.90		16.40	0.626		0.646
L7	9.00		9.30	0.354		0.366
Diam	3.00		3.20	0.118		0.126

■ Cooling method : C.

■ Torque value : 0.55 m.N typ (0.70 m.N max).

■ Electrical isolation : 2000V DC

■ Capacitance: 12 pF

Ordering code	Marking	Package	Weight	Base qty	Delivery mode
DTV16D	DTV16D	TO-220AC	1.86g	50	Tube
DTV32D	DTV32D				
DTV56D	DTV56D				
DTV64D	DTV64D				
DTV82D	DTV82D				
DTV110D	DTV110D				
DTV16F	DTV16F	ISOWATT220AC	2g	50	Tube
DTV32F	DTV32F				
DTV56F	DTV56F				
DTV64F	DTV64F				
DTV82F	DTV82F				
DTV110F	DTV110F				

■ Epoxy meets UL94, V0

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

change without notice. This publication supersedes and replaces all information previously supplied.

STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 1999 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

57