EDA on Haberman cancer survival Dataset

```
In [1]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
In [2]:
data=pd.read csv(r"C:\Users\kingjames\Downloads\haberman.csv")
data
Out[2]:
     aGe year nodes status
      30
           62
                  3
  1
                         1
  2
                         1
      30
           65
                  0
  3 31
           59
                  2
                         1
           65
  5
      33
           58
                 10
                         1
  6
      33
           60
                  0
                         1
  7
                  0
                         2
      34
           59
           66
                         2
      34
  9
      34
           58
                 30
                         1
 10
      34
           60
                  1
                         1
 11
      34
           61
                 10
                         1
                  7
           67
                         1
 12
      34
 13
                         1
 14
      35
           64
                 13
                         1
 15
      35
           63
                  0
                         1
           60
                  1
 16
      36
 17
      36
           69
                  0
                         1
                  0
 18
      37
           60
 19
      37
                  0
           63
                         1
 20
      37
           58
 21
      37
           59
                  6
                         1
 22
      37
           60
                  15
                  0
                         1
 23
      37
           63
 24
      38
           69
                 21
                         2
```

0 1

67

270 68 67

413	aGe	year	nodes	status
280	68	68	0	1
281	69	67	8	2
282	69	60	0	1
283	69	65	0	1
284	69	66	0	1
285	70	58	0	2
286	70	58	4	2
287	70	66	14	1
288	70	67	0	1
289	70	68	0	1
290	70	59	8	1
291	70	63	0	1
292	71	68	2	1
293	72	63	0	2
294	72	58	0	1
295	72	64	0	1
296	72	67	3	1
297	73	62	0	1
298	73	68	0	1
299	74	65	3	2
300	74	63	0	1
301	75	62	1	1
302	76	67	0	1
303	77	65	3	1
304	78	65	1	2
305	83	58	2	2

306 rows × 4 columns

```
In [3]:
```

In [5]:

```
print("chances of surviving after operation =",(225/306)*100)
print("chances of patient dying after opration = =",(81/306)*100)
```

chances of surviving after operation = 73.52941176470588 chances of patient dying after opration = 26.47058823529412

In [6]:

```
data.groupby("status").count().plot.bar()
```

Out[6]:

<matplotlib.axes._subplots.AxesSubplot at 0x181b4596cf8>

In [7]:

```
data.info()
#so there is no null values
```

In [8]:

```
sns.heatmap(data.isnull(),yticklabels=False,cbar=False)
# no null values we can see in heatmap
```

Out[8]:

<matplotlib.axes._subplots.AxesSubplot at 0x181b46a0d68>

In [9]:

```
data.describe()
```

Out[9]:

	aGe	year	nodes	status
count	306.000000	306.000000	306.000000	306.000000

mean	52.457 53 6	62.85 2941	4.0 26d44	1.2 6(47() 6
std	10.803452	3.249405	7.189654	0.441899
min	30.000000	58.000000	0.000000	1.000000
25%	44.000000	60.000000	0.000000	1.000000
50%	52.000000	63.000000	1.000000	1.000000
75%	60.750000	65.750000	4.000000	2.000000
max	83.000000	69.000000	52.000000	2.000000

2D Scatter plot

In [10]:

```
data.plot(kind="scatter", x="aGe" , y="nodes")
plt.show
#this doesnt make any sense
```

Out[10]:

<function matplotlib.pyplot.show(*args, **kw)>

In [11]:

```
sns.set_style("whitegrid")
sns.FacetGrid(data, hue="status", size=6).map(plt.scatter, "aGe", "nodes")
plt.legend()
plt.show()
#here also we cant find any conclusion as it doesnt separate the status
#dosnt make sense so i will use pairplot
```

C:\Users\kingjames\Anaconda3\lib\site-packages\seaborn\axisgrid.py:230: UserWarning: The `size` pa
ramter has been renamed to `height`; please update your code.
 warnings.warn(msg, UserWarning)

Observations: 1] it doesnt make any sense as it is not linearly separable 2]still we can see that most of patient who have died are in between age of 40 to 70

Pairplot

```
In [95]:
```

```
sns.set_style("whitegrid")
sns.pairplot(data, hue="status", vars=['aGe','year','nodes'],size=3)
plt.show()

C:\Users\kingjames\Anaconda3\lib\site-packages\seaborn\axisgrid.py:2065: UserWarning: The `size` p
arameter has been renamed to `height`; pleaes update your code.
   warnings.warn(msg, UserWarning)
C:\Users\kingjames\Anaconda3\lib\site-packages\scipy\stats\stats.py:1713: FutureWarning: Using a n
on-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `a
rr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which wi
ll result either in an error or a different result.
   return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval
```


observation: 1] here also it any pairplot doesnt separating status of patient linearly still we can see that NODES vs YEAR makes a lot of sense we gain more information as compaired to other pairplot

PDF (probability density function)

```
sns.FacetGrid(data, hue="status", size=5).map(sns.distplot, "aGe").add_legend()
plt.show()
```

 $\hbox{C:\Users\kingjames\Anaconda3\lib\site-packages\seaborn\axisgrid.py:230: UserWarning: The `size` paramter has been renamed to `height`; please update your code. }$

warnings.warn(msg, UserWarning)

C:\Users\kingjames\Anaconda3\lib\site-packages\scipy\stats\stats.py:1713: FutureWarning: Using a n on-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

Observation: 1]Till age 50 the chances of dying increases after that chances or probability of dying decreases

In [98]:

```
sns.FacetGrid(data, hue="status", size=5).map(sns.distplot, "year").add_legend()
plt.show()
```

C:\Users\kingjames\Anaconda3\lib\site-packages\seaborn\axisgrid.py:230: UserWarning: The `size` pa ramter has been renamed to `height`; please update your code.

warnings.warn(msg, UserWarning)

C:\Users\kingjames\Anaconda3\lib\site-packages\scipy\stats\stats.py:1713: FutureWarning: Using a n on-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval


```
In [97]:
```

```
sns.FacetGrid(data, hue="status", size=5).map(sns.distplot, "nodes").add_legend()
plt.show()

C:\Users\kingjames\Anaconda3\lib\site-packages\seaborn\axisgrid.py:230: UserWarning: The `size` pa
ramter has been renamed to `height`; please update your code.
   warnings.warn(msg, UserWarning)
C:\Users\kingjames\Anaconda3\lib\site-packages\scipy\stats\stats.py:1713: FutureWarning: Using a n
on-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `a
rr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which wi
ll result either in an error or a different result.
   return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval
```


Observation: 1]between nodes 0 to 0.5 there is more probability that patient is going to survived.

CDF (Cumulative distribution function)

```
In [43]:
```

```
survived=data.loc[data['status']==1]
not survived=data.loc[data['status']==2]
label = ["survived pdf", "survived cdf", "died pdf", "died cdf"]
counts , bin edges= np.histogram(survived['aGe'] , bins=10 , density= True)
pdf=counts/sum(counts)
cdf=np.cumsum(pdf)
plt.title("pdf and cdf for age")
plt.xlabel("age")
plt.ylabel("% of person's")
plt.plot(bin_edges[1:], pdf)
plt.plot(bin_edges[1:], cdf)
counts, bin_edges = np.histogram(not_survived["aGe"], bins=10, density = True)
pdf = counts/(sum(counts))
cdf = np.cumsum(pdf)
plt.plot(bin_edges[1:], pdf)
plt.plot(bin edges[1:], cdf)
plt.legend(label)
plt.show()
```


Observations: 1]Age less than 38 are definitely survived for more than 5 years after operation. 2] patients who have done the operation has not lived for more than 83 years . 83 is the maximum age of survival for patients.

In [45]:

```
survived=data.loc[data['status']==1]
not survived=data.loc[data['status']==2]
label = ["survived_pdf", "survived_cdf", "died_pdf", "died_cdf"]
counts , bin edges= np.histogram(survived['year'] , bins=10 , density= True)
pdf=counts/sum(counts)
cdf=np.cumsum(pdf)
plt.title("pdf and cdf for year")
plt.xlabel("year")
plt.ylabel("% of person's")
plt.plot(bin edges[1:], pdf)
plt.plot(bin_edges[1:], cdf)
counts, bin_edges = np.histogram(not_survived["year"], bins=10, density = True)
pdf = counts/(sum(counts))
cdf = np.cumsum(pdf)
plt.plot(bin edges[1:], pdf)
plt.plot(bin edges[1:], cdf)
plt.legend(label)
plt.show()
```


Observation: 1]Those who performed operation between year 61 - 65 are more probable to be survived 5 years or longer .

In [44]:

```
survived=data.loc[data['status']==1]
not survived=data.loc[data['status']==2]
label = ["survived pdf", "survived cdf", "died pdf", "died cdf"]
counts , bin_edges= np.histogram(survived['nodes'] , bins=10 , density= True)
pdf=counts/sum(counts)
cdf=np.cumsum(pdf)
plt.title("pdf and cdf for nodes")
plt.xlabel("nodes")
plt.ylabel("% of person's")
plt.plot(bin edges[1:], pdf)
plt.plot(bin edges[1:], cdf)
counts, bin edges = np.histogram(not survived["nodes"], bins=10, density = True)
pdf = counts/(sum(counts))
cdf = np.cumsum(pdf)
plt.plot(bin edges[1:], pdf)
plt.plot(bin edges[1:], cdf)
plt.legend(label)
plt.show()
```


Observation: 1] Patients who have nodes less than 22 are more probable to survive for more than 5 years.

Mean and std-dev

In [62]:

```
#mean and std deviation for age
survived=data.loc[data['status']==1]
not_survived=data.loc[data['status']==2]
print("Mean")
print(np.mean(survived['aGe']))
print(np.mean(not_survived['aGe']))
print("standard deviation")
print(np.std(survived['aGe']))
print(np.std(not_survived['aGe']))
```

Mean

52.017777777778 53.67901234567901 standard deviation 10.98765547510051 10.10418219303131

Observation: 1] The mean age of patient who survived is 52. 2] The mean age of patient who survived is approximately 54.

In [61]:

```
# mean and standard deviation of nodes
print("mean")
print(np.mean(survived['nodes']))
print(np.mean(not_survived['nodes']))
print("standard deviation")
print(np.std(survived['nodes']))
print(np.std(not_survived['nodes']))
```

mean

2.7911111111111113
7.45679012345679
standard deviation
5.857258449412131
9.128776076761632

Observation: 1]The mean of nodes of patients who have survived is approximately 3. 2]The mean of nodes of patients who have not survived is approximately 7.

In [63]:

```
# mean and std deviation of operation of year
print("mean")
print(np.mean(survived['year']))
print(np.mean(not_survived['year']))
print("standard deviation")
print(np.std(survived['year']))
print(np.std(not_survived['year']))
```

```
mean
62.8622222222222
62.82716049382716
standard deviation
3.2157452144021956
3.3214236255207883
```

Observation: 1] Operation of year doesnt reveal any information.

3D Scatter plot

```
In [80]:
```

```
from mpl_toolkits import mplot3d
%matplotlib inline
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

xs = data["aGe"]
ys = data["year"]
zs = data["nodes"]
ax.scatter(xs, ys, zs)

ax.scatter(xs, ys, zs)

ax.set_xlabel('age')
ax.set_ylabel('operation_year')
ax.set_zlabel('axil_nodes')
plt.show()
```


Observation: 1] Doesnt make any sense.

Box plot and Whiskers

```
In [109]:
```

```
sns.boxplot(x="status",y="aGe", data=data)
plt.show()
```


1 2 status

Observations: 1] Patient having age less than 35 year will survive for more than 5 years. 2] Patient having age more than 78 going to die within 5 years of operation.

In [90]:

```
sns.boxplot(x="status",y="nodes", data=data)
plt.show()
```


In [91]:

```
sns.boxplot(x="status",y="year", data=data)
plt.show()
```


Violin Plots

In [95]:

```
sns.violinplot(x="status", y="aGe" ,data=data)
plt.show()
```

C:\Users\kingjames\Anaconda3\lib\site-packages\scipy\stats\stats.py:1713: FutureWarning: Using a n on-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `a rr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] \star weights, axis=axis) / sumval

In [96]:

```
sns.violinplot(x="status", y="nodes" ,data=data)
plt.show()
```

C:\Users\kingjames\Anaconda3\lib\site-packages\scipy\stats\stats.py:1713: FutureWarning: Using a n on-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

observations: 1]50th percentile of survivors have 0 positive nodes, 75th percentile of survivors have less than 3 positive axilary nodes 2]25th percentile of dead have 1 positive axilary node, 50th percentile of dead have positive axilary nodes below 4, 3]75th percentile of dead have positive nodes below 11

In [97]:

```
sns.violinplot(x="status", y="year" ,data=data)
plt.show()
```

C:\Users\kingjames\Anaconda3\lib\site-packages\scipy\stats\stats.py:1713: FutureWarning: Using a n on-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

conclusion:

1] There is 73% more chances of patient going to survive for more than 5 years of operation. 2] if age is less than 34 then patient survived for more than 5 years. 3] if age is greater than 78 then the patient had died within 5 years of operation. 4] age and node are more important feature than year for deciding the status of patient.