Evaluation théorique N°4

Durée: 1 heure

La calculatrice est interdite ainsi que l'utilisation de tout document.

Rappel: Parmi les deux exercices suivants, en choisir UN seul!

Exercice 1:

Cet exercice traite du thème « algorithmique », et principalement des algorithmes sur les arbres binaires.

On manipule ici les arbres binaires avec trois fonctions :

- est_vide(A) qui renvoie True si l'arbre binaire A est vide, False s'il ne l'est pas :
- sous arbre gauche (A) qui renvoie le sous-arbre gauche de l'arbre binaire A;
- sous arbre droit (A) qui renvoie le sous-arbre droit de l'arbre binaire A.

L'arbre binaire renvoyé par les fonctions sous_arbre_gauche et sous arbre droit peut éventuellement être l'arbre vide.

On définit la hauteur d'un arbre binaire non vide de la façon suivante :

- si ses sous-arbres gauche et droit sont vides, sa hauteur est 0;
- si l'un des deux au moins est non vide, alors sa hauteur est égale à 1 + M, où M est la plus grande des hauteurs de ses sous-arbres (gauche et droit) non vides.
 - 1. a. Donner la hauteur de l'arbre ci-dessous.

b. Dessiner sur la copie un arbre binaire de hauteur 4.

La hauteur d'un arbre est calculée par l'algorithme récursif suivant :

```
Algorithme hauteur(A):
     test d'assertion : A est supposé non vide
3
     si sous arbre gauche (A) vide et sous arbre droit (A) vide:
4
       renvoyer 0
5
     sinon, si sous_arbre_gauche(A) vide:
       renvoyer 1 + hauteur(sous arbre droit(A))
6
     sinon, si ...:
8
       renvoyer ...
9
     sinon:
10
        renvoyer 1 + max(hauteur(sous arbre gauche(A)),
11
                        hauteur(sous arbre droit(A)))
```

- 2. Recopier sur la copie les lignes 7 et 8 en complétant les points de suspension.
- 3. On considère un arbre binaire R dont on note G le sous-arbre gauche et D le sous-arbre droit. On suppose que R est de hauteur 4 et G de hauteur 2.
 - a. Justifier le fait que D n'est pas l'arbre vide et déterminer sa hauteur.
 - b. Illustrer cette situation par un dessin.

Soit un arbre binaire non vide de hauteur h. On note n le nombre de nœuds de cet arbre. On admet que $h+1 \le n \le 2^{h+1}-1$.

- 4. a. Vérifier ces inégalités sur l'arbre binaire de la question 1.a.
 - b. Expliquer comment construire un arbre binaire de hauteur h quelconque ayant h+1 nœuds.
 - c. Expliquer comment construire un arbre binaire de hauteur h quelconque ayant $2^{h+1}-1$ nœuds.

Indication:
$$2^{h+1}-1=1+2+4+...+2^h$$
.

L'objectif de la fin de l'exercice est d'écrire le code d'une fonction fabrique(h, n) qui prend comme paramètres deux nombres entiers positifs h et n tels que $h+1 < n < 2^{h+1}-1$, et qui renvoie un arbre binaire de hauteur h à n nœuds.

Pour cela, on a besoin des deux fonctions suivantes:

- arbre vide(), qui renvoie un arbre vide;
- arbre (gauche, droit) qui renvoie l'arbre de fils gauche gauche et de fils droit.
 - 5. Recopier sur la copie l'arbre binaire ci-dessous et numéroter ses nœuds de 1 en 1 en commençant à 1, en effectuant un parcours en profondeur préfixe.

La fonction fabrique ci-dessous a pour but de répondre au problème posé. Pour cela, la fonction annexe utilise la valeur de n, qu'elle peut modifier, et renvoie un arbre binaire de hauteur hauteur_max dont le nombre de nœuds est égal à la valeur de n au moment de son appel.

```
def fabrique(h, n):
2.
   def annexe (hauteur max):
3.
      if n == 0:
4.
        return arbre vide()
5.
      elif hauteur max == 0:
        n = n - 1
6.
7.
        return ...
8.
      else:
        n = n - 1
9.
10.
         gauche = annexe(hauteur_max - 1)
11.
        droite = ...
12.
        return arbre(gauche, droite)
13. return annexe(h)
```

6. Recopier sur la copie les lignes 7 et 11 en complétant les points de suspension.

Exercice 2:

Cet exercice porte sur les représentations binaires et les protocoles de routage.

- 1. Une adresse IPv4 est représentée sous la forme de 4 nombres séparés par des points. Chacun de ces 4 nombres peut être représenté sur un octet.
 - a. Donner en écriture décimale l'adresse IPv4 correspondant à l'écriture binaire : 11000000.10101000.10000000.100000011
 - b. Tous les ordinateurs du réseau A ont une adresse IPv4 de la forme : 192.168.128.___, où seul le dernier octet (représenté par ___) diffère. Donner le nombre d'adresses différentes possibles du réseau A.
- 2. On rappelle que le protocole RIP cherche à minimiser le nombre de routeurs traversés (qui correspond à la métrique). On donne les tables de routage d'un réseau informatique composé de 5 routeurs (appelés A, B, C, D et E), chacun associé directement à un réseau du même nom obtenues avec le protocole RIP :

Routeur A

Destination	Métrique
Α	0
В	1
С	1
D	1
E	2

Routeur B

Destination	Métrique
Α	1
В	0
С	2
D	1
E	2

Routeur C

Destination	Métrique
Α	1
В	2
С	0
D	1
E	2

Routeur D

Destination	Métrique
Α	1
В	1
С	1
D	0
E	1

Routeur E

Destination	Métrique
Α	2
В	2
С	2
D	1
E	0

- **a.** Donner la liste des routeurs avec lesquels le routeur A est directement relié.
- **b.** Représenter graphiquement et de manière sommaire les 5 routeurs ainsi que les liaisons existantes entre ceux-ci.

3. Le protocole OSPF est un protocole de routage qui cherche à minimiser la somme des métriques des liaisons entre routeurs.

Dans le protocole de routage OSPF le débit des liaisons entre routeurs agit sur la métrique via la relation : $métrique = \frac{10^8}{débit}$ dans laquelle le débit est exprimé en bit par seconde (bps).

On rappelle qu'un kbps est égal à 10^3 bps et qu'un Mbps est égal à 10^6 bps. Recopier sur votre copie et compléter le tableau suivant :

Débit	100 kbps	500 kbps	?	100 Mbps
Métrique associée	1 000	?	10	1

4. Voici la représentation d'un réseau et la table de routage incomplète du routeur F obtenue avec le protocole OSPF :

Destination	Métrique	
F	0	
G	8	
Н	5	
I		
J		
K		
L		

Routeur F

Les nombres présents sur les liaisons représentent les coûts des routes avec le protocole OSPF.

- a. Indiquer le chemin emprunté par un message d'un ordinateur du réseau F à destination d'un ordinateur du réseau I.
 Justifier votre réponse.
- b. Recopier et compléter la table de routage du routeur F.
- c. Citer une unique panne qui suffirait à ce que toutes les données des échanges de tout autre réseau à destination du réseau F transitent par le routeur G. Expliquer en détail votre réponse.