

Important Questions for Class 9

Maths

Chapter 7 – Triangles

Very Short Answer Type Questions

1 Mark

1. In fig, if AD =BC and \angle BAD = \angle ABC, then \angle ACB is equal to

- a. ∠ABD
- **b.** \angle **BAD**
- c. $\angle BAC$
- d. $\angle BDA$

Ans. in $\triangle ABC$ and $\triangle ABD$

$$AD = BC$$
 (given)

$$\angle$$
 BAD = \angle ABC (Given)

AB = AB (Common side)

$$\therefore \triangle ABC \cong \triangle ABD$$

By CPCT theorem $\angle ACB = \angle BDA$ (By SAS Congruency)

Correct option is (D) $\angle BDA$

2. In fig, if ABCD is a quadrilateral in which AD= CB, AB=CD, and \angle D= \angle B, then \angle CAB is equal to

- a. ∠ ACD
- **b.** \angle **CAD**
- c. ∠ ACD
- $d. \angle BAD$

Ans: in $\triangle ABC$ and $\triangle CDA$

$$CB = AD$$
 (Given)

$$\angle B = \angle D$$
 (Given)

$$∴ \triangle ABC \cong \triangle CDA$$
 (By SAS Congruency)

By CPCT theorem $\angle CAB = \angle ACD$

Option (C) \angle ACD is correct.

3. If O is the mid – point of AB and \angle BQO = \angle APO, then \angle OAP is equal to

- a. ∠ QPA
- b. $\angle \overrightarrow{OQB}$
- c. ∠ QBO
- d. ∠ BOQ

Ans:

In $\triangle AOP$ and $\triangle BOQ$

AO = BO (O is midpoint of AB)

 $\angle APO = \angle BQO$ (Given)

 $\angle AOP = \angle BOQ$ (Vertically opposite Angles)

 \therefore △AOP \cong △BOQ (By AAS Congruency)

By CPCT $\angle OAP = \angle QBO$

Correct option is $(C) \angle QBO$

4. IF $AB \perp BC$ and $\angle A = \angle C$, then the true statement is

- a. AB≠AC
- b. AB=BC
- c. AB=AD
- d. AB=AC

Ans:

 ΔABC

$$\angle A = \angle C$$

Sides opposite to equal angles are also equal

$$AB = BC$$

Correct option is (B) AB=BC

5. If ABC is an isosceles triangle and $\angle B = 65^{\circ}$, find $\angle A$.

- **a.** 60°
- **b.** 70°
- **c.** 50°
- d. none of these

Ans:

Since △ABC is on isosceles triangle

$$\therefore \angle B = \angle C$$

$$\therefore \angle B = 65^{\circ}$$

$$\therefore \angle C = 65^{\circ}$$

$$\therefore \angle A + \angle B + \angle C = 180^{\circ}$$

$$\therefore \angle A + 130^{\circ} = 180^{\circ}$$

$$\therefore \angle A = 180^{\circ} - 130^{\circ}$$

$$\therefore \angle A = 50^{\circ}$$

Correct option is (c) 50°

6. If AB=AC and \angle ACD=120 o , find \angle A

a.
$$50^{\circ}$$

b.
$$60^{\circ}$$

c.
$$70^{\circ}$$

d. none of these

Ans:

$$\therefore AB = AC$$

$$\Rightarrow \angle ABC = \angle ACB = x(say)$$

Let
$$\angle BAC = y$$

We know,

Exterior angles = sum of interior opposite angles

$$120^{\circ} = \angle ABC + \angle BAC$$

$$120^{\circ} = x + y - - -(1)$$

Again,
$$\angle ACB + \angle ACD = 180^{\circ}$$

$$x + 120^{\circ} = 180^{\circ}$$

$$\therefore x = 60^{\circ}$$

From(1),

$$60^{\circ} + y = 120^{\circ}$$

$$\Rightarrow$$
 y = 60°

$$\Rightarrow \angle A = 60^{\circ}$$

Correct option is (b) 60°

7. What is the sum of the angles of a quadrilateral?

- **a.** 260°
- **b.** 360⁰
- $c. 180^{\circ}$
- **d.** 90°

Ans. (b) 360°

8. The sum of the angles of a triangle will be:

- **a.** 360⁰
- **b.** 270°
- $c. 180^{\circ}$
- **d.** 90°

Ans. (c) 180⁰

9. An angle is 14° more than its complement. Find its measure.

- a. 42
- b. 32
- c. 52
- d. 62

Ans: Two angles having sum equals to 90 degrees are called complementary angles.

let first angle = x

it's Complement = $90^{\circ} - x$

A.T.Q

$$x = 14^{\circ} + 90^{\circ} - x$$

$$x = 104 - x$$

$$\Rightarrow 2x = 104^{\circ}$$

$$\Rightarrow x = \frac{104}{2}$$

$$\therefore x = 52^{\circ}$$

Correct option is (C) 52

10. An angle is 4 time its complement. Find measure.

- a. 62
- **b.** 72
- c. 52
- d. 42

Ans: Two angles having sum equals to 90 degrees are called complementary angles.

let angle = x

Therefore, it's complement = $90^{\circ} - x$

A.T.Q

$$x = 4(90^{\circ} - x)$$

$$x = 360^{\circ} - 4x$$

$$x + 4x = 360^{\circ}$$

$$\Rightarrow$$
 5 $x = 360^{\circ}$

$$\Rightarrow x = \frac{360^{\circ}}{5}$$

$$\therefore x = 72^{\circ}$$

Correct option (B) 72

11. Find the measure of angles which is equal to its supplementary.

- **a.** 120°
- **b.** 60⁰
- **c.** 45⁰
- **d.** 90°

Ans: Two angles having sum equals to 180 degrees are called supplementary angles.

$$x = 180^{\circ} - x$$

$$2x = 180^{\circ}$$

$$\Rightarrow x = \frac{180^{\circ}}{2}$$

$$\therefore x = 90^{\circ}$$

Correct option is (D) 90°

12. Which of the following pairs of angle are supplementary?

- **a.** $30^{\circ}, 120^{\circ}$
- **b.** $45^{\circ}, 135^{\circ}$
- **c.** $120^{\circ}, 30^{\circ}$
- d. None of these.

Ans: (B) 45⁰,135⁰

Because $45^{\circ} + 135^{\circ} = 180^{\circ}$

13. Find the measure of each exterior angle of an equilateral triangle.

- **a.** 110°
- **b.** 100°
- **c.** 120°
- **d.** 150°

Ans. (C)120⁰

Because $180^{\circ} - 60^{\circ} = 120^{\circ}$

14. In an isosceles \triangle ABC, if AB=AC and $\angle A = 90^{\circ}$, Find \angle B.

- **a.** 45⁰
- **b.** 80°
- $c. 95^{\circ}$
- **d.** 60°

Ans: AB = AC

 $\Rightarrow \angle C = \angle B$ (angles opposite equal sides are also equal)

In $\triangle ABC$

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$90^{\circ} + 2\angle B = 180^{\circ}$$

$$\Rightarrow 2\angle B = 180^{\circ} - 90^{\circ}$$

$$\Rightarrow \angle B = \frac{90^{\circ}}{2}$$

$$\Rightarrow \angle B = 45^{\circ}$$

 $(A)45^{0}$

15. In a ABC, if $\angle B = \angle C = 45^{\circ}$, Which is the longest side.

- a. BC
- b. AC
- c. CA
- d. None of these.

Ans: ♦*ABC*

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$\angle A + 45^{\circ} + 45^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle A = 180^{\circ} - 90^{\circ} = 90^{\circ}$$

This is a right angles triangle in which right angle is at $\angle A$

Therefore, Side opposite to $\angle A$ is the longest side (hypotenuse)

Correct option is (A) BC

16. In a \triangle ABC, if AB=AC and \angle B=70°, Find

- **a.** 40°
- **b.** 50°
- $c. 45^{\circ}$
- **d.** 60°

Ans: In $\triangle ABC$

$$AB = AC$$

$$\angle C = \angle B = 70^{\circ}$$

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$\angle A + 70^{\circ} + 70^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle A = 180^{\circ} - 140^{\circ} = 40^{\circ}$$

Correct option is (A) 40°

17. Determine the shortest sides of the triangles.

- a. AC
- b. BC
- c. CA
- d. none of these

Ans. (B) BC

18. In an \triangle ABC, if $\angle A = 45^{\circ}$ and $\angle B = 70^{\circ}$, determine the longest sides of the triangle.

- a. AC
- b. AB
- c. BC
- d. none of these

Ans: Angle opposite to longest side is largest

Side opposite to $\angle B$ is AC

Correct option is (a) AC

19. The sum of two angles of a triangle is equal to its third angle. Find the third angles.

- **a.** 90°
- **b.** 45⁰
- **c.** 60°
- **d.** 70°

Ans. (a) 90⁰

20. Two angles of triangles are 60° , 70° respectively. Find third angles.

- **a.** 90°
- **b.** 45⁰
- **c.** 60°
- **d.** 50°

Ans. (d) 50⁰

21. \triangle ABC is an isosceles triangle with AB=AC and $\angle B = 45^{\circ}$, find $\angle A$.

Ans: In $\triangle ABC$

$$AB = AC$$

$$\angle C = \angle B = 45^{\circ}$$

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$\angle A + 45^{\circ} + 45^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle A = 180^{\circ} - 90^{\circ} = 90^{\circ}$$

22. AD and BC are equal perpendiculars to a line segment AB. Show that CD bisects AB (See figure)

Ans: In $\triangle BOC$ and $\triangle AOD$

$$OBC = OAD = [Given]$$

$$BC = AD [Given]$$

$$OB = OA$$
 and $OC = OD$ [By C.P.C.T.]

Short Answer Type Questions

2 Marks

1. In quadrilateral ABCD (See figure). AC = AD and AB bisects $\angle A$. Show that $\triangle ABC \cong \triangle ABD$. What can you say about BC and BD?

Ans: Given: In quadrilateral ABCD

AC = AD and AB bisects $\angle A$.

To prove: $\triangle ABC \cong \triangle ABD$

Proof: In \triangle ABC and \triangle ABD,

AC = AD [Given]

 $\angle BAC = \angle BAD[ABbisects \angle A]$

AB = AB [Common]

 $\triangle ABC \cong \triangle ABD$ [By SAS congruency]

Thus BC = BD [By C.P.C.T.]

2. ABCD is a quadrilateral in which AD = BC and \angle DAB = \angle CBA. (See figure). Prove that:

(i)
$$\triangle ABD \cong \triangle BAC$$

Ans: In $\triangle ABC$ and $\triangle ABD$,

$$BC = AD [Given]$$

$$DAB = CBA [Given]$$

$$AB = AB [Common]$$

$$\triangle ABC \cong \triangle ABD[By SAS congruency]$$

Thus
$$AC = BD [By C.P.C.T.]$$

(ii)
$$BD = AC$$

Ans: Since $\triangle ABC \cong \triangle ABD$

$$AC = BD [By C.P.C.T.]$$

(iii)
$$\angle$$
 ABD = \angle BAC

Ans: Since $\triangle ABC \cong \triangle ABD$

$$\angle ABD = \angle BAC [By C.P.C.T.]$$

3. l and m are two parallel lines intersected by another pair of parallel lines p and q (See figure). Show that $\triangle ABC \cong \triangle CDA$.

Ans: AC being a transversal. [Given]

Therefore $\angle DAC = \angle ACB$ [Alternate angles]

Now $p \parallel q$ [Given]

And AC being a transversal. [Given]

Therefore $\angle BAC = \angle ACD$ [Alternate angles]

Now In \triangle ABC and \triangle ADC,

 $\angle ACB = \angle DAC$ [Proved above]

 $\angle BAC = \angle ACD$ [Proved above]

AC = AC [Common]

 $\triangle ABC \cong \triangle CDA$ [By ASA congruency]

4. Line is the bisector of the angle A and B is any point on BP and BQ are perpendiculars from B to the arms of A. Show that:

(i). $\triangle APB \cong \triangle AQB$

Ans: Given: Linel bisects ∠A

$$\angle BAP = \angle BAQ$$

In $\triangle ABP$ and $\triangle ABQ$

$$\angle BAP = \angle BAQ[Given]$$

$$\angle BPA = \angle BQA = [Given]$$

AB = AB [Common]

 $\triangle APB \cong \triangle AQB$ By ASA congruency

(ii). BP = BQ or P is equidistant from the arms of $\angle A$ (see figure)

Ans: Since △APB ≅△AQB

BP = BQ [By C.P.C.T.]

B is equidistant from the arms of $\angle A$.

5. In figure, AC = AB, AB = AD and $\angle BAD = \angle EAC$. Show that BC = DE

Ans: Given that $\angle BAD = \angle EAC$

Adding ∠DAC on both sides,

we get,
$$\angle BAD + \angle DAC = \angle EAC + \angle DAC$$

$$BAC = EAD \dots (i)$$

Now in ΔABC and ΔADE

$$AB = AD [Given]$$

$$AC = AE[Given]$$

$$\angle BAC = \angle DAE \left[From eq. (i) \right]$$

$$BC = DE [By C.P.C.T.]$$

6. AB is a line segment and P is the mid-point. D and E are points on the same side of AB such that BAD = ABE and EPA = DPB. Show that: (i) DAF FBPE D (ii) AD = BE (See figure)

Ans: Given that $\angle EPA = \angle DPB$

Adding ∠EPD on both sides, we get,

$$\angle EPA + \angle EPD = \angle DPB + \angle EPD$$

$$\angle APD = \angle BPE \dots (i)$$

Now in $\triangle APD$ and $\triangle BPE$,

$$\angle PAD = \angle PBE[\angle BAD = \angle ABE (given)]$$

$$\angle PAD = \angle PBE$$

AP = PB[P is the mid - point of AB]

$$\angle APD = \angle BPE \left[From eq. (i) \right]$$

$$\angle DPA = \angle EBP$$
 [By ASA congruency]

$$AD = BE [By C.P.C.T.]$$

7. In an isosceles triangle ABC, with AB = AC, the bisectors of B and C intersect each other at O. Join A to O. Show that:

(i)
$$OB = OC$$

Ans: ABC is an isosceles triangle in which

$$AB = AC$$

 \Rightarrow C = B [Angles opposite to equal sides]

$$\triangle OCA + \triangle OCB = \triangle OBA + \triangle OBC$$

OB bisects ∠B and OC bisects ∠C

$$\angle OBA = \angle OBC$$
 and $\angle OCA = \angle OCB$

$$\angle OCB + \angle OCB = \angle OBC + \angle OBC$$

$$2\angle OCB = 2\angle OBC$$

$$\angle OCB = \angle OBC$$

Now in $\triangle OBC$,

$$\angle OCB = \angle OBC$$
 [Proved above]

OB = OC [Sides opposite to equal sides]

(ii) AO bisects A

Ans: In $\triangle AOB$ and $\triangle AOC$,

$$AB = AC [Given]$$

$$\angle OBA = \angle OCA[Given]$$

And
$$\angle B = \angle C$$

$$\frac{1}{2}\angle B = \frac{1}{2}\angle C$$

$$\angle OBA = \angle OCA$$

$$OB = OC [Proved above]$$

 $\triangle AOB \cong \triangle AOC$ [By SAS congruency]

8. In ABC, AD is the perpendicular bisector of BC (See figure). Show that ABC is an isosceles triangle in which AB = AC.

Ans: In \triangle AOB and \triangle AOC,

$$BD = CD [AD bisects BC]$$

$$\angle ADB = \angle ADC [Since AD = BC]$$

$$AD = AD [Common]$$

$$\triangle \triangle ABD \cong \triangle ACD$$
 [By SAS congruency]

therefore,
$$AB = AC [By C.P.C.T.]$$

Therefore, ABC is an isosceles triangle.

9. ABC is an isosceles triangle in which altitudes BE and CF are drawn to sides AC and AB respectively (See figure). Show that these altitudes are equal.

Ans: In \triangle ABE and \triangle ACF,

$$\angle A = \angle A$$
 [Common]

$$\angle AEB = \angle AFC [Since AD \perp BC] [Given]$$

$$AB = AC [Given]$$

$$\triangle ABE \cong \triangle ACF$$
 [By ASA congruency]

$$BE = CF [By C.P.C.T.]$$

Altitudes are equal.

10. ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (See figure). Show that:

(i). In $\triangle ABE$ and $\triangle ACF$,

Ans: In \triangle ABE and \triangle ACF,

$$\angle A = \angle A$$
 [Common]

$$\angle AEB = \angle AFC = 90^{\circ} [Given]$$

$$BE = CF [Given]$$

$$\triangle ABE \cong \triangle ACF$$
 [By ASA congruency]

(ii) AB = AC or $\triangle ABC$ is an isosceles triangle.

Ans: Since, $\triangle ABE \cong \triangle ACF$

$$BE = CF [By C.P.C.T.]$$

ΔABC is an isosceles triangle.

11. ABC and DBC are two isosceles triangles on the same base BC (See figure). Show that $\angle ABD = \angle ACD$.

Ans: In isosceles triangle ABC

$$AB = AC [Given]$$

$$\angle ACB = \angle ABC$$
(i) [Angles opposite to equal sides]

Also in Isosceles triangle BCD.

$$BD = DC$$

$$\angle BCD = \angle CBD$$
(ii) Angles opposite to equal sides

Adding eq. (i) and (ii)

$$\angle ACB + \angle BCD = \angle ABC + \angle CBD$$

 $\alpha = {\text{ACD} = } \$

 $\alpha = {\text{ABD} = }$

12. ABC is a right angled triangle in which $\angle A = 90^{\circ}$ and AB = AC. Find $\angle B$ and $\angle C$.

Ans: △ABC is a right triangle in which,

$$\angle A = 90^{\circ} And AB = AC$$

In ΔABC,

$$AB = AC \Rightarrow \angle C = \angle B \dots (i)$$

We know that, in $\triangle ABC$, $\angle A + \angle B + \angle C = 180^{\circ}$ [Angle sum property]

$$90^{\circ} + B + B = 180^{\circ} [\angle A = 90^{\circ} (given)]$$
 and $\angle B = \angle C (from eq. (i)]$

$$2 \angle B = 90^{\circ}$$

$$\angle B = 90^{\circ} Also \angle C = 45^{\circ} [\angle B = \angle C]$$

- 13. AD is an altitude of an isosceles triangle ABC in which AB = AC. Show that:
- (i) AD bisects BC.

Ans: In $\triangle ABD$ and $\triangle ACD$,

$$AB = AC [Given]$$

$$\triangle ADB = \triangle ADC = 90^{\circ} [AD \perp BC]$$

$$AD = AD [Common]$$

$$\triangle ABD \cong \triangle ACD [RHS rule of congruency]$$

$$BD = DC \left[By C.P.C.T. \right]$$

AD bisects BC

(ii) AD bisects A.

Ans: Since,
$$\angle BAD = \angle CAD$$
[By C.P.C.T.]

AD bisects $\angle A$.

14. Show that in a right angles triangle, the hypotenuse is the longest side.

Ans: Given: Let ABC be a right angled triangle, right angled at B.

To prove: Hypotenuse AC is the longest side.

$$\angle A + \angle B + \angle C = \angle A + 90^{0} + \angle C = [\angle B = 90^{0}]$$

$$\angle A + \angle C = 180^{\circ} - 90^{\circ}$$

And
$$\angle B = 90^{\circ}$$

$$\angle B > \angle C$$
and $\angle B > \angle A$

Since the greater angle has a longer side opposite to it.

Therefore ∠B being the greatest angle has the longest opposite side AC, i.e. hypotenuse.

15. In figure, sides AB and AC of ABC are extended to points P and Q respectively. Also PBC< QCB. Show that AC > AB.

Ans: Given: In ∆ABC, ∠PBC < ∠QCB

Toprove: AC > AB

Proof : In \triangle ABC, $\angle 4 > \angle 2$ [Given]

Now $\angle 1 + \angle 2 = \angle 3 + \angle 4 = 180^{\circ}$ [Linear pair]

 $\angle 1 > \angle 3[\because \angle 4 > \angle 2]$

AC > AB [Side opposite to greater angle is longer]

16. In figure, B < A and C < D. Show that AD < BC.

Ans: In ΔAOB

$$\angle B < \angle A$$
 [Given]

OA < OB(i) [Side opposite to greater angle is longer]

In $\triangle COD$, $\angle C < \angle D[Given]$

OD < OC.....(ii) [Side opposite to greater angle is longer]

Adding eq. (i) and (ii),

$$OA + OD < OB + OC$$

17. In a triangle locate a point in its interior which is equidistant from all the sides of the triangle.

Ans: Let $\triangle ABC$ be a triangle.

Drawbisectorsof ∠Band ∠C.

Let these angle bisectors intersect each other at point I.

DrawIK \perp BC

Also draw IJ \perp AB and IL \perp AC.

Join AI.

In Δ BIK and Δ BIJ,

$$\angle$$
 IKB = \angle IJB = 90° [By construction]

$$\angle$$
 IBK = \angle IBJ

Blisthebisectorof ∠B (By construction)]

$$BI = BI[Common]$$

 $\Delta BIK \cong \Delta BIJ$ [ASA criteria of congruency]

$$IK = IJ[By C.P.C.T.]$$
....(i)

Similarly, $\Delta CIK \cong \Delta CIL$

$$\therefore$$
 IK = IL [By C.P.C.T.](ii)

From eq (i) and (ii),

$$IK = IJ = IL$$

Hence, I is the point of intersection of angle bisectors of any two angles of $\triangle ABC$ equidistant from its sides.

18. In quadrilateral ACBD, AB=AD and AC bisects A. show ABC ACD?

Ans: In $\triangle ABC$ and $\triangle ACD$,

19. If DA and CB are equal perpendiculars to a line segment AB. Show that CD bisects AB.

Ans: In ΔAODand ΔBOC,

$$\angle A = \angle B$$
 and

$$\angle AOD = \angle BOC(\text{vert opp. Angles})$$

$$\therefore \angle AOD = \angle BOC(AAS rule)$$

$$\therefore$$
 OA = OB(CPCT)

Hence, CD bisects AB.

20. I and m, two parallel lines, are intersected by Another pair of parallel lines p and C. show that $\triangle ABC \cong \triangle CDA$.

Ans: L | M and AC cuts them (given)

 \therefore \angle ACB = \angle CAD(alternateangles)

P || Q and AC cuts them (Given)

 \therefore \angle CAB = \angle ACD(Alternateangles)

AC = CA(common)

∴ $\triangle ABC \cong \triangle CDA(ASA rule)$

21. In fig, the bisector AD of $\triangle ABC$ is \perp to the opposite side BC at D. show that $\triangle ABC$ is isosceles?

Ans: In ΔABD and ΔACD

Let $\angle BAD = \angle 1$ and $\angle DAC = \angle 2$

 $\angle 1 = \angle 2....(AD is the bisector of \angle A)$

And $\angle ADB = \angle ADC = 90^{\circ} \dots (AD \perp BC)$

 $\therefore AD = AD \dots (common)$

 $\triangle ABD \cong \triangle ACD.....$ (ASA rule)

 $\therefore AB = AC$ (C.P.C.T)

Hence $\triangle ABC$ is isosceles.

22. If AE=AD and BD=CE. Prove that $\triangle AEB \cong \triangle ADC$

Ans: We have,

AE = ADandCE = BD

 \Rightarrow AE + CE = AD + BD

 \Rightarrow AC = AB(i)

Now, in $\triangle AEB$ and $\triangle ADC$,

AE = AD[given]

 $\angle EAB = \angle DAC[common]$

AB = AC[from(i)]

AE = AD[given]

 $\angle EAB = \angle DAC[common]$

AB = AC[from(i)]

 $\triangle AEB \cong \triangle ADC[bySAS]$

23. In quadrilateral ACBD, AC=AD and AB bisects \angle A. show that \triangle ABC \cong \triangle ABD. What can you say about BC and BD?

Ans: In $\triangle ABC \cong \triangle ABD$,

AC = AD [given]

 $\angle CAB = \angle DAB[AB \text{ bisects } \angle A]$

$$AB = AB$$
 [common]

$$\triangle ABC \cong \triangle ABD$$
 [SAS criterion]

$$\therefore$$
 BC = BD [CPCT]

24. In $\triangle ABC$, the median AD is \perp to BC. Prove that $\triangle ABC$ is an isosceles triangle

Ans: In $\triangle ABD$ and $\triangle ACD$

BD = CD[D is mid - point of BC]

AD = AD [Common]

 $\angle ADB = \angle ADC[each90^{\circ} :: AD \perp BC]$

 $\triangle ABD \cong \triangle ACD[BySAS]$

 $\therefore AB = AC[CPCT]$

Hence, triangle ABC is an isosceles triangle.

25. Prove that ABC is isosceles if altitude AD bisects BAC

Ans: In ΔABD and ΔACD

 $\angle ADB = \angle ADC$ [Each 90° [AD \perp BC]

 $\angle BAD = \angle CAD[AD \text{ bisects } \angle BAC]$

AD = AD[common]

 $\triangle ABD \cong \triangle ACD[ByAAS]$

 \Rightarrow AB = AC[CPCT]

Thus, \triangle ABC is an isosceles triangle.

26. ABC is An isosceles triangle in which altitudes BE and CF are drawn to side AC and AB respectively. Show that these altitudes are equals.

Ans: In \triangle ABE and \triangle ACF,

$$\angle A = \angle A \begin{bmatrix} Common \end{bmatrix}$$

$$\angle AEB = \angle AFC = 90^{\circ}$$

$$AB = AC[given]$$

$$\triangle ABE \cong \triangle ACF[ByAAS]$$

$$\Rightarrow$$
 BE = CF[CPCT]

27. If AC = AE, AB = AD and $\angle BAD = \angle EAC$ show that BC = DE.

Ans: In $\triangle BAC$ and $\triangle DAE$,

AB = AD[given]

AC = AE[given]

Also, $\angle BAD = \angle EAC[given]$

 $\therefore \angle BAC + \angle DAC = \angle EAC + \angle CAD$

 $\Rightarrow \angle BAC = \angle EAD$

∴ $\triangle BAC \cong \triangle DAE[SAScriterior]$

 \Rightarrow BC=DE[CPCT]

28. Line \angle is the bisector of an angle \angle A and \angle B is any point on line l. BP and BQ are from \angle B to the arms of \angle A show that :

(i). $\triangle APB \cong \triangle AQB$

Ans: In $\triangle APB \cong \triangle AQB$,

$$\angle BAP = \angle BAQ[given]$$

$$\angle APB = \angle AQB = 90^{\circ} [common]$$

AB=AB[common]

∴ $\triangle APB \cong \triangle AQB[AAS rule]$

(ii). BP = BQ or B is A equidistant from the arms of $\angle A$

Ans. BP=BQ[CPCT]

29. In the given figure, $\triangle ABC$ is an isosceles triangle and $\angle B = 75^{\circ}$, find x.

Ans: In ΔABC,

$$AB = AC$$

 $\Rightarrow \angle B = \angle C$ [Angles opposite to equal sides are equal]

$$\therefore \angle B = 75^{\circ}$$

$$\therefore \angle B = \angle C = 75^{\circ}$$

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$x+150=180^{\circ}$$

$$x = 30^{\circ}$$

30. If E> A and C> D. prove that AD>EC.

Ans: In △ABE,

 $\angle E > \angle A$ [given]

 \Rightarrow AB > EB[Side opposite to greater angle is larger]....(i)

Similarly, in $\Delta BCD,$

 $\angle C > \angle D$ [Given]

 $\Rightarrow BD > BC \rightarrow (ii)$

Adding (i) and (ii)

AB + BD > EB + BC

or AD > EC

31. If PQ= PR and S is any point on side PR. Prove that RS<QS.

Ans: In ΔPQR

PQ-PR[given]

 $\angle PRQ = \angle PQR[angleoppositetoequalsideareequal]$

Now, $\angle SQR < \angle PQR[\angle SQR]$ is a part of $\angle PQR$

 \angle SQR < \angle PRQ or \angle SRQ

 \Rightarrow RS < QS[sideoppositetosmalleranglein \triangle SRQ]

32. Prove that MN+NO +OP+PM>2MO.

Ans: In ΔMON

 $MN+NO > MO[Sumofanytwosideof\Delta is greater than third sides]...(i)$

Similarlyin∆MPQ

OP+PM > MO

Hence from (i) and (ii)

orMN+NO+OP+PM > 2MO

33. Prove that MN+NO+OP>PM.

Ans: In ΔMON

MN+NO > MO[SumofanytwosideofΔ isgreaterthanthirdsides]...(i)

Similarlyin∆MOQ,

MO+OP > PM.....(ii)

Hence from (i) and (ii)

orMN+NO+OP+MO > MO+PM

orMN+NO+OP > PM

34. $\triangle ABC$ is an equilateral triangle and $\angle B = 60^{\circ}$, find $\angle C$.

Ans: In ΔABC,

$$AB = AC$$

 \angle B = \angle C[angleoppositetoequalsidesareequal]

but
$$\angle B = 60^{\circ}$$

$$so, \angle C = 60^{\circ}$$

35. In the figure, AB = AC and $\angle ACD = 120^{\circ}$, find $\angle B$.

Ans: Since, in $\triangle ABC$, AB=AC

 \angle B = \angle C[angleoppositetoequalsidesareequal]

but
$$\angle ACB + \angle ACD = 180^{\circ}$$
 [Linear pair]

SO,
$$\triangle ACB = 180^{\circ} - 120^{\circ}$$

and,
$$\angle C = \angle B = 60^{\circ}$$

36. In the given figure, find $\angle A$

Ans: In $\triangle ABC$

$$\angle A + \angle B + \angle C = 180^{\circ}$$
 [sum of angles of a triangle]

$$\angle A + 60^{\circ} + 60^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle A = 180^{\circ} - 120^{\circ}$$

$$\angle A = 60^{\circ}$$

Short Answer Type Questions

3 Marks

1. Prove that in a right triangle, hypotenuse is the longest (or largest) side.

Ans: Given a right angled triangle ABC in which $\angle B = 90^{\circ}$

Therefore, AC is hypotenuse.

Now, since

$$\angle B = 90^{\circ}$$

$$\therefore A + \angle B + \angle C = 180^{\circ}$$

$$\angle A + \angle C = 180^{\circ} - 90^{\circ} = 90^{\circ}$$

ie.
$$\angle B = \angle A + \angle C$$

$$\Rightarrow \angle B > \angle A$$
 and $\angle B > \angle C$

$$\therefore AB = BC = AC \Rightarrow AB = BC$$

$$\Rightarrow \angle C = \angle A \dots (i)$$

Similarly,
$$AB = AC$$

$$\Rightarrow \angle C = \angle B \dots \dots$$
 (ii)

From eq.(i)and(ii),

$$\angle A = \angle B = \angle C \triangle ABC$$

$$\angle A + \angle B + \angle C = 180^{\circ} \dots (iv)$$

$$\Rightarrow \angle A + \angle A + \angle A = 180^{\circ} \Rightarrow 3\angle A = 180^{\circ}$$

$$\Rightarrow \angle A = 60^{\circ}$$

Since
$$\angle A = \angle B = \angle c[Fromeq.(iii)]$$

$$\therefore \angle A = \angle B = \angle c = 60^{\circ}$$

2. Show that the angles of an equilateral triangle are 60 degree each.

Ans: Let ABC be an equilateral triangle.

$$\therefore AB = BC = AC \Rightarrow AB = BC$$

$$\Rightarrow \angle C = \angle A....(i)$$

Similarly,
$$AB = AC$$

$$\Rightarrow \angle C = \angle B......6(ii)$$
 From eq.(i) and (ii).

$$\angle A = \angle B = \angle C$$

Now $_{in} _{\Delta ABC}$

$$\angle A + \angle B + \angle C = 180^{\circ} \dots$$
 (iv)

$$\Rightarrow \angle A + \angle A + \angle A = 180^{\circ}$$

$$\Rightarrow 3\angle A = 180$$

$$\Rightarrow \angle A = 60^{\circ}$$

Since
$$\angle A = \angle B = \angle C[From eq. (iii)]$$

$$\therefore \angle A = \angle B = \angle C = 60^{\circ}$$

Hence, each angle of equilateral triangle is 60°

3. $\triangle ABC$ and $\triangle DBC$ are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (See figure). If AD is extended to intersect BC at P, show that:

(i). ABD
$$\cong$$
 ACD

DBC is an isosceles triangle.

$$BD = CD$$

Now in ABD and ACD,

AB = AC[Given]

BD = CD[Given]

AD = AD[Common]

∴ $\triangle ABD \cong \triangle ACD[By SSS$ congruency]

 \Rightarrow \angle BAD = \angle CAD[By *C.P.C.T.*].....(i)

(ii). $\triangle ABP \cong \triangle ACP$

Now in $\triangle ABP$ and $\triangle ACP$,

AB = AC[Given]

 $\angle BAD = \angle CAD$ [From eq.(i)]

AP = AP

∴ $\triangle ABP = \triangle ACP[By SAS congruency]$

(iii). AP bisects $\angle A$ as well as $\angle D$

Ans: since $\triangle ABP \cong \triangle ACP$

 $\Rightarrow \angle BAP = \angle CAP[ByC.P.C.T.]$

 \Rightarrow AP bisects \angle A.

Since
$$\triangle ABD \cong \triangle ACD[Frompart(i)]$$

$$\Rightarrow$$
 \angle ADB = \angle ADC[ByC.P.C.T.].....(ii)

Now
$$\angle ADB + \angle BDP = 180^{\circ} [Linearpair]....(iii)$$

And
$$\angle ADC + \angle CDP = 180^{\circ} [Linearpair]....(iv)$$

Fromeq.(iii)and(iv),

$$\angle ADB + \angle BDP = \angle ADC + \angle CDP$$

$$\Rightarrow \angle ADB + \angle BDP = \angle ADB + \angle CDP[Using(ii)]$$

$$\Rightarrow \angle BDP = \angle CDP$$

 \Rightarrow DP bisects \angle D or AP bisects \angle D.

(iv). AP is the perpendicular bisector of BC.

Ans:
$$\therefore$$
 BP = PC[ByC.P.C.T.]

And
$$\angle APB = \angle APC[ByC.P.C.T.].....(vi)$$

Now
$$\angle APB + \angle APC = 180^{\circ} [Linear Pair]$$

$$\Rightarrow \angle APB + \angle APC = 180^{\circ} [Using eq.(vi)]$$

$$\Rightarrow 2\angle APB = 180^{\circ}$$

$$\Rightarrow \angle APB = 90^{\circ}$$

$$\Rightarrow$$
 AP \perp BC....(vii)

From eq. (v), we have BP \perp PC and from (vii), we have proved AP \perp BC. So, collectively AP is perpendicular bisector of BC.

4. Two sides AB and BC and median AM of the triangle ABC are respectively equal to side PQ and QR and median PN of PQR (See figure). Show that: ABM PQN

Ans: AM is the median of VABC

$$\therefore BM = MC = \frac{1}{2}BC...(i)$$

PN is the median of VPQR

$$\therefore QN = NR = \frac{1}{2}QR....(ii)$$

Now BC = QR[Given]

$$\Rightarrow \frac{1}{2}BC = \frac{1}{2}QR$$

$$\therefore$$
 BM = QN

(i).
$$\triangle ABM \cong \triangle PQN$$

Now in $\triangle ABM \cong \triangle PQN$,

AB=PQ[given]

AM=PN[given]

BM=QN[from eq.(iii)]

 $\therefore \triangle ABM \cong \triangle PQN[$ by SSS congruency]

$$\Rightarrow \angle B = \angle Q[by \text{ CPCT}].....(iv)$$

(ii). \$\vartriangle ABC \cong \vartriangle PQR\$

In \$ABC{\text{ }}and{\text{ }}\vartriangle PQR\$

$$\{ \text{AB} = PQ[given] \}$$

\$\angle B{\text{ = }}\angle {\text{Q[proven above]}} \$

 $\{ \text{C} = QR[given] \}$

 $\label{lem:cong_vartingle} $$ \ \ ABC \ \ \ PQR[{\text{by SAS congruency}}] $$$

5. BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.

Ans. In \$\vartriangle BEC{\text{ and }}\vartriangle CFB,\$

 $\alpha = \$ angle BEC{\text{ = }}\angle CFB[each\,{\text{ }}{90^0}]\$

\${\text{BC = BC[Common]}} \$

 $\{\text{EE} = CF[Given]\}$

\${\text{\Delta BEC}} \cong {\text{\Delta CFB[RHScongruency]}} \$

6. ABC is an isosceles triangles with AB = AC. Draw AP\$ \bot \$ BC and show that \$\angle \$B = \$\angle \$C.

Ans. Given: ABC is an isosceles triangle in which AB = AC

\$\\text{Toprove:}}\angle \\text{B = }}\angle \\text{C}} \$

\${\text{Construction:Draw}}\;{\text{AP = BC}} \$

\${\text{Proof:In}}\vartriangle {\text{ABP and}}\;\vartriangle {\text{ACP}} \$

 $\alpha {\text{APB}} = \alpha {\text{APC}} = 90^\circ {\text{By}};{\text{construction}}$

 $\{\text{AB}\} = \{\text{AC[Given}\}\}\$

 $\{\text{AP}\} = \{\text{APICommon}\}\}$

\$

\therefore \vartriangle {\text{ABP}} \cong \vartriangle {\text{ACP[RHS congruency]}}\$

 $\Lambda = \$ \Rightarrow \angle B = \angle C[{\text{by CPCT}}] \$

7. AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD (See figure). Show that $\alpha = ABCD$ (See figure). Show that $\alpha = ABCD$ (See figure). Show that $\alpha = ABCD$ (See figure).

Ans. Given: ABCD is a quadrilateral with AB as smallest and CD as longest side.

i. $\alpha A < \$

\${\text{Construction: Join AC and BD}} \$

\$\\text{Proof:(i)In }\\vartriangle \\text{ABC,AB is the smallest side}}\\\text{.}}

 $\alpha = {\text{$\angle {\text{4 < }}\angle {\text{2}}....{\text{$\text{(i)}}} }}$

\${\text{[Angle opposite to smaller side is smaller]}} \$

\${\text{In }}\vartriangle {\text{ADC, DC is the longest side}}{\text{.}} \$

\$\angle {\text{3 < }}\angle {\text{1}}......{\text{(ii)}} \$

\${\text{[Angle opposite to longer side is longer]}} \$

\${\text{Adding eq}}{\text{.(i) and (ii),}} \$

 $\alpha {\text{$1 + }} \ {\text{$1 + }} \ {\text{$2 }}$

ii. $\alpha B > \alpha B$

8. In figure, PR > PQ and PS bisects QPR. Prove that PSR> PSQ.

Ans:

Ans.

\$\because PS{\text{ is the bisector of }}\angle P] \$

But \$\angle PQS + \angle 1 + \angle PSQ = \angle PRS + \angle 2 + \angle PSR = \{180^\circ \} \$

\${\text{[Angle sum property]}} \$

 $[\angle {\text{PRS}} = \angle {\text{PRQ and }}\angle {\text{PQS}} = \angle {\text{PQR}}] $$

From eq.(iii) and (iv),

\$\angle {\text{PSQ}} < \angle {\text{PSR}} \$</pre>

\${\text{ Or }}\angle {\text{PSR}} > \angle {\text{PSQ}} \$

9. Show that all the line segments drawn from a given point not on it, the perpendicular line segment is the shortest.

Ans.

Given: I is a line and P is point not lying on I.

\${\text{PM}}} \bot {\text{I}} \$

\${\text{N is any point on other than M}}{\text{.}} \$

\${\text{Proof:In \Delta PMN,}} \$

\$\angle {\text{M is the right angle}}{\text{.}} \$

\$\therefore {\text{N is an acute angle}}{\text{.(Angle sum property of \Delta
)}} \$

\$\therefore \angle {\text{M > }}\angle {\text{N}} \$

\$\therefore {\text{PN > PM[Side opposite greater angle]}} \$

\$\Rightarrow {\text{PM < PN}} \$

Hence of all line segments drawn from a given point not on it, the perpendicular is the

Shortest.

10. ABC is a triangle. Locate a point in the interior of \$\vartriangle ABC\$ which is equidistant from all the vertices of \$\vartriangle ABC\$.

Ans. Let ABC be a triangle.

Draw perpendicular bisectors PQ and RS of sides AB and BC respectively of triangle ABC. Let PQ bisects AB at M and RS bisects BC at point N.

Let PQ and RS intersect at point O.

Join OA, OB and OC.

Now in AOM and BOM,

AM = MB [By construction]

 \angle AMO = \angle BMO = 90° [Byconstruction]

OM=OM[Common]

∴ $\triangle AOM \cong \triangle BOM[BySAScongruency]$

 \Rightarrow OA=OB[ByC.P.C.T.]....(i)

Similarly∆BON ≅ ∆CON

 \Rightarrow OB=OC[ByC.P.C.T.]....(ii)

Fromeq.(i)and(ii),

OA = OB = OC

Hence O, the point of intersection of perpendicular bisectors of any two sides of $\triangle ABC$ equidistant from its vertices.

11. In a huge park, people are concentrated at three points (See figure).

A: where there are different slides and swings for children.

B: near which a man-made lake is situated.

C: which is near to a large parking and exit.

Where should an ice cream parlour be set up so that maximum number of persons can approach it?

Ans: The parlour should be equidistant from A, B and C.

For this let we draw perpendicular bisector say I of line joining points B and C also draw perpendicular bisector say m of line joining points A and C.

Let I and m intersect each other at point O.

Now point O is equidistant from points A, B and C.

Join OA, OB and OC.

Proof: in ΔBOPandΔCOP,

OP=OP[Common]

 $\angle OPB = \angle OPC = 90^{\circ}$ [Byconstruction]

BP=PC[midpointofBC]

 $\therefore \Delta BOP \cong \Delta COP[BySAS congruency]$

 \Rightarrow OB=OC[ByC.P.C.T.]....(i)

Similarly $\triangle AOQ \cong \triangle COQ$

 \Rightarrow OA=OC[ByC.P.C.T.]....(ii)

Fromeq.(i)and(ii),

OA = OB = OC

Therefore, ice cream parlour should be set up at point O, the point of intersection of perpendicular bisectors of any two sides out of three formed by joining these points.

12. If ABC, the bisector of ABC and BCA intersect each other at the point O prove that $\angle BOC = 90^{\circ} + \frac{\angle A}{2}$

Ans: In $\triangle BOC$, we know,

$$\angle 1 + \angle 2 + \angle BOC = 180^{\circ}....(1)$$

In **ABC**,we have

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$\Rightarrow \angle A + 2(\angle 1) + 2(\angle 2) = 180^{\circ}$$

$$\Rightarrow \frac{\angle A}{2} + \angle 1 + \angle 2 = 90^{\circ}$$

$$\Rightarrow \angle 1 + \angle 2 = 90^{\circ} - \frac{\angle A}{2}$$

Substituting this value of $\triangle 1 + \triangle 2$ in (1)

$$90^{\circ} - \frac{\angle A}{2} + \angle BOC = 18^{\circ}$$

$$\angle BOC = 90^{\circ} + \frac{\angle A}{2}$$

So,
$$\angle BOC = 90^{\circ} + \frac{\angle A}{2}$$

13. Prove that if one angle of a triangle is equal to the sum of the other two angles, the triangle is right angled

Ans: $\angle A + \angle B + \angle C = 180^{\circ}$ [Sum of three angles of triangle is 180°(1)

Given that: $\angle A + \angle C = \angle B....(2)$

From(1)and(2),

$$\angle B + \angle B = 180^{\circ}$$

$$\Rightarrow \angle B = \frac{180^{\circ}}{2} = 90^{\circ}$$

Hence∆ABCisrightangled.

14. If fig, if PQ \perp PS, PQ \perp SR, \angle SQR = 28° and \angle QRT =65°, then find the values of X and Y.

Ans: $PQ \parallel SR$ and QR is the transversal,

 $\therefore \angle PQR = \angle QRT[pair of alternate angles]$

$$or \angle PQS + \angle SQR = \angle QRT$$

or
$$x + 28^{\circ} = 65^{\circ}$$

$$x = 65^{\circ} - 28^{\circ} = 37^{\circ}$$

AlsoinΔPQS,

$$\angle$$
SPQ + \angle PSQ + \angle PQS = 180°

$$\Rightarrow$$
 90°+ y + x = 180°

or
$$90^{\circ} + y + 37^{\circ} = 180^{\circ}$$

15. If AD= AE and D and E are point on BC such that BD=EC prove that AB=AC.

Ans: In ♦ADE,

$$AD = AE[Given]$$

 \therefore \angle ADE = \angle AED[angles opposite to equal side are equal]

Now, $\angle ADE + \angle ADB = 180^{\circ}$ [linearpair]

Also, $\angle AED + \angle AEC = 180^{\circ}$ [linearpair]

$$\Rightarrow \angle ADE + \angle ADB = \angle AED + \angle AEC$$

But, $\angle ADE = \angle AED$

Now in, ΔABD and ΔACE,

$$BD = CE$$

$$AD = AE$$

$$\angle ADB = \angle AEC$$

$$\therefore \triangle ABC \cong \triangle ACE [BySAS]$$

$$\Rightarrow$$
 AB = AC[CPCT]

16. In the given figure, AC=BC, \angle DCA= \angle ECB and \angle DBC= \angle EAC. Prove that $\triangle DBC$ and $\triangle EAC$ are congruent and hence DC=EC.

Ans: We know,

 $\angle DCA = \angle ECB[Given]$

 \Rightarrow \angle DCA + \angle ECD = \angle ECB + \angle ECD[adding \angle ECDonbothsides]

 $\Rightarrow \angle ECA = \angle DCB...(i)$

 $\angle DCB = \angle ECA[From(i)]$

Now in, $\triangle DBC$ and $\triangle EAC$

BC=AC[given]

 $\angle DBC = \angle EAC[given]$

 $\triangle DBC \cong \triangle EAC[BySAS]$

 \Rightarrow DC=EC[CPCT]

17. From the following figure, prove that $\angle BAD = 3\angle ADB$.

Ans: Let $\angle ADC = Q$

$$\Rightarrow \angle CAD = Q[::, CA = CD]$$

Exterior
$$\angle ACB = \angle CAD = Q + Q = 2Q$$

$$\Rightarrow \angle BAC = 2Q[\because BA = BC]$$

$$\angle BAD = \angle BAC + \angle CAD$$

Hence
$$= 2Q + Q = 3Q$$

$$\Rightarrow 3\angle ADC = 3\angle ADB$$

18. Is the mid-point of AB and CD. Prove that AC=BD and \$AC\parallel BD\$.

Ans: In $\triangle AOC$ and $\triangle BOD$

AO = OB[O is the mid - point of AB]

 $\angle AOC = \angle BOD[$ vertically opposite angles]

CO = OD[O is the mid - point of CD]

 $\triangle AOC \cong \triangle BOD[$ By SAS]

AC = BD[CPCT]

 $\Rightarrow \angle CAO = \angle DBO[CPCT]$

Now, AC and BD are two lines inter sected by a transversal AB such that i.e. alternate angle are equal

19. ABCD is a quadrilateral in which AD=BC and \angle DAB= \angle CBA. Prove that.

(i).
$$\triangle ABD \cong \triangle BAC$$

Ans: In $\triangle ABD$ and $\triangle BAC$,

AD=BC[given]

 $\angle DAB = \angle CBA[given]$

AB=AB[Common]

because $\triangle ABD \cong \triangle BAC[SAScriterion]$

(ii). BD = AC

Ans: BD = AC [by CPCT]

(iii). $\angle ABD = \angle BAC$

Ans: In reference with the first part

 $\angle ABD = \angle BAC$

20. AB is a line segment. AX and BY are equal two equal line segments drawn on opposite side of line AB such that $AX \parallel BY$. If AB and XY intersect each other at P. prove that

(i). $\triangle APX \cong \triangle BPY$

Ans: In $\triangle APX$ and $\triangle BPY$,

 $\angle 1 = \angle 2$ [alternate angle]

 $\angle 3 = \angle 4$ [verticallyoppositeangle]

AX = BY [given]

 $\therefore \triangle APX \cong \triangle BPY [ByAAS]$

(ii). AB and XY bisect each other at P.

Ans: AX = BY[given]

 $\therefore \triangle APX \cong \triangle BPY [ByAAS]$

 $\Rightarrow AP = BP \text{ and } PX = PY[CPCT]$

⇒ AB and XY bisects each other at P

21. In an isosceles $\triangle ABC$, with AB =AC, the bisector of \angle B and \angle C intersect each other at O, join A to O. show that:

(i). OB=OC

Ans: In ΔABC

AB = AC[given]

 \angle ACB = \angle ABC[angles opposite to equal side]

$$\therefore \frac{1}{2} \angle ACB = \frac{1}{2} \angle ABC$$

or
$$\angle OCB = \angle OBC$$

 \Rightarrow OB = OC[side opposite to equal angle]

(ii). AO bisects $\angle A$.

Ans: In $\triangle AOB$ and $\triangle AOC$

$$AB = AC[given]$$

$$\angle ABO = \angle ACO[Halves of equals]$$

$$OB = OC[proved]$$

$$∴ \triangle AOB \cong \triangle AOC[SAS rule]$$

$$\Rightarrow \angle BAO = \angle CAO[CPCT]$$

22. Two side AB and BC and median AM of a triangle ABC are respectively equal to side PQ and QR and median PN of $\triangle PQR$, show that

(i). $\triangle ABM \cong \triangle PQN$

Ans: In $\triangle ABM$ and $\triangle PQN$

$$AB = PQ[Given]$$

 $BM = QN[Halves\ of\ equal]$

AP = PN[Given]

 $\therefore \triangle ABM \cong \triangle PQN[SSS \ rules]$

(ii). $\triangle ABC \cong \triangle PQR$

Ans: $\Rightarrow \angle B = \angle Q$

Now, in $\triangle ABC$ and PQR,

AB = PQ[Given]

BC = QR[Given]

 $\angle B = \angle Q[Proved]$

 $\triangle \Delta ABC \cong \Delta PQR.[SASrule]$

23. In the given figure, ABC and DBC are two triangles on the same base BC such that AB=AC and DB=DC. Prove that $\angle ABD = \angle ACD$.

Ans: In $\triangle ABC$,

AB = AC[Given]

$\therefore \angle ABC = \angle ACB$ [angles opposite to equal side are equals]

Similarly in,∆DBC,

$$DB = DC[Given]....(1)$$

$$\therefore \angle DBC = \angle DCB$$

Adding(1)and(2)

$$\angle ABC + \angle DBC = \angle ACB + \angle DCB$$

or;
$$\angle ABD = \angle ACD$$

24. Prove that the Angle opposite to the greatest side of a triangle is greater than two third of a right angle i.e. greater than 60°

Ans: In $\triangle ABC$,

 $\angle C > \angle A[angle \text{ opposite to large side is greater}]....(i)$

similarly,

$$\therefore \angle C > \angle B$$
.....(ii)

adding (i) and (ii),

$$2\angle C > (\angle A + \angle B)$$

adding $\angle C$ to both sides,

$$3\angle C > (\angle A + \angle B + \angle C)$$

 $3\angle C > 180^{\circ}$ [sum of three angles of a triangle is 180°]

or $\angle C > 60^{\circ}$

25. AD is the bisector of $\angle A$ of ABC, where D lies on BC. Prove that AB>BD and AC>CD.

Ans: In $\triangle ADC$

 $\angle 3 > \angle 2$ [Exterior angles of \triangle is greater than each of the interior opposite angles.

but $\angle 2 = \angle 1[AD \text{ bisects } \angle A]$

 $\therefore \angle 3 = \angle 1$ [Sideoppositetogreaterangleislarger]

 \Rightarrow AB > BD

In ∆ABD

 $\angle 4 > \angle 1$ [Exterioranglesof \triangle is greater than each of the interior opposite angles]

But, $\angle 1 = \angle 2$

 $\therefore \angle 4 > \angle 2$

 \Rightarrow AC > CD[Sideoppositetogreaterangleislarger].

26. In the given figure, AB and CD are respectively the smallest and the largest side of a quadrilateral ABCD. Prove that $\angle A > \angle C$ and $\angle B > \angle D$.

Ans: JoinAC.

In ∆ABC

BC > AB [ABisthesmallestsidesofquadrilateralABCD]

 $\Rightarrow \angle 1 > \angle 3$ [Angle opposite to larger side is greater]...(i)

In $\triangle ADC$

CD > AD[CD is the largest side of quadrilateral ABCD]

 $\angle 2 > \angle 4$ [angle opposite to larger side is greater]....(ii)

Adding (i) and (ii)

$$\angle 1 + \angle 2 > \angle 3 + \angle 4$$

Or $\angle A > \angle C$

Similarly, by joining BD, we can show that $\angle B > \angle D$

27. If the bisector of a vertical angle of a triangle also bisects the opposite side; prove that the triangle is an isosceles triangle.

Ans: In $\triangle ADC$ and $\triangle EDB$,

DC = DB[Given]

AD = ED[By construction]

 \angle ADC = \angle EDB [vertically opposite angle]

 $\therefore \Delta ADC \cong \angle EDB[BySAS]$

 \Rightarrow AC = EB and \angle DAC = \angle DEB[CPCT]

But, $\angle DAC = \angle BAD[::ADbisects \angle A]$

 $\therefore \angle BAD = \angle DEB$

 \Rightarrow AB = BE

But BE=AC[Proved above]

 $\therefore AB = AC$

28. ABC is an isosceles triangle with AB = AC. Draw AP \perp BC to show that $\angle B = \angle C$

Ans: In a right angled triangle APB and APC,

AP=AP[common]

HypotenuseAB = HypotenuseAC[Given]

∴ $\triangle APB \cong \triangle APC$ [RHSrule]

$$\Rightarrow \angle B = \angle C[CPCT]$$

29. AD is an altitude of an isosceles triangle ABC in which AB = AC. Prove that:

(i). AD bisects BC

Ans: In right triangle ABD and ACD,

Side AD = Side AD[common]

Hypotenuse AB = Hypotenuse AC [Given]

 $\therefore \triangle ABD \cong \triangle ACD[\text{by RSH}]$

 $\Rightarrow BD = CD[CPCT]$

Also, AD bisects BC

(ii). AD bisects ∠A

Ans: $\angle BAD = \angle CAD[CPCT]$

 \therefore AD bisects $\angle A$

30. In the given figure, PQ>PR, QS and RS are the bisectors of the \angle Q and \angle R respectively. Prove that SQ>SR.

Ans: Since PQ>PR

 $\therefore \angle R > \angle Q[$ angle opposite to larger side is larger]

$$\Rightarrow \frac{1}{2} \angle R > \frac{1}{2} \angle Q$$

$$\Rightarrow \angle SRQ > \angle SQR$$

 \Rightarrow SQ > SR[Sideoppositetogreaterangleislarger]

Long Answer Type Questions

4 Marks

1. In right triangle ABC, right angled at C, M is the m'id-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B. (See figure)

Show that:

(i)
$$\triangle AMC \cong \triangle BMD$$

Ans: In \triangle AMC and \triangle BMD

AM=BM[ABisthemid-pointofAB]

 \angle AMC = \angle BMD[Verticallyoppositeangles]

CM=DM[Given]

 $\therefore \triangle AMC \cong \triangle BMD[BySAScongruency]$

 $\therefore \angle ACM = \angle BDM.....(i)$

 $\angle CAM = \angle DBM$ and AC = BD[byC.P.C.T.]

(ii) ΔDBC ≅ ΔABC

Ans: Now in $\triangle DBC$ and $\triangle ABC$

DB=AC[Proved-inpart(i)]

 $\angle DBC = \angle ACB = 90^{\circ}[Provedinpart(ii)]$

BC=BC[Common]

∴ $\triangle DBC \cong \triangle ACB[BySAScongruency]$

(iii) CM = AB

Ans: Since $\triangle DBC \cong \triangle ACB$ [Proved above]

 $\therefore DC = AB$

 \Rightarrow AM + CM = AB

 \Rightarrow CM + CM = AB [::DM = CM]

 \Rightarrow 2CM = AB

 \Rightarrow CM = $\frac{1}{2}$ AB

2. Complete the hexagonal rangoli and the star rangolies (See figure) but filling them with as many equilateral triangles of side 1 cm as you can. Count the number of triangles in each case. Which has more triangles?

Ans: In hexagonal rangoli, Number of equilateral triangles each of side 5 cm are 6.

Area of equilateral triangle =
$$\frac{\sqrt{3}}{4}$$
 (side)² = $\frac{\sqrt{3}}{4}$ (5)² = $\frac{\sqrt{3}}{4}$ × 25 sq. cm

Area of hexagonal rangoli = 6 x Area of an equilateral triangle

$$= 6 \times \frac{\sqrt{3}}{4} \times 25 = 150 \times \frac{\sqrt{3}}{4} \operatorname{sq} \cdot \operatorname{cm} \dots (1)$$

Now area of equilateral triangle of side 1 cm= $\frac{\sqrt{3}}{4}$ (side)² = $\frac{\sqrt{3}}{4}$ (1)² = $\frac{\sqrt{3}}{4}$ sq. cm. ...(2)

Number of equilateral triangles each of side 1 cm in hexagonal rangoli

$$=150\times\frac{\sqrt{3}}{4}+\frac{\sqrt{3}}{4}=150\times\frac{\sqrt{3}}{4}\times\frac{4}{\sqrt{3}}-150...(3)$$

Now in Star rangoli,

Number of equilateral triangles each of side 5cm = 12

Therefore, total area of star rangoli = 12

Area of an equilateral triangle of side 5cm

$$=12\times\left(\frac{\sqrt{3}}{4}(5)^2\right)$$

$$=12\times\frac{\sqrt{3}}{4}\times25$$

$$=300\frac{\sqrt{3}}{4}sq,cm_{...}(iv)$$

Number of equilateral triangles each of side 1 cm in star rangoli

$$=300\frac{\sqrt{3}}{4} \div \frac{\sqrt{3}}{4}$$

$$=300\frac{\sqrt{3}}{4}\times\frac{4}{\sqrt{3}}$$

$$=300....(v)$$

From eq. (iii) and (v), we observe that star rangoli has more equilateral triangles each of side=1 cm

3. Prove that the sum of the quadrilateral is 360° ?

Ans:

Join B and D

to obtain two triangles

ABD $\perp BCD$

$$\angle BAD + \angle ABD + \angle BDA = 180^{\circ}$$
 [sumofthreeanglesof $\triangle is 180^{\circ}$]....(1)

$$\angle CBD + \angle BCD + \angle CDB = 180^{\circ} [sumofthree angles of \Delta is 180^{\circ}]...(2)$$

Adding, (1) and (2)

$$\angle BAD + \angle ABD + \angle BDA + \angle CBD + \angle BCD + \angle BCD + \angle CDB = 360^{\circ}$$

or
$$\angle BAD + (\angle ABD + \angle CBD) + \angle BCD + (\angle CDB + \angle BDA) = 360^{\circ}$$

or
$$\angle BAD + \angle ABC + \angle BCD + \angle CDA = 360^{\circ}$$

$$\angle A + \angle B + \angle C + \angle D = 360^{\circ}$$

So, Sum of quadrilateral is 360°

Hence, proved.

4. ABC is an isosceles triangle with AB=AC. AD bisects the exterior A. Prove that \$AD\parallel BC\$.

Ans: Since AD bisects the exterior A

$$\angle EAD = \frac{1}{2} \angle EAC$$

$$= \frac{1}{2} \left[180^{\circ} - \angle 1 \right] = 90^{\circ} - \frac{1}{2} \angle 1....(i)$$

$$\left[\therefore \angle 1 + \angle EAC = 180^{\circ} (\text{ Linear pair }) \right]$$

5. ABC is an isosceles triangle in which AB=AC and side BA is produced to D such that AD=AB. Show that BCD is a right angle.

Ans: $\angle ABC = \angle ACB$ [anglesoppositetoequalside]

Also, \angle ACD = \angle ADC[angles opposite to equal side]

Now

$$\angle BAC + \angle CAD = 180^{\circ}$$
[linear pair]

Also, $\angle CAD = \angle ABC + \angle ACB$ [exterior angle of $\triangle ABC$]

 $=2\angle ACB[exteriorangleof \triangle ABC]$

Also,
$$\angle BAC = \angle ACD + \angle ADE$$

$$=2\angle ACD$$

$$\therefore \angle BAC + \angle CAD$$

$$=2(\angle ACD + \angle ACB)$$

$$=2\angle BCD$$

i.e.
$$2\angle BCD = 180^{\circ}$$

or
$$\angle BCD = 90^{\circ}$$

6. In the given figure, $\angle A = \angle C$ and AB = BC. Prove that $\triangle ABD \cong \triangle CBE$

Ans: In ΔΑΟΕ and ΔCOD

$$\angle A = \angle C[Given]$$

 $\angle AOE = \angle COD[vertically opposite angle]$

$$\therefore \angle A + \angle AOE = \angle C + \angle COD$$

$$\Rightarrow$$
 180° – $\angle AEO = 180° - \angle CDO$

$$\angle A + \angle AOE + \angle AEO = 180^{\circ}$$
 and

$$\Rightarrow \angle AEO = \angle CDO \rightarrow (i)$$

Now

$$\angle AEO + \angle OEB = 180^{\circ}$$
 [linear pair]

And
$$\angle CDO + \angle ODB = 180^{\circ}$$
 [linear pair]

$$\Rightarrow \angle AEO + \angle OEB = \angle \frac{CDO + \angle ODB}{AEO}$$

$$\Rightarrow \angle OEB = \angle ODB(Using(i))$$

$$\Rightarrow \angle CEB = \angle ADB \rightarrow (ii)$$

Now, in $\triangle ABD$ and $\triangle CBE$,

$$\angle A = \angle C[Given]$$

$$\angle ADB = \angle CEB[From(ii)]$$

$$AB = CB$$

$$\triangle ABD \cong \triangle CBE[ByAAS]$$

7. In the given figure, PR>PQ and PS is the bisector of Prove that $\angle PSR > \angle PSQ$

Ans: In ΔPOR

 $\Rightarrow \angle 3 > \angle 4$ [angle opposite to larger side....(i)

Also, $\angle 6 = \angle 1 + \angle 3$ [Exterior angle theorem]....(ii)

Similarly, $\angle 5 = \angle 2 + \angle 4$

But, $\angle 2 = \angle 1[PS \text{ bisects} \angle QPR]$

$$\therefore \angle 5 = \angle 1 + \angle 4 \dots (iii)$$

Subtracting (iii) from (ii)

$$\angle 6 - \angle 5 = (\angle 1 + \angle 3) - (\angle 1 + \angle 4)$$

Or
$$\angle 6 - \angle 5 = \angle 3 - \angle 4(iv)$$

Now

$$\angle 3 > \angle 4$$

$$\Rightarrow \angle 3 - \angle 4 = 0 \rightarrow (v)$$

From (iv) and (iii)

$$\angle 6 - \angle 5 > 0$$

$$\angle 6 > \angle 5$$

Or \angle PSR > \angle PSQ