Algorithmique Correction Partiel nº 2 (P2)

Solution 1 (Arbres de Léonard – 5 points)

1. L'arbre A_5 de Fibonacci est celui de la figure 1 dont les noeuds contiennent leur propre valeur de déséquilibre.

FIGURE $1 - A_5$ de Fibonacci.

2. Tableau des valeurs de H_n , T_n , F_n et Fib_n :

n	H_n	T_n	F_n	Fib_n
0		0	0	0
1	0	1	1	1
2	1	2	1	1
3	2	4	2	2
4	3	7	3	3
5	4	12	5	5
6	5	20	8	8

- 3. $n \ge 2$:

 - $H_n=n-1$ évident par récurrence $T_n=Fib_{n+2}-1$ par récurrence aussi en notant que $T_n=T_{n-1}+T_{n-2}+1$
 - $F_n = Fib_n$ Vérifient la même récurrence, donc $F_n = Fib_n = Fib_{n-1} + Fib_{n-2}$
- 4. A_0 est réduit à une feuille, donc un arbre h-équilibré.

La racine de A_1 a pour déséquilibre 1 (une feuille à gauche, rien à droite).

Pour $n \geq 2$, A_n est un arbre de hauteur n-1. Ses 2 sous-arbres sont A_{n-1} de hauteur n-2 et A_{n-2} de hauteur n-3. Le déséquilibre de la racine de A_n est donc 1 (n-2-(n-3)).

Bref, tous les noeuds internes d'un arbre de Fibonacci ont un déséquilibre de 1 : c'est donc un arbre h-équilibré.

Solution 2 (ABR et mystère – 5 points)

```
    Résultat retourné:
    (a) call(25, B): None
    (b) call(21, B): 26
    (c) call(20, B): 21
    (d) call(9, B): 15
    (e) call(53, B): None
```

- 2. bst_mystery(x, B) (B ABR quelconque, dont tous les éléments sont distincts). À la fin de la partie 1 :
 - (a) B représente l'arbre de racine x si x présent, il a la valeur None sinon.
 - (b) Sur le chemin de recherche de x, P est l'arbre dont la racine est le dernier nœud rencontré avant de descendre à gauche (il reste à None si on n'est jamais descendu à gauche)...
- 3. call(x, B) : si x est présent dans l'arbre, et n'est pas la plus grand valeur, elle retourne la valeur immédiatement supérieure. Dans les autres cas elle retourne None.

Solution 3 (La taille en plus – 4 points)

```
def addSize(B):
               if B == None:
                   return(None, 0)
               else:
                   C = BinTreeSize()
                   C.key = B.key
                   (C.left, size1) = addSize(B.left)
                   (C.right, size2) = addSize(B.right)
                   C.size = 1 + size1 + size2
                   return (C, C.size)
    another version
12
          def addSize2(B):
14
               if B == None:
15
                   return(None, 0)
16
17
                   (left, size1) = addSize2(B.left)
18
                   (right, size2) = addSize2(B.right)
19
                   size = 1 + size1 + size2
20
                   return (newBinTreeSize(B.key, left, right, size), size)
21
```

Solution 4 (Médian – 7 points)

```
1. B ABR de n éléments dont le k^{\grave{e}me} élément (1 \le k \le n) se trouve en racine :
   - taille(g(B)) = k-1
   — taille(d(B)) = n - k
```

2. Définition abstraite de l'opération kieme (médian était donné) :

AXIOMES

```
k = taille(G)+1 \Rightarrow kieme (\langle r, G, D \rangle, k) = r
k \le taille (G) \Rightarrow kieme (\langle r, G, D \rangle, k) = kieme (G, k)
k > taille (G) +1 \Rightarrow kieme (\langle r, G, D \rangle, k) = kieme (D, k - taille (G)-1)
```

3. Spécifications:

La fonction nthBST(B, k) avec B un ABR non vide et $1 \le k \le taille(B)$, retourne l'arbre dont la racine contient le $k^{\grave{e}me}$ élément de B .

ЕРІТА

```
def nthBST(B, k):
               if B.left == None:
                    leftSize = 0
               else:
                    leftSize = B.left.size
               if leftSize == k - 1:
                    return B
               elif k <= leftSize:</pre>
                    return nthBST(B.left, k)
                    return nthBST(B.right, k - leftSize - 1)
13
14
           def nthBST2(B, k):
16
17
               if B.left == None:
18
                    if k == 1:
19
                        return B
20
21
                    else:
                        return nthBST2(B.right, k - 1)
               else:
                    if k == B.left.size + 1:
25
                        return B
26
                    elif k <= B.left.size:</pre>
27
                        return nthBST2(B.left, k)
28
                    else:
29
                        return nthBST2(B.right, k - B.left.size - 1)
30
```

Spécifications:

La fonction median(B) retourne la valeur médiane de l'ABR B s'il est non vide, la valeur None sinon.

```
def median(B):
    if B != None:
        return nthBST(B, (B.size+1) // 2).key
    else:
        return None
```