COGNOME E NOME: MATRICOLA:

DA LEGGERE CON ATTENZIONE PRIMA DI INIZIARE L'ESAME

- 1) Il tempo a disposizione è 2.5 ore
- 2) Scrivere cognome, nome e numero di matricola su questo foglio e su tutti i fogli consegnati
- 3) Bisogna consegnare il testo del compito anche in caso di ritiro
- 4) Fornire risposte chiare e adeguatamente giustificate
- 5) Nei conti e nei risultati, i valori numerici DEVONO essere accompagnati dalla relativa unità di misura.
- 6) L'elaborato deve essere scritto e consegnato in forma ORDINATA e COMPRENSIBILE.

PROBLEMA P1

Dato il circuito riportato nella figura sottostante, determinare:

- 1) il punto di lavoro dei transistor M_1 e M_2 ;
- 2) la potenza erogata dal generatore di corrente I_A ;
- 3) le resistenze di ingresso e uscita ai piccoli segnali ac R_{in} e R_{out} ;
- 4) il guadagno di tensione ai piccoli segnali ac $A_v = v_o/v_i$;
- 5) il guadagno di corrente ai piccoli segnali ac $A_i=i_o/i_i$;

V_{DD} =12 V, V_{G2} =4 V, I_A =16 mA R_i = 10 k Ω , R_I = 500 k Ω , R_{SI} =1 k Ω , R_{D2} =1 k Ω , R_L = 1 k Ω , M_I : k_{pI} =4 mA/V², V_{TPI} = -2 V, λ_{pI} =0 V⁻¹;

Dati:

$$M_3$$
: k_{n2} =4 mA/V²,
 V_{TN2} = 2 V,
 λ_{n2} = 0 V⁻¹.

PROBLEMA P2

Sia dato il circuito nella figura di pagina seguente che usa amplificatori operazionali e componenti passivi ideali. Le resistenze hanno valore $R_1=R_2=R_3=R_4=R_6=10k\Omega$ e $R_5=90k\Omega$. Le capacità valgono: $C_1=10nF$, $C_2=1\mu F$, $C_3=100nF$ e $C_4=0.1nF$.

- 1) ricavare l'espressione della funzione di trasferimento $W(\omega)=v_0(\omega)/v_{in}(\omega)$;
- 2) tracciare il diagramma di Bode asintotico dell'ampiezza e della fase di W, usando, nel caso della fase, l'approssimazione senza discontinuità.
- 3) Modificare in modo opportuno il valore di C_1 affinché il diagramma di Bode del modulo (asintotico) calcolato in $\omega = 10^5$ rad/s sia pari a 40dB.

PROBLEMA Q1

Sia dato il circuito in figura composto da un diodo ideale D_1 ($V_{ON}=0V$) ed uno diodo Zener D_2 ($V_{ON}=0V$) e $V_Z=2V$). Trovare le regioni di funzionamento dei diodi e tracciare la tensione di uscita V_{OUT} per V_{IN} compreso tra -10V e +10V.

PROBLEMA Q2

Data la seguente mappa di Karnaugh

- 1) Trovare una F minimizzata
- 2) Disegnare la rete logica minimizzata tramite porte logiche fondamentali.

CD AB	00	01	11	10
00	x		1	1
01		x	1	1
11	1	1	х	
10	1	Х	1	Х