3.5.2 MIPS-32处理器

(基本部件)

※CPU设计的主要任务

- ①拟定指令集 🗸
- ②数据通路设计
- ③控制器设计

※CPU执行1条指令的步骤:

①取指令

根据PC,从存储器中取出指令,同时PC自动加4。

②取操作数

根据指令中操作数字段,选择读取寄存器或立即数, 送ALU(运算器)。

③分析指令

将指令中的操作码送<mark>控制器</mark>,分析指令的功能,产生相应的控制信号。

④执行指令

ALU根据控制器产生的控制信号完成指令规定的操作, 并保存结果、修改PC。

※根据指令执行的所需时钟周期数

① 单周期CPU:

指令固定在1个时钟周期内完成。

v 时间效率低,时钟宽度由单指令最长时间决定。

v 在指令周期内, 功能部件不能共享, 冗余度大;

② 多周期CPU:

指令分散在多个时钟周期内完成。

√时间效率高,时钟的宽度由单步最长时间决定。

√不同的时钟周期之间,部件可共享,冗余降低。

MIPS32的指令格式

指令字长固定为32位,寄存器型寻址,指令中给出寄存器号(显、隐)或者偏移量。

指令	指令长度(32位定长)					
类型	31 ~ 26	25~21	20~16	25~11	10 ~ 6	5~0
R型	op(6)	rs(5)	rt (5)	rd(5)	sa	funct
I型	op(6)	rs(5)	rt (5)	imm (16)		
J型	op(6)	address(26)				

基本部件的选型

- ※ 存储相关的部件
- ※ 数据预处理部件
- ※ 运算部件
- ※ 数据通路选择部件
- ※ 控制单元(控制器)

1、存储相关的部件

- (1) 寄存器堆(组)
 - > 读数据(根据指令中的rs或rt)
 - ➤ 写数据(根据指令中的rt或rd)
- 32个寄存器,数据宽度32位
- 一般通过多端口小存储器构成寄存器堆

读写操作均靠时钟信号的边沿触发。

(2)存储器

(3)特殊功能寄存器

- ▶ PC(程序计数器), IR(指令寄存器)
- ▶ FR (标志寄存器, PWS, 与运算器相关)
- Enable: 写使能信号
- ➤ Enable=0 时钟边沿到来时,从R读

➤ Enable=1 时钟边沿到来时,向R写

→ PC和IR在数据通路中的作用

2、运算部件

- ▶ 算术逻辑运算单元,ALU
- ▶ PC自增单元(固定加4的运算器)

①32位加法器—Adder

加法器的输入端口A,可以固定输入常数4

②32位运算器—ALU

加法器的输入端口A,可以固定输入常数4

operation	ALU功能	ALU输出		
0000	AND	A AND B		
0001	OR	A OR B		
0010	ADD	A ADD B		
0110	SUB	A SUB B		
0111	小于则置1	A< B?: 1		
1100	NOR	Not (A OR B)		
•••	•••	•••		

3、数据预处理部件

- ▶ 带符号扩展、无符号扩展(0扩展)
- > 左移两位
- > 4位-28位拼接
- ①双模扩展器一Extender

16→32扩展器

①E=1时,数值型(补码)符号扩展 000A → 0000000A 800A → FFFF800A 正数高位全补0,负数高位权补1

②E=0时,逻辑型扩展(零扩展):

 $002A \longrightarrow 0000002A$

 $F12C \longrightarrow 0000F12C$

无论正负,高位均全补0

②左移2位扩展器

左移时空位自动补0

[例] <u>XX</u>XX...XXXX → XX...XX<u>00</u> (等效于乘4)

③2路拼接器

例如:

PC=A0000000 address=FFFFBB4

→ PC[31:28] U address
=AFFFFBB4

4、数据通路选择部件

32位的多路选择器—MUX

其中,2^m≥n