Can Social Media tell us something about our lives?

Vasileios Lampos

Computer Science Department University of Sheffield

March, 2013

Outline

- ⊥ Motivation, Aims [Facts, Questions]
- **⊥** Data
- **⊢** Nowcasting Events
- **⊢** Extracting Mood Patterns
- \dashv TrendMiner Extracting Political Opinion
- **⊨** Conclusions

Facts

We started to work on those ideas back in 2008, when...

- Web contained 1 trillion unique pages (Google)
- Social Networks were rising, e.g.
 - Facebook: $100m (2008) \rightarrow > 1$ billion active users (October, 2012)
 - Twitter: 6m (2008) \rightarrow **500m** active users (July, 2012)
- User behaviour was changing
 - Socialising via the Web
 - Giving up privacy (Debatin et al., 2009)

Some general questions

- Does user generated text posted on Social Web platforms include useful information?
- How can we extract this useful information...
 - ... automatically? Therefore, not we, but a machine.
- Practical / real-life applications?
- Can those large samples of human input assist studies in other scientific fields?
 - Social Sciences, Psychology, Epidemiology

The Data (1/3)

Why Twitter?

- Has a lot of content that is publicly accessible
- Provides a well-documented API for several types of data collection
- Opinions and personal statements on various domains
- Connection with current affairs (usually in real-time)
- Some content is **geo-located**
- Option for personalised modelling
- ... and we got good results from the very first, simple experiment!

The Data (2/3)

What does a @tweet look like?

Figure 1: Some biased and anonymised examples of tweets (limit of 140 characters/tweet, # denotes a topic)

Why do I feel so happy today hihi.
Bedtimeeee, good night. Yey thank You Lord
for everything. Answered prayer ♥

- ♣ Reply 🔁 Retweet ★ Favorite
 - (a) (user will remain anonymous)

another demo covered by citizens today in Thessaloniki int'l fair. Citizen journalism on a speed rise in #Greece. check #deth and #rbnews

- Reply 13 Retweet * Favorite
 - (c) citizen journalism

RT if you love Justin Bieber. Delete ur account if you don't.

(b) they live around us

i think i have the flu but i still look fabulous

- Reply Retweet * Favorite
 - (d) flu attitude

The Data (3/3)

Data Collection & Preprocessing

- The easiest part of the process...
 - not true! → Storage space, crawler implementation, parallel data processing, new technologies (e.g., Map-Reduce) (Preotiuc et al., 2012)
- Data collected via Twitter's Search API:
 - collective sampling
 - tweets geo-located in 54 urban centres in the UK
 - periodical crawling (every 3 or 5 minutes per urban centre)
- Data collected via Twitter's REST API:
 - user-centric sampling
 - \circ preprocessing to approximate user's location (city & country)
 - o ... or manual user selection from domain experts
 - o get their latest tweets (3,000 or more)
- Several forms of ground truth (flu/rainfall rates, polls)

Nowcasting Events from the Social Web

'Nowcasting'?

We do not predict the future, but ${\bf infer\ the\ present}-\delta$ ${\it i.e.}\ \ {\bf the\ very\ recent\ past}$

Figure 2 : Nowcasting the magnitude of an event (ε) emerging in the real world from Web information

Our case studies: nowcasting (a) flu rates & (b) rainfall rates (?!)

What do we get in the end?

This is a **regression** problem (text regression in NLP) i.e. \forall time interval i we aim to infer $y_i \in \mathbb{R}$ using text input $\mathbf{x}_i \in \mathbb{R}^n$

Figure 3: Inferred rainfall rates for Bristol, UK (October, 2009)

Methodology (1/5) — Text in Vector Space

Candidate features (*n*-grams): $C = \{c_i\}$

Set of **Twitter posts** for a time interval u: $\mathcal{P}^{(u)} = \{p_i\}$

Frequency of c_i in p_i :

$$g(c_i, p_j) = \begin{cases} \varphi & \text{if } c_i \in p_j, \\ 0 & \text{otherwise.} \end{cases}$$

– g Boolean, maximum value for φ is 1 –

Score of c_i in $\mathcal{P}^{(u)}$:

$$s\left(c_{i}, \mathcal{P}^{(u)}\right) = \frac{\sum_{j=1}^{|\mathcal{P}^{(u)}|} g(c_{i}, p_{j})}{|\mathcal{P}^{(u)}|}$$

Methodology (2/5)

Set of **time intervals**: $\mathcal{U} = \{u_k\} \sim 1$ hour, 1 day, ...

Time series of candidate features scores:

$$X^{(\mathcal{U})} = \begin{bmatrix} \mathbf{x}^{(u_1)} & \dots & \mathbf{x}^{(u_{|\mathcal{U}|})} \end{bmatrix}^\mathsf{T},$$

where

$$oldsymbol{x}^{(u_i)} = \left[s\left(c_1, \mathcal{P}^{(u_i)}
ight) \; ... \; s\left(c_{|\mathcal{C}|}, \mathcal{P}^{(u_i)}
ight)
ight]^\mathsf{T}$$

Target variable (event):

$$oldsymbol{y}^{(\mathcal{U})} = egin{bmatrix} y_1 & ... & y_{|\mathcal{U}|} \end{bmatrix}^\mathsf{T}$$

Methodology (3/5) — Feature selection

Solve the following **optimisation problem**:

• Least Absolute Shrinkage and Selection Operator (LASSO)

$$\underset{\boldsymbol{w}}{\operatorname{argmin}} \|\boldsymbol{X}^{(\mathcal{U})}\boldsymbol{w} - \boldsymbol{y}^{(\mathcal{U})}\|_{\ell_2}^2 + \lambda \|\boldsymbol{w}\|_{\ell_1}$$

(Tibshirani, 1996)

- Expect a **sparse w** (feature selection)
- Least Angle Regression (LARS) computes entire regularisation path (\mathbf{w} 's for different values of λ) (Efron et al., 2004)

Methodology (4/5)

LASSO is model-inconsistent:

- inferred sparsity pattern may deviate from the true model, e.g., when predictors are highly correlated (Zhao and Yu, 2006)
- bootstrap [?] LASSO (Bolasso) performs a more robust feature selection (Bach, 2008)
 ?
 - o in each bootstrap, input space is sampled with replacement
 - apply LASSO (LARS) to select features
 - select features with nonzero weights in all bootstraps
- better alternative soft-Bolasso:
 - o a less strict feature selection
 - \circ select features with nonzero weights in p% of bootstraps
 - (learn *p* using a separate validation set)
- weights of selected features determined via OLS regression

Methodology (5/5) — Simplified summary

Observations: $X \in \mathbb{R}^{m \times n}$ (m time intervals, n features)

Response variable: $y \in \mathbb{R}^m$

For i=1 to number of bootstraps Form $X_i\subset X$ by sampling X with replacement Solve LASSO for X_i and ${m y}$, i.e. learn ${m w}_i\in \mathbb{R}^n$ Get the $k\leq n$ features with nonzero weights End For

Select the $v \leq n$ features with nonzero weight in p% of the bootstraps Learn their weights with OLS regression on $X^{(v)} \in \mathbb{R}^{m \times v}$ and y

How do we form candidate features?

- Commonly formed by indexing the entire corpus (Manning, Raghavan and Schütze, 2008)
- We extract them from Wikipedia, Google Search results, Public Authority websites (e.g., NHS)

Why?

o reduce dimensionality to bound the error of LASSO

$$\mathcal{L}(\mathbf{w}) \leq \mathcal{L}(\hat{\mathbf{w}}) + \mathcal{Q}$$
, with $\mathcal{Q} \sim \min\left\{\frac{W_1^2}{N} + \frac{p}{N}, \frac{W_1^2}{N} + \frac{W_1}{\sqrt{N}}\right\}$

p candidate features, N samples, empirical loss $\mathcal{L}(\hat{m{w}})$ and

$$\|\hat{m{w}}\|_{\ell_1} \leq W_1$$
 (Bartlett, Mendelson and Neeman, 2011)

Harry Potter Effect!

The 'Harry Potter' effect (1/2)

Figure 4: Events co-occurring (correlated) with the inference target may affect feature selection, especially when the sample size is small.

(Lampos, 2012a)

The 'Harry Potter' effect (2/2)

Table 1: Top 1-grams correlated with flu rates in England/Wales (06-12/2009)

1-gram	Event	Corr. Coef.
latitud	Latitude Festival	0.9367
flu	Flu epidemic	0.9344
swine	A	0.9212
harri	Harry Potter Movie	0.9112
slytherin	A	0.9094
potter	A	0.8972
benicassim	Benicàssim Festival	0.8966
graduat	Graduation (?)	0.8965
dumbledor	Harry Potter Movie	0.8870
hogwart	A	0.8852
quarantin	Flu epidemic	0.8822
gryffindor	Harry Potter Movie	0.8813
ravenclaw	A	0.8738
princ	A	0.8635
swineflu	Flu epidemic	0.8633
ginni	Harry Potter Movie	0.8620
weaslei	A	0.8581
hermion	A	0.8540
draco	A	0.8533

Solution: ground truth with some degree of variability

(Lampos, 2012a)

About n-grams

1-grams

- decent (dense) representation in the Twitter corpus
- unclear semantic interpretation
 Example: "I am not sick. But I don't feel great either!"

2-grams

- very sparse representation in tweets
- sometimes clearer semantic interpretation

Experimental process indicated that...

a hybrid combination* of 1-grams and 2-grams delivers the best inference performance

^{*} refer to (Lampos, 2012a)

Flu rates – Example of selected features

Figure 5: Font size is proportional to the weight of each feature; flipped n-grams are negatively weighted. All words are stemmed (Porter, 1980).

(Lampos and Cristianini, 2012)

Rainfall rates – Example of selected features

Figure 6: Font size is proportional to the weight of each feature; flipped n-grams are negatively weighted. All words are stemmed (Porter, 1980).

(Lampos and Cristianini, 2012)

Examples of inferences

Figure 7: Examples of flu and rainfall rates **inferences** from Twitter content (Lampos and Cristianini, 2012)

Performance figures

Table 2 : RMSE for **flu rates** inference (5-fold cross validation), 50m tweets, 21/06/2009-19/04/2010

Method	1-grams	2-grams	Hybrid
Baseline*	12.44±2.37	13.81±3.29	11.62±1.58
Bolasso	11.14±2.35	12.64±2.57	10.57±2.2
CART ensemble**	9.63 ±5.21	13.13±4.72	9.4 ±4.21

Table 3 : RMSE (in mm) for rainfall rates inference (6-fold cross validation), 8.5m tweets, 01/07/2009-30/06/2010

Method	1-grams	2-grams	Hybrid
Baseline*	2.91±0.6	3.1±0.57	4.39±2.99
Bolasso	2.73±0.65	2.95±0.55	2.60 ±0.68
CART ensemble**	2.71 ±0.69	2.72±0.72	2.64±0.63

^{*} As implemented in (Ginsberg et al., 2009)

^{**} Classification and Regression Tree (Breiman et al., 1984) & (Sutton, 2005)

Flu Detector

URL: http://geopatterns.enm.bris.ac.uk/epidemics

Figure 8: Flu Detector uses the content of Twitter to nowcast flu rates in several UK regions

(Lampos, De Bie and Cristianini, 2010)

Extracting Mood Patterns from the Social Web

Computing a mood score

Table 4: Mood terms from WordNet Affect

Fear	Sadness	Joy	Anger
afraid	depressed	admire	angry
fearful	discouraged	cheerful	despise
frighten	disheartened	enjoy	enviously
horrible	dysphoria	enthousiastic	harassed
panic	gloomy	exciting	irritate
(92 terms)	(115 terms)	(224 terms)	(146 terms)

Mood score computation for a time interval d using n mood terms

$$\mathsf{ms}_d = \frac{1}{n} \sum_{i=1}^n \frac{c_i^{(t_d)}}{N(t_d)}$$

 $c_i^{(t_d)}$: count of term i in the Twitter corpus of day d $N(t_d)$: number of tweets for day d

Using the sample of d days, compute a standardised mood score:

$$ext{ms}_d^{ ext{std}} = rac{ ext{ms}_d - \mu_{ ext{ms}}}{\sigma_{ ext{ms}}}$$

The mood of the nation (1/5)

Figure 9: Daily time series (actual & their 14-point moving average) for the mood of $\bf Joy$ based on Twitter content geo-located in the $\bf UK$

(Lansdall, Lampos and Cristianini, 2012a&b)

The mood of the nation (2/5)

Figure 10: Daily time series (actual & their 14-point moving average) for the mood of $\bf Anger$ based on Twitter content geo-located in the $\bf UK$

(Lansdall, Lampos and Cristianini, 2012a&b)

The mood of the nation (3/5)

Window of 100 days: 50 before & after the point of interest

$$\mathsf{ms}^{\mathsf{std}}_i = \mu\left(\mathsf{ms}^{\mathsf{std}}_{i+1 o i+50}
ight) - \mu\left(\mathsf{ms}^{\mathsf{std}}_{i-50 o i-1}
ight)$$

Figure 11: Change point detection using a 100-day moving window

(Lansdall, Lampos and Cristianini, 2012a)

The mood of the nation (4/5)

Figure 12: Projections of 4-dimensional mood score signals (joy, sadness, anger and fear) on their top-2 principal components (PCA) – Twitter content from 2011

Cluster II

O.B. Laden's death (122), Winehouse's death + Breivik (204), UK riots (221)

(Lampos, 2012a)

The mood of the nation (5/5)

URL: http://geopatterns.enm.bris.ac.uk/mood

Figure 13: Mood of the Nation uses the content of Twitter to nowcast mood rates in several UK regions

(Lampos, 2012a)

Circadian mood patterns (1/3)

Compute **24-h** mood score patterns

Mood score computation for a **time interval** u = 24hours using n **mood terms** (WordNet) and a sample of D **days**:

$$\mathcal{M}_s(u) = \frac{1}{|D|} \sum_{j=1}^{|D|} \left(\frac{1}{n} \sum_{i=1}^n sf_i^{(t_{j,u})} \right)$$

$$sf_i^{(t_{d,u})} = \frac{f_i^{(t_{d,u})} - \bar{f}_i}{\sigma_{f_i}}, \ i \in \{1, ..., n\}.$$

 $f_i^{(t_{d,u})}$: normalised frequency of a mood term i during time interval u in day $d{\in}D$

Circadian mood patterns (2/3)

Figure 14: Circadian (24-hour) mood patterns based on UK Twitter content

Circadian mood patterns (3/3)

Figure 15: Autocorrelation of circadian mood patterns based on hourly lags revealing daily and weekly periodicities

... further analysis on those patterns (in collab. with domain experts) under submission

TrendMiner Project

Extracting political opinion from Social Media

A few words about the project...

- TrendMiner is an EU-FP7 project
- Several participants incl. the Univ. of Sheffield & Southampton (UK) and DFKI (Germany)
- Aims to form methods for interpreting the vast stream of online information
- Our focus on analysis of Twitter content → political opinion, financial indicators
- Work in progress and under submission process → cannot go into much detail!

Some new challenges

Aim: model voting intention

- o regression task
- o multiple outputs

• Overcome **limitations** of previous methods

- \circ use of sentiment analysis taxonomies o language specific, restrictive
- combined modelling of word frequencies and the domain of users?
- \circ multi-task learning \to exploit correlations in the feature space
- o multi-task & multi-domain learning
 - \rightarrow model political opinion + financial indicators jointly

Proper evaluation

- k-fold cross-validation may sometimes be misleading
- o can we actually predict future values?

Qualitative evaluation is also essential...

- Some domains may be represented by **smooth** trends (e.g., political domain)
- Predictions could be easy in that context
 - \rightarrow how do we know we are not **overfitting**?
- Perform qualitative analysis using the selected features (words, users and tweets)
 - Do the selected words and users make some sense?
 - \circ Does their combination make sense? \to score single tweets
- Possibly better models when increasing the statistical evidence (multi-task learning)

Conclusions – Did *they* tell us anything?

- Social Media hold valuable information
- We can develop methods to extract portions of this information automatically
 - detect, quantify, nowcast events
 - extract collective mood patterns
 - model other domains (such as politics)
- User generated input + other features
 - \rightarrow tell/reveal **something** about the users & their context
- Side effects: what about our **privacy**? ...

In collaboration with...

Prof. Nello Cristianini, University of Bristol

Prof. Ricardo Araya, University of Bristol (Psychiatry)

Dr. Tijl De Bie, University of Bristol

Thomas Lansdall-Welfare, University of Bristol

Dr. Trevor Cohn, University of Sheffield (TrendMiner)

Daniel Preotiuc-Pietro, University of Sheffield (TrendMiner)

Last Slide!

The end.

Any questions?

Download the slides from

http://www.lampos.net/research/presentations-and-posters

References

- B. Debatin, J.P. Lovejoy, A.M.A. Horn and B.N. Hughes. Facebook and Online Privacy: Attitudes, Behaviors, and Unintended Consequences. Journal of Computer-Mediated Communication 15, pp. 83–108, 2009.
- D. Preotiuc-Pietro, S. Samangooei, T. Cohn, N. Gibbins and M. Niranjan. TrendMiner: An Architecture for Real Time Analysis of Social Media Text. Proceedings of ICWSM '12, pp. 38–42, 2012.
- V. Lampos and N. Cristianini. Nowcasting Events from the Social Web with Statistical Learning. ACM TIST 3(4), n. 72, 2012.
- R. Tibshirani. Regression Shrinkage and Selection via the LASSO. Journal of the Royal Statistical Society, series B, 58(1), pp. 267–288, 1996.
- B. Efron, T. Hastie, I. Johnstone and R. Tibshirani. Least Angle Regression. The Annals of Statistics 32(2), pp. 407–499, 2004.
- C.D. Manning, P. Raghavan and H. Schütze. Introduction to Information Retrieval. Cambridge University Press, p. 544, 2008.
- P.L. Bartlett, S. Mendelson and J. Neeman. L1-regularized linear regression: persistence and oracle inequalities. Probability Theory and Related Fields, pp. 1–32, 2011.
- 8. M.F. Porter. An algorithm for suffix stripping. Program 14(3), pp. 130-137, 1980.
- V. Lampos and N. Cristianini. Tracking the flu pandemic by monitoring the Social Web. Proceedings of CIP '10, pp. 411–416, 2010.
- V. Lampos, T. De Bie and N. Cristianini. Flu Detector Tracking Epidemics on Twitter. Proceedings of ECML PKDD '10, pp. 599–602, 2010.
- T. Lansdall-Welfare, V. Lampos and N. Cristianini. Effects of the Recession on Public Mood in the UK. Proceedings of WWW '12, pp. 1221–1226, 2012.(a)
- T. Lansdall-Welfare, V. Lampos and N. Cristianini. Nowcasting the mood of the nation. Significance 9(4), pp. 26–28, 2012.(b)
- 13. V. Lampos. Detecting Events and Patterns in Large-Scale User Generated Textual Streams with Statistical Learning Methods. PhD Thesis, University of Bristol, p. 243, 2012.(a)
- V. Lampos. On voting intentions inference from Twitter content: a case study on UK 2010 General Election. CoRR. 2012.(b)