Test1 d'Analyse 1-2022/2023

Choisir 2 exercices parmis les trois exercices proposés

Exercice1. Soit l'ensemble $A = \left\{ \frac{2^n}{2^n - 1}, n \in \mathbb{N}^* \right\}$.

- 1. Montrer que $\forall n \in \mathbb{N}^*, 2^{n-1} \leq 2^n 1$, en dédure que $\frac{2^n}{2^n 1} \leq 2$.
- 2. Montrer en utilisant la caractérisation de la borne supérieur et la borne inférieur que:

$$\sup A = 2 \text{ et inf } A = 1.$$

Exercice2.

Exercice2. Soit $(U_n)_n$ une suite définie par la relation de recurrence $\begin{cases} U_0 = \frac{1}{2} \\ U_{n+1} = \frac{3U_n}{1+2U_n}, n \in \mathbb{N} \end{cases}$

- 1. Montrer que $\forall n \in \mathbb{N}, 0 < U_n < 1$, et que la suite $(U_n)_n$ est monotone
- 2. En déduire que la suite $(U_n)_n$ est convergente, déterminer sa limite.
- 3. On pose $E = \{U_n/n \in \mathbb{N}\}$, déterminer $\sup E$ et inf E.

Exercice3.

- Soit le nombre complexe $z = \frac{1+i}{1-i\sqrt{3}}$. 1. Ecrire z sous la forme algèbrique et trigonométrique.
- 2. Déduire $\cos \frac{7\pi}{12}$ et $\sin \frac{7\pi}{12}$.

Test1 d'Analyse 1-2022/2023

Choisir 2 exercices parmis les trois exercices proposés

Exercice1. Soit l'ensemble $A = \left\{ \frac{2^n}{2^n - 1}, n \in \mathbb{N}^* \right\}$.

- 1. Montrer que $\forall n \in \mathbb{N}^*, 2^{n-1} \leq 2^n 1$, En dédure que $\frac{2^n}{2^n 1} \leq 2$.
- 2. Montrer en utilisant la caractérisation de la borne supérieur et la borne inférieur que:

$$\sup A = 2$$
 et $\inf A = 1$.

Exercice2.

Soit $(U_n)_n$ une suite définie par la relation de recurrence $\begin{cases} U_0 = \frac{1}{2} \\ U_{n+1} = \frac{3U_n}{1+2U_n}, n \in \mathbb{N} \end{cases} .$

- 1. Montrer que $\forall n \in \mathbb{N}, 0 < U_n < 1$, et que la suite $(U_n)_n$ est monotone.
- 2. En déduire que la suite $(U_n)_n$ est convergente, déterminer sa limite.
- 3. On pose $E = \{U_n/n \in \mathbb{N}\}$, déterminer sup E et inf E.

Exercice3.

- Soit le nombre complexe $z=\frac{1+i}{1-i\sqrt{3}}$. 1. Ecrire z sous la forme algèbrique et trigonométrique. 2. Déduire $\cos\frac{7\pi}{12}$ et $\sin\frac{7\pi}{12}$.