MA1100 Homework 3

Qi Ji A0167793L T04

1st October 2017

$\mathbf{Q}\mathbf{1}$

Statement. For any sets X, Y, Z and any maps $f: X \mapsto Y$ and $g: Y \mapsto Z$, if f is injective and g is injective, then $g \circ f$ is injective.

Statement is **true**.

Proof. If f is injective, by definition,

$$\forall x_1, x_2 \in X. \ f(x_1) = f(x_2) \implies x_1 = x_2.$$

If g is injective, by definition,

$$\forall y_1, y_2 \in Y. \ g(y_1) = g(y_2) \implies y_1 = y_2.$$

 $g \circ f$ is defined as

$$\forall x \in X. (q \circ f)(x) := q(f(x)).$$

Then given $a, b \in X$,

if
$$(g \circ f)(a) = (g \circ f)(b)$$
, then

by definition of the composite map $g \circ f$, g(f(a)) = g(f(b)).

Since g is injective and $f(a), f(b) \in Y$, this implies f(a) = f(b).

Since f is injective and $a, b \in X$, this implies a = b.

Therefore, we can conclude that given f is injective and g is injective,

$$\forall a, b \in X. (g \circ f)(a) = (g \circ f)(b) \implies a = b,$$

 $g \circ f$ is injective.

Statement. For any sets X, Y, Z and any maps $f: X \mapsto Y$ and $g: Y \mapsto Z$, if f is injective and g is surjective, then $g \circ f$ is injective.

Statement is false.

Negation. There exists sets X, Y, Z and maps $f: X \mapsto Y$ and $g: Y \mapsto Z$ such that, f is injective and g is surjective, but $g \circ f$ is not injective.

Proof. Let

$$X := \{1, 2, 3\},$$

$$Y := \{4, 5, 6, 7\},$$

$$Z := \{10, 11\},$$

$$\Gamma f \subseteq X \times Y := \{(1, 4), (2, 5), (3, 6)\},$$

$$\Gamma g \subseteq Y \times Z := \{(4, 10), (5, 10), (6, 11), (7, 11)\}.$$

Trivially, it can be visually verified that f and g are totally-defined and well-defined. f is injective, because

$$\forall x_1, x_2 \in X. \ x_1 \neq x_2 \implies f(x_1) \neq f(x_2).$$

q is surjective, because

$$\forall z \in Z. \ \exists y \in Y. \ g(y) = z.$$

 $g \circ f$ is defined as

$$\forall x \in X. \ (g \circ f)(x) := g(f(x)).$$

In this example,

$$\Gamma(g \circ f) \subseteq X \times Z := \{(1, 10), (2, 10), (3, 11)\}.$$

Take $a, b \in X$ to be 1 and 2 respectively,

$$(g \circ f)(1) = (g \circ f)(2) = 10.$$

Since there exists $a, b \in X$ such that $(g \circ f)(a) = (g \circ f)(b)$ and $a \neq b$,

 $g \circ f$ is not injective.

Therefore, we can conclude that there exists sets X, Y, Z and maps $f: X \mapsto Y$ and $g: Y \mapsto Z$ such that f is injective and g is surjective, but $g \circ f$ is not injective.

Statement. For any sets X, Y, Z and any maps $f: X \mapsto Y$ and $g: Y \mapsto Z$, if f is surjective and g is injective, then $g \circ f$ is injective.

Statement is **false**.

Negation. There exists sets X, Y, Z and maps $f: X \mapsto Y$ and $g: Y \mapsto Z$ such that, f is surjective and g is injective, but $g \circ f$ is not injective.

Proof. Let

$$X := \{1, 2, 3\},$$

$$Y := \{4, 5\},$$

$$Z := \{10, 11\},$$

$$\Gamma f \subseteq X \times Y := \{(1, 4), (2, 5), (3, 4)\},$$

$$\Gamma g \subseteq Y \times Z := \{(4, 10), (5, 11)\}.$$

Trivially, it can be visually verified that f and g are totally-defined and well-defined. f is surjective, because

$$\forall y \in Y. \ \exists x \in X. \ f(x) = y.$$

g is injective, because

$$\forall y_1, y_2 \in Y. \ y_1 \neq y_2 \implies g(y_1) \neq g(y_2).$$

 $g \circ f$ is defined as

$$\forall x \in X. \ (g \circ f)(x) := g(f(x)).$$

In this example,

$$\Gamma(g \circ f) \subseteq X \times Z := \{(1, 10), (2, 11), (3, 10)\}.$$

Take $a, b \in X$ to be 1 and 3 respectively,

$$(g \circ f)(1) = (g \circ f)(3) = 10.$$

Since there exists $a, b \in X$ such that $(g \circ f)(a) = (g \circ f)(b)$ and $a \neq b$,

 $(g \circ f)$ is not injective.

Therefore, we can conclude that there exists sets X, Y, Z and maps $f: X \mapsto Y$ and $g: Y \mapsto Z$ such that f is surjective and g is injective, but $g \circ f$ is not injective.

$\mathbf{Q4}$

Statement. For any sets X, Y, Z and any maps $f: X \mapsto Y$ and $g: Y \mapsto Z$, if f is injective and g is surjective, then $g \circ f$ is surjective.

Statement is **false**.

Negation. There exists sets X, Y, Z and maps $f: X \mapsto Y$ and $g: Y \mapsto Z$ such that, f is injective and g is surjective, but $g \circ f$ is not surjective.

Proof. Let

$$X := \{1, 2\},$$

$$Y := \{4, 5, 6\},$$

$$Z := \{10, 11, 12\},$$

$$\Gamma f \subseteq X \times Y := \{(1, 4), (2, 5)\},$$

$$\Gamma g \subseteq Y \times Z := \{(4, 10), (5, 11), (6, 12)\}.$$

Trivially, it can be visually verified that f and g are totally-defined and well-defined. f is injective, because

$$\forall x_1, x_2 \in X. \ f(x_1) = f(x_2) \implies x_1 = x_2.$$

g is surjective, because

$$\forall z \in Z. \ \exists y \in Y. \ g(y) = z.$$

 $g \circ f$ is defined as

$$\forall x \in X. \ (g \circ f)(x) := g(f(x)).$$

In this example,

$$\Gamma(g \circ f) \subseteq X \times Z := \{(1, 10), (2, 11)\}.$$

Take $12 \in \mathbb{Z}$,

$$\forall x \in X. (q \circ f)(x) \neq 12.$$

Since $\exists z \in Z. \ \forall x \in X. \ (g \circ f)(x) \neq z$,

 $g \circ f$ is not surjective.

Therefore, we can conclude that there exists sets X, Y, Z and maps $f: X \mapsto Y$ and $g: Y \mapsto Z$ such that f is injective and g is surjective, but $g \circ f$ is not surjective.

$\mathbf{Q5}$

Statement. For any sets X, Y, Z and any maps $f: X \mapsto Y$ and $g: Y \mapsto Z$, if f is surjective and g is injective, then $g \circ f$ is surjective.

Statement is **false**.

Negation. There exists sets X, Y, Z and maps $f: X \mapsto Y$ and $g: Y \mapsto Z$ such that, f is surjective and g is injective, but $g \circ f$ is not surjective.

Proof. Let

$$X := \{1, 2, 3\},$$

$$Y := \{4, 5\},$$

$$Z := \{10, 11, 12\},$$

$$\Gamma f \subseteq X \times Y := \{(1, 4), (2, 5), (3, 4)\},$$

$$\Gamma g \subseteq Y \times Z := \{(4, 10), (5, 11)\}.$$

Trivially, it can be visually verified that f and g are totally-defined and well-defined. f is surjective, because

$$\forall y \in Y. \ \exists x \in X. \ f(x) = y.$$

g is injective, because

$$\forall y_1, y_2 \in Y. \ y_1 \neq y_2 \implies g(y_1) \neq g(y_2).$$

 $g \circ f$ is defined as

$$\forall x \in X. (g \circ f)(x) := g(f(x)).$$

In this example,

$$\Gamma(g \circ f) \subseteq X \times Z := \{(1, 10), (2, 11), (3, 10)\}.$$

Take $12 \in \mathbb{Z}$,

$$\forall x \in X. (q \circ f)(x) \neq 12.$$

Since $\exists z \in Z. \ \forall x \in X. \ (g \circ f)(x) \neq z, \ g \circ f$ is not surjective.

Therefore, we can conclude that there exists sets X, Y, Z and maps $f: X \mapsto Y$ and $g: Y \mapsto Z$ such that f is surjective and g is injective, but $g \circ f$ is not surjective. \square

$\mathbf{Q6}$

Statement. For any sets X, Y, Z and any maps $f: X \mapsto Y$ and $g: Y \mapsto Z$, if f is surjective and g is surjective, then $g \circ f$ is surjective.

Statement is **true**.

Proof. If f is surjective, by definition,

$$\forall y \in Y. \ \exists x \in X. \ f(x) = y.$$

If g is surjective, by definition,

$$\forall z \in Z. \ \exists y \in Y. \ g(y) = z.$$

 $g \circ f$ is defined as

$$\forall x \in X. \ (g \circ f)(x) := g(f(x)).$$

Then given $c \in \mathbb{Z}$,

Since g is surjective, $\exists b \in Y. \ g(b) = c.$

f is also surjective, so given $b \in Y$, $\exists a \in X$. f(a) = b.

Therefore, $\exists a \in X. \ g(f(a)) = c.$

Therefore, we can conclude that given f is surjective and g is surjective,

$$\forall c \in Z. \ \exists a \in X. \ (g \circ f)(a) = c,$$

 $g \circ f$ is surjective.

 $\mathbf{Q7}$

(a)

Claim. Given sets $A, B, A \subseteq B$ iff $A \cup B = B$.

Proof. Assume $A \subseteq B$, then $\forall x. \ x \in A \implies x \in B$. (\Longrightarrow) Let $x \in A \cup B$ be arbitary, but fixed, then,

$$(x \in A) \lor (x \in B).$$

Case $x \in A$, since $A \subseteq B$, $x \in B$.

Case $x \in B$, trivially, $x \in B$.

Because for any arbitary $x, x \in A \cup B \implies x \in B$, we have $A \cup B \subseteq B$. Conversely let $x \in B$ be arbitary, but fixed, then trivially,

$$x \in B$$
$$(x \in A) \lor (x \in B)$$
$$x \in A \cup B$$

Since for any arbitary $x, x \in B \implies x \in A \cup B$, we have $B \subseteq A \cup B$. Now because $A \cup B \subseteq B$ and $B \subseteq A \cup B$, we conclude that if $A \subseteq B$, then $A \cup B = B$.

Assume $A \cup B = B$, then by axiom of extentionality, (\Leftarrow)

$$\forall x. \ x \in A \cup B \iff x \in B$$

 $\forall x. \ (x \in A) \lor (x \in B) \iff x \in B$

Let $x \in A$ be arbitary, but fixed, then by above statement, $x \in B$. Because for any arbitary $x, x \in A \implies x \in B$, we conclude that if $A \cup B = B$, then $A \subseteq B$.

We have $A \subseteq B \implies A \cup B = B$ and $A \cup B = B \implies A \subseteq B$, so $A \subseteq B$ iff $A \cup B = B$. \square

(b)

Claim. Given sets $A, B, A \cap B = A$ iff $A \cup B = B$.

Proof. Assume $A \cap B = A$, then by axiom of extentionality, (\Longrightarrow)

$$\forall x. \ x \in A \cap B \iff x \in A$$
$$\forall x. \ (x \in A) \land (x \in B) \iff x \in A$$
 (1)

Let $x \in A \cup B$ be arbitary, but fixed, then,

$$(x \in A) \lor (x \in B).$$

Case $x \in A$, by (1), $(x \in A) \land (x \in B)$, so $x \in B$.

Case $x \in B$, trivially, $x \in B$.

Because for any arbitary $x, x \in A \cup B \implies x \in B$, we have $A \cup B \subseteq B$. Conversely let $x \in B$ be arbitary, but fixed, then trivially,

$$x \in B$$
$$(x \in A) \lor (x \in B)$$
$$x \in A \cup B$$

Since for any arbitary $x, x \in B \implies x \in A \cup B$, we have $B \subseteq A \cup B$. Because $A \cup B \subseteq B$ and $B \subseteq A \cup B$, we conclude that if $A \cap B = A$, then $A \cup B = B$. Now assume $A \cup B = B$, then by axiom of extentionality,

$$\forall x. \ x \in A \cup B \iff x \in B$$

$$\forall x. \ (x \in A) \lor (x \in B) \iff x \in B$$
(2)

Let $x \in A \cap B$ be arbitary, but fixed, then,

$$(x \in A) \land (x \in B)$$
$$x \in A$$

Because for any arbitary $x, x \in A \cap B \implies x \in A$, we have $A \cap B \subseteq A$. Conversely let $x \in A$ be arbitary, but fixed, then by (2), $x \in B$. Since $x \in A$ to begin with, we have

$$(x \in A) \land (x \in B)$$
$$x \in A \cap B$$

Since for any arbitary $x, x \in A \implies x \in A \cap B$, we have $A \subseteq A \cap B$. Because $A \cap B \subseteq A$ and $A \subseteq A \cap B$, we conclude that if $A \cup B = B$, then $A \cap B = A$.

We have $A \cap B = A \implies A \cup B = B$ and $A \cup B = B \implies A \cap B = A$, so $A \cap B = A$ iff $A \cup B = B$.

$\mathbf{Q8}$

Claim. Let A, B and U be sets so that $A \subseteq U$ and $B \subseteq U$. $A = \emptyset$ iff the equality $((U \setminus A) \cap B) \cup (A \cap (U \setminus B)) = B$ holds.

Proof. Assume $A = \emptyset$, then $\forall x. \ x \notin A$. Since $B \subseteq U$, so $\forall x. \ x \in B \implies x \in U$. (\Longrightarrow)

$$((U \setminus A) \cap B) \cup (A \cap (U \setminus B))$$

$$= \{ x \in U : (x \in (U \setminus A) \cap B) \lor (x \in A \cap (U \setminus B)) \}$$

$$= \{ x \in U : ((x \in U \setminus A) \land (x \in B)) \lor ((x \in A) \land (x \in U \setminus B)) \}$$

$$= \{ x \in U : (x \in U \setminus A) \land (x \in B) \}$$

$$= \{ x \in U : (x \in U) \land \neg (x \in A) \land (x \in B) \}$$

$$= \{ x \in U : (x \in U) \land \neg (x \in A) \land (x \in B) \}$$

$$= \{ x \in U : (x \in U) \land (x \in B) \}$$

$$= \{ x \in U : x \in B \}$$

$$= B$$
by $x \in B \implies x \in U$

If $A = \emptyset$, then the equality $((U \setminus A) \cap B) \cup (A \cap (U \setminus B)) = B$ holds. Now assume $((U \setminus A) \cap B) \cup (A \cap (U \setminus B)) = B$. (\Leftarrow) By axiom of extentionality,

$$\forall x. \ x \in ((U \setminus A) \cap B) \cup (A \cap (U \setminus B)) \iff x \in B$$

$$\forall x. \ (x \in (U \setminus A) \cap B) \vee (x \in A \cap (U \setminus B)) \iff x \in B$$

$$\forall x. \ ((x \in U \setminus A) \wedge (x \in B)) \vee ((x \in A) \wedge (x \in U \setminus B)) \iff x \in B$$

$$\forall x. \ ((x \in U) \wedge \neg (x \in A) \wedge (x \in B)) \vee ((x \in A) \wedge (x \in U) \wedge \neg (x \in B)) \iff x \in B$$

$$\forall x. \ ((x \in A) \wedge (x \in U) \wedge \neg (x \in B)) \implies x \in B$$

Suppose for a contradiction that $\exists x \in A$, since $A \subseteq U$, $x \in U$,

if $x \notin B$, $(x \in A) \land (x \in U) \land \neg (x \in B)$ is true, but $x \in B$ false, a contradiction.

Therefore if the equality $((U \setminus A) \cap B) \cup (A \cap (U \setminus B)) = B$ holds, there must not exist x where $x \in A$, that is, $\forall x. x \notin A$, which means $A = \emptyset$.

Because $A = \emptyset \implies ((U \setminus A) \cap B) \cup (A \cap (U \setminus B)) = B$ and $((U \setminus A) \cap B) \cup (A \cap (U \setminus B)) = B \implies A = \emptyset$,

we can conclude that $A = \emptyset$ iff the equality $((U \setminus A) \cap B) \cup (A \cap (U \setminus B)) = B$ holds. \square

$\mathbf{Q}9$

Claim. Suppose $f: X \mapsto Y$ is injective. Then for any set T, the map Φ_T of "post-composition with f" is injective.

Proof. f is injective, by definition,

$$\forall x_1, x_2 \in X. \ f(x_1) = f(x_2) \implies x_1 = x_2.$$

For any set T, the map Φ_T of "post-composition with f" is defined as

$$\forall \phi \in \operatorname{Maps}(T, X). \ \Phi_T(\phi) := (f \circ \phi).$$

Given any set T and $\phi_1, \phi_2 \in \text{Maps}(T, X)$, if $f \circ \phi_1 = f \circ \phi_2$, then

$$\forall t \in T. \ \forall y \in Y. \ (t,y) \in \Gamma(f \circ \phi_1) \iff (t,y) \in \Gamma(f \circ \phi_2)$$

$$\forall t \in T. \ \forall y \in Y. \ (f \circ \phi_1)(t) = y \iff (f \circ \phi_2)(t) = y$$

$$\forall t \in T. \ (f \circ \phi_1)(t) = (f \circ \phi_2)(t)$$

$$\forall t \in T. \ f(\phi_1(t)) = f(\phi_2(t))$$

Since $\phi_1(t), \phi_2(t) \in X$, by injectivity of f,

$$\forall t \in T. \ \phi_1(t) = \phi_2(t)$$

$$\forall t \in T. \ \forall x \in X. \ \phi_1(t) = x \iff \phi_2(t) = x$$

$$\forall t \in T. \ \forall x \in X. \ (t, x) \in \Gamma \phi_1 \iff (t, x) \in \Gamma \phi_2$$

Therefore $\phi_1 = \phi_2$.

For any set T, for all $\phi_1, \phi_2 \in \operatorname{Maps}(T, X)$, we have $(f \circ \phi_1) = (f \circ \phi_2)$, implies $\phi_1 = \phi_2$. This means that if f is injective, the map Φ_T of "post-composition with f" is injective for any set T.

Q10

Claim. Suppose for any set T, the map Φ_T of "post-composition with f" is injective. Then $f: X \mapsto Y$ is injective.

Proof. For any set T, the map Φ_T of "post-composition with f" is defined as

$$\forall \phi \in \operatorname{Maps}(T, X). \ \Phi_T(\phi) := (f \circ \phi).$$

 Φ_T of "post-composition with f" is injective, by definition, for any set T,

$$\forall \phi_1, \phi_2 \in \operatorname{Maps}(T, X). \ (f \circ \phi_1) = (f \circ \phi_2) \implies \phi_1 = \phi_2 \tag{1}$$

By definition, Maps(T, X) contains all maps from T to X, this means that given $T \neq \emptyset$,

$$\forall x \in X. \ \forall t \in T. \ \exists \phi \in \operatorname{Maps}(T, X). \ (t, x) \in \Gamma \phi$$

 $\forall x \in X. \ \forall t \in T. \ \exists \phi \in \operatorname{Maps}(T, X). \ \phi(t) = x$

Given $x_1, x_2 \in X$, if $f(x_1) = f(x_2)$, then

Take $x_1 = \phi_1(t_0)$ and $x_2 = \phi_2(t_0)$, where $\phi_1, \phi_2 \in \text{Maps}(T, X)$ and $t_0 \in T$ is arbitary, but fixed, then

$$f(\phi_1(t_0)) = f(\phi_2(t_0)).$$

Since t_0 is arbitary,

$$\forall t \in T. \ f(\phi_1(t)) = f(\phi_2(t))$$

$$\forall t \in T. \ (f \circ \phi_1)(t) = (f \circ \phi_2)(t)$$

$$\forall t \in T. \ \forall y \in Y. \ (f \circ \phi_1)(t) = y \iff (f \circ \phi_2)(t) = y$$

$$\forall t \in T. \ \forall y \in Y. \ (t, y) \in \Gamma(f \circ \phi_1) \iff (t, y) \in \Gamma(f \circ \phi_2)$$

$$(f \circ \phi_1) = (f \circ \phi_2)$$

Because Φ_T of "post-composition with f" is injective, by (1),

$$\phi_1 = \phi_2$$

$$\phi_1(t_0) = \phi_2(t_0)$$

$$x_1 = x_2$$

Since

$$\forall x_1, x_2 \in X. \ f(x_1) = f(x_2) \implies x_1 = x_2$$

We can conclude that if the map Φ_T of "post-composition with f" is injective for any set T, f is injective.

Q11

Claim. Suppose $f: X \mapsto Y$ is surjective. Then for any set T, the map Ψ_T of "pre-composition with f" is injective.

Proof. f is surjective, by definition,

$$\forall y \in Y. \ \exists x \in X. \ f(x) = y. \tag{1}$$

The map Ψ_T of "pre-composition with f" is defined as

$$\forall \psi \in \operatorname{Maps}(Y,T). \ \Psi_T(\psi) := (\psi \circ f).$$

Given any set T and $\psi_1, \psi_2 \in \text{Maps}(Y, T)$, if $\Psi_T(\psi_1) = \Psi_T(\psi_2)$, then

$$(\psi_1 \circ f) = (\psi_2 \circ f)$$

$$\forall x \in X. \ (\psi_1 \circ f)(x) = (\psi_2 \circ f)(x)$$

$$\forall x \in X. \ \psi_1(f(x)) = \psi_2(f(x))$$

$$\forall y \in Y. \ \psi_1(y) = \psi_2(y)$$
 by (1)
$$\forall y \in Y. \ \forall t \in T. \ \psi_1(y) = t \iff \psi_2(y) = t$$

$$\forall y \in Y. \ \forall t \in T. \ (y, t) \in \Gamma \psi_1 \iff (y, t) \in \Gamma \psi_2$$

Therefore $\psi_1 = \psi_2$.

For any set T, for all $\psi_1, \psi_2 \in \operatorname{Maps}(Y, T)$, we have $(\psi_1 \circ f) = (\psi_2 \circ f) \Longrightarrow \psi_1 = \psi_2$. This means that if f is surjective, the map Ψ_T of "pre-composition with f" is injective for any set T.

Q12

Claim. Suppose for any set T, the map Ψ_T of "pre-composition with f" is injective. Then $f: X \mapsto Y$ is surjective.

Proof. For any set T, the map Ψ_T of "pre-composition with f" is defined as

$$\forall \psi \in \operatorname{Maps}(Y,T). \ \Psi_T(\psi) := (\psi \circ f).$$

The map Ψ_T of "pre-composition with f" is injective, by definition, for any set T,

$$\forall \psi_1, \psi_2 \in \operatorname{Maps}(Y, T). \ \psi_1 \neq \psi_2 \implies (\psi_1 \circ f) \neq (\psi_2 \circ f)$$
 (*)

Suppose for a contradiction that f is not surjective, meaning

$$\exists y \in Y. \ \forall x \in X. \ f(x) \neq y$$

Take $Y_0 \subseteq Y$ to be when the above condition holds,

$$Y_0 := \{ y \in Y : \forall x \in X. \ f(x) \neq y \}$$

$$\forall y \in Y \setminus Y_0. \ \exists x \in X. \ f(x) = y.$$

Take $\psi_1, \psi_2 \in \text{Maps}(Y, T)$ where $\psi_1 \neq \psi_2$, specifically

$$\forall y \in Y \setminus Y_0. \ \psi_1(y) = \psi_2(y)$$

$$\forall y \in Y_0. \ \psi_1(y) \neq \psi_2(y)$$
(1)

Then for all $x \in X$, $f(x) \in Y \setminus Y_0$, then by (1)

$$\forall x \in X. \ \psi_1(f(x)) = \psi_2(f(x))$$

$$\forall x \in X. \ (\psi_1 \circ f)(x) = (\psi_2 \circ f)(x)$$

$$\forall x \in X. \ \forall t \in T. \ (\psi_1 \circ f)(x) = t \iff (\psi_2 \circ f)(x) = t$$

$$\forall x \in X. \ \forall t \in T. \ (x,t) \in \Gamma(\psi_1 \circ f) \iff (x,t) \in \Gamma(\psi_2 \circ f)$$

$$(\psi_1 \circ f) = (\psi_2 \circ f)$$

There exists maps $\psi_1, \psi_2 \in \operatorname{Maps}(Y,T)$ where $\psi_1 \neq \psi_2$ and $(\psi_1 \circ f) = (\psi_2 \circ f)$, a contradiction with (*).

Therefore, if the map Ψ_T of "pre-composition with f" is injective for any set T, f is surjective.