МИФИ

Национальный исследовательский ядерный университет

Направление: Классическое машинное обучение

Прогнозирование биологической активности химических соединений методами машинного обучения

Курсовая работа

Студента группы М24-525

Жадаева Василия Васильевича

1. Постановка исследовательской задачи

Требуется разработать прогностические модели для оценки ключевых параметров лекарственных соединений:

• Регрессионные задачи:

- □ Предсказание IC₅₀ (ингибирующая концентрация)
- □ Предсказание СС₅₀ (цитотоксическая концентрация)
- Расчет индекса селективности (SI)

• Классификационные задачи:

- $_{\circ}$ Бинарная классификация превышения медианных значений IC50, CC50, SI
- ∘ Классификация SI > 8 (порог селективности)

Цель: Оптимизация подбора соединений с высокой противовирусной активностью и низкой токсичностью.

2. Методология

2.1. Предобработка данных

• Feature Engineering:

- Логарифмирование целевых переменных (IC₅₀, CC₅₀, SI) для нормализации распределений.
- о Генерация полиномиальных признаков 2-й степени.
- о Создание бинарных признаков на основе пороговых значений.

• Обработка выбросов:

- ∘ Удаление аномалий по правилу 1.5×IQR.
- о Замена пропущенных значений медианами.

2.2. Используемые алгоритмы

• Регрессия:

o CatBoost, Random Forest, Gradient Boosting, XGBoost.

• Классификация:

Stacking (ансамбли CatBoost + Random Forest), HistGradientBoosting.

2.3. Метрики оценки

• **Регрессия:** MSE, RMSE, R².

• **Классификация:** Accuracy, ROC AUC, F1-score.

3. Результаты

3.1. Регрессионный анализ

Целевая переменная	Лучшая модель	MSE	R²
CC ₅₀	CatBoost	203548	0.607
IC ₅₀	Random Forest	194488	0.417
SI	Stacking	63	0.133

Выводы:

- CatBoost демонстрирует наивысшую точность для CC₅₀
- Random Forest лучше предсказывает IC_{50} , но объясняет лишь 41.7% дисперсии.
- Stacking лучше предсказывает IC₅₀, но объясняет лишь 13.3% дисперсии.

3.2. Классификация

Задача	Лучшая модель	Accuracy	ROC AUC
СС₅о > медиана	StackingClassifier	0.772	0.841
IC₅o > медиана	GradientBoostingClassifier	0.767	0.844
SI > медиана	Gradient Boosting Classifier	0.603	0.656
SI > 8	XGBClassifier	0.729	0.743

- Выводы
- С классификацией SI имеются какие-то фундаментальные проблемы

4. Заключение

В рамках данного проекта был выполнен всесторонний анализ данных, содержащих информацию о тысяче химических соединений и их противовирусной активности. Ключевые результаты представлены ниже.

Основные достижения

1. Исследовательский анализ данных (EDA)

- о Обнаружены существенные различия в распределениях ключевых показателей: IC₅₀, CC₅₀ и индекса селективности (SI).
- Выявлено значительное количество выбросов, особенно в значениях
 SI.
- Установлены умеренные, но статистически значимые корреляции между молекулярными дескрипторами и целевыми переменными.

2. Предварительная обработка данных

- Разработана и успешно применена методика обработки выбросов.
- о Проведено логарифмическое преобразование целевых переменных.
- Создан набор новых производных признаков, повышающих информативность данных.

3. Интерпретация результатов

- Определены наиболее значимые молекулярные дескрипторы для каждого исследуемого параметра.
- Установлено, что показатель VSA_EState обладает наибольшей
 предсказательной способностью в отношении индекса селективности.
- \circ Для IC₅₀ и CC₅₀ наиболее информативными оказались различные группы дескрипторов.

4. Построение и оценка моделей

Ключевые наблюдения

• Задача классификации значений SI остается наиболее сложной, что указывает на необходимость дальнейшего совершенствования методов.

Приложения:

• Исходный код:

[https://github.com/Turchkas/SkillFactory/tree/main/%D0%9A%D1%83%D1%80%D1%81%D0%BE%D0%B2%D0%B0%D1%8F]