ACC7320 ITS 多目标跟踪雷达 用户使用手册

(适用于全息路口、车路协同等项 目)

版本历史

日期	版本	版本描述
2020-06-01	1.0	适用于 V8 版本调试上位机。
2021-02-04	2.0	适用于 V9.2 版本调试上位机。适用于雷达程序 20201016_V9 或更高版本。
2021-04-09	3.0	适用于 V10.0 版本调试上位机。
2021-08-24	3.1	适用于 V10.4 版本调试上位机。
2021-11-15	3.2	适用于 V10.8 版本调试上位机。建议雷达程序 20211105 _V10-8 或更高版本。
2021-12-28	3.3	适用于 V10.9 版本调试上位机。建议雷达程序 20211210_V10-9 或更高版本。

目 录

版ス	体历.	史		l
目	录	•••••	••••••	i
图表	長清.	单		ii
1.	产品	品介绍		1
	1.1.	产品标	既述	1
	1.2.	应用均	汤景	1
	1.3.	生产作	衣据标准	1
	1.4.	产品	外观及尺寸	2
2.	技ス	术参数	•••••••••••••••••••••••••••••••••••••••	3
3.	设备	备安装	指南	5
	3.1.	安装均	汤景说明	5
	3.2.	安装	步骤	6
		3.2.1.	固定雷达底座与支架	7
		3.2.2.	通过抱箍把支架固定在现场横杆	7
		3.2.3.	调节气泡水平	8
		3.2.4.	通过雷达瞄准器将雷达调正	8
		3.2.5.	调整雷达俯仰角 α	9
	3.3.	系统技	妾线	9
		3.3.1.	通信	9
		3.3.2.	供电	9
4.	雷汶	达调试	上位机软件	10
	4.1.	网络边	连接、登录	11
	4.2.	雷达组	复位	13
	4.3.	设置-	<mark>—雷达设置</mark>	14
		4.3.1.	工作模式	14
		4.3.2.	安装参数	15
		4.3.3.	车道设置	15

	4.4. 设置—场景配置	16
	4.5. 设置—滤除区域	17
	4.6. 设置—网络设置—IP 设置	18
	4.7. 设置—网络设置—密码设置	18
	4.8. 设置—时间设置	19
	4.9. 设置—交通信息—测量线设置	20
	4.10. 设置—事件设置	21
	4.10.1. 事件参数设置	22
	4.10.2. 事件区域设置	23
	4.11. 坐标设置	24
	4.12. 设置—高级设置	25
	4.12.1. 雷达配置	25
	4.12.2. 过滤器配置	26
	4.13. 管理—日志管理	26
	4.14. 管理—连接管理	27
	4.15. 管理—485 和 WIFI	28
	4.16. 管理—UDP 复位	30
	4.17. 数据	31
	4.18. 画布	33
	4.18.1. 画布范围	33
	4.18.2. 参考线	33
	4.19. 信息(雷达升级)	34
	4.20. 菜单栏—保存数据	36
5.	常见问题与解决方法	37
	5.1. 上位机软件中目标轨迹偏移	37
6.	SHA256 哈希值校验	40
7.	附录 1 日志格式表	41

图表清单

图 1-1 产品外观示意图	2
图 3-1 安装位置示意图	5
图 3-2 正装、侧装示意图	5
图 3-3 雷达各部件名称	6
图 3-4 固定雷达底座与支架	7
图 3-5 上杆固定支架	7
图 3-6 调节气泡水平	8
图 3-7 瞄准器与车道线平行	8
图 3-8 调节雷达俯仰角	9
图 3-9 防水螺帽与网线转接口	9
图 4-1 雷达调试上位机界面图	10
图 4-2 参数设置示意图	11
图 4-3 登录成功	12
图 4-4 密码位数错误	12
图 4-5 用户名或密码错误	13
图 4-6 登录错误 5 次	13
图 4-7 雷达复位	13
图 4-8 雷达设置区域	14
图 4-9 场景配置	16
图 4-10 场景选择	16
图 4-11 滤除区域设置	17
图 4-12 雷达 IP 设置	18
图 4-13 IP 修改成功	18
图 4-14 登录密码设置界面	19
图 4-15 密码修改成功	19
图 4-16 NTP 设置	20
图 4-17 交通信息—测量线设置	21
图 4-18 事件参数设置	22
图 4-19 事件区域设置	23
图 4-20 坐标设置	24
图 4-21 高级设置界面	25
图 4-22 日志管理	27
图 4-23 连接管理	28

图 4-24 WIFI/485 通信功能	29
图 4-25 通过 COM 读取雷达 IP	29
图 4-26 UDP 复位	30
图 4-27 UDP 复位成功	30
图 4-28 数据视图—目标跟踪信息	31
图 4-29 数据视图—交通信息	32
图 4-30 画布设置	33
图 4-31 参考线设置	33
图 4-32 信息、雷达升级	34
图 4-33 雷达升级中	35
图 4-34 升级成功	35
图 4-35 "保存数据"按钮	36
图 5-1 左上往右下	37
图 5-2 右上往左下	38
图 5-3 目标轨竖直,但是整体横向偏移	38
图 6-1 查看安装包、升级包的路径地址	40
图 6-2 Windows PowerShell	40
图 6-3 windows 命令行得到文件哈希值	40
表 2.1 技术参数表	
表 3.1 电源线接线定义表	9
表 4.1 不同工作模式下保存数据文件名表格	36
表 7.1 日志格式表	41

1. 产品介绍

1.1. 产品概述

ACC7320 ITS 多目标跟踪雷达,能够对监测范围内的运动目标进行稳定跟踪,实时探测目标的位置、距离、运动状态、速度等信息,将信息传送至交控平台。本产品可通过上位机软件远程连接雷达,设置雷达工作模式和安装参数,也可远程升级雷达程序、更新雷达功能。

ACC7320 型雷达的横向监测车道可达 10 个,纵向监测距离可达 150/250/500m,同一时刻最大监测目标数 256 个,是市面上性能最高的交通监控雷达之一。本产品可实现排队长度检测、停车检测、车流量检测、平均速度检测、车头时距检测、车头间距检测、目标分类、实线变道检测等功能。

1.2. 应用场景

城市路口、路段:雷达实时分析路口各方向车量数、车速、排队状态,将实时车流信息传输到交通控制中心。交控中心根据实时交通数据,通过内部自适应配时算法实现交通诱导、引流、交通大数据等功能。

高速公路: 高速公路无盲区覆盖, 检测超速、慢速、异常停驶、应急车道占用现象。 利用雷达全天时全天候的工作特点, 解决摄像机夜间监控问题。

1.3. 生产依据标准

JJF 1065-2000 《射频通信测试校准规范》

JJF 1246-2010 《制造计量器具许可考核通用规范》

JJG 527-2015 《固定式机动车雷达测速仪检定规程》

JJF 1335-2012 《定角式雷达测速仪型式评价大纲》

1.4. 产品外观及尺寸

● 长: 189.5mm

● 宽: 98.0mm (底盘直径)

● 高: 266.0mm

2. 技术参数

表 2.1 技术参数表

指标分类	技术指标	参数
雷达安装参数	安装高度	4~10m(推荐值 6m)
	安装俯仰角	2° ∼3°
	安装偏转角	-12° ~12° (推荐值 0°)
	工作频率	77GHz
	测距范围	0.2~150/250/500m, 其中≤70m 为短距范 围,>70m 为长距范围,以下均指此范围
	水平展开角	远距: -9.0° ~+9.0°; 短距: -60° ~+60°
	垂直展开角	远距: 14°; 短距: 20° (6dB)
	距离分辨率	1.79m(长距), 0.39m(短距)
雷达技术参数	测量精度	±0.4m(长距), ±0.1m(短距)
田丛以外多数	角度分辨率	1.6°(长距), 4.5°(短距)
	角度精度	±0.1°(长距),±1°(短距)
	速度范围	-400km/h~ + 200km/h(来向为负,去向为 正)
	速度分辨率	0.37km/h
	速度精度	± 0.1 km/h
	探测周期	约 72ms
	可监测车道数	10 车道
	最大跟踪目标	256 个
全息感知参数	目标捕获率	≥98%
	轨迹跟踪正确率	≥97%
	目标识别正确率	(超大车、大车、小车)≥90%
	速度精度	≥97.5%
	距离精度	±0.1m

	统计周期	1s~18.2h
信息统计参数	统计断面	1~5 个
	分车道车流量统计正确率	≥99%
	分车道排队长度统计误差	≤10%
	异常停车检测准确率	≥90%
事件检测参数	拥堵事件检测准确率	≥95%
	逆行事件检测准确率	≥95%
	接口	RJ45/RS485
	电源	DC 12~13V
	功耗	8W
物理特性参数	工作温度	-40°C ~ + 85°C
内空机压多效	工作湿度	0%~90%@RH(50°C)
	防水等级	IP67
	防腐等级	IEC 60068-2-11
	EMC	IEC61000-4-5:2014
尺寸结构参数	尺寸	189.5x98.0x266.0mm
	底座孔半径	R 3.25mm
	重量	1.8kg

3. 设备安装指南

3.1. 安装场景说明

应用于全息路口的广域雷达,通常安装在对向路口的电警杆或红绿灯杆上。雷达安装时,尽量满足如下条件:

- 安装位置:尽可能保持雷达位于道路中央;以雷达为中心,所检测车道的最左侧和最右侧在20米范围之内;
- 安装环境: 雷达安装位置两侧 30cm 内没有设备凸出;
- 安装角度:尽可能采用正装的安装方式,保持雷达横面正对前方;左右偏转角度应小于3°。

图 3-1 安装位置示意图

图 3-2 正装、侧装示意图

3.2. 安装步骤

图 3-3 雷达各部件名称

3.2.1. 固定雷达底座与支架

使用至少3颗M6螺栓穿过雷达底座,将雷达底座固定在连接支架上,如图。

图 3-4 固定雷达底座与支架

3.2.2. 通过抱箍把支架固定在现场横杆

说明: 支架和抱箍需客户自行提供。

图 3-5 上杆固定支架

3.2.3. 调节气泡水平

通过调节雷达支架组件内六角头 M4 螺栓,使气泡水平仪的气泡位于中央,此时雷达处于水平状态;将调节左右倾角的下方 4 颗螺丝拧紧。

图 3-6 调节气泡水平

3.2.4. 通过雷达瞄准器将雷达调正

适当拧松雷达底座与横杆连接支架螺栓,将雷达顶部的瞄准器对准车道线远处,视线与车道线平行,拧紧底座与支架结合处的螺栓。

8

3.2.5. 调整雷达俯仰角 α

结合实际安装高度,调整雷达俯仰角 α 。安装高度约 6m 时,俯仰角度为 2° 。此时气泡应当正好处于正后方位置。如果底座不是水平状态,需要使用手机水平仪等工具确认俯仰角,而后将调节俯仰角的上方 4 颗螺丝拧紧。

图 3-8 调节雷达俯仰角

以上步骤完成后,需要通过雷达调试上位机检测雷达姿态是否满足现场监测要求, 若安装情况偏差较大,则需再次上杆调整。

3.3. 系统接线

3.3.1. 通信

雷达通过网口与通信(未使用 485 通信方式)。网线依次穿过防水螺帽和胶圈,插入接口并拧紧螺母。

图 3-9 防水螺帽与网线转接口

3.3.2. 供电

雷达通过电源适配器接入+12V 直流电压,雷达电源线接线定义如表 3.1 所示。拉线时应注意,直流供电线不宜过长(尽量短于 2m)。

电源线颜色	定义	
红色	+12V	
蓝色	GND	

表 3.1 电源线接线定义表

4. 雷达调试上位机软件

ACC7320 雷达采用 TCP/IP 协议,通过 LAN 口接入客户网络并传送实时数据。雷达配备调试上位机软件,用户可通过上位机软件远程升级雷达程序,设置雷达参数和工作模式。以下采用 V10.4 版本进行功能说明,界面如图 4-1 所示。

注意: 调试上位机软件 V10 勿与老版本 (V8、V9) 上位机软件放在同一目录下。

图 4-1 雷达调试上位机界面图

画布操作:

- 移动画布位置:键盘 WASD 或解锁后使用鼠标拖动
- 缩放画布:键盘Q、E及鼠标滚轮
- 锁定/解除鼠标拖动:单击一次 Ctrl 键,可以解锁鼠标拖动功能;再次单击 Ctrl 键可锁定画布无法鼠标拖动(拖动画布时目标刷新缓慢,故默认锁定)。
- 更改画布比例尺:菜单栏"画布—画布范围",可更改画布显示距离。
- 显示目标信息: 鼠标右键, (在跟踪模式) 勾选需要的显示项, 可显示目标 ID、 X、Y、VX、VY 等信息。

在雷达调试时,需要根据实际情况设置雷达参数。连接成功后,需要(1)修改雷达 IP; (2)设定 NTP 校时地址(通常为服务器的 IP); (3)场景设置; (4)在"雷达设置"中设置工作模式、安装参数和车道参数。

"雷达设置"中的各参数在画布中会有所体现,如图 4-2。此部分参数需要结合现场的安装情况和道路,结合车辆运动轨迹<mark>不断调整</mark>,最后使得车辆行驶轨迹与车道线一

致。参数含义详见 4.3 雷达设置。常规调试步骤:

- ① 根据 4.3.2 设置安装参数: "安装高度", "安装方向"、横向检测范围、纵向检测范围:
- ② 根据 4.3.3 设置来向/去向车道个数,与对向的路口机动车道数一致;
- ③ 根据实际路况,设置车道宽度(来向车道一般约3.2m)、绿化带宽度
- ④ 若车辆轨迹偏移,需调整"雷达安装角度"这一参数。 当相机画面中实际车辆 沿直线行驶时,调试软件画布中车辆轨迹直线行驶无偏斜。(说明:观察轨迹 时,应看向由近及远的整体轨迹。)
- ⑤ 轨迹正确后,调整"左侧1车道横坐标",使得车辆行驶于车道线中央。

图 4-2 参数设置示意图

4.1. 网络连接、登录

网络连接时,首先需要配置 PC 机以太网的 IP 地址和雷达 IP 地址在同一网段。PC 机能够 Ping 通雷达后(雷达默认 IP 地址 192.168.2.100,端口号 8899),可通过以下两种方式连接雷达:

方法①(分步连接登录):点击菜单栏"雷达设置",弹出子窗体。输入雷达 IP 和端口号,点击"网络连接"。若操作成功,子窗体下方文本变更为"已连接"。

正确输入 5 位用户名和 8 位密码后,点击"登录"按钮。若操作成功,子窗体下方文本变更为"已登录"。(默认用户名为 admin,默认密码 admin-L1)

方法②(一键连接登录):在菜单栏右上方输入雷达 IP,点击右上方"连接"按钮。 若操作成功,主窗体下方文本变为"登录成功"。 **注意:** 首次使用上位机软件,须采用方法①分步连接登录。登录成功后,上位机软件会在安装目录下建立<UPV_IP_address_record.txt>的文件,记录 IP、端口号、用户名、密码。此后可一键连接登录。

登录成功 2s 后,上位机接收到雷达数据,下方信息提示区的小灯会由灰变绿,时间会开始快速稳定的变化,至此通信成功。如图 4-3 所示。

图 4-3 登录成功

登录时,若输入的用户名非 5 位或密码为非 8 位,则会弹出"用户名或密码错误,请输入 5 位的用户名和 8 位的密码"对话框,如图 4-4 所示。

若输入的密码满足位数要求,但密码内容不正确,则会弹出"登录失败,用户名或密码错误"对话框,如图 4-5 所示。

在连续 5 次错误后弹出"登录错误 5 次,请 5 分钟后再登录"的对话框,此时用户需等待 5 分钟后才能登录,如图 4-6 所示。

图 4-4 密码位数错误

图 4-5 用户名或密码错误

图 4-6 登录错误 5次

4.2. 雷达复位

图 4-7 雷达复位

"雷达复位"按钮所在位置如图 4-7 所示。在某些异常状态下可点击"雷达复位"令雷达重启。雷达复位不会重置雷达的 IP、车道参数等。

说明:连接成功后,20s内无需登录,可直接点击"雷达复位"。

UDP 复位:无需连接登录雷达,也可进行 UDP 复位。详见 4.16 管理—UDP 复位。

4.3. 设置一雷达设置

图 4-8 雷达设置区域

4.3.1. 工作模式

雷达的工作模式有四种,分别为采集模式、跟踪模式、交通信息和统计测试。在全息路口项目中,<mark>默认选择"跟踪模式"</mark>。

如图 4-8 所示,下拉选择工作模式后,点击旁边的"设置"按钮,子窗体下方提示 "雷达工作模式设置成功"。点击"查询"按钮,子窗体下方显示"雷达工作模式查询 成功",则说明该参数写入成功。

在不同的模式下,数据列表中输出的目标信息和道路界面的显示也会不同。

- 采集模式:每 80ms 输出目标的原始数据 0x8F(未经算法过滤分类处理),雷达研发采集数据做算法优化时才会使用该模式。
- <mark>跟踪模式</mark>:每 80ms 输出目标信息数据(目标 ID、当前帧时间、横纵坐标、横 纵速度、所处车道、能量、目标分类等),即通讯协议中的 0x80 帧数据。可在 "数据—跟踪目标数据" 查看。
- 交通信息: 输出目标信息数据(0x80),同时输出交通信息数据(0xB1—0xB5)。目标信息数据周期固定为80ms(同跟踪模式),交通信息数据的周期可自行设定(以s为单位,最小1s,最大65535秒)。
- 统计测试:输出目标信息数据(0x80)、交通信息数据(0xB1—0xB5)。目标信息数据周期固定为80ms(同跟踪模式),交通信息数据的周期固定为1s,且交通信息数据持续累加,不会周期性清除。

0x80 和 0xB1-0xB5 输出内容详见 4.17 数据。

4.3.2. 安装参数

此部分参数需要根据雷达安装情况进行设置。对相关参数做如下说明:

- 雷达安装高度:根据雷达实际安装高度设置,一般为6m。
- 左右偏转角度:雷达的(水平)左右偏转角度,<mark>此项参数需根据实际情况不断</mark> 微调,直到车辆行驶轨迹呈现最佳显示效果。此参数极其重要,是整个调试的 核心参数,详见第7章。
- 安装方向:根据雷达实际安装方向设置。
- 检测横向范围:雷达实际监控范围,通常设置为-20~20。若需要屏蔽非机动车 道的目标,可适当缩小此项数值。
- 检测纵向范围:雷达实际监控范围,通常设置为0~250。

填写各参数值后,点击"设置"按钮,子窗体下方显示"雷达安装参数设置成功"。 点击"查询"按钮,子窗体下方显示"雷达安装参数查询成功",且参数变为2位小数, 则说明该参数写入成功。

4.3.3. 车道设置

此部分参数需要根据实际道路情况进行设置。对相关参数做如下说明:

- 车道 1 左侧横坐标:以雷达为原点,雷达监控区域内左数第一车道左侧车道线 距离雷达的横向距离,此数值为左负右正。
- 来向/去向车道个数:雷达监控区域内,路面来向(进口道)/去向(出口道)实际车道数。
- 来向/去向车道宽度:雷达监控区域内,路面来向(进口道)/去向(出口道)实际车道宽度(一般为 3.2m)。**注意:**雷达会将**来向排队目标**横坐标纠正至车道正中间**,来向车道宽度**务必精确。
- 绿化带宽度:雷达监控区域内,路面绿化带实际宽度。
- 停止线距离:雷达监控区域内,对面路口的停止线距离雷达的纵向距离。

因为毫米波雷达无法探测静止目标,对于车道内的来向排队目标,需要根据停车前的运动状态确定停车位置。所以需要准确绘制**来向车道**,使得来向排队效果达到最优。右转专用车道无排队,"来向车道个数""车道1左侧横坐标"可以只考虑直行车道和左转车道。

填写各参数值后,点击"设置"按钮,子窗体下方显示"雷达车道设置成功"即说明设置成功。点击"查询"按钮,子窗体下方显示"车道参数查询成功",且参数变为2位小数,则说明该参数写入成功。

上位机画布会根据参数值而改变,<mark>用户需要将道路界面和路面真实情况做对比,不</mark> 断修改雷达安装参数,以达到最佳显示效果。

4.4. 设置一场景配置

图 4-9 场景配置

根据实际安装环境,选择相应场景,如图 4-10。勾选所需功能后(具体说明见下方), 点击"设置"按钮,子窗体下方显示"场景配置成功"即可。点击"查询"功能,下方 文本框提示"场景查询成功",检查是否设置正确。

图 4-10 场景选择

- 路段逆行过滤:一般不勾选。根据画布中的车道区域,过滤来向和去向道路上 的逆行目标。
- (1) **城市路口**:适用于路口场景。此场景中,来向排队目标的横坐标会自动纠正至车道线正中。
 - 去向排队:一般不勾选。
 - 补充排队目标:一般不勾选。若遇上排队长、大流量的复杂路口,可勾选此选

项,但此选项可能导致目标误报。勾选此选项后,需观察实际效果是否适用。

- 最大丢失次数:一般直接配置为默认值。影响目标丢失前的外推次数(上位机中灰色方块的持续时间)。
- (2) 高速路: 适用于高速公路。
- 去向排队:一般不勾选。
- (3) 城市路段:适用于路段、弯道、匝道等非路口(中低速)场景。
- 去向排队:一般不勾选。
- 弯道排队:如果道路中存在弯道排队车辆,则需勾选弯道排队(不排队的弯道 无需勾选)。勾选后,目标在车道内的排队将不再纠正横坐标。

4.5. 设置一滤除区域

图 4-11 滤除区域设置

雷达可自行设置滤除区域,如图 4-11 滤除区域设置中黄色四边形,位于滤除区域内的目标不输出。滤除区域最多可设置 8 个。

每个滤除区域包含 4 个点坐标参数,point1、2、3、4 需顺时针或逆时针依次输入,每个点坐标的参数需保留英文括号和逗号(如图 4-11 滤除区域设置)。点击"设置"按钮,子窗体下方提示"场景配置成功";点击"查询"按钮,提示查询成功,并且参数与设置值一致。

解除鼠标锁定时(ctrl键),可通过鼠标移动滤除区域和 point1、2、3、4。鼠标拖动后,需点击"设置"按钮将参数写入雷达。

4.6. 设置一网络设置—IP 设置

若需要修改雷达 IP、掩码、网关,点击菜单栏"设置"—网络设置—IP 设置,弹出子窗口,如图 4-12。修改雷达网络的过程如下:

- ① 输入新的 IP、端口号、掩码、网关, 所有文本框不能为空。
- ② 点击"修改 IP",弹出提示如图 4-13 IP 修改成功,等待雷达自动重启(约 50s)。
- ③ 更改本机 IP,能 ping 通新的雷达 IP,重新登录。

注意:点击"修改 IP"前务必确认新 IP 未被占用,且输入信息无误。

图 4-12 雷达 IP 设置

图 4-13 IP 修改成功

4.7. 设置一网络设置一密码设置

点击菜单栏"设置"一网络设置一密码设置,即可修改或重置雷达的登录密码。登

录密码设置界面如图 4-14。

用户名固定为 admin 不可修改。雷达密码设置规则:

- 密码长度为 8 位:
- 密码不能和账号相同:
- 必须包含小写字母、大写字母、数字、特殊字符中的至少两种(特殊字符包含 `~!@#\$%^&*()-=+\|[{}];:'",<>/?和空格)。

修改密码:输入原密码和新密码后,点击"修改密码"按钮,弹出提示"密码修改成功",如图 4-15 密码修改成功。原密码输入错误,会弹出提示"密码修改失败"。 重置密码:点击"重置密码"按钮,雷达密码重置为 admin-L1。

图 4-14 登录密码设置界面

图 4-15 密码修改成功

4.8. 设置一时间设置

NTP 在线校时功能位于菜单栏"设置"一时间设置,如图 4-16 所示。

输入 NTP 服务器地址和校时间隔,点击"设置",下方子显示"NTP 设置成功"。 若此时 NTP 服务器校时功能已开启,在主窗体下方能看到雷达时间与其同步。

图 4-16 NTP 设置

4.9. 设置一交通信息—测量线设置

仅在工作模式为"交通信息"和"统计测试"时,才会输出交通信息参数(0xB1—0xB5)。在"跟踪模式"和"采集模式"时,无需配置此区域参数。输出的交通信息数据可在菜单栏"数据一交通信息数据"查看。

图 4-17 交通信息—测量线设置

如图 4-17 交通信息—测量线设置,测量线设置子窗体相关参数说明如下:

- 输出跟踪目标:是否输出目标信息(0x80,同跟踪模式),一般勾选。
- 统计周期:雷达输出交通信息数据的周期(仅 "交通信息"模式下有效, "统计测试"模式只需输出不清除),以秒为单位,最小1s,最大65535秒。
- 交通测量线:如图中黄线,用于车流量等交通信息数据的统计,最多同时启用 5 个位置的测量线。测量线的位置会影响交通信息统计结果(如车流量:车辆 经过黄线所在位置时,统计的车流量加1)。

4.10. 设置一事件设置

事件输出为单独的协议(0xD0),与目标跟踪信息(0x80)和交通信息(0xB1-0xB5) 互不相关。可在菜单栏"数据一交通事件"中查看雷达输出的事件。"数据一交通事件" 每一行表示一个事件,每一列代表:

- 第一列:事件上报时间
- 第二列:事件所处车道
- 第三列:事件位置(横坐标)
- 第四列:事件位置(纵坐标)
- 第五列:事件类型(目前包含停车、拥堵、超速、超低速、应急车道行车、应 急车道停车、实线变道)。

4.10.1. 事件参数设置

图 4-18 事件参数设置

若需要雷达输出事件,勾选"是否输出并"设置参数,点击"参数查询"将事件参数写入雷达,如图 4-18 事件参数设置。

以图示参数为例,子窗体左侧的事件参数说明如下(1个周期为80ms):

- 是否输出:是否输出交通事件。
- 停车事件建立周期: 1 个周期代表 80ms, 当停车现象维持 10 个周期后, 判定为停车事件, 将此事件上报。
- 拥堵事件建立周期、判断拥堵车辆数、判断拥堵车速: 当出现 10 辆及以上车辆时速小于 10km/h,且维持超过了 125 个周期(1s,125*80ms=10s)后,判定为拥堵事件并上报。
- 拥堵时间删除周期:有超过 1000 个周期(80s)的时间,车速小于 10km/h 的车辆数小于 10,则删除拥堵事件。
- 超速事件阈值:每出现一个目标的速度值超过该值,判定为一个超速事件并上报。
- 超低速事件阈值:每出现一个目标的速度值低于该值,判定为一个超低速事件 并上报。
- 应急车道号 1、应急车道号 2: 画布中从左向右数,第1车道和第5车道为应急车道。如果无应急车道,该参数填写 0。

4.10.2. 事件区域设置

图 4-19 事件区域设置

事件区域需要绘制四边形区域,如图 4-19 事件区域设置中白色虚线方块。可顺次输入区域的点坐标,也可解锁鼠标后鼠标拖动四个角,然后点击"设置"按钮。

实线变道也是输出的事件参数中的一种,事件区域1和2可设置至多2个实线变道检测区。事件区域3和4为正常排队区域,在此区域内若产生停车事件则不上报。

4.11. 坐标设置

图 4-20 坐标设置

雷达内部不带有 GPS 芯片, 若需要雷达直接输出目标的经纬度信息, 需在此输入雷达的绝对坐标。如图, 相关参数说明如下:

- 雷达坐标 经度/纬度: WGS84 坐标系下, 雷达的绝对坐标, 东经为正西经为负, 北纬为正南纬为负, 范围-180°-180°, 保留七位小数。
- 正北方向与雷达 Y 轴顺时针夹角:正北方向和雷达正面纵轴线(正北方向和马路夹角)的顺时针夹角,范围 0°-360°,保留 7 位小数。
- A、B、C 点坐标 经度/纬度:取 ABC 三点坐标从而算出正北方向与雷达 Y 轴的夹角。ABC 三点在雷达对向的车道线上等距离选取,AB=BC,A 点最远 C 点最近。范围-180°-180°,保留七位小数。

操作步骤:

- ① 输入雷达坐标,输入 ABC 三点坐标;
- ② 点击"计算夹角",夹角会自动填入"正北方向与雷达 Y 轴顺时针夹角"的文本框;
- ③ 点击"设置"按钮,将雷达经度、雷达纬度、正北方向与雷达 Y 轴顺时针夹角 三个参数写入雷达。(ABC 三点坐标不写入)

4.12. 设置一高级设置

图 4-21 高级设置界面

高级设置如图 4-21。在雷达出厂检测时,高级设置区域已配置好,不建议客户自行修改。

4.12.1. 雷达配置

首先点击"读取配置"按钮,下方文本框会提示"雷达参数读取成功"。在要更改的选项中,勾选"配置"框,并下拉选择"值",然后点击"发送配置"按钮,成功配置后下方文本框内会提示"雷达参数配置发送成功"。

- 检测模式:分为目标和集群。通常情况下默认雷达的输出类型为"目标"。
- 排序方式:通常选择"未排序"。
- 目标扩展信息:仅针对输出类型为目标的类型,用于输出目标的其他属性,通常选择"无效"。
- 目标质量信息:各项输出参数的标准误差,通常选择"有效";
- 永久保存:此项不配置。
- 发射功率: 当处于近距离场景或室内场景时,降低雷达发射功率可以提高检测效果。通常选择"标准"。
- 雷达 ID: 通常设置为"0"。
- 最大检测距离:通常设置为"260"。
- 继电器:通常选择"无效"。
- 雷达灵敏度:通常选择"标准"。

4.12.2. 过滤器配置

针对雷达输出目标的过滤,位于图 4-21 中雷达过滤器配置区域,每个参数都独立设置了"发送"和"读取"按钮。设置最小值和最大值后,范围外的目标会被过滤掉。

首先从上到下依次点击"读取"按钮,查看过滤器的设置与启用状态。目标检测模式下,通常只配置"(径向)来向速度"和"(径向)去向速度"两项,其余过滤器需要在"启用"中取消勾选,然后点击"发送"按钮。读取或者发送成功后,文本框会出现"过滤器配置或读取成功"的提示。

- "(径向)来向速度"和"(径向)去向速度"一般做如下配置:
- (径向)来向速度:单位为 m/s,来向目标的径向速度小于设置值时不输出,通常设置为最小值 0.25、最大值 128。点击设置后,会返回 0.22 和 127.98。
- (径向)去向速度:单位为 m/s,去向目标的径向速度小于设置值时不输出,通常设置为最小值 0.25、最大值 128。点击设置后,会返回 0.22 和 127.98。设置完成后,目标过滤器个数应相应的变为 2。

4.13. 管理一日志管理

此功能用于读取雷达工作状态和历史操作记录,位于菜单栏"日志管理"—"日志管理"。检查雷达工作状态时,有时需要读取运行日志。

日志管理界面如图 4-22。点击"读取日志",会在上位机软件存放目录下增加一个txt 文件的日志。等待 5 秒后,即可点击"停止读取"。日志命名方式为"年-月-日-时-分-秒-RadarLog.txt"(例如 2021-03-15-9-24-18-RadarLog.txt)。

日志格式见附录1。

图 4-22 日志管理

4.14. 管理一连接管理

此功能用于查询当前连接着雷达的所有用户的 IP 地址,位于菜单栏"管理"一连接管理,如图 4-23。点击"删除"按钮可以删除对应连接(不可以删除自己)。

一台雷达最多不超过3个客户同时连接,第4个请求连接的客户会被强制断开。

图 4-23 连接管理

4.15. 管理—485 和 WIFI

调试过程中遇到无法通过 LAN 口连接雷达的异常情况时,无需进行连接、登录即可通过此模块与雷达通信,获取雷达当前状态。当前仅有 485 通信模式,暂未开通 WIFI 功能。此模块位于菜单栏"管理"—485 和 WIFI, 如图 4-24。

串口(COM口)通信方式:

- ① "通信方式"下拉选择"串口通信",点击"刷新"按钮;
- ② 串口号选择当前的 COM 号,波特率选择"115200",点击"打开"按钮。
- ③ 下方文本框提示"串口已打开"则串口通信成功。
- "雷达复位"可重启雷达(不会重置雷达的 IP、安装参数等)。

图 4-24 WIFI/485 通信功能

通过 COM 或 WIFI 和雷达建立通信后,点击"IP 读取",下方显现雷达当前的 IP 地址、子网掩码、网关、端口号信息,如图 4-25 所示。

图 4-25 通过 COM 读取雷达 IP

修改网络配置的操作逻辑同"连接管理":

● 在"IP管理"中重新输入IP、子网掩码、端口号、网关,然后点击"IP设置" 重新配置雷达的网络信息。 ● "查询用户"按钮能查询当前连接着雷达的用户 IP。下拉选择后点击"删除用户"按钮,可强制该用户退出连接。

4.16. 管理—UDP 复位

UDP 复位功能无需连接雷达,通过本机向雷达 UDP 端口发送复位指令。通常在雷达连接数被异常占用时可尝试使用此功能使雷达强制重启(不会重置雷达参数)。

需要在主界面输入本机 IP、雷达 IP,并保证本机能 ping 通雷达,然后点击图中子窗体处的红色按钮"雷达复位"。

复位成功会显示"Reset OK",如图 4-27 UDP 复位成功。

图 4-26 UDP 复位

图 4-27 UDP 复位成功

4.17. 数据

图 4-28 数据视图—目标跟踪信息

当工作模式为跟踪模式、交通信息、统计测试,会输出目标跟踪信息。如图 4-28,目标跟踪信息包含内容如下:

- 目标 ID
- X: 以雷达为原点,目标的横向位置,横向距离 X 左负右正。
- Y: 以雷达为原点,目标的纵向位置,纵向距离 Y 恒为正值。
- VX: 目标移动速度(横向), VX 左负右正。
- VY: 目标移动速度(纵向),去向(驶离)为正值,来向(驶入)为负值。
- AX、AY: 目标加速度。
- Lane: 目标所处车道。车道号从左向右数,左数第1车道号为1。
- RCS: 信号反射强度,单位 dbm²
- Cofidence: 目标置信度, 0表示外推目标, 1表示真实目标。
- StopFlag: 停车标志, 0表示运动目标, 1表示停止目标。
- Class: 目标分类, 0表示小汽车, 2表示大车, 1表示超大车。

图 4-29 数据视图 一交通信息

当工作模式为交通信息、统计测试,会输出交通信息。在交通信息工作模式下,按 照统计周期输出交通信息数据,如图 4-29。交通信息包含内容如下:

LaneNum:车道编号。从左向右递增,左数第1车道编号为1。

Attribute: 车道属性。表示该车道属于来向车道/去向车道。

VehicleCount: 车流量。表示该统计周期内通过该测量线的车辆数。

AvgSpeed: 平均速度。该统计周期内通过测量线的车辆的平均速度。

TimeUsed: 车道时间占有率。该截面车存在的时间与统计总时间之比。

SpaceUsed: 车道空间占有率。车辆在地面的投影与车道总长度之比。

headinterval: 车头时距。同一车道上行驶的车辆队列中,相邻两辆车辆车头部分通过某一断面的时间间隔。

spaceinterval: 车头间距。在一条车道上,前后相邻车辆之间的间距。

Oversize|Large|Small:超大车|大车|小车的数量。

QueenLength: 排队长度。

Left|Stright|Right|Turn: 左转|直行|右转|掉头 的车辆数。

4.18. 画布

4.18.1. 画布范围

图 4-30 画布设置

如图 4-30, 可在此处更改画布显示范围。

4.18.2. 参考线

图 4-31 参考线设置

为方便观察,可在画布上绘制参考线,如图 4-31 中白色实线。参考线参数不写入雷达,对输出的数据无影响。

4.19. 信息(雷达升级)

图 4-32 信息、雷达升级

如图 4-32, 此部分可查看雷达 ID、程序版本、雷达型号。

对雷达进行程序升级也在此窗口。相比于 V9 版本的上位机调试软件,一键升级功能是此版本重大改进,操作如下:

- ① 连接雷达:
- ② 点击"选择固件",选择雷达程序(也可回退至旧版本);
- ③ 点击"升级固件",等待升级流程结束,如图 4-33。
- ④ 升级完成后,弹出提示框,显示升级过程所用时间,如图 4-34。
- ⑤ 重新连接雷达,在信息窗体中查询当前版本信息,是否已升级到相应版本。

品 信息		₽ ×
设备信息	_	
设备ID:	0-43-0-51	
版本号:	Apr 9 2021—20:01:02	版本读取
设备升级		
升级文件:	E:\广域雷达调试软件\ARM程序-l	选择固件
升级进度:		升级固件
所授: Load 阶段: Load 阶段: Load 阶段: Load	ingFile ->第5帧传输完成 ingFile ->第6帧传输完成 ingFile ->第6帧传输完成 ingFile ->第6帧传输完成 ingFile ->第9帧传输完成 ingFile ->第10帧传输完成 ingFile ->第10帧传输完成 ingFile ->第12帧传输完成 ingFile ->第13帧传输完成	^
	运行用户程序	
正在下载固件	14/57	10.10 V10.02 ,;;

图 4-33 雷达升级中

图 4-34 升级成功

4.20. 菜单栏—保存数据

图 4-35 "保存数据"按钮

如图 4-35 所示,选择工作模式后,点击"保存数据"按钮进行雷达数据的采集,数据采集完成后点击"停止保存"按钮结束数据采集。

一般情况下, 雷达研发需要"采集模式"下的原始数据进行问题定位。

保存的数据以".bin"文件的形式存放在上位机软件安装目录下。不同工作模式下所保存的数据的文件名如表 4.1。

工作模式		文件名	
采集模式	雷达检测模式为目标	年-月-日-时-分-秒-Object.bin	
水米保 八	雷达检测模式为集群	年-月-日-时-分-秒-Cluster.bin	
跟踪模式		年-月-日-时-分-秒-Target.bin	
交通信息		年-月-日-时-分-秒-Traffic.bin	
统计测试		年-月-日-时-分-秒-Traffic.bin	

表 4.1 不同工作模式下保存数据文件名表格

5. 常见问题与解决方法

5.1. 上位机软件中目标轨迹偏移

此问题建立在雷达正常安装并且参数设置较为准确的基础上,其他问题请联系厂家解决。

(1) 来向目标<mark>左上往右下</mark>,或去向目标呈<mark>右下往左上</mark>,如图 5-1。

异常原因: 雷达安装角度偏左, 或者"雷达安装角度"参数值设置的偏小。

解决方法:此时需要将目标逆时针旋转(以雷达为原点)。"雷达安装角度"为"左 负右正",因此需要<mark>将"雷达安装角度"参数值调大</mark>,最后点击"设置"按钮。重新设 置参数值后,需要再次根据现象确定所装订的参数是否合适。

图 5-1 左上往右下

(2) 来向目标<mark>右上往左下</mark>,或去向目标呈<mark>左下往右上</mark>,如图 5-2。

异常原因:雷达安装时水平角度偏右,或者"雷达安装角度"参数值设置的偏大。解决方法:此时需要将目标顺时针旋转(以雷达为原点)。"雷达安装角度"参数值为"左负右正",因此需要将"雷达安装角度"参数值调小,最后点击"设置"按钮。重新设置参数值后,需要再次根据现象确定所装订的参数是否合适。

图 5-2 右上往左下

(3) 目标直线行驶, 但是整体横向偏移, 如图 5-3 所示。

图 5-3 目标轨竖直,但是整体横向偏移

异常原因: "雷达安装"区域中"车道1左侧横坐标"参数值设置错误。

解决方法:需要根据实际情况调整"车道1左侧横坐标"参数值。本例中若来向车道目标实际行驶于车道3的中间、去向车道目标实际行驶于车道8的中间,则需要将车道整体左移,此参数值为"左负右正",因此需要将其调小。若来向车道目标实际行驶于

车道2的中间、去向车道目标实际行驶于车道7的中间,则需要将车道整体右移,因此需要将其调大。最后需要根据现象再次确定参数值装订是否合适。

6. SHA256 哈希值校验

安装包、升级包发布时会带有"SHA256哈希签名.txt"文件,用于文件完整性验证。 用户在接收到安装包、升级包后:

- (1) 右键-属性-安全,查找安装包、升级包的路径地址,如图 6-1 所示。
- (2) 用管理员身份打开 Windows PowerShell(如图 6-2),输入命令: Get-FileHash C:\Users\ya\Desktop\simulate test.m | Format-List(替换路径),如图 6-3 所示。
- (3) 对比 "SHA256 哈希签名.txt"文件中的哈希值和 Windows PowerShell 中的哈希值,进行文件完整性验证。

图 6-1 查看安装包、升级包的路径地址

图 6-2 Windows PowerShell

图 6-3 windows 命令行得到文件哈希值

7. 附录 1 日志格式表

表 7.1 日志格式表

种类	操作命令	解释
上电	system reset	上电日志,注:上电时 NTP 服务未开启,时间为 1900-1-1 日,下电没有日志
	Login successful	用户登录成功
	Auto Read Back by 802	登录成功后,自动读取雷达状态
	Auto Read Back OK	成功读取雷达状态
用户	Login failed	登录失败
连接与登	No login in 20s disconnected	用户连接 20s 内未登录,主动断开
录	Login locking in 5min	用户锁定 5 分钟
	Login quit	用户退出登录
	Disconnected	用户断开连接
	Login quit,Disconnected	用户退出登录并断开连接
	Password change	密码修改命令
密码	Password change Error	密码修改错误
修改与重	Password change OK	密码修改成功
置	Password reset	密码重置
	Password reset OK	密码重置成功
	IP read	雷达 IP 读取
IP	IP read OK	雷达 IP 读取成功
IP	IP Change	雷达 IP 修改
	IP Change OK	雷达 IP 修改成功
日志	RadarLog read	日志读取
口心	RadarLog read OK	日志读取结束
基础	Radar ID and Firmware Read	设备 ID 和版本号读取
信息	Radar ID and Firmware Read OK	设备 ID 和版本号读取成功
	Work mode read	工作模式读取。
	Work mode read OK	工作模式读取成功
工作	Work mode set	工作模式设置
模式	Work mode set OK	工作模式设置成功
	示例: <work_mode:0></work_mode:0>	0 采集模式, 1 跟踪模式, 2 交通信息, 3 统计测试。
	Installation parameter read	安装参数读取

	Installation parameter read OK	安装参数读取成功
	Installation parameter set	安装参数设置
安装参数	Installation parameter set OK	安装参数设置成功
	示例: <radar_height:6.00;radar_angle: 0.00;radar_direction:1;distlat_li="" 20.00~20.00;distlong_limit:0.00~="" 250.00="" mit:-=""></radar_height:6.00;radar_angle:>	Radar_Height:安装高度; Radar_Angle:安装角度; Radar_Direction:雷达方向; DistLat_Limit:检测横向范围; DistLong_Limit:检测纵向范围
	Road read	车道参数查询
	Road reak OK	车道参数查询成功
	Road set	车道参数设置
	Road OK	车道参数设置成功
车道 设置	示例: <lane1_bais:- 5.00;Lane Num:3.00;Lane Width: 3.00;Garden_Width:3.50;BLane_N um:3.00;BLane_Width:3.00;Stoplin e:60.00></lane1_bais:- 	Lanel_Bais: 车道 1 左侧横坐标; Lane_Num:来向车道个数; Garden_Width: 绿化带宽度; BLane_Num: 去向车道个数; BLane_Width: 去向车道宽度; Stopline: 停止线距离。
	Traffic_Infor parameter read	交通信息查询
	Traffic_Infor parameter read OK	交通信息查询成功
	Traffic_Infor parameter set	交通信息参数设置
交通信息	Traffic_Infor parameter set OK	交通信息参数设置
14.6	示例: <period:65535;virtualloopb1:255 ></period:65535;virtualloopb1:255 	Period: 统计周期 (s); VirtualLoopB1: 虚拟线圈B1
	Clear Traffic Information manual	数据清零
数据 保存 手动 复位	RadarData_Save_start	开始保存雷达数据
	RadarData_Save_stop	停止保存雷达数据
	Manual reset	手动复位
	Manual reset OK	手动复位成功
雷达配置	Ars408 parameter read	读取雷达配置
	Ars408 parameter read OK	读取雷达配置成功
	Ars408 parameter set	发送配置
	Ars408 parameter set OK	发送配置成功

	_		
		示例: <maxdistance:260;radarpower:0; hreshold:0;motionrx:3;ctrlr:0="" o:0;sendquality:1;outputtype:1;t="" sortindex:0;radarid:0;sendextinf=""></maxdistance:260;radarpower:0;>	MaxDistance: 最大检测距离 RadarPower: 发射功率, 0: 标准, 1: -3dB, 2: -6dB, 3: -9dB; SortIndex: 排序规则, 0: 未排序, 1: 距离排序, 2: RCS 排序; RadarID: 雷达 ID SendExtInfo: 目标扩展信息, 0: 不输出, 1: 输出; SendQuality: 目标质量信息, 0: 不输出, 1: 输出; OutputType: 检测模式, 0: 空, 1: 目标, 2: 集群; Threshold: 雷达灵敏度, 0: 标准, 1: 高灵敏; CtrlR: 继电器, 0: 无效, 1: 有效
		Ars408 filter(1-XXX) read	1-XXX 过滤器读取(0-XXX:集群模式,1-XXX: 目标模式)
器酉		Ars408 filter(1-XXX) Set:<0- 0.00~0.00>	1-XXX 过滤器配置<0:未启用,1:启用;最小值~ 最大值>
		Filter Set/Read Back OK	过滤器配置或读取成功
		Ars408 filter(1-XXX) Back:<0 0.00~0.00>	1-XXX 过滤器配置成功后的返回值<0:未启用, 1:启用;最小值~最大值>
	过滤器配置	1-XXX 代表的"目标"模式的过滤器配置项	1-NofObj: 输出目标数量 1-Distance: 径向距离 1-Azimuth: 水平角度 1-VrelOncome: (径向)来向速度 1-VrelDepart: (径向)去向速度 1-RCS: 雷达散射截面积 1-Lifetime: 目标持续时间 1-Size: 目标大小 1-ProbExists: 存在可能性 1-Y: Y方向距离 1-X: X方向距离 1-VYLeftRight: 从左到右分速度 1-VXDepart: 去向分速度 1-VYRightLeft: 从右到左分速度 1-VxOncome: 来向分速度

	0-XXX 代表"集群"模式的过滤 器配置项	0-NofObj: 1-Distance: 径向距离 0-Azimuth: 水平角度 0-VrelOncome: (径向)来向速度 0-VrelDepart: (径向)去向速度 0-RCS: 雷达散射截面积输出目标数量
	NTP set	NTP 服务器 IP 及校时间隔设置
NTP	NTP set OK	NTP 设置成功
设置	NTP read	NTP 服务器 IP 及校时间置读取
	NTP read OK	NTP 读取成功
	Radar Update	点击雷达升级按钮
	Radar Update begin	系统复位成功,程序运行至 Bootloader
	Radar Update Connected	Bootloader 中网络连接成功
	Radar Update-reset flag set	Bootloader 中雷达复位
	Radar Update-connect flag set	Bootloader 中连接雷达
	Radar Update-File Transferring(n)	加载文件,n代表第n帧
雷达升级	File Transfer OK and RAM Data Check OK	文件传输成功、RAM 文件校验成功
	Radar Update-Flash Erase	Flash 擦除
	Radar Update-Flash Erase OK	Flash 擦除完成
	Radar Update-Flash Write	Flash 写入
	Flash Write OK and Flash Data Check OK	Flash 写入成功,Flash 文件校验,程序升级成功
	Radar Update-Run APP	运行用户程序

注: 所有 Radar Update 日志均没有时间.。

公司: 上海黎明瑞达电子科技有限公司

地址:上海市杨浦区黎平路 203 号

Tel: 18221288598 (朱经理)

E-Mail: <u>zhuhaiyang@limradar.com</u>

官网: www.limradar.com