Important Property (5/7)

Basis. Initially, when the queue contains only s, the lemma certainly holds $(v_r.d \le v_1.d + 1)$ and $v_i.d \le v_{i+1}.d$.

Inductive Step: For the inductive step, we must prove that the lemma holds after both dequeuing and enqueuing a vertex.

If the head v_1 of the queue is dequeued, v_2 becomes the new head.

- By the inductive hypothesis, $v_1.d \le v_2.d$.
- Then we have $v_r.d \le v_1.d + 1 \le v_2.d + 1$, and the remaining inequalities are unaffected.

Important Property (6/7)

When we enqueue a vertex v in line 17 of BFS, it becomes v_{r+1} . At that time, we have already removed vertex u, whose adjacency list is currently being scanned.

- By the inductive hypothesis, the new head v_1 has v_1 .*d* ≥ u.*d*.
- Thus, $v_{r+1}.d = v.d = u.d + 1 \le v_1.d + 1$.
- From the inductive hypothesis, we also have $v_r.d \le u.d + 1$, and so $v_r.d \le u.d + 1 = v.d = v_{r+1}.d$.

Important Property (7/7)

- The following corollary shows that the d values at the time that vertices are enqueued are monotonically increasing over time.
- **Corollary 4.** Suppose that vertices v_i and v_j are enqueued during the execution of BFS, and that v_i is enqueued before v_j . Then $v_i.d \le v_j.d$ at the time that v_i is enqueued.

Proof. Immediate from <u>Lemma 3</u> and the property that each vertex receives a finite *d* value at most once during the course of BFS.

Correctness of Breadth-First Search (1/3)

Theorem 5. Let G = (V, E) be a directed or undirected graph, and suppose that BFS is run on G from a given source vertex s ∈ V. Then, during its execution, BFS discovers every vertex v ∈ V that is reachable from the source s, and upon termination, v.d = δ(s, v) for all v ∈ V. Moreover, for any vertex v ≠ s that is reachable from s, one of the shortest paths from s to v is a shortest path from s to v.π followed by the edge (v.π, v).

30

29