PO12Q - Introduction to Quantitative Political Analysis II: Week 7 – Solutions to Additional Exercises

Dr Florian Reiche F.Reiche@warwick.ac.uk

1 Load Packages and data

Before starting, we need to load libraries and install packages if not already installed. In these exercises we will be using the following packages:

- 1. haven
- 2. ggplot2
- 3. stargazer

Set working directory and load the data. The file is on Moodle. It's called simd.csv and it's the "Scottish Index of Multiple Deprivation". More details here: https://www.gov.scot/collections/scottish-index-of-multiple-deprivation-2020/

Hint: Remember that the WD is the folder where you stored the data set and where all the outputs will be saved

Hint2: Note, the data is a .csv file

```
library(tidyverse)
library(haven)
library(stargazer)
sim <- read.csv("simd.csv", stringsAsFactors = T)</pre>
```

2 Inspect your data

Here you can use several basic functions. The dataset does not contain too many variables, so you can start by using names(), str(), etc.

```
names (sim)
## [1] "data_zone"
                                   "intermediate zone"
## [3] "council_area"
                                   "health_board"
## [5] "pct_school_attend"
                                   "alcohol"
## [7] "population"
                                   "working_population"
## [9] "pct_income_deprived"
                                   "pct_employment_deprived"
## [11] "illness"
                                   "mortality"
## [13] "drugs"
                                   "pct_depress"
## [15] "pct_low_bw"
                                   "hosp_emerg"
## [17] "noquals"
                                   "crime"
## [19] "pct_no_heating"
                                   "pct_overcrowded"
## [21] "simd_2016_quintile"
                                   "urban"
dim (sim)
## [1] 6976
```

3 | Preliminary Analysis

Now that you have a preliminary idea of the structure of the dataset, you can select two variables and test a possible relationship. The topic today is bivariate linear regression analysis, so remember that the outcome variable needs to be continuous.

Let's say we want to look at the relationship between alcohol consumption and mortality rate (yes, not a very funny topic, but interesting nonetheless). The two variables are, respectively, alcohol and mortality (rather intuitive this time).

Now, formulate the working (alternative) and the null hypothesis. Write them down.

H₀:

H₁:

Which is your dependent variable?

Run a frequency table on the mortality variable. What is the level of measurement?

```
table (sim$mortality)
##
##
                                                   21
    0
         6
            8
                 9 11
                       12
                           13
                              15
                                   17
                                       18
                                           19
                                               20
                                                       22
                                                           23
                                                               24
                                                                   25
                                                                       26
                                                                           27
                                                                               28
##
    4
        1
            1
                1
                    2
                       2
                            1
                               3
                                    7
                                        4
                                            2
                                                1
                                                    5
                                                        3
                                                            2
                                                                   2
                                                                       5
                                                                            5
                                                                                8
##
    29
       30
          31 32
                   33
                      34
                           35 36
                                   37
                                       38
                                          39
                                               40
                                                   41
                                                       42
                                                           43
                                                               44
                                                                   45
                                                                       46
                                                                           47
                                                                               48
    3
        9
            7
                        8 17 10
                                       25
##
               7
                   12
                                          16
                                               18 31
                                                       26
##
   49
       50
          51 52
                   53
                       54
                           55
                               56 57
                                       58
                                           59
                                               60 61
                                                       62
                                                           63
                                                               64
                                                                   65
                                                                       66
                                                                           67
                                                                               68
##
   33
       43
          37 39
                   51
                       54
                           46 49 46
                                       57
                                           67
                                               59
                                                   61
                                                       73
                                                           70
                                                               71
                                                                   80
                                                                       67
                                                                               57
                                                                           85
                       74
                           75
                               76
                                   77
##
   69
       70
           71 72
                   73
                                       78
                                           79
                                               80
                                                   81
                                                       82
                                                               84
                                                                   85
                                                                           87
                                                           83
                                                                       86
                                                                               88
##
   87
       64
           71
               86
                   76
                       84
                           97
                               88
                                   70
                                       70
                                           79
                                               74
                                                   84
                                                       81
                                                           83
                                                               68
                                                                  68
                                                                       74
                                                                               70
##
    89
       90
               92
                   93
                       94
                           95
                               96
                                   97
                                       98
                                           99 100 101 102 103 104 105 106 107
   81
               77
                   77
                       76
                           85
                               72
                                   63
                                       74
                                           56
                                              63 66
                                                       72
                                                           62
                                                               71
                                                                  59
                                                                      82
## 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
                                      42 44 47 54
   61
       63 52 62
                  61
                      47
                           66
                               53
                                   53
                                                       46
                                                           59
                                                              52 43
                                                                     39
## 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
      37 39 40 28 21
                          40
                              38
                                  39
                                      37 31 25
                                                  34
                                                       28
                                                           26
## 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
## 22 21 21 11 20 22 19
                               25
                                  18 21 21 18
                                                   25
                                                      17
                                                                  17 15
                                                           13
                                                              16
## 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
                                7
                                    5
                                                9
                                                            9
## 11 11 12 11 12 13 12
                                        3 11
                                                      10
                                                                8
                                                                    6
## 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 205 206 207 208 209
##
         6
            6
               7
                    7
                        3
                          11
                                4
                                    7
                                        9
                                           10
                                                1
                                                    5
                                                        2
                                                            2
                                                                5
                                                                  10
## 210 211 212 213 214 216 217 218 219 220 221 222 223 224 227 228 229 230 231 232
##
                    2
                        3
                                1
                                        5
                                                3
    2
        3
           3
               1
                            2
                                    1
                                            4
                                                    1
                                                        3
                                                            2
                                                                1
                                                                    1
                                                                        3
                                                                                1
## 233 235 237 239 240 241 242 244 246 248 251 253 255 259 261 263 266 269 272 273
        1
            3
                2
                    2
                        5
                            1
                                2
                                    2
                                        1
                                            1
                                                1
                                                    2
                                                        2
                                                            1
                                                                1
                                                                    1
                                                                                1
## 282 286 294 299 303 310 312 324 340 346 356 385 398 399 411 472 473 476 504 523
        1
            1
                1
                    1
                               1
                                    1
                                                    1
## 557 563 589 669 719 950
           1
   1 1
               1
class (sim$mortality)
## [1] "integer"
```

Do the same for the other variable. And guess what is the level of measurement.

(I'm sparing you the endless table here, and jump straight to class ())

```
class(sim$alcohol)
## [1] "integer"
```

4 Visualisation

Let's start with the visualisation of the relationship between the two variables. What is the best way to visualise the relationship considering the level of measurement of our variables?

Hint: Probably a scatterplot, right? So, use a scatterplot to visualise the relationship and add the regression line.

You can use ggplot, but also the standard plot() function.

```
ggplot(sim, aes(x = alcohol, y = mortality)) +
geom_smooth(method = lm, se=FALSE) +
geom_point()
```


Improve the graph by:

- 1. Adding a regression line.
- 2. Adding up a relevant title, also possibly a subtitle.
- 3. Adding axes labels and making them readable.
- 4. Remove the grid in the background.

Page 3 of 8

```
ggplot(sim, aes(x = alcohol, y = mortality)) +
  geom_smooth(method = lm, se=FALSE) +
  geom_point() +
  theme_classic() +
  xlab('Alcohol') +
  ylab('Mortality') +
  ggtitle("Impact of Alcohol Consumption on Mortality Rate") +
  theme(axis.text=element_text(size=12),
      axis.title=element_text(size=14)) +
  theme(plot.title = element_text(size = 14))
```

If you have done everything correctly, you should see that the dots are rather concentrated in the bottom left corner of the scatterplot with some outliers far away from the cloud of our data. It is not a big deal, but we might want to get rid of the outliers and this way improve our visualisation.

There are several ways to do that, of course. But let's say we want to transform our variables, excluding all values over a certain point. For instance, we want to exclude the values above 750 of our alcohol variable and above 500 for our mortality variable. How would you do that?

```
# Option 1 with tidyverse
simred <- filter(sim, alcohol<750 & mortality<500)

# Option 2 with base R
simred<-subset(sim, alcohol<750 & mortality<500)
```

Hint: there are several solutions. One could be, creating a new datset subsetting the original. Another solution could be again, creating a new variable telling R to transform all the values above our treshold in NA (missing values). Try to find an apply the appropriate code. Use Google if necessary, it helps a lot.

5 | Visualisation 2.0

Now, visualise the relationship using the new variables. What can you see?

You can improve the scatterplot using a series of arguments (e.g., alpha) in the <code>geom_point()</code> function in ggplot. Try to improve the Aesthetics of the scatterplot playing with alpha, for instance. (see: https://www.rdocumentation.org/packages/ggplot2/versions/3.4.0/topics/geom_point).

Also, you can draw a vertical and horizontal line corresponding to the mean of your variables using geom_hline and geom_vline. You can thus check if the regression line passes through the mean of X and Y. (see: https://www.rdocumentation.org/packages/ggplot2/versions/0.9.1/topics/geom_hline).

6 | Saving the Scatterplot

You can also save a graph as .png, .JPG (even .pdf) that you can then import in a word document. Although there are many way to use your R output, saving a graph might be sometimes useful.

Use the function <code>ggsave()</code> to save your scatterplot. Again, there are tons of examples online, google it

Hint: You first need to store the graph in an object.

Hint 2: The file will end up in your working directory

```
# First, create an object #
scatterplot<-ggplot(simred, aes(alcohol, mortality)) +</pre>
  geom_point(position='jitter', alpha = 1/5) +
  xlab('Alcohol') +
  ylab('Mortality') +
  ggtitle ("Impact of Alcohol Consumption on Mortality Rate") +
  theme classic() +
  geom_smooth(method = 'lm', se=T, colour = 'red', lwd=0.4)+
  geom_hline(yintercept = mean(simred$mortality, na.rm=TRUE), color='blue', lty='dashed', lwd
  geom_vline(xintercept = mean(simred$alcohol,na.rm=TRUE), color='blue', lty='dashed', lwd
      =0.4)+
  theme(axis.text=element_text(size=12),
        axis.title=element_text(size=14)) +
  theme(plot.title = element_text(size = 14))
# Then save the file #
save_plot("scatterplot_mortality.png", scatterplot)
```

7 | Regression Analysis (yes, finally)

Now we can finally run a linear regression with mortality as the outcome variable and alcohol as the predictor using the lm() function. Store the results in an object called model and visualise the regression output using summary(). Use the reduced data set without outliers.

```
# Store the results in an object called model #
model<-lm(mortality ~ alcohol, simred)
# Visualise the regression output using summary() #
summary (model)
##
## Call:
## lm(formula = mortality ~ alcohol, data = simred)
## Residuals:
##
     Min
           1Q Median 3Q
                                   Max
## -122.69 -22.52 -4.71 17.27 377.77
##
## Coefficients:
        Estimate Std. Error t value Pr(>|t|)
## (Intercept) 78.155160 0.619648 126.13 <2e-16 ***
## alcohol 0.208270 0.004476 46.53 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 35.61 on 6956 degrees of freedom
## Multiple R-squared: 0.2374, Adjusted R-squared: 0.2373
## F-statistic: 2165 on 1 and 6956 DF, p-value: < 2.2e-16
```

You can also extract specific blocks of the output table. One way of doing it is to use the brackets [] after the summary() function. For example summary()[8]. Try to extract the block of Coefficients from the table, like this:

```
summary(model)[4]

## $coefficients

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 78.1551599 0.619648419 126.12823 0

## alcohol 0.2082697 0.004476011 46.53021 0
```

8 | Interpretation

Interpret the results, starting with model evaluation.

- 1. Is the p-value of the F-statistics statistically significant? We will be discussing this in our following lectures.
- 2. How much variation in the outcome variable does the model explain? What does this tell us about the model?
- 3. What's the value of the slope? What does it mean?
- 4. What's the value of the regression coefficient? How do we interpret it? Is it statistically significant? What does it mean in practice?
- 5. Interpret the results (in plain language) referring to the hypothesis you formulated above.

9 | Exporting the Results

As for the graphs, you can also export and save the results of the regression model in a Word table. To do that you can use the stargazer package. Try and export the table.

Hint 1: The function needs to contain, in order: the name of the R object where you stored the regression results, the option header=F to suppress the annoying immortalisation of the author, the option type="html", and the option out="documentname.doc" which places a word document with that file name in your working directory.

Hint 2: Remember that Google is your best friend when you learn to code. And after that as well. No one actually remembers all the functions and all their arguments. The secret is to know how to google the things you need.

```
stargazer(model,
header=F,
type="html",
out="documentname.doc")
```

Table 1

	Dependent variable:
	mortality
alcohol	0.208***
	(0.004)
Constant	78.155***
	(0.620)
Observations	6,958
R^2	0.237
Adjusted R ²	0.237
Residual Std. Error	35.610 (df = 6956)
F Statistic	2,165.060*** (df = 1; 6956)
Note:	*p<0.1; **p<0.05; ***p<0.01

You can improve the table in many ways. For example, you need to replace the variable names with the variable labels, You could add a name of the model and suppress unneeded statistics (see https://www.rdocumentation.org/packages/stargazer/versions/5.2.3/topics/stargazer_stat_code_list).

Table 2

	Dependent variable:
	Mortality
Alcohol	0.208***
	(0.004)
Constant	78.155***
	(0.620)
Observations	6,958
\mathbb{R}^2	0.237
Note:	*p<0.1; **p<0.05; ***p<0.01

10 | Comparing models

You can now run another regression model with a different independent variable. Can you compare your original model with the new one? How? How do you know which independent variable is doing a better job in explaining your dependent variable?