Assignment #1 Nitin Gaonkar

Introduction:

The purpose of this assignment is to understand the data for future statistical modelling, there are three important parts in understanding the data, 1) a data survey, (2) a data quality check, and (3) an initial exploratory data analysis.

Results:

1. Variables description:

Below table has the variables classified:

Nominal	Ordinal	Continuous	Discrete
PID	Lot Shape	Lot Frontage	Year Built
MS SubClass	Utilities	Lot Area	Year Remod/Add
MS Zoning	Land Slope	Mas Vnr Area	Bsmt Full Bath
Street	Overall Qual	BsmtFin SF 1	Bsmt Half Bath
Alley	Overall Cond	BsmtFinType 2	Full Bath
Land Contour	Exter Qual	BsmtFin SF 2	Half Bath
Lot Config	Exter Cond	Bsmt Unf SF	Bedroom
Neighborhood	Bsmt Qual	Total Bsmt SF	Kitchen
Condition 1	Bsmt Cond	1st Flr SF	TotRmsAbvGrd
Condition 2	Bsmt Exposure	2nd Flr SF	Functional
Bldg Type	BsmtFin Type	Low Qual Fin SF	Fireplaces
House Style	HeatingQC	Gr Liv Area	Garage Yr Blt
Roof Matl	Electrical	Garage Area	Garage Cars
Exterior 1	KitchenQual	Wood Deck SF	Mo Sold
Exterior 2	FireplaceQu	Open Porch SF	Yr Sold
Mas Vnr Type	Garage Finish	Enclosed Porch	
Foundation	Garage Qual	3-Ssn Porch	
Heating	Garage Cond	Screen Porch	
Central Air	Paved Drive	Pool Area	
Garage Type	Pool QC	Misc Val	
Misc Feature	Fence	SalePrice	
Sale Type			
Sale Condition			

Yes, I think the variables such as yearbuild, year remod, lot area would definetly help in building a statistical model for predicting the sale price, although the data contains the other variables which also play a major role in predicting the sale price, I feel that school district(ordinal) variable can be a included in the analysis, since it influences sale price.

2.

we should not print the entire observations, since we have too many observations, because of this the system may crash.

After sorting the data with sale price ascending and descending and by looking the max and min value of sale price I could say that the range of the sale price was pretty high. The difference between the maximum sale price and sale price of most of the other observations was large, which implied that the values around the maximum sale price were kind of fishy.

In order to analyze further I ran the mean proc and got the below values of mean and std deviation, by analyzing the mean and the std deviation it implied that the values around the maximum values of sale price were outliers.

Analysis Variable : SalePrice						
N	Mean Std Dev Minimum Maximum					
2930	180796.06	79886.69	12789.00	755000.00		

The second continuous variable which I used is TotalBsmtSF.

After sorting the data I could see that the max value is 6110 and the min value is Zero, after running the proc mean I could see that the mean and the std deviation is 1051.61 and 440.61, the values around the maximum like 6110, 5095 looked fishy.

Analysis Variable : TotalBsmtSF					
N Mean Std Dev Minimum Maxin					
2929	1051.61	440.6150670	0	6110.00	

After sorting the data with firstflrsf ascending and descending and by looking the max and min value of sale price I could say that the range of the firstflrsf was pretty high. The difference between the maximum sale price and sale price of most of the other observations was large, which implied that the values around the maximum firstflrsf were kind of fishy.

In order to analyze further I ran the mean proc and got the below values of mean and std deviation, by analyzing the mean and the std deviation it implied that the values around the maximum values of firstflrsf were outliers.

Analysis Variable : FirstFlrSF					
N	N Mean Std Dev Minimum Maximu				
2930	1159.56	391.8908853	334.0000000	5095.00	

3.

Overall Qual predictor variable has a strong linear relationship with the response variable. By looking at the numeric correlation measure we can see that there is a strong relation, as per the scatter plot we can see that the sale price increases with the higher value of overall Qual.

I think overall qual will be the best predictor variable since it has a good linear correlation ship with the response variable and the worst would be mosold since the correlation with the response variable is pretty low.

I did not find any high correlations within the set of potential variables, coefficient is not sufficient to make a decision regarding the predictor variable and its usefulness because the reliability of the linear model also depends on how many observed data points are in the sample.

4.

Below is the scatter plot for the overall qual and sale price as the overall qual has highest correlation with Y.

As we can see from the scatter plot that the correlation between the X and Y is at the lowest.

MasVnrArea variable has a corr co-efficient as 0.5, so let's plot a scatter plot for this as X with the sale price.

Below is the scatter plot with loess.

Here I have used three predictor variables overllqual, mosold and masvbrArea.

We can see that the overallqual is strongly correlated and we have a linear relationship with the sale price, where as the mosold is not correlated and no linear relationship with the sale price, where as the masvnr area is considered we can see that there is some correlation with the sale price.

Loess curve is weighted regression and it helps us to have a look at the chart and understand the big picture, from the graph one it shows that the saleprice increase as the overallqual increases.

Also we don't see much relationship between the mosold and the sale price.

For masvnr area we can see that there is some correlation between the sale price.

Below is the table produced by proc freq using the variable Mosold, here we can see that the frequency is high between mosold 5 to 7 implying that frequency of selling are high during these months, because of this the percent are also pretty high among these months., also the data looks like normally distributed.

6.

Below are the frequency tables for the 3 categorical variables.

- 1. Mosold
- 2. Fireplaces
- 3. Bedroombvgr

Below is the table produced by proc freq using the variable Mosold, here we can see that the frequency is high between mosold 5 to 7 implying that frequency of selling are high during these months, because of this the percent are also pretty high among these months., also the data looks like normally distributed.

The FREQ Procedure

MoSold	Frequency	Percent	Cumulative Frequency	Cumulative Percent
1	123	4.20	123	4.20
2	133	4.54	256	8.74
3	232	7.92	488	16.66
4	279	9.52	767	26.18
5	395	13.48	1162	39.66
6	505	17.24	1667	56.89
7	449	15.32	2116	72.22
8	233	7.95	2349	80.17
9	161	5.49	2510	85.67
10	173	5.90	2683	91.57
11	143	4.88	2826	96.45
12	104	3.55	2930	100.00

Below is the table produced by proc freq using the variable Fireplaces, here we can see that the frequency is high between 0 to 1 implying that the there are lot of houses without fireplaces and also with only one fireplace, there are few observations where the fireplaces are more than 2. So almost 91 % of the houses in the observations have one or no fireplaces.

The FREQ Procedure

Fireplaces	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	1422	48.53	1422	48.53
1	1274	43.48	2696	92.01
2	221	7.54	2917	99.56
3	12	0.41	2929	99.97
4	1	0.03	2930	100.00

Below is the table produced by proc freq using the variable bedroomabvgr, here we can see that the frequency is high between 2 to 3 implying that the there are lot of houses with 2 to 3 bedrooms above ground about 50 % of the houses have 3 bedrooms above the ground.

The FREQ Procedure

BedroomAbvGr	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	8	0.27	8	0.27
1	112	3.82	120	4.10
2	743	25.36	863	29.45
3	1597	54.51	2460	83.96
4	400	13.65	2860	97.61
5	48	1.64	2908	99.25
6	21	0.72	2929	99.97
8	1	0.03	2930	100.00

Below are the histogram for the data distribution of these 3 categorical variables:

The first categorical variable which I used for this analysis is the Mosold.

After going through the data I could see that the mean sale price is high for the first month, also I could see that the std deviation is also pretty high for the month 1 so we have wide range of values.

Also noticed that the sale price is high around year end..

By having a look at the correlation values of mosold and sale price and also having a look at the scatter plot I can say that I don't see a linear relationship with the mosold and sale price.

The second categorical variable which I used for this analysis is the BedroomAbvGr

After going through the data I could see that the mean sale price is high even when the Bedroomabgr is zero that implies that the no of bedroomabvgr do not influence that much in the sale price. As we can also see that the mean sale price is around 200 k for 8 Bedroomabgr which is not on the higher side of the sale price.

By having a look at the correlation values of BedroomAbvGr and sale price and also having a look at the scatter plot I can say that I don't see a strong linear relationship with the Bedroomabvgr and sale price.

The third categorical variable which I used for this analysis is the Fireplaces

After going through the data I could see that the mean sale price is high whenever there are more fireplaces, for ex: average sale price is around 140 k without fireplaces where as the average sale price is around 260 k with 4 fireplaces, as we can see the sale price increase with the increase in fireplaces

By having a look at the correlation values of Fireplaces and sale price and also having a look at the scatter plot I can say that I see a linear relationship with the fireplaces and sale price.

The CORR Procedure

1 With Variables: SalePrice

3 Variables: MoSold BedroomAbvGr Fireplaces

Simple Statistics							
Variable N Mean Std Dev Sum Minimum Maximum							
SalePrice	2930	180796	79887	529732456	12789	755000	
MoSold	2930	6.21604	2.71449	18213	1.00000	12.00000	
BedroomAbvGr	2930	2.85427	0.82773	8363	0	8.00000	
Fireplaces	2930	0.59932	0.64792	1756	0	4.00000	
Pearson Correlation Coefficients, N = 2930							

Pearson Correlation Coefficients, N = 2930						
Prob > r under H0: Rho=0						
	MoSold	BedroomAbvGr	Fireplaces			
SalePrice	0.03526	0.14391	0.47456			
Salerrice	0.0563	<.0001	<.0001			

By looking at the results we can say that the only variable that has a strong correlation is the fireplaces which can have an influence on the sale price other two variables doest look like they have strong correlation with the response variable (saleprice)

Conclusion:

i don't see any major potential difficulties or concerns in the model building, the variables provided would be definitely sufficient and effective in building the process, only variable i think could have been added would have been the neighborhood with good school district as this factor definitely affects the sale price. I think overallqual variable has a major influence on the sale price and it has a strong correlation with the sale price, also we may require few transformation for few of the predictor such as the Bedroomabvgr while modeling to check if they have any influence on the sale price. I think total bsmt sf and gr liv area these two variables can be a major factor in the variation of the sale price. Overall i think we have enough variables to build a model.

```
Paste your code in at the end.
libname mydata "/scs/wtm926/" access=readonly;
proc datasets library=mydata;
run;
quit;
data my_assign;
set mydata.ames_housing_data;
proc contents data=my_assign;
run;
Question 2:
proc sort data=my_assign;
by descending saleprice;
proc print data=my_assign(obs=10);
run;
proc means data=my_assign;
var TotalBsmtSF;
run;
```

proc sort data=my_assign;

Code:

```
by descending TotalBsmtSF;
proc print data=my_assign(obs=100);
run;
Question 3:
ods graphics on;
proc corr data=my_assign plot=matrix(histogram nvar=all);
with saleprice;
run;
ods graphics off;
proc sgscatter data=my_assign;
title "Scatterplot Matrix for Ames housing Data";
matrix OverallQual saleprice;
run;
4.
proc sgplot data=my_assign;
scatter x=OverallQual y=saleprice;
run;
proc sgplot data=my_assign;
scatter x=OverallQual y=saleprice;
```

```
run;
5
6.
proc freq data=my_assign;
tables Bedroomabvgr;
run;
proc freq data=my_assign;
tables Fireplaces;
run;
proc freq data=my_assign;
tables mosold;
run;
7.
proc sort data=my_assign;
by mosold;
proc means data=my_aasign;
by mosold;
var saleprice;
run;
proc sort data=my_assign;
```

by Bedroomabvgr;
proc means data=my_assign;
by Bedroomabvgr;
var saleprice;
run;
proc sort data=my_assign;
by fireplaces;
proc means data=my_assign;
by fireplaces;
var saleprice;
run;
8.
ods graphics on;
proc corr data=my_assign plot=matrix(histogram);
var mosold Bedroomabvgr Fireplaces;
with saleprice;
run;