VCLANG

Валерий Исаев

1. VCCORE

Язык vclang состоит из двух частей: ядра (vccore) и фронтенд (vclang). Пользователь пишет код на vclang, и он транслируется в vccore. Как это происходит мы обсудим позже, в этом разделе мы опишем ядро.

Программа на vccore состоит из множества объявлений (то есть *неупорядо-ченного* списка). Каждое объявление состоит из уникального имени и *определения*, которые бывают трех видов:

- *Функция* содержит тело и сигнатуру, состоящую из списка типов аргументов и типа возвращаемого значения.
- Алгебраический тип данных содержит вселенную в которой он лежит, список типов, описывающий параметры типа данных, и множество конструкторов, каждый из которых состоит из уникального имени и списка типов, описывающего параметры конструктора.
- *Класс* содержит список полей. Каждое поле состоит из уникального имени и типа.

Классы в vccore устроенны очень просто, по сути, они являются просто записями. Классы не могут наследоваться друг от друга, но можно использовать анонимное наследование. Если A – некоторый класс, содержащий поля $f_1, \ldots f_n$, и $d_1, \ldots d_n$ – некоторые термы, то A { $f_1 \Rightarrow d_1; \ldots f_n \Rightarrow d_n$ } – анонимный наследник класса A.

Если $A \{ f_1 \Rightarrow d_1; \dots f_n \Rightarrow d_n \}$ – коректный тип и все поля A присутствуют в списке $f_1, \dots f_n$, то его элементы создаются при помощи конструкции **new**:

new
$$A \{ f_1 \Rightarrow d_1, \ldots f_n \Rightarrow d_n \} : A \{ f_1 \Rightarrow d_1, \ldots f_n \Rightarrow d_n \}$$

1.1. **Формальное определение термов vccore.** Как обычно, мы сначала опишем множество сырых термов, после чего определим отношения типизации. Выражения и типы vccore тогда будут определятся как типизируемые термы.

При определении функции или связывания в **let** мы можем использовать один из двух способов их описания: либо $f x_1 \dots x_n \Rightarrow e$, либо $f x_1 \dots x_n \Leftarrow e$. Множество $\{\Leftarrow,\Rightarrow\}$ мы будем обозначать Def. Какой из элементов множества Def используется при определении функции влияет на то, как будет вычисляться эта функция. При выборе варианта \Leftarrow , мы можем использовать дополнительные конструкции для задания тела функции. Множество термов Term будет определено ниже. Используя его, можно определить множество $Term_e$ индуктивным образом:

- Если $a \in Term$, то $a \in Term_e$.
- Пусть $k \in \mathbb{N}$, p_i шаблоны, $d_i \in Def$, $b_i \in Term_e$ и $b_i \in Term$, если $d_i = \Rightarrow$. Тогда $\mathbf{elim} \ v_k \ \{p_1 \ d_1 \ b_1; \dots p_n \ d_n \ b_n\} \in Term_e$.

Шаблон – это либо имя конструктора, либо символ *var*. Множество термов определяется следующим образом:

$$\begin{split} Term := v_i \mid D \mid f \mid D \, a_1 \, \dots \, a_n \, . \, c \\ \mid \mathbf{new} \, C \, \{S\} \mid C \, \{S\} \\ \mid \mathbf{let} \, \mathbf{it} \, A_1 \, \dots \, A_n : B \Rightarrow b \, \mathbf{in} \, a \\ \mid \mathbf{let} \, \mathbf{it} \, A_1 \, \dots \, A_n : B \Leftarrow e \, \mathbf{in} \, a \\ \mid b \, a \mid \lambda b \mid \Pi AB \\ \mid (a,b)_B \mid \mathbf{proj}_1 \, p \mid \mathbf{proj}_2 \, p \mid \Sigma AB \\ \mid \mathbf{Type}_i \mid \mathbf{Set}_i \mid \mathbf{Prop} \end{split}$$

где $i \in \mathbb{N}$, $a,b,A,B,p,a_1,\ldots a_n,A_1,\ldots A_n \in Term, e \in Term_e$, D является именем типа данных, c – именем конструктора типа данных D,C – именем класса, f – именем поля некоторого класса и S – последовательностью пар (f,d), где f – имя поля класса C и d – терм. Такую пару (f,d) мы будем записывать как $f \Rightarrow d$. Как обычно, мы сокращаем $\Pi A(\uparrow B)$ до $A \to B$.

TODO: Добавить конструкции для вселенных **Prop** и \mathbf{Set}_i .

Определение редукций: TODO.

На множестве термов существует предпорядок \leq , порождаемый следующими соотношениями:

- $\mathbf{Prop} \leq \mathbf{Set}_i$.
- $\mathbf{Set}_i \leq \mathbf{Type}_i$.
- Если $i \leq j$, то $\mathbf{Set}_i \leq \mathbf{Set}_i$.
- Если $i \leq j$, то **Туре**_i \leq **Туре**_i.
- Если $A \Leftrightarrow B$, то $A \leq B$.
- Если $A \leq A'$ и $B \leq B'$, то $\Sigma AB \leq \Sigma A'B'$.
- Если $A' \leq A$ и $B \leq B'$, то $\Pi AB \leq \Pi A'B'$.
- Если любой член последовательности S встречается в S', то $C\left\{S'\right\} \leq C\left\{S\right\}$.

Правила типизации будут определены относительно фиксированного множества определений Σ . Как отмечалось ранее, каждое определение является определением либо функции, либо типа данных, либо класса.

Во-первых, опишем стандартные базовые правила для контекстов, индексов и типов:

$$\frac{\Gamma \vdash A}{\Gamma, A \vdash} \qquad \frac{A_1, \dots A_n \vdash}{A_1, \dots A_n \vdash v_i \uparrow (\uparrow^{i+1} A_{n-i})} \qquad \frac{\Gamma \vdash a \uparrow A}{\Gamma \vdash a \downarrow B}, A \leq B$$

Термы **Туре**_i, **Set**_i и **Prop**} мы будем называть вселенными в нормальной форме, множество таких термов мы будем обозначать \mathcal{U}_{nf} . Мы будем называть вселенными термы U, такие что $U \Rightarrow_h^* U'$ для некоторого $U' \in \mathcal{U}_{nf}$. Множество вселенных мы будем обозначать \mathcal{U} . Тогда существует функция $nf : \mathcal{U} \to \mathcal{U}_{nf}$ каждой вселенной сопоставляющая ее нормальную форму.

VCLANG 3

Определим функцию $max: \mathcal{U} \times \mathcal{U} \to \mathcal{U}_{nf}$ следующим образом:

$$\begin{split} & max(\mathbf{Type}_i, \mathbf{Type}_j) = \mathbf{Type}_{max(i,j)} \\ & max(\mathbf{Type}_i, \mathbf{Set}_j) = \mathbf{Type}_{max(i,j)} \\ & max(\mathbf{Set}_i, \mathbf{Type}_j) = \mathbf{Type}_{max(i,j)} \\ & max(\mathbf{Set}_i, \mathbf{Set}_j) = \mathbf{Set}_{max(i,j)} \\ & max(\mathbf{Type}_i, \mathbf{Prop}) = \mathbf{Type}_i \\ & max(\mathbf{Prop}, \mathbf{Type}_i) = \mathbf{Type}_i \\ & max(\mathbf{Set}_i, \mathbf{Prop}) = \mathbf{Set}_i \\ & max(\mathbf{Prop}, \mathbf{Set}_i) = \mathbf{Set}_i \end{split}$$

Для произвольных U и V мы полагаем max(U,V) = max(nf(U),nf(V)). Функция max_Π определена так же как и max за исключением того, что $max_\Pi(U,V) =$ **Prop** для любого U и V, такого что nf(V) = **Prop**. Для произвольного конечного множества термов $U_1, \ldots U_n$ мы определяем $max(U_1, \ldots U_n)$ как $max(U_1, \ldots max(U_{n-1}, U_n) \ldots)$. На пустом множестве мы определяем max как **Prop**.

Теперь опишем правила для Π и Σ типов. В правилах ниже термы U и V принадлежат множеству $\{\mathbf{Type}_i, \mathbf{Set}_i, \mathbf{Prop}\}.$

$$\frac{\Gamma \vdash A \Uparrow U \qquad \Gamma, A \vdash B \Uparrow V}{\Gamma \vdash \Pi AB \Uparrow max_{\Pi}(U, V)} \qquad \frac{\Gamma \vdash A \Uparrow U \qquad \Gamma, A \vdash B \Uparrow V}{\Gamma \vdash \Sigma AB \Uparrow max(U, V)}$$

$$\frac{\Gamma, A \vdash b \Uparrow B}{\Gamma \vdash \lambda b \Uparrow \Pi AB} \qquad \frac{\Gamma \vdash b \Uparrow C \qquad \Gamma \vdash a \Downarrow A}{\Gamma \vdash b a \Uparrow B[a]}, C \Rightarrow_{h}^{*} \Pi AB$$

$$\frac{\Gamma, A \vdash B \qquad \Gamma \vdash a \Uparrow A \qquad \Gamma \vdash b \Downarrow B[a]}{\Gamma \vdash (a, b)_{B} \Uparrow \Sigma AB}$$

$$\frac{\Gamma \vdash p \Uparrow C}{\Gamma \vdash \mathbf{proj}_{1} p \Uparrow A}, C \Rightarrow_{h}^{*} \Sigma AB \qquad \frac{\Gamma \vdash p \Uparrow C}{\Gamma \vdash \mathbf{proj}_{2} p \Uparrow B[\mathbf{proj}_{1} p]}, C \Rightarrow_{h}^{*} \Sigma AB$$

Следующие правила для вселенных:

$$\begin{array}{c|c} \Gamma \vdash & \Gamma \vdash \\ \hline \Gamma \vdash \mathbf{Type}_i \end{array} & \begin{array}{c} \Gamma \vdash \\ \hline \Gamma \vdash \mathbf{Set}_i \end{array} & \begin{array}{c} \Gamma \vdash \\ \hline \Gamma \vdash \mathbf{Prop} \end{array} & \begin{array}{c} \Gamma \vdash A \Downarrow U \\ \hline \Gamma \vdash A \end{array} \\ \hline \begin{array}{c} \Gamma \vdash \\ \hline \Gamma \vdash \mathbf{Prop} \Uparrow \mathbf{Set}_0 \end{array} & \begin{array}{c} \Gamma \vdash \\ \hline \Gamma \vdash \mathbf{Set}_i \Uparrow \mathbf{Type}_{i+1} \end{array} & \begin{array}{c} \Gamma \vdash \\ \hline \Gamma \vdash \mathbf{Type}_i \Uparrow \mathbf{Type}_{i+1} \end{array} \end{array}$$

Если D является типом данных в сигнатуре Σ с параметрами $A_1, \ldots A_n$ и вселенной U, то у нас есть следующее правило вывода:

$$\frac{\Gamma \vdash}{\Gamma \vdash D \Uparrow \Pi A_1(\dots \Pi A_n U \dots)}$$

Если c является конструктором D с типами аргументов $B_1, \dots B_k$, то у нас есть следующее правило вывода:

$$\frac{\Gamma \vdash \Gamma \vdash a_i \Downarrow A_i[a_1, \dots a_{i-1}]}{\Gamma \vdash D a_1 \dots a_n \cdot c \uparrow \Pi(B_1[a_1, \dots a_n])(\dots \Pi(B_k[a_1, \dots a_n])(D a_1 \dots a_n)\dots)}$$

Если C – класс в сигнатуре Σ и $f_1, \ldots f_n$ – поля C с типами $B_1, \ldots B_n$ соответственно, то для любого $1 \le k \le n$ у нас есть следующие правила вывода:

$$\frac{\Gamma \vdash \qquad \Gamma, C\{f_1 \Rightarrow b_1; \dots f_{i-1} \Rightarrow b_{i-1}\} \vdash b_i \Downarrow B_i, \ 1 \leq i < k}{\Gamma \vdash C\{f_1 \Rightarrow b_1; \dots f_{k-1} \Rightarrow b_{k-1}\}}$$

$$\frac{\Gamma, C\{f_1 \Rightarrow b_1; \dots f_{i-1} \Rightarrow b_{i-1}\} \vdash b_i \downarrow B_i, \ 1 \leq i < k}{\Gamma, C\{f_1 \Rightarrow b_1; \dots f_{k-1} \Rightarrow b_{k-1}\} \vdash B_i \uparrow U_i, \ k \leq i \leq n}{\Gamma \vdash C\{f_1 \Rightarrow b_1; \dots f_{k-1} \Rightarrow b_{k-1}\} \uparrow \max(U_k, \dots U_n)}$$

$$\frac{\Gamma \vdash \Gamma, C\{f_1 \Rightarrow b_1; \dots f_{i-1} \Rightarrow b_{i-1}\} \vdash b_i \Downarrow B_i, \ 1 \leq i < k}{\Gamma \vdash \mathbf{new} \ C\{f_1 \Rightarrow b_1; \dots f_{k-1} \Rightarrow b_{k-1}\} \uparrow C\{f_1 \Rightarrow b_1; \dots f_{k-1} \Rightarrow b_{k-1}\}}$$

Если f является полем класса C типа B, то у нас есть следующее правило вывода:

$$\frac{\Gamma \vdash}{\Gamma \vdash f \Uparrow \Pi(C\left\{\right\})B}$$

Для конструкции **elim** мы вводим отношение $\Gamma \vdash^n a \downarrow A$, где Γ – последовательность термов из $Term, n \in \mathbb{N}, a \in Term_e$ и $A \in Term$. Правило для **elim** тогда выглядит следующим образом: TODO.

Правило для let: TODO.

Теперь мы опишем как расширять сигнатуру новыми определениями. Мы будем писать $-\vdash_{\Sigma}-$ для обозначения того факта, что это отношение верно в сигнатуре Σ . Сначала мы введем вспомогательное понятие абстрактной функции, необходимое для описания рекурсивных функций. Пусть Σ – корректная сигнатура, f – имя функции и $B_1, \ldots B_n, A \in Term$. Тогда $(f, (B_1, \ldots B_n), A)$ является корректным определением абстрактной функции в сигнатуре Σ , если

$$B_1, \ldots B_n \vdash_{\Sigma}^n A$$
.

Пусть Σ – корректная сигнатура, f – имя функции, $d \in Def$, $B_1, \ldots B_n, A \in Term$, $a \in Term_e$ и если $d \Longrightarrow$, то $a \in Term$. Тогда $(f, (B_1, \ldots B_n), A, d, a)$ является корректным определением функции в сигнатуре Σ , если $(f, (B_1, \ldots B_n), A)$ является корректной абстрактной функцией в Σ и

$$B_1, \ldots B_n \vdash_{\Sigma, (f, (B_1, \ldots B_n), A)}^n a \Downarrow A.$$

Кроме того, мы требуем, чтобы определение было завершающимся, что проверяется отдельно.

Пусть Σ – корректная сигнатура, D – имя типа данных, $A_1, \ldots A_n \in Term$ и C – множество пар (c,B), где c – имя конструктора и $B=B_1, \ldots B_k$ – список типов. Тогда $(D,(A_1,\ldots A_n),C)$ является корректным определением типа данных в сигнатуре Σ , если

$$A_1, \ldots A_n \vdash_{\Sigma}$$

и для любой пары $(c, (B_1, \dots B_k)) \in C$ верно, что

$$A_1, \ldots A_n, B_1, \ldots B_k \vdash_{\Sigma, (D, (A_1, \ldots, A_n), \varnothing)} .$$

Пусть Σ – корректная сигнатура, C – имя класса и F – конечное множество пар (f,B), где f – имя поля и $B\in Term$. Тогда (C,F) является корректным

VCLANG 5

определением класса, если элементы F можно упорядочить $(f_1, B_1), \ldots (f_n, B_n)$ таким образом, что для любого $1 \le i \le n$ выполняется следующее свойство:

$$C\{\} \vdash_{\Sigma,(C,\{(f_1,B_1),...(f_{i-1},B_{i-1})\})} B_i.$$
2. VCLANG

Язык vclang имеет ряд отличий от vccore:

- В vclang есть полноценные классы. Они могут быть вложенными, а также могут наследоваться. В vclang, так же как и в vccore, есть анонимное наследование.
- В vclang есть неявные аргументы.
- В vclang будет реализован механизм, аналогичный классам типов.

Множество термов $Term_{vc}$ языка vclang определяется следующим образом:

$$\begin{split} Term_{vc} &:= x \mid D \mid D \, a_1 \, \dots \, a_n \, . \, c \\ &\mid \mathbf{new} \, C \, \{S\} \mid C \, \{S\} \\ &\mid b \, . \, D \mid b \, . \, f \mid b \, . \, D \, a_1 \, \dots \, a_n \, . \, c \\ &\mid \mathbf{new} \, b \, . \, C \, \{S\} \mid b \, . \, C \, \{S\} \\ &\mid \mathbf{let} \, x \, A_1 \, \dots \, A_n \, : \, B \Rightarrow b \, \mathbf{in} \, a \\ &\mid \mathbf{let} \, x \, A_1 \, \dots \, A_n \, : \, B \Leftarrow e \, \mathbf{in} \, a \\ &\mid b \, a \mid \lambda x . b \mid \lambda x \, : \, A . b \mid \Pi(x \, : \, A) B \\ &\mid (a,b) \mid \Sigma(x \, : \, A) B \, . \, (a,b) \mid \mathbf{proj}_1 \, p \mid \mathbf{proj}_2 \, p \mid \Sigma(x \, : \, A) B \\ &\mid \mathbf{Type}_i \mid \mathbf{Set}_i \mid \mathbf{Prop} \end{split}$$

где x – имя переменной, $a,b,A,B,p,a_1,\ldots a_n,A_1,\ldots A_n\in Term,\ e\in Term_e,\ D$ является именем типа данных, c – именем конструктора типа данных $D,\ C$ – именем класса, f – именем поля некоторого класса и S – последовательностью пар (f,d), где f – имя поля класса C и d – терм. Такую пару (f,d) мы будем записывать как $f\Rightarrow d$. Как обычно, мы сокращаем $\Pi(x:A)B$ до $A\to B$, если $x\notin FV(B)$.