Reflection about a plane passing through the oxigin and orthogonal to a given vector \vec{u}_2 $\begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$

Let \vec{x} be any vector \vec{x}_{z} $\begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}$ We want to find the reflection of \vec{x} about the plane \vec{x} 2 = Proj 2 + Proj 2 = $P(\vec{z}) + Q(\vec{z})$ $P(\vec{z})$: Proj. of \vec{z} along \vec{u} $Q(\vec{z})$; Proj of \vec{z} onto the plane throexigin and perp. to \vec{u}

$$\mathbb{E}_{\chi}: \vec{\mathcal{V}} = \begin{pmatrix} V_1 \\ V_2 \\ V_3 \end{pmatrix} \qquad \vec{\vec{u}} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Plane T: $\chi_2 \chi_3$ plane.

$$\overrightarrow{v}_{2} \begin{pmatrix} v_{1} \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ v_{2} \\ v_{3} \end{pmatrix}$$

$$P(\overrightarrow{v}) + Q(\overrightarrow{v})$$

Let $R_{\chi}(\vec{x})$ denote the reflection of \vec{x} about the plane \vec{x} .

For any \vec{z} , the midpt of the line segment joining \vec{z} and $R_{\chi}(\vec{z})$ is the projection of \vec{z} onto the plane $\vec{x} : Q(\vec{x})$

$$Q(\vec{z}) = \int_{\mathcal{Z}} (\vec{z} + R_{x}(\vec{z}))$$

$$R_{x}(\vec{z}) = 2Q(\vec{z}) - \vec{z}$$
Where $Q(\vec{z}) = \vec{z} - P(\vec{z})$

Reflection of $\vec{\chi}$

- a) about a line passing thro'
 the origin and in the direction
 of \vec{x} $\mathcal{R}_{f}(\vec{x}) = 2P(\vec{x}) \vec{x}$
 - P(Z): Projection of Z in the direction of U
- b) about a plane passing thro' the origin & orthogonal to the vector \vec{u} is given by
 - $\mathcal{R}_{x}(\vec{z}) = 29(\vec{z}) \vec{z}$
 - Q(文): Paoj of 元 onto the plane

Let
$$T = \chi_1 \chi_2$$
 plane $\vec{u} : \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

$$\vec{v} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

Reflection of it about I

$$R_{\pi}(\vec{v}) = 2Q(\vec{v}) - \vec{v}$$

$$Q(\vec{V}) = \vec{V} - P(\vec{V}) P(\vec{V}) : Paoj of
 $\vec{V} \text{ onto } \vec{U}$

$$\Rightarrow \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$$$$

$$R_{\pi}(\vec{v}) = 29(\vec{v}) - \vec{v}$$

$$= 2\left(\frac{1}{2}\right) - \left(\frac{1}{3}\right)$$

$$= \left(\frac{1}{2}\right)$$

Shears:

Recall: In 2D, Shear transf

takes a square to a parallelegram. $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 + x_3 \\ x_3 \end{bmatrix}$ In 3D, shear takes a cube to

a parallelopiped

Does Shear preserve volume? How about rotation transf in 3D? $\begin{bmatrix}
1 & 0 & a \\
0 & 1 & b
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
\begin{bmatrix}
x_1 + ax_3 \\
x_3
\end{bmatrix}$ Vol. is preserved.

Shear does not change the base on height \rightarrow Preserves the volume.