MFE 409 LECTURE 1B VALUE-AT-RISK

Valentin Haddad

Spring 2019

UCLA Anderson

LECTURE OBJECTIVES

Understanding Value-at-Risk

■ How to compute it

■ What is it useful for?

■ What are its limitations?

■ Some alternatives

Measuring Risk

 Defining and managing risk is one of the most important issues firms are facing in their daily operations

■ Especially important for financial institutions that rely on leverage.

■ Find an answer to the question:

"What is realistically the worst that could happen over one day, one week, or one year?"

Measuring Risk

 Defining and managing risk is one of the most important issues firms are facing in their daily operations

■ Especially important for financial institutions that rely on leverage.

■ Find an answer to the question:

"What is realistically the worst that could happen over one day, one week, or one year?"

Value-at-Risk

- Value-at-risk (VaR) is an answer to the question above where "realistically" is defined by finding an outcome that is so bad that anything worse is highly unlikely.
- Value-at-Risk is the realistically worst case outcome in the sense that anything worse only happens with probability less than some fixed level (such as 1%).

VALUE-AT-RISK

- Value-at-risk (VaR) is an answer to the question above where "realistically" is defined by finding an outcome that is so bad that anything worse is highly unlikely.
- Value-at-Risk is the realistically worst case outcome in the sense that anything worse only happens with probability less than some fixed level (such as 1%).

Definition. Let W be a random variable. The $\mathit{Value-at-Risk}$ at confidence level c relative to base level W_0 is the smallest non-negative number denoted by VaR such that

$$\mathsf{Prob}(W < W_0 - \mathsf{VaR}) \le 1 - c$$

Value-at-Risk

Definition. Let W be a random variable. The Value-at-Risk at confidence level c relative to base level W_0 is the smallest non-negative number denoted by VaR such that

$$\mathsf{Prob}(W < W_0 - \mathsf{VaR}) \le 1 - c$$

Typically:

- W is the value of a portfolio at some point in the future (1 day, 1 month, 1 year)
- $lacktriangleq W_0$ gives some base level: often current value of the portfolio
- \blacksquare Confidence level c gives concrete mean to what "worst case" means: 99%, 99.9%

VALUE-AT-RISK

VALUE-AT-RISK

 \blacksquare Bottom point: c-quantile, $F^{-1}(1-c)$ if F is cumulative distribution function

All outcomes between a loss of \$50 million and a gain of \$50 million are equally likely for a one-year project

■ The VaR for a one-year time horizon and a 99% confidence level is

All outcomes between a loss of \$50 million and a gain of \$50 million are equally likely for a one-year project

■ The VaR for a one-year time horizon and a 99% confidence level is

RATIONALE FOR VALUE-AT-RISK

■ It captures an important aspect of risk in a single number

■ Easy to understand

- Two broad motivations
 - Measure of potential extreme loss

Capital to hold against possible failure

RATIONALE FOR VALUE-AT-RISK

■ It captures an important aspect of risk in a single number

■ Easy to understand

- Two broad motivations
 - Measure of potential extreme loss

Capital to hold against possible failure

A MEASURE OF CAPITAL

Example:

- lacktriangledown W measures value of total assets of the firm in 10 days
- $ightharpoonup W_0$ is today's value of the firm's assets
- Firm remains solvent as long as W does not fall below W_0 capital.

A Measure of Capital

Example:

- lacktriangledown W measures value of total assets of the firm in 10 days
- $ightharpoonup W_0$ is today's value of the firm's assets
- lacktriangle Firm remains solvent as long as W does not fall below W_0- capital.

A Measure of Capital

- Example:
 - lacktriangledown W measures value of total assets of the firm in 10 days
 - $ightharpoonup W_0$ is today's value of the firm's assets
 - lacktriangle Firm remains solvent as long as W does not fall below W_0 capital.

■ 1% 10-day VaR: amount of capital to hold so that firm goes bankrupt with probability 1% in the next 10 days

REGULATORY CAPITAL

 Regulators have traditionally used VaR to calculate the capital they require banks to keep

■ The market-risk capital has been based on a 10-day VaR estimated where the confidence level is 99%

Credit risk and operational risk capital are based on a one-year 99.9%
 VaR

WHAT IS SPECIAL ABOUT CAPITAL?

■ If the firm or bank has limited liability, then it does not matter whether the firm goes bust just marginally, or whether it goes bust spectacularly, leaving a big shortfall

■ The tail loss is not a concern for a firm with limited liability

- Project A has:
 - ▶ 98% chance of leading to a gain of \$2 million
 - ▶ 1.5% chance of a loss of \$4 million
 - ▶ 0.5% chance of a loss of \$10 million
- The VaR with a 99.9% confidence level is ...
- What if the confidence level is 99.5%?
- What if it is 99%?

- Project A has:
 - ▶ 98% chance of leading to a gain of \$2 million
 - ▶ 1.5% chance of a loss of \$4 million
 - ▶ 0.5% chance of a loss of \$10 million
- The VaR with a 99.9% confidence level is
- What if the confidence level is 99.5%?
- What if it is 99%?

- Project A B has:
 - ▶ 98% 98% chance of leading to a gain of \$2 million
 - ► 1.5% 1.1% chance of a loss of \$4 million
 - \triangleright 0.5% 0.9% chance of a loss of \$10 million

- Project A B has:
 - ▶ 98% 98% chance of leading to a gain of \$2 million
 - ► 1.5% 1.1% chance of a loss of \$4 million
 - \triangleright 0.5% 0.9% chance of a loss of \$10 million

■ Which project is more risky?

- Project A B has:
 - ▶ 98% 98% chance of leading to a gain of \$2 million
 - ► 1.5% 1.1% chance of a loss of \$4 million
 - ▶ 0.5% 0.9% chance of a loss of \$10 million

- Which project is more risky?
- Which project has a larger 99% VaR?

LIMITATION OF VAR

- VaR does not capture the distribution of losses below the threshold
- \blacksquare Formally, any 2 distributions with same $F^{-1}(1-c)$ will have the same VaR

GAMING VAR

■ Banks are regulated based on VaR ...

■ But would like to take more risk

GAMING VAR

- Banks are regulated based on VaR ...
- But would like to take more risk

- Taking extreme tail risk will not increase VaR
 - Selling puts

GAMING VAR

- Banks are regulated based on VaR ...
- But would like to take more risk

- Taking extreme tail risk will not increase VaR
 - Selling puts
 - Selling disaster insurance

EXPECTED SHORTFALL

■ Expected shortfall: expected loss given loss larger than VaR

$$\begin{split} \mathsf{ES} &= W_0 - \mathbb{E}\left[W|W \leq W_0 - \mathsf{VaR}\right] \\ &= W_0 - \frac{\int_{-\infty}^{W_0 - \mathsf{VaR}} Wf(W)dW}{\int_{-\infty}^{W_0 - \mathsf{VaR}} f(W)dW} \end{split}$$

EXPECTED SHORTFALL

■ Expected shortfall: expected loss given loss larger than VaR

$$\begin{split} \mathsf{ES} &= W_0 - \mathbb{E}\left[W|W \leq W_0 - \mathsf{VaR}\right] \\ &= W_0 - \frac{\int_{-\infty}^{W_0 - \mathsf{VaR}} Wf(W)dW}{\int_{-\infty}^{W_0 - \mathsf{VaR}} f(W)dW} \end{split}$$

- Also called C-VaR and Tail Loss
- Regulators have indicated that they plan to move from using VaR to using ES for determining market risk capital
- Two portfolios with the same VaR can have very different expected shortfalls

- January 8, 2010
 - ▶ Position: EUR 10 million
 - ightharpoonup Exchange rate $M_t = \text{USD/EUR} = \$1.436$
 - ▶ Dollar position $W_0 = 14.36 million
- Assume normal distribution for FX return

$$R_{M,t+1} \sim \mathcal{N}(\mu, \sigma)$$

- ▶ Historically (in daily units), we find: $\sigma = 0.65\%$ and $\mu \approx 0$
- We want to compute the 99% 1-day Value-at-Risk

EXAMPLE: NORMAL DISTRIBUTION

VAR WITH NORMAL DISTRIBUTION

■ Assume
$$W - W_0 \sim \mathcal{N}(\mu, \sigma)$$

VAR WITH NORMAL DISTRIBUTION

- Assume $W W_0 \sim \mathcal{N}(\mu, \sigma)$
- $VaR = -(\mu + z(c) \times \sigma_V)$
- Can also compute expected shortfall:

► ES =
$$-\mu_V + \sigma_V \frac{e^{-z(c)^2/2}}{\sqrt{2\pi}(1-c)}$$

▶ 95% ES =
$$-(\mu_V - \sigma_V \times 2.0628)$$

▶ 99% ES =
$$-(\mu_V - \sigma_V \times 2.6649)$$

VAR WITH NORMAL DISTRIBUTION

- Assume $W W_0 \sim \mathcal{N}(\mu, \sigma)$
- $VaR = -(\mu + z(c) \times \sigma_V)$
- Can also compute expected shortfall:

► ES =
$$-\mu_V + \sigma_V \frac{e^{-z(c)^2/2}}{\sqrt{2\pi}(1-c)}$$

▶ 95% ES =
$$-(\mu_V - \sigma_V \times 2.0628)$$

- ▶ 99% ES = $-(\mu_V \sigma_V \times 2.6649)$
- For normal distributions, close relation between VaR and ES: multiple of volatility

Role of Time

■ Losses in successive days are independent, normally distributed, and have a mean of zero

Role of Time

 Losses in successive days are independent, normally distributed, and have a mean of zero

$$T\text{-day VaR} = 1\text{-day VaR} \times \sqrt{T}$$

$$T\text{-day ES} = 1\text{-day ES} \times \sqrt{T}$$

Role of Time

 Losses in successive days are independent, normally distributed, and have a mean of zero

$$T\text{-day VaR} = 1\text{-day VaR} \times \sqrt{T}$$

$$T\text{-day ES} = 1\text{-day ES} \times \sqrt{T}$$

 \blacksquare Autocorrelation ρ between losses on successive days, replace \sqrt{T} by

$$\sqrt{T+2(T-1)\rho+2(T-2)\rho^2+2(T-3)\rho^3+\ldots+2\rho^{T-1}}$$

	<i>T</i> =1	T=2	T=5	T=10	T=50	T=250
ρ=0	1.0	1.41	2.24	3.16	7.07	15.81
ρ=0.05	1.0	1.45	2.33	3.31	7.43	16.62
ρ=0.1	1.0	1.48	2.42	3.46	7.80	17.47
ρ=0.2	1.0	1.55	2.62	3.79	8.62	19.35

EXAMPLE: VAR FOR A PORTFOLIO

- Positions: 10mil EUR, 1bil Yen
 - $I_t = USD/JPY = 0.01078749$; USD/EUR = 1.436
 - Assume $R_{M,t+1}$ and $R_{J,t+1}$ jointly nomal with
 - $ightharpoonup E(R_M)=E(R_J)pprox 0$, $\sigma_M=0.65\%$, $\sigma_J=0.69\%$
 - $ightharpoonup Corr(R_M, R_J) =
 ho_{MJ} = 0.2775$

EXAMPLE: VAR FOR A PORTFOLIO

- Positions: 10mil EUR, 1bil Yen
 - $I_t = USD/JPY = 0.01078749$; USD/EUR = 1.436
 - Assume $R_{M,t+1}$ and $R_{J,t+1}$ jointly nomal with
 - $ightharpoonup E(R_M)=E(R_J)pprox 0$, $\sigma_M=0.65\%$, $\sigma_J=0.69\%$
 - $ightharpoonup Corr(R_M, R_J) =
 ho_{MJ} = 0.2775$

VAR FOR A PORTFOLIO: APPROXIMATE APPROACH

An approximate approach that seems to works well is

$$\mathsf{VaR}_{\mathsf{total}} = \sqrt{\sum_i \sum_j \mathsf{VaR}_i \mathsf{VaR}_j \rho_{ij}}$$

where VaR_i is the VaR for the i-th segment, VaR_{total} is the total VaR, and ρ_{ij} is the coefficient of correlation between losses from the i-th and j-th segments

Exact formula for normal distributions

VAR FOR A PORTFOLIO: EXACT APPROACH

■ Marginal VaR

$$\mathsf{DVaR}_i = \frac{\partial \mathsf{VaR}}{\partial x_i}$$

■ Component VaR

$$\mathsf{CVaR}_i = x_i \frac{\partial \mathsf{VaR}}{\partial x_i}$$

VAR FOR A PORTFOLIO: EXACT APPROACH

Marginal VaR

$$\mathsf{DVaR}_i = \frac{\partial \mathsf{VaR}}{\partial x_i}$$

■ Component VaR

$$\mathsf{CVaR}_i = x_i \frac{\partial \mathsf{VaR}}{\partial x_i}$$

Decomposition (Euler Theorem):

$$VaR = \sum_{i} CVaR_{i}$$

USING VAR FOR CAPITAL ALLOCATION

■ You are the head of prop trading for an investment bank. You have to allocate capital between investing in FX or in fixed income. Last year FX invested \$100m and made 10% profits, while fixed income invested \$200m and made 5% profit. What do you do?

USING VAR FOR CAPITAL ALLOCATION

- You are the head of prop trading for an investment bank. You have to allocate capital between investing in FX or in fixed income. Last year FX invested \$100m and made 10% profits, while fixed income invested \$200m and made 5% profit. What do you do?
- If you have access to leverage quantity of assets is not so important, rather quantity of capital mobilized.

USING VAR FOR CAPITAL ALLOCATION

- You are the head of prop trading for an investment bank. You have to allocate capital between investing in FX or in fixed income. Last year FX invested \$100m and made 10% profits, while fixed income invested \$200m and made 5% profit. What do you do?
- If you have access to leverage quantity of assets is not so important, rather quantity of capital mobilized.
- Risk Adjusted Rate of Return on Capital (RAROC): profit per unit of necessary capital, i.e. profit per unit of VaR

$$RAROC = \frac{Profit}{VaR}$$

 Developed in the 1980s by Bankers Trust (taken over by Deutsche Bank) to develop internal capital budgeting system

EXAMPLE: RAROC

- Let us compute RAROC for the two positions
 - ► Assume normal distribution with annual volatility 10% for FX and 4% for fixed income
 - ► We want to use annual 99.97% VaR (z(99.97%) = -3.4)

EXAMPLE: RAROC

- Let us compute RAROC for the two positions
 - Assume normal distribution with annual volatility 10% for FX and 4% for fixed income
 - ► We want to use annual 99.97% VaR (z(99.97%) = -3.4)

EXAMPLE: RAROC

- Let us compute RAROC for the two positions
 - Assume normal distribution with annual volatility 10% for FX and 4% for fixed income
 - ► We want to use annual 99.97% VaR (z(99.97%) = -3.4)

■ Diversification: 2 investments x_1 and x_2 with same mean and variance, correlation ρ

Diversification: 2 investments x_1 and x_2 with same mean and variance, correlation ρ

$$\begin{split} \operatorname{Var}\left(\frac{1}{2}x_1 + \frac{1}{2}x_2\right) &= \frac{1}{4}\sigma^2 + \frac{1}{4}\sigma^2 + 2\operatorname{Cov}\left(\frac{1}{2}x_1, \frac{1}{2}x_2\right) \\ &= \frac{1}{2}\left(\sigma^2 + \operatorname{Cov}\left(x_1, x_2\right)\right) \\ &= \frac{1}{2}\sigma^2(1+\rho) \\ &\leq \sigma^2 \end{split}$$

■ With normal distribution, also applies to Value-at-Risk: diversification reduces risk

- Consider bonds with face value of 100 and default probability of 0.9% and 0 recovery. Assume defaults are independent across bonds and that the baseline level is $W_0 = 100$.
- What is the 99% VaR for one bond?
- What is the 99% VaR for two bonds?

■ What is the 99% VaR for *n* bonds?

- Consider bonds with face value of 100 and default probability of 0.9% and 0 recovery. Assume defaults are independent across bonds and that the baseline level is $W_0 = 100$.
- What is the 99% VaR for one bond?
- What is the 99% VaR for two bonds?

■ What is the 99% VaR for *n* bonds?

- Define a coherent risk measure as the amount of cash that has to be added to a portfolio to make its risk acceptable
- Properties of coherent risk measure
 - If one portfolio always produces a worse outcome than another its risk measure should be greater
 - If we add an amount of cash K to a portfolio its risk measure should go down by K
 - \blacktriangleright Changing the size of a portfolio by a factor λ should result in the risk measure being multiplied by λ
 - ► The risk measures for two portfolios after they have been merged should be no greater than the sum of their risk measures before they were merged

- Value-at-Risk
- Expected Shortfall

- Value-at-Risk X
- Expected Shortfall ✓

- Value-at-Risk X
- Expected Shortfall ✓
- Spectral measures
 - Spectral measures assigns weight to quantiles of the loss distribution
 - ► VaR assigns all weight to c-th percentile of the loss distribution
 - Expected shortfall assigns equal weight to all percentiles greater than the *c*-th percentile
 - ► For a coherent risk measure weights must be a non-decreasing function of the percentiles

TAKEAWAYS

- Value-at-Risk is:
 - a simple measure
 - used by regulators and practitioners to measure risk
 - which focuses on the extreme downside of a distribution
- It has some limitations
 - Does not capture the entire distribution of extreme losses
 - Does not always capture diversification
- Implications
 - If you want to monitor risk, know its limitations
 - Expected shortfall is a better behaved alternative
 - If you are constrained by it, know how to game it
- Next: how to measure VaR in the real world? We don't know the distribution of what will happen in the next few days!