

Diseño de Algoritmos Departamento de Programación

Facultad de Informática - Universidad Nacional del Comahue

I -Estructuras de Datos Avanzadas y Análisis Amortizado

Ejercicio I-1:

Montículo Binomial

- A) Dibujar el **diagrama UML de clases** para implementar un montículo binomial dinámico.
 - Definir clases principales (NodoBinomial, ArbolBinomial, HeapBinomial).
 - Identificar atributos y métodos.
- B) Para la clase definida, **desarrollar los algoritmos** para:
 - insertar(x)
 - unir(H1,H2)
 - buscarMin()
 - extraerMin()
 - disminuirClave(x,k)
 - eliminar(x)
- C) Analizar la **eficiencia temporal** de cada operación en notación O.

Ejercicio I-2:

Conjuntos Disjuntos

- A) Implementar en pseudocódigo o Java las operaciones sobre **conjuntos disjuntos** usando representación en **arreglos**:
 - buscar(x) (find).
 - fusionar(a,b) (union).
- B) Explicar cómo cambia la eficiencia si se aplican:
 - Union by rank

Diseño de Algoritmos Departamento de Programación

Facultad de Informática - Universidad Nacional del Comahue

- Path compression
- C) Calcular la complejidad en cada caso y justificar.

Ejercicio I-3:

Árbol TRIE – Diccionario de sinónimos

- A) Diseñar e implementar en Java un algoritmo que:
 - Almacene un diccionario de sinónimos en un TRIE.
 - Permita **agregar un sinónimo** a una palabra existente.
 - Permita **mostrar todos los sinónimos** de una palabra dada.
 - Liste todas las palabras del diccionario sin mostrar sus sinónimos.
- B) Analizar la eficiencia de cada operación (insertar, buscar, listar).

Ejercicio I-4:

Análisis Amortizado

A) Contador binario extendido:

Demostrar que si se incluye la operación **decrementar una unidad** en el contador binario visto en clase:

- a) Una secuencia de n operaciones costará a lo sumo $\Theta(n \cdot k)$ en tiempo, donde k es la cantidad de dígitos del número binario.
- B) Secuencia de operaciones con costos especiales:
 - a) Se realiza una secuencia de n operaciones sobre una estructura de datos dada.

La operación i-ésima cuesta:

- costo(i)=i si i es una potencia de 2.
- costo(i)=1 en otro caso.
- b) Usando el **método agregado**, calcular el **costo amortizado** de cada operación.