

YEAR 12 MATHEMATICS SPECIALIST **SEMESTER ONE 2016**

TOTAL ABENDA	TES	ST 2: Functions	5	
WESLEY COLLEGE By daring & by doing				•
	N	[ame:		
Friday 1 st April				
Гіme: 50 minutes	Mark /45		/ 4 5 =	%
You are permitted to us	eatly in the spaces provide se the Formula Sheet in bo A4 page (one side) of note	th sections of th	ne test.	
Calculator free section	Suggeste	ed time: 30 min	utes	/28
1. [11 marks]				
Two functions f and g are	$f(x) = x^2 - 1$ e defined by an			
a) Evaluate $g \circ f(\sqrt{6})$				
b) What is the range of	$y = f(x)$ when $x \in \mathbb{R}$?			[2]
c) What is the natural do	omain of $y = g(x)$			[1]
d) Predict the domain ar	and range for $y = g^{-1}(x)$			[2]
				[2]

e) Determine $y = f \circ g(x)$, including all domain restrictions

[2]

[4]

2. [17 marks]

Consider the rational function
$$h(x) = \frac{2x^2 - 4x}{x^2 + x - 6}$$

a) Identify and classify all points of discontinuity

b) List the asymptotes (horizontal and vertical) [2]

c) Determine all intercepts [2]

d) Sketch y = h(x) [3]

e) Does y = h(x) possess an inverse function $y = h^{-1}(x)$? How do you know?

[2]

f) Show algebraically that $h^{-1}(x) = \frac{3x}{2-x}$ and identify appropriate restrictions on the domain and range. Use a simplified expression for y = h(x) in your calculations.

[4]

Name: _____

3. [5 marks]

Mark solutions to these equations on the number lines provided.

In (b), clearly explain clearly how to use distance considerations in determining the solution.

a)
$$|x + 3| = 4$$

b)

[1]

|x+3|+|x-1|=4

c)
$$|x+3|+|x-1|=8$$

4. [5 marks]

$$y = f(x)$$

$$y = \frac{1}{f(x)} \qquad y = f(|x|)$$

The graph of

is shown. Add the graphs of

and

5. [7 marks]

$$y = f(x) = \frac{ax + b}{x^2 + cx + d}$$

This graph represents a function of the form

(2,1)

The vertical asymptotes are as shown, the x-intercept is (3.5, 0) and one turning point is at

(a) Determine the values of the constants a, b, c and d.

[5]

$$y = f(x)$$

(b) What is the range of

?