Chapter 1

Mathematical Concepts and Symbols

1.1 Logical Symbols

The logical symbols are a kind of symbols using for theoretical statements.

Table 1.1: Frequently-used Logical Symbols

Symbols	Meanings
$L \Longrightarrow P$	Proposition L is contained in proposition P
$L \Longleftrightarrow P$	Proposition L is equivalent to proposition P
$\neg P$	Not P
$L \wedge P$	Proposition L and proposition P
$L \vee P$	Proposition L or proposition P

e.g.

$$((A \Longrightarrow B) \land (\neg B) \Longrightarrow (\neg A))$$

stands for " if A is contained in B,and B is not true, then A is not true". We also call $A \iff B$ "A is the necessary and sufficeent condition of B". The typical math proposition is like " $A \implies B$ ". In order to prove this proposition ,we can use the implication relationship

$$A \Longrightarrow C_1 \Longrightarrow \cdots \Longrightarrow C_n \Longrightarrow B$$

The every implication relationship in this chain is general truth or proved proposition.

Table 1.2: Truth Table				
$\neg A$	A	0	1	
·Д	$\neg A$	1	0	
$A \lor B$	A	0	1	
$A \lor D$	0	0	1	
	1	1	1	
$A \wedge B$	A	0	1	
$A \land D$	0	0	0	
	1	0	1	
$A \Longrightarrow B$	A	0	1	
$A \longrightarrow D$	0	1	1	
	1	0	1	
·	·			

Question 1. $\neg (A \land B) \Leftrightarrow (\neg A \lor \neg B)$.

Proof. (Use the truth table)

If A is ture, B is ture, $A \wedge B$ is ture. $\neg (A \wedge B)$ is false, $\neg A$ is false, $\neg B$ is false, $(\neg A \vee \neg B)$ is false.

If A is ture, B is false, $A \wedge B$ is false. $\neg (A \wedge B)$ is true. $\neg A$ is false, $\neg B$ is true, $(\neg A \vee \neg B)$ is ture.

If A is flase, B is true, $A \wedge B$ is false. $\neg (A \wedge B)$ is true. $\neg A$ is true, $\neg B$ is false, $(\neg A \vee \neg B)$ is ture.

If A is false, B is false, $A \wedge B$ is false. $\neg(A \wedge B)$ is true. $\neg A$ is true, $\neg B$ is true, $(\neg A \vee \neg B)$ is ture. So

$$\neg(A \land B) \Leftrightarrow (\neg A \lor \neg B)$$

Question 2. $(A \Rightarrow B) \Leftrightarrow \neg A \lor B$.

Proof. Firstly, we confirm the truth of

$$(A \Rightarrow B) \Rightarrow \neg A \lor B$$

If $(A \Rightarrow B)$ is false, then $\neg A \lor B$ is true.

If $(A \Rightarrow B)$ is ture ,then we have two posibilities. The first is A is ture, B is true, so $\neg A \lor B$ is true. The second is A is false,then B can be true or false, but $\neg A \lor B$ will be true.

Hence, $(A \Rightarrow B) \Rightarrow \neg A \lor B$.

Secondly, we prove

$$(A \Rightarrow B) \Leftarrow \neg A \lor B$$

If $\neg A \lor B$ is false, then $(A \Rightarrow B)$ is true.

If $\neg A \lor B$ is true, we have

- 1. $\neg A$ is true, B is false, then, A is false, $(A \Rightarrow B)$ is true.
- 2. $\neg A$ is false, B is true, then, A is true, $(A \Rightarrow B)$ is true.
- 3. $\neg A$ is true, B is true, then, A is false, $(A \Rightarrow B)$ is true.

So
$$(A \Rightarrow B) \Leftarrow \neg A \lor B$$
.

1.2 Sets and their Operations

A set is a collection of well-defined objects.

If A is a set, we write $a \in A$ to express element a belongs to set A, the negetive proposition of which is $a \notin A$. We use the symbol \oslash to denote the empty set, that is, the set with no elements.

Theorem 1.2.1 (Cantor). There is no set contains all the sets.

Proof. We assume P(M) represents M doesn't contain itself.

Consider $K = \{M|P(M)\}$ which is made of **sets** M that satisfies P. Assuming K is a set, then either P(K) or $\neg P(K)$ is true.

If P(K) is true, K doesn't contain itself,but because of the definition of K, K is belong to K, which means $\neg P(M)$.

If $\neg P(M)$ is ture, it's easy to find the similar conclusion.

So to the contrary, K is not a set. This reveals a set can't contain all the sets.

Theorem 1.2.1 is a typical paradox called Russell's paradox. \forall and \exists are logical symbols to describe

Table 1.3: Universial and Exsitential Quantifications

Symbols	Meanings
$\forall x \in A$	For all elements x in A
$\exists x \in A$	There exist at least one element x in A

To show the inclusion relation of two sets, we often use the Symbol $A \subset B$, which means set A is a **subset** of set B (All the elements in A also belong to B). We indicate that A is not a subset of B by this notation: $A \not\subset B$.

$$(A \subset B) := \forall x ((x \in A) \Rightarrow (x \in B))$$

We define the equal relation between two sets, using the symbol =:

$$A = B =: (A \subset B) \land (B \subset A)$$

We often use this definition to prove A = B. Symbol \neq denotes the negetive proposition of equal.

A is a **proper subset** of B, if A is a subset of B, and $A \neq B$, denoted by the symbol \subseteq .

Figure 1.1: Union of two sets

If A and B are sets, then their **union**, denoted by $A \cup B$, is the set of all elements that are elements of either A or B:

$$(A \cup B) =: \{x \in M | (x \in A) \lor (x \in B)\}$$

Clearly, $A \cup B = B \cup A$.

If A and B are sets, then their **intersection**, denoted by $A \cap B$, contains all the elements in both A and B:

$$(A \cap B) =: \{x \in M | (x \in A) \land (x \in B)\}$$

Also, we have $A \cap B = B \cap A$.

Figure 1.2: Intersection of two sets

We use the donation $A \setminus B$ to represent the set contains all the elements which belongs to A but not belong to B.

$$A \backslash B =: \{ x \in M | (x \in A) \land (x \notin B) \}$$

Figure 1.3: Complement

For $B \subset A$, we can also denote it as the symbol C_AB .

Question 3 (de Morgen).

$$C_M(A \cup B) = C_M A \cap C_M B$$

$$C_M(A \cap B) = C_M A \cup C_M B$$

Proof. We prove the first one.

$$(x \in C_M(A \cup B)) \Rightarrow (x \notin (A \cup B))$$

$$\Rightarrow ((x \notin A) \land (x \notin B)) \Rightarrow ((x \in C_m A) \land (x \in C_M B))$$

$$\Rightarrow ((x \in C_m A) \cap (x \in C_M B))$$

So we have proved $C_M(A \cup B) \subset C_M A \cap C_M B$. On the other hand:

$$((x \in C_m A) \cap (x \in C_M B)) \Rightarrow ((x \in C_m A) \wedge (x \in C_M B))$$

$$\Rightarrow ((x \notin A) \wedge (x \notin B)) \Rightarrow (x \notin (A \cup B))$$

$$\Rightarrow (x \in C_M (A \cup B))$$

That's the same as $C_M(A \cup B) = C_M A \cap C_M B$.