

FLUX BALANCE ANALYSIS OVERVIEW

Learning Objectives

Each student should be able to:

- Explain flux balance analysis (FBA).
- Explain the stoichiometric reactions and metabolites.
- Explain mass balanced linear equations.
- Explain the biomass reaction.
- Explain how to create a stoichiometric matrix from reactions and metabolites.
- Explain gene-protein-reaction associations.
- Explain the constraint-based modeling.

Flux Balance Analysis Overview

- Flux Balance Analysis Overview
 - Stoichiometric Reactions & Metabolites
 - Mathematical Representation of Reactions & Constraints
 - Mass Balanced Linear Equations
 - Biomass Reaction
 - Calculating Fluxes
 - Flux Balance Analysis Toolbox

FLUX BALANCE ANALYSIS

Orth, J. D., I. Thiele, et al. (2010). "What is flux balance analysis?" Nature biotechnology 28(3): 245-248.

- Through the use of genome-scale metabolic network reconstructions, Flux Balance
 Analysis (FBA) can be used to calculate the flow of metabolites through a metabolic
 network. This capability makes it possible to predict the growth rate of an organism
 and/or the rate of production of a given metabolite.
- FBA has limitations! It does not use kinetic parameters, thus it cannot predict
 metabolite concentrations. It is also only capable of determining fluxes at steady
 state. Typically, FBA does not account for regulatory effects such as activation of
 enzymes by protein kinases or regulation of gene expression. Therefore, its
 predictions may not always be accurate.

Formulation of Flux Balance Analysis

Orth, J. D., I. Thiele, et al. (2010). "What is flux balance analysis?" Nature biotechnology 28(3): 245-248.

Flux Balance Analysis Overview

- Flux Balance Analysis Overview
- → Stoichiometric Reactions & Metabolites
 - Mathematical Representation of Reactions & Constraints
 - Mass Balanced Linear Equations
 - Biomass Reaction
 - Calculating Fluxes
 - Flux Balance Analysis Toolbox

Identifying Metabolic Reactions and Metabolites

(Gene-Protein-Reactions)

Objective:

Create A biochemically, genetically and genomically (BiGG) structured knowledge base.

Reconstruction and Use of Microbial Metabolic Networks: the Core Escherichia coli Metabolic Model as an Educational Guide by Orth, Fleming, and Palsson (2010)

Desired Reaction Information

- 1. Reaction Name*
- 2. Reaction Description*
- 3. Reaction Formula*
- 4. Gene-reaction Association*
- 5. Genes (Gene Locus) *
- 6. Proteins
- 7. Cellular Subsystem * (e.g. Glycolysis)
- 8. Reaction Direction*
- 9. Flux Lower Bound*
- 10. Flux Upper Bound*
- 11. Confidence Score (1-5)
- 12. EC Number
- 13 Notes
- 14. References

Reconstruction and Use of Microbial Metabolic Networks: the Core Escherichia coli Metabolic Model as an Educational Guide by Orth, Fleming, and Palsson (2010)

* Required

Lesson: Flux Balance Analysis Overview

Genome-scale Reconstruction Reactions

abbreviation	officialName	equation	subSystem	proteinClass	delta G (pH 7.2)	Keq v
ACALD	acetaldehyde dehydrogenase (acetylating)	[c]: acald + coa + nad <==> accoa + h + nadh	1.2.1.10	-4.4	1.66E+03	
ACALDt	acetaldehyde reversible transport	acald[e] <==> acald[c]	Transport, Extracellular		0.0	1.00E+00
ACKr	acetate kinase	[c] : ac + atp <==> actp + adp	Pyruvate Metabolism	2.7.2.1	4.3	7.1204E-04
ACONTa	aconitase (half-reaction A, Citrate hydro-lyase)	[c] : cit <==> acon-C + h2o	Citric Acid Cycle	4.2.1.3	1.5	7.98E-02
ACONTb	aconitase (half-reaction B, Isocitrate hydro-lyase)	[c] : acon-C + h2o <==> icit	Citric Acid Cycle	4.2.1.3	-0.2	1.40E+00
ACt2r	acetate reversible transport via proton symport	ac[e] + h[e] <==> ac[c] + h[c]	Transport, Extracellular		0.0	1.0000E+00
ADK1	adenylate kinase	[c] : amp + atp <==> (2) adp	Oxidative Phosphorylation	2.7.4.3	-0.1	1.1836E+00
AKGDH	2-Oxogluterate dehydrogenase	[c]: akg + coa + nad> co2 + nadh + succoa	Citric Acid Cycle		-8.3	1.1896E+06
AKGt2r	2-oxoglutarate reversible transport via symport	akg[e] + h[e] <==> akg[c] + h[c]		0.0	1.0000E+00	
ALCD2x	alcohol dehydrogenase (ethanol)	[c]: etoh + nad <==> acald + h + nadh	Pyruvate Metabolism	1.1.1.1	6.0	4.06E-05
ATPM	ATP maintenance requirement	[c] : atp + h2o> adp + h + pi	Oxidative Phosphorylation		-6.6	6.7770E+04
ATPS4r	ATP synthase (four protons for one ATP)	adp[c] + (4) h[e] + pi[c] <==> atp[c] + (3) h[c] + h2o[c]	Oxidative Phosphorylation	3.6.3.14	6.6	1.4756E-05
Biomass_Ecoli_	Biomass Objective Function with GAM	[c]: (1.496) 3pg + (3.7478) accoa + (59.8100) atp + (0.36	610) e4p + (0.0709) f6p + (0.1290	g3p + (0.2050) g	6p + (0.2557) gln-L	+ (4.9414) glu-L
CO2t	CO2 transporter via diffusion	co2[e] <==> co2[c]	Transport, Extracellular		0.0	1.0000E+00
CS	citrate synthase	[c]: accoa + h2o + oaa> cit + coa + h	Citric Acid Cycle		-8.6	1.9724E+06
CYTBD	cytochrome oxidase bd (ubiquinol-8: 2 protons)	(2) h[c] + (0.5) o2[c] + q8h2[c]> (2) h[e] + h2o[c] + q8	Oxidative Phosphorylation		-37.2	1.6962E+27
D_LACt2	D-lactate transport via proton symport	$h[e] + lac-D[e] \le h[c] + lac-D[c]$	Transport, Extracellular		0.0	1.0000E+00
ENO	enolase	[c]: 2pg <==> h2o + pep	Glycolysis/Gluconeogenesis	4.2.1.11	-0.9	4.5580E+00
ETOHt2r	ethanol reversible transport via proton symport	$etoh[e] + h[e] \le etoh[c] + h[c]$	Transport, Extracellular		0.0	1.0000E+00
EX_ac(e)	Acetate exchange	[e]:ac<==>	Exchange			
EX_acald(e)	Acetaldehyde exchange	[e] : acald <==>	Exchange			
EX_akg(e)	2-Oxoglutarate exchange	[e]:akg<==>	Exchange			
EX_co2(e)	CO2 exchange	[e]:co2<==>	Exchange			
EX_etoh(e)	Ethanol exchange	[e] : etoh <==>	Exchange			
EX_for(e)	Formate exchange	[e]:for<==>	Exchange			
EX_fru(e)	D-Fructose exchange	[e] : fru <==>	Exchange			
EX_fum(e)	Fumarate exchange	[e] : fum <==>	Exchange			
EX_glc(e)	D-Glucose exchange	[e]:glc-D<==>	Exchange			
EX_gln_L(e)	L-Glutamine exchange	[e] : gln-L <==>	Exchange			
EX_glu_L(e)	L-Glutamate exchange	[e] : glu-L <==>	Exchange			

Lesson: Flux Balance Analysis Overview

Desired Metabolite Information

- 1. Metabolite Name*
- 2. Metabolite Description*
- 3. Metabolite Neutral Formula
- 4. Metabolite Charged Formula*
- 5. Metabolite Charge*
- 6. Metabolite Compartment*
- 7. Metabolite KEGGID
- 8. Metabolite PubChemID
- 9. Metabolite CheBI ID
- 10. Metabolite Inchi String
- 11. Metabolite Smile

Thiele, I. and B. O. Palsson (2010). "A protocol for generating a high-quality genomescale metabolic reconstruction." Nature protocols 5(1): 93-121.

Genome-scale Reconstruction Metabolites

abbreviatio	officialName	formula	charge	casNumber	formulaNeutral	CompoundNames	KeggID
13dpg	3-Phospho-D-glyceroyl phosphate	C3H4O10P2	-4	38168-82-0	C3H8O10P2	1,3-bis-phosphoglycerate/ 3-Phospho-D-glyceroyl phosphate,	C00236
2pg	D-Glycerate 2-phosphate	C3H4O7P	-3	None	C3H7O7P	2-phosphoglyceric acid/ 2-Phospho-D-glycerate	C00631
3pg	3-Phospho-D-glycerate	C3H4O7P	-3	None	C3H7O7P	D-Glycerate 3-phosphate/ 3-Phosphoglycerate/ 3-phosphogly	C00197
6pgc	6-Phospho-D-gluconate	C6H10O10P	-3	None	C6H13O10P	6-phosphogluconic acid/ D-gluconate 6-phosphate	C00345
6pgl	6-phospho-D-glucono-1,5-lactone	C6H9O9P	-2	None	C6H11O9P	D-Glucono-1,5-lactone 6-phosphate	C01236
ac	Acetate	C2H3O2	-1	71-50-1	C2H4O2	vinegar/Ethylic acid/Vinegar acid/Methanecarboxylic acid/A	C00033
ac[e]	Acetate (extracellular)	C2H3O2	-1	71-50-1	C2H4O2	vinegar/Ethylic acid/Vinegar acid/Methanecarboxylic acid/A	C00033
acald	Acetaldehyde	C2H4O	C	75-07-0		Ethanal/ Aldehyde C(2)/ acetylaldehyde/ Aceteldehyde/ Acet	C00084
acald[e]	Acetaldehyde (extracellular)	C2H4O	C	75-07-0		Ethanal/ Aldehyde C(2)/ acetylaldehyde/ Aceteldehyde/ Acet	C00084
accoa	Acetyl-CoA	C23H34N7O17P3	-4	72-89-9	C23H38N7O17P3S	Acetyl coenzyme A	C00024
acon-C	cis-Aconitate	C6H3O6	-3	585-84-2	C6H6O6	cis-1,2,3-Propenetricarboxylic acid/ (Z)-1-Propene-1,2,3-tricar	C00417
actp	Acetyl phosphate	C2H3O5P	-2	19926-71-7	C2H5O5P		C00227
adp	ADP	C10H12N5O10P2	-3	58-64-0	C10H15N5O10P2	Adenosine 5'-diphosphate	C00008
akg	2-Oxoglutarate	C5H4O5	-2	328-50-7	C5H6O5	Oxoglutaric acid/ 2-Ketoglutaric acid/ alpha-Ketoglutarate/ al	C00026
akg[e]	2-Oxoglutarate (extracellular)	C5H4O5	-2	328-50-7	C5H6O5	Oxoglutaric acid/ 2-Ketoglutaric acid/ alpha-Ketoglutarate/ al	C00026
amp	AMP	C10H12N5O7P	-2	61-19-8	C10H14N5O7P	Adenosine 5'-monophosphate/ Adenylic acid/ Adenylate/ 5'-A	C00020
atp	ATP	C10H12N5O13P3	-4	56-65-5	C10H16N5O13P3	Adenosine 5'-triphosphate/5'-adenylate triphosphate	C00002
cit	Citrate	C6H5O7	-3	77-92-9	C6H8O7	Citric acid/ 2-Hydroxytricarballylic acid/ 2/ 2-Hydroxy-1/ 3-pro	C00158
co2	CO2	CO2	C	124-38-9		Carbonic anhydride/ Carbon dioxide	C00011
co2[e]	CO2 (extracellular)	CO2	C	124-38-9		Carbonic anhydride/ Carbon dioxide	C00011
coa	Coenzyme A	C21H32N7O16P3	-4	85-61-0	C21H36N7O16P3S	CoA/ CoA-SH/ CoASH	C00010
dhap	Dihydroxyacetone phosphate	C3H5O6P	-2	57-04-5	C3H7O6P	Glycerone phosphate	C00111
e4p	D-Erythrose 4-phosphate	C4H7O7P	-2	585-18-2	C4H9O7P	4-phospho D-erythrose	C00279
etoh	Ethanol	C2H6O	C	64-17-5		Ethyl alcohol/ Methylcarbinol	C00469
etoh[e]	Ethanol (extracellular)	C2H6O	C	64-17-5		Ethyl alcohol/ Methylcarbinol	C00469
f6p	D-Fructose 6-phosphate	C6H11O9P	-2	643-13-0	C6H13O9P	D-Fructose 6-phosphoric acid/ Neuberg ester/ beta-D-Fructos	C00085
fdp	D-Fructose 1,6-bisphosphate	C6H10O12P2	-4	488-69-7	C6H14O12P2	fructose-1,6-bisphosphate/ fructose diphosphate/ beta-D-fru	C00354
for	Formate	CH1O2	-1	64-18-6	CH2O2	Methanoic acid/ Formic acid/ Hydrogencarboxylic acid/ amini	C00058
for[e]	Formate (extracellular)	CH1O2	-1	64-18-6	CH2O2	Methanoic acid/ Formic acid/ Hydrogencarboxylic acid/ amini	C00058
fru[e]	D-Fructose (extracellular)	C6H12O6	C	57-48-7		Levulose/ Fruit sugar/ D-Arabino-hexulose	C00095

Lesson: Flux Balance Analysis Overview

Metabolic Pathway

Becker, S. A., et al. (2007). "Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox." Nature protocols 2(3): 727-738.

System Boundaries: Exchange & Transport Reactions

Thiele, I. and B. O. Palsson (2010). "A protocol for generating a high-quality genome-scale metabolic reconstruction." Nature protocols 5(1): 93-121.

Exchange reactions are defined as follows:

GENOME-SCALE METABOLIC RECONSTRUCTIONS

- Overview
- Draft Reconstruction
- Refinement of Reconstruction
- Conversion of Reconstruction into Computable Format
- Network Evaluation
- Data Assembly and Dissemination

Thiele, I. and B. O. Palsson (2010). "A protocol for generating a high-quality genome-scale metabolic reconstruction." Nature protocols 5(1): 93-121.

Reconstruction Process: 96 Step Protocol

Thiele, I. and B. O. Palsson (2010). "A protocol for generating a high-quality genome-scale metabolic reconstruction." Nature protocols 5(1): 93-121.

1. Draft Reconstruction

- 1 Obtain genome annotation.
- 2 Identify candidate metabolic functions.
- 3 Obtain candidate metabolic reactions.
- 4 Assembly of draft reconstruction.
- 5 Collect of experimental data.

2. Refinement of reconstruction

- 6| Determine and verify substrate and cofactor usage
- 7 Obtain neutral formula for each metabolite.
- 8| Determine the charged formula.
- 9 Calculate reaction stoichiometry.
- 10| Determine reaction directionality.
- 11| Add information for gene and reaction localization.
- 12 Add subsystems information.
- 13| Verify gene-protein-reaction association.
- 14 Add metabolite identifier.
- 15 Determine and add confidence score.
- 16 Add references and notes.
- 17| Flag information from other organisms.
- 18 Repeat Step 6 to 17 for all genes.
- 19 Add spontaneous reactions to the reconstruction.
- 20|Add extracellular and periplasmic transport reactions.
- 21|Add exchange reactions.
- 22 Add intracellular transport reactions.
- 23 Draw metabolic map (optional).
- 24-32 Determine biomass composition.
- 33 Add biomass reaction.
- 34 Add ATP maintenance reaction (ATPM).
- 35|Add demand reactions.
- 36 Add sink reactions.
- 37| Determine growth medium requirements.

Data assembly and Dissemination

95 Print Matlab model content.

96 Add gap information to the reconstruction output.

4. Network evaluation

- 43-44 Test if network is mass- and charge balanced.
- 45 Identify metabolic dead-ends.
- 46-48 Gap analysis.
- 49 Add missing exchange reactions to model.
- 50| Set exchange constraints for a simulation condition.
- 51-58| Test for stoichiometrically balanced cycles.
- 59| Re-compute gap list.
- 60-65| Test if biomass precursors can be produced in standard medium
- 66 Test if biomass precursors can be produced in other growth media.
- 67-75| Test if model can produce known secretion products
- 76-78 Check for blocked reactions.
- 79-80| Compute single gene deletion phenotypes
- 81-82| Test for known incapabilites of the organism.
- 83 Compare predicted physiological properties with known properties.
- 84-87| Test if the model can grow fast enough.
- 88-94| Test if the model grows too fast.

3. Conversion of reconstruction

into computable format

- 38 Initialize the COBRA toolbox.
- 39 Load reconstruction into Matlab.
- 40 Verify S matrix.
- 41| Set objective function.
- 42 Set simulation constraints.

Lesson: Flux Balance Analysis Overview

E.coli Core Model

Glycolysis

Glycoxylate Cycle, Gluconeogenesis, and **Anapleurotic Reactions**

Fermentation

analysis?" Nature biotechnology 28(3): 245-248.

Flux Balance Analysis Overview

- Flux Balance Analysis Overview
- Stoichiometric Reactions & Metabolites
- → Mathematical Representation of Reactions & Constraints
 - Mass Balanced Linear Equations
 - Biomass Reaction
 - Calculating Fluxes
 - Flux Balance Analysis Toolbox

Creating A Stoichiometric Matrix

The stoichiometric matrix, S, is the centerpiece of a mathematical representation of genome-scale metabolic networks. This matrix represents each reaction as a column and each metabolite as a row, where each numerical element is the corresponding stoichiometric coefficient.

Becker, S. A., A. M. Feist, et al. (2007). "Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox." <u>Nature</u> protocols **2(3)**: **727-738**.

Genome-scale Metabolic Reconstruction

eno

ENO

pykF

PykF

PYK

pykA

ATP

GLC

Stoichiometric Matrix

Gene-Protein-Reaction
(GPR) Associations

Reed, J. L., I. Famili, et al. (2006). "Towards multidimensional genome annotation." Nature reviews. Genetics 7(2): 130-141.

Flux Balance Analysis Overview

- Flux Balance Analysis Overview
- Stoichiometric Reactions & Metabolites
- Mathematical Representation of Reactions & Constraints
- Mass Balanced Linear Equations
 - Biomass Reaction
 - Calculating Fluxes
 - Flux Balance Analysis Toolbox

How can we use the Stoichiometric Matrix?

• The stoichiometric matrix, S, is a linear transformation of the flux vector, v to a vector of time derivatives of the concentration vector, x.

$$\frac{d\mathbf{x}}{dt} = \mathbf{S} \cdot \mathbf{v}$$

- The concentration vector, x, represents the concentration of each of the metabolites.
- If we assume that a cell will be in a particular phenotype for a time much larger than the changing time of metabolites then we can also assume that the concentration pools for the metabolites will be non-changing thus setting dx/dt=0. This is the steady state assumption of flux balance analysis.

$$\frac{d\mathbf{x}}{dt} = 0 = \mathbf{S} \cdot \mathbf{v}$$

- Since there are normally many more reactions (columns) than metabolites (rows), more unknown variables than equations, then there is no unique solutions (could be a large number of solutions).
- Need to find a way to constrain the solution space!

Dynamic Mass Balance

A simple network

Linear Differential Equations

$$\frac{dA}{dt} = -v_1 - v_2 + v_3 + e_1$$

$$\frac{dB}{dt} = v_1 + v_4 - e_2$$

$$\frac{dA}{dt} = v_2 - v_3 - v_4 - e_3$$

Linear Transformation

$$\frac{d\mathbf{x}}{dt} = \mathbf{S}\Box\mathbf{v} \qquad \begin{bmatrix} \frac{dA}{dt} \\ \frac{dB}{dt} \\ \frac{dC}{dt} \end{bmatrix} = \begin{bmatrix} -1 & -1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & -1 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ e_1 \\ e_2 \\ e_3 \end{bmatrix}$$
Stoichiometric Matrix

Dynamic Mass Balance (Steady State)

$$0 = \mathbf{S} \square \mathbf{v} \qquad \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 & -1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & -1 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} v_3 \\ v_4 \\ e_1 \end{bmatrix}$$

Note: More unknown variables than equations, thus no unique solutions! Need constraints!

The Conceptual Basis of Constraint-based Modeling

With no constraints, the flux distribution of a biological network may lie at any point in a solution space. When mass balance constraints imposed by the stoichiometric matrix S (label 1) and capacity constraints imposed by the lower and upper bounds (a_i and b_i) (label 2) are applied to a network, it defines an allowable solution space. The network may acquire any flux distribution within this space, but points outside this space are denied by the constraints. Through optimization of an objective function using linear programming, FBA can identify a single optimal flux distribution that lies on the edge of the allowable solution space.

Orth, J. D., I. Thiele, et al. (2010). "What is flux balance analysis?" Nature biotechnology 28(3): 245-248.

Role of Constraints

REI601M, Introduction to Systems Biology, Dr. Innes Thiele, 2012, https://systemsbiology.hi.is/wiki/REI601M

FLUX OPTIMIZATION

(Linear Programming or Linear Optimization Problem)

Maximize the objective function

$$Z = \sum_{i} c_{i} v_{i} = \mathbf{c} \cdot \mathbf{v}$$

with the following constraints

$$\frac{d\mathbf{x}}{dt} = \mathbf{S} \cdot \mathbf{v} = \mathbf{0}$$

$$\alpha_j \le v_j \le \beta_j$$

where

x = concentration vector

v = flux vector

c = objective function weights

S = Stoichiometric matrix

 $\alpha_{\rm j}$ = Lower bound of flux

 β_i = upper bound of flux

The goal is to create and objective function that is biologically meaningful. These could include;

- Cellular growth (maximization)
- 2. Particular metabolite engineering (maximization)
- 3. Energy consumption (minimization)

For the case of cellular growth as the objective function (Biomass Function)

- 1. "It has been shown that under rich growth conditions (i.e. no lack of phosphate and nitrogen), E. coli grows in a stoichiometrically optimal manner." (Schilling 2001, Edwards 1994)
- 2. "It is reasonable to hypothesize that unicellular organisms have evolved toward maximal growth performance." (Segre, 2002.)

Flux Balance Analysis Overview

- Flux Balance Analysis Overview
- Stoichiometric Reactions & Metabolites
- Mathematical Representation of Reactions & Constraints
- Mass Balanced Linear Equations
- → · Biomass Reaction
 - Calculating Fluxes
 - Flux Balance Analysis Toolbox

Biomass Precursors

- The biomass reaction accounts for all the fractional contributions from biosynthetic precursors and key cofactors to create 1g of biomass.
- These factional contributions need to be determined experimentally for cells growing in log phase.
- It may not be possible to obtain a detailed biomass composition for the target organism. In this case, one can estimate the relative fraction of each precursor from existing databases.

Cellular component	Cellular content %(wt/wt)			
Protein	55			
RNA	20.5			
DNA	3.1			
Lipids	9.1			
Lipopolysaccharides	3.4			
Peptidoglycan	2.5			
Glycogen	2.5			
Polyamines	0.4			
Other	3.5			
<u>Total</u>	100.00			

Thiele, I. and B. O. Palsson (2010). "A protocol for generating a high-quality genomescale metabolic reconstruction." Nature protocols 5(1): 93-121.

E.coli Precursor Metabolites

BIE 5500/6500 Lesson: Flux Balance Analysis Overview

Maintenance Energy Requirements

- To simulate growth, the energy required to maintain the cell growth must be accounted for.
- Two forms of energy are required; growth associated maintenance (GAM)
 energy and nongrowth associated maintenance (NGAM) energy (e.g. turgor
 pressure).
- GAM reaction accounts for the energy (ATP) necessary to replicate a cell.
 It is represented in the model by

$$\times$$
 ATP + \times H₂O -> \times ADP + \times P_i + \times H⁺

Where x is the number of required phosphate bonds (59.81 in core model). This will be included in the biomass reaction

· The NGAM reaction (ATPM) is given by

where the flux through this reaction is constrained by experimental data to 8.39 mmol $g_{\rm DW}^{-1}h^{-1}$

Thiele, I. and B. O. Palsson (2010). "A protocol for generating a high-quality genome-scale metabolic reconstruction." Nature protocols 5(1): 93-121.

Biomass Reaction For *E.coli* Core Model

(1.496) 3pg + (3.7478) accoa + (59.8100) atp + (0.3610) e4p + (0.0709) f6p + (0.1290) g3p + (0.2050) g6p + (0.2557) gln-L + (4.9414) glu-L + (59.8100) h2o + (3.5470) nad + (13.0279) nadph + (1.7867) oaa + (0.5191) pep + (2.8328) pyr + (0.8977) r5p --> (59.8100) adp + (4.1182) akg + (3.7478) coa + (59.8100) h + (3.5470) nadh + (13.0279) nadp + (59.8100) pi

10-11-10ecoli core models.xls

* Key Cofactors

Lesson: Flux Balance Analysis Overview

iaf1260 BIOMASS OBJECTIVE FUNCTION

(Ec_biomass_iAF1260_core_59p81M)

 $Z = 0.000223\ 10fthf[c] + 0.000223\ 2ohph[c] + 0.5137\ ala-L[c] + 0.000223\ amet[c] + 0.2958\ arg-L[c] + 0.2411\ asn-L[c] + 0.2411\ asp-L[c] + 59.984\ atp[c] + 0.004737\ ca2[c] + 0.004737\ cl[c] + 0.000576\ coa[c] + 0.003158\ cobalt2[c] + 0.1335\ ctp[c] + 0.003158\ cu2[c] + 0.09158\ cys-L[c] + 0.02617\ datp[c] + 0.02702\ dctp[c] + 0.02702\ dgtp[c] + 0.02617\ dttp[c] + 0.000223\ fad[c] + 0.007106\ fe2[c] + 0.007106\ fe3[c] + 0.2632\ gln-L[c] + 0.6126\ gly[c] + 0.2151\ gtp[c] + 54.462\ h2o[c] + 0.09474\ his-L[c] + 0.2905\ ile-L[c] + 0.1776\ k[c] + 0.01945\ kdo2lipid4[e] + 0.4505\ leu-L[c] + 0.3432\ lys-L[c] + 0.1537\ met-L[c] + 0.007895\ mg2[c] + 0.000223\ mlthf[c] + 0.003158\ mn2[c] + 0.003158\ mobd[c] + 0.01389\ murein5px4p[p] + 0.001831\ nad[c] + 0.000447\ nadp[c] + 0.011843\ nh4[c] + 0.02233\ pe160[c] + 0.04148\ pe160[p] + 0.02632\ pe161[c] + 0.04889\ pe161[p] + 0.1759\ phe-L[c] + 0.000223\ pheme[c] + 0.2211\ pro-L[c] + 0.000223\ thmpp[c] + 0.2537\ thr-L[c] + 0.05684\ trp-L[c] + 0.1379\ tyr-L[c] + 5.5e-005\ udcpdp[c] + 0.1441\ utp[c] + 0.4232\ val-L[c] + 0.003158\ zn2[c] \ \rightarrow 59.81\ adp[c] + 59.81\ h[c] + 59.806\ pi[c] + 0.7739\ ppi[c]$

Formulation of Flux Balance Analysis

Orth, J. D., I. Thiele, et al. (2010). "What is flux balance analysis?" Nature biotechnology 28(3): 245-248.

E.coli Core Model

Orth, J. D., I. Thiele, et al. (2010). "What is flux balance analysis?" Nature biotechnology 28(3): 245-248.

Ferm

http://systemsbiology.ucsd.edu/Downloads/E_coli_Core

E.coli K-12 MG1655 Genome-Scale Reconstructions

iAF1260 - 6.Feist, A. M., C. S. Henry, et al. (2007). "A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information." Molecular Systems Biology 3: 121.

iJO1366 - Orth, J. D. and B. O. Palsson (2012). "Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions." BMC systems biology 6(1): 30.

Utah State University

BIE 5500/6500

Lesson: Flux Balance Analysis Overview

The Iterative Reconstruction and History of the *E. Coli* Metabolic Network

Feist, A. M. and B. O. Palsson (2008). "The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli." Nature biotechnology 26(6): 659-667...

E.coli Genome-scale Reconstructions

- Escherichia coli 042
- Escherichia coli 536
- Escherichia coli 55989
- Escherichia coli ABU 83972
- Escherichia coli APEC 01
- Escherichia coli ATCC 8739
- Escherichia coli B str. REL606
- Escherichia coli BL21(DE3) AM946981
- Escherichia coli BL21(DE3) BL21-Gold(DE3)pLysS AG
- Escherichia coli BL21(DE3) CP001509
- Escherichia coli BW2952
- Escherichia coli CFT073
- Escherichia coli DH1
- Escherichia coli DH1 ME8569
- Escherichia coli E24377A
- Escherichia coli ED1a

- Escherichia coli ETEC H10407
- Escherichia coli HS
- Escherichia coli IAI1
- Escherichia coli IAI39
- Escherichia coli IHF3034
- Escherichia coli KO11FL
- Escherichia coli LF82
- Escherichia coli NA114
- Escherichia coli O103:H2 str. 12009
- Escherichia coli O111:H- str. 11128
- Escherichia coli O127:H6 str. F2348/69
- Escherichia coli O157:H7 EDL933
- Escherichia coli O157:H7 str. FC4115
- Escherichia coli O157:H7 str. Sakai
- Escherichia coli O157:H7 str. TW14359
- Escherichia coli O26:H11 str. 11368

- Escherichia coli 055:H7 str. CB9615
- Escherichia coli 083:H1 str. NRG 857C
- Escherichia coli 588
- Escherichia coli SE11
- Escherichia coli SF15
- Escherichia coli SMS-3-5
- Escherichia coli str. K-12 substr. DH10B
- Escherichia coli str. K-12 substr. MG1655
- Escherichia coli str. K-12 substr. W3110
- Escherichia coli UM146
- Escherichia coli UMN026
- Escherichia coli UMNK88
- Escherichia coli UTI89
- Escherichia coli W
- Escherichia coli W CP002185
- Escherichia coli K-12 MG1655

Monk, J. M., P. Charusanti, et al. (2013). Proceedings of the National Academy of Sciences of the United States of America 110(50): 20338-20343.

Utah State University BIE 5500/6500 Lesson: Flux Balance Analysis Overview

Phylogenetic Coverage of Genome-scale Network Reconstructions

Monk, J., J. Nogales, et al. (2014). "Optimizing genome-scale network reconstructions." Nature biotechnology 32(5): 447-452

Lesson: Flux Balance Analysis Overview

Flux Balance Analysis Overview

- Flux Balance Analysis Overview
- Stoichiometric Reactions & Metabolites
- Mathematical Representation of Reactions & Constraints
- Mass Balanced Linear Equations
- Biomass Reaction
- → · Calculating Fluxes
 - Flux Balance Analysis Toolbox

COBRA TOOLBOX

Links for installing COBRA toolbox for MATLAB

- http://www.nature.com/protocolexchange/protocols/2097#/introduction
- http://benheavner.com/systemsbio/index.php?title=Installing_COBRA_toolbox_for_MATLAB
- http://opencobra.sourceforge.net/openCOBRA/Install.html

Matlab Interface

DRAWING FLUX VALUES ONTO A MAP

Print Flux Values

<i>ACONTa</i>	6.00725			
<i>ACONTb</i>	6.00725			
AKGDH	5.06438			
ATPM	8.39	Growth		
ATPS4r	45.514	∕ Rate		
Biomass	0.873922	<u>K</u>		
CO2t	-22.8098			
CS	6.00725			
CYTBD	43.599			
ENO	14.7161	_		
EX_co2(e) 22.8098			
EX_glc(e)	-10			
EX_h2o(e) 29.1758				
EX_h(e)	17.5309	Inputs & Outputs (Exchange		
EX_nh4(e)-4.76532	Reactions)		
EX_o2(e)	-21.7995	,		
EX_pi(e)	-3.2149			

FBA FUM G6PDH2r GAPD GLCpts GLNS GLUDy GND H2Ot ICDHyr MDH NADH16 NH4t O2t	7.47738 5.06438 4.95998 16.0235 10 0.223462 -4.54186 4.95998 -29.1758 6.00725 5.06438 38.5346 4.76532 21.7995
NH4t	4.76532

PGK	-16.0235	
PGL	4.95998	
PGM	-14.7161	
PIt2r	3.2149	
PP <i>C</i>	2.50431	
РУК	1.75818	
RPE	2.67848	
RPI	-2.2815	
SUCDi	5.06438	
SUCOAS	-5.06438	
TALA	1.49698	
TKT1	1.49698	
TKT2	1.1815	
TPI	7.47738	

Aerobic Growth on Glucose

Exchange Reactions

EX_co2	(e)	40.6527
	\	10,0067

EX_glc(e) -18.5

EX_h2o(e) 52.6943

EX_h(e) 33.1606

EX_nh4(e) -9.01387

EX_o2(e) -38.7416

EX_pi(e) -6.08116

Close-up of TCA Cycle

Anaerobic Growth on Glucose

Exchange Reactions

Biomass 0.470565

EX_ac(e) 15.1732

EX_co2(e) -0.840759

EX_etoh(e) 14.6749

EX_for(e) 32.1194

EX_glc(e) -18.5

EX_h2o(e) -12.0879

EX_h(e) 56.7321

EX_nh4(e) -2.5659

EX_pi(e) -1.73107

AEROBIC vs. ANAEROBIC GROWTH

Orth, J. D., I. Thiele, et al. (2010). "What is flux balance analysis?" Nature biotechnology 28(3): 245-248.

Aerobic Growth

Anaerobic Growth

Substrate Maximum Growth Rate

The core *E. coli* model contains exchange reactions for 13 different organic compounds, each of which can be used as the sole carbon source under aerobic or anaerobic conditions.

Aerobic (hr-1)	Anaerobic (hr ⁻¹)
0.3893	0
0.6073	0
1.0982	0
0.6996	0
1.7906	0.5163
0.7865	0
1.7906	0.5163
1.1636	0
1.2425	0
0.7403	0
0.7865	0
0.6221	0.0655
0.8401	0
	0.3893 0.6073 1.0982 0.6996 1.7906 0.7865 1.7906 1.1636 1.2425 0.7403 0.7865 0.6221

("What is flux balance analysis? - Supplementary tutorial")

Flux Balance Analysis Overview

- Flux Balance Analysis Overview
- Stoichiometric Reactions & Metabolites
- Mathematical Representation of Reactions & Constraints
- Mass Balanced Linear Equations
- Biomass Reaction
- Calculating Fluxes
- → · Flux Balance Analysis Toolbox

A Growing Toolbox for Constraint-based Analysis

Price, N. D., J. L. Reed, et al. (2004). "Genome-scale models of microbial cells: evaluating the consequences of constraints." Nature reviews. Microbiology 2(11): 886-897.

Lesson: Flux Balance Analysis Overview

Methods in Constraint-based Reconstruction and Analysis

http://sourceforge.net/apps/mediawiki/opencobra/index.php?title=Main_Page

Flux Balance Analysis Overview

- Flux Balance Analysis Overview
- Stoichiometric Reactions & Metabolites
- Mathematical Representation of Reactions & Constraints
- Mass Balanced Linear Equations
- Biomass Reaction
- Calculating Fluxes
- Flux Balance Analysis Toolbox