(3O) Самостоятельная работа № 5 Позиционные системы счисления

Цель: знакомство с понятием позиционной системы счисления и приобретение навыков перевода чисел из одной позиционной системы счисления в другую.

Задание. Выполнить пять переводов чисел, заданных в таблицах 1 и 2. Задание выполнить *подробно* в соответствии с методическими указаниями (по образцу).

Краткие теоретические сведения и пример выполнения заданий приведены после таблицы с заданиями.

Решения заданий рекомендуется выполнить на бумаге ручкой, а в docx-файл отчета вставить скан-копии или хорошо читаемые фотографии выполненных заданий.

Отчет следует начать с титульного листа.

Далее привести цель и общее задание на всю работу.

Затем привести индивидуальное задание i и решение индивидуального задания i (i=1,2,...,n; n — количество заданий в данной работе). Обязательно произвести проверку полученного числа путем обратного перевода в исходную систему счисления.

В конце отчета поместить вывод.

Таблица 1 – Задания 1, 2, 3

Вари-	Задание											
ант	1	2	3									
1	10011,1011 ₂ =10	25,8125 ₁₀ =2	$3131232,3202_4 = \underline{\hspace{1cm}}_2$									
2	1230,21 ₄ =10	$108,5625_{10} =4$	33556,704 ₈ =2									
3	$142,13_5 = \{10}$	39,84 ₁₀ =5	376 <i>e</i> , <i>e</i> 2 ₁₆ =2									
4	245,3 ₆ =10	$203,5_{10} = _{6}$	$603f2,564_{16} = \4$									
5	137,26 ₈ =10	158,1875 ₁₀ =8	12301213,231 ₄ =2									
6	$1ea,c_{16} = _{10}$	379,5 ₁₀ =16	66147,55 ₈ =2									
7	$11001,1101_2 ={10}$	22,25 ₁₀ =2	$6c67,b4_{16} =2$									
8	$232,12_4 = _{10}$	57,8125 ₁₀ =4	$2d55a7,9ed_{16} = _{4}$									
9	$234,14_5 = _{10}$	47,32 ₁₀ =5	3333000,132 ₄ =2									
10	$153,3_6 = _{\{10}}$	69,5 ₁₀ =6	37700,36 ₈ =2									
11	215,62 ₈ =10	$141,78125_{10} =8$	$3fc0,78_{16} =2$									
12	$17b, 8_{16} = _{10}$	$725,625_{10} = _{16}$	$16abf5,5ac_{16} =4$									
13	$10110,01_2 = _{\{10}}$	$15,625_{10} =2$	$1003320,321_4 =2$									
14	$321,31_4 = _{\{10}}$	58,4375 ₁₀ =4	$10370,71_8 =2$									
15	$124,41_5 = _{\{10}}$	$195,68_{10} =5$	$10f8,e4_{16} =2$									
16	$535,3_6 = _{10}$	77,5 ₁₀ =6	$1b6ef9, be_{16} = _{__4}$									
17	$236,14_8 = _{10}$	$102,875_{10} = _{\8}$	$1132222,1112_4 =2$									
18	$2d5, a_{16} = \underline{\hspace{1cm}}_{10}$	$495,3125_{10} = _{16}$	$13652,254_8 =2$									
19	$1111,101_2 = _{\{10}}$	$28,375_{10} =2$	$17aa,56_{16} =2$									
20	$322,13_4 = _{10}$	$103,125_{10} = _{\4}$	$556aa, ffc_{16} = _4$									
21	$1240,32_5 = _{10}$	$148,44_{10} =5$	$110133,311_4 =2$									
22	$314,3_6 = _{10}$	$118,5_{10} = _{6}$	$7525,52_8 =2$									
23	$237,4_8 = _{10}$	$159,5_{10} = _{8}$	$1223113,2322_4 = \underline{\hspace{1cm}}_2$									
24	$1a8, f_{16} = \underline{\hspace{1cm}}_{10}$	$424,9375_{10} = _{16}$	$15327,564_8 =2$									
25	$11100,011_2 = _{\{10}}$	$19,6875_{10} =2$	$1ad7,ba_{16} =2$									
26	$1213,02_4 = _{10}$	46,375 ₁₀ =4	1 <i>be</i> 48,63 ₁₆ =4									
27	$1043,21_5 = _{\{10}}$	$69,36_{10} =5$	1320013,333 ₄ =2									
28	$205,3_6 = _{10}$	$101,5_{10} = _{6}$	17007,77 ₈ =2									
29	$146,7_8 = _{\{10}}$	95,34375 ₁₀ =8	$1e07, fc_{16} =2$									
30	$1ef$, $5_{16} = _{10}$	$490,75_{10} = _{\{16}}$	$100af5,6f8_{16} =4$									

Таблица 2 – Задания 4, 5

Вари-	Задание											
ант	4	5										
1	$11010110101111,10111101_2 = \4$	1223113,23224 =8										
2	$11010110101111,10111101_2 = \8$	3131232,3202 ₄ =8										
3	$11010110101111,10111101_2 =16$	66147,55 ₈ =4										
4	$123321020,1203_4 =16$	33556,704 ₈ =16										
5	$11011101101110,1110001_2 = \4$	12301213,231 ₄ =8										
6	$11011101101110,1110001_2 = \underline{}_8$	3333000,132 ₄ =8										
7	$11011101101110,1110001_2 =16$	$1003320,321_4 =8$										
8	$1200033302,11121_4 =16$	1320013,333 ₄ =8										
9	$110110001100111,101101_2 = \underline{}_4$	$10370,71_8 = _{\{16}}$										
10	$110110001100111,101101_2 = \underline{}_8$	$17007,77_8 = _{\{16}}$										
11	$110110001100111,101101_2 =16$	$13652,254_8 = _{\{16}}$										
12	$23111112213,213231_4 = \16$	$37700,36_8 = _4$										
13	$111111111000000,011111_2 = \4$	$10370,71_8 = \4$										
14	$1111111110000000,011111_2 = \underline{}_8$	17007,77 ₈ =4										
15	$1111111110000000,011111_2 = \underline{}_{16}$	13652,254 ₈ =4										
16	$11222233311,11223_4 =16$	15327,564 ₈ =16										
17	$10000111111000,111001_2 = \4$	$1ad7,ba_{16} = _{\8}$										
18	$10000111111000,111001_2 = \8$	$376e,e2_{16} =8$										
19	$10000111111000,111001_2 =16$	$6c67,b4_{16} = _8$										
20	$12312323321,2332_4 = \underline{\hspace{1cm}}_{16}$	1132222,1112 ₄ =8										
21	1111000000111,1111111 ₂ =4	15327,564 ₈ =4										
22	$1111000000111,1111111_2 = \underline{}_8$	33556,704 ₈ =4										
23	$1111000000111,1111111_2 =16$	66147,55 ₈ =16										
24	$10000223311,12332_4 = \phantom{00000000000000000000000000000000000$	$37700,36_8 =16$										
25	$1011110101010,0101011_2 = \4$	$3fc0,78_{16} =8$										
26	$1011110101010,0101011_2 = \8$	$10f8,e4_{16} =8$										
27	$1011110101010,0101011_2 = \underline{}_{16}$	$1e07, fc_{16} =8$										
28	$1111122222,33333_4 =16$	$17aa,56_{16} = _{8}$										
29	$10100011111,110101_2 = \4$	3333000,132 ₄ =8										
30	$111101010101,10101_2 =8$	13652,254 ₈ =4										

Краткие теоретические сведения

Системой счисления (СС) называется совокупность приёмов наименования и записи чисел [1]. СС называется позиционной, если вес каждой цифры зависит от её положения в последовательности цифр, изображающих число. Основанием K позиционной СС называется число единиц какого-либо разряда, заменяемых единицей старшего разряда.

Позиционная СС с основанием K называется K-ичной СС. Для записи чисел в K-ичной СС используются K цифр, обозначающих числа 0, 1, ..., K-1. В таблице 3 представлены первые шестнадцать целых неотрицательных чисел в позиционных системах счисления с некоторыми основаниями.

Под *переводом* числа из P-ичной системы счисления в Q-ичную понимается преобразование исходного P-ичного представления числа в представление этого же числа в Q-ичной СС. Такой перевод будем обозначать схематично в виде $P \to Q$.

Рассмотрим различные варианты перевода чисел из одной системы счисления в другую.

- 1. При переводе $P \to 10$ (из некоторой P-ичной системы счисления в 10-ичную) сначала исходную запись числа представляют в виде полинома. Затем в полиноме все P-ичные представления чисел заменяют 10-ичными и вычисляют значение этого полинома средствами десятичной арифметики.
- **2.** Перевод $10 \rightarrow P$ (из 10-ичной СС в P-ичную) осуществляют средствами десятичной арифметики, причём целую и дробную части числа переводят отдельно. Целую часть переводят делением на P нацело с остатком до достижения частного, равного нулю. Дробную часть переводят умножением на P с отделением целой части произведения до достижения дробной части произведения, равной нулю. Каждый остаток от деления и каждую целую часть произведения представляют одной P-ичной цифрой. Результаты перевода целой и дробной частей объединяют.
- 3. Если необходимо выполнить перевод $P \to Q$ при $P \neq 10$ и $Q \neq 10$, то действуют по схеме $P \to 10 \to Q$, т. е. последовательно выполняют переводы $P \to 10$ и $10 \to Q$. Однако, когда значения P и Q определённым образом взаимосвязаны, перевод можно выполнить с меньшими трудозатратами.
- **4.** Так, например, **если** $P^1 = Q^n$ (n натуральное число), то для выполнения перевода достаточно каждую P-ичную цифру исходного числа представить соответствующим n-значным Q-ичным числом. Если же $P^n = Q^1$, то при переводе каждое выделенное в исходном представлении n-значное число можно заменить соответствующей Q-ичной цифрой.
- **5.** Наконец, **если** $P^1 = R^n$ и $R^m = Q^1$ (R, n, m натуральные числа), то перевод целесообразно осуществить по схеме $P \to R \to Q$ с последовательным применением двух рассмотренных выше способов.

Таблица 3 — Целые числа от 0 до 16 в системах счисления с основанием K

K	Представления чисел															
2	0	1	10	11	100	101	110	111	1000	1001	1010	1011	1100	1101	1110	1111
3	0	1	2	10	11	12	20	21	22	100	101	102	110	111	112	120
4	0	1	2	3	10	11	12	13	20	21	22	23	30	31	32	33
5	0	1	2	3	4	10	11	12	13	14	20	21	22	23	24	30
6	0	1	2	3	4	5	10	11	12	13	14	15	20	21	22	23
8	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17
10	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16	0	1	2	3	4	5	6	7	8	9	а	b	с	d	e	f

Пример выполнения заданий

1а. Выполнить перевод $10111,111_2 = _{10}$.

Решение.

Для выполнения перевода $2 \to 10$ (из двоичной СС в десятичную) исходную запись числа представим в виде полинома, заменим в нём все двоичные представления чисел десятичными (см. табл. 2.2) и вычислим значение этого полинома средствами десятичной арифметики:

$$4 \ 3 \ 2 \ 1 \ 0 \ -1-2-3$$

$$1 \ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 2 = \ 1_2 \cdot 10_2^4 + \ 0_2 \cdot 10_2^3 + \ 1_2 \cdot 10_2^2 + \ 1_2 \cdot 10_2^1 + \ 1_2 \cdot 10_2^0 +$$

$$+ \ 1_2 \cdot 10_2^{-1} + \ 1_2 \cdot 10_2^{-2} + \ 1_2 \cdot 10_2^{-3} = \ 1 \cdot 2^4 + \ 0 \cdot 2^3 + \ 1 \cdot 2^2 + \ 1 \cdot 2^1 + \ 1 \cdot 2^0 + \ 1 \cdot 2^{-1} +$$

$$+ \ 1 \cdot 2^{-2} + \ 1 \cdot 2^{-3} = \ 1 \cdot 16 + \ 0 + \ 1 \cdot 4 + \ 1 \cdot 2 + \ 1 \cdot 1 + \ 1 \cdot 1/2 + \ 1 \cdot 1/4 + \ 1 \cdot 1/8 =$$

$$= \ 16 + 4 + 2 + \ 1 + \ 0.5 + \ 0.25 + \ 0.125 = \ 23.875.$$
Omegan: 23.875

Ответ: 23,875₁₀.

1б. Выполнить перевод 214,24₅ = $_{10}$.

Решение.

Для выполнения перевода $5 \to 10$ (из пятеричной СС в десятичную) исходную запись числа представим в виде полинома, заменим в нём все пятеричные представления чисел десятичными (см. табл. 2.2) и вычислим значение полинома средствами десятичной арифметики:

$$2 \ 1 \ 0 \ -1-2$$

$$2 \ 1 \ 4 \ , \ 2 \ 4 \ _{5} = \ 2_{5} \cdot 10_{5}^{2} + \ 1_{5} \cdot 10_{5}^{1} + \ 4_{5} \cdot 10_{5}^{0} + \ 2_{5} \cdot 10_{5}^{-1} + \ 4_{5} \cdot 10_{5}^{-2} =$$

$$= 2 \cdot 5^{2} + 1 \cdot 5^{1} + 4 \cdot 5^{0} + 2 \cdot 5^{-1} + 4 \cdot 5^{-2} = 2 \cdot 25 + 1 \cdot 5 + 4 \cdot 1 + 2 \cdot 1/5 +$$

$$+ 4 \cdot 1/25 = 50 + 5 + 4 + 0,4 + 0,16 = 59,56.$$

Ответ: 59,56₁₀.

1в. Выполнить перевод 1f9, $c_{16} = _{10}$.

Решение.

Для выполнения перевода $16 \rightarrow 10$ (из шестнадцатеричной СС в десятичную) исходную запись числа представим в виде полинома, заменим в нём все шестнадцатеричные представления чисел десятичными (см. табл. 2.2) и вычислим значение полинома средствами десятичной арифметики:

$$\begin{array}{c} 2 \ 1 \ 0 & -1 \\ 1 \ f \ 9 \ , \ c_{16} = \ 1_{16} \cdot 10_{16}^{2} + f_{16} \cdot 10_{16}^{1} + 9_{16} \cdot 10_{16}^{0} + c_{16} \cdot 10_{16}^{-1} = \\ = 1 \cdot 16^{2} + 15 \cdot 16^{1} + 9 \cdot 16^{0} + 12 \cdot 16^{-1} = 1 \cdot 256 + 15 \cdot 16 + 9 \cdot 1 + 12 \cdot 1/16 = \\ = 256 + 240 + 9 + 0.75 = 505.75. \end{array}$$

Ответ: 505,7510.

2а. Выполнить перевод 75,515625 $_{10} = __4$.

Решение.

Перевод $10 \to 4$ (из десятичной СС в четверичную) осуществим средствами десятичной арифметики, причём целую и дробную часть числа переведём отдельно.

Целую часть переведём делением на 4 нацело с остатком до достижения частного, равного нулю, и каждый остаток от деления представим четверичной цифрой:

Дробную часть переведём умножением на 4 с отделением целой части произведения до достижения дробной части произведения, равной нулю, и каждую целую часть полученных произведений представим четверичной цифрой:

$$0.515625 \cdot 4 = 2.0625,$$
 $2 = 2_4,$ $0.0625 \cdot 4 = 0.25,$ $0 = 0_4,$ $0.25 \cdot 4 = 1.0,$ $1 = 1_4,$ $0.515625_{10} = 0.201_4.$

Объединив результаты перевода целой и дробной части, получим $75,515625_{10} = 1023,201_4$.

Ответ: 1023,201₄.

2б. Выполнить перевод $134,453125_{10} = _{8}$.

Решение.

Перевод $10 \to 8$ (из десятичной СС в восьмеричную) осуществим средствами десятичной арифметики, причём целую и дробную части числа переведём отдельно.

Целую часть переведём делением на 8 нацело с остатком до достижения частного, равного нулю, и каждый остаток от деления представим восьмеричной цифрой:

$$134_{10} = 206_8$$
.

Дробную часть переведём умножением на 8 с отделением целой части произведения до достижения дробной части произведения, равной нулю, и каждую целую часть полученных произведений представим восьмеричной цифрой:

$$0,453125 \cdot 8 = 3,625,$$
 $3 = 3_8,$ $5 = 5_8,$ $0,625 \cdot 8 = 5,0,$ $5 = 5_8,$ $0,453125_{10} = 0,35_8.$

Объединив результаты перевода целой и дробной части, получим $134,453125_{10} = 206,35_8$.

Ответ: 206,35₈.

2в. Выполнить перевод $2983,875_{10} = ___{16}$. *Решение*.

Перевод $10 \to 16$ (из десятичной СС в восьмеричную) осуществим средствами десятичной арифметики, причём целую и дробную части числа переведём отдельно.

Целую часть переведём делением на 16 нацело с остатком до достижения частного, равного нулю, и каждый остаток от деления представим шестнадцатеричной цифрой:

Дробную часть переведём умножением на 16 с отделением целой части произведения до достижения дробной части произведения, равной нулю, и каждую целую часть полученных произведений представим шестнадцатеричной цифрой:

$$0.875 \cdot 16 = 14.0,$$
 $14 = e_{16},$

$$14 = e_{16}$$

$$0,875_{10} = 0,e_{16}$$
.

Объединив результаты перевода целой и дробной частей, получим $2983,875_{10} = ba7,e_{16}$.

Ответ: ba7,e₁₆.

3а. Выполнить перевод 25701,14₈ = $_2$.

Решение.

Заметим, что $8^1 = 2^3$. Поэтому при выполнении перевода каждую восьмеричную цифру представим соответствующим трёхзначным двоичным числом (см. табл. 2.1):

$$2_8 = 10_2 = 010_2,$$
 $5_8 = 101_2,$ $7_8 = 111_2,$ $0_8 = 0_2 = 000_2,$ $1_8 = 1_2 = 001_2,$ $4_8 = 100_2,$ $25701,14_8 = \boxed{010} \boxed{101} \boxed{111} \boxed{000} \boxed{001},$ $\boxed{001} \boxed{100}_2.$

Отбросим у полученного двоичного числа слева и справа незначащие нули:

 $0101011111000001,001100_2 = 101011111000001,0011_2.$

Omsem: 10101111000001,0011₂.

3б. Выполнить перевод $1b49e,0f6_{16} = 4$.

Решение.

Заметим, что $16^1 = 4^2$. Поэтому при выполнении перевода каждую шестнадцатеричную цифру представим соответствующим двузначным четверичным числом (см. табл. 2.1):

$$1_{16} = 1_4 = 01_4, b_{16} = 23_4, 4_{16} = 10_4, 9_{16} = 21_4,$$
 $e_{16} = 32_4, 0_{16} = 0_4 = 00_4, f_{16} = 33_4, 6_{16} = 12_4,$
 $1b49e,0f6_{16} = \boxed{01\ 23\ 10\ 21\ 32}, \boxed{00\ 33\ 12}_4.$

Отбросим у полученного двоичного числа слева незначащий нуль:

 $0123102132,003312_4 = 123102132,003312_4.$

Ответ: 123102132,0033124.

4. Выполнить перевод 11000111001101,1111001 $_2 = \underline{\hspace{0.2cm}}_{16}$.

Решение.

Заметим, что $2^4 = 16^1$. Поэтому добавим слева и справа к заданному двоичному числу незначащие нули до достижения в целой и дробной частях количеств цифр, кратных четырём:

 $11000111001101, 11111001_2 = 0011000111001101, 111110010_2.$

Выделим в полученном представлении четырёхзначные двоичные числа:

$$0011000111001101,11110010_2 = \boxed{0011000111001101}, \boxed{11110010}_2.$$

Каждое выделенное четырёхзначное двоичное число заменим одной соответствующей шестнадцатеричной цифрой (см. табл. 2.1):

$$0011_2 = 11_2 = 3_{16},$$
 $0001_2 = 1_2 = 1_{16},$ $1100_2 = c_{16},$ $1101_2 = d_{16},$ $1111_2 = f_{16},$ $0010_2 = 10_2 = 2_{16},$

$$\boxed{0011|0001|1100|1101}, \boxed{1111|0010}_2 = 31cd, f2_{16}.$$

Omeem: $31cd, f2_{16}$.

5. Выполнить перевод $5a0b,c1_{16} = _{8}$.

Решение.

Заметим, что $16^1 = 2^4$ и $2^3 = 8^1$. Поэтому перевод осуществим по схеме $16 \to 2 \to 8$.

Переведём исходное число в двоичную систему счисления путём замены каждой шестнадцатеричной цифры соответствующим четырёхзначным двоичным числом (см. табл. 2.1):

$$5a0b, c1_{16} = \boxed{0101} \boxed{1010} \boxed{0000} \boxed{1011}, \boxed{1100} \boxed{0001}_2 = 101101000001011, 11000001_2.$$

Переведём полученное двоичное число в восьмеричную систему счисления путём замены каждого выделенного трёхзначного двоичного числа соответствующей восьмеричной цифрой (см. табл. 2.1):

$$\begin{aligned} 101101000001011,& 110000011_2 = 101101000001011,& 1100000101_2 = \\ & = \boxed{101 \ | \ 101 \ | \ 000 \ | \ 001 \ | \ 011} \ , \ \boxed{110 \ | \ 000 \ | \ 010} \ _2 = 55013,602_8. \end{aligned}$$

Ответ: $55013,602_8$.

Библиографический список

1. Острейковский, В. А. Информатика: учеб. для вузов / В. А. Острейковский. – М. : Высш. шк., 1999. - 511 с.