SCT30N120

Silicon carbide Power MOSFET 1200 V, 45 A, 90 mΩ (typ., T_J = 150 °C) in an HiP247[™] package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

- Very tight variation of on-resistance vs. temperature
- Very high operating temperature capability (T_J = 200 °C)
- Very fast and robust intrinsic body diode
- Low capacitance

Applications

- Solar inverters, UPS
- Motor drives
- High voltage DC-DC converters
- Switch mode power supply

Description

This silicon carbide Power MOSFET is produced exploiting the advanced, innovative properties of wide bandgap materials. This results in unsurpassed on-resistance per unit area and very good switching performance almost independent of temperature. The outstanding thermal properties of the SiC material, combined with the device's housing in the proprietary HiP247™ package, allows designers to use an industry standard outline with significantly improved thermal capability. These features render the device perfectly suitable for highericiency and high power density applications.

Table 1: Device summary

Order code	Marking	Package	Packaging
SCT30N120	SCT30N120	HiP247™	Tube

3

The device meets ECOPACK standards, an environmentally-friendly grade of products commonly referred to as "halogen-free". See *Section 6: "Package information"*.

Contents SCT30N120

Contents

1	Electrical ratings		
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Packag	e information	10
	3.1	HiP247 package information	10
4	Revisio	n history	12

SCT30N120 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	1200	V
V _{GS}	Gate-source voltage	-10 to 25	V
I _D	Drain current (continuous) at T _C = 25 °C (limited by die)	45	А
I _D	Drain current (continuous) at T _C = 25 °C (limited by package)	40	Α
l _D	Drain current (continuous) at T _C = 100 °C	34	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	90	Α
Ртот	Total dissipation at T _C = 25 °C	270	W
T _{stg}	Storage temperature range	FF to 200	°C
Tj	Operating junction temperature range	-55 to 200	°C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	0.65	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max		°C/W

⁽¹⁾Pulse width limited by safe operating area.

Electrical characteristics SCT30N120

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified).

Table 4: On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
lana	Zero gate voltage	V _{DS} = 1200 V		1	100	μA
I _{DSS}	drain current (V _{GS} = 0 V)	V _{DS} = 1200 V, T _J = 200 °C		50		μΑ
Igss	Gate-body leakage current (V _{DS} = 0)	V _{GS} = -10 to 22 V			100	nA
$V_{GS(th)}$	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	1.8	3.5		V
		$V_{GS} = 20 \text{ V}, I_{D} = 20 \text{ A}$		80	100	mΩ
R _{DS(on)}	R _{DS(on)} Static drain-source on- resistance	$V_{GS} = 20 \text{ V}, I_{D} = 20 \text{ A},$ $T_{J} = 150 ^{\circ}\text{C}$		90		mΩ
T (BG(GII)		V _{GS} = 20 V, I _D = 20 A, T _J = 200 °C		100		mΩ

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-	1700	-	pF
Coss	Output capacitance	$V_{DS} = 400 \text{ V}, f = 1 \text{ MHz},$ $V_{GS} = 0 \text{ V}$	-	130	-	pF
Crss	Reverse transfer capacitance	VGS = 0 V	-	25	-	pF
Qg	Total gate charge		-	105	-	nC
Qgs	Gate-source charge	$V_{DD} = 800 \text{ V}, I_{D} = 20 \text{ A},$ $V_{GS} = 0 \text{ to } 20 \text{ V}$	-	16	-	nC
Q_{gd}	Gate-drain charge	VGS = 0 t0 20 V	-	40	-	nC
Rg	Gate input resistance	f=1 MHz open drain	-	5	-	Ω

Table 6: Switching energy (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Eon	Turn-on switching energy	$V_{DD} = 800 \text{ V}, I_{D} = 20 \text{ A},$	-	500	ı	μJ
E _{off}	Turn-off switching energy	$R_G = 6.8 \Omega$, $V_{GS} = -2 \text{ to } 20 \text{ V}$	-	350	-	μJ
Eon	Turn-on switching energy	$V_{DD} = 800 \text{ V}, I_{D} = 20 \text{ A},$	-	500	-	μJ
E _{off}	Turn-off switching energy	R_{G} = 6.8 Ω , V_{GS} = - 2 to 20 V, T_{J} = 150 °C	-	400		μJ

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		1	19	•	ns
tf	Fall time	$V_{DD} = 800 \text{ V}, I_D = 20 \text{ A},$	-	28	-	ns
t _{d(off)}	Turn-off delay time	$R_G = 0 \Omega$, $V_{GS} = 0$ to 20 V	-	45	-	ns
tr	Rise time		-	20	-	ns

Table 8: Reverse SiC diode characteristics

Symbol	Parameter	Test conditions	Min	Тур.	Max	Unit
V _{SD}	Diode forward voltage	I _F = 10 A, V _{GS} = 0 V	-	3.5	-	V
t _{rr}	Reverse recovery time		-	140		ns
Qrr	Reverse recovery charge $I_{SD} = 20 \text{ A, di/dt} = 100 \text{ A/}\mu$ $V_{DD} = 800 \text{ V}$		-	140	-	nC
I _{RRM}	Reverse recovery current	עט ע – טטע ע	-	2	-	Α

2.1 Electrical characteristics (curves)

SCT30N120 Electrical characteristics

Figure 9: Gate charge vs gate-source voltage

VGS

(V)

VDD=800V
ID=20A

12

8

4

0
0
20
40
60
80
100
Qg(nC)

Figure 10: Capacitance variations AM17528v1 С (pF) f= 1MHz Ciss 1000 Coss 100 Crss 10 1 VDS(V) 200 400 600 800

Figure 14: Normalized gate threshold voltage vs. temperature AM17522v1 VGS(th) (norm) ID=1mA 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 -50 0 50 100 150 T_J(°C)

Figure 15: Normalized on-resistance vs. temperature (norm) Vgs=20V 3.2 2.8 2.4 2.0 1.6 1.2 8.0 0.4 0 25 75 100 125 150 175 T_J(°C)

Package information SCT30N120

3 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

3.1 HiP247 package information

Figure 22: HiP247™ package outline

Table 9: HiP247™ package mechanical data

Dim	·	mm.	
Dim.	Min.	Тур.	Max.
А	4.85		5.15
A1	2.20		2.60
b	1.0		1.40
b1	2.0		2.40
b2	3.0		3.40
С	0.40		0.80
D	19.85		20.15
Е	15.45		15.75
е	5.30	5.45	5.60
L	14.20		14.80
L1	3.70		4.30
L2		18.50	
ØP	3.55		3.65
ØR	4.50		5.50
S	5.30	5.50	5.70

Revision history SCT30N120

Revision history 4

Table 10: Document revision history

Date	Revision	Changes
10-May-2012	1	First release
21-May-2013	2	Updated trr value in Table8. Updated dynamic parameters in Table5, VGS(th) in Table4 and Eon in Table6.
24-Jun-2013	3	Document status promoted from target to preliminary data. Added: Section2.1: Electrical characteristics (curves)
11-Jul-2013	4	Updated Figure6: Output characteristics (TJ=200°C) and Figure7: Transfer characteristics.
18-Dec-2013	5	Updated parameters in Table2: Absolute maximum ratings and Table4: On/off states.
27-May-2014	6	Added Table7: Switching times. Updated Section3: Package mechanical data. Minor text changes.
25-Sep-2014	7	Document status promoted from preliminary to production data.
17-Feb-2015	8	Updated title in cover page.
20-Feb-2015	9	Updated Section2.1: Electrical characteristics (curves).
24-Jul-2016	10	Updated title and features in cover page. Updated Figure 2: "Safe operating area" and Figure 3: "Thermal impedance". Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

