Assessed Coursework: Systems Verification

Ioannis Kassinopoulos

February 12, 2013

Question 1

Figure 1: The transition system \mathcal{M}_1 .

Algebraic Form

A transition system $\mathcal{M}=(S,\to,L)$ is a set of states S endowed with a transition relation \to (a binary relation on S), such that every $s\in S$ has some $s'\in S$ with $s\to s'$, and a labeling function $L:S\to \mathcal{P}(\mathrm{Atoms})$.

```
Our system \mathcal{M}_1 (figure: 1) can be described as following: \mathcal{P} = \{p,q,r,t\} \mathcal{M}_1 = \{\{s_0,s_1,s_2,s_3\},\{(s_0,s_0),(s_0,s_1),(s_0,s_3),(s_1,s_2),(s_2,s_1),(s_3,s_1)\},\pi\} \pi(p) = \{s_1,s_3\} \pi(q) = \{s_2,s_3\} \pi(r) = \{s_0,s_1,s_2\} \pi(t) = \{s_1\}
```

Infinite Tree

Figure 2: Unwinding the system described by \mathcal{M}_1 as an infinite tree of all computation paths beginning in s_0 (first layer).

Satisfiability

Question 2

Question 3

Question 4