程其襄等编《实变函数与泛函分析基础》(第四版)第一章习题 1-12详解

原创 阿得学数学 阿得学数学 2020-02-27 11:31

收录于合集

#实变函数与泛函分析

26个>

第一章习题1-12针对这一章第1节和第2节的相关内容:集合的表示和集合的运算.这两节的内容相对比较简单,大部分知识点同学们都接触过,这里相当于复习一下.新的知识点包括:一族集合的并、交,德摩根公式,集合列的上极限和下极限及单调集合列的极限.

下面结合课后习题把相关的知识点总结一下.

第1-3题考查集合的运算. 需要的知识点有:

定义

并集

$$A \cup B = \{x : x \in A \text{ or } x \in B\}$$

交集

$$A \cap B = \{x : x \in A \text{ and } x \in B\}$$

差集

$$A \setminus B = \{x \ : \ x \in A \text{ and } x \not \in B\}$$

• 一族集合的并集

$$\bigcup_{\alpha \in \Lambda} A_{\alpha} = \{ x : \exists \alpha \in \Lambda \text{ s.t. } x \in A_{\alpha} \}$$

• 一族集合的交集

$$\bigcap_{\alpha \in \Lambda} A_{\alpha} = \{x : \forall \alpha \in \Lambda, x \in A_{\alpha}\}\$$

运算性质

• 交换律:

$$A \cup B = B \cup A, \ A \cap B = B \cap A.$$

• 结合律:

$$(A \cup B) \cup C = A \cup (B \cup C),$$

$$(A \cap B) \cap C = A \cap (B \cap C).$$

• 分配律:

$$\left(\bigcup_{\alpha \in \Lambda} A_{\alpha}\right) \cap B = \bigcup_{\alpha \in \Lambda} (A_{\alpha} \cap B)$$

• 德摩根公式:

$$\left(\bigcup_{\alpha \in \Lambda} A_{\alpha}\right)^{c} = \bigcap_{\alpha \in \Lambda} A_{\alpha}^{c},$$

$$\left(\bigcap_{\alpha \in \Lambda} A_{\alpha}\right)^{c} = \bigcup_{\alpha \in \Lambda} A_{\alpha}^{c}.$$

1. 证明:

$$(1) (A \setminus B) \setminus C = A \setminus (B \cup C);$$

$$(2) (A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C).$$

证明.

[方法一] 利用定义.

(1) 因为 $x \in (A \setminus B) \setminus C$ $\iff x \in (A \setminus B) \coprod x \notin C$ $\iff x \in A \coprod x \notin B \coprod x \notin C$ $\iff x \in A \coprod x \notin B \cup C$ $\iff x \in A \setminus (B \cup C),$ 所以 $(A \setminus B) \setminus C = A \setminus (B \cup C);$

(2) 因为 $x \in (A \cup B) \setminus C$ $\iff x \in (A \cup B) \perp x \notin C$ $\iff (x \in A \mid x \in B) \perp x \notin C$ $\iff (x \in A \mid x \notin C) \mid x \notin C$ $\iff x \in (A \setminus C) \mid x \notin C$ $\iff x \in (A \setminus C) \mid x \notin C$

$$\iff x \in (A \setminus C) \cup (B \setminus C)$$
所以 $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$.

[方法二] 利用集合运算的性质.

(1)
$$(A \setminus B) \setminus C = (A \cap B^c) \cap C^c = A \cap (B^c \cap C^c) = A \cap (B \cup C)^c = A \setminus (B \cup C);$$

(2)
$$(A \cup B) \setminus C = (A \cup B) \cap C^c = (A \cap C^c) \cup (B \cap C^c) = (A \setminus C) \cup (B \setminus C).$$

2. 证明:

(1)
$$\bigcup_{\alpha \in I} A_{\alpha} \setminus B = \bigcup_{\alpha \in I} (A_{\alpha} \setminus B);$$

(2)
$$\bigcap_{\alpha \in I} A_{\alpha} \setminus B = \bigcap_{\alpha \in I} (A_{\alpha} \setminus B).$$

证明

.....

[方法一] 利用定义.

(1) 因为

$$x \in \bigcup_{\alpha \in I} A_{\alpha} \setminus B$$

$$\iff x \in \bigcup_{\alpha \in I} A_{\alpha} \coprod x \notin B$$

$$\iff \exists \alpha_0 \in I \text{ s.t. } x \in A_{\alpha_0} \coprod x \notin B$$

$$\iff \exists \alpha_0 \in I \text{ s.t. } x \in A_{\alpha_0} \setminus B$$

$$\iff x \in \bigcup_{\alpha \in I} (A_{\alpha} \setminus B),$$
所以 $\bigcup_{\alpha \in I} A_{\alpha} \setminus B = \bigcup_{\alpha \in I} (A_{\alpha} \setminus B);$

(2) 因为

$$x \in \bigcap_{\alpha \in I} A_{\alpha} \setminus B$$

$$\iff x \in \bigcap_{\alpha \in I} A_{\alpha} \coprod x \notin B$$

$$\iff \forall \alpha \in I, x \in A_{\alpha} \coprod x \notin B$$

$$\iff \forall \alpha \in I, x \in A_{\alpha} \setminus B$$

$$\iff x \in \bigcap_{\alpha \in I} (A_{\alpha} \setminus B),$$
所以 $\bigcap_{\alpha \in I} A_{\alpha} \setminus B = \bigcap_{\alpha \in I} (A_{\alpha} \setminus B).$

[方法二] 利用集合运算的性质.

(1)
$$\bigcup_{\alpha \in I} A_{\alpha} \backslash B = \left(\bigcup_{\alpha \in I} A_{\alpha}\right) \cap B^{c} = \bigcup_{\alpha \in I} (A_{\alpha} \cap B^{c}) = \bigcup_{\alpha \in I} (A_{\alpha} \backslash B);$$

(2)
$$\bigcap_{\alpha \in I} A_{\alpha} \backslash B = \left(\bigcap_{\alpha \in I} A_{\alpha}\right) \cap B^{c} = \bigcap_{\alpha \in I} (A_{\alpha} \cap B^{c}) = \bigcap_{\alpha \in I} (A_{\alpha} \backslash B).$$

3. 设 $\{A_n\}$ 是一列集合,作

$$B_1 = A_1, \quad B_n = A_n \setminus \left(\bigcup_{i=1}^{n-1} A_i\right), n = 2, 3, \dots,$$

证明 $\{B_n\}$ 是一列互不相交的集合,而且

$$\bigcup_{i=1}^{n} A_{i} = \bigcup_{i=1}^{n} B_{i}, \quad n = 1, 2, \cdots.$$

证明.

第一步, 证明 $\{B_n\}$ 互不相交.

不妨设 i < j. 因为

$$B_i \subset A_i$$

$$B_{j} = A_{j} \setminus \left(\bigcup_{k=1}^{j-1} A_{k}\right)$$

$$= A_{j} \cap \left(\bigcup_{k=1}^{j-1} A_{k}\right)^{c} = A_{j} \cap \left(\bigcap_{k=1}^{j-1} A_{k}^{c}\right)$$

$$= A_{j} \cap A_{i}^{c} \cap \left(\bigcap_{k=1}^{j-1} A_{k}^{c}\right),$$

$$= A_{j} \cap A_{i}^{c} \cap \left(\bigcap_{k=1}^{j-1} A_{k}^{c}\right),$$

所以

$$B_i \cap B_j \subset A_i \cap B_j = A_i \cap A_j \cap A_i^c \cap \left(\bigcap_{\substack{k=1\\k \neq i}}^{j-1} A_k^c\right) = \emptyset.$$

第二步, 证明
$$\bigcup_{i=1}^{n} A_i = \bigcup_{i=1}^{n} B_i$$
, $n = 1, 2, \cdots$.

一方面,因为 $B_i \subset A_i$ 对 $i=1,2,\cdots$ 都成立,所以 $\bigcup_{i=1}^n B_i \subset \bigcup_{i=1}^n A_i$ 显然成立.

另一方面, 设 $x \in \bigcup_{i=1}^n A_i$, 至少存在一个 $1 \le i \le n$ 使得 $x \in A_i$. 设 i_0 是满足该条件的最小的下标,

即
$$x \in A_{i_0}$$
 且 $x \notin A_i, i = 1, 2, \dots, i_0 - 1$. 因此 $x \in A_{i_0} \setminus \left(\bigcup_{i=1}^{i_0-1} A_i\right) = B_{i_0} \subset \bigcup_{i=1}^n B_i$.

事实上, 我们已经证明了 $\bigcup_{i=1}^n A_i \subset \bigcup_{i=1}^n B_i$.

综上可得,
$$\bigcup_{i=1}^{n} A_i = \bigcup_{i=1}^{n} B_i$$
, $n = 1, 2, \cdots$.

第4-5题考查集合列的上极限和下极限的概念.

• 上极限:

$$\overline{\lim}_{n\to\infty} A_n = \{x : 存在无穷多个 A_n, 使 x \in A_n\}$$

• 下极限:

$$\underline{\lim}_{n\to\infty} A_n = \{x: \exists n 充分大以后都有 $x \in A_n\}$$$

4. $\mathfrak{P} A_{2n-1} = \left(0, \frac{1}{n}\right), A_{2n} = (0, n), n = 1, 2, \cdots,$ 求出集列 $\{A_n\}$ 的上限集和下限集.

解.

对于 $(0, +\infty)$ 中的每个点 x, 都存在自然数 N(x), 使得当 n > N(x) 时,

$$\frac{1}{n} < x < n,$$

即当 n > N(x) 时, $x \in A_{2n}$ 但 $x \notin A_{2n-1}$. 换句话 说, 对于 $(0,+\infty)$ 中的每个点 x, 具有充分大的偶 数指标的集都含有 x, 即 $\{A_n\}$ 中有无穷多个集合 含有x. 而充分大的奇数指标的集都不含有x, 即 $\{A_n\}$ 中不含 x 的集不会是有限个. 又 $(-\infty,0]$ 中 的点不属于任何的 A_n , 因此

$$\overline{\lim}_{n \to \infty} A_n = (0, +\infty), \qquad \underline{\lim}_{n \to \infty} A_n = \emptyset.$$

5. 证明:
$$\lim_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_m$$
.

证明. 因为

$$x \in \lim_{n \to \infty} A_n \iff$$
 当 n 充分大以后都有 $x \in A_n$
$$\iff \exists n \in \mathbb{N}, \text{ 当 } m \geq n \text{ 时有 } x \in A_m$$

$$\iff x \in \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_m,$$

所以,
$$\lim_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_m$$
.

KKKKKKKKKKKKKKKKKKKKKK

第6-10题考查集合包含关系及集合相等.

● 集合包含关系:

$$A \subset B \iff (x \in A \Rightarrow x \in B).$$

证明两个集合的包含关系,也可以通过证明补集的反包含关系得到.即

$$A \subset B \iff B^c \subset A^c$$
.

• 集合相等:

$$A = B \iff A \subset B \text{ and } B \subset A.$$

证明两个集合相等,通常使用定义,即证明两个集合互相包含.

6.

- (1) 设 $f: X \to Y, g: Y \to Z$ 均是双射. 对任意 $O \subset Z$, 证明: $(g \circ f)^{-1}(O) = f^{-1}(g^{-1}(O));$
- (2) 设 $f: X \to Y$ 是双射, $O \subset Y$,

证明: $f^{-1}(O^c) = (f^{-1}(O))^c$.

证明.

(1) 因为

$$x \in (g \circ f)^{-1}(O)$$
 $\iff x \in X \coprod (g \circ f)(x) \in O$
 $\iff x \in X \coprod g(f(x)) \in O$
 $\iff x \in X \coprod f(x) \in g^{-1}(O)$
 $\iff x \in f^{-1}(g^{-1}(O)),$

所以
$$(g \circ f)^{-1}(O) = f^{-1}(g^{-1}(O)).$$

(2) 因为

$$x \in f^{-1}(O^c)$$

$$\iff x \in X \perp f(x) \in O^c$$

$$\iff x \in X \perp f(x) \notin O$$

$$\iff x \in X \perp x \notin f^{-1}(O)$$

$$\iff x \in X \setminus f^{-1}(O)$$

$$\iff x \in [f^{-1}(O)]^c,$$
所以 $f^{-1}(O^c) = (f^{-1}(O))^c.$

7. 设 f(x), g(x) 是定义在 E 上的函数, 证明:

(1)
$$\{x: f(x) > g(x)\} = \bigcup_{n=1}^{\infty} \left\{x: f(x) > g(x) + \frac{1}{n}\right\};$$

(2)
$$\{x: f(x) > q(x)\} = \bigcap_{n=0}^{\infty} \{x: f(x) > q(x) - \frac{1}{n}\}.$$

n=1 n=1

证明.

(1) 记 $A = \{x : f(x) > g(x)\},$ $A_n = \left\{x : f(x) > g(x) + \frac{1}{n}\right\}, n = 1, 2, \cdots.$ 一方面,对任意的自然数 $n, A_n \subset A$ 显然成立,故 $\overset{\infty}{\bigcup} A_n \subset A.$

另一方面,若 $x \in A$,即 x 满足 f(x) > g(x),则 f(x) - g(x) > 0.又 $\frac{1}{n} \to 0 (n \to \infty)$,由 极限的定义,对于 $\varepsilon = f(x) - g(x) > 0$,存在自然数 N,当 n > N 时, $\frac{1}{n} < \varepsilon$.即当 n > N 时, $f(x) > g(x) + \frac{1}{n}$,也就是 $x \in A_n$.因此 $A \subset \bigcup_{n=1}^{\infty} A_n$.

综合以上讨论可得 $A = \bigcup_{n=1}^{\infty} A_n$.

(2) $\mathbb{i}\mathbb{C} B = \{x : f(x) \ge g(x)\},\$ $B_n = \left\{x : f(x) > g(x) - \frac{1}{n}\right\}, n = 1, 2, \dots.$

一方面,对任意的自然数 $n, B \subset B_n$ 显然成立,故 $B \subset \bigcap_{n=1}^{\infty} B_n$.

另一方面,若 $x \in \bigcap_{n=1}^{\infty} B_n$,则对任意的自然数 $n, x \in B_n$,即

$$f(x) - g(x) > -\frac{1}{n}, \quad n = 1, 2, \dots$$

又 $-\frac{1}{n}$ 单调递增且极限为0,故

$$f(x) - g(x) \ge 0,$$

即 $x \in B$. 因此 $\bigcap_{n=1}^{\infty} B_n \subset B$.

综合以上讨论可得 $B = \bigcap_{n=1}^{\infty} B_n$.

- 8. 设 $\{A_{\varepsilon}: \varepsilon \in \mathbb{R}^+\}$ 是集合族.
 - (1) 若对任意 $\varepsilon_1 < \varepsilon_2$, $A_{\varepsilon_1} \supset A_{\varepsilon_2}$, 证明:

$$\bigcup_{\varepsilon \in \mathbb{R}^+} A_{\varepsilon} = \bigcup_{n=1}^{\infty} A_{\frac{1}{n}};$$

(9) 芝が任音 こ / こ / こ / ご明.

(4) 有小儿本 $c_1 \setminus c_2, A_{\varepsilon_1} \cup A_{\varepsilon_2},$ 此切.

$$\bigcap_{\varepsilon \in \mathbb{R}^+} A_{\varepsilon} = \bigcap_{n=1}^{\infty} A_{\frac{1}{n}}.$$

证明.

(1) 一方面, $\bigcup_{n=1}^{\infty} A_{\frac{1}{n}} \subset \bigcup_{\varepsilon \in \mathbb{R}^+} A_{\varepsilon}$ 显然成立.

另一方面,若 $x \in \bigcup_{\varepsilon \in \mathbb{R}^+} A_{\varepsilon}$,则存在 $\varepsilon_0 \in \mathbb{R}^+$,使得 $x \in A_{\varepsilon_0}$.因为 $\varepsilon_0 > 0$,必存在自然数 n_0 使得 $\frac{1}{n_0} < \varepsilon_0$,故 $x \in A_{\varepsilon_0} \subset A_{\frac{1}{n_0}}$.因此, $x \in \bigcup_{n=1}^{\infty} A_{\frac{1}{n}}$.于是 $\bigcup_{\varepsilon \in \mathbb{R}^+} A_{\varepsilon} \subset \bigcup_{n=1}^{\infty} A_{\frac{1}{n}}$.

综合以上讨论可得 $\bigcup_{\varepsilon\in\mathbb{R}^+}A_\varepsilon=\bigcup_{n=1}^\infty A_{\frac{1}{n}}.$

(2) 一方面, $\bigcap_{\varepsilon \in \mathbb{R}^+} A_{\varepsilon} \subset \bigcap_{n=1}^{\infty} A_{\frac{1}{n}}$ 显然成立.

另一方面,若 $x \in \bigcap_{n=1}^{\infty} A_{\frac{1}{n}}$,则对任意的自然数 n,有 $x \in A_{\frac{1}{n}}$.对任意的 $\varepsilon \in \mathbb{R}^+$,存在自然数 n_{ε} 使得 $\frac{1}{n_{\varepsilon}} < \varepsilon$,故 $x \in A_{\frac{1}{n_{\varepsilon}}} \subset A_{\varepsilon}$.由 ε 的任意性可得 $x \in \bigcap_{\varepsilon \in \mathbb{R}^+} A_{\varepsilon}$.因此, $\bigcap_{n=1}^{\infty} A_{\frac{1}{n}} \subset A_{\varepsilon}$

^

$$\bigcap_{\varepsilon\in\mathbb{R}^+}A_{\varepsilon}.$$

综合以上讨论可得
$$\bigcap_{\varepsilon\in\mathbb{R}^+}A_\varepsilon=\bigcap_{n=1}^\infty A_{\frac{1}{n}}.$$

9. 设 f(x), g(x) 是定义在 E 上的函数, 证明:

对任意 $\varepsilon > 0$,

$$\{x \ : \ |f(x)+g(x)|>2\varepsilon\}\subset$$

$$\{x : |f(x)| > \varepsilon\} \cup \{x : |g(x)| > \varepsilon\}.$$

证明. 记

$$A = \{x : |f(x) + g(x)| > 2\varepsilon\},\$$

$$B = \{x : |f(x)| > \varepsilon\},\$$

$$C = \{x : |g(x)| > \varepsilon\}.$$

若 $x \in B^c \cap C^c$, 即 x 满足

$$|f(x)| \le \varepsilon$$
 B $|g(x)| \le \varepsilon$.

则

 $|f(x) + g(x)| \le |f(x)| + |g(x)| \le \varepsilon + \varepsilon = 2\varepsilon,$

即 $x \in A^c$. 事实上, 我们证明了 $B^c \cap C^c \subset A^c$, 因此有

$$A \subset (B^c \cap C^c)^c = B \cup C.$$

10. 证明: 若 $\{f_n(x)\}$ 是定义在 E 上的一列函数,则对任意 $c \in \mathbb{R}$,

(1)
$$\{x : \inf\{f_n(x)\} < c\} = \bigcup_{n=1}^{\infty} \{x : f_n(x) < c\};$$

(2)
$$\{x : \inf\{f_n(x)\} \ge c\} = \bigcap_{n=1}^{\infty} \{x : f_n(x) \ge c\}.$$

证明.

(1)
$$i \exists A = \{x : \inf\{f_n(x)\} < c\},\$$

$$A_n = \{x : f_n(x) < c\}, \quad n = 1, 2, \dots$$

首先, 对任意自然数 n, 若 $x \in A_n$, 则 $x \in A$, 即 $A_n \subset A$. 故 $\bigcup_{n=1}^{\infty} A_n \subset A$.

下证 $A \subset \bigcup_{n=1}^{\infty} A_n$. 为此, 只需要证明 $\left(\bigcup_{n=1}^{\infty} A_n\right)^c = \bigcap_{n=1}^{\infty} A_n^c \subset A^c$

即可. 事实上, 若 $x \in \bigcap_{n=1}^{\infty} A_n^c$, 即对任意自然数 n, 有 $f_n(x) \ge c$, 则 $\inf\{f_n(x)\} \ge c$, 故 $x \in A^c$. 结论得证.

综合前面的讨论可得 $A = \bigcup_{n=1}^{\infty} A_n$.

(2) 由 (1) 及 De Morgan 公式立即可得.

第11题考查单调集合列的性质:

如果{A_n}单调增加,则

$$\lim_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} A_n$$

• 如果 $\{A_n\}$ 单调减少,则

$$\lim_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} A_n$$

11. 若 $\{f_n(x)\}$ 是定义在 E 上的一列函数,且对任意 $x \in E$, $f_n(x) \leq f_{n+1}(x)$, $n = 1, 2, \cdots$. 证明对任意 $c \in \mathbb{R}$, $A_n = \{x : f_n(x) > c\}$ 是单调增集合列,且 $\lim_{n \to \infty} A_n = \{x : \lim_{n \to \infty} f_n(x) > c\}$.

证明.

 $\forall n \in \mathbb{N},$ 若 $x \in A_n$, 即 x 满足 $f_n(x) > c$, 有

$$f_{n+1}(x) \ge f_n(x) > c,$$

即 $x \in A_{n+1}$. 因此 $A_n \subset A_{n+1}$, 即 $\{A_n\}$ 是单调增集合列.

由单调集列的性质可得 $\lim_{n\to\infty}A_n=\bigcup_{n=1}^\infty A_n$. 因为

$$x \in \lim_{n \to \infty} A_n$$

$$\iff x \in \bigcup_{n=1}^{\infty} A_n$$

$$\iff \exists n_0 \in \mathbb{N} \text{ s.t. } x \in A_{n_0}$$

$$\iff \exists n_0 \in \mathbb{N} \text{ s.t. } \forall n \geq n_0 \text{ 有} x \in A_n$$

$$\iff \exists n_0 \in \mathbb{N} \text{ s.t. } \forall n \geq n_0 \text{ 有} f_n(x) > c$$

$$\iff \lim_{n \to \infty} f_n(x) > c$$

$$\iff x \in \{x : \lim_{n \to \infty} f_n(x) > c\},$$

所以 $\lim_{n\to\infty} A_n = \{x : \lim_{n\to\infty} f_n(x) > c\}.$

第12题主要考查 $\varepsilon - \delta(N)$ 语言和集合语言的相互转化.

12. 证明: 若 $\{f_n(x)\}$ 是定义在 \mathbb{R} 上的函数列, 令

$$E = \{x : \lim_{n \to \infty} f_n(x) = +\infty\}, \text{ M}$$

$$E = \bigcap_{k=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \{x : f_n(x) > k\}.$$

证明. 因为

$$x \in E$$

$$\iff \lim_{n \to \infty} f_n(x) = +\infty$$

$$\iff \forall k \in \mathbb{N}, \exists N \in \mathbb{N}, \textbf{\textit{if}} \ n \geq N \ \textbf{\textit{if}}, f_n(x) > k$$

$$\iff x \in \bigcap_{k=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \{x : f_n(x) > k\},$$

所以
$$E = \bigcap_{k=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \{x : f_n(x) > k\}.$$