Volvemos con el estimador Rao-Blacwell Llegamos a que, si XIT~N(0,1/17) T~ Gamma (d, s) $X \sim t \left(v = 2\alpha, M = 0, T = \sqrt{\frac{2}{\alpha}} \right)$ Si $x = \beta = 1$ y queremos estimar E[X], tenemoi que E[XIT] = 0 Mora, estimemos $E[X^2]$.

Tenemos que $E[X^2] = Var(X) = \gamma \infty$ $1 < \nu \le 2$ Indefinido $\nu < \nu \le 1$ Si d= \begin{array}{c} = 1, \to = 2, \to \text{Por} ende $\mathbb{E}\left[\frac{1}{2} \right] = \infty$.

Es decir, si v>2, ent. [E[x2] estará definido.

Si seguimos (on $d=\beta=3$, ent $X \sim t_{(6)}$. y ent, el valor à estimar serà $F\left(\frac{3}{2}\right) = \frac{6}{6-2} = \frac{6}{4} = \frac{3}{2}$ Voanos qué pasa con la variante de los estimadores χ^2 E(χ^2 17)

Othora, la varianta de IE[X217] $Var(E(X^{L}T))=Var(\frac{T}{T}E(X^{L}T))$ = Var (= E [TX2 IT)) $S: 2 \sim N(0,1),$ $2^2 \sim \chi^2_1$ = $\sqrt{\alpha}\left(\begin{array}{c} \frac{1}{1} \\ \end{array}\right)$ E[7]=# grados libertad $=\frac{\beta^2}{(\alpha-1)^2(\alpha-2)}$ $=\frac{4}{4}=2.25$ $\alpha = \beta = 3$

X~ N(0,17)

Si YNInr Gamma (diß)

Ly (x) = Bx (-x) exp(-B)

T(d)

Considere integración por Monte-Carlo para $h \geq 0$ tal que $h \leq Mg$ con M > 0 y g una función de densidad de probabilidad. Para $U \sim \text{Uniforme}(0,1), \ Y \sim \mathcal{L}(g)$ independientes definimos el estimador

$$\hat{I} = M1 \{ UMg(Y) \le h(Y) \}$$

z= | h = E(hlu)_

Muestre que la esperanza de \hat{I} es la integral de interés y que su varianza es mayor o igual a la varianza del estimador por importancia usando g.

$$\begin{aligned}
& = \int h(x)f(x) dx \\
& = \int h(x)f(x) g(x)dx \\
& = \underbrace{\int h(x)f(x)}_{g(x)} f(x)
\end{aligned}$$

Ender como f(x) = 1 para U~(0,1), El estimador por importancia usando g es E[h17]

Var
$$(x) = E[x'] - [E^2(x)]$$

Basta ver que $E_g[\frac{h^2(x)}{g^2(x)}] = [E^2]$
 $E[\hat{I}^2] : [E(M^2 \hat{I})]$
 $= M^2 Z$
 $= M^2 Z$

Como $h \in Mg$,

 $= \int \frac{h^2(y)}{g^2(y)} dy$
 $= \int h(y) \left(\frac{h(y)}{g(y)}\right) dy$
 $= \int h(y) \left(\frac{h(y)}{g(y)}\right) dy$
 $= \int h(y) Mdy$
 $= M \int h(y) Mdy$
 $= M \int h(y) Mdy$

 $\frac{e}{g^{2}(y)} = \frac{1}{g^{2}(y)}$ $\frac{e}{g^{2}(y)} = \frac{1}{g^{2}(y)}$ $\frac{e}{g^{2}(y)} = \frac{1}{g^{2}(y)}$ $\frac{e}{g^{2}(y)} = \frac{1}{g^{2}(y)}$

Objetivo: Calcular (274.5) ZNN(OI)

11/1274.5}
CMC

Distribución de una exponencial truncada Por la 17 quierda en 4.5

 $g(y) = \frac{e^{-y}}{\int_{4.5}^{\infty} e^{-x} dx} = \frac{e^{-y}}{1 - F(y.5)} = \frac{e^{-y}}{1 - (1 - e^{y.5})}$

ex b(1) = g(E)

 $G(y) = \int_{4.5}^{y} exp(-(t-4.5))d-1$ $M = \frac{1}{4}.5$ $dy = \frac{1}{4}.5$ exp(1) = UF) = F(y-4.5) = 1-e -(y-4.5) -(y-4.5) -(y-4.5)

 $\chi = \frac{1}{1 - e^{(y-4.5)}} =$ (-) y = -(n(1-x)+4.5) $^{\circ}$, $-(n(u) + 4.5 \sim ex(1) = (4.5, \infty)$ Es decir, basta con simular una exponencial (1) y a la muestrai agregarlei 4.5.

El estimador por importanca queda de la signiente forma $\frac{1}{n} = \frac{1}{2} = \frac{1}{2} = \frac{-4!/2}{2!} = \frac{1}{2!} = \frac{1}{2!}$