Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática MA4802 Ecuaciones en Derivadas Parciales 22 de Agosto de 2024

Auxiliar 2

Profesores: Rayssa Cajú y Claudio Muñoz **Auxiliares** Benjamin Bórquez, Vicente Salinas y Jessica Trespalacios

P1. Verifique que

$$g(x) = \frac{H(x)\sin(\omega x)}{\omega} \in L^1_{loc}(\mathbb{R}), \omega \in \mathbb{R} \setminus \{0\},$$

es solución en el sentido de las distribuciones de la EDO.

$$\left(\frac{d^2}{dx^2} + \omega^2\right)g = \delta_0$$

- **P2.** a) Sea $\Omega \subset \mathbb{R}$ un abierto no vació y $T, S \in \mathcal{D}'(\mathbb{R})$. Suponga que $\langle S, \phi \rangle = 0$ para todo $\phi \in \mathcal{C}_0^{\infty}(\Omega)$ tal que $\langle T, \phi \rangle = 0$. Demuestre que existe un $\lambda \in \mathbb{R}$ tal que $S = \lambda T$.
 - b) [**Propuesto**] Suponga que d=1 y que Ω es un intervalo abierto de \mathbb{R} . Deduzca de la parte anterior que toda distribución $T \in \mathcal{D}'(\mathbb{R})$ que verifica que T'=0, es una distribución constante. **Indicación:** Pruebe que $ker(T_1) \subset \{\phi': \phi \in \mathcal{C}_0^{\infty}(\Omega)\}$, donde T_1 es la distribución asociada a la función constante igual a 1. .

P3. Considere la ecuación de Schrödinger

$$\begin{cases} i\partial_t u + \Delta u = 0, & x \in \mathbb{R}^d, t \in \mathbb{R}. \\ u(0, x) = u_0(x), & x \in \mathbb{R}^d \end{cases}$$

a) Demuestre que la solución del PVI se puede escribir como:

$$u(t,x) = \frac{e^{\frac{i|x|^2}{4t}}}{(4\pi it)^{d/2}} * u_0.$$

b) Denotando por $e^{it\Delta}$ al operador

$$e^{it\Delta}u_0 = \mathcal{F}^{-1}\left(e^{-it|\xi|^2}\hat{u}_0\right), \quad u_0 \in \mathcal{S}(\mathbb{R}^d),$$

pruebe que

$$||e^{it\Delta u_0}||_{L^2(\mathbb{R}^d)} \le ||u_0||_{L^2(\mathbb{R}^d)} \quad \text{y} \quad ||e^{it\Delta u_0}||_{L^\infty(\mathbb{R}^d)} \le C|t|^{-\frac{d}{2}} ||u_0||_{L^1(\mathbb{R}^d)}$$

c) [**Propuesto**] Concluya que si $t \neq 0, \frac{1}{p} + \frac{1}{p'} = 1, p' \in [1, 2],$

$$e^{it\Delta}: L^{p'}(\mathbb{R}^d) \to L^p(\mathbb{R}^d)$$

es continua y

$$||e^{it\Delta u_0}||_{L^p(\mathbb{R}^d)} \le |t|^{-\frac{d}{2}(\frac{1}{p'}-\frac{1}{p})}||u_0||_{L^{p'}(\mathbb{R}^d)}$$

P4. Sea $\phi \in \mathcal{D}(\mathbb{R})$ no idénticamente nula. Pruebe que $\hat{\phi} \notin \mathcal{D}(\mathbb{R})$.

Resumen

1. Espacio $\mathcal{D}(\mathbb{R})$ de funciones test

Sea \mathbb{R}^d abierto no vaco. El (buen) espacio topológico de funciones test, denotado $\mathcal{D}(\mathbb{R})$, consiste en el espacio $\mathcal{C}_0^{\infty}(\mathbb{R})$ dotado de la siguiente noción de convergencia: Una secuencia $\phi_n \in \mathcal{C}_0^{\infty}$ converge en $\mathcal{D}(\mathbb{R})$ a la función $\phi \in \mathcal{C}_0^{\infty}$ ssi

- a) Existe un compacto fijo $K \subset \Omega$ tal que el $supp(\phi_n \phi) \subseteq K, \forall n \in \mathbb{N}$.
- b) $\sup_{x \in K} |\partial^{\alpha} \phi_n(x) \partial^{\alpha} \phi(x)| \to 0.$

2. Espacio de funciones clase Schwartz $S(\mathbb{R}^d)$

Se definen como las funciones suaves de rápido decrecimiento

$$S(\mathbb{R}^d) := \{ f \in C^{\infty}(\mathbb{R}^d) | ||f||_{(n,m)} < \infty \text{ para cualquier } n, m \in \mathbb{N} \}.$$

donde se define la seminorma como $\|\cdot\|_{(n,m)}$ como

$$||f||_{(n,m)} = ||x^n \partial_x^m f||_{\infty}$$

3. Transformada de Fourier

Se define la Transformada de Fourier $\mathcal{F}: \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^d)$ como

$$\mathcal{F}(\varphi)(\xi) = \frac{1}{(2\pi)^{\frac{d}{2}}} \int_{\mathbb{R}} e^{-i\xi \cdot x f(x)} \varphi dx.$$

Dicho operador esta bien definido. Más aun, define un mapeo lineal, continuo, biyectivo, continuo y de inversa continua. Análogamente, podemos extender la definición anterior a la Transformada de Fourier para distribuciones $\mathcal{F}: \mathcal{S}'(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^d)$ como

$$\langle \mathcal{F}T, \varphi \rangle = \langle T, \mathcal{F}(\varphi) \rangle, \quad \varphi \in \mathcal{S}(\mathbb{R}^d).$$

Dicho operador cumple las mismas buenas propiedades que el anterior.