Digitalna topologija na grafih Predstavitev diplomskega dela

Jakob Drusany

Fakulteta za računalništvo in informatiko Fakulteta za matematiko in fiziko Univerza v Ljubljani

16. september 2024

Mentor: prof. dr. Petar Pavešić

Motivacija

Zakaj hočemo topologije na slikah?

Topologije na grafih

Definicija

Naj bo G=(V,E) graf. Naj bo $\mathcal T$ topologija na V. $\mathcal T$ imenujemo kompatibilna topologija na G, če velja, da je $V'\subseteq V$ topološko povezan če in samo če je G[V'] grafovsko povezan.

Primer kompatibilne topologije

$$\mathcal{T}_k = \{\emptyset, \{a\}, \{a,b\}, \{a,b,c\}, \{a,b,d\}, \{a,b,c,d\}\}.$$

Primer topologije na grafu, ki ni kompatibilna

$$\mathcal{T}_n = \{\emptyset, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{a,b,c\}, \{a,b,c,d\}\}.$$

Kompatibilne topologije na dvodelnih grafih

Izrek

Vsak povezan, dvodelen graf $G^b = (V, E)$, ki ima vsaj tri vozlišča, ima natanko dve kompatibilni topologiji. To sta \mathcal{T}_1 in \mathcal{T}_2 :

$$\mathcal{T}_1: \quad U_x := \{x\} \quad \forall x \in V_A, \quad U_x := \{x\} \cup N_x \quad \forall x \in V_B$$

$$\mathcal{T}_2: \quad U_x := \{x\} \cup N_x \quad \forall x \in V_A, \quad U_x := \{x\} \quad \forall x \in V_B$$

Kompatibilne topologije na dvodelnih grafih

$$\mathcal{T}_1: \quad U_x := \{x\} \quad \forall x \in V_A, \quad U_x := \{x\} \cup N_x \quad \forall x \in V_B$$

$$\mathcal{T}_2: \quad U_x := \{x\} \cup N_x \quad \forall x \in V_A, \quad U_x := \{x\} \quad \forall x \in V_B$$

Izrek

Cikel C, ki ima liho število vozlišč n > 3, nima kompatibilne topologije.

$$G_{v}^{b}:=C[\{v\}\cup N_{v}]$$

Za vsaki dve sosednji točki $x,y\in V(C)$ velja

$$\mathcal{T}|_{V(G_x^b)}\cong \mathcal{T}_1\iff \mathcal{T}|_{V(G_y^b)}\cong \mathcal{T}_2.$$

sicer bi $U_{\rm X}=\{x\}$ in $U_{\rm y}=\{y\}$, kar bi pomenilo, da je množica $\{x,y\}$ nepovezana.

Za vsaki dve sosednji točki $x,y\in V(C)$ velja

$$\mathcal{T}|_{V(G_x^b)}\cong \mathcal{T}_1\iff \mathcal{T}|_{V(G_y^b)}\cong \mathcal{T}_2.$$

sicer bi $U_x = \{x\}$ in $U_y = \{y\}$, kar bi pomenilo, da je množica $\{x,y\}$ nepovezana.

Obstoj kompatibilne topologije

Izrek

Naj bo G graf, v katerem obstaja induciran podgraf, ki je cikel lihe dolžine. Potem G nima kompatibilne topologije.

Zaradi izreka lahko sklepamo, da 8-povezana mreža nima kompatibilne topologije, saj v njem obstaja induciran podgraf, ki je cikel lihe dolžine.

Obstoj kompatibilne topologije

Izrek

Naj bo G graf, v katerem obstaja induciran podgraf, ki je cikel lihe dolžine. Potem G nima kompatibilne topologije.

Zaradi izreka lahko sklepamo, da 8-povezana mreža nima kompatibilne topologije, saj v njem obstaja induciran podgraf, ki je cikel lihe dolžine.

