Příklad na metodu střelby

- Budeme řešit stejnou úlohu jakou se zabývá dělostřelec, když se snaží zasáhnout cíl.
- Ve vakuu je úloha poměrně snadná. Rychlost projektilu je dána

$$\vec{v} = \left(\begin{array}{c} v_0 \cos \theta \\ v_0 \sin \theta - g t \end{array} \right) \,,$$

kde v_o je počáteční rychlost projektilu a θ elevační úhel (úhel mezi vektorem rychlosti a osou x). Dolet v horizontálním směru x lze vypočíst analyticky jako

$$d = \frac{v_0}{q} \sin(2\theta),$$

z čehož vyplývá, že ve vakuu nejdál dostřelíme, pokud vystřelíme pod úhlem $\theta=45^\circ$, protože $\sin(2\frac{\pi}{4})=1.$

- Ve vzduchu je situace jiná, protože projektil je vzduchem brzděn.
 - Pohyb projektilu je pak popsán soustavou čtyř obyčejných diferenciálních rovnic (ODE)

$$\frac{\mathrm{d}x}{\mathrm{d}t} = v \cos \theta, \qquad \qquad \frac{\mathrm{d}v}{\mathrm{d}t} = -\frac{1}{2m} c \rho s v^2 - g \sin \theta,$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = v \sin \theta, \qquad \qquad \frac{\mathrm{d}\theta}{\mathrm{d}t} = -\frac{g}{v} \cos \theta,$$

kde

$$v^2 = \left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2,$$

s okrajovými podmínkami

$$x(0) = y(0) = 0,$$
 $v(0) = v_0,$ $y(x_c) = 0,$

kde x_c je poloha cíle (horizontální vzdálenost cíle od dělostřelce).

– Pro jednoduchost můžeme zvolit $m=1,\ g=1,\ c\,\rho\,s=2,$ takže řešená soustava je

$$\frac{\mathrm{d}x}{\mathrm{d}t} = v \cos \theta, \qquad \qquad \frac{\mathrm{d}v}{\mathrm{d}t} = -v^2 - \sin \theta, \frac{\mathrm{d}y}{\mathrm{d}t} = v \sin \theta, \qquad \qquad \frac{\mathrm{d}\theta}{\mathrm{d}t} = -\frac{1}{v} \cos \theta,$$

na počátku (v čase t=0) stojí střelec na pozici x=0 ve výšce y=0 a projektil má zasáhnout cíl na pozici $x=x_c$ ve výšce y=0.

– Střelec volí náměr, tedy úhel $\theta_0 = \theta(0)$, tak, aby zasáhl cíl. Pokud jej mine, opraví náměr a zkouší to znovu.

1

- Pro zvolený úhel $\theta_0 = \theta(0)$ tedy musíme řešit počáteční úlohu pro soustavu rovnic až do času t_c , kdy $x(t_c) = x_c$, a pak zjistit hodnotu $y(t_c)$. Mohou nastat tři situace:
 - * $y(t_c) > 0$: dopad příliš daleko
 - * $y(t_c) < 0$: dopad příliš blízko
 - * $y(t_c) = 0$: zásah!

- Příklad:

- * Mějme $v_0 = 4, x_c = 2.$
- * Ve vakuu bychom dostřelili do vzdálenosti $d = v_0 = 4$, proto bychom i na vzduchu měli do cíle ve vzdálenosti $x_c = 2$ dostřelit, pokud nebude odpor vzduchu příliš velký.
- * Budeme postupovat následovně:
 - · Vystřelíme pod úhlem $\theta_0 = 45^{\circ}$ měli bychom přestřelit
 - · Vystřelíme pod úhlem $\theta_0=5^\circ$ měli bychom nedostřelit
 - · Zvolíme úhel v půlce intervalu [5°, 45°], tedy 25°.
 - ♦ Pokud přestřelíme, budeme volit další úhel v intervalu [5°, 25°], tedy 15°.
 - ♦ Pokud nedostřelíme, budeme volit další úhel v intervalu [25°, 45°], tedy 35°.
 - · Takto pokračujeme dokud se nestrefíme s dostatečnou přesností.
- * Všimněme si, že jsme vlastně aplikovali metodu půlení intervalu pro řešení nelineární rovnice s neznámou θ_0 .
- * Vlastní soustavu ODE (jednotlivý výstřel) budeme řešit například metodou RK4.