Exercise 3.1 MLE for the Bernoulli/ binomial model

$$\frac{d}{d\theta}p(D|\theta) = \frac{d}{d\theta}(\theta^{N_1}(1-\theta)^{N_0}) \tag{1}$$

$$= N_1 \theta^{N_1 - 1} (1 - \theta)^{N_0} - N_0 \theta^{N_1} (1 - \theta)^{N_0 1}$$
(2)

$$= \theta^{N_1 - 1} (1 - \theta)^{N_0 - 1} (N_1 (1 - \theta) - N_0 \theta)$$
(3)

$$= \theta^{N_1 - 1} (1 - \theta)^{N_0 - 1} (N_1 - N\theta) \tag{4}$$

$$\therefore \theta_{\text{MLE}} = \frac{N_1}{N} \tag{5}$$

Exercise 3.2 Marginal likelihood for the Beta-Bernoulli model

$$p(D) = \frac{[(\alpha_1)\cdots(\alpha_1+N_1-1)][(\alpha_0)\cdots(\alpha_0+N_0-1)]}{(\alpha)\cdots(\alpha+N-1)}$$
(6)

$$= \frac{[(\alpha_1)\cdots(\alpha_1+N_1-1)][(\alpha_0)\cdots(\alpha_0+N_0-1)]}{(\alpha_1+\alpha_0)\cdots(\alpha_1+\alpha_0+N-1)}$$

$$(7)$$

$$= \frac{\Gamma(\alpha_1 + \alpha_0)}{\Gamma(\alpha_1 + \alpha_0 + N)} [(\alpha_1) \cdots (\alpha_1 + N_1 - 1)] [(\alpha_0) \cdots (\alpha_0 + N_0 - 1)]$$
(8)

$$= \frac{\Gamma(\alpha_1 + \alpha_0)}{\Gamma(\alpha_1 + \alpha_0 + N)} \frac{\Gamma(\alpha_1 + N_1)}{\Gamma(\alpha_1)} \frac{\Gamma(\alpha_0 + N_0)}{\Gamma(\alpha_0)}$$
(9)

$$= \frac{\Gamma(\alpha_1 + N_1)\Gamma(\alpha_0 + N_0)}{\Gamma(\alpha_1 + \alpha_0 + N)} \frac{\Gamma(\alpha_1 + \alpha_0)}{\Gamma(\alpha_1)\Gamma(\alpha_0)}$$
(10)