05/09/2021 OneNote

Sample

Friday, 3 September 2021

QUESTION 2, TUTORIAL 3

Fix a vertex s in G. We will present an algorithm to compute smallest cycle containing s.

Algorithm (Find minimum cycle containing s):

- 1. Compute T = BFS(s).
- 2. Let v_1, v_2, \ldots, v_k be children of s in T.
- 3. For $(i=1 \ \ to \ \ k)$: Scan vertices in $T(v_i)$ and for each $x \in T(v_i)$, set $L[x]=v_i$.
- 4. $Q=\left\{ \left(a,b
 ight)\in E\left(G
 ight)\smallsetminus E\left(T
 ight) \;\mid\; L\left[a
 ight]
 otag\ L\left[b
 ight]
 ight\} .$
- 5. (x_0, y_0) = The edge in G for which $dist(s, x_0) + dist(s, y_0)$ is minimum.
- 6. Output $C_0 = treepath(s, x_0) :: (x_0, y_0) :: treepath(y_0, s)$.

Claim 1: For any edge $(x,y) \in Q, \ \ C = treepath(s,x) :: (x,y) :: treepath(y,s)$ a cycle

Proof: Recall Q comprises of those non-tree edges (a,b) for which $s=LCA\left(a,b\right)$. Thus, C is a closed walk where no vertex is repeated. Hence C is a cycle.

Claim 2: Any cycle containing v must contain an edge from set Q.

Proof: Let C be a cycle containing v. Without loss of generality assume z_1, z_2 are neighbors of v in C . Let (x,y) be first edge on segment $C[z_1,z_2]$ such that $x\in\ T(z_1)$ and $y
otin T(z_1)$. Such an edge must exists as $z_2
otin T(z_1)$. Thus, (x,y) is an edge lying in Q . Hence proved.

Claim 3: Let $(x,y) \in Q$ be an edge that lie on some smallest cycle of s, say C. Then, ||C| = 1 + dist(s, x) + dist(s, y).

Proof: $|C[s,x]| \geq dist(s,x)$ and $|C[s,y]| \geq dist(s,y)$. Therefore, $|C| \geq 1 + dist(s, x) + dist(s, y)$.

Now, by Claim 1, $treepath\left(s,x\right)::\left(x,y\right)::treepath\left(y,s\right)$ is a cycle. Since C is cycle of minimum size. We have,

$$|C| \leq 1 + dist(s, x) + dist(s, y)$$
.

The claim follows by above two inequalities.

Correctness of Algorithm to find minimum length cycle containing s:

By Claim 1, C_0 is a cycle, and by Claim 3 and definition of (x_0, y_0) , we get that $|C_0| \leq |C|$. This proves that above algorithm correctly computes a smallest cycle containing v.

Finding minimum length cycle in G:

The time complexity to find a minimum length cycle containing a given vertex is O(m).

05/09/2021 OneNote

We can apply the same algorithm to each vertex of the graph to compute minimum length cycle.

So, we get that a cycle of minimum length in an undirected graph can be computed in O(mn)time.