Numerical Analysis Summary

Mathematical Notes

October 19, 2025

Contents

L	\mathbf{Err}	ror Analysis				
	1.1	Sources of Error				
	1.2	Error Types				
	1.3	Conditioning				
2	Roc	ot Finding				
	2.1	Bisection Method				
	2.2	Newton's Method				
	2.3	Secant Method				
3	Interpolation					
	3.1	Lagrange Interpolation				
	3.2	Newton's Divided Differences				
	3.3	Error in Interpolation				
	Numerical Integration					
	4.1	Newton-Cotes Formulas				
		4.1.1 Trapezoidal Rule				
		4.1.2 Simpson's Rule				
	4.2	Gaussian Quadrature				
	4.3	Error Analysis				
	Numerical Differentiation					
	5.1	Finite Differences				
	5.2	Error Analysis				
	Lin	near Systems				
	6.1	Gaussian Elimination				
	6.2	LU Factorization				
	6.3	Iterative Methods				
		6.3.1 Jacobi Method				
		6.3.2 Gauss-Seidel Method				
	6.4	Convergence				

7	1				
	7.1	Euler's Method	7		
	7.2	Runge-Kutta Methods	7		
	7.3	Error Analysis	7		
8	Approximation Theory				
	8.1	Best Approximation	7		
	8.2	Chebyshev Approximation	7		
	8.3	Least Squares Approximation			
9	Fast	Fourier Transform	8		
	9.1	Discrete Fourier Transform	8		
	9.2	FFT Algorithm			
10	Eige	envalue Problems	8		
	10.1	Power Method	8		
	10.2	QR Algorithm	8		
11	App	olications	8		
	11.1	Scientific Computing	8		
		Engineering			
12	Imp	ortant Theorems	9		
	12.1	Weierstrass Approximation Theorem	9		
		Intermediate Value Theorem			
			9		

1 Error Analysis

1.1 Sources of Error

Definition 1.1. • Modeling Error: Error in mathematical model

- Data Error: Error in input data
- Truncation Error: Error from finite approximations
- Round-off Error: Error from finite precision arithmetic

1.2 Error Types

Definition 1.2. For approximation \tilde{x} of exact value x:

- Absolute Error: $|x \tilde{x}|$
- Relative Error: $\frac{|x-\tilde{x}|}{|x|}$ (if $x \neq 0$)
- Forward Error: $|f(x) f(\tilde{x})|$
- Backward Error: $|\tilde{x} x|$ where $f(\tilde{x}) = f(x)$

1.3 Conditioning

Definition 1.3. A problem is **well-conditioned** if small changes in input produce small changes in output. The **condition number** measures sensitivity:

$$\kappa = \lim_{\delta \to 0} \sup_{|\Delta x| < \delta} \frac{|\Delta f|}{|\Delta x|} \cdot \frac{|x|}{|f(x)|}$$

2 Root Finding

2.1 Bisection Method

Theorem 2.1. If f is continuous on [a,b] and f(a)f(b) < 0, then the bisection method converges to a root with error bound:

$$|x_n - x^*| \le \frac{b - a}{2^{n+1}}$$

2.2 Newton's Method

Definition 2.1. Newton's method for finding roots of f(x) = 0:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Theorem 2.2. If $f'(x^*) \neq 0$ and f'' is continuous near x^* , then Newton's method converges quadratically:

$$|x_{n+1} - x^*| \le C|x_n - x^*|^2$$

3

2.3 Secant Method

Definition 2.2. The secant method uses two previous points:

$$x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

Figure 1: Root finding methods

3 Interpolation

3.1 Lagrange Interpolation

Definition 3.1. Given points (x_i, y_i) , the Lagrange interpolating polynomial is:

$$P_n(x) = \sum_{i=0}^n y_i L_i(x)$$

where
$$L_i(x) = \prod_{j \neq i} \frac{x - x_j}{x_i - x_j}$$

3.2 Newton's Divided Differences

Definition 3.2. The Newton form of the interpolating polynomial:

$$P_n(x) = f[x_0] + f[x_0, x_1](x - x_0) + \dots + f[x_0, \dots, x_n](x - x_0) \cdots (x - x_{n-1})$$

where
$$f[x_i, ..., x_j] = \frac{f[x_{i+1}, ..., x_j] - f[x_i, ..., x_{j-1}]}{x_j - x_i}$$

3.3 Error in Interpolation

Theorem 3.1. If $f \in C^{n+1}[a,b]$, then for $x \in [a,b]$:

$$f(x) - P_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^{n} (x - x_i)$$

for some $\xi \in [a, b]$.

4 Numerical Integration

4.1 Newton-Cotes Formulas

Definition 4.1. The *n*-point Newton-Cotes formula:

$$\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n} w_{i} f(x_{i})$$

where $x_i = a + ih$ and $h = \frac{b-a}{n}$.

4.1.1 Trapezoidal Rule

$$\int_{a}^{b} f(x) dx \approx \frac{h}{2} [f(a) + 2f(a+h) + \dots + 2f(b-h) + f(b)]$$

4.1.2 Simpson's Rule

$$\int_{a}^{b} f(x) dx \approx \frac{h}{3} [f(a) + 4f(a+h) + 2f(a+2h) + \dots + 4f(b-h) + f(b)]$$

4.2 Gaussian Quadrature

Definition 4.2. Gaussian quadrature uses optimal nodes and weights:

$$\int_{-1}^{1} f(x) dx \approx \sum_{i=1}^{n} w_i f(x_i)$$

where x_i are roots of Legendre polynomials.

4.3 Error Analysis

Theorem 4.1. For the trapezoidal rule with $f \in C^2[a,b]$:

$$\left| \int_{a}^{b} f(x) \, dx - T_{n} \right| \le \frac{(b-a)^{3}}{12n^{2}} \max_{x \in [a,b]} |f''(x)|$$

5 Numerical Differentiation

5.1 Finite Differences

Definition 5.1. • Forward Difference: $f'(x) \approx \frac{f(x+h)-f(x)}{h}$

- Backward Difference: $f'(x) \approx \frac{f(x) f(x-h)}{h}$
- Central Difference: $f'(x) \approx \frac{f(x+h) f(x-h)}{2h}$

5.2 Error Analysis

Theorem 5.1. For central difference with $f \in \mathbb{C}^3$:

$$f'(x) - \frac{f(x+h) - f(x-h)}{2h} = -\frac{h^2}{6}f'''(\xi)$$

for some $\xi \in [x - h, x + h]$.

6 Linear Systems

6.1 Gaussian Elimination

Definition 6.1. Gaussian elimination with partial pivoting solves Ax = b by:

- 1. Forward elimination with row swaps
- 2. Back substitution

6.2 LU Factorization

Definition 6.2. If A can be factored as A = LU where L is lower triangular and U is upper triangular, then Ax = b becomes:

- 1. Solve Ly = b for y
- 2. Solve Ux = y for x

6.3 Iterative Methods

6.3.1 Jacobi Method

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i} a_{ij} x_j^{(k)} \right)$$

6.3.2 Gauss-Seidel Method

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j < i} a_{ij} x_j^{(k+1)} - \sum_{j > i} a_{ij} x_j^{(k)} \right)$$

6.4 Convergence

Theorem 6.1. The Jacobi and Gauss-Seidel methods converge if A is strictly diagonally dominant:

$$|a_{ii}| > \sum_{i \neq i} |a_{ij}| \quad \forall i$$

7 Ordinary Differential Equations

7.1 Euler's Method

Definition 7.1. For $y' = f(t, y), y(t_0) = y_0$:

$$y_{n+1} = y_n + h f(t_n, y_n)$$

where h is the step size.

7.2 Runge-Kutta Methods

Definition 7.2. The fourth-order Runge-Kutta method:

$$k_1 = h f(t_n, y_n) \tag{1}$$

$$k_2 = h f(t_n + h/2, y_n + k_1/2)$$
(2)

$$k_3 = h f(t_n + h/2, y_n + k_2/2)$$
(3)

$$k_4 = h f(t_n + h, y_n + k_3) \tag{4}$$

$$y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$
(5)

7.3 Error Analysis

Theorem 7.1. For Euler's method with $f \in C^1$:

$$|y(t_n) - y_n| \le \frac{Mh}{2L} (e^{L(t_n - t_0)} - 1)$$

where $M = \max |f'|$ and L is the Lipschitz constant.

8 Approximation Theory

8.1 Best Approximation

Definition 8.1. The best approximation to f in norm $\|\cdot\|$ from subspace S is $p^* \in S$ such that:

$$||f - p^*|| = \min_{p \in S} ||f - p||$$

8.2 Chebyshev Approximation

Theorem 8.1. For $f \in C[a,b]$, there exists a unique best uniform approximation $p^* \in P_n$ such that:

$$||f - p^*||_{\infty} = \min_{p \in P_n} ||f - p||_{\infty}$$

8.3 Least Squares Approximation

Definition 8.2. The least squares approximation minimizes:

$$\sum_{i=1}^{m} (f(x_i) - p(x_i))^2$$

for given data points $(x_i, f(x_i))$.

9 Fast Fourier Transform

9.1 Discrete Fourier Transform

Definition 9.1. The DFT of sequence $\{x_n\}$ is:

$$X_k = \sum_{n=0}^{N-1} x_n e^{-2\pi i k n/N}$$

9.2 FFT Algorithm

Theorem 9.1. The FFT computes the DFT in $O(N \log N)$ operations using the divide-and-conquer approach.

10 Eigenvalue Problems

10.1 Power Method

Definition 10.1. For dominant eigenvalue λ_1 of matrix A:

$$x^{(k+1)} = \frac{Ax^{(k)}}{\|Ax^{(k)}\|}$$

10.2 QR Algorithm

Definition 10.2. The QR algorithm for eigenvalues:

- 1. Factor $A_k = Q_k R_k$
- 2. Set $A_{k+1} = R_k Q_k$
- 3. Repeat until convergence

11 Applications

11.1 Scientific Computing

Numerical analysis is essential for:

- Solving differential equations
- Optimization problems
- Signal processing
- Computational fluid dynamics

11.2 Engineering

Applications include:

- Structural analysis
- Control systems
- Image processing
- Financial modeling

12 Important Theorems

12.1 Weierstrass Approximation Theorem

Theorem 12.1. For any $f \in C[a, b]$ and $\epsilon > 0$, there exists a polynomial p such that:

$$||f - p||_{\infty} < \epsilon$$

12.2 Intermediate Value Theorem

Theorem 12.2. If f is continuous on [a, b] and f(a)f(b) < 0, then there exists $c \in (a, b)$ such that f(c) = 0.

12.3 Fixed Point Theorem

Theorem 12.3. If $g:[a,b] \to [a,b]$ is continuous and |g'(x)| < 1 for all $x \in [a,b]$, then g has a unique fixed point.