COURS: ENSEMBLES

1

3

3

5

Table des matières

1 Éléments de logique

	1.1	Assertion, prédicat				
	1.2	Implication, équivalence				
2	Ens	embles				
	2.1	Ensemble, élément				
	2.2	Opérations élémentaires				
3	App	pplications				
	3.1	Définitions, exemples				
	3.2	Application injective, surjective, bijective				
	3.3	Familles				
4	Rela	Relations binaires				
	4.1	Relation binaire				
	4.2	Relation d'ordre				
	4.3	Relation d'équivalence				

1 Éléments de logique

1.1 Assertion, prédicat

Définition 1.

- On appelle assertion toute phrase mathématique à laquelle on peut attribuer une et une seule valeur de vérité : vrai ou faux.
- Soit E un ensemble. On appelle prédicat sur E toute phrase mathématique dont la valeur de vérité dépend d'un élément $x \in E$.

Exemples:

- \Rightarrow « 7 est un nombre premier » est une assertion vraie. L'assertion « 7 est divisible par 3 » est fausse.
- \Rightarrow « L'ensemble des nombres premiers est infini » est une assertion vraie. L'assertion « Il existe une infinité de nombres premiers p tels que p+2 est premier » est une assertion dont on ne connaît pas la valeur de vérité.
- \Rightarrow P(x): « x est rationnel » est un prédicat sur \mathbb{R} . P(3/4) est vrai alors que $P(\sqrt{2})$ est faux.
- \Rightarrow $P(a,b,c): \ll a^2 + b^2 = c^2 \gg \text{ est un prédicat sur } \mathbb{N}^3.$

Remarques:

⇒ On retiendra le principe du tiers exclu : Une assertion P prend la valeur vraie, ou bien la valeur fausse.

- \Rightarrow Si P est un prédicat, on dit que P est vrai lorsque quel que soit $x \in E$, l'assertion P(x) est vraie. Dire que P n'est pas vrai signifie qu'il existe $x \in E$ tel que P(x) est faux.
- $\, \Longrightarrow \,$ Si P est une assertion ou un prédicat, écrire « P » signifie que P est vrai.

Définition 2.

- Le quantificateur universel \forall signifie : « pour tout »
- Le quantificateur existentiel \exists signifie : « il existe »

Remarques:

 $1 \Rightarrow$ On utilise aussi parfois le quantificateur \exists ! qui signifie : « il existe un unique ».

Exemples:

- ⇒ Les assertions suivantes sont-elles vraies?
 - 1. $\forall y \in \mathbb{R} \quad \exists x \in \mathbb{R} \quad x + y \geqslant 0$
 - 2. $\exists x \in \mathbb{R} \quad \forall y \in \mathbb{R} \quad x + y \geqslant 0$
 - 3. $\exists x \in \mathbb{R} \quad \forall y \in \mathbb{R} \quad y^2 \geqslant x$
- \Rightarrow Déterminer les $x \in \mathbb{R}$ tels que

$$\forall n \in \mathbb{N} \quad x^{n+2} \le x^{n+1} + x^n$$

Définition 3. Soit P et Q deux assertions.

- On définit l'assertion (non P) comme étant vraie lorsque P est fausse et fausse lorsque P est vraie.
- On définit l'assertion $[P \ et \ Q]$ comme étant vraie lorsque P et Q sont vraies et fausse sinon.
- On définit l'assertion [P ou Q] comme étant vraie lorsqu'au moins l'une des deux assertions est vraie, et fausse sinon.

Remarques:

 \Rightarrow Les valeurs de vérité de ces nouvelles assertions sont donc données par les tables suivantes :

non P

P et Q

P ou Q

 \Rightarrow Lorsque le menu d'un restaurant vous propose « fromage ou dessert », le « ou » est employé au sens strict (ont dit aussi exclusif) : il n'est pas possible d'avoir les deux. En mathématiques, le « ou » est employé au sens large (on dit aussi inclusif) : lorsqu'on dit qu'un entier naturel n est divisible par 2 ou par 3, il peut très bien être divisible par 2 et par 3.

1.2 Implication, équivalence

Définition 4. Soit P et Q deux assertions. On définit l'assertion $P \Longrightarrow Q$ comme étant fausse lorsque P est vraie et Q est fausse, et vraie sinon.

Remarques:

- \Rightarrow Montrer que $P \Rightarrow Q$ est vraie revient à prouver que si P est vraie, alors Q est vraie.
- \Rightarrow Si P et Q sont deux prédicats sur E, le prédicat $P \Longrightarrow Q$ est vrai si et seulement si Q(x) est vraie dès que P(x) est vraie. Si tel est le cas, on écrit

$$\forall x \in E \quad P(x) \Longrightarrow Q(x)$$

et on dit que P est une condition suffisante pour Q ou que Q est une condition nécessaire pour P.

Exemples:

- \Rightarrow Dans les exemples suivants, dites si le prédicat P est une condition nécessaire ou une condition suffisante pour Q.
 - $-E = \mathbb{R}, P(x) : \langle x \in \mathbb{Q} \rangle \text{ et } Q(x) : \langle x^2 \in \mathbb{Q} \rangle.$
 - E est l'ensemble des triangles du plan euclidien, $P\left(T\right)$: « T est isocèle » et $Q\left(T\right)$: « T est équilatéral ».
 - $--E=\mathbb{R}^{2},\,P\left(x,y\right) :\leqslant x\equiv y\,\left[2\pi\right] \text{ » et }Q\left(x,y\right) :\leqslant x\equiv y\,\left[\pi\right] \text{ »}.$

$$\forall x, y \in \mathbb{R} \quad [xy > 0 \text{ et } x + y > 0] \implies [x > 0 \text{ et } y > 0]$$

 \Rightarrow Montrer que

$$\forall x \in \mathbb{R} \quad [\forall \varepsilon \in \mathbb{R}_+^* \quad |x| \leqslant \varepsilon] \quad \Longrightarrow \quad x = 0$$

Proposition 1. Soit P et Q deux assertions. Si P et $P \Longrightarrow Q$ sont vraies, alors Q est vraie.

Remarques:

- $\, \rhd \,$ Cette règle est appelée « Modus ponens ».
- ightharpoonup En pratique, on utilise cette proposition lorsque P et Q sont des prédicats. Si $P\Longrightarrow Q$ est vrai et x est un élément de E tel que P(x) est vrai, alors Q(x) est vrai. Dans ce cadre, on dit que $P\Longrightarrow Q$ est un théorème (ou une proposition), vérifier les hypothèses du théorème revient à vérifier que P(x) est vrai et appliquer le théorème nous permet de conclure que Q(x) est vrai.

Exemples:

Traduisons mathématiquement le raisonnement suivant : « Socrate est un homme. Puisque tous les hommes sont mortels, alors Socrate est mortel ». Si P(x) : « x est un homme » et Q(x) : « x est mortel », alors l'énoncé « Tous les hommes sont mortels » s'écrit

$$\forall x \in U \quad P(x) \Longrightarrow Q(x)$$

Puisque Socrate est un homme (P(Socrate)) est vrai), on en déduit que Socrate est mortel (Q(Socrate)) est vrai).

 \Rightarrow Soit $a, b \in \mathbb{R}$ tels que

$$\forall x \in \mathbb{R} \quad x < a \implies x \le b$$

Montrer que $a \leq b$.

Définition 5. Soit P et Q deux assertions. On définit l'assertion $P \iff Q$ comme étant vraie lorsque P et Q ont même valeur de vérité, et fausse sinon.

Remarques:

 \Rightarrow Les valeurs de vérité des assertions $P\Longrightarrow Q$ et $P\Longleftrightarrow Q$ sont regroupées dans les tableaux suivants :

PQ	V	F
V		
F		

PQ	V	F
V		
F		

$$P \Longrightarrow Q$$

$$P \Longleftrightarrow Q$$

- \Rightarrow Les assertions $P \Longleftrightarrow Q$ et $Q \Longleftrightarrow P$ ont même valeur de vérité; on dit que la relation d'équivalence est symétrique.
- \Rightarrow Si P et Q sont deux prédicats sur E, le prédicat $P \Longleftrightarrow Q$ est vrai si et seulement si Q(x) et P(x) ont même valeur de vérité quel que soit $x \in E$. Si tel est le cas, on écrit

$$\forall x \in E \quad P(x) \iff Q(x)$$

et on dit que P est une condition nécessaire et suffisante pour Q.

Proposition 2. Soit P et Q deux assertions. Alors $P \iff Q$ et $[(P \implies Q)$ et $(Q \implies P)]$ ont même valeur de vérité.

Remarques:

ightharpoonup Pour démontrer que $P \iff Q$, on pourra choisir de démontrer que $P \implies Q$ puis que $Q \implies P$; on dit alors qu'on raisonne par double implication.

Exemples:

 \Rightarrow Soit $\lambda \in \mathbb{R}$ et f la fonction définie sur \mathbb{R} par

$$\forall x \in \mathbb{R} \quad f(x) = \sin(\lambda x)$$

Donner une condition nécessaire et suffisante sur λ pour que f soit 2π -périodique.

Soit $a, b, c \in \mathbb{R}$ avec $a \neq 0$. On note $P = aX^2 + bX + c$. Donner une condition nécessaire et suffisante sur a, b, c pour qu'il existe $x, y \in \mathbb{R}$ tels que P(x) = y et P(y) = x.

Proposition 3. Soit P, Q, R trois assertions. Alors :

$$[P \ et \ (Q \ ou \ R)] \iff [(P \ et \ Q) \ ou \ (P \ et \ R)]$$

$$[P \ ou \ (Q \ et \ R)] \iff [(P \ ou \ Q) \ et \ (P \ ou \ R)]$$

Proposition 4. Soit P et Q deux assertions. Alors:

$$\begin{array}{cccc} \text{non} & (P \ et \ Q) & \Longleftrightarrow & [\text{non} \ P \ ou \ \text{non} \ Q] \\ \text{non} & (P \ ou \ Q) & \Longleftrightarrow & [\text{non} \ P \ et \ \text{non} \ Q] \\ \text{non} & (\text{non} \ P) & \Longleftrightarrow & P \end{array}$$

Proposition 5. Soit P et Q deux assertions. Alors :

$$[P \Longrightarrow Q] \iff [\text{non } Q \Longrightarrow \text{non } P]$$

Remarques:

 \Rightarrow Lorsque l'on démontre [non $Q\Longrightarrow$ non P] pour montrer que $[P\Longrightarrow Q],$ on dit que l'on raisonne par contraposée.

Exemples:

Supposons que l'on ait montré que π^2 est irrationnel. Peut-on en déduire que π est irrationnel?

Proposition 6. Soit P et Q deux assertions. Alors:

$$[\text{non } (P \Longrightarrow Q)] \quad \Longleftrightarrow \quad [P \ et \ (\text{non} \ \ Q)]$$

Proposition 7. Soit P un prédicat sur l'ensemble E. Alors :

non
$$[\forall x \in E \mid P(x)] \iff [\exists x \in E \mid \text{non } (P(x))]$$

non $[\exists x \in E \mid P(x)] \iff [\forall x \in E \mid \text{non } (P(x))]$

Exemples:

 \Rightarrow Soit $f: \mathbb{R} \to \mathbb{R}$. Écrire les phrases suivantes avec des quantificateurs. En déduire leur négation.

« f est majorée », « f est croissante », « f est décroissante »

2 Ensembles

2.1 Ensemble, élément

Définition 6. Les notions d'ensembles, d'éléments et d'appartenance sont des notions premières en mathématiques que l'on ne définit pas. Intuitivement, un ensemble est une collection d'objets mathématiques appelés éléments. La notation $x \in E$ signifie que l'élément x appartient à l'ensemble E.

${\bf Remarques:}$

 \Rightarrow Un objet mathématique peut très bien être à la fois être un élément et un ensemble. Par exemple, nous verrons que l'ensemble $\mathbb N$ est un élément de $\mathcal P(\mathbb R)$.

 \Rightarrow Si x_1,\ldots,x_n sont des objets mathématiques, l'ensemble constitué de ces éléments est noté $\{x_1,\ldots,x_n\}$.

Définition 7. Soit A et B deux ensembles. On dit que A est inclus dans B et on note $A \subset B$ lorsque:

$$\forall x \in A \quad x \in B$$

Définition 8. Deux ensembles A et B sont dits égaux lorsqu'ils possèdent les mêmes éléments, c'est-à-dire lorsque :

$$A \subset B \ et \ B \subset A$$

Remarques:

 \Rightarrow En particulier $\{0,1\} = \{1,0\}$ et $\{0,0,1\} = \{0,1\}$.

Définition 9. Soit E un ensemble. On appelle partie de E tout ensemble A inclus dans E. L'ensemble des parties de E est noté $\mathcal{P}(E)$.

Exemples:

 \Rightarrow Déterminer $\mathcal{P}(\{1,2\})$ et $\mathcal{P}(\mathcal{P}(\emptyset))$.

2.2 Opérations élémentaires

Définition 10. Soit E un ensemble et P un prédicat défini sur E. On définit

$$\{x \in E : P(x)\}$$

comme l'ensemble des éléments de E tels que P(x) est vrai. C'est une partie de E.

Définition 11. Soit A et B deux parties de E. On définit :

$$A\cap B=\{x\in E:x\in A\ et\ x\in B\}\qquad A\cup B=\{x\in E:x\in A\ ou\ x\in B\}$$

$$A^c=\{x\in E:x\not\in A\}$$

${\bf Remarques:}$

 \Rightarrow On dit que deux ensembles A et B sont disjoints lorsque $A \cap B = \emptyset$.

Exemples:

- \Rightarrow Soit A et B deux parties d'un même ensemble. Montrer que $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.
- \Rightarrow Soit A, B, C trois parties d'un ensemble E non vide.
 - 1. Si $A \cup B = A \cup C$, a-t-on B = C?
 - 2. Si $A \cup B = A \cap B$, a-t-on A = B?
 - 3. Montrer que si $A \cup B = A \cup C$ et $A \cap B = A \cap C$, alors B = C.
 - 4. Montrer que si $A \cup B = E$ et $A \cap B = \emptyset$, alors $A = B^c$ et $B = A^c$.

Définition 12. Soit A et B deux parties de E. On définit :

$$A \setminus B = \{x \in E : x \in A \text{ et } x \notin B\}$$
 $A\Delta B = (A \setminus B) \cup (B \setminus A)$

Proposition 8. Soit A et B deux parties de E. Alors :

$$(A \cap B)^{c} = A^{c} \cup B^{c}$$

$$(A \cup B)^{c} = A^{c} \cap B^{c}$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$(A^{c})^{c} = A$$

Définition 13.

- Si A et B sont deux ensembles, on définit $A \times B$ comme l'ensemble des couples (a,b) avec $a \in A$ et $b \in B$. Deux couples (a_1,b_1) et $(a_2,b_2) \in A \times B$ sont dits égaux lorsque $a_1 = a_2$ et $b_1 = b_2$.
- $Si\ A_1, \ldots, A_n$ sont n ensembles, on définit $A_1 \times \cdots \times A_n$ comme l'ensemble des n-uplets (a_1, \ldots, a_n) avec $a_1 \in A_1, \ldots, a_n \in A_n$. Deux n-uplets (a_1, \ldots, a_n) et $(b_1, \ldots, b_n) \in A^n$ sont dits égaux lorsque : $\forall k \in [\![1, k]\!]$ $a_k = b_k$.
- Si A est un ensemble et $n \in \mathbb{N}^*$, on définit A^n comme :

$$A^n = \underbrace{A \times A \times \dots \times A}_{n \text{ fois } A}$$

3 Applications

3.1 Définitions, exemples

Définition 14. Soit E et F deux ensembles. Une application f de E dans F associe à tout élément x de E un unique élément $f(x) \in F$ appelé image de x par f. On note :

$$\begin{array}{ccc} f: E & \longrightarrow & F \\ x & \longmapsto & f(x) \end{array}$$

L'ensemble des applications de E dans F est noté $\mathcal{F}(E,F)$.

${\bf Remarques:}$

- Deux applications sont égales lorsqu'elles ont même ensemble de départ et d'arrivée et qu'elles prennent la même valeur en chaque point de l'ensemble de départ.
- \Rightarrow « application » et « fonction » sont des synonymes. L'usage veut cependant que l'on emploie plus souvent le mot « fonction » lorsque les ensembles de départ et d'arrivée sont des parties de $\mathbb R$ ou $\mathbb C$.

 \Rightarrow Si A est une partie de E, on appelle fonction caractéristique de A et on note 1_A l'application de E dans $\{0,1\}$ définie par

$$\forall x \in E \quad 1_A(x) = \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{sinon} \end{cases}$$

Définition 15. Si f est une application de E dans F, on appelle graphe de f l'ensemble :

$$\{(x,y) \in E \times F : f(x) = y\}$$

Définition 16. Soit $f: E \to F$ et $y \in F$. On appelle antécédent de y tout élément $x \in E$ tel que f(x) = y.

Exemples:

Soit f l'application de \mathbb{R}^2 dans \mathbb{R}^2 qui au couple (x,y) associe le couple (x+2y,xy). Déterminer les antécédents de (3,1).

Définition 17. *Soit* $f : E \rightarrow F$.

— Soit B une partie de F. On appelle image réciproque de B par f et on note $f^{-1}(B)$ l'ensemble des éléments de E dont l'image par f est dans B.

$$f^{-1}(B) = \{x \in E : f(x) \in B\}$$

— Soit A une partie de E. On appelle image directe de A par f et on note f(A) l'ensemble des éléments de F qui sont image d'un élément de A par f:

$$f(A) = \{ y \in F : \exists x \in A \mid f(x) = y \}$$
$$= \{ f(x) : x \in A \}$$

L'ensemble f(E) est appelé image de f et noté $\operatorname{Im} f$.

Exemples:

- Soit f une application de E dans F. Si A est une partie de E, comparer $f^{-1}(f(A))$ et A. De même, si B est une partie de F, comparer $f(f^{-1}(B))$ et B.
- \Rightarrow Soit f la fonction de $\mathbb{C} \setminus \{i\}$ dans \mathbb{C} qui à z associe $\frac{z+i}{z-i}$. Calculer $f^{-1}(\mathbb{U})$.
- \Rightarrow Soit f le fonction de $\mathbb R$ dans $\mathbb R$ définie par :

$$\forall x \in \mathbb{R} \quad f(x) = \frac{x}{1 + x^2}$$

Calculer $f(\mathbb{R})$.

Définition 18. Soit f une application de E dans F.

— Si A est une partie de E, l'application

$$\bar{f}: A \longrightarrow F$$

 $x \longmapsto f(x)$

est appelée restriction de f à A. On dit qu'une application g est un prolongement de f lorsque f est une restriction de g.

— Si B est une partie de F et :

$$\forall x \in E \quad f(x) \in B$$

l'application

$$\bar{f}: E \longrightarrow B$$
 $x \longmapsto f(x)$

est appelée corestriction de f à B.

Définition 19. Soit $f: E \to F$ et $g: F \to G$. On définit alors la fonction :

$$g \circ f : E \longrightarrow G$$

 $x \longmapsto g(f(x))$

Proposition 9. Soit $f: E \to F$, $g: F \to G$ et $h: G \to H$. Alors:

$$(h \circ g) \circ f = h \circ (g \circ f)$$

On note cette application $h \circ g \circ f$.

2 Application injective, surjective, bijective

Définition 20. Soit $f: E \to F$. On dit que f est injective lorsque

$$\forall x_1, x_2 \in E \quad f(x_1) = f(x_2) \Longrightarrow x_1 = x_2$$

c'est-à-dire lorsque tout élément y de F a au plus un antécédent.

Exemples:

- Soit f une fonction de \mathbb{R} dans \mathbb{R} . Montrer que si f est strictement monotone alors elle est injective. La réciproque est-elle vraie?
- Soit f une fonction de \mathbb{R} dans \mathbb{R} telle que : $\forall x, y \in \mathbb{R} \quad |f(x) f(y)| \ge |x y|$. Montrer qu'elle est injective.
- Soit φ l'application qui à la fonction f de [-1,1] dans $\mathbb R$ associe la fonction $\varphi(f)$ de $\mathbb R$ dans $\mathbb R$ définie par

$$\forall x \in \mathbb{R} \quad [\varphi(f)](x) = f(\sin x)$$

Montrer que φ est injective.

Soit E un ensemble et A une partie de E. Donner une condition nécessaire et suffisante sur A pour que

$$\varphi: \mathcal{P}(E) \longrightarrow \mathcal{P}(E)$$

$$X \longmapsto X \cap A$$

soit injective.

Définition 21. Soit $f: E \to F$. On dit que f est surjective lorsque :

$$\forall y \in F \quad \exists x \in E \quad f(x) = y$$

c'est-à-dire lorsque tout élément y de F a au moins un antécédent.

Proposition 10. Une application $f: E \to F$ est surjective si et seulement si Im f = F.

Exemples:

⇒ L'application

$$\varphi: \mathcal{F}(\mathbb{R}, \mathbb{R}) \longrightarrow \mathbb{R}$$

$$f \longmapsto f(0)$$

est-elle injective? surjective?

 \Rightarrow Soit $f: E \to F$ et $g: E \to G$. On définit l'application φ de E dans $F \times G$ par :

$$\forall x \in E \quad \varphi(x) = (f(x), g(x))$$

Que dire des assertions « φ est injective si et seulement si f et g le sont » et « φ est surjective si et seulement si f et g le sont » ?

Définition 22. On dit qu'une application $f: E \to F$ est bijective lorsqu'elle est injective et surjective, c'est-à-dire lorsque tout élément y de F a un unique antécédent.

Exemples:

- Montrer que la fonction f qui à x associe $\frac{1+ix}{1-ix}$ réalise une bijection de \mathbb{R} dans $\mathbb{U}\setminus\{-1\}$.
- ⇒ Montrer que l'application

$$\begin{array}{ccc} f: \ \mathbb{N}^2 & \longrightarrow & \mathbb{N} \\ (a,b) & \longmapsto & 2^a (2b+1) - 1 \end{array}$$

est bijective.

Soit X une ensemble et $f: X^2 \to X$ une bijection. Montrer que

$$g: X^3 \longrightarrow X$$

 $(x, y, z) \longmapsto f(x, f(y, z))$

est une bijection.

Proposition 11.

- La composée de deux applications injectives est injective.
- La composée de deux applications surjectives est surjective.
- La composée de deux applications bijectives est bijective.

Exemples:

- Soit $f: E \to F$ et $g: F \to G$. Montrer que si $g \circ f$ est injective, alors f est injective. De même montrer que si $g \circ f$ est surjective, alors g est surjective.
- \Rightarrow Est-il vrai que si $g \circ f$ est bijective, f et g le sont?

Définition 23. Soit E un ensemble. On appelle application identique et on note Id_E l'application de E dans E définie par :

$$\forall x \in E \quad \mathrm{Id}_E(x) = x$$

 $Si\ f\ est\ une\ application\ de\ E\ dans\ F$:

$$f \circ \mathrm{Id}_E = f \ et \ \mathrm{Id}_F \circ f = f$$

Proposition 12. Soit f une application de E dans F.

— L'application f est bijective si et seulement si il existe une application $g: F \to E$ telle que :

$$g \circ f = \mathrm{Id}_E \ et \ f \circ g = \mathrm{Id}_F$$

Si tel est le cas, g est unique; on l'appelle bijection réciproque de f et on la note f^{-1} .

— Si $f: E \to F$ est bijective, f^{-1} est bijective et $(f^{-1})^{-1} = f$.

Remarques:

- \Rightarrow Soit A et B deux parties de \mathbb{R} et f une bijection de A dans B. Alors le graphe de f^{-1} est le symétrique du graphe de f par rapport à la première bissectrice des axes [Ox) et [Oy).
- Arr La fonction ln de \mathbb{R}_+^* dans \mathbb{R} est une bijection et sa bijection réciproque est la fonction exp de \mathbb{R} dans \mathbb{R}_+^* . De même, la fonction sin de $[-\pi/2, \pi/2]$ dans [-1, 1] est une bijection et sa bijection réciproque est la fonction Arcsin de [-1, 1] dans $[-\pi/2, \pi/2]$.

Exemples:

⇒ Montrer que l'application

$$f: \mathbb{Z}^2 \longrightarrow \mathbb{Z}^2$$
$$(x,y) \longmapsto (2x+y,5x+3y)$$

est bijective et calculer f^{-1} .

Soit f une bijection de \mathbb{R} dans \mathbb{R} . Montrer que si f est strictement croissante, il en est de même pour f^{-1} . Que dire si f est impaire? paire?

Proposition 13. Soit $f: E \to F$ et $g: F \to G$ deux applications bijectives. Alors $g \circ f$ est bijective et:

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$

3.3 Familles

Définition 24. Soit E un ensemble et I un ensemble appelé ensemble d'indices. On appelle famille d'éléments de E indexée par I toute application :

$$\begin{array}{ccc} f:I & \longrightarrow & E \\ i & \longmapsto & f_i \end{array}$$

Cette application est notée $(f_i)_{i\in I}$. L'ensemble des familles d'éléments de E indexées par I est noté E^I .

Remarques:

- \Rightarrow Une famille indexée par $\mathbb N$ est une suite d'éléments de E.
- \Rightarrow On appelle sous-famille d'une famille $(f_i)_{i\in I}$ toute famille de la forme $(f_i)_{i\in J}$ où J est une partie de I.
- \Rightarrow Si A est un ensemble, on appelle famille des éléments de A l'application

$$f: A \longrightarrow A$$
$$a \longmapsto f_a = a$$

que l'on note $(f_a)_{a\in A}$ ou plus simplement $(f_i)_{i\in I}$ (où I=A, ce que l'on s'empresse d'oublier).

Définition 25. Soit E un ensemble et $(A_i)_{i\in I}$ une famille de parties de E. On définit alors :

$$\bigcap_{i \in I} A_i = \{ x \in E : \forall i \in I \quad x \in A_i \}$$

$$\bigcup_{i \in I} A_i = \{ x \in E : \exists i \in I \quad x \in A_i \}$$

Exemples:

 \Rightarrow Soit $f: E \to E$. On définit f^n pour tout $n \in \mathbb{N}$ par

$$f^0 = \operatorname{Id}_E \text{ et } \left[\forall n \in \mathbb{N} \quad f^{n+1} = f \circ f^n \right]$$

Soit A une partie de E. Pour tout $n \in \mathbb{N}$, on pose $A_n = f^n(A)$. Enfin, on pose $B = \bigcup_{n \in \mathbb{N}} A_n$. Montrer que $A \subset B$ et que $f(B) \subset B$.

Proposition 14. Soit E un ensemble et $(A_i)_{i\in I}$ une famille de parties de E. Alors :

$$\left(\bigcap_{i\in I} A_i\right)^c = \bigcup_{i\in I} A_i^c \ et \ \left(\bigcup_{i\in I} A_i\right)^c = \bigcap_{i\in I} A_i^c$$

4 Relations binaires

4.1 Relation binaire

Définition 26. Soit E un ensemble. On appelle relation binaire tout prédicat \mathcal{R} défini sur $E \times E$. Si x et y sont deux éléments de E et $\mathcal{R}(x,y)$ est vrai, on écrit $x\mathcal{R}y$.

Définition 27. On dit qu'une relation binaire R définie sur un ensemble E est :

— réflexive lorsque :

$$\forall x \in E \quad x \mathcal{R} x$$

— transitive lorsque :

$$\forall x, y, z \in E \quad [x\mathcal{R}y \ et \ y\mathcal{R}z] \Longrightarrow x\mathcal{R}z$$

— symétrique lorsque :

$$\forall x, y \in E \quad x\mathcal{R}y \Longrightarrow y\mathcal{R}x$$

— antisymétrique lorsque :

$$\forall x, y \in E \quad [x\mathcal{R}y \ et \ y\mathcal{R}x] \Longrightarrow x = y$$

4.2 Relation d'ordre

Définition 28. On dit qu'une relation binaire \leq définie sur un ensemble E est une relation d'ordre lorsqu'elle est :

- $r\'eflexive: \forall x \in E \quad x \leq x$
- $transitive: \forall x, y, z \in E \quad [x \leq y \ et \ y \leq z] \Longrightarrow x \leq z$
- antisymétrique : $\forall x, y \in E \quad [x \leq y \text{ et } y \leq x] \Longrightarrow x = y$

On appelle ensemble ordonné tout ensemble muni d'une relation d'ordre.

${\bf Remarques:}$

 \Rightarrow La relation \leq est une relation d'ordre sur \mathbb{R} . La relation \leq définie sur $\mathcal{F}(\mathbb{R},\mathbb{R})$ par

$$\forall f, g \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \quad f \leqslant g \quad \Longleftrightarrow \quad [\forall x \in \mathbb{R} \quad f(x) \leqslant g(x)]$$

est une relation d'ordre sur $\mathcal{F}(\mathbb{R}, \mathbb{R})$. Si E est un ensemble, la relation d'inclusion est une relation d'ordre sur $\mathcal{P}(E)$.

- \Rightarrow La relation < n'est pas une relation d'ordre sur $\mathbb R$ car elle n'est pas réflexive.
- \Rightarrow Si \leq est une relation d'ordre sur E, la relation \succeq définie par

$$\forall x, y \in E \quad x \succeq y \quad \Longleftrightarrow \quad y \preceq x$$

est aussi une relation d'ordre appelée relation d'ordre opposée à la première.

Exemples:

Montrer que la relation | définie sur N par

$$\forall a, b \in \mathbb{N} \quad a|b \iff [\exists k \in \mathbb{N} \quad b = ka]$$

est une relation d'ordre sur \mathbb{N} .

Définition 29. On dit qu'une relation d'ordre \leq définie sur un ensemble E est totale lorsque :

$$\forall x, y \in E \quad x \leq y \ ou \ y \leq x$$

Remarques:

Arr La relation d'ordre \leq est totale sur \mathbb{R} . Par contre, les relations \leq sur $\mathcal{F}(\mathbb{R},\mathbb{R})$, \subset sur $\mathcal{P}(E)$ et | sur \mathbb{N} ne sont pas totales.

Définition 30. Soit (E, \prec) un ensemble ordonné et A une partie de E.

— On dit que $M \in E$ est un majorant de A lorsque :

$$\forall a \in A \quad a \leq M$$

— On dit que $m \in E$ est un minorant de A lorsque :

$$\forall a \in A \quad m \leq a$$

Exemples:

 \Rightarrow Soit c > 0. On définit la relation $\leq \text{sur } \mathbb{R}^2$ par

$$\forall (x,t), (x',t') \in \mathbb{R}^2 \quad (x,t) \leq (x',t') \quad \Longleftrightarrow \quad |x'-x| \leqslant c \cdot (t'-t)$$

Vérifier que c'est une relation d'ordre. Dessiner l'ensemble des majorants et des minorants d'un couple (x_0, t_0) . L'ordre est-il total?

Définition 31. Soit (E, \prec) un ensemble ordonné et A une partie de E.

- On dit que A admet un plus grand élément lorsqu'il existe un majorant de A appartenant à A. Si un tel élément existe, il est unique et on l'appelle le plus grand élément de A.
- On dit que A admet un plus petit élément lorsqu'il existe un minorant de A appartenant à A. Si un tel élément existe, il est unique et on l'appelle le plus petit élément de A.

Remarques:

- ⇒ Muni de l'ordre usuel, [0, 1[admet un plus petit élément 0 mais n'admet pas de plus grand élément. Muni de la relation de divisibilité, {2,3} n'admet ni de plus grand ni de plus petit élément.
- ⇒ Un ensemble admettant un plus petit ou un plus grand élément est non vide.
- \Rightarrow Si E est totalement ordonné et A est une partie finie non vide de E, alors il admet un plus petit et un plus grand élément.

4.3 Relation d'équivalence

Définition 32. On dit qu'une relation binaire \mathcal{R} définie sur un ensemble E est une relation d'équivalence lorsqu'elle est :

— réflexive : $\forall x \in E \quad x \mathcal{R} x$

- transitive: $\forall x, y, z \in E \quad [x\mathcal{R}y \ et \ y\mathcal{R}z] \Longrightarrow x\mathcal{R}z$

- symétrique : $\forall x, y \in E \quad x\mathcal{R}y \Longrightarrow y\mathcal{R}x$

Remarques:

 \Rightarrow Si E est un ensemble quelconque, le relation d'égalité est une relation d'équivalence. Si $n \in \mathbb{N}$, la relation \mathcal{R} définie par « $\forall a,b \in \mathbb{Z}$ $a\mathcal{R}b \iff a \equiv b \ [n]$ » est une relation d'équivalence sur \mathbb{Z} . De même, si f est une application de E dans F, la relation \mathcal{R} définie sur E par « $\forall x,y \in E$ $x\mathcal{R}y \iff f(x) = f(y)$ » est une relation d'équivalence.

Exemples:

 \Rightarrow Soit E une ensemble. Montrer que la relation \mathcal{R} définie sur $\mathcal{P}(E)$ par

 $\forall A,B\in\mathcal{P}\left(E\right) \quad A\mathcal{R}B\quad\Longleftrightarrow\quad\text{« il existe une bijection de A dans B. »}$ est une relation d'équivalence.

Définition 33. Soit \mathcal{R} une relation d'équivalence sur E et $x \in E$. On appelle classe d'équivalence de x et on note $\operatorname{Cl}(x)$ l'ensemble des éléments de E en relation avec x:

$$Cl(x) = \{ y \in E : x \mathcal{R} y \}$$

Exemples:

 \Rightarrow Soit $n \in \mathbb{N}^*$. Déterminer le nombre de classes d'équivalence sur \mathbb{Z} pour la relation de congruence modulo n.

Définition 34. Soit E un ensemble. On dit qu'une famille $(A_i)_{i\in I}$ des parties de E est une partition de E lorsque

$$[\forall i, j \in I \quad A_i \cap A_j \neq \varnothing \Longrightarrow i = j] \quad et \bigcup_{i \in I} A_i = E$$

Proposition 15. Soit E un ensemble.

- Si \mathcal{R} est une relation d'équivalence sur E, la famille de ses classes d'équivalence forme une partition de E.
- Réciproquement, si $(A_i)_{i\in I}$ est une partition de E, la relation $\mathcal R$ définie sur E par

$$\forall x, y \in E \quad x\mathcal{R}y \quad \Longleftrightarrow \quad [\exists i \in I \quad x, y \in A_i]$$

est une relation d'équivalence.