

Dimension - [mm]

Land pattern and Schematics - [mm]

Description

- Metal compound molding type construction.
- · Magnetically shielded.
- · Low audible core noise.
- Suitable for large current.
- L × W × H: 4.75 × 4.45 × 1.2 mm Max.
- Product weight: 0.16g (Ref.)
- Moisture Sensitivity Level: 1
- · RoHS compliance.
- · Halogen Free available.

Environmental Data

- Operating temperature range: -55°C ~+125°C (including coil's self temperature rise)
- Storage temperature range: -55 °C ~+125 °C
- Solder reflow temperature: 260 [°]C peak.

Packaging

- · Carrier tape and reel packaging.
- · 3000pcs/Reel.

Applications

- Ideally used in notebook, ultrabook, tablet PC, LCD display, Server application.
- HDD, SSD modules application.
- · High current, POL converters.
- Low profile, high current power supplies.
- Battery powered devices.
- DC/DC converters in distributed power systems.

Page 1 of 4 Revised: 10-Jan-19

Electrical Characteristics

Part No.	Stamp	Inductance(µH) [Within] ※1	D.C.R(mΩ) Max.(Typ.) at 25℃	Saturation Current (A)Max.(Typ.) at 25℃ ※2	Temperature rise current(A) Typ.※3
0412CDMCCDS-R10MC	R10	0.10±20%	7.2(6.0)	16.5(19.5)	11.5
0412CDMCCDS-R12MC	R12	0.12±20%	7.8(6.5)	16.0(19.0)	11.0
0412CDMCCDS-R15MC	R15	0.15±20%	9.6(8.0)	14.5(17.0)	9.4
0412CDMCCDS-R22MC	R22	0.22±20%	11.0(9.2)	12.0(14.0)	9.0
0412CDMCCDS-R33MC	R33	0.33±20%	19(17)	9.4(11.0)	6.5
0412CDMCCDS-R47MC	R47	0.47±20%	21(19)	8.2(9.7)	6.0
0412CDMCCDS-R68MC	R68	0.68±20%	36(32)	6.9(8.0)	4.7
0412CDMCCDS-1R0MC	1R0	1.0±20%	47(43)	6.0(7.1)	4.1
0412CDMCCDS-1R5MC	1R5	1.5±20%	75(68)	3.6(4.2)	2.9
0412CDMCCDS-2R2MC	2R2	2.2±20%	84(80)	3.4(4.0)	2.7
0412CDMCCDS-3R3MC	3R3	3.3±20%	140(125)	3.2(3.8)	2.1
0412CDMCCDS-4R7MC	4R7	4.7±20%	195(175)	2.6(3.1)	1.8

^{※1} Measuring frequency Inductance at 100kHz 1V.

(Test board condition: FR4, Copper=70µm, four-layer PWB t=1.6mm)

Page 2 of 4 Revised: 10-Jan-19

^{*2} Saturation current: This indicates the value of D.C. current when the inductance becomes 30% lower than its initial value.

³ Temperature rise current: The actual value of D.C. current when the temperature of coil becomes $\Delta T=40^{\circ}C$ ($Ta=25^{\circ}C$).

Solder Reflow Condition

Please refer to the sales offices on our website - http://www.sumida.com

Hong Kong

Tel.+852-2880-6781 FAX.+852-2565-9600 sales@hk.sumida.com

Saitama(Japan) Tel.+81-48-691-7300

FAX.+81-48-691-7340 sales@jp.sumida.com

Chicago

Tel.+1-847-545-6700 FAX. +1-847-545-6720 sales@us.sumida.com Shanghai

Tel.+86-21-5836-3299 FAX.+86-21-5836-3266

shanghai.sales@cn.sumida.com

Seoul

Tel.+82-2-6237-0777 FAX.+82-2-6237-0778 sales@kr.sumida.com

Obernzell

Tel.+49-8591-937-0 FAX. +49-8591-937-103 contact@eu.sumida.com Shenzhen

Tel.+86-755-8291-0228 FAX.+86-755-8291-0338

shenzhen.sales@cn.sumida.com

Singapore Tel.+65-6296-3388 FAX.+65-6841-4426

Neumarkt

Tel.+49-9181-4509-110 FAX. +49-9181-4509-310 infocomp@eu.sumida.com

sales@sg.sumida.com

Page 4 of 4

Taipei Tel.+886-2-8751-2737

FAX.+886-2-8751-2738 sales@tw.sumida.com

San Jose

Tel.+1-408-321-9660 FAX.+1-408-321-9308 sales@us.sumida.com

Revised: 10-Jan-19