PWN production system

Productie vraag	Productie Andijk (PSA)	Productie Bergen (PSB)	Productie Mensink (PSM)	Productie Gooi	Inkoop Waternet
miljoen m³/jaar	miljoen m:/jaar	miljoen m:/jaar	miljoen m:/jaar	miljoen m [,] /jaar	miljoen m [,] /jaar
110,5	25,5	24,4	39,2	5	16,9

miljoen m³ per jaar

Challenges for drinking water production PWN

- Production capacity
 - Increased demand
 - Ambition to increase margin from 5% to 10%
 - Aging production facilities
 - Pre treatment PS Andijk end of life in 2035
- Water quality
 - Chloride
 - PFAS
 - Biological stability (mainly PS Andijk)
- Sustainability targets
 - Reduction of CO₂ emissions by 50% in 2030
 - Being completely circular in 2050

LTP 2021	Noord	Midden	Zuid	NMZ totaal
2020	41,31	31,31	31,94	104,56
2025	41,09	31,13	31,41	103,63
2030	41,47	31,72	32,32	105,51
2035	41,74	32,54	33,31	107,60
2040	41,84	33,26	34,22	109,32
2050	41,50	34,29	35,78	111,58

Thanks

Water quality: Chloride

- Increasing in source and relative high addition in treatment
- Dutch drinking water regulated at 150 mg/L (EU = 250 mg/L)

- Replacing SIX by coagulation
- Electrocoagulation
- Optimizing coagulation
 - CO₂ addition
 - Mondeling for optimal operation

PFAS

- Found everywhere globally
- Upcomming strict EFSA target at 4,4 ng/L PFOA-eq 4 PFAS

Drinking water PS Andijk

Activated carbon filtration

Reverse osmosis

update fase 1

Bram Martijn, Jim Plooij en Jink Gude Rev. 0 27-10-2020

28-10-2020

Vergelijking Andijk 3 en CVC

Trans Membrane Pressure (TMP)

 Testen in groen zeer stabiele en lage TMP op hogere flux in vergelijking tot PSA3, andere testen instabiele en lijken niet haalbaar

Waterkwaliteit (1)

indicatie zonder onderscheid naar procesinstellingen

	Unit	Ruw	Six-PSA	CM PSA	Six-pi	Coa- eff	C1-eff
		n=4			n=4	n=8	n=8
Chloride	mg/L	121	167	167	202	134	134
Sulfaat	mg/L	57	12	12	2	100	100
DOC	mg C/L	5,2	3,2	2,3	2,55	2,1	2,4
UV-t	%	77	92	93	92	93	90
Natrium	mg/L	84	88	89		83	102
HCO ₃	mg/L	129	114	112	74		
рН	-	7,8		8,0	7,6	6,4	7,9
Mangaan	ug/L	30	57	34	28	57	30
NO_3	mg/L	1,1			0,6		

Directe celtelling: logverwijdering >4,4

- Integer membraan
- Goede desinfectiecapaciteit PSA3

UitgelichtCoagulatie-C1-eff vs SIX-CM PSA

- Chloride: 134 mg/L i.p.v. 167 mg/L
- Sulfaat: 100 mg/L ipv 12 mg/L
- DOC: 2,4 mg/L ipv 2,3 mg/L
- UVT:
 - Bij volledige sedementatie conform SIX-CM PSA
 - Bij gedeeltelijke sedimentatie 90%-92% ipv 93%
 - Oorzaak UVT variatie: desorptie
 - pH verhoging met vlokken resulteert in daling UV-t en stijging DOC

Waterkwaliteit (2)

Organische stof karakterisering influent CM

 Vergelijkbaar verwijderingsrendement DOC tussen SIX en Coagulatie met twee verschillen:

Biopolymeren worden:

- niet verwijderd in SIX
- wel ingevangen door coagulatie
- relatie biopolymeren en membraanfouling / TMP!
- Building blocks beter verwijderd door SIX. Relatie tot biologische stabiliteit?

Advies: studie naar effecten biologische stabiliteit meenemen

Go-no go pilot WPJ uitbreiding Technologie

Namens projectteam uitbreiding WPJ
Jink Gude

Bestaand WPJ

- In bedrijf sinds 1981, ontwerpcapaciteit 14.400 m³/h, reele capaciteit max. 9000 m³/h
- Processtappen:
 - Trommelzeven, 200 μm
 - Coagulatie d.m.v. FeCl₃, c.a. 14 26 mg Fe/l
 - Flocculatie 15 min ontwerp
 - Lamellenseparators (1,6 m³/ m²/h ontwerp → 0,9 m³/ m²/h reeel)
 - Opwaartse zandfiltratie 20 m/h
 - Slibverwerking in bezinkvijvers en slibdroogbedden

		WPJ	WPJ	WPJ
productie		14000	9000	6000
aantal straten		6	6	6
totaal productie	[m3/h]	2333,333	1500	1000
Surfaceload	[m/h]	1,62	1,04	0,70
Verblijftijd flocculatie	[min]	14,91	23,20	34,80
Filtratiesnelheid	m/h	20	12	9

PWN system en WPJ gebruikers

- Voorgezuiverd water t.b.v. drinkwaterproductie:
 - PWN
 - UF/HF t.b.v. ontharding
 - UV/H2O2 t.b.v. duininfiltratie
 - UV/H2O2-AKF t.b.v. (back-up) PSA
 - Waternet
 - Infiltratiewater (direct?)
- 2. <u>Industrie water:</u>
 - Bestaande WRK contractanten (Tata, CvG)
 - Nieuwe klanten?

2. Waterkwaliteitseisen

Parameter	Units	Target new extension	WPJ actual (average) 2000 – 2020	
Total suspended solids	mg/l	< 0.1	0.01	
Turbidity	FTE	< 0.15	0.03	
DOC	mg/l C	<3	3.2	
UV-Transmissie 254	%	> 89%	85%	
Iron	μg/l Fe	<30	15	
Manganese	μg/l Mn	<1	0.2	
Ammonium	mg/l N	< 0.1	0.015	
Bicarbonate	mg/l HCO3	> 90	140	
Chloride	mg/l Cl	Minimum addition	160	
Sodium	mg/l Na	Minimum addition	90	
Sulphate	mg/l SO4	Minimum addition	62	
SI	рН	0.1 – 0.4	0.15	
Hydrobiologie		Zo goed als PSA1		

Identified Process Improvements WPJ

- Enhanced coagulation possibly with additional pH correction (CO₂)
 - Improvement in water quality (UV-T, removal of organic material)
 - Lower iron dosage and chemical use (NaOH)
 - Minimize floc-agent
- CO₂ removal after sedimentation
 - Lower chemical usage (NaOH)
- Rapid sand filtration flow direction (change from upwards to downwards)
 - Flowrate estimates from 7 to 20 m/h
 - Improvement in water quality (TSS?, hydrobiology?)
 - Lower losses during backwashing? Relevant?
- Use of a smaller screen size (35 µm instead of 200 µm
 - Possible positive influence on all downstream processes (including mussels?)
- Finding optimal design

Chemicaliënverbruik optimalisatie

28-4-2021 en 29-4-2021 UVT Usselmeer 68%

		FeCl ₃ (40%)	CO ₂	NaOH (50%)
Prijs	Eur/ton	95	72	265
Co2-eq	kg/kg/CO2-eq	0,18	0,78	1,36

Chemicaliënverbruik optimalisatie

HCO3 mg/L

156

128

156

38

38

29

20

10

10

0,3

0,3

80

85,8

86,1

WPJ bestaand

+cascade en CO₂

+cascade

Scenario	Eenheid	FeCl ₃ (40%)	CO ₂ (100%)	NaOH (50%)	TOTAAL
WPJ bestaand	ton/j	5596	0	2744	
+cascade	ton/j	5596	0	1326	
+cascade en CO ₂	ton/j	4197	848	1326	
_					
WPJ bestaand	ton CO ₂ -eq	1.007	0	2744	3.752
+cascade	ton CO ₂ -eq	1.007	0	1326	2.333
+cascade en CO ₂	ton CO ₂ -eq	755	661	1326	2.743
2	2 .				
WPJ bestaand	Euro / jaar	€ 532.000	€0	€ 727.000	€ 1.259.000
+cascade	Euro / jaar	€ 532.000	€ 0	€ 351.000	€ 883.000
+cascade en CO ₂	Euro / jaar	€ 399.000	€ 61.000	€ 351.000	€ 811.000
_					
			Totaal	WPJ bestaand	€ 1.634.028
CI No	CL	LIVIT	kosten incl.	+cascade	€ 1.116.305
Cl Na	SI	UVT	CO ₂	+cascade en CO ₂	€ 1.085.414

Samenvatting: waarom pilot?

- Geen voorbeeld aan bestaande WPJ
 - Ontwerpuitgangspunten "uit het lood"
 - Nieuwe ontwerpuitgangspunten valideren
 - Waterkwaliteit voldoet op aantal punten niet
- Verbeterde/efficiëntere vlokafscheiding?
 - Flotatie meer en meer toegepast (m.n. Evides)
 - Kleinere footprint
 - Mogelijk minder chemicaliën
 - Elektrificeer ambitie
 - Robuuster bij lagere temperaturen

Figure 1 | Typical DAF system schematic.

Concept keuze en pilot

Figure 1 Pilot block scheme

Puur water & natuur

Puur water & natuur

