Scuola universitaria professionale della Svizzera italiana Bachelor di Ingegneria Informatica

SUPSI

Machine Learning Lezione 1 - Introduzione alla regressione lineare

Loris Cannelli, Ricercatore, IDSIA-SUPSI loris.cannelli@supsi.ch

IDSIA-SUPSI, Polo universitario Lugano - Dipartimento Tecnologie Innovative

Capitolo 1 del libro A First Course in Machine Learning – Rogers Girolami

dati

▶ Dati: osservazioni, possono essere acquisiti in maniera attiva o passiva

dati +

▶ Dati: osservazioni, possono essere acquisiti in maniera attiva o passiva

dati + modello

- Dati: osservazioni, possono essere acquisiti in maniera attiva o passiva
- Modello: assunzioni, basate su esperienze precedenti (altri dati!, transfer learning, ecc.) o supposizioni riguardanti l'ambiente circostante

dati + modello =

- Dati: osservazioni, possono essere acquisiti in maniera attiva o passiva
- Modello: assunzioni, basate su esperienze precedenti (altri dati!, transfer learning, ecc.) o supposizioni riguardanti l'ambiente circostante

dati + modello = predizione

- Dati: osservazioni, possono essere acquisiti in maniera attiva o passiva
- Modello: assunzioni, basate su esperienze precedenti (altri dati!, transfer learning, ecc.) o supposizioni riguardanti l'ambiente circostante
- Predizione: un'azione da eseguire o una classificazione o un indice di qualità

Regressione: approccio ai minimi quadrati

Esempi di regressione

Predire un valore y da alcuni input x

La regressione può essere utilizzata nei campi più disparati

- Predire la qualità di carne da misurazioni spettrali (Tecator data)
- Datazione al Radiocarbonio C14: predire età di un reperto dalla presenza di isotopo C14 del carbonio
- Predire l'utilità di differenti mosse di Go o Backgammon basandosi sull'analisi del gioco di esperti
- ecc.

Olympic 100m data

► Tempi d'arrivo dei vincitori della medaglia d'oro sui 100m alle Olimpiadi dal 1986

Olympic 100m data

Figure: Asse x: anno; Asse y: tempo d'arrivo(in secondi)

Olympic 100m data

Figure: Asse x: anno; Asse y: tempo d'arrivo(in secondi)

Quale sarà il tempo nel 2032?

- ightharpoonup t = tempi dei vincitori (in secondi)
- ightharpoonup x = anno delle Olimpiadi

- ightharpoonup t = tempi dei vincitori (in secondi)
- ightharpoonup x = anno delle Olimpiadi

$$t = x$$

- ightharpoonup t = tempi dei vincitori (in secondi)
- ightharpoonup x = anno delle Olimpiadi

- ightharpoonup t = tempi dei vincitori (in secondi)
- ightharpoonup x = anno delle Olimpiadi

$$t = wx$$

 $ightharpoonup w \in \mathbb{R} = \mathsf{parametro}$

- ▶ t = tempi dei vincitori (in secondi)
- ightharpoonup x = anno delle Olimpiadi

$$t = f(x; w_0, w_1) = w_0 + w_1 x$$

 $ightharpoonup w_0, w_1 \in \mathbb{R} = \mathsf{parametri}$

- ightharpoonup t = tempi dei vincitori (in secondi)
- \triangleright x = anno delle Olimpiadi

$$t = f(x; w_0, w_1) = w_0 + w_1 x$$

(a) Increasing w_0 changes the point at which the line crosses the t axis

(b) Increasing w₁ changes the gradient of the line

$$\cdot t = f(x; w_0, w_1) = w_0 + w_1 x$$

$$\cdot t = f(x; w_0, w_1) = w_0 + w_1 x$$

· Valutiamo quanto questo modello sbaglia rispetto a un anno n $\mathcal{L}_n(t_n, f(x_n; w_0, w_1)) \triangleq (t_n - f(x_n; w_0, w_1))^2$ funzione costo quadratica

$$\cdot t = f(x; w_0, w_1) = w_0 + w_1 x$$

· Valutiamo quanto questo modello sbaglia rispetto a un anno n $\mathcal{L}_n(t_n, f(x_n; w_0, w_1)) \triangleq (t_n - f(x_n; w_0, w_1))^2$

funzione costo quadratica

· Sul totale degli anni

$$\mathcal{L} \triangleq \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}_n(t_n, f(x_n; w_0, w_1))$$

$$\cdot t = f(x; w_0, w_1) = w_0 + w_1 x$$

 \cdot Valutiamo quanto questo modello sbaglia rispetto a un anno n

$$\mathcal{L}_n(t_n, f(x_n; w_0, w_1)) \triangleq (t_n - f(x_n; w_0, w_1))^2$$

funzione costo quadratica

· Sul totale degli anni

$$\mathcal{L} \triangleq \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}_n(t_n, f(x_n; w_0, w_1))$$

 Si potrebbero considerare anche altre funzioni costo, ma quella quadratica è una delle più facili da studiare. Es:

$$\mathcal{L}_n = |t_n - f(x_n; w_0, w_1)|$$
funzione costo ai valori assoluti

Come prima cosa, riscriviamo in maniera più comoda la funzione costo

$$\mathcal{L} = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}_{n}(t_{n}, f(x_{n}; w_{0}, w_{1}))$$

$$= \frac{1}{N} \sum_{n=1}^{N} (t_{n} - f(x_{n}; w_{0}, w_{1}))^{2}$$

$$= \frac{1}{N} \sum_{n=1}^{N} (t_{n} - (w_{0} + w_{1}x_{n}))^{2}$$

$$= \frac{1}{N} \sum_{n=1}^{N} (w_{1}^{2}x_{n}^{2} + 2w_{1}x_{n}w_{0} - 2w_{1}x_{n}t_{n} + w_{0}^{2} - 2w_{0}t_{n} + t_{n}^{2})$$

$$= \frac{1}{N} \sum_{n=1}^{N} (w_{1}^{2}x_{n}^{2} + 2w_{1}x_{n}(w_{0} - t_{n}) + w_{0}^{2} - 2w_{0}t_{n} + t_{n}^{2})$$

Come prima cosa, riscriviamo in maniera più comoda la funzione costo

$$\mathcal{L} = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}_{n}(t_{n}, f(x_{n}; w_{0}, w_{1}))$$

$$= \frac{1}{N} \sum_{n=1}^{N} (t_{n} - f(x_{n}; w_{0}, w_{1}))^{2}$$

$$= \frac{1}{N} \sum_{n=1}^{N} (t_{n} - (w_{0} + w_{1}x_{n}))^{2}$$

$$= \frac{1}{N} \sum_{n=1}^{N} (w_{1}^{2}x_{n}^{2} + 2w_{1}x_{n}w_{0} - 2w_{1}x_{n}t_{n} + w_{0}^{2} - 2w_{0}t_{n} + t_{n}^{2})$$

$$= \frac{1}{N} \sum_{n=1}^{N} (w_{1}^{2}x_{n}^{2} + 2w_{1}x_{n}(w_{0} - t_{n}) + w_{0}^{2} - 2w_{0}t_{n} + t_{n}^{2})$$

Dopo altre semplificazioni (svolte alla lavagna - pag. 7 del libro), la funzione costo si può scrivere come:

$$\mathcal{L} = \frac{w_1^2}{N} \left(\sum_{n=1}^{N} x_n^2 \right) + \frac{2w_1}{N} \left(\sum_{n=1}^{N} x_n (w_0 - t_n) \right)$$

Per minimizzare la funzione costo \mathcal{L} , calcoliamo le derivate rispetto a w_0 e w_1

Per minimizzare la funzione costo \mathcal{L} , calcoliamo le derivate rispetto a w_0 e w_1

La derivata rispetto a w_0 è:

$$\frac{\partial \mathcal{L}}{\partial w_0} = 2w_0 + \frac{2w_1}{N} \left(\sum_{n=1}^{N} x_n \right) - \frac{2}{N} \left(\sum_{n=1}^{N} t_n \right)$$

Per minimizzare la funzione costo \mathcal{L} , calcoliamo le derivate rispetto a w_0 e w_1

La derivata rispetto a w_0 è:

$$\frac{\partial \mathcal{L}}{\partial w_0} = 2w_0 + \frac{2w_1}{N} \left(\sum_{n=1}^{N} x_n \right) - \frac{2}{N} \left(\sum_{n=1}^{N} t_n \right)$$

Per trovare il valore ottimo \hat{w}_0 la derivata va posta uguale a 0

$$2w_{0} + \frac{2w_{1}}{N} \left(\sum_{n=1}^{N} x_{n} \right) - \frac{2}{N} \left(\sum_{n=1}^{N} t_{n} \right) = 0$$

$$2w_{0} = \frac{2}{N} \left(\sum_{n=1}^{N} t_{n} \right) - \frac{2w_{1}}{N} \left(\sum_{n=1}^{N} x_{n} \right)$$

$$w_{0} = \frac{1}{N} \left(\sum_{n=1}^{N} t_{n} \right) - \frac{w_{1}}{N} \left(\sum_{n=1}^{N} x_{n} \right)$$

Definendo:

$$ar{t} riangleq rac{1}{N} \sum_{n=1}^N t_n,$$
 il tempo medio di vittoria $ar{x} riangleq rac{1}{N} \sum_{n=1}^N x_n,$ la media degli anni delle Olimpiadi

Definendo:

$$ar{t} riangleq rac{1}{N} \sum_{n=1}^N t_n,$$
 il tempo medio di vittoria $ar{x} riangleq rac{1}{N} \sum_{n=1}^N x_n,$ la media degli anni delle Olimpiadi

Il parametro ottimale \hat{w}_0 si ottiene come:

$$\hat{w}_0 \triangleq \bar{t} - w_1 \bar{x}$$

Definendo:

$$ar{t} riangleq rac{1}{N} \sum_{n=1}^N t_n,$$
 il tempo medio di vittoria $ar{x} riangleq rac{1}{N} \sum_{n=1}^N x_n,$ la media degli anni delle Olimpiadi

Il parametro ottimale \hat{w}_0 si ottiene come:

$$\hat{w}_0 \triangleq \bar{t} - w_1 \bar{x}$$

Nota Bene: Per essere sicuri che questo valore sia un minimo di $\mathcal L$ e non un massimo, vanno calcolate e analizzate anche le derivate seconde (vedi pagina 8 del libro)

Rimane da trovare il valore ottimale \hat{w}_1

Rimane da trovare il valore ottimale \hat{w}_1

Sostituendo \hat{w}_0 in \mathcal{L} , e poi calcolando la derivata parziale otteniamo:

$$\frac{\partial \mathcal{L}}{\partial w_{1}} = \frac{2w_{1}}{N} \left(\sum_{n=1}^{N} x_{n}^{2} \right) + \frac{2}{N} \left(\sum_{n=1}^{N} x_{n} (\hat{w}_{0} - t_{n}) \right)
= \frac{2w_{1}}{N} \left(\sum_{n=1}^{N} x_{n}^{2} \right) + \frac{2}{N} \left(\sum_{n=1}^{N} x_{n} (\bar{t} - w_{1}\bar{x} - t_{n}) \right)
= \frac{2w_{1}}{N} \left(\sum_{n=1}^{N} x_{n}^{2} \right) + \frac{2\bar{t}}{N} \left(\sum_{n=1}^{N} x_{n} \right) - \frac{2w_{1}\bar{x}}{N} \left(\sum_{n=1}^{N} x_{n} \right) - \frac{2}{N} \left(\sum_{n=1}^{N} x_{n} t_{n} \right)$$

Rimane da trovare il valore ottimale \hat{w}_1

Sostituendo \hat{w}_0 in \mathcal{L} , e poi calcolando la derivata parziale otteniamo:

$$\begin{split} \frac{\partial \mathcal{L}}{\partial w_{1}} &= \frac{2w_{1}}{N} \left(\sum_{n=1}^{N} x_{n}^{2} \right) + \frac{2}{N} \left(\sum_{n=1}^{N} x_{n} (\hat{w}_{0} - t_{n}) \right) \\ &= \frac{2w_{1}}{N} \left(\sum_{n=1}^{N} x_{n}^{2} \right) + \frac{2}{N} \left(\sum_{n=1}^{N} x_{n} (\bar{t} - w_{1}\bar{x} - t_{n}) \right) \\ &= \frac{2w_{1}}{N} \left(\sum_{n=1}^{N} x_{n}^{2} \right) + \frac{2\bar{t}}{N} \left(\sum_{n=1}^{N} x_{n} \right) - \frac{2w_{1}\bar{x}}{N} \left(\sum_{n=1}^{N} x_{n} \right) - \frac{2}{N} \left(\sum_{n=1}^{N} x_{n} t_{n} \right) \end{split}$$

Che può essere riscritta come:

$$\frac{\partial \mathcal{L}}{\partial w_1} = 2w_1 \left[\left(\frac{1}{N} \sum_{n=1}^{N} x_n^2 \right) - \bar{x}\bar{x} \right] + 2\bar{t}\bar{x} - \frac{2}{N} \left(\sum_{n=1}^{N} x_n t_n \right)$$

Ancora una volta, poniamo la derivata uguale a 0 per ottenere:

$$2w_1 \left[\left(\frac{1}{N} \sum_{n=1}^N x_n^2 \right) - \bar{x}\bar{x} \right] = 0$$

$$2w_1 \left[\left(\frac{1}{N} \sum_{n=1}^N x_n^2 \right) - \bar{x}\bar{x} \right] = \frac{2}{N} \left(\sum_{n=1}^N x_n t_n \right) - 2\bar{t}\bar{x}$$

$$\hat{w}_1 = \frac{\frac{1}{N} \left(\sum_{n=1}^N x_n t_n \right) - \bar{t}\bar{x}}{\left(\frac{1}{N} \sum_{n=1}^N x_n^2 \right) - \bar{x}\bar{x}}$$

Troviamo la predizione ottimale

Ancora una volta, poniamo la derivata uguale a 0 per ottenere:

$$2w_1 \left[\left(\frac{1}{N} \sum_{n=1}^N x_n^2 \right) - \bar{x}\bar{x} \right] = 0$$

$$2w_1 \left[\left(\frac{1}{N} \sum_{n=1}^N x_n^2 \right) - \bar{x}\bar{x} \right] = \frac{2}{N} \left(\sum_{n=1}^N x_n t_n \right) - 2\bar{t}\bar{x}$$

$$\hat{w}_1 = \frac{\frac{1}{N} \left(\sum_{n=1}^N x_n t_n \right) - \bar{t}\bar{x}}{\left(\frac{1}{N} \sum_{n=1}^N x_n^2 \right) - \bar{x}\bar{x}}$$

Che per comodità possiamo scrivere come:

$$\hat{w}_1 \triangleq \frac{\bar{x}t - \bar{t}\bar{x}}{\bar{x}^2 - (\bar{x})^2}$$

Regressione Lineare ottima

Per il nostro modello lineare di regressione

$$t = f(x; w_0, w_1) = w_0 + w_1 x$$

minimizzando la funzione costo quadratica $\mathcal L$ abbiamo trovato i parametri ottimali $\hat w_0$ e $\hat w_1$

$$\hat{w}_{=}\bar{t}-\hat{w}_{1}\bar{x}$$
 $\hat{w}_{1}\triangleq\frac{\bar{x}t-\bar{t}\bar{x}}{\bar{x}^{2}-(\bar{x})^{2}}$

Regressione Lineare ottima

Per il nostro modello lineare di regressione

$$t = f(x; w_0, w_1) = w_0 + w_1 x$$

minimizzando la funzione costo quadratica $\mathcal L$ abbiamo trovato i parametri ottimali $\hat w_0$ e $\hat w_1$

$$\hat{w}_{=}\bar{t}-\hat{w}_{1}\bar{x}$$
 $\hat{w}_{1}\triangleq\frac{\bar{x}t-\bar{t}\bar{x}}{\bar{x}^{2}-(\bar{x})^{2}}$

Vediamo come si comportano!

Consideriamo un esempio con solo N=3 coppie di punti (x_n,t_n)

n	$ x_n $	t_n	$x_n t_n$	x_n^2
1	1	4.8	4.8	1
2	3	11.3	33.9	9
3	5	17.2	86	25
$(1/N)\sum_{n=1}^{N}$	3	11.1	41.57	11.67

Come primo step calcoliamo \hat{w}_1

Come primo step calcoliamo \hat{w}_1

$$\hat{w}_1 = \frac{41.57 - 3 * 11.1}{11.67 - 3 * 3}$$
$$= \frac{8.27}{2.67}$$
$$= 3.1$$

Come primo step calcoliamo \hat{w}_1

$$\hat{w}_1 = \frac{41.57 - 3 * 11.1}{11.67 - 3 * 3}$$
$$= \frac{8.27}{2.67}$$
$$= 3.1$$

Calcoliamo, quindi, \hat{w}_0

Come primo step calcoliamo \hat{w}_1

$$\hat{w}_1 = \frac{41.57 - 3 * 11.1}{11.67 - 3 * 3}$$
$$= \frac{8.27}{2.67}$$
$$= 3.1$$

Calcoliamo, quindi, \hat{w}_0

$$\hat{w}_0 = 11.1 - 3.1 * 3 = 1.8$$

Come primo step calcoliamo \hat{w}_1

$$\hat{w}_1 = \frac{41.57 - 3 * 11.1}{11.67 - 3 * 3}$$
$$= \frac{8.27}{2.67}$$
$$= 3.1$$

Calcoliamo, quindi, \hat{w}_0

$$\hat{w}_0 = 11.1 - 3.1 * 3 = 1.8$$

Quindi, il nostro regressore lineare sarà

Come primo step calcoliamo \hat{w}_1

$$\hat{w}_1 = \frac{41.57 - 3 * 11.1}{11.67 - 3 * 3}$$
$$= \frac{8.27}{2.67}$$
$$= 3.1$$

Calcoliamo, quindi, \hat{w}_0

$$\hat{w}_0 = 11.1 - 3.1 * 3 = 1.8$$

Quindi, il nostro regressore lineare sarà

$$f(x; \hat{w}_0, \hat{w}_1) = 1.8 + 3.1x$$

n	x_n	t_n	x_nt_n	x_n^2
1	1896	12.00	22752.0	3.5948×10^{6}
2	1900	11.00	20900.0	3.6100×10^{6}
3	1904	11.00	20944.0	3.6252×10^{6}
4	1906	11.20	21347.2	3.6328×10^{6}
5	1908	10.80	20606.4	3.6405×10^{6}
6	1912	10.80	20649.6	3.6557×106
7	1920	10.80	20736.0	3.6864×10^{6}
8	1924	10.60	20394.4	3.7018×10 ⁶
9	1928	10.80	20822.4	3.7172×106
10	1932	10.30	19899.6	3.7326×106
11	1936	10.30	19940.8	3.7481×106
12	1948	10.30	20064.4	3.7947×106
13	1952	10.40	20300.8	3.8103×106
14	1956	10.50	20538.0	3.8259×10^{6}
15	1960	10.20	19992.0	3.8416×10^{6}
16	1964	10.00	19640.0	3.8573×10^{6}
17	1968	9.95	19581.6	3.8730×10^{6}
18	1972	10.14	19996.1	3.8888×10^{6}
19	1976	10.06	19878.6	3.9046×106
20	1980	10.25	20295.0	3.9204×10^{6}
21	1984	9.99	19820.2	3.9363×10^{6}
22	1988	9.92	19721.0	3.9521×10^{6}
23	1992	9.96	19840.3	3.9681×106
24	1996	9.84	19640.6	3.9840×106
25	2000	9.87	19740.0	4.0000×106
26	2004	9.85	19739.4	4.0160×10 ⁶
27	2008	9.69	19457.5	4.0321×10 ⁶
$(1/N)\sum_{n=1}^{N}$	1952.37	10.39	20268.1	3.8130×10 ⁶

Tempi dei vincitori sui 100m alle Olimpiadi (uomini)

Calcoliamo i parametri ottimali per la regressione

Calcoliamo i parametri ottimali per la regressione

$$\hat{w}_1 = \frac{20268.1 - 1952.37 * 10.39}{3.8130 * 10^6 - 1952.37 * 1952.37}$$

$$= \frac{-16.3}{1225.3}$$

$$= -0.0133$$

$$\hat{w}_0 = 10.39 - (-0.0133) * 1952.37$$

$$= 36.416$$

Calcoliamo i parametri ottimali per la regressione

$$\hat{w}_1 = \frac{20268.1 - 1952.37 * 10.39}{3.8130 * 10^6 - 1952.37 * 1952.37}$$

$$= \frac{-16.3}{1225.3}$$

$$= -0.0133$$

$$\hat{w}_0 = 10.39 - (-0.0133) * 1952.37$$

$$= 36.416$$

Il nostro regressore lineare è

Calcoliamo i parametri ottimali per la regressione

$$\hat{w}_1 = \frac{20268.1 - 1952.37 * 10.39}{3.8130 * 10^6 - 1952.37 * 1952.37}$$

$$= \frac{-16.3}{1225.3}$$

$$= -0.0133$$

$$\hat{w}_0 = 10.39 - (-0.0133) * 1952.37$$

$$= 36.416$$

Il nostro regressore lineare è

$$f(x; \hat{w}_0, \hat{w}_1) = 36.416 + 0.013x$$

$$f(x; w_0 = \hat{w}_0, w_1 = \hat{w}_1) = 36.416 + 0.013x$$

$$f(x; w_0 = \hat{w}_0, w_1 = \hat{w}_1) = 36.416 + 0.013x$$

$$t_{2012} = f(2012; \hat{w}_0, \hat{w}_1) = 36.416 + 0.013 * 2012 = 9.595$$

 $t_{2016} = f(2012; \hat{w}_0, \hat{w}_1) = 36.416 + 0.013 * 2016 = 9.541$

$$f(x; w_0 = \hat{w}_0, w_1 = \hat{w}_1) = 36.416 + 0.013x$$

$$t_{2012} = f(2012; \hat{w}_0, \hat{w}_1) = 36.416 + 0.013 * 2012 = 9.595$$

 $t_{2016} = f(2012; \hat{w}_0, \hat{w}_1) = 36.416 + 0.013 * 2016 = 9.541$

n	x_n	t_n	$x_n t_n$	x_n^2
1	1928	12.20	23521.6	3.7172×10^{6}
2	1932	11.90	22990.8	3.7326×10^6
3	1936	11.50	22264.0	3.7481×10^{6}
4	1948	11.90	23181.2	3.7947×10^{6}
5	1952	11.50	22448.0	3.8103×10^{6}
6	1956	11.50	22494.0	3.8259×10^{6}
7	1960	11.00	21560.0	3.8416×10^6
8	1964	11.40	22389.6	3.8573×10^{6}
9	1968	11.00	21648.0	3.8730×10^{6}
10	1972	11.07	21830.0	3.8888×10^6
11	1976	11.08	21894.1	3.9046×10^6
12	1980	11.06	21898.8	3.9204×10^6
13	1984	10.97	21764.5	3.9363×10^{6}
14	1988	10.54	20953.5	3.9521×10^{6}
15	1992	10.82	21553.4	3.9681×10^{6}
16	1996	10.94	21836.2	3.9840×10^{6}
17	2000	11.12	22240.0	4.0000×10^6
18	2004	10.93	21903.7	4.0160×10^6
19	2008	10.78	21646.2	4.0321×10^{6}
$(1/N)\sum_{n=1}^{N}$	1970.74	11.22	22106.2	3.8844×10^{6}

Tempi dei vincitori sui 100m alle Olimpiadi (donne)

Svolgendo le stesse operazioni già viste negli esempi precedenti, il regressore che otteniamo è

Svolgendo le stesse operazioni già viste negli esempi precedenti, il regressore che otteniamo è

$$f(x; \hat{w}_0, \hat{w}_1) = 40.92 - 0.015x$$

Svolgendo le stesse operazioni già viste negli esempi precedenti, il regressore che otteniamo è

$$f(x; \hat{w}_0, \hat{w}_1) = 40.92 - 0.015x$$

Quello ottenuto in precedenza per gli uomini era

Svolgendo le stesse operazioni già viste negli esempi precedenti, il regressore che otteniamo è

$$f(x; \hat{w}_0, \hat{w}_1) = 40.92 - 0.015x$$

Quello ottenuto in precedenza per gli uomini era

$$f(x; \hat{w}_0, \hat{w}_1) = 36.416 - 0.013x$$

Svolgendo le stesse operazioni già viste negli esempi precedenti, il regressore che otteniamo è

$$f(x; \hat{w}_0, \hat{w}_1) = 40.92 - 0.015x$$

Quello ottenuto in precedenza per gli uomini era

$$f(x; \hat{w}_0, \hat{w}_1) = 36.416 - 0.013x$$

