Zhen Huan

University of Illinois at Urbana-Champaign

October 30, 2016

Overview

Plan.

- The construction of quasi-elliptic cohomology
- The power operation
- The spectra

Groupoids

Definition

A groupoid \mathbb{G} is a small category in which each arrow is an isomorphism. That is, \mathbb{G} consists of a set \mathbb{G}_0 of objects and a set \mathbb{G}_1 of arrows.

Example (Translation Groupoids)

Compact Lie $G \curvearrowright X$.

X//G: the groupoid with

- objects: points $x \in X$
- arrows: $\alpha: x \longrightarrow y$ those $\alpha \in G$ for which $\alpha \cdot x = y$.

A bibundle from \mathbb{H} to \mathbb{G}

[Schommer-Pries]

- a smooth manifold P together with
 - the structure maps: • $\tau: P \longrightarrow \mathbb{G}_0$:

- a surjective submersion $\sigma: P \longrightarrow \mathbb{H}_0$.
- The action maps in $Man_{G_0 \times H_0}$
 - $\mathbb{G}_1 \times_{\tau} P \longrightarrow P$;

$$\bullet \ P_{\sigma} \times_{t} \mathbb{H}_{1} \longrightarrow P$$

such that

- 1. $g_1 \cdot (g_2 \cdot p) = (g_1 g_2) \cdot p$ for all $(g_1, g_2, p) \in \mathbb{G}_1 \times_t \mathbb{G}_1 \times_\tau P$;
- 2. $(p \cdot h_1) \cdot h_2 = p \cdot (h_1 h_2)$ for all $(p, h_1, h_2) \in P_{\sigma} \times_t \mathbb{H}_{1_s} \times_t \mathbb{H}_{1_s}$
- 3. $p \cdot u_H(\sigma(p)) = p$ and $u_G(\tau(p)) \cdot p = p$ for all $p \in P$
- 4. $g \cdot (p \cdot h) = (g \cdot p) \cdot h$ for all $(g, p, h) \in \mathbb{G}_{1_s} \times_{\tau} P_{\sigma} \times_{t} \mathbb{H}_1$
- 5. $\mathbb{G}_{1_s} \times_{\tau} P \longrightarrow P_{\sigma} \times_{\sigma} P$ $(g, p) \mapsto (g \cdot p, p)$ is an isomorphism

Bibundle Map

Schommer-Pries]

A bibundle from \mathbb{H} to \mathbb{G}

[Schommer-Pries]

- a smooth manifold P together with
 - the structure maps:
 - $\tau: P \longrightarrow \mathbb{G}_0$;

- a surjective submersion $\sigma: P \longrightarrow \mathbb{H}_0$.
- The action maps in $Man_{G_0 \times H_0}$

•
$$\mathbb{G}_{1_s} \times_{\tau} P \longrightarrow P$$
;

$$\bullet P_{\sigma} \times_{t} \mathbb{H}_{1} \longrightarrow P$$

such that

- 1. $g_1 \cdot (g_2 \cdot p) = (g_1g_2) \cdot p$ for all $(g_1, g_2, p) \in \mathbb{G}_1 \times_t \mathbb{G}_1 \times_\tau P$;
- 2. $(p \cdot h_1) \cdot h_2 = p \cdot (h_1 h_2)$ for all $(p, h_1, h_2) \in P_{\sigma} \times_t \mathbb{H}_{1_s} \times_t \mathbb{H}_1$;
- 3. $p \cdot u_H(\sigma(p)) = p$ and $u_G(\tau(p)) \cdot p = p$ for all $p \in P$.
- 4. $g \cdot (p \cdot h) = (g \cdot p) \cdot h$ for all $(g, p, h) \in \mathbb{G}_{1_s} \times_{\tau} P_{\sigma} \times_{t} \mathbb{H}_{1}$.
- 5. $\mathbb{G}_{1_s} \times_{\tau} P \longrightarrow P_{\sigma} \times_{\sigma} P$ $(g, p) \mapsto (g \cdot p, p)$ is an isomorphism

Bibundle Map

Schommer-Pries]

A bibundle from \mathbb{H} to \mathbb{G}

[Schommer-Pries]

- a smooth manifold P together with
 - the structure maps:
 - $\tau: P \longrightarrow \mathbb{G}_0$;

- a surjective submersion $\sigma: P \longrightarrow \mathbb{H}_0$.
- The action maps in $Man_{G_0 \times H_0}$
 - $\mathbb{G}_{1} \times_{\tau} P \longrightarrow P$;

$$\bullet P_{\sigma} \times_{t} \mathbb{H}_{1} \longrightarrow P$$

such that

1.
$$g_1 \cdot (g_2 \cdot p) = (g_1 g_2) \cdot p$$
 for all $(g_1, g_2, p) \in \mathbb{G}_1_s \times_t \mathbb{G}_1_s \times_\tau P$;

2.
$$(p \cdot h_1) \cdot h_2 = p \cdot (h_1 h_2)$$
 for all $(p, h_1, h_2) \in P_{\sigma} \times_t \mathbb{H}_1_s \times_t \mathbb{H}_1$;

3.
$$p \cdot u_H(\sigma(p)) = p$$
 and $u_G(\tau(p)) \cdot p = p$ for all $p \in P$.

4.
$$g \cdot (p \cdot h) = (g \cdot p) \cdot h$$
 for all $(g, p, h) \in \mathbb{G}_{1_s} \times_{\tau} P_{\sigma} \times_{t} \mathbb{H}_{1}$.

5.
$$\mathbb{G}_{1_{\mathfrak{S}}} \times_{\tau} P \longrightarrow P_{\sigma} \times_{\sigma} P$$
 $(\mathfrak{g}, \mathfrak{p}) \mapsto (\mathfrak{g} \cdot \mathfrak{p}, \mathfrak{p})$ is an isomorphism.

Bibundle Map

Schommer-Pries]

Bibundle

A bibundle from \mathbb{H} to \mathbb{G}

[Schommer-Pries]

- a smooth manifold P together with
 - the structure maps:
 - $\tau: P \longrightarrow \mathbb{G}_0$;

- a surjective submersion $\sigma: P \longrightarrow \mathbb{H}_0$.
- The action maps in $Man_{G_0 \times H_0}$
 - $\mathbb{G}_{1} \times_{\tau} P \longrightarrow P$;

$$\bullet \ P_{\sigma} \times_{t} \mathbb{H}_{1} \longrightarrow P$$

such that

- 1. $g_1 \cdot (g_2 \cdot p) = (g_1 g_2) \cdot p$ for all $(g_1, g_2, p) \in \mathbb{G}_1_s \times_t \mathbb{G}_1_s \times_\tau P$;
- 2. $(p \cdot h_1) \cdot h_2 = p \cdot (h_1 h_2)$ for all $(p, h_1, h_2) \in P_{\sigma} \times_t \mathbb{H}_1_s \times_t \mathbb{H}_1$;
- 3. $p \cdot u_H(\sigma(p)) = p$ and $u_G(\tau(p)) \cdot p = p$ for all $p \in P$.
- 4. $g \cdot (p \cdot h) = (g \cdot p) \cdot h$ for all $(g, p, h) \in \mathbb{G}_{1_s} \times_{\tau} P_{\sigma} \times_{t} \mathbb{H}_{1}$.
- 5. $\mathbb{G}_{1_{s}} \times_{\tau} P \longrightarrow P_{\sigma} \times_{\sigma} P$ $(g, p) \mapsto (g \cdot p, p)$ is an isomorphism.

Bibundle Map

[Schommer-Pries] `

Example $(Loop_1(X//G) := Bibun(S^1//*, X//G))$

Objects:

$$\mathcal{P} := \{ S^1 \stackrel{\pi}{\longleftarrow} P \stackrel{f}{\longrightarrow} X \}$$

• π : principal G—bundle over S^1

- f: G—equivariant;
- Morphism $\mathcal{P} \longrightarrow \mathcal{P}'$: G-bundle map $\alpha : P \longrightarrow P'$

$$S^{1} \stackrel{\pi}{\longleftarrow} P \stackrel{f}{\longrightarrow} X$$

$$\downarrow^{\alpha} \qquad \qquad \downarrow^{\alpha} \qquad \qquad \downarrow^{\alpha}$$

$$P'$$

- Objects: (σ, γ)
 - $\sigma \in G$

- $\gamma: \mathbb{R} \longrightarrow X$ smooth $\gamma(s+1) = \gamma(s) \cdot \sigma$
- Morphism $(\sigma, \gamma) \longrightarrow (\sigma', \gamma')$: $\alpha : \mathbb{R} \longrightarrow G$ smooth, $\gamma'(s) = \gamma(s)\alpha(s)$.

Example $(Loop_1(X//G) := Bibun(S^1//*, X//G))$

Objects:

$$\mathcal{P} := \{ S^1 \stackrel{\pi}{\longleftarrow} P \stackrel{f}{\longrightarrow} X \}$$

• π : principal G-bundle over S^1

- *f* : *G*—equivariant;
- Morphism $\mathcal{P} \longrightarrow \mathcal{P}'$: G-bundle map $\alpha : P \longrightarrow P'$

- Objects: (σ, γ)
 - $\sigma \in G$

- $\gamma: \mathbb{R} \longrightarrow X$ smooth $\gamma(s+1) = \gamma(s) \cdot \sigma$
- $\bullet \ \, \mathsf{Morphism} \ (\sigma,\gamma) \longrightarrow (\sigma',\gamma') \colon \ \alpha : \mathbb{R} \longrightarrow \mathcal{G} \ \, \mathsf{smooth}, \ \gamma'(s) = \gamma(s)\alpha(s).$

Example $(Loop_1(X//G) := Bibun(S^1//*, X//G))$

Objects:

$$\mathcal{P} := \{ S^1 \stackrel{\pi}{\longleftarrow} P \stackrel{f}{\longrightarrow} X \}$$

• π : principal G—bundle over S^1

- f: G—equivariant;
- Morphism $\mathcal{P} \longrightarrow \mathcal{P}'$: G-bundle map $\alpha : P \longrightarrow P'$

- Objects: (σ, γ)
 - $\sigma \in G$

- $\gamma: \mathbb{R} \longrightarrow X$ smooth $\gamma(s+1) = \gamma(s) \cdot \sigma$
- Morphism $(\sigma, \gamma) \longrightarrow (\sigma', \gamma')$: $\alpha : \mathbb{R} \longrightarrow G$ smooth, $\gamma'(s) = \gamma(s)\alpha(s)$.

Example $(Loop_1(X//G) := Bibun(S^1//*, X//G))$

Objects:

$$\mathcal{P} := \{ S^1 \stackrel{\pi}{\longleftarrow} P \stackrel{f}{\longrightarrow} X \}$$

• π : principal G—bundle over S^1

- *f* : *G*—equivariant;
- Morphism $\mathcal{P} \longrightarrow \mathcal{P}'$: G-bundle map $\alpha : P \longrightarrow P'$

- Objects: (σ, γ)
 - $\sigma \in G$

- $\gamma: \mathbb{R} \longrightarrow X$ smooth $\gamma(s+1) = \gamma(s) \cdot \sigma$
- Morphism $(\sigma, \gamma) \longrightarrow (\sigma', \gamma')$: $\alpha : \mathbb{R} \longrightarrow G$ smooth, $\gamma'(s) = \gamma(s)\alpha(s)$.

Example $(Loop_1^{ext}(X//G))$

- the same objects as $Loop_1(X//G)$;
- $\bullet \ (t,\alpha): \{S^1 \xleftarrow{\pi} P \xrightarrow{f} X\} \longrightarrow \{S^1 \xleftarrow{\pi'} P' \xrightarrow{f'} X\}$ • $\alpha: P \longrightarrow P': G$ -bundle map • $t \in \mathbb{T}$

- the same objects as $Loop_2(X//G)$;
- A morphism

$$(\alpha, t) : (\sigma, \gamma) \longrightarrow (\sigma', \gamma')$$

Example $(Loop_1^{ext}(X//G))$

- the same objects as $Loop_1(X//G)$;
- $\bullet \ (t,\alpha): \{S^1 \xleftarrow{\ \pi\ } P \xrightarrow{\ f\ } X\} \longrightarrow \{S^1 \xleftarrow{\ \pi'\ } P' \xrightarrow{\ f'\ } X\}$ • $\alpha: P \longrightarrow P': G$ -bundle map • $t \in \mathbb{T}$

$$S^{1} \stackrel{\pi}{\longleftarrow} P \stackrel{f}{\longrightarrow} X$$

$$t \downarrow \qquad \qquad \alpha \downarrow \qquad \qquad f'$$

$$S^{1} \stackrel{\pi}{\longleftarrow} P'$$

- the same objects as $Loop_2(X//G)$;
- A morphism

$$(\alpha, t) : (\sigma, \gamma) \longrightarrow (\sigma', \gamma')$$

Example $(Loop_1^{ext}(X//G))$

- the same objects as $Loop_1(X//G)$;
- $\bullet \ \, \big(t,\alpha\big):\big\{S^1 \ \stackrel{\pi}{\longleftarrow} \ P \ \stackrel{f}{\longrightarrow} \ X\big\} \longrightarrow \big\{S^1 \ \stackrel{\pi'}{\longleftarrow} \ P' \ \stackrel{f'}{\longrightarrow} \ X\big\}$ • $\alpha: P \longrightarrow P': G$ -bundle map • $t \in \mathbb{T}$

$$S^{1} \stackrel{\pi}{\lessdot} P \stackrel{f}{\longrightarrow} X$$

$$t \downarrow \qquad \qquad \alpha \downarrow \qquad \qquad f'$$

$$S^{1} \stackrel{\pi}{\lessdot} P'$$

Example $(Loop_2^{ext}(X//G))$

- the same objects as $Loop_2(X//G)$;
- A morphism

$$(\alpha, t) : (\sigma, \gamma) \longrightarrow (\sigma', \gamma')$$

•
$$t \in \mathbb{R}$$

•
$$\alpha: \mathbb{R} \longrightarrow G$$
 smooth • $t \in \mathbb{R}$ $\gamma'(s) = \gamma(s-t)\alpha(s-t)$.

Example $(Loop_1^{ext}(X//G))$

- the same objects as $Loop_1(X//G)$;
- $\bullet \ \, \big(t,\alpha\big):\big\{S^1 \ \stackrel{\pi}{\longleftarrow} \ P \ \stackrel{f}{\longrightarrow} \ X\big\} \longrightarrow \big\{S^1 \ \stackrel{\pi'}{\longleftarrow} \ P' \ \stackrel{f'}{\longrightarrow} \ X\big\}$ • $\alpha: P \longrightarrow P': G$ -bundle map • $t \in \mathbb{T}$

$$S^{1} \stackrel{\pi}{\longleftarrow} P \stackrel{f}{\longrightarrow} X$$

$$t \downarrow \qquad \qquad \alpha \downarrow \qquad \qquad f'$$

$$S^{1} \stackrel{\pi}{\longleftarrow} P'$$

Example $(Loop_2^{ext}(X//G))$

- the same objects as $Loop_2(X//G)$;
- A morphism

$$(\alpha, t) : (\sigma, \gamma) \longrightarrow (\sigma', \gamma')$$

• $\alpha: \mathbb{R} \longrightarrow G$ smooth • $t \in \mathbb{R}$ $\gamma'(s) = \gamma(s-t)\alpha(s-t)$.

A skeleton of $Loop_2^{ext}(X//G)$

- $\mathcal{L}_g X$: the space of objects (g, γ) in $Loop_2(X//G)$.
- $L_gG = \{\gamma : \mathbb{R} \longrightarrow G | \gamma(s+1) = g^{-1}\gamma(s)g \}$, the gauge group of the principal G-bundle $P_g := \mathbb{R} \times G/(s+1,a) \sim (s,ga)$ over S^1 ;
- $L_g G \rtimes \mathbb{T}$: $(\gamma, t) \cdot (\gamma', t') := (s \mapsto \gamma(s)\gamma'(s+t), t+t')$.
- For any $(\gamma, t) \in L_g G \rtimes \mathbb{T}$, and $\delta \in \mathcal{L}_g X$, $\delta \cdot (\gamma, t) := (s \mapsto \delta(s + t) \cdot \gamma(s + t))$.
- $\coprod_{g \in \pi_0 G/conj} \mathcal{L}_g X / / L_g G \rtimes \mathbb{T} \text{ is a skeleton of } Loop_2^{\text{ext}}(X / / G).$

 $L_g G \rtimes \mathbb{T}$ is an infinite dimensional topological group when G is not finite. So we consider the subgroup consisting of constant loops

$$\Lambda_G(g) = C_G(g) \times \mathbb{R}/\langle (g, -1) \rangle$$

A skeleton of $Loop_2^{ext}(X//G)$

- $\mathcal{L}_g X$: the space of objects (g, γ) in $Loop_2(X//G)$.
- $L_gG = \{ \gamma : \mathbb{R} \longrightarrow G | \gamma(s+1) = g^{-1}\gamma(s)g \}$, the gauge group of the principal G-bundle $P_g := \mathbb{R} \times G/(s+1,a) \sim (s,ga)$ over S^1 ;
- $L_g G \rtimes \mathbb{T}$: $(\gamma, t) \cdot (\gamma', t') := (s \mapsto \gamma(s)\gamma'(s+t), t+t')$.
- For any $(\gamma, t) \in L_g G \rtimes \mathbb{T}$, and $\delta \in \mathcal{L}_g X$, $\delta \cdot (\gamma, t) := (s \mapsto \delta(s+t) \cdot \gamma(s+t))$.
- $\coprod_{g \in \pi_0 G/conj} \mathcal{L}_g X / / L_g G \rtimes \mathbb{T} \text{ is a skeleton of } Loop_2^{ext} (X / / G).$

 $L_g G \rtimes \mathbb{T}$ is an infinite dimensional topological group when G is not finite. So we consider the subgroup consisting of constant loops

$$\Lambda_G(g) = C_G(g) \times \mathbb{R}/\langle (g, -1) \rangle$$

A skeleton of $Loop_2^{ext}(X//G)$

- $\mathcal{L}_g X$: the space of objects (g, γ) in $Loop_2(X//G)$.
- $L_gG = \{ \gamma : \mathbb{R} \longrightarrow G | \gamma(s+1) = g^{-1}\gamma(s)g \}$, the gauge group of the principal G-bundle $P_g := \mathbb{R} \times G/(s+1,a) \sim (s,ga)$ over S^1 ;
- $L_g G \rtimes \mathbb{T}$: $(\gamma, t) \cdot (\gamma', t') := (s \mapsto \gamma(s)\gamma'(s+t), t+t')$.
- For any $(\gamma, t) \in L_g G \rtimes \mathbb{T}$, and $\delta \in \mathcal{L}_g X$, $\delta \cdot (\gamma, t) := (s \mapsto \delta(s + t) \cdot \gamma(s + t))$.
- $\coprod_{g \in \pi_0 G/conj} \mathcal{L}_g X // L_g G \rtimes \mathbb{T} \text{ is a skeleton of } Loop_2^{ext} (X//G).$

 $L_g G \rtimes \mathbb{T}$ is an infinite dimensional topological group when G is not finite. So we consider the subgroup consisting of constant loops

$$\Lambda_G(g) = C_G(g) \times \mathbb{R}/\langle (g, -1) \rangle$$

A skeleton of $Loop_2^{ext}(X//G)$

- $\mathcal{L}_g X$: the space of objects (g, γ) in $Loop_2(X//G)$.
- $L_gG = \{ \gamma : \mathbb{R} \longrightarrow G | \gamma(s+1) = g^{-1}\gamma(s)g \}$, the gauge group of the principal G-bundle $P_g := \mathbb{R} \times G/(s+1,a) \sim (s,ga)$ over S^1 ;
- $L_g G \rtimes \mathbb{T}$: $(\gamma, t) \cdot (\gamma', t') := (s \mapsto \gamma(s)\gamma'(s+t), t+t')$.
- For any $(\gamma, t) \in L_g G \rtimes \mathbb{T}$, and $\delta \in \mathcal{L}_g X$, $\delta \cdot (\gamma, t) := (s \mapsto \delta(s + t) \cdot \gamma(s + t))$.
- $\coprod_{g \in \pi_0 G/conj} \mathcal{L}_g X / / L_g G \rtimes \mathbb{T} \text{ is a skeleton of } Loop_2^{ext} (X / / G).$

 $L_g G \rtimes \mathbb{T}$ is an infinite dimensional topological group when G is not finite. So we consider the subgroup consisting of constant loops

$$\Lambda_G(g) = C_G(g) \times \mathbb{R}/\langle (g, -1) \rangle$$

A skeleton of $Loop_2^{ext}(X//G)$

- $\mathcal{L}_g X$: the space of objects (g, γ) in $Loop_2(X//G)$.
- $L_gG = \{\gamma : \mathbb{R} \longrightarrow G | \gamma(s+1) = g^{-1}\gamma(s)g \}$, the gauge group of the principal G-bundle $P_g := \mathbb{R} \times G/(s+1,a) \sim (s,ga)$ over S^1 ;
- $L_g G \rtimes \mathbb{T}$: $(\gamma, t) \cdot (\gamma', t') := (s \mapsto \gamma(s)\gamma'(s+t), t+t')$.
- For any $(\gamma, t) \in L_g G \rtimes \mathbb{T}$, and $\delta \in \mathcal{L}_g X$, $\delta \cdot (\gamma, t) := (s \mapsto \delta(s + t) \cdot \gamma(s + t))$.

 $\coprod_{g \in \pi_0 G/conj} \mathcal{L}_g X / / \mathcal{L}_g G \rtimes \mathbb{T} \text{ is a skeleton of } Loop_2^{ext} (X / / G).$

 $L_g G \rtimes \mathbb{T}$ is an infinite dimensional topological group when G is not finite. So we consider the subgroup consisting of constant loops

$$\Lambda_G(g) = C_G(g) \times \mathbb{R}/\langle (g, -1) \rangle$$

A skeleton of $Loop_2^{ext}(X//G)$

- $\mathcal{L}_g X$: the space of objects (g, γ) in $Loop_2(X//G)$.
- $L_gG = \{ \gamma : \mathbb{R} \longrightarrow G | \gamma(s+1) = g^{-1}\gamma(s)g \}$, the gauge group of the principal G-bundle $P_g := \mathbb{R} \times G/(s+1,a) \sim (s,ga)$ over S^1 ;
- $L_g G \rtimes \mathbb{T}$: $(\gamma, t) \cdot (\gamma', t') := (s \mapsto \gamma(s)\gamma'(s+t), t+t')$.
- For any $(\gamma, t) \in L_g G \rtimes \mathbb{T}$, and $\delta \in \mathcal{L}_g X$, $\delta \cdot (\gamma, t) := (s \mapsto \delta(s + t) \cdot \gamma(s + t))$.

 $\coprod_{g \in \pi_0 G/conj} \mathcal{L}_g X // L_g G \rtimes \mathbb{T} \text{ is a skeleton of } Loop_2^{ext} (X//G).$

 $L_g G \rtimes \mathbb{T}$ is an infinite dimensional topological group when G is not finite.

$$\Lambda_G(g) = C_G(g) \times \mathbb{R}/\langle (g, -1) \rangle$$

A skeleton of $Loop_2^{ext}(X//G)$

- $\mathcal{L}_g X$: the space of objects (g, γ) in $Loop_2(X//G)$.
- $L_gG = \{\gamma : \mathbb{R} \longrightarrow G | \gamma(s+1) = g^{-1}\gamma(s)g \}$, the gauge group of the principal G-bundle $P_g := \mathbb{R} \times G/(s+1,a) \sim (s,ga)$ over S^1 ;
- $L_g G \rtimes \mathbb{T}$: $(\gamma, t) \cdot (\gamma', t') := (s \mapsto \gamma(s)\gamma'(s+t), t+t')$.
- For any $(\gamma, t) \in L_g G \rtimes \mathbb{T}$, and $\delta \in \mathcal{L}_g X$, $\delta \cdot (\gamma, t) := (s \mapsto \delta(s + t) \cdot \gamma(s + t))$.

 $\coprod_{g \in \pi_0 G/conj} \mathcal{L}_g X / / \mathcal{L}_g G \rtimes \mathbb{T} \text{ is a skeleton of } Loop_2^{ext} (X / / G).$

 $L_g G \rtimes \mathbb{T}$ is an infinite dimensional topological group when G is not finite. So we consider the subgroup consisting of constant loops

$$\Lambda_G(g) = C_G(g) \times \mathbb{R}/\langle (g, -1) \rangle$$

$$\mathcal{L}(X//G) := \coprod_{g \in G_{conj}^{tors}} \mathcal{L}_g X / / \Lambda_G(g)$$
 $\Lambda(X//G) := \coprod_{g \in G_{conj}^{tors}} X^g / / \Lambda_G(g)$

 G_{conj}^{tors} : a set of representatives of G-conjugacy classes in G^{tors} .

Quasi-elliptic cohomology

$$QEII(X//G) := K_{orb}(\Lambda(X//G)).$$

QEII as equivariant *K*—theories

$$QEII(X//G) \cong \prod_{g \in G_{conj}^{tors}} K_{\Lambda_G(g)}(X^g)$$

$$QEll_G^*(X) \otimes_{\mathbb{Z}[q^{\pm 1}]} \mathbb{Z}((q)) \cong K_{Tate}^*(X//G).$$

$$\mathcal{L}(X//G) := \coprod_{\substack{g \in G_{conj}^{tors} \\ C_{gonj}}} \mathcal{L}_g X / / \Lambda_G(g)$$

 G_{conj}^{tors} : a set of representatives of G-conjugacy classes in G^{tors} .

Quasi-elliptic cohomology

$$QEII(X//G) := K_{orb}(\Lambda(X//G)).$$

QEII as equivariant *K*—theories

$$QEII(X//G) \cong \prod_{g \in G_{conj}^{tors}} K_{\Lambda_G(g)}(X^g)$$

$$QEll_G^*(X) \otimes_{\mathbb{Z}[q^{\pm}]} \mathbb{Z}((q)) \cong K_{Tate}^*(X//G).$$

$$\mathcal{L}(X//G) := \coprod_{g \in G_{conj}^{tors}} \mathcal{L}_g X / / \Lambda_G(g)$$

$$\Lambda(X//G) := \coprod_{g \in G_{conj}^{tors}} X^g / / \Lambda_G(g)$$

 G_{conj}^{tors} : a set of representatives of G-conjugacy classes in G^{tors} .

Quasi-elliptic cohomology

$$QEII(X//G) := K_{orb}(\Lambda(X//G)).$$

QEII as equivariant K—theories

$$QEII(X//G) \cong \prod_{g \in G_{conj}^{tors}} K_{\Lambda_G(g)}(X^g)$$

$$QEll_G^*(X) \otimes_{\mathbb{Z}[q\pm 1]} \mathbb{Z}((q)) \cong K_{Tate}^*(X//G).$$

$$\mathcal{L}(X//G) := \coprod_{g \in G_{conj}^{tors}} \mathcal{L}_g X / / \Lambda_G(g)$$

$$\Lambda(X//G) := \coprod_{g \in G_{conj}^{tors}} X^g / / \Lambda_G(g)$$

 G_{conj}^{tors} : a set of representatives of G-conjugacy classes in G^{tors} .

Quasi-elliptic cohomology

$$QEII(X//G) := K_{orb}(\Lambda(X//G)).$$

QEII as equivariant K—theories

$$\operatorname{\mathit{QEII}}(X//G) \cong \prod_{g \in G_{coni}^{tors}} \mathcal{K}_{\Lambda_G(g)}(X^g)$$

$$QEII_G^*(X) \otimes_{\mathbb{Z}[q^{\pm 1}]} \mathbb{Z}((q)) \cong K_{Tate}^*(X//G).$$

Restriction

$$\phi: X//G \longrightarrow Y//H \Longrightarrow \Lambda(\phi): \Lambda(X//G) \longrightarrow \Lambda(Y//H)$$

$$QEII^*(Y//H) \xrightarrow{\phi^*} QEII^*(X//G)$$

$$\pi_{\phi(\tau)} \downarrow \qquad \qquad \pi_{\tau} \downarrow$$

$$K_{\Lambda_H(\phi(\tau))}^*(Y^{\phi(\tau)}) \xrightarrow{\phi_{\Lambda}^*} K_{\Lambda_G(\tau)}^*(X^{\tau})$$

Künneth Map

$$K_{\Lambda_G(\sigma)}(X^{\sigma}) \otimes_{\mathbb{Z}[q^{\pm}]} K_{\Lambda_H(\tau)}(Y^{\tau}) \longrightarrow K_{\Lambda_G(\sigma) \times_{\mathbb{T}} \Lambda_H(\tau)}((X \times Y)^{(\sigma, \tau)}) \cong K_{\Lambda_{G \times H}(\sigma, \tau)}((X \times Y)^{(\sigma, \tau)}) \text{ where}$$

$$\Lambda_{G \times H}(\sigma, \tau) \cong \Lambda_G(\sigma) \times_{\mathbb{T}} \Lambda_H(\tau)$$
: pullback of $\Lambda_G(\sigma) \xrightarrow{\pi} \mathbb{T} \xleftarrow{\pi} \Lambda_H(\tau)$.

$$QEll_G^*(X) \widehat{\otimes}_{\mathbb{Z}[q^{\pm}]} QEll_H^*(Y) := \prod_{\sigma \in G_{coni}^{tors} \tau \in H_{coni}^{tors}} K_{\Lambda_G(\sigma)}^*(X^{\sigma}) \otimes_{\mathbb{Z}[q^{\pm}]} K_{\Lambda_H(\tau)}^*(Y^{\tau}).$$

The Künneth map: $QEll_G^*(X) \widehat{\otimes}_{\mathbb{Z}[q^{\pm}]} QEll_H^*(Y) \longrightarrow QEll_{G\times H}^*(X\times Y)$.

Restriction

$$\phi: X//G \longrightarrow Y//H \Longrightarrow \Lambda(\phi): \Lambda(X//G) \longrightarrow \Lambda(Y//H)$$

$$QEII^*(Y//H) \xrightarrow{\phi^*} QEII^*(X//G)$$

$$\pi_{\phi(\tau)} \downarrow \qquad \qquad \pi_{\tau} \downarrow$$

$$K_{\Lambda_H(\phi(\tau))}^*(Y^{\phi(\tau)}) \xrightarrow{\phi_{\Lambda}^*} K_{\Lambda_G(\tau)}^*(X^{\tau})$$

Künneth Map

$$K_{\Lambda_G(\sigma)}(X^{\sigma}) \otimes_{\mathbb{Z}[q^{\pm}]} K_{\Lambda_H(\tau)}(Y^{\tau}) \longrightarrow K_{\Lambda_G(\sigma) \times_{\mathbb{T}} \Lambda_H(\tau)}((X \times Y)^{(\sigma,\tau)}) \cong K_{\Lambda_{G \times H}(\sigma,\tau)}((X \times Y)^{(\sigma,\tau)}) \text{ where}$$

$$\Lambda_{G\times H}(\sigma,\tau)\cong \Lambda_G(\sigma)\times_{\mathbb{T}}\Lambda_H(\tau): \text{ pullback of } \Lambda_G(\sigma)\stackrel{\pi}{\longrightarrow} \mathbb{T}\stackrel{\pi}{\longleftarrow} \Lambda_H(\tau).$$

$$QEll_G^*(X) \widehat{\otimes}_{\mathbb{Z}[q^{\pm}]} QEll_H^*(Y) := \prod_{\sigma \in G_{conj}^{\mathsf{tors}} \tau \in H_{conj}^{\mathsf{tors}}} K_{\Lambda_G(\sigma)}^*(X^{\sigma}) \otimes_{\mathbb{Z}[q^{\pm}]} K_{\Lambda_H(\tau)}^*(Y^{\tau})$$

The Künneth map: $QEll_G^*(X) \widehat{\otimes}_{\mathbb{Z}[q^{\pm}]} QEll_H^*(Y) \longrightarrow QEll_{G\times H}^*(X\times Y).$

Restriction

$$\phi: X//G \longrightarrow Y//H \Longrightarrow \Lambda(\phi): \Lambda(X//G) \longrightarrow \Lambda(Y//H)$$

$$QEII^*(Y//H) \xrightarrow{\phi^*} QEII^*(X//G)$$

$$\pi_{\phi(\tau)} \downarrow \qquad \qquad \pi_{\tau} \downarrow$$

$$K_{\Lambda_H(\phi(\tau))}^*(Y^{\phi(\tau)}) \xrightarrow{\phi_{\Lambda}^*} K_{\Lambda_G(\tau)}^*(X^{\tau})$$

Künneth Map

$$K_{\Lambda_G(\sigma)}(X^{\sigma}) \otimes_{\mathbb{Z}[q^{\pm}]} K_{\Lambda_H(\tau)}(Y^{\tau}) \longrightarrow K_{\Lambda_G(\sigma) \times_{\mathbb{T}} \Lambda_H(\tau)}((X \times Y)^{(\sigma,\tau)}) \cong K_{\Lambda_{G \times H}(\sigma,\tau)}((X \times Y)^{(\sigma,\tau)}) \text{ where}$$

 $\Lambda_{G \times H}(\sigma,\tau) \cong \Lambda_G(\sigma) \times_{\mathbb{T}} \Lambda_H(\tau): \text{ pullback of } \Lambda_G(\sigma) \xrightarrow{\pi} \mathbb{T} \xleftarrow{\pi} \Lambda_H(\tau).$

$$QEII_G^*(X) \widehat{\otimes}_{\mathbb{Z}[q^{\pm}]} QEII_H^*(Y) := \prod_{\sigma \in G_{conj}^{tors}, \tau \in H_{conj}^{tors}} \mathcal{K}_{\Lambda_G(\sigma)}^*(X^{\sigma}) \otimes_{\mathbb{Z}[q^{\pm}]} \mathcal{K}_{\Lambda_H(\tau)}^*(Y^{\tau}).$$

The Künneth map: $QEll_G^*(X) \widehat{\otimes}_{\mathbb{Z}[q^{\pm}]} QEll_H^*(Y) \longrightarrow QEll_{G\times H}^*(X\times Y)$.

Restriction

$$\phi: X//G \longrightarrow Y//H \Longrightarrow \Lambda(\phi): \Lambda(X//G) \longrightarrow \Lambda(Y//H)$$

$$QEII^*(Y//H) \xrightarrow{\phi^*} QEII^*(X//G)$$

$$\pi_{\phi(\tau)} \downarrow \qquad \qquad \pi_{\tau} \downarrow$$

$$K_{\Lambda_H(\phi(\tau))}^*(Y^{\phi(\tau)}) \xrightarrow{\phi_{\Lambda}^*} K_{\Lambda_G(\tau)}^*(X^{\tau})$$

Künneth Map

$$K_{\Lambda_G(\sigma)}(X^{\sigma}) \otimes_{\mathbb{Z}[q^{\pm}]} K_{\Lambda_H(\tau)}(Y^{\tau}) \longrightarrow K_{\Lambda_G(\sigma) \times_{\mathbb{T}} \Lambda_H(\tau)}((X \times Y)^{(\sigma, \tau)}) \cong K_{\Lambda_G(\sigma) \times_{\mathbb{T}} \Lambda_H(\tau)}(X \times Y)^{(\sigma, \tau)}$$

 $K_{\Lambda_{G\times H}(\sigma,\tau)}((X\times Y)^{(\sigma,\tau)})$ where

 $\Lambda_{G\times H}(\sigma,\tau)\cong \Lambda_G(\sigma)\times_{\mathbb{T}}\Lambda_H(\tau) \text{: pullback of } \Lambda_G(\sigma)\stackrel{\pi}{\longrightarrow} \mathbb{T}\stackrel{\pi}{\longleftarrow} \Lambda_H(\tau).$

 $QEII_G^*(X) \widehat{\otimes}_{\mathbb{Z}[q^{\pm}]} QEII_H^*(Y) := \prod_{\sigma \in G_{coni}^{tors}, au \in H_{coni}^{tors}} \mathcal{K}_{\Lambda_G(\sigma)}^*(X^{\sigma}) \otimes_{\mathbb{Z}[q^{\pm}]} \mathcal{K}_{\Lambda_H(au)}^*(Y^{ au}).$

The Künneth map: $QEII_G^*(X) \widehat{\otimes}_{\mathbb{Z}[a^{\pm 1}]} QEII_H^*(Y) \longrightarrow QEII_{G\times H}^*(X\times Y)$.

The Change of Group Isomorphism

- *H*: closed subgroup of *G*;
- *X*: *H*-space;
- $\phi: H \longrightarrow G$ is the inclusion.

Theorem

The change-of-group map ho_H^{G} is an isomorphism.

$$\rho_H^G: \operatorname{QEII}_G^*(G\times_HX) \xrightarrow{\phi^*} \operatorname{QEII}_H^*(G\times_HX) \xrightarrow{i^*} \operatorname{QEII}_H^*(X)$$

• ϕ^* : the restriction map

•
$$i: X \longrightarrow G \times_H X: i(x) = [e, x].$$

10 / 28

Induced map

$$\mathcal{I}_{H}^{G}: QEII(X//H) \xrightarrow{\cong} QEII((G \times_{H} X)//G) \longrightarrow QEII(X//G)$$

- the first map: the change of group isomorphism
- the second: the finite covering $\Lambda(G \times_H X//G) \longrightarrow \Lambda(X//G)$ obj $(\sigma, [g, x]) \mapsto (\sigma, gx)$; mor $([g', t], (\sigma, [g, x])) \mapsto ([g', t], (gx, \sigma))$

The Change of Group Isomorphism

- *H*: closed subgroup of *G*;
- *X*: *H*-space;
- $\phi: H \longrightarrow G$ is the inclusion.

Theorem

The change-of-group map ρ_H^G is an isomorphism.

$$ho_H^G: \mathit{QEII}_G^*(G \times_H X) \stackrel{\phi^*}{\longrightarrow} \mathit{QEII}_H^*(G \times_H X) \stackrel{i^*}{\longrightarrow} \mathit{QEII}_H^*(X)$$

• ϕ^* : the restriction map

•
$$i: X \longrightarrow G \times_H X: i(x) = [e, x].$$

Induced map

$$\mathcal{I}_{H}^{G}: QEII(X//H) \xrightarrow{\cong} QEII((G \times_{H} X)//G) \longrightarrow QEII(X//G)$$

- the first map: the change of group isomorphism
- the second: the finite covering $\Lambda(G \times_H X//G) \longrightarrow \Lambda(X//G)$ obj $(\sigma, [g, x]) \mapsto (\sigma, gx)$; mor $([g', t], (\sigma, [g, x])) \mapsto ([g', t], (gx, \sigma))$

The Change of Group Isomorphism

- *H*: closed subgroup of *G*;
- X: H-space;
- $\phi: H \longrightarrow G$ is the inclusion.

Theorem

The change-of-group map ρ_H^G is an isomorphism.

$$\rho_H^G : QEII_G^*(G \times_H X) \xrightarrow{\phi^*} QEII_H^*(G \times_H X) \xrightarrow{i^*} QEII_H^*(X)$$

• ϕ^* : the restriction map

•
$$i: X \longrightarrow G \times_H X: i(x) = [e, x].$$

Induced map

$$\mathcal{I}_{H}^{G}: QEII(X//H) \stackrel{\cong}{\longrightarrow} QEII((G \times_{H} X)//G) \longrightarrow QEII(X//G)$$

- the first map: the change of group isomorphism
- the second: the finite covering $\Lambda(G \times_H X//G) \longrightarrow \Lambda(X//G)$ obj $(\sigma, [g, x]) \mapsto (\sigma, gx)$; mor $([g', t], (\sigma, [g, x])) \mapsto ([g', t], (gx, \sigma))$.

Power Operation

Quasi-elliptic cohomology has power operations, which gives it the structure of an " H_{∞} -ring theory" [Ganter 06].

Atiyah's Power Operation

 $\mathsf{Ganter}]$

V: a vector bundle over $\Lambda(X//G)$.

 $P_n(V) := V^{\otimes_{\mathbb{Z}[q^{\pm}]}^n}$ defines an operation

$$P_n: QEII_G(X) \longrightarrow QEII_{G\wr\Sigma_n}(X^{\times n})$$

"Elliptic" Power Operation

Ganter] [Ando]

$$QEII_G^*(X) \otimes_{\mathbb{Z}[q^{\pm}]} \mathbb{Z}((q)) = K_{Tate}^*(X//G)$$

There exists

$$\mathbb{P}_n: QEII_G(X) \longrightarrow QEII_{G\wr \Sigma_n}(X^{\times n})$$

extends uniquely to the stringy power operation

$$P_n^{string}: K_{Tate}(X//G) \longrightarrow K_{Tate}(X^{\times n}//G \wr \Sigma_n)$$

which is elliptic

Power Operation

Quasi-elliptic cohomology has power operations, which gives it the structure of an " H_{∞} -ring theory" [Ganter 06].

Atiyah's Power Operation

[Ganter]

V: a vector bundle over $\Lambda(X//G)$.

 $P_n(V) := V^{\widehat{\otimes}_{\mathbb{Z}[q^\pm]}{}^{m{n}}}$ defines an operation

$$P_n: QEII_G(X) \longrightarrow QEII_{G\wr \Sigma_n}(X^{\times n})$$

"Elliptic" Power Operation

Ganter] [Ando_.

$$QEII_G^*(X) \otimes_{\mathbb{Z}[q^{\pm}]} \mathbb{Z}((q)) = K_{Tate}^*(X//G)$$

There exists

$$\mathbb{P}_n: QEll_G(X) \longrightarrow QEll_{G\wr \Sigma_n}(X^{\times n})$$

extends uniquely to the stringy power operation

$$P_n^{string}: K_{Tate}(X//G) \longrightarrow K_{Tate}(X^{\times n}//G \wr \Sigma_n)$$

which is elliptic

Power Operation

Quasi-elliptic cohomology has power operations, which gives it the structure of an " $H_{\infty}-$ ring theory" [Ganter 06].

Atiyah's Power Operation

[Ganter]

V: a vector bundle over $\Lambda(X//G)$.

 $P_n(V) := V^{\widehat{\otimes}_{\mathbb{Z}[q^\pm]}{}^n}$ defines an operation

$$P_n: QEII_G(X) \longrightarrow QEII_{G\wr \Sigma_n}(X^{\times n})$$

"Elliptic" Power Operation

[Ganter] [Ando]

$$QEll_G^*(X) \otimes_{\mathbb{Z}[q^{\pm}]} \mathbb{Z}((q)) = K_{Tate}^*(X//G)$$

There exists

$$\mathbb{P}_n: QEII_G(X) \longrightarrow QEII_{G\wr \Sigma_n}(X^{\times n})$$

extends uniquely to the stringy power operation

$$P_n^{string}: K_{Tate}(X//G) \longrightarrow K_{Tate}(X^{\times n}//G \wr \Sigma_n)$$

which is elliptic.

The Construction of \mathbb{P}_n

$$\begin{split} \mathbb{P}_n &= \prod_{(\underline{g},\sigma) \in (G \wr \Sigma_n)^{tors}_{conj}} \mathbb{P}_{(\underline{g},\sigma)} : \\ QEII_G(X) &\longrightarrow QEII_{G \wr \Sigma_n}(X^{\times n}) = \prod_{(\underline{g},\sigma) \in (G \wr \Sigma_n)^{tors}_{conj}} \mathsf{K}_{\Lambda_{G \wr \Sigma_n}(\underline{g},\sigma)}((X^{\times n})^{(\underline{g},\sigma)}). \end{split}$$

Each $\mathbb{P}_{(\sigma,\sigma)}$ is constructed as the composition:

$$QEII_{G}(X) \xrightarrow{U^{*}} K_{orb}(\Lambda_{(\underline{g},\sigma)}(X)) \xrightarrow{()_{k}^{\wedge}} K_{orb}(\Lambda_{(\underline{g},\sigma)}^{var}(X))$$

$$\xrightarrow{\boxtimes} K_{orb}(d_{(\underline{g},\sigma)}(X)) \xrightarrow{f_{(\underline{g},\sigma)}^{*}} K_{\Lambda_{G\wr\Sigma_{n}}(\underline{g},\sigma)}((X^{\times n})^{(\underline{g},\sigma)})$$

The Construction of \mathbb{P}_n

$$\begin{split} \mathbb{P}_n &= \prod_{(\underline{g},\sigma) \in (G \wr \Sigma_n)^{tors}_{conj}} \mathbb{P}_{(\underline{g},\sigma)} : \\ QEII_G(X) &\longrightarrow QEII_{G \wr \Sigma_n}(X^{\times n}) = \prod_{(\underline{g},\sigma) \in (G \wr \Sigma_n)^{tors}_{conj}} \mathsf{K}_{\Lambda_{G \wr \Sigma_n}(\underline{g},\sigma)}((X^{\times n})^{(\underline{g},\sigma)}). \end{split}$$

Each $\mathbb{P}_{(g,\sigma)}$ is constructed as the composition:

$$\begin{aligned} QEII_{G}(X) & \xrightarrow{U^{*}} \mathcal{K}_{orb}(\Lambda_{(\underline{g},\sigma)}(X)) & \xrightarrow{(\)_{k}^{\wedge}} \mathcal{K}_{orb}(\Lambda_{(\underline{g},\sigma)}^{var}(X)) \\ & \xrightarrow{\boxtimes} \mathcal{K}_{orb}(d_{(\underline{g},\sigma)}(X)) & \xrightarrow{f_{(\underline{g},\sigma)}^{*}} \mathcal{K}_{\Lambda_{G\wr\Sigma_{n}}(\underline{g},\sigma)}((X^{\times n})^{(\underline{g},\sigma)}), \end{aligned}$$

the functor $f_{(g,\sigma)}$: the KEY isomorphism

$$\mathcal{L}_{(\underline{g},\sigma)}(X^{\times n})$$
 and $\prod_{k}\prod_{(i_1,\cdots i_k)}{}_k\mathcal{L}_{g_{i_k}\cdots g_{i_1}}X$ are $\Lambda_{G\wr \Sigma_n}(\underline{g},\sigma)$ —equivariant homeomorphic.

Example
$$(\mathcal{L}_{(g_1,\cdots g_5,(135)(24))}(X^{\times 5})$$
 and $_3\mathcal{L}_{g_5g_3g_1}(X)\times_2\mathcal{L}_{g_4g_2}(X))$

$$\downarrow^{m_1g_5} \qquad \downarrow^{m_1g_5} \qquad \downarrow^{m_1g_$$

 $f_{(g,\sigma)}$ is the restriction of this homeomorphism to the constant loops.

the functor $f_{(g,\sigma)}$: the KEY isomorphism

$$\mathcal{L}_{(\underline{g},\sigma)}(X^{\times n})$$
 and $\prod_{k}\prod_{(i_1,\cdots i_k)}{}_k\mathcal{L}_{g_{i_k}\cdots g_{i_1}}X$ are $\Lambda_{G\wr \Sigma_n}(\underline{g},\sigma)$ —equivariant homeomorphic.

 $f_{(g,\sigma)}$ is the restriction of this homeomorphism to the constant loops.

the functor $f_{(g,\sigma)}$: the KEY isomorphism

$$\mathcal{L}_{(\underline{g},\sigma)}(X^{\times n})$$
 and $\prod_{k}\prod_{(i_1,\cdots i_k)}{}_k\mathcal{L}_{g_{i_k}\cdots g_{i_1}}X$ are $\Lambda_{G\wr \Sigma_n}(\underline{g},\sigma)$ —equivariant homeomorphic.

Example
$$(\mathcal{L}_{(g_1, \dots g_5, (135)(24))}(X^{\times 5})$$
 and $_3\mathcal{L}_{g_5g_3g_1}(X) \times _2\mathcal{L}_{g_4g_2}(X))$

$$m_1 g_3$$
 $m_4 g_4$ $m_5 g_5$ $m_5 g_5$ $m_5 g_5$ $m_5 g_5$ $m_5 g_5 g_5$ $m_5 g_5 g_5$ $m_5 g_5 g_5$ $m_6 g_5$

This picture is from [Ganter].

 $f_{(g,\sigma)}$ is the restriction of this homeomorphism to the constant loops.

Construction and Notation

$$C_G(g,g'):=\{x\in G|gx=xg'\}.$$

$$\Lambda_G^k(g,g') := C_G(g,g') \times \mathbb{R}/(x,t) \sim (gx,t-k).$$

Note

$$\Lambda_G^1(g,g) = \Lambda_G(g).$$

A groupoid equivalent to $\Lambda(X//G)$

- objects $\coprod_{g \in G^{tors}} X^g$;
- ullet morphisms $\coprod_{g,g'\in G^{tors}} \Lambda^1_G(g,g') imes X^g$

Explicitly, (α, x) maps $x \in X^g$ to $\alpha \cdot x \in X^{g'}$.

Let's use the same symbol $\Lambda(X//G)$ to denote it

Construction and Notation

$$C_G(g,g'):=\{x\in G|gx=xg'\}.$$

$$\Lambda_G^k(g,g') := C_G(g,g') \times \mathbb{R}/(x,t) \sim (gx,t-k).$$

Note

$$\Lambda^1_G(g,g) = \Lambda_G(g).$$

A groupoid equivalent to $\Lambda(X//G)$

- objects $\coprod_{g \in G^{tors}} X^g$;
- ullet morphisms $\coprod_{g,g'\in G^{tors}} \Lambda^1_G(g,g') imes X^g$

Explicitly, (α, x) maps $x \in X^g$ to $\alpha \cdot x \in X^{g'}$.

Let's use the same symbol $\Lambda(X//G)$ to denote it

Construction and Notation

$$C_G(g,g'):=\{x\in G|gx=xg'\}.$$

$$\Lambda_G^k(g,g') := C_G(g,g') \times \mathbb{R}/(x,t) \sim (gx,t-k).$$

Note

$$\Lambda_G^1(g,g) = \Lambda_G(g).$$

A groupoid equivalent to $\Lambda(X//G)$

- objects $\coprod_{g \in G^{tors}} X^g$;
- ullet morphisms $\coprod_{g,g'\in G^{tors}} \Lambda^1_G(g,g') imes X^g$

Explicitly, (α, x) maps $x \in X^g$ to $\alpha \cdot x \in X^{g'}$.

Let's use the same symbol $\Lambda(X//G)$ to denote it.

the Functor U: Draw necessary information

For $(\underline{g}, \sigma) \in G \wr \Sigma_n$, let $\Lambda_{(\underline{g}, \sigma)}(X)$ denote the groupoid with

- objects: points in $\coprod_k \coprod_{(i_1, \cdots i_k)} X^{g_{i_k} \cdots g_{i_1}}$ where $(i_1, \cdots i_k)$ goes over all the k-cycles of σ ;
- morphisms: $\coprod_k \coprod_{(i_1,\cdots i_k),(j_1,\cdots j_k)} \Lambda_G(g_{i_k}\cdots g_{i_1},g_{j_k}\cdots g_{j_1}) \times X^{g_{i_k}\cdots g_{i_1}},$ Explicitly, (α,x) maps x to $\alpha \cdot x$.

Let

$$U: \Lambda_{(g,\sigma)}(X) \longrightarrow \Lambda(X//G)$$

denote the functor sending

- an object $x \in X^{g_{i_k} \cdots g_{i_1}} \Longrightarrow x \in X^{g_{i_k} \cdots g_{i_1}}$;
- a morphism $(\alpha, x) \in \Lambda_G(g_{i_k} \cdots g_{i_1}, g_{j_k} \cdots g_{j_1}) \times X^{g_{i_k} \cdots g_{i_1}} \Longrightarrow (\alpha, x) \in \Lambda_G(g_{i_k} \cdots g_{i_1}, g_{j_k} \cdots g_{j_1}) \times X^{g_{i_k} \cdots g_{i_1}}.$

Note: U may not be the identity map.

the Functor U: Draw necessary information

For $(\underline{g}, \sigma) \in G \wr \Sigma_n$, let $\Lambda_{(g,\sigma)}(X)$ denote the groupoid with

- objects: points in $\coprod_k \coprod_{(i_1, \cdots i_k)} X^{g_{i_k} \cdots g_{i_1}}$ where $(i_1, \cdots i_k)$ goes over all the k-cycles of σ ;
- morphisms: $\coprod_{k} \coprod_{(i_1, \cdots i_k), (j_1, \cdots j_k)} \Lambda_G(g_{i_k} \cdots g_{i_1}, g_{j_k} \cdots g_{j_1}) \times X^{g_{i_k} \cdots g_{i_1}},$ Explicitly, (α, x) maps x to $\alpha \cdot x$.

Let

$$U: \Lambda_{(g,\sigma)}(X) \longrightarrow \Lambda(X//G)$$

denote the functor sending

- an object $x \in X^{g_{i_k} \cdots g_{i_1}} \Longrightarrow x \in X^{g_{i_k} \cdots g_{i_1}}$;
- a morphism $(\alpha, x) \in \Lambda_G(g_{i_k} \cdots g_{i_1}, g_{j_k} \cdots g_{j_1}) \times X^{g_{i_k} \cdots g_{i_1}} \Longrightarrow (\alpha, x) \in \Lambda_G(g_{i_k} \cdots g_{i_1}, g_{j_k} \cdots g_{j_1}) \times X^{g_{i_k} \cdots g_{i_1}}.$

Note: U may not be the identity map.

the Functor U: Draw necessary information

For $(\underline{g}, \sigma) \in G \wr \Sigma_n$, let $\Lambda_{(g,\sigma)}(X)$ denote the groupoid with

- objects: points in $\coprod_k \coprod_{(i_1, \cdots i_k)} X^{g_{i_k} \cdots g_{i_1}}$ where $(i_1, \cdots i_k)$ goes over all the k-cycles of σ ;
- morphisms: $\coprod_k \coprod_{(i_1,\cdots i_k),(j_1,\cdots j_k)} \Lambda_G(g_{i_k}\cdots g_{i_1},g_{j_k}\cdots g_{j_1}) \times X^{g_{i_k}\cdots g_{i_1}},$ Explicitly, (α,x) maps x to $\alpha \cdot x$.

Let

$$U: \Lambda_{(g,\sigma)}(X) \longrightarrow \Lambda(X//G)$$

denote the functor sending

- an object $x \in X^{g_{i_k} \cdots g_{i_1}} \Longrightarrow x \in X^{g_{i_k} \cdots g_{i_1}}$;
- a morphism $(\alpha, x) \in \Lambda_G(g_{i_k} \cdots g_{i_1}, g_{j_k} \cdots g_{j_1}) \times X^{g_{i_k} \cdots g_{i_1}} \Longrightarrow (\alpha, x) \in \Lambda_G(g_{i_k} \cdots g_{i_1}, g_{j_k} \cdots g_{j_1}) \times X^{g_{i_k} \cdots g_{i_1}}.$

Note: U may not be the identity map.

$\Lambda_{(g,\sigma)}^{var}(X)$ and the Functor $()_k^{\Lambda}$: Dilating the Loops

Let $\Lambda^{\mathit{var}}_{(g,\sigma)}(X)$ be the groupoid with

- ullet the same objects as $\Lambda_{(g,\sigma)}(X)$
- morphisms: $\coprod_{k}\coprod_{(i_1,\cdots i_k),(j_1,\cdots j_k)} \Lambda_G^k(g_{i_k}\cdots g_{i_1},g_{j_k}\cdots g_{j_1}) \times X^{g_{i_k}\cdots g_{i_1}},$ where $(i_1,\cdots i_k)$ and $(j_1,\cdots j_k)$ go over all the k-cycles of σ .

The functor

$$(\)^{\Lambda}_k: \Lambda^{\mathit{var}}_{(\underline{g},\sigma)}(X) \longrightarrow \Lambda_{(\underline{g},\sigma)}(X)$$

- identity on objects
- sends each $[g,t] \in \Lambda_G^k(g_{i_k} \cdots g_{i_1}, g_{j_k} \cdots g_{j_1})$ to $[g,\frac{t}{k}] \in \Lambda_G(g_{i_k} \cdots g_{i_1}, g_{j_k} \cdots g_{j_1}).$

$\Lambda_{(g,\sigma)}^{var}(X)$ and the Functor $()_k^{\Lambda}$: Dilating the Loops

Let $\Lambda^{var}_{(g,\sigma)}(X)$ be the groupoid with

- ullet the same objects as $\Lambda_{(g,\sigma)}(X)$
- morphisms: $\coprod_k \coprod_{(i_1,\cdots i_k),(j_1,\cdots j_k)} \Lambda_G^k(g_{i_k}\cdots g_{i_1},g_{j_k}\cdots g_{j_1}) \times X^{g_{i_k}\cdots g_{i_1}},$ where $(i_1,\cdots i_k)$ and $(j_1,\cdots j_k)$ go over all the k-cycles of σ .

The functor

$$(\)_k^\Lambda : \Lambda^{\mathit{var}}_{(g,\sigma)}(X) \longrightarrow \Lambda_{(g,\sigma)}(X)$$

- identity on objects
- sends each $[g,t] \in \Lambda_G^k(g_{i_k} \cdots g_{i_1}, g_{j_k} \cdots g_{j_1})$ to $[g, \frac{t}{k}] \in \Lambda_G(g_{i_k} \cdots g_{i_1}, g_{j_k} \cdots g_{j_1}).$

Examples

Example (n = 2 and G = e)

$$\begin{split} QEII_G^*(X) &= K_{\mathbb{T}}^*(X). \ \ \sigma \in \Sigma_n. \ \ \mathbb{P}_{(\underline{1},\sigma)}(x) = \boxtimes_k \boxtimes_{(i_1,\cdots i_k)} (x)_k. \\ QEII(X//\Sigma_2) &\cong K(X)[q^{\pm}][1,s]/(s^2-1) \times K(X)[q^{\pm}][y]/(y^2-q) \\ \mathbb{P}_2(x) &= (\mathbb{P}_{(1,(1)(1))}(x), \mathbb{P}_{(1,(12))}(x)) = (x\boxtimes x,(x)_2). \end{split}$$

Transfer Ideal for QEII

$$\mathcal{I}^{QEII}_{tr} := \sum_{\substack{i+j=N,\\N>j>0}} \mathsf{Image}[\mathcal{I}^{\Sigma_N}_{\Sigma_i \times \Sigma_j} : \mathit{QEII}(\mathsf{pt}//\Sigma_i \times \Sigma_j) \longrightarrow \mathit{QEII}(\mathsf{pt}//\Sigma_N)]$$

Example (n = 2 and X = pt)

$$\mathcal{I}_{tr}^{QEII} = Ind_{\Lambda_{\Sigma_{1} \times \Sigma_{1}}(1)}^{\Lambda_{\Sigma_{2}}(1)} K_{\Lambda_{\Sigma_{1} \times \Sigma_{1}}(1)}(\mathsf{pt}). \ \mathbb{P}_{2}(q) = (q^{2}, q^{\frac{1}{2}}).$$

$$QEII(\mathsf{pt}//\Sigma_{2})/\mathcal{I}_{tr}^{QEII} = K_{\Lambda_{\Sigma_{2}}(1)}(\mathsf{pt})/\mathcal{I}_{tr}^{QEII} \times K_{\Lambda_{\Sigma_{2}}(12)}(\mathsf{pt})$$

$$\cong \mathbb{Z}[q^{\pm}][q']/(q' - q^{2}) \times \mathbb{Z}[q^{\pm}][q']/(q' - q^{2})$$

Examples

Example (n = 2 and G = e)

$$\begin{aligned} QEII_{G}^{*}(X) &= K_{\mathbb{T}}^{*}(X). \ \ \sigma \in \Sigma_{n}. \ \ \mathbb{P}_{(\underline{1},\sigma)}(x) = \boxtimes_{k} \boxtimes_{(i_{1},\cdots i_{k})} (x)_{k}. \\ QEII(X//\Sigma_{2}) &\cong K(X)[q^{\pm}][1,s]/(s^{2}-1) \times K(X)[q^{\pm}][y]/(y^{2}-q) \\ \mathbb{P}_{2}(x) &= (\mathbb{P}_{(\underline{1},(1)(1))}(x), \mathbb{P}_{(\underline{1},(12))}(x)) = (x \boxtimes x,(x)_{2}). \end{aligned}$$

Transfer Ideal for QEII

$$\mathcal{I}^{\textit{QEII}}_{\textit{tr}} := \sum_{\substack{i+j=N,\\N>j>0}} \mathsf{Image}[\mathcal{I}^{\Sigma_N}_{\Sigma_i \times \Sigma_j} : \textit{QEII}(\mathsf{pt}//\Sigma_i \times \Sigma_j) \longrightarrow \textit{QEII}(\mathsf{pt}//\Sigma_N)]$$

$$\mathcal{I}_{tr}^{QEII} = Ind_{\Lambda_{\Sigma_{1} \times \Sigma_{1}}(1)}^{\Lambda_{\Sigma_{2}}(1)} K_{\Lambda_{\Sigma_{1} \times \Sigma_{1}}(1)}(\mathsf{pt}). \ \mathbb{P}_{2}(q) = (q^{2}, q^{\frac{1}{2}}).$$

$$QEII(\mathsf{pt}//\Sigma_{2})/\mathcal{I}_{tr}^{QEII} = K_{\Lambda_{\Sigma_{2}}(1)}(\mathsf{pt})/\mathcal{I}_{tr}^{QEII} \times K_{\Lambda_{\Sigma_{2}}(12)}(\mathsf{pt})$$

$$\sim \mathbb{V}[q^{\pm 1}][q']/(q' - q^{2}) \times \mathbb{V}[q']/(q' - q^{2}) \times \mathbb{V}[q']/(q' - q') \times \mathbb{V}[q']/(q'$$

Examples

Example (n = 2 and G = e)

$$\begin{aligned} QEII_{G}^{*}(X) &= K_{\mathbb{T}}^{*}(X). \ \ \sigma \in \Sigma_{n}. \ \ \mathbb{P}_{(\underline{1},\sigma)}(x) = \boxtimes_{k} \boxtimes_{(i_{1},\cdots i_{k})} (x)_{k}. \\ QEII(X//\Sigma_{2}) &\cong K(X)[q^{\pm}][1,s]/(s^{2}-1) \times K(X)[q^{\pm}][y]/(y^{2}-q) \\ \mathbb{P}_{2}(x) &= (\mathbb{P}_{(1,(1)(1))}(x), \mathbb{P}_{(1,(12))}(x)) = (x\boxtimes x,(x)_{2}). \end{aligned}$$

Transfer Ideal for QEII

$$\mathcal{I}^{\textit{QEII}}_{\textit{tr}} := \sum_{\substack{i+j=N,\\N>i>0}} \mathsf{Image}[\mathcal{I}^{\Sigma_{\textit{N}}}_{\Sigma_{i}\times\Sigma_{j}}:\textit{QEII}(\mathsf{pt}//\Sigma_{i}\times\Sigma_{j}) \longrightarrow \textit{QEII}(\mathsf{pt}//\Sigma_{\textit{N}})]$$

Example (n = 2 and X = pt)

$$\begin{split} \mathcal{I}^{\textit{QEII}}_{tr} &= \textit{Ind}^{\Lambda_{\Sigma_2}(1)}_{\Lambda_{\Sigma_1 \times \Sigma_1}(1)} \textit{K}_{\Lambda_{\Sigma_1 \times \Sigma_1}(1)}(\text{pt}). \ \ \mathbb{P}_2(q) = (q^2, q^{\frac{1}{2}}). \\ & \textit{QEII}(\text{pt}//\Sigma_2)/\mathcal{I}^{\textit{QEII}}_{tr} = \textit{K}_{\Lambda_{\Sigma_2}(1)}(\text{pt})/\mathcal{I}^{\textit{QEII}}_{tr} \times \textit{K}_{\Lambda_{\Sigma_2}(12)}(\text{pt}) \\ & \cong \mathbb{Z}[q^{\pm}][q']/(q'-q^2) \times \mathbb{Z}[q^{\pm}][q']/(q'^2-q). \end{split}$$

17 / 28

Finite Subgroups of Tate Curve

Theorem (H.)

$$\textit{QEII}(\textit{pt}//\Sigma_\textit{N})/\mathcal{I}^\textit{QEII}_{tr} \cong \prod_{\textit{N}=\textit{de}} \mathbb{Z}[\textit{q}^{\pm}][\textit{q}'^{\pm}]/\langle \textit{q}^{\textit{d}} - \textit{q}'^{\textit{e}} \rangle,$$

where \mathcal{I}^{QEII}_{tr} is the transfer ideal and q' is the image of q under the power operation \mathbb{P}_N . The product goes over all the ordered pairs of positive integers (d,e) such that N=de.

Theorem (H.)

The Tate K-theory of symmetric groups modulo a certain transfer ideal classifies finite subgroups of the Tate curve.

$$K_{Tate}(pt//\Sigma_N)/I_{tr}^{Tate} \cong \prod_{N=de} \mathbb{Z}((q))[q_s'^{\pm}]/\langle q^d - q_s'^e \rangle,$$

where I_{tr}^{Tate} is the transfer ideal and q_s' is the image of q under the stringy power operation P_N^{string} , the product goes over all the ordered pairs of positive integers (d,e) such that N=de.

Finite Subgroups of Tate Curve

Theorem (H.)

$$QEII(pt//\Sigma_N)/\mathcal{I}_{tr}^{QEII} \cong \prod_{N=de} \mathbb{Z}[q^{\pm}][q'^{\pm}]/\langle q^d - q'^e \rangle,$$

where \mathcal{I}^{QEII}_{tr} is the transfer ideal and q' is the image of q under the power operation \mathbb{P}_N . The product goes over all the ordered pairs of positive integers (d,e) such that N=de.

Theorem (H.)

The Tate K-theory of symmetric groups modulo a certain transfer ideal classifies finite subgroups of the Tate curve.

$$K_{Tate}(pt//\Sigma_N)/I_{tr}^{Tate} \cong \prod_{N=de} \mathbb{Z}((q))[q_s'^{\pm}]/\langle q^d - q_s'^e \rangle,$$

where I_{tr}^{Tate} is the transfer ideal and q_s' is the image of q under the stringy power operation P_N^{string} , the product goes over all the ordered pairs of positive integers (d,e) such that N=de.

Case I:

 $\sigma \in \Sigma_N$ has cycles with different length. Then $\sigma \in \Sigma_r \times \Sigma_{N-r}$ such that all the cycles of the same length are either in Σ_r or Σ_{N-r} .

$$\Lambda_{\Sigma_N}(\sigma) = \Lambda_{\Sigma_r \times \Sigma_{N-r}}(\sigma) \Longrightarrow Ind_{\Lambda_{\Sigma_r \times \Sigma_{N-r}}(\sigma)}^{\Lambda_{\Sigma_N}(\sigma)} \text{ is the identity map.}$$

$$K_{\Lambda_{\Sigma_N}(\sigma)}(\mathsf{pt})$$
 modulo $Ind_{\Lambda_{\Sigma_r \times \Sigma_{N-r}}(\sigma)}^{\Lambda_{\Sigma_N}(\sigma)} K_{\Lambda_{\Sigma_r \times \Sigma_{N-r}}(\sigma)}(\mathsf{pt})$ is trivial.

Case II

$$\sigma \in \Sigma_N$$
 has d e -cycles. $\Lambda_{\Sigma_N}(\sigma) \cong \Lambda_{\Sigma_e}(12 \cdots e) \wr_{\mathbb{T}} \Sigma_d$. $K_{\Lambda_{\Sigma_N}(\sigma)}(\operatorname{pt}) \cong R\Lambda_{\Sigma_N}(\sigma)$ has a $\mathbb{Z}[q^\pm]$ -basis

$$\{ Ind_{\Lambda_{\Sigma_e}(12\cdots e) \wr_{\mathbb{T}}\Sigma_{(d)}}^{\Lambda_{\Sigma_e}(12\cdots e) \wr_{\mathbb{T}}\Sigma_{(d)}} \left((q^{\frac{a_1}{e}})^{\otimes_{\mathbb{Z}[q^{\pm}]}d_1} \otimes_{\mathbb{Z}[q^{\pm}]} \cdots \otimes_{\mathbb{Z}[q^{\pm}]} (q^{\frac{a_r}{e}})^{\otimes_{\mathbb{Z}[q^{\pm}]}d_r} \right)^{\sim} \otimes D_{\Lambda_{\Sigma_e}(12\cdots e) \wr_{\mathbb{T}}\Sigma_{(d)}}^{\Lambda_{\Sigma_e}(12\cdots e) \wr_{\mathbb{T}}\Sigma_{(d)}}$$

$$| \ (d) = (d_1, d_2, \cdots d_r) \text{ is a partition of } d. \ a_1 < a_2 < \cdots < a_r$$

$$\text{are in } \{0, 1, \cdots e - 1\}. \text{ And } \tau \in R\Sigma_{(d)} \text{ is irreducible.} \}$$

Case I:

 $\sigma \in \Sigma_N$ has cycles with different length. Then $\sigma \in \Sigma_r \times \Sigma_{N-r}$ such that all the cycles of the same length are either in Σ_r or Σ_{N-r} .

$$\Lambda_{\Sigma_N}(\sigma) = \Lambda_{\Sigma_r \times \Sigma_{N-r}}(\sigma) \Longrightarrow Ind_{\Lambda_{\Sigma_r \times \Sigma_{N-r}}(\sigma)}^{\Lambda_{\Sigma_N}(\sigma)} \text{ is the identity map.}$$

$$K_{\Lambda_{\Sigma_N}(\sigma)}(\mathsf{pt})$$
 modulo $Ind_{\Lambda_{\Sigma_r \times \Sigma_{N-r}}(\sigma)}^{\Lambda_{\Sigma_N}(\sigma)} K_{\Lambda_{\Sigma_r \times \Sigma_{N-r}}(\sigma)}(\mathsf{pt})$ is trivial.

Case II:

$$\sigma \in \Sigma_N$$
 has d e -cycles. $\Lambda_{\Sigma_N}(\sigma) \cong \Lambda_{\Sigma_e}(12 \cdots e) \wr_{\mathbb{T}} \Sigma_d$. $\mathcal{K}_{\Lambda_{\Sigma_N}(\sigma)}(\mathsf{pt}) \cong R\Lambda_{\Sigma_N}(\sigma)$ has a $\mathbb{Z}[q^\pm]$ -basis

$$\{ \mathit{Ind}_{\Lambda_{\Sigma_e}(12\cdots e)\wr_{\mathbb{T}}\Sigma_{(d)}}^{\Lambda_{\Sigma_e}(12\cdots e)\wr_{\mathbb{T}}\Sigma_{(d)}} \left((q^{\frac{s_1}{e}})^{\otimes_{\mathbb{Z}[q^{\pm}]}d_1} \otimes_{\mathbb{Z}[q^{\pm}]} \cdots \otimes_{\mathbb{Z}[q^{\pm}]} (q^{\frac{s_r}{e}})^{\otimes_{\mathbb{Z}[q^{\pm}]}d_r} \right)^{\sim} \otimes D_{\tau} \\ \mid (d) = (d_1, d_2, \cdots d_r) \text{ is a partition of } d. \ a_1 < a_2 < \cdots < a_r \\ \text{are in } \{0, 1, \cdots e - 1\}. \text{ And } \tau \in R\Sigma_{(d)} \text{ is irreducible.} \}$$

Continue with Case II

 $K_{\Lambda_{\Sigma_N}(\sigma)}(pt)$ modulo the image of the transfer

is a $\mathbb{Z}[q^\pm]-$ module generated by

$$\{\mathbb{P}_{\sigma}(q)^{\otimes a}\mid a=0,1,\cdots e-1\}.$$

 $\mathcal{K}_{\Lambda_{\Sigma_N}(\sigma)}(\mathsf{pt})$ modulo the image of the transfer $\cong \mathbb{Z}[q^\pm][q'^\pm]/\langle q^d-q'^e \rangle$.

$$\Longrightarrow QEII(\mathrm{pt}//\Sigma_N)/\mathcal{I}_{tr}^{QEII}\cong \prod_{N=de}\mathbb{Z}[q^\pm][q'^\pm]/\langle q^d-q'^e\rangle.$$

$$\begin{aligned} \textit{QEII*}(\textit{X}/\textit{/}\textit{G}) \otimes_{\mathbb{Z}[q^{\pm}]} \mathbb{Z}((q)) &\cong \textit{K}^*_{\textit{Tate}}(\textit{X}/\textit{/}\textit{G}) \\ \mathbb{P}_{\textit{N}} \sim \textit{P}_{\textit{N}}^{\textit{string}} \end{aligned}$$

$$\Longrightarrow K_{Tate}(\mathrm{pt}//\Sigma_N)/I_{tr}^{Tate} \cong \prod_{N = 1} \mathbb{Z}((q))[q_s'^{\pm}]/\langle q^d - q_s'^e \rangle,$$

Continue with Case II

 $K_{\Lambda_{\Sigma_N}(\sigma)}(pt)$ modulo the image of the transfer

is a $\mathbb{Z}[q^\pm]-$ module generated by

$$\{\mathbb{P}_{\sigma}(q)^{\otimes a}\mid a=0,1,\cdots e-1\}.$$

 $\mathcal{K}_{\Lambda_{\Sigma_N}(\sigma)}(\mathsf{pt})$ modulo the image of the transfer $\cong \mathbb{Z}[q^\pm][q'^\pm]/\langle q^d-q'^e \rangle$.

$$\Longrightarrow QEII(\operatorname{pt}//\Sigma_N)/\mathcal{I}_{tr}^{QEII}\cong\prod_{N=de}\mathbb{Z}[q^\pm][q'^\pm]/\langle q^d-q'^e
angle.$$

$$\begin{aligned} \textit{QEII*}(\textit{X}/\textit{/}\textit{G}) \otimes_{\mathbb{Z}[q^{\pm}]} \mathbb{Z}((q)) &\cong \textit{K}^*_{\textit{Tate}}(\textit{X}/\textit{/}\textit{G}) \\ \mathbb{P}_{\textit{N}} \sim \textit{P}_{\textit{N}}^{\textit{string}} \end{aligned}$$

$$\Longrightarrow K_{Tate}(\mathrm{pt}//\Sigma_N)/I_{tr}^{Tate}\cong \prod_{N=1}^{\infty} \mathbb{Z}((q))[q_s'^{\pm}]/\langle q^d-q_s'^e\rangle,$$

Continue with Case II

 $K_{\Lambda_{\Sigma_N}(\sigma)}(pt)$ modulo the image of the transfer

is a $\mathbb{Z}[q^\pm]-$ module generated by

$$\{\mathbb{P}_{\sigma}(q)^{\otimes a}\mid a=0,1,\cdots e-1\}.$$

 $\mathcal{K}_{\Lambda_{\Sigma_N}(\sigma)}(\mathsf{pt})$ modulo the image of the transfer $\cong \mathbb{Z}[q^\pm][q'^\pm]/\langle q^d-q'^e \rangle$.

$$\Longrightarrow QEII(\operatorname{pt}//\Sigma_N)/\mathcal{I}_{tr}^{QEII}\cong\prod_{N=de}\mathbb{Z}[q^\pm][q'^\pm]/\langle q^d-q'^e
angle.$$

$$egin{aligned} extit{QEII}^*(X//G) \otimes_{\mathbb{Z}[q^\pm]} \mathbb{Z}((q)) &\cong K^*_{Tate}(X//G) \ \mathbb{P}_{N} \sim P_N^{string} \end{aligned}$$

$$\Longrightarrow \mathcal{K}_{Tate}(\mathsf{pt}//\Sigma_N)/I_{tr}^{Tate} \cong \prod_{s} \mathbb{Z}((q))[q_s'^{\pm}]/\langle q^d - q_s'^e \rangle,$$

Continue with Case II

 $K_{\Lambda_{\Sigma_N}(\sigma)}(pt)$ modulo the image of the transfer

is a $\mathbb{Z}[q^\pm]-$ module generated by

$$\{\mathbb{P}_{\sigma}(q)^{\otimes a}\mid a=0,1,\cdots e-1\}.$$

 $\mathcal{K}_{\Lambda_{\Sigma_N}(\sigma)}(\mathsf{pt})$ modulo the image of the transfer $\cong \mathbb{Z}[q^\pm][q'^\pm]/\langle q^d-q'^e \rangle$.

$$\Longrightarrow QEII(\operatorname{pt}//\Sigma_N)/\mathcal{I}_{tr}^{QEII}\cong\prod_{N=de}\mathbb{Z}[q^\pm][q'^\pm]/\langle q^d-q'^e
angle.$$

$$egin{aligned} extit{QEII}^*(X//G) \otimes_{\mathbb{Z}[q^\pm]} \mathbb{Z}((q)) &\cong K^*_{Tate}(X//G) \ \mathbb{P}_N \sim P_N^{string} \end{aligned}$$

$$\Longrightarrow \mathcal{K}_{\textit{Tate}}(\text{pt}//\Sigma_{\textit{N}})/I_{\textit{tr}}^{\textit{Tate}} \cong \prod_{s} \mathbb{Z}((q))[q_s'^{\pm}]/\langle q^d - q_s'^e \rangle,$$

Adams Operation

We can define an additive operation

$$\begin{split} \overline{P}_{N} : & QEll_{G}(X) \xrightarrow{\mathbb{P}_{N}} QEll_{G \wr \Sigma_{N}}(X^{\times N}) \xrightarrow{res} QEll_{G \times \Sigma_{N}}(X^{\times N}) \\ \xrightarrow{diag^{*}} & QEll_{G \times \Sigma_{N}}(X) \cong QEll_{G}(X) \otimes_{\mathbb{Z}[q^{\pm}]} QEll_{\Sigma_{N}}(\mathsf{pt}) \\ \longrightarrow & QEll_{G}(X) \otimes_{\mathbb{Z}[q^{\pm}]} QEll_{\Sigma_{N}}(\mathsf{pt}) / \mathcal{I}_{tr}^{QEll} \\ & \cong QEll_{G}(X) \otimes_{\mathbb{Z}[q^{\pm}]} \prod_{N=de} \mathbb{Z}[q^{\pm}][q'^{\pm}] / \langle q^{d} - q'^{e} \rangle, \end{split}$$

It is the Adams operation of quasi-elliptic cohomology. It extends uniquely to an additive operation

$$\overline{P^{string}}_n: K_{Tate}(X//G) \longrightarrow K_{Tate}(X//G) \otimes_{\mathbb{Z}((q))} \left(K_{Tate}(\operatorname{pt}//\Sigma_N)/I_{tr}^{Tate}\right).$$

Taking the trace of $P^{string}_n(x)$, it equals $nT_n(x)$ with T_n the Hecke operator of Tate K-theory defined by the stringy power operation P_n^{string} , as shown in [Ganter].

Adams Operation

We can define an additive operation

$$\begin{split} \overline{P}_{N} : & QEll_{G}(X) \xrightarrow{\mathbb{P}_{N}} QEll_{G \wr \Sigma_{N}}(X^{\times N}) \xrightarrow{res} QEll_{G \times \Sigma_{N}}(X^{\times N}) \\ \xrightarrow{diag^{*}} & QEll_{G \times \Sigma_{N}}(X) \cong QEll_{G}(X) \otimes_{\mathbb{Z}[q^{\pm}]} QEll_{\Sigma_{N}}(\mathsf{pt}) \\ \longrightarrow & QEll_{G}(X) \otimes_{\mathbb{Z}[q^{\pm}]} QEll_{\Sigma_{N}}(\mathsf{pt}) / \mathcal{I}_{tr}^{QEll} \\ & \cong QEll_{G}(X) \otimes_{\mathbb{Z}[q^{\pm}]} \prod_{N=de} \mathbb{Z}[q^{\pm}][q'^{\pm}] / \langle q^{d} - q'^{e} \rangle, \end{split}$$

It is the Adams operation of quasi-elliptic cohomology. It extends uniquely to an additive operation

$$\overline{\mathit{P^{string}}}_n: \mathit{K}_{\mathit{Tate}}(X//\mathit{G}) \longrightarrow \mathit{K}_{\mathit{Tate}}(X//\mathit{G}) \otimes_{\mathbb{Z}((q))} \bigg(\mathit{K}_{\mathit{Tate}}(\mathsf{pt}//\Sigma_{\mathit{N}})/\mathit{I}_{\mathsf{tr}}^{\mathit{Tate}}\bigg).$$

Taking the trace of $P^{string}_{n}(x)$, it equals $nT_{n}(x)$ with T_{n} the Hecke operator of Tate K-theory defined by the stringy power operation P_{n}^{string} , as shown in [Ganter].

G—spectra

We construct a space $QEll_{G,n}$ for each G and each n representing $QEll_G^n(-)$ in the sense

$$\pi_0(QEII_{G,n})=QEII_G^n(S^0).$$

Orthogonal G—spectra

We construct an orthogonal G-spectra E, which is a \mathcal{I}_G -FSP. For each faithful G-representation V, E weakly represents $QEll_G^V(-)$ in the sense

$$\pi_k(E(G,V)) = QEII_G^V(S^k)$$
, for each k .

For a trivial G-representation V, the G-action on E(G,V) is not a trivial.

 $\Longrightarrow \{E(G,-)\}$ cannot arise from an orthogonal spectrum.

G—spectra

We construct a space $QEll_{G,n}$ for each G and each n representing $QEll_G^n(-)$ in the sense

$$\pi_0(QEII_{G,n})=QEII_G^n(S^0).$$

Orthogonal G-spectra

We construct an orthogonal G-spectra E, which is a \mathcal{I}_G -FSP. For each faithful G-representation V, E weakly represents $QEll_G^V(-)$ in the sense

$$\pi_k(E(G,V)) = QEII_G^V(S^k)$$
, for each k .

For a trivial G-representation V, the G-action on E(G,V) is not a trivial.

 $\Longrightarrow \{ {\it E}({\it G}, -) \}$ cannot arise from an orthogonal spectrum.

G—spectra

We construct a space $QEll_{G,n}$ for each G and each n representing $QEll_G^n(-)$ in the sense

$$\pi_0(QEII_{G,n}) = QEII_G^n(S^0).$$

Orthogonal G-spectra

We construct an orthogonal G-spectra E, which is a \mathcal{I}_G -FSP. For each faithful G-representation V, E weakly represents $QEll_G^V(-)$ in the sense

$$\pi_k(E(G,V)) = QEII_G^V(S^k)$$
, for each k .

For a trivial G-representation V, the G-action on E(G, V) is not a trivial.

 $\Longrightarrow \{E(G,-)\}$ cannot arise from an orthogonal spectrum.

G—spectra

We construct a space $QEll_{G,n}$ for each G and each n representing $QEll_G^n(-)$ in the sense

$$\pi_0(QEII_{G,n})=QEII_G^n(S^0).$$

Orthogonal G-spectra

We construct an orthogonal G-spectra E, which is a \mathcal{I}_G -FSP. For each faithful G-representation V, E weakly represents $QEll_G^V(-)$ in the sense

$$\pi_k(E(G,V)) = QEII_G^V(S^k)$$
, for each k .

For a trivial G-representation V, the G-action on E(G, V) is not a trivial.

 $\Longrightarrow \{E(G,-)\}$ cannot arise from an orthogonal spectrum.

- *V* : *G*—representation
- $Sym(V) := \bigoplus_{n \ge 0} Sym^n(V)$: the total symmetric power.
- $S(G, V)_g := Sym(V) \setminus Sym(V)^g$.
- *KU*: the global complex *K*-spectrum;
- $(V)_g$: a specific $\Lambda_G(g)$ —representation.

$$\begin{split} F_g(G,V) &:= \mathsf{Map}_{\mathbb{R}}(S^{(V)_g}, KU((V)_g \oplus V^g)) \\ E_g(G,V) &:= \{t_1 a + t_2 b \in F_g(G,V) * S(G,V)_g | \|b\| \leqslant t_2\} / \{t_1 c_0 + t_2 b\}. \end{split}$$

$$E(G, V) := \prod_{g \in G_{coni}^{tors}} \mathsf{Map}_{C_G(g)}(G, E_g(G, V))$$

- *V* : *G*—representation
- $Sym(V) := \bigoplus_{n \ge 0} Sym^n(V)$: the total symmetric power.
- $S(G, V)_g := Sym(V) \setminus Sym(V)^g$.
- *KU*: the global complex *K*-spectrum;
- $(V)_g$: a specific $\Lambda_G(g)$ —representation.

$$\begin{aligned} F_{\mathbf{g}}(G,V) &:= \mathsf{Map}_{\mathbb{R}}(S^{(V)_{\mathbf{g}}}, KU((V)_{\mathbf{g}} \oplus V^{\mathbf{g}})) \\ E_{\mathbf{g}}(G,V) &:= \{t_1 a + t_2 b \in F_{\mathbf{g}}(G,V) * S(G,V)_{\mathbf{g}} | \|b\| \leqslant t_2\} / \{t_1 c_0 + t_2 b\}. \end{aligned}$$

$$E(G, V) := \prod_{g \in G_{conj}^{tors}} \mathsf{Map}_{C_G(g)}(G, E_g(G, V))$$

- V : G—representation
- $Sym(V) := \bigoplus_{n \ge 0} Sym^n(V)$: the total symmetric power.
- $S(G, V)_g := Sym(V) \setminus Sym(V)^g$.
- *KU*: the global complex *K*-spectrum;
- $(V)_g$: a specific $\Lambda_G(g)$ —representation.

$$F_g(G,V) := \mathsf{Map}_{\mathbb{R}}(S^{(V)_g}, KU((V)_g \oplus V^g))$$

$$E_g(G,V) := \{t_1a + t_2b \in F_g(G,V) * S(G,V)_g | ||b|| \leqslant t_2\} / \{t_1c_0 + t_2b\}.$$

$$E(G, V) := \prod_{g \in G_{conj}^{tors}} \mathsf{Map}_{C_G(g)}(G, E_g(G, V))$$

- V : G—representation
- $Sym(V) := \bigoplus_{n \ge 0} Sym^n(V)$: the total symmetric power.
- $S(G, V)_g := Sym(V) \setminus Sym(V)^g$.
- *KU*: the global complex *K*-spectrum;
- $(V)_g$: a specific $\Lambda_G(g)$ —representation.

$$F_g(G, V) := \mathsf{Map}_{\mathbb{R}}(S^{(V)_g}, KU((V)_g \oplus V^g))$$

$$E_g(G, V) := \{t_1 a + t_2 b \in F_g(G, V) * S(G, V)_g | ||b|| \leq t_2\} / \{t_1 c_0 + t_2 b\}.$$

$$E(G, V) := \prod_{g \in G_{conj}^{tors}} \mathsf{Map}_{C_G(g)}(G, E_g(G, V))$$

a new Global Homotopy Theory

A category D_0 larger than \mathbb{L}

- objects: (G, V, ρ) with V an inner product vector space, G a compact group and ρ a faithful group representations $\rho: G \longrightarrow O(V)$,
- morphism: $\phi = (\phi_1, \phi_2) : (G, V, \rho) \longrightarrow (H, W, \tau)$
 - $\phi_2: V \longrightarrow W$ a linear isometric embedding
 - $\phi_1: \tau^{-1}(O(\phi_2(V))) \longrightarrow G$ group homomorphism

$$G \xrightarrow{\rho} O(V)$$

$$\downarrow^{\phi_1} \qquad \qquad \downarrow^{\phi_{2*}}$$

$$\tau^{-1}(O(\phi_2(V))) \xrightarrow{\tau} O(W)$$

The Category of D_0 —Spaces

A D_0 -space is a continuous functor $X:D_0\longrightarrow T$ to the category of compactly generated weak Hausdorff spaces. A morphism of D_0 -spaces is a natural transformation.

a new Global Homotopy Theory

A category D_0 larger than \mathbb{L}

- objects: (G, V, ρ) with V an inner product vector space, G a compact group and ρ a faithful group representations $\rho: G \longrightarrow O(V)$,
- morphism: $\phi = (\phi_1, \phi_2) : (G, V, \rho) \longrightarrow (H, W, \tau)$
 - ullet $\phi_2:V\longrightarrow W$ a linear isometric embedding
 - $\phi_1: \tau^{-1}(O(\phi_2(V))) \longrightarrow G$ group homomorphism

$$G \xrightarrow{\rho} O(V)$$

$$\downarrow^{\phi_1} \qquad \qquad \downarrow^{\phi_{2*}}$$

$$\tau^{-1}(O(\phi_2(V))) \xrightarrow{\tau} O(W)$$

The Category of D_0 -Spaces

A D_0 —space is a continuous functor $X:D_0\longrightarrow T$ to the category of compactly generated weak Hausdorff spaces. A morphism of D_0 —spaces is a natural transformation.

a new Global Homotopy Theory

A category D_0 larger than $\mathbb L$

- objects: (G, V, ρ) with V an inner product vector space, G a compact group and ρ a faithful group representations $\rho: G \longrightarrow O(V)$,
- morphism: $\phi = (\phi_1, \phi_2) : (G, V, \rho) \longrightarrow (H, W, \tau)$
 - $\phi_2:V\longrightarrow W$ a linear isometric embedding
 - $\phi_1: au^{-1}(\mathit{O}(\phi_2(\mathit{V}))) \longrightarrow \mathit{G}$ group homomorphism

$$G \xrightarrow{\rho} O(V)$$

$$\downarrow^{\phi_1} \qquad \qquad \downarrow^{\phi_{2*}}$$

$$\tau^{-1}(O(\phi_2(V))) \xrightarrow{\tau} O(W)$$

The Category of D_0 -Spaces

A D_0 -space is a continuous functor $X:D_0\longrightarrow T$ to the category of compactly generated weak Hausdorff spaces. A morphism of D_0 -spaces is a natural transformation.

Model Structure on D_0T

I formulate several model structures on $D_0 T$.

Theorem (Level Model Structure)

The category of D_0 —spaces is a compactly generated topological model category with respect to the level equivalences, level fibrations and q—cofibrations. It is right proper and left proper.

 D_0 is a generalized Reedy category in the sense of [Berger and Moerdijk]. And we can formulate a Reedy model structure on D_0T .

Theorem (Reedy Model Structure)

The Reedy cofibrations, Reedy weak equivalences and Reedy fibrations form a model structure, the Reedy model structure, on the category of D_0 —spaces.

I'm formulating a global model structure on D_0T Quillen equivalent to the global model structure on the orthogonal spaces formulated by Schwede in Global Homotopy Theory.

Model Structure on D_0T

I formulate several model structures on $D_0 T$.

Theorem (Level Model Structure)

The category of D_0 -spaces is a compactly generated topological model category with respect to the level equivalences, level fibrations and q-cofibrations. It is right proper and left proper.

 D_0 is a generalized Reedy category in the sense of [Berger and Moerdijk]. And we can formulate a Reedy model structure on $D_0 T$.

Theorem (Reedy Model Structure)

The Reedy cofibrations, Reedy weak equivalences and Reedy fibrations form a model structure, the Reedy model structure, on the category of D_0 —spaces.

I'm formulating a global model structure on D_0T Quillen equivalent to the global model structure on the orthogonal spaces formulated by Schwede in Global Homotopy Theory.

Model Structure on $D_0 T$

I formulate several model structures on $D_0 T$.

Theorem (Level Model Structure)

The category of D_0 -spaces is a compactly generated topological model category with respect to the level equivalences, level fibrations and q-cofibrations. It is right proper and left proper.

 D_0 is a generalized Reedy category in the sense of [Berger and Moerdijk]. And we can formulate a Reedy model structure on $D_0 T$.

Theorem (Reedy Model Structure)

The Reedy cofibrations, Reedy weak equivalences and Reedy fibrations form a model structure, the Reedy model structure, on the category of D_0 —spaces.

I'm formulating a global model structure on D_0T Quillen equivalent to the global model structure on the orthogonal spaces formulated by Schwede in Global Homotopy Theory.

Model Structure on $D_0 T$

I formulate several model structures on $D_0 T$.

Theorem (Level Model Structure)

The category of D_0 -spaces is a compactly generated topological model category with respect to the level equivalences, level fibrations and q-cofibrations. It is right proper and left proper.

 D_0 is a generalized Reedy category in the sense of [Berger and Moerdijk]. And we can formulate a Reedy model structure on $D_0 T$.

Theorem (Reedy Model Structure)

The Reedy cofibrations, Reedy weak equivalences and Reedy fibrations form a model structure, the Reedy model structure, on the category of D_0 —spaces.

I'm formulating a global model structure on $D_0\,T$ Quillen equivalent to the global model structure on the orthogonal spaces formulated by Schwede in Global Homotopy Theory.

QEII can fit into this global homotopy theory

What is important

Combining the orthogonal G-spectra $\{E(G,-)\}$ of quasi-elliptic cohomology together, we get a well-defined D_0 -spectra and D_0 -FSP. Thus, we can define global quasi-elliptic cohomology in the category of D_0 -spectra.

Thank you.

Some references

http://www.math.uiuc.edu/~huan2/Zhen-AMS-2016-Slides.pdf

- Ando, "Isogenies of formal group laws and power operations in the cohomology theories E_n ", Duke J., 1995
- Ando, Hopkins, Strickland, "The sigma orientation is an H_∞ map", Amer. J. 2004; arXiv:math/0204053
- Adem, Leida, Ruan, "Orbifolds and stringy topology", Cambridge Tracts in Mathematics, 171. 2007.
- Atiyah, "K-theory", second edition, 1989. Notes by D.W.Anderson.
- Atiyah, "Power operations in K-theory", Quart. J. Math. Oxford Ser. (2) 17 1966.
- Atiyah," Equivariant K-theory and completion", J. Differential Geometry 3 1969.
- Berger, Moerdijk, "On an extension of the notion of Reedy category", Mathematische Zeitschrift, December 2011.
- Bröcker, Dieck, "Representation of Compact Lie Groups", Springer GTM 98 1985.
- Bruner, May, McClure, Steinberger, "H_∞ ring spectra and their applications", volume 1176 of Lecture Notes in Mathematics, 1986.
- Ganter, "Orbifold genera, product formulas, and power operations", Adv. Math, 2006; arXiv:math/0407021.
- Ganter, "Stringy power operations in Tate K-theory", Homology, Homotopy, Appl., 2013; arXiv:math/0701565
- Ganter. "Power operations in orbifold Tate K-theory": arXiv:1301.2754
- Hirschhorn, "Model categories and their localizations", Mathematical Surveys and Monographs, 99. American Mathematical Society, 2003.
- Hopkins, Kuhn, Ravenel, "Generalized group characters and complex oriented cohomology theories", J. Am. Math. Soc. 13 (2000).
- James, Kerber, "Representation theory of the symmetric group", Encyclopedia of mathematics and its applications v. 16, 1981.
- Katz, Mazur, "Arithmetic moduli of elliptic curves", Annals of Mathematics Studies, vol. 108, 1985.
- Mandell, May, Schwede, Shipley, "Model categories of diagram spectra", Proc. London Math. Soc. 82(2001).
- May, "Equivariant homotopy and cohomology theory", CBMS Regional Conference Series in Mathematics, vol. 91, 1996.
- Rezk, "Quasi-elliptic cohomology", 2011.
- Schommer-Pries, "Central extensions of smooth 2-groups and a finite-dimensional string 2-group", Geom. Topol. 15
 (2011).
- Schwede, "Global Homotopy Theory", global.pdf.
- Strickland, "Morava E-theory of symmetric groups", Topology 37 (1998), no. 4.