Introduction to Algebraic Topology PSET 7

Nilay Kumar

Last updated: March 20, 2014

Proposition 1. Hatcher exercise 2.1.1

Proof. The Δ -complex obtained from the 2-simplex $[v_0, v_1, v_2]$ with edges $[v_0, v_1]$ and $[v_1, v_2]$ identified with order preserved is just a cone $C(S^1)$.

Proposition 2. Hatcher exercise 2.1.5

Proof. Let us compute the simplicial homology groups of the Klein bottle using the Δ -complex structure K described on page 102 of Hatcher. It's clear that there is one 0-simplex (v), three 1-simplices (a,b,c), and two 2-simplices (U,L). We obtain the chain complex

$$0 \xrightarrow{\partial_3} \mathbb{Z}^2 \xrightarrow{\partial_2} \mathbb{Z}^3 \xrightarrow{\partial_1} \mathbb{Z} \xrightarrow{\partial_0} 0$$

with $\partial_0 v = 0$, $\partial_1 a = \partial_1 b = \partial_1 c = 0$, and $\partial_2 U = a + b - c$, $\partial_2 L = a - b + c$. The Klein bottle is path-connected and hence $H_0^{\Delta}(K) = \mathbb{Z}$. Next note that $\ker \partial_2 = 0$ as no linear combination of U and L will map to 0 under ∂_2 , and thus $H_2^{\Delta}(K) = 0$. Computing $H_1^{\Delta}(K)$ is a bit more tedious: $H_1^{\Delta}(K) = \ker \partial_1 / \operatorname{im} \partial_2 = \langle a, b, c \rangle / \langle a + b - c, a - b + c \rangle$. We can simplify this as follows:

$$\frac{\langle a, b, c \rangle}{\langle a+b-c, a-b+c \rangle} = \frac{\langle a-b+c, b, c \rangle}{\langle a+b-c, a-b+c \rangle}$$
$$= \frac{\langle b, c \rangle}{\langle 2b-2c \rangle} = \frac{\langle b-c, c \rangle}{\langle 2(b-c) \rangle} = \frac{\langle d, c \rangle}{\langle 2d \rangle}$$
$$= \mathbb{Z} \oplus \mathbb{Z}_2.$$

Hence the non-trivial simplicial homology groups are $H_0^{\Delta}(K) = \mathbb{Z}$ and $H_1^{\Delta}(K) = \mathbb{Z} \oplus \mathbb{Z}_2$.

Proposition 3. Find a Δ -complex structure for the orientable surface of genus two and compute the simplicial homology groups of this Δ -complex.

Proof. Consider the Δ -complex Σ_2 obtained by taking an octagon (with sides identified appropriately) and drawing segments from a fixed vertex to the other vertices (see figure). This yields one 0-simplex (v), nine 1-simplices (a, \ldots, i) , and six 2-simplices (α, \ldots, ζ) and the chain complex

$$0 \xrightarrow{\partial_3} \mathbb{Z}^6 \xrightarrow{\partial_2} \mathbb{Z}^9 \xrightarrow{\partial_1} \mathbb{Z} \xrightarrow{\partial_0} 0.$$

Clearly $H_0^{\Delta}(\Sigma_2) = \mathbb{Z}$. More tedious is $H_1^{\Delta}(\Sigma_2)$:

$$H_1^{\Delta}(\Sigma_2) = \frac{\ker \partial_1}{\operatorname{im} \partial_2}$$

$$= \frac{\langle a, b, c, d, e, f, g, h, i \rangle}{\langle d + c - e, f + d - e, g + c - f, g + b - h, h + a - i, a + b - i \rangle}$$

$$= \frac{\langle b, c, d, e, f, g, h, i \rangle}{\langle c + d - e, d - e + f, c - f + g, b + g - h, h - b \rangle}$$

$$= \frac{\langle b, c, d, e, f, g, i \rangle}{\langle c + d - e, d - e + f, c - f + g, g \rangle} = \frac{\langle b, c, d, e, f, i \rangle}{\langle c + d - e, d - e + f, c - f \rangle}$$

$$= \frac{\langle b, c, d, e, i \rangle}{\langle c + d - e, c + d - e \rangle} = \frac{\langle b, c, d, e, i \rangle}{\langle c + d - e \rangle}$$

$$= \mathbb{Z}^4.$$

Finally, $H_2^{\Delta}(\Sigma_2) = \ker \partial_2 / \text{im } \partial_3 = \ker \partial_2$. It is straightforward to check that $\ker \partial_2 = \langle \alpha - \beta - \gamma + \delta + \varepsilon - \zeta \rangle$ (one can read this off of the figure via the orientations of the 2-simplicies). Hence the non-trivial simplicial homology groups are $H_0^{\Delta}(\Sigma_2) = \mathbb{Z}$, $H_1^{\Delta}(\Sigma_2) = \mathbb{Z}^4$, $H_2^{\Delta}(\Sigma_2) = \mathbb{Z}$.

Proposition 4. Find a Δ -complex structure for S^3 and compute the simplicial homology groups of this Δ -complex.

Proof. \Box

Proposition 5. Hatcher exercise 2.1.8

Proof.