Activité 7.2 - Voiture et vélo : danger sur la ville?

Objectifs:

- Savoir calculer une énergie cinétique à partir de sa relation $E_c = \frac{1}{2}mv^2$.
- ▶ Comprendre comment se transfère l'énergie pendant une collision.

Contexte: Une cycliste et une automobiliste roule toutes les deux à $30\,\mathrm{km}\cdot\mathrm{h}^{-1}$ en ville, en grillant de manière répétée des feux rouges.

→ Les deux véhicules représentent-ils le même danger pour les piéton-nes et les autres véhicules ?

Document 1 - L'énergie cinétique

Quand un objet de masse m se déplace avec une vitesse v en $\mathbf{m}\cdot\mathbf{s}^{-1},$ cet objet possède une énergie cinétique notée E_c

$$E_c = \frac{1}{2}mv^2$$
 en joule noté J

L'énergie se conserve toujours, mais elle peut changer de forme.

Document 2 - Énergie, freinage et collision

Quand un véhicule freine, l'énergie cinétique est convertie en énergie thermique par les frottements : la température des pneus et du sol augmente.

Pendant une collision, l'énergie cinétique est convertie en énergie de déformation.

L'énergie de déformation est responsable de la déformation

- du véhicule et de l'obstacle éventuel;
- des personnes dans et en dehors du véhicule.

Pour les personnes les « déformations » sont dramatiques : on parle de blessures, fractures, hémorragies, etc.

À Ici on fait une modélisation simplifiée : en réalité l'énergie de déformation est liée à des phénomènes complexes à l'échelle microscopique (destruction des cellules, ruptures des liaisons moléculaires, etc.).

Document 3 – Quelques données

En France

- la voiture moyenne a une masse de 1250 kg en 2023;
- la masse moyenne d'une femme est de 67,3 kg en 2020;
- la masse moyenne d'un homme est de 81,2 kg en 2020;
- les vélos vendu ont en moyenne une masse de 12,0 kg.

1 – collision.	Expliquer pourquoi le freinage permet de réduire l'énergie de déformation pendant une
	C_{1} C_{2} C_{3} C_{4} C_{4} C_{5} C_{5
	Convertir $30 \mathrm{km} \cdot \mathrm{h}^{-1}$ en $\mathrm{m} \cdot \mathrm{s}^{-1}$.
3 -	Calculer l'énergie cinétique d'une cycliste roulant à une vitesse de $30\mathrm{km}\cdot\mathrm{h}^{-1}$.
4 -	Calculer l'énergie cinétique d'un automobiliste roulant à une vitesse de $30\mathrm{km}\cdot\mathrm{h}^{-1}.$
	Entre la cycliste et l'automobiliste, qui représente le plus grand danger a priori?

Document 4 – Égalité des énergies cinétiques

En négligeant la forme d'une voiture et d'un vélo, pour que la cycliste soit aussi dangereuse que l'automobiliste, il faudrait que les deux aient la même énergie cinétiques.

Pour ça, la cycliste devrait avoir une vitesse :

$$v_{\text{v\'elo}} = \sqrt{\frac{m_{\text{auto}}}{m_{\text{v\'elo}}}} v_{\text{auto}}$$

6 -	Calcu	ler la vi	tesse que	e devrait	avoir u	ne cyclis	te pour a	woir la m	iême éne	rgie ciné	tique qu	ı'un
automob	oiliste qu	ui roule	à $30\mathrm{km}$	\cdot h ⁻¹ . E	st-ce un	e vitesse	facilemen	nt atteigi	nable?			
			• • • • • • • •									
												_