Diseño de bloques al azar

Diseño de bloques al azar ¿Qué es un bloque?

Es una o varias unidades experimentales homogéneas:

- Una parcela que se divide en subparcelas
- Una camada compuesta por varios individuos
- Un mismo individuo que se puede tratar por más de un método o proporcionar más de un dato

Y dentro de cada bloque la asignación de los tratamientos a las u.e. es aleatoria

¿Mejora la productividad de una plantación de trigo si se aplica un fungicida para el control de la roya?

Diseño completamente aleatorizado (DCA)

Unidad experimental:

Réplicas:

Diseño de bloques al azar (DBA)

¿Con qué criterio bloquear?

- Utilizando cualquier factor que afecte la variable respuesta y que varíe entre las unidades experimentales
- No debería interesar efectuar comparaciones entre niveles del factor bloque
- El bloque debe ser internamente homogéneo
- □ El criterio debe ser tal que minimice la variabilidad entre las subparcelas dentro de un mismo bloque (control del error)
- La prueba t para muestras pareadas es equivalente a DBA con 2 tratamientos

Buenos criterios para bloquear

- Proximidad (parcelas adyacentes)
- Características físicas (edad, peso)
- Características genéticas (parientes, camadas, un mismo individuo)
- Tiempo

DBA

- Consiste en descomponer la variabilidad de la variable respuesta en:
- Variabilidad explicada o debida a los tratamientos (variabilidad entre tratamientos)
- Variabilidad explicada o debida a las parcelas (variabilidad entre bloques)
- Variabilidad no explicada por los tratamientos o variabilidad aleatoria o residual (variabilidad dentro)

El modelo estadístico es:

$$y_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}$$

- donde μ es la media general o media de la población
- α_i es el <u>efecto del tratamiento</u> i y que es común a todos los individuos que recibieron ese tratamiento
- \square ϵ_{ii} es el residuo o error aleatorio (dentro)

Hipótesis en DBA

- A □ Ho: $μ_1 = μ_2 = μ_3 = μ$ es decir no hay efecto de los tratamientos sobre la variable respuesta
 - H_1 : alguna $\mu_i \neq \mu$ es decir al menos un tratamiento tiene efecto sobre la variable respuesta
- **B** \Box Ho: $\sigma^2_{bloques} = 0$ es decir no hay variabilidad debida a los bloques
 - H_1 : $\sigma^2_{bloques} \neq 0$ es decir al hay variabilidad debida a los bloques

Tabla de ANOVA

Fuente de Variación	SC	GL	CM	F
A Entre Tratamientos	$b\Sigma(\overline{y}_i - \overline{y})^2$	a-1	SCA GIA	CM _A CMd
B Entre Bloques	$a\Sigma(\overline{y}_j - y)^2$	b-1	SC _B Gl _B	CM _B CMd
Dentro de tratamientos	Por diferencia	(a-1)x (b-1)	<u>SCd</u> GLd	
Total	$\sum (y_{ij} - y)^2$	n-1		

Volvamos al ejemplo

	Bloque	Control	Fungicida Dosis baja	Fungicida Dosis alta	Media Bloque
a=3	1	2.83	2.95	3.52	3.10
b=5	2	2.62	2.88	3.47	2.99
n _i =1	3	3.44	3.55	4.20	3.73
n=15	4	3.05	3.08	3.98	3.37
	5	2.44	2.54	3.60	2.86
Med	lia Trat	2.876	3.000	3.754	3.21

Fuente de Variación	SC	GL	CM	F
A Entre	$b\Sigma(\overline{y}_i - \overline{y})^2$	a 1	<u>SC</u> A	CM _A
Tratamientos	$DZ(y_i - y)$	a-1	GI_{A}	CMd
B Entre		L 1	<u>SC</u> _B	<u>СМ</u> в
Bloques	$\left a\Sigma (\overline{y}_j - \overline{y})^2 \right $	b-1	Gl_B	CMd
Dentro de	Por diferencia	(a-1)x	<u>SCd</u>	
tratamientos		(b-1)	GLd	
Total	$\sum (y_{ij} - y)^2$	n-1		

	Bloque	Control	Fungicida Dosis baja	Fungicida Dosis alta	Media Bloque
a=3	1	2.83	2.95	3.52	3.10
b=5	2	2.62	2.88	3.47	2.99
n _i =1	3	3.44	3.55	4.20	3.73
n=15	4	3.05	3.08	3.98	3.37
	5	2.44	2.54	3.60	2.86
Med	ia Trat	2.876	3.000	3.754	3.21

En Infostat:

■ Ingreso de datos

Anova:

A

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM	F	p-valor
Modelo	3.69	6	0.62	42.60	<0.0001
Tratamiento	2.26	2	1.13	78.10	<0.0001
Parcela	1.44	4	0.36	24.85	0.0001
Error	0.12	8	0.01		
Total	3.81	14			

Obsérvese que

SCA + SCB + SCd = SC total GLA + GLB + GLd = GL total

Supuestos del modelo

- Los b bloques deben ser extraídos al azar y deben ser independientes entre sí.
- Los tratamientos deben ser asignados al azar dentro de cada bloque
- Los errores deben estar normalmente distribuidos
- Los bloques deben responder en forma paralela (aditividad-paralelismo)
- Los tratamientos deben tener la misma variabilidad (homocedasticidad)

¿Cómo detectamos si hay normalidad de los errores?

- **□Gráficamente: QQ plot**
- **□Analíticamente:** Prueba de Shapiro Wilks

¿Cómo detectamos si hay paralelismo entre bloques?

□Gráficamente: Gráfico de perfiles

En Infostat => Gráfico de puntos. Variable a graficar: rinde. Criterios de clasificación: Tratamiento. Partición: Bloque (Particiones en el mismo gráfico)

□Analíticamente: Prueba de no aditividad de Tukey

Gráfico de paralelismo

¿Cómo detectamos si hay heterocedasticidad?

- Se calculan los residuos y se grafican vs los valores esperados o predichos
- Se espera encontrar una distribución al azar y con variabilidad constante

Comparaciones múltiples

- Tienen sentido solo para comparar tratamientos
- Es irrelevante comparar bloques
- El procedimiento es el mismo que en anova de un factor