

KORSZERŰ VIZSGÁLATI MÓDSZEREK LABORATÓRIUM

Compton-effektus vizsgálata

Katona Dávid

Mérőtársak: Máthé Marcell, Olar Alex

MÉRÉS DÁTUMA: 2018. 02. 22.

Bevezetés

A mérés célja

A mérés célja a Compton-effektus differenciális hatáskeresztmetszetének, illetve a szóródott foton energiájának vizsgálata a szög függvényében.

Elméleti háttér

A Compton-effektus a fotonok rugalmatlan szóródása (azok energiájához képest) gyengén kötött elektronokon. Mivel a szóródás rugalmatlan, a foton energiát ad át az elektronnak, amelynek mennyisége szögfüggő. A tömeghéj-feltételből, illetve a négyesimpulzus-megmaradásból levezethető a szóródott foton energiájának szögfüggése (1. egyenlet, ahol E_0 a beövő foton energiája, m_e az elektrontömeg, θ a szóródás szöge).

$$P := \frac{E}{E_0} = \frac{1}{1 + \frac{E_0}{m_e c^2} (1 - \cos \theta)} \tag{1}$$

A szórást a differenciális hatáskeresztmetszet $\frac{d\sigma}{d\Omega}(\theta)$ jellemzi, melynek definícióját írja le a 2. egyenlet, ahol N a θ irányba szóródott fotonok száma, n a szórócentrumok száma, j a bejövő részecskeáram-sűrűség, Ω pedig a térszög.

$$\frac{dN}{dt}(\theta) = n \cdot j \cdot \frac{d\sigma}{d\Omega}(\theta)\Delta\Omega \tag{2}$$

Kvantumtérelméleti számításokkal levezethető a Compton-szóródás hatáskeresztmet-szetére a Klein-Nishina formula (3. egyenlet, r_0 a klasszikus elektronsugár).

$$\frac{d\sigma}{d\Omega}(\theta) = \frac{r_0^2}{2}(P - P^2\sin^2\theta + P^3) \tag{3}$$

A mérés

A méréshez fotonforrásként 137 Cs izotópot használunk ($T_{\frac{1}{2}} = (11018.3 \pm 9.5 \text{ nap})$), amely az esetek (94.36 ± 0.20)%-ában β^- -bomlással gerjesztett állapotú 137 Ba-má alakul, majd rövid, 2.55 perces felezési idővel $E_0 = (661.659 \pm 0.003) keV$ energiájú gammasugárzás kíséretében alapállapotba kerül. A sugarat egy kollimátorral a céltárgyra irányítjuk, amely egy plasztik szcintillátor. Ez egyben elektrondetektorként is működik, így koincidencia-módszerrel tudunk mérni. A szórt gamma-fotonokat NaI(Tl) szcintillációs detektorral mérjük. Ennek hatásfoka energiafüggő, így a rugalmatlan szórás következtében ennek a változásával is számolni kell (4.egyenlet).

$$\eta(E[MeV]) = 0.98e^{-4.7E} + 0.05E \tag{4}$$

A szcintillációs kristályban a gamma-fotonok hatására kelezkező felvillanások fotoeffektus során elektront löknek ki, majd fotoelektron-sokszorozó után a jelet egy sokcsatornás analizátor segítségével dolgozzuk fel, így egy energiaspektrumot veszünk fel.

Aktivitás, sugárvédelmi becslések

Az izotóp aktivitása 1963. júl. 1.-jén 486.55 MBq volt, azóta 19960 nap telt el¹. Ez alapján a mérés napján az aktivtása (az eredeti aktivitás hibája nem ismert, így csak a felezési idő hibáját figyelembe véve, ezáltal alulbecsülve (5.egyenlet)):

$$A = A_0 2^{-t/T_{1/2}} = (138.6 \pm 0.2) MBq \tag{5}$$

Ebből a teljesítménye:

$$P = A \cdot 0.9436 \cdot 661.7 keV = (1.387 \pm 0.2) \cdot 10^{-5} W \tag{6}$$

Ez alapján a labor alatt (210 perc) kapható maximális sugárzás (m = 63 kg-ra):

$$H = Pt/m \simeq 2.8mSv \tag{7}$$

Ez az érték azonos nagyságrendű az éves átlagos sugárterheléssel, azonban ez azt kívánta volna meg, hogy lenyeljük a sugárzóanyagot. Ezzel szemben, ha 1m-re állunk tőle, és a felületemet $0.5\ m^2$ -nek veszem, akkor:

$$H = Pt/m\frac{0.5}{4\pi} \simeq 0.11mSv \tag{8}$$

Ez már egy nagyságrenddel kisebb az előbbinél, így az átlagos napi sugárterhelés kb. 17-szerese (szemben az előbbi kb. 420-szorossal). A 6cm ólomárnyékolás hatását is figyelembe véve:

$$H = Pt/m \frac{0.5}{4\pi} \cdot e^{-10} \simeq 5 \cdot 10^{-9} Sv \tag{9}$$

Ez 3 nagyságrenddel kisebb az átlagos napi sugárterhelésnél, így elhanyagolható kockázatot jelent a mérést végzőre.

¹https://www.timeanddate.com/segítségével

Mérési eredmények

A szögfüggés vizsgálata

A mérés során 30°-tól 110°-ig 10°-onként kb. 15 percig vettük fel a szórt fotonok spektrumát. A mérési eredmények az 1.táblázatban láthatók. Az adatokra és hibáikra² a csatornaszám függvényében Gauss-görbét illesztettünk exponenciális háttérrel (1. táblázat, 1. ábra). A táblázatban szereplő hibák az illesztésből eredő bizonytalanságok (statisztikus hiba), melyek a kovarianciamátrix diagonális elemeinek gyökeként számoltunk. Az adatfeldolgozási és az illesztést pythonban a matplotlib könyvtár segítségével végeztük.

szög [°]	csatorna	szórás	terület	csatorna hiba	szórás hiba	terület hiba	idő [t]
30	89.73	3.23	166	0.37	0.23	12	1224
40	82.31	3.11	173	0.36	0.44	35	1085
50	74.37	2.43	120	0.42	0.27	13	1002
60	66.15	1.96	85	0.43	0.43	26	962
70	60.63	1.93	108	0.24	0.23	15	1166
80	54.49	2.31	121	0.33	0.20	11	1100
90	50.92	1.67	100	0.38	0.27	18	977
100	46.62	1.46	101	0.19	0.13	9	1113
110	42.88	1.82	155	0.34	0.31	44	1098

1. táblázat. Mért adatok és illesztett Gauss-görbék paraméterei a szög függvényében

Az energia szögfüggése

A csatornaszám és az energia közt lineáris kapcsolat paramétereinek meghatározása érdekében kiszámoltuk az egyes szögekhez elméletileg tartozó energiaértékeket az 1. egyenlet segítségével (??. táblázat ????. oszlop). A Gauss-csúcsok helyét ennek függvényében ábrázolva (??. táblázat ????. oszlop) egyenest kapunk (??. ábra). Az illesztés paraméterei:

$$sdhfjk$$
 (10)

Az illesztésből meghatározható a χ^2 értékek az alábbi formula szerint (11. egyenlet, ??. táblázat).

$$\chi_i^2 = \frac{(y_i - f(x_i))^2}{\Delta y_i^2} \tag{11}$$

Az illesztést jellemző χ^2 =. 9 mérési adat mellett és 2 illesztendő paraméterrel a szabadsági fokok száma 8, az így a relatív χ^2_r =. Ez a scipy.stats könyvtár segítségével kiszámolva ????-os konfidenciaszintnek felel meg.

²a beütésszám gyökét vettük az adott csatornához tartozó hibának

1. ábra. Gauss-görbe (kék) illesztése a mért adatokra (sárga) különböző szögeknél

A fenti számolás csupán a statisztikus hibákat vette figyelembe, azonban az egyenesillesztésből adódóan az a és b paraméterek hibái korrelált szisztematikus hibáként jelennek meg. Ezt figyelembevéve a fenti χ^2 értéket kiszámoltuk a szisztematikus hibák figyelembevételével is a 12. egyenlet szerint $\varepsilon=\pm 1$ értékek eseténél. Ekkor a $\chi^2_1=$, $\chi^2_{-1}=$, a konfidenciaszintekre pedig $CL_1=$ és $CL_{-1}=$ adódtak.

$$\chi_i^2 = \frac{(y_i - f(x_i) + \varepsilon \cdot \delta y_{sys})^2}{\Delta y_i^2} \tag{12}$$

A differenciális hatáskeresztmetszet szögfüggése

A hatáskeresztmetszet meghatározásához először az illesztett Gauss-görbék alatti területből, a mérés időtartamából és a 4. egyenletből³ meghatároztuk az egységnyi idő alatt bejövő fotonszámot (2.táblázat). Erre illesztettünk a Klein-Nishina formula szerinti görbét, annak konstans együtthatóját (K) szabad paraméterként kezelve(2. ábra). Az illesztés eredménye: $K = (1.21 \pm 0.05)s^{-1}$, $\chi^2 = 11.0$, amelyhez tartozó konfidenciaszint CL = 0.200, tehát a Klein-Nishina formulától nem térnek el szignifikáns mértékben adataink.

Felhasználva a differenciális hatáskeresztmetszet definícióját (2.egyenlet), illetve a Klein-Nishina formula együtthatóját K az alábbi módon adódik (13. egyenlet első fele). Az egységnyi felületre jutó szórócentrumok száma meghatározható a minta részecskenyaláb irányú hosszából (dx=1.58~cm), sűrűségéből ($\rho=1.03~g\cdot cm^{-3}$), moláris tömegéből ($M=14~g\cdot mol^{-1}$), molekuláiban lévő elektronszámból (Z=8). A térszöget és a részecskeáram-sűrűséget a számolt aktivitásból és a geometriai elrendezésből lehet becsülni. Mivel a detektor a szórócentrumtól l=18.48~cm-re van, átmérője d=4.81~cm, ezért $\Delta\Omega=r^2\pi/l^2=0.0532~sr$. A részecskeáram h=13.95~cm hosszú és r=0.3~cm sugarú kollimátoron keresztül éri el a szórócentrumot, ezt felhasználva és pontszerű forrást feltételezve $I=(16025\pm23)~s^{-1}$. Mindezt felhasználva K becsült értéke:

$$K = \frac{r_0^2 n j \Delta \Omega}{2} = \frac{r_0^2 I dx \rho N_A Z \Delta \Omega}{2M} \simeq 19$$
 (13)

³A hatásfok számolásához az elméleti energiákat használtuk.

A számolt és mért érték közti nagyságrendi eltérést okozhatja a forrás nem pontszerű volta, ami miatt a sugárzás nagy része elnyelődik a tartóban. Emiatt a klasszikus elektronsugár becslése (amennyiben azt tekintjük változónak) lehetetlenné válik a bejövő részecskeáram pontosabb ismerete nélkül.

szög[°]	η	$\frac{1}{\eta} \frac{dN_{\text{mért}}}{dt} \left[s^{-1} \right]$	$\Delta \left(\frac{1}{\eta} \frac{dN_{\text{mért}}}{dt} \right) [s^{-1}]$	illesztett függvény $[s^{-1}]$	χ^2
30	0.0974	1.39	0.10	1.34	0.27
40	0.115	1.38	0.28	1.02	1.76
50	0.140	0.859	0.089	0.779	0.79
60	0.169	0.522	0.160	0.618	0.36
70	0.200	0.460	0.063	0.511	0.66
80	0.234	0.471	0.044	0.442	0.45
90	0.267	0.381	0.069	0.397	0.05
100	0.298	0.303	0.028	0.367	5.09
110	0.327	0.391	0.034	0.348	1.61

2. táblázat. Hatásfok, hatásfokkal súlyozott beütési gyakoriság, valamint az arra illesztett függvény $(K\cdot(P-P^2\sin^2\theta+P^3))$ értékei és a hozzájuk tartozó χ^2 .

2. ábra. A hatásfokkal súlyozott beütési gyakoriság szügfüggése, és az illesztett görbe