Оглавление

0.1	Критерий Коши, существование конечного предела последо-	
	вательности	3
0.2	Полпоследовательности	6

Лекция 5: Продолжение

05.10.2023

Для того чтобы вывести все слагаемые, мы полагаем, что n >= 3, тогда

$$x_n = 2 + \sum_{k=2}^n \frac{1}{k!} (1 - \frac{k-1}{n}) \cdot \dots \cdot (1 - \frac{1}{n})$$
 (5)(1)

Пример. (Пример умножения из предыдущей суммы) Если k = 3, то

$$(1-\frac{2}{n})\cdot(1-\frac{1}{n})$$

$$x_{n+1} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \left(1 - \frac{k-1}{n+1}\right) \cdot \dots \cdot \left(1 - \frac{1}{n+1}\right) + \frac{1}{(n+1)!} \left(1 - \frac{n}{n+1}\right) \cdot \dots \cdot \left(1 - \frac{1}{n+1}\right)\right)$$
(2)

Замечание. Слагаемое из (2) $(1-\frac{n}{n+1})$, также оно же в виде $\frac{1}{(n+1)^{n+1}}$ больше нуля.

Замечание. Если ${
m r}>0,\ {
m to}\ 1-\frac{r}{n+1}>1-\frac{r}{n}$

$$\Rightarrow (1 - \frac{k-1}{n+1}) = (1 - \frac{1}{n+1}) \cdot \dots \cdot (1 - \frac{1}{n+1}) > (1 - \frac{k-1}{n}) \cdot \dots \cdot (1 - \frac{1}{n})$$

Замечание. Получается, что в (1) и (2) одинаковое количество слагаемых. При этом, соотвествующе слагаемые относящихся к n+1 будет строго больше чем слагаемые относящихся к n.

Следовательно, равенство (2) больше, чем равенство (1).

Кроме того, в сумме относящийся к n+1 есть ещё n+1 слагаемое,

которые положительно.

$$(1), (2) \Rightarrow x_{n+1} > x_n \tag{3}$$

Примем во внимание неравенства для у и неравенства для x_n . Тогда мы будем иметь следующее неравенство:

$$(3)28.9(3)5.10 \Rightarrow x_1 < x_2 < \dots < x_n < y_n < y_{n-1} < \dots < y_1$$
 (4)

$$(4) \Rightarrow x_n < y_1, y_n > x, \forall n \tag{5}$$

Последовательность x_n строго возрастает и ограниченна сверху. Мы можем применить критерий существования конечного предела у строго монотонной возрастающей последовательности.

$$(5) \Rightarrow \exists \lim_{n \to \infty} x_n = a$$

Если мы посмотрим на последовательность y_n , она ограничена снизу в отношении пять и мы знаем что она строго монотонно убвает. По теореме о предельной последовательности получаем, что:

$$(5) \Rightarrow \exists \lim_{n \ to \infty} y_n = b$$

Теперь,

$$b = \lim_{n \to \infty} y_n = \lim_{n \to \infty} (1 + \frac{1}{n})^{n+1} =$$

(Воспользуемся свойством предела произведения пределов)

$$\lim_{n \to \infty} \left(1 + \frac{1}{n}\right) \cdot \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = 1 + \lim_{n \to \infty} x_n = a$$

Таким образом,

$$a = b = e \tag{6}$$

Замечание. Пользуемся свойствами пределов строго монотонной последовательностей.

Последовательность y_n строго убывает, а последовательность x_n строго возрастает поэтому её предел меньше любого y_n

$$(6) \Rightarrow x_n < e < y_n \forall n \tag{7}$$

$$(7) \Rightarrow e > x_1 = 2, e < y_5 < 3$$

$$y_5 = (\frac{6}{5})^6$$

Оглавление 2

Примечание. Нужно посчитать и понять намного ли это меньше 3 или

$$e = 2.718...$$

Замечание. Число е - одно из фундаментальных констант на которой держится вся математика.

Первые две - это 0 и 1. А третья - это π

0.1Критерий Коши, существование конечного предела последовательности

Теорема 1. Пусть имеется некоторая последовательность x_n .

$$x_{n} = 1$$

Для того чтобы $\exists\lim_{\substack{n\to\infty\\n\to\infty}}x_n\in\mathbb{R}$ необходимо и достаточно, чтобы $\forall \varepsilon>0,\exists N$ такой, что $\forall m,\forall n>N$ выполнено

$$|x_m - x_m| < \varepsilon \tag{8}$$

Замечание. Важное обстоятельство содержащееся в формулиров-

В формулировке не сказано чему будет равен этот предел. Какой именно он будет - неизвесто. Известно только то что он существует.

Это так называемая теорема существования.

Доказательства начнём с необходимости.

Примечание. Необходимость означает что предел существует.

Доказательство. Предположим, что

$$\lim_{k \to \infty} x_k = a \in \mathbb{R}$$

Тогда, по определению предела для любого $\varepsilon > 0 \exists N$ такой, что $\forall n>N$ выполнено

$$|x_n - a| < \frac{\varepsilon}{2} \tag{9}$$

Тогда,

$$(9) \Rightarrow \text{при} n > N, m > N$$

$$(9) \Rightarrow \text{при} n > N, m > N$$
$$|x_m - x_n| = |(x_m - a) - (x_n - a)| \le |x_m - a| + |x_n - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \Rightarrow (8)$$

То-есть, необходимость доказана. Если конечный предел существует, то соотношение 8 выполнено.

Теперь докажем достаточность.

Когда мы будем доказывать достаточность, то мы не знаем, существует предел или нет.

Замечание. Не каждая последователность имеет предел (например, $x_n = -1^n$).

Для доказательства мы будем использовать теорему Дедекинда. Определим сечение множества вещественных чисел.

Нижний класс А - это

$$A = \alpha \in \mathbb{R} : \exists N \text{такое}, \, \text{что} \forall n > N x_n > \alpha$$
 (10)

Замечание. Номер n от α зависит.

Каждому α соответствует свой номер n.

Вернхний класс А' - это

$$A' = \mathbb{R} \setminus A \tag{10'}$$

Множества, получившиеся в (10) и (10') - это сечения, и это нужно проверить.

Нужно проверить, что A и A^\prime не пустые и не совпадают с множеством вещественных чисел.

Возьмём

$$\varepsilon = 1$$

Тогда,

 $\exists N_0$ такой, что $\forall m, n > N_0$

$$|x_m - x_n| < 1$$

В частности, при m=N+1 и при n>N+1 имеем

$$|x_n - x_{N+1}| < 1 \Leftrightarrow x_{N+1} - 1 < x_n < x_{N+1} + 1 \tag{11}$$

$$(11) = > x_{N+1} - 1 \in A \tag{12}$$

(по определению)

Пример. Если мы возьмем любой п который > N+1, тогда получается что x_n больше чем число (12)

4

С другой стороны,

$$(11) \Rightarrow x_{N+1} + 1 \notin A, \text{ то-есть}, x_{N+1} + 1 \in A'$$
 (13)

При всех n, начиная с N + 1 x_n будет меньше чем то число. Оно никак не может удовлетворять соотношению (10).

Значит, это не может быть число из А, значит это число из А'.

$$(12), (13) \Rightarrow A \neq \emptyset, A' \neq \emptyset$$

Никакое из них не может быть множеством вещественных чисел. Давайте возьмём $\forall \alpha \in A, \forall \beta inA'$. Нужно доказать, что α всегда меньше β . В этом состоит условие определения сечения.

$$\alpha \in A = (10) > \exists N$$
такой, что $\forall n > Nx_n > \alpha$ (14)

Если бы для любого $\forall n>N$ выполнялось $x_n>\beta,$ то $\beta\in A.$ Однако, это не так, т.к. $\beta\in A'.$

То-есть,

$$\exists n_0 > N$$
такое, что $x_{n_0} \le \beta$ (15)

Примечание. Если бы всё время неравенство было в другую сторону $(x_n > \beta)$, тогда бы по определению (10), мы бы получили, что $\beta \in A$, но мы взяли $\beta \in A'$, то есть $\beta \notin A$, значит свойства выше выполнятся не может и выполняется свойство (15).

$$(14), (15) \Rightarrow \alpha \leq x_{n_0} \leq \beta \Rightarrow \alpha < \beta$$

То-есть, мы действительно получили сечение. Теперь можно применить теорему Дедекинда. По теореме Дедекинда, существует некое число

 $\exists a \in R$ такое, что $\forall \alpha in A, \forall \beta in A'$

$$\alpha \le a \le \beta \tag{16}$$

Возьмём $\forall \varepsilon > 0$

Тогда,

$$(8) = > \exists N$$
такое, что выполнено (8)

m = N + 1

Тогда,

$$(8) \Rightarrow \forall n > N+1$$

$$|x_n - x_{N+1}| < \varepsilon \Leftrightarrow x_n \in (x_{N+1} - \varepsilon, x_{N+1} + \varepsilon)$$
 (17)

Теперь, если посмотреть на соотношение (17),

$$(17) \Leftrightarrow x_n > x_{N+1} - \varepsilon u x_n < x_{N+1} + \varepsilon$$

Примечание. при $\forall n>N+1,$ выполнена правая счасть неравенства (17) $x_n>x_{N+1}-\varepsilon.$

Теперь рассмотрим (10) и (18).

$$(10), (18) \Rightarrow x_{N+1} - \varepsilon \in A \tag{19}$$

Теперь обратимся ко второму неравенству в соотношении (18).

Получается, что правая часть неравенства $x_n < x_{N+1}$ принадлежит А', потому что если бы принадлежало А, должно было бы быть другое неравенство в другую сторону/

$$(10), (18) \Rightarrow x_{N+1} + \varepsilon \in A' \tag{20}$$

Возьмём (19) $\Rightarrow x_{N+1} - \varepsilon$ как α ,

a (20) $\Rightarrow x_{N+1} - \varepsilon \text{ как } \beta$,

Тогда, применяем (16), получаем что:

$$(16), (19), (20) \Rightarrow x_{N+1} - \varepsilon \le a \le x_{N+1} + \varepsilon \tag{21}$$

Обратимся к соотношению (17)

$$(17): x_{N+1} < x_n < x_{N+1} + \varepsilon$$

Получаем, что a удовлетворяет этому неравенству и x_n удовлетворяет этому неравенству (лежит на промежутке) при $\forall n > N+1$.

Поэтому, (21) и (17') \Rightarrow

$$|x_n - a| < 2\varepsilon = (x_{N+1} + \varepsilon) - (x_{N+1} - \varepsilon) \tag{22}$$

Примечание. То-есть, если x_n и а лежат на этом промежутке, то длина отрезка между а и x_n меньше чем длина промежутка, на котором они лежат. Длина промежутка равна 2ε

Мы получили, что существует некоторое a такое, что для любого n > N+1 выполняется неравенство (22). А это определение предела. По определению предела,

$$(22) \Rightarrow \lim_{n \to \infty} x_n = a$$

Тем самым, достаточность в критерии доказано. доказать конкретно а мы не смогли, но оно существует.

0.2 Подпоследовательности

Последовательность - это отображение $f: \mathbb{N} \to \mathbb{R}$.

Оглавление 6

Допустим, что у нас имеется некое отображение $g:\mathbb{N}\to\mathbb{N}$ которое не является тождественным.

д не тождественное отображение.

Когда каждому n сопоставляется тоже самое n.

$$\forall n < mg(n) < g(m)$$

Тогда, подпоследовательностью называется суперпозиция этих выражений.

$$f(g): \mathbb{N} \to \mathbb{R}$$
.

Примечание. Классический вид:

$$x_n = 1$$

$$g(k) = n_k$$

$$n_1 < n_2 < \dots$$

Тем самым, вместо всей последовательностьи x_n мы рассматриваем только с такими номерами:

$$x_{n_1}, x_{n_2}, \dots$$

Это только часть первоначальной поледовательности.

Обозначение. Если эти номера определены, то последовательность обозначают

$$x_{n_k} \underset{k=1}{\overset{\infty}{\sim}}$$

Предел последовательности определяется как предел подпоследовательности по нижним индексам.

Если есть такая последовательность, говорят что:

 $A\in\overline{\mathbb{R}}$ является пределом, то-есть $x_{n_k}\to A$, при $k\to\infty$, если $\forall\Omega(A)$ существует такой номер K, что для любого k > K выполнено $x_{n_k}\in\Omega(A)$

Теорема 2. Пусть $x_n \to A$, при $n \to \infty$, где $A \in \overline{\mathbb{R}}$

и пусть мы имеем любой подпоследовательность

 $x_{n_k}{}_{k=1}^{\infty}$ выбранную из этой последовательности. $\Rightarrow x_{n_k} \to A$, при $k \to \infty$

Доказательство. Возьмём любую окрестность А.

$$\forall \Omega(A) \Rightarrow \exists N$$
такое, что $\forall n > N$

будет выполняться

$$x_n \in \Omega(A)$$

Воспользуемся тем, что поледовательность n_k строго возрастает,

$$\rightarrow n_1 \ge 1, n_2 > 1, n_2 \ge 2$$

(Шаг индукции)

$$n_k \ge k \Rightarrow n_{k+1} > n_k \ge k \rightarrow n_{k+1} > k+1$$

То-есть, если мы выберем подпоследовательность, то n_k будет больше или равно к. Начиная с какого-то индекса, будет строго больше.

Возьмём K = N.

Тогда, при $\mathbf{k}>$ N $n_k\geq k>N$ То-есть, при $\mathbf{k}>$ N, $x_{n_k}\in\Omega(A)$

$$\Rightarrow x_{n_k} \to A$$
, при $k \to \infty$