Classification **Decision Trees**

Huiping Cao

Example of DT

Examples of a Decision Tree

Tid	Refund	Marital	Taxable	Cheat
		Status	Income	
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Refund: categorical

Marital Status: categorical Taxable Income: continuous

Cheat: class

Training Data

Model: Decision Tree

Example of DT

oooooo

Training Data

Model: Decision Tree

Example of DT

000000

Training Data

Model: Decision Tree

Learn Model-Hunt's Alg.

Training Data

Model: Decision Tree

References

Training Data

Model: Decision Tree

Training Data

Model: Decision Tree

References

000000

Examples of a Decision Tree (cont.)

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Decision Tree Classification Task

References

Example: Apply Model to Test Data

Test Data

Re	fund	Marital Status	Taxable Income	Cheat
No)	Married	80K	?

References

Decision Tree Classification Task

Example of DT

References

Decision Tree Induction

- How many trees? Exponential in the number of attributes
- Many Algorithms: reasonably accurate, suboptimal, reasonable amount of time
 - Hunt's Algorithm (basis of many others)
 - CART (Classification and Regression Trees), a book by Breiman et al.
 - ID3, C4.5 by Quinlan

- Let D_t be the set of training records that reach a node t
- $y = \{y_1, y_2, \cdots, y_c\}$ are class labels
- General procedure
 - If D_t contains records that belong to the same class y_t , then t is a leaf node labeled as y_t

Learn Model-Hunt's Alg.

- If D_t contains records that belong to more than one class
 - Use an attribute test to split the data into smaller subsets
 - Recursively apply the procedure to each subset

Decision Tree Induction Algorithms - Design Issues

- How should the training records be split?
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Greedy strategy: split the records based on an attribute test that optimizes certain criterion
- When to stop splitting
 - Naive: (1) all the records have identical attribute values; or (2) all the records belong to the same class
 - Is there any better way? Early stop?

Specify the Attribute Test Condition?

- Depends on attribute types
 - Nominal
 - Ordinal
 - Continuous
- Depends on number of ways to split
 - 2-way split
 - Multi-way split

Splitting Based on Nominal Attributes

Multi-way split: Use as many partitions as distinct values

Binary split: Divides values into two subsets. Need to find optimal partitioning.

Splitting Based on Ordinal Attributes

Multi-way split: Use as many partitions as distinct values

Binary split: Divides values into two subsets. Need to find optimal partitioning and preserve the order among attribute values.

Splitting Based on Continuous Attributes

- Discretization to form an ordinal categorical attribute
 - Static discretize once at the beginning
 - Dynamic ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.
- Binary decision: (A < v) or $(A \ge v)$
 - Consider all possible splits and find the best cut
 - Can be more compute intensive

00000000000

(ii) Multi-way split

Determine the best split

Before Splitting:

Example of DT

■ 10 records of class 0

■ 10 records of class 1

Which test condition is the best?

Determine the Best Split – Node Impurity

- Splitting criterion
 - Splitting attribute
 - Splitting point or splitting subset
 - Ideally, the resulting partitions at each branch are as "pure" as possible.
- Need a measure of node impurity
 - The smaller the degree of impurity, the more skewed the class distribution. The BETTER.
 - Node with class distribution (0,1) has zero impurity.
 - Node with class distribution (0.5,0.5) has highest impurity.

References

 Chapter 3: Introduction to Data Mining (2nd Edition) by Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, and Vipin Kumar

DecisionTreeClassifier:

```
https:
```

//scikit-learn.org/stable/modules/generated/
sklearn.tree.DecisionTreeClassifier.html