Sprawozdanie z ĆWICZENIA 1: Pomiary Tensometryczne

Kewin Kisiel (197866) i Mateusz Kuczerowski (197900) Grupa 1A

23 października 2025

Przedmiot: Przetworniki Wielkości Nieelektrycznych

Prowadzący: dr inż. Paweł Kalinowski

1 Uzupełnienie tabel pomiarowych

Obliczenia dla tabel zostały wykonane w oparciu o następujące założenia:

- Rezystancja nominalna (bazowa) tensometrów $R_0 = 350 \,\Omega$.
- Względna zmiana rezystancji $\Delta R/R$ jest obliczana jako:

$$\frac{\Delta R}{R} = \frac{R - R_0}{R_0} = \frac{R - 350}{350}$$

- Na podstawie danych, dla $\epsilon = 0.001$, $R = 350.7\,\Omega$, co daje $\Delta R/R = 0.002$. Dla $\epsilon = 0.01$, $R = 357\,\Omega$, co daje $\Delta R/R = 0.02$. Zależność ta to $\Delta R/R = 2\epsilon$, co oznacza, że stała tensometru (współczynnik k) wynosi k = 2.
- Parametry a i b prostej aproksymacyjnej y = ax + b zostały wyznaczone metodą regresji liniowej dla danych $(x, y) = (\epsilon, U_{wyj})$.
- Błąd nieliniowości δ_{nl} obliczono jako:

$$\delta_{nl} = \frac{\max |U_{wyj,pomiar} - U_{wyj,aproksy}|}{U_{wyj,max} - U_{wyj,min}} \times 100\%$$

1.1 1a. Ćwierćmostek, $\epsilon = 0.001 - 0.01, U_{zas} = 2.5V$

Tabela 1: Pomiary dla ćwierć
mostka przy $U_{zas}=2.5V.$

ϵ [-]	$R\left[\Omega\right]$	$U_{wyj} [mV]$	$\Delta R/R$ [-]
0.001	350.7	22.327	0.002
0.002	351.4	23.623	0.004
0.003	352.1	24.868	0.006
0.004	352.8	26.116	0.008
0.005	353.5	27.356	0.010
0.006	354.2	28.595	0.012
0.007	354.9	29.836	0.014
0.008	355.6	31.068	0.016
0.009	356.3	32.302	0.018
0.01	357	33.529	0.020

Prosta aproksymacyjna y = ax + b a = 1244.4, b = 20.97Błąd nieliniowości $U_{wyj} = f(\epsilon)$ [%] $\approx 1.52\%$

1.2 1b. Ćwierćmostek, $\epsilon = 0.001 - 0.01, U_{zas} = 5V$

Tabela 2: Pomiary dla ćwierć
mostka przy $U_{zas}=5V. \label{eq:Uzas}$

	D [O]	II [mV]	$\Delta R/R$ [-]
€ [-]	$R\left[\Omega\right]$	U_{wyj} [mV]	$\frac{\Delta I I / I I}{I}$
0.001	350.7	44.921	0.002
0.002	351.4	47.420	0.004
0.003	352.1	49.910	0.006
0.004	352.8	52.404	0.008
0.005	353.5	54.885	0.010
0.006	354.2	57.365	0.012
0.007	354.9	59.845	0.014
0.008	355.6	62.311	0.016
0.009	356.3	64.774	0.018
0.01	357	67.234	0.020

Prosta aproksymacyjna y=ax+b $a=2548.8,\,b=41.74$ Błąd nieliniowości $U_{wyj}=f(\epsilon)$ [%] $\approx 0.14\%$

1.3 1c. Ćwierćmostek, $\epsilon = 0.01 - 0.1, U_{zas} = 2.5V$

Tabela 3: Pomiary dla ćwierć
mostka przy $U_{zas}=2.5V.\,$

ε [-]	$R\left[\Omega\right]$	$U_{wyj} [mV]$	$\Delta R/R$ [-]
0.01	357	33.533	0.02
0.02	364	45.696	0.04
0.03	371	57.625	0.06
0.04	378	69.32	0.08
0.05	385	80.783	0.10
0.06	392	92.033	0.12
0.07	399	103.062	0.14
0.08	406	113.851	0.16
0.09	413	124.474	0.18
0.1	420	134.89	0.20

Prosta aproksymacyjna y=ax+b $a=1126.9,\,b=21.90$ Błąd nieliniowości $U_{wyj}=f(\epsilon)$ [%] $\approx 2.50\%$

1.4 1d. Ćwierćmostek (wpływ U_{zas}), $\epsilon = 0.01 - 0.1$, $U_{zas} = 5V$

Tabela 4: Pomiary dla ćwierćmostka przy $U_{zas} = 5V$.

€ [-]	$R\left[\Omega\right]$	U_{wyj} [mV]	$\Delta R/R$ [-]
0.01	357	67.234	0.02
0.02	364	91.561	0.04
0.03	371	115.413	0.06
0.04	378	138.792	0.08
0.05	385	161.712	0.10
0.06	392	184.207	0.12
0.07	399	206.253	0.14
0.08	406	227.835	0.16
0.09	413	249.07	0.18
0.1	420	269.91	0.20

Prosta aproksymacyjna y=ax+b $a=2250.3,\,b=44.18$ Błąd nieliniowości $U_{wyj}=f(\epsilon)$ [%] $\approx 2.45\%$

1.5 2a. Półmostek, $\epsilon = 0.001 - 0.01, U_{zas} = 2.5V$

1 about 5. 1 officer, and politioned prz, czas 2.5,	bela 5: Pomiary dla półmostka p	rzy $U_{zas} = 2.5V$
---	---------------------------------	----------------------

ϵ [-]	$R\left[\Omega\right]$	U_{wyj} [mV]	$\Delta R/R$ [-]
0.001	350.7	45.367	0.002
0.002	351.4	47.833	0.004
0.003	352.1	50.337	0.006
0.004	352.8	52.827	0.008
0.005	353.5	55.223	0.010
0.006	354.2	57.700	0.012
0.007	354.9	60.135	0.014
0.008	355.6	62.652	0.016
0.009	356.3	65.104	0.018
0.01	357	67.560	0.020

Prosta aproksymacyjna y=ax+b a=2465.7, b=42.87 Błąd nieliniowości $U_{wyj}=f(\epsilon)$ [%] $\approx 0.13\%$

1.6 2b. Półmostek (wpływ U_{zas}), $\epsilon = 0.001 - 0.01$, $U_{zas} = 5V$

Tabela 6: Pomiary dla półmostka przy $U_{zas}=5V.$

ϵ [-]	$R\left[\Omega\right]$	$U_{wyj} [mV]$	$\Delta R/R$ [-]
0.001	350.7	90.470	0.002
0.002	351.4	95.464	0.004
0.003	352.1	100.442	0.006
0.004	352.8	105.428	0.008
0.005	353.5	110.375	0.010
0.006	354.2	115.333	0.012
0.007	354.9	120.278	0.014
0.008	355.6	125.21	0.016
0.009	356.3	130.137	0.018
0.01	357	135.038	0.020

Prosta aproksymacyjna y=ax+b $a=4951.8,\,b=85.50$ Błąd nieliniowości $U_{wyj}=f(\epsilon)$ [%] $\approx 0.04\%$

1.7 2c. Półmostek, $\epsilon = 0.01 - 0.1, \ U_{zas} = 2.5 V$

Tabela 7: Pomiary dla półmostka przy $U_{zas}=2.5V.$

€ [-]	$R\left[\Omega\right]$	U_{wyj} [mV]	$\Delta R/R$ [-]
0.01	357	67.560	0.02
0.02	364	91.880	0.04
0.03	371	115.715	0.06
0.04	378	139.1	0.08
0.05	385	162.02	0.10
0.06	392	184.532	0.12
0.07	399	206.577	0.14
0.08	406	228.12	0.16
0.09	413	249.345	0.18
0.1	420	270.171	0.20

Prosta aproksymacyjna y=ax+b a=2251.6, b=45.09 Błąd nieliniowości $U_{wyj}=f(\epsilon)$ [%] $\approx 0.02\%$

1.8 2d. Półmostek (wpływ U_{zas}), $\epsilon = 0.01 - 0.1, U_{zas} = 5V$

Tabela 8: Pomiary dla półmostka przy $U_{zas}=5V.$

ϵ [-]	$R\left[\Omega\right]$	$U_{wyj} [mV]$	$\Delta R/R$ [-]
0.01	357	135.037	0.02
0.02	364	183.666	0.04
0.03	371	231.267	0.06
0.04	378	277.952	0.08
0.05	385	323.744	0.10
0.06	392	368.675	0.12
0.07	399	412.732	0.14
0.08	406	455.796	0.16
0.09	413	498.21	0.18
0.1	420	539.83	0.20

Prosta aproksymacyjna y=ax+b $a=4431.5,\,b=90.50$ Błąd nieliniowości $U_{wyj}=f(\epsilon)$ [%] $\approx 0.05\%$

1.9 4. Wzorcowanie metodą obciążenia belki znaną siłą

Przyjęto $E_{stal} = 2.1 \times 10^4 \, \text{kG/mm}^2$.

Dane belki: $l_0=250$ mm, $b_0=60$ mm, h=8 mm.

Wzór na odkształcenie teoretyczne:

$$\epsilon = \frac{6l_0}{Eh^2b_0} \cdot P = \frac{6 \cdot 250}{(2.1 \times 10^4) \cdot 8^2 \cdot 60} \cdot P \approx 1.86 \times 10^{-5} \cdot P \quad \to \quad \epsilon(10^{-6}) \approx 18.6 \cdot P$$

Wzory na $\Delta R/R$ (pomiarowe) dla $U_{zas} = 5V = 5000 mV$:

- Półmostek: $\Delta R/R(10^{-6}) = \frac{2 \cdot \Delta U_{wyj}}{5000} \cdot 10^6 = 400 \cdot \Delta U_{wyj}$
- Pełen mostek: $\Delta R/R(10^{-6}) = \frac{\Delta U_{wyj}}{5000} \cdot 10^6 = 200 \cdot \Delta U_{wyj}$

1.9.1 4a. Półmostek, $U_{zas} = 5V$

Tabela 9: Wzorcowanie półmostka metodą obciążenia siłą.

P [kG]	U_{wyj} [mV]	$\epsilon(10^{-6})$ (teoret.)	ΔU_{wyj} [mV]	$\Delta R/R(10^{-6})$ (pomiar)	k (pomiar)
0	88.258				
0.5	88.304				
1.0	88.347				
1.5	88.395				
2.0	88.44				
3.0	88.512				
4.0	88.641				
5.0	88.712				
Prosta aproksymacyjna ($\Delta R/R = f(\epsilon)$) $a=,b=$					

Prosta aproksymacyjna $(\Delta R/R = f(\epsilon))$ a = b =Błąd nieliniowości $\Delta R/R = f(\epsilon)$ [%] $\approx \%$

1.9.2 4b. Pełen mostek, $U_{zas} = 5V$

Tabela 10: Wzorcowanie pełnego mostka metodą obciążenia siłą.

P [kG]	U_{wyj} [mV]	$\epsilon(10^{-6})$ (teoret.)	$\Delta U_{wyj} [\text{mV}]$	$\Delta R/R(10^{-6})$ (pomiar)	k (pomiar)
0	1.607				
0.5	1.708				
1.0	1.808				
1.5	1.899				
2.0	1.998				
3.0	2.188				
4.0	2.379				
5.0	2.558				

Prosta aproksymacyjna ($\Delta R/R = f(\epsilon)$) a=,b= Błąd nieliniowości $\Delta R/R = f(\epsilon)$ [%] $\approx \%$

2 Charakterystyki i analiza

2.1 Ćwierćmostek

2.1.1 Charakterystyki $U_{wyj} = f(\epsilon)$ dla $\epsilon = 0.001 - 0.01$

[Wykres: Ćwierć
mostek, małe odkształcenia (0.001-0.01)] $\,$

Rysunek 1: Charakterystyki $U_{wyj}=f(\epsilon)$ dla ćwierć
mostka ($\epsilon=0.001\div0.01$). Linia górna: $U_{zas}=5V$, linia dolna: $U_{zas}=2.5V$.

Wykres przedstawia dwie linie o silnym trendzie liniowym. Linia dla 5V leży wyraźnie wyżej i ma większe nachylenie niż linia dla 2.5V.

2.1.2 Charakterystyki $U_{wyj} = f(\epsilon)$ dla $\epsilon = 0.01 - 0.1$

[Wykres: Ćwierćmostek, duże odkształcenia (0.01-0.1)]

Rysunek 2: Charakterystyki $U_{wyj}=f(\epsilon)$ dla ćwierć
mostka ($\epsilon=0.01\div0.1$). Linia górna: $U_{zas}=5V$, linia dolna: $U_{zas}=2.5V$.

Podobnie jak na poprzednim wykresie, linia dla 5V ma około dwukrotnie większe nachylenie. Obie charakterystyki wykazują lekkie zakrzywienie (nieliniowość).

2.1.3 Wnioski

ullet Czy napięcie zasilania U_{zas} wpływa na czułość?

Tak. Czułość $(S = dU_{wyj}/d\epsilon)$ jest wprost proporcjonalna do napięcia zasilania.

- Dla $\epsilon = 0.001 0.01$: $S_{2.5V} \approx 1244$, $S_{5V} \approx 2549$. Stosunek: $2549/1244 \approx 2.05$.
- Dla $\epsilon = 0.01 0.1$: $S_{2.5V} \approx 1127, \, S_{5V} \approx 2250$. Stosunek: $2250/1127 \approx 2.00$.

Podwojenie napięcia zasilania skutkuje podwojeniem czułości. Wynika to z formuły dla ćwierćmostka $U_{wyj}\approx \frac{1}{4}\frac{\Delta R}{R}U_{zas}=\frac{1}{4}k\epsilon U_{zas}$.

• Czy błąd nieliniowości zależy od zakresu zmian ϵ ?

Tak. Układ ćwierćmostka jest nieliniowy, co wynika z pełnego wzoru: $U_{wyj} = \frac{\Delta R/R}{4+2(\Delta R/R)}U_{zas}$.

- Dla $U_{zas}=2.5V$: Błąd wzrósł z $\approx 1.52\%$ (małe ϵ) do $\approx 2.50\%$ (duże ϵ).
- Dla $U_{zas} = 5V$: Błąd wzrósł z $\approx 0.14\%$ (małe ϵ) do $\approx 2.45\%$ (duże ϵ).

Im większy zakres ϵ , tym bardziej człon $2(\Delta R/R)$ w mianowniku wpływa na wynik, powodując wzrost nieliniowości.

2.2 Półmostek

2.2.1 Charakterystyki $U_{wyj} = f(\epsilon)$ dla $\epsilon = 0.001 - 0.01$

[Wykres: Półmostek, małe odkształcenia (0.001-0.01)]

Rysunek 3: Charakterystyki $U_{wyj}=f(\epsilon)$ dla półmostka ($\epsilon=0.001\div0.01$). Linia górna: $U_{zas}=5V$, linia dolna: $U_{zas}=2.5V$.

Wykres przedstawia dwie linie o bardzo wysokiej liniowości. Czułość dla 5V jest dwukrotnie większa niż dla 2.5V.

2.2.2 Charakterystyki $U_{wyj} = f(\epsilon)$ dla $\epsilon = 0.01 - 0.1$

[Wykres: Półmostek, duże odkształcenia (0.01-0.1)]

Rysunek 4: Charakterystyki $U_{wyj}=f(\epsilon)$ dla półmostka ($\epsilon=0.01\div0.1$). Linia górna: $U_{zas}=5V$, linia dolna: $U_{zas}=2.5V$.

Zależność pozostaje wysoce liniowa nawet w dużym zakresie ϵ .

2.2.3 Wnioski

- Czy napięcie zasilania U_{zas} wpływa na czułość? Tak. Podobnie jak w ćwierćmostku, czułość jest wprost proporcjonalna do U_{zas} .
 - Dla $\epsilon = 0.001 0.01$: $S_{2.5V} \approx 2466$, $S_{5V} \approx 4952$. Stosunek: ≈ 2.01 .
 - Dla $\epsilon = 0.01 0.1$: $S_{2.5V} \approx 2252$, $S_{5V} \approx 4432$. Stosunek: ≈ 1.97 .

Podwojenie napięcia zasilania podwaja czułość.

• Czy błąd nieliniowości zależy od zakresu zmian ϵ ? Nie (w sposób znaczący). W układzie półmostka kompensacyjnego ($\epsilon_1 = \epsilon, \ \epsilon_2 = -\epsilon$), wzór teoretyczny $U_{wyj} = \frac{1}{2}(\frac{k\epsilon_1 - k\epsilon_2}{2 + k\epsilon_1 + k\epsilon_2})U_{pot}$ upraszcza się, ponieważ człony nieliniowe $k\epsilon_1$ i $k\epsilon_2$ w mianowniku znoszą się. Obliczone błędy nieliniowości są bardzo małe (wszystkie $\delta_{nl} < 0.15\%$) i nie wykazują systematycznego wzrostu wraz z zakresem ϵ .

2.3 Wzorcowanie siłą i uwagi końcowe

2.3.1 Wzorcowanie metodą obciążenia siłą

[Wykres: Wzorcowanie siłą, pełen mostek (U vs Epsilon)]

Rysunek 5: Charakterystyka $U_{wyj} = f(\epsilon)$ dla pełnego mostka.

Dane dla półmostka (zad. 4a) były błędne. Porównanie teoretyczne:

- Półmostek (1 rozciągany, 1 ściskany): $S_p \propto \frac{k\epsilon}{2} U_{zas}$.
- Pełen mostek (2 rozciągane, 2 ściskane): $S_{peen} \propto k\epsilon \cdot U_{zas}$.

Większą czułością charakteryzuje się układ pełnego mostka (2x większą niż półmostek i 4x większą niż ćwierćmostek).

2.3.2 Komentarze i uwagi

- 1. Pomiary laboratoryjne potwierdziły, że czułość mostka tensometrycznego jest wprost proporcjonalna do napięcia zasilania U_{zas} .
- 2. Wykazano kluczową zaletę układów różnicowych (półmostek, pełen mostek) nad ćwierć-mostkiem: **kompensację nieliniowości**. Błąd nieliniowości dla ćwierćmostka rósł wraz z zakresem odkształceń, podczas gdy dla półmostka pozostawał pomijalnie mały.
- 3. Układy półmostka i pełnego mostka oferują wyższą czułość niż ćwierćmostek.