

divisor as factor of principal divisor

Canonical name DivisorAsFactorOfPrincipalDivisor

Date of creation 2013-03-22 18:02:09 Last modified on 2013-03-22 18:02:09

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 9

Author pahio (2872) Entry type Theorem Classification msc 13A05 Classification msc 11A51

 $Related\ topic \qquad Every Ideal In ADedekind Domain Is AFactor Of A Principal Ideal$

Let an integral domain \mathcal{O} have a divisor theory $\mathcal{O}^* \to \mathfrak{D}$. The http://planetmath.org/Divisor of divisor theory implies that for any divisor \mathfrak{a} , there exists an element ω of \mathcal{O} such that \mathfrak{a} divides the principal divisor (ω) , i.e. that $\mathfrak{ac} = (\omega)$ with \mathfrak{c} a divisor. The following theorem states that \mathfrak{c} may always be chosen such that it is coprime with any beforehand given divisor.

Theorem. For any two divisors \mathfrak{a} and \mathfrak{b} , there is a principal divisor (ω) such that

$$\mathfrak{ac} = (\omega)$$

and

$$gcd(\mathfrak{b}, \mathfrak{c}) = (1).$$

Proof. Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_s$ all distinct prime divisors, which divide the product \mathfrak{ab} , and let the divisor \mathfrak{a} be http://planetmath.org/ExactlyDividesexactly divisible by the powers $\mathfrak{p}_i^{a_1}, \ldots, \mathfrak{p}_s^{a_s}$ (the cases $a_i = 0$ are not excluded). For each $i = 1, \ldots, s$, we choose a nonzero element α_i of \mathcal{O} being exactly divisible by the power $\mathfrak{p}_i^{a_i}$; the choosing is possible, since any nonzero element of the ideal determined by the divisor $\mathfrak{p}_i^{a_i}$, not belonging to the sub-ideal determined by the divisor $\mathfrak{p}_i^{a_i+1}$, will do. According to the http://planetmath.org/ChineseRemainderTheore remainder theorem, there exists a nonzero element ω of the ring \mathcal{O} such that

$$\omega \equiv \alpha_i \mod \mathfrak{p}_i^{a_i+1} \quad (i = 1, \dots, s). \tag{1}$$

Because α_i is divisible by $\mathfrak{p}_i^{a_i}$, the element ω is divisible by $\mathfrak{p}_1^{a_1} \cdots \mathfrak{p}_s^{a_s} = \mathfrak{a}$, i.e. $(\omega) = \mathfrak{ac}$. If one of the divisors \mathfrak{p}_i would divide \mathfrak{c} , then (ω) would be divisible by $\mathfrak{p}_i^{a_i+1}$ and thus by (1), also α_i were divisible by $\mathfrak{p}_i^{a_i+1}$. Therefore, no one of the prime divisors $\mathfrak{p}_1, \ldots, \mathfrak{p}_s$ divides \mathfrak{c} . On the other hand, every prime divisor dividing the divisor \mathfrak{b} divides \mathfrak{ab} and thus is one of $\mathfrak{p}_1, \ldots, \mathfrak{p}_s$. Accordingly, the divisors \mathfrak{b} and \mathfrak{c} have no common prime divisor, i.e. $\gcd(\mathfrak{b}, \mathfrak{c}) = (1)$.

References

[1] М. М. Постников: Введение в теорию алгебраических чисел. Издательство "Наука". Москва (1982).