Introduction to Machine Learning

Albert Ruiz

What was the first Machine Learning application?

First ML application: the spam filter

How would you code a spam filter?

Traditional approach: the developer learns

Developer does (example):

- Find common words: IBAN , discount , offer , bank , password ...
- Find patterns in introductory phrases: Dear Sir/Madam, Mr/Mrs/Miss ...
- Find patterns in email addresses: @hacker.com , @no-reply.com ...
- Calculate weights

ML approach: the machine learns

What are we going to learn today?

Agenda

- 1. Introduction (5 min)
 - What is ML?
 - Why ML?
 - ML in insurance
- 2. End-to-end ML (45 min)
 - Data
 - Processing
 - Vectorization
 - Modelling
 - Visualization
- 3. Hands-on ML (practice, 1h)

Introduction

What is ML?

Machine learning is the field of study that gives computers the ability to learn without being explicitely programmed.

[Arthur L. Samuel, 1959]

AI/ML/DL/DS/BD

ML can help humans learn!

Some modern problems are too complex for traditional approaches:

- Problems that require fine-tuning or long list of rules
- Problems with fluctuating data
- Getting insights from large amounts of data

A wide range of use cases

- Text classification
- Sentiment analyisis
- Summarizing long text
- Data extraction from images
- Fraud detection
- Chatbots
- Client segmentation
- Recommending a product to a client
- Speech recognition
- Forecasting

ML applied to the insurance sector

Common steps in a ML project

The common steps

Data

Structured / Unstructured

Processing

Vectorization

Modelling

Visualization

Structured data

- Well defined interface to access data
- Data is formatted
- SQL, XML, HTML, JSON, XLSX, CSV, PNG...

Unstructured data

- No predefined interface to access data
- No predefined format
- PDF, TXT, TEX, MD...

When structured isn't structured

Processing

Data

Vectorization

Modelling

Vi	su	al	iz	al	ti	0	ſ
				_	_	-	

name	surname	sex	birthdate	birthplace	country	phone
Max	Rockatasnky	М	10-11-1984	Perth	AU	+61 8 6245 2100
Immortan	Joe	m	01-02-1949	Canberra	AU	+61 4 1234 5678
James	Connor	М	1985-02-28	Los Angeles	USA	unknown
Alex Murphy		М	1979	Detroit	US	tbc
John	McClane	М	1969-07-17	Los Angeles	US	4242706247
Pete	Mitchell	MALE	1972-10-10	San Diego	US	tbc

Labelled / Unlabelled

Processing

Vectorization

Labelled datasets include the desired solutions (labels), used in supervised learning.

Modelling

Visualization

In a spam filter, datasets include emails alredy classified into ham or spam.

Labelled / Unlabelled

Labelled datasets include the desired solutions (labels), used in supervised learning

asdf 20/28

Categorical / Quantitative

Processing

Vectorization

Modelling

Training dataset / Testing dataset

Processing

Data

Vectorization

Modelling

Insuficient quantity of training data

Processing

Data

Vectorization

Modelling

Non-representative training data

Processing

Data

Vectorization

Modelling

Poor quality

Processing

Vectorization

Modelling

Hands-on ML (practice)

Questions?

(albert.ruizalvarez@zurich.com)

Thank you!