Quantum Operation

- A general theory of $\rho \mapsto \mathscr{E}(\rho)$ capturing all <u>physically possible dynamic changes to a state</u>
 - · For example, unitary evolution or measurements
 - · Physically possible dynamic changes associated with maps on the set of density operators
- System Q coupled with environment E
 - Model 1: QE starts in $\rho\otimes \rho^E$ and undergoes U
 - $\rho \mapsto \operatorname{tr}_E \left(U(\rho \otimes \rho^E) U^{\dagger} \right)$
 - Analysis: without loss of generality we assume $\rho^E=|0_E\rangle\langle0_E|$ —use purification
 - Let $\{\,|\,i_E\rangle\}$ be basis for E, define $E_i\equiv\langle i_E\,|\,U\,|\,0_E\rangle$ (operator on Q), then $\rho\mapsto\sum E_i\rho E_i^\dagger$

$$\bullet \ \ U \left| \psi \right\rangle \left| \left. 0_E \right\rangle = \sum \left(\left\langle i_E \right| U \left| \left. 0_E \right\rangle (\left| \psi \right\rangle) \right) \left| \left. i_E \right\rangle = \sum \left(E_i \left| \psi \right\rangle \right) \left| \left. i_E \right\rangle \right.$$

- $E_i | \psi
 angle$ is the "Q-vector" component of $|i_E
 angle$ in $U | \psi
 angle | 0_E
 angle$
- Conversely, $E_i^\dagger \, | \, \psi \rangle$ is the Q-vector component of $| \, 0_E \rangle$ in $U \, | \, \psi \rangle \, | \, i_E \rangle$
- $\bullet \ \operatorname{tr}_E\left(U(\rho \otimes |\, 0_E\rangle\langle 0_E|\,)U^\dagger\right) = \sum \langle i_E|\, U(\rho \otimes |\, 0_E\rangle\langle 0_E|\,)U^\dagger |\, i_E\rangle = \sum \langle i_E|\, U\, |\, 0_E\rangle\rho\langle 0_E|\, U^\dagger |\, i_E\rangle = \sum E_i\rho E_i^\dagger |\, i_E\rangle = \sum E_i$
- $\sum E_i^\dagger E_i = I \iff \rho \mapsto \operatorname{tr}_E \left(U(\rho \otimes \rho^E) U^\dagger \right)$ corresponds to (measuring Q by $\{E_i\}$) or (measuring E in computational basis) after undergoing U with result of measurement lost
- Example: Consider single-qubit Q, E with $U = |0\rangle\langle 0| \otimes I + |1\rangle\langle 1| \otimes X$, then $U(\alpha|0\rangle + \beta|1\rangle)|0\rangle = \alpha|00\rangle + \beta|11\rangle. \text{ Then } E_1(\alpha|0\rangle + \beta|1\rangle) = \alpha|0\rangle \implies E_0 = |0\rangle\langle 0|,$ similarly $E_1 = |1\rangle\langle 1|$.
 - Lost measurement in computational basis corresponds to unitary evolution of $U|\psi\rangle|0\rangle$

$$U \equiv \frac{X}{\sqrt{2}} \otimes I + \frac{Y}{\sqrt{2}} \otimes X, \text{ then } U(\alpha \mid 0) + \beta \mid 1\rangle) \mid 0\rangle = \left(\frac{X}{\sqrt{2}} \mid \psi \rangle\right) \mid 0\rangle + \left(\frac{Y}{\sqrt{2}} \mid \psi \rangle\right) \mid 1\rangle$$

- $E_0 = X/\sqrt{2}$, $E_1 = Y/\sqrt{2}$, corresponds to applying X, Y randomly with probability 1/2
- Model 2: QE starts in $\rho\otimes\sigma$, undergoes U and joint projective measurement $\{P_m\}$
 - Remark: General measurement = unitary evolution + projective measurement

$$\text{ Let } \mathscr{E}_m(\rho) \equiv \operatorname{tr}_E \left(P_m U(\rho \otimes \sigma) U^\dagger P_m \right), \ \sigma = \sum q_j |j\rangle \langle j| \, \text{, and } E_{jk} \equiv \sqrt{q_j} \cdot \langle k_E | P_m U |j\rangle$$

$$\mathscr{E}_m(\rho) = \sum q_j \cdot \operatorname{tr}_E \left(P_m U(\rho \otimes |j\rangle \langle j|) U^\dagger P_m \right) = \sum_{jk} E_{jk} \rho E_{jk}^\dagger$$

- Given any $\{\mathscr{E}_m\}$ such that $\sum\mathscr{E}_m$ is trace-preserving, introduce E with basis $|m,k\rangle_E$, initial state $|0\rangle_E$, $U:U|\psi\rangle|0\rangle_E=\sum E_{mk}|\psi\rangle|m,k\rangle$, and $P_m=\sum_k|m,k\rangle\langle m,k|$, then $\mathrm{tr}_E\left(P_mU\left(\rho\otimes|0\rangle_E\langle 0|\right)U^\dagger P_m\right)=\mathscr{E}_m(\rho)/\mathrm{tr}(\mathscr{E}_m(\rho))$
- $\quad \quad \{\mathscr{E}_m\} \text{ model-able as } \mathscr{E}_m(\rho) = \operatorname{tr}_E \left(P_m U \left(\rho \, \otimes \, | \, 0 \rangle_E \langle 0 \, | \, \right) \, U^\dagger P_m \right) \\ \iff \mathscr{E}_m(\rho) = \sum E_{mk} \rho E_{mk}^\dagger \rho E_{mk$
- Axiomatic approach: we define a dynamic change $\mathscr E$ to system Q in state ρ by:
 - $\bullet \ \ \underline{\text{Nonnegative probability}} : \text{With initial state} \ \rho, \mathscr{E} \ \text{occurs with probability} \ \text{tr} \ \left(\mathscr{E}(\rho)\right) \in [0,1]$
 - · Mathematically convenient definition to help cope with measurements
 - . Convex-linear: $\mathcal{E}\left(\,\sum\nolimits_{i}p_{i}\rho_{i}\right) = \,\sum\nolimits_{i}p_{i}\mathcal{E}(\rho_{i})$
 - $\text{We wish that } \rho \sim \{\rho_i, p_i\} \implies \frac{\mathscr{E}(\rho)}{\operatorname{tr}\left(\mathscr{E}(\rho)\right)} \sim \{\frac{\mathscr{E}(\rho_i)}{\operatorname{tr}\left(\mathscr{E}(\rho_i)\right)}, p_i\}, \text{ then }$

$$\mathscr{E}(\rho) = \operatorname{tr}\left(\mathscr{E}(\rho)\right) \sum\nolimits_{i} p(i \mid \mathscr{E}) \frac{\mathscr{E}(\rho_{i})}{\operatorname{tr}\left(\mathscr{E}(\rho_{i})\right)}. \ \operatorname{By} p(i \mid \mathscr{E}) = \frac{p_{i} \operatorname{tr}\left(\mathscr{E}(\rho_{i})\right)}{\operatorname{tr}\left(\mathscr{E}(\rho)\right)} \ \text{yields above}$$

- Completely positive: For any (including trivial) system $R, I_R \otimes \mathscr{E}$ maps to positive operators
 - If $\rho={\rm tr}_{\mathcal{Q}}(\rho^{R\mathcal{Q}})$ then after \mathscr{E} the joint state is still in a valid density matrix
 - Remark: positive *does not* imply completely positive: consider positive map $\rho\mapsto \rho^\dagger$ applied to the first qubit in β_{00} . Then $(\rho\mapsto \rho^\dagger\otimes I)$ transposes the 2×2 blocks

$$(\rho \mapsto \rho^{\dagger} \otimes I)\beta_{00} = \frac{(\rho \mapsto \rho^{\dagger} \otimes I)}{2} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & & & \\ & & 1 & \\ & & & 1 \end{bmatrix} \text{ with }$$

- Theorem: $\mathscr E$ satisfies axioms above $\iff \mathscr E(\rho) = \sum_i E_i \rho E_i^\dagger$ and $\sum_i E_i^\dagger \rho E_i \leq I$
 - $\sum_{i} E_{i} \rho E_{i}^{\dagger} \text{ obviously satisfies axioms 1 \& 2, to show complete positivity: let A be any positive operator on RQ, and $|\psi\rangle$ be any state of RQ, then by A positive <math display="block"> \langle \psi \, | \, (I \otimes \mathscr{E}) A \, | \, \psi \rangle = \langle \psi \, | \, \sum_{i} (I \otimes E_{i}) A (I \otimes E_{i}^{\dagger}) \, | \, \psi \rangle = \sum_{i} \langle \psi \, | \, (I \otimes E_{i}) A (I \otimes E_{i}^{\dagger}) \, | \, \psi \rangle \geq 0$
 - Conversely, let $\{\,|\,i_R\rangle\}, \{\,|\,i_Q\rangle\}$ span R,Q and define maximally entangled state $|\,\alpha\rangle \equiv \sum |\,i_R\rangle\,|\,i_Q\rangle \text{ and } \sigma \equiv (I_R\otimes\mathscr{E})(\,|\,\alpha\rangle\langle\alpha\,|\,) = \sum_{ii} \left(\,|\,i_R\rangle\langle j_R\,|\,\right)\otimes\mathscr{E}\left(\,|\,i_Q\rangle\langle j_Q\,|\,\right)$

$$\begin{array}{l} \bullet \ \, \text{For any} \,\, |\psi\rangle = \sum \psi_i |\, i_Q\rangle \,\, \text{on} \,\, Q , \, \text{define} \,\, |\, \tilde{\psi}\rangle \equiv \sum \psi_i^* |\, i_R\rangle \,\, \text{on} \,\, R . \,\, \text{Then} \\ \langle \tilde{\psi} \,|\, \sigma \,|\, \tilde{\psi}\rangle = \langle \tilde{\psi} \,|\, \sum_{ij} |\, i_R\rangle \langle\, j_R \,|\, \otimes \,\, \mathcal{E}\left(\,|\, i_Q\rangle \langle\, j_Q \,|\,\right) |\, \tilde{\psi}\rangle = \sum \psi_i \psi_j^* \,\, \mathcal{E}(\,|\, i_Q\rangle \langle\, j_Q \,|\,) = \mathcal{E}(\,|\, \psi\rangle \langle\, \psi \,|\,) \\ \end{array}$$

- Let $\sigma = \sum |s_i\rangle\langle s_i|$ be some decomposition of σ , then $E_i|\psi\rangle = \langle \tilde{\psi}\,|\,s_i\rangle$ satisfies $\sum E_i|\psi\rangle\langle\psi\,|\,E_i^\dagger = \sum \langle \tilde{\psi}\,|\,s_i\rangle\langle s_i|\,\tilde{\psi}\rangle = \langle \tilde{\psi}\,|\,\sigma\,|\,\tilde{\psi}\rangle$
- Remark: $I \otimes \mathcal{E}$'s action on maximally entangled state of QR uniquely determines \mathcal{E}

$$\qquad \qquad \mathscr{E} \text{ satisfies axioms} \iff \mathscr{E}(\rho) = \sum E_k \rho E_k^\dagger, \ \sum E_i^\dagger E_i \leq I \iff \mathscr{E}(\rho) = \operatorname{tr}_E \left(PU \left(\rho \otimes \sigma \right) U^\dagger P \right)$$

- · Unitary freedom in operator-sum representation
 - $\bullet \quad \{E_k\}, \{F_k\} \text{ equivalent if } \sum E_k \rho E_k^\dagger = \sum F_k \rho F_k^\dagger \iff \forall \, |j\rangle, \sum E_k |j\rangle \langle j \, | \, E_k^\dagger = \sum F_k |j\rangle \langle j \, | \, F_k^\dagger = \sum F_k |$
 - $\{E_k,F_k\}$ equivalent $\iff \forall\,|\,j\rangle,\{E_k\,|\,j\rangle\},\{F_k\,|\,j\rangle\}$ generate the same density matrix

$$\bullet \ \ \operatorname{Recall} \Psi \Psi^\dagger = \Phi \Phi^\dagger \iff \Psi = \Phi U \ \operatorname{then} \ \forall i, E_i | j \rangle = \sum\nolimits_i u_{ki} F_k | j \rangle \implies E_i = \sum u_{ki} F_k | j \rangle$$

- $\{E_k\}, \{F_k\}$ equivalent \iff $\mathbf{E} = U\,\mathbf{F}$ with $\mathbf{E}_i = E_i$ for unitary U
 - · Matrix multiplication with operator as elements

• Example:
$$E_1 = \frac{I}{\sqrt{2}}, E_2 = \frac{Z}{\sqrt{2}}, F_1 = |0\rangle\langle 0|, F_2 = |1\rangle\langle 1|, \begin{bmatrix} E_1 \\ E_2 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} F_1 \\ F_2 \end{bmatrix}$$

- Any operation over E with dimension d may be described by at most d^2 operation elements
 - Assume we have more than d^2 operators $\{E_i\}$
 - Recall Hilbert-Schmidt inner product $\langle A,B \rangle = \operatorname{tr}\left(A^{\dagger}B\right)$
 - Let $W_{ij} = \langle E_i, E_j \rangle$. Easy to see that $W^\dagger = W$ is Hermitian
 - Lemma: W has rank at most d^2
 - At most d^2 linearly independent operators, so we have row dependence from

$$E_{j} = \sum_{k \neq j} \alpha_{k} E_{k} \implies E_{j}^{\dagger} E_{l} = \sum_{k \neq j} \alpha_{k}^{*} E_{k}^{\dagger} E_{l} \implies W_{jl} = \sum_{k \neq j} \alpha_{k}^{*} W_{kl}$$

- Diagonalized W has at most d^2 nonzero diagonal entries, then equivalent operator set W \mathbf{E} has at most d^2 effective elements
- · Trace and partial trace as quantum operation

$$\bullet \ \ \mathrm{Trace} \colon \mathrm{Let} \, E_i = |\, 0 \rangle \langle i \,|\, , \, \mathrm{then} \, \mathscr{C}(\rho) = \sum |\, 0 \rangle \langle i \,|\, \rho \,|\, i \rangle \langle 0 \,| = \mathrm{tr}(\rho) \,|\, 0 \rangle \langle 0 \,|\,$$

- Partial trace: Given joint system QR with $|i_O\rangle\otimes|j_R\rangle$ basis, then

$$E_{k}\left(\left.\sum\lambda_{j}\left|j_{Q}\right\rangle\left|j_{R}\right\rangle\right)=\lambda_{k}\left|k_{Q}\right\rangle \text{ satisfies }\mathscr{E}(\rho)=\left.\sum E_{k}\rho E_{k}^{\dagger}=\operatorname{tr}_{R}\left(\rho\right)\right.$$

$$\sum a_{ij} \cdot E_k |i_Q\rangle |j_R\rangle \Big(E_k |i_Q\rangle |j_R\rangle \Big)^{\dagger}$$

• Single-qubit quantum operations

• Trace-preserving operations on single-qubit correspond to affine maps on the Bloch sphere

$$\text{Recall: } \phi: |\psi\rangle\langle\psi| = \frac{\phi(|\psi\rangle\langle\psi|) \cdot \sigma}{2} \text{ is linear, and } \sigma_i |\psi\rangle\langle\psi| \, \sigma_i^\dagger = \frac{R_i\left(|\psi\rangle\langle\psi|\right) \cdot \sigma}{2}$$
 where $R_I = I, \ R_{a \in \{x,y,z\}} = R_a(\pi/2)$

Quantum Error-correction

- · Formalism of error-correction
 - An quantum error-correcting code is a subspace C of larger Hilbert space with projector P
 - Noise and recovery are \mathscr{E}, \mathscr{R} respectively with $\operatorname{tr} \mathscr{R} = 1$ (recovery must certainly happen)
 - Error-correction condition: $\forall \rho \in C : (\mathcal{R} \circ \mathcal{E})(\rho) \propto \rho$
- Theorem: Exists ECC for $\mathscr{E}(\rho) = \sum E_i \rho E_i^\dagger \iff \exists \, U : P E_i^\dagger E_j P = U_{ij} P$ for Hermitian U
 - Consider diagonalization $U = SDS^{\dagger}$ and the equivalent operator set for \mathscr{E} : $\mathbf{F} = S\mathbf{E}$ $\iff F_k = \sum S_{ki} E_i$, then $PF_i^{\dagger} F_j P = \sum_{kl} S_{ik}^* S_{jl} \cdot PE_i^{\dagger} E_j P = \sum_{kl} S_{ik}^* S_{jl} U_{ij} P = d_{kl} P$

•
$$F_k P = U_k \sqrt{P F_k^\dagger F_k P} = \sqrt{d_{kk}} U_k P$$
. F_k rotates C onto $\mathrm{Im} U_k P = \mathrm{Im} \left(P_k \equiv U_k P U_k^\dagger = \frac{F_k P U_k^\dagger}{\sqrt{d_{kk}}} \right)$

- Recall: projector P must satisfy $\langle Px, x Px \rangle = 0 \iff P^\dagger = P^\dagger P$ and $\mathrm{Im} P = \mathrm{Im} A$
- Now $P_l P_k = P_l^{\dagger} P_k = \frac{U_l P F_l^{\dagger} F_k P U_k^{\dagger}}{\sqrt{d_{ll} d_{kk}}} = \frac{U_l d_{lk} U_k^{\dagger}}{\cdots} = 0 \text{ implies } k \neq l \implies \operatorname{Im}(U_l P) \perp \operatorname{Im}(U_l P)$
 - Syndrome measurement corresponds to $P_k \equiv U_k P U_k^\dagger$ and correction U_k^\dagger
- Theorem: \mathscr{R} constructed above for $\mathscr{E}=\{E_i\}$ also corrects any error $\mathscr{F}=\{\sum m_{ji}E_i\}$
 - · Corollary: we can instead talk about a set of error operators which are correctable

Quantum Error-Correcting Codes

- A [n,k] classical linear code is a subspace $C \subset \mathbb{Z}_2^n$ with dim k. It encodes k bits into n bits
 - · Codes are specified as a subspace so may be uniquely determined as kernel or image
 - Remark: linear codes are closed under addition
 - Generating matrix $G \in \mathbb{Z}_2^{n \times k}, C = \mathrm{Im}(G)$ specifies encoding $E(x) = Gx \in \mathbb{Z}_2^{n \times 1}$
 - Decoding $D(y') = \operatorname{argmin}_{x} [d(Gx, y')]$
 - Parity check matrix $H \in \mathbb{Z}_2^{(n-k)\times n}$, $C = \ker(H)$ facilitates
 - Let y' = y + e = Gx + e, then Hy' = He characterizes the **error syndrome**.
 - If error syndromes distinct $H(\{e_i\} \cong \{He_i\})$ then we can identify and correct e_i from Hy'
 - To ensure dim C = k both H, G must have full rank
 - $C = \operatorname{Im}(G) = \ker(H) \implies HG \in \mathbb{Z}_2^{(n-k)\times 1} = 0$
 - $H = [A \in \mathbb{Z}_2^{(n-k) \times k} | I_{n-k}] \iff G = \begin{bmatrix} I_k \\ -A \end{bmatrix}$. These are called the **standard form**
- Define **Hamming distance** d(x, y) as the number of indices in which x, y differ
 - The Hamming weight $wt(x) \equiv d(x,0)$. $x + y = x y \implies d(x,y) = wt(x+y)$
- Define the **distance of code** $d(C) \equiv \min_{x,y \in C, x \neq y} d(x,y) = \min_{x \in C \{0\}} \operatorname{wt}(x)$
 - Let $d \equiv d(C)$, we say that C is an [n, k, d] code
- Theorem: a [n,k,d] code with $d \ge 2t+1$ corrects error on up to t bits
 - y = Gx, y' = y + e. Now $d(y', y) \le t$ while $\min_{y_1 \ne y_2} d(y_1, y_2) \ge 2t + 1$. Decoding is unique
- If any d-1 columns of H are linearly independent but some subset of d columns are linearly dependent $\iff C = \ker H$ has distance d
 - Recall $x \in C \iff Hx = 0$. If $x \neq 0$ and Hx = 0, condition above implies that x cannot have $\leq d-1$ nonzero entries. The converse is also true
- Singleton bound: an [n,k,d] code satisfies $n-k \geq d-1$
 - An [n,k,d] code has $H\in\mathbb{Z}_2^{(n-k)\times n}$ of full rank. Some subset of n-k+1 columns must be linearly dependent so $d\le n-k+1$
 - Remark: H full rank \Longrightarrow some (generally not all) n-k columns are independent, so the last result does not imply d-1=n-k

- Hamming codes: Given $r \in \mathbb{N}$, let columns of parity check matrix $H_r \in \mathbb{Z}_2^{r \times (2^r 1)}$ be all r-bit nonzero strings, then H_r defines a $[2^r 1, 2^r r 1]$ linear code
 - All Hamming codes have distance 3: any two columns are different and some three columns are independent. Hamming codes are $[2^r 1, 2^r r 1, 3]$ linear codes

• Example:
$$H_3 = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

- Gilbert-Varshamov bound: for large n there exists $[n, k, d \ge 2t + 1]$ code for some k s.t. $k/n \ge 1 H(2t/n)$ with $H \equiv -x \log x (1-x)\log(1-x)$
 - · Prove the Gilbert-Varshamov bound
- Given an [n,k] code C, its **dual code** C^{\perp} has generator H^T and parity check matrix G^T
 - $x \in C^{\perp} \iff \forall c^T x = 0 \iff x \in \ker G^T \implies G^T$ parity checks C^{\perp}
 - A code is weakly self-dual if $C \subseteq C^{\perp}$ and strictly self-dual if $C = C^{\perp}$
 - Over \mathbb{C},\mathbb{R} fields, $C^\perp\cap C=\{0\}$ but over \mathbb{Z}_2 field $C^\perp\cap C$ can be nontrivial
 - Remark: Hamming distance is not a valid inner product in strict sense e.g. d(x, x) can be 0 for nonzero x, but it obeys triangle inequality
- Code with generator G is weakly self-dual $\iff G^TG = 0$
 - Follows from definition: $G^TG = 0 \iff \operatorname{Im} G \subseteq \ker G^T$

$$\text{Lemma: } \sum_{c \in C} (-1)^{y \cdot c} = \begin{cases} 0 & \text{if } y \not \in C^{\perp} \\ |C| & \text{if } y \in C^{\perp} \end{cases}$$

- $y \in C^{\perp} \implies \forall c \in C, y \cdot c = 0$
- $\quad \text{$\cdot$} \quad y \not\in C^\perp \implies \exists c_0 \in C : c_0 \cdot y = 1 \text{ then for every } c : c \cdot y = 0 \text{ we have } (c + c_0) \cdot y = 1$
 - Bijection between $\{c \in C : c \cdot y = 0\}$ and $\{c \in C : c \cdot y = 1\}$
- · Calderbank-Shor-Steane (CSS) codes
 - Given $[n,k_1]$ code C_1 and $[n,k_2]$ code C_2 s.t. $C_2 \subsetneq C_1$ and C_1,C_2^\perp both correct t errors
 - $\dim C_1 = \dim C_2^{\perp} = t \implies k_1 = t, n k_2 = t, \text{ and } k_2 < k_1$
 - Remark: we're assuming bit then phase error, but it's without loss of generality up to e_1, e_2
 - We can construct an $[n, k_1 k_2] = [n, 2t n]$ quantum code $\mathrm{CSS}(C_1, C_2)$ as follows:
 - Define $x + C_2 = [x]^{C_2} \equiv \{x' \in C_1 : x' x \in C_2\} \in C_1/C_2$
 - For each unique $[x]^{C_2}$, define $|[x]^{C_2}\rangle \equiv \frac{1}{\sqrt{|C_2|}} \sum_{y \in C_2} |x+y\rangle$
 - Define $\mathrm{CSS}(C_1,C_2)=\mathrm{span}(\{[x]^{C_2}\rangle\})$, then $\mathrm{dim}\,\mathrm{CSS}(C_1,C_2)=k_1-k_2$

- $|[x]^{C_2}\rangle$ is well-defined i.e. $x-x'\in C_2\implies |[x]^{C_2}\rangle=|[x']^{C_2}\rangle$
 - $|x + (y \in C_2)\rangle = |x + (y + x' x \in C_2)\rangle$
- $|[x]^{C_2}\rangle$ is orthonormal: $[x]^{C_2} \neq [x']^{C_2} \implies \nexists y_1, y_2 \in C: |x+y_1\rangle = |x'+y_2\rangle$
- Error correction: denote bit and phase errors by n-bit binary strings e_1, e_2 respectively

•
$$|[x]^{C_2}\rangle \mapsto \frac{1}{\sqrt{|C_2|}} \sum_{x \in C_2} (-1)^{(x+y) \cdot e_2} |x+y+e_1\rangle$$

$$\bullet \quad \text{Apply } |x\rangle\,|\,0\rangle \mapsto |x\rangle\,|\,H_1x\rangle \text{ obtaining } \frac{1}{\sqrt{\,|\,C_2\,|\,}} \sum_{x \in C_2} (-1)^{(x+y) \cdot e_2} |\,x + y + e_1\rangle\,|\,H_1e_1\rangle$$

- Remark: $x + y \in C_1 \implies H_1(x + y + e_1) = H_1e_1$
- Measure second register, obtain e_1 , and correct $\mapsto \frac{1}{\sqrt{|C_2|}} \sum_{x \in C_2} (-1)^{(x+y) \cdot e_2} |x+y\rangle$

•
$$H^{\otimes n}$$
: $\frac{1}{\sqrt{|C_2|2^n}} \sum_{y \in C_2} (-1)^{(x+y) \cdot e_2} \sum_{z \in \mathbb{Z}_2^n} (-1)^{(x+y) \cdot z} |z\rangle = \frac{1}{\sqrt{|C_2|2^n}} \sum_{y \in C_2} \sum_{z \in \mathbb{Z}_2^n} (-1)^{(x+y) \cdot (z+e_2)} |z\rangle$

$$\text{Substitute } z'=z+e_2 : \frac{1}{\sqrt{\mid C_2 \mid 2^n}} \sum_{z \in \mathbb{Z}_2^n} (-1)^{x \cdot z'} \Biggl(\sum_{y \in C_2} (-1)^{y \cdot z'} \Biggr) \mid z'-e_2 \rangle. \text{ Recall lemma}$$

• Remark: + and - are the same in mod-2 arithmetic

$$\cdot \ \, \sqrt{\frac{|\,C_2\,|\,}{2^n}} \sum_{z \in \mathbb{C}_2^\perp} (-1)^{x \cdot z'} |\,z' - e_2\rangle = \frac{1}{\sqrt{\,|\,C_2^\perp\,|\,}} \sum_{z \in \mathbb{C}_2^\perp} (-1)^{x \cdot z'} |\,z' - e_2\rangle$$

· Hadamard code takes Hadamard code to itself

$$\text{Apply } |x\rangle\,|0\rangle \mapsto |x\rangle\,|\,G_2^Tx\rangle \text{, obtaining } \frac{1}{\sqrt{|\,C_2^\perp\,|}} \sum_{z \in \mathbb{C}_2^\perp} (-1)^{x \cdot z'} |\,z' - e_2\rangle\,|\,-\,G_2^Te_2\rangle$$

• Measure second register and retrieve e_2 from $-G_2^Te_2$

Correct by applying
$$X$$
 to obtain $\frac{1}{\sqrt{\mid C_2^\perp\mid}} \sum_{z \in \mathbb{C}_2^\perp} (-1)^{x \cdot z'} \mid z' \rangle$

Note how this equals
$$H^{\otimes n}\left(\frac{1}{\sqrt{\mid C_2\mid}}\sum_{y\in C_2}(-1)^{(x+y)\cdot e_2}\mid x+y\rangle\right)$$
 for $e_2=\mathbf{0}$

$$\text{Apply } H^{\otimes n} \text{ to obtain } \frac{1}{\sqrt{\mid C_2 \mid}} \sum_{y \in C_2} \mid x + y \rangle = \mid [x]^{C_2} \rangle \text{ as encoded state}$$

Shifted CSS codes: define
$$\operatorname{CSS}_{u,v}(C_1,C_2)$$
 with $|[x]^{C_2}\rangle \equiv \frac{1}{\sqrt{|C_2|}} \sum_{y \in C_2} (-1)^{u \cdot y} |x+y+v\rangle$

- Lemma: $\forall u, v, \mathrm{CSS}_{u,v}(C_1, C_2)$ has the same coding properties as $\mathrm{CSS}(C_1, C_2)$
 - Equivalent to encoding bit / phase error e_1, e_2 with $e_1 + u, e_2 + v$