Transient coupled calculations of the Molten Salt Fast Reactor using the Transient Fission Matrix approach

A. Laueau et al., Nuclear Engineering and Desing, 2017

Amanda Bachmann Advanced Reactors and Fuel Cycles Group

University of Illinois at Urbana-Champaign

October, 16, 2020

Outline

- 1 Analysis Methodology Results
- 2 Critiques
- 3 Extensions
- 4 Conclusion

Introduction

- Foucs on modeling the fuel circuit of the Molten Salt Fast Reactor (MSFR) duirng transients
- Neutronics and thermal hydraulics are strongly coupled
- Model the coupling during transients: RIA and load following
- Reference reactor configuration:
 - 3 GWth liquid fueled reactor
 - Salt volume of 18 m³
 - Salt average temperature of 975 K
 - Salt is 75% LiF, 25% HMF (mix of Th and fissile material)
 - Salt circulation time is 4 s

Figure: MSFR circuit configuration

Methodology

Couple neuronics and thermal hyrdaulics using a Transient Fission Matrix (TFM) in Serpent and the CFD code OpenFOAM

- TFM contain the transport of neutrons during a generation in a spatially discretized reactor with a temporal aspect
- Used a modified Serpent code to calculate the TFM
- Used Reynolds-Averaged Navier Stokes approach for TH

Validation

First had to couple the two components

- Serpent is used to calculate the TFM, prior to transients
- Integrate precursor calculation into TH source code

Used reference case using direct Serpent and OpenFOAM coupling previously defined

Transient Calculations

Load Following Results:

Figure: Evolution of metrics for 33% power variation in 60 s.

No active regulation of reactivity, don't need control rods to

Transient Calculations (cont.)

Overcooling Accident Results:

Figure: Evolution of metrics for instantaneous overcooling.

Transient Calculations (cont.)

Overcooling Accident Results (cont.):

Figure: Evolution of metrics for overcooling of various time constants.

Transient Calculations (cont.)

Reactivity Insertion:

Figure: Evolution of metrics for 1000 pcm reactivity insertion in 1 s.

Figure: Evolution of metrics for various reactivity insertion in 1 s.

- Analysis
 Methodology
 Results
- 2 Critiques
- 3 Extensions
- 4 Conclusion

Overall, a pretty well written paper with lots of figures to discuss the results

- Math was a little hard to follow often happens when not familiar with subject
- Concerned with prompt criticality, but what about the normal criticality
- Modeled the pumps and heat exchangers as porous media

- Analysis
 Methodology
 Results
- 2 Critiques
- 3 Extensions
- 4 Conclusion

- Look at results of normal criticality, compare them with limits
- Evaluate how some of these changes affect reactor materials
 - Large temperature swings, inducing stresses and strains
 - Computationally look at how these affect material performance and expected lifetime
- Investigate how the times tep size impacts the results
- Authors propose examining other transient scenarios
 - Look specifically at start up and shot down scenarios normal operation of their transients and accident scenarios
- Authors also propose using this methodology for analysis of other reactor types
 - Sodium Fast Reactors
 - HTGRs, both with TRISO and prismatic fuel
 - Authors suggest PWRs could gain insight for heat carried by the water

- Analysis
 Methodology
 Results
- 2 Critiques
- 3 Extensions
- **4** Conclusion

Conclusion

Demonstration of the Fission Matrix neutronics approach coupled to thermal hydraulics to investigate coupled phenomena

- Can evaluate perturbed fission matrices
- Interpolated solution closely approaches reference calculation
- Studied normal and incident transient scenarios
 - Can sustain a 1000 pcm insertion in 1 s
 - Showed results of load following scenairos
 - Can reach prompt critical during overcooling incident

