Math 240B: Real Analysis, Winter 2020

Homework Assignment 8 Due Friday, March 13, 2020

- 1. Prove that every open set in a second countable locally compact Hausdorff space is σ -compact.
- 2. Prove the following:
 - (1) The product of finitely many locally compact spaces is locally compact;
 - (2) The product of countably many sequentially compact spaces is sequentially compact.
- 3. Let $K \in C([0,1] \times [0,1])$. For $f \in C([0,1])$, define

$$Tf(x) = \int_0^1 K(x, y) f(y) \, dy \qquad \forall x \in [0, 1].$$

Prove that $Tf \in C([0,1])$ and that the set $\{Tf : ||f||_u \leq 1\}$ is precompact in C([0,1]).

- 4. Let \mathcal{X} be a separable normed vector space. Prove that the weak-* topology on the closed unit ball in \mathcal{X}^* is second countable and hence metrizable.
- 5. Let \mathcal{X} be a Banach space. Prove the following:
 - (1) The norm-closed unit ball $B = \{x \in \mathcal{X} : ||x|| \le 1\}$ is also weakly closed;
 - (2) The weak closure of any bounded subset of \mathcal{X} is also bounded;
 - (3) The weak-* closure of any bounded subset of \mathcal{X}^* is also bounded;
 - (4) Every weak-* Cauchy sequence in \mathcal{X}^* converges.
- 6. Let $C^{\infty}(\mathbb{R})$ denotes the set of all infinitely differentiable functions on \mathbb{R} . For each $j \in \mathbb{N}$ and $f \in C^{\infty}(\mathbb{R})$, define

$$p_{j,k}(f) = \max_{-j \le x \le j} |f^{(k)}(x)| \qquad (k = 0, 1, \dots).$$

It is clear that each $p_{j,k}$ is a seminorm on $C^{\infty}(\mathbb{R})$. Prove the following:

- (1) The topological vector space defined by the family of seminorms $p_{j,k}$ (j = 1, 2, ... and k = 0, 1, ...) is Hausdorff and metrizable;
- (2) The convergence $f_n \to f$ in this space is equivalent to $f_n^{(k)} \to f^{(k)}$ uniformly on any compact subsets of \mathbb{R} for all $k \geq 0$.
- 7. Let \mathcal{X} be a normed vector space and \mathcal{M} a vector subspace of \mathcal{X} . Prove that \mathcal{M} is norm-closed if and only if it is weakly closed.
- 8. Let \mathcal{X} be a Banach space, $T_n \to T$ and $S_n \to S$ in $L(\mathcal{X}, \mathcal{X})$, and $x_n \to x$ in \mathcal{X} . Prove that $T_n x_n \to Tx$ in \mathcal{X} and $T_n S_n \to TS$ strongly in $L(\mathcal{X}, \mathcal{X})$.