山东大学计算机科学与技术学院

大数据分析实践 课程实验报告

学号: 202300130086 姓名: 张珈恺 班级: 23 数据

实验题目:数据质量实践

实验学时: 2 实验日期: 2025/9/26

实验目标:

本次实验主要围绕宝可梦数据集进行分析,考察在拿到数据后如何对现有的数据进行预 处理清洗操作,建立起对于脏数据、缺失数据等异常情况的一套完整流程的认识。

实验环境:

Python3.9, Jupyter notebook

实验步骤与内容:

1、导入数据集

in	mport numpy mport panda mport matpl	s as pd											
	ata = pd.re ata	ead_csv("C:\\SDUicloud	Cache\\张珈	恺//大数据分	所实践\\Po	kemon.csv"	, encoding=	'Windows-1	252')				
√ 6													
		Name	Type 1	Type 2	Total	НР	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generation	Legendary
		Bulbasaur	Grass	Poison	318	45	49	49	65	65	45		FALSE
		lvysaur	Grass	Poison	405	60			80	80	60		FALSE
		Venusaur	Grass	Poison	525	80	82	83	100	100	80		FALSE
		VenusaurMega Venusaur	Grass	Poison	625	80	100			120	80		FALSE
		Charmander	Fire	NaN	309	39			60	50			FALSE
805		Volcanion	Fire	Water	600	80	110	120	130	90	70		TRUE
806	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined
807	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined	undefined
808	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
809	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	

2、删除无意义数据

最后四行数据无意义,直接删去。

3、删除存在异常值的数据

对 Type2 列的取值频次进行可视化,发现存在少数无意义异常值,删除。

对 Attack 列的值进行可视化,发现存在少数无意义异常值,删除

4、删除重复值

5、有两条数据的 generation 与 Legendary 属性被置换

结论与体会:

本次实验围绕宝可梦数据集完成数据质量优化,通过删除无意义行、异常值、重复值,修正属性置换问题,构建了完整数据清洗流程。我掌握了用 Pandas 处理脏数据的方法,也认识到可视化能高效定位异常。数据质量是分析基础,规范预处理步骤才能保障后续结果可靠。