受	験	番	号	

東京大学大学院新領域創成科学研究科物質系専攻

平成 31 (2019) 年度大学院入学試験問題

修士課程 • 博士後期課程共通

専門科目

平成 30 (2018) 年 8 月 21 日 (火)

 $13:30\sim16:30$ (180 分)

注意事項

- 1. 試験開始の合図があるまで、この冊子を開いてはいけません。
- 2. 本冊子の総ページ数は 26 ページです。落丁、乱丁、印刷不鮮明な 箇所などがあった場合には申し出て下さい。
- 3. この問題冊子の中にある第1問から第13問までの中から4問を選択し、解答して下さい。各1問につき解答用紙1枚を使って下さい。必要ならば裏面を使用しても構いません。その場合、裏面に続くことを明記して下さい。
- 4. 解答には必ず黒色鉛筆(または黒色シャープペンシル)を使用して下さい。
- 5. 解答は日本語または英語で記入して下さい。
- 6. 配布された解答用紙(4枚)の指定箇所に、受験番号とその解答用 紙で解答する問題番号を必ず記入して下さい。
- 7. この問題冊子にも必ず受験番号を記入して下さい。問題冊子は試験終了後に回収します。
- 8. 試験開始後は、たとえ棄権する場合でも退室することはできません。

第1問

図に示すように、質量が無視できる延伸しない棒の先に、大きさの無視できる 2 つのおもりを取り付け、二重振り子を作る。 x 軸の正の方向が水平右向きに、y 軸の正の方向が鉛直下向きになるような直交座標系を設定する。原点 0 を二重振り子の支点とし、0 から質量 m_1 のおもり 1 までの棒の長さを l_1 、おもり 1 から質量 m_2 のおもり 2 までの棒の長さを l_2 とする。また、図に示すように、それぞれの棒の鉛直線とのなす角度を θ_1 、 θ_2 とする。この振り子は、

xy 平面内を運動する。ある物理量 X の時間 t に関する微分を \dot{X} で表し、重力加速度の大きさを g とする。摩擦の影響は無視してよい。以下の問いに答えよ。

- (1) おもり 1の xy 平面内での位置 (x_1, y_1) を l_1 、 θ_1 を用いて表せ。
- (2) おもり 2 の xy 平面内での位置 (x_2, y_2) を l_1 、 θ_1 、 l_2 、 θ_2 を用いて表せ。
- (3) おもり1の運動エネルギー T_1 を l_1 、 θ_1 、 m_1 を用いて表せ。
- (4) おもり2の運動エネルギー T_2 を l_1 、 θ_1 、 l_2 、 θ_2 、 m_2 を用いて表せ。
- (5) おもり 1 の位置エネルギー U_1 を g、 l_1 、 θ_1 、 m_1 を用いて表せ。ただし、0 を U_1 の基準にとることとする。
- (6) おもり 2 の位置エネルギー U_2 を g、 l_1 、 θ_1 、 l_2 、 θ_2 、 m_2 を用いて表せ。ただし、0 を U_2 の基準にとることとする。
- (7) 二重振り子のラグランジュの運動方程式を g、 l_1 、 θ_1 、 m_1 、 l_2 、 θ_2 、 m_2 を用いて表せ。ただし、ラグランジアン L は、運動エネルギー T と位置エネルギー U を用いると、L=T-U で表される。また、ラグランジュの運動方程式は、一般化座標を q として、

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = 0$$

と表される。

次に、 $|\theta_1|$ 、 $|\theta_2|$ 、及び $|\theta_1-\theta_2|$ が 1 より十分小さい場合を考える。以下では、微小角 θ に対して、 $\cos\theta\approx1$ 、 $\sin\theta\approx\theta$ と近似し、また、 $\dot{\theta_i}^2$ (i=1,2) の項は無視してよいものとする。

- (8) おもり 1、おもり 2 が同一の角振動数で振動する運動を固有振動と呼ぶ。固有角振動数を ω とした場合の、おもり 1、おもり 2 の運動の一般解は、それぞれ $\theta_1 = A_1\sin(\omega t + \varphi_1)$ 、 $\theta_2 = A_2\sin(\omega t + \varphi_2)$ で与えられる。ここで、 A_1 、 A_2 、 φ_1 、 φ_2 は定数である。下記 (a)、(b)の場合において、(7)で求めた運動方程式を解き、 ω^2 を求めよ。
 - (a) $m_1 = m_2$ 、 $l_1 = l_2$ の場合。
 - (b) $m_2 > m_1$ の場合。

第2問

真空の透磁率を μ_0 として以下の問いに答えよ。

(1) 無限に広く厚さが無視できる薄い導体板を xz 平面に置き、図1のように面電流密度 i の定常電流を z 軸の正方向に流す。点 P (0,R,0) に生じる磁束密度 B をベクトル表示で答えよ。ただし R > 0 とする。

- (2) 無限に長い太さの無視できる導線が図 2のように y 軸と平行に置かれ、z 軸と z=h (>0) で交わっている。導線には定常電流 I が y 軸の正方向に流れている。また、長方形の閉回路を xy 平面上に置く。回路の中心座標は (x,0,0) であり、回路の長軸は y 軸に平行で長さ L、短軸は x 軸に平行で長さ b である。
 - (a) 回路の中心座標における磁束密度 B をベクトル表示で示せ。
 - (b) 回路の中心座標における磁東密度 B の z 成分の x 依存性を -3h < x < 3h の範囲で図示せよ。
 - (c) 回路を貫く磁束 ϕ を求めよ。

次に、回路が一定の速さ v で x 軸の正方向に移動している場合を考える。

- (d) 回路に生じる誘導起電力 V_1 を x の関数として求めよ。
- (e) 回路に生じる誘導起電力の大きさ $|V_{\rm I}|$ が最大値をとるときの回路の中心 座標 (k,0,0) 及び、最大値 $V_{\rm m}$ を求めよ。ただし、 $h,L\gg b>0$ である。

(f) V_I の x 依存性を -3h < x < 3h の範囲で図示せよ。また、得られた図と (b)で示した図との関係を述べよ。

図 2

第3問

水素原子を考える。スピンを考慮しない時、質量 m_e 、電荷 -e (e>0) の電子のシュレーディンガー方程式を、原子核の位置を原点とした図のような極座標 (r,θ,ϕ) で表すと

$$\left(-\frac{\hbar^2}{2m_e}\frac{\partial^2}{\partial r^2} - \frac{\hbar^2}{2m_e}\frac{2}{r}\frac{\partial}{\partial r} + \frac{L^2}{2m_e r^2} - \frac{1}{4\pi\varepsilon_0}\frac{e^2}{r}\right)\psi(r,\theta,\phi) = E\psi(r,\theta,\phi) \qquad (1)$$

となる。ここで、 \hbar 、 ϵ_0 、 ψ 、E はそれぞれ、プランク定数を 2π で割った値、真空の誘電率、波動関数、エネルギーである。L は角運動量演算子であり、

$$L^{2} = -\hbar^{2} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \right]$$
 ②

が成り立つ。するとシュレーディンガー方程式の解は、3 つの量子数 n,l,m で指定できて、 $\psi(r,\theta,\phi)=R_{nl}(r)Y_l^m(\theta,\phi)$ 、 $E=E_n$ と表せる。ここで、n,l,m はそれぞれ $n=1,2,\cdots$ 、 $l=0,1,\cdots n-1$ 、 $m=-l,-l+1,\cdots l-1,l$ のような値をとる整数である。 $R_{nl}(r)$ は動径方向の規格化された波動関数で、ボーア半径 a_0 を用いて、

$$R_{10}(r) = \left(\frac{1}{a_0}\right)^{\frac{3}{2}} 2\exp\left(-\frac{r}{a_0}\right)$$
 (3)
$$R_{20}(r) = \left(\frac{1}{a_0}\right)^{\frac{3}{2}} \frac{1}{\sqrt{2}} \left(1 - \frac{1}{2} \frac{r}{a_0}\right) \exp\left(-\frac{r}{2a_0}\right)$$
 (4)
$$R_{21}(r) = \left(\frac{1}{a_0}\right)^{\frac{3}{2}} \frac{1}{2\sqrt{6}} \frac{r}{a_0} \exp\left(-\frac{r}{2a_0}\right)$$
 (5)

のように書ける。また、 $Y_{i}^{m}(\theta, \phi)$ は角度方向の規格化された波動関数であり、

$$Y_0^0(\theta,\phi) = \frac{1}{\sqrt{4\pi}}$$
 6

$$Y_1^1(\theta,\phi) = -\sqrt{\frac{3}{8\pi}}\sin\theta\exp(i\phi)$$

$$Y_1^0(\theta,\phi) = \sqrt{\frac{3}{4\pi}}\cos\theta$$
 \tag{8}

$$Y_1^{-1}(\theta,\phi) = \sqrt{\frac{3}{8\pi}} \sin\theta \exp(-i\phi)$$
 (9)

のように書ける。以下の問いに答えよ。ただし、 $\alpha>0$ 、 $N=0,1,2,\cdots$ について成り立つ以下の積分公式を用いてよい。

$$\int_0^\infty x^N \exp(-ax) \, dx = \frac{N!}{a^{N+1}} \tag{10}$$

- (1) E_1 を求めよ。
- (2) $a_0 = \frac{4\pi\varepsilon_0\hbar^2}{m_0e^2}$ となることを示せ。
- (3) n=1 の状態における r の期待値を求めよ。
- (4) n=1 の状態において、電子を見いだす確率が最も大きくなる r の値を求め、 (3) で求めた値の何倍になるか答えよ。

次に、水素原子にz軸の正の方向に一様な電場 E_z をかける。電場は十分弱いとして、その効果を摂動として扱うものとする。

- (5) n=1 の状態のエネルギーを1次摂動の範囲で求めよ。
- (6) $E_z = 0$ では n = 2 の 4 つの状態は縮退している。摂動ハミルトニアンを n = 2 の 4 つの状態を基底とした 4×4 の行列で表すことを考える。 $\langle R_{20}Y_0^0|z|R_{20}Y_0^0\rangle$ 、 $\langle R_{21}Y_1^m|z|R_{21}Y_1^{m'}\rangle$ 、 $\langle R_{20}Y_0^0|z|R_{21}Y_1^{\pm 1}\rangle$ がそれぞれ 0 であることを示せ。ただし、m と m' はそれぞれ m = -1,0,1、m' = -1,0,1 のような整数を独立にとるとする。なお、角度方向の波動関数のみ考慮すれば十分であることに留意せよ。
- (7) $\langle R_{20}Y_0^0|z|R_{21}Y_1^0\rangle$ を求め、摂動ハミルトニアンを n=2 の 4 つの状態を基底とした 4×4 の行列で表せ。
- (8) n=2 の状態のエネルギーを 1 次摂動の範囲で求めよ。

第4問

異種の元素からなる二原子分子 N 個からなる系の分子回転を考える。一つの分子の回転に関する固有状態は二つの量子数 ℓ と m で表される。ここで、 ℓ は負でない整数であり、m は $-\ell \le m \le \ell$ を満たす整数である。結合距離を一定とすると、固有状態の回転エネルギー $\varepsilon_{\ell m}$ は正の定数 q を用いて

$$\varepsilon_{\ell m} = \ell(\ell+1)q \tag{1}$$

と書ける。以下、量子数 ℓ と m で表される固有状態にある分子の数を $N_{\ell m}$ 、熱平衡における $N_{\ell m}$ の平均値を $\langle N_{\ell m} \rangle$ と表す。ボルツマン定数を k、絶対温度を T として、以下の問いに答えよ。

- (1) 内部エネルギー E を $N_{\ell m}$ と $\varepsilon_{\ell m}$ を用いて表せ。
- (2) すべての ℓ と m の組に対して $N_{\ell m}$ を指定したときの場合の数 W を N!、 $N_{\ell m}!$ を用いて表せ。
- (3) 自由エネルギー F を $F \equiv E TS$ で定義する。ここで、S はエントロピーである。すべての ℓ と m の組に対して $N_{\ell m}$ を指定したときの自由エネルギー F を N!、 $N_{\ell m}$ 、 $N_{\ell m}$!、 $\varepsilon_{\ell m}$ 、k、T を用いて表せ。
- (4) 熱平衡状態では、(3)で定義した自由エネルギー F が最小となるはずである。 量子数 ℓ 、m で指定される固有状態にある一つの分子が量子数 ℓ' 、m'で指定される固有状態に移行したときの自由エネルギー F の変化を考えることにより、 $N_{\ell m}$ や $N_{\ell' m'}$ が 1 より十分大きければ、

$$\frac{\langle N_{\ell'm'}\rangle}{\langle N_{\ell m}\rangle} = \exp\left[-\frac{1}{kT}(\varepsilon_{\ell'm'} - \varepsilon_{\ell m})\right] \tag{2}$$

となることを示せ。

任意の量子数 ℓ、m について②式が成り立つことから、

$$\langle N_{\ell m} \rangle = \frac{N}{Z} \exp\left(-\frac{\varepsilon_{\ell m}}{kT}\right) \tag{3}$$

という関係が導かれる。③式の Z を分配関数と呼ぶ。

(5) 分配関数 Z を $\varepsilon_{\ell m}$ 、k、および、T を用いて表せ。

(6) $\beta = \frac{1}{kT}$ と変数変換すると、熱平衡状態の内部エネルギー U が

$$U = -\frac{N}{Z} \frac{\partial Z}{\partial \beta} \tag{4}$$

と書けることを示せ。

以下では、 $kT \gg q$ が成り立つ高温領域における熱平衡状態を考える。

- (7) ℓ に関する和を積分で近似することにより、分配関数 Z を q、k、および、T を用いて表せ。
- (8) 内部エネルギー U と熱容量 C を求めよ。
- (9) エントロピー S は、定数 A、B を用いて、 $S=A+B \ln T$ と書ける。B を求めよ。

第5問

図 1 のように、角振動数 ω の直線偏光の光を空気中から透明なガラスに入射する。空気とガラスの境界面は xy 面である。光の入射面は xz 面であり、入射角を α とする。空気の屈折率は 1 であるとし、ガラスの屈折率は n (> 1) とする。空気およびガラスの透磁率は、真空中の透磁率 μ_0 と等しいものとする。入射光、屈折光、反射光の電場(磁場)ベクトルを、それぞれ、E、E'、E''(H、H'、H'')とする。これらのベクトルは、以下のように表される。

$$\begin{aligned} E &= E_0 \sin(k_x x + k_z z - \omega t), \\ E' &= E'_0 \sin(k'_x x + k'_z z - \omega t), \\ E'' &= E''_0 \sin(k'_x x + k'_z z - \omega t), \\ E''' &= E''_0 \sin(k''_x x + k''_z z - \omega t), \\ H''' &= H''_0 \sin(k''_x x + k''_z z - \omega t) \\ H''' &= H''_0 \sin(k''_x x + k''_z z - \omega t) \end{aligned}$$

ここで、 E_0 、 E_0' 、 E_0'' (H_0 、 H_0' 、 H_0'')は、電場(磁場)の振幅と向きを表すベクトルであり、その振幅は、それぞれ、 E_0 、 E_0' 、 E_0'' (H_0 、 H_0' 、 H_0'')である。また、 k_x (k_z)、 k_x'' (k_z') は、それぞれ、入射光、屈折光、反射光の波数ベクトル k の x 成分(z 成分)である。この x 成分については、 $k_x = k_x' = k_x''$ の関係が成り立つ。

(1) 図1のように、屈折角を β 、反射角を γ とする。このとき、以下の関係が成り立つことを示せ。

$$\sin \alpha = n \sin \beta$$
, $\gamma = \alpha$

(2) 入射光の電場が入射面に垂直であるときの電場の振幅反射率 $r_{\rm s}=\frac{E_0''}{E_0}$ が以下のように表されることを示せ。

$$r_{\rm S} = \frac{E_0''}{E_0} = \frac{\sin(\beta - \alpha)}{\sin(\alpha + \beta)}$$

ここで、入射光の電場振幅 E_0 と反射光の電場振幅 E_0'' は、図2のように y 方向を正にとるものとする。また、光の電場ベクトル E、磁場ベクトル H と波数ベクトル E の間に成り立つ以下の関係を用いてよい。

$$\boldsymbol{H} = \frac{1}{\mu_0 \omega} \boldsymbol{k} \times \boldsymbol{E}$$

(3) 入射光の電場が入射面に平行であるときの電場の振幅反射率 $r_{\rm p}=\frac{E_0''}{E_0}$ は、以下のように表される。

$$r_{\rm p} = \frac{E_0''}{E_0} = \frac{\tan(\alpha - \beta)}{\tan(\alpha + \beta)}$$

ここで、入射光の電場振幅 E_0 と反射光の電場振幅 E_0'' は、図 3 に示した矢印の向きを正にとるものとする。 $r_{\rm p}=0$ となる入射角を α_0 とするとき、 $\cos\alpha_0$ を n を用いて表せ。

- (4) 入射光を、その電場ベクトルと入射面とのなす角度 θ が 45° になるようにして、(3) の場合と同じ入射角 α_0 で入射した場合を考える。このとき、エネルギー反射率 $R = \left|\frac{E_0''}{E_0}\right|^2$ を n を用いて表せ。ここで、 θ は、入射光の進行方向に向ってその電場ベクトルを見たとき、入射面から反時計回りに測るものとする。例えば、図 2 の E_0 の向きは $\theta = 90$ ° に対応し、図 3 の E_0 の向きは $\theta = 0$ ° に対応する。
- (5) 入射光を、その電場ベクトルと入射面とのなす角度 θ が (4) と同様に 45° になるようにして、入射角 $\alpha=45$ ° で入射した場合を考える。n が $\sqrt{2}$ に等しいとき、反射光の電場ベクトルと入射面とのなす角度 φ を求めよ。ここで、 φ は、反射光の進行方向に向ってその電場ベクトルを見たとき、入射面から反時計回りに測るものとする。例えば、図 2 の E_0'' の向きは $\varphi=90$ ° に対応し、図 3 の E_0'' の向きは $\varphi=0$ ° に対応する。

第6問

物質の圧力 P、体積 V、絶対温度 T の関係は状態方程式により記述される。特に気体の性質は様々な状態方程式により、比較的よく理解されている。以下の文章を読んで、気体の状態方程式に関する問いに答えよ。

理想気体の状態方程式は、モル当たりの体積 $V_{\rm m}$ と気体定数 $R=8.31\,{
m J\,K^{-1}\,mol^{-1}}=0.0821$ atm L ${
m K^{-1}\,mol^{-1}}$ を用いて $PV_{\rm m}=RT$ と与えられる。一方、実在気体に対する補正を表す圧縮 因子 Zを導入すると、実在気体の状態方程式 $PV_{\rm m}=ZRT$ が得られる。ここで、Zを Z=1 + $B/V_{\rm m}+C/V_{\rm m}^2+...$ のように $1/V_{\rm m}$ で冪級数展開して得られるものがビリアル状態方程式 であり、B、Cをビリアル定数と呼ぶ。ただし、以下では第3項までを考慮する。

$$PV_{\rm m} = \left(1 + \frac{B}{V_{\rm m}} + \frac{C}{{V_{\rm m}}^2}\right)RT$$

これに対して、有益な物理描像を与える状態方程式として、ファンデルワールス方程式

$$P = \frac{RT}{V_{\rm m} - b} - \frac{a}{{V_{\rm m}}^2}$$

がしばしば用いられ、この方程式に従う気体 をファンデルワールス気体、*a*, *b*をファンデル ワールス定数と呼ぶ。

右図にいくつかの温度において実験から得られた、1モルの二酸化炭素の等温線を示す。

- (1) 容積 20 L の容器に、2.0 mol の水素と 1.0 mol の窒素を温度 273 K で詰めた。ど ちらの気体も理想気体とみなし、全圧とそれぞれの分圧を求めよ。
- (2) 理想気体および実在気体に対して、圧縮因子 Z と圧力の関係を模式的にグラフ に描け。

- (3) ファンデルワールス方程式を $1/V_m$ で展開して、ビリアル定数 Bおよび Cを aと bを使って表せ。ただし、展開式 $(1-x)^{-1}=1+x+x^2+...$ を用いよ。 273 K の二酸化炭素において、B=-0.118 L mol^{-1} , $C=1.84\times10^{-3}$ L 2 mol^{-2} であるとして、ファンデルワールス定数を求めよ。
- (4) (3) で得られたファンデルワールス定数を用いて、容積 0.14 L の容器に入れた 1 mol の二酸化炭素の 313 K および 673 K における圧力を計算せよ。また、二酸化炭素を理想気体とみなして、同一の条件における圧力を計算せよ。2 つの温度における圧力の比較をもとに、ファンデルワールス気体と理想気体の違いを議論せよ。
- (5) ファンデルワールス定数 a, b の物理的意味を簡単に記せ。
- (6) 二酸化炭素分子を球と近似して分子体積を計算せよ。ただし、アボガドロ数は $N_{\rm A}=6.02 imes10^{23}$ とする。
- (7) 図の294 K における等温曲線において、点 A から D までの圧縮過程で起こる状態の変化を説明せよ。
- (8) 図の 304.19 K における等温曲線には変曲点 E が現れ、これを臨界点と呼ぶ。臨界点における圧力 P_c , モル体積 V_c , 絶対温度 T_c を臨界パラメータと呼ぶ。ファンデルワールス気体における臨界パラメータを a, b で表し、そこでの圧縮因子 V_c を求めよ。また、二酸化炭素の臨界パラメータを求めよ。
- (9) メタンの臨界パラメータは、 $P_c = 45.6$ atm, $V_c = 0.0987$ L mol⁻¹ である。メタンのファンデルワールス定数および T_c を計算せよ。

第7問

- (1) 次の語句について、それぞれ50字程度以内で説明せよ。
 - (a) ルイス酸
 - (b) 常磁性
 - (c) ゼオライト
 - (d) パウリの排他原理
- (2) 以下の金属錯体に関する文章を読んで、下記の問いに答えよ。

- (a) AからFに入る適当な記号もしくは語句を答えよ。
- (b) $(3d)^4$ 錯体である $[Cr(CN)_6]^4$ の配位子場安定化エネルギーを Δ 。を用いて表せ。
- (c) 下線部①に関して、その理由を配位子場理論を用いて説明せよ。
- (d) Pt(II)や Pd(II)イオンは平面四角形錯体を形成することが多い。電子配置を示しながらその理由を説明せよ。
- (e) 下線部②に関して、 d^2 電子配置における基底項を示せ。
- (f) 下線部③に関して、次のページに d^3 電子配置の田辺・菅野ダイアグラムを

示す。ダイアグラム中にある各スペクトル項の左上の添え字はスピン多重度を示すが、 $[Cr(NH_3)_6]^{3+}$ において低エネルギー側に観測される2つのスピン許容吸収バンドのエネルギー(E)を求めよ。その導出過程もあわせて示せ。ただし、 $\Delta_0=21780~{
m cm}^{-1}$ 、 $B=660~{
m cm}^{-1}$ とする。

第8問

- (1) 非対称アルケン 2-methyl-2-butene に対する HBr の付加反応の選択性を、カルボカチオンが関与するルートで、カルボカチオンの安定性から説明せよ。
- (2) 次の化合物を IUPAC 命名法に基づき命名せよ(光学異性体は考慮しなくてよい)。

- (3) 下記の四つの高分子の合成を、(i) 連鎖重合と (ii) 逐次重合に分類し、それぞれ のモノマーとポリマーの構造式を示せ。
 - (a) ポリスチレン
 - (b) ナイロン 6,6
 - (c) PET 樹脂
 - (d) テフロン
- (4) DNA の二重らせん構造形成において、アデニンはチミンと、グアニンはシトシンと塩基対を作る。下記の構造式からそれぞれの対を選び、どのように塩基対を作るか、相互作用様式がわかるように下記の構造式を組み合わせて示せ。ただし、以下の構造式は当該核酸塩基の塩基対形成部分のみを抜き出して表している。

(5) 次の (a) \sim (m) の分子の水中での酸解離定数 p K_a が表のように報告されている。(A) \sim (M) に対応する分子を (a) \sim (m) から選べ。

	р <i>К</i> а	Group
H ₃ O ⁺	-1.7	
(A)	-0.25	I
(B)	0.65	I
(C)	1.68	I
(D)	4.2	I
(E)	4.76	I
(F)	7.1	II
(G)	8.4	II
(H)	9.95	II
(I)	13	III
$\mathrm{H}_{2}\mathrm{O}$	15.7	
(J)	19-20	III
(K)	43	III
(L)	48	III
(M)	53	III

Group II

$$(f) \qquad \qquad (g) \qquad \qquad (h) \qquad \qquad O_2N \qquad OH$$

$$O_2N \qquad OH$$

(6) 次の二つの分子の pK_a はどちらが低いか、構造式を用いて説明せよ。

$$\mathsf{HO} \overset{\mathsf{O}}{\longleftarrow} \mathsf{OH} \qquad \overset{\mathsf{O}}{\longleftarrow} \mathsf{OH}$$

第9問

- (1) 分子量分析法について以下の問いに答えよ。
 - (a) Gel Permeation Chromatography (GPC)あるいは Size Exclusion Chromatography は 分子量分析法の一つである。GPC はゲルが充填されたカラムを分子が通過する時間(溶出時間)を利用した分析法である。
 - (i) 高分子量体と低分子量体で、溶出時間の短いのはどちらか、理由とともに 答えよ。
 - (ii) GPC の溶出時間から求められるのは相対分子量である。溶出時間から絶 対分子量を測定するにはどうしたらよいか答えよ。
 - (b) 質量分析法は、物質を各種方法でイオン化し、その質量と数を測定することで、物質の同定や定量を行う方法である。表 1 に、ある未知物質 X の質量分析結果を示す。ただし、m はイオンの質量、z はイオンの電荷数であり、X は表 2 に挙げた元素のみを含んでいる。
 - (i) Xの分子量を概算せよ。そのように計算する理由も答えよ。

表 1

m/z

120

122

15 1.6 2.5 26 27 1.4 37 3.5 38 5.7 39 41.7 40 4.6 41 100 42 3.3

Intensity

15.3

14.8

表 2

Element	Atomic mass
Н	1.008
В	10.81
C	12.01
F	19.00
P	30.97
S	32.07
Cl	35.45
Br	79.90

- (ii) 未知物質 X の分子量よりも小さな質量に相当するシグナルがなぜ現れる のか説明せよ。
- (iii)未知物質 X の分子式を推測せよ。
- (iv)表1の質量分析結果にて、最大強度を与えている物質は何か答えよ。
- (c) 高分子量の物質の測定に GPC と質量分析ではどちらが適当か、理由とともに 答えよ。
- (2) 水溶液中における沈殿の生成に関する以下の問いに答えよ。
 - (a) AgCl の溶解度に対して、以下の物質がどのように影響するか説明せよ。
 - (i) AgNO₃
 - (ii) NH₃
 - (iii) NaCl
 - (b) 0.001~M の $CaCl_2$ 溶液に $C_2O_4^{2-}$ イオンを加え、 CaC_2O_4 が沈殿を始める $C_2O_4^{2-}$ 濃度を求めよ。ただし、 CaC_2O_4 の溶解度積は $2.6\times 10^{-9}\,M^2$ である。
 - (c) (b)において、 Ca^{2+} の 99.9%を沈殿させるには、 $C_2O_4^{2-}$ 濃度をいくらにしたらよいか答えよ。
 - (d) Ba²⁺ と Ca²⁺ が、それぞれ 0.010 M 溶解している混合液に、F⁻ を加えて分別 沈殿を行うことを考える。 BaF₂ 及び CaF₂ の溶解度積は、それぞれ 2.4×10⁻⁵ M³ 及び 1.7×10⁻¹⁰ M³ である。Ba²⁺が沈殿を始める時点での Ca²⁺濃度 を求めよ。

第10問

以下の問いに答えよ。式の導出過程、計算過程を示すこと。気体定数は $R=8.31\,\mathrm{Jmol}^{-1}\mathrm{K}^{-1}$ である。

- (1) 絶対温度Tでの化学反応 $A+B\to C+D$ を考える。この反応のギブスエネルギー変化を ΔG とする。成分X (X:A,B,C,D) の化学ポテンシャル μ_X は純物質の場合の X の化学ポテンシャル μ_X° および X の純物質基準の活量 a_X を用いて、 $\mu_X = \mu_X^{\circ} + RT \ln a_X$ で表される。 \ln は自然対数を表す。反応の平衡定数K を各成分の活量を用いて表し、反応の標準ギブスエネルギー変化 ΔG° と反応の平衡定数K の関係を導出せよ。
- (2) 図1はCu-S-O系の1473 K での化学ポテンシャル図である。縦軸および横軸の $P_{O_2}(atm)$ 、 $P_{S_2}(atm)$ はそれぞれ酸素分圧、硫黄分圧である。
 - (a) 領域 (A)、(B) で安定な化合物の化学式をそれぞれ示せ。
 - (b) 線 [C]、[D]、[E] に対応する化学反応式をそれぞれ示せ。 また、線 [C] の傾きを化学反応式から計算して求めよ。 傾きは、定数 α および β を用いた式 $\log_{10}P_{\mathrm{O_2}}=\alpha\log_{10}P_{\mathrm{S_2}}+\beta$ の α である。
 - (c) 図1に示す酸素分圧、硫黄分圧の値から、1473 K での、領域 (A) で安定な 化合物、および領域 (B) で安定な化合物の標準生成ギブスエネルギーを求 めよ。
 - (d) SO_2 の分圧が 0.20 atm のとき、以下の式を用いて 1473 K で Cu が安定に存在する酸素分圧の範囲を対応する硫黄分圧とともに求めよ。

$$\frac{1}{2}$$
S₂(g) + O₂(g) \rightarrow SO₂(g) $\Delta G^{\circ} = -361700 + 72.7T$ Jmol⁻¹

ここで(g)は気相を示し、T(K)は絶対温度である。

(e) 図1を参考にして、銅精鉱から粗銅を得る製錬プロセスについて説明せよ。

図 1

第11問

- 一定圧力での状態図に関する以下の問いに答えよ。
- (1) 図1に示す A-B 二元系状態図に関する以下(a) ~ (d)の問いに答えよ。L は液相、 α 、 β は固相である。各点 a ~ k でのB のモル分率 x_B を x_a ~ x_k と表すものとする。
 - (a) 点 d の名称を述べよ。
 - (b) モル分率 x_b 、温度 $T > T_1$ にある液相を矢印①に沿って平衡状態を保ちながらゆっくりと冷却した。温度 T_2 直上において存在する全ての相を示し、その中の x_B を示せ。また、相の存在割合を示せ。
 - (c) 上記の冷却過程において、温度 T_2 直上から T_2 直下までの組織変化を模式的に示せ。模式図の一例を図 2 に示す。

(d) 温度 T_2 および T_3 における L、 α 、 β 各相の単位モル当たりのギブスエネルギー G^L 、 G^α 、 G^β の x_B 依存性の概略を、 T_2 においては x_c 、 x_d 、 x_e 、 T_3 においては x_f 、 x_g 、 x_h 、 x_i との関係が明確となる様、 T_4 における図 3 にならって図示せよ。

図 3

(2) 固溶体を形成しない A-B-C 三元共晶系状態図を図4に示す。液相面上の等温曲線を実線で示し、数値の温度単位は K である。三元共晶温度は1150 K で、純物質 C の融点は1480 K である。以下(a)~(e)の問いに答えよ。

- (a) P 点であらわされる組成を持ち 1600 K にある液相を、平衡状態を保ちながら ゆっくりと冷却した際、固相としては C 相のみが存在する温度範囲を示せ。
- (b) 上記(a)の温度範囲から平衡状態を保ちながら更に冷却していくと、液相が消滅した。消滅する直前の液相の組成を示せ。
- (c) Q 点であらわされる組成を持ち 1600 K にある液相を、平衡状態を保ちながらゆっくりと 1000 K まで冷却した際、共存する相は温度とともにどのように変化するか記述せよ。
- (d) (50 mol% A 50 mol% B) C 擬二元系状態図(一点鎖線②を横軸、温度を縦軸とする状態図)において、固相としては B 相のみが存在する最低温度を、その時の C のモル%とともに示せ。C のモル%の求め方も示すこと。
- (e) (50 mol% A 50 mol% B) C 擬二元系状態図を描け。横軸を C のモル%、縦軸を温度とする。液相を L と表記し、全ての領域において、共存する相 (A+C+L 等)を明記すること。交点を結ぶ曲線の厳密性は問わないが、各交点 の温度および C のモル%は明記すること。

第12問

- (1) 金属融液をゆっくりと冷却すると、融液は融点 T_m よりも低い温度($T_m \Delta T$)で凝固を開始し、そののち全体が固相化した。
 - (a) 融点よりも低い温度まで凝固が開始されず冷却されるこの現象は何と呼ばれるか答えよ。
 - (b) 固相が生成する過程において、液相中に半径 r の球状の固相が生成する均一核生成を考える。この場合の臨界半径 r*が式①で表されることを導け。

$$r^* = \frac{2\sigma_{\rm SL}}{\Delta G_{\rm V}} \tag{1}$$

ただし、 σ_{SL} は固相と液相の界面の単位面積当たりの界面エネルギー、 ΔG_V は単位体積の固相がそれに対応する体積の液相に変態する場合のギブスエネルギーの変化量とする。

- (c) ΔT が大きくなるにつれて、臨界半径 r^* はどのように変化するか。式①を用いて 100 字程度で説明せよ。
- (2) 図1に状態図を示す金属 Y と金属 Z から構成される二元系合金について、金属 Z をわずかに含む融液(濃度 C_0)を、図2のように一定の速さ Vで一方向凝固 させる。ただし、固相中での Z の拡散は無視でき、液相中では拡散のみを考え、 攪拌による混合は考えない。液相中での拡散係数 D、および、平衡分配係数 k_0 は、一定の値をとり、また、D/V は、試料の長さ(初期の融液全体の長さ)に対して非常に小さいとする。
 - (a) 凝固開始直後の固液界面での固相中の Z の濃度を、理由とともに与えられた 記号で表せ。
 - (b) 凝固開始からしばらくすると、固液界面近傍の液相中での Z の濃度 $C_L(x)$ が 時間に依らず以下の式②に従いながら凝固が進む。

$$C_{L}(x) = C_{0} \left\{ 1 + \frac{1 - k_{0}}{k_{0}} \exp\left(-\frac{V}{D}x\right) \right\}$$
 ②

ただし、x は液相内における固液界面からの距離を表す。式②を導け。

(c) 固液界面近傍での溶質の濃度変化に起因して、実際の液相の温度が溶質濃度 に対する液相線の温度よりも低くなることが起きる。この現象は何と呼ばれ るか答えよ。

図 1

図 2

第13問

固体の電気伝導に関して、以下の問いに答えよ。

- (1) アルミニウムとシリコンは、それぞれ典型的な金属と半導体であり、電子が電気 伝導を担う。
 - (a) 固体中の電子の状態を記述するのに、断熱近似と、一電子近似を適用した上で成り立つ、自由電子近似がある。自由電子近似では、価電子に対するイオンのクーロンポテンシャルが無視できると考える。断熱近似と、自由電子近似が成り立つ根拠を、それぞれ述べよ。
 - (b) 自由電子近似の下では、電気伝導率 (σ) は、下記の物理量を使ってどのような式で書けるか示せ。

n:価電子の数密度 e:素電荷 τ:電子の緩和時間 m:自由電子質量

- (c) アルミニウムとシリコンの立方晶の格子定数は、それぞれ $0.404~\rm nm$ と $0.543~\rm nm$ である。それぞれの価電子(最外殻電子)の数密度($\rm nm^{-3}$)を求め よ。
- (d) 純度の高いアルミニウムとシリコンの室温での電気伝導率の値は、それぞれ約 $10^7 \, \Omega^{-1} \mathrm{m}^{-1}$ 以上と約 $10^{-3} \, \Omega^{-1} \mathrm{m}^{-1}$ 以下である。これだけ大きく違う理由は、(b)、(c)の結果からは説明できないことを示し、電気伝導率が大きく違う理由を述べよ。
- (2) ZrO₂に適量のCaOを添加した安定化ジルコニアセラミックスは固体電解質であ り、主にイオンが電気伝導を担う。ただし、酸素分圧や温度によっては、イオン 伝導とは別の伝導機構が現れる。
 - (a) イオン伝導が生じる理由を、点欠陥の視点から説明せよ。
 - (b) 3つの温度A、B、Cにおける電気伝導率(σ)の酸素分圧(P_{O_2})依存性を図1に示す。電気伝導率には、酸素分圧に対してほぼ一定の領域と、酸素分圧が下がると共に大きくなる領域が現れる。それぞれの領域でこのような σ の P_{O_2} 依存性となる理由を述べよ。
 - (c) A、B、Cを温度の高い順に並べ、その理由を述べよ。

図 1