Logic in Computer Science

Matthías Páll Gissurarson

Autumn 2015

Contents

1	2015-09-01	2
2	2015-09-04	4
3	2015-09-08	5
	3.1 Inductive definitions	. 5
	3.2 Constructive semantics	8

Chapter 1

2015-09-01

www.cse.chalmers.se/edu/course/DAT060

What is logic about?

- Rules for correct reasoning.
- Foundation of mathematics.
- Mathematics about mathematics (metamathematics)

History:

- Babylonian mathematics ~ 2000 BC. Had no notion of proof, but gave very general examples. Could calculate $\sqrt{2}$ to 7 decimals.
- Pythagoras 580-495 BC. Were shocked by that the $\sqrt{2}$ was irrational.
- Aristotle 384-322 BC Called his rules for Syllogism, and had 24 of them. Example: All dogs have four legs Carlo is a dog. => Carlo has four legs
- \bullet Euclid ~ 300 BC. Geometry. Wrote Euclids elements, which used axioms. Used for a long time in schools.
- Archimedes 287-212 BC.
- Islamic Logic: Avicerna (ibn-suna) 980-1037 AD.
- Medival logic: 1200-1600 BC.

Scientific revolution:

- Galileo 1564-1642. The first one to conduct proper experiments. Science, not logic nor mathemathics.
- Descartes 1596-1650. Started an intellectual revolution. Was Both a philosopher and a mathematician. Rationalism, "Cogito ergo sum". He wanted to write everything we know from the start.
- Leibniz 1646-1716. Also invented differential calculus. Wanted to construct a language in which any argument could be represented and checked to be correct or not.
- Newton 1646-1727.

Newton, Leibniz and Descartes were all convinced that god existed, and use that as a basis for some of their proofs, even though it is unproven.

Empiricism:

- Hume 1711 1776. Was a bit secular, and was interested in what it was possible to know.
- Boole 1815 1864 Laws of thought. Propositional logic. $\land \lor, \rightarrow, \neg$
- Gottlieb Frege 1848 1925 Wrote a very important text about logic Begrüffnschift (1879) Predicate logic, proposistional logic plus quantifiers: \forall , \exists Grundgesetsse 1893, 1902 If P(x) is a property, then we can form the set $\{x|P(x)\}$
- Bertrand Russel. Found the Russel paradox, i.e.: According to Frege, you can form the set

$$A = \{x | x \notin x\}$$

Assume that $A \in A$ (1) According to the definition we then get that $A \notin A$ which contradicts the assumption which hence must be false, i.e. $A \notin A$, but then (2) follow, by the definition of A, that $A \in A$.

- Cantor ~ 1870 Set Theory. Potential infinity $0, 1, 2, \ldots, n, n+1, \ldots$ Actual infinity: $\{0, 1, 2, \ldots\}$
- Zemelo 1908 Given a set G, then we can form $\{x \in G | P(x)\}$

- Brouwer All mathematical objects must be constructed by us. A proposition is true if and only if we can prove it (complete). $A \vee \neg A$.
- Constructivism: Only things we can construct exists.
- Platonism: Objects exists independent of us.
- Formalism: Things can only be derived.

Chapter 2

2015-09-04

Missed

Definition (\vdash (derives)). Syntatic implication. If $S \vdash \psi$, it means that ψ can be derived from the formulas in S.

Definition (\models (models)). Semantic implication. $A \models B$ means that B is true in every model in which A is true.

Chapter 3

2015-09-08

3.1 Inductive definitions

The set N of natural numbers is inductively defined by

- (i) 0 is a natural number
- (ii) if n is a natural number, then succ(n) is a natural number.

Expressed by rules:

- (i) $0 \in \mathbb{N}$
- (ii) $\frac{n \in \mathbb{N}}{\operatorname{succ}(n) \in \mathbb{N}}$

Example of a recursively defined function, n!

$$\begin{cases}
fac(0) &= 1 \\
fac(succ(n)) &= succ(n) \cdot fac(n)
\end{cases}$$

The set \mathcal{F} of proposistional formulas is inductively defined by

- (i) atoms, including \perp , are formulas
- (ii) if \emptyset and ψ are formulas, so are $(\emptyset \land \psi), (\emptyset \lor \psi), (\emptyset \to \psi)$ and $(\neg \emptyset)$

Example. Define a function par which computes the number of parentheses in a formula. Done by recursion.

(i) $par(\emptyset) = 0$ when \emptyset is an atom.

(ii)

$$par((\emptyset \land \psi)) = par(\emptyset) + par(\psi) + 2$$
$$par((\emptyset \lor \psi)) = par(\emptyset) + par(\psi) + 2$$
$$\vdots$$
$$par((\neg \emptyset)) = par(\emptyset) + 2$$

Truth tables

Ø	ψ	$\emptyset \wedge \psi$	$\emptyset \vee \psi$	$ \emptyset \to \psi$	¬∅
Т	Т	Т	Т	Т	F
Τ	F	\mathbf{F}	Т	F	F
F	Τ	\mathbf{F}	Т	Т	Γ
F	F	F	F	T	Γ

Two kind of semantics

- (i) in terms of truth values "The meaning of a formula is its truth value" (Frege)
- (ii) In terms of proofs. Constructive semantics.

Definition (1.28, p 37). A valuation v is a function from the set of atoms to the set of truth values $v: \{p, q, r, p_1, p_2, p_3, \ldots\} \to \{T, F\}$ v can be extended to the set of proposistional formulas by recursion.

(i) v is already defined on the atoms $(v(\bot) = F)$

(ii)
$$v(\emptyset \wedge \psi) = \begin{cases} T & \text{if } v(\psi) = v(\emptyset) = T \\ F & \text{Otherwise} \end{cases}$$

$$v(\emptyset \vee \psi) = \begin{cases} T & \text{if } v(\psi) = T \text{ or } v(\emptyset) = T \\ F & \text{Otherwise} \end{cases}$$

$$v(\emptyset \to \psi) = \begin{cases} F & \text{if } v(\emptyset) = T \text{ and } v(\psi) = F \\ T & \text{Otherwise} \end{cases}$$

$$v(\emptyset) = \begin{cases} T & \text{if } v(\emptyset) = F \\ F & \text{Otherwise} \end{cases}$$

Definition (1.34, p 46). If for all valuations in which all $\emptyset_1, \ldots, \emptyset_n$ evaluates to T, also ψ evaluates to T then

$$\emptyset_1, \ldots, \emptyset_n \models \psi$$

holds.

Example. $p \land q \models p$ holds. Nota $p \land q \vdash$ with a completely different argument, namely the derivation

- 1. $p \wedge q$ premise
- $2. p \wedge e_1, 1$

Example.

$$p,q \models p \land q$$

Theorem (Soundness (1.35)).

$$\emptyset_1, \dots, \emptyset_n \vdash \psi \Rightarrow \emptyset_1, \dots, \emptyset_n \models \psi$$

Proof. Proof by induction on the derivation

$$\begin{array}{c} \vdots \\ \frac{\psi_1 \quad \psi_2}{\psi_1 \wedge \psi_2} \wedge i \\ \\ \vdots \\ \frac{\psi_1 \wedge \psi_2}{\psi_1} \wedge e_i \\ \\ \psi_1 \\ \vdots \\ \psi_2 \\ \hline \psi_1 \rightarrow \psi_2 \rightarrow i \end{array}$$

Q.E.D

Theorem (1.4.4 p 49. Completeness).

$$\emptyset_1, \dots, \emptyset_n \models \psi \rightarrow \emptyset_1, \dots, \emptyset_n \vdash \psi$$

Proof by kalmar 1930. The construction of Kalmar's derivation is exponential in the number of atoms of the formulas $\sim 2^n$, where n is the number of atoms.

Definition. If $\models \emptyset$ hodls, we say that \emptyset is a **tautology**

 \emptyset is true for all valuations

$$\llbracket \emptyset \rrbracket_r = T \text{ for all } v$$

$$\emptyset_1, \dots, \emptyset_n \models \psi \Leftrightarrow \models (\emptyset_1 \land \dots \land \emptyset_n) \to \psi$$

3.2 Constructive semantics

Brouwer, Heyting, Kolmogorov. 1930.

A proposistion is defined by laying down what counts as a proof of it.

To prove	we must	Type
$\emptyset \wedge \psi$	prove \emptyset and prove ψ	$A \times B$
$\emptyset \lor \psi$	prove \emptyset or prove ψ	A+B
$\emptyset \to \psi$	give a method which	$A \rightarrow B$
	to each proof of \emptyset gives a proof of ψ	
	nothing counts as a proof of \perp	T

Bishop 1967. Foundations of constructive analysis, a great work in constructive semantics.

Thierry Coquand was given a prize for his work in logic.

x-elimination: $\frac{c \in A \times B}{\operatorname{snd}(c) \in B} \times e_2$

Where $\operatorname{fst}(\langle a, b \rangle) = a$ and $\operatorname{snd}(\langle a, b \rangle) = b$.

Curry 1958. - noticed implications Howard 1969 - extended to predicate logic. Per Marten-Löf 1970. Type theory.