Recall the guidelines:

- A. domain
- B. intercepts
- C. symmetry
- D. asymptotes
- E. increase/decrease (and critical numbers)
- F. local maxima/minima
- G. concavity (and inflection points)
- H. sketch the graph
- 1. Sketch the graph by applying the guidelines:

$$y = \frac{1}{x^2 - 4}$$

A.
$$x \neq \pm 7$$
 or $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$

1.
$$x=-2$$
 and $x=+2$ are vertical [e.g. $\lim_{x\to 2^+} \frac{1}{x^2-4} = +\infty$]
 $y=0$ is horizontal [$\lim_{x\to \pm \infty} \frac{1}{x^2-4} = 0$]

E.
$$y' = -(x^2 - 4)^{-2}(2x) = \frac{-2x}{(x^2 - 4)^2}$$
 : $x = 0$ is crit. #

increasing $(-20, -2) \cup (-2, 0)$

G.
$$y'' = \frac{-2(x^2-4)^2 - (-2x)2(x^2-4)(2x)}{(x^2-4)^4} = \frac{2(3x^2+4)}{(x^2-4)^3}$$

:. no in fl. pts., concave up: (-00,-2)U(2,00), concave dwn: (-2,2)

2. Sketch the graph by applying the guidelines:

$$y = x(x-4)^3$$
, $y' = 4(x-1)(x-4)^2$, $y'' = 12(x-2)(x-4)$

- A. (-00,00)
- B. 4=0, x=0 8 x=4
- C. none
- D. none
- E. increasing on [1,00)

 decreasing on (-00,1)

 (rit. #s: x=1,4
- F. x=1 is loc. min. (y=-27) no loc max
- Concar up: (-0,2) U (4,0), dwn: (2,7)

 3. Sketch the graph by applying the guidelines:
 - 3. Sketch the graph by applying the guidelines: $y = \frac{x}{1 + x}$
 - $y = \frac{x}{\sqrt{x^2 + 1}}$ $y' = \frac{1}{(x^2 + 1)^{3/2}}$ $y'' = \frac{-3x}{(x^2 + 1)^{5/2}}$
 - A. (-00,00)
 - B. (0,0) is both
 - C. odd
 - 0, y = -1, y = +1 are hor. asympts. $\text{e.t.} \frac{\times}{\times -20} \sqrt{\times^2 + 1} = 0$
 - E. no crit. #s
 increasing on (-00,0)
 - F. x=0 is infl. pt. (oncave up (-00,0) concave dam (0,00)

