

Analysis and Comparison of Text-Input Methods in Virtual RealityBachelor Thesis Presentation

Nakarin Srijumrat, 16.12.1998

1	Introduction and Motivation – Why VR?
2	VR Text Input Today
3	Implemented Keyboards
4	Evaluation Methodology
5	Results
6	Conclusion
7	Future Work

1	Introduction and Motivation – Why VR?
2	VR Text Input Today
3	Implemented Keyboards
4	Evaluation Methodology
5	Results
6	Conclusion
7	Future Work

Intro to Virtual Reality

- Enables experiences not possible with conventional computer
 - Headset with display (+ controllers)
- First interest in VR in research 70s-80s, less in 2000s
 - Renaissance in 2010s
- 3.24% of Steam accounts connected a VR Headset in May 2022
 - Estimated: 3'888'000 of 120'000'000 total users [1]
- Use cases
 - Training and Education
 - Entertainment
 - Healthcare
 - ...

Current state of VR Text-Input and Motivation

- Efficiency of text-input in VR insufficient:
 - Speed
 - Reliability
 - Accuracy
- Many of proposed solutions not public or developed for specific hardware
- What can we do?
- **Thesis Goal:** Contribute to existing research
 - **Implement** solutions (2 existing designs, 1 new design)
 - **Compare** solutions using research standards

2 VR Text Input Today	
2 VR Text Input Today	
3 Implemented Keyboards	
4 Evaluation Methodology	
5 Results	
6 Conclusion	
7 Future Work	

Established VR Text-Input Methods

Raycast Keyboard

Controller-based

«Aim and shoot»:

Selection with hand movement **Confirmation** with button press

Virtual Keyboard

Controller-based

Modelled after physical keyboard: **Selection** and **Confirmation** with hand movement

Subject of thesis

1	Introduction and Motivation – Why VR?
2	VR Text Input Today
3	Implemented Keyboards
4	Evaluation Methodology
5	Results
6	Conclusion
7	Future Work

Implemented Keyboards

Virtual Keyboard

Copy of a «real» keyboard

Pros

- Widespread familiarity
- Very easy to use

Cons

Tiring to use

Drumstick Keyboard [2]

Drums as keys, sticks as triggers

Pros

- Less arm fatigue
- Intuitive

Cons

Requires more precision

Analog Stick Keyboard

Input based on sticks and triggers instead of movement

Inspiration for Analog Stick Keyboard

Н

Daisywheel Keyboard (2012) by Valve [3]

Implemented Keyboards

Virtual Keyboard

Copy of a «real» keyboard

Pros

- Widespread familiarity
- Very easy to use

Cons

Tiring to use

Drumstick Keyboard

Drums as keys, sticks as triggers

Pros

- Less arm fatigue
- Intuitive

Cons

Requires more precision

Analog Stick Keyboard

Input based on sticks and triggers instead of movement

Pros

- ???

Cons

- ???

Demo Video

Title of presentation, author, DD.MM.YY

1	Introduction and Motivation – Why VR?
2	VR Text Input Today
3	Implemented Keyboards
4	Evaluation Methodology
5	Results
6	Conclusion
7	Future Work

Evaluation Methodology [4, 5]

|T| = Length of Input

S =Seconds From First Input to Last

IF = Incorrect Fixed

Data Collection

- User Study, participants asked to copy phrases using identical VR hardware (n=14)
 - Phrases taken from MacKenzie phrase set [6]
- 5 phrases for Virtual/Drumstick Keyboard, 3 phrases for Analog Stick Keyboard
- **Performance** calculation based on user input
- **Usability** based on SUS questionnaire

1	Introduction and Motivation – Why VR?
2	VR Text Input Today
3	Implemented Keyboards
4	Evaluation Methodology
5	Results
6	Conclusion
7	Future Work

Performance: Text Entry Speed

Performance: Error Rate

Performance Comparison to Physical Input Methods [4]

Input Method	Participants	Error Metric	Error Rate	WPM ↓
Physical Keyboard	25	ER*	1.80	75.84
12-Key Multi-tap	55	EKS ER	9.10	9.94
Drumstick Keyboard	14	EKS ER	9.22	6.91
Virtual Keyboard	14	EKS ER	8.76	6.42
Analog Stick Keyboard	10	EKS ER	5.35	2.80

Input Method	Participants	Error Metric	Error Rate ↓	WPM
Drumstick Keyboard	14	EKS ER	9.22	6.91
12-Key Multi-tap	55	EKS ER	9.10	9.94
Virtual Keyboard	14	EKS ER	8.76	6.42
Analog Stick Keyboard	10	EKS ER	5.35	2.80
Physical Keyboard	25	ER*	1.80	75.84

*allows incorrect input

Usability: System Usability Scale (SUS)

Implemented Keyboards - Reprise

Virtual Keyboard

Copy of a «real» keyboard

Pros

- Widespread familiarity
- Very easy to use

Cons

Tiring to use

Drumstick Keyboard

Drums as keys, sticks as triggers

Pros

- Less arm fatigue
- Intuitive

Cons

Requires more precision

Analog Stick Keyboard

Input based on sticks and triggers instead of movement

Pros

- Can be used blindy
- No arm movements

Cons

Very steep learning curve

1	Introduction and Motivation – Why VR?
2	VR Text Input Today
3	Implemented Keyboards
4	Evaluation Methodology
5	Results
6	Conclusion
7	Future Work

Conclusion

- 2 existing designs of keyboards implemented, 1 original design implemented
- **Virtual Keyboard** ranked best in terms of usability, almost fastest and moderate ER
- **Drumstick Keyboard** was the fastest (but had the highest ER)
- Analog Stick Keyboard least errors, but low speed and low usability
 - Attributed to learning curve properties
- All methods significantly slower than physical keyboard

1	Introduction and Motivation – Why VR?
2	VR Text Input Today
3	Implemented Keyboards
4	Evaluation Methodology
5	Results
6	Conclusion
7	Future Work

(Conceptual) Keyboard Improvements

- Haptic Feedback
- Improved Visual Feedback for Analog Stick Keyboard
- More Symbols and Capital Letters (Using Modificator Buttons)
- Alternative Layout for Analog Stick Keyboard

Future Work

- Alternative Error Rate Measurements
 - EKS ER didn't allow incorrect copies
 - Impact on WPM
 - Different measurements highlight different factors [4]
- Exploration of other input methods
 - Countless possibilities for text input
 - Methods that come with technological advances

References

- [1] VR Usage On Steam Jumps To All Time High But Why? (uploadvr.com) (06 June 2022, retrieved 30 June 2022)
- [2] Andrey Doronichev. Daydream labs: Exploring and sharing vr's possibilities, May 2016. URL https://blog.google/products/google-ar-vr/daydream-labs-exploring-and-sharing-vrs/.
- [3] likethemammal/daisywheelis: The Steam "Big Picture" Daisywheel ported to JS and CSS. Supports Gamepad API. (github.com)
- [4] Ahmed Arif and Wolfgang Stuerzlinger. Analysis of text entry performance metrics. pages 100 105, 10 2009. doi: 10.1109/TIC-STH.2009.5444533
- [5] John Brooke. SUS a quick and dirty usability scale, pages 189–194. 01 1996.
- [6] I. Mackenzie and R. Soukoreff. Phrase sets for evaluating text entry techniques. Conference on Human Factors in Computing Systems - Proceedings, 05 2003. doi: 10.1145/765891.765971

Thank you for your attention.