Package 'LSVAR'

October 12, 2022

2 fista.LpS

```
      snrinkage.ir
      8

      sparse.pen
      9

      summary.LSVAR
      9

      testVAR
      10

      Index
      12
```

f.func

Main loss function for quardratic loss

Description

Main loss function

Usage

```
f.func(x, A, b)
```

Arguments

x Model parameters

A Design matrix with size of n by p

b Correspond vector or matrix

Value

Value of objective function

fista.LpS

A function to solve low rank plus sparse model estimation using FISTA algorithm

Description

A function to solve low rank plus sparse model estimation

```
fista.LpS(
  data,
  lambda,
  mu,
  alpha_L = 0.25,
  niter = 100,
  backtracking = TRUE,
  x.true = NULL
)
```

gradf.func 3

Arguments

data	A numeric dataset with size of n by p
lambda	A positive numeric value, indicating the tuning parameter for sparse component
mu	A positive numeric value, indicating the tuning parameter for low rank component
alpha_L	The constraint coefficient of low rank component, default is 0.25
niter	The maximum number of iterations required for FISTA
backtracking	A boolean argument, indicating that use backtracking in the FISTA
x.true	A p by p matrix, the true model parameter. Only available for simulation.

Value

A S3 object of class LSVAR, including

est_phi estimated model parameter

sparse.comp Estimated sparse component

Ir.comp Estimated low-rank component

obj.val Values of objective function

rel.err Relative errors compared with the true model parameters if available

Examples

gradf.func

Gradient function of quardratic loss

Description

Gradient function of quardratic loss

```
gradf.func(x, AtA, Atb)
```

obj.func

Arguments

x A vector, or matrix, indicating the model parameter

AtA A p by p Gram matrix for corresponding design matrix A

Atb An inner product for design matrix A and corresponding matrix (vector) b

Value

Value of gradients

nuclear.pen

Nuclear norm penalty for low-rank component

Description

Nuclear norm penalty for low-rank component

Usage

```
nuclear.pen(x, lambda)
```

Arguments

x Model parameterlambda Tuning parameter

Value

Value of nuclear norm penalty term

obj.func

Objective function

Description

objective function, main loss function and penalties

```
obj.func(x.lr, x.sparse, A, b, lambda, mu)
```

plot_network 5

Arguments

x.1r low-rank componentx.sparse sparse componentA design matrixb correspond vector

1ambda a tuning parameter for sparse componentmu a tuning parameter for low-rank component

Value

value of objective function

plot_network

plot sparse component for use igraph and network layout

Description

Plot a network to illustrate the estimated sparse component

Usage

```
plot_network(mat, threshold = 0.1)
```

Arguments

mat a p by p matrix, indicating the sparse component threshold the threshold for presenting the edges in the network

Value

A network plot for the sparse component

Examples

```
set.seed(1)
est_mats <- matrix(rnorm(400, 0, 1), 20, 20)
plot_network(est_mats, threshold = 0.1)</pre>
```

6 prox.sparse.func

prox.nuclear.func

Proximal function with nuclear norm penalty updating

Description

Proximal function with nuclear norm

Usage

```
prox.nuclear.func(w1, y, A, b, L, lambda, AtA, Atb)
```

Arguments

w1 previously updated model parameter

y updated model parameter

A design matrix

b correspond vector, or matrix

L learning rate

lambda tuning parameter for low-rank component

AtA Gram matrix of design matrix A

Atb inner product of design matrix A and correspond vector b

Value

Value of proximal function with nuclear norm penalty

prox.sparse.func

Proximal function with 11-norm penalty updating

Description

Proximal function with 11-norm

```
prox.sparse.func(w1, y, A, b, L, lambda, AtA, Atb)
```

Q.func 7

Arguments

w1	previously updated model parameter
у	updated model parameter
Α	design matrix
b	correspond vector, or matrix
L	learning rate
lambda	tuning parameter for sparse component
AtA	Gram matrix of design matrix A

Atb inner product of design matrix A and correspond vector b

Value

Value of proximal function with 11-norm penalty

Q. func An auxiliary function in FISTA algorithm	
--	--

Description

Auxiliary function for FISTA implementation

Usage

```
Q.func(x, y, A, b, L, AtA, Atb)
```

Arguments

X	Model parameter for previous update
У	Model parameter for updating
A	An n by p design matrix
b	A correspond vector, or matrix with size of n by 1 or n by p
L	Learning rate
AtA	Gram matrix for design matrix A
Atb	Inner product for design matrix A and correspond vector b

Value

Value of function Q

8 shrinkage.lr

shrinkage

Shrinkage function for sparse soft-thresholding

Description

Shrinkage function for sparse soft-thresholding

Usage

```
shrinkage(y, tau)
```

Arguments

y A matrix, or a vector for thresholding

tau A positive number, threshold

Value

A thresholded matrix, or vector

shrinkage.lr

Shrinkage function for low-rank soft-thresholding

Description

Shrinkage function for low-rank soft-thresholding

Usage

```
shrinkage.lr(y, tau)
```

Arguments

y A matrix, or a vector for thresholding

tau A positive number, threshold

Value

A thresholded matrix, or vector

sparse.pen 9

sparse.pen

L1-norm penalty for sparse component

Description

L1-norm penalty for sparse component

Usage

```
sparse.pen(x, lambda)
```

Arguments

x Model parameterlambda Tuning parameter

Value

Value of 11-norm penalty term

summary.LSVAR

Summary of LSVAR S3 class

Description

summary function for S3 class for the fitting result

Usage

```
## S3 method for class 'LSVAR'
summary(object, threshold = 0.2, ...)
```

Arguments

object the S3 class object of LSVAR

threshold the threshold for sparse component visualization

... not in use

Value

A series of summary for the S3 result

10 testVAR

Examples

testVAR

Function to generate a VAR process

Description

A function to generate synthetic time series process based on the given structure

Usage

```
testVAR(
    n,
    p,
    struct = c("sparse", "low rank", "LS")[1],
    sp_density = 0.1,
    signal = NULL,
    rank = NULL,
    singular_vals,
    spectral_radius = 0.9,
    sigma = NULL,
    skip = 50,
    seed = 1
)
```

Arguments

n	the length of time series
р	the number of multivariate time series
struct	a character string indicating the structure of the transition matrix, here are three options: sparse, low rank and LS (low rank plus sparse)
sp_density	a numeric value, indicating the sparsity density of sparse components, default is 0.1
signal	a numeric value, indicating the magnitude of transition matrix
rank	a positive integer, the rank for low rank component
singular_vals	a numeric vector, indicating the singular values for the low rank component, the length of singular value must equal to the rank

testVAR 11

spectral_radius

a numeric value, controlling the stability of the process, default is 0.9

sigma a numeric matrix, indicating the covariance matrix of noise term

skip a numeric value, indicating the number of skipped time points in the beginning

of the process

seed an integer, indicating the seed for random seed.

Value

A list object, including

series the generated time series

noise the noise term

model_param true transition matrix

Examples

Index

```
f.func, 2
fista.LpS, 2
gradf.func, 3
nuclear.pen, 4
obj.func, 4
plot_network, 5
prox.nuclear.func, 6
prox.sparse.func, 6
Q.func, 7
shrinkage, 8
shrinkage.lr, 8
sparse.pen, 9
summary.LSVAR, 9
testVAR, 10
```