

1. Diseñar y simular un circuito con un diodo rectificador y analizar su comportamiento.

- Alternador: Tiene una configuración de 170V para obtener 120v eficaz.
- **Transformador:** $N_p / N_s = V_p / V_s = I_s / I_p = r_t$ Donde (N_p) es el número de vueltas del devanado del primario, (N_s) el número de vueltas del secundario, (V_p) la tensión aplicada en el primario, (V_s) la obtenida en el secundario, (I_s) la intensidad que llega al primario, (I_p) la generada por el secundario y (r_t) la relación de transformación

- Diodos rectificador: Permiten el flujo de corriente en una sola dirección, convirtiendo la señal de AC en dos semiciclos de DC.
- Capacitor de filtro (147μF): Almacena la voltaje durante los picos de la señal de DC, Filtrando el rizado y generando una señal de DC más estable.
- Resistencia de carga (10kΩ): Limita la corriente que fluye a través del circuito y proporciona una carga para el rectificador.
 - 2. Diseñar y simular un circuito con un transistor bipolar como amplificador y analizar su comportamiento.

La función básica de un transistor como amplificador es tomar una señal de entrada débil en la base y proporcionar una señal de salida amplificada en el colector gracias a la característica fundamental de un transistor: la corriente que fluye del emisor al colector (I_c) es una multiplicación de la corriente que fluye de la base al emisor (I_b) por un factor llamado ganancia de corriente (β o hfe). $I_c = \beta * I_b$

3. Diseñar y simular un circuito con un transistor bipolar como interruptor y analizar su comportamiento.

Lo que se pude observar al comenzar a realizar esta práctica es como empieza un transistor a funcionar automáticamente para activar cualquier cosa que pueda funcionar a base de un interruptor.

4. Diseñar y simular un circuito con un amplificador operacional como sumador inversor y analizar su comportamiento.

Un amplificador operacional sumador es un circuito eléctrico que suma dos señales de entrada y entrega el valor de la suma a la salida del circuito.

5. Diseñar y simular un circuito con un amplificador operacional como comparador y analizar su comportamiento.

Tienen como misión comparar una tensión variable con otra, normalmente constante, denominada tensión de referencia, dándonos a la salida una tensión positiva o negativa. Este amplificador se caracteriza por ser de tipo diferencial, es decir, toma la diferencia entre los voltajes de entradas y los amplifica según su ganancia Vout = Av·(Vin1-Vin2). Sí Vin1 (entrada no inversora) es mayor que Vin2 (entrada inversora) la salida será +VCC. Si Vin2 (entrada inversora) es mayor que Vin1 (entrada no inversora) la salida será -VCC.