1 Einleitung

1.1 NP-Vollständigkeit

Eine Sprache B ist **NP-Vollständig** wenn gilt:

- 1. $B \in NP$
- 2. $\forall A \in NP : A \prec_p B$

Notiz:

 $A \prec_p B : A$ ist polynomialzeitreduzierbar auf B

1.2 Polynomialzeitreduktion

Eine Sprache A ist polynomialzeitreduzierbar auf Sprache $B, A \prec_p B$, wenn eine in polynomialer Zeit berechenbare Funktion $f: \Sigma^* \to \Sigma^*$ existiert, für die gilt:

$$\forall w : w \in A \iff f(w) \in B$$

Die Funktion f heißt dann Polynomialzeitreduktion von A nach B.

1.3 Definition 3SAT

Spezialform des Erfüllbarkeitsproblems

- Literal:
 - x_i oder $\overline{x_i}$
- Variable:

 x_i (l: Anzahl der Variablen)

• Klausel:

$$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4)$$
 (k: Anzahl der Klauseln)

• CNF-Formel(cnf-formula - conjunctive normal form): $(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4) \land (x_3 \lor \overline{x_5} \lor x_6) \land (x_3 \lor \overline{x_6})$

•
$$\phi$$
: $(x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (\overline{x_2} \vee x_4 \vee ...) \wedge ... \wedge (\overline{x_3} \vee ... \vee ...)$

 $3SAT = \{\ \langle \phi \rangle | \phi \ \text{ist eine erfüllbare 3CNF-Formel} \}$ $\phi = 1 \iff \forall c_j \text{: mindestens ein Literal ist } true$

2 Hamilton-Pfad-Problem

2.1 Definition

- Geht durch jeden Knoten genau einmal
- Startet in s
- Endet in t

Notiz: Gesucht: Pfad von s nach t, der durch jeden knoten genau einmal geht.

2.2 Beweis Gerichtet

$\textbf{2.2.1} \;\; \textbf{HAMPATH} \in \textbf{NP}$

Notiz: Eine nichtdeterministische Turingmaschine rät das Ergebnis und Verwirft dann bzw. nimmt an.

2.2.2 Konstruktion von G

 $\phi \to G$

Darstellung Variable x_i

Darstellung Klausel c_j

High-level structure of G

Horizontale Struktur im Diamant

 $\langle 3k+1 \rangle$ Knoten

Zusätzliche Kanten wenn x_i in c_j ist

Notiz: Am Beispiel von ϕ zeigen!

Zusätzliche Kanten wenn $\overline{x_i}$ in c_j ist

2.2.3 ϕ ist erfüllbar

Notiz: Zunächst werden die Knoten c_i ignoriert.

Notiz: Der Pfad geht von s nach t durch jeden Diamanten nach einander.

Notiz: Um alle Knoten zu treffen muss der Pfad entweder zig-zaggen oder zag-ziggen.

Zig-zagging and Zag-zigging

Notiz: Zig-zagging wenn Variable $x_i = true$, Zag-zigging wenn Variable $x_i = false$

Notiz: Jetzt fehlen nurnoch die Knoten c_i .

Notiz: In jeder Klausel c_i wählen wir einen Literal aus, dem wir true zuweisen.

Notiz: Jeder wahre Literal in einer Klausel ist nur eine Option für einen Umweg über einen Klauselnoten. \rightarrow Es wird immer nur ein Umweg zu jedem Klauselknoten genommen. \rightarrow Konstruktion von G ist beendet.

2.2.4 G hat einen HAMPATH

- HAMPATH muss normal sein, geht durch Diamanten von oben nach unten (ausgenommen von den Umwegen über die Klauselknoten
- zig- $zag \rightarrow x_i = true$, zag- $zig \rightarrow x_i = false$
- Anhand dessen, wie der Umweg über einen Klauselknoten genommen wird kann man erkennen welcher Literal der Klausel wahr ist
- Hampath ist normal zeigen

Laufzeit

Notiz: Anhand des Graphen erläutern(Anzahl Knoten)

2.2.5 Ungerichtet

TODO: muss der auch rein?

3 SUBSET-SUM-Problem

3.1 Definition

- Integer-Arithmetik (dezimal)
- Menge von Zahlen $S: x_1, ..., x_k$
- Target t
- Kann t durch ein Subset von S erreicht werden?

3.2 Beweis

3SAT \prec_p SUBSET-SUM $\phi: (x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (\overline{x_2} \vee x_4 \vee ...) \wedge ... \wedge (\overline{x_3} \vee ... \vee ...)$

$\textbf{3.2.1 SUBSET-SUM} \in \textbf{NP}$

Notiz: Eine nichtdeterministische Turingmaschine rät das Ergebnis und Verwirft dann bzw. nimmt an.

3.2.2 Konstruktion der Tabelle

- Elemente aus S und die Zahl t sind die Zeilen der Tabelle (in Dezimaldarstellung)
- Die Zeilen oberhalb des Doppellinie sind $y_1, z_1, y_2, z_2, ..., y_l, z_l$ und $g_1, h_1, g_2, h_2, ..., g_k, h_k$
- Unter der Doppellinie ist t, l 1 gefolgt von k 3
- S hat ein Paar y_i, z_i für jede Variable x_i in ϕ
- linke Seite: 1 gefolgt von l-i 0
- rechte Seite: $1 \iff c_j \ x_i$ beinhaltet, $0 \iff c_j \ \overline{x_i}$ beinhaltet
- nicht gefüllte Stellen sind 0

- g_j, h_j für jede Klausel c_j
- $g_j = h_j$, 1 gefolgt von k j 0
- Kein Carry möglich

	1	2	3	4	•••	1	c_1	c_2		c_k
$\overline{y_1}$	1	0	0	0	•••	0	1	0	•••	0
z_1	1	0	0	0	•••	0	0	0		0
y_2		1	0	0	•••	0	0	0		0
z_2		1	0	0	•••	0	1	1		0
y_3			1	0	•••	0	0	0		0
z_3			1	0	•••	0	1	0		1
•••					•••					
y_l						1	0	0		0
z_l						1	0	0		0
g_1						1	0	0		0
h_1						1	0	0		0
g_2							1	0		0
h_2							1	0		0
					•••					
g_k										1
h_k										_1_
t	1	1	1	1		1	3	3		3

3.2.3 Annahme

Es existiert eine Konfiguration für die ϕ erfüllt ist.

- Wähle y_i wenn Variable x_i wahr ist, ansonsten z_i
- Summe ergibt nur 1 auf der linken Seite, auf der rechten Seite nur 1 bis 3
- g und h wählen bis t erreicht

3.2.4 Annahme

Ein Subset von S ergibt t.

- y_i oder z_i um 1 für linke Seite zu bekommen
- Wenn y_i im Subset dann $x_i = true$, ansonsten false
- Summe der rechten Seite ist immer 3, maximal 2 können von g und h kommen, daher alle c_j wahr

3 SUBSET-SUM-Problem

- Wenn y_i dann ist x_i in c_j und wird true gesetzt, wenn z_i dann $\overline{x_i}$ in c_j und x_i wird aus false gesetzt
- Daher ist ϕ wahr

3.2.5 Laufzeit

Tabelle hat etwa eine Größe von $(l+k)^2$ Jeder Eintrag ist leicht zu berechnen $\Rightarrow O(n^2)$