Quaternion

5.3

Generated by Doxygen 1.8.14

Contents

1	Mod	ule Index	1
	1.1	Modules	1
2	Nam	espace Index	3
	2.1	Namespace List	3
3	Data	Structure Index	5
	3.1	Data Structures	5
4	File	Index	7
	4.1	File List	7
5	Mod	ule Documentation	9
	5.1	Models	9
		5.1.1 Detailed Description	9
	5.2	Utils	10
		5.2.1 Detailed Description	10
	5.3	Quaternion	11
		5.3.1 Detailed Description	11
6	Nam	espace Documentation	13
	6.1	jeod Namespace Reference	13
		6.1.1 Detailed Description	13

ii CONTENTS

7	Data	Struct	ure Docun	nentation	15
	7.1	jeod::C	Quaternion	Class Reference	15
		7.1.1	Detailed	Description	17
		7.1.2	Construc	tor & Destructor Documentation	17
			7.1.2.1	Quaternion() [1/5]	17
			7.1.2.2	Quaternion() [2/5]	17
			7.1.2.3	Quaternion() [3/5]	18
			7.1.2.4	Quaternion() [4/5]	18
			7.1.2.5	Quaternion() [5/5]	18
		7.1.3	Member	Function Documentation	19
			7.1.3.1	compute_left_quat_deriv() [1/2]	19
			7.1.3.2	compute_left_quat_deriv() [2/2]	19
			7.1.3.3	compute_left_quat_second_deriv() [1/2]	20
			7.1.3.4	compute_left_quat_second_deriv() [2/2]	20
			7.1.3.5	compute_slerp()	21
			7.1.3.6	conjugate() [1/2]	21
			7.1.3.7	conjugate() [2/2]	21
			7.1.3.8	conjugate_multiply() [1/2]	22
			7.1.3.9	conjugate_multiply() [2/2]	22
			7.1.3.10	copy_from()	22
			7.1.3.11	copy_to()	23
			7.1.3.12	eigen_compare()	23
			7.1.3.13	left_quat_from_eigen_rotation()	23
			7.1.3.14	left_quat_from_transformation()	24
			7.1.3.15	left_quat_to_eigen_rotation()	24
			7.1.3.16	left_quat_to_transformation()	25
			7.1.3.17	left_quat_transform()	25
			7.1.3.18	make_identity()	26
			7.1.3.19	multiply() [1/2]	26
			7.1.3.20	multiply() [2/2]	26

CONTENTS

		7.1.3.21	multiply_conjugate() [1/2]	27
		7.1.3.22	multiply_conjugate() [2/2]	27
		7.1.3.23	multiply_left() [1/2]	27
		7.1.3.24	multiply_left() [2/2]	28
		7.1.3.25	multiply_left_conjugate() [1/2]	28
		7.1.3.26	multiply_left_conjugate() [2/2]	28
		7.1.3.27	multiply_vector_left()	29
		7.1.3.28	multiply_vector_right()	29
		7.1.3.29	norm_sq()	30
		7.1.3.30	normalize() [1/2]	30
		7.1.3.31	normalize() [2/2]	30
		7.1.3.32	normalize_integ() [1/3]	31
		7.1.3.33	normalize_integ() [2/3]	31
		7.1.3.34	normalize_integ() [3/3]	31
		7.1.3.35	operator double *()	31
		7.1.3.36	scale() [1/2]	32
		7.1.3.37	scale() [2/2]	32
		7.1.3.38	set_to_zero()	32
	7.1.4	Friends A	nd Related Function Documentation	33
		7.1.4.1	init_attrjeodQuaternion	33
		7.1.4.2	InputProcessor	33
	7.1.5	Field Doc	umentation	33
		7.1.5.1	scalar	33
		7.1.5.2	vector	33
7.2	jeod::C	QuatMessaç	ges Class Reference	34
	7.2.1	Detailed [Description	34
	7.2.2	Construct	or & Destructor Documentation	34
		7.2.2.1	QuatMessages() [1/2]	34
		7.2.2.2	QuatMessages() [2/2]	34
	7.2.3	Member F	Function Documentation	35
		7.2.3.1	operator=()	35
	7.2.4	Friends A	nd Related Function Documentation	35
		7.2.4.1	init_attrjeodQuatMessages	35
		7.2.4.2	InputProcessor	35
	7.2.5	Field Doc	umentation	35
		7.2.5.1	invalid_entry	35
		7.2.5.2	undefined	35

iv CONTENTS

8	File	Documentation				37
	8.1	quat.cc File Reference			 	 37
		8.1.1 Detailed Descri	iption		 	 37
	8.2	quat.hh File Reference			 	 37
		8.2.1 Detailed Descri	iption		 	 38
	8.3	quat_from_mat.cc File	Reference		 	 38
		8.3.1 Detailed Descri	iption		 	 38
	8.4	quat_inline.hh File Ref	erence		 	 38
		8.4.1 Detailed Descri	iption		 	 39
	8.5	quat_messages.cc File	Reference		 	 39
		8.5.1 Detailed Descri	iption		 	 39
		8.5.2 Macro Definition	on Documentation .		 	 39
		8.5.2.1 MA	KE_QUAT_MESSAC	GE_CODE .	 	 39
	8.6	quat_messages.hh File	e Reference		 	 40
		8.6.1 Detailed Descri	iption		 	 40
	8.7	quat_norm.cc File Refe	erence		 	 40
		8.7.1 Detailed Descri	ription		 	 40
	8.8	quat_to_eigenrot.cc Fi	le Reference		 	 40
		8.8.1 Detailed Descri	iption		 	 41
	8.9	quat_to_mat.cc File Re	eference		 	 41
		8.9.1 Detailed Descri	iption		 	 41
Inc	lex					43

Module Index

1.1 Modules

Here is a list of all modules:

Models .					 																9
Q	uaternior	١.					 														11

2 Module Index

Namespace Index

	2.1	Namespace	List
--	-----	-----------	------

Here is a list of all Harriespaces w	itii bilei descriptions.	

jeod																						
	Namespace jeod															 						13

4 Namespace Index

Data Structure Index

3.1 Data Structures

Here are the data structures with brief descriptions:

jeod::Quaternion	
Implement quaternions to the extent needed to represent orientations	15
jeod::QuatMessages	
Specifies the message IDs used in the orbital elements model	34

6 Data Structure Index

File Index

4.1 File List

Here is a list of all files with brief descriptions:

quat.cc	
Define basic methods for the quaternion class	37
quat.hh	
Define the quaternion class	37
quat_from_mat.cc	
Define left_quat_from_transformation (), which computes the parent-to-child left quaternion from	
the input transformation matrix	38
quat_inline.hh	
Define inline methods for the quaternion class	38
quat_messages.cc	
Implement the class QuatMessages	39
quat_messages.hh	
Define the class QuatMessages, the class that specifies the message IDs used in the quaternion	
model	40
quat_norm.cc	
Define quaternion normalization methods	40
quat_to_eigenrot.cc	
Define Quaternion::left_quat_to_eigen_rotation, which computes the eigen rotation correspond-	
ing to a quaternion	40
quat_to_mat.cc	
Define Quaternion::left_quat_to_transformation, which computes the parent- to-child transforma-	
tion matrix from the parent-to-child left quaternion	41

8 File Index

Module Documentation

5.1 Models

Modules

• Utils

5.1.1 Detailed Description

10 Module Documentation

5.2 Utils

Modules

Quaternion

5.2.1 Detailed Description

5.3 Quaternion 11

5.3 Quaternion

Files

· file quat.hh

Define the quaternion class.

• file quat_inline.hh

Define inline methods for the quaternion class.

· file quat messages.hh

Define the class QuatMessages, the class that specifies the message IDs used in the quaternion model.

· file quat.cc

Define basic methods for the quaternion class.

file quat_from_mat.cc

Define left_quat_from_transformation (), which computes the parent-to-child left quaternion from the input transformation matrix.

• file quat_messages.cc

Implement the class QuatMessages.

• file quat_norm.cc

Define quaternion normalization methods.

• file quat_to_eigenrot.cc

Define Quaternion::left_quat_to_eigen_rotation, which computes the eigen rotation corresponding to a quaternion.

file quat_to_mat.cc

Define Quaternion::left_quat_to_transformation, which computes the parent- to-child transformation matrix from the parent-to-child left quaternion.

Namespaces

• jeod

Namespace jeod.

5.3.1 Detailed Description

12 Module Documentation

Namespace Documentation

6.1 jeod Namespace Reference

Namespace jeod.

Data Structures

class Quaternion

Implement quaternions to the extent needed to represent orientations.

class QuatMessages

Specifies the message IDs used in the orbital elements model.

6.1.1 Detailed Description

Namespace jeod.

Data Structure Documentation

7.1 jeod::Quaternion Class Reference

Implement quaternions to the extent needed to represent orientations.

```
#include <quat.hh>
```

Public Member Functions

• Quaternion ()

Construct a quaternion; default constructor.

• Quaternion (const double s)

Construct a pure real quaternion.

• Quaternion (const double s, const double v[3])

Construct from a scalar and a vector.

• Quaternion (const double arr[4])

Construct from a double array.

Quaternion (const double T[3][3])

Construct a left transformation unit quaternion.

void set_to_zero ()

Set all components of the quaternion to zero.

• void make_identity ()

Make the quaternion represent an identity transform.

• operator double * ()

Make a quaternion look like a double array.

void copy_to (double arr[4]) const

Copy a quaternion to a four vector, with the scalar part copied to arr[0] and the vector part to arr[1] to arr[3].

void copy_from (const double arr[4])

Copy a quaternion from a four vector, with the scalar part of the quaternion in arr[0] and the vector part in arr[1] to arr[3].

void scale (const double scale)

Scale the quaternion by a real.

· void scale (const double scale, Quaternion &quat) const

Scale the quaternion by a real, leaving original intact.

double norm_sq () const

Compute the square of the norm of the quaternion.

• void normalize ()

Normalize the quaternion, making the scalar part of the quaternion non-negative.

· void normalize (Quaternion &quat) const

Form the normalized quaternion, leaving original intact.

void normalize_integ ()

Normalize the quaternion, but do not make the scalar part non-negative.

· void normalize integ (Quaternion &quat) const

Form the normalized quaternion, leaving original intact.

· void conjugate ()

Replace the quaternion with its conjugate.

void conjugate (Quaternion &quat) const

Form the conjugate of a quaternion, leaving original intact.

· void multiply (const Quaternion &quat, Quaternion &prod) const

Post-multiply this quaternion by another quaternion: prod = this * quat.

void multiply (const Quaternion &quat)

Post-multiply this quaternion by another quaternion: this = this * quat.

void conjugate multiply (const Quaternion &quat, Quaternion &prod) const

Post-multiply this quaternion's conjugate by another quaternion: prod = conj(this) * quat.

void conjugate_multiply (const Quaternion &quat)

Post-multiply this quaternion's conjugate by another quaternion: this = conj(this) * quat.

· void multiply conjugate (const Quaternion &quat, Quaternion &prod) const

Post-multiply this quaternion by another's conjugate: prod = this * conj(quat).

void multiply_conjugate (const Quaternion &quat)

Post-multiply this quaternion by another's conjugate: this = this * conj(quat).

· void multiply_left (const Quaternion &quat, Quaternion &prod) const

Pre-multiply this quaternion by another quaternion: prod = quat * this.

· void multiply left (const Quaternion &quat)

Pre-multiply this quaternion by another quaternion: this = quat * this.

void multiply_left_conjugate (const Quaternion &quat, Quaternion &prod) const

Pre-multiply this quaternion by another's conjugate: prod = conj(quat) * this.

void multiply_left_conjugate (const Quaternion &quat)

Pre-multiply this quaternion by another's conjugate: this = conj(quat) * this.

void multiply_vector_left (const double vec[3], Quaternion &prod) const

Pre-multiply this quaternion by a pure imaginary quaternion, the latter represented by a vector: prod = [0, vec] * quat.

• void multiply_vector_right (const double vec[3], Quaternion &prod) const

Post-multiply this quaternion by a pure imaginary quaternion, the latter represented by a vector: prod = quat * [0, vec].

void left_quat_from_transformation (const double T[3][3])

Compute the parent-to-child left quaternion from the input transformation matrix.

• void left quat to transformation (double T[3][3]) const

Compute the parent-to-child transformation matrix from the parent-to-child left quaternion.

void left_quat_from_eigen_rotation (double eigen_angle, const double eigen_axis[3])

Construct the quaternion corresponding to an eigen rotation.

• void left quat to eigen rotation (double *eigen angle, double eigen axis[3]) const

Compute the eigen rotation corresponding to a quaternion.

- void eigen_compare (const Quaternion &compare_to, double *eigen_angle, double eigen_axis[3]) const Compute eigen decomposition of this*conj(quat).
- void left quat transform (const double vec in[3], double vec out[3]) const

Transform a vector.

void compute_left_quat_deriv (const double ang_vel[3], Quaternion &qdot) const

Compute the time derivative of a left quaternion.

void compute_left_quat_second_deriv (const double ang_vel[3], const double ang_acc[3], Quaternion &qdot)
 const

Compute the time derivative of a left quaternion.

Static Public Member Functions

• static void normalize_integ (double arr[4])

Normalize the quaternion, but do not make the scalar part non-negative.

- static void compute_left_quat_deriv (const double quat[4], const double ang_vel[3], double qdot[4])

 Compute the time derivative of a left quaternion.
- static void compute_left_quat_second_deriv (const double quat[4], const double ang_vel[3], const double ang_acc[3], double qddot[4])

Compute the second time derivative of a left quaternion.

• static Quaternion compute_slerp (Quaternion &q1, Quaternion &q2, const double T)

Compute the minimum interpolation quaternion between a start quarternion and end quaternion.

Data Fields

· double scalar {1.0}

The scalar, or real, part of the quaternion.

• double vector [3] {}

The vectorial, or imaginary, part of the quaternion.

Friends

- · class InputProcessor
- void init_attrjeod__Quaternion ()

7.1.1 Detailed Description

Implement quaternions to the extent needed to represent orientations.

Definition at line 86 of file quat.hh.

7.1.2 Constructor & Destructor Documentation

```
7.1.2.1 Quaternion() [1/5]
jeod::Quaternion::Quaternion ( )
```

Construct a quaternion; default constructor.

Definition at line 53 of file quat.cc.

References scalar, and vector.

```
7.1.2.2 Quaternion() [2/5]
```

Construct a pure real quaternion.

Parameters

in <i>real</i>	part	Scalar
----------------	------	--------

Definition at line 65 of file quat.cc.

7.1.2.3 Quaternion() [3/5]

```
jeod::Quaternion::Quaternion (  {\it const double } \ s, \\ {\it const double } \ v[3] \ ) \ [inline]
```

Construct from a scalar and a vector.

Parameters

in	s	Scalar part
in	V	Vector part

Definition at line 83 of file quat_inline.hh.

References vector.

7.1.2.4 Quaternion() [4/5]

Construct from a double array.

Parameters

in	arr	Quaternion source
T11	an	Qualeffiloff Source

Definition at line 95 of file quat_inline.hh.

References copy_from().

7.1.2.5 Quaternion() [5/5]

Construct a left transformation unit quaternion.

Parameters

in Transformation matrix	
--------------------------	--

Definition at line 74 of file quat.cc.

References left_quat_from_transformation().

7.1.3 Member Function Documentation

7.1.3.1 compute_left_quat_deriv() [1/2]

Compute the time derivative of a left quaternion.

Parameters

in	ang_vel	Angular velocity Units: r/s
out	qdot	Quaternion derivative

Definition at line 466 of file quat_inline.hh.

References multiply_vector_left().

7.1.3.2 compute_left_quat_deriv() [2/2]

Compute the time derivative of a left quaternion.

Parameters

in	quat	Quaternion as 4-vector
in	ang_vel	Angular velocity
		Units: r/s
out	qdot	Derivative as 4-vector

Definition at line 495 of file quat_inline.hh.

7.1.3.3 compute_left_quat_second_deriv() [1/2]

Compute the time derivative of a left quaternion.

Parameters

in	ang_vel	Angular velocity
		Units: r/s
in	ang_acc	Angular acceleration
		Units: r/s2
out	qddot	Quaternion 2nd deriv

Definition at line 479 of file quat_inline.hh.

References multiply_left().

7.1.3.4 compute_left_quat_second_deriv() [2/2]

Compute the second time derivative of a left quaternion.

Parameters

in	quat	Quaternion as 4-vector
in	ang_vel	Angular velocity
		Units: r/s
in	ang_acc	Angular acceleration
		Units: r/s2
out	qddot	2nd derivative as 4-vector

Definition at line 511 of file quat_inline.hh.

7.1.3.5 compute_slerp()

Compute the minimum interpolation guaternion between a start quarternion and end guaternion.

Parameters

in	q1	Starting quaternion
in	q2	Ending quaternion
in	Т	Interpolation coefficient between 0.0 and 1.0 representing a rotational scale factor between the
		intial and final quaternion. When the compute_slerp method is used in a loop to rotate an object
		from a start and end orientation, a smaller step or change in T results in a smoother object rotation

Definition at line 91 of file quat.cc.

References normalize(), scalar, jeod::QuatMessages::undefined, and vector.

```
7.1.3.6 conjugate() [1/2]
```

void jeod::Quaternion::conjugate () [inline]

Replace the quaternion with its conjugate.

Definition at line 215 of file quat_inline.hh.

References vector.

```
7.1.3.7 conjugate() [2/2]
```

Form the conjugate of a quaternion, leaving original intact.

Parameters

out	quat	Conjugated quaternion

Definition at line 224 of file quat_inline.hh.

References scalar, and vector.

7.1.3.8 conjugate_multiply() [1/2]

Post-multiply this quaternion's conjugate by another quaternion: prod = conj(this) * quat.

Parameters

in	quat	Right multiplicand
out	prod	Quaternion product

Definition at line 270 of file quat_inline.hh.

References scalar, and vector.

7.1.3.9 conjugate_multiply() [2/2]

Post-multiply this quaternion's conjugate by another quaternion: this = conj(this) * quat.

Parameters

in	quat	Right multiplicand

Definition at line 283 of file quat_inline.hh.

References scalar, and vector.

7.1.3.10 copy_from()

Copy a quaternion from a four vector, with the scalar part of the quaternion in arr[0] and the vector part in arr[1] to arr[3].

Parameters

in	arr	Quaternion source
----	-----	-------------------

Definition at line 136 of file quat_inline.hh.

References scalar, and vector.

Referenced by Quaternion().

7.1.3.11 copy_to()

Copy a quaternion to a four vector, with the scalar part copied to arr[0] and the vector part to arr[1] to arr[3].

Parameters

out	arr	Copy of quaternion
-----	-----	--------------------

Definition at line 123 of file quat inline.hh.

References scalar, and vector.

7.1.3.12 eigen_compare()

Compute eigen decomposition of this*conj(quat).

Parameters

in	quat	Quaternion to compare to
out	eigen_angle	Eigen angle
		Units: r
out	eigen_axis	Eigen axis

Definition at line 454 of file quat_inline.hh.

References left_quat_to_eigen_rotation(), and multiply_conjugate().

7.1.3.13 left_quat_from_eigen_rotation()

Construct the quaternion corresponding to an eigen rotation.

Parameters

in	eigen_angle	Eigen angle
		Units: r
in	eigen_axis	Eigen axis

Definition at line 149 of file quat_inline.hh.

References scalar, and vector.

7.1.3.14 left_quat_from_transformation()

```
void jeod::Quaternion::left_quat_from_transformation ( const double T[3][3] )
```

Compute the parent-to-child left quaternion from the input transformation matrix.

Assumptions and Limitations

• Matrix is orthonormal.

Parameters

in	Τ	Transformation matrix

Definition at line 115 of file quat_from_mat.cc.

References scalar, and vector.

Referenced by Quaternion().

7.1.3.15 left_quat_to_eigen_rotation()

Compute the eigen rotation corresponding to a quaternion.

Assumptions and Limitations

• Quaternion is normalized.

Parameters

	out	eigen_angle	Eigen angle
			Units: r
ĺ	out	eigen_axis	Eigen axis

Definition at line 47 of file quat_to_eigenrot.cc.

References scalar, and vector.

Referenced by eigen_compare().

7.1.3.16 left_quat_to_transformation()

```
void jeod::Quaternion::left_quat_to_transformation ( double T[3][3] ) const
```

Compute the parent-to-child transformation matrix from the parent-to-child left quaternion.

Assumptions and Limitations

• Quaternion is normalized.

Parameters

out	T	Transformation matrix

Definition at line 82 of file quat_to_mat.cc.

References scalar, and vector.

7.1.3.17 left_quat_transform()

Transform a vector.

Parameters

in	vec_in	Vector to be transformed
out	vec_out	Transformed vector

Definition at line 433 of file quat_inline.hh.

References scalar, and vector.

7.1.3.18 make_identity()

```
void jeod::Quaternion::make_identity ( ) [inline]
```

Make the quaternion represent an identity transform.

Definition at line 112 of file quat_inline.hh.

References scalar, and vector.

7.1.3.19 multiply() [1/2]

Post-multiply this quaternion by another quaternion: prod = this * quat.

Parameters

in	quat	Right multiplicand
out	prod	Quaternion product

Definition at line 236 of file quat_inline.hh.

References scalar, and vector.

7.1.3.20 multiply() [2/2]

Post-multiply this quaternion by another quaternion: this = this * quat.

Parameters

in	quat	Right multiplicand
----	------	--------------------

Definition at line 249 of file quat_inline.hh.

References scalar, and vector.

7.1.3.21 multiply_conjugate() [1/2]

Post-multiply this quaternion by another's conjugate: prod = this * conj(quat).

Parameters

in	quat	Right multiplicand
out	prod	Quaternion product

Definition at line 304 of file quat_inline.hh.

References scalar, and vector.

Referenced by eigen_compare().

7.1.3.22 multiply_conjugate() [2/2]

Post-multiply this quaternion by another's conjugate: this = this * conj(quat).

Parameters

in	quat	Right multiplicand
----	------	--------------------

Definition at line 317 of file quat_inline.hh.

References scalar, and vector.

7.1.3.23 multiply_left() [1/2]

Pre-multiply this quaternion by another quaternion: prod = quat * this.

Parameters

in	quat	Left multiplicand
out	prod	Quaternion product

Definition at line 338 of file quat_inline.hh.

References scalar, and vector.

Referenced by compute_left_quat_second_deriv().

```
7.1.3.24 multiply_left() [2/2]
```

Pre-multiply this quaternion by another quaternion: this = quat * this.

Parameters

in	quat	Left multiplicand
----	------	-------------------

Definition at line 351 of file quat_inline.hh.

References scalar, and vector.

7.1.3.25 multiply_left_conjugate() [1/2]

Pre-multiply this quaternion by another's conjugate: prod = conj(quat) * this.

Parameters

in	quat	Left multiplicand
out	prod	Quaternion product

Definition at line 372 of file quat_inline.hh.

References scalar, and vector.

7.1.3.26 multiply_left_conjugate() [2/2]

Pre-multiply this quaternion by another's conjugate: this = conj(quat) * this.

Parameters

in quat	Left multiplicand
----------------	-------------------

Definition at line 385 of file quat_inline.hh.

References scalar, and vector.

7.1.3.27 multiply_vector_left()

Pre-multiply this quaternion by a pure imaginary quaternion, the latter represented by a vector: prod = [0, vec] * quat.

Parameters

in	vec	Right multiplicand
out	prod	Quaternion product

Definition at line 407 of file quat_inline.hh.

References scalar, and vector.

Referenced by compute_left_quat_deriv().

7.1.3.28 multiply_vector_right()

Post-multiply this quaternion by a pure imaginary quaternion, the latter represented by a vector: prod = quat * [0, vec].

Parameters

	in	vec	Right multiplicand
	out	prod	Quaternion product

Definition at line 421 of file quat_inline.hh.

References scalar, and vector.

7.1.3.29 norm_sq()

```
double jeod::Quaternion::norm_sq ( ) const [inline]
```

Compute the square of the norm of the quaternion.

Returns

Square of the norm of the quaternion

Definition at line 187 of file quat_inline.hh.

References scalar, and vector.

Referenced by normalize(), and normalize_integ().

7.1.3.30 normalize() [1/2]

```
void jeod::Quaternion::normalize ( )
```

Normalize the quaternion, making the scalar part of the quaternion non-negative.

Definition at line 47 of file quat_norm.cc.

References norm_sq(), scalar, and scale().

Referenced by compute_slerp(), and normalize().

7.1.3.31 normalize() [2/2]

Form the normalized quaternion, leaving original intact.

Parameters

out	quat	Normalized quaternion

Definition at line 196 of file quat_inline.hh.

References normalize().

```
7.1.3.32 normalize_integ() [1/3]
```

```
void jeod::Quaternion::normalize_integ ( )
```

Normalize the quaternion, but do not make the scalar part non-negative.

Definition at line 83 of file quat norm.cc.

References norm_sq(), and scale().

Referenced by normalize_integ().

7.1.3.33 normalize_integ() [2/3]

Form the normalized quaternion, leaving original intact.

Parameters

	out	quat	Normalized quaternion
--	-----	------	-----------------------

Definition at line 206 of file quat_inline.hh.

References normalize_integ().

7.1.3.34 normalize_integ() [3/3]

Normalize the quaternion, but do not make the scalar part non-negative.

Parameters

```
quat Quaternion to be normalized.
```

Definition at line 108 of file quat_norm.cc.

7.1.3.35 operator double *()

```
jeod::Quaternion::operator double * ( ) [inline]
```

Make a quaternion look like a double array.

Definition at line 128 of file quat.hh.

Scale the quaternion by a real.

Parameters

in fact	Scale factor
---------	--------------

Definition at line 166 of file quat_inline.hh.

References scalar, and vector.

Referenced by normalize(), and normalize_integ().

```
7.1.3.37 scale() [2/2]
```

Scale the quaternion by a real, leaving original intact.

Parameters

in		fact	Scale factor
out	-	quat	Scaled quaternion

Definition at line 177 of file quat_inline.hh.

References scalar, and vector.

7.1.3.38 set_to_zero()

```
void jeod::Quaternion::set_to_zero ( ) [inline]
```

Set all components of the quaternion to zero.

Definition at line 103 of file quat_inline.hh.

References scalar, and vector.

7.1.4 Friends And Related Function Documentation

7.1.4.1 init_attrjeod__Quaternion

```
void init_attrjeod__Quaternion ( ) [friend]
```

7.1.4.2 InputProcessor

```
friend class InputProcessor [friend]
```

Definition at line 88 of file quat.hh.

7.1.5 Field Documentation

7.1.5.1 scalar

```
double jeod::Quaternion::scalar {1.0}
```

The scalar, or real, part of the quaternion.

trick units(-)

Definition at line 93 of file quat.hh.

Referenced by compute_slerp(), conjugate(), conjugate_multiply(), copy_from(), copy_to(), left_quat_from_eigen_rotation(), left_quat_from_transformation(), left_quat_to_eigen_rotation(), left_quat_to_transformation(), left_quat_transform(), make_identity(), multiply(), multiply_conjugate(), multiply_left(), multiply_left_conjugate(), multiply_vector_left(), multiply_vector_right(), norm_sq(), normalize(), Quaternion(), scale(), and set_to_zero().

7.1.5.2 vector

```
double jeod::Quaternion::vector[3] {}
```

The vectorial, or imaginary, part of the quaternion.

trick_units(-)

Definition at line 98 of file quat.hh.

Referenced by compute_slerp(), conjugate(), conjugate_multiply(), copy_from(), copy_to(), left_quat_from_copy_eigen_rotation(), left_quat_from_transformation(), left_quat_to_eigen_rotation(), left_quat_to_transformation(), left_quat_transform(), make_identity(), multiply(), multiply_conjugate(), multiply_left(), multiply_left_conjugate(), multiply_vector_left(), multiply_vector_right(), norm_sq(), Quaternion(), scale(), and set_to_zero().

The documentation for this class was generated from the following files:

- · quat.hh
- quat inline.hh
- quat.cc
- quat_from_mat.cc
- · quat norm.cc
- quat_to_eigenrot.cc
- quat_to_mat.cc

7.2 jeod::QuatMessages Class Reference

Specifies the message IDs used in the orbital elements model.

```
#include <quat_messages.hh>
```

Public Member Functions

- QuatMessages ()=delete
- QuatMessages (const QuatMessages &)=delete
- QuatMessages & operator= (const QuatMessages &)=delete

Static Public Attributes

- static const char * undefined = "utils/quaternion/" "undefined" Issued an undefined behaviour is encountered.
- static const char * invalid_entry = "utils/quaternion/" "invalid_entry"
 Issued when function input is invalid.

Friends

- · class InputProcessor
- void init_attrjeod__QuatMessages ()

7.2.1 Detailed Description

Specifies the message IDs used in the orbital elements model.

Definition at line 81 of file quat_messages.hh.

7.2.2 Constructor & Destructor Documentation

7.2.3 Member Function Documentation

7.2.3.1 operator=()

7.2.4 Friends And Related Function Documentation

7.2.4.1 init_attrjeod__QuatMessages

```
void init_attrjeod__QuatMessages ( ) [friend]
```

7.2.4.2 InputProcessor

```
friend class InputProcessor [friend]
```

Definition at line 83 of file quat_messages.hh.

7.2.5 Field Documentation

7.2.5.1 invalid_entry

```
char const * jeod::QuatMessages::invalid_entry = "utils/quaternion/" "invalid_entry" [static]
Issued when function input is invalid.
```

trick_units(-)

Definition at line 93 of file quat_messages.hh.

7.2.5.2 undefined

```
char const * jeod::QuatMessages::undefined = "utils/quaternion/" "undefined" [static]
```

Issued an undefined behaviour is encountered.

trick_units(-)

Definition at line 88 of file quat_messages.hh.

Referenced by jeod::Quaternion::compute_slerp().

The documentation for this class was generated from the following files:

- · quat_messages.hh
- · quat_messages.cc

Chapter 8

File Documentation

8.1 quat.cc File Reference

Define basic methods for the quaternion class.

```
#include "utils/math/include/numerical.hh"
#include "utils/math/include/vector3.hh"
#include "../include/quat.hh"
#include "../include/quat_messages.hh"
#include "utils/message/include/message_handler.hh"
#include <cmath>
#include <fstream>
#include <iomanip>
```

Namespaces

• jeod

Namespace jeod.

8.1.1 Detailed Description

Define basic methods for the quaternion class.

8.2 quat.hh File Reference

Define the quaternion class.

```
#include <cstdlib>
#include "utils/sim_interface/include/jeod_class.hh"
#include "quat_inline.hh"
```

38 File Documentation

Data Structures

· class jeod::Quaternion

Implement quaternions to the extent needed to represent orientations.

Namespaces

• jeod

Namespace jeod.

8.2.1 Detailed Description

Define the quaternion class.

8.3 quat_from_mat.cc File Reference

Define left_quat_from_transformation (), which computes the parent-to-child left quaternion from the input transformation matrix.

```
#include <cmath>
#include "../include/quat.hh"
```

Namespaces

· jeod

Namespace jeod.

8.3.1 Detailed Description

Define left_quat_from_transformation (), which computes the parent-to-child left quaternion from the input transformation matrix.

8.4 quat_inline.hh File Reference

Define inline methods for the quaternion class.

```
#include <cmath>
#include "quat.hh"
#include "utils/math/include/vector3.hh"
```

Namespaces

· jeod

Namespace jeod.

8.4.1 Detailed Description

Define inline methods for the quaternion class.

8.5 quat_messages.cc File Reference

Implement the class QuatMessages.

```
#include "utils/message/include/make_message_code.hh"
#include "../include/quat_messages.hh"
```

Namespaces

jeod

Namespace jeod.

Macros

#define MAKE_QUAT_MESSAGE_CODE(id) JEOD_MAKE_MESSAGE_CODE(QuatMessages, "utils/quaternion/", id)

8.5.1 Detailed Description

Implement the class QuatMessages.

8.5.2 Macro Definition Documentation

8.5.2.1 MAKE_QUAT_MESSAGE_CODE

```
\label{eq:define_make_QUAT_MESSAGE_CODE} $$id$ ) JEOD_MAKE_MESSAGE_CODE(QuatMessages, "utils/quaternion/", id)
```

Definition at line 43 of file quat_messages.cc.

40 File Documentation

8.6 quat_messages.hh File Reference

Define the class QuatMessages, the class that specifies the message IDs used in the quaternion model.

```
#include "utils/sim_interface/include/jeod_class.hh"
```

Data Structures

· class jeod::QuatMessages

Specifies the message IDs used in the orbital elements model.

Namespaces

· jeod

Namespace jeod.

8.6.1 Detailed Description

Define the class QuatMessages, the class that specifies the message IDs used in the quaternion model.

8.7 quat_norm.cc File Reference

Define quaternion normalization methods.

```
#include <cmath>
#include "../include/quat.hh"
```

Namespaces

· jeod

Namespace jeod.

8.7.1 Detailed Description

Define quaternion normalization methods.

8.8 quat_to_eigenrot.cc File Reference

Define Quaternion::left_quat_to_eigen_rotation, which computes the eigen rotation corresponding to a quaternion.

```
#include <cmath>
#include "utils/math/include/vector3.hh"
#include "../include/quat.hh"
```

Namespaces

• jeod

Namespace jeod.

8.8.1 Detailed Description

Define Quaternion::left_quat_to_eigen_rotation, which computes the eigen rotation corresponding to a quaternion.

8.9 quat_to_mat.cc File Reference

Define Quaternion::left_quat_to_transformation, which computes the parent- to-child transformation matrix from the parent-to-child left quaternion.

```
#include "utils/math/include/vector3.hh"
#include "../include/quat.hh"
```

Namespaces

jeod

Namespace jeod.

8.9.1 Detailed Description

Define Quaternion::left_quat_to_transformation, which computes the parent- to-child transformation matrix from the parent-to-child left quaternion.

42 File Documentation

Index

compute_left_quat_deriv	left_quat_to_transformation, 25
jeod::Quaternion, 19	left_quat_transform, 25
compute_left_quat_second_deriv	make identity, 26
jeod::Quaternion, 20	multiply, 26
compute_slerp	multiply_conjugate, 26, 27
jeod::Quaternion, 20	multiply_left, 27, 28
conjugate	multiply_left_conjugate, 28
jeod::Quaternion, 21	multiply_vector_left, 29
conjugate_multiply	multiply vector right, 29
jeod::Quaternion, 21, 22	norm_sq, 29
copy_from	normalize, 30
jeod::Quaternion, 22	normalize_integ, 30, 31
copy_to	operator double *, 31
jeod::Quaternion, 23	Quaternion, 17, 18
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	scalar, 33
eigen_compare	scale, 32
jeod::Quaternion, 23	set_to_zero, 32
	vector, 33
init_attrjeodQuatMessages	100.01, 00
jeod::QuatMessages, 35	left_quat_from_eigen_rotation
init attrjeod Quaternion	jeod::Quaternion, 23
jeod::Quaternion, 33	left quat from transformation
InputProcessor	jeod::Quaternion, 24
jeod::QuatMessages, 35	left_quat_to_eigen_rotation
jeod::Quaternion, 33	jeod::Quaternion, 24
invalid_entry	left_quat_to_transformation
jeod::QuatMessages, 35	jeod::Quaternion, 25
	left_quat_transform
jeod, 13	jeod::Quaternion, 25
jeod::QuatMessages, 34	•
init_attrjeodQuatMessages, 35	MAKE_QUAT_MESSAGE_CODE
InputProcessor, 35	quat_messages.cc, 39
invalid_entry, 35	make_identity
operator=, 35	jeod::Quaternion, 26
QuatMessages, 34	Models, 9
undefined, 35	multiply
jeod::Quaternion, 15	jeod::Quaternion, 26
compute_left_quat_deriv, 19	multiply_conjugate
compute_left_quat_second_deriv, 20	jeod::Quaternion, 26, 27
compute_slerp, 20	multiply_left
conjugate, 21	jeod::Quaternion, 27, 28
conjugate_multiply, 21, 22	multiply_left_conjugate
copy_from, 22	jeod::Quaternion, 28
copy_to, 23	multiply_vector_left
eigen_compare, 23	jeod::Quaternion, 29
init_attrjeodQuaternion, 33	multiply_vector_right
InputProcessor, 33	jeod::Quaternion, 29
left_quat_from_eigen_rotation, 23	•
left_quat_from_transformation, 24	norm_sq
left_quat_to_eigen_rotation, 24	jeod::Quaternion, 29

44 INDEX

```
normalize
    jeod::Quaternion, 30
normalize_integ
    jeod::Quaternion, 30, 31
operator double *
    jeod::Quaternion, 31
operator=
    jeod::QuatMessages, 35
quat.cc, 37
quat.hh, 37
quat_from_mat.cc, 38
quat_inline.hh, 38
quat_messages.cc, 39
    MAKE_QUAT_MESSAGE_CODE, 39
quat_messages.hh, 40
quat_norm.cc, 40
quat_to_eigenrot.cc, 40
quat_to_mat.cc, 41
QuatMessages
    jeod::QuatMessages, 34
Quaternion, 11
    jeod::Quaternion, 17, 18
scalar
    jeod::Quaternion, 33
scale
    jeod::Quaternion, 32
set_to_zero
    jeod::Quaternion, 32
undefined
    jeod::QuatMessages, 35
Utils, 10
vector
    jeod::Quaternion, 33
```