

ACM/ICPC Template Manaual

QUST

hxk

August 3, 2018

Contents

0	Incl	ude 1
1	Mat	h
	1.1	Prime
		1.1.1 Eratosthenes Sieve
		1.1.2 Eular Sieve
		1.1.3 Prime Factorization
		1.1.4 Miller Rabin
		1.1.5 Segment Sieve
	1.2	Eular phi
		1.2.1 Eular
		1.2.2 Sieve
	1.3	Basic Number Theory
		1.3.1 Extended Euclidean
		1.3.2 ax+by=c 5
		1.3.3 Multiplicative Inverse Modulo
	1.4	Modulo Linear Equation
		1.4.1 Chinese Remainder Theory
		1.4.2 ExCRT
	1.5	Combinatorics
		1.5.1 Combination
		1.5.2 Lucas
		1.5.3 Big Combination
		1.5.4 Polya
	1.6	Fast Power
	1.7	Mobius Inversion
		1.7.1 Mobius
		1.7.2 Number of Coprime-pair
		1.7.3 VisibleTrees
	1.8	Fast Transformation
		1.8.1 FFT
		1.8.2 NTT
		1.8.3 FWT
	1.9	Numerical Integration
		1.9.1 Adaptive Simpson's Rule
		1.9.2 Berlekamp-Massey
		Others
	1.11	Formula
2	C4	no December
2		ng Processing 16 KMP
	$\frac{2.1}{2.2}$	KMP 16 ExtendKMP 16
	2.3	Manacher
	$\frac{2.3}{2.4}$	Aho-Corasick Automaton
	$\frac{2.4}{2.5}$	Suffix Array
	$\frac{2.5}{2.6}$	Suffix Automation
	2.0	Sumx Automation
3	Dat	a Structure 21
	3.1	Binary Indexed Tree
	3.2	Segment Tree
		3.2.1 Single-point Update
		3.2.2 Interval Update
	3.3	Splay Tree
	3.4	Functional Segment Tree
	3.5	Sparse Table
	3.6	Heavy-Light Decomposition
		Link-Cut Tree

ACM/ICPC Template Manaual by hxk

4	Gra	aph Theory 28
	4.1	Union-Find Set
	4.2	Minimal Spanning Tree
		4.2.1 Kruskal
		4.2.2 Prim
	4.3	Shortest Path
		4.3.1 Dijkstra
		4.3.2 Bellman-Ford
	4.4	Topo Sort
	4.5	LCA
	4.0	4.5.1 Tarjan
		4.5.2 DFS+ST
	4.6	Depth-First Traversal
	4.0	4.6.1 Biconnected-Component
		<u>.</u>
	4.77	4.6.3 2-SAT
	4.7	Eular Path
	4.0	4.7.1 Fleury
	4.8	Bipartite Graph Matching
		4.8.1 Hungry(Matrix)
		4.8.2 Hungry(List)
		4.8.3 Hopcroft-Carp
		4.8.4 Hungry(Multiple)
		4.8.5 Kuhn-Munkres
	4.9	Network Flow
		4.9.1 EdmondKarp
		4.9.2 Dinic
		4.9.3 ISAP
		4.9.4 MinCost MaxFlow
J	~	
5		nputational Geometry 4
	5.1	Basic Function
	5.2	Position
		5.2.1 Point-Point
		5.2.2 Line-Line
		5.2.3 Segment-Segment
		5.2.4 Line-Segment
		5.2.5 Point-Line
		5.2.6 Point-Segment
		5.2.7 Point on Segment
	5.3	Polygon
		5.3.1 Area
		5.3.2 Point in Convex
		5.3.3 Point in Polygon
		5.3.4 Judge Convex
	5.4	Integer Points
		5.4.1 On Segment
		5.4.2 On Polygon Edge
		5.4.3 Inside Polygon
	5.5	Circle
		5.5.1 Circumcenter
6	Dyı	namic Programming 53
	6.1	1
		6.1.1 Max Sum
		6.1.2 Longest Increase
		6.1.3 Longest Common Increase
	6.2	Digit Statistics 5

ACM/ICPC Template Manaual by hxk

7	Oth	ners	55
	7.1	Matrix	55
		7.1.1 Matrix FastPow	55
		7.1.2 Gauss Elimination	55
	7.2	Tricks	55
		7.2.1 Stack-Overflow	55
		7.2.2 Fast-Scanner	56
		7.2.3 Strok-Sscanf	56
		Mo Algorithm	
	7.4	BigNum	
		7.4.1 High-precision	
		7.4.2 Complete High-precision	
	7.5	VIM	60

0 Include

1 Math

1.1 Prime

 $\begin{array}{c}
 1 \\
 2 \\
 3 \\
 4 \\
 5 \\
 6 \\
 7 \\
 8 \\
 9
 \end{array}$

1.1.1 Eratosthenes Sieve

 $O(n \log \log n)$ maxn $notprime[i] = 0/1 \ 0$ 1

1.1.2 Eular Sieve

1.1.3 Prime Factorization

 $fact[i][0]^{fact[i][1]}$ i

1.1.4 Miller Rabin

 2^{63} $O(s \log n)$,s

1.1.5 Segment Sieve

[a,b)

is_prime [i-a]=true i $a < b \leq 10^{12}, b-a \leq 10^6$

 $1\\2\\3$

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22		
	1.2	Eular phi
	1.2.1	Eular
1 2 3 4 5 6 7 8 9 10 11 12		
	1.2.2	Sieve
1 2 3 4 5 6 7 8 9 10 11 12		
	1.3	Basic Number Theory
	1.3.1	Extended Euclidean
1 2 3 4		

```
5
6
7
```

 $\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
9 \\
10 \\
11 \\
12 \\
13
\end{array}$

1.3.2 ax+by=c

```
\begin{array}{l} : X = x + k*dx, Y = y - k*dy \\ \mathbf{x} \qquad , \qquad 0 \end{array}
```

1.3.3 Multiplicative Inverse Modulo

1

1.4 Modulo Linear Equation

1.4.1 Chinese Remainder Theory

```
X = r_i(modm_i); \quad m_iX = re + k * mo
```

 $\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array}$

1

1.4.2 ExCRT

 $X = r_i(modm_i); m_i$ X = re + k * mo;7 8

1.5 Combinatorics

1.5.1 Combination

 $0 \le m \le n \le 1000$

 $\begin{matrix} 6 \\ 7 \\ 8 \\ 9 \end{matrix}$

 $0 \le m \le n \le 10^5$, p

3

1.5.2 Lucas

 $1 \leq n, m \leq 1000000000, 1 p$

1.5.3 Big Combination

 $0 \le n \le 10^9, 0 \le m \le 10^4, 1 \le k \le 10^9 + 7$

 $\begin{array}{c}
 1 \\
 2 \\
 3 \\
 4 \\
 5 \\
 6 \\
 7 \\
 8 \\
 9
 \end{array}$

1.5.4 Polya

$$\begin{array}{l} : \quad n \quad , \quad i \qquad \gcd(i,n) \\ N*N \quad , c^{n^2} + 2c^{\frac{n^2+3}{4}} + c^{\frac{n^2+1}{2}} + 2c^{n\frac{n+1}{2}} + 2c^{\frac{n(n+1)}{2}} \\ , \frac{m^8+17m^4+6m^2}{24} \quad , \frac{m^4+11m^2}{12} \end{array}$$

1.6 Fast Power

 $\begin{array}{c}
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
9 \\
10 \\
11 \\
12
\end{array}$

1.7 Mobius Inversion

1.7.1 Mobius

$$\begin{array}{l} F(n) = \sum_{d|n} f(d) \Rightarrow f(n) = \sum_{d|n} \mu(d) F(\frac{n}{d}) \\ F(n) = \sum_{n|d} f(d) \Rightarrow f(n) = \sum_{n|d} \mu(\frac{d}{n}) F(d) \end{array}$$

 $1\\2\\3\\4$

1.7.2 Number of Coprime-pair

 $n \quad (n \le 100000), \quad n$

1.7.3 VisibleTrees

 $\gcd(x,y)=1 \quad , \, x \leq n, y \leq m$

1.8 Fast Transformation

1.8.1 FFT

1.8.2 NTT

P ,G P $G^{\frac{P-1}{n}}$ $w_n = e^{\frac{2i\pi}{n}}$ P G 1.11

1.8.3 FWT

1.9 Numerical Integration

1.9.1 Adaptive Simpson's Rule

```
\int_{a}^{b} f(x)dx \approx \frac{b-a}{6} [f(a) + 4f(\frac{a+b}{2}) + f(b)]
|S(a,c) + S(c,b) - S(a,b)|/15 < \epsilon
( )
```

1.9.2 Berlekamp-Massey

 $1\\2\\3$

 $\frac{4}{5}$

1.10 Others

```
1
2
3
4
5
6
   n^n
1
2
3
4
5
6
   n!
1
2
3
4
```

1.11 Formula

```
1. : n = \prod_{i=1}^{k} p_i^{a_i},

(a) f(n) = \prod_{i=1}^{k} (a_i + 1)

(b) g(n) = \prod_{i=1}^{k} (\sum_{j=0}^{a_i} p_j^j)

2. n \quad n\varphi(n)/2

3. gcd(n,i) = 1, gcd(n,n-i) = 1(1 \le i \le n)

4. : D(n) = (n-1)(D(n-2) + D(n-1)) = \sum_{i=2}^{n} \frac{(-1)^k n!}{k!} = \left[\frac{n!}{e} + 0.5\right]

5. : p is prime \Rightarrow (p-1)! \equiv -1 \pmod{p}

6. : gcd(a,n) = 1 \Rightarrow a^{\varphi(n)} \equiv 1 \pmod{n}

7. : gcd(n,p) = 1 \Rightarrow a^n \equiv a^{n\%\varphi(p)} \pmod{p}

8. : n \quad \pi(n), \lim_{n \to \infty} \pi(n) = \frac{n}{\ln n}

9. : x \quad N = \log 10(n) + 1

10. n! \approx \sqrt{2\pi n} (\frac{n}{e})^n

11. a > 1, m, n > 0, gcd(a^m - 1, a^n - 1) = a^{gcd(m,n)} - 1

12. a > b, gcd(a, b) = 1, gcd(a^m - b^m, a^n - b^n) = a^{gcd(m,n)} - b^{gcd(m,n)}
```

$$G = \gcd(C_n^1, C_n^2, ..., C_n^{n-1}) = \begin{cases} n, & n \text{ is prime} \\ 1, & n \text{ has multy prime factors} \\ p, & n \text{ has single prime factor } p \end{cases}$$

$$\gcd(Fib(m),Fib(n))=Fib(\gcd(m,n))$$

13.
$$gcd(m,n) = 1$$
, :

(a)
$$m*n-m-n$$

(b)
$$N = \frac{(m-1)(n-1)}{2}$$

14.
$$(n+1)lcm(C_n^0, C_n^1, ..., C_n^{n-1}, C_n^n) = lcm(1, 2, ..., n+1)$$

15.
$$p$$
 , $(x+y+...+w)^p \equiv x^p + y^p + ... + w^p \pmod{p}$

16. :1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012
$$h(0) = h(1) = 1, h(n) = \frac{(4n-2)h(n-1)}{n+1} = \frac{C_{2n}^n}{n+1} = C_{2n}^n - C_{2n}^{n-1}$$

17.
$$:B_n = -\frac{1}{n+1} \sum_{i=0}^{n-1} C_{n+1}^i B_i$$

$$\sum_{i=1}^{n} i^{k} = \frac{1}{k+1} \sum_{i=1}^{k+1} C_{k+1}^{i} B_{k+1-i} (n+1)^{i}$$

18. FFT

ггі			
$r \ 2^k + 1$	r	k	g
3	1	1	$\frac{g}{2}$
5	1	2	2
17	1	4	3
97	3	5	5
193	3	6	5
257	1	8	3
7681	15	9	17
12289	3	12	11
40961	5	13	3
65537	1	16	3
786433	3	18	10
5767169	11	19	3
7340033	7	20	3
23068673	11	21	3
104857601	25	22	3
167772161	5	25	3
469762049	7	26	3
998244353	119	23	3
1004535809	479	21	3
2013265921	15	27	31
2281701377	17	27	3
3221225473	3	30	5
75161927681	35	31	3
77309411329	9	33	7
206158430209	3	36	22
2061584302081	15	37	7
2748779069441	5	39	3
6597069766657	3	41	5
39582418599937	9	42	5
79164837199873	9	43	5
263882790666241	15	44	7
1231453023109121	35	45	3
1337006139375617	19	46	3
3799912185593857	27	47	5
4222124650659841	15	48	19
7881299347898369	7	50	6
31525197391593473	7	52	3
180143985094819841	5	55	6
1945555039024054273	27	56	5
4179340454199820289	29	57	3

2 String Processing

2.1 KMP

2.2 ExtendKMP

2.3 Manacher

2.4 Aho-Corasick Automaton

 $1\\2\\3\\4\\5$

2.5 Suffix Array

2.6 Suffix Automation

3 Data Structure

3.1 Binary Indexed Tree

3.2 Segment Tree

3.2.1 Single-point Update

3.2.2 Interval Update

3.3 Splay Tree

3.4 Functional Segment Tree

k

 $1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6$

 $7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22$

3.5 Sparse Table

 $\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ \end{array}$

 RMQ

 $\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
9 \\
10 \\
11 \\
12 \\
13
\end{array}$

3.6 Heavy-Light Decomposition

3.7 Link-Cut Tree

4 Graph Theory

4.1 Union-Find Set

4.2 Minimal Spanning Tree

4.2.1 Kruskal

4.2.2 Prim

4.3.2 Bellman-Ford

4.4 Topo Sort

 $\begin{array}{ccc} \mathrm{Ans} & \mathrm{,G} & \mathrm{,deg} & \mathrm{,map} \\ 1, & 0 & \end{array}$

TarjanO(n+q)

4.6.2 Strongly Connected Component

 $\frac{1}{2}$

4.6.3 2-SAT

```
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
```

4.7 Eular Path

uGGGG

```
- : ( )
- :
- : ( , ),

• G
- G
- G
- G ( ) 0 2.

• G
- G
- G
- G
- G
- G
- G
```

1,v 1, (u ,v)

4.7.1 Fleury

4.8 Bipartite Graph Matching

1. $2. = |G|- \\ N \times N \quad , \qquad , \qquad , \qquad ; \\ (\qquad , \qquad); \qquad , \qquad . \\ \vdots \qquad \qquad (a) \qquad ; \\ (b) \qquad p_1, p_2,p_k, \quad p_1 \quad ,p_k \quad , \qquad , \quad p_1, p_2,p_k \\ \qquad , \qquad G \qquad . \\ \qquad \vdots \qquad = |G|- \quad ; \\ 3. \qquad = \quad -$

4.8.1 Hungry(Matrix)

O(VE).

:

 $\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
9 \\
10 \\
11 \\
12 \\
13 \\
14
\end{array}$

 $\frac{36}{37}$

4.8.3 Hopcroft-Carp

 $O(\sqrt{n}*E)$ uN , (0)

 $\begin{array}{c}
 1 \\
 2 \\
 3 \\
 4 \\
 5 \\
 6 \\
 7 \\
 8 \\
 9
 \end{array}$

4.8.4 Hungry(Multiple)

 $\frac{37}{38}$

4.8.5 Kuhn-Munkres

4.9 Network Flow

, , ,

 $m n , (p_1, p_2)$

: , X ,Y , x , S , 1, , 1, T, x, x , S , $O(\log m)$

k , k

: , , $w = [u,v) \quad u \rightarrow v$, 1, $-w \quad i \rightarrow i+1$, k, 0 , ,

G(), , , ,

: s t, s , ; , $S - \{s\}$

4.9.1 EdmondKarp

 $\begin{array}{c}
 2 \\
 3 \\
 4 \\
 5 \\
 6 \\
 7
 \end{array}$

 $\begin{array}{c}
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
9
\end{array}$, (),12 13

4.9.3 ISAP

 $105\\106$

4.9.4 MinCost MaxFlow

 $\frac{44}{45}$

Computational Geometry

5.1 Basic Function

5.2.2 Line-Line

5.2.3 Segment-Segment 5.2.4 Line-Segment 5.2.5 Point-Line 2 3 5 5.2.6 Point-Segment 2 3 7 5.2.7 Point on Segment

5.3 Polygon

5.3.1 Area

5.3.2 Point in Convex

5.3.3 Point in Polygon

	5.3.4	Judge Convex
1 2 3 4 5 6	~	
7 8 9 10 11 12 13	^	
	5.4	Integer Points
	5.4.1	On Segment
1		
	5.4.2	On Polygon Edge
1 2 3 4 5 6 7		
	5.4.3	Inside Polygon
1 2 3 4 5 6 7		
	5.5	Circle
	5.5.1	Circumcenter
1 2 3 4 5 6 7		

6 Dynamic Programming

6.1 Subsequence

6.1.1 Max Sum

6.1.2 Longest Increase

6.1.3 Longest Common Increase

6.2 Digit Statistics

7 Others

7.1 Matrix

7.1.1 Matrix FastPow

7.1.2 Gauss Elimination

7.2 Tricks

7.2.1 Stack-Overflow

 $\begin{array}{c} 1 \\ 2 \end{array}$

7.2.2 Fast-Scanner

7.2.3 Strok-Sscanf

 $\frac{1}{2}$

7.3 Mo Algorithm

, \sqrt{x} ,

 $\begin{array}{c} 16 \\ 17 \end{array}$

7.4 BigNum

7.4.1 High-precision

 $\frac{26}{27}$

 $\frac{44}{45}$

7.4.2 Complete High-precision

 $1\\2\\3\\4\\5$

7.5 VIM