ESTRUTURA DE DADOS

Prof.^a Priscilla Abreu

priscilla.braz@rj.senac.br

Roteiro de Aula

- Objetivo da aula
- Revisão
- Introdução a Estrutura de Dados
 - Matrizes
 - Tipos estruturados

Objetivo da aula

Revisar os conceitos básicos envolvendo o uso de estruturas homogêneas bidimensionais e estruturas heterogêneas.

RELEMBRANDO...

Análise e Desenvolvimento de Sistemas 2022.1

INTRODUÇÃO

Tipos de dados

Primitivos: a partir dos quais podemos definir os demais

Estrutura de dados: constituídos de dados primitivos e/ou estruturas

- Tipos primitivos
 - inteiro, real, lógico (boolean), caracter
- Estrutura de dados
 - Conjunto de informações agrupadas de uma forma coerente (com alguma relação entre elas)
 - Ex.: lista de chamada da turma.

O que são matrizes?

Análise e Desenvolvimento de Sistemas 2022.1

MATRIZES

As matrizes são, comumente referenciadas através de suas dimensões (quantidade de linhas e colunas).

A notação comum é: MxN, onde

M representa a quantidade de linhas

N representa a quantidade de colunas

Exemplo:

MATRIZES

Exemplo: Matriz bidimensional de notas de alunos durante um semestre.

MATRIZES

Estrutura de dados com mais de um índice.

Sintaxe:

tipo_dado matriz[tam1][tam2]...[tamn];

Exemplo:

int mat [10][10];

float mat2[2][5];

MATRIZES

Como acessar um elemento da matriz?

```
Linha
mat[0][2];
coluna
scanf("%d", &mat[2][3]);
printf("%d", mat[2][3]);
```


MATRIZES

Controle da posição das matrizes:

- Necessário mais de um contador;
- Matrizes de duas dimensões: controle de linha e coluna.
- Acessamos as linhas e para cada linha acessamos todas as colunas.
- Uso de dois contadores.

MATRIZES

```
Exemplo:
int mat [3][3];
int lin, col;
for (lin=0; lin<=2; lin++){
    for (col=0; col <= 2; col ++){
        printf("Informe o valor: ");
        scanf("%d",&mat[lin][col]);
```


MATRIZES

```
Exemplo:
#include <stdio.h>
#define max 2
int main(){
  int mat[max][max];
  int lin,col;
  for (lin=0;lin<max;lin++){</pre>
     for (col=0;col<max;col++){
        printf("Digite um número: ");
       scanf("%d",&mat[lin][col]);
```


MATRIZES

```
Exemplo:
```

```
for (lin=0;lin<max;lin++){
    for (col=0;col<max;col++){
        printf("%d ",mat[lin][col]);
    }
    printf("\n");
}</pre>
```

```
Digite um n·mero: 1
Digite um n·mero: 2
Digite um n·mero: 3
Digite um n·mero: 4
1 2
3 4
Pressione qualquer tec
```


MATRIZES – uso de constantes

Vantagem e importância da utilização de constantes:

Se houver necessidade de alterar a dimensão da matriz, basta alterar o valor da constante usada na dimensão da matriz.

MATRIZES – uso de constantes

```
#include <stdio.h>
#define max 3
int main(){
  int mat[max][max];
  int lin,col;
  for (lin=0;lin<max;lin++){</pre>
    for (col=0;col<max;col++){
       printf("Digite um número: ");
      scanf("%d",&mat[lin][col]);
       mat[lin][col]=mat[lin][col]*2;
```


MATRIZES – uso de constantes

```
for (lin=0;lin<max;lin++){
    for (col=0;col<max;col++){
        printf("%d ",mat[lin][col]);
    }
    printf("\n");
    }
}</pre>
```


EXERCÍCIO

Análise e Desenvolvimento de Sistemas 2022.1

MATRIZES

Faça um programa que receba valores inteiros do usuário para preencher uma matriz 3x3, e em seguida, exiba a soma de todos os valores e a soma dos valores da diagonal principal da matriz. Exiba esses dois valores ao final.

MATRIZES – EXERCÍCIO

Faça um programa que preencha uma matriz M, 3x3. Em seguida, o programa deve calcular e mostrar a matriz R, resultante da multiplicação dos elementos de M pelo maior elemento informado.

MATRIZES – características

Matriz quadrada

Diagonal principal

Elementos:

[0][0]

[1][1]

[2][2]

[3][3]

[4][4]

	0	1	2	3	4
0	16.0	7.5	4.3	1.5	9.2
1	9.5	8.0	3.6	8.7	4.6
2	6.5	4.9	5. ₇	9.8	6.5
3	3.5	1.0	5.0	18.0	7.6
4	10.0	9.0	9.5	9.1	8.6

MATRIZES – características

Matriz quadrada

Triângulo Superior (Diagonal principal)

	0	1	2	3	4
0	16.0	7.5	4.3	1.5	9.2
1	9.5	ة. 0	3.6	8.7	4.6
2	6.5	4.9	5. 5.	9.8	6.5
3	3.5	1.0	5.0	18.0	7.6
4	10.0	9.0	9.5	9.1	8.6

MATRIZES – características

Matriz quadrada

Triângulo Superior (Diagonal principal)

Elementos:						
[0][1], [0][2], [0][3],	[0][4]					
[1][2], [1][3], [1][4]						
[2][3], [2][4]						
[3][4]						

	0	1	2	3	4
0	16.0	7.5	4.3	1.5	9.2
1	9.5	8.0	3.6	8.7	4.6
2	6.5	4.9	5.7	9.8	6.5
3	3.5	1.0	5.0	18.0	7.6
4	10.0	9.0	9.5	9.1	8.6

MATRIZES – características

Matriz quadrada

Triângulo Inferior (Diagonal principal)

	0	1	2	3	4
0	16.0	7.5	4.3	1.5	9.2
1	9.5	٥. و	3.6	8.7	4.6
2	6.5	4.9	5.7	9.8	6.5
3	3.5	1.0	5.0	18.0	7.6
4	10.0	9.0	9.5	9.1	8.6

MATRIZES – características

Matriz quadrada

Triângulo Inferior (Diagonal principal)

Elementos	
-----------	--

[1][0] [2][0], [2][1] [3][0], [3][1], [3][2] [4][0], [4][1], [4][2], [4][3]

	0	1	2	3	4
0	16.0	7.5	4.3	1.5	9.2
1	9.5	8.0	3.6	8.7	4.6
2	6.5	4.9	5. 5.	9.8	6.5
3	3.5	1.0	5.0	18.0	7.6
4	10.0	9.0	9.5	9.1	8.6

MATRIZES – características

Matriz quadrada

Diagonal secundária

Elementos:

[0][4]

[1][3]

[2][2]

[3][1]

[4][0]

	0	1	2	3	4
0	10.0	7.5	4.3	1.5	9.2
1	9.5	8.0	3.6	9.1	4.6
2	6.5	4.9	<u> </u>	9.8	6.5
3	3.5	1.0	5.0	10.0	7.6
4	18.0	9.0	9.5	9.1	8.6

DÚVIDAS?

Análise e Desenvolvimento de Sistemas 2022.1