Mathematical Statistics I Recitation Session 7

Theorem. Let \mathcal{U} be the set of all unbiased estimators of 0 with finite variances and T be an unbiased estimator of ϑ with $E\left(T^2\right)<\infty$. A necessary and sufficient condition for T(X) to be a UMVUE of ϑ is that E[T(X)U(X)]=0 for any $U\in\mathcal{U}$ and any $P\in\mathcal{P}$.

Theorem. Uniformly minimum-variance unbiased estimator (UMVUE) is unique, whenever it exists.

Exercise. Let X_1, \ldots, X_n be i.i.d from uniform distribution on the interval $(0, \theta)$ with parameter space $\Theta = [1, \infty)$. Find UMVUE of θ . Note that the maximum order statistic, $X_{(n)}$, is sufficient for θ but not complete because $\theta \geq 1$.

Exercise. Let (X_1, \ldots, X_n) be a random sample from the exponential distribution with density $\theta^{-1}e^{-(x-a)/\theta}I_{(a,\infty)}(x)$, where $a \leq 0$ and θ is known. Obtain a UMVUE of a. Note that the minimum order statistic, $X_{(1)}$, is sufficient for a but not complete because $a \leq 0$.

Exercise. Let X be an observation from uniform $(\theta, \theta + 1), \theta \in \mathbb{R}$. Show that there is no UMVUE of $g(\theta)$ for any non-constant differentiable function g.