Próbny Egzamin Ósmoklasisty z Matematyki

ZESTAW PRZYGOTOWANY PRZEZ SERWIS

WWW.ZADANIA.INFO

16 MARCA 2019

CZAS PRACY: 100 MINUT

ZADANIE 1 (1 PKT)

Firma transportowa *Paka* korzysta z samochodów dostawczych, które mogą przewozić towar o maksymalnej masie 1,2 tony. Maksymalne wymiary jednej prostopadłościennej przesyłki, która może zostać przewieziona takim samochodem wynoszą 2,25 m \times 1,39 m \times 1,66 m. W tabeli zapisano wymiary i masę jednej paczki oraz liczbę paczek w sześciu zamówieniach transportowych

Nr zamówienia	Liczba paczek	Wymiary	Masa
1	1	$150 \text{ cm} \times 220 \text{ cm} \times 90 \text{ cm}$	1199 kg
2	3	$200 \text{ cm} \times 50 \text{ cm} \times 150 \text{ cm}$	400 kg
3	8	$25 \text{ cm} \times 90 \text{ cm} \times 110 \text{ cm}$	120 kg
4	2	$100 \text{ cm} \times 40 \text{ cm} \times 50 \text{ cm}$	620 kg
5	5	$20 \text{ cm} \times 40 \text{ cm} \times 30 \text{ cm}$	250 kg
6	4	$190 \text{ cm} \times 30 \text{ cm} \times 45 \text{ cm}$	290 kg

Ile sposród tych zamówień może zostać zrealizowanych jednym samochodem dostawczym? Wybierz właściwą odpowiedź spośród podanych.

A) 2

B) 3

C) 4

D) 5

E) 6

ZADANIE 2 (1 PKT)

Uzupełnij zdania. Wybierz odpowiedź spośród oznaczonych literami A i B oraz odpowiedź spośród oznaczonych literami C i D.

Wartość wyrażenia $\sqrt[3]{135}$: 15 jest równa wartości wyrażenia **A/B**.

A) $\sqrt[3]{9}$

B) $\frac{\sqrt[3]{5}}{5}$

Wartość wyrażenia $\sqrt[3]{18} \cdot \sqrt[3]{12}$ jest równa wartości wyrażenia **C/D**.

C) 6

D) $\sqrt[3]{30}$

ZADANIE 3 (1 PKT)

Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

40% liczby 140 to tyle samo, co 140% liczby 40.	P	F
30% liczby 42 to tyle samo, co 60% liczby 84.	P	F

ZADANIE 4 (1 PKT)

W magazynie znajdują się: 264 stoły i 1836 krzeseł. Meble te podzielono na n grup w ten sposób, że w każdej grupie jest tyle samo krzeseł i w każdej grupie jest tyle samo stołów. Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Liczba n może być równa 8.	P	F
Największa możliwa wartość liczby <i>n</i> to 12.	P	F

ZADANIE 5 (1 PKT)

Z okazji Międzynarodowego Dnia Liczby π zorganizowano konkurs matematyczny w jednej ze szkół podstawowych. Każdy z uczestników konkursu zajmował jedno z miejsc numerowanych kolejno od I do VI. Na diagramie przedstawiono, ile procent uczniów zakończyło konkurs na danym miejscu. Wiadomo, że 49% uczniów zajęło miejsce o numerze wyższym niż Amelia.

Ile procent uczniów zakończyło konkurs na miejscach o numerach niższych niż Amelia? Wybierz właściwą odpowiedź spośród podanych.

A) 8%

B) 22%

C) 51%

D) 36%

ZADANIE 6 (1 PKT)

Prostokąt o wymiarach 60 cm \times 40 cm przecięto na dwa takie same prostokąty (patrz rysunek I). Następnie jeden z tych prostokątów obrócono o 90° i ułożono na drugim (patrz rysunek II).

Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Figura z rysunku II ma pole 0, 16 m ²		F
Figura z rysunku II ma obwód równy 2,4 m.	P	F

ZADANIE 7 (1 PKT)

Narysowany kwadrat należy wypełnić tak, aby iloczyny liczb w każdym wierszu, każdej kolumnie i na obu przekątnych kwadratu były takie same.

	97	96
99	9 ⁵	
9^{4}		

Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Iloczyn wszystkich liczb w kwadracie jest równy 9 ⁴⁸ .	P	F
W zacieniowane pole kwadratu należy wpisać liczbę 9 ⁷ .	P	F

ZADANIE 8 (1 PKT)

Tomek poprawnie zaokrąglił liczbę 5985 do pełnych setek i otrzymał liczbę x, a Ania poprawnie zaokrągliła liczbę 6489 do pełnych tysięcy i otrzymała liczbę y.

Czy liczby x i y są równe? Wybierz odpowiedź T lub N i jej uzasadnienie spośród A, B albo C.

Tak	Nie

	ponieważ
A)	początkowa liczba Tomka jest mniejsza od początkowej liczby Ani.
B)	liczba Tomka jest większa od 5950, a liczba Ani jest mniejsza od 6500.
C)	otrzymane zaokrąglenia różnią się o 100.

ZADANIE 9 (1 PKT)

Na bokach trójkąta prostokątnego ABC zaznaczono punkty D i E. Odcinek DE podzielił trójkąt ABC na dwa wielokąty: trójkąt prostokątny ADE i czworokąt DBCE, jak na rysunku. Odcinek AD ma długość $3\sqrt{3}$ cm, a odcinek EC ma długość 2 cm.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Długość odcinka BC jest równa

- A) 6 cm
- B) $4\sqrt{3}$ cm
- C) 2 cm
- D) 4 cm
- E) $3\sqrt{3}$ cm

ZADANIE 10 (1 PKT)

Dokończ zdanie. Wybierz odpowiedź spośród podanych.

Średnia arytmetyczna zestawu liczb: 12, 5, 13, 9, 2, 7 zwiększy się o 75%, gdy w miejsce 2 wpiszemy liczbe

A) 36

B) 84

C) 38

D) 14

ZADANIE 11 (1 PKT)

O liczbie x wiemy, że $\frac{1}{4}$ tej liczby jest o $\frac{3}{2}$ mniejsza od $\frac{1}{3}$ tej liczby. **Które równanie pozwoli wyznaczyć liczbę** x? **Wybierz właściwą odpowiedź spośród podanych.**A) $\frac{1}{4}x - \frac{3}{2} = \frac{1}{3}x$ B) $\frac{1}{4}x - \frac{3}{2} = \frac{5}{3}x$ C) $\frac{2}{4}x = \frac{1}{3}x - \frac{3}{2}$ D) $\frac{1}{4}x = \frac{1}{3}x - \frac{3}{2}$

A)
$$\frac{1}{4}x - \frac{3}{2} = \frac{1}{3}x$$

B)
$$\frac{1}{4}x - \frac{3}{2} = \frac{5}{3}x$$

C)
$$\frac{2}{4}x = \frac{1}{3}x - \frac{3}{2}$$

D)
$$\frac{1}{4}x = \frac{1}{3}x - \frac{3}{2}$$

ZADANIE 12 (1 PKT)

Przekątne trapezu *ABCD* przedstawionego na rysunku przecinają się w punkcie *S*.

Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Kąt <i>BSC</i> ma miarę 65°.	P	F
Trójkąty <i>ABS</i> i <i>CDS</i> mają równe kąty.	P	F

ZADANIE 13 (1 PKT)

W układzie współrzędnych zaznaczono trzy kolejne wierzchołki prostokąta ABCD: B = (5,7), C = (1, 10), D = (-8, -2).

Jakie współrzędne ma punkt A? Wybierz właściwą odpowiedź spośród podanych.

A)
$$\left(-\frac{3}{2}, \frac{5}{2}\right)$$

B)
$$(-4, -5)$$

C)
$$(3, \frac{17}{2})$$

D)
$$(-2,15)$$

ZADANIE 14 (1 PKT)

Uzupełnij zdania. Wybierz odpowiedź spośród oznaczonych literami A i B oraz odpowiedź spośród oznaczonych literami C i D.

Liczba $a = \sqrt{150} - 3$ jest A/B.

A) mniejsza od 10

B) większa od 10

Liczba $6\sqrt{3} - 10$ jest C/D.

C) ujemna

D) dodatnia

ZADANIE 15 (1 PKT)

Na rysunkach przedstawiono graniastosłup prawidłowy i ostrosłup prawidłowy. Wszystkie krawędzie obu brył są jednakowej długości.

Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Suma długości wszystkich krawędzi graniastosłupa jest większa niż suma długości wszystkich krawędzi ostrosłupa.	P	F
Całkowite pole powierzchni graniastosłupa jest większe niż całkowite pole powierzchni ostrosłupa.	P	F

ZADANIE 16 (2 PKT)

Zdarzenie losowe polega na wybraniu jednej krawędzi ustalonego wcześniej graniastosłupa prostego. Oblicz jakie jest prawdopodobieństwo, że wybrana krawędź jest krawędzią boczną tego graniastosłupa.

ZADANIE 17 (2 PKT)

Wykaż, że jeżeli w pewnym roku pierwszy dzień kalendarzowego lata (21 czerwca) wypada w niedzielę, to pierwszy dzień kalendarzowej zimy (21 grudnia) wypada w poniedziałek.

ZADANIE 18 (2 PKT)

Karol przykleja na kartce formatu A4 (210 mm \times 297mm) kwadraty o boku 2 cm, według wzoru, którego fragment pokazano na rysunku.

Przekątne każdego kwadratu są równoległe do krawędzi kartki i kwadraty stykają się jednym wierzchołkiem. Oblicz ile maksymalnie takich kwadratów Karol będzie mógł przykleić na kartce. Do obliczeń przyjmij przybliżenie $\sqrt{2}\approx 1,4$.

ZADANIE 19 (3 PKT)

Na rysunku przedstawiono dwie różne ściany ostrosłupa prawidłowego czworokątnego. Jedna jest kwadratem o boku 10 cm, a druga – trójkątem równoramiennym o podstawie 10 cm i ramieniu 13 cm.

Oblicz pole powierzchni całkowitej ostrosłupa o takich wymiarach.

Zadanie 20 (3 pkt)

Cena godziny korzystania z basenu wynosi 12 zł. Można jednak kupić miesięczną kartę rabatową za 49 złotych, upoważniającą do obniżki cen, i wtedy za pierwsze 10 godzin pływania płaci się 8 złotych za godzinę, a za każdą następną godzinę – 9 złotych. Kamila kupiła kartę rabatową, a Kacper zdecydował się korzystać z basenu bez karty rabatowej. Po miesiącu korzystania z basenu, okazało się, że Kamila i Kacper byli na basenie przez dokładnie tyle samo godzin, oraz ich wydatki na basen były dokładnie takie same. Ile godzin spędziła na basenie Kamila?

ZADANIE 21 (3 PKT)

Pan Kamil wyjechał o godzinie 9:00 w podróż samochodową z Torunia do Warszawy. Wykres przedstawia jego odległość od Torunia w zależności od czasu jazdy.

Średnia prędkość z jaką pokonał ten dystans jest równa 70 km/h. Oblicz z jaką największą prędkością poruszał się Pan Kamil w trakcie swojej podróży do Warszawy.

