

Tu universidad de postgrado

Your university for graduate studies

Tu universidad para una formación permanente

Your lifelong learning university

Tu universidad para una enseñanza innovadora

Your innovative education university

La universidad para tu futuro

The university for your future

Sistemas de recomendación basados en contexto y secuencias

Alejandro Bellogín

Universidad Autónoma de Madrid

UNIVERSIDAD **DE ANDALUCÍA**

Índice

Introducción

- Definición del problema
- Ejemplos
- Adquisición de contexto

Conceptos

- Contexto temporal
- Contexto secuencial
- Contexto social
- Contexto espacial
- Evaluación contextual
- Caso de uso: recomendación en Turismo
- Conclusión

Introducción

Introducción y definición del problema

• ¿Qué es contexto?

- Hay muchas definiciones, nosotros usaremos:
- "Aquellas variables que pueden cambiar cuando una actividad se repite varias veces"

Ejemplos:

- Viendo una película: momento, localización, compañía, ...
- Escuchando música: momento, localización, compañía, estado de ánimo, ...
- Viaje: momento, localización, tiempo, recursos (dinero, disponibilidad de transporte), ...

Ejemplo de datos contextuales

Compañía Ítem Localización Usuario Rating Momento 11 Mañana U1 4 Trabajo Solo 12 U1 Tarde Fuera **Amigos** 12 U2 5 Tarde Pareja Casa U2 13 Mañana Casa **Amigos** 13 U1 ? Tarde Casa Pareja

Introducción

Definición del problema y ejemplos

- Dimensión contextual: momento, localización, compañía
- Condición contextual: mañana/tarde/noche, ...
- Situación contextual para ?: {Tarde, Casa, Pareja}

Introducción

Introducción

Introducción

Introducción

yes netflix. you're absolutely right...

https://twitter.com/WhosChaos/status/939999586998943744

Introducción

6x Screen Protector for Garmin...

Garmin Charging/Data Cradle for... Sold by: protectionfilms...

Sport and...

Eat Natural Mixed Box 20 Bars...

Garmin Premium Soft Strap Heart... **Prime**

Sold by: Harris Active S ...

Chocolate.. **Prime**

https://ometria.com/blog/6-product-recommendation-fails-to-watch-out-for

DE ANDALUCÍA

Índice

Introducción

Conceptos

- Diferencia con recomendación clásica
- Métodos generales para procesar el contexto
- Ejemplos de contexto
- Contexto temporal
- Contexto secuencial
- Contexto social
- Contexto espacial
- Evaluación contextual
- Caso de uso: recomendación en Turismo
- Conclusión

Conceptos

Diferencia con la recomendación clásica

Hipótesis principal

- Los usuarios tienen unos intereses (a largo plazo)
- Pero toman decisiones de acuerdo al contexto en el que están (corto plazo)

• Formalización:

Recomendación clásica: F: U x I → R
 matriz de puntuaciones

 Recomendación contextual: F: U x I x C → R tensor de puntuaciones

Conceptos

Métodos generales para procesar el contexto

• Pre-filtrado:

 Aprende un perfil de usuario distinto según el contexto en el que se encuentre

Post-filtrado:

 Se aprenden las preferencias usando todos los datos, después las predicciones se ajustan según el contexto objetivo

Modelado contextual:

• La información contextual se incorpora en el modelo de predicción directamente

Conceptos

Métodos generales para procesar el contexto

Conceptos

Ejemplos de contexto

- Instante de la recomendación
 - Momento del día, día de la semana, época del año, ...
- Compañía del usuario (contexto social)
 - Solo, en familia, con amigos, con pareja, ...
- Localización
 - Barrio desconocido, urbano, zona con naturaleza, ...
- Estado de ánimo
 - Contento, triste, melancólico, enfadado, enérgico, ...
- Tiempo atmosférico
 - Soleado, lluvioso, nublado, ola de calor, ...

• ...

Índice

- Introducción
- Conceptos
- Contexto temporal
 - Captura de contexto y propiedades
 - Ventajas e inconvenientes
 - Métodos
- Contexto secuencial
- Contexto social
- Contexto espacial
- Evaluación contextual
- Caso de uso: recomendación en Turismo
- Conclusión

Contexto temporal

- Es el contexto más sencillo de capturar
 - Se puede hacer de manera implícita
- Hay distintas granularidades: época del año, día de la semana, momento del día, ...
 - Continuo vs discreto
 - Puede depender del dominio
- Es posible que existan eventos (hitos) en nuestros datos que hayan influido en el comportamiento de los usuarios
 - P.e.: películas que se ven/puntúan cerca de la fecha de los Óscar

Contexto temporal

- Permite comprobar el objetivo "ideal" de los sistemas de recomendación:
 - Ofrecer a los usuarios recomendaciones en base a sus experiencias o gustos del pasado
 - Además, considerar elementos nuevos o recientemente populares

Ventajas e inconvenientes

Contexto temporal

Ventajas e inconvenientes

Mejor según...

• Relevancia?

Novedad? (ítems no populares)

Novedad temporal?

(ítems recientes)

 R_3

 R_2

 R_1

(2001)

(1972)

(2018)

(1994)

(1994)

(1993)

(2017)

(2016)

Contexto temporal

- Permite comprobar el objetivo "ideal" de los sistemas de recomendación:
 - Ofrecer a los usuarios recomendaciones en base a sus experiencias o gustos del pasado
 - Además, considerar elementos nuevos o recientemente populares

• Problemas:

- Hay preferencias a corto y largo plazo
- Hay cambios de intereses (interest drift)
- Se suelen entremezclar en los datos que se recogen

Ventajas e inconvenientes

Contexto temporal

Métodos clásicos

- Primeras aproximaciones kNN:
 - Introducir pesos en funciones de similitud
 - Mayor peso a interacciones más recientes
 - Decaimiento exponencial (Ding & Li, 2005)
 - Medida temporal de similitud entre ítems:

$$w_t(t(r_{u,i}), t(r_{u,j}), t) = 1/(|t(r_{u,i}) - t(r_{u,j})| + |min(t(r_{u,i}), t(r_{u,j})) - t|)$$
 (Hermann 2010)

 Truncar (llevar a 0) según actividad en un intervalo (Gordea & Zanker, 2007)

Contexto temporal

- Primeras aproximaciones MF:
 - Añadir parámetros a métodos basados en modelo
 - Estos parámetros aprenden sesgos a distintos niveles
 - Se puede identificar variación en el tiempo en los siguientes aspectos
 - Sesgo de usuario: $b_u(t)$
 - Sesgo de ítem: $b_i(t)$
 - Preferencias de usuario: $p_u(t)$
 - Respecto a las características de ítem se suponen efectos estáticos, debido a la propia naturaleza de estos (a diferencia de los usuarios)
 - El modelo se plantea como

$$\hat{r}_{ui} = \mu + b_u(t) + b_i(t) + q_i^t \cdot p_u(t)$$

Contexto temporal

- Primeras aproximaciones MF:
 - ¿Por qué podrían funcionar?
- Las hipótesis de variación temporal de los sesgos son
 - La popularidad de los ítems varía con el tiempo $b_i(t)$
 - Por ejemplo la aparición de un actor en una película modifica el interés en películas anteriores de ese actor
 - Los usuarios modifican sus criterios de puntuación con el paso del tiempo $b_u(t)$
 - Por ejemplo, pasar de considerar el rating promedio de 4* a 3* movidos por
 - Tendencias naturales de los usuarios
 - Influencia cercana en el tiempo de otros ratings dados
 - La identidad cambiante del usuario en una casa
 - ullet En consecuencia consideraremos, en el día t_{ui}

$$b_{ui} = \mu + b_u(t_{ui}) + b_i(t_{ui})$$

• Primeras aproximaciones – MF:

Se pueden codificar estos sesgos de muchas maneras

Contexto temporal

Se pueden codifical estos sesgos de machas maneras	
MODELO	CODIFICACIÓN
1. Estático sin efectos temporales (static)	$b_{ui} = \mu + b_u + b_i$
2. Efectos temporales de ítems (movies)	$b_{ui} = \mu + b_u + b_i + b_{i,Bin(t_{ui})}$
3. Lineal de los sesgos de usuario (lineal)	$b_{ui} = \mu + b_u + \alpha_u dev_u(t_{ui}) + b_i + b_{i,Bin(t_{ui})}$
4. Spline de los sesgos de usuario (spline)	$b_{ui} = \mu + b_u + \frac{\sum_{l=1}^{k_u} e^{-\sigma t_{ui} - t_l^u } b_{t_l}^u}{\sum_{l=1}^{k_u} e^{-\sigma t_{ui} - t_l^u }} + b_i + b_{i,Bin(t_{ui})}$
5. Lineal de sesgos de usuario y efecto día único (lineal+)	$b_{ui} = \mu + b_u + \alpha_u dev_u(t_{ui}) + b_{u,t_{ui}} + b_i + b_{i,Bin(t_{ui})}$
6. Spline de sesgos de usuario y efecto día único (spline+)	$b_{ui} = \mu + b_u + \frac{\sum_{l=1}^{k_u} e^{-\sigma t_{ui} - d_l } b_{t_l}^u}{\sum_{l=1}^{k_u} e^{-\sigma t_{ui} - t_l^u }} + b_{u,t_{ui}} + b_i + b_{i,Bin(t_{ui})}$

Universidad Internacional de Andalucía

• Primeras aproximaciones – MF:

Cuidado con la complejidad

Contexto temporal

Universidad Internacional de Andalucía

Contexto

temporal

Métodos generales

- Aplicar factorización de matrices a tensores
 - La tercera dimensión sería el tiempo
 - Se pueden aplicar a otros contextos N
 - CANDECOMP/PARAFAC
 - Descomposición Tucker

Aplicar filtros antes o después de aprender el modelo

- Requiere definir los tipos de contexto que se quieren aprender
- También se puede aplicar a otros contextos
- Pre-filtrado: cada par (usuario, tiempo) se asigna al mismo pseudo-usuario, después se aplica un modelo (kNN, MF) a estos datos
- Post-filtrado: se recomienda usando cualquier modelo F(u,i) y después se descartan las recomendaciones que no son relevantes en un contexto, por ejemplo: $P_c(u,i,c) = \frac{|U_{u,i,c}|}{k}$

$$F(u,i,c) = \begin{cases} F(u,i) & if \quad P_c(u,i,c) \ge \tau_{P_c} \\ \min(R) & if \quad P_c(u,i,c) < \tau_{P_c} \end{cases}$$

Contexto temporal

Métodos generales

 Los últimos trabajos utilizan la información temporal para construir secuencias (ver siguiente contexto)

Contexto temporal

Tendencias actuales Redes neuronales (convolucionales, en particular) son apropiadas para este problema

Índice

- Introducción
- Conceptos
- Contexto temporal
- Contexto secuencial
 - Captura de contexto y propiedades
 - Ventajas e inconvenientes
 - Métodos
- Contexto social
- Contexto espacial
- Evaluación contextual
- Caso de uso: recomendación en Turismo
- Conclusión

Contexto secuencial

- También es fácil de conseguir (de manera implícita)
 - Si capturamos el tiempo, podemos convertirlo en secuencia
 - El problema surge si queremos "partir" las secuencias
 - Relacionado con la recomendación basada en sesiones
 - Comercio electrónico, noticias, música, ...

Contexto secuencial

- También es fácil de conseguir (de manera implícita)
 - Si capturamos el tiempo, podemos convertirlo en secuencia
 - El problema surge si queremos "partir" las secuencias
 - Relacionado con la recomendación basada en sesiones

• Comercio electrónico, noticias, música, ...

Dos días

Tres meses

Diez días

Dos meses

Contexto secuencial

- También es fácil de conseguir (de manera implícita)
 - Si capturamos el tiempo, podemos convertirlo en secuencia
 - El problema surge si queremos "partir" las secuencias
 - Relacionado con la recomendación basada en sesiones
 - Comercio electrónico, noticias, música, ...

Contexto secuencial

Ventajas e inconvenientes

- El tiempo se ignora
 - Impide distinguir intervalos entre interacciones
 - Simplifica el problema

- La importancia del orden depende del dominio
 - En algunos dominios se puede entender como una restricción o para aprender "paquetes" de productos
 - En e-learning, hay lecciones que se tienen que ver antes que otras
 - En e-commerce, hasta que no se compra un producto no se necesitan otros (p.e., un videojuego si no se tiene consola)

- Tarea más habitual: recomendar el siguiente elemento
- Hay otras tareas donde se usan secuencias
 - Encontrar datos relacionados
 - Obtener restricciones de orden
 - Recomendaciones repetidas (p.e., al hacer la compra)

Contexto secuencial

Propiedades: tareas y dominios

Contexto secuencial

Métodos clásicos

- Cadenas/Modelos de Markov de orden L (clásico: L=1)
 - El estado actual depende los L estados anteriores
 - En principio, si se personalizan, funcionan mejor (pero tienen coste mayor)
 - Cuanto mayor el orden, más memoria y menos datos disponibles

• Combinación de Modelos de Markov con Factorización y

similitudes

Contexto secuencial

- Minería de patrones frecuentes: permite descubrir patrones de comportamiento
 - Reglas de asociación (basadas en co-ocurrencia)
 - Patrones secuenciales (co-ocurrencia en el mismo orden)
 - Patrones secuenciales y contiguos (co-ocurrencia en el mismo orden manteniendo los intervalos)
- Necesitan cumplir un mínimo de confianza y soporte
 - Confianza: estima la probabilidad de que el patrón llegue a cumplirse
 - Soporte: permite descartar aquellos patrones que no aparecen lo suficiente en los datos

Contexto secuencial

- Redes neuronales: redes recurrentes (RNNs)
 - Estas redes almacenan un estado interno, lo cual permite modelar secuencias
- Muchas propuestas basadas en GRU y variantes
 - Gated Recurrent Unit
- También se usan CNNs
 - Convolutional Neural Networks

Contexto secuencial

- Aprender embeddings considerando las probabilidades de transición
 - Los embeddings (representaciones de baja dimensión de los ítems) se aprenden a partir de las interacciones entre los usuarios y los ítems
 - Pero manteniendo las relaciones secuenciales entre ellos
- Se pueden utilizar redes neuronales para ello

Contexto secuencial

- Aprendizaje por refuerzo o procesos de decisión de Markov (MDPs)
 - Se aprende a partir de interacciones secuenciales con el entorno
 - Se obtienen recompensas (clicks, ratings, etc.) según las acciones realizadas (recomendaciones)

Introducción

- Conceptos
- Contexto temporal
- Contexto secuencial

Contexto social

- Captura de contexto y propiedades
- Ventajas e inconvenientes
- Métodos
- Contexto espacial
- Evaluación contextual
- Caso de uso: recomendación en Turismo
- Conclusión

Contexto social

Captura de contexto y propiedades

- La información social entendida como contexto se refiere a la gente con la que estamos (o queremos estar) disfrutando de una actividad
 - Ejemplos: ver una película, visitar un museo, escuchar música
 - Equivalente a recomendación a un grupo
- Caso más general: información social son todas aquellas relaciones que tenemos en el sistema con otros usuarios
 - Explícito: follows en Twitter, amigos en Facebook, etiquetas en fotos de Instagram, ...
 - Implícito: muy difícil de extraer, ya que aunque dos personas estén cerca, no tienen porque ir "juntas"

Contexto social

- Considerar este contexto permite tomar decisiones que consideren todos los puntos de vista
- Además, es muy útil para explicar por qué se recomienda algo
 - "Este ítem es preferido por la mayoría del grupo"
 - "A tu amigo le encantó esta película"

Ventajas e inconvenientes

Universidad Internacional de Andalucía

Contexto social

- Considerar este contexto permite tomar decisiones que consideren todos los puntos de vista
- Además, es muy útil para explicar por qué se recomienda algo

- Sin embargo, a veces no es posible conseguir mejoras para todos los miembros del grupo
 - Aunque la mayoría de las estrategias buscan el bien común, puede haber usuarios que salgan perjudicados
- Hay que considerar los tipos de relaciones, contagio emocional, personalidad, estado de ánimo, ...

Ventajas e inconvenientes

Contexto social

Métodos clásicos

- Métodos de agregación de preferencias
 - Son métodos sencillos
 - Permiten tener en cuenta las preferencias individuales
 - Combinación/agregación: promedio, multiplicativo, votos, justicia, persona más respetada, ...
- Métodos de agregación de recomendaciones
 - Se aplican a posteriori
 - Se intenta alcanzar un consenso que maximice la satisfacción

Contexto social

Usar redes neuronales para

- Aprender cómo combinar las preferencias o las recomendaciones de los distintos usuarios
- Minimizar las distancias entre los embeddings de aquellos usuarios que tienen relaciones sociales
- Co-factorizar los datos de manera que comparten su representación en el espacio de preferencias y social

Índice

- Introducción
- Conceptos
- Contexto temporal
- Contexto secuencial
- Contexto social
- Contexto espacial
 - Captura de contexto y propiedades
 - Ventajas e inconvenientes
 - Métodos
- Evaluación contextual
- Caso de uso: recomendación en Turismo
- Conclusión

Contexto espacial

Captura de contexto y propiedades

- Contexto espacial: localización del usuario
 - País, código postal, coordenadas geográficas, ...

- Depende de la granularidad (detalle) que se quiera,
 puede ser sencillo o requerir de la interacción del usuario
 - Usando dirección IP vs activar GPS
 - ¿Basta con saber país o necesitamos la calle/barrio exacto?

Contexto espacial

Ventajas:

 Permite filtrar muy bien posibilidades viables: restaurantes, monumentos o museos cercanos; noticias de interés en tu región

• Inconvenientes:

- En algunos dominios no tiene utilidad *a priori*
- El usuario puede querer buscar recomendaciones para otro momento

Ventajas e inconvenientes

Contexto espacial

Métodos clásicos

Adaptaciones de MF

- GeoMF: los puntos del espacio se dividen en una malla y se calcula un MF aumentado
- IRenMF: se calculan dos tipos de influencias, una donde los usuarios visitan localizaciones cercanas y otra para capturar que las preferencias de los usuarios se comparten por regiones
- RankGeoFM: al optimizar se incluye la distancia entre los

Li, X., Cong, G., Li, X., Pham, T-A.N., Krishnaswamy, S. Rank-GeoFM: A Ranking based Geographical Factorization Method for Point of Interest Recommendation. In *SIGIR*, 2015.

Lian, D., Zhao, C., Xie, X., Sun, G., Chen, E., Rui, Y. GeoMF: joint geographical modeling and matrix factorization for point-of-interest recommendation. In *KDD*, 2014 Liu, Y., Wei, W., Sun, A., Miao, C. Exploiting Geographical Neighborhood Characteristics for Location Recommendation. In *CIKM*, 2014.

• Cuando también se tiene información temporal, se pueden modelar trayectorias espacio-temporales

• Explotar herramientas del área de minería de datos de

trayectorias

Contexto espacial

Contexto espacial

Tendencias actuales

- Las redes neuronales profundas nos permiten extraen muchos tipos de información directamente de los mapas:
 - Polución
 - Tráfico/congestión

(b) MapLUR estimates

Contexto espacial

Tendencias actuales

- Las redes neuronales profundas nos permiten extraen muchos tipos de información directamente de los mapas
- Esta información se combina junto con información sobre las visitas de los usuarios

Xu, Y., Shen, Y., Zhu, Y., & Yu, J. AR2Net: An Attentive Neural Approach for Business Location Selection with Satellite Data and Urban Data. *ACM Transactions on Knowledge Discovery from Data (TKDD)*, 14(2), 2020.

Introducción

- Conceptos
- Contexto temporal
- Contexto secuencial
- Contexto social
- Contexto espacial
- Evaluación contextual
 - Introducción
 - Evaluación de contexto temporal
- Caso de uso: recomendación en Turismo
- Conclusión

Evaluación contextual

- Muy importante tener en cuenta las características de cada contexto al simular la evaluación
 - Esto no es fácil hacerlo bien
 - Conseguir una metodología libre de filtraciones (leaking) es complejo
 - En general, habrá que dividir los datos en dos (entrenamiento y test), <u>incluyendo</u> el contexto

A continuación, un ejemplo con el contexto temporal

Introducción

Evaluación contextual

Evaluación de contexto temporal

- Hay varias alternativas para dividir un conjunto de datos en entrenamiento + test según las siguientes condiciones:
 - Orden de las interacciones: aleatorio o según la marca de tiempo
 - Tamaño: criterio para decidir cuántos elementos forman el test;
 puede tener un valor fijo o según un ratio dado
 - Conjunto base: condición que indica qué conjunto inicial se considerará; puede ser el conjunto completo o hacer un conjunto por cada usuario

Evaluación contextual

Evaluación de contexto temporal

CONDICIONES	CASOS			
Conjunto base	Centrado en la comunidad (cc) $M^{\mathscr{E}_{cc}}=M$	Centrado en el usuario (uc) $M^{\mathscr E_{uc}}=\{M_u\mid u\in U\}, M_u=\{r_{u,\cdot}\mid r_{u,\cdot}\in M\}$		
Orden de interacciones	Independiente del tiempo (ti) $M_k \overset{\sigma_{ti}}{\longrightarrow} Seq_k^{ti}$ Aleatorio	Dependiente del tiempo (td) $M_k \overset{\sigma_{td}}{\longrightarrow} Seq_k^{td} \\ t\big(r_{(j)}\big) \leq t\big(r_{(j+1)}\big); \forall r_{(j)} \in Seq_k^{td}$		
Tamaño	Según proporción (prop) $s_{prop}^{Te}(Seq_k) = q_{prop} \cdot Seq_k $ $s_{prop}^{Tr}(Seq_k) = \left(1 - q_{prop}\right) \cdot Seq_k $ $q_{prop} \in [0,1]$	Fijo (fix) $s_{fix}^{Te}(Seq_k) = q_{fix}$ $s_{fix}^{Tr}(Seq_k) = Seq_k - q_{fix}$	Basado en tiempo (time) $s_{time}^{Tr}(Seq_k) = \left \left\{ r_{(1)}, r_{(2)}, \dots, r_{(p_k)} \right\} \right $ $s_{time}^{Te}(Seq_k) = \left Seq_k \right - s_{time}^{Tr}(Seq_k)$ $t\left(r_{(p_k)} \right) \leq q_{time}$	

Evaluación contextual

Ejemplos

Evaluación contextual

Ejemplos

Índice

- Introducción
- Conceptos
- Contexto temporal
- Contexto secuencial
- Contexto social
- Contexto espacial
- Evaluación contextual
- Caso de uso: recomendación en Turismo
- Conclusión

Caso de uso: recomendación en Turismo

Introducción

- En esta tarea encontramos todos los contextos a la vez
 - Temporal: momento en el que se visita un punto de interés
 - Secuencial: orden en el que se visitan los puntos (o sus categorías)
 - Social: se suele viajar con gente
 - Espacial: la distancia entre los puntos es importante
- Se han propuesto métodos que los consideran tanto juntos como por separado

Caso de uso: recomendación en Turismo

- Se utilizan multitud de técnicas a partir de estos datos y los contextos mencionados:
 - Clustering de puntos: tanto espacial como espacio-temporal
 - Minería de patrones frecuentes y secuenciales
 - Factorización de matrices y de tensores
 - Redes de Markov
 - Redes Neuronales: RNNs, CNNs
 - Minería de trayectorias

• ..

Métodos

Caso de uso: recomendación en Turismo

- Algunos métodos basados en trayectorias permiten combinar inteligentemente varios contextos
- Lo primero: extraer trayectorias o secuencias a partir de los datos

Métodos: trayectorias

Caso de uso: recomendación en Turismo

Métodos: trayectorias

Explotar trayectorias:

Para encontrar trayectorias similares: usando funciones de

similitud entre trayectorias

Similitudes Euclídea vs DTW (Dynamic Time Warping)

Caso de uso: recomendación en Turismo

Métodos: trayectorias

Explotar trayectorias:

 Para encontrar usuarios similares: usando kNN con funciones de similitud entre trayectorias o métodos de patrones de co-movimiento

Caso de uso: recomendación en Turismo

Métodos: reranking

• Es posible aprovechar los métodos existentes a partir de varias técnicas de post-filtrado

$$f_{seq}^{lcs} \quad \mathbf{M}_4 \to \mathbf{P}_5 \to \mathbf{R}_3 \to \mathbf{P}_8 \quad f_{seq}^{dist} \quad \mathbf{M}_4 \to \mathbf{P}_5 \to \mathbf{P}_8 \to \mathbf{R}_3 \to \mathbf{M}_2 \to \mathbf{R}_6$$

$$f_{seq}^{stree} \quad \mathbf{M}_4 \to \mathbf{P}_5 \to \mathbf{R}_3 \qquad \qquad f_{seq}^{rec} \quad \mathbf{M}_4 \to \mathbf{R}_6 \to \mathbf{P}_5 \to \mathbf{R}_3 \to \mathbf{M}_2 \to \mathbf{P}_8$$

$$f_{seq}^{oracle} \quad M_4 \to P_5 \to M_2$$

• Es posible aprovechar los métodos existentes a partir de varias técnicas de post-filtrado

Abbr.

Description

Caso de uso: recomendación en Turismo

Independent	Random	f_{seq}^{rnd}	Items reranked randomly
	Recommender-based	f_{seq}^{rec}	Items reranked according to the score provided by a recommender
Dependent on the previous item	Distance	f_{seq}^{dist}	Next selected item is the closest one to the previous item in the sequence
	Feature-based Markov Chain	f_{seq}^{feat}	Next selected item based on the category that maximizes the transition probability with re- spect to the category of previous item
	Item-based Markov Chain	f_{seq}^{item}	Next item is selected by maximizing the tran- sition probability with respect to previous item
Dependent on the whole sequence	LCS-based	f_{seq}^{lcs}	Items reranked by maximizing the LCS be- tween the categories of the recommended items and the user profile
	Suffix tree	fstree fseq	Items reranked by searching the potential sequence as a substring in the suffix tree built based on the item categories in user profile
	Oracle	f_{seq}^{oracle}	Reranked items following the same order as in the test set

Métodos: reranking

Name

Family

Índice

- Introducción
- Conceptos
- Contexto temporal
- Contexto secuencial
- Contexto social
- Contexto espacial
- Evaluación contextual
- Caso de uso: recomendación en Turismo
- Conclusión
 - Resumen
 - Retos

Conclusión

- El contexto en recomendación es una información muy útil que conviene explotar
- Hay muchas formas (técnicas) para hacerlo
 - Pero hay que saber cuándo
 - Y según el dominio, algunos contextos son más útiles que otros
 - También cambia cómo se captura el contexto
- En general, suelen dar mejores resultados
 - Aunque hay que alcanzar un compromiso junto con la cantidad de datos y la eficiencia esperada

Resumen

- Datos contextuales, multidimensionales
- Alta dispersión
 - Al definir varios contextos posibles, disponemos de menos datos para aprender
- Identificar qué contextos son relevantes
 - Preguntando al usuario o de manera automática [Odić et al 2012]
- Identificar en qué momento hay que aplicar recomendación contextual
- Recomendación de contextos
 - Junto con la lista de ítems, se mostraría el o los contextos en el que serían más útiles

Conclusión

Retos

Sistemas de recomendación basados en contexto y secuencias

Alejandro Bellogín

Universidad Autónoma de Madrid

