UNIT3

DATA PRE-PROCESSING - Part 1/4

DIMENSIONALITY REDUCTION - The What and Why?

Dimensionality Reduction!

IRIS dataset

Iris Versicolor

Iris Setosa

Iris Virginica

What is Dimensionality??

	Mouse	Mouse	Mouse	Mouse	Mouse	Mouse
	1	2	3	4	5	6
Gene 1	10	11	8	3	2	1

Even though it's a simple graph, it shows us that mice 1, 2 and 3 are more similar to each other than they are to mice 4, 5 6.

Data Values Plotted in 1 Dimension

Data Values Plotted in 2 Dimension

Data Values Plotted in 3 Dimensions

	Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6
Gene 1	10	11	8	3	2	1
Gene 2	6	4	5	3	2.8	1
Gene 3	12	9	10	2.5	1.3	2
Gene 4	5	7	6	2	4	7

If we measured 4 genes, however, we can no longer plot the data - 4 genes require 4 dimensions.

Beyond 3D Human Capability to do Data Visualization is NIL!!!

Large Table

Y1 Y2 Y3 Y4 Y5

Χī	X2	X3	X 4	X5
*	*	*	*	*
*	*	*	*	*
*	*	*	*	*
*	*	*	*	*
*	*	*	*	*
*	*	*	*	*
*	*	*	*	*
*	*	*	*	*
*	*	*	*	*
*	*	*	*	*
*	*	*	*	*
*	*	*	*	*

- 2. Which Variable is most useful for clustering the data correctly?
 - **3.** PCA can help us determine how accurate the 2D graph is.

Reducing a 2-D graph to a 1-D graph

Reducing a 2-D graph to a 1-D graph

This way is bad because it ignores the useful information that Gene Y provides...

Projecting the genes onto the Y-axis (i.e. ignoring Gene X) isn't any better

Solutions?

- **1. PCA** Principal Component Analysis (Un-Supervised Technique)
- 2. LDA Linear Discriminant Analysis (Supervised Technique)

NOTE: Neither PCA nor PDA are "Machine Learning Algorithms". They are used much before ML Algorithms comes into effect - in the Data Pre-Processing Stage. Both are used for Dimensionality Reduction.

SOURCES:

- 1. Stat Quest: https://www.youtube.com/watch?v=FqakZw6K1QQ
- 2. IRIS Dataset: https://www.youtube.com/watch?v=S8YSqrzqERI