

Lecture 10: Resolution, friends + SAT

Barnaby Martin

barnaby.d.martin@durham.ac.uk

A search algorithm

- Algorithm A(F)
- outputs sat or unsat
- Pseudocode:

outputs
$$sat$$
 or $unsat$

Pseudocode:

if $var(F) = \emptyset$ then

if $F = \emptyset$ then exit(sat).

else exit(unsat). /* $F = \{\Box\}$ where \Box is empty clause */

else choose $x \in var(F)$,

/* x is the branching variable */

if $A(F[x = 0]) = sat$ then exit(sat).

else exit(unsat).

A(a,b,c)

ひんりへ(ラ りつく

DPLL

- Algorithm A is the foundation of the Davis-Putnam-Logmann-Loveland (DPLL) algorithm.
- Essentially, DPLL is algorithm A plus some data reduction rules.
- Complete state-of-the-art SAT solvers are based on DPLL.
- Most complete AR solvers use an inference system.
- For propositional logic, it's usually a variant of resolution.

Resolution Rule

- Let C and D be two clauses, and let $x \in C$ and $\overline{x} \in D$.
- The resolution rule allows us to derive from C and D the clause $(C \setminus \{x\}) \cup (D \setminus \{\overline{x}\})$.
- As a figure:

$$\frac{C}{(C\setminus\{x\})\cup(D\setminus\{\overline{x}\})} : \frac{C}{Q \vee C}$$

- $(C \setminus \{x\}) \cup (D \setminus \{\overline{x}\})$ is a resolvent of C and D wrt literal x.
- Example:

$$\frac{\{x,y,\overline{z}\}\quad \{v,\overline{y},\overline{z}\}}{\{v,x,\overline{z}\}}$$

Resolution Derivations

- A resolution derivation from a clause-set F is a sequence of clauses C_1, \ldots, C_s such that, for each i,
 - $C_i \in F$, i.e. C_i is an axiom, or
 - C_i is the resolvent of clauses C_j , and C_k for $1 \le j, k < i$, C_i is a derived clause
- A clause C can be derived by resolution from F if there is a resolution derivation D from F that containing C; written

$$F \vdash_R C$$

Example a, b, a, b, a, b, a, b, c, b, c

$$\blacksquare F = \{\{x, y, z\}, \{x, \overline{z}\}, \{\overline{x}, y\}, \{\overline{x}, \overline{y}, \overline{z}\}, \{\overline{y}, z\}\}.$$

A resolution derivation from F:

1.
$$C_1 = \{x, y, z\}$$
 (axiom)

2.
$$C_2 = \{x, \overline{z}\}$$
 (axiom)

3.
$$C_3 = \{x, y\}$$
 (from C_1 and C_2)

4.
$$C_4 = \{\overline{x}, y\}$$
 (axiom)

5.
$$C_5 = \{y\}$$
 (from C_3 and C_4)

6.
$$C_6 = \{\overline{x}, \overline{y}, \overline{z}\}$$
 (axiom)

7.
$$C_7 = \{\overline{y}, \overline{z}\}$$
 (from C_6 and C_2)

8.
$$C_8 = \{\overline{y}, z\}$$
 (axiom)

9.
$$C_9 = \{\overline{y}\}$$
 (from C_7 and C_8)

10.
$$C_{10} = \square$$
 (from C_5 and C_9)

■ Hence
$$F \vdash_B \square$$
.

{C1, C2] } [(3)

[[x,y,=3,[x,=3]] } [x,y]

Refutations

A resolution refutation = resolution derivation containing □

Theorem

A clause-set F is unsatisfiable iff $F \vdash_R \Box$

In words, resolution is

- sound, i.e. it can refute only unsat clause-sets, and
- refutationally complete, i.e. any unsat clause-set can be

Resolution Trees

Tree-like resolution: If every derived clause in a resolution derivation is used at most once for obtaining a clause below.

Resolution trees and DAGs

Fact

Tree-like resolution is sound and refutationally complete.

- If subderivations are shared, a resolution derivation can be represented by a DAG.
- dag-like resolution = general resolution.
- dag-like resolution derivations can be significantly shorter than tree-like resolution derivations.
- Algorithm A for satisfiability can be modified so that it outputs
 - a satisfying truth assignment if the input F is sat, and
 - a tree-like resolution refutation if input F is unsat.
- In both cases it is easy to verify the certificate.

Long and short resolution refutations

- Let *F* be a clause-set and *R* a resolution refutation of *F*.
- We say the resolution refutation *R* is *short* if the number of clauses in *R* is polynomial in the number of clauses of *F*.
- Otherwise we call the resolution refutation long.
- Is there a family of unsatisfiable clause-sets that require long resolution refutations?
- If every unsatisfiable clause-set had a short resolution refutation, then NP = coNP would follow (which is believed not to be the case).

Pigeonhole clause-sets

- Let PH_n be the clause-set that represents the (untrue) statement that n+1 items can be fitted into n drawers such that each drawer contains at most one item.
- **PH**_n contains variables $x_{i,j}$ for $1 \le i \le n+1$ and $1 \le j \le n$; we think of $x_{i,j}$ as true if item i is in drawer j.
- PH_n contains two groups of clauses:
 - a clause $\{x_{i,1},\ldots,x_{i,n}\}$ for each $1 \le i \le n+1$ "item i is in one of the n drawers";
 - a clause $\{\overline{x_{i,j}}, \overline{x_{i',j}}\}$ for each $1 \le i < i' \le n+1$ and $1 \le j \le n$ "in each drawer there is at most one item".
- Observe that \mathbf{PH}_n is unsatisfiable.

Haken's Theorem

Theorem (Haken, 1985)

Pigeonhole clause-set require long resolution refutations.

A shortest resolution refutation of PH_n contains $2^{\Omega(n)}$ clauses.

Later, Chávtal and Szemerédi have shown that randomly chosen unsatisfiable *k*-SAT clause-sets require long resolution refutations.

Linear Resolution

- A resolution derivation linear if it has the following form: $C_1, D_1, C_2, D_2, \dots, C_{n-1}, D_{n-1}, C_n$ where
 - C_1 is an axiom, and each D_i is either an axiom or C_j for some j < i.
 - C_{i+1} is a resolvent of C_i and D_i , for $1 \le i \le n-1$.
- The clause C_1 is the *base clause*, the clauses D_i are called *side clauses*.

Theorem

Linear resolution is refutationally complete.

- A linear resolution derivation is called an input resolution derivation if all side clauses are axioms.
- Note that input resolution derivations are always tree-like but linear resolution derivations are not always tree-like.

Example

- $\blacksquare F = \{\{x, y, z\}, \{x, \overline{z}\}, \{\overline{x}, y\}, \{\overline{x}, \overline{y}, \overline{z}\}, \{\overline{y}, z\}\}.$
- A linear resolution refutation of F
 - 1. $C_1 = \{x, y, z\}$ (axiom)
 - 2. $D_1 = \{x, \overline{z}\}$ (axiom)
 - 3. $C_2 = \{x, y\}$ (from C_1 and D_1)
 - 4. $D_2 = \{\overline{x}, y\}$ (axiom)
 - 5. $C_3 = \{y\}$ (from C_2 and D_2)
 - 6. $D_3 = \{\overline{x}, \overline{y}, \overline{z}\}$ (axiom)
 - 7. $C_4 = \{\overline{x}, \overline{z}\}$ (from C_3 and D_3)
 - 8. $D_4 = \{x, \overline{z}\}$ (axiom)
 - 9. $C_5 = \{\overline{z}\}$ (from C_4 and D_4)
 - 10. $D_5 = \{\overline{y}, z\}$ (axiom)
 - 11. $C_6 = \{\overline{y}\}$ (from C_5 and D_5)
 - 12. $D_6 = \{y\} (= C_3)$
 - 13. $C_7 = \square$ (from C_6 and D_6)
- Is this an input resolution derivation?

Incompleteness of Input Resolution

- Let $F = \{\{x,y\}, \{\overline{x},y\}, \{x,\overline{y}\}, \{\overline{x},\overline{y}\}\}.$
- The following is a linear resolution refutation of F. $C_1 = \{x, y\}, D_1 = \{x, \overline{y}\}, C_2 = \{x\}, D_2 = \{\overline{x}, y\}, C_3 = \{y\}, D_3 = \{\overline{x}, \overline{y}\} C_4 = \{\overline{x}\}, D_4 = C_2 = \{x\}, C_5 = \Box$.
- However, F has no input resolution refutation! (Why?)

Theorem

Input resolution is not refutationally complete.

We shall see that input resolution is refutationally complete if all input clauses have a special property: they are Horn clauses.

Horn clauses and unit resolution

- A clause is a Horn clause if it contains at most one positive literal.
- It is called definite Horn clause if it contains exactly one positive literal.
- Examples: $\{\overline{x}, \overline{z}, y\}$, $\{\overline{x}, \overline{z}, \overline{y}\}$, $\{x\}$, $\{\overline{x}\}$, \square are Horn clauses. The first and third clauses are definite Horn.
- Rules and facts can be directly stated as Horn clauses.
- A clause-set is called (definite) Horn if it contains only (definite) Horn clauses.
- Unit clause = a clause with one literal
- Unit resolution = every step involves a unit clause

Theorem

A Horn clause-set F is unsatisfiable if and only if $F \vdash_{UR} \Box$.

SLD Resolution

SLD Resolution is a special type of linear resolution, it is defined for Horn clauses only. SLD stands for **linear** resolution with **selection** function for **definite** clauses.

An input resolution derivation is an SLD resolution derivation if:

- the base clause is a negative clause, i.e., all its literals are negative.
- Each side clause is a *definite Horn clause*, i.e., it contains exactly one positive literal.

Theorem

SLD resolution is refutationally complete for Horn clause-sets.

Logic Programming

- The program consists of an ordered list of definite horn clauses.
- Each clause is given as an ordered set of literals, with the positive literal first.

```
E.g., the clause \{x, \overline{y}, \overline{z}\} is given as x \le y and y \in \mathbb{Z}. (or y \in \mathbb{Z} in PROLOG syntax)
```

- The goal clause is given with a question mark, e.g.,
 ? x, v.
- The interpreter/compiler searches for an SDL resolution refutation with the goal clause as base clause.
- Side clauses are tried according to the ordering they are given in.

Example

- From Monty Python's Holy Grail: A witch is a female who burns. Witches burn because they're made of wood. Wood floats. What else floats on water? A duck; if something has the same weight as a duck it must float. A duck and scales are fetched. The girl and the duck balance perfectly. "It's a fair cop."
- This reasoning can be represented by the following logic program.

```
witch <= burns and female.
burns <= wooden.
wooden <= floats.
floats <= sameweightDuck.
female.
sameweightDuck.
? witch.</pre>
```

Example cont'd

The interpreter produces the following SLD resolution refutation.

```
1. C_1 = \{\overline{\text{witch}}\}\
 2. D_1 = \{\text{witch}, \overline{\text{burns}}, \overline{\text{female}}\}
 3. C_2 = \{\overline{\text{burns}}, \overline{\text{female}}\}
 4. D_2 = \{\text{burns}, \overline{\text{wooden}}\}
 5. C_3 = \{\overline{\text{wooden}}, \overline{\text{female}}\}
  6. D_3 = \{\text{wooden}, \overline{\text{floats}}\}
 7. C_4 = \{\overline{\text{floats}}, \overline{\text{female}}\}
 8. D_4 = \{\text{floats}, \overline{\text{sameweightDuck}}\}
 9. C_5 = \{\overline{\text{sameweightDuck}}, \overline{\text{female}}\}
10. D_5 = \{\text{sameweightDuck}\}
11. C_6 = \{ female \}
12. D_6 = \{ \text{female} \}
13. C_7 = \Box
```

Recall our tree resolution of

$$F := (x \vee y) \wedge (\neg y \vee z) \wedge (\neg x \vee y) \wedge (\neg z).$$

It may be inverted to provide a boolean search tree for $F := (x \lor y) \land (\neg y \lor z) \land (\neg x \lor y) \land (\neg z)$.

The *least number principle* **LNP** $_n$ is a tautology asserting that any strict (total) n-order has a minimal element. Its negation may be given in CNF by the following clauses:

$$\begin{array}{ll}
\neg x_{i,i} & i \in [n] \\
x_{i,j} \lor x_{j,i} & i \neq j \in [n] \\
\neg x_{i,j} \lor \neg x_{j,k} \lor x_{i,k} & i,j,k \in [n] \\
\bigvee_{i=1}^{n} x_{i,j} & j \in [n]
\end{array}$$

LNP_n admits polynomial-sized refutations in resolution. Let $k \in [n]$ and $i \in [k]$ and move between instances of:

$$X_{i,1} \wedge \ldots \wedge X_{i,i-1} \wedge X_{i,i+1} \wedge \ldots \wedge X_{i,k}$$