京都大学 2024 前期理系

各問題の内容と感想

問題番号	内容	感想	なかけん難易度
1	??	??	
2	不定方程式	変形だけでなく、最小値を求める意識も必要だった。	***
3	??	??	
4	??	??	
5	??	??	

1 剰余環における冪

\mathbb{Z}_3 の表

<u> </u>							
x	0	1	2				
x^2	0	1	1				

\mathbb{Z}_5 の表

x	0	1	2	3	4
x^2	0	1	4	4	1
x^3	0	1	3	2	4
x^4	0	1	1	1	1

ℤ7 の表

<u>L7 VX</u>								
x	0	1	2	3	4	5	6	
x^2	0	1	4	2	2	4	1	
x^3	0	1	1	6	1	6	6	
x^4	0	1	2	4	4	2	1	
x^5	0	1	4	5	2	3	6	
x^6	0	1	1	1	1	1	1	

\mathbb{Z}_4 の表

<u>24</u> 0/12							
x	0	1	2	3			
x^2	0	1	0	1			
x^3	0	1	0	3			
x^4	0	1	0	1			

ℤ6の表

x	0	1	2	3	4	5
x^2	0	1	4	3	4	1
x^3	0	1	2	3	4	5
x^4	0	1	4	3	4	1
x^5	0	1	2	3	4	5

問2

正整数 x, y, z に対して、 $N = 9z^2 = x^6 + y^4$ と定める。N の最小値を求めよう。

考え方・疑問点

- 剰余を使って、条件を絞り込むしかなさそう。
- ●全ての整数解を求めることは難しそう。Siegel の定理 (整数解) や Mordell の定理 (有理点) から、整数解は有限個しかないとわかるのか?
- 途中で出てくる式 $X^2=9Y^2+Z^2$ は、Pell 方程式などを使って解けるか? 二次不定方程式の一般論が気になるところ

解き方

(1) $9z^2 = x^6 + y^4$ を \mathbb{Z}_3 で考えると

$$0 = \overline{x}^2 + \overline{y}^2$$
 in \mathbb{Z}_3

となるけど、 $\overline{x} = 0$ or 1 なので、 $\overline{x} = \overline{y} = 0$ がわかる。 そこで、 $x = 3x_1, y = 3y_1$ とおいて、元の式に代入すると

$$9z^{2} = (3x_{1})^{6} + (3y_{1})^{4}$$
$$z^{2} = 3^{4}x_{1}^{6} + 3^{2}y_{1}^{4}$$

右辺は、3で割り切れるので、zも3で割り切れる。そこで、 $z=3z_1$ とおく。

$$(3z_1)^2 = 3^4 x_1^6 + 3^2 y_1^4$$
$$z_1^2 = 9x_1^6 + y_1^4 \tag{1}$$

変数の関係は $(x,y,z)=3(x_1,y_1,z_1)$ となる。 $z_1^2\geq 9+1=10$ で、 $z_1\geq 4$ となる。 z_1 が最小となれば、 $N=(3z_1)^2$ も最小となる。 $z_1=4$ としてみると、式 (1) は

$$16 = 9x_1^6 + y_1^4$$

となるが、 $x_1=1$ となるしかなくて、 $y_1^4=7$ となるが、これは矛盾。 次に、 $z_1=5$ とすると

$$25 = 9x_1^6 + y_1^4$$

 $x_1=1$ となるしかなくて、 $y_1{}^4=16$ となり、 $y_1=2$ となる。 したがって、N が最小になるのは、(x,y,z)=3(1,2,5)=(3,6,15) のときで

$$N = 9z^2 = 9 \cdot 15^2 = 45^2 = 2025$$

未分類、どこかで発見した問題

駿台の整数完全攻略の見本画像より

10 進法の数 $\frac{12}{13}$ を 3 進数で表したとき、小数第 100 位の数を求めたい

解き方

一 3 進数で表すと、 $\frac{12}{13}=(0.\dot{2}\dot{2}\dot{0}220220\cdots)_{(3)}$ となるため、小数は周期的に変化する。 小数第 3k 位 $(k=1,2,3,\cdots)$ は 0 となっているので、小数点第 99 位の数は 0。そして、小数点第 100 位は、2 となる。

東大実践模試? の動画

- (1) n が偶数であって、n! は n^2 の倍数となるものを求めると、n > 6。
- (1)' n が奇数ならば、n! は $(n-1)^2$ の倍数となる。
- $(2) (n+1)^k = n! + 1$ を満たす (n,k) の組をすべて求めたい。

解き方

(2) n! < n! + 1 < (n+1)! であるから、仮定の方程式より $n! < (n+1)^k < (n+1)!$ となる。ここで、n と k の大小で場合分けして考える。

 $k \ge n$ だと、 $(n+1)^k > (n+1)!$ となり矛盾してしまう。よって、k < n は分かる。 $n! = (n+1)^k - 1 \equiv nk \mod n^2$ だけども、n が 6 以上だと $n! \equiv 0 \mod n^2$ であるから、n < 6 でないといけない。

n	1	2	3	4	5
n! + 1	2	3	7	$25 = 5^2$	121
k	1	1	_	2	_

(n,k)=(1,1),(2,1),(4,2) が答えになる。

東大過去問? の動画の改良

- (1) 自然数 a,b,c で、任意の 2 つの和は残りの一つで割り切れるものをすべて求めたい。
- (2) 自然数 a_1, \dots, a_n で、任意の n-1 個の和が、残りの一つで割り切れるものを全て求めたい。

解き方