T-tests

Data Science Immersive

Examples

- Chemistry do inputs from two different barley fields produce different yields?
- Astrophysics do star systems with near-orbiting gas giants have hotter stars?
- Economics demography, surveys, etc.
- Medicine BMI vs. Hypertension, etc.
- Business which ad is more effective given engagement?

Problem

Systolic Blood Pressure Before and After Treatment

Problem

Hypothesis

Null Hypothesis / Alternative Hypothesis Structure

- Error
 - I: False positive rate
 - II: False negative rate

$$H_0: \mu_1 - \mu_2 = 0$$

$$H_1: \mu_1 - \mu_2 \neq 0$$

- Choosing the right error rate
 - Alpha, α
 - Sigma, σ
 - Depends on field of study, $0.2 \le \alpha \le 0.00001$

P-Values

What's a t-test

What's different?

- Sometimes the population standard deviation is irrelevant, and sometimes it's unknown. (we'll get to the different types of t-test later)
- Sometimes a sample is too small to be confident that it's an accurate representation of reality

A t-test is like a modified z-test:

- Penalize for small sample size "degrees of freedom"
- Use sample std. dev. s to estimate population σ

Assumptions

- Normally distributed (and similarly distributed) samples
- Controlled for selection bias

What's a t-test

The z-distribution is skewed to fit the level of uncertainty of a t-test. the curve approaches z curve as df -> ∞

t curve and z curve

Both the standard normal curve N(0,1) (the z distribution), and all t(k) distributions are density curves, symmetric about a mean of 0, but t distributions have more probability in the tails.

As the sample size increases, this decreases and the t distribution more closely approximates the z distribution. By n = 1000 they are virtually indistinguishable from one another.

What's going on?

Unknown o

Z statistic

$$z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

$$t = \frac{\overline{X} - \mu}{s / \sqrt{n}}$$

$$f(z) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{z^2}{2}}$$

$$f(t) = rac{\Gamma(rac{
u+1}{2})}{\sqrt{
u\pi}\,\Gamma(rac{
u}{2})}igg(1+rac{t^2}{
u}igg)^{-rac{
u+1}{2}}$$

What this really comes down to

$$\lim_{n\to\infty} \frac{n}{n-1} = 1$$

Tables

Numbers in each row of the table are values on a t-distribution with (df) degrees of freedom for selected right-tail (greater-than) probabilities (p).

df/p	0.40	0.25	0.10	0.05	0.025	0.01	0.005	0.0005
1	0.324920	1.000000	3.077684	6.313752	12.70620	31.82052	63.65674	636.6192
2	0.288675	0.816497	1.885618	2.919986	4.30265	6.96456	9.92484	31.5991
3	0.276671	0.764892	1.637744	2.353363	3.18245	4.54070	5.84091	12.9240
4	0.270722	0.740697	1.533206	2.131847	2.77645	3.74695	4.60409	8.6103
5	0.267181	0.726687	1.475884	2.015048	2.57058	3.36493	4.03214	6.8688
6	0.264835	0.717558	1.439756	1.943180	2.44691	3.14267	3.70743	5.9588
7	0.263167	0.711142	1.414924	1.894579	2.36462	2.99795	3.49948	5.4079
8	0.261921	0.706387	1.396815	1.859548	2.30600	2.89646	3.35539	5.0413
9	0.260955	0.702722	1.383029	1.833113	2.26216	2.82144	3.24984	4.7809
10	0.260185	0.699812	1.372184	1.812461	2.22814	2.76377	3.16927	4.5869
11	0.259556	0.697445	1.363430	1.795885	2.20099	2.71808	3.10581	4.4370
12	0.259033	0.695483	1.356217	1.782288	2.17881	2.68100	3.05454	43178
13	0.258591	0.693829	1.350171	1.770933	2.16037	2.65031	3.01228	4.2208
14	0.258213	0.692417	1.345030	1.761310	2.14479	2.62449	2.97684	4.1405
15	0.257885	0.691197	1.340606	1.753050	2.13145	2.60248	2.94671	4.0728
16	0.257500	0.600133	1 226757	1 7/15/20/	2 11001	2 50240	2 92079	4.0150

3 types of t-test

- Do we have a good sample?
 - Single sample
 - The One Sample *t* Test determines whether the sample mean is statistically different from a known or hypothesized population mean. (sample vs. population)
 - Note this is the only one where we need the population mean

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$$

- Has our sample changed?
 - Paired data
 - o Two samples of related data points (same person, same wheat field, etc.)

$$t = \frac{m}{s/\sqrt{n}}$$

- Are two different samples different or alike?
 - Independent samples
 - Two samples of unrelated data points (not before/after, etc.) (different people, different wheat fields)

$$t = \frac{m_A - m_B}{\sqrt{\frac{S^2}{n_A} + \frac{S^2}{n_B}}} \qquad S^2 = \frac{\sum (x - m_A)^2 + \sum (x - m_B)^2}{n_A + n_B - 2}$$

Practice

shutterstock.com - 149523425

Effect Size

Interpreting Results

Reject or fail to reject null hypothesis

Language is important!

- Don't throw out failed experiments
 - This methodology, with this data, does not produce significant results
 - More data
 - More time
 - More details

Hypotheses

Null hypothesis / hypothesis structure & formulation

$$H_o$$
: $\mu_1 = \mu_2$

Why do w

Difference

p-values

ge!

Quick Recap

T-tests compare means. Here's what we need:

- Mean µ
- Standard deviation σ
- Sample size n
- Distribution
- Z score

Error

- Choosing the appropriate error rate
 - Alpha, α
 - Sigma, σ
- Depends on field of study
 - \circ 0.2 $\leq \alpha \leq 0.00001$

Quick Maths

Normal distribution:

$$y = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Z score:

$$z = \frac{(x - \mu)}{\sigma}$$

Substituting:

$$y = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{z^2}{2}}$$

Integrating the normal distribution gets you something called the "error function" which is usually abbreviated as erf().

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt. \qquad Y = \frac{1}{2\sigma} \operatorname{erf}(\frac{z}{\sqrt{2}})$$

Quick Maths

$$f(t) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi} \Gamma(\frac{\nu}{2})} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}} \qquad f(z) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{z^2}{2}}$$

$$\Gamma(n) = (n-1)!$$

$$\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx$$

$$\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

$$= \frac{2}{\sqrt{\pi}} \int_0^x (1 - t^2 + \frac{t^4}{2!} - \frac{t^6}{3!} + \cdots) dt$$

$$= \frac{2}{\sqrt{\pi}} \left[t - \frac{t^3}{3} + \frac{t^5}{5 \cdot 2!} - \frac{t^7}{7 \cdot 3!} + \cdots\right]_0^x$$

$$= \frac{2}{\sqrt{\pi}} \left(x - \frac{x^3}{3} + \frac{x^5}{5 \cdot 2!} - \frac{x^7}{7 \cdot 3!} + \cdots\right)$$

As $n \to \infty$, $f(t) \to f(z)$, $t \to z$, $u \to v$

Full Proof

Practice with t tests

Do one together (one sided)

Then practice (one sided)

Then give example that requires two sided

One-Tail vs. Two Tail

Page Name

Code Examples

shutterstock.com · 149523425