## University of Aegean

### DOCTORAL THESIS

## **Open-set Web Genres Identification**

Author:
Dimitrios A. PRITSOS

Supervisor:
Dr. Efstathios STAMATATOS

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy in the

September 8, 2019

#### UNIVERSITY OF AEGEAN

## **Abstract**

Doctor of Philosophy

#### **Open-set Web Genres Identification**

by Dimitrios A. PRITSOS

The Web's Contexts Genres computational identification is a subject where due to the advances of Machine Learning research and technologies, created a fruitful environment for rejuvenating the interest of its research. The Identification of the Genus of the texts is a ascent task assigned to the Natural Language Processing and Information Retrieval research, since they have been digitized. In an attempt resolve the ambiguity of the Genus-taxonomy of the texts, it has been distinguished to the Genre, Register, Domain, ... taxonomies. In contrast to the others, Genre-taxonomy is more closely related to the style and the purpose of the texts rather than their context.

Since the explosion of the World Wide Web (a.k.a The Web) and the tremendous rate of context daily generation redefined and also is perpendicular to their Topic-taxonomy was the main issue. However, the scaling raised for more sophisticated approaches to handle the size of the information and increase the relevance of a potential query. *Automated Web Genre Identification* can benefit all the advances of Computational Linguistics, Natural Language Processing and Information Retrieval by providing rich descriptions of the web documents, by narrowing the features, thus the vector, space for a Machine Learning algorithm to operate pattern recognition on texts and potentially help on building more sophisticated data-structure such as the *Ontology-Schemes*.

The contribution of this work on the field of Automated Web Genre Identification is mainly the establishment of a framework towards to its research as an open-set classification problem and the outcome to be valuable for realistic and practical applications. Particularly in this study the notion of the Noise is established, the proper evaluation methodology for AGI tasks has discovered. Most importantly two new machine learning algorithms has been build as an evolutionary step of their original versions. These algorithms are clearly showing that the feature selection and dimentionality reduction is closely tight to the model induction for the this task.

Finally, one will find the new avenues for improving the research on the field and understand the mechanics ruling the process of *genre taxonomy evolution* and its *characteristic temporal attribute*.

## **Contents**

Contents 1

s

## Chapter 1

## Introduction

#### 1.1 Text Mining

Text mining roughly means text analytics, i.e. the process where Linguistics and Machine Learning(ML) methods are used for extracting higher level information from texts. Higher level information is patterns, trends in the texts and clusters of the texts. Thus, Text mining is a super-category which includes several research domains related to text and context pattern recognition and regression. Typical text mining tasks include text taxonomy, categorization, clustering, entity extraction and word embedding (i.e. learning relations between words and entities).

The above tasks is merely some of ones the following sub-domains are operating:

- Information Retrieval (IR): where the texts are decomposed and special data structures are created for rapid identification of text for a requested query.
- *Natural Language Processing (NLP)*: such as Part of Speech tagging, Linguistic Analysis, Author Identification.
- Entity Identification / Ontology: to identify; people, organizations, place names, abbreviations, emails, phones, units etc.
- Faceted Search where several categories are extracted automatically from a corpus for easier search in a large text collections.
- Word Embedding where Distributional Models are created unambiguous encoding for
  the words (or other text terms). Then the words with similar meaning are encoded
  closer and the algebraic operator are returning rational results. As an example "power"
  is closer in encoding to the "strength" and "Greece" + "Athens" "France" = "Paris" is
  an vector algebraic operation which stands.
- Document clustering: forming sets of similar texts.
- Sentiment analysis: extracting information for the author of the text: sentiment, opinion, mood, and emotion.
- Quantitative text analysis: such as Stemming or grammatical relationships between words or Part-of-Speech (POS) recognition.
- Automated Genre Identification (AGI): Identification of the text's Genre and sometime equivalent to text's Register. That is the the automated identification of the Style and/or Purpose of th texts. News is a different text than Blog in respect of the genre, while Editorial is different than Article in respect of the register while both are considered as News in a Genre Taxonomy. The purpose of news articles is to inform people, written in informative style, whereas, the editorials is to express opinion written in argumentative style.

Text analysis involves IR, Word Embedding, Pattern Recognition, Tagging (e.g. POS tagging), Classification, Regression, Clustering and Visualization. The general goal is to turn Texts into Data structures for analysis by applying the affronted methods usually are meet in NLP and Statistical Analytics.

Text classification is a super-branch of the text-manning because the methods and the application is passing thought all the text mining domains aforementioned. It also has been widely studied in other than text mining domains such as the *database domain*. The problem of classification is defined as the assignment of a *k label* from a given set  $\{1,...,k\}$  of labels, to a Document  $d_i$  from a corpus  $D = \{d_i,...,d_N\}$  of N documents. In the *hard version* of the classification problem, a particular label is explicitly assigned to the instance. In the *soft version* of the classification problem, a probability value or a similarity/confidence score is assigned to the arbitrary document.

The above generic definition implies that the text classification is a closed-set classification problem where it is assumed that the prediction model induced by the D corpus when it is given as a training set - is trained for the whole possible document *label/cate-gories space*. However, this is high likely impossible for several practical application then the problem is becoming *open-set* and the label set is becoming  $\{1,...,k,\emptyset\}$  where  $\emptyset$  means none-of-the-k categories. Some examples of practical domain where text-mining is applied is News filtering/Organization, Document Organization, Opinion Mining and Email Spam Filtering (Aggarwal2012ASO).

This thesis is focused on the *Web Genre Identification* text mining domain which is a super-branch of the AGI described above because it is dealing with the Hypertexts which is practically the expansion of the traditional Document texts.

#### 1.2 Classifying Documents by Genre

Computational Genre Identification is the natural progress of the almost ancient process of categorizing the human intellectual creations on such an abstract taxonomy as their Genus. Artifacts such as paintings, music pieces and written texts are always a subject of research interest to be classified based on their from, style and communicative purpose other than their topic/content. Literature or poems for documents, impressionism or expressionism for paintings, blues or funky for music, are some examples of these artifacts' genres which are independent of their topic.

This thesis is focused on the Web Genre-taxonomy and more specifically based only on the web-document's textual information. The *Web Genre Identification (WGI)* is a superset of the AGI where the web-pages, i.e. the Hypertexts, are classified on a given genretaxonomy. This thesis is focusing on the WGI, yet the methods presented here can be applied on other text mining domain.

There is a great debate for defining the notion of genre in the linguistic studies. Additionally, the genre notion comes into conflict with other abstract categorizations of texts such as the *Register taxonomy* etc.. Despite the methodological differences the linguistic community concluded that the idiosyncrasy of the genre taxonomy is mutable and diverse (**coutinho2009describe**). This kind of idiosyncrasy is yielded to the genre taxonomy due to the spontaneous genesis of the genre classes. Since, genre classes are emerging or mutating when a communication process is taking place.

definition

**Definition 1** Genre is the genus of some arbitrary texts, which comprehensively describes their form, style and communicative purpose other than their content, where it emerges as a sociocentric interaction for accelerating the social communication when it comes to the description of the texts.

The ability to automatically recognize the genre of web documents can enhance modern IR systems by enabling genre-based grouping/filtering of search results or building intuitive hierarchies of web page collections combining topic and genre information (**Braslavski2007**; **Rosso2008**; **de2009genre**). Similarly, the modern NLP systems for author attribution, automated translation can be benefit by narrowing the feature space for an algorithm model induction. The recognition of web genre can also enhance the effectiveness of processing the content of web pages in information extraction applications. For example, given that a set of web pages has to be part-of-speech tagged, appropriate models can be applied to each web page according to their genre (**Nooralahzadeh2014**).

The Web Genre Identification (WGI) also can benefit a search engine which it can provide its users with the option to define complex queries (e.g., blogs about machine learning or eshops about sports equipment) as well as the option to navigate through results based on genre labels (e.g. social media pages, web shops, discussion forum, blogs, etc).

Focused crawling is the a very interesting application of WGI, where unlike general webcrawling, is the process of downloading only relevant web-pages of *particular topic, genre or query*. As a result valuable time is saved and resources, such as processing power, bandwidth and storage space. Focused crawling engines, i.e. Focused crawlers, are following several strategies and criteria in order to download only the desired pages. The difficulty on the downloading decision is to be made in advance, i.e. before the pages be downloaded (**privatam2013don URL**).

There also several applications and research domains where the (AGI) advances can directly benefit them. Such as *foreign language teaching*, *journalism history research* and *automated translation* where the genre-taxonomy is very important for locating the proper documents as a starting point for their work. These methods are based on the assumption where the structure and the position of the relative information in the texts, correlates with their genres (citation form Ashegis[55, 166, 151]).

Finally, text based genre identification is also a utility for video (e.g. movies, TV series, etc) classification in video/cinematographic genres using the text available such as the subtitles(lee2017text). Additionally, in *Author Profiling* cross-genre evaluation has been employed. That is, texts from a variate of different genres such as *Social Media, Blogs, Twitter and Hotel reviews* used for this task's (rangel2016overview).

## 1.3 Representation of Web Genres

In order to classify the web-pages on a genre taxonomy it is required to encode the raw web documents in to vectors where they are properly capturing the relevant to genre information. In addition, ideally the vectors should be dense and the defined n-manifold to be expanded for enabling the ML algorithms the classification task efficiently. A great amount of research on the document representation for the WGI and AGI tasks.

The web-documents can be considered a super-set of the document format types because it is expanding the Postscript<sup>1</sup> by introducing functionality and versatility because of the HTML and virtual infinite inter-connectivity because of the URL links.

Thus features that can be extracted from a web-pages are the following:

- 1. The Text of the web-page.
- 2. The HTML tags and DOM (Document Object Model) structure of the web-page.

<sup>&</sup>lt;sup>1</sup>Postscript is the digital format is used from the Desktop Publishing (e.g. PDF or PS formats). In this thesis is used as term in order to describe all the document traditional formats such as books, magazines, newspapers, in contrast to the web-documents. Moreover, the printed form or digital version of these traditional text formats has no effect, therefore, are considered to be the same.

3. The URL links and the graph is formed by the connection of the web-pages.

Cornering the URL there are two features than can be extracted. The URL it self as a string of characters which it can be analyzed into character/word n-grams or/and its *anchortext*. There are some studies where the URL has aided the classification performance. In other the URL alone was sufficient for predicting the genre of a web-page where the URL was leading into (Abramson and Aha, 2012; Asheghi, Markert, and Sharoff, 2014; Jebari, 2014; Priyatam et al., 2013; Zhu, Zhou, and Fung, 2011).

Alternatively, the structure of the graph which is formed by the URL linking of the web pages neighbouring pages can also be used. Usually, the URL linking is used for locating the web-pages that can contribute by amplifying the signals for the correct genre classification. Either using the *text* or the ambient web-graph's prior genre-tag knowledge of the neighbouring web-pages'. (Abramson and Aha, 2012; Asheghi, Markert, and Sharoff, 2014; Jebari, 2014; Priyatam et al., 2013; Zhu, Zhou, and Fung, 2011).

The HTML tags can be treated as raw text where the frequency of the *html-tags* measured, with some potential heuristics. However, the HTML W3C suggested web-page composition paradigm is changing and constantly violated, heuristics can only contribute but in a few practical cases. A more sophisticated and sensible approach can be the analysis of the DOM structure, where the format of the text can be captured. As an example the *e-shop web-pages* are different from the *academic web-pages*. This resemble the difference in typographic format of a *printed magazine* and a *printed news paper*. However, most likely several heuristics are needed for identifying these structures, because of the HTML composition paradigm "violation" (mehler2011integrating; mehler2011integrating).

All the research work on WGI has focused mostly on the features which they can be extracted from the *raw text* of the HTML, cleaned from the html-tags. There are five general categories of text features, the *term-based frequency counts*, the *superficial text-based counts*, the *morpho-syntactic features* and the *distributional features*. Moreover, it has been shown that same domain specific words can contribute to the WGI task, an other heuristic (mason2009classifying; sharoff2010web; Sharroff2010; Nooralahzadeh2014; onan2018ensemble).

The text based features for the WGI that thoroughly tested among all were the following:

- 1. Word N-Grams (WNG) and Character N-grams (CNG), Part-of-Speech N-grams.
- 2. The length (in characters) of the sentences, paragraphs, and texts.
- 3. The Max, Min and Ratios frequencies of the WNG and/or CNG.

The Term Frequency (TF) and Term Frequency Inverted Document Frequency (TF-IDF) is the usual document representation. However, there are some interesting features have been used for the WGI such as the Readability Assessment Features, the TF-IGF, the *fuzzy extension of TF-IDF* and the *Most Discriminative Words Frequency*. The TF-IGF is the acronym of *Term Frequency - Inverted Genre Frequency* which similarly to the TF-IDF the regularization was based on the respective frequencies of the a genre and not on the whole corpus.

The *Distributional Features* is the state-of-the-art document representation modeling for the text mining and also for the WGI task. This is, also, one of the essential contributions of this thesis. The process of modeling the distributional features is including the encoding of the corpus-vocabulary words (or more generally terms) and the document's words distributions together. The outcome of this process are the *Word Emmbedings* or the *Documents encoding* where the words are note not the collection of frequencies anymore. They are vectors with encoded ontological and syntactical information. The Document encoding similarly is including these information compressed into a vector and these document vectors can algebraically compared.

#### 1.4 Closed-set vs. Open-set Classification

Most previous studies in WGI consider the case where all web pages should belong to a predefined taxonomy of genres (Lim2005; santini2007automatic; kanaris2009learning; jebari2014pure\_URL). However, this naive assumption is not appropriate for most applications related with WGI.

The text genre in general and web genre in particular, are evolving, seize to exist or new are emerging. In fact this temporal characteristic is even more vivid for the web genres. In addition to this, the scale of the Web is making intractable, the effort of mapping all the possible genres of the web for a given time.

In that sense the Web-pages *Noise* is introduced and well defined in this study. Noise web-pages are considered also when multiple genres co-exist (**santini2011cross**; **levering2008using**). The vast majority of previous work in WGI avoid to examine the problems arising from the presence of noise and as a result it is not possible to estimate the effectiveness of most existing WGI approaches in realistic conditions.

To handle noise in WGI there are two options. First, to adopt the closed-set classification setup having one predefined category devoted to noise. Since this category would comprise all web pages not belonging to the known genre labels, it would not be homogeneous. Moreover, this noise class would be much more greater with respect to the other genres causing class imbalance problems. The second option is to adopt the open-set classification setting where it is possible for some web pages not to be classified into any of the predefined genre categories (**pritsos2013open**). This setup avoids the problem of class imbalance caused by numerous noisy pages and also avoids the problem of handling a diverse and highly heterogeneous class. On the other hand, open-set classification requires strong generalization with respect to the closed-set setup (**scheirer2013toward**).

definition

**Definition 2** Close-set Classification describes a scenario with the assumption that the training and testing data are drawn from the same label space and the same distribution. The "traditional" classification/identification assumes a static environment where an arbitrary sample is drown from one of the distribution of the training set. There are several variation where soft-classification is also considered closed-set where an algorithm can return the probability score for every class from the trained label space(**geng2018recent**).

definition

**Definition 3** Open-set Identification describes a scenario where samples of unseen, in training phase, classes appear in testing phase. Then the classifiers classify accurately the the known classes and also effectively deal with the unknown ones. Therefore, the classifiers need to have a rejection option when an arbitrary sample is from an unknown class (geng2018recent).

Although, the rejection option is emphasized in the definition of the open-set identification, the algorithms with rejection option are not open-set by default. Particularly there are several scenarios such as in (**onan2018ensemble**) where this option is used for rejecting the outages for improving the precision score. However, the framework remains as closed-set.

Open-set classification framework is closely related to the *Novelty Detection* and the *One-class Classification* where it is assumed that only positive examples are available for the surprised model induction methods. These methods then have been adapted to this problem and there are several examples such as One-Class SVM, One-Class Neural Networks... etc. It might sound similar but it is not a binary classification setup for training these algorithms due to the lack of the negative examples. In respect of WGI this is the realistic case scenario where one might be able to collect a good sample (however not complete due to the scaling

of the Web) for the positive samples but for the negative samples is virtually impossible since not even the temporal genre-taxonomy pallet is not available.

As an even more complicated task the open-set classification usually (use Open set Classification Survey reference HERE) assumes a multi-class classification problem where a few genres might be available to the *Learner* and again the total number of the negative samples are not available. Then several issues rise and the most important of all is to constraint the *Open-Space Risk*.

The Open-Space Risk is a definition form the domain of Open-Set classification research to describe the weakness of the current closed-set ML algorithms usually are used out-of-the-box to regulate low Recall performance of the models due to the luck of negative samples. In order to measure the performance of such algorithms the *Openness* test have very recently introduced.

A more formal definition of the Open-set classification is the one where the open space risk is considered.

definition

**Definition 4** Open-set Multi-class Classification Let C be the training data, and let  $R_O$  open space risk and R the empirical risk. Then the objective of open-set classification is to find a function  $f \in L$  which is minimizing the following Open-Set Risk.

Mathematically described as  $arg_{min}\{R_{O(f)} + \lambda R_{(f(V))}\}$ , where f(x) > 0 implies correct recognition and  $\lambda$  is a regularization constant.

Thus open-set risk balances the empirical risk and the open space risk over the space of allowable recognition functions (geng2018recent).

In practice the *empirical risk* is the weighted loss function of the open-set multi-class classification model. The *open space risk* is in practice the ratio of the open vector space to the full vector space, where the full vector space is the concatenation of the space defined by the known data samples and the unconstrained unknown space.

Using the proper benchmark corpora we perform a systematic evaluation of WGI models when noise is either unstructured (the true genre of noisy pages is not available) or structured (the true genre of noisy pages is available). In *Unstructured noise* the true genre of noisy pages is not available and in *Structured noise* the true genre of noisy pages is available.

In order to handle the structured noise, the *Openness test* is employed. In WGI that provides a detailed view of performance for a varying number of known/unknown labels. This test has already been used in visual object recognition (**scheirer2013toward**) and it perfectly fits the WGI task.

### 1.5 Motivation and Objective

Research in WGI is relatively limited due to fundamental difficulties emerging from the genre notion itself. The most significant difficulties in the WGI domain are:

- 1. There is not a consensus on the exact definition of genre (crowston2011problems).
- There is not a common genre palette that comprises all available genres and sub-genres (santini2011cross; mehler2010genres\_on\_web; mason2009n; sharoff2010web), moreover, genres are evolving in time since new genres are born or existing genres are modified (Boese2005).
- 3. It is not clear whether a whole web page should belong to a genre or sections of the same web page can belong to different genres (**jebari2015combination**; **madjarov2015web**).

4. Style of documents is affected by both genre-related choices and author-related choices (**petrenz2011stable**; **Sharroff2010**). As a result, it is hard to accurately distinguish between personal style characteristics and genre properties when style is quantified.

The main motivation for this research finding some new research paths on the WGI which they will overcome the above difficulties by focusing on the text mining aspects. Moreover the utility of this research advances they can potentially and directly applied in several text mining domains. The expansion of the IR faceted search, or the improvement of the autosummarisation and auto-translation are few of them.

The following objective or research paths has been set for this WGI research work.

- 1. Most previous studies in WGI the case is considered where all web pages should belong to a predefined taxonomy of genres. That is a closed-set supervised machine learning framework. There is same vague works on the open-set framework while most are handling the case of *outages* but still the scenario is closed-set. In this thesis the objective is to push the research towards to the development of algorithms where they can be competent in an open-set framework, where the *genre taxonomy* is open and the genre are not considered to be known.
- 2. In order to push the research even farther in this work *the Noise* is also considered. The *Web genre taxonomy* is suffering from noise, structured or/and unstructured, when open-set classification is considered. The reason is the temporal idiosyncrasy of the genres which is discussed in chapter ??. In this work the objective is to find the family of the *features selection methodologies* combined with the *open-set machine learning algorithms* that can efficiently handle the noise in the WGI task.
- 3. Due to the closed-set framework choice the evaluation methodology for the WGI task was restricted only on the basic text mining measures. That is *Accuracy, Precision, Recall* and  $F_x$  statistics. In this thesis the objective is to evaluate these measures and find more sophisticated ones such as *Precision Recall Curves (PRC), Receiver Operating Characteristics (ROC) curves, macro-averaging F*<sub>1</sub> etc, which can be more appropriate to evaluate the open-set scenario classification,
- 4. The feature extraction is the main subject where the most research effort has been taking place on WGI. Several features has been tested from common Bag-of-Words (and Bag-of-Terms) to specialized heuristics as will be thoroughly expelled in section ??. The objective in this thesis is to investigate whether or not more sophisticated features could be more effective for the task, for example *Part-of-speech (POS) vs Word n-grams (WNG)*. The former is a more sophisticated feature extraction technique, while the later is simpler yet, found to be very effective in several text mining domains.
- 5. TF (and TF-IDF) document representation is the basic approach in all text mining domains and the same applies for WGI. In the closed-set framework the vector space defined by the TF representation is sufficient for WGI. However, in open-set scenario is an essential aspect which should be reconsidered. In this thesis the objective is to investigate other document representations, i.e. other vector space modeling methodologies. The Distributional Features (Word Embedding) modeling is a state-of-the art option for several text mining domains. Therefore, it is also considered for WGI. The Word Embedding modeling method is using a multi-layer Neural Network (NNet in order to project the word of the texts in a multi-dimensional feature space. The NNet modeling then is used in order to bring close the words that are "similar" in context. This model is a radically different approach where the proximity information and the distribution of the words are considered.

In this thesis the advances of the above objectives can significantly contribute to the application of the WGI task on realistic condition where the scaling is ultimate issue.

WGI is a "super-domain" covering mainly AGI because the Hypertext is an extended version of the electronic documents (e.g. Postscripts, Adobe .pdf, MS .doc, etc) where the hyperlinks and the HTML have a significant impact in the scaling of the task. The scaling in respect of the size of the Web which due to its structure can expand infinitely in content and the scaling in respect of the text mining task. Now, the problem is to find algorithms that can be competent for web-pages, web-sites, or web-sections. Moreover, the web-sections might be connected with hyperlinks or might be considered isolated. Even farther, the web-page might be multi-genre and multi-register. All these issues together, are increasing the difficulty of this text mining task.

A general objective for every thesis and this one, is to develop a set of long term contributions. Thus the focus of this thesis is to find solution *independent of any heuristics*, *strictly related to the hypertext's special characteristics* and to be applicable on other relative text mining tasks.

#### 1.6 Contribution

The main contributions of this thesis in the WGI problem is the establishment of the *Openset Classification Framework* for handling the task under *Noise-full conditions*. Particularly, three machine learning algorithms have been implemented as open-set mulit-class classifications methods specialized for this task.

This thesis contributions are listed bellow:

- 1. The introduction of the Open-set classification frame work for the WGI task. The open-set classification framework has been used for several text mining related tasks but it is the first time being applied for the WGI task. The open-set framework is closely related to the *Novelty Detection* and the *One-class Classification*. It is assumed that only positive examples are available for the model's induction methods. This is the realistic case scenario where one might be able to collect a good sample (however not complete due to the scaling of the Web) for the positive samples but for the negative samples is virtually impossible since not even the temporal genre-taxonomy pallet is available. There are several variation on the open-set classification related to the specification of the problem. In this thesis two of the open-set cases are considered. The unknown samples are derived from a distribution of known genres or they are derived from a random distribution where the samples genre are not. In both bases samples are *tagged-as-unknown* in the testing phase in order to be separate from the false positives unknown samples, i.e. the samples becoming from the genre distribution that the learner is already trained with (geng2018recent).
- 2. The definition of the Web Genre Noise and separating the from the Outages. Noiseweb-pages are considered when multiple genres (predefined or not) co-exist (santini2011cross; levering2008using). The vast majority of previous work in WGI avoid to examine the problems arising from the presence of noise and as a result it is not possible to estimate the effectiveness of most existing WGI approaches in realistic conditions. In this thesis the difference of the outages the the noise samples is clarified. In addition this thesis is contributing in the disambiguation of the *Structure* and the *Unstructured Noise*. Showing also how these kind of noises are affecting the difficulty of the WGI task.
- 3. **The Genre-units** are, also, discussed in this study such as *the web-page*, *the web-page* section, the web-page paragraph or the web-site multi-genres. Consequently, the URL

1.6. Contribution

utility in the WGI task is raised and discussed in respect of the linking of these units and how it can be used as an indicator of the genre-identification. Then noise notion is changing slightly but the same approach can be applied.

- 4. The establishment of the proper evaluation methodology for an open-set WGI task. In this study is also confirmed and reestablished the proper methods for measuring the performance of the open-set algorithms on the WGI task. Measures like  $F_1$  statistic, *Precision, Recall, Accuracy, Precision-Recall Curves (PRC) and PRC Area Under the Curve (AUC)* are inappropriate for the open-set classification where an algorithm can classify an arbitrary sample one one of it is *Known* classes but it can also let the sample as *Unknown* or in a "Don't know bucket". It is shown that the *Macro Averaging* in measures like  $F_1$  (becoming Macro  $F_1$ ) can tackle the problem of proper measurement and overcome the usually *imbalanced available corpora* for the WGI research. It is shown that he proper measurement is the most essential tool for evolving the WGI to be usable in realistic condition.
- 5. The establishment of the evaluation of the WGI task difficulty. It has been shown that the open-set multi-class classification task has escalated difficulty for the algorithm depending on the number of classes that are known and unknown. Thus, the algorithms that can better regulate the *Open-Space Risk* due to the luck of negative samples can have better performance to an algorithm designed originally for closed-set classification. The *Openness test* have been for the first time on the open-set WGI task. As also recently shown in other open-set tasks it is a very useful measurement methodology for giving us a sense of the difficulty of a particular open-set task. Consequently, it is enabling the qualitative estimation of the performance score of the open-set algorithms. Then it is clear that an algorithm with a very high, say, *macro precision score* in a problem with *low openness test score* is less useful than an one with medium performance in a *high openness task*.
- 6. Three ML Algorithms have been created from scratch for the Open-set WGI task. In this study are introduced and tested two open-set classification models, the *Random Feature Subspacing Ensembles* (RFSE) and the *Open Nearest Neighbours Distance Ratio* OpenNNDR. An evolutionary adaption for the WGI task of two already suggested algorithms.
  - The Random Feature Subspacing Ensembles (RFSE)<sup>2</sup> algorithm where it is an extension of an Author Attribution algorithm based on *random feature selection subspaces*. This algorithm has been implemented in python and it can work with any kind of textual or HTML information. This algorithm is presented in detail in section ??.
  - The Open Nearest Neighbours Distance Ratio (OpenNNDR)<sup>3</sup> algorithm which it is implemented based on (mendesjunior2016), where it was originally designed for open-set multi-class classification of images. In this thesis, it is extended to fit the WGI application in addition to some essential changes. This algorithm on the contrary to the RFSE is explicitly handling the *Open Space Risk* in the training process. However, it seem to be vulnerable when the vector space is very large and sparse. However, in this thesis it is shown to be able to work very competitive with the proper document representation/encoding. This algorithm is presented in detail in section ??.

<sup>&</sup>lt;sup>2</sup>https://github.com/dpritsos/RFSE

<sup>&</sup>lt;sup>3</sup>https://github.com/dpritsos/OpenNNDR

- The One Class SVM Ensemble (OCSVME) algorithm which is the extension of the *v*-SVM trained only with positive samples. In this thesis an ensemble form of this algorithm has been implemented for multi-class open-set classification setup experiments. In this work it has mainly used as the baseline for evaluating the RFSE and the OpenNNDR. This algorithm is presented in detail in section ??.
- 7. The evaluation of these algorithms is mainly focuses on the textual information one can get from the web-pages such as Bag-of-Words (BOW), Word N-Grams (WNG), Character N-Grams (CNG), Part-of-Speech N-Grams (POSNG). It has been shown that Word 3-grams (W3G) and Character 4-grams (C4G), are better option than Word Unigrams, POS etc. However, there are several other features have been suggested in the related literature. All of them are presented in chapters ?? and an extra focus is given to some of the most notable ones. The effect of these features on the open-set noise-full classification is evaluated and the behaviour of each of the above algorithms is discussed related to the openness of the WGI task.
- 8. In this study it is shown for the first time how the Distributional Features (Word Embedding) modeling can inverse the performance of a weak for the WGI task open-set algorithm to a competitive one. The Neural Models for creating Distributional Continues Textual Feature modeling is the state-of-the art for several text mining tasks. In this study shown that in can really improve low performance algorithms, however, it is cannot outperform more simple methods. In this thesis it is shown for the first time that the Distributional Feature Models can change the research focus for the WGI task towards the Distributional Features Modeling in an open-set multi-class classification framework because they can potentially return high performance results when the Openness difficulty of the WGI task is high, because it removes the necessity of heuristics which they are tight to the Corpus, therefore, cannot easily generalize.
- 9. In order to pre-process the HTML raw web-pages of the corpora used for the experiments of this thesis a specialized tool has been implemented called **Html2Vec**<sup>4</sup>. This has a well designed API in order to be rapid expandable for handling any HTML heuristics and return any kind of Vectors required for a specific experiment. It handles special HTML characters, is cleaning or extracting the HTML elements. It can also recognize the *Numbers*, *IP addresses*, *URLs*, *Currency Numbers* for reducing the noise might be created in the *dot* (,) and *space* () will be used as separation characters for the terms extraction form the text. Moreover, in can return the TF, and Word2Vec vectors of a corpus.

#### 1.7 Thesis Outline

The structure of this theses is essentially divide in three parts. The first is related to the argument about the appropriateness of the open-set framework for the WGI instead of the closed-set and the and the presentation of the ML algorithms. These are the chapters ?? and ??. The second is the evaluation framework discussion and the establishment of the proper measures for the open-set WGI, found in chapter ??. The third part is the experimentation and discovery of the approriate features and document representation for the open-set WGI. These are the chapters ?? and ??.

Chapter ?? 2 discusses the relevant work on the WGI and AGI tasks. The *Genre Definitions* in the linguistics and the computational linguistics point of view are presented. The state-of-the art ML methodologies for the genre classification are discussed and organized

<sup>&</sup>lt;sup>4</sup>https://github.com/dpritsos/html2vec

1.7. Thesis Outline

on their common based models such as the SVM, the Decision Trees, Ensembles etc. The Web Genre Noise is parented and the limited open-set related work. The Web genre temporal property is analyzed and how some of the research has also focused on that aspect. Features selection and the heuristics are listed which they have been used with success in WGI, mostly in closed-set scenarios. The effect of distributional features on the WGI also is presented. The Hyperlink (URL) exploitation efforts for improving the WGI is described. Finally, several utilities of the AGI are presented such as the Focused Crawlers for Genres. Moreover, the luck of realist and systematically developed corpora for the WGI task is discussed and how this is drawing back the evolution of the domain.

Chapter ?? 3 presenting the three algorithms that have been developed for working on the open-set framework for WGI. The *Random Feature Subspacing Ensemble* which is a *distance based* algorithms using random sampling and a majority voting technique for predicting the appropriate genre tag for a random page. The *Nearest Neighbors Distance Ration* is presented which is the algorithm that it tries to regulate the *Open Space Risk* in order to be more competent in high openness score problems. The SVM also discussed which is the most popular ML algorithm in the research papers related to the WGI. In this work an One Class Classification Ensemble version of the SVM has developed and used as the baseline for evaluating the open-set framework and the open-set algorithms.

Chapter ?? 4 is measures that are more appropriate for the WGI in an open-set framework. The Open Space Risk is defined and its measure. The Area Under the Curve is presented as a measure for the open-set algorithms, The Openness test is discussed. The Domain Transfer Measure and other potential measure for the open-set framework evaluation are presented.

Chapter ?? 5 a set of experiments using three well established corpora, i.e, 7-Genre, KI04 and SANTINIS, is presented in this chapter. Experiments on structured and unstructured noise are presented. The effectiveness of the document representation based on pure textual information is evaluated. The different distance measurement for the RFSE and their effect in the performance of the algorithm with Noise in presented. In addition, the performance of the RFSE is presented when the Noise samples are considered as Outages during the testing phase.

Chapter ?? 6 the powerful effect of the distributional features on the open-set algorithm NNDR is presented, where from a very weak learner is becoming a state-of-the-art solution for the open-set WGI. The Distributional Features and Word Embeddings are presented in detail. It is shown how they can potentially replace all the heuristics have been so far applied for WGI. Since the Distributional Features are a more effective, corpus independent, mathematically modeled compare to the heuristics or the **feature selection manual assumption**.

Finally, chapter ?? 7 presents the conclusions and the future work of on the Open-Set WGI task. Discussing the research paths towards the development of algorithms where the feature modeling (or encoding) and the class modeling (or induction), could be unified. This is possible feasible using the state-of-the-art Neural Modeling and *Stochastic Optimization Algorithms*.

15

## **Chapter 2**

## **Relevant work**

#### 2.1 Introduction (Not Final)

NOTE: In this survey section the Genre and Web-Genre is studied mostly thematically than historically. However, wherever there is interesting historical sequence in the research field it is pointed out.

This study is focused on the Open-set Machine Learning (ML) computational methods for *Automated Classification* of *the Web-pages* into a *Genre Taxonomy*. In a broader definition is also known as Web-Genre Identification (WGI). Since most of the literature has also worked with corpora including also electronic document other than web-sourced, the WGI also called as Automated Genre Identification (AGI).

The *Genre* taxonomy of *the texts* in linguistics domains is a subject of a theoretical (mostly philosophical) debate respectively to its evolution mechanics. Several computational methodologies has been developed for automating the process based on *Machine Learning (ML)* methods. However, most of the AGI research has focused on the raw text pre-processing and the feature selection methodologies and the *Bag-of-Words (or Bag-of-Terms) BoT* <sup>1</sup> text representation. Only recently there is a redirection of the research focus to the *Vocabulary Learning Models (VLM)* where they are used as input to the Identification/Classification ML model, instead of the BoT.

A very recent research on Cross-Lingual Genre Classification showed that it is possible to get very good results when an ML model is trained with a corpus samples of one language and then testing the trained model to an other. However, the evaluation framework was closed-set and the relation of the languages seems to be of a great importance for the accuracy performance of the model. That is, in some cases it was important the language to be of the same group for example the Roman or the Slavic group of languages and for others was not. Some times oddly the performance was dropping when the language was form the same language group (nguven2019cross).

Web Genre Identification (WGI) concerns the association of web pages with labels that correspond to their form, communicative purpose and style rather than their content. The ability to automatically recognize the genre of web documents can enhance modern information retrieval systems by enabling genre-based grouping/filtering of search results or building intuitive hierarchies of web page collections combining topic and genre information (Braslavski2007; Rosso2008; de2009genre). For example, a search engine can provide its users with the option to define complex queries (e.g., blogs about machine learning or eshops about sports equipment) as well as the option to navigate through results based on genre labels (e.g. social media pages, web shops, discussion forum, blogs, etc). The recognition of web genre can also enhance the effectiveness of processing the content of web pages in information extraction applications. For example, given that a set of web pages has to

<sup>&</sup>lt;sup>1</sup>In this text Bag-of-Terms (BoT) is equivalent to the Bag-of-Words (BOW), which has been widely used in the literature of the Information Retrieval and Natural Language Processing domains. Since, BoT is accurately describing the meaning of BOW in most of the cited literature.



FIGURE 2.1: Stolen Imag.

be part-of-speech tagged, appropriate models can be applied to each web page according to their genre (**Nooralahzadeh2014**). However, research in WGI is relatively limited due to fundamental difficulties emanating from the genre notion itself.

The most significant difficulties in the WGI domain are: (1) There is not a consensus on the exact definition of genre (**crowston2011problems**); (2) There is not a common genre palette that comprises all available genres and sub-genres (**santini2011cross**; **mehler2010genres\_on\_web**; **mason2009n**; **sharoff2010web**), moreover, genres are evolving in time since new genres are born or existing genres are modified (**Boese2005**); (3) It is not clear whether a whole web page should belong to a genre or sections of the same web page can belong to different genres (**jebari2015combination**; **madjarov2015web**); (4) Style of documents is affected by both genre-related choices and author-related choices (**petrenz2011stable**; **Sharroff2010**). As a result, it is hard to accurately distinguish between personal style characteristics and genre properties when style is quantified.

Genre means "genus" in the Greek language and for the text focused studies (either traditional linguistics or computational) mainly means style. The main utility of the genre taxonomy is for speeding up the communication in a broader sense.

Starting with two cases outside the computer science the genre taxonomy is very useful in English

One (REF) from the discipline of the *English for Academic Purposes* (EAP) where it was vividly discussed the divergence in the genre taxonomies between the difference academic disciplines and reasoned the utility of the genre taxonomy for enabling the teachers and the students to improve their rhetorical and written language with the purpose of improving the teaching procedure. What is important to note for this study is the conclusion that the same genre-type can be very different for the communication purpose, i.e. as text identity carrier, but it can also contain the same style and other language properties when the purpose is similar, for example the article of new paper and an article form a magazine where one can claim that they are a different genre-type although they governed by the same linguistic properties.

The types of their study genre taxonomy mainly focused on the *purpose* of the students written context and less on the *style*, thus their genre-types where *Creative Writing, Response Paper, Critique/Evaluation, Argumentative Essay, Report, Research Paper and Proposal.* Their study was a manual statistical process, similar to a *Data Mining* process where grammatical features were counted in the texts. Then these features where indicating the score for each of the four (4) dimensions which has been qualitatively predefined. The counting process was using a heuristic computational tagger, named as Biber tagger (see Biber 1988 or ??? \*\*\* Genre variations in student .... (paper)).

\*\*\* Genres, in textual sense, is sometimes defined as group of texts of documents that share a communicative purpose, as determined by the *discourse community* which produces and/or reads them. "In **structural**terms, genre are social institutions that are produced, reproduced, reproduced, reproduced or modified when *human agents* draw on genre rules to engage in organizational communication".

"Layout in organizational communities cause people to focus perceptually on key parts of the text and our empirical research has previously demonstrated that people use layouts and other related cues to focus on key parts of the text." \*\*\*

On the other hand and other research lying in the discipline of cognitive computing an health research they found humans are recognizing the genre type of a document or webpage using other cognitive processes relates mostly to the formatting of the text. Particularly they used as well configured apparatus for tracking the eyes movement while the recognition effort, where they fount that the eyes where following specific paths and where stopping to special landmarks on the text. They have concluded that the process of genre recognition was mostly related to the format and not the context, in addition they statistically measured that they previews experience was not related to the recognition process. Although it was the previews knowledge of the text formatting was accelerating the process. However, on the opinion of the authors of this study the genre recognition is a more deep process, thus as one can concluded by reading their study the landmarks they are referring into seems to be the only context combined with the formatting of the text that the human brain is requiring for identifying the genre-type. Given that their study is focused on the e-mail genres where formatting options compare to the web or textbooks is rather limited is advocating the conclusion that the minimum context is required for identifying the genre-type.

They are discussing of tree main perception (psychology) theories, i.e. Gestaltism (or Gestalt psychology), Ecological and Constructivism, which are the theories which can interpret the perception procedures, it this case the eye movement on the texts, to the cognition process for identifying the genre types of the texts. The perception procedure includes some eye movements mainly doing two tasks, *scanning* and *skimming*. Theses two procedures are irrespective of the belief of the supported interpretation theory related to the internal thought process for making a genre taxonomy decision. Scanning is the process where more or less we are trying to locate information of interest where the information has a homogeneous property, such as the a phone number in phone-book list. Skimming is the process where we are trying to locate information of interest where the information is raw or without a specific form, such as names, verbs, or phrases that is related to the abstract related concept in order to decide whether the text is matches and worth farther reading.

The process of scanning and especially skimming in practice follows some specific eye movements, i.e. Fixation and Saccadic. Saccadic is the process while scanning or skimming that the eye is jumping around to the text, while Fixation is the process where the eye remains focused for a while. One can resemble the process like navigation where the eye is constantly moving while is focused for small fragments of time in landmarks of interest.

As Web Search from an extension of IR because the main subject under investigation (manning2008introduction), Web page Genre Classification is becoming the main subject of document classification research.

Blogs is a genre-type has attracted as special interest on its own, in differed domains such as in sociology, psychology, linguistics and mostly in computational linguistics and WGI. There are several blogs' properties of interest of the research and also blogs having their own sub-genre taxonomy. Blog-taxonomy general genres are *Filter, Personal-diary* and *Notebook* and other related to the authors group of styles such as *Reflective, Narrative, Emotional, Rational* and *Personal*, *Non-Personal*. The thought research on the blog-types classification has delivered a set of special linguistic and web-page structural properties which are

increasing the performance of the closed set classification. Details for this linguistic properties used for specially for blogs sub-taxonomy classification are described in section ?? (virik2017blog; hoffmann2012cohesive; hoffmann2012cohesive; derczynski2014social; qu2006automated).

Most previous work in WGI follows a typical closed-set text categorization approach where, first, features are extracted from documents and, then, a classifier is built to distinguish between classes. Attention is paid to the appropriate definition of features that are able to capture genre characteristics and should not be affected by topic shifts or personal style choices.

# **2.2** Genre Definitions: The Linguistics and the Computational Linguistics

Overcoming the difficulties related to the genre taxonomy pointed out in linguistic and empirical studies, in text in *text categorization* there is a great amount of work related to the automated categorization of texts based on *genre taxonomy*. Although, starting from fundamentally different routes computational and linguistic studies, both ended up with the same notion of genre, which is eventually having two complimentary meanings, i.e. *Style* and *Genus*<sup>2</sup> (sugiyanto2014term).

**Definition Debate** In linguistic studies there is a great debate in defining *the notion of genre* as an *abstract categorization* of texts and the relation between them. Despite the methodological differences the linguistic community concluded that the idiosyncrasy of the *genre tax-onomy* is mutable and diverse (**coutinho2009describe**). This kind of idiosyncrasy is yielded to the *genre taxonomy* due to the spontaneous genesis of the genre classes. The genesis of a genre class is socio-centric interaction which is emerging from the need to describe the texts in order to accelerate the social communication procedure. Thus, genre classes are spontaneously emerging while the communication procedure is taking place.

**Readers Perception** Humans can efficiently recognize the genre-types by processing the texts intuitively. However, there is a *great luck of consensus* for the genre-types, particularly naming the genres. There there was an effort of several user studies for eliciting the mechanics in the process of *genre identification and tagging*. The results on user agreement were very discouraging. Also, when it come to the reporting, i.e. for humans to describe specifically the terms or/and the attributes with which they use to identify the genre-types then there is a great confusion. A convincing reasoning for that is the plethora of textual, stylistic and conceptual terms which are used where they are different per individual and/or per group (e.g. teachers, scientists, engineers) for the same (or similar) text (or web-page) (**roussinov2001genre**; **crowston2011problems**).

Researchers, of cognitive computing and health research disciplines, found humans are recognizing the genre type of a document (or web-page) using other cognitive processes related mostly to the form of the text. Particularly they used as well configured apparatus for tracking the eyes movement while the recognition effort. One can resemble the process like navigation where the eyes are constantly moving while they are focusing for small fragments of time in landmarks of interest. The pausing of the eyes on the text "landmarks" is called *Fixation* while the "jumping" movements of the eyes is called *Saccadic*. The whole process was the effort to locate information of interest such as a specific text forms, names, verbs, or phrases that are related to the abstract concept in order to decide whether the text is matches

<sup>&</sup>lt;sup>2</sup>Genus in Greek means type or class

and worth farther reading. They systematically found that the process of finding the genretype of the text is the same as to find out whether a text worth farther reading. Thus, the genre taxonomy definitely accelerates the communication procedure and helping the reader of the text find the information of interest faster (clark2014you).

Writers Awareness In discipline of the *English for Academic Purposes* (EAP) it was vividly discussed the divergence in the genre taxonomies between the difference academic disciplines and reasoned the utility of the genre taxonomy for enabling the teachers and the students to improve their rhetorical and written language with the purpose of improving the teaching procedure. What is important to note for this study is the conclusion that the same genre-type can be vary differently form the communication purpose, i.e. as text identity carrier, but it can also contain the same style and other language properties when the purpose is similar, for example the article of new paper and an article form a magazine where one can claim that they are a different genre-type although they governed by the same linguistic properties. Therefore, for the witter of a text is is very important to be aware (thus to be taught) of the genre-type in order the text to be recognizable for the reader is seeking similar texts (hardy2016genre; melissourgou2017genre; al2017genre).

"News" Sub-genres The utility of the text genre identification (and/or classification) has been realized by the journalism historians. The technology advances and the new science innovations cased the attraction to the field. Journalism historians using a different genretaxonomy where they mainly focusing on the purpose of the texts by analyzing the structure of the texts, where the structure consist of abstract elements. Their main genre-type are Inverted Pyramid, Martini Glass, Kabob, Narrative, Narrative and elements are *Standard Lede, Body Section, Narration, Synopsis, Image Lede*. Similarly to the EAP domain, their sub-genre taxonomy is including genre-types like . (dai2018fine).

**Genre as Writing Style** The aforementioned variations of the genre taxonomy's notion is related more to the methodology and the objective of the text categorization task's specifications, rather than the philosophical difference. Particularly in author attribution domain there is a focus on identifying the *style of the author* (**stamatatos2009survey**; **koppel2011authorship**; **koppel2014determining**). On the other hand in the information retrieval (IR) domain, the interest is to classify the texts based on a predefined *genre pallet*. Thus the interest is focused on the *style of the authors group*, such as scientists, journalists, bloggers, etc.

The Web Genre In consideration of the web genres taxonomy it has been also eloquently analyzed the utilities and the difficulties for the web users. It has been pointed out that the genre taxonomy is summarizing the type and the style of the text in a single term as a communicative act [This conclusion cited also in (de2009genre)]. In the domain of web genre identification (WGI), the web genre taxonomy pallet (which mostly used for research) has been formed in a top-down approach, where a group of experts are forming the taxonomy based on the specific objective of the task (crowston2011problems). Moreover, in WGI research there was a very early observation that genre are organized in a hierarchical manner (wu2010fine). Thus, most likely a web page might be multi-genre, the genre unit is considered to be the web-page (madjarov2015web; jebari2015combination). However, in section ?? there is a discussion related the web-genre units other than the web-page.

As described so far, after a significant amount of work related to the study of the *Genre-Taxonomy* and the *Genre-Identification*, there is an agreement for the criteria which are defining the genres and the web-genres. That is, the *Form* and the *Function/Purpose*. Complimentary criterion is the *Context*, for example, the genre-type of the *academic home web-pages* are

easily identified by their context. The computational process of a text's *context* is a standard procedure for the *Topic Identification*. Although text's topic is considered as orthogonal to its genre, in cases such as academic home web-pages some context indicators can be exploited for the identification, also, of the Genre (coutinho2009describe; crowston2011problems; kanaris2009learning; jebari2015combination; gollapalli2011identifying).

Considering the above, it is clear that the Web-Genre Taxonomy has also a relatively abstract notion where is slightly changes depending on the research framework, despite the fact that the criteria for the genre-types of the texts are more or less common. Thus, for continuing the a this study in for the computationally, particularly NLP, research approach we are defining the notion of web-genre-type as follows.

However, *genre* itself requires different level of human reading abilities to be recognized and even with these skills different humans may disagree (**mccarthy2009psychological**).

**Definition 5** Web-Genre-Type is defined as a class where its samples are i.i.d. Thus every web-unit (usually web-page) is always derived under a unique class distribution and the class distributions are not overlapped. That is, the Genre-Taxonomy consist from a distinctive non-overlapping classes/types.

# 2.3 Machine-Learning Methodology for Web Genre Identification and Classification

In this work three algorithms are presented than can efficiently work on the WGI task in an open-set framework. There algorithms are inspired by some previews works on the AGI, which they have been adapted in fitting to the open-set classification requirements and to the web-genre noise problem when it is assumed. In section ?? these algorithms are discussed, together with other similar works towards to the open-set approach for WGI.

In this section it is summed up most of the machine learning models have been tested so far on the AGI (and especially the WGI) task. In addition, the most notable cases are presented in this section.

The main research volume have conducted experiments in a closed-set framework. The models have been commonly tested were the *SVM*, *Naive Bayes*, *Random Forest*, *Decision Trees*(*C4.5*), *Ensemble based* models and the AdaBoost(**lee2017text**). It seems that Random Forest and SVM were the top performing classification methods in the closed-set framework.

**SVM Based** The SVM model was tested either in multi-class or binary form for the WGI (dai2018fine). The model successfully been tested on *Cross-Lingual Genre Classification* showed that it is possible to get very good results when an ML model is trained with a corpus samples of one language and then testing the trained model to an other (nguyen2019cross).

SVM also combined with several feature selection schemes, where most of them are presented in section ??. In (**kanaris2009learning**) is one of the first cases where the significance of the proper features for the SVM in WGI was pointed out. Specifically, the web-pages were projected in a feature space defined by a *variable length Character n-gram corpus dictionary*. The dictionary composed from a mixture of size 3, 4 and 5 CNG features carefully selected from a modified version of the *LocalMaxs* algorithm. The algorithm was using a "glue function" for selecting the most informative n-grams and the rest of them where discarded.

Structure indicative features have also been combined with SVM for the WGI task, specifically for the case of *News article* sub-genre identification. Experimental results show that reasonable performance, although, this kind of features are importing even more issues. At first are difficulty to be captured for example counting the HTML tags or by analyzing

the HTML DOM tree from a browser is the best practice to follow. Moreover, this kind of information usually is vague and small (Cortes and Vapnik, 1995).

In (virik2017blog) SVM is compared with *Naive Bayes Classifier (NBC)* and *k-Nearest Neighbours kNN* on the classification accuracy for the *Blogs' sub-genre taxonomy*. The results for the correlation of the *linguistic features* and the *Blog's sub-genres* shown that all three algorithms were successfully. However, SVM returned higher performance score.

Although SVM algorithm is a high performance learner for the WGI task, it only can be competent for the closed-set classification framework. In the case of the open-set classification the performance drops significantly as shown in several studies (such as ...) and discussed later in chapter ??, where simpler *Distance Based* methods seem to have higher performace.

**Distance Based** There are several distance based approaches of the WGI task where it seems to have the highest performance in difficult cases such as the open-set WGI, and also when Noise is present. However, they have also been tested successfully in the closed set experimental setup.

One different case which is also bind to the feature selection is the *Feature Difference Coefficient (FDC)* method. This method is based on the idea of the *Ranked Features Distributions Distances* between the class-level features ranking and the document-level feature ranking. The features of the samples of a class are initially counted and their TF or TF-IDF values are ranked in a descending order. One can select the most frequent, but in the case study of (waltinger2010feature) the whole vocabulary have been used. Then a ranking sequential number is assigned and the frequency information is then discarded.

In order to compare a random web-page to the Class ranking the above procedure is repeated in the document level. Then for every feature present in the document and also present in the class vocabulary their ranking distance is calculated. The total sum or the distances is summed, while the norm value of the distances is assumed. Moreover, when a feature is not present in the document or the vocabulary then a Max value is assigned for this feature. The total ranking distance calculation is shown in equations ?? and ??.

$$d_{mnt} = \begin{cases} |r_{mt} - r_{nt}|, t \in m \land t \in n \\ Max, t \notin m \lor t \notin n \end{cases}$$
 (2.1)

$$IM_{mn}^k = \sum_{i=1}^t d_{mni} \tag{2.2}$$

The smaller the  $IM_{mn}^k$  total rank distance sums for all the k feature the more is the similarity of the web-page pattern to the Class pattern. The features suggested (but not constrained) for this algorithm and for the WGI task are the following:

- 1. Word n-grams, Character n-grams, Word uni-grams and POS n-grams
- 2. Superficial and Structural such as the sentence length and the divisions number, and the paragraph length, concerning of the HTML text formatting.
- 3. HTML tag frequency in their logical structure, e.g. the number of tags in total by ignoring the special cases of attributes or style sheets than might contain individually.
- 4. HTML Attribute Frequency same as in tags case.
- 5. First-Last tag frequency the x number of the first occurring html tags and the y number of the last occurring tags.

6. Name entities frequency based on an entity recognition heuristic engine.

In order to take into account all the above features contribution to the WGI task, a weighted sum all the  $IM_{mn}^k$  scores is calculated by the equation ??

$$C_g = \sum_{k=1}^{F} \delta_k \cdot IM_{mn}^k \tag{2.3}$$

Where  $C_g$  is the similarity score for the a genre of the taxonomy, and  $\delta_k$  is the weight of the k feature set from all F features, where is under the constraint co  $\sum_{k=1}^{F} \delta_k = 1$ .

The accuracy using this method on shown to have been reached 93% compare to 89% of the SVM's performance, using the same features.

**Neural Based** Recently Neural Networks have been used for modeling the WGI task (and other text classification tasks), additionally or independently of the Vocabulary modeling where neural-models have widely used.

Most notably is the used of Recurrent Neural Networks (RNN) where Linguistic Complexity Contours (LCC) where employed as modeling features (LCC details are explained in section ??). Their model was based on 32 LLC features where fed to 32 Gated Recurrent Units (GRU) and the output of each GRU was also fed to the next. Then all the output GRU output was the input of a Dense Layer of the RNN where a Softmax decision function was applied on. Their model was a closed-set framework with very high performance where was reaching over 90% accuracy(strobel2018text).

**Ensemble Based** There are very few *ensemble based* algorithms employed for the WGI and AGI task, however, they seem to be a very promising path as shown in (**onan2018ensemble**; **pritsos2015clef**; **pritsos2013open**; **pritsos2018open**). Particularly there are three methods, mainly, where an ensemble can be formed, namely, AdaBoost, Bagging and Random Feature (RFS) Subspace ( (i.e. random sub-sampling). In this study we mainly focusing on the RFS, it is one of the algorithms are thoroughly presented in the context of WGI/AGI task.

AdaBoost is a Boosting algorithm where usually a random sampling is performed over the data and s set of classifier are trained over these samples. There is a weighting scheme over the samples which is changing in every training iteration, where for the samples mostly missclassified, by most of the learners, their weights are increasing. In this manner the difficult samples repetitively to classification are presented to the weak learner in more iterations in order the whole systems of learners fit adjust better over these samples.

Bagging/Bootstrap aggregating is an ensemble learning methods where a set of independent learners are training on different subsets of samples. Sampling with replacement is employed for Bagging, usually random. The performance of the ensemble is significantly influenced by the sampling policy/model. The ensembles decision is obtained either by the majority voting or my the weighted voting for a random sample.

Although, the traditional bag-of-words approach had better result with XABoost or other techniques been tested for over a decade on genre identification or/and particularly on WGI, distributional feature models are early showing their advantages over the TF-IDF (or TF alone) models[REF].

RFS is mainly similar to Bagging in respect the sampling policy might be used. However, they deffer in the decision method where in RFS there is a  $\kappa$  metric or a  $\sigma$  threshold for the agreement of the weak learners for a random sample. This method also can be used for closed-set and open-set multi-class classification methods such as RFSE algorithms will be discussed in section ??.

In (chen2012genre) an open-set ensemble presented where two multi-class SVM classifiers where trained for all the genres of their special formed genre-taxonomy for *office documents* (details for office documents taxonomy find in ??). Every SVM classifier was trained in a different mutually exclusive training subset, where the other part of the training set was used for tuning and vice-versa. The assumption of this training methods is that part of the support vectors will be optimized for every SVM preserving the generalization of the two independent models and the combined classification will manage to fit well over the whole corpus. Their ensemble's decision rule as shown in equation ?? is a pairwise genre-class operation for an arbitrary page, where the truth table of this binary rule for all genre-class pairs might end up wilt all 0 (zero) outcome. Then this page remains as unknown in all other cases at least one genre will return as true. On this combination rule several application can be operated as they have presented.

$$(g_1^k[i] \lor g_2^k[i]) \land (g_1^m[i] \lor g_2^m[i]), \forall m \neq k$$
 (2.4)

where  $\{k, m\}$  are the genre classes and  $\{g_1, g_2\}$ , are the genre SVM classifiers.

The above ensemble is an *Early Fusion* category of ensembles where the potential different features and document representation are all combined in a sum-up vector for each document, i.e. a weighted sum or a concatenation of the different feature vectors. Then the summed-up vectors are the input for the learners of the ensemble where Bagging, Boosting, Majority voting or other strategies are used for then training and testing (or production) phases.

In (**finn2006learning**) a *Late Fusion* ensemble is proposed for the AGI task which is an other category of ensembles. Late Fusion ensembles are composed from learners of the same model (say SVM, C4.5, NN etc) where every one is trained only on a specific feature set (or/and document representation). In the testing phase the ensemble me majority voting us a common strategy.

Particularly the in their study they are testing C4.5 decision trees for BOW, POS, and *Text Statistics* in detail explained in section ?? they shown that their *Multi View Ensemble*, i.e. the Late Fusion Ensemble, performs significantly better because every one of these features was a better choice only for a part of the genres in their taxonomy, thus the fusion of the all three increased the performance for all genre in total. In is important to note that in the training phase *Active Learning*, and binary vector representation also were used.

Active Learning in their study was defined as a sample selection strategy while training where an an evaluating process was indicating which sample was better to be used for the specific C4.5 learner, for the specific features set. The Late Fusion ensemble with the active learning strategy shown to be a promising proposal for the Domain Transfer problem for AGI.

Additionally, other methods extending the ensembles methodology like Random Forests have been also became popular (see the following paragraph).

Domain transfer is the ability to transfer across multiple-topic domains the same learner when it has been only trained in one of these domains. As an example, for the genre *News* there might be several topic domains such as Sports, Technology, Science, Health, Politics. An ML model which has been trained for News only on Sports topic and still can perform similarly good for Technology, etc, it considered to perform well in domain transfer cases. This is very important particularly for AGI where usually the positive available sample for a genre are not available in a wide variate topic-domains (see section ?? discussing the genre taxonomy corpus building issues).

**Domain transfer: Cross-Lingual Genre Classification** Similarly to the WGI domain transfer is the case of *Cross-Lingual AGI* where the task is to train a model for classifying texts in a genre-taxonomy and on a *specific mono-lingual corpus*. Then using the same trained model for classification to an other mono-lingual corpus but *on a different language*, particularly with different linguistic properties such as English to Chinese transfer, and vice versa.

One proposed solution(**petrenz2011stable**), is a combination of language independent features such as character-n-grams or/and superficial text characteristics such as *Type/Token Ration* with an *iiterative strategy of training a ML model*. Such a method is the *Iterative Target Language Adaption (ITLA*).

*ITLA* a special case of cross-lingual AGI method where pair-wise inter-language training is possible. That is, one can train a model to one language and then optimize it to an other. This method enabling the potential training of a model on one language and adapted to an other with very small labeled samples set for the required genre-taxonomy, but rich set of unlabeled samples. In (**petrenz2011stable**) SVM was the models of choice, The process includes the following steps:

- 1. Initially training an SVM classifier on language  $L_S^L$ . Then with the help of unlabeled  $L_T^U$  set for the target language the model is *evaluated for its prediction confidence* on the genre-taxonomy.
- 2. Using a labeled subset of the target language set  $L_T^L$  an other SVM model is trained where the prediction confidence of the initial training is used for selecting only the samples of the subset returning the highest confidence score.
- 3. The  $L_T^L$  is clean by the samples with very low score and a new subset is re-sampled.
- 4. The process continues between the steps 2 and 3 until no change in the prediction confidence occurring or the iteration number has reached its max limit.

An aspect is interesting to be mentioned is the set of features have been selected for training the above model. Mostly they are superficial, like Average Sentence Lenght and its STD, Average Paragraph length, Token-Type Ration, Numerical-Token Ration, Topic Average Precision, and a *Single Line Sentence Ration and Distribution*. The Single Line feature refers to the cases where a paragraph of the text is just a single sentence where it seem to be a commonality to Reports, Official Documents and Academic documents.

The results in this study were very promising given that with a generic language independent approach manages to exceeds the results of the common solution of *Machine Translation*. That is where the texts of the source (where the model trained) of the target the language are translated automatically beforehand they are fed to the ML model.

Clustering Based and Hierarchical multi-class classification (HMC) There a very special case, in (madjarov2015web), worth to be motioned for the concept rather than its research value. Particularly is a primitive attempt to test the *Hierarchical Multi-class Classification* on AGI. Although the results are relatively low in preforms and the experiments are not exactly comparable concerning the statistical consistency. However, there are several interesting aspects.

Firstly, they are using two *clustering methods* attempting to develop an *Automated Hierarchical Clustering (AHC)* where a raw multi-class taxonomy could potentially organized in a hierarchical manner. That is, given a set of "leaf" class-tags by using an agglomerative or a balanced k-means algorithm the tried to create a class-tag hierarchy and compare with the one of an expert. Secondly, they show than the Balanced k-means works better for this task on their data set and experimental set-up.

The utility of the Balanced K-means is for pre-defining the size of the clusters assumed to be. Thus, the objective function of the *balanced k-means* is implicitly (or explicitly) optimizes two (contradictory) objectives. Firstly, is to find most dense and well separated clusters and secondly, is to maintain the sizes of the clusters equal. To do so, the *Hungarian algo-rithm* algorithm is used for the optimization process (**malinen2014balanced**), where it is a combinatorial optimization algorithm that solves the assignment problem in polynomial time.

Their method compared with the hierarchical taxonomy created by an expert, seems to work equally or betters for the HMC scenario of AGI. They also show the their result of the AHC can be also used for a multi-class classification scenario.

**Random Forest** Several studies among other classification algorithm they have extensively used *Random Forest Classifiers*. Usually they use this algorithm in an out-of-the-box format. Most importantly seem to be one of the high score performance algorithms and most of the time the best solution. Although, most the studies are focusing of features selection/extraction and the term weighting schemes one could reason the high performance of the Random Forests to its internal ability to selecting the internal connection of the features which *resembles the word embedding* (FIND REF FOR THIS ARGUMENT) (**sugiyanto2014term**)

**Semi-supervised classification (Co-Training** In section ?? the genre-taxonomy corpus building task is discussed, where it is pointed out the issues of insufficient number of characteristic examples related to the positive samples for the genres of a taxonomy. Moreover, in section ?? the noise is discussed and the lack of negative samples in the available research corpora. These issues are labor intensive and very hard to be resolved even with the attempt of the cowed sourcing engines (like *Amazon Mechanical Turk*) as presented in (**Asheghi's relative work**).

However, there might be an other path to follow when one would like to focus fore the classification aspect of the WGI, rather than the genre taxonomy itself. One suggested path is the *Semi-supervised classification* in order to exploit the virtually infinite number of *unlabeled*, in respect of genre, web-pages of the Web. Particularly in (**chetry2011web**) *Co-Training* is suggested for SVM and Naive Bayes classifiers with a set of 20000 unlabeled samples in addition to the 1232 labeled web-pages.

The Co-Training is based on an iterative process where the unlabeled data are classified by the initially trained classifier. In every iteration the highest ranked unlabeled samples, in terms of classification certainty of the classifier, are fed to the re-training process to the classifier together with the previously labeled samples. The process continues until all unlabeled samples have been used or a specific number of interaction is reached.

A significant improvement found where the ROC AUC score reached 0.730 compare the supervised classification with score 0.713 for SVM. The experiments where set on a closed-set framework with a corpus including the genes of *Spam, Discussion, Educational Research, News Editorial, Commercial, Personal Leisure*.

Concerning the classification models involved in WGI studies, when a given genre taxonomy is utilized and there is no noise, then well-known machine learning models, like SVMs, decision trees, neural networks, naive Bayes, Random Forests, etc. are used (Lim2005; santini2007automatic; kanaris2009learning; jebari2015combination; sharoff2010web).

In case of presence of noise, in a clustering framework described in (kennedy2005automatic) one cluster is built for each predefined class and another cluster is built for the noise. However, the most common approach to handle noise is to build binary classifiers where the positive class is based on a certain predefined category and the negative class is based on the concatenation of all other predefined categories plus the noise (kennedy2005automatic; dong2006binary; levering2008using). Such a combination of binary classifiers can also be

seen as a multi-label and open-set classification model where a web page can belong to different genres and it is possible for one page not to belong to any of the predefined genres. More concrete open-set classification models for WGI were presented in (stubbe2007genre; pritsos2013open). However, these models were only tested in noise-free corpora (pritsos2015clef). More recently, Asheghi (Asheghi2015) showed that it is much more challenging to perform WGI in the noisy web in comparison to noise-free corpora.

In section ?? the open-set approach for WGI when noise is present, or not.

#### 2.4 Web Genre Noise and the Open-set approach

The main contribution of this work is the establishment of the novel open-set approach for the WGI and AGI tasks. In addition three previously presented algorithms adapted to the open-set classification and they are also presented briefly in this section together with an only few other similar efforts to towards to this research direction. The algorithms are thoroughly presented and evaluated in the following chapter ??, while in chapter ?? are stressfully tested under the presence of noise.

Most previous studies in WGI consider the case where all web pages should belong to a predefined taxonomy of genres (Lim2005; santini2007automatic; kanaris2009learning; jebari2014pure\_URL). Putting this setup under the vantage point of machine learning, it is the same as assuming what is known as a closed-set problem definition. However, this naïve assumption is not appropriate for most applications related to WGI as it is not possible to construct a universal genre palette a priori nor force web pages to always fall into any of the predefined genre labels. Such web pages are considered *noise* and include web documents where multiple genres co-exist (santini2011cross; levering2008using).

To handle noise in WGI there are two options. First, to adopt the closed-set classification setup having one predefined category devoted to noise. Since this category would comprise all web pages not belonging to the known genre labels, it would not be homogeneous. Moreover, this noise class would be much more greater with respect to the other genres causing class imbalance problems.

The second option is to adopt the open-set classification setting where it is possible for some web pages not to be classified into any of the predefined genre categories (**pritsos2013open**; **pritsos2015clef**; **pritsos2018open**). This setup avoids the problem of class imbalance caused by numerous noisy pages and also avoids the problem of handling a diverse and highly heterogeneous class. On the other hand, open-set classification requires strong generalization with respect to the closed-set setup (**scheirer2013toward**) and showed that it is much more challenging to perform WGI (**Asheghi2015**).

The effect of noise in WGI was first studied in (shepherd2004cybergenre; kennedy2005automatic; dong2006binary; levering2008using) where predefined genres were personal, organizational, and corporate home pages while noise consisted of non-home pages. However, the distribution of pages into these four categories was practically balanced, hence it was not realistic.

*Noise* in WGI can be categorized into *Structured Noise* (*s-noise*) and into *Unstructured Noise* (*u-noise*), where s-noise defines as the collection of web pages belonging to several (known) genres. However, it is highly unlikely that such a collection represents the real distribution of pages on the web. On the other hand, u-noise defines a random collection of web-pages (santini2011cross).

There are few studies where they have handled somehow the *structured and unstructured noise* in a closed-set approach. That is either the "noise" was assumed in the training phase of the prediction model where some sample had been left as *outages* (**jebari2015combination**), or s-noise has been used *as a negative class* for training a binary classifier (**Vidulin2007**).

Noise also *used as the majority class* in experiments where one class was the positive sample case and several other genre with combination of some other randomly selected pages where used for fitting prediction models binary or multi-class (**dong2006binary**; **levering2008using**).

Open-set classification models for WGI were first described in (pritsos2013open; stubbe2007genre). These models were tested in *noise-free* and *noise-full* corpora (pritsos2015clef; pritsos2018open; pritsos2019open). Particularly, these are the models are described in detail in section ?? and they are the main contribution to the domains of WGI and AGI. Here, are briefly described.

Recently, *Ensemble Methods* were shown to achieve high effectiveness in open-set WGI setups (**pritsos2013open**; **pritsos2015clef**; **pritsos2018open**; **pritsos2019open**). Two variants are studied in detail in this work, where one is based on the OC-SVM or *v*-SVM and the other is based a random features sub-sampling distance comparisons called *RFSE* (*Random Feature Subspace Ensemble*).

One-class SVM is actually an v-SVM for the case we want to find the contour which is prescribing the positive samples of the training set given for a single class, while there are no negative samples. v-SVM is providing an alternative trade-off control method of misclassification, proposed from Scholkopf et al. scholkopf1999estimating.

It should be noted than v-SVM has the v parameter which is regulating the following properties of the algorithm.

- *v* is an upper bound on the fraction of *Outliers*.
- *v* is a lower bound on the fraction of *Support Vectors*.

In practice different values of v are defining different proportion of the training sample as outliers. For example in Scholkopf et al. scholkopf1999estimating is showed that in their experiments when using v = 0.05, 1.4% of the training set has been classified as outliers while using v = 0.5, 47.4% is classified as outliers and 51.2% is kept as SVs.

In the prediction phase in order for an OCSVM model to decide whether a document is belonging to the target genre-class (or not) a *decision function* is used. The decision function indicates the distance of the document, positive or negative, to the hyperplane separating the classes. In the case of OCSVM we are usually only interested whether the decision function is positive or negative for deciding if an arbitrary document belonging or not to the target class.

The ensemble form of OCSVM proposed in this work, and published in pritsos2013open, is described in algorithm ??. Specifically, an OCSVM is trained for every web-genre class individually. In the prediction phase, the document is assigned to the class with the highest positive distance from the hyperplane (or the contour for OCSVM). If all OCSVMs return a negative distance (i.e. the web-page does not belong to this genre) the document remains unclassified, that is the final answer corresponds to "I Don't Know". Note than the *v* parameter is the same for all the OCSVM learner.

The RFSE algorithm is a variation of the method presented in koppel2011authorship. In this work the RFSE shown in *Algorithm* ??. There are multiple training examples (documents) for each available genre from which a *centroid vector* is calcualted for each genre. In the training phase, a centroid vector is formed, for every class, by averaging all the Term-Frequency (TF) vectors of the training examples of web pages for each genre.

An random document is compared against every centroid and this process is repeated I times. Every time a Different Feature Sub-set is used. Then, the scores are ranked from highest to lowest and the number of times the document is top-matched is measured, with every class. The document is assigned to the genre with maximum number of matches. A  $\sigma$  threshold is regulating amount of documents remaining unclassified, i.e. the RFSE responds "I Don't Know" for these documents.

The similarities function which they have been tested was cosine similarity, MinMax similarity, its combination. The similarities are combined in a way where their confidence scores are compared among all iterations at the end of the process for every document. Moreover, cosine and MinMax have different mean and standard deviation for the set of all evaluation documents and all iterations per document, thus the scores are first normalized and then are combined to amplify the confides score towards the dominant prediction.

An other recent approach related to the open-set classification on the *Text Classification* problem was suggesting the reduction of the *open space risk* using an SVM based methodology. Particularly, they are comparing eight (8) SVM based methods (additionally with an EM Semi-supervised method) in a open-set setup. They have compared their method with an SVM center-based similarity space learning methods and some other methods, also in a open-set setup. Their method outperformed the others significantly, with some exceptions.

Their main contribution is the transitions of the problem form the *feature space* to the *distance space*. Particularly they are using ten (10) different centroids one for each of the five (5) different distance measures proposed by (Fei and Liu 2015.....) and for two (2) different document representations one for uni-grams and one for bi-grams. Their centroids are calculated using eq??

$$c_{j} = \frac{\alpha}{|D_{+}|} \sum_{d_{i} \in D_{+}} \frac{x_{j}^{i}}{\|x_{j}^{i}\|} - \frac{\beta}{|D - D_{+}|} \sum_{d_{i} \in D - D_{+}} \frac{x_{i}^{j}}{\|x_{i}^{j}\|}$$
(2.5)

where  $D_+$  is the set of documents in the positive class and |.| is the size of function.  $\alpha$  and  $\beta$  are parameters, which are usually set empirically.

The SVM methods under testing where 1-vs-rest multi-class SVM (Platt200...), 1-vs-set Machine SVM (**scheirer2013toward**), W-SVM (Scheirer2014....), *P*<sub>1</sub>-SVM (Jain2014), *P*<sub>1</sub>-SVM (Jain2014), Exploratory Seeded K-means (Exploratory EM) (Dalvi2013...). They have also used a kind of *openness testing*, by using 25% to 100% of the classes and their method were mostly outperforming the other methods. The macro-F1 score range of their methods from the most open set-up to the totally closed (i.e. using the 100% of the classes) was from 0.417 to 0.873 depending on the corpus and the special class set-up (**fei2016breaking**).

In this work it is presented an adapted implantation, for the WGI task, of the *Nearest Neighbours Distance Ration (NNDR)* which it is also handles the open space risk and it is presented in detail in chapter ?? and described in algorithm ??.

NNRD algorithm is our variant implementation of the proposed in (**mendesjunior2016**). In the original approach euclidean distance has been used because of the variation of data set on which the algorithm has been evaluated. in algorithm ??, the cosine distance is used, because in text classification is being confirmed to be the proper choice in hundreds of publications.

The NNRD algorithm is an extension of the *Nearest Neighbors* NN algorithm where additionally to the sets of training vectors (one set for each class) a threshold is selected by maximizing the *Normalized Accuracy* (NA) as shown in equation??) on the *Known* and the *Marked as Unknown samples*.

$$NA = \lambda A_{KS} + (1 - \lambda) A_{MUS} \tag{2.6}$$

where  $A_{KS}$  is the Known Samples Accuracy and  $A_{MUS}$  is the Marked as Unknown Samples Accuracy. The balance parameters  $\lambda$  regulates the mistakes trade - of f on the known and marked - unknown samples prediction.

The optimally selected threshold is the the *Distance Ratio Threshold* (DRT) where NA is maximized. Equation ?? is used for calculating the Distance Ratio (DR) of the two nearest class samples, say  $s_{c_a}$  and  $u_{c_b}$ , to a random sample  $r_x$  under the constrain  $c_a \neq c_b$ , where  $c_g$  is the sample's class.

It is very important to note that the  $c_g$  is trained in an open-set framework, therefore, the samples pairs selected for comparison might either be from the known of the marked as unknown samples. Thus  $g \in 1, 2, ..., N$  and  $g = \emptyset$  when samples is marked as unknown.

$$DR = \frac{D(r_x, s_{c_a})}{D(r_x, s_{c_b})}$$
 (2.7)

where D(x,y) is the distance between the samples where in this study is the *Cosine Distance*. Therefore, the fitting function of the NN algorithm, described in algorithm  $\ref{eq:cosine}$ , is the optimization procedure to find the DRT values for classes respective sets of training samples where NA is maximized.

The NNDR is a open-set classification algorithm, therefore, a random sample will be classified to one of the classes it has been trained or to the *unknown class* when its DR score is greater than DRT threshold. During training the DRT values are tested incrementally until the optimal data are fitted for the training function.

In prediction phase the DRT is passed to the NNDR prediction function together with the training samples as shown in algorithm. Then for every sample of the testing set a classification decision is returned as shown in algorithm ??.

To sum up, as concerns the classification models involved in WGI studies, when a given genre taxonomy is utilized and there is no noise, then well-known machine learning models, like SVMs, decision trees, neural networks, naive Bayes, Random Forests, etc. are used (Lim2005; santini2007automatic; kanaris2009learning; jebari2015combination; sharoff2010web). In case of presence of noise, in a clustering framework described in (kennedy2005automatic) one cluster is built for each predefined class and another cluster is built for the noise. However, the most common approach to handle noise is to build binary classifiers where the positive class is based on a certain predefined category and the negative class is based on the concatenation of all other predefined categories plus the noise (kennedy2005automatic; dong2006binary; levering2008using). Such a combination of binary classifiers can also be seen as a multi-label and open-set classification model where a web page can belong to different genres and it is possible for one page not to belong to any of the predefined genres.

More concrete open-set classification models for WGI have been presented here are the RFSE and the NNRD . In the next chapters these algorithms together with the issues related to the model building for the WGI task in an open-set framework with the presence of Noise is analysed in details. Before that there is one more issue one could pursue in this research domain however it out of the scope of this work and that is way is only preseted here briefly in subsection ??

#### 2.4.1 Web Genre Temporal Property

The temporal idiosyncrasy of the genre-taxonomy is a major factor, yet not deeply studied in the linguistics and computational linguistic domains. Naturally, as in other human arts there is an evolution in the genres, while other genres emerging and others stop existing. Webgenre taxonomy is a result of an even more dynamic environment and it evolves rapidly. Genres are adapting due to the medium transition such as from *News on paper* to *News on the Web*, or because of the medium itself emerging novelties such as the *Blogs* which have evolved to *micro-Blogs* and finally to *the Social-Media*.

In (caple2017genre) there is a characteristic study advocating in the temporal manner of the web-genre, where it is analyzed how the News (as a web-genre) have changed overtime and the way the News sub-genres occurred.

An Enhanced Centroid-based Classification (ECC) ensemble model has been proposed for dealing with adapted genres and the temporal idiosyncrasy of the genre-taxonomy. The

model is an *incremental centroid-based* ensemble where new web pages are classified one by one, where in the testing/production phase the centroids adjust to the new data as long as they are "close-enough" (**jebari2015combination**).

The ECC learning algorithm is calculating an initial set of centroids for every given class based on the equation ?? and then using the threshold calculated by the equation ?? is reevaluating the samples. When the samples of class are not "close-enough" are considered to be *outages* and a new centroid is calculated from the rest of the samples for this class.

$$GC_i^N = \frac{GC_i^S}{\|GC_i^S\|} \tag{2.8}$$

$$\sigma_i = \frac{1}{|g_i|} \sum_{p_j \in T_{r_{g_i}}} sim(p_j, GC_i^N)$$
(2.9)

where  $GC_i^S \in G$  is a set of predefined genre centroids for the  $S_i \in G$  set of samples for each genre class G.  $T_{r_{g_i}} = \{(p_i, g_j) | g_i \in G\}$  is a set of training set samples initially and at the and is formed to  $T_{r_{g_i}} = \{(p_i, g_j) | sim(p_j, GC_i^N) \leq \sigma_i\}$  after eq. will be applied ??.

In the testing phase an arbitrary page is ranked in deciding order to the *similarity-rank*  $\theta(p)$ , as defined in the equation ??. Then the centroids and the threshold are re-calculated based on the equations ?? and ??.

$$\theta_i = \{g_i, sim(p, GC_i^N) > \sigma_i\}$$
(2.10)

$$GC_i^N = \frac{GC_i^S + p}{\|GC_i^S + p\|}$$
 (2.11)

$$\sigma_i = \frac{S_i + sim(p, GC_i^N)}{|g_i|} \tag{2.12}$$

The ECC has been designed to adapt in the evolution of genres in time, thus, it makes no sense to classify the web pages exclusively on the contrary is returning the similarly-rank  $\theta(p)$ . Consequently, this algorithm can be considered open-set because possible for same web-pages the  $\theta(p)$  set might return empty. On the other hand since the algorithm will adapt some web-pages that are not strictly belonging to the genre it is trained for, i.e. noise pages, will be incorporated to the new centroids and the threshold value. Consequently, ECC is sensitive to noise as it has been defined in section ??.

## 2.5 Features Selection and Vector Space Dimensions

In most of the applied research domains where machine learning is the dominant subject of choice the main concern is to extract and select the proper features from the raw data samples of the data set. Therefore, in addition to the process of inverting a machine learning method for inducing prediction models for the problem the process of feature extraction and dimensionality reduction are coming together. The same applies for the WGI where most of the focus where in these two procedures and less in creating new machine learning algorithms. On the contrary, in all studies usually a closed-set and out-of-the-box ML models were tested with the exception of the cases described in sections ?? and ??.

In this section are summarized all feature selection and dimentionality reduction successful ideas for WGI and AGI. To begin with the features that can be extracted from a web-pages can be grouped to the *textual*, the *HTML tags* and the *URL links* with or without their *anchor text*. Cornering the URL links it will be discussed in more detail in section ?? where either the

URL it self as a character string can be analyzed or the structure of the web-pages connections can be exploited (abramson2012\_URL; asheghi2014semi; jebari2014pure\_URL; priyatam2013don\_URL; zhu2011enhance).

In respect of the HTML tags, the most adaptive approach it the frequency counting of the HTML tags distributed in the hypertext. Special focus in some cases are given to the image tags and the link tags(Lim2005; levering2008using). There are also other cases where only pure structural information of a web page, i.e. the HTML tags, are exploited [Philipp Scholl]. In addition there are very few cases where the DOM object structure is analyzed for extracting information but usually as part of the whole set of features selected and not as a stand alone choice (mehler2011integrating).

The *Textual content* is the most analyzed part of the hypertext which has been used for WGI (mason2009distance; Sharroff2010). There are several features than can be extracted used alone or combined to getting the maximum information one can get from the web-paged and feed it for training a prediction ML algorithm. Character n-grams, Word n-grams, Part-of-Speach n-grams and some *special discriminative words* have been commonly used and usually combined with some heuristically extracted features (kanaris2009learning;

kumari2014web; levering2008using; Lim2005; mason2009n; onan2018ensemble; petrenz2011stable; sharoff2010web; Nooralahzadeh2014).

The web-page's extracted features were also presented in a variety of text representation schemes such as Term Frequency (TF), Term Frequency Inverted Document Frequency (TF-IDF), Binary Term, and Smoothing Distribution (see LOWBOW ref). The *Superficial Document Characteristics (SDC)* can be considered as features and document representations together where they are the counts of the Words lengths (in characters) frequency, the Sentencies length (in words) frequency, the Paragraphs length etc. In addition the Max, Min, and Ratios of these SDC were also count such as the *Average to Max size of Words Ratio, the Max Word Length Frequency* etc. In general several facets, i.e. *terms types*, have been tested for WGI cornering the Hypertext (**feldman2009classifying**; **santini2005linguistic**).

Superficial features, such as *colon frequency, document length, sentence mean length and single-sentence paragraph count*, were successfully used as in input to an SVM classifier for a closed-set genre classification task where training and testing has been applied on different languages (cross-lingual genre classification) (**nguyen2019cross**).

Usually, the combination of features from different sources enhances the robustness of WGI approaches (**levering2008using**; **kanaris2009learning**). However, features extracted from textual content are more robust since they do not depend on technology or format used to create a web page and therefore they are more likely to remain constant in time given that the W3C is changing the specification of the HTML regularly, for covering the occurring needs. This is the reason that this work is only focusing on the textual information in the next chapters.

Althought the textual information is more robust and constant in time there are a lot of heuristics that where successfully in WGI and AGI experiments. In section ?? the most interesting feature extraction heuristics are summarized.

#### 2.5.1 Heuristics has been used with success in WGI

#### (ADD LOWBOW MAYBE)

Raw document pre-processing is essential part for the document categorization and this is the case for the WGI also. Several heuristic methods for selecting and/or extracting the document's information have been tested together with the representation of the extracted information a vector space. The objective o these heuristics is to capture the features carriers of the required information for training the model correctly and moreover, to reduce the vector space implicitly compare to the BOW approach.

To begin with, it shown that the Writing Style Features and Key Event Placement (KEP) Features are improving significantly the performance of the SVM classifier (dai2018fine). The writing style features are extracted as a combination of other complex features, i.e. the combination of grammar production rules (GPR and features from a semantic category of a Linguistic Inquiry and Word count (LIWC) dictionary. GPR are the combination of POS and word lexical rules. LIWC is a sophisticated dictionary of occurrences of word from a word category. The KEP is a set of text formatting features, or "landmarks", such as specific characters, time, location at specific areas of the text. In practice it is the words overlapping count between the first paragraph and the title of a document. The combination of these structured based features has improved the macro-F1 performance.

Another notable methodology in respect of the feature selection and document representation is the *Complexity Measures (CM)*. Particularly a sliding window of characters and words is considered over a text. Then using this window several heuristics and superficial metrics are counted and/or calculated. Particularly there are 32 features, depicted in table ??. These features can be categorized in the following four (4) classes: (1) *Raw Text Features* such as the Mean Sentence Length, (2) *Lexical Features* such as Type Token Ration, (3) *Morpho-Syntactic Features* such as Lexical Density, (4) *Syntactic Features*, such as *Complex Nominals* per term unit (strobel2018text).

The Blog is a genre with special interest for several research domains and as might be expected it has its own special set of heuristics for selecting informative features. This requires Lexical Analysis, Morphological Analysis, Lightweight Syntactical Analysis and Structural Analysis. In table ?? all the linguistic properties used for Blog's sub-genres classification are presented in detail. In (virik2017blog) there is a detailed analysis for the correlation of the linguistic features and the Blog's sub-genres. Example of these sub-genre are informative, affecting, reflective, narrative, emotional and rational.

The automated genre-taxonomy is a subject of interest in other domain of intellectual products (e.g. paintings, music, movies etc) as explained before. Movies taxonomy has also a special interest for the technology and entertainment industries, besides other methods a special interst for this work is the case where the genre of a moves is induced by textural features such as the subtitles and the text description of a video content. These features are summarized in table ??. Particularly, BOW, Superficial and Syntactical features were combined. Superficial features in this study were called content-free and the ones related to specific words called content-specific (lee2017text). In the process it has been found that not all these features were so important. The most important of them were the Token-Type Ration, Words per minute, Characters per minute, Hapax legomena, Dis legomena, Short words ratio, Rations of (10, 4, 3, 1)-letter words.

Wikipedia and in general Wiki sites, is considered as a special genre due to its characteristic, mainly the rich of textual content per page and secondary its *informative linguistic register*. Also there are several sub-genre wiki pages which are also characterized as *Popular Science* web-site and web-documents (e.g. Wikipedia, Nature, New Scientist, Wikinews, etc). There are some heuristically selected features that seems to work well for classifying the wiki-pages into a sub-genre taxonomy. Table ?? shows the set of features used for capturing sub-genre of the Popular Science. Testing these feature with a clustering algorithm it has been shown that 4 clusters can be formed with where their centroid have as significant distance. Thus the documents can be separated easily. Although, the performance scores were not very high this approach seems promising (lieungnapar2017genre).

Registers and Genres are correlated and also used interchangeably, although different. A set of "abstract" features can be used for explicitly correlating the registers and the Popular Science sub-genres. In table ?? are presented these abstract features are listed, which potentially can be tested for any register to genre correlation other than the aforementioned use case.

As registers are also considered as genres then there is also a set of heuristics have been used for a classification for this taxonomy. Particularly in (**onan2018ensemble**) Language Function Analysis (LFA) has been introduced for a classification task on a taxonomy of *Expressive*, *Appellative*, and *Informative* classes.

The LFA is combining features that successfully used for Authorship Attribution (AA), Linguistic Features (LF), Character n-grams (CNG), Part of Speech n-grams (POSNG), and the frequency of the most discriminative words (MDW).

- Features used in authorship attribution (AA) usually are words, POS n-grams, character n-grams, capitalized words, lowercase words frequency, punctuation and quotation marks frequencies.
- Linguistic features (LF) usually are time and money entities, POS, personal pronouns, possessive pronouns, adjectives and nouns frequencies.
- Character n-grams (CNG) usually means their frequency of the n-grams, over a specific frequency threshold, say at least 4 times occurrence.
- Part of speech n-grams (POSNG) same as CNG but for POS.
- The frequency of the most discriminative words (MDW) this is usually task dependent.

News sub-genres is also a subject of great interest in several domain related to text categorization. The News sub-genre are also resembles more to document registers such as the case of  $\{News - Fact, News - Opinion, Review - Positive, Review - Negative\}$ . This kind of classification is also called Domain Transfer AGI Task (finn2006learning).

*Text Statistics* features have been used for such a task described in table ??. It seems that special function words frequencies have a special significance in these special case.

**Image processing features for document AGI** In (chen2012genre) there is a very interesting approach where image processing features have been used for the AGI for categorizing *office documents*. In their experiments interestingly the image-based features were significantly better that the text-features when coopering their work to previews ones. The combination of both was increasing the performance even more.

The image-based features were extracted by splitting the image of the document into 25 tils (5 horizontally and 5 vertically) plus a full-page til. The image-based features used where; (a) *Image Density*, (b) *Horizontal projection*, (c) *Vertical projection*, (d) *Color Correlogram*, (e) *Lines*, (f) *Image Size*. In all cases the documents images where converted to back and white for these features to be extracted. The exception is the *Correlogram* which is analyzing the full color spectrum of the document's in its image format.

- The Image Density utility was used for differentiating where the images and the text
  was located. In addition the titles form the rest of the text could be also separated. To
  capture this feature the black to total pixels ration was calculated for each til of the
  document.
- The *Horizontal Projection* was used for differentiating the slides where the text is large and less than the rest of the non-slides documents. After the process required for locating the text boxes (similarly tho the OCR software) then a five-bin histogram were used for identifying the majority of the text font sizes.
- The *Vertical Projection* was used to differentiating the papers from tables by capturing the number of text columns and the distribution of their width. Similarly to the horizontal projection a five-bin histogram of column width were used.

- The *Color Correlogram* is representing the spatial correlation of colors. The process is starting by quantizing the colors to a 96 scale in distance range for 0 to 1. In addition 3 pixels are used thus every til of the document has 288 dimensions. The selection of the optimal features for reducing even farther the dimensions was operated using Maximally Relevant Minimally Redundant (mRMR) method, resulting 50 features pare til. The preservation of the location of the spatial color correlation coefficients is important thus an implicit strategy was followed. Particularly after the mRMR the selected features where preserved to their til-vector position and then all tils vectors concatenated into one vector. Finally the non-selected features from mRMR where discarded and the "compressed" form of the concatenated vector was the final outcome of the Correlogram preprocessing.
- The Lines was used particularly for locating tables. The process was operated on the
  full-page til and it was measuring the continues sequence of black pixels of the black
  and white form of the picture. Then a line-length histogram was used for discriminating the table lines from other lines present in a text such as header of footer lines often
  met in textbooks.
- The *Image Size* was operated only on the full-page size, for finding the page size of the document and differentiate the papers form slides or picture usually having different sized while papers usually delivered in a specific size page size.

However, their experiments where conducted to a very special case of the AGI research and for a very specialized taxonomy the *office documents*. The corpus was including *Papers* such as PDF, *Photos* such as JPG, *Slides* such as PowerPoint, *Tables* in documents. This corpus has been collected manually and then also manually annotated. *Fleiss' Kappa* agreement score for the annotators, has been used in order to evaluate the quality of their corpus (the *Kappa* score was from 0.88 to 0.92).

The image-based features described above are similar to the ones used from the human evaluator in (clark2014vou) described in ??.

**Graph based features** Several heuristics, superficial, lexical, grammatical, syntactical and specialized to context information has been explored for WGI/AGI in the context of using the textual information of the text/web-pages. However, there is a effort from (**nabhan2016graph**) where they using Graph-based features for *Text Genre Analysis*. This work is no testing these features for identification or classification. However, it seems that the texts-genres are having *Graph Properties Measurements* than can potentially could be used for automated identification.

The graph measures has been analysed related to the text-genre were *Node degree*, *Clustering Coefficient*, *Average Shortest Path Length*, *Network Diameter*, *Number of Connected Components*, *Average Neighborhood Connectivity*, *Network Centralization* and *Network Heterogeneity*. The graph they used was constructed be Word 2-Grams (bigrams). The graph was underweight and no bigram frequency was considered.

The average node degree, i.e. the number of neighbors connections, shown to be a discriminating criterion for discriminating for example *scientific* to *humor genres*. Higher average node degree may indicate a preference to use established vocabulary than a random one.

The clustering coefficient with high value would mean there is tendency for a set of nodes to cohere or stay connected in a sub-network. The *Religion, Fiction* and *Adventure* seems to have higher value to their clustering coefficient compare to *News, Editorial* and *Hobbies*.

The Number of connected components with high number is indicating a *Topic Diversity* within genre. News and Hobbies shown to have higher score, i.e. higher diversity, than

Religion and Fiction. Related to this, also high score in Network Centralization seems to be a good indicator for Fiction and Adnventure genres.

The Network Heterogeneity where shown to be higher in News and Hobbies reflects the tendency of the graph to have alto of links between high-degree to low degree-nodes. This can indicate tendency to use functional keywords in text.

Genre-specific graph characteristics also found it this study. Such as, high global clustering coefficient found for Learned and Religious text genres. Moreover, the Average Local Clustering strongly correlated to the node degree shown to be a good indicator for genres showing concentration to specific concepts.

Ultimately, the graph-metric patterns can also be used for discovering the existence of sub-genre within a genre such as in News. It has been shown that there are some areas in the News genre bigram graph with *High Node Connection Concentration* (or High edge Concentration.

Readability Assessment Features Finally, the *Readability Assessment Features (RAF)* have also been tested for the WGI/AGI task. Moreover, a primitive attempt also presented related to these features where they have been evaluated (and compared to others features) in their effectiveness on different taxonomies. Particularly they compared on the *Domaintaxonomy* and the *Genre-taxonomy* (falkenjack2016exploratory).

Although, there is a ambiguity in the research literature related to the Domain/Genre definition, usually the genre considers to be (as explained in section ??) more abstract and related to the texts organization, rhetorical structure, length, syntax, morphology and vocabulary richness. Domain is more related to the General topic of a group of text. Consequently, Sports as category is considered to be a Domain while Academic papers are considered Genres.

It has been shown that genre-taxonomy ML classification is benefit by the use of RAF while the domain-taxonomy does not.

The RAF are very old in because they are studied since 1920 where their main purpose is to help in the evaluation of a text in respect the ease in reading and comperhation by the abilities of the reader. Although, the function includes two (2) variables the research is mainly focusing on the aspect of the evaluation of the text side only.

The most basic metrics are LIX metric (see eq ??), OVIX (Word Variation Index) and NR (Nominal Ration) metric. However, since the evolution of ML there are several other text information have been evaluated and also used in combination with the basic metrics (falkenjack2013features).

RAF other than the basics are including some *Superficial features*, *Lexical features*, *Morpho-syntactic features* and *Syntactic features*. Specifically the selected features from every linguistic categories are:

- 1. Superficial: Average Word Lengh (in Characters), Averga Word Length Syllables per word, Average Sentence Length.
- 2. Lexical: Vocabulary Lemmas for Communication, Everyday use, High frequent, Unique.
- 3. Morpho-syntactic: Unigram-POS, Ration-to-content of nouns, verbs etc.
- 4. Syntactic: Average Dependency Distance, Ration of Dependencies, Sentence Depth (in dependency terms), Unigram Dependency Type (based on token terms), Verbal Roots, Average Verbal Arity, Unigram Verbal Arity, Tokens per clause, Average Nominal Pre and Pos Modifiers, Average Number of Prepositional components.

It should be noted that other than the basic LIX, NR and the Superficial of the RAF, all the other are language dependent such as the OVIX which mainly has been tested on Swedish language.

$$LIX = \frac{A}{B} + \frac{C \cdot 100}{A} \tag{2.13}$$

Where A is the number of words, B is the number of periods (colon, dot, capital fist letter), C is the number of long words, more than 6 letters for the English language.

#### 2.5.2 Feature Selection and Term Weighting Schemes

*Term Weighting Schemes* is also an essential issue together with the features selection for the pre-processing of the web-pages and the induction of the ML models for WGI task.

**TF-IGF** The *term weighting schemes* is an other aspect have been considered merely for WGI. Most of the studies were commonly selecting the TF-IDF schema. In the study of (**sugiyanto2014term**) it is shown that TF-IDF is not the proper schema for the WGI task. On the contrary a TF-IGF schema was proposed and shown to perform better.

TF-IDF is a balancing weighting scheme of the document's terms (Word n-gram, Character n-gram, POS n-gram, etc), in a collection of documents, where it regulates the information value of the very low and very high frequency terms of the collection. That is, it decreases the value of the very high frequency terms, and increases the the very low frequency terms when they are occurring in a high amount of documents in the collection ( and also low in the document level). The calculation of a terms IDF in a documents collection is shown in equation ??

$$IDF(T) = log\left(\frac{N}{1 - f_{D,T}}\right) \tag{2.14}$$

where N is the number of the collection documents and  $f_{d,t}$  is the frequency of the documents where term t occurs. Following the same line of thought, and replacing the collection of documents with a collection of documents on a specific genre TF-IGF is a weighting schema where the high frequency terms in the genre are smoothed and the low frequency terms are weight higher as long as they occur in a significant amount of documents of this genre. Then in a multi-genre corpus the Term Frequency - Inverse Genre Frequency (TF-IGF) is calculated as in equation  $\ref{eq:total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_tot$ 

$$F^{TF-IDF}(T) = f_{T,G_i} \cdot log\left(\frac{N}{1 - f_{G_i,T}}\right)$$
 (2.15)

where  $f_{T,G_i}$  is the frequency of the Term in the genre and  $F^{TF-IDF}(T)$  is the TF-IGF. In (**sugiyanto2014term**) they also used the average  $Avg(F^{TF-IDF}(T))$  for ranking the terms and they have tested the 100, 500, and 1000 most frequent in average terms. Comparing them with the averaged TF-IDF on their 7-Genre corpus they show clearly that the confusion matrix has great improvement when it used as an input to a *Random Forest Algorithm*. Especially for the 100 features where the  $F_1$  climbed from 0.091 to 0.642 and for 500 to 0.775 from 0.249.

Although the improvement was impressive by just changing the weighting schema, especially for the size of the vector space, one should consider that the experimental set-up was only for the closed-set scenario. Moreover, the TF-IGF similarly to the TF-IDF is tightly related to the collection itself, therefore, the results closely are related to the 7-Genres collection. Given that these collection are old and the nature of the highly temporal idiosyncrasy of the genre-taxonomies, it is high likely this method to have high bias. On the other hand in closed-set cases where the texts collection is constrained considering documents number (i.e. slowly expanding) and genre-taxonomy size (i.e. rarely updated) the TF-IGF seems to be efficient, and with very low computational cost.

**Fuzzy extension of TF-IDF** In section ?? a set of heuristics presented where Video content can be categorized on its respective genre taxonomy based on the textual information of the videos such as the subtitles and the small description of the video. In formation from public site like IMDB and Movelens. There it is also possible for the the users to create their own *tags* in addition to the *keywords* mainly created for the data curators of these sites.

These user created tags can be exploited in a similar manner as the words of the subtitle text for classification of the video to their genre. Particularly there is a work where the tags, and the keywords are used for multi-class classification task of Movies upon their genre. It has been shown that the user tags is a rich information source and more effective than keywords alone. However, the user tags wouldn't be useful features without the proposed Fuzzy extension of TF-IDF weighting schema. This schema returned  $F_1$  score up to 0.9 when user tags alone where used.

Although the above method was aiming for building an effective recommendation system here it is presented briefly for the innovative weighting scheme which is exploiting the meta-data of the tags. Particularly the aforementioned user tags are in fact triplets of  $\{Tag,Movie,User\}$ . The idea is to exploit the frequency of the users selecting a tag for a movie and then the frequency of the movies a tag was occurring, similarly to the TF-IDF.

To do so initially the *Appropriateness* of a tag is evaluated by counting the number of time a user is tagging a movie with the same tag when a movie is belonging to a specific genre by using equation ??

$$tf(u_j, g_i) = \frac{\sum_{m \in G} tagged(t, u, m)}{\max_{t \in T} \sum_{m \in G} tagged(t, u, m)}$$
(2.16)

where tagged(t, u, m) is 1 when a user u tag with t the movie m when it belongs to genre g, and 0 if not. The score of a tag similar to the TF-IDF is called Degree  $deg(t, m, g_i)$  and it is the weighted frequency of users as singled this tag by the *Importance Score imp* $(t, g_i)$  of the tag, as shown in equation ??

$$deg(t, m, g_i) = uf(t, m) \cdot imp(t, g_i) \tag{2.17}$$

Where uf(t,m) is the frequency of the users assigned the this tag to a movie m. The imp() is calculated by the Fussy Linguistic Ordered Weighted Averaging Aggregation Operator (OWA) of the equation ?? weighted by the Uniqueness of the tag. The uniqueness is also the OWA compliment of the term among all the genres of the taxonomy. The imp() is then calculated by the equations ?? and ??.

$$t_{most}(g_i) = \oint_{j=1}^{U} t f_{(u_j, g_i)}$$
 (2.18)

$$imp(t,g_i) = \oint_{i=1}^{U} t f(u_j,g_i) \cdot (1 - \oint_{i=1}^{G} t_{most}(g_i))$$
 (2.19)

Where  $\oint = OWA$ ,  $g_i$  is a particular genre, G is the number of the genres in the taxonomy and U is the number of users used this tag for this genre.

Finally, for the movie genre categorization a binary vector of the genres list is returned of the *Quantised*  $\max_{t \in T} deg()$ . The maximum degree values of the genre tag is set to 1 when it is above the *mean values of all tag-degrees* and zero otherwise.

TABLE 2.1: Complexity Measures table as found in (strobel2018text).

| CM Name                               | Definition         | NLP Category     |
|---------------------------------------|--------------------|------------------|
| Number of Different Words / Sample    | $Nw_{diff}/Nw$     | Lexical          |
| Correct Type-Token Ration             | $T/\sqrt{2N}$      | Lexical          |
| Number of Different Words             | $Nw_{diff}$        | Lexical          |
| Root Type-Token Ration                | $T/\sqrt{N}$       | Lexical          |
| Type-Token Ration                     | T/N                | Lexical          |
| Lexical Density                       | $N_{lex}/N$        | Morpho-Syntactic |
| Mean Length Clause                    | $N_W/N_C$          | Morpho-Syntactic |
| Mean Length Term-Unit                 | $N_W/N_T$          | Morpho-Syntactic |
| Sequence Academic Formula List        | $N_{seq}/AWL$      | Raw text         |
| Lexical Sophistication (ANC)          | $N_{ANC}/N_{Lex}$  | Raw text         |
| Lexical Sophistication (BNC)          | $N_{BNC}/N_{Lex}$  | Raw text         |
| Kolmogorov Deflate                    | KS2011             | Raw text         |
| Morphological Kolmogorov Deflate      | KS2011             | Raw text         |
| Syntactic Kolmogorov Deflate          | KS2011             | Raw text         |
| Mean Length Sentence                  | $N_W/N_S$          | Raw text         |
| Mean Length of Words                  | $N_C/N_W$          | Raw text         |
| Words on New Academic Word List       | $N_{W^{AWL}}$      | Raw text         |
| Words not on General Service List     | $\neg N_{W^{GSL}}$ | Raw text         |
| Clause per Sentence                   | $N_C/N_T$          | Syntactic        |
| Clause per Term-Unit                  | $N_C/N_T$          | Syntactic        |
| Complex Nominals per Clause           | $N_{CN}/C$         | Syntactic        |
| Complex Nominals per Term Unit        | $N_{CN}/N_T$       | Syntactic        |
| Complex Terms Units per Term Unit     | $N_{CT}/N_{T}$     | Syntactic        |
| Coordinate Phrase per Clause          | $N_{CP}/N_{C}$     | Syntactic        |
| Coordinate Phrase per Clause          | $N_{CP}/N_T$       | Syntactic        |
| Dependent Clause per Clause           | $N_{DC}/N_C$       | Syntactic        |
| Dependent Clause per Terms Unit       | $N_{DC}/N_T$       | Syntactic        |
| Mean Length of Words (syllables)      | $N_{Syl}/N_W$      | Syntactic        |
| Noun Phrase Post-modification (words) | $N_{NP^{Post}}$    | Syntactic        |
| Noun Phrase Pre-modification (words)  | $N_{NP^{Pre}}$     | Syntactic        |
| Noun Phrase Pre-modification (words)  | $N_{NP^{Pre}}$     | Syntactic        |
| Term Units per Sentence               | $N_T/N_S$          | Syntactic        |
| Verb Phrase per Term Unit             | $N_{VP}/N_T$       | Syntactic        |

TABLE 2.2: Blogs' special features table as found in (virik2017blog).

| Type                                            | Description                                                                                                           | NLP Category  |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------|
| Special Character Fre-                          | Frequency of: @, #, \$, %, <whitespace>,&amp;,</whitespace>                                                           | Lexical       |
| quency                                          | -, =, +, !, ¿, ¡, [, ], /,                                                                                            |               |
| Word Count                                      | Number of alphanumeric tokens                                                                                         | Lexical       |
| Unique Lemma Count                              | Number of unique identified tokens                                                                                    | Lexical       |
| Abbreviation Frequency                          | Ration of abbreviations to all words                                                                                  | Lexical       |
| Ratio of long to short words                    | Long words consist of three and more syllables                                                                        | Lexical       |
| Misspelled words Frequency                      | Ration of misspelled words of all words                                                                               | Lexical       |
| Noun Frequency                                  | Ration of nouns to all words                                                                                          | Morphological |
| Adjective Frequency                             | Ration of adjectives to all words                                                                                     | Morphological |
| Pronoun Frequency                               | Ration of pronouns to all words                                                                                       | Morphological |
| Verb Frequency                                  | Ration of verbs to all words                                                                                          | Morphological |
| Proper Noun Frequency                           | Ration of proper nouns to all words                                                                                   | Morphological |
| Ratio of Open to Closed<br>words Classes        | Words open to Inflection which include<br>nouns, adjectives, pronouns, numerals, and<br>verbs                         | Morphological |
| Ratio of functional to<br>Content words Classes | Words with only grammatical function. Content words include nouns, adjectives, numerical, non-modal verbs and adverbs | Morphological |
| Frequency of sequences                          | Five of more consecutive functional words                                                                             | Morphological |
| of functional words                             | with tolerance of one closed word                                                                                     |               |
| Sentence Count                                  | Number of identified sentences                                                                                        | Syntactical   |
| Average Sentence Count                          | Average sentence length in number of words                                                                            | Syntactical   |
| Ratio of Simple to Compound Sentences           | Compound consist of two or more sentences                                                                             | Syntactical   |
| Average Sub-sentence Count                      | Sub-sentence is simple sentence inside a compound sentence                                                            | Syntactical   |
| Dominant Tense of Predicted Candidates          | Present, future and past                                                                                              | Syntactical   |
| Dominant Person of Predicted Candidates         | First, second and third                                                                                               | Syntactical   |
| Dominant Number of Predicted Candidates         | Singular and plural                                                                                                   | Syntactical   |
| Link Frequency                                  | Ration of number of Links to number of Sections                                                                       | Structural    |
| Image Frequency                                 | Ration of number of Images to number of Sections                                                                      | Structural    |
| Section Count                                   | Number of Sections                                                                                                    | Structural    |
| Standard Deviation of Section length            | Deviation of the number of words in sections                                                                          | Structural    |

TABLE 2.3: Video content genre classification special features, based exclusively on text (subtitles etc) table as found in (lee2017text).

| Туре                                                                                    | Description                                                                            | NLP Category                |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------|
| Average words per minute                                                                |                                                                                        | Textual/Superficial         |
| Average characters per minute                                                           |                                                                                        | Textual/Superficial         |
| Average word length                                                                     |                                                                                        | Textual/Superficial         |
| Average sentence length                                                                 |                                                                                        | Textual/Superficial         |
| in terms of words                                                                       |                                                                                        |                             |
| Type/token ratio                                                                        | Ratio of different words to the total number of words                                  | Textual/Superficial         |
| Hapax legomena ratio                                                                    | Ration of once-occurring words to the total number of words                            | Textual/Superficial         |
| Dis Legomena ratio                                                                      | Ration of twice-occuring words to the total number of words                            | Textual/Superficial         |
| Short words ratio                                                                       | Words less than 4 characters to the total number of words                              | Textual/Superficial         |
| Long words ratio                                                                        | Words more than 6 characters to the total number of words                              | Textual/Superficial         |
| Words-length distribution                                                               | Ratio of words in length of 1-20                                                       | Textual/Superficial         |
| Function words ratio                                                                    | Ratio of function words to the total number of words                                   | Textual/Superficial         |
| Descriptive words to nominal words ratio                                                | Adjectives and adverbs to the total number of nouns                                    | Syntactical                 |
| Personal pronouns ratio                                                                 | Ratio of personal pronouns to the total number of words                                | Syntactical                 |
| Question words ratio                                                                    | Proportion of wh-determiners, wh-pronouns, and wh-adverbs to the total number of words | Syntactical                 |
| Proportion of question<br>marks to the total num-<br>ber of end sentence<br>punctuation |                                                                                        | Syntactical                 |
| Exclamation mark ratio                                                                  | Proportion of exclamation marks to the total number of end sentence punctuation        | Syntactical                 |
| Part-of-speech tag n-<br>grams                                                          | named of the solutions panetation                                                      | Syntactical                 |
| Word n-grams                                                                            | Bag-of-words n-grams                                                                   | Textual/Content<br>Specific |

TABLE 2.4: Popular science web-documents Sub-genres special features, based exclusively on text, found in (**lieungnapar2017genre**).

| Type          | Description                                                                      |
|---------------|----------------------------------------------------------------------------------|
| Average sen-  | Average number of words per sentence with the text. Longer sentences are         |
| tence length  | commonly used to mark complex and elaborated structure.                          |
| Average       | Average number of sentences per paragraph with the text. Longer paragraphs       |
| paragraph     | are frequently used to mark information density.                                 |
| length        |                                                                                  |
| Discipline-   | Number of specialized vocabulary items in content-specific areas as a propor-    |
| specific      | tion of total number of words. Discipline-specific words are frequently used to  |
| word density  | express referential information in specific subject areas.                       |
| Phrasal verb  | Number of phrasal verbs as a proportion of total number of verbs. Since          |
| density       | phrasal verbs manifest a degree of informality and textual spokenness, a high    |
|               | frequency of this feature suggests a narrative purpose.                          |
| Compound      | Number of open compound nouns as proportion of total number of nouns. A          |
| noun density  | high frequency of compound nouns indicates greater density of information.       |
| Modal verb    | Number of modal verbs as proportion of total number of words. Modality is        |
| density       | used to mark explicit persuasion.                                                |
| Verb density  | Verbs indicate a verbal style that can be considered interactive or involved and |
| Ž             | are used for overt expression of attitudes, thoughts, and emotions.              |
| Adjective     | Number of adjectives as proportion of total number of words. A high fre-         |
| density       | quency of adjectives can be associated with high informative focus and careful   |
| •             | integration of information in a text.                                            |
| Adverb den-   | Number of adverbs as a proportion of total number of words. Adverbs are used     |
| sity          | more frequently to indicate situation-dependent reference for narrating a story. |
| Lexical rep-  | Yule's characteristic K, the variance of the mean number of occurrences per      |
| etition       | word. The larger Yule's K, the more the lexical repetition, Greater use of       |
|               | repetition results from the purpose of explicitly marking cohesion in a text and |
|               | informative focus.                                                               |
| Coordinating  | Number of coordinating conjunctions as a proportion of total number of sen-      |
| conjugation   | tences. Coordinating conjugations are commonly used to show formality in         |
| density       | reverentially explicit discourse.                                                |
| Content       | Number of content words as proportion of total number of words. Content          |
| word density  | words mark precise lexical choice resulting in presentation of informative con-  |
|               | tent.                                                                            |
| Evaluation    | Numbers of evaluation moves as portion of total number or sentences. Evalu-      |
| move den-     | ative language in normally used to express emotions and attitudes.               |
| sity          |                                                                                  |
| Vocabulary    | Sums of probabilities of encountering each word type in 35-50 tokens. A high     |
| diversity     | diversity of vocabulary results from the use of many different vocabulary items. |
|               | Narrative texts often have high vocabulary diversity.                            |
| Logical con-  | Number of logical connectives per 1000 words. A high frequency of logical        |
| nective den-  | connectives indicates an informative relation in a text.                         |
| sity          |                                                                                  |
| Prepositional | Number of prepositional phrase per 1000 words. Prepositional phrase indicates    |
| phrase den-   | a greater density of information.                                                |
| sity          |                                                                                  |
| Negation      | Number of negation markers per 1000 words. Negation is preferred in literary     |
| density       | narrative.                                                                       |
| Pronoun       | Number of pronouns refer directly to the addressor and addressee and thus are    |
| density       | used frequently in highly interactive discourse.                                 |
| Flesch Read-  | Flesh Reading Ease formula. Higher Flesch reading scores are easier to read.     |
| ing Ease      |                                                                                  |
| 0 =====       |                                                                                  |

TABLE 2.5: Popular science web-documents Sub-genres registers to features correlation, found in (**lieungnapar2017genre**).

| Pop Science Sub-Genre | Key features                                   | Text-Registers            |
|-----------------------|------------------------------------------------|---------------------------|
| Sub-genre 1           | Phrasal verb density, verb density, adverb     | Interpersonal, Nar-       |
|                       | density, vocabulary diversity, logical connec- | rative, Persuasive,       |
|                       | tive density, negation density, pronoun den-   | Informative               |
|                       | sity, Flesch reading ease                      |                           |
| Sub-genre 2           | Modal verb density, Flesch reading ease        | Interpersonal, Persuasive |
| Sub-genre 3           | Average paragraph length, Lexical repeti-      | Informative               |
|                       | tion, Evaluation move density, Prepositional   |                           |
|                       | phrase density                                 |                           |
| Sub-genre 4           | Average sentence length, Discipline-specific   | Informative, Elab-        |
|                       | word density, compound noun density, adjec-    | orated, Impersonal        |
|                       | tive density, coordinating g7conjunction den-  | -                         |
|                       | sity, content word density                     |                           |

TABLE 2.6: Text Statistics, found in (finn2006learning).

| Feature Type                        | Features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Document Superfi-                   | Sentence length, Number of words, Words length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| cial Statistics                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Frequency of various function words | because, been, being, beneath, can, can't, certainly, completely, could, couldn't, did, didn't, do, does, doesn't, doing, don't, done, downstairs, each, early, enormously, entirely, every, extremely, few, fully, furthermore, greatly, had, hadn't, has, hasn't, haven't, having, he, her, herself, highly, him, himself, his, how, however, intensely, is, isn't, it, its, itself, large, little, many, may, me, might, mighten, mine, mostly, much, musn't, must, my, nearly, our, perfectly, probably, several, shall, she, should, shouldn't, since, some, strongly, that, their, them, themselves, therefore, these, they, this, thoroughly, those, tonight, totally, us, utterly, very, was, wasn't, we, were, weren't, what, whatever, when, whenever, where, wherever, whether, which, whichever, while, who, whoever, whom, whomever, whose, why, will, won't, would, wouldn't, you, your |
| Frequency counts                    | ! " \$ % ' ( ) * + : ; = ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| of various punctua-                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| tion symbols                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

# 2.6 Dimensionality Reduction

Dimentionality reduction and the *selected features encoding in to a multi-dimensional vector* is an important aspect concerns the WGI research. As aforementioned *features selection* implicitly affects the compression of the vector space, however, there are other explicit methods than have been tested for WGI.

BOT and TF-IDF approaches seems to work almost as good as more complex features such as POS,  $\chi^2$  statistics etc. However, in some cases explained before such as Wikipedia, blogs, news sub-genre the complex features (and heuristics) seems to work better. It seems that is is the result of the implicit dimentionality reduction which enables an ML model to be optimized in a more informative vector space.

Although, the above statement might be a subject of a great research arguments, what we unsuitably know is that in a smaller and more informational dense vector space a ML algorithm will perform much better with great certainty. Thus, a method that could potentially reduce the vector space and manage to encode the maximum of the required information, it would at least improve significantly the speed performance of any ML algorithm.

In order to make an intuition about the "curse of dimensionality" and on how the feature selection can encode more information in case dimensionality reduction, a mind experiment is presented bellow.

Lets assume task where a ML model should be trained in a multi-class classification task for the whole genre-taxonomy of the WWW and assuming that all the genre of the Web where idd and known. In that case the whole Oxford Dictionary would have defining the vector space of the problem.

The Oxford dictionary English is containing 171,476 words thus the vector space would have been very sparse. The amount words can be calculated also by using the Combinatorial Calculation using the *binomial coefficient* minus the invalid combinations, of the 26 English letters (assuming the whole Web was only written in English language), as shown in equation ??.

$$\binom{n=26}{k=1} + \binom{n=26}{k=2} + \dots + \binom{n=26}{k=MaxEng.Word} = 300,430 - \{InvalidCombinat.\} = 171,476$$

$$(2.20)$$

On the other hand if we are using the Character n-grams of size 3 (C3G) or 4 (C4G) then for C3G the vector space is 2600 *minus the set of invalid combinations* and for C4G becomes 14950. As we also know from the literature and it will presented later in this study the CNG features are returning the highest score in WGI ML modeling. Moreover, the *character tuples* are capturing stylistic properties of the texts, where it is an information which is lost when it is "hidden" in the words.

To conclude, dimentionality reduction is the main objective in the process of feature selection and as explained so far there are several heuristics than can applied to achieve this. There cases where a terms (word or char, n-gram) is selected only when it can be counted in more than a specific number of web-pages in a corpus. Moreover, there are cases where only the words above a specific threshold are selected, usually the length varies from 2 to 5 characters length. In addition is has been shown that *Stop words* (Stamatatos) and *Surface cues* (Kessler) from the superficial document metrics are important and some time better (and lighter in terms of speed in model training) than the raw BOT.

All the aforementioned approaches is a implicit method for dimentionality reduction and documents information encoding. However, *Graph based features* is an explicit method for this and usually is applied after them feature selection process.

Distributional Features/Word Emending based on the words or/and document encoding is the state-of-the-art in IR and NLP because it a practical solution for automatically modeling the process of feature selection, document representation and dimentionality reduction. This is the case for the AGI/ WGI tasks, and it is the second contribution to the domain together with the open-set approach.

In section ?? and it is shown how a week ML algorithm can be trained with 100 times less features than the features given to an better algorithm for the WGI task. Moreover in section ?? there is a discussion related to the word embedding and the *Features Vocabulary Modeling*.

# 2.7 Deep Learning Vocabulary of Distributional Features for WGI

Given the complicated task of AGI, the traditional BOW models are unable to capture the enduring information span across sentences and paragraphs. Themes, registers and other properties of the texts cannot be captured only by the frequencies of the Terms (Word, Character, POS n-grams etc). The abstract concepts, the ontologies, the style and the form of the texts are only merely captured by a combination of heuristics as explained in section ??.

The feature selection is so important that so far the simpler the model the better performs for the WGI task as long as the features are capturing the style and the concepts of the texts. In (pritsos2019open), which is part of this work, and also in (worsham2018genre) the Neural Language Modeling (NLM) is proposed for the first time for WGI an AGI respectively. In both works the conclusion is similar. i.e. the ensemble based and boosting methods which are rather simpler than NLM are stile better performers on the task. However, in respect of speed performance and the automation in the process of feature selection the NLM seem to be the perspective research path for the following years.

Most proposed *NLM* are designed to capture text in a sequential manner. That is, the model is encoding the meaning of the words based on the sequence of the previews terms (or following terms). Therefore, these models also called *Distributional Models (DM)* and the NLM process is also called *Word Emending*. The NNet models which have been tested are the *Convolutional Neural Networks (CNN)*, the Recurrent Neural Networks (RNN), and the *Long Short-Term Memory Networks (LSTM)*.

The experimental procedures of this work is confirming the speed amplification in the WGI training and prediction process, mainly due to the dimentionality reduction and the better encoding of the abstract information required. However, it is also confirming that the process more the NLM was computationally expensive because of the length of the texts. In (worsham2018genre) there was an effort to reduce the problem and increase the performance of the NNet models.

Working with long pieces of text the NNet for example CNN the network is increasing as the data input is growing. On the other hand the RNN and the LSTM are sensitive to long sequences and their hyper-parameters are degenerated then they are becoming very slow in training for overcoming this issue. Moreover, to train these NNet models with long corpora is required a great hardware infrastructure.

In order to reduce the training time and computational cost of the word-embedding modeling one can think of several strategies. It turns out that the best strategies is to use the *All Chapters* training input. That is, the training and the test set is splinted into chapters in a heuristic manner. Then the lengths of the chapters are normalized by getting only the  $C_{Doc}$  length of the whole chapter, say the first 2,000 terms. In case the chapter is shorter the rest of the chapter is padded with an abstract term such as pad.

As it has been reported the all-chapters strategy with a CNN returned  $F_1 = 0761$  score which was the best of all the NNet combinations and features sizes. However, *Random* 

Forests or XGBoost on sequential trees and simple BOW, outperformed the NNet model with  $F_1 = 0.79$  and  $F_1 = 0.81$  respectively. XGBoost is a highly optimized, Gradient Boosting solution which is made up of a boosted set of sequential trees learned from the gradients of some differentiable loss function (Chen and Guestrin, 2016).

In (**pritsos2019open**) a work is presented where Doc2Vec has been used for the WGI task on KI04 corpus. Detail are discussed in section ??. It is shown that *Distributional (DL) features* can make a weak open-set learning algorithm namely the *Nearest Neighbour Distance Ration* classifier to a combative learner. When it come to comparison in the open-set framework with the RFSE, the NNDR seems performing lower, however, the size of the document vectors are 10 to 100 times smaller because of the DL features.

In these experiments the whole KI04 corpus is given to the NNet document encoder. The line of thought is the same as Word2Vec and the word embedding, i.e. as an extension of the words encoding the documents can be encoded to a fixed size vector space.

The state-of-the-art in the text-genre classification and WGI is the Vocabulary-Learning and particularly the use of the deep-learning methods for building comprehensive word encoding vocabularies or document encoding.

This methods due to the nature of the Neural-Networks, mainly used, the procedure for building vocabulary models is *implicitly embedding* a variate of information *syntactical, morphological and structural*. However, there are some efforts, where these kind of information was "explicitly encoded" by using other methods inspired by signal processing and dimentionality or noise reduction techniques.

In (kim2010formulating) it is proposed the *Harmonic Descriptor Representation (HDR)* of the web-pages inspired by the musical analogy of a string musical instrument. Then the document is consider to be a temporla sequence of signals, i.e. the characters or word n-grams. In similar manner to the NLE models it is captured explicitly the *Distributional Properties* of the texts. Particularly instead of the terms occurrence counting the intervals of the the occurrences are measured, in addition the length of the documents are encoded and normalized implicitly.

The HDR word encoding is a tuple of three explicit measurements; the FP, LP and AP. Moreover the *Range* and the *Period* are also introduced. The *Range* is the interval between the initial an the ultimate occurrence of the term and the *Period* is the "time duration", i.e. the count of terms, between two conductive occurrences of the term. Therefore, the HDR vectors components are defined as follows:

- 1. FP: is the time duration before the first occurrence of the term in a web-page. That is the Period before the first occurrence divided by the total number of terms into the page.
- 2. LP: is the time duration after the last occurrence of the term. Similarly calculated as FP.
- 3. AP: is the average period ration as in equation ??.

$$AP = \begin{cases} \frac{N-T}{T \cdot I^{max}}, I^{max} > 0\\ 1, I^{max} = 0 \end{cases}$$
 (2.21)

where T is the term's number of occurrences plus 1, N id the total number of pages terms and  $I^{max}$  is the maximum number of characters found between two consecutive occurrences of the term. The more harmonic the distribution of a terms in a documents the more the AP is closer to 1.

The HDR vocabulary modeling in the 7-Web genres corpus managed to return a accuracy score 0.96 with the SVM algorithm in a closed set classification experimental setup.

Alternative methods and similar the HDR is the *Pointwize Mutual Information (PMI)*. It is the Post-processing of the resulting modeled vectors. Such example is the *unsupervised Post-processing via Conceptors (or Conceptor Negation)*. The main concept is to suppress the outages frequencies using PCA, SVD and most recently Conceptors Negation. The latest is a methodology (unsupervised) of Conceptors are a family of regularized identity maps introduced by (Jaeger 2014 ???) where a linear transformation is taking place minimizing a loss function similar to the PCA process. However, this methodology on the contrary to the PCA is a "Soft" regularization or "Soft" noise filtering, while PCA is considered "Hard". In both cases by projecting the data-point to the prediction space we are able to filter the noise (or outages) samples (CITE Unsupervised Post-processing of Word Vectors via Conceptor Negation).

Textual feature selection and document representation is the main research focus for WGI, with the NLM being the most promising path to follow for the near future. However, the URL and the Hypertext linking graph are the properties of the web-pages have also been exploited in the WGI research. Analogous to the surface and structural types of cues for text features, these features can be treated as cues for extending or mining additional information for the classification process. In addition, some time for example in the cases of the very short textual information in a web-page, the URL and the sibling (in graph) pages are necessary for correctly identifying its genre.

In section ?? the URL and the hypertext graph linking is discussed before the open-set and the NLE modeling, for WGI, will be thoroughly analyzed as the main focus of this work.

# 2.8 The Hyper (URL) links significance

In the IR research, related to the Web-Site/Page search result ranking the URL as a hyperlink and as a string describing the source location is essential element. This is the case also for the WGI task, where both properties of the URL have been tested. In this section all of the effort where the URL have been used substantially and not just as part of the BOW approach are described.

The URL elements exploitation is out of the scope of this work because this work is focusing on the exploitation on the textual information, its encoding, and the ML algorithms for this purpose. On the contrary the URL is changing the definition of the web-genre unit from the web-page to different variation such as the web-site or the section of a web-page. On the whole, the URL for WGI can be consider an amplifier mechanism for the signal than an ML algorithm is using for fitting a model for WGI.

To begin with, a study is based on the web-graph and the implicit genre relation among web pages assuming that neighbouring web pages are more likely to belong to the same genre, a property called *homophily*. Then, the content of neighboring pages is used to enhance the representation of a given web page in a semi-supervised learning framework (asheghi2014semi)...(More details to be written here)

GenreSim is a link-based graph model which exploits *link structure* to select relevant neighbouring pages in order to amplify the information required for a page to be classified to a genre taxonomy. This algorithm is improving significantly cases where the textual information is very low in a web-page such as a web page such as Movie Homepages, Photography websites etc. Particularly in their experiments GenreSim ((( compare to RFSE was performing significantly grater in their *genre-taxonomy corpus named IV-12* with such idiosyncrasy (i.e. move homepages, photography etc) and less or no improvement on corpora such as 7-Genre or KI-04 (**zhu2011enhance**; **zhu2016exploiting**) ))).

*GenreSim* is a ranking algorithm based on *PageSim* algorithm, extended to fit in the problem of genre-taxonomy. Similarly to all this kind of algorithms, is based on the assumption



FIGURE 2.2: GenreSim page selection diagram, found in (zhu2016exploiting).

where the more webpages refereed to a particular page, the more this page is related to them in class of topic and/or genre taxonomy. Respectively to the genre-taxonomy the assumption for the GenreSim algorithm, this relation is expended to the level of forward F(p) and backwards B(p) related URL links. Moreover, the web-pages URL structure is also scored and the pages are characterized as  $Hubs\ H(p)$  and  $Authorities\ A(p)$ . The null hypothesis of the algorithm is that the web pages of the same genre are inter-connected with their URL links. Consequently, a few pages backwards and forwards to a specific web-page consists a "small" network of the same genre. Using this "genre-network", the textual (and partially the structural) information of neighbouring web-pages can be used to amplify the signals required to classify a random page to the proper genre.

Hubs are pages with many outgoing URLs, whereas pages with many URLs pointing to, are called authorities. The number of incoming and outgoing URLs are increasing the respective scores as shown in equation  $\ref{eq:condition}$ . However, web-pages with high score but with few backward URL links its high likely to be "spam" pages in the context of genre relation. In order to regulate this the  $\omega(p)$  factor is intruded of equation  $\ref{eq:condition}$ , where is reducing the score for the web pages with few backward links. In addition, it is also normalizing the "few links" issue. That is, the number of the backward links is correlated to the number of links the page itself is containing.

$$H(p) = \sum_{u \in V \mid p \to u} \omega(p) A(u)$$
  

$$A(p) = \sum_{v \in V \mid v \to v} \omega(p) H(u)$$
(2.22)

$$\omega(p) = \frac{N}{|\log N - \log N(p)| + 1}$$
(2.23)

Therefore the score for a random page in the G graph of web-pages, is calculated by equation  $\ref{eq:commendation}$ ? In general the genre-selection recommendation score is propagated to the graph path P(u,v) as indicated by the Score(u,v) function of equation  $\ref{eq:commendation}$ ? Therefore, the score of a recommended webpage is decreasing gradually as this pages is farther (in hops) from the web-page to be classified. The d factor is set to be 0.5, i.e. the page score is decreasing by half for every hop farther from the page under evaluation.

$$Score(p) = H(p) + A(p)$$
(2.24)

$$Score(u,v) = \begin{cases} \sum_{p \in P(u,v)} \frac{dScore(u)}{\prod_{x \in p, x \neq v} (|F(x)| + |B(x)|)}, & v \neq u \\ Score(u), & v = u \end{cases}$$
(2.25)

Finally, the similarity of the candidate neighbour pages to the one under evaluation is calculated form equation ??. That is, the ration of the min and the max paths-score sums of all the possible paths, backwards and forwards, to the page under evaluation.

$$Sim(u,v) = \frac{\sum_{i=1}^{n} min(Score(v_i, u), Score(v_i, v))}{\sum_{i=1}^{n} man(Score(v_i, u), Score(v_i, v))}$$
(2.26)

GenreSim is combined with an ML algorithm called MCC (Multiple Classifier Combination). Particularly GenreSim utility is to select a set of web-pages where their content (textual and structural) will be used in combination to the "on-page" content, as an input to the MCC algorithm for classification.

The MCC algorithm is a set of SVM classifiers where each is trained to a particular set of features from the webpage and its neighbours, well selected from the GenreSim, webpages. Then a Decision Template, shown in equation ??, is build and used for the classification of a random web-page. Then the Min, Max or Mid values for the classification decision from the matrix are selected for making the final decision for the Genre class of the web-page.

$$DP(p) = \begin{pmatrix} d_{11}(p) & \cdots & d_{1|G|}(p) \\ d_{21}(p) & \cdots & d_{2|G|}(p) \\ & \vdots & \\ d_{N1}(p) & \cdots & d_{N|G|}(p) \end{pmatrix}$$
(2.27)

where |G| is the number of genres in a genre taxonomy and the calcification methods is under a closed set setup with N indented (one for each feature set) SVM multi-class classifier.

Hyperlinks can be exploited by extracting information from the URL string itself and not from the hyper-graph. Particularly, URL can analyzed farther in its components, i.e. the web-site's domain name, the URI which is the path after the domain and the anchor text. Special characters such as {,.,?,\$,%}, top-level domains {.gr,.uk,.com,etc}, and file suffixes such as ".html", ".pdf" are usually discarded and then character n-grams are extracted from the URL counterparts. Finally several weighing schemes were used such as binary, TF or the one described in equation ?? and ??. WGI experiments using only the hyperlink information combined (or not) with other web-page information seems to be a promising researching path especially for performance oriented WGI applications such as Genre-Based Focused-Crawling (jebari2014pure\_URL; jebari2015combination) (MSc reference on focused-genre-crawling)

$$W_s(C_i, U_j) = \sum_s w(s) TF(C_i, U_j)$$
(2.28)

where  $TF(C_i, U_j)$  is the n-gram  $C_i$  frequency in the s segment of the URL  $U_j$  and w(s) is weight empirically assigned to the segment depending on the type of the segments as shown in eq. ??. The weights  $\{\alpha, \beta, \gamma\}$  should be defined empirically usually upon the corpus.

$$w(s) = \begin{cases} \alpha & \text{if} \quad s = Domain \ Name \\ \beta & \text{if} \quad s = URL \ path(non \ domain \ part) \\ \gamma & \text{if} \quad s = Document \ name(e.g..html,.pdf,etc) \end{cases}$$
(2.29)

Another useful source of information is the URL of web documents are in (abramson2012\_URL; jebari2014pure URL; privatam2013don URL).

# 2.9 The Web Genre units: Section, Page, Site and "Stage"

AGI/WGI research mostly has studied the genre-taxonomy assuming than a page (or webpage) is mono-thematic, this it has only one genre and only one topic, That is the web pages has been assumed to be the *Genre Unit*. Although, it has been noted in lots of studies that

this is not the case. Additionally, the hyperlink and the connection of the web-pages is an other aspect is closely related the genre-units.

In the traditional containers such as Books, Document, Posters, Slides, etc; the container itself is the linking of the pages considering the genre. The hyperlinks is replacing the traditional container propriety, respectively the genre taxonomy, and also it extends it. That is, web-pages of them genre are not necessarily belonging to the same web-site, however, they can be linked. Moreover, pages of the same web-site might not be from the same genre.

In this section the Web Genre units is discussed closely related to the linking of the genre-units and also introducing the notion of *Tracking, Zoning and Sounding* of this units.

In (mehler2011integrating) is an study for extracting the web-page thematic information by exploiting the semantic linking of the genre-units. In an effort to explore the possibility of creating a *Universal Structure Thematic Structure*, where genre-taxonomies (and topic) would be able to retrieved. Their strategy is exporting the *Linked URL Graph* properties by using the Tracking, Zoning and Sounding graph traversal strategies. In order to extract rich information and finally creating a universal *Genre Retrieval Graph Structure*.

The null hypothesis of the Genre Retrieval Graph is the two level of information can be extracted by the web-pages linking and then mapping this liking to the *Stages* of the page. *Staging* is the process where Sections of the page are extracted which are functioning as taxonomy units. This units are assumed to be mono-thematic. Thus stages are the sections which are sub-genre restricted. Stages for example might be, paragraphs, sentences, bibliography sections, titles, photo gallery, etc. Overall they are defined as the parts of the web-pages with specific sub-genre, for example Bibliography is a sub-genre of *the Academic (and the Publication)* genres.

The web-page linking mapping to the Stages assumes that the linking implies similarity in the taxonomy level, in our case the genre-taxonomy. Then several issues occurring where with Tracking, Zoning and Sounding of the linked graph are tried to be resolved.

Sounding graph traversal strategies are used for finding how deep in a *Tree Structured Staged Graph (TSSG)* the a sub-genre propagates. On the other hand Tracking is the hopes an algorithm should traverse until it reaches the root of the tree.

Zoning it the process where the total number of paths are located where only one subgenre is propagated on the tree. As an example given a web page of a Market Place genre, where products Specification together with product Reviews coexist; sounding is the process where the paths of the linked Specification will be separated by the paths of the linked Reviews. Note that the assumption of the concept of TSSG is the taxonomy goes beyond the location restriction of a web-site and the sections/stages of the same genre are linked in cross-site manner.

Finally, the process is reduced to the proper staging and and feature/structure encoding on the web-page level, before the TSSG formation. The process is separated in five (5) main sequencs of processing:

- Segmenter process: where a set of heuristics are applied in order to exploit the HTML markup tags and then forming sections of the webpage that make sense. To do so an algorithm is used where the DOM tree is analysed in its counterparts, together with the respective CSS. Then using an empirical threshold of the size of the text is included in the DOM objects, these objects are re-assembled for reaching the minimum context size.
- 2. Tagger process: where the segments are analyzed for extracting linguistic and superficial features such as; 1) tf-idf term vectors of lexical features, structural features (paragraph size, sentence size, etc) and HTML markup tag features such as counting the header tags (eg <h1></h1>) etc.

- 3. Stage Classification process: Where several SVM models are trained one for every different Stage. As an example, one for Bibliography sections, one for Schedules, one for Product Review etc.
- 4. *Disambiguation process:* a Markov-model is applied on each of HTML Section where the its Stage is calculated based on the *probabilistic grammar* based on the trained SVMs in the step 3.
- 5. Web-page Classification process: where the whole information extracted by the previews steps are given as input to an other page level SVM model, which returns the final decision for the page.

It has been shown that following the above steps it is possible to reach up to 0.745 score for  $F_1$  and 0.694 for predicting the sub-genre of the Academic web-sites super-genre.

Disambiguation process is using two types of features the Bag-of-Features (such as BOW, POS, Superficial text features etc) and the Bag-of-Structures. Particularly the former is referring to the features extracted directly by the HTML raw text of the segments. The Bag-of-Structures (which is the probabilistic-grammar mentioned above) is a model derived by a the process of an accumulated transition probability. To be more specific assuming that the proximity of the segment/stages is relevant; a probabilistic model is calculated for the genres a particular segment is under.

Multi-class classification, hierarchical classification, and multi-page classification is some of the aspects considered in the WGI. Naturally, a web-page, a section on the page, a paragraph on the page, a collection of pages linked together by their URLs. A web-site is, also, a genre-unit. That is, in an experimental set-up one has to consider which genre-unit will be assumed. However, it is foregrounded that in almost any unit there is always a change to be multi-genre (lee2017text) (also Ashegi, Santini, and other old citations)., for example in (madjarov2015web) has been found that on average 1.34 genres are present per web-page.

#### 2.10 Focused Crawlers for Genres

Focused crawling, unlike general web-crawling, is the process of downloading only relevant web-pages of *particular topic*, *genre or query*. As a result valuable time is saved and resources, such as processing power, bandwidth and storage space. Focused crawling engines, i.e. Focused crawlers, are following several strategies and criteria in order to download only the desired pages. The difficulty on the downloading decision is to be made in advance, i.e. before the pages be downloaded (**priyatam2013don\_URL**).

Particularly, a genre-focused crawler is possible to be implemented using only the URL's BOW for predicting whether or not a web page will return by this URL will be relevant to genre. To do so a machine learning algorithm should me trained using a well curated training set. Experimental results shown a promising approach with all the affronted benefits for crawling.

There are simple heuristics that could be used in production such as well composed list of words in the URLs strings. Particularly some strategies has been tested where: 1) a list from experts derived, 2) a list of experts augmented using WordNet, 3) list of keywords derived from an "authority" site where the genre-taxonomy is already used for categorizing its content, such as Wikipedia. These heuristic are able to capture some of the required information however is far from a satisfying performance and is a tedious, non-automated and hard to be updated procedure.

An other approach is the machine learning method such as *Nearest Neighbours (NN)* method but in an *Incremental/Adaptive form*. Such as in the case of (**jebari2015combination**)

this algorithm is adapting the new discovered web-pages when they are above a specific threshold irrespective the similarity score. In could also used an verification algorithm where it could use an other trained model on the webpages contexts. In this manner, after a web paged would have been downloaded the second algorithm could return a verification score in order to be decided whether to adapt the URL or not the the NN model.

The main evaluation criterion for the focused crawlers is the *Precision*, although, *Recall* and *Harvest Ratio* are also important (**priyatam2013don\_URL**). The task objective is more important the crawled pages to be relevant to the requested genre than potentially missing a few, i.e. high precision and low recall. As we will see later WGI in an open-set framework is focusing mainly on precision performance, which it seems more suitable for the application.

An aspect to be noted is the seeding. Seeding is the initialization procedure where the several URLs are given as starting point for the crawler. First of all usually a manually curated seeding returns faster, and more relevant pages. Secondly main issue for the genrefocused crawling is the *diversity*. That is, *the seed pages should be diverse in respect of the topic* but similar to the genre requested. Several strategies can be used, where the URL string, the webpage content, and the user/authority posting/publishing, are analyzed with machine learning and/or heuristic method for measuring the diversity. Ultimately, exploiting the similarities in context of the above units (URL, Text, Html, Author) a graph is constricted of the *perspective seed pages*. Then an out-of-the box algorithm can be used for finding the pages are connected with a distance greater than three (3) nodes.

Measuring the diversity is also an important issue. In the semantic point of view diversity means that a web-page content would be really distant in WordNet distance metric. However, this is not the case, because some specific words, POS n-grams, and other features which are genre-related are also topic-related. Thus *Semantic Distance metric* is not the best choice. On the other hand *Average Similarity between Document-pairs* shown to be more efficient (priyatam2013don\_URL).

# 2.11 Genres Utility

Genre taxonomy of the texts has a research interest for linguistics and computational linguistics studies, as part of the taxonomy behaviour and evolution. However, is not strictly a tool for studying the languages only academically or as an aiding tool for better NLP and IR results in other domains. It also has its one practical utility directly for the end user. Some examples will follow.

To begin with, journalism historians have a great interest in the advances of the ML and NLP in order to automatically cluster their resources for better studying the News publication in a systematic historical manner. An closely related study in native and foreign languages teaching is an essential tool for locating documents to be used in the teaching process for developing the competence of written ans spoken language on specific genre. As an example, when the student should learn the difference of academic and casual writing.

An other study for the utility of the genre taxonomy and the *Search Engines Results* (*SER* is one conducted at Pittsburgh, USA, University. The experiment measured the correlation of the website's/web-page's genre and the user's preference for completing the task of finding health care information for *Multiple Sclerosis* and *Weight Loss*. The results clearly show that the user's task would be significantly easier if the web resource were organized based on their genre and no only on their topic relation ranking (**chi2018sources**).

Text based genre identification is also a utility for video (e.g. movies, TV series, etc) classification in video/cinematographic genres using the text available such as the subtitles. In this study a variety of ML algorithms has been tested such as SVM, Naive Bayes, Random

Forest, Decision Trees and several types of features. Their *content-free* features are equivalent to the superficial features described in section ??. Moreover, *content-specific* features also used which they are specific words relevant to content(lee2017text).

In *Author Profiling* cross-genre evaluation has been employed. That is, texts from a variate of different genres such as *Social Media, Blogs, Twitter and Hotel reviews* used for this task's (rangel2016overview).

Office/local documents multi-faceted search application documents in an office environment (with shared files) was using a genre-taxonomy for aiding the users locating their files. Particularly, their application had great acceptance rate form the users who tested it. User reported that they were able to locate old slides abandoned more than a decayed related to their current work when using the genre-taxonomy based retrieval. An ensemble based algorithm within an open-set framework was trained, for this task, in a relatively small data-set of 5,098 pages. Then it was tested in a production environment with 30,000 office documents of a 10-year time span. The corpus was including pdf files, images (jpg, png, etc), slides (Powerpoint, Keynote) and HTML booklets (chen2012genre).

# 2.12 Web Genre Corpora: An unfinished work in progress

Santini and Serge in (santini2009web) for more than a decade have pointed out the problem of the Genre Corpora in the context of the difficulty to be consisted and maintained due to the reasons explained in this chapter up to here.

The constitution process for the rules required to be followed for composing a text corpus is still a research problem in *linguistics studies*, while the utility of the genre-taxonomy is vividly pointed out. A collection of texts cannot be assumed to be a corpus by default due to several issues should be considered starting with the taxonomy definition where mostly is an overlapping problem, then the texts should have several properties linguistically and statistically defined. The homogeneity in temporal manner, whether are from multiple languages and the way have been collected; *speech*, *spoken or written corpus*. Particularly speech corpus implies voice recording while spoken means to be transcribed from speech samples. Particularly for the genre-taxonomy the homogeneity related to the time the samples has been collected is very critical since the genres are changing over time until a new genre occurs replacing or dividing from an older (dash2018history). Blogs, for example, was the evolution of "personal/memory diaries" when they became public on the web and named "web-logs" then in a second time evolution renamed to "blogs" where their content also changed now is mostly like an *informal journalism* rather than a diary.

The NLP community has overcome the problem of a non-well established corpus of the WGI. There are at least tree publication on the effort on *corpus building methodologies* with vividly different approaches, yet the problem is remaining open due to several issues described in detail in section ?? and in

# **Chapter 3**

# **Open-set WGI algorithms**

- 3.1 Introduction
- 3.2 Closed-set Classification
- 3.3 One-Class Classification

The main difference of the One Class Classification problem (OCC) with respect to the conventional multi-class or binary classification problem is that in OCC there are only available positive examples of a class and none or very few negative examples. There are several approaches towards the solution of this problem. A compact survey on OCC is provided by Khan et al.khan2010survey. In this section, we present a brief review of the OCC methods used for Document Classification (DC) and Information Retrieval (IR). We mainly consider SVM-based OCC methods.

To begin with there are several references to the well known Scholkopf et al.scholkopf1999estimating which actually presents an alternative solution to the problem of the overlapping distributions of samples, known as v-SVM bishop2006. The nature of v-SVM is allowing us to use it effortless in Binary Classification problems as long as to OCC problems. This is owing to parameter v which is both controlling the fraction of SVs and the margin errors, i.e. point of the positive sample considered as outliers. In the case of One-Class SVM (OC-SVM) the optimization process begins with considering, as the only negative example, the origin of the vector space, defined from the data space. Some more details for OC-SVM is given into the section ??.

OC-SVM model has been used in DC, where only positive example were available. Building upon OC-SVM concept Manevitz and Yousef manevitz2002one; khan2010surveyhave been build an OCC SVM model, called Outliers-SVM, that takes into account a few more points, other that the origin, from the positive sample as outliers for achieving a similar model to the one of Scholkopf et al. The idea of outliers-SVM is to define a model of measurement for measuring the distance of some points, in the positive sample space, where it will treated as Outliers, additional to the origin of the data space. In their outliers-SVM they have used Hamming distance as the model of measurement. However, while comparing their model (Outliers-SVM) to One-Class SVM, One Class Neural Networks, One Class Naive Bayes Classifier, One Class Nearest Neighbor, and Rocchio Prototype, One-Class SVM has higher or at least comparable performance to all the others. In addition they have pointed out that One-Class SVM it seems to be sensitive to the Term-Vector formats - i.e. binary, tf, tf-id, etc. - and sensitive to the amount of features (i.e. dimensions) that have been kept.

The Prototype or Rocchio's algorithm was used for IR problems because of its simplicity and consistency **joachims1997probabilistic**. The learning process for this method is just to add all the vectors of the training set in to one *prototype vector*. An arbitrary vector is classified as positive or negative using the angular distance from the prototype vector and a threshold. In this method term-vectors are having tf-idf format.

Datta (cited in **manevitz2002one**) proposed Naive Bayes Classifier modification for OCC problems and use only positive samples in the learning process. The prediction model induced in this case is a *probability density function* of a class E. Classifying the a document d involves calculating the probability of the document p(d|E) which is equal to the product of its features  $w_n$  probabilities p(w|E), where n is the number of document's feature/term-vector. To decide weather of not the document is classified as positive its required a threshold.

In OC-SVM and few other OCC method the process of model optimization requires only positive sample points and no negative or unlabeled examples. Thus building process it is not taking into account information that might be useful from even a poor negative sample (if any available) or a set of unlabeled data, vastly available. However, there are some OCC methods exploiting the availability of unlabeled data for building an classification models, where some of them have been evaluated in the context of IR and DC.

Yu proposed two OCC algorithms that use positive and unlabeled data for building a classification model that describes the *single class boundary* **yu2005single**. Their *Mapping Convergence* (MC) algorithm is incrementally labeling negative data from an *unlabeled data set* using the margin maximization property of SVM, while *Support Vector Mapping Convergence* (SVMC) was their second proposed algorithm which optimizes the MC algorithm for fast training. Both of their algorithms had been compared into a real world text classification, letter recognition, and diagnosis of breast cancer. Additionally MC and SVMC had been compared to OC-SVM, Spy Expectation Maximization (S-EM), SVM-NN (i.e. C-SVM using unlabeled data point as negative ones) and Naive Bayes with Noisy Negatives. Above all models SVMC (and MC) performance was significantly better to all the other models, while OC-SVM was the second best in performance. In Yu's paper there are pointed out the difficulties of OCC which are referred briefly in section ??.

Spy EM (Spy EM) is an other method using unlabeled data in the training procedure and it had been tested in DC domain. The procedure proposed in Liu et al.liu2002partially, involves the *Naive Bayesian Classification* with *Expectation maximization algorithm*. This method has several limitations such as the assumption of attribute independence which results in linear separation, and the requirement to estimate the proper prior probabilities which is difficult task yu2005single.

An alternative *two-step* method like S-EM proposed by Li and Liu **li2003learning**. Again they have pointed out that their 'OCC method, like the other OCC methos, need a large positive data 'sample and negative samples derived from unlabeled data to induce 'a "good" classifier.

To conclued, in all OCC publication cited in this paper it had been point out that the problems encountered when using conventional classification models such as the curse of dimensionality, the generalization of the method, etc., it seems to be amplified when in OCC methods. In all the OCC models it has been reported that the problem is the difficulty to decide how tightly should be the boundary that contours the positive data, additional to the problem of the attribute selection which will be used for finding the outliers or the automated formation of a *negative body of samples*. Hence, the performance of OC-SVM should be expected to be poorer comparing to *binary* or *multi-class* classification SVMkhan2010survey; manevitz2002one; yu2005single; scholkopf1999estimating; li2003learning.

# 3.4 Open-set (Ensembles) Classification

#### 3.4.1 One-class SVM Ensemble

One-class SVM is actually an v-SVM for the case we want to find the contour which is prescribing the positive samples of the training set given for a single class, while there are no negative samples. nu-SVM (v-SVM) is providing an alternative trade-off control method of

misclassification, proposed from Scholkopf et al. (?). In v-SVM we are minimizing eq.?? with the constraints of eq.??, eq.??.

Following the logic from the conventional SVM, thoroughly analysed in (?), the Lagrange multipliers for solving the optimization problem of eq.?? under eq.??, eq.?? constraints are used. Equation ?? is then derived, i.e. a Lagrangian function to be maximized as subject to the constraints eq.??, eq.??.

$$\arg\min_{w,b} \left\{ \frac{1}{\nu\lambda} \sum_{n=1}^{N} (\xi_n - \rho) + \frac{1}{2} ||w||^2 \right\}$$
 (3.1)

$$0 \leqslant a_n \leqslant 1/N, \qquad n = 1, ..., N$$
 (3.2)

$$v \leqslant \sum_{n=1}^{N} a_n, \qquad \sum_{n=1}^{N} a_n t_n = 0$$
 (3.3)

$$\widetilde{L}(a) = -\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{M} a_n a_m t_n t_m k(x_n, x_m)$$
(3.4)

It should be noted that v in v-SVM has the flowing properties:

- *v* is an upper bound on the fraction of *Outliers*.
- *v* is a lower bound on the fraction of *Support Vectors*.
- v values cannot exceed 1 (see eq.??).

In practice different values of v are defining different proportion of the training sample as outliers. For example in Scholkopf et al. (?) is showed that in their experiments when using v = 0.05, 1.4% of the training set has been classified as outliers while using v = 0.5, 47.4% is classified as outliers and 51.2% is kept as SVs.

In the prediction phase in order for an OCSVM model to decide whether a document is belonging to the target genre-class (or not) a *decision function* is used. The decision function indicates the distance of the document, positive or negative, to the hyperplane separating the classes. In the case of OCSVM we are usually only interested whether the decision function is positive or negative for deciding if an arbitrary document belonging or not to the target class.

In this work we are using the OCSVM in an ensemble form, first proposed in (?), as analytically described in algorithm ??. There we are both interested in the positive and negative decision of each ensemble's classifier, and the decision scores.

#### **Algorithm 3.1:** The *OCSVM* algorithm.

```
Data: G a genre palette and W_g a set of known web-pages for each g \in G, w an
         unknown webpage of the W_a arbitrary webpages set, F the feature set, v the
         nu hyper-parameter of OCSVM,
   Result: r \in \{G, \emptyset\}
1 score: =0, the score 2D matrix where rows are for genre's class tags and columns
    for each webpage under evaluation for each g \in G do
      Model(g) = ocsvmTrain(W_g, F, v), train a OCSVM model in vector space F
2
        with hyper-parameter \nu for genre g;
3 end
4 for each g \in G do
       for each w \in W_a do
5
          score[g, w] = ocsvmApply(Model(g), F, w), the distance of the unknown
6
            page w from the hyperplane;
      end
7
8 end
  if max(score[:,:]) < 0 then
       r \in \emptyset, i.e. none of the known genres or "I don't know";
11 else
      r = argmax_{g \in G}(score[:,:]), i.e. w belongs to the genre of highest score;
12
13 end
```

In training phase of the ensemble one OCSVM is built for each known genre label. The hyper-parameter  $\nu$  has the same value for all OCSVM models. In the prediction phase, the document is assigned to the class with the highest positive distance from the hyperplane (or the contour for OCSVM). If all OCSVMs return a negative distance (i.e. the web-page does not belong to this genre) the document remains unclassified, that is the final answer

corresponds to "I Don't Know". The OCSVM ensemble was implemented in Python using the *scikit-learn*<sup>1</sup> package.

#### 3.4.2 Random Feature Subpacing Ensemble

The RFSE algorithm is a variation of the method presented by Koppel et al. (?) for the task of *author identification*. In the original approach, there is only one training example for each author and a number of simple classifiers is learned based on random feature subspacing. Each classifier uses the cosine distance to estimate the most likely author. The key idea is that it is more likely for the true author to be selected by the majority of the classifiers since the used subset of features will still be able to reveal that high similarity. That is, the style of the author is captured by many different features so a subset of them will also contain enough stylistic information. Since WGI is also a style-based text categorization task, this idea should also work for it.

#### **Algorithm 3.2:** The *RFSE* algorithm.

```
Data: G a genre palette and W_g a set of known web-pages for each g \in G, w an
          arbitrary web-page of the W_a arbitrary webpages set, F the feature set, fs a
          fraction of feature set size, I a number of iterations, \sigma the decision threshold
   Result: r \in \{G, \emptyset\}
1 for each g \in G do
      centroid[g] = average(W_g, F), average all known web-pages W_g of genre g to
        build a centroid vector;
      score[g] = 0;
3
4 end
5 repeat
       f = subset(F, fs), Randomly choose fs features from the full feature set F;
      for each g in G do
7
          for each w in W_a do
 8
              sim[g, w] = similarity(w, centroid(g), f), estimate similarity of unknown
                page w with centroid(g) in vector space f;
          end
10
      end
11
      maxg = argmax_{g \in G}(sim[:,:]), find the top match genre;
12
      score(maxg) = score(maxg) + 1, increase the score of top match genre;
13
14 until I times;
15 if max(score(g))/I > \sigma then
      r = argmax_{g \in G}(score(g)), assign the unknown page to genre with maximum
16
        top matches;
17 else
      r = \emptyset, none of the known genres or "I don't know";
19 end
```

In our study we adopt the RFSE method as introduced in (?) shown in *Algorithm* ??. There are multiple training examples (documents) for each available genre. To maintain simplicity of classifiers, we have used a *centroid vector* for each genre. In the training phase,

<sup>1</sup>http://scikit-learn.org

a centroid vector is formed, for every class, by averaging all the Term-Frequency (TF) vectors of the training examples of web pages for each genre.

The class centroids are all formed for a given feature type. Then, an evaluation document is compared against every centroid and this process is repeated I times. Every time a different feature sub-set is used. Then, the scores are ranked from highest to lowest and we measure the number of times the document is top-matched with every class. The document is assigned to the genre with maximum number of matches given that this score exceed a predefined  $\sigma$  threshold. In the opposite case, the document remains unclassified, the RFSE responds "I Don't Know".

With respect to the similarity function, we examine cosine similarity (similar to (?)) and MinMax similarity (inspired by (?)). Moreover, in this paper we introduce a measure that combines these two similarity functions and selects the one that is most confident in each iteration. More specifically, since cosine and MinMax may have different mean and standard deviation for the set of all evaluation documents and all iterations per document, we first normalize their value. Then, for each evaluation document and each iteration we select the one with maximum normalized value. We call this similarity measure *Combo*.

#### 3.5 Nearest Neighbors Distance Ratio

The Nearest Neighbors Distance Ratio (NNRD) algorithm is our variant implementation of the proposed open-set algorithm of Mendes et al. **mendesjunior2016**. In the original approach euclidean distance has been used because of the variation of data set on which the algorithm has been evaluated. In our approach we are using cosine distance, because in text classification is being confirmed to be the proper choice in hundreds of publications. Moreover, the cosine distance is comparable to the results of the *Random Feature Sub-spacing Ensemble* algorithm found in **pritsos2018open** where cosine similarity is used for the WGI evaluation.

The NNRD algorithm is an extension of the simple *Nearest Neighbors* NN algorithm where additionally to the sets of training vectors (one set for each class) a threshold is selected by maximizing the *Normalized Accuracy* (NA) as shown in equation??) on the *Known* and the *Marked as Unknown samples*.

$$NA = \lambda A_{KS} + (1 - \lambda)A_{MUS} \tag{3.5}$$

where  $A_{KS}$  is the Known Samples Accuracy and  $A_{MUS}$  is the Marked as Unknown Samples Accuracy. The balance parameters  $\lambda$  regulates the mistakes trade — of fontheknown and marked—unknown samples prediction.

The optimally selected threshold is the the *Distance Ratio Threshold* (DRT) where NA is maximized. Equation ?? is used for calculating the Distance Ratio (DR) of the two nearest class samples, say  $s_{c_a}$  and  $u_{c_b}$ , to a random sample  $r_x$  under the constrain  $c_a c_b$ , where  $c_g$  is the sample's class.

It is very important to note that the  $c_g$  is trained in an open-set framework, therefore, the samples pairs selected for comparison might either be from the known of the marked as unknown samples. Thus  $g \in 1, 2, ..., N$  and  $g = \emptyset$  when samples is marked as unknown.

$$DR = \frac{D(r_x, s_{c_a})}{D(r_x, s_{c_b})}$$
 (3.6)

where D(x, y) is the distance between the samples where in this study is the *Cosine Distance*. Therefore, the fitting function of the NN algorithm, described in pseudo-code ??, is the optimization procedure to find the DRT values for classes respective sets of training samples where NA is maximized.

Algorithm 3.3: Nearest Neighbor Distance Ratio training data fitting function

**Data:** G the set of genre class tags  $\{1,2,...,N\}$ , p the hyper-parameter regulates the percentage of G tags will be marked as unknown, k the hyper-parameter regulates the percentage of known G tags that will be keept for validation only, T the *Distance Ratio* thresholds set than will test for finding the one which is minimizing the *Normalized Accuracy*,  $\lambda$  regulates the mistakes trade-off on the known and marked-unknown samples prediction (see eq.??), C[g] the matrix of class vector sets one for every genre class tag  $g \in G$ 

**Result:** DRT the  $Distance\ Ration\ Threshold\ calculated\ by\ the\ NNRD\ algorithm's fitting\ function, <math>C[g]$ 

- 1  $K_i^G, K_{validation}^G, U_{validation}^G, I^G = Split(G, p, k)$  splitting the G tags in to known/unknown samples combinations using the p and k hyper-parameters. The amount of split combinations is calculated by the equations ?? and ??.;
- 2  $V^G = U^G_{validation} \cup K^G_{validation}$  the validation set is the union of the I splits of the known-validation and the marked-as-unknown sets, of the whole training set;
- 3 for each  $i \in I$  do
- 4  $D_{VK}^{cos}[i] = COS_D(V_i^G, K_i^G)$  calculating all the Cosine Distances between the web-page of  $K^G$  and  $V^G$  sets for *every I split combination*;
- 5 end
- 6  $Ci_A^{min} = argmin(D_{VK}^{cos})$  getting the indices of the closest classes from V;
- 7  $Ci_B^{min} = argmin(D_{VK}^{cos})$  getting the indices of the second closest classes from V;
- 8  $R_V = D_{VK}^{cos}[Di_A^{min}]/D_{VK}^{cos}[Di_B^{min}]$  calculating the Distance Rations R for all the vectors in V
- 9  $NA^{max} \leftarrow 0$  initializing Maximized Normalized Accuracy with 0 value.  $DRT \leftarrow 0$  initializing Distance Ratio Threshold with 0 value.

```
10 for each drt \in T do
       for each r, i \in \{R_V, count(R_V)\} do
11
           if r < drt then
12
               vi = Ci_A^{min}[i] keep the respective index;
13
               Y[i] = G[vi] setting the genre's class tag as prediction for this random
14
                 vector of set V:
15
               Y[i] = \emptyset setting as none of the known genres or "I don't know";
16
           end
17
18
       NA_V = NormalizedAccuracy(Y, R_V) calculating the Normalized Accuracy as
19
        shown in equation ?? for tested threshold drt;
       if NA_V > NA^{max} then
20
           NA^{max} \leftarrow NA_V keeping the maximum NA until the outer for-loop finishes;
21
           DRT \leftarrow drt keeping the Distance Ratio Threshold maximizes the
22
            Normalized Accuracy;
       else
23
       end
24
25 end
```

In the optimization procedure the training samples are split based on their class tags  $c_x$ . Then some class tags are *marked as unknown* and some are left being known. Therefore, all the samples of the marked as unknown are used only in the validation subset while the known class tags samples are farther split into the classes sets (one for each class) and into

14 end

the known validation set. Then, samples of the validation sets, both then known and then marked as unknown, are used seamlessly for calculating the set of Distance Rations (one for each class). Afterwards, a set of DRT values are tested given a range of values  $R \in t_1, t_2, t_n$  beforehand where the  $t_x$  is selected which is maximizing the NA of the validation set.

The splitting procedure the of the training set is regulated by a hyper-parameter p which defines the percentage of the class tags set  $g \in {1,2,...,N}$  where they will be marked as unknown. Then the total number of all possible splitting combination are calculated and these split-sets are used for finding the DRT. The combination are found using equations ?? and ??, where eq.?? is the *Binomial Coefficient*.

$$U_{num} = int(N * p) \tag{3.7}$$

where N is the size of the class tags set 1, 2, ..., N and p is the percentage regulation parameter for keeping the number of tags to be marked as unknown.

$$S_{num} = \frac{N!}{U_{num}!(N - U_{num})!}$$
 (3.8)

The NNDR is a open-set classification algorithm, therefore, every random sample will be classified to one of the classes the NNRD has been fitted or to the unknown when its DR is greater then DRT. While training as explained above the DRT values are tested incrementally until the optimal data fitting for the training function.

In prediction phase the DRT is passed to the NNDR prediction function together with the random samples and the training samples as shown in pseudo-code ??.

```
Algorithm 3.4: Nearest Neighbor Distance Ratio prediction function
```

```
Data: W the vector set of the random web-page to be classified, C[g] the matrix of
          class vector sets one for every genre class tag g \in G, DRT the Distance
          Ration Threshold calculated by the NNRD algorithms fitting function
   Result: Y \in \{G, \emptyset\}, R the Distance Ratio scores vector, one score for every input
            vector of the random set W
1 for each g \in G do
       D_{C_gX}^{cos} = COS_D(C[g], X) calculating all the Cosine Distances between the random
         web-page vectors and the class vectors of class g;
3 end
4 Ci_A^{min} = argmin(D_{C_eW}^{cos}) getting the indices of the closest classes from W;
5 Ci_B^{min} = argmin(D_{C_oW}^{cos}) getting the indices of the second closest classes from W;
6 R_W = D_{C_gW}^{cos}[Di_A^{min}]' D_{C_gW}^{cos}[Di_B^{min}] calculating the Distance Rations R for all the
    vectors in W
7 for each r, i \in \{R_W, count(R_W)\} do
       if r < DRT then
           vi = Ci_A^{min}[i] keep the respective index;
           Y[i] = G[vi] setting the genre's class tag as prediction for this random vector
10
            of set W;
11
           Y[i] = \emptyset setting as none of the known genres or "I don't know";
12
13
       end
```

Our implementation of the above NNRD algorithm can be found at https://github.com/dpritsos/OpenNNDR, where it is implemented in Python/Cython and can significantly accelerated using as much as possible CPUs due to its capability for concurrent calculations in C level speed. Since, NNRD is a rather slow classification method, we have seen in practice

that there is up to 100 time acceleration from the capability to exploit a cloud service with 32 vCPUs (Xeon) compare to 4-core/8-threads i7 CPU.

# **Chapter 4**

# **Evaluation framework for open-set WGI**

#### 4.1 Introduction

# 4.2 Closed-set vs Open-set Measures

# 4.3 Area Under the Curve (AUC)

Precision-Recall curve is a standard method to visualize the performance of classifiers. In this paper, the Precision-Recall curve is calculated in 11-standard recall levels [0,0.1,...,1.0]. Precision values are interpolated based on the following formula:

$$P(r_j) = \max_{r_j \leqslant r \leqslant r_{j+1}} (P(r)) \tag{4.1}$$

where  $P(r_i)$  is the precision at  $r_i$  standard recall level.

To compensate the potentially unbalanced distribution of web pages over the genres, we are using the macro-averaged precision and recall measures. In more detail, we use the modified version of precision and recall for open-set classification tasks proposed by (?). This modification calculates precision and recall only for the known classes (available in the training phase) while the unknown samples (belonging to classes not available during training) affect false positives and false negatives. To find parameter settings that obtain optimal evaluation performances we use 2 scalar measures, the Area Under the Precision-Recall Curve (AUC) and  $F_1$ . We will show that the appropriate selection of the optimization measure is highly significant in the presence of noise.

# 4.4 Re-defining the Open Space Risk

The open space risk in scheirer2013toward is originally defined as in eq. ??

$$R_o(f) = \frac{\int_o f_y(x)dx}{\int S_o f_y(x)dx}$$
(4.2)

where  $R_o(.)$  is the open-space risk function and  $f_y(x) \in \{0,1\}$  is the classification function of class y, where 1 is for recognizing its class and 0 when not.  $S_o$  is the large hyper-sphere where all the positive training data points and the *positive open space area O*. The original formulation of the eq.  $\ref{eq:constrained}$  area cannot be constrained by any means. The only information we are getting is the farther form the training date we go the risk of miss-classification is increasing One method to constrain the problem is by using the center of the positively labeled training data and defining a radios  $r_o$  where it will reduce the open space area based on the positively labeled empirically observations. Then the O is defined by the equation eq.  $\ref{eq:constrainter}$ ?

$$O = S_o - B_{r_v}(C_v) \tag{4.3}$$

where  $B_{r_y}(.)$  is the function which defines the area of radius  $r_y$  of the  $C_y$  class defined by its training data (**fei2016breaking**).

# 4.5 Openness test

In Scheirer's et al. (?) work in image processing, the *openness measure* is introduced, as shown in eq.??. The openness measure indicates properties of an open-set classification task by taking into account the number of *training classes*, i.e. the known labels used in the training phase and the number of *testing classes*, i.e., the labels, both known and unknown, used in the testing phase.

$$openness = 1 - \sqrt{\frac{|TrainingClasses|}{|TestingClasses|}}$$
 (4.4)

When openness is 0.0, it is essentially a closed-set task, that is the training and testing classes are the same or there is no noise. When openness reaches 1.0 this means that the known classes are far less than the unknown classes, that is the amount of noise is especially high. Therefore, by varying the openness level we can study the performance of WGI models in different conditions.

Note that the openness measure can only be applied to corpora where all available documents have been labeled with genre information. In other words, we have to know the genre labels of the pages that form the noise (i.e., structured noise). Thus, it cannot be applied to SANTINIS corpus where the web pages taken from the SPIRIT collection are unclassified (i.e., unstructured noise). On the other hand, the SANTINIS corpus provides the opportunity to examine WGI performance when all documents not belonging to the known labels are grouped into one single (highly heterogeneous) class.

#### 4.6 Domain Transfer Measure

A practical methodology for evaluating a classification/identification ML model in a text-categorization task is the *Domain Transfer Evaluation*. The goal of this evaluation methodology is to measure the generalization of the model when training corpus is rather small and to evaluate how the model would perform in an unknown domain for the same task.

Particularly for the AGI/WGI with this measure we can evaluate a ML algorithm when for example the model has been trained to identify *News* and *Wiki* genres, however, the available corpus would be only from *Technology products Topics*. Then by testing it on Sports Topics we could evaluate the model in such a case when very small corpus is available for training. In addition using this methodology we can evaluate the models behaviour depending on the *Features* have been selected for the training, e.g. BOW, POS, Term N-grams etc.

One can measure the performance, say Accuracy, F1-statistic, Precision-Recall Curve, Receiver Operating Characteristic (ROC) Curve etc, and then compare the two measures pairwise for every domain combination (e.g. {MobilePhones, Football}, etc). However, it would be easier to have measure for all possible combinations training/testing of different domain combinations.

The measure proposed from (**finn2006learning**) and shown in equation **??** in its generalized form. Originally, this measure was designed for Accuracy measure in mind. However, it can be used for any measure say  $F_1$ -statistic in order to fit in open-set framework and not respected to the closed-set also ( Accuracy Open-set).

$$T^{C,F} = \frac{1}{N(N-1)} \sum_{A=1}^{N} \sum_{B,\forall B \neq A}^{N} \left( \frac{M_{A,B}^{C,F}}{M_{A,A}^{C,F}} \right)$$
(4.5)

Where T is the *Transfer Measure Score*, M is the measure of choice (Accuracy,  $F_1$ , Precision, Recall, etc.), F is the *Feature Set*, and C is the *Genre Class*.

# **Chapter 5**

# **Experimental Open-set Framework Effectiveness Evaluation on Noise**

- 5.1 Introduction
- 5.2 Noise vs Outages on Open-set Classification
- 5.3 Open-set Framework Evaluation on Noise
- 5.4 Experimental Setup

## 5.4.1 Corpora

In this paper we study the performance of the open-set classification models on the WGI task. In particular, the two open-set algorithms described above are analytically tested on benchmark corpora. In particular, our experiments are based on the following corpora already used in previous work in WGI (???):

- 1. SANTINIS (?): This is a corpus comprising 1,400 English web pages evenly distributed into 7 genres as well as 80 BBC web pages evenly categorized into 4 additional genres. In addition, it comprises a random selection of 1,000 English web pages taken from the SPIRIT corpus (?). The latter can be viewed as noise in this corpus. Details are given in table ??.
- 2. *KI-04* (?): This is a collection of 1,205 English web pages unevenly categorized into 8 genres. Details can be seen in table ??.

Our text representation features are based exclusively on textual information from web pages excluding any structural information, URLs, etc. Based on the good results reported in (???) as well as some preliminary experiments, the following document representation schemes are examined: Character 4-grams (C4G), Word unigrams (W1G), and Word 3-grams (W3G). We use the Term-Frequency (TF) weighting scheme and the feature space is defined by a *Vocabulary* which is extracted based on the terms appearing at training set only.

As concerns OCSVM model, two parameters have to be tuned: the number of features F and V. For the former, we used  $F = \{1k, 5k, 10k, 50k, 90k\}$ , of most frequent terms of the vocabulary. Following the reports of previous studies (?) and some preliminary experiments, we examined  $V = \{0.05, 0.07, 0.1, 0.15, 0.17, 0.3, 0.5, 0.7, 0.9\}$ . In comparison to (?), this set of parameter values is more extended. With respect to RFSE, four parameters should be set: the vocabulary size F, the number of features used in each iteration f, the number of iterations I, and the threshold  $\sigma$ . We examined  $F = \{5k, 10k, 50k, 100k\}$ , f s= $\{1k, 5k, 10k, 50k, 90k\}$ , I= $\{10, 50, 100\}$  (following the suggestion in (?) that more than 100 iterations does not

| SANTINIS             |       | KI-04                 |       |
|----------------------|-------|-----------------------|-------|
| Genre                | Pages | Genre                 | Pages |
| Blog                 | 200   | Article               | 127   |
| Eshop                | 200   | Discussion            | 127   |
| FAQ                  | 200   | Download              | 152   |
| Frontpage            | 200   | Help                  | 140   |
| Listing              | 200   | Link Collection       | 208   |
| Personal Home Page   | 200   | Portrayal-Non Private | 179   |
| Search Page          | 200   | Portrayal- Private    | 131   |
| DIY Mini Guide (BBC) | 20    | Shop                  | 175   |
| Editorial (BBC)      | 20    |                       |       |
| Features (BBC)       | 20    |                       |       |
| Short Bio (BBC)      | 20    |                       |       |
| Noise (Spirit1000)   | 1000  |                       |       |

TABLE 5.1: Corpora descriptions and amount of pages per genre.

improve significantly the results) and  $\sigma = \{0.5, 0.7, 0.9\}$  (based on some preliminary tests). Additionally, in this work we are testing three document similarity measures: cosine similarity, MinMax similarity, and combined cosine similarity and MinMax. Finally, to extract the best possible parameter settings for each classification method we apply grid-search over the space of all parameter value combinations.

# 5.5 Experiments

#### 5.5.1 WGI with Unstructured Noise

We initially examine the performance of OCSVM and RFSE models based on SANTINIS corpus. In the training phase, only the 11 known genres are considered. In the testing phase, the noise pages coming from the SPIRIT corpus are also used. Note that information about the true genre of these pages is not available. Therefore, we have to deal with unstructured noise. We perform 10-fold cross validation and in each fold we include the full set of 1,000 pages of noise. This evaluation strategy is giving a more realistic evaluation framework since the size of the noise is much greater than the size of any genre included in the given palette.

Figures ?? and ?? depict the Precision-Recall curves (PRC) of OCSVM and RFSE models, respectively. For each model and each one of the three document representations, the parameters that maximize performance with respect to the  $F_1$ -measure are used. Note that when recall does not reach 1.0 this means that some pages belonging to known classes were classified as unknown. In all cases, RFSE outperforms OCSVM. Moreover, for both methods, W3G seems to be the best feature type for this corpus, followed by C4G. OCSVM performance is only comparable with RFSE when W3G is used.

diagrams/OCSME\_Best\_per\_DocRep-eps-converted-to.pdf

FIGURE 5.1: Precision-Recall Curves of OCSVM models on SANTINIS corpus using W1G, W3G, and C4G features.

5.5. Experiments 69

diagrams/RFSE\_Best\_per\_DocRep-eps-converted-to.pdf

FIGURE 5.2: Precision-Recall Curves of RFSE models on SANTINIS corpus using W1G, W3G, and C4G features.

We further explore the performance of the open-set WGI methods by selecting parameter settings with different optimization criteria. Tables ?? and ?? show the combination of parameters that optimize performance of OCSVM and RFSE based on AUC,  $F_1$  and  $F_{0.5}$ . Moreover, in the tables we show the values of all three performance measures where one of them is maximized. It is clear that the performance in all cases is maximized when W3G document representation is used. In previous studies based on a closed-set framework, C4G was the document type of features to maximize performance (?). This indicates that contextual and content information is important for this corpus (?).

In addition, in almost all cases, RFSE models are far more effective than OCSVM. Another important conclusion is that the optimization criterion plays a crucial role for the properties of the model especially for RFSE. When AUC is maximized, recall is favoured. On the other hand, while  $F_1$  is maximized, precision is substantially increased. Fig. ?? shows the performance of OCSVM and RFSE models when AUC and  $F_1$  criteria are used to select parameter settings. As can be seen, the RFSE model based on  $F_1$  maximization avoids to make wrong decisions and leaves a large number of web pages unclassified. On the other hand, the model optimized by AUC prefers to make a lot of errors in order to recognize more web pages of known genres. OCSVM models seem not significantly affected. Note that choosing between WGI models that prefers precision over recall and vice versa is an application-specific task.

diagrams/MacroPRC11AVG\_RFSE\_OCSVME\_SANTINIS\_2-eps-convert

FIGURE 5.3: Precision-Recall Curves of OCSVM and RFSE models on SANTINIS corpus optimized either by AUC or  $F_1$ .

| Optim.    | Features | Voc.    | f      | v    | Prec. | Rec.  | AUC   | $F_{0.5}$ | $F_1$ |
|-----------|----------|---------|--------|------|-------|-------|-------|-----------|-------|
| AUC       | W3G      | 50,000  | 10,000 | 0.07 | 0.63  | 0.643 | 0.542 | 0.633     | 0.636 |
| $F_1$     | W3G      | 50,000  | 10,000 | 0.1  | 0.631 | 0.654 | 0.535 | 0.636     | 0.643 |
| $F_{0.5}$ | W3G      | 100,000 | 50,000 | 0.07 | 0.647 | 0.603 | 0.518 | 0.638     | 0.624 |

TABLE 5.2: Best performing models for OCSVM on SANTINIS corpus.

| Optim.    | Features | Similarity | Voc.    | f      | σ   | I   | Prec. | Rec.  | AUC   | $F_{0.5}$ | $F_1$ |
|-----------|----------|------------|---------|--------|-----|-----|-------|-------|-------|-----------|-------|
| AUC       | W3G      | Combo      | 50,000  | 10,000 | 0.5 | 100 | 0.572 | 0.824 | 0.73  | 0.609     | 0.675 |
| $F_1$     | W3G      | MinMax     | 50,000  | 5,000  | 0.7 | 100 | 0.933 | 0.68  | 0.595 | 0.868     | 0.787 |
| $F_{0.5}$ | W3G      | MinMax     | 100,000 | 5,000  | 0.9 | 100 | 0.987 | 0.596 | 0.498 | 0.872     | 0.743 |

TABLE 5.3: Best performing models for RFSE on SANTINIS corpus.

#### **5.5.2** WGI with Structured Noise

In this section we describe experiments using a corpus with structured noise, i.e., when the true genre of pages not included in the training genre palette is available. In more detail, we use the KI-04 corpus and adopt the openness measure varying the number of training classes from 7 to 1 while keeping the number of testing classes always the same, at maximum 8. As a result, the openness measure varies from 0.065 to 0.646, one extreme refers to the case where only one genre class is unknown while in the other extreme only one genre class is known. For each openness level, we randomly select the known classes and repeat the experiment 8 times, each time performing 10-fold cross-validation. Moreover, to avoid any biased selection of parameter values, we use the parameter settings found to be optimal for the SANTINIS corpus in section ??.

Figures ?? and ?? show the performance  $(F_1)$  of OCSVE and RFSE models using different text representation features for varying openness levels. Standard error bars are also depicted to show the variance of performance for each model. Surprisingly, the performance of OCSVM seems to improve by increasing openness and this pattern is consistent in all three feature types while C4G seem to be the most effective type. On the other hand, RFSE models based on C4G and W1G gradually get worse while openness increasing while W3G models seems to be relatively stable.

```
diagrams/OCSVME_openness_test_graph-eps-converted-to.
```

FIGURE 5.4: OCSVM performance in varying openness level.

```
diagrams/RFSE_MIX_openness_test_graph-eps-converted-t
```

FIGURE 5.5: RFSE performance in varying openness level.

As it was highlighted in the previous section, according to the properties of the application in which WGI is involved, precision may be more important than recall or vice-versa. In figure ?? the macro-precision of RFSE is depicted for W3G, W1G and C4G features. Min-Max similarity is used since it increases significantly the performance of RFSE in respect with precision. As concerns text representation, W1G is the best choice when precision is at more importance than recall. On the other hand, W3G features seem to be more stable because the standard error is lower than that of the other features and also the W3G model is not affected too much when openness surpasses 0.5 (actually it improves).

```
diagrams/RFSE_Precision_Focus_openness_test_graph-eps
```

FIGURE 5.6: RFSE precision in varying openness level.

In the case of C4G and W1G where the openness level is 0.646 the standard error in both case is very hight. Since, we observe this problem only in the case where the problems has been reduced to binary, we are interested to see whether it is caused by choice of the document representation or by the choice of the similarity measure.

Despite OCSVM's improvement when structured noise is used, it can only be competitive to RFSE on a high openness level, where all genre labels but one are considered unknown.

5.6. Conclusions 71

This can be better viewed in figure  $\ref{sum}$  where OCSVM is compared with RFSE models based on MinMax and Combo similarity measures for a varying openness level. These curves correspond to W1G features, so they are not the optimal models. However, they provide a fair comparison between examined methods. As standard error bars indicate, the performance of RFSE models with respect to the  $F_1$  measure is significantly better than that of OCSVM while openness is less than 0.5. Beyond that level, OCSVM is significantly better than RFSE models. Note also Combo measure helps RFSE in while openness is relatively low and MinMax seems to be a better choice when openness increases.

diagrams/RFSE\_vs\_OCSVME\_W1G-eps-converted-to.pdf

FIGURE 5.7: Comparison of OCSVM and RFSE models based on W1G features in varying Openness levels.

#### 5.6 Conclusions

In this paper we presented an experimental study on WGI focusing on open-set evaluation for this task. In contrast to vast majority of previous work in this area, we adopt the open-set scenario that is more realistic for WGI since it is not feasible to construct a genre palette with all available genres and appropriate samples for each one of them. Moreover, we examined two open-set classification methods and several feature types and similarity measures. To the best of our knowledge, this is the first time the performance of WGI models is evaluated using performance measures and tests specifically designed for open-set classification tasks.

The presented evaluation of open-set WGI covers two basic scenarios. The first is when noise is unstructured, i.e., information about the true genre of pages not belonging to the known genre palette is not available. The second scenario applies when noise is structured, i.e., we actually know the true genre of pages not included in the training classes. For both cases, we propose appropriate evaluation methodologies and present comparative results for the tested models.

In almost all examined cases, RFSE models outperformed the corresponding OCSVM models. This verifies previous work findings about the appropriateness of RFSE for WGI (?). RFSE is able to provide effective models and additionally it is possible to manage preference on recall or precision, an application-dependent choice, by focusing on optimizing AUC or  $F_1$  respectively. On the other hand, OCSVM proved to be the best-performing method in extreme cases when openness is high. Actually, the restrictions of the available corpora did not allow us to examine cases where openness approaches 1.0. However, it seems that when openness is more than 0.5 OCSVM outperforms RFSE.

As concerns the feature types, in most of the cases W3G and C4G provided the best results. However, the selection of text representation features is a crucial choice that affects performance and it seems to be corpus-dependent. Another crucial parameter of RFSE is the similarity measure. Among the examined measures, MinMax and its combination with cosine similarity provide the most robust results. The choice of similarity measure correlates with feature types. It seems that the combo measure is more effective than MinMax in low openness conditions.

To enhance the evaluation of WGI models in open-set conditions, we need larger corpora including multiple genre labels. New enhanced open-set WGI methods are needed and they should be evaluated using the proposed paradigm. Otherwise, using an evaluation paradigm more appropriate for closed-set tasks, the performance may be over-estimated.

# **Chapter 6**

# **Open-set WGI with Distributional Features**

#### 6.1 Introduction

# 6.2 N-grams, Word Embeddings and Distributional Features

The Bag of Terms (BOT) n-grams, a.k.a the Bag of Words (BOW), is the most common text modeling in NLP and other text related research domains. The assumption as in other features from other domain, say image processing, is the *Independent and Identical Distribution (i.i.d)* of the terms, then it is easy to express context of a text into a *fixed vector* sample which is the main requirement of most ML algorithms to work. Moreover, is computationally very easy and in the past the creation of such a fast document representing in respect of time consumption was critical due to the lack of the today's resources.

The BOT is still a top performance document representation however it comes to a great cost because it is loosing the order of the words and cannot capture their semantics. Therefore, it is impossible to capture similarities in word level such as "power" and "strength", in sentence level such as "Beats me!" and "I don't know", and in writing style such as "My greetings to..." and "Say hello to... for me".

Word Embeddings and Distributional Feature (DF)s is the state-of-the-art in language modeling as a result in the advances of the Statistical Language Modeling and particularly the Neural Probabilistic Language modeling. Ultimately, the Paragraph Vector Continues Bag of Words (PV-BOW) DF modeling can be used for complicated classification tasks such as WGI, where the BOT together with its complicated heuristics for additional feature extraction can only perform as good when the task is more tight the corpus. Although, as it will be explained later the DF models and word embeddings is a computationally expensive process is might be comparable to a sequential set of heuristics for extracting a variety of features in the effort of capturing the information missing from the BOT in the first place.

In this section it is described the PV-BOW modeling in detail, which have been used in combination with the NNDR (the open-set Nearest Neighbours) on the WGI task with promising results. First, it is described the *Neural Language Modeling (NLE)* concept and on the top of it the *Continues Bag of Words (CBOW)* and *Skip-Gram (SG)* modeling, which they are special modified *Feedforward* and *Recurrent Neural Network models respectively*.

The goal of *Statistical Language Modeling (SLM)* is to learn *joint probability distribution function* of word sequences, i.e. word n-grams. The main difference to the BOW and particularly to the word n-grams TF (or TF-IDF) model, is the *semantic proximity* of the word's neighbouring in the sentences. Implicitly the WNG-TF models is also capturing some of this information and definitely not explicitly. Additionally, the SLM can always return an estimate value for n-grams never seen before, while for the WNG-TF this is impossible (bengio2003neural)

The SLM model is defined as the *joint conditional probability distribution* of the next word given the probabilities of previous ones as shown in equation ??

$$P(w=i) = \prod_{i=1}^{|V|} P(w_i|w_{i-k}, ..., w_{i+k})$$
(6.1)

where  $w_i$  is the i-th word, and k is for the number of words before or/and and after, writing sub-sequence  $w_i = (w_{i-k}, w_{i-1}, ..., w_{i+1}, w_{i+k})$ . Note that this model returns a singleton value for a word on the condition of previews or/and next word. This model also can be expanded to have few more words in the conditional probability, usually from 2 up to 4.

With this model it can be captured the semantic proximity but it will return zero in the case a sequence have never been met before in the samples. A solution to this problem is the interpolation or smoothness factor that can be applied such as in the *back-off tri-gram model* (Katz, 1980 see in bengio2003neural).

The model of equation ?? can capture the joint probability of word-sequences in terms of feature vectors, however, it cannot capture the correlation of the words in terms of semantics. Models like LSI or LDA are methodologies also been tested in IR and NLP for capturing the semantics in the context of the n-gram based SLM.

The goal of the DF models is to learn simultaneously the *word feature vectors*, a.k.a *Word Embeddings*, and the probability function or word sequences, a.k.a *Distributional Features*. The word embeddings is a *continuous vector space* where the words are positioned in *Vocabulary* context, where the similarity of words can be learned. The word sequences are capturing the proximity of words in the paragraph (or sentence) context.

The DF models then are able to learning the *Continuous Distribution of Words in Sequences* and not only their role in sentences (such as in eq. ?? model) or only their similarity (such as the LSI models). The DF modeling is a NLM procedure where Neural Networks are used for approximating the *joint probability distribution function of the continuous distributed feature-sequences*, where the probability features are associated to the words of the Vocabulary.

In practice the distributed features is the mapping of the Vocabulary words  $V = \{w_i, i \in [1, |V|]\}$  to a real vector  $\vec{t}(i) \in \mathbb{R}^m$ . Then the semantic distance can be approximated by a NNet algorithm given the distribution of the words. The words are initially are having a vector 1-of-V representation, a.k.a. *One-hot representation*. Then the probability of the a word  $w_i$  in equation ?? can be replaced by the real continues vector ti and the conditional probability P(.|.) to be approximated my a NNet function  $\hat{p}(.)$ . The ^(hat) is for symbolizing a special condition where the probability is approximated given a sequence with a specific order, say preceding words or succeeding words or both.

Now the DF neural model can be calculated with several architectures where the  $\vec{t}$  and the  $\hat{p}$  continues distribution can feed separate layers of joint layers, and also the learning strategy can have variant implementations such as Continues Bag-of-Words, Skip-grams etc. The strategy of learning and the NNet architecture are very close related and the results are continues probability functions with substantially different meaning, where they can either encode word similarities, word semantics or even paragraph and documents encoding and similarities

To begin with, the most general architecture is to use the *Feedforward Neural Network* with a projection layer, a hidden layer and an output layer as shown in figure ??. This NNet has an input layer where every word in the vocabulary is assigned to an One-hot vector  $\hat{t}_i$  and all the sequence of the *word vectors* are concatenated and forming the input vector  $\hat{w}_i$ . The  $\hat{w}$  is the input the projection layer  $\vec{t} = \hat{w}W_{in}$  as show in the figure. The  $W_{in}$  is the weight matrix of the projection layer with same regularization parameters  $\theta$ .



FIGURE 6.1: Diagram for C-BOW and General NLM architecture. Depending whether the  $t_{i*}$  is part of the projection and the hidden layer or the layers are different. In practice the weighting matrices are either shared or different between the word projection and the hidden layer or it is the same matrix, which is equivalent to the words been projected to the same position as their vectors are averaged and not concatenated.

Now the  $\vec{t}$  is the input to a hidden layer  $\vec{h} = \vec{t}H$ , which is usually the *hyperbolic tangent hidden layer*, where H is the weights of the hidden layer. Then, the output  $\hat{p} = \vec{h}W_{out}$  is the last layer of the NNet.

The generic architecture of the final output of the NLM described above is the equation ??. Note that the output vector  $\vec{y}$  has size |V| due to the input  $\hat{w}$  and is the inference model of a *continues distribution* of both the proximity of the words in the sentences (captured by the hidden layer) and the distribution over the vocabulary, which is the continues similarity of the words in this vocabulary. The output layer then is as described in equation ??

$$\vec{y} = \vec{t} + W_{out}(\vec{t}H + b_h) + b_o \tag{6.2}$$

where  $b_o$  and  $b_h$  are the output and hidden layers biases. Usually the Hidden layer typically has a size of 500 to 1000 neurons while the projection layer might be 500 to 2000. Due to the multiple layers and the feeding of both the projection and the hidden to the output layer there is great complexity and the process is very computationally demanding.

A more efficient method is suggested in (**mikolov2013efficient**) where the non-linear hidden layer is removed and the projection layer is shared to all words, geometrically this is equivalent to the projection of the words to the same position. Then the algorithm is

reformed and the  $\hat{w}$  vectors are replaced by the  $t^*$  which is the sum of the *one-hot word vectors* (**mitra2018introduction**).

Now the equation  $\ref{eq:continuous}$  is becoming  $\ref{eq:continuous}$ . Due to the new form of the NNet where the tangent hidden layer is absent, there is no constraint in the presenting sequence of the words order. Moreover, the succeeding words also can also be taken in to account in a given window say for  $k_w$  number of words around the specific one.

$$\vec{y} = W_{out}(t^*W_{in}) + b_o \tag{6.3}$$

The suggested algorithm is called *Continues Bag-of-Words (CBOW)* because the words of the surrounding sequences is not important but it is still are taken into account for predicting the next word. Moreover the  $\vec{y}$  has a size equivalent to the size of the Vocabulary V.

In respect of training the CBOW model, a multiclass classifier is set by a Softmax function is described in equation ?? where the y is the output of the equation ??. Note now the  $\hat{p}$  continues probability is replaced by the p district probability and because now the order in the words sequences are not important. Additionally, the  $\vec{t}$  are replaced by the t because it denotes that the words can be any term; character, words, word n-grams, character n-grams.

$$p(t_i|t_{i-k},...,t_{i+k}) = \frac{e^{y_{t_i}}}{\sum_{i}^{|V|} e^{y_i}}$$
(6.4)

The objective of the training of the NLM CBOW model is to maximize the conditional log probability in equation ??.

$$\mathcal{L}_{CBOW} = \frac{1}{|S|} \sum_{i=1}^{|S|} \log p(t_i | t_{i-k}, ..., t_{i+k}; \theta)$$
(6.5)

where S is the set k-size of sampling windows and  $\theta = \{b_o, W_{in}, W_{out}\}$  are the parameters and weights should be optimized in order the CBOW model to converge. Stochastic Gradient Decent and Backpropagation is used for training the NNet.

An other training strategy is the *Skip-Gram* modeling, where the objective is to maximizes the log-likelihood of the equation ??.

$$\mathcal{L}_{SkipGram} = \frac{1}{|S|} \sum_{i=1}^{|S|} \sum_{-k < j < +k} \log p(t_{i+j}|t_i;\theta)$$

$$\tag{6.6}$$

where S is the prediction windows over the training text and k is the number of the words to be predicted surrounding the input word  $\theta$  set of parameters to be optimized. The Softmax function of equation ?? is applied at the output layer.

$$p(t_{i+k}|t_i) = \frac{e^{(W_{out} \times t_{i+j})^T (W_{in} \times t_i)}}{\sum_{i}^{|V|} e^{(W_{out} \times t_k)^T (W_{in} \times t_i)}}$$
(6.7)

As shown in figure ?? the input and the output are one-hot vectors.

Note that the two different weight matrices  $W_{in}$  and  $W_{out}$  (similarly to the CBOW) constitutes the  $\theta$  set of parameters to be optimized of the models.  $W_{in}$  gives the "in" embeddings corresponding to the input terms and  $W_{out}$  corresponds to the output embeddings for the output terms.  $W_{in}$ , a.k.a. Word Embedding, are used for several IR and NLP classification and regression tasks. The  $W_{out}$  are usually discarded.

A very important difference between the CBPW and Skip-Grams is the NNet architecture usually their implementation is based. Particularly, there are some internal detail occurring because of the objective of the task. (boden2002guide)



FIGURE 6.2: Diagram for Skip-Gram.

Finally, all the above neural models, either CBOW or Skip-Grams, since they are approximating the continues distribution probability function of words over the Vocabulary *V* they have the constraint described in equation ??

$$\sum_{i=1}^{|V|} p(t_i|t_{i-k},...,t_{i+k}) = 1$$
(6.8)

To summarize, the NLM models such as the CBOW are very effective *Language Modeling* and it has the agility to measure simultaneously several properties form the context. That is, the distribution of the terms in the paragraphs of the texts and in the vocabulary and they are also called *Distributional Features*. The features are set in a continues vector space and the model can return a prediction value y (see equation ??) for set of terms given as an input at the test phase of the model and they can be treated as response signals of a text. Particularly a sequence of words.

The texts also now are considered as signal and the sequence of words now has a temporal property where the proximity and the order are providing important information. In respect of the term frequencies are still considered due to the temporal properties, where now the words with the higher TF are weighting or amplifying the sequential signal input to the network.

Finally, the training of the CBOW and the Skip-gram NLM is very expensive and although they have lower complexity than the more generic Feedforward Neural Networks with the tangent hidden layer explained above. However, there are several engineering solution that are accelerating the training even more such as the *Huffman Binary Tree encoding or the Words* and *Hierarchical soft-max*. The later is a solution where it is enabling us to use

multi-processing and the  $\theta$  parameters to be updated concurrently. The parallel asynchronous updating of the parameter matrices is not conforming to the mathematical constraints however in practice the negative effect is minor.

The *Huffman Binary Tree* is a methods for compressing the encoding of the terms where the one with the higher frequency to be accessed faster. In addition to this, *negative sampling*, sub-sampling, or *ramdom sampling* is also used where in the range of *k* window for surrounding words only a few are selected during training with minor effect in performance and significant acceleration in training.

There are several detailed studies for *Neural Language Modeling (NLM)*, Distributional Features and Word Embedding in (**mitra2018introduction**; **mikolov2013efficient**; **mikolov2013distributed**). In the next paragraphs is explained thea *Document to Vector (Doc2Vec)* Neural Model, where it is the extension of the above models CBOW and Skip-grams. Particularly, the PV-BOW is explained which has been used in this study on WGI, where a model of the *Continues Distribution of Paragraphs* over the corpus context. Then, the web-pages are encoded in this continues distribution and their similarity is measured for the open-set WGI.

# **6.3** Paragraph-Vector Bag-of-Words and Document Vectors Projection

In this study, the Paragraph Vector Bag-of-Words (PV-BOW) model is used for the WGI task in the open-set framework evaluation. The PV-BOW is a DF modeling of the documents as an extension of the Skip-Grams modeling. The PV-BOW extends the idea of the *Continues Distribution of the Words* over the Vocabulary and the Context defined by a Corpus of documents. A *Continues Distribution of the Paragraphs (CDP* is defined where this method considers the concatenation of the paragraph vector with the word vectors to predict the next word in a text window.

The CDP can be derived with two methods, one is based on CBOW and the other on Skip-Grams, which is used in this study. The CBOW extension is called Distributed Memory Paragraph Vector (PV-DM) because the Paragraph Vector is given as an input together with the word vectors, and it is considered as memory of the words distribution.

Another way is to ignore the context words in the input, and make a model for predicting words randomly sampled from the paragraph in the output. That is the Skip-gram model but instead of a words the whole paragraph vector is given as an input as shown in figure  $\ref{eq:content}$ . In practice, at each iteration of stochastic gradient descent, text window of k size is sampled. Then a random word sampled from the text window and form a classification task given the Paragraph Vector and this is the PV-DBOW. This model requires to store less data, because only the softmax weights are stored as opposed to both softmax weights and word vectors in the PV-DM.

It should be noted that the Paragraph Vectors can be a text paragraph, a sentence, or the whole document. In this study, the whole web-pages is considered as shown in the first vector at the left in figure ??. There are several implementation for the PV-BOW modeling and a late evolution proposal for making the model more appreciate for IR problems. Including, *Document frequency based Negative Sampling* and *Document Length Regularization* (le2014distributed; posadas2017application).

The PV-BOW objective log likelihood of Skip-gram models described in equation ?? is changing to the equation ??

$$\mathcal{L}_{SkipGram} = \frac{1}{|S|} \sum_{i=1}^{|S|} \sum_{-k < j < +k} \log p(t_{i+j}|D_i; \theta)$$
 (6.9)



FIGURE 6.3: Diagram for PV-BOW

where  $D_i$  is the Document Vector or Document ID, S is the prediction windows over the training text and k is the number of the words to be predicted surrounding the input word  $\theta$  set of parameters to be optimized. Consequently, the Softmax function is becoming as shown in equation ??.

$$p(t_{i+k}|t_i) = \frac{e^{(W_{out} \times t_{i+j})^T (W_{in} \times D_i)}}{\sum_{i}^{|V|} e^{(W_{out} \times t_k)^T (W_{in} \times D_i)}}$$
(6.10)

Paragraph Vectors address some of the key weaknesses of bag-of-words (remember words can be any terms characters, words or POS) models. First, they capture the semantics of the terms. Therefore, words like "strong" and "powerful" are closer together both and far from "Athens". Secondly, paragraph vectors take into consideration the word order, at least in sentence or paragraph level, in the same way that an Word n-Gram model would do in the size of n-Terms. As we will see experimentally the n-gram model also preserves a lot of information of the paragraph such as the word order. However, even if in some cases like in the experiments below, the n-grams perform equally to the PV-BOW DF models, the DF models can generalize better. They encoding more information with much denser and continuous dimemntionality or at least the information they capture is not sparse and maybe

"broken" in the small ranges of n-terms.

In practice a library for HTML reprocessing and and Vector Representation of the webpages has been created for this work, named  $Html2Vec^1$ . There as special module for PV-BOW modeling has been build, where it is based on the the algorithm can be found at *Gensim* package <sup>2</sup>.

In this study a PVBOW Distributional Feature model for the whole corpus is trained. The corpus initially is split to a set of paragraphs, as required from PVBOW. To be more specific the paragraphs are sentences split from all the document of the whole corpus. Then several models PVBOW feature models are trained for a variety of parameters and vector dimensions, explained in the experiments section below. After the model has been fitted then one vector for each web-document was inferred from the PVBOW. The final document vectors derived from Distributional Feature Model are given to the open-set learning model explained below.

# **6.4** Paragraph-Vectors for Improving Low Performance Learners on WGI

# 6.5 Random Features vs Paragraph Vector Bag-of-Words for the Open-set Framework

# 6.6 Experiments

# **6.6.1** Corpus

Our experiments are based on *SANTINIS*, a benchmark corpus already used in previous work in WGI (mehler2010genres\_on\_web; pritsos2018open; santini2007automatic). This dataset comprises 1,400 English web-pages evenly distributed into seven genres (blog, eshop, FAQ, frontpage, listing, personal home page, search page) as well as 80 BBC web-pages evenly categorized into four additional genres (DIY mini-guide, editorial, features, short-bio). In addition, the dataset comprises a random selection of 1,000 English web-pages taken from the SPIRIT corpus (joho2004spirit). The latter can be viewed as *unstructured noise* since genre labels are missing.

## **6.6.2** Experimental Setup

To represent web-pages, we use features exclusively related to textual information, excluding any structural information, URLs, etc. The following representation schemes are examined: Character 4-grams (C4G), Word unigrams (W1G), and Word 3-grams (W3G). For each of these schemes, we use either Term-Frequency (TF) weights or DF features. The feature space for TF is defined by a vocabulary  $V_{TF}$ , which is extracted based on the most frequent terms of the training set — we consider  $V_{TF} = \{5k, 10k, 50k, 100k\}$ . The DF space is pre-defined in the PV-BOW model — we consider  $DF_{dim} = \{50, 100, 250, 500, 1000\}$ .

In PV-BOW, the terms with very low-frequency in the training set are discarded. In this study, we examine  $TF_{min} = \{3, 10\}$  as cutoff frequency threshold. The text window size is selected from  $W_{size} = \{3, 8, 20\}$ . The remaining parameters of PV-BOW are set as follows:  $\alpha = 0.025$ ,  $epochs = \{1, 3, 10\}$  and  $decay = \{0.002, 0.02\}$ .

<sup>1</sup>https://github.com/dpritsos/html2vec

<sup>&</sup>lt;sup>2</sup>https://github.com/RaRe-Technologies/gensim

6.7. Results 81

Regarding the NNRD open-set classifier, there are two parameters, *lambda* and DRT, and their considered values are:  $\lambda = \{0.2, 0.5, 0.7\}$ ,  $DRT = \{0.4, 0.6, 0.8, 0.9\}$ . All aforementioned parameters are adjusted based on grid-search using only the training part of the corpus.

For a proper comparison with prior art, we use two open-set WGI approaches with good previously reported results as baselines: Random Feature Subset Ensemble (RFSE) and one-class SVM (OCSVM) (**pritsos2013open**; **pritsos2018open**). All parameters of these methods have been been adjusted as suggested in (**pritsos2018open**) (based on the same corpus).

We follow the open-set evaluation framework with unstructured noise introduced in (**pritsos2018open**). In particular, the open-set F1 score (**mendesjunior2016**) is calculated over the known classes (the noisy class is excluded). The reported evaluation results are obtained by performing 10-fold cross-validation and, in each fold, we include the full set of 1,000 pages of noise. This setup is comparable to previous studies (**pritsos2018open**).

## 6.7 Results

We apply the baselines and NNDR in the SANTINIS corpus. In the training phase, we use only the 11 known genre classes while in test phase, we also consider an additional class (unstructured noise). Table ?? shows the performance of tested methods when either TF or DF representation schemes, based on C4G, W1G, or W4G features, are used.

First, we compare NNDR using TF features with baselines, also using this kind of features. In this case, NNDR outperforms OCSVM. On the other hand, RFSE performed better than NNDR for Macro-F1 and Macro-AUC. This is consistent for any kind of features (C4G, W1G, or W3G). There is notable difference in the dimensionality of representation used by the examined approaches though. RFSE relies upon a 50k-D manifold while NNDR and OCSVM are based on much lower dimensional spaces. It has to be noted that RFSE builds an ensemble by iteratively selecting a subset of the available features (randomly). That way, it internally reduces the dimensionality for each constituent base classifier. On the other hand, NNDR seems to be confused when thousands of features are considered as it is based on distance calculations.

Next, we compare NNDR models using either TF or DF features. There is a notable improvement when DFs are used in associated with the open-set NNDR classifier. The dimensionality of DF is much lower than TF and this seems to be crucial to improve the performance of NNDR. This is consistent for all three feature types (C4G, W1G, and W3G). NNDR with TF scheme is competitive only when W3G features are used. It has also to be noted that in all cases the selected value of parameter DRT is 0.8. This indicates that NNDR is a very robust algorithm.

Finally, the proposed approach using NNDR and DF outperforms OCSVM but it is outperformed by the strong baseline RFSE in both macro-AUC and macro F1. However, when precision is concerned, NNDR is much better. A closer look at the comparison of the two methods is provided in Fig. ??, where precision curves in 11-standard recall levels are depicted. The precision value at  $r_j$  level is interpolated as follows:  $P(r_j) = \max_{r_i \le r \le r+j+1} (P(r))$ 

The NNDR-DF model maintains very high precision scores for low levels of recall. The difference between NNDR-DF and RFSE at that point is clearer when W3G features are used. NNDR-TF is clearly worse than both NNDR-DF and RFSE. In addition, OCSVM is competitive in terms of precision only when W3G features are used but its performance drops abruptly in comparison to that of NNDR-DF. Note that the point where the curves end indicates the percentage of corpus that is left unclassified (assigned to unknown class). RFSE manages to recognize correctly larger part of the corpus, more than 70%, with respect to NNDR-DF that reaches 60%.

| Model       | Features | Dim. | Precision | Recall | AUC   | F1    |
|-------------|----------|------|-----------|--------|-------|-------|
| RFSE        | TF-C4G   | 50k  | 0.739     | 0.780  | 0.652 | 0.759 |
| RFSE        | TF-W1G   | 50k  | 0.776     | 0.758  | 0.657 | 0.767 |
| <b>RFSE</b> | TF-W3G   | 50k  | 0.797     | 0.722  | 0.615 | 0.758 |
| OCSVM       | TF-C4G   | 5k   | 0.662     | 0.367  | 0.210 | 0.472 |
| OCSVM       | TF-W1G   | 5k   | 0.332     | 0.344  | 0.150 | 0.338 |
| OCSVM       | TF-W3G   | 10k  | 0.631     | 0.654  | 0.536 | 0.643 |
| NNDR        | TF-C4G   | 5k   | 0.664     | 0.403  | 0.291 | 0.502 |
| NNDR        | TF-W1G   | 5k   | 0.691     | 0.439  | 0.348 | 0.537 |
| NNDR        | TF-W3G   | 10k  | 0.720     | 0.664  | 0.486 | 0.691 |
| NNDR        | DF-C4G   | 50   | 0.829     | 0.600  | 0.455 | 0.696 |
| NNDR        | DF-W1G   | 50   | 0.733     | 0.670  | 0.541 | 0.700 |
| NNDR        | DF-W3G   | 100  | 0.827     | 0.615  | 0.564 | 0.706 |

TABLE 6.1: Performance of baselines and NNDR on the SANTINIS coprus.

All evaluation scores are macro-averaged.

NNDR\_W3G-W1G\_Best\_RFSE-OCSVM-Baselines-eps-converted-to.

FIGURE 6.4: Precision curves in 11-standard recall levels of the examined open-set classifiers using either W3G features (left) or W1G features (right).

# 6.8 Experiments

#### **6.8.1** Open-set Evaluation Methodology

In this study we are measuring the performance of a novel extension of the NN method, designed for open-set classification when the web-documents used as input are *Distributional Encoding of Fixed Size Vectors* derived from an PVBOW NNet model. In particular we are measuring the effect the marked-as-unknown (or marked-as-noise) genre class tags, to the open-set prediction process.

To compensate the potentially unbalanced distribution of web pages over the genres, we are using the macro-averaged precision and recall measures. Than is a modified version of precision and recall for open-set classification tasks proposed by (**mendesjunior2016**). This modification calculates precision and recall only for the known classes (available in the training phase) while the unknown samples (belonging to classes not available during training) affect false positives and false negatives. To find parameter settings that obtain optimal evaluation performances we use two scalar measures, the *Area Under the Precision-Recall Curve* (AUC) and  $F_1$ . We will show that the appropriate selection of the optimization measure is highly significant in the presence of noise.

Precision-Recall curve is a standard method to visualize the performance of classifiers. In this paper, the Precision-Recall curve is calculated in 11-standard recall levels [0,0.1,...,1.0]. Precision values are interpolated based on the following formula:

$$P(r_j) = \max_{r_j \leqslant r \leqslant r_{j+1}} (P(r)) \tag{6.11}$$

where  $P(r_i)$  is the precision at  $r_i$  standard recall level.

6.8. Experiments 83

## 6.8.2 Corpora

In this paper we study NNRD performance with distributional features derived from a NNet PVBOW corpus. In particular, the open-set algorithms described above are analytically tested on benchmark corpus already used in previous work in WGI meyer2004genre, santini2007automatic, kanaris2009learni the *SANTINIS* (mehler2010genres\_on\_web) corpus. Details are given in table ??. This is a corpus comprising 1,400 English web pages evenly distributed into 7 genres as well as 80 BBC web pages evenly categorized into 4 additional genres. In addition, it comprises a random selection of 1,000 English web pages taken from the SPIRIT corpus (joho2004spirit). The latter can be viewed as noise in this corpus. In particular in this study SPIRIT tags are considered *Marked as Unknown* (MU) and this is how we measure them.

Note that in the evaluation process we both measuring two kind classification-as-unknown of the open-set algorithm; the *false positive unknown* where are classification of samples which have class tags known to the NNRD model and the *true positive unknown* where they are marked-as-unknown (or marked-as-noise) where they are considered as noise.

#### 6.8.3 Settings

Our text representation features are based exclusively on textual information from web pages excluding any structural information, URLs, etc. Based on the good results reported in sharoff2010web,pritsos2013open,Asheghi2015 as well as some preliminary experiments. The following document representation schemes are examined: Character 4-grams (C4G), Word unigrams (W1G), and Word 3-grams (W3G).

We use the Term-Frequency (TF) weighting scheme and Distributional Learning scheme. The feature space for TF is defined by a *Vocabulary* which is extracted based on the terms appearing at training set only. The TF-Vocabulary range of dimensions have been tested are  $V_{TF} = \{5k, 10k, 50k, 100k\}$ . The feature space in the Distributional model is pre-selected while the deep learning process of PVBOW model. The range of the models fixed dimensions has been tested are  $D_{dim} = \{50, 100, 250, 500, 1000\}$  based of previews studies related to the distributional features on Natural Language Processing domain where relatively small dimensions are used, compare to TF scheme.

The DM vocabulary creation process is also driven by an internal terms *vocabulary* which is used for eliminating the terms with lower than a preferred frequency and then discards the terms from the text window for the PVBOW (see section ??). In this study we have tested as the  $TF_{min} = \{3, 10\}$  minimum frequencies set. The text window tested was  $P_{win} = \{3, 8, 20\}$  size set. In respect of PVBOW model, other (hyper-)parameter values put to a test were  $\alpha = 0.025$ ,  $epochs = \{1, 3, 10\}$  and  $decay = \{0.002, 0.02\}$ .

Particularly for NNRD then following parameters have been tested:1) ={0.2, 0.5, 0.7} which is regulating the balance between the known and the unknown classification accuracy risk in the formula ??, 2)DRT threshold selection candidates  $DRT = \{0.4, 0.6, 0.8, 0.9\}$ . Also two other parameters we have introduced in our implementation; the percentage of the training set to be split internally as Training/Validation sub-sets where  $V_{ptg} = \{0.5, 0.7\}$  has been tested. Then the percentage of the validation set which was split as unknown  $U_{ptg} = \{0.3, 0.5\}$  has been tested.

The Random Feature Sub-spacing Ensemble (RFSE) algorithm is a variation of the method presented by Koppel et al. koppel2011authorship for the task of *author identification*. In the original approach, there is only one training example for each author and a number of simple classifiers is learned based on random feature subspacing. Each classifier uses the cosine distance to estimate the most likely author. The key idea is that it is more likely for the true author to be selected by the majority of the classifiers since the used subset of features will still be able to reveal that high similarity. That is, the style of the author is captured by many

| Genre                | Pages |
|----------------------|-------|
| Blog                 | 200   |
| Eshop                | 200   |
| FAQ                  | 200   |
| Frontpage            | 200   |
| Listing              | 200   |
| Personal Home Page   | 200   |
| Search Page          | 200   |
| DIY Mini Guide (BBC) | 20    |
| Editorial (BBC)      | 20    |
| Features (BBC)       | 20    |
| Short Bio (BBC)      | 20    |
| Noise (Spirit1000)   | 1000  |

TABLE 6.2: SANTINIS corpora descriptions and amount of pages per genre.

different features so a subset of them will also contain enough stylistic information. Since WGI is also a style-based text categorization task, this idea should also work for it.

In our study we adopt the RFSE method as introduced in pritsos2013open shown in *Algorithm* ??. There are multiple training examples (documents) for each available genre. To maintain simplicity of classifiers, we have used a *centroid vector* for each genre. In the training phase, a centroid vector is formed, for every class, by averaging all the Term-Frequency (TF) vectors of the training examples of web pages for each genre.

The class centroids are all formed for a given feature type. Then, an evaluation document is compared against every centroid and this process is repeated I times. Every time a different feature sub-set is used. Then, the scores are ranked from highest to lowest and we measure the number of times the document is top-matched with every class. The document is assigned to the genre with maximum number of matches given that this score exceed a predefined  $\sigma$  threshold. In the opposite case, the document remains unclassified, the RFSE responds "I Don't Know".

As comparative *Baseline* we have employed RFSE. With respect to RFSE, four parameters should be set: the vocabulary size  $V_F$ , the number of features used in each iteration FSS, the number of iterations I, and the threshold  $\sigma$ . We examined,  $FSS=\{1k, 5k, 10k, 50k, 90k\}$ ,  $I=\{10, 50, 100, 200, 300, 500, 1000\}$  and  $\sigma=\{0.5, 0.7, 0.9\}$ . Additionally, in this work we are testing three document similarity measures: cosine similarity. All these parameters have been selected as suggested in (**pritsos2018open**).

Finally, to extract the best possible parameter settings for each classification method we apply grid-search over the space of all parameter value combinations.

## 6.9 Results

In this study we are evaluating the performance of NNDR algorithm into the open-set framework with the presence of noise, as the notion of noise explained above. That is we are only using the 11 known genre classes of SANTINIS corpus for training, while for evaluation we are using all 12 classes. The true genre class tags for the documents of the in the 12th class is not known and it is only considered as noise. Therefore, we have to deal with *unstructured noise*. Additionally, since the noise-class is marked then the algorithm is evaluated in both false-positive classifications of the marked-unknown-classes as known an the false-negative classifications of the known-classes as unknown. In both cases the false classifications are

6.9. Results 85

causing a penalty to the Macro-F1 and Macro-Precision-Recall Curves we are using for evaluation.

We perform 10-fold cross validation and in each fold we include the full set of 1,000 pages of noise. This evaluation strategy is giving a more realistic evaluation. Since the noise size is greater than the size of any genre included in the given genres collection.

Initially we are comparing the performance of NNDR with RFSE on TF features vocabulary. RFSE returns higher score to NNDR, in tables ?? and ??, for Macro-F1 and Macro-AUC and for any terms-type. Note also that the TF feature model dimensions for both algorithm is in all cases a few thousands.

| MAX. | STP | SUP | DRT | λ          | T.TYPE | DIMs  | MP    | MR    | MAUC   | MF1   |
|------|-----|-----|-----|------------|--------|-------|-------|-------|--------|-------|
| F1   | 0.7 | 0.3 | 0.8 | any        | C4G    | 5000  | 0.664 | 0.403 | 0.291D | 0.502 |
| AUC  | 0.7 | 0.3 | 0.8 | any        | C4G    | 5000  | 0.664 | 0.403 | 0.291D | 0.502 |
| F1   | 0.7 | 0.5 | 0.8 | any        | W1G    | 5000  | 0.691 | 0.439 | 0.348D | 0.537 |
| AUC  | 0.7 | 0.5 | 0.8 | any        | W1G    | 5000  | 0.691 | 0.439 | 0.348D | 0.537 |
| F1   | 0.5 | 0.5 | 0.8 | 0.3 or 1.5 | W3G    | 10000 | 0.720 | 0.664 | 0.486D | 0.691 |
| AUC  | 0.5 | 0.5 | 0.6 | 0.5        | W3G    | 5000  | 0.738 | 0.604 | 0.437D | 0.664 |

TABLE 6.3: Maximum performance of NNDR on TF Features of SANTINIS coprus. STP is the Splitting Training Percentage. SUP is the Splitting Unknown Percentage. DRT is the Distance Ration Threshold.  $\lambda$  is the weighting balance regulation parameters for the Normalized Accuracy. T.TYPE is the Terms Type. DIMs is the features model's dimensions. MP is the Macro Precision. MR is the Macro Recall. MAUC is the Area Under the Macro PR Curve. MF1 is the F1 score of the Macro Precision and Macro Recall

| MAX. | FSS   | $\sigma$ T | ITER. | T.TYPE | DIMs   | MP    | MR    | MAUC  | MF1   |
|------|-------|------------|-------|--------|--------|-------|-------|-------|-------|
| F1   | 1000  | 0.5        | 100   | C4G    | 50000  | 0.739 | 0.780 | 0.652 | 0.759 |
| AUC  | 500   | 0.5        | 300   | C4G    | 10000  | 0.686 | 0.831 | 0.722 | 0.751 |
| F1   | 10000 | 0.5        | 1000  | W1G    | 50000  | 0.776 | 0.758 | 0.657 | 0.767 |
| AUC  | 1000  | 0.5        | 300   | W1G    | 5000   | 0.618 | 0.807 | 0.673 | 0.700 |
| F1   | 1000  | 0.7        | 100   | W3G    | 50000  | 0.797 | 0.722 | 0.488 | 0.758 |
| AUC  | 10000 | 0.5        | 100   | W3G    | 100000 | 0.657 | 0.805 | 0.696 | 0.723 |

TABLE 6.4: Maximum performance of RFSE on TF Features of SANTINIS coprus. FSS is the Features Subset Selection number.  $\sigma$ T is the sigma threshold of the RFSE. ITER is the number of iterations of the RFSE. T.TYPE is the Terms Type. DIMs is the features model's dimensions. MP is the Macro Precision. MR is the Macro Recall. MAUC is the Area Under the Macro Precision-Recall Curve. MF1 is the F1 score of the Macro Precision and Macro Recall.

However, there is a notable difference in the behavior of the two algorithms where it seems to be the reason RFSE outperforms NNDR. NNDR is using the 5000 (with the exception of line 4 of table ??) most frequent features for both training and evaluation phases. RFSE is using about 1000 *randomly selected features* from the 50,000 to 100,000 most frequent features. This observations leading as the conclusion that the textual-genre information is pervasive in several features of the texts irrespectively of their frequency.

In order to research our null hypothesis where the textual-genre information is pervasive in the correlation of the features and not only in their frequency, we employee the distributional features explained above. Comparing tables ?? and ?? there is a notable improvement. Particularly for the Macro-F1 Score the performance reaches 0.7 in all cases. Moreover, the STP, SUP and  $\lambda$  parameters can my any of the set we have tested, on the contrary to the TF features model where only a specific value pare case is returning the maximum performance. Concerning TF model only when W3G terms-type is used we have a comparable F1 and AUC value to the respective performance of the distributional model for NNDR.

We have also examined the case where *AUC* is maximized because it seems in (**pritsos2018open**) study this measure is maximized when precision is maximized while the recall is kept as max as possible. As an example note line 6 at table ?? where for W3G the precision can reach 0.738 while recall only reduced to 0.604 compare to the 0.664 in the above line where F1 is maximized.

6.9. Results 87

| MAX. | STP | SUP | DRT | λ   | T.TYPE | DIMs | MTF | WS | $\alpha$ | EP. | DEC.  | M <i>P</i> | MR    | MA   |
|------|-----|-----|-----|-----|--------|------|-----|----|----------|-----|-------|------------|-------|------|
| F1   | any | any | 0.8 | any | C4G    | 50   | 3   | 8  | 0.025    | 10  | 0.002 | 0.829      | 0.600 | 0.45 |
| AUC  | any | any | 0.8 | any | C4G    | 500  | 3   | 3  | 0.025    | 10  | 0.02  | 0.755      | 0.602 | 0.53 |
| F1   | any | any | 0.8 | any | W1G    | 50   | 3   | 3  | 0.025    | 10  | 0.02  | 0.733      | 0.670 | 0.54 |
| AUC  | any | any | 0.8 | any | W1G    | 50   | 3   | 3  | 0.025    | 10  | 0.02  | 0.733      | 0.670 | 0.54 |
| F1   | any | any | 0.8 | any | W3G    | 100  | 3   | 3  | 0.025    | 10  | 0.02  | 0.827      | 0.615 | 0.56 |
| AUC  | any | any | 0.8 | any | W3G    | 100  | 3   | 3  | 0.025    | 10  | 0.02  | 0.827      | 0.615 | 0.56 |

TABLE 6.5: Maximum performance of NNDR on Distributional Features of SANTINIS corpus. STP, SUP, DRT,  $\lambda$ , T.TYPE, DIMs are the same as in table ??. MTF is the Minimum Threshold Fequency of the Distributional models Vocabulary. WS is the Windows Size of the text sentence.  $\alpha$  is the NNet parameter. EP is the epochs number of the NNet model. DEC is the decay parameter of the NNet model. MP is the Macro Precision. MR is the Macro Recall. MAUC is the Area Under the Macro PR Curve. MF1 is the F1 score of the Macro Precision and Macro Recall.

The open-set classification framework evaluation design naturally turns our interest to the precision performance of the algorithms. To reason it we have to consider that a classifier in a binary case should distinguish the *known and the unknown web documents* are not belonging to the target class. In addition it has to recognize the the documents of the target class. Thus 2 out of 3 evaluation score naturally related to the precision score.

In precision perspective it seems NNDR with distributional features outperforms RFSE in all case. In addition the size of features models dimension are 10 to 200 times smaller. NNDR returns 0.829 macro-precision score compare to 0.739 of the RFSE, for C4G terms-type. Moreover, the maximum precision of RFSE is 0.797 with 0.722 recall while the respective recall for them maximum NNDR precision performance is 0.600.

The performance of NNDR (with distributional features) increases for 10% on average for precision and decreases for 21.00% compare to the RFSE. In addition, its performance increases for 7% in precision and 37% in recall compare to it self when TF feature model is used.

We further evaluated the performance of NNDR in respect of precision performance and for this reason we have selected the best performance with the AUC criterion for NNDR using DF model, which in for this corpus is also maximizes F1. In figure ?? NNDR with DF, NNDR with TF and RFSE with TF are shown. All curves are showing the performance when W3G is used where it the case NNDR with DF is returning the maximum performance on SANTINIS corpus.



FIGURE 6.5: Precision-Recall Curves of NNDR on SANTINIS corpus with RFSE as Baseline. The curves are for W3G terms-type and for AUC optimization criterion. The 11-recall-levels are shown for each evaluation experiment. The lines are stopping before the 11th recall level due to the open-set framework, i.e. the remaining part after the last mark of each curve it the percentage of the corpus tha has been classified as Unknown from the algorithms.

The NNDR-DF is starting higher from all the curves and it remains to 0.99 precision for the 30% of the corpus then it drops to the same level with the RFSE baseline and after 0.50% drops below it. However, it remains over 0.80 up to 60% of the corpus. The the rest of the corpus is classified as unknown. RFSE manages to recognize correctly part of the corpus up to 80% with the precision to drop to 0.70 and then to 0.65. Considering the NNDR-TF is significantly lower in performance compare to the base line and is also has a significant drop in performance for the first 10% of the corpus. Given that the curves are calculated based on the ranked scores from the best performance to the lowest performance it seems that the algorithm significantly affected by the noise of the marked-unknown part. That is the algorithm makes very confident decision for some part of the corpus confusing them with other classes. Its overall performance is over 0.7 precision and still recognize the 60% of the corpus.

To conclude it seems that distributional features are giving a significant increment in performance even for a pure performance and very algorithm as NN, particularly the NNDR, i.e. an open-set version of it. Still RFSE where has successfully used for WGI and other NLP problems, is giving higher over all performance in respect of macro-F1 and AUC. However, in respect of precision which is naturally more important for an open-set evaluation set the distributional features are offering higher or equal performance with 100 times smaller feature size. Moreover, considering the open-set framework as a filtering-setup for the algorithms one would probably prefer the NNDR-DF algorithm over RFSE.

# 6.10 Conclusions

In this paper we presented an experimental study where is focused on the effect of distributional features on an open-set web-page document classification task. In contrast to vast majority of previous work in this area, we adopt the open-set scenario that is more realistic for web-page classification since it is not feasible to construct a genre palette with all available genres and appropriate samples for each one of them. Particularly we are evaluating the possible performance improvement of an open-set algorithm when distributional features are employed, using the SANTINIS corpus.

The open-set algorithm we have evaluated with distributional features input is a novel variation of Nearest Neighbors algorithm named NNDR. A Distance Ration threshold is calculated while the training procedure for maximizing the *Normilized Accuracy* of the known and the unknown classes.

Our evaluation methodology previews shown to be proper for evaluation open-set scenarios. The natural focus in an open-set evaluation framework is the macro-precision, since always there is a part of the corpus will be classified as unknown. Either because it is unknown (marked-as-unknown) or it is considered as outage while training.

In our evaluation distributional feature are giving a great improvement to the NNDR algorithm compare to it TF features performance. Moreover comparing it to the RFSE algorithm, our baseline, there is also an improvement in respect of macro-precision with some cost to the recall performance. Overall NNDR from a very low performance compare to the baseline it is becoming a comparable choice.

As concerns the terms-types, either fo the TF features model of the distributional one in all cases W3G provided the maximum scores. distributional In this study we concluded that probably the distributional features is a prospective choice for the WGI research community. Thus, a farther research would be fruitful focusing on several important aspects the selection of the similarity measures other than cosine we have used. There are also several variation and parameters for the distributional features one can use, for instance we have used Bag-of-words-paragraph vectors for training on our NNet deep learning model.

6.11. Final VERSION 89

Finally it almost became tradition to be underlined that there is a need for a well formed corpus specialized for the WGI task. We need larger corpora including multiple genre labels. In addition there is a need for a constant updating of this corpus to capture the new trends in the genre pallet of the web itself, since new genre classes are added and the current ones are rapidly changing context, as naturally the human communication is reformed in a temporal manner.

# 6.11 Final VERSION

# 6.12 Proposed Approach — Open-Set Web Genre Identification

#### 6.12.1 Nearest Neighbors Distance Ratio Classifier

The Nearest Neighbors Distance Ratio (NNRD) classifier is an open-set classification algorithm introduced in (**mendesjunior2016**), which in turn, is an extension upon the *Nearest Neighbors* (NN) algorithm. NNRD calculates the distance of a new sample s to its nearest neighbor t and to the closest training sample t belonging to a different class with respect to t. Then, if the ratio d(s,t)/d(s,u) is higher than a threshold, the new sample is classified to the class of t. Otherwise, it is left unclassified.

It is remarkable that, in contrast to other open-set classifiers, training of NNDR requires both known samples (belonging to classes known during training) and unknown examples (belonging to other/unknown classes) of interest. In more details, the *Distance Ratio Threshold* (DRT) used to classify new samples is adjusted by maximizing the *Normalized Accuracy* (NA)  $NA = \lambda A_{KS} + (1 - \lambda)A_{US}$ , where  $A_{KS}$  is the accuracy on known samples and  $A_{US}$  is the accuracy on unknown samples. The parameter  $\lambda$  regulates the mistakes trade-off on the known and unknown samples prediction. Since usually in training phase only known classes are available, Mendes et al. (**mendesjunior2016**) propose an approach to repeatedly split available training classes into two sets (known and "simulated" unknown). In our implementation of NNDR, we use cosine distance rather than the Euclidean distance because previous work found this type of distance more suitable for WGI (**pritsos2018open**).<sup>3</sup>

<sup>3</sup>https://github.com/dpritsos/OpenNNDR