산업용 비파괴측정용 고속 테라헤르츠영상시스템

기술명	산업용 비파괴 측정용 고속 테라헤르츠 영상 시스템
기술완성도(TRL)	5단계(확정된 소재/부품/시스템 시제품 제작 및 성능평가, 구현환경 적용실험)
	주파수 가변 테라헤르츠 연속파를 이용한 분광 이미징 시스템으로, 펄스 기반 테라헤
	르츠 이미징 시스템에 비해 소형, 저가격으로 고속 이미징이 가능한 기술
키워드	비파괴 측정, 테라헤르츠

□ 기술개요

ㅇ 분광 이미징 가능한 국산화된 모듈

[그림 2] Dual-Mode Laser 주파수 가변 특성

- 광대역 주파수 가변이 가능한 테라헤르츠파 발생을 위해 포토닉스 기반의 이 중모드레이저(Dual-Mode Laser, 비팅 광원)를 개발
- 테라헤르츠 광원/검출기용 소자, 모듈과 각종 테라헤르츠 광학부품(실리콘 렌즈, F-theta lens, THz mirror, beam splitter 등) 및 구동 보드에 이르기 까지, 시스템 구성에 필요한 대부분의 구성 요소를 자체적을 개발하여, 기술 국산화, 저가격화, 지속적인 시스템 개선 및 개발 가능

□ 기술개발 현황

- ㅇ 기존기술의 문제점
 - 기존 기술은 크기가 크고 가격이 비쌈

ㅇ 본 기술의 해결방안 및 효과

- 레이저 기반의 연속파 테라헤르츠 광원 및 발생기를 이용하여 기존 기술에 비해 소형, 저가격의 장치 구성이 가능함
- Handheld 형태의 휴대가 가능한 시스템 개발이 가능하여 다양한 산업현장으로 의 적용이 가능함

🔲 기술의 우수성

- 펄스 기반 시스템과 달리 수초 이내에 10cm x 10cm 이상의 비교적 넓은 영역에 대한 테라헤르츠 이미지를 얻을 수 있으며, 주파수 가변이 가능하여 특정 주파수에 강한 흡수선을 갖는 위험 물질의 분광학적 이미징을 통해 검출 가능함
- 또한, 포토닉스 기반의 소자 개발로, 펄스 형태의 테라헤르츠 시스템에 비하여 소형, 저가격의 휴대가 가능한 테라헤르츠 시스템 개발이 가능하여 여러산업 현장에서 필수적인 검사 도구로 자리 잡을 것으로 기대되며, 또한 X-ray와 달리 인체에 무해한 테라헤르츠 파의 특성상 의료분야 및 공항 등의 공공 장소에서 별도 고지 없이 시스템 설치가 가능하여 공공 안전 분야로의 그 응용이 기대됨

□ 기술 적용(활용) 가능 분야

 식품 이물질 탐지, 비접촉식 반도체 기판 전기전도도 매핑, 비접촉식 페인트 등의 도막 두께 측정, 공항 보안 검색대, 비전도성 물질의 투과 및 반사 이 미지, 의료분야(암조직 분포 실시간 확인) 등

□ 시장 현황(시장 규모 및 국내외 동향)

[영상 잔단 및 측정기기 분야의 세계시장 규모 및 전망]

(단위: 백만달러,%)

구분	'15	'16	17	'18	119	,50	CAGR ('13~'15)
세계시장	9,070	9,510	10,050	10,500	10,920	11,357	5.59

ALE: World Medical Market Fact Book 2014/2014.08. BMI Epicom), The World Medical Market Forecast to 2019 (2014: 10, BMI Epicom), Top MedicalDevice & imaging Technologies in 2015 (May 2015, Frost & Sullivan), World-wide Mobile health Revenue (2013, PwC), Top Medical Device and imaging Technologies in 2015 (May 2015, Frost & Sullivan).

- o 영상 진단 및 측정기기 분야의 세계시장 규모는 2015년 90억 7,000만 달러이며, 2020년에는 113억 달러 규모의 시장을 형성할 것으로 전망
- ㅇ 의료영상 전단 기기는 전 세계 의료기기 시장 중에서 약 26%로 높은 시장

점유율을 가지고 있으며, 전형적인 고부가가치를 창출하는 의료기기 분야

[영상 진단 및 측정기기 분야의 세계시장 규모 및 전망]

(단위: 억원,%)

구분	′15	116	'17	′18	19	′20	CAGR ('13~'15)
국내시장	3,373	3,592	3,825	4,073	4,317	4,576	6.48

자료 : 식물의약품통제면보 (2012~2014, 식물의약품안전체), 2014년 의료기기 생산실적 (2015, 식물의약품만전체) 의료기기 물목시장 리포트 (2014, 한국보건산업 진흥원)

- o 영상 진단 및 측정기기 분야의 국내시장 규모는 2015년 3,373억 원이며 2020년에는 4,576억원 규모의 시장을 형성 할 것
- 2012년 국내 의료기기 시장 4조 5,923억원으로 2011년 대비 6.6% 증가하였으며, 생산액은 3조 6,773억원으로 9.2%, 수출액은 2조 2,150억원으로 19.5% 증가
- o 초음파 영상진단기기 생산실적은 4,666억원, 수출실적은 460백만 달러를 기록하며 국내 의료 기기 품목 중 생산 및 수출 1위를 차지함

□ 관련 지식재산권 현황

구분	발명의 명칭	특허 출원번호 (출원일자)	특허 등록번호 (등록일자)
국외	Multiple distributed feedback laser	12506073	07864824
	devices	(2009.07.20)	(2011.01.04)
국외	Dual mode semiconductor laser and terahertz wave apparatus using the same	13022985	08774243
		(2011.02.08)	(2014.07.08)
국외	Laser device	12856172	08213478
	Lasei device	(2010.08.13)	(2012.07.03)

🔲 기술 문의처

구 분	기관명	이름	부서	직급	연락처	e-mail
연구자 (기술보유기관)	한국전자통신연구원	<i>박경현</i>	테라헤르츠창의 원천연구실	실장	042-860-1343	khp@etri.re.kr
기술거래기관	㈜피앤아이비	황인수	기술사업화1팀	0/1/	070-8299-248 3	ishwang@pnibiz.com