

BUNDESREPUBLIK DEUTSCHLAND

P 2198 DE

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen: 103 00 280.4

Anmeldetag: 8. Januar 2003

Anmelder/Inhaber: ITW Gema AG, St. Gallen/CH

Bezeichnung: Pumpeneinrichtung für Pulver, Verfahren hierfür und Pulverbeschichtungseinrichtung

IPC: B 65 G und B 05 C

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 20. November 2003
Deutsches Patent- und Markenamt
Der Präsident
Im Auftrag

A handwritten signature in black ink, appearing to read "Stark".

ITW Gema AG
P 2198

7. Januar 2003

Pumpeneinrichtung für Pulver, Verfahren hierfür und
Pulverbeschichtungseinrichtung

Die Erfindung betrifft eine Pumpeneinrichtung für Pulver, insbesondere für Beschichtungspulver gemäß dem Oberbegriff von Anspruch 1, ein Verfahren hierfür und eine Pulverbeschichtungseinrichtung, die mindestens eine solche Pumpeneinrichtung aufweist.

Demgemäß betrifft die Erfindung eine Pumpeneinrichtung für Pulver, insbesondere für Beschichtungspulver, enthaltend mindestens eine Pulver-Pumpe, welche eine Dosierkammer aufweist, die von einem Kammergehäuse und einem Verdrängerkörper begrenzt ist, welcher relativ zum Kammergehäuse während eines Druckhubes vor und während eines Saughubes zurück bewegbar ist, wobei die Pumpenkammer einen Pulvereinlasskanal, welchem ein Pulvereinlassventil zugeordnet ist, einen Pulverauslasskanal, welchem ein Pulverauslassventil zugeordnet ist, und einen Druckgaseinlasskanal, welchem ein Druckgaseinlassventil zugeordnet ist, aufweist, wobei zum Ansaugen einer dosierten Menge von Pulver in die Dosierkammer das Pulvereinlassventil aufmachbar ist und das Pulverauslassventil und das Druckgaseinlassventil schließbar sind, so dass der sich in Saughubrichtung bewegende Verdrängerkörper

Pulver durch den Pulvereinlasskanal in die Dosierkammer saugen kann, und zum Fördern von der dosierten Pulvermenge aus der Dosierkammer das Pulvereinlassventil schließbar ist und das Pulverauslassventil und das Druckgaseinlassventil aufmachbar sind, so dass von dem Drucklufeinlasskanal in die Dosierkammer strömende Druckluft die dosierte Pulvermenge von der Dosierkammer in den Pulverauslasskanal drücken kann.

Aus der Praxis ist eine Pumpeinrichtung dieser Art bekannt, welche zwei Pumpen aufweist, die je einen Pulveransaugkolben und einen ihn antreibenden Pneumatikzylinder aufweisen. Die beiden Pumpen werden gegenläufig angetrieben, so dass der eine einen Saughub ausführt, während der andere einen Druckhub ausführt. Während des Saughubes saugt der betreffende Pulveransaugkolben Pulver von einer Pulverquelle in seine Dosierkammer. Am Ende des Saughubes wird mittels Druckluft, welche in die Dosierkammer eingeleitet wird, die dort dosierte Pulvermenge aus der Dosierkammer in eine Pulverabgableitung ausgestoßen. Danach geht der Kolben während eines Druckhubes in seine Ausgangsstellung zurück, um dann wieder während eines Saughubes Pulver von der Pulverquelle anzusaugen. Die Fördermenge pro Zeiteinheit ist von der Frequenz abhängig, mit welcher die Kolben hin und her bewegt werden.

Ferner sind sogenannte Injektoren bekannt, bei welchen nach dem Venturi-Prinzip ein Förderluftstrom von einer Auslassdüse in eine Fangdüse strömt und im Zwischenraum dazwischen einen Unterdruck erzeugt, durch welchen Beschichtungspulver von einer Pulverquelle in den Förderluftstrom gesaugt wird. Solche Injektoren haben gegenüber den vorgenannten Kolbenpumpen die Nachteile, dass die Pulverpartikel eine abrasive Wirkung auf die Fangdüse haben und dadurch der Wirkungsgrad der Pulverförderung im Laufe der Zeit abfällt. Eine pneumatische Pulverförderung dieser Art benötigt eine große Druckluftmenge pro Zeiteinheit.

Die vorgenannten Kolbenpumpen haben diese Nachteile nicht. Die Kolbenpumpen haben jedoch den Nachteil, dass sie das Pulver diskontinuierlich hubweise fördern und sowohl zur gleichmäßigeren Pulverförderung als auch zur Förderung von größeren Pulvermengen pro Zeiteinheit eine schnelle Kolbenbewegungsfrequenz erforderlich ist. Die Höhe der Kolbenfrequenz ist jedoch durch die Ansteuergeschwindigkeit, mit welcher die Ventile in den Strömungswegen der Pumpe ansteuerbar sind, begrenzt. Ferner muss darauf geachtet werden, dass in den Pumpen und in deren Strömungswegen Pulverpartikel nicht gequetscht werden, ansintern oder anderweitig haften bleiben und dass auch keine Zwischenräume, Vertiefungen und dergleichen existieren, in welchen sich Pulver ansammeln kann.

Durch die Erfindung soll die Aufgabe gelöst werden, eine Pumpeneinrichtung, welche mindestens einen Volumen-Verdrängerkörper aufweist, derart auszubilden, dass eine definierte und gewünschtenfalls auch große Fördermenge Pulver pro Zeiteinheit förderbar ist, ohne dass die vorgenannten Nachteile entstehen. Insbesondere soll über eine lange Betriebs-Lebensdauer eine große Prozesssicherheit und große Stabilität der Pulver-Fördermenge pro Zeiteinheit (konstante Pulverrate für eine definierte Konfiguration und definierte Einstellung der Pumpeneinrichtung) erzielt werden.

Diese Aufgabe wird gemäß der Erfindung durch die Merkmale von Anspruch 1 und der anderen unabhängigen Ansprüche gelöst.

Weitere Merkmale der Erfindung sind in den Unteransprüchen enthalten.

Demgemäß ist die Pumpeneinrichtung gemäß der Erfindung dadurch gekennzeichnet, dass eine Zeitsteuereinrichtung vorgesehen ist, durch welche in Abhängigkeit von der seit einer vorbestimmten Saughubposition des Verdrängerkörpers vergangenen vorbestimmten Verzögerungszeitdauer das Fördern des Pulvers aus der Dosierkammer gestartet wird, wobei die Druckluft in

die Dosierkammer eingelassen und die bis zum Ende der Verzögerungszeitdauer dosierte Pulvermenge mittels der Druckluft aus der Dosierkammer heraus gedrückt wird.

Ferner ist gemäß der Erfindung eine Pulversprühbeschichtungseinrichtung gegeben, welche mindestens eine solche Pumpeneinrichtung aufweist.

Außerdem offenbart die Erfindung ein Verfahren zur Förderung von Pulver, insbesondere Beschichtungspulver, bei welchem durch Vergrößern des Volumens einer Dosierkammer Pulver aus einem Pulvervorrat in die Dosierkammer eingesaugt und anschließend mittels Druckluft die dosierte Pulvermenge aus der Dosierkammer heraus gedrückt wird, wonach das Volumen der Dosierkammer verkleinert wird, und dann der Zyklus periodisch wiederholt wird, dadurch gekennzeichnet, dass mittels Sensoren eine vorbestimmte Phase der periodisch erfolgenden Volumenänderung der Dosierkammer ermittelt wird und dass mit einer vorbestimmten Zeitverzögerung nach dem Erreichen der vorbestimmten Phase mittels der Druckluft die bis dahin dosierte Pulvermenge aus der Dosierkammer heraus gedrückt wird.

Gemäß einer besonderen Ausführungsform der Erfindung ist das Verfahren dadurch gekennzeichnet, dass in einem Pulveransaugweg in die Dosierkammer, und in einem Pulverauslassweg aus der Dosierkammer, je mindestens ein Ventil in dem betreffenden Weg verwendet wird, welches in Abhängigkeit von der jeweiligen Gasdruckdifferenz zwischen seiner stromaufwärtigen Seite und seiner stromabwärtigen Seite nach Art eines Rückschlagventiles selbstständig auf und zu macht.

Die Erfindung wird im Folgenden mit Bezug auf die Zeichnungen anhand von bevorzugten Ausführungsformen als Beispiele beschrieben. In den Zeichnungen zeigen

Fig. 1 schematisch, teilweise im Querschnitt, eine Doppelpumpeneinrichtung nach der Erfindung,

Fig. 2 schematisch Teile von Fig. 1 zusammen mit einem Funktionsdiagramm zur Erklärung der Erfindung,

Fig. 3 schematisch, teilweise im Querschnitt, eine weitere Ausführungsform einer Doppelpumpeneinrichtung nach der Erfindung.

Fig. 1 zeigt eine Pumpeneinrichtung nach der Erfindung für Pulver, insbesondere für Beschichtungspulver, welche zwei Pulver-Pumpen 2-1 und 2-2 aufweist, welche je eine Dosierkammer 4-1 bzw. 4-2 enthalten, die von einem Kammergehäuse 6-1 bzw. 6-2 und einem Verdrängerkörper in Form einer flexiblen Membran 8-1 bzw. 8-2 begrenzt ist.

Die beiden Membranen 8-1 und 8-2 haben einen zwischen ihnen angeordneten, gemeinsamen Antrieb 10. Der Antrieb 10 kann ein mechanischer, hydraulischer, elektrischer oder entsprechend Fig. 1 ein pneumatischer Antrieb sein. Der in Fig. 1 gezeigte pneumatische Antrieb enthält einen quer zu den Membranen 8-1 und 8-2 verschiebbaren Antriebskolben 12, von welchem sich in Bewegungsrichtung Kolbenstangen 14-1 bzw. 14-2 weg erstrecken, deren vom Antriebskolben 12 entfernte Enden mit der einen Membran 8-1 bzw. mit der anderen Membran 8-2 verbunden sind, so dass die beiden Membranen sich jeweils gemeinsam mit dem Antriebskolben 12 bewegen. Die Kolbenstangen 14-1 und 14-2 greifen jeweils im Zentrum der betreffenden Membran 8-1 bzw. 8-2 an, welche sich jeweils zusammen mit dem Antriebskolben 12 in Kolbenaxialrichtung bewegt. Die Membranumfangsränder 16-1 bzw. 16-2 sind jeweils an einem Teil des Kammergehäuses 6-1 bzw. 6-2 befestigt und können sich nicht mit dem Membranzentrum zusammen mit dem Antriebskolben 12 quer zur Membran bewegen. Wenn im Rahmen dieser Beschreibung von Hubbewegungen der Membran die Rede ist, dann ist damit jeweils der Bereich der Membran gemeint,

welcher mit dem Antriebskolben 12 zur gemeinsamen Bewegung verbunden ist, jedoch nicht die am Kammergehäuse befestigten Membranumfangsränder 16-1 bzw. 16-2.

Die Kammergehäuse 6-1 und 6-2 der beiden Pulver-Pumpen 2-1 und 2-2 sind vorzugsweise Abschnitte eines gemeinsamen Gehäuseteiles oder Gehäuses, welches in Fig. 1 im Schnitt gezeigt ist.

Die Membranen 8-1 und 8-2 (mit Ausnahme ihrer Membranumfangsränder 16-1 und 16-2) sind während eines Druckhubes vor und während eines Saughubes zurück bewegbar mittels des gemeinsamen Antriebes 10. In Fig. 1 befindet sich die links gezeigte Membran 8-1 in einer Endstellung "a", welches die Endstellung des Druckhubes und die Anfangsstellung des Saughubes ist. Hierbei hat die zugehörige Dosierkammer 4-1 ihr kleinstes Volumen. Hierbei liegt die Membran 8-1 vorzugsweise nicht vollständig an dem Kammergehäuse 6-1 an, sondern hat einen kleinen Abstand davon, damit zwischen der Membran 8-1 und dem Kammergehäuse 6-1 Pulverpartikel nicht eingequetscht werden können. Dasselbe trifft für die in Fig. 1 rechts gezeigte Membran 8-2 zu, wenn sich diese in einer Endstellung "d" befindet, welches die Endstellung ihres Druckhubes und die Anfangsstellung ihres Saughubes ist. Fig. 1 zeigt jedoch die rechte Membran 8-2 in einer linken Endstellung "c", welches ihre Endstellung des Saughubes und ihre Anfangsstellung des Druckhubes ist. Die beiden Membranen 8-1 und 8-2 werden von dem Antriebskolben 12 jeweils gemeinsam nach links oder nach rechts bewegt, so dass die linke Membran 8-1 ihren Druckhub ausführt, wenn die rechte Membran 8-2 ihren Saughub ausführt, und umgekehrt.

Der Antriebskolben 12 befindet sich in einem Zylinder 22, welcher nahe von Zylinderstirnwänden 24 und 25 beidseitig des Antriebskolbens 12 je eine Druckluft-Steueröffnung 26 bzw. 28 hat, welche über ein Umschaltventil 30 wechselweise mit einer Druckluftquelle 32 oder mit einer Entlüftungsöffnung 34 zur Außenatmosphäre zur Entlüftung verbindbar sind. In Fig. 1 ist die rechts gezeigte Druckluft-

Steueröffnung 28 mit der Druckluftquelle 32 verbunden, weshalb deren Druckluft den Antriebskolben 12 in die in Fig. 1 links gezeigte Position gedrückt hat, während die links gezeigte Druckluft-Steueröffnung 26 mit der Entlüftungsöffnung 34 des Umschaltventils 30 verbunden ist. Das Umschaltventil 30 ist umschaltbar, so dass nach der Umschaltung die rechts gezeigte Druckluft-Steueröffnung 28 mit der Entlüftungsöffnung 34 verbunden ist und die links gezeigte Druckluft-Steueröffnung 26 mit der Druckluftquelle 32 verbunden ist. Bei dieser in Fig. 1 nicht gezeigten, umgekehrten Stellung des Umschaltventils 30 treibt die Druckluft den Antriebskolben 12 zusammen mit den beiden Membranen 8-1 und 8-2 von links nach rechts. Dabei wird durch die linke Membran 8-1 von ihrer Saughubanfangsposition (Druckhubendposition) "a" in ihre Saughubendposition (Druckhubanfangsposition) "b" bewegt. Simultan dazu wird die rechte Membran 8-2 von ihrer Saughubendposition (Druckhubanfangsposition) "c" in ihre Saughubanfangsposition (Druckhubendposition) "d" bewegt. Die beiden Membranen 8-1 und 8-2 sind in ihrer linken Endstellung durch eine durchgezogene Linie und in ihrer rechten Endstellung durch eine gestrichelte Linie schematisch dargestellt.

Jede Dosierkammer 4-1 und 4-2 hat einen Pulvereinlasskanal 36-1 bzw. 36-2, welchem je ein Pulvereinlassventil 38-1 bzw. 38-2 zugeordnet ist; einen Pulverauslasskanal 40-1 bzw. 40-2, welchem je ein Pulverauslassventil 42-1 bzw. 42-2 zugeordnet ist; und einen Druckgaseinlasskanal 44-1 bzw. 44-2, welchem je ein Druckgaseinlassventil 46-1 bzw. 46-2 zugeordnet ist.

Zum Ansaugen einer dosierten Menge von Pulver in die in Fig. 1 links gezeigte Dosierkammer 4-1 ist das linke Pulvereinlassventil 38-1 aufmachbar, und das linke Pulverauslassventil 42-1 und das linke Druckgaseinlassventil 46-1 schließbar, so dass die sich in Saughubrichtung von der Saughubanfangsposition "a" in die Saughubendposition "b" bewegende linke Membran 8-1 Pulver durch den linken Pulvereinlasskanal 36-1 in die linke Dosierkammer 4-1 saugen kann. Zum Fördern der dosierten Pulvermenge aus der links gezeigten Dosierkammer 4-1 in den linken

Pulverauslasskanal 40-1 ist das linke Pulvereinlassventil 38-1 schließbar und das linke Pulverauslassventil 42-1 sowie das linke Druckgaseinlassventil 46-1 aufmachbar, so dass Druckgas, z. B. Druckluft, von einer Druckgasquelle 45-1, z. B. einer Druckluftquelle, durch den linken Druckgaseinlasskanal 44-1 in die linke Dosierkammer 4-1 strömen und die dosierte Pulvermenge von der Dosierkammer 4-1 in den linken Pulverauslasskanal 40-1 drücken kann. Danach oder während dieses Ausstoßens des Pulvers aus der linken Dosierkammer 4-1, je nach Ausführungsform der Pumpeneinrichtung, wird die linke Membran 8-1 von dem Antriebskolben 12 wieder von der linken Saughubendposition "b" in die rechte Saughubanfangsposition "a" zurück bewegt, was hier als Druckhub bezeichnet wird, damit sie anschließend wieder einen Saughub ausführen kann.

Korrespondierende Funktionen führen auch die vom Antrieb 10 angetriebene, in Fig. 1 rechts gezeigte Membran 8-2 und die ihr zugeordneten Ventile 38-2, 42-2, 45-2 und 46-2 aus bezüglich der zugehörigen rechten Dosierkammer 4-2, des zugehörigen rechten Pulvereinlasskanals 36-2 und des zugehörigen rechten Pulverauslasskanals 40-2 und einer rechts gezeigten Druckgasquelle 45-2, z. B. einer Druckluftquelle. Die rechte Membran 8-2 macht jedoch ihren Druckhub, wenn die linke Membran 8-1 ihren Saughub macht, und umgekehrt.

Die beiden Pulvereinlassventile 38-1 und 38-2 haben je einen Ventilkörper 38-3 und einen Ventilsitz 38-4 mit einer Ventilöffnung, die vom Ventilkörper 38-3 verschließbar ist. Die beiden Pulverauslassventile 42-1 und 42-2 haben je einen Ventilkörper 42-3 und einen Ventilsitz 42-4 mit einer Ventilöffnung, die vom Ventilkörper 42-3 verschließbar ist.

Die beiden in Fig. 1 gezeigten Pulverauslasskanäle 40-1 und 40-2 haben eine gemeinsame Pulverabgabeöffnung 48, an welche über eine Pulverabgabeeleitung 50 ein Pulverempfänger angeschlossen ist, beispielsweise eine Pulverspritzvorrichtung 52 zum Sprühen des Pulvers 54 auf ein zu beschichtendes Objekt oder ein

Pulverzwischenbehälter, von welchem dann das Pulver 54 einer Pulverspritzvorrichtung 52 zugeführt wird, oder ein Pulversammelbehälter.

Die beiden Pulvereinlasskanäle 36-1 und 36-2 können getrennt oder gemeinsam an eine gemeinsame oder an verschiedene Pulverquellen angeschlossen sein. In Fig. 2 sind sie vorzugsweise über eine gemeinsame Pulvereinlassöffnung 56 und über eine Pulveransaugleitung 58 an einen Farbwechsler 60 angeschlossen. Der Farbwechsler 60 ist eine Kanalweiche oder Pulverweiche, durch welche je nach Weichenstellung einer von mehreren Pulverbehältern 62, 63, 64 usw. mit der Pulveransaugleitung 58 wahlweise verbindbar ist. Die Umschaltung des Farbwechslers 60 erfolgt vorzugsweise mittels Druckgas, z. B. Druckluft, einer Druckgasquelle, z. B. einer Druckluftquelle 66 über eine gesteuerte Ventilanordnung 67.

Der Farbwechsler 60 ist auch in eine Schaltstellung schaltbar, bei welcher keiner der Pulverbehälter 62, 63, 64, sondern statt dessen die Druckgasquelle 66 über eine Druckgasleitung 69 mit der Pulveransaugleitung 58 verbunden ist, so dass Druckgas, z. B. Druckluft über die Pulvereinlasskanäle 36-1, 36-2 und deren Pulvereinlassventile 38-1, 38-2 durch die Dosierkammern 4-1 und 4-2 und dann auch über deren Pulverauslassventile 42-1 bzw. 42-2 und die Pulverauslasskanäle 40-1, 40-2 zu der Pulverabgableitung 50 und von dieser durch die Pulverspritzvorrichtung 52 in die Außenatmosphäre strömen kann, um die ganze Anlage von Pulverresten zu reinigen. Mittels einer, vorzugsweise elektronischen oder computerisierten, Pumpensteuereinrichtung 68 kann ferner vorgesehen sein, dass gleichzeitig oder nach dieser Reinigung Druckgas, z. B. Druckluft von einer Druckgasquelle 45-1 bzw. 45-2 über den Druckgaseinlasskanal 44-1 bzw. 44-2 und deren zugehöriges steuerbares Druckgaseinlassventil 46-1 bzw. 46-2 in das eine Ende der Dosierkammer 4-1 bzw. 4-2 eingeblasen und damit Pulver aus der Dosierkammer am anderen Kammerende durch das dortige Pulverauslassventil 42-1 bzw. 42-2 und den sich daran anschließenden Pulverauslasskanal 40-1 bzw. 40-2 durch die Pulverabgableitung 50 und die Pulverspritzvorrichtung 52 ausgeblasen

wird. Der Druckgaseinlasskanal 44-1 bzw. 44-2 kann einen parallel zu ihm angeordneten Druckgasreinigungskanal 72-1 bzw. 72-2 aufweisen, welcher gegen die stromabwärtigen Teile des betreffenden Pulvereinlassventils 38-1 bzw. 38-2 gerichtet ist, um diese von Pulverpartikeln zu reinigen, falls nicht bereits der Druckgaseinlasskanal 44-1 bzw. 44-2 gegen die stromabwärtigen Bereiche der Pulvereinlassventile 38-1 bzw. 38-2 gerichtet ist und dadurch diese reinigt.

Gleichzeitig oder nach dieser Reinigung kann von der Pumpensteuereinrichtung 68 über eine Steuerleitung 70 ein Ventil 71 geöffnet werden, um Druckgas, z. B. Druckluft, von einer Druckgasquelle 75 durch eine Zusatzgasleitung 73-1 bzw. 73-2 auf die stromabwärtigen Teile der Pulverauslassventile 42-1 bzw. 42-2, gegen welche die Zusatzgasleitung gerichtet ist, zu blasen und von dort durch die Pulverauslasskanäle 40-1 und 40-2 und die Pulverabgabeleitung 50 zur Pulverspritzvorrichtung 52 und von dort in die Außenatmosphäre zu leiten.

Die Pumpeneinrichtung 68 steuert alle steuerbaren Ventile und den Farbwechsler 60.

Die Pumpensteuereinrichtung 68 enthält eine Zeitsteuereinrichtung 74, durch welche in Abhängigkeit von der seit einer vorbestimmten Saughubposition, z. B. P1 oder P2 der links gezeigten Membran 8-1 und einer vorbestimmten Saughubposition, z. B. P4 oder P3, der rechts gezeigten Membran 8-2, vergangenen vorbestimmten Verzögerungszeitdauer das Fördern des Pulvers aus der betreffenden Dosierkammer 4-1 bzw. 4-2 gestartet wird. Am Ende der Verzögerungszeit wird das Druckgas der Druckgasquelle 45-1 bzw. 45-2 durch das Druckgaseinlassventil 46-1 bzw. 46-2 in die Dosierkammer 4-1 bzw. 4-2 eingelassen, so dass die bis zum Ende der Verzögerungszeit dosierte Pulvermenge mittels dieses Druckgases aus der Dosierkammer heraus gedrückt wird durch das betreffende Pulverauslassventil 42-1 bzw. 42-2 in die Pulverabgabeleitung 50 und von dieser zur Pulverspritzvorrichtung 52 oder zu einem Pulverbehälter.

Die genannte "vorbestimmte Saughubposition" kann gemäß einer Ausführungsform die Saughubanfangsposition "a" entsprechend P1 für die linke Membran 8-1 und "d" entsprechend P4 für die rechte Membran 8-2 sein, welche in Fig. 1 für die links gezeigte Membran 8-1 die in ausgezogenen Linien dargestellte Stellung "a" ist, und welches für die in Fig. 1 rechts gezeigte Membran 8-2 die in gestrichelten Linien gezeigte Position "d" ist.

Die Saughubanfangsposition "a" wird für die in Fig. 1 und 2 links gezeigte Membran 8-1 durch einen Sensor S1 an einer Position P1 detektiert. Dies ist für die linke Membran 8-1 gleichzeitig die Druckhubendposition. Für die rechte Membran 8-2 ist die Position P1 am Sensor S1 die Saughubendposition und gleichzeitig die Druckhubanfangsposition.

Die Saughubanfangsposition "d" wird für die in Fig. 1 und 2 rechts gezeigte Membran 8-2 durch einen Sensor S4 an einer Position P4 detektiert. Dies ist für die rechte Membran 8-2 gleichzeitig die Druckhubendposition. Für die linke Membran 8-1 ist die Position P4 am Sensor S4 die Saughubendposition und gleichzeitig die Druckhubanfangsposition.

Wenn die Membranen 8-1 und 8-2 eine dem Sensor S1 bei P1 oder dem Sensor S4 bei P2 entsprechende Endposition "a" entsprechend "c", oder "d" entsprechend "b" erreicht haben, gibt der betreffende Sensor ein Signal an die Pumpensteuereinrichtung 68 zur Umkehr der Bewegung des Antreibskolbens 12 und damit auch der beiden Membranen in der einen oder anderen Richtung durch Druckluftzufuhr zur Druckluft-Steueröffnung 26 oder zur Druckluft-Steueröffnung 28 und durch Entlüften der jeweils anderen Druckluft-Steueröffnung.

Wenn bei der betreffenden Ausführungsform der Pumpeneinrichtung die genannte "vorbestimmte Saughubposition" die Saughubanfangsposition "a" bzw. "d" der Membran 8-1 bzw. der Membran 8-2 ist, dann erkennt die Zeitsteuereinrichtung 74

der Pumpensteuereinrichtung 68 anhand der Signale der Sensoren S1 und S4, wenn die Membranen 8-1 und 8-2 die betreffende Endposition erreicht haben.

Die Sensoren S1 und S4 können an jeder beliebigen Stelle angeordnet sein, wo Positionen der Membran 8-1 und 8-2 ermittelbar sind, insbesondere an Stellen des Zylinders 22 oder des Antriebskolbens 12 oder der Kolbenstangen 14-1 und 14-2 oder des Kammergehäuses 6-1, 6-2 oder der Membranen 8-1 und 8-2. Gemäß bevorzugter Ausführungsform sind sie am Zylinder 22, vorzugsweise auf dessen Außenseite, an Positionen P1 und P4 angeordnet, welche der Antreibskolben 12 jeweils hat, wenn sich die Membranen 8-1 und 8-2 in einer der beiden Endstellungen befinden.

Gemäß der Erfindung kann mittels Druckgas der Druckgasquelle 45-1 dosiertes Pulver aus der linken Dosierkammer 4-1, und mittels Druckgas der Druckgasquelle 45-2 dosiertes Pulver aus der rechten Dosierkammer 4-2 nicht nur bei Erreichen der Saughubendposition "b" der linken Membran 8-1 und "c" der rechten Membran 8-2 durch das betreffende Pulverauslassventil 42-1 bzw. 42-2 ausgestoßen werden, sondern auch bereits früher, wenn erst eine kleinere Pulvermenge in der betreffenden Dosierkammer ist. Dies wird durch eine Verzögerungszeitdauer erreicht, welche an der Zeitsteuereinrichtung 74 vorzugsweise variabel einstellbar ist. Dadurch ist es möglich kleiner dosierte Pulvermengen aus der betreffenden Dosierkammer 4-1 bzw. 4-2 auszustoßen, bevor die zugehörige Membran 8-1 bzw. 8-2 ihren vollen Saughub vollendet hat. Hierbei wird das jeweils zugehörige Pulvereinlassventil 38-1 bzw. 38-2 jeweils sofort geschlossen, wenn Druckgas der Druckgasquelle 45-1 bzw. 45-2 über den Druckgaseinlasskanal 44-1 bzw. 44-2 in die betreffende Dosierkammer 4-1 bzw. 4-2 eingeblasen wird. Je nach Größe der vorbestimmten Verzögerungszeit ist zum Zeitpunkt des Pulverausstoßes eine größere oder kleinere Menge Pulver in der betreffenden Dosierkammer angesaugt worden. Dadurch besteht durch Einstellen unterschiedlicher Verzögerungszeitdauern die Möglichkeit, die dosierte Pulverfördermenge der Dosierkammern 4-1 bzw. 4-2 zu variieren, unabhängig von der Frequenz, mit

welcher die Membranen 8-1 und 8-2 von dem gemeinsamen Antrieb 10 hin und her bewegt werden. Die Bewegungsfrequenz der Membranen kann konstant gehalten werden oder ebenfalls variabel sein.

Gemäß der bevorzugten Ausführungsform der Erfindung befindet sich die "vorbestimmte Saughubposition" um eine Stelle zwischen der Saughubfangsposition "a" bzw. "d" und der Saughubendposition "b" bzw. "a", vorzugsweise näher bei der Saughubfangsposition als bei der Saughubendposition.

Bei der bevorzugten Ausführungsform wird diese vorbestimmte Saughubposition für die in Fig. 1 und 2 links gezeigte Membran 8-1 durch einen Sensor S2 an einer Position P2 und für die in Fig. 1 und 2 rechts gezeigte Membran 8-2 durch einen Sensor S3 an einer Position P3 definiert. Die beiden Sensoren S2 und S3 können wie die Sensoren 51 und 52 an jeder beliebigen Stelle angeordnet sein, wo sie definierte Positionen der Membran 8-1 und 8-2 zwischen deren Endpositionen a, b, c und d detektieren können, beispielsweise am Zylinder 22, am Antriebskolben 12, an dessen Kolbenstangen 14-1 und 14-2 oder an den Membranen selbst oder an dem Kammergehäuse 6-1, 6-2. Gemäß bevorzugter Ausführungsform der Erfindung sind sie an dem Zylinder 22 angeordnet. Es wird ein Sensorsignal ausgelöst, wenn der Antriebskolben 12 oder ein bestimmter Teil des Antriebskolbens 12 dem jeweiligen Sensor benachbart ist. Der Sensor S2 sendet jeweils dann ein Signal an die Zeitsteuereinrichtung 74 der Pumpensteuereinrichtung 68, wenn die linke Membran 8-1 eine dem Sensor S2 entsprechende Position erreicht, die so gewählt wird, dass sie beim Saughub der vorbestimmten Saughubposition der linken Membran 8-1 entspricht. Entsprechend sendet der Sensor S3 jeweils dann ein Signal an die Zeitsteuereinrichtung 74 der Pumpensteuereinrichtung 68, wenn die rechte Membran 8-2 eine dem Sensor S3 entsprechende Position erreicht, die so gewählt wird, dass sie beim Saughub der vorbestimmten Saughubposition der rechten Membran 8-2 entspricht. Durch die zeitliche Abfolge der Signale der angebrachten Sensoren erkennt die

Zeitsteuereinrichtung, ob bei Empfang eines Signals des Sensors S2 bzw. des Sensors S3 die linke Membran 8-1 oder die rechte Membran 8-2 zu diesem Zeitpunkt einen Saughub ausführt. Im Falle eines Saughubes startet die Zeitverzögerungseinrichtung 74 die vorbestimmte Zeitverzögerungsdauer, an deren Ende Druckgas in die Dosierkammer 4-1 bzw. in die Dosierkammer 4-2 gelassen wird zum Herausdrücken der dosierten Pulvermenge.

Gemäß der bevorzugten Ausführungsform ist die Bewegungsstrecke der Membranen 8-1 und 8-2 bei allen Hubbewegungen konstant gleich groß und sie erstreckt sich von dem Sensor S1 bis zum Sensor S4 bzw. umgekehrt. Durch entsprechende Ansteuerung der Antriebsdruckluft mittels des Umschaltventils 30 könnte die Bewegungsstrecke auch verkürzt werden.

Fig. 2 zeigt über der Pumpeneinrichtung ein Diagramm, in welchem auf der horizontalen Achse S die Hubstrecke des Antriebskolbens 12, welche der Bewegungsstrecke der Membran entspricht, mit der Endposition P1 bei dem Sensor S1, der Endposition P4 bei dem Sensor S4, der vorbestimmten Saug-Teilhubposition P2 bei dem Sensor S2 und der vorbestimmten Saug-Teilhubposition P3 bei dem Sensor S3. Auf der vertikalen Achse des Diagramms sind die Saughubzeiten t_0 bis t_{10} für die links gezeigte Membran 8-1 aufgetragen. In umgekehrter Richtung von der Endposition P4 bis zur Endposition P1 entspricht dies dem Druckhub der links gezeigten Membran 8-1. Wenn die links gezeigte Membran 8-1 sich von der Saughubanfangsposition P1 nach rechts bewegt, erreicht sie die vorbestimmte Saug-Teilhubposition P2 bei dem Sensor S2. Bei Erreichen dieser vorbestimmten Saug-Teilhubposition P2 wird von der Zeitsteuereinrichtung 74 eine vorbestimmte, vorzugsweise variabel einstellbare, Verzögerungszeitdauer gestartet, bei deren Ablauf das Druckgas der Druckgasquelle 45-1 über den Druckgaseinlasskanal 44-1 in die Dosierkammer 4-1 eingelassen wird, damit das Druckgas die bis dahin in diese Dosierkammer 4-1 eingesaugte Pulvermenge durch das Pulverauslassventil 42-1 in die Pulverabgabeleitung 50 drückt und durch diese hindurch aus der

Pulverspritzvorrichtung 52. Das Ende der Verzögerungszeitdauer kann jeder beliebige Zeitpunkt sein, während welchem sich der Antriebskolben 12 und entsprechend die links gezeigte Membran 8-1 zwischen der vorbestimmten Saug-Teilhubposition P2 bei dem Sensor S2 und der Saughubendposition P4 bei dem Sensor S4 befindet.

Wenn der Antriebskolben 12 den Sensor S4 in der Endposition P4 erreicht hat, wird dies von der Pumpensteuereinrichtung 68 durch ein Signal des Sensors S4 erkannt. Die Pumpensteuereinrichtung 68 schaltet daraufhin das Umschaltventil 30 in die in Fig. 1 gezeigte Stellung um, in welcher Druckluft der Druckluftquelle 32 den Antriebskolben 12 wieder zurück treibt zur anderen Endposition P1 bei dem Sensor S1. Durch ein Signal von dem Sensor S1 beginnt dann der Zyklus erneut. Die Umschaltung der Bewegung der beiden Membranen 8-1 und 8-2, und damit auch des Antriebkolbens 12, von der einen Bewegungsrichtung in die andere Bewegungsrichtung an den Bewegungspunkten kann jeweils ohne oder mit Zeitverzögerung erfolgen. Die Zeitverzögerung kann fest eingestellt oder variabel einstellbar sein, beispielsweise in einem Programm programmierbar sein.

Bei der Bewegung des Antriebskolbens 12 von der rechts gezeigten Endposition P4 bei dem Sensor S4 zur links gezeigten Endposition P1 bei dem Sensor S1 wird die links gezeigte Membran 8-1 von ihrer gestrichelt gezeichneten Druckhubanfangsposition "b", welche der Saughubendposition entspricht, in die Druckhubendposition "a" bewegt, welche mit ausgezogener Linie 8-1 dargestellt ist.

Während dieses Druckhubes der linken Membran 8-1 wird die rechts gezeigte Membran 8-2 von dem Antriebskolben 12 von ihrer in gestrichelten Linien gezeigten Saughubanfangsposition "d" (Druckhubendposition) in die in ausgezogenen Linien gezeigte Saughubendposition "c" bewegt, wobei sie über das Pulvereinlassventil 38-2 Pulver vom Farbwechsler 60 in ihre Dosierkammer 4-2 einsaugt. Wenn der Antriebskolben 12 bei diesem Saughub von Position P4 bei S4 kommend die vorbestimmte Saughubposition P3 bei dem Sensor S3 erreicht, wird durch ein

Signal dieses Sensors S3 von der Zeitsteuereinrichtung 74 eine vorbestimmte, vorzugsweise variabel einstellbare, Verzögerungszeitdauer gestartet. Bei Ablauf dieser Verzögerungszeitdauer wird von der Pumpensteuereinrichtung 68, ausgelöst durch die Zeitsteuereinrichtung 74, Druckgas der in Fig. 1 rechts gezeigten Druckgasquelle 45-2 über deren Druckgaseinlassventil 46-2 und den Drucklufteinlaßkanal 44-2 in die rechts gezeigte Dosierkammer 4-2 eingelassen, um die bis zu diesem Zeitpunkt eingesaugte und damit entsprechend dosierte Pulvermenge aus dieser Dosierkammer 4-2 durch deren Pulverauslassventil 42-2 zur Pulverabgabeeleitung 50 und von dieser durch die Pulverspritzvorrichtung 52 zu drücken. Dieser Zeitpunkt, zu welchem das Pulver mittels des Druckgases aus der Dosierkammer 4-2 ausgestoßen wird, kann an einer beliebigen Stelle der Bewegung des Antriebskolbens 12 zwischen der vorbestimmten Saughubposition P3 beim Sensor S3 und der Saughubendposition P1 beim Sensor S1 liegen. Dies entspricht einem Zeitraum zwischen der in Fig. 2 in der oberen Hälfte des Diagramms gezeigten Zeitskala lt_0 bis lt_{10} . Wenn die rechte Membran 8-2 ihre Saughubendposition "c" erreicht hat, hat gleichzeitig die links gezeichnete Membran 8-1 ihre Druckhubendposition "a" erreicht, welches gleichzeitig deren Saughubanfangsposition wird.

Danach beginnt der Zyklus von vorne.

Die Zahlen der Zeitachsen lt_0 bis lt_{10} und rt_0 bis rt_{10} sind beliebig gewählt.

Wenn die von der Pumpensteuereinrichtung 68 in Abhängigkeit von Signalen der Endpositions-Sensoren S1 und S4 gesteuerten Druckgaszufuhrventile 46-1 und 46-2 nicht sehr nahe bei der betreffenden Dosierkammer 4-1 bzw. 4-2 positionierbar sind, kann es zweckmäßig sein, in dem Druckgaseinlasskanal 44-1 bzw. 44-2, oder dessen Zuleitung zum gesteuerten Ventil, ein Rückschlagventil 76-1 bzw. 76-2 nahe des Einlasses des Druckgaseinlasskanals 44-1 bzw. 44-2 in die Dosierkammer 4-1 bzw. 4-2 anzuordnen, welches in Druckgaszufuhrrichtung selbsttätig öffnet und in entgegengesetzter Strömungsrichtung selbsttätig schließt. Damit wird vermieden,

dass Pulverpartikel aus der Dosierkammer 4-1 bzw. 4-2 in die Druckgaseinlassventile 46-1 und 46-2 zurück wandern können.

Gemäß der bevorzugten Ausführungsform der Erfindung sind die Pulvereinlassventile 38-1 und 38-2 und/oder die Pulverauslassventile 42-1 und 42-2 keine gesteuerten Ventile, sondern selbsttätig öffnende und schließende Ventile nach Art eines Rückschlagventiles. Hierbei sind die Pulvereinlassventile 38-1 und 38-2 derart angeordnet, dass sie vom Sog bzw. Unterdruck in ihrer Dosierkammer 4-1 bzw. 4-2 während des Saughubes der zugehörigen Membran 8-1 bzw. 8-2 geöffnet werden, um Pulver von dem betreffenden Pulverbehälter 62, 63 oder 64 durch den Pulvereinlasskanal 36-1 bzw. 36-2 in die Dosierkammern 4-1 bzw. 4-2 einzusaugen. Der zum Ausstoßen der dosierten Pulvermenge aus der betreffenden Dosierkammer 4-1 bzw. 4-2 verwendete Gasdruck der Druckgasquelle 45-1 bzw. 45-2 ist größer als der Unterdruck und bewirkt, dass das Pulvereinlassventil 38-1 bzw. 38-2 automatisch geschlossen wird. Gemäß einer anderen Ausführungsform sind die Pulvereinlassventile 38-1 und 38-2 und/oder die Pulverauslassventile 42-1 und 42-1 von der Pumpensteuereinrichtung 68 gesteuerte Ventile.

Die Pulverauslassventile 42-1 und 42-2 sind umgekehrt zu den Pulvereinlaßventilen angeordnet. Dadurch wird das betreffende Pulverauslassventil 42-1 bzw. 42-2 vom Unterdruck während des Saughubes der zugehörigen Membran 8-1 bzw. 8-2 geschlossen und von dem Druckgas in den Dosierkammern zum Ausstoßen der dosierten Pulvermenge geöffnet, um die dosierte Pulvermenge mittels des Druckgases durch das geöffnete Pulverauslassventil 42-1 bzw. 42-2 und den sich anschließenden Pulverauslasskanal 40-1 bzw. 40-2 in die Pulverabgabeleitung 50 und von dieser in die Pulverspritzvorrichtung 52 zu drücken. Das Druckgas überwindet den Unterdruck.

Die Pulveransaugleitung 58 könnte anstatt an einen Farbwechsler 60 direkt zu einem der Pulverbehälter 62, 63 oder 64 gehen.

Die Pulverspritzvorrichtung 52, üblicherweise auch als Pulversprühvorrichtung bezeichnet, kann zum Spritzen oder Sprühen des Pulvers eine Düse oder einen Rotationskörper oder eine rotierende Düse aufweisen, wie dies aus dem Stand der Technik bekannt ist.

Somit ist gemäß der Erfindung ein Verfahren zur Förderung von Pulver, insbesondere Beschichtungspulver, gegeben, bei welchem durch Vergrößern des Volumens einer Dosierkammer 4-1 und/oder 4-2 Pulver von einer Pulverquelle in die Dosierkammer 4-1 bzw. 4-2 einsaugbar und anschließend mittels Druckgas die dosierte Pulvermenge aus der Dosierkammer heraus drückbar ist. Der Zyklus ist periodisch wiederholbar. Mittels der Sensoren S1, S4, S2 und S3 wird eine vorbestimmte Phase oder Position der periodisch erfolgenden Volumenänderungen der Dosierkammer 4-1 bzw. 4-2 ermittelt und nach einer vorbestimmten Zeitverzögerung nach dem Erreichen der vorbestimmten Phase wird mittels der Druckluft die bis dahin dosierte Pulvermenge aus der Dosierkammer 4-1 bzw. 4-2 heraus gedrückt.

Es ist offensichtlich, dass die Erfindung auch mit nur einer Dosierkammer 4-1 oder 4-2 ausführbar ist, ohne eine zweite Dosierkammer 4-2 oder 4-1. Ferner ist ersichtlich, dass anstelle eines einzigen Antriebes 10 für beide Membranen 8-1 und 8-2, jede Membran 8-1 und 8-2 einen eigenen Antrieb 10 haben kann.

Die Verwendung einer Membran 8-1 bzw. 8-2 als Verdrängerkörper ermöglicht eine kompakte kleine Bauweise. Die Erfindung ist jedoch nicht auf die Verwendung einer Membran beschränkt; sondern anstelle einer Membran kann auch ein Kolben in einem Zylinder verwendet werden.

Fig. 3 zeigt eine Ausführungsform der Erfindung, bei welcher anstelle einer Membran ein Kolben als Verdrängerkörper verwendet wird. Ferner zeigt Fig. 3 die Möglichkeit, anstelle eines einzigen Antriebes für zwei oder mehr Verdrängerkörper

(Membran oder Kolben) für jeden Verdrängerkörper (Membran oder Kolben) einen eigenen Antrieb zu verwenden.

In Fig. 3 sind den Fig. 1 und 2 entsprechende Teile mit gleichen Bezugszahlen versehen. Damit trifft die vorstehende Beschreibung der Fig. 1 und 2 auch auf Fig. 3 zu. Fig. 3 zeigt auch die Möglichkeit, die Sensoren S1, S2, S3 und S4 nicht zur Detektion des Antriebskolbens 12 anzuhören, sondern zur Detektion der jeweiligen Position des Verdrängerkörperkolbens 8-1 bzw. 8-2. Bei Fig. 3 besteht jedoch ebenfalls die Möglichkeit, diese Sensoren nicht dem Verdrängerkörperkolben 8-1 und 8-2 zuzuordnen, sondern dem Antriebskolben 12 oder einem anderen Element.

In Fig. 3 ist für jeden Pulvereinlasskanal 36-1 und 36-2 eine eigene Pulveransaugleitung 58 vorgesehen, welche zu verschiedenen Pulverquellen (Pulverbehälter oder Farbwechsler) oder gemäß in Fig. 3 zu einer gemeinsamen Pulverquelle, z. B. einem Pulverbehälter 62 führen können. Anstelle dieser Ausführungsform könnte auch eine gemeinsame Pulveransaugleitung 58 ähnlich Fig. 1 für beide Pulvereinlasskanäle 36-1 und 36-2 vorgesehen werden. Diese können direkt zu einem Pulverbehälter, z. B. 62, führen oder zu einem Farbwechsler 60 entsprechend Fig. 1.

Merkmale der Fig. 1 und 2 einerseits und Fig. 3 andererseits sind gegenseitig austauschbar zur Bildung von neuen Kombinationen.

Die Erfindung ist auch für Kombinationen von drei oder mehr Pulverpumpen verwendbar, deren Pulvereinlaßkanäle an eine gemeinsame oder an verschiedene Pulverquellen angeschlossen oder anschließbar sind und deren Pulverauslaßkanäle alle mit einer gemeinsamen Pulverabgabeöffnung verbunden sind, wobei eine Pumpensteuereinrichtung derart ausgebildet ist, dass sie die Pumpen ansteuert, um relativ zueinander zeitlich versetzt ihre Saughübe und dazu korrespondierend zeitlich versetzt auch ihre Druckhübe auszuführen, so dass die Pumpen zeitlich zueinander versetzt Pulver ansaugen und zeitlich zueinander

ersetzt dosierte Pulvermengen abgeben, jedoch bei mindestens einer Pumpe ihr Verdrängerkörper (Membran oder Pulververdrängerkolben) sich in einer Zwischenstellung zwischen Endstellungen befindet, wenn der Verdrängerkörper von mindestens einer der anderen der Pumpen sich in einer Endstellung befindet.

Alle genannten Druckgase und Druckgasquellen können Druckluft bzw. Druckluftquellen sein. Jedoch sind auch andere Druckgase, z. B. Edelgase, und entsprechende andere Druckgasquellen, z. B. Edelgasquellen, verwendbar. Zwei oder mehr oder alle genannten Druckgasquellen können zusammen eine einzige Druckgasquelle sein, von welcher die verschiedenen Druckgase entnehmbar sind.

Patentansprüche

1. Pumpeneinrichtung für Pulver (54), insbesondere für Beschichtungspulver, enthaltend mindestens eine Pulver-Pumpe (2-1,2-2), welche eine Dosierkammer (4-1,4-2) aufweist, die von einem Kammergehäuse (6-1,6-2) und einem Verdrängerkörper (8-1,8-2) begrenzt ist, welcher relativ zum Kammergehäuse während eines Druckhubes vor und während eines Saughubes zurück bewegbar ist, wobei die Pumpenkammer einen Pulvereinlasskanal (36-1,36-2), welchem ein Pulvereinlassventil (38-1,28-2) zugeordnet ist, einen Pulverauslasskanal (40-1,40-2), welchem ein Pulverauslassventil (42-1,42-2) zugeordnet ist, und einen Druckgaseinlasskanal (44-1,44-2), welchem ein Druckgaseinlassventil (46-1, 46-2) zugeordnet ist, aufweist, wobei zum Ansaugen einer dosierten Menge von Pulver (54) in die Dosierkammer (4-1,4-2) das Pulvereinlassventil (38-1, 38-2) aufmachbar ist und das Pulverauslassventil (42-1,42-2) und das Druckgaseinlassventil (46-1,46-2) schließbar sind, so dass der sich in Saughubrichtung bewegende Verdrängerkörper Pulver (54) durch den Pulvereinlasskanal (36-1,36-2) in die Dosierkammer (4-1,4-2) saugen kann, und zum Fördern von der dosierten Pulvermenge aus der Dosierkammer (4-1, 4-2) das Pulvereinlassventil (38-1,38-2) schließbar ist und das Pulverauslassventil (42-1,42-2) und das Druckgaseinlassventil (46-1,46-2) aufmachbar sind, so dass von dem Druckgaseinlasskanal (44-1,44-2) in die Dosierkammer (4-1,4-2) strömendes Druckgas die dosierte Pulvermenge von

der Dosierkammer (4-1,4-2) in den Pulverauslasskanal (40-1,40-2) drücken kann,

dadurch gekennzeichnet,

dass eine Zeitsteuereinrichtung (74) vorgesehen ist, durch welche in Abhängigkeit von der seit einer vorbestimmten Saughubposition des Verdrängerkörpers (8-1,8-2) vergangenen vorbestimmten Verzögerungszeitdauer das Fördern des Pulvers aus der Dosierkammer gestartet wird, wobei das Druckgas in die Dosierkammer (4-1,4-2) eingelassen und die bis zum Ende der Verzögerungszeitdauer dosierte Pulvermenge mittels des Druckgases aus der Dosierkammer (4-1,4-2) heraus gedrückt wird.

2. Pumpeneinrichtung nach Anspruch 1,
dadurch gekennzeichnet,
dass die vorbestimme Saughubposition eine Saughubanfangsposition ist.
3. Pumpeneinrichtung nach Anspruch 1,
dadurch gekennzeichnet,
dass die vorbestimmte Saughubposition zwischen einer Saughubanfangsposition und einer Saughubendposition liegt.
4. Pumpeneinrichtung nach Anspruch 1,
dadurch gekennzeichnet,
dass die vorbestimmte Saughubposition zwischen einer Saughubanfangsposition und einer Saughubendposition näher bei der Saughubanfangsposition als bei der Saughubendposition liegt.
5. Pumpeneinrichtung nach mindestens einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Zeitsteuereinrichtung (74) mindestens einen Sensor (S1,S4;S2,S3) zur Erzeugung eines Signals aufweist, wenn sich der Verdrängerkörper (8-1, 8-2) in der vorbestimmten Saughubposition befindet.

6. Pumpeneinrichtung nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass die Bewegungsstrecke des Verdrängerkörpers (8-1,8-2) bei allen Hubbewegungen konstant gleich groß ist.
7. Pumpeneinrichtung nach Anspruch 6,
dadurch gekennzeichnet,
dass eine Pumpensteuereinrichtung (68) vorgesehen ist, durch welche die Umschaltungen der Bewegungen des Verdrängerkörpers (8-1,8-2) von Saughub auf Druckhub, und umgekehrt, in Abhängigkeit von Signalen von Sensoren (S1,S4) erfolgt, welche jeweils ein Signal erzeugen, wenn sich der Verdrängerkörper (8-1,8-2) längs der Hubstrecke an der einen oder der anderen von zwei vorbestimmten Bewegungsumkehrpositionen befindet.
8. Pumpeneinrichtung nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass das Pulvereinlassventil (38-1,38-2) und das Pulverauslassventil (42-1, 42-2) selbsttätige Ventile sind, welche nach Art eines Rückschlagventils durch Differenzgasdruck über ihrem Ventilkörper (38-3,42-3) betätigbar sind, wobei der Ventilkörper (38-3,42-3) in Abhängigkeit von diesem Differenzgasdruck relativ zu einem Ventilsitz (38-4,42-4) in Offenstellung oder in Schließstellung bewegbar ist und in der betreffenden Stellung haltbar ist.
9. Pumpeneinrichtung nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass mindestens zwei der genannten Pulver-Pumpen (2-1,2-2) vorgesehen sind, deren Pulvereinlasskanäle (36-1,36-2) mit einer Pulverquelle verbindbar oder verbunden sind und deren Pulverauslasskanäle (40-1,40-2) mit einer gemeinsamen Pulverabgabeöffnung (48) verbindbar oder verbunden sind, und dass die beiden Pulver-Pumpen (2-1,2-2) relativ zueinander gegenläufig betreibbar sind, so dass wechselweise von der Dosierkammer (4-1) der einen Pulver-Pumpe (2-1) oder der Dosierkammer (4-2) der anderen Pulver-Pumpe

(2-2) eine dosierte Pulvermenge mittels des Druckgases in den Pulverauslasskanal (40-1,40-2) ausstoßbar ist, und entgegengesetzt wechselweise Pulver durch die Pulvereinlasskanäle (36-1,36-2) in die andere oder die eine Dosierkammer (4-1,4-2) einsaugbar ist.

10. Pumpeneinrichtung nach Anspruch 9,
dadurch gekennzeichnet,
dass die Verdrängerkörper (8-1,8-2) der beiden Pumpen einen gemeinsamen Antrieb (10) haben.
11. Pumpeneinrichtung nach mindestens einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Verzögerungszeitdauer variabel einstellbar ist.
12. Pumpeneinrichtung nach mindestens einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Verdrängerkörper (8-1,8-2) flexible Membranen sind.
13. Pulverbeschichtungseinrichtung, gekennzeichnet durch eine Pumpeneinrichtung nach mindestens einem der vorhergehenden Ansprüche zur Förderung von Beschichtungspulver.
14. Verfahren zur Förderung von Pulver (54), insbesondere Beschichtungspulver, bei welchem durch Vergrößern des Volumens einer Dosierkammer (4-1,4-2) Pulver (54) von einer Pulverquelle in die Dosierkammer (4-1,4-2) eingesaugt und anschließend mittels Druckgas die dosierte Pulvermenge aus der Dosierkammer (4-1,4-2) heraus gedrückt wird, wonach das Volumen der Dosierkammer (4-1,4-2) verkleinert wird, und dann der Zyklus periodisch wiederholt wird,
dadurch gekennzeichnet,
dass mittels Sensoren (S1,S4;S2,S3) eine vorbestimmte Phase der periodisch erfolgenden Volumenänderung der Dosierkammer (4-1,4-2) ermittelt wird und

dass mit einer vorbestimmten Zeitverzögerung nach dem Erreichen der vorbestimmten Phase mittels des Druckgases die bis dahin dosierte Pulvermenge aus der Dosierkammer (4-1,4-2) heraus gedrückt wird.

15. Verfahren nach Anspruch 14,
dadurch gekennzeichnet,
dass in einem Pulvereinlasskanal (36-1,36-2) in die Dosierkammer (4-1,4-2),
und in einem Pulverauslasskanal (40-1,40-2) aus der Dosierkammer (4-1,4-2),
je mindestens ein Ventil in dem betreffenden Weg verwendet wird, welches in
Abhängigkeit von der jeweiligen Gasdruckdifferenz zwischen seiner
stromaufwärtigen Seite und seiner stromabwärtigen Seite nach Art eines
Rückschlagventiles selbstständig auf und zu macht.

Fig. 1

Fig. 2

Fig. 3

ITW Gema AG
P 2198

7. Januar 2003

Zusammenfassung

Pumpeneinrichtung für Pulver, insbesondere für Beschichtungspulver, und Pulverbeschichtungseinrichtung.

Die Volumenänderung einer Pulverdosierkammer (4-1,4-2) wird gemessen. In Abhängigkeit von einer bestimmten Volumenänderung wird eine Zeitverzögerung gestartet. Nach dieser Zeitverzögerung wird die beim Ablauf der Zeitverzögerung in der Dosierkammer gespeicherte Pulvermenge pneumatisch ausgestoßen.

(Fig. 1)

Fig. 1