Exercícios - Cálculo IV - Aula 6 - Semana 28/9 - 2/10 Séries de Potências

Uma série de potências centrada em $x_0 \in \mathbb{R}$ é dada por

$$\sum_{n=0}^{\infty} c_n (x-x_0)^n = c_0 + c_1 (x-x_0) + c_2 (x-x_0)^2 + \dots + c_n (x-x_0)^n + \dots$$

Vimos na lista de exercícios da aula 5 que três tipos de comportamentos são os únicos obtidos para uma série de potências centrada em x_0 , isto é, vale uma das alternativas abaixo

- converge para todo $x \in \mathbb{R}$,
- converge num intervalo centrado em x_0 ,
- só converge em x_0 .

Teorema 1 Seja
$$\sum_{n=0}^{\infty} c_n(x-x_0)^n$$
. Então temos uma das alternativas abaixo:

a) $\sum_{n=0}^{\infty} c_n(x-x_0)^n$ converge somente se $x=x_0$.

b) $\sum_{n=0}^{\infty} c_n(x-x_0)^n$ converge para todo $x \in \mathbb{R}$.

c) Existe $R > 0$ tal que $\sum_{n=0}^{\infty} c_n(x-x_0)^n$ converge absolutamente para todo $x \in [x_0-R, x_0+R[e]]$ e diverge se $|x-x_0| > R$.

Observação 1 Para $x = x_0 + R$ e $x = x_0 - R$ precisamos analisar cada série especificamente.

Exemplo 1 Consideremos a série de potências centrada em $x_0 = 0$

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots + x^n + \dots$$

onde $c_n = 1$ para todo $n \ge 0$. Esta é uma série geométrica de razão x, logo sabemos que converge para todo x desde que |x| < 1 e neste caso temos

$$\sum_{n=0}^{\infty} x_n = \frac{1}{1-x}$$

Assim esta série de potências de x representa a função $f(x) = \frac{1}{1-x}$ no intervalo]-1,1[. É óbvio que $f(x) = \frac{1}{1-x}$ está definida para todo $x \neq 1$. Mas no intervalo]-1,1[ela também é descrita através da série geométrica.

Exemplo 2 Consideremos a série de potências centrada em $x_0 = 1$ e $c_n = \frac{1}{n!}$

$$\sum_{n=0}^{\infty} \frac{(x-1)^n}{n!} = 1 + (x-1) + \frac{(x-1)^2}{2} + \frac{(x-1)^3}{6} + \cdots$$

Denominando-se $a_n(x) = \frac{(x-1)^n}{n!}$ e aplicando-se o Critério da razão, para $x \neq 1$, temos que

$$\lim_{n \to \infty} \left| \frac{a_{n+1}(x)}{a_n(x)} \right| = \lim_{n \to \infty} \left| \frac{x-1}{n+1} \right| = 0, qualquer que seja x.$$

Portanto esta série descreve uma função f(x) definida para todo $x \in \mathbb{R}$. Ainda não sabemos se f(x) é alguma função conhecida.

Exemplo 3 Consideremos agora a série centrada em $x_0 = 0$ dada por

$$\sum_{n=0}^{\infty} 2^{n^2} x^n.$$

Aplicando-se o Critério da raiz quando $x \neq 0$ vemos que

$$\lim_{n \to \infty} \sqrt[n]{|2^{n^2} x^n|} = \lim_{n \to \infty} 2^n |x| = \infty.$$

Logo esta série só converge se x = 0 e portanto, não representa uma função.

Raio de Convergência

Se $\sum_{n=0}^{\infty} c_n(x-x_0)^n$ converge para todo $x \in \mathbb{R}$ dizemos que $R=\infty$ é seu

raio d<mark>e convergência.</mark>

Se $\sum_{n=0}^{\infty} c_n (x-x_0)^n$ converge somente para $x=x_0$ dizemos que R=0 é seu raio de convergência.

E se existe R > 0 tal que $\sum_{n=0}^{\infty} c_n (x - x_0)^n$ converge absolutamente para todo $x \in]x_0 - R, x_0 + R[$ e diverge se $|x - x_0| > R$, dizemos que R é seu **raio** de convergência.

Exemplo 4 $\sum_{n=0}^{\infty} (\frac{2x}{3})^n$ é uma série geométrica. Logo sabemos convergir absolutamente se |2x/3| = 2|x|/3 < 1 e divergir se |2x/3| > 1. Logo R = 3/2 é seu raio de convergência.

Aplicando o critério da razão para $x \neq x_0$ temos:

$$\lim_{n \to \infty} \frac{|c_{n+1}(x - x_0)^{n+1}|}{|c_n(x - x_0)^n|} = |x - x_0| \lim_{n \to \infty} \frac{|c_{n+1}|}{|c_n|}$$

- Suponha que $\lim_{n\to\infty} \frac{|c_{n+1}|}{|c_n|} = L > 0$ então a série converge absolutamente para todo x tal que $|x-x_0|.L < 1$, ou seja, $|x-x_0| < 1/L$ e portanto o raio de convergência é R = 1/L.
- Se $\lim_{n\to\infty} \frac{|c_{n+1}|}{|c_n|} = 0 < 1$ então

a série converge para todo $x \in \mathbb{R}$ e portanto $R = \infty$ é seu raio de convergência.

• Se
$$\lim_{n\to\infty} \frac{|c_{n+1}|}{|c_n|} = \infty$$
 então a série convergirá somente se $x = x_0$ e portanto $R = 0$ é seu raio de convergência.

O Prof. Possani usa a fórmula acima para o cálculo do raio de convergência. No entanto algumas referências usam a fórmula abaixo (inclusive na apostila da Prof. Janete).

Teorema 2 Seja a série
$$\sum_{n=0}^{\infty} c_n (x - x_0)^n$$
.
a) (Critério inverso da razão) Suponha que

$$\lim_{n \to \infty} \frac{|c_n|}{|c_{n+1}|} = R$$

então R é seu raio de convergência.

b) (Critério inverso da raiz) Suponha que

$$\lim_{n \to \infty} \frac{1}{\sqrt[n]{|c_n|}} = R$$

então R é seu raio de convergência.

Seja $\sum_{n=0}^{\infty} c_n (x-x_0)^n$. Denominamos o seu **intervalo de convergência** como sendo o maior intervalo $I \subset \mathbb{R}$ para o qual a série converge.

Na apostila daProf. Janete Crema Simal você encontra as provas dos teoremas.

Exercício 1 Determine o intervalo de convergência de cada uma das seguintes séries de potências:

$$a) \sum \frac{n!}{100^n} x^n$$

b)
$$\sum \frac{2^n}{n^2} x^n$$

a)
$$\sum \frac{n!}{100^n} x^n$$
 b) $\sum \frac{2^n}{n^2} x^n$ c) $\sum (-1)^{n+1} \frac{x^n}{\sqrt{n}}$

d)
$$\sum \frac{(3n)!}{(2n)!} x^n$$
 e) $\sum \frac{x^{2n+1}}{(-3)^n}$ f) $\sum \frac{(x-3)^n}{n^2 2^n}$

$$e) \sum \frac{x^{2n+1}}{(-3)^n}$$

$$f) \sum \frac{(x-3)^n}{n^2 2^n}$$

$$g) \sum \frac{3^n}{n4^n} x^n$$

g)
$$\sum \frac{3^n}{n4^n} x^n$$
 h) $\sum \frac{(-1)^{n+1}}{n \ln n} (x-3)^n$ i) $\sum \frac{\ln n}{e^n} (x-e)^n$

$$i) \sum \frac{\ln n}{e^n} (x-e)^n$$

$$j) \sum \frac{10^n}{(2n)!} (x-7)^n \qquad k) \sum \frac{n}{4^n} x^{2n} \qquad l) \sum \frac{x^n}{n^3+1}$$

$$k) \sum \frac{n}{4n} x^{2n}$$

$$l) \sum \frac{x^n}{n^3+1}$$

$$m) \sum \frac{(-1)^{n+1}}{\sqrt[3]{n}2^n} x^n$$
 $n) \sum n^2 x^n$ $o) \sum \frac{n^2}{2^{3n}} (x+2)^n$

$$n) \sum n^2 x^n$$

$$o) \sum \frac{n^2}{2^{3n}} (x+2)^n$$