Spectral Clustering

Part 2: Weighted Graph Laplacians

Ng Yen Kaow

Minimum Cut Problem

- The minimum cut of an undirected graph G = (V, E) is a partition of V into two groups S and \bar{S} so that the number of edges between S and \bar{S} is minimized
 - Karger's algorithm finds an optimal solution in $O(|V|^2|E|\log|V|)$ time with probability $1/\binom{|V|}{2}$
- Recall that for the unnormalized $L = D W, x^T L x$ = 4 times the number of adjacent vertices of different values in x
 - We showed in Part 1 that an x which minimizes $x^T L x$ can be approximated from eigendecomposition
 - In fact, it added an (ineffective) balance requirement

Minimum Bisection Problem

- The minimum bisection of an undirected graph G = (V, E) is a partition of V into two groups S and \bar{S} so that the number of edges between S and \bar{S} is minimized, under the constraint that $|S| = |\bar{S}|$ (or $|S| |\bar{S}| = 1$ for odd |V|)
- □ As in minimum cut, let $x_i = \begin{cases} 1 & \text{if } v_i \in S \\ -1 & \text{if } v_i \in \bar{S} \end{cases}$
 - In which case, $|S| = |\bar{S}|$ implies $\sum_i x_i = 0$, which implies $x \perp 1$ (or $x \perp b1$ for any constant value b)

Constrained optimization problem

- □ Minimize $x^T L x$ where L = D Asubject to $x_i \in \{1, -1\}$ and $x^T \mathbf{1} = 0$
 - $x_i \in \{1, -1\}$ and $x^T \mathbf{1} = 0$ (that is, $x \perp \mathbf{1}$) together ensures balance in the partition

- Problem is NP-hard
- □ In contrast, eigendecomposition of a $|V| \times |V|$ matrix takes $O(|V|^3)$ time
 - Faster if only a few eigenpairs are needed, like in the case of spectral clustering

Constrained optimization problem

□ Minimize $x^{T}Lx$ where L = D - Asubject to $x_i \in \{1, -1\}$ and $x^{T}\mathbf{1} = 0$

Example of cuts (shown with Rayleigh quotient for

comparison later)

Group 1	Group 2	$x^{T} L x$	$\frac{x^{\top}Lx}{x^{\top}x}$
A	BCD	12	3
В	ACD	8	2
С	ABD	8	2
D	ABC	4	1
AB	CD	12	3
AC	ВD	12	3
A D	ВС	8	2
ABCD	Ø	0	0

- □ Minimize $x^{T}Lx$ where L = D Asubject to $x^{T}x = 1$ and $x^{T}1 = 0$
 - $\mathbf{x}^{\mathsf{T}}x = 1$ (or any constant)
 - \Box Allows problem to be solved as minimization of $\frac{x^{\top}Lx}{x^{\top}x}$
 - The (standard) Rayleigh quotient is scale invariant so limiting x^Tx to any constant does not change its value
 - By the min-max theorem, λ_{k-1} is minimal among all $\frac{x^{\mathsf{T}}Lx}{x^{\mathsf{T}}x}$ that are orthogonal to μ_k
 - $x^{\mathsf{T}} \mathbf{1} = 0$
 - \square Automatically fulfilled by μ_{k-1}
 - Ineffective: no longer ensures balance
 Both $\frac{[1\ 1-1-1]}{\|[1\ 1-1-1]\|}$ and $\frac{[1\ 1\ 1-3]}{\|[1\ 1\ 1-3]\|}$ fulfill the constraints

Eigenvalues

λ_1	λ_2	λ_3	λ_4
4.0000	3.0000	1.0000	0.0000

Eigenvectors

μ_1	μ_2	μ_3	μ_4
0.8660	0.0000	0.0000	-0.5000
-0.2887	0.7071	-0.4082	-0.5000
-0.2887	-0.7071	-0.4082	-0.5000
-0.2887	0.0000	0.8165	-0.5000

- \square As expected $\mu_4 = b\mathbf{1}$ (b = -0.5) gives the trivial solution
- As expected $\lambda_3 \le 2$, the optimal solution under constraint, since λ_3 is minimal among all $\frac{x^T L x}{x^T x}$ for x orthogonal to μ_4

Introducing weights into problems

- Unweighted (undirected) graphs
 - Unbalanced version
 - (Unweighted) Minimum Cut Problem
 - Balanced version
 - Minimum Bisection Problem (NP-hard)
- Weighted (undirected) graphs
 - Unbalanced version
 - \Box (Weighted) Minimum Cut Problem O(|V||E|)
 - Balanced versions
 - Ratio Cut Problem (NP-hard)
 - Graph Partitioning Problem (NP-hard)

(Weighted) Minimum Cut Problem

Given edge weight matrix $W = (w_{ij})$, the minimum cut of an undirected graph G = (V, E) is a partition of V into two groups S and \bar{S} such that $\text{cut}(S, \bar{S}) = \sum_{i \in S, j \in \bar{S}} w_{ij}$ is minimized

(Weighted) Minimum Cut Problem

- Given edge weight matrix $W = (w_{ij})$, the minimum cut of an undirected graph G = (V, E) is a partition of V into two groups S and \bar{S} such that $\text{cut}(S, \bar{S}) = \sum_{i \in S, j \in \bar{S}} w_{ij}$ is minimized
 - Ford-Fulkerson algorithm
 - Edmonds-Karp algorithm
 - Current best algorithm runs in O(|V||E|) time
 - No point in using spectral clustering
 - Just as an example try anyway
 - First, define the graph Laplacian with edge weights

Graph Laplacian with edge weights

- To add weight to the Laplacian
 - Adjacency matrix $A \Longrightarrow$ weight matrix W
 - Degree matrix $D \Longrightarrow$ weighted degree D'
- □ Laplacian L = D A becomes L = D' W
- □ Given edge weights $W = (w_{ij})_{m \times m}$, for any vector $x \in \mathbb{R}^m$,

$$x^{\mathsf{T}}(D'-W)x = \frac{1}{2}\sum_{1 \le i,j \le m} w_{ij}(x_i - x_j)^2$$

(Proof same as for
$$x^{\top}(D-A)x = \frac{1}{2}\sum_{1 \le i,j \le m} a_{ij}(x_i - x_j)^2$$
)

Graph Laplacian with edge weights

- To add weight to the Laplacian
 - Adjacency matrix $A \Longrightarrow$ weight matrix W
 - Degree matrix $D \Longrightarrow$ weighted degree D'
- □ Laplacian L = D A becomes L = D' W
- □ Suppose x is a vector of only the values +1 and -1. Then,

$$x^{\mathsf{T}}(D' - W)x = \frac{1}{2} \sum_{1 \le i,j \le m} w_{ij} (x_i - x_j)^2$$

$$= \frac{1}{2} \sum_{1 \le i,j \le m} w_{ij} (x_i - x_j)^2 = 4 \sum_{1 \le i < j \le m, x_i \ne x_j} w_{ij}$$

$$= 4 \operatorname{cut}(A, B)$$

Constrained optimization problem

- □ Minimize $x^T L x$ where L = D' W subject to $x_i \in \{1, -1\}$
- \square Example of cuts with x^TLx and Rayleigh quotient

Group 1	Group 2	$x^{T}Lx$	$\frac{x^{\top}Lx}{x^{\top}x}$
Α	BCDEF	24	4.00
ABCDE	F	28	4.67
AB	CDEF	44	7.33
ABCE	DF	100	16.67
ABCD	EF	104	17.33
ABC	DEF	16	2.67
ABD	CEF	132	22.00

□ Minimize $x^T L x$ where L = D' - W subject to $x^T x = 1$

Eigenvalues

λ_1	λ_2	λ_3	λ_4	λ_5	λ_6
46.04	23.36	11.07	7.28	2.25	0.00

Eigenvectors

μ_1	μ_2	μ_3	μ_4	μ_5	μ_6
-0.0136	-0.2879	-0.0224	-0.6854	-0.5291	-0.4082
0.0907	0.8331	0.0189	0.1460	-0.3306	-0.4082
-0.0371	-0.4557	0.1779	0.6912	-0.3390	-0.4082
-0.7519	0.0242	-0.3924	0.0007	0.3368	-0.4082
0.6488	-0.1212	-0.5194	0.0226	0.3570	-0.4082
0.0631	0.0074	0.7374	-0.1750	0.5049	-0.4082

Ratio Cut Problem

Given edge weight matrix $W = (w_{ij})$, the minimum ratio cut of an undirected graph G = (V, E) is a partition of V into two groups S and \bar{S} such that

$$\operatorname{ratio}(S, \bar{S}) = \operatorname{cut}(S, \bar{S}) \left(\frac{1}{|S|} + \frac{1}{|\bar{S}|} \right)$$

is minimized, where $\operatorname{cut}(S, \bar{S}) = \sum_{i \in S, j \in \bar{S}} w_{ij}$

Original paper defined ratio $(S, \overline{S}) = \text{cut}(S, \overline{S})/|S||\overline{S}|$ $= \frac{1}{|V|} \text{cut}(S, \overline{S}) \left(\frac{1}{|S|} + \frac{1}{|\overline{S}|}\right)$

Ratio Cut

□ Represent a partition S, \overline{S} of V with $x \in \mathbb{R}^n$, where

$$x_{i} = \begin{cases} \sqrt{\frac{|S|}{|\bar{S}|}} & \text{if } i \in S \\ -\sqrt{\frac{|\bar{S}|}{|S|}} & \text{if } i \in \bar{S} \end{cases}$$

Unlike earlier formulation, $|x_i|$ is not a constant – it changes according to the solution

- □ Then, $x^T x = |S| \frac{|\bar{S}|}{|S|} + |\bar{S}| \frac{|S|}{|\bar{S}|} = |V| = \text{const}$
- $\Box \quad \sum_{i} x_{i} = \sum_{i \in S} \sqrt{\frac{|\bar{S}|}{|S|}} \sum_{v_{i} \in \bar{S}} \sqrt{\frac{|S|}{|\bar{S}|}} = |S| \sqrt{\frac{|\bar{S}|}{|S|}} |\bar{S}| \sqrt{\frac{|S|}{|\bar{S}|}} = 0$

 $\Rightarrow x \perp 1$ (in fact, it can be shown that $x \perp b1$ for any b)

 \square For the unnormalized weighted Laplacian L = D' - W

$$x^{\mathrm{T}}Lx = |V|\operatorname{cut}(S, \overline{S})\left(\frac{1}{|S|} + \frac{1}{|\overline{S}|}\right) = |V|\operatorname{ratio}(S, \overline{S})$$

Proof for $x^T L x = |V| \text{ratio}(S, \overline{S})$

$$\Box x^{\mathsf{T}} L x = \frac{1}{2} \sum_{1 \leq i, j \leq m} w_{ij} \left(x_{i} - x_{j} \right)^{2} \\
= \frac{1}{2} \sum_{i \in S, j \in \bar{S}} w_{ij} \left(\sqrt{\frac{|S|}{|\bar{S}|}} + \sqrt{\frac{|\bar{S}|}{|S|}} \right)^{2} + \frac{1}{2} \sum_{i \in S, j \in \bar{S}} w_{ij} \left(-\sqrt{\frac{|S|}{|\bar{S}|}} - \sqrt{\frac{|\bar{S}|}{|\bar{S}|}} \right)^{2} \\
= \sum_{i \in S, j \in \bar{S}} w_{ij} \left(\frac{|S|}{|\bar{S}|} + \frac{|\bar{S}|}{|S|} + 2 \right) = \text{cut}(S, \bar{S}) \left(\frac{|S|}{|\bar{S}|} + \frac{|\bar{S}|}{|S|} + 2 \right) \\
= \text{cut}(S, \bar{S}) \left(\frac{|S|}{|\bar{S}|} + \frac{|\bar{S}|}{|S|} + \frac{|S|}{|\bar{S}|} \right) \\
= \text{cut}(S, \bar{S}) \left(\frac{|S| + |\bar{S}|}{|\bar{S}|} + \frac{|S| + |\bar{S}|}{|S|} \right) \\
= (|S| + |\bar{S}|) \text{cut}(S, \bar{S}) \left(\frac{1}{|\bar{S}|} + \frac{1}{|S|} \right) = |V| \text{cut}(S, \bar{S}) \left(\frac{1}{|\bar{S}|} + \frac{1}{|S|} \right)$$

Constrained optimization problem

- □ Minimize $x^{T}Lx$ where L = D' W subject to $x_i \in \{\sqrt{|S|/|S|}, -\sqrt{|S|/|S|}\}$
 - $x_i \in \left\{ \sqrt{|S|/|\bar{S}|}, -\sqrt{|S|/|\bar{S}|} \right\} \Rightarrow x^\top x = |V| \land x^\top \mathbf{1} = 0$
 - However, problem is NP-hard
- \Box Example of cuts with $x^{T}Lx$ and Rayleigh quotient

Group 1	Group 2	$x^{T} L x$	$\frac{x^{\top}Lx}{x^{\top}x}$
Α	BCDEF	24	4.00
ABCDE	F	28	4.67
AB	CDEF	44	7.33
ABCE	DF	100	16.67
ABCD	EF	104	17.33
ABC	DEF	16	2.67
ABD	CEF	132	22.00

- □ Minimize $x^T L x$ where L = D' Wsubject to $x^T x = 1$ and $x^T 1 = 0$
 - Since $x^T L x \neq |V|$ ratio $(S, \overline{S}) \Rightarrow$ balance no longer enforced

Eigenvalues

λ_1	λ_2	λ_3	λ_4	λ_5	λ_6
46.04	23.36	11.07	7.28	2.25	0.00

Eigenvectors

μ_1	μ_2	μ_3	μ_4	μ_5	μ_6
-0.0136	-0.2879	-0.0224	-0.6854	-0.5291	-0.4082
0.0907	0.8331	0.0189	0.1460	-0.3306	-0.4082
-0.0371	-0.4557	0.1779	0.6912	-0.3390	-0.4082
-0.7519	0.0242	-0.3924	0.0007	0.3368	-0.4082
0.6488	-0.1212	-0.5194	0.0226	0.3570	-0.4082
0.0631	0.0074	0.7374	-0.1750	0.5049	-0.4082

Eigenvalues

λ_1	λ_2	λ_3	λ_4	λ_5	λ_6
46.04	23.36	11.07	7.28	2.25	0.00

Eigenvectors

μ_1	μ_2	μ_3	μ_4	μ_5	μ_6
-0.0136	-0.2879	-0.0224	-0.6854	-0.5291	-0.4082
0.0907	0.8331	0.0189	0.1460	-0.3306	-0.4082
-0.0371	-0.4557	0.1779	0.6912	-0.3390	-0.4082
-0.7519	0.0242	-0.3924	0.0007	0.3368	-0.4082
0.6488	-0.1212	-0.5194	0.0226	0.3570	-0.4082
0.0631	0.0074	0.7374	-0.1750	0.5049	-0.4082

The eigenvalue system is exactly the same as in (Weighted) Minimum Cut. Only the (unrelaxed) optimal solution is different

- □ As expected $\mu_6 = b\mathbf{1}$ (b = -0.4082) gives the trivial solution
- As expected $\lambda_5 \le 2.67$, the optimal solution under constraint, since λ_5 is minimal among all $\frac{x^{\mathsf{T}}Lx}{x^{\mathsf{T}}x}$ for x orthogonal to μ_6

Comparison of problems

- □ Unweighted problem (L = D A)
 - Minimum Cut
 - Add balance ⇒ Minimum Bisection
- □ Weighted problems (L = D' W)
 - (Weighted) Minimum Cut
 - Add balance ⇒ Ratio Cut
- The version of the problem with $x^{\mathsf{T}}\mathbf{1} = 0$ balance requirement can better exploit the fact that $\mu_{k-1} \perp \mu_k$ where $\mu_k = \mathbf{1}$ which helps optimality
- □ However note that even with $x^{\mathsf{T}}\mathbf{1} = 0$, the balance requirement is not ensured

More constraint for balance

- □ So far, no attempt has been made to maintain the balance of the partition besides $x^Tx = 1$ and $x^T1 = 0$, both of which are fulfilled automatically for a eigenvalue system
- Further constraints can be added to the eigenvalue system
 - However, the resultant eigenvalue system will no longer be standard
 - Demonstrate with Graph Partitioning Problem in Part 3