Paper Implementation

GraphSAGE: Inductive Representation Learning on Large Graphs

By Ahmed A. A. Elhag

General inductive framework that leverages node features to efficiency generate node embedding for unseen dataset

Main Idea

from neighbors

using aggregated information

Aggregator Architectures

$$\mathbf{h}_{\mathcal{N}(v)}^{k} \leftarrow \text{AGGREGATE}_{k}(\{\mathbf{h}_{u}^{k-1}, \forall u \in \mathcal{N}(v)\});$$

$$\mathbf{h}_{v}^{k} \leftarrow \sigma\left(\mathbf{W}^{k} \cdot \text{CONCAT}(\mathbf{h}_{v}^{k-1}, \mathbf{h}_{\mathcal{N}(v)}^{k})\right)$$

- Mean Aggregator
- LSTM Aggregator
- Pooling Aggregator

Implementation approach

GraphSAGE paper

- Define one GraphSAGE layer: depending on the aggregator type
- Stack two GraphSAGE layers, use nonlinearity between them.
- Build the train funcion: (optimizer, loss...)
- Experiments

The Experiments

Results

Dataset	Туре	Nodes	Edges	Classes	Features	Mean Aggregator	MaxPooling Aggregator
Cora	Citation network	2,708	5,429	7	1,433	80.0 ± 1	81.0 ± 1
Citeseer	Citation network	3,327	4,732	6	3,703	68 ± 1	69.5 ± 0.8

Improvement

ADVANCING GRAPHSAGE WITH A DATA -DRIVEN NODE SAMPLING

Jihun Oh et al., (ICLR 2019)

- A new data-driven sampling approach to reason about the real-valued importance of a neighborhood
- Use a non-linear regressor, as a criterion for subsampling neighborhoods.
- The regressor is learned using a value based reinforcement learning.

Conclusion

GraphSAGE: inductive framework, leverages node feature information.

Generate node embeddings for previously unseen data.

Work on Large Scale graphs!

Thank you!