

Potassium Channels

Inward—rectifier—type (K _{ir} ,K_{ATP}) P_{2X}purinergic Shaker-type (K_A,K_V,K_{VR})

Sodium and Calcium Channels

Neurotransmitter—gated Channels

> 5-HT3,GABA_A, nAChR,glycine

$$O_{n} = ligand$$

$$n+m+core<100 atoms$$

$$FIG. 2A$$

$$Q_{()p}$$

$$HN = 0$$

$$O_{()m}$$

$$HN = 0$$

$$O_{()m}$$

$$O_$$

FIG. 3

FIG. 5

FIG. 10

FIG. 11B