Введение в Теорию Типов Конспект лекций

Штукенберг Д. Г. Университет ИТМО

2 января 2019 г.

1 Введение

Эти лекции были рассказаны студентам групп М3334—М3337, М3339 в 2018 году в Университете ИТМО, на Кафедре компьютерных технологий Факультета информационных технологий и программирования.

Конспект подготовили студенты Кафедры: Егор Галкин (лекции 1 и 2), Илья Кокорин (лекции 3 и 4), Никита Дугинец (лекции 5 и 6), Степан Прудников (лекции 7 и 8). (возможно, история сложнее)

2 Лекция 1

2.1 λ -исчисление

Определение 2.1 (λ -выражение). λ -выражение — выражение, удовлетворяющее грамматике:

- 1. Аппликация левоассациативна.
- 2. Абстракции жадные, едят все что могут.

Пример.
$$(\lambda x.(\lambda f.((fx)(fx)\lambda y.(yf))))$$

Есть понятия связанного и свободного вхождения переменной (аналогично исчислению предикатов). $\lambda x.A$ связывает все свободные вхождения x в A.

Определение 2.2. Функция FV(A) — множество свободных переменных, входящих в A:

$$\mathrm{FV}(A) = \begin{cases} \{x\} & \text{если } A \equiv x \\ \mathrm{FV}(P) \cup \mathrm{FV}(Q) & \text{если } A \equiv PQ \\ \mathrm{FV}(P) \backslash \{x\} & \text{если } A \equiv \lambda x.P \end{cases}$$

Договоримся, что:

- Переменные x, a, b, c.
- Термы (части λ -выражения) X, A, B, C.
- Фиксированные переменные обозначаются буквами из начала алфавита, метапеременные из конца.

На самом деле, смысл в этом есть, λ -выражение можно понимать как функцию. Абстракция— это функция с аргументом, аппликация— это передача аргумента.

Определение 2.3 (α -эквивалентность). $A =_{\alpha} B$, если имеет место одно из следующих условий:

- 1. $A \equiv x$, $B \equiv y$ (x,y—переменные) и $x \equiv y$
- 2. $A \equiv P_1Q_1$, $B \equiv P_2Q_2$ и $P_1 =_{\alpha} P_2$, $Q_1 =_{\alpha} Q_2$
- 3. $A \equiv \lambda x. P_1, \ B \equiv \lambda y. P_2$ и $P_1[x \coloneqq t] =_{\alpha} P_2[y \coloneqq t]$, где t новая переменная.

Пример. $\lambda x.\lambda y.xy =_{\alpha} \lambda y.\lambda x.yx$.

Доказательство. Согласно второму правилу следующие утверждения верны:

$$\lambda y.ty =_{\alpha} \lambda x.tx \implies \lambda x.\lambda y.xy =_{\alpha} \lambda y.\lambda x.yx$$
$$tz =_{\alpha} tz \implies \lambda y.ty =_{\alpha} \lambda x.tx$$

 $tz =_{\alpha} tz$ верно по третьему условию.

Определение 2.4 (β -редекс). β -редекс—выражение вида: ($\lambda x.A$) B

Определение 2.5 (β -редукция). $A \to_{\beta} B$, если имеет мето одно из следующих условий:

- 1. $A \equiv P_1Q_1, B \equiv P_2Q_2$ и либо $P_1 =_{\alpha} P_2, Q_1 \rightarrow_{\beta} Q_2$, либо $P_1 \rightarrow_{\beta} P_2, Q_1 =_{\alpha} Q_2$
- 2. $A \equiv (\lambda x.P) Q$, $B \equiv P[x \coloneqq Q] Q$ свободна для подстановки вместо x в P

Пример. $X \rightarrow_{\beta} X$, $(\lambda x.x) y \rightarrow_{\beta} y$

Пример. $a(\lambda x.x)y \rightarrow_{\beta} ay$

Пример. $A \equiv \lambda x.P$, $B \equiv \lambda x.Q$, $P \rightarrow_{\beta} Q$

2.2 Представление некоторых функций в лямбда исчислении

Boolean значения легко представить в терминах λ -исчисления, к примеру

- True = $\lambda a \lambda b.a$
- False = $\lambda a \lambda b.b$

Также мы можем выражать и более сложные функции

Определение 2.6. If $= \lambda c.\lambda t.\lambda e.(ct)e$

Пример. If T $a \ b \rightarrow_{\beta} a$

Доказательство.

$$((\lambda c.\lambda t.\lambda e.(ct)e) \ \lambda a\lambda b.a) \ a \ b \rightarrow_{\beta} (\lambda t.\lambda .e(\lambda a\lambda b.a) \ t \ e) \ a \ b \rightarrow_{\beta} (\lambda t.\lambda .e(\lambda b.t) \ e) \ a \ b \rightarrow_{\beta} (\lambda t.\lambda e.t) \ a \ b \rightarrow_{\beta} (\lambda e.a) \ b \rightarrow_{\beta} a$$

Как мы видим If true действительно возвращает результат первой ветки. Другие логические операции:

Not =
$$\lambda a.a$$
 F T Add = $\lambda a.\lambda b.a$ b F Or = $\lambda a.\lambda b.a$ T b

2.3 Черчевские нумералы

Определение 2.7 (черчевский нумерал).

$$\overline{n} = \lambda f. \lambda x. f^n x$$
, где $f^n x = \begin{cases} f\left(f^{n-1}x\right) & \text{при } n > 0 \\ x & \text{при } n = 0 \end{cases}$

Пример.

$$\overline{3} = \lambda f. \lambda x. f(f(fx))$$

Несложно определить прибавление единицы к такому нумералу:

$$(+1) = \lambda n.\lambda f.\lambda x.f(nfx)$$

Арифметические операции:

- 1. IsZero = $\lambda n.n(\lambda x. F) T$
- 2. Add = $\lambda a.\lambda b.\lambda f.\lambda x.a f(b f x)$
- 3. Pow = $\lambda a. \lambda b. b$ (Mul a) $\overline{1}$
- 4. IsEven = $\lambda n.n$ Not T
- 5. Mul = $\lambda a.\lambda b.a$ (Add b) $\overline{0}$

Для того, чтобы определить (-1), сначала определим «пару»:

$$\langle a, b \rangle = \lambda f. f \, a \, b$$
 First $= \lambda p. p \, T$ Second $= \lambda p. p \, F$

Затем n раз применим функцию $f(\langle a,b\rangle) = \langle b,b+1\rangle$ и возьмём первый элемент пары:

$$(-1) = \lambda n. \operatorname{First}(n(\lambda p. \langle (\operatorname{Second} p), (+1) (\operatorname{Second} p) \rangle) \langle \overline{0}, \overline{0} \rangle)$$

3 Лекция 2

3.1 Формализация λ -термов, классы α -эквивалентности термов

Определение 3.1 (λ -терм). Рассмотрим классы эквивалентности $[A] = \alpha$ Будем говорить, что $[A] \to_{\beta} [B]$, если $\exists A' \in [A], B' \in [B]$, что $A' \to_{\beta} B'$.

Лемма 3.1. $=_{\alpha}$ — отношение эквивалентности.

Пусть в А есть β -редекс $\lambda x.Q$, но P[x := Q] не может быть, тогда найдем $y \notin V[P]$, $y \notin V[Q]$. Сделаем замену P[x := y]. Тогда замена P[x := y][y := Q] допустима.

Лемма 3.2. $P[x \coloneqq y] =_{\alpha} P[x \coloneqq y][y \coloneqq Q]$, если замена допустима.

3.2 Нормальная форма, λ -выражения без нормальной формы, комбинаторы $K,\ I,\ \Omega$

Определение 3.2. Нормальня форма — это λ -выражение без β -редексов.

Лемма 3.3. λ -выражение A в нормальноф форме, т.и.т.т, когда $\sharp B$, что $A \to_{\beta} B$.

Определение 3.3. $A - H.\Phi$ B, если $\exists A_1...A_n$, что $B =_{\alpha} A_1 \to_{\beta} A_2 \to_{\beta} ... \to_{\beta} A_n =_{\alpha} A$.

Определение 3.4. Комбинатор — λ -выражение без свободных переменных.

Определение 3.5.

- $I = \lambda x.x$ (Identitant)
- $K = \lambda a.\lambda b.a$ (Konstanz)
- $\Omega = (\lambda x.xx)(\lambda x.xx)$

Лемма 3.4. Ω — не имеет нормальной формы.

Доказательство. $\Omega \to_{\beta} \Omega$

3.3 β -редуцируемость

Определение 3.6. Будем говорить, что $A \to_{\beta} B$, если \exists такие $X_1...Xn$, что $A =_{\alpha} X_1 \to_{\beta} X_2 \to_{\beta} ... \to_{\beta} X_{n-1} \to_{\beta} X_n =_{\alpha} B$.

 $\twoheadrightarrow_{\beta}$ — рефлексивное и транзитивное замыкание $\twoheadrightarrow_{\beta}$. $\twoheadrightarrow_{\beta}$ не обязательно приводит к нормальной форме

Пример. $\Omega \rightarrow_{\beta} \Omega$

3.4 Ромбовидное свойство

Определение 3.7 (Ромбовидное свойство). Отношение R обладает ромбовидным свойством, если $\forall a,b,c$, таких, что $aRb,\,aRc,\,b\neq c,\,\exists d,\,$ что bRd и $cRd.\,$ Далее будем обозначать ромбовидное свойство как <>.

Пример. (\leq) на множестве натуральных чисел обладает <> (>) не обладает <> на множестве натуральных чисел

3.5 Теорема Чёрча-Россер, следствие о единственности нормальной формы

Теорема 3.1 (Черча-Россера). $(\twoheadrightarrow_{\beta})$ обладает ромбовидным свойством.

Следствие 3.1. Если у A есть $H.\Phi$, то она единтсвенная с точностью до $(=_{\alpha})$ (переименования переменных).

 \mathcal{A} оказательство. Пусть $A \twoheadrightarrow_{\beta} B$ и $A \twoheadrightarrow_{\beta} C$. B, C — нормальные формы и $B \neq_{\alpha} C$. Тогда по теореме Черча-Россера $\exists D \colon B \twoheadrightarrow_{\beta} D$ и $C \twoheadrightarrow_{\beta} D$. Тогда $B =_{\alpha} D$ и $C =_{\alpha} D \Rightarrow B =_{\alpha} C$. Противоречие.

Лемма 3.5. Если B — Н.Ф, то $\not \equiv Q$: $B \to_{\beta} Q$. Значит если $B \twoheadrightarrow_{\beta} Q$, то количество шагов редукции равно 0.

Лемма 3.6. Если R — обладает <>, то и R^* (транзитивное, рефлексивное замыкание R) обладает R^* .

 \mathcal{A} оказательство. Пусть $M_1R^*M_n$ и M_1RN_1 . Тогда существуют такие $M_2\dots M_{n-1}$, что $M_1RM_2\dots M_{n-1}RM_n$. Так как R обладает ромбовидным свойством, M_1RM_2 и M_1RN_1 , то существует такое N_2 , что N_1RN_2 и M_2RN_2 . Аналогично, существуют такие $N_3\dots N_n$, что $N_{i-1}RN_i$ и M_iRN_i . Мы получили такое N_n , что $N_1R^*N_n$ и $M_nR^*N_n$.

Пусть теперь $M_{1,1}R^*M_{1,n}$ и $M_{1,1}R^*M_{m,1}$, то есть имеются $M_{1,2}\dots M_{1,n-1}$ и $M_{2,1}\dots M_{m-1,1}$, что $M_{1,i-1}RM_{1,i}$ и $M_{i-1,1}RM_{i,1}$. Тогда существует такое $M_{2,n}$, что $M_{2,1}R^*M_{2,n}$ и $M_{1,n}R^*M_{2,n}$. Аналогично, существуют такие $M_{3,n}\dots M_{m,n}$, что $M_{i,1}R^*M_{i,n}$ и $M_{1,n}R^*M_{i,n}$. Тогда $M_{1,n}R^*M_{m,n}$ и $M_{m,1}R^*M_{m,n}$.

Лемма 3.7 (Грустная лемма). (\rightarrow_{β}) не обладает <>

Доказательство. Пусть $A = (\lambda x. x. x)(\mathcal{I}\mathcal{I})$. Покажем что в таком случае не будет выполнять сомбовидное свойство:

Рис. 1: Нет такого D, что $B \rightarrow_{\beta} D$ и $C \rightarrow_{\beta} D$.

Определение 3.8 (Параллельная β -редукция). $A \rightrightarrows_{\beta} B$, если

- 1. $A =_{\alpha} B$
- 2. $A \equiv P_1Q_1$, $B \equiv P_2Q_2$ u $P_1 \rightrightarrows_{\beta} P_2$, $Q_1 \rightrightarrows_{\beta} Q_2$
- 3. $A \equiv \lambda x.P_1$, $B \equiv \lambda x.P_2$ и $P_1 \rightrightarrows_{\beta} P_2$
- 4. $A =_{\alpha} (\lambda x. P)Q, B =_{\alpha} P[x := Q]$

Лемма 3.8. $P_1 \rightrightarrows_{\beta} P_2$ и $Q_1 \rightrightarrows_{\beta} Q_2$, то $P_1[x := Q_1] \rightrightarrows_{\beta} P_2[x := Q_2]$

Доказательство. Будем доказывать индукцией по определению 式_β. Рассмотрим случаи:

- Пусть $P_1 =_{\alpha} P_2$. Тогда лемма легко доказывается индукцией по структуре выражения.
- Пусть $P_1 \equiv A_1B_1$, $P_2 \equiv A_2B_2$. По определению $\rightrightarrows_{\beta} A_1 \rightrightarrows_{\beta} A_2$ и $B_1 \rightrightarrows_{\beta} B_2$. Рассмотрим два случая:
 - 1. $x \in FV(A_1)$. По индукционному предположению $A_1[x := Q_1] \rightrightarrows_{\beta} A_2[x := Q_2]$. Тогда $A_1[x := Q_1]B_1 \rightrightarrows_{\beta} A_2[x := Q_2]B_2$. Тогда $A_1B_1[x := Q_1] \rightrightarrows_{\beta} A_2B_2[x := Q_2]$.
 - 2. Аналогично для B

- Пусть $P_1 \equiv \lambda x. A_1$, $P_2 \equiv \lambda x. A_2$. по определению $\Rightarrow_{\beta} A_1 \Rightarrow_{\beta} A_2$. Тогда по индукционному предположению $A_1[x' := Q_1] \Rightarrow_{\beta} A_2[x' := Q_2]$. Тогда $\lambda x. (A_1[x' := Q_1]) \Rightarrow_{\beta} \lambda x. (A_2[x' := Q_2])$ по определению \Rightarrow_{β} . Следовательно $\lambda x. A_1[x' := Q_1] \Rightarrow_{\beta} \lambda x. A_2[x' := Q_2]$ по определению подствановки.
- Пусть $P_1 \equiv (\lambda x.A)B$, $P_2 \equiv A[x \coloneqq B]$. Тогда по индукционному предположению $A[x \coloneqq Q_1] \rightrightarrows_{\beta} A[x \coloneqq Q_2]$, $B[x \coloneqq Q_1] \rightrightarrows_{\beta} B[x \coloneqq Q_2]$. Тогда по определению $\rightrightarrows_{\beta}$ имеем $(\lambda x.A[x' \coloneqq Q_1])B \rightrightarrows_{\beta} A[x' \coloneqq Q_2][x \coloneqq B]$. Тогда имеем, что $A[x' \coloneqq Q_1][x \coloneqq B] \equiv (A[x \coloneqq B])[x' \coloneqq Q_2] \equiv B[x' \coloneqq Q_2]$.

Лемма 3.9. $(\rightrightarrows_{\beta})$ обладает <>

Доказательство. Будем доказывать индукцией по определению $\rightrightarrows_{\beta}$. Покажем, что если $M \rightrightarrows_{\beta} M_1$ и $M \rightrightarrows_{\beta} M_2$, то $\exists M_3$, что $M_1 \rightrightarrows_{\beta} M_3$ и $M_2 \rightrightarrows_{\beta} M_3$. Рассмотрим случаи:

- Если $M \equiv M_1$, то просто возьмем $M_3 \equiv M_2$.
- Если $M \equiv \lambda x.P$, $M_1 \equiv \lambda x.P_1$, $M_2 \equiv \lambda x.P_2$ и $P \rightrightarrows_{\beta} P_1$, $P \rightrightarrows_{\beta} P_2$, то по предположению индукции $\exists P_3$, что $P_1 \rightrightarrows_{\beta} P_3$, $P_2 \rightrightarrows_{\beta} P_3$, тогда возьмем $M_3 \equiv \lambda x.P_3$.
- Если $M \equiv PQ, M_1 \equiv P_1Q_1$ и по определению $\rightrightarrows_{\beta} P \rightrightarrows_{\beta} P_1, Q \rightrightarrows_{\beta} Q_1$, то рассмотрим два случая:
 - 1. $M_2 \equiv P_2 Q_2$. Тогда по предположению индукции $\exists P_3$, что $P_1 \rightrightarrows_{\beta} P_3, P_2 \rightrightarrows_{\beta} P_3$. Аналогично для Q. Тогда возьмем $M_3 \equiv P_3 Q_3$.
 - 2. $P \equiv \lambda x.P', M_2 \equiv P_2'[x \coloneqq Q_2]$, по определению $\rightrightarrows_{\beta} P' \rightrightarrows_{\beta} P_2', Q \rightrightarrows_{\beta} Q_2$. Также $P_1 \equiv \lambda x.P_1', P' \equiv P_1'$. Тогда по предположению индукции и леммы 3.8 мы можем взять $M_3 \equiv P_3'[x \coloneqq P_3]$.
- Если $M =_{\alpha} (\lambda x.P)Q, M_1 =_{\alpha} M_2 =_{\alpha} P[x \coloneqq Q]$, то просто возьмем $M_3 =_{\alpha} P[x \coloneqq Q]$.

Лемма 3.10.

- 1. $(\rightrightarrows_{\beta})^* \subseteq (\to_{\beta})^*$
- $2. \ (\rightarrow_{\beta})^* \subseteq (\rightrightarrows_{\beta})^*$

Следствие 3.2. $(\rightarrow_{\beta})^* = (\rightrightarrows_{\beta})^*$

Из приведенных выше лемм и следствия докажем теорему Черча-Россера.

 \mathcal{A} оказательство. $(\rightarrow_{\beta})^* \equiv (\twoheadrightarrow_{\beta})$. Тогда $(\twoheadrightarrow_{\beta}) = (\rightrightarrows_{\beta})^*$. Значит из того, что $(\rightrightarrows_{\beta})$ обладает <> и леммы 3.6 следует, что $(\twoheadrightarrow_{\beta})$ обладает <>.

3.6 Нормальный и аппликативный порядок вычислений

Пример. Выражение $KI\Omega$ можно редуцировать двумя способами:

- 1. $\mathcal{K} \mathcal{I} \Omega =_{\alpha} ((\lambda a. \lambda b. a) I) \Omega \rightarrow_{\beta} (\lambda b. \mathcal{I}) \Omega \rightarrow_{\beta} \mathcal{I}$
- $2. \ \mathcal{K} \mathcal{I} \Omega =_{\alpha} ((\lambda a.\lambda b.a)I)((\lambda x.x \ x)(\lambda x.x \ x)) \twoheadrightarrow_{\beta} ((\lambda a.\lambda b.a)I)((\lambda x.x \ x)(\lambda x.x \ x)) \rightarrow_{\beta} \mathcal{K} \mathcal{I} \Omega$

6

Как мы видим, в первом случае мы достигли нормальной формы, в то время как во втором мы получаем бесонечную редукцию. Разница двух этих способов в порядке редукции. Первый называется нормальный порядок, а второй аппликативный.

Определение 3.9 (нормальный порядок редукции). Редукция самого левого β -редекса.

Определение 3.10 (аппликативный порядок редукции). Редукция самого левого β -редекса из самых вложенных.

Утверждение 3.1. Если нормальная форма существует, она может быть достигнута нормальным порядком редукции.