Westtown ML Codebook

Ben Drucker

Contents:

- I. Large-scale overview
- II. Introduction and goals of machine learning
- III. Common ML models
- IV. Lab
- V. Extra resources

Large-scale overview

- The ML Codebook consists of the following components: this user guide, a student's GitHub repository, and an instructor's GitHub repository.
- This user guide is intended as an instructor's guide to teaching introductory machine learning.
- The student repository contains a Jupyter Notebook lab on handwriting recognition and associated datasets and other miscellaneous files.
- The instructor repository contains the same files, but the Jupyter Notebook is completely filled in (it is essentially an answer key).
- TODO: platform cocalc or something else?

Introduction and Goals of ML

- Traditional computing vs. machine learning
 - View diagram to the right.
 - Traditionally, we are given an input and an accompanying program to solve a problem. A computer then generates desired results.
 - In ML we are also given an input, but instead of having an accompanying program, we are given humangenerated desired results. These two entities allow the computer to generate the program (and future results).
 - To sum up, traditionally humans write the programs and the computer generate the results. In ML, humans generate initial results and the computer generates the program to compute future results.

Input Computation Results Machine learning Input Computation Program Future results Future input Source Link

Introduction and Goals of ML

- Mechanics of ML
 - In ML, there are two common types of tasks: classification and regression
 - In classification, we are given information about an entity and desire to classify the entity into several discrete categories.
 - In regression, we are also given information about an entity but desire a continuous, numerical output.
 - ML can be broken into supervised and unsupervised learning.
 - Supervised learning occurs when we have a dataset containing many datapoints along with with associated human-labeled classifications. The computer uses this information to generate a mapping from data to classifications. This is the type of ML that is discussed in this codebook.
 - Unsupervised learning occurs when our dataset does not contain *labeled* examples. Here, we can only look at the data to generate classifications.

Introduction and Goals of ML

- ML Example Task
 - Suppose we work at a marble factory.
 - Our job is to **classify** marbles as "good" or "bad" quality.

Features

Suppose we have many attributes about each marble, but it is difficult
for humans to generate a rule/program that determines whether a
marble is good or bad based on these attributes. An example dataset is
below.

Labels/Targets

Diameter Color Material Mass (a) Has Swirl Class Pattern (Good/Bad) (cm) Marble #1 40 True **Bad** 5 Red Glass **Plastic** Marble #2 Blue 45 False Good **Examples** Marble #3 2.5 Glass 32 False Good Red

Common ML Models

- K-Nearest-Neighbors
- Linear Regression

- For ease of use, I have found it would be best to use Colab as the lab platform. Colab uses a Jupyter Notebook (.ipynb — interactive python notebook) format.
- Setup instructions:
 - First, we need to download the git repository.
 - Go to the repository link (TODO)
 - Click the green "code ▼" button and then select "Download ZIP." Save the zip folder on your computer.

- On your computer, unzip the downloaded zip folder.
- Upload to Google Drive (instructions on next slide)

- Setup Instructions Continued
 - Go to your Google Drive. And select the "+ New" button at the upper right corner.
 Then choose "Folder upload." Upload the un-zipped folder you downloaded from the previous slide.

 Open this folder in Google Drive. Open the "code" folder within. Double click the "main.ipynb" file. This will open Colab, where you can begin editing.

Add Code Cell Tour of Colab Add Text Cell △ main.ipynb ☆ Runtime Tools Help + Code + Text ∷ Text Cells **Getting Started** Find and Replace Instructions: Run the cell below to import the necessary libraries. # General imports View Variables import math Code Cell import sys from IPython.display import display File System # Data science imports import pandas as pd # pandas documentation: import numpy as np # numpy documentation: 10 # ML imports import sklearn # sk learn documentation: from sklearn import neighbors, tree, svm, linear_mode 13 # Graphical imports from PIL import Image from matplotlib import pyplot as plt # matplotlib do 17 # Configuration np.set_printoptions(threshold=sys.maxsize, linewidth: >_

- Colab uses google drive as a file management system. To view an access repository files, complete the following steps:
 - Click the file system icon on the left panel ()
 - Click on the "Mount Google Drive" icon

 Click the "▶" button associated with the added cell with message "Run this cell to mount your Google Drive." Enable permissions.

```
1 from google.colab import drive
2 drive.mount('/content/drive')
Run this cell to mount your Google Drive.
```

 All Google Drive files (including the upload folder) are available by selecting the "up one level" option from the file system menu

and then navigating to content > drive > MyDrive.

Lab: Frameworks

- The lab portion of this codebook employs the following common ML/data science python libraries:
 - Sklearn Robust machine learning library that implements many ML models
 - Pandas Data manipulation library
 - Numpy Math and data structure library
 - Scipy Math library