PROBABILIDADE E ESTATÍSTICA AULA 2 – INTEGRAÇÃO E EXPECTATIVA

Luis A. F. Alvarez

3 de fevereiro de 2025

Integral de Lebesgue

- Nesta aula, partiremos de um espaço de medida (Ω, Σ, μ) e definiremos, para uma função mensurável $f: \Omega \mapsto \mathbb{R}$, a integral de Lebesgue com respeito a μ .
 - Como veremos, essa noção de integral *estende* a noção de integral de Riemann para uma classe mais ampla de funções e espaços subjacentes.
 - Esse conceito de integral será fundamental para a definição formal de esperança condicional.

Funções simples

- Seja (Ω, Σ, μ) um espaço de medida.
- Uma função $f: \Omega \mapsto \mathbb{R} \cup \{-\infty, \infty\}$ é dita simples se existem $k \in \mathbb{N}$ e $E_1, E_2, \dots, E_k \in \Sigma$, $a_1, \dots, a_k \in \mathbb{R} \cup \{-\infty, \infty\}$ tais que:

$$f(\omega) = \sum_{i=1}^{k} a_i \mathbf{1}_{E_i}(\omega), \quad \omega \in \Omega$$

onde $\mathbf{1}_A(\omega) = egin{cases} 1 & \text{se } \omega \in A \\ 0 & \text{se } \omega \notin A \end{cases}$ é a função indicadora do conjunto A.

- **Convenção:** se $\mathbf{1}_{E_i}(\omega)=0$ e $a_i=\pm\infty$, então $\mathbf{1}_{E_i}(\omega)a_i=0$
- Fácil ver que f é mensurável.
 - Também fácil ver que, sem perda de generalidade, podemos tomar os E_i como disjuntos.

Integral de Lebesgue de funções simples não negativas

- Seja f uma função simples **não negativa**. A integral de Lebesgue com respeito a μ , denotada por $\mu(f)$ ou $\int f(\omega)\mu(d\omega)$ ou $\int fd\mu$, é definida por:

$$\int f(\omega)\mu(d\omega) := \sum_{i=1}^k a_i\mu(E_i).$$

- Fácil de ver que integral está bem-definida (para duas expressões distintas da função simples em termos de conjuntos finitos, expressão dará a mesma coisa).
- Integral será um elemento de $[0,\infty]$

Integral de Lebesgue de funções mensuráveis não negativas

- Seja $f:\Omega\mapsto [0,\infty]$ uma função mensurável não negativa. Definimos a integral de Lebesgue como:

$$\mu(f) \coloneqq \sup(\mu(g) : g \text{ simples e não negativa}, g \le f)$$
.

LEMA

Seja $f \ge 0$ mensurável.

- Se $\mu(f) < \infty$, então, $\mu(\{\omega : f(\omega) = \infty\}) = 0$.
- Se $\mu(f) = 0$, então $\mu(\{\omega : f(\omega) > 0\}) = 0$.
- Seja g \geq 0 mensurável. Se $\mu(\{\omega: g(\omega) \neq f(\omega)\})=$ 0, então $\mu(f)=\mu(g)$.
- **Obs:** Quando uma afirmação é válida a não ser em um conjunto de pontos ω de medida zero, dizemos que ela vale em μ -quase todo ponto (μ -q.t.p.).
 - Se μ é medida de probabilidade, equivalente ao qualificador "quase certamente" visto em aula anterior.

Teorema da Covergência Monótona

- Seja $(f_n)_n$ uma sequência de funções mensuráveis. Dizemos que f_n converge a uma função f em μ -quase todo ponto se $\mu(\{\omega: f_n(\omega) \nrightarrow f(\omega)\})) = 0$.
 - Medida do evento em que não há convergência é zero.
- Como f é mensurável (por quê?), se $f_n \ge 0$ para todo n, podemos nos perguntar se:

$$\int f_{n}d\mu \rightarrow \int fd\mu$$
,

- i.e. podemos passar o limite por "debaixo" da integral?
- Resposta é verdadeira se a convergência for **monótona** em μ -quase todo ponto, i.e. $\mu(\{\omega: f_n(\omega) \uparrow f(\omega)\}^{\complement}) = 0$.

TEOREMA (CONVERGÊNCIA MONÓTONA)

Seja $(f_n)_n$ uma sequência de funções não negativas mensuráveis tais que $f_n \uparrow f$ em μ -quase todo ponto. Então.

$$\mu(f_n) \uparrow \mu(f) \leq \infty$$

Construindo aproximação monotônicas

- Em alguns contextos, é interessante construir funções monotônicas que aproximam uma dada função não negativa f.
- Uma construção bastante comum é dada por $f_n = s_n \circ f$, onde s_n são funções escada da forma:

$$s_n(y) = \begin{cases} 0 & \text{se } y = 0 \\ rac{(j-1)n}{2^n}, & \text{se } y \in \left(rac{(j-1)n}{2^n}, rac{jn}{2^n}
ight], j \in \{1, \dots, 2^n\} \\ n,, & \text{se } y > n \end{cases}$$

- Sequência é tal que $f_n \uparrow f$.

Integral de Lebesgue no caso geral

- Seja $f: \Omega \mapsto \mathbb{R} \cup \{\infty, -\infty\}$ uma função mensurável. Defina as partes positiva e negativa de f como:

$$f^+ = \max\{f, 0\}, \quad f^- = -\min\{f, 0\},$$

- Dizemos que f é **integrável** se $\mu(|f|) = \mu(f^+) + \mu(f^-) < \infty$. Nesse caso, a integral de f é definida como:

$$\mu(f) = \mu(f^+) - \mu(f^-)$$

- Vamos denotar por $L^1(\Omega, \Sigma, \mu)$ o espaço de funções Lebesgue-integráveis.

Integral de Lebesgue: propriedades

Proposição

Sejam $f, g \in L^1(\Omega, \Sigma, \mu)$ e $\lambda \in \mathbb{R}$. Temos que:

- 1 (Monotonicidade) $f \leq g \implies \mu(f) \leq \mu(g)$
- 2 (Linearidade) $f + \lambda g \in L^1(\Omega, \Sigma, \mu)$ e $\mu(f + \lambda g) = \mu(f) + \lambda \mu(g)$.

Proposição (Teorema da Convergência Dominada)

Seja $(f_n)_n$ uma sequência de funções em $L^1(\Omega, \Sigma, \mu)$, tais que $f_n \to f$ em μ -q.t.p. Se existe $g \ge 0$ mensurável tal que $\mu(g) < \infty$ e:

$$|f_n(\omega)| \leq g(\omega) \, \forall n \in \mathbb{N}, \omega \in \Omega,$$

então $f \in L^1(\Omega, \Sigma, \mu)$ e:

$$\mu(|f_n - f|) \to 0,$$

 $\mu(f_n) \to \mu(f)$

Integral de Lebesgue e integral de Riemann

- Considere o espaço ([0,1], \mathcal{B} [0,1], λ), com λ a medida de Lebesgue.
- Nesse espaço, podemos tanto calcular a integral de Lebesgue $\int f(x)\lambda(dx)$ como a integral de Riemann:

$$\int_0^1 f(x) dx$$

- Qual a relação entre as duas integrais?

Proposição

Seja $f \ge 0$ uma função real com domínio em [0,1] Riemann integrável. Então f é mensurável e $\lambda(f) = \int_0^1 f(x) dx$.

- A recíproca do resultado acima nem sempre verdadeira. Por exemplo, a função

$$\mathbf{1}_{[0,1]\setminus\mathbb{Q}}$$
,

não é Riemann-integrável, embora $\lambda(\mathbf{1}_{[0,1]\setminus\mathbb{Q}})=1$.

Densidade com respeito a uma medida

- Seja (Ω, Σ, μ) um espaço de medida, e $f \geq 0$ uma função mensurável.
- O conjunto de integrais:

$$\int_{A} f d\mu := \mu(f \mathbf{1}_{A}), A \in \Sigma$$

define uma medida sobre (Ω, Σ) (verifique).

- Reciprocamente, se Φ é uma medida sobre (Ω, Σ) , dizemos que Φ admite uma densidade com respeito a uma medida μ sobre (Ω, Σ) se existe $g \geq 0$ mensurável tal que, para todo $A \in \Sigma$:

$$\Phi(A) = \int_A g d\mu$$

 Condição necessária e suficiente para existência de densidade é dada pelo teorema de Radon-Nikodyn.

TEOREMA

Seja (Ω, Σ) um espaço mensurável, e μ e Φ duas medidas σ -finitas. Φ admite uma densidade com respeito a μ se, e somente se, para todo $A \in \Sigma$, $\mu(A) = 0 \implies \Phi(A) = 0$.

DENSIDADE E UMA FÓRMULA PADRÃO

LEMA

Seja (Ω, Σ) um espaço mensurável, e μ e Φ duas medidas. Se Φ admite densidade g com respeito a a μ , então para qualquer $h \in L^1(\Omega, \Sigma, \Phi)$, temos que:

$$\Phi(h) = \int h(\omega)g(\omega)\mu(d\omega)$$

- Fórmula acima nos permite calcular esperança diretamente da integral com respeito a $\mu.$
- **Demonstração:** primeiro verificamos a expressão para funções simples, depois para funções não negativas usando uma aproximação por funções-escada, e por fim estendemos para funções gerais.

ESPERANÇA

- Seja $(\Omega, \Sigma, \mathbb{P})$ espaço de probabilidade.
- Neste caso, damos à integral de Lebesgue o nome de expectativa ou esperança, denotando-a, para $X \in L^1(\Omega, \Sigma, \mathbb{P})$ por:

$$\mathbb{E}[X] := \mathbb{P}(X)$$

.

- Como uma medida de probabilidade é finita, um corolário imediato do teorema da convergência dominada é:

COROLÁRIO (TEOREMA DA CONVERGÊNCIA LIMITADA)

Seja $(X_n)_n \in L^1(\Omega, \Sigma, \mathbb{P})^{\mathbb{N}}$ tais que $X_n \to X$ quase certamente. Se existe K > 0 tal que:

$$\mathbb{P}[\{\omega: |X_n(\omega)| \leq K, \, \forall n\}] = 1,$$

então
$$X \in L^1(\Omega,\Sigma,\mathbb{P})$$
 e: $\mathbb{E}[X_n] o \mathbb{E}[X]$

ESPERANÇA: DESIGUALDADES FUNDAMENTAIS

- No que segue, considere um espaço de probabilidade $(\Omega, \Sigma, \mathbb{P})$.

Lema (Desigualdade de Markov)

Seja Z uma variável aleatória, e $g: \mathbb{R} \mapsto [0, \infty]$ mensurável e não decrescente. Então, para todo $c \in \mathbb{R}$.

$$\mathbb{P}[Z \geq c]g(c) \leq \mathbb{E}[g(Z)]$$

Lema (Desigualdade de Jensen)

Seja X uma variável aleatória, e $c:C\mapsto\mathbb{R}$ uma função convexa onde $C\subseteq\mathbb{R}$ é um conjunto aberto e convexo. Suponha que:

$$\mathbb{E}[|X|] < \infty$$
, $\mathbb{P}[X \in C] = 1$, $\mathbb{E}[|c(X)|] < \infty$,

então $\mathbb{E}[X] \in C$ e:

$$c(\mathbb{E}[X]) \leq \mathbb{E}[c(X)]$$
.

A NORMA L^p

- Fixe $p \in [1, \infty]$. Para uma variável aleatória X, nós definimos:

$$||X||_p = (\mathbb{E}[|X|^p])^{1/p}$$

- Denotamos por $L^p(\Omega, \Sigma, \mathbb{P})$ o espaço de variáveis aleatórias $X \in m(\Sigma)$ tais que $\|X\|_p < \infty$.
- É possível mostrar que esse espaço é linear normado, com $\|\cdot\|_p$ definindo uma (semi)norma em $L^p(\Omega, \Sigma, \mathbb{P})$.
 - "Semi" vem do fato de que $||X||_p = 0 \implies \mathbb{P}[X = 0] = 1$, de modo que há múltiplas variáveis aleatórias com norma zero, embora todas-quase certamente iguais a zero.
 - Essa multiplicidade não é problemática.

Normas L_p : Propriedades úteis

- Abaixo, elencamos algumas propriedades úteis das normas L_p .

LEMA

- 1. (Monotonicidade) Sejam $1 \le p \le q$. Se $X \in L^q(\Omega, \Sigma, \mathbb{P})$, então $X \in L^p(\Omega, \Sigma, \mathbb{P})$ e $\|X\|_p \le \|X\|_q$.
- 2. (Cauchy-Schwarz) sejam $X, Y \in L^2(\Omega, \Sigma, \mathbb{P})$. Então $X \cdot Y \in L^1(\Omega, \Sigma, \mathbb{P})$ e :

 $|\mathbb{E}[XY]| \leq \mathbb{E}[|XY|] \leq ||X||_2 ||Y||_2.$

3. (Hölder) Seja $1 \leq p \leq q \leq \infty$, $\frac{1}{p} + \frac{1}{q} = 1$. Sejam $X \in L^p(\Omega, \Sigma, \mathbb{P})$ e $Y \in L^q(\Omega, \Sigma, \mathbb{P})$. Então $X \cdot Y \in L^1(\Omega, \Sigma, \mathbb{P})$ e:

$$|\mathbb{E}[XY]| \leq \mathbb{E}[|XY|] \leq ||X||_p ||Y||_q.$$

4. (Minkowski) Seja $p \ge 1$, e $X, Y \in L^p(\Omega, \Sigma, \mathbb{P})$, então:

$$||X + Y||_p < ||X||_p + ||Y||_p$$

- Cauchy-Schwarz é caso particular de Hölder.
- Minkowski garante desigualdade triangular (e que $\|\cdot\|_p$ é norma)

ESPERANÇA CONDICIONAL

- Seja $(\Omega, \Sigma, \mathbb{P})$ um espaço de probabilidade, Y uma variável aleatória, e $\mathcal{G} \subseteq \Sigma$ uma sub- σ -álgebra de Σ .
- Tome $Y \in L^1(\Omega, \Sigma, \mathbb{P})$.
- Definimos a esperança condicional de Y com respeito a \mathcal{G} , denotada por $\mathbb{E}[Y|\mathcal{G}]$ como a variável aleatória $\mathbb{E}[Y|\mathcal{G}] \in L^1(\Omega, \Sigma, \mathbb{P})$ \mathcal{G} -mensurável que satisfaz, para todo $A \in \mathcal{G}$:

$$\mathbb{E}[\mathbb{E}[Y|\mathcal{G}]\mathbf{1}_A] = \mathbb{E}[Y\mathbf{1}_A]$$

- Fácil mostrar que esperança condicional está unicamente definida, a não por eventos de probabilidade zero.
 - Uma variável aleatória que satisfaz as condições acima é conhecida como versão da esperança condicional.
 - Sejam Z_1 e Z_2 duas versões de $\mathbb{E}[Y|\mathcal{G}]$, então $\{\omega: Z_1(\omega) > Z_2(\omega)\} \in \mathcal{G}$ e pela definição da esperança condicional $Z_1 \geq Z_2$ q.c.

EXISTÊNCIA DA ESPERANÇA CONDICIONAL

- No slide anterior, definimos a esperança condicional e verificamos que, caso exista, ela é única.
 - No entanto, cabe a pergunta: será que existe uma variável aleatória que satisfaz as condições requeridas?
 - Resposta é afirmativa, e dada por um teorema devido a Komogorov.
- Além disso, note que, pelo resultado visto em aula anterior, quando $\mathcal{G} = \sigma(X_1, \dots, X_n)$, a esperança condicional $\mathbb{E}[Y|\sigma(X_1, \dots, X_n)] = f(X_1, \dots, X_n)$ para alguma f $\mathcal{B}(\mathbb{R}^n)$ -mensurável.
 - Essa é f é conhecida como função de expectativa condicional.
 - Nesses casos, costumeiro usar a notação $\mathbb{E}[Y|X_1,\dots,X_n]$ para $\mathbb{E}[Y|\sigma(X_1,\dots,X_n)]$
- Interpretação da esperança condicional: \mathcal{G} é o conjunto informacional do agente (após sorteio de $\omega \in \Omega$ pela natureza, agente observa se $\omega \in E$ é verdade ou não, para todo $E \in \mathcal{G}$).
 - $\omega \mapsto \mathbb{E}[Y|\mathcal{G}]$ é a melhor previsão do agente sobre Y após o sorteio, em termos de minimização do erro quadrático médio, dado o conhecimento de \mathcal{G} (exercício da lista).

ESPERANÇA CONDICIONAL: PROPRIEDADES BÁSICAS

No que segue, tome $X \in \mathcal{L}^1(\Omega, \Sigma, \mathbb{P})$, e \mathcal{F} e \mathcal{G} sub- σ -álgebras de Σ .

LEMA

- 1. **Preservação da Esperança:** Se Y é qualquer versão de $\mathbb{E}(X \mid \mathcal{G})$, então $\mathbb{E}(Y) = \mathbb{E}(X)$.
- 2. **Mensurabilidade:** Se X é \mathcal{G} -mensurável, então $\mathbb{E}(X \mid \mathcal{G}) = X$ quase certamente.
- 3. Linearidade:

$$\mathbb{E}(a_1X_1 + a_2X_2 \mid \mathcal{G}) = a_1\mathbb{E}(X_1 \mid \mathcal{G}) + a_2\mathbb{E}(X_2 \mid \mathcal{G}),$$
 quase certamente.

- 4. **Positividade:** Se $X \ge 0$, então $\mathbb{E}(X \mid \mathcal{G}) \ge 0$, quase certamente.
- 5. Convergência Monótona (cMON): Se $0 \le X_n \uparrow X$, então $\mathbb{E}(X_n \mid \mathcal{G}) \uparrow \mathbb{E}(X \mid \mathcal{G})$, quase certamente.
- 6. Convergência Dominada (cDOM): Se $|X_n(\omega)| \leq V(\omega)$ para todo n, $\mathbb{E}[V] < \infty$, e $X_n \to X$ quase certamente, então

$$\mathbb{E}(X_n \mid \mathcal{G}) \to \mathbb{E}(X \mid \mathcal{G})$$
, quase certamente.

Esperança condicional: propriedades básicas

No que segue, tome $X\in\mathcal{L}^1(\Omega,\Sigma,\mathbb{P})$, e \mathcal{F} e \mathcal{G} sub- σ -álgebras de Σ .

LEMA

7 **Propriedade da Torre:** Se \mathcal{H} é uma sub- σ -álgebra de \mathcal{G} , então

$$\mathbb{E}[\mathbb{E}(X \mid \mathcal{G}) \mid \mathcal{H}] = \mathbb{E}(X \mid \mathcal{H}),$$
 quase certamente.

8 **'Extraindo o que é Conhecido':** Se Z é G-mensurável e limitada, então

$$\mathbb{E}[ZX \mid \mathcal{G}] = Z\mathbb{E}[X \mid \mathcal{G}],$$
 quase certamente.

(resultado também vale se $X \in L^p$ e $Z \in L^q$, com $p \geq 1$ e $\frac{1}{q} = 1 - \frac{1}{p}$).

9 **Papel da Independência:** Se \mathcal{H} é independente de $\sigma(X,\mathcal{G})$, então

$$\mathbb{E}[X \mid \sigma(\mathcal{G}, \mathcal{H})] = \mathbb{E}(X \mid \mathcal{G}),$$
 quase certamente.

Em particular, se X é independente de \mathcal{H} , então

$$\mathbb{E}(X \mid \mathcal{H}) = \mathbb{E}(X)$$
, quase certamente.

PROBABILIDADE CONDICIONAL

- Seja $(\Omega, \Sigma, \mathbb{P})$ um espaço de probabilidade, $A \in \Sigma$ um evento e $\mathcal{G} \subseteq \Sigma$ uma sub- σ -álgebra de Σ . Definimos a **probabilidade condicional** de A dado \mathcal{G} como:

$$\mathbb{P}[A|\mathcal{G}] = \mathbb{E}[\mathbf{1}_A|\mathcal{G}]$$

- Uma função $p: \Sigma \times \Omega \mapsto [0,1]$ é dita uma **probabilidade** condicional regular dado $\mathcal G$ se:
 - 1. $\forall A \in \Sigma$, $\omega \mapsto p(A, \omega)$ é uma versão de $\mathbb{P}[A|\mathcal{G}]$.
 - 2. $\forall \omega \in \Omega, A \mapsto p(A, \omega)$ é uma lei de probabilidade sobre (Ω, Σ) .
- Probabilidades condicionais regulares nem sempre existem, embora, para espaços bem-comportados como os estudados em Estatística, elas existam na maioria dos casos.

Probabilidade condicional regular e uma fórmula para a esperança condicional

LEMA

Seja $(\Omega, \Sigma, \mathbb{P})$ um espaço de probabilidade, e $\mathcal{G} \subseteq \Sigma$ uma sub- σ -álgebra de Σ . Se existe uma probabilidade condicional regular dado \mathcal{G} , $p: \mathcal{A} \times \Omega \mapsto [0,1]$, então, para qualquer variável aleatória Y integrável, a função:

$$f(\omega) = \int Y(s)p(ds,\omega),$$

define uma versão de $\mathbb{E}[Y|\mathcal{G}]$.

- Se probabilidade condicional regular existe, esperança condicional pode ser calculada usando probabilidades condicionais.
- Demonstração: primeiro verificar para funções simples, depois aproximar para funções não negativas, depois considerar o caso geral.

MEDIDA PRODUTO

- Sejam $(\Omega_1, \Sigma_1, \mathbb{P}_1)$ e $(\Omega_2, \Sigma_2, \mathbb{P}_2)$ dois espaços de probabilidade.
- A σ -álgebra **produto**, denotada por $\Sigma_1 \otimes \Sigma_2$, é a σ -álgebra em $\Omega_1 \times \Omega_2$ gerada pelos conjuntos da forma $B_1 \times B_2$, com B_1, Σ_1 e B_2, Σ_2 .
- A medida produto, denotada por $\mathbb{P}_1\otimes\mathbb{P}_2$ é a medida caracterizada pelas probabilidades:

$$\mathbb{P}_1 \otimes \mathbb{P}_2[B_1 \times B_2] = \mathbb{P}_1[B_1]\mathbb{P}_1[B_2], \quad \forall B_1 \in \Sigma_1, B_2 \in \Sigma_2.$$

(note o paralelismo com o conceito de independência; estamos definindo um novo espaço de probabilidade em que os experimentos 1 e 2 ocorrem de forma independente).

Teorema de Fubini

- Seja $f \in L^1(\Omega_1 \times \Omega_2, \Sigma_1 \otimes \Sigma_2, \mathbb{P}_1 \otimes \mathbb{P}_2)$. Uma pergunta que podemos ter é se podemos calcular a esperança:

$$\int \mathit{fd}\mathbb{P}_1\otimes\mathbb{P}_2\,,$$

de forma sequencial, isto é se:

$$egin{aligned} \int f d\mathbb{P}_1 \otimes \mathbb{P}_2 &= \int \left(\int f(\omega_1,\omega_2) \mathbb{P}[d\omega_1]
ight) \mathbb{P}[d\omega_2] = \ &\int \left(\int f(\omega_1,\omega_2) \mathbb{P}[d\omega_2]
ight) \mathbb{P}[d\omega_1] \end{aligned}$$

- Resposta é afirmativa, e dada pelo Teorema de Fubini.
 - Teorema adicionalmente garante que podemos "trocar" as integrais.
 - Teorema vale para expectativas e, mais genericamente, integrais de medidas σ -finitas.