

planetmath.org

Math for the people, by the people.

condition on a near ring to be a ring

Canonical name ConditionOnANearRingToBeARing

Date of creation 2013-03-22 17:19:54 Last modified on 2013-03-22 17:19:54

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 14

Author CWoo (3771)
Entry type Theorem
Classification msc 20-00
Classification msc 16-00
Classification msc 13-00
Related topic UnitalRing

Every ring is a near-ring. The converse is true only when additional conditions are imposed on the near-ring.

Theorem 1. Let $(R, +, \cdot)$ be a near ring with a multiplicative identity 1 such that the \cdot also left distributes over +; that is, $c \cdot (a + b) = c \cdot a + c \cdot b$. Then R is a ring.

In short, a distributive near-ring with 1 is a ring.

Before proving this, let us list and prove some general facts about a near ring:

- 1. Every near ring has a unique additive identity: if both 0 and 0' are additive identities, then 0 = 0 + 0' = 0'.
- 2. Every element in a near ring has a unique additive inverse. The additive inverse of a is denoted by -a.

Proof. If b and c are additive inverses of a, then
$$b+a=0=a+c$$
 and $b=b+0=b+(a+c)=(b+a)+c=0+c=c$.

- 3. -(-a) = a, since a is the (unique) additive inverse of -a.
- 4. There is no ambiguity in defining "subtraction" on a near ring R by a b := a + (-b).
- 5. a b = 0 iff a = b, which is just the combination of the above three facts.
- 6. If a near ring has a multiplicative identity, then it is unique. The proof is identical to the one given for the first Fact.
- 7. If a near ring has a multiplicative identity 1, then (-1)a = -a.

Proof.
$$a + (-1)a = 1a + (-1)a = (1 + (-1))a = 0a = 0$$
. Therefore $(-1)a = -a$ since a has a unique additive inverse. \Box

We are now in the position to prove the theorem.

Proof. Set r = a + b and s = b + a. Then

$$r-s=r-(b+a)$$
 substitution
 $=r+(-1)(b+a)$ by Fact ?? above
 $=r+((-1)b+(-1)a)$ by left distributivity
 $=r+(-b+(-a))$ by Fact ?? above
 $=(a+b)+(-b+(-a))$ substitution
 $=((a+b)+(-b))+(-a)$ additive associativity
 $=(a+(b+(-b))+(-a)$ additive associativity
 $=(a+0)+(-a)$ o is the additive inverse of b
 $=a+(-a)$ 0 is the additive identity
 $=0$ same reason as above

Therefore, a + b = r = s = b + a by Fact ?? above.