ECESA Sligital Systems

Chip used FP&A - field programmable gated array

Brany Numbers

Base 10 (decimal) = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Bast 2 (binary): 0, 1

Bast 16 (hexadecimal) = 0,1,2, --- 9, A, B, C, D, E, F

example: (17)₁₀ seventeen (10001)₂

(11)16

Motation: $(115)_{10} = |x_{10}|^{2} + |x_{10}|^{4} + 5x_{10}^{6}$ $(10001)_{2} = |x_{2}|^{4} + 0x_{2}^{3} + 0x_{2}^{2} + 0x_{2}^{2} + 1x_{2}^{6}$

Convertion:

binary to decimal $(10/1)_2 = |x2^3 + 1x2^4 + |x2^6 = 8 + 2 + 1 = (1/1)_0$

decimalto binary

 $A = b_{n-1} \times 2^{n-1} + b_{n-1} \times 2^{n-2} - + b_1 \times 2^1 + b_0 \times 2^0 + 2$

= $6n_{1}^{2} + 6n_{2}^{2} + 6n_{2}^{2} + 6n_{2}^{2} + 6n_{2}^{2}$ Remainder ÷ 2

Renainder

enample:
$$(9)_{10} \stackrel{.}{\div} 2$$
 $4 R=1 \stackrel{.}{\div} 2$
 $2 R=0 \stackrel{.}{\div} 2$
 $1 R=0 \stackrel{.}{\div} 2$
 $0 R=1$
 $(1001)_2$
 $(35)_{10} = 32 + 2 + 1 = 2^5 + 2^1 + 2^\circ = (100011)_2$
 $(100)_{10} = 64 + 32 + 4 = 2^6 + 2^5 + 2^2 = (1100100)_2$

each base 2 digit is called a bit eight bits are called a byte four bits are called a nibble

Henadecinal: each 4 bits \Rightarrow heradecimal digit $(1234)_{16} = 00010010011000$
 $(A387)_{16} = 1010001110000111$

Trith
$$b_1b_0 | S_1S_0$$
 $\Rightarrow S_0 \text{ will be } 1 \text{ iff } b_1b_0 = 01 \text{ or } b_1b_0 = 10$

Table $0 | 0 | 1 \text{ s.s.}$
 $1 | 0 | 0 | 1 \text{ and } b_0 \text{ is } 1$

* This SN connects A to B if x=1, otherwise it does not.

if
$$x=0$$
, then $L=0$ which means lights $2.5V$ L light if $x=1$, then $L=1$ which means lights on

L(x) = x or j'nst L=x <u>logic expression</u> Lis a logic function

light is on iff x_1 and x_2 are closed(on) $L(x_1, x_2) = x_1 \cdot x_2 \quad (x_1 x_2)$ $= x_1 \cdot x_2$

 $=\chi_1$ AND χ_2

AND means switches in peries

Light is on iff either \mathcal{A}_1 or \mathcal{A}_2 is on $L(\mathcal{A}_1,\mathcal{A}_2) = \mathcal{X}_1 + \mathcal{X}_2$ $= \mathcal{X}_1 \mid \mathcal{A}_2$ $= \mathcal{X}_1 \mid \mathcal{A}_2$ $= \mathcal{X}_1 \mid \mathcal{A}_2$

OR mems switches in parallel

light is m when 1=0 $L = \overline{x}$ = ! x = NOT x = x

This pystem based on AND, OR, NOT with variables that can be o or I is called Boolean Logie!