Họ và tên: Mã SV: Lớp: Số ĐT:

ĐỀ 2 (Viết kết quả)-(Thời gian làm bài: 45 phút)

Câu 1: Cho hàm số $f(x,y) = \ln(x-y+1)$. Miền xác định D và miền giá trị E của hàm số là

$$D =$$
 $E =$

Câu 2: Tìm cực trị của hàm số $f(x, y) = x^2 - 6x + 2y^2 + 8$. Ta thấy f

Câu 3: Cho hàm số
$$z = x^3 - 3xy + y^2; x = \cos t, \ y = e^{-2t}$$
. Có $\frac{dz}{dt}(0) =$

Câu 4: Cho
$$f(x,y) = \ln \frac{1}{x^2 + 3y^4} + xy^2$$
. Có $f''_{x^2}(x,y) =$

Câu 5: Cho hàm số $u=x\cos(yz)+\arctan xy$. và điểm $\mathbf{M}_0(1,0,2)$. Có $\overrightarrow{gradu}(\mathbf{M}_0)=$

Câu 6: Tìm cực trị của hàm số $f(x,y) = (x^2 + y^2)e^y$. Ta thấy f

Câu 7: Cho $z = xy + f(\frac{x}{y^2})$ với f(t) là hàm số có đạo hàm liên tục. Có $\frac{2x}{y}z_x' + z_y' =$

Câu 8: Tính
$$I = \int_0^1 dy \int_y^3 y dx$$
. Có $I =$

Câu 9: Cho $I = \iint_D (x^2 + y^2 + \cos^2 x + \sin^2 x) dx dy$ với $D = (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1$.

Đặt
$$x = r \cos \varphi$$
, $y = r \sin \varphi$. Có $I =$

Câu 10: Tính
$$I=\int_0^1 dx \int_0^{x^2} (x-2y) dy$$
 . Có $I=$

Câu 11: Tính
$$I=\iint\limits_D x^2ydxdy,\ D=\ (x,y)\in\mathbb{R}^2\mid x^2+y^2\leq 4, x\geq 0, y\geq 0$$
 . Có $I=$

Câu 12: Cho S là diện tích hình phẳng giới hạn bởi các đường $y=x^2+1, y=2$. Có S=

Câu 13: Cho D là miền giới hạn bởi các đường $x^2 + y^2 = 1, x^2 + y^2 = 4$.

$$I=\int \!\!\!\int _{D}(1-2x^{2}-2y^{2})e^{1-2x^{2}-2y^{2}}dxdy$$
 . Ta có $I=$

- **Câu 14:** Tính tích phân $I=\iiint_V x^2 dx dy dz$, V là miền giới hạn bởi các mặt $x=0,\ y=0$, z=0 và x+y+z=1. Có I=
- **Câu 15:** Tính thể tích V của vật thể chứa điểm $(0,0,\sqrt{2})$ và giới hạn bởi các mặt $x^2+y^2+z^2=2, z=1$. Có V=
- Câu 16: Tính tích phân $I=\iiint\limits_V(x+y)(x-2z)dxdydz$, D là miền giới hạn bởi các mặt sau: $y=-x, y=1-x, x=2z+1, \ x=2z+2, \ x+2y-3z=1, x+2y-3z=3. \ \ \text{Có} \ I=0$
- **Câu 17:** Tính $I = \int_{(0,1)}^{(1,3)} (x^2 + y) dx + (y^2 4x) dy$ dọc theo đoạn thẳng từ điểm (0,1) đến điểm (1,3). Có I =
- **Câu 18:** Cho đường cong C, biết khối lượng riêng của C tại mỗi điểm (x,y) là $\rho(x,y)$. Khối lượng của C là m=
- **Câu 19:** Cho $I=\int\limits_C (x+2y)ds$, với C là đường cong tron có phương trình tham số: $x=2t,\ y=4+3t,\ 0 < t < 1.$ Có I=
- **Câu 20:** Cho $I=\int\limits_{AB}(x^2y+e^{3x})dx+(4y^5+\frac{2}{3}x^3)dy$, AB là cung parabol $y=x^2-1$ hướng từ điểm A(-1,0) đến điểm B(1,0). Có I=
- Câu 21: Tính $I=\iint_S xy^2dS$, S là mặt $z=\sqrt{x^2+y^2};z\leq 1,x\geq 0$. Có I=
- Câu 22: Cho $I=\int\limits_L y ds,\ L$ có PT $x=t,\ y=\frac{t\sqrt{8t}}{3},\ z=\frac{t^2}{2},\ 0\leq t\leq 1$. Có I=
- Câu 23: Cho $I=\int\limits_{AB}ydx-(x+1)dy+z^3dz$, cung AB có phương trình $\begin{cases}x^2+y^2=1\\z=3\end{cases}$, A(1,0,3), B(0,1,3). Có I=
- **Câu 25 :** Tính $I=\int_D (x^2+2y^2)dxdy,\ D$ là miền giới hạn bởi các đường $x^2=1+2y^2, x^2=4+2y^2, xy=1, xy=5.\ {\rm Ta~c\acuteo}\ I=$