

Substrum problem
_ A single resource _ Requests [1 n] each take time
wi to process
_ Can schedule jobs at any time
Derween 0 10 to
- Objective: to schedule jobs such
that we maximize The resource's utilization

if $n \neq 0$ then $opt(n) = opt(n-1)$ if $n \in 0$ then $opt(n) = wn + opt(n-1)$			pt. sol. for
	\$ 0 then	OPT(n)=	OPT(n-1)
if neO then OPT(n) = wn + OPT(n-	= 0 then	OPT(n) = (Wn + OPT (n-1

	Takes O(nW) pseudo polynomico Con
ex.	$w_1 = 10,000$
	W2 = 9,999
	W = 10,001
2	
1	
0	
0	100,001
N 3	OK elements

0-1 knowsach proble		
each request has weight will		
if n \$0, Then OPT(n,w) = OPT(n-1,	(w)	
if $n \in O$, then $\delta PT(n, w) = V_n + \delta PT(n-1)$		wn)