Data Cleansing for Models Trained with SGD

Satoshi Hara (Osaka Univ.), Atsushi Nitanda (Tokyo Univ./RIKEN AIP), Takanori Maehara (RIKEN AIP)

Data Cleansing

Remove "harmful" training instances, and improve the model's accuracy.

The Results on MNIST/CIFAR10

By removing "harmful" instances, the trained CNN became more accurate.

Compute $r_k = \langle u, \Delta \theta_{-k} \rangle$ Identify "harmful" instance:

 $\hat{k} = \operatorname{argmin} r_k$

Remove "harmful" instance: $D \leftarrow D \setminus \{z_{\widehat{k}}\}$

Theoretical Analysis

Convex Case

Our Estimator

$$\left\| \left(\theta_{-k}^{[T]} - \theta^{[T]} \right) - \Delta \theta_{-k} \right\| \leq \sqrt{2(h_k(\lambda)^2 + h_k(\Lambda)^2)}$$
Assumption
$$h_k(a) \coloneqq \frac{\eta_{\pi(k)}}{|S_{\pi(k)}|} \prod_{t=\pi(k)+1}^{T-1} (1 - \eta_t a) \|\nabla_{\theta} \ell(z_k; \theta^{[\pi(k)]})\|$$

Assumption

- The loss ℓ is strongly convex, smooth, and twice differentiable.
- $\exists \lambda, \Lambda > 0$ such that $\lambda I \leq \nabla^2_{\theta} \ell(z; \theta) \leq \Lambda I$.

Non-Convex Case

Our Estimator

$$\left\| \left(\theta_{-k}^{[T]} - \theta^{[T]} \right) - \Delta \theta_{-k} \right\| \le \frac{\gamma^2 T G^2 L}{\Lambda} \exp^{O(\gamma \Lambda \sqrt{T})}$$

Assumption

- The Hessian of the loss ℓ is Lipschitz.
- $\|\nabla_{\theta}\ell(z;\theta)\| \leq G, \nabla_{\theta}^{2}\ell(z;\theta) \leq \Lambda I.$
- $\eta = O(\gamma/\sqrt{T})$

The Proposed Estimator

Estimation of "harmful" instances

Problem

Find z_k that minimizes the validation loss.

$$\sum_{z \in D_V} \left(\ell(z; \hat{\theta}_{-k}) - \ell(z; \hat{\theta}) \right) \approx \langle u, \hat{\theta}_{-k} - \hat{\theta} \rangle$$
Small validation loss \approx

"harmful".

Small inner product

- $u:=\sum_{z\in D_V}\nabla_{\theta}\ell(z;\hat{\theta})$ for the val. set D_V .
- No model retraining.

Our Contributions

- To estimate $\hat{\theta}_{-k} \hat{\theta}$, the current methods require "the optimal $\hat{\theta}''$ and "convex loss ℓ'' .
 - → Too restrictive for modern ML.
- Our estimator assumes that "the model is trained with SGD".
- → More appropriate for modern ML.

The Proposed Estimator

•
$$\theta^{[t+1]} \leftarrow \theta^{[t]} - \frac{\eta_t}{|S_t|} \sum_{z \in S_t} \nabla_{\theta} \ell(z; \theta^{[t]}) =: h_t(\theta^{[t]})$$
 Ordinary SGD

•
$$\theta_{-k}^{[t+1]} \leftarrow \theta_{-k}^{[t]} - \frac{\eta_t}{|S_t|} \sum_{z \in S_t \setminus \{z_k\}} \nabla_{\theta} \ell(z; \theta^{[t]})$$
 SGD with missing z_k

Our Estimator $\Delta \theta_{-k} \approx \theta_{-k}^{[T]} - \theta^{[T]}$

"Backprop" through SGD

Computing $r_k = \langle u, \Delta \theta_{-k} \rangle$ for all k = 1, 2, ..., N.

for
$$t = T - 1, T - 2, ..., 1$$

$$r_j \leftarrow r_j + \left\langle u, \frac{\eta_t}{|S_t|} \nabla_{\theta} \ell(z_j; \theta^{[t]}) \right\rangle, \forall j \in S_t \qquad \text{in total}$$

$$u \leftarrow Z_t u$$