Analisi Matematica 2 - Ing. Informatica Telecomunicazioni		Esame del 21 gennaio 2022
Cognome:	Nome:	Matricola:

ESERCIZI: 24 punti.

Esercizio 1 (5,5 punti)

1) (3 punti) Determinare l'integrale generale dell'equazione differenziale

$$y''(t) + 4y(t) = \cos(2t) + 8.$$

- 2) (1 punto) Stabilire se esiste una soluzione limitata (in tutto il suo dominio di definizione) di tale equazione.
- 3) (1,5 punti) Tra le soluzioni trovate al punto 1), determinare quella il cui grafico passa per il punto $(\pi,0)$, la cui retta tangente in tale punto ha coefficiente angolare π .

Risposte

1) Consideriamo in primo luogo l'omogenea associata y'' + 4y = 0; l'equazione caratteristica è $\lambda^2 + 4 = 0$, da cui $\lambda = \pm 2i$. Segue che l'integrale generale dell'equazione omogenea associata è dato da $y_o(t) = c_1 \cos(2t) + c_2 \sin(2t)$, $c_1, c_2 \in \mathbb{R}$.

Per il principio di sovrapposizione, cerchiamo separatamente una soluzione particolare di $y'' + 4y = \cos(2t)$ e una soluzione particolare di y'' + 4y = 8. Per quanto riguarda $y'' + 4y = \cos(2t)$, siccome 2i è radice semplice dell'equazione caratteristica, per il metodo di somiglianza dobbiamo cercare la soluzione nella forma $z(t) = t(A\cos(2t) + B\sin(2t))$. Calcolandone la derivata seconda e sostituendo nell'equazione differenziale, otteniamo

$$-4A\sin(2t) - 4At\cos(2t) + 4B\cos(2t) - 4Bt\sin(2t) + 4At\cos(2t) + 4Bt\sin(2t) = \cos(2t)$$

$$\Rightarrow A = 0, B = \frac{1}{4}.$$

Per il metodo di somiglianza, la soluzione particolare di y'' + 4y = 8 è invece un polinomio di grado 0, cioè una costante k; deve perciò essere (k)'' + 4k = 4k = 8, cioè k = 2. L'integrale generale dell'equazione data è perciò

$$y(t) = c_1 \cos(2t) + c_2 \sin(2t) + \frac{t}{4} \sin(2t) + 2, \quad c_1, c_2 \in \mathbb{R}.$$

- 2) La soluzione y(t) è definita su tutto \mathbb{R} ; poiché la funzione $t\mapsto \frac{t}{4}\sin(2t)$ non è limitata mentre tutti gli altri addendi nell'espressione di y(t) sono limitati, non esistono soluzioni y(t) limitate dell'equazione assegnata.
- 3) Si richiede cioè che $y(\pi) = 0$ e $y'(\pi) = \pi$; poiché dall'espressione di y(t) deduciamo $y'(t) = -2c_1\sin(2t) + 2c_2\cos(2t) + \frac{1}{4}\sin(2t) + \frac{1}{2}t\cos(2t)$, deve essere soddisfatto il sistema

$$\begin{cases} (y(\pi) =) c_1 + 2 = 0 \\ (y'(\pi) =) 2c_2 + \frac{\pi}{2} = \pi, \end{cases}$$

da cui $c_1 = -2$, $c_2 = \pi/4$ e la soluzione richiesta è

$$y(t) = -2\cos(2t) + \frac{\pi}{4}\sin(2t) + \frac{t}{4}\sin(2t) + 2.$$

Esercizio 2 (7 punti)

- 1) (5 punti) Scrivere lo sviluppo in serie di potenze della funzione $f(x) = \arctan(x^2)$, seguendo lo schema di seguito riportato:
 - a- a partire dalle note proprietà della serie geometrica, scrivere lo sviluppo in serie di potenze di $\frac{1}{1+x^4}$; dedurne lo sviluppo di $\frac{2x}{1+x^4}$;
 - b- dal momento che $(\arctan(x^2))' = \frac{2x}{1+x^4}$, usare le proprietà viste per le serie di potenze reali per dedurre lo sviluppo in serie di potenze di $\arctan(x^2)$ e specificarne l'intervallo di convergenza.
- 2) (2 punti) Determinare l'intervallo di convergenza della serie di potenze reale

$$\sum_{n=1}^{+\infty} \frac{\log n}{n \cdot 2^n} (x-1)^n.$$

Risposte

1) Siccome, per le note proprietà della serie geometrica, $\sum_{n=0}^{+\infty} q^n = \frac{1}{1-q}$ per $q \in (-1,1)$, ponendo $q = -x^4$ si ha

$$\sum_{n=0}^{+\infty} (-x^4)^n = \frac{1}{1+x^4}$$

per $-x^4 \in (-1,1)$ (cioè $x \in (-1,1)$), da cui

$$\frac{2x}{1+x^4} = \sum_{n=0}^{+\infty} 2x(-x^4)^n = 2\sum_{n=0}^{+\infty} (-1)^n x^{4n+1}.$$

Come detto, tale sviluppo vale per $x \in (-1,1)$; mediante integrazione indefinita termine a termine in tale intervallo, lecita per le proprietà delle serie di potenze, otteniamo

$$\arctan(x^2) = \int \frac{2x}{1+x^4} \, dx = \sum_{n=0}^{+\infty} 2(-1)^n \int x^{4n+1} \, dx = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{4n+2}}{2n+1}.$$

Poiché l'operazione di integrazione termine a termine conserva il raggio di convergenza, il raggio di convergenza di tale serie è 1; d'altra parte, sia per x = 1 che per x = -1 si ottiene la serie $\sum_{n=0}^{+\infty} (-1)^n \frac{1}{2n+1}$, che converge in virtù del criterio di Leibniz. Pertanto, l'intervallo di convergenza della serie trovata è [-1,1].

2) Si noti che la serie di potenze è centrata in x=1 e che i coefficienti sono $a_n=\frac{\log n}{n2^n}$. Il raggio di convergenza R della serie assegnata è

$$R = \lim_{n \to +\infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to +\infty} \left[\frac{\log n}{n 2^n} \cdot \frac{(n+1)2^{n+1}}{\log(n+1)} \right] = \lim_{n \to +\infty} \left[2 \cdot \frac{n+1}{n} \cdot \frac{\log n}{\log(n+1)} \right] = 2.$$

Pertanto R=2 e la serie converge per |x-1|<2, cioè $x\in(-1,3)$, e non converge per |x-1|>2. Per quanto riguarda gli estremi dell'intervallo (-1,3), per x=-1 otteniamo la serie

$$\sum_{n=1}^{+\infty} \frac{\log n}{n \cdot 2^n} (-2)^n = \sum_{n=1}^{+\infty} (-1)^n \frac{\log n}{n},$$

che converge per il criterio di Leibniz, essendo $(\log n)/n$ decrescente ed infinitesima; per x=3 otteniamo la serie

$$\sum_{n=1}^{+\infty} \frac{\log n}{n},$$

che diverge per confronto con la serie armonica. Pertanto, l'intervallo di convergenza richiesto è [-1,3).

2

Sia f la funzione di due variabili definita da

$$f(x,y) = \frac{y}{x^4 + y^4}.$$

- 1) (1 punto) Determinare il dominio di f e dire se si tratta di un insieme aperto/chiuso limitato/illimitato.
- 2) (2 punti) Determinare la derivata direzionale di f in direzione (3/5, 4/5) nel punto (1, -1). Determinare il piano tangente al grafico di f nel punto (1, -1, f(1, -1)).
- 3) (3 punti) Stabilire se esistono il massimo assoluto e il minimo assoluto di f sul quadrato chiuso Q di vertici (0,1), (1,1), (1,2), (0,2) e, in caso affermativo, determinarli.

Risposte

- 1) Dovrà essere $x^4 + y^4 \neq 0$, perciò $(x, y) \neq (0, 0)$. Il dominio di f è dato quindi da dom $f = \{(x, y) \in \mathbb{R}^2 \mid (x, y) \neq (0, 0)\} = \mathbb{R}^2 \setminus \{(0, 0)\}$. Tale insieme è aperto (non contiene alcun punto della sua frontiera perché la sua frontiera si riduce al punto (0, 0), che non appartiene a dom f); è inoltre ovviamente illimitato (contiene tutti i punti del piano a meno dell'origine).
- 2) Nel suo dominio, f è di classe C^1 perché quoziente di polinomi; vale perciò la regola del gradiente. Essendo

$$\nabla f(x,y) = \left(\frac{-4x^3y}{(x^4 + y^4)^2}, \frac{x^4 - 3y^4}{(x^4 + y^4)^2}\right),$$

avremo $\nabla f(1,-1) = (1,-1/2)$ e quindi, posto $\underline{v} = (3/5,4/5)$,

$$\frac{\partial f}{\partial \underline{v}}(1,-1) = \langle \begin{pmatrix} 1 \\ -\frac{1}{2} \end{pmatrix}, \begin{pmatrix} \frac{3}{5} \\ \frac{4}{5} \end{pmatrix} \rangle = 3/5 - 2/5 = 1/5.$$

Essendo poi f(1,-1) = -1/2, il piano tangente al grafico di f nel punto (1,-1,f(1,-1)) risulta avere equazione

$$z = -1/2 + \langle \nabla f(1, -1), (x - 1, y + 1) \rangle = x - \frac{y}{2} - 2.$$

- 3) Essendo f continua su tutto il suo dominio ed essendo Q chiuso e limitato, il massimo e il minimo assoluti di f su Q esistono per il teorema di Weierstrass. Per determinarli, indaghiamo in primo luogo i punti critici liberi di f nell'interno di Q; poiché $\nabla f(x,y) = (0,0)$ se e solo se $-4x^3y = 0$ e $x^4 3y^4 = 0$ allo stesso tempo, l'unico punto critico libero di f è (0,0), che però non appartiene a Q. Non ci sono perciò punti critici liberi di f nell'interno di Q. Esaminiamo allora la frontiera di Q, chiamando l_1 il lato di estremi (0,1), (1,1), l_2 il lato di estremi (1,1), (1,2), l_3 il lato di estremi (1,2), (0,2) e l_4 il lato di estremi (0,2), (0,1). Si ha:
 - $-f\Big|_{l_1}=f(x,1)=1/(x^4+1)$, che è ovviamente decrescente in $x\in[0,1]$ e quindi f su l_1 assume massimo in (0,1), uguale a $1/(0^4+1)=1$, e minimo in (1,1), uguale a $1/(1^4+1)=1/2$;
 - $-f\Big|_{l_2} = f(1,y) = y/(1+y^4)$ per $y \in [1,2]$; detta $g(y) = y/(1+y^4)$, si ha $g'(y) = (1-3y^4)/(1+y^4)^2$, che si annulla in $y = 1/\sqrt[4]{3} < 1$ ed è negativa per $y > 1/\sqrt[4]{3}$. Per $y \in [1,2]$, g' è quindi negativa e quindi $f\Big|_{l_2}$ è decrescente; f assume massimo su l_2 in (1,1), uguale a $1/(1+1^4) = 1/2$, e minimo in (1,2), uguale a $2/(1+2^4) = 2/17$;
 - $-f\Big|_{l_3}=f(x,2)=2/(x+16)$ per $x\in[0,1]$, che è ovviamente decrescente in $x\in[0,1]$ e quindi f su l_3 assume massimo in (0,2), uguale a 2/(0+16)=1/8, e minimo in (1,2), uguale a 2/17;
 - $-f\Big|_{l_4} = f(0,y) = 1/y^3$ per $y \in [1,2]$, che è ovviamente decrescente in $y \in [1,2]$ e quindi f su l_4 assume massimo in (0,1), uguale a $1/1^3 = 1$, e minimo in (0,2), uguale a $1/2^3 = 1/8$.

Il minimo tra i valori minimi trovati sui quattro lati è $\min\{1/2, 2/17, 1/8\} = 2/17$, il massimo è $\max\{1, 1/2, 1/8\} = 1$. Pertanto,

$$\min_{Q} f = f(1,2) = 2/17, \qquad \max_{Q} f = f(0,1) = 1.$$

3

Calcolare l'integrale triplo

$$\iiint_{\Sigma} xz \, dx dy dz,$$

dove

$$\Sigma = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le z \le 4 - (x^2 + y^2), \ x \ge 0\}.$$

Risposte

Dalla disuguaglianza $x^2 + y^2 \le 4 - (x^2 + y^2)$ deduciamo che dovrà essere $2(x^2 + y^2) \le 4$, cioè $x^2 + y^2 \le 2$. Il dominio di integrazione Σ può pertanto essere scritto come dominio z-semplice:

$$\Sigma = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le 2, x^2 + y^2 \le z \le 4 - (x^2 + y^2), \ x \ge 0\}.$$

Posto $D=\{(x,y)\in\mathbb{R}^2\mid x^2+y^2\leq 2, x\geq 0\},$ integriamo perciò per fili paralleli a z:

$$\iiint_{\Sigma} xz \, dx dy dz = \iint_{D} \left(\int_{x^2 + y^2}^{4 - (x^2 + y^2)} xz \, dz \right) \, dx dy = \iint_{D} x \left(\frac{z^2}{2} \Big|_{x^2 + y^2}^{4 - (x^2 + y^2)} \right) \, dx dy =$$

$$= \iint_{D} x \left(\frac{(4 - x^2 - y^2)^2}{2} - \frac{(x^2 + y^2)^2}{2} \right) \, dx dy.$$

Passando a coordinate polari, l'integranda assume la forma $\rho\cos\theta[(4-\rho^2)^2/2-\rho^4/2]$, mentre il dominio D si scrive come $D=\{(\rho,\theta)\mid 0\leq\rho\leq\sqrt{2},\theta\in[-\pi/2,\pi/2]\}$. Ricordando di moltiplicare l'integranda per il modulo dello jacobiano del cambiamento di coordinate (ρ) abbiamo quindi

$$\iiint_{\Sigma} xz \, dx dy dz = \int_{-\pi/2}^{\pi/2} \cos \theta \, d\theta \int_{0}^{\sqrt{2}} \rho^{2} [(4 - \rho^{2})^{2}/2 - \rho^{4}/2] \, d\rho
= (\sin \theta)_{-\pi/2}^{\pi/2} \int_{0}^{\sqrt{2}} \left(\frac{\rho^{6}}{2} - 4\rho^{4} + 8\rho^{2} - \frac{\rho^{6}}{2}\right) \, d\rho = \frac{64}{15} \sqrt{2}.$$

TEORIA: 8 punti.

Tutte le domande a crocette ammettono una e una sola risposta corretta.

1) (1 punto) Data un'equazione differenziale a variabili separabili y'(t) = a(t)b(y(t)), con a, b funzioni continue,

A se a(t) non è identicamente nulla e b(y) > 0 per ogni $y \in \mathbb{R}$, essa non ha soluzioni costanti V

B se $a(t_0)=0$ per un opportuno $t_0\in\mathbb{R}$, essa ha la soluzione costante $y(t)=t_0$ per ogni t

C se b(y) = |y|, essa è lineare

D le sue soluzioni sono sempre definite su tutto $\mathbb R$

2) (1 punto) Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione 2π -periodica e regolare a tratti in $[-\pi, \pi]$. Denotiamo con a_0, a_n, b_n $(n \ge 1)$ i suoi coefficienti di Fourier e sia

$$F_m(x) = a_0 + \sum_{n=1}^{m} (a_n \cos(nx) + b_n \sin(nx)).$$

Si ha:

A per ogni $x \in \mathbb{R}$, $\lim_{m \to +\infty} F_m(x) = f(x)$

B
$$\lim_{m \to +\infty} \int_{-\pi}^{\pi} (F_m(x) - f(x))^2 dx = 0$$
 V

C può esistere $x_0 \in \mathbb{R}$ tale che $\lim_{m \to +\infty} F_m(x_0)$ non esiste

D se $\sum_{n}(|a_n|+|b_n|)<+\infty$, allora la serie di Fourier di f è derivabile termine a termine ed inoltre converge in ogni punto di \mathbb{R} ad f'(x)

3) (1 punto) Data una funzione $f: \mathbb{R}^2 \to \mathbb{R}$ di classe C^1 e dato un vincolo $\mathcal{Z} = \{(x,y) \in \mathbb{R}^2: G(x,y) = 0\}$, con G di classe C^1 su \mathbb{R}^2 ,

A se esiste $\lambda \in \mathbb{R}$ per cui $\nabla f(x_0, y_0) = \lambda \nabla G(x_0, y_0)$ e $\nabla G(x_0, y_0) \neq (0, 0)$, allora (x_0, y_0) è estremo relativo vincolato per f su \mathcal{Z}

B se $(x_0, y_0) \in \mathcal{Z}$ è estremo relativo vincolato per f su \mathcal{Z} e $\nabla G(x_0, y_0) \neq (0, 0)$, allora esiste $\lambda \in \mathbb{R}$ tale che $\nabla f(x_0, y_0) = \lambda \nabla G(x_0, y_0) | \overline{V} |$

C se $\nabla f(x_0, y_0) = (0, 0)$, allora (x_0, y_0) è un estremo relativo vincolato per f su \mathcal{Z}

D nessuna delle altre

- 4) (2 punti) Enunciare il teorema di convergenza puntuale delle serie di Fourier. Indicare, eventualmente mediante rappresentazione grafica, un esempio di funzione periodica e non continua su tutto \mathbb{R} a cui tale teorema può essere applicato.
- 5) (3 punti) Dare la definizione di differenziabilità per una funzione di 2 variabili e dimostrare che la differenziabilità in un punto implica la continuità in tale punto.

5