Interlude: Quick Review

Interlude: Quick Review

Review: Task Scheduling

Figure 9.3 Queuing Diagram for Scheduling

Review: Bad Assumptions

All tasks:

- 1. Run for the same amount of time FUFS
- 2. Arrive at the same time (roughly) SPN (Line 1)
- 3. Once started, run to completion set sporte started
- 4. Only use the CPU **I**CO
- 5. Have a known run-time. Exp Averaging

Part 5: Feedback Queues

"Multi-Level Feedback Queue" (MLFQ) to be precise

The Algorithm (Part 1)

- 1. don't estimate runtime
- * Smaller 15 more important
- 2. schedule preemptively, using mutiple ready averes averes RQo RQW RQo RQW
 - b) Priority (A) > Priority (B) -> schedule A
 - C) Priority (A) == Priority (B) -> Schedule using RR time slice
 - d) all tasks enter into RQO
 - e) on preemption, move the running task down a RQ
 - f)
 - g)

Visual

Figure 9.10 Feedback Scheduling

Simple Example

Task	Arrival Time	Service Time	9
A	$0-\varepsilon$	4	3
В	$2-\varepsilon$	6	
C	$4-\epsilon$	4	

...what happens to long(er) tasks?

Task	Arriva	l Time	Service	Time	0 S				- (45
A	3-0		4						, ge	d
В	$2-\epsilon$		2			.16	s o	74.0	W0	7400
C	4 – ε		2		m s	*0-1	*	7 CA	•	
D	6 – ε	~ %°	02		V	ga ch	` Y	· (W	e	
E	8 – ε	o gov	2		'					
1	2 3	4 5	6 7	8 9	(U p	12	13	14	15	6
A			f2	arves -						
B	•									
<u> </u>										
D										
E										

The Algorithm (Part 2)

- Don't estimate runtime
- 2. Schedule *preemptively* using *multiple* ready queues
 - a) Priority(task) = n RQ #
 - b) Priority(A) > Priority(B) → schedule A
 - c) Priority(A) = Priority(B) \rightarrow schedule in RR
 - d) Tasks start in queue 0

g)

- e) On pre-emption, tasks move down a queue
- f) increase the length of a time slice for lower queves

```
each lower

q gc+5 2x

+ve +5

J renegth

q = 2 i
```

Redo

, r	Fask	Arı	rival	Tim	e	Ser	vice	Tim	e				R	Δ		0
1	4	0 –	3			4							<i>ا</i>			
]	3	2 –	3			2							B	A		1
(\mathbb{C}	4 –	3			2										
]	O	6 –	ε			2									•	2
]	Ξ	8 –	ε			2					_	^ ^	0.4.5	d	ouk	ماد
		2	3	4	5	6	7	8	9	10	H	a g	tim	w 3	sli c	ક્
A	V	V		M.	W						OLI	nd	in	ıpr	S V	kd
8		•	W								,	ne n d tur tii	no	50	UN.	c
C																
P																
6																

What about even longer tasks?

7	Cask	Ar	rival	Tim	ie	Ser	vice	Time	2					B	A	10
A	4	0 –	3			5								<u> </u>		<u>↓</u>
F	3	2 –	3			2										
(2	4 –	3			2								R	A	1
Ι)	6 –	3			2				_					1	—
F	Ξ	8 –	3			2									Δ	2
	١	ι	3	ч	5					act	'S S	tary	red	A		•
A	W	W		W	W					J	8	tarv	M	re		
B			M				W	W								
C						W										
P																
E																

The Algorithm (Part 3)

- Don't estimate runtime
- 2. Schedule *preemptively* using *multiple* ready queues
 - a) Priority(task) = n RQ #
 - b) Priority(A) > Priority(B) → schedule A
 - c) Priority(A) = Priority(B) \rightarrow schedule in RR
 - d) Tasks start in queue 0
 - e) On pre-emption, tasks move *down* a queue
 - f) Longer time-slice for lower queues, e.g., $q = 2^i$
 - g) after a task has waited for S consecutive time units, promote to RQo

Analysis

- Does not require future knowledge

 ronly based on the past

 since only get demoted
 on pre-emption, not willfully
 giving up CPU

 Tasks

 Fix: demote at the moment a proc has run for
 a total time slice
- A good balance between response time and turnaround time
- =) MLFQs form the basis for most UNIX schedules

Adding Priority

Typically, four levels of priority:

- 1. System 4 highest
- 2. Interactive
- 3. Normal
- 4. Batch

=> use priority queues

More Performance Metrics

Even more... (see book)

- Task deadlines
- Predictability
- Processor utilization

- Enforcing priorities
- Balancing resources
- Overhead

Formal Analysis

- total execution time was the gotter?
- W: total waiting time
- total service time

 cither predict the future

 Require future knowledge

Selection function:

which task is selected to be scheduled

Summary of Scheduling Algorithms

be able to fill this out for final - answer in

	FCFS	RR Round Robin	SPN	SRT	HRRN	MLFQ
Selection Function	max(w)					
Preemptive?	×					
Starvation Possible?	×					
Response Time	poor					
Overhead	100					

med: 11 mean: 14

Midterm