

大数据分析技术

Chap. 11 Data quality

王怡洋副教授 大连海事大学 信息科学技术学院

内容提纲

- Chap. 11.1 Data quality
- Chap. 11.2 Major tasks of data preprocessing
- Chap. 11.3 Data cleaning
- Chap. 11.4 Data integration
- Chap. 11.5 Data reduction
- Chap. 11.6 Data transformation
- Chap. 11.7 Anomaly detection
- Chap. 11.8 Anomaly classifier
- Chap. 11.9 Anomaly detection without labels

11.1 Data quality

11.2 Major tasks of data preprocessing

Handle missing data

Smooth noisy data

Identify/remove outliers

resolve inconsistencies

Integration

Transformatio Reduction

- Normalization
- Concept hierarchy generation

 $-2, 32, 100, 59, 48 \longrightarrow -0.02, 0.32, 1.00, 0.59, 0.48$

Dimensionality reduction

Integration of multiple

database, data cubes, or files

- Numerosity reduction
- Data compression

11.3 Data cleaning

Data in the Real World Is Dirty: Lots of potentially incorrect data, e.g., instrument faulty, human or computer error, and transmission error

No thanks, adulthood

11.3 Data cleaning

- **Data in the Real World Is Dirty**: Lots of potentially incorrect data, e.g., instrument faulty, human or computer error, and transmission error
 - Incomplete: lacking attribute values, lacking certain attributes of interest
 - e.g., current(kn) ="-" (missing data)
 - Noisy: containing noise, errors, or outliers
 - e.g., *Salary* = "-10" (an error)

11.3 Data cleaning

- **Data in the Real World Is Dirty**: Lots of potentially incorrect data, e.g., instrument faulty, human or computer error, and transmission error
 - Incomplete: lacking attribute values, lacking certain attributes of interest
 - e.g., current(kn) ="-" (missing data)
 - Noisy: containing noise, errors, or outliers
 - e.g., *Salary* = "-10" (an error)
 - <u>Inconsistent</u>: containing discrepancies
 - *Age* = "42", *Birthday* = "03/07/2010"
 - discrepancy between duplicate records
 - <u>Intentional</u> (e.g., disguised missing data)
 - Jan. 1 as everyone's birthday?

11.3.1 Incomplete data

Data is not always available

 E.g., many tuples have no recorded value for several attributes, such as the current speed and direction

Missing data may be due to

- Equipment malfunction
- Inconsistent with other recorded data and thus deleted
- Data were not entered due to misunderstanding
- Certain data may not be considered important at the time of entry
- Did not register history or changes of the data

Missing data may need to be inferred

11.3.2 How to handle incomplete data

- **Ignore the tuple**: usually done when class label is missing (when doing classification)—not effective when the % of missing values per attribute varies considerably
- Fill in the missing value manually: tedious + infeasible?
- Fill in it automatically with
 - a global constant : e.g., "unknown", a new class?!
 - the attribute mean
 - the attribute mean for all samples belonging to the same class: smarter
 - the most probable value: inference-based such as Bayesian formula or decision tree

11.3.3 Noisy data

- Noise: random error or variance in a measured variable
- **Incorrect attribute values** may be due to
 - Faulty data collection instruments
 - Data entry problems
 - Data transmission problems
 - Technology limitation
 - Inconsistency in naming convention
- Other data problems
 - Duplicate records
 - Incomplete data
 - Inconsistent data

11.3.4 How to handle noisy data

Binning

- First sort data and partition into (equal-frequency) bins
- Then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.

Sorted data for *price* (in dollars): 4, 8, 15, 21, 21, 24, 25, 28, 34

Partition into (equal-frequency) bins:

Bin 1: 4, 8, 15 Bin 2: 21, 21, 24

Bin 3: 25, 28, 34

Smoothing by bin means:

Bin 1: 9, 9, 9

Bin 2: 22, 22, 22

Bin 3: 29, 29, 29

Smoothing by bin boundaries:

Bin 1: 4, 4, 15

Bin 2: 21, 21, 24

Bin 3: 25, 25, 34

11.3.4 How to handle noisy data

• Binning

- First sort data and partition into (equal-frequency) bins
- Then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.

Regression

Smooth by fitting the data into regression functions

11.3.4 How to handle noisy data

Binning

- First sort data and partition into (equal-frequency) bins
- Then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.

Regression

Smooth by fitting the data into regression functions

Clustering

- Detect and remove outliers
- to be continued...

- Semi-supervised: Combined computer and human inspection
 - Detect suspicious values and check by human (e.g., deal with possible outliers)

11.4 Data integration

- Redundant attributes may be able to be detected by correlation analysis and covariance analysis
- Careful integration of the data from multiple sources may help reduce/avoid redundancies and inconsistencies and improve mining speed and quality

(Pearson) Correlation coefficient

$$\rho_{xy} = \frac{Cov(x, y)}{\sigma_x \sigma_y}$$

$$\rho_{xy} = \frac{Cov(x, y)}{\sigma_x \sigma_y}$$

$$Cov(x, y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n}$$

11.5 Data reduction

Dimensionality reduction

 Reducing the number of random variables under consideration, via obtaining a set of principal variables

Advantages of dimensionality reduction

- Avoid the curse of dimensionality
- Help eliminate irrelevant features and reduce noise
- Reduce time and space required in data mining
- Allow easier visualization

Typical dimensionality methods

- Principal component analysis
- Supervised and nonlinear techniques
 - Feature subset selection
 - Feature creation

11.5.1 Principal component analysis

E.g. 2-dim \rightarrow 1-dim

centralization:
$$\frac{1}{m} \sum_{i=1}^{m} x_i = \mathbf{0}$$

PCA is not linear regression!

• Target: the projected versions of x_i s on u-direction have a large variance (to keep discriminable information)

projection

• Naturally, we set $\|\mathbf{u}\| = 1$, then the distance from x_i to \mathbf{u} is:

$$x_i^{\mathsf{T}}\mathbf{u}$$

• To maximize the variance, we have

$$\max_{\|\boldsymbol{u}\|=1} \frac{1}{m} \sum_{i=1}^{m} (\boldsymbol{x_i}^{\mathsf{T}} \mathbf{u} - \frac{1}{m} (\sum_{i=1}^{m} \boldsymbol{x_i}^{\mathsf{T}} \mathbf{u}))^2$$

then with the centralization, it equals

$$\max_{\|\boldsymbol{u}\|=1} \frac{1}{m} \sum_{i=1}^{m} (\boldsymbol{x_i}^{\mathsf{T}} \mathbf{u})^2$$

11.5.1 Principal component analysis

E.g. 2-dim \rightarrow 1-dim

centralization:
$$\frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_i = \mathbf{0}$$

PCA is not linear regression!

$$\max_{\|\boldsymbol{u}\|=1} \frac{1}{m} \sum_{i=1}^{m} (\boldsymbol{x_i}^{\mathsf{T}} \mathbf{u})^2$$
$$\max_{\|\boldsymbol{u}\|=1} \sum_{i=1}^{m} \boldsymbol{u}^{\mathsf{T}} \left(\frac{1}{m} \sum_{i=1}^{m} \boldsymbol{x_i} \boldsymbol{x_i}^{\mathsf{T}} \right) \boldsymbol{u}$$

• Set $\mathcal{E} = \frac{1}{m} \sum_{i=1}^{m} x_i x_i^{\mathsf{T}}$, then we have the model of PCA:

$$\begin{cases}
\max_{\mathbf{u}} \quad \mathbf{u}^{\mathsf{T}} \mathbf{\mathcal{E}} \mathbf{u} \\
\text{s.t.} \quad \mathbf{u}^{\mathsf{T}} \mathbf{u} = 1
\end{cases}$$

• The Lagrange function of the optimization problem is:

$$\mathcal{L}(\boldsymbol{u}, \lambda) = \boldsymbol{u}^{\mathsf{T}} \boldsymbol{\mathcal{E}} \boldsymbol{u} - \lambda^{\mathsf{T}} (\boldsymbol{u}^{\mathsf{T}} \boldsymbol{u} - 1)$$

$$\nabla_{\boldsymbol{u}} \mathcal{L}(\boldsymbol{u}, \lambda) = \boldsymbol{\mathcal{E}} \boldsymbol{u} - \lambda \boldsymbol{u} = 0$$

$$\Rightarrow \boldsymbol{u} \text{ is the eigenvector of } \boldsymbol{\mathcal{E}}.$$

• Let $\mathcal{E}u = \lambda u$ and reformulate the optimization problem:

$$\max_{\boldsymbol{u}} \; \boldsymbol{u}^{\mathsf{T}} \boldsymbol{\mathcal{E}} \boldsymbol{u} \; \Leftrightarrow \; \max_{\boldsymbol{u}} \; \boldsymbol{u}^{\mathsf{T}} \lambda \boldsymbol{u} \; \Leftrightarrow \max_{\boldsymbol{u}} \; \lambda$$

11.6 Data transformation

Min-max normalization: to [n_min, n_max]

$$\tilde{x} = \frac{x - \min}{\max - \min} (n_{\max} - n_{\min}) + n_{\min}$$

Encounter an "out-of-bounds" error

• **Z-score normalization**: (μ : mean, σ : standard deviation)

$$\tilde{x} = \frac{x - \mu}{\sigma}$$

Normalization by decimal scaling:

$$\tilde{x} = \frac{x}{10^j}$$

where j is the smallest integer such that $\max(|\tilde{x}|) \le 1$

The values of *mean* and *deviation* should be saved for normalizing future data in a uniform manner

When using *z-score normalization* or *decimal scaling*, the process can change the original data quite a bit

11.6 Data transformation

• Discretization:

"Concept hierarchy"

Degree	Height (m)	Height (ft)	Description
0	no wave		Calm (Glassy)
1	0-0.10	0.00-0.33	Calm (rippled)
2	0.10-0.50	0.33-1.64	Smooth
3	0.50-1.25	1.6-4.1	Slight
4	1.25-2.50	4.1-8.2	Moderate
5	2.50-4.00	8.2–13.1	Rough
б	4.00-6.00	13.1-19.7	very rough
7	6.00-9.00	19.7–29.5	High
8	9.00–14.00	29.5–45.9	Very high
9	14.00+	45.9+	Phenomenai

11.7 Anomaly detection

• <u>Noisy</u>: containing noise, errors, or outliers

"In anomaly detection, the goal is to find objects that do not conform to normal patterns or behavior. Often, anomalous objects are known as outliers, since, on a scatter plot of the data, they lie far away from other data points."

11.7.1 Problem formulation

- Given a set of training data $\{x_1, x_2, \dots, x_m\}$, where each data sample $x_i \in \mathbb{R}^n$ (n features)
- The *anomaly detection* is finding a function to detect whether the input variable x is similar to the training data or not

- Anomaly means:
 - *− Outlier* ⊗
 - − Novelty ©
 - − Exceptions ⊕
 - **–** ...

• What is anomaly?

• <u>Different methods use</u> <u>different ways to</u> <u>determine similarity</u>

11.7.2 What is anomaly?

• Training data:

• Training data:

• Training data:

11.7.2 What is anomaly?

• **Another example**: port entry/exit? Oceangoing?

11.7.3 Categories

• Training data:

A binary classifier?

11.7.3 Categories

Training data:

- Cannot be considered as a class (cannot estimate the distribution of anomaly data) \odot
- In most cases, it is difficult to collect anomaly data (very small %) $\ \odot$
- Hardly to mark labels on data ☺

11.7.3 Categories

- Given a set of training data $\{x_1, x_2, \dots, x_m\}$, where each data sample $x_i \in \mathbb{R}^n$ (n features)
- The *anomaly detection* is finding a function to detect whether the input variable x is similar to the training data or not

11.8 Anomaly classifier

Example application: is the new x from the

 \boldsymbol{x}

11.8 Anomaly classifier

Example application: is the new x from the

 \boldsymbol{x}_2

 \boldsymbol{x}_3

 $oldsymbol{x}_4$

$$y_1 =$$
赵云 $y_2 =$ 曹操 $y_3 =$ 韩信 $y_4 =$ 诸葛亮 $y_5 =$ 张飞

 \boldsymbol{x}_5

11.8.1 Confidence score

Anomaly detection:

$$f(x) = \begin{cases} \text{normal,} & c > \lambda \\ \text{anomaly,} & c \le \lambda \end{cases}$$

11.8.1 Confidence score

y₂ = 曹操

 $y_3 = 韩信$

 $y_4 = 诸葛亮$

 $y_5 = 张飞$

normal

Very confident!

anomaly

Not confident!

11.8.2 Evaluation problem

- Accuracy is not a good measure!
- A system can have high accuracy, but do nothing.

Accuracy =
$$\frac{1000}{1000+5} \approx 99.5\%$$
 \otimes

Area under ROC curve... (ref.)

11.9 Anomaly detection without labels

• Speed over ground (SOG) (→ speed through water)

"In anomaly detection, the goal is to find objects that do not conform to normal patterns or behavior. Often, anomalous objects are known as outliers, since, on a scatter plot of the data, they lie far away from other data points."

11.9.1 Gaussian distribution revisit

• Say $x \in \mathbb{R}$. If x is a distributed Gaussian with mean μ , variance σ^2 , i.e.,

$$x \sim \mathcal{N}(\mu, \sigma^2)$$
 ~: "distributed as"

• Probability density function:

$$p(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

• Parameter estimation: given dataset $\{x_1, x_2, \dots, x_m\}$, $x_i \in \mathbb{R}$, we want to estimate the parameters μ and σ^2

$$\mu = \frac{1}{m} \sum_{i=1}^{m} x_i$$

$$\sigma^2 = \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu)^2$$

Maximum likelihood estimation

11.9.2 For anomaly detection

• Dataset
$$\{\boldsymbol{x}_1, \boldsymbol{x}_2, \cdots, \boldsymbol{x}_m\}, x_i \in \mathbb{R}^n$$
 $x_j \sim \mathcal{N}(\mu_j, \sigma_j^2)$

$$p(\boldsymbol{x}) = p(\boldsymbol{x}_{\cdot,1}; \mu_1, \sigma_1^2) p(\boldsymbol{x}_{\cdot,2}; \mu_2, \sigma_2^2) \cdots p(\boldsymbol{x}_{\cdot,n}; \mu_n, \sigma_n^2)$$

$$= \prod_{j=1}^n p(\boldsymbol{x}_{\cdot,j}; \mu_j, \sigma_j^2)$$

$$x \sim \mathcal{N}(\mu, \sigma^2)$$
$$p(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Anomaly detection algorithm

- 1. Choose features $x_{i,j}$ that you think might be indicative of anomalous examples
- 2. Fit parameters $\mu_1, \mu_2, \dots, \mu_n; \sigma_1^2, \sigma_2^2, \dots, \sigma_n^2$

$$\mu_j = \frac{1}{m} \sum_{i=1}^m \mathbf{x}_{i,j}$$
 $\sigma_j^2 = \frac{1}{m} \sum_{i=1}^m (\mathbf{x}_{i,j} - \mu_j)^2$

3. Given new example x, compute p(x):

$$p(\mathbf{x}) = \prod_{j=1}^{n} p(\mathbf{x}_j; \mu_j, \sigma_j^2) = \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi}\sigma_j} \exp\left(-\frac{(\mathbf{x}_j - \mu_j)^2}{2\sigma_j^2}\right)$$

Anomaly if $p(x) < \varepsilon$.

11.9.3 How to select what features to use

Anomaly detection algorithm

Dataset $\{\boldsymbol{x}_1, \boldsymbol{x}_2, \cdots, \boldsymbol{x}_m\}, x_i \in \mathbb{R}^n$

1. Choose features $x_{.,j}$ that you think might be indicative of anomalous examples

• Must satisfy Gaussian distribution?

- $\log(x+c)$
- $x^c, c \in (0, 1)$

• Error analysis?

- want p(x) large for normal examples p(x) small for anomalous examples
- when p(x) is comparable for both types, maybe you need to add some features
- or maybe you need to combine some features to create a new feature

11.9.4 Multivariate Gaussian distribution

• Dataset
$$\{x_1, x_2, \dots, x_m\}, x_i \in \mathbb{R}^n$$
 $x_j \sim \mathcal{N}(\mu_j, \sigma_j^2)$

$$p(x) = p(x_{\cdot,1}; \mu_1, \sigma_1^2) p(x_{\cdot,2}; \mu_2, \sigma_2^2) \cdots p(x_{\cdot,n}; \mu_n, \sigma_n^2)$$

$$= \prod_{i=1}^n p(x_{\cdot,j}; \mu_j, \sigma_j^2)$$

- Don't model $p(x_{.1})$, $p(x_{.2})$, ..., etc. separately; model p(x) all in one go
- The parameters of a multivariate Gaussian distribution are $\mu \in \mathbb{R}^n$, $\Sigma \in \mathbb{R}^{n \times n}$ (covariance matrix, similar to the one in PCA)
- The density function of a multivariate Gaussian distribution is

$$p(\mathbf{x}; \, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{n/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

11.9.4 Multivariate Gaussian distribution

• The density function of a multivariate Gaussian distribution is

$$p(\mathbf{x}; \, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{n/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

11.9.5 For anomaly detection (multi-Gaussian)

• The density function of a multivariate Gaussian distribution is

$$p(\mathbf{x}; \, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{n/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

- Parameter fitting:
- Given training set $\{x_1, x_2, \dots, x_m\}$, $x_i \in \mathbb{R}^n$

$$\boldsymbol{\mu} = \frac{1}{m} \sum_{i=1}^{m} \boldsymbol{x}_{i} \qquad \qquad \boldsymbol{\Sigma} = \frac{1}{m} \sum_{i=1}^{m} (\boldsymbol{x}_{i} - \boldsymbol{\mu}) (\boldsymbol{x}_{i} - \boldsymbol{\mu})^{\mathsf{T}}$$

- Anomaly detection with multivariate Gaussian
 - 1. Fit model p(x) by setting:

$$\boldsymbol{\mu} = \frac{1}{m} \sum_{i=1}^{m} \boldsymbol{x}_{i} \qquad \qquad \boldsymbol{\Sigma} = \frac{1}{m} \sum_{i=1}^{m} (\boldsymbol{x}_{i} - \boldsymbol{\mu}) (\boldsymbol{x}_{i} - \boldsymbol{\mu})^{\mathsf{T}}$$

2. Given a new example \boldsymbol{x} , compute:

$$p(\mathbf{x}; \, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{n/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

Anomaly if $p(x) < \epsilon$.

11.9.6 original vs multivariate Gaussian

$$p(\mathbf{x}) = p(\mathbf{x}_{\cdot,1}; \mu_1, \sigma_1^2) p(\mathbf{x}_{\cdot,2}; \mu_2, \sigma_2^2) \cdots p(\mathbf{x}_{\cdot,n}; \mu_n, \sigma_n^2)$$

$$p(\mathbf{x}; \, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{n/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

The original Gaussian corresponds to the multivariate one when the contours are axis aligned

- The multivariate Gaussian automatically captures correlations between features
- The multivariate Gaussian is computationally expensive, for the inverse of Σ
 - Must have m > n or else Σ is non-invertible (the sample number is much bigger than the feature number)
 - It takes $O(n^2)$ computation
- If Σ is non-invertible, there may have two cases:
 - m > n is not satisfied
 - There exist redundant features E.g., $x_{\cdot,1} = x_{\cdot,2}$ $x_{\cdot,1} = x_{\cdot,2} + x_{\cdot,3}$