Princeton workshop 2019

DataJoint Primer for MATLAB - building your project's data pipeline Presented by

Shan Shen Feb 13, 2019

Overview of this workshop

- 2/13 1 3 pm: DataJoint basics and build your own pipeline from scratch.
- 2/14 10 am 12 pm: Introduction to several canonical pipelines.
 - Colony management
 - Behavior & Ephys
 - Two-photon
- 2/14 1 4 pm: Individual sessions
- 2/15 9 am -12 pm: more individual sessions and topics on demand.
 - Git & Docker
 - Python version of DataJoint

Topics today

- Session 0: Getting access to materials and DataJoint
- Session 1: Getting started with DataJoint: create, query and fetch a data pipeline
- Session 2: Imported and Computed table
- Session 3: Common design patterns and advanced queries

Session 0:
Getting access to
materials and DataJoint

Access to the materials

- Go to website: https://datajoint.io/workshops
- Download materials from: https://github.com/vathes/
 princeton-workshop-2019
- Start MATLAB and go to the directory of the download materials.

Setting up DataJoint for MATLAB is simple!

- Start MATLAB
- Home —> Add-Ons —> Get Add-Ons
- Search "DataJoint"
- Click on "DataJoint" in the search result
- Click Add —> Add to MATLAB —> OK
- In your console, type in "dj.version"
- You are all set and ready to start!

Session 1: Getting started with DataJoint

Session 1 Goals

- 1. Learn what a pipeline is
- 2. Design and create our first pipeline in DataJoint
- 3. Insert data
- 4. Query and fetch data

What is a data pipeline?

"A data pipeline is a sequence of steps (more generally a directed acyclic graph) with integrated storage at each step. These steps may be thought of as nodes in a graph"

~ from DataJoint documentation (https://docs.datajoint.io)

?

Data pipeline are about "things" in your experiment!

neuron

Data pipeline = "Things" + relationship

SpikeDetectionParam

Spikes

Each "thing" is represented as a table in DataJoint

DataJoint provides an Mouse easy way but precise way to define relationship between "things". Session **Neuron** SpikeDetectionParam ActivityStatistics Spikes

Building your first pipeline

- "Things" in our project:
 - Mouse
 - Experimental session
 - Neuron
 - Spikes

Building your first pipeline

- "Things" in our project:
 - Mouse
 - Experimental session
 - Neuron
 - Spikes

What would uniquely identify a mouse?

mouse_id!

mouse_id*	
12123	
15302	
1243	

This is the primary key

mouse_id*	
12123	
15302	
1243	

Each row is a mouse

Adding other attributes (columns) **about each mouse**

mouse_id*	dob	sex
12123	2017-01-12	М
15302	2018-01-01	F
1243	2016-03-05	Unknown

Let's now go build the pipeline in DataJoint!

So far...

- All tables have been manual ...
- What about tables for recordings that need loading from external data files?
- What about some analysis tables that need computation?
- DataJoint provides nice support for auto computation and insertion.

Session 2: Imported and Computed tables

Session 2 Goals

- import neuron activity data from data files into an Imported table
- compute various statistics for each neuron by defining a Computed table
- 3. define a Lookup table to store parameters for computation
- define another Computed table to perform spike detection and store the detected spikes
- automatically trigger computations for all missing entries with populate

Session 3: Common design patterns and advanced queries

Session 3 Goals

- highlight common design patterns found in our data pipeline
- 2. some more complex DataJoint queries

Recap of Today

We covered a lot!

- Designed our first data pipeline
- Learned to insert, query and fetch data
- Learned to define computations as tables in data pipeline
 - Computing "statistics"
 - Detected "spikes"
- Learned to use `make` and `populate` logic to automatically "populate" tables
- Studies common design patterns in data pipeline

Data pipeline = "Things" + relationship

Mouse

Neuron

Data pipeline = Entities + dependencies

ActivityStatistics

Neuron

Mouse

Session

Additional learning resources

- Visit https://datajoint.io for more information about DataJoint the free open-source libraries for Python 3 and MATLAB
- Documentation and tutorials are available at https://tutorials.datajoint.io
- DataJoint Slack group is an excellent place to interact with developers and other users.
- More learning resources are up and coming!

Thanks for attending!