Math 493 Lecture 5

Thomas Cohn

9/18/2019

We define \mathbb{R}^n to be the set of column vectors of size z. It has two important operations: addition and scalar multiplication.

Most things in linear algebra work with \mathbb{R} replaced by \mathbb{C} or \mathbb{Q} . \mathbb{R} , \mathbb{C} , and \mathbb{Q} are examples of fields.

Defn: A field is a set K equipped with 2 composition laws, + (addition) and \cdot (multiplication) s.t.

- (K, +) is an abelian group with identity element 0.
- (K^{\times}, \cdot) is an abelian group with identity element 1. $(K^{\times} \stackrel{\text{def}}{=} K \setminus \{0\})$.
- $\forall a, b, c \in K$, $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$ (multiplicative distribution).

Ex: If K is any field, define K(T) to be the set of rational functions with coefficients in K. A rational function looks like

$$\frac{a_n T^n + \dots + a_0}{b_m T^m + \dots + b_0} \quad a_i, b_j \in K$$

Ex: $\mathbb{Q}[i] = \{a + bi \mid a, \underline{b} \in \mathbb{Q}\}$ is field. $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$ is a field.

Ex: For p prime, $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ is a field. Addition and multiplication are the usual modular operations. (See paper notes for justification.)

Observe: If K is a field, and $a, b \in K^{\times}$, then $ab \neq 0$. This is because K^{\times} is closed under multiplication, and $0 \notin K^{\times}$.

Ex: $\mathbb{Z}/6\mathbb{Z}$ is not a field. $\bar{2} \cdot \bar{3} = \bar{6} = \bar{0}$. But $\bar{2}, \bar{3} \neq \bar{0}$.

More generally, if n is composite, n = ab, for 1 < a, b < n. So $\bar{a} \cdot \bar{b} = \bar{n} = \bar{0}$, but $\bar{a}, \bar{b} \neq \bar{0}$. Thus, $\mathbb{Z}/n\mathbb{Z}$ is not a field.

Ex: Suppose K is a field, $a \in K$ is not a square (i.e. $a \neq b^2$, for any $b \in K$). Then we define $K(\sqrt{a}) = K$ $\{b+c\sqrt{a}\mid b,c\in K\}$, with the obvious addition and multiplication. This is a field. Note: we get inversion by

$$\frac{1}{b+c\sqrt{a}} = \frac{b-c\sqrt{a}}{b^2-c^2a}$$

 $\frac{1}{b+c\sqrt{a}}=\frac{b-c\sqrt{a}}{b^2-c^2a}$ The denominator is nonzero because $b^2/c^2=(b/c)^2$ is a perfect square, and a is not.

Ex: $K = \mathbb{F}_3 = \{0, 1, 2\}, 2 = -1 \text{ is not a square. } 0^2 = 0, 1^2 = 1, 2^2 = 4 = 1.$ So there's a field $\mathbb{F}_3(\sqrt{-1})$. $\#\mathbb{F}_3(\sqrt{-1}) = 9.$

1

Ex: $K = \mathbb{F}_5 = \{0, 1, 2, 3, 4\}$. -1 is a square $-1 = 4 = 2^2$. 2 is not so we get a field $\mathbb{F}_5(\sqrt{2})$. $\#\mathbb{F}_5(\sqrt{2}) = 25$.

Vector Spaces

Fix a field K.

Defn: A vector space over K is a set V equipped with two operations:

- $+: V \times V \to V$ (addition)
- $\cdot: K \times V \to V$ (scalar multiplication)
- (V, +) is an abelian group (write 0 for the identity element).
- Given $a, b \in K$, $v \in V$, then a(bV) = (ab)V.
- $1 \cdot v = v$.

Such that

• Distributive law: for $a, b \in K$ and $v, w \in V$, (a + b)v = av + bv and a(v + w) = av + aw.

Ex: V = K[t] (all polynomials with coefficients in K) is a vector space. $V = M_n(K) \cong K^{n^2}$ $(n \times n \text{ matrices in } K)$ is a vector space.

Defn: V, W vector spaces over K. A **linear map** is a function $T: V \to W$ s.t. $T(v_1 + v_2) = T(v_1) + T(v_2)$ and $T(av_1) = aT(v_1)$, for all $a \in K$ and $v_1, v_2 \in V$.

Defn: An **isomorphism** is a bijective linear map.

Ex: \mathbb{C} is a vector space over \mathbb{R} . As an \mathbb{R} -vector space, $\mathbb{C} \cong \mathbb{R}^2$, where $a + bi \mapsto \begin{bmatrix} a \\ b \end{bmatrix}$. More generally, if K is a subfield of L, then L is naturally a K-vector space.

Defn: Let V be a K-vector space, and $S \subseteq V$. Define the **span** of S, denoted span(S), to be the set of all finite linear combinations of elements of S.

Defn: A set $S \subseteq V$ which is closed under addition and scalar multiplication is a subspace of V.

Note: $\operatorname{span}(S)$ is closed under addition and scalar multiplication, so it's a subspace of V.

Defn: We say S spans V, or is a spanning set if span(S) = V.

Defn: We say S is **linearly independent** if given $v_1, \ldots, v_n \in S$ distinct, if $\sum_{i=1}^n a_i v_i = 0$, then $a_i = 0$, $\forall i$.

Defn: S is a **basis** if it's a spanning set and linearly independent.

Ex: $V = K^3$, $S = \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}$, $\operatorname{span}(S) = \left\{ \begin{bmatrix} a\\b\\c \end{bmatrix} \mid b = a + c \right\}$. S is not a spanning set, but it is linearly independent.

Prop: Let S be a subset of V. The following are equivalent:

- 1. S is a basis.
- 2. S is a minimal spanning set, i.e., S is a spanning set, but no proper subset of S is.
- 3. S is a maximal linearly independent set, i.e., S is linearly independent, but no proper superset of S is.

Proof:

- (1) \Rightarrow (2): S is a basis. By definition, S spans. Let $T \subseteq S$ that spans, and let $v \in S \setminus T$. Since T spans, $\exists w_1, \ldots, w_n \in T, a_1, \ldots, a_n \in K$ s.t. $v = a_1w_1 + \cdots + a_nw_n$. But $0 = -v + a_1w_1 + \cdots + a_nw_n$, so S is not linearly independent. Oops!
- (2) \Rightarrow (1): S is a minimal spanning set. We need to show that S is linearly independent, so suppose not. Then we have $a_1v_1+\cdots+a_nv_n=0$ with not all $a_i=0$, and $v_i\in S$ distinct. WOLOG $a_1=a$. Then $v_1=-a_2v_2-\cdots-a_nv_n$. We will show that $T=S\setminus\{v_1\}$ spans. Let $x\in V$ be given. Since S spans, $x=b_1w_1+\cdots+b_mw_m$. If no $w_i=v_1$, then $x\in S$ otherwise, WOLOG $w_m=v_1$. Then $x=b_1w_1+\cdots+b_{m-1}w_{m-1}+b_m(-a_2v_2-\cdots-a_nv_n)\in Span(S\setminus\{v_1\})=Span(T)$.