SOFTWARE ENGINEERING HW 1

1. SETUP & RUNNING

I have used models which are similar in size to gpt2:

- distilgpt2: 82M parameters
- EleutherAI/gpt-neo-125M: 125M parameters
- facebook/opt-125m: 125M parameters

Then I created sets of parameters to test each of them with the 3 models:

- temperature=0.3; top_p=0.9; top_k=50; repetition_penalty=1.5
- temperature=0.7; top_p=0.9; top_k=50; repetition_penalty=1.5
- temperature=1.0; top_p=0.9; top_k=50; repetition_penalty=1.5

The prompt used:

• prompt = "Today I learned how to solve differential equations"

I ran the models through google collab on a personal notebook. The code selects one of the models in the list and loops through the sets of parameters with the same input prompt on each run.

2. RESULTS

distilgpt2

EleutherAI/gpt-neo-125M

facebook/opt-125m

3. INTERPRETATIONS OF RESULTS

Across all three small models, I saw a pretty consistent pattern with temperature. **distilgpt2** was the steadiest: at **T=0.3** it didn't stick to the language it mentioned first, **T=0.7** gave a generic sentence without specifying the language, and **T=1.0** started to ramble. **EleutherAl/gpt-neo-125M** felt more "codey"—**0.3** but it was repetitive, **0.7** produced the best mix of concrete details (e.g., plausible class/function names) and coherence, and **1.0** often drifted into half-finished snippets. **facebook/opt-125m** had a chatty vibe; **0.3** read like forum comments, **0.7** was the most useful with step-like guidance, and **1.0** became disjoint quickly. **Overall, the best temperature across models was ~0.7**, which gave the strongest balance of specificity and coherence without the chaos I saw at 1.0 or the repetitiveness and incoherence at 0.3.