Expresso Churn Prediction

Introduction to DS Course Project

Vera Soboleva & Viacheslav Vasilev

25th of October, 2021

Presentation Plan

- Problem Statement
- 2. Data exploration
- 3. Data preprocessing
- 4. Feature engineering
- 5. Random Forest and Ensembling
- 6. Gradient Boosting
- 7. Feature importance
- 8. Conclusions

Problem statement

Expresso - African telecommunications company that provides customers with airtime and mobile data bundles.

Why churn prediction is important?

- better understanding of future expected revenue
- prevent churn
- understand what preventative steps are necessary
- formation of special offers for regular customers

Classification problem: X, y = CHURN : {0,1}

Evaluation metric: AUC

The churn dataset 4 categorical variables:

- REGION the location of each client
- TENURE duration in the network
- TOP_PACK the most active packs
- MRG a client who is going

The churn dataset 4 categorical variables:

- REGION the location of each client
- TENURE duration in the network
- TOP_PACK the most active packs
- MRG a client who is going (all values are the same)

The churn dataset 4 categorical variables:

- REGION the location of each client
- TENURE duration in the network
- TOP_PACK the most active packs
- MRC a client who is going (all values are the same)

Data Preprocessing

- Splitting of initial train data (2 154 048 objects):
 56% for training, 14% for validation, 30% for local testing (the model is trained again on all train data before submitting)
- 2. Stratification
- 3. Working with NaNs. Replace by mean, median, zero or combination
- 4. Working with NaNs after splitting to avoid data leaks
- 5. **Normalization** or **scaling** in [0, 1] for numeric features or **not any** standardization
- 6. Fixed random_state

Feature engineering: Add numerical features

- Total number of calls (ON_NET + ORANGE + TIGO + ZONE1 + ZONE2)
 To evaluate the overall user activity
- 2. **Average top-up amount** (MONTANT / FREQUENCE_RECH) "Reliable" users can put less often, but more
- 3. Connections density (DATA_VOLUME / REGULARITY) and
- 4. **Call density** (Total number of calls / REGULARITY)

 It should be high for "reliable" users
- 5. Income from the user per month minus its top up amount (ARPU_SEGMENT MONTANT)

 An "unreliable" user may also be unprofitable for the company
- **6. Arpu last to average** (ARPU_SEGMENT / REVENUE)

Random Forest: Baseline

We used model with max_depth=7, n_estimators=200 and max_samples=1

Data modifications	AUC
Replace NaNs by mean	0.896979
Include encoded 'TENURE' feature	0.89 <mark>58</mark> 07
Replace NaNs by median	0.897719
Replace NaNs by zeros	0.89 <mark>76</mark> 01
Change train size	0.8981661
Without Normalization	0.8981660
MinMaxScaler	0.898169
Add new numerical features	0.898878

Random Forest: Model Selection and Ensembling

- After data manipulation, we use GridSearchCV with AUC-scoring to select the best RF model. Our grids:
 - o n_estimators: [150, 200, 250, 300, 350, 400]
 - max_samples: [0.4, 0.6, 0.8, 1.0]
 - max_depth: [7, 9, 12, 15]

Total: 96 variants of models. The evaluation of hyperparameters was done on a validation dataset.

Best RF model's parameters: {'max_depth': 7, 'max_samples': 0.6, 'n_estimators': 300}

AUC on the test: 0.89906

After that, we took the top 10 models and averaged their probability predictions.

AUC on the test: 0.8988

Logistic Regression

Best parameters (grid search): I1 regularization, C = 10

Preprocessing: NaN to mean and zeros, Category encoder

Best Validation AUC: 0.928629

Gradient Boosting (Light GBM)

Data modification	Validation AUC	Test Leaderboard AUC
-	0.93149	
NaN to mean	0.93139	
NaN to mean and zeros	0.93125	
Category encoder	0.9315	
NaN to mean + Category encoder	0.93136	
New features	0.93151	0.93156
New features + Category encoder	0.93154	0.93164

Best params: n_estimators=200, learning_rate=0.05, min_child_samples=30, num_leaves=127 (by grid search)

Clustering

tSNE visualization

	Validation AUC
Additional feature	0.9341
Different models for different clusters	0.877

Feature importance

Conclusions

- 1. We **carefully examined the data transformations**, checking the work of the transformation efficiency and training a new model.
- Categorical features that were discarded at the beginning, at the end made a significant contribution to the speed of the model.
- 3. We also investigated simpler and more **interpretable** models like Logistic Regression and found that they work well in this task.
- 4. Our best score = **0.93164** (public leaderboard position 42, best public leaderboard score 0.93346).

Thank you for attention!