CHAPTER 1

NORMED VECTOR SPACES

1.1 Introduction to norms

Distance in vector spaces

In \mathbb{R}^n , we have seen the following metrics:

• d_1 , which is defined by

$$d_1(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^n |x_i - y_i|;$$

• d_2 , which is defined by

$$d_1(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^n |x_i - y_i|^2\right)^{1/2};$$

• d_{∞} , which is defined by

$$d_{\infty}(\boldsymbol{x},\boldsymbol{y}) = \sup_{i=1}^{n} |x_i - y_i|;$$

In general, for $p \in [1, \infty)$, we can define the metric d_p , given by

$$d_p(x, y) = \left(\sum_{i=1}^n |x_i - y_i|^2\right)^{1/p}.$$

We can define metrics on other vector spaces, such as the space of sequences in \mathbb{R} (or any field \mathbb{K}). The space of sequences in some field \mathbb{K} is denoted by $\operatorname{Seq}(\mathbb{K})$. For each $p \in [1, \infty)$, we define the set ℓ^p to be a subspace of $\operatorname{Seq}(\mathbb{R})$ for which the distance function d_p is defined. That is, the set ℓ^p contains of all sequences $(x_n)_{n=1}^{\infty}$ in \mathbb{R} such that the series

$$\sum_{i=1}^{\infty} |x_i|^p$$

converges- if so, we define the distance between $x^{(n)}$ and $y^{(n)}$ in ℓ^p to be:

$$d_p(x^{(n)}, y^{(n)}) = \left(\sum_{i=1}^{\infty} |x_i - y_i|^p\right)^{1/p}.$$

We also define ℓ^{∞} to be the set of all bounded sequences in \mathbb{R} , with

$$d_{\infty}(x^{(n)}, y^{(n)}) = \sup_{i=1}^{n} |x_i - y_i|.$$

Further, we can define norms on the set of continuous functions C[0,1]. The distance between two functions $f,g\in C[0,1]$ is defined to be:

$$d_p(f,g) = \left(\int_0^1 |f(x) - g(x)|^p dx\right)^{1/p}.$$

The value is always finite for f,g continuous, since $|f-g|^p$ is a continuous function.

Norms

We now define a norm for vector spaces.

Definition 1.1.1. Let V be a real vector space and let $\|.\|:V\to\mathbb{R}$ be a function. We say that $\|.\|$ is a *norm* if

N1. for all $v \in V$, $||v|| \ge 0$, and ||v|| = 0 if and only if v = 0;

N2. for all $c \in \mathbb{R}$ and $\mathbf{v} \in V$, $||c\mathbf{v}|| = |c|||\mathbf{v}||$;

N3. for all $\boldsymbol{u}, \boldsymbol{v} \in V$,

$$||u + v|| \le ||u|| + ||v||.$$

For every norm, there exists a metric; every norm induces a metric.

Proposition 1.1.2. Let V be a real vector space and let $\|.\|$ be a norm. Define the function $d: V \times V \to \mathbb{R}$ by $d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|$. Then, (V, d) is a metric space.

Proof. We check this directly from the axioms of a metric space:

M1. Let $x, y \in V$. We find that

$$d(\boldsymbol{x}, \boldsymbol{y}) = \|\boldsymbol{x} - \boldsymbol{y}\| > 0.$$

Moreover, d(x, y) = 0 if and only if x - y = 0, i.e. x = y.

M2. Let $x, y \in V$. We find that

$$d(x, y) = ||x - y|| = ||-(y - x)|| = |-1|||y - x|| = ||y - x|| = d(y, x).$$

M3. Let $x, y, z \in V$. We find that

$$d(x, z) = ||x - z||$$

$$= ||(x - y) + (y - z)||$$

$$\leq ||x - y|| + ||y - z||$$

$$= d(x, y) + d(y, z).$$

So, (V, d) is a metric space.

However, the converse is not true- not every distance function corresponds to a norm. Before proving this, we characterise the relationship between the distance and the norm in the other direction.

Proposition 1.1.3. Let V be a real vector space and let d be a metric induced by some norm $\|.\|: V \to \mathbb{R}$. Then, for all $\mathbf{v} \in V$, $\|\mathbf{v}\| = d(\mathbf{0}, \mathbf{v})$.

Proof. Since the norm $\|.\|$ induces the metric d, we know that for all $u, v \in V$, $d(u, v) = \|u - v\|$. In that case, for $v \in V$,

$$\|v\| = \|v - 0\| = d(v, 0) = d(0, v).$$

Now, we give a counterexample to show that not every metric is induced by some norm. Let d be the discrete metric on \mathbb{R} . We claim that (\mathbb{R},d) is not induced by a norm. Assume, for a contradiction, that there exists a norm $\|.\|:\mathbb{R}\to\mathbb{R}$ such that for all $x,y\in\mathbb{R},\ d(x,y)=\|x-y\|$. In that case,

$$2 = 2d(1,0) = 2||1|| = ||2|| = d(2,0) = 1.$$

This is a contradiction. So, (\mathbb{R}, d) is not induced by a norm.

Strong equivalence of norms

For a real vector space, we say that two norms on it are strongly equivalent if the induced metrics are strongly equivalent. We know that in \mathbb{R}^n , all the ℓ^p norms are strongly equivalent. However, this is not true for sequence and function spaces.

For sequence spaces, the sets ℓ^p are not equal for distinct p. In particular, $\ell^1 \neq \ell^2$. To see this, consider the sequence $(x_n)_{n=1}^{\infty}$ in \mathbb{R} given by $x_n = 1/n$. Since the harmonic series diverges, we know that (x_n) is not in ℓ^1 . However, since the series

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

converges, the sequence is in ℓ^2 . So, $\ell^1 \neq \ell^2$.

Nonetheless, we do have $\ell^1 \subseteq \ell^2$. Let $(x_n)_{n=1}^{\infty}$ be a sequence in \mathbb{R} with (x_n) in ℓ^1 . In that case, the series

$$\sum_{n=1}^{\infty} x_n$$

converges. Therefore, we must have that $x_n \to 0$, i.e. (x_n) is convergent. So, there exists a K > 0 such that $|x_n| \le K$ for all $n \in \mathbb{Z}_{\ge 1}$. In that case, for $n \in \mathbb{Z}_{\ge 1}$,

$$0 \le |x_n|^2 \le K|x_n|.$$

So, the comparison test tells us that the series

$$\sum_{n=1}^{\infty} x_n^2$$

converges. This implies that (x_n) is in ℓ^2 . Therefore, $\ell^1 \subseteq \ell^2$.

Using the result above, we show that ℓ_1 and ℓ_2 are not equivalent in ℓ^1 .² show that $\ell^2 \subseteq \ell^3$? To see this, define the sequence $(x^{(k)})_{k=1}^{\infty}$ in ℓ^2 by

$$x^{(k)} = (1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{k}, 0, 0, \dots).$$

¹Can we use this approach to show that $\ell^2 \subseteq \ell^3$?

²We refer to the set of sequences by ℓ^p , and the corresponding norm by ℓ_p .

For $k \in \mathbb{Z}_{\geq 1}$, we have

$$||x^{(k)}||_1 = \sum_{n=1}^k \frac{1}{n}.$$

Since the sum is finite, we know that $x^{(k)}$ is in ℓ^1 . Now, define also the sequence $(x_n)_{n=1}^{\infty}$ by $x_n = \frac{1}{n}$. We have (x_n) in ℓ^2 . Moreover, under the ℓ_2 norm,

$$||x^{(k)} - x||_2 = \sum_{n=k+1}^{\infty} \frac{1}{n^2} \to 0$$

as $k \to \infty$. This implies that $(x^{(k)})$ is Cauchy in (ℓ^1, d_1) . Now, we show that $(x^{(k)})$ is not Cauchy in (ℓ^1, d_2) . Let $N \in \mathbb{Z}_{\geq 1}$. Since the harmonic series diverges, we must have

$$\sum_{n=N}^{\infty} \frac{1}{n} \to \infty.$$

So, there exists an $M \in \mathbb{Z}_{>N}$ such that

$$\sum_{n=N}^{M} \frac{1}{n} > 1.$$

In that case,

$$||x^{(N)}, x^{(M+1)}||_1 = \sum_{n=N}^{\infty} \frac{1}{n} - \sum_{n=M+1}^{\infty} \frac{1}{n} = \sum_{n=N}^{M} \frac{1}{n} \ge 1.$$

Therefore, $(x^{(k)})$ is not Cauchy in (ℓ^1, d_2) . This implies that ℓ_1 and ℓ_2 are not equivalent in ℓ^1 .

Similarly, the norms on the function space C[0,1] are not strongly equivalent. For example, consider the sequence $(f_n(x))_{n=1}^{\infty}$ given by $f_n(x) = x^n$. We know that x^n is increasing on [0,1]. So,

$$||f_n||_{\infty} = \sup_{x \in [0,1]} |f_n(x)| = f_n(1) = 1.$$

Moreover,

$$||f_n||_1 = \int_0^1 f_n(x) \ dx = \int_0^1 x^n \ dx = \left[\frac{1}{n+1}x^{n+1}\right]_0^1 = \frac{1}{n+1} \to 0$$

as $n \to \infty$. This implies that the two norms are not strongly equivalent.

1.2 Introduction to inner products

Definition 1.2.1. Let V be a real vector space and let $\langle .,. \rangle : V \times V \to \mathbb{R}$ be a function. Then, $\langle .,. \rangle$ is an *inner product* if:

- **I1.** for all $v \in V$, $\langle v, v \rangle \geq 0$, with $\langle v, v \rangle = 0$ if and only if v = 0;
- **12.** for all $\lambda \in \mathbb{R}$ and $\boldsymbol{v}, \boldsymbol{w} \in V$, $\langle \lambda \boldsymbol{v}, \boldsymbol{w} \rangle = \lambda \langle \boldsymbol{v}, \boldsymbol{w} \rangle$;
- **I3.** for all $\boldsymbol{v}, \boldsymbol{w} \in V$, $\langle \boldsymbol{v}, \boldsymbol{w} \rangle = \langle \boldsymbol{w}, \boldsymbol{v} \rangle$;
- **I4.** for all $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in V$,

$$\langle \boldsymbol{u} + \boldsymbol{v}, \boldsymbol{w} \rangle = \langle \boldsymbol{u}, \boldsymbol{w} \rangle + \langle \boldsymbol{v}, \boldsymbol{w} \rangle.$$

In \mathbb{R}^n , the inner product is the dot product, given by

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \sum_{k=1}^{n} x_k y_k$$

for $x, y \in \mathbb{R}^n$. For sequences, the inner product is the generalisation of the dot product, given by

$$\langle x^{(n)}, y^{(n)} \rangle = \sum_{n=1}^{\infty} x_n y_n.$$

The sequence space where this series is convergent is precisely ℓ^2 . In C[0,1], the inner product is given by

$$\langle f, g \rangle = \int_0^1 f(x)g(x) \ dx.$$

We can define this not just on C[0,1], but also on functions f and g where fg is integrable- this set is called $L^2[0,1]$. In all cases, this follows from the Cauchy-Schwarz inequality.

Proposition 1.2.2 (Cauchy-Schwarz inequality). Let V be a real vector space and let $\langle .,. \rangle : V \times V \to \mathbb{R}$ be an inner product on V. Then, for all $\mathbf{v}, \mathbf{w} \in V$,

$$|\langle \boldsymbol{v}, \boldsymbol{w} \rangle|^2 \leq \langle \boldsymbol{v}, \boldsymbol{v} \rangle \cdot \langle \boldsymbol{w}, \boldsymbol{w} \rangle.$$

Proof. Let $\lambda = \frac{\langle v, w \rangle}{\langle w, w \rangle}$. We know that

$$\langle \boldsymbol{v} - \lambda \boldsymbol{w}, \boldsymbol{v} - \lambda \boldsymbol{w} \rangle \geq 0.$$

We also have

$$\langle \boldsymbol{v} - \lambda \boldsymbol{w}, \boldsymbol{v} - \lambda \boldsymbol{w} \rangle = \langle \boldsymbol{v}, \boldsymbol{v} \rangle - 2\lambda \langle \boldsymbol{v}, \boldsymbol{w} \rangle + \lambda^2 \langle \boldsymbol{w}, \boldsymbol{w} \rangle.$$

Treating this as a quadratic on λ , we know that it has at most one real root. So, the discriminant is non-positive. That is,

$$(2\langle \boldsymbol{v}, \boldsymbol{w} \rangle)^2 - 4\langle \boldsymbol{w}, \boldsymbol{w} \rangle \cdot \langle \boldsymbol{v}, \boldsymbol{v} \rangle \le 0$$
$$4\langle \boldsymbol{v}, \boldsymbol{w} \rangle^2 \le 4\langle \boldsymbol{w}, \boldsymbol{w} \rangle \cdot \langle \boldsymbol{v}, \boldsymbol{v} \rangle$$
$$|\langle \boldsymbol{v}, \boldsymbol{w} \rangle|^2 \le \langle \boldsymbol{w}, \boldsymbol{w} \rangle \cdot \langle \boldsymbol{v}, \boldsymbol{v} \rangle.$$

5

An inner product induces a norm.

Proposition 1.2.3. Let V be a real vector space and let $\langle .,. \rangle : V \times V \to \mathbb{R}$ be an inner product on V. Then, define the function $\|.\| : V \to \mathbb{R}$ by

$$\|\boldsymbol{v}\| = \langle \boldsymbol{v}, \boldsymbol{v} \rangle^{1/2}.$$

Then, $\|.\|$ defines a norm on V.

Proof.

N1. Let $v \in V$. We know that $||v|| \ge 0$ for all $v \in V$. Moreover, if $||v|| = \langle v, v \rangle = 0$, then v = 0.

N2. Let $c \in \mathbb{R}$ and $v \in V$. We find that

$$||c\mathbf{v}||^2 = \langle c\mathbf{v}, c\mathbf{v} \rangle = c^2 \langle \mathbf{v}, \mathbf{v} \rangle = c^2 ||\mathbf{v}||^2.$$

So, ||cv|| = |c|||v||.

N3. Let $u, v \in V$. We find that

$$\begin{aligned} \|\boldsymbol{u} + \boldsymbol{v}\|^2 &= \langle \boldsymbol{u} + \boldsymbol{v}, \boldsymbol{u} + \boldsymbol{v} \rangle \\ &= \langle \boldsymbol{u}, \boldsymbol{u} \rangle + 2 \langle \boldsymbol{v}, \boldsymbol{u} \rangle + \langle \boldsymbol{v}, \boldsymbol{v} \rangle \\ &\leq \|\boldsymbol{u}\|^2 + 2 \|\boldsymbol{u}\| \|\boldsymbol{v}\| + \|\boldsymbol{v}\|^2 \\ &\leq (\|\boldsymbol{u}\| + \|\boldsymbol{v}\|)^2. \end{aligned}$$

This implies that $||u + v|| \le ||u|| + ||v||$.

So, $\|.\|$ is a norm on V.

Definition 1.2.4. Let V be a real vector space with inner product $\langle .,. \rangle$. Then, for $\boldsymbol{v}, \boldsymbol{w} \in V$, we say that \boldsymbol{v} and \boldsymbol{w} are orthogonal if $\langle \boldsymbol{v}, \boldsymbol{w} \rangle = 0$.

Proposition 1.2.5 (Pythagoras' Theorem). Let V be a real vector space with inner product $\langle .,. \rangle$, let ||.|| be the norm induced by the inner product, and let $\boldsymbol{v}, \boldsymbol{w} \in V$ be orthogonal. Then,

$$\|\boldsymbol{v} + \boldsymbol{w}\|^2 = \|\boldsymbol{v}\|^2 + \|\boldsymbol{w}\|^2.$$

Proof. We find that

$$||\mathbf{v} + \mathbf{w}||^2 = \langle \mathbf{v} + \mathbf{w}, \mathbf{v} + \mathbf{w} \rangle$$

$$= \langle \mathbf{v}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle + \langle \mathbf{w}, \mathbf{v} \rangle + \langle \mathbf{w}, \mathbf{w} \rangle$$

$$= \langle \mathbf{v}, \mathbf{v} \rangle + \langle \mathbf{w}, \mathbf{w} \rangle$$

$$= ||\mathbf{v}||^2 + ||\mathbf{w}||^2.$$

Proposition 1.2.6 (Parallelogram Law). Let V be a real vector space with inner product $\langle ., \rangle$, and let $\|.\|$ be the norm induced by the inner product. Then, for all $\mathbf{v}, \mathbf{w} \in V$,

$$\|\boldsymbol{v} + \boldsymbol{w}\|^2 + \|\boldsymbol{v} - \boldsymbol{w}\|^2 = 2\|\boldsymbol{v}\|^2 + 2\|\boldsymbol{w}\|^2.$$

Conversely, if a norm satisfies the equality above for all $v, w \in V$, then it is induced by an inner product.

6 Pete Gautam

Proof.

• First, assume that $\|.\|$ is induced by an inner product. Let $\boldsymbol{v}, \boldsymbol{w} \in V$. Then,

$$\|\boldsymbol{v} + \boldsymbol{w}\|^2 + \|\boldsymbol{v} - \boldsymbol{w}\|^2 = \langle \boldsymbol{v} + \boldsymbol{w}, \boldsymbol{v} + \boldsymbol{w} \rangle + \langle \boldsymbol{v} - \boldsymbol{w}, \boldsymbol{v} - \boldsymbol{w} \rangle$$

$$= \langle \boldsymbol{v}, \boldsymbol{v} \rangle + \langle \boldsymbol{v}, \boldsymbol{w} \rangle + \langle \boldsymbol{w}, \boldsymbol{v} \rangle + \langle \boldsymbol{w}, \boldsymbol{w} \rangle$$

$$+ \langle \boldsymbol{v}, \boldsymbol{v} \rangle - \langle \boldsymbol{v}, \boldsymbol{w} \rangle - \langle \boldsymbol{w}, \boldsymbol{v} \rangle + \langle \boldsymbol{w}, \boldsymbol{w} \rangle$$

$$= 2\langle \boldsymbol{v}, \boldsymbol{v} \rangle + 2\langle \boldsymbol{w}, \boldsymbol{w} \rangle$$

$$= 2\|\boldsymbol{v}\|^2 + 2\|\boldsymbol{w}\|^2.$$

• Now, assume that for all $v, w \in V$,

$$\|\boldsymbol{v} + \boldsymbol{w}\|^2 + \|\boldsymbol{v} - \boldsymbol{w}\|^2 = 2\|\boldsymbol{v}\|^2 + 2\|\boldsymbol{w}\|^2.$$

Define the function $\langle .,. \rangle : V \times V \to \mathbb{R}$ by

$$\langle \boldsymbol{v}, \boldsymbol{w} \rangle = \frac{1}{4} (\|\boldsymbol{v} + \boldsymbol{w}\|^2 - \|\boldsymbol{v} - \boldsymbol{w}\|^2).$$

We claim that $\langle .,. \rangle$ is an inner product on V and that the inner product induces the norm $\|.\|$.

I1. Let $\boldsymbol{v} \in V$. We have

$$\langle \boldsymbol{v}, \boldsymbol{v} \rangle = \frac{1}{4} \cdot \|2\boldsymbol{v}\|^2 = \|\boldsymbol{v}\|^2 \ge 0.$$

Moreover, if $\langle \boldsymbol{v}, \boldsymbol{v} \rangle = 0$, then $\boldsymbol{v} = \boldsymbol{0}$.

12. Let $\lambda \in \mathbb{R}$ and $\boldsymbol{v}, \boldsymbol{w} \in V$. Then,

$$\langle \lambda \boldsymbol{v}, \boldsymbol{w} \rangle = \frac{1}{4} (\|\lambda \boldsymbol{v} - \boldsymbol{w}\|^2 - \|\lambda \boldsymbol{v} - \boldsymbol{w}\|^2)$$
$$= \frac{1}{4} (2\|\lambda \boldsymbol{v}\|^2 + 2\|\boldsymbol{w}\|^2 - 2\|\lambda \boldsymbol{v} - \boldsymbol{w}\|^2)$$

I3. Let $\boldsymbol{v}, \boldsymbol{w} \in V$. Then

$$\langle \boldsymbol{v}, \boldsymbol{w} \rangle = \frac{1}{4} (\|\boldsymbol{v} + \boldsymbol{w}\|^2 - \|\boldsymbol{v} - \boldsymbol{w}\|^2)$$

 $= \frac{1}{4} (\|\boldsymbol{w} + \boldsymbol{v}\|^2 - \|\boldsymbol{w} - \boldsymbol{v}\|^2)$
 $= \langle \boldsymbol{w}, \boldsymbol{v} \rangle.$

I4. Let $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in V$. Then,

$$\langle \boldsymbol{u} + \boldsymbol{v}, \boldsymbol{w} \rangle =$$

Using this result, we can show that the norm $\|.\|_1$ on \mathbb{R}^2 is not induced by a norm. Let $\boldsymbol{v} = [1,0]$ and $\boldsymbol{w} = [0,1]$. Then, we have

$$\|\boldsymbol{v} + \boldsymbol{w}\|_1^2 + \|\boldsymbol{v} - \boldsymbol{w}\|_1^2 = \|[1, 1]\|_1^2 + \|[1, -1]\|_1^2 = 4 + 4 = 8,$$

but

$$2\|\boldsymbol{v}\|_1 + 2\|\boldsymbol{w}\|_1 = 2\|[1,0]\|_1^2 + 2\|[0,1]\|_1^2 = 2 + 2 = 4.$$

We can use the same values to show that $\|.\|_{\infty}$ on \mathbb{R}^2 is not induced by a norm.

Pete Gautam 7

1.3 Sequence spaces

In this section, we will have a look at sequence spaces in more detail- we will show that they are vector spaces and characterise the containment of sequence spaces. First, we will consider the sequence spaces:

• For $p \in [1, \infty)$, the sequence space ℓ^p contains sequences $(x_n)_{n=1}^{\infty}$ in \mathbb{R} such that the series

$$\sum_{k=1}^{\infty} |x_k|^p$$

converges. We show that ℓ^p is a vector space.

- Let $(x_n)_{n=1}^{\infty}$ be in ℓ^p and $\lambda \in \mathbb{R}$. Since (x_n) is in ℓ^p , the series

$$\sum_{n=1}^{\infty} |x_n|^p$$

converges. In that case,

$$\sum_{n=1}^{\infty} |\lambda x_n|^p = |\lambda|^p \sum_{n=1}^{\infty} |x_n|^p.$$

So, the series (λx_n) is in ℓ^p .

– Let $(x_n)_{n=1}^{\infty}$ and $(y_n)_{n=1}^{\infty}$ be in ℓ^p . Since (x_n) and (y_n) are in ℓ^p , the series

$$\sum_{n=1}^{\infty} |x_n|^p, \qquad \sum_{n=1}^{\infty} |y_n|^p$$

converge. In that case, for all $n \in \mathbb{Z}_{>1}$,

$$(|x_n| + |y_n|)^p = |x_n|^p + \dots + |y_n|^p$$

So, the comparison test tells us that

$$\sum_{n=1}^{\infty} |x_n + y_n|^p$$

converges. So, the series $(x_n + y_n)$ is in ℓ^p .

• The sequence space ℓ^{∞} is the set where the infinity norm is defined, i.e. for a sequence $(x_n)_{n=1}^{\infty}$ in \mathbb{R} , the supremum

$$\sup_{k=1}^{\infty} |x_n|$$

exists. Therefore, the space is precisely the set of all bounded sequences. We show that ℓ^{∞} is a vector space.

- Let $(x_n)_{n=1}^{\infty}$ be in ℓ^{∞} and $\lambda \in \mathbb{R}$. Since (x_n) is in ℓ^{∞} , there exists a K > 0 such that for all $n \in \mathbb{Z}_{\geq 1}$, $|x_n| \leq K$. In that case, for all $n \in \mathbb{Z}_{\geq 1}$, $|\lambda x_n| \leq |\lambda| K$. So, the sequence (λx_n) is in ℓ^{∞} .

- Let $(x_n)_{n=1}^{\infty}$ and $(y_n)_{n=1}^{\infty}$ be in ℓ^{∞} . In that case, there exist $K_1, K_2 > 0$ such that for all $n \in \mathbb{Z}_{\geq 1}$, $|x_n| \leq K_1$ and $|y_n| \leq K_2$. In that case, for all $n \in \mathbb{Z}_{\geq 1}$,

$$|x_n + y_n| \le |x_n| + |y_n| \le K_1 + K_2.$$

So, the sequence $(x_n + y_n)$ is in ℓ^{∞} .

- The sequence space c is the set of convergent sequences. We show that c is a vector space.
 - Let $(x_n)_{n=1}^{\infty}$ be in c and $\lambda \in \mathbb{R}$. In that case, the sequence $x_n \to L$, for some $L \in \mathbb{R}$. Therefore, $\lambda x_n \to \lambda L$. This implies that (λx_n) is in c.
 - Let $(x_n)_{n=1}^{\infty}$ and $(y_n)_{n=1}^{\infty}$ be in c. In that case, we have $x_n \to L_1$ and $y_n \to L_2$, for some $L_1, L_2 \in \mathbb{R}$. Therefore, $x_n + y_n \to L_1 + L_2$. This implies that $(x_n + y_n)$ is in c.
- The sequence space c_0 is the set of convergent sequences that converge to 0. We show that c_0 is a vector space.
 - Let $(x_n)_{n=1}^{\infty}$ be in c_0 and $\lambda \in \mathbb{R}$. In that case, the sequence $x_n \to 0$. Therefore, $\lambda x_n \to 0$. This implies that (λx_n) is in c_0 .
 - Let $(x_n)_{n=1}^{\infty}$ and $(y_n)_{n=1}^{\infty}$ be in c. In that case, we have $x_n \to 0$ and $y_n \to 0$. Therefore, $x_n + y_n \to 0$. This implies that $(x_n + y_n)$ is in c_0 .
- Finally, the sequence space c_{00} is the set of convergent sequences $(x_n)_{n=1}^{\infty}$ such that there exists an $N \in \mathbb{Z}_{\geq 1}$ such that for $n \in \mathbb{Z}_{\geq 1}$, if $n \geq N$, then $x_n = 0$.³ We show that c_{00} is a vector space.
 - Let $(x_n)_{n=1}^{\infty}$ be in c_{00} and $\lambda \in \mathbb{R}$. In that case, there exists an $N \in \mathbb{Z}_{\geq 1}$ such that for $n \in \mathbb{Z}_{\geq 1}$, if $n \geq N$, then $x_n = 0$. So, for $n \in \mathbb{Z}_{\geq 1}$, if $n \geq N$, then $\lambda x_n = 0$. So, (λx_n) is in c_{00} .
 - Let $(x_n)_{n=1}^{\infty}$ and $(y_n)_{n=1}^{\infty}$ be in c_{00} . In that case, there exist $N_1, N_2 \in \mathbb{Z}_{\geq 1}$ such that for $n \in \mathbb{Z}_{\geq 1}$, if $n \geq N_1$, then $x_n = 0$, and if $n \geq N_2$, then $y_n = 0$. So, set $N = \max(N_1, N_2)$. Then, for $n \in \mathbb{Z}_{\geq 1}$, if $n \geq N$, then $x_n + y_n = 0$. This implies that $(x_n + y_n)$ is in c_{00} .

The following is the containment relationship between the sequence spaces:

$$c_{00} \subseteq c_0 \subseteq c \subseteq \ell^{\infty}$$
.

Moreover, the quotient vector space c/c_0 is isomorphic to \mathbb{R} - this is because the relation \sim on c given by

$$(x_n) \sim (y_n) \iff (x_n)$$
 and (y_n) converge to the same limit

corresponds to $x_n - y_n \to 0$, i.e. $(x_n - y_n)$ in c_0 . In other words, it is the kernel of the surjective vector space homomorphism $v: c \to \mathbb{R}$ where v(x) = L, with $x_n \to L$. Then, the result follows from the first isomorphism theorem.

³That is, it is the set of sequences that eventually become 0.

Now, let $p \in [1, \infty)$. We will place ℓ^p in the containment relationship. Let $(x_n)_{n=1}^{\infty}$ be in ℓ^p . We know that the series

$$\sum_{n=1}^{\infty} |x_n|^p$$

converges. In that case, we have $|x_n|^p \to 0$. Therefore, $x_n \to 0$. So, $\ell^p \subseteq c_0$. However, $\ell^p \not\subseteq c_{00}$ since there are infinite sums that converge. So, we have $c_{00} \subseteq \ell^p \subseteq c_0$.

Next, let $p,q \in [1,\infty)$ with p < q. We show that $\ell^p \subseteq \ell^q$. We start with a lemma.

Lemma 1.3.1. Let $p \in [1, \infty)$, and let $(x_n)_{n=1}^{\infty}$ be in ℓ^p . Then, $||x||_{\infty} \leq ||x||_p$.

Proof. Let $\varepsilon > 0$. Since

$$||x||_{\infty} = \sup_{n=1}^{\infty} |x_n|,$$

we can find a $k \in \mathbb{Z}_{\geq 1}$ such that $|x_k| \geq ||x||_{\infty} - \varepsilon$. In that case,

$$||x||_p = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p} \ge (|x_k|^p)^{1/p} = |x_k| \ge ||x||_{\infty} - \varepsilon.$$

So, for all $\varepsilon > 0$, $||x||_p \ge ||x||_{\infty} - \varepsilon$. In that case, we must have $||x||_{\infty} \le ||x||_p$. \square Now, we prove that $\ell^p \subseteq \ell^q$.

Proposition 1.3.2. Let $p, q \in [1, \infty)$ with p < q. Then, $\ell^p \subseteq \ell^q$.

Proof. Let $(x_n)_{n=1}^{\infty}$ be in ℓ^p . We find that

$$||x||_{q}^{q} = \sum_{n=1}^{\infty} |x_{n}|^{q}$$

$$= \sum_{n=1}^{\infty} |x_{k}|^{p} \cdot |x_{n}|^{q-p}$$

$$\leq \sum_{n=1}^{\infty} |x_{n}|^{p} \cdot ||x||_{\infty}^{q-p}$$

$$= ||x||_{\infty}^{q-p} \sum_{n=1}^{\infty} |x_{n}|^{p}$$

$$= ||x||_{\infty}^{q-p} ||x||_{p}^{p}$$

$$= ||x||_{p}^{q-p} ||x||_{p}^{p}$$

$$= ||x||_{p}^{q}.$$

This implies that $||x||_q \leq ||x||_p$. So, (x_n) is in ℓ^q . Therefore, $\ell^p \subseteq \ell^q$.

Finally, we have the complete characterisation of the containment:

$$c_{00} \subseteq \ell^1 \subseteq \ell^2 \subseteq \cdots \subseteq c_0 \subseteq c \subseteq \ell^{\infty}$$
.

At each level, the containment is strict.

1.4 Topology of vector spaces

Compactness

We know that a subspace $A \subseteq \mathbb{R}^n$ is compact if and only if A is closed and bounded. This does not hold in sequence spaces, under any norm. First, we consider the ℓ_{∞} norm. Let

$$A = \{ (x_n) \in \ell^{\infty} \mid ||x||_{\infty} \le 1 \}.$$

This is a closed space since the norm map is continuous. Moreover, it is bounded by the triangle inequality. However, we claim that the space is not compact. To see this, let $(e_k)_{k=1}^{\infty}$ be a sequence in ℓ^{∞} given by

$$e_k = \begin{cases} 0 & n \neq k \\ 1 & n = k \end{cases}.$$

By definition, for all $m, n \in \mathbb{Z}_{\geq 1}$, if $m \neq n$, then $\|e_m - e_n\|_{\infty} = 1$. This implies that any subsequence cannot be Cauchy, and so is not convergent. Therefore, A is not sequentially compact. Since the topology on A is induced by a metric, this further implies that A is not compact. This is true for other norms as well.

Definition 1.4.1. Let X be a real vector space, and let $(f_n)_{n=1}^{\infty}$ be a sequence of functions $f_n: X \to \mathbb{R}$, and let $f: X \to \mathbb{R}$. We say that (f_n) converges to f pointwise if for all $x \in X$, $f_n(x) \to f(x)$. In other words, for every $x \in X$ and $\varepsilon > 0$, there exists an $N \in \mathbb{Z}_{\geq 1}$ such that for all $n \in \mathbb{Z}_{\geq 1}$, if $n \geq N$, then $|f_n(x) - f(x)| < \varepsilon$.

Definition 1.4.2. Let X be a real vector space, and let $(f_n)_{n=1}^{\infty}$ be a sequence of functions $f_n: X \to \mathbb{R}$, and let $f: X \to \mathbb{R}$. We say that (f_n) converges to f uniformly if for every $\varepsilon > 0$, there exists an $N \in \mathbb{Z}_{\geq 1}$ such that for all $x \in X$ and $n \in \mathbb{Z}_{\geq 1}$, if $n \geq N$, then $|f_n(x) - f(x)| < \varepsilon$.

Proposition 1.4.3. Let X be a normed vector space, and let $(f_n)_{n=1}^{\infty}$ be a sequence of continuous functions $f_n: X \to \mathbb{R}$, and let $f: X \to \mathbb{R}$ such that $f_n \to f$ uniformly. Then, f is continuous.

Proof. Let $x \in X$ and $\varepsilon > 0$. Since $f_n \to f$ uniformly, we can find an $N \in \mathbb{Z}_{\geq 1}$ such that for $n \in \mathbb{Z}_{\geq 1}$ and $a \in X$, if $n \geq N$, then $|f_n(a) - f(a)| < \frac{\varepsilon}{3}$. Moreover, since f_N is continuous, we can find a $\delta > 0$ such that for $y \in X$, if $||x - y|| < \delta$, then $|f_N(x) - f_N(y)| < \frac{\varepsilon}{3}$. In that case, for $y \in X$, if $||x - y|| < \delta$, then

$$|f(x) - f(y)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(y)| + |f_N(y) - f(y)|$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

This implies that f is continuous.

Definition 1.4.4. Let $K \subseteq C[0,1]$. We say that K is equi-continuous if for all $\varepsilon > 0$, there exists a $\delta > 0$ such that for all $f \in K$ and $s, t \in [0,1]$, if $|s-t| < \delta$, then $|f(s) - f(t)| < \varepsilon$.

Theorem 1.4.5 (Arzela-Ascoli). Let $K \subseteq C[0,1]$. Then, K is compact if and only if K is closed, bounded and equi-continuous, under the L_{∞} norm.

Proof.

• First, assume that K is compact. We know that K is closed and bounded. We show that K is equi-continuous. So, let $\varepsilon > 0$. We know that $(B_K(f,\frac{\varepsilon}{3}))_{f \in K}$ is an open cover of K. So, it has a finite subcover $(B_K(f_i,\frac{\varepsilon}{3}))_{i=1}^n$. For $i \in \{1,2,\ldots,n\}$, we can find a $\delta_i > 0$ such that for $s,t \in [0,1]$, if $|s-t| < \delta$, then $|f_i(s)-f_i(t)| < \frac{\varepsilon}{3}$. Set $\delta = \min_{i=1}^n \delta_i$. Now, let $g \in K$. We can find a $j \in \{1,2,\ldots,n\}$ such that

$$g \in B_K(f_j, \frac{\varepsilon}{3}).$$

In that case, $||f_j - g||_{\infty} < \frac{\varepsilon}{3}$. So, for all $x \in [0,1]$, $|f_j(x) - g(x)| < \frac{\varepsilon}{3}$. Now, for $s,t \in [0,1]$, if $|s-t| < \delta$, then

$$|g(s) - g(t)| \le |g(s) - f_j(s)| + |f_j(s) - f_j(t)| + |f_j(t) - g(s)|$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

So, K is equi-continuous.

• Now, assume that K is closed, bounded and equi-continuous. Let $(f_n)_{n=1}^{\infty}$ be a sequence in K. We show that (f_n) has a convergent subsequence.

Separability

Definition 1.4.6. Let X be a metric space. We say that X is separable if it contains a countable dense subset.

We know that \mathbb{R} is separable- \mathbb{Q} is a countable dense subset of \mathbb{R} . In general, \mathbb{Q}^n is a countable dense subset of \mathbb{R}^n .

Proposition 1.4.7. The sequence space ℓ^{∞} is not separable.

Proof. Let $C \subseteq \mathbb{Z}_{>1}$. Define the sequence $(x_n^C)_{n=1}^{\infty}$ in \mathbb{R} by

$$x_n^C = \begin{cases} 1 & n \in C \\ 0 & n \notin C \end{cases}.$$

We have (x_n) in ℓ^{∞} . Moreover, for $P, Q \subseteq \mathbb{N}$ with $P \neq Q$, $||x^P - x^Q||_{\infty} = 1$. In that case,

$$B_{\ell^{\infty}}(x^P, \frac{1}{2}) \cap B_{\ell^{\infty}}(x^Q, \frac{1}{2}) = \varnothing.$$

So, the set

$$S = \{ x^C \mid C \subseteq \mathbb{Z}_{\geq 1} \}$$

is not dense in ℓ^{∞} -

Proposition 1.4.8. The function space C[0,1] is separable.

Proof. We show that polynomials is a countable subset in C[0,1]. The space of polynomials is the union of polynomials of degree n, for all $n \in \mathbb{Z}_{\geq 1}$. The polynomials of degree n are isomorphic to \mathbb{R}^{n+1} as vector spaces. So, the space of polynomials is countable. Moreover, the space of polynomials is dense- we will not prove this. For this reason, C[0,1] is separable.

12 Pete Gautam

Completeness

Definition 1.4.9. Let V be a normed vector space such that the metric induced by the norm is complete. Then, we say that V is a $Banach\ space$.

Definition 1.4.10. Let V be a inner product space such that the metric induced by the norm is complete. Then, we say that V is a *Hilbert space*.

The sequence space c_{00} is not complete. Consider the sequence $(x^{(n)})_{n=1}^{\infty}$ in c_{00} , given by

$$x^{(n)} = (1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, 0, 0, \dots).$$

Under the ℓ_{∞} norm, this sequence converges to

$$x = (1, \frac{1}{2}, \frac{1}{3}, \dots)$$

since

$$||x^{(n)} - x||_{\infty} = ||(0, 0, \dots, 0, -\frac{1}{n+1}, -\frac{1}{n+2}, \dots)||_{\infty} = \frac{1}{n+1} \to 0.$$

But, the sequence x is not in c_{00} since it is not eventually 0. So, $(x^{(n)})$ is Cauchy in c_{00} but not convergent- it is not complete.

However, this is not the case for ℓ^{∞} .

Proposition 1.4.11. The sequence space ℓ^{∞} is complete.

Proof. Let $(x^{(n)})_{n=1}^{\infty}$ be a Cauchy sequence in ℓ^{∞} . For $k \in \mathbb{Z}_{\geq 1}$, we have the sequence $(x_k^{(n)})_{n=1}^{\infty}$ in \mathbb{R} . We claim that $(x_k^{(n)})$ is Cauchy in \mathbb{R} . Let $\varepsilon > 0$. Since $(x^{(n)})$ is Cauchy, there exists an $N \in \mathbb{Z}_{\geq 1}$ such that for $m, n \in \mathbb{Z}_{\geq 1}$, if $m, n \geq N$, then

$$||x^{(n)} - x^{(m)}||_{\infty} < \varepsilon.$$

In that case,

$$|x_k^{(n)} - x_k^{(m)}| \le \sup_{i=1}^{\infty} |x_i^{(n)} - x_i^{(m)}| = ||x^{(n)} - x^{(m)}||_{\infty} < \varepsilon.$$

So, $(x_k^{(n)})$ is Cauchy in \mathbb{R} . Since \mathbb{R} is complete, there exists an $x_k \in \mathbb{R}$ such that $x_k^{(n)} \to x_k$. So, we can construct the sequence $(x_k)_{k=1}^{\infty}$ in \mathbb{R} , where $x_k^{(n)} \to x_k$ for $k \in \mathbb{Z}_{\geq 1}$.

First, we claim that (x_k) is in ℓ^{∞} . Since $(x^{(n)})$ is Cauchy, there exists an $N \in \mathbb{Z}_{\geq 1}$ such that for $m, n \in \mathbb{Z}_{\geq 1}$, if $m, n \geq N$, then $||x^{(m)} - x^{(n)}||_{\infty} < 1$. In particular, for all $m, n \in \mathbb{Z}_{\geq 1}$, if $m, n \geq N$, then $|x_k^{(m)} - x_k^{(n)}| < 1$ for all $k \in \mathbb{Z}_{\geq 1}$. Since $x^{(N)}$ is in ℓ^{∞} , there exists a K > 0 such that for all $k \in \mathbb{Z}_{\geq 1}$, $|x_k^{(N)}| \leq K$. Now, let $k \in \mathbb{Z}_{\geq 1}$. Since $x_k^{(n)} \to x_k$, there exists an $N' \in \mathbb{Z}_{\geq 1}$ such that for $n \in \mathbb{Z}_{\geq 1}$, if $n \geq N'$, then $|x_k - x_k^{(n)}| < 1$. Now, fix $n = \max(N, N')$. In that case,

$$|x_k| \le |x_k - x_k^{(n)}| + |x_k^{(n)} - x_k^{(N)}| + |x_k^{(N)}| \le 2 + K.$$

So, (x_k) is in ℓ^{∞} .

Now, we claim that $x^{(n)} \to x$ under the ℓ_{∞} metric. Let $\varepsilon > 0$. Since $(x^{(n)})$ is Cauchy, there exists an $N \in \mathbb{Z}_{\geq 1}$ such that for $m, n \in \mathbb{Z}_{\geq 1}$, if $m, n \geq N$,

then $||x^{(m)} - x^{(n)}||_{\infty} < \frac{\varepsilon}{3}$. In particular, for all $m, n \in \mathbb{Z}_{\geq 1}$, if $m, n \geq N$, then $|x_k^{(m)} - x_k^{(n)}| < \frac{\varepsilon}{3}$ for all $k \in \mathbb{Z}_{\geq 1}$. Now, let $n \in \mathbb{Z}_{\geq 1}$ with $n \geq N$. Moreover, let $k \in \mathbb{Z}_{\geq 1}$. Since $x_k^{(n)} \to x_k$, there exists an $N' \in \mathbb{Z}_{\geq 1}$ such that for $n \in \mathbb{Z}_{\geq 1}$, if $n \geq N'$, then $|x_k^{(n)} - x_k| < \frac{\varepsilon}{3}$. Now, fix $m = \max(N, N')$. Then,

$$|x_k^{(n)} - x_k| \le |x_k^{(n)} - x_k^{(m)}| + |x_k^{(m)} - x_k| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \frac{2}{3}\varepsilon.$$

Therefore, for all $k \in \mathbb{Z}_{\geq 1}$, $|x_k^{(n)} - x_k| < \frac{2}{3}\varepsilon$. By the supremum property, this implies that

$$||x^{(n)} - x||_{\infty} \le \frac{2}{3}\varepsilon < \varepsilon.$$

So, for all $n \in \mathbb{Z}_{>1}$, if $n \geq N$, then

$$||x^{(n)} - x||_{\infty} < \varepsilon.$$

This implies that $x^{(n)} \to x$. Therefore, ℓ^{∞} is complete.

Using this, we can show that c is complete.

Proposition 1.4.12. The sequence space $c \subseteq \ell^{\infty}$ is closed.

Proof. Let $(x^{(n)})_{n=1}^{\infty}$ be a convergent sequence in c with $x^{(n)} \to x$, for some x in ℓ^{∞} . We show that x is Cauchy. Let $\varepsilon > 0$. Since $x^{(n)} \to x$, we can find an $N \in \mathbb{Z}_{\geq 1}$ such that for $n \in \mathbb{Z}_{\geq 1}$, if $n \geq N$, then $\|x^{(n)} - x\|_{\infty} < \frac{\varepsilon}{3}$. In particular, for $n \in \mathbb{Z}_{\geq 1}$, if $n \geq N$, then $|x^{(n)}_k - x_k| < \frac{\varepsilon}{3}$ for all $k \in \mathbb{Z}_{\geq 1}$. Since $x^{(N)}$ is in c, we know that $x^{(N)}$ is Cauchy. In that case, there exists an $N' \in \mathbb{Z}_{\geq 1}$ such that for $m, n \in \mathbb{Z}_{\geq 1}$, if $m, n \geq N'$, then $|x^{(N)}_m - x^{(N)}_n| < \frac{\varepsilon}{3}$. Therefore, for $m, n \in \mathbb{Z}_{\geq 1}$, if $m, n \geq N'$, then

$$|x_m - x_n| \le |x_m - x_m^{(N)}| + |x_m^{(N)} - x_n^{(N)}| + |x_n^{(N)} - x_n| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

This implies that x is Cauchy. Since x is a sequence in \mathbb{R} , we find that x is in c. So, c is closed.

This shows that c is complete- it is a closed subset of a complete space. We use a similar approach to show that c_0 is complete.

Proposition 1.4.13. The sequence space $c_0 \subseteq c$ is closed.

Proof. Let $(x^{(n)})_{n=1}^{\infty}$ be a convergent sequence in c_0 with $x^{(n)} \to x$, for some x in c. We show that $x_k \to 0$. Let $\varepsilon > 0$. Since $x^{(n)} \to x$, we can find an $N \in \mathbb{Z}_{\geq 1}$ such that for $n \in \mathbb{Z}_{\geq 1}$, if $n \geq N$, then $||x^{(n)} - x||_{\infty} < \frac{\varepsilon}{2}$. In particular, for $n \in \mathbb{Z}_{\geq 1}$, if $n \geq N$, then $|x_k^{(n)} - x_k| < \frac{\varepsilon}{2}$ for all $k \in \mathbb{Z}_{\geq 1}$. Since $x^{(N)}$ is in c_0 , we find that $x^{(N)} \to 0$. In that case, there exists an $N' \in \mathbb{Z}_{\geq 1}$ such that for $k \in \mathbb{Z}_{\geq 1}$, if $k \geq N'$, then $|x_k^{(N)}| < \frac{\varepsilon}{2}$. In that case, for all $k \in \mathbb{Z}_{\geq 1}$, if $k \geq N'$, then

$$|x_k| \le |x_k - x_k^{(N)}| + |x_k^{(N)}| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

This implies that $x_k \to 0$. So, x is in c_0 , i.e. c_0 is closed.

Finally, we show that C[0,1] is complete.

Proposition 1.4.14. The function space C[0,1] is complete.

Proof. Let $(f_n)_{n=1}^{\infty}$ be a Cauchy sequence in C[0,1]. For $x \in [0,1]$, the sequence $(f_n(x))_{n=1}^{\infty}$ is a sequence in \mathbb{R} . We show that $(f_n(x))$ is Cauchy. Let $\varepsilon > 0$. Since (f_n) is Cauchy, there exists an $N \in \mathbb{Z}_{\geq 1}$ such that for $m, n \in \mathbb{Z}_{\geq 1}$, if $m, n \geq N$, then $||f_m - f_n||_{\infty} < \varepsilon$. In that case, for $m, n \in \mathbb{Z}_{\geq 1}$, if $m, n \geq N$, then

$$|f_m(x) - f_n(x)| \le \sup_{y \in [0,1]} |f_m(y) - f_n(y)| = ||f_m - f_n||_{\infty} < \varepsilon.$$

This implies that $(f_n(x))$ is Cauchy in \mathbb{R} . Since \mathbb{R} is complete, there exists an $f_x \in \mathbb{R}$ such that $f_n(x) \to f_x$. So, we can construct the function $f: [0,1] \to \mathbb{R}$ by $f(x) = f_x$.

First, we claim that f is in C[0,1]. Let $x \in [0,1]$, and $\varepsilon > 0$. Since (f_n) is Cauchy, we can find an $K \in \mathbb{Z}_{\geq 1}$ such that for $m, n \in \mathbb{Z}_{\geq 1}$, if $m, n \geq K$, then $||f_m - f_n||_{\infty} < \frac{\varepsilon}{5}$. In particular, for $m, n \in \mathbb{Z}_{\geq 1}$, if $m, n \geq K$, then $||f_m(y) - f_n(y)|| < \frac{\varepsilon}{5}$ for all $y \in [0,1]$. Since f_K is in C[0,1], we can find a $\delta > 0$ such that for $y \in [0,1]$, if $|x-y| < \delta$, then $|f_K(x) - f_K(y)| < \frac{\varepsilon}{5}$. Since $f_n(x) \to f(x)$, we can find an $N_2 \in \mathbb{Z}_{\geq 1}$ such that for $n \in \mathbb{Z}_{\geq 1}$, if $n \geq N_2$, then $|f_n(x) - f(x)| < \frac{\varepsilon}{5}$. Set $N = \max(N_1, N_2)$. Next, let $y \in [0,1]$ with $|x-y| < \delta$. Since $f_n(y) \to f(y)$, we can find an $N_3 \in \mathbb{Z}_{\geq 1}$ such that for $n \in \mathbb{Z}_{\geq 1}$, if $n \geq N_3$, then $|f_n(y) - f(y)| < \frac{\varepsilon}{5}$. Set $M = \max(N_1, N_3)$. Therefore,

$$|f(x) - f(y)| \le |f(x) - f_N(x)| + |f_N(x) - f_K(x)| + |f_K(x) - f_K(y)| + |f_K(y) - f_M(y)| + |f_M(y) - f(y)| < \frac{\varepsilon}{5} + \frac{\varepsilon}{5} + \frac{\varepsilon}{5} + \frac{\varepsilon}{5} + \frac{\varepsilon}{5} = \varepsilon.$$

That is, for all $y \in [0,1]$, if $|x-y| < \delta$, then $|f(x) - f(y)| < \varepsilon$. This implies that f is in C[0,1].

Now, we claim that $f_n \to f$ under the ℓ_∞ metric. Let $\varepsilon > 0$. Since (f_n) is Cauchy, there exists an $N \in \mathbb{Z}_{\geq 1}$ such that for $m, n \in \mathbb{Z}_{\geq 1}$, then $||f_m - f_n||_\infty < \frac{\varepsilon}{3}$. In particular, for all $m, n \in \mathbb{Z}_{\geq 1}$, if $m, n \geq N$, then $|f_m(x) - f_n(x)| < \frac{\varepsilon}{3}$ for all $x \in [0,1]$. Now, let $n \in \mathbb{Z}_{\geq 1}$ with $n \geq N$. Moreover, let $x \in [0,1]$. Since $f_n(x) \to f(x)$, there exists an $N' \in \mathbb{Z}_{\geq 1}$ such that for $n \in \mathbb{Z}_{\geq 1}$, if $n \geq N'$, then $|f_n(x) - f(x)| < \frac{\varepsilon}{3}$. Now, fix $m = \max(N, N')$. Then,

$$|f_n(x) - f(x)| \le |f_n(x) - f_m(x)| + |f_m(x) - f(x)| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \frac{2}{3}\varepsilon.$$

Therefore, for all $x \in [0,1]$, $|f_n(x) - f(x)| < \frac{2}{3}\varepsilon$. By the supremum property, this implies that

$$||f_n - f||_{\infty} \le \frac{2}{3}\varepsilon < \varepsilon.$$

So, for all $n \in \mathbb{Z}_{\geq 1}$, if $n \geq N$, then

$$||f_n - f||_{\infty} < \varepsilon.$$

This implies that $f_n \to f$. Therefore, C[0,1] is complete.