應數一線性代數 2021 秋,第一次期中考 解答

學號:	 , 姓名:	

本次考試共有8頁(包含封面),有12題。如有缺頁或漏題,請立刻告知監考人員。

考試須知:

- 請在第一頁及最後一頁填上姓名學號。
- 不可翻閱課本或筆記。
- 計算題請寫出計算過程,閱卷人員會視情況給予部份分數。沒有計算過程,就算回答正確答案也不會得到滿分。答卷請清楚乾淨,儘可能標記或是框出最終答案。
- 書寫空間不夠時,可利用試卷背面,但須標記清楚。

高師大校訓:誠敬宏遠

誠:一生動念都是誠實端正的。 **敬**:就是對知識的認真尊重。 **宏**:開拓視界,恢宏心胸。 **遠**:任重致遠,不畏艱難。

請簽名保證以下答題都是由你自己作答的,並沒有得到任何的外部幫助。

1. (5 points) Find all numbers r such that $\begin{bmatrix} 2 & 4 & 2 \\ 1 & r & 3 \\ 1 & 1 & 2 \end{bmatrix}$ is invertible.

Answer: $r = \mathbb{R} \setminus \{0\}$

$$det\begin{pmatrix} 2 & 4 & 2 \\ 1 & r & 3 \\ 1 & 1 & 2 \end{pmatrix} = 4r + 2 + 12 - 2r - 8 - 6 = 2r.$$

Therefore, determine equal to 0 only if r = 0.

2. (10 points) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that T([1,0,0]) = [2,3,0], T([0,1,0]) = [-2,0,1], and T([1,2,3]) = [4,15,2]. Find $T^{-1}([4,-3,2]) = \underline{\qquad}$ $T([0,0,1]) = \frac{1}{3} \left(T([1,2,3]) - T([1,0,0]) - 2T([0,1,0]) \right) = [2,4,0] \text{ Let } A \text{ is the standard matrix representation of } T.$

$$A = \begin{bmatrix} 2 & -2 & 2 \\ 3 & 0 & 4 \\ 0 & 1 & 0 \end{bmatrix}$$

The standard matrix representation of T^{-1} is A^{-1}

$$A^{-1} = \begin{bmatrix} 2 & -1 & 4 \\ 0 & 0 & 1 \\ -1.5 & 1 & -3 \end{bmatrix}$$

$$T^{-1}([4, -3, 2]) = (A^{-1} \begin{bmatrix} 4 \\ -3 \\ 2 \end{bmatrix})^T = [19, 2, -15]$$

3. (5 points) Classify $\vec{v} = [4, 1, 2, 1, 6]$ and $\vec{u} = [8, 2, 4, 2, 3]$ are parallel, perpendicular, or neither.

Since $\vec{v} \cdot \vec{u} \neq 0$, it is NOT perpendicular.

4. (10 points) Find the homogeneous solution and general solution of the given linear system and express the solution set.

$$\begin{cases} x_1 + x_3 + 5x_4 = -1 \\ x_2 + 2x_3 + 6x_4 = 3 \\ x_1 - x_2 + 2x_4 = 3 \end{cases}$$

Answer: the homogeneous solution is __

The general solution is _____

$$\begin{bmatrix} 1 & 0 & 1 & 5 & | & -1 \\ 0 & 1 & 2 & 6 & | & 3 \\ 1 & -1 & 0 & 2 & | & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 2 & | & -8 \\ 0 & 1 & 0 & 0 & | & -11 \\ 0 & 0 & 1 & 3 & | & 7 \end{bmatrix}$$

NOTIII

Let $x_4 = r$, we get $x_3 = 0$, $x_2 + 2r = 8$, $x_1 + 3r = 13$. Thus $x_1 = 13 - 3r$, $x_2 = 8 - 2r$, $x_3 = 0$, $x_4 = r$. Then solution are

$$\left\{ \begin{bmatrix} 13 - 3r \\ 8 - 2r \\ 0 \\ r \end{bmatrix} \middle| r \in \mathbb{R} \right\} = \left\{ \begin{bmatrix} 13 \\ 8 \\ 0 \\ 0 \end{bmatrix} + r \begin{bmatrix} -3 \\ -2 \\ 0 \\ 1 \end{bmatrix} \middle| r \in \mathbb{R} \right\}$$

5. (10 points) Assume the the matrix A can be row reduces to H, please answer the following questions.

$$A = \begin{bmatrix} 5 & 1 & 0 & 3 & -3 \\ 1 & 0 & -1 & 1 & 8 \\ 0 & 3 & 1 & -6 & 1 \\ 1 & 1 & 0 & -1 & 7 \end{bmatrix}, H = \begin{bmatrix} 5 & 0 & 0 & 5 & 0 \\ 0 & 2 & 0 & -4 & -6 \\ 0 & 0 & -1 & 0 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- (a) the **rank** of matrix A, is ______.
- (b) a basis for the **row space** of A is [5, 0, 0, 5, 0], [0, 2, 0, -4, -6], [0, 0, -1, 0, -2]
- (c) a basis for the **column space** of A is $\begin{bmatrix} 5 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \end{bmatrix}.$
- (d) a basis for the **nullspace** of A is $\begin{bmatrix} -1 \\ 4 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 6 \\ -2 \\ 1 \\ 0 \\ 1 \end{bmatrix}.$

Let $x_4 = r, x_5 = s$, we get $-x_3 - 2s = 0, x_2 - 4r - 6s = 0, 5x_1 + 5r = 0$. Thus $x_1 = -r, x_2 = 4r + 6s, x_3 = -2s, x_4 = r, x_5 = s$. Then homogeneous solution are

$$\left\{ \begin{bmatrix} -r \\ 4r + 6s \\ -2s \\ r \\ s \end{bmatrix} \middle| r \in \mathbb{R} \right\} = \left\{ r \begin{bmatrix} -1 \\ 4 \\ 0 \\ 1 \\ 0 \end{bmatrix} + s \begin{bmatrix} 0 \\ 6 \\ -2 \\ 0 \\ 1 \end{bmatrix} \middle| r \in \mathbb{R} \right\}$$

6. (5 points) Suppose that T is a linear transformation with standard matrix representation A, and that A is a 8×11 matrix such that the nullspace of A has dimension 6. What is the dimension of the range of T?

Since the nullity of A is equal to 6, the rank of A is equal to 5. Thus the dimension of the range of T is 5.

- 7. (10 points) Given set $S = \{[-2, 3, 1, 0], [0, 1, 5, -2], [1, -1, 2, -1]\}$ in \mathbb{R}^4 .
 - (a) Determine whether the set S is linearly dependent or linearly independent. If it is linearly dependent, find a basis for sp(S).

Answer: $\{[-2,3,1,0],[0,1,5,-2],\}$

(b) Enlarge the basis you found in part (a) to be a basis for \mathbb{R}^4 .

Answer: $\{[-2, 3, 1, 0], [0, 1, 5, -2], [1, 0, 0, 0], [0, 1, 0, 0]\}$

```
\begin{bmatrix} -2 & 0 & 1 & 1 & 0 & 0 & 0 \\ 3 & 1 & -1 & 0 & 1 & 0 & 0 \\ 1 & 5 & 2 & 0 & 0 & 1 & 0 \\ 0 & -2 & -1 & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -0.5 & 0 & 0 & 1 & 2.5 \\ 0 & 1 & 0.5 & 0 & 0 & 0 & -0.5 \\ 0 & 0 & 0 & 1 & 0 & 2 & 5 \\ 0 & 0 & 0 & 0 & 1 & -3 & -7 \end{bmatrix}
```

8. (10 points) Determine if the set $W = \{(x, y, z) \in \mathbb{R}^3 | x = 2y + z, y = 5z\}$ is a subspace of \mathbb{R}^3

If y = 5z, we have x = 2y + z = 11z. Let $w_1 = (11z_1, 5z_1, z_1)$ and $w_2 = (11z_2, 5z_2, z_2)$ be arbitrary vectors in W. Then for any real number c, $cw_1 = (11cz_1, 5cz_1, cz_1) \in W$

 $w_1 + w_2 = (11z_1 + 11z_2, 5z_1 + 5z_2, z_1 + z_2) = (11(z_1 + z_2), 5(z_1 + z_2), (z_1 + z_2)) \in W$

So since W is closed under scalar multiplication and vector addition, W is a subspace of \mathbb{R}^3

9. (5 points) Let F bethe set of all real-valued functions on a (nonempty) set S; that is, let F be the set of all functions mapping S into \mathbb{R} . For $f,g\in F$, let the sum $f\oplus g$ of two functions f and g in F, and for any scalar r, let scalar multiplication be defined below. Is this set a vector space?

$$(f \oplus g)(x) = f(x) + 3g(x)$$
 for all $x \in S$
 $(rf)(x) = rf(x)$ for all $x \in S$

Define $(f \oplus g) = f(x) + 3g(x)$, for all $x \in \mathbb{R}$.

A2: $(f \oplus g) = (g \oplus f)$ for all $f, g \in F$.

However, pick f(x) = x, g(x) = 6x, $(f \oplus g) = f(x) + 3g(x) \neq 3f(x) + g(x) = (g \oplus f)$.

Therefore, It is NOT a vector space.

10. (10 points) Let \vec{v}_1 and \vec{v}_2 be two vectors in \mathbb{R}^n . Prove that $sp(\vec{v}_1, \vec{v}_1 + \vec{v}_2) = sp(\vec{v}_1 - \vec{v}_2, \vec{v}_1 + \vec{v}_2)$

Clearly, $\vec{v}_1 = \frac{1}{2}[(\vec{v}_1 - \vec{v}_2) + (\vec{v}_1 + \vec{v}_2)]$ and $\vec{v}_1 + \vec{v}_2 = 0 \cdot (\vec{v}_1 - \vec{v}_2) + 1 \cdot (\vec{v}_1 + \vec{v}_2)$. Hence $\vec{v}_1, \vec{v}_1 + \vec{v}_2 \in sp(\vec{v}_1 - \vec{v}_2, \vec{v}_1 + \vec{v}_2)$ and therefore $sp(\vec{v}_1, \vec{v}_1 + \vec{v}_2) \subset sp(\vec{v}_1 - \vec{v}_2, \vec{v}_1 + \vec{v}_2)$.

Also, $\vec{v}_1 + \vec{v}_2 = 0 \cdot \vec{v}_1 + 1 \cdot (\vec{v}_1 + \vec{v}_2)$ and $\vec{v}_1 - \vec{v}_2 = 1 \cdot \vec{v}_1 - 1 \cdot (\vec{v}_1 + \vec{v}_2)$. Hence $\vec{v}_1 - \vec{v}_2, \vec{v}_1 + \vec{v}_2 \in sp(\vec{v}_1 - \vec{v}_2, \vec{v}_1 + \vec{v}_2)$ and therefore $sp(\vec{v}_1 - \vec{v}_2, \vec{v}_1 + \vec{v}_2) \subset sp(\vec{v}_1, \vec{v}_1 + \vec{v}_2)$.

Thus $sp(\vec{v}_1 - \vec{v}_2, \vec{v}_1 + \vec{v}_2) = sp(\vec{v}_1, \vec{v}_1 + \vec{v}_2)$

11. (10 points) Suppose that the vectors \vec{v} , \vec{w} , and \vec{x} are mutually perpendicular (i.e. \vec{v} and \vec{w} are perpendicular, \vec{v} and \vec{x} are perpendicular, and \vec{w} and \vec{x} are perpendicular). Use dot products to find $\|\vec{v} + 3\vec{w} + 2\vec{x}\|$ in terms of the magnitudes (lengths) of \vec{v} , \vec{w} , and \vec{x} . Hint: Start by computing $\|\vec{v} + 3\vec{w} + 2\vec{x}\|^2$.

$$\begin{split} &\|\vec{v} + 3\vec{w} + 2\vec{x}\|^2 = (\vec{v} + 3\vec{w} + 2\vec{x}) \cdot (\vec{v} + 3\vec{w} + 2\vec{x}) \\ &= \vec{v} \cdot \vec{v} + \vec{v} \cdot 3\vec{w} + \vec{v} \cdot 2\vec{x} + 3\vec{w} \cdot \vec{v} + 3\vec{w} \cdot 3\vec{w} + 3\vec{w} \cdot 2\vec{x} + 2\vec{x} \cdot \vec{v} + 2\vec{x} \cdot 3\vec{w} + 2\vec{x} \cdot 2\vec{x} = \|\vec{v}\|^2 + 9\|\vec{w}\|^2 + 4\|\vec{x}\|^2 \end{split}$$
 Thus $\|\vec{v} + 3\vec{w} + 2\vec{x}\| = \sqrt{\|\vec{v}\|^2 + 9\|\vec{w}\|^2 + 4\|\vec{x}\|^2}$

12. (10 points) Let A and C be matrices such that the product AC is defined. Whether the column space of AC is contained in the column space of A or C? Explain your answer.

Answer: the column space of AC is contained in the column space of AC.

- 1. Let A be $m \times n$ matrix. Every vector in the column space of AC is of the form $\vec{v} = (AC)\vec{x}$ for some $\vec{x} \in \mathbb{R}^n$. For every \vec{x} , $(C\vec{x}) \in \mathbb{R}^n$. Then $\vec{v} = A(C\vec{x})$ which is the vector in the column space of A. Thus $colspace(AC) \subseteq colspace(A)$.
- 2. Let A be $m \times n$ matrix, C be $n \times s$ matrix. Thus AC is $m \times s$ matrix. Since the column vectors of AC are belong to \mathbb{R}^m and the column vectors of C are belong to \mathbb{R}^n , the column space of AC can not be contained in the column space of C.

學號: _____, 姓名: _____, 以下由閱卷人員填寫

Question:	1	2	3	4	5	6	7	8	9	10	11	12	Total
Points:	5	10	5	10	10	5	10	10	5	10	10	10	100
Score:													