Instructions: Complete each of the following exercises for practice.

1. Compute the following iterated integrals.

(a)
$$\int_{x=1}^{4} \int_{y=0}^{2} (6x^2y - 2x) \ dy \ dx$$
 (e) $\int_{y=-3}^{3} \int_{x=0}^{\frac{\pi}{2}} (y + y^2 \cos(x)) \ dx \ dy$ (i) $\int_{t=0}^{3} \int_{\phi=0}^{\frac{\pi}{2}} t^2 \sin^3(\sin(\phi)) \ d\phi \ dt$

(b)
$$\int_{y=0}^{1} \int_{x=0}^{1} (x+y)^2 dx dy$$
 (f) $\int_{x=1}^{3} \int_{y=1}^{5} \frac{\ln(y)}{xy} dy dx$ (j) $\int_{x=0}^{1} \int_{y=0}^{1} xy \sqrt{x^2 + y^2} dy dx$

(c)
$$\int_{y=0}^{1} \int_{x=1}^{2} (x + e^{-y}) dx dy$$
 (g) $\int_{x=1}^{4} \int_{y=1}^{2} \left(\frac{x}{y} + \frac{y}{x}\right) dy dx$ (k) $\int_{v=0}^{1} \int_{u=0}^{1} v(u + v^{2})^{4} du dv$

(d)
$$\int_{x=0}^{\frac{\pi}{6}} \int_{y=0}^{\frac{\pi}{2}} (\sin(x) + \sin(y)) \, dy \, dx$$
 (h)
$$\int_{y=0}^{1} \int_{x=0}^{2} y e^{x-y} \, dx \, dy$$
 (l)
$$\int_{t=0}^{1} \int_{s=0}^{1} \sqrt{s+t} \, ds \, dt$$

2. Compute the double integral $\iint_R f(x,y) \ dA$ for function f(x,y) and region R.

(a)
$$f(x,y) = x \sec^2(y)$$
; $R = [0,2] \times [0,\frac{\pi}{4}]$ (e) $f(x,y) = x \sin(x+y)$; $R = [0,\frac{\pi}{6}] \times [0,\frac{\pi}{3}]$

(b)
$$f(x,y) = y + xy^{-2}$$
; $R = [0,2] \times [1,2]$ (f) $f(x,y) = \frac{x}{1+xy}$; $R = [0,1] \times [0,1]$

(c)
$$f(x,y) = \frac{xy^2}{x^2 + 1}$$
; $R = [0,1] \times [-3,3]$ (g) $f(x,y) = ye^{-xy}$; $R = [0,2] \times [0,3]$

(d)
$$f(x,y) = \frac{\tan(x)}{\sqrt{1-y^2}}; \quad R = [0, \frac{\pi}{3}] \times [0, \frac{1}{2}]$$
 (h) $f(x,y) = \frac{1}{1+x+y}; \quad R = [1,3] \times [1,2]$

3. Compute the double integral $\iint_R f(x,y) dA$ for function f(x,y) and region R.

(a)
$$f(x,y) = \frac{y}{x^2 + 1}$$
; $R = \{(x,y) : 0 \le x \le 4, 0 \le y \le \sqrt{x}\}$

(b)
$$f(x,y) = 2x + y$$
; $R = \{(x,y) : y - 1 \le x \le 1, 1 \le y \le 2\}$

(c)
$$f(x,y) = e^{-y^2}$$
; $R = \{(x,y) : 0 \le x \le y, 0 \le y \le 3\}$

(d)
$$f(x,y) = y\sqrt{x^2 - y^2}$$
; $R = \{(x,y) : 0 \le x \le 2, 0 \le y \le x\}$

(e)
$$f(x,y) = x\cos(y)$$
; R the region bounded by $y = 0$, $y = x^2$, and $x = 1$

(f)
$$f(x,y) = x^2 + 2y$$
; R the region bounded by $y = x$, $y = x^3$, and $x \ge 0$

(g)
$$f(x,y) = y^2$$
; R the triangle with vertices $(0,1)$, $(1,2)$, and $(4,1)$

(h)
$$f(x,y) = xy$$
; R the region bounded by $y = \sqrt{1-x^2}$ with $x,y \ge 0$

(i)
$$f(x,y) = 2x - y$$
; R the radius 2 circular disk about the origin

(j)
$$f(x,y) = y$$
; R the triangle with vertices $(0,0)$, $(1,1)$, and $(4,0)$

4. Sketch the region of integration and then change the order of integration.

(a)
$$\int_{y=0}^{1} \int_{x=0}^{y} f(x,y) \, dx \, dy$$
 (c) $\int_{x=1}^{2} \int_{y=0}^{\ln(x)} f(x,y) \, dy \, dx$ (e) $\int_{y=-2}^{2} \int_{x=0}^{\sqrt{4-y^2}} f(x,y) \, dx \, dy$ (b) $\int_{x=0}^{\frac{\pi}{2}} \int_{x=0}^{\cos(x)} f(x,y) \, dy \, dx$ (d) $\int_{x=0}^{2} \int_{y=x^2}^{4} f(x,y) \, dy \, dx$ (f) $\int_{x=0}^{1} \int_{y=xx+x+x}^{\frac{\pi}{4}} f(x,y) \, dy \, dx$

5. Evaluate the integral (Hint: Reverse the order of integration).

(a)
$$\int_{y=0}^{1} \int_{x=3y}^{3} e^{x^2} dx dy$$
 (b) $\int_{x=0}^{1} \int_{y=x^2}^{1} \sqrt{y} \sin(y) dy dx$

(c)
$$\int_{x=0}^{1} \int_{y=\sqrt{x}}^{1} \sqrt{y^3 + 1} \ dy \ dx$$

(d)
$$\int_{y=0}^{2} \int_{x=\frac{1}{2}y}^{1} y \cos(x^3 - 1) dx dy$$

(e)
$$\int_{y=0}^{1} \int_{x=\arcsin(y)}^{\frac{\pi}{2}} \cos(x) \sqrt{1 + \cos^2(x)} dx dy$$

(f)
$$\int_{y=0}^{8} \int_{x=\sqrt[3]{y}}^{2} e^{x^4} dx dy$$