سلسلة 3: نهاية متتالية

لتكن (u_n) و (v_n) المتتاليتين المعرفتين بما يلي:

$$\begin{cases} v_0 = 4 \\ v_{n+1} = -\frac{1}{2}v_n - 3 \end{cases} \quad \mathbf{y} \begin{cases} u_0 = -5 \\ u_{n+1} = \frac{1}{2}u_n + 1 \end{cases}$$

- (u_n) أحسب الحدود الأربعة الأولى للمتتاليتين (u_n) و منظم. أثم مثلها في معلم متعامد ممنظم. (v_n)
- $\mathbb N$ من n من المتاليتين المعرفتين لكل (w_n) من (w_n) $t_n = v_n + 2$ و $w_n = u_n - 2$
- بين أن (w_n) و (t_n) متتاليتين هندسيتين ثم (t_n) n استنتج w_n و w_n بدلالة
- $(oldsymbol{\psi})$ استنتج تعبير كل من u_n و v_n بدلالة nاحسب نهايتيهما.

التمرين 2

$$\left\{ \begin{array}{ll} u_0 = 3 \\ u_{n+1} = \sqrt{\frac{2}{3}u_n^2 + 2} \end{array} \right.$$
يلي: $\left(u_n \right)$

- $(\forall n \in \mathbb{N}): u_n > \sqrt{6}$ بين أِن: 1
- بين أن المتتالية (u_n) تناقصية قطعا. $(\forall n \in \mathbb{N}): v_n = u_n^2 6$ نضع 3.
- بين أن (v_n) متتالية هندسية.
 - $\cdot n$ بدلالة v_n بدلالة
- الج) حدد u_n بدلالة n ثم احسب u_n حدد u_n

التمرين 4

 $\left\{ \begin{array}{ll} u_0 = \frac{1}{2} \\ u_{n+1} = \frac{1+u_n^2}{1+u_n} \end{array} \right.$ نعتبر $\left(u_n \right)$ المتتالية المعرفة بما يلي:

- $(\forall n \in \mathbb{N}): 0 \leq u_n \leq 1$ بين أِن: 1
- 2. بین أن (u_n) رتیبة و استنتج أنها متقاربة.
- $(\forall n \in \mathbb{N}): 1 u_{n+1} \leq \frac{2}{3}(1 u_n)$:3.
 - $(\forall n \in \mathbb{N}): 1-u_n \leq \frac{1}{2}\left(\frac{2}{3}\right)^n$ نستنتج أن. 4
 - $\lim_{n\to+\infty}u_n$ استنتج.

التمرين 5

الجزء الأول لتكن (u_n) المتتالية العددية المعرفة بما يلي:

$$\begin{cases} u_0 = 3 \\ u_{n+1} = \frac{8(u_n - 1)}{u_n + 2} \end{cases}$$

- $(\forall n \in \mathbb{N}): 2 < u_n < 4$:بين إُن
- .2 بین أن (u_n) رتیبة و استنتج أنها متقاربة.
- $(\forall n \in \mathbb{N}): 4 u_{n+1} \le \frac{4}{5}(4 u_n)$. 3.
 - $(\forall n \in \mathbb{N}): 4-u_n \leq \left(\frac{4}{5}\right)^n$ استنتج أن: 4
 - $\lim_{n\to+\infty}u_n$ استنتج. 5
 - $(\forall n \in \mathbb{N}): v_n = \frac{u_n 4}{u_n 2}$ نضع: الجزء الثاني
 - 1. بين أن (v_n) متتالية هندسية. n عدد v_n ثم u_n بدلالة v_n
- - $\lim_{n\to +\infty} S_n$ بدلالة n ثم استنج S_n

التمرين 6

$$\left\{ \begin{array}{l} u_0 = 1 \\ u_{n+1} = \sqrt[3]{3u_n + 1} - 1 \end{array} \right.$$
متتالية معرفة بما يلي: $\left(u_n \right)$

- u_2 و u_1 أحسب.
- $(\forall n \in \mathbb{N}): 0 \leq u_n \leq 1$ بين أَن: 2
 - $\cdot(u_n)$ رتابة (u_n)،
- 4. استنتج أن (u_n) متقاربة ثم حدد نهايتها.

التمرين 3

$$\left\{ \begin{array}{ll} u_0 = 3 \\ u_{n+1} = \frac{u_n}{3+3^n u_n} \end{array} \right.$$
 يلي: عددية معرفة بما يلي: (u_n)

- $(\forall n \in \mathbb{N}): u_n > 0$:نين أِن 1
- د. بین آن (u_n) تناقصیة ثم استنتج أنها مكبورة بـ 3.
 - استنتج أن (u_n) متقاربة.
 - $(orall n\in \mathbb{N}): v_n=rac{1}{3^nu_n}$ نفع: •4
 - بين أن (v_n) متتالية حسابية.
 - $\lim_{n\to+\infty}u_n$ احسب u_n عدد u_n بدلالة u_n أحسب

التمرين 7

 $f(x) = \frac{1}{2}\sqrt{x^2 + 3}$ الجزء الأول f دالة معرفة بـ: f

 $\widehat{\mathbf{1}}$. ادرس تغیرات الداله f علی $\widehat{\mathbf{1}}$

f(x)=x المعادلة: \mathbb{R} عل في

 $(\forall x \in [0;1[):f(x)>x$:نن أن مين أن

 $\int u_0 = 0$ المتتالية المعرفة بـ: (u_n) الجزء الثانى $u_{n+1} = f(u_n)$

 $(\forall n \in \mathbb{N}): 0 \leq u_n \leq 1$ بين أَن: 1

2. أُدرس رتابة المتتالية (u_n) و حدد نهايتها.

 $(\forall n \in \mathbb{N}): v_n = u_n^2 - 1$ نضع: الثالث نضع

1. بين أن (v_n) متتالية هندسية. v_n عدد v_n محدد v_n بدلالة v_n

 $\lim_{n\to+\infty}u_n$ استنتج.

التمرين 8

الجزء الأول نعتبر الدالة العددية g المعرفة على [0;2] بما $g(x) = \sqrt[3]{-x^2 + 2x}$ يلي:

g'(x) من g'(x) من g'(x) 1.

ومع جدول تغيرات الدالة g.

 $(\forall x \in [0; 2]): 0 \le g(x) \le 1$.3

 $\left\{ \begin{array}{ll} u_0 \in \left[\begin{smallmatrix} \mathsf{U}, \; \mathsf{I} \end{smallmatrix} \right] \\ u_{n+1} = g(u_n) \end{array} \right.$ المتتالية المعرفة بـ: $\left(u_n \right)$

بين أنه إذا كان $u_0=0$ أو $u_0=1$ فإن u_n متتالية .1

 $0 < u_0 < 1$ نفترض أن $0 < u_0 < 1$.

 $(\forall n \in \mathbb{N}): 0 < u_n < 1$:نين أَن (۱)

(ب) ادرس رتابة (u_n) و استنتج أنها متقاربة.

 $\cdot(u_n)$ أحسب نهاية (ج)

 $w_n = \frac{u_n}{v_n}$ و $v_n = u_{n+1} - \frac{1}{2}u_n$ بنضع لكل n من n و n

بين أن (v_n) متتالية هندسية.

(ب) بين أن (w_n) متتالية حسابية.

 $(orall n\in\mathbb{N}):u_n=rac{2n-1}{2^n}$:بين أن $\left(rac{1}{2^n}
ight)$

 $(\forall n > 4): 2n^2 > (n+1)^2$:3.

 $(\forall n > 4): 2^n > n^2$ بين أن: 4

 $(\forall n > 4) : 0 < u_n < \frac{2}{n}$ أثبت أن: 5.

 $\lim_{n\to+\infty}u_n \text{ i.e. } 16$

 $f(x) = x\sqrt{1+x^2} - x^2$ نعتبر الدالة f المعرفة بما يلي: $oldsymbol{\cdot} \left(O; ec{i}; ec{j} \right)$ منحناها في معلم متعامد ممنظم (C)

أحسب $\lim_{|x| \to +\infty} f(x)$ أحسب الفرعين اللا نهائيبن الله المائيبن

ين أن: $\forall x \in \mathbb{R}$: $f'(x) = \frac{\left(\sqrt{1+x^2}-x\right)^2}{\sqrt{1+x^2}}$ عط. f بغيرات الدالة

 $\bullet(\forall x \in \mathbb{R}): f(x) \leq x$. بين أن:

بين أن f تقبل دالة عكسية معرفة على مجال J ينبغي 4

J من x من $f^{-1}(x)$ من .5

 f^{-1} أنشئ المنحني (C') و (C') منحني الدالة f^{-1}

 $\left\{ egin{array}{ll} u_0=-rac{3}{4} \ u_{n+1}=f(u_n) \end{array}
ight.$ is in the strict of t

بين أن (u_n) متتالية تناقصية.

 $(\forall n \in \mathbb{N}): u_n \leq -\frac{3}{4}$:استنتج أن (ب)

 $(\forall n \in \mathbb{N}): \sqrt{1+u_n^2}-u_n \geq 2$:بين أن (ج)

 $(\forall n \in \mathbb{N}): |u_{n+1}| \geq 2 |u_n|$ (ح) بین أن:

 $(\forall n \in \mathbb{N}): |u_n| \ge \frac{3}{4}2^n$ استنتج أن (ه)

 $\lim_{n\to+\infty}u_n \quad \text{im} \quad (\mathfrak{g})$

التمرين 9

 $\begin{cases} u_0 = -1; u_1 = \frac{1}{2} \\ u_{n+2} = u_{n+1} - \frac{1}{4} u_n \end{cases}$ الية معرفة بما يلي: الله متتالية معرفة (u_n)

 u_3 و u_2 .1