

Animesh Giri

Department of Computer Science & Engineering

Transport Layer

Animesh Giri

Department of Computer Science & Engineering

Principles of Congestion Control

Animesh Giri

Department of Computer Science & Engineering

In this segment

- Principles of congestion control
- Causes/costs of congestion: scenario 1
- Causes/costs of congestion: scenario 2
- Causes/costs of congestion: scenario 3

Principles of congestion control

congestion:

- informally: "too many sources sending too much data too fast for *network* to handle"
- different from flow control!
- manifestations:
 - lost packets (buffer overflow at routers)
 - long delays (queueing in router buffers)
- a top-10 problem!

Causes/costs of congestion: scenario 1

two senders, two receivers

• one router, infinite buffers

output link capacity: R

no retransmission

maximum per-connection throughput: R/2

 large delays as arrival rate, λ_{in}, approaches capacity

Causes/costs of congestion: scenario 2

- one router, finite buffers
- sender retransmission of timed-out packet
 - application-layer input = application-layer output: λ_{in} = λ_{out}
 - transport-layer input includes *retransmissions* : $\lambda_{in} \geq \lambda_{in}$

Causes/costs of congestion: scenario 2

idealization: perfect knowledge

sender sends only when router buffers available

Causes/costs of congestion: scenario 2

Idealization: known loss

packets can be lost, dropped at router due to full buffers

sender only resends if packet known to be lost

Causes/costs of congestion: scenario 2

Idealization: known loss

packets can be lost,
dropped at router due to
full buffers

sender only resends if packet known to be lost

Causes/costs of congestion: scenario 2

Realistic: duplicates

- packets can be lost, dropped at router due to full buffers
- sender times out prematurely, sending two copies, both of which are delivered

Causes/costs of congestion: scenario 2

Realistic: duplicates

- packets can be lost, dropped at router due to full buffers
- sender times out prematurely, sending two copies, both of which are delivered

"costs" of congestion:

- more work (retrans) for given "goodput"
- unneeded retransmissions: link carries multiple copies of pkt
 - decreasing goodput

Causes/costs of congestion: scenario 3

- four senders
- multihop paths
- timeout/retransmit

Q: what happens as λ_{in} and λ_{in} increase?

A: as red λ_{in} increases, all arriving blue pkts at upper queue are dropped, blue throughput $\rightarrow 0$

Causes/costs of congestion: scenario 3

another "cost" of congestion:

when packet dropped, any "upstream transmission capacity used for that packet was wasted!

THANK YOU

Animesh Giri

Department of Computer Science & Engineering animeshgiri@pes.edu

+91 80 66186603