Metastabilità

Quando si verifica? (MS1)

Ci sono casi nei quali non si può garantire il sincronismo tra dati e clock.

Un registro rimedia al problema solo se non è violato il setup time. Se sfortunatamente cadiamo nella *critical time window* (tipicamente larga da 10 a 100 ps),sono guai: Si verifica la metastabilità.

Come si manifesta? (MS2) (MS3)

In diversi modi, ma essenzialmente con uno stato indefinito per un tempo Δt , detto *recovery time* tipico di ogni dispositivo.

Cosa possiamo fare?

Dobbiamo evitare di considerare l'uscita di un registro durante il suo possibile stato di metastabilità.

Come possiamo agire?

Dobbiamo cercare di prevedere quanto può durare l'evento metastabile: in pratica dobbiamo aggiungere al tp classico un ulteriore Δt , ed evitare di prelevare l'escita del registro critico prima di tp+ Δt

Come possiamo valutare Δt ? (MS4)

Indirettamente, con il metastable test circuit: questo ci permette di misurare, per un certo DUT, lo MTBF relativo al Δt che impostiamo noi. Variando Δt si ricava l'andamento MTBF vs Δt .

In questo caso noi *vogliamo forzare* la metastabilità, perchè lo scopo è misurare Δt . Per forzare la metastabilità, si sceglie Fck=2Fin, così che i dati varino a tutti i colpi di ck (worst case), e si fa in modo che Fin sia centrato su Fck e affetto da un jitter almeno uguale al Tsu.

Nota: in questo schema, ∆t ingloba la somma del tp del DUT con il Trec

Dobbiamo sempre valutare sperimentalmente Δt? (MS5)

Alcuni costruttori, forniscono un paio di costanti, per ogni tecnologia, che, sostituite nell'espressione esponenziale, definiscono analiticamente la relazione tra MTBF e Δt .

Come possiamo utilizzare la relazione che lega MTBF e At? (MS6)

Per valutare quale Δt è necessario per garantire un certo MTBF o, viceversa, per valutare quale MTBF possiamo ottenere con un Δt prefissato.

Esistono, in generale, logiche più affidabili? (MS7)

Si, quelle più veloci, perchè hanno minore critical window, e quindi consentono un ∆t più breve, a pari MTBF

A cosa serve il dual rank synchronizer? (MS8)

Garantisce un MTBF ridottissimo per periodo di Ck è superiore a Δt.