

COMP 3710 - 3

Applied Artificial Intelligence (3,1,0)

Fall 2017

Seminar/Lab 1.

Search Space

Instructor: Mahnhoon Lee

Student Name: ZHENYU WANG **Student Number:** T00059541

Search Space:

- o Missionaries and cannibals problem
- o 3×3 puzzle game
- o Tower of Hanoi problem
- Define a state for each one of the following problems.
- 1. Possible state at the beginning side: (0, 2,2)
 Possible state at the ending side: (1,1,1)
- 2. Possible state for this puzzle game: [5,8,7,4,3,2,0,1,6]
- 3. One possible state in the problem is:
 - T1 [4,3,0,0]
 - T2 [0,0,2,0]
 - T3 [0,0,0,1]
 - Give initial states and goal states.
- 1. Initial state: (3,3,1) at the starting side; (0,0,0) at the ending side Goal state: (0,0,0) at the starting side; (3,2,1) at the ending side
- 2. Initial state: [5,8,4,3,6,7,1,2,0] Goal State: [1,2,3,4,5,6,7,8,0]
- 3. Initial state:
 - T1 [4,3,2,1]
 - T2 [0,0,0,0]
 - T3 [0,0,0,0]

Goal state:

- T1 [0,0,0,0]
- T2 [4,3,2,1]
- T3 [0,0,0,0]
- Draw search trees. Not full trees. 3 levels are good.

1. Search tree for Missionaries and cannibals problem:

2. Search tree for 3×3 puzzle game

3. Search tree for Tower of Hanoi problem

T1 [4,3,2,1] T2 [0,0,0,0] T3 [0,0,0,0]

• Devise an idea or algorithm to find a solution.

1. Solution for Missionaries and cannibals problem:

Move 2 cannibals to the left,

Move 1 cannibal back to the right.

Move 2 cannibals to the left,

Move 1 cannibal back to the right.

Move 2 missionaries to the left,

Move 1 missionary and 1 cannibal back to the right.

Move 2 missionaries to the left,

Move 1 cannibal back to the right.

Move 2 cannibals to the left,

Move 1 cannibal back to the right.

Move 2 cannibals to the left.

2. Solution for 3x3 puzzle game:

Seems there is no absolute correct solution for this problem, because it always with random number in a 3x3 square, a good logical way for this problem is solve it by part, start with the first line (1,2,3) and then go the second line (4,5,6); finally move the third line.

3. Solution for Tower of Hanoi problem

Move A	(1) to C,	A: 4,3,2	B:	C: 1
Move A	(2) to B,	A: 4,3	B: 2	C: 1
Move Co	(1) to B,	A: 4,3	B: 2,1	C:
Move A	(3) to C,	A: 4	B: 2,1	C: 3
Move B	(1) to A,	A: 4,1	B: 2	C:3
Move B	(2) to C,	A: 4,1	B:	C: 3,2
Move A	(1) to C,	A: 4	B:	C: 3,2,1
Move A	(4) to B,	A:	B: 4	C: 3,2,1
Move Co	(1) to B,	A:	B: 4,1	C: 3,2
Move Co	(2) to A,	A: 2	B: 4,1	C: 3
Move A	(1) to A,	A: 2,1	B: 4	C: 3
Move Co	(3) to B,	A: 2, 1	B: 4,3	C:
Move A	(1) to C,	A: 2	B: 4,3	C: 1
Move A	(2) to B,	A:	B: 4,3,2	C: 1
Move Co	(1) to B,	A:	B: 4,3,2,1	C: