

- noradrenaline (norepinephrine USAN)
 - from sympathetic nerve endings
- adrenaline (epinephrine USAN)
 - -from adrenal glands
- (dopamine)
 - -mainly in CNS
 - but also gut & visceral blood vessels

receptor	transmitter	useful effects	agonist	antagonist
α1	adrenaline noradrenaline	vasoconstriction mydriasis	phenylephrine	prazosin
α2	adrenaline noradrenaline	(vasodilatation) sedation & analgesia	xylazine detomidine	yohimbine atipamezole
β 1	adrenaline (noradrenaline)	+ve inotropy tachycardia	dobutamine dopamine	atenolol metoprolol
β 2	adrenaline	bronchodilatation vasodilatation (musc) uterine relaxation	salbutamol clenbuterol	propranolol (nonselective)
(β3	adrenaline	lipolysis	SR58611A	SR59230A)

clinical use of agonists

- heart failure
 - -adrenaline & β1 agonists
- anaphylactic reactions
 - adrenaline
- delay parturition
 - clenbuterol
- sedation and analgesia
 - -xylazine and α2 agonists

- vesicle released at synapse
- mixture of transmitters in vesicle
 - noradrenaline
 - ATP
 - neuropeptide Y (& in separate vesicles)
 - others???
- mixture may not always be the same

co-transmission

- ATP
 - P2x purinoceptors responsible for fast transmission
 - > 7 subtypes
 - CNS as well as smooth muscle & peripheral nerves
 - P2y purinoceptors ??
 - potentiates effects of noradrenaline
- peptides
 - neuropeptide Y
 - -chromogranin??

non-adrenergic noncholinergic transmission

- nitric oxide
- vasoactive intestinal peptide
- neuropeptide Y
- gonadotrophin releasing hormone
- 5 hydroxytryptamine
- y aminobutyric acid
- dopamine

NANC transmission

(nor)adrenergic transmission

- NA synthesised from tyrosine & stored in vesicles
- release requires calcium
- NA binds to a variety of adrenergic receptors throughout the body
- action terminated by reuptake
- · all these processes can be affected by drugs
- ATP co-transmission important