Limits

Example

Consider the quadratic function $f(x) = x^2 - 5x + 6$:

What happens to f(x) as $x \to 2$, but $x \ne 2$?

x	f(x)
2.1	-0.09
2.01	-0.0099
2.001	-0.000999
2	
1.999	0.001001
1.99	0.0101
1.9	0.11

It appears that $f(x) \to 0$ as $x \to 2$ (from either direction).

In the previous example, it turns out that f(x) is actually defined at x=2 and furthermore, f(2)=0. This special case will be used later as a formal definition of *continuity*. However, as previously stated, we don't actually care about the function value at x=2. In fact, the function might not even be defined at the x value in question.

Example

Consider the rational function:

$$f(x) = \frac{x^2 - 5x + 6}{x - 2}$$

Now, as $x \to 2$:

x	f(x)
2.1	-0.9
2.01	-0.99
2.001	-0.999
2	
1.999	-1.001
1.99	-1.01
1.9	-1.1

It appears that $f(x) \to -1$ as $x \to 2$ (from either direction), even though f(2) is not defined. To reiterate, we do not care what actually happens at x=2. In fact, let's define f(2)=1:

$$f(x) = \begin{cases} \frac{x^2 - 5x + 6}{x - 2}, & x \neq 2\\ 1, & x = 2 \end{cases}$$

Still, $f(x) \to -1$ as $x \to 2$, regardless of the fact that f(2) = 1. Once again, we do not care about the function at x = 2; we only care what happens near x = 2.

Example

Consider the function:

$$f(x) = \frac{\sin x}{x}$$

As $x \to 0$:

f(x)
0.841471
0.998334
0.999983
0.999983
0.998334
0.841471

It appears that $f(x) \to 1$ as $x \to 0$. Note that at x = 0, $f(x) = \frac{0}{0}$, which is a so-called *indeterminate form*; we cannot tell if the function is actually defined at x = 0 or not. In this case it is and f(0) = 1.

Definition: Limit of a Function at a Point

Let f(x) be a function on \mathbb{R} . To say that the *limit* of f(x) at x=c is L, denoted by $\lim_{x\to c} f(x)=L$, means that $f(x)\to L$ as $x\to c$ but $x\ne c$. In other words, for all $\epsilon>0$ there exists some $\delta>0$ such that if $0<|x-c|<\delta$ then $|f(x)-L|<\epsilon$.

Select an $\epsilon>0$ and then find a $\delta>0$ such that f(x) is contained in the bounding box. As $\epsilon\to 0$, this forces $\delta\to 0$ and the bounding box converges to the point (c,L). This does not imply that f(c)=L. In fact since |x-c|>0, $x\ne c$ so we don't care what actually happens at x=c.

Example

Consider the function $f(x)=x^2+2x-1$ and note that $\lim_{x\to 1}=2$. Find a suitable δ to two decimal places for $\epsilon=0.1$.

$$\delta_1 = 1.0248457 - 1 = 0.0248457$$

$$\delta_2 = 1 - 0.9748418 = 0.0251582$$

$$\delta = \min\{\delta_1, \delta_2\} = 0.0248457$$

Be sure to round down: $\delta = 0.24$.

Find a suitable δ to four decimal places for $\epsilon = 0.01$.

$$\delta_1 = 1.0024984 - 1 = 0.0024984$$

 $\delta_2 = 1 - 0.9974984 = 0.0025016$

$$\delta = \min\{\delta_1, \delta_2\} = 0.0024984$$

Be sure to round down: $\delta = 0.0024$.