SRP 2022: Lecture 6-8 Summary

by Xinyu

Overview

- Language Models
- Recurrent Neural Network (RNN)
- Long short-term memory (LSTM) and Gated Recurrent Units (GRU)
- Machine Translation
- Seq2seq
- Attention

Language Model

- compute the probability of occurrence of a number of words in a particular sequence $P(w_1,...,w_m) = \prod_{i=1}^{i=m} P(w_i|w_1,...,w_{i-1}) \approx \prod_{i=1}^{i=m} P(w_i|w_{i-n},...,w_{i-1})$
- n-gram model: statistical learning
 - sparsity problem smoothing
 - storage problems
- window-based Neural LM

Language Model

- compute the probability of occurrence of a number of words in a particular

sequence

- n-gram model: statistical learning

- sparsity problem smoothing
- storage problems
- window-based Neural LM

- same weight matrix
- training average CE loss
- metric: perplexity exponential of the CE

- pros
 - variable input length
 - fixed model size
 - keep information from many steps back
- cons
 - non-parallelized
 - vanishing / exploding gradient

Exploding / vanishing gradient

$$\begin{aligned} \boldsymbol{h}^{(t)} &= \sigma \left(\boldsymbol{W}_h \boldsymbol{h}^{(t-1)} + \boldsymbol{W}_x \boldsymbol{x}^{(t)} + \boldsymbol{b}_1 \right) \\ &\frac{\partial \boldsymbol{h}^{(t)}}{\partial \boldsymbol{h}^{(t-1)}} &= \operatorname{diag} \left(\sigma' \left(\boldsymbol{W}_h \boldsymbol{h}^{(t-1)} + \boldsymbol{W}_x \boldsymbol{x}^{(t)} + \boldsymbol{b}_1 \right) \right) \boldsymbol{W}_h \end{aligned}$$

Exploding gradient

Gradient clip

LSTM and GRU

- additional cell state for long-term information
- forget / input / output gate

- simplify above to have GRU
- without additional cell state

You can think of the LSTM equations visually like this:

Figure 2. Residual learning: a building block.

Figure 1: A 5-layer dense block with a growth rate of k=4. Each layer takes all preceding feature-maps as input.

RNN mutants - Bidirectional RNNs - multi-layer RNN 0 RNN layer 3 RNN layer 2 terribly the movie exciting was RNN layer 1

the

movie

was

terribly

exciting

Machine Translation

- map text from source language to target language
- statistical(SMT) probabilistic
 model
 - many subcomponents
 - extremely complex system

Sequence-to-sequence

- training
- search algorithm beam search end criterion
- pros and cons
- metrics: BLEU (Bilingual Evaluation Understudy)

Attention

- direct connection to the encoder

Attention

- direct connection to the encoder

Attention

- direct connection to the encoder

Thank you.