MIT OpenCourseWare http://ocw.mit.edu

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Control of Manufacturing Processes

Subject 2.830/6.780/ESD.63

Spring 2008

Lecture #12

Full Factorial Models

March 20, 2008

Outline

- Modelling "Effects" from Multiple Inputs
- ANOVA on Effects
- Linear and Quadratic Models
- Model Coefficient Calculation
 - Regression (General Approach)
 - Contrasts (for Factorial Designs)

What Is the Effect?

 What is the relationship between Hold Time and Dimension?

But Wait... There's More!

Do the two inputs interact?

Model Form

- Linear
- Quadratic
- Exponential
- General Polynomial?
- Interactions

What data needed to decide and/or estimate parameters of different model forms?

Multiple Input/Treatment Models

- In general k inputs
 - If 2 levels for each 2^k combinations
 - If 3 levels for each 3^k combinations
- Why use more than one input?
 - More than one output
 - Change mean and variance
 - Process Robustness
 - Optimization of Quality Loss

A General Linear Model for k inputs

$$\eta = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{j=1}^k \sum_{i=1}^k \beta_{ij} x_i x_j + h.o.t. + \varepsilon$$
 mean linear term interaction term higher residual order error

i = input index k = total number of inputs

terms (model form error)

Two Input Model

$$\eta = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + h.o.t. + \varepsilon$$

4 coefficients to determine

How many data points (factors, levels) are needed to uniquely identify?

Consider a One Input Case

Linear One Input Example

Linear model
$$\eta = \beta_0 + \beta_1 x$$

Assume 2 levels x_{-}, x_{+}

With 1 trial at each level we get:

$$\underline{\eta} = \begin{vmatrix} \eta_1 \\ \eta_2 \end{vmatrix} \qquad \mathbf{X} = \begin{vmatrix} 1 & x_- \\ 1 & x_+ \end{vmatrix} \qquad \underline{\beta} = \begin{vmatrix} \beta_0 \\ \beta_1 \end{vmatrix} \qquad \underline{\varepsilon} = 0 \quad \text{(for means)}$$

$$\underline{\eta} = \mathbf{X}\underline{\beta} + \underline{\varepsilon}$$

Since X is square and $\varepsilon = 0$ $\beta = \mathbf{X}^{-1} \eta$

Linear Model with Replicates

- Line will no longer intersect specific points
- What is "best fit?"

Minimum Error Line Fits

- Define squared error for data for a given β_o and β_1
- Find β_0 and β_1 that lead to minimum of the sum of all e^2 $e^2 = (\eta (\beta_0 \beta_1 x))^2$
- OR Solve the matrix equation to get

$$\underline{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \underline{\eta}$$

where ${\bf X}$ is a <u>non-square</u> matrix of all inputs for all replicates and η is the vector of all trial outputs

Aside

$$\underline{\eta} = \mathbf{X}\underline{\beta} + \underline{\varepsilon}$$
 $\underline{\varepsilon} = \eta - \mathbf{X}\beta$

squared error
$$J = \underline{\varepsilon}^T \underline{\varepsilon} = (\underline{\eta} - \mathbf{X}\underline{\beta})^T (\underline{\eta} - \mathbf{X}\underline{\beta})$$

The minimum value of *J* is then found by the vector partial derivative:

$$\frac{\partial J}{\partial \beta} = 0 = -2\mathbf{X}^T \underline{\eta} + 2\mathbf{X}^T \mathbf{X} \underline{\beta}$$

$$\underline{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \underline{\eta}$$

General result for any **X** matrix

Solution with Replicates

$$\underline{\eta} = egin{bmatrix} \eta_1 & & & 1 & x_- \ \eta_2 & & \ddots & & 1 & x_+ \ \eta_{2n-1} & & \eta_{2n} & & 1 & x_- \ & & 1 & x_- & & \underline{\beta} = egin{bmatrix} eta_0 \ eta_1 \ & 1 & x_- \ & 1 & x_+ \ \end{pmatrix}$$

For *n* trials at two levels for x: x_{\perp} and x_{\perp}

$$\underline{\eta} = \mathbf{X}\underline{\beta} + \underline{\varepsilon} \qquad \underline{\beta} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\underline{\eta}$$

Or...

 Notice that for only 2 levels, the minimum squared error line must pass through the mean at each level

Linear Curve Fit

$$\begin{vmatrix} \beta_0 \\ \beta_1 \end{vmatrix} = \frac{1}{(x_+ - x_-)} \begin{vmatrix} x_+ & x_- \\ -1 & 1 \end{vmatrix}^{-1} \begin{vmatrix} \overline{\eta}_1 \\ \overline{\eta}_2 \end{vmatrix}$$

$$\rho_{0} = \frac{(\overline{\eta}_{1}x_{+} - \overline{\eta}_{2}x_{-})}{(x_{+} - x_{-})}$$

$$\beta_{1} = \frac{(\overline{\eta}_{2} - \overline{\eta}_{1})}{(x_{+} - x_{-})}$$

For "Real" Data

Outline, cont'd

Multiple Effects (Inputs)

- ANOVA Test for Multiple Effects
 - Are effects due to different factors significant?

- Linear Models for "k" inputs
 - Visualization
 - Coefficient Estimation (Model Calibration)
 Using Contrasts
 - Significance Test

Reconsider the Injection Molding Problem

Full Effects Model

a levels for factor τ b levels for factor β n replicates at each treatment

hold time

high effect

are **not**

independent

Full Effects

$$y_{ijk} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij} + \varepsilon_{ijk}$$

Hypothesis?

Test on Each Term

$$H_0: \tau_1 = \tau_2 \cdots \tau_a$$

$$H_0: \tau_1 = \tau_2 \cdots \tau_a \qquad H_0: \beta_1 = \beta_2 \cdots \beta_a$$

$$H_1: \tau_i \neq 0$$

$$H_1: \beta_i \neq 0$$

$$H_0: (\tau\beta)_{ij} = 0$$

$$H_1:(\tau\beta)_{ij}\neq 0$$

Definitions

$$\overline{y}_i = \frac{1}{bn} \sum_{j=1}^b \sum_{k=1}^n y_{ijk}$$

 $\overline{y}_i = \frac{1}{bn} \sum_{i=1}^{b} \sum_{k=1}^{n} y_{ijk}$ responses from A at a levels averaged over b and n

$$\overline{y}_j = \frac{1}{an} \sum_{i=1}^a \sum_{k=1}^n y_{ijk}$$

 $\overline{y}_j = \frac{1}{an} \sum_{i=1}^a \sum_{k=1}^n y_{ijk}$ responses from B at b levels averaged over a and n

$$\overline{y}_{ij} = \frac{1}{n} \sum_{k=1}^{n} y_{ijk}$$

 $\overline{y}_{ij} = \frac{1}{n} \sum_{i=1}^{n} y_{ijk}$ responses from A & B at *ab* levels averaged over all *n*

$$\overline{y} = \frac{1}{abn} \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} y_{ijk}$$

ANOVA for Multiple Effects

$$SS_T = \sum_{i=1}^a \sum_{j=1}^b \sum_{k=1}^n (y_{ijk} - \overline{\overline{y}})^2 =$$

$$bn\sum_{i=1}^{a}(\overline{y}_{i}-\overline{\overline{y}})^{2}+an\sum_{j=1}^{a}(\overline{y}_{j}-\overline{\overline{y}})^{2}+$$

$$n\sum_{i=1}^{a}\sum_{j=1}^{b}(\overline{y}_{ij}-\overline{y}_{i}-\overline{y}_{j}-\overline{\overline{y}})^{2}+\sum_{i=1}^{a}\sum_{j=1}^{b}\sum_{k=1}^{n}(y_{ijk}-\overline{y}_{ij})^{2}$$

Total sum of squared deviations

$$SS_T = SS_{Treatment\,A} + SS_{Treatment\,B} + SS_{InteractionAB} + SS_{Error}$$
 Degrees of Freedom?

$$abn-1 = a-1 + b-1 + (a-1)(b-1) + ab(n-1)$$

ANOVA Table for Multiple Factors (Treatments)

Source	SS	dof	MS	${f F}$	$\mathbf{F_o}$
Factor A	$SS_{ m A}$	<i>a</i> -1	$\frac{SS_A}{a-1}$	$\frac{MS_A}{MS_E}$	$F_{(1-lpha),a-1,ab(n-1)}$
Factor B	$SS_{ m B}$	<i>b</i> -1	$\frac{SS_B}{b-1}$	$\frac{MS_b}{MS_E}$	$F_{(1-\alpha),b-1,ab(n-1)}$
Interaction AB	$SS_{ m AB}$	(<i>a</i> -1)(<i>b</i> -1)	$\frac{SS_{AB}}{(a-1)(b-1)}$	$\frac{MS_{AB}}{MS_{E}}$	$F_{(1-\alpha),(a-1)(b-1),ab(n-1)}$
Within Tests (Pure Error)	$SS_{ m E}$	<i>ab</i> (<i>n</i> -1)	$\frac{SS_E}{ab(n-1)}$		
Total	$SS_{ m T}$	abn-1			

Now Consider a Linear Model

	test	x_1	x_2
(1)	1	-1	-1
a	2	+1	-1
b	3	-1	+1
ab	4	+1	+1

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2$$

Regression Model

Classical Design-of-Experiments (DOE) for 2²

• Same graph, different labels

- treatment condition
- average of n responses at that condition

Effects

- The Effect of an input term on the Output
 - A and B are "Main Effects"
 - AB is the Interaction Effect
- Main Effects
 - Change caused by a single factor <u>averaged over all</u> other changes

Main Effects

$$A = \overline{y}_A^+ - \overline{y}_A^-$$
$$= \frac{a+ab}{2n} - \frac{b+(1)}{2n}$$

$$B = \overline{y}_B^+ - \overline{y}_B^-$$

$$= \frac{b+ab}{2n} - \frac{a+(1)}{2n}$$

Interaction Effect

Diagonal Averages

$$AB = \overline{y}_{AB}^{+} - \overline{y}_{AB}^{-}$$
$$= \frac{ab + (1)}{2n} - \frac{a+b}{2n}$$

Definition: Contrasts

$$A = \frac{1}{2n} [a + ab - b - (1)]$$

$$B = \frac{1}{2n} [b + ab - a - (1)]$$

$$AB = \frac{1}{2n}[ab + (1) - a - b]$$

$$\hat{y} = \bar{y} + \frac{A}{2}x_1 + \frac{B}{2}x_2 + \frac{AB}{2}x_1x_2$$

Model Based on Contrasts

$$\hat{y} = \bar{y} + \frac{A}{2}x_1 + \frac{B}{2}x_2 + \frac{AB}{2}x_1x_2$$

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2$$

(Regression model)

This defines a 3-D "ruled surface"

Response Surface without Interaction

Response Surface: Positive Interaction

$$y = 1 + 7x_1 + 2x_2 + 5x_1x_2$$

Response Surface: Negative Interaction

 $y = 1 + 7x_1 + 2x_2 - 5x_1x_2$

General Form for Contrasts

Trial	A	В	AB
(1)	_	_	+
a	+	_	_
b	_	+	_
ab	+	+	+

$$A : [a + ab - b - (1)]$$

$$B : [b + ab - a - (1)]$$

$$A : [a + ab - b - (1)]$$

$$B : [b + ab - a - (1)]$$

$$AB : [ab + (1) - a - b]$$

 $Contrast_A = Trial\ Column \cdot A$

 $Contrast_{R} = Trial \ Column \cdot B$

 $Contrast_{AB} = Trial\ Column \cdot AB$

Extension to 2^k

Consider 2³:

			Factor Levels			
Run	Treatment		X_1	X_2	X_3	
Number	Combination	on	A	B	C	
1	(1)	\mathbf{y}_1	-1	-1	-1	
2	а	y_2	1	-1	-1	
3	b	y_3	-1	1	-1	
4	ab	y_4	1	1	-1	
5	С	y_5	-1	-1	1	
6	ac	y_6	1	-1	1	
7	bc	y_7	-1	1	1	
8	abc	y_8	1	1	1	

Generalization

Courtesy of Dan Frey. Used with permission.

"Surface" Averages

$$A = \frac{1}{4} [(abc) + (ab) + (ac) + (a)] - \frac{1}{4} [(b) + (c) + (bc) + (1)]$$

Surface Averages

$$B = \frac{1}{4} [(abc) + (ab) + (bc) + (b)] - \frac{1}{4} [(a) + (c) + (ac) + (1)]$$

Factorial Combinations

	A 1 1 11	
Factorial	Combination	
Tactoriai	COHDINATION	

Treament								
Combination	I	Α	В	AB	С	AC	BC	ABC
(1)	1	-1	-1	1	-1	1	1	-1
а	1	1	-1	-1	-1	-1	1	1
b	1	-1	1	-1	-1	1	-1	1
ab	1	1	1	1	-1	-1	-1	-1
С	1	-1	-1	1	1	-1	-1	1
ac	1	1	-1	-1	1	1	-1	-1
bc	1	-1	1	-1	1	-1	1	-1
abc	1	1	1	1	1	1	1	1

Note: this is the scaled *X* matrix in the regression model

Contrasts for 2³

Factorial Combination								
Treament								
Combination	1	Α	В	AB	С	AC	BC	ABC
(1)	1	-1	-1	1	-1	1	1	-1
а	1	1	-1	-1	-1	-1	1	1
b	1	-1	1	-1	-1	1	-1	1
ab	1	1	1	1	-1	-1	-1	-1
С	1	-1	-1	1	1	-1	-1	1
ac	1	1	-1	-1	1	1	-1	-1
bc	1	-1	1	-1	1	-1	1	-1
abc	1	1	1	1	1	1	1	1

Contrast
$$A : [a + ab + ac + abc - b - c - bc - (1)]$$

Contrast
$$ABC : [a + b + c + abc - ab - ac - bc - (1)]$$

Effect =
$$\frac{\text{Contrast}}{n2^{k-1}}$$

$$A = \frac{1}{4n}[a + ab + ac + abc - b - c - bc - (1)]$$

Relationship to Regression Model

$$\underline{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \underline{y}$$

$$\underline{y} \text{ is data from experimental design } \mathbf{X}$$

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2$$
 regression model

- A is the Effect of input 1 averaged over all other input changes (-1 to +1 or a total range of 2)
- B is the Effect of input 2 averaged over all other input changes,

$$\beta_0 = \overline{y}$$
 $\beta_1 = \frac{A}{2}$; $\beta_2 = \frac{B}{2}$; $\beta_{12} = \frac{AB}{2}$

or

$$\hat{y} = \bar{\bar{y}} + \frac{A}{2}x_1 + \frac{B}{2}x_2 + \frac{AB}{2}x_1x_2$$

ANOVA for 2k

- Now have more than one "effect"
- We can derive:

$$SS_{Effect} = (Contrast)^2/n2^k$$

And it can be shown that:

$$SS_{Total} = SS_A + SS_B + SS_{AB} + SS_{Error}$$

ANOVA Table

Source	SS	d.o.f.	MS	F_0	F _{crit}
A	$\frac{\text{Contrast}_{A}^{2}}{2^{2} \text{ n}}$	1	SS_A	$\frac{MS_A}{MS_E}$	F _{1,2n-4,α}
В	$\frac{Contrast_B^2}{2^2 n}$	1	SS_B	$\frac{MS_{_B}}{MS_{_E}}$	
AB	$\frac{Contrast_{AB}^2}{2^2 n}$	1	SS_C	$rac{MS_{AB}}{MS_{E}}$	
Error	SS_{E}	2 ² *n-3	$\frac{SS_E}{2^2 * n-3}$		
Total	$\Sigma \Sigma (y_{ij} - \overline{y})^2$	2 ² *n-1			

Alternative Form

Source	SS	d.o.f.	MS	${f F}$	
mean	$nm \beta_0^{-2}$	1	$\frac{SS(\beta_0)}{1}$	$\frac{MS(\beta_0)}{MS(\varepsilon)}$	
x_1	$nm \beta_1^2$	1	$\frac{SS(\beta_1)}{1}$	$\frac{MS(\beta_1)}{MS(\varepsilon)}$	n = replicates $m = 2^k$
\mathcal{X}_2	$nm eta_2^{\ 2}$	1	$\frac{SS(\beta_2)}{1}$	$\frac{MS(\beta_2)}{MS(\varepsilon)}$	SS_{Total} includes
x_{12}	$nm \beta_{12}^{2}$	1	$\frac{SS(\beta_{12})}{1}$	$\frac{MS(\beta_{12})}{MS(\varepsilon)}$	the grand mean in this
\mathcal{E}	$\sum_{i=1}^{m} \sum_{j=1}^{n} \mathcal{E}_{ij}$	mn-4	$\frac{SS\left(\varepsilon\right)}{(mn-4)}$		formulation
total	$\sum_{i=1}^{m} \sum_{j=1}^{n} y_{ij}$	mn			

For all terms $F_{crit} = F_{1, mn-4, (1-\alpha)}$

Recall the Brakeforming Data (MIT 2002)

Inputs and Levels

- Inputs
 - Punch Depth (x_1)
 - 0.3 In (-1)
 - 0.6 in (+1)
 - Material Type/Thickness (x₂) (e.g., bending stiffness)
 - Aluminum (-`1)
 - Steel (+1)
- 2 Inputs 2 levels each 2² Model
- Output: Angle (y)

Data Table for 2² Model

Test	x1	x2	yi1	yi2	yi3	yi4	yi5	yi6	yi7	yi8	yi9	yi10
1	-1	-1	31.45	32.00	31.15	31.45	31.15	31.15	31.15	30.15	30.20	30.30
2	-1	1	45.30	45.10	45.00	42.15	44.00	45.35	44.55	43.30	44.30	42.15
3	1	-1	68,15	62.00	64.50	62.55	61.30	63.45	64.40	64.10	64.45	64.35
4	1	1	81.43	80.15	82.20	83.00	83.05	82.20	82.25	81.45	82.15	82.00

x₁: Material

• x₂ : Depth

• 4 Tests

• 10 Replicates

Looking only at Mean Response

Test	x1	x2	yibar
1	-1	-1	31.02
2	-1	1	44.12
3	1	-1	63.43
4	1	1	81.99

$$y = \begin{bmatrix} 31 \\ 44.1 \\ 63.4 \\ 82 \end{bmatrix}$$

Model and Interpretation

• Solving $\beta = X^{-1} y$

$$\underline{\beta} = \begin{bmatrix} 55.1 \\ 17.6 \\ 7.92 \\ 1.36 \end{bmatrix}$$

$$y = 55.1 + 17.6x_1 + 7.9x_2 + 1.4x_1x_2 + \varepsilon$$

Residual Analysis

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + h.o.t. + \varepsilon$$

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2$$

$$y - \hat{y} = h.o.t. + \varepsilon = \text{residual}$$

Properties of residual?

- if model is "correct"
- if model of error is $\sim N(0,\sigma^2)$

Residuals (ε) with Test

Residual Distribution

Aside: Use of All Data

Χ η

1	x1	x2	x1x2	у
1	-1	-1	1	31.45
1	-1	1	-1	45.30
1	1	-1	-1	63.15
1	1	1	1	81.45
1	-1	-1	1	32.00
1	-1	1	-1	45.10
1	1	-1	-1	62.00
1	1	1	1	80.15
1	-1	-1	1	31.15
1	-1	1	-1	45.00
1	1	-1	-1	64.50
1	1	1	1	82.20
1	-1	-1	1	31.45
1	-1	1	-1	42.15
1	1	-1	-1	62.55
1	1	1	1	83.00
1	-1	-1	1	31.15
1	-1	1	-1	44.00
1	1	-1	-1	61.30
1	1	1	1	83.05
1	-1	-1	1	31.15
1	-1	1	-1	45.35
1	1	-1	-1	63.45
1	1	1	1	82.20
1	-1	-1	1	31.15
1	-1	1	-1	44.55
1	1	-1	-1	64.40
1	1	1	1	82.25
1	-1	-1	1	30.15
1	-1	1	-1	43.30
1	1	-1	-1	64.10
1	1	1	1	81.45
1	-1	-1	1	30.20
1	-1	1	-1	44.30
1	1	-1	-1	64.45
1	1	1	1	82.15
1	-1	-1	1	30.30
1	-1	1	-1	42.15
1:	1	-1	-1	64.35
	1	1	1	82.00

$$\underline{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \underline{\eta}$$

$$\underline{\beta} = \begin{bmatrix} 55.1 \\ 17.6 \\ 7.92 \\ 1.36 \end{bmatrix}$$

Same as before!

Response Surface

Side View of Surface

Degree of interaction?

Are the Model Terms Significant?

- The Mean Effect β₀
- The Effect of Depth β₁
- The Effect of Material β₂
 - Contaminated by simultaneous change of modulus, thickness and yield
- The Interaction of Depth and Material β_{12}

Look at Single Variable Plots

Effect of Depth with Aluminum Only

Single Variable Plot: Material Effect

Is Model Form Adequate?

How to Test?

Next Time

- Checking adequacy of model form
 - Tests for higher order fits
- Experimental Design
 - Blocks and Confounding
- Single Replicate Designs
- Fractional Factorial Designs

