REVIEW LATX-X64 WORK

从开发到重构

SPC

LOONGSON LAB

2021年10月11日

认知:从 X86 到 AMD64 的一些区别

- 寄存器层次的区别
- 指令层次的区别
- 地址空间的区别
- 运行模式的区别

寄存器层次的区别

64-Bit Mode 执行环境

- GPR
 - ► GPR 数量从 8 个增加到 16 个 (R8-R15), 位宽增加到 64 位
 - ► EFLAGS(RFLAGS) 变成 64 位宽度,高 32 位保留,低 32 位同 FFLAGS
- XMM/YMM 数量从 8 个增加到 16 个
- Stack 栈指针地址宽度固定 64 位,即只用 RSP 做寻址
- Control registers, ...
- RIP 为 64 位,并加入了对于 RIP 的相对寻址 *
- Flat address space*

寄存器层次的区别

字节寄存器的变动

- SIL, DIL, BPL, SPL 的加入¹
- AH, BH, CH, DH 的调换²

¹当 REX prefix 存在时(事实上,如果存在 R8-R15,REX 就一定存在)

²当 REX prefix 不存在时

寄存器层次的区别

字节寄存器的变动

- SIL, DIL, BPL, SPL 的加入¹
- AH, BH, CH, DH 的调换²

寄存器运算: 默认如果目标寄存器是 32 位的, 高 32 位清零

o1C3 ADD EBX, EAX; 32-bit add

Begin: RAX = 0002_0001_8000_2201;

 $RBX = 0002_0002_0123_3301;$

Result: RBX = 0000_0000_8123_5502.

¹当 REX prefix 存在时(事实上,如果存在 R8-R15,REX 就一定存在)

²当 REX prefix 不存在时

指令层次的区别

增加新前缀 REX

- 以前的 Prex 被称为 Legacy Prefixes
- 为了支持更多的寄存器,新增加 REX 的新前缀
- REX Prefix Fields [BITS: 0100WRXB] ³
 - ► W: Operand Size: o = Default; 1 = 64 Bit Opsize
 - ► R: ModR/M
 - ► X: SIB index
 - ► B: ModR/M r/m, SIB base, or Opcode reg field

³Intel 64 and IA-32 Architectures Software Developer's Manual, 2.2.1 REX Prefixes

地址空间的区别

段寄存器的取消->Flat address space4

- 当然,他们还是会被正常装入 Segment-Register hidden part
- DS/ES/SS 对应隐藏部分被硬件忽略(认为 base = o)
- CS 对应隐藏部分只有部分属性可以使用 (L/D/DPL)
- FS/GS 对应隐藏部分只考虑 base
 - 1. Seg load 指令 (mov, pop) 只改变低 32 位地址
 - 2. 高 32 位地址映射到 MSR,通过指令 WRMSR 装入 The FS.base MSR address is Cooo_o1ooh while the GS.base MSR address is Cooo_o1o1h.
 - 3. 装入 null selector 不改变地址
- GDTR/LDTR/SYS-Descriptor⁵
 - 1. LGDT/LIDT 可以加载 m16864
 - 2. GDT 表项扩充到 128-bit(64-bit LDT/TSS/x Gate)

⁴AMD64 Architecture Programmer's Manual, Vol.2, 4.5.2 Segement Register ⁵AMD64 Architecture Programmer's Manual, Vol.2, 4.8.3 System Descriptors

地址空间的区别

RIP 相对寻址

■ 在 x86 上,获取当前 PC 非常"痛苦"

```
call _here
_here: pop eax
; eax now holds the PC.
```

- AMD64存在 lea (rip), rax
 - ▶ 在 64-bit mode 下打开,可以受 address-size prefix 改写 ⁶
 - ▶ 当 {mod, r/m} = 00101b 时, 启用 RIP + disp32 7

⁶AMD64 Architecture Programmer's Manual, Vol.1, 2.2.5.2 Effect of Address-Size Prefix on RIP-Relative Addressing

⁷AMD64 Architecture Programmer's Manual, Vol.3, 1.7 RIP-Relative Addressing

运行模式的区别

x86 运行模式

- Real Mode
- Virtual-8086 Mode
- Protected Mode

AMD64 运行模式

- Legacy Mode
 - ▶ Real Mode
 - ► Virtual-8086 Mode
 - Protected Mode
 - Long Mode
 - ► Compatibility Mode
 - ► 64-Bit Mode

开发: 以功能为导向

重构: 以任务为驱动

- 红-绿-重构: CI 的角色
- BUG TRACK & CM
- CODE REVIEW
- PATCH AND BRANCH

红-绿-重构

红-绿-重构: CI 的角色

BUG TRACK & CM

CODE REVIEW

PATCH AND BRANCH