

Associative: If \oplus is associative, then a \oplus (b \oplus c) = (a \oplus b) \oplus c Commutative: If \oplus is commutative, then a \oplus b = b \oplus a Identity: If id is an identity for \oplus , then a \oplus id = id \oplus a = a. Inverse: If \neg is an inverse for \oplus and id, then a \oplus \neg a = \neg a \oplus a = id. Reflexivity: $a \le a$, i.e. every element is related to itself. Irrelexivity: a < a, i.e. no element is related to itself. Antisymmetry: if $a \le b$ and $b \le a$ then a == b i.e. no two distinct elements precede each other. Asymmetry: if a < b and not b < a Transitivity: if $a \le b$ and $b \le c$ then $a \le c$ Idompotency: If \oplus is idempotent, then a \oplus a = a. If f is idempotent, then f(f(a)) = f(a) Join: Every pair of elements has a unique supremum/least upper bound. Join is written as v Meet: Every pair of elements has a unique infimum/greatest lower bound. Meet is written as Λ Distributive: If \oplus and \odot distribute, then a \odot (b \oplus c) = (a \odot b) \oplus (a \odot c) and (a \oplus b) \odot c = (a \odot c) \oplus (b \odot c). Implication: 'a \rightarrow a = 1' • 'a \land (a \rightarrow b) = a \land b' • 'b \land (a \rightarrow b) = b' • 'a \rightarrow (b \land c) = (a \rightarrow b) \land (a \rightarrow c)' Law of excluded middle: b v $(\neg b) = 1$ Derivative operator: D Existential quantifier: 3