Docket No.: MBT-13702/03

(PATENT)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of:

Vinode Ramnauth et al.

Application No.: 10/849,986

7849,986 Confirmation No.: 8686

Filed: May 20, 2004 Art Unit: 3722

For: APPARATUS AND METHOD FOR

MANUFACTURING PLASTIC

FRAMEWORKS SUCH AS WINDOW

FRAMES

Examiner: M. Talbot

AMENDMENT AFTER FINAL ACTION UNDER 37 C.F.R. 1.116

MS AF Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Dear Sir:

INTRODUCTORY COMMENTS

In response to the Office Action mailed August 1, 2007, please amend the aboveidentified U.S. patent application as follows:

Amendments to the Claims are reflected in the listing of claims which begins on page 2 of this paper.

Remarks/Arguments begin on page 18 of this paper.

AMENDMENTS TO THE CLAIMS

1. (Previously presented) A machine for carrying out machining operations on two rectangular frameworks arranged one above the other and extending horizontally, said machine using at least one power tool and comprising:

a machine base having a length and a width, both extending in a horizontal direction;

two framework guide supporting devices mounted on said base frame, each guide supporting device including an elongate horizontal support frame mounted on said base frame;

two horizontally extending guide arrangements mounted one above the other on each horizontal support frame, said guide arrangements being adapted to guide and support respectively said two rectangular frameworks for intermittent horizontal movement relative to said machine in the lengthwise direction of the base frame;

a tool supporting mechanism including a horizontal support beam mounted for sliding movement on said base frame in the widthwise direction of said base frame;

at least one power tool for carrying out machining operations on said frameworks; and

a transporting mechanism mounted on said horizontal support beam, supporting said at least one power tool, and capable of moving said at least one power tool both horizontally on said support beam in said lengthwise direction of the base frame and vertically relative to said base frame and said support beam;

wherein during use of said machine, said at least one power tool can carry out one or more machining operations on said two frameworks and said two frameworks are supported one above the other on said two guide arrangements.

After Final Office Action of August 1, 2007

2. (Previously presented) A machine according to claim 1 wherein one of the horizontal support frames is mounted for horizontal sliding movement on said base frame in the widthwise direction of said base frame.

3. (Canceled)

- 4. (Previously presented) A machine according to claim 1 wherein said transporting mechanism includes a vertical support plate mounted for horizontal sliding movement on said support beam and a tool supporting carriage unit mounted for vertical sliding movement on said vertical support plate.
- 5. (Previously presented) A machine for carrying out machining operations on rectangular frameworks using at least one power tool, said machine comprising:

a machine base frame having a length and a width;

at least one framework guide supporting device mounted on said base frame;

two horizontally extending guide arrangements mounted one above the other on said at least one supporting device, said guide arrangements being adapted to guide and support respectively two of said rectangular frameworks for intermittent horizontal movement relative to said machine in the lengthwise direction of the base frame;

a tool supporting mechanism including a horizontal support beam mounted for sliding movement on said base frame in the widthwise direction of the base frame;

at least one power tool for carrying out machining operations on said frameworks, said at least one power tool comprising a drill unit assembly including a drill bit holder and a motor for rotating a drill bit mounted in said drill bit holder; and

a transporting mechanism mounted on said support beam, supporting said drill unit assembly, and capable of moving said drill unit assembly both horizontally in the lengthwise direction of the base frame and vertically relative to said base frame, said transporting mechanism including a vertical support plate mounted for horizontal sliding movement on said support beam and a tool supporting carriage unit mounted for vertical sliding movement on said vertical support plate,

wherein said carriage unit includes a support arm having said drill unit assembly mounted thereon and pivotable about a horizontal axis in order to change the drilling orientation of said drill unit assembly.

- 6. (Original) A machine according to claim 5 wherein said carriage unit includes an upright post rotatable about a vertical axis and a gear housing in which said post is rotatably mounted, said support arm being pivotably mounted at a top end of the upright post.
- 7. (Original) A machine according to claim 6 wherein one end of said gear housing is attached to a vertical mounting plate slidably mounted on said support plate, a vertical drive motor is mounted on said vertical mounting plate and is operatively connected to a spur gear for rotating same, and a vertically extending, toothed rack is mounted on said support plate for engagement with said spur gear in order to provide drive means for raising or lowering said carriage unit and the drill unit assembly.

Application No. 10/849,986 5 Docket No.: MBT-13702/03

After Final Office Action of August 1, 2007

8. (Original) A machine according to claim 2 including two parallel, horizontal

tracks each of which is mounted on top of its respective guide supporting device and two

clamping arm assemblies each mounted on a respective one of said tracks for horizontal

movement along its track, each clamping arm assembly being adapted to clamp said two

frameworks and to move said two frameworks along said guide arrangements during operation

of said machine.

9. (Original) A machine according to claim 2 wherein each of said guide

arrangements is a pair of substantially horizontal rails spaced horizontally apart a selected

distance corresponding closely to one dimension of the two frameworks and said machine further

includes clamping devices for firmly and temporarily holding a respective one of said two

frameworks arranged along each pair of the rails.

10. (Original) A machine according to claim 9 wherein said tool supporting

mechanism includes a horizontal support beam mounted for horizontal sliding movement on said

base frame in the widthwise direction of the base frame.

11. (Currently amended) An apparatus for carrying out machining operations on a

workpiece, said apparatus comprising:

a tool carriage mechanism adapted for mounting on a support member and movable with

respect to said support member, said tool carriage mechanism including a base unit mountable on

said support member, a support post having one end rotatably mounted on or in said base unit, a

first drive motor unit capable of rotating said support post about a central longitudinal axis of said post, a vertical main mounting plate on which said base unit is movably mounted, and a drive motor mechanism adapted for moving said base unit on said main mounting plate;

Docket No.: MBT-13702/03

a power tool for carrying out machining operations, said power tool including a second drive motor and a tool rotatable by said second drive motor;

a support arm pivotable about a transverse axis that is substantially perpendicular to said central longitudinal axis, said support arm being mounted on a second end of said support post which is opposite said one end and said power tool being mounted on a section of said support arm spaced away from the support post; and

a third drive motor unit capable of pivoting said support arm and the attached power tool about said transverse axis, said third drive motor unit including a servomotor mounted in said support post, a first bevel gear rotatable by said servomotor, and another bevel gear mounted on a horizontal shaft and driven by said first bevel gear, said support arm being fixedly connected to said horizontal shaft which extends along said transverse axis and is rotatably supported on top of said support post,

wherein said support arm and third drive motor unit can be used to change the operating orientation of said power tool during use of said apparatus and said drive motor mechanism includes a fourth motor mounted on said base unit.

12. (Canceled)

13. (Currently amended) An apparatus for carrying out machining operations on rectangular frameworks, said apparatus comprising:

Docket No.: MBT-13702/03

a tool carriage mechanism adapted for mounting on a support member and movable with respect to said support member, said tool carriage mechanism including a base unit mountable on said support member, a support post having one end rotatably mounted on or in said base unit, and a first drive motor unit capable of rotating said support post about a central longitudinal axis of said post, said base unit including a gear housing having a longitudinal central axis, which extends horizontally, and a vertical mounting plate attached to an end of said gear housing and fitted with ball slides for facilitating vertical movement of the gear housing and the mounting plate, said one end of said support post extending into said gear housing and said first drive motor unit being operatively connected by a drive shaft attached to said gear housing, wherein said central longitudinal axis of said support post is a vertical axis, said support post comprises a substantially hollow tube, and said first drive motor unit is mounted substantially in a lower section of the hollow tube;

a power tool for carrying out machining operations, said power tool including a second drive motor and a tool rotatable by said second drive motor;

a support arm pivotable about a transverse axis that is substantially perpendicular to said central longitudinal axis, said support arm being mounted on a second end of said support post which is opposite said one end and said power tool being mounted on a section of said support arm spaced away from the support post; and

a third drive motor unit capable of pivoting said support arm and the attached power tool about said transverse axis,

said third drive motor unit being mounted substantially in an upper section of said hollow tube,

After Final Office Action of August 1, 2007

wherein said support arm and third drive motor unit can be used to change the operating

orientation of said power tool during use of said apparatus.

14. (Original) An apparatus according to claim 13 wherein said power tool is a

drilling unit assembly including a drill bit holder and said support arm is pivotable through an

angle of at least 180 degrees about said transverse axis.

15. (Canceled)

16. (Original) An apparatus according to claim 15 wherein said tool carriage

mechanism further includes a support beam adapted to extend horizontally along a longitudinal

beam axis and to move horizontally in a direction perpendicular to said longitudinal beam axis,

and a vertical main mounting plate mounted for horizontal movement on said support beam in a

direction parallel to said longitudinal beam axis, said first mentioned mounting plate being

movably mounted on said main mounting plate by means of said ball slides.

17. (Original) An apparatus according to claim 16 including a further drive motor

mounted on said main mounting plate and adapted to rotate a further spur gear and a toothed rack

mounted on and extending lengthwise along said support beam, said further spur gear engaging

said rack so that a selected amount of rotation of said further spur gear causes said main

mounting plate to move horizontally along said support beam a desired distance during use of

said apparatus.

18. (Canceled)

19. (Currently amended) An apparatus for carrying out machining operations on plastic frameworks such as window-frames, said apparatus comprising:

a power tool for carrying out machining operations on one of said plastic frameworks, said power tool including a first drive motor and a tool device operatively connected to and adapted to be driven by said first drive motor;

a lever member pivotable about a first horizontal pivot axis and supporting said power tool at a location spaced away from said pivot axis;

a vertically extending, first support structure on which said lever member is mounted for pivotable movement about said horizontal pivot axis;

a horizontally extending, second support structure on which said first support structure is mounted for rotation about a substantially vertical axis of rotation;

a third support structure on which said second support structure is movably mounted, said third support structure including a vertically extending main mounting plate on which said second support structure is vertically movable;

a second drive motor mounted on said first support structure and operatively connected to said lever member in order to pivot said lever member about said pivot axis;

a drive motor system mounted on one of said first and second support structures and operatively connected to rotate said first support structure about said axis of rotation in a desired manner; and

a further drive motor system for moving said second support structure vertically on said main mounting plate, said further drive motor system including a further drive motor mounted on said second support structure,

wherein the operating orientation of said tool device can be turned about said two axes during use of said apparatus.

20. (Canceled)

21. (Currently amended) An apparatus for carrying out machining operations on plastic frameworks such as window frames, said apparatus comprising:

a power tool for carrying out machining operations on one of said plastic frameworks, said power tool including a first drive motor and a tool device operatively connected to and adapted to be driven by said first drive motor, said tool device including a rotatable drill bit holder and a drill bit mountable in said drill bit holder;

a lever member pivotable about a first horizontal pivot axis and supporting said power tool at a location spaced away from said pivot axis;

a vertically extending, first support structure on which said lever member is mounted for pivotable movement about said horizontal pivot axis, said first support structure being a hollow, elongate post, said lever member being a lever arm pivotally mounted at a top end of said post, said horizontal pivot axis being located at one end of said lever arm;

a horizontally extending, second support structure on which said elongate post is mounted for rotation about a substantially vertical axis of rotation;

a third support structure on which said second support structure is movably mounted;

a second drive motor mounted on said first support structure and operatively connected to said lever member in order to pivot said lever member about said pivot axis, said second drive member being mounted within said post and having an output shaft connected to a bevel pinion rotatable about a vertical axis, said bevel pinion engaging a bevel gear mounted on a shaft for rotation about said pivot axis, said one end of the lever arm being attached to said shaft; and

a drive motor system mounted on one of said first and second support structures and operatively connected to rotate said first support structure about said axis of rotation in a desired manner;

wherein the operating orientation of said tool device can be turned about said two axes during use of said apparatus.

22. (Canceled)

- 23. (Original) An apparatus according to claim 19 wherein said first support structure is a hollow, elongate post, said lever member is pivotably mounted at a top end of said post, said second drive motor is mounted within an upper section of said post, and said drive motor system includes a servomotor mounted within a lower section of said post.
- 24. (Original) An apparatus according to claim 23 wherein said second support structure comprises a box-like housing having a vertical supporting plate at one end, said post extends upwardly from an opposite end section of the housing, and a bottom end section of said post is rotatably mounted in said housing.

- 25. (Previously presented) An apparatus according to claim 24 wherein said main mounting plate has vertical rails mounted thereon, ball slides are mounted on said supporting plate for sliding movement on said rails, and said further drive motor is operatively connected to a rack and pinion drive system in order to move said box-like housing and said post selectively upwardly or downwardly relative to said main mounting plate.
- 26. (Original) An apparatus according to claim 19 including a support beam adapted to extend horizontally during use of said apparatus, wherein said third support structure is slidably mounted on said support beam for movement along said beam in the lengthwise direction of the beam.
- 27. (Previously presented) An apparatus according to claim 26 including a servomotor drive system for controllably moving said third support structure along said beam, said servomotor drive system including a servomotor mounted on said third support structure and a gear rotatable by said servomotor and engaging a rack mounted on said beam.
- 28. (Withdrawn) A method for processing plastic frameworks such as window frames, said method comprising:

welding elongate plastic frame members together in a plastic frame welding machine and thereby forming two rectangular plastic frameworks located one above the other;

moving said two plastic frameworks to a framework processing machine with one of said plastic frameworks being moved along a first predetermined path to said processing machine and

the other of said frameworks being moved along a second predetermined path to said processing machine, said second path being located above said first path; and

carrying out processing steps on both of said plastic frameworks by means of said processing machine while said plastic frameworks are both positioned on said processing machine and one of the plastic frameworks is held higher than the other plastic framework, said processing steps are being carried out by at least one power tool having a drive motor and mounted on a lever member pivotable about a horizontal pivot axis and supporting said power tool at a location spaced away from said pivot axis, said lever member being mounted on a vertically extending support structure for pivotable movement about said horizontal pivot axis, said processing steps including manipulating the or each power tool to carry out one or more processing steps on at least one of said plastic framework by pivoting said lever member and said power tool about said horizontal pivot axis and rotating said support structure about a substantially vertical axis so that the power tool is properly positioned and oriented for said one or more processing steps.

- 29. (Withdrawn) A method for processing plastic frameworks according to claim 28 wherein said two plastic frameworks are moved by gripper arm assemblies along upper and lower pairs of rails to said framework processing machine.
- 30. (Withdrawn) A method for processing plastic frameworks according to claim 28 including the additional steps of moving said two plastic frameworks substantially horizontally to a separate framework cleaning machine after said processing steps have been carried out by said processing machine, and then carrying out plastic weld cleaning steps by means of said

framework cleaning machine on the two plastic frameworks while they are both positioned simultaneously and one above the other on said framework cleaning machine, said processing steps carried out by said framework processing machine being machining steps other than weld cleaning.

31. (Withdrawn) A method for manufacturing plastic frameworks such as window frames, said method comprising:

welding elongate plastic frame members together in a plastic frame welding machine and thereby forming two rectangular plastic frameworks located one above the other;

moving said two plastic frameworks to a framework processing machine with one of said plastic frameworks being moved along a first predetermined path to said processing machine and the other of said frameworks being moved along a second predetermined path to said processing machine, said second path being located above said first path;

carrying out machining operations on both of said plastic frameworks by means of one or more power tools mounted on said processing machine while said plastic frameworks are both positioned on said processing machine and one of the plastic frameworks is held higher than the other plastic framework;

moving the machined plastic frameworks to a weld cleaning machine with one of said plastic frameworks being moved along a lower path to said weld cleaning machine and the other of said frameworks being moved along an upper path located above said lower path to the weld cleaning machine; and

carrying out processing operations including weld cleaning steps on both of said machined plastic frameworks by means of said weld cleaning machine while one of the machined plastic frameworks is held higher than the other plastic framework.

- 32. (Withdrawn) A method for manufacturing plastic frameworks according to claim 31 wherein said first predetermined path is defined by a first guide arrangement mounted on said framework processing machine and extending substantially horizontally and said second predetermined path is defined by a second guide arrangement mounted on said framework processing machine and extending substantially horizontally.
- 33. (Withdrawn) A method for manufacturing plastic frameworks according to claim 32 wherein each guide arrangement comprises two spaced-apart supporting rails which are horizontally aligned and each of said plastic frameworks is moved along its respective supporting rails by means of at least one clamping arm assembly slidably mounted on a horizontal track arrangement.
- 34. (Withdrawn) A method manufacturing plastic frameworks according to claim 31 wherein said lower path is defined by a lower guide arrangement mounted on said weld cleaning machine and extending substantially horizontally and said upper path is defined by an upper guide arrangement mounted on said weld cleaning machine and extending substantially horizontally.

35. (Withdrawn) A method for manufacturing plastic frameworks according to claim 31 wherein said one or more power tools mounted on said processing machine include a power drill having a drill bit holder and an electric motor adapted to rotate said drill bit holder and a drill bit mounted therein, and said processing machine includes a transporting mechanism on which said power drill is mounted, said transporting mechanism being used to move said power drill horizontally, vertically or both horizontally and vertically in order to position said power drill prior to said power drill carrying out said machining operations.

16

- (Withdrawn) A method of manufacturing plastic frameworks according to claim 36. 35 wherein said transporting mechanism is used to position said power drill adjacent both left and right sides of said plastic frameworks and said machining operations are carried out by said power drill on both of said left and right sides of said plastic frameworks.
- 37. (Withdrawn) A method of manufacturing plastic frameworks according to claim 35 wherein said transporting mechanism includes a support arm on which said power drill is mounted, said support arm and the attached power drill being pivoted about a horizontal pivot axis in order to change the drilling orientation of said power drill prior to said power drill carrying out one or more of said machining operations.
- 38. (Withdrawn) A method of manufacturing plastic frameworks according to claim 32 wherein said one or more power tools mounted on said processing machine include a power drill having a drill bit holder and an electric motor adapted to rotate said drill bit holder and a drill bit mounted therein, and said processing machine including a transporting mechanism on

which said power drill is mounted, said transporting mechanism being used to move said power drill horizontally, vertically or both horizontally and vertically in order to position said power drill prior to said power drill carrying out said machining operations.

REMARKS

Applicant thanks the Examiner for the allowance of claims 1, 2 and 4 to 10 and for the indication of allowable subject matter in claims 15 to 18. Currently claims 11, 13, 19 and 21 have been amended and, for the reasons indicated hereinafter, it is respectfully submitted that the amendments to these claims effectively overcome all of the Examiner's objections. The Applicant respectfully requests reconsideration of this application in view of these amendments and the following submissions.

With respect to the initial rejection of claims 19, 21 and 23 to 27 under 35 U.S.C. §112, claims 19 and 21 have been amended at the beginning thereof to delete the words "such as window frames". It is respectfully submitted that with these amendments, independent claims 19 and 21 are now quite clear and definite and they now comply fully with the requirements of 35 U.S.C. §112. Claims 23 to 27 depend directly or indirectly on these claims and are now believed to be in condition for allowance.

With respect to the rejection of claims 11, 13 and 14 under 35 U.S.C. §102(b), claim 11 has been amended now to include the subject matter of original claim 18 which has now been canceled. As the Examiner indicated that claim 18 contained allowable subject matter (on page 7 of the Office Action), it is submitted that claim 11 is clearly now in condition for allowance.

With respect to the rejection of claim 13, an independent claim, the initial portion of this claim has been amended to include the subject matter of original claim 15, which has now been canceled. Again, since the Examiner indicated that claim 15 contained allowable subject matter, claim 13 should now be clearly in condition for allowance.

With respect to claim 14, it is noted that this claim is dependent upon claim 13 and accordingly claim 14 is allowable for the same reasons as claim 13.

Conclusion

For the above cited reasons, all of the claims presently pending in this application are believed to be allowable. If the Examiner has any further questions or concerns, the Examiner is invited to contact the Applicant's undersigned attorney.

Dated: 10-27-07

Respectfully-submitted,

Alleh M. Krass

Registration No.: 18,277

GIFFORD, KRASS, SPRINKLE, ANDERSON

& CITKOWSKI, P.C.

2701 Troy Center Drive, Suite 330

Post Office Box 7021

Troy, Michigan 48007-7021

(248) 647-6000

(248) 647-5210 (Fax)

Attorney for Applicant