tob multiple

Esercizi vari di Logica

(tratti da esami degli anni precedenti)

Anno accademico 2021-22

Foth, sleums (guardo qui)

Insiemi, relazioni, funzioni e cardinalità 1

Esercizio 1

Disegnare il diagramma di Hasse dei seguenti reticoli (dove l'ordine è dato dalla relazione di divisibilità):

- reticolo dei divisori di 20;
- reticolo dei divisori di 105.

Esercizio 2

Giustificando la propria risposta, dire per ciascuna delle seguenti funzioni se è iniettiva, suriettiva, biettiva o nessuna delle tre.

- $f: \mathbb{R} \to \mathbb{R}, \qquad x \mapsto 3x + 4.$ $g: \mathbb{Q} \to \mathbb{R}, \qquad x \mapsto 3x + 4.$
- $h: \mathbb{R} \to \mathbb{R}, \qquad x \mapsto 2 \cdot |x|$
- $k \colon \mathbb{R} \to \mathbb{R}_{\leq 0}, \qquad x \mapsto -2 \cdot |x|$

dove |x| indica il valore assoluto di $x \in \mathbb{R}_{\leq 0} = \{r \in \mathbb{R} \mid r \leq 0\}.$

Esercizio 3

Sia

$$Fin = \{ A \subseteq \mathbb{N} \mid A \text{ è finito} \}$$

e si ricordi che $\mathbb{N}^{<\mathbb{N}}$ è l'insieme di tutte le sequenze finite di numeri naturali. Dimostrare che

$$|\operatorname{Fin}| = |\mathbb{N}^{<\mathbb{N}}|.$$

Esercizio 4

Si consideri l'insieme

$$D = \left\{ w \in \{a, b\}^{<\mathbb{N}} \mid a \in b \text{ compaiono in } w \text{ lo stesso numero di volte} \right\}.$$

Dimostrare che D è numerabile.

Dimostrare che l'insieme

$$D = \left\{ s \in \{0, 1\}^{\mathbb{N}} \mid \forall k \in \mathbb{N} \left(s(2k) = s(2k+1) \right) \right\}$$

è in biezione con $\{0,1\}^{\mathbb{N}}$. È vero che D è numerabile?

Esercizio 6

Dimostrare $D = \left\{ \frac{k}{2^n} \mid k \in \mathbb{Z}, n \in \mathbb{N} \right\}$ è in biezione con \mathbb{N} .

Esercizio 7

Sia $L = \{f, a\}$ un linguaggio del prim'ordine costituito dal simbolo di funzione unario f e dal simbolo di costante a. Sia Term l'insieme di tutti i termini nel linguaggio L. Dimostrare che l'insieme

$$A = \{t \in \text{Term} \mid t \text{ non contiene variabili}\}$$

è un insieme numerabile, ovvero $|A| = |\mathbb{N}|$.

Suggerimento: Osservare che $a \in A$ e che se $t \in A$ allora $f(t) \in A$.

Esercizio 8

Dimostrare che

$$|A| = |B|$$

dove

 $A = \{ n \in \mathbb{N} \mid n \text{ è un quadrato perfetto} \}$

e

$$B = \left\{ \frac{1}{p+1} \mid p \in \mathbb{N} \right\}.$$

2 Principio di induzione

Esercizio 1

Dimostrare che per ogni $n\in\mathbb{N}$ vale la relazione

$$\sum_{i=0}^{n} (2i+3) = n^2 + 4n + 3.$$

Esercizio 2

Definiamo la successione dei c_n per ricorsione su $n \in \mathbb{N}$ come segue:

$$c_0 = 2$$
$$c_{n+1} = \frac{1}{c_n}.$$

Dimostrare che per ogni $n \geq 0$

$$1/2 \le c_n \le 2.$$

Esercizio 3

Sia $a_n, n \in \mathbb{N}$, la successione definita per ricorsione da

$$a_0 = 1$$

$$a_{n+1} = 1 - \frac{1}{2} \cdot a_n$$

Dimostrare che per ognin>0

$$0 < a_n < 1$$
.

Suggerimento: Per il passo induttivo, osservare innanzitutto che se 0 < r < 1 allora anche $0 < \frac{1}{2} \cdot r < 1$ e 0 < 1 - r < 1.

Esercizio 4

Dimostrare che per ogni $n \in \mathbb{N}$

$$\sum_{k=0}^{n} (3k+1) = \frac{3n^2 + 5n + 2}{2}.$$

Esercizio 5

Dimostrare che per ogni $n \in \mathbb{N}$ si ha

$$\sum_{i=0}^{n} 3^{i} = \frac{3^{n+1} - 1}{2}.$$

Esercizio 6

Dimostrare che per ogni $n \ge 1$

$$\sum_{i=1}^{n} i(i+1) = \frac{n(n+1)(n+2)}{3}.$$

Dimostrare che per ogni $n \in \mathbb{N}$

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1.$$

Esercizio 8

Dimostrare che per ogni $m \in \mathbb{N}$ e per ogni $n \in \mathbb{N}$

$$\sum_{i=1}^{n} m = m \cdot n$$

ricordando che per convenzione $\sum_{i=1}^{0} m = 0$.

Esercizio 9

Dato un linguaggio del prim'ordine L con un simbolo funzionale binario f ed un simbolo di costante a, dimostrare per induzione che per ogni n > 0 esiste un L-termine che contiene 2n occorrenze del simbolo a.

Esercizio 10

Dimostrare per induzione che per ogni $n \ge 1$

$$\sum_{i=1}^{n} (2i)^3 = 2n^2(n+1)^2.$$

Esercizio 11

Dimostrare che per ogni $n \in \mathbb{N}$ esistono esattamente 2^n stringhe di lunghezza n sull'alfabeto $A = \{0, 1\}$.

Esercizio 12

Dimostrare per induzione che se n è dispari e a_1, \ldots, a_n sono dispari, allora $\sum_{i=1}^n a_i$ è dispari.

Esercizio 13

Dimostrare per induzione che $\sum_{k=1}^{n} (4k+1) = n(2n+3)$.

Esercizio 14

Dimostrare per induzione che se $n \ge 1$ allora

$$\sum_{k=1}^{n} k \cdot 2^{k-1} = (n-1) \cdot 2^{n} + 1$$

Esercizio 15

Dimostrare per induzione che se $n \ge 1$ allora

$$\prod_{i=1}^{n} (4i - 2) = \frac{(2n)!}{n!},$$

dove
$$\prod_{i=1}^{n} (4i - 2) = 2 \cdot 6 \cdot 10 \cdots (4n - 2)$$
.

Data la definizione ricorsiva

$$f(0) = 0$$
$$f(n+1) = 1 - f(n)$$

dimostrare che per ogni $n \in \mathbb{N}$

$$f(n) \in \{0, 1\}.$$

Esercizio 17

Dato un alfabeto A, dimostrare per induzione che per ogni coppia di stringhe $s, t \in A^*$, la lunghezza della concatenazione di s con t è la somma delle lunghezze di s e di t, in simboli:

$$lh(st) = lh(s) + lh(t)$$

Esercizio 18

Dimostrare per induzione che

$$\sum_{k=0}^{n} \frac{k(k+1)}{2} = \frac{1}{6}n(n+1)(n+2)$$

Esercizio 19

Dimostrare per induzione che esistono n! permutazioni di un insieme con n elementi, dove $n! = \prod_{i=1}^{n} i$.

Suggerimento. Si osservi che una permutazione di un insieme di n+1 elementi è determinata dalla scelta di un elemento dell'insieme con una permutazione dei restanti n elementi.

Esercizio 20

Si dimostri per induzione strutturale che il numero di parentesi in una formula è sempre pari.

Esercizio 21

Dimostrare per induzione su n che la funzione f definita ricorsivamente dalle clausole

$$f(0) = 0$$

$$f(n+1) = 1 - f(n)$$

soddisfa le condizioni seguenti, per ogni numero naturale n:

$$f(n) = 0$$
 se n è pari
 $f(n) = 1$ se n è dispari

Esercizio 22

Sia $f \colon \mathbb{N} \to \mathbb{Z}$ definita per ricorsione dalle clausole

$$f(0) = 0$$

$$f(n+1) = f(n) + 2n - 1.$$

Dimostrare che per ogni $n \in \mathbb{N}$ si ha

$$f(n) = n^2 - 2n.$$

Dimostrare che per ogni $n \in \mathbb{N}$ si ha

$$\sum_{i=0}^{n} (2i - 3) = n^2 - 2n - 3.$$

Esercizio 24

Dimostrare che per ogni $n\in\mathbb{N}$ si ha

$$\sum_{i=0}^{n} (4i+4) = (n+1)(2n+4).$$

Esercizio 25

Sia $a_n, n \in \mathbb{N}$, la successione definita per ricorsione da

$$\begin{cases} \frac{a_0 = 4}{a_{n+1}} = a_n + 4n + 8. \end{cases}$$

Dimostrare che per ogni $n \in \mathbb{N}$ si ha

$$a_n = (n+1)(2n+4).$$

Esercizio 26

Siano a e b due numeri naturali. Dimostrare che per ogni $n \geq 1$ vale la disuguaglianza

$$(a+b)^n \ge a^n + b^n.$$

Logica proposizionale 3

(altre (iv. variti)

Esercizio 1

Consideriamo le seguenti proposizioni:

$$P: \neg A \rightarrow \neg B$$

$$Q: \neg B \rightarrow \neg A$$

$$R: \neg A \wedge \neg B$$

Determinare se:

1.
$$P, Q \models R;$$

2.
$$Q, R \models P$$
;

3.
$$P \wedge R \equiv Q$$
.

Esercizio 2

Sia P la proposizione

$$A \wedge (B \rightarrow A)$$
.

Giustificando le proprie risposte, dire quale delle seguenti proposizioni sono conseguenza logica di P:

1.
$$A \leftrightarrow \neg A$$

2.
$$(A \rightarrow B) \lor (B \rightarrow A)$$

3.
$$\neg B \rightarrow A$$

Esercizio 3

Consideriamo le seguenti proposizioni:

$$P_0: A \land \neg B$$

 $P_1: B \lor \neg C$

$$P_1: B \vee \neg C$$

$$P_2: A \leftrightarrow (\neg B \land \neg C)$$

Determinare se:

1.
$$P_0, P_1 \models P_2$$
;

2.
$$P_2, P_1 \models P_0$$
;

3.
$$P_0, P_2 \models P_1$$
.

Esercizio 4

Sia P la proposizione $\neg(A \rightarrow B) \lor \neg B$. Giustificando la propria risposta, determinare quali delle seguenti sono conseguenza logica di P:

2.
$$A \vee B$$

3.
$$A \wedge \neg B$$

4.
$$A \rightarrow B$$

Sia P la proposizione $\neg(A \rightarrow B) \lor \neg B$. Giustificando la propria risposta, determinare quali delle seguenti sono conseguenza logica di P:

- 1. ¬B
- 2. $A \vee B$
- 3. $A \land \neg B$
- 4. $A \rightarrow B$

Esercizio 6

Sia P la proposizione $\neg(A \to B) \lor B$. Giustificando la propria risposta, determinare quali delle seguenti sono conseguenza logica di P:

- 1. ¬A
- 2. $A \wedge B$
- 3. $A \vee B$
- 4. $A \rightarrow B$

Esercizio 7

Sia P la proposizione $\neg(B \to A) \lor (B \lor A)$. Giustificando la propria risposta, verificare quali delle seguenti proposizioni sono logicamente equivalenti a P, quali sono conseguenza logica di P, quali non sono né l'una né l'altra:

- 1. $B \rightarrow A$
- 2. $\neg B \rightarrow A$
- 3. B
- 4. $\neg(\neg A \land \neg B)$

Esercizio 8

Giustificando la propria risposta, determinare se è vero che

$$\neg B \lor A$$
, $\neg (C \land A) \models C \rightarrow \neg B$.

Esercizio 9

1. Dimostrare mediante tavole di verità che vale la seguente relazione:

$$\neg A \lor \neg B, B \land \neg C \models \neg A \rightarrow \neg C$$

2. Dimostrare mediante tavole di verità:

$$A \rightarrow B, C \rightarrow B, \neg B \not\models A \lor C$$

Esercizio 10

1. Indicare, se esiste, una valutazione delle lettere proposizionali A, B, C che dimostri che $(A \to B) \land (\neg A \to C)$ non è conseguenza logica di $(A \land \neg B) \lor (\neg A \land \neg C)$, motivando la scelta.

Esercizi vari di Logica Matematica

Mark

2. Si consideri la proposizione "Solo gli studenti che prendono almeno 18 allo scritto possono essere ammessi all'orale": quale dei seguenti casi esclude?

- (1) Alice ha preso 18 allo scritto ma non è ammessa all'orale;
- (2) Bice ha preso 18 allo scritto ed è ammessa all'orale;
- (3) Carlo ha preso 17 allo scritto ed è ammesso all'orale;
- (4) Davide ha preso 17 allo scritto e non è ammesso all'orale.

Esercizio 11

Consideriamo le seguenti proposizioni:

 $P: A \to B$

 $Q: B \to A$

 $R: A \vee B$

Determinare se:

- 1. $P,Q \models R$;
- 2. $Q, R \models P;$
- 3. $P, R \models Q$.

Esercizio 12

Data la formula proposizionale

$$(A \land \neg B \land C) \lor (\neg A \rightarrow \neg C)$$

indicare quali delle seguenti formule ne sono conseguenze logiche:

- 1. A
- 2. B
- 3. $A \lor B \lor C$
- 4. $\neg A \lor (\neg A \rightarrow \neg C)$

Esercizio 13

Data la seguente formula proposizionale P

$$(A \wedge \neg B \wedge \neg C) \vee (A \wedge B \wedge \neg C),$$

quali delle seguenti formule **non** sono conseguenze logiche di P?

- 1. $(C \to B) \to \neg A$
- 2. $A \lor C$
- 3. ¬C
- 4. $(A \wedge B) \rightarrow C$

Esercizio 14

Indicare per ciascuna delle seguenti righe se vale la relazione di conseguenza logica indicata, motivando la risposta con la corrispondente tavola di verità:

- 1. $\neg A \lor \neg B \models \neg A \to \neg B$
- 2. $A \rightarrow B \models A \lor B$
- 3. $\neg B \rightarrow \neg A \models \neg A \lor B$
- 4. $\neg A \land \neg B \models \neg A \rightarrow \neg B$

Verificare se la seguente affermazione è valida o meno:

$$P \vee Q, (R \wedge P) \rightarrow Q, \neg R \not\models P$$

Esercizio 16

Consideriamo le seguenti proposizioni:

 $P_0: B \wedge \neg A$

 $P_1: C \vee \neg B$

 $P_2: C \leftrightarrow (\neg A \wedge B)$

Determinare se:

- 1. $P_0 \models P_2 \vee P_1$;
- 2. $P_1 \models P_0 \land P_2$;
- 3. $P_0, P_1 \models P_2$.

Esercizio 17

Usare il calcolo proposizionale per risolvere il seguente problema:

Alessandro, Beatrice e Carlo vanno al ristorante. Se Alessandro ordina una pizza altrettanto fa Beatrice; Beatrice o Carlo, ma non entrambi, ordinano una pizza; Alessandro o Carlo, o entrambi, ordinano una pizza. Se Carlo ordina una pizza, altrettanto fa Alessandro. Chi ordina una pizza?

Esercizio 18

Siano date le formule

 $P: A \vee B \vee C$

 $Q: \neg A \to B$

 $R: \neg C \to A$

Giustificando le proprie risposte, verificare se:

- 1. $Q \models P$
- 2. $R \models P$
- 3. $R \lor Q \equiv P$

Siano date le formule

$$P: (A \land \neg B) \rightarrow \neg C$$

$$Q: \quad \neg B \to A$$

$$R: \neg B \rightarrow \neg C$$

Giustificando le proprie risposte, verificare se:

1.
$$P, Q \models R$$

2.
$$R, P \models Q$$

3.
$$P \wedge Q \equiv R$$

Esercizio 20

Consideriamo le seguenti proposizioni:

$$Q_0: \neg A \to C$$

$$Q_1: \neg A \rightarrow \neg B$$

$$\begin{aligned} Q_0: & \neg A \to C \\ Q_1: & \neg A \to \neg B \\ Q_2: & (B \vee \neg C) \to A \end{aligned}$$

Determinare se:

1.
$$Q_0, Q_1 \models Q_2$$
;

2.
$$Q_2 \models Q_0 \wedge Q_1$$
;

3.
$$Q_0 \vee Q_1 \equiv Q_2$$
.

Esercizio 21

Consideriamo le seguenti proposizioni:

$$S_0: \neg C \leftrightarrow A$$

$$S_1: \neg A \leftrightarrow B$$

$$\begin{array}{ll} S_1: & \neg A \leftrightarrow B \\ S_2: & B \rightarrow (A \lor C) \end{array}$$

Determinare se:

1.
$$S_0, S_1 \models S_2$$
;

2.
$$S_2 \models S_0 \wedge S_1$$
;

3.
$$S_2 \equiv S_1 \vee S_0$$
.

Esercizio 22

Consideriamo le seguenti proposizioni:

$$Q_0: (\neg C \wedge A) \vee (C \wedge \neg A)$$

$$Q_1: (\neg A \wedge B) \vee (A \wedge \neg B)$$

$$Q_2: \neg B \lor A \lor C$$

Giustificando le proprie risposte, determinare se:

1.
$$Q_0, Q_1 \models Q_2$$
;

2.
$$Q_2 \models Q_0 \land Q_1$$
;

3.
$$Q_2 \equiv Q_1 \vee Q_0$$
.

4 Logica del prim'ordine: semantica

Esercizio 1

Sia $L = \{R, f\}$, dove R simbolo di relazione binario e f simbolo di funzione binario. Sia φ la seguente formula

$$\forall x \exists y R(f(x,y),z).$$

- 1. Sottolineare (nel caso in cui ve ne siano) ciascuna occorrenza libera di variabile in φ .
- 2. Determinare se $\mathcal{A} \models \varphi[x/2, y/5, z/0]$ dove $\mathcal{A} = \langle \mathbb{N}, \leq, + \rangle$.
- 3. Determinare per quali valori di $k \in \mathbb{Z}$ si ha che $\mathcal{B} \models \varphi[x/2, y/5, z/k]$ dove $\mathcal{B} = \langle \mathbb{Z}, \geq, \cdot \rangle$.

Giustificare le proprie risposte.

Suggerimento. Nel terzo punto distinguere i casi $k \leq 0$ e k > 0.

Esercizio 2

Sia $L = \{f\}$ un linguaggio costituito da un unico simbolo di funzione binario. Sia φ la formula

$$\forall y \forall z (f(y, z) = x \rightarrow y = x \lor z = x).$$

- 1. Determinare tutti gli $n \in \mathbb{N}$ tali che $(\mathbb{N}, \cdot) \models \varphi[x/n]$.
- 2. Determinare tutti gli $n \in \mathbb{N}$ tali che $\langle \mathbb{N}, + \rangle \models \varphi[x/n]$.
- 3. Dimostrare che $\langle \mathbb{Z}, \cdot \rangle \not\models \varphi[x/3]$.

Giustificare le proprie risposte.

Esercizio 3

Sia $L = \{f, g, c\}$, dove f e g sono simboli di funzione binari e c è un simbolo di costante. Sia φ la formula

$$\forall x \forall y (f(q(x, x), c) = f(c, q(y, y)) \rightarrow x = y).$$

- 1. Dimostrare che $\langle \mathbb{N}, +, \cdot, 0 \rangle \models \varphi$.
- 2. Dimostrare che $\langle \mathbb{Z}, +, \cdot, 0 \rangle \not\models \varphi$.

Esercizio 4

Sia φ la formula

$$\exists x \forall y R(x,y)$$

 $e \psi$ la formula

$$\forall y \exists x R(x,y)$$

dimostrare che $\psi \not\models \varphi$.

Esercizio 5

Sia $L = \{R, f, a, c\}$ un linguaggio del prim'ordine contenente un simbolo di relazione binario R, un simbolo di funzione binario f e due simboli di costante a e c. Sia φ l'enunciato

$$\forall x (\exists y R(y, f(x, y)) \to \exists z (R(a, z) \land R(z, x)))$$

e sia ψ l'enunciato

$$\forall x \forall z (\neg(z=x) \land \neg(z=f(x,c)) \rightarrow R(z,x) \lor R(f(x,c),z))$$

Per ciascuna delle seguenti L-strutture, determinare se gli enunciati φ e ψ sono veri in esse oppure no.

- $Q = \langle \mathbb{Q}, <, +, 0, 1 \rangle$
- $\mathcal{N} = \langle \mathbb{N}, <, +, 0, 1 \rangle$

Giustificare le proprie risposte.

Esercizio 6

Sia $L = \{f, g\}$ un linguaggio del prim'ordine, dove f e g sono entrambi simboli di funzione binari. Sia $\varphi(x)$ la formula

$$f(x,x) = g(x,x).$$

Consideriamo le due L-strutture seguenti:

- $\mathcal{R}_0 = \langle \mathbb{R}, +, \cdot \rangle$
- $\mathcal{R}_1 = \langle \mathbb{R}, +, \rangle$

Giustificando la propria risposta, determinare tutti gli $r \in \mathbb{R}$ per cui si ha

$$\mathcal{R}_0 \models \varphi[x/r]$$

e tutti gli $r \in \mathbb{R}$ per cui vale

$$\mathcal{R}_1 \models \varphi[x/r].$$

Esercizio 7

Sia $L = \{R, f, c\}$ un linguaggio del prim'ordine contenente un simbolo di relazione binario R, un simbolo di funzione binario f e un simbolo di costante c. Sia φ la formula

$$\forall x \, (\neg \exists y \, (f(y,y) = x) \to R(f(z,c),x)).$$

Consideriamo la L-struttura $\mathcal{N} = \langle \mathbb{N}, \leq, +, 1 \rangle$.

- 1. Dire se ϕ è un enunciato oppure no, e nel secondo caso cerchiare le occorrenze libere di variabili.
- 2. È vero che $\mathcal{N} \models \varphi[x/0, y/0, z/0]$?
- 3. Trovare un'assegnazione x/n, y/m, z/k tale che $\mathcal{N} \not\models \varphi[x/n, y/m, z/k]$.
- 4. Determinare se è vero che $\mathcal{N} \models \forall z \varphi$.

Giustificare le proprie risposte.

Esercizio 8

Sia $L = \{R, P, c\}$ un linguaggio del prim'ordine contenente un simbolo di relazione binario R, un simbolo di relazione unario P, e un simbolo di costante c. Sia φ l'enunciato

$$\exists y \, P(y) \land \forall x \, (P(x) \to R(c, x))$$

e sia ψ l'enunciato

$$\forall x \, R(c, x))$$

Dimostrare che

$$\varphi \not\models \psi$$
.

Trovare l'insieme di verità in $\langle \mathbb{N}, |, 1 \rangle$ (dove i simboli | e 1 sono interpretati nella maniera naturale) della seguente formula:

$$\exists y (y \mid x \land y \neq 1 \land y \neq x).$$

Esercizio 10

Dimostrare che il seguente enunciato non è logicamente valido

$$\exists x P(x) \land \exists y Q(y) \rightarrow \exists x (P(x) \land Q(x))$$

costruendo una opportuna struttura in cui l'enunciato risulti falso

Esercizio 11

Dimostrare che la formula $\forall x(C(x) \to S(x))$ non è conseguenza logica delle formule

$$\forall x (R(x) \to S(x)), \forall x (R(x) \to C(x)).$$

Esercizio 12

Trovare l'insieme di verità in $\mathbb N$ della seguente formula:

$$\exists y (y \mid x \land P(y) \land \forall z (z \mid x \land P(z) \rightarrow z = y),)$$

dove | denota la relazione di divisibilità e P il predicato per essere un numero primo.

Esercizio 13

Sia L un linguaggio del prim'ordine contenente il simbolo relazionale binario P. Sia \mathcal{A} la L-struttura il cui supporto consiste dell'insieme delle persone e a $P^{\mathcal{A}}$ b se e solo se a è genitore di b. Trovare una formula $\varphi(x)$ il cui insieme di verità in \mathcal{A} è l'insieme delle persone che sono zio/zia di qualcuno.

Esercizio 14

Sia L un linguaggio del prim'ordine contenente il simbolo funzionale binario \cdot . Sia \mathcal{A} la L-struttura il cui universo è l'insieme \mathbb{N} e in cui $\cdot^{\mathcal{A}}$ è la moltiplicazione. Trovare una formula $\varphi(x,y)$ il cui insieme di verità in \mathcal{A} è la relazione che vale tra x e y quando hanno un divisore in comune.

Esercizio 15

Dimostrare, costruendo una opportuna struttura, che

$$\forall x \left(P(x) \to Q(x) \right), \exists x \left(R(x) \land \neg Q(x) \right) \not\models \exists x \left(R(x) \land P(x) \right)$$

per un linguaggio del prim'ordine con simboli predicativi unari P, Q, R.

Esercizio 16

Dimostrare che

$$\forall x (P(x) \to Q(x)), \exists x (Q(x) \land R(x)) \not\models \forall x (P(x) \to R(x))$$

Esercizio 17

Sia $L = \{R\}$ un linguaggio costituito da un unico simbolo di relazione binario. Si considerino le L-strutture

 $\supset \bullet \ \langle \mathbb{N}, | \rangle$, dove $| \ \dot{\mathbf{e}} \$ la relazione di divisibilità tra numeri naturali;

$$\mathbf{b} \bullet \langle \mathbb{Z}, \leq \rangle;$$

$$\mathcal{L} \bullet \langle \mathbb{Z}, \geq \rangle.$$

Stabilire quali tra le precedenti L-strutture è un modello dell'enunciato

$$\exists x \exists y (\neg R(x, y) \land \neg R(y, x)).$$

Giustificare le proprie risposte.

Esercizio 18

- J

Sia $L = \{P\}$ con P simbolo di relazione binario. Consideriamo la L-struttura

$$\mathcal{A} = \langle \mathbb{N} \setminus \{0\}, | \rangle,$$

dove | è l'usuale relazione di divisibilità. Sia $\varphi(x)$ la L-formula

$$\neg \forall y P(x,y) \land \forall z (P(z,x) \land \neg (z=x) \rightarrow \forall y P(z,y)).$$

1. Quali delle tre affermazioni seguenti sono corrette?

$$\mathcal{A} \models \varphi(x)[x/1]$$
 $\mathcal{A} \models \varphi(x)[x/3]$ $\mathcal{A} \models \varphi(x)[x/4]$ $\sim \mathbf{0}$

2. Determinare l'insieme di verità di $\varphi(x)$ in \mathcal{A} .

Giustificare le proprie risposte.

Esercizio 19

Sia $L = \{f\}$ con f simbolo di funzione binario. Sia $\varphi(x)$ la L-formula

$$\exists y (f(y,y) = x).$$

- 1. Determinare l'insieme di verità di $\varphi(x)$ nella L-struttura $\mathcal{A} = \langle \mathbb{N}, + \rangle$.
- 2. Determinare l'insieme di verità di $\varphi(x)$ nella L-struttura $\mathcal{B} = \langle \mathbb{R}, \cdot \rangle$.
- 3. Sia $\mathcal{C} = \langle \mathbb{R}^+, \cdot \rangle$, dove $\mathbb{R}^+ = \{ r \in \mathbb{R} \mid r > 0 \}$. È vero che $\mathcal{C} \models \forall x \, \varphi(x)$?

Giustificare le proprie risposte.

Esercizio 20

Sia $L = \{f, a\}$ con f simbolo di funzione unario e a simbolo di costante. Sia ϕ l'enunciato

$$\forall x (\neg (x = a) \rightarrow \exists y (f(y) = x)).$$

Giustificando le proprie risposte, determinare quali delle seguenti L-strutture soddisfano φ .

1.
$$\mathcal{A} = \langle \mathbb{N}, f^{\mathcal{A}}, 0 \rangle$$
, dove $f^{\mathcal{A}} \colon \mathbb{N} \to \mathbb{N}$ è definita da $f^{\mathcal{A}}(n) = n + 1$;

2.
$$\mathcal{B} = \langle \mathbb{Q}, f^{\mathcal{B}}, 0 \rangle$$
, dove $f^{\mathcal{B}} \colon \mathbb{Q} \to \mathbb{Q}$ è definita da $f^{\mathcal{B}}(q) = q + 1$;

3.
$$\mathcal{C} = \langle \mathbb{Z}, f^{\mathcal{C}}, 0 \rangle$$
, dove $f^{\mathcal{C}} \colon \mathbb{Z} \to \mathbb{Z}$ è definita da $f^{\mathcal{C}}(z) = 2z$;

Sia $L=\{P,R,a\}$ con P ed R simboli di relazione binaria e a simbolo di costante. Consideriamo la L-struttura $\mathcal{A}=\langle\mathbb{N},\leq,|,2\rangle,$ dove | è l'usuale relazione di divisibilità.

Siano φ l'enunciato

$$\forall x \exists y (P(x,y) \land R(a,y))$$

e ψ l'enunciato

$$\exists x \forall y (P(x,y) \to R(a,y))$$

- 1. Determinare se $\mathcal{A} \models \varphi$.
- 2. Determinare se $\mathcal{A} \models \psi$.
- 3. Determinare se $\varphi \models \psi$.

Giustificare le proprie risposte.

Esercizio 22

Sia $L = \{P\}$ con P simbolo di relazione binaria. Sia φ l'enunciato

$$\forall x \exists y \neg P(x, y).$$

- 1. Determinare se $\langle \mathbb{N}, \leq \rangle \models \varphi$.
- 2. Determinare se $\langle \mathbb{N}, \geq \rangle \models \varphi$.
- 3. L'enunciato φ è soddisfacibile? È valido?

Giustificare le proprie risposte.

5 Logica del prim'ordine: formalizzazione

Esercizio 1

Formalizzare in \mathbb{Z} la seguente affermazione

La somma di tre numeri dispari è un numero pari.

utilizzando il linguaggio del prim'ordine contenente il simbolo + (interpretato nella maniera usuale).

Suggerimento. Scrivere prima una L-formula P(x) che formalizzi "x è un numero pari".

Esercizio 2

Formalizzare in $\mathbb Z$ la seguente affermazione

Il doppio di un numero pari è un numero pari.

utilizzando il linguaggio del prim'ordine contenente i simboli + e 1 (interpretati nella maniera usuale) e il simbolo | per la relazione di divisibilità.

Suggerimento. Scrivere prima una L-formula P(w) che formalizzi "w è un numero pari".

Esercizio 3

Formalizzare in \mathbb{Q} la seguente affermazione

Il quadrato di un numero strettamente negativo è strettamente positivo.

utilizzando il linguaggio del prim'ordine contenente solo i simboli \cdot e < (interpretati nella maniera usuale).

Suggerimento. Scrivere prima una L-formula Z(w) che formalizzi "w è il numero 0".

Esercizio 4

1. Formalizzare in N la frase

Esiste un numero naturale che è la radice quadrata di y. utilizzando il linguaggio formato dai simbol $\mathbf{i} < \mathbf{e} \cdot$ interpretati nella maniera usuale.

2. Utilizzando lo stesso linguaggio, formalizzare in $\mathbb N$ la frase

Ci sono numeri arbitrariamente grandi che hanno una radice quadrata.

Esercizio 5

Formalizzare la seguente frase:

Esiste una costante k ed infiniti numeri primi p tali che p+k è anch'esso primo.

utilizzando il linguaggio contenente soltanto i simboli $\cdot, +, \le e 1$ (interpretati nella maniera usuale).

Esercizio 6

Formalizzare in \mathbb{N} la seguente affermazione

Il cubo di un numero pari è anch'esso un numero pari.

utilizzando il linguaggio del prim'ordine contenente solo i simboli \cdot e + (interpretati nella maniera usuale).

Esercizio 7

Formalizzare in \mathbb{N} la seguente affermazione

Ogni numero maggiore di 1 è diviso da un numero primo.

utilizzando il linguaggio del prim'ordine contenente solo i simboli \cdot e < (interpretati nella maniera usuale).

Suggerimento. Scrivere prima una L-formula P(w) che formalizzi "w è un numero primo" e una L-formula D(w, x) che formalizzi "w divide x".

Esercizio 8

Formalizzare in \mathbb{N} la seguente affermazione

Ci sono numeri pari arbitrariamente grandi la cui metà è un quadrato perfetto.

utilizzando il linguaggio del prim'ordine contenente solo i simboli <, \cdot e + (interpretati nella maniera usuale).

Esercizio 9

Formalizzare in \mathbb{R} la seguente affermazione

Il prodotto di un numero per il suo opposto è l'opposto del suo quadrato.

utilizzando il linguaggio del prim'ordine contenente i simboli \cdot e 0 (interpretati nella maniera usuale). Si ricordi che l'opposto di un numero reale è il numero stesso cambiato di segno.

Suggerimento. Scrivere prima una L-formula Z(x,y) che formalizzi "x è l'opposto di y", sfruttando il fatto che un numero e il suo opposto hanno lo stesso quadrato (attenzione: bisogna distinguere il caso in cui y sia il numero 0 dai restanti casi).

Esercizio 10

Formalizzare in $\mathbb N$ la seguente affermazione

$$\forall P \left(\exists h \left(P = \mathbf{M} + \mathbf{M} \right) \longrightarrow \exists h \left(\mathbf{M} h = P \cdot P \cdot P \right) \right)$$

Il cubo di un numero pari è anch'esso un numero pari.

utilizzando il linguaggio del prim'ordine contenente solo i simboli \cdot e + (interpretati nella maniera usuale).

Esercizio 11

Formalizzare in \mathbb{N} il seguente enunciato nel linguaggio contenente il simbolo relazionale binario <, ed il simbolo funzionale binario +:

Ogni numero pari sufficientemente grande è la somma di due numeri pari distinti.

Esercizio 12

Formalizzare (in un universo il cui dominio è l'insieme degli esseri umani) in un linguaggio del prim'ordine con un simbolo relazionale G(x, y) per "x è genitore di y" ed un simbolo predicativo unario B(x) per "x ha i baffi" il seguente enunciato:

C'è chi ha un cugino i cui nonni hanno tutti i baffi.

Suggerimento. Definire prima formule N[x,y] e C[x,y] per formalizzare le relazioni: "x è nonno di y" e "x è cugino di y".

Esercizio 13

Formalizzare in $\mathbb N$ il seguente enunciato nel linguaggio contenente soltanto un simbolo per il prodotto tra numeri naturali:

Tutti i multipli di un multiplo di un numero, sono multipli di quel numero.

Si consiglia di definire prima una formula M(x,y) che formalizzi "x è multiplo di y".

Esercizio 14

Formalizzare in \mathbb{N} il seguente enunciato nel linguaggio contenente soltanto un simbolo funzionale binario \cdot per il prodotto tra numeri naturali:

Tutti i divisori di un prodotto di due numeri naturali sono divisori di uno dei due.

Esercizio 15

Formalizzare in \mathbb{N} il seguente enunciato nel linguaggio contenente il simbolo relazionale binario \leq , il simbolo funzionale binario \neq per la divisione, la costante \mathbb{O} (tutti interpretati nella maniera usuale), e il simbolo predicativo unario N, dove N(x) è interpretato come "x è un numero naturale":

Per ogni coppia di numeri naturali distinti c'è un numero razionale compreso strettamente tra essi.

Esercizio 16

Formalizzare il seguente enunciato nel linguaggio contenente il simbolo relazionale binario A, dove A(x, y) è interpretato come "x è antenato di y" e l'universo di discorso si intende costituito da tutte le persone:

Ci sono figli unici.

Esercizio 17

Formalizzare in \mathbb{N} con il linguaggio contenente i simbol $i < \infty$ e 1 la seguente proposizione (falsa):

Tutti i numeri sufficientemente grandi ammettono almeno due divisori primi.

Definire prima, mediante opportune formule da usare come abbreviazioni, la relazione di divisibilità e la proprietà di essere un numero primo.

Esercizio 18

Formalizzare in \mathbb{N} il seguente enunciato nel linguaggio contenente i simboli $<, \times, +$ e 1:

Ci sono infiniti numeri n tali che $3n^2 + 1$ è un quadrato perfetto

Esercizio 19

Formalizzare in \mathbb{R} il seguente enunciato nel linguaggio contenente i simboli 1, + e:

Se n e m sono coprimi (cioè relativamente primi), allora $n \cdot a + m \cdot b = 1$ per qualche a e b.

Esercizio 20

Formalizzare in \mathbb{N} la seguente frase

Se ci sono elementi arbitrariamente piccoli che godono della proprietà P, allora la funzione f è suriettiva

utilizzando il linguaggio contenente i simboli: $P_{,} < e f$.

Esercizio 21

Formalizzare in \mathbb{N} la seguente affermazione in un linguaggio contenente un simbolo di predicato unario P che descrive la proprietà di essere un numero primo, il simbolo \leq di relazione binaria per l'ordinamento, il simbolo di funzione binaria + per la somma, e la costante 1:

Ogni numero dispari sufficientemente grande è somma di tre numeri primi, non necessariamente distinti

Esercizio 22

Sia L un linguaggio del prim'ordine contenente il simbolo relazionale binario P. Sia \mathcal{A} la L-struttura il cui supporto consiste dell'insieme delle persone, a $P^{\mathcal{A}}$ b se e solo se a è genitore di b. Formalizzare in \mathcal{A} la seguente affermazione:

Tutti i cugini dei fratelli di una persona sono anche cugini di quella persona.

Esercizio 23

Formalizzare in \mathbb{N} la seguente affermazione:

Se a e b sono relativamente primi, allora ci sono infiniti numeri primi congruenti ad a modulo b

usando i simboli1,<,+e $\cdot\cdot$

Suggerimento. Cominciare a formalizzare il predicato di divisibilità | e il predicato di primalità Pr.

Esercizio 24

Sia L in un linguaggio del prim'ordine in cui ci sono costanti individuali g per Giuseppe, m per Maria e i simboli relazionali binari S, F, dove S(x, y) significa che x ha sposato y e F(x, y) significa che y è figlio di x. Sia \mathcal{A} la L-struttura il cui supporto consiste dell'insieme delle persone. Formalizzare in \mathcal{A} la seguente frase:

Uno dei cugini di Giuseppe ha sposato una nipote di Maria

Esercizio 25

Formalizzare in \mathbb{N} l'affermazione

Ogni numero pari maggiore di 2 è il prodotto di due numeri pari distinti.

Esercizi vari di Logica Matematica

utilizzando il linguaggio formato dai simboli <, \cdot e 2 (tutti interpretati nella maniera usuale).

Suggerimento: Scrivere prima una formula $\varphi(x)$ che formalizzi "x è pari".

Esercizio 26

Formalizzare in \mathbb{N} l'affermazione

Esistono infiniti numeri primi.

utilizzando il linguaggio formato dai simboli \leq , \cdot e 1 (tutti interpretati nella maniera usuale).

Suggerimento: Scrivere prima una formula $\varphi(x)$ che formalizzi "x è un numero primo".

Esercizio 27

Formalizzare in \mathbb{R} la frase

Il numero y è la radice cubica di qualche numero.

utilizzando il linguaggio formato dal simbolo · interpretato nella maniera usuale.

1.

1.

2. Utilizzando il linguaggio formato dai simboli $<,\cdot$ interpretati nella maniera usuale, formalizzare in $\mathbb R$ la frase

Ci sono numeri arbitrariamente grandi che hanno una radice cubica.

Esercizio 28

Formalizzare in \mathbb{Z} la frase

Il numero y ammette una radice quadrata.

utilizzando il linguaggio formato dal simbolo \cdot di moltiplicazione interpretato nella maniera usuale.

2. Utilizzando il linguaggio formato dai simboli $>, \cdot$ interpretati nella maniera usuale, formalizzare in $\mathbb Z$ la frase

Ci sono numeri arbitrariamente grandi che sono il quadrato di qualche numero. $\qquad \qquad \forall \gamma \, \exists \times$

Esercizio 29

Formalizzare in \mathbb{Z} la frase

Il numero y è diviso dal numero x.

utilizzando il linguaggio formato dal simbolo \cdot di moltiplicazione interpretato nella maniera usuale.

2. Utilizzando il linguaggio formato dai simboli $0, \cdot$ interpretati nella maniera usuale, formalizzare in $\mathbb Z$ la frase

Se un numero è non nullo, non può essere diviso da 0.