

1 nucleic - nucleic search, using sw model							
Search on:		July 11, 2006, 07:21:26 ; Search time 107.065 Seconds (without alignments) 4561.330 Million cell updates/sec					
Title:	US-09-973-994-131 <th>Score:</th> <td>261</td> <th>Sequence:</th> <td>1 aggttacccatagcattta.....gggtttttcacggtcacct</td> <th>Table:</th> <td>IDENTITY_NUC</td>	Score:	261	Sequence:	1 aggttacccatagcattta.....gggtttttcacggtcacct	Table:	IDENTITY_NUC
Scoring table:	Gapop 10_0 , Gapext 1.0	Number of hits satisfying chosen parameters:	1403666 seqs, 93554401 residues	Post-processing:	Minimum Match 0% Maximum Match 100%	Number of hits listing first 45 summaries	2807332
Database :	Issued Patents_NA: 1: /EMC_Celerra_SIDS3/prodata/2/ina/1_COMB.seq: 2: /EMC_Celerra_SIDS3/prodata/2/ina/5_COMB.seq: 3: /EMC_Celerra_SIDS3/prodata/2/ina/6A_COMB.seq: 4: /EMC_Celerra_SIDS3/prodata/2/ina/6B_COMB.seq: 5: /EMC_Celerra_SIDS3/prodata/2/ina/7_COMB.seq: 6: /EMC_Celerra_SIDS3/prodata/2/ina/H_COMB.seq: 7: /EMC_Celerra_SIDS3/prodata/2/ina/P_COMB.seq: 8: /EMC_Celerra_SIDS3/prodata/2/ina/PP_COMB.seq: 9: /EMC_Celerra_SIDS3/prodata/2/ina/RE_COMB.seq: 10: /EMC_Celerra_SIDS3/prodata/2/ina/backfiles1.seq: *						
Pred.	No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.						
SUMMARIES							
Result No.	Score	Query Length	DB ID	Description			
1	37.6	14.4	144362	US-09-949-016-16066	Sequence 16066, A		
2	36.8	14.1	357	US-09-949-016-160581	Sequence 1581, A		
3	35.8	13.7	264206	US-09-949-016-12131	Sequence 1271, A		
4	35.8	13.7	261304	US-09-949-016-1349	Sequence 13243, A		
5	35.6	13.6	117391	US-09-949-016-11945	Sequence 13945, A		
6	34.8	13.3	119059	US-09-949-016-17030	Sequence 17030, A		
7	34.8	13.3	193555	US-09-949-016-15553	Sequence 15553, A		
8	34.8	13.3	193555	US-09-949-016-15554	Sequence 15554, A		
9	34.8	13.3	192555	US-09-949-016-15555	Sequence 15555, A		
10	34.6	13.3	200663	US-09-949-016-15659	Sequence 12563, A		
11	34.6	13.3	203093	US-09-949-016-14445	Sequence 14445, A		
12	33.6	12.9	601	US-09-949-016-15593	Sequence 53533, A		
13	33.6	12.9	57392	US-09-949-016-12070	Sequence 12070, A		
14	33.6	12.9	57402	US-09-949-016-11293	Sequence 13283, A		
15	33.4	12.8	76	US-09-134-000C-905	Sequence 905, App		
16	33.2	12.7	43360	US-09-153-702B-006	Sequence 206, App		
17	33.2	12.7	43360	US-10-114-170-206	Sequence 206, App		
18	33.2	12.7	45325	US-09-453-702B-61	Sequence 261, App		
19	33.2	12.7	45325	US-10-114-170-261	Sequence 261, App		
20	33.2	12.7	156324	US-09-949-016-13749	Sequence 13749, A		
21	33	12.6	237863	US-09-949-016-13404	Sequence 13404, A		
22	32.8	12.6	150	US-09-974-300-783	Sequence 7683, App		
23	32.8	12.6	56374	US-09-949-002-645	Sequence 645, App		

RESULT 2
US-09-640-211A-1581
Sequence 1581, Application US/09640211A
Patent No. 6833446
GENERAL INFORMATION:
APPLICANT: Wood, Marion
APPLICANT: Shenk, Michael A.
APPLICANT: McGrath, Annette
TITLE OF INVENTION: Compositions and Methods for the
Title of Invention: Modification of Gene Transcription
FILE REFERENCE: 1100001021C1U
CURRENT APPLICATION NUMBER: US/09/640,211A
CURRENT FILING DATE: 2000-08-16
SOFTWARE: FastSEQ for Windows Version 4.0
SEQ ID NO 1581
LENGTH: 357
TYPE: DNA
ORGANISM: Pinus radiata
US-09-640-211A-1581

Query Match 14.1%; Score 36.8; DB 3; Length 357;
Best Local Similarity 5.6%; Pred. No. 0.31; Indels_ 0; Gaps 0;
Matches 80; Conservative 0; Mismatches 72;

Qy 46 AGTTTTCCATTGCTGTAGGCCAACGATAAGTGTAAAGTTGCTGCCT 105
Db 85 ATTCATCGGGTCAGTTGGACTATACAGACAAATTGAAATGCTCTAGCT 144
Qy 106 GATTGAGGCCGGAAAACCGATAAGTGTAAATTGCTCCGTGATTGCTGAA 165
Db 145 GATTGAGAAAGCACCCGATAAATGGAGAAAGTGGCAGGGTGCTGGAAA 204
Qy 166 TATTCCTCTCACTAAAAAGCATTTCCAGA 197
Db 205 ACTGCTACCGATGTAGAAAGCATTAGAGA 236

RESULT 3
US-09-949-016-12731/C
Sequence 12731, Application US/09949016
Patent No. 6812339
GENERAL INFORMATION:
APPLICANT: VENTER, J. Craig et al.
TITLE OF INVENTION: POLYMORPHISMS IN KNOWN GENES ASSOCIATED
Title of Invention: WITH HUMAN DISEASE, METHODS OF DETECTION AND USES THEREOF
FILE REFERENCE: CLO01307
CURRENT APPLICATION NUMBER: US/09/949,016
CURRENT FILING DATE: 2000-04-14
PRIOR APPLICATION NUMBER: 60/241,755
PRIOR FILING DATE: 2000-10-20
PRIOR APPLICATION NUMBER: 60/237,768
PRIOR FILING DATE: 2000-10-03
PRIOR APPLICATION NUMBER: 60/231,498
NUMBER OF SEQ ID NOS: 207012
SOFTWARE: FastSEQ for Windows Version 4.0
SEQ ID NO 12731
LENGTH: 264206
TYPE: DNA
ORGANISM: Human
US-09-949-016-12731

Query Match 13.7%; Score 35.8; DB 3; Length 264206;
Best Local Similarity 52.3%; Pred. No. 4.3; Indels 0; Gaps 0;
Matches 79; Conservative 0; Mismatches 72;

Qy 45 AGCTTTTCGATTCGGCACGGAAACGAGATAAGTGTAAAGTTGCTGC 104
Db 14095 AAATTTCAAATGGACTTCAGTAATCCAGAAATTTGGA 14036
Qy 105 TGATTGAGGCCGGAAAACGATAAGTGTAAATTGCTGGATTGCTG 164

RESULT 4
US-09-949-016-13249/C
Sequence 13249, Application US/09949016
Patent No. 6812339
GENERAL INFORMATION:
APPLICANT: VENTER, J. Craig et al.
TITLE OF INVENTION: WITH HUMAN DISEASE, METHODS OF DETECTION AND USES THEREOF
FILE REFERENCE: CLO01307
CURRENT APPLICATION NUMBER: US/09/949,016
PRIOR APPLICATION NUMBER: 60/241,755
PRIOR FILING DATE: 2000-10-20
PRIOR APPLICATION NUMBER: 60/237,768
PRIOR FILING DATE: 2000-10-03
PRIOR APPLICATION NUMBER: 60/231,498
NUMBER OF SEQ ID NOS: 207012
SOFTWARE: FastSEQ for Windows Version 4.0
SEQ ID NO 13945
LENGTH: 11791
TYPE: DNA
ORGANISM: Human

Query Match 13.7%; Score 35.8; DB 3; Length 264304;
Best Local Similarity 52.3%; Pred. No. 4.3; Indels 0; Gaps 0;
Matches 79; Conservative 0; Mismatches 72;

Qy 45 AGCTTTTCGATTCGGCACGGAAACGAGATAAGTGTAAAGTTGCTGC 104
Db 14095 AAATTTCAAATGGACTTCAGTAATCCAGAAATTTGGA 14036
Qy 105 TGATTGAGGCCGGAAAACGATAAGTGTAAATTGCTGGATTGCTG 164

RESULT 5
US-09-949-016-13945/C
Sequence 13945, Application US/09949016
Patent No. 6812339
GENERAL INFORMATION:
APPLICANT: VENTER, J. Craig et al.
TITLE OF INVENTION: POLYMORPHISMS IN KNOWN GENES ASSOCIATED
Title of Invention: WITH HUMAN DISEASE, METHODS OF DETECTION AND USES THEREOF
FILE REFERENCE: CLO01307
CURRENT APPLICATION NUMBER: US/09/949,016
PRIOR APPLICATION NUMBER: 60/241,755
PRIOR FILING DATE: 2000-10-20
PRIOR APPLICATION NUMBER: 60/237,768
PRIOR FILING DATE: 2000-10-03
PRIOR APPLICATION NUMBER: 60/231,498
NUMBER OF SEQ ID NOS: 207012
SOFTWARE: FastSEQ for Windows Version 4.0
SEQ ID NO 13945
LENGTH: 11791
TYPE: DNA
ORGANISM: Human

Query Match 13.7%; Score 35.8; DB 3; Length 264304;
Best Local Similarity 52.3%; Pred. No. 4.3; Indels 0; Gaps 0;
Matches 79; Conservative 0; Mismatches 72;

Qy 45 AGCTTTTCGATTCGGCACGGAAACGAGATAAGTGTAAAGTTGCTGC 104
Db 14095 AAATTTCAAATGGACTTCAGTAATCCAGAAATTTGGA 14036
Qy 105 TGATTGAGGCCGGAAAACGATAAGTGTAAATTGCTGGATTGCTG 164

Result No.	Score	Query Match	Length	DB ID	Description
1	962	8	US-11-266-748A-150525	Sequence 97714, A	Sequence 97714, A
C 2	962	8	US-11-266-748A-150525	Sequence 150525,	Sequence 150525,
C 3	1421	8	US-11-266-748A-361361	Sequence 361361,	Sequence 361361,
C 4	1421	8	US-11-266-748A-444740	Sequence 444740,	Sequence 444740,
C 5	1888	8	US-11-266-748A-260726	Sequence 260726,	Sequence 260726,
C 6	1888	8	US-11-266-748A-321243	Sequence 321243,	Sequence 321243,
C 7	988	8	US-11-266-748A-192101	Sequence 192101,	Sequence 192101,
B 8	988	8	US-11-266-748A-226177	Sequence 226177,	Sequence 226177,
C 9	686	8	US-11-266-748A-55772	Sequence 55772, A	Sequence 55772, A
C 10	706	8	US-11-266-748A-166299	Sequence 166299,	Sequence 166299,
C 11	489	8	US-11-266-748A-172138	Sequence 172138,	Sequence 172138,
C 12	888	8	US-11-266-748A-199218	Sequence 199217, A	Sequence 199217, A
C 13	2079	8	US-11-266-748A-180693	Sequence 180693,	Sequence 180693,
C 14	3350	8	US-11-266-748A-28652	Sequence 28652, A	Sequence 28652, A
C 15	1000	8	US-11-266-748A-189440	Sequence 118940,	Sequence 118940,
C 16	1000	8	US-11-266-748A-224558	Sequence 161104,	Sequence 161104,
C 17	1000	8	US-11-266-748A-28555	Sequence 224558,	Sequence 224558,
C 18	1000	8	US-11-266-748A-345184	Sequence 293755,	Sequence 293755,
C 19	1000	8	US-11-266-748A-396868	Sequence 345184,	Sequence 345184,
C 20	1000	8	US-11-266-748A-405877	Sequence 405877,	Sequence 405877,
C 21	1000	8	US-11-266-748A-467914	Sequence 467914,	Sequence 467914,
C 22	1000	8	US-11-266-748A-476923	Sequence 476923,	Sequence 476923,
C 23	1000	8	US-10-471-571A-421	Sequence 421, App	Sequence 421, App
C 24	2199	6	US-10-471-571A-421	Qy	Qy

Db 799 ACACAGCCATGGTAAATTTCACACTGAGTTACCAACAGCGCTTAACATCTGC 858
 Qy 135 GTAAATTGTCTGCTGTTTGCTGAATAATTCTCCTACTAAAGCATTTTC 194
 Db 859 TTGCTCTTTACACGAAACATAGTGRATCCCTGGTCACTAGCATTTC 918
 Qy 195 AGAATAAGGAGGCTTCGA 216
 Db 919 AGCAAAAGATCCAGCCATCAA 940

RESULT 2
 US 11-266-748A-150525/C
 Sequence 150525, Application US/11266748A
 GENERAL INFORMATION:
 Publication No. US2006134663A1
 APPLICANT: Harkin, Paul
 APPLICANT: Mulligan, Karl
 TITLE OF INVENTION: Transcriptome Microarray Technology and Methods of Using the Same
 FILE REFERENCE: 55815-0102 (319189)
 CURRENT APPLICATION NUMBER: US/11/266,748A
 PRIOR APPLICATION NUMBER: EP 04105482.6
 PRIOR FILING DATE: 2004-11-03
 PRIOR APPLICATION NUMBER: EP 04105483.4
 PRIOR FILING DATE: 2004-11-03
 PRIOR APPLICATION NUMBER: EP 04105507.0
 PRIOR FILING DATE: 2004-11-03
 PRIOR APPLICATION NUMBER: EP 04105485.9
 PRIOR FILING DATE: 2004-11-03
 PRIOR APPLICATION NUMBER: EP 04105484.2
 PRIOR FILING DATE: 2004-11-03
 PRIOR APPLICATION NUMBER: US 60/662,276
 PRIOR FILING DATE: 2005-03-14
 PRIOR APPLICATION NUMBER: US 60/700,293
 PRIOR FILING DATE: 2005-07-18
 NUMBER OF SEQ ID NOS: 483996
 SOFTWARE: PatentIn version 3.3
 SEQ ID NO 361361
 LENGTH: 1421
 TYPE: DNA
 ORGANISM: Homo Sapiens
 US-11-266-748A-361361

Query Match 13.9%; Score 36.4; DB 8; Length 1421;
 Best Local Similarity 53.5%; Pred. No. 0; 87;
 Matches 76; Conservative 0; Mismatches 66; Indels 0; Gaps 0;

Qy 75 AACGAGATAAGTTGTAAGTTGCTGATTAGGCACGGAAAACGAGATAAGTT 134
 Db 164 ACACAGCTCATGGAAATTTCACAGTACAGCTTAAACATCTCTC 105

Qy 135 GAAAAATTGTCTGCTGATTTTGCTGAATAATTCTCCTACTATAAAGCATTTTC 194
 Db 104 TTGCTCTTTACACGAAACATAGTGRATCCCTGGTCACTAGCATTTC 45

TYPE: DNA
 ORGANISM: Homo Sapiens
 FEATURE: misc_feature
 NAME/KEY: misc_feature
 LOCATION: (732) .. (732)
 OTHER INFORMATION: n is a, c, g, or t

US-11-266-748A-150525

RESULT 4
 US-11-266-748A-444740
 Sequence 444740, Application US/11266748A
 Publication No. US2006134663A1
 GENERAL INFORMATION:
 APPLICANT: Harkin, Paul
 APPLICANT: Mulligan, Karl
 TITLE OF INVENTION: Transcriptome Microarray Technology and Methods of Using the Same
 FILE REFERENCE: 55815-0102 (319189)
 CURRENT APPLICATION NUMBER: EP 04105482.6
 PRIOR APPLICATION NUMBER: EP 04105507.0
 PRIOR FILING DATE: 2004-11-03
 PRIOR APPLICATION NUMBER: EP 04105483.6
 PRIOR FILING DATE: 2004-11-03
 PRIOR APPLICATION NUMBER: EP 04105484.4
 PRIOR FILING DATE: 2004-11-03
 PRIOR APPLICATION NUMBER: EP 04105507.0
 PRIOR FILING DATE: 2004-11-03
 PRIOR APPLICATION NUMBER: EP 04105485.9
 PRIOR FILING DATE: 2005-03-14
 PRIOR APPLICATION NUMBER: US 60/662,276
 PRIOR FILING DATE: 2005-07-18
 NUMBER OF SEQ ID NOS: 483996
 SOFTWARE: PatentIn version 3.3
 SEQ ID NO 150525
 LENGTH: 962

TYPE: DNA
 ORGANISM: Homo Sapiens
 FEATURE: misc_feature
 NAME/KEY: misc_feature
 LOCATION: (732) .. (732)
 OTHER INFORMATION: n is a, c, g, or t

US-11-266-748A-150525

Query Match 13.9%; Score 36.4; DB 8; Length 962;
 Best Local Similarity 53.5%; Pred. No. 0; 77;
 Matches 76; Conservative 0; Mismatches 66; Indels 0; Gaps 0;

Qy 75 ANAGAGTAACTTAAAGTTCTCCTGTTGAGCCACGGAAACGGAAAGT 134
 Db 164 ACACAGCTCATGGAAATTTCACAGTACAGCTTAAACATCTCTC 105

Qy 135 GAAAAATTGTCTGCTGATTTTGCTGAATAATTCTCCTACTATAAAGCATTTTC 194
 Db 104 TTGCTCTTTACACGAAACATAGTGRATCCCTGGTCACTAGCATTTC 45

TYPE: DNA
 ORGANISM: Homo Sapiens
 FEATURE: misc_feature
 NAME/KEY: misc_feature
 LOCATION: (732) .. (732)
 OTHER INFORMATION: n is a, c, g, or t

US-11-266-748A-361361/C
 Sequence 361361, Application US/11266748A
 Publication No. US2006134663A1

RESULT 3
 US-11-266-748A-361361/C
 Sequence 361361, Application US/11266748A
 Publication No. US2006134663A1

GenCore version 5.1.9
 Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM nucleic - nucleic search, using sw model

Run on: July 11, 2006, 07:46:32 ; Search time 779.324 Seconds
 (without alignments)

Perfect score: 261

Sequence: 1 agtgaccgtacagccattn.....gggttttccacggtcacct 261
 4115.199 Million cell updates/sec

Title: US-09-973-994-131

Scoring table: IDENTITY_NUC
 Gapop 10.0 , Gapext 1.0

Searched: 18892170 seqs, 6143817638 residues

Total number of hits satisfying chosen parameters: 37784340

Minimum DB seq length: 0
 Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
 Maximum Match 100%
 Listing first 45 summaries

Database : Published Applications NA Main:*

```

1: /EMC_Celerra_SIDS3/ptodata/2/pubpna/us07_PUBCOMB.seq:*
  /EMC_Celerra_SIDS3/ptodata/2/pubpna/us08_PUBCOMB.seq:*
  3: /EMC_Celerra_SIDS3/ptodata/2/pubpna/us09A_PUBCOMB.seq:*
  4: /EMC_Celerra_SIDS3/ptodata/2/pubpna/us09B_PUBCOMB.seq:*
  5: /EMC_Celerra_SIDS3/ptodata/2/pubpna/us09C_PUBCOMB.seq:*
  6: /EMC_Celerra_SIDS3/ptodata/2/pubpna/us10A_PUBCOMB.seq:*
  7: /EMC_Celerra_SIDS3/ptodata/2/pubpna/us10B_PUBCOMB.seq:*
  8: /EMC_Celerra_SIDS3/ptodata/2/pubpna/us10C_PUBCOMB.seq:*
  9: /EMC_Celerra_SIDS3/ptodata/2/pubpna/us10D_PUBCOMB.seq:*
  10: /EMC_Celerra_SIDS3/ptodata/2/pubpna/us10E_PUBCOMB.seq:*
  11: /EMC_Celerra_SIDS3/ptodata/2/pubpna/us10F_PUBCOMB.seq:*
  12: /EMC_Celerra_SIDS3/ptodata/2/pubpna/us10G_PUBCOMB.seq:*
  13: /EMC_Celerra_SIDS3/ptodata/2/pubpna/us11A_PUBCOMB.seq:*
  14: /EMC_Celerra_SIDS3/ptodata/2/pubpna/us11B_PUBCOMB.seq:*
  15: /EMC_Celerra_SIDS3/ptodata/2/pubpna/us11C_PUBCOMB.seq:*
  16: /EMC_Celerra_SIDS3/ptodata/2/pubpna/us11D_PUBCOMB.seq:*

```

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query	Match	Length	DB ID	Description
1	261	100.0	261	10	US-10-651-991-131	Sequence 131, APP
2	37.4	14.3	40324	8	US-10-433-793-180	Sequence 180, APP
3	37	14.2	346	4	US-09-925-065A-125418	Sequence 125418,
4	37	14.2	346	4	US-09-925-065A-125410	Sequence 125410,
5	37	14.2	346	4	US-09-925-065A-125481	Sequence 125481,
6	37	14.2	346	5	US-09-925-065A-125418	Sequence 125418,
7	37	14.2	346	5	US-09-925-065A-125410	Sequence 125410,
8	37	14.2	346	5	US-09-925-065A-125418	Sequence 125418,
9	37	14.2	558	4	US-09-925-065A-43956	Sequence 43956,
10	37	14.2	558	9	US-10-856-499-1581	Sequence 1581, APP
11	36.8	14.1	357	9	US-10-856-499-1581	Sequence 1581, APP
12	36.8	14.1	5276	7	US-10-311-455-800	Sequence 800, APP
13	36.8	14.1	5276	8	US-10-221-714-102	Sequence 102, APP
14	36.8	14.1	40862	7	US-10-311-455-2046	Sequence 2046, APP
15	36.6	14.0	346	4	US-09-925-065A-125419	Sequence 125419,
16	36.6	14.0	346	5	US-09-925-065A-125419	Sequence 125419,
17	36	13.8	37515	8	US-10-433-793-27	Sequence 27, APP

ALIGNMENTS

RESULT 1

; Sequence 131, Application US/10651991:
 ; Publication No. US20050125161A1
 ; GENERAL INFORMATION:
 ; APPLICANT: CALNEY, JOHN
 ; ATTORNEY: XU, NANFIE
 ; TITLE OF INVENTION: DIFFERENTIALLY EXPRESSED CONIFER cDNAs, AND THEIR USE
 ; IN IMPROVING SOMATIC EMRYOGENESIS
 ; FILE REFERENCE: 7648_0023-00
 ; CURRENT APPLICATION NUMBER: US/10/1651,991
 ; CURRENT FILING DATE: 2003-09-02
 ; PRIORITY APPLICATION NUMBER: 60/239,250
 ; PRIORITY FILING DATE: 2000-10-11
 ; PRIORITY APPLICATION NUMBER: 60/260,882
 ; PRIORITY FILING DATE: 2001-01-12
 ; NUMBER OF SEQ ID NOS: 339
 ; SOFTWARE: PatentIn Ver. 2.1
 ; SEQ ID NO: 131
 ; LENGTH: 261
 ; TYPE: DNA
 ; ORGANISM: Pinus taeda
 ; US-10-651-991-131

Query Match 100.0%; Score 261, DB 10;
 Best Local Similarity 100.0%; Pred. No. 1,3e-63;
 Mismatches 0; Indels 0; Gaps 0;

Qy 1 AGGTGACCGTACAGCATTATGATGTTCTATTGTTGGTCAAGTTTCGATTCG 60
 Db 1 AGGTGACCGTACAGCATTATGATGTTCTATTGTTGGTCAAGTTTCGATTCG 60
 Qy 61 CTGTGAGGCCGGAAACAGATAAGTGTAAAGTTGCTCGTGAATTGAGCCACGGA 120
 Db 61 CTGTGAGGCCGGAAACAGATAAGTGTAAAGTTGCTCGTGAATTGAGCCACGGA 120
 Qy 121 AACGAGATAAGTTGCTGAAATTGCTGCTGATTTGCTGAAATTCTCTCACTAT 180
 Db 121 AACGAGATAAGTTGCTGAAATTGCTGCTGATTTGCTGAAATTCTCTCACTAT 180

Query Match Score 37; DB 4; Length 346;
 Best Local Similarity 52.2%; Pred. No. 5;
 Matches 82; Conservative 0; Mismatches 75; Indels 0; Gaps 0;
 Query 84 AAGTTGTAACCTGGGACGGAAAACGAGATAAGTGTAAATT 143
 Db 178 AAACCTGAAGACATTAATCTGCTTGAGCCACAAATCGATAATCTGTTTACCT 237

RESULT 2
 US-10-433-793-180
 ; Sequence 180, Application US/10433793
 ; Publication No. US20040142334A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Epigenomics AG
 ; TITLE OF INVENTION: Diagnose von mit Angiogenese assoziierten Krankheiten
 ; FILE REFERENCE:
 ; CURRENT APPLICATION NUMBER: US10/433,793
 ; CURRENT FILING DATE: 2003-06-16
 ; NUMBER OF SEQ ID NOS: 212
 ; SEQ ID NO 180
 ; LENGTH: 40324
 ; TYPE: DNA
 ; ORGANISM: Artificial Sequence
 ; FEATURE:
 ; OTHER INFORMATION: chemically treated genomic DNA (Homo sapiens)
 US-10-433-793-180

Query Match Score 37.4; DB 8; Length 40324;
 Best Local Similarity 52.2%; Pred. No. 31;
 Matches 83; Conservative 0; Mismatches 76; Indels 0; Gaps 0;
 Query 25 TGTCTTATTGTTGTCGAAAGTTTCCGATTCGCTGTAGGCACGGAAAACGAGATA 84
 Db 26359 TGTTAGTTAATATTAAATGTTAATGTTGGAAAAGATGAAGATAATTGGGGAGATT 26418

Query Match Score 37; DB 4; Length 346;
 Best Local Similarity 52.2%; Pred. No. 5;
 Matches 82; Conservative 0; Mismatches 75; Indels 0; Gaps 0;
 Query 84 AAGTTGTAACCTGGGACGGAAAACGAGATAAGTGTAAATT 143
 Db 178 AAACCTGAAGACATTAATCTGCTTGAGCCACAAATCGATAATCTGTTTACCT 237

RESULT 3
 US-09-925-065A-125478
 ; Sequence 125478, Application US/09925065A
 ; Publication No. US20040181048A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Wang, David G.
 ; TITLE OF INVENTION: Identification and Mapping of Single Nucleotide Polymorphisms in the Human Genome
 ; FILE REFERENCE: 108827-135
 ; CURRENT APPLICATION NUMBER: US10/925-065A
 ; CURRENT FILING DATE: 2001-08-08
 ; PRIORITY APPLICATION NUMBER: US 60/243,096
 ; PRIORITY FILING DATE: 2000-10-24
 ; PRIORITY APPLICATION NUMBER: US 60/252,147
 ; PRIORITY FILING DATE: 2000-11-20
 ; PRIORITY APPLICATION NUMBER: US 60/250,092
 ; PRIORITY FILING DATE: 2000-11-30
 ; PRIORITY APPLICATION NUMBER: US 60/261,766
 ; PRIORITY FILING DATE: 2001-01-16
 ; PRIORITY APPLICATION NUMBER: US 60/289,846
 ; PRIORITY FILING DATE: 2001-05-09
 ; NUMBER OF SEQ ID NOS: 957086
 ; SOFTWARE: FastSEQ for Windows Version 4.0
 ; SEQ ID NO: 125478
 ; LENGTH: 346
 ; TYPE: DNA
 ; ORGANISM: Homo sapiens
 US-09-925-065A-125478

RESULT 4
 US-09-925-065A-125480
 ; Sequence 125480, Application US/09925065A
 ; Publication No. US20040181048A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Wang, David G.
 ; TITLE OF INVENTION: Identification and Mapping of Single Nucleotide Polymorphisms in the Human Genome
 ; FILE REFERENCE: 108827-135
 ; CURRENT APPLICATION NUMBER: US10/925-065A
 ; CURRENT FILING DATE: 2001-08-08
 ; PRIORITY APPLICATION NUMBER: US 60/243,096
 ; PRIORITY FILING DATE: 2000-10-24
 ; PRIORITY APPLICATION NUMBER: US 60/252,147
 ; PRIORITY FILING DATE: 2000-11-20
 ; PRIORITY APPLICATION NUMBER: US 60/250,092
 ; PRIORITY FILING DATE: 2000-11-30
 ; PRIORITY APPLICATION NUMBER: US 60/261,766
 ; PRIORITY FILING DATE: 2001-01-16
 ; PRIORITY APPLICATION NUMBER: US 60/289,846
 ; PRIORITY FILING DATE: 2001-05-09
 ; NUMBER OF SEQ ID NOS: 957086
 ; SOFTWARE: FastSEQ for Windows Version 4.0
 ; SEQ ID NO: 125480
 ; LENGTH: 346
 ; TYPE: DNA
 ; ORGANISM: Homo sapiens
 US-09-925-065A-125480

RESULT 5
 US-09-925-065A-125481
 ; Sequence 125481, Application US/09925065A
 ; Publication No. US20040181048A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Wang, David G.
 ; TITLE OF INVENTION: Identification and Mapping of Single Nucleotide Polymorphisms in the Human Genome
 ; FILE REFERENCE: 108827-135
 ; CURRENT APPLICATION NUMBER: US10/925-065A
 ; CURRENT FILING DATE: 2001-08-08
 ; PRIORITY APPLICATION NUMBER: US 60/243,096
 ; PRIORITY FILING DATE: 2000-10-24
 ; PRIORITY APPLICATION NUMBER: US 60/252,147
 ; PRIORITY FILING DATE: 2000-11-20
 ; PRIORITY APPLICATION NUMBER: US 60/250,092
 ; PRIORITY FILING DATE: 2000-11-30
 ; PRIORITY APPLICATION NUMBER: US 60/261,766
 ; PRIORITY FILING DATE: 2001-01-16
 ; PRIORITY APPLICATION NUMBER: US 60/289,846
 ; PRIORITY FILING DATE: 2001-05-09
 ; NUMBER OF SEQ ID NOS: 957086
 ; SOFTWARE: FastSEQ for Windows Version 4.0
 ; SEQ ID NO: 125478
 ; LENGTH: 346
 ; TYPE: DNA
 ; ORGANISM: Homo sapiens
 US-09-925-065A-125478

GenCore version 5.1.9
 Copyright (c) 1993 - 2006 Biocceleration Ltd.
 M nucleic - nucleic search, using sw model
 run on: July 11, 2006, 07:01:45 ; Search time 333.602 Seconds
 (without alignments)
 5454.872 Million cell updates/sec
 title: US-09-973-994-131
 score: 261
 sequence:
 1 aggtggccgtacagccatTA.....99gtttttccacggcacct
 scoring table: IDENTITY_NUC
 Gapop 10.0 , Gapext 1.0
 searched: 5244920 seqs, 3486124231 residues
 total number of hits satisfying chosen parameters : 10489840
 minimum DB seq length: 0
 maximum DB seq length: 2000000000
 post-processing: Minimum Match 0%
 Maximum Match 100%

ASSIGNMENTS

Result No.	Score	Query Match	Length	DB ID	Description
c 1	90.2	34.6	563	C295441	C295441 upto001f0 DR053876 RTCAI1_13—DR120385 RTMGI_129—CZ85986 226_5_123 BE89011 60147812 CO456808 MZCCS1500 ALO5514 Drosophil DV779559 Rw Rat_57 BX197330 Danio rer CN252666 EST08601 DE073250 Oryzias1 AL09526 Drosophil BX097453 Drosophil BX553089 BX553089 CV595856 L_AJ_aaa0 CE105632 tigr-gss-
c 12	38.8	14.9	941	BX158594	BX158594 Danio rer CN252666 EST08601 DE073250 Oryzias1 AL09526 Drosophil BX097453 Drosophil BX553089 BX553089 CV595856 L_AJ_aaa0 CE105632 tigr-gss-
c 13	38.6	14.8	386	CN252666	BX158594 Danio rer CN252666 EST08601 DE073250 Oryzias1 AL09526 Drosophil BX097453 Drosophil BX553089 BX553089 CV595856 L_AJ_aaa0 CE105632 tigr-gss-
c 14	38.6	14.8	663	DE073250	BX158594 Danio rer CN252666 EST08601 DE073250 Oryzias1 AL09526 Drosophil BX097453 Drosophil BX553089 BX553089 CV595856 L_AJ_aaa0 CE105632 tigr-gss-
c 15	38.6	14.8	1101	CNS005Q1	BX158594 Danio rer CN252666 EST08601 DE073250 Oryzias1 AL09526 Drosophil BX097453 Drosophil BX553089 BX553089 CV595856 L_AJ_aaa0 CE105632 tigr-gss-
c 16	38.6	14.8	1101	CNS005B7	BX158594 Danio rer CN252666 EST08601 DE073250 Oryzias1 AL09526 Drosophil BX097453 Drosophil BX553089 BX553089 CV595856 L_AJ_aaa0 CE105632 tigr-gss-
c 17	38.4	14.7	489	BX553089	BX158594 Danio rer CN252666 EST08601 DE073250 Oryzias1 AL09526 Drosophil BX097453 Drosophil BX553089 BX553089 CV595856 L_AJ_aaa0 CE105632 tigr-gss-
c 18	38.4	14.7	856	CV595856	BX158594 Danio rer CN252666 EST08601 DE073250 Oryzias1 AL09526 Drosophil BX097453 Drosophil BX553089 BX553089 CV595856 L_AJ_aaa0 CE105632 tigr-gss-
c 19	38.6	14.6	537	CE105632	BX158594 Danio rer CN252666 EST08601 DE073250 Oryzias1 AL09526 Drosophil BX097453 Drosophil BX553089 BX553089 CV595856 L_AJ_aaa0 CE105632 tigr-gss-

GenCore version 5.1.9
 Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM nucleic - nucleic search, using sw model

Run on: July 11, 2006, 07:10:56 ; Search time 2616.43 Seconds
 Perfect score: 261 (without alignments)
 Sequence: 1 agtgaccgtacagccatata.....999ttttccacggccacct 261
 5578.184 Million cell updates/sec

Title: US-09-973-994-131
 Scoring table: IDENTITY_NUC Gapop 10.0 , Gapext 1.0

Searched: 48236798 seqs, 27959665780 residues

Total number of hits satisfying chosen parameters:

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database :

```
EST:*
1: 9b_est1:*
2: 9b_est3:*
3: 9b_est4:*
4: 9b_est5:*
5: 9b_est6:*
6: 9b_ntc:*
7: 9b_est2:*
8: 9b_est7:*
9: 9b_est8:*
10: 9b_est9:*
11: 9b_gss1:*
12: 9b_gss2:*
13: 9b_gss3:*
14: 9b_gss4:*
```

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match	Length	DB ID	Description
c 1	90.2	34.6	563	C295441	C295441 upto001f0 DR053876 RTCAI1_13—DR120385 RTMGI_129—CZ85986 226_5_123 BE89011 60147812 CO456808 MZCCS1500 ALO5514 Drosophil DV779559 Rw Rat_57 BX197330 Danio rer CN252666 EST08601 DE073250 Oryzias1 AL09526 Drosophil BX097453 Drosophil BX553089 BX553089 CV595856 L_AJ_aaa0 CE105632 tigr-gss-
c 11	38.8	14.9	694	BX158594	BX158594 Danio rer CN252666 EST08601 DE073250 Oryzias1 AL09526 Drosophil BX097453 Drosophil BX553089 BX553089 CV595856 L_AJ_aaa0 CE105632 tigr-gss-
c 12	38.8	14.9	941	BX158594	BX158594 Danio rer CN252666 EST08601 DE073250 Oryzias1 AL09526 Drosophil BX097453 Drosophil BX553089 BX553089 CV595856 L_AJ_aaa0 CE105632 tigr-gss-
c 13	38.6	14.8	386	CN252666	BX158594 Danio rer CN252666 EST08601 DE073250 Oryzias1 AL09526 Drosophil BX097453 Drosophil BX553089 BX553089 CV595856 L_AJ_aaa0 CE105632 tigr-gss-
c 14	38.6	14.8	663	DE073250	BX158594 Danio rer CN252666 EST08601 DE073250 Oryzias1 AL09526 Drosophil BX097453 Drosophil BX553089 BX553089 CV595856 L_AJ_aaa0 CE105632 tigr-gss-
c 15	38.6	14.8	1101	CNS005Q1	BX158594 Danio rer CN252666 EST08601 DE073250 Oryzias1 AL09526 Drosophil BX097453 Drosophil BX553089 BX553089 CV595856 L_AJ_aaa0 CE105632 tigr-gss-
c 16	38.6	14.8	1101	CNS005B7	BX158594 Danio rer CN252666 EST08601 DE073250 Oryzias1 AL09526 Drosophil BX097453 Drosophil BX553089 BX553089 CV595856 L_AJ_aaa0 CE105632 tigr-gss-
c 17	38.4	14.7	489	BX553089	BX158594 Danio rer CN252666 EST08601 DE073250 Oryzias1 AL09526 Drosophil BX097453 Drosophil BX553089 BX553089 CV595856 L_AJ_aaa0 CE105632 tigr-gss-
c 18	38.4	14.7	856	CV595856	BX158594 Danio rer CN252666 EST08601 DE073250 Oryzias1 AL09526 Drosophil BX097453 Drosophil BX553089 BX553089 CV595856 L_AJ_aaa0 CE105632 tigr-gss-
c 19	38.6	14.6	537	CE105632	BX158594 Danio rer CN252666 EST08601 DE073250 Oryzias1 AL09526 Drosophil BX097453 Drosophil BX553089 BX553089 CV595856 L_AJ_aaa0 CE105632 tigr-gss-

RESULT 1

C2895441/c

LOCUS upta00f002b10f0

DEFINITION Pine methylation unfiltered library (LibID: 131)

ACCESSION C2895441

VERSION C2895441.1

KEYWORDS GSS,

SOURCE Pinus taeda

ORGANISM Pinus taeda

Eukaryota; Viridiplanteae; Streptophytina; Embryophytina; Tracheophytina; Spermatophytina; Coniferopsida; Pinales; Pinaceae; Pinus; Pinus.

REFERENCE 1 (bases 1 to 563)

AUTHORS Babinowicz, P.D., Citek, R.W., Budiman, M.A., Nurnberg, A., Bedell, J.A., Lakey, N., O'Shaughnessy, A.L., Nascimento, I.U., McCombie, W.R. and Martienssen, R.A.

TITLE Differential methylation of genes and repeats in land plants

JOURNAL Genome Res.

PUBMED 16204196

COMMENT Contact: Rabinowicz PD

The Institute for Genomic Research

9712 Medical Center Dr., Rockville, MD 20850, USA

Tel: 301 795 7787

Fax: 301 838 0208

Email: public@tigr.org

Class: methylation filtered

High quality sequence stop

FEATURES 563.

Source 1..563

Organism="Pinus taeda"

/mol_type="genomic DNA"

/db_xref="taxon:3522"

/clone_lib="Pine

131)"

ORIGIN

Query Match 90.2;

Best Local Similarity 88.9%;

Matches 120;

Conservative 0;

Indels 2;

Gaps 2;

Length 563;

Pred. No. 3e-13;

Nimatches 0;

LIBID: 131

Query 127 GATAGTTGAAATTGGCTGGAATTTCCTCACTTAAAG 186

GenCore version 5.1.9
Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM nucleic - nucleic search, using sw model

Run on: July 11, 2006, 07:02:26 ; Search time 1779.21 Seconds

Perfect score: 261 (without alignments)

Sequence: 9380.717 Million cell updates/sec

Scoring table: IDENTITY_NUC
Gapop 10.0 , Gapext 1.0

Searched: 6366136 seqs, 31973710525 residues

Total number of hits satisfying chosen parameters:

Minimum DB seq length: 0

Maximum DB seq length: 20000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing First 45 summaries

Database : GenEmbl:*

```
1: gb_env:*
2: gb_Pat:*
3: gb_Ph:*
4: gb_Dl:*
5: gb_Pr:*
6: gb_Ro:*
7: gb_Ts:*
8: gb_Sy:*
9: gb_Un:*
10: gb_Vi:*
11: gb_Ov:*
12: gb_Htg:*
13: gb_In:*
14: gb_Om:*
15: gb_Ba:*
```

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

X74481 Human Papill	
CR931025 Pan trogl	
AC153218 Bos tauru	
AC151020 Callithri	
BX53133 Zebrafish	
AC157148 Bos tauru	
AL662880 Zebrafish	
BX005463 Zebrafish	
AC10195 Mus muscu	
CR954958 Danio rer	
AC171784 Bos tauru	
AC067791 Caenorhab	
AC118784 Rattus no	
AC073576 Homo sapi	
AL13129 Human chr	
AC163148 Bos tauru	
AC114946 Homo sapi	
AC015446 Arabidops	
AP007470 Lotus cor	
AC025384 Homo sapi	
AC157113 Bos tauru	
AX438634 Sequence	
Continuation (5 of	
AC015446 Arabidops	
AC015875 Homo sapi	
AC146220 Pan trog	
AC073740 Homo sapi	
AC181755 Strongyl	

ALIGNMENTS

RESULT 1	
AC128851/C	
LOCUS Rattus norvegicus clone CHP30-445E24	171009 bp DNA linear HTG 20-NOV-2002
DEFINITION Rattus norvegicus clone CHP30-445E24, WORKING DRAFT SEQUENCE.	
AC128851	
ACCESSION AC128851	
VERSION AC128851.3	GI:25139471
KEYWORDS HTGS; HTGS_DBFT; HTGS_FULLTOP.	
SOURCE Rattus norvegicus (Norway rat)	
ORGANISM Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;	
Mammalia; Butheria; Buarchoptoglires; Glires; Rodentia;	
Sciurognathii; Murioidea; Muridae; Murinae; Rattus.	
REFERENCE 1 (bases 1 to 171009)	
AUTHORS Muzny,D.Marie., Metzker,M., Lee,S., Abramzon,S., Adams,C., Alder,J.J.,	
AnyaIebuchi,V., Allen,H., Alstrooks,I., Amin,A., Anguiano,D.,	
Claecko,J., Chavez,D., Chen,G., Chen,Y., Chen,Z., Chu,J.,	
Cleveland,C., Cockrell,R., Cox,C., Coyne,M., Cree,A., D'Souza,L.,	
Davila,M.I., Davis,C., Davy-Carroll,L., De Andra,C., Dederich,D.,	
Delgado,O., Denson,S., Deramo,C., Ding,Y., Dinh,D., Ditya,K.,	
Drager,H., Dugan-Rocha,S., Dunn,A., Durbin,K., Durval,B., Eaves,K.,	
Egan,A., Escoto,M., Eugene,C., Evans,C.A., Falls,T., Fan,G.,	
Fernandez,S., Finlay,M., Flanagan,L., Forbes,L., Foster,M., Foster,P.,	
Fraser,C.M., Gabisi,A., Garcia,A., Garcia,R., Garner,T., Garza,M.,	
Gebregeorgis,E., Geer,K., Hill,R., Grady,M., Guerra,W., Guevara,W.,	
Gunaratne,P., Haaland,W., Hamill,C., Hamilton,C., Hamilton,K.,	
Harvey,Y., Havlak,P., Hawe,A., Hernandez,N., Hernandez,J.,	
Hernandez,R., Hines,S., Hladun,S.L., Hodgson,A., Hogues,M.,	
Hollins,B., Howells,S., Hunt,J., Idlebird,D., Hum,J., Jackson,A.,	
Jackson,L., Jacob,L., Jiang,H., Johnson,B., Johnson,R., Jolivet,A.,	
Karpathy,S., Kelly,S., Khan,Z., King,L., Kovar,C., Levan,C., Li,Z., Liu,J.,	
Liu,J., Liu,W., Liu,Y., London,P., Longacre,S., Lopez,J.,	
Lorenzulewa,L., Louisegd,H., Lozano,R.J., Lu,X., Ma,J.,	
Maheshwari,M., Mahindarane,M., Maimoud,M., Mailly,K., Mangum,A.,	
Mangum,B., Mapua,P., Martin,K., Martin,R., Martinez,E.,	
Mawhinney,S., McLeod,M.P., McNeill,T.Z., Meenem,E.,	

SUMMARIES

Result No.	Score	Query	Match	Length	DB ID	Description
c 1	42	16.1	171009	12	AC128851	AC128851 Rattus no
c 2	42	16.1	264832	12	AC106309	AC106309 Rattus no
c 3	41.8	16.0	38744	13	CEC56A3	277655 Caenorhabdi
c 4	41.2	15.8	161505	6	CT054234	AC154234 Mus muscu
c 5	41.2	15.8	222702	12	CT009561	CT009561 Mus muscu
c 6	40.8	15.6	182957	12	CR931799	CR931799 Danio rer
c 7	40.8	15.6	259146	12	CT573231	AC171004 Danio rer
c 8	40.6	15.6	231271	12	AC171004	AC171004 Rattus no
c 9	40.6	15.6	232508	12	AC116189	AC116189 Rattus no
c 10	39.8	15.2	237705	12	AC171299	AC171299 Bos tauru
c 11	39.8	15.2	239162	12	AC175441	AC175441 Bos tauru
c 12	39.4	15.1	94646	12	AC171129	AC171129 Helobdell
c 13	39.2	15.0	15835	12	AC080040	AC080040 Homo sapi
c 14	39.2	15.0	174058	12	AC068695	AC068695 Homo sapi
c 15	39.2	15.0	176570	5	AC009499	AC009499 Homo sapi
c 16	38.8	14.9	33651	13	AC114261	AC114261 Dicystot
c 17	38.8	14.9	195124	11	CR548625	CR548625 Zebrafish
c 18	38.8	14.9	208436	12	CT027756	CT027756 Danio rer

Copyright (C) 1993 - 2006 Biocceleration Ltd.

OM nucleic - nucleic search, using sw model

Run on: July 11, 2006, 07:21:26 ; Search time 125.935 Seconds
(without alignments)

Perfect score: 307

Title: US-09-973-994-79

Sequence: 1 gggtgcattcaatttgcac.....ggccatcactcgatccgacc 307

Scoring table: IDENTITY_NUC Gapop 10.0 , Gapext 1.0

Searched: 140366 seqs, 935554401 residues

Total number of hits satisfying chosen parameters: 2807332

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 45 summaries

Issued Patents NA:
1: /EMC_Celerra_SIDS3/prodata/2/ina/1_COMB.seq:
2: /EMC_Celerra_SIDS3/prodata/2/ina/5_COMB.seq:
3: /EMC_Celerra_SIDS3/prodata/2/ina/6A_COMB.seq:
4: /EMC_Celerra_SIDS3/prodata/2/ina/6B_COMB.seq:
5: /EMC_Celerra_SIDS3/prodata/2/ina/7_COMB.seq:
6: /EMC_Celerra_SIDS3/prodata/2/ina/H_COMB.seq:
7: /EMC_Celerra_SIDS3/prodata/2/ina/PCTUS_COMB.seq:
8: /EMC_Celerra_SIDS3/prodata/2/ina/PE_COMB.seq:
9: /EMC_Celerra_SIDS3/prodata/2/ina/RE_COMB.seq:
10: /EMC_Celerra_SIDS3/prodata/2/ina/backfiles1.seq:
*

Pred. No. is the number of results predicted by chance to have a

score greater than or equal to the score of the result being printed,
and is derived by analysis of the total score distribution.

C 24 33 10.7 74962 3 US-09-685-853A-3 Sequence 3, Appli
C 25 32.6 10.6 1377 3 US-09-583-110-2506 Sequence 2506, AP
C 26 32.6 10.6 1392 3 US-09-107-433-903 Sequence 903, App
C 27 32.6 10.6 39318 3 US-09-1949-016-1798 Sequence 13798, A
C 28 32.2 10.5 601 3 US-09-1949-016-63948 Sequence 64948, A
C 29 32.2 10.5 601 3 US-09-1949-016-152910 Sequence 152910, A
C 30 32.2 10.5 166698 3 US-09-1949-016-15038 Sequence 16038, A
C 31 32 10.4 601 3 US-09-1949-002-3110 Sequence 3110, AP
C 32 32 10.4 601 3 US-09-1949-002-3111 Sequence 3111, AP
C 33 32 10.4 601 3 US-09-1949-002-7169 Sequence 7769, AP
C 34 32 10.4 601 3 US-09-1949-002-7770 Sequence 7770, AP
C 35 32 10.4 51905 3 US-09-1949-002-657 Sequence 667, APP
C 36 32 10.4 228 3 US-09-248-796A-11240 Sequence 11240, A
C 38 31.8 10.4 601 3 US-09-1949-016-152908 Sequence 152908, A
C 39 31.8 10.4 601 3 US-09-1949-016-12909 Sequence 152909, A
C 40 31.8 10.4 1827 3 US-09-270-767-1108 Sequence 1308, AP
C 41 31.8 10.4 1827 3 US-09-270-767-15590 Sequence 16590, A
C 42 31.8 10.4 25052 3 US-09-1949-016-14724 Sequence 14724, A
C 43 31.6 10.3 100848 3 US-09-596-39 Sequence 39, APP1
C 44 31.6 10.3 312474 3 US-09-1949-016-1434 Sequence 17434, A
C 45 31.4 10.2 601 3 US-09-1949-016-128705 Sequence 128705,

ATTACHMENTS

RESULT 1
US-09-232-463-14

; Sequence 14, Application US/0832463

; Patent No. 5670367

; GENERAL INFORMATION:

; APPLICANT: DORNER, P.

; APPLICANT: SCHEIFFLINGER, F.

; APPLICANT: FALKNER, F. G.

; TITLE OF INVENTION: RECOMBINANT FOWLPOX VIRUS

; NUMBER OF SEQUENCES: 52

; CORRESPONDENCE ADDRESS:

; ADDRESSEE: Foley & Lardner

; STREET: 1800 Diagonal Road, Suite 500

; CITY: Alexandria

; STATE: VA

; COUNTRY: USA

; ZIP: 22313-0299

; COMPUTER READABLE FORM:

; MEDIUM TYPE: Floppy disk

; COMPUTER: IBM PC compatible

; OPERATING SYSTEM: PC DOS/MS-DOS

; SOFTWARE: Patent In Release #10, Version #1.25

; CURRENT APPLICATION NUMBER: US/08/232-463

; APPLICATION NUMBER: EP 91 114 3 00.6

; FILING DATE: 26-AUG-1991

; ATTORNEY/AGENT INFORMATION:

; NAME: BENT, Stephen A.

; REGISTRATION NUMBER: 29,768

; REFERENCE/DOCKET NUMBER: 30472/114 IMMU

; TELECOMMUNICATION INFORMATION:

; TELEPHONE: (703) 836-9300

; TELEX: (703) 683-4109

; INFORMATION FOR SEQ ID NO: 14:

; SEQUENCE CHARACTERISTICS:

; LENGTH: 7218 base pairs

; TYPE: nucleic acid

; STRANDEDNESS: single

; TOPOLOGY: linear

; IMMEDIATE SOURCE:

SUMMARIES

Result No.	Score	Query Match	Length	DB	ID	Description
1	55.8	18.2	7218	2	US-09-232-463-14	Sequence 14, Appli
2	36.4	11.9	63588	3	US-09-873-404-3	Sequence 3, Appli
3	36.4	11.9	63588	3	US-10-243-735-3	Sequence 3, Appli
4	36.4	11.9	63588	4	US-10-370-010-3	Sequence 3, Appli
5	36	11.7	219964	3	US-09-949-016-15086	Sequence 15006, A
6	34.8	11.5	101349	3	US-09-949-016-1433	Sequence 17433, A
7	34.8	11.3	1664976	3	US-09-916-421B-1	Sequence 1, Appli
8	34.8	11.3	1664976	3	US-09-692-570-1	Sequence 1, Appli
9	33.6	11.3	5394	3	US-09-888-316-1	Sequence 1, Appli
10	34.4	11.2	764	3	US-09-949-016-5644	Sequence 5644, Ap
11	34.4	11.2	764	3	US-09-949-016-5645	Sequence 5645, Ap
12	34.4	11.2	1127	3	US-09-976-534-1102	Sequence 1102, Ap
13	34	11.1	15756	3	US-09-949-016-13607	Sequence 13607, A
14	34	11.1	29165	3	US-09-949-016-12340	Sequence 12340, A
15	33.8	11.0	1141	3	US-09-806-708B-22	Sequence 22, Ap
16	33.4	10.9	453	3	US-09-328-352-2667	Sequence 2667, Ap
17	33.4	10.9	601	3	US-09-949-016-64949	Sequence 64949, A
18	33.4	10.9	87863	3	US-09-949-016-14402	Sequence 14402, A
19	33.4	10.9	30042	3	US-09-949-016-13607	Sequence 13607, A
20	33	10.7	396	3	US-09-495-050A-98	Sequence 98, Appli
21	33	10.7	6854	2	US-08-668-036-4	Sequence 4, Appli
22	33	10.7	6854	2	US-08-376-043-4	Sequence 4, Appli
23	33	10.7	24740	3	US-09-949-016-13528	Sequence 13528, A

CLONE; ptZgpt-F18
 US-08-232-46-14

Query Match 18.2%; Score 55.8; DB 2; Length 7218;
 Best Local Similarity 2.0%; Pred. No. 1.2e-06;
 Matches 6; Conservative 186; Mismatches 103; Indels 0; Gaps 0;

Qy 3 TGCATCCPAGAATGCACTGCGTGTGACTCCCTTGAAAGCCTTCCT 62
 Db 1061 TGCATYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY 1120

Qy 63 GCCACCTGGCTGAAGCATCCTTGGATTATTCTCTAGAATTC 122
 Db 1121 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY 1180

Qy 123 TCTTGCTCCTAACATCCATAAGGTCACTCATGCCAAGAGATCTTGAA 182
 Db 1181 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY 1240

Qy 183 GAATCTGCCATTGTCGCCCTCTTAACACTGAAAGTGAAC 242
 Db 1241 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY 1300

Qy 243 TTCTGAGTACCTGTTCTGTATCATGGTTCTTGCCATCACTC 287
 Db 1301 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY 1355

RESULT 2
 US-09-873-404-3
 ; Sequence 3, Application US/09873404
 ; Patent No. 650056

GENERAL INFORMATION:
 ; APPLICANT: WEBSTER, Marion et al.
 ; TITLE OF INVENTION: ISOLATED HUMAN KINASE PROTEINS, NUCLEIC ACID MOLECULES ENCODING HUMAN KINASE PROTEINS, AND USES
 ; TITLE OF INVENTION: THEREOF
 ; FILE REFERENCE: CLO01212.CIP
 ; CURRENT APPLICATION NUMBER: US/09/873,404
 ; CURRENT FILING DATE: 2001-06-05
 ; NUMBER OF SEQ ID NOS: 4
 ; SOFTWARE: FastSEQ for Windows Version 4.0
 ; SEQ ID NO 3
 ; LENGTH: 63588
 ; TYPE: DNA
 ; FEATURE: misc_feature
 ; LOCATION: (1)...(63588)
 ; OTHER INFORMATION: n = A,T,C or G

US-09-873-404-3

Query Match 11.9%; Score 36.4; DB 3; Length 61588;
 Best Local Similarity 51.2%; Pred. No. 1.6;
 Matches 85; Conservative 0; Mismatches 81; Indels 0; Gaps 0;

Qy 106 CATTATCTAGAATCTCTGCGTCTTACATCTTAAAGCTCATCT 165
 Db 15012 CAGCTTCTCTGCGCTTCCTCACCTCTCAGCTTACAGCACT 15071

Qy 166 TCTTGACAATTTGAGAATCTGCGTACTGTCTTACTGATGATG 225
 Db 15072 TCTGAGTCTGACCTCTGAGCTTACAGCTTACAGCACT 15131

Query Match 11.9%; Score 36.4; DB 4; Length 63588;
 Best Local Similarity 51.2%; Pred. No. 1.6;
 Matches 85; Conservative 0; Mismatches 81; Indels 0; Gaps 0;

Qy 106 CATTATCTAGAATCTCTGCGTCTTACATCTTAAAGCTCATCT 165
 Db 15012 CAGCTTACTTGATGCGTTTCCTCACCTCTCAGCTTACAGCACT 15071

Query Match 11.9%; Score 36.4; DB 5; Length 63588;
 Best Local Similarity 51.2%; Pred. No. 1.6;
 Matches 85; Conservative 0; Mismatches 81; Indels 0; Gaps 0;

Qy 166 TCTTGACAATTTGAGAATCTGCGTACTGTCTTACTGATGATG 225
 Db 15072 TCTGAGTCTGACCTCTGAGCTTACAGCTTACAGCACT 15131

RESULT 3
 US-10-243-735-3
 ; Sequence 3, Application US/10243735
 ; Patent No. 6706510

GenCore version 5.1.9
 Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM nucleic - nucleic search, using SW mode!

Run on: July 11, 2006, 07:46:32 ; Search time 916.676 seconds
 Sequence: 1 gggtggatccatggattgca.....gccatcactcgaggatgcacc 307
 Scoring table: IDENTITY_NUC
 Gapext 1.0

Title: US-09-973-994-79

Perfect score: 307

Searched: 18892170 seqs, 6143817638 residues

Total number of hits satisfying chosen parameters: 37784340

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
 Maximum Match 100%
 Listing first 45 summaries

Database : Published Applications NA Main:*

1: /EMC_Celerra_SID3/pctodata/2/pubpna/US07_PUBCOMB.seq:
 2: /EMC_Celerra_SID3/pctodata/2/pubpna/US08_PUBCOMB.seq:
 3: /EMC_Celerra_SID3/pctodata/2/pubpna/US09A_PUBCOMB.seq:
 4: /EMC_Celerra_SID3/pctodata/2/pubpna/US09B_PUBCOMB.seq:
 5: /EMC_Celerra_SID3/pctodata/2/pubpna/US09C_PUBCOMB.seq:
 6: /EMC_Celerra_SID3/pctodata/2/pubpna/US10A_PUBCOMB.seq:
 7: /EMC_Celerra_SID3/pctodata/2/pubpna/US10B_PUBCOMB.seq:
 8: /EMC_Celerra_SID3/pctodata/2/pubpna/US10C_PUBCOMB.seq:
 9: /EMC_Celerra_SID3/pctodata/2/pubpna/US10D_PUBCOMB.seq:
 10: /EMC_Celerra_SID3/pctodata/2/pubpna/US10E_PUBCOMB.seq:
 11: /EMC_Celerra_SID3/pctodata/2/pubpna/US10F_PUBCOMB.seq:
 12: /EMC_Celerra_SID3/pctodata/2/pubpna/US10G_PUBCOMB.seq:
 13: /EMC_Celerra_SID3/pctodata/2/pubpna/US11A_PUBCOMB.seq:
 14: /EMC_Celerra_SID3/pctodata/2/pubpna/US11B_PUBCOMB.seq:
 15: /EMC_Celerra_SID3/pctodata/2/pubpna/US11C_PUBCOMB.seq:
 16: /EMC_Celerra_SID3/pctodata/2/pubpna/US11D_PUBCOMB.seq:
 Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match	Length	DB ID	Description
1	307	100.0	307	10	US-10-651-991-79
c 2	296	96.4	308	10	US-10-651-991-78
c 3	36.6	11.9	16516	10	US-10-953-13304
c 4	36.4	11.9	63588	6	US-10-243-735-3
5	36.4	11.9	63588	8	US-10-730-010-3
6	36	11.7	511	4	US-09-925-065A-261418
7	36	11.7	511	5	US-09-925-065A-261418
8	36	11.7	548	12	US-10-301-480-33919
9	36	11.7	548	12	US-10-301-480-953118
10	36	11.7	661	3	US-09-998-598-965
c 11	35.4	11.5	5976	8	US-10-437-963-8075
c 12	35.4	11.5	165156	8	US-10-741-601-5668
c 13	35.2	11.5	669	12	US-10-741-601-5668
c 14	35.2	11.5	669	12	US-10-301-480-545653
c 15	35	11.4	445	6	US-09-920-300A-620
c 16	35	11.4	445	6	US-10-033-528-620
c 17	35	11.4	445	7	US-10-099-926-620

ALIGNMENTS

RESULT	US-10-651-991-79	Sequence 79, Appl	Score 307; DB 10; Length 307;
		Best Local Similarity 100 %;	Pred. No. 1..6..81;
		Matches 307; Conservative 0;	Mismatches 0; Gaps 0;
		Qy 1 GGTCGATCCCTAGAAATTGCATCTGTGGCGTTGCTACTCCCTTGAAATTAGAGCTTC 60	
		Db 1 GTGCGATCCCTAGAAATTGCATCTGTGGCGTTGCTACTCCCTTGAAATTAGAGCTTC 60	
		Qy 61 TTGCCAACCTGGCTTGAAGCATCCCTTAGTCCTTATTCCCTGCAATTCTCTAGAT 120	
		Db 61 TTGCCAACCTGGCTTGAAGCATCCCTTAGTCCTTATTCCCTGCAATTCTCTAGAT 120	

Qy 79 GCATCCCTTAGCTTATTATCCTGGATTATTCCTAGAATCCCTGCTCCCTAACAT 1.38
 Db 4410 AAATCAACATAACTTAAAGTTTACCATACACTAATCTCAAATCGTTTACAT 4411

Qy 139 CCTATAAGTCATCTATGCCAGAGATTTGACAATTGGAGAAATCGCCA 1.93
 Db 4410 AAATCAACATAACTTAAATCCATCTTAAATACCTACTCTATATTACCAACATATAA 4.356

RESULT 2
 US-10-517-441-108/C
 Sequence 108, Application US/10517441
 Publication No. US20060121467A1.

GENERAL INFORMATION:
 APPLICANT: FOEKENS, John
 HARBECK, Nadia
 KOENIG, Thomas
 MAIER, Sabine
 MARTENS, John
 MODEL, Fabian
 NIMMICH, Inko
 RUIJAN, Tamas
 SCHMITT, Armin
 SCHMITT, Manfred
 LOOK, Maxime P.
 MARX, Almut
 HOEFLER, Heinz
 TITLE OF INVENTION: Method and nucleic acids for the improved treatment of breast cell
 TITLE OF INVENTION: Proliferative disorders
 FILE REFERENCE: 47675-93
 CURRENT APPLICATION NUMBER: US/10/517,441
 CURRENT FILING DATE: 2004-12-11
 PRIOR APPLICATION NUMBER: PCT EP2003/010881
 PRIOR FILING DATE: 2003-10-01
 PRIOR APPLICATION NUMBER: DE 10317955.0
 PRIOR FILING DATE: 2003-04-17
 PRIOR APPLICATION NUMBER: DE 10300096.8
 PRIOR FILING DATE: 2003-01-07
 PRIOR APPLICATION NUMBER: DE 10245779.4
 PRIOR FILING DATE: 2002-10-01
 NUMBER OF SEQ ID NOS: 2147
 SEQ ID NO 108
 LENGTH: 9353
 TYPE: DNA
 ORGANISM: Homo Sapiens
 US-10-517-441-108

Query Match 11.4%; Score 35; DB 6; Length 9353;
 Best Local Similarity 50.3%; Pred. No. 1.5; Indels 0; Gaps 0;
 Matches 86; Conservative 86; Mismatches 0; ~Mismatches 0;

Qy 19 CACATGTTGCGGTGCTACTCCCTTGAAATTAGAGCTTCCCTGCCACCTGCTGCTAACAT 1.38
 Db 4530 CACCATCCCCGTCGCCACCCATACATTACACCACTGATCTCATCCACAG 4471

Qy 79 GCATCCCTTAGCTTATTATCCTGGATTATTCCTAGAATCCCTGCTCCCTAACAT 1.38
 Db 4410 GAATTCACACATAACTTGGATCTACTCTTGGCAGGACTG 4360

RESULT 3
 US-10-501-187-222/C
 Sequence 222, Application US/10501187
 Publication No. US2006014455A1.
 GENERAL INFORMATION:
 APPLICANT: Hansen, Rhonda
 TITLE OF INVENTION: GENE PRODUCTS DIFFERENTIALLY EXPRESSED
 TITLE OF INVENTION: IN CANCEROUS BREAST CELLS AND THEIR METHODS OF USE

Query Match 11.2%; Score 34.4; DB 8; Length 809;
 Best Local Similarity 59.0%; Pred. No. 0.76; Indels 0; Gaps 0;
 Matches 59; Conservative 59; Mismatches 0; ~Mismatches 0;

Qy 68 CGGGCTGAAACATCCCTTGTAGCTTATCCATCCCTGCTTCTGCTTCTG 1.27
 Db 490 CAGGTGTTTGGCTTCTGATATTTGCAAGCTCTCCCTTGCCTCTTG 431

Qy 128 CTCCTAACATCCCTAAAGTCATGCCAAGAGTC 1.67

GenCore version 5.1.9
Copyright (c) 1993 - 2006 Bioacceleration Ltd.

OM nucleic - nucleic search, using sw model

Run on: July 11, 2006, 07:01:45 ; Search time 392.398 Seconds

Perfect score: 307 (without alignments)

Sequence: 5454.872 Million cell updates/sec

Scoring table: IDENTITY_NUC Gapop 10.0 , Gapext 1.0

Searched: 5244920 seqs, 3486124231 residues

Total number of hits satisfying chosen parameters:

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database :

N_Geneseq_8;*

- 1: Geneseqn19906;*
- 2: Geneseqn19906;*
- 3: Geneseqn20006;*
- 4: Geneseqn2001as;*
- 5: Geneseqn2001bs;*
- 6: Geneseqn2002as;*
- 7: Geneseqn2002bs;*
- 8: Geneseqn2003as;*
- 9: Geneseqn2003bs;*
- 10: Geneseqn2003cs;*
- 11: Geneseqn2004db;*
- 12: Geneseqn2004ds;*
- 13: Geneseqn2004bs;*
- 14: Geneseqn2005as;*
- 15: Geneseqn2006s;*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query	Match	Length	DB	ID	Description
c 1	307	100.0	307	14	AEA49584	Aea19584 Lobolly	
c 2	296	96.4	308	14	AEA49583	Aea49583 Lobolly	
c 3	36.4	11.9	63588	8	AB57150	Abs57150 Human gen	
c 4	36.2	11.8	2000	11	ACL3606	Ac136306 Rice	
c 5	36	11.7	661	6	ABV87554	Abv87654 Human col	
c 6	35.8	11.7	677	1	AAN60193	Aan60193 Sequence	
c 7	35.8	11.7	9353	13	ADS89445	Adss89445 Oligonucle	
c 8	35.6	11.6	265118	5	AAH41227	Aah41227 Pyrococcus	
c 9	35.4	11.5	165156	13	ADS36459	Adss36459 Human aut	
c 10	35	11.4	445	6	ABK45069	Abk45069 cDNA enco	
c 11	35	11.4	2607	14	ADW16473	Adw16473 Eucalyptu	
c 12	35	11.4	9353	13	ADS89092	Adss89092 Human AKR	
c 13	35	11.4	18820	4	AAL03764	Aal03764 Human rep	
c 14	35	11.4	18820	4	ABA07938	Abat07938 Human ova	
c 15	34.8	11.3	64976	2	AAV21209_16	Continuation (17 o	
c 16	34.6	11.3	5394	2	AAT00872	Aat00872 Murine mC	
c 17	34.6	11.3	5394	3	AAZ86916	Aaz86916 Mouse mC2	
c 18	34.6	11.3	5394	14	AEC05449	Aec05449 Mouse mC2	

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query	Match	Length	DB	ID	Description
c 1	307	100.0	307	14	AEA49584	Aea19584 Lobolly	
c 2	296	96.4	308	14	AEA49583	Aea49583 Lobolly	
c 3	36.4	11.9	63588	8	AB57150	Abs57150 Human gen	
c 4	36.2	11.8	2000	11	ACL3606	Ac136306 Rice	
c 5	36	11.7	661	6	ABV87554	Abv87654 Human col	
c 6	35.8	11.7	677	1	AAN60193	Aan60193 Sequence	
c 7	35.8	11.7	9353	13	ADS89445	Adss89445 Oligonucle	
c 8	35.6	11.6	265118	5	AAH41227	Aah41227 Pyrococcus	
c 9	35.4	11.5	165156	13	ADS36459	Adss36459 Human aut	
c 10	35	11.4	445	6	ABK45069	Abk45069 cDNA enco	
c 11	35	11.4	2607	14	ADW16473	Adw16473 Eucalyptu	
c 12	35	11.4	9353	13	ADS89092	Adss89092 Human AKR	
c 13	35	11.4	18820	4	AAL03764	Aal03764 Human rep	
c 14	35	11.4	18820	4	ABA07938	Abat07938 Human ova	
c 15	34.8	11.3	64976	2	AAV21209_16	Continuation (17 o	
c 16	34.6	11.3	5394	2	AAT00872	Aat00872 Murine mC	
c 17	34.6	11.3	5394	3	AAZ86916	Aaz86916 Mouse mC2	
c 18	34.6	11.3	5394	14	AEC05449	Aec05449 Mouse mC2	

RESULT 1
ID AEA49584 standard; cDNA; 307 BP;
AC AEA49584;
XX DT 11-AUG-2005 (first entry)
XX DE Loblolly pine CDNA clone, LPS-096
XX KW Plant; embryogenesis; plant breeding; paper; wood; ss
XX OS Pinus taeda.
XX PN US2005125161-A1.
XX PD 09-JUN-2005.
XX XX PF 02-SEP-2003; 2003US-00651991.

PR 11-OCT-2000; 2000US-0239250P.
PR 12-JAN-2001; 2001US-0230882P.
PR 11-OCT-2001; 2001US-00973994.

(PAPB-) INST PAPER SCI & TECHNOLOGY INC.

Cairney J, Xu N;

WPI; 2005-417092/42.

PF 02-SEP-2003; 2003US-00651991.

PR 11-OCT-2000; 2000US-0239250P.

PR 12-JAN-2001; 2001US-0230882P.

PR 11-OCT-2001; 2001US-00973994.

Relational database of cDNA molecules including those corresponding to

Loblolly pine major intrinsic protein, being differentially expressed during plant embryogenesis, useful for staging plant embryos.

Claim 17; SEQ ID NO 79; 219PP; English.

The present invention relates to a relational database of cDNA molecules comprising multiple nucleotide sequences (ABA49506-ABA49832). The database is useful for staging plant embryos, selecting advantageous plant clones, determining embryo fitness, and conditions for embryo development. The invention is particularly intended

Result No.	Score	Query Match	Length	DB ID	Description	FEATURES
1	44.2	14.4	482	12 BZ833608	BZ833608 CH240_258	Location/Qualifier Source
2	42.6	13.9	997	14 CNS005TE	AL060767 Drosophili	1..482
C 3	42.4	13.8	466	1 AL794888	AL794888 DT441734 JGI CAB3	/organism="Bos taurus"
C 4	42.4	13.8	862	10 DT441734	DT441734 JGI CAB3	/mol type="genomic DNA"
C 5	41.4	13.5	738	14 BX159004	AL159004 Danilo ror	/strain="breed: Hereford"
C 6	40.8	13.3	656	1 AL896255	AL896255 DT441734	
C 7	40	13.0	911	14 AG887137	AG887137 Oryza sat	
C 8	40	13.0	936	11 AZ209923	AZ209923 SP 0150 B	
C 9	39.2	12.8	694	10 DT853440	DT853440 LR058 CR	
C 10	39	12.7	791	10 DV553586	DV553586 DC05040D0	
C 11	38.8	12.6	532	4 CD055130	CD055130 CO010537	
C 12	38.8	12.6	617	8 CO010537	CO010537 EST98872	
C 13	38.6	12.6	763	5 CJ460131	CJ460131 CX44624 JGI XZG10	
C 14	38.6	12.6	808	14 CJ44624	CJ44624 DU98506 225686 To	
C 15	38.6	12.6	939	14 DU98506	DU98506 W52992 zC02e10.r1	
C 16	38.4	12.5	549	10 W52992	W52992 DR431991	
C 17	38.4	12.5	595	10 DR431991	DR431991 BZ636126	
C 18	38.4	12.5	653	2 BZ636126	BZ636126 BZ97774	
C 19	38.4	12.5	800	2 BZ97774	BZ97774 CH230-57H	

ALIGNMENTS

RESULT 1
BZ833608
LOCUS CH240_258K11.TV CHORI-240
DEFINITION Genomic survey sequence.
ACCESSION BZ833608
KEYWORDS GSS,
SOURCE Bos taurus (cartil)
ORGANISM Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Buthneria; Laurasiatheria; Cetartiodactyla; Ruminantia;
Pecora; Bovidae; Bovinae; Bos.
REFERENCE 1 (bases 1 to 482)
AUTHORS Zhao,S., Shetty,J., Shatwell,S., Tsegaye,G., Geer,K.,
Shwartsbeyn,A., Gebregeorgis,E., Chen,D., Riggs,F., de Jong,P.,
Crawford,A.M. and McEwan,J.C.
TITLE Bovine BAC End Sequences From Library CHORI-240
JOURNAL Unpublished (2003)
COMMENT Contact: Shaving Zhao
Department of Bukaryotic Genomics
The Institute for Genomic Research
9712 Medical Center Dr., Rockville, MD 20850, USA
Tel: 301 838 0200
Fax: 301 838 0208
Email: s2nao@tigr.org

Clones are derived from the bovine BAC library CHORI-240 (<http://www.chori.org/bacp/bacv240.html>). For BAC library availability, please contact Pieter de Jong (pdejong@mail.cho.org). Clones may be purchased from BACPAC Resources (<http://www.chori.org/bacp/bacpac/ordering-information.htm>). This work was undertaken as part of the International Bovine BAC Mapping Consortium (IBBM) by AGRE Research Ltd., New Zealand and The Institute of Genomic Research (TIGR), USA. Plate: 258 row: K column: 11 Seq primer: "T7 Class: BAC ends.

Clones are derived from the bovine BAC library CHORI-240 (<http://www.chori.org/bacp/bacv240.html>). For BAC library availability, please contact Pieter de Jong (pdejong@mail.cho.org). Clones may be purchased from BACPAC Resources (<http://www.chori.org/bacp/bacpac/ordering-information.htm>). This work was undertaken as part of the International Bovine BAC Mapping Consortium (IBBM) by AGRE Research Ltd., New Zealand and The Institute of Genomic Research (TIGR), USA. Plate: 258 row: K column: 11 Seq primer: "T7 Class: BAC ends.

SUMMARIES

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

%

CONTACT: Shaving Zhao

Department of Bukaryotic Genomics

The Institute for Genomic Research

9712 Medical Center Dr., Rockville, MD 20850, USA

Tel: 301 838 0200

Fax: 301 838 0208

Email: s2nao@tigr.org

Clones are derived from the bovine BAC library CHORI-240 (<http://www.chori.org/bacp/bacv240.html>). For BAC library availability, please contact Pieter de Jong (pdejong@mail.cho.org). Clones may be purchased from BACPAC Resources (<http://www.chori.org/bacp/bacpac/ordering-information.htm>). This work was undertaken as part of the International Bovine BAC Mapping Consortium (IBBM) by AGRE Research Ltd., New Zealand and The Institute of Genomic Research (TIGR), USA. Plate: 258 row: K column: 11 Seq primer: "T7 Class: BAC ends.

Clones are derived from the bovine BAC library CHORI-240 (<http://www.chori.org/bacp/bacv240.html>). For BAC library availability, please contact Pieter de Jong (pdejong@mail.cho.org). Clones may be purchased from BACPAC Resources (<http://www.chori.org/bacp/bacpac/ordering-information.htm>). This work was undertaken as part of the International Bovine BAC Mapping Consortium (IBBM) by AGRE Research Ltd., New Zealand and The Institute of Genomic Research (TIGR), USA. Plate: 258 row: K column: 11 Seq primer: "T7 Class: BAC ends.

Result No.	Score	Query Match	Length	DB ID	Description
1	55.8	18.2	7218	2 I66494	I66494 Sequence 14
2	42.6	13.9	230556	12 AC162231	AC162231 Bos tauri
3	42	13.7	110000	12 AC11678_4	Continuation (5 of BX255911 Zebrafish)
4	40.4	13.2	230915	12 AC130523	AC130523 Rattus no
C	5	40.4	13.2	338915	AC084575 Caenorhabditis
C	6	39.8	13.0	45027	CR318629 Danio rer
C	7	39	12.7	224884	BX546500 Zebrafish
C	8	39	12.7	237446	Continuation (2 of U83594 Ovine Papilloma virus)
9	38.8	12.6	110000	12 AC107427_1	AC107427 Homo sapi
10	38.6	12.6	7761	10 OPU83594	AC023757 Homo sapi
C	11	38.4	12.5	171562	AC107027
C	12	38.4	12.5	197206	AC130905
C	13	38.4	12.5	222375	AC099135 Rattus no
C	14	38.4	12.5	234072	AC120912 Rattus no
C	15	38.2	12.4	183481	AC111734 Rattus no
C	16	38.2	12.4	23444	AC177302 Strongylid
C	17	38	12.4	187571	AC079545 Mus musculus
18	38	12.4	221478	12 AC112792	Continuation (89 of CR382400 Plasmodium falciparum)
					AC145761 Papilio anil
					AC100081 Mus musculus
					BX67774 Mouse DNA
					AC133645 Rattus norvegicus
					AC147439 Strongylid
					AC148292 Medicago sativa
					AC124217 Medicago sativa
					BX510957 Zebrafish
					AL928680 Mouse DNA
					AC133758 Rattus norvegicus
					AC174554 Strongylid

REFERENCE	of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA 3 (bases 1 to 230556)	
AUTHORS	Cow Genome Sequencing Consortium.	
TITLE	Submitted (01-JUL-2005) Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA On Jun 29, 2005 this sequence version replaced GI:66730668.	
JOURNAL	Direct Submission	
RECORD NUMBER	AC162231	
RESULT	2	
LOCUS	AC162231 Bos taurus clone CH240-112A3, WORKING DRAFT SEQUENCE, 24 unorderd pieces	
DEFINITION	AC162231 AC162231.2 GI:68302821 HTGS PHASE1; HTGS_DRAFT; HTGS_FULLTOP.	
ORGANISM	Bos taurus	
KEYWORDS	Bukaryota; Metazoa; Chordata; Craniata; Euteleostomi; Mammalia; Eutheria; Laurasiatheria; Cetartiodactyla; Ruminantia; Pecora; Bovidae; Bovinae; Bos.	
SOURCE	(bases 1 to 230556)	
REFERENCE	Muñoz, D. Marie., Metzger, M. Lee., Abramzon, S., Adams, C., Alder, J., Allen, C., Allen, H., Alsbrooks, G., Amin, A., Anguiano, D., Anyalobeche, V., Aoyagi, M., Ayodeji, M., Baca, E., Baden, H., Baldwin, D., Bandaranaike, D., Barber, M., Barnstead, M., Benahmed, F., Biswal, K., Blair, J., Blankenburg, K., Blyth, P., Brown, M., Bryant, N., Bubay, C., Burch, P., Burnett, K., Calderon, E., Cardenas, V., Carter, K., Cavazos, I., Ceasar, H., Center, A., Chacko, J., Chavez, D., Chen, G., Chen, R., Chen, Y., Chiu, J., Cleveland, C., Cockrell, R., Cox, C., Coyle, M., Cree, P., D'Souza, L., Devila, M.L., Davis, C., Davy-Carroll, L., De Andra, C., Dederich, D., Delgado, O., Denson, S., Deramo, C., Ding, Y., Dinh, H., Divya, K., Draper, H., Dugan-Rocha, S., Dunn, A., Durbin, K., Duval, B., Eaves, K., Egan, A., Escott, M., Eugene, C., Evans, C.A., Falls, T., Fan, G., Forbes, C.M., Frasier, C., Gallo, C., Gantz, L., Gao, C., Garcia, A., Garner, T., Garza, M., Gebregeorgis, E., Geer, K., Gill, R., Grady, M., Guerra, W., Guevara, W., Guarante, P., Haaland, W., Hamil, C., Hamilton, C., Hernandez, J., Harvey, Y., Havlik, P., Hawes, A., Henderson, N., Hernandez, J., Hernandez, R., Hines, S., Hladun, S.L., Hodson, A., Houghes, M., Hollins, B., Howell, S., Hulyk, S., Hume, J., Idleberry, D., Jackson, A., Jackson, L., Jacob, L., Jiang, H., Johnson, B., Johnson, R., Jolivet, A., Karpathy, S., Kelly, S., Kelly, S., Khan, Z., King, L., Kovar, C., Kovis, B., Kraft, C.L., Lebow, H., Levan, J., Lewis, L., Li, Z., Liu, J., Liu, J., Liu, W., Liu, Y., London, P., Longacre-S., Lopez, J., Lorenshew, L., Louised, H., Loado, R.J., Lu, X., Ma, J., Maheshwari, M., Mahindarne, M., Mahmoud, M., Malloy, K., Mangum, B., Mapua, P., Martin, K., Martin, R., Martinez, E., Mawhinney, S., McLeod, M.P., McNeill, T.Z., Meenen, E., Milosavljevic, A., Miner, G., Munro, E., Montemayor, J., Moore, S., Morgan, M., Morris, K., Morris, S., Manidas, M., Murphy, M., Nair, L., Nankervis, C., Neal, D., Newton, N., Nguyen, N.N., Norris, S., Okwakolemele, O., Okwunzu, G., Olarnpongsoon, A., Pal, S., Parks, K., Pasternak, S., Paul, H., Perez, A., Perez, L., Peňninkoch, C., Blopper, F., Poindexter, A., Popovic, D., Primus, B., Pu, L.-L., Buazo, M., Quiroz, J., Rachlin, E., Reeves, K., Regier, M.A., Reigh, R., Reilly, B., Reilly, M., Ren, Y., Reuter, M., Richards, S., Riggs, F., Rives, C., Rodkey, T., Rojas, A., Rose, M., Rose, R., Ruiz, S.J., Sanders, W., Savery, G., Scherer, S., Scott, G., Shatsman, S., Shen, H., Sherry, J., Shvartsbeyn, A., Sisson, I., Sitter, C.D., Smajis, D., Sneed, A., Sodergren, E., Song, X., Sorelle, R., Soe, J., Steimle, M., Strong, R., Sutton, A., Svatek, A., Taylor, C., Taylor, T., Thomas, N., Thomas, S., Tingey, A., Trejos, Z., Usmani, K., Valas, R., Vera, V., Villasana, D., Waldron, L., Walker, B., Wang, J., Wang, Q., Wang, S., Warren, J., Warren, R., Wei, F., White, F., Williams, G., Wilson, R., Wleczik, R., Woeden, H., Worley, K., Wright, D., Wright, R., Wu, J., Yakub, S., Yen, J., Yoon, L., Yoon, V., Yu, F., Zhang, J., Zhou, J., Zhou, X., Zhao, S., Dunn, D., von Niederhausen, A., Weiser, R., Smith, D.R., Holt, R.A., Smith, H.O., Weinstock, G., and Gibbs, R.A.	
RESULT	2	
DEFINITION	Unpublished	
ORGANISM	2 (bases 1 to 230556)	
KEYWORDS	Direct Submission	
SOURCE	Worley, K.C.	
REFERENCE	Submitted (26-MAY-2005) Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA 2 (bases 1 to 230556)	
AUTHORS	Worley, K.C.	
TITLE	Direct Submission	
JOURNAL	Journal of Molecular Biology	
REFERENCE	Submitted (26-MAY-2005) Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA 2 (bases 1 to 230556)	
AUTHORS	Worley, K.C.	
TITLE	Direct Submission	
JOURNAL	Journal of Molecular Biology	