

cs4341 Digital Logic & Computer Design

Lecture Notes 15

Omar Hamdy

Assistant Professor

Department of Computer Science

Review: Moore and Mealy Machines

Moore machine

Mealy machine

Review: Traffic Light Design

- \triangleright Design a system to control two traffic lights L_A and L_B.
- ➤ The traffic lights are connected to two sensors T_A and T_B, where each sensor is TRUE if a car is present, and FALSE if the street is empty (inputs)
- ➤ Each traffic light receives digital input specifying the color it should display: R, Y, G (outputs)
- Rule is simple: a green light stays green as long as there are cars on that street. Otherwise, it switches to the other light.
- ➤ The system is linked to a 5-second clock, where at each rising edge of the clock, the output might change based on the input and the current state
- The system has a reset button. When pressed, it resets the outputs to L_A = Green and L_B = Red
- So, what is the system-level design looks like?

Traffic Light: State Transition Diagram

- How do we determine a state?
 - Using the different possible (legal) outputs the system produces
- How many states do we have?

State	L_A	L _B
SO	Green	Red
S1	Yellow	Red
S2	Red	Green
S3	Red	Yellow

- What are the transitioning conditions?
- How many bits of memory are needed?

Traffic Light: State Transition Truth Table

- The first truth table needed is the state transition table, which determines all the next state S' given current state S and input.
- There are two ways: either we build the full table (2 state bits and 2 input sensors = 2^4 = 16 lines), or we build from the state diagram (easier)

Current State S	T _A	T _B	Next State S'
S0	0	X	S1
S0	1	X	S0
S1	X	X	S2
S2	Χ	0	S3
S2	Χ	1	S2
S3	Χ	Χ	S0

Traffic Light: State Encoding

➤ Before we proceed in the analysis, we need to give a binary code for each of the 4 states using 2 binary bits.

State	Encoding S _{1:0}		
S0	0	0	
S1	0	1	
S2	1	0	
S3	1	1	

Traffic Light: State Transition Truth Table

- Properly represent current state, next state and inputs as individual bits
- ➤ Simplify using K-Map and express S'₁ and S'₀ algebraically

Cur Sta	rent ate	Input		Next State	
S ₁	S ₀	T _A	T _B	S' ₁	S' ₀
0	0	0	Χ	0	1
0	0	1	Χ	0	0
0	1	Χ	Χ	1	0
1	0	Χ	0	1	1
1	0	Χ	1	1	0
1	1	X	X	0	0

$$S'_1 = \overline{S_1}S_0 + S_1\overline{S_0} = S_1 \oplus S_0$$
 $S'_0 = \overline{S_1}\overline{S_0}\overline{T}_A + S_1\overline{S_0}\overline{T}_B$

$$S'_0 = \overline{S_1} \overline{S_0} \overline{T}_A + S_1 \overline{S_0} \overline{T}_B$$

Traffic Light: Output Encoding

- > To analyze the output, we first need to assign each output a binary code.
- > Since we have 3 colors for each traffic light, then 2 bits are sufficient.

Output	Encoding L _{1:0}		
Green	0	0	
Yellow	0	1	
Red	1	0	

Traffic Light: Output Truth Table

 \blacktriangleright The second truth table needed is the output table, which determines all the output L_A and L_B given current state S.

Cur Sta	rent ate	Outputs			
S ₁	S ₀	L _{A1}	L _{AO}	L _{B1}	L _{BO}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

What is the algebraic expression for each output?

Traffic Light: Output Truth Table

- How to represent each output algebraically?
- Using K-Map, row reduction, or just by looking at the table, we can say:
 - $\succ L_{A1} = S1$
 - $L_{A0} = \overline{S}_1 S_0$
 - $ightharpoonup L_{B1} = \overline{S}_1$
 - \triangleright $L_{B0} = S_1 S_0$

Cur Sta	rent ate	Outputs			
S ₁	So	L _{A1}	L _{AO}	L _{B1}	L _{BO}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

Traffic Light: Circuit Design

The final step is to design the next step logic and the output logic circuits using the basic logic gate

> Registers

$$S'_1 = \overline{S_1}S_0 + S_1\overline{S_0} = S_1 \oplus S_0$$

> Outputs

$$\succ L_{A1} = S1$$

$$\triangleright$$
 $L_{A0} = \overline{S}_1 S_0$

$$ightharpoonup L_{B1} = \overline{S}_1$$

$$\triangleright$$
 $L_{B0} = S_1 S_0$

Traffic Light: Waveform Analysis

> The following is how the waveform looks like for the traffic circuit

State and Output Encoding

- ➤ The state as well as output encodings were chosen randomly and could be selected differently
- > Different encoding will result in different circuit design.
- > Challenge would then be which encoding can produce the best circuit design (least number of gates, least propagation delay, etc)
- > Therefore, choosing good encodings is crucial in the circuit design
- > There are two types of encoding:
 - Binary encoding: each state or output is represented as a binary number
 - > One-hot-encoding: each state is represented by its own memory bit.
- > One-hot-encoding usually means simpler circuit, but more memory bits

Output	Encoding L _{1:0}		
Green	1	1	
Yellow	1	0	
Red	0	0	

Output	Encoding L _{1:0}		
Green	1	0	
Yellow	1	1	
Red	0	1	

Output	Encoding L _{1:0}		
Green	0	1	
Yellow	0	0	
Red	1	1	

Example: Divide-by-N Counter

- > This special circuit has no inputs and one output.
- > The output Y is High (1) for one clock cycle out of every N

Design the circuit using binary and one-hot encodings.

To Do List

- ➤ Review lecture notes
- ➤ Continue working on assignment 2