Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

"Белгородский государственный технологический университет им. В. Г. Шухова"

(БГТУ им. В.Г. Шухова)

Институт энергетики, информационных технологий и управляющих систем

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа № 4.2 по дисциплине дискретная математика тема: Циклы

Выполнил: студент группы ПВ-223

Игнатьев Артур Олегович

Проверил: доцент

Рязанов Юрий Дмитриевич

Цель работы: изучить разновидности циклов в графах, научиться генерировать случайные графы, определять их принадлежность к множеству эйлеровых и гамильтоновых графов, находить все эйлеровы и гамильтоновы циклы в графах.

Задания

- 1. Разработать и реализовать алгоритм генерации случайного графа, содержащего п вершин и m ребер.
 - 2. Написать программу, которая:
- а) в течение десяти секунд генерирует случайные графы, содержащие п вершин и m ребер;
- б) для каждого полученного графа определяет, является ли он эйлеровым или гамильтоновым;
- в) подсчитывает общее количество сгенерированных графов и количество графов каждого типа. Результат работы программы представить в виде таблицы. Величину h подобрать такой, чтобы в таблице количество строк было в диапазоне от 20 до 30.
 - 3. Выполнить программу при n = 8,9,10 и сделать выводы.
- 4. Привести пример диаграммы графа, который является эйлеровым, но не гамильтоновым. Найти в нем все эйлеровы циклы.
- 5. Привести пример диаграммы графа, который является гамильтоновым, но не эйлеровым. Найти в нем все гамильтоновы циклы.
- 6. Привести пример диаграммы графа, который является эйлеровым и гамильтоновым. Найти в нем все эйлеровы и гамильтоновы циклы.
- 7. Привести пример диаграммы графа, который не является ни эйлеровым, ни гамильтоновым.

Выполнение

```
#define N 15
int ** get memory matr(int n, int m) {
       free(a[i]);
   free(a);
int * init_posl(int n) {
```

```
void ten_sec_gen(int n, int last) {
    double time_spent = 0;
printf("
```

```
time spent = 0;
```

3. Выполнить программу при $n=8,\,9,\,10$ и сделать выводы.

N = 8

Количество вершин	Количество графов		
	Эйлеровых	Гамильтоновых	Bcex
8	8760	1191143	1193423
9	4829	666556	681500
10	3862	371079	425421
11	3020	187088	306326
12	2255	171091	273081
13	1992	145833	303822
14	2111	183319	301961
15	2839	198544	299414
16	1679	187231	274435
17	1741	173211	229101
18	1339	165539	193546
19	1480	91081	149356
20	1104	81938	104871
21	766	92337	93423
22	630	64952	67339
23	674	43085	52596
24	290	26340	35368
25	0	19823	25606
26	0	15622	23206
27	0	13985	20564
28	0	19321	19321

N = 9

Количество вершин	Количество графов		
	Эйлеровых	Гамильтоновых	Bcex
9	5762	1005491	1005718
10	1904	565567	569417
11	1469	275725	287700
12	2029	201391	237046
13	840	153057	182133
14	596	63537	163357
15	503	129546	150219
16	590	115474	141614
17	784	118610	133875
18	486	114141	126822
19	283	102780	111282
20	596	91147	97731
21	416	46802	48958

22	227	59522	61003
23	315	81217	82182
24	494	75890	76619
25	805	66020	66520
26	1366	30135	34156
27	2289	17183	19106
28	3594	73697	73771
29	4959	25442	29754
30	5506	13860	13860
31	4543	13397	13397
32	6433	16182	16182
33	0	10087	10087
34	0	9249	9249
35	0	8728	8728
36	8865	8865	8865

N = 10

Количество вершин	Количество графов		
	Эйлеровых	Гамильтоновых	Всего
10	2775	817272	817272
11	527	439863	447672
12	1345	339272	380432
13	684	194729	253974
14	673	114611	136515
15	578	112611	125529
16	541	93597	108513
17	435	54824	64815
18	425	51767	52510
19	321	7568	45201
20	253	7727	10911
21	208	8434	10647
22	125	9595	11135
23	91	10407	11466
24	24	11363	12138
25	19	13965	14503
26	28	14846	15238
27	50	20635	20924
28	47	25831	26046
29	74	42004	42160
30	88	50069	50194
31	152	77514	77600
32	205	62092	62142

33	354	60463	60498
34	736	34625	34649
35	180	630595	630602
36	141	60165	61144
37	114	57582	67582
38	18	53628	53628
39	14	47394	47394
40	28	31231	31231
41	0	7184	7184
42	0	1630	1630
43	0	2091	2091
44	0	29	329
45	0	68	68

4. Привести пример диаграммы графа, который является эйлеровым, но не гамильтоновым. Найти в нем все эйлеровы циклы:

Эйлеровы циклы:

1, 2, 4, 3, 5, 2, 3, 1

1, 2, 5, 3, 4, 2, 3, 1

1, 2, 3, 4, 2, 5, 3, 1

1, 2, 3, 5, 2, 4, 3, 1

- 1, 3, 2, 4, 3, 5, 2, 1
- 1, 3, 2, 5, 3, 4, 2, 1
- 1, 3, 4, 2, 5, 3, 2, 1
- 1, 3, 5, 2, 4, 3, 2, 1
- 2, 1, 3, 4, 2, 5, 3, 2
- 2, 1, 3, 5, 2, 4, 3, 2
- 2, 1, 3, 2, 4, 3, 5, 2
- 2, 1, 3, 2, 5, 3, 4, 2
- 2, 3, 4, 2, 5, 3, 1, 2
- 2, 3, 5, 2, 4, 3, 1, 2
- 2, 3, 1, 2, 4, 3, 5, 2
- 2, 3, 1, 2, 5, 3, 4, 2
- 3, 1, 2, 4, 3, 5, 2, 3
- 3, 1, 2, 5, 3, 4, 2, 3
- 3, 1, 2, 3, 4, 2, 5, 3
- 3, 1, 2, 3, 5, 2, 4, 3
- 3, 2, 1, 3, 4, 2, 5, 3
- 3, 2, 1, 3, 5, 2, 4, 3
- 3, 2, 4, 3, 5, 2, 1, 3
- 3, 2, 5, 3, 4, 2, 1, 3
- 4, 3, 5, 2, 3, 1, 2, 4
- 4, 2, 5, 3, 2, 1, 3, 4
- 5, 2, 4, 3, 2, 1, 3, 5
- 5, 3, 4, 2, 1, 3, 2, 5

5. Привести пример диаграммы графа, который является гамильтоновым, но не эйлеровым. Найти в нем все гамильтоновы циклы:

Гамильтоновы циклы:

- 1, 2, 3, 4, 5, 1
- 1, 5, 4, 3, 2, 1
- 2, 3, 4, 5, 1, 2
- 2, 1, 5, 4, 3, 2
- 3, 4, 5, 1, 2, 3
- 3, 2, 1, 5, 4, 3
- 4, 5, 1, 2, 3, 4
- 4, 3, 2, 1, 5, 4
- 5, 1, 2, 3, 4, 5
- 5, 4, 3, 2, 1, 5

6. Привести пример диаграммы графа, который является эйлеровым и гамильтоновым. Найти в нем все эйлеровы и гамильтоновы циклы:

Гамильтоновы циклы:

- 1, 2, 3, 4, 1
- 1, 4, 3, 2, 1
- 2, 3, 4, 1, 2
- 2, 1, 4, 3, 2
- 3, 4, 1, 2, 3
- 3, 2, 1, 4, 3
- 4, 1, 2, 3, 4
- 4, 3, 2, 1, 4

Эйлеровы циклы:

- 1, 2, 3, 4, 1
- 1, 4, 3, 2, 1
- 2, 3, 4, 1, 2
- 2, 1, 4, 3, 2
- 3, 4, 1, 2, 3
- 3, 2, 1, 4, 3
- 4, 1, 2, 3, 4
- 4, 3, 2, 1, 4

7. Пример графа не являющегося не эйлеровым, не гамильтоновым (так как он не связный):

Вывод: на этой лабораторной работе я изучил разновидности циклов в графах, научился генерировать случайные графы, определять их принадлежность к множеству эйлеровых и гамильтоновых графов, находить все эйлеровы и гамильтоновы циклы в графах.