

Projeto 08

Controle de Posição - Prática

Jan K. S. – janks@puc-rio.br

ENG1419 – Programação de Microcontroladores

Testes Iniciais

#include <EEPROM.h>

#include <Servo.h>

#include <meArm.h>

Testes Iniciais

- 1. Crie uma variável global de contagem. Ao apertar o Botão B (Direita), adicione 1 nessa contagem e imprima-a via serial.

 → DICA: use a GFButton.
- 2. Também ao apertar o Botão B (Direita), salve na EEPROM essa contagem no endereço 0. Ao iniciar o programa, carregue da EEPROM essa contagem como o valor inicial, para ela continuar de onde parou antes.
- 3. Ao girar o potenciômetro, varie o ângulo do servo da base entre 0 e 180°.
- → DICA: use a função map e a biblioteca Servo (sem meArm!).
- 4. Dentro da loop: se o Botão A (Cima) estiver apertado, diminua um pouco o ângulo do servo do ombro, sem ultrapassar 45; se o Botão C (Baixo) estiver apertado, aumente um pouco esse ângulo, sem ultrapassar 135. Essas mudanças devem ser graduais, com um tempo pequeno de espera.
- → DICA: crie uma variável global para o ângulo do servo do ombro. Use a digitalRead ou a isPressed().

Implementação

Trajeto Desejado: Colocar o Pino dentro do Copo

abre/fecha garra

modo absoluto / relativo

Controle Analógico de 3 Coordenadas

Movimento Absoluto

posição do joystick = posição do braço

Movimento Relativo

posição do joystick

variação da posição do braço

Movimento do Braço com Modo Absoluto e com Modo Relativo

Movimento Absoluto

- 1. Criar variáveis globais X, Y e Z.
- 2. Mapear valores do joystick para X (entre -150 e 150) e Y (entre 100 e 200), e do potenciômetro para Z (entre -30 e 100).
- 3. Mover a garra **SUAVEMENTE** para essas coordenadas.

Movimento Relativo

- 1. Usar as mesmas variáveis globais X, Y e Z do modo absoluto.
- 2. Fazer as leituras analógicas do joystick, mapeá-las para valores entre -10 e 10 e usar esses valores como incremento para o X e o Y (Z fica com o mesmo mapeamento do modo absoluto).
- 3. Corrigir os valores resultantes de X e Y caso eles ultrapassem os limites do braço (os mesmos limites do movimento absoluto).
- 4. Imprimir as variáveis X e Y pela Serial para verificar os valores. Talvez seja necessário adicionar/subtrair 1 para corrigir o viés (drift) do joystick.
- 5. Mover a garra DIRETAMENTE para essas coordenadas, com um delay de 40ms.

Movimento do Braço com Modo Relativo

Implementação

- 1. Ao iniciar o programa, mova suavemente o braço para a coordenada (0, 130, 0) e fecha a garra.
- 2. Ao apertar o Botão A (Cima), alterne o estado da garra entre aberto e fechado.
- → DICA: crie uma variável global tipo bool (true/false) para salvar esse estado.
- 3. Ao apertar o Botão B (Direita), alterne entre "modo absoluto" e "modo relativo" e imprima esse estado na serial.

 → DICA: crie uma outra variável global para salvar esse modo.
- 4. No loop: se o modo for absoluto, ajuste as posições X e Y do braço de acordo com o joystick e a posição Z de acordo com o potenciômetro, conforme o algoritmo ilustrado.
- 5. Se o modo for relativo, ajuste o incremento de X e Y de acordo com o joystick e a posição Z de acordo com o potenciômetro, conforme o algoritmo do slide anterior.

 → DICA: restrinja os valores de X e Y com "if"s ou com a função constrain (pesquise no Google).
- 6. Use o braço para mover o cilindro para o copo.

Aperfeiçoamento

Trajeto Desejado: Colocar o Pino dentro do Copo

Botão C (Baixo)

move o braço para a posição

salva coordenadas e garra na matriz (linhas de 0 a 3)

Botão D (Esquerda)

move braço para as coordenadas salvas

Trajeto Desejado: Colocar o Pino dentro do Copo

int pontosSalvos[4][4];

Armazenamento dos Pontos

Aperfeiçoamento

- 2. Ao apertar o Botão D (Esquerda), leia os dados salvos e mova o braço suavemente para cada uma das 4 posições, abrindo ou fechando a garra, com intervalos de 500 ms entre cada ponto.
- 3. Ao salvar o ponto, guarde a matriz dentro da EEPROM. Ao iniciar o programa, carregue a matriz a partir da EEPROM.
- → DICA: só é necessário escrever 2 linhas de código neste item.
- 4. Treine o braço para colocar o pino dentro do copinho por conta própria.

Desafio Extra

int pontosSalvos[4][4];

E se eu quiser mais posições?

int pontosSalvos[1000][4];

Desperdiça muita memória e não identifica direito os dados dentro da matriz.

lista encadeada

estrutura

x: -35

104

z: 56

aberto: false:

x: 75

167

z: 81

x: -119

199

z: -27

aberto: true : aberto: false

```
struct Posicao {
   int x;
   int y;
   int z;
   bool garraAberta;
Posicao novaPosicao;
novaPosicao.x = 2;
novaPosicao.y = 162;
novaPosicao.z = -19;
novaPosicao.garraAberta = true;
```



```
#include <LinkedList.h>
// criação de lista para um certo tipo de elemento
LinkedList<int> listaDeInteiros;
LinkedList<bool> listaDeBooleanos;
LinkedList<Posicao> listaDeEstruturas;
// adiciona elemento no final da lista
listaDeEstruturas.add(elemento);
// acessa elemento da lista pelo índice (posição)
Posicao elemento = listaDeEstruturas.get(indice);
// total de elementos
int total = listaDeEstruturas.size();
// remove todos os elementos
listaDeEstruturas.clear();
```

Exemplo de Uso da Biblioteca LinkedList

```
Posicao novaPosicao;
novaPosicao.x = 2.4;
novaPosicao.y = 162.3;
novaPosicao.z = -19.8;
novaPosicao.garraAberta = true;
EEPROM.put(endereco, novaPosicao); // funciona!
LinkedList<Posicao> lista;
lista.add(novaPosicao1);
lista.add(novaPosicao2);
EEPROM.put(endereco, lista); // não funciona!
```

EEPROM

Nova Organização de Dados na EEPROM

- 3. Modifique o código do Aperfeiçoamento para salvar o total de elementos e cada estrutura na EEPROM.

 → DICA: usa a função sizeof para calcular quantos bytes cada estrutura vai ocupar na memória.
- 4. Ao iniciar o programa, leia os dados da EEPROM para preencher a lista encadeada global.
- 5. Ao apertar o botão E (porta 6), limpe todos os dados salvos, apagando a lista de posições salvas e atualizando o total na EEPROM.

Desafio Extra

Possíveis Melhorias

Como navegar manualmente entre os pontos salvos para poder editá-los?

Como indicar qual o índice do ponto atual?

Possíveis Melhorias

