CS1131 (Design and Analysis of Algorithms) <u>Quiz-1</u>

Time - 45 Minutes	
Name	Roll No
Q1. Which of the following is correct. 1. $n = o(n^2)$ 2. $n = O(n^2)$ 3. Both 1 and 2 are correct 4. None are correct	Marks 1.0
Q2. A machine needs a minimum of 50 sec to sort 500 names by m needed to sort 100 names will be approximately	
Q3. Derive the relationship between $f(n) = 2n^5 + 3n^3 + 5n^2$ and $g(n) =$	10n ³ +6n. Marks 1.0
Q4. Huffman tree is constructed for the following data :{A,B,C,D,E 0.17, 0.19 and 0.08} respectively. Draw the tree:	E} with frequency {0.22, 0.34, Marks 1.5 +0.5

0010001100 is decoded as _____

0	1	2	3	4	5	6	7	8	9		
0	1	1	3	8	5	1	1	8	8		
(a) Connect (7,8). Write the modified array											
0	1	2	3	4	5	6	7	8	9		
Marks 1.0 Q6 a). In a basic interval scheduling implemented using a greedy algorithm, write down the objective function, feasibility constraints and greedy choice property Marks 1.0											
b). Use an optimal algorithm to find our how many requests can be catered if the intervals are of requests are: R1 = (0,4); R2 = (5,9); R3 = (11, 13); R4=(3, 6); R5 = (11, 14); R6= (3,7); R7=(8, 10), R8 = (5, 12); R9 = (1,2); Show the steps Marks 1.0											
Q7. Write a function for a fractional knapsack, assuming that the input arrays to this function have the items already sorted by their pi/wi ratios. The function should return the total profit obtained. Marks 2.0 double GreedyKnapsack (int p[], int w[], int size){											

Q5. Given connected components, apply ${\bf Quick\ Find\ }$ and fill the table: