Présentation : Gestion d'accès d'accès aux remontées mécaniques

Projet : Accès Ski sécurisé

Participants: Usman Ameer, Dimitry

Sommaire de la présentation

1 Contexte et Objectifs

2 Fonctionnement et Matériel

3 Planning et Conception

Comprendre le problème et les buts du projet.

Détails sur le système et les composants utilisés.

Vue d'ensemble du calendrier et de l'architecture.

4 Code et Démonstration

Explication technique et présentation pratique.

5 Github

6 Concl

Conclusion et Perspectives

visualisation d'avancement d'ព្រារ្គាល់etaméliorations futures du projet.

Contexte et Problématique

Problématique Principale

Sécuriser et automatiser l'accès aux remontées mécaniques, évitant fraudes et incidents. Assurer une communication LoRa fiable.

Solution Provisoire

Initialement conçu pour RFID, le prototype utilise un bouton poussoir pour simuler le badge, faute de matériel.

Objectifs du Projet

Simulation d'Accès

Utiliser un bouton poussoir pour simuler le badge RFID.

Envoi d'Identifiant

Transmettre l'identifiant via LoRa à un serveur (Carte UCA/Arduino).

Gestion de Forfait

Implémenter un système de gestion des forfaits.

Gestion des Accès

Gérer localement les accès (validés/refusés) avec LED, buzzer, barrière, écran OLED.

Fonctionnement Global et Schémas

% Notice d'installation

- Boutons
 - BTN0 et BTN1 : déjà intégrés à la carte
- **♀** LED RGB
 - Déjà intégrée à la carte
- Buzzer
 - + : connecter à D7 (carte)
 - : connecter à GND (carte)
- Servo-moteur
 - Rouge → 3.3V (alimentation)
 - Gris → GND (masse)
 - Jaune → A2 (signal)
- Écran OLED (connexion I2C)
 - **VCC** → **3.3V** (carte)
 - GND → GND (carte)
 - **SCL** → **A5** (horloge I2C)
 - SDA → A4 (données I2C)

Carte: ATMega328PB

Fonctionnement Global et Schémas

- Notice d'utilisation
- 🔢 Saisie :
 - Appuyer sur BTN0 pour saisir 1
 - Appuyer sur BTN1 pour saisir 2
- ✓ Étape 1 : Inscription pour obtenir un badge valide
 - 1. Sélectionner l'option 2
 - Saisir votre nom à l'aide des boutons BTN0 et BTN1
 - 3. Un identifiant unique à 4 chiffre vous sera attribué avec un forfait de 2 passages
- P Étape 2 : Identification
 - 1. Sélectionner l'option 1
 - 2. Saisir votre identifiant
 - 3. A Si vous avez effectué plus de deux passages, votre identifiant sera expiré

Flux de données 1:

BTN0 (Demande d'inscription) \rightarrow Carte UCA (Client) \rightarrow LoRa (Requête) \rightarrow Serveur \rightarrow LoRa (Réponse) \rightarrow Carte UCA (Client) : Réception de l'ID unique

Flux de données 2 :

RFID (Lecture badge) \rightarrow Carte UCA (Client) \rightarrow LoRa (Requête) \rightarrow Serveur \rightarrow LoRa (Réponse OK / NON) \rightarrow Carte UCA :

Déclenchement des **actions** : Barrière, LED RGB, Buzzer, Écran OLED

Matériel Utilisé pour la Borne Borne

((01)

Carte UCA

Module LoRa

Servo-moteur

Client et serveur.

Communication client-serveur.

Bloque l'accès.

Buzzer

Son de validité.

Autres composants : LED RGB pour la validité, bouton poussoir (simule RFID), écran OLED pour l'affichage des informations.

Planning du Projet

1 Semaine 1

Prototype avec Carte UCA/Arduino, bouton poussoir, LED, servo.

2 — Semaine 2

Tests de communication LoRa bidirectionnelle (Client/Serveur).

Semaine 3

Intégration côté serveur : gestion des forfaits, inscription, autorisation.

4 — Semaine 4

Réalisation de la maquette finale.

Conception du Système

Matérielle : Carton

Explication du Code

Côté Client (LoraSender_PHY.ino)

```
setup(): initialisation des composant
// Fonction pour changer la couleur des LEDs
void setLEDColor(String color)
// Fonction pour afficher un texte sur l'écran OLED
void lcdCode(String text)
// Fonction qui emet un son : "valid" (bip rapide) ou
"invalid" (bip d'erreur)
void emettreSon(String type)
// Fonction pour ouvrir la barrière (mouvement du servo)
void ouvrirBarriere()
// Fonction pour saisir un identifiant à 4 chiffres à l'aide
de 2 boutons
String saisieBouton()
// Fonction pour saisir un nom court à l'aide de 2 boutons
(ex. "us", "man")
String saisieNom()
// Fonction pour saisir un choix s'identifier ou l'inscription
seul chiffre avec les 2 boutons
String saisiNombre()
// Fonction pour choix de s'identifier ou de s'inscrire
void choix()
```

Côté Serveur (LoraReceiver_Ph.ino)

//Fonction pour recevoire les donnée

String receiveData()

```
// Vérifie si l'ID reçu correspond à un ID valide
                        dans le tableau
                        String verifID (String received1, String tab[], int
                        taille, String nb Protocol);
                        // Sauvegarde un nom reçu dans le tableau des
                        clients
                        void sauvGardeClient(String nom);
                        // Génère un ID aléatoire à 2 chiffres (ex : "23")
                        String getRandomID();
                        // Attribue un ID à un nom donné, l'envoie et le
                        sauvegarde
                        String attributionID(String nom2);
                        // Vérifie si un ID est déjà utilisé ou pas
                        bool verifierUtilisationID(String receivedID);
Fonction Lora (Communication bidirectionelle:
 void sendData(String payload)
```

GitHub

Lien: https://github.com/usmanameer0807/L1_Projet_Acc-sSkiS-curis-

Démonstration 1:

BTNO Inscription pour obtenir BTN1 S'identifier et accéder une identifiant unique

Conclusions et Perspectives

Bilan du Projet

Système fonctionnel, simulation réussie, communication LoRa fiable, validation locale.

2

Améliorations Futures

Intégrer un lecteur RFID réel pour une sécurité accrue.