Inverse Functions

a function f: X -> Y is invertible iff there is a function 9: Y -> X

such that f(g(y)) = y for all $y \in Y$, g(f(x)) = x for all $x \in X$,

We call of the inverse function of f and write to instead of g.

Warning For numbers at R we write a for a (if a \$0). For functions, & does not mean &, so & (a) & f(a) in general,

Example

* The identity function f(n) = n is it, own inverse function: f(f(n)) = n.

Note: $f^{-1}(u) = f(u) = \mathcal{H}$ is not the same thing as $\frac{1}{f(u)} = \frac{1}{\mathcal{H}}$ (unless u = -1 or u = 1).

* The linear function $f(x) = \frac{1}{2}x - 3$ is invertible with f'(y) = 2(y + 3).

We can find f'' as follows: $y = \frac{1}{2}x - 3$ $y = \frac{1}{2}x - 3$ y = f(x),

2(y+3) = 2Rthen 2(y+3) = R R = f(y) = 2y+6,

There is a relation between the graphs y=f(N) and n=f(y):

The graphs are each other's reflection in the line y = N (which acts as a mirror).

Examples

* $f(n) = n^2$ is not invertible, because e.g. f(-1) = 1 = f(+1).

The restriction $b|_{C0,cs}$, $[C0,cs) \to [C0,cs)$ is invertible and the inverse function is $f^{-1}(y) = Vy^2$.

* $f(u) = u^3$ is invertible and the inverse function is $f^{-1}(y) = \sqrt[3]{y}$,

* For general $n \in \mathbb{N}$:

if n is odd, $f(n) = u^n$ is invertible, if n is even, $f(n) = u^n$ is not invertible, but $f|_{E_0,\infty}: E_0,\infty) \to E_0,\infty)$ is. In both cases we write $f^{-1}(g) = \nabla g^n$ or also $f^{-1}(g) = g^{\frac{1}{n}}$.

Remark: The back that these functions are insertible is perhaps not obvious.

It follows from the back that they are structly increasing on the given domains,

We will see in a few weeks why this is true.

Example * Find the ratural domain of $f(n) = \sqrt[4]{3-n^2}$. Write the answer in terms of intervals.

Solution: $3-n^2$ makes sense for all $n \in \mathbb{R}$, but $\sqrt[3]{y}$ only makes sense if $y \ge 0$. For f(u) to make sense we therefore read: $3-n^2 \ge 0$.

The quadratic function $3-n^2$ has roots $n=-\sqrt{3}$ and $n=\sqrt{3}$.

Graphically: $3-n^2 \ge 0$ iff $n \in [-\sqrt{3}]$, $\sqrt{3}$.

The natural domain of f(n) is $[-\sqrt{3}]$, $\sqrt{3}$.

* Find the natural domain of $g(n) = \frac{\sqrt{n^2-1}}{n-2}$ and write the answer in terms of intervals.

Solution: n^2-1 and n-2 make sense for all $n \in \mathbb{R}$. The quotient n-2 does not make sense if n=2, so 2 is not in the natural domain, $\sqrt{n^2-1}$ only makes sense if $n^2-1\geq 0$. We have $n^2-1=0$ iff n=-1 or n=1 and graphically $n^2-1\geq 0$ iff $n\in (-\infty,-1]$ or n=1 or n=1 or n=1.

Combining all conditions we find the natural domain $(-\infty,-1]$ or n=1 or n=1