

Models

Fundamentals

Prof. Dr. Jan Kirenz HdM Stuttgart

Data Science Lifecycle

Plan | Data | **Model** | Deployment

How do we select, train, tune (optimize) and evaluate models?

Data:
Money &
Happiness

Widely regarded as one of the world's most influential living psychologist, **Daniel Kahneman** won the Nobel in Economics for his pioneering work in behavioral economics:

"Below an income of … \$60,000 a year, people are unhappy, and they get progressively unhappier the poorer they get. Above that, we get an absolutely flat line. … Money does not buy you experiential happiness, but lack of money certainly buys you misery."

Watch TED-talk:

Money can buy happiness, but only to a point

Does money make people happier?

Get the data at GitHub:

() GitHub

Get the code at GitHub:

(GitHub

Raw data:

OECD Better Life Index data: Life satisfaction

IMF: Gross domestic product per capita

	GDP per capita	Life satisfaction
Country		
Hungary	12239.894	4.9
Korea	27195.197	5.8
France	37675.006	6.5
Australia	50961.865	7.3
United States	55805.204	7.2

Exploratory data analysis (EDA)

- Data exploration gives indication for a trend that is:
 - a. Positive or negative?
 - b. Linear or non-linear?

... but be careful, the data is noisy (i.e., partly random

- 2. Model (type) selection:
 - a. Regression or classification?
 - b. Linear or non-linear?

- Data exploration gives indication for a trend that is:
 - a. Positive or negative?
 - b. Linear or non-linear?

... but be careful, the data is noisy (i.e., partly random)

- 2. Model (type) selection:
 - a. Regression or classification?
 - b. Linear or non-linear?

- Data exploration gives indication for a trend that is:
 - a. Positive or negative?
 - b. Linear or non-linear?

... but be careful, the data is noisy (i.e., partly random

- 2. Model (type) selection:
 - a. Regression or classification?
 - b. Linear or non-linear?

- Data exploration gives indication for a trend that is:
 - a. Positive or negative?
 - b. Linear or non-linear?

... but be careful, the data is noisy (i.e., partly random

- 2. Model (type) selection:
 - a. Regression or classification?
 - b. Linear or non-linear?

- Data exploration gives indication for a trend that is:
 - a. Positive or negative?
 - b. Linear or non-linear?

... but be careful, the data is noisy (i.e., partly random)

2. Model (type) selection:

- a. Regression or classification?
- b. Linear or non-linear?

$$\hat{\mathbf{y}}_{i} = \theta_{0} + \theta_{1} \times \mathbf{x}_{1}$$

- ŷ_i is the predicted output (life satisfaction).
- θ_0 is the bias (the y-intercept)
- θ₁ is the slope of our feature 1 (in machine learning often called weight of the feature)
- x₁ is our feature GDP (a known input).

$$\hat{y}_i = b_0 + b_1 \times x_1$$

$$\hat{y}_{i} = W_{0} + W_{1} \times X_{1}$$

$$\hat{\mathbf{y}}_{i} = \theta_{0} + \theta_{1} \times \mathbf{x}_{1}$$

- \hat{y}_i is the predicted output (life satisfaction).
- θ_0 is the bias (the y-intercept)
- θ₁ is the slope of our feature 1 (in machine learning often called weight of the feature)
- x₁ is our feature GDP (a known input).

$$\hat{y}_i = b_0 + b_1 \times x_1$$

$$\hat{y}_{i} = W_{0} + W_{1} \times X_{1}$$

$$\hat{\mathbf{y}}_{i} = \theta_{0} + \theta_{1} \times \mathbf{x}_{1}$$

- ŷ_i is the predicted output (life satisfaction).
- θ_0 is the bias (the y-intercept).
- θ₁ is the slope of our feature 1 (ir machine learning often called weight of the feature)
- x₁ is our feature GDP (a known input).

$$\hat{y}_i = b_0 + b_1 \times x_1$$

$$\hat{\mathbf{y}}_{i} = \mathbf{W}_{0} + \mathbf{W}_{1} \times \mathbf{X}_{1}$$

$$\hat{\mathbf{y}}_{i} = \theta_{0} + \theta_{1} \times \mathbf{x}_{1}$$

- ŷ_i is the predicted output (life satisfaction).
- θ_0 is the bias (the y-intercept)
- θ_1 is the slope of our feature 1 (in machine learning often called weight of the feature)
- x₁ is our feature GDP (a known input).

$$\hat{y}_i = b_0 + b_1 \times X_1$$

$$\hat{y}_j = W_0 + W_1 \times X_1$$

$$\hat{\mathbf{y}}_{i} = \theta_{0} + \theta_{1} \times \mathbf{x}_{1}$$

- ŷ_i is the predicted output (life satisfaction).
- θ_0 is the bias (the y-intercept)
- θ₁ is the slope of our feature 1 (ir machine learning often called weight of the feature)
- x₁ is our feature GDP (a known input).

$$\hat{y}_i = b_0 + b_1 \times X_1$$

$$\hat{y}_{j} = W_0 + W_1 \times X_1$$

$$\hat{\mathbf{y}}_{i} = \theta_{0} + \theta_{1} \times \mathbf{x}_{1}$$

- ŷ_i is the predicted output (life satisfaction).
- θ_0 is the bias (the y-intercept)
- θ₁ is the slope of our feature 1 (in machine learning often called weight of the feature)
- x₁ is our feature GDP (a known input).

$$\hat{y}_i = b_0 + b_1 \times X_1$$

$$\hat{y}_i = W_0 + W_1 \times X_1$$

$$\hat{\mathbf{y}}_{i} = \theta_{0} + \theta_{1} \times \mathbf{x}_{1}$$

- \hat{y}_i is the predicted output (life satisfaction).
- θ_0 is the bias (the y-intercept).
- θ_1 is the slope of our feature 1 (in machine learning often called weight of the feature)
- x₁ is our feature GDP (a known input).

$$\hat{y}_i = b_0 + b_1 \times X_1$$

$$\hat{y}_i = W_0 + W_1 \times X_1$$

A few possible linear models with different parameters (θ)

- Type of model (we usually call this "algorithm")
 - o e.g., Linear Regression
- 2. Fully specified model architecture
 - e.g., Linear Regression with one input and one output.
- 3. Final trained model
 - e.g. Linear Regression with one input and one output, using θ_0 = 4.85 θ_1 = 4.91 × 10⁻⁵

- 1. Type of model (we usually call this "algorithm")
 - o e.g., Linear Regression
- 2. Fully specified model architecture
 - e.g., Linear Regression with one input and one output.
- 3. Final trained model
 - e.g. Linear Regression with one input and one output, using θ_0 = 4.85 θ_1 = 4.91 × 10⁻⁵

- 1. Type of model (we usually call this "algorithm")
 - o e.g., Linear Regression
- 2. Fully specified model architecture
 - e.g., Linear Regression with one input and one output.
- 3. Final trained model
 - e.g. Linear Regression with one input and one output, using θ_0 = 4.85 θ_1 = 4.91 × 10⁻⁵

- Type of model (we usually call this "algorithm")
 - o e.g., Linear Regression
- 2. Fully specified model architecture
 - e.g., Linear Regression with one input and one output.
- 3. Final trained model
 - e.g. Linear Regression with one input and one output, using θ_0 = 4.85 θ_1 = 4.91 × 10⁻⁵

- 1. Choosing the type of algorithm
 - o e.g., Linear Regression
- 2. Fully specifying its architecture
 - e.g., Linear Regression with one input and one output.
- 3. Fitting (training) the model to find the model parameters that will make it best fit the training data
 - e.g. Linear Regression with one input and one output, using $\theta_0 = 4.85 \ \theta_1 = 4.91 \times 10^{-5}$

- 1. Choosing the type of algorithm
 - e.g., Linear Regression
- 2. Fully specifying its architecture
 - o e.g., Linear Regression with one input and one output.
- 3. Fitting (training) the model to find the model parameters that will make it best fit the training data
 - e.g. Linear Regression with one input and one output, using $\theta_0 = 4.85 \ \theta_1 = 4.91 \times 10^{-5}$

- 1. Choosing the type of algorithm
 - o e.g., Linear Regressior
- 2. Fully specifying its architecture
 - e.g., Linear Regression with one input and one output.
- 3. Fitting (training) the model to find the model parameters that will make it best fit the training data
 - e.g. Linear Regression with one input and one output, using $\theta_0 = 4.85 \ \theta_1 = 4.91 \times 10^{-5}$

- 1. Choosing the type of algorithm
 - o e.g., Linear Regression
- 2. Fully specifying its architecture
 - e.g., Linear Regression with one input and one output.
- 3. Fitting (training) the model to find the model parameters that will make it best fit the training data
 - e.g. Linear Regression with one input and one output, using $\theta_0 = 4.85 \ \theta_1 = 4.91 \times 10^{-5}$

- The arrows represent residuals (loss)
- The **blue lines** represent predictions.

- The arrows represent residuals (loss).
- The **blue lines** represent predictions.

- The arrows represent residuals (loss).
- The **blue lines** represent predictions.

The squared loss for a **single observation** (example) is as follows

= the square of the difference between the true outcome (label) and the prediction

= (observation - prediction(x))²

$$= (y - \hat{y})^2$$

$$= (6 - 5)^2$$

= ^

The squared loss for a **single observation** (example) is as follows

the square of the difference between thetrue outcome (label) and the prediction

= (observation - prediction(x))²

$$= (y - \hat{y})^2$$

$$= (6 - 5)^2$$

= ^

The squared loss for a **single observation** (example) is as follows

= the square of the difference between the true outcome (label) and the prediction

= (observation - prediction(x))²

$$= (y - \hat{y})^2$$

$$= (6 - 5)^2$$

= 1

The squared loss for a **single observation** (example) is as follows

the square of the difference between thetrue outcome (label) and the prediction

= (observation - prediction(x))²

$$= (y - \hat{y})^2$$

$$= (6 - 5)^2$$

= 1

The squared loss for a **single observation** (example) is as follows

= the square of the difference between the **true outcome (label)** and the **prediction**

= (observation - prediction(x))²

$$= (\mathbf{y} - \mathbf{\hat{y}})^2$$

$$= (6 - 5)^2$$

= ^

The squared loss for a **single observation** (example) is as follows

= the square of the difference between the **true outcome (label)** and the **prediction**

= (observation - prediction(x))²

$$= (\mathbf{y} - \mathbf{\hat{y}})^2$$

$$= (6 - 5)^2$$

= ^

The squared loss for a **single observation** (example) is as follows

= the square of the difference between the **true outcome (label)** and the **prediction**

= (observation - prediction(x))²

$$= (y - \hat{y})^2$$

$$= (6 - 5)^2$$

= ^

The squared loss for a **single observation** (example) is as follows

= the square of the difference between the **true outcome (label)** and the **prediction**

= (observation - prediction(x))²

$$= (y - \hat{y})^2$$

$$= (6 - 5)^2$$

= ^

The squared loss for a **single observation** (example) is as follows

= the square of the difference between the **true outcome (label)** and the **prediction**

= (observation - prediction(x))²

$$= (y - \hat{y})^2$$

$$= (6 - 5)^2$$

= 1

The squared loss for a **single observation** (example) is as follows

the square of the difference between thetrue outcome (label) and the prediction

= (observation - prediction(x))²

$$= (\mathbf{y} - \mathbf{\hat{y}})^2$$

$$= (6 - 5)^2$$

= 1

$$(y_i - \hat{y}_i)^2$$

Mean square error (MSE) is the **average squared loss per example** over the whole dataset.

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Mean square error (MSE) is the average squared loss per example over the whole dataset.

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Mean square error (MSE) is the average squared loss per example over the whole dataset.

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Mean square error (MSE) is the average squared loss per example over the whole dataset.

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Mean Squared Error

Consider the following two plots:

Explore the options below.

Our best fitting model

We used the **mean squared error** to select the best model.

Use your best fitting model to **predict** the life satisfaction of new data (Cypriots).

Cyprus's GDP per capita: \$22587.

Can a model be too good? Yes, it can

Source: James et. al. (2013)

Prof. Dr. Jan Kirenz

Training, evaluation and testing data

Training set

- Usually 80% of the data, but depends on sample size
- The error rate on training data is called the training error

Evaluation set (holdout set; development set)

- We split the training set into smaller k sets (usually 5 or 10) to be able to find optimal parameters (hyperparameters)
- This approach is called cross-validation

Test set

- Also called hold out data (usually 20%)
- The error rate on new cases is called the test error or generalization error (out-of-sample error)
- Low training error in combination with a high test error is a sign of overfitting

Training set

- Usually 80% of the data, but depends on sample size
- The error rate on training data is called the training error

Evaluation set (holdout set; development set)

- We split the training set into smaller k sets (usually 5 or 10) to be able to find optimal parameters (hyperparameters)
- This approach is called cross-validation

Test set

- Also called hold out data (usually 20%)
- The error rate on new cases is called the test error or generalization error (out-of-sample error)
- Low training error in combination with a high test error is a sign of overfitting

Training set

- Usually 80% of the data, but depends on sample size
- The error rate on training data is called the training error

Evaluation set (holdout set; development set)

- We split the training set into smaller k sets (usually 5 or 10) to be able to find optimal parameters (hyperparameters)
- This approach is called cross-validation

Test set

- Also called hold out data (usually 20%)
- The error rate on new cases is called the test error or generalization error (out-of-sample error)
- Low training error in combination with a high test error is a sign of overfitting

Training set

- Usually 80% of the data, but depends on sample size
- The error rate on training data is called the training error

Evaluation set (holdout set; development set)

- We split the training set into smaller k sets (usually 5 or 10) to be able to find optimal parameters (hyperparameters)
- This approach is called cross-validation

Test set

- Also called hold out data (usually 20%)
- The error rate on new cases is called the test error or generalization error (out-of-sample error)
- Low training error in combination with a high test error is a sign of overfitting

- While there are a number of variations, the most common cross-validation method is k-fold cross-validation
- The data are randomly partitioned into k sets of roughly equal size (called the "folds").

Step 1: assign each observation to one of 3 folds

For illustration, k = 3 is shown for a data set of thirty training set points with random fold allocations.

- While there are a number of variations, the most common cross-validation method is k-fold cross-validation
- The data are randomly partitioned into k sets of roughly equal size (called the "folds").

Step 1: assign each observation to one of 3 folds

For illustration, k = 3 is shown for a data set of thirty training set points with random fold allocations.

- For each iteration, one fold is held out for assessment statistics and the remaining folds are substrate for the model
- This process continues for each fold so that three models produce three sets of performance statistics

Step 2: split the folds into training and test partitions

- For each iteration, one fold is held out for assessment statistics and the remaining folds are substrate for the model.
- This process continues for each fold so that three models produce three sets of performance statistics

Step 2: split the folds into training and test partitions

- For each iteration, one fold is held out for assessment statistics and the remaining folds are substrate for the model.
- This process continues for each fold so that three models produce three sets of performance statistics.

Step 2: split the folds into training and test partitions

k-Fold-Cross-Validation

- Using k = 3 is a good choice to illustrate cross-validation but is a poor choice in practice.
- Values of k are most often 5 or 10.
- We generally prefer 10-fold cross-validation as a default.

Procedure

Modeling procedere in summary

- 1. **Split data** into training and test set
- 2. Create **evaluation set** from training data (cross-validation)
- 3. **Train** a set of initial models using cross-validation (without extensive tuning)
- 4. **Select** the models with the best performance on the validation set
- 5. **Optimize** your models (hyperparameter tuning) on the validation set
- 6. Train the best model one more time on the **full training set**
- 7. Evaluate the final model on the **test set**
- 8. Do not further improve the model (this is your final result!)

Literature

Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. O'Reilly Media.

Kuhn, M., & Silge, J. (2020). Tidy Modeling with R.

Training, evaluation and testing data

The only way to know how well a model will **generalize to new cases** is to actually try it out on new cases

Training set

Evaluation set; Holdout validation

Cross-validation

Test set

Training error

Generalization error

Hyperparameter tuning