PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁵:
A61K 39/00, 39/02, 39/12, 37/02, 35/14

(11) International Publication Number:

WO 95/31997

(43) International Publication Date:

30 November 1995 (30.11.95)

(21) International Application Number:

PCT/US94/05697

A1

(22) International Filing Date:

20 May 1994 (20.05.94)

(71) Applicant (for all designated States except US): UNITED STATES OF AMERICA, represented by THE SECRETARY OF THE ARMY [US/US]; Intellectuel Property Counsel of the Army, Office of The Judge Advocate General, DA, Suite 400, 901 North Stuart Street, Arlington, VA 22203-1837 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): REID, Robert, H. [US/US]; 10807 McComas Court, Kensington, MD 20895 (US). SADEGH-NASSERI, Scheherazade [US/US]; 13600 Straw-Bale Lane, Darnestown, MD 20878 (US). WOLFF, Marcia [US/US]; 9850 Hollow Glen Place, Silver Spring, MD 20910 (US). NAUSS, Jeffrey, L. [US/US]; 142 Martha Lane, Fairfield, OH 45014 (US).
- (74) Agent: NORRIS, Jerome, J.; Suite 1250, 1401 New York Avenue, N.W., Washington, DC 20005 (US).

(81) Designated States: AT, AU, BB, BG, BR, CA, CH, CZ, DE, DK, ES, FI, GB, HU, JP, KP, KR, LK, LU, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SK, UA, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: MODEL FOR TESTING IMMUNOGENICITY OF PEPTIDES

(57) Abstract

Assay methods for determining whether a peptide is likely to be immunogenic are based on a computer modeling of binding to a Class II MHC DR1 receptor. This is confirmed by competitive inhibition binding assays. The peptides are useful for eliciting an immune response for vaccination or the production of antibodies or T-cells.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
· BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
ВJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon		-		

MODEL FOR TESTING IMMUNOGENICITY OF PEPTIDES

Government Interest

5

15

20

25

The invention described herein may be manufactured, licensed and used by or for governmental purposes without the payment of any royalties to us thereon.

Cross Reference

This application is a continuation-in-part of U.S. Patent application Serial No. 08/064,559, filed May 21, 1993, and the present application incorporates U.S. Patent Application Serial No. 08/064,559 in its entirety by reference.

Field of the Invention:

This invention relates to a means of predicting potential of a peptide for eliciting immune response.

Background of the Invention:

Among the numerous steps required for an immunological response to occur is the presentation of the antigen by macrophages to the B-cell or T-cell. This presentation is mediated by the Class I and Class II major histocompatibility complex (MHC) molecules on the surface of the cell. The MHC molecules hold antigens in the form of the peptide fragments and together with the receptor molecule on the T-cells, form a macromolecular complex that induces a response in the T-cell. Therefore, a necessary step in an immune response is the binding of the antigen to the MHC.

Recent single crystal X-ray structures of human and murine Class I MHC's have been reported. Analysis of these crystal structures have shown that antigenic peptides lie in the so-called binding cleft for presentation to the T-cell. This cleft is formed by α_1 and α_2 domains and by β -strands from each domain forming the floor. Furthermore, the sequence polymorphism among Class I molecules can result in alterations of the surface of the cleft forming different pockets. Peptide side chains may insert into these pockets. Thus, different pockets may interact with different side chains. This implies the mechanism for the peptide specificity of Class I MHC's. Peptides bound to the Class I MHC's in the crystal structures were found to have both the amino and carboxy termini tightly held by the MHC. There were few interactions near the middle of the cleft. Hence the bound peptide is allowed to bend slightly in the center. observed binding mode helped to explain the apparent partial specificity of peptide sequence and the allowed variation in peptide length found among peptides isolated from Class I MHC's.

5

10

15

20

25

The precise mode of binding of peptides to Class II MHC molecules is less clear. While a single crystal X-ray diffraction structure for the HLA-DR1 MHC has been shown, the coordinates have remained unavailable. However, currently available theoretical and experimental results help form a hypothesis that the binding of a peptide to Class II MHC is similar to that observed with Class I. First, it is noted that the Class II binding cleft is structurally similar to

that of Class I. This was concluded based upon a sequence analysis of 26 Class I and 54 Class II amino acid sequences.

Unlike with Class I molecules, self-peptides isolated from murine I-A^b and I-E^b, from murine I-A^d and from human HLA-DR1 molecules were found to be varied in size (13 to 25 residues long). The peptides isolated from the murine I-A^b and I-E^b molecules had heterogenous carboxy termini while those from I-A^d and HLA-DR1 had ragged termini at both ends. The varying lengths indicate that the amino and carboxy termini of the peptides were not critical for the binding. One or both termini may protrude from the binding site and be available for further processing. The residues critical for binding were proposed to be at the ends of the peptide as opposed to the center.

15

20

25

10

5

Summary of the Invention:

It is the purpose of this invention to provide a method for preliminary screening of peptides for ability to elicit an immune response. Structural homology techniques were used to model a receptor (the Class II MHC is exemplified). This model makes it possible to preliminarily screen peptides for antigenic properties. By modifying the peptide to "fit" into the receptor it is possible to identify methods of rendering non-immunogenic peptides immunogenic.

The preliminary screening of peptides for immunogenicity comprises the steps of (1) creating a molecular model of a receptor followed by minimizing the model created, 2) modeling a peptide to be tested and minimizing the model of the peptide, then testing the

fit of the model of the peptide into the model of the receptor to produce a composite minimized receptor/minimized peptide model.

Upon finding an acceptable fit, the peptide may then be screened by a binding assay for actual binding to Class II MHC as a further test for immunogenicity.

It has been found that when the model of the peptide can not be fitted into the model of the receptor, the peptide will lack immunogenicity. While not all peptide models which can be made to "fit" into to model of the receptor will be effective as immunogens, the screening methods of the invention may make it possible to avoid undue biological testing of inappropriate peptides. By using the model, it is also possible to alter peptides to accommodate the receptor. Hence, the invention has both predictive and drug design applications.

15

20

10

5

Brief Description of the Figures:

Fig. 1 shows the HLA-aw68 α_1 and α_2 domains with DR1 α_1 and β_1 domains.

Figs. 2-30 are a printout of the minimized coordinates of the receptor.

Figs. 31 and 32 shows the effects of various peptides inhibiting the binding of labeled hemagglutinin in a competitive binding assay.

25 <u>Detailed Description of the Invention:</u>

In order to understand and better predict peptide interaction with Class II MHC's and as an aid for synthetic peptide vaccine design, a structural homology model of HLA-DR1 molecule was made

5

10

15

20

25

using the Class I HLA-aw68 as a reference molecule. For purposes of this analysis, numerous conserved residues were aligned leading to a proposed three-dimensional model for the Class II structure very similar to that of Class I. This model retained the overall conformation of a Class I MHC and agreed with a considerable amount of the published data. Furthermore, peptides shown to bind to DR1 were docked in the binding cleft of the model and analyzed. The results agree with the experimental binding data presented here. Hence, it is shown that the structural homology model reported here is useful for screening Class II MHC functionality.

It had been hypothesized that few peptide residues may be required for binding to DR1. By substituting residues into the influenza hemagglutinin 307-319 T-cell epitope (HA) it had been determined that a single tyrosine at 308 was required for binding. A synthetic peptide with the tyrosine at position 308 and a lysine at 315 was found to bind DR1 as well as the native peptide. Hence, it was concluded that few peptide residues determine the high affinity binding to DR1.

The peptides produced according to the present invention may be used alone or chemically bound to another peptide and/or carrier in order to elicit an immune response. An immune response is elicited by administering a peptide to an animal in an effective dose and by an effective route of administration. Typically the peptide will be administered with an immunologically acceptable carrier. The routes of administration, dosages, times between multiple administrations will be based on the particular peptide and are standard operations of those skilled in the art.

Of particular interest are peptides from pathogenic microorganisms and neoplasms. In such an example, a vaccine may be formed with the peptide and any known immunological carrier and may be administered prophylactically or therapeutically. The immune response may be elicited for a number of reasons other than for prophylaxis or therapy such as increasing antibody production for the harvesting of antibodies, or increasing specific B-cell or T-cell concentration for the production of hybridomas or cellular therapy.

5

10

15

20

25

The choice of host animals is limited only to those capable of an immune response. Preferred hosts are mammals, more preferred are humans.

The vaccine may contain plural peptides with each peptide corresponding to the same or different antigens. The peptides may be used unbound or they may be chemically bound to another peptide or an unrelated protein or other molecule. A preferred vaccine preparation contains a plurality of peptides chemically bound to a larger more immunogenic peptide.

The peptide may be adsorbed, bound or encapsulated in a biodegradeable microsphere, microcapsule, larger carrier or a combination of these. The carrier may have a slow or controlled release property thereby releasing the peptide under appropriate conditions and times for enhanced immunization. This is particularly important when administering the peptide orally where stomach acid can degrade the peptide.

Another embodiment of the present invention is to modify the amino acid sequence of a peptide to enhance its immunogenicity.

This is done by modifying the natural peptide sequence to bind to

the Class II MHC receptor DR1 with superior binding affinity for a Class II MHC receptor DR1 than the natural peptide sequence. This modified peptide is considered a synthetic peptide. Alternatively, the sequence may be modified to have a greater inhibition of HA (306-318) binding to a Class II MHC receptor DR1.

Many amino acid changes are acceptable in the formation of a synthetic peptide. The changes may be for similar types of amino acids such as leucine for isoleucine or they may be for diverse types such as tyrosine for lysine.

10

15

20

25

5

Materials and Methods:

The structural homology model for the DR1 Class II MHC was constructed using the QUANTA molecular modeling package (vision 3.2, Molecular Simulations, Inc., Burlington, MA) with the CHARMM and Protein Design modules. After alignment of the sequences as described below, gaps and loops were energy minimized using 100 steps of steepest descents minimization followed by 100 steps of adopted basis set Newton-Rapheson (ABNR) minimization. were closed using a fragment database from a selected set of high-resolution crystal structures. The resulting structure was minimized in vacuo using 1000 steps of steepest descents followed by an additional 1000 steps of ABNR minimization. A distance related electrostatic function was used in all calculations with a dielectric constant of 1.0. Non-bound parameter lists were updated every 20 steps with a cutoff distance of 15.0Å. Non-bonded calculations were performed using a shifted potential function between 11.0Å and 14.0Å. An extended atom set was used with only

5

10

15

20

25

polar hydrogen atoms specifically placed. There were no explicit hydrogen bond energy calculations performed.

All peptides were initially modeled using QUANTA in an extended chain conformation and subjected to 500 steps of ABNR minimization. The resulting structures remained essentially in extended chain conformations. Individual peptides were manually docked in several different orientations into the binding cleft region of the minimized DR1 structure. The resulting bimolecular complex was subjected to 5000 steps of steepest descents minimization with non-bonded interactions updated every five steps. After minimization, bound peptides remained essentially in extended chain conformations. The lowest energy complexes for each peptide were selected for further analysis.

The selected peptide and DR1 complexes and the minimized DR1 model were subjected to the following molecular dynamics regimen: 300 steps of heating to 300°K, 600 steps of equilibration at 300°K, and 1100 steps of production dynamics. During this simulation, the DR1 C α atoms were constrained in their starting positions. All non-bonded interaction parameters were as stated for the minimization procedure. The lowest energy structure during the course of the production dynamics was selected and subjected to the 5000 step minimization procedure described previously with the C α restraints removed. The resulting structures were used for the binding energy calculations and for hydrogen bonding analysis.

Hydrogen bonds were determined using the QUANTA default parameters. Maximum allowed distances were 2.5Å between a hydrogen and the acceptor atom and 3.3Å between the donor and acceptor atoms.

The minimum angle allowed between any set of atoms forming a hydrogen bond was 90°.

Competitive Inhibition Binding Assay:

5

10

15

HA peptide (the influenza hemagglutinin 307-319 T-cell epitope) was labeled with ¹²⁵I. The labeled HA peptides were then allowed to interact with purified DR1 molecules during incubation to allow formation of peptide/DR1 complexes. After incubation, the peptide/DR1 composition was exposed to a native gel for chromatographic separation or passed through a spun column to separate labeled peptide/DR1 complex and free labelled peptide. When unlabeled peptides were added before incubation of labeled HA peptides and DR1, and if the unlabelled peptides had capacity for binding to DR1 simultaneous with ¹²⁵I-HA, there was a resultant decrease in radioactive signal associated with the DR1. The extent of this decrease directly related to the binding capacity of the unlabeled unknown peptide.

Structural Homology Model for the DR1 Molecule:

The structural homology model was created, the reference molecule being the crystal structure of HLA-aw68. The HLA-aw68 coordinates and subsequent sequence were obtained from the entry 2HLA in the Brookhaven Protein Data Bank released January 15, 1991, which is incorporated herein by reference. The sequence for the DR1 molecule was for the α_1 domain was reported by Klein and for the β_1 domain, the study reported by Todd et al. (Nature 329, 599 (1987)).

The sequence alignment is based on Brown et al. (Nature 332, 845 (1988)). The complete alignment and numbering scheme for both

are seen in Figure 1. The Class II, eta_1 and Class I $lpha_2$ domains regions were conserved with some variations at the ends where the two MHC's have different loop regions. The fourth B-strand in the α_1 domain of HLA-aw68 (residues 30-38) is disrupted in the DR1 model. Only three residues are in a β -sheet conformation, probably due to the inserted glycine at position 28 before the strand and the large deletion in the loop region immediately after the strand. two alpha-helical regions are clearly maintained. Both helices have been observed to be discontinuous in the Class I molecules and are similar in the DR1 model. The α_1 domain helix is long and curves from residues 49α to 76α without significant disruption. It is essentially a single continuous helix. However, the α_2 helical region is broken into two separate helices as with the Class I molecules. A short helix (52-63) is separated from a longer helix (68-94) by a deformed region without secondary structure. This deformation is more pronounced in the DR1 model as opposed to the Class I molecules due to an insertion.

Influenza Hemagglutinin Peptide with DR1:

5

10

15

20

25

The amino acid residues 307-319 of influenza hemagglutinin (Pro-Lys- Tyr-Val-Lys-Gln-Asn-Thr-Leu-Lys-Leu-Ala-Thr) make up a well-documented linear T-cell epitope which has been shown to be HLA-DR1 restricted. With the demonstration that the influenza hemagglutinin epitope (referred to as the HA peptide) binds DR1, it was chosen to be modeled into the binding cleft.

The peptide was initially inserted into the cleft so that Leu 11 HA was in the vicinity of the hydrophobic pocket. This allowed Asn 7 to be near the middle charged and polar groups of the cleft.

The remaining residue of the motif (Lys 2) was near the vicinity of the remaining charged and polar residues at the end of the cleft.

The only adjustment to the starting conformation was a slight rearrangement of the terminal peptide proline and Tyr 3 to alleviate obvious bad contacts.

After the energy minimization of the bimolecular complex, the total energy was reduced to 483 kcal/mol. This reduction in energy was accomplished by alleviation of several bad contacts and also be formation of several hydrogen bonds. The sticking feature of this mode is lack of hydrogen bonds in the carboxy terminal half of the peptide. Only one hydrogen bond is identified between the backbone carbonyl group of Leu 9 and the side chain of the β_1 Asn 77. In contrast, the amino terminal half has eleven identified interactions. Four of these interaction involve the peptide backbone residues Tyr 3, Val 4, and Gln 6. The remainder involve the side chains of Lys 2, Tyr 3, Lys 5 and Gln 6. Interestingly, Lys 5 is involved in more interactions (three) than Lys 2 (only 2). No interactions were observed as anticipated with Asn 7. Instead, it was the glutamine at position 6 donating a hydrogen bond to the α_1 Asn 62. No interactions were observed for the amino and carboxy termini.

HA-YK Peptide with DR1:

5

10

15

20

25

hydrophilic groups in the other half of the cleft. The resulting peptide orientation is the opposite that used for the HA and the CS3 (defined below) peptides. With the peptide oriented as described, the final docking position for the peptide was unclear. The hydrophobic pocket is quite large, and, at least in this model, could accommodate the peptide tyrosine in a number of positions by sliding the peptide lengthwise through the cleft. However, repositioning the peptide also repositions the lysine. There were primarily two positions for the lysine: one with the lysine inside the cleft and the second with it outside. Of the two positions, the former was the lower in energy by 46 kcal/mol and had the greater number of interactions with the protein (11 vs. 7). Thus, the preferred orientation of the peptide appears to be with the lysine inside the binding cleft region.

15

20

25

10

5

CS3 subunit Pilin Peptide with DR1:

The suspected T-cell epitope for CS3 pilus subunit 63-78 (Ser-Lys-Asn-Gly-Thr-Val-Thr-Trp-Ala-His-Glu-Thr-Asn-Asn-Ser-Ala) was modeled with the DR1 molecule. The peptide was inserted with lysine inside the cleft in the hydrophilic region. This placed the Thr 5 in the center of the binding cleft and the tryptophane (residue 8) near the hydrophobic region. The resulting minimized model had ten interactions between the peptide and the protein, three interactions with the peptide backbone and five with the peptide side chains. The remaining two were with the amino terminal of the peptide. All of the interactions were in either the first three residues, His 10 or Glu 11 in the peptide. No interactions

were observed in the center of the cleft or residues four through nine.

CFA/1 with DR1:

A peptide identified as CFA/1 (colonization factor antigen)

(Val-Gly-Lys-Asn-Ile-Thr-Val-Thr-Ala-Ser-Val-Asp-Pro) was prepared
and an attempt was made to "fit" the molecule into the cleft of the

DR1. The lysine at position 3 prevented insertion of the peptide.

10 Results:

The peptides chosen to dock in the DR1 model are shown in Table

1. The peptides were docked manually in several orientations into
the DR1 model. The peptides were then tested in biological binding
assays with the following results:

15

5

Table I

Peptide	Molecular Model predicted binding	Binding in the bioassay
HA (influenza hemagglutinin)	Yes	Yes
HA-YK (synthetic peptide)	Yes	Yes
CS3 Pilin subunit	Yes	Yes
CFA/1	No	No

25

30

20

Quantitative measurement of the inhibition of CS3 63-78 and HA 306-318 as compared to controls is shown in Fig. 31.

The binding energy was calculated as the difference between the final DR1 and peptide complex and the sum of the energies for the minimized DR and peptide models individually. The data is shown in Table II.

Table II.

Peptide	Protein	Residues	Sequence	Binding Energy (kcal/mol)
НА	Influenza hemagglutinin	306-318	PKYVKQNTLKLAT	-283
HA-YK	synthetic peptide		ААҮАААААКАА	-216
CS3	CS3 pilin subunit	63-78	SKNGTVTWAHETNNSA	-245

 $CS6\alpha$ and CS6% with DR1

Colonization factor antigen IV (CFA/IV is an antigen on the surface of many enterotoxigenic *E. coli* one component of which is CS6. CS6 has two major subunits and a number of minor subunits. Several peptides from CS6 have been sequenced and assayed for potential inhibition of radiolabeled HA (306-318)/DR1 complex as a measure of immunogenicity. The sequences of the subunits are shown in Table III.

Table III.

Peptide	Amino Acid Residues	Sequence
CS6α6	63-75	DEYGLGRLVNTAD
CS6α7	80-92	IIYQIVDEKGKKK
CS6α8	111-123	LNYTSGEKKISPG
CS6ß1	3-15	WQYKSLDVNVNIE
CS6ß2	42-54	QLYTVEMTIPAGV
CS6ß3	112-124	TSYTFSAIYTGGE
CS6ß4	123-135	GEYPNSGYSSGTY
CS6ß5	133-145	GTYAGHLTVSFYS

These peptides were assayed for inhibition of radioactively labeled HA(306-318)/DR1. The results are demonstrated in Fig. 32.

14

5

10

20

15

The foregoing description of the specific embodiments reveal the general nature of the invention so that others can, by applying current knowledge, readily modify and/or adapt for various applications such specific embodiments without departing from the generic concept, and, therefore, such adaptations and modifications should and are intended to be comprehended within the meaning and range of equivalents of the disclosed embodiments. It is to be understood that the phraseology or terminology employed herein is for the purpose of description and not of limitation.

5

10

All references mentioned in this application are incorporated by reference.

We Claim:

5

20

1. A method of preliminarily screening peptides for immunogenicity comprising the steps of:

- 1) creating a molecular model of receptor DR1 Class II MHC and minimizing the model of the DR1;
 - 2) modeling a peptide to be tested and minimizing the model of the peptide; and
- 3) testing fit of model obtained in step 2 into the model
 10 obtained in step 1 to produce a composite receptor/peptide model.
 - 2. A computerized model comprising a model of the DR1 molecule having fitted in a cleft therein a model of a peptide.
- 3. A method of claim 1 wherein, additionally, the receptor/peptide model is subjected to computer-simulated heating.
 - 4. A method of claim 1 further comprising, assaying the peptide by competitive inhibition binding to a Class II MHC receptor DR1.
 - 5. A minimized peptide capable of binding to a Class II MHC receptor DR1 and inhibiting the binding of HA (306-318).
- 6. A synthetic peptide, wherein the amino acid sequence of the
 minimized peptide according to claim 5 has been modified to have a
 superior binding affinity for a Class II MHC receptor DR1 to form at
 least a portion of the synthetic peptide.

7. A synthetic peptide, wherein the amino acid sequence of the minimized peptide according to claim 5, has been modified to have greater inhibition of HA (306-318) binding to a Class II MHC receptor DR1 to form at least a portion of the synthetic peptide.

5

- 8. A synthetic peptide according to claim 6, wherein an amino acid has been modified from a charged amino acid to an uncharged amino acid.
- 9. A synthetic peptide according to claim 7, wherein an amino acid has been modified from a charged amino acid to an uncharged amino acid.
 - 10. A synthetic peptide according to claim 8, wherein said uncharged amino acid is alanine.
 - 11. A synthetic peptide according to claim 9, wherein said uncharged amino acid is alanine.
- 12. A minimized peptide according to claim 5, wherein the sequence is selected from the group consisting of PKYVKQNTLKLAT, AAYAAAAAKAA and SKNGTVTWAHETNNSA.
- 13. A minimized peptide according to claim 5, wherein the sequence is contained in a CFA.

14. A minimized peptide according to claim 13, wherein the sequence is selected from the group consisting of DEYGLGRLVNTAD, IIYQIVDEKGKKK, LNYTSGEKKISPG, WQYKSLDVNVNIE, QLYTVEMTIPAGV, TSYTFSAIYTGGE, GEYPNSGYSSGTY and GTYAGHLTVSFYS.

5

- 15. A vaccine comprising:
 - a minimized peptide according to claim 5; and an immunologically acceptable carrier.
- 10 16. A vaccine comprising:
 - a synthetic peptide according to claim 6; and an immunologically acceptable carrier.
 - 17. A vaccine comprising:
- a synthetic peptide according to claim 7; and an immunologically acceptable carrier.
- 18. A method of eliciting an immune response in an animal comprising administering said animal with the vaccine according to claim 15.
 - 19. A method of eliciting an immune response in an animal comprising administering said animal with the vaccine according to claim 16.

25

20. A method of eliciting an immune response in an animal comprising administering said animal with the vaccine according to claim 17.

av68 DR1 K, DRU B,	D DTQFVF	LEEPG LEEPG VFLRGY
2068 DRI a ₁	SO RPASFEAGGA 60 LANIAVDKAN 70 LEIMTKRSNY 80 TPI	ERVRLL
OR1 B,	(((((((((((((((((((((((((((((((((((((()))));
8920	114 RQDAYDGKDY 124 IALKEDLRSW 134 TAADMAA QT 143 TKUKWEAA H 152 VAEGWRAYLE 162 GTCVEWLRRR	EWLRR'
DR1 a, DR1 B,	* *	TYCRIINYGV
8946))))))))))))))))))))))))))))))	
DR1 «, DR1 8,	87 ESFTVQRRVII	

Conserved residues Polymorphic residues

* MINIMIZED COORDINATES FROM CHARMM CREATED BY USER: naus* 14:58:48 DATE: 2/25/93 1839 -53.41835 -52.87964 96.86949 A1 0.00000 1 1 ILE N 0.00000 -54.06550 -53.37379 96.22549 Al ı 1 ILE 2 HT1 0.00000 96.89426 Al 1 1 ILE -52.48505 -53.33354 3 HT2 97.84341 A1 1 0.00000 -53.81151 -52.85195 4 1 ILE нтЗ 96.52548 Al 0.00000 -53.29159 -51.45945 1 5 1 ILE CA 0.00000 -54.51076 -51.09296 95.64551 Al 1 6 1 ILE CB 0.00000 96.33544 Al ı CG2 -55.84867 -51.39510 7 1 ILE 95.12978 Al 0.00000 1 8 1 ILE CG1 -54.43380 -49.65164 0.00000 -55.55018 -49.30658 94.14124 A1 1 ILE Q CD 0.00000 1 97.88119 Al -53.31306 -50.79352 1 ILE 10 С -53.76732 -51.45486 98.80800 Al 0.00000 1 1 ILE 11 0 0.00000 2 -52.70566 -49.57271 97.98462 Al 12 2 LYS N 97.19065 A1 0.00000 -52.43149 -49.07042 2 2 LYS 11 13 -52.72856 -48.82990 99.24363 Al 2 0.00000 2 LYS Сλ 14 0.00000 2 -51.48674 -49.22996 100.05168 A1 15 · 2 LYS CB 2 0.00000 ---51.65942 -50.46422 100.94226 A1 16 2 LYS CG -50.39491 -50.76541 101.74483 Al 0.00000 2 2 LYS 17 CD 0.00000 -50.65567 -51.67024 102.94896 Al 2 2 LYS CE 18 0.00000 , .,19 -49, 487,844-51.62033 103.84066 Al 2 2 LYS NZ 0.00000 -49.68891 -52.15413 104.71032 Al 2 20 1121 0.00000 -48.66152 -52.03086 103.36182 A1 2 21 2 0.00000 -49.28787 -50.62863 104.08530 Al 22 2 LYS HZ3 0.00000 -52.58080 -47.37619 98.85749 A1 2 23 2 LYS С 0.00000 -52.16561 -47.08993 97.74074 Al 2 2 LYS 0 .24 0.00000 99.78817 Al -52.93375 -46.48610 3 3 GLU Lſ 25 0.00000 3 -53.25920 -46.74733 100.69754 Al 3 GLU 26 Н 0.00000 99.49342 Al 3 -52.88416 -45.05669 27 3 GLU CA 0.00000 98.75869 Al -54.17633 -44.67728 3 28 3 GLU CB 0.00000 3 98.07127 Al 29 3 GLU CG -54.16941 -43.30721 97.16830 A1 0.00000 3 -55.38365 -43.14982 CD 30 3 GLU 0.00000 3 --55.40070 -42.20412 96.38367 A1 3 GLU OEl 31 97.23742 Al 0.00000 -56.30088 -43.96983 3 GLU OE2 32 -52.73723 -44.30588 100.80334 Al 0.00000 3 33 3 GLU С 0.00000 3 -53.13310 -44.80289 101.85375 A1 34 3 GLU 0 4 0.00000 -52.10513 -43.13147 100.72198 A1 4 GLU 35 N 0.00000 -51.89913 -42.70887 99.83885 A1 4 36 4 GLU Н 0.00000 -51.71490 -42.41569 101.93532 Al 4 4 GLU 37 CA 0.00000 -50.23606 -42.65775 102.23912 Al 4 4 GLU 38 CB: 0.00000 -49.88908 -44.07273 102.69972 Al 39 4 GLU CG 0.00000 -48.39447 -44.20822 102.86978 Al 4 CD 40 4 GLU 0.00000 4 -47.71593 -43.20739 103.12446 A1 4 GLU OE1 41 0.00000 -47.87485 -45.31826 102.72475 A1 4 42 4 GLU OE2 0.00000 -51.86859 -40.92476 101.75610 Al 4 43 4 GLU С -51.85445 -40.40438 100.64776 A1 0.00000 44 4 GLU ٥ 0.00000 -51.98758 -40.25490 102.89941 Al 5 45 5 HIS N 0.00000 -51.95529 -40.74179 103.77267 Al 5 46 5 HIS н. 0.00000 5 -52.02510 -38.79739 102.88794 Al 47 5 HIS CA 0.00000 -52.95268 -38.30654 104.00423 A1 5 48 5 HIS 0.00000 -54.39292 -38.58657 103.64511 A1 5 49 5 HIS CG 0.00000 -55.01336 -38.04007 102.58831 Al 5 50 NDl 5 KIS 0.00000 -54.63216 -37.40030 101.93314 Al 51 5 HIS HD1 0.00000 -55.29163 -39.42491 104.31043 Al 5 52 5 HIS CD2 0.00000 5 -56.46563 -39.37373 103.63249 A1 53 5 HIS NE2 0.00000 -56.29489 -38.51954 102.57197 A1 5 54 5 KIS CEl 5 0.00000 -50.64149 -36.20241 103.06558 A1 55 5 HIS С -49.75908 -38.76174 103.68940 Al 0.00000 56 5 HIS 0 0.00000 -50.46014 -37.02655 102.46317 A1 6 57 6 VAL 1: 6 0.00000 -51.22869 -36.59864 101.97707 A1 6 VAL 58 H 0.00000 -49.12695 -36.41474 102.46428 A1 6 CA 59 6 VAL 0.00000 -48,60121 -36,33669 101,01420 A1 €0 5 VAL CB

ساء سار .	مسابد . نتان		Can had	<u>-5 14:58:4</u>	8 1993		2	
εì	6 VAL	CG1	47.07672	-36.30119	101.00126	Al	ક પ	FF-05-00-005
€2	6 VAL	CG2		-37.46647			6	0.00000
63	6 VAL	c		-35.00190	103.02675		6	0.00000
64	6 VAL	0		-34.34041	102.87457		6	0.00000
65	7 ILE	N	-48.11527	-34.52120	103.65431		7 7	0.00000
66	7 ILE	н	-47.35972	-35.13148	103.91409		7	0.00000
67	7 ILE	CA	-48.09506	-33.08697	103.98819		ŕ	0,00000
68	7 ILE	CB	-48.69197 -47.96322	-32.86813 -33.71317	106.43001		7	0.00000
69 70	7 ILE 7 ILE	CG2 CG1	-47.96322 -48 74316	-31.39586	105.81727		7	0.00000
71	7 ILE	CD	-49.28846	-31.20489	107.23523		7	0.00000
72	7 ILE	C	-46.69381	-32.50114	103.87753	Al	7	0.00000
73	7 ILE	ō	-45.72315	-33.10109	104.32366		7	0.00000
74	8 ILE	N	-46.61414	-31.32789	103.23109		8	0.00000
75	8 ILE	Н	-47.43598	-30.79777	103.00074		8	0.00000
76	8 ILE	CA	-45.31176	-30.85113	102.75879		8	0.00000
77	8 ILE	CB	-45.18096	-31.21426	101.24826		8 8	0.00000
78	9 ILE	CG2	-46.47692	-30.98133	100.47371		8	0.00000
79	8 ILE	CG1		-30.53590	101.12422		8	0.00000
80	8 ILE.			-30.85297 -29.37643	103.03239		8	0.00000
81	8 ILE	С		-28.43922	102.63903		8	0.00000
82	8 ILE	0	-43.69210	-29.19466	103.70229		9	0.00000
83	9 GLN	N	-43.33777	-29.97409	104.05676		9	0.00000
84 85	9 GLN	H		-27.85712	103.71549		9	0.00000
85 85	9 GLN 9 GLN	CA . CB		-27.43231	105.14730		9	0.00000
87	9 GLN	CG		-27.13894	105.94550	Al	9	0.00000
8,5	9 GLN	CD	-43.92932	-26.69043	107.36359		9	0.00000
89	9 GLN	OEl	-44.59992	-27.05224	108.31811		9	0.00000
90	9 GLN	NE2		-25.86874	107.50418		9 9	0.00000
91	9 GLM	HE21	-42.31986	-25.58069	106.73881		9	0.00000
92	a CTM	HE22	-42.66204	-25.53260	108.41526		9	0.00000
93	9 GLN	C	-42.00840	-28.56703	103.06902		9	0.00000
94	9 GLN	0.	-42 01720	-26.84230	101.96835		10	0.00000
95 96	10 ALA 10 ALA	N H	-42.80016	-26.24022	101.81084		10	0.00000
97	10 ALA	CA		-26.60034	101.15833		1.0	0.00000
98	10 ALA	CB		-26.95993	99.69281	A1	10	0.00000
99	10 ALA	c	-40.41733	-25.14834	101.25674		10	0.00000
100	10 ALA	Õ	-41.21138	-24.24680	101.50542		10	0.00000
101	ıï GLU	N	-39.11637	-24.95043	101.08226		11	0.00000
102	11 GLU	H	-38.51800	-25.72332	100.86462		11	0.00000
203	11 CTA	CA		-23.61077	101.26935		11 11	0.00000
104		·CB	-37.61570	-23.62729	102.46404		11	0.00000
105	11 GLU	CG	-38.29740	-24.15021 -24.35236	104.86668	A1	11	0.00000
106 107	11 GLU	CD OE1	-37.72498	-24.91514	105.87939	Al	11	0.00000
108	11 GLU	OE2	-36 15746	-23.95826	104.74301	Al	11	0.00000
109	11 GLU	C	-37.79619	-23.17941	100.04756	Al	11	0.00000
110	11 GLU	ō	-37.17390	-23.99314	.99.37097	Al	11	0.00000
111	12 PHE	N	-37.86688	-21.87280	99.78525		12	0.00000
112	12 PHE	н	-38.38856	-21.25141	100.37827	Al.	12	0.00000
113	12 PHE	CA	-37.20863	-21.33691	98.59813		12	0.00000
114	12 PHE	CB	-38.26225	-21.06791	97.51950 96.27668		12 12	0.00000
115	12 PHE	CG	-37.93682	-21.86124	96.27666		12	0.00000
116	12 PHE	CD1	-38.35291 -37.21678	-21 25353	95.22261		12	0.00000
117 118	12 PHE	CD2 CE1	-37.21676	-23.95258	95.01356		12	0.00000
119	12 PHE 12 PHE	CE2	-36.91098	-21.99741	94.06122	Al	12	0.00000
120	12 PHE	CZ	-37.32685	-23.34453	93.96022	Al	12	0.00000
121	12 PHE	C	-36.45949	-20.05659	98.90209		12	0.00000
122	12 PHE	Ö	-37.00216	-18.95808	98.93077		12	0.00000
123	13 TYR	14	-35.16677	-20.22034	99.15293		13	0.00000
124	13 TYR	H	-34.71888	-21.10886	99.03348	£1	13	0.00000

./521_	_ಸವನಿ. ೧೯೮)	ILU Feb	25 14:58:	48 1993	3	
125	13 TYP	CA	4.4465	0 -19.0289	1 99.57908 Al	13	0.00000
126	13 TYR		- 3.7416	4 -19.3163	7 100.90471 31	13	0.00000
3.27	13 TYR	CG	-33.6322	9 -18.0484	4 101.71489 A1	13	0.00000
128	13 TYR	CD1	-34.7919	2 -17.5270	7 102.32828 Al		0.00000
129	13 TYR	CE1	-34.6973	6 -16.3571	0 103.10470 Al	13	0.00000
130	13 TYR	CD2	-32.3832	8 -17.4068	7 101.86606 A1	13	0.00000
131	13 TYR	CE2	-32.2940	5 -16.2333	2 102.64552 Al	13	0.00000
132	13 TYR		-33.4518	8 -15.7159	4 103.26657 Al	13	0.00000
133	13 TYR	ОН	-33.3719	1 -14.5893	0 104.06109 Al	13	0.00000
134	13 TYR	нн	-33.4734	3 -14.8923	8 104.98360 Al	13	0.00000
135	13 TYR	С	-33.4670	2 -18.5254	4 98.54525 Al	13	0.00000
136	13 TYR		-32.5945	6 -19.2391	5 98.06786 Al	13	0.00000
137	14 LEU		-33.6524	0 -17.2555	0 98.19697 Al	14	0.00000
138	14 LEU			8 -16.6830		14	0.00000
139	14 LEU	CA		8 -16.7042		14	0.00000
140	14 LEU	CB	-33.7027	4 -16.2104	4 96.00105 A1	14	0.00000
141	14 LEU	CG	-33.9821	9 -17.2967		14	- 0.00000
142	14 LEU	CD1	-35.16863	-16.92524	94.07539 Al	14	0.00000
143	14 LEU	CD2	-32.7246	-17.54798	94.13078 λ1	14	0.00000
144	14 LEU	C٠	-31.93377	7 -15.56813	97.60481 A1	14	0.00000
145	14 LEU	0	-32.31049	-14.71998	98.40126 A1	14	0.00000
146	15 ASN	N	-30.73908	-15.58168	97.02166 A1	15	0.00000
147	15 ASN	н	~30,.47955	-16.38705	96.48149 A1	15	0.00000
148	15 ASN	CA		-14.39297		15	0.00000
149	15 ASN	CB	-28.47094	-14.93729	97.29287 31	15	0.00000
150	15 ASN	CG	-27.86774	-14.18957	98.46652 Al	15	0.00000
151	i5 ASN	OD1	-28.47231	-13.98878	99.50693 Al	15	0.00000
152	15 ASN	ND2	-26.63329	-13.74712	98.26721 A1	15	0.00000
153	15 ASN	HD21	-26.12722	-13.93409	97.42633 Al	15	0.00000
154	15 ASN	HD22	-26.21377	-13.18778	98.98020 A1	15	0.00000
15 5	is asn	С	-30.09328			15	0.00000
156	15 ASN	O	-30.96066	-14.17939	94.92357 Al	15	0.00000
157	16 PRO	N	-29.35358			16	0.00000
158	ić PRO	CD	-29.47390	-12.14147	.93.88390 Al	16	0.00000
159	16 PRO	CA	-28.34388	-11.89943	96.02164 Al	16	0.00000
160	16 PRO	CB	-27,47317		94.90180 Al	16	0.00000
161	16 PRO	CG	-28.40713	-11.06430	93.72211 Al	16	0.00000
162	16 PRO	С	-28.87201	-10.84560	96.98393 Al	16	0.00000
163	16 PRO	0	-28,49727	-10.81095	98.14625 Al	16	0.00000
164	17 ASP	N	-29.73099	9.96981		17	0.00000
165	17 ASP	н.	-30.06531	-10.06794	95.52595 Al	17	0.00000
166	17 ASP	CA	-30.07647	-8.75629		17	0.00000
167	17 ASP	CB	-30.80318	-7.83976		17	0.00000
168	17 ASP	CG	-30.22601	-6.44601	96.27578 Al	17	0.00000
169	17 ASP	OD1	-29.42577	+6.10216	95.40955 Al	17	0.00000
170	17 ASP	OD2	-30.58500	-5.71147	97.19272 Al	17	0.00000 0.00000
171	17 ASP	С	-30.91226	-8.96778	98.44177 Al	17	
172	17 ASP	0	-30.52677	-8.65960	99.56331 Al	17	0.00000
173	18 GTM	N	-32.11780	-9.49744	98.20428 A1	18	0.00000
174	18 GTH	н :	-32.36542	-9.81984	97.29256 A1	18	0.00000
175	jв СГИ	CÀ	-33.10696	-9.57864	99.27949 A1	18	0.00000
176	18 GLN	СĠ	-34.05728	-8.37464	99.14180 A1	18	
177	18 GTM	CĠ	-33.36307	-7.07517	99.58476 A1	18	0.00000
178	18 GLN	CD	-33.97880	-5.85158	98,94046 Al	18	0.00000
179	18 GLN	OE1	-35.13776	-5.50918	99.12725 Al	18	0.00000
180	18 GLN	NE2	-33.14378	-5.16835	98.16624 Al	18 18	0.00000
181	18 GTN	HE21	-32.19859	5.47544	97.99847 A1	18	0.00000
182	18 GLN		-33.43475	-4.32502	97.72302 Al 99.26964 Al	18	0.00000
183	. 18 GTN	C		-10.91598	98.32391 Al	18	0.00000
184	18 GLN	0	-33./4/50	-11.68763	100.39831 Al	19	0.00000
185	19 SER	1.	-34.51482	-11.16924 -10.43617	101.06649 A1	19	0.00000
186	19 SER	H	-34.03228	-10.43017	100.83625 A1	19	0.00000
197	19 SER	CA	-34.944/4	-12.36114		19	0.00000
188	19 \$ER	CB	2/ ۵۲، بدد-	-22.00119			

.,	ಜ=೫೭.೮೫೮	inu Fe	ے 25 14:58:	48 1993	4	
189	19 SER	OG 34.370	64 -11.8772	7 103.10841 A1	19	0.00000
190	19 SER	HG 33.839	84 -12.6349	9 103.40254 A1	19	0.00000
191		C -35.976	40 -13.2977	5 100.02197 A1	19	0.00000
192		0 -36.495	18 -12.86400	99.00144 A1	19	0.00000
193		N -36,249	17 -14.51787	7 100.53004 Al	20	0.00000
194			34 -14.79673		20	0.00000
195			23 -15.47533		20	0.00000
196			97 -15.89747		20	0.00000
197			38 -15.10421		20	0.00000
198			•	100.25477 A1	21	0.00000
199			4 -17.84573		21	0.00000
200 201			88 -17.64629		21	0.00000
201			3 -17.64420		21	0.00000
203			4 -17.90322		21	0.00000
204			5 -17.98331 0 -17.59671	96.93169 A1 96.43390 A1	21 21	0.00000
205			8 -18.43207	96.43390 A1	21	0.00000 0.00000
206	21 GLU C			100.89226 A1	21	0.00000
207	21 GLU 0			101.07437 A1	21	0.00000
208		141.5428	6 -19.38051	101.22645 A1	22	0.00000
209	22 PHE H			101.01655 A1	22	0.00000
210		A -41.8477	7 -20.63223	101.93252 A1	22	0.00000
211		B -41.7671	6 -20.31207	103.43794 A1	22	0.00000
212				104.34752 A1	22	0.00000
213		D1 =40.5948:	1 -21.25886	105.44915 A1	22	0.00000
214		D2 -42.01384	4 -22.76966	104.14562 A1	22	0.00000
215			9 -22.30643	106.34948 Al	22	0.00000
216			4 -23.81970	105.04232 A1	22	0.00000
217	22 PHE C		2 -23.58408	106.14281 AL	22	0.00000
218	22 PHE C	-43.25845	-21.11988	101.58028 A1	22	0.00000
219	22 PHE 0			101.55111 A1	22	0.00000
220	23 MET N			101.32298 A1	23	0.00000
221	23 MET H			101.30500 A1	23	0.00000
222 223	23 MET C			101.02967 A1	23	0.00000
223 224	23 MET CO		-22.73266	99.57140 A1	23	0.00000
225	23 MET CO		-23.35273 -23.10231	99.09264 A1 97.33272 A1	23 23	0.00000 0.00000
226	23 MET CE		-23.10231	97.33272 A1 96.98955 A1	23	0.00000
227	23 MET C		•	101.21411 A1	23	0.00000
228	23 MET 0			100.62115 A1	23	000000
229	24 PHE N			101.99622 A1	24	0.00000
230	24 PHE H			102.03772 A1	24	0.00000
231	24 PHE CA	-46.72021	-25.11140	L02.69060 A1	24	0.00000
232	24 PHE CB	-47.06193	-23.70552	L03.21139 A1	24	0.00000
233	24 PHE CG		-23.27691	L04.43188 A1	24	0.00000
234	24 PHE CD			L05.60532 Al	24	0.00000
235	24 PHE CD		-22.04683 1		24	0.00000
236	24 PHE CE			.06.75356 Al	24	0.00000
237 238	24 PHE CE	2 -44,89083	-21.60180 1	.05.55271 A1	24	0.00000
239	24 PHE CZ 24 PHE C	-45.89594	-22.39162 1		24	0.00000
240		40 773.53	-25.61775 1 -24.87778 1		24	0.00000
241	24 PHE 0 25 ASP N		-26.94593 1		24	0.00000
242	25 ASP H		-27.52403 1		25 25	0.00000
243	25 ASP CA		-27.64762 1		25	0.00000
244	25 ASP CB	-48.21052		99.52046 A1	25	0.00000
245	25 ASP CG	-49.19634		98.47932 A1	25	0.00000
246	25 ASP ODI		•	97.77589 A1	25	0.00000
247	25 ASP OD2	-49.39656	-29.50745	98.38197 A1	25	0.00000
248	25 ASP C		-28.98699 1		25	0.00000
249	25 ASP O	-48.57317		02.56241 A1	25	0.00000
250	26 PHE N		-29.70261 1		26	0.00000
251	26 PHE H		-29.38662 1		2.5	0.00000
252	26 PHE CA	-50.56030	-30.99701 1	U1.54898 A1	26	0.00000

Thu Feb 25 14:58:48 1993 دين د دين المحدر م 253 0.00000 26 PHE 51.42378 -30.83098 102.82009 A1 26 CB 254 26 PHE -52.60356 -29.92038 102.57724 A1 26 0.00000 CG 26 PHE 255 -52.50398 -28.55674 102.91777 A1 0.00000 26 CD1 256 26 PHE -53.78380 -30.42265 101.99011 A1 26 0.00000 CD2 257 26 PHE CEl -53.58477 -27.68701 102.66706 Al 26 0.00000 258 26 PHE -54.86474 -29.55076 101.74257 A1 0.00000 26 CE2 259 26 PHE -54.76149 -28.18547 102.07912 $\lambda1$ 26 0.00000 Cz26 PHE -51.29340 -31.82500 100.51070 A1 26 0.00000 260 С -51.63257 -31.38211 99.42184 A1 0.00000 261 26 PHE 26 0 -51.50640 -33.00225 100.89199 A1 27 0.00000 27 ASP 262 N -51.30608 -33.34660 101.83544 Al 27 0.00000 27 ASP 263 н -52.05815 -34.11623 100.01741 Al 27 0.00000 264 27 ASP CA -53.56271 -34.25359 100.24733 Al 27 0.00000 265 27 ASP CB -53.82295 -35.66101 100.73899 A1 27 0.00000 266 27 ASP CG -52.95640 -36.23164 101.40272 A1 27 0.00000 267 27 ASP ODl 268 27 ASP OD2 -54.89062 -36.19966 100.47314 A1 27 0.00000 27 0.00000 269 27 ASP С -51.70102 -34.05698 98.54820 Al 270 27 ASP -52.51335 -34.10386 97.63254 Al 27 0.00000 0 271 98.35075 A1 28 0.00000 28 GLY И -50.39045 -33.92246 H · - -49.78144 -33.80079 99.13160 Al 0.00000 272 28 28 GLY CA -49.88845 -33.86633 96.98221 A1 273 28 GLY 28 0.00000 274 28 0.00000 28 GLY -50.00090 -32.51821 96.28701 A1 С -49.04304;-32.03342 95.69731 A1 28 0.00000 275 28 GLY 0 29 0.00000 276 29 ASP -51.21573 -31.96145 96.33541 A1 N 29 -51.93955 -32.39453 96.87595 A1 -51.52130 -30.85124 95.43198 A1 -52.38232 -31.44665 94.30287 A1 -52.46245 -30.54960 93.07981 A1 277 0.00000 29 ASP н 278 29 0.00000 29 ASP CΑ 29 CB. 29 ASP 0.00000 279 29 0.00000 280 29 ASP CG -51.43429 -30.32445 92.44162 A1 29 0.00000 281 29 ASP OD1 29 0.00000 -53.56233 -30.10545 92.75048 A1 282 29 ASP OD2 -52.21461 -29.64631 96.07233 A1 -52.39419 -28.59407 95.46732 A1 -52.65130 -29.81701 97.32405 A1 0.00000 283 29 29 ASP С 0.00000 284 29 29 ASP O 285 30 0.00000 30 GLU N -52.34793 -30.57647 97.90251 Al 30 0.00000 286 30 GLÜ Н 30 0.00000 287 -53.43516 -28.70871 97.86160 Al 30 GLU CA 30 0.00000 -54.71008 -29.18152 98.54724 Al 288 30 GLU CB -55.84100 -29.71506 97.67444 A1 -57.13279 -29.50058 98.43828 A1 -57.79466 -30.47326 98.78969 A1 -57.48939 -28.34297 98.66447 A1 0.00000 30 289 30 GLU CG 290 30 GLU 30 0.00000 CD 30 0.00000 291 30 GLU OEl 0.00000 30 292 30 GLU OE2 -52.69655 -27.80995 98.82987 Al 30 GLU 30 0.00000 293 С 30 -52.13191 -28.20198 99.84476 A1 0.00000 294 30 GLU 0 98.46810 A1 97.65353 A1 -52.76110 -26.53268 31 0.00000 295 31 ILE N -53.28532 -26.29454 31 0.00000 296 31 ILE . н 99.18511 A1 0.00000 -51.98442 -25.52556 31 297 ILE CA 31 298 -51.81933 -24.32331 98.23317 A1 31 0.00000 31 ILE CB 299 -53.16329 -23.65625 97.91607 Al 31 0.00000 31 ILE CG2 -50.75168 -23.33810 0.00000 300 98.71478 Al 31 31 ILE CG1 0.00000 31 301 97.66271 A1 31, ILE CD -50.41981 -22.27940302 -52.51316 -25.12446 100.56211 A1 31 0.00000 31 ILE С -53.70233 -24.97567 100.82175 A1 0.00000 303 31 ILE 0 31 и. -51.54696 -24.95576 101.46562 A1 0.00000 304 32 PHE 32 н 32 0.00000 305 32 PHE -50.59061 -25.06998 101.18020 A1 0.00000 32 306 -51.85606 -24.57978 102.84494 Al 32 PHE CA -50.76201 -25.18703 103.73391 A1 307 32 PHE 32 0.00000 CB -51.19588 -26.22218 104.74893 A1 32 0.00000 308 32 PHE CG -50.23927 -27.18148 105.15120 Al 32 0.00000 309 32 PHE CD1 310 -52.49149 -26.22907 105.32111 A1 32 0.00000 32 PHE CD2 0.00000 -50.57386 -28.14516 106.12524 A1 32 311 32 PHS CEL -52.82688 -27.19600 106.29575 A1 32 0.00000 312 32 PHE CE2 -51.86606 -28.15152 106.69566 A1 -51.84397 -23.07181 103.07985 A1 32 0.00000 313 32 PHE ÇZ 32 0.00000 314 32 PHE C -52.76581 -22.45086 103.62205 A1 32 0.00000 315 32 PHE 0 -50.69098 -22.50451 102.70813 Al 33 0.00000 316 33 HIS 23

٠/٣٩٠	_ಸು.ಚಿ. ಯ)	ಸಹಿಚ್ ೫45	25 14:58:	48 1993	6	
317	33 HIS	н	0.0431	2 -22.9883	4 102.10786 A	1 33	0.00000
318	33 HIS				7 103.23242 A		0.00000
319	33 HIS		-49,6590	8 -21.5154	0 104.63303 A	33	0.00000
320	33 HIS			4 -20.3214		1 33	0.00000
321	33 HIS				3 105.37205 A	1 33	0.00000
322	33 HIS				7 104.75923 A		0.00000
323	33 HIS			4 -19.6882			0.00000
324	33 HIS	NE2		8 -18.7068			0.00000
325	33 HIS	CEl		-18.7265			0.00000
326	33 HIS	C	-49 1151	1 -20.7847	2 102.29629 A		0.00000
327	33 HIS	Ö		-21.6120			0.00000
328	34 VAL	и		7 -19.5044			0.00000
329	34 VAL	H		-18.8080			0.00000
330	34 VAL	CA		-19.11490			0.00000
331	34 VAL	CB	-47.31770 -47.91303	18 4256	7 100.28392 A		0.00000
331	34 VAL	CG1		-18.41158			0.00000
333	34 VAL	CG2		-19.06363			0.00000
334	34 VAL	C			2 102.56509 A		0.00000
335	34 VAL	0			3 103.42874 A		0.00000
336	35 ASP	N			102.37666 Al		0.00000
337	35 ASP	н			101.76710 A		0.00000
338	35 ASP	CA			102.93355 Al		0.00000
.339	35 ASP	CB			101.94639 A1		0.00000
340	35 ASP	CG		-15.06364			0.00000
341	35 ASP	OD1			100.93528 Al	_	0.00000
342	35 ASP	OD2			100.73320 A2		0.00000
343	35 ASP	C			104.41152 Al		0.00000
344	35 ASP	0		-17.43137			0.00000
345	36 MET	n		-15.26386	•	36	0.00000
346	36 MET	н.			103.95356 A1	36	0.00000
347	36 MET	CA			106.04065 A1	36	0.00000
348					106.01845 Al	36	0.00000
349	36 MET 36 MET	CB		-13.10955		36	0.00000
350		ÇG.		-11.71848		36	0.00000
351	36 MET 36 MET	SD			105.42531 Al	36	0.00000
352	36 MET 36 MET	CE C			106.53712 A1	36	0.00000
353	36 MET	0		-14.73983		36	0.00000
354	37 ALA	N			105.58618 A1	37	0.00000
355	37 ALA	н		-14.87225		37	0.00000
356	37 ALA	CA			106.05297 Al	37	0.00000
357	37 ALA	CB		-13.19637		37	0.00000
358	37 ALA	2		-15.61256	105.65673 Al	37	0.00000
359	37 ALA	0	•	-16.18787	104.57639 A1	37	0.00000
360		. N	-50.76933		106.59397 Al	38	0.00000
361	38 LYS	H			107.49351 A1	38	0.00000
3 62	38 LYS	CA	-52 00981	-16.48765	106.23832 Al	38	0.00000
363	38 LYS	CB	-52.90628	-16.55867	107.48308 A1	38	0.00000
364	38 LYS	CG	-52.41585	-17.48517	108.60236 A1	38	0.00000
365	38 LYS	CD,	-53.40991	-18.62084	108.86983 Al	38	0.00000
366	38 LYS	CE :	-53.42547	-19.66155	107.75111 Al	38	0.00000
367	38 LYS	NZ	-54.78503	-20.17861	107.56038 Al	38	0.00000
368	38 LYS	HZl	-54.79226	-20.92377	106.83759 Al	38	0.00000
369	38 LYS	HZ2	-55.17879	-20.59510	108.44046 Al	38	0.00000
370	38 LYS	HZ3	-55.42747	-19.41621	107.27224 A1	38	0.00000
371	38 LYS	С	-52.74081	-15.73437	105.12989 A1	38	0.00000
372	38 LYS	Ö	-52.72521	-14.51209	105.10297 A1	38	0.00000
373	39 LYS	N			104.17702 A1	39	0.00000
374	39 LYS	Н	-53.59774	-15.96113	103.33578 Al	39	0.00000
375	39 LYS	CA			104.22041 Al	39	0.00000
376	39 LYS	CB	-55.18971	-18.00506	104.55346 Al	39	0.00000
377	39 LYS	CG	-56.24681	-17.84030	103.42417 A1	39	0.00000
378	39 LYS	CD	-56.27039	-15.52580	102.62130 Al	39	0.00000
379	39 LYS	CE	-56.64532	-16.69161	101.13213 Al	39	0.00000
380	39 LYS	NZ	-55.66137	-17.54082	100.43802 A1	39	0.00000
			•				

./DR1	_ಖರಾಣ . ರಜು	Thu Fol	5 25 14:58:	48 1993	7	
381	39 LYS	HZ1 55.956	(5 -18.5458	1 100.36313 A1	3	0.00000
382	39 LYS	H22 -55.3986			39	0.00000
343	39 LYS		36 -17.5192		39	0.00000
384 385	39 LYS		23 -18.4428 51 -17.6751	3 102.84433 A1 8 101.88936 A1	39 39	0.00000
386	39 LYS 40 GLU	O -53.4335 N -53.4133	32 -19.7742		40	0.00000
387	40 GLU	H -53.1615	4 -20.4369	1 103.42697 A1	40	0.00000
388	40 GLU		2 -20.1464		40	0.00000
389	40 GLU		2 -20.8464		40	0.00000
390	40 GLU		3 -19.8275		40	0.00000
391	40 GLU		7 -18.9010		40	0.00000
392	40 GLU		1 -17.68372		40	0.00000
393	-		6 -19.35560	98.59153 Al 5 101.61501 Al	40 40	0.00000
394 395	40 GLU 40 GLU		1 -20.18304		40	0.00000
396		N -55.5632	1 -21.84976	102.35754 A1	41	0.00000
397			9 -22.20472		41	0.00000
398			6 -22.55464		41	0.00000
399			1 -24.05830		41	0.00000
400			2 -24.75407		41	0.00000
401		HG1 -57.4783			41 41	0.00000
402 .403				103.43152 A1 103.42344 A1	41	0.00000
404			7 -21.93546		41	0.00000
405	_		6 -22.41525		42	0.00000
406		H -59.2568		102.09633 A1	42	0.00000
407			4 -22.03291		42	0.00000
408		CB -61.5761:	i -22.26846	102.98525 Al	42	0.00000
409	42 VAL	CG1 -62.83989	9 -21.83994	103.74041 A1	42	0.00000
410		CG2 -61.49852	2 -21.55078	101.63610 A1	42	0.00000
411		C -60.39368	-22.75550	105.14170 Al	42	0.00000
412		0 -60.54018	-22.16641	106.20404 A1 105.07466 A1	42 43	0.00000
413 414			2 -24.07997 0 -24.53437		43	0.00000
415	•	н -60.09540 СА -60.35178	•		43	0.00000
116	•			106.17013 Al	43	0.00000
417		CG -60.96314	-26.72686	104.73262 Al	43	0.00000
418		CD2 -59.88712		103.92127 Al	43	0.00000
419			-27.49629		43	0.00000
420	•		-27.24274	104.12574 A1 103.93459 A1	43 43	0.00000 0.00000
421 422		CD1 -62.11826 NE1 -61.84174			43	0.00000
423		HE1 -62.50030		101.97106 A1	43	0.00000
424		CZ2 -59.62565		101.58525 Al	43	0.00000
425	43 TRP C		-27.72260	103.07694 Al	43	0.00000
426				101.82597 Al	43	0.00000
427				107.16564 A1	43	0.00000
428 429	43 TRP O	-58.85050	-25.68073	108.02836 Al	43 44	0.00000 0.00000
430	44 ARG H			106.89519 A1 106.07364 A1	44	0.00000
431			-23.49560	107.89144 A1	44	0.00000
432			-23.69727	107.26013 A1	44	0.00000
433	2.5			108.22026 A1	44	0.00000
434	•	D -53.30915	-23.64273	107.47006 A1	44	0.00000
435	•	E -52.18625	-23.26000	108.32672 A1	44	0.00000
436				109.25139 A1	44	0.00000
437 438				107.86475 Al 108.56844 Al	4 4 4 4	0.00000
438				108.24673 A1	44	0.00000
440		H12 -50.05182		109.51721 Al	44	0.00000
441			-23.89024	106.69352 Al	4 4	0.00000
442	44 ARG H	H21 -49.73581	-23.96008	106.35139 A1	44	0.00000
443		H22 -51.41769	-24.25918	106.14195 Al	44	0.00000
444	44 ARG C	-57.42751	-22.05857	108.38029 Al	44	0.00000

لمار.	_MIN2.CR	o	Thu Feb	25 14:58:	:48 1993	8	
445	44 ARC)1 108.88943 A	1 44	0.00000
446	45 Let			0 -21.5568			0.00000
447	45 LET				2 107.69729 A		0.00000
448 449	45 LEU 45 LEU			7 -19.4651	7 108.70611 д 5 107.74942 д		0.00000
450	45 LEU		-59.8720	6 -18.9699	0 106.49579 A		0.00000
451	45 LEU				6 105.47407 A		0.00000
452	45 LEC				9 106.87944 A		0.00000
453	45. LEU				4 110.09168 A		0.00000
454	45 LEU				6 110.79199 A		0.00000
455	46 GLU	N		7 -21.3602			0.00000
456	46 GLU			7 -22.1470			0.00000
457	46 GLU			9 -21.4731			0.00000
458 459	46 GLU 46 GLU			7 -22.7151 1 -24.0238			0.00000
460	46 GLU				0 111.46594 A		0.00000
461	46 GLU				2 110.36424 A		0.00000
462	46 GLU		-62.24894	1 -25.6061	6 112.52280 A	46	0.00000
463	46 GLU	С			3 112.92683 A		0.00000
464	46 GLU	.0		-	6 114.10493 A)		0.00000
465	47 GLU	И			112.44220 Al		0.00000
466 .467	47 GLU	н			9 111.48920 A1 4 113.27698 A1		0.00000
468	47 GLU	CA CB			113.27696 A1		0.00000
469	47 GLU	CG	-55.95036		111.78977 Al		0.00000
470	47 GLU	CD	-55.55418				0.00000
471	47 GLU	QE1			112.37878 A1	47	0.00000
472	47 GLU	OE2			113.95212 A1	47	0.00000
473	47 GLU	С		-20.38151		47	0.00000
474	47 GLU	0	-56.67000	-19.35742		47	0.00000
475	48 PHE	N		-20.40716		4.8	0.00000
476	48 PHE	H.		-21.28123		48	0.00000
477 478	48 PHE 48 PHE	CA CB		-19.13647	115.96362 A1 117.41420 A1	48 48	0.00000
479	48 PHE	CG	-58.41697	•	117.70829 A1	48	0.00000
480	48 PHE	CDl	-59.71122	-19.00320		48	0.00000
481	48 PHE	CD2		-17.19966		48	0.00000
482	48 PHE	CE1		·		48	0.00000
483	48 PHE	CE2		-16.40286		48	0.00000
484	48 PHE	CZ	-60.68202	-16.90878		48	0.00000
485 486	48 PHE	С		-18.46628		48 48	0.00000
487	48 PHE 49 GLY	N O			115.72587 A1 116.19781 A1	49	0.00000
488	49 GLY	H		-16.72101	116.34575 Al	49	0.00000
489	49 GLY	СУ	-54.23420	-16.30520	116.13162 A1	49	0.00000
490	49 GLY	С			116.68056 A1	49	0.0000
491	49 GLY	0			116.10714 A1	49	0.00000
492	50 ARG	N			117.81779 A1	50	0.00000
493 494	50 ARG 50 ARG	H			118.24069 Al	50 50	0.00000 0.00000
495	50 ARG	CA CB			118.42224 A1 119.68340 A1	50	0.00000
496	50 ARG	CG .			120.58254 Al	50	0.00000
497	50 ARG	CD	-51.53002	-20.14774	121.80047 A1	50	0.00000
498	50 ARG	NE	-50.37432	-20.44943	122.64580 Al	50	0.00000
499	50 ARG	HE	-49.69865	-19.71957	122.75767 Al	50	0.00000
500	50 ARG	CZ	-50.24449		123.26571 A1	50	0.00000
501	50 ARG	NHI	-49.18578		124.04503 1	50 50	0.00000
502 503	50 ARG				124.52612 A1 124.16453 A1	50 50	0.00000
504	50 ARG 50 ARG	NH2	-48.49360 -51.15926		123.10823 A1	50	0.00000
505	50 ARG		-51.08073		123.56513 Al	50	0.00000
506	50 ARG		-51.95092	-22.42795	122.51852 Al	50	0.00000
507	50 ARG	С	-51.06703		117.49074 81	50	0.00000
508	50 ARG	0	-49.84240	-19.09133	117.41926 AI	50	0.00000

./೨ಸು_	KEN2.CRD		Thu Feb	25 14:58:	48 1993		9	
509	51 PHE	и			8 116.73839		51	0.00000
510	51 PHE	Н	-		7 116.76797		51	0.00000
511 512	S1 PHE 51 PHE	CA CB			6 115.73402 3 115.15449		51 51	0.00000
513	51 PHE	CG	-52.25099				51	0.00000
514	51 PHE	CD1	-51.87888	3 -23.82851	114.29503		51	0.00000
515	51 PHE	CD2		-22.06484	1 112.69289 1 113.22969		51 51	0.00000
516	51 PHE 51 PHE	CE1 CE2	-51.72483	3 -24.74421 3 -22.98082			51	0.00000
517 518	51 PHE	CZ	-51.94314		111.90000		51	0.00000
519	51 PHE	c	-50.50268	-20.00696	114.69371		51	0.00000
520	51 PHE	0	-49.31281	-20.20801	114.47961	Al No	51 52	0.00000
521 522	52 ALA 52 ALA	·N H	-51.20465	-19.03212 -18.89764	114.10202 114.33870	λ1 λ1	52	0.00000
522 523	52 ALA	CA		-18.16486			52	0.00000
524	52 ALA	CB		-17.09216			52	0.00000
525	52 ALA	С	-49.28257	-17.48933	113.62687		52 52	0.00000
526 527	52 ALA 53 SER	О И		-17.39834 -17.04955	112.94510 114.88764	A1	53	0.00000
528	53 SER		50.22411	-17.11498			53	0.00000
529	53 SER	CA	-48.18100	-16.47055	115.53815	Al	53	0.00000
530	53 SER	CB		-16.02158			53	0.00000
531	53 SER	og ::0		-15.15541 -14.90357	117.52845 118.42105	Al Al	53 53	0.00000
532 533	53 SER 53 SER	HG C		-17.42737		λl	53	0.00000
534	53 SER	0		-17.11790		Al	53	0.00000
535	54 PHE	N .	-47.26082	-18.64220	116.08200	λl	54	0.00000
536	54 PHE	H		-18.87361	116.41568	Al	54	0.00000
537	54 PHE	CA		-19.64350 -20.99079	_		54 54	0.00000
538 539	54 PHE 54 PHE	CB ·	-46.69548 -46.90625	-20.99411	118.13255		54	0.00000
540	54 PHE	CD1		-21.50316	118.65539	Al	54	0.00000
541	54 PHE	CD2	-45.89246	-20.53119	119.00621		54	0.00000
542	54 PHE	CEl					54 54	0.00000 0.00000
543	54 PHE	CE2	-46.08993 -47.30008	-20.57973 -21.09192	120.40382		54 54	0.00000
544 545	54 PHE 54 PHE	CZ C	-45.57270	-19.90650	114.73758	A1	54	0.00000
546	54 PHE	Õ	-44.36030	-19.93109	114.55246	Al	54	0.00000
547	55 GLU	N		-20.08976	113.76558		55	0.00000
548	55 GLU	Н.		-20.04226	113.95516 112.42886	Al	55 55	0.00000
549 550	55 GLU 55 GLU	CA CB		-20.41545 -20.81915		Al	55	0.00000
551	55 GLU	CG			112.19274	Al	5.5	0.0000
552	55 GLU	.CD	-49.04456	-22.36202		Al	55	0.00000
553	55 GLU	OEl	-49.15553	-23.53977	110.96047	Al	55 55	0.00000
554 555	55 GLU 55 GLU	OE2 C	-49.80524 -45.10354	-21.50984	110.81474 111.76318	A1	55	0.00000
55.6	55 GLU	0:	-44.12678	-19.50387	111.19343	A1	55	0.00000
557	56 ALA	И	-45.73650	-18.08673	111.89532	Al	56	0.00000
558	56 ALA	H		-17.96765			56 56	0.00000 0.00000
559 560	56 ALA	CA	-45.00414	-16.92733	111.38640 111.59969	AI AI	56	0.00000
560 561	56 ALA 56 ALA	CB C	-43.60074	-16.77849	112.02791	Al	56	0.0000
562	56 ALA	Õ	-42.62065	-16.60634	111.36878	A1	56	0.00000
563	57 GLN	N	-43.63088	-16.91454	113.35929	Al	57 57	0.00000
564	57 GLN	H	-44.48826	-17.03983	113.86832	Al Al	57 57	0.00000
565 566	57 GLN 57 GLN	CA CB	-42.35063 -42.61087	-16.88200 -17.03049	115.56930		57	0.00000
567	57 GLN	CG	-41.40659	-15.75355	116.45895	A.l	57	0.0000
568	57 GLN	CD	-41.80070	-16.94589	117.90800	Al	57	0.00000
569	57 GLN	OEl	-42.29879	-16.06206	118.58910	Al	57 57	0.00000 0.00000
570	57 GLN	NE2	-41.55425 -41.14709	-18.16011	116.38366	Al .	57 57	0.00000
571 572	57 GLN 57 GLN	EE21	-41.14709	-18.36728	119.33313	A.1	57	0.00000
	J. Gine		41.7011.		_			

./DR1_	_HIN2.CRD)	Thu Feb	25 14:58:	48 1993	10	
573	57 GLN	· c	1.3621	3 -17.9405	5 113.59025	λ1 57	
574	57 GLN			1 -17.6805			
373	58 GLY	N	-41.8882	5 -19.1574	2 113.41319		0.00000
576	58 GLY	H		1 -19.3351			0.00000
577	58 GLY	CA			3 112.87374		0.00000
578	58 GLY	С	-40.4553	4 -19.9278	1 111.50957	A1 58	0.0000
579	58 GLY	0	-39.2532	4 -20.0102	1 111.27849	Al 58	0.00000
580	59 ALA	И	-41.3465	4 -19.5222	7 110.60018	A1 59	0.00000
581	59 ALA	н	-42.32072	2 -19.4676	2 110.83485	A1 59	0.00000
582	59 ALA	CA	-40.8866	6 -19.14531	7 109.26181	A1 59	0.00000
583	59 ALA	CB	-42.07124	4 -18.7408	5 108.38101	A1 59	0.00000
584	59 ALA	С	-39.86090	-18.0225	109.26073	Al 59	0.00000
585	59 ALA	0	-38.85187	7 -18.04905	108.56603	A1 59	0.00000
586	60 LEU	N	-40.12979	-17.02925	110.11113	A1 60	0.00000
587	60 LEU	н	-40.96678	3 -17.03715	110.66448	A1 60	0.00000
588	60 TER	CA	-39.17026	5 -15.93079	110.21454	A1 60	0.00000
589	60 Leu	CB	-39.82974	-14.72108	110.88234	A1 60	0.00000
590	60 LEU	CG	-41.00342	2 -14.16448	110.06267	A1 60	0.00000
591	60 TEA	CD1	-41.72077	-13.05637	110.83175	A1 60	0.00000
592	60 LEU		-40.54968	-13.69403	108.67852	A1 60	0.00000
593	60 TEA	С	-37.86300	-16.28507	110.90549	A1 60	
594	60 LEU	0	-36.81366	-15.71151	110.64266	41 60	0.00000
595	61 ALA	N	-37.92548	17.30628	.111.76650	A1 61	0.00000
596	61 ALA	н	-38.80416	-17.70206	112.04737	A1 61	0.00000
597	61 ALA	CA	-36.66060	-17.86080	112.25036	A1 61	0.00000
598	61 ALA	CB	-36.90091	-18.87147	113.37402	A1 61 A1 61	0.00000
599	ei via	С		-18.52303	111.13575 /	41 61	0.00000
600	61 ALA	٠Ö	-34.67753	-18.28483	110.93578	1 62	0.00000
601	62 ASN	N	-36.59182	-19.33811	110.35468		0.00000
602	62 ASN	H			110.56458 /	11 62	0.00000
603	62 ASN	CA	-35.93048	-19.97053	109.20954		0.00000
604	62 ASN	ĊВ	-36.90608	-20.83397	108.41185 /		0.00000
605	62 ASN	CG	-36.14296	-21.97501	107.76767 3	1 62	0.00000
606	62 ASN	OD1	-35.90083	-23.00051	108.38915		0.00000
607	62 ASN	ND2			106.49294 A 106.04169 A		0.00000
608	62 ASN	HD21		-20.90910			0.00000
609	62 ASN	HD22		-22.62041			0.00000
610	62 ASN	C		-18.97317 -19.05772			0.00000
611 612	62 ASN 63 ILE	0	74.003//	-17.05/72	107.91224 A		0.00000
613		N		-17.97906			0.00000
614	63 ILE 63 ILE	H CA		-16.86395	107.05550 A		0.00000
615	63 ILE	CB		-15.88630	106.84927 A		0.00000
616	63 ILE	CG2	-36.71800	-14.58751	107.66300 A	.1 63	0.00000
617	63 ILE	CG1	-37.00443	-15.60068	105.36486 A	1 63	0.00000
618	63 ILE	CD	-38.27181	-14.79756	105.06416 A	1 63	0.00000
619	63 ILE	Ċ	-34.32421	-16.14412	107.48562 A	.1 63	0.00000
620	63 ILE	0	-33.67028	-15.43835	106.72047 አ	.1 63	0.00000
621	64 ALA	N	-33.97867	-16.34078	108.76481 A	1 64	0.00000
622	64 ALA	н	-34.55914	-16.88095	109.37800 A	1 64	0.00000
623	64 ALA	CA	-32.68252	-15.86370	109.23001 A	1 64	0.00000
624	64 ALA	CB	-32.78414	-15.37252	110.67448 A	1 64	0.00000
625	64 ALA	С	-31.59324	-16.91956	109.13883 A	1 64	0.00000
626	64 ALA	0	-30.45701		108.75412 A		0.00000
627	65 VAL	N	-31.96250		109.50633 A		0.00000
628	65 VAL	H	-32.92093	-18.37377	109.71401 A		0.00000
629	65 VAL	CA	-30.91507		109.47932 A		0.00000
630	65 VAL	CЭ			110.33210 A		0.00000
631	65 VAL	CG1			111.77524 A		0.00000
632	65 VAL	CG2.	-32.45603		109.79675 A		0.00000
633	65 VAL	С	-30.45713		108.08237 A		0.00000 0.00000
634	65 VAL	0	-29.26568	-19.71596	107.82437 A	1 65 1 66	0.00000
635	66 ASP	N	-31.42136	-19.66037	107.15805 A	1 66	0.00000
536	66 ASP	H	-34.38553	-19.49/23	107.38832 A	_	

_ئېمنار.	_ಜಸ್ಯು2 . ರಾಜ	,	Thu Fed	25 14:58:	48 1993		13	
63 [.] 7	66 ASP	CA	1.0485	8 -19.9321	6 105.76795	λl	~66	0.00000
638	66 ASP	CB		6 -20.2496			66	0.00000
533	S6 ASP		-33.4429	7 -19.2421	9 105.08208	Al	66	0.00000
640	66 ASP	OD1	-33.1698	6 -18.0511	4 105.20729	A1	66	0.00000
641	66 ASP			6 -19.6546			66	0.00000
642	66 ASP				9 105.15564		66	0.0000
643	66 ASP			2 -19.0687			66	0.00000
644	67 LYS			1 -17.5991	_		67	0.00000
645	67 LYS			3 -17.4865			67	0.00000
646	67 LYS			-16.4320			67	0.00000
647	67 LYS			-15.2319			67	
648	67 LYS	CG			7 105.56853		67 67	0.00000
649	67 LYS	CD		-12.79056 -11.3864			67	0.00000
650	67 LYS 67 LYS	CE		-10.4489			67	0.00000
651 652	67 LYS	NZ HZ1	-30.33262				67	0.00000
653	67 LYS	HZ2		-10.49161			67	0.00000
654	67 LYS	H23		-10.71804			67	0.00000
655	67 LYS	c		-16.58093			67	0.00000
656	67 LYS		27.33559	-16.44078	104.87661	Al	67	0.00000
657	68 ALA	N	-28.12520	-16.92373	106.92795	Al	68	0.00000
658	68 ALA	H		-17.00935			68	0.00000
659	68 ALA	CA			107.40958		68	0.00000
660	68 ALA	CB		-17.44846			68	0.00000
661	68 ALA	С		-18.34364			68	0.00000
662	68 ALA	0			106.37143		68	0.00000
, 663	69 ASN	N	-26.87877				69	0.00000
.664	69 ASN	H	-27.84416				69	0.00000
665	69 ASN	CA	-26.32826	-20.54731	105.77098	ΥT	69 69	0.00000
666	69 ASN	СВ	-27.33794	-21.70567	105.74618	20 ± 1	69	0.00000
667	69 ASN	CG	-27.75534	722.20215	107.12937 107.30600	A.i	69	0.00000
668	69 ASN	OD1	-26.90880		107.30000		69	0.00000
669 670	69 ASN 69 ASN	ND2 HD21	-26.90880	-21.50527	108.03476		69	0.00000
671	69 ASN	HD21	-20.02343	-22 29754	109.04652	A1	69	0.00000
672	69 ASN	C		-20.26827		A1	69	0.0000
673	69 ASN	Ö	-24.88019			Al	69	0.00000
674	70 LEU	N	-26.46696		103.71664		70	0.00000
675	70 LEU	Н	-27.27121				70	0.00000
676	70 LEU	CA			102.42930		70	0.0000
677	70 LEU	CB	-26.70466	-17.57714	101.93156	λl	70	0.00000
678	70 LEU	CG			101.32608		70	0.00000
679	70 LEU	CD1	-28.90878				70 70	0.00000 0.00000
680		· CD2	-27.93286	-18.56192		Al	70	0.00000
681	70 LEU	С	-24.47328	-18.42736	102.51389	F.)	70	0.00000
682	70 LEU	0	-23.64160	-18.86456	101.72791	21	71	0.00000
683 684	71 GLU 71 GLU	N H	-24.17005	-17.02332	104.19342	7.1 7.1	71	0.00000
685	71 GLU	r CA	-22 77384	-17.33320	103.73624	7.1 7.1	71	0.00000
686	71 GLU	CB	-22.68099	-16.23884	104.88750	Al	71	0.00000
687	71 GLU	CG	-21.33647			Al	71	0.00000
688	71 GLU	CD	-21.30052		106.10023	Al	71	0.00000
689	71 GLU	OE1	-20.27115				71	0.00000
690	71 GLU	OE2	-22.29376	-13.85012	106.33423	Al	71	0.00000
691	71 GLU	С	-21.86369	-18.43808	103.97868		71	0.00000
692	71 GLU	ο,	-20.81243		103.36820		71	0.00000
693	72 ILE	N	-22.34609			Àl	72	0.00000
694	72 ILE	н	-23.21301			A)	72	0.00000 0.00000
695	72 ILE	A.		-20.53142		Al El	72	0.00000
696	72 ILE	CB	-22.29516		106.17923		72 72	0.00000
697	72 ILE	CG2	-21.51796 -22.55172				72	0.00000
698 699	72 ILE	CC1		-20.39463	108.51180		72	0.00000
730	72 ILE 72 ILE	C C		-21.35378	103.89490		72	0.00000
, 00		_	21.22100					

تهرد.	_#೨೩೪ . ಆನ	ခ	Inu rei	b 25 14:58:	48 1993	12	
701		E 0	20.066	79 -21.6816	2 103.64178 A	. 72	0.00000
702		T N	-22.2440	06 ~21.6712	7 103.09738 A	73	0.00000
703 7 0 4	73 ME			06 -21.3441			0.00000
705	73 ME:	-		// -22.5114 17 -23.4460	6 101.95532 A1 1 101.56487 A1		0.00000
706	73 ME				2 102.69030 A1		0.00000
707	73 ME:				2 102.19686 Al		0.00000
708	73 ME:			5 -26.5673			0.00000
709	73 ME2			0 -21.7943		73	0.00000
710 711	73 ME7			0 -22.3693		73 74	0.00000
712	74 THE			2 -20.4921 $5 -20.0440$		74	0.00000
713	74 THE			3 -19.7383		74	0.00000
714	74 THE			9 -18.3549		74	0.00000
715	74 THR	-		1 -17.8476		74	0.00000
716	74 THR			9 -17.88383		74	0.00000
717 718	74 THR			0 -17.31089		74	0.00000
719	. 74 THR			0 -19.61359 4 -19.49348		74 74	0.00000
720	75 LYS	· · N · · ·			- 101.33717 Al	75	0.00000
721	75 LYS	н		5 -19.65220		75	0.00000
722	75 LYS	CA	-17.69833	3 -19.83955	101.77078 Al	75	0.00000
723	75 LYS	CB			103.27797 A1	75	0.00000
724	75 LYS	CG			103.86107 A1	75	0.00000
725 726	75 LYS 75 LYS	CD	-16.21091		105.38567 Al	75 75	0.00000
727	75 LYS	CE NZ	-14.81504	: -19.74395 : -19.69891		75 75	0.00000
728	75 LYS	HZ1		-19.83508		75	0.00000
7.29	75 LYS	HZ2			107.74094 A1	75	0.00000
730	75 LYS	HZ3	-15.54844	•	107.77639 A1	75	0.00000
731	75 LYS	C.	-17.14118			75	0.00000
732	75 LYS	0			100.79660 Al	75 76	0.00000
733 734	76 ARG 76 ARG	N H			101.90990 A1 102.44436 A1	76 76	0.00000
735	76 ARG	CA	-17.35520		101.67525 A1	76	0.00000
736	76 ARG	CB	-18.33654	•	102.17145 A1	76	0.00000
737	76 ARG	CG	-18.82789		103.62361 A1	76	0.00000
738	76 ARG	CD	-19.55383	-25.98411		76	0.0000
739	76 ARG	NE,			105.14334 A1	76	0.00000
740 741	76 ARG 76 ARG	HE CZ		-25.85364 -26.28686	105.02467 Al 106.34915 Al	76 76	0.00000 0.00000
742	76 ARG	NH1		-26.45770		76	0.00000
743	76 ARG	HHll		-26.64144	108.30551 A1	76	0.00000
744	76 ARG	HH12		-26.42100	107.26619 A1	76	0.00000
745	76 ARG	NH2			106.51158 A1	76	0.00000
746 747	76 ARG	HH21			107.39854 A1	76 76	0.00000
748	76 ARG 76 ARG	HH22 C	-17.92942	-26.29542	105.72237 A1 100.20901 A1	76 76	0.00000
749	76 ARG	0	-16.02715		99.83552 A1	76	0.00000
750	77 SER	N	-18.01091		99.36716 Al	77	0.00000
751	77. SER	H,	-18.84286	-23.05363	99.69917 A1	77	0.00000
752	77 SER	CA			97.93702 A1	77	0.00000
753 754	77 SER	CB	-19.13837		97.32351 Al	77	0.00000
755	77 SER 77 SER	og Hg	-18.92403 -18.99574		96.24728 Al 95.39572 Al	7 7 7 7	0.00000 0.00000
756	77 SER	Ċ	-17.22854		.97.20137 A1	77	0.00000
757	77 SER	ö	-17.39865		96.00106 A1	77	0.00000
758	78 ASN	N	-16.52714		97.97646 Al	78	0.00000
759	78 ASN	H	-16.44843		98.96113 A1	78	0.00000
760 761	78 ASN	CA	-15.74721		97.45264 A1 97.09195 A1	78 78	0.00000 0.00000
762	78 ASN 78 ASN	CB	-14.33390 -13.52905		98.36114 A1	78	0.00000
763	78 ASN	CDl	-12.89966		98.89264 A1	78	0.00000
764	78 ASN	ND2	-13.5526÷		98.85326 A1	78	0.00000

./DRI MIN2.CRD Thu Feb 25 14:58:48 1993 13 765 4.08412 -23.19170 98.43678 A1 78 ASN 78 HD21 0.00000 78 ASN HD22 -13.03871 -22.65362 99.68493 Al 78 0.00000 761 78 ASN -16.34134 -19.72172 78 0.00000 C 96.31352 Al 78 ASN 768 -15.71478 -19.4297995.30178 Al 78 0.00000 79 TYR 769 -17.59612 -19.32597 79 0.00000 N 96.52354 A1 770 79 TYR н -18.05424 -19.55771 97.38252 A1 79 0.00000 79 TYR 771 -18.21408 -18.48918 CA 95.49858 Al 79 0.00000 772 79 TYR CB -19.64874 -18.92649 95.21260 A1 79 0.00000 773 79 TYR -19.74485 -20.3276494.65360 Al 79 CG 0.00000 79 TYR -20.64246 -21.23278 79 774 CD1 95.25950 A1 0.00000 79 TYR 79 775 CEl -20.76017 -22.54189 94.75217 A1 0.00000 776 79 TYR CD2 -18.96361 -20.72112 93.54108 Al 79 0.00000 CE2 777 79 TYR -19.07884 -22.0333993.03642 A1 79 0.00000 79 TYR -19.97533 -22.93822 93.64752 A1 778 79 CZ 0.00000 79 TYR 779 -20.07585 -24.23438 93.18578 A1 79 0.00000 ОН 780 79 TYR нн -19.67682 -24.30670 92.31232 A1 79 0.00000 781 79 0.00000 TYR -18.21035 -17.01261 95.83719 A1 79 С 782 79 TYR 0 -18.85099 -16.51273 96.76683 Al 79 0.00000 783 80 THR N -17.42457 -16.33235 95.00452 A1 80 0.00000 784 80 THR н .. -16.96429 -16.79509 94.24288 Al 8.0 0.00000 785 80 THR -17.09577 -14.92660 95.20513 A1 CA 80 0.00000 786 80 THR CB -15.89072 -14.87711 96.18098 Al 80 0.00000 787 80 THR OG1 80 -15.49849.,-13.52440 96.43537 Al 0.00000 788 80 THR HGl -14.60960 -13.50159 96.80560 A1 80 0.00000 -14.69719 -15.72265 95.72104 A1 789 80 THR CG2 . 80 0.00000 790 -16.77512 -14.32258 93.83840 A1 80 THR С 80 0.00000 791 80 THR -16.16879 -14.97644 92.99811 A1 0 80 0.00000 792 81 PRO N -17.23243 -13.08096 93.61451 A1 81 0.00000 81 FRO 793 -18.04687 -12.25452 94.50529 A1 81 0.00000 CD 794 81 PRO CA -16.95963 -12.43774 92.32255 A1 81 0.00000 92.28996 A1 93.74456 A1 795 -18.08102 -11.39225 81 PRO 81 0.00000 СВ 796 81 PRO 0.00000 -18.22970 -10.94901 ÇG 81 797 81 PRO C -15.57247 -11.80328 92.25040 A1 81 0.00000 81 PRO ρ. -15.41926 -10.58936 92.16776 A1 798 81 0.00000 799 82 ILE 82 0.00000 и. -14.55883 -12.66988 92.27154 A1 82 ILE 0.00000 800 82 -14.69364 -13.66392 92.31920 Al н 801 -13.18946 -12.18130 92.13921 A1 -12.60010 -11.87598 93.53959 A1 82 ILE CA 82 0.00000 82 ILE 802 CB 82 0.00000 -12.41140 -13.13773 94.38674 A1 803 82 ILE CG2 82 0.00000 804 82 ÎLÊ CG1 -11.31152 -11.05228 93.44331 A1 82 0.00000 805 82 ILE -10.76554 -10.62709 94.80896 A1 82 0.00000 CD 806 82 ILE -12.35649 -13.19907 91.37376 A1 82 0.00000 С 807 82 ILE OCT1 -11.36717 -12.81747 90.75062 A1 82 0.00000 808 82 ILE OCT2 -12.72556 -14.37446 91.38671 Al 82 0.00000 -0.31236 -17.53322 809 83 GLY 94.99084 Bl 1 0.00000 810 83 GLY HTl -17.219940.44323 94.35235 Bl 1 0.00000 811 83 GLY HT2 -1.12219 94.96444 Bl 0.00000 -16.86357 1 812 -17.61098 83 GLY HT3 0.01920 95.97150 B1 1 0.00000 813 83 GLY CA -18.79853 -0.91116 -18.52573 -2.38203 94.55151 B1 1 0.00000 83 GLY 814 0.00000 94.66351 Bl C 1 815 83 GLY 0 -17.35786 -2.70920 94.84086 B1 0.00000 816 84 ASP N -19.57260 -3.20239 94.59303 Bl 2 0.00000 817 84 ASP Η. -20.49658 94.35600 B1 2 0.00000 -2.89510 -19.43900 -19.44643 818 84 ASP CA -4.63200 94.86181 B1 2 0.00000 819 84 ASP CB -4.83356 96.38475 B1 2 0.00000 820 84 ASP CG -18.89301 96.73815 Bl 2 0.00000 -6.19519 821 -6.29764 84 ASP OD1 -17.69451 96.98109 Bl 0.00000 822 96.75715 B1 84 ASP OD2 -19.66566 -7.14958 2 0.00000 923 94.19848 B1 2 0.00000 B4 ASP С -20.62786 -5.31072 824 84 ASP 93.63479 B1 0.00000 0 -21.46903 -4.61697 925 -6.64606 94.24891 B1 3 0.00000 85 THR N -20.€7796 85 THR 94.84032 Bl 826 3 0.00000 н -20.04362 -7.15926 827 -21.75257 3 0.00000 85 THR -7.39367 93.59154 BI CA 3 0.00000 328 95 THR CS -21.58903 -7.31950 92.05122 B1

./DRI_MIN2.CRD Thu Feb 25 14:58:48 1993 829 85 THR OG1 22.76265 -7.82480 91.39964 B1 0.00000 3 85 THR 830 HG1 -22.73431 -7.60152 0.00000 90.46343 B1 83. 85 THR CG2 -20.32966-8.02078 91.53071 B1 3 0.00000 832 85 THR С -21.74290 94.09035 B1 -8.83241 3 0.00000 85 THR 833 -20.76454 -9.30377 0 94.65381 Bl 3 0.00000 86 ARG 834 N -22.86491 -9.52779 93.88799 B1 4 0.00000 835 86 ARG н -23.62404 -9.13760 93.36423 B1 4 0.00000 86 ARG 836 CA -22.93360 -10.87552 94.44830 B1 4 0.00000 837 86 ARG CB -23.51668 -10.79083 95.86916 B1 0.00000 838 86 ARG CG -22.74323 -11.65365 96.87092 B1 4 0.00000 839 86 ARG CD -23.23116 -13.10294 97.02541 B1 0.00000 4 840 86 ARG NE -22.12580 -14.03911 97.27083 B1 0.00000 841 86 ARG -21.93083 -14.68836 HE 96.53494 B1 4 0.00000 842 86 ARG CZ -21.37502 -14.05016 98.38612 B1 0.00000 843 86 ARG NHl -20.31371 -14.85617 98.44757 B1 4 0.00000 814 86 ARG HH11 -19.73815 -14.87872 99.26299 Bl 4 0.00000 845 86 ARG HH12 -20.05194 -15.47498 97.69021 Bl 4 0.00000 36 ARG NH2 -21.67517 -13.26636 846 99.42563 B1 4 0.00000 847 86 ARG HH21 -21.13780 -13.26659 100.26897 B1 4 0.00000 848 . 86 ARG HH22 -22.46145 -12.65025 · 99.36831 B1 0.00000 849 86 ARG С -23.73522 -11.82065 93.57905 B1 4 0.00000 850 86 ARG 0 -24.85200 -11.52883 93.17882 B1 4 0.00000 851 87 PRO -23.12190 -12.98532 93.27325 B1 -21.73269 -13.34562 93.54376 B1 N 0.00000 852 87 PRO CD 5 0.00000 853 87 PRO =23.84439 -14.02757 92.53087 B1 CA 0.00000 854 87 PRO CB -22.78528 -15.13066 92.39999 B1 5 0.00000 855 87 PRO CG -21.4346C -14.43376 92.52460 B1 5 0.00000 856 87 PRO С -25.10390 -14.54496 93.21975 B1 5 0.00000 857 87 PRO 0 -25.32441 -14.39544 94.41838 B1 5 0.00000 858 88 ARG N -25.94344 -15.17061 92.39123 B1 6 0.00000 859 88 ARG H -25.68611 -15.35588 91.44433 B1 6 0.00000 860 -27.23219 -15.62675 92.90235 B1 88 ARG CA 6 0.00000 861 88 ARG CB -28.29078 -15.39805 91.81653 B1 0.00000 862 88 ARG CG -29.70863 -15.55859 92.35844 B1 6 0.00000 -30.79150 -14.91787 91.49236 B1 -31.92741 -14.57277 92.34607 B1 B 63 88 ARG CD 6 0.00000 864 88 ARG ΝE 6 0.00000 -31.76512 -14.64038 93.33788 B1 865 88 ARG HΞ 6 0.00000 866 88 ARG CZ -33.08381 -14.12165 91.86193 B1 6 0.00000 867 88 ARG NHI -34.06565 -13.81756 92.71322 B1 6 0.00000 HH11 -34.95441 -13.48197 92.40144 B1 HH12 -33.91853 -13.92533 93.69838 B1 NH2 -33.26623 -13.97383 90.54974 B1 **868** 88 ARG 6 0.00000 869 88 ARG 6 0.00000 870 88 ARG 6 0.00000 871 88 ARG HH21 -34.12737 -13.64013 90.16725 B1 0.00000 6 872 88 ARG HH22 -32.52080 -14.19859 89.92214 B1 6 0.00000 873 88 ARG С -27.23157 -17.07404 93.36366 B1 6 0.00000 874 88 ARG 0 -26.89591 -18.00090 92.63574 Bl 6 0.00000 -27.62757 -17.24057 94.62546 B1 875 89 PHE N 7 0.00000 -27.92346 -16.46797 95.18173 B1 876 89 PHE Н 7 0.00000 877 -27.64368 -18.59443 95.17433 B1 89 PHE CA 7 0.00000 878 89 PHE CB -26.56379 -18.74887 96.25427 B1 7 0.00000 879 89 PHE CG -25.20774 -18.55805 95.61829 B1 7 0.00000 880 89 PHE CD1 -24.74915 -19.48139 94.64858 B1 7 0.00000 95.96102 B1 881 89 PHE CD2 -24.42840 -17.43023 7 0.00000 882 89 PHE 94.00961 B1 CE1 -23.51045 -19.27079 7 0.00000 883 89 PHE -23.18767 -17.21976 CE2 95.32384 B1 7 0.00000 884 89 PHE -22.73800 -18.13927 CZ 94.34976 Bl 0.00000 885 89 PHE С -28.99632 -18.97147 95.72084 B1 7 0.00000 -29.85551 -18.12429 -29.15750 -20.28822 886 89 PHE 0 95.94786 B1 7 0.00000 887 90 LEU N 95.87791 81 В 0.00000 95.76376 Bi 886 90 LEU H -26.38720 -20.92114 8 0.00000 889 90 LEU CA -30.48975 -20.82226 96.14113 B1 8 0.00000 890 90 LEU CB -31.01265 -21.46546 94.84981 B1 8 0.00000 891 0.00000 90 LEU CG -32.46079 -21.16892 · 94.43614 B1 3 292 90 LEU CD1 -32.81137 -21.98230 93.19113 B1 0.00000 3

./ಶಸ್ತ	MIN2.CRD	•	Thu Feb	25 14:58:	48 1993	15	
893	90 LEU		3.4749	8 -21.4069	9 95.55222		
894	90 LEU			7 -21.9028		_	
895	90 LEU			6 -22.8920		_	
896	91 TRP	-		3 -21.7108			
897	91 TRP			7 -20.8522		_	
898	91 TRP			7 -22.8604 9 -22.5078			
899 900	91 TRP 91 TRP			0 -22.1149			
901	91 TRP	CD2		3 - 22.7928			
902	91 TRP	CE2			6 101.98847		0.00000
903	91 TRP	CE3		-24.0032			0.00000
904	91 TRP	CD1		-20.9642			0.00000
905	91 TRP	NEI		-20.8704			0.00000
906	91 TRP	HE1	-28.68566	-20.1561	5 103.04137	B1 9	0.00000
907	91 TRP	CZ2	-26.97767	7 -22.40520	102.16578		0.00000
908	91 TRP	CZ3	-27.44054	-24.40402	2 100.81577	B1 9	0.00000
909	91 TRP	CH2			101.58828		0.00000
910	91 TRP	С		-23.39534			0.00000
911	91 TRP	0		-22.66026			0.00000
912	92 GLN			-24.71550			
913 914	92 GLN 92 GLN	H		2 -25.28365 -25.34751			
915	92 GLN 92 GLN	CA CB		-25.34731 26.04119			
916	92 GLN	CG	-34.43287		96.13126		
917	92 GLN	CD	-34.12668				
918	92 GLN	OE1	-32.99424				
919	92 GLN	NE2		-26.32196			0.00000
920	92 GLN	HE21					0.00000
921	92. GLN	HE22				B1 1(0.00000
922	92 GLN	C	-34.37000			B1 10	0.00000
923	92 GLN	Ο.	-33.40619	-27.07419	100.00960	Bl 10	
924	93 LEU	N.	-35.49484			B1 11	
925	93 LEU	H	•			B1 11	
926	93 LEU	CV		-27.43909		91 13	
927	93 LEU	CB		-26.81504			
928	93 LEU	CG.		-27.70766	103.99848		
929 930	93 LEU 93 LEU	CD1 CD2		-26.83824 -28.74167			
931	93 LEU	C	-36 93596	-28.11112	101.32695		
932	93 LEU	Ö		-27.47571	100.96621	31 11	0.00000
933	94 LYS	N.		-29.41719	101.56549 1		0.00000
934	94 LYS	H	•	-29.89866		31 12	
935	94 LYS	CA		-30.14121		31 12	
936	94 LYS	· CB	-38.26049			31 12	
937	94 LYS	CG			100.07544	12	
938	94 LYS	CD	-39.91969		98.75113 E		
939	94 LYS	CE	-41.00198		99.23924 I		0.00000 0.00000
940 941	94 LYS 94 LYS	NZ	-41.98389		98.26846 F 98.86351 F		0.00000
942	94 LYS	HZ1 HZ2	-42.69798 -42.49249		97.78947 E		0.00000
943	94 LYS	HZ3	-41.57162		97.59540 E		0.00000
944	94 LYS	C	-38.34910	-31.08699	102.67642 E		0.00000
945	94 LYS	ō	-37.54720	-31.99770	102.85849 E		0.00000
946	95 PHE	N	-39.40676	-30.85929	103.46609 E	1 13	0.00000
947	95 PHE	н	-39.99321	-30.05201	103.34519 E	13	0.00000
948	95 PHE	CA	-39.73794	-31.84982	104.49053 E	1 13	0.00000
949	95 PHE	CB	-39.13251			1 13	0.00000
950	95 PHE		-39.62104	-30.20819	106.49960 E		0.00000
951	95 PHE	CD1	-39.04917	-28.96886	106.12996 B	1 13	0.00000
952	95 PHE	CD2	-40.60668	-30.26479	107.51173 B		0.00000
953	95 PHE	CE1	-39.45587	-20.0000	106.77985 B 108.16313 B	1 13	0.00000
954 955	95 PHE 95 PHE	CE2 CZ	-41.U14//	-29.00019	107.79605	1 13	0.00000
956	95 PME	C	-41.22005	-32,16799	104.57423 E	1 13	0.00000
	J - 2112	~		32.20	_		

./סגו	_ಜಮ್ಯ.ಯ		Ipa Lep	25 14:58:4	8 1993		16	
95 ⁷	95 PHE	0	08591	-31.31332	104.41691	B1	1'3	-04-000/00
958	96 GLU	ĸ	4.47812	-33.46734	104.75822	Bl	14	0.00000
9.79	52 CTA	Н	-40.74093	-34.09871	105.01948	Bl	14	0.00000
960	96 GLU	CA	-42.80002	-33.99059	104.40078		14	0.0000
961	96 GLU	CB	-42.75085	-34.25375	102.88321		14	0.0000
962	96 GLU	CG	-43.92070	-34.87965	102.11791		14	0.00000
963	96 GLU	CD	-43.55505	-34.92496	100.64018	Bl	14	0.00000
964	96 GLÜ	OE1	-44.08205	-34.15253	99.84297		14	0.00000
965	96 GLU	OE2	-42.67962	-35.68559	100.23154	Bl	14	0.0000
966	96 GLÜ	c	-43.13129	-35.25393	105.17925		14	0.00000
967	96 GLÜ	ō	-42.27510	-36.11395	105.37879	Bl	14	0.00000
968	97 CYS	N	-44.39621	-35.34431	105.62501		15	0.00000
969	97 CYS	н	-45.05281	-34.60566	105.44206	Bl	15	0.00000
970	97 CYS	CA	-44.78990	-36.60747	106,25700	Bl	15	0.00000
971	97 CYS	CB	-45.09404	-36.46870	107.76554	B1	15	0.00000
972	97 CYS	SG	-46.49873	-35.54248	108.42288	Bl	15	0.00000
973	97 CYS	c	-45.89248	-37.36966	105.55706		15	0.00000
974	97 CYS	ō	-46.75253	-36.80546	104.88787	Bl	15	0.00000
975	98 HIS	N	-45.80356	-38.69951	105.71784	Bl	16	0.00000
976	98-HIS	·H·	-45.06854	-39.11332			16	0.00000
977	98 HIS	CA	-46.75592	-39.59530	105.05785	B1	16	0.00000
978	98 HIS	CB	-46.00867	-40.61029	104.19437		16	0.00000
979	98 HIS	CG		-39.98357			16	0.00000
980	98 HIS	ND1	-45.88967	-40.13539		B1	16	0.00000
981	98 HIS	HD1	-46.72307	-40.60043	101.51181		16	0.00000
982	98 HIS	CD2	-44.21286	-39.22166	102.89430		16	0.00000
983	98 HIS	NE2		-38.92334	101.58753		16	0.00000
984	98 HIS	CE1	-45.05268	-39.48082	100.87633	Bl	16	0.00000
985			-47 56750	-40.40062			16	0.00000
986	98 HIS 98 HIS	0	-47.04279		106.99225		16	0.00000
•	99 PHE	и	-48.87987	-40.39547		51	17	0.00000
987	•		-40.07307 -40.07307	-39.92869	105.00666	В1	17	0.00000
. 988	99 PHE	H	-49.78029	-41.01889	106.77662		17	0.00000
989	99 PHÉ	CA		-39.93190	107.59234		17	0.00000
990	99 PHÉ	CB		-39.72312	108.81497		17	0.00000
991	99 PHE	CG		-38.87580	108.76543		17	0.00000
992	99 PHE	CD1	-48.50685	-40.47457			17	0.00000
993	99 PHE	CD2	-49.92563 -47.64103	-38.80002	109.87537	B1	17	0.00000
994	99 PHE	CE1		-40.39779	111.08354		17	0.00000
995	99 PHE	CE2	-49.00232	-39.56658	111.02626	Bl	17	0.00000
996	99 PHE	CZ	-47.92137	-41.97404	106 19800	Bl	17	0.00000
997	99 PHE	Ë	-50.79242	-41.71068	105.22101	Bl	17	0.00000
998	99 PHE	0	-50.86837	-43.12653	106.85844	Bl	18	0.00000
999	100 PHE	N		-43.27017		Bl	18	0.00000
1000	100 PHE	'H	-50.32768	-44.10783	106.41132	Bl	18	0.00000
1001 1002	100 BHE	CA	-51.04710 -51.04710	-45.52210	106.84262	Bl	18	0.00000
	100 PHE	CB	-51.44460	-46.34931	105.63001	B1	18	0.00000
1003	100 PHE	CG	40 07150	-46.95065	105.55366	Bl	18	0.00000
1004	100 PHE	CD1	-49.01139	-46.50158	104.56911	Bl	18	0.00000
1005	100 PHE	CD2	40 45012	-47.69723	104.41336	в1	18	0.00000
1006 1007		CE1	-51 65494	-47.24829	103.42719	В1	18	0.00000
1007	100 PHE	CE2	-50.37408	-47.83859	103.35608	Bl	18	0.00000
	100 PHE	CZ	-50.57400 53.51757	-43.84401	106.96975	Bl	18	0.00000
1009	100 PHE	C	-53.21727	-43.49692	108.13319	Bl	18	0.00000
1010 1011	100 PHE 101 ASN	0 1	-54 19611	-44.08275	106:08672	B 1	19	0.00000
1011	101 ASN	Н	-53 00777	-44.28429	105.14366	Bl	19	0.00000
	101 ASN	CA	-55.63451	-43.97453	106.37273	Bl	19	0.00000
1013	•		-56.35400	-45.03359	105.52094	Bl	19	0.00000
1014	101 ASN	CB	-57.86040	-44.83624	105.52911	Bl	19	0.00000
1015	101 ASN	CG	-58.43246	-44 06601	104.77523	21	19	0.00000
1016	101 ASN	0D1	-58.51327	-45.52184	206.41359	81	19	0.00000
1017	101 ASN	ND2	-58.04843	-46.21753	107.02623	91	19	0.00000
1018	101 ASN	HD21	-59 50666	-45.49785	106.46882	91	19	0.00000
1019	101 ASN		-56.06277	-44.09262	107.83398	B1	19	0.00000
1020	101 AS::	С	- 50.00211		-			

ָנגם/.	באבאר.	2 . CK:)	Thu	reb	25	14:5	8:4	E 1	993		17	
1021	. 10	1 ASN	0	16.7	3737	7 -4	3.23	997	10	8.3946	3 B1	19	0.00000
1022	10	2 GLY	N	- 25.6	3460		5.18		. 10	8.4645	4 B1	20	0.00000
1025				-55.0	-		5.82			8.0193		20	0.00000
1024			-	-55.9			5.32			9.8815		20	0.00000
1025				-55.0			4.59			0.8195		20	0.00000
1026			-	-54.4			5.17			1.7380		20	0.00000
1027				-54.8			3.29			0.5464		21	0.00000
1028				-55.3			2.90			9.7743	_	21 21	0.00000
1029	10:			-53.9			2.39			1.3036 2.5101		21	0.00000
1030	10:			-54.7			0.53		374	2.8748		21	0.00000
1031 1032	10.			-54.2	-		0.099			3.4922		21	0.00000
1032	10:		HG1 CG2	-54.8 -54.8						3.7395		21	0.00000
1034	103		C	-52.5			2.923			.6695		21	0.00000
1035	103		Õ	-51.9						2.6870		21	0.00000
1036	104		N	-52.0						.7832		22	0.00000
1037	104	GLU	H	-52.5						.9006	B Bl	22	0.00000
1038	104	GLU	CA	-50.80						.1619		22	0.00000
1039		GLU	CB	-50.88								22	0.00000
1040		-GLU		··-51.13								22	0.00000
1041		GLU	CD	-50.07								22	0.00000
1042		GLU	OE1	-50.42					114	.0835	ום נ דם ר	22 22	0.00000
1043		GLÜ	OE2	-4889			3.919					22	0.00000
1044	104		С	-49.56 -49.58			3.919 3.401			.45954		22	0.00000
1045	105	•	и 0	•			.049			.19345		23	0.00000
1047	105		H	-48.46 -48.46			.679			.97754		23	0.00000
1048	105		CA	-47.23			.365			.79677		23	0.00000
1049	105		CB	-46.43						.09184		23	0.00000
1050	105		CG	-45.11			.375			.05228		23	0.00000
1051	105	•	CD	-43.89						.65081		23	0.00000
1052	105		NE	-42.65			.487			.89499		23	0.00000
1053	105	ARG	HΞ	-42.30	דֹרד	- 42	.459	15	112	.83943	. Bl	23	0.00000
1054	105	ARG	CZ	-42.05			.776			. 93892		23	0.00000
1055	105		NHl	-41.02			.009			.25165		23	0.00000
1056	105		HH11	-40.51			.491			.56874		23	0.00000
1057		ARG	HH12	-40.73						.21979		23	0.00000
1058		ARG	NH2	-42.47			.827			.68286		23	0.00000
1059	105		HH21	-42.19						.00310 .38941		23 23	0.00000
1060	•	ARG	ңн22	-43.08			.1388			.30941 .74376		23	0.00000
1061 1062	105	ARG ARG	0	-46.47 -46.02	- · · · · · · · · · · · · · · · · · · ·				•	97034		23	0.00000
1063	105	VAL	N	-46.32						56827		24	0.00000
1064	•	VAL	·H	-46.72						37187		24	0.00000
1065		VAL	CA	-45.53					107.	58352	B1	24	0.00000
1066	106		CB.	-46.27	08i	-44	.3907	73	106.	24298	B1	24	0.00000
1067	106	VAL	CG1	-45.79								24	0.00000
1068	106		CG2	-47.77	990	-44	.4116	6	106.	42922	Bl	24	0.00000
1069	106	VAL	С	-44.140								24	0.00000
1070	•••	VAL	0	-43.30	354	-43.	.8089	11 .	108.	29696	BI	24	0.00000 0.00000
1071	107	ARG	N	-43.873	114	-42.	. 9806	9 .	106.	29410	D1	25 25	0.00000
1072 1073	107	ARG	H	-44.584 -42.495	52	- 42	. 6909		105.	12250	D.I.	25	0.00000
1074	107 107		CA CB	-41.956	. D Z	-92. -13	.5511	7 .	100. 108	76032	BI	25	0.00000
1075		ARG	CG	-41.963	200	-43. -22	0251		103.	58362	BI	25	0.00000
1076	107		CD	-42.333	57	-42	6682	ģ :	102	24883	Bl	25	0.00000
1077		ARG	ИE	-43.768	38 -	-42	9351	5	102	23147	Bl	25	0.00000
1078		ARG	HE	-44.379	46 -	-42.	1431	2	102.	28284	Bi	25	0.00000
1079	107		CZ	-44.265	10 -	-44.	1749	0 3	102.	20945	Bl	25	0.00000
1080	107	ARG	NH1	-45.565	98 -	-44.	3274	7]	102.	35905	B1	25	0.0000
1081		ARG	HH11	-46.086	29 -	-45.	1920	7 1	102.	34562	Bl	25	0.00000
1082		ARG		-45.195	39 -	-43.	5573	0 3	102.	54612	E1	25 25	0.00000
1083		ARG	NH2	-43.479	83 -	-45.	2500	<u>د</u> د	102.	05/95	51	25 25	0.00000 0.00000
1084	103	ARG	HH21	-43.865	41 -	- 95.	1009	د د	. 02.	00402	- 1	~ -	0.0000

يدغاء.	_KIN2	. ೧೯೨		<u> </u>	25 14:58:	48 1993		18	
1085	107	ARG	нн2:	2 2.49404	4 -45.1199	7 101.94496	B1	25	0.00000
1086	107		С			6 106.32504		25	0.00000
1007	157	ARG	0			1 106.43645		25	0.00000
1088	108	LEU	N		3 -40.5860			26	0.00000
1089	108	-	H		7 -41.1798			26	0.00000
1090	108	_			2 -39.1574			26 26	0.00000
1091		LEU	CB		7 -38.80954	1 108.01248 9 108.35874		26	0.00000
1092		LEU	CG CD1		-38.44729			26	0.00000
1093	108		CD2		-36.44650			26	0.00000
1095	108		C		-38.77273			26	0.00000
1096	108		ō	-38.76368	-39.61093			26	0.00000
1097	109		N	-39.52150	-37.47828	105.56773	Bl	27	0.00000
1098	109	LEU	н	-40.28459	-36.84167	105.72467		27	0.0000
1099	109	, TEA	CA		-37.02679			27	0.00000
1100		LEU	CB		-37.24039			27	0.00000
1101	109	LEU	CG	-39.74490	-36.59695	102.82634		27 27	0.00000
1102	109	LEU	CD1	-39.42210	-35.25631	102.17066	B.I.	27	0.00000
1103		LEU	CD2 C	-40.49190	-37.56523	101.91138 -105.21268	B)	27	0.00000
1104 1105		LEU LEU	0		-34.77322		Bl	27	0.00000
1105		GLU	N	-36.70092	-35.29768			28	0.00000
1107		GLU	11	-36.01498	36.01786	105.00992		28	0.00000
1108		GLU	CV	-36.20315	-33.92985	105.08184	Bl	28	0.00000
1109		GLU	CB	-35.80977	-33.47627	106.49578	Bl	28	0.00000
1110	110	GLU	CĢ	-35.32216	-32.02210	106.60993	Bl	28	0.0000
1111	110	GLU	CD	-33.83808	-31.87178	106.30413	Вl	28	0.00000
1112	110	GLU	OE1	-33.37957	-30.74951	106.10521	Bl	28	0.00000
1113		GLU	OE2	-33.09671	-32.85201	106.36491	B1	28	0.00000
1114	110	GLU	C	-35.01026	-33.94076	104.15500	B1	28	0.00000
1115	110	GLU	0		-34.90807			28 29	0.00000 0.00000
1116		ARG	N	-34.89439	-32.86843	103.37222		29	0.00000
1117	111		H	-35.61365	-32.16/66	103.37387	R1	29	0.00000
1118 1119	111	ARG ARG	CA CB		-33.60407		B1	29	0.00000
1119	111		CG		-33.70037			29	0.00000
1121	111		CD		-34.83036	99.75174		29	0.00000
1122	111		NE	-37.09124	-35.21147	99.72614		29	0.00000
1123	111	ARG	HE		-34.61357	100.22757		29	0.00000
1124	111		CZ	-37.50098		99.09789		29	0.00000
1125	111		NH1	-38.78116		99.16119		29 2 9	0.00000 0.00000
1126	111		нн11	-39.12269		98.68276 99.70940		29	0.00000
1127 1128		ARG ARG	HH12 NH2	-39.43712 -36.63391		98.41518		29	0.00000
1129	111			-36.91501		97.94325		29	0.00000
1130	111		HH22	-35.67503		98.36264	B1	29	0.00000
1131	111		C	-33.49135			Bl	29	0.00000
1132	iii		ō	-34.39395				29	0.00000
1133	112		N	-32.20568		102.12414		30	0.00000
1134	112	CYS	н.	-31.50733	-31.64380	102.37455		30	0.00000
1135		CXŻ	CA	-31.80468		101.73826		30	0.00000
1136		CYS	CB	-31.12874		102.91930		30 30	0.00000 0.00000
1137		CYS	SG	-30.70297		102.57697		30	0.00000
1138	112		C	-30.87388 -29.97769		100.34380		30	0.00000
1139 1140		CYS	N O	-31.15975		99.65078		31	0.00000
1141		ILE	H	-31.84193		99.86111		31	0.00000
1142		ILE	CA	-30.55306		98.32464		31	0.00000
1143		ILE	CB		-29.33526	97.30706	Bl	31	0.00000
1144		ILE	CG2	-33.00339	-29.37434	97.82323		31	0.00000
1145	113	ILE	CG1	-31.52431	-28.74184	95.89635		31	0.00000
1146	113	ILE	CD	-32.44047	-29.50025	94.93272		31	0.00000
1147		ILE	C	-30.08576	-27.29665	97.96536		31 31	0.00000 0.00000
1148	113	ILE	O	-30.75333	-25.29900	98.21317	DI	JI	0.0000

./DR1	_ K 133)	Thu Fat	25	14:58:	48	1993		19	
1149	11	4 7YF	и	28.8701	0 -2	27.2556	5 4	97.416	65 B1	32	0.00000
1150		4 TYP		-28.4297				97.102		32	0.00000
1151		4 TYP		-28.2203				97.114		32	0.00000
1152		4 TYP		-26.8008			-	97.713		32 32	0.00000
1153 1154		4 TYR		-26.0112 -26.6277				97.613 97.790		32	0.00000
1155		4 TYR		-25.8488				97.752		32	0.00000
1156		4 TYR		-24.6182				97.387		32	0.00000
1157	11			-23.8384				97.345	88 B1	32	0.00000
1158		4 IYR	CZ	-24.4560	0 -2	2.3694	0	97.531		32	0.00000
1159				-23.6896				97.509		32	0.00000
1160	11			-22.7967				97.219		32	0.00000
1161 1162	11			-28.1472 -27.6637				95.614 94.912		32 32	0.00000
1163		5 ASN		-28.6682				95.129		33	0.00000
1164		5 ASN		-29.0309				95.776		33	0.00000
1165	11	S ASN	CA	-28.6376				93.685	66 B1	33	0.00000
1166		NZA č	CB	-27.2704				93.270		33	0.00000
1167		5 ASN	CG	-27.0823				93.784		33	0.00000
1168 1169		MZA·E		26.5538				99.853 92.9621		33 33	0.00000
1170		ASN	ND2	-27.5176: -28.0488:				92.962		33	0.00000
1171		ASN	HD22					93.1394		33	0.00000
1172		ASN	c	-28.96318				92.7732		33	0.00000
1173		ASN	0	-28.22150	-25	5.91402	2 !	91.8525	0 Bl	33	0.00000
1174	116	GLN	N	-30.10693	-26	5.23583	3 !	93.0776		34	0.00000
1175		CIW	H	-30.66790				93.8483		34	0.00000
1176		GLN	CA	-30.60575	-27	7.38897		92.3121 90.8263		34	0.00000
1177		GLN	CB	-30.73906 -31.33401				90.8263 39.8098		34 ·34	0.00000
1178 1179	•	GLN	CD.	-31.33954			•	88.4358		34	0.00000
1180	-	GLN	OE1	-32.32002				7.7060		34	0.00000
1181		GTM	NE2	-30.20428				8.0818	5 B1	34	0.00000
1182		GLN	HE21	i .				8.6700		34	0.00000
1183	-	GLN	HE22					37.2020		34	0.00000
1184		GLN	c.	-29.89899				92.5304 92.1076		34 34	0.00000
1185 1186	117	GLN	о И	-30.38571 -28.76921				3.2483		35	0.00000
1187		GLU	Н	-28.34990				3.5952		35	0.00000
1188	117		CA	-28.17324				3.5863		35	0.00000
1189	117		CB	-26.68237				3.2357		35	0.00000
1190		GLU	CG	-26.41125				1.7572		35	0.00000
1191	117		CD	-24.93459				1.4363		35	0.00000
1192 1193	117	erd ern	OE1 OE2	-24.62388 -24.09945				0.3735		35 35	0.00000
1194		CLU	C ,	-28.34342				5.0536		35	0.00000
1195		GLU	ō . '	-28.39032				5.9359		35	0.00000
1196	118	GLU	N	-28.45418				5.3115		36	0.00000
1197	118	GLU	H	-28.37884				4.5785		36	0.00000
1198	118	GLU	CA	-28.64640				6.7050 6.8022		36 36	0.00000 0.00000
1199 1200	118	GTA GTA	CB CG	-28.86529 -30.04821				6.0445		36	0.00000
1201	118		CD	-30.18685				6.3996		36	0.00000
1202	118		OE1	-31.31366				6.6200		36	0.00000
1203	118		OE2	-29.17775			9	6.4623	8 Bl	36	0.00000
1204	118	GLU	C.			.79603		7.5995		36	0.00000
1205	118	GTO	0	-26.30375				7.2200		36	0.00000
1206	119		N .	-27.77719				8.81673 9.1056		37 37	0.00000
1207	119		H CA	-28.73032 -26.67523				9.1030 9.7433		37	0.00000
1209	119			-26.79679			10	0.2543	3 81	37	0.00000
1210	119		os	-25.62406			10	0.96854	Bl	37	0.00000
1211	119	SER		-25.73840	-28	.33730		1.3035		37	0.00000
1212	119	SIR	С	-26.64967	-32.	.10869	30	0.87899	# B1	37	0.00000

./DR1	. אנזא	೭.೦೩೨		Thu Fab	25 14:58:4	8 1993		20	
1213	119	SER	0	25.72568	-32.90554	101.03211	в1	37	0.00000
1214	120	VAL	И		-32.06808			38	0.00000
1215		VAL			-31.45938			38	0.00000
1216		VAL	CA	-27.82678		102.80099		38 38	0.00000
1217		VAL	CB CG1		-32.32244 -32.18078			38	0.00000
1218 1219) VAL	CG2		-30.97900			38	0.00000
1220) VAL	C	-29.23777	-33.53625	102.89372	Bl	38	0.00000
1221		VAL	Ö	-30.19812	-32.88656	102.49711	B1	38	0.00000
1222	121	ARG	N	-29.34164	-34.75356	103.41944	Bl	39	0.00000
1223		. ARG	H	-28.52525	-35.27675	103.67737	Bl	39	0.00000
1224		ARG	CA	-30.65941	-35.37282	103.49447		39 39	0.00000
1225		ARG	CB	-30.83879	-36.26556 -36.83907	102.25451		39	0.00000
1226 1227		ARG ARG	CG CD	-32.24891 -32.36448	-38.11228	101.31436	Bl	39	0.00000
1228		ARG	NE		-38.89614			39	0.00000
1229		ARG	HE	-33.58314	-38.82444			39	0.00000
1230		ARG	CZ	-34.21779	-39.71705	101.13259	Bl	39	0.00000
1231	121	ARG	NH1	-35.18842	-40.40193	101.73316	B1	39	0.00000
1232		··ARG	HH11	-35.77971	-41.03741	101.23780	Bl	39 39	0.00000
1233		ARG		-35.33365	-40.28153	102.71808 99.82444		39	0.00000
1234		ARG	NH2	-33.99786	-39.84536	99.25675		39	0.00000
1235 1236		ARG	HH22	-31.33099	-39.30635	99.39731		39	0.00000
1237		ARG	C	-30.80743	-36.21013	104.75602	Bl	39	0.00000
1238		ARG	ō	-29.86515	-36.82872	105.23483	Вl	39	0.00000
1239	122	PHE	N	-32.04075	-36.24095	105.26404	Bl	40	0.00000
1240		PHE	H	•	-35.63810	104.89111	B1	40 40	0.00000
1241		PHE	CA		-37.26064			40	0.00000
1242		PHE	CB	-33./5/24 33.64003	-36.87165 -36.46831	108.83230	R1	40	0.00000
1243 1244		PHE PHE	CG CD1	-33.64992	-35.69712	108.77664	B1	40	0.00000
1245		PHE	CD2	-34.66985	-36.87929	109.19094	Bl	40	0.00000
1245		PHE	CE1	-32.49275	-35.34303	110.14035	Bl	40	0.00000
1247		PHE	CE2	-34.60187	-36.52254	110.55431	Bl	40	0.00000
1248		PHĖ	CZ	-33.51285	-35.75823	111.02379	Bl	40	0.00000
1249	122	PHE	С	-32.57844	-38.62424	105.60697	Bl Bl	40 40	0.00000
1250	122		0	-33.34168 -31.06201	-38.79208	104.65567	BI	41	0.00000
1251 1252	123 123		N H	-31.06201	-39.47015	106.92548	BI	41	0.00000
1253	123	ASP	CA	-32.08552	-40.93522	105.58825	Bl	41	0.00000
1254	123	ASP	СВ	-30.85171	-41.81726	105.76445	Bl	41	0.00000
1255	123	ASP	CG	-29.93161	-41.56041	104.59405	B1	41	0.00000
1256		ASP	OD1	-28.81173	-41.11310	104.81757	BI	41 41	0.00000
1257		ASP	OD2	-30.34905 -33.32362	-41.80191	105.43656	B1	41	0.00000
1258 1259	123	ASP ASP	С 0	-34.00966	-41.03010	107.02319	Bl	41	0.00000
1260		SER	ห	-33.62443	-42.74250	105.41429	B1	42	0.00000
1261		SER	H	-32.95329	-43.10971	104.76900	Bl	42	0.00000
1262	124	SER	CA	-34.94425	-43.35498	105.58880	Bl	42	0.00000
1263		SER	CB	-35.18779	-44.37028	104.46149	B1	42 42	0.00000 0.00000
1264		SER	OG	-36.57945	-44.70776	104.3/0/1	ום	42	0.00000
1265		SER	HG	-36.91089 -35.21640	-44.87590 -44.01057	105.27415	Bl	42	0.00000
1266 1267		SER SER	C 0	-36.33538	~44.42223	107.22372	Bl	42	0.00000
1268		ASP	N	-34.16447	-44.10325	107.74330	Bl	43	0.00000
1269		ASP	н	-33.26228	-43.73425	107.50494	Bl	43	0.00000
1270	125	ASP	CA	-34.30492	-44.60689	109.10471	Bl	43	0.00000
1271		ASP	CB	-32.96210	-45.24580	109.50620	B.I	43 43	0.00000
1272		ASP	CG	-31.82155 -31.89194	-44.23245	108 89075	51 91	43	0.00000
1273 1274		ASP	0D3	-31.89194 -30.87249	-44 45676	110.29614	B1	43	0.0000
1275	125	ASP	OD2 C	-34.69374	-43.52244	110.10428	B1	43	0.00000
1276		ASP	0	-35.10540	-43.78441	111.22872	21	43	0.00000

./DRI	אבא2	.ಞು		22ක වනව	25 14:58:	48 1993		21	
1277	126	VAL	N	51615	5 -42.2675	1 109.64790	р в 1	44	ō. poooo
1278		VAL	н		-42.1230			44	0.00000
1279	126	VAL	CA		5 -41.0791			4.4	0.00000
1280		VAL	CB		4 -40.8246			44	0.00000
1281		VAL	CG1		-39.41758			44	0.00000
1282		VAL	CG2	-37.04494	-41.0028	109.82481	ים. דמי	4 4 4 4	0.00000
1283	126		C		5 -41.13739 -40.75403		. D.	44	0.00000
1284		VAL GLY	0	-33.70013	-41.66443			45	0.00000
1285 1286	127 127		N H	-32.41343	-42.01122	110.31755	B1	45	0.00000
1287		GLY	СУ		-41.88201		B1	45	0.00000
1288	127		C		-41.56889			45	0.00000
1289		GLY	ō		-41.21776	112.35962		45	0.00000
1290	128	GLU	N	-29.81143	-41.65704	110.29545		46	0.00000
1291		GLU	н	-30.48653	-42.13586	109.72534	Bl	46	0.00000
1292			CA		~41.14297		ום א	46 46	0.00000 0.00000
1293	128	GLU	CB	-27.75197	-42.29481 -42.25781			46	0.00000
1294 1295	128	GLU	CG CD	-20.29310 -25 44181	-43.28422	108.87693	Bl	46	0.00000
1296			"OEl"	·-24.49646	-42.88073	108.19992	B1	46	0.00000
1297	128	GLU	OE2	-25.71010	-44.47773	109.00348	Bl	46	0.00000
1298	128	GLU	C	-28.71376	-39.98012	108.75031	Bl	46	0.00000
1299		GLU	ō		39.57375		Bl	46	0.00000
1300	.129	TYR	N	-27.54735	-39.42619			47	0.00000
1301	129	TYR	Н	-26.68498	-39.83420	108.68820	B1	47	0.00000
1302	129	TYR	CA.		-38.29454	107.46434	Bl	47	0.00000
1303	129	TYR	CB	-26.63842	-37.15326	108.01560		47	0.00000
1304	129	TYR	CG	-27.30857	-36.34222	109.09443	Bl	47	0.00000
1305	129	TYR	CDİ		-36.21958			47	0.00000 0.00000
1306	129	TYR	CE1	-27.25566	-35.42131	111.35148		47 47	0.00000
1307	129	TYR	CD2	-28.52827	-35.67832	108.83210	B.J.	47	0.00000
1308	129	TYR	CE2	-29.11235	-34.88063 -34.75726	111.08860	B1	47	0.00000
1309 1310	129 129	TYR TYR	CZ OH		-33.98459			47	0.00000
1311	129	TYR	нн		-33.40059	• •		47	0.00000
1312	129	TYR	Ć.		-38.64384			47	0.00000
1313	129	TYR	Õ	-25.66697	-39.04407	106.10492	Bl	47	0.00000
1314	130	ARG	N	-27.55686	-38.38162	105.08581	Bl	48	0.00000
1315	130	ARG	H	-28.51666	-38.10451	105.16735	Bl	48	0.00000
1316	130	ARG	CA	-26.87326		103.80227		48	0.00000
1317	130	ARG	CB	-27.85650	-38.84699	102.71647	B1	48 48	0.00000
1318	130	ARG	CG	-27.21143	-39.00526	101.34112		48	0.00000
1319		ARG	.NE	-28.23975	-39.41974 -39.38333			48	0.00000
1320 1321	130 130		HE		-38.85034	98.82833		48	0.00000
1322	130		CZ		-39.96348	97.93202		48	0.00000
1323	130		NHI		-39.81313	96.69917	Bl	48	0.00000
1324	130		нн11	-28.26738	-40.23513	,95.90996		48	0.00000
1325	130	ARG	нн12	-27.01064		96.53955		48	0.00000
1326	130		NH2		-40.6B730	98.14392		48	0.00000
1327	130			-29.90446		97.39118		48 48	0.00000 0.00000
1328	130				-40.81930	99.07957		48	0.00000
1329		ARG	C		-37.06053 -36.11772			48	0.00000
1330 1331	130 131		0 N	-20.30233	-36.99899	103.58668		49	0.00000
1332	131		H	-24.45069	-37.77908			49	0.00000
1333	131		CA		-35.84894			49	0.00000
1334	131		CB	-23.06137	-35.44271	103.80801	ы	49	0.00000
1335	131		c	-23.85084	-36.20633	101.58658		49	0.00000
1336	131		0		-37.20532	101.36065		49	0.00000
1337	132		N		-35.38774			50 50	0.00000 0.00000
1338	132		li O		-34.54695	100.85567		50	0.00000
1339	132		CA	-24.05930 -25.12578	-35./3013	98.36560		50	0.00000
1340	132	YAL	CB	-23.22316	5.7 0 0	, , , , , , , ,			

./DR1	_MIN	2.C25		Thu	حمء	25	14:	58:	48 3	1993	3		22	
1341	132	2 VAL	CG1	5.0	2505	s - 3	5.4	568	7 9	96.8	37606	B1	9.0	O 570 0 580
1342	132	VAL	CG2	-26.5	1048	3 -3	5.4	885	3 9	8.8	9777	Bl	50	0.00000
1343	132			-22.6							73419		50	0.00000
1344	132		0	-22.1		_					34114		50 51	0.00000
1345	133		и	-22.0 -22.4							35299		51	0.00000
1346 1347	133		CY H	-22.4							1128		51	0.00000
1348	133		CB	-20.8							6600		51	0.00000
1349	133		0G1	-19.5					5 9	7.3	4397	Bl	51	0.00000
1350	133		HGl	-19.6					5 9		0551		51	0.00000
1351	133	THR	CG2	-21.8	1730	-3	1.9	6947			2788		51	0.00000
1352	133		С	-19.9	1735	-3:	3.5	9750	10	0.1	.0846	Bl	51	0.00000
1353	133		0	-20.4	3697	-3:	3.3	0952	10	11.1	.5881 1793	10 I	51 52	0.00000
1354 1355		GLU	И	-18.60 -18.20							2398		52	0.00000
1356		GLU	Н СА	-17.75									52	0.00000
1357		GLU	CB	-16.30						0.4	9482	B1	52	0.00000
1358		GLU	CG	-15.76							3844		52	0.00000
1359	134	GLU	CD	-14.31	377	-34	1.04	4410	9		0488		52	0.00000
1360				13.54	341	-34	1.9	6158	9	9.8	8007	Bl	52	0.00000
1361		GLU	OE2	-13.96	021	-33	3.03	3519			9487		52 52	0.00000
1362		GLU	C	-18.16 -17.97	601	-31	51	1310	10	1.4 7.5	0752	B1	52	0.00000
1363 1364		GLŲ	0 N	-18.87						2.J N 5	5812	B1	53	0.00000
1365	135		H .	-18.92				3340			1398		53	0.00000
1366	135		CA	-19.55	727						4931		53	0.00000
1367	135		СВ	-20.29							0959		53	0.00000
1368	135		CG	-20.12				7937	9		8843		53	0.00000
1369	135	LEÜ	CD1	-20.93							2666		53	0.00000
1370	135		CD2	-18.63							6436		53	0.00000
1371	135	LEU	С	-20.53		-29					1412		53 53	0.00000
1372		LEU	0.	-20.60		-28 -30					4463 2891		54	0.00000
1373 1374		GLY GLY	И ; Н .	-21.29 -21.14		-31					0480		54	0.00000
1375	136		CA	-22.25		-31					8935		54	0.00000
1376		GLY	C.	-21.66				099			6834		54	0.00000
1377	136		0	-22.17	280	-31	.82	013			8053		54	0.00000
1378	137	ARG	N	-20.54							1306		55	0.00000 0.00000
1379	137	УĽĠ	H	-20,17							8296		55 55	0.00000
1380	137	ARG	CA	-19.94					10:		9532 8318		55	0.00000
1381 1382	137	ARG ARG	CB CG	-18.67 -18.13		-34					5025		55	0.00000
1383	137	ARĠ	CD	-19.16							5371		55	0.00000
1384	137	ARG	NE.	-18.66	781	-37	.06	640			7657		55	0.00000
1385		ARG	HE	-17.93	002	-36	.71	980	107	7 . 47	7204	Bl	55	0.00000
1386		arģ	CZ	-19.21	896	-38	.26	612	107	7.07	7086	Bl	55	0.00000
1387	137	ARG	NH1	-18.67	934	-39	.07	643	107	7 . 97	7489	B1	55	0.00000
1388	137	ARG	нніі	-19.03	969	-39	.99	255	108	3.14	1749	Bl	55 55	0.00000
1389 1390	137	ARG		-17.88 -20.29	763	-38	.75	241	100		7714	R1	55	0.00000
1391	137 137	arg arg	NH2	-20.72	192	-39	. 53	705	106	5.49	834	Bl	55	0.00000
1392	137		нн22	-20.68	B79	-38	.01	490	105	.70	1437	Bl	55	0.00000
1393	137		С,	-19.76	338	-32	. 65	026	106	5.46	5929	Bl	55	0.00000
1394	137		0	-20.33	202	-33	.13	638	107	. 44	172	Bl	55	0.00000
1395	138		N	-19.03	95	-31	.51	331	106	.56	5277	Bl	56 56	0.00000 0.00000
1396	138		CD	-18.26	903	-30	.78	028	105	. 55	1020	B I	56 56	0.00000
1397	138		CA	-18.925 -18.005	000	-30.	. 86	885 775	107	. 61	219	E1	56	0.00000
1398 1399	138		CB CG	-18.00	900 101	-25. -30	00. 10	427	106	. 35	389	B1	56	0.00000
1400	138	•	C	-20.248							452		56	0.00000
1401	138		0	-20.388	373	-30.	20	105	109	. 65	243	31	56	0.00000
1402	139		N	-21.228	322	-30.	.19	487	107	. 56	513	31	57	0.00000
1403	139		н	-21.129	955	-30.	45	258	106	. 60	295	31	57	0.00000
1404	139	ASP	CA	-22.544	45	-29.	.7E	374	108	. 02	635	31	57	0.00000

./221	_KD(2 . C RD	ı	Thu Fab	25 14:58:	48 1993		23	
1405	13	9 ASP	СВ	3 29483	1 -29 2279	4 106.8072	9 B1	5 7·	~0~°00 0 700
1406						0 107.2340		57	0.00000
1,07	13		OD1			5 107.53698		57	0.00000
1408	13				-29.0093	7 107.24893	B1	57	0.00000
1409	13		С	23.29009	-30.9065	1 108.7064	8 B1	57	0.00000
1410	139	qaa e	0	-23.84428	3 -30.7994	4 109.79628	B1	57	0.00000
1411	140) YLY	N	-23.18867	-32.0695	0 108.0497	5 B1	58	0.00000
1412	140	ALA (H	-22.77745	-32.0932	5 107.13514	Bl	58	0.00000
1413) ALA	CA	-23.64141	33.2986	3 108.70194	Bl	58	0.00000
1414	140		CB	-23.39932	-34.5128	5 107.80148	B1	58	0.00000
1415	140		С	-22.96994	-33.5259	1 110.04660	. 21	58 58	0.00000
1416		ALA (0	-23.61501	-33.6246	0 111.08086	ום ו	59	0.00000
1417		GLU	N	-21.63141	-33.53/10	0 110.01537 2 109.14251	B1	59	0.00000
1418 1419		. GLU	H	-21.14260	-33.4442	5 111.26272	וח	59	0.00000
1420		. GLU	CA CB	-10 39545	-33.7504.	110.92637	81	59	0.00000
1421		. CTA	CG	-19 08157	-34.9215	109.97183		59	0.00000
1422		GLU	CD			109.44677		59	0.00000
1423		GLU	OE1	-17.21662	-35.95752	108.96182	В1	59	0.00000
1424		GLU		·· -16.99658				59	0.00000
1425	141	GLU	С	-21.20315	-32.72395	3 112.36696	Bl	59	0.00000
1426	141	GLU	0	-21.35204	-33.05368	113.53869	Bl	59	0.00000
1427	142	TYR	N			.111.93865		60	0.00000
1428		TYR	н	-21.16858	-31.22939	110.99159		60	0.00000
1429	142		CA			112.82625		60	0.00000
1430	142		CB		-29.18770			60	0.00000
1431	142		CG		-27.86866			60	0.00000
1432	142		CD1		-27.21121			60 60	0.00000
1433	142		CE1		-25.94177 -27.27306			60	0.00000
1434 1435	142		CD2 CE2		-26.00211			60	0.00000
1436	142	TYR	CZ		-25.34007			60	0.00000
1437	142	TYR	ОН		-24.08718			60	0.00000
1438	142	TYR	нн		-23.75980			60	0.00000
1439	142	TYR	ç		-30.84932			60	0.00000
1440	142	TYR	Ō			114.74427	Bl	60	0.00000
1441	143	TRR	N	-24.16819	-31.24530	112.69102	Bl	61	0.00000
1442	143	TRP	H	-24.01203	-31.27353	111.69669	Bl	61	0.00000
1443	143	TRR	CA			113.24427	Bl	61	0.00000
1444	143	TRP	CB		-31.82534	112.10045		61	0.00000
1445	143	TRP	CG		-30.51319		B1	61 61	0.00000
1446	143	TRP	CD2		-30.35383 -28.88192			61	0.00000
1447 1448	143	TRP TRP	CE2 CE3		-31.24445		Bl	61	0.00000
1449		TRP	CD1	-26.49404	-29.2040B	111.84528	Bl	61	0.00000
1450		TRP	NE1	-26.99373	-28.24161	111.01939	Bl	61	0.00000
1451	143	i .	HE1	-26.86335	-27.27405	111.09738	Bl	61	0.00000
1452	143		CZ2	-28.41151	-28.41903	108.90296	Bl	61	0.00000
1453	143	TRP	CZ3	-28.94655	-30.73482	108.27096	Bl	61	0.00000
1454	143	TRP	CH2	-29.03488	-29.34388	108.03833	Bl	61	0.00000
1455	143	TRP	C·	-25.40824	-32.93379	114.07770	Bl	61	0.00000
1456		TRP	Ο.	-26.13451	-33.11650	115.04995	B1	61	0.00000
1457		ASN	N	-24.46546	-33.80055	113.69236	B1	62	0.00000
1458	٠.	ASN	H	-23.94027	-33.62305	112.85783	BI	62 53	0.00000 0.00000
1459	144		CA	-24.16067	-34.99080	114.49069	ום דמ	62 62	0.00000
1460	144		CB	-23.20850	-35.Y33UB	113.73882	B1	62	0.00000
1461	144	• '	CG	-23.89541	-30.00001 -36 27^75	112.61740	B1	62	0.00000
1462 1463	144		OD1 ND2	-23.00133	-30.47073	113.02365	B1	62	0.00000
1464	144		HD21	-24.89338	-37.61926	113.9927€	B1	62	0.0000
1465	144		HD22	-25,19584	-38.20406	112.34455	Bl	62	0.00000
1466	144	_	C	-23,49875	-34.69497	115.82591	В1	62	0.00000
1467	144	ASN	0	-23,43003	-35.54654	116.69934	មា	62	0.00000
1458	145	SER	1:	-22.99604	-33.46640	115.97350	ងរ	63	0.00000

ال المحمد وروي هه: دن: ۱۹ ته ته د دنت 2: 1469 145 SER 22.97830 -32.80428 115.21961 B1 Η. 63 ** 11 *0 -00000 1470 145 SER 22.38004 -33.14621 117.25865 B1 CA 63 0.00000 1 : 7 3 145 SER -20.91921 -32.73054 117.01176 B1 CB 63 0.00000 1472 145 SER OG -20.18983 -32.64180 118.24511 B1 0.00000 145 SER 1473 HG -20.76055 -32.22535 118.91065 B1 63 0.00000 0.00000 145 SER 1474 -23.11027 -32.07614 118.06161 B1 63 С 145 SER -22.67401 -31.68287 119.13941 B1 63 -24.22180 -31.59037 117.51252 B1 64 0.00000 1475 0 146 GLN 1476 N -24.58118 -31.94604 116.64774 B1 64 146 GLN H 0.00000 1477 1478 146 GLN CA -24.90025 -30.49286 118.19522 B1 64 0.00000 1479 146 GLN CB -24.86315 -29.29301 117.23892 B1 64 0.00000 1480 146 GLN CG -25.45855 -27.96945 117.72882 B1 64 0.00000 1481 146 GLN -26.89096 -27.81462 117.25234 B1 64 CD 0.00000 146 GLN -27.80837 -27.53609 118.00911 B1 -27.06556 -27.97948 115.94329 B1 1482 OE1 64 0.00000 146 GLN 1483 NE2 64 0.00000 1484 HE21 -26.30809 -28.20349 115.33276 B1 64 146 GLN 0.00000 1485 146 GLN HE22 -27.98288 -27.88997 115.56134 B1 64 0.00000 1486 146 GLN -26.29488 -30.93694 118.57642 B1 64 0.00000 С 1487 64 0.00000 1488 65 0.00000 1489 147 LYS H -25.65249 -31.20699 120.47663 B1 65 0.00000 1490 147 LYS CA -27.35463 -32.46614 120.21964 B1 65 0.00000 1491 147 LYS CB -28.27258 -32.00851 121.37895 B1 65 0.00000 1492 147 LYS CG -29.34716 -33.02726 121.84203 B1 65 0.00000 1493 147 LYS CD -28.88674 -34.49172 121.97244 B1 0.00000 147 LYS 1494 CE 0.00000 147 LYS 1495 NZ 0.00000 147 LYS HZ1 -30.04886 -37.42223 120.71767 B1 65 1496 0.00000 1497 147 LYS HZ2 -28.53282 -36.76558 120.68922 B1 65 0.00000 1498 147 LYS HZ3 -29.15199 -37.28892 122.15073 B1 65 0.00000 0.00000 0.00000 0.00000 1499 147 LYS С -28.12445 -33.12689 119.09340 B1 65 65 0 1500 147 LYS -29.30235 -32.90174 118.83683 B1 -27.34620 -34.00916 118.45822 B1 -26.39747 -34.14495 118.75300 B1 66 66 1501 148 ASP N н 1502 148 ÄSP -27.79510 -35.00236 117.48362 B1 1503 148 ASP 66 0.00000 CA 1504 148 ASP CB -27.88927 -36.37833 118.17059 B1 66 0.00000 148 ASR 1505 -26.79528 -36.57930 119.21585 B1 66 0.00000 CĠ 1506 148 ASP OD1 -25.69280 -36.06325 119.05193 B1 66 0.00000 OD2 -27.07650 -37.20742 120.23524 B1 66 1507 148 ASP 0.00000 1508 148 ASP C -29.08887 -34.63043 116.79645 B1 66 0.00000 1509 148 ASP -30.17136 -35.14808 117.04951 B1 66 0.00000 1510 149 LEU -28.92399 -33.61840 115.93941 B1 67 11 0.00000 -27.98965 -33.30949 115.73440 B1 149 LEU 149 LEU 67 1511 H 0.00000 1512 · CA -30.07076 -32.84836 115.45008 B1 67 0.00000 1513 -29.45399 -31.74267 114.57360 B1 149 LEÚ 67 CB 0.00000 1514 149 LEU -30.29432 -30.58223 114.02475 B1 67 0.00000 CG CD1 -30.85820 -30.92475 112.65290 B1 1515 149 LEU 67 0.00000 1516 CD2 -31.34761 -30.09615 115.02072 B1 67 149 LEU 0.00000 1517 149 LEU 67 0.00000 -31.17667 -33.69413 114.80952 B1 C 1518 67 149 LEU 0 -32.36472 -33.37859 114.83807 B1 0.00000 1519 150 LEU -30.73118 -34.86138 114.32363 B1 68 0.00000 N 150 LEU 1520 68 0.00000 -29.75579 -34.94139 114.11621 B1 н -31.59782 -36.02822 114.12850 B1 1521 68 0.00000 150 LEU CA 1522 68 0.00000 150 LEÚ CB -30.74740 -37.29867 114.15286 B1 1523 150 LEU -29.89363 -37.44772 112.89569 B1 68 0.00000 CG 1524 150 LEU CD1 -28.64060 -38.26626 113.18796 B1 68 0.00000 0.00000 1525 150 LEU CD2 -30.71709 -38.01712 111.73915 B1 68 1526 150 LEU -32.74973 -36.17247 115.10785 B1 65 0.00000 С 1527 150 LEU O -33.89001 -36.01901 114.70350 B1 63 0.00000 0.00000 6.9 -32.47441 -36.43576 116.39428 B1 1528 151 GLU 1529 -31.52943 -36.57284 116.72119 B1 69 0.00000 151 GLU н 0.00000 2530 -33.61295 -36.59512 117.30950 B1 69 151 GLU CA 0.00000 65 -33.19489 -36.98331 118.72928 B1 1531 151 GLU CB CG -32.69081 -38.41906 118.86324 B1 1532 151 GLU

٠/ ١٨	T_KTM5.CK	D	Thu Fob	25 14:58	:48 1993	25	
153		CD U			64 118.70497		
135					29 117.58148		
1539 1539		U OE2		2 -38.564			
153					68 117.43857		
1538				0 -35.573. 1 -34.1978	13 117.58647		0.00000
1539					30 117.35586 56 117.18602		0.00000
1540					52 117.40695		0.00000
1541					16 117.32018		0.00000
1542				9 -31.2690			0.00000
1543				6 -29.7742			0.00000
1544	152 GLN	OE1	-32.1306	3 -29.2701			0.00000
1545		NE2	-34.3465	5 -29.0468	2 118.54711	B1 70	0.00000
1546					1 118.65663		0.00000
1547					8 118.46911		0.00000
1548					6 116.27182		0.00000
1549 1550					1 116.43607		0.00000
1551	153 ARG 153 ARG				9 115.08552		0.00000
1552	153 ARG		-34.35835	-33.4870	9 114.99299	B1 71	0.00000
1553	153 ARG				9 113.95947 7 112.66564		0.00000
1554	153 ARG				1 112.35054		0.00000
1555	153 ARG				0.111.17839		0.00000
1556	153 ARG				6 110.55166		0.00000
1557	153 ARG			-30.0936			0.00000
1558	153 APG	-			2 109.31716		0.00000
1559	153 ARG				6 108.54980		0.00000
1560	153 ARG				2 107.55422		0.00000
1561	153 ARG	HH12 ~	-33.14801	-29.0102	108.90136	B1 71	0.00000
1562	153 ARG			-32.1769		B1 71	0.00000
1563	153 ARG			-32.29042			0.00000
1564	153 ARG			-32.97359			0.00000
1565	153 ARG			-34.62908			0.00000
1566	153 ARG		,	-34.50228			0.00000
1567 1568	154 ARG				114.34589		0.00000
1569	154 ARG 154 ARG				114.34685 E		0.00000
1570	154 ARG				114.59374 E		0.00000
1571	154 ARG				115.12920 E		0.00000
1572	154 ARG				115.69023 E		0.00000
1573	154 ARG				115.80184 E		0.00000
1574	154 ARG				115.09038 B		0.00000
1575	154 ARG	CZ -	36.70093	-42.71372	116.80504 B	1 72	0.00000
1576	154 ARG				116.88687 B		0.00000
1577	154 ARG				117.61587 B		0.00000
1578 1579	154 ARG				116.20728 B		0.00000
1580	154 ARG	NH2 -3	35.75363	-42.48325	117.71513 B	1 72	0.00000
1581	154 ARG 154 ARG				118.48012 B		0.00000
1582	154 ARG				117.63709 B 115.51516 B		0.00000 0.00000
1583	154 ARG				115.31516 B		0.00000
1584	155 ARG				116.55472 B		0.00000
1585	155 ARG				116.77047 B		0.00000
1586	155 ARG				117.36371 B		0.00000
	155 ARG				118.48265 B		0.00000
1588	155 ARG				119.44775 B		0.00000
	155 ARG	CD -3			120.46128 B	1 73	0.00000
	155 ARG	NE -4	0.71623 -	-32.83780	121.28237 B	1 . 73	0.00000
1591	155 ARG				121.09517 B		0.00000
	155 ARG				122.22743 B		0.00000
	155 ARG				122.94081 B		0.00000
	155 ARG 155 ARG				123.65592 E		0.00000 0.00000
	155 ARG 155 ARG				122.77039 B		0.00000
	722 NV/2	2 -3	5.22/13 -	23.4509	122.43304 5	• •	0.00000

. ,	_بدر،کارو	o	Thu Feb	25 14:58:	48 1993	27	
1662	162 AR	IIE	50.49694	-40.8845	5 114.11092 B	1 80	0.00000
1,662	2 162 ARC				7 114.80601 B		0.00000
30					4 114.46730 B		0.00000
1664					3 114.66150 B		0.00000
1665 1666					5 113.96028 B 3 115.38323 B		0.00000
1667					1 115.55650 B		0.00000
1668			-47.52579	-42.0678	8 115.64161 B	1 80	0.00000
1669					6 113.42487 B		0.00000
1670					2 112.81658 B		0.00000
1671 1672					2 114.60088 B 5 115.03933 B		0.00000
1672			-50.76431	-34.7335	7 115.23467 B	81	0.00000
1674					5 116.66134 B		0.00000
1675		CG	-50.41026	-35.50649	9 117.55950 B	81	0.00000
1676		ND1	-51.51644				0.00000
1677 1678		HD1	-52.42830		1 118.03242 B: 7 117.93420 B:		0.00000 0.00000
1679	163 HIS	CD2 NE2			9 118.73130 B		0.00000
1680	163-HI6				5 118.84798 B		0.00000
1681	163 HIS	С	-51.37160	-33.59588	3 114.44466 B	. 81	0.00000
1682	163 HIS	0			114.18659 B		0.00000
1683 1684	164 ASN 164 ASN	N	-50.50246 -49.51981		5 114.01202 B3 2 114.21247 B3		0.00000
1685	164 ASN	H CA	-51.04300				0.00000
1686	164 ASN	CB	-49.96583				0.00000
1687	164 ASN	CG.	-49.91907				0.00000
1688	164 ASN		-49.13948	-29.62233	114.96163 B1	82	0.00000
1689	164 ASN	ND2			113.91309 B1		0.00000
1690 1691	164 ASN 164 ASN				113.14586 B1 114.61251 B1		0.00000
1692	164 ASN 164 ASN	C RDZZ			111.91584 B1		0.00000
1693	164 ASN	o			111.51085 Bl		0.0000
1694	165 TYR	N	-51.12326	-33.05626	111.29191 B1	83	0.00000
1695	165 TYR	н	-50.28201	-33.49370	111.62194 B1	83	0.00000
1696	165 TYR	CA	-51.81304	-33.54191	110.10401 B1	83 83	0.00000
1697 1698	165 TYR 165 TYR	CB CG	-50.92781 -51.30689	-34.47239 -34 50284	109.25048 B1 107.80317 B1	83	0.00000
1699	165 TYR	CD1	-52.18946	-33.44669	107.29137 B1	83	0.00000
1700	165 TYR	CE1	-52.63312	-33.47413	105.96126 B1	83	0.00000
1701	165 TYR				106.96903 Bl	83	0.00000
1702 1703	165 TYR 165 TYR	CE2 CZ	-51.48846	-35.61522 -34.55457	105.62740 B1 105.13440 B1	83 83	0.00000 0.00000
1703	165 TYR		-52.2653/ ·	-34.53152	103.84155 B1	83	0.00000
1705	165 TYR	нн	-52.13515 -	-34.97162	103.24416 Bl	83	0.00000
1706	165 TYR	С	-53.16114 -	-34.17050	110.39688 B1	83	0.00000
1707	165 TYR	0	-54.17243	-33.75040	109.85354 B1	83	0.00000
1708 1709	166 GLY	N ·	-53.16827 -	-35.13255	111.32677 B1 111.74443 B1	8 4 8 4	0.00000 0.00000
1710	166 GLY	H ·	-52.30920 - -54 44388 -	-35.44204 -35.75931	111.69489 B1	84	0.00000
1711	166 GLY	C -	-54.44500 . -55.55421 -	-34.78683	112.08191 B1	84	0.00000
1712	166 GLY	0 .	-56.70Ò58 <i>-</i>	-34.86763	111.64884 B1	84	0.00000
1713	167 VAL	N ·	-55.16433 -	-33.81049	112.90998 B1	85	0.00000
1714	167 VAL				113.25020 B1	85 05	0.00000 0.00000
1715 1716	167 VAL				113.26808 B1 114.36486 B1	85 85	0.00000
1717	167 VAL	CG1 -	-56.46931 -	-30.71890	114.75691 B1	85	0.00000
1718	167 VAL	CG2 -	-55.22649 -	-32.70528	115.60849 B1	85	0.00000
1719	167 VAL	c -	-56.62003 -	-31.96437	112.06515 Bl	85	0.00000
1720	167 VAL	0 -	-57.80658 -	31.70971	111.87365 Bl	85 86	0.00000
1721 1722	168 GLY 168 GLY	N -	-55.65605 - -54 68827 -	-31 81 974 -31 81 974	111.20320 B1 111.38362 B1	86	0.00000
1723	168 GLY	CA -	-56.04215 -	30.96490	109.94972 Bi	86	0.00000
1724	168 GLY	c -	-57.02338 -	31.77629	109.11607 B1	86	0.00000

./ಎನ್ನುಜಾಗ್ಯ,೦ಸರ 28 Thu Feb 15 14:58:48 1993 1725 168 GLY 86 0.00000 0 58.02649 -31.28044 108.61617 B1 1726 169 GLU 87 0.00000 N 56.71134 -33.07169 109.00665 B1 169 GIU 1717 -55.87921 -33.43085 109.43169 B1 87 0.00000 н 1728 169 GLU -57.59179 -34.00467 108.30469 B1. 87 0.00000 CA 87 0.00000 1729 -56.95070 -35.39155 108.28846 B1 169 GLU CB 1730 169 GLU -55.67851 -35.40281 107.43481 Bl 87 0.00000 CG 87 0.00000 1731 169 GLU CD -54.91259 -36.69049 107.65905 B1 0.00000 87 1732 169 GLU -53.74095 -36.61342 108.02205 B1 OE1 -55.48540 -37.76250 107.47736 B1 87 0.00000 1733 169 GLU OE2 1734 -59.00151 -34.05273 108.86565 B1 87 0.00000 169 GLU С 169 GLU -59.98966 -34.06690 108.14126 B1 87 0.00000 1735 0 0.00000 88 1736 170 SER -59.06996 -33.99305 110.19884 Bl N -50.23138 -34.05998 110.74831 B1 88 0.00000 1737 170 SER H 0.00000 -60.38255 -33.85094 110.83391 Bl 88 1738 170 SER CA -60.18950 -33.85581 112.35798 B1 88 0.00000 1739 170 SER СB 1740 170 SER -61.42043 -34.13237 113.03659 B1 88 0.00000 OG 0.00000 88 1741 170 SER HG -61.30877 -34.00943 113.98374 Bl 1742 170 SER -61.16415 -32.61665 110.37646 B1 88 0.00000 С 0.00000 1743 170 SER -62.31497 -32.69150 109.96191 B1 88 0 1744 171 PHE N -- -60.49231 -31.45621 -110.41676 B1 89 0.00000 1745 -59.54601 -31.41832 110.75393 B1 89 0.00000 171 PHE H 1746 -61.19539 -30.24631 109.95663 B1 89 0.00000 171 PHE CA 0.00000 1747 171 PHE CB -60.30793 -28.99941 110.10880 Bl 89 1748 171 PHE -59.94208 -28.68147 111.54294 B1 89 0.00000 CG CD1 -58.59291 -28.39703 111.85413 B1 89 CD2 -60.93098 -28.63398 112.55491 B1 89 CE1 -58.23032 -28.06074 113.17656 B1 89 1749 171 PHE 0.00000 0.00000 1750 171 PHE 0.00000 1751 171 PHE 1752 CE2 -60.56845 -28.29967 113.87858 B1 89 0.00000 171 PHE -59.21901 -28.01319 114.18527 B1 89 0.00000 1753 171 PHÉ CZ 0.00000 1754 171 PHÉ -61.62802 -30.29139 108.49502 B1 89 С -62.68697 -29.84047 108.07691 B1 0.00000 1755 Ο, 89 171 PHE N, 0.00000 1756 -60.72520 -30.85206 107.69903 Bl 90 172 THR -59.91792 -31.29854 108.09636 B1 90 1757 172 THR 0.00000 H -60.84308 -30.66246 106.25599 B1 90 0.00000 1758 172 THR CA 0.00000 90 1759 172 THR -59.41710 -30.70747 105.70165 B1 CB OG1 -59.35292 -30.21143 104.36207 B1 0.00000 90 1760 172 THR -60.15430 -30.48800 103.89285 B1 90 0.00000 1761 172 THR HGl CG2 -58.90262 -32.13906 105.74825 B1 0.00000 90 1762 172 THR 172 THR -61.71208 -31.64877 105.47987 B1 0.00000 1763 90 C -61.76078 -31.56505 104.25169 B1 1764 172 THR 90 0.00000 0 0.00000 -62.32957 -32.60764 106.19315 B1 91 1765 173 VAL N 173 VAL -62.28706 -32.56397 107.19363 B1 91 0.00000 1766 H -62.87984 -33.81113 105.53718 B1 0.00000 1767 173 VAL 91 CA ·CB 173 VAL 0.00000 1768 -63.87967 -34.51911 106.47899 B1 91 91 1769 173 VAL 0.00000 -64.50006 -35.77324 105.85034 B1 CG1 173 VAL 0.00000 1770 CG2 -63.20452 -34.90248 107.79466 B1 91 91 0.00000 1771 173 VAL -63.51710 -33.59419 104.16716 B1 С 1772 -63.18750 -34.24452 103.18126 Bl 91 0.00000 173 VAL 0 92 60 0.00000 1773 174 GLN -64.41211 -32.59570 104.14711 B1 N -64.59818 -32.11269 105.00138 B1 -65.14373 -32.19104 102.94243 B1 1774 174 GLN Н 92 0.00000 1775 92 0.00000 174 GLN CA 1776 174 GLN -65.76132 -30.80951 103.22574 B1 92 0.00000 CB 0.00000 -66.77986 -30.26016 102.21318 Bl 92 1777 174 GLN CG 1778 174 GLN -66.09397 -29.58024 101.04012 B1 92 0.00000 CD 1779 92 0.00000 174 GLN OE1 -65.45924 -28.54065 101.15380 Bl 92 0.00000 1780 99.87453 Bl 174 GLN -66.26402 -30.18961 NE2 0.00000 1781 174 GLN HE21 -66.63226 -31.11966 99.82928 B1 92 0.00000 HE22 -65.97833 -29.74839 99.02730 B1 92 1782 174 GLN 92 -64.36067 -32.18074 101.63553 B1 0.00000 174 GLN 1783 C -64.88582 -32.51356 100.57991 Bl 0.00000 174 GLN 1784 0 93 -63.09233 -31.77447 101.73327 Bl 0.00000 1785 175 ARG N 93 -62.69754 -31.53564 102.62225 B1 0.00000 1786 175 ARG H 0.00000 -62.31707 -31.78835 100.50018 B1 1787 175 ARG CA. 0.00000 <u>9</u> 3 -61.85817 -30.36631 100.16958 B1 1788 175 ARG CB

DRI	_KIN2.CRD	,	Thu Feb	25 14:58:	48 1993	29	
1789	175 ARG		-61 2439	5 -30.2691	4 98.77310 Bl	93	0.00000
1790				7 -28.8420		93	0.00000
1791		NE		7 -28.8721		93	0.00000
1792				6 -29.7691		93	0.00000
1793				5 -27.7492		93	0.00000
1794	175 ARG	NH1		3 -27.8357		93	0.00000
1795	175 ARG		1 -58.1941	-27.02728	95.28229 B1	93	0.00000
1796	175 ARG			-28.73459		93	0.00000
1797	175 ARG	NH2		7 -26.55682		93	0.00000
1798	175 ARG			3 -25.70796		93	0.00000
1799	175 ARG	HH22		-26.50975		93	0.00000
1800	175 ARG	C		-32.79150		93	0.00000
1801	175 ARG	0		-33.52738		93	0.00000
1802	176 ARG	N		-32.85103		94	0.00000
1803	176 ARG	H		-32.31340		94	0.00000
1804	176 ARG	CA		-33.80802		94	0.00000
1805	176 ARG	CB		-33.62483		94	0.00000
1806	176 ARG	CG		-32.37173		94	0.00000
1807	176 ARG	CD		-32.28237		94	0.00000
1808	176 ARG	NE		-30.94018		94 94	0.00000 0.00000
1609 1810	176 ARG 176 ARG	HE Cr			103.53710 B1 105.19759 B1	94	0.00000
1811	176 ARG	CZ NH1			105.19739 B1	94	0.00000
1812	176 ARG	HH11			106.50132 B1	94	0.00000
1813	176 ARG			-28.69008		94	0.00000
1814	176 ARG	NH2		-31.57276		94	0.00000
1815	176 ARG	HH21			106.75753 B1	94	0.00000
1816	176 ARG			-32.51329		94	0.00000
1817	176 ARG	С		-35.27348		94	0.0000
1818	176 ARG	0			101.06767 B1	94	0.00000
1819	177 VAL	и			101.85272 B1	95	0.0000
1820	177 VAL	H		-34.82991	102.18430 Bl	95	0.00000
1821	177 VAL	CA	-61.32863	-36.91608	101.70299 B1	95	0.00000
1822	177 VAL	CB .	-61.79519	-37.47193	103.06780 Bl	95	0.00000
1823	177 VAL	CG1		-39.00335	103.05589 B1	95	0.00000
1824	177 VAL	CG2		-37.00753		95	0.00000
1825	177 VAL	С		-37.02458	100.63553 B1	95	0.00000
1826	177 VAL	0		-37.67295		95	0.00000
1827	178 HIS	N		-36.33028	99.52296 Bl	96	0.00000
1828	178 HIS	H	-61.32158		99.39184 B1	96	0.00000
1829	178 HIS	CA	-63.09845		98.41659 B1	9 6	0.00000
1830	178 HIS	CB	-64.01495		98.57314 B1	96 96	0.00000
1831 1832	178 HIS 178 HIS	CG		-35.21481 -35.62002	97.74669 B1 96.46944 B1	96	0.00000
1833	178 HIS	-ND1 HD1	-64.50806		95.96816 Bl	96	0.00000
1834	178 HIS	CD2	-66.58524		98.14872 B1	96	0.00000
1835	178 HIS	NE2	-67.39749		97.08780 B1	96	0.00000
1836	178 HIS		-66.60728		96.05191 B1	96	0.00000
1837	178 HIS		-62.34621		97.09131 B1	96	0.00000
1838	178 HIS		-61.22615		97.07091 B1	96	0.00000
1839	178 HIS		-62.87363		96.08799 Bl	96	0.00000

FIG. 31

Inhibition of 125 I HA (306-318)/DRI. by unlabeled CSG of and B peptides

*HA/DR1 compact dimer signal (densitometric units)

INTERNATIONAL SEARCH REPORT

International application No. PCT/US94/05697

									
IPC(5)									
	to International Patent Classification (IPC) or to both								
B. FIEI	LDS SEARCHED								
Minimum d	locumentation searched (classification system followed	d by classification symbols)	· · · · · · · · · · · · · · · · · · ·						
U.S. :	424/185.1, 186.1, 190.1, 242.1; 530/327, 326, 333,	334, 388.75							
Documentat	tion searched other than minimum documentation to the	e extent that such documents are included	in the fields searched						
Electronic d	data base consulted during the international search (na	ame of data base and, where practicable	, search terms used)						
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT	 							
Category*	Citation of document, with indication, where ap	opropriate, of the relevant passages	Relevant to claim No.						
×	The Journal of Immunology, Volissued 15 April 1993, Nauss et al Peptides in a Structural Homology MHC ", page 41A, Abstract 221,	., " Binding Interactions of y Model of the DR1 Class	1, 3-20						
x	Nature, Volume 358, issued 27 A	ugust 1992. Chicz et al	12						
	"Predominant Naturally Processed		******						
Υ	DR1 are derived from MHC-re		1, 3-7						
	Heterogenous in Size", pages 764-		•						
	2, and Table 3.								
		Į.							
		•							
X Furth	ner documents are listed in the continuation of Box C	See patent family annex.							
* Sp	ecial categories of cited documents:	"T" later document published after the inte							
	cument defining the general state of the art which is not considered be of particular relevance	principle or theory underlying the inve							
"E. car	rlier document published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be considered.							
	cument which may throw doubts on priority claim(s) or which is ed to establish the publication date of another citation or other	when the document is taken alone	•						
spo	ecial reason (as specified)	"Y" document of particular relevance; the considered to involve an inventive	step when the document is						
	cument referring to an oral disclosure, use, exhibition or other	combined with one or more other such being obvious to a person skilled in th							
the	cument published prior to the international filing date but later than e priority date claimed	*&* document member of the same patent	-·-·						
Date of the	actual completion of the international search	Date of mailing of the international sea	rch report						
01 SEPTE	EMBER 1994	1 3 SEP 1994.							
	nailing address of the ISA/US mer of Patents and Trademarks	Authorized officer	A ₂						
Box PCT		H. Sidberry	za for						
	n, D.C. 20231 In (703) 305-3230	Telephone No. (703) 308-0196	/						

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US94/05697

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
	The second of th	Relevant to claim 140
Y	The Journal of Immunology, Volume 150, No. 2, issued 15 January 1993, Boehncke et al., "The Importance of Dominant Negative Effects of Amino Acid Side Chain Substitution in Peptide-MHC Molecule Interactions and T Cell Recognition", pages 331-341, see Abstract, on page 331.	8-11
K	The EMBO Journal, Volume 9, No. 6, issued 1990, Jardetzky et al., "Peptide binding to HLA-DR1: a Peptide with most residues substituted to alanine retains MHC binding", pages 1797-1803, see page 1798, page 1800, figure 4, and page 1801, figure 7.	512
Ż	Nature, Volume 332, issued 28 April 1988, Brown et al., "A hypothetical model of the foreign antigen binding site of Class II histocompatibility molecules", pages 845-850, see pages 845-849.	1, 3, 4
·		
	·	

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US94/05697

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)		
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:		
Claims Nos.: 2 because they relate to subject matter not required to be searched by this Authority, namely:		
Claim 2 is directed to a computerized model which encompasses scientific theory and computer programs to the extent that the International Searching Authority is not equipped to search prior art concerning such programs. Accordingly claim 2 is withdrawn from search under PCT Rule 39 and PCT Article 17(2)(a)(i).		
Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:		
3. Claims Nos.:		
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).		
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)		
This International Searching Authority found multiple inventions in this international application, as follows:		
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.		
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.		
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:		
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:		
Remark on Protest The additional search fees were accompanied by the applicant's protest.		
No protest accompanied the payment of additional search fees.		