Week 2 Homework - Summer 2020

(!) This is a preview of the published version of the quiz

Started: May 9 at 12:02pm

Quiz Instructions

Please answer all the questions below.

Question 1 1 pts

(Lesson 2.1: Derivatives.) BONUS: If $f(x) = \ell n(2x-3)$, find the derivative f'(x).

- a. 2x
- \bigcirc b. $rac{1}{2}\ell n(2x-3)$
- \bigcirc c. 2/(2x-3)
- \bigcirc d. $oldsymbol{x/2}$

Question 2 1 pts

(Lesson 2.1: Derivatives.) BONUS: If $f(x) = \cos(1/x)$, find the derivative f'(x).

- \bigcirc a. $\cos(1/x^2)$
- \odot b. $\sin(1/x^2)$
- \bigcirc c. $-rac{1}{x^2}\sin(1/x)$
- \bigcirc d. $rac{1}{x^2} \sin(1/x)$

Question 3 1 pts

(Lesson 2.2: Finding Zeroes.) BONUS: Suppose that $f(x) = e^{4x} - 4e^{2x} + 4$. Use any method you want to find a zero of f(x), i.e., x such that f(x) = 0.

- \bigcirc a. $oldsymbol{x}=oldsymbol{0}$
- \bigcirc b. $oldsymbol{x}=oldsymbol{1}$
- \bigcirc c. $x=\ell n(2)=0.693$
- \bigcirc d. $x=rac{1}{2}\ell n(2)=0.347$

Question 4 1 pts

(Lesson 2.3: Integration.) BONUS: Find $\int_0^1 (2x+1)^2 dx$.

- a. 1/2
- O b. 7/2
- C. 7/3
- od. 13/3

Question 5 1 pts

(Lesson 2.3: Integration.) BONUS: Find $\int_1^2 e^{2x} dx$.

- (a. 1
- \bigcirc b. e^2-e
- oc. 23.6

od. 46.2

Question 6	1 pts
(Lesson 2.3: Integration.) BONUS: Find $\lim_{x\to 0} \frac{\sin(x)-x}{x}$.	
O b. 0	
	

Question 7 1 pts

(Lesson 2.4: Numerical Integration.) BONUS: Find the approximate value of the integral $\int_0^2 (x-1)^2 dx$ using the lesson's form of the Riemann sum with $f(x)=(x-1)^2, a=0, b=2$, and n=4.

- a. -2
- ob. 1/3
- c. 3/4
- Od. 3

Question 8 1 pts

(Lesson 2.5: Probability Basics.) If P(A) = P(B) = P(C) = 0.6 and A, B, and C are independent, find the probability that exactly one of A, B, and C occurs.

a. 0.144

b. 0.288

c. 0.576

d. 0.6

e. I'm from The University Of Georgia. Is the answer -3?

Question 9	1 pts
(Lesson 2.5: Probability Basics.) Toss 3 dice. What's the probability that a "4" v come up exactly twice?	vill
a. 5/72	
○ b. 1/2	
O d. 1/8	

Question 10 1 pts

(Lesson 2.6: Simulating Random Variables.) BONUS: Suppose U and V are independent Uniform(0,1) random variables. (You can simulate these using the RAND() function in Excel, for instance.) Consider the nasty-looking random variable

$$Z = \sqrt{-2\ell n(U)}\cos(2\pi V),$$

where the cosine calculation is carried out in radians (not degrees). Go ahead and

don't be afraid. Now, repeat this task 1000 times (easy to do in Excel) stogram of the 1000 Z 's. What distribution does this look like?
al
•

Question 11	1 pts
(Lesson 2.7: Great Expectations.) Suppose that $m{X}$ is a discrete random variab having $m{X}=-m{1}$ with probability 0.2, and $m{X}=m{3}$ with probability 0.8. Find $m{E}[m{X}]$	
○ a1	
O b. 3	
○ c. 1	
O d. 2.2	

Question 12	1 pts
(Lesson 2.7: Great Expectations.) Suppose that $m{X}$ is a discrete random varial having $m{X} = -1$ with probability 0.2, and $m{X} = 3$ with probability 0.8. Find $m{Var}$	
a1	
c. 2.56	
O d. 5.12	

Question 13 1 pts

(Lesson 2.7: Great Expectations.) Suppose that X is a discrete random variable having X=-1 with probability 0.2, and X=3 with probability 0.8. Find $\mathbf{E}[3-\frac{1}{X}]$.

- (a. 3
- ∩ b. ∞
- Oc. -2
- d. 44/15

Question 14 1 pts

(Lesson 2.7: Great Expectations.) Suppose X is a continuous random variable with p.d.f. $f(x)=4x^3$ for $0\leq x\leq 1$. Find ${\rm E}[1/X^2]$.

- a. 2/3
- O b. 1
- c. 3/2
- Od. 2

Question 15 1 pts

(Lesson 2.8: Functions of a Random Variable.) Suppose X is the result of a 5-sided die toss having sides numbered -2, -1, 0, 1, 2. Find the probability mass function of $Y = X^2$.

 \bigcirc a. P(Y=1) = P(Y=4) = 1/2

$$\bigcirc$$
 b. $\mathrm{P}(Y=1)=\mathrm{P}(Y=2)=1/2$

$$\bigcirc$$
 c. $P\left(Y=0
ight)=rac{1}{5},\ and\ P\left(Y=1
ight)=P\left(Y=4
ight)=rac{2}{5}$

$$\bigcirc$$
 d. $\mathrm{P}(Y=-2)=\mathrm{P}(Y=-1)=\mathrm{P}(Y=0)=\mathrm{P}(Y=1)=\mathrm{P}(Y=2)=1/5$

Question 16

1 pts

(Lesson 2.8: Functions of a Random Variable.) Suppose X is a continuous random variable with p.d.f. f(x)=2x for 0< x<1. Find the p.d.f. g(y) of $Y=X^2$. (This may be easier than you think.)

$$\bigcirc$$
 a. $g(y) = 1$, for $0 < y < 1$

$$\bigcirc$$
 b. $g(y) = y$, for $0 < x < 1$

$$\bigcirc$$
 c. $g(y) = y^2$, for $-1 < y < 1$

$$\bigcirc$$
 d. $g(y) = x^2$, for $0 < y < 1$

Question 17

1 pts

(Lesson 2.9: Jointly Distributed RVs.) Suppose that f(x,y)=6x for $0 \le x \le y \le 1$. Find $\mathrm{P}(X < 1/2 \text{ and } Y < 1/2)$.

- a. 1
- b. 1/2
- o. 1/4
- od. 1/8

Question 18 1 pts

(Lesson 2.9: Jointly Distributed RVs.) Suppose that f(x,y)=6x for $0\leq x\leq y\leq 1$. Find the marginal p.d.f. $f_X(x)$ of X.

- \bigcirc a. 6x(1-x), for $0 \leq x \leq 1$
- \bigcirc b. 6x, for $0 \leq x \leq 1$
- \bigcirc c. 6y, for $0 \leq x \leq 1$
- \bigcirc d. 6x(1-y), for $0 \leq x \leq 1$

Question 19 1 pts

(Lesson 2.9: Jointly Distributed RVs.) YES or NO? Suppose X and Y have joint p.d.f. $f(x,y)=cxy/(1+x^2+y^2)$ for 0 < x < 1, 0 < y < 1, and whatever constant c makes the nasty mess integrate to 1. Are X and Y independent?

- a. Yes
- b. No

Question 20 1 pts

(Lesson 2.10: Conditional Expectation.) BONUS: Suppose that

f(x,y)=6x for $0\leq x\leq y\leq 1$. Hint (you may have seen this someplace): the marginal p.d.f. of X turns out to be

 $f_{X}\left(x
ight)=6x\left(1-x
ight)$ for $0\leq x\leq 1$. Find the conditional p.d.f. of Y given that X=x.

 \bigcirc a. $f(y|x)=rac{1}{1-x}, \quad 0 \leq x \leq y \leq 1$

$$\bigcirc$$
 b. $f(y|x)=rac{1}{1-x}, \quad 0 \leq x \leq 1$

$$\bigcirc$$
 c. $f(y|x)=rac{1}{1-y}, \quad 0 \leq y \leq 1$

$$\bigcirc$$
 d. $f(x|y)=rac{1}{1-x}, \quad 0 \leq x \leq y \leq 1$

Question 21 1 pts

(Lesson 2.10: Conditional Expectation.) BONUS: Again suppose that

f(x,y)=6x for $0\leq x\leq y\leq 1$. Hint (you may already have seen this someplace): the the marginal p.d.f. of X turns out to be $f_X\left(x\right)=6x\left(1-x\right)$ for $0\leq x\leq 1$. Find $\mathsf{E}[Y|X=x]$.

$$\bigcirc$$
 a. $\mathsf{E}[Y|X=x]=1/2, \quad 0 \leq x \leq 1$

$$\bigcirc$$
 b. $\mathsf{E}[Y|X=x]=rac{1+x}{2},\quad 0\leq x\leq 1$

$$\bigcirc$$
 c. $\mathsf{E}[Y|X=x]=rac{1+y}{2}, \quad 0\leq y\leq 1$

$$\bigcirc$$
 d. $\mathsf{E}[X|Y=y]=rac{1+y}{2}, \quad 0\leq y\leq 1$

Question 22 1 pts

(Lesson 2.10: Conditional Expectation.) BONUS: Yet again suppose that f(x,y)=6x for $0\leq x\leq y\leq 1$. Hint (you may already have seen this someplace): the the marginal p.d.f. of X turns out to be $f_X\left(x\right)=6x\left(1-x\right)$ for $0\leq x\leq 1$. Find $\mathsf{E}[\mathsf{E}[Y|X]]$.

- a. 1/2
- ob. 2/3
- o. 3/4

O d. 1

Question 23	1 pts
(Lesson 2.11: Covariance and Correlation.) Suppose that the correlation between December snowfall and temperature in Siberacuse, NY is -0.5 . Further suppose that $Var(S) = 100$ in and $Var(T)$ (degrees F)2. Find $Cov(S,T)$ (in units of degree inches, whatever those are).	=25
○ a25	
○ b5	
O d. 25	

Question 24	1 pts
(Lesson 2.11: Covariance and Correlation.) If X and Y both have mean — variance 4, and ${\sf Cov}(X,Y)=1$, find ${\sf Var}(3X-Y)$.	∙ 7 and
○ a. 34	
o b. 36	
O d. 41	

Question 25 1 pts

(Lesson 2.12: Probability Distributions.)

You may recall that the p.m.f. of the Geometric (p) distribution is $f(x)=(1-p)^{x-1}p, x=1,2,\ldots$

If the number of orders at a production center this month is a Geom(0.7) random variable, find the probability that we'll have at most 3 orders.

- a. 0.027
- b. 0.14
- c. 0.86
- d. 0.973

Question 26 1 pts

(Lesson 2.12: Probability Distributions.) Suppose the SAT math score of a University of Georgia student can be approximated by a normal distribution with mean 400 and variance 225. Find the probability that the UGA Einstein will score at least a 415.

- a. 0.5
- ob. 0.1587
- c. 0.975
- d. 0.8413

Question 27 1 pts

(Lesson 2.13: Limit Theorems.)

What is the most-important theorem in the universe?

- a. Eastern Limit Theorem
- b. Central Limit Theorem

○ c. Central Limit Serum
d. Central Simit Theorem (simit is a tasty Turkish bagel)

Question 28	1 pts
(Lesson 2.13: Limit Theorems.) If X_1,\ldots,X_{400} are i.i.d. from some distribution mean 1 and variance 400, find the approximate probability that the sample me between 0 and 2.	
○ a. 0.1587	
○ b. 0.3174	
○ c. 0.6826	
○ d. 0.8413	

Question 29	1 pts
(Lesson 2.14: Estimation.) Suppose we collect the following observations: 7, -2 , 1, 6. What is the sample variance?	;
○ a. 13	
\bigcirc b. $\sqrt{13}$	
c. 18	
O d. 28	

Question 30 1 pts

(Lesson 2.14: Estimation.) BONUS: Consider two estimators, T_1 and T_2 , for an unknown parameter θ . Suppose that the $\operatorname{Bias}(T_1)=0$, $\operatorname{Bias}(T_2)=\theta$, $\operatorname{Var}(T_1)=4\theta^2$, and $\operatorname{Var}(T_2)=\theta^2$. Which estimator might you decide to use and why? a. T_1 - it has lower expected value b. T_1 - it has lower MSE c. T_2 - it has lower variance

Question 31

(Lesson 2.15: Maximum Likelihood Estimation.) BONUS: Suppose that X_1, X_2, \ldots, X_n are i.i.d. $\operatorname{Pois}(\lambda)$. Find $\hat{\lambda}$, the MLE of λ . (Don't panic --- it's not that difficult.)

a. \overline{X} b. $1/\overline{X}$ c. $n/\sum_{i=1}^x X_i$ d. S^2

Question 32

(Lesson 2.15: Maximum Likelihood Estimation.) BONUS: Suppose that we are looking at i.i.d. $\operatorname{Exp}(\lambda)$ customer service times. We observe times of 2, 4, and 9 minutes. What's the maximum likelihood estimator of λ^2 ?

(a. 5)

(b. 1/5)

c. 25			
od. 1/25			

Question 33 1 pts

(Lesson 2.16: Confidence Intervals.) BONUS: Suppose we collect the following observations: 7, -2, 1, 6 (as in a previous question in this homework). Let's assume that these guys are i.i.d. from a normal distribution with unknown variance σ^2 . Give me a two-sided 95% confidence interval for the mean μ .

- \bigcirc a. [-2, 7]
- \bigcirc b. $[-3.75,\ 9.75]$
- \bigcirc c. [-6.75, 6.75]
- \bigcirc d. [3.75, 9.75]

Not saved

Submit Quiz