Отчет по лабораторной работе №2: Задача о погоне

дисциплина: Математическое моделирование

Сасин Ярослав Игоревич, НФИбд-03-18

Содержание

Введение	
Цель работы	
Задачи	
Объект и предмет исследования	
Теоретические сведения: Задача о погоне	
Формулировка задания	
Постановка задачи	
Реализация модели	
Подключение библиотек	
Функции, описывающие движениие лодки и катера	
Функция перехода из декартовых координаи в полярные	
Начальные значения	
Нахождение промежуточных координат и построение графиков	
Построенный график	
Выволы	

Введение

Цель работы

Основной целью лабораторной работы можно считать Ппостроение математической модели для выбора правильной стратегии при решении задачи о погоне.

Задачи

Можно выделить три основные задачи данной лабораторной работы:

- 1. Провести рассуждения и вывод дифференциальных уравнений, если скорость катера больше скорости лодки в 4.5 раза;
- 2. Построить траекторию движения катера и лодки для двух случаев;
- 3. Определить по графику точку пересечения катера и лодки.

Объект и предмет исследования

Объектом исследования в данной лабораторной работе является задача о погоне, а предметом исследования - траектории движения лодки браконьеров и катера берешлвлй охраны при заданных начальных условиях.

Теоретические сведения: Задача о погоне

Формулировка задания

Вариант 26

На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии 15,5 км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 4,5 раза больше скорости браконьерской лодки. 1. Запишите уравнение, описывающее движение катера, с начальными условиями для двух случаев (в зависимости от расположения катера относительно лодки в начальный момент времени). 2. Постройте траекторию движения катера и лодки для двух случаев. 3. Найдите точку пересечения траектории катера и лодки

Постановка задачи

- 1. Принимаем $t_0=0$, $x_{l0}=0$ место нахождения браконьеров в момент обнаружения, $x_{k0}=15$,5 место нахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки.
- 2. Введем полярные координаты. Считаем, что полюс это точка обнаружения лодки браконьеров x_{l0} ($\theta=x_{l0}=0$), а полярная ось r проходит через точку нахождени катера береговой охраны,
- Траектория катера должна быть такой, чтобы и катер, и лодка все время были в одном расстоянии от полюса θ, только в этом случае траектория катера пересечется с траекторией лодки.
 Поэтому для начала катер береговой охраны должен двигаться некоторое время прямолинейно, пока не окажется на том же расстоянии от полюса, что и лодка браконьеров. После этого катер береговой охраны должен двигаться вокруг полюса, удаляясь от него с той же скоростью, что и лодка браконьеров.
- 4. Чтобы найти расстояние x (расстояние, после которого катер начнет двигаться вокруг полюса), необходимо составить простое уравнение, Пусть через время t катер и лодка окажутся на одном расстоянии x от полюса. За это время лодка пройдет x, а катер k-x (или k+x, в зависимости от начального положения катера относительно полюса). Время, за которое они пройдет это расстояние, вычисляется как x/v или k-x/3,5v (во втором случае x+k/5,5v). Так как время одно и то же, то эти величины одинаковы. Тогда неизвестное расстояние x можно найти из

следующего уравнения: $\frac{x}{v} = \frac{k-x}{3,5v}$ в первом случае или $\frac{x}{v} = \frac{x+k}{5,5v}$ во втором случае. Отсюда мы найдем два значения $x_1 = \frac{k}{3} = \frac{15,5}{3,5}$ и $x_2 = k = \frac{15,5}{5,5}$.

- 5. После того, как катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса, удаляясь от него со скоростью лодки v. Для этого скорость катера раскладываем на две составляющие: v_r радиальная скорость и v_τ тангенсальная скорость. Радиальная скорость это скорость, с которой катер удаляется от полюса, $v=\frac{dr}{dt}$. Нам нужно, чтобы эта скорость была равна скорости лодки, поэтому полагаем, что $\frac{dr}{dt}=v$. Тангенсальная скорость это линейная скорость вращения катера относительно полюса. Она равна произведению угловой скорости $\frac{d\theta}{dt}r\ v=r\frac{d\theta}{dt}$. $v_\tau=\sqrt{20,25v^2-v^2}=\sqrt{19,25}v\ v\ r\frac{d\theta}{dt}=\sqrt{19,25}v$.
- 6. Решение исходной задачи сводится к решению дифференциального уравнения $\frac{dr}{d\theta} = \frac{r}{\sqrt{19.25}}$ с начальными условиями

$$\begin{cases} \theta_0 = 0 \\ r_0 = \frac{15.5}{5.5} \end{cases}$$

7. или

$$\begin{cases} \theta_0 = -\pi \\ r_0 = \frac{11.5}{3.5} \end{cases}$$

Реализация модели

Подключение библиотек

Для того, чтобы использовать многие формулы, а также для построения графиков, необходимо подключить определенные библиотеки, в которых эти формулы описаны:

import numpy as np
from math import sqrt, pi, tan
import scipy.integrate as itg
import matplotlib.pyplot as plt

Функции, описывающие движениие лодки и катера

Для катера береговой охраны:

```
def dx(r, theta):
    dr = r / sqrt(19.25)
    return dr
Для лодки браконьеров:
def dxdx(t):
    xt = tan(fi) * t
    return xt
Функция перехода из декартовых координаи в полярные
def cart2pol(x, y):
    rho = np.sqrt(x**2 + y**2)
    phi = np.arctan2(y, x)
    return(rho, phi)
Начальные значения
Начальные условия задаются следующим образом:
s = 15.5 # Начальное расстояние от лодки до катера
fi = 3 * pi / 4
# Для случая 1
# Для катера береговой охраны
r0 = 15.5 / 5.5
theta0 = 0
theta = np.arange(theta0, 2 * pi, 0.01)
# Для лодки браконьеров
t0 = 0
t = np.arange(t0, 13, 1)
# Для случая 2
# Для катера береговой охраны
r0 = 15.5 / 3.5
theta0 = - pi
theta = np.arange(theta0, 2 * pi, 0.01)
# Для лодки браконьеров
t0 = 0
t = np.arange(t0, 30, 1)
Нахождение промежуточных координат и построение графиков
r = sp.odeint(dx, r0, theta)
[rho, phi] = cart2pol(t, dxdx(t))
plt.polar(theta, r)
plt.polar(phi, rho)
```

Построенный график

В первом случае при запуске получившейся программы получаем следующий график (рис.1):

График движения лодки браконьеров и катера береговой охраны при $s=15.5, n=5.5, \theta=0, r_0=15.5/5.5$

Во втором случае при запуске получившейся программы получаем следующий график (рис.2):

График движения лодки браконьеров и катера береговой охраны при s=15.5, n=3.5, $\theta=-\pi, r_0=15.5/3.5$

Выводы

В ходе выполнения лабораторной работы была изучена модель задачи о погоне, а также способ ее решения.