Ottimizzazione Strutturale e Ottimizzazione Topologica

Claudio Caccia

Progetto di Strutture Aerospaziali

Politecnico di Milano

May 11, 2016

Outline

- Descrizione del Problema
- Definizione di un Modello di Ottimizzazione
- Categorie di modelli di Ottimizzazione
- Ottimizzazione strutturale: Classificazione
- Ottimizzazione Topologica [OT]
- OT: algoritmi
- OT: esempi
- OT: implementazioni SW
- Conclusioni

Elementi dell'ottimizzazione strutturale:

- modello strutturale
- modello di ottimizzazione
- algoritmo di ottimizzazione

Modello di ottimizzazione

- Modello strutturale:
 - struttura reale ⇒ modello
 - funzione obiettivo e vincoli descritti come variabili del modello x
- Algoritmo di ottimizzazione:
 - porta da soluzione iniziale x_0 a x_f
- Modello di ottimizzazione:
 - ponte tra struttura e algoritmo
 - valuta f.o. e vincoli
 - traduce le variabili strutturali in design variables

Schema

Schema di ottimizzazione:

Figure: Optimization schema [4]

Formulazione

Forma generale [6]:

$$\min \qquad f(\mathbf{x}) \qquad \mathbf{x} \in \mathbb{R}^n \tag{1}$$

subject to
$$g_j(\mathbf{x}) \leq 0$$
 $j = 1, \dots, m$ (2)

$$h_k(\mathbf{x}) = 0 \quad k = 1, \dots, r \tag{3}$$

$$\check{x}_i \le x_i \le \hat{x}_i \quad i = 1, \dots, n \tag{4}$$

Definizione dei termini

- Funzione obiettivo
- inequality constraints: definiscono le regioni di validità della f.o.
- equality constraints: sono sempre attivi
- side constraints: definiscono la regione di ricerca delle variabili

Categorie di Modelli

- lineare, non-lineare [5]
- continuo, discreto
- vincolato, non vincolato
- convex optimization [1]
- multi-objective [3]
- modelli euristici vs. esatti
- metodi rilassati
- . . .

Note (1)

Ottimizzazione multi-obiettivo

- Frontiera di Pareto
- definizione a priori delle preferenze
 - pb. di omogeneizzazione (costo?)
- trasformazione di obiettivi in vincoli

Note (2)

Convex optimization

In un certo senso più semplice. Strumenti molto potenti. Varie implementazioni software (ad es. www.cvxopt.org)

Rilassamento dei vincoli

Possibilità di ridurre la complessità del pb. modificando opportunamente i vincoli del problema.

Varie tecniche, in particolare da binario [0,1] a continuo.

Ottimizzazione Strutturale

Classificazione dei modelli di O.S.[2]

- Sizing Optimization
- Shape Optimization
- Topological Optimization

Sizing Optimization

Parametri

- Spessori
- Aree
- momenti d'inerzia
- 4 . .

Figure: minimo peso con vincolo su sforzi

Table

Treatments	Response 1	Response 2
Treatment 1	0.0003262	0.562
Treatment 2	0.0015681	0.910
Treatment 3	0.0009271	0.296

Table: Table caption

Theorem

Theorem (Mass-energy equivalence)

$$E = mc^2$$

Verbatim

```
Example (Theorem Slide Code)
\begin{frame}
\frametitle{Theorem}
\begin{theorem}[Mass--energy equivalence]
$E = mc^2$
\end{theorem}
\end{frame}
```


Citation

An example of the \cite command to cite within the presentation:

This statement requires citation [?].

References

Stephen Boyd and Lieven Vandenberghe.

Convex optimization.

Cambridge university press, 2004.

Peter W Christensen and Anders Klarbring.

An introduction to structural optimization, volume 153.

Springer Science & Business Media, 2008.

Jean-Antoine Désidéri.

Hierarchical shape optimization: Cooperation and competition in multi-disciplinary approaches.

Technical report, INRIA, 2010.

Hans Eschenauer, Niels Olhoff, and Walter Schnell.

Applied structural mechanics: fundamentals of elasticity, load-bearing structures, structural optimization: including exercises.

Springer Science & Business Media, 1997.

Robert J Vanderbei.

Linear programming.

The End

