Writing Portable Building Analytics with the Brick Metadata Schema

Gabe Fierro, UC Berkeley
ACM E-Energy
gtfierro@eecs.berkeley.edu

Outline

1. Lecture on Brick Schema

2. Overview of Mortar platform

3. Guided exploration of Mortar with online tutorial

Resources

Brick Website

https://brickschema.org/

Mortar Website https://mortardata.org/

Tutorial Page https://tutorial.mortardata.org/

Brick Explore Tool
https://querybuilder.mortardata.org/

Applications	Demand Response	Occupant Interaction	NILM	
Applications	Occupancy Models	Predictive Control	Fault Detection	
Management	APIs	Data Storage	Access Control	
Services	Monitoring	Search	Privacy	
Buildings	Residential	Large Commercial	Factory	
	Research Lab	Small Commercial	Hospital	
Sensors	HVAC	Appliances	Lighting	
Equipment	Fire Safety	Conditioning	Metering	

Heterogeneity

- Different BMS, equipment vendors
- Custom-designed controls, systems, architecture
- All of this changes over time

Buildings	Residential	Residential Large Commercial	
	Research Lab	Small Commercial	Hospital
Sensors Equipment	HVAC	Appliances	Lighting
	Fire Safety	Conditioning	Metering

Existing Metadata Schemata

- Survey 90 apps from building science literature
- Decompose apps into "things" and "relationships"

Can existing schemas describe what's needed?

- NO!

	IFC	SSN	Haystack
Tag Coverage	29%	11%	54%
Relationships	n/a	Only spatial	n/a

Bhattacharya, Arka, Joern Ploennigs, and David Culler. "Short Paper: Analyzing Metadata Schemas for Buildings: The Good, the Bad, and the Ugly." *BuildSys*, 2015.

- Write applications against BRICK
- Apps become agnostic to the underlying hardware
- No more hard-coding points in applications
- "Write once, run anywhere"

Brick Schema

- Graph-based metadata schema for smart buildings
- Capture physical, logical, virtual entities in buildings using a class hierarchy
- Capture the necessary relationships between them
- Use Brick to describe timeseries data and its context

https://brickschema.org

Brick Schema: Class Structure

- Standardized class structure enables discoverability
- Extensible: allow site/deployment-specific classes

Brick Schema: Relationships

- Relationships capture how "things" relate to each other
- Relationships can be transitive, symmetrical
- Help Brick extend to cover new settings, equipment

Brick Schema: Relationships

Relationship	Definition
contains/isLocatedIn	Spatial location of the subject: room, building, campus, city chain
controls/isControlledBy	Identifies the affected subject of some control block (probably a functional block)
hasPart/isPartOf	Mechanical composition
hasPoint/isPointOf	Associates measurement points/timeseries with the entity it measures for
feeds/isFedBy	The passage of some medium: light, air, power, water, etc
type/isTypeOf	Instantiates "things"

A Brick Model is a Graph

Nodes = "things"

- Building assets
- Equipment
- Subsystems
- Class structure

Edges = "relationships"

- Location
- Control
- Connectivity
- Composition
- etc

- Have a set of physical, virtual "things" and points that an application wants to refer to

- Have a set of physical, virtual "things" and points that an application wants to refer to
- Brick defines a **hierarchical class structure** to define **standard names** for equipment, points, locations, etc

- Have a set of physical, virtual "things" and points that an application wants to refer to
- Brick defines a hierarchical class structure to define standard names for equipment, points, locations, etc
- Brick defines a set of **standard relationships** that describe how things are **connected**

A Brick model represents the assets and relationships and data in a building

An application queries a Brick model to retrieve the data + configuration it needs

Queries allow apps to account for building heterogeneity and **customize their operation** to each building.

This is called **application portability**

Outline

1. Lecture on Brick Schema

2. Overview of Mortar platform

3. Guided exploration of Mortar with online tutorial

Resources

Brick Website
https://brickschema.org/

Mortar Website https://mortardata.org/

Tutorial Page https://tutorial.mortardata.org/

Brick Explore Tool
https://guerybuilder.mortardata.org/

How do we build a platform that enables reproducible building research?

Why are Portable Applications Hard to Write?

- Hardcoded point names:
 - Lights in this building are WS86004.RELAYXX
- Assumptions about building subsystems
 - This building has room-level temperature sensors
- Tightly-coupled phases of operation:
 - Downloading, cleaning data often specific to the building at hand
- Access to different buildings:
 - Why write portably if you don't have to?
- How to name, describe and discover data
 - **Brick** gives us this abstraction: describe data in terms of types and relationships

Mortar Platform Contributions

 Open data set of buildings with timeseries data and Brick models

Modular, extensible architecture for portable analytics applications

 Data platform for the development, execution and evaluation of portable analytics

22 ©2017 RISELab

Air-based HVAC Systems

Radiant Heating/Cooling Systems

Rooftop Unit Systems

23

Air-based HVAC Systems

Radiant Heating/Cooling Systems

Rooftop Unit Systems

Open Dataset

- Live data for > 100 buildings
 - Up to 6 years of data
- Contextualized timeseries data
 - Each building has a Brick model
- Public API for data access
 - pymortar Python library
- Open source library of analytics applications

equipment exists and how it is monitored, (3) the

Dataset Overview

- 107 buildings
- > **13.5 billion** data points
- **26,000** data streams

All data streams described in per-site Brick models

All data available on https://mortardata.org/

Temperature Sensor	7380
Luminance Sensor	257
Occupancy Sensor	445
Pressure Sensor	148
Outside Air Temperature Sensor	362
Cloud Cover	32
Setpoints (generic)	2331
Power Meters	77
VAVs	4724
AHUs	467
HVAC Zones	4887
Dampers	1662
Non BMS Thermostats	123

©2017 RISELab

Dataset Overview

- UC Davis campus data
 - ~ 90 buildings (not all with data)
 - 3-6 years of data
 - ~15min collection interval
 - HVAC system, building meter

- XBOS-DR/V data

- 15 RTU-based buildings
- 1-9 months of data
- ~10-30sec collection interval
- HVAC, Lighting, building meter, occupancy, PV, EVSE

API for Heterogeneous Data

How do apps actually make use of this data?

- Need data representations that are application-appropriate
 - Simplify expressive and semantically rich underlying data model

- Application-specific dataset as a materialized view
 - Expressed as queries over Brick metadata + timeseries data

Contextualizing Timeseries Data

30

Declarative specification of app dataset

Execute against underlying data model

©2017 RISELab

From SELECT clause Autogenerated

temp	room	zone	temp_uuid	site
senl	Room 410	Zone 4	9788bdf63cf0	CompSciHall
sen2	Room 410	Zone 4	d7c96010da5c	CompSciHall
sen3	Room 411	Zone 4	b1607a419aa4	CompleiHall
sen4	Room 501	Zone 5	89f84f4ec34e	CompSciH 11

Yields app-specific (relational) table

	ffee4857- 0a4e-3a18- 808d- c94ad6801642	de32b7a8- 38ae-322b- a98f- 4d4dddd84e37	7d49226d- 32a0-328f- b8cb- 5c3dddbd40c5	dfde85ft 0a94-3e4l 9dct 05921a84088
2018-08-31 21:30:00+00:00	1306.0	52.0	105.0	Na
2018-08-31 22:00:00+00:00	1312.0	52.0	105.0	Na
2018-08-31 22:30:00+00:00	1312.0	52.0	105.0	Na
2018-08-31 23:00:00+00:00	1392.0	52.0	105.0	Na
2018-08-31 23:30:00+00:00	1350.0	52.0	105.0	Na

Example: Self-configuring Thermal Model

- Running optimal thermostatic control in ~20 buildings
 - Butcher shop, movie theatre, vets hall, senior center,
 office buildings, residential, etc
 - Different {equipment, sensors, architecture, climates}
- Requires data-driven thermal model:
 - Hand-code building-specific thermal model
 - Code a thermal model template app
 - App uses Mortar to configure itself to a building
 - 20 different thermal models with the same code base

Looking Forward: Applying RL to Building Controls

- Reduce the role of the expert in designing control schemes for buildings
 - Expert doesn't scale
- Need robust simulations to apply RL
 - Work on thermal model enables creating
 "digital twins" at scale
- How to write/deploy RL agents (at scale) for different deployment context?

©2017 RISELab

Outline

1. Lecture on Brick Schema

2. Overview of Mortar platform

3. Guided exploration of Mortar with online tutorial

Resources

Brick Website
https://brickschema.org/

Mortar Website https://mortardata.org/

Tutorial Page https://tutorial.mortardata.org/

Brick Explore Tool
https://guerybuilder.mortardata.org/

Interactive Portion

1. Go to mortardata.org and click "Sign Up" to make an account

2. Go to tutorial.mortardata.org

3. Complete the first 2 cells