CNN Architecture Summary

NCSOFT Vision AI Lab

김준호

https://github.com/taki0112

LeNet5

Characteristics	Contribution	Etc
Conv – Pooling – Activation	 Use of convolution to extra ct spatial features 	Slow to train
Average pooling	·	Hard to train (Neurons
Sigmoid activation & tanh activation	 Subsample using spatial average of maps 	dies quickly)
• 5x5 Convolution filter		
 7 layers and less than IM parameters 		

AlexNet

Characteristics	Contribution	Etc
• IIxII, 5x5, and 3x3 convolution	Relu activation	
 Max pooling 	Dropout for regularization	
• 3 FC	Local response normalization	
• 60M parameters	Image augmentation	
	Multiple GPU	

VggNet

VGG-16

Characteristics	Contribution	Etc
• 3x3 conv	Simple architecture	Many parameters
Max pooling	• Easy to use	
• I30M parameters	Practical	

GoogLeNet

Characteristics	Contribution	Etc
• x convolution	Depth reduction using IxI	Hard to use
Global average pooling		• Inception v2, v3, v4 ~
• 6.8 M parameters		

ResNet

Residual net

Characteristics	Contribution	Etc
Going deep	Skip connection	Pre-activation resnet
• IM parameters	• Easy to use	• ResNeXt
	Practical	

DenseNet

Characteristics	Contribution	Etc
• BN – Relu – conv	• Concatenation	More memory
• IM parameters	• Easy to use	
	Practical	

SENet

Squeeze

- Shrinking feature maps $\in \mathbb{R}^{w \times h \times c_2}$ through spatial dimensions $(w \times h)$
- Global distribution of channelwise responses

Excitation

- Learning $W \in \mathbb{R}^{c_2 \times c_2}$ to explicitly model channel-association
- Gating mechanism to produce channel-wise weights

Scale

ullet Reweighting the feature maps $\in \mathbb{R}^{w imes h imes c_2}$

SE-ResNet Module

Characteristics	Contribution	Etc
• Attention	• Easy to use	
	Practical	

U-Net

Framing U-Net

END

https://github.com/taki0112

김준호