

Projetando um DAC para RaspberryPi

Live 16 – Alimentação Pt. 3

Valeu apoiadores!

Alexandre

Alex G.

Ankra

Antonio

Beatriz

Cássio

Digão

Edson

Emanuel

Erik

Henrique R.

Leonardo B.

Leonardo C.

Luiz

Rogério

Na última live

Baixamos a bola!

Projeto TPS65131

Parâmetros

- $V_{IN} = 5V$
- V_{POS} = 8V
- $I_{POS} = 604mA \text{ (pk)}; 352mA \text{ (rms)}$
- $V_{NEG} = -8V$
- $I_{NEG} = 625 \text{mA (pk)}$; 377mA (rms)

Características TPS65131

- $V_{REF} = 1.213V$
- $f_{osc} = 1.38MHz$

Tensão de Saída

Para V_{POS}:

$$R_1 = R_2 \left(\frac{V_{pos}}{V_{ref}} - 1 \right) = R_2 \left(\frac{8}{1.213} - 1 \right) = 5.5952 R_2 \qquad R_3 = -R_4 \left(\frac{V_{neg}}{V_{ref}} \right) = R_4 \left(\frac{8}{1.213} \right) = 6.5952 R_4$$

Escolhemos R₁ e calculamos R₂:

$$R_1 = 1M\Omega \rightarrow R_2 = 178k\Omega$$

$$V_{POS}(real) = 8.03V$$

Para V_{NEG}:

$$R_3 = -R_4 \left(\frac{V_{neg}}{V_{ref}}\right) = R_4 \left(\frac{8}{1.213}\right) = 6.5952 R$$

Escolhemos R₃ e calculamos R₄:

$$R_3 = 1M\Omega \rightarrow R_4 = 150k\Omega$$

$$V_{NEG}(real) = -8.08V$$

Indutor – Corrente de Pico

Para corrente positiva:

$$I_{LP} = \frac{V_{pos}}{V_{in} * 0.64} * I_{pos}^{pk} = \frac{8}{5 * 0.64} * 0.604 = 1.51A$$

Para corrente negativa:

$$I_{LN} = \frac{V_{in} - V_{neg}}{V_{in} * 0.64} * I_{neg}^{pk} = \frac{5 - (-8)}{5 * 0.64} * 0.625 = 2.54A$$

Estas correntes precisam ser menores que as correntes máximas dos indutores

Indutor - Indutância

Para fonte positiva:

$$L_1 = \frac{V_{in} * (V_{pos} - V_{in})}{\Delta I_{LP} * f_{osc} * V_{pos}} \xrightarrow{\Delta I_{LP} = 20\% I_{LP}} \frac{5 * (8 - 5)}{0.2 * 1.51 * 1.38 MHz * 5} = 4.49 \mu H \approx 4.7 \mu H$$

$$L_2 = \frac{V_{in} * V_{neg}}{\Delta I_{LN} * f_{osc} * (V_{neg} - V_{in})} \xrightarrow{\Delta I_{LN} = 20\% I_{LN}} \frac{5 * (-8)}{0.2 * 2.54 * 1.38 MHz * (-8 - 5)} = 4.39 \mu H \approx 4.7 \mu H$$

Capacitor

Para fonte positiva:

$$C_4^{min} = \frac{I_{pos}^{pk} * (V_{pos} - V_{in})}{f_{osc} * \Delta V_{pos} * V_{pos}} \xrightarrow{\Delta V_{pos} = 10mV} \frac{0.604 * (8 - 5)}{1.38MHz * 0.01 * 8} = 16.51\mu F \rightarrow 22\mu F$$

$$C_5^{min} = \frac{I_{neg}^{pk} * V_{neg}}{f_{osc} * \Delta V_{neg} * (V_{neg} - V_{in})} \xrightarrow{\overline{\Delta V_{neg} = 10mV}} \frac{0.625 * (-8)}{1.38MHz * 0.01 * (-8 - 5)} = 27.87 \mu F \rightarrow 2x22 \mu F$$

Calculo do ripple (resumido)

Para fonte positiva:

$$\Delta V_{pos}(total) = \Delta V_{pos} + \Delta V_{ESRpos} = 14.1 mV$$

$$\Delta V_{neg}(total) = \Delta V_{neg} + \Delta V_{ESRneg} = 13.2 mV$$

Diodo Retificador

- Schottky → Baixas perdas
- Corrente acima do pico
- Candidatos
 - 1N5819HW-7-F
 - MBR130T1G
 - MBR260HW
 - MBRX120LF-TP
 - MBR120LSFT3G

PMOS para dsesacoplar da saída

- V_{TH} << 5V
 V_{GSMAX} > 5V
- $I_D > I_{TOTAL} = 0.604 + 0.625 = 1.23A$
- Candidatos
 - AO3419
 - AD3409
 - DMG23011
 - FDN340P
- Resistor de curto circuito

Estabilização loop de controle (opcional)

Para fonte positiva:

$$C_9 = \frac{6.8\mu}{R_1} = 6.8pF$$

$$C_9 = \frac{7.5\mu}{R_1} = 7.5pF$$

Projeto LM317/337

- R1 e R2 ajustam V_O
- C_{ADJ} e D2 só são usados para fontes ajustáveis
- C_I é importante para desacoplamento
- C_O melhora resposta a transiente
- D1 é recomendado para que C_O não descarregue no regulador
- Fonte negativa tem mesmos calculos

Tensão de Saída +5VA

$$V_o = V_{ref} \left(1 + \frac{R_2}{R_1} \right) + I_{adj} R_2$$

Sabendo que:

- $V_0 = 5V$
- $V_{REF} = 1.25V$
- $I_{ADJ} = 50uA$

Fazemos R1 = 240Ω (referência, datasheet)

$$R_2 = \frac{(V_o - V_{ref}) * R_1}{V_{ref} + I_{adj}R_1} = \frac{(5 - 1.25) * 240}{1.25 + 0.00005 * 240} = 713.15\Omega \approx 720\Omega$$

Tensão de Saida -5VA

$$-V_o = -V_{ref} \left(1 + \frac{R_2}{R_1} \right) - I_{adj} R_2$$

Sabendo que:

- $V_0 = 5V$
- $V_{REF} = 1.25V$
- $I_{ADJ} = 50uA$

Fazemos R1 = 240Ω (referência, datasheet)

$$R_2 = \frac{(V_o - V_{ref}) * R_1}{V_{ref} + I_{adj}R_1} = \frac{(5 - 1.25) * 240}{1.25 + 0.00005 * 240} = 713.15\Omega \approx 720\Omega$$

Tensão de Saída +3.3V e +3.3VA

$$V_o = V_{ref} \left(1 + \frac{R_2}{R_1} \right) + I_{adj} R_2$$

Sabendo que:

- $V_0 = 3.3V$
- $V_{REF} = 1.25V$
- $I_{ADJ} = 50uA$

Fazemos R1 = 240Ω (referência, datasheet)

$$R_2 = \frac{(V_o - V_{ref}) * R_1}{V_{ref} + I_{adj}R_1} = \frac{(3.3 - 1.25) * 240}{1.25 + 0.00005 * 240} = 389.86\Omega \approx 390\Omega$$

Demais componentes

- Capacitores
 - Vamos usar os valores de referência
 - Um de 100nF e um de 1uF
- Não usaremos diodo de descarga

Bora pro KiCad!