Proyecto Final Día 1

1. Importar el archivo 'cifosis.vsc' utilizando pandas

```
1 import pandas as pd
2
3 df_kyphosis = pd.read_csv('kyphosis-230525-093959.csv')
4 df_kyphosis
```

\rightarrow		Kyphosis	Age	Number	Start	
	0	absent	71	3	5	
	1	absent	158	3	14	
	2	present	128	4	5	
	3	absent	2	5	1	
	4	absent	1	4	15	
	•••					
	76	present	157	3	13	
	77	absent	26	7	13	
	78	absent	120	2	13	
	79	present	42	7	6	
	80	absent	36	4	13	
	81 rows × 4 columns					

2. Realizar un analisis exploratorio de datos (EDA) basico de los datos

```
1 df_kyphosis.info()
```

1 df_kyphosis.select_dtypes(exclude='number').describe()

```
count 81
unique 2
top absent
freq 64
```

1 df_kyphosis['Kyphosis'].value_counts()

```
Kyphosis
absent 64
present 17
Name: count, dtype: int64
```

1 df_kyphosis.select_dtypes(include='number').describe()

	Age	Number	Start
count	81.000000	81.000000	81.000000
mean	83.654321	4.049383	11.493827
std	58.104251	1.619423	4.883962
min	1.000000	2.000000	1.000000
25%	26.000000	3.000000	9.000000
50%	87.000000	4.000000	13.000000
75%	130.000000	5.000000	16.000000
max	206.000000	10.000000	18.000000

3. Enumerar la edad media, minima y maxima (en años) considerada en este estudio utilizando 2 metodos

```
1 print('la edad media es: ', df_kyphosis['Age'].mean())
2 print('la edad maxima es: ', df_kyphosis['Age'].max())
3 print('la edad minima es: ', df_kyphosis['Age'].min())

la edad media es: 83.65432098765432
la edad maxima es: 206
la edad minima es: 1

1 print('la edad media es: ', (df_kyphosis['Age'] / 12).mean().round(3))
2 print('la edad maxima es: ', (df_kyphosis['Age'] / 12).max().round(3))
3 print('la edad minima es: ', (df_kyphosis['Age'] / 12).min().round(3))

la edad media es: 0.0
la edad maxima es: 0.177
la edad minima es: -0.119
```

4. Representar la matriz de correlaciones

```
1 import seaborn as sns
2
3 sns.heatmap(df_kyphosis.select_dtypes(include='number').corr(), annot=True);
```


1 df_kyphosis.select_dtypes(include='number').corr()

5. Convierte el tipo de datos de la columna edad de int64 a float64

```
1 df_kyphosis['Age'] = df_kyphosis['Age'].astype(float)
2 df_kyphosis['Age']
           71.0
₹
    0
          158.0
          128.0
    3
            2.0
    4
            1.0
          157.0
    76
    77
           26.0
    78
          120.0
    79
           42.0
    80
           36.0
    Name: Age, Length: 81, dtype: float64
```

6. Definir una función que convierta la edad de meses a años

```
1 def meses_a_año(edad):
2    edad = edad / 12
3    return edad
```

7. Aplicar la funcion a la columna 'Edad' y añadir los resultados en una nueva columna edad titulada 'Edad en años'

```
1 df_kyphosis['Edad en años'] = df_kyphosis['Age'].apply(meses_a_año)
2 df_kyphosis['Edad en años']
<del>_</del> 0
           5.916667
          13,166667
    2
          10.666667
          0.166667
    4
           0.083333
    76
          13.083333
    77
           2.166667
    78
          10.000000
    79
           3.500000
    80
           3.000000
    Name: Edad en años, Length: 81, dtype: float64
```

8. Cuales son las caracteristicas del niño mayor y del menor de este estudio?

```
1 mask1 = df_kyphosis['Age'].min()
2 mask2 = df_kyphosis['Age'].max()
3 print('Cantidad de vertebra afectadas:', df_kyphosis['Number'].loc[((df_kyphosis['Age'] == mask1) | (df_kyphosis['Age'] == mask2))].mean(
4 print('Primera vertebra operada para los menores:', df_kyphosis['Start'].loc[((df_kyphosis['Age'] == mask1))].median().round(0))
5 df_kyphosis.loc[((df_kyphosis['Age'] == mask1) | (df_kyphosis['Age'] == mask2))]
```

Cantidad de vertebra afectadas: 3.0 Primera vertebra operada para los menores: 15.0

	Kyphosis	Age	Number	Start	Edad en años
4	absent	1.0	4	15	0.083333
5	absent	1.0	2	16	0.083333
13	absent	1.0	4	12	0.083333
15	absent	1.0	3	16	0.083333
36	absent	1.0	3	9	0.083333
73	absent	206.0	4	10	17.166667

- Podemos notar que tenemos cinco pacientes de un mes de nacidos con afectaciones en las vertebras, por lo general con un promedio de 3 vertebras afectadas, y observando detalladamente encontramos que la primera vertebra operada suele ser la 15 o 16
- Para el de mayor de edad observamos que tiene 4 vertebras afectadas pero en este caso, a diferencia de los menores, su primera vertebra fue la 10, alejandose un poco de la obervación anterior
- Todos los pacientes están ausentes de cifosis

1 df_kyphosis.describe().round(3)

9. Escala la columna 'Edad' sin procesar (en meses) utilizando tanto la estandarización como la normalizazacion. Realice una comprobacion de sanidad

```
1 from sklearn.preprocessing import MinMaxScaler, StandardScaler
1 scaler1 = MinMaxScaler()
2 df_kyphosis['Age'] = scaler1.fit_transform(df_kyphosis['Age'].values.reshape(-1, 1))
3 df_kyphosis['Age']
<del>→</del> 0
          0.341463
         0.765854
    2
         0.619512
         0.004878
        0.000000
    4
    76 0.760976
         0.121951
    78
         0.580488
    79
          0.200000
    Name: Age, Length: 81, dtype: float64
1 scaler2 = StandardScaler()
2 df_kyphosis['Age'] = scaler2.fit_transform(df_kyphosis['Age'].values.reshape(-1, 1))
3 df_kyphosis['Age']
→ 0 -0.219143
         1.287494
    2
         0.767964
       -1.414063
        -1.431381
    76 1.270177
77 -0.998439
    78
        0.629423
    79
        -0.721356
    80
        -0.825262
    Name: Age, Length: 81, dtype: float64
```


	Age	Number	Start	Edad en años
count	81.000	81.000	81.000	81.000
mean	0.000	4.049	11.494	6.971
std	1.006	1.619	4.884	4.842
min	-1.431	2.000	1.000	0.083
25%	-0.998	3.000	9.000	2.167
50%	0.058	4.000	13.000	7.250