R09631031 賴怡穎 HW4

GUI介面圖:

• • •	MainWindow			
Load Image	FFT IFFT			
	Ideal Low Ideal High Butterworth Low Butterworth High Gaussian Low Gaussian High			
	DO Gamma Low Gamma High Homomorphic			
	Motion Blur Inverse Filter Wiener Filter Gaussian noise			
Digit Imag Proce	al essing			

Part 1:

- 1. 轉換上使用np 內建的np.fft.fft2作為轉換,轉換上沒有在圖像周圍補零,而是直接使用np.fft.fftshift將fft的順序重新排列,使中心點為對稱點。
- 2. Magnitude使用np.abs獲得, Phase使用math.actan獲得實根跟虛根夾角
- 3. Inverse使用np.fft.ifft2轉換獲得,反轉換後的圖案與轉換前非常相似。
- 4. 使用fft與dft得差異在於fft的時間是O(nlogn),dft是O(n^2),因此時間上與照片的大小成nlogn關聯正比

Part 2:

1. 轉換方程式如下:

1.

Ideal		Butterworth	Gaussian
$H(u,v) = \begin{cases} 1 \\ 0 \end{cases}$	$ if D(u, v) \le D_0 $ $ if D(u, v) > D_0 $	$H(u,v) = \frac{1}{1 + [D(u,v)/D_0]^{2n}}$	$H(u,v) = e^{-D^2(u,v)/2D_0^2}$

- 2. High pass filter 在 D0越大,H(u,v)涵蓋的範圍越多,圖像越接近原圖,Low pass則相反
- 3. High pass 使邊緣輪廓清晰, Low pass使整體變模糊
- 4. 在相同的D0下,圖片清晰度Gaussian>Butterworth>Ideal

Part 3:

原圖

 $\gamma L=0.4 \quad \gamma H=2.5 \quad D0=2$

1. 轉換方程式如下:

$$H(u,v) = (\gamma_H - \gamma_L)[1 - e^{-c(D^2(u,v)/D_0^2)}] + \gamma_L$$

2. D0 和第二部分的filter一樣,決定選取的頻段多寡,γL決定低頻部分的顏色亮度,選擇較低的數值會讓紋路變化小,均匀的區塊顏色變暗,γH決定高頻部分的顏色亮度,選擇較高的數值會讓邊緣輪廓更凸出,製造兩者對比。

Part 4:

Gaussian noise

Restore with inverse filter

Restore with Wiener filter

- 1. 轉換方程式如下圖所示:
 - 1. Motion Blur:

$$H(u,v) = \frac{T}{\pi(ua+vb)} \sin[\pi(ua+vb)] e^{-j\pi(ua+vb)}$$

- 2. Inverse: 將模糊的相片作Laplace轉換後,除以上式的H
- 3. Wiener:將模糊的相片作Laplace轉換後,除以下式

$$\left[\frac{1}{H(u,v)}\frac{\left|H(u,v)\right|^{2}}{\left|H(u,v)\right|^{2}+K}\right]^{4}$$

2. 反轉換效果:如果沒有雜訊,則兩者的反轉換效果接近,但是加上雜訊後,Inverse對雜訊 非常敏感,會導致轉換結果不好,尤其是當雜訊的標準差很小時,相反的Wiener因為有修正 向的緣故,反轉換後的效果明顯好於Inverse。