Lab - 4 Report

Group 9: 200020031,200020042,180020010

Experiment-4A

Determination of Regulation of an Alternator by Synchronous Impedance Method

Aim: To determine the voltage regulation of a three phase alternator by synchronous impedance method.

Machine Specification:

Rated Current = 0.4 A
Rated Voltage = 415V ± 10%

Open Circuit Test:

Circuit was built as per the diagram, DC power was switched on and the motor was started with a 3-point starter, while keeping the rheostat at a minimum value.

Motor speed is adjusted to the sync. speed of 1500 rpm. Alternator field current is varied by varying field voltage and values, noted down.

Fig1: Circuit diagram to perform Open circuit Characteristics

Short Circuit Test:

Circuit was made as in the manual, armature current and field current values were measured. DC power is turned off and connections are removed.

Fig 2 : Circuit diagram to perform Short Circuit Characteristics

Observation:

Open Circuit Test:

Terminal Voltage(Vt) in V	Field Current(If) in A
100	0.1

150	0.15
200	0.2
250	0.25
300	0.3
350	0.37
400	0.5
450	0.7

Field Current(If) in A vs. Terminal Voltage(Vt) in V

Short Circuit Test:

Is (A)	If (A)
1	0.05
2	0.15
3	0.25
4	0.34

If (A) vs. Is (A)

Armature resistance per phase: 5.5Ω

Field Resistance: 182 Ω

Effective value of armature resistance: $1.5 * 5.5 = 8.5\Omega$

Result:

1.For OCC, we see that because of saturation in iron parts of the machine, the no-load generated voltage IF does not increase in the same proportion as the increase in field current IF.

2. For SCC, field current vs armature current gives a linear plot.

Experiment- 4 B

V AND INVERTED V CURVES OF A SYNCHRONOUS MOTOR

Aim: To study and draw the V and inverted V curves of the synchronous motor.

Circuit Diagram:

1: Connection diagram of synchronous motor for V and inverted V Curve

Observations:

la(A)	If(A)	Power Factor (Cosφ)
2.5	0.3	0.45
2	0.4	0.5
1.5	0.45	0.6
1.2	0.5	0.8
1.15	0.55	0.9
1	0.6	1
1.1	0.7	0.9
1.25	0.73	0.8
1.4	0.75	0.7
1.7	0.8	0.6
2.1	0.85	0.5

2.4	0.9	0.4

If(A) vs. Ia(A)

Result:

- 1. For the V curve, as IF is varied from low to high, IA decreases and is minimum at unity power factor and then increases again.

 Armature current has large values for low and high values of excitation.
- 2. For inverted V curve, power factor is lagging when the motor is under-excited and leading when it is over-excited.