Approximation and Genralizatoin error

ML Instruction Team, Fall 2022

CE Department Sharif University of Technology

Generalization

Some of the evaluation metrics we can use to measure the performance on the test set are the prediction accuracy and misclassification error in the context of classification models – we say that a good model has a "high generalization accuracy" or "low generalization error" (or, simply "good generalization performance").

Validation set

- In order to choose right model complexity and train the hyperparameters we cannot use:
 - training set: because we want to choose values that will generalize.
 - ▶ test set:, because that would be "cheating." We're only allowed to use the test set once, to report the final performance.
- A validation set, which is used to tune hyperparameters

Overfitting and Underfitting

- overfitting and underfitting are two terms that we can use to diagnose a machine learning model based on the training and test set performance.
- a model that suffers from underfitting does not perform well on the test and training set
- In contrast, a model that overfits can be usually recognized by a high training set accuracy, but low test set accuracy

Overfitting and Underfitting

Figure: Overfitting and Underfitting in terms of train and test set error, Source

Bias-Variance Decomposition of the Squared Loss

Let y be the true output value and \hat{y} be the predicted output value that depends on the dataset generated by some unknown joint distribution and hence is random and we define the expected value w.r.t the data set as $\mathbb{E}[\hat{y}]$ the squared loss $(\hat{y}-y)^2$ can be decomposed as:

$$\begin{array}{l} (y - \hat{y})^2 = ((y - \mathbb{E}[\hat{y}]) + (\mathbb{E}[\hat{y}] - \hat{y})^2 = (y - \mathbb{E}[\hat{y}])^2 + (\mathbb{E}[\hat{y}] - \hat{y})^2 + 2(y - \mathbb{E}[\hat{y}])(y - \mathbb{E}[\hat{y}]) \end{array}$$

Taking expected value w.r.t dataset we get:

$$\mathbb{E}[(y-\hat{y})^2] = (\underbrace{y - \mathbb{E}[\hat{y}]}_{\text{bias}})^2 + \underbrace{\mathbb{E}[(\mathbb{E}[\hat{y}] - \hat{y})^2]}_{\text{variance}}$$

Bias and Variance intuition

- The first term is the bias, which tells us how far off the model's average prediction is.
- The second term is the variance, which tells us about the variability in its predictions as a result of the choice of training set.

Figure: the bias is large because the difference between the true value and the predicted value, on average is large

Figure: The variance is very high, since on average, a prediction differs a lot from the expectation value of the prediction

References

- https://www.cs.toronto.edu/ rgrosse/coursescsc321 _2018/readings/L09%20Generalization.pdf
- https://sebastianraschka.com/pdf/lecture-notes/stat479fs19/08-model-eval-1-intro notes.pdf

Thank You!

Any Question?