4. Método Simplex de Programación Lineal

Temario

- A- Resolución de problemas, no particulares, con representación gráfica.
 - 1- Planteo ordenado de las inecuaciones.
 - 2- Introducción de variables slack.
 - 3- Representación gráfica.
 - 4- Identificación: variables nulas sobre las rectas representadas.
 - 5- Identificación: variables nulas sobre las intersecciones.
 - 6- Uso del Método de Gauss-Jordan para hallar los valores de todas las variables en cada intersección. Tabulación del proceso.
 - 7- Tabla usual en el Método Simplex.
 - 8- Ubicación de coeficientes tecnológicos.
 - 9- Ubicación de coeficientes del funcional.
 - 10-Definición de la solución básica factible.
 - 11- Cálculo de los Z_j C_j
 - 12-Selección de la variable a introducir.
 - 13-Selección de la variable que deja la base.
 - 14-Transformación de la fila del pivote.
 - 15-Transformación del resto de la tabla.
 - 16-Identificación de matrices y sus inversas.
 - 17-Matriz inversa óptima.
 - 18-Análisis gráfico del camino seguido sobre el polígono.
 - 19- Obtención de la tabla óptima por cálculo matricial, sin pasos intermedios, en base a la solución gráfica.

B- Casos particulares

- 1- Relaciones de "mayor o igual".
- 2- Relaciones de "igual".
- *3- No imprescindibilidad de variables artificiales.*
- 4- Solución óptima con alternativas, análisis gráfico.
- 5- Problemas degenerados.
- 6- Detección de incompatibilidad, análisis gráfico.
- 7- Detección de polígono abierto, análisis gráfico.

Problema Tipo Nº 1

Condiciones de vínculo:

$$\begin{array}{rcl} X_2 & \leq & 2 \\ 3 \ X_1 & + & 2 \ X_2 & \leq & 12 \\ 2 \ X_1 & + & 4 \ X_2 & \leq & 12 \\ & X_1 \ , \ X_2 & \geq & 0 \\ Z = & 3 \ X_1 & + & 4 \ X_2 & \end{array} \qquad \text{Máx}.$$

Resolución del problema

1. Representación gráfica

2. <u>Planteo inicial – Variables slacks</u>

$$X_2 + X_3 = 2$$

 $3 X_1 + 2 X_2 + X_4 = 12$
 $2 X_1 + 4 X_2 + X_5 = 12$

3. <u>Tabla inicial</u>

			3	4	0	0	0
C_K	X_K	B_K	A_{I}	A_2	A_3	A_4	A_5
0	X_3	2	0	1	1	0	0
0	X_4	12	3	2	0	1	0
0	X_5	12	2	4	0	0	1
Z = 0		???	???	0	0	0	

Estamos en 0, definido por $X_1 = X_2 = 0$; X_1 y X_2 fuera de la base. Tenemos una primera solución básica factible (0, 0, 2, 12, 12). Para saber si es óptima debemos

averiguar si existe alguna posible solución mejor, para lo cual calcularemos los Z_i - C_i de las variables que no están en la base (lo únicos que <u>pueden ser</u> \neq 0).

4. <u>Cálculo de los Z_j - C_j</u>

$$X_1$$
) $Z_1 = C_3 * a_{13} + C_4 * a_{14} + C_5 * a_{15} = 0*0 + 0*3 + 0*2 = 0$
 $C_1 = 3$

$$\Rightarrow Z_1 - C_1 = -3$$

*X*₂) análogamente...

$$Z_2 - C_2 = -4$$

Como ambos Z_j - C_j son negativos y el problema tiene un funcional de máximo, cualquiera de las dos variables que ingrese en la base mejora la solución. Por convención elegimos X_2 , pues es el de mayor valor absoluto.

© Observar que si entra X_1 vamos de 0 a A y si entra X_2 vamos de 0 a D.

5. Selección de la variable que sale de la base (toma valor nulo)

Calculamos el coeficiente θ para las tres variables en la base:

 $^{\circ}$ Nota: si a_{23} , a_{24} o a_{25} fueran negativos, el coeficiente θ_3 , θ_4 o θ_5 respectivo, no sería necesario calcularlo

$$\theta_{3} = \frac{B_{3}}{a_{23}} \quad \theta_{4} = \frac{B_{4}}{a_{24}} \quad \theta_{5} = \frac{B_{5}}{a_{25}}$$

$$3 \quad 4 \quad 0 \quad 0 \quad 0$$

$$C_{K} \quad X_{K} \quad B_{K} \quad A_{1} \quad A_{2} \quad A_{3} \quad A_{4} \quad A_{5} \quad \theta$$

$$0 \quad X_{3} \quad 2 \quad 0 \quad 1 \quad 1 \quad 0 \quad 0 \quad 2$$

$$0 \quad X_{4} \quad 12 \quad 3 \quad 2 \quad 0 \quad 1 \quad 0 \quad 6$$

$$0 \quad X_{5} \quad 12 \quad 2 \quad 4 \quad 0 \quad 0 \quad 1 \quad 3$$

$$Z = 0 \quad -3 \quad -4 \quad 0 \quad 0 \quad 0$$

Como θ_3 tiene el menor valor positivo, X_3 sale de la base, el funcional deberá aumentar en - $(Z_j - C_j) * \theta \Rightarrow -(-4)*2 = 8 (Z_2 = Z_1 + 8 = 8)$. Aplicamos el método de Gauss-Jordan y obtenemos una nueva tabla. Estamos en D definido por $X_3=0$ y $X_2=0$ (fuera de la base).

			3	4	0	0	0	
C_K	X_K	B_K	A_{I}	A_2	A_3	A_4	A_5	θ
4	X_2	2	0	1	1	0	0	∞
0	X_4	8	3	0	-2	1	0	8/3
0	X_5	4	2	0	-4	0	1	2
	Z = 8		-3	0	4	0	0	

Si hubiéramos introducido X_1 , serían ($\theta = 4$) y ($Z_1 - C_1 = -3$) $\Rightarrow \Delta Z = 12$

Por eso se demuestra que elegir el de mayor valor absoluto no implica mejorar más el Z; depende del producto de - θ * (Z_i - C_i).

Repitiendo el paso c) como $Z_I - C_I < 0$ puedo mejorar la solución, repito d) para cambiar de tabla y así sucesivamente hasta que todos los Z_j - $C_j \ge 0$

			3	4	0	0	0	_
C_K	X_K	B_K	A_1	A_2	A_3	A_4	A_5	θ
4	X_2	2	0	1	1	0	0	2
0	X_4	2	0	0	4	1	-3/2	1/2
3	X_{I}	2	1	0	-2	0	1/2	_
	Z = 14		0	0	-2	0	3/2	

6. Tabla Óptima (final)

			3	4	0	0	0
C_K	X_K	B_K	A_{I}	A_2	A_3	A_4	A_5
4	X_2	3/2	0	1	0	-1/4	3/8
0	X_3	1/2	0	0	1	1/4	-3/8
3	X_{I}	3	1	0	0	1/2	-1/4
Z = 15		0	0	0	1/2	3/4	

Matriz inversa óptima

Para obtener la tabla óptima se multiplicó a la primer matriz (tabla inicial) por una serie de matrices y el resultado de esa multiplicación es la matriz (o tabla) óptima; como en la tabla inicial se tiene una matriz canónica, observando los vectores correspondientes a ésta en la tabla óptima. se puede obtener la matriz buscada.

$$A^{-1} = \begin{vmatrix} 0 & -1/4 & 3/8 \\ 1 & 1/4 & -3/8 \\ 0 & 1/2 & -1/4 \end{vmatrix} * A = \begin{vmatrix} 1 & 1 & 0 \\ 2 & 0 & 3 \\ 4 & 0 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

En la segunda tabla también es posible encontrar un par de matrices inversas:

$$\begin{vmatrix}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-4 & 0 & 1
\end{vmatrix}$$

$$y$$

$$\begin{vmatrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
4 & 0 & 1
\end{vmatrix}$$

Cualquier vector del problema original, o adicional, en la tabla inicial puede ser transformado en su correspondiente vector final en la tabla óptima, sólo premultiplicándolo por la matriz inversa. Como ejemplo mostraremos el vector de los términos independientes.

$$B_f = A^{-1} * B_i \implies \begin{vmatrix} 0 & -1/4 & 3/8 \\ 1 & 1/4 & -3/8 \\ 0 & 1/2 & -1/4 \end{vmatrix} * \begin{vmatrix} 2 \\ 12 \\ 12 \end{vmatrix} = \begin{vmatrix} 3/2 \\ 1/2 \\ 3 \end{vmatrix}$$

B en la última tabla representa

$$3/2A_2 + 1/2A_3 + 3A_1 = \begin{vmatrix} 3/2 \\ 3 \\ 6 \end{vmatrix} + \begin{vmatrix} 1/2 \\ 0 \\ 0 \end{vmatrix} + \begin{vmatrix} 0 \\ 9 \\ 6 \end{vmatrix} = \begin{vmatrix} 2 \\ 12 \\ 12 \end{vmatrix}$$

Solución

Análisis complementario

Hacemos $2X_1 + 4X_2 \le 13$ (recta de puntos) El óptimo pasa a B

En	В	В'	ΔX
X_1	3	2,75	-0,25
X_2	1,5	1,875	0,375
<i>X</i> ₃	0,5	0,125	-0,375
<i>X</i> ₄	0	0	0
X_5	0	0	0
			\uparrow

Es lo que marca el A5 de la última tabla

$$\Delta Z = C_j * \Delta X = 3 * \Delta X_1 + 4 * \Delta X_2 + 0 * (\Delta X_3 + \Delta X_4 + \Delta X_5) = 0,75$$

 $Z' = Z + \Delta Z = 15 + 0,75 = 15,75$
También $Z' = C_j * B' = 3 * 2,75 + 4 * 1,875 + 0 \times (0,125 + 0 + 0) = 15,75$

"Conocer es conocer las causas"

Aristóteles

Problemas a resolver

Conservar las resoluciones pues se utilizarán en el tema siguiente.

Parte A: Resolver por el método Simplex y gráficamente los siguientes ejercicios. En caso de encontrar algún caso particular, indicar cuál es y cómo se detecta en la tabla:

4.1.

$$X_1$$
 ≤ 3
 $X_2 \leq 6$
 $6X_1 + 4X_2 \leq 36$
 $Z = 8X_1 + 3X_2 \implies Máx$.

4.2.

$$-2 X_1 + X_2 \le 2$$
 $X_1 - X_2 \le 2$
 $X_1 + X_2 \le 5$
 $Z = 10 \quad X_1 + 3 \quad X_2 \longrightarrow Máx.$

4.3.

$$X_2 \le 3$$
 $4 X_1 + 6 X_2 \le 24$
 $4 X_1 - 3 X_2 \le 12$
 $Z = 5 X_1 + 2 X_2 \longrightarrow Máx.$

4.4.

4.5.

4.6.

$$\begin{array}{rcl} & X_2 & \leq & 3 \\ 4 \, X_1 & + & 6 \, X_2 & \leq 24 \\ 2 \, X_1 & + & 2 \, X_2 & \geq & 0 \\ Z = -2 \, X_1 & + & 4 \, X_2 & \clubsuit & \text{Máx}. \end{array}$$

4.7.

4.8.

4.9.

4.10.

$$X_2 \ge 2$$
 $4 X_1 + 6 X_2 \ge 24$
 $10 X_1 - 30 X_2 \ge 30$
 $Z = X_1 + 8 X_2 \implies Máx.$

4.11.

$$X_1 \ge 2$$
 $2 X_1 + X_2 \le 10$
 $X_1 + 2 X_2 \le 8$
 $X_2 \ge 1$
 $Z = X_1 - 2 X_2 Min.$

4.12.

4.13.

4.14.

$$X_1 + X_2 \ge 4$$
 $X_2 \ge 1$
 $2 X_1 + X_2 \le 8$
 $Z = X_1 + 2 X_2 \longrightarrow M$ ín.

Parte B: Responder a partir de una solución obtenida usando el método Simplex

4.15.

En un punto degenerado, ¿cómo te das cuenta de que entraste en loop? Justificá.

4.16.

Un problema lineal de mínimo tiene dos variables reales y tres restricciones, una de las cuales es $X_1 + X_2 \ge 1$.

Su funcional es 5 X_1 + 0,3 X_2 (mínimo). ¿Puede este problema tener soluciones alternativas? Justificar.

4.17.

Tenemos un modelo con dos productos y 6 restricciones. Estamos en el origen, y, al querer hacer entrar una variable, las titas correspondientes son todas iguales (todas = 5). Ante el séxtuple empate, decido suspender el ingreso de esa variable y pruebo el ingreso de otra. Ante mi sorpresa, ¡nuevamente los 6 titas son todos iguales a 5! ¿Es esto posible? Si lo es, ¿cuál sería el caso? Justificar.

4.18.

En una tabla de Simplex cualquiera, al hacer entrar una variable elijo un tita que no es mínimo para determinar cuál es la que sale de la base y la tabla siguiente no tiene variables negativas en la base ¿Es esto posible? Justificar.

4.19.

En una tabla óptima no degenerada la variable slack S_2 está en la base. Esa slack corresponde a la segunda restricción cuyo término independiente correspondiente valía b_2 . Eso significa que:

- a- el problema original es incompatible;
- b- el segundo recurso se usarán exactamente b₂;
- c- el valor marginal de la segunda restricción es cero.

4.20.

El siguiente gráfico representa la resolución gráfica de un problema de PLC. La solución óptima está en el segmento $(1;6) - (2\frac{1}{2};3)$ y da un valor de Z = 16.

Sabiendo que el poliedro de soluciones es el delimitado por los vértices (0;4) – (0;5) – (1;6) – $(2\frac{1}{2};3)$, se pide:

- Determinar el valor del funcional en cada vértice del poliedro.
- Realizar el planteo original del problema.
- Resolverlo mediante el método Simplex indicando, para cada tabla, a qué vértice del dibujo corresponde.

4.21.

La siguiente tabla debería ser la tabla óptima de un problema de maximización, sin embargo presenta varios errores. Indicar cuáles son esos errores y corregirlos.

C_{K}	X _K	B _K	A_1	A_2	A_3	A_4	A_5
-5	X_1	20	1	0	-1	0	0
2	X_2	4	0	1	6	0	1/2
0	X_4	-3	2	0	0	1	1
2	Z = -92		0	0	4	1	-1

Tabla Óptima

4.22.

Dada la siguiente tabla de Simplex, indicar los valores que deben tomar A, B, C, D, E, F, G, H, K y L para que la tabla que se presenta sea:

- a- Una tabla óptima de un problema de minimización con punto degenerado.
- b- Una tabla no óptima de un problema de maximización cuya siguiente tabla es un punto degenerado.
- c- Una tabla no óptima de un problema de maximización en la que al intentar pasar a la siguiente tabla se comprueba que el problema no está acotado.

			A	3	0	В	0	0
C_{K}	X_{K}	B_{K}	A_1	A_2	A_3	A_4	A_5	A_6
0	X ₃	С	-3	D	1	0	1	0
В	X_4	16	1	0	0	1	E	-4
3	X_2	24	3	F	0	0	-1	G
	Z =		H	J	0	0	K	L

4.23.

Contestar si las siguientes afirmaciones son verdaderas o falsas y justificar su respuesta.

- a- Todo programa lineal de máximo resuelto al que se le agregue una restricción, disminuirá el valor de su funcional.
- b- Siempre que al sacar una variable de la base se elija un θ no mínimo, una variable real será negativa en el siguiente paso.
- c- En un punto degenerado siempre hay una variable en la base que vale cero.
- d- En un punto degenerado puede haber una variable real en la base que valga cero.
- e- En un vértice no degenerado puede haber más de un conjunto de variables básicas (más de una base de vectores).
- f- Comparando la resolución por Simplex de un problema de máximo y de uno de mínimo, lo único que cambia es el criterio para elegir la variable que sale de la base y el criterio para saber que se llegó al óptimo.
- g- En cada iteración de Simplex, el funcional queda igual o mejora.
- h- Simplex indica si el problema es incompatible.
- i- Simplex sirve para indicar el óptimo de un problema no lineal.
- j- Simplex termina a lo sumo en m pasos, siendo m el número de restricciones del problema que se está resolviendo.

4.24.

Considerar el siguiente programa lineal:

$$2 X_1 + 3 X_2 \le 8$$

 $X_2 \le 2$
 $3.5 X_1 + 5.25 X_2 \le 10.5$

No incluimos la inclinación del funcional (sólo decimos que es de maximización). Si decimos que el óptimo es tal que aumentando una sola de las disponibilidades (una cualquiera), el óptimo no se modifica, ¿se puede deducir de esto cuál es el punto óptimo? Mostrarlo a través de un gráfico.