Universidad "Mayor de San Andrés"

FACULTAD DE CIENCIAS PURAS Y NATURALES

DESAFIO - INTERPOLACION

Universitario: Cristian Gonzalo Mamani Espinoza

Carrera: INFORMATICA

Docente: Lic. Brígida Carvajal Blanco

Materia: SIS – 254 METODOS NUMERICOS

Paralelo: A

I - 2024

La Paz - Bolivia

Contenido

PARA LA PAZ	3
POR EL METODO DE NEWTON	
POR LE METODO DE LAGRANGE	
GRAFICA	
PARA EL ALTO	
POR EL MÉTODO DE NEWTON	
POR EL METODO DE LA GRANGE	
GRAFICA	
CONCLUSIÓN	

Teniendo en cuenta el siguiente ejercicio

21. The boiling temperature of water T_B at various altitudes h is given in the following table. Determine a linear equation in the form $T_B = mh + b$ that best fits the data. Use the equation for calculating the boiling temperature at 5,000 m. Make a plot of the points and the equation.

h (ft)	-1,000	0	3,000	8,000	15,000	22,000	28,000
T(°F)	213.9	212	206.2	196.2	184.4	172.6	163.1

Traducido:

La temperatura de ebullición del agua TBT_BTB a varias altitudes hhh se da en la siguiente tabla. Determina una ecuación lineal en la forma TB=mh+bT_B = mh + bTB=mh+b que se ajuste mejor a los datos. Usa la ecuación para calcular la temperatura de ebullición a 5,000 m. Haz un gráfico de los puntos y la ecuación.

hhh (pies)	TTT (°F)
-1,000	213.9
0	212
3,000	206.2
8,000	196.2
15,000	184.4
22,000	172.6
28,000	163.1

PARA LA PAZ

Se busca obtener la temperatura en la cual hierve el agua en la ciudad de la paz, y en la ciudad del alto:

Calculo de a que temperatura hierve el agua en la ciudad de la paz.

La ciudad de La Paz, la capital de Bolivia, se encuentra a una altitud de 3,650 metros sobre el nivel del mar. Para convertir esta altitud a pies, utilizamos el factor de conversión donde 1 metro equivale aproximadamente a 3.281 pies.

Realizando el cálculo:

Altura en pies = $3,650\,\mathrm{m} \times 3.281\,\mathrm{pies/m} \approx 11,975.65\,\mathrm{pies}$

Por lo tanto, la ciudad de **La Paz** se eleva a aproximadamente **11,975.65 pies** sobre el nivel del mar.

POR EL METODO DE NEWTON

Utilizando el método de newton, aproximaremos a que temperatura hierve el agua

	cristian gonzalo mamani espinoza							
#	x	у	1er nivel	2do nivel	3er nivel	4to nivel	5to nivel	6to nivel
0	-1000	213.9	-0.0019	-8.33E-09	-3.125E-27	1.43849E-16	-1.35271E-20	7.59756E-25
1	0	212	-0.0019333	-8.33E-09	2.3016E-12	-1.6727E-16	8.50582E-21	
2	3000	206.2	-0.002	2.619E-08	-1.378E-12	7.08888E-17		
3	8000	196.2	-0.0016857	-2.94E-22	3.9377E-13			
4	15000	184.4	-0.0016857	7.875E-09				
5	22000	172.6	-0.0015833					
6	28000	163.1						
	11942							
	f(x0) + F[x0,x1] (x-x0) + F[x0,x1,x2] (x-x0)(x-x1) + F[x0,x1,x2,x3] (x-x0)(x-x1)(x-x2)							
	рх	189.158597						

Utilizando el dato de 11942 pies que se indico en la clase, se obtiene que la temperatura hierve a $189,158597\,^{\circ}F$

POR LE METODO DE LAGRANGE

Calculadora de polinomios de Lagrange

GRAFICA

PARA EL ALTO

Se busca obtener a que temperatura hierve el agua en la ciudad del alto:

La ciudad de **El Alto**, ubicada cerca de La Paz, se encuentra a una altitud de aproximadamente **4,100 metros** sobre el nivel del mar, lo que equivale a alrededor de **13,448 pies**. Esta altitud la convierte en una de las ciudades más altas del mundo.

POR EL MÉTODO DE NEWTON

Utilizando el método de newton, aproximaremos a que temperatura hierve el agua

				n=6				
	cristian gonzalo mamani espinoza							
#	x	у	1er nivel	2do nivel	3er nivel	4to nivel	5to nivel	6to nivel
0	-1000	213.9	-0.0019	-8.33E-09	-3.125E-27	1.43849E-16	-1.35271E-20	7.59756E-25
1	0	212	-0.0019333	-8.33E-09	2.3016E-12	-1.6727E-16	8.50582E-21	
2	3000	206.2	-0.002	2.619E-08	-1.378E-12	7.08888E-17		
3	8000	196.2	-0.0016857	-2.94E-22	3.9377E-13			
4	15000	184.4	-0.0016857	7.875E-09				
5	22000	172.6	-0.0015833					
6	28000	163.1						
	13448							
	f(x0) + F[x0,x1] (x-x0) + F[x0,x1,x2] (x-x0)(x-x1) + F[x0,x1,x2,x3] (x-x0)(x-x1)(x-x2)							
	рх	186.76427						

Utilizando el dato de 13448 pies que se indico en la clase, se obtiene que la temperatura hierve a $186,76427~^\circ\text{F}$

POR EL METODO DE LA GRANGE

CONCLUSIÓN

Al evaluar la efectividad de los métodos de **Newton** y **Lagrange** para la interpolación de datos de temperatura a diferentes altitudes, los resultados obtenidos muestran una notable cercanía entre ambos enfoques.

Para la ciudad de **El Alto**, el método de Lagrange proporcionó un valor de temperatura de **186.76** °F, mientras que el método de Newton arrojó un resultado de **186.7642701** °F. Esta diferencia es mínima, lo que indica que ambos métodos son efectivos para interpolar datos en esta altitud.

De manera similar, en la ciudad de **La Paz**, el método de Lagrange dio un resultado de **189.16** °F, en comparación con **189.1585973** °F obtenido mediante el método de Newton. Nuevamente, la cercanía de estos resultados sugiere que ambos métodos son igualmente válidos y confiables.

¿Cuál Método Es Mejor?

La elección entre el método de Newton y el método de Lagrange puede depender de varios factores:

1. Facilidad de Cálculo:

- El método de Lagrange es más sencillo de entender y aplicar, especialmente para conjuntos de datos pequeños, ya que utiliza un solo polinomio para representar todos los puntos.
- El método de **Newton**, aunque más complejo en términos de cálculo de diferencias divididas, puede ser más eficiente cuando se agregan más puntos a un conjunto existente, ya que permite la construcción del polinomio de forma incremental.

2. Precisión:

 Ambos métodos proporcionan resultados comparables en términos de precisión, como se ha demostrado en los cálculos realizados para El Alto y La Paz. La elección del método podría depender más de la preferencia personal o del contexto específico en el que se apliquen.

3. Aplicaciones:

- Si se requiere una interpolación en tiempo real o con un número variable de puntos, el método de **Newton** puede ser más ventajoso.
- Por otro lado, para aplicaciones donde se dispone de un conjunto de datos fijo y se necesita una representación visual clara, el método de Lagrange puede ser más adecuado.

Ambos métodos son efectivos y proporcionan resultados comparables. La elección entre **Newton** y **Lagrange** dependerá de la situación específica, la cantidad de datos disponibles y la preferencia personal del investigador. En resumen, si se busca una solución simple y directa, el método de **Lagrange** es recomendable, mientras que el método de **Newton** es preferible para aplicaciones más dinámicas y en contextos donde se añadan datos de forma continua.