DSML Lab Assignment № 2

Problem 1: Tent map

For $c \in (0,2]$, consider the tent map $T_c : [0,1] \to [0,1]$ defined by

$$T_c(x) = \begin{cases} cx & , \ 0 \le x < \frac{1}{2} \\ c(1-x) & , \ \frac{1}{2} \le x < 1 \end{cases}$$

- a. For c=2, sketch graphical iterations (cobweb diagram) for the initial conditions $x_0 \in \{\frac{1}{4}, \frac{1}{6}, \frac{5}{7}, \frac{1}{19}\}$. Find the fixed points and the periodic cycles of period 2, 3, and 4. Give a formula for the number of periodic points of period N.
- b. For $c=\frac{3}{2}$, plot the graphs of T(x), $T^2(x)=(T\circ T)(x)$ and $T^3(x)=(T\circ T\circ T)(x)$ and determine the number of fixed points and periodic points of period 2 and 3.
- c. Plot a bifurcation diagram for the tent map, considering the bifurcation parameter $c \in (0, 2]$.

Problem 2: Logistic map

Consider the logistic map defined by

$$f_{\mu}(x) = \mu x(1-x).$$

- a. For $\mu=4$, plot the graphs of the functions $f_{\mu}(x)$, $f_{\mu}^{2}(x)$, $f_{\mu}^{3}(x)$ and $f_{\mu}^{4}(x)$. Determine the number of fixed points and periodic points of period 2, 3 and 4.
- b. Plot a bifurcation diagram for the logistic map, with the bifurcation parameter $\mu \in (0,4]$.
- c. Consider the dynamical system $x_{n+1} = f_{\mu}(x_n)$ which may be used to model the population of a certain species of insect. Given that the population size periodically alternates between two distinct values, determine a value of μ that would be consistent with this behavior. Determine an equation that gives the points of period two for a general μ value.

Problem 3: Henon map

Consider the Henon map in \mathbb{R}^2 given by

$$\begin{cases} x_{n+1} = 1 - \alpha x_n^2 + y_n \\ y_{n+1} = \beta x_n \end{cases}$$

where $\alpha > 0$ and $|\beta| < 1$.

Assignment № 2 Page 1

- a. Determine the fixed points and investigate if they are attractive, repulsive, or saddle points.
- b. Show that the Henon map undergoes a bifurcation from a fixed point to period-two cycle behavior exactly when $\alpha=\frac{3}{4}(\beta-1)^2$, for fixed β .
- c. Investigate the bifurcation diagrams for the Henon map by plotting the x_n values as a function of α for $\beta=0.4$.

Problem 4: Mandelbrot sets

Plot the Mandelbrot sets for the mappings

a.
$$z_{n+1} = z_n^2 + c$$

b.
$$z_{n+1} = z_n^3 + c$$

c.
$$z_{n+1} = z_n^4 + c$$

Problem 5*: Fractal dimension

The goal of this problem is to estimate the fractal dimension of a high-dimensional dataset.

Step 1. Generate High-Dimensional Synthetic Data: Create a synthetic dataset with 1000 points in 10-dimensional space, where each feature is drawn from a Gaussian distribution.

Python hint: You can use NumPy's np.random.randn and np.random.choice for this.

Step 2. Box-Counting Method:

- Implement the Box-Counting method to estimate the fractal dimension of your synthetic dataset.
- Vary the size of the "box" (i.e., the range within which you count points as belonging to a single box) and plot how the number of boxes needed changes as a function of the box size.
- Estimate the fractal dimension using the relation:

$$\dim_B(D) = \lim_{\delta \to 0} \frac{\log N(\delta)}{\log(1/\delta)}$$

Compute the fractal dimension of a data set of your choice.

Assignment № 2 Page 2