Quasi-experiments in epidemiology: Prep

Lee Kennedy-Shaffer, PhD

2025-06-10

Standard Difference-in-Differences

Motivating Example: Cholera, London, 1850s

Figure 2: Regions of South London Served by the Southwark & Vauxhall and the Lambeth Companies (Snow [1855])

Causality in the Time of Cholera: John Snow as a Prototype for

Causal Inference

Working Paper Version 1.2

Thomas S. Coleman*

March 13, 2019

Difference-in-Difference in the Time of Cholera: a Gentle Introduction for Epidemiologists

Ellen C Caniglia, ScD¹, Eleanor J Murray, ScD, MPH, MS²

Setting

- Two (or more) units: some treated/exposed, some untreated
- Two time periods: one prior to first treatment, one after

\bigcirc

Example: South London "Grand Experiment" from Coleman 2024

Untreated: Southwark & Vauxhall Districts (12)

Treated: Joint Southwark & Vauxhall/Lambeth Districts (16)

Time Periods: 1849 (pre-treatment) and 1854 (post-treatment) outbreaks

Potential Outcomes and Treatment Effect

Unit	Pre-Treatment	Post-Treatment
Exposed	$Y_{10}=Y_{10}(0)$	$Y_{11}=Y_{11}(1)$
Unexposed	$Y_{00}=Y_{00}(0)$	$\overline{Y_{01} = Y_{01}(0)}$

Treatment Effect:

$$\theta = E[Y_{11}(1) - Y_{11}(0)]$$

Change Over Time

Within each unit, we have an interrupted time series:

$$\Delta_1 = Y_{11} - Y_{10} \ \Delta_0 = Y_{01} - Y_{00}$$

Key Idea

Use the observed Δ_0 under control as the potential outcome for the unobserved Δ_1 under treatment.

Two-by-Two DID

$$egin{aligned} \hat{Y}_{11}(1) &= Y_{11} \ \hat{Y}_{11}(0) &= Y_{10} + (Y_{01} - Y_{00}) \ \hat{ heta} &= (Y_{11} - Y_{10}) - (Y_{01} - Y_{00}) \end{aligned}$$

Two-by-Two DID: Example

Supplier	Sub-	1849	1854
	Districts	Deaths	Deaths
		per	per
		10,000	10,000
Joint Southwark & Vauxhall/Lambeth (Treated)	16	130.1	84.9
Southwark & Vauxhall Only (Untreated)	12	134.9	146.6

Two-by-Two DID: Example

Supplier	1849 Deaths	1854 Deaths	Diff, 1854-1849
	per 10,000	per 10,000	
Joint Southwark & Vauxhall/Lambeth (Treated)	130.1	84.9	-45.2
Southwark & Vauxhall Only (Untreated)	134.9	146.6	11.8
Diff, Treated- Untreated	-4.8	-61.8	-57.0

Two-by-Two DID: Graphically

Two-by-Two Difference-in-Differences, South London Cholera

Two-by-Two DID: Graphically

Two-by-Two Difference-in-Differences, South London Cholera

Details and Assumptions

Regression Form: Two-Way Fixed Effects (TWFE)

$$Y_{it} = lpha_i + \gamma_t + heta I(X_{it} = 1) + \epsilon_{it},$$

where:

- α_i is the fixed effect for unit i,
- γ_t is the fixed effect for time t,
- ϵ_{it} is the error term for unit i in time t, and
- X_{it} is the indicator of whether unit i is treated at time t.
- ullet θ is the treatment effect estimand.

Statistical Inference

Inference can be conducted using the TWFE regression model. This accounts for variability in the outcome if there are multiple treated/untreated units and multiple periods.

Generally, the standard errors are *clustered* by unit to account for correlation. This can also be done with a *block-bootstrap* variance estimation.

Caution

This accounts for *statistical uncertainty* but not *causal uncertainty* in the model assumptions. Those cannot be fully assessed statistically.

Example Analysis Code

See the analysis/zika-did-handout file for an example analysis, with visualization and regression-based estimation.

Key Assumptions

- Parallel trends (in expectation of potential outcomes)
- No spillover
- No anticipation/clear time point for treatment

Parallel Trends

$$E[Y_{11}(0) - Y_{10}(0)] = E[Y_{01}(0) - Y_{00}(0)]$$

In the absence of treatment, the treated and untreated units would have the same expected outcome trend over time.

No Spillover

There is no effect of the treatment on any untreated units (similar to a consistency or SUTVA assumption across units).

No Anticipation

There is no effect of the treatment (or its announcement) prior to the time period assigned as its start (similar to a consistency or SUTVA assumption across periods). A washout period can be incorporated if necessary.

Assessing Parallel Trends

Placebo/specification tests:

- In-time: conduct the same DID analysis on a time period prior to the actual treatment initiation
- In-space: conduct the same DID analysis as if an untreated unit were the treated one
- Alternative outcome: conduct the same DID analysis on an outcome that should not be affected by the treatment

Assessing Parallel Trends

These approaches can be used either:

- as a heuristic justification for the assumption,
- to obtain a null distribution for permutation tests, or
- to adjust the estimate for the "null" effect (difference-in-differences or triple-differences).

Approaches to Handle Assumption Violations

Re-scale the Outcome

Changing the scale of the outcome changes the parallel trends assumption. The most common transformation is to use the **natural log**.

E.g.,
$$\log(Y_{it}) = lpha_i + \gamma_t + heta I(X_{it} = 1) + \epsilon_{it}$$

Changes parallel trends assumption to:

$$E[\log Y_{11}(0) - \log Y_{10}(0)] = E[\log Y_{01}(0) - \log Y_{00}(0)]$$
 $E\left[\log\left(rac{Y_{11}(0)}{Y_{10}(0)}
ight)
ight] = E\left[\log\left(rac{Y_{01}(0)}{Y_{00}(0)}
ight)
ight]$

Re-scale the Outcome

A

Caution

- Only one scale can actually have parallel trends
- This changes the estimand (e.g., additive -> multiplicative)

See Kahn-Lang and Lang (2020) for more considerations and Feng and Bilinski (2024) for examples of different scales/specifications.

Incorporate Covariates

Incorporating covariates makes the parallel trends assumption conditional on those covariates.

E.g.,
$$Y_{it} = lpha_i + \gamma_t + heta I(X_{it} = 1) + eta Z_i + \epsilon_{it}$$

Changes parallel trends assumption to:

$$E[Y_{11}(0) - Y_{10}(0) \mid Z_1] = E[Y_{01}(0) - Y_{00}(0) \mid Z_0]$$

Incorporate Covariates

A

Caution

- This makes the parallel trends assumption more complex to consider and requires modeling covariates
- This changes the estimand and assumes the effect is homogeneous across covariates

See Caetano and Callaway (2023) for issues that arise with time-varying covariates.