MATROIDS: COMBINATORIAL OPTIMIZATION

Instructor: Prajakta Nimbhorkar

SCRIBE: SOHAM CHATTERJEE

SOHAMCHATTERJEE999@GMAIL.COM Website: Sohamch08.github.io

CONTENTS

Section 1		Introduction	PAGE 2
SECTION 2		Types of Matroids	Page 2
	2.1	Uniform Matroid:	2
	2.2	Partition Matroid:	2
	2.3	Linear Matroid:	2
	2.4	Representable Matroid:	2
	2.5	Regular Matroid:	3
	2.6	Graphic Matroid / Cyclic Matroid:	3
	2.7	Matching Matroids	3
SECTION 3		Circuits	PAGE 4
SECTION 4		FINDING MAX WEIGHT BASE	PAGE 4
	4.1	Algorithm	4
	4.2	Correctness Analysis	4
SECTION 5		Some Matroid Properties	PAGE 4
	5.1	Strong Base Exchange Property	4
	5.2	Exchange Graph of a Matroid wrt $S \in I$	4
SECTION 6		Using Matroid Intersection to Solve Problems	PAGE 4
	(1		
	6.1 6.2	Bipartite Matching	4
	6.2	Colorful Spanning Tree Min May Polation for Colorful Spanning Tree	4
		Min-Max Relation for Colorful Spanning Tree Arborescence	4
	6.4	Alborescence	4
SECTION 7		CONVINCE MATTROYD INTERPRETATION PRODUCTION	Dage 4

1 Introduction

Definition 1.1: Matroid

A matroid M = (E, I) has a ground set E and a collection I of subsets of E called the *Independent Sets* st

- 1. Downward Closure: If $Y \in I$ then $\forall X \subseteq Y, X \in I$.
- 2. Extension Property: If $x, Y \in I$, |X| < |Y| then $\exists e \in Y X$ such that $X \cup \{e\}$ also written as $X + e \in I$

Observation. A maximal independent set in a matroid is also a maximum independent set. All maximal independent sets have the same size.

Base: Maximal Independent sets are called bases.

Rank of $S \in I$: max{ $|X|: X \subseteq S, X \in I$ }

Rank of a Matroid: Size of the base.

Span of $S \in I$: $\{e \in E : rank(S) = rank(S + e)\}$

2 Types of Matroids

2.1 Uniform Matroid:

It is denoted as $U_{k,n}$ where E = [n] and $I = \{X \subseteq E \mid |X| \le k\}$.

Free Matroid: When k = n we take all possible subsets of E into I. This matroid is called Free Matroid i.e. $U_{n,n}$

2.2 Partition Matroid:

Given $E = E_1 \sqcup E_2 \sqcup \cdots \sqcup E_l$ where $\{E_1, \ldots, E_l\}$ is a partition of E and $k_1, \ldots, k_l \in \mathbb{N} \cup \{0\}$

$$I = \{X \subseteq E \colon |X \cap E_i| \le k_i \ \forall \ i \in [l]\}$$

then M = (E, I) is a partition matroid.

Note:-

If the E_i 's are not a partition then suppose E_1 , E_2 has nonempty partition then we will not have a matroid. For example: $E_1 = \{1,2\}$, $E_2 = \{2,3\}$ and $k_1 = k_2 = 1$ then $X = \{1,3\}$ is independent but $Y = \{2\} \subsetneq X$ is not a matroid.

2.3 Linear Matroid:

Given a $m \times n$ matrix denote its columns as A_1, \ldots, A_n . Then

$$I = \{X \subseteq [n] : \text{Columns corresponding to } X \text{ are linearly independent} \}$$

Here if the underlying field is \mathbb{F}_2 then it is called *Binary Matroid* and for \mathbb{F}_3 it is called *Ternary Matroid*.

2.4 Representable Matroid:

A matroid with which we can associate a linear matroid is called a representable matroid.

Eg:
$$U_{2,3}$$
. It can be represented by the matrix $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$, over \mathbb{F}_2 . Over \mathbb{F}_3 it is same as $U_{3,3}$.

Note:-

There are matroids which are not representable as linear matroids in some field. There are matroids which are not representable on any field as well.

2

Lemma 2.1

 $U_{2,4}$ is not representable over \mathbb{F}_2 but representable over \mathbb{F}_3

2.5 Regular Matroid:

There are the matroids which are representable over all fields.

Lemma 2.2

Regular Matroids are precisely those which can be represented over $\mathbb R$ by a Totally Uni-modular matrix

2.6 Graphic Matroid / Cyclic Matroid:

For a graph G = (V, E) the graphic matroid $M_G = (E, I)$ where

$$I = \{F \subseteq E \colon F \text{ is acyclic}\}\$$

Hence I is the collection of forests of G. It follows the downward closure trivially. For extension property let $k = |F_1| < |F_2| = l$ and then there are n - k and n - l components. SO n - k > n - l. So \exists an edge in F_2 which joins 2 components in F_1 .

Lemma 2.3

A subset of columns is linearly independent iff the corresponding edges don't contain a cycle in the incidence matrix

Lemma 2.4

Graphic Matroids are Regular Matroids

Proof Idea: Use Incidence Matrix. ■

2.7 Matching Matroids

We can try to define it like this but it will not work:

Problem 1

Is the following a matroid: $E = \text{Edges of a graph and } I = \{F \subseteq E \colon F \text{ is a matching}\}$

Solution: It is not a matroid since maximal matchings can not be extended to a maximum matching.

Correct way will be: For a graph G = (V, E) the ground set = V and

 $I = \{S \subseteq V \colon \exists a \text{ matching that matches all vertices in } S\}$

The downward closure property trivially holds. For extension property is S | < |S'| then there exists another vertex in S' which is not matched with S, so we can add that vertex to S.

3 Circuits

Assume we have a matroid M = (E, I).

Definition 3.1: Circuit

A minimal dependent set *C* such that $\forall e \in C, C - e$ is an independent set.

Theorem 3.1

Let $S \in I$. $S + e \notin I$. Then $\exists ! C \subseteq S + e$.

4 Finding Max Weight Base

- 4.1 Algorithm
- 4.2 Correctness Analysis
- **5 Some Matroid Properties**
- 5.1 Strong Base Exchange Property
- 5.2 Exchange Graph of a Matroid wrt $S \in I$
- 6 Using Matroid Intersection to Solve Problems
- 6.1 Bipartite Matching
- 6.2 Colorful Spanning Tree
- 6.3 Min-Max Relation for Colorful Spanning Tree
- 6.4 Arborescence
- 7 Solving Matroid Intersection Problem