NC.2. CALCUL NUMERIQUE

1) Ecritures fractionnaires

a) Addition

Propriété: Étant donnés a, b et c des nombres relatifs tels que $c \neq 0$

$$\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$$
 (Les dénominateurs doivent être égaux.)

Méthode: * J'écris les deux fractions avec le même dénominateur (en cherchant un multiple commun aux deux dénominateurs)

* Je garde ce dénominateur commun et j'ajoute les numérateurs

* Je simplifie si possible

Explication détaillée : $\frac{3}{2} + \frac{5}{2}$

Liste des multiples de 8:9; 8;16; 24; 32;40;48;56;64;72;80;...

Liste des multiples de 6:9; 6; 12; 18; 24; 30; 36; 42; 48; 54; 60; 66; 72;

Entourer les multiples communs et en choisir un (par exemple le plus petit sauf 0)

$$\frac{3}{8} + \frac{5}{6} = \frac{9}{24} + \frac{20}{24} = \frac{9+20}{24} = \frac{29}{24}$$

Exemples:
$$A = \frac{12}{7} - \frac{26}{7}$$
 $B = -\frac{4}{5} + \frac{2}{3}$ $C = \frac{5}{9} - 1$

$$B = -\frac{4}{5} + \frac{2}{3}$$

$$C = \frac{5}{9} - 1$$

$$A = \frac{-14}{7}$$

$$A = \frac{-14}{7}$$
 $B = -\frac{12}{15} + \frac{10}{15}$ $C = \frac{5}{9} - \frac{9}{9}$

$$C = \frac{5}{9} - \frac{9}{9}$$

$$\mathbf{A} = -2$$

$$\mathsf{B} = \frac{-2}{15}$$

$$B = \frac{-2}{15} \qquad C = -\frac{4}{9}$$

b) Multiplication

Propriété: Étant donnés 4 nombres relatifs a, b, c et d tels que $b \neq 0$ et $d \neq 0$

* J'écris le produit des distances à zéro des numérateurs et des dénominateurs

* Je simplifie si possible

* Je calcule les produits

* Je vérifie que la fraction est simplifiée au maximum

 $C = \frac{-5}{21} \times \frac{-49}{25} = -\frac{5 \times 49}{21 \times 25} = -\frac{5 \times 7 \times 7}{3 \times 7 \times 5 \times 5} = -\frac{7}{15}$ Exemple:

Prendre une fraction d'un nombre, c'est multiplier cette fraction par Définition : ce nombre.

c) Division

Rappel: Soit a un nombre relatif tel que $a \neq 0$, l'inverse de a se note $\frac{1}{a}$

Propriété: Étant donnés des nombres relatifs a, b, c et d tels que

$$b \neq 0, c \neq 0 \text{ et } d \neq 0$$

$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$$

* Je recopie le premier nombre (décimal ou écriture fractionnaire) *Méthode*:

> * Je change la division en multiplication et j'écris l'inverse du 2ème nombre.

* J'applique la méthode de multiplication.

Exemple:
$$D = \frac{-4}{11} \div \frac{8}{-5}$$
 $E = \frac{-24}{-7} \div (-8)$

$$D = \frac{-4}{11} \times \frac{-5}{8}$$
 $E = \frac{-24}{-7} \times \frac{1}{-8}$

$$D = + \frac{4 \times 5}{11 \times 2 \times 4}$$

$$E = -\frac{24 \times 1}{7 \times 8}$$

$$D = \frac{5}{22}$$
 $E = -\frac{3 \times 8 \times 1}{7 \times 8}$ $E = -\frac{3}{7}$

2) Puissances d'un nombre relatif

a) Exposant entier positif

Définition : Soit a un nombre relatif (éventuellement nul)

Pour
$$n \ge 1$$
, $a^n = \underbrace{a \times a \times ... \times a \times a}_{n \text{ facteurs } \notin gaux}$

Convention: $a^0 = 1$

a s'appelle la base, *n* l'exposant. Le résultat s'appelle la puissance.

Exemples: $7^3 = 7 \times 7 \times 7 = 343$ $(-3)^4 = (-3) \times (-3) \times (-3) \times (-3) = 81$ $10^6 = 10 \times 10 \times 10 \times 10 \times 10 = 1000000$

b) Exposant entier négatif avec 10 comme base

Définition : Soit n un entier positif $(n \ge 0)$

$$10^{-n}$$
 est l'inverse de 10^n $10^{-n} = \frac{1}{10^n}$

Exemple: $10^{-3} = \frac{1}{10^{3}} = \frac{1}{1000} = 0,001$

c) Priorités de calculs

Dans une expression,

les calculs entre parenthèses ont priorité,

ensuite ce sont les exposants,

puis les multiplications et divisions de gauche à droite si elles s'enchaînent, puis les additions et soustractions de gauche à droite (ou avec des astuces).

Exemples:
$$(-7)^2 = (-7) \times (-7) = 49$$
 alors que $-7^2 = -7 \times 7 = -49$

$$F = -10 + 6 \times (7 - 3 \times 4)^{2}$$

$$F = -10 + 6 \times (7 - 12)^{2}$$

$$F = -10 + 6 \times (-5)^{2}$$

$$F = -10 + 6 \times 25$$

$$F = -10 + 150$$

$$F = 140$$

d) Ecriture scientifique

Propriété/Définition:

Tout nombre décimal non nul peut s'écrire sous la forme $a \times 10^n$ avec a un nombre décimal relatif tel que $-10 < a \le -1$ ou $1 \le a < 10$ et n un entier relatif qui convient.

(Le nombre a doit être un nombre décimal avec un seul chiffre différent de zéro avant la virgule.)

C'est l'écriture scientifique de ce nombre décimal.

Exemples:
$$2 \cdot 167 = 2,167 \times 10^{3}$$

 $0,000 \cdot 58 = 5,8 \times 10^{-4}$
 $456.1 \times 10^{8} = 4.561 \times 10^{10}$

e) Règles de calculs

Propriétés: Etant donnés a et b deux nombres relatifs non nuls et n et p deux nombres entiers relatifs

$$a^{n} \times a^{p} = a^{n+p}$$

$$\frac{a^{n}}{a^{p}} = a^{n-p}$$

$$(a^{n})^{p} = a^{n \times p}$$

$$(a \times b)^{n} = a^{n} \times b^{n}$$

$$\left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}}$$