Regression and practical advice

Toby Dylan Hocking

Supervised machine learning

- ▶ Goal is to learn a function $f(\mathbf{x}) = y$ where $\mathbf{x} \in \mathbb{R}^p$ is an input/feature vector and y is an output/label.
- This week we will study linear models and neural networks for regression, meaning labels represented by $y \in \mathbb{R}$ is a real number.
- ▶ air foil self-noise data: $\mathbf{x} = \text{Frequency (Hertz)}$, Angle of attack (degrees), Chord length (meters), Free-stream velocity (meters per second), $y \in \mathbb{R}$ Scaled sound pressure level, in decibels.
- ▶ forest fires data: $\mathbf{x} =$ meteorological and other data, $y \in \mathbb{R}_+$ burned area.
- some practical advice for getting gradient descent learning to work better (scaling, log transform, feature transform)

air foil self-noise data

##		Hertz	degrees		meters	decibels
##	0	800	0.0		0.002663	126.201
##	1	1000	0.0		0.002663	125.201
##	2	1250	0.0		0.002663	125.951
##	3	1600	0.0		0.002663	127.591
##	4	2000	0.0		0.002663	127.461
##						
##	1498	2500	15.6		0.052849	110.264
##	1499	3150	15.6		0.052849	109.254
##	1500	4000	15.6		0.052849	106.604
##	1501	5000	15.6		0.052849	106.224
##	1502	6300	15.6		0.052849	104.204
##						
##	[1503 rows x 6 columns]					

Need to scale label vector, to avoid numerical instability in gradient descent.

Labels in data=air_foil

Labels in data=air foil

log(decibels)

forest fires data

```
##
        X
              month
                      ... wind
                                 rain
                                        area
##
        7
            5
                           6.7
                                  0.0
                                        0.00
   0
                mar
        7
##
                oct
                           0.9
                                  0.0
                                        0.00
##
        7
                oct
                         1.3
                                  0.0
                                        0.00
        8
                                        0.00
##
   3
            6
                           4.0
                                  0.2
                mar
        8
                                        0.00
##
            6
                      ... 1.8
                                  0.0
                mar
##
## 512
        4
           3
                          2.7
                                  0.0
                                        6.44
                aug
                      . . .
##
   513
        2
                           5.8
                                  0.0
                                       54.29
                aug
                      . . .
## 514
                           6.7
                                  0.0
                                       11.16
                aug
## 515
                          4.0
                                  0.0
                                        0.00
            4
                aug
## 516
           3
                nov
                           4.5
                                  0.0
                                        0.00
##
   [517 rows x 13 columns]
```

For categorical variables like month, need to ignore, or re-encode (ordinal or one-hot encoding).

Labels in data=forest_fires

Labels in data=forest_fires

Labels in data=forest fires

Labels in data=forest_fires, zeros excluded

Real data feature distribution

Feature distribution in air_foil data

Real data feature distribution

Simulated data feature distribution

Pattern in simulated data has continuity over 0/360 edge

Non-linear basis expansion

Train nearest neighbor regression

Predict mean of K nearest neighbors.

Learned function not continuous over 0/360

KNN Train features: degrees

sin/cos features enforce continuity

How are the neural network weights learned?

- Typically we use some version of gradient descent.
- ► This algorithm requires definition of a differentiable loss function to minimize on the train set.
- For regression problems $(y \in \mathbb{R})$ we use the square loss, $\ell[f(\mathbf{x}), y) = [f(\mathbf{x}) y]^2$.

Visualization of square loss gradient/derivative

Enforcing non-negative predictions

Assume labels $y \ge 0$. How to make sure that the neural network predicts $f(x) \ge 0$?

Square loss is defined for all real numbers. Neural network predicts f(x), a real number (maybe negative).

Taking $\exp f(x) > 0$ ensures positive output.

Interactive visualization of gradient descent for regression

http://ml.nau.edu/viz/2022-02-02-gradient-descent-regression/

Possible exam questions

► TODO