Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЛЕКТРОНИКИ

Военный факультет

Кафедра электронных вычислительных машин

Дисциплина: Базы данных

ОТЧЁТ к лабораторной работе №2 на тему СОЗДАНИЕ РЕЛЯЦИОННОЙ СХЕМЫ ДАННЫХ

Студент М.И. Семёнов

Проверила Д.В. Куприянова

МИНСК 2024

1. ЦЕЛИ РАБОТЫ

Изучить принципы выполнения логического проектирования базы данных путем построение реляционной схемы данных по раннее спроектированной ER-модели (построение ER-модели приведено в отчете лабораторной работе N 1). Рассмотреть принципы преобразования ER-диаграммы в реляционную схему данных в виде UML диаграммы.

Изучить «автоматическое» преобразование ER-диаграммы в реляционную модель под средством установленной программы PostgreSQL. Освоить алгоритмы в «бумажном» построении данной схемы.

Изучить принципы формирования первичных ключей, составных первичных ключей, внешних ключей, суррогатных ключей столбцов таблиц баз данных. Рассмотреть конструкции построение и элементы схем в создании реляционных схем и знать их отличие.

Продемонстрировать построение на выбранную тему базы данных «Железнодорожный вокзал». Объяснить выбранные элементы для построения, продемонстрировать возможность другого принципа формирования первичного ключа в промежуточных таблицах, которые реализуют тернарные связи ER-диаграммы.

2. ИСХОДНЫЕ ДАННЫЕ К РАБОТЕ

В данной лабораторной работе используется инструмент построения реляционных отношений и схем баз данных draw.io. Для проектирования детальных связей между сущностями «один к одному», «один ко многим», «многие ко многим» PostgreSQL.

В процессе выполнения лабораторной работы требуется:

- проверить ER-диаграмму, созданную в лабораторной работе №1;
- выполнить преобразования ER-диаграммы в реляционную модель в следующем варианте: данный вид приведен в пункте 3.1 раздела выполнения работы;
- сравнить полученные диаграммы и, если есть расхождения в получение реляционных схемах, найти несоответствия и устранить их;
- по алгоритму продемонстрировать поэтапное выполнения проектирования схемы с кратким описанием.

3. ВЫПОЛНЕНИЕ РАБОТЫ

В данном разделе описано проектирование реляционной схемы базы данных в двух вариантах: «бумажный» вид с помощью инструмента draw.io и программное проектирование через PostgreSQL.

3.1 Проектирование схемы данных через draw.io

Порядок перевода ER-модели, изображенной на рисунке 3.1, в реляционную модель для базы данных на тему «Железнодорожный вокзал» выполняется с помощью алгоритма, состоящего из 6 этапов:

- первый, второй и третий этап: каждый объект на ER-диаграмме превращается в реляционное отношение (далее для краткости в таблицу), имя объекта становится именем таблицы (следует указать понятное имя). Далее каждый атрибут объекта становится столбцом таблицы с тем же именем (так же следует указать понятное имя) и требуемым типом данных. Затем уникальные (ключевые) атрибуты объекта превращаются в первичный ключ таблицы (при наличии нескольких возможных уникальных идентификаторов, выбирается наиболее подходящий для использования; если таковых атрибутов нет или плохо подходят для долговременного использования в БД, то желательно создать суррогатный ключ). Следует отметить, что каждая таблица должна иметь первичный ключ. На рисунке 3.2 изображен первая реализация схема данных;
- четвертый этап: связи «один ко многим» (в том числе и связи «один к одному») становятся ссылками в уже существующих таблицах, при это внешний ключ добавляется в виде столбца (столбцов) в таблицу, соответствующую объекту со стороны «многие» связи. Внешние ключи должны ссылаться только на первичные ключи целевых таблиц. Данный этап построения изображен на рисунке 3.3;
- пятый этап: связи «многие ко многим» реализуются каждая через отдельную промежуточную таблицу: промежуточная таблица обязательно столбиы содержать внешних ключей. будет ссылающиеся соответствующие связи, и первичный ключ промежуточной таблицы для исключения дубликатов должен быть составным и включать в себя все внешние ключи на объекты, участвующие Данный В связи. продемонстрирован на рисунке 3.4;
- шестой этап: если связь имеет дополнительные атрибуты, то, как в случае атрибутов объектов, они становятся столбцом соответствующей таблицы: для связей «многие ко многим» (встречается на практике редко) в таблице со стороны «многие» (там, где расположен внешний ключ). Для связей «многие ко многим» в промежуточной таблице (при этом атрибуты, расширяющие комбинацию в связи, так же должны войти в состав составного

первичного ключа промежуточной таблицы). На рисунке 3.5 изображен последний этап моделирования.

Рисунок 3.1 – Исходная ER-диаграмма для базы данных на тему «Железнодорожный вокзал»

Рисунок 3.2 – Реализация первого, второго и третьего алгоритма построения реляционной схемы данных

Рисунок 3.3 — Четвертый алгоритм отображения связей «один к одному», «многие ко многим»

Рисунок 3.4 – Пятый алгоритм соотношения связей «многие ко многим»

Так как в заключительном этапе реализации реляционной схемы данных в таблице «Рейс» используются составные ключи на основе ссылок на базовые объекты. Даная реализация позволяет контролировать комбинации полей и блокировать добавление дубликатов, следует отметить, что в данной реализации первичным составным ключом будет выступать 4 поля.

Так же существует еще один вариант полей на основе суррогатного поля (РК), как простое. Такой первичный ключ просто реализуется и позволяет легко модернизировать БД.

Рисунок 3.5 – Шестой этап реализации реляционной схемы данных

3.2 Проектирование схемы данных в PostgreSQL

В данном подразделе реализовано проектирование реляционной схемы данных в PostgreSQL. На рисунке 3.6 изображена ERD-диаграмма.

Рисунок 3.6 – Схематичное изображение ERD-диаграммы через PostgreSQL

4. ВЫВОД

В данной лабораторной работе научились проектировать реляционную схему данных на основе ERD-диаграммы. В данном случае изучили реализацию схемы данных на основе ER-модели «сущность - связь», приведены примеры «бумажного» и автоматического создания реляционной схемы данных на тему «Железнодорожный вокзал».