DERIVATIVE OF $f(x) = \sin(x)$

We want to find the derivative of $f(x) = \sin(x)$. In other words, we're asking: "How fast is sine changing at any given angle x?"

🗩 Step 1: Start from the Definition of Derivative

By definition, $f'(x) = \lim (h \to 0) [f(x + h) - f(x)] / h$ Since $f(x) = \sin(x)$, we can write: $f'(x) = \lim (h \to 0) [\sin(x + h) - \sin(x)] / h$

🧠 Step 2: Expand Using the Trigonometric Formula

We know from trigonometry that: sin(A + B) = sin(A)cos(B) + cos(A)sin(B)

So, sin(x + h) = sin(x)cos(h) + cos(x)sin(h)

Substitute this into our derivative:

 $f'(x) = \lim (h \rightarrow 0) \left[\sin(x)\cos(h) + \cos(x)\sin(h) - \sin(x) \right] / h$

Step 3: Rearrange Terms

Group the sin(x) terms together:

$$f'(x) = \lim (h \to 0) [\sin(x)(\cos(h) - 1) + \cos(x)\sin(h)] / h$$

Now, split the fraction into two parts:

$$f'(x) = \sin(x) * [(\cos(h) - 1) / h] + \cos(x) * [\sin(h) / h]$$

Step 4: Apply Two Famous Trig Limits

We know these standard limits:

1.
$$\lim (h \to 0) [\sin(h) / h] = 1$$

2.
$$\lim (h \to 0) [(\cos(h) - 1) / h] = 0$$

Now substitute these into the expression:

$$f'(x) = \sin(x) * (0) + \cos(x) * (1)$$

Simplify it:

$$f'(x) = \cos(x)$$

Final Result

The derivative of sin(x) is:

$$f'(x) = cos(x)$$

Intuitive Explanation (Feynman Style)

Think of sin(x) as a **wave** that rises and falls smoothly. At the start (x = 0), sin(x) begins to rise — its slope is 1, and that's exactly what cos(x) equals at x = 0.

Whenever sin(x) is at its highest point (like 1), it stops rising — its slope becomes $\mathbf{0}$, and cos(x) is also 0 there.

So cos(x) acts like the "speed" or "slope tracker" of sin(x). Whenever sin(x) increases or decreases, cos(x) tells us how fast.

In other words:

cos(x) is the rate of change of sin(x).

Quick Verification Example

Let's test at a few points:

x	sin(x)	f'(x) = cos(x)	Meaning
0	0	1	Sine starts rising fast
π/2	1	0	Sine stops increasing
π	0	– 1	Sine falls sharply
3π/2	-1	0	Sine stops decreasing

You can literally "see" cos(x) describe how the slope of sin(x) changes over time.

Memory Trick

"Derivative of sin is cos — they're dance partners."

Whenever sin(x) leads, cos(x) follows — one describes the motion, the other describes the speed.

V Final Formula:

If $f(x) = \sin(x)$, then $f'(x) = \cos(x)$

DERIVATIVE OF f(x) = cos(x)

We already found that the derivative of sin(x) is cos(x). Now let's discover how the slope behaves for the **cosine** function.

Step 1: Start from the Definition

By definition,

$$f'(x) = \lim (h \to 0) [f(x + h) - f(x)] / h$$

For f(x) = cos(x), we have:

$$f'(x) = \lim (h \rightarrow 0) [\cos(x + h) - \cos(x)] / h$$

Step 2: Expand Using the Trig Formula

We know that:

$$cos(A + B) = cos(A)cos(B) - sin(A)sin(B)$$

So.

$$cos(x + h) = cos(x)cos(h) - sin(x)sin(h)$$

Substitute this into the derivative:

$$f'(x) = \lim (h \to 0) [\cos(x)\cos(h) - \sin(x)\sin(h) - \cos(x)]/h$$

🧮 Step 3: Group and Simplify

Group the cos(x) terms together:

$$f'(x) = \lim_{h \to 0} (h \to 0) [\cos(x)(\cos(h) - 1) - \sin(x)\sin(h)] / h$$

Split the terms:

$$f'(x) = \cos(x) * [(\cos(h) - 1) / h] - \sin(x) * [\sin(h) / h]$$

Step 4: Apply the Two Standard Limits

We already know:

$$\lim (h \to 0) [\sin(h) / h] = 1$$

 $\lim (h \to 0) [\cos(h) - 1) / h] = 0$

Substitute them in:

$$f'(x) = \cos(x)(0) - \sin(x)(1)$$

Simplify:

$$f'(x) = -\sin(x)$$

V Final Result

If
$$f(x) = cos(x)$$
,
then $f'(x) = -sin(x)$

Intuitive Explanation (Feynman Style)

Think of sin(x) and cos(x) as **wave partners** — when one rises, the other falls.

At x = 0, cos(x) = 1, but it starts decreasing immediately — so the slope is **negative** there. That's why we get the minus sign.

In short:

cos(x) tells how high we are,-sin(x) tells how fast we're coming down.

Memory Trick

If derivative of sin(x) = cos(x), then derivative of cos(x) = -sin(x).

They're the same pattern — just one step out of phase.

▼ Final Formula:

$$f'(x) = -\sin(x)$$

DERIVATIVE OF f(x) = tan(x)

Now let's find the derivative of tan(x).

We could start from the definition, but that gets messy with expansions of sin and cos. Instead, let's use a clever shortcut — the **Quotient Rule**.

Step 1: Write tan(x) as a Quotient

We know that: tan(x) = sin(x) / cos(x)Let $f(x) = \sin(x)$ and $g(x) = \cos(x)$ Then, tan(x) = f(x) / g(x)

Step 2: Apply the Quotient Rule

The Quotient Rule says:

$$d/dx [f(x) / g(x)] = [g(x)f'(x) - f(x)g'(x)] / [g(x)]^{2}$$

Now,

 $f'(x) = \cos(x)$

 $g'(x) = -\sin(x)$

Substitute these values:

$$d/dx [sin(x) / cos(x)]$$

= $[cos(x) * cos(x) - sin(x) * (-sin(x))] / [cos(x)]^2$

Simplify the numerator:

=
$$[\cos^2(x) + \sin^2(x)] / \cos^2(x)$$

Step 3: Use the Pythagorean Identity

We know:

$$\sin^2(x) + \cos^2(x) = 1$$

So:

$$f'(x) = 1 / \cos^2(x)$$

Final Result

The derivative of tan(x) is:

$$f'(x) = sec^2(x)$$

(because sec(x) = 1 / cos(x))

💡 Intuitive Explanation (Feynman Style)

Think of tan(x) as sine divided by cosine.

As cosine gets smaller (approaching 0), tan(x) shoots up its slope grows incredibly fast near vertical asymptotes (like $x = \pi/2$).

That's why the derivative is $sec^2(x)$ —

it grows *much faster* when cos(x) becomes small.

Memory Trick

"Derivative of tan is sec2" —

like saying "tan stands tall — its slope squares up!"

You can also remember:

 $\sin \rightarrow \cos$

 $cos \rightarrow -sin$

tan → sec²

 $sec \rightarrow sec \cdot tan$

 $cot \rightarrow -csc^2$

csc → -csc·cot

☑ Final Formulas Summary

Function	Derivative
sin(x)	cos(x)
cos(x)	-sin(x)
tan(x)	sec ² (x)

```
DERIVATIVE OF f(x) = \sec(x)

Recall: \sec(x) = 1 / \cos(x).

Use the reciprocal rule (or quotient rule). If g(x) = \cos(x), then d/dx [1 / g(x)] = -g'(x) / [g(x)]^2.

Here g(x) = \cos(x) and g'(x) = -\sin(x). So d/dx [\sec(x)] = d/dx [1 / \cos(x)] = -(-\sin(x)) / [\cos(x)]^2 = \sin(x) / \cos^2(x).

Rewrite \sin(\cos^2 x) = \sin(x) / \cos^2 x.

Therefore: d/dx [\sec(x)] = \sec(x) * \tan(x).

Intuition (Feynman-style): \sec(x) is 1/\cos(x). When \cos x decreases a bit, its reciprocal increases; the extra factor \tan(x) appears because the slope depends on both the size of \cos x and how fast \sin(x) is changing.
```

DERIVATIVE OF f(x) = csc(x)

Recall: csc(x) = 1 / sin(x).

Apply the reciprocal rule with $g(x) = \sin(x)$, $g'(x) = \cos(x)$:

```
d/dx [csc(x)] = d/dx [1 / sin(x)]
= - g'(x) / [g(x)]^2
= - cos(x) / sin^2(x).
```

Rewrite as $-(1/\sin) * (\cos/\sin) = -\csc(x) * \cot(x)$.

Therefore:

$$d/dx [\csc(x)] = -\csc(x) * \cot(x).$$

Intuition: same idea — reciprocal of sine decreases when sine grows, and the extra cot factor captures the relative rates.

DERIVATIVE OF $f(x) = \cot(x)$

Recall: cot(x) = cos(x) / sin(x) = 1 / tan(x).

Use quotient rule or reciprocal rule. Using quotient rule with $f = \cos$, $g = \sin$:

```
\begin{aligned} & d/dx \left[ \cot(x) \right] = \left[ \sin(x) * (-\sin(x)) - \cos(x) * \cos(x) \right] / \sin^2(x) \\ & = \left[ -\sin^2(x) - \cos^2(x) \right] / \sin^2(x) \\ & = -\left[ \sin^2(x) + \cos^2(x) \right] / \sin^2(x) \\ & = -1 / \sin^2(x) (\text{since } \sin^2(x) + \cos^2(x)) \\ & = -\cos^2(x). \end{aligned}
Therefore:
 & d/dx \left[ \cot(x) \right] = -\csc^2(x).
```

Intuition: cot is cos/sin; both numerator and denominator change and the result is always negative (because cot decreases where sine increases), with magnitude 1/sin^2 scaling the change.

SUMMARY OF TRIG DERIVATIVES (plain list)

```
d/dx [sin(x)] = cos(x)
d/dx [cos(x)] = -sin(x)
d/dx [tan(x)] = sec^2(x)
d/dx [sec(x)] = sec(x) \cdot tan(x)
d/dx [csc(x)] = -csc(x) \cdot cot(x)
d/dx [cot(x)] = -csc^2(x)
```

(Remember: these formulas are valid when the arguments are measured in RADIANS — see note below.)

WHY ANGLES MUST BE IN RADIANS (short, essential explanation)

The basic limit $\lim(h\to 0) \sin(h)/h = 1$ is true *only when h is measured in radians*. That limit is used in the derivative calculations for sin and cos. If you measure angles in degrees, the limit becomes $\sin(h^\circ)/h^\circ = (\pi/180)$ (as $h^\circ \to 0$) and you get extra constant factors. In short:

- Derivative formulas (like d/dx[sin x] = cos x) rely on $sin(h)/h \rightarrow 1$ as $h\rightarrow 0$.
- That identity is true for radian measure, so trig derivatives above assume x is in radians.
- If x were in degrees, every trig derivative would include a constant factor (π/180) or its powers — messy and incorrect unless adjusted.

Bottom line: use radians when differentiating trig functions.

APPLICATION EXAMPLE — BUILDING SHADOW

Problem: A building is 100 feet high. Let θ be the sun's angle of elevation and x be the length of the building's shadow. Find dx/d θ (rate of change of shadow length with respect to θ) when θ = 45°, and give the answer in feet per degree.

Geometry relation:

 $tan(\theta) = opposite/adjacent = 100 / x \rightarrow x = 100 / tan(\theta) = 100 \cdot cot(\theta)$.

Differentiate with respect to θ (use radians while differentiating):

$$dx/d\theta = 100 \cdot d/d\theta [cot(\theta)] = 100 \cdot (-csc^2(\theta)) = -100 \cdot csc^2(\theta)$$
. (units: feet per radian)

Evaluate at $\theta = 45^{\circ} = \pi/4$ radians:

$$\sin(\pi/4) = \sqrt{2}/2 \rightarrow \csc(\pi/4) = 1 / \sin(\pi/4) = \sqrt{2} \rightarrow \csc^2(\pi/4) = 2.$$

So:

$$dx/d\theta$$
 (at $\theta = \pi/4$) = -100 · 2 = -200 feet per radian.

Convert to feet per degree:

1 degree = $\pi/180$ radians, so dx/d(degree) = dx/d(radian) * (radian per degree)

= $(-200 \text{ ft/radian}) * (\pi / 180) \text{ rad/degree}$

 $= -200\pi / 180 \text{ ft/degree}$

= -10π / 9 ft/degree (exact form)

Numeric approx: $-10\pi/9 \approx -3.49$ ft/degree.

Interpretation: at 45°, as the sun's elevation angle increases by 1 degree, the shadow shortens by about 3.49 feet (negative sign = shadow length decreasing).