

Diagonalisierung und polynomielle Hierarchie

Corvin Paul, Matthias Schimek

Institut für Theoretische Informatik - Algorithmik I

Diagonalisierung als Beweistechnik

Diagonalisierung: Was ist das eigentlich?

Diagonalisierung als Beweistechnik

Eine Hierarchie von Komplexitätsklassen

P oder NPC: gibt es noch mehr in NP?

P oder NPC: gibt es noch mehr in NP?

Diagonalisierung als Beweistechnik Grenzen der Diagonalisierung

Orakelmaschinen und die P, NP Frage

Die polynomoielle Hierarchie

- Verallgemeinerung von P NP
- Kollabiert die PH?

Die polynomoielle Hierarchie

- Verallgemeinerung von $\mathbf{P} \mathbf{NP}$
- Kollabiert die PH?

Gliederung

Diagonalisierung

Was verstehen wir unter Diagonalisierung?

Time Hierarchy

Satz von Ladner

Orakelmaschinen - Grenzen der Diagonalisierung

Die polynomielle Hierarchie

Motivation und Beispiele

Die Klasse PH

Gliederung

Diagonalisierung

Was verstehen wir unter Diagonalisierung?

Time Hierarchy

Motivation und Beispiele Die Klasse PH

- Unentscheidbarkeit des Halteproblems

- Unentscheidbarkeit des Halteproblems
- informell: Konstruktion eines Elements, das sich von jedem anderen Element unterscheidet
- Diagonalisierung nicht immer "schön" zu seher
- In späteren Beweisen gewisse Abstraktion vom "Diagonalprinzip"

- Unentscheidbarkeit des Halteproblems
- informell: Konstruktion eines Elements, das sich von jedem anderen Element unterscheidet
- Diagonalisierung nicht immer "schön" zu sehen
- In späteren Beweisen gewisse Abstraktion vom "Diagonalprinzip"

- Unentscheidbarkeit des Halteproblems
- informell: Konstruktion eines Elements, das sich von jedem anderen Element unterscheidet
- Diagonalisierung nicht immer "schön" zu sehen
- In späteren Beweisen gewisse Abstraktion vom "Diagonalprinzip"

Was ist Diagonalisierung

Als Diagonalisierung wird (in der Informatik) ein Beweis bezeichnet, der nur auf den beiden folgenden Eigenschaften von TM aufbaut.

Die Existenz einer Repräsentation von TM durch Zeichenketten (Gödelnummer)

Die Fähigkeit eine andere TM mit geringem zusätzlichen Zeit- oder Platzbedarf zu simulieren (Universelle TM)

Was ist Diagonalisierung

Als Diagonalisierung wird (in der Informatik) ein Beweis bezeichnet, der nur auf den beiden folgenden Eigenschaften von TM aufbaut.

 Die Existenz einer Repräsentation von TM durch Zeichenketten (Gödelnummer)

Die Fähigkeit eine andere TM mit geringem zusätzlichen Zeit- oder Platzbedarf zu simulieren (Universelle TM)

Diagonalisierung

Was verstehen wir darunter?

Was ist Diagonalisierung

Als Diagonalisierung wird (in der Informatik) ein Beweis bezeichnet, der nur auf den beiden folgenden Eigenschaften von TM aufbaut.

- Die Existenz einer Repräsentation von TM durch Zeichenketten (Gödelnummer)
- Die F\u00e4higkeit eine andere TM mit geringem zus\u00e4tzlichen Zeit- oder Platzbedarf zu simulieren (Universelle TM)

Gliederung

Diagonalisierung

Was verstehen wir unter Diagonalisierung?

Time Hierarchy

Motivation und Beispiele Die Klasse PH

Vorraussetzungen

Wiederholung:

- Für $i \in \mathbb{N}$ beschreibt i die TM M_i
- Jede TM wird von unendlich vielen $i \in \mathbb{N}$ beschrieber
- Es existiert eine universelle TM U, die jede TM mit logarithmischem Overhead simulieren kann

Vorraussetzungen

Wiederholung:

- Für $i \in \mathbb{N}$ beschreibt i die TM M_i
- Jede TM wird von unendlich vielen $i \in \mathbb{N}$ beschrieben

Vorraussetzungen

Wiederholung:

- Für $i \in \mathbb{N}$ beschreibt i die TM M_i
- Jede TM wird von unendlich vielen $i \in \mathbb{N}$ beschrieben
- Es existiert eine universelle TM U, die jede TM mit logarithmischem Overhead simulieren kann

Universelle TM

Vorraussetzungen

TM M_i läuft bei Eingabe x in $\mathcal{O}(f(n)) \Rightarrow$ TM U läuft bei Eingabe i, x in $\mathcal{O}(f(n)log(f(n)))$

Vorraussetzungen

Definition Time-constructible functions

Wir nennen eine Funktion f time-constructible, falls gilt: f(n) ist in $\mathcal{O}(f(n))$ berechenbar.

Vorraussetzungen

Definition Time-constructible functions

Wir nennen eine Funktion f time-constructible, falls gilt : f(n) ist in $\mathcal{O}(f(n))$ berechenbar.

Definition DTIME

Deterministische Time Hierarchy

Satz: Time Hierarchy Theorem, 65

Seien f,g time-constructible mit $f(n)\log(f(n))\in o(g(n))$, dann gilt $\mathsf{DTIME}(f(n))\subsetneq\mathsf{DTIME}(g(n))$

Frage : Warum brauchen wir der Faktor log(f(n)) ?

Deterministische Time Hierarchy

Satz: Time Hierarchy Theorem, 65

Seien f,g time-constructible mit $f(n)\log(f(n))\in o(g(n))$, dann gilt $\mathbf{DTIME}(f(n))\subsetneq \mathbf{DTIME}(g(n))$

Frage : Warum brauchen wir den Faktor log(f(n)) ?

Beweis det. Time Hierarchy

Wir zeigen **DTIME** $(n) \subseteq \mathbf{DTIME}(n^{1.5})$

$$D(x) = \begin{cases} \overline{M_X(x)} & \text{falls die Simulation eine Ausgabe hatte} \\ 0 & \text{sonst} \end{cases}$$

Beweis det. Time Hierarchy

Wir zeigen **DTIME** $(n) \subseteq \mathbf{DTIME}(n^{1.5})$

Definition Turing Maschine D

Bei Eingabe x: Simuliere die TM M_x mit Eingabe x genau für $|x|^{1.4}$ Schritte. Danach gebe folgendes aus :

$$D(x) = \begin{cases} \overline{M_X(x)} & \text{falls die Simulation eine Ausgabe hatte} \\ 0 & \text{sonst} \end{cases}$$

Sei $L = \{x | D(x) = 1\}$ die von D erzeugte Sprache

Beweis det. Time Hierarchy

Behauptung

 $L \in \mathbf{DTIME}(n^{1.5}) \text{ und } L \notin \mathbf{DTIME}(n)$

- Wir nehmen an , dass $L \in \mathbf{DTIME}(n)$
- ⇒ ∃ Turing Maschine M, die L entscheidet ($\Leftrightarrow \forall x \in \{0,1\}^*$ D(x) = M(x)) und für Eingabe x höchstens Schritte benötigt. (c ist konstant)
- Wir konstruieren Wiederspruch , indem wir D eine Gödelnummer x mit $M_x = M$ als Eingabe geben.

Beweis det. Time Hierarchy

Behauptung

 $L \in \mathbf{DTIME}(n^{1.5}) \text{ und } L \notin \mathbf{DTIME}(n)$

- Wir nehmen an , dass $L \in \mathbf{DTIME}(n)$
- ⇒ ∃ Turing Maschine M, die L entscheidet $(\Leftrightarrow \forall x \in \{0,1\}^* D(x) = M(x))$ und für Eingabe x höchstens c|x Schritte benötigt. (c ist konstant)
- Wir konstruieren Wiederspruch , indem wir D eine Gödelnummer x mit $M_x = M$ als Eingabe geben.

Beweis det. Time Hierarchy

Behauptung

 $L \in \mathbf{DTIME}(n^{1.5}) \text{ und } L \notin \mathbf{DTIME}(n)$

- Wir nehmen an , dass $L \in \mathbf{DTIME}(n)$
- ⇒ ∃ Turing Maschine M, die L entscheidet $(\Leftrightarrow \forall x \in \{0,1\}^* D(x) = M(x))$ und für Eingabe x höchstens c|x| Schritte benötigt. (c ist konstant)
- Wir konstruieren Wiederspruch , indem wir D eine Gödelnummer x mit $M_x = M$ als Eingabe geben.

Beweis det. Time Hierarchy

Behauptung

 $L \in \mathbf{DTIME}(n^{1.5})$ und $L \notin \mathbf{DTIME}(n)$

- Wir nehmen an , dass $L \in \mathbf{DTIME}(n)$
- ⇒ ∃ Turing Maschine M, die L entscheidet $(\Leftrightarrow \forall x \in \{0,1\}^* D(x) = M(x))$ und für Eingabe x höchstens c|x| Schritte benötigt. (c ist konstant)
- Wir konstruieren Wiederspruch , indem wir D eine Gödelnummer x mit $M_x = M$ als Eingabe geben.

Beweis det. Time Hierarchy

Definition Turing Maschine D

Bei Eingabe x: Simuliere die TM M_x mit Eingabe x genau für $|x|^{1.4}$ Schritte. Danach gebe das invertierte Ergebniss von M_x aus

- Wollen |x| groß genug, dass D für M_x eine Ausgabe erhält!
- M simuliert auf U läuft in $c|x|\log(|x|)$
- Wir wählen dazu n_0 so groß, dass $\forall n \ge n_0$ gilt : $n^{1.4} > cn \log(n)$
- Nun wählen wir eine Gödelnummer x , so dass $|x| > n_0$ und $M_X = M$
- Damit läuft M_X in der Simulation in D komplett durch und D invertiert das Ergebniss
- Nun gilt $D(x) \neq M(x)$
- Beweis ähnlich auf allgemeinen Fall übertragbar

Beweis det. Time Hierarchy

Definition Turing Maschine D

Bei Eingabe x: Simuliere die TM M_x mit Eingabe x genau für $|x|^{1.4}$ Schritte. Danach gebe das invertierte Ergebniss von M_x aus

- Wollen |x| groß genug, dass D für M_x eine Ausgabe erhält!
- M simuliert auf U läuft in $c|x|\log(|x|)$

Beweis det. Time Hierarchy

Definition Turing Maschine D

Bei Eingabe x: Simuliere die TM M_x mit Eingabe x genau für $|x|^{1.4}$ Schritte. Danach gebe das invertierte Ergebniss von M_x aus

- Wollen |x| groß genug, dass D für M_x eine Ausgabe erhält!
- M simuliert auf U läuft in $c|x|\log(|x|)$
- Wir wählen dazu n_0 so groß, dass $\forall n \ge n_0$ gilt : $n^{1.4} > cn \log(n)$
- Nun wählen wir eine Gödelnummer x , so dass $|x| > n_0$ und $M_x = M$
- Damit läuft M_X in der Simulation in D komplett durch und D invertiert das Ergebniss
- Nun gilt $D(x) \neq M(x)$
- Beweis ähnlich auf allgemeinen Fall übertragbar

Beweis det. Time Hierarchy

Definition Turing Maschine D

Bei Eingabe x: Simuliere die TM M_x mit Eingabe x genau für $|x|^{1.4}$ Schritte. Danach gebe das invertierte Ergebniss von M_x aus

- Wollen |x| groß genug, dass D für M_x eine Ausgabe erhält!
- M simuliert auf U läuft in $c|x|\log(|x|)$
- Wir wählen dazu n_0 so groß, dass $\forall n \ge n_0$ gilt : $n^{1.4} > cn \log(n)$
- Nun wählen wir eine Gödelnummer x , so dass $|x| > n_0$ und $M_{x} = M$

Time Hierarchy

Beweis det. Time Hierarchy

Definition Turing Maschine D

Bei Eingabe x: Simuliere die TM M_x mit Eingabe x genau für $|x|^{1.4}$ Schritte. Danach gebe das invertierte Ergebniss von M_x aus

- Wollen |x| groß genug, dass D für M_x eine Ausgabe erhält!
- M simuliert auf U läuft in $c|x|\log(|x|)$
- Wir wählen dazu n_0 so groß, dass $\forall n \ge n_0$ gilt : $n^{1.4} > cn \log(n)$
- Nun wählen wir eine Gödelnummer x , so dass $|x| > n_0$ und $M_{x} = M$
- **Damit läuft** M_x in der Simulation in D komplett durch und D invertiert das Ergebniss

Time Hierarchy

Beweis det. Time Hierarchy

Definition Turing Maschine D

Bei Eingabe x: Simuliere die TM M_x mit Eingabe x genau für $|x|^{1.4}$ Schritte. Danach gebe das invertierte Ergebniss von M_x aus

- Wollen |x| groß genug, dass D für M_x eine Ausgabe erhält!
- M simuliert auf U läuft in $c|x| \log(|x|)$
- Wir wählen dazu n_0 so groß, dass $\forall n \ge n_0$ gilt : $n^{1.4} > cn \log(n)$
- Nun wählen wir eine Gödelnummer x , so dass $|x|>n_0$ und $M_x=M$
- Damit läuft M_x in der Simulation in D komplett durch und D invertiert das Ergebniss
- Nun gilt $D(x) \neq M(x)$
- Beweis ähnlich auf allgemeinen Fall übertragbar

Time Hierarchy

Beweis det. Time Hierarchy

Definition Turing Maschine D

Bei Eingabe x: Simuliere die TM M_x mit Eingabe x genau für $|x|^{1.4}$ Schritte. Danach gebe das invertierte Ergebniss von M_x aus

- Wollen |x| groß genug, dass D für M_x eine Ausgabe erhält!
- M simuliert auf U läuft in $c|x| \log(|x|)$
- Wir wählen dazu n_0 so groß, dass $\forall n \ge n_0$ gilt : $n^{1.4} > cn \log(n)$
- Nun wählen wir eine Gödelnummer x , so dass $|x|>n_0$ und $M_x=M$
- Damit läuft M_x in der Simulation in D komplett durch und D invertiert das Ergebniss
- Nun gilt $D(x) \neq M(x)$
- Beweis ähnlich auf allgemeinen Fall übertragbar

Gliederung

Diagonalisierung

Was verstehen wir unter Diagonalisierung?

Time Hierarchy

Satz von Ladner

Motivation und Beispiele Die Klasse PH

Motivation

Frage: Gibt es NP Probleme, die

nicht NP-vollständig sind, aber auch nicht in P liegen?

NP-intermediate Probleme

Mögliche Kandidaten:

- Graphisomorphie (kommt in Vortrag 7)
- Faktorisierungsproblem
- Kein "natürliches" Problem bekannt aber,

Behauptung

Existenz einer NP-intermediate Sprache, Ladner, 75

Wenn $P \neq NP$ dann gilt :

Es existiert eine Sprache $L \in \mathbf{NP} \setminus \mathbf{P}$ die nicht \mathbf{NP} -vollständig ist

Beweisidee

Konstruieren Sprache mit diesen Eigenschaften und zeigen, dass sie in ${\bf NP}$ - intermediate ist, falls ${\bf P} \neq {\bf NP}$:

Die Sprache SAT_H

Für eine Funktion
$$H: \mathbb{N} \to \mathbb{N}$$
 definieren wir : $\mathbf{SAT}_H = \{\psi 01^{n^{H(n)}} : \psi \in \mathbf{SAT} \text{ und } n = |\psi|\}$

Beispiel für SAT_H

Für
$$H(n) = n - 1$$
 und $\psi = a \wedge b$ gilt : $(a \wedge b)01^{3^2} = (a \wedge b)011111111111 \in SAT_H$

Beweisidee

Konstruieren Sprache mit diesen Eigenschaften und zeigen, dass sie in **NP** - intermediate ist, falls **P** \neq **NP** :

Die Sprache SAT_H

Für eine Funktion $H: \mathbb{N} \to \mathbb{N}$ definieren wir :

 $\mathsf{SAT}_H = \{ \psi \mathsf{01}^{n^{H(n)}} : \psi \in \mathsf{SAT} \text{ und } n = |\psi| \}$

 $(a \wedge b)01^{3^2} = (a \wedge b)01111111111 \in SAT_H$

Beweisidee

Konstruieren Sprache mit diesen Eigenschaften und zeigen, dass sie in ${\bf NP}$ - intermediate ist, falls ${\bf P} \neq {\bf NP}$:

Die Sprache SAT_H

Für eine Funktion $H: \mathbb{N} \to \mathbb{N}$ definieren wir :

$$\mathbf{SAT}_H = \{\psi \mathbf{0} \mathbf{1}^{n^H(n)} : \psi \in \mathbf{SAT} \text{ und } n = |\psi|\}$$

Beispiel für SAT_H

Für H(n)=n-1 und $\psi=a\wedge b$ gilt :

$$(a \wedge b)01^{3^2} = (a \wedge b)01111111111 \in \mathbf{SAT}_H$$

Beweis: Wahl von H

Definition von H

- Betrachte die TM M_1 , M_2 , ... $M_{|log(log(n))|}$.
- Wähle unter diesen die TM *M_i* mit kleinster Gödelnummer *i*, welche für alle $|x| \leq \log(n)$ **SAT**_H(x) in $i|x|^i$ Schritten berechnet
- Setze H(n) = i.
- Falls eine solche TM nicht existiert, setze $H(n) = \log(\log(n))$

Beweis: Wahl von H

Definition von H

- Betrachte die TM M_1 , M_2 , ... $M_{|log(log(n))|}$.
- Wähle unter diesen die TM *M_i* mit kleinster Gödelnummer *i*, welche für alle $|x| \leq \log(n)$ **SAT**_H(x) in $i|x|^i$ Schritten berechnet
- Setze H(n) = i.
- Falls eine solche TM nicht existiert, setze $H(n) = \log(\log(n))$

Gewähltes H erfüllt die folgenden Eigenschaften

 $SAT_H \in P \Leftrightarrow H(n) \in O(1)$ (also $H(n) \leq C$ für alle n) und damit insbesondere $\lim_{n\to\infty} H(n) = \infty$ für $\mathbf{SAT}_H \notin \mathbf{P}$

Beweis: Wahl von H

Definition von *H*

- Betrachte die TM M_1 , M_2 , ... $M_{|log(log(n))|}$.
- Wähle unter diesen die TM *M_i* mit kleinster Gödelnummer *i*, welche für alle $|x| \leq \log(n)$ **SAT**_H(x) in $i|x|^i$ Schritten berechnet
- Setze H(n) = i.
- **Talls** eine solche TM nicht existiert, setze $H(n) = \log(\log(n))$

Gewähltes H erfüllt die folgenden Eigenschaften

 $SAT_H \in P \Leftrightarrow H(n) \in O(1)$ (also $H(n) \leq C$ für alle n) und damit insbesondere $\lim_{n\to\infty} H(n) = \infty$ für $SAT_H \notin P$

- H erfüllt diese und ist polynomiell berechenbar.
- (ohne Beweis)

SAT_H weder in P noch NP-complete

Definition von SAT_H

$$\mathsf{SAT}_H = \{ \psi \mathsf{01}^{n^{H(n)}} : \psi \in \mathsf{SAT} \text{ und } n = |\psi| \}$$

Gewähltes H erfüllt die folgenden Eigenschaften

$$\mathbf{SAT}_H \in \mathbf{P} \Leftrightarrow H(n) \in O(1) \text{ (also } H(n) \leq C \text{ für alle n)}$$

- Angenommen $SAT_H \in P \Rightarrow H(n) \leq C$, C Konstante
- SAT_H ist also SAT mit höchsten polynomiell vielen angehängten 1enn
- SAT kann somit durch dieselbe TM wie SAT_H gelöst werden

SAT_H weder in P noch NP-complete

Definition von SAT_H

$$\mathsf{SAT}_H = \{ \psi \mathsf{01}^{n^{H(n)}} : \psi \in \mathsf{SAT} \text{ und } n = |\psi| \}$$

Gewähltes H erfüllt die folgenden Eigenschaften

$$\mathbf{SAT}_H \in \mathbf{P} \Leftrightarrow H(n) \in O(1)$$
 (also $H(n) \leq C$ für alle n)

SAT_H weder in P noch NP-complete

Definition von SAT_H

$$\mathsf{SAT}_H = \{ \psi \mathsf{01}^{n^{H(n)}} : \psi \in \mathsf{SAT} \text{ und } n = |\psi| \}$$

Gewähltes *H* erfüllt die folgenden Eigenschaften

$$\mathbf{SAT}_H \in \mathbf{P} \Leftrightarrow H(n) \in O(1) \text{ (also } H(n) \leq C \text{ für alle n)}$$

- Angenommen $SAT_H \in P \Rightarrow H(n) < C, C$ Konstante

SAT_H weder in P noch NP-complete

Definition von SAT_H

$$\mathsf{SAT}_H = \{ \psi \mathsf{01}^{n^{H(n)}} : \psi \in \mathsf{SAT} \text{ und } n = |\psi| \}$$

Gewähltes *H* erfüllt die folgenden Eigenschaften

$$\mathbf{SAT}_H \in \mathbf{P} \Leftrightarrow H(n) \in O(1) \text{ (also } H(n) \leq C \text{ für alle n)}$$

- Angenommen $SAT_H \in P \Rightarrow H(n) < C, C$ Konstante
- **SAT**_H ist also **SAT** mit höchsten polynomiell vielen angehängten 1en

SAT_H weder in P noch NP-complete

Definition von SAT_H

$$\mathsf{SAT}_H = \{ \psi \mathsf{01}^{n^{H(n)}} : \psi \in \mathsf{SAT} \text{ und } n = |\psi| \}$$

Gewähltes *H* erfüllt die folgenden Eigenschaften

$$\mathbf{SAT}_H \in \mathbf{P} \Leftrightarrow H(n) \in O(1) \text{ (also } H(n) \leq C \text{ für alle n)}$$

- Angenommen $SAT_H \in P \Rightarrow H(n) < C, C$ Konstante
- **SAT**_H ist also **SAT** mit höchsten polynomiell vielen angehängten 1en
- SAT kann somit durch dieselbe TM wie SAT_H gelöst werden $\Rightarrow P = NP$

SAT_H weder in P noch NP-complete

Definition von SAT_H

$$\mathsf{SAT}_H = \{ \psi \mathsf{01}^{n^{H(n)}} : \psi \in \mathsf{SAT} \text{ und } n = |\psi| \}$$

- Angenommen SAT_H ∈ NPC ⇒ es existiert poly. Reduktion f von SAT auf SAT_H.
- Da SAT_H ∉ P geht H gegen ∞
- **SAT**-Instanz φ wird mit f auf \mathbf{SAT}_H -Instanz der Form $\psi 01^{\psi^{H(|\psi|)}}$ abgebildet und da f polynomiell beschränkt, folgt wegen $|f(\varphi)| = |\psi| + |\psi|^{H(|\psi|)}$, dass $|\psi| \in o(n)$, da sonst $|\psi|^{H(|\psi|)}$ nicht polynomiell beschränkt sei kann.
- Wegen ψ | ∈ o(n) existiert dann ein Polynomialzeitalgorithmus für SAT und damit P NP → Widerspruch!

SAT_H weder in P noch NP-complete

Definition von SAT_H

$$\mathsf{SAT}_H = \{ \psi \mathsf{01}^{n^{H(n)}} : \psi \in \mathsf{SAT} \text{ und } n = |\psi| \}$$

- Angenommen $SAT_H \in NPC \Rightarrow$ es existiert poly. Reduktion f von **SAT** auf **SAT** $_{H}$.
- **SAT**-Instanz φ wird mit f auf **SAT**_H-Instanz der Form ψ 01 $^{\psi}$
- **SAT** und damit $P = NP \Rightarrow$ Widerspruch!

SAT_H weder in P noch NP-complete

Definition von SAT_H

$$\mathsf{SAT}_H = \{ \psi \mathsf{01}^{n^{H(n)}} : \psi \in \mathsf{SAT} \text{ und } n = |\psi| \}$$

- Angenommen $SAT_H \in NPC \Rightarrow$ es existiert poly. Reduktion f von **SAT** auf **SAT** $_{H}$.
- Da **SAT**_H \notin **P** geht H gegen ∞
- **SAT**-Instanz φ wird mit f auf **SAT**_H-Instanz der Form ψ 01 $^{\psi}$
- **SAT** und damit $P = NP \Rightarrow$ Widerspruch!

SAT_H weder in P noch NP-complete

Definition von SAT_H

$$\mathsf{SAT}_H = \{ \psi \mathsf{01}^{n^{H(n)}} : \psi \in \mathsf{SAT} \text{ und } n = |\psi| \}$$

- Angenommen $\mathsf{SAT}_H \in \mathsf{NPC} \Rightarrow \mathsf{es}$ existiert poly. Reduktion f von **SAT** auf **SAT** $_{H}$.
- Da **SAT**_H \notin **P** geht H gegen ∞
- **SAT**-Instanz φ wird mit f auf **SAT** $_H$ -Instanz der Form ψ 01 $^{\psi^{H(|\psi|)}}$ abgebildet und da f polynomiell beschränkt, folgt wegen $|f(\varphi)| = |\psi| + |\psi|^{H(|\psi|)}$, dass $|\psi| \in o(n)$, da sonst $|\psi|^{H(|\psi|)}$ nicht polynomiell beschränkt sei kann.
- **SAT** und damit $P = NP \Rightarrow$ Widerspruch!

SAT_H weder in P noch NP-complete

Definition von SAT_H

$$oxed{\mathsf{SAT}_H = \{\psi \mathsf{01}^{n^{H(n)}} : \psi \in \mathsf{SAT} \ \mathsf{und} \ n = |\psi|\}}$$

- Angenommen $\mathsf{SAT}_H \in \mathsf{NPC} \Rightarrow \mathsf{es}$ existiert poly. Reduktion f von SAT auf SAT ...
- Da SAT_H ∉ P geht H gegen ∞
- **SAT**-Instanz φ wird mit f auf **SAT** $_H$ -Instanz der Form ψ 01 $^{\psi^{H(|\psi|)}}$ abgebildet und da f polynomiell beschränkt, folgt wegen $|f(\varphi)| = |\psi| + |\psi|^{H(|\psi|)}$, dass $|\psi| \in o(n)$, da sonst $|\psi|^{H(|\psi|)}$ nicht polynomiell beschränkt sei kann.
- Wegen $\psi \mid \in o(n)$ existiert dann ein Polynomialzeitalgorithmus für **SAT** und damit $P = NP \Rightarrow$ Widerspruch!

Gliederung

Diagonalisierung

Was verstehen wir unter Diagonalisierung?

Time Hierarchy

Orakelmaschinen - Grenzen der Diagonalisierung

Motivation und Beispiele Die Klasse PH

Wiederholung Diagonalisierung

Was ist Diagonalisierung

Als Diagonalisierung wird (hier) ein Beweis bezeichnet, der nur auf den beiden folgenden Eigenschaften von TM aufbaut.

Die Existenz einer Repräsentation von TM durch Zeichenketten (Gödelnummer)

Die Fähigkeit eine andere TM mit geringem zusätzlichen Zeit- oder Platzbedarf zu simulieren (Universelle TM)

Wiederholung Diagonalisierung

Was ist Diagonalisierung

Als Diagonalisierung wird (hier) ein Beweis bezeichnet, der nur auf den beiden folgenden Eigenschaften von TM aufbaut.

 Die Existenz einer Repräsentation von TM durch Zeichenketten (Gödelnummer)

Die Fähigkeit eine andere TM mit geringem zusätzlichen Zeit- oder Platzbedarf zu simulieren (Universelle TM)

Wiederholung Diagonalisierung

Was ist Diagonalisierung

Als Diagonalisierung wird (hier) ein Beweis bezeichnet, der nur auf den beiden folgenden Eigenschaften von TM aufbaut.

- Die Existenz einer Repräsentation von TM durch Zeichenketten (Gödelnummer)
- Die F\u00e4higkeit eine andere TM mit geringem zus\u00e4tzlichen Zeit- oder Platzbedarf zu simulieren (Universelle TM)

Definition von Orakelmschinen

- Werden zeigen, dass Diagonalisierung allein P/NP Frage nicht beantworten kann
- benötigen hierzu ein weitere Kategorie von Turingmaschinen.

Definition Orakel-Turingmaschine

Eine Orakel-Turingmaschine M ist eine TM, die folgende zusätzliche Eigenschaften hat:

ein spezielles zusätzliches Band (Orakelband) und 3 spezielle zusätzliche Zustände q_{query} , q_{yes} , q_{no} .

ein Orakel $O \subseteq \{0, 1\}^*$

Wenn M den Zustand q_{query} betritt, ist der Folgezustand

 q_{yes} , wenn für Inhalt s des Orakelbands gilt $s \in O$ und q_{no} , wenn $s \notin O$

Das Orakel liefert die Antwort

Definition von Orakelmschinen

- Werden zeigen, dass Diagonalisierung allein P/NP Frage nicht beantworten kann
- benötigen hierzu ein weitere Kategorie von Turingmaschinen.

Definition Orakel-Turingmaschine

Eine Orakel-Turingmaschine M ist eine TM, die folgende zusätzliche Eigenschaften hat:

ein spezielles zusätzliches Band (Orakelband) und 3 spezielle zusätzliche Zustände qquery, qyes, qno.

Definition von Orakelmschinen

- Werden zeigen, dass Diagonalisierung allein P/NP Frage nicht beantworten kann
- benötigen hierzu ein weitere Kategorie von Turingmaschinen.

Definition Orakel-Turingmaschine

Eine Orakel-Turingmaschine M ist eine TM, die folgende zusätzliche Eigenschaften hat:

- ein spezielles zusätzliches Band (Orakelband) und 3 spezielle zusätzliche Zustände q_{query}, q_{yes}, q_{no}.
- ein Orakel $O \subseteq \{0, 1\}^*$

Wenn M den Zustand q_{query} betritt, ist der Folgezustand

 q_{yes} , wenn für Inhalt s des Orakelbands gilt $s \in O$ und q_{pe} wenn $s \notin O$

Das Orakol liefort die Antwort

Definition von Orakelmschinen

- Werden zeigen, dass Diagonalisierung allein P/NP Frage nicht beantworten kann
- benötigen hierzu ein weitere Kategorie von Turingmaschinen.

Definition Orakel-Turingmaschine

Eine Orakel-Turingmaschine M ist eine TM, die folgende zusätzliche Eigenschaften hat:

- ein spezielles zusätzliches Band (Orakelband) und 3 spezielle zusätzliche Zustände q_{query} , q_{yes} , q_{no} .
- ein Orakel $O \subseteq \{0, 1\}^*$
- Wenn M den Zustand qquery betritt, ist der Folgezustand
 - $lack q_{yes}$, wenn für Inhalt s des Orakelbands gilt $s \in O$ und
 - q_{no} , wenn $s \notin O$

Das Orakel liefert die Antwort

Definition von Orakelmschinen

- Werden zeigen, dass Diagonalisierung allein P/NP Frage nicht beantworten kann
- benötigen hierzu ein weitere Kategorie von Turingmaschinen.

Definition Orakel-Turingmaschine

Eine Orakel-Turingmaschine M ist eine TM, die folgende zusätzliche Eigenschaften hat:

- ein spezielles zusätzliches Band (Orakelband) und 3 spezielle zusätzliche Zustände q_{query} , q_{yes} , q_{no} .
- ein Orakel $O \subseteq \{0, 1\}^*$
- Wenn M den Zustand qquery betritt, ist der Folgezustand
 - $lack q_{yes}$, wenn für Inhalt s des Orakelbands gilt $s \in O$ und
 - q_{no} , wenn $s \notin O$
- Das Orakel liefert die Antwort in einem Berechnungsschritt

Satz von Baker-Gill-Solovay

Komplexitätsklassen von Orakelmaschinen

Für jedes $O \subseteq \{0,1\}^*$ ist P^O die Menge aller Sprachen, die eine det. Orakel-TM mit Orakel O entscheiden kann. NPO analog für nichtdet. Orakel-TM.

Es existieren Orakel A, B so dass $P^A = NP^A$ und $P^B \neq NP^B$

Satz von Baker-Gill-Solovay

Komplexitätsklassen von Orakelmaschinen

Für jedes $\mathbf{O}\subseteq\{0,1\}^*$ ist $\mathbf{P^O}$ die Menge aller Sprachen, die eine det. Orakel-TM mit Orakel \mathbf{O} entscheiden kann. $\mathbf{NP^O}$ analog für nichtdet. Orakel-TM.

Satz (Baker, Gill, Solovay, 75)

Es existieren Orakel A, B so dass $\mathbf{P}^A = \mathbf{NP}^A$ und $\mathbf{P}^B \neq \mathbf{NP}^B$

relativierende Beweise

Satz (Baker, Gill, Solovay, 75)

Es existieren Orakel A. B so dass $\mathbf{P}^A = \mathbf{NP}^A$ und $\mathbf{P}^B \neq \mathbf{NP}^B$

relativierende Beweise

Wir nennen einen Beweis, der auch für TM mit Orakel gilt, einen relativierenden Beweis

- Diagonalisierung ist relativierend und kann damit nicht für die $\mathbf{P} - \mathbf{NP}$ Frage genutzt werden.
- \Rightarrow ein Beweis für die **P NP** Frage muss ein nicht relativierendes

relativierende Beweise

Satz (Baker, Gill, Solovay, 75)

Es existieren Orakel A, B so dass $\mathbf{P}^A = \mathbf{NP}^A$ und $\mathbf{P}^B \neq \mathbf{NP}^B$

relativierende Beweise

Wir nennen einen Beweis, der auch für TM mit Orakel gilt, einen relativierenden Beweis

- Diagonalisierung ist relativierend und kann damit nicht für die P – NP Frage genutzt werden.
- ⇒ ein Beweis für die P NP Frage muss ein nicht relativierendes Verfahren nutzen!

Beispiele für Orakelmaschinen

SAT

- lacktriangle Für $\overline{ extsf{SAT}}$, Sprache der nicht erfüllbaren Formeln, gilt $\overline{ extsf{SAT}} \in extsf{P}^{ extsf{SAT}}$.
- Mit Orakel **SAT** kann TM in $\mathcal{O}(1)$ entscheiden, ob $\varphi \in$ **SAT** und gegenteilige Antwort ausgeben.

Beispiele für Orakelmaschinen

SAT

- Für $\overline{\textbf{SAT}}$, Sprache der nicht erfüllbaren Formeln, gilt $\overline{\textit{SAT}} \in \textbf{P}^{\textbf{SAT}}$.
- Mit Orakel **SAT** kann TM in $\mathcal{O}(1)$ entscheiden, ob $\varphi \in$ **SAT** und gegenteilige Antwort ausgeben.

Beweis : $P^A = NP^A$

Beweis des Satzes von Baker:

Sei EXPCOM folgende Sprache:

 $\{(M, x, 1^n) : M \text{ berechnet } 1 \text{ bei Eingabe } x \text{ innerhalb von } 2^n \text{ Schritten}\}$

Dann gilt $\mathbf{P}^{\mathbf{EXPCOM}} = \mathbf{NP}^{\mathbf{EXPCOM}} = \mathbf{EXP}$.

- Wegen Orakel aus EXP ⇒ EXP ⊆ P^{EXPCOM}
- Außerdem: M eine nichtdet. TM mit Orakel EXPCOM
 - Austuhrung von M det. in Exponentialzeit simulieren
 Orakelaufruf in Exponentialzeit simulieren (max 2^{|X|} · 2^{q(|X|)} Aufrufe
- $ightharpoonspin \Rightarrow \mathsf{EXP} \subset \mathsf{P}^\mathsf{EXPCOM} \subseteq \mathsf{NP}^\mathsf{EXPCOM} \subseteq \mathsf{EXP}$

Beweis : $P^A = NP^A$

Beweis des Satzes von Baker:

Sei EXPCOM folgende Sprache:

 $\{(M, x, 1^n) : M \text{ berechnet } 1 \text{ bei Eingabe } x \text{ innerhalb von } 2^n \text{ Schritten}\}$

Dann gilt $\mathbf{P}^{\mathbf{EXPCOM}} = \mathbf{NP}^{\mathbf{EXPCOM}} = \mathbf{EXP}$.

- Wegen Orakel aus EXP ⇒ EXP ⊆ PEXPCOM
- Außerdem: M eine nichtdet. IM mit Orakel EXPCOM
 - austunrung von M det. In Exponentialzeit simulieren Orakelaufruf in Exponentialzeit simulieren (max $2^{|x|} \cdot 2^{q(|x|)}$ Austunrung von M det. In Exponentialzeit simulieren (max $2^{|x|} \cdot 2^{q(|x|)}$ Austunrung von M det. In Exponentialzeit simulieren
- $ightharpoonspin \Rightarrow \mathsf{EXP} \subset \mathsf{P}^\mathsf{EXPCOM} \subseteq \mathsf{NP}^\mathsf{EXPCOM} \subseteq \mathsf{EXP}$

Beweis: $P^A = NP^A$

Beweis des Satzes von Baker:

Sei **EXPCOM** folgende Sprache:

```
\{(M, x, 1^n): M \text{ berechnet } 1 \text{ bei Eingabe } x \text{ innerhalb von } 2^n \text{ Schritten}\}
```

```
Dann gilt P^{EXPCOM} = NP^{EXPCOM} = EXP
```

- Wegen Orakel aus EXP ⇒ EXP ⊂ PEXPCOM
- Außerdem: M eine nichtdet. TM mit Orakel EXPCOM:

 - Orakelaufruf in Exponentialzeit simulieren (max $2^{|x|} \cdot 2^{q(|x|)}$ Aufrufe)
- \Rightarrow EXP \subset PEXPCOM \subset NPEXPCOM \subset EXP

Beweis : $P^A = NP^A$

Beweis des Satzes von Baker:

■ Sei **EXPCOM** folgende Sprache:

```
\{(M, x, 1^n) : M \text{ berechnet } 1 \text{ bei Eingabe } x \text{ innerhalb von } 2^n \text{ Schritten}\}
```

```
Dann gilt \mathbf{P}^{\mathbf{EXPCOM}} = \mathbf{NP}^{\mathbf{EXPCOM}} = \mathbf{EXP}.
```

- Wegen Orakel aus EXP ⇒ EXP ⊆ PEXPCOM
- Außerdem: *M* eine nichtdet. TM mit Orakel **EXPCOM**:
 - Ausführung von M det. in Exponentialzeit simulieren
 - lacktriangle Orakelaufruf in Exponentialzeit simulieren (max $2^{|x|} \cdot 2^{q(|x|)}$ Aufrufe)
- $ightharpoonspin \Rightarrow \mathsf{EXP} \subset \mathsf{P}^\mathsf{EXPCOM} \subseteq \mathsf{NP}^\mathsf{EXPCOM} \subseteq \mathsf{EXP}$

Beweis : $P^A = NP^A$

Beweis des Satzes von Baker:

Sei EXPCOM folgende Sprache:

```
\{(M, x, 1^n) : M \text{ berechnet } 1 \text{ bei Eingabe } x \text{ innerhalb von } 2^n \text{ Schritten}\}
```

Dann gilt $\mathbf{P}^{\mathbf{EXPCOM}} = \mathbf{NP}^{\mathbf{EXPCOM}} = \mathbf{EXP}$.

- Wegen Orakel aus EXP ⇒ EXP ⊆ PEXPCOM
- Außerdem: *M* eine nichtdet. TM mit Orakel **EXPCOM**:
 - Ausführung von M det. in Exponentialzeit simulieren
 - lacktriangle Orakelaufruf in Exponentialzeit simulieren (max $2^{|x|} \cdot 2^{q(|x|)}$ Aufrufe)
- $ightharpoonspin \Rightarrow \mathsf{EXP} \subset \mathsf{P}^\mathsf{EXPCOM} \subseteq \mathsf{NP}^\mathsf{EXPCOM} \subseteq \mathsf{EXP}$

Beweis : $P^A = NP^A$

Beweis des Satzes von Baker:

Sei EXPCOM folgende Sprache:

 $\{(M, x, 1^n) : M \text{ berechnet } 1 \text{ bei Eingabe } x \text{ innerhalb von } 2^n \text{ Schritten}\}$

Dann gilt $\mathbf{P}^{\mathbf{EXPCOM}} = \mathbf{NP}^{\mathbf{EXPCOM}} = \mathbf{EXP}$.

- Wegen Orakel aus EXP ⇒ EXP ⊆ PEXPCOM
- Außerdem: *M* eine nichtdet. TM mit Orakel **EXPCOM**:
 - Ausführung von M det. in Exponentialzeit simulieren
 - lacktriangle Orakelaufruf in Exponentialzeit simulieren (max $2^{|x|} \cdot 2^{q(|x|)}$ Aufrufe)
- lacktriangle \Rightarrow EXP \subseteq P^{EXPCOM} \subseteq NP^{EXPCOM} \subseteq EXP

Beweis : $P^B \neq NP^B$

Definition unäre Sprache U_{R}

Für eine Sprache B sei $U_B = \{1^n : \text{Es gibt einen String der Länge n in } \}$ **B** }

Beweis : $P^B \neq NP^B$

Definition unäre Sprache U_B

Für eine Sprache B sei $U_B = \{1^n : Es gibt einen String der Länge n in B \}$

- Warum gilt $U_B \in \mathbf{NP}^B$?
- Müssen also nur noch B so konstruieren, dass $U_B \notin \mathbf{P}^B$

Beweis : $P^B \neq NP^B$

Definition unäre Sprache U_{R}

Für eine Sprache B sei $U_B = \{1^n : Es \text{ gibt einen String der Länge n in } \}$ **B** }

- Warum gilt $U_B \in \mathbf{NP}^B$?
- Müssen also nur noch B so konstruieren, dass $U_B \notin \mathbf{P}^B$

Wir konstruieren eine Folge von Sprachen $(B_i)_{i\in\mathbb{N}}$ so , dass $B=\lim_{i\to\infty}B_i$

- Wie stellen wir sicher, dass keine Turing Maschine U_B in polynomieller Zeit entscheiden kann?
- Tipp: Die Menge aller Turing Maschinen ist abzählbar

Wir konstruieren eine Folge von Sprachen $(B_i)_{i\in\mathbb{N}}$ so , dass $B=\lim_{i\to\infty}B_i$

- Wie stellen wir sicher, dass keine Turing Maschine U_B in polynomieller Zeit entscheiden kann?
- Tipp: Die Menge aller Turing Maschinen ist abzählbar

- Genau : Wir iterieren über alle Turing Maschinen M_i und stellen sicher, dass M_i nicht in polynomieller Zeit U_B entscheiden kann
- Nutze dabei, dass die Anzahl der Wörter exponentiell in der Eingabelänge wächst

- Genau : Wir iterieren über alle Turing Maschinen M_i und stellen sicher, dass M_i nicht in polynomieller Zeit U_B entscheiden kann
- Nutze dabei, dass die Anzahl der Wörter exponentiell in der Eingabelänge wächst

Wir fangen an mit $B_0 = \emptyset$. Konstruktion fr B_i :

- Wähle n so , dass n größer als alle Strings in B_{i-1}

Wir fangen an mit $B_0 = \emptyset$. Konstruktion fr B_i :

- Wähle n so, dass n größer als alle Strings in B_{i-1}
- Lasse M_i auf Eingabe 1ⁿ genau 2ⁿ/10 Schritte laufen (Beachte, dass *M_i* das Orakel B hat!)

Konstruktion von B

 $B_i = \{11011011, 10, 101, 111, 000111\}$

Orakel

Turing Maschine M_i

- Das Orakel antwortet konsistent auf dem bisherigen Bi
- Wir merken uns alle Strings der Länge n, die M_i an fragt!

Konstruktion von B

 $B_i = \{11011011, 10, 101, 111, 000111\}$

- Das Orakel antwortet konsistent auf dem bisherigen Bi
- Wir merken uns alle Strings der Länge n, die M_i an fragt!

 M_i

Konstruktion von B

 $B_i = \{11011011, 10, 101, 111, 000111\}$

- Das Orakel antwortet konsistent auf dem bisherigen Bi
- Wir merken uns alle Strings der Länge n, die M_i an fragt!

Konstruktion von B

 $B_i = \{11011011, 10, 101, 111, 000111\}$

Orakel

В

Turing Maschine M_i

- Das Orakel antwortet konsistent auf dem bisherigen B_i
- Wir merken uns alle Strings der Länge n, die M_i an fragt!

Konstruktion von B

 $B_i = \{11011011, 10, 101, 111, 000111\}$

- Das Orakel antwortet konsistent auf dem bisherigen Bi
- Wir merken uns alle Strings der Länge n, die M_i an fragt!

Konstruktion von B

 $B_i = \{11011011, 10, 101, 111, 000111\}$

- Das Orakel antwortet konsistent auf dem bisherigen B_i
- Wir merken uns alle Strings der Länge n, die M_i an fragt!

- Wir definieren nun B_{i+1} wie folgt :

- Wir definieren nun B_{i+1} wie folgt :
- Wenn M_i nicht gehalten hat : $B_{i+1} = B_i$

- Wir definieren nun B_{i+1} wie folgt :
- Wenn M_i nicht gehalten hat : $B_{i+1} = B_i$
- ansonsten :

Konstruktion von B

- M_i akzeptiert 1ⁿ: Wir definieren, dass kein String der Länge n in B ist
- M_i lehnt ab : Wähle $x \in \{0, 1\}^n$, welches nicht von M_i an gefragt wurde und setze $B_{i+1} = B_i \cup \{x\}$
- warum existiert dieses x's

- Wir definieren nun B_{i+1} wie folgt :
- Wenn M_i nicht gehalten hat : $B_{i+1} = B_i$
- ansonsten :
 - lacktriangle M_i akzeptiert 1ⁿ: Wir definieren, dass kein String der Länge n in B ist
 - M_i lehnt ab : Wähle $x \in \{0, 1\}$ ", welches nicht von M_i an gefragt wurde und setze $B_{i+1} = B_i \cup \{x\}$
 - warum existiert dieses x'

- Wir definieren nun B_{i+1} wie folgt :
- Wenn M_i nicht gehalten hat : $B_{i+1} = B_i$
- ansonsten :
 - lacktriangle M_i akzeptiert 1^n : Wir definieren, dass kein String der Länge n in B ist
 - M_i lehnt ab : Wähle $x \in \{0, 1\}^n$, welches nicht von M_i an gefragt wurde und setze $B_{i+1} = B_i \cup \{x\}$
 - warum existiert dieses x?

- Wir definieren nun B_{i+1} wie folgt :
- Wenn M_i nicht gehalten hat : $B_{i+1} = B_i$
- ansonsten :

Konstruktion von B

- lacktriangle M_i akzeptiert 1^n : Wir definieren, dass kein String der Länge n in B ist
- M_i lehnt ab : Wähle $x \in \{0, 1\}^n$, welches nicht von M_i an gefragt wurde und setze $B_{i+1} = B_i \cup \{x\}$
- warum existiert dieses x?

- Haben oben ein gesehen, dass $U_B \in \mathbf{NP}^B$

- $\blacksquare \Rightarrow U_B \notin \mathbf{P}^B$ und damit $P^B \neq \mathbf{NP}^B$

- Haben oben ein gesehen, dass $U_B \in \mathbf{NP}^B$
- Und für jede polynomiell beschränkte TM M existiert ein i,so dass

- $\blacksquare \Rightarrow U_B \notin \mathbf{P}^B$ und damit $P^B \neq \mathbf{NP}^B$

- Haben oben ein gesehen, dass $U_B \in \mathbf{NP}^B$
- Und für jede polynomiell beschränkte TM M existiert ein i,so dass
 - $M = M_i$

- $\blacksquare \Rightarrow U_B \notin \mathbf{P}^B$ und damit $P^B \neq \mathbf{NP}^B$

- Haben oben ein gesehen, dass $U_B \in \mathbf{NP}^B$
- Und für jede polynomiell beschränkte TM M existiert ein i,so dass
 - $M = M_i$
 - M auf der Eingabe 1ⁱ weniger als 2ⁱ/10 Schritte benötigt
 - und damit M_i nach Konstruktion die Frage $1^i \in U_B$ falsch beantwortet
- $\blacksquare \Rightarrow U_B \notin \mathbf{P}^B$ und damit $P^B \neq \mathbf{NP}^B$

Grenzen der Diagonalisierung **Beweis Schluss**

- Haben oben ein gesehen, dass $U_B \in \mathbf{NP}^B$
- Und für jede polynomiell beschränkte TM M existiert ein i.so dass
 - $M = M_i$
 - M auf der Eingabe 1ⁱ weniger als 2ⁱ/10 Schritte benötigt
 - und damit M_i nach Konstruktion die Frage $1^i \in U_B$ falsch beantwortet
- $\blacksquare \Rightarrow U_B \notin \mathbf{P}^B$ und damit $P^B \neq \mathbf{NP}^B$

- Haben oben ein gesehen, dass $U_B \in \mathbf{NP}^B$
- Und für jede polynomiell beschränkte TM M existiert ein i.so dass
 - $M = M_i$

- M auf der Eingabe 1ⁱ weniger als 2ⁱ/10 Schritte benötigt
- und damit M_i nach Konstruktion die Frage $1^i \in U_B$ falsch beantwortet
- $\blacksquare \Rightarrow U_B \notin \mathbf{P}^B$ und damit $P^B \neq \mathbf{NP}^B$

Gliederung

Was verstehen wir unter Diagonalisierung? Time Hierarchy

Die polynomielle Hierarchie Motivation und Beispiele Die Klasse PH

- bisher die Komplexitätsklassen P, NP, coNP

- bisher die Komplexitätsklassen P, NP, coNP
- es gibt Probleme, die sich nicht mit diesen klassifizieren lassen

- bisher die Komplexitätsklassen P, NP, coNP
- es gibt Probleme, die sich nicht mit diesen klassifizieren lassen
- durch Verallgemeinerung dieser Klassen kann eine Reihe weiterer Probleme "eingefangen" werden

- bisher die Komplexitätsklassen P, NP, coNP
- es gibt Probleme, die sich nicht mit diesen klassifizieren lassen
- durch Verallgemeinerung dieser Klassen kann eine Reihe weiterer Probleme "eingefangen" werden
- Verallgemeinerung ist die "polynomielle Hierarchie" PH

Definition INDSET

Beispiele

Sei **INDSET** = $\{\langle G, k \rangle$: Graph G hat ein independent set , welches Größe k hat $\}$

Bekannt : INDSET ∈ NPC

Definition EXACTINDSET

Sei **EXACTINDSET** = $\{\langle G, k \rangle : \text{das größte independent set in G hat Größe genau k} \}$

 $=\{\langle G, k \rangle : \exists \text{ independent set der Größe k in } G \text{ und } \forall \text{ independent sets}$ in G haben G

Definition INDSET

Beispiele

Sei **INDSET** = $\{\langle G, k \rangle$: Graph G hat ein independent set , welches Größe k hat $\}$

Bekannt : $INDSET \in NPC$

Definition EXACTINDSET

Sei **EXACTINDSET** = $\{\langle G, k \rangle : \text{das größte independent set in G hat Größe genau k} \}$

= $\{\langle G, k \rangle : \exists \text{ independent set der Größe k in } G \text{ und } \forall \text{ independent sets in } G \text{ haben Größe} < k \}$

Beispiele

Definition INDSET

Sei **INDSET** = $\{\langle G, k \rangle : \text{Graph } G \text{ hat ein independent set , welches Größe k hat }$

Bekannt : $INDSET \in NPC$

Definition EXACTINDSET

Sei **EXACTINDSET** = $\{\langle G, k \rangle : \text{das gr\"{o}Bte} \text{ independent set in G hat Gr\"{o}Be genau k}\}$

= $\{\langle G, k \rangle : \exists \text{ independent set der Größe k in } G \text{ und } \forall \text{ independent sets in } G \text{ haben Größe } < k \}$

Die Klasse \sum_{2}^{p}

INDSET

Sei **INDSET** = $\{\langle G, k \rangle : \exists$ independent set in G, welches Größe k hat $\}$

Wiederholung NP

NP ist die Menge aller Sprachen L für die gilt :

Es gibt eine deterministische polynomielle TM M und ein Polynom q so dass :

$$x \in L \Leftrightarrow \exists u \in \{0,1\}^{q(|x|)} M(x,u) = 1$$

Die Klasse $\sum_{n=0}^{p}$

EXACTINDSET

Sei **INDSET** = $\{\langle G, k \rangle : \exists \text{ independent set in } G, \text{ welches Größe } k \text{ hat } f \in A, k \in B, k \in B$ und \forall independent sets in *G* haben Größe $\leq k$ }

Definition \sum_{2}^{p}

 $\sum_{i=1}^{p}$ ist die Menge aller Sprachen L für die gilt : Es gibt eine deterministische polynomielle TM M und ein Polynom q

so dass:

$$x \in L \Leftrightarrow \exists u \in \{0,1\}^{q(|x|)} \ \forall v \in \{0,1\}^{q(|x|)} \ M(x,u,v) = 1$$

Noch mehr Quantoren?

Gliederung

Was verstehen wir unter Diagonalisierung? Time Hierarchy

Die polynomielle Hierarchie Die Klasse PH

Definition von PH

Definition \sum_{i}^{p}

 \sum_{i}^{p} ist die Menge aller Sprachen L für die gilt :

Es gibt deterministische polynomielle TM M und ein Polynom q so dass:

$$x \in L \Leftrightarrow \exists u_1 \in \{0,1\}^{q(|x|)} \ \forall u_2 \in \{0,1\}^{q(|x|)} \dots Q_i u_i \in \{0,1\}^{q(|x|)} M(x,u_1,\dots,u_i) = 1$$

wobei Q_i entweder \forall oder \exists beschreibt, abhängig davon ob *i* gerade oder ungerade ist

Definition \sum_{i}^{p}

 \sum_{i}^{p} ist die Menge aller Sprachen L für die gilt :

Es gibt deterministische polynomielle TM M und ein Polynom q so dass:

$$x \in L \Leftrightarrow \exists u_1 \in \{0,1\}^{q(|x|)} \ \forall u_2 \in \{0,1\}^{q(|x|)} \dots Q_i u_i \in \{0,1\}^{q(|x|)} M(x,u_1,\dots,u_i) = 1$$

wobei Q_i entweder \forall oder \exists beschreibt, abhängig davon ob *i* gerade oder ungerade ist

Definition PH

Die polynomielle Hierarchie ist $\mathbf{PH} = \bigcup_{i \in \mathbb{N}} \sum_{i=1}^{p} \sum_{i=1}^{p} \mathbf{PH}$

- Man sieht : $\sum_{1}^{p} = \mathbf{NP}$

- Man sieht : $\sum_{1}^{p} = \mathbf{NP}$
- $\Pi_i^p := co \sum_i^p$

- Man sieht : $\sum_{1}^{p} = \mathbf{NP}$
- $\Pi_i^p := co \sum_i^p$

- Man sieht : $\sum_{1}^{p} = \mathbf{NP}$

- Vermutung: $P \neq NP$ und $NP \neq coNP$

- Vermutung: $P \neq NP$ und $NP \neq coNP$
- Verallgemeinerung: $\sum_{i=1}^{p} \subseteq \sum_{i=1}^{p}$ für alle *i*

- Vermutung: $P \neq NP$ und $NP \neq coNP$
- Verallgemeinerung: $\sum_{i=1}^{p} \subseteq \sum_{i=1}^{p}$ für alle *i*
- "The polynomial hierarchy does not collapse"

- Vermutung: $P \neq NP$ und $NP \neq coNP$
- Verallgemeinerung: $\sum_{i=1}^{p} \subseteq \sum_{i=1}^{p}$ für alle *i*
- "The polynomial hierarchy does not collapse"

Eigenschaften von PH

- Vermutung: $P \neq NP$ und $NP \neq coNP$
- Verallgemeinerung: $\sum_{i=1}^{p} \subseteq \sum_{i+1}^{p}$ für alle *i*
- "The polynomial hierarchy does not collapse"

Satz Kollaps von PH und Auswirkungen auf P – NP

1. Für alle
$$i \ge 0$$
 gilt: $\sum_{i=1}^{p} = \prod_{i=1}^{p} \Rightarrow \mathbf{PH} = \sum_{i=1}^{p} \mathbf{PH}$

Eigenschaften von PH

- Vermutung: $P \neq NP$ und $NP \neq coNP$
- Verallgemeinerung: $\sum_{i=1}^{p} \subseteq \sum_{i+1}^{p}$ für alle *i*
- "The polynomial hierarchy does not collapse"

Satz Kollaps von PH und Auswirkungen auf P – NP

- 1. Für alle $i \geq 0$ gilt: $\sum_{i}^{p} = \prod_{i}^{p} \Rightarrow \mathbf{PH} = \sum_{i}^{p}$
- 2. Wenn P = NP, dann folgt PH = P

Beweis

Beweis von $P = NP \Rightarrow PH = P$

- **Sei P** = **NP**, beweisen über Induktion $\sum_{i=1}^{p} \prod_{i=1}^{p} \subseteq \mathbf{P}$ für alle *i*
- IA: i = 1, nach Voraussetzung: $\sum_{1}^{\rho} = NP$, $\prod_{1}^{\rho} = coNP$ und P = coP = NP = coNP gilt
- IV: Es gelte $\sum_{i=1}^{p} \subseteq \mathbf{P}$ für $i-1 \in \mathbb{N}$
- Anm: $\prod_{i=1}^{p}$ besteht aus Komplementsprachen der Sprachen in $\sum_{i=1}^{p}$ **P** ist abgeschlossen unter Komplementbildung $\Rightarrow \prod_{i=1}^{p} \subseteq \mathbf{P}$ unter

Beweis von
$$P = NP \Rightarrow PH = P$$

- **Sei P** = **NP**, beweisen über Induktion $\sum_{i=1}^{p} \prod_{i=1}^{p} \subseteq \mathbf{P}$ für alle *i*
- IA: i = 1, nach Voraussetzung: $\sum_{1}^{p} = NP$, $\prod_{1}^{p} = coNP$ und P = coP = NP = coNP gilt
- IV: Es gelte $\sum_{i=1}^{p} \subseteq \mathbf{P}$ für $i-1 \in \mathbb{N}$
- Anm: $\prod_{i=1}^{p}$ besteht aus Komplementsprachen der Sprachen in $\sum_{i=1}^{p}$ **P** ist abgeschlossen unter Komplementbildung $\Rightarrow \prod_{i=1}^{p} \subseteq \mathbf{P}$ unter

Beweis von
$$P = NP \Rightarrow PH = P$$

- **Sei P** = **NP**, beweisen über Induktion $\sum_{i=1}^{p} \prod_{i=1}^{p} \subseteq \mathbf{P}$ für alle *i*
- IA: i = 1, nach Voraussetzung: $\sum_{1}^{p} = NP$, $\prod_{1}^{p} = coNP$ und P = coP = NP = coNP gilt
- IV: Es gelte $\sum_{i=1}^{p} \subseteq \mathbf{P}$ für $i-1 \in \mathbb{N}$
- Anm: $\prod_{i=1}^{p}$ besteht aus Komplementsprachen der Sprachen in $\sum_{i=1}^{p}$ **P** ist abgeschlossen unter Komplementbildung $\Rightarrow \prod_{i=1}^{p} \subseteq \mathbf{P}$ unter

Beweis von
$$P = NP \Rightarrow PH = P$$

- Sei $\mathbf{P} = \mathbf{NP}$, beweisen über Induktion $\sum_{i=1}^{p} \prod_{j=1}^{p} \subseteq \mathbf{P}$ für alle i
- IA: i = 1, nach Voraussetzung: $\sum_{1}^{p} = NP$, $\prod_{1}^{p} = coNP$ und P = coP = NP = coNP gilt
- IV: Es gelte $\sum_{i=1}^{p} \subseteq \mathbf{P}$ für $i-1 \in \mathbb{N}$
- Anm: $\prod_{i=1}^{p}$ besteht aus Komplementsprachen der Sprachen in $\sum_{i=1}^{p}$ **P** ist abgeschlossen unter Komplementbildung $\Rightarrow \prod_{i=1}^{p} \subseteq \mathbf{P}$ unter IV.

Beweis

■ IS: Sei $L \in \sum_{i=1}^{p}$, dann ex. TM M und Polynom q so, dass

$$x \in L \Leftrightarrow \exists u_1 \in \{0,1\}^{q(|x|)} \forall u_2 \in \{0,1\}^{q(|x|)} ... Q_i u_i \in \{0,1\}^{q(|x|)}$$

 $M(x, u_1, u_2, ..., u_i) = 1(Definition)$

gilt

Definiere Sprache L'

$$(x, u_1) \in L' \Leftrightarrow \forall u_2 \in \{0, 1\}^{q(|x|)} ... Q_i u_i \in \{0, 1\}^{q(|x|)}$$

 $M(x, u_1, u_2, ... u_i) = 1$

Beweis

■ IS: Sei $L \in \sum_{i=1}^{p}$, dann ex. TM M und Polynom q so, dass

$$x \in L \Leftrightarrow \exists u_1 \in \{0,1\}^{q(|x|)} \forall u_2 \in \{0,1\}^{q(|x|)} ... \ Q_i u_i \in \{0,1\}^{q(|x|)} \ M(x,u_1,u_2,...,u_i) = 1 (\textit{Definition})$$

gilt

Definiere Sprache L'

$$(x, u_1) \in L' \Leftrightarrow \forall u_2 \in \{0, 1\}^{q(|x|)} \dots Q_i u_i \in \{0, 1\}^{q(|x|)}$$

 $M(x, u_1, u_2, \dots u_i) = 1$

Beweis

- L' ist in $\prod_{i=1}^{p}$ (für $\overline{L'}$ alle Quantoren und M negieren $\Rightarrow \overline{L'} \in \sum_{i=1}^{p}$)
- Nach IV gilt: $\prod_{i=1}^{p} \in \mathbf{P} \Rightarrow L' \in \mathbf{P}$

$$x \in L \Leftrightarrow \exists u_1 \in \{0,1\}^{q(|x|)} M'(x,u_1) = 1$$

Damit $L \in \mathbb{NP}$ und da $\mathbb{P} = \mathbb{NP}$ vorausgesetzt, folgt $L \in \mathbb{P}$

Beweis

- L' ist in $\prod_{i=1}^{p}$ (für $\overline{L'}$ alle Quantoren und M negieren $\Rightarrow \overline{L'} \in \sum_{i=1}^{p}$)
- Nach IV gilt: $\prod_{i=1}^{p} \in \mathbf{P} \Rightarrow L' \in \mathbf{P}$

$$x \in L \Leftrightarrow \exists u_1 \in \{0,1\}^{q(|x|)} M'(x,u_1) = 1$$

Damit $L \in \mathbb{NP}$ und da $P = \mathbb{NP}$ vorausgesetzt, folgt $L \in \mathbb{P}$

Beweis

- L' ist in $\prod_{i=1}^p$ (für $\overline{L'}$ alle Quantoren und M negieren $\Rightarrow \overline{L'} \in \sum_{i=1}^p$)
- Nach IV gilt: $\prod_{i=1}^{p} \in \mathbf{P} \Rightarrow L' \in \mathbf{P}$
- **Damit** ex. det. TM M', die L' in polynom. Zeit berechnet

$$x \in L \Leftrightarrow \exists u_1 \in \{0,1\}^{q(|x|)} M'(x,u_1) = 1$$

■ Damit $L \in \mathbb{NP}$ und da $\mathbb{P} = \mathbb{NP}$ vorausgesetzt, folgt $L \in \mathbb{P}$

- L' ist in $\prod_{i=1}^{p}$ (für $\overline{L'}$ alle Quantoren und M negieren $\Rightarrow \overline{L'} \in \sum_{i=1}^{p}$)
- Nach IV gilt: $\prod_{i=1}^{p} \in \mathbf{P} \Rightarrow L' \in \mathbf{P}$
- Damit ex. det. TM M', die L' in polynom. Zeit berechnet

$$x \in L \Leftrightarrow \exists u_1 \in \{0,1\}^{q(|x|)} M'(x,u_1) = 1$$

Karjkruher Institut für Technolog

Beweis

- L' ist in $\prod_{i=1}^p$ (für $\overline{L'}$ alle Quantoren und M negieren $\Rightarrow \overline{L'} \in \sum_{i=1}^p$)
- Nach IV gilt: $\prod_{i=1}^{p} \in \mathbf{P} \Rightarrow L' \in \mathbf{P}$
- Damit ex. det. TM M', die L' in polynom. Zeit berechnet

$$x \in L \Leftrightarrow \exists u_1 \in \{0,1\}^{q(|x|)} M'(x,u_1) = 1$$

■ Damit $L \in \mathbf{NP}$ und da $\mathbf{P} = \mathbf{NP}$ vorausgesetzt, folgt $L \in \mathbf{P}$

PH Vollständigkeit

Wir definieren PH Vollständigkeit analog zur NP Vollständigkeit und erhalten damit:

dass $PH = \sum_{i}^{p}$

PH Vollständigkeit

Wir definieren **PH** Vollständigkeit analog zur **NP** Vollständigkeit und erhalten damit :

Überlegung zur PH Vollständigkeit

Wenn eine **PH**-vollständige Sprache L existiert dann existiert ein i so dass **PH** = \sum_{i}^{p}

- Da $\mathbf{PH} = \cup_{k \in \mathbb{N}} \sum_{k=1}^{p} \exists i$ so dass $L \in \sum_{i=1}^{p} \exists i$
- Können durch PH Vollständigkeit jedes L' ∈ PH in pol. Zeit auf L reduzieren
- \blacksquare und damit also auch $L' \in \Sigma^p$

PH Vollständigkeit

Wir definieren PH Vollständigkeit analog zur NP Vollständigkeit und erhalten damit:

Überlegung zur PH Vollständigkeit

Wenn eine PH-vollständige Sprache L existiert dann existiert ein i so dass $PH = \sum_{i}^{p}$

- Da **PH** = $\bigcup_{k \in \mathbb{N}} \sum_{k=1}^{p} \exists i \text{ so dass } L \in \sum_{i=1}^$
- und damit also auch $L' \in \sum_{i=1}^{p} C_i$

PH Vollständigkeit

Wir definieren PH Vollständigkeit analog zur NP Vollständigkeit und erhalten damit:

Überlegung zur PH Vollständigkeit

Wenn eine **PH**-vollständige Sprache L existiert dann existiert ein *i* so dass $PH = \sum_{i}^{p}$

- Da **PH** = $\bigcup_{k \in \mathbb{N}} \sum_{k=1}^{p} \exists i$ so dass $L \in \sum_{i=1}^{p} \exists i$
- **N** Können durch **PH** Vollständigkeit jedes $L' \in \mathbf{PH}$ in pol. Zeit auf L reduzieren
- und damit also auch $L' \in \sum_{i=1}^{p} C_i$

PH Vollständigkeit

Wir definieren PH Vollständigkeit analog zur NP Vollständigkeit und erhalten damit:

Überlegung zur PH Vollständigkeit

Wenn eine PH-vollständige Sprache L existiert dann existiert ein i so dass $PH = \sum_{i}^{p}$

- Da **PH** = $\bigcup_{k \in \mathbb{N}} \sum_{k=1}^{p} \exists i \text{ so dass } L \in \sum_{i=1}^$
- **N** Können durch **PH** Vollständigkeit jedes $L' \in \mathbf{PH}$ in pol. Zeit auf L reduzieren
- und damit also auch $L' \in \sum_{i=1}^{p} C_i$

- Bild Anfangsseite : https://jeremykun.files.wordpress.com/2012/02/pvsnp.jpg
- Einleitung Halteproblem: http://s1060.photobucket.com/user/LandruBek/media/dkos/bitter-b8.jpg.html