PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-172951

(43) Date of publication of application: 26.06.1998

(51)Int.CI.

H01L 21/304 H01L 21/304

(21)Application number: 09-287905

(71)Applicant: TOKYO ELECTRON LTD

(22)Date of filing:

03.10.1997

(72)Inventor: YAMASAKA MIYAKO

(30)Priority

Priority number: 08284633

Priority date: 07.10.1996

Priority country: JP

(54) LIQUID PROCESSING METHOD AND DEVICE THEREFOR

(57) Abstract:

PROBLEM TO BE SOLVED: To process with chemical the surface of a body to be processed, to clean and dry it and to reduce particle contamination, by supplying inert gas from the center of the surface of the processed body to the periphery so as to dry it while the processed body is rotated.

SOLUTION: An N2 gas supply nozzle 33 is connected to an N2 gas supply source 48 through a bulb 45. Then, N2 gas is supplied to the N2 gas supply nozzle 33 by the supply means of a compressor and the like. It is constituted to be supplied (injected) to a wafer W. In such a case, the cooling means of N2 gas is provided between the N2 gas supply source 48 and the N2 gas supply nozzle 33, and the temperature of injected N2 gas is set to the low temperature of 2–10° C, for example. Thus the rate of the chemical reaction becoming the cause of the water mark can be reduced by cooling the

LEGAL STATUS

[Date of request for examination]

17.08.2000

[Date of sending the examiner's decision of

26.12.2002

rejection]

N2 gas.

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3691227

[Date of registration]

24.06.2005

[Number of appeal against examiner's decision

2003-01392

of rejection]

[Date of requesting appeal against examiner's 23.01.2003 decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平10-172951

(43)公開日 平成10年(1998) 6月26日

(51) Int.Cl.6

戲別記号

HO1L 21/304

351

361

FΙ

H01L 21/304

351S

361H

審査請求 未請求 請求項の数14 FD (全 13 頁)

(21)出願番号

特願平9-287905

(22)出願日

平成9年(1997)10月3日

(31) 優先権主張番号 特願平8-284633

(32) 優先日

平8 (1996)10月7日

(33)優先権主張国

日本 (JP)

(71) 出願人 000219967

東京エレクトロン株式会社

東京都港区赤坂5丁目3番6号

(72)発明者 山坂 都

山梨県韮崎市穂坂町三ツ沢650 東京エレ

クトロン九州株式会社プロセス開発センタ

一内

(74)代理人 弁理士 中本 菊彦

液処理方法及びその装置 (54) 【発明の名称】

(57)【要約】

【課題】 洗浄処理された後の被処理体の表面に残存す るウォータマークを除去し、パーティクルの発生を低減 すること。

【解決手段】 スピンチャック10にて保持される半導 体ウエハWを回転させながら半導体ウエハWの表面に純 水を供給して洗浄した後、半導体ウエハWを回転させな がら半導体ウエハWの中心から外周に向かってN2ガス を供給して乾燥することにより、半導体ウエハW表面に 残存するウォータマークを除去する。

【特許請求の範囲】

【請求項1】 回転保持手段にて保持される被処理体を回転させながら被処理体の表面に洗浄液を供給して洗浄する工程と、

上記被処理体を回転させながら被処理体の表面の中心から外周に向かって不活性ガスを供給して乾燥する工程と、を具備することを特徴とする液処理方法。

【請求項2】 回転保持手段にて保持される被処理体を回転させながら被処理体の表面に薬液を供給して薬液処理する工程と、

上記被処理体を回転させながら被処理体の表面に洗浄液 を供給して洗浄する工程と、

上記被処理体を回転させながら被処理体の表面の中心から外周に向かって不活性ガスを供給して乾燥する工程と、を具備することを特徴とする液処理方法。

【請求項3】 請求項1又は2記載の液処理方法において、

上記被処理体の回転中に、不活性ガス供給手段を被処理体の中心から外周に向かってスキャン移動させながら不活性ガス供給手段から被処理体の表面に不活性ガスを供給して乾燥することを特徴とする液処理方法。

【請求項4】請求項1又は2記載の液処理方法において、

上記被処理体の表面に洗浄液を供給した後、上記被処理体に不活性ガスを供給する前に、上記被処理体を回転して洗浄液を振り切るようにしたことを特徴とする液処理方法。

【請求項5】 請求項1,2又は3記載の液処理方法において、

上記被処理体の回転を加速させながら不活性ガス供給手段をスキャン移動させ、不活性ガス供給手段から上記被 処理体の表面に不活性ガスを供給することを特徴とする 液処理方法。

【請求項6】 請求項5記載の液処理方法において、 上記被処理体の回転加速の開始と不活性ガス供給手段の スキャン移動の開始とを実質的に同時とし、上記不活性 ガス供給手段のスキャン移動中に上記被処理体の回転加 速を終了させるようにしたことを特徴とする液処理方 法。

【請求項7】 請求項5記載の液処理方法において、 上記被処理体の回転加速の開始と不活性ガス供給手段の スキャン移動の開始とを実質的に同時とし、上記被処理 体の回転加速を終了させた後、被処理体を一定速度で回 転させているときに不活性ガス供給手段のスキャン移動 を終了させるようにしたことを特徴とする液処理方法。

【請求項8】 請求項1.2又は3記載の液処理方法において、

上記被処理体を実質的に一定速度で回転させながら不活性ガス供給手段をスキャン移動させ、不活性ガス供給手段から上記被処理体の表面に不活性ガスを供給すること

を特徴とする液処理方法。

【請求項9】 請求項3記載の液処理方法において、 不活性ガス供給手段のスキャン移動を被処理体の外周端 面部より手前の位置で停止することを特徴とする液処理 方法。

【請求項10】 請求項1,2又は3記載の液処理方法において、

不活性ガス供給手段のガス吹出口を被処理体の表面に対して傾け、不活性ガス供給手段がスキャン移動しようとする方向に不活性ガスを供給しながら不活性ガス供給手段をスキャン移動させることを特徴とする液処理方法。

【請求項11】 被処理体を保持する回転可能な回転保 持手段と、

上記被処理体の表面に洗浄液を供給する洗浄液供給手段 と、

上記被処理体の表面に不活性ガスを供給する不活性ガス 供給手段と、

上記不活性ガス供給手段を上記被処理体の中心から外周 に向かってスキャン移動する移動機構と、を具備することを特徴とする液処理装置。

【請求項12】 被処理体を保持する回転可能な回転保持手段と、

上記被処理体の表面に薬液を供給する薬液供給手段と、 上記被処理体の表面に洗浄液を供給する洗浄液供給手段 と、

上記被処理体の表面に不活性ガスを供給する不活性ガス 供給手段と、

上記不活性ガス供給手段を上記被処理体の中心から外周 に向かってスキャン移動する移動機構と、を具備することを特徴とする液処理装置。

【請求項13】 請求項11又は12記載の液処理装置において、

上記回転保持手段の回転と、不活性ガス供給手段のスキャン移動とを、制御手段からの信号に基づいて制御することを特徴とする液処理装置。

【請求項14】一請求項11又は12記載の液処理装置 こおいて

上記不活性ガス供給手段のガス吹出し口を、不活性ガス 供給手段のスキャン移動方向に向けて傾斜してなる、こ とを特徴とする液処理装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、例えば半導体ウエハ等の被洗浄体を回転しながら薬液処理、洗浄処理及び乾燥処理を行う液処理方法及びその装置に関するものである。

[0002]

【従来の技術】一般に、半導体デバイスの製造工程においては、例えば半導体ウエハ(以下にウエハという)や液晶ディスプレイ(LCD)基板等の被処理体の表面に

付着したパーティクルや大気との接触により形成された 自然酸化膜を除去するために洗浄処理が行われる。被処 理体を洗浄する方法の1つとして、一般にスピン型の装 置を用いた枚葉式の洗浄方法が知られている。

【0003】上記スピン型の洗浄方法では、被処理体を回転保持手段であるスピンチャックに保持して回転させながら被処理体の表面に例えばフッ酸溶液等の薬液を供給し、次いで洗浄水例えば純水を供給した後、スピン乾燥させるようにしている。そして、被処理体を乾燥させる工程では、スピンにより純水を吹き飛ばすことに加えて不活性ガス例えば窒素(N2)ガスを被処理体の表面に吹き付けて乾燥を促進することも行われている(特開平7-3785号公報参照)。この特開平7-3785号公報参照)。この特開平7-3785号公報に記載の技術は、被処理体であるウェハを脱浄液で洗浄した後、ウェハ表面の中心部にN2ガスを噴射して乾燥を行う技術である。

[0004]

【発明が解決しようとする課題】ところで、被処理体の乾燥性能の指標として、通常ウォータマークと称される乾燥不良による"水跡"がどれだけ発生しているかということが挙げられるが、従来の洗浄方法では、ウォーマークの発生が避けられなかった。図14に示すように、被処理体例えばウエハW表面をフッ酸で処理する場合、まず、図14(a)に示すように、ウエハWをスピンチャック1にて保持して回転させながらノズル2からフッ酸溶液AをウエハW表面に供給し、次いで図14(b)に示すように、ノズル3から純水Bを供給して表面をリンスし、遠心力により純水Bを弾き飛ばす。このときの純水Bの一部が図14(c)に示すように、ウエハW表面に残存し、図14(d)に示すように、ウォータマーク4として残る。

【0005】このように、ウォータマーク4が発生する要因としては、水が乾燥して行くと最後には球状になり、これが表面張力でウエハW表面上に残り、水と空気中の酸素とウエハW表面のシリコンとが反応してH2SiO3が生成され、この反応生成物が析出して、あるいは純水中に含まれる極く微量のシリカ(SiO2)が析出してウォターマークになる。

【〇〇〇6】特に、フッ酸処理の場合には、ウエハW表面のSi〇2が除去されてSiが露出するので、反応が起こり易い。また、図15(a)及び(b)に示すように、ウエハW表面がポリシリコン等の疎水性膜で凹部5がある場合には、水が球状になって残り易く、水が飛びにくくなり、ウォータマークとして一層残り易くなる。【〇〇〇7】また、乾燥工程時に、N2ガスをウエハWの中心に供給すなわち噴射する方法においては、N2ガスによって水の残存を少なくすることができるが、上述したようにウエハW表面がポリシリコン等の疎水性膜で凹部5があるため、ウォータマークを完全に除去するに

は至っていないのが現状である。

【0008】この発明は上記事情に鑑みなされたもので、被処理体の表面を薬液処理し、次いで洗浄した後、乾燥してパーティクル汚染を低減できるようにした液処理方法及びその装置を提供することを目的とするものである。

[0009]

【課題を解決するための手段】上記目的を達成するために、請求項1記載の発明は、回転保持手段にて保持される被処理体を回転させながら被処理体の表面に洗浄液を供給して洗浄する工程と、 上記被処理体を回転させたがら被処理体の表面の中心から外周に向かってとを特徴と、上記被処理体の表面に洗浄液を供給する洗浄液もする。この請求項1の発明を具現化する請求項11記載の発明は、被処理体を保持する回転な回転保持で設定、上記被処理体の表面に洗浄液を供給する洗浄液を供給する洗浄液を供給する洗浄液を供給するに表別で表別である。 上記を明確を表面に不活性ガス 会別を表別を表面に不活性ガス 会別を表別を表面にないます。

【〇〇1〇】また、請求項2記載の発明は、回転保持手 段にて保持される被処理体を回転させながら被処理体の 表面に薬液を供給して薬液処理する工程と、 上記被処 理体を回転させながら被処理体の表面に洗浄液を供給し て洗浄する工程と、 上記被処理体を回転させながら被 **処理体の表面の中心から外周に向かって不活性ガスを供** 給して乾燥する工程と、を具備することを特徴とする。 この請求項2記載の発明を具現化する請求項12記載の 発明は、被処理体を保持する回転可能な回転保持手段 上記被処理体の表面に薬液を供給する薬液供給手 上記被処理体の表面に洗浄液を供給する洗浄液 段と、 上記被処理体の表面に不活性ガスを供給 供給手段と、 する不活性ガス供給手段と、 上記不活性ガス供給手段 を上記被処理体の中心から外周に向かってスキャン移動 する移動機構と、を具備することを特徴とする。

【〇〇11】この発明において、上記被処理体を回転させながら被処理体の表面の中心から外周に向かって不成は性ガスを供給して乾燥できるものであれば、その構成と任意でよいが、好ましくは上記回転保持手段の回転とを、制御手段のスキャン移動とを、制御手段のスキャン移動とを、制御手段をがよく(請求項13)、被の信号に基づいて制御する方がよく(請求項13)、被のに上記被処理体の回転中に、不活性ガス供給手段から被処理体の表面に不活性ガス供給手段から被処理体の表面に不活性ガス供給手段から被処理体の表面に不活性ガスを供給して乾燥する方がよい(請求項3)。また、上記被処理体の表面に洗浄液を供給した後、上記被処理体を回転して洗浄液を振り切るようにする方が好ましい(請求項4)。

【OO12】上記不活性ガスを供給する場合、好ましくは、上記被処理体の回転を加速させながら不活性ガス供

給手段をスキャン移動させ、不活性ガス供給手段から上 記被処理体の表面に不活性ガスを供給するか(請求項 5) 、あるいは、上記被処理体を実質的に一定速度で回 転させながら不活性ガス供給手段をスキャン移動させ、 不活性ガス供給手段から上記被処理体の表面に不活性ガ スを供給する方がよい(請求項8)。この際、請求項5 記載の液処理方法の場合は、上記被処理体の回転速度 と、不活性ガス供給手段のスキャン移動の開始及び終了 の時間的関係は、乾燥効率を著しく低下させない限り任 意でよいが、好ましくは、上記被処理体の回転加速の開 始と不活性ガス供給手段のスキャン移動の開始とを実質 的に同時とし、上記不活性ガス供給手段のスキャン移動 中に上記被処理体の回転加速を終了させるようにする方 がよい (請求項6)。また、上記被処理体の回転加速の 開始と不活性ガス供給手段のスキャン移動の開始とを実 質的に同時とし、上記被処理体の回転加速を終了させた 後、被処理体を一定速度で回転させているときに不活性 ガス供給手段のスキャン移動を終了させる方が好ましい (請求項7)。これらの場合、不活性ガス供給手段のス キャン移動を被処理体の外周端面部より手前の位置で停 止する方が好ましい(請求項9)。

【0013】また、上記不活性ガスを供給する場合は、不活性ガス供給手段のガス吹出口を被処理体の表面に対して傾け、不活性ガス供給手段がスキャン移動しようとする方向に不活性ガスを供給しながら不活性ガス供給手段をスキャン移動させてもよい(請求項10又は請求項14)

【〇〇14】請求項1、11記載の発明によれば、被処 理体を回転させながら被処理体の表面に洗浄液を供給し て薬液を除去し、その後、被処理体を回転させながら被 処理体の中心から外間に向かって不活性ガスを供給し て、被処理体の表面に残存する洗浄液を積極的に除去す ると共に、乾燥を行うことができる。また、請求項2. 12記載の発明によれば、回転保持手段にて保持された 被処理体を回転させながら、被処理体の表面に薬液を供 給してパーティクル等を除去し、次いで被処理体を回転 させながら被処理体の表面に洗浄液を供給して薬液を除 去し、その後、被処理体を回転させながら被処理体の中 心から外周に向かって不活性ガスを供給して、被処理体 の表面に残存する洗浄液を積極的に除去すると共に、乾 燥を行うことができる。したがって、被処理体の表面の 凹部に洗浄液が球状になって残存することなく速やかに 除去されるので、例えば純水中のシリカの析出や反応生 成物の析出が実質的に起こらなくなり、ウォータマーク の発生及びパーティクルの発生を低減することができ る。

【〇〇15】また、回転保持手段の回転と、不活性ガス 供給手段のスキャン移動とを、制御手段からの信号に基 づいて制御することで、ウォータマークの発生及びパー ティクルの発生をより一層低減することができ(請求項 13)、不活性ガス供給手段を被処理体の中心から外間に向かってスキャン移動させながら、不活性ガス供給手段から被処理体表面に不活性ガスを供給することで、被処理体表面に多少の凹凸部が存在しても満遍なく乾燥できる(請求項3)。更に、不活性ガスを供給する前に、被処理体を回転して洗浄液を振り切ることで、乾燥効率を向上させることができると共に、不活性ガスの消費量の低減が図れる(請求項4)。

【0016】また、上記被処理体の回転を加速させながら不活性ガス供給手段をスキャン移動させ、不活性ガス供給手段から上記被処理体の表面に不活性ガスを供給することで、乾燥時間を短縮することができると共に、乾燥効率を向上させることができる(請求項5,6.

7)。あるいは、例えば上記被処理体を実質的に一定の 低速度で回転させながら不活性ガス供給手段をスキャン 移動させ、不活性ガス供給手段から上記被処理体の表面 に大きな噴射速度で不活性ガスを供給することにより、 被処理体の表面に深い凹凸部をもつ場合でもより確実に 乾燥することができる(請求項8)。

【 O O 1 7 】 更に、不活性ガス供給手段のスキャン移動を被処理体の外周端面部より手前の位置で停止することにより、被処理体の周囲にむやみに不活性ガスを吹き付けることがなくなり、したがって、パーティクルを巻き上げる虞れを解消できる(請求項 9)。

【0018】また、不活性ガス供給手段のガス吹出口を被処理体の表面に対して傾け、不活性ガス供給手段がスキャン移動しようとする方向に不活性ガスを供給しながら不活性ガス供給手段をスキャン移動させることにより、傾斜した不活性ガス保持手段がより効果的に被処理体表面の洗浄液を除去できるので、更にウォータマークの発生及びパーティクルの発生を低減することができる(請求項10,14)。

[0019]

【発明の実施の形態】以下に、この発明の実施の形態を 図面に基づいて詳細に説明する。この実施形態では、こ の発明に係る液処理装置を半導体ウエハの洗浄処理装置 に適用した場合について説明する。

【0020】◎第一実施形態

図1は、この発明に係る液処理装置の第一実施形態を適用した上記洗浄装置の要部を示す断面図、図2はその概略平面図である。この洗浄装置は、被処理体であるウエハWを保持して水平面上を回転する回転保持手段例えばスピンチャック10と、このスピンチャック10及びエハWの外周及び下方を包囲するカップ20と、ウエハWの表面に薬液例えばフッ酸溶液を供給する薬液供給チ段である薬液供給する洗浄液供給手段である純水供給する洗浄液供給手段である純水供給メズル32と、ウエハWの表面に不活性ガス例えば窒素(N2)ガスを供給する不活性ガス供給手段であるN2ガス供給ノズル33を

ウェハWの中心から外周に向かって移動する移動機構3 4を具備している。また、洗浄装置には、上記薬液供給 ノズル31、 純水供給ノズル32、 N2ガス供給ノズル 33からの薬液(フッ酸溶液)、 純水及び N2ガスの供 給を制御する制御部40が具備されている(図3参 昭)。

【0021】上記スピンチャック10は、モータ11により垂直軸の回りを回転する回転軸12の上部に装着される載置板13と、この載置板13の周縁部に周設され、ウエハWが載置板13から浮いた状態でウエハWの周縁部を保持する固定式保持部14とで構成されている。この場合、固定式保持部14は、図2に示すように、図示しない搬送手段との間でウエハWの受け渡しが可能なように周方向の一部が切り欠れている。また、ウエハWを保持するには、上記固定式保持部14以外にも揺動式保持部15、あるいはこれらの併用であってもよい。

【0022】上記固定式保持部14と揺動式保持部15 とを併用した場合のスピンチャック10の拡大図を図4 及び図5に示す。載置板13の周縁部の複数箇所(図4 では3箇所の場合を示す)に設けられた固定式保持部1 4を挟むように、その両側に揺動式保持部15が設けら れている。揺動式保持部15は、図5に示すように、水 平支軸 15 dを支点にして揺動可能に形成されており、 かつ水平支軸15dより下部の下端部15aは、水平支 軸15dより上部の上端部15bよりも長くなるように 形成されている。更に上端部15bにはウエハWと接触 してこれを保持する当接部15cが設けられている。こ のように構成される揺動式保持部15において、スピン チャック10が回転することにより、下端部15aは遠 心力の作用によって外方へ傾き、水平支軸 15 d を支点 として上端部15bはウェハの中心方向へ傾く。したが って、当接部15cがウエハWを押さえ付けるようにし て保持することができる。

【0023】上記カップ20は、内カップ21と外カップ22よりなる二重カップ構造に構成されており、昇降手段23により昇降可能に構成されている。この場合、内カップ21及び外カップ22は、ウエハWが回転する際に飛び散った液を受け止めて排出するものであり、外カップ22の受口22aは内カップ21の受口21aの上方に位置するように形成されている。

【0024】また、内カップ21及び外カップ22は、下部側にて共通の排気路24によりカップ内雰囲気が排気されるように構成されると共に、内カップ21及び外カップ22の底部には、それぞれドレン管25、26が設けられている。更に、内カップ21の内側すなわちスピンチャック10の下方領域を包囲するように受けカップ27が設けられており、この受けカップ27の内部に溜った液は、上記ドレン管25を介して排出されるようになっている。このようにカップ20を内、外の二重構

造にすることにより、薬液 (フッ酸溶液) と洗浄液 (純水) とを別々に排出し回収することができる。

【0025】上記薬液供給ノズル31及び純水供給ノズル32は、それぞれ上記カップ20の外側に鉛直に設けられた回転軸35、36の上部から水平に延在する支持部材37、38により固定されている。そして、回転軸35、36は、それぞれ回転機構41、42により垂直軸回りに回転し、ノズル31、32を、先端部がウエハWの中心部付近に対向する供給位置と、外カップ22よりも外側の待機位置との間で回動させるように構成されている。

【0026】また、上記薬液供給ノズル31及び純水供給ノズル32は、図3に示すように、それぞれバルブ43、44を介して薬液供給源であるフッ酸溶液供給源46、純水供給源47に接続されており、図示しないポンプ等の供給手段によって薬液供給ノズル31、純水供給ノズル32に薬液であるフッ酸溶液あるいは純水を供給して、ウエハWに供給し得るように構成されている。

【0027】一方、上記N2ガス供給ノズル33は、上記カップ20の外側に配設された移動機構34によってウエハWの中心部付近の供給始動位置と外カップ22の外側の待機位置との間を往復移動可能に構成され、ウエハWの中心から外周に向かって移動し得るように構成されている。この場合、移動機構34は、水平状態に配置されるエアーシリンダ34aのピストンロッド34bに装着された取付部材34cから水平に延在する支持部材34dに上記N2ガス供給ノズル33が固定されている。なお、移動機構34は必しもシリンダである必要はなく、例えばベルト駆動あるいはボールねじ等の直線駆動機構であってもよく、あるいは、上記薬液供給ノズル31及び純水供給ノズル32の移動機構のような回転駆動機構を用いてもよい。

【0028】また、上記N2ガス供給ノズル33は、図3に示すように、パルブ45を介してN2ガス供給源48に接続されており、図示しないコンプレッサ等の供給手段によってN2ガスがN2ガス供給ノズル33に供給され、ウエハWに向かって供給(噴射)されるように構成されている。この場合、図示しない、N2ガスの冷却手段を、N2ガス供給源48とN2ガス供給ノズル33との間に設けて、噴射されるN2ガスの温度を例えば2℃~10℃の低い温度になるようにしてもよい。このようにN2ガスの温度を冷却することにより、ウエハWの表面のSiと、空気中の酸素、及び水とからウォータマークの要因となるH2SiO3を生成する化学反応の速度を遅くすることができるので、更に確実にウォータマークの発生を低減することができる。

【0029】上記薬液供給ノズル31、純水供給ノズル32及びN2ガス供給ノズル33からの薬液(フッ酸溶液)、純水及びN2ガスの供給を制御する制御部40

は、予めメモリ部に記憶されたプログラムに従って各ノズル31、32、33の回転機構41、42及び移動機構34を制御すると共に、バルブ43、44、45を制御し得るように構成されている。

【0030】次に、上記洗浄装置を用いて行われる洗浄 方法について説明する。まず、ウエハWがスピンチャッ ク10の載置板13上に載置されて保持される。次いで モータ11の駆動によりスピンチャック10が例えば3 OOrpmの回転数で回転すると共に、薬液供給ノズル 3 1 が待機位置から供給位置すなわち先端部がウエハW の中心部と対向する位置間で回転し、バルブ43が開放 して図6 (a) に示すように、薬液供給ノズル31から 例えばO. 5%のフッ酸溶液Aが例えば1000ミリリ ットル/分の流量でウエハW表面の中心部付近に 1 分間 供給され、ウエハW表面の自然酸化膜が除去される。こ のとき、カップ20は、内カップ21の受口21aがウ エハWの周縁部と対向する位置となるように上昇し、図 示しない排気手段により排気路24内が排気されること により、ウエハW表面から飛散されたフッ酸溶液は、受 口21aより内カップ21内に吸引されて、ドレン管2 5を介して回収される。

【0031】上記のようにしてウエハW表面の自然酸化膜が除去された後、薬液供給ノズル31は待機位置に後退する。この薬液供給ノズル31の後退と同時に、純水供給ノズル32が待機位置から供給位置すなわちウエハWの中心部と対向する位置間で回転し、バルブ44が開放して図6(b)に示すように、純水供給ノズル32からウエハW表面の中心部付近に純水Bが例えば1000ミリリットル/分の流量で1分間供給され、ウエハW表面がリンスされる。このとき、カップ20は昇降手段23により下降して外カップ22の受口22aがウエハWの周縁部と対向する位置におかれ、ウエハW表面から飛散された純水が受口22aより外カップ22内に吸引され、ドレン管26を介して排出される。

【OO32】上記のようにしてウエハW表面に残存する フッ酸溶液を純水で置換して除去した後、純水供給ノズ ル32は待機位置に後退する。この純水供給ノズル32 の後退と同時に、移動機構34が駆動してN2ガス供給 ノズル33をウエハW表面の中心部付近に移動すると共 に、ウエハW表面の中心部から外周に向かって移動す る。このとき、バルブ45を開放してN2ガスを例えば 240リットル/分の流量で例えば5秒間供給(噴射) すると共に、N2ガス供給ノズル33を例えば20mm /secの速度でウエハW表面の中央部から外周に向か って移動する(図6(c)参照)。またこのとき、ウエ ハWの回転数は例えば最高3000rpmに回転され る。これにより、ウエハW表面上の純水は球状になるこ とができずにN2ガスによってウエハWの外周方向に押 し出されて、図6 (d) に示すように、ウエハW表面上 の純水は除去され、乾燥処理が行われる。この場合、N 2ガス供給ノズル33を停止する時は、ウエハWの外周端面部より手前の位置(例えば外周端面部より10mm~20mm手前の位置)で停止する方が好ましい。ウエハWの外周端面部近傍まで移動すると、ウエハWの周囲にむやみにガスを吹き付けることになり、パーティクルを巻き上げる虞れがあるからである。こうして、N2ガス供給ノズル33を停止位置で停止して、しばらくしてからウエハWの回転速度の減速を開始すると共に、N2ガス供給ノズル33の後退を開始する。このような一連の処理は制御部40のメモリに予め入力し、記憶させたプログラムに基づいて行われる。

【〇〇33】次に、上記洗浄方法における処理時間に対 するウエハWの回転速度と、ウエハWに対するN2ガス 供給ノズル33の位置と、N2ガスの噴射量との関係 を、図7に示すタイミングチャートを参照して説明す る。まず、処理開始Oからt1までにウエハWの回転数 を、静止状態から300rpmまで加速した後、t2ま で定速回転にする。このt1からt2までの間に薬液処 理と洗浄処理を行い、純水供給ノズル32の後退と同時 にN2ガス供給ノズル33をウエハWの中心に移動させ る。 t 2でウエハWの回転速度の加速を開始すると共 に、N2ガス供給ノズル33の移動を開始する。また、 ガス噴射量がt2で適当な値例えば50リットル/分に 達するように、その直前からN2ガスの供給を開始す る。更にウエハWの回転数が3000rpmに達したt 3において加速をやめ、3000rpmを維持するよう に定速回転にする。この時N2ガス供給ノズル33は移 動途中だが、上記の停止位置に到達するt4で移動を停 止し、またN2ガスの供給も停止する。その後、t5に おいて、ウエハWの回転速度を減速させると共に、N2 ガス供給ノズル33を後退させる。

【〇〇34】この発明に係る液処理方法は、必ずしも上 記洗浄方法のプログラムに基づくものではなく、別の洗 浄方法のプログラムに基づいて行うこともできる。例え ば図8に示すタイミングチャートに示すプログラムに基 づいて行うことができる。すなわち、処理開始Oからt 1までにウエハWの回転数を、静止状態から300rp mまで加速した後、定速回転にする。その後、時刻 t 2 までに薬液処理と洗浄処理を終了させ、t2でN2ガス 供給ノズル33の移動を開始すると共に、適当な値例え ば240リットル/分という上記50リットル/分より もかなり大きな噴射量でN2ガス供給ノズル33からN2 ガスを噴射させる。そしてt4でN2ガス供給ノズル3 3が停止位置に違し、N2ガスの供給を停止する。ま た、ウエハWの回転速度を減速し始める。その後、ウエ ハWの回転が停止してから、 t 5において、N2ガス供 給ノズル33を基の位置へ後退させ始める。

【0035】上述したように、低速回転のウエハWに大流量のN2ガスを吹き付けると、ウォータマークを生じることなく、表面に深い凹凸部をもつウエハWをより確

実にに乾燥することができる。

【0036】上記二つの例のようにして、洗浄処理後にウエハWを回転させながらウエハW表面の中心から外周に向かってN2ガスを供給することにより、水、空気中の酸素及びシリコンの反応物の析出や水に含まれるシリカの析出等によるウォータマークの発生を防止することができ、パーティクルの発生を低減することができると共に、歩留まりの向上を図ることができる。

【OO37】◎第二実施形態

次に、この発明に係る液処理装置の第二実施形態について、図9に示す工程図に基づいて説明する。

【0038】第二実施形態は、上述したN2ガス供給ノズル33の下方側を、ウエハWに対して垂直な方向から N2ガス供給ノズル33の移動方向に、適当な傾斜角度 α 例えば約15°だけ傾斜させるように形成した場合である。なお、傾斜角度 α は5°ないし45°の範囲とすることが好ましい。

【0039】この場合、スピンチャック 10 を回転させながら、 N_2 ガス供給ノズル33を、ウエハWの中心近傍で垂直状態から徐々に傾斜移動させ、角度が α になった時点で傾斜移動を停止させる(図9(a) 参照)。その後、適当な速度で N_2 ガス供給ノズル33をウエハWの外方部へ移動させ(図9(b) 参照)、ウエハWの外周端面部の手前(例えば外周端面部より約 $10\sim20$ mm手前の位置)に到達した時点で N_2 ガス供給ノズル33の移動を停止させる(図9(c) 参照)。なおこの場合、 N_2 ガス供給ノズル33のスキャン移動速度は20 ±5mm/秒とすることが好ましい。また、 N_2 ガス供給ノズル33の先端の噴出口からウエハWの表面までの距離は $10\sim20$ mmの範囲とすることが好ましい。更に、 N_2 ガス供給ノズル33の先端の噴出口の口径は $4\sim16$ mmの範囲とすることが好ましい。

【OO4O】また、N2ガス供給ノズル33は、初めから角度 α だけ傾斜した状態であってもよい。その場合は、初期に噴射されるN2ガスがウエハWの中心部を吹き付けるように位置合わせをする必要がある。

【 O O 4 1】なお、第二実施形態のその他の部分は上記 第一実施形態と同様なので、同一部分には同一符号を付 してその説明を省略する。

【OO42】このように構成することにより、より効果的にウエハW上の洗浄液を除去することができるので、 更に確実にウォータマークの発生を低減することができ

【0043】◎第三実施形態

次に、この発明の第三実施形態について、図10に示す工程図に基づいて説明する。

【0044】第三実施形態は、乾燥効率の向上と不活性 ガスの消費量の低減を図れるようにした場合である。す なわち、まず、上記第一及び第二実施形態と同様に、ウ エハWを所定回転数例えば300rpmにして薬液供給 ノズル31から薬液例えばフッ酸溶液Aを供給してウエハW表面の自然酸化膜を除去する(図10(a)参照)。次に、純水供給ノズル32からウエハW表面に純水Bを供給してウエハW表面をリンスする(図10(b)参照)。

【0045】上記のようにしてウエハW表面に残存するフッ酸溶液を純水で置換して除去した後、純水供給ノズル32は待機位置に後退する。次に、ウエハWを高速回転(例えば3000rpm)して、ウエハW表面に付着する純水を遠心力の作用によって振り切る(図10(c)参照)。

【0046】次に、N2ガス供給ノズル33をウエハW 表面の中央部から外周に向かって移動しながらN2ガスを供給(噴射)して(図10(d)参照)、ウエハW表面上の純水を除去(乾燥)する(図10(e)参照)。【0047】上記のように、純水による洗浄処理後にウエハWを高速回転してウエハW表面上の純水を振り切ることにより、ウエハW表面上に付着する純水の量を少なくすることができる。したがって、以後のN2ガスの噴射による乾燥効率の向上が図れると共に、N2ガスの消費量の低減が図れる。

【OO48】なお、上記説明では、N2ガス供給ノズル 33を垂直状態のまま移動させたが、勿論第二実施形態 と同様にN2ガス供給ノズル33を傾斜させてもよい。 【0049】上記第一ないし第三実施形態のように構成 される洗浄装置は単独で使用される他、以下に示すよう な半導体ウエハの洗浄処理システムに組み込まれて使用 される。上記半導体ウェハの洗浄処理システムは、図1 1に示すように、被処理体であるウエハWを複数枚例え ば25枚収納したカセットCが外部から搬送されて載置 されるウエハWの搬出入ポート50と、水平(X.Y) 方向、回転(heta) 方向に移動自在な受け渡しアーム 5 1と、Y, θ及びZ(高さ)方向に移動自在なメインアー ム52とを具備している。また、この洗浄処理システム には、メインアーム52の搬送路53に沿う一側側に は、裏面洗浄部54、洗浄乾燥部55及びAPM処理部 56が配設され、搬送路53に沿う他側側には、HPM 処理部57及びこの発明に係る液処理装置であるフッ酸

【0050】上記のように構成される洗浄処理システムにおいて、その処理手順を図12に示すフローチャートに基づいて説明する。まず、処理対象であるウエハW表面の薄膜の性質に応じて適当なプログラムを制御部40のメモリに予め入力し、記憶させる(S1)。搬出入ポート50に搬入されたカセットC内のウエハWは、受け渡しアーム51を介してメインアーム52に受け渡され、各処理部に順次搬送される。すなわち、ウエハWは、まず裏面洗浄部54にてウエハWの裏面が洗浄液例えば純水で洗浄され(S2)、次いでAPM処理部56にてAPM溶液(アンモニア、過酸化水素水及び純水の

処理部58が配設されている。

混合溶液)によりパーティクルの除去が行われる。AP M処理されたウエハWは、続いてHPM処理部57でH PM溶液(塩酸、過酸化水素水及び純水の混合溶液)に より金属汚染の清浄が行われる(S3)。更に、メイン アーム52によってウエハWをフッ酸処理部58に搬入 し(S4)た後、スピンチャック10を例えば300 r pmの回転速度で回転させる(S5)。この後、上述し たように、フッ酸溶液により自然酸化膜の除去が行われ る(S6)と共に、純水の供給によりウエハW表面に残 存するフッ酸溶液を純水で置換してフッ酸溶液を除去し (S7) た後、ウエハWを300rpmで回転させたま ま、ウエハWの表面の中心部から外周に向かってN2ガ スを供給して、乾燥処理が行われる(S8)。そして、 ウエハWの回転を停止し(S9)、ウエハWをフッ酸処 理部58から搬出する(S10)。上記のように処理し た後、最後に洗浄乾燥部55にて純水で最終洗浄され乾 燥される。また、上記処理手順のうち、この発明に係る 液処理方法の説明は、図8のプログラムに基づいて行っ たが、図7に示したプログラムに基づいて行ってもよ い。

【0051】なお、上記実施形態では、この発明に係る 液処理装置が半導体ウエハの洗浄装置に適用した場合に ついて説明したが、必しも半導体ウェハの洗浄に限定さ れるものではなく、例えばLCD基板の洗浄処理におい ても適用できることは勿論である。また、被処理体の処 理される側の表面は、パターン化した薄膜例えばシリコ ン酸化膜、シリコン窒化膜又はポリシリコン膜等が形成 されていてもよく、あるいは薄膜を形成していない化学 機械研磨(Chemical Mechanical Polishing)された平滑面であってもよい。更 に、上記説明では薬液がフッ酸溶液である場合について 説明したが、フッ酸溶液以外の薬液を用いてもよく、ま た、上記実施形態では不活性ガスがN2ガスである場合 について説明したが、N2ガスと、それ以外の不活性ガ ス例えばAr、He、CO2及び空気の中から1又は2 種以上のガスを選んで用いることも可能である。

[0052]

【実施例】次に、この発明の実施形態の一例の実施例と、不活性ガスを用いずに乾燥処理を行う比較例1及び被処理体例えばウエハWの中心部に不活性ガスを供給して乾燥処理を行う比較例2とを比較して、ウエハW表面に残存するウォーターマークの残存量を調べるための実験を行った結果について説明する。

【0053】★実験条件

①フッ酸溶液濃度

フッ酸溶液 (50重量%): 水=1:10

②処理プロセス

フッ酸処理した後、純水によりリンス処理し、その後、スピン乾燥又はN2ガスの供給により乾燥処理を行う
③評価対象試料

8インチウエハ;図15(a)の断面構造の0.8μm のライン及びスペースパターン

④ウォータマーク測定方法

測定機:金属顕微鏡 [オリンパス工学工業(株) 製] 測定倍率:×200(接眼×10,対物×20)

・N2ガス流量:240リットル/分

・N2ガス供給ノズルのスキャン速度:20mm/se

ウエハ回転数:最高3000rpm

・吐出時間:5秒

比較例1

ウエハ回転数:最高3000rpm

比較例2

・N2ガス供給量:240リットル/分・ウエハ回転数:最高3000rpm。

【0054】上記実験条件の下で実験を行って、図13に示すように、ウエハWの9ポイントの5mm平方のチップにおけるウォータマークの個数を調べたところ、実施例のものにおいては、図13(a)に示すように、各ポイントにおけるウォータマークの個数は零であった。これに対し、N2ガスを供給せずにウエハWの回転のみで乾燥を行った比較例1においては、図13(b)に示すように、各ポイントにおけるウォータマークの個数が多い箇所では3桁に達し、1ポイントの平均のウォータマークの個数は、94.1個/チップであった。また、ウエハWの中心部にN2ガスを供給して乾燥する比較例2においては、図13(c)に示すように、ウエハWの中心側にウォータマークの残存が生じ、1ポイントの平均のウォータマークの個数は、3.4個/チップであった。

[0055]

【発明の効果】以上に説明したように、この発明によれば、被処理体の表面の凹部に洗浄液が球状になって残存することなく速やかに除去できるので、例えば純水中のシリカの析出や反応生成物の析出が実質的に起こらなくなり、ウォータマークの発生及びパーティクルの発生を低減することができると共に、歩留まりの向上を図ることができる。

【図面の簡単な説明】

【図1】この発明に係る液処理装置の第一実施形態を半 導体ウエハの洗浄装置に適用した場合の要部を示す断面 図である。

【図2】図1の概略平面図である。

【図3】この発明における薬液供給ノズル、洗浄液供給 ノズル及び不活性ガス供給ノズル及びその制御部を示す 概略構成図である。

【図4】図1の要部を拡大した平面図である。

【図5】図4の側面図である。

【図6】この発明の処理手順を示す工程図である。

【図7】この発明に係る液処理方法の一例において、処理時間に対するウエハの回転数と、ウエハに対するN2ガス供給ノズルの位置と、N2ガスの噴射速度との関係を示すタイミングチャートである。

【図8】この発明に係る液処理方法のその他の例において、処理時間に対するウエハの回転数と、ウエハに対するN2ガス供給ノズルと、N2ガス噴射速度との関係を示すタイミングチャートである。

【図9】この発明の第二実施形態の処理手順を示す工程 図である。

【図10】この発明の第三実施形態の処理手順を示す工程図である。

【図11】この発明に係る液処理装置を組み込んだ半導体ウエハの洗浄処理システムを示す概略平面図である。

【図12】この発明に係る液処理装置を組み込んだ半導体ウエハの洗浄処理システムの処理手順を示すフローチ

ャートである。

【図13】この発明の実施例と比較例について洗浄の評価の結果を示す説明図である。

【図14】従来の洗浄方法を示す工程図である。

【図15】洗浄されるウエハの表面構造の例を示す拡大 断面図である。

【符号の説明】

A フッ酸溶液 (薬液)

B 純水(洗浄液)

W 半導体ウエハ (被処理体)

- 10 スピンチャック(回転保持手段)
- 31 薬液供給ノズル(薬液供給手段)
- 32 純水供給ノズル (洗浄液供給手段)
- 33 N2ガス供給ノズル (不活性ガス供給手段)
- 34 移動機構
- 40 制御部

【図1】

31:蔥液供給ノズル 32:純水供給ノズル 33:N2ガス供給ノズル

【図2】

[図5]

【図4】

【図6】

