

Facultad de Ingeniería

Laboratorio de Fundamentos de Control(6655)

Profesor: Salcedo Ubilla María Leonor Ing.

Semestre 2019-1

Práctica No. 4

Ganancia en Amplificadores operacionales

Grupo 2

Brigada: 4

Martínez López Rodrigo Adrián

Vivar Colina Pablo

Ciudad Universitaria Agosto de 2018.

Índice

1.	Resumen	1
	Introducción 2.1. NI ELVIS	1 1
3.	Objetivos	1
4.	Materiales y métodos	1
5.	Resultados	2
6.	Análisis de Resultados	2
7.	Conclusiones	2
8.	Referencias	2

1. Resumen

2. Introducción

2.1. NI ELVIS

Para crear una aplicación completa de NI ELVIS, explore otras soluciones de laboratorio para NI ELVIS.

Proporciona una experiencia de aprendizaje basada en proyectos, usando medidas en línea y diseño práctico y embebido.

El NI Educational Laboratory Virtual Instrumentation Suite (NI ELVIS) es un dispositivo modular de laboratorio educativo de ingeniería desarrollado específicamente para la academia. Con este enfoque práctico, los profesores pueden ayudar a los estudiantes a aprender habilidades de ingeniería prácticas y experimentales. NI ELVIS incluye un osciloscopio, multímetro digital, generador de funciones, fuente de alimentación variable, analizador de Bode y otros instrumentos comunes de laboratorio. Puede conectar una PC al NI ELVIS usando USB y desarrollar circuitos en su protoboard desmontable. [1]

3. Objetivos

 Utilizar la herramientas de National Instruments para verificar las ecuaciones de función de transferencia

4. Materiales y métodos

■ NI Elvis

• Computadora con Suite de herramientas Texas Instruments

5. Resultados

Se usa el circuito operacional con realimentacion negativa.

- 2->Entrada Inversora
- 3->Entrada no inversora
- 4->Fuente -10[V]
- 5->Vacío
- 6->Salida
- 7->Fuente +10[V]

$$\frac{1,42}{s^2 + 2,42s + 1,42}\tag{1}$$

Función de transferencia

Figura 1: Circuito de Amplificadores operacionales

En la figura 1 se puede pareciar el circuito que se ocupó en la experimentación.

6. Análisis de Resultados

7. Conclusiones

8. Referencias

Referencias

[1] NationalInstruments. NI Elvis, 2018.

Figura 2: Valores de PID Kc=3, Ti=1

Figura 3: Valores de PID Kc=3, Ti=1

Figura 4: Valores de PID Kc=3, Ti=120

Figura 5: Valores de PID Kc=3, Ti=120

Figura 6: Valores de PID Kc=3, Ti=1

Figura 7: Valores de PID Kc=3, Ti=1

Figura 8: Valores de PID Kc=3, Ti=1

Figura 9: Valores de PID Kc=2.4, Ti=1

Figura 10: Valores de PID Kc=2.45, Ti=1