README

Pflichtenheft: KI zur Erkennung von echten und KI-generierten Bildern

1. Projektübersicht

1.1 Projektziel

Entwicklung eines Machine-Learning-Modells, das zwischen echten (von Menschen erstellten) und KI-generierten Bildern unterscheiden kann. Technologien die Beispielsweise verwendet werden können: CNN-Klassifizierung, Anomalieerkennung.

1.2 Anwendungsbereich

- Erkennung von Deepfakes und synthetischen Bildern (z. B. generiert durch ChatGPT, DALL·E, MidJourney)
- Mögliche Einsatzgebiete: FakeNews-Erkennung, Qualität von Generierten Bildern bestimmen

2. Anforderungen

2.1 Funktionale Anforderungen

ID	Anforderung	Beschreibung
01	Datensammlung	Beschaffung eines ausgewogenen Datensatzes mit echten und KI-generierten Bildern.
02	Datenvorverarbeitung	Bereinigung, Normalisierung und Augmentierung der Bilddaten.
03	Modellauswahl	Auswahl eines geeigneten ML/DL-Modells (z. B. CNN, Vision Transformer, Hybridmodell).
04	Modelltraining	Training des Modells mit Trainings- und Validierungsdaten.
05	Evaluierung	Bewertung der Modelleistung mittels Metriken (Accuracy, Precision).
06	Inferenz	Bereitstellung einer Methode zur Klassifikation neuer Bilder (Echt vs. Kl-generiert).

2.2 Nicht-funktionale Anforderungen

ID	Anforderung	Beschreibung
01	Performance	Das Modell soll eine Accuracy von mindestens 85% auf Testdaten erreichen.
02	Skalierbarkeit	Das Modell sollte auf neuen Datensätzen anpassbar sein.
03	Laufzeit	Möglichst geringe Rechenzeit.
04	Robustheit	Das Modell sollte gegen kleine Bildmanipulationen robust sein.

3. Projektplanung

3.1 Meilensteine

Meilenstein	Beschreibung
M1	Datensatzbeschaffung & -aufbereitung
M2	Modellauswahl & -implementierung
M3	Training & Hyperparameter-Optimierung
M4	Evaluierung & Dokumentation
M5	Präsentation & Abschluss

4. Technische Spezifikationen

4.1 Tools & Frameworks

• Programmiersprache: Python

• Bibliotheken: Pytorch

Datenverarbeitung: Pandas, NumPy

• Visualisierung: Matplotlib, Django (für einen Webserver)

4.2 Hardware

• Training: GPU-Unterstützung (z. B. Google Colab, lokale GPU)

5. Risikoanalyse

Risiko	Auswirkung	Gegenmaßnahme
Unausgewogener Datensatz	Schlechte Generalisierung	Datenbalance prüfen, Augmentierung
Overfitting	Gute Trainings-, schlechte Testperformance	Regularisierung, Dropout, Cross-Validation
Hardware-Limitationen	Lange Trainingszeiten	Cloud-Ressourcen nutzen (Colab, AWS)
KI-generierte Bilder werden immer realistischer	Modell veraltet schnell	Aktuelle Datensätze verwenden

6. Abnahmekriterien

- Das Modell erreicht eine Accuracy ≥ 85% auf einem separaten Testset.
- Die Dokumentation ist vollständig (Code, Trainingsprotokolle, Evaluierung).
- Eine Demo (z. B. Jupyter Notebook) liegt vor.
- · Visualisierung auf einem Django-Server

7. Projektabschluss

- **Präsentation** der Ergebnisse (Metriken, Herausforderungen, Learnings)
- Code- & Dokumentationsabgabe (GitHub-Repository)
- Reflexion über mögliche Verbesserungen