

Notes for the Final Exam

Time and Address

- Closed-book Exam
 - Time: 10:20am~12:10pm on (Friday) July 5th, 2024
 - Address: N233
- ▶ Tutorial time (答疑时间)
 - 10:30am-12:00pm on 06/26/2024 (Wednesday)
 - N416

Questions

- ▶ 1. Blank Filling 10%
- ▶ 2. Multiple Choice 20%
- ▶ 3. True-False 20%
- ▶ 4. Computations 15%
- ▶ 5. Algorithms 20%
- ▶ 6. Proofs 15%

Key Points of Review

- Please review key points from:
 - Slides
 - Homeworks
 - Mid-term exercises
 - Textbook

Ch2 The Classical Cryptography

- 1. Famous ciphers in the history
 - Spartan Scytale cipher, Caesar Cipher, Enigma Machine, ...
- 2. The Substitution Cipher: The Shift/Affine/Vigenere/Hill Cipher
 - The size of key space
 - The Affine cipher over \mathbb{Z}_{26} and \mathbb{Z}_{m}
 - The monoalphabetic and polyalphabetic cryptosystem
- 3. The Permutation Cipher
 - The size of key space; The inverse of a permutation
- 4. The Stream Cipher
 - The Synchronous Stream Cipher over Binary Alphabets:
 - > linear recurrence, degree, keystream, period, LFSR
 - Applications of Stream ciphers

Ch2 The Classical Cryptography

- 5. Cryptanalysis:
 - Kerckhoff's Principle
 - four different attack models
 - Attacks on the Affine Cipher, Stream Cipher,
- 6. Modular Arithmetic, Arithmetic Modulo m:
 - Zn & Zn*
 - Euler Phi-Function
 - invertible elements
 - invertible matrix

Ch3 – Shannon's Theory

- 1. Perfect Secrecy:
 - Why introduce perfect secrecy?
 - Definition and proof
- 2. The One-time Pad Cryptosystem:
 - What? Characteristics?
- 3. The requirements of a unbreakable (unconditionally secure) system
- 4. Entropy: why introduce Entropy? Computations.
- 5. The Key Equivocation H(K|C): Meaning
- **6.** Spurious Keys and Unicity Distance:
 - Definition

Ch4 – Block Ciphers

1. Iterated Block Cipher: basic idea

2. DES:

- a) Description: rounds, plaintext/key/ciphertext length
- b) the round function, S-box
- c) Key schedule generation
- d) Cryptanalysis

3. AES:

- a) the high-level Description: rounds, plaintext/key/ciphertext length
- b) four operations (SUBBYTES, SHIFTROWS, MIXCOLUMNS, ADDROUNDKEY) in each iteration
- c) S-box:
- d) Key schedule generation
- e) Cryptanalysis

4. Modes of Operations for block ciphers:

- a) Why introduce Modes?
- b) ECB/CFB/CBC/OFB/CTR/CCM/GCM mode

Ch5 - The Hash functions

1. Security of Hash functions:

- Preimage-resistant, Second Preimage-resistant, Collision-resistant
- 2. The Random Oracle Model and Las Vegas (randomized) algorithms
 - Las Vegas algorithm, Algorithms of finding Preimage, Second Preimage
 - Algorithms of finding Collision, Birthday problem and Birthday attack
 - Relationships of Collision, Second Preimage and Preimage Problems

3. Reduction method

- 4. Constructions of Iterated Hash Functions
 - Merkle-Damgard Construction: collision-resistant property, SHA-1
 - Sponge Construction: SHA-3
 - Discussions on the Security of SHA-like Hash functions: MD4, MD5, SHA-0, SHA-1, SHA-2

5. MAC:

- a) HMAC, CBC-MAC, Authenticated Encryption
- b) Security and attack: A known message attack, A chosen message attack, forgery

Ch6 - The RSA cryptosystem

- 1. PKC v.s. SKC
- 2. The RSA cryptosystem: Public key & private key, Encryption & decryption, an example of RSA
- 3. Implementing of RSA: Complexity
- 4. Euclidean-like Algorithms: to compute $b^{-1} \mod n$
- 5. Applications of the Chinese Remainder Theorem
- 6. Security Discussions:
 - Factoring Integer *n* and related attacks
 - Provable security: Turing Reduction
 - Semantic security: definition
 - Security problem: $e(x_1x_2)=y_1y_2$

Ch7 - The ElGamal cryptosystem

- 1. The ElGamal cryptosystem:
 - Public key & private key, Encryption & decryption, (Randomized ideas), example
- 2. Discrete Logarithm Problem (DLP):
- 3. Algorithms for DLP: Shanks' algorithm
- 4. Security Discussions:
 - security: DLP is infeasible
 - different attack goals
 - Semantic security
- 5. ElGamal-like Cryptosystems over suitable (proper) groups:
 - The Elliptic Curve ElGamal Cryptosystem; ECDLP (What is ECDLP?)
- 6. Diffie-Hellman Problems and Security: CDH, DDH, DL
 - What are CDH, DDH?
 - Security level of DL, CDH, DDH
 - Applications of Turing Reduction

Ch8 - The Signature Schemes

- 1. The digital Signature
 - Public key & private key, Signing algorithm & Verification
 Algorithm
- 2. The RSA Signature
- 3. The ElGamal Signature

Thank you!

Questions?