In-Class Assignment 11

For this assignment you will be looking at the diamonds dataset. You can pull this in with the tidyverse library.

- 1. Take a look at the fields. Which ones are numerical?
 - a. Carat, depth, table, price, x,y, z
- 2. Which numerical field has the largest relative spread?
 - a. price
 - i. sd(diamonds\$carat)/mean(diamonds\$carat)
 - ii. sd(diamonds\$depth)/mean(diamonds\$depth)
 - iii. sd(diamonds\$table)/mean(diamonds\$table)
 - iv. sd(diamonds\$price)/mean(diamonds\$price)
 - v. sd(diamonds\$x)/mean(diamonds\$x)
 - vi. sd(diamonds\$y)/mean(diamonds\$y)
 - vii. sd(diamonds\$z)/mean(diamonds\$z)
 - 1. [1] 0.5940439
 - 2. [1] 0.02320057
 - 3. [1] 0.03888966
 - 4. [1] 1.014402
 - 5. [1] 0.1957302
 - 6. [1] 0.1991681
 - 7. [1] 0.1994213
- 3. What are the deciles of carat? Deciles are the quantiles for every tenth from 0.1 to 0.9.
 - a. quantile(diamonds\$carat, c(0.1, 0.9))
 - i. 10% 90%
 - ii. 0.31 1.51
- 4. How does the median value for carat compare to the average value?
 - a. mean(diamonds\$carat) = 0.7979397
 - b. median(diamonds\$carat) = 0.7
- 5. Produce a histogram for carat. How would you describe the distribution?
 - a. hist(diamonds\$carat)

b.

The distribution is positively skewed (greater on the right and decreasing in frequency from right to left)

6. Produce a normal probability plot for carat. Does it look like it is normally distributed?

a.hist(diamonds\$carat)

No the graph is not normally distributed, the x values start at -4 while the y start at 0. The slope is also exponentially curved which is not the y=x line that we are looking for.

- 7. Produce the covariance and correlation matrices for the numerical fields. Which field (other than itself) has the highest correlation to price? Note: you can select specific fields in diamonds by stating diamonds[, c(list of field numbers)]. So for example to get the cut and color fields only, you can use diamonds[, c(2, 3)]
 - a. cov(diamonds[,c(1,5,6,7,8,9,10)])
 - b. cor(diamonds[,c(1,5,6,7,8,9,10)])
- 8. Produce a pair plot for the fields carat, table, and price, coloring by cut. (Note: this will take a few minutes to produce). Make some comments on what you see.
 - a. I see that for the table and carat correlation there is a poor correlation. There is also a poor correlation between price and table. There is a very good correlation between the price and the carat of the diamonds, which is what we found earlier with our coding. There are a few outliers but most of each dataset is similar which we can see clearly from the box plots.

