TTIC 31230, Fundamentals of Deep Learning

David McAllester, Winter 2018

Rate-Distortion Autoencoders

Rate-Distortion Autoencoders

Given an image or sound wave y we can compress it into a coded form $C_{\Phi}(y)$.

Let $|C_{\Phi}(y)|$ denote the number of bits in the compressed form $C_{\Phi}(y)$.

We let $\hat{y}_{\Phi}(C_{\Phi}(y))$ be the decompression of $C_{\Phi}(y)$.

We let $D(y, \hat{y})$ be a measure of the difference between y and \hat{y} (the loss or "distortion").

Rate-Distortion Autoencoders

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{y \sim \operatorname{Pop}} |C_{\Phi}(y)| + \lambda D(y, \hat{y}_{\Phi}(C_{\Phi}(y)))$$

It is common to take

$$D(y, \hat{y}) = ||y - \hat{y}||^2 \qquad (L_2)$$

or

$$D(y, \hat{y}) = ||y - \hat{y}||_1 \tag{L_1}$$

Conditional Rate-Distortion Autoencoders

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} \quad E_{(x,y) \sim \text{Pop}} \quad |C_{\Phi}(y|x)| + \lambda D(y \mid \hat{y}_{\Phi}(x, C_{\Phi}(y|x)))$$

Colorization

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{(x,y) \sim \text{Pop}} |C_{\Phi}(y|x)| + \frac{1}{2} \lambda ||y - \hat{y}_{\Phi}(x, C_{\Phi}(y|x))||^2$$

If the image can be segmented based on x then $C_{\Phi}(y|x)$ can be a specification of color of each segment — this would be very compact.

A Case Study in Image Compression

End-to-End Optimized Image Compression, Balle, Laparra, Simoncelli, ICLR 2017.

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{y \sim \text{Pop}} |C_{\Phi}(y)| + \frac{1}{2} \lambda ||y - \hat{y}_{\Phi}(C_{\Phi}(y))||^2$$

JPEG at 4283 bytes or .121 bits per pixel

JPEG, 4283 bytes (0.121 bit/px), PSNR: 24.85 dB/29.23 dB, MS-SSIM: 0.8079

JPEG 2000 at 4004 bytes or .113 bits per pixel

JPEG 2000, 4004 bytes (0.113 bit/px), PSNR: 26.61 dB/33.88 dB, MS-SSIM: 0.8860

Proposed Method at 3986 bytes or .113 bits per pixel

Proposed method, 3986 bytes (0.113 bit/px), PSNR: 27.01 dB/34.16 dB, MS-SSIM: 0.9039

The Encoder $C_{\Phi}(y)$

This paper uses a three layer CNN for the encoder.

The first layer is computed stride 4.

The two remaining layers are computed stride 2.

They use a generilized divisive normalization (GDN) layer rather than an activation function.

$$y'[i, j, c] = \frac{y[i, j, c]}{\left(\beta_c + \sum_{c'} \gamma_{c, c'} y[i, j, c']^2\right)^{1/2}}$$

 β_c and $\gamma_{c,c'} = \gamma_{c',c}$ are trained.

The number of numbers

The first layer is computed stride 4.

The next two layers are computed stride 2.

Final image dimension is reduced by a factor of 16 with 192 channels per pixel (192 channels is for color images).

$$192 < 16 \times 16 \times 3 = 768$$

These 192 numbers are rounded to integers.

The 192 integers are coded losslessly using P_{Θ}^{code} .

Increasing Spatial Dimension in Decoding

[Hyeonwoo Noh et al.]

Increasing Spatial Dimensions in Deconvolution

Consider a stride 2 convolution

$$y[i, j, c_y] = W[\Delta i, \Delta j, c_x, c_y]x[2i + \Delta i, 2j + \Delta j, c_x]$$
$$y[i, j, c_y] += B[c_y]$$

For deconvolution we use stride 1 with 4 times the channels.

$$\hat{x}[i, j, c_{\hat{x}}] = W'[\Delta i, \Delta j, c_{\hat{y}}, c_{\hat{x}}] \hat{y}[i + \Delta i, j + \Delta j, c_{\hat{x}}]
\hat{x}[i, j, c_{\hat{x}}] += B[c_{\hat{x}}]$$

The channels at each lower resolution pixel $\hat{x}[i,j]$ are divided among four higher resolution pixels.

This is done by a simple reshaping of \hat{x} .

The Decoder

This is a deconvolution network of the same architecture with independent parameters.

There is a special parameterization of the "inverter" for the normalization layer.

Rounding the Numbers

We let $C_{\Phi}(x)$ be the unrounded numerical representation and $\tilde{C}_{\Phi}(x)$ be the result of rounding.

$$\tilde{C}_{\Phi}(x)_i = \text{round}(C_{\Phi}(x)_i) = \lfloor C_{\Phi}(x)_i + 1/2 \rfloor$$

Each integer channel of the final layer is coded independently.

Context-based adaptive binary arithmetic coding framework (CABAC; Marpe, Schwarz, and Wiegand, 2003).

Training

We now have the optimization problem

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{y \sim \operatorname{Pop}} - \log_2 P_{\Phi}(\tilde{C}_{\Phi}(y)) + \lambda ||y - \hat{y}_{\Phi}(\tilde{C}_{\Phi}(y))||^2$$

Issue: The rounding causes the gradients for Φ to be zero.

Modeling Rounding with Noise

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{y \sim \operatorname{Pop}} - \log_2 P_{\Phi}(\tilde{C}_{\Phi}(y)) + \lambda ||y - \hat{y}_{\Phi}(\tilde{C}_{\Phi}(y))||^2$$

At train time (but not test time) the rounding is replaced with additive noise.

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{y,\epsilon} - \log_2 P_{\Phi}(C_{\Phi}(y) + \epsilon) + \lambda ||y - \hat{y}_{\Phi}(C_{\Phi}(y) + \epsilon)||^2$$

$$\epsilon_i$$
 drawn uniformly from $[-1/2, 1/2]$

 P_{Φ} defines a piecewise linear density for each coordinate of z.

Noise vs. Rounding

Differential Entropy vs. Discrete Entropy

Varying the Level Of Compression

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} \ E_{y \sim \operatorname{Pop}} - \log_2 P_{\Phi}(\tilde{C}_{\Phi}(y)) + \frac{1}{2} \frac{1}{\lambda} ||y - \hat{y}_{\Phi}(\tilde{C}_{\Phi}(y))||^2$$

Different levels of compression correspond to different values of λ .

In all levels of compression we replace 768 numbers by 192 numbers.

Higher levels of compression result in more compact distributions on the 192 numbers.

\mathbf{END}