- 17.1.3 Theorem (Riemann–Lebesgue) If $f \in L^1(\mathbb{R})$, then \widehat{f} satisfies the following conditions:
 - (i) \mathcal{F} f is continuous and bounded on \mathbb{R} .
 - (ii) \mathscr{F} is a continuous linear operator from $L^1(\mathbb{R})$ to $L^{\infty}(\mathbb{R})$, and

$$\|\widehat{f}\|_{\infty} \le \|f\|_{1}.$$
 (17.3)

(iii)
$$\lim_{|\xi| \to +\infty} |\widehat{f}(\xi)| = 0.$$

Proof.

- (i) The continuity of \widehat{f} follows directly from the continuity of the integral (17.1) with respect to the parameter ξ . The function $\xi \mapsto e^{-2i\pi\xi x} f(x)$ is continuous on $\mathbb R$ and is dominated by |f(x)|, which is in $L^1(\mathbb R)$. Proposition 14.2.1 applies.
- (ii) For all $\xi \in \mathbb{R}$ we have $|\widehat{f}(\xi)| \leq \int |f(x)| dx = ||f||_1$. Thus \widehat{f} is bounded, and \mathscr{F} is continuous from $L^1(\mathbb{R})$ to $L^{\infty}(\mathbb{R})$.
- (iii) For $f = \chi_{[a,b]}$ we have $|\widehat{f}(\xi)| \leq 1/\pi |\xi|$ for $\xi \neq 0$ (Section 17.1.2). Thus $\lim_{|\xi| \to \infty} \widehat{f}(\xi) = 0$; clearly this is true for all simple functions. Now take f in $L^1(\mathbb{R})$. Since the simple functions are dense in $L^1(\mathbb{R})$, there exists a sequence g_n of simple functions such that $\lim_{n \to \infty} ||f g_n||_1 = 0$ and, for each fixed n, $\lim_{|\xi| \to \infty} |\widehat{g}_n(\xi)| = 0$. From (17.3), $|\widehat{f}(\xi) \widehat{g}_n(\xi)| \leq ||f g_n||_1$ uniformly in $\xi \in \mathbb{R}$ for each fixed n. It follows that $\lim_{|\xi| \to \infty} \widehat{f}(\xi) = 0$.