6.S085 Statistics for Research Projects

IAP 2014

Lecture 5: January 24

Lecturer: Ramesh Sridharan and George Chen Notes by: William Li

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

5.1 Logistic Regression

Last time:

Model: $y = X\beta + \epsilon$

This is good if there is a linear relation between y and columns of X

What if y has a non-linear pattern?

Generalized Linear Models

 $y = g^{-1}(X\beta) + \epsilon$ (noise doesn't have of be independent anymore

 g^{-1} — nonlinear "link function"

One of the most common forms: logistic regression

$$g^{-1}(z) = \frac{1}{1 + \exp(-z)}$$

Logistic regression is useful when output data (y) is binary, or between 0 and 1

5.2 Non-Parametric/Distribution-Free Statistics

Last week: t-test and variances; we assumed normality

In general, assumed known distribution, computed p-values/confidence intervals

If we had a sample mean with unknown variances — t distribution

Review of p-value: probability of observed statistic or something more extreme if null hypothesis is true (t value is usually the threshold, p value is the probability mass)

5.2.1 Comparing distributions

Kolmogorov-Smirnov Test

- Compare two distributions
- Do two distributions look almost the same, or are they different?

- Based on cumulative distribution functions (CDFs) For random value x, F(a) = P(x < a)
- Empirical CDF: For any value a, what % of data is $\leq a$? (the empirical CDF is a property of the data)

Find the biggest difference in the CDF

$$D = \max_{x} |F_1(x) - F_2(x)|$$

Theoretical result: if F_1 is empirical CDF of data generated from F_2 , $\lim_{n\to\infty} D = 0$

The Kolmogorov-Smirnov statistic is sensitive to any difference (your software package will compute it for you)

If you want to compare your data vs. normal distribution, use Shapiro-Wilk test (uses quantiles of your data and quantiles of the normal distribution)

5.2.2 Wilcoxon Signed-Rank Test

For comparing medians of two distributions (medians are less sensitive to outliers, e.g. 1,2,4,4,8,200)

For matched pairs — two datasets where there is a correspondence, often a before/after (weight, test scores, etc.)

For each pair, $d_1, S_i \in \{(\pm 1)\}$

Rank all d_i , compute R_i (smallest to largest)

Example ranking (smallest to largest): d_5, d_3, d_1, d_4, d_2

$$R_5 = 1, R_3 = 2, \dots$$

$$W = |\sum_{i} R_{i}|$$

W has a known distribution (you can compute p-values, confidence intervals, etc. on this)

W is a measure of how different the medians are; if they are almost the same, the terms will cancel out and be zero

Example calculation will look like -1 * 1 + 1 * 2...

If W is large, medians are different

Mann-Whitney U Test: Similar, but doesn't require matched pairs

5.3 Resampling Methods

What if the test statistical distribution is unknown?

Key idea: use the data to tell us about the distribution

5.3.1 Permutation Tests

Used for hypothesis testing

Lecture 5: January 24

5 - 3

Used when we don't have a null hypothesis

Comparing statistic across two groups

Idea: is there anything special about the way we labeled the groups?

Example: Consider two groups, A and B

$$\bar{x}_A - \bar{x}_B = w$$

How do we know whether w is big or small?

- Relabel points:
 - put all n + m points together
 - pick n points, call it A_1
 - call the rest (m) points, B_1
- Compute test statistic $(w_1 = \bar{x}_{A_1} \bar{x}_{B_1})$
- Repeat for different relabelings: $W = \{w_1, w_2, ..., w_k\}$

How unlikely is w given your set of w values, W? (Generate an empirical distribution of W)

Exact test: compare versus all relabelings

Monte Carlo approximation: randomly sampl erelabelings

5.3.2 Permutation Test: Other Examples

Time series analysis: (3,10,117,20,9)

Consider a random reordering: (11,9,10,20,7,3)

Compute the statistic for the actual and reordered points

The question we're asking: Is the ordering meaningful?

5.3.3 Detecting Dishonest Teachers

Two statistics developed:

- A: Comparing student scores to year before and year after
- B: Pattern of ABCD responses; how similar are they?

Permutation test: permute teacher and student matches and compute null distribution For A, compute 50th-75th percentile of values

5.3.4 Bootstrap

Data are samples from the true distribution

Wouldn't it be nice if we could get another sample?

Idea: resample from data with replacement

Key insight from 1979 bootstrapping paper: random samples out of random samples \rightarrow more random samples

If data has N points, resample $n \ (n \leq N)$ points with replacement

Repeat many times; this will give you multiple datasets

Purpose: understand variability \rightarrow compute confidence intervals

Compute statistic w on each dataset, $\{w_1, ..., w_n\}$

Can compute the confidence interval: perhaps find 25th to 75th percentile

In machine learning, it could be used to compute the variability of estimates

5.3.5 Jacknife

Like bootstrapping, but:

Instead of bootstrapping, use all but one point, repeat for each point

Kind of like bootstrap, with n = N - 1

It's exact instead of randomized

5.4 Model Selection

Last time: use Lasso to get sparsity in linear regression

Recall LASSO: $\min \sum_{i} (y_i - X_i \beta)^2 + \lambda \sum_{k} |\beta_k|$