Exploratory data analysis of cytokine files 2018-12-15

Settings

Load data

There are NAs and values like "< OOR". The latter are replaced by 0.

Cytokine EDA

Data dimensions: 29, 873

	Cytokine	EP036702_K10_MVAX	EP062329_K10_MP1P	EP062329_K10_MVAX
1	Eotaxin	73.91	83.21	11.32
2	FGF_basic	307.07	NA	NA
3	G-CSF	430.87	324.73	0.00
4	GM-CSF	7615.00	0.00	505.35
5	IFN-g	481.79	274.65	0.00
	EP062329_F	K2O_MVAX		
1		36.42		
2		NA		
3		126.38		
4		478.16		
5		129.54		

Count distribution for 500 randomly selected samples

[1] "Summary of count data"

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.0 5.5 24.3 1363.5 83.1 1008760.0

Count distribution

Question: There are outlier counts. With median/mean counts equal to 24/1363, respectively, we have counts as high as 1008760.

Distribution of sample medians for all samples

Question: The range of medians vary across samples. Most samples have median counts \sim 25, but some have as high as 563.

Boxplots of low/high median samples

We see how different are count distributions between low/high median samples

Sparsity of samples (across columns)

Sparsity distribution across samples

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.06897 0.06897 0.06897 0.08510 0.10345 0.17241

 $\textbf{Conclusion:} \ \operatorname{Sparsity} \ \operatorname{is} \ \operatorname{present}, \ \operatorname{but} \ \operatorname{not} \ \operatorname{bad}$

[1] "Top 10 least sparse samples:"

file	$sample_body_site$	visit_number
EP062329_K10_MVAX	vagina	1
EP062329_K30_MVAX	vagina	3
EP062329_K40_MVAX	vagina	4
EP062329_K50_MCKX	buccal mucosa	5
EP062329_K60_BCKX	buccal mucosa	6
EP062329_K80_BCKX	buccal mucosa	8
EP062329_K90_MCKX	buccal mucosa	9
EP065458_K100_BCKX	buccal mucosa	10
EP065458_K20_MVAX	vagina	2
EP065458_K80_BCKX	buccal mucosa	8

[1] "Top 10 most sparse samples:"

file	sample_body_site	visit_number
EP362253_K10_MVAX	vagina	1
EP505314_K10_MVAX	vagina	1
EP516855_K10_MVAX	vagina	1
EP523733_K10_MVAX	vagina	1
EP588271_K10_MVAX	vagina	1
EP608013_K10_MVAX	vagina	1
EP647247_K10_MVAX	vagina	1
EP663711_K10_MVAX	vagina	1
EP794231_K10_MVAX	vagina	1
EP936022_K10_MVAX	vagina	1
EP949081_K10_MVAX	vagina	1

Observation: Samples from buccal mucosa may be least sparse. Samples from vagina and first visits may be most sparse.

Sparsity of counts (across rows)

Sparsity distribution across counts

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.00000 0.00000 0.00000 0.08510 0.02408 0.97592

Question: The data across counts is OK except one measure that is very sparse.

[1] "Top 5 least sparse counts:"

	Х
Eotaxin	0
G-CSF	0
GM-CSF	0
IL-10	0
IL-12(p70)	0

[1] "Top 5 most sparse counts:"

	X
IL-2	0.0240826
IL-5	0.0240826
RANTES	0.0745413
IL-1ra	0.3004587
FGF_basic	0.9759174
IL-17	0.9759174

Observation: Counts for IL-5 and IL-2 cytokines are very sparse.

Metadata EDA

```
# Quick EDA
table(mtx_metadata$subject_gender) %>% sort(., decreasing = TRUE)

female
   872
table(mtx_metadata$subject_race) %>% sort(., decreasing = TRUE)

unknown
   872
table(mtx_metadata$study_full_name) %>% sort(., decreasing = TRUE)

momspi
   872
table(mtx_metadata$project_name) %>% sort(., decreasing = TRUE)
Integrative Human Microbiome Project
```

$sample_body_site$

vagina buccal mucosa blood cell 455 311 106

${\bf visit_number}$

1 12 9 7 8 3 6 10 11 15 158 109 98 94 93 73 60 57 52 41 21 10 3 2 1

- [1] "How many total samples: 872"
- [1] "How many samples at visit 1: 158"

Number of subjects with vaginal samples

- [1] 872 9
- [1] 116

1 3 4 5 6 7 8 26 8 32 29 16 4 1

Save the results