Повышение производительности

- За счет совершенствования элементной базы (переход к новой интегральной технологии, рост плотности размещения компонентов на единице площади кристалла, рост частоты).
- За счет рациональной организации процесса выполнения команд в компьютере (параллелизм, архитектурные решения: CISC и RISC).

Особенности архитектур RISC и CISC

CISC – компьютер с полным набором машинных команд; RISC – компьютер с сокращенным набором машинных команд.

Наименование	CISC	RISC
1. Количество команд	много	мало
2. Длина программы	короткие	длинные
3. Формат команд	сложный	простой
4. Выполнение команд	за несколько циклов	за цикл
5. Скорость выполнения программы	выше (?)	ниже (?)
6. Типы адресации	сложные (КА)	простые (Рг)
7. Количество регистров	мало	много
8. Устройство управления	МПУ	жесткая логика

Конвейеризация вычислений

Конвейер имеет два независимых блока обработки – извлечения и выполнения команды.

Пока команда выполняется на втором блоке, первый блок может загружать следующую машинную команду.

Конвейеризация вычислений

Причины снижения производительности конвейера:

- Время выполнения больше времени извлечения команды;
- В командах условного перехода нельзя заранее предсказать адрес следующей выполняемой команды.

Конвейеризация вычислений

Для достижения быстродействия конвейера необходимо:

- разделить ЦОК на большее количество независимых этапов;
- время выполнения команды на каждом этапе одинаково (такт конвейера).

 $t_i \approx const$

Конвейеризация вычислений

ИК – извлечение команды; ДК – декодирование команды;

АО – вычисление адресов операндов; ИО – извлечение операндов;

ВК – выполнение команды; ЗР – запись результатов.

Конфликты в конвейере

Причины возникновения (риски):

Структурный риск – попытка нескольких команд одновременно обратиться к одному и тому же ресурсу ВМ;

Риск по данным - взаимосвязь команд по данным;

Риск по управлению – неоднозначность при выборке следующей команды в случае команд условного перехода.

Конфликты в конвейере

3-я команда — условный переход, передающий управление 15-й команде. Загрузка на 8-м такте. С 9 по 12 такты ни одна команда не вышла из конвейера — штраф.

Алгоритм управления конвейером

Метрики производительности конвейера

Ускорение — отношение времени обработки без конвейера и при его использовании (S).

Время обработки потока из N команд на конвейере с K позициями и тактом конвейера τ :

$$T_K = (K + (N-1))\tau$$

Время обработки потока из N команд без конвейера: $NK\tau$

$$S = \frac{NK\tau}{(K + (N-1))\tau} = \frac{NK}{(K + (N-1))}$$

Метрики производительности конвейера

Эффективность — доля ускорения, приходящаяся на одну позицию конвейера (E)

$$E = \frac{S}{K} = \frac{N}{K + (N - 1)}$$

Пропускная способность — эффективность, деленная на длительность такта конвейера (P)

$$P = \frac{N}{(K + (N-1))\tau}$$

Методы решения проблемы условного перехода: буферы предвыборки

Методы решения проблемы условного перехода: множественные потоки

Методы решения проблемы условного перехода: задержанный переход

Безусловное продолжение выполнения команд, следующих за командой условного перехода. В качестве таких команд должны быть «полезные команды», на результат выполнения которых не влияет условный переход, т.е. независящие от перехода.

Методы решения проблемы условного перехода: предсказание перехода

До момента выполнения команды условного перехода делается предположение о наиболее вероятном исходе этой команды. Последующие команды поступают на конвейер в соответствии с предсказанием.

Различают *статические*, когда прогнозируемое направление перехода не изменяется, и *динамические*, когда прогнозируемое направление зависит от истории выполнения программы, способы предсказания.

Методы решения проблемы условного перехода: предсказание перехода

Автомат с двумя состояниями:

МВП – малая вероятность перехода;

БВП – большая вероятность перехода.

Методы решения проблемы условного перехода: предсказание перехода

Автомат с четырьмя состояниями:

ОМВП – очень малая вероятность перехода; **МВП** – малая вероятность перехода;

ОБВП – очень большая вероятность перехода.

БВП – большая вероятность перехода.

© С. Г. Мосин, 2007

Суперконвейерная обработка

Увеличение количества стадий конвейера за счет добавления новых ступеней и дробления имеющихся на несколько простейших подступеней.

© С. Г. Мосин, 2007

	-														
Время															
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
Команда 1	ик	ДК	AO	ио	вк	3P									
Команда 2		ик	дк	AO	ио	ВК	3P								
Команда 3			ик	ДК	AO	ио	ВК	3P							
Команда 4			_	ик	ДК	AO	ио	ВК	3P						
Команда 5				_	ик	ДК	AO	ио	вк	3P					
Команда 6					_	ик	ДК	AO	ио	ВК	3P				
Команда 7						•	ик	дк	AO	ио	вк	3P			
Команда 8							•	ик	дк	AO	ио	ВК	3P		
Команда 9								•	ик	дк	AO	ио	вк	3P	
									•	—	_		_	-	
Команда 1	ик¦ик,	дк _і дк,	40,ko,	во, но,	вк, вк,	3P, 3P,			-	-	-		-		
Команда 2	ик,	ик, дк,	цк, ло,	ло, по,	но, вк,	BK, 3P,	3P ₂								
Команда 3		ик,ик,	цк, дк,	10,10,	но,но,	BK, BK,	3P, 3P,								
Команда 4		HK,	ик, дк,	JK, AO,	ло, по,										
Команда 5		-	ик, ик,	дк, дк,	AO, AO,	по,по,		3P, (3P,							
Команда 6			RIK,		дк, мо,	AO,RO,		BK,(3P,	3P.						
Команда 7			-		дк, дк,			вк,вк,	3F, 13F,						
Команда 8				HK.				но,вк		3P,					
Команда 9				45	RK, RK,	дк дк		но но,							
					-	4> 4>	4> 4>	4	45	-					

Многоконвейерная обработка

Блок выборки команд извлекает из памяти сразу несколько команд и помещает каждую из них в один из конвейеров. Условие нормальной работы: отсутствие конфликтов.

Суперскалярная обработка

Основная идея:

один конвейер с большим числом обрабатывающих блоков.

Стадия 3 отрабатывает значительно быстрее, чем стадия 4.

Структура процессора Pentium MMX

Процессор содержит два командных конвейера (*U*- и *V*-конвейер). *U*-конвейер выполняет все целочисленные команды и команды с ПТ. *V*-конвейер – простые целочисленные команды и *FXCH* с ПТ.

© С. Г. Мосин, 2007

Особенности процессора Pentium MMX

- Поддержка выполнения мультимедиа набора команд (дополнительно 57 команды *MMX*);
- Удвоение объема кэш-памяти данных и команд (по 16 кбайт каждый);
- Улучшенная логика предсказания переходов;
- Расширенная конвейеризация.