

Transformers

Yilun Kuang

Outline

- Encoder-Only / Decoder-Only / Encoder-Decoder Architecture
- Huggingface Transformer

Encoder-Only | BERT

Bidirectional Encoder Representations from Transformers (BERT)

Model Architecture

Transformer Encoder

What is Special About It

- Mask Language Modeling & Next Sentence Prediction
- Downstream task adaptation

BERT - Pretrain | Inputs

Training Input: 1) pairs of sentence; 2) [CLS] token; 3) [SEP] token

[CLS]: Special token

Training time: predict if sentences are consecutive or not (Next Sentence Prediction /NSP objective)

Test time: downstream tasks (e.g., classification)

[SEP]: Special token-separator

Segment A

Segment B

Training on pairs of sentences: either consecutive or random (50%/50%)

BERT - Pretrain | Inputs

Embedding

1) Token

2) Segment

3) Position

Model (Transformer encoder)

Test time: classification

Input

Training on pairs of sentences: either consecutive or random (50%/50%)

BERT - Pretrain | Objective

Next Sentence Prediction (NSP)

Input: [CLS] the man went to [MASK] store [SEP] he bought a gallon [MASK] milk [SEP]

Label: isNext

Input: [CLS] the man went to [MASK] store [SEP] penguin [MASK] are flight ##less

birds [SEP]

Label: notNext

BERT - Pretrain | Objective

Masked Language Modeling (MLM)

At each training step:

- pick randomly 15% of tokens
- replace each of the chosen tokens with something
- predict original chosen tokens

BERT - Finetune | Tasks

Single sentence classification

class label several layers (Transformer's encoder) [CLS] I saw a cat No second sentencel

Sentence Pair Classification

BERT - Finetune | Tasks

Question Answering

Single sentence tagging

Decoder-Only | GPT

Generative Pretrained Transformer (GPT)

Model Architecture

Transformer Decoder

What is Special About It

- Autoregressive Language Modeling
- Downstream task adaptation

GPT - Pretrain | Inputs

Training Input: 1) sentences; 2) [PAD] / [EOS] token

Example:

My dog is very cute. He likes playing in the garden with me [EOS] [EOS] ... [EOS]

Embedding:

Token embeddings + positional embeddings

GPT - Pretrain | Objective

Autoregressive Language Modeling

Language Modeling

- Target: next token
- Prediction: $P(* | \mathbf{I} saw)$

left-to-right, does not see future

Masked Language Modeling

- Target: current token (the true one)
- Prediction: P(* |I [MASK] a cat)

sees the whole text, but something is corrupted

GPT - Finetune | NLU Tasks

GPT for Natural Language Understanding (NLU) Tasks

 You can train an additional linear head on top of the final transformer block activation vector, but this is only used in GPT-1.

Encoder-Decoder | T5

Text-to-Text Transfer Transformer (T5)

Model Architecture

Transformer Encoder & Decoder

What is Special About It

 pretraining on multi-task mixture of unsupervised and supervised tasks (converted to Text-to-Text format)

Resources

- Encoder-Only (BERT)
 - https://github.com/JonasGeiping/cramming
- Decoder-Only (GPT)
 - https://github.com/karpathy/nanoGPT
- Encoder-Decoder (T5)
 - https://github.com/PiotrNawrot/nanoT5

Summary

- Encoder-Only (BERT)
- Decoder-Only (GPT)
- Encoder-Decoder (T5)

Acknowledgement

This presentation is adapted from Elena (Lena) Voita's NLP Course | For You (https://lena-voita.github.io/nlp_course.html)

