Solution5BeautifulVersion

Lemma1:

Both edges e22 e11 should be cut by all the min cuts. ($orall C\ u_1$ and $u_2\in \mathsf{S}$ and v_1 and $v_2\in \mathsf{T}$)

Proof contradiction:

If they didn't than when we raised the capacities the maximum flow would not have increased because there would have existed a min cut which capacity value did not change. But the max flow value increased. This is a contradiction.

Lemma2:

Even after raising the capacity for e22 and e11 all the min cuts still remained min cuts.

Proof:

Before: $c(min cuts)=val(f_{min})$

After raising the capacity: $val(f'_{min})=c(C'_{min})=c(\min \ cuts)+the \ new \ capacity.$

Corollary:

The second largest capacity of a cut (int original graph) differs by >=+(2*32) from the value of the min capacity.

This tells us that until we don't change the capacity of the min cuts more than >=+ (2*32) the flow will change the same amount.

The e12 and e21 also are cut by all the min cuts ($\forall C\ u_1$ and $u_2\in {\sf S}$ and v_1 and $v_2\in {\sf T}$) => changing their value changes the min capacity of the cut.

 \Rightarrow max(f)=21+31-13=39.