Ordenamientos

Algoritmos por distribución

Verónica E. Arriola-Rios

Facultad de Ciencias, UNAM

31 de mayo de 2022

Referencias

Ordenamiento en cubetas

- 1 Ordenamiento en cubetas
- 2 Radix Sort
- Ordenamiento de Shel

Ordenamiento en cubetas / por conteo

- Bruno Preiss lo llama *Ordenamiento en cubetas*^[1], mientras que Cormen lo presenta como Ordenamiento por conteo^[2]
- Sirve para ordenar secuencias con n elementos en [0, K], con $K \ll n$.
- Se utilizan tres arreglos.
 - El arreglo a ordenar A, con longitud n.
 - Un arreglo auxiliar C, con longitud K, que cuenta cuántas veces aparece cada elemento k
 - El arreglo con el resultado B.
- Su complejidad es $\Theta(K + n)$.
- Una propiedad importante de este algoritmo es que es un ordenamiento estable preserva el orden relativo de los valores k repetidos, por lo que, si las ks son llaves para otros datos, éstos conservan entre sí su orden original.

Ordenamiento en cubetas

^[1] Bucket Sort

^[2] Counting Sort

Algorithm Ordenamiento en cubetas

1:
$$n \leftarrow longitud(A)$$

2:
$$B \leftarrow Zeros(n)$$

Ordenamiento en cubetas

0000

3:
$$C \leftarrow Zeros(k+1)$$

4: for
$$j \in [0,n)$$
 do

5:
$$C[A[j]] + = 1$$

6: for
$$i \in [1, k]$$
 do

7:
$$C[i] + = C[i - 1]$$

8: **for**
$$j \in (n, 0]$$
 cada -1 **do**

9:
$$B[C[A[j]] - 1] \leftarrow A[j]$$

10:
$$C[A[j]] - = 1$$

return B

▷ Posiciones finales para cada valor

▷ Acomoda

Ejercicio:

Resultado

			2			5			8		10
$B \rightarrow$	0	0	1	1	1	2	2	2	3	3	
	0	1	2	3	4	5	6	7	8	9	

Radix Sort

- Ordenamiento en cubetas
- 2 Radix Sort
- Ordenamiento de Shel

Radix Sort

- Para i ∈ [1, d] (del dígito de menor a mayor precedencia):
 ordena A según el iésimo dígito, utilizando un ordenamiento estable.
- Requiere un ordenamiento estable como auxiliar, donde los elementos con el mismo valor conserven su orden original, con respecto a los otros elementos semejantes. Ejemplos son:
 - Por inserción.
 - En cubetas (como se implementó anteriormente).
- Su complejidad es $\Theta(d(n+k))$, con:
 - d el número de dígitos en los números
 - n el total de números
 - k el número de dígitos diferentes posibles en la base utilizada
 - El algoritmo auxiliar tiene complejidad $\Theta(n+k)$

Ejemplo

$$d = 3$$

$$n = 7$$

$$k = 10$$

Ordenamiento de Shell

Ordenamiento en cubetas

Ordenamiento de Shell

Ordenamiento en cubetas

- Está basado en el ordenamiento por inserción.
- Se ordenan sucesivamente subsecuencias de elementos equidistantes.
- La distacia entre los elementos se reduce para cada iteración, hasta llegar a separación 1.

Referencias

Radix Sort

 \bullet salto = 5

- \bullet salto = 3
- salto = 1

Criterios para elegir los saltos

Shell $\frac{n}{2}, \frac{n}{4}, ..., 1$, produce complejidad $O(n^2)$

Hibbard $2^k - 1$, produce compleidad $\mathcal{O}(n^{\frac{3}{2}})$

Sedgewick Se eligen números alternando entre las series definidas por las funciones:

$$f(i) = 9(4^{i}) - 9(2^{i}) + 1 \tag{1}$$

$$g(i) = (2^{i+2}) * (2^{i+2} - 3) + 1$$
 (2)

$$f(0) = 1$$
 $g(0) = 5$
 $f(1) = 19$ $g(1) = 41$
 $f(2) = 109$ $g(2) = 209$
 $f(5) = 505$ $g(3) = 929$

produce complejidad $O(n \log^2(n))$

Ordenamiento en cubetas

- Cormen, Thomas H. y col. (2009). *Introduction to Algorithms*. 3rd. The MIT Press.
- Ordenamiento Shell (s.f.). Wikipedia. URL: https://es.wikipedia.org/wiki/Ordenamiento%5C Shell.
- Preiss, Bruno (1999). Data Structures and Algorithms with Object-Oriented Design Patterns in Java. John Wiley & Sons.

Licencia

Ordenamiento en cubetas

Creative Commons Atribución-No Comercial-Compartir Igual

Referencias