Implementation exercises for the course Heuristic Optimization

Christian L. Camacho-Villalón ¹ ccamacho@ulb.ac.be

IRIDIA, CoDE, ULB

March 2, 2023

¹ Slides based on Franco Mascia's and Federico Pagnozzi's previous work.

Exercise 1.1: Iterative Improvement for the PFSP

Goal: implement perturbative local search algorithms for the PFSP

- Permutation Flowshop Scheduling Problem (PFSP)
- First-improvement and best-improvement
- Transpose, exchange and insert neighborhoods
- Random initialization vs. simplified RZ heuristic
- Statistical empirical analysis

Glazed Tile Production Flow Chart

- Tiles need several processing steps with different machines
- Tiles of different type require specific processing times for each machine
- Goal: find a schedule of the jobs that minimizes an objective function (makespan or total completion time)

Glazed Tile Production Flow Chart

- Tiles need several processing steps with different machines
- Tiles of different type require specific processing times for each machine
- Goal: find a schedule of the jobs that minimizes an objective function (makespan or total completion time)

Glazed Tile Production Flow Chart

- Tiles need several processing steps with different machines
- Tiles of different type require specific processing times for each machine
- Goal: find a schedule of the jobs that minimizes an objective function (makespan or total completion time)

Glazed Tile Production Flow Chart

- Tiles need several processing steps with different machines
- Tiles of different type require specific processing times for each machine
- Goal: find a schedule of the jobs that minimizes an objective function (makespan or total completion time)

Flowshop scheduling

- Several scheduling problems have been proposed with different formulations and constraints.
- In permutation flowshop problems:
 - jobs are composed of operations to be executed on several machines
 - all jobs pass through the machines in the same order
 - all jobs available at time zero
 - pre-emption is not allowed
 - each operation has to be performed on a specific machine
 - each job at most on one machine at a time
 - each machine at most one job at a time

- Jobs pass trough all machines in the same order (FCFS queues
- There are infinite buffers between machines
- Constraints: due dates, importance

Flowshop scheduling

- Several scheduling problems have been proposed with different formulations and constraints.
- In permutation flowshop problems:
 - jobs are composed of operations to be executed on several machines
 - all jobs pass through the machines in the same order
 - all jobs available at time zero
 - pre-emption is not allowed
 - each operation has to be performed on a specific machine
 - each job at most on one machine at a time
 - each machine at most one job at a time

- Jobs pass trough all machines in the same order (FCFS queues
- There are infinite buffers between machines
- Constraints: due dates, importance

Flowshop scheduling

- Several scheduling problems have been proposed with different formulations and constraints.
- In permutation flowshop problems:
 - jobs are composed of operations to be executed on several machines
 - all jobs pass through the machines in the same order
 - all jobs available at time zero
 - pre-emption is not allowed
 - each operation has to be performed on a specific machine
 - each job at most on one machine at a time
 - each machine at most one job at a time

- Jobs pass trough all machines in the same order (FCFS queues)
- There are infinite buffers between machines
- Constraints: due dates, importance

Flowshop scheduling

- Several scheduling problems have been proposed with different formulations and constraints.
- In permutation flowshop problems:
 - jobs are composed of operations to be executed on several machines
 - all jobs pass through the machines in the same order
 - all jobs available at time zero
 - pre-emption is not allowed
 - each operation has to be performed on a specific machine
 - each job at most on one machine at a time
 - each machine at most one job at a time

- Jobs pass trough all machines in the same order (FCFS queues
- There are infinite buffers between machines
- Constraints: due dates, importance

Flowshop scheduling

- Several scheduling problems have been proposed with different formulations and constraints.
- In permutation flowshop problems:
 - jobs are composed of operations to be executed on several machines
 - all jobs pass through the machines in the same order
 - all jobs available at time zero
 - pre-emption is not allowed
 - each operation has to be performed on a specific machine
 - each job at most on one machine at a time
 - each machine at most one job at a time

- Jobs pass trough all machines in the same order (FCFS queues
- There are infinite buffers between machines
- Constraints: due dates, importance

Flowshop scheduling

- Several scheduling problems have been proposed with different formulations and constraints.
- In permutation flowshop problems:
 - jobs are composed of operations to be executed on several machines
 - all jobs pass through the machines in the same order
 - all jobs available at time zero
 - pre-emption is not allowed
 - each operation has to be performed on a specific machine
 - each job at most on one machine at a time
 - each machine at most one job at a time

- Jobs pass trough all machines in the same order (FCFS queues
- There are infinite buffers between machines
- Constraints: due dates, importance

Flowshop scheduling

- Several scheduling problems have been proposed with different formulations and constraints.
- In permutation flowshop problems:
 - jobs are composed of operations to be executed on several machines
 - all jobs pass through the machines in the same order
 - all jobs available at time zero
 - pre-emption is not allowed
 - each operation has to be performed on a specific machine
 - each job at most on one machine at a time
 - each machine at most one job at a time

- Jobs pass trough all machines in the same order (FCFS queues
- There are infinite buffers between machines
- Constraints: due dates, importance

Flowshop scheduling

- Several scheduling problems have been proposed with different formulations and constraints.
- In permutation flowshop problems:
 - jobs are composed of operations to be executed on several machines
 - all jobs pass through the machines in the same order
 - all jobs available at time zero
 - pre-emption is not allowed
 - each operation has to be performed on a specific machine
 - each job at most on one machine at a time
 - each machine at most one job at a time

- Jobs pass trough all machines in the same order (FCFS queues
- There are infinite buffers between machines
- Constraints: due dates, importance

Flowshop scheduling

- Several scheduling problems have been proposed with different formulations and constraints.
- In permutation flowshop problems:
 - jobs are composed of operations to be executed on several machines
 - all jobs pass through the machines in the same order
 - all jobs available at time zero
 - pre-emption is not allowed
 - each operation has to be performed on a specific machine
 - each job at most on one machine at a time
 - each machine at most one job at a time

- Jobs pass trough all machines in the same order (FCFS queues)
- There are infinite buffers between machines
- Constraints: due dates, importance

Given

A set of n jobs J_1, \ldots, J_n jobs, where each job J_i consists of m operations o_{i1}, \ldots, o_{im} performed on M_1, \ldots, M_m machines (in that order), with processing time p_{ij} for operation o_{ij} .

Due dates

each job J_i has a due date d_i and a priority w_i . Let C_{ij} be the completion time of job J_i on machine M_i , and C_i the completion time of job J_i on the last machine.

Given

A set of n jobs J_1, \ldots, J_n jobs, where each job J_i consists of m operations o_{i1}, \ldots, o_{im} performed on M_1, \ldots, M_m machines (in that order), with processing time p_{ij} for operation o_{ij} .

Due dates

each job J_i has a due date d_i and a priority w_i . Let C_{ij} be the completion time of job J_i on machine M_j , and C_i the completion time of job J_i on the last machine.

Given

A set of n jobs J_1, \ldots, J_n jobs, where each job J_i consists of m operations o_{i1}, \ldots, o_{im} performed on M_1, \ldots, M_m machines (in that order), with processing time p_{ij} for operation o_{ij} .

Due dates

each job J_i has a due date d_i and a priority w_i . Let C_{ij} be the completion time of job J_i on machine M_j , and C_i the completion time of job J_i on the last machine.

Objective

Find a permutation (i.e., a schedule) π that minimizes the sum of the *total weighted tardiness*:

$$\sum_{i=1}^n w_i \cdot T_i,$$

where $T_i = \max\{C_i - d_i, 0\}$ is the tardiness of completing job *i*.

Computing completion times and tardiness

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n, j = 2, \dots m \\ T_{\pi(k)} = \max\{C_{\pi(k),m} - d_j, 0\} & \end{array}$$

	J1				
Pit			4	2	
	2	1			1
Pi3	4	2	1	2	
		11	12	14	10
VV;	1	2	4	2	

Makespan = 2

Sum of completion times = 73

Weighted sum of completion times = 18

Veighted tardiness = 50

Computing completion times and tardiness

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n, j = 2, \dots m \\ T_{\pi(k)} = \max\{C_{\pi(k),m} - d_j, 0\} & \end{array}$$

Job	<i>J</i> ₁	J_2	<i>J</i> ₃	J_4	J 5
P _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
di	8	11	12	14	10
Wi	1	2	4	2	3

	3	6	10	12	15
	5		13		17
	9	11	14		21
T_i	1	0	2	4	11
	9	22			
$W_i \cdot T_i$	-1				

Computing completion times and tardiness

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n, j = 2, \dots m \\ T_{\pi(k)} = \max\{C_{\pi(k),m} - d_j, 0\} & \end{array}$$

Job	<i>J</i> ₁	J_2	<i>J</i> ₃	J_4	J 5
P _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
di	8	11	12	14	10
Wi	1	2	4	2	3

	3	6	10	12	15
	5		13		17
C_i	9	11	14		21
T_i	1	0	2	4	11
$w_i \cdot C_i$	9	22			
$w_i \cdot T_i$	1				

Computing completion times and tardiness

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$
 $j = 1, \dots m$ $C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$ $k = 1, \dots n$ $C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$ $k = 2, \dots n, j = 2, \dots m$ $T_{\pi(k)} = \max\{C_{\pi(k),m} - d_j, 0\}$

Job	<i>J</i> ₁	J_2	<i>J</i> ₃	J_4	J ₅
	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
d_i	8	11	12	14	10
- W _i	1	2	4	2	3

	3	6	10	12	15
	5		13		17
C_i	9	11	14		21
T_i	1	0	2	4	11
$w_i \cdot C_i$	9	22			
$w_i \cdot T_i$	1				

Computing completion times and tardiness

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} \qquad j = 1, \dots m$$

$$C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} \qquad k = 1, \dots n$$

$$C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} \qquad k = 2, \dots n, j = 2, \dots m$$

$$T_{\pi(k)} = \max\{C_{\pi(k),m} - d_j, 0\}$$

Job	J_1	J_2	J_3	J_4	J_5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
di	8	11	12	14	10
Wi	1	2	4	2	3

	3	6	10	12	15
	5		13		17
C_i	9	11	14		21
T_i	1	0	2	4	11
$w_i \cdot C_i$	9	22			
$w_i \cdot T_i$	1				

Computing completion times and tardiness

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n, j = 2, \dots m \\ T_{\pi(k)} = \max\{C_{\pi(k),m} - d_j, 0\} & \end{array}$$

Job	J_1	J_2	J_3	J_4	J_5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
di	8	11	12	14	10
Wi	1	2	4	2	3

	3	6	10	12	15
	5		13		17
	9	11	14		21
T_i	1	0	2	4	11
	9	22			
$w_i \cdot T_i$	1				

Computing completion times and tardiness

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n, j = 2, \dots m \\ T_{\pi(k)} = \max\{C_{\pi(k),m} - d_j, 0\} & \end{array}$$

Job	<i>J</i> ₁	J_2	J ₃	J_4	J 5
Pi1	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
di	8	11	12	14	10
Wi	1	2	4	2	3

	3	6	10	12	15
	5		13		17
	9	11	14		21
T_i	1	0	2	4	11
	9	22			
$w_i \cdot T_i$	1				

Computing completion times and tardiness

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n, j = 2, \dots m \\ T_{\pi(k)} = \max\{C_{\pi(k),m} - d_j, 0\} & \end{array}$$

Job	<i>J</i> ₁	J_2	<i>J</i> ₃	J_4	J ₅
	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
d_i	8	11	12	14	10
- W _i	1	2	4	2	3

	3	6	10	12	15
	5		13		17
	9	11	14		21
T_i	1	0	2	4	11
	9	22			
$w_i \cdot T_i$	1				

Computing completion times and tardiness

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n, j = 2, \dots m \\ T_{\pi(k)} = \max\{C_{\pi(k),m} - d_j, 0\} & \end{array}$$

Job	<i>J</i> ₁	J_2	<i>J</i> ₃	J_4	J 5
P _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
di	8	11	12	14	10
Wi	1	2	4	2	3

	3	6	10	12	15
	5		13		17
	9	11	14		21
T_i	1	0	2	4	11
	9	22			
$w_i \cdot T_i$	1				

Computing completion times and tardiness

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$
 $j = 1, \dots m$
 $C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$ $k = 1, \dots n$
 $C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$ $k = 2, \dots n, j = 2, \dots m$
 $T_{\pi(k)} = \max\{C_{\pi(k),m} - d_j, 0\}$

Job	<i>J</i> ₁	J_2	J ₃	J_4	J 5
<i>p</i> _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
d_i	8	11	12	14	10
- W _i	1	2	4	2	3

	3	6	10	12	15
	5	7	13		17
	9	11	14		21
T_i	1	0	2	4	11
	9	22			
$w_i \cdot T_i$	1				

Computing completion times and tardiness

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n, j = 2, \dots m \\ T_{\pi(k)} = \max\{C_{\pi(k),m} - d_j, 0\} & \end{array}$$

Job	J_1	J_2	<i>J</i> ₃	J_4	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
di	8	11	12	14	10
Wi	1	2	4	2	3

	3	6	10	12	15
	5	7	13		17
	9	11	14		21
T_i	1	0	2	4	11
	9	22			
$w_i \cdot T_i$	1				

Computing completion times and tardiness

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n, j = 2, \dots m \\ T_{\pi(k)} = \max\{C_{\pi(k),m} - d_j, 0\} & \end{array}$$

Job	J_1	J_2	J 3	J_4	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
di	8	11	12	14	10
Wi	1	2	4	2	3

	3	6	10	12	15
	5	7	13		17
C_i	9	11	14		21
T_i	1	0	2	4	11
$w_i \cdot C_i$	9	22			
$w_i \cdot T_i$	1				

Computing completion times and tardiness

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} \qquad j = 1, \dots m$$

$$C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} \qquad k = 1, \dots n$$

$$C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} \qquad k = 2, \dots n, j = 2, \dots m$$

$$T_{\pi(k)} = \max\{C_{\pi(k),m} - d_j, 0\}$$

Job	<i>J</i> ₁	J_2	<i>J</i> ₃	J_4	J 5
P _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
di	8	11	12	14	10
Wi	1	2	4	2	3

	3	6	10	12	15
	5	7	13		17
	9	11	14		21
T_i	1	0	2	4	11
	9	22			
$w_i \cdot T_i$	1				

Computing completion times and tardiness

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n, j = 2, \dots m \\ T_{\pi(k)} = \max\{C_{\pi(k),m} - d_j, 0\} & \end{array}$$

Job	<i>J</i> ₁	J_2	J ₃	J_4	J 5
Pi1	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
di	8	11	12	14	10
Wi	1	2	4	2	3

	3	6	10	12	15
	5	7	13	16	17
	9	11	14		21
T_i	1	0	2	4	11
	9	22			
$w_i \cdot T_i$	1				

Computing completion times and tardiness

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n, j = 2, \dots m \\ T_{\pi(k)} = \max\{C_{\pi(k),m} - d_j, 0\} & \end{array}$$

Job	<i>J</i> ₁	J_2	J ₃	J_4	J 5
Pi1	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
di	8	11	12	14	10
Wi	1	2	4	2	3

	3	6	10	12	15
	5	7	13	16	17
	9	11	14	18	21
T_i	1	0	2	4	11
	9	22			
$w_i \cdot T_i$	1				

Computing completion times and tardiness

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n, j = 2, \dots m \\ T_{\pi(k)} = \max\{C_{\pi(k),m} - d_j, 0\} & \end{array}$$

Job	<i>J</i> ₁	J_2	J ₃	J_4	J 5
Pi1	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
di	8	11	12	14	10
Wi	1	2	4	2	3

	3	6	10	12	15
	5	7	13	16	17
	9	11	14	18	21
T_i	1	0	2	4	11
	9	22			
$w_i \cdot T_i$	1				

Computing completion times and tardiness

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n, j = 2, \dots m \\ T_{\pi(k)} = \max\{C_{\pi(k),m} - d_j, 0\} & \end{array}$$

Job	J_1	J_2	J 3	J_4	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
di	8	11	12	14	10
Wi	1	2	4	2	3

	3	6	10	12	15
	5	7	13	16	17
	9	11	14	18	21
T_i	1	0	2	4	11
	9	22			
$w_i \cdot T_i$	1				

Computing completion times and tardiness

$$egin{array}{ll} C_{\pi(1)j} &= \sum_{h=1}^{j} p_{\pi(1)h} \ C_{\pi(k)1} &= \sum_{h=1}^{k} p_{\pi(h)1} \ C_{\pi(k)j} &= \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} \ T_{\pi(k)} &= \max\{C_{\pi(k),m} - d_i, 0\} \end{array}$$

$j=1,\ldots$	m
$k=1,\ldots$	n
$= 2, \ldots, n, j = 2, \ldots$	m

Job	J_1	J_2	J 3	J_4	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
di	8	11	12	14	10
Wi	1	2	4	2	3

	3	6	10	12	15
	5	7	13	16	17
C_i	9	11	14	18	21
T_i	1	0	2	4	11
	9	22			
$w_i \cdot T_i$	1				

Makespan = 21

Sum of completion times = 73

Weighted sum of completion times = 180
Weighted tardiness = 50

Computing completion times and tardiness

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$
 $C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$
 $C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$
 $T_{\pi(k)} = \max\{C_{\pi(k),m} - d_{j}, 0\}$

$$j = 1, \dots m$$

$$k = 1, \dots n$$

$$k = 2, \dots n, j = 2, \dots m$$

Job	<i>J</i> ₁	J_2	<i>J</i> ₃	J ₄	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
di	8	11	12	14	10
Wi	1	2	4	2	3

	3	6	10	12	15
	5	7	13	16	17
C_i	9	11	14	18	21
T_i	1	0	2	4	11
$w_i \cdot C_i$	9	22			
$w_i \cdot T_i$	1				

Makespan = 21

Sum of completion times = 73

Weighted sum of completion times = 180
Weighted tardiness = 50

Computing completion times and tardiness

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$
 $C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$
 $C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$
 $T_{\pi(k)} = \max\{C_{\pi(k), m} - d_{j}, 0\}$

$$j = 1, \dots m$$

$$k = 1, \dots n$$

$$k = 2, \dots n, j = 2, \dots m$$

Job	J_1	J_2	J 3	J_4	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
di	8	11	12	14	10
Wi	1	2	4	2	3

	3	6	10	12	15
	5	7	13	16	17
C_i	9	11	14	18	21
T_i	1	0	2	4	11
$w_i \cdot C_i$	9	22			63
$w_i \cdot T_i$	1				33

Makespan = 21

Sum of completion times = 73

Weighted sum of completion times = 189
Weighted tardiness = 50

Computing completion times and tardiness

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$
 $C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$
 $C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$
 $T_{\pi(k)} = \max\{C_{\pi(k),m} - d_i, 0\}$

$$j = 1, \dots m$$

$$k = 1, \dots n$$

$$k = 2, \dots n, j = 2, \dots m$$

Job	J_1	J_2	J 3	J_4	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
di	8	11	12	14	10
Wi	1	2	4	2	3

	3	6	10	12	15
	5	7	13	16	17
C_i	9	11	14	18	21
T_i	1	0	2	4	11
$w_i \cdot C_i$	9	22			
$w_i \cdot T_i$	1				

Makespan = 21

Sum of completion times = 73

Weighted sum of completion times = 180
Weighted tardiness = 50

Computing completion times and tardiness

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$
 $C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$
 $C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$
 $T_{\pi(k)} = \max\{C_{\pi(k),m} - d_j, 0\}$

	$j=1,\ldots$	m
	$k=1,\ldots$	n
$\varsigma=2,\ldots$	n, j = 2,	m

Job	<i>J</i> ₁	<i>J</i> ₂	<i>J</i> ₃	J_4	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
di	8	11	12	14	10
Wi	1	2	4	2	3

	3	6	10	12	15
	5	7	13	16	17
C_i	9	11	14	18	21
T_i	1	0	2	4	11
$w_i \cdot C_i$	9	22			
$w_i \cdot T_i$	1				

Makespan = 21

Sum of completion times = 73

Weighted sum of completion times = 189
Weighted tardiness = 50

Computing completion times and tardiness

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$
 $C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$
 $C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$
 $T_{\pi(k)} = \max\{C_{\pi(k),m} - d_i, 0\}$

j	$f=1,\ldots m$
P	$k=1,\ldots n$
$i=2,\ldots n, j$	$j=2,\ldots m$

Job	J_1	J_2	J_3	J_4	J_5
p_{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
d_i	8	11	12	14	10
	1	2	4	2	3

	3	6	10	12	15
	5	7	13	16	17
C_i	9	11	14	18	21
T_i	1	0	2	4	11
$w_i \cdot C_i$	9	22			63
$w_i \cdot T_i$	1				33

Makespan = 21

Sum of completion times = 73

Weighted sum of completion times = 180
Weighted tardiness = 50

Computing completion times and tardiness

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$
 $C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$
 $C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$
 $T_{\pi(k)} = \max\{C_{\pi(k),m} - d_j, 0\}$

$j=1,\ldots$	m
$k=1,\ldots$	n
$= 2, \ldots, n, j = 2, \ldots$	m

Job	J_1	J_2	J_3	J_4	J_5
p_{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
d_i	8	11	12	14	10
	1	2	4	2	3

	3	6	10	12	15
	5	7	13	16	17
C_i	9	11	14	18	21
T_i	1	0	2	4	11
$w_i \cdot C_i$ $w_i \cdot T_i$	9	22			
$w_i \cdot T_i$	1				

Makespan = 21

Sum of completion times = 73

Weighted sum of completion times = 186

Computing completion times and tardiness

$$egin{array}{ll} C_{\pi(1)j} &= \sum_{h=1}^{j} p_{\pi(1)h} \ C_{\pi(k)1} &= \sum_{h=1}^{k} p_{\pi(h)1} \ C_{\pi(k)j} &= \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} \ T_{\pi(k)} &= \max\{C_{\pi(k),m} - d_i, 0\} \end{array}$$

$$j = 1, \dots m$$

$$k = 1, \dots n$$

$$k = 2, \dots n, j = 2, \dots m$$

Job	J_1	J_2	J 3	J_4	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
di	8	11	12	14	10
Wi	1	2	4	2	3

	3	6	10	12	15
	5	7	13	16	17
C_i	9	11	14	18	21
T_i	1	0	2	4	11
$w_i \cdot C_i$	9	22			
$w_i \cdot T_i$	-1				

Makespan = 21

Sum of completion times = 73

Weighted sum of completion times = 186

Computing completion times and tardiness

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$
 $C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$
 $C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$
 $T_{\pi(k)} = \max\{C_{\pi(k), m} - d_{j}, 0\}$

$$j = 1, \dots m$$

$$k = 1, \dots n$$

$$k = 2, \dots n, j = 2, \dots m$$

Job	J_1	J_2	J_3	J_4	J_5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
di	8	11	12	14	10
Wi	1	2	4	2	3

	3	6	10	12	15
	5	7	13	16	17
C_i	9	11	14	18	21
T_i	1	0	2	4	11
$w_i \cdot C_i$	9	22	56		
$w_i \cdot T_i$	1				

Makespan = 21

Sum of completion times = 73

Weighted sum of completion times = 186

Computing completion times and tardiness

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$
 $C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$
 $C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$
 $T_{\pi(k)} = \max\{C_{\pi(k),m} - d_{l}, 0\}$

$$j = 1, \dots m$$

$$k = 1, \dots n$$

$$k = 2, \dots n, j = 2, \dots m$$

Job	J_1	J_2	J 3	J_4	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
di	8	11	12	14	10
Wi	1	2	4	2	3

	3	6	10	12	15
	5	7	13	16	17
C_i	9	11	14	18	21
T_i	1	0	2	4	11
$w_i \cdot C_i$	9	22	56	36	63
$w_i \cdot T_i$	1				33

Makespan = 21

Sum of completion times = 73

Weighted sum of completion times = 186

Computing completion times and tardiness

$$egin{array}{l} C_{\pi(1)j} &= \sum_{h=1}^{j} p_{\pi(1)h} \ C_{\pi(k)1} &= \sum_{h=1}^{k} p_{\pi(h)1} \ C_{\pi(k)j} &= \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} \ T_{\pi(k)} &= \max\{C_{\pi(k),m} - d_j, 0\} \end{array}$$

$$j = 1, \dots m$$

$$k = 1, \dots n$$

$$k = 2, \dots n, j = 2, \dots m$$

Job	J_1	J_2	J_3	J_4	J_5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
di	8	11	12	14	10
Wi	1	2	4	2	3

	-				
	3	6	10	12	15
	5	7	13	16	17
C_i	9	11	14	18	21
T_i	1	0	2	4	11
$w_i \cdot C_i$	9	22	56	36	63
$w_i \cdot T_i$	1				

Makespan = 21 Sum of completion times = 73

Weighted sum of completion times = 186

Computing completion times and tardiness

$$egin{array}{l} C_{\pi(1)j} &= \sum_{h=1}^{j} p_{\pi(1)h} \ C_{\pi(k)1} &= \sum_{h=1}^{k} p_{\pi(h)1} \ C_{\pi(k)j} &= \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} \ T_{\pi(k)} &= \max\{C_{\pi(k),m} - d_j, 0\} \end{array}$$

$$j = 1, \dots m$$

$$k = 1, \dots n$$

$$k = 2, \dots n, j = 2, \dots m$$

Job	J_1	J_2	J_3	J_4	J_5
p_{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
d_i	8	11	12	14	10
	1	2	4	2	3

	3	6	10	12	15
	5	7	13	16	17
C_i	9	11	14	18	21
T_i	1	0	2	4	11
$w_i \cdot C_i$	9	22	56	36	63
$w_i \cdot T_i$	1				33

Makespan = 21

Sum of completion times = 73

Weighted sum of completion times = 186

Computing completion times and tardiness

$$egin{array}{l} C_{\pi(1)j} &= \sum_{h=1}^{j} p_{\pi(1)h} \ C_{\pi(k)1} &= \sum_{h=1}^{k} p_{\pi(h)1} \ C_{\pi(k)j} &= \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} \ T_{\pi(k)} &= \max\{C_{\pi(k),m} - d_j, 0\} \end{array}$$

$$j = 1, \dots m$$

$$k = 1, \dots n$$

$$k = 2, \dots n, j = 2, \dots m$$

Job	J_1	J_2	J 3	J_4	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
di	8	11	12	14	10
Wi	1	2	4	2	3

	3	6	10	12	15
	5	7	13	16	17
C_i	9	11	14	18	21
T_i	1	0	2 56	4	11
$w_i \cdot C_i$	9	22	56	36	63
$w_i \cdot T_i$	1	0			33

Makespan = 21

Sum of completion times = 73

Weighted sum of completion times = 186

Computing completion times and tardiness

$$egin{array}{ll} C_{\pi(1)j} &= \sum_{h=1}^{j} p_{\pi(1)h} \ C_{\pi(k)1} &= \sum_{h=1}^{k} p_{\pi(h)1} \ C_{\pi(k)j} &= \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} \ T_{\pi(k)} &= \max\{C_{\pi(k),m} - d_j, 0\} \end{array}$$

	$j=1,\ldots,j$	m
	$k=1,\ldots$	n
$z=2,\ldots$	$n, j = 2, \ldots$	m

Job	<i>J</i> ₁	J_2	J ₃	J_4	J ₅
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
di	8	11	12	14	10
Wi	1	2	4	2	3

	3	6	10	12	15
	5	7	13	16	17
C_i	9	11	14	18	21
T_i	1	0	2	4	11
$w_i \cdot C_i$ $w_i \cdot T_i$	9	22	56	36	63
$w_i \cdot T_i$	1	0	8		33

Makespan = 21

Sum of completion times = 73

Weighted sum of completion times = 186

Computing completion times and tardiness

$$egin{array}{ll} C_{\pi(1)j} &= \sum_{h=1}^{j} p_{\pi(1)h} \ C_{\pi(k)1} &= \sum_{h=1}^{k} p_{\pi(h)1} \ C_{\pi(k)j} &= \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} \ T_{\pi(k)} &= \max\{C_{\pi(k),m} - d_i, 0\} \end{array}$$

$j=1,\ldots$	m
$k=1,\ldots$	n
$= 2, \ldots, n, j = 2, \ldots$	m

Job	J_1	J_2	J 3	J_4	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
di	8	11	12	14	10
Wi	1	2	4	2	3

	3	6	10	12	15
	5	7	13	16	17
C_i	9	11	14	18	21
T_i	1	0	2	4	11
$w_i \cdot C_i$ $w_i \cdot T_i$	9	22	56	36	63
$w_i \cdot T_i$	1	0	8	8	33

Makespan = 21

Sum of completion times = 73

Weighted sum of completion times = 186

Computing completion times and tardiness

$$egin{array}{l} C_{\pi(1)j} &= \sum_{h=1}^{j} p_{\pi(1)h} \ C_{\pi(k)1} &= \sum_{h=1}^{k} p_{\pi(h)1} \ C_{\pi(k)j} &= \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} \ T_{\pi(k)} &= \max\{C_{\pi(k),m} - d_j, 0\} \end{array}$$

$$j = 1, \dots m$$

$$k = 1, \dots n$$

$$k = 2, \dots n, j = 2, \dots m$$

Job	J_1	J_2	J_3	J_4	J_5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
di	8	11	12	14	10
Wi	1	2	4	2	3

	3	6	10	12	15
	5	7	13	16	17
C_i	9	11	14	18	21
T_i	1	0	2	4	11
$w_i \cdot C_i$	9	22	56	36	63
$w_i \cdot T_i$	1	0	8	8	33

Makespan = 21 Sum of completion times = 73 Weighted sum of completion times = 186 Weighted tardiness = 50

Example: random vs. optimal

Implement 12 iterative improvements algorithms for the PFSP-WT

Implement 12 iterative improvements algorithms for the PFSP-WT

- Pivoting rule:
 - first-improvement
 - best-improvement
- Neighborhood:
 - Transpose
 - 2 Exchange
 - Insert
- Initial solution:
 - Random permutation
 - Simplified RZ heuristic

Implement 12 iterative improvements algorithms for the PFSP-WT

- Pivoting rule:
 - first-improvement
 - best-improvement
- Neighborhood:
 - Transpose
 - 2 Exchange
 - Insert
- Initial solution:
 - Random permutation
 - Simplified RZ heuristic

2 pivoting rules \times 3 neighborhoods \times 2 initialization methods = **12 combinations**

Implement 12 iterative improvements algorithms for the PFSP-WT

Don't implement 12 programs!

Reuse code and use command-line parameters

```
pfspwt-ii --first --transpose --srz
pfspwt-ii --best --exchange --random-init
...
```

Iterative Improvement

```
\begin{split} \pi &:= \texttt{GenerateInitialSolution}\,() \\ \textbf{while} \,\, \pi \,\, \text{is not a local optimum do} \\ &\quad \text{choose a neighbour} \,\, \pi' \in \mathcal{N}(\pi) \,\, \text{such that} \,\, F(\pi') < F(\pi) \\ &\quad \pi := \pi' \end{split}
```

Iterative Improvement

```
\begin{array}{l} \pi := \texttt{GenerateInitialSolution}\,() \\ \textbf{while} \, \pi \text{ is not a local optimum do} \\ \textbf{choose a neighbour} \, \pi' \in \mathcal{N}(\pi) \, \text{such that} \, F(\pi') < F(\pi) \\ \pi := \pi' \end{array}
```

Which neighbour to choose? Pivoting rule

- ullet Best Improvement: choose best from all neighbours of π
 - Better quality
 - Requires evaluation of all neighbours in each step
- First improvement: evaluate neighbours in fixed order and choose first improving neighbour.
 - More efficient
 - Order of evaluation may impact quality / performance

Iterative Improvement

```
\begin{array}{l} \pi := \texttt{GenerateInitialSolution}\,() \\ \textbf{while} \, \pi \text{ is not a local optimum do} \\ \text{choose a neighbour } \pi' \in \mathcal{N}(\pi) \text{ such that } F(\pi') < F(\pi) \\ \pi := \pi' \end{array}
```

Which neighbour to choose? Pivoting rule

- ullet Best Improvement: choose best from all neighbours of π
 - Better quality
 - X Requires evaluation of all neighbours in each step
- First improvement: evaluate neighbours in fixed order and choose first improving neighbour.
 - ✓ More efficien:
 - Order of evaluation may impact quality / performance

Iterative Improvement

```
\begin{array}{l} \pi := \texttt{GenerateInitialSolution}\,() \\ \textbf{while} \, \pi \text{ is not a local optimum do} \\ \text{choose a neighbour } \pi' \in \mathcal{N}(\pi) \text{ such that } F(\pi') < F(\pi) \\ \pi := \pi' \end{array}
```

Which neighbour to choose? Pivoting rule

- ullet Best Improvement: choose best from all neighbours of π
 - Better quality
 - X Requires evaluation of all neighbours in each step
- First improvement: evaluate neighbours in fixed order and choose first improving neighbour.
 - More efficient
 - Order of evaluation may impact quality / performance

Iterative Improvement

```
\begin{array}{l} \pi := \texttt{GenerateInitialSolution}\,() \\ \textbf{while} \, \pi \text{ is not a local optimum do} \\ \textbf{choose a neighbour} \, \pi' \in \mathcal{N}(\pi) \, \text{such that} \, F(\pi') < F(\pi) \\ \pi := \pi' \end{array}
```

Initial solution

- Random uniform permutation
- Simplified RZ heuristic

Iterative Improvement

```
\pi := \texttt{GenerateInitialSolution}\,() while \pi is not a local optimum do choose a neighbour \pi' \in \mathcal{N}(\pi) such that F(\pi') < F(\pi) \pi := \pi'
```

Simplified RZ heuristic

Start by ordering the jobs in ascending order of their weighted sum of processing times. Construct the solution by inserting **one job at a time** in the position that minimize the WCT.

The weighted sum of processing times of job J_i is computed as $\frac{1}{w_i} \cdot \sum_{1}^{m} p_{ij}$

Note: the solution is constructed incrementally, and at each iteration C_i corresponds to the makespan of the partial solution.

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$

$$C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$$

$$C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$$

$$D_{i} = \frac{1}{w_{i}} \cdot \sum_{1}^{m} p_{ij}$$

Job	J_1	J_2	J ₃	J_4	J 5
p_{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
W _i	1	2	4	2	3
$\overline{D_i}$	9	3	2	3.5	2.3

Starting sequence = $\{J_3 J_5 J_2 J_4 J_1\}$ Initial Solution = $\{J_4 J_3 J_5 J_2 J_1\}$

$$j = 1, \dots m$$

$$k = 1, \dots n$$

$$k = 2, \dots n, j = 2, \dots m$$

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$

$$C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$$

$$C_{\pi(k)j} = \max_{k} \{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$$

$$D_{i} = \frac{1}{w_{i}} \cdot \sum_{1}^{m} p_{ij}$$

Job	J_1	J_2	J ₃	J_4	J ₅
	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
	1	2	4	2	3
D_i	9	3	2	3.5	2.3

Starting sequence = $\{J_3 J_5 J_2 J_4 J_1\}$

$$j = 1, \dots m$$

$$k = 1, \dots n$$

$$k = 2, \dots n, j = 2, \dots m$$

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$

$$C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$$

$$C_{\pi(k)j} = \max_{k} \{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$$

$$D_{i} = \frac{1}{w_{i}} \cdot \sum_{1}^{m} p_{ij}$$

Job	J_1	J_2	J ₃	J_4	J 5
p_{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
- W _i	1	2	4	2	3
D_i	9	3	2	3.5	2.3

Starting sequence = $\{J_3 J_5 J_2 J_4 J_1\}$

$$j = 1, \dots m$$

$$k = 1, \dots n$$

$$k = 2, \dots n, j = 2, \dots m$$

Step 1 $\pi = \{\}$	
	WCT = 65
	WCT = 65
	WCT = 98
	WCT = 94
	WCT = 91
	WCT = 123
	WCT = 130
	WCT = 125
	WCT = 125
Step 4 $\pi = \{J_4 \ J_3 \ J_5 \ J_2\}$	
	WCT = 167
	WCT = 161
	WCT = 163
	WCT = 151
	WCT = 144

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$

$$C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$$

$$C_{\pi(k)j} = \max_{j} \{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$$

$$D_{i} = \frac{1}{w_{i}} \cdot \sum_{1}^{m} p_{ij}$$

Job	<i>J</i> ₁	J ₂	J ₃	J_4	J ₅
p_{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
- W _i	1	2	4	2	3
$\overline{D_i}$	9	3	2	3.5	2.3

Starting sequence = $\{J_3 J_5 J_2 J_4 J_1\}$

$$j = 1, \dots m$$

$$k = 1, \dots n$$

$$k = 2, \dots n, j = 2, \dots m$$

Step 1 $\pi = \{\}$ { $J_3 J_5\}$ { $J_5 J_3\}$	<i>WCT</i> = 65 <i>WCT</i> = 65
	<i>WCT</i> = 98
	WCT = 94
	WCT = 91
	WCT = 123
	WCT = 130
	WCT = 125
	WCT = 125
Step 4 $\pi = \{J_4 \ J_3 \ J_5 \ J_2\}$	
	WCT = 167
	WCT = 161
	WCT = 163
	WCT = 151
	WCT = 144

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$

$$C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$$

$$C_{\pi(k)j} = \max_{k} \{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$$

$$D_{i} = \frac{1}{w_{i}} \cdot \sum_{1}^{m} p_{ij}$$

Job	J ₁	J_2	J ₃	J_4	J 5
p_{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
W _i	1	2	4	2	3
- D _i	9	3	2	3.5	2.3

Starting sequence = $\{J_3 J_5 J_2 J_4 J_1\}$

$$j = 1, \dots m$$

$$k = 1, \dots n$$

$$k = 2, \dots n, j = 2, \dots m$$

Step 1 $\pi = \{\}$	WOT CE
$\{J_3 \ J_5\}$ $\{J_5 \ J_3\}$	WCT = 65 WCT = 65
Step 2 $\pi = \{J_3 J_5\}$	W67 = 66
{ J ₂ J ₃ J ₅ }	WCT = 98
	WCT = 94
	WCT = 91
	WCT = 123
	WCT = 130
	WCT = 125
	WCT = 125
Step 4 $\pi = \{J_4 \ J_3 \ J_5 \ J_2\}$	
	WCT = 167
	WCT = 161
	WCT = 163
	WCT = 151
	WCT = 144

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$

$$C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$$

$$C_{\pi(k)j} = \max_{j} \{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$$

$$D_{i} = \frac{1}{w_{i}} \cdot \sum_{j}^{m} p_{ij}$$

Job	J ₁	J_2	J ₃	J_4	J 5
p_{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
W _i	1	2	4	2	3
- D _i	9	3	2	3.5	2.3

Starting sequence = $\{J_3 J_5 J_2 J_4 J_1\}$

Initial Solution = $\{J_4 \ J_3 \ J_5 \ J_2 \ J_1\}$

$$j = 1, \dots m$$

$$k = 1, \dots n$$

$$k = 2, \dots n, j = 2, \dots m$$

Step 1 $\pi = \{\}$ $\{J_3 \ J_5\}$	<i>WCT</i> = 65
$\{J_5 J_3\}$	WCT = 65
Step 2 $\pi = \{J_3 \ J_5\}$ $\{J_2 \ J_3 \ J_5\}$ $\{J_3 \ J_2 \ J_5\}$	<i>WCT</i> = 98 <i>WCT</i> = 94
$\{J_3 J_5 J_2\}$	<i>WCT</i> = 91
	WCT = 123
	WCT = 130
	WCT = 125
	WCT = 125
Step 4 $\pi = \{J_4 \ J_3 \ J_5 \ J_2\}$	
	WCT = 167
	WCT = 161
	WCT = 163
	WCT = 151
	WCT = 144

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$

$$C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$$

$$C_{\pi(k)j} = \max_{j} \{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$$

$$D_{i} = \frac{1}{w_{i}} \cdot \sum_{1}^{m} p_{ij}$$

Job	J ₁	J_2	J ₃	J_4	J 5
p_{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
W _i	1	2	4	2	3
- D _i	9	3	2	3.5	2.3

Starting sequence = $\{J_3 J_5 J_2 J_4 J_1\}$

Initial Solution =
$$\{J_4, J_3, J_5, J_2, J_1\}$$

$$j = 1, \dots m$$

$$k = 1, \dots n$$

$$k = 2, \dots n, j = 2, \dots m$$

Step 1 $\pi = \{\}$	
$\{J_3 \ J_5\}$	WCT = 65
$\{J_5 J_3\}$	WCT = 65
Step 2 $\pi = \{J_3 \ J_5\}$	
$\{J_2 \ J_3 \ J_5\}$	WCT = 98
$\{J_3 \ J_2 \ J_5\}$	WCT = 94
$\{J_3 \ J_5 \ J_2\}$	WCT = 91
Step 3 $\pi = \{J_3 \ J_5 \ J_2\}$	WO1 — 91
	WCT = 123
	WCT = 130
	WCT = 125
	WCT = 125
Step 4 $\pi = \{J_4 \ J_3 \ J_5 \ J_2\}$	
	WCT = 167
	WCT = 161
	WCT = 163
	WCT = 151
	WCT = 144

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$

$$C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$$

$$C_{\pi(k)j} = \max_{j} \{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$$

$$D_{i} = \frac{1}{w_{i}} \cdot \sum_{1}^{m} p_{ij}$$

Job	J_1	J_2	J_3	J_4	J_5
p_{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
Wi	1	2	4	2	3
D_i	9	3	2	3.5	2.3

Starting sequence = $\{J_3 J_5 J_2 J_4 J_1\}$

$$j = 1, \dots m$$

$$k = 1, \dots n$$

$$k = 2, \dots n, j = 2, \dots m$$

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$

$$C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$$

$$C_{\pi(k)j} = \max_{j} \{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$$

$$D_{i} = \frac{1}{w_{i}} \cdot \sum_{j}^{m} p_{ij}$$

Job	J_1	J_2	J ₃	J_4	J ₅
p_{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
W _i	1	2	4	2	3
$\overline{D_i}$	9	3	2	3.5	2.3

Starting sequence = $\{J_3 J_5 J_2 J_4 J_1\}$

$$k = 1, \dots n$$

$$k = 2, \dots n, j = 2, \dots m$$

 $j=1,\ldots m$

Step 1 $\pi = \{\}$	
$\{J_3 \ J_5\}$	WCT = 65
$\{J_5 \ J_3\}$	WCT = 65
Step 2 $\pi = \{J_3 J_5\}$	
$\{J_2 \ J_3 \ J_5\}$	WCT = 98
$\{J_3 \ J_2 \ J_5\}$	WCT = 94
$\{J_3 \ J_5 \ J_2\}$	WCT = 91
Step 3 $\pi = \{J_3 J_5 J_2\}$	
$\{J_4 \ J_3 \ J_5 \ J_2\}$	WCT = 123
$\{J_3 \ J_4 \ J_5 \ J_2\}$	WCT = 130
$\{J_3 \ J_5 \ J_4 \ J_2\}$	WCT = 125
$\{J_3 \ J_5 \ J_2 \ J_4\}$	WCT = 125
Step 4 $\pi = \{J_4 \ J_3 \ J_5 \ J_2\}$	
	WCT = 167
	WCT = 161
	WCT = 163
	WCT = 151
	WCT = 144

Simplified RZ heuristic: an example

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$

$$C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$$

$$C_{\pi(k)j} = \max_{k} \{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$$

$$D_{i} = \frac{1}{w_{i}} \cdot \sum_{1}^{m} p_{ij}$$

Job	J_1	J_2	J_3	J_4	J 5
p_{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
- W _i	1	2	4	2	3
D _i	9	3	2	3.5	2.3

Starting sequence = $\{J_3 \ J_5 \ J_2 \ J_4 \ J_1\}$

$$j = 1, \dots m$$

$$k = 1, \dots n$$

$$k = 2, \dots n, j = 2, \dots m$$

Simplified RZ heuristic: an example

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$

$$C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$$

$$C_{\pi(k)j} = \max_{j} \{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$$

$$D_{i} = \frac{1}{w_{i}} \cdot \sum_{j}^{m} p_{ij}$$

Job	J ₁	J ₂	J ₃	J_4	J ₅
p_{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
Wi	1	2	4	2	3
D _i	9	3	2	3.5	2.3

Starting sequence = $\{J_3 \ J_5 \ J_2 \ J_4 \ J_1\}$ Initial Solution = $\{J_4 \ J_3 \ J_5 \ J_2 \ J_1\}$

$$j = 1, \dots m$$

$$k = 1, \dots n$$

$$k = 2, \dots n, j = 2, \dots m$$

Step 1 $\pi = \{\}$	
{J ₃ J ₅ }	WCT = 65
$\{J_5, J_3\}$	WCT = 65
Step 2 $\pi = \{J_3 J_5\}$	
$\{J_2 \ J_3 \ J_5\}$	WCT = 98
$\{J_3 \ J_2 \ J_5\}$	WCT = 94
$\{J_3 J_5 J_2\}$	WCT = 91
Step 3 $\pi = \{J_3 J_5 J_2\}$	
{J ₄ J ₃ J ₅ J ₂ }	WCT = 123
{J ₃ J ₄ J ₅ J ₂ }	WCT = 130
$\{J_3 J_5 J_4 J_2\}$	WCT = 125
$\{J_3 J_5 J_2 J_4\}$	WCT = 125
Step 4 $\pi = \{J_4 \ J_3 \ J_5 \ J_2\}$	
$\{J_1 \ J_4 \ J_3 \ J_5 \ J_2\}$	WCT = 167
$\{J_4 J_1 J_3 J_5 J_2\}$	<i>WCT</i> = 161
$\{J_4 \ J_3 \ J_1 \ J_5 \ J_2\}$	WCT = 163
$\{J_4 \ J_3 \ J_5 \ J_1 \ J_2\}$	WCT = 151
$\{J_4\ J_3\ J_5\ J_2\ J_1\}$	WCT = 144

Iterative Improvement

```
\begin{array}{l} \pi := \texttt{GenerateInitialSolution}\,() \\ \textbf{while} \,\, \pi \,\, \text{is not a local optimum do} \\ \text{choose a neighbour} \,\, \pi' \in \mathcal{N}(\pi) \,\, \text{such that} \,\, F(\pi') < F(\pi) \\ \pi := \pi' \end{array}
```

Which neighborhood $\mathcal{N}(\pi)$?

- Transpose
- Exchange
- Insert

transpose neighbourhood

exchange neighbourhood

insert neighbourhood

exchange neighbourhood

Example: Exchange π_i and π_j (i < j), $\pi' = \text{Exchange}(\pi, i, j)$

Only jobs after i are affected!

Do not recompute the evaluation function from scratch!

Equivalent speed-ups with Transpose and Insertion

exchange neighbourhood

Example: Exchange π_i and π_j (i < j), $\pi' = \text{Exchange}(\pi, i, j)$

Only jobs after i are affected!

Do not recompute the evaluation function from scratch!

Equivalent speed-ups with Transpose and Insertion

exchange neighbourhood

Example: Exchange π_i and π_j (i < j), $\pi' = \text{Exchange}(\pi, i, j)$

Only jobs after i are affected!

Do not recompute the evaluation function from scratch!

Equivalent speed-ups with Transpose and Insertion

exchange neighbourhood

Example: Exchange π_i and π_j (i < j), $\pi' = \text{Exchange}(\pi, i, j)$

Only jobs after i are affected!

Do not recompute the evaluation function from scratch!

Equivalent speed-ups with Transpose and Insertion

exchange neighbourhood

Example: Exchange π_i and π_j (i < j), $\pi' = \text{Exchange}(\pi, i, j)$

Only jobs after i are affected!

Do not recompute the evaluation function from scratch!

Equivalent speed-ups with Transpose and Insertion

exchange neighbourhood

Example: Exchange π_i and π_j (i < j), $\pi' = \text{Exchange}(\pi, i, j)$

Only jobs after i are affected!

Do not recompute the evaluation function from scratch!

Equivalent speed-ups with Transpose and Insertion

Instances

- PFSP instances with 50 and 100 jobs, and 20 machines.
- A full description is provided in the project document on TEAMS

Experiments

Apply each algorithm k once to each instance i and compute:

- Relative percentage deviation $\Delta_{ki} = 100 \cdot \frac{\mathsf{cost}_{ki} \mathsf{best-known}_i}{\mathsf{best-known}_i}$
- \bigcirc Computation time (t_{ki})

Repeat 5 times

Report for each algorithm k

- Average relative percentage deviation *per instance size* (50 and 100) per algorithm (12 algorithms)
- Average computation time per instance size (50 and 100) per algorithm (12 algorithms)

Instances

- PFSP instances with 50 and 100 jobs, and 20 machines.
- A full description is provided in the project document on TEAMS

Experiments

Apply each algorithm k once to each instance i and compute:

- **2** Computation time (t_{ki})

Repeat 5 times

Report for each algorithm k

- Average relative percentage deviation *per instance size* (50 and 100) per algorithm (12 algorithms)
- Average computation time *per instance size* (50 and 100) per algorithm (12 algorithms)

Instances

- PFSP instances with 50 and 100 jobs, and 20 machines.
- A full description is provided in the project document on TEAMS

Experiments

Apply each algorithm k once to each instance i and compute:

- **2** Computation time (t_{ki})

Repeat 5 times

Report for each algorithm k

- Average relative percentage deviation per instance size (50 and 100) per algorithm (12 algorithms)
- Average computation time per instance size (50 and 100) per algorithm (12 algorithms)

Is there a statistically significant difference between the solution quality generated by the different algorithms?

Statistical test

- Paired t-test
- Wilcoxon signed-rank test

Is there a statistically significant difference between the solution quality generated by the different algorithms?

- Statistical hypothesis tests are used to assess the validity of statements about properties of or relations between sets of statistical data.
- The statement to be tested (or its negation) is called the *null hypothesis* (H₀) of the test.
 Example: For the Wilcoxon signed-rank test, the null hypothesis is that 'the median of the differences is zero'.
- The $significance\ level\ (\alpha)$ determines the maximum allowable probability of incorrectly rejecting the null hypothesis.
 - Typical values of α are 0.05 or 0.01.

Is there a statistically significant difference between the solution quality generated by the different algorithms?

- Statistical hypothesis tests are used to assess the validity of statements about properties of or relations between sets of statistical data.
- The statement to be tested (or its negation) is called the *null hypothesis* (*H*₀) of the test. *Example:* For the Wilcoxon signed-rank test, the null hypothesis is that 'the median of the differences is zero'.
- The *significance level* (α) determines the maximum allowable probability of incorrectly rejecting the null hypothesis.

 Typical values of α are 0.05 or 0.01.

Is there a statistically significant difference between the solution quality generated by the different algorithms?

- Statistical hypothesis tests are used to assess the validity of statements about properties of or relations between sets of statistical data.
- The statement to be tested (or its negation) is called the *null hypothesis* (*H*₀) of the test. *Example:* For the Wilcoxon signed-rank test, the null hypothesis is that 'the median of the differences is zero'.
- The *significance level* (α) determines the maximum allowable probability of incorrectly rejecting the null hypothesis.

 Typical values of α are 0.05 or 0.01.

Is there a statistically significant difference between the solution quality generated by the different algorithms?

Background: Statistical hypothesis tests (1)

- Statistical hypothesis tests are used to assess the validity of statements about properties of or relations between sets of statistical data.
- The statement to be tested (or its negation) is called the *null hypothesis* (H₀) of the test.
 Example: For the Wilcoxon signed-rank test, the null hypothesis is that 'the median of the differences is zero'.
- The *significance level* (α) determines the maximum allowable probability of incorrectly rejecting the null hypothesis.

Typical values of α are 0.05 or 0.01

Is there a statistically significant difference between the solution quality generated by the different algorithms?

- Statistical hypothesis tests are used to assess the validity of statements about properties of or relations between sets of statistical data.
- The statement to be tested (or its negation) is called the *null hypothesis* (H₀) of the test.
 Example: For the Wilcoxon signed-rank test, the null hypothesis is that 'the median of the differences is zero'.
- The *significance level* (α) determines the maximum allowable probability of incorrectly rejecting the null hypothesis. Typical values of α are 0.05 or 0.01.

Is there a statistically significant difference between the solution quality generated by the different algorithms?

- The application of a test to a given data set results in a p-value, which represents the
 probability that the null hypothesis is incorrectly rejected.
- The null hypothesis is rejected iff this p-value is smaller than the previously chosen significance level.
- Most common statistical hypothesis tests are already implemented in statistical software such as the *R software environment* (http://www.r-project.org/).

Is there a statistically significant difference between the solution quality generated by the different algorithms?

- The application of a test to a given data set results in a p-value, which represents the
 probability that the null hypothesis is incorrectly rejected.
- The null hypothesis is rejected iff this p-value is smaller than the previously chosen significance level.
- Most common statistical hypothesis tests are already implemented in statistical software such as the *R software environment* (http://www.r-project.org/).

Is there a statistically significant difference between the solution quality generated by the different algorithms?

- The application of a test to a given data set results in a p-value, which represents the
 probability that the null hypothesis is incorrectly rejected.
- The null hypothesis is rejected iff this p-value is smaller than the previously chosen significance level.
- Most common statistical hypothesis tests are already implemented in statistical software such as the R software environment (http://www.r-project.org/).

Is there a statistically significant difference between the solution quality generated by the different algorithms?

```
best.known <- read.csv ("bestSolutions.txt")
a.cost <- read.table("ii-best-ex-rand.dat")$V1
a.cost <- 100 * (a.cost - best.known) / best.known$BS
b.cost <- read.table("ii-best-ins-rand.dat")$V1
b.cost <- 100 * (b.cost - best.known) / best.known$BS
t.test (a.cost, b.cost, paired=T)$p.value
[1] 0.8819112
wilcox.test (a.cost, b.cost, paired=T)$p.value
[1] 0.0019212</pre>
```

Is there a statistically significant difference between the solution quality generated by the different algorithms?

```
best.known <- read.csv ("bestSolutions.txt")
a.cost <- read.table("ii-best-ex-rand.dat")$V1
a.cost <- 100 * (a.cost - best.known) / best.known$BS
b.cost <- read.table("ii-best-ins-rand.dat")$V1
b.cost <- 100 * (b.cost - best.known) / best.known$BS
t.test (a.cost, b.cost, paired=T)$p.value
[1] 0.8819112
wilcox.test (a.cost, b.cost, paired=T)$p.value
[1] 0.0019212</pre>
```

Is there a statistically significant difference between the solution quality generated by the different algorithms?

```
best.known <- read.csv ("bestSolutions.txt")
a.cost <- read.table("ii-best-ex-rand.dat")$V1
a.cost <- 100 * (a.cost - best.known) / best.known$BS
b.cost <- read.table("ii-best-ins-rand.dat")$V1
b.cost <- 100 * (b.cost - best.known) / best.known$BS
t.test (a.cost, b.cost, paired=T)$p.value
[1] 0.8819112
wilcox.test (a.cost, b.cost, paired=T)$p.value
[1] 0.0019212</pre>
```

Is there a statistically significant difference between the solution quality generated by the different algorithms?

```
best.known <- read.csv ("bestSolutions.txt")
a.cost <- read.table("ii-best-ex-rand.dat")$V1
a.cost <- 100 * (a.cost - best.known) / best.known$BS
b.cost <- read.table("ii-best-ins-rand.dat")$V1
b.cost <- 100 * (b.cost - best.known) / best.known$BS
t.test (a.cost, b.cost, paired=T)$p.value
[1] 0.8819112
wilcox.test (a.cost, b.cost, paired=T)$p.value
[1] 0.0019212</pre>
```

Is there a statistically significant difference between the solution quality generated by the different algorithms?

```
best.known <- read.csv ("bestSolutions.txt")
a.cost <- read.table("ii-best-ex-rand.dat")$V1
a.cost <- 100 * (a.cost - best.known) / best.known$BS
b.cost <- read.table("ii-best-ins-rand.dat")$V1
b.cost <- 100 * (b.cost - best.known) / best.known$BS
t.test (a.cost, b.cost, paired=T)$p.value
[1] 0.8819112
wilcox.test (a.cost, b.cost, paired=T)$p.value
[1] 0.0019212</pre>
```

Is there a statistically significant difference between the solution quality generated by the different algorithms?

```
best.known <- read.csv ("bestSolutions.txt")
a.cost <- read.table("ii-best-ex-rand.dat")$V1
a.cost <- 100 * (a.cost - best.known) / best.known$BS
b.cost <- read.table("ii-best-ins-rand.dat")$V1
b.cost <- 100 * (b.cost - best.known) / best.known$BS
t.test (a.cost, b.cost, paired=T)$p.value
[1] 0.8819112
wilcox.test (a.cost, b.cost, paired=T)$p.value
[1] 0.0019212</pre>
```

Exercise 1.2 VND algorithms for the PFSP

Implement 4 VND algorithms for the PFSP

- Pivoting rule: first-improvement
- Neighborhood order:
 - transpose \rightarrow exchange \rightarrow insert
 - 2 transpose \rightarrow insert \rightarrow exchange
- Initial solution:
 - Random permutation
 - Simplified RZ heuristic

Exercise 1.2 VND algorithms for the PFSP

Variable Neighbourhood Descent (VND)

```
k neighborhoods \mathcal{N}_1, \ldots, \mathcal{N}_k
\pi := GenerateInitialSolution()
i := 1
repeat
  choose the first improving neighbor \pi' \in \mathcal{N}_i(\pi)
   if \exists \pi' then
     i := i + 1
  else
     \pi := \pi'
     i := 1
until i > k
```

Exercise 1.2 VND algorithms for the PFSP

Implement 4 VND algorithms for the PFSP

- Instances: Same as for exercise 1.1
- Experiments: one run of each algorithm per instance
- Report: Same as for exercise 1.1
- Statistical tests: Same as for exercise 1.1

- Instances and "skeleton" code are available on TEAMS
- Some of the deliverables you need to provide in a zip folder with your name via TEAMS are:
 - your implementation in C, C++ or Java. Python is also possible, but **not** recommended
 - a README file explaining how to run your implementation from the command line on Linux
 - a report describing the implementation of the algorithms and the results you obtained more detail on TEAMS)
 - see the full description of the deliverables in the pdf on TEAMS
- Deadline is April 14, 2023 (23:59)
- Questions?
 Use TEAMS to post them in the channel of the assignment