Paper title - English

Título do artigo - somente para documento escrito em Português

BRAGA, Samira J.*; GOMI, Edson S.*
*Escola Politécnica da Universidade de São Paulo

Abstract—Abstract here. Keywords— word 1; word 2.

Resumo— É necessária a inserção do resumo para artigo escrito em Português.

Palavras-chave— palavra 1; palavra 2.

Classificação — Mestrado

Categoria— Iniciante

I. INTRODUÇÃO

II. DIAGNÓSTICO DE GLAUCOMA

Glaucoma é uma neuropatia óptica crônica multifatorial e de lenta progressão que causa perda de campo visual periférico e é a segunda maior causa de cegueira no mundo, estima-se que atingirá 79,6 milhões de pessoas até 2020 [1]. Essa doença caracteriza-se pela perda da camada de fibras nervosas no olho, o que pode causar cegueira se não for tratado corretamente [2]. O dano na camada de fibras nervosas se dá antes de alteração no campo visual do paciente, por isso o diagnóstico precoce é um fator importante para evitar a perda da visão [3].

O glaucoma é diagnosticado por meio do exame perimetria computadorizada (SAP), que é um exame funcional, e pela tomografia de coerência óptica (OCT), que é um exame estrutural. Os exames funcionais avaliam o campo visual do paciente em busca de reduções na visão. Os exames estruturais avaliam a camada de fibras nervosas para identificar alterações na espessura. Não é simples identificar a existência do glaucoma antes que haja dano ao campo visual [4].

O OCT é empregado para identificar alterações na espessura da camada de fibras nervosas. No exame, utiliza-se o princípio da interferometria luminosa para medir as espessuras das estruturas intraoculares. Ao realizar uma varredura, o equipamento emite feixes de laser infravermelho e mede o tempo que a luz leva para ser refletida. A cada estrutura atravessada, uma parte dessa luz é refletida de volta, é feito então o cálculo da espessura da estrutura com base em um feixe de luz de referência e o quanto de luz foi refletido de volta [5].

Durante o exame com um equipamento de alta definição, são realizadas 200 varreduras lineares verticais e 200 horizontais em uma área de 6mm centralizado no disco óptico, após isso é gerada uma saída como na figura 1. O primeiro gráfico no topo representa o mapa de espessuras de toda a área analisada, as áreas sem azul indicam espessuras próximas a 0 e áreas amarelas e vermelhas indicam espessuras entre 175 e 350 mícrons. O disco central em cinza representa a fóvea, ponto

Figura 1. Saída de um exame de OCT.

cego do olho de onde sai o nervo óptico. Abaixo do mapa de espessuras está a o mapa de desvio, mostra as áreas onde a espessura está diferente da população normal, de acordo com um banco de dados normativo do software do equipamento. Também nesse gráfico está representada a linha círcular de onde são retirados os pontos para a representação da espessura nos gráficos na parte de baixo da saída. Esses gráficos mostram a espessura ao longo da circunferência, com centro no nervo óptico. A partir dos ponto dessa circunferência, são gerados os gráficos de quadrantes e horas de relógio, que representam as espessuras médias em cada região.

É possível utilizar classificadores de aprendizagem de máquina para fazer o diagnóstico de glaucoma com base nos exames de OCT e SAP. Um classificador de rede neural profunda foi utilizado com dados de exame de campo visual para detectar estágios iniciais de glaucoma [6]. Dados de OCT e SAP em conjunto também foram utilizados para treinar diversos tipos de classificadores [4], [7].

III. REDES NEURAIS CONVOLUCIONAIS

Redes neurais profundas estão sendo amplamente utilizadas em diversos domínios para classificação e detecção de objetos, principalmente em visão computacional e reconhecimento e processamento de linguagem natural. Essas redes consistem em várias camadas conectadas que aprendem a reconhecer padrões nos dados apresentados, sejam eles imagens ou sons.

(a) Imagem de entrada da rede

(b) Imagem de saída da primeira camada convolucional

(c) Imagem de saída da segunda camada convolucional

(d) Imagem de saída da terceira camada convolucional

(e) Imagem de saída da quarta camada convolucional

(f) Imagem de saída da quinta camada convolucional

Figura 2. Exemplos de saídas de cada camada convolucional ao longo da rede.

O principal tipo de rede utilizado é a rede neural convolucional (RNC). As RNCs mostraram ser excelentes ferramentas no processamento de imagens, inclusive na área médica, sendo utilizadas para classificação, detecção de objetos e segmentação. Esse sucesso deve-se principalmente à utilização de grandes quantidades de exemplos de treinamento, que permitem que a rede aprenda a reconhecer características a partir dos dados brutos das imagens [8].

As RNCs são compostas de várias camadas conectadas, sendo os principais tipos as convolucionais, pooling e as camadas totalmente conectadas. As camadas convolucionais servem como filtros para identificar as características das imagens, como curvas, bordas e cores. As saídas das camadas convolucionais são mapas de características identificadas na imagem de entrada. A convolução é feita utilizando uma máscara (ou kernel) que desliza por todos os pixels da imagem múltiplicando os valores do pixel pelos valores da máscara. Essa múltiplicação é feita em toda a imagem com diferentes máscaras, gerando assim as saídas dos diferentes filtros em cada camada de convolução.

Após a identificação dessas características, a camada de pooling agrupa as características e reduz a resolução da imagem. Também utilizando uma máscara, a operação de pooling irá calcular o valor máximo em cada região da imagem, agrupando características similares em um mesmo pixel. Na figura 2 é possível acompanhar o agrupamento de características e a redução da resolução da imagem ao longo de 5 camadas convolucionais e pooling.

As camadas totalmente conectadas recebem todas as características identificadas nas imagens e fazem a classificação final. A saída dessa camada será um vetor com o número de classes a serem classificadas, cada classe terá um valor de probabilidade sendo o maior valor a classe identificada para a imagem. O desenho de uma configuração de rede convolucional profunda pode ser visto na figura 3. Várias camadas de convolução e pooling utilizando ativações por ReLU (Rectified Linear Unit) são seguidas por duas ou mais camadas totalmente conectadas.

A. Transfer Learning

Para treinar uma rede convolucional com muitas camadas e milhões de parâmetros é necessário ter um conjunto muito grande de exemplos de treinamento para que não haja problemas de convergência. Redes como a GoogleLeNet e

Figura 3. Esquema de camadas de uma rede neural convolucional.

VGG foram treinadas com datasets como o ImageNet com 14 milhões de imagens distribuidas em 1000 categorias [9]. No entanto, imagens médicas são muito mais difíceis de se obter, principalmente com anotações de classes, devido ao tempo para realizar os estudos e para anotar as imagens.

Uma alternativa para a utilização de redes profundas com um dataset menor é a utilização do transfer learning. Essa técnica consiste em usar uma rede treinada com um dataset grande de imagens em um domínio mais amplo e transferir esse conhecimento de características mais básicas para um domínio mais específico. Dessa forma, ao invés de utilizar inicialização randômica dos parâmetros da rede, utiliza-se os pesos de uma rede já treinada. A utilização de uma rede prétreinada reduz o tempo de treinamento e a necessidade de um dataset muito grande para o novo objetivo [10].

B. Redes pré-treinadas

IV. EXPERIMENTOS E RESULTADOS

A. Dataset

O dataset original foi obtido com o departamento de oftalmologia da Unicamp. O dataset consiste de imagens de OCT com tamanho 136x136 de 56 olhos com glaucoma e 66 olhos normais, totalizando 122 pacientes. Os gráficos de espessura de fibras nervosas foram obtidos através da extração das imagens do PDF do exame. Foram selecionados para o experimento somente os olhos de pacientes que foram manualmente classificados por especialistas.

Para a separação do dataset em treino e validação, foram selecionados 20% de olhos normais e 20% de olhos com glaucoma para validação, e o restante para treino, totalizando 98 imagens de treino e 24 para validação. As imagens selecionadas para teste não estão presentes no dataset de treino, para que o algoritmo possa classificar imagens ainda não vistas.

Para evitar overfitting, foi empregada uma técnica para aumentar o número de exemplos a partir das imagens no dataset de treino. Cada imagem foi rotacionada 100 vezes em ângulos aleatórios entre 0 e 360 graus, gerando assim um dataset de treino com 9800 imagens. As imagens de validação não foram rotacionadas.

B. Pré-processamento

Para utilização do transfer learning, foi necessário fazer a subtração do pixel médio em todas as imagens do dataset de treino. O valor (médio de cada pixel da imagem) é calculado sobre todas as imagens do dataset de treino. Essa imagem média é então subtraída de cada imagem do dataset. Dessa forma, todos os pixels de entrada estão na mesma ordem de grandeza, evitando que os gradientes desapareçam ou explodam.

Onde houveram falhas na aquisição da imagem, gerando áreas escuras, pixels com valores RGB próximos ao preto foram substituídos pelo valor de preto absoluto RGB (0, 0, 0) para que não tenham influência sobre a decisão do classificador.

C. Resultados com transfer learning

Neste experimento, utilizamos a mesma arquitetura da rede VGG16, alterando a saída da última camada totalmente conectada para duas saídas, correspondente às duas classes a serem classificadas: normal e glaucoma. A camada de entrada da rede também foi alterada para a resolução das imagens do nosso dataset. As imagens do dataset Imagenet com que a rede foi treinada tinham a resolução de 224x224 pixels, enquanto que as imagens de OCT têm resolução de 136x136 pixels.

Os pesos pré-treinados foram carregados para inicialização apenas das camadas convolucionais. As três últimas camadas totalmente conectadas foram iniciadas com valores aleatórios devido à diferença de resolução entre as imagens do dataset Imagenet e as imagens de OCT classificadas nesse experimento. Essa diferença gera quantidades de parâmetros diferentes na saída da última camada convolucional. Sendo assim, as camadas totalmente conectadas foram inicializadas com valores aleatórios de uma distribuição normal com desvio padrão 0.01.

O treinamento foi realizado em todas as camadas da rede, utilizando o gradiente descendente estocástico por 5000 iterações, com mini batches de 15 imagens. Os parâmetros de momentum e weight decay foram definidos como 0.9 e 0.0005, respectivamente. A taxa de aprendizagem inicial foi de 0.001. A cada 1000 iterações a taxa de aprendizagem foi diminuída utilizando a equação 1.

$$base_lr * \gamma^{\left\lfloor \frac{iter}{step} \right\rfloor}$$
 (1)

Onde $base_lr$ é a taxa de aprendizagem inicial, γ é um parâmetro do Caffe definido com o valor 0.1, iter é o número da iteração atual e step é um parâmetro definido como 1000.

A validação do modelo foi feita utilizando um dataset de 24 imagens não vistas pelo algoritmo durante a fasee de treinamento. Foi obtida acurácia final de 95.8%, com sensibilidade de 100% e especificidade de 92.3%. O gráfico na figura 4 mostra a evolução dos valores de perda e acurácia durante

Figura 4. Acurácia e perda de treino e validação da rede VGG16 com transfer learning.

o processo de treinamento da rede. A validação foi feita a cada 1000 iterações. É possível identificar a estabilização da acurácia após 1000 iterações, quando o valor de perda do treinamento chega próximo à zero.

D. Resultados sem transfer learning

No experimento sem transfer learning, foi utilizada a mesma arquitetura de rede VGG16, porém sem utilizar os pesos pré-treinados. As camadas convolucionais foram inicializadas utilizando o algoritmo xavier [11], as últimas camadas totalmente conectadas foram inicializadas utilizando valores de distribuição normal com desvio padrão 0.01.

O treino foi realizado com 10000 iterações, utilizando mini batches de 20 imagens e gradiende descendente estocástico. A taxa de aprendizagem foi inicializada em 0.1 e diminuída a cada 5000 iterações, utilizando a equação 1. Os parâmetros de momentum e e weight decay não foram alterados, utilizando os mesmos definidos no experimento com transfer learning. Para evitar que os gradientes aumentassem muito, foi utilizada a técnica de gradient clipping para que os gradientes não sejam maior que 1.

V. DISCUSSÃO

VI. CONCLUSÃO

REFERÊNCIAS

- [1] QUIGLEY, H. A. The number of people with glaucoma worldwide in 2010 and 2020. *British Journal of Ophthalmology*, BMJ, v. 90, n. 3, p. 262–267, mar 2006. Disponível em: http://dx.doi.org/10.1136/bjo.2005.081224>.
- [2] QUIGLEY, H. A. Glaucoma. The Lancet, v. 377, n. 9774, p. 1367 –1377, 2011.
- [3] MALIK, R.; SWANSON, W. H.; GARWAY-HEATH, D. F. 'structure-function relationship' in glaucoma: past thinking and current concepts. Clinical & Experimental Ophthalmology, Wiley-Blackwell, v. 40, n. 4, p. 369–380, apr 2012. Disponível em: http://dx.doi.org/10.1111/j.1442-9071.2012.02770.x.
- [4] DIAS, M. Geracao de Populacoes Artificiais para Treinamento de Classificadores de Apoio ao diagnostico de Glaucoma. Tese (Doutorado) — Escola Politecnica da USP, 2009.
- [5] HUANG, D. et al. Optical coherence tomography. Science, American Association for the Advancement of Science, v. 254, n. 5035, p. 1178–1181, 1991. ISSN 0036-8075. Disponível em: http://science.sciencemag.org/content/254/5035/1178.

- [6] ASAOKA, R. et al. Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier. *Ophthalmology*, Elsevier BV, v. 123, n. 9, p. 1974–1980, sep 2016. Disponível em: http://dx.doi.org/10.1016/j.ophtha.2016.05.029>.
- [7] BOWD, C. et al. Bayesian machine learning classifiers for combining structural and functional measurements to classify healthy and glaucomatous eyes. *Investigative Ophthalmology & Visual Science*, v. 49, n. 3, p. 945, 2008. Disponível em: <+ http://dx.doi.org/10.1167/iovs.07-1083>.
- [8] GREENSPAN, H.; GINNEKEN, B. van; SUMMERS, R. M. Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique. *IEEE Transactions on Medical Imaging*, v. 35, n. 5, p. 1153–1159, May 2016. ISSN 0278-0062.
- [9] RUSSAKOVSKY, O. et al. ImageNet Large Scale Visual Recognition Challenge. *International Journal of Computer Vision (IJCV)*, v. 115, n. 3, p. 211–252, 2015.
- [10] Tan, C. et al. A Survey on Deep Transfer Learning. ArXiv e-prints, ago. 2018.
- [11] GLOROT, X.; BENGIO, Y. Understanding the difficulty of training deep feedforward neural networks. In: TEH, Y. W.; TITTERINGTON, M. (Ed.). Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Chia Laguna Resort, Sardinia, Italy: PMLR, 2010. (Proceedings of Machine Learning Research, v. 9), p. 249–256. Disponível em: http://proceedings.mlr.press/v9/glorot10a.html.