

ĐẠI HỌC ĐÀ NẮNG

TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG VIỆT - HÀN Vietnam - Korea University of Information and Communication Technology

BÀI GIẢNG LẬP TRÌNH MẠNG

PGS.TS.Huỳnh Công Pháp; Nguyễn Anh Tuấn; Lê Tân; Nguyễn Thanh Cẩm; Hoàng Hữu Đức

Khoa Khoa học máy tính

Bài 2. Các mô hình mạng

- Nguyên tắc truyền thông
- Mô hình truyền thông trong kiến trúc mạng
- 7 tầng của mô hình tham chiếu OSI
- Các giao thức
- Mô hình 4 tầng TCP/IP
- Mô hình phân tầng thu gọn 3 tầng
- Ví dụ mô hình truyền thông đơn giản

Nguyên tắc truyền thông

- Một mạng máy tính truyền dữ liệu được khi:
 - Các máy tính kết nối nhau theo một cấu trúc (topology) nào đó.
 - Truyền/nhận dữ liệu theo qui định thống nhất (protocol).
 - Phân chia hoạt động truyền thông của hệ thống thành nhiều lớp theo các nguyên tắc nhất định.

Mô hình truyền thông trong kiến trúc mạng (tt)

- Phương pháp phân tầng mạng
 - Tách và xét mô hình mạng thành các môđun độc lập:
 - giảm độ phức tạp cho việc thiết kế và cài đặt.
- Nguyên tắc
 - Mỗi hệ thống được xây dựng như một cấu trúc nhiều tầng và có cấu trúc giống nhau:
 - số lượng tầng và chức năng của các tầng

- Dữ liệu chỉ được truyền giữa 2 tầng kề nhau.
- Bên gửi: Dữ liệu từ tầng cao nhất lần lượt đến tầng thấp nhất.
- Bên nhận: Dữ liệu từ tầng thấp nhất ngược lên đến tầng cao nhất.

• Chỉ có 2 tầng thấp nhất mới có liên kết vật lý với nhau, còn các tầng trên cùng thứ tự chỉ có liên kết logic với nhau.

10 Tiầng của mô hình tham chiếu OSI

Tầng vật lý (physical layer)

- Kiểm soát mức thấp nhất việc truyền thông giữa 2 nút mạng.
- Card mạng và cáp mạng. Truyền dãy các bit giữa 2 nút.
- Các nhà lập trình mạng không làm việc ở mức này.
 - Trách nhiệm của các nhà phát triển driver phần cứng và các kỹ sư điện.

• Lỗi có thể xảy ra trong quá trình truyền dữ liệu ở tầng này do điện áp, hay nhiễu đường truyền trên

mang.

Sample electrical signals transmitted on copper cable

Representative light pulse fiber signals

Microwave (wireless) signals

Tầng liên kết dữ liệu (Data link layer) • Chịu trách nhiệm truyền dữ liệu tin cậy hơn

- Nhóm dữ liệu thành các frames.
 - Frames tương tự như các packet dữ liệu, nhưng chúng là các khối dữ liệu, được đặc tả theo kiến trúc phần cứng (trong khi đó packet được dùng ở tầng cao hơn và có thể di chuyển từ kiểu mạng này sang kiểu mạng khác).
- Frames có trường kiểm tra lỗi truyền (checksums, TTL..)
- Đảm bảo dữ liệu bị méo không được truyền lên tầng trên.

Tầng Mạng (Network layer)

- Các frames truyền từ tầng Datalink lên hoặc các segments từ tầng transport xuống.
- Dữ liệu dạng các packets
- Phần header chứa các thông tin quan trọng:
 - Địa chỉ mạng (network address) và định tuyến mạng (routing).
- Packets được gửi qua lại giữa các mạng.
- Các packets thường được định tuyến khác nhau;
 - việc định tuyến được thực hiện nhờ các routers
- Các lập trình mạng cũng hiếm được yêu cầu lập trình các dịch vụ phần mềm cho tầng này.

Tầng vận chuyển (transport layer)

- Liên quan đến việc dữ liệu được truyền như thế nào
- Dữ liệu dạng segments
- Chịu trách nhiệm:
 - Xử lý việc kết nối,
 - Phát hiện lỗi một cách tự động,
 - điều khiển luồng dữ liệu

Tầng phiên (session layer)

- Làm cho dễ dàng việc trao đổi dữ liệu,
- Quản lý phiên truyền thông giữa các ứng dụng.
 - Thiết lập một phiên,
 - đồng bộ một phiên,
 - thiết lập lại phiên nếu một phiên bị kết thúc đột ngột.
- Không phải tất cả các ứng dụng đều sử dụng giao thức có kết nối
 - Do vậy việc quản lý phiên không phải lúc nào cũng được yêu cầu.

Tầng trình bày (Presentation layer)

- Nhiệm vụ đảm bảo hiển thị và chuyển đổi dữ liệu.
 - Các máy tính khác nhau có thể sử dụng các kiểu biểu diễn dữ liệu khác nhau (ví dụ một số nguyên có thể 8 bit hoặc 16 bit).
 - Một vài giao thức muốn nén hoặc mã hóa dữ liệu.

Tầng ứng dụng (Application layer)

- Tầng cao nhất trong mô hình mạng.
- Hầu hết các ứng dụng mạng được viết ở tầng này.

Các giao thức

- Application
 - HTTP, FTP, SMTP, NSF, Telnet, SSH, ECHO, ...
- Presentation
 - SMB, NCP, ...
- Session
 - SSH, NetBIOS, RPC, ...
- Transport
 - TCP, UDP, ...
- Network
 - IP, ICMP, IPX
- Data link
 - Ethernet, Token Ring, ISDN, ...
- Physical
 - 100BASE-T, 1000BASE-T, 802.11

Metadata trong một thông điệp

V Dóng gói dữ liệu

Upper Layer Data TCP Header Upper Layer Data

IP Header Data

FCS LLC Header Data

MAC Header **FCS** Data 0101110101001000010

Application

Presentation

Session

Segment Transport

Network Packet

Data Link Frame

Physical Bits

Mô hình 4 tầng TCP/IP

OSI Model	TCP/IP Internet Protocol
Application	
Presentation	Application
Session	
Transport	Transport
Network	Internet
Data-link	Network Interface
Physical	IACTOOOLV HITCHIGGE

Mô hình phân tầng thu gọn 3 tầng

- Một số mô hình được phát triển
 - Mô hình 7 tầng OSI
 - Mô hình 4 tầng TCP/IP
- Xét trên phương diện lập trình
 - Mô hình truyền thông đơn giản gồm 3 tầng.
 - Tầng ứng dụng,
 - Tầng giao vận
 - Tầng tiếp cận mạng

Mô hình phân tầng thu gọn 3 tầng (tt)

- Các thành phần tham gia trong quá trình truyền thông
 - Các chương trình ứng dụng,
 - Các chương trình truyền thông,
 - Các máy tính và các mạng
- Gửi dữ liệu giữa các ứng dụng
 - Máy tính gửi:
 - Úng dụng gửi chuyển dữ liệu cho chương trình truyền thông
 - Chương trình truyền thông sẽ gửi dữ liệu cho máy tính nhận.
 - Máy tính nhận:
 - Chương trình truyền thông sẽ tiếp nhận và kiểm tra dữ liệu trước
 - Sau đó chuyển cho ứng dụng đạng chờ nhận dữ liệu.

Ví dụ mô hình truyền thông đơn giản

Ví dụ mô hình truyền thông..(tt)

Máy A:

- Úng dụng 1 cần gửi một khối dữ liệu
- Dữ liệu được chuyển cho tầng giao vận
 - chia dl thành nhiều đoạn và đóng thành các gói tin (packets)
 - bổ sung thêm các thông tin điều khiển (header) vào mỗi gói tin.
- Dữ liệu tiếp tục được chuyển cho tầng tiếp cận mạng và chuyển cho máy B.

Máy B:

- Tầng tiếp cận mạng sẽ tập hợp dữ liệu và chuyển cho tầng giao vận.
 - kiểm tra và ghép dl lại thành khối (nhờ tt header).
 - Khối dữ liệu sẽ được chuyển lên cho tầng ứng dụng.

Thank your listening!