

Présentation P3 - Projet fil rouge

Toxic Comment Classification

28/04/2020

Hamza AMRI, Camille COCHENER, Sophie LEVEUGLE, Rodolphe SIMONEAU

Plan de la présentation

- 1. Contexte et présentation du nouveau sujet
- 2. Etat de l'art et méthodes
- 3. Premiers résultats obtenus
- 4. Difficultés et ajustements
- 5. Prochaines étapes

Contexte et présentation du nouveau sujet

Rappels des objectifs du sujet initial

Analyser et valoriser les données audio des centres d'appels

Reconnaissance vocale

NLP

Apprentissage

1

Transcription des données audio en texte

- 2
- Extraire des insights pertinents pour améliorer la satisfaction client et la performance de vente des conseillers

Difficultés et ajustements

Rappels des objectifs du sujet initial

✓ Transcription des données audio en texte

Choix de trois cas d'usage pertinents

- Identification de l'argumentaire clé de vente avec assurance
- Segmentation des conversations afin d'identifier le sentiment du client
- Prédiction de la volumétrie d'appel

Toxic Comment Classification Challenge

"FUCK YOUR FILTHY MOTHER IN THE ASS, DRY!"

"Stupid peace of shit stop deleting my stuff asshole go die and fall in a hole go to hell!

Toxic Comment Classification Challenge

Conversation AI

Développement d'outils pour améliorer les conversations en lignes **Etude de commentaires toxiques**

Beaucoup de modèles disponibles sur l'API Perspective MAIS

Les modèles font encore des erreurs

Pas de sélection possible du type de toxicité

Toxic Comment Classification Challenge

Construire un modèle multi-labels qui permet de détecter plusieurs types de toxicité...

Menaces

obscénité

Insultes

Haine

à partir de commentaires des pages de discussion de Wikipedia

Rappel de notre équipe

Hamza AMRI

Camille COCHENER

Sophie LEVEUGLE

Rodolphe SIMONEAU

Support Académique

Geoffroy PEETERS (Spécialiste des données audio)

Béatrice BIANCARDI (Spécialiste des sciences cognitives)

Etat de l'art et méthodes

Le problème de classification multi-label

Trouver une fonction qui relie les entrées X à plusieurs vecteurs binaires en sortie

Transformation du problème en...

Binary Relevance

- * 1 classifieur par label
- **Suppose l'indépendance entre les labels**

Classifier Chain

- * Chaînes de classifieurs binaires
- * Prise en compte de la sortie du classifieur précédent
- ***** Prise en compte des **corrélations** entre labels

Label Powerset

- **X** Considération de **combinaison de labels**
- * 1 classifieur pour une combinaison de labels
- ***** Prise en compte des **corrélations** entre labels
- ****** Coûteux en calcul

Customisation des algorithmes

** Changement de fonction de coût et/ou de fonction de décision

Préparation des données textuelles

```
"D'aww! He matches this background colour I'm seemingly stuck with. Thanks. (talk) 21:51, January 11, 2016 (UTC)"
```

Préparation des données textuelles

Techniques d'apprentissage identifiées

Métriques d'évaluation

Moyenne des Auc individuelles de chaque colonne prédite

$$\frac{1}{m} \sum_{i=1}^{6} AUC_i$$

Contexte et présentation du nouveau sujet

- Données déséquilibrées
- Classification multi-label

Méthodes supplémentaires envisagées

Train et Test-Time Augmentation (TTA)

Quels environnements de développement?

Développement du code pour les analyses

Librairies majoritaires utilisées

Plateforme de calcul?

Premiers résultats obtenus

Exploration des données (1)

Analyse des labels à prédire

Classes déséquilibrées

89.8% Sans

10.2% Avec

toxicité

toxicité

Majorité de labels "toxic", "insult", "obscene"

Pas de données manquantes

Difficultés et ajustements

Exploration des données (2)

Analyse des labels à prédire

Corrélations entre labels

De fortes corrélations entre :

- "toxic" et "insult": 0.65
- "toxic" et "obscene" : 0.68
- "insult" et "obscene" : 0.74

Prochaines étapes

Exploration des données (3)

Longueurs des commentaires

Légère ≠ entre les longueurs moyennes des commentaires sans toxicité et avec toxicité

*Cohen's d = 0.35 (Petit effect size)

Description des commentaires

- Longueur moyenne: 67.3 termes
- Longueur min : 1 terme
- Longueur max: 1411 termes
- 75% des commentaires ont une longueur < 75 termes

Exploration des données (4)

Suppression des stopwords

Exploration des données (5)

Analyse des commentaires

Une utilisation sensiblement plus marquée des majuscules dans les commentaires très toxiques

Taux de majuscules par commentaire

Une utilisation plus marquée du point d'exclamation dans commentaires toxiques

Nombre de "!" par commentaire

Difficultés et ajustements

Résultats des premiers modèles

Essai n°	Préparation	Transformation	Algorithme	AUC
1	Nettoyage classique Lower Stopwords Lemmatisation	TF-IDF	Binary relevance Régression Logistique	0.93518
2		TF-IDF	Chaîne de classifieur Régression Logistique	0.968
3		Tokenizer Padding Embedding (GloVe)	LSTM Simple Dense	0.95503
4		Tokenizer Padding Embedding (GloVe, Word2vec, Fasttext)	Bidirectional LSTM MaxPool Dropout Dense	0.97483

Positionnement dans le challenge

Difficultés et ajustements

Difficultés et ajustements réalisés

Changement de sujet au bout de 6 mois de projets

Prise de décision rapide sur un nouveau sujet

Travail à distance dû au confinement

Github, visioconférence, drive...

Limites dans la puissance de calcul

Utilisation d'outils gratuits (Collab,...)

Limites d'un projet Kaggle

Recherche de complexité (création d'une API...)

Prochaines étapes

MAI JUIN Dashboard **P1** - Élargir notre benchmark de modèles **P1** - Choisir une méthode et l'optimiser **P2** - Développer la forme finale de la solution **P1** - Développer un code propre prêt à être **P2** - Travailler sur les supports de rendu final déployer **P1** - Choisir la forme finale de la solution

Merci pour votre attention!