Deep Learning for Natural Language Processing

Dr. Minlie Huang (黄民烈)

aihuang@tsinghua.edu.cn

Computer Science Department

Tsinghua University

Homepage: http://coai.cs.Tsinghua.edu.cn/hml

Convolutional Network for NLP

Convolutional Network for NLP

Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification. In *EMNLP*. Association for Computational Linguistics, 1746–1751.

Convolution Layer

• Word vectors: $\mathbf{x}_i \in \mathbb{R}^k$

• Sentence (concatenating words sequentially):

$$\mathbf{x}_{1:n} = \mathbf{x}_1 \oplus \mathbf{x}_2 \oplus \ldots \oplus \mathbf{x}_n$$

- Words in range (a vector): $\mathbf{x}_{i:i+j}$
- Convolutional filter (a vector), h is a window of h words:

$$\mathbf{w} \in \mathbb{R}^{hk}$$

Convolution Layer

• The feature value of position i:

$$c_i = f(\mathbf{w}^T \mathbf{x}_{i:i+h-1} + b)$$

• All possible windows:

$$\{\mathbf{x}_{1:h}, \mathbf{x}_{2:h+1}, \dots, \mathbf{x}_{n-h+1:n}\}$$

• The resulting feature map:

$$\mathbf{c} = [c_1, c_2, \dots, c_{n-h+1}] \in \mathbb{R}^{n-h+1}$$

Convolution Layer

When the window width h=2

Pooling Layer

• Feature map with **W**:

$$\mathbf{c} = [c_1, c_2, \dots, c_{n-h+1}] \in \mathbb{R}^{n-h+1}$$

Pooling this vector to a single scalar (max, min, mean):

$$\hat{c} = \max\{\mathbf{c}\}$$

 But only ONE value here? Machine learning generally requires more input values

Final Softmax Layer

- Using multiple filters W (~100), and multiple window h
 - The final vector is of N_w*N_h
- The final feature vector

$$Z = [c_{h_{-1,1}}, c_{h_{-1,2}}, \dots, c_{h_{-1,N_w}}, c_{h_{-2,1}}, c_{h_{-2,2}}, \dots, c_{h_{-2,N_w}} \dots]$$

h_i: how many types of windows

N_w: how many filters

• The final softmax layer (or another MLP layer) takes z as input:

$$y = softmax \left(W^{(S)}z + b \right)$$

Advanced CNN Models for NLP

- One-dimensional convolution
- K-max pooling over time
- Multiple filters and multiple channels
- Very similar to image processing

N. Kalchbrenner, E. Grefenstette, and P. Blunsom. A Convolutional Neural Network for Modelling Sentences . In: Proceedings of ACL. 2014.

Advanced CNN Models for NLP

Convolutional Neural Network

Lei T, Barzilay R, Jaakkola T. Molding cnns for text: non-linear, non-consecutive convolutions[J]. EMNLP, 2015.

Model	Fine-grained		Binary	
	Dev	Test	Dev	Test
RNN		43.2		82.4
RNTN		45.7		85.4
DRNN		49.8		86.8
RLSTM		51.0		88.0
DCNN		48.5		86.9
CNN-MC		47.4		88.1
CNN	48.8	47.2	85.7	86.2
PVEC		48.7		87.8
DAN		48.2		86.8
SVM	40.1	38.3	78.6	81.3
NBoW	45.1	44.5	80.7	82.0
Ours	49.5	50.6	87.0	87.0
+ phrase labels	53.4	51.2	88.9	88.6

Comments on CNN for NLP

- Suitable for longer text
- Deep structures (multiple con/pool operations) seem to be NOT that helpful
- Not as strong as other models such as recursive/recurrent models

Summary

- Word representation
 - Word vectors
- Phrase/sentence representation
 - Recursive models
 - Recurrent models
 - CNN
- Document representation
 - CNN
 - Hierarchical models (RNN)
 - Hybrid models

Summary

0.123

0.243

0.789

-0.150

0.893

0.163

-0.876

Deep

Advance Topics of Deep Learning for NLP

- Memory network
- Deep reinforcement learning
- Sequence2Sequence learning

Memory Network Models

Neural Differentiable Computer

Deep Reinforcement Learning

Deep learning to represent states, actions, or policy functions

Sequence to Sequence Learning

- From Sequence $X_1 X_2 \cdots X_m$ to $Y_1 Y_2 \cdots Y_n$
- Machine translation, dialogue generation

Thanks for Attention

- Dr. Minlie Huang
- aihuang@tsinghua.edu.cn
- Homepage: http://coai.cs.tsinghua.edu.cn/hml