On Local Optimizers of Acquisition Functions in Bayesian Optimization

Jungtaek Kim (jtkim@postech.ac.kr)

Department of Computer Science and Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang 37673, Gyeongsangbuk-do, Republic of Korea

Presented at ECML-PKDD 2020

Joint work with Seungjin Choi

Table of Contents

Overview

Motivation

Definitions

Main Theorems

Empirical Analysis

Conclusion

Overview

Overview

- ▶ Bayesian optimization: a sample-efficient method for finding a global optimum of an expensive black-box function.
- ▶ A global optimizer of acquisition function should be found at each round and selected as the next query point.
- In practice, however, local optimizers of acquisition function are also used, since searching for the global optimizer is often a non-trivial or time-consuming task.
- We present a performance analysis on the behavior of local optimizers of those acquisition functions, in terms of instantaneous regrets over global optimizers.
- ► Then, we introduce an analysis, allowing a local optimization method to start from **multiple different initial conditions**.

Intuition

Figure 1: Results on Hartmann6D function.

(a) Optimization w/ global optimizers (b) Instantaneous regret difference over

global optimizers

In-Depth Explanation

Motivation

▶ Bayesian optimization sequentially finds a global optimum of a **black-box objective function** $f(\mathbf{x}): \mathcal{X} \to \mathbb{R}$ defined over a compact set $\mathcal{X} \subset \mathbb{R}^d$:

$$\mathbf{x}^{\dagger} = \arg\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}). \tag{1}$$

- ▶ Instead of optimizing f directly, it optimizes an acquisition function, which is defined with a surrogate model (e.g., Gaussian process regression).
- A global optimizer of acquisition function should be found at each round. However, in practice, local optimizers of acquisition function are used.
- ➤ To the best of our knowledge, this work is the first study which analyzes the difference between global and local optimizers in terms of instantaneous regrets.

Definition 1 (Global optimizer)

We denote by $\mathbf{x}_{t,g}$ the optimizer of the acquisition function $a(\mathbf{x}|\mathcal{D}_{t-1})$ at round t, determined by a global optimization method, given a time budget τ :

$$\mathbf{x}_{t,g} = \arg\max_{\mathbf{x} \in \mathcal{X}} a(\mathbf{x}|\mathcal{D}_{t-1}). \tag{2}$$

 $\mathbf{x}_{t,g}$ is referred to as a global optimizer.

Definition 2 (Local optimizer)

We denote by $\mathbf{x}_{t,l}$ the optimizer of the acquisition function $a(\mathbf{x}|\mathcal{D}_{t-1})$ at round t, determined by an iterative (local) optimization method where the convergence meets $\|\mathbf{x}_{t,l}^{(\tau)} - \mathbf{x}_{t,l}^{(\tau-1)}\|_2 \leq \epsilon_{opt}$ for iteration τ :

$$\mathbf{x}_{t,l} = \underset{\mathbf{x} \in \mathcal{X}}{\operatorname{arg\,max}} \mathbf{x}_{\mathbf{x} \in \mathcal{X}} \ a(\mathbf{x} | \mathcal{D}_{t-1}).$$
 (3)

 $\mathbf{x}_{t,l}$ is referred to as a local optimizer.

Definition 3 (Multi-started local optimizer)

Suppose that $\{\mathbf{x}_{t,l_1},\ldots,\mathbf{x}_{t,l_N}\}$ is a set of N local optimizers, each of which is determined by a local optimization method (3), starting from a different initial condition. The multi-started local optimizer, denoted by $\mathbf{x}_{t,m}$, is the one at which $a(\mathbf{x}|\mathcal{D}_{t-1})$ achieves the maximum:

$$\mathbf{x}_{t,m} = \underset{\mathbf{x} \in \mathcal{X}}{\operatorname{arg max}} \mathbf{x}_{\mathbf{x} \in \mathcal{X}} \ a(\mathbf{x} | \mathcal{D}_{t-1}). \tag{4}$$

Definition 4 (Instantaneous regret)

Suppose that \mathbf{x}^{\dagger} is the true global minimum of the objective function in (1). Denote by \mathbf{x}_t a maximum of acquisition function $a(\mathbf{x}|\mathcal{D}_{t-1})$ at round t, determined by either a global or local optimization method. The instantaneous regret r_t at round t is defined as

$$r_t = f(\mathbf{x}_t) - f(\mathbf{x}^\dagger). \tag{5}$$

Depending on an optimization method (i.e., one of global, local, and multi-started local optimization methods) used to search for a maximum of the acquisition function, we define the following instantaneous regrets: $r_{t,g} = f(\mathbf{x}_{t,g}) - f(\mathbf{x}^{\dagger})$, $r_{t,l} = f(\mathbf{x}_{t,l}) - f(\mathbf{x}^{\dagger})$, and $r_{t,m} = f(\mathbf{x}_{t,m}) - f(\mathbf{x}^{\dagger})$.

Definition 5 (Instantaneous regret difference)

With Definition 4, we define instantaneous regret differences for an local optimizer $\mathbf{x}_{t,l}$ and for a multi-started local optimizer $\mathbf{x}_{t,m}$:

$$|r_{t,g} - r_{t,l}| = |f(\mathbf{x}_{t,g}) - f(\mathbf{x}_{t,l})|,$$
 (6)

$$|r_{t,g} - r_{t,m}| = |f(\mathbf{x}_{t,g}) - f(\mathbf{x}_{t,m})|,$$
 (7)

which measures a performance gap with respect to the one induced by $\mathbf{x}_{t,g}$, at round t.

Main Theorems

Theorem 1

Given $\delta_l \in [0,1)$ and $\epsilon_l, \epsilon_1, \epsilon_2 > 0$, the regret difference for a local optimizer $\mathbf{x}_{t,l}$ at round t, $|r_{t,g} - r_{t,l}|$ is less than ϵ_l with a probability at least $1 - \delta_l$:

$$\mathbb{P}(|r_{t,g} - r_{t,l}| < \epsilon_l) \ge 1 - \delta_l, \tag{8}$$

where $\delta_l = \frac{\gamma}{\epsilon_1}(1-\beta_g) + \frac{M}{\epsilon_2}$, $\epsilon_l = \epsilon_1\epsilon_2$, $\gamma = \max_{\mathbf{x}_i,\mathbf{x}_j \in \mathcal{X}} \|\mathbf{x}_i - \mathbf{x}_j\|_2$ is the size of \mathcal{X} , β_g is the probability that a local optimizer of the acquisition function collapses with its global optimizer, and M is the Lipschitz constant.

Main Theorems

Theorem 2

Given $\delta_m \in [0,1)$ and $\epsilon_m, \epsilon_2, \epsilon_3 > 0$, a regret difference for a multi-started local optimizer $\mathbf{x}_{t,m}$, determined by starting from N initial points at round t, is less than ϵ_m with a probability at least $1-\delta_m$:

$$\mathbb{P}(|r_{t,g} - r_{t,m}| < \epsilon_m) \ge 1 - \delta_m, \tag{9}$$

where $\delta_m = \frac{\gamma}{\epsilon_3} \left(1 - \beta_g\right)^N + \frac{M}{\epsilon_2}$, $\epsilon_m = \epsilon_2 \epsilon_3$, $\gamma = \max_{\mathbf{x}_i, \mathbf{x}_j \in \mathcal{X}} \|\mathbf{x}_i - \mathbf{x}_j\|_2$ is the size of \mathcal{X} , β_g is the probability that a local optimizer of the acquisition function collapses with its global optimizer, and M is the Lipschitz constant.

Take-Home Message

- As shown in the main theorems, the probability $1 \delta_l$ is controlled by three statements related to γ , β_q , and M.
- ▶ For example, $1 \delta_l$ is decreased (i) as γ is increased, (ii) as β_g is decreased, and (iii) as M is increased.
- ▶ Theorem 2 suggests similar implications with Theorem 1, but their main difference is that δ_m is additionally related to the number of initial points N.
- By this difference, we theoretically reveal how many runs for a multi-started local optimizer are needed to obtain the sufficiently small regret difference over a global optimizer.
- ► Furthermore, an appropriate multi-started local optimizer can produce a similar convergence quality with the global optimizer, without the expensive computational complexity.

Figure 2: Empirical results on Theorem 1 and Theorem 2. For the lower panels, transparent lines are observed instantaneous regret differences and solid lines are moving average (10 steps) of the transparent lines.

Figure 3: Empirical results on Theorem 1 and Theorem 2.

Figure 4: Empirical results on Theorem 1 and Theorem 2.

Table 1: Time (sec.) consumed in optimizing acquisition functions.

	Beale	Branin	Cosines (2 dim.)
DIRECT	3.434	2.987	2.306
L-BFGS-B (1)	0.010	0.004	0.052
L-BFGS-B (10)	0.096	0.036	0.515
L-BFGS-B (100)	0.977	0.363	5.173
L-BFGS-B (1000)	9.720	3.633	51.818

Table 2: Time (sec.) consumed in optimizing acquisition functions.

	Cosines (8 dim.)	Hartmann6D	Holdertable
DIRECT	2.508	0.728	2.935
L-BFGS-B (1)	0.023	0.026	0.017
L-BFGS-B (10)	0.224	0.253	0.177
L-BFGS-B (100)	2.224	2.533	1.760
L-BFGS-B (1000)	22.306	25.305	17.629

Table 3: Time (sec.) consumed in optimizing acquisition functions.

	Rosenbrock	Six Hump Camel	Sphere
DIRECT	13.928	4.639	10.707
L-BFGS-B (1)	0.005	0.010	0.030
L-BFGS-B (10)	0.050	0.100	0.311
L-BFGS-B (100)	0.504	0.969	3.048
L-BFGS-B (1000)	5.049	9.682	30.764

Conclusion

- ▶ In this paper, we theoretically and empirically analyze the upper bound of instantaneous regret difference between global and local optimizers of an acquisition function.
- ► The probability on this bound becomes tighter, using a multi-started local optimizer instead of the local optimizer.
- Our experimental results show our theoretical analyses can be supported.

Thank you for listening!