Application {shiny} de correction de projets individuels utilisant R, RStudio, GitHub

Philippe Grosjean & Guyliann Engels

Service d'Écologie numérique Université de Mons, Belgique <guyliann.engels@umons.ac.be>

Rencontres R 2023, Avignon

Qui sommes-nous?

Philippe Grosjean

- Professeur
- Biologiste marin
- Développeur en R

Guyliann Engels

- Assistant
- Biologiste marin
- Utilisateur de R

Cours de sciences des données biologiques

https://wp.sciviews.org/

UMONS - Université de Mons

Science des données biologiques

Moodle

Discord

Github

E-mail

RStudio

Login with BioDataScience

Accueil

Contact

Contenu des cours

Science des données biologiques 1 (Bab2)

Science des données biologiques 2 (Bab3)

Science des données biologiques 3-5 (Ma1&2)

Bien débuter...

Méthode d'enseignement

On veut des étudiants actifs

Cours classique ex cathedra + séances d'exercices

Chez soi (distanciel asynchrone) ⇒ Mettre ses notes en ordre les exercices un examen	Écouter passivement des cours ex cathedra	Faire des exercices avant d'assimiler la matière	← En classe (présentiel synchrone)		Préparer et passer un examen
	Chez soi (distanciel asynchrone) \Rightarrow				

Approche en classe inversée

Quatre niveaux d'exercices

Gestion des projets

Projet RStudio hébergé sur github sous la forme d'un template : https://github.com/BioDataScience-Course/A09Ia_ttest

Github Classroom permet à chaque étudiant de générer une copie dans notre organisation github du projet template.

Structuration du document

<!--% Réalisez un graphique pertinent par rapport à ce test afin d'illustrer la situation d'après l'indice de performance de la photosynthèse pi abs. -->

```
```{r plot2}
<!-- Calculez un tableau des descripteurs statistiques
pertinents par rapport à ce test (incluez médiane.
moyenne et écart type dans vos calculs). -->
 ``{r tab2}
 ⊕ ≖ ▶
```

```
alpha de 5%. -->
```{r test2a}
                                                 ⊕ ▼ →
test2a <-
test2a
# Ne modifiez pas ci-dessous
write$rds(test2a, here::here("tests", "test2a.rds").
```

<!--% Réalisez le test d'hypothèse, en prenant un seuil

Un document R. Markdown contenu dans un projet RStudio sur un dépôt github: https://github.com/Bio DataScience-

Course/A09Ia_ttest

- des consignes sous la forme de commentaire
- des noms de chunks ou des niveaux de titres comme des balises.

compress = "xz")

Comment corriger ces projets?

Cas pratique : A09Ia_22M_ttest

avec 1 document

R. Markdown

avec 26 critères

interpétation de

graphiques, ...)

(code R.

50 projets

■ 50 grilles de

corrections

Remarques générales sur le projet.

Réalisation d'au moins un commit dans seaweed.Rmd.

Compilation du document seaweed Rmd.

YAML = Entête complèt (title+author+date) dans seaweed.Rmd.

Introduction = Introduction photosynthèse et stress therminque chez Fucus distichus.

@import = Importation de photosynthesis.csv. @select1 = sélection Svalbard + 20°C + t0 & t60.

@pivot1 = remaniement du tableau avec pivot wider().

Variation de la capacité photosynthétique après 60 minutes dans une eau à 20°C = formulation des hypothèses. @plot1 = Nuage de points t60 vs t0 avec bissectrice.

@tab1 = Tableau descriptif des données.

@test1a = t-test apparié t0 / t60.

+test1a = Interpétation du t-test apparié t0 / t60 + Normalité + test alternatif.

@test1b = Wilcoxon apparié t0 / t60.

+test1b = Interpétation du Wilcoxon apparié t0 / t60 + comparaison.

@select2 = sélection 20°C + t60.

+select2 = choix test et formulation des hypothèses.

@plot2 = graphique movennes + barres d'erreurs / population.

@tab2 = Tableau descriptif du second sous-ensemble de données.

@test2a = Wilcoxon pi abs ~ population.

+test2a = Interprétation Wilcoxon #2 + hypothèses t-test.

@test2b = t-test pi abs ~ population.

+test2b = inteprétation et comparaison au Wilcoxon.

@power2b = puissance du t-test.

+power2b = interprétation puissance du t-test.

Ouestion bonus = calcul de taille nécessaire pour un effet significatif (+2 points max).

Total: 1300 critères: Il faut attribuer 1300 notes et commentaires

{learnitgrid}

Notre solution: {learnitgrid} https://github.com/SciViews/learnitgrid

- create_context(): une liste contenant toutes les informations sur les projets à corriger
- populate_table(): regrouper toutes les informations dans un tableau pour réaliser la correction
- => Une application shiny permettant la correction en série.

Démonstration : {learnitgrid}

Avez-vous des questions?

Ressources utiles

- Site web du cours : https://wp.sciviews.org/
- {learnitgrid} : https://github.com/SciViews/learnitgrid
- {learnitdown} : https://www.sciviews.org/learnitdown/
- Cette présentation : https://github.com/BioDataScience-Course/sdd_presentations/tree/master/2023_rencontresr_avignon

