Tutorial 3

Machine Learning and Big Data for Economics and Finance

List of activities

- I. Complete the list of exercises in this tutorial.
- II. Complete **Section 3.6 Lab: Linear Regression**. Section 3.6.6 to 3.6.7.

Exercise 1. Consider the following sample of the three random variables X_1 , X_2 and Y:

Obs.
$$X_1$$
 X_2 Y

1 1 2 0
2 1 3 0
3 -3 1 0
4 2 2 x
5 3 2 x
6 4 1 x
7 4 3 x

Table 1.

- 1. In the input space, compute the distance between each point and $x_0 = (1, 1)$.
- 2. Predict Y given $X_1 = 1$ and $X_2 = 1$ using K-nearest neighbor classification for K = 1 and K = 3.

Exercise 2. Load the data included in the file MC1.csv. The file contains a sample of size n = 1000 from a random variable X.

The data generating process for a new random variable Y is given by

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

where $\beta_0 = -1$, $\beta_1 = 5.1$ and $\varepsilon \sim N(0, 1)$.

- 1. Generate a sample of size n from Y.
- 2. Assuming you don't know the parameters behind the data generating process, compute the least squares estimates for $\hat{\beta}_0$, $\hat{\beta}_1$ and $\hat{\sigma}$ (the standard deviation of the error term).
- 3. Generate 100 different samples of size n of Y and for each compute $\hat{\beta}_{0,m}$, $\hat{\beta}_{1,m}$ and $\hat{\sigma}_m$ where $\hat{\beta}_{0,m}$ is the estimate of β_0 in sample m for m=1,...,100.
- 4. Using the values $\hat{\beta}_{0,m}, \, \hat{\beta}_{1,m}$ and $\hat{\sigma}_m$, compute
 - a. The sample averages of each of $\hat{\beta}_{0,m}$, $\hat{\beta}_{1,m}$ and $\hat{\sigma}_m$.
 - b. The sample variance of $\hat{\beta}_{0,m}$
 - c. The sample variance of $\hat{\beta}_{1,m}$.
 - d. The sample covariance of $\hat{\beta}_{0,m}$ and $\hat{\beta}_{1,m}$.
- 5. Plot $\hat{\beta}_{0,m}$, $\hat{\beta}_{1,m}$ and $\hat{\sigma}_m$ and discuss.
- 6. Compare the results of the small simulation exercise with the formula $Var(\hat{\beta}) = \sigma^2(\mathbf{X}^T\mathbf{X})^{-1}$.