Research Update: Rashomon Active Learning

August 13, 2024

Data Generating Process

- 1000 observations (\mathbf{x}_i, y_i) were generated
- X ~ Multivariate Normal($0_{4\times1}$, Σ) such that

$$\Sigma = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -0.5 \\ 0 & 0 & 1 & 0 \\ 0 & -0.5 & 0 & 0 \end{pmatrix}$$

- That is, X_2 and X_4 are mildly negatively correlated.
- True coeffcients $\beta_{4\times1}$ are randomly generated ~ N(0,1).

• Classes generation:
$$\mathbb{P}(Y=1) = \frac{1}{1 + e^{-\mathbf{x}\beta^T}}$$

Classes 0 and 1 had equal proportion (500 in each class).

This will affect our LASSO coeffcients estimates

Active Learning Set Up

- 80% Training Set, 20% Test Set
- Random Start:

- Each selector will select 1 observation for oracle labelling. Unlabeled candidate data are matched based on Mahalanobis Distance.
- The predictor LASSO is then updated/re-trained with the new training set.
- Two types of selectors:
 - Random: Randomly selects observations
 - Breaking Ties: Selects the observations with the most uncertainty:

$$\epsilon_i := \max_{c \in \mathscr{C}} \mathbb{P}(\hat{\mathbf{y}}_{tr,i}^n = c \mid \mathbf{x}_{tr,i}^{(n)}) - \max_{c \in \mathscr{C} \setminus c^+} \mathbb{P}(\hat{\mathbf{y}}_{tr,i}^n = c \mid \mathbf{x}_{tr,i}^{(n)})$$

Stopping Criteria: 10 consecutive iterations have to have an error less than 0.25 and a variance less than 0.2.

Active Learning Results

- Breaking Ties Selection stops (ever slightly) before Random Selection
 - I can probably change this to induce a larger difference
 - Sometimes Random Selection does better (known in the literature as Cold Start)
- In general, LASSO achieves an accuracy of ~70 - 80%

LASSO Class Error by Selector

This is cool! Prediction accuracy is decent.

but... LASSO will return bad coefficient estimates when covariates are correlated!

LASSO Biased Coefficient Estimates

- Recall X_2 and X_4 are mildly negatively correlated ($\rho=-0.5$)
- The right table shows that LASSO underestimates X_2 and overestimates X_4 .
- The figure shows that even with all samples, LASSO still biases X_2 in the active learning process.

	X1	X2	Х3	X 4
True	-0.62645	0.18364	-0.83563	1.59528
LASSO	-0.64020	0.06202	-0.78615	1.75861

Takeaway: Even with decent prediction, LASSO returns biased estimates of regression coefficients in adaptive decision making.

Next Steps

- Extend:
 - 1. Multi-classes: Easy should be done this week
 - 2. Imbalanced samples: Also easy should be done this week
- Expecting the same results with multi-classes and imbalanced samples:
 - LASSO provides decent prediction
 - But wrong coefficients
- Should set up the framework for considering model uncertainty by enumerating the Rashomon Set

Main Methodology Idea

- At each step of the active learning process, a predictor is retrained based on the updated training set.
- The predictor then provides the probability of an observation being in each class.
- Predicted observation uncertainty is measured (in our case by Breaking Ties):

$$\epsilon_i := \max_{c \in \mathscr{C}} \mathbb{P}(\hat{\mathbf{y}}_{tr,i}^n = c \,|\, \mathbf{x}_{tr,i}^{(n)}) - \max_{c \in \mathscr{C} \setminus c^+} \mathbb{P}(\hat{\mathbf{y}}_{tr,i}^n = c \,|\, \mathbf{x}_{tr,i}^{(n)})$$

- Unlabelled observations are then matched with the most uncertain observations and then recommended for oracle labelling.
- However, this measure of uncertainty does not consider predictive model uncertainty.
- Instead, we should consider the uncertainty of each observations across the Rashomon Set: $\epsilon_i^{(m)}$ for model m in the Rashomon set
- We then weigh $\epsilon_i^{(m)}$ by the probability of observing each model, say p(m)
- Suggestions for oracle labelling is then based on this model-weighted uncertainty metric: $p(m) \cdot e_i^{(m)}$