RSAConference2020

San Francisco | February 24 – 28 | Moscone Center

HUMAN ELEMENT

SESSION ID: CRYP-F03

Universally Composable Accumulators Foteini Baldimtsi, Ran Canetti, Sophia Yakoubov

Sophia Yakoubov

Postdoc
Aarhus University
@sophiay135

- Accumulators are used in...
 - (Anonymous) Credentials
 - Cryptocurrencies
 - Group and Ring Signatures
- Definition styles:

	Game-Based Definitions	UC Definitions
Statement	Simple	Complex
Proof of secure use in system	Hard	Easy

- First UC definition for accumulators
- Proof of equivalence of game-based and UC definitions

	Game-Based Definitions	UC Definitions
Statement	Simple	Complex
Proof of secure use in system	Hard	Easy

- First UC definition for accumulators
- Proof of equivalence of game-based and UC definitions
 - Best of both worlds!
 - All existing constructions are automatically UC-secure

	Game-Based Definitions	UC Definitions
Statement	Simple	Complex
Proof of secure use in system	Hard	Easy

- First UC definition for accumulators
- Proof of equivalence of game-based and UC definitions
- Demonstration of Composition
 - Modular accumulators
 - Anonymous credentials

	Game-Based Definitions	UC Definitions
Statement	Simple	Complex
Proof of secure use in system	Hard	Easy

- What is an accumulator?
- First UC definition for accumulators
- Proof of equivalence of game-based and UC definitions
 - Demonstration of Composition

- What is an accumulator?
- First UC definition for accumulators
- Proof of equivalence of game-based and UC definitions
 - **Demonstration of Composition**

- What is an accumulator?
- First UC definition for accumulators
- Proof of equivalence of game-based and UC definitions
 - **Demonstration of Composition**

Yep, you're on Merlin's list. Go ahead.

Accumulators: a digest of set S

Can I have the

 \mathbf{W}_{A}

THE THE PERSON OF THE PERSON O

Merkle Trees

- Merkle Trees
- DigitalSignatures

Merkle Trees

Digital Signatures

Strong	Add
√	X
X	√

- Merkle Trees
- Digital Signatures
- RSA Accumulator
 - $-p_1$, p_2 secret primes
 - $n = p_1 p_2$
 - v (mod n)

AARHUS UNIVERSITET

- Merkle Trees
- Digital Signatures
- RSA Accumulator
 - $-p_1, p_2$ secret primes
 - $n = p_1 p_2$
 - $\mathbf{v} = \mathbf{v} \pmod{\mathbf{n}}$

AARHUS UNIVERSITE

Strong	Add
√	X
X	√
X	

- Merkle Trees
- Digital Signatures
- RSA Accumulator

Strong	Add	Del	Hiding Update Message
√	X	X	-
X	√	X	√
X	\checkmark	\checkmark	X

 $-p_1$, p_2 secret primes

 $- n = p_1 p_2$

- v (mod n)

Merkle Trees

Digital Signatures

RSA Accumulator

Strong	Add	Del	Hiding Update Message	Proofs of Non- Membership
√	X	X	-	X
X	√	X	√	X
X	\checkmark	\checkmark	X	√

There are many other interesting accumulator properties!

- What is an accumulator?
- First UC definition for accumulators
 Proof of equivalence of game-based and UC definitions
 - **Demonstration of Composition**

Universal Composability

Real World

Universal Composability

Ideal World

Universal Composability

New UC definition: describe what the functionality does

UC Signature Definition

- Requesting algorithms from the adversary ensures VERIFY consistency
- This is intuitive: if the functionality never has to substitute algorithms' outputs...
 - The algorithms satisfy correctness and soundness (classical definitions)
 - This is indistinguishable from a real execution (UC security)

SIGN, VERIFY interfaces
Signature
Functionality

SIGN, VERIFY algorithms?

SIGN, VERIFY

I'll use these, except as necessary for correctness and soundness

UC Accumulator Definition

Same principle as for signatures!

- Requesting algorithms from the adversary ensures VERIFY consistency
- This is intuitive: if the functionality never has to substitute algorithms' outputs...
 - The algorithms satisfy correctness and soundness (classical definitions)
 - This is indistinguishable from a real execution (UC security)

UPDATE, VERIFY, ... algorithms?

Accumulator Functionality

UPDATE, VERIFY, ...

I'll use these, except as necessary for correctness and soundness


```
    GEN: Upon getting (GEN, sid, So) as first activation from AM...

     (a) Initialize an operation counter t = 0.
    (b) Initialize an empty list A. This list will be used to keep track of all accumulator states.
     (c) Initialize an empty map S, and set S[0] = S<sub>0</sub>. (If S<sub>0</sub> was not provided, use ∅.) This map will be used
          to map operation counters to current accumulated sets.
    (d) Send (GEN, sid) to Adversary Appl
     (e) Get (ALGORITHMS, sid, (Gen, Update, WitCreate, WitUp, VerStatus, VerGen, VerUpdate)) from Adversary
          Alded. This includes all of the accumulator algorithms; their expected input output behavior is de-
          scribed in Figure 1. All of them should be polynomial-time; we restrict the verification algorithms
          VerStatus, VerGen, VerUpdate to be deterministic.
     (f) Run (sk, a<sub>0</sub>, m<sub>0</sub>, v) ← Gen(1<sup>A</sup>, S<sub>0</sub>).
    (g) Verify that VerGen(S<sub>0</sub>, a<sub>0</sub>, v) = 1. If not, output ⊥ to AM and halt. (This ensures strength.) Other-
          wise, continue.
    (h) Store sk, mo; add ao to A.

    Output (ALGORITHMS, sid, So., (Gen, Update, WitCreate, WitUp, VerStatus, VerGen, VerUpdate) to AM.

    UPDATE: Upon getting (UPDATE, sid, Op, x) from A.M...

    (a) Increment the operation counter: t = t + 1.
    (b) Set S[t] = S[t − 1].
     (c) Run (a<sub>t</sub>, m<sub>t</sub>, w<sub>t</sub><sup>x</sup>, upmsg<sub>t</sub>, v<sub>t</sub>) ← Update(Op, sk, a<sub>t-1</sub>, m<sub>t-1</sub>, x).
     (d) If Op = Add:

    Verify that VerStatus(in, a, x, w<sub>t</sub>) = 1. If not, output ⊥ to AM and halt. (This ensures correct-

                ness.) Otherwise, continue

 If x ∉ S[t], add x to S[t].

     (e) If Op = Del:

    Verify that VerStatus(out, a, x, w<sub>t</sub>) = 1. If not, output ⊥ to AM and halt. (This ensures negative

                correctness.) Otherwise, continue

 If x ∈ S[t], remove x from S[t].

     (f) Verify that VerUpdate(Op, a<sub>t-1</sub>, a<sub>t</sub>, x, v<sub>t</sub>) = 1. If not, output ⊥ to AM and halt, (This ensures
          strength.) Otherwise, continue.
    (g) Store m<sub>t</sub>, upmsg<sub>t</sub>; add a<sub>t</sub> to A.
    (h) Output (UPDATE, sid, Op, at, x, wt, upmsgt) to AM.
3. WITCREATE: Upon getting (WITCREATE, sid, stts, x) from AM ...
    (a) Run w \leftarrow WitCreate(stts, sk, a_t, m_t, x, (upmsg_1, ..., upmsg_t))
    (b) If stts = in:
          If x \in S[t], verify that VerStatus(in, a_t, x, w) = 1. If not, output \perp to AM and halt. (This ensures
          creation-correctness.) Otherwise, continue.
     (c) If stts = out:
          If x \notin S[t], verify that VerStatus(out, a_t, x, w) = 1. If not, output \bot to AM and halt. (This ensures
          negative-creation-correctness.) Otherwise, continue.
    (d) Output (WITNESS, sid, stts, x, w) to AM.

    WITUP: Upon getting (WITUP, sid, sits, a old, anew, x, wold, (upmsg old+1,..., upmsg old+1) from any party

    (a) Run w_{new} \leftarrow WitUp(stts, x, w_{old}, (upmsg_{old+1}, ..., upmsg_{new}))
    (b) If a<sub>old</sub> ∈ A, a<sub>new</sub> ∈ A and old < new:</p>
            i. If stts = in, VerStatus(in, a_{old}, x, w_{old}) = 1, x \in S[t] for t \in [old, ..., new]
                \operatorname{upmsg}_{\operatorname{old}+1}, \ldots, \operatorname{upmsg}_{\operatorname{new}} match the stored values and \operatorname{VerStatus}(\operatorname{in}, a_{\operatorname{new}}, x, w_{\operatorname{new}}) = 0, out-
                put \perp to P and halt. (This ensures correctness.) Otherwise, continue.
            ii. If stts = out, VerStatus(out, a_{old}, x, w_{old}) = 1, x \notin S[t] for t \in [old, ..., new]
                \operatorname{upres}_{\operatorname{old}+1}, \ldots, \operatorname{upres}_{\operatorname{new}} match the stored values and \operatorname{VerStatus}(\operatorname{out}, a_{\operatorname{new}}, x, w_{\operatorname{new}}) = 0, out-
                put \perp to P and halt. (This ensures negative correctness.) Otherwise, continue.
    (c) Output (UPDATEDWITNESS, sid, stts, a<sub>old</sub>, a<sub>new</sub>, x, w<sub>old</sub>, (upmsg<sub>old+1</sub>, . . . , upmsg<sub>new</sub>), w<sub>new</sub>) to H.
```

Fig. 4. Ideal Functionality \mathcal{F}_{ACC} for Accumulators With Explicit Verification Algorithm

See the paper for the full functionality ©

#RSAC

```
(a) If VerStatus' = VerStatus and there exists a t such that a = a<sub>t</sub> ∈ A:

    Let t be the largest such number.

          ii. If stts = in:
                A. If AM not corrupted, x \notin S[t] and VerStatus(in, a_t, x, w) = 1, output \bot to P and halt
                    (This ensures collision-freeness.) Otherwise, continue.
                B. Set φ = VerStatus(in, a<sub>t</sub>, x, w).
                A. If AM not corrupted, x \in S[t] and VerStatus(out, a_t, x, w) = 1, output \bot to P and
                    halt. (This ensures negative collision-freeness.) Otherwise, continue.
                B. Set φ = VerStatus(out, a<sub>t</sub>, x, w).
    (b) Otherwise, set φ = VerStatus'(stts, a, x, w).
    (c) Output (VERIFIED, sid, stts, a, VerStatus', x, w, φ) to P.

    VERGEN: Upon getting (VERGEN, sid, S, a, v, VerGen') from any party P...

    (a) Set φ = VerGen'(S, a, v).

    (b) Output (VERIFIED, sid, S, a, ν, VerGen', φ) to P.

    VERUPDATE: Upon getting (VERUPDATE, sid, Op. a, a', x, v<sub>t</sub>, VerUpdate') from any party P . . .

    (a) Set φ = VerUpdate'(Op, a, a', x, v<sub>t</sub>).
    (b) Output (VERIFIED, sid, Op, a, a', x, ν<sub>t</sub>, VerUpdate', φ) to P.
```

VERSTATUS: Upon getting (VERSTATUS, sid, stts, a, VerStatus', x, w) from any party P...

Fig. 5. Ideal Functionality \mathcal{F}_{ACC} Interfaces for Third Parties

- What is an accumulator?
- First UC definition for accumulators
- Proof of equivalence of game-based and UC definitions
 - Demonstration of Composition
 - Modular accumulators
 - Anonymous credentials

- What is an accumulator?
- First UC definition for accumulators
- Proof of equivalence of game-based and UC definitions
 - Demonstration of Composition
 - Modular accumulators
 - Anonymous credentials

Merkle Trees

Digital Signatures

RSA Accumulator

Strong	Add	Del	Hiding Update Message	Proofs of Non- Membership
✓	X	X	-	X
X	√	X	√	X
X	√	√	X	√

Merkle Trees

Digital Signatures

RSA Accumulator

Strong	Add	Del	Hiding Update Message	Proofs of Non- Membership
√	X	X	-	X
X	√	X	✓	X
X	√	√	X	√

WANT

\checkmark	\checkmark	\checkmark

Merkle Trees

Digital Signatures

RSA Accumulator

Strong	Add	Del	Hiding Update Message	Proofs of Non- Membership
✓	X	X	-	X
X	√	X	✓	X
X	√	√	X	✓

We can achieve better efficiency by using CL-RSA-B instead

Braavos

SIGNATURES

- What is an accumulator?
- First UC definition for accumulators
- Proof of equivalence of game-based and UC definitions
 - Demonstration of Composition
 - Modular accumulators
 - Anonymous credentials

Composition: Anonymous Credentials

- We can build revocable anonymous credentials by combining...
 - An hiding update message (HUM) accumulator, e.g. Braavos
 - Zero knowledge proofs

Composition: Anonymous Credentials

Zero knowledge proof of knowledge of sk_A, pk_A, w such that...

- sk_A matches pk_A
- pk_Δ is in the accumulator

Hiding update
messages ensure that
no-one learns who gets
added or deleted!

- What is an accumulator?
- First UC definition for accumulators
- Proof of equivalence of game-based and UC definitions
 - **Demonstration of Composition**

