Álgebra Linear para Computação Suzana M. F. de Oliveira

Índice

- Revisão
- Diagonalização
 - Matrizes semelhantes
 - Processo de diagonalização
 - Potências de uma matriz
 - Multiplicidades geométrica e algébrica
- Resumo
- Bibliografia

Revisão

Resumo

Autovalores e autovetores

$$A\mathbf{x} = \lambda \mathbf{x}$$

Equação característica

$$\det(\lambda I - A) = 0$$

- Polinômio característico
 - É possível descobrir os autovalores achando as raízes

$$p(\lambda) = \lambda^{n} + c_1 \lambda^{n-1} + \dots + c_n$$

- Autoespaço
 - É possível descobrir o autovetor associado a um autovalor λ descobrindo a base do espaço nulo da matriz dos coeficientes atualizada

$$(\lambda I - A)\mathbf{x} = \mathbf{0}$$

Transformação de semelhança da matriz A

Problema 1

Dada uma matriz A de tamanho n×n, existe alguma matriz invertível P tal que P-1AP é uma matriz diagonal?

Problema 2

Dada uma matriz A de tamanho n×n, existem n autovetores de A linearmente independentes?

- Definição 1:
 - Se A e B forem matrizes quadradas, dizemos que B é semelhante a A se existir alguma matriz invertível P tal que B = P-1AP

- Definição 1:
 - Se A e B forem matrizes quadradas, dizemos que B é semelhante a A se existir alguma matriz invertível P tal que B = P-1AP
 - Observação:
 - B for semelhante a A, então também é verdade que A é semelhante a B
 - $A = Q^{-1}BQ$ tomando $Q = P^{-1}$
 - Assim diz-se que A e B são matrizes semelhantes

- Matrizes semelhantes
 - Matrizes semelhantes têm algumas propriedades em comum
 - Exemplo: A e B têm o mesmo determinante

$$\det(B) = \det(P^{-1}AP) = \det(P^{-1})\det(A)\det(P)$$
$$= \frac{1}{\det(P)}\det(A)\det(P) = \det(A)$$

- Matrizes semelhantes
 - Matrizes semelhantes têm algumas propriedades em comum

Propriedade invariante por semelhança ou invariante de semelhança

Propriedade	Descrição
Determinante	$A \in P^{-1}AP$ têm o mesmo determinante.
Invertibilidade	A é invertível se, e só se, $P^{-1}AP$ é invertível.
Posto	$A \in P^{-1}AP$ têm o mesmo posto. Traço: Soma da
Nulidade	$A \in P^{-1}AP$ têm a mesma nulidade. diagonal principal
Traço	$A e P^{-1} AP$ têm o mesmo traço.
Polinômio característico	$A e P^{-1} AP$ têm o mesmo polinômio característico.
Autovalores	$A \in P^{-1}AP$ têm os mesmos autovalores.
Dimensão de autoespaço	Se λ for um autovalor de A e, portanto, de $P^{-1}AP$, então o autoespaço de A associado a λ e o autoespaço de $P^{-1}AP$ associado a λ têm a mesma dimensão.

Matrizes semelhantes

Problema 1

Dada uma matriz A de tamanho n×n, existe alguma matriz invertível P tal que P-1AP é uma matriz diagonal?

• É equivalente a perguntar se a matriz A é semelhante a alguma matriz diagonal.

Uma matriz diagonal é mais simples de se trabalhar

Definição 2:

- Uma matriz quadrada A é dita diagonalizável se for semelhante a alguma matriz diagonal,
 - Se existir alguma matriz invertível P tal que P-1AP é diagonal.
 - Dizemos que a matriz P diagonaliza A

Problema 1

Dada uma matriz A de tamanho n×n, existe alguma matriz invertível P tal que P-1AP é uma matriz diagonal?

Problema 2

Dada uma matriz A de tamanho n×n, existem n autovetores de A linearmente independentes?

Formas diferentes do mesmo problema matemático.

Teorema 1:

- Se A for uma matriz n×n, são equivalentes as afirmações seguintes.
 - (a) A é diagonalizável.
 - (b) A tem n autovetores linearmente independentes.

Demonstração: (a)⇒(b)

- Supondo que A é diagonalizável
 - Existem uma matriz invertível P e uma matriz diagonal D tais que P-1AP = D

onde pode-se definir
$$P = \begin{bmatrix} \boldsymbol{p}_1 & \boldsymbol{p}_2 \cdots \boldsymbol{p}_n \end{bmatrix}$$

$$D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

Demonstração: (a)⇒(b)

- Supondo que A é diagonalizável
 - Existem uma matriz invertível P e uma matriz diagonal D tais que P-1AP = D

onde pode-se definir
$$P = \begin{bmatrix} \boldsymbol{p}_1 & \boldsymbol{p}_2 \cdots \boldsymbol{p}_n \end{bmatrix}$$

$$D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

Lado esquerdo pode ser expresso por

$$AP = A[\mathbf{p}_1 \quad \mathbf{p}_2 \quad \cdots \quad \mathbf{p}_n] = [A\mathbf{p}_1 \quad A\mathbf{p}_2 \quad \cdots \quad A\mathbf{p}_n]$$

Lado direito pode ser expresso por

$$PD = \begin{bmatrix} \lambda_1 \mathbf{p}_1 & \lambda_2 \mathbf{p}_2 & \cdots & \lambda_n \mathbf{p}_n \end{bmatrix}$$

Igualando

 $A\mathbf{p}_1 = \lambda_1 \mathbf{p}_1, \quad A\mathbf{p}_2 = \lambda_2 \mathbf{p}_2, \dots, \quad A\mathbf{p}_n = \lambda_n \mathbf{p}_n$

Definição de autovalores e autovetores

Demonstração: (b)⇒(a)

- Suponha que A tenha n autovetores linearmente independentes \mathbf{p}_1 , \mathbf{p}_2 ,..., \mathbf{p}_n com autovalores associados λ_1 , λ_2 , ..., λ_n .
 - Escrevendo $P = [\mathbf{p}_1 \ \mathbf{p}_2 \cdots \mathbf{p}_n]$ $D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$

Demonstração: (b)⇒(a)

- Suponha que A tenha n autovetores linearmente independentes $\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_n$ com autovalores associados $\lambda_1, \lambda_2, ..., \lambda_n$.
 - evendo $P = [\mathbf{p}_1 \ \mathbf{p}_2 \cdots \mathbf{p}_n]$ $D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$ Escrevendo
 - Multiplicando A pela matriz dos autovetores P

A ordem influencia!
$$AP = A[\mathbf{p}_1 \quad \mathbf{p}_2]$$
$$= [\lambda_1 \mathbf{p}_1 \quad \lambda_2]$$

$$AP = A[\mathbf{p}_1 \quad \mathbf{p}_2 \quad \cdots \quad \mathbf{p}_n] = [A\mathbf{p}_1 \quad A\mathbf{p}_2 \quad \cdots \quad A\mathbf{p}_n]$$
$$= [\lambda_1 \mathbf{p}_1 \quad \lambda_2 \mathbf{p}_2 \quad \cdots \quad \lambda_n \mathbf{p}_n] = PD$$

 Por hipótese, os vetores p_i são linearmente independentes, então P é invertível, então pode ser reescrito como P-1AP = D

Demonstração: (b)⇒(a)

- Suponha que A tenha n autovetores linearmente independentes \mathbf{p}_1 , \mathbf{p}_2 ,..., \mathbf{p}_n com autovalores associados λ_1 , λ_2 , ..., λ_n .
 - Escrevendo $P = [\mathbf{p}_1 \ \mathbf{p}_2 \cdots \mathbf{p}_n]$ $D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$

Garante que uma matriz A de tamanho n×n com n autovetores Linearmente independentes é diagonalizável,

Multiplicando A pela matriz dos autovetores P

$$AP = A[\mathbf{p}_1 \quad \mathbf{p}_2 \quad \cdots \quad \mathbf{p}_n] = [A\mathbf{p}_1 \quad A\mathbf{p}_2 \quad \cdots \quad A\mathbf{p}_n]$$
$$= [\lambda_1 \mathbf{p}_1 \quad \lambda_2 \mathbf{p}_2 \quad \cdots \quad \lambda_n \mathbf{p}_n] = PD$$

 Por hipótese, os vetores p_i são linearmente independentes, então P é invertível, então pode ser reescrito como P-1AP = D

- Procedimento para diagonalizar uma matriz
 - Passo 1.
 - Confirme que a matriz é realmente diagonalizável encontrando n autovetores linearmente independentes.
 - Encontrar uma base de cada autoespaço e juntar todos esses vetores num único conjunto S.
 - Se esse conjunto tiver menos do que n elementos, a matriz não é diagonalizável.

- Passo 2.

• Forme a matriz $P = [\mathbf{p}_1 \ \mathbf{p}_2...\mathbf{p}_n]$ que tem os vetores de S como vetores coluna.

- Passo 3.

• A matriz P-1AP será diagonal com os autovalores $\lambda_1, \lambda_2, ..., \lambda_n$ correspondentes aos autovetores $\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_n$ como entradas diagonais sucessivas.

- Procedimento para diagonalizar uma matriz
 - Exemplo: Encontre uma matriz P que diagonalize A

$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

- Equação característica $(\lambda 1)(\lambda 2)^2 = 0$
- Autovalores e autovetores

$$\lambda = 2$$
: $\mathbf{p}_1 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{p}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$; $\lambda = 1$: $\mathbf{p}_3 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$

- Procedimento para diagonalizar uma matriz
 - Exemplo: Encontre uma matriz P que diagonalize A

$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

- Equação característica $(\lambda 1)(\lambda 2)^2 = 0$
- Autovalores e autovetores

$$\lambda = 2$$
: $\mathbf{p}_1 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{p}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$; $\lambda = 1$: $\mathbf{p}_3 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$

• Montando matriz P
$$-1$$
 0 -2 Porém, não provamos que são linearmente independentes

Porém, não provamos

- Procedimento para diagonalizar uma matriz
 - Exemplo: Encontre uma matriz P que diagonalize A

$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

Diagonalizando a matriz A

$$P^{-1}AP = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ -1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} -1 & 0 & -2 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- Procedimento para diagonalizar uma matriz
 - Exemplo: Encontre uma matriz P que diagonalize A

$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

Em geral, não existe uma ordem preferencial para as colunas de P.

Diagonalizando a matriz A

$$P^{-1}AP = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ -1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} -1 & 0 & -2 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Outra opção

$$P = \begin{bmatrix} -1 & -2 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

- Matrizes não diagonalizáveis
 - Exemplo:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 5 & 2 \end{bmatrix}$$

Equação característica

$$(\lambda - 1)(\lambda - 2)^2 = 0$$

Bases do autoespaço

$$\lambda = 1: \quad \mathbf{p}_1 = \begin{bmatrix} \frac{1}{8} \\ -\frac{1}{8} \\ 1 \end{bmatrix}; \qquad \lambda = 2: \quad \mathbf{p}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

 A não é diagonalizável porque é uma matriz 3×3 porém tem somente 2 autovetores

- Matrizes não diagonalizáveis
 - Exemplo:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 5 & 2 \end{bmatrix}$$

 Solução alternativa: Verificar a dimensão dos autoespaços (Teorema fundamental da Álgebra linear)

- nulidade(
$$I\lambda$$
 - A) = n - posto($I\lambda$ - A)
- λ = 1 - λ = 2

$$\begin{bmatrix} 0 & 0 & 0 \\ -1 & -1 & 0 \\ 3 & -5 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 \\ -1 & -1 & 0 \\ 3 & -5 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 0 \\ 3 & -5 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

• Teorema 2:

- Se \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_k forem autovetores de uma matriz A associados a autovalores distintos, então $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$ é um conjunto linearmente independente

27

provar por contradição

- Teorema 2:
 - Se uma matriz A de tamanho n×n tem n autovalores distintos, então A é diagonalizável.

• Teorema 2:

 Se uma matriz A de tamanho n×n tem n autovalores distintos, então A é diagonalizável.

Demonstração

- Se \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_n são autovetores associados aos autovalores distintos λ_1 , λ_2 , ..., λ_n então, pelo Teorema anterior [Anton 5.2.2], \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_n são linearmente independentes.
- Assim, A é diagonalizável pelo primeiro Teorema da aula [Anton 5.2.1]

(a) A é diagonalizável.(b) A tem n autovetores linearmente independentes.

teoremas anteriores

Exemplo: Ache a matriz diagonal semelhante a A

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{bmatrix}$$

OCTAVE: Função p = poly(A) e r = roots(p)

Exemplo: Ache a matriz diagonal semelhante a A

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{bmatrix}$$
OCTAVE:
Função p = poly(A)
e r = roots(p)

Autovalores distintos

$$\lambda = 4$$
, $\lambda = 2 + \sqrt{3}$ e $\lambda = 2 - \sqrt{3}$

Matriz diagonal

$$P^{-1}AP = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 2 + \sqrt{3} & 0 \\ 0 & 0 & 2 - \sqrt{3} \end{bmatrix}$$

- Diagonalização de matrizes triangulares
 - Exercício: Qual a matriz diagonal similar a A?

$$A = \begin{bmatrix} -1 & 2 & 4 & 0 \\ 0 & 3 & 1 & 7 \\ 0 & 0 & 5 & 8 \\ 0 & 0 & 0 & -2 \end{bmatrix}$$

- Diagonalização de matrizes triangulares
 - Exercício: Qual a matriz diagonal similar a A?

$$A = \begin{bmatrix} -1 & 2 & 4 & 0 \\ 0 & 3 & 1 & 7 \\ 0 & 0 & 5 & 8 \\ 0 & 0 & 0 & -2 \end{bmatrix}$$

Autovalores

$$\lambda_1 = -1, \lambda_2 = 3, \lambda_3 = 5, \lambda_4 = -2$$

Matriz diagonal

$$D = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & -2 \end{bmatrix}$$

Calculando as potências de uma matriz

Como calcular A¹³?

$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

- Calculando as potências de uma matriz
 - Digamos que A seja uma matriz diagonalizável de tamanho n×n, que P diagonaliza A e que

$$P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} = D$$

- Calculando as potências de uma matriz
 - Digamos que A seja uma matriz diagonalizável de tamanho n×n, que P diagonaliza A e que

$$P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} = D$$

Elevando ambos os lados ao quadrado

$$(P^{-1}AP)^2 = \begin{bmatrix} \lambda_1^2 & 0 & \cdots & 0 \\ 0 & \lambda_2^2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_n^2 \end{bmatrix} = D^2$$

Calculando as potências de uma matriz

$$(P^{-1}AP)^{2} = \begin{bmatrix} \lambda_{1}^{2} & 0 & \cdots & 0 \\ 0 & \lambda_{2}^{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n}^{2} \end{bmatrix} = D^{2}$$

Reescrevendo o lado direito

$$(P^{-1}AP)^2 = P^{-1}APP^{-1}AP = P^{-1}AIAP = P^{-1}A^2P$$

- Assim, encontramos

$$P^{-1}A^2P=D^2$$

Lembrar que os autovalores de A² são λ² e os autovetores são os mesmos

- Calculando as potências de uma matriz
 - De forma análoga, para um inteiro positivo k:

$$P^{-1}A^{k}P = D^{k} = \begin{bmatrix} \lambda_{1}^{k} & 0 & \cdots & 0 \\ 0 & \lambda_{2}^{k} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n}^{k} \end{bmatrix}$$

Reescrevendo

Cálculos: k multiplicações matriciais

$$A^{k} = PD^{k}P^{-1} = P\begin{bmatrix} \lambda_{1}^{k} & 0 & \cdots & 0 \\ 0 & \lambda_{2}^{k} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n}^{k} \end{bmatrix} P^{-1}$$
Cálculos: 3 multiplicações matriciais e potências das entradas de D

- Calculando as potências de uma matriz
 - Exercício: Calcule A¹³

$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$
 O que precisa?

Calculando as potências de uma matriz

- Exercício: Calcule A¹³
$$\begin{bmatrix} -1 & 0 & -2 \ 0 & 1 & 1 \ 1 & 0 & 3 \end{bmatrix}$$
 $P^{-1} = \begin{bmatrix} 1 & 0 & 2 \ 1 & 1 & 1 \ -1 & 0 & -1 \end{bmatrix}$

A = $\begin{bmatrix} 0 & 0 & -2 \ 1 & 2 & 1 \ 1 & 0 & 3 \end{bmatrix}$ $P^{-1} = \begin{bmatrix} 1 & 0 & 2 \ 1 & 1 & 1 \ -1 & 0 & -1 \end{bmatrix}$

TAVE:

= eig(A)

OCTAVE: [V,D] = eig(A)

Calculando as potências de uma matriz

$$A^{13} = PD^{13}P^{-1} = \begin{bmatrix} -1 & 0 & -2 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2^{13} & 0 & 0 \\ 0 & 2^{13} & 0 \\ 0 & 0 & 1^{13} \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ -1 & 0 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} -8.190 & 0 & -16.382 \\ 8.191 & 8.192 & 8.191 \\ 8.191 & 0 & 16.383 \end{bmatrix}$$

O maior trabalho é achar P, D e P⁻¹, porém pode-se calcular qualquer potência!

Teorema: Se uma matriz A de tamanho n×n tem n autovalores distintos, então A é diagonalizável.

- A reciproca do Teorema 2 é falsa
 - Garante que uma matriz quadrada com n autovalores distintos é diagonalizável
 - Não impede a possibilidade de existirem matrizes diagonalizáveis com menos que n autovalores distintos.

Teorema: Se uma matriz A de tamanho n×n tem n autovalores distintos, então A é diagonalizável.

- A reciproca do Teorema 2 é falsa

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- Exemplo:
$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{e} \quad J = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Teorema: Se uma matriz A de tamanho n×n tem n autovalores distintos, então A é diagonalizável.

- A reciproca do Teorema 2 é falsa

- Exemplo:
$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{e} \quad J = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

- Ambas tem um autovalor distinto $\lambda=1$
- Exercício: Calculo dos autovalores

$$(\lambda I - I)\mathbf{x} = \mathbf{0}$$
 e $(\lambda I - J)\mathbf{x} = \mathbf{0}$

Teorema: Se uma matriz A de tamanho n×n tem n autovalores distintos, então A é diagonalizável.

- A reciproca do Teorema 2 é falsa

- Exemplo:
$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{e} \quad J = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

- Ambas tem um autovalor distinto $\lambda=1$
- Exercício: Calculo dos autovalores

$$(\lambda I - I)\mathbf{x} = \mathbf{0} \quad \mathbf{e} \quad (\lambda I - J)\mathbf{x} = \mathbf{0}$$

$$v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}; v_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}; v_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Teorema: Se uma matriz A de tamanho n×n tem n autovalores distintos, então A é diagonalizável.

- A reciproca do Teorema 2 é falsa

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- Exemplo:
$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{e} \quad J = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

- Ambas tem um autovalor distinto $\lambda=1$
- Exercício: Calculo dos autovalores

$$(\lambda I - I)\mathbf{x} = \mathbf{0}$$
 e $(\lambda I - J)\mathbf{x} = \mathbf{0}$

$$v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}; v_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}; v_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Produzimos duas matrizes 3×3 com menos do que 3 autovalores distintos, uma sendo diagonalizável e a outra não.

Terminologia

- Seja λ_0 for um autovalor de uma matriz A n×n
 - A dimensão do autoespaço associado a λ_0 é denominada multiplicidade geométrica de λ_0
 - O número de vezes que λ-λ₀ aparece como um fator do polinômio característico de A é denominado multiplicidade algébrica de λ₀.

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 5 & 2 \end{bmatrix} \longrightarrow (\lambda - 1)(\lambda - 2)^{2} = 0 \longrightarrow A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

$$\lambda = 1: \qquad \lambda = 2: \qquad \lambda = 1:$$

$$\mathbf{p}_1 = \begin{bmatrix} \frac{1}{8} \\ -\frac{1}{8} \\ 1 \end{bmatrix}; \quad \mathbf{p}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}; \quad \mathbf{p}_2 = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}; \quad \mathbf{p}_3 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

- Terminologia
 - Seja λ_0 for um autovalor de uma matriz A n×n
 - A dimensão do autoespaço associado a λ_0 é denominada multiplicidade geométrica de λ_0
- Mult.g. = 1 Mult.a. = 2
- O número de vezes que λ - λ_0 aparece como um fator do polinômio característico de A é denominado **multiplicidade algébrica** de λ_0 .

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 5 & 2 \end{bmatrix} \longrightarrow (\lambda - 1)(\lambda - 2)^{2} = 0 \longrightarrow A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

$$\lambda = 1: \qquad \lambda = 2: \qquad \lambda = 1:$$

$$\mathbf{p}_1 = \begin{bmatrix} \frac{1}{8} \\ -\frac{1}{8} \\ 1 \end{bmatrix}; \quad \mathbf{p}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\mathbf{p}_1 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \ \mathbf{p}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}; \qquad \mathbf{p}_3 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

Mult.g. = 2 Mult.a. = 2

- Teorema 3: Multiplicidades geométrica e algébrica

 Não pode ter uma
 - Se A for uma matriz quadrada, valem as afirmações seguintes:
 - (a) Dado qualquer autovalor de A, a multiplicidade geométrica é **menor ou igual** à multiplicidade algébrica.
 - (b) A é diagonalizável se, e só se, a multiplicidade geométrica de cada autovalor é **igual** à multiplicidade algébrica.

dimensão maior

que a multiplicidade

no polinômio

Resumo

- Diagonalização
 - Matrizes semelhantes
 - B = P-1AP
 - Existem propriedades invariantes por semelhança
 - Processo de diagonalização
 - Achar n autovalores e n autovetores
 - Potências de uma matriz
 - A matriz diagonal semelhante D, e a matriz P que diagonaliza A, diminuem o custo do cálculo de potencias altas
 - Multiplicidades geométrica e algébrica
 - Dimensão do autoespaço e multiplicidade no polinômio
 - Para A ser diagonalizável, é preciso que sejam iguais

Resumo

- Exercícios de fixação:
 - Anton seção 5.2
 - 1-6
 - 12-15

Resumo

- Próxima aula:
 - Diagonalização ortogonal
 - Matrizes ortogonalmente semelhantes

$$P^{T}AP = D$$

Bibliografia

Bibliografia

- Bibliografia básica:
 - ANTON, Howard; RORRES, Chris. Álgebra Linear com Aplicações. 10 ed. Porto Alegre: Bookman, 2012.
 - Seção 5.2
 - DE ARAUJO, Thelmo. Álgebra Linear: Teoria e Aplicações. Rio de Janeiro: SBM, 2014.
 - Seção 5.4