Machine Learning pour la détection d'intrusion Les bonnes pratiques

Anaël Beaugnon anael.beaugnon@ssi.gouv.fr

ANSSI, ENS Paris, INRIA

Forum CERT IST 2017 L'intelligence artificielle et la sécurité

- 1 Contexte et problème
- 2 Machine Learning
- 3 Bien utiliser le Machine Learning
- 4 Obtenir un bon jeu de données annotées

Intelligence Artificielle
Deep Learning
Data Science
Big Data
Machine Learning

Un succès dans de nombreux domaines

- Recommandation de produits sur Amazon
- Détection et reconnaissance de visages sur Facebook
- ► Intelligence artificielle pour le Go de Google (AlphaGo)

Anaël Beaugnon Machine Learning pour la détection d'intrusion

Machine Learning et détection d'intrusion

Les plaquettes marketing!

- ✓ Analyse comportementale
- ✓ Attaques inconnues
- ✓ 0-day

Pas si simple ...

- Trop de faux positifs
- X Boîte noire incompréhensible

Comment adapter le Machine Learning à la détection d'intrusion ?

- Contexte et problème
- 2 Machine Learning
- 3 Bien utiliser le Machine Learning
- 4 Obtenir un bon jeu de données annotées

Machine Learning - Classifieur

Deux étapes

- Apprentissage du classifieur
- 2 Détection

1- Apprentissage d'un classifieur

2- Détection grâce au classifieur

Probabilité de malveillance

- Prioritisation des alertes
- Compromis entre taux de détection et taux de faux positifs

Vecteurs d'attributs numériques

Vecteurs d'attributs numériques

Vecteurs d'attributs numériques

Machine Learning

- Contexte et problème
- 2 Machine Learning
- 3 Bien utiliser le Machine Learning!
- 4 Obtenir un bon jeu de données annotées

1- Attributs discriminants

- Spécifiques à chaque problème de détection
- Connaissances expert

- Prédiction rapide
- Mise à jour périodique du modèle
- ► Transparence interprétation du modèle

- Prédiction rapide
- Mise à jour périodique du modèle
- ► Transparence interprétation du modèle
- X Réseaux de neurones

- Prédiction rapide
- Mise à jour périodique du modèle
- ► Transparence interprétation du modèle
- X Réseaux de neurones
- \times k plus proches voisins

- Prédiction rapide
- Mise à jour périodique du modèle
- Transparence interprétation du modèle
- X Réseaux de neurones
- X k plus proches voisins
- ✓ Modèles linéaires (ex: régression logistique, SVM)
- ✓ Modèles d'arbre (ex: arbre de décision, forêt aléatoire)

Les modèles linéaires sont interprétables.

Les modèles linéaires sont interprétables.

Méthode de scoring Coefficients optimaux appris automatiquement à partir des données annotées

Les prédictions sont aussi interprétables !

Pourquoi une alerte a été générée ?

3- Valider le modèle

Avant la mise en production !

Jeu de données de validation

- Données annotées
- Validation sur des données non utilisées pour l'apprentissage

Méthode de validation

Apprentissage

90% données

Validation

10% données

Bien utiliser le Machine Learning!

Bonnes pratiques

- Attributs discriminants
- 2 Modèle répondant aux contraintes opérationnelles
- 3 Validation du modèle

SecuML

- Interface de diagnostic d'un classifieur
- Mise en place d'un modèle avant sa mise en production
- https://github.com/ANSSI-FR/SecuML

SSTIC 2017 Bonneton et al., Le Machine Learning confronté aux contraintes opérationnelles des systèmes de détection.

Interface de diagnostic d'un classifieur

https://github.com/ANSSI-FR/SecuML

Détection de fichiers PDF malveillants

- 1 Attributs: de nombreux articles de recherche
- 2 Modèle: régression logistique
- **3 Validation:** Contagio et WebPdf

Détection de fichiers PDF malveillants

- Attributs: de nombreux articles de recherche
- 2 Modèle: régression logistique
- **3 Validation:** Contagio et WebPdf

Détection de fichiers PDF malveillants

- Attributs: de nombreux articles de recherche
- 2 Modèle: régression logistique
- **3 Validation:** Contagio et WebPdf

Bien utiliser le Machine Learning!

- Un bon jeu de données annotées
- Attributs discriminants
- Modèle répondant aux contraintes opérationnelles
- 3 Validation du modèle

Bien utiliser le Machine Learning!

- Un bon jeu de données annotées
- Attributs discriminants
- Modèle répondant aux contraintes opérationnelles
- 3 Validation du modèle

Comment obtenir un bon jeu de données annotées ?

- 1 Contexte et problème
- 2 Machine Learning
- 3 Bien utiliser le Machine Learning
- 4 Obtenir un bon jeu de données annotées

Manque de données d'apprentissage

- X Jeux de données publics ≠ production
- Crowd-sourcing

Manque de données d'apprentissage

- X Jeux de données publics ≠ production
- Crowd-sourcing

Comment sélectionner les demandes d'annotations ?

Méthode de sélection

- X Sélection aléatoire
- ✓ Active learning

Principe de l'active learning (uncertainty sampling)

Défis liés à l'active learning

Défis

- 1 Détecter toutes les familles
- 2 Réduire le temps d'attente
- 3 Interface utilisateur adaptée

Un système d'annotation adapté aux besoins des experts en sécurité

Répond aux défis

- 1 Détecter toutes les familles
- 2 Réduire le temps d'attente
- 3 Interface utilisateur adaptée

Annotation: famille

Annotation: famille

Annotation: famille

Annotation: famille

Demande d'annotation

► Frontière de décision

Annotation: famille

Demande d'annotation

► Frontière de décision

Clusters = Familles définies par l'utilisateur

Annotation: famille

Demande d'annotation

- ► Frontière de décision
- ► Centre des clusters

Clusters = Familles définies par l'utilisateur

Annotation: famille

Demande d'annotation

- ► Frontière de décision
- Centre des clusters
- Bord des clusters

Clusters = Familles définies par l'utilisateur

ILAB et Aladin détectent bien les différentes familles.

Uncertainty Almgren et al., Using Active Learning in Intrusion Detection, CSFW 2004 Görnitz et al., Görnitz et al., Toward Supervised Anomaly Detection, JAIR 2013

Aladin Stokes et al., Aladin: Active Learning of Anomalies to Detect Intrusions, 2008

ILAB Beaugnon et al., ILAB: An Interactive Labelling Strategy for Intrusion Detection, RAID 2017

2- Réduire le temps d'attente

Diviser pour régner

- Reduction de la complexité
- Annotations pendant les calculs

2- Réduire le temps d'attente

Diviser pour régner

- Reduction de la complexité
- Annotations pendant les calculs

2- Réduire le temps d'attente

Temps d'attente réduit grâce à ILAB

Aladin Stokes et al., Aladin: Active Learning of Anomalies to Detect Intrusions, 2008

ILAB Beaugnon et al., ILAB: An Interactive Labelling Strategy for Intrusion Detection, RAID 2017

3- Interface utilisateur adaptée : Annotations

3- Interface utilisateur adaptée : Instances annotées

3- Interface utilisateur adaptée : Éditeur de familles

Un système d'annotation adapté aux besoins des experts en sécurité

Répond aux défis

- Détecter toutes les familles
- Réduit le temps d'attente
- Interface utilisateur adaptée

RAID 2017 Beaugnon et al., ILAB: An Interactive Labelling Strategy for Intrusion Detection
AICS 2018 Beaugnon et al., End-to-End Active Learning for Computer Security Experts

Machine Learning pour la détection d'intrusion

Bonnes pratiques

- 1 Un bon jeu de données annotées
- Attributs discriminants
- 3 Modèle répondant aux contraintes opérationnelles
- 4 Validation du modèle

https://github.com/ANSSI-FR/SecuML

Machine Learning pour la détection d'intrusion

Bonnes pratiques

- 1 Un bon jeu de données annotées
- Attributs discriminants
- 3 Modèle répondant aux contraintes opérationnelles
- 4 Validation du modèle

https://github.com/ANSSI-FR/SecuML

