Quantum Math

Brian Rashap

August 2025

Algebra

Algebra Overview

- Functions
- Transformations
- Polynomials
- Rational Functions
- Exponentials and Logarithms

4 / 24

Cartesian Coordinates

THE IORIZONTAL NUMBER LINE IS OFTEN ZALED THE x-ANTS AND THE VERTICAL NUMBER LINE THE y-ANTS. THE VOLNIESS OF A POINT'S DOPES ARE ZALED THE x-COORDINATE, AND THE y-ACORDINATE, FOR A POINT'S x-COORDINATE, FOLLOW A VERTICAL LINE FROM THE POINT TO THE x-AX45, TO FIND ITS y-COORDINATE, 60 HORIZONTALLY FROM THE POINT TO THE y-AX55.

IF A CITY WERE LAIP OUT LIKE THIS (AND MANY ARE-CHECK OUT A MAP OF NEW YORK CITY'S MANNATTAN), YOU MIGHT SAY THAT THE POINT (x,y) is at the intersection of x avenue

Some text

Measuring Distance - Pythagorean Theorem

Pythagorean Theorem:

$$a^2 + b^2 = c^2$$

For example:

$$d^{2} = 3^{2} + 4^{2}$$

$$d^{2} = 9 + 16 = 25$$

$$d = \sqrt{25} = 5$$

More generally for two points $P(x_1, y_1)$ and $Q(x_2, y_2)$

$$d^{2} = (x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}$$

$$d = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}$$

Noting that $|a| = (a)^2$:

Midpoints and Intercepts

Midpoint:

$$M=\left(\frac{x_1+x_2}{2},\frac{y_2+y_1}{2}\right)$$

Intercepts:

Two key features of a graph are where the graph intersects the x and y axes, the x-intercept and y-intercept, respectively.

The Circle

A circle is a set of all points that are equidistant from a fixed point called the center (h, k). The distance from any point on the circle to the center is called the radius (r) $r = \sqrt{(x-h)^2 + (y-k)^2}$

Equation of a circle:

Standard form:
$$(x - h)^2 + (y - k)^2 = r^2$$

Expand binomials:

$$x^2 - hx + h^2 + y^2 - ky + k^2 - r^2 = 0$$

$$x^{2} + y^{2} - hx - ky + (h^{2} + k^{2} - r^{2}) = 0$$
or
$$x^{2} + y^{2} + Ax + By + C = 0$$

Exponential Functions

- Linear growth a constant rate of change, that is,a constant number by which the output increased for each unit increase in input.
- Exponential growth increase based on a constant multiplicative rate
 of change over equal increments of time, that is, a percent increase of
 the original amount over time.

x	$f(x) = 2^x$	g(x) = 2x
0	1	0
1	2	2
2	4	4
3	8	6
4	16	8
5	32	10
6	64	12

Origami to the Moon

What about Negative Exponents

The general form of an exponential function is $f(x) = ab^x$, where a is any non-zero number and b is an positive number not equal to 1.

- If b > 1 the function grows at a rate proportional to its size.
- If 0 < b < 1 the function decays at a rate proportional to its size.

For example, $f(x) = 2^x$:

x								
$f(x) = 2^x$	$2^{-3} = \frac{1}{8}$	$2^{-2} = \frac{1}{4}$	$2^{-1} = \frac{1}{2}$	$2^0 = 1$	$2^1 = 2$	$2^2 = 4$	$2^3 = 8$	

Brian Rashap Quantum Math August 2025 10 / 24

Scientific (SI) Prefixes

The Metric System Prefixes								
Prefix	Label	Decimal Value	Scientific	Colloquial				
yocto	у	0.000 000 000 000 000 000 000 001	10 ⁻²⁴	septillionth				
zepto	z	0.000 000 000 000 000 000 001	10 ⁻²¹	sextillionth				
atto	а	0.000 000 000 000 000 001	10 ⁻¹⁸	quintillionth				
femto	f	0.000 000 000 000 001	10 ⁻¹⁵	quadrillionth				
pico	р	0.000 000 000 001	10 ⁻¹²	trillionth				
nano	n	0.000 000 001	10 ⁻⁹	billionth				
micro	μ	0.000 001	10 ⁻⁶	millionth				
milli	m	0.001	10 ⁻³	thousandth				
centi	С	0.01	10 ⁻²	hundredth				
deci	d	0.1	10 ⁻¹	tenth				
		1	10°	one				
deka	da	10	10 ¹	ten				
hecto	h	100	10 ²	hundred				
kilo	k	1 000	10 ³	thousand				
mega	M	1 000 000	10 ⁶	million				
giga	G	1 000 000 000	10 ⁹	billion				
tera	Т	1 000 000 000 000	10 ¹²	trillion				
peta	Р	1 000 000 000 000 000	10 ¹⁵	quadrillion				
exa	E	1 000 000 000 000 000 000	10 ¹⁸	quintillion				
zetta	Z	1 000 000 000 000 000 000 000	10 ²¹	sextillion				
yotta	Υ	1 000 000 000 000 000 000 000 000	10 ²⁴	septillion				

e - an interesting aside

The letter e represents the irrational number:

$$e = \left(1 + \frac{1}{n}\right)^n \tag{1}$$

as *n* increases without bound.

The number e is used as a base for many real-world exponential models. To work with base e, we use the approximation, $e \approx 2.718282$. The constant was named by the Swiss mathematician Leonhard Euler (1707–1783) who first investigated and discovered many of its properties.

Graphing Exponentials

Shifts:

Stretch:

Flip:

Trigonometry

Algebraic Functions

An algebraic function provides a "y-value" for every "x-value"

• Linear: y = x + 2

• Quadratic: $y = x^2$

• Periodic: y = sin(x)

12 BASIC FUNCTIONS

More Desmos Fun

Pi (π)

Unit Circle and Trigonometric Functions

The Unit Circle is a circle with a radius of 1.

The Unit Circle can be used to map out the trigonometric values of sine, cosine, and tangent.

Brian Rashap Quantum Math August 2025 18 / 24

Unit Circle and the Value of $sin(\theta)$

- $sin(\theta)$ is the y-value of the point on the Unit Circle at angle θ .
- ullet In our trig functions, heta is measured in radians (rad), not degrees.
- 360 degrees = 2π radians.

Brian Rashap Quantum Math August 2025 19 / 24

Sine Waves

$$y = A * sin(2 * \pi * \nu * t) + B$$

where A = amplitude, B = offset, ν = frequency = $\frac{1}{\textit{period}}$, and t = time in seconds.

Using Desmos (desmos.com/calculator)

Brian Rashap Quantum Math August 2025 21 / 24

SOH CAH TOA

- sin = opposite over hypotenuse
- cos = adjacent over hypotenuse
- tan = opposite over adjacent

 $sin(\Theta) = opposite / hypotenuse$ or
opposite = hypotenuse * $sin(\Theta)$

Scalars and Vectors

Scalars are quantities that are fully described by a magnitude (or numerical value) alone.

Vectors are quantities that are fully described by both a magnitude and a direction.

Pythagorean Theorem in 3 Dimensions

The Pythagorean Theorem

To add orthogonal (at right angles to each other) vectors in 3 Dimensions:

$$C = \sqrt{A_x^2 + A_y^2}$$

$$A_{total} = \sqrt{C^2 + A_z^2}$$

$$\bullet \ A_{total} = \sqrt{A_x^2 + A_y^2 + A_z^2}$$