

Report No: CCISE161105401

FCC REPORT

Applicant: 8devices

Address of Applicant: Gedimino 47, Kaunas, LT-44242, Lithuania

Equipment Under Test (EUT)

Product Name: Broadband Digital Transmission System

Model No.: Rambutan

FCC ID: Z9W-RMB

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 24 Nov., 2016

Date of Test: 24 Nov., 2016 to 05 Feb., 2017

Date of report issued: 05 Feb., 2017

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Report No: CCISE161105401

2 Version

Version No.	Date	Description
00	05 Feb., 2017	This report was amended on FCC ID: Z9W-RMB follow FCC Class II Permissive Change.

Test Engineer

Reviewed by: Date: 05 Feb., 2017

Project Engineer

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3		NTENTS	
4	IES	ST SUMMARY	4
5	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	7
	5.5	MEASUREMENT UNCERTAINTY	7
	5.6	LABORATORY FACILITY	8
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	8
6	TES	ST RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	11
	6.4	OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	
	6.6	BAND EDGE	27
	6.7	Spurious Emission	
	6.7.		
	6.7.2		
	6.8	FREQUENCY STABILITY	47
7	TES	ST SETUP PHOTO	49
Ω	FI 17	CONSTRUCTIONAL DETAILS	E2

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.407 (g)	Pass
AC Power Line Conducted Emission	15.207	Pass*
Conducted Peak Output Power	15.407 (a)	Pass
26dB Occupied Bandwidth	15.407 (a)	Pass*
6dB Emission Bandwidth	15.407(e)	Pass*
Power Spectral Density	15.407 (a)	Pass*
Band Edge	15.407(b)	Pass
Spurious Emission	15.205/15.209	Pass
Frequency Stability	15.407(g)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Pass*: Please refer to FCC ID: Z9W-RMB.

5 General Information

5.1 Client Information

Applicant:	8devices
Address of Applicant:	Gedimino 47, Kaunas, LT-44242, Lithuania
Manufacturer/ Factory:	8devices
Address of Manufacture/Factory:	Gedimino 47, Kaunas, LT-44242, Lithuania

5.2 General Description of E.U.T.

Product Name:	Broadband Digital Transmission System
Model No.:	Rambutan
Operation Frequency:	Band 1: 5150MHz-5250MHz Band 4: 5725MHz-5850MHz
Channel numbers:	Band 1: 802.11a/802.11n20: 4,802.11n40: 2 Band 4: 802.11a/802.11n20: 5,802.11n40: 2
Channel separation:	802.11a/802.11n20: 20MHz, 802.11n40: 40MHz
Modulation technology: (IEEE 802.11a)	BPSK,QPSK,16-QAM,64-QAM
Modulation technology: (IEEE 802.11n)	BPSK,QPSK,16-QAM,64-QAM
Data speed(IEEE 802.11a)	6Mbps, 9Mbps,12Mbps,18Mbps,24Mbps,36Mbps,48Mbps,54Mbps
Data speed (IEEE 802.11n20):	MCS0: 6.5Mbps,MCS1:13Mbps,MCS2:19.5Mbps,MCS3:26Mbps, MCS4: 39Mbps,MCS5:52Mbps,MCS6:58.5Mbps,MCS7:65Mbps
Data speed (IEEE 802.11n40):	MCS0:15Mbps,MCS1:30Mbps,MCS2:45Mbps,MCS3:60Mbps, MCS4: 90Mbps,MCS5:120Mbps,MCS6:135Mbps,MCS7:150Mbps
Antenna Type:	Antenna 0: Ceramic Antenna (Indoor used only) Antenna 1: Rod Antenna (Used for 5725MHz~5850MHz only)
Antenna gain:	Antenna 0: 5 dBi (5150~5250MHz indoor, 5725~5850MHz) Antenna 1:10 dBi (5725~5850MHz)
Power supply:	DC 5V
Remark:	802.11b/g/n all support 2×2 MIMO

Operation Frequency each of channel

Band 1					
802.11	a/802.11n20	802.11n40			
Channel	Frequency	Channel	Frequency		
36	5180MHz	38	5190MHz		
40	5200MHz	46	5230MHz		
44	5220MHz				
48	48 5240MHz				
	Bar	nd 4			
802.11	a/802.11n20	802.11n40			
Channel	Frequency	Channel	Frequency		
149	5745MHz	151	5755MHz		
153	5765MHz	159	5795MHz		
157	5785MHz				
161	5805MHz				
165 5825MHz					

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Band 1					
802.11a/802.11n2	20	802.11n40			
Channel	Frequency	Channel	Frequency		
The lowest channel	5180MHz	The lowest channel	5190MHz		
The middle channel	5200MHz	The highest channel	5230MHz		
The highest channel	The highest channel 5240MHz				
Band 4					
802.11a/802.11n2	802.11a/802.11n20		802.11n40		
Channel	Channel Frequency		Frequency		
The lowest channel	The lowest channel 5745MHz		5755MHz		
The middle channel	The middle channel 5785MHz		5795MHz		
The highest channel 5825MHz					

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Continuously transmitting mode	Keep the EUT in 100% duty cycle transmitting with modulation.			
Remark	During the test, pre-scan the Antenna 0 and Antenna 1, and found the Antenna 1 is the worst case, so only shows the data of Antenna 1 in this report.			

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.			
Mode Data rate			
802.11a	6Mbps		
802.11n20	6.5Mbps		
802.11n40 13Mbps			

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 6Mbps for 802.11a, 6.5 Mbps for 802.11n20, 13 Mbps for 802.11n40. All test items for 802.11a, 802.11n were performed with duty cycle above 98%, meet the requirements of KDB789033.

5.4 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC

5.5 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

Report No: CCISE161105401

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

●FCC- Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

●IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

● CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.8 Test Instruments list

Radiated Emission					
Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-25-2016	03-25-2017
Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-25-2016	03-25-2017
Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	03-25-2016	03-25-2017
Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	03-25-2016	03-25-2017
Pre-amplifier (18-40GHz)	A.H System	PAM-1840	GTS219	04-01-2016	03-31-2017
Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2016	03-31-2017
Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2016	03-28-2017
EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	04-01-2016	03-31-2017
Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2016	03-31-2017
Spectrum Analyzer	HP	8564E	CCIS0150	05-24-2016	05-23-2017
EMI Test Software	AUDIX	E3	N/A	N/A	N/A

Conducted Emission					
Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2014	11-09-2017
EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-24-2016	03-24-2017
LISN	CHASE	MN2050D	CCIS0074	03-26-2016	03-26-2017
Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2016	03-31-2017
EMI Test Software	AUDIX	E3	N/A	N/A	N/A

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, § 15.213,§ 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The product is a professionally installed device which has two types of antennas for the application. The antennas information as below table:

Antenna No.	Antenna Type	Antenna Gain (dBi)	Remark
Antenna 0	Ceramic Antenna	5	Indoor use only
Antenna 1	Rod Antenna	10	5725MHz~5850MHz use only

According to above information, the antennas meet the requirements of this section
Antenna 0:
Antenna 1:

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.20	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.4: 2014	ANSI C63.4: 2014						
Test Frequency Range:	150kHz to 30MHz	150kHz to 30MHz						
Class / Severity:	Class B							
Receiver setup:	RBW=9kHz, VBW=30kHz							
Limit:	Frequency range (MHz)	Limit ((dBuV)					
		Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5 5-30	56 60	46 50					
	* Decreases with the logarith		50					
Test procedure	 The E.U.T and simulate a line impedance sta 500hm/50uH coupling in The peripheral device through a LISN that p with 500hm termination test setup and photogra Both sides of A.C. line a interference. In order to positions of equipment a changed according to A measurement. 	bilization network (L.Impedance for the meass are also connected rovides a 50ohm/50uhn. (Please refer to the liphs). Are checked for maximum find the maximum emisted and all of the interface of	.S.N.). It provides a suring equipment. It of the main power of coupling impedance block diagram of the sign conducted assion, the relative cables must be					
Test setup:	LISN 40cr	EMI Receiver	ter — AC power					
Test Instruments:	Refer to section 5.8 for detail	ls						
Test mode:	Refer to section 5.3 for detail	ls.						
Test results:	Refer to FCC ID:Z9W-RMB							

6.3 Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) & (a) (3)
Test Method:	ANSI C63.10: 2013, KDB789033
Limit:	Band 1: 1W (For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.) Band 4: 1W (If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.).
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Band 1:

Mode	Test CH	Ant. Port	Conducted Output power (dBm)	Total power (dBm)	Limit (dBm)	Result	
	Lowest	TX0	21.80	24.07	20.00	Doos	
	Lowest	TX1	20.17	24.07	30.00	Pass	
002.110	Middle	TX0	20.09	22.07	20.00	Door	
802.11a	Middle	TX1	20.03	23.07	30.00	Pass	
	Llighoot	TX0	20.00	22.04	20.00	Pass	
	Highest	TX1	19.66	22.84	30.00	F 455	
	Lowest	TX0	19.87	22.77	20.00	Door	
		TX1	19.64	22.77	30.00	Pass	
802.11n20	Middle	TX0	19.50	22.63	30.00	Pass	
002.111120	Middle	TX1	19.73	22.03	30.00	Fa55	
	Lighoot	TX0	20.04	22.81	30.00	Door	
	Highest	TX1	19.54	22.01	30.00	Pass	
	Lowest	TX0	20.40	22.47	20.00	Door	
000 44 = 40	Lowest	TX1	19.90	23.17	30.00	Pass	
802.11n40	Highest	TX0	20.09	22.99	30.00	Doos	
	riignest	TX1	19.86	22.99	30.00	Pass	

Remark:

- 1. Because the transmit signals are completely uncorrelated, so the Directional gain = G_{ANT}.
- 2. Only 5 dBi antenna used for 5150MHz~5250MHz.
- 3. The maximum directional Gain of antenna is 5 dBi, so the limit of power is 30 dBm.

Band 4:

Mode	Test CH	Ant. Port	Conducted Output power (dBm)	Total power (dBm)	Limit (dBm)	Result	
	Lowest	TX0	21.04	24.22	26.00	Pass	
	Lowest	TX1	21.38	24.22	20.00	Fd55	
802.11a	Middle	TX0	20.81	24.07	26.00	Door	
002.11a	Middle	TX1	21.29	24.07	26.00	Pass	
	Lighoot	TX0	20.44	23.53	26.00	Pass	
	Highest	TX1	20.60	23.53	26.00		
	Lowest	TX0	21.12	24.31	26.00	Pass	
		TX1	21.47	24.31	26.00	F ass	
802.11n20	Middle	TX0	20.79	24.04	26.00	Door	
002.111120	Middle	TX1	21.25	24.04	26.00	Pass	
	Llighoot	TX0	20.81	22.75	26.00	Door	
	Highest	TX1	20.66	23.75	26.00	Pass	
	Lowest	TX0	20.84	24.05	26.00	Door	
000 44 : 40	Lowest	TX1	21.23	24.05	26.00	Pass	
802.11n40	Highoot	TX0	20.60	23.83	26.00	Door	
	Highest	TX1	21.03	23.03	20.00	Pass	

Remark:

- 1. Because the transmit signals are completely uncorrelated, so the Directional gain = G_{ANT} .
- 2. The maximum directional Gain of antennas is10 dBi, so the limit of power is 26 dBm.

Test plot as follows:

Band 1: TX0

Lowest channel

Middle channel

Highest channel

Middle channel

Highest channel

Highest channel

TX1

Lowest channel

Middle channel

Highest channel

Middle channel

Highest channel

Highest channel

Band 4: TX0

Lowest channel

Middle channel

Highest channel

Middle channel

Highest channel

Highest channel

TX1

Lowest channel

Middle channel

Highest channel

Middle channel

Highest channel

Highest channel

6.4 Occupy Bandwidth

FCC Part15 E Section 15.407 (a) (5) and Section 15.407 (e)			
ANSI C63.10:2013 and KDB 789033			
Band 1: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: >500kHz(6dB Bandwidth)			
Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Refer to section 5.8 for details			
Refer to section 5.3 for details			
Refer to FCC ID:Z9W-RMB			

6.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) &(a) (3)			
Test Method:	ANSI C63.10:2013, KDB 789033			
Limit:	Band 1: 17 dBm/MHz (The maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.); Band 4: 30dBm/500kHz (The maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.)			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Refer to FCC ID:Z9W-RMB			

6.6 Band Edge

6.6 Band Edge	F00 D- (45 F 0 - 1)	. 45 407 (1)						
Test Requirement:	FCC Part15 E Section 15.407 (b)							
Test Method:		ANSI C63.10:2013 , KDB 789033						
Receiver setup:	Detector	RBW	VBW	Remark				
	Quasi-peak	120kHz	300kHz	Quasi-peak Value				
	RMS	1MHz	3MHz	Average Value				
Limit:	Band	· ·	ıV/m @3m)	Remark				
	Band 1		3.20	Peak Value				
		+	1.00	Average Value				
	Band 4		3.20	Peak Value				
	Б	54	1.00	Average Value				
Test Procedure:	 Remark: Band 1 limit: E[dBμV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=-27dBm. Band 4 limit: E[dBμV/m] = EIRP[dBm] + 95.2=78.2 dBuV/m, for EIPR[dBm]=-17dBm. The EUT was placed on the top of a rotating table 1.5 meters above the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak value of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quas peak or average method as specified and then reported in a data 							
Test setup:	AE EUT (Turntable)	Ground Reference Plane	Horn Anlenna Tow	wer				
Test Instruments:	Refer to section 5.8 fo	or details						
Test mode:	Refer to section 5.3 fo	or details						
Test results:	Passed							

MIMO TX mode

Band 1:

	802.11a							
Test c	hannel		Lowest	Level		vel	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5150.00	42.25	36.23	7.05	41.93	43.60	68.20	-24.60	Horizontal
5150.00	41.78	36.23	7.05	41.93	43.13	68.20	-25.07	Vertical
				802.11a				
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5150.00	32.95	36.23	7.05	41.93	34.30	54.00	-19.70	Horizontal
5150.00	31.47	36.23	7.05	41.93	32.82	54.00	-21.18	Vertical
				802.11a				
Test c	hannel	Highest		Level		Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	42.05	35.37	7.11	41.89	42.64	68.20	-25.56	Horizontal
5350.00	42.61	35.37	7.11	41.89	43.20	68.20	-25.00	Vertical
	802.11a							
Test c	hannel		Highest		Le	vel	Average	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	32.03	35.37	7.11	41.89	32.62	54.00	-21.38	Horizontal
5350.00	32.31	35.37	7.11	41.89	32.90	54.00	-21.10	Vertical

802.11n-HT20									
Test channel Lowest Level				vol		Peak			
	Read Level	Antenna	Cable	Droomp	Level	Limit Line	Over	ean	
Frequency (MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Preamp Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization	
5150.00	42.75	36.23	7.05	41.93	44.10	68.20	-24.10	Horizontal	
5150.00	41.16	36.23	7.05	41.93	42.51	68.20	-25.69	Vertical	
			8	02.11n-HT20					
Test c	hannel		Lowest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	32.86	36.23	7.05	41.93	34.21	54.00	-19.79	Horizontal	
5150.00	31.95	36.23	7.05	41.93	33.30	54.00	-20.70	Vertical	
			8	02.11n-HT20					
Test c	hannel		Highest		Level		Peak		
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Dalarination	
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization	
5350.00	42.72	35.37	7.11	41.89	43.31	68.20	-24.89	Horizontal	
5350.00	42.03	35.37	7.11	41.89	42.62	68.20	-25.58	Vertical	
	802.11n-HT20								
Test c	hannel		Highest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	32.65	35.37	7.11	41.89	33.24	54.00	-20.76	Horizontal	
5350.00	33.04	35.37	7.11	41.89	33.63	54.00	-20.37	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n-HT40								
Test c	hannel		Lowest		Level		F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	42.16	36.23	7.05	41.93	43.51	68.20	-24.69	Horizontal	
5150.00	43.35	36.23	7.05	41.93	44.70	68.20	-23.50	Vertical	
			8	02.11n-HT40					
Test c	hannel		Lowest		Le	vel	Av	rerage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	32.57	36.23	7.05	41.93	33.92	54.00	-20.08	Horizontal	
5150.00	33.69	36.23	7.05	41.93	35.04	54.00	-18.96	Vertical	
			8	02.11n-HT40					
Test c	hannel		Highest		Level		Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	42.28	35.37	35.37	7.11	41.89	68.20	-26.31	Horizontal	
5350.00	42.69	35.37	35.37	7.11	41.89	68.20	-26.31	Vertical	
			8	02.11n-HT40					
Test c	Test channel Highest			Level		Av	rerage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	32.15	35.37	7.11	41.89	32.74	54.00	-21.26	Horizontal	
5350.00	33.14	35.37	7.11	41.89	33.73	54.00	-20.27	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

	802.11a									
Test c	hannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	41.56	34.65	7.69	41.94	41.96	78.20	-36.24	Horizontal		
5725.00	42.95	34.65	7.69	41.94	43.35	78.20	-34.85	Vertical		
802.11a										
Test c	hannel		Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	31.45	34.65	7.69	41.94	31.85	54.00	-22.15	Horizontal		
5725.00	32.59	34.65	7.69	41.94	32.99	54.00	-21.01	Vertical		
				802.11a						
Test c	hannel	Highest			Le	vel	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	41.72	34.63	7.90	42.03	42.22	78.20	-35.98	Horizontal		
5850.00	40.69	34.63	7.90	42.03	41.19	78.20	-37.01	Vertical		
				802.11a						
Test c	hannel		Highest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	31.69	34.63	7.90	42.03	32.19	54.00	-21.81	Horizontal		
5850.00	30.25	34.63	7.90	42.03	30.75	54.00	-23.25	Vertical		

			8	302.11n-HT20						
Test c	hannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	42.69	34.65	7.69	41.94	43.09	78.20	-35.11	Horizontal		
5725.00	41.51	34.65	7.69	41.94	41.91	78.20	-36.29	Vertical		
802.11n-HT20										
Test c	hannel		Lowest		Le	vel	Av	rerage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	32.64	34.65	7.69	41.94	33.04	54.00	-20.96	Horizontal		
5725.00	31.21	34.65	7.69	41.94	31.61	54.00	-22.39	Vertical		
			8	02.11n-HT20						
Test c	hannel	Highest			Le	vel	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	42.74	34.63	7.90	42.03	43.24	78.20	-34.96	Horizontal		
5850.00	41.28	34.63	7.90	42.03	41.78	78.20	-36.42	Vertical		
			8	02.11n-HT20						
Test c	hannel		Highest		Le	vel	Av	rerage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	32.06	34.63	7.90	42.03	32.56	54.00	-21.44	Horizontal		
5850.00	31.79	34.63	7.90	42.03	32.29	54.00	-21.71	Vertical		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

			8	02.11n-HT40					
Test c	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	41.71	34.65	7.69	41.94	42.11	78.20	-36.09	Horizontal	
5725.00	42.03	34.65	7.69	41.94	42.43	78.20	-35.77	Vertical	
802.11n-HT40									
Test c	hannel		Lowest		Le	vel	Av	rerage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	32.77	34.65	7.69	41.94	33.17	54.00	-20.83	Horizontal	
5725.00	31.64	34.65	7.69	41.94	32.04	54.00	-21.96	Vertical	
			8	02.11n-HT40					
Test c	hannel		Highest			Level		Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	41.68	34.63	7.90	42.03	42.18	78.20	-36.02	Horizontal	
5850.00	40.13	34.63	7.90	42.03	40.63	78.20	-37.57	Vertical	
			8	02.11n-HT40					
Test c	hannel		Highest		Le	vel	Av	rerage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	31.77	34.63	7.90	42.03	32.27	54.00	-21.73	Horizontal	
5850.00	30.65	34.63	7.90	42.03	31.15	54.00	-22.85	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Restricted Band

<u>6.7.1</u>	Restricted Band										
	Test Requirement:	FCC Part15 E Se	ction 15.	.407(b)						
	Test Method:	ANSI C63.10: 20	13								
	TestFrequencyRange:	Band 1: 4.5 GHz	to 5.15 G	3Hz a	and 5.35GHz	to 5.4	6GHz				
	, , ,	Band 4: 5.35 GHz	z to 5.46	GHz							
	Test site:	Measurement Dis	stance: 3	m							
	Receiver setup:	Frequency	Detect		RBW	VE	3W	Remark			
			Peal		1MHz		1Hz	Peak Value			
		Above 1GHz	RMS		1MHz		1Hz	Average Value			
	Limit:	Frequency			t (dBuV/m @:			Remark			
					68.20			Peak Value			
		Above 1GHz	<u> </u>		54.00		1	Average Value			
		Remark:						gee			
		1. Above 1GHz lii	mit:								
		E[dBμV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m,for EIPR[dBm]=-27dBm									
	Test Procedure:							1.5 meters above			
	10011100000101							ted 360 degrees			
					f the highest			tou ooo dog.ooo			
			•		-			nce-receiving			
		antenna, whichwas mounted on the top of a variable-height antenna									
		tower.			•			ŭ			
		3. The antenna	height is	s vari	ed from one r	neter	to fou	r meters above			
								field strength.			
		Both horizon	tal and v	ertica	al polarization	s of tl	he ante	enna are set to			
		make the me	easureme	ent.							
		4. For each sus	spected e	emiss	sion, the EUT	was a	arrang	ed to its worst			
		case and the	nthe ant	enna	was tuned to	heig	hts fro	m 1 meter to 4			
		meters and t	he rotata	ablew	as turned froi	m 0 d	egrees	s to 360 degrees			
		to find the ma	aximum	readi	ng.		_				
		5. The test-rece	eiver sys	tem v	was set to Pea	ak De	tect F	unction and			
		SpecifiedBar	ndwidth v	with N	/laximum Hol	d Mod	de.				
		6. If the emission	on level o	of the	EUT in peak	mode	e was	10dB lower than			
		the limitspec	ified, the	n tes	ting could be	stopp	ed an	d the peak values			
		of the EUT w	vouldbe r	epor	ted. Otherwis	e the	emissi	ions that did not			
								sing peak, quasi-			
		peak or aver	age metl	hod a	as specified a	ndthe	n repo	rted in a data			
		sheet.									
	Test setup:							20.			
			\bigvee	\sim	$\vee \vee $	$\wedge \vee$	\bigvee	$\sim\sim$			
							1	\leq			
						T		3			
						.		\geq			
			AE L EUT	-	Horr	Antenna	Antenna 1	Tower S			
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	AE H	7			_				
		9cm			3m		5				
			(Turntable)		\\\\\\\						
			***************************************	W V	V V V V \	0	0				
		The state of the s			Ground Reference Plane						
				Test Re	eceiver Am	re- plifier Co	ontroller				
	Test Instruments:	Refer to section 5	.8 for de	tails							
	Test mode:	Refer to section 5	3.3 for de	tails							
	Test results:	Passed									

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

MIMO TX mode

Band 1:

802.11a

Test c	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	43.35	34.50	6.80	42.05	42.60	74.00	-31.40	Horizontal
4500.00	42.27	34.50	6.80	42.05	41.52	74.00	-32.48	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	32.63	34.50	6.80	42.05	31.88	54.00	-22.12	Horizontal
4500.00	31.12	34.50	6.80	42.05	30.37	54.00	-23.63	Vertical
Test c	hannel		Highest		Level		F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	41.41	34.90	7.18	41.85	41.64	74.00	-32.36	Horizontal
5460.00	42.69	34.90	7.18	41.85	42.92	74.00	-31.08	Vertical
Test c	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	32.03	34.90	7.18	41.85	32.26	54.00	-21.74	Horizontal
5460.00	32.42	34.90	7.18	41.85	32.65	54.00	-21.35	Vertical

802.11n-HT20

Test c	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	41.85	34.50	6.80	42.05	41.10	74.00	-32.90	Horizontal
4500.00	42.17	34.50	6.80	42.05	41.42	74.00	-32.58	Vertical
Test c	hannel		Lowest		Le	vel	Av	rerage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	32.26	34.50	6.80	42.05	31.51	54.00	-22.49	Horizontal
4500.00	32.15	34.50	6.80	42.05	31.40	54.00	-22.60	Vertical
Test c	hannel	Highest			Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	41.72	34.90	7.18	41.85	41.95	74.00	-32.05	Horizontal
5460.00	42.13	34.90	7.18	41.85	42.36	74.00	-31.64	Vertical
Test c	hannel		Highest		Le	vel	Av	rerage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	32.03	34.90	7.18	41.85	32.26	54.00	-21.74	Horizontal
5460.00	32.59	34.90	7.18	41.85	32.82	54.00	-21.18	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40

Test c	hannel		Lowest		Le	vel	F	Peak
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Polarization
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization
4500.00	42.69	34.50	6.80	42.05	41.94	74.00	-32.06	Horizontal
4500.00	41.41	34.50	6.80	42.05	40.66	74.00	-33.34	Vertical
Test c	hannel		Lowest		Le	vel	Av	rerage
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Delevization
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization
4500.00	32.58	34.50	6.80	42.05	31.83	54.00	-22.17	Horizontal
4500.00	31.74	34.50	6.80	42.05	30.99	54.00	-23.01	Vertical
Test c	hannel	Highest			Le	vel	F	Peak
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Dolorization
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization
5460.00	41.36	34.90	7.18	41.85	41.59	74.00	-32.41	Horizontal
5460.00	42.08	34.90	7.18	41.85	42.31	74.00	-31.69	Vertical
Test c	hannel		Highest		Le	Level		rerage
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Delevimetien
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization
5460.00	31.48	34.90	7.18	41.85	31.71	54.00	-22.29	Horizontal
5460.00	33.17	34.90	7.18	41.85	33.40	54.00	-20.60	Vertical

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

802.11a

Test c	hannel		Lowest		Le	vel	F	Peak
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Polarization
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polatization
5350.00	42.43	35.37	7.11	41.89	43.02	74.00	-30.98	Horizontal
5350.00	41.85	35.37	7.11	41.89	42.44	74.00	-31.56	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Polarization
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polanzalion
5350.00	32.12	35.37	7.11	41.89	32.71	54.00	-21.29	Horizontal
5350.00	31.49	35.37	7.11	41.89	32.08	54.00	-21.92	Vertical
Test c	hannel	Lowest			Le	vel	F	Peak
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Dolorization
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization
5460.00	42.89	34.90	7.18	41.85	43.12	74.00	-30.88	Horizontal
5460.00	41.21	34.90	7.18	41.85	41.44	74.00	-32.56	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Dolorization
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization
5460.00	33.08	34.90	7.18	41.85	33.31	54.00	-20.69	Horizontal
5460.00	32.14	34.90	7.18	41.85	32.37	54.00	-21.63	Vertical

802.11n-HT20

	/0211 III 111 20									
Test c	hannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	42.86	35.37	7.11	41.89	43.45	74.00	-30.55	Horizontal		
5350.00	41.65	35.37	7.11	41.89	42.24	74.00	-31.76	Vertical		
Test c	hannel		Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	32.71	35.37	7.11	41.89	33.30	54.00	-20.70	Horizontal		
5350.00	31.34	35.37	7.11	41.89	31.93	54.00	-22.07	Vertical		
Test c	hannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	42.25	34.90	7.18	41.85	42.48	74.00	-31.52	Horizontal		
5460.00	43.31	34.90	7.18	41.85	43.54	74.00	-30.46	Vertical		
Test c	hannel		Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	32.14	34.90	7.18	41.85	32.37	54.00	-21.63	Horizontal		
5460.00	32.28	34.90	7.18	41.85	32.51	54.00	-21.49	Vertical		

Remark

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40

Test c	hannel		Lowest		Le	vel	F	Peak
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Polarization
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polatization
5350.00	42.17	35.37	7.11	41.89	42.76	74.00	-31.24	Horizontal
5350.00	43.02	35.37	7.11	41.89	43.61	74.00	-30.39	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Delevierstiere
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization
5350.00	32.67	35.37	7.11	41.89	33.26	54.00	-20.74	Horizontal
5350.00	33.12	35.37	7.11	41.89	33.71	54.00	-20.29	Vertical
Test c	hannel		Lowest		Le	vel	Peak	
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Dolorization
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization
5460.00	42.28	34.90	7.18	41.85	42.51	74.00	-31.49	Horizontal
5460.00	41.23	34.90	7.18	41.85	41.46	74.00	-32.54	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over	Dolorization
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization
5460.00	32.10	34.90	7.18	41.85	32.33	54.00	-21.67	Horizontal
5460.00	31.27	34.90	7.18	41.85	31.50	54.00	-22.50	Vertical

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7.2 Unwanted Emissions out of the Restricted Bands

Test Requirement:	FCC Part15 C S	ection 15.209	and 15.205			
Test Method:	ANSI C63.10:20	ANSI C63.10:2013				
Test Frequency Range:	30MHz to 40GHz					
Test site:	Measurement Distance: 3m					
Receiver setup:	Frequency	Detector	RBW	VB	3W	Remark
·	30MHz-1GHz	Quasi-peak	100kHz	300	kHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	3M	Hz	Peak Value
Limit:	Frequency		imit (dBuV/m @	3m)	_	Remark
	30MHz-88M		40.0			luasi-peak Value
	88MHz-216N	1Hz	43.5		C	luasi-peak Value
	216MHz-960I	ИНz	46.0		C	luasi-peak Value
	960MHz-1G	Hz	54.0		C	luasi-peak Value
	Frequency	/	Limit (dBm/MH	z)		Remark
	Above 1GH	1-	68.20			Peak Value
	Above IGF	12	54.00			Average Value
Test Procedure:	 The EUT w /1.5m (above was rotated radiation.) The EUT wantenna, who tower. The antennal ground to design herizontal ameasurement and then the and the rotal maximum resolution. The test-resolutions of the emission limit specified Best of the EUT wanten resolution. 	= EIRP[dBm] - as placed on ye 1GHz) about 1360 degrees as set 3 meters inch was mountained as height is value at the end vertical potent. It is pected emisted as the earth of the end was the earth of the end was the earth of the end would be reported in would be reserved as placed as the end with the end the	ve the ground at to determine to determine to determine the results away from the top ried from one remaximum valuations of the scientifications of the scientification of the scientif	ating ta at a 3 n he posi- ne inter o of a vo- meter to e of the me ante was ar ints froi grees to d Mode mode v pped a the emi- one us	able 0.8 neter of the ference ariable of four refield senna are ranged m 1 me of 360 control of the fessions sing pe	Bm (below 1GHz) camber. The table the highest ee-receiving cheight antenna meters above the strength. Both re set to make the d to its worst case eter to 4 meters degrees to find the action and DdB lower than the peak values of that did not have eak, quasi-peak or

MIMO TX mode Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL Condition

Pro EUT

: Broadband Digital Transmission System

Model Rambutan-I Test mode TX mode

Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: MT

: 5Gwifi(10 dBi ant) Remark

		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	dB/m	dB	dB	dBu∜/m	dBu∜/m	dB	
1	68.872	46.92	7.20	1.49	29.73	25.88	40.00	-14.12	QP
2	104.536	41.87	10.62	1.99	29.50	24.98	43.50	-18.52	QP
3	141.826	44.14	11.56	2.42	29.26	28.86	43.50	-14.64	QP
4	250.301	37.42	11.88	2.81	28.54	23.57	46.00	-22.43	QP
5	365.539	33.67	14.72	3.09	28.63	22.85	46.00	-23.15	QP
6	501 179	35 00	16 80	3 63	28 96	26 47	46 00	-19.53	OP

Vertical:

Site

3m chamber FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL Condition

Pro

EUT Broadband Digital Transmission System

Model : Rambutan-I Test mode : TX mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT

Remark : 5Gwifi(10 dBi ant)

		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBu∀	dB/m		<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	39.854	39.34	16.90	1.21	29.90	27.55	40.00	-12.45	QP
2	68.391	47.61	7.30	1.46	29.73	26.64	40.00	-13.36	QP
1 2 3	126.772	42.89	12.15	2.25	29.35	27.94	43.50	-15.56	QP
	180.017	42.05	9.20	2.73	28.97	25.01	43.50	-18.49	QP
5	365.539	38.26	14.72	3.09	28.63	27.44	46.00	-18.56	QP
6	747.483	32.80	20.32	4.35	28.49	28.98	46.00	-17.02	QP

Above 1GHz

Band 1:

Band 1:		000.4	1 a mada l av	voot obonn	al (Daak Va	luo)			
	I	802.1	1a mode Lov	vest chann	ei (Peak Vai	lue)			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10360.00	49.57	40.10	9.82	41.97	57.52	68.20	-10.68	Vertical	
10360.00	48.74	40.10	9.82	41.97	56.69	68.20	-11.51	Horizontal	
		802.11	a mode Lowe	est channe	I (AverageV	alue)			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10360.00	40.25	40.10	9.82	41.97	48.20	54.00	-5.80	Vertical	
10360.00	40.02	40.10	9.82	41.97	47.97	54.00	-6.03	Horizontal	
	802.11a mode Middle channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10400.00	50.12	40.00	9.85	41.95	58.02	68.20	-10.18	Vertical	
10400.00	50.03	40.00	9.85	41.95	57.93	68.20	-10.27	Horizontal	
802.11a mode Middle channel (AverageValue)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10400.00	40.07	40.00	9.85	41.95	47.97	54.00	-6.03	Vertical	
10400.00	39.58	40.00	9.85	41.95	47.48	54.00	-6.52	Horizontal	
		802.11	Ia mode Hig	hest chanr	el (Peak Va	lue)			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10480.00	50.17	39.70	9.96	41.88	57.95	68.20	-10.25	Vertical	
10480.00	49.76	39.70	9.96	41.88	57.54	68.20	-10.66	Horizontal	
		802.11a	mode High	est channe	l (AverageV	alue)			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10480.00	40.23	39.70	9.96	41.88	48.01	54.00	-5.99	Vertical	
10480.00	40.18	39.70	9.96	41.88	47.96	54.00	-6.04	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

		802.111	n20 mode Lo	west chan	nel (Peak V	alue)			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10360.00	48.67	40.10	9.82	41.97	56.62	68.20	-11.58	Vertical	
10360.00	49.21	40.10	9.82	41.97	57.16	68.20	-11.04	Horizontal	
		802.11n2	20 mode Lov	vest chann	el (Average)	√alue)			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10360.00	39.57	40.10	9.82	41.97	47.52	54.00	-6.48	Vertical	
10360.00	40.43	40.10	9.82	41.97	48.38	54.00	-5.62	Horizontal	
	802.11n20 mode Middle channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10400.00	50.02	40.00	9.85	41.95	57.92	68.20	-10.28	Vertical	
10400.00	49.78	40.00	9.85	41.95	57.68	68.20	-10.52	Horizontal	
802.11n20 mode Middle channel (AverageValue)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10400.00	41.25	40.00	9.85	41.95	49.15	54.00	-4.85	Vertical	
10400.00	40.18	40.00	9.85	41.95	48.08	54.00	-5.92	Horizontal	
		802.11r	20 mode Hi	ghest chan	nel (Peak V	alue)			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10480.00	50.11	39.70	9.96	41.88	57.89	68.20	-10.31	Vertical	
10480.00	50.06	39.70	9.96	41.88	57.84	68.20	-10.36	Horizontal	
		802.11n2	20 mode Hig	hest chann	el (Average	Value)			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10480.00	41.12	39.70	9.96	41.88	48.90	54.00	-5.10	Vertical	
10480.00	40.27	39.70	9.96	41.88	48.05	54.00	-5.95	Horizontal	

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

		802.11	n40 mode Lo	west chan	nel (Peak Va	alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380.00	48.96	40.00	9.85	41.95	56.86	68.20	-11.34	Vertical
10380.00	48.52	40.00	9.85	41.95	56.42	68.20	-11.78	Horizontal
		802.11n	40 mode Lov	vest chann	el (Average\	√alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380.00	39.75	40.00	9.85	41.95	47.65	54.00	-6.35	Vertical
10380.00	38.87	40.00	9.85	41.95	46.77	54.00	-7.23	Horizontal
		802.11r	n40 mode Hi	ghest chan	nel (Peak V	alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460.00	49.52	39.80	9.92	41.90	57.34	68.20	-10.86	Vertical
10460.00	50.01	39.80	9.92	41.90	57.83	68.20	-10.37	Horizontal
		802.11n ²	10 mode Higl	hest chann	el (Average)	Value)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460.00	39.24	39.80	9.92	41.90	47.06	54.00	-6.94	Vertical
10460.00	40.03	39.80	9.92	41.90	47.85	54.00	-6.15	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

Danu 4:								
		802.1	1a mode Lov	vest chann	el (Peak Va	lue)		_
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	47.74	41.50	10.81	42.29	57.76	74.00	-16.24	Vertical
11490.00	46.58	41.50	10.81	42.29	56.60	74.00	-17.40	Horizontal
		802.11	a mode Lowe	est channe	I (AverageV	alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	36.24	41.50	10.81	42.29	46.26	54.00	-7.74	Vertical
11490.00	37.47	41.50	10.81	42.29	47.49	54.00	-6.51	Horizontal
		802.1	1a mode Mid	ddle chann	el (Peak Val	ue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	45.91	41.38	10.78	42.27	55.80	74.00	-18.20	Vertical
11570.00	46.45	41.38	10.78	42.27	56.34	74.00	-17.66	Horizontal
802.11a mode Middle channel (Average Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	36.15	41.38	10.78	42.27	46.04	54.00	-7.96	Vertical
11570.00	35.71	41.38	10.78	42.27	45.60	54.00	-8.40	Horizontal
		802.11	Ia mode Hig	hest chanr	el (Peak Va	lue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	46.23	41.26	10.76	42.26	55.99	74.00	-18.01	Vertical
11650.00	46.31	41.26	10.76	42.26	56.07	74.00	-17.93	Horizontal
		802.11a	mode Highe	est channe	l (Average V	'alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	36.74	41.26	10.76	42.26	46.50	54.00	-7.50	Vertical
11650.00	35.78	41.26	10.76	42.26	45.54	54.00	-8.46	Horizontal

Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
 The emission levels of other frequencies are very lower than the limit and not show in test report.

		802.11	n20 mode Lo	west chan	nel (Peak V	alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	47.26	41.50	10.81	42.29	57.28	74.00	-16.72	Vertical
11490.00	47.11	41.50	10.81	42.29	57.13	74.00	-16.87	Horizontal
		802.11n2	20 mode Low	est chann	el (Average	Value)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	36.64	41.50	10.81	42.29	46.66	54.00	-7.34	Vertical
11490.00	37.59	41.50	10.81	42.29	47.61	54.00	-6.39	Horizontal
		802.11	n20 mode M	iddle chan	nel (Peak Va	alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	45.25	41.38	10.78	42.27	55.14	74.00	-18.86	Vertical
11570.00	46.81	41.38	10.78	42.27	56.70	74.00	-17.30	Horizontal
802.11n20 mode Middle channel (Average Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	36.07	41.38	10.78	42.27	45.96	54.00	-8.04	Vertical
11570.00	35.42	41.38	10.78	42.27	45.31	54.00	-8.69	Horizontal
		802.11r	20 mode Hi	ghest chan	nel (Peak V	alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	46.46	41.26	10.76	42.26	56.22	74.00	-17.78	Vertical
11650.00	46.71	41.26	10.76	42.26	56.47	74.00	-17.53	Horizontal
		802.11n2	0 mode High	nest chann	el (Average	Value)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	37.15	41.26	10.76	42.26	46.91	54.00	-7.09	Vertical
11650.00	36.26	41.26	10.76	42.26	46.02	54.00	-7.98	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

		802.11	n40 mode Lo	west chan	nel (Peak Va	alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	45.78	41.50	10.81	42.29	55.80	74.00	-18.20	Vertical
11510.00	46.51	41.50	10.81	42.29	56.53	74.00	-17.47	Horizontal
		802.11n4	0 mode Low	est chann	el (Average	Value)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	35.60	41.50	10.81	42.29	45.62	54.00	-8.38	Vertical
11510.00	35.39	41.50	10.81	42.29	45.41	54.00	-8.59	Horizontal
		802.11r	140 mode Hi	ghest chan	nel (Peak V	alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	46.74	41.32	10.77	42.27	56.56	74.00	-17.44	Vertical
11590.00	45.31	41.32	10.77	42.27	55.13	74.00	-18.87	Horizontal
		802.11n4	0 mode High	nest chann	el (Average	Value)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	35.52	41.32	10.77	42.27	45.34	54.00	-8.66	Vertical
11590.00	36.11	41.32	10.77	42.27	45.93	54.00	-8.07	Horizontal

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.8 Frequency stability

Test Requirement:	FCC Part15 E Section 15.407 (g)					
Limit:	Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.					
Test setup:	Temperature Chamber					
	Spectrum analyzer EUT Att. Variable Power Supply					
	Note: Measurement setup for testing on Antenna connector					
Test procedure:	 The EUT is installed in an environment test chamber with external power source. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT. A sufficient stabilization period at each temperature is used prior to each frequency measurement. When temperature is stabled, measure the frequency stability. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions. 					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details, and all channels have been tested, only shows the worst channel data in this report.					
Test results:	Passed					

Measurement Data (the worst channel):

Band 1:

Voltage vs. Frequency Stability (Lowest channel=5180MHz)

Tes	t conditions		May Povistion (mmm)		
Temp(℃)	Voltage(dc)	Frequency(MHz)	Max. Deviation (ppm)		
	5.75V	5179.963759	7.00		
20	5.00V	5179.974590	4.91		
	4.25V	5179.966329	6.50		

Temperature vs. Frequency Stability (Lowest channel=5180MHz)

ciliperature vo. 1 i	imperature vs. i requericy otability (Lowest Ghannel-5 roominz)								
Test cond	itions	Fragueney/MU=\	May Davistian (num)						
Voltage(dc)	Temp(°C)	Frequency(MHz)	Max. Deviation (ppm)						
	-20	5179.979520	3.95						
	-10	5179.974950	4.84						
	0	5179.986301	2.64						
5 \/	10	5179.963974	6.95						
5V	20	5179.952890	9.09						
	30	5179.947810	10.08						
	40	5179.969520	5.88						
	50	5179.974852	4.85						

Band 4:

Voltage vs. Frequency Stability (Lowest channel=5745MHz)

Test conditions			Man Parietian (num)
Temp(°C)	Voltage(AC /60Hz)	Frequency(MHz)	Max. Deviation (ppm)
20	5.75V	5744.974960	4.36
	5.00V	5744.976985	4.01
	4.25V	5744.974855	4.38

Temperature vs. Frequency Stability (Lowest channel=5745MHz)

Test conditions		Fragueney/MU=)	Max Deviation (nnm)
Voltage(AC /60Hz)	Temp(°C)	Frequency(MHz)	Max. Deviation (ppm)
	-20	5744.969524	5.30
	-10	5744.974855	4.38
	0	5744.979584	3.55
5 \/	10	5744.985970	2.44
5V	20	5744.987451	2.18
	30	5744.979881	3.50
	40	5744.979633	3.55
	50	5744.989650	1.80