Lecture 2: Randomized iterative methods for linear systems

School of Mathematical Sciences, Xiamen University

1. The pseudoinverse solution of linear systems

• Consider a linear system of equations

$$\mathbf{A}\mathbf{x} = \mathbf{b}, \quad \mathbf{A} \in \mathbb{R}^{m \times n}, \quad \mathbf{b} \in \mathbb{R}^m.$$

The system is called *consistent* if $\mathbf{b} \in \text{range}(\mathbf{A})$, otherwise, inconsistent.

• We are interested in the pseudoinverse solution $\mathbf{A}^{\dagger}\mathbf{b}$, where \mathbf{A}^{\dagger} denotes the Moore–Penrose pseudoinverse of \mathbf{A} .

$\mathbf{A}\mathbf{x} = \mathbf{b}$	$\operatorname{rank}(\mathbf{A})$	${f A}^\dagger {f b}$
consistent	= n	unique solution
consistent	< n	unique minimum 2-norm solution
inconsistent	= n	unique least-squares (LS) solution
inconsistent	< n	unique minimum 2-norm LS solution

- 2. Randomized Kaczmarz (RK) (Strohmer & Vershynin 2009)
 - Kaczmarz method projects \mathbf{x}^{k-1} onto $\{\mathbf{x} \mid \mathbf{A}_{i,:}\mathbf{x} = \mathbf{b}_i\},\$

$$\mathbf{x}^k = \mathbf{x}^{k-1} - \frac{\mathbf{A}_{i,:}\mathbf{x}^{k-1} - \mathbf{b}_i}{\|\mathbf{A}_{i,:}\|_2^2} (\mathbf{A}_{i,:})^\top,$$

where $A_{i,:}$ is the *i*th row of A and b_i is the *i*th component of b.

Algorithm: RK for Ax = b

Initialize $\mathbf{x}^0 \in \mathbb{R}^n$ for $k = 1, 2, ..., \mathbf{do}$ Pick $i \in [m]$ with probab

Pick
$$i \in [m]$$
 with probability $\frac{\|\mathbf{A}_{i,:}\|_2^2}{\|\mathbf{A}\|_F^2}$

Set
$$\mathbf{x}^k = \mathbf{x}^{k-1} - \frac{\mathbf{A}_{i,:}\mathbf{x}^{k-1} - \mathbf{b}_i}{\|\mathbf{A}_{i,:}\|_2^2} (\mathbf{A}_{i,:})^{\top}$$

end

• Suppose that $\mathbf{b} \in \text{range}(\mathbf{A})$. The convergence result:

$$\mathbb{E}\left[\|\mathbf{x}^k - \mathbf{x}_{\star}^0\|_2^2\right] \le \rho^k \|\mathbf{x}^0 - \mathbf{x}_{\star}^0\|_2^2,$$

where

$$\mathbf{x}_{\star}^{0} = (\mathbf{I} - \mathbf{A}^{\dagger} \mathbf{A}) \mathbf{x}^{0} + \mathbf{A}^{\dagger} \mathbf{b}$$

and

$$\rho = 1 - \frac{\sigma_r^2(\mathbf{A})}{\|\mathbf{A}\|_{\mathrm{E}}^2}.$$

2.1 A numerical example

Figure: The relative error of the RK algorithm (10 independent trials) for consistent case (left) and inconsistent case (right).

3. Randomized coordinate descent (RCD)

• RCD or RGS: (Leventhal & Lewis 2010)

$$\mathbf{x}^k = \mathbf{x}^{k-1} - \frac{(\mathbf{A}_{:,j})^\top (\mathbf{A}\mathbf{x}^{k-1} - \mathbf{b})}{\|\mathbf{A}_{:,j}\|_2^2} \mathbf{I}_{:,j},$$

where $\mathbf{A}_{:,j}$ is the jth column of \mathbf{A} and $\mathbf{I}_{:,j}$ is the jth column of the $n \times n$ identity matrix \mathbf{I} .

• The residual $\mathbf{r}^k = \left(\mathbf{I} - \frac{\mathbf{A}_{:,j}(\mathbf{A}_{:,j})^\top}{\|\mathbf{A}_{:,j}\|_2^2}\right)\mathbf{r}^{k-1}$. Here $\mathbf{r}^k := \mathbf{b} - \mathbf{A}\mathbf{x}^k$.

We have $\mathbf{A}(\mathbf{x}^k - \mathbf{A}^{\dagger}\mathbf{b}) \to \mathbf{0}$ and $\mathbf{r}^k \to (\mathbf{I} - \mathbf{A}\mathbf{A}^{\dagger})\mathbf{b}$.

Algorithm: RCD for Ax = b

Initialize
$$\mathbf{x}^0 \in \mathbb{R}^n$$
 and $\mathbf{r}^0 = \mathbf{b} - \mathbf{A}\mathbf{x}^0$

for
$$k = 1, 2, ... do$$

Select
$$j \in [n]$$
 randomly with probability $\frac{\|\mathbf{A}_{:,j}\|_2^2}{\|\mathbf{A}\|_F^2}$

Compute
$$w_k = \frac{(\mathbf{A}_{:,j})^\top \mathbf{r}^{k-1}}{\|\mathbf{A}_{:,j}\|_2^2}$$

Update
$$\mathbf{x}_j^k = \mathbf{x}_j^{k-1} + w_k$$
 and $\mathbf{r}^k = \mathbf{r}^{k-1} - w_k \mathbf{A}_{:,j}$

end for

• The convergence result:

$$\mathbb{E}\left[\|\mathbf{A}(\mathbf{x}^k - \mathbf{A}^{\dagger}\mathbf{b})\|_2^2\right] \le \left(1 - \frac{\sigma_r^2(\mathbf{A})}{\|\mathbf{A}\|_F^2}\right)^k \|\mathbf{A}(\mathbf{x}^0 - \mathbf{A}^{\dagger}\mathbf{b})\|_2^2.$$

3.1 A numerical example

Figure: Convergence history of the RCD algorithm (10 independent trials) for rank-deficient case. Left: the relative residual. Right: the relative error.

- **4. Randomized extended Kaczmarz (REK)** (Zouzias & Freris 2013, Du 2019)
 - The normal equations $\mathbf{A}^{\top} \mathbf{A} \mathbf{x} = \mathbf{A}^{\top} \mathbf{b}$ can be written as

$$\mathbf{A}^{\top}\mathbf{z} = \mathbf{0}, \quad \mathbf{A}\mathbf{x} = \mathbf{b} - \mathbf{z}.$$

• RK for $\mathbf{A}^{\top}\mathbf{z} = \mathbf{0}$ with $\mathbf{z}^0 \in \mathbf{b} + \text{range}(\mathbf{A})$ yields $\{\mathbf{z}^k\}_0^{\infty}$ satisfying

$$\mathbf{z}^k \to (\mathbf{I} - \mathbf{A} \mathbf{A}^\dagger) \mathbf{b}$$
 as $k \to \infty$.

Then $\mathbf{A}\mathbf{x} = \mathbf{b} - \mathbf{z}^k \to \mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{A}^{\dagger}\mathbf{b}$, which is consistent.

• REK solves $\mathbf{A}^{\top} \mathbf{A} \mathbf{x} = \mathbf{A}^{\top} \mathbf{b}$ via intertwining an iterate of RK on $\mathbf{A}^{\top} \mathbf{z} = \mathbf{0}$ with an iterate of RK on $\mathbf{A} \mathbf{x} = \mathbf{b} - \mathbf{z}$.

$$\mathbf{z}^{k} = \mathbf{z}^{k-1} - \frac{(\mathbf{A}_{:,j})^{\top} \mathbf{z}^{k-1}}{\|\mathbf{A}_{:,j}\|_{2}^{2}} \mathbf{A}_{:,j},$$

$$\mathbf{x}^{k} = \mathbf{x}^{k-1} - \frac{\mathbf{A}_{i,:} \mathbf{x}^{k-1} - \mathbf{b}_{i} + \mathbf{z}_{i}^{k}}{\|\mathbf{A}_{i::}\|_{2}^{2}} (\mathbf{A}_{i::})^{\top}.$$

Algorithm: REK for $\mathbf{A}^{\top} \mathbf{A} \mathbf{x} = \mathbf{A}^{\top} \mathbf{b}$

Initialize $\mathbf{z}^0 \in \mathbf{b} + \text{range}(\mathbf{A})$ and $\mathbf{x}^0 \in \mathbb{R}^n$ for $k = 1, 2, ..., \mathbf{do}$

Pick
$$j \in [n]$$
 with probability $\frac{\|\mathbf{A}_{:,j}\|_2^2}{\|\mathbf{A}\|_F^2}$

Set
$$\mathbf{z}^k = \mathbf{z}^{k-1} - \frac{(\mathbf{A}_{:,j})^\top \mathbf{z}^{k-1}}{\|\mathbf{A}_{:,j}\|_2^2} \mathbf{A}_{:,j}$$

Pick
$$i \in [m]$$
 with probability $\frac{\|\mathbf{A}_{i,:}\|_2^2}{\|\mathbf{A}\|_F^2}$

Set
$$\mathbf{x}^k = \mathbf{x}^{k-1} - \frac{\mathbf{A}_{i,:}\mathbf{x}^{k-1} - \mathbf{b}_i + \mathbf{z}_i^k}{\|\mathbf{A}_{i,:}\|_2^2} (\mathbf{A}_{i,:})^{\top}$$

end

• The convergence result:

$$\mathbb{E}\left[\|\mathbf{x}^k - \mathbf{x}_{\star}^0\|_2^2\right] \leq \rho^k \|\mathbf{x}^0 - \mathbf{x}_{\star}^0\|_2^2 + \frac{k\rho^k}{\|\mathbf{A}\|_{\mathrm{E}}^2} \|\mathbf{z}^0 - (\mathbf{I} - \mathbf{A}\mathbf{A}^{\dagger})\mathbf{b}\|_2^2.$$

5. Summary of randomized iterative methods

- Randomized iterative methods are preferable if the coefficient matrix A is too large to fit in memory, or the matrix-vector product Av is considerably expensive.
- Consistent: RK and its variants
 Inconsistent, full-column rank: RCD and its variants
 Inconsistent, rank-deficient: REK and its variants

6. References

- T. Strohmer and R. Vershynin, A randomized Kaczmarz algorithm with exponential convergence, JFAA, 2009
- D. Leventhal and A.S. Lewis, Randomized methods for linear constraints: convergence rates and conditioning, MOR, 2010
- A. Zouzias and N.M. Freris, Randomized extended Kaczmarz for solving least squares, SIMAX, 2013
- K. Du, Tight upper bounds for the convergence of the randomized extended Kaczmarz and Gauss–Seidel algorithms, NLAA, 2019