REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN SUPERIOR UNIVERSIDAD POLITÉCNICA TERRITORIAL DEL ESTADO PORTUGUESA J.J. MONTILLA GUANARE-PORTUGUESA

SUCESIONES Y SERIES

INTEGRANTES:

PROF:

MELKICEDE CAMACHO

27.216.702 ADRIAN MARQUEZ 27.635.379 VICTOR GUDIÑO 27.944.863 NEOMAR RODRIGUEZ

ÍNDICE

ÍNDICE	2
DEFINICIÓN	3
Sucesión	3
Series	3
CRITERIOS DE CONVERGENCIA Y DIVERGENCIA	4
Criterio de d'Alembert o del cociente	4
Criterio de la raíz	4
Criterio de Raabe	4
Criterio de Cauchy	5
Criterio de Leibniz	5
TIPOS DE SERIES	5
Sumas parciales	5
Serie de Taylor	6

DEFINICIÓN

Sucesión

Una sucesión numérica se formaliza como una aplicación de los números naturales sobre otro conjunto numérico X, de manera:

$$a: \mathbb{N} \to X$$
$$n \to a_n$$

Por norma general, la sucesión numérica se formaliza como una aplicación de los números naturales en los números reales. En cualquier caso se denota simplemente como: $\{a_n\}_{n\in\mathbb{N}}$

Una sucesión **finita** $\{a_n\}$ (de longitud r) con elementos pertenecientes a un conjunto S, se define como una función $f:\{1,2,\cdots,r\}\to S$, y en este caso el elemento a_n corresponde a f(n). Por ejemplo, la finitud e infinitud, (de longitud 4) de números primos menores que 10 (2, 3, 5, 7) corresponde a la función $f:\{1,2,3,4\}\to \mathbb{P}$ (donde \mathbb{P} es el conjunto de números primos) definida por f(1)=2, f(2)=3, f(3)=5, f(4)=7.

Una sucesión **infinita** $\{a_k\}$ (de longitud r) con elementos pertenecientes a un conjunto S, se define como una función $f \colon \mathbb{N} \to S$ en donde, de forma análoga, $\{a_n\}$ corresponde a f(n).

Series

Una serie es la generalización de la suma aplicada a los términos de una sucesión matemática. De manera informal, es el resultado de sumar los términos $S=a_1+a_2+a_3+\cdots$, suele escribirse de forma compacta con el símbolo de sumatorio:

$$S_n = \sum_{i=1}^n a_i = a_1 + a_2 + \dots + a_n$$

El estudio de las series consiste en la evaluación de la suma de un número finito n de términos sucesivos, y mediante un paso al límite identificar el comportamiento de la serie a medida que n crece indefinidamente. $S = \sum_{i=1}^{\infty} a_i = a_1 + a_2 + \cdots$

Una secuencia o cadena «finita», tiene un primer y último término bien definidos; en cambio en una serie infinita, cada uno de los términos suele obtenerse a partir de una determinada regla o fórmula, o por algún algoritmo.

CRITERIOS DE CONVERGENCIA Y DIVERGENCIA

Una serie es convergente si la sucesión de sumas parciales tiene un límite en el espacio considerado.

Criterio de d'Alembert o del cociente

Sea $\sum_{k=1}^{\infty} a_k$ una serie de términos estrictamente positivos; si $\lim_{k\to\infty} \frac{a_{k+1}}{a_k} = L \in [0, +\infty]$ entonces el Criterio de d'Alembert establece que si

L < 1, la serie converge

L > 1, la serie no converge

 $L=\infty$, la serie no converge

L=1 el criterio no establece nada respecto a su convergencia.

Criterio de la raíz

Si los términos a_n son estrictamente positivos y si existe una constante C<1 tal que $\lim_{n\to\infty}(a_n)^{\frac{1}{n}}\leq C$, entonces $\sum a_n$ es convergente.

Criterio de Raabe

Sea una serie $\sum_{k=1}^{\infty} a_k$, tal que $a_k>0$ (serie de términos positivos). Si existe el límite $\lim_{k\to\infty} k\left(1-\frac{a_{k+1}}{a_k}\right)=L$, siendo $L\in(-\infty,+\infty)$ entonces, si L>1 la serie es convergente y si L<1 la serie es divergente. El criterio de Raabe se recomienda sólo si falla el criterio de d'Alembert.

Criterio de Cauchy

Una serie a valores en un espacio vectorial normado completo es convergente si y solo si la sucesión de sumas parciales es de Cauchy:

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, \forall p \in \mathbb{N}, \left\|u_{n+1} + \dots + u_{n+p}\right\| < \varepsilon$$

Criterio de Leibniz

Una serie formada $\sum_{n=1}^{\infty} (-1)^n a_n$ (con $a_n > 0$) se llama serie alternada. Tal serie converge si se cumplen las siguientes condiciones:

- a) $\lim_{n\to\infty} (-1)^n a_n = 0$ para n par y n impar.
- b) La serie tiene que ser absolutamente decreciente, es decir que: $|a_n| \ge |a_{n+1}|$

Si esto se cumple, la serie $\sum_{n=1}^{\infty}a_n$ es condicionalmente convergente, de lo contrario la serie es divergente.

TIPOS DE SERIES

Sumas parciales

Para cualquier sucesión matemática $\{a_n\}$ de números racionales, reales, complejos, funciones, etc., la serie asociada se define como la suma formal ordenada:

$$S = \sum_{i=1}^{\infty} a_i = a_1 + a_2 + a_3 + \cdots$$

La sucesión de sumas parciales $\{S_k\}$ asociada a una sucesión $\{a_n\}$ está definida para cada k como la suma de la sucesión $\{a_n\}$ desde a_1 hasta a_k :

$$S_k = \sum_{i=1}^k a_i = a_1 + a_2 + \dots + a_k$$

Muchas de las propiedades generales de las series suelen enunciarse en términos de las sumas parciales asociadas.

Serie de Taylor

Es una aproximación de funciones mediante una serie de potencias o suma de potencias enteras de polinomios como $(x-a)^n$ llamados términos de la serie, dicha suma se calcula a partir de las derivadas de la función para un determinado valor o punto a suficientemente derivable sobre la función y un entorno sobre el cual converja la serie.

A la serie centrada sobre el punto cero a=0, se le denomina también $serie\ de$ Maclaurin.

La **representación de series de Taylor** T(x) de una función f(x) cuando $x=x_0$ puede ser escrito de manera compacta como la suma:

$$T(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

La **representación de series de Maclaurin** T(x) de una función es la serie de Taylor para cuando $x_0=0$:

$$M(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x_n$$

En donde:

- n! es el factorial de n
- $f^{(n)}(a)$ denota la n-ésima derivada de f para el valor a de la variable de la cual se deriva.