Name: Panneerselvam N

Role: Research Intern – Inspect

Date: 27/05/2021

Research Paper Reviews-Part 3

Paper-10:

Research on Defect Detection Method for Steel Metal Surface based on Deep Learning

Published Year: 2020

Objective:

To detect metal surface defects using improved VGG16 based object detection.

Methodology:

Metal defects can be recognized by modified VGG16 architecture.

Modification:

VGG16 has 5 convalutional blocks. 4th convalutional block is modified with new design block.

New design block consist of Residual networks and inception blocks.

Above block is a new block which replaces the 4th convalutional block in VGG16.

Training Parameters:

Initial learning rate: 0.01

Batch size: 128 momentum: 0.9 **Performance:**

Algorithm model	AP	recall	MAP
VGG foundation model	63%	67%	65%
The improved network model	74%	80%	77%

Conclusion:

Modified VGG16 gives around 77% MAP. In this paper they have used only 1400 data. If dataset is increased, accuracy also increased above 90%.

Paper – 11 Recognition Method of Aerial Insulator Defects Based on Deep Learning

Published Year: 2020

Objective:

To detect insulators(Small objects) in tranmission line with YOLOv3 and Asymmetric Convalutional Block.

Methodology:

Insulator is detected by YOLOv3 with modified structure. In YOLOv3, Darknet-53 act as convalutional block. In New structure replaces Darknet-53 with Asymmetric Convalutional Block(ACB). ACB means it perform covalutional operation with three kernel 1x1, 1x3, 3x1 and sums up these ouputs.

K-means++ is used for clustring operation . Up-sampling and residual blocks are used for increase accuracy and avoid gradient vanishing , exploding problem.

Table 1. Combined with ACB network model comparison

Testing framework	Network model	P/ Insulator	P/ Defec	t mAP	Detection speed /FPS
YOLOv3	Darknet-53	85.5	83.7	84.5	33.2
	ACBnet-53	86.7	85.4	86.1	33.9
Tiny-YOLO	Tinynet	79.3	77.2	78.3	51.2
	ACBtinynet	81.4	79.9	80.7	51.1

Conclusion:

ACBnet-53 gives more good accuracy and speed with compared to Darknet-53. This model is very helpful for detecting small objects in inspection.

Paper - 12:

Detection Of Concrete Cracks Using Dual-channel Deep Convolutional Network

Published Date: 3rd July, 2020

Objective:

To recognize concrete cracks using Dual Channel Convalutional Neural Networks(DuCCnet).

Methodology:

Dual-channel CNN is used to recognize even small cracks in an image. Dual-channel means Sub-architecture is additionally added to main CNN architecture.

In sun-network, the skip connection is used to avoid gradient vanishing and exploding problem. Sub-network act as a residual block for main CNN. Finally two outputs are added together.

Authors tried more model before getting this architecture, The following table shows comparison.

TABLE II. ABLATION STUDY OF THE PROPOSED MODEL

	Model 1	Model 2	Model 3	Model 4	DuCCNet
Channel 1	✓	√	V	√	✓
Channel 2	×	×	V	V	V
Skip Connection	×	×	V	×	V
Conv-block7	×	✓	x	√	✓
Accuracy	79.75	82.50	85.75	89.00	92.25

Conclusion:

DuCCNet gives around 92.25 % accuracy. It is good accuracy. Over-fitting is avoided by this Sub-Network.

Paper – 13:

Transmission Line Image Object Detection Method Considering Fine-Grained Contexts

Published Year: 2020

Objective:

To detect Transmission Line components using Region-based Fully Convalutional Neural Networks(R-FCN).

Methodology:

Normal R-FCN architecture with little modification is used for object detection.

Modification:

In R-FCN, Main CNN architecture is build with ResNet50. Squeeze-and-Excitation Blocks(**SE Blocks**) are used in between of ResNet blocks for extract more features. **Deformable Convalutionals** and Position Sensitive Region Of Interest Pooling(**PSROI**) is used in 5th stage of ResNet.

Performance:

Algorith	ms		
R-FCN	l ✓	✓	✓
Deformable Convolution		✓	✓
SE blocks			✓
AP@0.5 of Elect	rical Fitting	s	
Insulator Strings	89.26%	90.13%	89.83%
Fittings of Suspension Conductor	85.73%	87.29%	87.18%
Fittings of Tension Conductor	84.52%	84.45%	86.78%
Fittings of Suspension Ground Wire	88.25%	86.03%	88.57%
Fittings of Tension Ground Wire	79.89%	83.63%	82.30%
Ground-wire Insulators	72.12%	74.37%	74.99%
Dampers	84.85%	87.25%	87.69%
Grading Rings	66.87%	69.83%	69.58%
AP@0.5 of Transmiss	ion Line D	efects	
Spontaneous Explosion of Insulators	95.19%	97.25%	97.39%
Faults on Discharge Gaps	72.06%	75.31%	77.98%
Damaged Dampers	51.98%	59.49%	65.40%
Slipped Dampers	81.30%	86.25%	86.94%
Bird Nests	65.65%	68.10%	72.34%
Tilt Ground-wire Clamps	72.24%	76.83%	78.38%
mAP	77.85%	80.44%	81.81%

Conclusion:

This method takes advantages of deformable convolutional layers and SE blocks to improve 3.96% AP by making better use of context information than similar other method.

Paper -14:

A Drone Based Transmission Line Components Inspection System with Deep Learning Technique

Published Date: 30th June, 2020

Objective:

To identify the faults of Transmission line components using Deep learning.

Methodology:

Normal YOLOv3 is used for Object detection.

Various AI techniques and Image processing is used for fault analysis.

AI Techniques and Image Processing:

Color clustering based segmentation
Template Matching
Image Eroding
K-means Clustering
Gaussian Mixer
Edge Detection
Ellipse Detection

Performance:

Components				YOLO V3		YOLO V3 (Multi-Scaling Removed)	
Туре	#Train #Test Samples Samples	Total #Samples	Precision (%)	Recall (%)	Precision (%)	Recall (%)	
Transmission- tower	4002	1458	5460	80.86	84.03	81.81	85.46
Spacer	2692	464	3156	78.87	86.93	81.9	92.96
Balisor	316	82	398	100.00	100.00	100.00	100.00
Lightning- arrester	2982	454	3436	83.91	89.42	84.93	90.75
PorSTI-W+ PorSTI-R	7404	990	8394	91.87	97.07	93.42	97.47
Insulator (polymer)	800	48	848	92.23	95.36	93.35	96.21
Damper- weight	4088	352	4440	77.19	75.00	79.83	81.45
Sag adjuster	1830	334	2164	71.85	86.64	75.45	87.2
Avg.	24,114	4182	28,296	84.60	89.31	86.34	91.44

Conclusion:

In this paper various computer vision techniques are used to effectively analyze faults of transmission line components. In YOLOv3, after removing muti-scale model performance little bit increased.