- CC2-S1 -

- 2016-2017

- Correction - Analyse -

Exercice 1

- 1. La fonction $f: t \mapsto \frac{t-1}{\ln t}$ est continue sur]0,1[, donc localement intégrable. $\lim_{t\to 0} f(t) = 0$ et $\lim_{t\to 1} f(t) = 1$; la fonction se prolonge par continuité en 0 et en 1, I converge donc.
- 2. Pour $t \in]0,1]$ on note : $h_1(t) = t \ln t t + 1$ et $h_2(t) = t 1 \ln t$. h_1 et h_2 sont dérivables sur]0,1] et $\forall t \in]0,1], h_1'(t) = \ln t \leq 0, h_2'(t) = 1 - \frac{1}{t} \leq 0$, ainsi h_1 et h_2 sont décroissantes sur]0,1] et $\forall t \in]0,1[,h_1(t) \geq h_1(1) = 0,h_2(t) \geq h_2(1) = 0$. D'où $\forall t \in]0,1[,t-1 \leq t \ln t \text{ et } \ln t \leq t - 1, \text{ puis } \forall t \in]0,1[,\frac{t-1}{t} \leq \ln t \leq t - 1]$

Remarque: une autre démonstration (qui utilise la formule de la moyenne vue en sup)
Pour tout $t \in]0,1[$ la fonction ln est continue sur [t,1], dérivable sur]t,1[donc, d'après le théorème de la moyenne, il existe un réel $c \in]t,1[$ tel que $\ln(1) - \ln t = (1-t)\frac{1}{c}$;
Comme $c \in]t,1[$ (avec 0 < t < 1), on a : $1 \le \frac{1}{c} \le \frac{1}{t}$ donc $\frac{t-1}{t} \le \ln t \le t-1$.

3. Soit $x \in]0,1[$; la fonction $t \mapsto \frac{t}{\ln t}$ est continue sur]0,x[donc localement intégrable, et elle se prolonge par continuité en 0 car $\lim_{t\to 0} \frac{t}{\ln t} = 0$, ainsi $\int_0^x \frac{t}{\ln t} dt$ converge.

On effectue le changement de variable $u=t^2$, bijectif et de classe C^1 sur $[0,x], \forall x \in]0,1[: \int_0^x \frac{t}{\ln t} \mathrm{d}t = \int_0^{x^2} \frac{\mathrm{d}u}{2\ln(\sqrt{u})} = \int_0^{x^2} \frac{\mathrm{d}u}{\ln u}$

On peut remarquer à ce stade que le théorème de changement de variable assure la convergence de l'intégrale $\int_0^x \frac{\mathrm{d}t}{\ln t}$, pour $x \in]0,1[$.

4. Soit $x \in]0,1[$; on note $I(x) = \int_0^x \frac{t-1}{\ln t} dt$. Les convergences ayant été établies précédemment, on a :

$$I(x) = \int_0^x \frac{t}{\ln t} dt - \int_0^x \frac{1}{\ln t} dt = \int_0^{x^2} \frac{dt}{\ln t} - \int_0^x \frac{1}{\ln t} dt = \int_x^{x^2} \frac{dt}{\ln t} dt$$

D'après la question 2., $\forall t \in]0,1[,\frac{t-1}{t} \leq \ln t \leq t-1 < 0 \text{ donc } \frac{t}{t-1} \geq \frac{1}{\ln t} \geq \frac{1}{t-1}.$

Par ailleurs, $\forall x \in]0,1[,x>x^2.$ La positivité de l'intégrale donne

$$\begin{split} & \int_{x^2}^x \frac{t}{t-1} \mathrm{d}t \geq \int_{x^2}^x \frac{\mathrm{d}t}{\ln t} \geq \int_{x^2}^x \frac{\mathrm{d}t}{t-1}, \text{ puis } [t+\ln|t-1|]_x^{x^2} \leq I(x) \leq [\ln|t-1|]_x^{x^2} \\ & \text{d'où}: x^2 + \ln \left(\frac{x^2-1}{x-1}\right) - x \leq I(x) \leq \ln \left(\frac{x^2-1}{x-1}\right). \end{split}$$

Finalement, on a:

$$x^{2} - x + \ln(x+1) \le I(x) \le \ln(x+1)$$

Pour conclure, on applique le théorème des gendarmes à l'encadrement précédent et l'on obtient :

$$I = \lim_{x \to 1} I(x) = \ln 2$$

 $\operatorname{Sp\'{e}}\operatorname{PT}$ Page 1 sur 2

Exercice 2

- **1. a.** $\forall n \in \mathbb{N}^*$, en notant $a_n = \frac{1}{n(n+2)} > 0$, on a : $\frac{a_{n+1}}{a_n} \underset{+\infty}{\sim} 1$. Le critère de d'Alembert pour les séries entières donne donc un rayon de convergence R = 1.
 - **b.** $\left| \frac{(-1)^n}{n(n+2)} \right| = a_n \underset{+\infty}{\sim} \frac{1}{n^2}$. Donc, par comparaison, $\sum_{n>1} a_n$ et $\sum_{n>1} (-1)^n a_n$ sont absolument convergences.
- **2. a.** $\ln(1-x) = -\sum_{n=0}^{+\infty} \frac{x^n}{n}$, de rayon de convergence 1.
 - **b.** La série $\sum_{n\geq 1} \frac{x^n}{n+2}$ a le même rayon de convergence que la précédente, c'est-à-dire 1;

si
$$x = 0$$
, $\sum_{n=1}^{+\infty} \frac{x^n}{n+2} = 0$;

$$\text{si } x \in]-1,0[\cup]0,1[:\sum_{n=1}^{+\infty}\frac{x^n}{n+2} = \frac{1}{x^2}\sum_{n=1}^{+\infty}\frac{x^{n+2}}{n+2} = \frac{1}{x^2}(-\ln(1-x) - x - \frac{x^2}{2}) = -\frac{1}{x^2}\ln(1-x) - \frac{1}{x} - \frac{1}{2}.$$

- **3. a.** $\forall n \in \mathbb{N}^*, \quad \frac{1}{n(n+2)} = \frac{1}{2n} \frac{1}{2(n+2)}$
 - **b.** Les séries $\sum_{n\geq 1}\frac{x^n}{n}$ et $\sum_{n\geq 1}\frac{x^n}{(n+2)}$ ont le même rayon de convergence R=1. Si $x=0,\,S(x)=0$;

Si
$$x = 0, S(\bar{x}) = 0;$$

Si
$$x \in]-1,0[\cup]0,1[,S(x)=\frac{1}{2}\left(\sum_{n=1}^{+\infty}\frac{x^n}{n}\right)-\frac{1}{2}\left(\sum_{n=1}^{+\infty}\frac{x^n}{n+2}\right)=-\frac{1}{2}\ln(1-x)+\frac{1}{2x^2}\ln(1-x)+\frac{1}{2x}+\frac{1}{4}$$
.

- $\mathbf{c.} \quad -\frac{1}{2}\ln(1-x) + \frac{1}{2x^2}\ln(1-x) + \frac{1}{2x} + \frac{1}{4} \underset{x \to 0}{=} -\frac{1}{2}(-x) + \frac{1}{2x^2}\left(-x \frac{x^2}{2} \frac{x^3}{3}\right) + \frac{1}{2x} + \frac{1}{4} + o(x) = \frac{x}{3} + o(x).$ On a donc $\lim_{x \to 0} S(x) = S(0)$
- **4. a.** On a vu dans la question **1.b** que la série entière converge pour x=1 et x=-1.

$$S(1) = \frac{1}{2} \left(\sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+2} \right) \right) = \frac{1}{2} \left(\sum_{n=1}^{+\infty} \left(\left(\frac{1}{n} + \frac{1}{n+1} \right) - \left(\frac{1}{n+1} + \frac{1}{n+2} \right) \right) \right).$$

On reconnait une série télescopique ; comme $\lim_{n\to+\infty}\left(\frac{1}{n}+\frac{1}{n+1}\right)=0$ on a : $S(1)=\frac{3}{4}$

$$S(-1) = \frac{1}{2} \left(\sum_{n=1}^{+\infty} \left(\frac{(-1)^n}{n} - \frac{(-1)^n}{n+2} \right) \right) = \frac{1}{2} \left(\sum_{n=1}^{+\infty} \left((-1)^n \left(\frac{1}{n} - \frac{1}{n+1} \right) - (-1)^{n+1} \left(\frac{1}{n+1} - \frac{1}{n+2} \right) \right) \right).$$

On reconnait une série téles copique ; comme $\lim_{n\to +\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)=0$ on a : $S(-1)=-\frac{1}{4}$

b. On a montré que pour $x \in]-1,0[\cup]0,1[,S(x)=-\frac{1}{2}\ln(1-x)+\frac{1}{2x^2}\ln(1-x)+\frac{1}{2x^2}+\frac{1}{4};$ on a bien $\lim_{x \to 1} S(x) = \frac{3}{4}$ et $\lim_{x \to -1} S(x) = -\frac{1}{4}$.

Spé PT Page 2 sur 2