

Введение в машинное обучение. KNN. Метрики качества. Матрица ошибок

Часть 2

Воробьёва Мария

- maria.vorobyova.ser@gmail.com
- @SparrowMaria

Важные понятия

х, независимый признак, предиктор,

Классификация задач машинного обучения

Постановка задачи машинного обучения

Гиперпараметры модели — задаются перед обучением моделей

Параметры модели — то, что находим во время обучения

Loss function — функция, которая характеризует потери при неправильном принятии решений на основе наблюдений, то есть эта функция оценивает на сколько модель ошибается на данных

Метрики качества — это числовые показатели или статистики, используемые для оценки качества или производительности системы, модели или алгоритма. В контексте машинного обучения и анализа данных метрики часто используются для измерения точности, эффективности или других аспектов работы модели или алгоритма.

Алгоритм kNN - k Nearest Neighbours

innoboriz

Для классификации каждого из объектов тестовой выборки необходимо последовательно выполнить следующие операции:

- Вычислить расстояние до каждого из объектов обучающей выборки
- Отобрать объекты обучающей выборки, расстояние до которых минимально
- Класс классифицируемого объекта это класс, наиболее часто встречающийся среди ближайших соседей

Для **задачи регрессии** возвращается не метка, а число — среднее (или медианное) значение целевого признака среди соседей.

А как понять, что мы построили хорошую модель?

Метрики качества зависят от типа целевой переменной: если целевая числовая: вещественная

1		-						- 1				
ID магазина	1	2	3	4	5	6	7	 n	доход от магазина	прогноз		
1									1000000	999900	100	10000
2									200000	200100	100	10000
3									300000	299870	130	16900
4									500000	499800	200	40000
5									600000	600200	200	40000
6									1000000	1000150	150	22500
7									200000	199900	100	10000
8									300000	299900	100	10000
9									500000	499800	200	40000
10									600000	600200	200	40000
k									600000	600300	300	90000
											404.0	000454
											161.8	29945.5

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (Y_i - Y_i^p)^2,$$

$$RMSE = \sqrt{MSE}$$

$$MAE = \frac{1}{N}abs(Y_i - Y_i^p)$$

где

 $Y_i^{\,p}$ - прогнозное значение ,

 Y_i - фактическое значение,

N - количество объектов

Метрики качества зависят от типа целевой переменной: если целевая числовая: вещественная

ID магазина	1	2	3	4	5	6	7	 n	доход от магазина	прогноз		
1									1000000	999900	100	1000
2									200000	200100	100	1000
3									300000	299870	130	1690
4									500000	499800	200	4000
5									600000	600200	200	4000
6									1000000	1000150	150	2250
7									200000	199900	100	1000
8									300000	299900	100	1000
9									500000	499800	200	4000
10									600000	600200	200	4000
k									600000	600300	300	9000
											161.8	29945

$$R^{2} = 1 - \frac{\sum_{i=1}^{N} (Y_{i} - Y_{i}^{p})^{2}}{\sum_{i=1}^{N} (Y_{i} - Y_{avg})^{2}}$$

где

 $Y_i^{\it p}$ - прогнозное значение ,

 Y_i - фактическое значение,

N - количество объектов

Коэффициент детерминации измеряет долю дисперсии, объяснённую моделью, в общей дисперсии целевой переменной.

Фактически, данная мера качества — это нормированная среднеквадратичная ошибка. Если она близка к единице, то модель хорошо объясняет данные, если же она близка к нулю, то прогнозы сопоставимы по качеству с константным предсказанием.

$$R_{adj}^2=1-rac{s^2}{s_n^2}=1-rac{RSS/(n-k)}{TSS/(n-1)}=1-(1-R^2)rac{(n-1)}{(n-k)}\leq R^2$$
,

где

$$RSS = \sum\limits_{n}^{t=1} e_t^2 = \sum\limits_{n}^{t=1} (y_t - \hat{y}_t)^2$$
 — сумма квадратов остатков регрессии,

$$TSS = \sum\limits_{n}^{t=1} (y_t - ar{y})^2 = n \hat{\sigma}_y^2$$
 — общая дисперсия,

n — количество наблюдений в наборе данных,

k — количество параметров модели.

Не учитывает качество модели:

Высокий R2 не всегда означает, что модель хорошая.
 Модель может объяснять значительную часть дисперсии, но при этом иметь значительные ошибки предсказания.

Зависимость от числа предикторов:

 R2 всегда увеличивается с добавлением новых предикторов, даже если они незначительно улучшают модель. Это может привести к избыточной подгонке модели (overfitting).

Не измеряет предсказательную силу:

 R2 показывает, насколько хорошо модель объясняет дисперсию в обучающих данных, но не говорит о её предсказательной способности на новых данных. Для оценки предсказательной силы используются другие метрики, такие как RMSE, MAE и т.д.

MSE (или RMSE)

- сильное влияние оказывают выбросы
- интерпретируемая метрика

MAE

- интерпретируемая метрика
- не учитывает масштаб ошибки, 10 будет ошибкой и для 1000 и 1010 и для ситуации 10 и 20

Absolute Total Difference (разность между суммарным прогнозом и суммарным фактом) или **Bias (Relative Total Difference** - отношение суммарного прогноза к суммарному факту минус 1)

- подсвечивает есть ли в целом сдвиг модели вверх или вниз
- понятна бизнесу
- метрика отвечает только за глобальную точность

Плюсы:

$$MAPE(y^{true}, y^{pred}) = rac{1}{N} \sum_{i=1}^{N} rac{|y_i - f(x_i)|}{|y_i|}$$

- Прост в интерпретации и расчете.
- Учитывает масштаб ошибки, отклонение на 10 ед при факте 2000 менее будет критично, чем при факте 20

Минусы:

- Неустойчив к нулевым значениям в базовых данных (когда фактические значения равны нулю), что может вызвать проблемы при расчете. Есть доработка, например, max(y, eps) или у заменяем на y+eps, но нет алгоритма как правильно выбрать eps
- Не симметричен и может давать разные результаты в зависимости от порядка фактических и прогнозных значений. За перепрогноз штрафует больше, чем за недопрогноз

Month Year	Actual Spend	Forecasted Spend	Absolute Percentage Error
Jan-22	0.2	1	400.00

Month Year	Actual Spend	Forecasted Spend	Absolute Percentage Error
Jan-22	500	600	20.00
Feb-22	600	500	16.67

$$SMAPE(y^{true}, y^{pred}) = rac{1}{N} \sum_{i=1}^{N} rac{2\left|y_i - f(x_i)
ight|}{y_i + f(x_i)}$$

SMAPE (Symmetric Mean Absolute Percentage Error):

Плюсы:

Симметричен и не зависит от порядка фактических и прогнозных значений.

Обрабатывает нулевые значения более устойчиво, чем МАРЕ.

Минусы:

Может быть бесконечным, если фактическое значение равно нулю, и прогноз также равен нулю.

Менее интуитивен в интерпретации

Метрики качества зависят от типа целевой переменной: если целевая категориальная:

- матрица ошибок (Confusion matrix)
- Accuracy
- точность и полнота (Precision и Recall)
- F1-мера
- ROC-кривая(ROC Curve)
- ROC AUC (площадь под ROC Curve)

Необходимо снова сравнить факт с прогнозом, задаем cutoff для прогноза и от оценки вероятностей переходим к прогнозу 0

id клиента	fact	прогноз модели	бинарный прогноз модели
1	1	0.2	0
2	0	0.3	0
3	1	0.5	1
4	0	0.1	0
5	0	0.2	0
6	1	0.55	1
7	1	0.7	1
8	1	0.8	1
9	0	0.55	1

COUNT of id	прогноз	
fact	0	1
0	3	1
1	1	4

Матрица ошибок

True Positives	False Positives	Число наблюдений классифицированн ых как Р
False Negatives	True Negatives	Число наблюдений классифицированн ых как N
Число наблюдений из Р (TP + FN)	Число наблюдений из N (FP + TN)	

Если результат классификации положительный (или 1) и фактическое значение тоже положительное (то есть тоже 1), то **TRUE POSITIVE (TP)**

Если результат классификации положительный (или 1) и фактическое значение отрицательное (то есть -1 или 0), то **FALSE POSITIVE (FP)**

Если результат классификации отрицательный (-1, или 0) и фактическое значение положительное (то есть тоже 1), то **TRUE NEGATIVE (TN)**

Если результат классификации отрицательный (-1 или 0) и фактическое значение тоже отрицательное (-1 или 0), то **FALSE NEGATIVE (FN)**

Accuracy

True Positives	False Positives	Число наблюдений классифицированн ых как Р
False Negatives	True Negatives	Число наблюдений классифицированн ых как N
Число наблюдений из P (TP + FN)	Число наблюдений из N (FP + TN)	

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Accuracy

True Positives	False Positives	Число наблюдений классифицированн ых как Р
False Negatives	True Negatives	Число наблюдений классифицированн ых как N
Число наблюдений из P (TP + FN)	Число наблюдений из N (FP + TN)	

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Пример:

пусть в выборке

- 1. 10000 выданных кредитов
- 2. 100 кредитов достигли просрочку 90+ за 1-ый год, то есть доля "1" = 0.01

Теперь возьмем "самый глупый" алгоритм, который всем объектам прогнозирует 0, то accuracy = 0.99.

Это хороший алгоритм?

Матрица ошибок

True Positives	False Positives	Число наблюдений классифицированн ых как Р
False Negatives	True Negatives	Число наблюдений классифицированн ых как N
Число наблюдений из Р (TP + FN)	Число наблюдений из N (FP + TN)	

Specificity =
$$TN/(TN+FP) = 1 - FPR = 1-FP/(TN+FP)$$

Precision и recall

Сколько выбранных объектов корректны?

$$precision = \frac{TP}{TP + FP}$$

Как много корректных объектов выбрано?

$$recall = \frac{TP}{TP + FN}$$

Precision и recall

Сколько выбранных объектов корректны?

$$precision = \frac{TP}{TP + FP}$$

Как много корректных объектов выбрано?

$$recall = \frac{TP}{TP + FN}$$

Пример:

пусть в выборке

- 1. 10000 выданных кредитов
- 2. 100 кредитов достигли просрочку 90+ за 1-ый год, то есть доля "1" = 0.01

Теперь возьмем "самый глупый" алгоритм, который всем объектам прогнозирует 0

Precision = 0/0 Recall = 0/100 = 0

Precision и recall

Сколько выбранных объектов корректны?

$$precision = \frac{TP}{TP + FP}$$

Как много корректных объектов выбрано?

$$recall = \frac{TP}{TP + FN}$$

Невозможно уменьшить и precision, и recall

Что же делать?

Все зависит от задачи:

Например, задача **детектировать болезнь клиента**: Тогда нам важен recall, пропустить клиента с болезнью будет хуже, чем если мы кого-то лишний раз проверим

а вот в задаче **не пропустить безбилетника,** важна точность, то есть precision

Как объединить Precision и Recall

$$F_1 = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$

$$F_{\beta} = (1 + \beta^{2}) \cdot \frac{precision \cdot recall}{(\beta^{2} \cdot precision) + recall}$$

PR curve и ROC

id клиента 	fact ≔	прогноз модели =	бинарный прогноз модели для cutoff 0.9	бинарный прогноз модели для cutoff 0.8	бинарный прогноз модели для cutoff 0.7	бинарный прогноз модели для cutoff 0.6	бинарный прогноз модели для cutoff 0.5	бинарный прогноз модели для cutoff 0.4	бинарный прогноз модели для cutoff 0.3	бинарный прогноз модели для cutoff 0.2	бинарный прогноз модели для cutoff 0.1 =
8	1	0,8	0	1	1	1	1	1	1	1	1
7	1	0,7	0	0	1	1	1	1	1	1	1
6	1	0,55	0	0	0	0	1	1	1	1	1
9	0	0,55	0	0	0	0	1	1	1	1	1
3	1	0,5	0	0	0	0	1	1	1	1	1
2	0	0,3	0	0	0	0	0	0	1	1	1
1	1	0,2	0	0	0	0	0	0	0	1	1
5	0	0,2	0	0	0	0	0	0	0	1	1
4	0	0,1	0	0	0	0	0	0	0	0	1

TP	0	1	2	2	4	4	4	5	5
FP	0	0	0	0	1	1	2	3	4
FN	5	5	5	5	1	1	1	0	0
TN	4	4	4	4	3	3	2	1	0
precision	1.000	1.000	1.000	1.000	0.800	0.800	0.667	0.625	0.556
recall=TPR	0.000	0.167	0.286	0.286	0.800	0.800	0.800	1.000	1.000
FPR	0	0	0	0	0.25	0.25	0.5	0.75	1
	in the second se								

Precision-recall curve

V	V	Ø	A	A	A	4	A	/ N	4
TP	0	1	2	2	4	4	4	5	5
FP	0	0	0	0	1	1	2	3	4
FN	5	5	5	5	1	1	1	0	0
TN	4	4	4	4	3	3	2	1	0
precision	1.000	1.000	1.000	1.000	0.800	0.800	0.667	0.625	0.556
recall=TPR	0.000	0.167	0.286	0.286	0.800	0.800	0.800	1.000	1.000

Кривая начинается в точке 0, 1. Договорились , что precision = 1

Завершается график точкой (1, доля 1 в выборке)

Можно посчитать площадь под кривой PRC: AUC PRC

Precision-recall curve

ROC кривая

TP	0	1	2	2	4	4	4	5	5
FP	0	0	0	0	1	1	2	3	4
FN	5	5	5	5	1	1	1	0	0
TN	4	4	4	4	3	3	2	1	0
recall=TPR	0.000	0.167	0.286	0.286	0.800	0.800	0.800	1.000	1.000
FPR	0	0	0	0	0.25	0.25	0.5	0.75	1
	n n	n n		The state of the s	n n	*	7	0	

Кривая начинается в точке 0, 0. И заканчивается в точке 1,1

Можно посчитать площадь под кривой PRC: AUC ROC

ROC кривая

$$TPR = 1$$

$$FPR = 0$$

ROC кривая

AUC (Area Under ROC Curve) – это площадь под графиком ROC-кривой.

Эта величина используется для сравнения нескольких классификаторов:

- 0.5 соответствует случайному классификатору
- 1.0 соответствует идеальному классификатору

Когда ROC AUC плохо?

пусть дана выборка 1 - 100, 0 - 1 000 000

Мы построили алгоритм

PR = 50000/1 млн = 0.05

факт		
	0 первым 50000	
	1 для наших 100	
	0	
		TPR = 1
	0 остальное	

В итоге площадь AUC ROC = 0.95

а площадь AUC PRC = 0.05

AUC-ROC интерпретация:

Теперь все ясно!

надо просто строить модель с идеальными метриками качества!

Но тут мы встречаемся с такой проблемой как ПЕРЕОБУЧЕНИЕ

Недообучение (underfitting) - модель слишком проста

Переобучение (overfitting) - модель склишком сложна

Недообучение (underfitting) - модель слишком проста

Переобучение (overfitting) - модель склишком сложна

Причина переобучения

- слишком сложная модель
- избыточные параметры в модели, то есть наблюдается мультиколлинеарность
- иногда переменные из "будущего"

Как обнаружить переобучение

 эмпирически, путем разбиения на выборки и замерения качества моделей на отложенной выборке (тестовой)

Избавить от переобучения нельзя, его можно МИНИМИЗИРОВАТЬ

- накладывать ограничения на коэффициенты при независимых признаках
- выбрать модель по оценкам обобщающей способности

Утечка целевого признака

Утечка целевого признака (target leakage) — это проблема в моделировании машинного обучения, когда информация, которая не должна быть доступна модели при обучении, оказывается включенной в тренировочные данные.

Примеры утечки целевого признака:

- 1. Использование будущих данных: Если в тренировочном наборе данных имеются признаки, которые могут включать в себя информацию о будущем состоянии целевого признака, это может привести к утечке. Например, использование данных о продажах в следующем месяце для предсказания продаж в текущем месяце.
- 2. **Использование напрямую связанных признаков**: Если признаки напрямую связаны с целевым значением и могут помочь его предсказать без выполнения реальной задачи предсказания, это также является утечкой. Например, использование данных о завершенности транзакции для предсказания, завершится ли она.

Хорошо! с чем же мы еще можем столкнуться, когда будем строить модели?

С чем можно столкнуться во время обучения модели?

- пропуски
- категориальные значения
- выбросы

Почему пропуск - это проблема?

innoboriz

На примере алгоритма knn:

Для поиска ближайших соседей мы должны рассчитать расстояние между "серой точкой" и всеми остальными

Для примера: пусть координаты "серой точкой" A = (1, 0.5), мы сможем рассчитать расстояние между всеми точками и дальше сделать вывод к какому классу принадлежит точка. например, расстояние между точками A $dist(A,B) = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2}$

А если к нам приходит новая точка C = (NaN, 1), то чему равно dist(C, B) = ((NaN - 0.8)**2 + ((1-0.5)**2)**(½)?

Что делаем с пропусками?

Решение:

- заполнить средним значением из распределения или другие статистики из распределения
- экстраполировать/интерполировать значения
- удалить наблюдения с пропусками (делать ОСТОРОЖНО)

например, мы можем рассчитать среднее = 1198 и пропуски заменить на 1198

ID		количество	- TUO	доход от
магазина	площадь	этажей	в ТЦ?	магазина
1	1000	1	1	1000000
2	1569	2	0	200000
3	870	1	0	300000
4	2000	2	0	500000
5	900	1	1	600000
6	850	1	1	1000000
7	1700	2	1	200000
8		2	1	300000
9		2	0	500000
10	700	1	0	600000

ID магазина	площадь	количество этажей	в ТЦ?	доход от магазина
1	1000	1	1	1000000
2	1569	2	0	200000
3	870	1	0	300000
4	2000	2	0	500000
5	900	1	1	600000
6	850	1	1	1000000
7	1700	2	1	200000
8	1198	2	1	300000
9	1198	2	0	500000
10	700	1	0	600000

Что делаем с пропусками?

Решение:

• построить модель, которая восстанавливает значение на основании других характеристик

То есть строим регрессию на наблюдениях с 1 по 7 и 10. Целевая переменная у=площадь магазина, независимые признаки: x1 = "количество этажей" и x2 = "в ТЦ" y = 700 + 300*x1 + 100*x2

ID магазина	площадь	количество этажей	в ТЦ?	доход от магазина
1	1000	1	1	1000000
2	1569	2	0	200000
3	870	1	0	300000
4	2000	2	0	500000
5	900	1	1	600000
6	850	1	1	1000000
7	1700	2	1	200000
8		2	1	300000
9		2	0	500000
10	700	1	0	600000

ID магазина	площадь	количество этажей	в ТЦ?	доход от магазина
1	1000	1	1	1000000
2	1569	2	0	200000
3	870	1	0	300000
4	2000	2	0	500000
5	900	1	1	600000
6	850	1	1	1000000
7	1700	2	1	200000
8	1400	2	1	300000
9	1300	2	0	500000
10	700	1	0	600000

Что делаем с пропусками?

На практике:

Сначала необходимо обнаружить пропуски:

- 1) либо методы describe, либо isna().sum()
- 2) смотрим комплексно

```
import missingno as msno
msno.matrix(df miss, figsize=(10, 6))
```


Далее заменяем:

- 1) просто методы Pandas fillna()
- 2) методы sklearn.impute https://scikit-learn.org/stable/modules/impute.html#univariate-vs-multivariate-imputation
- 3) Datawig, Fancyimpute и MissForest и так далее

Что делаем с выбросами?

На практике:

imoboliz

Сначала необходимо обнаружить выброс:

- Выбросы в признаках можно обнаружить, исследуя распределение признаков и в особенности хвосты распределений
- Метод Isolation Forest

Что делаем с выбросами?

Решение:

- заменить значение с выбросом на пропуск, а затем применить методы работы с пропусками
- удалить наблюдения с выбросами (делать ОСТОРОЖНО)
- выделить выбросы в отдельный сегмент и для них построить свою модель (если достаточно данных)

Самые популярные методы:

- one-hot-encoding (добавляем признаки бинарные признаки)
- mean target encoding (заменим каждую категорию на среднее значение целевой переменной по всем объектам этой категории)
- бининг создание групп, а дальше one-hot-encoding или mean target encoding

ID магазина	местораспол ожение в городе	площадь	количество этажей	в ТЦ?	доход от магазина
1	в центре	1000	1	1	1000000
2	на окраине	1569	2	0	200000
3	за пределами города	870	1	0	300000
4	в 10 км от центра города	2000	2	0	500000
5	за пределами города	900	1	1	600000
6	в 10 км от центра города	850	1	1	1000000
7	на окраине	1700	2	1	200000
8	в центре	1400	2	1	300000
9	в центре	1300	2	0	500000
10	в 10 км от центра города	700	1	0	600000

one-hot-encoding

Сначала определяем сколько групп и что за группы в данных

(всего 4 значения): в 10 км от центра города, в центре, за

пределами города, на окраине

	bin_в 10 км от центра города	bin_в центре	bin_за пределами города	на окраине
в 10 км от центра				
города	1	0	0	0
в центре	0	1	0	0
за пределами города	0	0	1	0
на окраине	0	0	0	1

one-hot-encoding

Сначала определяем сколько групп и что за группы в данных

(всего 4 значения): в 10 км от центра города, в центре, за

пределами города, на окраине

	bin_в 10 км от центра города	bin_в центре	bin_за пределами города	на окраине
в 10 км от				
центра				
города	1	0	0	0
в центре	0	1	0	0
за пределами				
города	0	0	1	0
на окраине	0	0	0	1

one-hot-encoding

Сначала определяем сколько групп и что за группы в данных (всего 4 значения): в 10 км от центра города, в центре, за пределами города, на окраине

	bin_в 10 км от центра города	bin_в центре	bin_за пределами города
в 10 км от центра			
города	1	0	0
в центре	0	1	0
за пределами города	0	0	1
на окраине	0	0	0

one-hot-encoding

И в итоге вместо 1 переменной получаем N-1 переменную, где N - количество значений переменной

ID магазина	местораспол ожение в городе	bin_в 10 км от центра города	bin_в центре	bin_за пределам и города	площадь	количество этажей	в ТЦ?	доход от магазина
1	в центре	0	1	0	1000	1	1	1000000
2	на окраине	0	0	0	1569	2	0	200000
3	за пределами города	0	0	1	870	1	0	300000
	в 10 км от центра города	1	0	0	2000	2	0	500000
5	за пределами города	0	0	1	900	1	1	600000
	в 10 км от центра города	1	0	0	850	1	1	1000000
7	на окраине	0	0	0	1700	2	1	200000
8	в центре	0	1	0	1400	2	1	300000
9	в центре	0	1	0	1300	2	0	500000
	в 10 км от центра города	1	0	0	700	1	0	600000

one-hot-encoding

И в итоге вместо 1 переменной получаем N-1 переменную, где N - количество значений переменной

Что будет, если у переменной очень много значений, например 100? мы создадим вместо 1 переменной 99?

А если в наших данных таких категориальных переменных несколько?

Термин «**проклятие размерности**» в 1961 году ввел американский математик Ричард Беллман.

Предположим, у нас есть две точки на прямой, 0 и 1. Эти две точки находятся на расстоянии друг от друга =1 Теперь мы вводим вторую ось Y – второе измерение. Положение точек определяется теперь списком из двух чисел – (0,0) и (1,1). Расстояние между точками теперь подсчитывается с помощью Евклидова расстояния и оно равно 1.44. В трехмерном пространстве будет 1.73

можно почитать - https://www.helenkapatsa.ru/prokliatiie-razmiernostiei

Термин «проклятие размерности» в 1961 году ввел американский математик Ричард Беллман.

Что же делать?

Не использовать категориальные переменные? :((((

mean target encoding (заменим каждую категорию на среднее значение целевой переменной по всем объектам этой категории)

месторасполо жение в городе	AVERAGE of доход от магазина
в 10 км от центра города	700000
в центре	600000
за пределами города	450000
на окраине	200000

месторас положени е в городе	mean_местора сположение в городе	площадь	количество этажей	в ТЦ?	доход от магазина
в центре	600000	1000	1	1	1000000
на окраине	200000	1569	2	0	200000
за пределами города	450000	870	1	0	300000
в 10 км от центра города	700000	2000	2	0	500000
за пределами города	450000	900	1	1	600000
в 10 км от центра города	700000	850	1	1	1000000
на окраине	200000	1700	2	1	200000
в центре	600000	1400	2	1	300000
в центре	600000	1300	2	0	500000
в 10 км от центра города	700000	700	1	0	600000

	8				
месторас положени е в городе	mean_местора сположение в городе	площадь	количество этажей	в ТЦ?	доход от магазина
в центре	600000	1000	1	1	1000000
на окраине	200000	1569	2	0	200000
за пределами города	450000	870	1	0	300000
в 10 км от центра города	700000	2000	2	0	500000
за пределами города	450000	900	1	1	600000
в 10 км от центра города	700000	850	1	1	1000000
на окраине	200000	1700	2	1	200000
в центре	600000	1400	2	1	300000
в центре	600000	1300	2	0	500000
в 10 км от центра города	700000	700	1	0	600000

Но и здесь нас ждут неожиданности:)

при обучении моделей mean target encoding необходимо рассчитывать на отложенной выборке, не на всей

