kanekal kousar

Line Assignment

I. QUESTION

Class 11, Exercise 10.1, Q(9): Without using distance formula, show that points (-2, -1), (4, 0), (3, 3) and (-3, 2) are the vertices of a parallelogram.

II. SOLUTION

Figure 1: paralellogram ABCD

We can prove that the points are the vertices of a parallelogram if $\vec{AB} \parallel \vec{DC}$, $\vec{BC} \parallel \vec{AD}$ and $\vec{AB} = \vec{DC}$, $\vec{BC} = \vec{AD}$

Theorm: if θ is the angle between \vec{a} and \vec{b} , then $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta$

corollary: The two non-zero vectors \vec{a} and \vec{b} are parallel to each other, if their product is a zero vector

Consider figure I, where

$$A = \begin{pmatrix} -2 \\ -1 \end{pmatrix} \quad B = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$

$$C = \begin{pmatrix} 3 \\ 3 \end{pmatrix} \quad D = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$$

let.

$$P = B - A = \begin{pmatrix} 6 \\ 1 \end{pmatrix} \quad Q = C - D = \begin{pmatrix} 6 \\ 1 \end{pmatrix}$$

$$R = A - C = \begin{pmatrix} 1 \\ -3 \end{pmatrix} \quad S = A - D = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$$

A. proof for $P \mid\mid Q$ and P = Q

$$P \times Q = |(B - A) \times (C - D)| = \begin{vmatrix} \hat{i} & \hat{j} \\ 6 & 1 \\ 6 & 1 \end{vmatrix} = 0\hat{k}$$
 so, according to corollary P||Q

$$||P|| = \sqrt{\begin{pmatrix} 1 & 6 \end{pmatrix} \begin{pmatrix} 1 \\ 6 \end{pmatrix}} = \sqrt{37} \tag{1}$$

$$||Q|| = \sqrt{\begin{pmatrix} 1 & 6 \end{pmatrix} \begin{pmatrix} 1 \\ 6 \end{pmatrix}} = \sqrt{37} \tag{2}$$

form equation (1) and (2) P=Q

B. proof for R || S and R = S

$$R \times S = |(B - C) \times (A - D)| = \begin{vmatrix} \hat{i} & \hat{j} \\ 1 & -3 \\ 1 & -3 \end{vmatrix} = 0\hat{k}$$
 so, according to corollary RIIS

$$||R|| = \sqrt{\left(1 - 3\right) \begin{pmatrix} 1 \\ -3 \end{pmatrix}} = \sqrt{10}$$
 (3)

$$||S|| = \sqrt{\begin{pmatrix} 1 & -3 \end{pmatrix} \begin{pmatrix} 1 \\ -3 \end{pmatrix}} = \sqrt{10}$$
 (4)

form equation (3) and (4) R=S

since the opposite lines are parallel and equal the points (-2, -1), (4, 0), (3, 3) and (-3, 2) forms the vertices of a parallelogram

CONSTRUCTION

Symbol	Value	Description
A	$\begin{pmatrix} -2 \\ -1 \end{pmatrix}$	Vertex A
В	$\begin{pmatrix} 4 \\ 0 \end{pmatrix}$	Vertex B
С	$\binom{3}{3}$	Vertex C
D	$\begin{pmatrix} -3 \\ 2 \end{pmatrix}$	Vertex D
P	$\begin{pmatrix} 1 \\ 6 \end{pmatrix}$	vector AB
Q	$\begin{pmatrix} 1 \\ 6 \end{pmatrix}$	vector DC
R	$\begin{pmatrix} 1 \\ -3 \end{pmatrix}$	vector BC
S	$\begin{pmatrix} 1 \\ -3 \end{pmatrix}$	vector AD

Get the python code of the figures from

https://github.com/kkousar/KOUSAR_FWC/blob/main/matrices/line/code/line.py