Lecture 02: Second-order effects on MOSFET & Biasing

Javier Ardila

Integrated Systems Research Group – OnChip Universidad Industrial de Santander, Bucaramanga - Colombia javier.ardila@e3t.uis.edu.co

Universidad Industrial de Santander

Review

TURN ON the Device

Vgs > Vth

Triode Region

- VDS < VGS-VTH
- In depends on Vgs and Vps

$$I_D = \mu_n C_{ox} \frac{W}{L} \left[(V_{GS} - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

Saturation Region

- VDS ≥ VGS-VTH
- ID depends on VGS (mostly)

$$I_D = \mu_n C_{ox} \frac{W}{L} \left[(V_{GS} - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L_1} (V_{GS} - V_{TH})^2$$

- Remember that a certain value for VGS=VTH is required to create and inversion layer under the oxide.
- VTH can be considered constant for a given NFET* if the source and body experiment the same potential.

$$V_{TH} = \Phi_{MS} + 2\Phi_F + \frac{Q_{dep}}{C_{ox}}$$

• The body effect appears when source-bulk voltage is different to ZERO (≠0).

As the source becomes more positive with respect to the bulk, VTH increases.

 The body effect appears when source-bulk voltage is different to ZERO (≠0).

• As the source becomes more positive with respect to the bulk, VTH increases. Why?

 The body effect appears when source-bulk voltage is different to ZERO (≠0).

• As the source becomes more positive with respect to the bulk, VTH increases. Why? A: Because the depletion region becomes larger

$$V_{TH} = \Phi_{MS} + 2\Phi_F + Q_{dep}$$

 This phenomenon is called the "body effect" and it can be proved that:

$$V_{TH} = V_{TH0} + \gamma (\sqrt{|2\phi_F + V_{SB}|} - \sqrt{|2\phi_F|})$$

 This phenomenon is called the "body effect" and it can be proved that:

$$V_{TH} = V_{TH0} + \gamma \left(\sqrt{|2\phi_F + V_{SB}|} - \sqrt{|2\phi_F|}\right)$$

$$\Phi_{MS} + 2\Phi_F + \frac{Q_{dep}}{C_{ox}}$$

$$\gamma = \sqrt{2q\epsilon_{si}N_{sub}}/C_{ox}$$

The "threshold" explained before

body-effect coefficient

 $(0.3^{\circ}0.4V^{1/2})$

- Remember that:
- If VDS=VGS-VTH then the channel is pinched-off.
- Actually, for greater values of VDS the region under the gate without inversion layer extents towards the source.

- Remember that:
- If VDS=VGS-VTH then the channel is pinched-off.
- Actually, for greater values of VDS the region under the gate without inversion layer extents towards the source.

• Current expression:

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L_1} (V_{GS} - V_{TH})^2$$

• L_1 is a function of V_{DS} . We can write:

$$L_1 = L - \Delta L$$

Assuming that L $\gg \Delta L$, then,

$$1/L_1 \approx (1+\Delta L/L)/L$$

And assuming a first-order relationship between $\Delta L/L$ and V_{DS} , such as $\Delta L/L = \frac{\lambda V_{DS}}{\lambda V_{DS}}$

Current expression is modified to:

$$I_D \approx \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$

Current expression is modified to:

$$I_D \approx \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$

Same as before

Additional term

 Now the current has a dependence on VDS and results in a non-ideal current source between source and drain.

Current expression is modified to:

$$I_D \approx \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$

Same as before

Additional term

Exercise for class

Calculate the bias current of M1. Assume:

$$\mu_n C_{ox} = 100 uA/V^2$$

 $V_{TH} = 0.4 V$

➤ When the region of operation is not known, a region is assumed (with an intelligent guess). Then, the final answer is checked against the assumption.

Circuit for exercise

Additional exercises

Figure 6.38

Figure 6.39

Biasing in MOS transistor

- The main idea is to find the "work point" of the transistor.
- Remember to assume a region, do the calculations and then verify the results.

Biasing by fixing VGS

This is the easiest way to bias the transistor, but it is not a good way

Review

Recall that:

$$I_D = \frac{1}{2}\mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2.$$

- We fixed the gate-source voltage using a voltage divider. But this has a lot of dependences.
- Check the curves for extreme transistors of the same batch

Biasing by fixing VGS and Rs resistor

 Connecting an Rs resistor to the source terminal can help to solve the great dependence of ID on MOS parameters.

Biasing by fixing VGS

- Here, the variability of I_D is smaller
- Take care of the valid region of red line!

Examples

• Determine the bias current of M1 for the two bias schemes explained before, assuming VTH = 0.5V, $\mu nCox = 100 \mu A/V^2$, W/L = 5/0.18, and $\lambda = 0$. What is the maximum possible value of RD for M1 to remain in saturation?. RG1=4k, RG2=10K, RS=1K.

Self Biasing

$$V_{GS} = V_{DS} = V_{DD} - R_D I_D$$

$$V_{DD} = V_{GS} + R_D I_D$$

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2.$$

- What is the operation region of the MOSFET?
- Also it is possible to add an Rs resistor!

Examples

• Calculate the drain current of M1 if $\mu nCox = 100 \,\mu\text{A/V}^2$, $VTH = 0.5 \,\text{V}$, and $\lambda = 0$. What value of RD is necessary to reduce ID by a factor of two?

Biasing with current source

- MOSFETS operating in saturation region may act similar to a current source? Why?
- What are the differences regarding an ideal current source?

• Actually, current sources are implemented with MOS devices!!!

Biasing with current source

- Fix the bias point by using a current source
- Fixing ID is almost the same as fixing VGS in saturation region.

Additional Examples: OrCAD

Thanks!