Software Development Plan (SDP)

NASA Farm Navigators: Data-Driven Agricultural Education Platform

Document Version

• Version: 2.0

• Date: September 2025

• Project Code: NFN-2025

• Challenge: NASA Space Apps Challenge 2025

1. Executive Summary

1.1 Project Vision

NASA Farm Navigators transforms complex NASA satellite data into an engaging educational game that bridges the \$43 billion technology adoption gap in agriculture. By gamifying precision farming techniques, we enable farmers, students, and agricultural professionals to understand and apply NASA's freely available Earth observation data for sustainable farming practices.

1.2 Core Innovation

Our solution uniquely addresses the challenge by:

- Data Depth Understanding: Going beyond surface-level variables to show interconnections between soil moisture depth variations, temperature layers, and crop health
- Resolution Awareness: Teaching players about 30m vs 375m dataset limitations through gameplay
- Context Sensitivity: Adapting scenarios for industrial vs smallholder farming realities
- Offline-First Architecture: Ensuring accessibility in rural areas with limited connectivity

1.3 Success Metrics

- Educational Impact: 85% improvement in data interpretation skills
- Practical Application: 40% of players report implementing learned techniques
- Sustainability Outcomes: Documented 20-50% water savings in simulations
- User Engagement: 15-minute average session, 60% monthly retention

2. Technical Architecture

2.1 Data Integration Strategy

Primary NASA Data Sources

```
NASA DATA PIPELINE
| AppEEARS API
                  Crop-CASMA
                                    Worldview
                                | GIBS | |
| MODIS/VIIRS | SMAP Moisture |
                             |Visualization| |
| 30-500m |
               9-11km
         Data Processor
         | - Resolution Check|
         - Depth Analysis
         | - Time Alignment |
         | Game Data Layer |
         - Simplification |
         - Caching
         | - Offline Storage |
```

Data Understanding Matrix

Dataset	Resolution	Depth/Layer	Update Frequency	Game Application	
SMAP L3	9km	0-5cm surface	2-3 days	Irrigation timing	
SMAP L4	11km	Root zone 0-100cm	Daily	Deep crop water needs	
MODIS NDVI	250m	Canopy reflection	8-day composite	Crop health monitoring	
Landsat	30m	Surface	16 days	Field-level precision	
GPM IMERG	10km	Precipitation 30 minutes Fored		Forecast planning	
GLDAS	25km	Multi-layer temp	3-hourly Heat stress detection		

2.2 Technology Stack

Core Architecture

yaml
Frontend:
Game Engine: Phaser.js v3.70+
UI Framework: React 18 (dashboard components)
State Management: Redux Toolkit
Visualization: D3.js v7 (data graphs)
Maps: Leaflet with NASA GIBS tiles
PWA: Service Worker with Workbox
Backend:
Runtime: Node.js 20 LTS
Framework: Express.js with GraphQL
Database:
- PostgreSQL 15 (user data, game state)
- TimescaleDB (time-series satellite data)
- Redis 7 (session cache, real-time data)
Queue: Bull MQ (background data processing)
Data Pipeline:
ETL: Apache Airflow
Processing: Python with xarray, rasterio
Storage: AWS S3 with CloudFront CDN
Format: Cloud Optimized GeoTIFF (COG)
Infrastructure:
Container: Docker with Kubernetes
Cloud: AWS (primary) with multi-region
Monitoring: Prometheus + Grafana
Logging: ELK Stack

2.3 System Architecture Diagram

CLIENT LAYER	
Browser PWA Mobile PWA Desktop App	
Phaser.js Phaser.js Electron	
React React React	

```
| Service Worker |
       Offline Cache
         API GATEWAY
      GraphQL Federation Router
  Auth Game Data
  | Service | Service |
                                                                          MICROSERVICES
| User | Farm | NASA | Analytics |
| | Manager | | Simulator | | Data | | Engine | |
        DATA LAYER
PostgreSQL TimescaleDB Redis
                                S3
| |User Data| |Time Series| | Cache | |Satellite | |
```

3. Development Methodology

3.1 Agile Framework

• Methodology: Scrum with 2-week sprints

• Team Size: 14 members

• Duration: 16 weeks to MVP, 24 weeks to full release

• Review Cycles: Bi-weekly with NASA SMEs and agricultural consultants

3.2 Development Phases

Phase 1: Foundation (Weeks 1-4)

Sprint 1-2: Data Pipeline & Infrastructure

Week 1-2:

- NASA Earthdata authentication setup
- AppEEARS API integration
- Crop-CASMA data access implementation
- AWS infrastructure provisioning
- Docker containerization setup

Week 3-4:

- Data resolution handling system
- Multi-depth soil moisture processing
- Temperature layer differentiation
- Offline caching architecture
- Service Worker implementation

Deliverables:

- Functional data pipeline processing 5 NASA datasets
- Offline storage supporting 72-hour gameplay
- Data accuracy validation reports

Phase 2: Core Game Engine (Weeks 5-8)

Sprint 3-4: Game Mechanics

Week 5-6:

- Phaser.js game engine setup
- Farm grid system (supporting 30m to 11km resolutions)
- Crop growth simulation with real phenology
- Water balance model implementation
- Fertilizer response curves

Week 7-8:

- Livestock management system
- Weather integration with GPM data
- Pest/disease modeling
- Yield prediction algorithms
- Economic simulation

Key Features:

- Dynamic resolution switching to show data limitations
- Depth-aware irrigation (surface vs root zone)
- Multi-layer temperature impacts on crops

Phase 3: Educational Framework (Weeks 9-12)

Sprint 5-6: Learning Systems

Week 9-10:

- Progressive tutorial system
- Data interpretation challenges
- Resolution awareness mini-games
- Depth understanding scenarios
- Context-switching (industrial vs smallholder)

Week 11-12:

- Real-world case studies integration
- NASA expert video content
- Knowledge assessment system
- Certification pathway
- Classroom management tools

Educational Innovations:

- "Resolution Reality Check": Shows what 30m vs 375m actually means
- "Depth Dive": Teaches difference between surface and root zone moisture
- "Context Matters": Adapts to farm size and resources

Phase 4: Polish & Testing (Weeks 13-16)

Sprint 7-8: Optimization & Launch

Week 13-14:

- Performance optimization
- Cross-platform testing
- Accessibility compliance
- Security audit
- Load testing (10,000 concurrent users)

Week 15-16:

- Beta testing with 500+ users
- Educational institution pilots
- NASA review and approval
- Marketing material preparation
- Launch preparation

4. Team Structure & Roles

4.1 Core Team Composition

Role	Count	Responsibilities	Required Expertise	
Project Manager	1	Overall coordination, NASA liaison	AgTech experience, PMP	
Technical Lead	1	Architecture decisions, code review	Full-stack, GIS experience	
Game Designer	1	Gameplay mechanics, progression	Educational game design	
Backend Engineers	3	API development, data pipeline	Node.js, Python, PostGIS	
Frontend Engineers	2	Game development, UI	Phaser.js, React, WebGL	
Data Scientists	2	NASA data processing, ML models	Remote sensing, agriculture	
UX/UI Designer	1	Interface design, user testing	Game UI, accessibility	
Agricultural SME	1	Domain validation, content accuracy	Agronomy, precision ag	
NASA Liaison	1	Data access, compliance	Earth observation expertise	
DevOps Engineer	1	Infrastructure, deployment	AWS, Kubernetes, CI/CD	
QA Engineers	2	Testing, quality assurance	Game testing, automation	

4.2 Advisory Board

- NASA Acres representative
- NASA Harvest consortium member
- Precision agriculture farmer
- Agricultural educator
- Climate scientist

5. Risk Management

5.1 Technical Risks

Risk	Impact	Probability	Mitigation Strategy		
NASA API rate limits	Lliab	High	Implement intelligent caching, pre-process common		
NASA APITALE IIIIILS	High		queries, use bulk downloads		
Data accuracy in	Ouitie al Mardiana		Maintain accuracy thresholds, expert validation, show		
simplification	Critical	Medium	confidence intervals		
Resolution confusion by	High High		Progressive education, visual demonstrations, clear		
users			limitations display		
Offline sync conflicts	Medium	Medium	CRDT implementation, clear conflict resolution UI		
Performance on low-end	High Medium		Progressive enhancement, quality settings, cloud gaming		
devices			option		

5.2 Educational Risks

Risk	Impact	Probability	Mitigation Strategy	
Oversimplification of complex	Critical	Medium	Layer complexity progressively, maintain	
data	Critical		scientific accuracy	
Misinterpretation of data	Lliab	High	Explicit teaching moments, warning systems,	
limitations	High		resolution indicators	
Curface level angagement only	Lliab	Medium	Deep gameplay mechanics, real-world	
Surface-level engagement only	High		connections, expert testimonials	
Context mismatch (industrial vs			Adaptive scenarios, selectable contexts, localized	
smallholder)	Medium	High	content	

6. Quality Assurance Strategy

6.1 Testing Framework

yaml		

```
Unit Testing:
 Coverage: 85% minimum
 Framework: Jest, React Testing Library
 Focus: Data transformations, game logic
Integration Testing:
 Coverage: All NASA API endpoints
 Framework: Postman, Newman
 Focus: Data pipeline accuracy
Game Testing:
 Framework: Playwright, custom game test harness
 Focus: Gameplay mechanics, progression
Performance Testing:
 Tools: K6, Lighthouse
 Targets:
  - Load time: <3 seconds on 3G
  - FPS: 60fps on standard hardware
  - Concurrent users: 10,000
Educational Testing:
 Method: A/B testing with control groups
```

Metrics: Knowledge retention, skill application Sample: 500+ users across demographics

6.2 Data Validation

```
python

validation_rules = {
    "SMAP": {
        "range": [0.0, 0.6], # m³/m³
        "depth_levels": ["surface", "root_zone"],
        "resolution_m": [9000, 11000],
        "null_handling": "temporal_interpolation"
    },
    "NDVI": {
        "range": [-1.0, 1.0],
        "cloud_mask": True,
        "quality_flags": ["good", "marginal"],
        "composite_period": 8 # days
    }
}
```

7. Innovation Features

7.1 Beyond Basic Implementation

- 1. Multi-Resolution Comparison Tool: Side-by-side view of same field at different resolutions
- 2. Depth Profile Visualizer: 3D soil moisture profile showing all layers
- 3. Uncertainty Quantification: Shows confidence intervals on all predictions
- 4. Climate Scenario Generator: Uses NASA climate projections for future planning
- 5. Peer Learning Network: Connect with real farmers using similar data

7.2 Advanced Educational Elements

- NASA Scientist Mentorship: Monthly live Q&A sessions
- Real Farm Twinning: Partner with actual farms for data comparison
- Certification Program: NASA-endorsed precision agriculture certificate
- Research Mode: Access to raw data for advanced users

8. Sustainability & Scalability

8.1 Business Model

Revenue Streams:

- Freemium: Basic game free, advanced features \$4.99/month
- Educational Licenses: \$500/year per institution
- Certification Program: \$99 per certificate
- Sponsorships: AgTech company partnerships
- Grants: NASA, USDA, NSF funding

Cost Structure:

Infrastructure: \$5,000/month (AWS)Data Storage: \$2,000/month (S3, CDN)

Development: \$150,000 (initial)Maintenance: \$50,000/yearMarketing: \$30,000/year

8.2 Scaling Strategy

- Year 1: 10,000 users, focus on U.S. market
- Year 2: 100,000 users, expand to Canada, Mexico
- Year 3: 500,000 users, global expansion
- Year 4: 1M+ users, white-label for organizations

9. Compliance & Standards

9.1 Required Compliance

- COPPA: Age verification, parental consent for <13
- FERPA: Educational records protection
- Section 508: Accessibility for government use
- WCAG 2.1 AA: Web accessibility standards
- NASA Data Use: Attribution, no endorsement implied

9.2 Data Standards

- OGC Standards: WMS, WFS, WCS for geospatial data
- CF Conventions: NetCDF climate data
- STAC: SpatioTemporal Asset Catalogs
- ISO 19115: Metadata standards

10. Success Criteria

10.1 Technical Success

- Data accuracy: 95% correlation with source
- System uptime: 99.9%
- Response time: <200ms API, <100ms game actions
- Offline capability: 72+ hours
- Cross-platform compatibility: 100%

10.2 Educational Success

- Knowledge assessment improvement: 80%
- Practical application: 40% users report real-world use
- Completion rate: 70% finish tutorial
- Engagement: 15-minute average session
- · Retention: 60% monthly active users

10.3 Impact Metrics

- Water savings demonstrated: 20-50%
- Yield optimization shown: 10-30%
- Fertilizer reduction: 15-40%
- Carbon footprint reduction: 20%
- ROI demonstration: 3:1 minimum

11. Documentation Requirements

11.1 Technical Documentation

- API documentation (OpenAPI 3.0)
- Data processing algorithms
- · Game mechanics formulas
- Infrastructure as Code (Terraform)
- Deployment procedures

11.2 Educational Documentation

- Educator's guide
- Student workbook
- Data interpretation manual
- Best practices handbook
- Case study compilation

11.3 User Documentation

- Getting started guide
- Video tutorials
- FAQ system
- Community forum
- Help center

12. Project Tim			
mermaid			

gantt

title NASA Farm Navigators Development Timeline

dateFormat YYYY-MM-DD

section Phase 1

Data Pipeline :2025-01-01, 2w Infrastructure Setup :2025-01-15, 2w

section Phase 2

Game Engine :2025-02-01, 2w Core Mechanics :2025-02-15, 2w

section Phase 3

Educational System :2025-03-01, 2w Content Creation :2025-03-15, 2w

section Phase 4

Testing & Polish :2025-04-01, 2w Beta Launch :2025-04-15, 2w

section Release

Public Launch :2025-05-01, 1d

Appendices

Appendix A: NASA Data Source Details

Comprehensive list of all NASA datasets, access methods, and update frequencies.

Appendix B: Agricultural Models

Scientific basis for crop growth, water balance, and yield prediction algorithms.

Appendix C: Educational Framework

Learning objectives mapped to Common Core and NGSS standards.

Appendix D: Technical Architecture

Detailed system design documents, database schemas, and API specifications.