A	immunoreceptors,
AD, see Alzheimer's disease	benzoapyrene detection in single
Adipogenesis, induction by gelatin	cells, 395–397
hydrogel incorporating	cell culture for analysis, 392, 393
fibroblast growth factor, 95	immobilization on nanofiber
Aerogel, see Sol-gel encapsulation	probes, 392
AFM, see Atomic force microscopy	optical detection instrument, 393,
Alzheimer's disease (AD), amyloid	394
fibril formation, 424–426	overview, 388
Amyloidosis,	nanosensors with antibody probes, 384
fibril characteristics, 419, 420, 427–	sol-gel encapsulation and immuno-
429	assay application, 73-75
mechanisms of fibril formation,	Atomic force microscopy (AFM),
conformational change	aligned carbon nanotubules, 236–238
hypothesis, 419	nanoelectrode integration into
crowding, 419	cantilevers for scanning
protein folding defects, 417-419	electrochemical microscopy,
unified mechanism, 431, 432	materials, 404
proteins and diseases,	rationale, 403, 404
β-amyloid and Alzheimer's	sample preparation, 408, 413
disease, 424–426	simultaneous topographical and
immunoglobulin light chains, 424	electrochemical imaging,
lysozyme, 422, 423	electrochemical imaging, 411
overview, 418	instrument setup, 408–411, 413
prion proteins, 426	simultaneous imaging, 411,
transthyretin, 420–422	412
therapeutic intervention, 432, 433	tapping mode imaging, 411,
X-ray diffraction studies of fibrils,	413, 414
429, 431	tip preparation,
Angiogenesis, induction by gelatin	electrochemical
hydrogel incorporating	characterization, 407, 408
fibroblast growth factor, 92, 93	focused ion beam milling, 405-
Antibodies,	407
amyloid fibril formation with immuno-	metallization and insulation of
globulin light chains, 424	cantilevers, 405, 413

protein crystallization studies,	procapsid, 288, 289
instrumentation and data	scaffolding proteins, 289
acquisition, 17-21	stoichiometry studies, 296, 297
mass, size, and intermolecular	function, 285, 286
interactions, 22, 23	homology with other virus motors,
resolution, 18–20	286
step velocity determination, 21, 22	mechanism studies,
S-layer proteins on solid supports,	circularly permutated pRNA, 298
110, 111	computer modeling, 298–300
	optical tweezers for force
В	determination, 300
Bacteriophage Φ29 DNA-packaging	reconstitution in vitro, 298
motor,	models, 300-303
applications,	packaging pathway, 286, 288
antiviral therapy,	Benzoapyrene tetrol (BPT),
antisense targeting of pRNA,	nanodetectors, 203, 395-397
306	β-structured fibrous proteins, see also
mutant pRNA inhibition, 306,	Amyloidosis,
307	applications, 135
DNA sequencing, 305	crystallization conditions, 128, 129
macromolecular translocation	peptide synthesis, 134
through membranes, 308	prospects for study, 136
nanodevice incorporation, 303, 304	recombinant expression systems, 127
nucleic acid sliding/riding studies,	self-assembling peptides, 133, 134
307	stable domain identification, 126,
polyvalent gene delivery using	127
motor pRNA, 304, 305	virus proteins,
prospects, 308	adenovirus fiber structure, 129–
RNA dimer and trimer studies,	131
305, 306	bacteriophage T4 short tail fiber
ATP hydrolysis, 297, 298	structure, 131–133
components,	functions, 126
capsid proteins, 289	Bioreceptor,
connector, 289, 290	definition, 385
genomic DNA, 290	immobilization on nanofiber
gp16, 291	probes, 392
pRNA,	immunoreceptors, see Antibodies
domains, 291, 292	principles of optical detection, 386
hexamer assembly, 292	specificity, 387, 388
stoichiometric determination in	Bone, regeneration by gelatin hydrogel
DNA packaging, 292, 293,	incorporating fibroblast growth
295, 296	factor, 93–95

Bovine serum albumin (BSA), fluorescence labeling with	single-cell/single-molecule probes, 203–206, 226, 227
noncovalent ligands, 175, 176 structure, 4, 5	single-walled versus multiwalled, 192, 193, 198
BPT, see Benzoapyrene tetrol	templated bioassembly, 211, 212
BSA, see Bovine serum albumin	Caspase-9, assay of apoptosis in living
Butyrylcholinesterase, sol-gel	cells, 397, 398
encapsulation and stability, 61	Catalase, kinetics of crystallization, 41
	CD, see Circular dichroism
C	Chemical vapor deposition (CVD),
Calmodulin, labeling for fluorescence	carbon nanotube synthesis,
resonance energy transfer	194, 195
studies, 17	Circular dichroism (CD),
Canavalin, kinetics of crystallization,	creatine kinase sol-gel encapsulation
41	studies, 66, 67
Carbon nanotubes (CNTs),	protein conformational changes in
biological sensing applications, 191–193, 196–200, 216	solution, 165, 166
diameter, 192	CNTs, see Carbon nanotubes
electrochemical sensing, 198, 199,	Creatine kinase, sol-gel encapsulation and stability studies,
208–211	encapsulation, 63
enzyme attachment to electrodes for	long-term storage at room
electron transfer,	temperature, 63
alignment of electrodes for direct	matrix-enzyme surface interactions,
electron transfer, 228–231,	68, 69
233, 235–237	thermal stability, 64–67
atomic force microscopy of	Crystallization, proteins,
aligned nanotubules, 236–238	atomic force microscopy studies,
gold surface preparation, 234–237	instrumentation and data
materials, 234, 236	acquisition, 17–21
principles, 226–228	mass, size, and intermolecular
rationale, 225, 226	interactions, 22, 23
single-walled nanotube cutting	resolution, 18–20
and characterization, 228, 229,	step velocity determination, 21, 22
235, 237	β-structured fibrous proteins, see $β$ -
field-effect transistor sensors, 193,	structured fibrous proteins
197, 201, 202, 206–208	driving force, 23, 24
functionalization for biological	ferritin and apopferritin,
sensing, 201–203	geometry of crystals, 16, 17
growth, 194, 195	kinetics of crystallization, 40, 41
nanoelectrode arrays, 208-211	solubility determination, 24
porous film electrodes, 211	space group, 16

growth sites,	electronic structure activity
kink formation energy, 28	relations, 336
kinks and kink density, 26–28	first-generation inhibitors, 335
molecular interaction energy, 28, 29	fourth-generation inhibitors, 342
kink molecule incorporation limiting	mistargeted bases, 337, 341
factors,	overview, 333, 334
diffusion-limited kinetics, 35-40	second-generation inhibitors,
transition-state kinetics, 36	335–337, 341
molecular-level kinetics, 31–35	third-generation inhibitors, 341,
molecular pathway from solution to	342
crystal, 42–46	tumor biology, 334, 335
phase transition, 16	three-address protein array ordered
S-layer proteins, see S-layer proteins	assembly,
solubility,	electrophoretic mobility shift
independence of molecular mass,	assay with microfluidics chips,
24–26	333
independence of temperature, 29	fusion protein preparation,
thermodynamics,	expression, 332
enthalpy, 29, 30	purification, 332, 333
entropy, 29–31	vectors, 331, 332
equilibrium constant of	molecular models, 327, 330
crystallization, 29	oligodeoxynucleotide preparation,
free energy, 30	330, 331
CVD, see Chemical vapor deposition	protein coupling conditions, 333
Cytochrome b5, see DNA-protein	Y-junction assembly monitoring
assemblies floating on	with microfluidics chips, 331
supported membranes	DNA-packaging motor, see
Cytochrome c,	Bacteriophage Φ29 DNA-
carbon nanotubule electrode	packaging motor
attachment, 227	DNA-protein assemblies floating on
sol-gel encapsulation and stability,	supported membranes,
61, 62	cytochrome b5 interactions with
_	supported membranes, 360, 361
D	hybrid bilayer setup on gold surface,
DNA hybridization,	359, 360, 366, 367
peptide nucleic acid-carbon nanotube	P-DNA chips,
coupling, 205, 206	analysis of hybridization, 362, 363
surface-enhanced Raman scattering	hybrid bilayer interactions, 361, 362
gene probes, 266–270	unique properties, 364, 365
DNA methyltransferase,	preparation,
catalytic reaction, 327, 328	cytochrome b5 preparation,
inhibitor development using ordered	engineering, 352, 353
protein arrays,	expression, 353, 354

materials, 350, 351	total internal reflection fluorescence
rationale, 349, 350	microscopy,
single-stranded DNA coupling	principles, 170
to protein,	sensitivity, 181
cisplatin bridge, 354	Fluorescence polarization anisotropy
homobifunctional crosslinkers,	(FPA),
354–358, 365, 366	principles, 180
surface plasmon resonance, 351,	single-molecule detection, 180–182
359, 360, 362, 363, 365–367	Fluorescence resonance energy transfer (FRET),
E	advantages of protein conformational
Electron microscopy, nanoparticle	change measurement, 166, 167
array formation using S-layer	filter sets for microscopy, 170, 172
proteins, 115, 116	fluorescence labeling of proteins,
proteins, 113, 110	chemical tagging, 178, 179
\mathbf{F}	green fluorescent protein variants,
Esseid's an additional a	176–178
Ferritin, crystallization, see	noncovalent binding, 174–176
Crystallization, proteins	fluorescence lifetime changes in
FET, see Field-effect transistor	donor and measurement, 170,
Fiberoptics,	172, 173
fabrication of nanoprobes, 388–392	principles, 167–170, 172, 173
immunoreceptors,	single-molecule detection, 180–182
antibody immobilization on	FPA, see Fluorescence polarization
nanofiber probes, 392	anisotropy
benzoapyrene detection in single cells, 395–397	FRET, see Fluorescence resonance
cells, 393–397 cell culture for analysis, 392, 393	energy transfer
optical detection instrument,	G
393, 394	
overview, 388	Gene therapy, polyvalent gene delivery
nanoprobes, 10, 11, 384	using bacteriophage Φ29
prospects, 399	DNA-packaging motor pRNA,
	304, 305
Fibrous proteins, see β-structured	GFP, see Green fluorescent protein
fibrous proteins	Glucose oxidase,
Field-effect transistor (FET), carbon nanotube sensors, 193, 197,	carbon nanotubule electrode
201, 202, 206–208	attachment, 227, 228, 230, 233
	catalytic reaction, 225, 226
Flavonoids, see Quercitin	scanning electrochemical
Fluorescence microscopy,	microscopy, 404, 408, 411, 412
multiphoton microscopy, 169	sol-gel encapsulation and stability, 60
soft lithography patterning of S-	Glycolate oxidase, sol-gel
layer proteins, 114, 115	encapsulation and stability, 60

Graphite laser-driven nanomotor, design, 8, 9	Metabolosomes, simulation of
Green fluorescent protein (GFP), near-field scanning optical microscopy markers, 439, 440, 445, 446 protein labeling for fluorescence resonance energy transfer studies, 176–178	evolution, 326 Microperoxidase MP-11, carbon nanotubule electrode attachment, 229–231, 233, 236 Microtubule, dynamics, 7 Molecularly imprinted polymers, applications, 243–245 principles of molecular imprinting,
Н	244
High-performance liquid chromatography (HPLC), separations using molecularly imprinted polymers, 246, 247, 249, 251, 252	quercitin recognition, high-performance liquid chromatography separation using imprinted polymers, 246, 247, 249, 251, 252 materials, 245
Horseradish peroxidase (HRP), carbon nanotubule electrode attachment, 227	polymer synthesis, control polymer, 246 imprinted polymer, 246, 250,
HPLC, see High-performance liquid chromatography	251 processing, 246, 251
HRP, see Horseradish peroxidase	solid-phase extraction for assay, 249, 250
I	MRP-1, see Near-field scanning optical
Immunoassay, see Antibodies; Protein chip; Surface-enhanced Raman scattering Immunoreceptors, see Antibodies Insulin, kinetics of crystallization, 41	microscopy Multidrug resistance, see Near-field scanning optical microscopy Myosin, dynamics, 7
misum, kinetics of crystamzation, 41	N
L Lactate oxidase, sol-gel encapsulation and stability, 60	NAD(P)H, photochemical regeneration in sol-gel matrices, 69–73 NADPH oxidoreductase, luciferase
Luciferase, NADPH oxidoreductase coupling, 326, 327	coupling, 326, 327 Nanoprobes, development, 10, 11
Lysozyme, amyloid fibril formation, 422, 423 crystallization kinetics, 41 fluorescence labeling with noncovalent ligands, 174, 175	Nanosensors, development, 10–12 Nanotechnology, biological application prospects, 12 definition, 1 historical perspective, 1, 2
M	Nanowires, assembly approaches, 193, 194
Mag-indo-1, noncovalent labeling of proteins, 174–176	biological sensing applications, 191, 192, 196–200, 216

definition, 193	trNOESY of tetanus toxin fragment
functionalization for biological	C binding ligands,
sensing, 201–203	competition assays,
growth, 195, 196	doxorubicin as marker ligand,
single-cell/single-molecule probes,	152
203–206	limitations, 152, 158
structure, 193	protein addition to ligand
templated bioassembly, 212-215	combinations, 154, 156
Near-field scanning optical microscopy	reverse-order binding, 154
(NSOM),	sequential addition of ligands,
applications,	152–154
actin filaments, 438	ligand set optimization with
cell biology, 440	virtual screening and mass
green fluorescent protein markers,	spectrometry, 149, 150
439, 440, 445, 446	materials, 144, 156
hippocampal slices, 438	principles, 142, 144-146, 156
multidrug resistance studies,	pulse sequences,
cell lines, 441	mixing times, 148
imaging, 444, 445, 449	protein signal filtering, 147, 156
instrumentation and setup, 441–	scan times, 148, 149
443	temperature effects, 149, 158
mounting and laser coupling, 444,	water signal suppression, 148, 158
449	sample solution preparation, 150, 158
MRP-1 activity, 447, 448	0
P-glycoprotein activity, 447, 448	0
sample preparation, 444, 449	Optical tweezers,
single-molecule studies, 446	bacteriophage Ф29 DNA-packaging
transport proteins, 441, 445	motor force determination, 300
nanofiber probes, 384, 385	principles, 12
principles, 182, 437, 438	P
resolution, 270, 271, 384, 385, 437	r
scanning probe microscopy technique	P-DNA, see DNA-protein assemblies
comparison, 438, 439	floating on supported
surface-enhanced Raman scattering	membranes
probes, 270, 271, 440	Peptide nucleic acid (PNA), carbon
NMR, see Nuclear magnetic resonance	nanotube coupling for DNA
NSOM, see Near-field scanning optical	hybridization, 205, 206
microscopy	P-glycoprotein, see Near-field scanning
Nuclear magnetic resonance (NMR),	optical microscopy
binding affinity considerations, 142,	F29, see Bacteriophage Φ29 DNA-
143	packaging motor
ligand screening assay, 141, 142	Plasmonics, see also Surface-enhanced
protein conformational changes in	Raman scattering,
solution, 165, 166	overview, 10

PNA, see Peptide nucleic acid	preparation,
Polymer imprinting, see Molecularly	electrodeposition, 372
imprinted polymers	materials, 371
Prion proteins, amyloid fibril	overview, 370, 371
formation, 426	particle fabrication, 372, 373
Protein arrays, see also Protein chip,	photolithographic patterning, 372
DNA methyltransferase inhibitor	self-assembled monolayer
development,	coating, 373
electronic structure activity	prospects for use, 378
relations, 336	Protein structure,
first-generation inhibitors, 335	crystallization, see Crystallization,
fourth-generation inhibitors, 342	proteins
mistargeted bases, 337, 341	misfolding and disease, 5
overview, 333, 334	primary structure, 4
second-generation inhibitors,	quaternary structure, 4
335–337, 341	secondary structure, 4
third-generation inhibitors, 341, 342	sequence and function, 4
tumor biology, 334, 335	size, 2, 3
ordering approaches, 325–327	techniques for elucidation, 5, 6
prospects, 344	tertiary structure, 4
three-address array ordered	Proteomics, functional versus structural, 6
assembly,	
electrophoretic mobility shift	Q
assay with microfluidics chips, 333	Quantum molecular simulation,
fusion protein preparation,	nanomaterial design, 6, 7
expression, 332	Quercitin, recognition using
purification, 332, 333	molecularly imprinted
vectors, 331, 332	polymers, see Molecularly
molecular models, 327, 330	imprinted polymers
oligodeoxynucleotide preparation,	
330, 331	R
protein coupling conditions, 333	Raman spectroscopy, see Surface-
Y-junction assembly monitoring	enhanced Raman scattering
with microfluidics chips, 331	Regeneration, see Tissue engineering
Protein chip,	Ribosome,
multianalyte immunoassay,	machine function, 7
chemiluminescence signal	size, 3, 7
detection, 375	
IgA, IgG, and IgM	\mathbf{S}
immunoassays, 373	SAMs, see Self-assembled monolayers
overview, 376-378	Scanning electrochemical microscopy,
particle array assembly on protein	see Atomic force microscopy
chip, 373, 375, 376	Scanning probe microscopy (SCM),
rationale, 369, 370	carbon nanotube probes, 204

comparison of techniques, 438, 439	preparation,
single nucleotide polymorphism	bacterial strains, 104, 105
mapping, 204, 205	cell-wall fragment preparation,
SCM, see Scanning probe microscopy	109
Self-assembled monolayers (SAMs),	continuous culture of bacteria,
protein chip coating, 373	108, 109, 119
surface-enhanced Raman scattering	isolation of proteins, 109, 119
substrate overcoating, 264	materials, 104, 105
SERS, see Surface-enhanced Raman	solid support coating studies,
scattering	atomic force microscopy, 110, 111
Single-molecule detection,	crystallization of proteins, 110
carbon nanotube probes, 203–206,	materials, 105, 106
226, 227	solid support preparation, 109, 110
fluorescence techniques, 180-182	structure of lattices, 102, 103
near-field scanning optical	Sol-gel encapsulation,
microscopy, 446	aerogels, 57
surface-enhanced Raman scattering,	biosensor applications, 73-76
271	hydrolysis and condensation
S-layer proteins,	reactions, 55, 56
assembly on non-bacterial substrates,	photochemical coenzyme
103	regeneration, 69–73
bacteria distribution, 101, 102	rationale, 53, 54
biomedical applications, 103, 104	sol-gel chemistry overview, 54-57
lipid membrane modification,	stabilization of biomolecules,
crystallization of proteins, 117-	chemical stability, 62
119	creatine kinase studies, 62-69
folded membrane formation, 116,	matrix-enzyme surface
117, 120	interactions, 68, 69
materials, 107, 108	mechanisms, 59, 62
painting, 116, 120	storage stability, 61, 63
nanoparticle array formation,	thermal stability, 60, 61, 64–67
crystallization of proteins, 115	synthesis protocol for biomolecule
materials, 107	encapsulation, 58, 59
nanoparticle preparation, 115, 120	xerogels, 57, 59
solid support preparation, 115	SPR, see Surface plasmon resonance
transmission electron microscopy,	Streptavidin, ordering along DNA, 326
115, 116	Supramolecular assemblies, see DNA-
nanopatterning applications, 104	protein assemblies floating on
patterning of crystalline proteins,	supported membranes
excimer laser patterning, 111-	Surface plasmon resonance (SPR),
113, 119	DNA-protein assemblies
materials, 106, 107	floating on supported
soft lithography patterning, 113–	membranes, 351, 359, 360,
115, 119, 120	362, 363, 365–367

Surface-enhanced Raman scattering	structure, 5, 6
(SERS),	trNOESY assay of ligands,
active metal electrode development,	competition assays,
257	doxorubicin as marker ligand,
active metal nanoparticle colloid	152
development, 257, 258	limitations, 152, 158
efficiency of Raman scattering, 255	protein addition to ligand
gene probes, 266–270	combinations, 154, 156
immunoassays, 265, 266	reverse-order binding, 154
intracellular analysis nanoprobes,	sequential addition of ligands,
272, 273	152–154
metal nanoparticle island film	ligand set optimization with
development, 258	virtual screening and mass
nanoprobe utilization, 10	spectrometry, 149, 150
near-field scanning optical	materials, 144, 156
microscopy probes, 270, 271	principles, 142, 144–146, 156
near-field surface-enhanced Raman	pulse sequences,
spectroscopy, 385	mixing times, 148
origins of enhancement, 256	protein signal filtering, 147,
prospects, 273, 274	156
single-molecule detection, 271	scan times, 148, 149
substrate development,	temperature effects, 149, 158
metal-coated nanoparticles, 260,	water signal suppression, 148,
261	158
metal-coated nanospheres, 259, 260	sample solution preparation, 150
metal-coated quartz posts for	158
substrate development, 261	Thaumatin, kinetics of crystallization,
metal nanoparticle-embedded	41
media, 261–263	Tissue engineering,
substrate overcoating,	gelatin hydrogel incorporating
bioreceptor monolayers, 264,	fibroblast growth factor,
265	adipogenesis, 95
general organic, metallic, and	angiogenesis induction, 92, 93
dielectric overcoatings, 263,	bone regeneration, 93–95
264	controlled release of growth
self-assembled monolayers, 264	factor, 90, 91
•	degradation characterization, 88,
T	90
TetC, see Tetanus toxin C	preparation, 87
Tetanus toxin C (TetC),	in vitro versus in vivo, 84
ligand identification rationale, 143,	organ engineering, 83, 86
144	regeneration.

carrier-growth factor
combinations, 88, 89
extracellular matrix functions, 82
fibrosis inhibition, 86
growth factors, 82, 83
materials, 87
therapeutic prospects, 81, 82, 95, 97
tissue site differences, 83, 86
Total internal reflection fluorescence
microscopy,

principles, 170
sensitivity, 181
Transthyretin, amyloid fibril formation,
420–422
trNOESY, see Nuclear magnetic
resonance

X

Xerogel, *see* Sol-gel encapsulation X-ray diffraction, amyloid fibrils, 429, 431

About the Editor

Tuan Vo-Dinh is a Corporate Fellow, Group Leader and Director of the Center for Advanced Biomedical Photonics at Oak Ridge National Laboratory (ORNL), Oak Ridge, TN. A native of Vietnam and a naturalized US citizen, Dr. Vo-Dinh completed his high school education in Saigon (now Ho Chi Minh City) and went on to pursue his studies in Europe, where he received a PhD in biophysical chemistry in 1975 from the Swiss Federal Institute of Technology (known as ETH) in Zurich, Switzerland. His research has focused on the development of advanced technologies for the protection of the environment and the improvement of human health. His research activities involve laser spectroscopy, molecular imaging, medical diagnostics, cancer detection, chemical sensors, biosensors, biochips, nanosensors, and nanotechnology.

Dr. Vo-Dinh has published over 300 peer-reviewed scientific papers, is an author of a textbook on spectroscopy, and is the editor of four books. He holds over 28 patents, six of which have been licensed to environmental and biotech companies for commercial development. Dr. Vo-Dinh is a Fellow of the American Institute of Chemists and a Fellow of SPIE, the International Society for Optical Engineering, and serves on the editorial boards for various international journals on molecular spectroscopy, analytical chemistry, biomedical optics, and medical diagnostics. He has also served the scientific community through his participation in a wide range of governmental and industrial boards and advisory committees.

In addition, Dr. Vo-Dinh has received seven R&D 100 Awards for "Most Technologically Significant Advance in Research and Development" for his pioneering research and inventions of innovative technologies. These awards were for a chemical dosimeter (1981), an antibody biosensor (1987), the SERODS optical data storage system (1992), a spot test for environmental pollutants (1994), the SERS gene probe technology for DNA detection (1996), the multifunctional biochip for medical diagnostics and pathogen detection (1999), and the Ramits Sensor (2003). He also received the Gold Medal Award, Society for Applied Spectroscopy (1988); the Languedoc-Roussillon Award (France, 1989); the Scientist of the Year Award, ORNL (1992); the Thomas Jefferson Award, Martin Marietta Corporation (1992); and two Awards for Excellence in Technology Transfer, Federal Laboratory Consortium (1995, 1986), the *Inventor of the Year Award*, Tennessee Inventors Association (1996); the Lockheed Martin Technology Commercialization Award (1998), The Distinguished Inventors Award, UT-Battelle (2003), and the Distinguished Scientist of the Year Award, ORNL (2003). In 1997 Dr. Vo-Dinh was presented the Exceptional Services Award for distinguished contribution to a Healthy Citizenry from the U.S. Department of Energy.