Notación asintótica

La notación asintótica surge de la necesidad de representar de forma sencilla la complejidad en tiempo (y en espacio) de un algoritmo.

Notaciones

Supongamos que la función de tiempo de un algoritmo es f(n)

- $Big-oh \rightarrow O$ (nos indica una límite superior de f(n))
- Big-omega $\rightarrow \Omega$ (nos indica una límite inferior de f(n))
- Theta $\rightarrow \theta$ (nos indica un «límite» promedio de f(n))

Notación big-oh

Una función f(n) = O(g(n)) ssi existen constantes positivas c y n_0 tales que $f(n) \le c \cdot g(n)$ para todo $n \ge n_0$.

Notación big-omega

Una función $f(n) = \Omega(g(n))$ ssi existen constantes positivas c y n_0 tales que $f(n) \ge c \cdot g(n)$ para todo $n \ge n_0$.

Notación theta

Una función $f(n) = \theta(g(n))$ ssi existen constantes positivas c_1 , c_2 y n_0 tales que $c_1g(n) \le f(n) \le c_2g(n)$ para todo $n \ge n_0$.

Ejemplo 1. Compruebe que $f(n) = n^2 + 3n + 4$ es $O(n^2)$, $\Omega(n^2)$ & $\theta(n^2)$.

$$n^2 + 3n + 4 \le n^2 + 3n^2 + 4n^2 = 8n^2 \rightarrow c = 8 \& f(n) = O(n^2)$$

$$n^2 \le n^2 + 3n + 4 \rightarrow c = 1 \& f(n) = \Omega(n^2)$$

$$n^2 \le n^2 + 3n + 4 \le 8n^2 \rightarrow c_1 = 1, c_2 = 8 \& f(n) = \theta(n^2)$$

! Si f(n) = O(g(n)) y $f(n) = \Omega(g(n))$, entonces $f(n) = \theta(g(n))$

Ejemplo 2. Compruebe que f(n) = n! es $O(n^n) \& \Omega(1)$.

$$n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot (n-1) \cdot n \le n \cdot n \cdot n \cdot n \cdot n \cdot n = n^n \longrightarrow c = 1 \& f(n) = O(n^n)$$

$$1 \cdot 1 \cdot 1 \cdot \dots \cdot 1 \cdot 1 = 1 \le 1 \cdot 2 \cdot 3 \cdot \dots \cdot (n-1) \cdot n = n! \to c = 1 \& f(n) = \Omega(1)$$

Clases de funciones

Para la mayoría de los algoritmos, las funciones de tiempo pueden identificarse con alguna de las siguientes:

O(1) — orden constante

 $O(\log n)$ — orden logarítmico

O(n) — orden lineal

 $O(n \log n)$ — orden $n \log arítmo de <math>n$

 $O(n^2)$ — orden cuadrático

 $O(n^3)$ — orden cúbico

 $O(2^n)$ — orden exponencial 2

 $O(3^n)$ — orden exponencial 3

 $O(n^n)$ — orden exponencial n

Podemos «ordenar» las funciones de tiempo según su comportamiento asintótico:

$$O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(n^3) < ... < O(2^n) < O(3^n)$$

Este es el objeto de estudio de la complejidad de algoritmos.

Comparación de funciones

Ejemplo 3. Compare las funciones $f(n) = n^2 \log n \& g(n) = n(\log n)^{10}$.

$$n^{2}\log n \sim n (\log n)^{10}$$

$$n^{2}\log n - n (\log n)^{10} \sim 0$$

$$n \log n (n - (\log n)^{9}) \sim 0 \longrightarrow n > (\log n)^{9}$$

$$n - (\log n)^{9} \sim 0$$

$$n \sim (\log n)^{9} \quad * Aplicamos \log de$$

$$anbos (aolos)$$

$$\log n \sim \log ((\log n)^{9})$$

$$\log n \sim 9 \log ((\log n)) \longrightarrow \log n > 9 \log ((\log n))$$

:. f(n) >> g(n)

Lel símbolo \geq lo usamos en el estricto sentido del comportamiento asintótico. Esto quiere decir que puede ser que g sea «mayor» que f para algunos valores de n, pero que a partir de un cierto n_0 y en adelante, f es «mayor» que g.