

Data sheet acquired from Harris Semiconductor

CD74HC4094, CD74HCT4094

High Speed CMOS Logic 8-Stage Shift and Store Bus Register, Three-State

November 1997

Features

- · Buffered Inputs
- Separate Serial Outputs Synchronous to Both Positive and Negative Clock Edges For Cascading
- Fanout (Over Temperature Range)
 - Standard Outputs......10 LSTTL Loads
 - Bus Driver Outputs 15 LSTTL Loads
- Wide Operating Temperature Range ... -55°C to 125°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- HC Types
 - 2V to 6V Operation
 - High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} at V_{CC} = 5V
- HCT Types
 - 4.5V to 5.5V Operation
 - Direct LSTTL Input Logic Compatibility,
 V_{IL}= 0.8V (Max), V_{IH} = 2V (Min)
 - CMOS Input Compatibility, $I_I \le 1\mu A$ at V_{OL} , V_{OH}

Pinout

CD74HC4094, CD74HCT4094 (PDIP, SOIC) TOP VIEW

Description

The Harris CD74HC4094 and CD74HCT4094 are 8-stage serial shift registers having a storage latch associated with each stage for strobing data from the serial input to parallel buffered three-state outputs. The parallel outputs may be connected directly to common bus lines. Data is shifted on positive clock transitions. The data in each shift register stage is transferred to the storage register when the Strobe input is high. Data in the storage register appears at the outputs whenever the Output-Enable signal is high.

Two serial outputs are available for cascading a number of these devices. Data is available at the QS_1 serial output terminal on positive clock edges to allow for high-speed operation in cascaded system in which the clock rise time is fast. The same serial information, available at the QS_2 terminal on the next negative clock edge, provides a means

for cascading these devices when the clock rise time is slow.

Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE	PKG. NO.
CD74HC4094E	-55 to 125	16 Ld PDIP	E16.3
CD74HCT4094E	-55 to 125	16 Ld PDIP	E16.3
CD74HC4094M	-55 to 125	16 Ld SOIC	M16.15
CD74HCT4094M	-55 to 125	16 Ld SOIC	M16.15

NOTES:

- 1. When ordering, use the entire part number. Add the suffix 96 to obtain the variant in the tape and reel.
- 2. Wafer or die for this part number is available which meets all electrical specifications. Please contact your local sales office or Harris customer service for ordering information.

Functional Diagram

TRUTH TABLE

	INPL	ITS		PARALLEL	. OUTPUTS	SERIAL OUTPUTS		
СР	OE	STR	D	Q_0	Q _n	QS ₁ (NOTE 4)	QS ₂	
\uparrow	L	Х	Х	Z	Z	Q'6	NC	
\downarrow	L	Х	Х	Z	Z	NC	Q ₇	
↑	Н	L	Х	NC	NC	Q'6	NC	
↑	Н	Н	L	L	Q _n -1	Q'6	NC	

TRUTH TABLE

	INPL	JTS		PARALLEL	. OUTPUTS	SERIAL OUTPUTS		
СР	OE	STR	D	Q_0	Q _n	QS ₁ (NOTE 4)	QS ₂	
↑	Н	Н	Н	Н	Q _n -1	Q'6	NC	
\	Н	Н	Н	NC	NC	NC	Q ₇	

NOTES:

- 3. H = High Voltage Level, L = Low Voltage Level, X = Don't Care, NC = No charge, Z = High Impedance Off-state,
 ↑ = Transition from Low to High Level, ↓ = Transition from High to Low.
- 4. At the positive clock edge the information in the seventh register stage is transferred to the 8th register stage and QS₁ output.

Absolute Maximum Ratings

Thermal Information

Thermal Resistance (Typical, Note 5)	θ_{JA} (oC/W)
PDIP Package	90
SOIC Package	160
Maximum Junction Temperature	150 ⁰ C
Maximum Storage Temperature Range	65°C to 150°C
Maximum Lead Temperature (Soldering 10s)	300°C
(SOIC - Lead Tips Only)	

Operating Conditions

Temperature Range (T _A)55°C to 125°C
Supply Voltage Range, V _{CC}
HC Types2V to 6V
HCT Types
DC Input or Output Voltage, V _I , V _O 0V to V _{CC}
Input Rise and Fall Time
2V
4.5V 500ns (Max)
6V

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

5. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

DC Electrical Specifications

		TEST CONDITIONS		v _{cc}		25°C		-40°C 1	O 85°C	-55°C T	O 125°C	
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
HC TYPES												
High Level Input	V _{IH}	-	-	2	1.5	-	-	1.5	-	1.5	-	V
Voltage				4.5	3.15	•	-	3.15	-	3.15	-	V
				6	4.2	•	-	4.2	-	4.2	-	V
Low Level Input	V _{IL}	-	-	2	-	-	0.5	-	0.5	-	0.5	V
Voltage				4.5	-	-	1.35	-	1.35	-	1.35	V
				6	-	-	1.8	-	1.8	-	1.8	V
High Level Output	V _{OH}	V _{IH} or V _{IL}	-0.02	2	1.9	-	-	1.9	-	1.9	-	V
Voltage CMOS Loads			-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
omeo Loado			-0.02	6	5.9	-	-	5.9	-	5.9	-	V
High Level Output	7		-	-	-	-	-	-	-	-	-	V
Voltage TTL Loads			-4	4.5	3.98	-	-	3.84	-	3.7	-	V
			-5.2	6	5.48	-	-	5.34	-	5.2	-	V
Low Level Output	V _{OL}	V _{IH} or V _{IL}	0.02	2	-	-	0.1	-	0.1	-	0.1	V
Voltage CMOS Loads			0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
			0.02	6	-	-	0.1	-	0.1	-	0.1	V
Low Level Output	1		-	-	-	-	-	-	-	-	-	V
Voltage TTL Loads			4	4.5	-	-	0.26	-	0.33	-	0.4	V
112 20000			5.2	6	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current	II	V _{CC} or GND	-	6	-	-	±0.1	-	±1	-	±1	μΑ
Quiescent Device Current	Icc	V _{CC} or GND	0	6	-	-	8	-	80	-	160	μΑ

DC Electrical Specifications (Continued)

		TES CONDI	_	Vcc		25°C		-40°C 1	O 85°C	-55°C T	O 125°C	
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	(S)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
HCT TYPES	-		-		-	-	-	-	-	-		
High Level Input Voltage	V _{IH}	-	-	4.5 to 5.5	2	-	-	2	-	2	-	V
Low Level Input Voltage	V _{IL}	-	-	4.5 to 5.5	-	-	0.8	-	0.8	-	0.8	V
High Level Output Voltage CMOS Loads	Voн	V _{IH} or V _{IL}	-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
High Level Output Voltage TTL Loads			-4	4.5	3.98	-	-	3.84	-	3.7	-	V
Low Level Output Voltage CMOS Loads	V _{OL}	V _{IH} or V _{IL}	0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
Low Level Output Voltage TTL Loads			4	4.5	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current	lį	V _{CC} and GND	0	5.5	-	-	±0.1	-	±1	-	±1	μΑ
Quiescent Device Current	Icc	V _{CC} or GND	0	5.5	-	-	8	-	80	-	160	μΑ
Additional Quiescent Device Current Per Input Pin: 1 Unit Load	ΔI _{CC} (Note)	V _{CC} -2.1	-	4.5 to 5.5	-	100	360	-	450	-	490	μА

NOTE: For dual-supply systems theoretical worst case ($V_I = 2.4V$, $V_{CC} = 5.5V$) specification is 1.8mA.

HCT Input Loading Table

INPUT	UNIT LOADS
D	0.4
CP, OE	1.5
STR	1.0

NOTE: Unit Load is $\Delta I_{\hbox{CC}}$ limit specified in DC Electrical Table, e.g., 360µA max at 25°C.

Prerequisite for Switching Specifications

			25°C		-40°C T	O 85°C	-55°C T		
CHARACTERISTIC	SYMBOL	V _{CC} (V)	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
HC TYPES									
CP Pulse Width	t _W	2	80	-	100	-	120	-	ns
		4.5	16	-	20	-	24	-	ns
		6	14	-	17	-	20	-	ns
STR Pulse Width	t _{WH}	2	80	-	100	-	120	-	ns
		4.5	16	-	20	-	24	-	ns
		6	14	-	17	-	20	-	ns

Prerequisite for Switching Specifications (Continued)

			25	25°C		O 85°C	-55°C T		
CHARACTERISTIC	SYMBOL	V _{CC} (V)	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
Data Set-up Time	t _{SU}	2	50	-	65	-	75	-	ns
		4.5	10	-	13	-	15	-	ns
		6	9	-	11	-	13	-	ns
Data Hold Time	tH	2	3	-	3	-	3	-	ns
		4.5	3	-	3	-	3	-	ns
		6	3	-	3	-	3	-	ns
STR Set-up Time	t _{SU}	2	100	-	125	-	150	1	ns
		4.5	20	-	25	-	30	-	ns
		6	17	-	21	-	26	1	ns
STR Hold Time	tH	2	0	-	0	-	0	1	ns
		4.5	0	-	0	-	0	-	ns
		6	0	-	0	-	0	-	ns
Maximum CP Frequency	fCL (MAX)	2	6	-	5	-	4	1	MHz
		4.5	30	-	24	-	20	-	MHz
		6	35	-	28	-	24	-	MHz
HCT TYPES			-				-		
CP Pulse Width	t _W	4.5	16	-	20	-	24	-	ns
STR Pulse Width	t _{WH}	4.5	16	-	20	-	24	-	ns
Data Set-up Time	t _{SU}	4.5	10	-	13	-	15	-	ns
Data Hold Time	t _H	4.5	4	-	4	-	4	-	ns
STR Set-up Time	tsu	4.5	20	-	25	-	30	-	ns
STR Hold Time	tH	4.5	0	-	0	-	0	-	ns
Maximum CP Frequency	f _{CL} (MAX)	4.5	30	-	24	-	20	-	MHz

Switching Specifications Input $t_{\text{r}}, \, t_{\text{f}} = 6 \text{ns}$

		TEST	Vcc		25°C		-40°C T	O 85°C	-55°C T	O 125°C	
PARAMETER	SYMBOL	CONDITIONS	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
HC TYPES											
Propagation Delay Time (Figure 1)	t _{PLH,} t _{PHL}	C _L = 50pF	2	-	-	150	-	190	-	225	ns
CP to QS ₁			4.5	-	-	30	-	38	-	45	ns
		C _L =15pF	5	-	12	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	26	-	33	-	38	ns
CP to QS ₂	t _{PLH} ,	C _L = 50pF	2	-	-	135	-	170	-	205	ns
	t _{PHL}		4.5	-	-	27	-	34	-	41	ns
		C _L =15pF	5	-	11	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	23	-	29	-	35	ns
CP to Q _n	t _{PLH} ,	C _L = 50pF	2	-	-	195	-	245	-	295	ns
	t _{PHL}		4.5	-	-	39	-	49	-	59	ns
			5	-	16	-	-	-	-	-	ns
			6	-	-	33	-	42	-	50	ns
STR to Q _n	t _{PLH} ,	C _L = 50pF	2	-	-	180	-	225	-	270	ns
	t _{PHL}		4.5	-	-	36	-	45	-	54	ns
			6	-	-	31	-	38	-	46	ns

Switching Specifications Input t_r , t_f = 6ns (Continued)

		TEST	V _{CC}		25°C		-40°C T	O 85°C	-55°C T	O 125°C	
PARAMETER	SYMBOL	CONDITIONS	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
Output Enable to Q _n	t _{PZH} , t _{PZL}	C _L = 50pF	2	-	-	175	-	220	-	265	ns
			4.5	-	-	35	-	44	-	53	ns
			6	-	-	30	-	37	-	45	ns
Output Disable to Q _n	t _{PHZ} , t _{PLZ}	C _L = 50pF	2	-	-	125	-	155	-	190	ns
			4.5	-	-	25	-	31	-	38	ns
			6	-	-	21	-	26	-	32	ns
Output Transition Time	t _{TLH} , t _{THL}	C _L = 50pF	2	-	-	75	-	95	-	110	ns
			4.5	-	-	15	-	19	-	22	ns
			6	-	-	13	-	16	-	19	ns
Output Disabling Time	t _{PHZ} , t _{PLZ}	C _L =15pF	5	-	10	-	-	-	-	-	ns
Maximum CP Frequency	f _{MAX}	C _L =15pF	5	-	60	-	-	-	-	-	MHz
Input Capacitance	C _{IN}	C _L = 50pF	-	-	-	10	-	10	-	10	pF
Power Dissipation Capacitance (Notes 6, 7)	C _{PD}	C _L =15pF	5	-	90	-	-	-	-	-	pF
Three-State Output Capacitance	CO	C _L = 50pF	-	-	-	15	-	15	-	15	pF
HCT TYPES											
Propagation Delay Time (Figure 1)	t _{PLH,} t _{PHL}	C _L = 50pF	4.5	-	-	39	-	-	-	-	ns
CP to QS ₁		C _L =15pF	5	-	16	-	-	-	-	-	ns
CP to QS ₂	t _{PLH} ,	C _L = 50pF	4.5	-	-	36	-	-	-	-	ns
	tPHL	C _L =15pF	5	-	15	-	-	-	-	-	ns
CP to Q _n	t _{PLH,}	C _L = 50pF	4.5	-	-	43	-	-	-	-	ns
	t _{PHL}	C _L =15pF	5	-	18	-	-	-	-	-	ns
STR to Q _n	t _{PLH,} t _{PHL}	C _L = 50pF	4.5	-	-	39	-	-	-	-	ns
Output Enable to Q _n	t _{PZH} , t _{PZL}	C _L = 50pF	4.5	-	-	35	-	-	-	-	ns
Output Disable to Q _n	t _{PHZ} , t _{PLZ}	C _L = 50pF	4.5	-	-	35	-	-	-	-	ns
Output Transition Time	t _{TLH} , t _{THL}		4.5	-	-	15	-	-	-	-	ns
Output Disabling Time	t _{PHZ} , t _{PLZ}	C _L =15pF	5	-	14	-	-	-	-	-	ns
Maximum CP Frequency	f _{MAX}	C _L =15pF	5	-	60	-	-	-	-	-	MHz
Input Capacitance	C _{IN}	C _L = 50pF	-	-	-	10	-	10	-	10	pF
Power Dissipation Capacitance (Notes 6, 7)	C _{PD}	C _L =15pF	5	-	110	-	-	-	-	-	pF
Three-State Output Capacitance	C _O	C _L = 50pF	-	-	-	15	-	15	-	15	pF

NOTES:

 ^{6.} C_{PD} is used to determine the dynamic power consumption, per register.
 7. P_D = V_{CC}² f_i (C_{PD} + C_L) where f_i = Input Frequency, C_L = Output Load Capacitance, V_{CC} = Supply Voltage.

Test Circuits and Waveforms

FIGURE 1. DATA PROPAGATION DELAYS, SET-UP AND HOLD TIMES

FIGURE 2. STROBE PROPAGATION DELAYS AND SET-UP AND HOLD TIMES

FIGURE 3. ENABLE AND DISABLE TIMES

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated