Introduction to TensorFlow

Lecture 17 for 14-763/18-763 Guannan Qu

Nov 4, 2024

TensorFlow Architecture

Data

ML Models

torch.tensor

nn.Module for building NN models

Dataset/DataLoader

backward() for differentiation

O PyTorch

Tensor/Dataset

tf.Tensor

tf.data API

tf.keras High-Level API

keras. Sequential(), keras. Model for building models keras. Model. fit() for training

TensorFlow Core

tf.Module for building models tf.GradientTape() for automatic differentiation

TensorFlow Architecture

Additional tools

TensorBoard

Tool for Data visualization and tuning

tf.distribute

Allows training across multiple GPUs/CPUs on multiple machines

Deployment

TFX for production-level ML TensorFlow.js for JavaScript Deployment TensorFlowLite for Mobile/Edge

Tensor/Dataset

tf.data API

tf.Tensor

tf.keras High-Level API

keras. Sequential(), keras. Model for building models keras. Model. fit() for training

TensorFlow Core

tf.Module for building models tf.GradientTape() for automatic differentiation

Basics

We will cover

Very similar to PyTorch

TensorBoard

Tool for Data visualization and tuning

tf.distribute

Allows training across multiple GPUs/CPUs on multiple machines

Deployment

TFX for production-level ML
TensorFlow.js for JavaScript Deployment
TensorFlowLite for Mobile/Edge

Tensor/Dataset

tf.data API

tf.Tensor

tf.keras High-Level API

keras.Sequential(), keras.Model for building models keras.Model.fit() for training

TensorFlow Core

tf.Module for building models
tf.function for computation graphs
tf.GradientTape() for automatic differentiation

TensorBoard

Tool for Data visualization and tuning

tf.distribute

Allows training across multiple GPUs/CPUs on multiple machines

Deployment

TFX for production-level ML TensorFlow.js for JavaScript Deployment TensorFlowLite for Mobile/Edge

Tensor/Dataset

tf.data API

tf.Tensor

tf.keras High-Level API

keras. Sequential(), keras. Model for building models keras. Model. fit() for training

TensorFlow Core

tf.Module for building models
tf.function for computation graphs
tf.GradientTape() for automatic differentiation

How to create a model with tf.keras?

Input/Feature:

 $\boldsymbol{\chi}$

```
model = keras.Sequential()
model.add(keras.layers.Dense(1))
This layer is a simple linear function with output dimension 1
No need to specify input dimension
                                          Output/Target
             y = ax + b
```

How does the model look like? (Note: this model is untrained yet)

```
x_mesh = np.linspace(1,6,100) # generate 100 input values between 1 and 6
x_mesh = tf.constant( x_mesh[:,np.newaxis])
y_pred_mesh = model(x_mesh) # get the output of our model
plt.plot(x, y, 'ro')
plt.plot(x_mesh, y_pred_mesh , label = "Model before fitting")
plt.legend()
```


How does the model look like? (Note: this model is untrained yet)

```
model.summary()
```

Model: "sequential_1"

Layer (type)	Output Shape	Param #
dense_1 (Dense)	======================================	2

Total params: 2

Trainable params: 2

Non-trainable params: 0

How to train the model?

```
model.compile(optimizer = keras.optimizers.SGD(), loss = keras.losses.MeanSquaredError())
model.fit(x,y,epochs=30)

Measures how well the model fits the data
```

MeanSquaredError =
$$\frac{1}{\#number\ of\ samples} \sum_{i}^{} (e_i)^2$$

How to train the model?

```
model.compile(optimizer = keras.optimizers.SGD(), loss = keras.losses.MeanSquaredError())
model.fit(x,y,epochs=30)
```

Choosing the algorithm to find the model weights that minimize the loss. SGD, Adam are popular choices, which is similar to PyTorch

How to train the model?

```
model.compile(optimizer = keras.optimizers.SGD(), loss = keras.losses.MeanSquaredError())
model.fit(x,y,epochs=30)
```

Epochs means how many iterations we go through the data (similar to pytorch)

How does the trained model look like?

```
y_pred_mesh_afterfitting = model(x_mesh)
plt.plot(x, y, 'ro')
plt.plot(x_mesh, y_pred_mesh , label = "Model before fitting")
plt.plot(x_mesh, y_pred_mesh_afterfitting , label = "Model after fitting")
plt.legend()
```


How to build neural networks?

This is how we build a linear regression model

```
For each hidden layer, specify
                model = keras.Sequential()
                                                  the width and the activation
                model.add(keras.layers.Dense(1))
    To build a neural network, just add more layers
               model = keras.Sequential()
               model.add(keras.layers.Dense(20,activation='relu'))
               model.add(keras.layers.Dense(20,activation='relu'))
Add layers
               model.add(keras.layers.Dense(20 activation='relu')
one-by-one
               model.add(keras.layers.Dense(1))
                                                     The output dimension
```

Keras: Simple Neural Network

Equivalent way to create the same neural network

Keras: Simple Neural Network

Another equivalent way to create the same neural network

```
input = keras.Input(shape = (1))
intermediate_1 = keras.layers.Dense(20,activation='relu')(input)
intermediate_2 = keras.layers.Dense(20,activation='relu')(intermediate_1)
intermediate_3 = keras.layers.Dense(20,activation='relu')(intermediate_2)
output = keras.layers.Dense(1)(intermediate_3)
model3 = keras.Model(inputs = input,outputs = output)
```

I have received many questions regarding

- what should be the input to the cross entropy loss
- what should be the final layer (linear or softmax) of NN.

This can be confusion as PyTorcha and tf.keras has different conventions

I would like to clarify this by first presenting the "mathematical" way to compute cross entropy (which is unambiguous), and then present what is the convention for each platform (pytorch/tensorflow).

Consider a classification problem with $\mathcal C$ classes 1,2, ... $\mathcal C$

 $Score_i$ is unnormalized (can take values from $-\infty$ to $+\infty$)

The larger $Score_i$, the higher the odds of class i

Softmax Function

$$Prob_{i} = \frac{\exp(Score_{i})}{\exp(Score_{1}) + \exp(Score_{2}) + \dots + \exp(Score_{C})}$$

 $Prob_i$ is "normalized", i.e. it must lie between 0,1

Consider a classification problem with $\mathcal C$ classes 1,2, ... $\mathcal C$

Suppose the true label is $y \in \{1, 2, ..., C\}$

CrossEntropy for this data point is

$$-\log Prob_{y} = \begin{cases} 0 & \text{if } Prob_{y} = 1 \\ +\infty & \text{if } Prob_{y} = 0 \end{cases}$$

where $Prob_{\nu}$ is the probability of the correct class

Minimizing cross entropy encourages predicting the true label with larger prob.

PyTorch Convention

So in PyTorch, neural networks typically don't include softmax as final layer. Typically, linear is the final layer.

PyTorch nn.CrossEntropyLoss()
Includes BOTH Softmax AND CrossEntropy

TensorFlow Keras Convention?

Let's use NSL-KDD as example

Which means your NN should NOT include softmax as final layer

 $Score_1$ linear/relu layers $Score_2$ Input $Score_C$

If From_logits = true, the SparseCategoricalCrossentorpy() will INCLUDE SOFTMAX

```
keras.layers.Dense(10,activation='relu'),
keras.layers.Dense(10,activation='relu'),
keras.layers.Dense(10,activation='relu'),
keras.layers.Dense(10,activation='relu'),
keras.layers.Dense(2)])
```

```
model_multiclass.compile(optimizer = 'sgd', _logits = true assumes NN output is score
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
```

model_multiclass = keras.Sequential([keras.layers.Dense(10,activation='relu'),

Which means your NN SHOULD INCLUDE softmax

If From_logits = false, the SparseCategoricalCrossentorpy() will NOT INCLUDE SOFTMAX

one for normal and one for attack

From_logits = false assumes NN output is probability

 $model 2. compile (optimizer = 'sgd', loss=keras. losses. Sparse Categorical Crossentr bpy (from_logits=False)) \\$

Here we use the SparseCategoricalCrossentropy as the loss

- "Sparse" refers to the fact the true label is integer values Can also use CategoricalCrossentropy
- In this case, the true label should be onehot encoded

```
model_multiclass.compile(optimizer = 'sgd',
    loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
```

Summary So Far

- Should set from_logits = True if NN output is score (last layer linear)
- Should set from_logits = False if NN output is probability (last layer softmax)
- NN output dimension should be the same as the number of classes

Converting DF to tf.Tensor

```
to_array = udf(lambda v: v.toArray().tolist(), ArrayType(FloatType()))
nslkdd_df_train = nslkdd_df
nslkdd_df_validate,nslkdd_df_test = nslkdd_df_test.randomSplit([0.5,0.5])
nslkdd_df_train_pandas = nslkdd_df_train.withColumn('features', to_array('features')).toPandas()
nslkdd_df_validate_pandas = nslkdd_df_validate.withColumn('features', to_array('features')).toPandas()
nslkdd_df_test_pandas = nslkdd_df_test.withColumn('features', to_array('features')).toPandas()
x_train = tf.constant(np.array(nslkdd_df_train_pandas['features'].values.tolist()))
y_train = tf.constant(np.array(nslkdd_df_train_pandas['outcome'].values.tolist()))
x_validate = tf.constant(np.array(nslkdd_df_validate_pandas['features'].values.tolist()))
y_validate = tf.constant(np.array(nslkdd_df_validate_pandas['outcome'].values.tolist()))
x_test = tf.constant(np.array(nslkdd_df_test_pandas['features'].values.tolist()))
y_test = tf.constant(np.array(nslkdd_df_test_pandas['outcome'].values.tolist()))
```

Training for NSL-KDD

```
model.compile(optimizer = keras.optimizers.SGD(learning_rate=0.02),
    loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    metrics=[keras.metrics.SparseCategoricalAccuracy()])

model.fit(x_train,y_train, epochs = 5,batch_size = 64, validation_data=(x_validate,y_validate),verbose = 2)
```

Fit the keras Model

```
Epoch 1/5

1969/1969 - 1s - loss: 0.1268 - sparse_categorical_accuracy: 0.9649 - val_loss: 0.7386 - val_sparse_categorical_accuracy: 0.7687 - 699ms/epoch - 355us/step

Epoch 2/5

1969/1969 - 1s - loss: 0.0681 - sparse_categorical_accuracy: 0.9810 - val_loss: 0.8911 - val_sparse_categorical_accuracy: 0.7553 - 502ms/epoch - 255us/step

Epoch 3/5

1969/1969 - 1s - loss: 0.0605 - sparse_categorical_accuracy: 0.9824 - val_loss: 1.0256 - val_sparse_categorical_accuracy: 0.7542 - 506ms/epoch - 257us/step

Epoch 4/5

1969/1969 - 1s - loss: 0.0517 - sparse_categorical_accuracy: 0.9833 - val_loss: 1.3345 - val_sparse_categorical_accuracy: 0.7714 - 508ms/epoch - 258us/step

Epoch 5/5

1969/1969 - 0s - loss: 0.0389 - sparse_categorical_accuracy: 0.9868 - val_loss: 1.4130 - val_sparse_categorical_accuracy: 0.7617 - 497ms/epoch - 253us/step
```

Evaluate it on the test data

```
model.evaluate(x_test,y_test, verbose = 2)

v 0.1s
```

179/179 - 0s - loss: 1.3673 - sparse_categorical_accuracy: 0.7626 - 93ms/epoch - 518us/step

Up Next

TensorBoard

Tool for Data visualization and tuning

tf.distribute

Allows training across multiple GPUs/CPUs on multiple machines

Deployment

TFX for production-level ML TensorFlow.js for JavaScript Deployment TensorFlowLite for Mobile/Edge

Tensor/Dataset

tf.data API

tf.Tensor

tf.keras High-Level API

keras. Sequential(), keras. Model for building models keras. Model. fit() for training

TensorFlow Core

tf.Module for building models
tf.function for computation graphs
tf.GradientTape() for automatic differentiation

TensorBoard

- TensorBoard is an interactive interface that allows you to
 - Track "scalar" metrics, like train/validation loss, auc, accuracy, across different epochs
 - Visualize the structure of neural network
 - Hyper-Parameter Tuning

Let's try TensorBoard

```
import datetime
model = keras.Sequential( [keras.layers.Dense(10,activation='relu'),
     keras.layers.Dense(10,activation='relu'),
     keras.layers.Dense(10,activation='relu'),
     keras.layers.Dense(10,activation='relu') ,
    keras.layers.Dense(2)] )
model.compile(loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
        metrics=[keras.metrics.SparseCategoricalAccuracy(name='Accuracy')])
log_dir = "logs14763/myfirstlog/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)
model.fit(x=x_train, y=y_train,
                                             Create a callback object and specify log directory
          epochs=20, verbose = 2,
         validation_data=(x_validate, y_validate),
         [callbacks=[tensorboard_callback])
```

Pass the callback to Model.fit(), which will run the callback to write all necessary info to the log directory

How to launch TensorBoard?

Launch TensorBoard within notebook

```
%load_ext tensorboard
%tensorboard ---logdir logs14763/myfirstlog/
```

Launch TensorBoard in terminal

- Use the following command: tensorboard --logdir logs14763/myfirstlog/
- The terminal will then prompt a URL, typically http://localhost:6006
- Use your browser to enter that URL

Hyper Parameter Tuning with TensorBoard

- We have kept using a Neural Network with 3 hidden layers, each with 20 neurons.
- There is no fixed rule in how we should choose these numbers, and let's tune it!

Hyper Parameter Tuning with TensorBoard

```
from tensorboard.plugins.hparams import api as hp
                                                                  Create two hyper
                                                                  parameters and pick
HP_WIDTH = hp.HParam('NN_width', hp.Discrete([20,30]))
                                                                  several values
HP_DEPTH = hp.HParam('NN_depth', hp.Discrete([4,6]))
with tf.summary_create_file_writer('logs14763/hparam_tuning')_as_default():
 hp.hparams_config(
    hparams=[HP_WIDTH, HP_DEPTH],
   metrics=[hp.Metric('Accuracy')],
```

Configure the hyper-parameter panel - two hyperparameters to tune, with the metric

Create NN model with given depth and width

```
def train_test_model(hparams,logdir):_
/ model = keras.Sequential()
 for _ in range(hparams[HP_DEPTH]):
   model.add(keras.layers.Dense(hparams[HP_WIDTH],activation='relu'))
 model.add(keras.layers.Dense(2))
 model.compile(
      optimizer=keras.optimizers.SGD(),
      loss = keras.losses.SparseCategoricalCrossentropy(from_logits=True),
     metrics=[keras.metrics.SparseCategoricalAccuracy(name="Accuracy_epochs")])
/ history = model.fit(x_train, y_train, epochs=5, verbose = 2,
 callbacks=[tf.keras.callbacks.TensorBoard(log_dir=logdir, histogram_freg=1)],
 validation data = (x validate, y validate))
 _accuracy = np.max(history.history["val_Accuracy_epochs"])
  return accuracy
```

Calculate the largest accuracy across different epochs

```
for hp_width in HP_WIDTH.domain.values:
  for hp_depth in (HP_DEPTH.domain.values):
                                  Go through all combinations of hyper-parameters
    hparams = {
        HP_WIDTH: hp_width,
        HP_DEPTH: hp_depth,
    run_name = f"run-WIDTH{int(hparams[HP_WIDTH])}-DEPTH{hparams[HP_DEPTH]}"
    print('--- Starting trial: %s' % run_name)
    print({h.name: hparams[h] for h in hparams})
                                                            Train our model and get Accuracy
    run_dir = 'logs14763/hparam_tuning/'_+_run_name
    accuracy = train_test_model(hparams,run_dir)
   with tf.summary.create_file_writer(run_dir).as_default():
      hp.hparams(hparams) # record the values used in this trial
      tf.summary.scalar("Accuracy", accuracy, step=1)
```

Record the hyper-parameter value, Accuracy to the log directory

Hyper Parameter Tuning with TensorBoard

