12 (12 12013 M.

COMP 3 - 4 (RC)

S.E. (Comp.) (Sem. – III) (RC) Examination, Nov./Dec. 2013 COMPUTER ORIENTED NUMERICAL TECHNIQUES

Duratio	n: 3 Hours)()
1	Instructions: 1) Answer any 05 questions, selecting atleast 01 question from each Module. 2) Assume necessary details.	
	MODULE-1	
1. a)	What are inherent errors ? How do they arise ? Discuss.	4
b)	Provide flowchart for Bisection method of finding roots. Trace your flow chart.	8
g c)	Find real root of the equation $x e^x = \cos x$ in the interval (0, 1) using Regula Falsi method correct to 4 decimal places.	8
2. a)	What is pivoting? What is the difference between partial and complete pivoting explain?	5
b)	Solve the full system of eqns. using Gauss elimination method:	8
	$x_1 + x_2 + x_3 = 6$	
	$3x_1 + 3x_2 + 4x_3 = 20$ $2x_1 + x_2 + 3x_3 = 13.$	
– e c)	Write an algorithm to implement Gauss-Jordan method of finding roots verify your algorithm.	7
	MODULE - II	
3. a)	Determine by Lagrange's method, the percentage no. of patients over 40 yrs.	7
	Age over (x) years : 30 35 45 55	
	% no. (y) of patients : 148 96 68 34	
b)	Derive Newton's forward Interpolation formula.	6
	P.T.	.0.

COMP3-4(RC)

 Explain the suitability of interpolation methods which use central differences, forward differences and backward differences. Provide appropriate examples to justify your approach.

7

4. a) Determine eigen values and eigen vector for the foll. matrix.

-

 b) Describe Gauss-seidal method for iterative solutions of simultaneous equations. Contrast this with Jacobi method.

8

c) Solve the following system of eqns. by Jacobi's method.

6

 $10x_1 + 2x_2 + x_3 = 9$ $x_1 + 10x_2 - x_3 = -22$

 $-2x_1 + 3x_2 + 10x_3 = 22.$

MODULE - III

5. a) Derive Simpson's 1/3 rule to evaluate an integral.

E

b) Evaluate $\int_{0}^{6} \frac{e^{x}}{1+x} dx$ using Simpson's 3/8 rule on integration.

8

c) Write a C/CH program to implement trapezoidal rule for numerical integration.

7

6. a) What is Boundary Value Problem? Solve the Boundary value problem

y'' - 64y + 10 = 0 with y(0) = y(1) = 0 by finite difference method. Compute value of y(0.5).

- 10
- b) Write an algorithm to find derivative at particular point using Numerical differentiation, trace your algorithm.

10

and x = 0.75.

MODULE-IV

- 7. a) Given dy/dx = y² x², obtain y(0.4) using Milne's Predictor Corrector method.
 7
 x 0 0.1 0.2 0.3
 y 1 1.11 1.25 1.42
 f 1 1.22 1.52 1.92
 b) Write an algorithm to implement Runge-Kutta method Trace your algorithm.
 7
 c) Explain practical uses of parabolic equations with exmaples.
 6
 8. a) Solve dy/dx = x²y y and y(0) = 1 using Picard's method. Estimate y at x = 0.25
 - Explain trapezoidal method of integration with apropriate algorithm. provide an example.
 - c) Explain practical applications of differential equations.