

# Machine Learning With TensorFlow

# INTRODUCTION TO TENSORFLOW PART II

- Quiz
- Assignments
- Input
- Breakout Discussions)
- Projects

#### Introduction to TensorFlow Part II

QUIZ



https://forms.office.com/e/S4XDcfBZWv

# ASSIGNMENTS

# ASSIGNMENTS: WHO WILL PRESENT NEXT?

Why do we split the data into training and validation set?

Why do we split the data into training and validation set?

- We want an unbiased performance estimate
- If we evaluate on the training set, we will be overconfident
- Example: If the model just learns the solutions by heart, performance on the training data would be perfect, but the model would not generalize well to unseen data

# INPUT: TRAINING CURVES & OVERFITTING



# INPUT: TRAINING CURVES & OVERFITTING





### RECAP: CALLBACKS



Methods on\_batch\_begin on\_batch\_end on\_epoch\_begin on\_epoch\_end on\_predict\_batch\_begin on\_predict\_batch\_end on\_predict\_begin on\_predict\_end on\_test\_batch\_begin on\_test\_batch\_end on\_test\_begin on\_test\_end on\_train\_batch\_begin on\_train\_batch\_end on\_train\_begin on\_train\_end

## EARLY STOPPING CALLBACK

```
tf.keras.callbacks.EarlyStopping(
monitor='val_loss',
min_delta=0,
patience=0,
verbose=0,
mode='auto',
baseline=None,
restore_best_weights=False,
start_from_epoch=0
```

Why would we need an additional test set, when we already have a validation set?

What's the downside of a splitting the data only once into training, validation, and test set?

Why would we need an additional test set, when we already have a validation set?

- Hyperparameter tuning is often done based on the validation set
- Validation set thus influences model choice/performance
- Performance estimate is no longer unbiased and overfitting may occur

What's the downside of a splitting the data only once into training, validation, and test set?

Why would we need an additional test set, when we already have a validation set?

- Hyperparameter tuning is often done based on the validation set
- Validation set thus influences model choice/performance
- Performance estimate is no longer unbiased and overfitting may occur

What's the downside of a splitting the data only once into training, validation, and test set?

- We use only one specific subset of the data to test on
- We could get a better performance estimate if we tested on more data

# INPUT: k-FOLD CROSS-VALIDATION



#### BREAKOUT DISCUSSIONS

What layers can typically be found in a computer vision model architecture? What are their purposes? How would you – intuitively – describe how convolutional layers work?

Suppose you try to distinguish dogs from cats. In your training set, you have 1000 images of dogs and 100 images of cats. You test your trained model on 10 images of dogs and cats. The confusion matrix looks as follows. What's the problem and how can you try to solve it?

| P           |      | Prediction |      |
|-------------|------|------------|------|
| Ground trut |      | dogs       | cats |
| nd 1        | dogs | 10         | 0    |
| rou         | cats | 9          | 1    |
|             |      |            |      |

• If you're fast: Recap what the final layer and loss function look like for regression, binary classification, and multiclass classification problems.

# PROJECTS MILESTONES

10.07.

| 24.04. | Project pitches                                         |
|--------|---------------------------------------------------------|
| 01.05. | Further Project Proposals and Discussions in Mattermost |
| 08.05. | Form Groups                                             |
| 15.05. | Literature Review (Submission Deadline: 18.05.)         |
| 22.05. | Dataset Characteristics                                 |
| 05.06. | Definition of Model Evaluation                          |
| 12.06. | Baseline Model Estimation (Submission Deadline: 15.06.) |
| 22.06. | Individual Feedback Sessions                            |
| 03.07. | Project Presentations, Part I                           |
|        |                                                         |

Project Presentations, Part II

## LITERATURE REVIEW

- What to look for?
  - Datasets that are suitable to solve the taskOR
    - Tasks that are interesting to solve with a given dataset
  - General advice / best practices in the relevant field (Computer Vision, Natural Language Processing, or Time-Series Prediction)
  - Approaches that have been tried before on similar projects

## LITERATURE REVIEW

- Where to look?
  - News articles / blogs







Academic papers





Data repositories





### TASKS UNTIL NEXT WEEK

- Setup a GitHub repository for your project based on the provided template (see course handbook)
- Conduct the literature review and upload it to your project repository
- Complete weeks 1 and 2 of the course "Convolutional Neural Networks in TensorFlow"
- Complete the assignment notebook