Referencia - ICPC

Mathgic

Marzo 2024

Índice

	0.1. OJO	4
1.	Estructuras básicas	4
	1.1. Min stack	4
	1.2. Min queue	
2.	Ordenamiento	4
	2.1. Bucket sort	
	2.2. Merge sort	5
	3.6 · · · · · · · · · · · · · · · · · · ·	_
3.	Matemáticas	5
	3.1. Criba de Eratóstenes	
	3.2. Criba sobre un rango	
	3.3. Criba segmentada	
	3.5. Algoritmo extendido de Euclides	
	3.6. Solución de ecuaciones diofánticas lineales	
	3.7. Función Phi de Euler	
	3.8. Función sigma	
	3.9. Función de Moebius	
	3.10. Exponenciación binaria	
4.	Sparse table	10
5 .	Fenwick Tree	11
6.	Segment Tree	11
	6.1. Actualizaciones puntuales	
	6.2. Actualizaciones sobre rangos	
7.	Sqrt decomposition	13
	7.1. Algoritmo de MO	13
8.	DSU	13
9.	Grafos	14
	9.1. Caminos mínimos	
	9.1.1. Dijkstra	
	9.1.2. Bellman-Ford	
	9.2. Árboles	
	9.2.1. MIST	
	9.2.3. Sack	
	9.3. Máximo flujo	
	9.4. SCC	
	9.4.1. Kosajaru	
	9.5. 2-Sat	
	5.5. 2 Satt	20
10).Treap	21
11	.Strings	22
	11.1. KMP	
	11.2. Suffix array	
	11.2.1. Construcción	
	11.2.2. Prefijo común más largo	23
	11.3. Suffix tree	24

2.Geometría	
12.1. Convex hull	
${f 3.Utilidades}$	
13.1. Plantilla tree	
13.2. Números aleatorios	
13.3. Bitmask	

0.1. OJO

- a) Se usan macros (MAXN, LOGN, etc) para más comodidad, pero puede causar RTE o MLE cuando los valores son grandes. Pensar en usar vector<> (STL) cuando sea conveniente.
- b) agréguenle errores/consejos que hay que tener en cuenta sobre las implementaciones y no estemos mucho tiempo tratanto de encontrar el error.

1. Estructuras básicas

1.1. Min stack

```
struct min_stack{
    stack<pair<int, int>> st;
    min_stack(){st.push(make_pair(INT_MAX, INT_MAX));}

void push(int v){st.push(make_pair(v, min(v, st.top().second)));}

int top(){return st.top().first;}

void pop(){if(st.size() > 1)st.pop();}

int minV(){return st.top().second;}

int size(){return st.size() -1;}

bool empty(){return size() == 0;}

};
```

1.2. Min queue

```
struct min_queue{
        min_stack p_in;
2
        min_stack p_out;
        void push(int v){p_in.push(v);}
        int front(){transfer(); return p_out.top();}
        void pop(){transfer(); p_out.pop();}
6
        int size(){return p_in.size() + p_out.size();}
        int minV() {return min(p_in.minV(), p_out.minV());}
        bool empty(){ return size() == 0;}
        void transfer(){
10
            if(p_out.size()) return;
11
            while(p_in.size()){
12
                 p_out.push(p_in.top());
13
                 p_in.pop();
            }
15
        }
    };
17
```

2. Ordenamiento

2.1. Bucket sort

Complejidad: Tiempo O(n) - Memoria extra O(MAXVAL). MAXVAL es el valor máximo del arreglo.

```
void bucketSort(int arr[], int n){
   int cub[MAXVAL + 1] = {};
   for(int i = 0; i < n; ++i) cub[ arr[i] ]++;
   int idx = 0;
   for(int i = 0; i <= MAXVAL; ++i){
      while( cub[i] ){
        arr[idx++] = i;
      cub[i]--;
</pre>
```

2.2. Merge sort

Complejidad: Tiempo $O(n \log n)$ - Memoria extra O(n).

```
void mergeSort(int arr[], int ini, int fin){
1
        if(ini == fin) return;
2
        int mitad = (ini + fin) / 2;
3
        mergeSort(arr, ini, mitad);
        mergeSort(arr, mitad + 1, fin);
5
6
        int tam1 = mitad - ini + 1, tam2 = fin - mitad;
        int mitad1[tam1], mitad2[tam2];
        for(int i = ini, idx = 0; i <= mitad; ++i, idx++)</pre>
q
            mitad1[idx] = arr[i];
10
        for(int i = mitad + 1, idx = 0; i <= fin; ++i, idx++)</pre>
11
            mitad2[idx] = arr[i];
12
        for(int i = ini, idx1 = 0, idx2 = 0; i <= fin; ++i){
14
            if(idx1 < tam1 && idx2 < tam2){ /// si quedan elementos en ambas mitades
                 arr[i] = mitad1[idx1] < mitad2[idx2] ? mitad1[idx1++] : mitad2[idx2++];
16
            } else if(idx1 < tam1){ /// si solo hay elementos en mitad1
                 arr[i] = idx1 < tam1 ? mitad1[idx1++] : mitad2[idx2++];
18
            }
19
        }
20
    }
21
```

3. Matemáticas

3.1. Criba de Eratóstenes

Complejidad: Tiempo $O(n \log \log n)$ - Memoria extra O(n). Calcula los primos menores o iguales a n.

```
void criba(int n, vector<int> &primos){
1
        primos.clear();
2
        if(n < 2) return;
        vector<bool> no_primo(n + 1);
        no_primo[0] = no_primo[1] = true;
5
        for(long long i = 3; i * i <= n; i += 2){
6
             if(no_primo[i]) continue;
             for(long long j = i * i; j \le n; j += 2 * i)
                 no_primo[j] = true;
9
10
        primos.push_back(2);
11
        for(int i = 3; i <= n; i += 2){
12
             if(!no_primo[i])
13
                 primos.push_back(i);
        }
15
    }
16
```

3.2. Criba sobre un rango

Complejidad: Tiempo $O(\sqrt{b} \log \log \sqrt{b} + (b-a) \log \log (b-a))$ - Memoria extra $O(\sqrt{b} + b - a)$. Calcula los primos en el rango [a, b].

```
void cribaSobreRango(long long a, long long b, vector<long long> &primos){
1
        a = max(a, 011);
2
        b = max(b, 011);
3
        long long tam = b - a + 1;
        vector<int> primosRaiz;
5
        criba(sqrt(b) + 1, primosRaiz);
6
        bool no_primo[tam] = {};
        primos.clear();
8
        for(long long p : primosRaiz){
             long long ini = p * max(p, (a + p - 1) / p);
10
             for(long long m = ini; m \le b; m += p){
11
                 no_primo[m - a] = true;
12
             }
13
        }
14
        for(long long i = 0; i < tam; ++i){
             if(no primo[i] || i + a < 2) continue;</pre>
16
             primos.push_back(i + a);
        }
18
    }
19
```

3.3. Criba segmentada

Complejidad: Tiempo $O(\sqrt{n}\log\log\sqrt{n} + n\log\log n)$ - Memoria extra $O(\sqrt{n} + S)$. Cuenta la cantidad de primos menores o iguales a n.

```
int cuentaPrimos(int n){
         if(n < 2) return 0;</pre>
         const int S = sqrt(n);
3
         vector<int> primosRaiz;
         criba(sqrt(n) + 1, primosRaiz);
5
         int ans = 0;
         vector<char> no_primo(S);
         for(int ini = 0; ini <= n; ini += S){</pre>
             fill(no_primo.begin(), no_primo.end(), false);
             for(int p : primosRaiz){
10
                  int m = p * max(p, (ini + p - 1) / p) - ini;
11
                 for(; m <= S; m += p)
12
                      no_primo[m] = true;
13
             }
14
             for(int i = 0; i < S && i + ini <= n; ++i)</pre>
15
                  if(!no_primo[i] && 1 < i + ini)</pre>
16
                      ans++;
18
        return ans;
20
```

3.4. Criba lineal

Complejidad: Tiempo O(n) - Memoria extra O(n). Calcula los primos menores o iguales a n y el menor primo que divide a cada entero en [2, n].

```
primos.push_back(i);
8
             }
9
             for(int j = 0; i * (long long)primos[j] <= n; ++j){</pre>
10
                  lp[i * primos[j]] = primos[j];
11
                  if(primos[j] == lp[i])
12
                       break;
13
             }
         }
15
    }
```

3.5. Algoritmo extendido de Euclides

Complejidad: Tiempo $O(\log(\max(a,b)))$ - Memoria extra O(1). Encuentra una solución a la ecuación $ax + by = \gcd(a,b)$.

```
int gcdExtendido(int a, int b, int &x, int &y){
1
         if(!b){
2
            x = 1;
3
             y = 0;
             return a;
5
        }
6
        int x1, y1;
        int g = gcdExtendido(b, a % b, x1, y1);
        x = y1;
q
        y = x1 - y1 * (a / b);
10
        return g;
11
    }
12
```

3.6. Solución de ecuaciones diofánticas lineales

Complejidad: Tiempo $O(\log(\max(a,b)))$ - Memoria extra O(1). Encuentra una solución a la ecuación ax + by = c o determina si no existe solución.

```
bool encuentra_solucion(int a, int b, int c, int &x, int &y){
1
        int g = gcdExtendido(abs(a), abs(b), x, y);
2
        if(c % g) return false;
        x *= c / g;
        y *= c / g;
        if(a < 0) x = -x;
6
        if(b < 0) y = -y;
        return true;
8
   }
      Cambia a la siguiente (anterior) solución abs(cnt) veces. q := qcd(a, b).
   void cambia_solucion(int &x, int &y, int a, int b, int cnt, int g = 1) {
        x += cnt * b / g;
2
        y = cnt * a / g;
3
   }
4
      Cuenta la cantidad de soluciones x, y con x \in [minx, maxx] y y \in [miny, maxy].
2
```

int cuenta_soluciones(int a, int b, int c, int minx, int maxx, int miny, int maxy) {
 int x, y, g;
 if(!encuentra_solucion(a, b, c, x, y, g)) return 0;
 /// ax + by = c ssi (a/g)x + (b/g)y = c/g
 /// Dividimos entre g para simplificar y no dividir a cada rato
 a /= g;
 b /= g;

```
/// Signos de a, b nos sirven para pasar a la
8
        /// siquiente (anterior) solucion
        int sign_a = a > 0 ? +1 : -1;
10
        int sign_b = b > 0 ? +1 : -1;
11
        /// pasa a la minima solucion tal que minx <= x
12
        cambia_solucion(x, y, a, b, (minx - x) / b);
13
        /// si \ x < minx, pasa a la siguiente para que minx <= x
        if(x < minx) cambia_solucion(x, y, a, b, sign_b);</pre>
15
        if(x > maxx) return 0; /// si x > maxx, entonces no hay x solution tal que x in [minx, maxx]
16
        int lx1 = x;
17
        /// pasa a la maxima solucion tal que x \le maxx
18
        cambia_solucion(x, y, a, b, (maxx - x) / b);
19
        if(x > maxx) cambia_solucion(x, y, a, b, -sign_b); /// si x > maxx, pasa a la solucion anterior
20
        int rx1 = x;
21
        /// hace todo lo anterior pero con y
        cambia_solucion(x, y, a, b, -(miny - y) / a);
23
        if(y < miny) cambia_solucion(x, y, a, b, -sign_a);</pre>
        if(y > maxy) return 0;
25
        int 1x2 = x;
26
        cambia_solucion(x, y, a, b, -(maxy - y) / a);
27
        if(y > maxy) cambia_solucion(x, y, a, b, sign_a);
28
        int rx2 = x;
29
        /// como al encontrar las x tomando y como criterio no nos asegura
30
        /// que esten ordenadas, entonces las ordenamos
31
        if(lx2 > rx2) swap(lx2, rx2);
32
        /// obtenemos la interseccion de los intervalos
33
        int lx = max(lx1, lx2);
34
        int rx = min(rx1, rx2);
35
        if(lx > rx) return 0; /// no existen soluciones, interseccion vacia
36
        /// las soluciones (por x) van de b en b (b/g en b/g pero dividimos al principio)
37
        return (rx - lx) / abs(b) + 1;
38
    }
```

3.7. Función Phi de Euler

Complejidad: Tiempo O(d) - Memoria extra O(n). d es la cantidad de factores primos de n. lp[i] es el menor primo que divide a i. Cuenta la cantidad de coprimos con n menores a n.

```
int phi(int n){
1
         if(n <= 1) return 1;</pre>
2
         if(!dp[n]){
3
              int pot = 1, p = lp[n], n0 = n;
             while(n0 \% p == 0){
5
                  pot *= p;
6
                  n0 /= p;
             }
             pot /= p;
             dp[n] = pot * (p - 1) * phi(n0);
10
11
         return dp[n];
12
    }
```

3.8. Función sigma

Sigma 0 (σ_0). Complejidad: Tiempo O(d) - Memoria extra O(n). d es la cantidad de factores primos de n. 1p[i] es el menor primo que divide a i. Cuenta la cantidad de divisores de n.

```
long long sigma0(int n){
1
         if(n <= 1) return 1;</pre>
2
         if(!dp[n]){
3
             long long exp = 0, p = lp[n], n0 = n;
             while(n0 \% p == 0){
5
                  exp++;
6
                  n0 /= p;
             }
8
             dp[n] = (exp + 1) * sigma0(n0);
10
         return dp[n];
11
    }
12
```

Sigma 1 (σ_1) . Complejidad: Tiempo O(d) - Memoria extra O(n). d es la cantidad de factores primos de n. 1p[i] es el menor primo que divide a i. Calcula la suma de los divisores de n.

```
long long sigma1(int n){
1
         if(n <= 1) return 1;</pre>
2
         if(!dp[n]){
3
             long long pot = 1, p = lp[n], n0 = n;
             while(n0 \% p == 0){
                  pot *= p;
6
                  n0 /= p;
             }
             pot *= p;
9
             dp[n] = (pot - 1) / (p - 1) * sigma1(n0);
10
11
         return dp[n];
12
    }
13
```

3.9. Función de Moebius

Complejidad: Tiempo O(d) - Memoria extra O(n). d es la cantidad de factores primos de n. lp[i] es el menor primo que divide a i. Devuelve 0 si n no es divisible por algún cuadrado. Devuelve 1 o -1 si n es divisible por al menos un cuadrado. Devuelve 1 si n tiene una cantidad par de factores primos. Devuelve -1 si n tiene una cantidad impar de factores primos.

```
int moebius(int n){
        if(n <= 1) return 1;</pre>
2
        if(dp[n] == -7){
3
             int exp = 0, p = lp[n], n0 = n;
4
             while(n0 \% p == 0){
5
                 exp++;
6
                 n0 /= p;
             }
             dp[n] = (exp > 1 ? 0 : -1 * moebius(n0));
        }
10
        return dp[n];
11
   }
```

3.10. Exponenciación binaria

Iterativa. Complejidad: Tiempo $O(\log b)$ - Memoria extra O(1).

```
int binExp(int a, int b){
   int ans = 1;
   while(b){
   if(b % 2) ans *= a;
```

```
a *= a;
5
            b /= 2;
        return ans;
8
   }
      Recursiva. Complejidad: Tiempo O(\log b) - Memoria extra O(1).
   int binExp(int a, int b){
        if(!b) return 1;
2
        int tmp = binExp(a, b / 2);
3
        if(b \% 2) return tmp * tmp * a;
4
        return tmp * tmp;
   }
```

4. Sparse table

Complejidad: Tiempo de precalculo $O(n \log n)$ - Tiempo en responder $O(\log(r-l+1))$ - Tiempo en responder para operaciones idempotentes O(1) - Memoria extra $O(n \log n)$. LOGN es $\lceil \log_2(\text{MAXN}) \rceil$.

```
struct sparse_table{
        int n, NEUTRO;
2
        vector<vector<int>> ST;
3
        vector<int> lg2;
        int f(int a, int b){return a + b;}
5
        sparse_table(int _n, int data[]){
             n = n;
             NEUTRO = 0;
             lg2.resize(n + 1);
9
             lg2[1] = 0;
10
             for(int i = 2; i <= n; ++i) lg2[i] = lg2[i / 2] + 1;
11
             ST.resize(lg2[n] + 1, vector<int>(n + 1, NEUTRO));
12
             for(int i = 0; i < n; ++i) ST[0][i] = data[i];</pre>
             for(int k = 1; k \le lg2[n]; ++k){
                 int fin = (1 << k) - 1;</pre>
1.5
                 for(int i = 0; i + fin < n; ++i)
16
                     ST[k][i] = f(ST[k-1][i], ST[k-1][i+(1 << (k-1))]);
17
             }
18
19
        int query(int 1, int r){
20
             if(1 > r) return NEUTRO;
             int ans = NEUTRO;
22
             for(int k = lg2[n]; 0 \le k; --k){
23
                 if(r - 1 + 1 < (1 << k)) continue;
24
                 ans = f(ans, ST[k][1]);
25
                 1 += 1 << k;
26
             }
             return ans;
28
29
        int queryIdem(int 1, int r){
30
             if(1 > r) return NEUTRO;
             int lg = lg2[r - 1 + 1];
32
             return f(ST[lg][l], ST[lg][r - (1 << lg) + 1]);
33
        }
34
   };
35
```

5. Fenwick Tree

Complejidad: Tiempo en responder $O(\log n)$ - Tiempo de actualización $O(\log n)$ - Memoria extra O(n).

```
struct FenwickTree{
         int n, BIT[MAXN];
2
        FenwickTree(int n_size){
             n = n_size;
             memset(BIT, 0, sizeof(BIT));
6
        void add(int pos, int x){
             while(pos <= n){
                 BIT[pos] += x;
                 pos += pos & -pos;
10
             }
11
        }
12
         int sum(int pos){
13
             int ret = 0;
             while(pos){
15
                 ret += BIT[pos];
                 pos -= pos & -pos;
17
             }
             return ret;
19
         }
20
    };
21
```

6. Segment Tree

Nodo del Segment Tree:

```
struct nodo{
   int val, lazy;
   nodo():val(0), lazy(0){}/// inicializa con el neutro y sin lazy pendiente
   nodo(int x, int lz = 0):val(x), lazy(lz){}
   const nodo operator+(const nodo &b)const{
      return nodo(val + b.val);
   }
}
```

6.1. Actualizaciones puntuales

Complejidad: Tiempo de precalculo O(n) - Tiempo en responder $O(\log n)$ - Tiempo de actualización $O(\log n)$ - Memoria extra O(n).

```
struct segment_tree{
        struct node{...}nodes[4 * MAXN + 1];
2
        segment_tree(int n, int data[]){
            build(1, n, data);
        void build(int left, int right, int data[], int pos = 1){
6
            if(left == right){
                nodes[pos].val = data[left];
                 return;
            }
10
            int mid = (left + right) / 2;
11
            build(left, mid, data, pos * 2);
12
            build(mid + 1, right, data, pos * 2 + 1);
13
            nodes[pos] = nodes[pos * 2] + nodes[pos * 2 + 1];
14
```

```
15
         void update(int x, int idx, int left, int right, int pos = 1){
16
             if(idx < left || right < idx) return;</pre>
17
             if(left == right){
18
                 nodes[pos].val += x;
19
                 return;
20
             }
21
             int mid = (left + right) / 2;
22
             update(x, idx, left, mid, pos * 2);
23
             update(x, idx, mid + 1, right, pos * 2 + 1);
24
             nodes[pos] = nodes[pos * 2] + nodes[pos * 2 + 1];
26
        node query(int 1, int r, int left, int right, int pos = 1){
27
             if(r < left || right < 1) return node(); /// Devuelve el neutro</pre>
28
             if(1 <= left && right <= r) return nodes[pos];</pre>
             int mid = (left + right) / 2;
30
             return query(1, r, left, mid, pos * 2) + query(1, r, mid + 1, right, pos * 2 + 1);
        }
32
    };
33
```

6.2. Actualizaciones sobre rangos

Complejidad: Tiempo de precalculo O(n) - Tiempo en responder $O(\log n)$ - Tiempo de actualización $O(\log n)$ - Memoria extra O(n).

```
struct segment_tree{
1
        struct node{...}nodes[4 * MAXN + 1];
2
        segment_tree(int n, int data[]){...}
3
        void build(int left, int right, int data[], int pos = 1){...}
        void combineLazy(int lz, int pos){nodes[pos].lazy += lz;}
        void applyLazy(int pos, int tam){
6
             nodes[pos].val += nodes[pos].lazy * tam;
             nodes[pos].lazy = 0;
        }
        void pushLazy(int pos, int left, int right){
10
             int tam = abs(right - left + 1);
11
             if(1 < tam){
12
                 combineLazy(nodes[pos].lazy, pos * 2);
13
                 combineLazy(nodes[pos].lazy, pos * 2 + 1);
14
             applyLazy(pos, tam);
16
17
        void update(int x, int l, int r, int left, int right, int pos = 1){
18
            pushLazy(pos, left, right);
19
             if(r < left || right < 1) return;</pre>
20
             if(1 <= left && right <= r){
21
                 combineLazy(x, pos);
22
                 pushLazy(pos, left, right);
23
                 return;
             }
25
             int mid = (left + right) / 2;
             update(x, 1, r, left, mid, pos * 2);
27
             update(x, 1, r, mid + 1, right, pos * 2 + 1);
28
            nodes[pos] = nodes[pos * 2] + nodes[pos * 2 + 1];
29
        node query(int 1, int r, int left, int right, int pos = 1){...}
31
    };
```

7. Sqrt decomposition

7.1. Algoritmo de MO

Complejidad: Tiempo en responder $O((n+q)\sqrt{n}F + q\log(q))$, donde O(F) es la complejidad de add() y remove().

```
const int block_size = 300; /// Ajustable
    struct query {
2
         int 1, r, block, i;
         bool operator<(const query &b) const {
             if(block == b.block) return r < b.r;</pre>
             return block < b.block;
6
        }
    };
    void add(int idx){/**TO-DO*/}
    void remove(int idx){/**TO-DO*/}
10
    int get_answer(){return 0; /**TO-DO*/}
11
    vector<int> solve(vector<query> &queries) {
12
        vector<int> answers(queries.size());
13
         sort(queries.begin(), queries.end());
14
         int l_act = 0;
15
         int r_act = -1;
16
         for(query q : queries){
17
             while(l_act > q.l) add(--l_act);
             while(r act < q.r) add(++r act);</pre>
19
             while(l_act < q.1) remove(l_act++);</pre>
20
             while(r_act > q.r) remove(r_act--);
21
             answers[q.i] = get_answer();
22
23
        return answers;
    }
25
```

8. DSU

Complejidad: Tiempo $O(\log(n))$ - Memoria O(n), donde n es la cantidad total de elementos. La complejidad temporal es por cada función.

P[MAXN]: guarda el representante para cada nodo.

RA[MAXN]: guarda el rango (peso) del conjunto de cada representante para el small to large.

```
struct dsu{
        struct action{
2
             int x_p, y_p;
3
             int rank_y;
        };
5
        int RA[MAXN], P[MAXN];
        vector<action> actions;
        dsu(int n){
             for(int i = 0; i < n; ++i){
                 RA[i] = 1;
10
                 P[i] = i;
11
             }
12
        }
13
        int root(int x){
14
             return (x == P[x] ? x : P[x] = root(P[x]));
15
16
        void join(int x, int y, bool recording){
```

```
x = root(x);
18
             y = root(y);
19
             if(x == y) return;
20
             if(RA[x] >= RA[y]) swap(x, y);
21
             if(recording) actions.push_back({x, y, RA[y]});
22
             RA[y] += RA[x];
23
             P[x] = y;
24
25
         void rollback(int times){
26
             while(times > 0 && actions.size()){
27
                 action act = actions.back();
                 actions.pop_back();
29
                 sets.RA[act.y_p] = act.rank_y;
30
                 sets.P[act.x_p] = act.x_p;
31
             }
        }
33
    };
```

9. Grafos

```
struct edge{
         int from, to;
2
         int64_t w;
3
         const bool operator<(const edge &b)const{</pre>
             return w > b.w;
6
    };
    struct pos{
         int from;
         int64_t c;
10
         const bool operator<(const pos &b)const{</pre>
11
             return c > b.c;
12
         }
13
   };
14
```

9.1. Caminos mínimos

9.1.1. Dijkstra

Complejidad: Tiempo $O(|E|\log |V|)$ - Memoria extra O(|E|). dist[MAXN] es el arreglo de distancias mínimas desde el nodo inicial a todos los demás.

```
int64_t dijkstra(int a, int b, vector<edge> graph[]){
        int64_t dist[MAXN];
2
        bool vis[MAXN];
3
        fill(dist, dist + MAXN, LLONG_MAX);
        memset(vis, 0, sizeof(vis));
5
        priority_queue<pos> q;
        q.push(pos{a, 0});
        dist[a] = 0;
        while(!q.empty()){
9
            pos act = q.top();
10
            q.pop();
11
             if(vis[act.from]) continue;
            vis[act.from] = true;
13
            for(edge &e : grafo[act.from]){
14
                 if(dist[e.to] < dist[act.from] + e.w) continue;</pre>
15
```

```
dist[e.to] = dist[act.from] + e.w;
16
                 q.push(pos{e.to, dist[e.to]});
17
             }
18
        }
19
        return dist[b];
20
    }
21
    9.1.2. Bellman-Ford
    vector<int> bellman_ford(int s, int n, vector<edge> &edges, bool cycles = false){
        vector<int> d(n, (cycles ? 0 : INT_MAX));
2
        d[s] = 0;
        vector<int> P(n, -1); /// Predecesor
4
        for(int i = 0; i < n - 1; ++i){
5
             for(edge &e : edges){
6
                 if(d[e.from] == INT_MAX) continue;
                 if(d[e.to] > d[e.from] + e.w){
                     d[e.to] = d[e.from] + e.w;
                     P[e.to] = e.from;
10
                 }
11
             }
12
13
        int last_relax = -1;
        for(edge &e : edges){
15
             if(d[e.from] == INT_MAX) continue;
16
             if(d[e.to] > d[e.from] + e.w){
17
                 d[e.to] = d[e.from] + e.w;
18
                 P[e.to] = e.from;
19
                 last_relax = e.to;
20
             }
21
```

9.2. Árboles

9.2.1. MST

22

23

25

}

Prim. Complejidad: Tiempo $O(|E|\log |V|)$. eCost [MAXN] es el arreglo de costos mínimos de cada nodo para incluirlo en el MST.

```
int64_t prim(vector<edge> graph[]){
        int64_t eCost[MAXN];
2
        bool vis[MAXN];
        memset(vis, 0, sizeof(vis));
        fill(eCost, eCost + MAXN, LLONG_MAX);
        int64 t ans = 0;
6
        priority_queue<edge> q;
        q.push(edge{1, 1, 0});
        while(q.size()){
9
             int node = q.top().to;
10
             int64_t w = q.top().w;
11
12
             q.pop();
             if(vis[node]) continue;
13
             vis[node] = true;
14
             ans += w;
15
             for(edge &e : graph[node]){
16
```

if(last_relax == -1) return d;

return {}; /// VACIO

```
if(vis[e.to] || eCost[e.to] <= e.w) continue;</pre>
17
                 eCost[e.to] = e.w;
18
                 q.push(e);
19
             }
20
         }
21
        return ans;
22
    }
23
       Kruskal. Complejidad: Tiempo O(|E| \log |E|).
    int64_t kruskal(vector<edge> &edges, int n){
         sort(edges.begin(), edges.end());
2
        dsu mset(n);
3
         int64 t res = 0;
        for(edge &e : edges){
             if(mset.root(e.from) == mset.root(e.to)) continue;
6
             mset.join(e.from, e.to);
             res += e.w;
8
        return res;
10
    }
11
       Boruvka. Complejidad: Tiempo O(|E|\log |V|). |V|=n. dsu.join() devuelve true si la unión se llevó
   a cabo o false en otro caso.
    int64_t boruvka(vector<edge> &edges, int n){
1
         dsu mset(n);
2
         int min_edge[n];
3
         int64_t res = 0;
         while(mset.cnt_comp > 1){
5
             fill(min_edge, min_edge + n, -1);
6
             for(int i = 0; i < edges.size(); ++i){</pre>
                 int u = mset.root(edges[i].from);
                 int v = mset.root(edges[i].to);
                 if(u == v) continue;
10
                 if(min_edge[u] == -1 || edges[i].w < edges[min_edge[u]].w) min_edge[u] = i;</pre>
11
                 if(min_edge[v] == -1 || edges[i].w < edges[min_edge[v]].w) min_edge[v] = i;</pre>
12
             }
13
             for(int i = 0; i < n; ++i){
14
                 int idx_e = min_edge[i];
15
                 if(idx e == -1) continue;
16
                 res += mset.join(edges[idx_e].from, edges[idx_e].to) * edges[idx_e].w;
             }
18
         }
19
        return res;
20
    }
21
   9.2.2. LCA
       Complejidad: Tiempo de preproceso O(|V|\log |V|). Tiempo de LCA y n-ésimo ancestro O(\log |V|)
    void precalc(int node, int p = 0, int d = 1){
         depth[node] = d;
2
        P[0][node] = p;
3
         for(int k = 1; k <= LOGN; ++k)</pre>
             P[k][node] = P[k - 1][P[k - 1][node]];
5
         for(int child : tree[node])
6
             if(p != child) precalc(child, node, d + 1);
7
```

}

```
int LCA(int a, int b){
9
        if(depth[b] < depth[a]) swap(a, b);</pre>
10
        int dif = depth[b] - depth[a];
11
        for(int k = LOGN; 0 \le k; --k)
12
             if(is_on(dif, k)) b = P[k][b];
13
        if(a == b) return a;
14
        for(int k = LOGN; 0 \le k; --k){
15
             if(P[k][a] != P[k][b]){
16
                 a = P[k][a];
17
                 b = P[k][b];
18
             }
19
20
        return P[0][a];
21
22
    int nth_ancestor(int u, int n){
        for(int k = LOGN; 0 \le k; --k)
24
             if(is_on(n, k)) u = P[k][u];
        return u;
26
    }
27
   9.2.3. Sack
       Complejidad: Tiempo O(|V| \log |V|).
    void precalc(int node, int p = 0){
        subtree_size[node] = 1;
2
        depth[node] = depth[p] + 1;
3
        for(int v : tree[node]){
             if(v == p) continue;
5
             precalc(v, node);
             subtree_size[node] += subtree_size[v];
        }
8
9
    void add(int node, int x, int p = 0){
10
        /// add node here
11
        /// add subtree
12
        for(int v: tree[node])
13
             if(v != p && !big[v])
14
                 add(v, x, node);
15
16
    void dfs(int node, bool keep, int p = 0){
17
        int maxi = -1, big_child = -1;
18
        for(int v : tree[node]) /// Search for big_child
19
            if(v != p && subtree_size[v] > maxi)
20
               maxi = subtree_size[v], big_child = v;
21
        for(int v : tree[node])
22
             if(v != p && v != big_child)
                 dfs(v, false, node); /// run a dfs on small childs and clear them
24
         if (big child !=-1)
             dfs(big_child, true, node), big[big_child] = 1; /// big_child marked as big and not cleared
26
        add(node, 1, p);
27
        /// answer queries here
28
        if(big_child != -1) big[big_child] = 0;
29
        if(!keep) add(node, -1, p);
30
    }
31
```

9.3. Máximo flujo

Complejidad: Ford-Fulkerson $O(|E| \cdot maxFlow)$, Edmonds-Karp $O(|V||E|^2)$.

```
struct edge {
        int64_t c; // capacity
2
        int64_t f; // flow
3
        int to;
    };
    class ford_fulkerson {
6
    public:
        ford_fulkerson (vector<vector<pair<int, int64_t>>> &graph) : graph(graph){}
        int64_t get_max_flow(int s, int t){
             init();
10
             int64_t f = 0;
11
             while(find_and_update(s, t, f)){}
12
             return f;
        }
14
    private:
15
        vector<vector<pair<int, int64_t>>> graph; // graph (to, capacity)
16
        vector<edge> edges; // List of edges (including the inverse ones)
17
        vector<vector<int>> edge_indexes; // indexes of edges going out from each vertex
18
        void init(){
19
             edges.clear();
20
             edge_indexes.clear(); edge_indexes.resize(graph.size());
21
             for(int i = 0; i < graph.size(); i++){</pre>
22
                 for(int j = 0; j < graph[i].size(); j++){</pre>
23
                     edges.push_back({graph[i][j].second, 0, graph[i][j].first});
24
                     edges.push_back({0, 0, i});
25
                     edge_indexes[i].push_back(edges.size() - 2);
26
                     edge_indexes[graph[i][j].first].push_back(edges.size() - 1);
27
                 }
             }
29
    }
30
        bool find_and_update(int s, int t, int64_t &flow){
31
             // Encontrar camino desat con BFS
32
             queue<int> q;
33
             // Desde donde llego y con que arista
             vector<pair<int, int>> from(graph.size(), make_pair(-1, -1));
35
             q.push(s);
36
             from[s] = make_pair(s, -1);
37
             bool found = false;
38
             while(q.size() && (!found)){
39
                 int u = q.front(); q.pop();
40
                 for(int i = 0; i < edge_indexes[u].size(); i++){</pre>
41
                     int eI = edge_indexes[u][i];
42
                     if((edges[eI].c > edges[eI].f) && (from[edges[eI].to].first == -1)){
                          from[edges[eI].to] = make_pair(u, eI);
44
                          q.push(edges[eI].to);
45
                          if(edges[eI].to == t) found = true;
46
                     }
                 }
48
             }
             if(!found) return false;
50
             // Encontrar cap. minima del camino de aumento
51
             int64_t u_flow = LLONG_MAX;
52
             int current = t;
53
```

```
while(current != s) {
54
                 u_flow = min(u_flow, edges[from[current].second].c - edges[from[current].second].f);
55
                 current = from[current].first;
56
             }
57
             current = t;
58
             // Actualizar flujo
59
             while(current != s){
60
                 edges[from[current].second].f += u_flow;
61
                 edges[from[current].second^1].f -= u_flow; // Arista inversa
62
                 current = from[current].first;
63
             }
             flow += u flow ;
65
             return true;
66
        }
67
    };
          SCC
   9.4.
   9.4.1.
          Kosajaru
       Complejidad: Tiempo O(n).
    void dfs(int node, vector<int> &topo_ord){
        if(vis[node]) return;
2
        vis[node] = true;
        for(int v : graph[node]) dfs(v, topo_ord);
        topo_ord.push_back(node);
6
    void assign_scc(int node, const int id){
        if(vis[node]) return;
        vis[node] = true;
9
        scc[node] = id;
10
        for(int v : inv_graph[node]) assign_scc(v, id);
11
12
    int kosajaru(int n){ /// devuelve la cantidad de scc.
13
        memset(vis, 0, sizeof(vis));
14
        vector<int> topo_ord;
15
        for(int i = 1; i <= n; ++i) dfs(i, topo_ord);</pre>
16
        reverse(topo ord.begin(), topo ord.end());
17
        memset(vis, 0, sizeof(vis));
18
        int id = 0:
19
        for(int u : topo_ord) if(!vis[u]) assign_scc(u, id++);
20
        return id;
21
22
    void build_scc_graph(int n, int n_scc){
23
        for(int u = 0; u < n; ++u)
24
             for(int v : graph[u])
25
                 if(scc[u] != scc[v])
26
                     scc_graph[scc[u]].push_back(scc[v]);
27
        for(int u = 0; u < n_scc; ++u){
28
             sort(scc_graph[u].begin(), scc_graph[u].end());
29
             auto it = unique(scc_graph[u].begin(), scc_graph[u].end());
30
             scc_graph[u].resize(it - scc_graph[u].begin());
31
             for(int v : scc graph[u])
32
                 inv_scc_graph[v].push_back(u);
        }
34
    }
```

9.5. 2-Sat

Complejidad: Tiempo en responder O(n).

```
struct two sat{
        int n;
2
        vector<vector<int>>> graph, inv_graph;
3
        vector<int> scc, ans;
        vector<bool> vis;
5
        two_sat(){}
6
        two_sat(int _n){
            n = n;
             graph.resize(2 * n);
             inv_graph.resize(2 * n);
10
             scc.resize(2 * n);
11
             vis.resize(2 * n);
12
             ans.resize(n);
13
        void add_edge(int u, int v){
15
             graph[u].push_back(v);
16
             inv_graph[v].push_back(u);
17
        }
18
        /// al menos una es verdadera
19
        void add_or(int p, bool val_p, int q, bool val_q){
20
             add_edge(p + (val_p ? n : 0), q + (val_q ? 0 : n));
21
             add_edge(q + (val_q ? n : 0), p + (val_p ? 0 : n));
22
23
        /// exactamente una es verdadera
24
        void add_xor(int p, bool val_p, int q, bool val_q){
25
             add_or(p, val_p, q, val_q);
26
             add_or(p, !val_p, q, !val_q);
27
28
        /// p y q tienen el mismo valor
        void add_and(int p, bool val_p, int q, bool val_q){
30
             add_xor(p, !val_p, q, val_q);
31
32
        /// Kosajaru
        void dfs(int node, vector<int> &topo_ord){...}
34
35
        void assign_scc(int node, const int id){...}
        /// construye respuesta
36
        bool build_ans(){
37
             fill(vis.begin(), vis.end(), false);
38
             vector<int> topo_ord;
39
             for(int i = 0; i < 2 * n; ++i) dfs(i, topo_ord);</pre>
40
             fill(vis.begin(), vis.end(), false);
41
             reverse(topo_ord.begin(), topo_ord.end());
42
             int id = 0;
43
             for(int u : topo_ord) if(!vis[u]) assign_scc(u, id++);
             for(int i = 0; i < n; ++i){
45
                 if(scc[i] == scc[i + n]) return false;
                 ans[i] = (scc[i] < scc[i + n] ? 0 : 1);
47
             }
             return true;
49
        }
   };
51
```

10. Treap

AGREGAR PEQUEÑA DESCRIPCIÓN.

```
struct treap{
1
2
         typedef struct _node{
             long long x;
             int freq, cnt;
             long long p;
             node *1, *r;
6
             node(long long _x): x(_x), p(((long long)(rand()) << 32 )^rand()),
             cnt(1), freq(1), l(nullptr), r(nullptr){}
             ~_node(){delete 1; delete r;}
             void recalc(){
10
                 cnt = freq;
11
                 cnt += ((1) ? (1->cnt) : 0);
12
                 cnt += ((r) ? (r->cnt) : 0);
13
             }
         }* node;
15
        node root;
        node merge(node 1, node r){
17
             if(!1 || !r) return 1 ? 1 : r;
             if(1->p < r->p){
19
                 r->1 = merge(1, r->1);
20
                 r->recalc();
21
                 return r;
             } else {
23
                 1->r = merge(1->r, r);
                 1->recalc();
25
                 return 1;
26
27
        }
28
         void split_by_value(node n, long long d, node &1, node &r){
29
             1 = r = nullptr;
30
             if(!n) return;
31
             if(n->x < d){
32
                 split_by_value(n->r, d, n->r, r);
                 1 = n;
34
             } else {
35
                 split_by_value(n->1, d, 1, n->1);
36
                 r = n;
             }
38
             n->recalc();
40
         void split_by_pos(node n, int pos, node &1, Node &r, int l_nodes = 0){
41
             1 = r = NULL;
42
             if(!n) return;
43
             int cur_pos = (n->1) ? (l_nodes + n->l->cnt) : l_nodes;
44
             if(cur_pos < pos){</pre>
45
                 splitFirstNodes(n->r, pos, n->r, r, cur_pos + 1);
46
                 1 = n;
47
             } else {
48
                 splitFirstNodes(n->1, pos, 1, n->1, l_nodes);
49
                 r = n;
50
             }
51
             n->recalc();
        }
53
```

```
treap(): root(NULL){}
54
         void insert_value(long long x){
55
             node 1, m, r;
56
             split_by_value(root, x, 1, m);
57
             split_by_value(m, x + 1, m, r);
58
             if(m){
59
                  m->freq++;
60
                  m->cnt++;
61
             } else m = new _node(x);
62
             root = merge(merge(1, m), r);
63
         void erase_value(long long x){
65
             node 1, m, r;
66
             split_by_value(root, x, 1, m);
67
             split_by_value(m, x + 1, m, r);
             if(!m \mid | m->freq == 1){
69
                  delete m;
70
                  m = nullptr;
71
             } else {
72
                  m->freq--;
73
                  m->cnt--;
74
             }
75
             root = merge(merge(1, m), r);
76
         }
77
    };
78
```

11. Strings

11.1. KMP

Complejidad: Tiempo O(|s|) - Memoria extra O(|s|).

```
vector<int> prefix_function(string s){
        int n = (int)s.length();
2
        vector<int> pi(n);
3
        for (int i = 1; i < n; i++) {
             int j = pi[i-1];
             while (j > 0 \&\& s[i] != s[j]) j = pi[j-1];
6
             if (s[i] == s[j]) j++;
            pi[i] = j;
        }
10
        return pi;
    }
11
```

11.2. Suffix array

11.2.1. Construcción

Complejidad: Tiempo $O(|s|\log(|s|))$ - Memoria O(|s|). Calcula la permutación que corresponde a los sufijos ordenados lexicográficamente. SA[i] es el índice en el cual empieza el *i*-ésimo sufijo ordenado.

```
int SA[MAXN], mrank[MAXN];
int tmpSA[MAXN], tmpMrank[MAXN];

void countingSort(int k, int n){
   int freqs[MAXN] = {};
   for(int i = 0; i < n; ++i){
       if(i + k < n) freqs[mrank[i + k]] ++;
       else freqs[0]++;</pre>
```

```
8
         int m = max(100, n);
         for(int i = 0, sfs = 0; i < m; ++i){</pre>
10
             int f = freqs[i];
11
             freqs[i] = sfs;
12
             sfs += f;
13
        }
         for(int i = 0; i < n; ++i){
15
             if(SA[i] + k < n) tmpSA[freqs[mrank[SA[i] + k]]++] = SA[i];
             else tmpSA[ freqs[0]++ ] = SA[i];
17
18
        for(int i = 0; i < n; ++i) SA[i] = tmpSA[i];</pre>
19
    }
20
21
    void buildSA(string &str){
22
         int n = str.size();
23
         for(int i = 0; i < n; ++i){
             mrank[i] = str[i] - '#';
25
             SA[i] = i;
26
27
         for(int k = 1; k < n; k <<= 1){
28
             countingSort(k, n);
29
             countingSort(0, n);
30
             int r = 0;
31
             tmpMrank[SA[0]] = 0;
32
             for(int i = 1; i < n; ++i){
                 if(mrank[ SA[i] ] != mrank[ SA[i - 1] ] || mrank[ SA[i] + k ] != mrank[ SA[i - 1] + k ])
34
                      tmpMrank[ SA[i] ] = ++r;
                 else
36
                     tmpMrank[ SA[i] ] = r;
37
38
             for(int i = 0; i < n; ++i) mrank[i] = tmpMrank[i];</pre>
        }
40
41
    inline bool suff_compare1(int idx,const string &pattern) {
42
         return (s.substr(idx).compare(0, pattern.size(), pattern) < 0);</pre>
43
44
    inline bool suff_compare2(const string &pattern,int idx) {
45
        return (s.substr(idx).compare(0, pattern.size(), pattern) > 0);
46
47
    pair<int,int> match(const string &pattern) {
48
         int *low = lower_bound (SA, SA + s.size(), pattern, suff_compare1);
49
         int *up = upper_bound (SA, SA + s.size(), pattern, suff_compare2);
50
         return make_pair((int)(low - SA),(int)(up - SA));
51
    }
52
```

11.2.2. Prefijo común más largo

Complejidad: Tiempo O(|s|) - Memoria O(|s|). Calcula la longitud del prefijo común más largo entre dos sufijos consecutivos (lexicográficamente) de s. lcp[i] guarda la respuesta para el i-ésimo sufijo y el (i-1)-ésimo sufijo.

```
int lcp[MAXN];
void buildLCP(string &str){
   int n = str.size();
   int phi[n];
   phi[SA[0]] = -1;
```

```
for(int i = 1; i < n; ++i) phi[ SA[i] ] = SA[i - 1];</pre>
6
         int plcp[n];
         int k = 0;
         for(int i = 0; i < n; ++i){</pre>
9
              if(phi[i] == -1){
10
                  plcp[i] = 0;
11
                  continue;
12
              }
13
               while(i + k < n \&\& phi[i] + k < n \&\& str[i + k] == str[phi[i] + k]) k++; 
14
             plcp[i] = k;
15
             k = \max(k - 1, 0);
17
         for(int i = 0; i < n; ++i) lcp[i] = plcp[SA[i]];</pre>
    }
19
```

11.3. Suffix tree

38

COPIADO Y PEGADO POR

```
/// MEJORAR ESTA COSA, SOLO LO COPIE Y PEGUÉ porcuestionesdetiempo
    const int inf = 1e9;
    const int maxn = 1e6;
3
    int s[maxn];
    map<int, int> to[maxn];
5
    //Root is the vertex 0
    //f_pos[i] is the initial index with the letter of the edge that goes from the parent of i to i
    //len[i] is the number of letters in the edge that enters in i
    //slink[i] is the suffix link
    int len[maxn], f pos[maxn], slink[maxn];
10
    int node, pos;
11
    int sz = 1, n = 0;
12
13
    int make_node(int _pos, int _len){
14
        f_pos[sz] = _pos;
15
        len [sz] = len;
16
        return sz++;
17
    }
18
19
    void go_edge(){
20
        while(pos > len[to[node][s[n - pos]]]){
21
            node = to[node][s[n - pos]];
22
             pos -= len[node];
23
        }
24
    }
25
26
    void add letter(int c){
27
        s[n++] = c;
28
        pos++;
29
        int last = 0;
30
        while(pos > 0){
31
             go_edge();
32
             int edge = s[n - pos];
33
             int &v = to[node][edge];
34
             int t = s[f_pos[v] + pos - 1];
35
             if(v == 0){
36
                 v = make_node(n - pos, inf);
37
                 //v = make_node(n - pos, 1);
```

```
slink[last] = node;
39
                  last = 0;
40
             } else if(t == c) {
41
                  slink[last] = node;
42
                  return;
43
             } else {
44
                  int u = make_node(f_pos[v], pos - 1);
45
                  to[u][c] = make_node(n - 1, inf);
46
                  to[u][t] = v;
47
                  f_pos[v] += pos - 1;
48
                  len [v] -= pos - 1;
49
                  v = u;
50
                  slink[last] = u;
51
                  last = u;
52
             }
             if(node == 0) pos--;
54
             else node = slink[node];
         }
56
57
58
    void correct(int s_size){
59
         len[0] = 0;
60
         for (int i = 1; i < sz; i++){
61
             if (f_pos[i] + len[i] - 1 >= s_size){
62
                  len[i] = (s\_size - f\_pos[i]);
63
             }
64
         }
65
    }
66
67
    void print_suffix_tree(int from){
         cout << "Edge entering in " << from << " has size " << len[from];</pre>
69
         cout << " and starts in " << f_pos[from] << endl;</pre>
70
         cout << "Node " << from << " goes to: ";</pre>
71
         for (auto u : to[from]){
72
             cout << u.second << " with " << (char)u.first << " ";</pre>
73
74
         cout << endl;</pre>
75
         for (auto u : to[from]){
76
             print_suffix_tree(u.second);
77
         }
78
    }
79
80
    void build(string &s){
81
         for (int i = 0; i < sz; i++){
82
             to[i].clear();
83
         }
84
85
         sz = 1;
         node = pos = n = 0;
86
         len[0] = inf;
         for(int i = 0; i < s.size(); i++)</pre>
88
             add_letter(s[i]);
         correct(s.size());
90
91
92
    void cutGeneralized(vector<int> &finishPoints){
93
         for (int i = 0; i < sz; i++){
94
```

```
int init = f_pos[i];
95
              int end = f_pos[i] + len[i] - 1;
96
              int idx = lower_bound(finishPoints.begin(), finishPoints.end(), init) - finishPoints.begin();
97
              if ((idx != finishPoints.size()) && (finishPoints[idx] <= end)){//Must\ be\ cut}
98
                  len[i] = (finishPoints[idx] - f_pos[i] + 1);
99
                  to[i].clear();
100
              }
101
         }
102
     }
103
104
     void build generalized(vector<string> &ss){
106
         for (int i = 0; i < sz; i++){
107
              to[i].clear();
108
         }
         sz = 1;
110
         node = pos = n = 0;
         len[0] = inf;
112
         int sep = 256;
113
         vector<int> finishPoints;
114
         int next = 0;
115
         for (int i = 0; i < ss.size(); i++){</pre>
116
              for (int j = 0; j < ss[i].size(); j++){</pre>
117
                  add_letter(ss[i][j]);
118
              }
119
              next += ss[i].size();
              finishPoints.push_back(next);
121
              add_letter(sep++);
122
              next++;
123
          correct(next);
125
          cutGeneralized(finishPoints);
    }
127
```

12. Geometría

12.1. Convex hull

Complejidad: $O(n \log n)$. AGREGAR PEQUEÑA DESCRIPCIÓN.

```
/// MEJORAR ESTA COSA, SOLO LO COPIE Y PEGUÉ porcuestionesdetiempo
    struct pt {
        double x, y;
3
    };
    int orientation(pt a, pt b, pt c) {
5
        double v = a.x*(b.y-c.y)+b.x*(c.y-a.y)+c.x*(a.y-b.y);
6
        if (v < 0) return -1; // clockwise
        if (v > 0) return +1; // counter-clockwise
        return 0;
9
10
    bool cw(pt a, pt b, pt c, bool include_collinear) {
11
        int o = orientation(a, b, c);
12
        return o < 0 || (include_collinear && o == 0);
13
14
    bool collinear(pt a, pt b, pt c) { return orientation(a, b, c) == 0; }
15
    void convex_hull(vector<pt>& a, bool include_collinear = false) {
16
        pt p0 = *min_element(a.begin(), a.end(), [](pt a, pt b) {
17
```

```
return make_pair(a.y, a.x) < make_pair(b.y, b.x);</pre>
18
         });
19
         sort(a.begin(), a.end(), [\&p0](const pt\& a, const pt\& b) {
20
             int o = orientation(p0, a, b);
21
             if (o == 0)
22
                  return (p0.x-a.x)*(p0.x-a.x) + (p0.y-a.y)*(p0.y-a.y)
23
                      < (p0.x-b.x)*(p0.x-b.x) + (p0.y-b.y)*(p0.y-b.y);
24
             return o < 0;
25
         });
26
         if (include_collinear) {
27
             int i = (int)a.size()-1;
             while (i \ge 0 \&\& collinear(p0, a[i], a.back())) i--;
29
             reverse(a.begin()+i+1, a.end());
30
         }
31
         vector<pt> st;
         for (int i = 0; i < (int)a.size(); i++) {</pre>
33
             while (st.size() > 1 && !cw(st[st.size()-2], st.back(), a[i], include_collinear))
                  st.pop_back();
35
             st.push_back(a[i]);
36
37
         a = st;
38
    }
39
```

13. Utilidades

13.1. Plantilla tree

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
typedef tree<int, null_type, less(int), rb_tree_tag, tree_order_statistics_node_update> ordered_set;
```

13.2. Números aleatorios

mt19937_64 genera números de 64 bits.

```
random_device rd; // Inicializa el generador de numeros aleatorios
mt19937_64 generator(rd()); // Crea un generador Mersenne Twister con la semilla de random_device
uniform_int_distribution<long long> distribution(1, 1e18);
cout << distribution(generator) << '\n';
```

13.3. Bitmask

```
#define isOn(S, j) (S & (111 << j))

#define setBit(S, j) (S |= (111 << j))

#define clearBit(S, j) (S &= ~(111 << j))

#define toggleBit(S, j) (S ^= (111 << j))

#define lowBit(S) (S & (-S))

#define setAll(S, n) (S = (111 << n) - 111)

#define modulo(S, N) ((S) & (N - 1)) // S % N, N potencia de 2

#define isPowerOfTwo(S) (!((S) & (S - 1)))

#define nearestPowerOfTwo(S) ((int)pow(2, (int)((log((double)S) / log(2)) + 0.5)))
```