

DET 05970 Termodinâmica e Transmissão de Calor

Entalpia

Aula 9-10

Prof. Dr. Yuri Nariyoshi

Entalpia

$$H(T,p)$$
 $H \equiv U + pV$

Reações químicas e processos biológicos usualmente ocorrem sob pressão constante e com trabalho pV reversível.

$$gas (p, T_1, V_1) \stackrel{reversible}{\underset{const.p}{=}} gas (p, T_2, V_2)$$

$$U_1 \qquad U_2$$

$$\Delta U = q + w = q_p - p\Delta V$$

$$\Delta U + p\Delta V = q_p \qquad \text{definido como H}$$

$$\Delta U + \Delta (pV) = q_p \qquad \Rightarrow \qquad \Delta (U + pV) = q_p$$

$$H \equiv U + pV$$
 \Longrightarrow $\Delta H = q_p$ (p/ processos reversíveis sob p cte)

$$H(T,p)$$
 \Rightarrow $dH = \left(\frac{\partial H}{\partial T}\right)_{p} dT + \left(\frac{\partial H}{\partial p}\right)_{T} dp$

$$\left(\frac{\partial \mathcal{H}}{\partial \mathcal{T}}\right)_{p}$$
 \Rightarrow para processo reversível sob p constante $(dp = 0)$

$$dH = dq_p$$
 e $dH = \left(\frac{\partial H}{\partial T}\right)_p dT$

$$\Rightarrow dq_p = \left(\frac{\partial H}{\partial T}\right)_p dT \qquad \text{mas} \qquad dq_p = C_p dT \qquad \log q$$

$$\therefore \qquad \left(\frac{\partial \mathcal{H}}{\partial T}\right)_{p} = \mathcal{C}_{p}$$

$$\left(\frac{\partial \mathcal{H}}{\partial p}\right)_{-}$$
 \Rightarrow Expansão Joule-Thomson

$$w = p_1V_1 - p_2V_2$$
 \Rightarrow $\Delta U = q + w = p_1V_1 - p_2V_2 = -\Delta(pV)$
 $\therefore \Delta U + \Delta(pV) = 0 \Rightarrow \Delta(U + pV) = 0$

$$\therefore \quad \Delta H = 0$$

$$d\mathcal{H} = \mathcal{C}_{p}d\mathcal{T} + \left(\frac{\partial \mathcal{H}}{\partial p}\right)_{T}dp \qquad \Longrightarrow \qquad \mathcal{C}_{p}d\mathcal{T} = -\left(\frac{\partial \mathcal{H}}{\partial p}\right)_{T}dp_{\mathcal{H}}$$

$$\Rightarrow \left(\frac{\partial \mathcal{H}}{\partial \boldsymbol{p}}\right)_{T} = -\boldsymbol{C}_{\boldsymbol{p}} \left(\frac{\partial T}{\partial \boldsymbol{p}}\right)_{H} \leftarrow \text{pode ser medido} \left(\frac{\Delta T}{\Delta \boldsymbol{p}}\right)_{H}$$

Definição:

$$\lim_{\Delta p \to 0} \left(\frac{\Delta T}{\Delta p} \right)_{H} = \left(\frac{\partial T}{\partial p} \right)_{H} \equiv \mu_{\mathcal{J}T} \quad \longleftarrow \quad \text{Coeficiente Joule-Thomson}$$

$$\therefore \left[\left(\frac{\partial H}{\partial p} \right)_{T} = -C_{p} \mu_{JT} \right] \qquad e \qquad dH = C_{p} dT - C_{p} \mu_{JT} dp$$

Para um gás ideal:

U(T), pV=nRT

$$H \equiv U(T) + pV = U(T) + nRT$$
depende somente de T

$$\mathcal{H}(T)$$
 \Rightarrow $\left(\frac{\partial \mathcal{H}}{\partial \boldsymbol{p}}\right)_{T} = \mu_{JT} = 0$

Para um gás de Van der Waals:

$$\left(\frac{\partial H}{\partial p}\right)_{T} \approx b - \frac{a}{RT}$$
 \Rightarrow $\mu_{JT} \approx \frac{a}{RT} - b = 0$ quando $T = T_{inv} = \frac{a}{Rb}$

1. Se
$$\frac{a}{RT} < b \implies T > \frac{a}{Rb} = T_{inv}$$

então $\left(\frac{\Delta T}{\Delta p}\right)_{H} < 0$ portanto se $\Delta p < 0$ $(p_{2} < p_{1})$
então $\Delta T > 0$

gás aquece sobre expansão

2. Se
$$\frac{a}{RT} > b$$
 \Rightarrow $T < \frac{a}{Rb} = T_{inv}$

então $\left(\frac{\Delta T}{\Delta p}\right)_{H} > 0$ portanto $\begin{cases} \text{se} & \Delta p < 0 \\ \text{então} & \Delta T < 0 \end{cases}$
gás resfria sobre expansão

 $T_{inv} >> 300 K$ para maioria dos gases reais

⇒ Usual utilizar a expansão J-T para liquefazer gases

Prove que:
$$\overline{C}_p = \overline{C}_V + R$$

para um gás ideal

$$\overline{C}_{p} = \left(\frac{\partial \overline{H}}{\partial T}\right)_{p}, \qquad \overline{C}_{V} = \left(\frac{\partial \overline{U}}{\partial T}\right)_{V}$$

$$\underline{H} = \overline{U} + p\overline{V}, \qquad p\overline{V} = RT$$

$$\left(\frac{\partial \overline{H}}{\partial T}\right)_{p} = \left(\frac{\partial \overline{U}}{\partial T}\right)_{p} + p\left(\frac{\partial \overline{V}}{\partial T}\right)_{p}$$

$$\overline{C}_{p} = \overline{C}_{V} + \left(\frac{\partial \overline{U}}{\partial V}\right)_{p} \left(\frac{\partial \overline{V}}{\partial T}\right)_{p} + p\left(\frac{R}{p}\right)$$

$$= 0 \text{ for ideal gas}$$

$$\therefore \quad \overline{C}_p = \overline{C}_V + R$$

