PPL-Analytics - 데이터 기반 PPL 마케팅 성과 분석 서비 스

슬로건

데이터로 증명하는 PPL의 힘, 당신의 마케팅을 Analytics로 업그레이드하다.

1. 프로젝트 개요

1.1 목적

PPL(Product Placement) 마케팅의 패러다임을 전환하여, 감정적 판단과 추측에 의존하던 기존 광고 성과 측정 방식을 **데이터 기반의 정량적 분석 체계**로 혁신한다. 실제 시청자 행동 데이터와 AI 분석을 통 해 광고주가 보다 전략적이고 객관적인 의사결정을 내릴 수 있도록 지원한다.

1.2 핵심 가치 제안

- 데이터 투명성: 실제 시청자 반응 데이터 기반 객관적 PPL 성과 분석
- 효율성 극대화: AI 기반 자동 리포트 생성으로 분석 시간 80% 단축
- 경쟁 인텔리전스: 동종 업계 벤치마크 대비 상대적 성과 평가
- 시각화 중심: 직관적 차트와 인포그래픽을 통한 즉시 이해 가능한 인사이트
- 전략적 방향성: 단순 성과 리포팅을 넘어선 차세대 마케팅 전략 제안

1.3 시장 차별화 요소

기존 PPL 분석 도구들이 **표면적 지표(노출량, 도달률)**에 머물러 있는 반면, 본 서비스는 **심층적 사용자행동 분석**과 **AI 기반 예측 모델링**을 통해 실질적 비즈니스 임팩트를 정량화한다.

2. 요구사항 정의서

2.1 기능적 요구사항

2.1.1 사용자 인증 및 권한 관리 시스템

핵심 구현 요소:

• Supabase Auth 기반 소셜 로그인

- Google OAuth 2.0 연동을 통한 무마찰 인증
- JWT 토큰 기반 세션 관리 및 자동 갱신
- 역할 기반 접근 제어(RBAC) 관리자/일반 사용자/게스트 권한 분리
- 세션 만료 및 보안 정책 자동 적용

2.1.2 데이터 입력 및 파일 관리 시스템

제품 정보 수집 폼:

- 스마트 카테고리 분류: 화장품, 식품, 패션, 전자제품, 생활용품 등 10개 주요 업종
- 동적 입력 필드: 카테고리별 맞춤형 추가 정보 수집
- 기간 설정 모듈: 캠페인 시작/종료일, 분석 대상 기간 유연 설정
- 경쟁사 정보: 벤치마크 대상 경쟁 제품/브랜드 지정

파일 처리 기능:

- 멀티 포맷 지원: PDF, DOCX, XLSX, CSV 파일 업로드
- AWS S3 보안 저장: 암호화된 저장소, 버전 관리, 백업 정책

2.1.3 다차원 데이터 수집 및 전처리 엔진

시청자 행동 데이터 분석:

- 실시간 시청 패턴: IPTV/OTT 플랫폼별 시청 시작/중단/재시청 분석
- **인구통계학적 세분화**: 연령, 성별, 지역, 소득수준별 반응 차이 분석
- 디지털 성향 분석: OTT 친화도. 디지털 리터러시 수준별 PPL 반응도
- 시청 환경 분석: 개인/가족 시청, 시청 시간대별 주의집중도 측정

PPL 성과 데이터 통합:

- 다중 소스 연동: 방송사 제공 데이터, 소셜미디어 언급량, 검색 트렌드
- 경쟁사 벤치마킹: 동일 업종/카테고리 내 경쟁 제품 성과 비교
- ROI 정밀 계산: 매체비, 제작비 대비 매출 증가. 브랜드 인지도 상승 정량화

데이터 품질 관리:

- 이상치 탐지: 통계적 방법을 통한 비정상 데이터 식별 및 처리
- 결측값 처리: 머신러닝 기반 결측값 대체 알고리즘
- 데이터 정규화: 플랫폼간 측정 단위 통일화

2.1.4 AI 기반 보고서 생성 시스템

프롬프트 오케스트레이션 아키텍처:

• 카테고리별 전문화 프롬프트:

- 화장품: 뷰티 트렌드, K-뷰티 글로벌 영향력, 인플루언서 효과 분석
- 식품: 건강 트렌드. 가족 단위 구매 패턴. 계절성 요인 분석
- 패션: 시즌별 트렌드, MZ세대 선호도, 지역별 스타일 차이
- 전자제품: 기술 혁신 사이클, 얼리어답터 반응, 가격 민감도

AI 모델 이중 구조:

- Gemini-2.5-flash-lite (1차 처리):
 - 역할: 원시 데이터 구조화, 프롬프트 전처리, 초기 인사이트 추출
 - 처리 시간: 30초
 - 비용 효율성: 토큰당 비용 최적화
- Skywork API (2차 처리):
 - 역할: 전략적 분석, 최종 보고서 생성, 권고사항 도출
 - 처리 시간: 10-15분 (에이전트 AI 활용)
 - 품질 보장: 다중 에이전트 검증 시스템

보고서 생성 파이프라인 (8단계 구조):

- 1. **요약(Executive Summary)**: 핵심 성과 지표 및 주요 발견사항
- 2. 시장 분석(Market Analysis): 업종별 PPL 시장 현황 및 트렌드
- 3. 경쟁사 비교(Competitive Analysis): 동종 업계 벤치마크 비교
- 4. **타겟 오디언스 분석(Target Audience Analysis)**: 시청자 세분화 및 반응 분석
- 5. PPL 성과 분석(PPL Performance Analysis): 정량적 성과 측정 및 평가
- 6. ROI 및 비용 효율성(ROI & Cost Effectiveness): 투자 대비 수익률 분석
- 7. 전략적 권고사항(Strategic Recommendations): AI 기반 개선 방안 제시
- 8. **향후 계획(Future Planning)**: 차기 캠페인 전략 및 예산 최적화

2.1.5 인터랙티브 대시보드 및 시각화

실시간 성과 모니터링:

- KPI 대시보드: 실시간 성과 지표 업데이트
- **드릴다운 분석**: 클릭 한 번으로 상세 분석 레이어 접근
- 비교 분석 뷰: 시계열, 경쟁사, 세그먼트별 다차원 비교
- 예측 모델링: 트렌드 연장선상의 미래 성과 예측

고급 시각화 기능:

- 인터랙티브 차트: D3.js 기반 동적 차트, 실시간 필터링
- 히트맵 분석: 지역별, 시간대별 PPL 반응도 지도 시각화
- 워드클라우드: 소셜미디어 언급 키워드 분석
- 트렌드라인: 장기 성과 추이 및 계절성 패턴 시각화

2.1.6 고급 내보내기 및 공유 시스템

다중 포맷 지원:

- PDF 리포트: 경영진 보고용 요약 버전, 상세 분석 버전
- PowerPoint: 프레젠테이션용 슬라이드 자동 생성
- Excel: 원시 데이터 및 계산식 포함 스프레드시트
- 웹 링크: 실시간 업데이트되는 웹 기반 리포트 공유

2.1.7 API 및 시스템 통합

RESTful API 설계:

- 인증 API: /auth/* 로그인, 토큰 관리, 권한 검증
- 데이터 API: /dashboard/* 시청자 데이터, PPL 성과 데이터 조회
- **분석 API**: /analysis/* AI 분석 요청, 결과 조회
- 리포트 API: /report/* 보고서 생성, 다운로드, 공유

외부 시스템 연동:

- 방송사 API: 실시간 시청률 데이터 연동
- 소셜미디어 API: Twitter, Instagram, YouTube 언급량 수집
- 검색 트렌드: Google Trends, 네이버 DataLab 연동
- 광고 플랫폼: 페이스북, 구글 광고 성과 데이터 연동

2.2 비기능적 요구사항

2.2.1 보안 및 컴플라이언스

데이터 보호:

- **암호화**: AES-256 저장 암호화, TLS 1.3 전송 암호화
- 데이터 거버넌스: 데이터 생명주기 관리. 자동 삭제 정책
- **접근 제어**: 최소 권한 원칙

2.2.2 성능 및 확장성

성능 목표:

- 응답 시간: API 3초 이내
- 리포트 생성: 5분 이내 완료 (복잡 분석 10분 이내)

2.3 데이터 모델 및 AI 구성 요구사항

2.3.1 데이터베이스 스키마 설계

fact_ppl_campaign (PPL 캠페인 팩트 테이블)

총 29개 컬럼, 캠페인 성과의 중심 테이블

핵심 식별자:

- campaign_id (VARCHAR, PK): 캠페인 고유 식별자
- program id (INT, FK): 프로그램 참조 키
- brand_id (INT, FK): 브랜드 참조 키
- broadcast_start_id, broadcast_end_id (INT): 방송 구간 식별

캠페인 메타데이터:

- drama_title (VARCHAR): 드라마 제목
- drama_genre (VARCHAR): 장르 분류
- channel_name (VARCHAR): 방송 채널
- broadcast_timeslot (VARCHAR): 방송 시간대
- company_name (VARCHAR): 광고주 회사명
- product_name (VARCHAR): 제품명
- episodes (INT): 총 방송 회차

PPL 노출 지표:

- ppl_type (VARCHAR): PPL 유형 (직접/간접/배경 등)
- ppl_scenes (DECIMAL): PPL 등장 장면 수
- total_exposure_time_sec (DECIMAL): 총 노출 시간(초)
- ppl_exposure_count (INT): 총 노출 횟수

성과 지표:

- avg_viewership_pct (DECIMAL): 평균 시청률
- reach_target_pct (DECIMAL): 목표 도달률
- reach_actual_pct (DECIMAL): 실제 도달률
- social_mentions (INT): SNS 언급량
- search_increase (DECIMAL): 검색량 증가율
- website_traffic_increase_pct (DECIMAL): 웹사이트 트래픽 증가율

비용 및 수익성:

- production_cost (DECIMAL): 제작비
- media_cost (DECIMAL): 매체비
- total_cost (DECIMAL): 총 투입 비용
- sales_increase (DECIMAL): 매출 증가액
- roi_pct (DECIMAL): ROI 비율
- performance_grade (VARCHAR): 성과 등급 (S/A/B/C)

iptv_user_profile (시청자 프로필 테이블)

총 10개 컬럼, 시청자 세분화의 핵심

인구통계학적 정보:

- user_id (VARCHAR, PK): 사용자 고유 식별자
- age (INT): 연령
- gender (CHAR): 성별 (M/F)
- region (VARCHAR): 거주 지역
- family_type (VARCHAR): 가구 형태
- job (VARCHAR): 직업 분류

디지털 행동 특성:

- iptv_provider (VARCHAR): IPTV 사업자
- subscription_type (VARCHAR): 구독 유형
- digital_literacy_level (INT): 디지털 리터러시 점수 (1-10)
- ott_preference_score (DECIMAL): OTT 친화도 점수
- terrestrial_viewing_ratio (DECIMAL): 지상파 시청 비율

drama_program_metadata (드라마 프로그램 메타데이터)

총 28개 컬럼, 프로그램별 상세 시청률 분석

프로그램 기본 정보:

- BRDCST_DE (VARCHAR(8), PK): 방송일자
- CHNNEL_NM (VARCHAR(200)): 채널명
- PROGRM_NM (VARCHAR(200)): 프로그램명
- PROGRM_DC (VARCHAR(500)): 프로그램 설명
- PROGRM_BEGIN_TIME, PROGRM_END_TIME (VARCHAR(6)): 시작/종료 시간

장르 및 분류:

- PROGRM_GENRE_LCLAS_NM (VARCHAR): 장르 대분류
- PROGRM_GENRE_MLSFC_NM (VARCHAR): 장르 중분류
- PROGRM_GENRE_SCLAS_NM (VARCHAR): 장르 소분류

세분화된 시청률 데이터 (20개 컬럼):

- 성별/연령대별 시청률: MALE 4 9YO WTCHNG RT (남자 4-9세) 등
- 총 4개 성별/연령 그룹 × 5개 연령대 = 20개 세분화 지표

industry_benchmark (업종별 벤치마크)

총 6개 컬럼, 경쟁 분석의 기준점

- industry_code (VARCHAR, PK): 업종 코드
- age_group (VARCHAR): 연령대 구분
- gender (VARCHAR): 성별 구분
- survey_category (VARCHAR): 조사 구분 (브랜드 인지도, 구매 의향 등)
- metric_item (VARCHAR): 측정 항목
- response_count (INT): 응답자 수

ppl_performance_history (PPL 성과 이력)

총 11개 컬럼, 시계열 분석용

- serial_id (VARCHAR, PK): 데이터 일련번호
- product_name (VARCHAR): 제품명
- company_name (VARCHAR): 회사명
- drama_title (VARCHAR): 드라마명
- drama_category (VARCHAR): 드라마 장르
- episode_count (INT): 방송 회차
- exposure_count (INT): 광고 노출 횟수
- search_increase (INT): 검색량 증가 건수
- sales_increase (DECIMAL): 매출 증가액

- advertising_cost (DECIMAL): 광고비용
- roi_ratio (DECIMAL): ROI 비율

2.3.2 AI 모델 아키텍처

이중 AI 모델 전략

1차 모델: Gemini-2.5-flash-lite

역할: 데이터 전처리 및 구조화

- 입력: 원시 데이터 + 사용자 업로드 문서

- 처리: 데이터 정규화, 이상치 제거, 초기 패턴 인식

- 출력: 구조화된 분석 데이터셋

- 처리시간: 30초

- 비용효율성: ☆☆☆☆☆

2차 모델: Skywork API

역할: 전략적 분석 및 최종 보고서 생성

- 입력: 1차 모델 출력 + 카테고리별 프롬프트 템플릿 - 처리: 다중 에이전트 협업, 전략적 인사이트 도출

- 출력: 완성된 전략 보고서 (PDF/HTML)

- 처리시간: 10-15분 - 품질: ☆☆☆☆☆

제품 카테고리별 프롬프트 오케스트레이션

화장품 카테고리 프롬프트:

시장 특성: K-뷰티 글로벌 트렌드, 인플루언서 마케팅 영향도 핵심 지표: 브랜드 인지도 상승률, 구매 전환율, 재구매율 분석 관점: 연령대별 선호 브랜드, 계절성, 트렌드 민감도 경쟁사 벤치마크: 동급 브랜드 대비 성과, 시장 점유율 변화

식품 카테고리 프롬프트:

시장 특성: 건강 트렌드, 가족 단위 구매 패턴, 지역별 식문화

핵심 지표: 시식 후 구매율, 브랜드 충성도, 추천 의향 분석 관점: 건강 지향성, 편의성, 가격 대비 만족도

경쟁사 벤치마크: 유사 제품군 내 포지셔닝, 차별화 요소

패션 카테고리 프롬프트:

시장 특성: 시즌 트렌드, MZ세대 선호도, 지속가능성 이슈 핵심 지표: 브랜드 이미지 개선도, 매장 방문율, 온라인 전환율 분석 관점: 스타일 트렌드 반영도, 가격 경쟁력, 브랜드 가치 경쟁사 벤치마크: 패션 하우스별 브랜드 파워, 시장 영향력

전자제품 카테고리 프롬프트:

시장 특성: 기술 혁신 사이클, 얼리어답터 반응, 가격 탄력성핵심 지표: 스펙 비교 검색량, 리뷰 평점, 구매 결정 시간

분석 관점: 기술적 우위, 브랜드 신뢰도, A/S 만족도

경쟁사 벤치마크: 기술 리더십, 시장 점유율, 가격 포지셔닝

2.4 기술 스택

영역	기술스택	버전	선택 근거
Frontend	React	19.1	최신 Concurrent Features, Suspense 최 적화
	Next.js	15.4	App Router, Server Components, 향상 된 SSR
	Tailwind CSS	4.1	유틸리티 우선 CSS, 일관된 디자인 시스템
	React Query	5.3	서버 상태 관리, 캐싱 최적화
Backend	FastAPI	0.116	높은 성능, 자동 API 문서, 타입 힌팅
	Python	3.11 slim	최신 성능 개선, 타입 힌팅 강화
	Pydantic	2.11	데이터 검증, 직렬화, FastAPI 완전 통합
	SQLAlchemy	2.0+	비동기 ORM, 성능 최적화
Database	MariaDB	Latest	AWS RDS, 관리형 서비스, 확장성
Cloud & Storage	AWS S3	-	파일 저장, CDN 연동, 보안
	AWS RDS	-	관리형 데이터베이스, 백업/복구
	AWS CloudFront	-	CDN, 글로벌 배송 최적화
Authentication	Supabase Auth	2.56	소셜 로그인, JWT, 사용자 관리
AI/ML	Gemini-2.5-flash- lite	Latest	빠른 데이터 전처리, 비용 최적화
	Skywork API	Latest	고품질 보고서 생성, 에이전트 AI

영역	기술스택	버전	선택 근거
	Xgboost	3.0.4	머신러닝
	Scikit-learn	1.71	머신러닝
Data Visualization	Matplotlib	3.10	정적 차트 생성
Development	TypeScript	5.0+	타입 안전성, 개발 효율성
	Eslint	3+	유닛 테스트, React 테스팅

2.5 MVP 성공 지표 및 측정 체계

2.5.1 기술적 성공 지표

시스템 안정성 (Critical)

지표	목표값	측정방법
플로우 완주율	90%	로그인→분석→리포트 다운로드 전체 과정
시스템 가용성	80%	월별 다운타임 측정
치명적 오류율	3% 미만	5xx 에러 비율 추적

성능 벤치마크 (High Priority)

지표	목표값	측정방법	비고
리포트 생성시간	10분 이내	분석 요청부터 PDF 생성까지	분석 3분 에이전트 AI 7분
API 응답시간	3초 이내	모든 API 엔드포인트	데이터 조회 API 제외
페이지 로딩 시간	5초 이내	첫 번째 의미있는 렌더링	Core Web Vitals 기준

2.5.2 비즈니스 성공 지표

기능적 완성도 (High Priority)

지표	목표값	측정방법
지원 제품 카테고리	5개 이상	화장품, 식품, 패션, 전자제품, 생활용품
데이터 소스 연동	3개 이상	RDS, 외부 API, 사용자 업로드

지표	목표값	측정방법
AI 모델 정확도	85% 이상	실제 데이터와 예측 결과 비교
보고서 생성 성공률	95% 이상	오류 없는 PDF 생성 비율

2.5.3 혁신성 및 차별화 지표

데이터 활용도

지표	목표값	측정방법
데이터 커버리지	90%	수집 가능한 모든 데이터 소스 활용
분석 깊이	3단계	기초-심화-예측 분석 제공
시각화 완성도	15개 차트	다양한 관점의 시각적 표현

3. 위험 요소 분석 및 대응 전략

3.1 기술적 위험

AI 모델 의존성 위험

- 외부 API 서비스 중단 위험 → 자체 MCP 서비스 파이프라인 구성
- 비용 급증 위험 \rightarrow 토큰 사용량 모니터링 및 예산 제한

데이터 품질 위험

• 편향된 샘플 데이터 → 인구통계 기반 데이터 모델링

4. 기대 효과 및 성공 시나리오

영역	현재 상황	개선 목표	측정 지표
의사결정 정확도	경험과 감에 의존	데이터 기반 객관적 판단	예측 정확도 80%+
분석 소요시간	2-3주 수작업 분석	5분 자동 리포트	시간 단축 99%
ROI 최적화	사후 평가 중심	실시간 성과 추적	ROI 개선 30%+

영역	현재 상황	개선 목표	측정 지표
시장 인사이트	제한적 경쟁사 정보	전방위 벤치마킹	시장 대응력 향상