TECHNISCHE UNIVERSITÄT DORTMUND

Anfängerpraktikum Physik Sommersemester 2014

V500 Photoeffekt

06.05.2014

1. Abgabe: 13.05.2014

Johannes Schlüter Joshua Luckey johannes.schlueter@udo.edu joshua.luckey@udo.edu

1 Einleitung

2 Theorie

3 Durchführung

4 Auswertung

Im folgenden Abschnitt sind die während des Versuches aufgenommenen Messwerte und die aus diesen berechneten Ergebnisse tabellarisch aufgeführt. An entsprechender Stelle sind Erklärungen und Anmerkungen zu den angestellten Rechnungen und Ergebnissen gegeben. Die Fehler der Messwerte wurden allgemein mit der kleinsten Skaleneinteilung des jeweiligen Messgerätes abgeschätzt. Die für die Fehlerrechnung verwendeten Fehlergleichungen befinden sich im Abschnitt 4.2 und werden mit römischen Ziffern referenziert.

4.1 Messung des Photostroms für die Spektrallinien von Quecksilber

Die Messwerte für die fünf untersuchten Spektrallinie des Quecksilbers sind in den Tabellen 1 bis 5 aufgeführt.

Photostrom	Bremsspannung	Photostrom	Bremsspannung
I [pA]	U [V]	I [pA]	U[V]
0.0 ± 0.5	$0,368 \pm 0,001$	$5,0 \pm 0,5$	$0,139 \pm 0,001$
$1,0 \pm 0,5$	$0,293 \pm 0,001$	6.0 ± 0.5	$0,114 \pm 0,001$
$2,0 \pm 0,5$	$0,250 \pm 0,001$	$7,0 \pm 0,5$	$0,101 \pm 0,001$
$3,0 \pm 0,5$	$0,183 \pm 0,001$	$8,0 \pm 0,5$	$0,076 \pm 0,001$
$4,0 \pm 0,5$	0.157 ± 0.001	9.0 ± 0.5	$0,065 \pm 0,001$

Tabelle 1: Messwerte der orangenen Spektrallinie

Photostrom	Bremsspannung	Photostrom	Bremsspannung
I [pA]	U [V]	I [pA]	U[V]
0.0 ± 0.5	$0,398 \pm 0,001$	$16,0 \pm 0,5$	$0,206 \pm 0,001$
$2,0 \pm 0,5$	0.348 ± 0.001	$18,0 \pm 0,5$	$0,194 \pm 0,001$
4.0 ± 0.5	$0,318 \pm 0,001$	$20,0 \pm 0,5$	0.182 ± 0.001
6.0 ± 0.5	$0,293 \pm 0,001$	$30,0 \pm 0,5$	$0,126 \pm 0,001$
$8,0 \pm 0,5$	$0,268 \pm 0,001$	$40,0 \pm 0,5$	$0,095 \pm 0,001$
10.0 ± 0.5	$0,250 \pm 0,001$	$50,0 \pm 0,5$	0.057 ± 0.001
$12,0 \pm 0,5$	$0,237 \pm 0,001$	$60,0 \pm 0,5$	0.027 ± 0.001
14.0 ± 0.5	$0,219 \pm 0,001$	$70,0 \pm 0,5$	$0,000 \pm 0,001$

Tabelle 2: Messwerte der grünen Spektrallinie

Photostrom	Bremsspannung	Photostrom	Bremsspannung
I [pA]	U[V]	I [pA]	U[V]
0.0 ± 0.5	$0,460 \pm 0,001$	$3,0 \pm 0,5$	$0,200 \pm 0,001$
$1,0 \pm 0,5$	$0,411 \pm 0,001$	4.0 ± 0.5	$0,157 \pm 0,001$
1.5 ± 0.5	0.355 ± 0.001	4.5 ± 0.5	$0,100 \pm 0,001$
2.0 ± 0.5	$0,300 \pm 0,001$	$5,0 \pm 0,5$	$0,070 \pm 0,001$
2.5 ± 0.5	$0,250 \pm 0,001$	6.0 ± 0.5	$0,000 \pm 0,001$

Tabelle 3: Messwerte der cyanen Spektrallinie

Photostrom	Bremsspannung	Photostrom	Bremsspannung
I [pA]	U [V]	I [pA]	U[V]
0.0 ± 0.5	0.825 ± 0.001	$112,0 \pm 0,5$	$0,367 \pm 0,001$
10.0 ± 0.5	0.752 ± 0.001	$160,0 \pm 0,5$	$0,259 \pm 0,001$
24.0 ± 0.5	$0,677 \pm 0,001$	$185,0 \pm 0,5$	$0,206 \pm 0,001$
44.0 ± 0.5	$0,590 \pm 0,001$	$245,0 \pm 0,5$	$0,101 \pm 0,001$
84.0 ± 0.5	$0,455 \pm 0,001$	$300,0 \pm 0,5$	$0,000 \pm 0,001$

Tabelle 4: Messwerte der ersten violetten Spektrallinie

Photostrom	Bremsspannung	Photostrom	Bremsspannung
I [pA]	U[V]	I [pA]	U[V]
0.0 ± 0.5	$0,943 \pm 0,001$	$34,0 \pm 0,5$	$0,400 \pm 0,001$
4.0 ± 0.5	$0,819 \pm 0,001$	$46,0 \pm 0,5$	$0,306 \pm 0,001$
10.0 ± 0.5	$0,721 \pm 0,001$	$58,0 \pm 0,5$	$0,206 \pm 0,001$
$18,0 \pm 0,5$	$0,615 \pm 0,001$	$70,0 \pm 0,5$	$0,115 \pm 0,001$
$26,0 \pm 0,5$	0.515 ± 0.001	$88,0 \pm 0,5$	$0,000 \pm 0,001$

Tabelle 5: Messwerte der zweiten violetten Spektrallinie

In den Abbildungen 1 bis 5 sind die radizierten Messwerte des Photostroms gegen die Bremsspannung und die mit Hilfe der Python-Bibliothek SciPy [1] erstellte Regressiongerade eingetragen. Die Regressionsparameter für den Ansatz

$$I_w(U) = a \cdot U + b \tag{1}$$

sind für die fünf Spektrallinien in Tabelle 6 zusammen mit den ebenfalls eingezeichneten Grenzspannungen zu finden.

Die berechneten Werte für die Grenzspannungen aus Tabelle 6 sind in ?? gegen die jeweilige Frequenz der Spektrallinie aufgetragen und wiederum eine lineare Regression durchgeführt.

Die Regression mit dem Ansatz

$$U_a(f) = c \cdot f + d \tag{2}$$

Wellenlänge	Frequenz	Steigung	y-Achsenabschnitt	Grenzspannung
$\lambda \text{ [nm]}$	f [PHz]	a	b	U_g [V]
578	0,519	-9.5 ± 0.5	$3,59 \pm 0,05$	0,379
546	0,549	-20.7 ± 0.3	$8,29 \pm 0,04$	0,401
492	0,609	-3.5 ± 0.1	$2,47 \pm 0,02$	0,705
436	0,688	$-18,3 \pm 0,2$	$17,39 \pm 0,05$	0,949
405	0,740	-8.5 ± 0.1	$9,37 \pm 0,04$	1,097

Tabelle 6: Regressionsparameter der Untersuchung der Spektrallinien

Abbildung 1: Messwerte und Regeression der orangenen Linie

$$c = (3.4 \pm 0.2) \cdot 10^{-15} \,\mathrm{V}\,\mathrm{s}$$
 (2a)

$$d = (-1.4 \pm 0.2) \,\mathrm{V} \tag{2b}$$

Durch Umformung von ?? erhält man eine Gerade der Form $U_g = \frac{h}{e_0} f - \frac{A_k}{e_0}$. Daraus ergibt sich, dass die Steigung der Regressionsgeraden c dem gesuchten Wert für $\frac{h}{e_0}$ und der Betrag des berechneten y-Achsenabschnitts d, dem des Quotienten aus Auslösearbeit und Elementarladung entspricht.

$$\frac{h}{e_0} = (3.4 \pm 0.2) \cdot 10^{-15} \,\text{V s} \tag{3}$$

$$A_k = (1.4 \pm 0.2) \,\text{eV}$$
 (4)

Abbildung 2: Messwerte und Regeression der grünen Linie

Abbildung 3: Messwerte und Regeression der cyanen Linie

Abbildung 4: Messwerte und Regeression der ersten violetten Linie

Abbildung 5: Messwerte und Regeression der zweiten violetten Linie

 ${\bf Abbildung}$ 6: Grenzspannung in Abhängigkeit der Frequenz

4.2 Fehlerrechnung

5 Diskussion

Literatur

[1] SciPy. URL: http://docs.scipy.org/doc/ (besucht am 21.04.2014).