Measuring

Bart Snapp and Brad Findell

April 10, 2019

Contents

Measuring by Sight

Short-answer questions involving measuring.

Careful Measurement by Sight

Adjust the figures to fit the given conditions within **eyeball accuracy**. Enter the requested measurements.

Problem 1 Geogebra link: https://tube.geogebra.org/m/gjf28er6 In figure above, when point C is adjusted so that \overline{BC} is perpendicular to \overline{AC} , $AC = \boxed{?}$.

Problem 2 Geogebra link: https://tube.geogebra.org/m/q32gyaud In $\triangle ABC$ above, move point D to make the following measurements. **Enter-1** if it is not possible.

- (a) When \overline{BD} is a median, AD = ?
- (b) When \overline{BD} is a angle bisector, $AD = \boxed{?}$
- (c) When \overline{BD} is a perpendicular bisector, $AD = \boxed{?}$.
- (d) When \overline{BD} is a altitude, AD = ?.

Problem 3 Geogebra link: https://tube.geogebra.org/m/a888zyw2 In $\triangle ABC$ above, the height to base \overline{AC} is $\boxed{?}$.

Problem 4 Geogebra link: https://tube.geogebra.org/m/kta9hbuf In $\triangle ABC$ above, the height to base \overline{AC} is $\boxed{?}$.

Author(s): Brad Findell

Measuring Interior Angles

Short-answer questions involving angles in triangles.

Geogebra link: https://tube.geogebra.org/m/zrapvzpz

Problem 5 Measure the interior angles of quadrilateral ABCD above.

- (a) $m \angle A = \boxed{?}$ degrees.
- (b) $m \angle B = \boxed{?}$ degrees.
- (c) $m \angle C = \boxed{?}$ degrees.
- (d) $m \angle D = ?$ degrees.
- (e) $m \angle A + m \angle B + m \angle C + m \angle D = \boxed{?}$ degrees.

Problem 6 Use the measurements from the previous problem to answer the following questions:

- (a) The marked angle should measure ? degrees.
- (b) $m\angle A + m\angle B + m\angle D = \boxed{?}$ degrees.
- (c) What do you notice?

Author(s): Brad Findell

Problem 7 In order to reason about the sum of the interior angles, Bart and Brad each triangulated the figure as shown below.

Both Bart and Brad claim that because in a triangle the sum of the interior angles is ? degrees, and this quadrilateral is cut into ? triangles, the angle sum in this quadrilateral should be ? degrees. What is your judgment?

Multiple Choice:

- (a) They are both correct.
- (b) Only Brad is correct.
- (c) Only Bart is correct.
- (d) Neither of them are correct.

Explain your reasoning.