lytische Funktion f definiert man das Residuum im Punkt a als $\mathop{\rm Res}_{z=a} f(z) = \mathop{\rm Res}_a f = \frac{1}{2\pi \mathrm{i}} \int f(z) \,\mathrm{d}z,$

Theorem 1 (Residuum). Für eine in einer punktierten Kreisscheibe $D\setminus\{a\}$ ana-

wobei
$$C \subset D \setminus \{a\}$$
 ein geschlossener Weg mit $n(C,a) = 1$ ist (z. B. ein entgegen dem Uhrzeigersinn durchlaufener Kreis).

ΑΛΔ ∇ BCD Σ EFΓGHIJ $KLMNO\Theta\Omega$ P Φ Π Ξ QRST $UVWXY\Upsilon\Psi Z$ ABCDabcd1234 $a\alpha b\beta c\partial d\delta e \epsilon \epsilon f \zeta \xi g \gamma h h i i j k k l \ell \lambda m n η θ θ ο σ ς φφρρρης r s t <math>\tau$ π μ ν ν ν ν ω ω

$$a\alpha b\beta c\partial d\delta e\varepsilon \varepsilon f\zeta \xi g\gamma h\hbar iiijkkl\ell \lambda mn\eta\theta \vartheta o\sigma \zeta \phi \varphi \wp p\rho \rho q r s t\tau \pi u \mu v v v w \omega \varpi$$

$$xyz\infty \infty \emptyset y = f(x)$$

$$\sum \int \prod \left[\int \sum \sum_a^b \int_a^b \prod_a^b \sum_a^b \int \prod_a^b \prod_a^$$