

Forced ventilation device, in particular for vehicle

Patent number: EP0936091
Publication date: 1999-08-18
Inventor: FLORENT PIERRE (FR)
Applicant: REGIE AUTONOME TRANSPORTS (FR)
Classification:
 - international: B60H1/34; B60H1/34; (IPC1-7): B60H1/34
 - european: B60H1/34B
Application number: EP19990400241 19990203
Priority number(s): FR19980001554 19980210

Also published as:

FR2774633 (A1)
 EP0936091 (B1)
 ES2175905T (T3)
 CZ294777 (B6)

Cited documents:

DE7525560U
 DE2933083
 US5340358
 US3503320
 US4751980

Report a data error here**Abstract of EP0936091**

The installation has a motor driven fan and ventilation outlets that may be formed as nozzles. Each fan is connected to a group of outlets made up of a central outlet (1) and at least two peripheral outlets (2) which are arranged around the central outlet. The outlets have a tubular housing (11,21) and a guide that is located in the housing and is made up of three guide ramps which guides the air flowing upstream and downstream of the outlets. The airflow is first guided in a radial plane, then in a helical direction along the length of an axis relatively central to the outlets.

FIG.3a

Data supplied from the esp@cenet database - Worldwide

03-B-068-B WO

(19)

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11)

EP 0 936 091 A1

(12)

DEMANDE DE BREVET EUROPEEN

(43) Date de publication:
18.08.1999 Bulletin 1999/33

(51) Int Cl. 6: B60H 1/34

(21) Numéro de dépôt: 99400241.8

(22) Date de dépôt: 03.02.1999

(84) Etats contractants désignés:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE
Etats d'extension désignés:
AL LT LV MK RO SI

(30) Priorité: 10.02.1998 FR 9801554

(71) Demandeur: Régie Autonome des Transports
Parisiens
75599 Paris Cedex 12 (FR)

(72) Inventeur: Florent, Pierre
59990 Preseau (FR)

(74) Mandataire: Farges, Roger et al
c/o Cabinet Lavoix,
2, Place d'Estienne d'Orves
75441 Paris Cédex 09 (FR)

(54) Installation de ventilation forcée, notamment pour véhicule

(57) L'installation comporte une ou plusieurs unités de soufflage comprenant un motoventilateur et des dispositifs de soufflage (1, 2) tels que des buses.

A chaque motoventilateur, est relié un groupe de soufflage comprenant un dispositif de soufflage central (1) et au moins deux dispositifs de soufflage périphériques (2) répartis autour du dispositif de soufflage central ; les dispositifs de soufflage (1, 2) comportent une enveloppe tubulaire (11, 21) et un guide de souffla-

ge logé dans l'enveloppe et comprenant au moins trois rampes de guidage de jet d'air s'étendant rectilignement puis hélicoïdalement le long d'une partie rectiligne d'un axe approximativement central du dispositif de soufflage ; cette partie rectiligne de l'axe central des dispositifs de soufflage périphériques (2) est inclinée et diverge en allant vers l'aval par rapport à celle de l'axe central du dispositif de soufflage central (1).

Utilisation possible dans les véhicules.

FIG.3a

Description

[0001] L'invention concerne la ventilation d'espaces, par exemple l'espace destiné aux voyageurs dans des véhicules routiers ou ferroviaires, et plus particulièrement une installation de ventilation forcée comportant une unité de soufflage ou plusieurs unités de soufflage indépendantes pouvant être réparties dans l'espace à ventiler en fonction des dimensions de cet espace.

[0002] Jusqu'à une époque récente, la ventilation des véhicules, en vue d'éviter les inconvenients du confinement, éliminer les odeurs éventuelles, et évacuer le gaz carbonique résultant de la respiration des voyageurs, était assurée par des moyens divers, dont aucun ne donne satisfaction si l'on désire que le coût reste raisonnable vis-à-vis du coût global du véhicule.

[0003] Par exemple, les ventilateurs sont bruyants, les glaces à abattant ne permettent qu'une faible ouverture, les glaces coulissantes ne peuvent être utilisées à pleine ouverture par suite des risques d'accidents, les trappes de toit ne sont efficaces que pour une vitesse de véhicule supérieure à 20 km/h environ, et les installations de climatisation sont onéreuses tant à la fabrication et au montage qu'à l'exploitation (surconsommation énergétique sensible, et maintenance délicate).

[0004] Par ailleurs, il est maintenant admis qu'un confort correct des voyageurs exige un débit de gaz de ventilation de l'ordre de 25 m³/h par occupant de l'espace à ventiler.

[0005] Pour répondre à cette exigence, on a créé des installations comportant un appareil insuffleur en toiture, un réseau de gaine dans des voussoirs latéraux, et des dispositifs de diffusion d'air de ventilation pour diffuser de l'air pulsé dans l'espace à ventiler en tentant de le répartir de manière appropriée.

[0006] Cependant, ces installations sont onéreuses, et n'apportent pas aux occupants du local tout le confort souhaitable.

[0007] En effet, aux températures habituelles dans nos régions en saison d'été, le soufflage approximativement vertical d'un gaz de ventilation, à température ambiante, procure une fraîcheur agréable (équivalente à une baisse de température de l'ordre de 4°C) à condition que la vitesse du gaz au voisinage du corps et du visage soit sensiblement uniforme et de l'ordre de 0,3 à 0,6 m/s.

[0008] Comme ces installations pulsent de l'air à une vitesse seulement de l'ordre de 0,15 m/s au niveau du corps et du visage des occupants de l'espace ventilé, l'obtention d'une sensation de confort nécessite un refroidissement préalable de l'air pulsé, solution onéreuse et consommatrice d'énergie.

[0009] On a également créé des installations munies de dispositifs de soufflage d'air de ventilation tels que des buses. Cependant, les jets issus de ces buses ne sont pas suffisamment divergents et n'apportent donc également pas le confort attendu ; l'obtention d'une vitesse uniforme de 0,3 à 0,6 m/s à quelques décimètres de la sortie de la buse sur une surface relativement étendue imposerait un très faible débit initial du jet, et même la multiplication des buses ne permettrait pas d'atteindre le débit nécessaire pour une bonne ventilation dans le cas où un grand nombre de personnes occupent le volume à ventiler.

[0010] L'invention a pour but de remédier à ces inconvenients et concerne à cet effet une installation de ventilation forcée notamment pour véhicule, comportant au moins une unité de soufflage comprenant un motoventilateur et des dispositifs de soufflage tels que des buses, installation caractérisée en ce qu'à chaque motoventilateur, est relié un groupe de soufflage comprenant un dispositif de soufflage central et au moins deux dispositifs de soufflage périphériques répartis autour du dispositif de soufflage central, les dispositifs de soufflage comportent une enveloppe tubulaire et un guide de soufflage logé dans l'enveloppe et comprenant au moins trois rampes de guidage de jet d'air s'étendant chacune, en allant d'amont en aval des dispositifs de soufflage, tout d'abord selon un plan radial, puis hélicoïdalement le long d'une partie rectiligne d'un axe approximativement central du dispositif de soufflage.

[0011] La forme hélicoïdale de la rampe de guidage, ou des rampes de guidage, est à l'origine d'un jet plus épanoui que les jets rectilignes, et présentant une diffusion turbulente plus importante, ce qui permet d'obtenir des vitesses plus faibles qu'un jet classique à une même distance de l'embouchure du dispositif de soufflage.

[0012] Comme également, l'obtention d'une vitesse de soufflage uniforme à une distance donnée ainsi que la surface ventilée sont essentiellement dépendantes du paramètre angulaire de sortie de l'hélicoïde ainsi que de l'angle de l'axe des jets périphériques par rapport à celui du jet central, les jets sortant des dispositifs à rampe hélicoïdale selon une configuration approximativement tronconique, et l'inclinaison divergente vers l'aval des dispositifs de soufflage périphérique par rapport au dispositif de soufflage central, permettent d'obtenir une diffusion correcte dans un angle solide très ouvert, et des jets peuvent être mis en interaction de manière à épanouir et uniformiser la vitesse de l'air dans un volume de plus grandes dimensions qu'avec les techniques conventionnelles.

[0013] Grâce au fait que l'installation est constituée, selon les dimensions de l'espace à ventiler, d'une ou plusieurs unités de soufflage comprenant chacune un motoventilateur auquel est relié un unique groupe de dispositifs de soufflage, le motoventilateur peut être de faible puissance et ainsi peu bruyant.

[0014] L'installation selon l'invention peut comporter de plus une ou plusieurs des caractéristiques suivantes :

- la partie rectiligne de l'axe central des dispositifs de soufflage périphériques est inclinée et diverge par rapport à celle de l'axe central du dispositif de soufflage central en allant vers l'aval ;
- les rampes de guidage sont des ailettes s'étendant

- chacune tout d'abord selon un plan radial puis en forme d'hélicoïde dans l'enveloppe du dispositif de soufflage ;
- elle comporte plusieurs rampes de guidage s'étendant chacune tout d'abord selon un plan radial puis en forme d'hélicoïde autour d'une tige s'étendant axialement dans l'enveloppe du dispositif de soufflage ;
 - le guide de soufflage est monté fixe dans l'enveloppe du dispositif de soufflage ;
 - les parties hélicoïdales des rampes de guidage des dispositifs de soufflage central et périphériques d'un même groupe de soufflage s'étendent en forme d'hélicoïdes enroulées dans le même sens ;
 - elle comporte plusieurs unités de soufflage, et les parties hélicoïdales des rampes de guidage des dispositifs de soufflage de toutes les unités s'étendent en forme d'hélicoïdes enroulées dans le même sens ;
 - les dispositifs de soufflage périphérique émettent chacun un jet de gaz de ventilation dont une région se mélange avec une région respective d'un jet de gaz de ventilation émis par le dispositif de soufflage central ;
 - les dispositifs de soufflage périphériques émettent chacun un jet de gaz de ventilation dont au moins une région se mélange avec une région du jet de gaz de ventilation émis par un autre dispositif de soufflage périphérique ;
 - les dispositifs de soufflage périphérique émettent chacun un jet de gaz de ventilation dont deux régions se mélangent chacune avec une région d'un jet de gaz de ventilation émis par un autre dispositif de soufflage périphérique respectif ;
 - les dispositifs de soufflage émettent chacun un jet de gaz de ventilation s'épanouissant avec une forme générale approximativement tronconique ;
 - le groupe de soufflage émet un gaz de ventilation dont la vitesse, dans un volume situé à quelques décimètres en aval des guides de soufflage, est approximativement uniforme et de l'ordre de 0,3 à 0,6 m/s.
 - le groupe de soufflage débite un gaz de ventilation avec un débit égal approximativement à 300m³/h ;
 - elle comprend au moins un groupe de soufflage comportant un dispositif de soufflage central à quatre rampes de guidage, et quatre dispositifs de soufflage périphériques à trois rampes de guidage ;
 - elle comprend au moins un groupe de soufflage comportant un dispositif de soufflage central à trois rampes de guidage, et quatre dispositifs de soufflage périphériques également à trois rampes de guidage ;
 - elle comprend au moins un groupe de soufflage comportant un dispositif de soufflage central à trois rampes de guidage, et six dispositifs de soufflage périphériques également à trois rampes de guidage ;
- la partie hélicoïdale des rampes de guidage présente un pas variable dont la longueur diminue d'amont en aval.
- 5 [0015] D'autres caractéristiques et avantages de l'invention ressortiront de la description qui va suivre de formes de réalisation de cette invention données à titre d'exemples non limitatifs, illustrée par les dessins joints dans lesquels :
- 10 - les figures 1a et 1b sont des vues de face d'une partie respectivement de deux exemples de réalisation d'un groupe de soufflage entrant dans la constitution d'une installation selon l'invention,
- 15 - les figures 2a et 2b sont des vues de dessus de la partie du groupe de soufflage des figures 1a et 1b respectivement,
- les figures 3a et 3b sont des vues de dessous de la partie du groupe de soufflage des figures 1a et 1b respectivement,
- 20 - la figure 4 est une vue de face d'un guide de soufflage équipant les dispositifs de soufflage du groupe des figures 1a, 1b à 3a, 3b, dans une première forme de réalisation,
- 25 - la figure 5 est une vue de dessus du guide de soufflage de la figure 4,
- la figure 6 est une vue de face d'un guide de soufflage dans une deuxième forme de réalisation, et
- la figure 7 est une vue de dessus du guide de soufflage de la figure 6.
- [0016] L'installation de ventilation forcée selon l'invention, illustrée par les figures, est plus particulièrement destinée à la ventilation de l'espace intérieur de véhicules ; elle comporte une unité de soufflage, ou plusieurs unités de soufflage convenablement réparties en fonction de la configuration de l'espace à ventiler, pour introduire dans le véhicule, en tant que gaz de ventilation, de l'air prélevé à l'extérieur de celui-ci.
- 35 [0017] Les unités de soufflage comprennent chacune un motoventilateur comportant une volute dont la sortie est reliée, directement ou par une conduite de liaison pouvant être très courte, à l'entrée d'un groupe de dispositifs de soufflage tels que des buses.
- 40 [0018] Les figures 1a, 2a et 3a montrent un tel groupe de dispositifs de soufflage, qui comporte une buse centrale 1 et quatre buses périphériques 2 réparties à 90° autour de la buse centrale, prolongeant un collecteur 3 tubulaire destiné à être raccordé à la conduite de liaison ou directement au motoventilateur ; ce collecteur comporte à cet effet une région de raccordement 31 cylindrique à section droite circulaire et une embase 32 portant les buses 1, 2.
- 45 [0019] Ces buses 1, 2 comportent une enveloppe tubulaire 11, 21 dont une région d'entrée débouche dans le collecteur 3 à travers l'embase 32 et dont une région de sortie est en saillie hors du collecteur, vers le bas si l'on se réfère à la figure 1 où le groupe de soufflage est
- 50
- 55

représenté dans la position qu'il occupe lorsqu'il est fixé au plafond d'un véhicule en vue de souffler de l'air de ventilation vers le plancher sur les occupants. L'enveloppe 11 de la buse centrale s'étend rectilignement et prolonge le collecteur coaxialement. Le nombre de dispositifs de soufflage périphériques 2 est choisi en fonction des besoins, et par exemple des groupes comportant deux buses périphériques 2 diamétralement opposées de part et d'autre d'une buse centrale 1 peuvent convenir à un espace étroit et allongé tel qu'un couloir de voiture de chemin de fer notamment ; en revanche, pour de larges espaces, le dispositif de soufflage central 1 est entouré d'un plus grand nombre de dispositifs de soufflage périphériques 2, par exemple quatre buses ou davantage, répartis régulièrement ou non le long d'une circonférence centrée sur l'axe central X-X du dispositif de soufflage central ; ainsi, les figures 1b, 2b et 3b montrent un groupe à six buses périphériques 2 réparties à 60° autour de la buse centrale 1 et présentant par ailleurs le même agencement, les organes correspondants portant les mêmes repères numériques que sur les figures 1a à 3a.

[0020] A l'intérieur de l'enveloppe 11, 21, les dispositifs de soufflage sous la forme de buses comportent un guide de soufflage 4 (figures 4 à 7) afin de guider le jet d'air parcourant la buse hélicoïdalement au moins dans la région de sortie de celle-ci. Ce guide de soufflage 4 est formé par une ou plusieurs rampes d'abord longitudinales puis devenant hélicoïdales constituées ici par une ou plusieurs ailettes 41 s'étendant d'amont en aval tout d'abord selon un plan radial et longitudinal puis en forme d'hélicoïde dans l'enveloppe 21, 31, autour d'une tige axiale 42 s'étendant elle-même le long d'au moins une partie de l'axe central du dispositif de soufflage.

[0021] Au moins une partie rectiligne Y-Y de l'axe central des dispositifs de soufflage périphériques 2 autour de laquelle s'étendent les ailettes 41 est inclinée en divergeant par rapport à l'axe central X-X du dispositif de soufflage central 1 en allant d'amont en aval des dispositifs de soufflage 1, 2, et coupe cet axe central X-X en faisant un angle choisi comme on le verra dans la suite.

[0022] Dans la forme de réalisation représentée sur les figures, le collecteur 3 et les enveloppes tubulaires 11, 21 des buses sont constitués en une seule pièce ; l'enveloppe 11 de la buse centrale s'étend rectilignement, et les enveloppes 21 des buses périphériques comportent une région d'entrée s'étendant parallèlement à l'enveloppe 11 de la buse centrale, un coude à angle obtus, et une région de sortie s'étendant le long de la partie Y-Y de l'axe central qui est inclinée et diverge par rapport à l'axe central X-X de la buse centrale en allant vers l'aval ; c'est dans au moins une partie de cette région de sortie que s'étend le guide de soufflage 4, constitué ici par les ailettes 41 s'étendant autour d'une tige centrale 42, qui est fixé dans l'enveloppe ; on peut noter que ces ailettes sont montées fixes à l'intérieur de l'enveloppe et qu'un mouvement de rotation de celles-ci engendrerait un bruit important ; l'angle d'inclinaison

de l'hélice extérieure de l'hélicoïde par rapport à l'axe central ou son angle δ par rapport au plan perpendiculaire à l'axe central est également choisi comme on le verra dans la suite. Intérieurement, le collecteur 3 peut présenter une forme appropriée pour guider l'air issu du motoventilateur vers les différents dispositifs de soufflage 1, 2 en favorisant son écoulement et en réduisant les pertes de charge afin notamment que le bruit émis soit minimal.

10 [0023] Les dispositifs de soufflage périphériques 2 peuvent naturellement ne pas présenter une forme coulée, mais une forme rectiligne sur toute leur longueur, leur axe central étant alors lui-même rectiligne et incliné par rapport à celui du dispositif de soufflage central 1, 15 d'un angle qui est comme on l'a vu l'un des paramètres fondamentaux de l'installation.

[0024] Lorsque le motoventilateur est en fonctionnement, il insuffle, éventuellement par l'intermédiaire de la conduite de liaison, de l'air de ventilation dans le collecteur du groupe de soufflage, d'où l'air est distribué aux buses 1, 2.

[0025] Comme, dans la région de sortie des buses, le jet d'air est forcé selon un trajet hélicoïdal, à la sortie de chaque buse il s'épanouit en formant approximativement un tronc de cône d'autant plus évasé que l'angle δ de l'hélicoïde défini plus haut est petit ; en corollaire, on notera que pour un même débit initial, la vitesse en un point du tronc de cône est d'autant plus faible que l'angle δ est petit ; si les jets issus des buses n'ont aucune interaction, l'uniformisation des vitesses exige un angle relativement important de l'hélice extérieure de l'hélicoïde par rapport à l'axe central de la buse, d'où une forte perte de charge, et par voie de conséquence un groupe motoventilateur bruyant dans la gamme de débits désirée.

[0026] En revanche, selon l'invention, on mélange certaines régions périphériques des jets voisins, à savoir une région de chaque jet périphérique avec une région du jet central, et si possible deux autres régions chacune avec une région du jet périphérique le plus voisin, en faisant en sorte que les troncs de cône de ces jets se coupent légèrement à leur périphérie. Comme, selon l'invention, les jets sont issus de dispositifs de soufflage dont de préférence les rampes de guidage forment des hélicoïdes enroulées dans le même sens, l'antagonisme des composantes tangentielles des vitesses dans la région d'intersection produit une homogénéisation favorable du mélange et des vitesses résultantes dans un volume situé à quelques décimètres en aval des guides de soufflage. Comme l'uniformisation des vitesses peut être obtenue au moyen de débits qui ne sont pas trop faibles, un petit nombre de jets dans chaque groupe permet de satisfaire aux conditions de débit assurant une ventilation conforme aux normes.

55 [0027] Plus précisément, la distance et les dimensions du volume dans lequel les vitesses sont uniformisées dépendent de la vitesse de sortie du jet, de l'angle d'inclinaison de l'hélice extérieure par rapport à l'axe

central de la buse ou de l'angle δ par rapport au plan perpendiculaire à cet axe, de l'angle β entre la projection sur un plan horizontal des axes des jets périphériques voisins, de l'angle α entre la partie rectiligne Y-Y de l'axe des jets périphériques et l'axe X-X du jet central, et du nombre d'ailettes dans chaque buse. Plusieurs combinaisons différentes peuvent donner des résultats voisins dans un volume donné.

[0028] Ainsi, par exemple, on obtient, pour un débit global de $300 \text{ m}^3/\text{h}$ convenable dans un véhicule de transport en commun, des vitesses présentant une homogénéité satisfaisante, comprises entre 0,3 et 0,6 m/s à 1,5 m du sol, dans les trois cas suivants :

Cas N° 1 :

- buse centrale à quatre ailettes avec $\delta = 17^\circ$ environ
- quatre buses périphériques à trois ailettes avec $\delta = 25^\circ$ environ et $\beta = 90^\circ$
- diamètre des hélicoïdes = 25,4 mm environ
- $\alpha = 45^\circ$ environ.

Cas N° 2 :

- buse centrale à trois ailettes avec $\delta = 25^\circ$ environ
- quatre buses périphériques à trois ailettes avec $\delta = 25^\circ$ environ et $\beta = 90^\circ$
- diamètre des hélicoïdes = 25,4 mm environ
- $\alpha = 67^\circ 30'$ environ.

Cas N° 3 :

- buse centrale à trois ailettes avec $\delta = 25^\circ$ environ
- six buses périphériques à trois ailettes avec $\delta = 30^\circ$ environ et $\beta = 60^\circ$
- diamètre des hélicoïdes = 33,3 mm environ
- $\alpha = 45^\circ$ environ.

[0029] Dans ces exemples, le résultat obtenu convient pour la ventilation d'un autobus ou d'un autocar, la mise en oeuvre de sept unités identiques permettant de répondre aux conditions imposées de vitesse et de débit.

[0030] Cependant, ces trois exemples montrent l'importance des paramètres fondamentaux que sont les angles δ , α , β , et la vitesse axiale initiale, pour obtenir l'homogénéisation des vitesses à une distance déterminée de l'origine du soufflage, et satisfaire aux critères de bruit en diminuant les pertes de charge et les vitesses initiales pour un débit donné ; en particulier, le cas N° 3 illustre, vis-à-vis des cas N° 1 et 2, la réduction des pertes de charge de 80 mm d'eau à 15 mm d'eau, et le bruit de 75 db à 59 db, pour la même efficacité, l'augmentation du nombre de buses périphériques permettant la diminution des vitesses initiales.

5 [0031] La similitude du comportement des jets basés sur l'angle δ de l'hélicoïde en regard du diamètre de l'origine du soufflage et de la valeur de la composante axiale de la vitesse initiale, est également fondamentale et explique les résultats obtenus dans les trois cas mentionnés plus haut.

[0032] Il est possible de jouer aussi sur les angles β pour adapter le groupe de soufflage à la longueur et à la largeur du volume à ventiler ; par exemple, dans un 10 même groupe, les buses peuvent être orientées selon des angles β différents, en fonction de la forme du volume à ventiler.

[0033] On notera également que pour une unité de soufflage donnée, en faisant varier la vitesse du moteur ventilateur, on obtient une variation du débit initial qui permet de modifier l'emplacement de la zone dite « de confort » dans laquelle les vitesses sont comprises entre 0,3 et 0,6 m/s, et notamment de la faire monter ou descendre. Par ailleurs, la sensation de confort étant subjective et dépendant de la température, une ventilation à plus grande vitesse est nécessaire en cas de forte chaleur, tandis que la vitesse doit être diminuée par temps frais.

[0034] Compte tenu de l'influence de l'angle δ de sortie des hélicoïdes et de l'intérêt de pouvoir choisir le meilleur angle possible en fonction des besoins, les hélicoïdes présentent un pas variable, et plus précisément un pas dont la longueur diminue d'amont en aval ; ainsi l'angle δ diminue lui-même d'amont en aval et on peut 20 obtenir l'angle δ désiré en tronçonnant les hélicoïdes à l'emplacement approprié.

[0035] En conclusion, l'installation selon l'invention donne des résultats remarquables grâce à sa modularité qui permet de l'adapter à des espaces de géométries variées, sans réseau de gaine par exemple dans des voussoirs de véhicule, à ses possibilités de réglage de la zone à vitesse uniforme par exemple en asservissant la vitesse de rotation des motoventilateurs, et à son adaptabilité qui permet de se plier aux contraintes d'un 30 grand nombre de situations ; il est ainsi possible par exemple de ventiler des volumes de formes irrégulières, en installant des groupes de soufflage différents aussi bien en ce qui concerne le nombre et l'orientation des dispositifs de soufflage, que le nombre et l'angle de sortie des rampes de guidage. De même, le diamètre extérieur des hélices, qui est fonction de critères de bruit pour les débits souhaités peut être compris dans une très large gamme dépendant des volumes à ventiler, et des vitesses souhaitées à la distance imposée.

50

Revendications

1. Installation de ventilation forcée notamment pour véhicules, comportant au moins une unité de soufflage comprenant un motoventilateur et des dispositifs de soufflage (1, 2) tels que des buses, installation caractérisée en ce qu'à chaque motoventila-

- teur, est relié un groupe de soufflage comprenant un dispositif de soufflage central (1) et au moins deux dispositifs de soufflage périphériques (2) répartis autour du dispositif de soufflage central, les dispositifs de soufflage (1, 2) comportent une enveloppe tubulaire (11, 21) et un guide de soufflage (1) logé dans l'enveloppe et comprenant au moins trois rampes (41) de guidage de jet d'air s'étendant chacune, en allant d'amont en aval des dispositifs de soufflage, tout d'abord selon un plan radial, puis hélicoïdalement le long d'une partie rectiligne d'un axe approximativement central du dispositif de soufflage.
2. Installation selon la revendication 1, caractérisée en ce que la partie rectiligne (Y-Y) de l'axe central des dispositifs de soufflage périphériques (2) est inclinée et diverge par rapport à celle de l'axe central (X-X) du dispositif de soufflage central (1) en allant vers l'aval.
 3. Installation selon la revendication 1, caractérisée en ce que les rampes de guidage (41) sont des ailettes s'étendant chacune tout d'abord selon un plan radial puis en forme d'hélicoïde dans l'enveloppe (11, 21) du dispositif de soufflage (1, 2).
 4. Installation selon la revendication 1, caractérisée en ce qu'elle comporte plusieurs rampes de guidage (41) s'étendant chacune tout d'abord selon un plan radial puis en forme d'hélicoïde autour d'une tige (42) s'étendant axialement dans l'enveloppe (11, 21) du dispositif de soufflage (1, 2).
 5. Installation selon la revendication 1, caractérisée en ce que le guide de soufflage (4) est monté fixe dans l'enveloppe (11, 21) du dispositif de soufflage (1, 2).
 6. Installation selon la revendication 1, caractérisée en ce que les parties hélicoïdales des rampes de guidage (41) des dispositifs de soufflage central (1) et périphériques (2) d'un même groupe de soufflage s'étendent en forme d'hélicoïdes enroulées dans le même sens.
 7. Installation selon la revendication 1, caractérisée en ce qu'elle comporte plusieurs unités de soufflage, et les parties hélicoïdales des rampes de guidage (41) des dispositifs de soufflage (1, 2) de toutes les unités s'étendent en forme d'hélicoïdes enroulées dans le même sens.
 8. Installation selon la revendication 1, caractérisée en ce que les dispositifs de soufflage périphérique (2) émettent chacun un jet de gaz de ventilation dont une région se mélange avec une région respective d'un jet de gaz de ventilation émis par le

dispositif de soufflage central (1).

9. Installation selon la revendication 1, caractérisée en ce que les dispositifs de soufflage périphériques (2) émettent chacun un jet de gaz de ventilation dont au moins une région se mélange avec une région du jet de gaz de ventilation émis par un autre dispositif de soufflage périphérique (2).
10. Installation selon la revendication 1, caractérisée en ce que les dispositifs de soufflage périphérique (2) émettent chacun un jet de gaz de ventilation dont deux régions se mélangent chacune avec une région d'un jet de gaz de ventilation émis par un autre dispositif de soufflage périphérique (2) respectif.
11. Installation selon la revendication 1, caractérisée en ce que les dispositifs de soufflage (1, 2) émettent chacun un jet de gaz de ventilation s'épanouissant avec une forme générale approximativement tronconique.
12. Installation selon la revendication 1, caractérisée en ce que le groupe de soufflage émet un gaz de ventilation dont la vitesse, dans un volume situé à quelques décimètres en aval des guides de soufflage (4), est approximativement uniforme et de l'ordre de 0,3 à 0,6 m/s.
13. Installation selon la revendication 1, caractérisée en ce que le groupe de soufflage débite un gaz de ventilation avec un débit égal approximativement à 300m³/h.
14. Installation selon la revendication 1, caractérisée en ce qu'elle comprend au moins un groupe de soufflage comportant un dispositif de soufflage central (1) à quatre rampes de guidage (41), et quatre dispositifs de soufflage périphériques (2) à trois rampes de guidage (41).
15. Installation selon la revendication 1, caractérisée en ce qu'elle comprend au moins un groupe de soufflage comportant un dispositif de soufflage central (1) à trois rampes de guidage (41), et quatre dispositifs de soufflage périphériques (2) également à trois rampes de guidage (41).
16. Installation selon la revendication 1, caractérisée en ce qu'elle comprend au moins un groupe de soufflage comportant un dispositif de soufflage central (1) à trois rampes de guidage (41), et six dispositifs de soufflage périphériques (2) également à trois rampes de guidage (41).
17. Installation selon la revendication 1, caractérisée en ce que la partie hélicoïdale des rampes de guि-

dage (41) présente un pas variable dont la longueur diminue d'amont en aval.

5

10

15

20

25

30

35

40

45

50

55

FIG.1a

FIG.2a

FIG.3a

**ANNEXE AU RAPPORT DE RECHERCHE EUROPEENNE
RELATIF A LA DEMANDE DE BREVET EUROPEEN NO.**

EP 99 40 0241

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche européenne visé ci-dessus.

Lesdits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du
Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

20-05-1999

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)			Date de publication
DE 7525560 U	26-02-1976	AUCUN			
DE 2933083 A	26-02-1981	CH	650326 A	15-07-1985	
		NL	8004591 A	18-02-1981	
US 5340358 A	23-08-1994	DE	4139099 A	03-06-1993	
		EP	0544125 A	02-06-1993	
		AT	132961 T	15-01-1996	
		DE	59205010 D	22-02-1996	
		ES	2083650 T	16-04-1996	
US 3503320 A	31-03-1970	DE	1778267 A	23-03-1972	
		DK	123260 B	29-05-1972	
		FR	1557555 A	14-02-1969	
		GB	1166026 A	01-10-1969	
		NL	6805434 A	21-10-1968	
		SE	346373 B	03-07-1972	
US 4751980 A	21-06-1988	AUCUN			

EPO FORM P0160

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets. No.12/82

Office européen
des brevets

RAPPORT DE RECHERCHE EUROPEENNE

Numéro de la demande
EP 99 40 0241

DOCUMENTS CONSIDERES COMME PERTINENTS									
Catégorie	Citation du document avec indication, en cas de besoin, des parties pertinentes	Revendication concernée	CLASSEMENT DE LA DEMANDE (Int.Cl.6)						
A	DE 75 25 560 U (KARL KASSBOHRER) 26 février 1976 * le document en entier *	1	B60H1/34						
A	DE 29 33 083 A (KESSLER & LUCH GMBH) 26 février 1981 * page 6, ligne 4 - ligne 6; figure 2 *	1							
A	US 5 340 358 A (HALUPCZOK JOHANN ET AL) 23 août 1994 * colonne 3, ligne 29 - ligne 33; figure 4 *	1							
A	US 3 503 320 A (GEROMET SALVATORE) 31 mars 1970 * colonne 2, ligne 68 - colonne 3, ligne 3; figure 3 *	1							
A	US 4 751 980 A (DEVANE HARRY M) 21 juin 1988 * colonne 3, ligne 50 - ligne 61; figure 4 *	1	DOMAINES TECHNIQUES RECHERCHES (Int.Cl.6)						
			B60H F24F						
<p>Le présent rapport a été établi pour toutes les revendications</p> <table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 33%;">Lieu de la recherche</td> <td style="width: 33%;">Date d'achèvement de la recherche</td> <td style="width: 34%;">Examinateur</td> </tr> <tr> <td>LA HAYE</td> <td>20 mai 1999</td> <td>Marangoni, G</td> </tr> </table>				Lieu de la recherche	Date d'achèvement de la recherche	Examinateur	LA HAYE	20 mai 1999	Marangoni, G
Lieu de la recherche	Date d'achèvement de la recherche	Examinateur							
LA HAYE	20 mai 1999	Marangoni, G							
CATEGORIE DES DOCUMENTS CITES X : particulièrement pertinent à lui seul Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie A : matière-plan technologique O : divulgation non-écrite P : document intercalaire		T : théorie ou principe à la base de l'invention E : document de brevet antérieur, mais publié à la date de dépôt ou après cette date D : cité dans la demande L : cité pour d'autres raisons & : membre de la même famille, document correspondant							