Prova1 04/04/11 EE 610 - Eletrônica Digital

1) Considere um inversor implementado como mostra a figura 1. Seja $V_{DD} = 5V$, $R = 5K\Omega$, $(W/L)_n = 1.2 \mu m/0.8 \mu m$, $k_n' = 200\mu A/V^2$ e $V_t = 1 V$. (3,0)

Figura 1

a) Calcule V_{OL} e V_{IL}. (1,0)

- b) Utilizando a figura 2 (CTT simulada do circuito) estime o valor de V_{IH} e V_{OH} . (0,5)
- c) Calcule o valor de MR_H e MR_I. (0,5)
- d) Qual o número máximo de inversores de carga (fan-out) que podem ser acoplados à saída de um inversor semelhante ao da **figura 1** que garanta MR_H ao menos igual a MR_L . Cada inversor de carga drena uma corrente de 25 μ A por meio do resistor R quando sua entrada é alta. (0,5)
 - e) Calcule a potência estática quando a saída é baixa (a corrente dos inversores de carga é nula). (0,5) /

2) O objetivo desse exercício é projetar uma porta lógica CMOS complementar onde a saída é dada por: (2,0)

a)
$$Y = \overline{A(B+C)}$$
 (1,0)

b)
$$Y = \overline{A + BC}$$
 (1,0)

Desenhe as redes PUN e PDN e obtenha as razões W/L assumindo que para o inversor básico temos n = 2 e p = 5.

3) Projete um inversor pseudo-NMOS que tenha V_{OL} = 0,2V. Sejam V_{DD} = 5V, $|V_t|$ = 0,8, k_n ′=4 k_p ′=120μA/V² e (W/L) $_n$ = 1,2 μm/0,8 μm. Qual é o valor de (W/L) $_n$? Calcule os valores de MR $_L$ e a dissipação de potência estática. (2,0)

- 4) Considere o transistor NMOS como chave nos circuitos das figuras 3 e 4 a serem fabricados em uma tecnologia com $k_n'=50\mu\text{A/V}^2$, |Vt0|=1V, $\gamma=0.5\text{V}^{1/2}$, $2\varphi_f=0.6$ V e $V_{DD}=5$ V. Considere que o transistor tenha área mínima para essa tecnologia, ou seja, 4 μm/2 μm, e assuma que a capacitância total entre o nó de saída e o terra seja C = 50 fF. (3,0)
 - a) Obtenha t_{pLH} (1,0)
 - b) Para o caso em que vi subitamente chaveia de V_{DD} para 0 (Figura 4), obtenha t_{pHL} (1,0)
 - c) Obtenha t_p (1,0)

