Спеціальність	_Інжен	ерія програмної	о забезпечения
Навчальний пред	цмет	_Алгебра та гео:	метрія
Курс1 Семест	p2		

ЕКЗАМЕНАЦІЙНИЙ БІЛЕТ № 1.

- 1. Поняття лінійного простору. Наслідки аксіом лінійного простору.
- 2. Теорема Якобі про квадратичні функції.
- 3. Лінійне перетворення в базисі e_1,e_2,e_3 задається матрицею A, знайти матрицю цього перетворення в базисі f_1,f_2,f_3

$$A = \begin{pmatrix} -9 & 3 & 7 \\ 1 & 1 & -1 \\ -11 & 3 & 9 \end{pmatrix} \qquad f_1 = e_1 + e_2 + e_3$$

$$f_2 = e_1 - e_2 + 2e_3.$$

4. Знайти канонічний вигляд B ортогональної матриці A і ортогональну матрицю Q таку, що $B = Q^{\text{-}1}AQ$

$$A = \begin{pmatrix} \frac{1}{4} & \frac{3}{4} & \frac{\sqrt{6}}{4} \\ \frac{3}{4} & \frac{1}{4} & -\frac{\sqrt{6}}{4} \\ -\frac{\sqrt{6}}{4} & \frac{\sqrt{6}}{4} & -\frac{1}{2} \end{pmatrix}.$$

Затверджено на засіданні кафедри *Дослідження операцій* від 25 травня 2022 року протокол № 11.

Зав. кафедри Іксанов О.М.

Спеціальність	Інженерія програмного забезпечення
Навчальний предм	метАлгебра та геометрія
Курс1 Семестр	2

ЕКЗАМЕНАЦІЙНИЙ БІЛЕТ № 2.

- 1. Лінійна залежність та лінійна незалежність системи векторів, властивості.
- 2. Додатні квадратичні функції, критерій Сільвестра.
- 3. Лінійне перетворення в деякому базисі задається матрицею. З'ясувати, чи існує для даного перетворення базис простору, складений з власних векторів перетворення. Знайти цей базис і матрицю перетворення в цьому базисі.

$$\begin{pmatrix} -6 & 2 & 3 \\ 2 & -3 & 6 \\ 3 & 6 & 2 \end{pmatrix}$$

4. Розкласти дану матрицю в добуток симетричної матриці з додатними характеристичними числами і ортогональної матриці

$$A = \begin{pmatrix} 2 & -2 & 6 \\ 2 & 4 & -3 \\ -1 & 4 & 6 \end{pmatrix}.$$

Затверджено на засіданні кафедри *Дослідження операцій* від 25 травня 2022 року протокол № 11.

Зав. кафедри Іксанов О.М.

Спеціальність	_Інженері	я програмно	го забезпечення
Навчальний пред	,метA.	лгебра та гео	метрія
Курс1 Семест	p2		

ЕКЗАМЕНАЦІЙНИЙ БІЛЕТ № 3.

- 1. Лема про дві системи.
- 2. Теорема Жордана.
- 3. Лінійне перетворення φ простору в деякому базисі задається матрицею. Знайти базис, в якому матриця цього перетворення жорданова, і знайти цю жорданову матрицю.

$$\begin{pmatrix} 4 & 1 & 1 \\ -2 & 1 & -2 \\ 1 & 1 & 4 \end{pmatrix}.$$

4. Для квадратичної форми знайти канонічний вигляд та невироджене лінійне перетворення, що зводить квадратичну форму до цього вигляду (метод Лагранжа) $x_1^2 - 2x_1x_2 + 2x_1x_3 - 2x_1x_4 + x_2^2 + 2x_2x_3 - 4x_2x_4 + x_3^2 - 2x_4^2$.

Затверджено на засіданні кафедри *Дослідження операцій* від 25 травня 2022 року протокол № 11.

Зав. кафедри Іксанов О.М.

Спеціальність	Інженерія прог	рамного забезпечення
Навчальний преді	метАлгебра	та геометрія
Курс1 Семестр	2_2	

ЕКЗАМЕНАЦІЙНИЙ БІЛЕТ № 4.

- 1. Поняття базису простору. Теореми про базис.
- 2. Евклідові простори. Нерівність Коші-Буняковського, трикутника.
- 3. Система векторів задається координатами в деякому ортонормованому базисі евклідова простору. За допомогою процесу ортогоналізації знайти ортогональний базис підпростору, породженого даною системою векторів.

$$(1,-3,2,1), (-1,7,-3,-2), (2,-2,3,1).$$

4. Знайти ортогональне перетворення, що зводить квадратичну форму до канонічного вигляду, і записати цей канонічний вигляд.

$$7x_1^2 + 5x_2^2 + 3x_3^2 - 8x_1x_2 + 8x_2x_3$$
.

Затверджено на засіданні кафедри *Дослідження операцій* від 25 травня 2022 року протокол № 11.

Зав. кафедри Іксанов О.М.

Спеціальність	<u> </u> Інженер	рія програм	ного забезпеч	ення
Навчальний пред	мет	Алгебра та г	еометрія	
Курс1 Семест	p2			

ЕКЗАМЕНАЦІЙНИЙ БІЛЕТ № 5.

- 1. Матриця переходу від одного базису до іншого. Зв'язок координат вектора в різних базисах.
- 2. Ортогональність. Процес ортогоналізації.
- 3. Знайти базис ортогонального доповнення L^{\perp} підпростору L.
- L породжується системою векторів (-1,3,0,1), (4,2,1,1), (3,5,1,2).
- 4. Звести рівняння поверхні другого порядку до канонічного вигляду і визначити тип поверхні.

$$4y^2 - 3z^2 + 4xy - 4xz + 8yz + 4x - 2z - 1 = 0.$$

Затверджено на засіданні кафедри *Дослідження операцій* від 25 травня 2022 року протокол № 11.

Зав. кафедри Іксанов О.М.

Екзаменатори Довгай Б.В.

Маринич О.В.

Спеціальність	Інженерія програмного забезпечення
Навчальний пред	метАлгебра та геометрія
Курс 1 Семест	2

ЕКЗАМЕНАЦІЙНИЙ БІЛЕТ № 6.

- 1. Поняття підпростору, елементарні властивості.
- 2. Поняття ортогонального доповнення. Властивості.
- 3. Довести, що кожна з двох систем векторів $e_1,e_2,...,e_n$ та $e_1,e_2,...,e_n$ утворює базис простору і знайти матрицю переходу від базису $e_1,e_2,...,e_n$ до базису $e_1,e_2,...,e_n$?

$$e_1 = (1,2,-1,0), e_2 = (1,-1,1,1), e_3 = (-1,2,1,1), e_4 = (-1,-1,0,1);$$

 $e_1' = (2,1,0,1), e_2' = (0,1,2,2), e_3' = (-2,1,1,2), e_4' = (1,3,1,2).$

4. $e_1, e_2, ..., e_n$ — ортонормований базис евклідова простору. Лінійне перетворення φ задається в базисі $f_1, f_2, ..., f_n$ матрицею A. Знайти матрицю спряженого перетворення φ * в базисі $f_1, f_2, ..., f_n$.

$$A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ -1 & 0 & 1 \end{pmatrix} \qquad f_1 = e_1 - e_2 - e_3, f_2 = e_1 - e_2, f_3 = e_1.$$

Затверджено на засіданні кафедри *Дослідження операцій* від 25 травня 2022 року протокол № 11.

Зав. кафедри Іксанов О.М.

Спеціальність	Інженерія програмного забезпечення
Навчальний пред	метАлгебра та геометрія
Курс 1 Семест	\circ 2

ЕКЗАМЕНАЦІЙНИЙ БІЛЕТ № 7.

- 1. Операції над підпросторами. Поняття суми підпросторів.
- 2. Геометричний зміст процесу ортогоналізації.
- 3. Знайти розмірність і базис лінійного підпростору, породженного системою векторів

$$a_1 = (1,1,1,1), a_2 = (1,2,1,3), a_3 = (1,1,2,2), a_4 = (1,1,1,3); a_5 = (2,3,3,3).$$

4. Самоспряжене лінійне перетворення φ в деякому ортонормованому базисі задається матрицею A. Знайти ортонормований базис простору, який складається з власних векторів перетворення φ , і матрицю B перетворення в цьому базисі.

$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}.$$

Затверджено на засіданні кафедри *Дослідження операцій* від 25 травня 2022 року протокол № 11.

Зав. кафедри Іксанов О.М.

Спеціальність	Інженерія програмного забезпечення
Навчальний пред	метАлгебра та геометрія
Курс 1 Семест	\circ 2

ЕКЗАМЕНАЦІЙНИЙ БІЛЕТ № 8.

- 1. Поняття прямої суми підпросторів. Теорема про еквівалентність двох означень прямої суми. Теорема про базис прямої суми.
- 2. Визначник Грама та його властивості.
- 3. Знайти систему лінійних рівнянь, яка задає підпростір, породжений системою векторів

$$a_1$$
=(2,-1,4,2), a_2 =(3,0,6,1), a_3 =(-1,2,-2,-3), a_4 =(1,1,2,-1).

4. Знайти канонічний вигляд B ортогональної матриці A і ортогональну матрицю Q таку, що $B = Q^{-1}AQ$

таку, що
$$B = Q^{-1}AQ$$

$$A = \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{1}{2} & \frac{1}{2} \\ -\frac{\sqrt{2}}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{pmatrix}.$$

Затверджено на засіданні кафедри *Дослідження операцій* від 25 травня 2022 року протокол № 11.

Зав. кафедри Іксанов О.М.

Спеціальність	Інженерія програмного забезпечення
Навчальний пред	метАлгебра та геометрія
Курс 1 Семест	2

ЕКЗАМЕНАЦІЙНИЙ БІЛЕТ № 9.

- 1. Теорема про розмірність суми та перетину підпросторів.
- 2. Спряжені оператори. Властивості операції спряження. Теорема про інваріантність ортогонального доповнення.
- 3. Знайти базиси суми і перетину лінійних підпросторів, породжених системами векторів $a_1,...,a_k$ і $b_1,...,b_m$ відповідно

$$a_1$$
=(1,1,0,0), a_2 =(0,1,1,0), a_3 =(0,0,1,1); b_1 =(1,0,1,0), b_2 =(0,2,1,1), b_3 =(1,2,1,2).

4. Розкласти дану матрицю в добуток симетричної матриці з додатними характеристичними числами і ортогональної матриці

$$A = \begin{pmatrix} 0 & 3 & 2 \\ -2 & 2 & 4 \\ 5 & 0 & -2 \end{pmatrix}.$$

Затверджено на засіданні кафедри *Дослідження операцій* від 25 травня 2022 року протокол № 11.

Зав. кафедри Іксанов О.М.

Спеціальність	_Інженері	я програмно	го забезпечення
Навчальний пред	,метA.	лгебра та гео	метрія
Курс1 Семест	p2		

ЕКЗАМЕНАЦІЙНИЙ БІЛЕТ № 10.

- 1. Поняття лінійного перетворення.
- 2. Ортогональні оператори. Властивості ортогональних операторів та ортогональних матриць.
- 3. Оператор φ задається координатами вектора $\varphi(x)$ як фукнціями координат вектора $x=(x_1,x_2,x_3)$. З'ясувати, чи ε φ лінійним оператором. У випадку лінійності знайти його матрицю в базисі, в якому задаються координати векторів x та $\varphi(x)$. $\varphi(x)=(3x_1-x_2+4x_3, x_2-2x_3, x_1+2x_2+4x_3)$.
- 4. Лінійне перетворення φ простору в деякому базисі задається матрицею. Знайти базис, в якому матриця цього перетворення жорданова, і знайти цю жорданову матрицю.

$$\begin{pmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5 \end{pmatrix}.$$

Затверджено на засіданні кафедри *Дослідження операцій* від 25 травня 2022 року протокол № 11.

Зав. кафедри Іксанов О.М.

Спеціальність	_Інженері	я програмно	го забезпечення
Навчальний пред	,метA.	лгебра та гео	метрія
Курс1 Семест	p2		

ЕКЗАМЕНАЦІЙНИЙ БІЛЕТ № 11.

- 1. Матриця лінійного перетворення в базисі, властивості.
- 2. Ортогональні оператори на прямій та площині. Теореми про будову ортогонального оператора та ортогональної матриці.
- 3. Довести, що існує єдине лінійне перетворення, що переводить вектори a_1,a_2,a_3 відповідно в b_1,b_2,b_3 , та знайти матрицю цього перетворення в базисі, в якому задаються координати усіх векторів

$$a_1$$
=(2,3,4), a_2 =(1,2,2), a_3 =(-1,-1,-1); b_1 =(-11,3,9), b_2 =(1,1,-1), b_3 =(18,-6,-14).

4. Система векторів задається координатами в деякому ортонормованому базисі евклідова простору. За допомогою процесу ортогоналізації знайти ортогональний базис підпростору, породженого даною системою векторів. (1,2,-1,1), (-5,-5,4,-2), (-3,6,2,0).

Затверджено на засіданні кафедри *Дослідження операцій* від 25 травня 2022 року протокол № 11.

Зав. кафедри Іксанов О.М.

Спеціальність	_Інжен	нерія програмного забезпечення
Навчальний пред	цмет	_Алгебра та геометрія
Курс1 Семест	p 2	

ЕКЗАМЕНАЦІЙНИЙ БІЛЕТ № 12.

- 1. Координати образу вектора при лінійному перетворенні.
- 2. Будова невиродженого лінійного оператора в скінченовимірному евклідовому просторі.
- 3. Лінійне перетворення в базисі e_1, e_2, e_3 задається матрицею A, знайти матрицю цього перетворення в базисі f_1, f_2, f_3 .

$$A = \begin{pmatrix} 0 & 2 & 1 \\ 2 & 8 & 2 \\ 1 & 2 & 0 \end{pmatrix} \qquad f_1 = 2e_1 + 2e_2 - e_3$$

$$f_2 = 2e_1 - e_2 + 2e_3.$$

$$f_3 = -e_1 + 2e_2 + 2e_3$$

4. Перевірити ортогональність системи векторів і доповнити вектори до ортогонального базису простору (1,-1,1,-3), (-4,1,5,0).

Затверджено на засіданні кафедри *Дослідження операцій* від 25 травня 2022 року протокол № 11.

Зав. кафедри Іксанов О.М.

Екзаменатори Довгай Б.В.

Маринич О.В.

Спеціальність	_Інженері	я програмного	э забезпечення
Навчальний пред	,метAл	тебра та геом	етрія
Курс1 Семест	p2		

ЕКЗАМЕНАЦІЙНИЙ БІЛЕТ № 13.

- 1. Ядро та образ лінійного перетворення. Теорема про розмірність.
- 2. Лінійні функції та лінійні форми.
- 3. Лінійне перетворення в деякому базисі задається матрицею. З'ясувати, чи існує для даного перетворення базис простору, складений з власних векторів перетворення. Знайти цей базис і матрицю перетворення в цьому базисі.

$$\begin{pmatrix} 2 & 5 & 1 \\ -1 & -3 & 0 \\ -2 & -3 & -2 \end{pmatrix}.$$

4. Знайти ортогональну проекцію y та ортогональну складову z вектора x на лінійний підпростір L.

x= (14,-3,-6,-7). L породжується системою векторів a_1 = (-3,0,7,6), a_2 = (1,4,3,2), a_3 = (2,2,-2,-2).

Затверджено на засіданні кафедри *Дослідження операцій* від 25 травня 2022 року протокол № 11.

Зав. кафедри Іксанов О.М.

Спеціальність	_Інжеі	нерія програмного забезпечення
Навчальний пред	цмет	_Алгебра та геометрія
Курс1 Семест	p_2	

ЕКЗАМЕНАЦІЙНИЙ БІЛЕТ № 14.

- 1. Алгебра лінійних операторів (операції над лінійними операторами).
- 2. Білінійні функції та білінійні форми.
- 3. Перевірити, чи утворює система векторів лінійний підпростір в просторі всіх n-вимірних векторів. Якщо система векторів є підпростором, знайти його базис та розмірність.

Усі вектори, у яких перша координата дорівнює сумі усіх інших координат.

4. Для квадратичної форми знайти канонічний вигляд та невироджене лінійне перетворення, що зводить квадратичну форму до цього вигляду (метод Лагранжа) $3{x_1}^2 + 2{x_2}^2 - {x_3}^2 - 2{x_4}^2 + 2{x_1}{x_2} - 4{x_2}{x_3} + 2{x_2}{x_4}$.

Затверджено на засіданні кафедри *Дослідження операцій* від 25 травня 2022 року протокол № 11.

Зав. кафедри Іксанов О.М.

Екзаменатори Довгай Б.В.

Маринич О.В.

Спеціальність	_Інжен	ерія програмного забезпечення
Навчальний пред	цмет	_Алгебра та геометрія
Курс 1 Семест	p 2	

ЕКЗАМЕНАЦІЙНИЙ БІЛЕТ № 15.

- 1. Поняття оберненого оператора, умови існування.
- 2. Матриця білінійної функції в базисі. Зв'язок матриць в різних базисах.
- 3. Довести, що кожна з двох систем векторів $e_1, e_2, ..., e_n$ та $e_1, e_2, ..., e_n$ утворює базис простору і знайти матрицю переходу від базису $e_1, e_2, ..., e_n$ до базису $e_1, e_2, ..., e_n$?

$$e_1$$
=(1,1,1,1), e_2 =(1,2,1,3), e_3 =(1,1,2,2), e_4 =(1,1,1,3); e_1 '=(3,-5,7,2), e_2 '=(-1, 8,-6, 5), e_3 '=(1,0,1,3), e_4 '=(2,2,2,2).

4. Знайти ортогональне перетворення, що зводить квадратичну форму до канонічного вигляду, і записати цей канонічний вигляд. $x_1^2 - x_1x_2 + x_1x_3 + x_2^2 + x_2x_3 + x_3^2$.

Затверджено на засіданні кафедри *Дослідження операцій* від 25 травня 2022 року протокол № 11.

Зав. кафедри Іксанов О.М.

Спеціальність	Інженерія програмного забезпечення
Навчальний пред	метАлгебра та геометрія
Курс 1 Семест	\circ 2

ЕКЗАМЕНАЦІЙНИЙ БІЛЕТ № 16.

- 1. Зв'язок матриць лінійного оператора в різних базисах.
- 2. Симетричні та кососиметричні білінійні функції.
- 3. Знайти розмірність і базис лінійного підпростору, породженого системою векторів

$$a_1 = (1,1,-1,-1), a_2 = (5,-4,7,1), a_3 = (3,-3,5,1), a_4 = (9,-6,11,1).$$

4. Звести рівняння поверхні другого порядку до канонічного вигляду і визначити тип поверхні.

$$3x^2 - 7y^2 + 3z^2 + 8xy - 8yz - 8xz - 4x + 6y + 8z - 5 = 0.$$

Затверджено на засіданні кафедри *Дослідження операцій* від 25 травня 2022 року протокол № 11.

Зав. кафедри Іксанов О.М.

Спеціальність	Інженерія програмн	ого забезпечення
Навчальний преди	метАлгебра та ге	ометрія
Курс1 Семестр	2	

ЕКЗАМЕНАЦІЙНИЙ БІЛЕТ № 17.

- 1. Характеристичний многочлен лінійного оператора. Поняття власних векторів та власних чисел. Теореми про власні вектори.
- 2. Квадратичні функції та квадратичні форми. Поняття полярної білінійної функції.
- 3. Знайти систему лінійних рівнянь, яка задає підпростір, породжений системою векторів

$$a_1 = (1, -1, 1, -1, 1), a_2 = (1, 1, 0, 0, 3), a_3 = (3, 1, 1, -1, 7), a_4 = (0, 2, -1, 1, 2).$$

4. Знайти відстань від точки, що відповідає вектору x, до лінійного підпростору L, породженого системою векторів a_1, \ldots, a_k

$$x=(1,-1,1,-1); a_1=(1,-1,0,2), a_2=(1,0,1,1).$$

Затверджено на засіданні кафедри *Дослідження операцій* від 25 травня 2022 року протокол № 11.

Зав. кафедри Іксанов О.М.

Спеціал	пьністьІн	женерія програг	много забезпечення
Навчал	ьний предме	етАлгебра та	геометрія
Курс	1 Семестр	2	

ЕКЗАМЕНАЦІЙНИЙ БІЛЕТ № 18.

- 1. Інваріантність. Теореми 1–5 про інваріантність. Теорема про інваріантні підпростори дійсного векторного простору.
- 2. Зведення квадратичної функції до канонічного вигляду. Метод Лагранжа.
- 3. Знайти базиси суми і перетину лінійних підпросторів, породжених системами векторів $a_1, ..., a_k$ і $b_1, ..., b_m$ відповідно

$$a_1$$
=(1,2,3), a_2 =(0,1,1), a_3 =(1,1,2); b_1 =(4,3,1), b_2 =(1,1,0), b_3 =(5,3,2).

4. $e_1, e_2, ..., e_n$ — ортонормований базис евклідова простору. Лінійне перетворення φ задається в базисі $f_1, f_2, ..., f_n$ матрицею A. Знайти матрицю спряженого перетворення φ * в базисі $f_1, f_2, ..., f_n$.

$$A = \begin{pmatrix} 0 & 0 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \qquad f_1 = e_1 + e_2 + e_3, f_2 = e_2 + e_3, f_3 = e_2 - e_3.$$

Затверджено на засіданні кафедри *Дослідження операцій* від 25 травня 2022 року протокол № 11.

Зав. кафедри Іксанов О.М.

Спеціальність	Інженерія прогр	рамного забезпечення
Навчальний преді	метАлгебра	та геометрія
Курс1 Семестр	2	

ЕКЗАМЕНАЦІЙНИЙ БІЛЕТ № 19.

- 1. Оператори простої структури. Достатня умова, критерії оператора простої структури.
- 2. Закон інерції квадратичних форм.
- 3. Довести, що існує єдине лінійне перетворення, що переводить вектори a_1,a_2,a_3 відповідно в b_1,b_2,b_3 , та знайти матрицю цього перетворення в базисі, в якому задаються координати усіх векторів

$$a_1$$
=(6,2,1), a_2 =(-7,-1,-1), a_3 =(9,1,1); b_1 =(-2,9,11), b_2 =(0,4,5), b_3 =(-4,-36,-46).

4. Самоспряжене лінійне перетворення φ в деякому ортонормованому базисі задається матрицею A. Знайти ортонормований базис простору, який складається з власних векторів перетворення φ , і матрицю B перетворення в цьому базисі.

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 3 & -1 \\ 0 & -1 & 2 \end{pmatrix}.$$

Затверджено на засіданні кафедри *Дослідження операцій* від 25 травня 2022 року протокол № 11.

Зав. кафедри Іксанов О.М.