Exercícios de Cálculo Diferencial e Integral III

(DF - 2018/19)

Capítulo 0 - Revisões

- 1. Diga se são verdadeiras ou falsas as seguintes afirmações:
 - (a) $y(x) = 2e^x + xe^{-x}$ é solução da equação y'' + 2y' + y = 0 num intervalo aberto $I \subset \mathbb{R}$.
 - (b) $v(x) \equiv 1$ é solução da equação v'' + 2v' + v = x num intervalo aberto $I \subset \mathbb{R}$.
 - (c) $u(x) = \log x$ é solução da equação xu'' + u' = 0 num intervalo aberto $I \subset \mathbb{R}$.
- 2. (a) Sendo $a \in \mathbb{R}$, verifique que as funções $x(t) = ce^{at}$ ($c \in \mathbb{R}$) são soluções em \mathbb{R} da equação x'(t) = ax(t).
 - (b) Justifique que a equação x'(t) = ax(t) é equivalente a $(x(t)e^{-at})' = 0$; use este facto para justificar que não há mais soluções em \mathbb{R} da equação x'(t) = ax(t) para além das da forma em (a).
- 3. Um corpo descreve um movimento rectilíneo com posição s(t) em cada instante $t \ge 0$. Sabendo que $v(t)e^{s(t)} = 1 \cos t$, onde v(t) é a velocidade, e que no instante t = 0 o corpo ocupa a posição s(0) = 0, determine a sua posição no instante $t = \pi$.
- 4. Para as seguintes matrizes, determine os valores próprios (reais ou complexos) e um vector próprio associado a cada um deles:

(a)
$$\begin{bmatrix} -5 & 2 \\ 1 & -4 \end{bmatrix}$$
; (b) $\begin{bmatrix} 1 & 1 \\ -4 & 1 \end{bmatrix}$.

5. Calcule os seguintes integrais, onde $n \in \mathbb{N}$:

(a)
$$\int_0^1 \sin(n\pi x) dx$$
; (b) $\int_0^1 x \cos(n\pi x) dx$; (c) $\int_{-\pi}^{\pi} x \cos(nx) dx$; (d) $\int_{-\pi}^{\pi} x \sin(nx) dx$.

6. Escreva os seguintes números complexos na forma (dita algébrica) a+ib, com $a,b \in \mathbb{R}$:

a)
$$\frac{1}{i} + \frac{1}{2-i}$$
; b) izw^{-1} , onde $z = 5 - 5i$, $w = -3 + 4i$.

7. Recorde a <u>forma trigonométrica</u> de números complexos $r \operatorname{cis} \theta = r \operatorname{cos} \theta + ir \operatorname{sin} \theta$, também chamada de **forma polar** e denotada por

$$re^{i\theta} := r(\cos\theta + i\sin\theta).$$

- a) Considerando números complexos z, w dados na forma polar por $z = re^{i\theta}, w = \rho e^{i\zeta}$, mostre que $zw = r\rho e^{i(\theta+\zeta)}$.
- b) Represente geometricamente e escreva na forma polar os números complexos seguintes: -1 + i; 3; -3; -3i; $(1 + i)^{100}$.
- 8. Represente geometricamente: a) as raízes cúbicas de -1; b) as raízes quadradas de 4i.

1

- 9. Usando os desenvolvimentos em série de Mac-Laurin de $\sin y = \cos y$, mostre que $\cos y +$ $i\sin y = \sum_{n\geq 0} \frac{(iy)^n}{n!}, \ \forall y\in \mathbb{R}$ – o que justifica a notação $e^{iy}:=\cos y+i\sin y.$
- 10. Exponencial Complexa: A função exponencial complexa, denotada por e^z ou exp z, é definida por

$$e^z = e^x e^{iy}$$
 para $z = x + iy \ (x, y \in \mathbb{R}).$

- a) Escreva na forma x+iy com $x,y\in\mathbb{R}$ os complexos: e^{3+i},e^{2i} .
- b) Mostre que $e^{z+w} = e^z e^w$, $\forall z, w \in \mathbb{C}$.
- c) Mostre que qualquer $w \in \mathbb{C}, w \neq 0$ se escreve na forma $w = e^z$, para algum $z = a + ib \in \mathbb{C}$; determine ainda a, b. (Sugestão: escreva w na forma polar.)
- d) Escreva na forma polar os números complexos: (i) $i^7(\frac{\sqrt{3}}{2}+i\frac{1}{2})$; (ii) $(2+2i)(\frac{\sqrt{3}}{2}+i\frac{1}{2})$.
- e) Sendo $z \in \mathbb{C}$ fixado e $\gamma : \mathbb{R} \to \mathbb{C}$ a função definida por $\gamma(t) = e^{zt}$ (com a identificação geométrica $\mathbb{C} \equiv \mathbb{R}^2$), mostre que

$$\gamma'(t) = ze^{zt}, \quad \forall t \in \mathbb{R}.$$

- 11. Diga se são verdadeiras ou falsas as seguintes afirmações:
 - a) $z = \bar{z}$ se e só se z é real.
 - b) wz = 0 se e só se w = 0 ou $z = 0, \forall w, z \in \mathbb{C}$.
 - c) Re(wz) = 0 se e só se Re w = 0 ou $Re z = 0, \forall w, z \in \mathbb{C}$.

Algumas soluções:

- 1. F, F, V.
- 3. $\log(1+\pi)$.
- 4.(a) val. pp -6, -3; (b) val. pp $1 \pm 2i$.
- 5.(a) 0 se n par, $2/(n\pi)$ se n impar; (b) 0 se n par, $-2/(n\pi)^2$ se n impar; (c) 0; (d) $(-1)^{n+1}\frac{2\pi}{n}$. 6.a) $\frac{2}{5} - i\frac{4}{5}$; b) $\frac{1}{5} - i\frac{7}{5}$. 11. V, V, F.