Beispiel einer Anfrage (I)

Welche Umsätze sind in den Jahren 2013 und 2014 in den Abteilungen Kosmetik, Elektro und Haushalt in den Bundesländern Sachsen und Thüringen angefallen?

Ergebnis als Bericht

Umsatz		Kosmetik	Elektro	Haushalt	SUMME
2013	Sachsen	45	123	17	185
	Thüringen	43	131	21	195
	SUMME	88	254	38	380
2014	Sachsen	47	131	19	197
	Thüringen	40	136	20	196
	SUMME	87	267	39	393
SUMME		175	521	77	773

H1//

Beispiel einer Anfrage (II)

Data Warehouse - Ziele und Definitionen

allgemeine Zielsetzungen:

- > Aufbau einer zentralen und konsistenten Datenbasis
- für verschiedene Anwendungen
- zur Unterstützung analytischer Aufgaben von Fach- und Führungskräften
- losgelöst betrieben von den operativen Datenbanken

Ein **Data Warehouse** ist eine aus einer oder mehreren operativen Datenbanken extrahierte Datenbank, die alle für den Geschäftsprozess relevanten Daten eines Unternehmens zusammenfasst, aufbereitet und aggregiert.

Ein **Data Warehouse** umfasst die Meta-, die Dimensions- und die Aggregationsdaten sowie die Fakten, um Informationen verfügbar und informationsgestützte Entscheidungen möglich zu machen.

Darüber hinaus beinhaltet es die notwendigen Verwaltungsprozesse wie Einfügen, Warehouse und Abfrage.

Beispiel für eine Data Warehouse - Architektur

Problemfelder bei der "Erschließung" von Informationen

Hindernisse bei der Auswertung unternehmensweiter Datenbestände ohne Einsatz Data Warehouse - Einsatz:

- Behinderung von Zugriff auf und Zusammenführung von Daten durch heterogene IS-Strukturen
- unbefriedigende und oft schwer überprüfbare Qualität und Aktualität der Daten
- Behinderung der Berichtserstellung durch mangelnde Kapazität in der EDV.
- Auslagerung historischer Daten auf langsame, nicht online verfügbare Datenspeicher
- Erhebliche **Mehrbelastung der vorhandenen IS-Infrastruktur** (Rechner, Netzwerke, etc...) durch die notwendigen Analysen
- Fehlende Nachvollziehbarkeit von Analysen wegen permanenter Datenänderungen
- unbefriedigende Performance beim Umgang mit großen Datenbeständen

Informationslücke

- Verfügbare Datenbestände
- Unternehmenskritische Entscheidungen pro Woche
- Anzahl der Systemanalytiker

Vergleich der Systemauslastung

Data Warehouse – Definition und Charkteristika

Forderungen an ein DWH: [nach Inmon]

- > Struktur- und Formatvereinheitlichung (Integration):
 Ablage der Daten einer Datenstruktur mit einheitlichem Format
- Subjektorientierung:
 Speicherung orientiert an den Subjekten eines Unternehmens
- Zeitraumbezug (time variant): Speicherung aller Daten mit Zeitraumbezug (<u>nicht</u> zeitpunktbezogen)
- Nicht-Volatilität: keine Änderung einmal gespeicherter Daten

Denormalisierung

Auf eine Normalisierung nach Codd wird verzichtet, bzw. ist eine Normalisierung vorhanden, wird diese rückgängig gemacht.

Ziel: Reduzierung der Zugriffszeiten und damit Gewinn an Performance

Integration

- Integration ist erforderlich, da das Data Warehouse die zentrale Datenbasis zur Durchführung der Business Analyse ist.
- Diese Datenbasis enthält die Daten aller OLTP-Systeme und aller Organisationseinheiten des Unternehmens in einem einheitlichen Format und einer Struktur.

Situation: o Einsatz unterschiedlicher DBMS auf verschiedenen Betriebssystemplattformen

- o Unterschiede in Struktur und Formaten der OLTP-Datenbanken
- o Unterschiede in der semantischen Interpretation der Daten

Subjektorientierung

- Das Datenbankschema ist an den Subjekten der Business Analyse und nicht an den Datenbankobjekten (OLTP Datenbank) orientiert.
- Die Orientierung an den Subjekten der Business Analyse ist sinnvoll, da unterschiedliche Unternehmensfunktionen gleiche Subjekte des Data Warehouses für ihre Analyse nutzen.

Daten-orientierte versus Subjekt-orientierte Modellierung

Denormalisierung

- keine Normalisierung nach Codd in die 3. Normalform (NF)
- Entfernen vorhandener Normalisierungen der OLTP-Datenbasis

12

Ziel: Reduzierung der Zugriffszeit => Steigerung der Performance

join

Bespiel:

OLTP-System: 3. NF

product_ID	name	category_ID
2102	Blueberry Milk	8
1508	Buttermilk	8
1302	Schoklade Milk	8
2103	Blueberry Yogurt	12

1307 Strawberry Yogurt

category_ID	name
8	Milk
12	Yogurt

DWH-System: not 3. NF

product_ID	productname	category_ID	categoryname
2102	Blueberry Milk	8	Milk
1508	Buttermilk	8	Milk
1302	Schoklade Milk	8	Milk
2103	Blueberry Yogurt	12	Yogurt
1307	Strawberry Yogurt	12	Yogurt

kein JOIN in Abfrage notwenig

Modellierung der Zeit

Data Warehouse und OLAP

Veranschaulichung der Multidimensionalität

- > Dimensionalität
 - Anzahl der Dimensionen
- > Kanten = Dimensionen
- > **Zellen** = Fakten

- Visualisierung
- 2 Dimensionen: Tabelle
 - 3 Dimensionen: Würfel
 - >3 Dimensionen: Multidim. Domänenstruktur

Business IntelligenceData Warehouse und OLAP

Verschiedene Sichten auf einen Würfel

Dimensionen

- Dimensionen sind die "Richtungen", nach denen die Kennzahlen ausgewertet werden können.
- Sie beschreiben den Rahmen für die Auswertung der Kennzahlen.
- Kennzahlen sind nur in Zusammenhang mit den Dimensionen gültig.
- Beispiel: Wenn der Umsatzbetrag eines Produktes in einer Region und einer Zeitperiode die Kennzahl ist, dann sind die Dimensionen:
 - Produkt,
 - Geografie und
 - Zeit.
- Dimensionen sind eine unabhängige Liste an Analyseelementen.
- ➤ Die Attribute sind i. A. eine abhängige Liste an Analyseelementen.
- Beispiel: Attribute in der Dimension Zeit
 - alle Jahre, Jahr, Quartal, Monat, Woche, Tag

Attribute und Hierarchien der Dimensionen

- > Attribute sind die Eigenschaften der Dimensionen.
- > Sie werden für die Klassifizierung und Filterung der Kennzahlen verwendet.
- > Beispiel: Produkt, Geografie und Zeit sind die Dimensionen eines in einem Würfel (Cube).

Attribute:

- Dim. Produkt: Produkt_ID, Produktname, Preis, Produkttyp, Anbieter
- Dim. Geografie: Shop_ID, Shopname, Stadt, Region, Land
- Dim. Zeit: Tag_ID, Wochentag, Woche, Monat, Quartal, Jahr
- Die Attribute k\u00f6nnen zur Bildung der Hierarchien in der Dimension verwendet werden. Die verwendeten Attribute bilden dann die Ebenen (level) der Hierarchie.
- ▶ Beispiel: Dim. Zeit Attribute zur Bildung der Hierarchie Kalender: alle Jahre ⇒ Jahr ⇒ Quartal ⇒ Monat ⇒ Tag

Dimensionen und Abhängigkeit

2 unabhängige Dimensionen

	January	February	March
Blueberry Milk	102456	98345	122334
Buttermilk	13453	15677	17885
Schoklade Milk	22341	18776	24556
Blueberry Yogurt	67987	56367	54378
Strawberry Yogurt	123451	98233	99132

	Qrt1	Qtr2
Blueberry Milk	323135	421823
Buttermilk	47015	76553
Schoklade Milk	65673	76823
Blueberry Yogurt	178732	198323
Strawberry Yogurt	320816	44571

2 Dimensionen mit Abhängigkeit

	Qtr1	Qtr2
January	102456	
February	98345	
March	122334	
April		145267
May		138734
June		156239

viele leere Zellen (z.B. Wert für Qtr1 uns April nicht existent)

Erstellen einer Dimension, die die beiden Elemente als Attribute enthält (ggf. Hierarchie aus den Attributen erzeugen)

Beispiel einer parallelen Hierarchie

parallel

- Es gibt Knoten mit mehr als einem übergeordneten Knoten.
- Es sind mehrere Wege von der Wurzel zu einzelnen Blättern vorhanden.
- Es gibt keine Lücken in den Werten der Knoten.

Beispiel:

Tu

Th

Fr

Sa

So

53. week 2004 1. week 2005 2. week 2005 10.01.2005 Mo 27.12.2004 03.01.2005 28.12.2004 04.01.2005 11.01.2005 We 29.12.2004 05.01.2005 12.01.2005 30.12.2004 06.01.2005 13.01.2005 31.12.2004 07.01.2005 14.01.2005 08.01.2005 15.01.2005 01.01.2005 02.01.2005 09.01.2005 16.01.2005

level: name: time all year quarter week month

day

Strategien zur Speicherung multidimensionaler Daten

relational

- Datenspeicherung im relationalen DBMS
- Modellierung der Cubestruktur mittels Relationen (Tabellen)
- Verwendung des SQL-Standards zur Datenabfrage und -manipulation
- Beispiele:
 - > Star Schema
 - Snowflake Schema

(Relational Online Analytical Processing)

nicht relational

- Datenspeicherung nicht in relationaler Art
- Speicherung des Cube mit klassischen Methoden der Informatik
- Fehlende Standards für Datenabfrage und -manipulation
- > Beispiele:
 - arrays
 - hash-tables
 - bitmap-indices

(Multidimensional Online Analytical Processing)

Star - Schema

Ein **Star-Schema** ist ein Datenbankschema, welches so strukturiert ist, dass eine typische Abfrage zur Entscheidungsfindung unterstützt wird.

Im Zentrum des Schemas befindet sich die Fakttabelle, um welche die Dimensionstabellen angeordnet sind.

Die Verbindung zwischen den Dimensions-und der Fakttabellen wird über Fremdschlüssel-Primärschlüssel-Beziehungen realisiert.

Verwendung des relationalen Datenmodells zur Abbildung multidimensionaler Strukturen

Business IntelligenceData Warehouse und OLAP

Ausschnitt aus dem Schema einer operativen Datenbank

Business IntelligenceData Warehouse und OLAP

Auszug aus der Dimensionstabelle "Zeit"

Z_ID	Monat	Jahr
1	Januar	2002
2	Februar	2002
3	März	2002
4	April	2002
5	Mai	2002
6	Juni	2002
7	Juli	2002
8	August	2002
9	September	2002
10	Oktober	2002
11	November	2002
12	Dezember	2002
13	Januar	2003
14	Februar	2003
15	März	2003

Beispieldaten - Star Schema

dimension table product

Product_ID	Brand_Name	Product_Name	Price	Category_ID	Category_Name
1001	American	Chicken Hot Dogs	2,45€	7	Hot Dogs
1002	American	Extra Light Hamburger	1,20 €	6	Hamburger
1003	American	Chicken Fricassee	3,00€	5	Frozen Chicken
1004	American	Chicken Breast	2,05€	5	Frozen Chicken
		•••			
1309	Danone	Creme fraiche	0,52€	11	Sour Cream
1310	Danone	Creme Legere	2,22€	11	Sour Cream
1311	Danone	Leerdammer special	0,71€	2	Cheese
,		•••			

fact table sales

dimension table time

Time_ID	State_ID	Product_ID	Sales_Euro	Sales_Units
1	1	1001	126,04 €	46
1	1	1002	62,10 €	46
1	1	1003	149,52 €	42
7	17	1309	10,80 €	18
7	17	1310	191,99€	73
7	17	1311	6,30 €	7

Time_ID	Year	Quarter	Month
1	2002	1	1
2	2002	1	2
3	2002	1	3
4	2002	2	4
5	2002	2	5
6	2002	2	6
7	2002	3	7
8	2002	3	8
9	2002	3	9
10	2002	4	10
11	2002	4	11
12	2002	4	12
13	2003	1	1
14	2003	1	2

dimension table state

ı	State_ID	Federal_State	Region	Country
	1	Saxony	East	Germany
	2	Bavaria	South	Germany
	3	Saarland	West	Germany
	16	Hesse	West	Germany
	17	Valais	South	Switzerland
	18	Ticino	South	Switzerland

Business Intelligence Data Warehouse und OLAP

Eigenschaften des Star Schemas

- Bezug mehrerer Dimensionstabellen auf eine Fakttabelle
- Große Datensatzanzahl in der Fakttabelle gegenüber den Dimensionstabellen
- > 1:n Beziehung jeder Dimensionstabelle zur Fakttabelle
- hohe Abfrageeffizienz (Abfrage auf großer Fakttabelle mit einfachem join zu kleinen Dimensionstabellen)
 - Abfrage auf großer Fakttabelle mit einfachem join zu kleinen Dimensionstabellen
 - Bildung des join nur zwischen Fakttabelle und der jeweiligen Dimensionstabelle
- einfache Anfrageerstellung durch geringe Tabellenanzahl
- Bei Verwendung von level-Attributen
 - ⇒ Zugriff auf aggregierte Werte nicht performater als auf Detailwerte
- > hoher Aufwand bei Änderung der Dimensionshierarchien

Snowflake Schema

Ein **Snowflake Schema** ist ein Datenbankschema, welches aus dem Star Schema in der Weise abgeleitet wird, dass die Dimensionstabellen normalisiert werden.

In jeder Dimension wird für jede Hierarchieebene eine eigene Tabelle eingeführt.

Die Verbindung zwischen den Dimensions-und der Fakttabellen wird über Fremdschlüssel - Primärschlüssel-Beziehungen realisiert.

Die einzelne **Dimensionstabelle** enthält:

- Primärschlüssel für den Hierarchieknoten (z.B. P_Nr)
- beschreibendes Attribut (z.B. Name)
- Fremdschlüssel der nächst höheren Hierarchieebene (z.B. K_Nr)

Die **Fakttabelle** enthält (neben den Fakten):

- Fremdschlüssel der jeweils niedrigsten Hierarchiestufe der Dimensionen (z.B. P_Nr)
- Primärschlüssel als zusammengesetzten Schlüssel, bestehend aus den Fremdschlüsseln der niedrigsten Hierarchiestufen der Dimensionen (z.B. P_Nr F_Nr M_Nr)

Beispieldaten - Snowflake Schema

dimension tables of product

Category_ID	Category_Name
2	Cheese
6	Hamburger
11	Sour Cream
5	Frozen Chicken
7	Hot Dogs
,	

Product_ID	Brand_Name	Product_Name	Price	Category_ID
1001	American	Chicken Hot Dogs	2,45€	7
1002	American	Extra Light Hamburger	1,20 €	6
1003	American	Chicken Fricassee	3,00€	5
1004	American	Chicken Breast	2,05€	5
		•••		
1309	Danone	Creme fraiche	0,52€	11
1310	Danone	Creme Legere	2,22€	11
1311	Danone	Leerdammer special	0,71€	2

fact table sales

Time_ID	State_ID	Product_ID	Sales_Euro	Sales_Units
1	1	1001	126,04 €	46
1	1	1002	62,10€	46
1	1	1003	149,52 €	42
7	17	1309	10,80 €	18
7	17	1310	191,99€	73
7	17	1311	6,30 €	7

Vergleich von Star Schema und Snowflake Schema

Star Schema

- denormalisierteDimensionstabellen
- nur JOIIN zwischen Fakt- und Dimensionstabellen
- Insert- und Updateanomalien bei Änderungen in den Dimensionen vorhanden

Anwendung bei geringer Änderungshäufigkeit in den Dimensionswerten

Snowflake Schema

- normalisierte Dimensionstabellen
- JOIN zwischen Fakt- und Dimensionstabellen sowie zwischen den Tabellen einer Dimension
- Insert- und Updateanomalien bei Änderungen in den Dimensionen nicht vorhanden

Anwendung bei großer Änderungshäufigkeit in den Dimensionswerten

Galaxie Schema

Star Schema

- > Eine Fakttabelle
- Mehrere Kennzahlen nur möglich bei gleichen Dimensionen
- Bsp.:

Kennzahlen *Istumsatz* und *Umsatzmenge*, beide abhängig von den Dimensionen *Zeitraum*, *Geografie* und *Vertragstyp*

Galaxie Schema

- Mehrere Fakttabellen
- Kennzahlen nur teilweise mit gleichem Dimensionsbezug
- Bsp:

Kennzahl *Istumsatz*, abhängig von den Dimensionen *Zeitraum*, *Geografie* und *Vertragstyp*

Kennzahl *Planumsatz*, abhängig von den Dimensionen *Zeitraum* und *Geografie*, <u>keine</u> Abhängigkeit vom *Vertragstyp*

Beispieldaten - Star Schema mit level-Attribut

fact table sales

Time_ID	State_ID	Product_ID	Sales_Euro	Sales_Units	
1	1	1001	126,04 €	46	
1	1	1002	62,10€	46	
1	1	1003	149,52€	42	
7	17	1309	10,80€	18	
7	17	1310	191,99€	73	
7	17	1311	6,30€	7	
25	1	1001	345,05€	205	
26	1	1001	205,20€	209	
27	1	1001	335,67€	245	
28	1	1001	456,28 €	234	
29	1	1001	1.342,20 €	893	
107	1	1001	2.345,45€	1453	

dimension table *time*

Time_ID	Year	Quarter	Month	level
1	2002	1	1	0
2	2002	1	2	0
3	2002	1	3	0
4	2002	2	4	0
5	2002	2	5	0
6	2002	2	6	0
7	2002	3	7	0
8	2002	3	8	0
9	2002	3	9	0
10	2002	4	10	0
11	2002	4	11	0
12	2002	4	12	0
25	2002	1	NULL	1
26	2002	2	NULL	1
27	2002	3	NULL	1
28	2002	4	NULL	1
29	2002	NULL	NULL	2
13	2003	1	1	0
14	2003	1	2	0
107	NULL	NULL	NULL	3

dimension dimension table table product

level attributs:

Prof. Dr.-Ing. A. Toll

Business IntelligenceData Warehouse und OLAP

Beispieldaten - Fact Constellation

dimension table product

only one aggregation level for dimension time: quarter

4111101	oioii tai	oio produot			
Product_ID	Brand_Name	Product_Name	Price	Category_ID	Category_Name
1001	American	Chicken Hot Dogs	2,45 €	7	Hot Dogs
1002	American	Extra Light Hamburger	1,20 €	6	Hamburger
1003	American	Chicken Fricassee	3,00€	5	Frozen Chicken
1004	American	Chicken Breast	2,05€	5	Frozen Chicken
1309	Danone	Creme fraiche	0,52€	11	Sour Cream
1310	Danone	Creme Legere	2,22€	11	Sour Cream
1311	Danone	Leerdammer special	0,71€	2	Cheese
			•		

fact table sales

Time_ID	State_ID	Product_ID	Sales_Euro	Sales_Units
1	1	1001	126,04 €	46
1	1	1002	62,10€	46
1	1	1003	149,52 €	42
7	17	1309	10,80€	
7	17	1310	191,99€	73
7	17	1311	6,30€	7
_				

fact table sales_quarter_product_state

Year	Quarter	State_ID	Product_ID	Sales_Euro	Sales_Units
2002	1	1	1001	345,05€	205
2002	2	1	1001	205,20€	209
2002	3	1	1001	335,67 €	245
2002	4	1	1001	456,28 €	234
2003	1	1	1001	367,34 €	239
2003	2	1	1001	521,23€	312

dimension table *time*

Time_ID	Year	Quarter	Month
1	2002	7	_ 1
2	2002	1	2
3	2002	1	3
4	2002	2	4
5	2002	2	5
6	2002	2	6
7	2002	3	7
8	2002	3	8
9	2002	3	9
10	2002	4	10
11	2002	4	11
12	2002	4	12
13	2003	1	1
14	2003	1	2

dimension table state

State_ID	Federal_State	Region	Country
1	Saxony	East	Germany
2	Bavaria	South	Germany
3	Saarland	West	Germany
16	Hesse	West	Germany
17	Valais	South	Switzerland
18	Ticino	South	Switzerland
			_

Business Intelligence
Data Warehouse und OLAP

Speicherung vorberechneter Aggregate im relationalen Schema

Anmerkungen zur Verwendung von Level-Attributen im Star-Schema

- Speicherung der vorberechneten Aggregate in weiteren Tupeln der Fakttabelle
- Einführung eines Level-Attributes in den Dimensionstabellen
- schnellerer Zugriff auf Aggregate bei der Schemavariante mit Level-Attribut als beim klassischen Star-Schema, kein schnellerer Zugriff auf aggregierte Werte im Vergleich zu Detailwerten
- anwendbar nur beim Star-Schema, nicht beim Shnowflake-Schema
- Erfordernis der Änderung von Daten in der Fakttabelle (ggf. Anpassen der Aggregate beim Laden)
- einfache Abfrage auch für aggregierte Werte
- praktisch nicht alle Aggregattupel speicherbar ("kombinatorische Explosion")

Anmerkungen zum Schema Fact Constellation

- Speicherung der vorberechneten Aggregate in zusätzlichen Fakttabellen
- keine Änderungen in den Dimensiontabellen
- schnellerer Zugriff auf aggregierte Werte im Vergleich zu Detailwerten

- anwendbar auch beim Shnowflake-Schema
- keine Änderung von Daten in der ursprünglichen Fakttabelle des Star-Schemas
- hohe Komplexität der Abfrage auf aggregierte Werte
- praktisch nicht alle Aggregattabellen speicherbar ("kombinatorische Explosion")

Beispiel Autohändler: Hierarchie der Dimension Zeit

Beispiel Autohändler: Hierarchie der Dimension Verkäufer

Business Intelligence
Data Warehouse und OLAP

Beispiel Autohändler: Hierarchie der Dimension Modelle

Business IntelligenceData Warehouse und OLAP

Beispiel Autohändler: Star Schema

Data Warehouse und OLAP

Dimensionstabelle "Verkäufer"

KVerkäufer	Name	KNiederlassung	Niederlassung	KLand	Land	level
1	Meier	1	Düsseldorf	1	NRW	0
2	Schneider	1	Düsseldorf	1	NRW	0
3	Bäcker	2	Essen	1	NRW	0
4	Müller	2	Essen	1	NRW	0
5	Null	1	Düsseldorf	1	NRW	1
6	Null	2	Essen	1	NRW	1
7	Null	Null	Null	1	NRW	2
8	Null	Null	Null	Null	Null	3

Dimensionstabelle "Modelle"

KModell	Modell	KModellgruppe	Modellgruppe	KMotor	Motor	level
1	316i	1	3er	1	1,6 Liter	Modelle
2	318i	1	3er	2	1,8 Liter	Modelle
3	320i	1	3er	3	2,0 Liter	Modelle
4	328i	1	3er	4	2,8 Liter	Modelle
5	520i	2	5er	3	2,0 Liter	Modelle
6	528i	2	5er	4	2,8 Liter	Modelle
7	530i	2	5er	5	3,0 Liter	Modelle
8	535i	2	5er	6	3,5 Liter	Modelle
9	540i	2	5er	7	4,0 Liter	Modelle
10	740i	3	7er	7	4,0 Liter	Modelle
11	750i	3	7er	8	5,0 Liter	Modelle
12	Null	1	3er	Null	Null	Modellgruppen
13	Null	2	5er	Null	Null	Modellgruppen
14	Null	3	7er	Null	Null	Modellgruppen
15	Null	Null	Null	1	1,6 Liter	Motoren
16	Null	Null	Null	2	1,8 Liter	Motoren
17	Null	Null	Null	3	2,0 Liter	Motoren
18	Null	Null	Null	4	2,8 Liter	Motoren
19	Null	Null	Null	5	3,0 Liter	Motoren
20	Null	Null	Null	6	3,5 Liter	Motoren
21	Null	Null	Null	7	4,0 Liter	Motoren
22	Null	Null	Null	8	5,0 Liter	Motoren
23	Null	Null	Null	Null	Null	Total

Dimensionstabellen mit flacher Hierarchie

KModellvariante	Modellvariante
1	Stufenheck
2	Touring
3	Null

KModellfarbe	Modellfarbe
1	Rot
2	Schwarz
3	Blau
4	Null

KKundentyp	Kundentyp
1	Altkunde
2	Neukunde
3	Null

KVertragstyp	Vertragstyp
1 2	Barverkauf Finanzierung
3	Leasing
4	Null

Faktentabelle im Star Schema

KZeit	KVer- käufer	KModell	KModell- variante	KModell- farbe	KKunden- typ	KVertrags- typ	Umsatz	IstAbsatz- menge
1 1 1 1 1 2 2 2	1 1 3 4 4 4 1 2 2	2 3 3 2 3 4 4 3 2 4	1 1 2 2 1 1 1 2	1 2 1 2 2 1 3 3 2	2 2 1 2 2 2 1 2 2 2	2 2 2 1 2 1 2 2 2	60000 120080 80000 30000 40000 100000 50000 160000 90000 50000	2 3 2 1 1 2 1 4 3 1
13 13 13 13 13	1 2 3 4	23 23 23 23 23	3 3 3 3	4 4 4 4	3 3 3 3	4 4 4 4	230000 250000 80000 220080 780000	6 7 2 5

Fact Constellation Schema

Data Warehouse und OLAP

Beispiel normalisierter Dimensionstabellen

Snow Flake Schema

Star-Join

SELECT

Attribute der Dimensionen

Kennzahlen [aggregiert]

FROM

Dimensionstabellen

Fakttabelle

JOIN

JOIN-Bedingungen

ON

WHERE

Explizite Bedingungen

[] ... Schemavariante

ohne level-Attribut

[Level = Wert]

[GROUP BY] ➤ Kenngrößen]

mit level-Attribut

Schemavariante

Beispiel: Ermittlung der 2015 im Land "Deutschland" verkauften Produkte mit Namen "Radeberger"

Dimensionen: Zeit: Jahr, Quartal, Monat

Produkt: Name, Kategorie

Geografie: Land, Region, Staat

Kennzahlen: Mengenumsatz, Wertumsatz

Ergebnisse unterschiedlicher Abfragen

- Über das GROUP BY-Attribut wird "normal" gruppiert.
- Für das PIVOT-Attribut der Kreuztabellenabfrage wird in einer zweiten Ebene eine Gruppierung durchgeführt, welche unabhängig vom GROUP BY-Attribut ist.
- > Die gruppierten Werte des PIVOT-Attributs werden neue Spalten in der Ergebnisrelation.

Gri	Gruppierungsabfrage				
ArtikelNr	Verkaufsgebiet	Verkaufte Einheiten			
ALG-001	Ost	150			
ALG-002	Nord	53			
ALG-002	Ost	150			
ALG-003	Nord	20			
ALG-003	Süd	30			
ALG-003	West	30			
ALG-004	Süd	30			
ALG-004	West	80			
ALG-005	Nord	40			
ALG-005	Ost	10			
ALG-006	Nord	200			

	Kreuztabellenabfrage						
ArtikelNr	Gesamt- summe	Nord	Ost	Süd	West		
ALG-001	150		150				
ALG-002	203	53	150				
ALG-003	80	20		30	30		
ALG-004	110			30	80		
ALG-005	50	40	10				
ALG-006	243	200	43				
ALG-007	5		5				
EDV-001	55		25	15	15		
EDV-002	78	3	50	25			
EDV-003	55	40	10	5			
EDV-004	52	17		15	20		

Beispiel für die Gruppierung mit ROLLUP

SELECT Monat, Bundesland, Verkaeufer, SUM(Umsatz) FROM Verkaeufe WHERE Jahr = '2009' GROUP BY ROLLUP(Monat, Bundesland, Verkaeufer)

Monat	Bundesland	Verkäufer	SUM
April	Sachsen	Müller	25000
April	Sachsen	Lehmann	15000
April	Sachsen	-	40000
April	Thüringen	Lehmann	15000
April	Thüringen	-	15000
April	-	-	55000
Mai	Sachsen	Müller	25000
Mai	Sachsen	-	25000
Mai	Thüringen	Lehmann	15000
Mai	Thüringen	-	15000
Mai	-	-	40000
-	-	-	95000

Beispiel für die Gruppierung mit CUBE - 1

SELECT Monat, Bundesland, Verkaeufer, SUM(Umsatz) FROM Verkaeufe WHERE Jahr = '2009' GROUP BY CUBE(Monat, Bundesland, Verkaeufer)

Monat	Bundesland	Verkäufer	SUM	
April	Sachsen	Müller	25000	
April	Sachsen	Lehmann	15000	
April	Sachsen	-	40000	
April	Thüringen	Lehmann	15000	
April	Thüringen	-	15000	
April	-	Müller	25000	
April	-	Müller	30000	
April	-	-	55000	

Business Intelligence

Data Warehouse und OLAP

7 HI //

Beispiel für die Gruppierung mit CUBE - 2

Mai	Sachsen	Müller	25000
Mai	Sachsen	-	25000
Mai	Thüringen	Lehmann	15000
Mai	Thüringen	-	15000
Mai	-	Müller	25000
Mai	-	Lehmann	15000
Mai	-	-	40000
-	Sachsen	Müller	50000
-	Sachsen	Lehmann	15000
-	Sachsen	-	65000
-	Thüringen	Lehmann	30000
-	Thüringen	-	30000
-	-	Müller	50000
-	-	Lehmann	45000
-	-	-	95000

Umsetzung der Hersteller (Auswahl)

DB2	Oracle	MS SQL Server	SYBASE ASE
Data Warehouse Server der bei einer Standard- installation installiert wird	Integration von Business Intelligence und Data Warehouse Funktionalität in DB- Server	Vielzahl von Funktionen für Data Mining und OLAP	spezieller Data Warehouse Server Adaptive Server IQ
Steuerung über externes Tool, namens DB2 Control Center + Tools für Auswertung	Bietet Data Mining, ROLAP und MOLAP an	Data Transformation Services (DTS) Satz grafischer Tools für DW-Design und ETL	Warehouse Architekt als Data Warehouse und Data Mart Design Tool
hat GROUPING SETS, ROLLUP, CUBE, implementiert	hat GROUPING SETS, ROLLUP, CUBE, RANK OVER, PARTITION BY implementiert	hat GROUPING SETS, ROLLUP, CUBE, implementiert	Warehose Control Center Toolset zur Administration, Warehouse DB und Data Marts

Folie 1.49

Multidimensionale Speicherung

Anforderungen:

- Ordnung zwischen den Dimensionen (i.A. nicht vorhanden)
 - Beispiel: Zeit = 1; Produkt = 2; Geografie = 3
- Ordnung zwischen den Dimensionswerte (zum Teil vorhanden)

- Ordnung zwischen den Level einer Dimension (i.A. vorhanden)
 - Beispiel: month = 1; quarter = 2; year = 3

Berechnung:

- n- dimensionaler Array
- In jeder Dimension mit |D_n| Werten
- Berechnung des Index:

$$= x_1 + (x_2 - 1)^* |D_1|$$

- + $(x_2-1)^* |D_1|^* |D2| + ...$
- + $(x_n-1)^* |D1|^*...^* |D_n|$
- Speicher für aggregierte Werte wird benötigt

Produkt (2)

Milk (1)

Sour Cream (2)

Yogurt (3) Butter (4)

ice cream (5)

Geógrafie (3) Saxony (1),

Bavaria (2),

Berlin (3),

Lower Saxony (4) Thuringia (5)

Brandenburg (6)

Zeit (1)

Jan (1), Feb (2), Mar (3), Apr (4), ... Dez (12)

Business Intelligence Data Warehouse und OLAP

Folie 1.50

Speicherbedarf bei der Pointerspeicherung - Beispiele

Beispiel 1:		Beispiel 2:		Beispiel 3:	
D ₁ =	120	$ D_1 =$	120	D ₁ =	120
$ D_2 =$	60	$ D_2 =$	60	$ D_2 =$	60
$ D_1 * D_2 =$	7200	$ D_1 * D_2 =$	7200	$ D_1 * D_2 =$	7200
K =	2500	K =	5000	K =	2500
S =	0.35	S =	0.69	S =	0.35
B =	12 Byte	B =	12 Byte	B =	12 Byte
B _P =	4 Byte	B _P =	4 Byte	B _P =	8 Byte
$G_V =$	86400	$G_V =$	86400	$G_V =$	86400
G _P =	58800	$G_P =$	88800	$G_P =$	87600

Break-Even-Point

K	S	G _V	G _P
2000	0.28	86400	52800
2200	0.31	86400	55200
2400	0.33	86400	57600
2600	0.36	86400	60000
2800	0.39	86400	62400
3000	0.42	86400	64800
3200	0.44	86400	67200
3400	0.47	86400	69600
3600	0.50	86400	72000
3800	0.53	86400	74400
4000	0.56	86400	76800
4200	0.58	86400	79200
4400	0.61	86400	81600
4600	0.64	86400	84000
4800	0.67	86400	86400
5000	0.69	86400	88800
5200	0.72	86400	91200
5400	0.75	86400	93600
5600	0.78	86400	96000
5800	0.81	86400	98400
6000	0.83	86400	100800

Grenzen multidimensionaler Speicherung

- Skalierbarkeitsprobleme auf Grund dünn besetzter Datenräume
- teilweise einseitige Optimierung bezüglich Leseoperationen
- Notwendigkeit einer Ordnung der Dimensionswerte (durch Array-Speicherung) -> erschwerte Änderbarkeit an den Dimensionen
- Fehlender Standart für multidimensionale DBMS
- Notwendigkeit von Spezialwissen

Anfragebeispiel an ein Relationales DBMS

Berechnung des durchschnittlichen Absatzes von "Radeberger" in Gastronomie-Einrichtungen in Sachsen

Mon	Einr	Тур	Land	Prod	Abs	
9805	32	G	SA	Werne	6	
9805	36	G	MV	Becks	9	
9805	38	G	SA	Radeb	5	
9805	41	K	NS	Jever	11	
9805	43	G	SA	Radeb	9	•••
9805	46	G	BY	Paula	3	
9805	47	M	NW	Dortm	7	
9805	49	K	SA	Lands	12	

SELECT AVG (Abs), SUM(Abs)/AnzGSA/36
FROM Absatz,

(SELECT COUNT(DISTINCT Einr)
 AS AnzGSA
 FROM Absatz

WHERE Land = 'SA' AND
 Typ = 'G')
WHERE Land = 'SA' AND
 Typ = 'G' AND

Prod = 'Radeb'

Vertikale Partitionierung und Bitmap Index

IIII						IIII
	Einr	Тур	Land	Prod	Abs	
	32	G	SA	Werne	6	
	36	G	MV	Becks	9	
	38	G	SA	Radeb	5	
	41	K	NS	Jever	11	
	43	G	SA	Radeb	9	
	46	G	BY	Paula	3	
	47	M	NW	Dortm	7	
	49	K	SA	Lands	12	
IIIII						////

Bitmapindex am Beispiel der Spalte Land

Bitmap Index für Land							
row-id		BY	MV	NS	NW	SA	
1		0	0	0	0	1	
2		0	1	0	0	0	
3		O	О	0	0	1	
4		0	0	1	0	0	
5		0	0	0	0	1	
6		1	0	0	0	0	
7		O	О	О	1	0	
8		O	0	0	0	1	

Beispiel für die I/O-Reduzierung

"Wieviele Männer sind in Kalifornien nicht versichert?"

RDBMS:

800 Bytes/Satz

$$\frac{800 \text{ Bytes x 20M}}{16 \text{K Seite}} = 1.000,000 \text{ I/Os}$$

- **■** Verarbeitet grosse Mengen nicht benötigter Daten
- Erfordert oft "Full Table Scan"

 $20M Bits \times 3 Spalten / 8 = 470 I/Os$

Bitmap Index

Geschlecht Staat

Versichert

16K Seite

Prof. Dr.-Ing. A. Toll

Business Intelligence Data Warehouse und OLAP

Folie 1.56

Beispiel für einen Index eines RDBMS

Business IntelligenceData Warehouse und OLAP

Folie 1.57

Fast Projection - FP

Die Daten einer Spalte werden komprimiert gespeichert.

SELECT Land FROM Absatz WHERE Land LIKE 'Sa%'

- Default Speicherung, die automatisch durch IQ realisiert wird und nicht entfernt werden kann
- > für alle Spalten: notwendig für select list Spalten, string Suche, ad-hoc joins

Fast Projection - FFP und FFFP

Subtype: Fast Fast Projection (FFP)

Subtype: Fast Fast Fast Projection (FFFP)

Prod
Radeberger
Wernesgrüner
Radeberger
Landskron
Becks
Radeberger
Paulaner
Wernesgrüner
Klosterbräu

Radeberger	1	1
Wernesgrüner	2	2
Landskron	3	3
Becks	4	4
Paulaner	5	5
Klosterbräu	6	6

Low Fast

Bitmap Index, der für Spalten mit kleiner Kardinalität benutzt wird

SELECT *
FROM Absatz
WHERE Prod = 'Radeberger'

- Eine Menge von werte-basierten Bitmaps wird für Bearbeitung fast aller Anfragen angewendet.
- ➤ Ideal für Spalten mit einer Kardinalität <1000

High Group

High Non Group

Bit-weiser Index, optimiert für Rang-Suche und

Aggregations-Funktionen

HNG-Index für Abs

64	32	16	8	4	2	1
0	0	0	1	1	0	0
0	0	0	1	0	0	1
0	0	1	1	1	0	0
0	0	0	1	0	1	1
0	0	0	1	0	0	1
0	0	0	0	0	1	1
1	0	0	0	1	1	0
0	0	0	1	1	0	0
1	0	1	6	4	3	4

Beispiel:

SELECT SUM(Abs) FROM Absatz

$$(1 * 64) + (0 * 32) + (1 * 16) + (6 * 8) + (4 * 4) + (3 * 2) + (4 * 1) = 154$$

Beipiel für den Einsatz der Indexarten

Berechnung des durchschnittlichen Absatzes von "Radeberger" in Gastronomie-Einrichtungen in Sachsen

		_				
<u>Mon</u>	Einr	Тур	Land	Prod	Abs	•••
9805	32	G	SA	Werne	6	
9805	36	G	MV	Becks	9	
9805	38	G	SA	Radeb	5	
9805	41	K	NS	Jever	11	
9805	43	G	SA	Radeb	9	•••
9805	46	G	BY	Paula	3	
9805	47	M	NW	Dortm	7	
9805	49	K	SA	Lands	12	

SELECT AVG (Abs), SUM(Abs)/AnzGSA/36 FROM Absatz, (SELECT COUNT(DISTINCT <u>Einr</u>) **AS AnzGSA FROM Absatz** WHERE Land = 'SA' AND $\underline{\mathsf{Typ}} = \mathsf{'G'})$ WHERE Land = 'SA' AND Typ = 'G' AND

Prod = 'Radeb'

OLAP-Architekturen

OLAP-Server mehrdimensionale Präsentationsund Transformationswerkzeuge

Business Intelligence
Data Warehouse und OLAP

Folie 1.64

Beispiel eines OLAP-Datenwürfels

Multidimensionale Abfragen am Beispiel des Handels

Würfel mit "dreidimensionalen" Zellen

Drill-down und Roll-up

Business IntelligenceData Warehouse und OLAP

Folie 1.68

Slice

Business IntelligenceData Warehouse und OLAP

Folie 1.69

Darstellung als Matrix

Produktgruppe = Elektrogeräte								
	Q1 2009	Q2 2009	Q3 2009	Q4 2009	SUMME			
Nord	1.428 €	1.856 €	1.984 €	2.320 €	7.588 €			
West	620 €	660 €	680 €	1.240 €	3.200 €			
Mitte	996 €	1.110 €	1.218 €	1.282 €	4.606 €			
Ost	1.294 €	1.382 €	1.436 €	2.214 €	6.326 €			
Süd	410 €	362 €	420 €	240 €	1.432 €			
SUMME	4.748 €	5.370 €	5.738 €	7.296 €	23.152 €			

Darstellung als Diagramm

Auswahl der Daten für einen Drill-through

Produktgruppe = Elektrogeräte Vertriebsregion = Nord								
• • •								
Meier GmbH	39 €	34 €	45 €	152 €	270 €			
SUMME	945 €	1.720 €	1.740 €	2.230 €	6.635 €			

Beispielcube

Prof. Dr.-Ing. A. Toll

Business Intelligence
Data Warehouse und OLAP

MDX - Einführung

- Multidimensional Expressions
- Von Microsoft entwickelte Abfragesprache für OLAP Datenbanken
- Entwickelt sich zum Industriestandard
- ➤ Eher für IT-Entwickler bzw. als Abfragesprache für Applikationen, da relativ komplex

Beispielabfrage:

```
SELECT
{ [Measures].[Umsatzbetrag], [Measures].[Umsatzmenge] }
ON COLUMNS,
{ [Zeit].[Quartal].&[200601] , [Zeit].[Quartal].&[200602] }
ON ROWS
FROM [Umsatz]
WHERE {[Geografie].[Sachsen]}
```


MDX – Abgrenzung zu SQL

MDX	SQL		
Abfragesprache für Datenbanken			
Microsoft	ANSI und ISO Standard		
Abfrageschema basiert auf SELECT, FROM, WHERE			
Basis ist eine multidimensionale OLAP Datenbank (CUBE)	Basis ist eine relationale Datenbank		
Versteht Hierarchien, Vorgänger / Nachfolger, Cousin, und kann Eigenschaften von Elementen, Zellen auslesen und definieren			
2 – n dimensionales Ergebnis, also Tabelle oder Cube	2 dimensionale Ergebnis, also Tabelle		
Ähnliche Basisoperatoren und -funktionen			

Business Intelligence
Data Warehouse und OLAP

MDX Abfrageschema

Aufbau einer MDX Abfrage

```
SELECT
     <Abfrageachse> ON COLUMNS,
     <Abfrageachse> ON ROWS
FROM <Cube>
WHERE <Slicerachse>
```

- Cube>
 Cube(s) der (die) abgefragt werden sollen.

Einfache Abfragen - Umsatzbetrag

```
SELECT
{ ([Geografie].[Bundesland].[Sachsen]),
  ([Geografie].[Bundesland].[Thüringen])
} ON COLUMNS,
{ ([Zeit].[Kalender].[Quartal].[1. Quartal]),
  ([Zeit].[Kalender].[Quartal].[2. Quartal]),
  ([Zeit].[Kalender].[Quartal].[3. Quartal]),
  ([Zeit].[Kalender].[Quartal].[4. Quartal])
) ON ROWS
FROM [Umsatz]
WHERE ([Measures].[Umsatzbetrag], [Zeit].[Jahr].&[2006]);
```


Einfache Abfragen - Umsatzmenge

```
SELECT
{ ([Geografie].[Bundesland].[Sachsen]),
  ([Geografie].[Bundesland].[Thüringen])
} ON COLUMNS,
{ ([Zeit].[Kalender].[Quartal].[1. Quartal]),
  ([Zeit].[Kalender].[Quartal].[2. Quartal]),
  ([Zeit].[Kalender].[Quartal].[3. Quartal]),
  ([Zeit].[Kalender].[Quartal].[4. Quartal])
) ON ROWS
FROM [Umsatz]
WHERE ([Measures].[Umsatzmenge],[Zeit].[Jahr].&[2006]);
                      Sachsen
                              Thüringen
                      27032

    Quartal

                               13380
```

28923

Quartal

14775

14981

Abfragen mittels CROSSJOIN

```
SELECT
{ ([Geografie].[Bundesland].[Sachsen]),
  ([Geografie].[Bundesland].[Thüringen])
} ON COLUMNS,
CROSSJOIN( { ([Zeit].[Kalender].[Quartal].[1. Quartal]),
                 ([Zeit].[Kalender].[Quartal].[2. Quartal]),
                 ([Zeit].[Kalender].[Quartal].[3. Quartal]),
                 ([Zeit].[Kalender].[Quartal].[4. Quartal])
              },
                 ([Measures].[Umsatzbetraq]),
                  ([Measures].[Umsatzmenge])
                                                               Sachsen
                                                                        Thüringen

    Quartal

                                                   Umsatzbetrag
                                                              58.924,74 €
                                                                       28.719.44 €
  ON ROWS

    Quartal

                                                   Umsatzmenge
                                                               27032
                                                                         13380
FROM [Umsatz]
                                           Quartal
                                                   Umsatzbetrag
                                                              63.311.14 €
                                                                       31.391.61 €
WHERE ([Zeit].[Jahr].&[2006]);
                                                   Umsatzmenge
                                                               28923
                                                                         14775
                                           Quartal
                                                   Umsatzbetrag
                                                              63.603.99 €
                                                                       31.698.82 €
                                           Quartal
                                                   Umsatzmenge
                                                               29172
                                                                         14981
                                           Quartal
                                                   Umsatzbetrag
                                                                       28.695.14 €
                                           Quartal
                                                              64.192.99 €
                                                   Umsatzmenge
                                                                29086
                                                                         13208
                                            Quartal
```

Abfragen mit Funktion *Children*- Umsatzbetrag 2006 mit kürzerem MDX-Befehl -

```
SELECT
  ([Geografie].[Bundesland].[Sachsen]),
  ([Geografie].[Bundesland].[Thüringen])
  ON COLUMNS,
  ([Zeit].[Kalender].[Jahr].[2006].Children)
  ON ROWS
FROM [Umsatz]
WHERE ([Measures].[Umsatzbetrag]);
                     Sachsen:
                               Thüringen

    Quartal

                    58.924,74 €
                              28.719.44 €
                    63.311,14 €
                              31.391,61 €
           Quartal
                    63.603,99 €
                              31.698,82€
           Quartal
```

64.192.99 €

Quartal

28,695,14 €

Fallunterscheidung mittels CASE-Anweisung

```
Variante 1:
                                     Variante 2:
CASE <Ausdruck>
                                     CASE
   WHEN <Konstante 1>
                                       WHEN <Bedingung 1>
                                            THEN <Wert1>
       THEN <Wert 1>
   [WHEN <Konstante 2>
                                       [WHEN <Bedingung 2>
       THEN <Wert 2>]
                                            THEN <Wert 2>1
   [ELSE <Werte für ELSE>
                                       [ELSE <Werte für ELSE>
END
                                    END
Beispiel:
 CASE
   WHEN IsEmpty ([Zeit].[Kalender].PrevMember) //Wert ist NULL
       THEN 0
   WHEN [Measure].[Umsatzbetrag] >
       ([Zeit].[Kalender].PrevMember, [Measure].[Umsatzbetrag])
       THEN 1
   ELSE -1
 END
```

Business IntelligenceData Warehouse und OLAP

Abfragen mit Funktion Children

- Umsatzbetrag Brotprodukte in Deutschland, 2006 -

```
SELECT
     {[Zeit].[Kalender].[Jahr].[2006].Children
       ON COLUMNS,
     {[Produkt].[Sortiment].[Subkategorie].[Brot].Children
       ON ROWS
FROM
       [Umsatz]
WHERE ([Measures].[Umsatzbetrag],
           [Geografie].[Staat].[Deutschland])
                                     1. Quartal
                                             2. Quartal 3. Quartal
                                                                  4. Quartal
        Colonial - Weißbrot
                                    1.027.88 €
                                              1.105.16 €
                                                        711.30 €
                                                                  1.013.07€
        Colonial - Vollkombrot
                                    1.233.89 € 1.445.18 €
                                                       947.14 €
                                                                  1.151.03 €
        Colonial - Roggenbrot
                                    2.106.25 € 2.450.42 €
                                                        2.094.89 €
                                                                  2.202.41 €
                                    1 298 20 € | 1 491 27 €
                                                        1.396.27€
                                                                  1 387 69 €
        Colonial - Pumpernickel Brot
                                     956,48 € 950,62 €
                                                       850,06 €
                                                                  1.149,00€
        Friedrichs - Vollkombrot
        Friedrichs - Weißbrot
                                     544.28 € 584.34 €
                                                       447.96 €
                                                                  519 26 €
         Wendels Bestes - Vollkombrot
                                                       429.17 €
                                     431,82 €
                                               517.48 €
                                                                  535,36 €
         Wendels Bestes - Roggenbrot
                                     3.182.28 €
                                              3.286.31 €
                                                       2.351.81 €
                                                                  2.251.32 €
```

Business IntelligenceData Warehouse und OLAP

Abfragen mit den Funktionen *Children* und *Members* und CROSSJOIN

```
SELECT
   ([Geografie].[Bundesland].[Sachsen]),
   ([Geografie].[Bundesland].[Thüringen])
  ON COLUMNS,
    CROSSJOIN
      {([Zeit].[Jahr].Children)},
         ([Zeit].[Quartal].Members)}
                                                                              Thüringen
                                                                   Sachsen
  ON ROWS
                                                   2006
                                                        All
                                                                  250.032.86 €
                                                                             120.505.01 €
FROM
      [Umsatz]
                                                   2006
                                                        1. Quartal
                                                                  58.924,74 €
                                                                             28.719.44 €
WHERE ([Measures].[Umsatzbetrag]);2006
                                                        2. Quartal
                                                                  63.311.14 €
                                                                             31.391.61 €
                                                   2006
                                                                  63.603.99 €
                                                                             31.698.82 €
                                                        Quartal
                                                   2006
                                                        4. Quartal
                                                                  64.192.99 €
                                                                             28,695,14 €
                                                        All
                                                                  293.994,40 €
                                                   2007
                                                                             149.099.76 €
                                                   2007
                                                        1. Quartal
                                                                  70.622.74 €
                                                                             35.431.61 €
                                                        2. Quartal
                                                                  76.993.17 €
                                                                             40.030.19 €
                                                   2007
                                                   2007
                                                        3. Quartal
                                                                  73.204,88 €
                                                                             35.361,47 €
                                                        4. Quartal
                                                                  73.173.61 €
                                                                             38.276.49 €
```

Abfrage mit Alias in WITH MEMBER (1)

Für welche Produktkategorien wurden die Planumsätze in den Quartalen nicht erfüllt?

```
WITH MEMBER [Measures].[Umsatz_Plan Differenz]
    AS '[Measures].[Umsatzbetrag] - [Measures].[Umsatzplan]
    , FORMAT_STRING = '#.00'

SELECT
    { [Zeit].[Jahr].Children * [Zeit].[Quartal].Members }
    ON COLUMNS,
         { [Produkt].[Sortiment].[Kategorie] }
    ON ROWS
FROM Umsatz
WHERE [Measures].[Umsatz_Plan Differenz]
```

	2006	2006	2006	2006	2006	2007	2007	2007	2007	2007
	All	1. Quartal	2. Quartal	3. Quartal	4. Quartal	All	1. Quartal	2. Quartal	3. Quartal	4. Quartal
Backwaren	39419,79	6119,16	16671,36	8525,74	8103,53	47786,68	8922,27	20935,59	9905,32	8023,50
Milchprodukte	5280,59	-1458,60	-1249,98	1854,23	6134,94	69006,97	13150,08	15930,26	14930,95	24995,68
Fleisch	101081,92	23698,85	22396,24	33616,85	21369,98	120423,42	29896,60	32345,46	33474,89	24706,47

Abfrage mit Alias in WITH MEMBER (2)

Wie groß ist der Anteil der Umsätze der Subkategorie an dem Umsatz der jeweiligen übergeordneten Kategorie und am Gesamtumsatz?

```
WITH
   MEMBER [Measures]. [Anteil Subkategorie am Gesamtumsatz]
      AS '([Measures].[Umsatzbetrag] * 100) / ([Measures].[Umsatzbetrag],
[Produkt].[Kategorie].[All])'
       , FORMAT STRING='###.00\%'
   MEMBER [Measures].[Anteil der Subkategorie an deren Kategorie]
      AS '([Measures].[Umsatzbetrag] * 100) / ([Measures].[Umsatzbetrag],
[Produkt].[Kategorie])'
       , FORMAT STRING='###.00\%'
SELECT
       { [Measures].[Umsatzbetrag], [Measures].[Anteil Subkategorie am
Gesamtumsatz],
         [Measures].[Anteil der Subkategorie an deren Kategorie] } on
columns,
       { NONEMPTY([Produkt].[Kategorie].Children *
[Produkt].[Subkategorie].Children) } on rows
FROM [Umsatz]
                           Umsatzbetrag Anteil Subkategorie am Gesamtumsatz Anteil der Subkategorie an deren Kategorie
 Backwaren
          Bagels
                          1.807.831.59 €
                                             19.81%
                                                                     71.72%
 Backwaren
          Muffins
                          265.937.09 €
                                             2.91%
                                                                     10.55%
                          446.957.79 €
                                                                     17.73%
 Backwaren
          Brot
                                             4.90%
 Milchprodukte Käse
                          1.064.149.59 €
                                             11.66%
                                                                     29.54%
```

Business Intelligence
Data Warehouse und OLAP

Abgrenzung zu operativen Systemen

Kriterium	OLTP-Sytem	DWH-System	
Anfragearten	Lesen, Schreiben, Ändern, Löschen	Lesen, periodisches Hinzufügen	
Transaktions- dauer und typ	kurze Lese- und Schreibtrans- aktionen	lange Lesetransaktionen	
Anfragestruktur	einfach strukturiert	komplex	
Datenvolumen je Anfrage	wenige Datensätze	viele Datensätze	
Datenmodell	anfragebezogen	analysebezogen	
Datenquelle	meist eine	mehrere	
Eigenschaften der Daten	nicht abgeleitet, zeitpunkt-bezogen, autonom, dynamisch	abgeleitet, konsolidiert, zeitraum- bezogen, integriert, stabil	
Datenvolumen	MByte GByte	GByte TByte	
Zugriffsart	Einzeltupelzugriff	Tabellenzugriff	
Anwendertyp	Ein- und Ausgabe durch Angestellte oder Anwendungssoftware	Manager, Controller, Analyst	
Anwenderzahl	sehr viele	wenige (bis einige hundert)	
Antwortzeit	ms sec	sec min	

Business Intelligence
Data Warehouse und OLAP

VLDB - Very Large Database

Business IntelligenceData Warehouse und OLAP

Weitere Begriffe beim Umgang mit DWH

- Data Warehousing:
 - Data Warehouse Prozess
 - alle Schritte der Datenbeschaffung (Extraktion, Transformation, Laden), des Speichern bis zur Analyse
- Data Mart:
 - externe Teilsicht auf das Data Warehouse
 - i. A. erzeugt durch Kopie
 - spezifisch je Anwendungsbereich
- OLAP (Online Analytical Processing)
 - interaktive Analyse der Daten
- Metadatensystem (Business Data Dictionary, Repository))
 - Ablage der Hintergrundinformationen (Datenquellen, Transformationen, Verdichtungen, ...)

Datenquellen eines Data Warehouses

Klassifikation

- Herkunft:
 intern, extern
- Zeit: aktuell, historisch
- Nutzungsebene:
 Primärdaten, Metadaten
- Inhalt: Zahl, Zeichenkette, Referenz, Dokument
- Darstellung: numerisch, alphanumerisch, BLOB
- Sprache:
 Zeichensatz, Währung
- Vertraulichkeitsgrad: offen, vertraulich

Qualitätsanforderungen

- Konsistenz(Widerspruchsfreiheit)
- Korrektheit:(Übereinstimmung mit der Realität)
- Vollständigkeit (Abwesenheit fehlender Werte)
- Genauigkeit(z.B. Anzahl der Nachkommastellen)
- Granularität(z.B. tagesgenaue Daten)
- Zuverlässigkeit
 (Nachvollziehbarkeit der Entstehung,
 Vertrauenswürdigkeit der Quelle)
- Verständlichkeit

 (inhaltlich und strukturell passend für die Zielgruppe)
- Relevanz (Zweckdienlichkeit)

Arbeitsbereiche und Extraktionskomponente

Arbeitsbereiche

- Aufgabe:
 - Zentrale Datenkomponente des Beschaffungsbereichs (engl.: stating area)
 - temporärer Zwischenspeicher zur Integration
- > Nutzung:
 - Ausführung von Transformationen (Bereinigen, Integrieren,...) direkt im Arbeitsbereich
 - Laden der Daten ins DWH erst nach abgeschlossener Transformation
- Vorteile
 - keine Beeinflussung von Daten in Quellen und im DWH
 - keine Übernahme fehlender Daten

Extraktions-komponente

- Aufgabe:
 - Übertragung von Daten aus Quellen in den Arbeitsbereich
- Funktion: abhängig von der Monitor-Strategie
 - periodisch
 - auf Anfrage
 - Ereignis-gesteuert (z.B. nach Erreichen einer festgesetzten Anzahl an Änderungen in den Quelldaten)
 - sofortige Extraktion

Prof. Dr.-Ing. A. Toll

Business IntelligenceData Warehouse und OLAP

Laden von Daten ins DWH

> Aufgabe:

Übertragen der bereinigten und aufbereiteten (z.B. aggregierten)
 Daten in das Data Warehouse

> Besonderheiten:

- i.A. Verwendung spezieller Ladewerkzeuge (z.B. SQL*Loader von Oracle)
- Anwendung von Bulk-Laden
- Historisierung: kein Überschreiben von Daten im DWH bei Änderungen in den Quelldaten, sondern zusätzliches Abspeichern

Ladevorgang

- online: Quelldatenbank und DWH stehen weiterhin zur Verfügung
- offline: Quelldatenbank und DWH stehen nicht zur Verfügung (i.A. Verwendung von Zeitfenstern mit Schwachlast, z.B. nachts oder an Wochenenden)

Data Warehouse

Chancen

Risiken

Strategie und Wettbewerb

- Informationsvermarktung
- •Wettbewerbsvorteile durch verbesserte Entscheidungsqualität
- •(Informationsvermarktung:) Gefahr, wettbewerbskritische Daten und Erfolgsfaktoren offenlegen

Qualität

- verbesserte Datenqualität und -konsistenz
- •höhere Reporting-/Analysequalität
- •verbesserte Entscheidungsqualität

- •Gefahr von Inkonsistenzen aufgrund zusätzlicher Datenredundanz bei mehreren Data Marts
- •Gefahr unzureichender Datenaktualität bei niedriger Datenübernahmefrequenz

Flexibilität

- umfassende, integrierte
 Informationserschließung
- •schnellere Verfügbarkeit von

Auswertungen

Business Intelligence
Data Warehouse und OLAP
Folie 1.94

Data Warehouse

Chancen

Risiken

Produktivität

- Leistungssteigerungen im operativen Betrieb durch Entlastung der operativen Systeme
 Wegfall personeller Analysetätigkeiten
- •Zeitaufwand für Wartung und Pflege

Kosten

- Personalkosteneinsparung durch
 - Reduzierung des Personalbedarfs für Reporting-/Analysetätigkeiten
- Ablösung herkömmlicher MIS
- Sachkosteneinsparung

- hohes Investitionsvolumen (Kapitalbindung)
- hohe laufende Kosten, v.a. für Datenaktualisierung

Mitarbeiter

- Steigerung der Mitarbeiterzufriedenheit
- durch Einsatz moderner Technologie
- durch weniger Datensuche und Aufbereitungstätigkeiten

Hauptgründe für das Scheitern von Unternehmen

[nach: Insolvenzen, Neugründungen, Löschungen Jahr 2007; Creditreform Wirtschaftsforschung]

u.a. ist BI die Basis für ein erfolgreiches Controlling

Ziele der langfristigen Unternehmensexistenz

Angemessene Verzinsung des investierten Kapitals der Eigentümer in Form von Gewinnen, Dividenden und Eigenkapitalwertsteigerungen

Jederzeitige Fähigkeit, anstehende Zahlungsverpflichtungen erfüllen zu können

Ergebnis, Rentabilität

Controlling

Liquidität

Finanzierung

DuPont-Kennzahlensystem

Toll

Business Intelligence

Data Warehouse und OLAP

Branchenspezifik von Umsatzrendite und Umschlagshäufigkeit

Branche	Umsatzrendite	Umschlagshäufigkeit
Ernährungsindustrie	5,4 %	2,11
Großhandel	3,2 %	2,95
Papierindustrie	7,0 %	2,05
Kunststoffindustrie	6,2 %	1,98
Maschinenbau	6,1 %	1,34
Baugewerbe	5,7 %	1,21
Chemie	7,9 %	1,38
Elektrotechnik	6,9 %	1,26

[nach Coenenberg 1997]

Cash-to-Cash-Zyklus

Data Warehouse und OLAP

Arten an Kennzahlen aus betriebswirtschaftlicher Sicht

Toll Business Intelligence
Data Warehouse und OLAP

Perspektiven der Balanced Scorecard

Finanzwirtschaftliche Perspektive

Ziele	Leistungsmaßstäbe
Erfolg	Umsatzrentabilität, ROI
Ertragswachstum	Umsatzwachstum/Zielsegment
Kostenreduzierung	% indirekte Kosten am Gesamt
Liquidität	Cash to Cash - Cycle

Kundenperspektive

Ziele	Leistungsmaßstäbe
Kundenrentabilität	Nettoerfolg je Kunde
Marktanteil	% Umsatz im Zielsegment
Kundenaquisition	% Umsatz mit Neukunden
Kundentreue	Umsatzsteigerung Altkunden
Kundenzufriedenheit	Zufriedenheitsindex aus Umfrage
Qualität, Zeit	Fehlerquote, Reparaturzeit

Interne Prozessperspektive

Ziele	Leistungsmaßstäbe
Innovationsprozess	Umsatz neuer Produkte,
- Effektivität,	Time to Market,
- Zykluszeiten	BreakEvenTime
Betriebszyklus:	Durchlaufzeiten,
- Zykluszeiten,	Kosten der Prozesse,
- Effizienz,	Fehlerquote,
- Qualität	first pass yields

Lern – und Entwicklungsperspektive

Ziele	Leistungsmaßstäbe
Mitarbeiterproduktivität	Wertschöpfung je Mitarbeiter
Mitarbeitertreue	Fluktuationsquote
Weiterbildung	Aufgabendeckungsziffer
Informationssystem	Informationsdeckungsziffer

Prof. Dr.-Ing. A. Toll

Business IntelligenceData Warehouse und OLAP

Beispiel einer Ursache-Wirkungskette

Finanzielle Perspektive:

Was wollen wir unseren Kapitalgebern bieten?

Kundenperspektive:

Wie sollen uns unsere Kunden wahrnehmen?

Prozessperspektive:

Bei welchen Prozessen müssen wir Hervorragendes leisten)

Entwicklungsperspektive:

Wie gewährleisten wir langfristig unseren Erfolg?

Entwicklungsschritte einer Balanced Scorecard

Business IntelligenceData Warehouse und OLAP