

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 14 EXAMINATIONS

Subject Code: 17304 <u>Model Answer</u> Total Pages: 35

Important Instruction to Examiners:-

- 1) The answers should be examined by key words & not as word to word as given in the model answers scheme.
- 2) The model answers & answers written by the candidate may vary but the examiner may try to access the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance.
- 4) While assessing figures, examiners, may give credit for principle components indicated in the figure.

The figures drawn by candidate & model answer may vary. The examiner may give credit for any equivalent figure drawn.

- 5) Credit may be given step wise for numerical problems. In some cases, the assumed contact values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidates understanding.
- 7) For programming language papers, credit may be given to any other programme based on equivalent concept.

Important Notes:

- 1. In Q 3(d) in this problem point of contra flexure is not possible, therefore examiner should give proportionate marks.
- 2. In Q 4 (a) this problem is solved by using parallel axis theorem.

OR

Problem is solved by using standard formula, examiner should give proportionate marks.

\(\frac{1}{2700}\) = 2005 (errified)

SUMMER - 14 EXAMINATION

Subject Code: 17304	Model Answer	Page No: 1/35
		Lyansas

QNO	SOLUTION	MARKS
1 A) (A)	Poisson's Ratio: - when material is loaded	
	within its elastic limit, the vatio of	
	Lateral strain to the Longitudinal strain	1
	(linear stain) is constant and is called as	
	poisson's Ratio.	
	Relation between E and K.	
	E = 3k(1-2ll)	1
(B)	Principal plane: - A plane which carry	
	only direct stress or normal stress and no	1
	snear stress on it, is called Principal plane	
	Principal stress: - The magnitude of Direct stess	
	or normal stress acting on principal plane	1
	is called Principal spess.	
(c)	M.I. of Semicircle about its base	
	x	
	A B V	
	$\frac{1}{1000} = \frac{1}{100} = \frac{11}{100} = 11$	2
	$\therefore \text{ Ibase} = \text{IAB} = \frac{\pi d^4}{128} = \frac{\pi Y^4}{8}$	
(D)	Direct load: - A load whose line of action.	
	coincides with the axis of the member	
	is called an axial load or direct load.	

MATERIAL STATE BUARD OF THE STATE AT LIFE AT LESS AT LIFE AT L

SUMMER - 14 EXAMINATION

Subject Code: 17304 Model Answer Page No: 2/35

Q.X0	SOLUTION	MARKS
(A) L	Eccentric Load: - A Load whose line of	
(A) +no	action does not coincides with the axis	
Ø1) Ţ-	of a member is called eccentric load.	
(E)	power transmitted by shaft. (P)	
	$P = \frac{2\pi NT}{60}$	1
	P = Power in watts	
	T = Averge (mean) Torque in N-m	1
	N = number of revolutions of shaft in rpm.	
(E)	Ductility: - It is the property of a material to undergo large deformation under tension.	
	undergo large deformation under tension.	1
	before failure or rupture.	OR
	OR.	-
	It is the ability of material which enables	3
	it to draw into then wires under tension	1
	without failure or rupture.	
	malleability: - It is the property of a material	
	by virtue of which it gets permananently deformed by compression without failure or nufture	1
	deformed by compression without failure or nufter	xe.
	OR.	OR
	It is the ability of material which enables it to Roll into thin sheets under compression	1

A) A) A RASTILLEA STATE BOARD OF THE HAY CALLED CALLED A THE ALLON (A) (180) 11 (27001 - 2005 Combod)

SUMMER - 14 EXAMINATION

Subject Code: 17304

Model Answer

Page No: 03/35

Q .NO	SOLUTION	MARKS
1 (A)(G)	Hoof stoess: - The stoess which act in the	
	tangential direction to the peximeter	
	(circumference) of the cylinder is called	1
	as Hoop stress or circumferential stress.	
	$6c = \frac{pd}{2+}$	1
	p= internal pressure of fluid	
	d= internal dea of thin cylinder	
	t = thickness of thin cylindes	
(H)	Resultant stress distribution at the base	
	when: 60 = 66	
		1 M-
	60 16max = 2.60 OR	sketch
	$6mn = 0$ $2.60 \circ R$ $6mn = 0$ $2.60 \circ R$ $2.60 \circ R$ $2.60 \circ R$	1 M fo
		labels
B) (a)	Given data.	
	1. (=2m = 2000 MW	
	$t_1 = 10^{\circ}$ $t_2 = 80^{\circ}$	
	Expansion of the mod(SI) : F = 1x 105 N/mm2	
	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx = \frac{12 \times 10^{-6}}{2}$	
		1 M
	$SL = 2000 \times 12 \times 10 \times (80 - 10)$	
	: SL = 1.68 mm	- 1M

MAHARASHARA STATE BOARD OF THE HAD ALTER CATION (Submonois) (180) (11 t = 2700) + 2005 (certified)

SUMMER-14 EXAMINATION Model Answer

Subj	ect Code: 17304 Model Answer Page No:	04/35
Q.NO	SOLUTION	MARK
1 B) (a)	stress (6) = xtE	1
cont	$= 12 \times 10^{6} \times (80 - 10) \times 1 \times 10^{5}$	
	= 84 N/mm ²	1
رط	M	
	R _A R _B	
	1 RA ⊕ 1 W/2	2
	W/2 @ RB	
	1/2 L KB	
	BMD.	2
	/	
	EV 2KN/m.	
c)	A MANAGE	
	4-m .	
	Given	
	5017 Given .: 6b= 165 N/mm²	
	1 maximum Bending moment:	
	D maximum Bending moment: $M = \frac{\omega l^2}{8} = \frac{2 \times 4^2}{8} = 4 \times N - W = 4 \times 10^6 N - W =$	w 1
	@ section modulus(Z):	

\(\lambda(\text{XRASH})\) \(\text{STATE BD \text{XRBD} \text{TECHNIC \text{AT DB \text{CASH}}}\) \(\text{Autonomous}\) \(\text{AUTOnomous}\) \(\text{AUTOnomous}\) \(\text{AUTOnomous}\) \(\text{CO(B)}\) \(\text{

SUMMER - 14 EXAMINAT	10)
----------------------	-----

Sub	ject Code: 17304 Model Answer Page No:	05/35
Q .N()	SOLUTION	MARKS
1 B)	M = 6.Z	1.
(2	$Z = \frac{M}{6}$	1 2
conti-	Z = 6	
	$z = \frac{4 \times 10^6}{185}$	
	Z = 21621.621 mm	1
		-
	3. Diameter of the circular beam (d)	
	$z = \frac{\pi}{32} d^3$.	1
	52	
	$1.21621.621 = \frac{11}{32}.d^3$	
	1. d= 60.389 mm.	1
		44.
02 W	i) Principal of Supex position:	
	er If number of forces act on a body.	
	the total effect of all the forces is the	2 M
	summetion of the effects of the individual	
	forces?	
	If body is subjected to different direct	
	forces at different sections along the	2 M
	length of the body, then the total detarms	tion
	of the body will be equal to the Algebraic	**
	length of the body, then the total deforms of the body will be equal to the Algebraic sum of deformations of the individual sections	ins.
	o R	
	"e when number of forces or loads are acti	hap

\$15HARASHERASTATI BOXRUMU HARAATIMA X1108 1Antaminast 118O-11 c 27001 2105 Certificia

	SUMMER - 14 EXAMINATION
Subject Code: 17304	Model Answer

Page No: 06/35

Sub	ject Code: 17304 Model Answer Page No:	06/33
Q NO	SOLUTION	MARKS
	on a body, the resulting stain will be the algebraic sum of strains caused by individue forces or Loads."	
(ii)	effective length when both ends are hinged.	
	effective length when both ends are fixed $\frac{l}{2}$	
(ط)	. 3	
	Yield JA	
	Stress (6)	2 M
	0.002 strain (e)	
	(1) Brittle material do not show clear yield poi	inf
	as a china world obess a line is drawn	2 M
	parallel to tangent from 0.2% strain (i.e 0.002). 3) Point A is yield stress and point B is Breaking.	to get A's
(ي)	Assumptions made in Euler's theory.	
	(i) The column is initially straight and is axially I ii) The section of the column is uniform.	loaded.
	(iii) The column material is perfectly elastic.	
	homogeneous and isotropic and obeys Hooke's law	

MAHARASI(TRASTATI BI)ARBAH IK (1981) AR LDR (AT LDR (A

SUMMER - 14 EXAMINATION

Subject Code: 17304 Model Answer Page No: 07/35

Su	bject Code: 17304	Model Answer	1'a	ge No: 07/3)
Q.NO		SOLUTION		MARKS
Q 2 (C) cont	(iv) the column is look buckling alone (v) shortening of the compression is (vi) the self neight	e column due negligible.	to direct	for an four
(d)	10 KN 40 KN		60 KN	30 KN
	1m -1a	3 m	2m.	4
	10 KN 10 KN	30 KN	<u>(3)</u>	30 KN
	1- 1000 mm + B	C		<u> </u>
	30 KN	2	30 KN	1 M
		3000 MM		
	-	BD		
	Total change is	length (SL)		
	Sl = Slas +	Stoc + Slo	D	
	SL = PILI +	12/2 + 13	<u>l</u> 3	
	$\mathcal{A} = \frac{1}{AE} \left(P_1 \right)$	1, + P2l2+ P	3 (3).	1 M
	Here P = 10	KN = 10000 N	(compress	ive).
	P = 3	0000 N (T	ensile)	
	$P_{g} = $	30000 N (CO	wfressive)	

MAHARASHIRASTATE BOARDON HERBON ALTERICATION

(180).11 (-2700) -2005 (errified)

SUMMER	-14	EXAMI	NATION
		1 4	

Page No: 08/35 Subject Code: 17304 Model Answer MARKS SOLUTION Q.NO Q2(d) considering Tensile force as +ve comp. force as - ve $\int_{-30000}^{1000} x = \frac{1}{1000 \times 1.05 \times 10^{5}} \left[-10000 \times 1000 + 30000 \times 3000 - 30000 \times 2000 \right]$ 2 M 1. St = 0. 1905 mm. C = 40 N/mm2 (e) 6,= 120 N/mm² 6,= 120 N/mm2 = : Here 62=0 120p 2 M scale 1cm = 20 N/mm2 Principal stresses .: Major principal stress '6n, = l(oe) x scale = 6.6 x20 = 132 N/mm² (Tensile) : Minor Principal Stress 6p=- L(of) x scale =-0.6x20=-12 N/mm²

(comp.)

MAHARASHIR (SIAH BOARDO) DECENICALIDE CAHON

(180) 11 t = 27091 - 2005 ("ertified)

SUMMER - 14 EXAMINATION

Sub	ject Code: 17304 Model Answer Page No:	09/35
Q .N()	SOLUTION	MARKS
Q 2(e)	position of Principal plane	
cont	position of major Principal Plane (O1)	
	$0_1 = 2bda = \frac{20p}{2} = \frac{33}{2}$	
	$0 = 16.5^{\circ}$	1 M
	Position of Minor Principal Plane (O2)	
	$Q_2 = Q_1 + 90$	
	Q ₂ = 16.5 +90	
	$Q_2 = 106.5^{\circ}$	12 M
	Given Data.	
(t)	Int. fluid pr. (b)= 3 N/mm²	
	Int. cliameter (d) = 500 mm.	
	permissible tensile stess = 80 N/mi	2 W.
	Taking 6= permissible tensile stress = 80 N/mm2.	11
	circumferential stress (60)	
		1 N
	$6c = \frac{Pd}{2t}$	
	$t = \frac{pd}{d}$	
	2×6c	
	$+ = 3 \times 500$	
	2×80	
	t = 9.375 mm	2 M

Page No: 10/35

Q.NO		SOLUTION		MARKS
a-3 (a)	1	X X	W	
cog.	A /		B	
	1			
		L X		
	Consider at its	a cantilever of span	L with a point load a section x-x	
	S.F. Call	wation_:		
	i> FB=	shear force at B = + W		
4	ii> Fx=	shear force at x = + 1	1	1/2
		shear force at A = + W wation. Fmon=+W	man. S.F	1/2
٠	i> MB=	Bending moment at &	3 = 0	
	ii> Mx =	- Bending moment at or	ny section x-x	名
	Mx-	- W.2C		
	iii) Ma	= Bending moment A	M·h	
		Mman = W.4	man BM	12
	W		W	
		+>e	S-F-D	
	A		B	
	A	B	B.M.D	
		-Ve	N . 1 . 2	
			I	
	- Wh			

Subject Code: 17304

NO	740100	OLUTION	MARKS
3 (b)	2 KN M	i) Support Reaction Ety = 0 $RA - 3 \times 2 - 6 + RD = 0$ $RA - 6 - 6 + RD = 0$ $RA + RD = 12 - iJ$ $EMA = 0$ $-ROX6 + 6 \times 4 + 3 \times 2 \times \frac{7}{2} = 0$ $-6RD + 24 + 6 = 0$ $-6RD + 30 = 0$ $RD = \frac{30}{6}$	For S.f.D = IM For B.M.D = IM
		RA=7KM	
	S.F.D. calculation	B.M. calculation.	for situati
	I> FA= 7 KM	i> MA = O KN-M	= 111
	11> F8=7-3×2= 1KH	ii> Mg= 7x2-3x2x2/2=8K	1-m
	iii> fcb= 1 KN	$ ii $ M(= 7×4-3×2($\frac{2}{2}$ +2)	for Br
	iv> FCR = 1-6 = - S KM	= 28-3×2×3	Calculat
	V) FO = - 5 KN	MICT 10 KN-M	= 1 M
-	b	iv> Mp = O KH-m.	

Page No: 12/35

Q.NO		SOLUTION	MARKS
Q-3 (c)	1 4 KM	m 6KN 10KN	
	3m	2m 2m B	
		10 KM 10 KM	
	A ///		1
		S.f.D.	
	//-ve	20 KN-M	1
	86 KM-M	8·M·D	
	S.F. Calculati	ion B.M. calculation	S.F. Calculation - 1 M
	i> FB= O KM	i> MB= O KN-M	
	ii) FOR = O KN	ii) MD= O KH-M	
	iii> FOL= 10 KM	$ 11\rangle MC = -10X2 = -20 Kg$ $ 11\rangle MA = -10X5 - 6X3 =$	B.M. Calculati
	V> FCL = 10+6 = 1	6 KM 4X3X3/2	1M
	Vi) FA= 16+4×3		
	= 16 + 12 FA= 28 KN	MA = -86 KN-M	
	T The second sec		

Q .NO	SOLUTION	MARKS
(d)	1.6 KM/m 3KM	
(0)	4 mmmmmm B	
	4m 2m J	
	2m 2m 1 2m	
	Y I	
,	i) find reactions RA & RB	
in the state of th	E4-0	
M	RA+ RB-3-1.6×6 = 0	
	RA+RB= 12.6i>	
	EMA=0	
	- RBX6+3X4+1.6X6X6/2=0	
	-6RB+12+28.8=0	
	-6RB+40.8-0	
	-6RB=-40.8	
	RB = 6.8 KM	
-	Put Ro value in ean i>	
	RA+RB=12.6	
	RA= 12.6-RB	
	RA=12.6-6.8	
	RA = 5.8 KM	
	ii) S.F. calculation	
	i> FB = - 6.8 KM	
	ii> Fer= -6.8+ (1.6x2)	
	FCR = -3.6 KN	

Page No: 14/35

)	SOLUTION	MAR
Fe	u = -3.6+3 = -0.6 KN	
FA	= -0.6 + (1.6 × 4) = S.8 KM	0
iii>		
	alculation	
i>	MB= O KN-M	
<u> </u>	Mc = 6.8x2 - 1.6x2x2	
	Mc= 10.4 Kn.m	la
111	MA = O KN-M	
	Mcs = 5.8 x 3.625 - 1.6 x 3.625 x 3-625 -	- 10.515 XN-m 1c
	2001	/ /
	1.6 KM/M PC	cation of sint of zero
#	f C	shear
	2m 2m 2m x	$\frac{6-5.8}{4-x}$
	0.66	(4-X) = 5.8X
5.8Y	N	
	+ve x=0.375m 2.4	-0.6x=5.8x
A	(4-x)=3.625m 0.6KM B X	- 0.375 m
		nom on the
	S.F.D 3.6 6.8 KN	O11)T
		1
	10.515KN-M	
OKH	m +vc OKN-m	
	/ ONIA II)	01
	B.M.D	

Q.NO	SOLUTION	MARKS
Q-3(e)	13 64	
	H B	
	2m 15m 1 is To Gind recursion	
	To find reaction	
-	A B C Efy=0	for BM
-	OKN-M -ve RATRB=15-1]	= 1.W
	EMA=0	
- Innoverse	-22.5 KAY -R8X2+15 X3.5-0	
	B.M.D -2 RB+ S2-S = 0	
	RB-26-25 KN	1/2M
	put in ean i]	
	RATES = 15	
÷	RA = - 11.25 KN	
	RA= 11-25 KN (1)	- 12M
	ii> B.M. calculation	
	i) Mc= BM at tree end = OKH-m	
-	11) M8=-15 x 1.5 = -22.5 kN-m	
	111) MA= 15x3.5-26.28x2 = 0 KN·m	OZM
-3(1)	is perpendicular aus theorem	
	it states that the moment of inertia of a plane section about an oxis perpendicular to the figure	
	sum of moment of inertia of the plane figure	
	about two mutually perpendicular axis passing	02
	through the c.e cs conmoid G'	

Q.NO	SOLUTION	MARKS
	ii> parallel anis Theorem	
	the moment of inertia of a plane section about	
	any axus is equal to M.I of the plane section about a parallel axus passing through its commit or	
	centre of gravity plus the product of area and the	
	5 quare of perpondicular distance bet two ares.	02
2-4		
ca)	A Japon	
	B	
	60	
	h= 2.598 m	
	(60)	
	C A AD	
	i) sin 60° = h	
-:	h= 2.598m	1/2
	ii) MI at apen	
	By using parallel anis theorem	
		1
	$IAB = \frac{bh^3}{36} - \frac{3 \times 2.598^3}{36} = 1.4613 \text{ m}^4$	h
	A= 1xbxh = 1x3x2.598 = 3.897 m2	1/2
	h= $\frac{7}{2}$ h from apex	1/2
	$h = \frac{2}{3} \times 2.598 = 1.732 \text{ m}$	1/2
	70	
	IAB= 16+Ah2 = 1.4613+3.897×1.732	
	IAB= 13.152 m4 from apen	01

MAHARASHIRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-14 EXAMINATION

Subject Code: 17304

Model Answer

Page No: 17/35

Q .NO	SOLUTION	MARKS
	ii> MI at apen base	
	$\frac{1cp - bh^3 - 3 \times 2.598^3 - 4.38386 m^4}{12}$ from base	1/2-
	Icn= 4.38386 m ⁴	1/2
	this problem can be solved by using formule	
	i) MI at apex	
	$\frac{110 - bh^3}{4} = \frac{3 \times 2598^3}{4}$	OIM
	IAB = 4.38386 m4	01 M
	ii) MI at base	
	$\frac{1cp = \frac{bh^3}{12} = \frac{3 \times 2.598^3}{12}$	0111
	Icp = 4.38386 m4	01 1

Subject Code: 17304

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER - 14 EXAMINATION

Q.NO	SOLUTION	MARKS
	SOLO III.,	WARK
	v) To find lyy	
	fyy = I6, + I62	
	7 14 - 161 102	
	t. 1.h.3 dah3	
	$\frac{1}{12} + \frac{1}{12} + \frac{1}{12} = \frac{1}{12}$	1/2 M
	3 . 7	
	$144=\frac{10\times150^{3}}{12}+\frac{140\times10^{3}}{12}$	
	12 12	
	144= 2.8125×10 +11.67×103	
	144= 2.824 × 10 mm4	DI M
	1299 2004 110 111111	Olw
	•	
		•
	+	

Q.NO	SOLUTION	MARKS
	i> To find moment of inertia (Idia)	
	1 dia = II (D + d +) A = II (D - d 2)	For Isia =
	Idia = TT (1004 804) A= TT (1002 802)	IM
	Idia= 2.898 × 106 mm4 A= 2.827433 × 103 mm	32 A= IM
	ii) To find radius of gyration (K)	Formulae
	$K = \frac{13iq}{A} = \frac{2.8981 \times 10^6}{2.8274 \times 10^3} = K = 32.015 \text{ mm}$	1 M
Q-4 (e)	Assumption in theory of simple Bending	
	i) Transverse section of beam which is plane before bending will remain plane after the bending	
	ii) The beam is stressed well up to proportional limit such that it must obey's Hook's law	
	iii) The value of young's modulus (E) is same in tension and compression.	m
	iv) the elastic limit is not exceeded.	
	V) The beam is initially straight & unstressed.	1 M for each
	vi) Each longitudinal fibre is tree to expand or contract independently from every other layer	(write amy four
	vii) The resultant force across transverse section of the beam is zono.	,,,,,,,
	viii) the deformation of the section due to shear force is neglected.	
	ix > The material of the peam is homogeneous and	

Q.NO	SOLUTION	MARKS
Q-4 (F)	shearforce = 25 KN	
	100	mm
	d= 100 mm F= 25 × 103 N	-
	To find the manimum shear stress (9mon)	
	A= TT Xd2	
-	$A = \frac{T}{4} \times 100^2$	
	A= 7853.98 mm ²	0
	$q_{au} = \frac{F - 25 \times 10^3}{A}$	
	$fax = 3.18 \text{ N/mm}^2$	
	for circular section	0)
	$\frac{4 \text{monc}}{3} = \frac{4}{3} \times 3.18$	
	9mai= 4.244 N/mm²	0

MAINTARASHTRASTATI BOARD DE ITOTALION (ALLDE CATION Autonomous) (1807) to 27001 - 2005 Certified)

Subject Code: 17304

SUMMER - 14 EXAMINATION Model Answer

Page No: 23/35

Q NO	SOLUTION	MARK
35a>	Given, d = 200 mm 6max = 100 N/mm2	
	find 66 at 50 mm from N.A	
-	Soln * Smax-4	
	NA: 3 350	
	1/2/66	
	*/	
٦١.		
1)	Using the flexural formula	
	M = Genery. I Imax	-
	I = = = (d)4 = = = (200)4 = 78.539×106 mm4	01
	Imax = 0/2 = 200 = 100mm	
	6 max = 100 N/mm2 (Given)	
	:. M = 6max x I = 100 x 78.539x106	
	:. M = 6max x I = 100 x 78.539x106	
	M = 78.539×106 N.mm	0.1
	11 - 10. 307 N. W.	101
2>	Reduce of the property	
,,	Bending stress at 50 mm from N.A Using the flexural formula. M. = 65. I Jso	
	Using the flexural formiwa.	
	$\frac{M}{I} = \frac{68}{360}$	- 01

MAHARASHIKA STATE BOARD OF TROBERT AT THE ATTOX

(18().11 (2*001 - 2005 (errolled)

SUMMER - 14 EXAMINATION

Subject (ode:	17304
-----------	------	-------

Model Answer

Page No: 24/35

Q.NO	SOLUTION	MARK
		1317 11(1)
35a> Cont	$\frac{78.539 \times 10^6}{78.539 \times 10^6} = \frac{66}{50}$	
	78.539×106 50	
	:. 65 = 50 N/mm2 6max	01
	OR K100-7	
	100 6b	OR
	From similar triangles Imax 50mm	
	Smax = 6b. Imax Iso	
	100 = 6b 100 = 50	
	100 50	
	:. 6b = 50 N/mm2	01
35b	Given, Column size - 600 x 600 mm, P=6000 KN.	
	e= 2, No tension Condition	
\rightarrow	Sol ⁿ	
	1) For No Tension Condition	
	Direct stress (60) = Bending Stress (60)	
27	Direct Stress 60 = 1/A = 6000 × 103	
	:. 60 = 16.67 N/mm2	01
3>	Bending stress 66 = M = P.e.	

MATHARASH (RASTALL BOARD OF HEREAL AFTER A 110). (ISO IF C. 2700) - 2005 (criffed)

SUMMER - 14 EXAMINATION

Subject Code: 17304 Model Answer Page No: 35/35

Q.NO	SOLUTION	MARKS
35b Cont	$Z = \frac{I}{J_{\text{max}}} = \frac{bd^3}{\frac{12}{4_2}} = \frac{bd^2}{6} = \frac{600 \times 600^2}{6}$	
	$Z = 36 \times 10^6 mm^3$	01
	:. 66 = 6000×103×E = 0.1667 E N/mm²	01
	Now equate 60 = 66	
	16.67 = 0.1667 E :. e = 100 mm +	01
	A point load of 6000 KN be placed at an eccentricity of 100 mm on the Centroickel axis so as to produced no tension Condition.	
	$P = 85 \text{ KM}, \ b = 3.5t, \ 6 = 60 \text{ MPa}.$ solution, As the load is axial.	
	Stress 6 = load = P 4s area bxt.	01
	$= \frac{\rho}{3.5 \pm x \pm} = \frac{\rho}{3.5 \pm 2}$	01
	$60 = 85 \times 10^{3}$ 3.5 ± 2	
	t = 20.11 mm	01
	$b = 3.5 \times 20.11 = 70.38 mm.$	01

A) A HARASHTR (STATE BI) ARD OF THE HARCATED CATTON (A) ADDRESS (180/11 C - 2700) - 2005 Certified).

SUMMER - 14 EXAMINATION

Subject Code: 17304

Model Answer

Page No: 26/35

Q .NO	SOLUTION	MARKS
35d	Given, diameter = d, load = P	
	eccentricity = e	
	$\frac{1}{2}e$	
		-
	100	
1>	Area of Section (A)	
	$A = \frac{\pi}{4}(d)^2$	
	. 4	
2>	Section Modulus (Z)	
	Z = I Jimax	01
		-
	$I = \frac{\pi}{64} (d)^4 \qquad \lim_{\alpha \to \infty} \frac{1}{2}$	
	$Z = \frac{T}{84}(d)^4 = \frac{T}{32}(d)^3$	or
	% 32	
37	F81 NO 121/3/01/ SUJJENTI-1/	
	$e \leq \frac{Z}{A}$	01
	$e < \frac{3}{32}(d)^3$ $\frac{7}{4}(d)^2$	
	五(め)2	
	$e \leq \frac{d}{8}$. 01
	0	
	:. Cmax = d	

MATERIAR VS) E (RANS) (A) BO ARISO THE DISTEAL TED CATION (A) AND THE 2005 Certified)

SUMMER - 14 EXAMINATION

Subject Code: 17304

Model Answer

Page No: 27/35

Q .NO	SOLUTION	MARKS
95d Cont	: 2 cmax = 2 x d = 0/4	
	For no tension Condition the load must lie	
	within a circle of diameter 2e i.e d/4.	
g 5 e		
\rightarrow	Core of a section: The Centrally located portion of a section within which the load	
	must act so as to produce only Compressive stress is called a core or kernel of a	01
	Section.	
	Let us consider a rectangular section of wielth	
	b of thickness / depth dy	
	H [b	
	1 2ey x d/3	
	2e, Tex 1 d/3	
	X	
	et d/3	
	b/3 + b/3 7 b/3	
1>	Area of Section A = bxd	
2>		
4/		
	$Z_{xx} = \frac{I_{xx}}{J_{max}}$ $Z_{yy} = \frac{I_{yy}}{J_{max}}$	

SUMMER - 14 EXAMINATION

Subject Code: 17304

Model Answer	M	odel	Answer
--------------	---	------	--------

Page No: 28/35

gse Cont	$Z_{xx} = \frac{bd^3}{d/2}$ $Z_{yy} = \frac{db^3}{b/2}$ $Z_{yy} = \frac{db^3}{b/2}$ $Z_{yy} = \frac{db^2}{b}$ $Z_{yy} = \frac{db^2}{b}$	
		-
	6	01
	For No Tension Condition	(1-1-)
	ex < Zxx ey < Zxx. A	01
	$\leq \frac{bo^2}{b} \leq \frac{db^2}{bd}$	
	$\frac{b \times d}{b \times d}$ $e_{1} = \frac{b}{6}$ $e_{2} = \frac{b}{6}$	
	2ex = d3 2ex = b/3	01
	The load must lie within the middle	
	third area of eccentricity 20 as shown in. fig. It is called as core or kernel of section.	
85f	4	
. •	50/n K-b=1000mm-x	
	3	
	d=2000 666.67 d/3 = 666.67mm	01
	333·33mm d/3	
	b/3 * b/3 y * b/3	

MAHARASITERASIATE BOARD OF TECHNICALL DECATION (Autonomius) (180/11 C - 27001 - 2005 Certified)

SUMMER - 14 EXAMINATION

Subject Code: 17304 Model Answer Page No: 29/35

2111)	ject Code: [7304] <u>Model Answer</u> rage	No: 7/33
Q.NO	SOLUTION	MARK
95f. Cont	For No Tension Condition	
	$e_x \leq \frac{Z_{xx}}{A}$ $e_y \leq \frac{Z_{yy}}{A}$	01
	$e_{x} \leq \frac{bd^{2}}{bd}$ $e_{y} \leq \frac{db^{2}}{bd}$	
	$e_{x} = \%$ $e_{y} = \%$	01
	:. 2ex = d/3 2ex = b/3	
	$= \frac{2000}{3}$ $2e_{x} = 666.67mm 2e_{y} = \frac{1000}{3}$	
	2eg = 383.33mm	01
	29.33	
	The Core of section is shown in fig. above of size 2ex x 2ey.	
	· · · · · · · · · · · · · · · · · · ·	

SEXHARASHER V \$2 VII BOARD OF HELENG AT LINE A LINE (Anteriorius) (180 H t - 2700) - 2005 (cerii) (d)

SUMMER - 14 EXAMINATION

Subject Code: 17304

Model Answer

Page No: 30/35

Q.NO	SOLUTION	MARKS
96a		
→	Pure Torsion	
	If the shoft is subjected to two equal and	
	opposite torques at its two ends, it is said	
	to be under pure tortion. A shaft is subjected	01
	to pure tortion if it is subjected to only	
	twisting moment and no other benching moment	
	or thrust acts on the shaft.	
*	Assumption's in the theory of torsion	
	The shaft is homogeneous & isotropic.	
27	The shaft is straight having uniform circulus	
	Cross section	02
3>	Twisting along the shaft is uniform.	
4>	Plain section before twisting remain plain	
	after twisding.	
5>	Stresses do not exceed the proportional limit.	
	1	
	A B (S)	01
	Longitudinal Seetton cross-Seetion)

MAHARASHIRASIAH BUAR) OH HAMINAT IDIA AHAN (ISO HA 27001-2005 (emilied)

SUMMER - 14 EXAMINATION

Subject Code: 17304

Model Answer

Page No: 31/35

Q.NO	SOLUTION	MARKS
36 b	Given, P = 800 KW, N = 200 rpm, Tmax = 1.3 Tmean	
	Tmax = 80 N/mm2	
→	Soln	
1>	Power transmitted by shaft	
	Power transmitted by shaft	01
	Tmean = 38197.18 N.m	
	As Tmax = 1.30 Tmean	
	Tmax = 49.656×106 N.mm	01
27	Using Torsion formula.	
	$\frac{T_{\text{max}}}{I_{P}} = \frac{Z}{R}$	
	$I_p = I_{xx} + I_{yy} = 2x \frac{\pi}{64} (d)^4 = \frac{\pi}{32} \times d^4$ $R = \frac{d}{2}$	
	Tmux = Ip x Z = \frac{7}{32}x(d)^4 x 80	
	R d/2	
	Tmax = TT J3. × 80	01
	49.656×106 = TF ×d3×80	
	d = 146.76 mm	01

(18O/11't 27001 2005 Certified)

SUMMER - 14 EXAMINATION

Subject Code: 17304

Model Answer

Page No: 32/35

Q.NO	SOLUTION	MARKS
96 c	Given, P = 200 HP, N=180 rpm, Z=90 N/mm2	
	0 = 1° = To red, L=5m 6/9 = 0.82×105 N/mm2	
->	Soln	
	Power transmitted by shaft in HP $P = 2\pi NT \dots T. \text{ is in kg·m}$ 4500	1/2
	200 = 2×11×180× T 4500	
	4500	
	T = 795.774 kg.m	
	= 795.774×9.81	
	T = 7806.549 N·M	
	T = 7.806 ×106 N.mm	1
2>	Diameter of shaft based on strength	
	Using the relation, T = T	1 2
	$\frac{7.806\times10^{6}}{32\times04^{4}} = \frac{90}{4/2}$	
	# 32×04	
	d3 = 441.760 ×103	
	-: d = 76.16 mm.	1/2
3>	Diameter based on stiffness.	
	Using the relation, T = GQ	1

MARASHERASTATI BOARDEN HEREKEALING ARTHUR (Autonomous) (180/HC 27001 - 2005 Cernifical)

SUMMED 14 EXAMINATION

	SUMMER - 14 EXAMINATION	- 1
Sul	oject Code: 17304 <u>Model Answer</u> Page No	:33/35
Q .NO	SOLUTION	MARKS
36c Cont	7.806×106 = 0.82×105×(1× TBO)	
30,00	T132 xd4 5000	
	d4 = 279.70×106	
	d = 129.32 mm	Ol
	. The scitable diameter is greater of above	
	troo values: d=129.32 mm.	+
96d>	Given, D = 400 mm, d = 200 mm. Q = 1.5°	
	L=10m, C/q=0.85×105 N/mm2	
\rightarrow	Solution	
	Using the relation	
	$\frac{\sigma}{I_{P}} = \frac{60}{L}$	0
	•	
	$\frac{T}{32} \times (cD^4 - cl^4) = \frac{0.85 \times 10^5 \times (1.5 \times \frac{T}{180})}{10000}$	
	$\frac{\pi}{32} \times (cD^4 - cl^4)$ 10000	
		0
	$T = \frac{\pi}{32} (400^4 - 200^4) \times 0.85 \times 10^5 \times (1.5 \times 180)$	
	T = 524.32 × 106 N.mm	
	T = 524.32 KN.m	. 02

MAHARASHERA STATE BOARDON TECHNICALEDIA VIIION Autonomoust (ISO/IEC 27001) 2005 Certified)

SUMMER - 14 EXAMINATION

Subject Code: 17304

Model Answer

Page No: 34/35

Q.NO	SOLUTION	MARKS
96€	Given, P = 36 KN·m, L=0.60, Z=83N/mm2	
->	Solution, Using the Relation.	
-	$\frac{T}{Ip} = \frac{Z}{R}$	
	$Ip = I \times x + I_{JJ} = 2 \times \frac{71}{64} (D^4 - U^4) = \frac{1}{32} (D^4 - U^4)$	01
	$R = \frac{9}{2}$	
	··· 丁= 印×景.	
	$= \frac{\pi \cdot (0^4 - 0^4) \times \epsilon}{32}$	
	$T = \frac{\pi}{16} \frac{(D^4 - d^4)}{D} \times C$	01
	But d=0.60 put in above egn.	
	T = 75 [04-6.40)4] x 83	
	36×106 = 76 [0.9744 D4] ×83	
	36×106 = 15.879 D3	
	$D = 131.36 mm$ $L = 0.6 \times 131.36$	0
7	$d = 0.6 \times 131.36$ $d = 78.82 mm$	0

MAHARASH DOASTALL BOARD OF THORITAL FOR CALIDA - Anti-monte of Certified)

Sul	SUMMER - 14 EXAMINATION oject Code: 17304 Model Answer Page No:	37/35
Q NO 96 \$	SOLUTION	MARKS
5 ° T		
->	Section Modulus (Z)	
	It is the satio of moment of Inertia	
	of the section about the neutral axis and	
	the distance of the most extreme layer from the neutral axis.	01
	Section modules about XX axis Zxx = Ixx Imax	
	Section modulus about 47 axis Zyy = Tyy Jmax	
	5. I. Unit of Section modules is = mm3, cm3, m3e	ko1
2>	Strength of hollow shaft.	
	Ip R	
	$T = I_{P \times C} \qquad I_{P} = \overline{3}_{2}(O^{4} - d^{4})$ $R = 0$	
	72.	
	= II (04-d4) C	
	$T = \frac{\pi}{16} \left[\frac{04 - 04}{0} \right]_{X} = \frac{\pi}{16} \left$	01
	where T = Toxque toursmitted be shall (N.m.	

where, T = Torque transmitted by shaft (N·mm)

D = External dia. of shaft (mm)

d = Internal dia. of shaft (mm)

T = fermissible shear stress of shaft muterial (N)mi