Cognitive Modeling Part I

Bayesian Modeling in brms

Julia Haaf September, 2022

A brief introduction to cognitive modeling

 $\boldsymbol{1.} \ \ What \ kind \ of \ models \ are \ we \ talking \ about?$

A brief introduction to cognitive modeling

- 1. What kind of models are we talking about?
- 2. Signal detection

A brief introduction to cognitive modeling

- 1. What kind of models are we talking about?
- 2. Signal detection
- 3. Application to perceptual decision making experiment

Theory, models, and data

There are many things that people call models.

E.g. Prayoga, T., & Abraham, J. (2017). A psychological model explaining why we love or hate statistics.

Verbal vs. mathematical models

There are many things that people call models.

E.g. Prayoga, T., & Abraham, J. (2017). A psychological model explaining why we love or hate statistics.

"A mathematical model or theory is a set of mathematical structures, including a set of *linkage statements*" van Zandt & Townsend (2012).

 Behavioral variables are related to components of psychological processes using equations.

"A mathematical model or theory is a set of mathematical structures, including a set of *linkage statements*" van Zandt & Townsend (2012).

- Behavioral variables are related to components of psychological processes using equations.
- Psychological processes are expressed as parameters and functions.

"A mathematical model or theory is a set of mathematical structures, including a set of *linkage statements*" van Zandt & Townsend (2012).

- Behavioral variables are related to components of psychological processes using equations.
- Psychological processes are expressed as parameters and functions.
- Behavior needs to be quantifiable (e.g. accuracy, response time).

Signal detection experiment

Stimulus	Present response	Absent Response	Total
Signal	75	25	100
Noise	30	20	50
Total	105	45	

Signal detection experiment

Stimulus	Present response	Absent Response	Total
Signal	75 (Hits)	25 (Misses)	100
Noise	30 (False Alarms)	20 (Correct Rejections)	50
Total	105	45	

 $\, \bullet \,$ General idea: Perception strength S varies gradually.

- General idea: Perception strength *S* varies gradually.
- On average, perceptual strength is higher when the stimulus is present/matches/old, etc.

- General idea: Perception strength S varies gradually.
- On average, perceptual strength is higher when the stimulus is present/matches/old, etc.

$$S \sim egin{cases} {\sf Normal}(\mu=d',\sigma^2=1), & {\sf for signal-present trials,} \ {\sf Normal}(\mu=0,\sigma^2=1), & {\sf for signal-absent trials.} \end{cases}$$

SDT model

d' = Sensitivity.

SDT model

 $c = \mathsf{Criterion}, \ \mathsf{determines} \ \mathsf{the} \ \mathsf{response} \ \mathsf{made}.$

What corresponds to the probability of hit?

Area under the curve!

What corresponds to the probability of false alarm?

What corresponds to the probability of correct rejection?

Application to perceptual decision making experiment

Collapsing across participants			
<u>The Confusion Matrix</u>	Chose Blue	Chose Yellow	
Blue (2.35 cpd) was correct	81.9%	18.1%	
Yellow (2.65 cpd) was correct	11.5%	88.5%	

Application to perceptual decision making experiment

Application to perceptual decision making experiment

■ Data are a coin flip and we model the probability: $Y_i \sim \text{Bernoulli}(p_i)$.

- Data are a coin flip and we model the probability: $Y_i \sim \text{Bernoulli}(p_i)$.
- Probabilities are transformed to the continuous latent space: $p_i = \Phi(\mu_i)$.

- Data are a coin flip and we model the probability: $Y_i \sim \text{Bernoulli}(p_i)$.
- Probabilities are transformed to the continuous latent space: $p_i = \Phi(\mu_i)$.
- In that space, we can use a linear model just as before: $\mu_i = \beta_0 + \beta_1 \operatorname{spf}_i$,

- Data are a coin flip and we model the probability: Y_i ~ Bernoulli(p_i).
- Probabilities are transformed to the continuous latent space: $p_i = \Phi(\mu_i)$.
- In that space, we can use a linear model just as before: $\mu_i = \beta_0 + \beta_1 \operatorname{spf}_i$,
- where β_0 , the intercept, translates to the criterion,

- Data are a coin flip and we model the probability: Y_i ~ Bernoulli(p_i).
- Probabilities are transformed to the continuous latent space: $p_i = \Phi(\mu_i)$.
- In that space, we can use a linear model just as before: $\mu_i = \beta_0 + \beta_1 \mathrm{spf}_i$,
- where β_0 , the intercept, translates to the criterion,
- and β_1 , the slope, translates to d'.

$$Y_i \sim \mathsf{Bernoulli}(p_i),$$
 $p_i = \Phi(\mu_i),$ $\mu_i = \beta_0 + \beta_1 \mathsf{spf}_i.$

Computing *responses* using accuracy and presented spacial frequency:

```
summary(fit1)
## Family: bernoulli
##
    Links: mu = probit
## Formula: response ~ 1 + factor(spf)
##
     Data: pdm[pdm$subject == 1, ] (Number of observations: 562)
    Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##
##
           total post-warmup draws = 4000
##
## Population-Level Effects:
               Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
##
## Intercept -0.11 0.08 -0.27 0.05 1.00
                                                           3757
                                                                   2501
## factorspflow -1.14 0.13 -1.37 -0.89 1.00
                                                           2495
                                                                   2218
##
## Draws were sampled using sampling(NUTS). For each parameter, Bulk ESS
## and Tail ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
```

Questions?

