Marco Bornstein

My overarching research goal is to make edge and distributed learning algorithms more realistic, efficient, and secure

Georgetown, Washington, DC

+I (206) 495-3942

marco.i.bornstein@gmail.com

SELECTED RESEARCH EXPERIENCE

Huang Research Group

(2020 - PRESENT)

Graduate Research Assistant (Dr. Furong Huang)

Federated Learning (FL), Asynchronous Algorithms, Compression and Hashing, Mechanism Design, and Non-convex Optimization. Currently as a graduate student I am...

- · Constructing faster distributed algorithms via asynchronous methods
- · Creating memory- and computational-efficient distributed algorithms via sketching and hashing (some which escape saddle points)
- Building mechanisms to incentivize FL participation & performance

Pacific Northwest National Laboratory (2022 – 2023)

Doctoral Internship (Dr. Nawaf Nazir)

Distributed Algorithms for Micro-grid Applications.

- · Researched edge-computing algorithms with applications to inverterbased micro-grids with high renewable penetration
- · Constructed a model-agnostic distributed algorithm so edge devices can collaboratively train irrespective of cost or memory constraints
- · Built a decentralized FL Python package

PUBLICATIONS

M. Bornstein, T. Rabbani, E. Wang, A. Bedi, & F. Huang. "SWIFT: Rapid Decentralized Federated Learning via Wait-Free Model Communication". International Conference on Learning Representations, 2023.

M. Bornstein*, T. Rabbani*, & F. Huang. "Large-Scale Distributed Learning via Private On-Device LSH". Neural Information Processing Systems, 2023.

M. Bornstein, T. Tullius, & Y. Bayazitoglu. "Optimal nanoparticles for heat absorption and cost." International Journal of Heat and Mass Transfer 133 (2019): 778-785.

Workshop Accepted:

M. Bornstein, A. Bedi, A. Sahu, & F. Huang. "RealFM: A Realistic Mechanism to Incentivize Data Contribution and Device Participation". NeurIPS Federated Learning Workshop, 2023.

Preprints:

M. Bornstein, J. Liu, J. Li, & F. Huang. "Escaping From Saddle Points Using Asynchronous Coordinate Gradient Descent". 2022.

Under Submission:

T. Rabbani, B. Feng, M. Bornstein, & F. Huang. "Federated Learning of Large Networks on Constrained Clients via Sketching".

M. Bornstein, N. Nazir. "Model Independent Distributed Learning". M. Bornstein*, T. Rabbani*, M. Ding, & F. Huang. "Training Extreme Recommender Systems using Compressed Virtual Labels.".

EDUCATION

2019 - PRESENT **Doctor of Philosophy Candidate**

> Applied Mathematics University of Maryland

GPA: 3.95/4.00

Master of Science 2019 - 2021

> Applied Mathematics University of Maryland GPA: 3.95/4.00

Bachelor of Science 2015 - 2019

Mechanical Engineering

Bachelor of Arts

Comp. & Applied Mathematics

Rice University GPA: 3.77/4.00

AWARDS

Aziz-Osborn Gold Medal in 2019-2020

> **Teaching Excellence** University of Maryland

Best Energy-Related Design 2019 Rice University Eng. Design Showcase

NSF Travel Grant Scholarship 2017 University of Connecticut, 34th QPRC

Best Poster and Presentation 2017 Rice University, 7th Eubank Conference

SELECTED PRESENTATIONS

Oral Presentation of SWIFT: Rapid Decentralized Federated Learning via Wait-Free Model Communication NeurIPS Federated Learning Workshop

TEACHING EXPERIENCE

2019-PRESENT University of Maryland

MATH 120: Elementary Calculus I FALL 2019

SPRING 2020 MATH 140: Calculus I MATH 140: Calculus I FALL 2020

PROGRAMMING SKILLS

ADVANCED Python, MATLAB, TensorFlow,

Open MPI, OpenMP, PyTorch

C, C++ INTERMEDIATE