### 10 Popular Evolutionary Algorithm Variants

#### Popular Evolutionary Algorithm Variants

- we're going to take a tour of these main EA variants:
  - Genetic Algorithms (GA and SGA)
  - Evolution Strategies (ES)
  - Evolutionary Programming (EP)
  - Genetic Programming (GP)
- and later on in the course we'll look more recent variants, such as:
  - Particle Swarm Optimisation (PSO)
  - Ant Colony Optimisation (ACO)

#### Genetic Algorithms: Quick Overview

- developed in 1960s by John Holland
- initially conceived as a means of studying adaptive behaviour
- typically applied to:
  - discrete function optimization
  - benchmarking new algorithms
  - straightforward problems that allow binary representation
- have been lots of variants developed since
  - as we've seen
- so Holland's GA is now known as the Simple Genetic Algorithm (SGA)

# Simple Genetic Algorithm (SGA): Technical Summary Tableau

| representation     | bit-strings                                             |
|--------------------|---------------------------------------------------------|
| recombination      | 1-point crossover                                       |
| mutation           | bit flip                                                |
| parent selection   | fitness proportional – implemented by Roulette<br>Wheel |
| survivor selection | generational                                            |

#### SGA Reproduction Cycle

- select parents for the mating pool
  - (size of mating pool = population size)
- shuffle the mating pool
- apply crossover for each consecutive pair with probability p<sub>c</sub>, otherwise copy parents
- apply mutation for each offspring (bit-flip with probability pm independently for each bit)
- replace the whole population with the resulting offspring

#### SGA Example

#### from Goldberg 1989:

- simple problem: max  $x^2$  over  $\{0, 1, ..., 31\}$
- GA approach:
  - representation: binary code, e.g., 01101 ↔ 13
  - population size: 4
  - 1-point crossover, bitwise mutation
  - roulette wheel selection
  - random initialisation
- let's see one generational cycle done by hand...

### X<sup>2</sup> Example: Selection

| String  | Initial         | x Value | Fitness      | $Prob_i$ | Expected | Actual |
|---------|-----------------|---------|--------------|----------|----------|--------|
| no.     | population      |         | $f(x) = x^2$ |          | count    | count  |
| 1       | 01101           | 13      | 169          | 0.14     | 0.58     | 1      |
| 2       | $1\ 1\ 0\ 0\ 0$ | 24      | 576          | 0.49     | 1.97     | 2      |
| 3       | 01000           | 8       | 64           | 0.06     | 0.22     | 0      |
| 4       | $1\ 0\ 0\ 1\ 1$ | 19      | 361          | 0.31     | 1.23     | 1      |
| Sum     |                 |         | 1170         | 1.00     | 4.00     | 4      |
| Average |                 |         | 293          | 0.25     | 1.00     | 1      |
| Max     |                 |         | 576          | 0.49     | 1.97     | 2      |

#### X<sup>2</sup> Example: Crossover

| String  | Mating                   | Crossover | Offspring       | x Value | Fitness      |
|---------|--------------------------|-----------|-----------------|---------|--------------|
| no.     | pool                     | point     | after xover     |         | $f(x) = x^2$ |
| 1       | 0 1 1 0   1              | 4         | 01100           | 12      | 144          |
| 2       | 1 1 0 0   0              | 4         | $1\ 1\ 0\ 0\ 1$ | 25      | 625          |
| 2       | $ 1 \ 1 \   \ 0 \ 0 \ 0$ | 2         | $1\ 1\ 0\ 1\ 1$ | 27      | 729          |
| 4       | $ 1\ 0\  \ 0\ 1\ 1$      | 2         | 10000           | 16      | 256          |
| Sum     |                          |           |                 |         | 1754         |
| Average |                          |           |                 |         | 439          |
| Max     |                          |           |                 |         | 729          |

### X<sup>2</sup> Example: Mutation

| String  | Offspring       | Offspring       | x Value | Fitness      |
|---------|-----------------|-----------------|---------|--------------|
| no.     | after xover     | after mutation  |         | $f(x) = x^2$ |
| 1       | 01100           | 1 1 1 0 0       | 26      | 676          |
| 2       | $1\ 1\ 0\ 0\ 1$ | 11001           | 25      | 625          |
| 2       | $1\ 1\ 0\ 1\ 1$ | $1\ 1\ 0\ 1\ 1$ | 27      | 729          |
| 4       | $1\ 0\ 0\ 0\ 0$ | $1\ 0\ 1\ 0\ 0$ | 18      | 324          |
| Sum     |                 |                 |         | 2354         |
| Average |                 |                 |         | 588.5        |
| Max     |                 |                 |         | 729          |

#### The Simple GA

- has been subject of many (early) studies
- still often used as benchmark for novel GAs
- shows many shortcomings, such as:
  - representation is too restrictive
  - mutation and crossover operators are only applicable for bitstring and integer representations
  - selection mechanism is sensitive for converging populations with close fitness values
  - generational population model can be improved with explicit survivor selection

#### Evolution Strategies: Quick Overview

- developed by Rechenberg & Schwefel
- typically applied to:
  - numerical optimisation
- attributed features:
  - fast
  - good optimizer for real-valued optimisation
- special:
  - self-adaptation of mutation parameters is standard

#### An Historical Example: The Jet Nozzle Experiment

- task:
  - optimise the shape of a jet nozzle
- approach:
  - random mutations to shape, with selection

before:

after:



#### Evolution Strategies: Technical Summary Tableau

| representation     | real-valued vectors           |
|--------------------|-------------------------------|
| recombination      | discrete or intermediary      |
| mutation           | Gaussian (Normal) pertubation |
| parent selection   | uniform random                |
| survivor selection | (μ,λ) or (μ+λ)                |

#### Evolution Strategies: (1+1) Example

- a very simple early version
- task: maximise  $f : \mathbb{R}^n \to \mathbb{R}$
- algorithm is a 'two-membered ES':
  - uses vectors from  $\mathbb{R}^n$  as genotypes
  - population size of 1
  - only uses mutation, creating one child
  - 'greedy' selection
    - accept offspring if fitter than parent
- (1,1) version always replaces the parent with the child

#### **Evolution Strategies: Representation**

- chromosomes consist of three parts:
  - object variables: x<sub>1</sub>,..., x<sub>n</sub>
  - strategy parameters:
    - mutation step sizes:  $\sigma_1, ..., \sigma_n$
    - rotation angles:  $\alpha_1, ..., \alpha_n$  (for correlated mutation)
- not every component is always present
- full size genotype:  $< x_1,...,x_n, \sigma_1,...,\sigma_n, \alpha_1,...,\alpha_k >$  where k = n(n-1)/2 (number of i, j pairs)

# Evolution Strategies: Example: Mutation Mechanism

- random numbers drawn from normal distribution  $N(0,\sigma)$ 
  - where 0 is the mean
  - and  $\sigma$  is the mutation step size
- $\sigma$  is varied using the 1/5 success rule:
- for some k, every k generations, the step-size should:
  - increase if 'too many' steps are successful (>20%)
    - because this indicates that the search is too local
  - decrease if 'too few' steps are successful (<20%)</li>
    - because this indicates that the step size is 'too large'
  - and stay the same if exactly 20% of steps are successful



#### **Evolution Strategies: Recombination**

- creates one child
- acts per gene position by either:
  - averaging the parental values, or
  - selecting one of the parental values
- derives values from two or more parents, either:
  - uses the same two parents for all positions
  - selects two different parents for each position

#### Evolution Strategies: Names of Recombinations

|                                                                    | two fixed parents  | two parents selected for each i |
|--------------------------------------------------------------------|--------------------|---------------------------------|
| $z_i = (x_i + y_i)/2$                                              | local intermediary | global intermediary             |
| z <sub>i</sub> is x <sub>i</sub> or y <sub>i</sub> chosen randomly | local discrete     | global discrete                 |

#### **Evolution Strategies: Parent Selection**

- parents are selected by uniform random distribution
- so ES parent selection is unbiased
- every individual has the same probability of being selected

#### **Evolution Strategies: Survivor Selection**

- generally  $(\mu, \lambda)$  is preferred to  $(\mu + \lambda)$  because:
  - $(\mu,\lambda)$  discards all parents
    - so can in principle leave (small) local optima
  - if the fitness function changes over time,  $(\mu + \lambda)$  selection preserves outdated solutions
    - so is less able to follow the moving optimum
  - $(\mu + \lambda)$  selection hinders self-adaptation, because misadapted strategy parameters may survive for a relatively large number of generations
- selective pressure in evolution strategies is very high because  $\lambda$  is typically much higher than  $\mu$
- typically an ES is a more aggressive optimizer than a (simple) GA

#### ES Example: The Ackley Function

#### evolution strategy:

- representation:
  - $-30 < x_i < 30$
- (30,200) survivor selection

• (
$$\mu$$
=30, $\lambda$ =200)

- termination:
  - after 200,000 fitness evaluations
- results:
  - average best solution is  $7.48 \times 10^{-8}$
  - which is very good!



$$f(x) = -20 \cdot \exp\left(-0.2\sqrt{\frac{1}{n}} \cdot \sum_{i=1}^{n} x_i^2\right)$$
$$-\exp\left(\frac{1}{n} \sum_{i=1}^{n} \cos(2\pi x_i)\right) + 20 + e$$

### Evolutionary Programming: Quick Overview

- originally developed by Fogel et al in the 1960s
- why?
  - to simulate evolution as a learning process with the aim of generating artificial intelligence
- intelligence was viewed as adaptive behaviour
- so capability to predict is considered key to intelligence

### Evolutionary Programming: Quick Overview

- typically applied to:
  - traditional EP: prediction by finite state machines
  - contemporary EP: (numerical) optimization
- attributed features:
  - very open framework:
    - any representation and mutation operators are OK
  - contemporary EP are 'crossbred' with ES techniques
    - consequently it's hard to say what 'standard' EP is
- special:
  - no recombination
  - self-adaptation of parameters standard (contemporary EP)

# Evolutionary Programming: Technical Summary Tableau

| representation     | real-valued vectors                                |
|--------------------|----------------------------------------------------|
| recombination      | none                                               |
| mutation           | Gaussian (Normal) pertubation                      |
| parent selection   | deterministic (each parent produces one offspring) |
| survivor selection | probabilistic (μ+μ)                                |

# Evolutionary Programming: Prediction by Finite State Machines

- finite state machine (FSM):
  - states S
  - inputs I
  - outputs O
  - transition function  $\delta: S \times I \rightarrow S \times O$ 
    - transforms input stream into output stream
- can be used for predictions, such as predicting the next input symbol in a sequence

### Evolutionary Programming: FSM Example

consider the FSM with:

$$\bullet S = \{A, B, C\}$$

$$\bullet I = \{0, 1\}$$

• d, given by a diagram:



### Evolutionary Programming: FSM As Predictor

- consider an FSM to predict next input
- quality: % of  $in_{(i+1)} = out_i$
- given initial state C
- example:



quality: 60% (3 out of 5)



# Evolutionary Programming: Evolving FMS to Predict Primes

- $\bullet$  P(n) = 1 if n is prime, 0 otherwise
- $\bullet$  I =  $\mathbb{N}$  = {1,2,3,..., n, ...}
- $\bullet$  0 = {0,1}
- correct prediction: out<sub>i</sub>= P(in<sub>(i+1)</sub>)
- fitness function:
  - 1 point for correct prediction of next input
  - 0 point for incorrect prediction
  - penalty for 'too many' states

# Evolutionary Programming: Evolving FMS to Predict Primes

- parent selection: each FSM is mutated once
- mutation operators (one selected randomly):
  - change an output symbol
  - change a state transition (i.e. redirect edge)
  - add a state
  - delete a state
  - change the initial state
- survivor selection: (μ+μ)
- results: overfitting, after 202 inputs best FSM had one state and both outputs were 0,
  - so it always predicted 'not prime'!
- take away thought: not perfect accuracy, but proof that simulated evolutionary process can create good solutions for intelligent task

#### Evolutionary Programming: Modern EP

- no predefined representation in general
- so no predefined mutation
  - must match representation
- often applies self-adaptation of mutation parameters

### Evolutionary Programming: Representation

- for continuous parameter optimisation
- chromosomes consist of two parts:
  - object variables:  $x_1, ..., x_n$
  - mutation step sizes:  $\sigma_1, ..., \sigma_n$
- full size genotype:  $\langle x_1, ..., x_n, \sigma_1, ..., \sigma_n \rangle$

#### Evolutionary Programming: Mutation

- genotypes:  $\langle x_1, ..., x_n, \sigma_1, ..., \sigma_n \rangle$
- $\bullet \ \sigma_1' = \sigma_1 \ \bullet \ (1 + \alpha \ \bullet \ N(0,1))$
- $x_1' = x_1 + \sigma_1' \cdot N_i(0,1)$
- $\alpha \simeq 0.2$ 
  - (so this is correlated stepwise mutation seen in previous slides)
- boundary rule:  $\sigma' < \epsilon \Rightarrow \sigma' = \epsilon$
- other variants proposed and tried:
  - using variance instead of standard deviation
  - mutate σ-last
  - other distributions, such as Cauchy instead of Gaussian

### Evolutionary Programming: Recombination

- none
- why?
- because EP has a different biological inspiration to GA and ES
- in EP one point in the search space stands for a species, not for an individual
- so there can be no crossover between species
- much historical debate about the benefits of 'mutation versus crossover'

### Evolutionary Programming: Parent & Survivor Selection

- parent selection:
  - each individual creates one child by mutation
  - deterministic
  - not biased by fitness
- survivor selection:
  - parents and offspring populations are merged and compete in stochastic round-robin tournaments for survival

# Evolutionary Programming: Evolving Checkers Players

- Fogel 2002:
- neural nets for evaluating future values of moves are evolved
- nets have fixed structure with 5046 weights
- these are evolved, plus one weight for 'kings'
- representation:
  - vector of 5046 real numbers for object variables (weights)
  - vector of 5046 real numbers for σs
- mutation:
  - correlated stepwise, σ-first
  - plus special mechanism for the kings' weight
- population size of 15

# Evolutionary Programming: Evolving Checkers Players

- selection:
  - tournament size q = 5
  - programs (with nets inside) play against other programs
  - no human trainer or hard-wired intelligence
- after 840 generations (6 months computing time!) the best strategy was tested against humans via Internet
- program earned 'expert class' ranking, outperforming
   99.61% of all rated players

#### Genetic Programming: Quick Overview

"programming of computers by means of natural selection" or "automatic evolution of computer programs"

- developed in the 1990's
- typically applied to:
  - machine learning tasks (prediction, classification...)
- attributed features:
  - competes with neural nets and alike
  - needs huge populations (thousands)
  - slow
- special:
  - non-linear chromosomes: trees, graphs
  - mutation possible but not necessary

## Genetic Programming: Technical Summary Tableau

| representation                              | tree structures        |  |
|---------------------------------------------|------------------------|--|
| recombination                               | exchange of subtrees   |  |
| mutation                                    | random change in trees |  |
| parent selection                            | fitness proportional   |  |
| survivor selection generational replacement |                        |  |

### Genetic Programming: Example: Credit Scoring

- bank wants to distinguish good from bad loan applicants
- model needed that matches historical data

| ID   | No. of children | Salary | Marital status | OK? |
|------|-----------------|--------|----------------|-----|
| ID-1 | 2               | 45000  | Married        | 0   |
| ID-2 | 0               | 30000  | Single         | 1   |
| ID-3 | 1               | 40000  | Divorced       | 1   |
|      |                 |        |                |     |

### Genetic Programming: Example: Credit Scoring

• a possible model:

```
IF (NOC = 2) AND (S > 80000) THEN good ELSE bad
```

in general we see that this takes the form:

```
IF formula THEN good ELSE bad
```

- the only unknown is the right formula, hence our search space (phenotypes) is the set of formulas
- the natural fitness of a formula is percentage of well classified (test) cases of the model it stands for

### Genetic Programming: Example: Credit Scoring

IF (NOC = 2) AND (S > 80000) THEN good ELSE bad can be represented by the following tree:



#### Genetic Programming: Initialisation

- most common method is ramped half-and-half
- given sets of functions F and terminals T
- a maximum initial depth for trees is chosen, D<sub>max</sub>
- each member of the initial population is created using one of two methods, each with equal probability:
- full method:
  - each branch has depth D<sub>max</sub>
  - beginning at the root:
    - nodes at depth d <  $D_{max}$  are randomly chosen from function set F
    - nodes at depth  $d = D_{max}$  are randomly chosen from function set T
- grow method:
  - each branch has depth  $\leq D_{max}$
  - beginning at the root:
    - nodes at depth d <  $D_{max}$  are randomly chosen from function set F U T
    - nodes at depth  $d = D_{max}$  are randomly chosen from function set T

#### Genetic Programming: Mutation

- typically there is a low or zero mutation rate
- early on Koza advised using no mutation at all
- later Banzhaf et al advised a low rate of around 5%
- so very different from other EA variants
  - but why?
- the consensus is that crossover in GP has a large shuffling effect
- which acts as a kind of 'macromutation' operator

# Genetic Programming: Offspring Creation Scheme

- let's compare:
  - GA scheme using crossover AND mutation
- with:
  - GP scheme using crossover OR mutation
    - (chosen probabilistically)

#### Genetic Programming: GA versus GP



**GA** flowchart

**GP** flowchart

#### Genetic Programming: Selection

- parent selection is typically fitness proportionate
- over-selection is often used with very large populations, to increase efficiency
  - rank population by fitness and divide it into two groups:
    - group I: the best x% of population
    - group 2: the other (100-x)%
  - then:
    - 80% of selection operations choose from group I
    - 20% choose from group 2
  - for population sizes 1000, 2000, 4000, 8000, good x values are 32%, 16%, 8%, 4%
- survivor selection:
  - typically: generational scheme (none)
  - recently: steady-state is becoming popular because of the elitism that it provides

#### Genetic Programming: Bloat

#### Bloat: "survival of the fattest"

- so tree sizes in the population are increasing over time
- ongoing research and debate about the reasons
- not much insight, other than "because it's possible they can, and so without any pressure for smaller sizes, they will!"
- so needs countermeasures, such as:
  - prohibiting variation operators that would deliver 'too big' children
    - but this could inhibit the search
  - parsimony pressure: a penalty for being oversized
    - more widely used

### Genetic Programming: Example: Symbolic Regression

- given some points in  $\mathbb{R}^n$ ,  $(x_1, y_1)$ ,...,  $(x_n, y_n)$
- find function f(x):  $\forall i = 1, ..., n : f(x_i) = y_i$
- possible GP solution:
  - representation:
    - $F = \{+, -, /, \sin, \cos\}$
    - $\bullet T = R U \{x\}$
  - fitness is the error
  - all operators standard
  - population size = 1000, ramped half-and-half initialisation
  - termination: n 'hits' or 50000 fitness evaluations reached
    - (where 'hit' is if  $| f(x_i) y_i | < 0.0001$ )

- slides based on and adapted from, Chapter 6 (and slides) of Eiben & Smith's Introduction to Evolutionary Computing
- the book also mentions several other variants not covered here
- see the Resources section of Brightspace for wider reading
- Genetic Algorithms:
  - Kenneth De Jong, Genetic algorithms are NOT function optimizers, pp
     5–18 in Foundations of Genetic Algorithms 2, Morgan Kaufmann, San Francisco, 1993
  - D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, 1989
  - J.H. Holland, Adaption in Natural and Artificial Systems, MIT Press, 1992
  - M.Mitchell, An Introduction to Genetic Algorithms, MIT Press, 1996 (a good supplementary course text book!)

- Evolution Strategies:
  - T. Bäck, Evolutionary Algorithms in Theory and Practice, Oxford University Press, New York, 1996
  - T. Bäck, D.B. Fogel, and Z.Michalewicz, Evolutionary Computation 1: Basic Algorithms and Operators, Institute of Physics Publishing, 2000
  - T. Bäck, D.B. Fogel, and Z.Michalewicz, Evolutionary Computation 2: Advanced Algorithms and Operators, Institute of Physics Publishing, 2000
  - Hans-Georg Beyer, The Theory of Evolution Strategies, Springer, Berlin, 2001
  - H.-G. Beyer and H.-P. Schwefel, Evolution strategies: A comprehensive introduction. Natural Computing, I(I):3–52, 2002
  - H.-P. Schwefel, Evolution and Optimum Seeking, Wiley, New York, 1995

- Evolutionary Programming:
  - L.J. Fogel, A.J. Owens, M.J. Walsh, Artificial Intelligence Through Simulated Evolution, John Wiley, 1966
  - D.B. Fogel, Evolutionary Computation, IEEE Press, Piscataway, NJ, 1995
  - T. Bäck, G.Rudolph, H.-P.Schwefel, Evolutionary programming and evolution strategies: Similarities and differences, in Fogel, Atmar Eds. Proceedings of EP-93, pp. 11–22
  - D.B.~Fogel, Blondie24: Playing at the Edge of Al, Morgan Kaufmann, San Francisco, 2002

- Evolutionary Programming:
  - J.R. Koza, Genetic Programming, MIT Press, 1992
  - J.R. Koza, Genetic Programming II, MIT Press, 1994
  - W. Banzhaf, P. Nordin, R.E. Keller, and F.D.
     Francone, Genetic Programming: An Introduction, Morgan Kaufmann, 1998 (a good text if you ever pursue this type of work)
  - W.B. Langdon, Genetic Programming + Data Structures = Automatic Programming!, Kluwer, 1998
  - W.B. Langdon and R. Poli, Foundations of Genetic Programming, Springer-Verlag, 200 I