CSCI 5525: Machine Learning Homework 3

Jingxiang Li

November 14, 2015

Problem 1.a

Knowing that for adaboost algorithm, we have

$$\frac{1}{N} \sum_{i=1}^{N} \mathbb{1}(g(x_i) \neq y) \leq \frac{1}{N} \sum_{i=1}^{N} \exp(-y_i g(x_i)) = \prod_{i=1}^{T} Z_t$$

Where

$$Z_t = \sum_{i=1}^{N} \exp(-\alpha_t y_i g_t(x_i))$$

is the normalization constant when update $w_{t+1}(i)$

To minimize the training error, we minimize its upper-bound $\prod_{i=1}^{T} Z_t$, i.e. find the best α_t that minimizing each Z_t , t = 1, ..., T

Note that

$$Z_{t} = \sum_{i=1}^{N} \exp(-\alpha_{t} y_{i} g_{t}(x_{i})) = e^{-\alpha_{t}} \sum_{y_{i} = g_{t}(x_{i})} w_{t}(i) + e^{\alpha_{t}} \sum_{y_{i} \neq g_{t}(x_{i})} w_{t}(i)$$

$$= (e^{\alpha_{t}} - e^{-\alpha_{t}}) \sum_{i=1}^{N} w_{t}(i) \mathbb{1}(y_{i} \neq g_{t}(x_{i})) + e^{-\alpha_{t}} \sum_{i=1}^{N} w_{t}(i)$$

$$= (e^{\alpha_{t}} - e^{-\alpha_{t}}) \epsilon_{t} + e^{-\alpha_{t}}$$

where

$$\epsilon_t = P_{x \sim w_t}(y \neq g_t(x)) = \frac{\sum_{i=1}^N w_t(i) \mathbb{1}(y_i \neq g_t(x_i))}{\sum_{i=1}^N w_t(i)}$$

Let $\beta = e^{\alpha_t}$, we try to solve the following optimization problem

$$\arg\min_{\beta} f(\beta) = (\beta - \frac{1}{\beta})\epsilon_t + \frac{1}{\beta}$$

Let

$$\nabla f(\beta) = \epsilon_t + (1 - \epsilon_t) \frac{1}{\beta} = 0$$

We have

$$\beta = \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$$

i.e.

$$\alpha_t = \log(\beta) = \frac{1}{2}\log(\frac{1 - \epsilon_t}{\epsilon_t})$$

Then we have

$$Z_t = (e^{\alpha_t} - e^{-\alpha_t})\epsilon_t + e^{-\alpha_t} = 2\sqrt{\epsilon_t(1 - \epsilon_t)}$$

Since $\epsilon_t \leq \frac{1}{2} - \frac{\gamma}{2}$ We have

$$Z_t \leq \sqrt{(1-\gamma)(1+\gamma)} = \sqrt{1-\gamma^2}$$

Then we know

$$\frac{1}{N} \sum_{i=1}^{N} \mathbb{1}(g(x_i) \neq y) \leq \prod_{i=1}^{T} Z_t \leq \prod_{t=1}^{T} \sqrt{1 - \gamma^2}$$

$$= \exp(\log(\prod_{t=1}^{T} \sqrt{1 - \gamma^2}))$$

$$= \exp(\frac{1}{2} \sum_{t=1}^{T} \log(1 - \gamma^2))$$

Knowing that $\log(1+x) \le x$, $\forall x \in (-1,0)$ and $-\gamma^2 \in (-1,0)$, we have

$$\frac{1}{N} \sum_{i=1}^{N} \mathbb{1}(g(x_i) \neq y) \le \exp(-\frac{1}{2} \sum_{t=1}^{T} \gamma^2) = \exp(-\frac{\gamma^2}{2} T)$$

Q.E.D.

Problem 1.b

Yes, since for adaboost algorithm we have proved that

$$\frac{1}{N} \sum_{i=1}^{N} \mathbb{1}(g(x_i) \neq y) \leq \exp(-\frac{\gamma^2}{2}T) \to 0, \quad T \to \infty$$

and the left hand side term is exactly the training error. Thus training error always become 0 as T increases. Q.E.D.

Problem 2.a

Before deriving the algorithm for Bagging and Random Forest, we need to define the information gain of a continuous random variable X

Let H(Y) be the entropy of a random variable Y,

$$H(Y) = \sum_{i=1}^{n} -p(y_i) \log_2 p(y_i)$$

Then the conditional entropy H(Y|X), which is the entropy of Y given a discrete random variable X is

$$H(Y|X) = \sum_{j=1}^{m} p(x_j)H(Y|x_j)$$

If *X* is a numeric random variable, we approximate H(Y|X) by discretizing *X* into a binary value random variable, i.e.

$$H(Y|X,C) = p(X < C)H(Y|X < C) + p(X \ge C)H(Y|X > C)$$

Then the information gain is defined as

$$IG(Y|X,C) = H(Y) - H(Y|X,C)$$

We will choose C that maximize the information gain IG(Y|X,C), i.e.

$$IG(Y|X) = \max_{C} IG(Y|X,C)$$

The optimization problem is solved by brute force search.

Then we will give a algorithm for training single binary split tree, which will be used for both Bagging and Random Forest.

Algorithm 1: Binary Split Tree

input : Design Matrix X of size $n \times p$, Response Vector y of size n, size of random feature set M, depth of the tree D

output:Root of the Tree

if $D \neq 0$ then

Randomly pick M features from X

foreach *j* as the feature index **do**

$$x = X[,j]$$

find the best split point C_j and the corresponding information gain $Gain_j$ by

minimizing $p(x < C_i)H(y|x < C_i) + p(x \ge C_i)H(y|x > C_i)$

 $J = \arg \max_{i} Gain_{i}$

$$X_l = X[X[,J] < C_I,:], X_r = X[X[,J] \ge C_I,:]$$

Build Sub Trees with X_l , X_r and depth D-1

Algorithm 2: Bagging

input : Design Matrix X of size $n \times p$, Response Vector y of size n, number of base classifiers B, size of random feature set M = p, depth of the tree D

output: Bagging of the Trees

for i = 1, ... B **do**

Draw Bootstrap Sample From X to form $X_{bootstrap}$ and $y_{bootstrap}$ Build Binary Tree with $X_{bootstrap}$, $y_{bootstrap}$, M = p and D = D

Simulation Result

Here we run simulations for Bagging with different number of base classifiers, the result is summarized in figure 1 and table 1. From the result we could see that the training and test error do not change significantly as the number of base classifiers increase, due to the fact the trees built in the Bagging algorithm are highly correlated.

Training and Test Error for Baggings

Figure 1: Simulation Result for Bagging

Table 1: Simulation Result for Bagging

				Numb						
Errors	5	10	15	20	25	30	35	40	45	50
Fold 1 Training	0.092	0.092	0.086	0.076	0.095	0.086	0.083	0.079	0.095	0.089
Fold 1 Test	0.083	0.139	0.083	0.139	0.056	0.056	0.139	0.139	0.056	0.111
Fold 2 Training	0.089	0.098	0.092	0.092	0.085	0.085	0.092	0.085	0.089	0.092
Fold 2 Test	0.086	0.057	0.143	0.086	0.143	0.143	0.086	0.143	0.086	0.057
Fold 3 Training	0.085	0.092	0.085	0.076	0.092	0.089	0.082	0.089	0.089	0.082
Fold 3 Test	0.114	0.171	0.086	0.057	0.086	0.114	0.143	0.114	0.086	0.143
Fold 4 Training	0.089	0.098	0.092	0.079	0.060	0.085	0.085	0.085	0.089	0.089
Fold 4 Test	0.114	0.029	0.114	0.114	0.086	0.143	0.029	0.200	0.114	0.143
Fold 5 Training	0.079	0.095	0.089	0.076	0.076	0.085	0.089	0.092	0.082	0.098
Fold 5 Test	0.171	0.086	0.086	0.200	0.229	0.057	0.086	0.086	0.114	0.029
Fold 6 Training	0.098	0.070	0.054	0.082	0.095	0.085	0.092	0.095	0.092	0.082
Fold 6 Test	0.057	0.114	0.086	0.171	0.029	0.143	0.057	0.029	0.086	0.171
Fold 7 Training	0.085	0.085	0.101	0.092	0.089	0.082	0.085	0.085	0.082	0.085
Fold 7 Test	0.114	0.114	0.029	0.057	0.086	0.143	0.143	0.114	0.171	0.143
Fold 8 Training	0.089	0.047	0.092	0.092	0.085	0.098	0.092	0.092	0.089	0.089
Fold 8 Test	0.000	0.086	0.114	0.029	0.171	0.029	0.114	0.086	0.086	0.086
Fold 9 Training	0.066	0.095	0.085	0.079	0.092	0.089	0.082	0.085	0.079	0.095
Fold 9 Test	0.057	0.086	0.057	0.143	0.086	0.057	0.114	0.086	0.114	0.057
Fold 10 Training	0.089	0.079	0.082	0.098	0.082	0.082	0.089	0.089	0.089	0.057
Fold 10 Test	0.114	0.171	0.171	0.029	0.114	0.143	0.086	0.029	0.057	0.086
Training Mean	0.086	0.085	0.086	0.084	0.085	0.087	0.087	0.088	0.087	0.086
Training Std	0.008	0.016	0.012	0.008	0.011	0.005	0.004	0.004	0.005	0.011
Test Mean	0.091	0.105	0.097	0.102	0.108	0.103	0.100	0.102	0.097	0.103
Test Std	0.046	0.046	0.041	0.060	0.059	0.047	0.038	0.052	0.034	0.047

Algorithm 3: Random Forest

input : Design Matrix X of size $n \times p$, Response Vector y of size n, number of base classifiers B, size of random feature set M, depth of the tree D

output: Bagging of the Trees

for i = 1, ... B **do**

Draw Bootstrap Sample From X to form $X_{bootstrap}$ and $y_{bootstrap}$

Build Binary Tree with $X_{bootstrap}$, $y_{bootstrap}$, M and D

Here we run simulations for Random Forest with different size of random features, the result is summarized in figure 2 and table 2, 3. From the result we could see that the training and test error first decrease, and then increase as the size of random features increases. Compared with Bagging, Random Forest has better generalization power in this case, since Random Forest is capable to de-correlate trees in the algorithm by randomly select features while training each node of the tree.

Training and Test Error for Random Forest

Figure 2: Simulation Result for Random Forest

Table 2: Simulation Result for Random Forest, Part 1 $\,$

								C.1 7									
	Size of the Random Feature Set																
Errors	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Fold 1 Training	0.165	0.098	0.108	0.086	0.079	0.076	0.086	0.067	0.067	0.073	0.076	0.070	0.057	0.057	0.060	0.079	0.054
Fold 1 Test	0.139	0.194	0.139	0.083	0.056	0.139	0.139	0.056	0.083	0.056	0.083	0.056	0.083	0.111	0.139	0.167	0.139
Fold 2 Training	0.123	0.108	0.082	0.092	0.079	0.085	0.085	0.089	0.066	0.082	0.066	0.082	0.079	0.060	0.073	0.070	0.070
Fold 2 Test	0.171	0.086	0.171	0.086	0.057	0.143	0.086	0.086	0.143	0.057	0.143	0.000	0.143	0.114	0.057	0.086	0.086
Fold 3 Training	0.133	0.098	0.082	0.073	0.085	0.089	0.073	0.070	0.095	0.066	0.060	0.057	0.054	0.063	0.060	0.063	0.057
Fold 3 Test	0.143	0.200	0.086	0.143	0.086	0.143	0.114	0.200	0.029	0.143	0.057	0.086	0.029	0.057	0.086	0.029	0.171
Fold 4 Training	0.158	0.117	0.101	0.085	0.076	0.092	0.085	0.085	0.070	0.063	0.082	0.063	0.057	0.066	0.054	0.070	0.066
Fold 4 Test	0.114	0.171	0.143	0.086	0.200	0.000	0.086	0.114	0.086	0.086	0.029	0.057	0.171	0.057	0.171	0.029	0.057
Fold 5 Training	0.136	0.082	0.092	0.082	0.092	0.082	0.076	0.060	0.073	0.076	0.063	0.066	0.073	0.085	0.079	0.063	0.066
Fold 5 Test	0.057	0.143	0.029	0.143	0.057	0.086	0.086	0.229	0.086	0.057	0.143	0.057	0.057	0.029	0.143	0.000	0.057
Fold 6 Training	0.142	0.111	0.101	0.089	0.082	0.076	0.070	0.082	0.082	0.070	0.073	0.057	0.076	0.070	0.082	0.044	0.063
Fold 6 Test	0.286	0.086	0.114	0.086	0.114	0.029	0.086	0.029	0.114	0.086	0.029	0.057	0.057	0.229	0.057	0.200	0.000
Fold 7 Training	0.161	0.092	0.089	0.089	0.070	0.082	0.085	0.089	0.089	0.076	0.063	0.066	0.063	0.060	0.070	0.060	0.063
Fold 7 Test	0.200	0.114	0.114	0.114	0.114	0.200	0.086	0.057	0.114	0.114	0.057	0.257	0.029	0.086	0.000	0.029	0.000
Fold 8 Training	0.152	0.095	0.079	0.098	0.082	0.082	0.079	0.089	0.070	0.070	0.089	0.101	0.063	0.089	0.070	0.070	0.070
Fold 8 Test	0.200	0.143	0.114	0.114	0.029	0.143	0.086	0.029	0.114	0.114	0.057	0.114	0.000	0.029	0.029	0.000	0.086
Fold 9 Training	0.165	0.120	0.092	0.085	0.076	0.070	0.092	0.092	0.076	0.095	0.070	0.076	0.057	0.060	0.047	0.047	0.051
Fold 9 Test	0.257	0.114	0.114	0.086	0.229	0.086	0.057	0.086	0.029	0.114	0.029	0.086	0.143	0.057	0.057	0.114	0.114
Fold 10 Training	0.206	0.079	0.085	0.085	0.095	0.085	0.089	0.089	0.073	0.073	0.073	0.076	0.066	0.057	0.066	0.066	0.066
Fold 10 Test	0.086	0.057	0.057	0.114	0.057	0.057	0.143	0.029	0.057	0.029	0.200	0.114	0.086	0.057	0.086	0.057	0.057
Training Mean	0.154	0.100	0.091	0.086	0.082	0.082	0.082	0.081	0.076	0.074	0.072	0.072	0.065	0.067	0.066	0.063	0.063
Training Std	0.023	0.014	0.010	0.007	0.008	0.007	0.007	0.011	0.010	0.009	0.009	0.013	0.009	0.011	0.011	0.011	0.007
Test Mean	0.165	0.131	0.108	0.105	0.100	0.102	0.097	0.091	0.085	0.086	0.083	0.088	0.080	0.083	0.082	0.071	0.077
Test Std	0.072	0.048	0.042	0.024	0.066	0.062	0.027	0.071	0.038	0.036	0.059	0.068	0.057	0.059	0.054	0.070	0.055

Table 3: Simulation Result for Random Forest, Part 2

	Size of the Random Feature Set																
Errors	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Fold 1 Training	0.060	0.054	0.070	0.076	0.060	0.076	0.079	0.054	0.079	0.079	0.079	0.092	0.083	0.086	0.073	0.095	0.089
Fold 1 Test	0.083	0.083	0.111	0.083	0.111	0.139	0.111	0.056	0.139	0.111	0.111	0.056	0.111	0.083	0.222	0.028	0.111
Fold 2 Training	0.066	0.066	0.060	0.054	0.054	0.082	0.060	0.038	0.047	0.051	0.085	0.082	0.092	0.089	0.089	0.085	0.098
Fold 2 Test	0.029	0.029	0.229	0.114	0.057	0.086	0.086	0.200	0.086	0.029	0.114	0.086	0.029	0.114	0.057	0.143	0.000
Fold 3 Training	0.066	0.054	0.041	0.051	0.079	0.082	0.076	0.057	0.085	0.063	0.076	0.085	0.070	0.085	0.079	0.076	0.092
Fold 3 Test	0.000	0.057	0.171	0.143	0.114	0.114	0.171	0.057	0.086	0.029	0.143	0.057	0.143	0.114	0.229	0.229	0.057
Fold 4 Training	0.051	0.057	0.060	0.057	0.054	0.063	0.076	0.085	0.060	0.089	0.063	0.095	0.085	0.089	0.089	0.092	0.089
Fold 4 Test	0.171	0.114	0.029	0.029	0.057	0.029	0.057	0.143	0.086	0.114	0.057	0.057	0.114	0.057	0.057	0.057	0.114
Fold 5 Training	0.057	0.047	0.066	0.057	0.057	0.047	0.070	0.051	0.063	0.082	0.057	0.079	0.089	0.085	0.082	0.085	0.082
Fold 5 Test	0.114	0.114	0.057	0.086	0.114	0.114	0.029	0.086	0.029	0.114	0.029	0.143	0.114	0.143	0.086	0.086	0.114
Fold 6 Training	0.054	0.070	0.076	0.063	0.089	0.085	0.079	0.063	0.060	0.085	0.070	0.063	0.085	0.089	0.092	0.082	0.085
Fold 6 Test	0.143	0.086	0.143	0.057	0.086	0.086	0.114	0.029	0.029	0.143	0.029	0.057	0.171	0.086	0.057	0.114	0.086
Fold 7 Training	0.060	0.060	0.057	0.063	0.073	0.063	0.054	0.082	0.076	0.073	0.092	0.073	0.092	0.089	0.082	0.076	0.085
Fold 7 Test	0.200	0.029	0.057	0.114	0.171	0.086	0.114	0.114	0.143	0.200	0.086	0.257	0.029	0.086	0.143	0.171	0.114
Fold 8 Training	0.057	0.057	0.057	0.060	0.066	0.066	0.079	0.095	0.079	0.057	0.085	0.082	0.085	0.089	0.098	0.095	0.089
Fold 8 Test	0.029	0.057	0.114	0.029	0.086	0.000	0.143	0.000	0.057	0.114	0.171	0.057	0.057	0.057	0.029	0.000	0.114
Fold 9 Training	0.066	0.051	0.060	0.057	0.057	0.057	0.082	0.076	0.051	0.085	0.073	0.085	0.082	0.076	0.098	0.092	0.079
Fold 9 Test	0.086	0.029	0.029	0.029	0.086	0.171	0.057	0.143	0.114	0.114	0.171	0.057	0.057	0.143	0.029	0.029	0.200
Fold 10 Training	0.076	0.057	0.057	0.057	0.060	0.092	0.054	0.057	0.079	0.092	0.085	0.079	0.092	0.089	0.095	0.089	0.089
Fold 10 Test	0.143	0.057	0.029	0.057	0.057	0.057	0.057	0.086	0.200	0.029	0.057	0.114	0.086	0.143	0.086	0.114	0.086
Training Mean	0.061	0.057	0.060	0.060	0.065	0.072	0.071	0.066	0.068	0.076	0.077	0.082	0.085	0.086	0.088	0.087	0.088
Training Std	0.007	0.007	0.009	0.007	0.012	0.014	0.011	0.018	0.013	0.014	0.011	0.009	0.007	0.004	0.008	0.007	0.005
Test Mean	0.100	0.065	0.097	0.074	0.094	0.088	0.094	0.091	0.097	0.100	0.097	0.094	0.091	0.103	0.099	0.097	0.100
Test Std	0.066	0.033	0.069	0.041	0.036	0.051	0.045	0.060	0.054	0.056	0.054	0.065	0.048	0.034	0.074	0.072	0.051

Problem 3.a

For sigmoid activation function

$$L_{sq}^{sigmoid}(a) = \sum_{i=1}^{n} (y_i - \frac{1}{1 + \exp(-a_i)})^2$$

Note that the Loss function is twice differentiable, we will check the following condition:

 $\forall n, y \text{ the } Hessian Matrix is positive definite.$

Proof. $L_{sq}^{sigmoid}$ is not a convex function

It's easy to see that

$$\frac{\partial^2 L}{\partial a_i \partial a_j} = 0, \ \forall i \neq j$$

i.e. the Hessian Matrix is diagonal, so it's sufficient to check $\frac{\partial^2 L}{\partial a_i^2} > 0$, $\forall i$

Let $y_i = 1$, we have

$$\frac{\partial^2 L}{\partial a_i^2} = \frac{2e^{a_i}(2e^{a_i} - 1)}{(e^{a_i} + 1)^4}$$

Note that if $2e^{a_i} - 1 < 0$, i.e. $a_i < -\log(2)$, $\frac{\partial^2 L}{\partial a_i^2} < 0$, which means that if

$$\exists i \text{ s.t. } y_i = 1 \text{ and } a_i < -\log(2)$$

The Hessian Matrix is not positive definite, suggesting that $L_{sq}^{sigmoid}$ is not a convex function of the activation vector a.

Problem 3.b

For relu activation function

$$L_{sq}^{relu}(a) = \sum_{i=1}^{n} (y_i - \max(0, a_i))^2$$

We will check the definition of convexity, i.e. $\forall y, n, \forall 0 < \lambda < 1 \text{ and } x_1, x_2 \in \mathbb{R}^n$,

$$L(\lambda x_1 + (1 - \lambda)x_2) \le \lambda L(x_1) + (1 - \lambda)L(x_2)$$

Proof. L_{sq}^{relu} is not a convex function

Let n = 1 and $y_1 = 1$, we have

$$L(a) = (1 - \max(0, a))^2$$

Choose $\lambda = 0.5$, $x_1 = -0.5$, $x_2 = 0.5$, we have $L(x_1) = 1$, $L(x_2) = 0.25$ and $L(\lambda x_1 + (1 - \lambda)x_2) = 1$, i.e.

$$L(\lambda x_1 + (1 - \lambda)x_2) = 1 > 0.625 = \lambda L(x_1) + (1 - \lambda)L(x_2)$$

which suggests that there exists *n* and *y* such that

$$L(\lambda x_1 + (1-\lambda)x_2) \le \lambda L(x_1) + (1-\lambda)L(x_2)$$

doesn't hold, i.e. L_{sq}^{relu} is not a convex function

Problem 4.a

Let vec(X) be a vectorized version of matrix X constructed column-wise and "<x, y>" be the inner product of two vectors, then the convolution operation can be described by using the following pseudo-code:

```
for i = 1, ..., n - 2:

for j = 1, ..., m - 2:

Z[i, j] = \langle vec(X[i:(i + 2), j:(j + 2)]), vec(K) \rangle
```

Problem 4.b

Note that for matrix $X \in \mathbb{R}^{n \times m}$, X[i,j] = vec(X)[i+(j-1)n], similarly Z[i,j] = vec(Z)[i+(j-1)(n-2)], then it's easy to derive the form of A,

$$\forall i = 1, 2, 3, ..., n - 2, \quad j = 1, 2, 3, ..., m - 2$$

$$A[i + (j - 1)(n - 2), i + (j - 1) \times n] = K[1, 1]$$

$$A[i + (j - 1)(n - 2), i + j \times n] = K[1, 2]$$

$$A[i + (j - 1)(n - 2), i + (j + 1) \times n] = K[1, 3]$$

$$A[i + (j - 1)(n - 2), i + 1 + (j - 1) \times n] = K[2, 1]$$

$$A[i + (j - 1)(n - 2), i + 1 + j \times n] = K[2, 2]$$

$$A[i + (j - 1)(n - 2), i + 1 + (j + 1) \times n] = K[2, 3]$$

$$A[i + (j - 1)(n - 2), i + 2 + (j - 1) \times n] = K[3, 1]$$

$$A[i + (j - 1)(n - 2), i + 2 + j \times n] = K[3, 2]$$

$$A[i + (j - 1)(n - 2), i + 2 + (j + 1) \times n] = K[3, 3]$$

Entries not specified in the above equations are all 0.