

At
$$x=0.2$$

$$f'(x) = \frac{1}{4}x = f(x_0^2+1) - f(x_0^2-1)$$

$$2h$$

$$(h=0.5-0=1) = -0.10017 + 0.30452$$

$$(16)$$

$$= 1.767$$

$$\frac{1}{4}x = 0.10017 - 2(0.20134) - 0.3052$$

$$(172)^2$$

$$= 0.10017 - 2(0.20134) - 0.3052$$

$$(172)^2$$

$$= 0.28944$$
Question #3

Compute $f'(3.1)$ and $f'(3.2)$

$$x = 1 = 2 = 3 = 4 = 5$$

$$f(x) = 0 = 1.4 = 3.3 = 5.6 = 8.1$$
Solution

we have to find $f(3.1)$ and $f(5.2)$
using newton forward difference formula

	Difference table	
-	X y Dy Dzy Dzy	
-	1 0	
	2 1.4 0.5	
	1.9 -0.1	
	2.3 -0.2	
	4 5.6 0.2	
	5 8-1	
	Here at K=3.1 P = X-X0 - 3.1-1 - 2.1	
	n Market Land	
	$f(301) = 0 + (201)(104) + (201)(201-1)(0.5)^{3}$	
	+ (2.1)(2.1-1)(2.1-2)(-0.1)	
	31 + (2·1)(2·1-1)(2·1-2)(2·1-3) (-0·1)	
	f(3.1) = 2.94 + 0.5775 - 0.00385 + 0.00086	
	$= \frac{1}{3.1} = \frac{1}{2.5}$ $= \frac{1}{3.5} = \frac{1}{4.5}$ At $\chi = 3.2$ $\rho = \frac{3.2 - 1}{2.2} = \frac{2.2}{2.5}$	-
		-
A	f(3.2) = 0 + (2.2)(1.4) + (2.2)(2.2-1)(0.5)	1
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	山
	f(3.2) = 3.08 + 0.66 - 0.0088 + 0.00176 4!	-

we have $f(3) = 3.3 \quad f(3.1) = 3.5145$ f(3.2)=3.7329 Using backward finite difference formula we have f'(3.1) = f(3.1) - f(3)= 3.5145 - 3.3 = 2.145 using backward finite difference formula we have f'(3.2) = f(3.2) - f(3.1)= 3.7329-3.5145 = 2.184 Thesefore using numerical differentiation we have f'(3.1) = 2.145 | f'(3.2) = 2.184Question # 4

	-
i) Trapezoidal rule, n=6 Sulution	1
h = b - a = h = 12 - 0	= 2
2 0 2 4 8 10 12 y 1 1/5 1/17 1/64 1/101 1/145	5
$\int_{0}^{12} y dn = \frac{h}{2} \left((y_0 + y_5) + 2(y_1 + y_2 + y_3) \right)$	73+74)]
$= \frac{2}{2} \left[\left(1 + \frac{1}{145} \right) + 2 \left(\frac{1}{5} + \frac{1}{17} + \frac{1}{64} \right) \right]$	101)]
= 1.5754	
ii) Trapezoidal rule, n=8	17-11-11-11-11-11-11-11-11-11-11-11-11-1
h = b - q = 12 - 0 = 3 $h = 8 2$	
2 0 3/2 3 9/2 6 15/2 9 4 1 4/13 1/10 4/35 1/37 4/229 1/2	
$\int_{0}^{12} dx = \frac{h}{2} \left[(y_0 + y_8) + 2(y_1 + y_2 + y_3 + y_6) \right]$	
= 3 [(1+1)+2(4+1+4+1+4) = 3 [(1+1)+2(4+1+4)+1+4] + 10 35 37 22 + 145 + 145	19 82 =)]
$=\frac{3}{7}(2.0342719)=1.52570$	

iii) Simpson's Rule 1/2 rule, n=6 X 0 2 4 6 8 10 12 4 1 1/5 1/7 1/37 1/65 1/01 1/145 $\int_{3}^{12} y dx = \frac{h}{3} \left(\frac{y_0 + y_5}{4} + \frac{y_1 + y_3 + y_5}{4} \right)$ +2(42+44) $=\frac{2}{3}\left[\left(1+\frac{1}{145}\right)+4\left(\frac{2}{5}+\frac{1}{37}+\frac{1}{101}\right)+\right.$ iv) Simpson's & Rule n=8 h = b - a = 5 12 - 0 = 3X 0 1.5 3 4.5 6 7.5 9 10.5 12 J 1 4/13 1/10 4/35 1/37 4/229 1/82 4/445 1/82 (ydx = b ((y, + y8) + 4 (y1+ y3+ y5+ y7) +2 (1/2 + 1/6 + 1/8)] $=\frac{1}{2}\left[\frac{1+1}{145}+\frac{1}{13}+\frac{1}{35}+\frac{1}{229}+\frac{1}{145}\right]$ +2 (10 37 82)

= 1 [14.5 + 1.52483 + 2112] 2 [145 7585] = 1 [2.81017] = 1.40508 V) Simpson's 3 Rule, n=6 h-12-2 n=6 where n+7=7gives 7 co-ordinates 4 1 1/5 1/17 1/37 1/65 1/101 1/145 $\int y dx = 3n \left[(y_0 + y_8) + 3 (y_1 + y_2 + y_4 + y_5) \right]$ +2 (43) = 3 [(1+1/45)+(3)(1/5+1/7+1/5+1/01) +(2)(1/37) = 3 (145/145 + 0.85233+2/37) = 34 (1.91327) = 1.435 vii) Boole's Rule using five functional evaluations