Daniel Alvarado ESFM Taller Topología Algebraica Homología ∠aniel Alvarado 26 de diciembre de 2024 aniel Alvarado ESFM

Cristo Daniel Alvarado ES

Índice general

Índ	ice general	
4. Hon	nología Simplicial y Singular	2
	Homología Simpleial	2
	4.1.1. Δ -complejos	2
	4.1.2. Homología Simplicial	4
4.2.	Homología Singular	4
	4.2.1. Definición de los grupos cúbicos singulares de homología	4
	4.2.2. Caras de un cubo singular	6
4.3.	El 0-ésimo grupo de homología, $H_0(X)$	10
	4.3.1. Primera definición de $H_0(X)$	10
4.4.	Ejercicios	11
	4.4.1. Homología Simplicial	11
	4.4.2. Homología Singular	110

Capítulo 4

Homología Simplicial y Singular

Antes de empezar con la parte de homología singular, veremos un poco de homología singular, que es una versión primitiva de ésta la cual nos permitirá entender los conceptos abstractos de la homología singular de forma más sencilla.

4.1. Homología Simplcial

El dominio natural de la definición de la homología simplicial es una clase de espacios llamado Δ complejos, los cuales son una generalización de una noción más clásica, la de complejo simplicial.

4.1.1. Δ -complejos

El toro, el plano proyectivo y la botella de Klein pueden ser obtenidas mediante un procedimiento de identificación de lados opuestos de un cuadrado, manteniendo la orientación deseada.

Cortar un cuadrado sobre la diagona produce dos triángulos. De forma análoga, podemos cortar un polígono en triángolos más pequeños. Más aún, toda superficie cerrada puede ser construida usando triángulos e identificando sus lados de forma adecuada.

Así que, tenemos un sólo bloque de construcción para todas las superficies. Usando sólo triángulos podemos construir una clase de espacios 2-dimensionales que no son superficies en el sentido estricto, perimitiendo que más de dos lados se identifiquen juntos a la vez.

La idea de un Δ -complejo es la de generalizar este tipo de construcciones a cualquier número de dimensiones. El análogo n-dimensional de un triángulo es el n-simplejo.

Definición 4.1.1

Sean $n, m \in \mathbb{N} \cup \{0\}$ con m > 0. Se define el n-simplejo como el subconjunto convexo más pequeño en \mathbb{R}^m tal que contiene a n + 1 puntos $v_0, ..., v_n \in \mathbb{R}^m$ que no yacen en el mismo hiperplano de dimensión menor o igual a n.

Los puntos v_i son llamados **vértices del simplejo** y éste es denotado por $[v_0, ..., v_n]$

Observación 4.1.1

En la práctica, esto se vería más o menos así:

Figura 1. n simplejos para n = 0, 1, 2 y 3.

De izquierda a derecha se muestran como serían el 0-simplejo, 1-simplejo, 2-simplejo y 3-simplejo metidos en \mathbb{R}^3 .

Ejemplo 4.1.1

El n-simplejo que contiene a los vectores canónicos $e_1, ..., e_n$ y al cero en \mathbb{R}^m es el conjunto:

$$\Delta^{n} = \left\{ (t_{0}, ..., t_{n}) \in \mathbb{R}^{n+1} \middle| \sum_{i=0}^{n} t_{i} \ y \ t_{i} \ge 0 \ \forall i = 0, ..., n \right\}$$

es llamado *n*-simplejo estándar. Notemos que $\Delta^n = [0, e_1, ..., e_n]$ donde O es el origen de \mathbb{R}^{n+1} .

En homología va a resultar importante mantener el orden de los vértices del simplejo, por lo que cuando digamos n-simplejo, realmente estaremos diciendo n-simplejo con un ordenamiento de vértices.

Una consecuencia de ordenar los vértices de un simplejo $[v_0, ..., v_n]$ es que éstos determinan la orientación de los vértices $[v_i, v_j]$ de acuerdo a los subíndices ordenados de forma creciente.

Especificar este orden de los vértices determina un homomorfismo lineal del n-simplejo estándar en cualquier otro n-simplejo $[v_0, ..., v_n]$ que preserve el orden de los vértices, a saber:

$$(t_0, ..., t_n) \mapsto \sum_{i=0}^n t_i v_i$$

los coeficientes t_i son llamados i-ésimas **coordenadas baricéntricas** del punto $\sum_{i=0}^{n} t_i v_i$ en el simplejo $[v_0, ..., v_n]$.

Definición 4.1.2

Sea $[v_0,...,v_n]$ un n-simplejo y tomemos j=0,...,n. Entonces el simplejo $[v_0,...,\hat{v_j},...,v_n]$ es un (n-1)-simplejo llamado j-ésima cara de $[v_0,...,v_n]$.

Observación 4.1.2

Bajo la definición que hicimos anteriormente, todo subsimplejo de un simplejo estará siempre con los vértices ordenados de forma creciente, de acuerdo al orden que establecimos en el simplejo original.

Definición 4.1.3

El conjunto formado por la unión de todas las caras de un simplejo Δ^n es la **frontera de** Δ^n y se denota por $\partial \Delta^n$. El **simplejo abierto** $\mathring{\Delta}^n$ es el conjunto $\Delta^n \setminus \partial \Delta^n$.

Definición 4.1.4

Una estructura de Δ -complejo en un espacio X (o llamado simplemente Δ -complejo) es una colección $\{\sigma_{\alpha}: \Delta^{n_{\alpha}} \to X\}_{\alpha \in I}$ (con $n_{\alpha} \in \mathbb{N} \cup \{0\}$ para todo $\alpha \in I$) tal que:

- (1) Para todo $\alpha \in I$, la reestricción $\sigma_{\alpha}|_{\mathring{\Delta}^{n_{\alpha}}}$ es inyectiva, y todo punto de X es la imagen de exactamente una reestricción $\sigma_{\alpha}|_{\mathring{\Delta}^{n_{\alpha}}}$.
- (2) Para todo $\alpha \in I$ y para cada reestricción de σ_{α} a alguna cara de $\Delta^{n_{\alpha}}$ existe $\beta \in I$ tal que esta reestricción coincide con $\sigma_{\beta} : \Delta^{n_{\alpha}-1} \to X$ (donde $n_{\beta} = n_{\alpha} 1$).
- (3) $A \subseteq X$ es abierto si y sólo si $\sigma_{\alpha}^{-1}(A)$ es abierto en $\Delta^{n_{\alpha}}$ para todo $\alpha \in I$.

Observación 4.1.3

En el inciso (2) identificamos cada cara de Δ^n con Δ^{n-1} mediante el homomorfismo lineal entre ellos que preserva la orientación.

La condición (3) nos quita la condición trivial de que todos los puntos de X sean vértices de algún simplejo.

Una consecuencia inmediata de todas estas condiciones es que un espacio X puede ser construido a partir de una colección de simplejos disjuntos $\Delta_{\alpha}^{n_{\alpha}}$, uno por cada $\sigma_{\alpha}: \Delta^{n_{\alpha}} \to X$, el espacio obtenido a partir de identificar cada cara de $\Delta_{\alpha}^{n_{\alpha}}$ con el correspondiente $\Delta_{\beta}^{n_{\alpha}-1}$, correspondiente a la reestricción de σ_{β} de σ_{α} de la cara en cuestión.

Para nuestro caso, basta con analizar por ejemplo al Toro:

Ejemplo 4.1.2

4.1.2. Homología Simplicial

Nuestro objetivo ahora es definir los grupos de homología de un Δ -complejo X. Para ello, será imprescindible contar con todo lo hecho en la teoría sobre grupos libres y grupos abelianos libres.

Definición 4.1.5

Sea

4.2. Homología Singular

Con lo hecho en la parte de homología simplicial, resultará un poco más sencillo observar qué es lo que está sucediendo en homología singular. En esta sección se dan definiciones y algunas otras propiedades básicas.

4.2.1. Definición de los grupos cúbicos singulares de homología

Observación 4.2.1

De ahora en adelante I = [0, 1] denotará a este intervalo. Además, convenimos en que I^0 es un conjunto con un sólo punto, a saber $I^0 = \{0\}$. Además, el conjunto \mathbb{N}^* denotará a $\mathbb{N} \cup \{0\}$.

Definición 4.2.1

Sea X un espacio topológico. Si existe $n \in \mathbb{N}$ tal que $X \cong I^n$, diremos que X es un **cubo** n-dimensional.

Definición 4.2.2

Sea X espacio topológico y $n \in \mathbb{N}^*$ n-cubo singular en X es una función continua $T: I^n \to X$.

Ejemplo 4.2.1

Si n=0, entonces $T:\{*\}\to X$ es una función que manda un punto en un punto.

Si n=0, entonces $T:I\to X$ es un camino con puntos extremos T(0) y T(1).

Observación 4.2.2

Note que a diferencia de la parte de homología simplicial, en esta parte permitimos que nuestro mapeo T no necesariamente sea lineal, ya que en la parte anterior se deduce rápidamente que $\Delta^n \cong I^n$.

Más aún, esta es llamada homología singular ya que puede que la función T tenga singularidades.

Esta generalización nos permitirá hacer la construcción de la homología singular de forma similiar a como se hizo anteriormente.

Definición 4.2.3

Sean X espacio topológico y $n \in \mathbb{N}^*$. El conjunto $Q_n(X)$ denota al grupo abeliano libre generado por el conjunto de todos los n-cubos singulares en X.

Observación 4.2.3

Un elemento de $Q_n(X)$ (dados como en la definición anterior) es de la forma:

$$n_1T_1 + n_2T_2 + \cdots + n_kT_k$$

donde $n_i \in \mathbb{Z}$, $T_i : I^n \to X$ es función continua, para todo $i \in [1, n]$ y $T_j \neq T_i$, para todo $i, j \in [1, n]$ con $i \neq j$. La suma NO es la suma usual de funciones (pues puede que X no tenga estructura que le permita realizar esta suma de funciones, y aunque tuviese, ignoraríamos este hecho), es únicamente usada para expresar a los elementos del grupo abeliano libre.

Definición 4.2.4

Sean X espacio topológico y $n \in \mathbb{N}$. Un n-cubo singular $T: I^n \to X$ es **degenerado** si existe $i \in [1, n]$ tal que:

$$T(x_1,...,x_{i_1},...,x_n) = T(x_1,...,x_{i_2},...,x_n)$$

para todo $x_{i_1}, x_{i_2} \in I$. En otras palabras, T no depende de la i-ésima entrada.

Notemos que admitimos que ningún 0-cubo singular puede ser degenerado. Además, un 1-cubo singular es dengerado si y sólo si es la función constante.

Definición 4.2.5

Sean X espacio topológico y $n \in \mathbb{N}$. $D_n(X)$ denota al subgrupo de $Q_n(X)$ generado por el conjunto de todos los n-cubos singulares degenerados. Este es un subgrupo normal de $Q_n(X)$ (ya que es un subgrupo de un grupo abeliano), denotamos por:

$$C_n(X) = Q_n(X)/D_n(X)$$

este es llamado grupo de todas las cadenas singulares de n-cubos o simplemente n-cadenas de X.

En otras palabras, lo que estamos haciendo es quitar al grupo de todos los n-cubos singulares a aquellos que deberían tener menos volumen que los demás dentro de esta lista.

Convenimos en que si $X = \emptyset$, entonces $Q_n(X) = D_n(X) = C_n(X) = \langle 0 \rangle$ para todo $n \in \mathbb{N}^*$.

Ejemplo 4.2.2

Si $X = \{*\}$, entonces sólo puede haber un único cubo singular en X para todo $n \in \mathbb{N}^*$. Además, este siempre es degenerado si $n \in \mathbb{N}$.

Por tanto, $C_0(X)$ es cíclico infinito ya que $Q_0(X)$ lo es y $D_0(X) = \langle 0 \rangle$. Si $n \in \mathbb{N}$ se tiene que $C_n(X) = \langle 0 \rangle$ ya que $Q_n(X) = D_n(X)$.

Ejemplo 4.2.3

Podemos ir más allá en la primer parte del ejemplo anterior, ya que para cualquier espacio X se tiene que $D_0(X) = \langle 0 \rangle$, por lo que $C_0(X) = Q_0(X)$.

Ejemplo 4.2.4

Para cualquier espacio X, $C_n(X)$ (con $n \in \mathbb{N}$) es grupo abeliano libre generado en el conjunto de todos los n-cubos singulares no dengenerados en X.

4.2.2. Caras de un cubo singular

Nuestro objetivo ahora es el de definir las caras de estos n-cubos singulares, de forma análoga a como se hizo con los simplejos.

Definición 4.2.6

Sean X espacio topológico y $n \in \mathbb{N}$. Sea T un n-cubo singular en X, para cada $i \in [\![1,n]\!]$ se definen los n-cubos singulares:

$$A_i(T), B_i(T): I^{n-1} \to X$$

dados por:

$$A_i T(x_1, ..., x_n) = T(x_1, ..., x_{i-1}, 1, x_i, ..., x_n)$$

$$B_i T(x_1, ..., x_n) = T(x_1, ..., x_{i-1}, 0, x_i, ..., x_n)$$

 A_iT es llamada la *i*-ésima cara frontal de T y B_iT es la *i*-ésima cara trasera de T.

Observación 4.2.4

Podemos ver a $A_i:Q_n(X)\to Q_{n-1}(X)$ y $B_i:Q_n(X)\to Q_{n-1}(X)$ como funciones para cada $i\in [1,n]$.

Rápidamente (ejercicio), es posible verificar para cada $i, j \in [1, n], i < j y n > 1$:

$$A_{i}A_{j}(T) = A_{j-1}A_{i}(T)$$

$$B_{i}B_{j}(T) = B_{j-1}B_{i}(T)$$

$$A_{i}B_{j}(T) = B_{j-1}A_{i}(T)$$

$$B_{i}A_{j}(T) = A_{j-1}B_{i}(T)$$
(4.1)

Definición 4.2.7

Sean X espacio topológico y $n \in \mathbb{N}$. Para cada n-cubo singular T se define:

$$\partial_n(T) = \sum_{i=1}^n (-1)^i \left[A_i T - B_i T \right]$$

Extendemos de forma natural ∂_n al Q_n , definiéndolo en función de su valor en los elementos generadores. Denotamos esta extensión de igual manera y es tal que $\partial_n: Q_n \to Q_{n-1}$. Este es un homomorfismo llamado **operador frontera**.

Por comodidad, de ahora en adelante denotaremos a este operador simplemente por ∂ .

Proposición 4.2.1

Sea $n \in \mathbb{N}$ con n > 1 y T un n-cubo singular. Entonces:

$$\partial_{n-1} \left(\partial_n \left(T \right) \right) = 0$$

Además, si T es degenerado, entonces $\partial_n(T) \in D_{n-1}(X)$. En otras palabras, $\partial_n(D_n(X)) \subseteq D_{n-1}$.

Demostración:

Probaremos primero la primera identidad. Veamos que:

$$\partial_{n-1} (\partial_n (T)) = \partial_{n-1} \left(\sum_{i=1}^n (-1)^i \left[A_i T - B_i T \right] \right)$$

$$= \sum_{i=1}^n (-1)^i \left[\partial_{n-1} (A_i T) - \partial_{n-1} (B_i T) \right]$$

$$= \sum_{i=1}^n (-1)^i \left[\sum_{j=1}^{n-1} (-1)^j \left[A_j A_i T - B_j A_i T \right] - \sum_{j=1}^{n-1} (-1)^j \left[A_j B_i T - B_j B_i T \right] \right]$$

$$= \sum_{i=1}^n \sum_{j=1}^{n-1} (-1)^{i+j} \left[A_j A_i T - B_j A_i T - A_j B_i T + B_j B_i T \right]$$

Analizaremos las sumas una por una:

$$\sum_{i=1}^{n} \sum_{j=1}^{n-1} (-1)^{i+j} A_j A_i T = \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} (-1)^{i+j} A_j A_i T + \sum_{j=1}^{n-1} (-1)^{n+j} A_j A_n T$$

$$= \sum_{j=1}^{n-1} (-1)^{1+j} A_j A_1 T + \sum_{j=1}^{n-1} (-1)^{2+j} A_j A_2 T + \dots +$$

$$+ \sum_{j=1}^{n-1} (-1)^{n-1+j} A_j A_{n-1} T + \sum_{j=1}^{n-1} (-1)^{n+j} A_j A_n T$$

Hay dos casos, n es par o n es impar. Analicemos por casos:

• Suponga que n es impar, entonces existe $k \in \mathbb{N}$ tal que n = 2k + 1, luego hay 2k sumandos. Se tiene:

$$\sum_{i=1}^{n} \sum_{j=1}^{n-1} (-1)^{i+j} A_j A_i T = \sum_{j=1}^{n-1} (-1)^{1+j} A_j A_1 T + \sum_{j=1}^{n-1} (-1)^{2+j} A_j A_2 T + \dots + \sum_{j=1}^{n-1} (-1)^{k+j} A_j A_k T + \dots + \sum_{j=1}^{n-1} (-1)^{k+j} A_j A_{k+1} T + \dots + \sum_{j=1}^{n-1} (-1)^{n+j} A_j A_n T$$

Veamos que todo elemento de una suma de las primeras k-sumas se cancela con alguno de las otras k-sumas que siguen. En efecto, considere el sumando $(-1)^{l+j}A_jA_lT$ con $j \in [1, n-1]$ y $l \in [1, n]$ que es el j-ésimo sumando que se encuentra en la l-ésima suma. Se tienen dos casos:

• Si $1 \le j < l$, entonces al tenerse que $A_j A_l T = A_{l-1} A_j T$ por (4.1) se sigue que el elemento $(-1)^{l-1+j} A_{l-1} A_j T$ es el (l-1)-ésimo sumando que se encuentra en la j-ésima suma. Por ende, los sumandos $(-1)^{l+j} A_j A_l T = (-1)^{l+j} A_{l-1} A_j T$ y $(-1)^{l-1+j} A_{l-1} A_j T$ se encuentran en diferentes sumas, así que cuando se efectúa su suma obtenemos:

$$(-1)^{l+j} A_j A_l T + (-1)^{l-1+j} A_{l-1} A_j T = (-1)^{l+j} \left(A_{l-1} A_j T - A_{l-1} A_j T \right)$$

$$= 0$$

• Si $l \leq j < n$, entonces al tenerse que $A_j A_l T = A_{(j+1)-1} A_l T$, se sigue de la ecuación (4.1) que $(-1)^{l+j} A_j A_l T = (-1)^{l+j} A_l A_{j+1} T$. Como en el j+1-ésimo sumando se encuentra l-ésimo término (ya que $l \leq n-1$ este término existe) $(-1)^{j+1+l} A_l A_{j+1} T$, se tiene que los términos $(-1)^{l+j} A_l A_{j+1} T$ y $(-1)^{j+1+l} A_l A_{j+1} T$ se encuentran en diferentes sumas, así que cuando se efectúa la suma obtenemos que:

$$(-1)^{l+j} A_l A_{j+1} T + (-1)^{j+1+l} A_l A_{j+1} T = (-1)^{l+j} (A_l A_{j+1} T - A_l A_{j+1} T)$$

= 0

en ambos casos, se sigue que:

$$\sum_{i=1}^{n} \sum_{j=1}^{n-1} (-1)^{i+j} A_j A_i T = 0$$

■ Suponga que n es par, entonces existe $k \in \mathbb{N}$ tal que n = 2k. Entonces, hay 2k - 1 sumandos. El procedimiento para ver que se cancelan las sumas es análogo al anterior.

Por ambos incisos, se sigue que:

$$\sum_{i=1}^{n} \sum_{j=1}^{n-1} (-1)^{i+j} A_j A_i T = 0$$

es decir:

$$\partial_n(\partial_{n-1})(T) = 0$$

Para la otra parte, suponga que T es degenerado, entonces existe $j \in [1, n]$ tal que:

$$T(x_1,...,x_{j_1},...,x_n) = T(x_1,...,x_{j_2},...,x_n)$$

para todo $x_1,...,x_{j_1},x_{j_2},...,x_n \in I$. En particular, notemos que:

$$T(x_1,...,0,...,x_n) = T(x_1,...,1,...,x_n)$$

por lo cual,

$$B_j T = A_j T \Rightarrow A_j T - B_j T = 0$$

Veamos entonces que:

$$\partial_n T = \sum_{i=1}^n (-1)^i [A_i T - B_i T]$$
$$= \sum_{\substack{i=1 \ i \neq j}}^n (-1)^i [A_i T - B_i T]$$

donde todos los demás (n-1)-cubos en esta suma son degenerados, por lo que $\partial_n T \in D_{n-1}(X)$.

Corolario 4.2.1

Sea $n \in \mathbb{N}$ con n > 1. Entonces, $\partial_n : Q_n(X) \to Q_{n-1}(X)$ induce un homomorfismo que denotamos por el mismo símbolo $\partial_n : C_n(X) \to C_{n-1}(X)$, tal que:

$$\partial_{n-1} \circ \partial_n = 0$$

Demostración:

En efecto, definamos $\partial_n: C_n(X) \to C_{n-1}(X)$ por:

$$\partial_n([C]_{D_n(X)}) = [\partial_n(C)]_{D_{n-1}(X)}$$

donde $C \in Q_n(X)$ y los corchetes denotan la clase de equivalencia, es decir que $[C]_{D_n(X)} \in C_n(X)$. Veamos que este es un homomorfismo que está bien definido.

■ ∂_n está bien definido. Sean $C_1, C_2 \in Q_n(X)$ tales que $C_1 + D_n(X) = C_2 + D_n(X)$, en otras palabras:

$$[C_1]_{D_n(X)} = [C_2]_{D_n(X)}$$

por comodidad, esto simplemente lo denotaremos por $[C_1] = [C_2]$. Por tanto, existen $T_1, ..., T_n \in D_n(X)$ y $n_1, ..., n_m \in \mathbb{Z}$ tales que:

$$C_1 - C_2 = n_1 T_1 + \dots + n_m T_m \Rightarrow C_1 = C_2 + n_1 T_1 + \dots + n_m T_m$$

así que:

$$\partial_n([C_1]) = [\partial_n(C_1)]$$

$$= [\partial_n(C_2 + n_1T_1 + \dots + n_mT_m)]$$

$$= [\partial_n(C_2) + n_1\partial_n(T_1) + \dots + n_m\partial_n(T_m)]$$

$$= [\partial_n(C_2)]$$

$$= \partial_n([C_2])$$

por lo que ∂_n está bien definido.

• ∂_n es homomorfismo. Es inmediato.

Observación 4.2.5

Nuevamente, al operador ∂_n lo denotaremos simplemente por ∂ .

Observación 4.2.6

De forma análoga, resulta que para el homomorfismo $\partial_n: C_n(X) \to C_{n-1}(X)$ es tal que:

$$\partial_{n-1} \circ \partial_n = 0$$

para n > 1.

Definición 4.2.8

Sea X espacio topológico y $n \in \mathbb{N}$. Definimos:

$$Z_n(X) = \ker \partial_n = \left\{ u \in C_n(X) \middle| \partial_n(u) = 0 \right\} \subseteq C_n(X)$$

y, para $n \in \mathbb{N}^*$:

$$B_n(X) = \operatorname{im} \partial_{n+1} = \partial_{n+1}(C_{n+1}(X)) \subseteq C_n(X)$$

En consecuencia de que $\partial_n \circ \partial_{n+1} = 0$, se tiene que $B_n(X) \subseteq Z_n(X)$ para todo $n \in \mathbb{N}$. Con lo que se define el n-ésimo grupo de homología singular de X o el n-ésimo grupo de homología de X:

$$H_n(X) = Z_n(X)/B_n(X), \quad \forall n \in \mathbb{N}$$

 $Z_n(X)$ es llamado el *n*-ésimo grupo de ciclos singulares de X, o grupo de *n*-ciclos. $B_n(X)$ es llamado grupo de froteras *n*-dimensionales o grupo de los *n*-ciclos delimitadores.

Nuestro objeto principal de estudio será el grupo $H_n(X)$.

4.3. El 0-ésimo grupo de homología, $H_0(X)$

En la parte anterior hemos definido los grupos de homología para $n \in \mathbb{N}$, pero para poder obtener aún más información (y hacer más álgebra con esta estructura algebraica), necesitamos alguna forma de definir a $H_0(X)$. Para ello, primero deberíamos intentar definir a $Z_0(X)$.

Daremos dos definiciones, donde una de ellas resultará más sencilla en algunos casos, y la otra en otros. No existe casi diferencia entre ambas será tan sencilla que no habrá problemas en los resultados que obtengamos.

4.3.1. Primera definición de $H_0(X)$

Definición 4.3.1

Sea X espacio topológico. Definimos $Z_0(X) = C_0(X)$ y hacemos:

$$H_0(X) = Z_0(X)/B_0(X) = C_0(X)/B_0(X)$$

4.4. Ejercicios

4.4.1. Homología Simplicial

4.4.2. Homología Singular

Ejercicio 4.4.1

Compute $\partial_n(T)$ para el caso en que n=1,2.