

R V College of Engineering Department of Computer Science and Engineering CIE 1: Scheme

Subject : (Code)	Natural La	anguage Processing (Group (IS355TBC)	B)	Semester: 5th BE
Date:		Duration: 120 minutes	Staff: D	r.Sindhu D V
Name:		USN:	Section :	: A

512

Q. No	Part-A	Mar ks	Le vel	СО
1	def tweet_length(tweet):			
	return len(tweet)			
	# Example usage:	2	2	2
	tweet = "Learning Python is fun! #coding #python"	2	2	2
	length = tweet_length(tweet)			
	<pre>print(f"The length of the tweet is: {length} characters.")</pre>			
2	from transformers import AutoTokenizer			
	model_name = "bert-base-uncased" # Replace with your desired model			
	tokenizer = AutoTokenizer.from_pretrained(model_name)			
	text = "Transformers are powerful tools in NLP."	2	1	1
	tokens = tokenizer(text)			
3	$S \rightarrow VP PP$			
	$\mathbf{VP} \to \mathbf{V}$			
	$PP \rightarrow PREP NP$			
	$NP \rightarrow ADJ NP \mid N \mid N NUM$			
	V → 'welcome'		3	2
	$PREP \rightarrow 'to'$			
	ADJ → 'prosperous' 'new'			
	$N \rightarrow 'year'$			
	$NUM \rightarrow '2025'$			
4	To enable the model to focus on different parts of the input sentence when	1	1	1
	processing each word		1	I
5	Distributed Training			
	Large models such as GPT and BERT require vast computational resources,	2	3	1
	so they are typically trained using distributed training across multiple GPUs or		3	I
	machines to speed up the process.			

Q. No	Answer all questions	Mar ks	Le vel	co
1	Consider the sentences like	10	3	3
1	"The dog chased the cat"	10	3	3
	"A cat saw a dog"			
	CFG			
	$S \rightarrow NP VP$			
	$NP \rightarrow Det N \mid N$			
	$VP \rightarrow V NP \mid V$			
	$Det \rightarrow 'the' \mid 'a'$			
	$N \rightarrow 'dog' \mid 'cat'$			
	$V \rightarrow \text{'chased'} \mid \text{'saw'}$			
	V Fended Saw			
	class RecursiveParser:			
	definit(self, tokens):			
	self.tokens = tokens			
	self.position = 0			
	self.parse_tree = []			
	def parse_S(self):			
	$\#S \to NP VP$			
	start_pos = self.position			
	if self.parse_NP() and self.parse_VP():			
	return True			
	self.position = start_pos			
	return False			
	def parse_NP(self):			
	$\# NP \rightarrow Det N \mid N$			
	start_pos = self.position			
	if self.parse_Det() and self.parse_N():			
	return True			
	self.position = start_pos			
	if self.parse_N():			
	return True			
	self.position = start_pos			
	return False			
	def parse_VP(self):			ļ
	$\# VP \to V NP \mid V$			
	start_pos = self.position			

```
if self.parse_V() and self.parse_NP():
        return True
     self.position = start_pos
     if self.parse_V():
        return True
     self.position = start_pos
     return False
  def parse_Det(self):
     # Det \rightarrow 'the' | 'a'
     if self.match('the') or self.match('a'):
        self.parse_tree.append(('Det', self.tokens[self.position - 1]))
        return True
     return False
  def parse_N(self):
     \# N \rightarrow 'dog' \mid 'cat'
     if self.match('dog') or self.match('cat'):
        self.parse_tree.append(('N', self.tokens[self.position - 1]))
        return True
     return False
  def parse_V(self):
     \# V \rightarrow \text{'chased'} \mid \text{'saw'}
     if self.match('chased') or self.match('saw'):
        self.parse_tree.append(('V', self.tokens[self.position - 1]))
        return True
     return False
  def match(self, token):
     # Match a token
     if self.position < len(self.tokens) and self.tokens[self.position] == token:
        self.position += 1
        return True
     return False
# Example usage:
sentence = "the dog chased the cat"
tokens = sentence.split()
parser = RecursiveParser(tokens)
```

j	if parser.parse_S() and parser.position == len(tokens):			
	print("Valid sentence!")			
	print("Parse Tree:", parser.parse_tree)			
'	else:			
	print("Invalid sentence.")			
	S			
	/ \			
	NP VP			
	/ \ / \			
	Det N V NP			
	the dog chased Det N			
	the cat			
2	Word Sense Disambiguation (WSD)	10	4	2
	WSD is the task of determining the intended meaning of a word in a given	10		
	context. This involves:			
	• Lexical Resources: Dictionaries or WordNet for listing possible			
	senses.			
	 Contextual Analysis: Utilizing surrounding words and sentence 			
	structure to infer the correct sense.			
	Machine Translation (MT)			
	MT systems convert text between languages. Without WSD, translations often			
	fail when faced with polysemous words, leading to incorrect or awkward			
	translations. Incorporating WSD helps address these issues, especially in			
	neural models like Transformer-based architectures.			
	Example 1: "Bank"			
	• Source Sentence: "He sat by the bank to watch the sunset." Pageline MT Output (Franch): "He lest assis pròs de la banque nour			
	• Baseline MT Output (French): "Il s'est assis près de la banque pour regarder le coucher du soleil." (<i>Incorrect; "banque" refers to a</i>			
	financial institution)			
	• WSD-Augmented MT Output (French): "Il s'est assis près de la rive			
	pour regarder le coucher du soleil." (Correct; "rive" refers to the			
	riverbank)			
	Example 2: "Charge"			
	• Source Sentence: "The company will charge you for extra services."			
	Baseline MT Output (Spanish): "La empresa te cargará por servicios			
	extra." (Incorrect; "cargar" suggests a physical burden)			
1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			

	servicios extra." (Correct; "cobrar" refers to monetary charges)						
3	The main idea behind attention is that instead of producing a single hidden state for the input sequence, the encoder outputs a hidden state at each step that the decoder can access. However, using all the states at the same time would create a huge input for the decoder, so some mechanism is needed to prioritize which states to use. This is where attention comes in: it lets the decoder assign a different amount of weight, or "attention," to each of the encoder states at every decoding timestep. This process is illustrated in Figure 1-4, where the role of attention is shown for predicting the third token in the output sequence.						
	Transformers → RNN cell → State 1 → RNN cell → Transformers → RNN cell → State 2 → RNN cell → sind						
	great → RNN cell → State 3 → RNN cell → grossa						
	! → RNN cell → State 4 Attention → RNN cell → !						
	Figure 1-4. An encoder-decoder architecture with an attention mechanism for RNNs						
	By focusing on which input tokens are most relevant at each timestep, these attention-based models are able to learn nontrivial alignments between the words in a generated translation and those in a source sentence. Although attention enabled the production of much better translations, there was still a major shortcoming with using recurrent models for the encoder and decoder: the computations are inherently sequential and cannot be parallelized across the input sequence. With the transformer, a new modelling paradigm was introduced: dispense with recurrence altogether, and instead rely entirely on a special form of attention called self-attention. The basic idea is to allow attention to operate on all the states in the same layer of the neural network.						
4	It is nowadays common practice in computer vision to use transfer learning to	6	1,2	1			
	train a convolutional neural network like ResNet on one task, and then adapt it to or fine-tune it on a new task. This allows the network to make use of the knowledge learned from the original task. Architecturally, this involves						

resource languages.

2. Data availability

Although we can use transfer learning to dramatically reduce the amount of labeled training data our models need; it is still a lot compared to how much a human needs to perform the task.

3. Working with long documents

Self-attention works extremely well on paragraph-long texts, but it becomes very expensive when we move to longer texts like whole documents.

4. Opacity

As with other deep learning models, transformers are to a large extent opaque. It is hard or impossible to unravel "why" a model made a certain prediction. This is an especially hard challenge when these models are deployed to make critical decisions.

5. Bias

Transformer models are predominantly pretrained on text data from the internet. This imprints all the biases that are present in the data into the models.

	Particulars		CO1	CO2	CO3	CO4	L1	L2	L3	L4	L5	L6
Marks		1										
Distribution	Test	Max	28	19	13		6	26	18	10		
2154110441011		Marks										

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks