

Elément de module: Endocrinologie

Semestre: 6

Année: 2011 - 2012

COURS D'ENDOCRINOLOGIE

- I- Les hormones : Notions générales
- II- Les hormones hypothalamo-hypophysaires
- III- Les hormones ovariennes
- IV- Les hormones testiculaires
- V- Les hormones thyroïdiennes
- VI- Les hormones des parathyroïdes
- VII- Les hormones surrénaliennes
- VIII- Les hormones pancréatiques

COURS D'ENDOCRINOLOGIE

Notions générales:

- L'endocrinologie est la science qui étudie le système endocrinien
- Le système endocrinien est l'ensemble des organes dont les secrétions ou hormones se déversent directement dans la circulation
- C'est un système complémentaire et comparable aux systèmes nerveux et immunitaire.

	Système nerveux	Système endocrinien
Message	Influx nerveux (électrique) et synapse	Hormone (chimique)
Voies efférentes	Neurones	Sang
Effecteurs	Muscles Glandes	Cellules cibles (avec récepteur)
Réponses des effecteurs	Contraction, sécrétion	Modifications des activités métaboliques
Temps de réaction	Court	Long
Durée de la réponse	Courte	Longue

Notions générales

 Glandes Endocrines : libèrent des hormones (sécrétion interne)

Ex: Insuline, glucagon, adrénaline, cortisol

 Glandes Exocrines : libèrent des sécrétions non hormonales (s'ouvrant vers l'extérieur)

Ex: Glandes sudoripares, sébacées, salivaires

Les glandes endocrines

L'hypophyse

Le pancréas

La glande pinéale Le thymus

La glande thyroïde

Les glandes parathyroïdes

Les glandes surrénales

L'ovaire

Le testicule

Les hormones passent par plusieurs étapes :

- 1- la biosynthèse,
- 2- la libération,
- 3- le transport sanguin,
- 4- la fixation sur un récepteur
- 5- l'induction d'une réponse,
- 6- la destruction.
- 7- La régulation

 C'est une substance chimique produite par les glandes endocrines.

• Elle est déversée dans le sang et transportée par la circulation sanguine.

 Elle exerce une action à distance sur un organe ou des cellules cibles.

Une hormone peut agir à différentes distances de son site de libération

Une même glande endocrine peut secréter plusieurs hormones

response in liver and blood vessels

response in kidney

Une hormone peut avoir des effets différents en fonction de la cellule cible et des récepteurs

Un effet physiologique est contrôlé par plusieurs hormones

La progestérone développe les acini des glandes mammaires

La prolactine développe les acini des glandes mammaires

La prolactine agit avec le cortisol et l'insuline pour stimuler la transcription de gènes codant pour les protéines du lait.

L'ocytocine contracte les muscles lisses: Ejection du lait

Les œstrogènes stimulent la croissance des canaux galactophores

14

Différentes glandes agissent les unes sur les autres pour un fonctionnement optimal

Classifications des hormones:

Hormones dérivées d'acides aminés :

Ex: Adrénaline, Noradrénaline, T3 et T4, Mélatonine

Hormones peptidiques :

Ex: Insuline, glucagon

Hormones stéroïdes

Ex: Testostérone, oestrogènes, aldostérone...

Les hormones passent par plusieurs étapes :

- 1- la biosynthèse,
- 2- la libération,
- 3- le transport sanguin,
- 4- la fixation sur un récepteur
- 5- l'induction d'une réponse,
- 6- la destruction.
- 7- La régulation

Hormones dérivées d'acides aminés:

L'adrénaline, la noradrénaline et la dopamine synthétisées dans la médullosurrénale à partir de la tyrosine

Hormones dérivées d'acides aminés:

La T3 et la T4 proviennent de l'association de 2 molécules de tyrosine. Elles sont synthétisées dans la thyroïde

"Reverse T3" (inactive)

Hormones dérivées d'acides aminés:

La mélatonine provient de la transformation du tryptophane.

Hormones peptidiques:

Synthèse des hormones peptidiques :

Cellule Eucaryote

Synthèse des hormones stéroïdes:

Oestrogènes

Progestérone

Androgènes

Glucocorticoïdes Minéralocorticoïdes

BIOSYNTHESE DES HORMONES STEROIDES

Précurseur : CHOLESTEROL

Pas de stockage sous forme de granules

Synthèse des hormones stéroïdes:

Catégories d'Hormones	Hormones	« Glandes » Endocrines
	Ocytocine Vasopressine CRH ou Corticolibérine GnRH ou Gonadostimuline GHRH ou Somatocrinine GHIH ou Somastatine TRH ou Thyrotrophine ACTH ou hormone corticotrope FSH ou Folliculostimuline LH ou hormone lutéinisante TSH ou hormone thyréotrope GH ou hormone de croissance	Hypothalamus
Hormones Peptidiques		Adénohypophyse
	Prolactine Insuline	Pancréas (llots de Langerhans)
	Glucagon	Parathyroïdes
	Parathormone	Thyroïde
	Calcitonine CCK ou Cholescystokinine	Duodénum
	Entégastrone	Estomac
	Sécrétine Contrins	Cœur
	Gastrine	Foie et Reins
	NAF ou facteur natriurétique atrial	Foie
	EPO ou Erytropoïétine Angiotensine (Angiotensinogène) Facteurs de croissances	Multiples types cellulaires
Hormones Stéroïdes	Minéralocorticoïdes (aldostérone) Glucocorticoïdes Androgènes (androsténedione)	Cortico-surrénales
	Progestérone Oestrogènes	Ovaires
	Testostérone	Testicules
Hormones Monoaminées	T3 ou triiodothyronine T4 ou thyroxine	Thyroïde
	Dopamine	Hypothalamus
	Adrénaline Noradrénaline	Médullo-surrénales
	Mélatonine	Epiphyse

Pr A

Les hormones passent par plusieurs étapes :

- 1- la biosynthèse,
- 2- la libération,
- 3- le transport sanguin,
- 4- la fixation sur un récepteur
- 5- l'induction d'une réponse,
- 6- la destruction.
- 7- La régulation

Loi d'action de masse:

$$[H] + [R] \xrightarrow{K1} [H-R]$$

[H]: Concentration de l'hormone

[R]: Concentration du Récepteur

[H-R]: Concentration du complexe Ligand-Récepteur

K1 et K2 : Constantes cinétiques d'association et de dissociation

$$KA = \frac{[H-R]}{[H][R]} = 1 / KD$$
 constante de dissociation

constante d'association

Transport des hormones:

Proteine de transport	Hormones	Pm et affinite
Cbg	glucocorticostéroïdes progestérone	PM : 25000 K _d : 10 ⁻⁸).
Sbg ou Sbp	testostérone oestradiol	50000 à 10000 K _d : 0,5 - 4 nM
Tbg	hormones thyroïdiennes $(T_3 \text{ et } T_4)$	K _d : 10 ⁻⁶ - 10 ⁻³ M)
Albumine (non spécifique)	tous les stéroïdes	non spécifique

Les hormones passent par plusieurs étapes :

- 1- la biosynthèse,
- 2- la libération,
- 3- le transport sanguin,
- 4- la fixation sur un récepteur
- 5- l'induction d'une réponse,
- 6- la destruction.
- 7- La régulation

Hormone peptidique

Hormone stéroïdienne Récepteur cytosolique

Ocytocine

Mélatonine

ADH

PRL

GH

FSH

LH

TSH T3/T4

Calcitonine

PTH

Thymosine

Adrénaline

Insuline

Glucagon

Testostérone

Aldostérone

Cortisol

Progestérone

Oestrogène

Pr A OUIHOU, Unité de Physiologie Nerveuse et Endocrinienne, DEPT Sciences de la Vie, FSK 2011/2012

Action des hormones peptidiques:

Hormones peptidiques Catécholamines mélatonine

Type facteur de croissance

Type insuline

Transport des hormones stéroïdiennes:

Une hormone peut moduler le niveau de sensibilité hormonale via la régulation de la densité de ses récepteurs (up-down regulation).

L'exposition des cellules à de faibles concentrations hormonales augmente le nombre de récepteurs et la sensibilité à l'hormone et l'importance de la réponse physiologique.

La surexposition des cellules à une forte concentration hormonale réduit le nombre de récepteurs et diminue la sensibilité à l'hormone et la capacité de réponse de la cellule cible.

les hormones thyroïdiennes renforcent l'effet de l'adrénaline sur la libération des acides gras par les adipocytes. Les hormones thyroïdiennes stimulent la synthèse des récepteurs adrénergiques

Action des hormones peptidiques:

Nature	Hormones	Glande	Principales cibles	Principales Actions
	Ocytocine		Utérus et glandes mammaires	Contractions utérines et excrétion du lait
Polypeptides	Vasopressine	Neurohypophyse	Reins	Stimule la réabsorption de l'eau
	CRH		Adénohypophyse	Stimulation de la sécrétion d'ACTH
	GnRH	Hypothalamus	"	Stimulation de la sécrétion de FSH et LH
	GHRH		"	Stimulation de la sécrétion de GH
	GHIH		"	Inhibition de la sécrétion de GH et TRH
	TRH		"	Stimule la sécrétion de TSH et prolactine
	Dopamine		Adénohypophyse	Contrôle la production de prolactine
	ACTH		Cortico-surrénales	Stimulation de la sécrétion des stéroïdes
	FSH	Adénohypophyse	Gonades	Stimule la reproduction et la sécrétion des hormones
	FSII			sexuelles
	LH		11	n
	TSH		Thyroïde	Stimulation de la sécrétion de T3 et de T4
	GH		Os et autres tissus	Stimule la croissance et le métabolisme énergétique
	MSH		Mélanocytes	Pigmentation cutanée
	Prolactine		Seins	Développement des seins et synthèse du lait
	Insuline	Pancréas	Muscles, foie, tissu adipeux	Stimule le stockage et l'utilisation cellulaire du
				glucose
	Glucagon		Nombreux type cellulaires	Stimule le déstockage du glucose
	Parathormone	Paratrhyroïdes	Os et reins	Homéostasie Ca++
	Calcitonine	Thyroïde	Os	Calcification, homéostasie Ca++
	CCK		Appareil digestif	Stimule la sécrétion de bile
	Entégastrone	Glandes	"	Inhibe la sécrétion de suc pancréatique
	Sécrétine	digestives	"	Stimule la sécrétion de suc pancréatique
	Gastrine		"	п
	NAF	Cœur	Reins	Contrôle la sécrétion de Na+
	EPO	Reins	Moelle osseuse	Production de globules rouges
	Angiotensine	Foie et Reins	Reins, surrénales	Contrôle la pression artérielle
	Facteurs de	Foie	Multiples types cellulaires	Survie, prolifération et différenciation
	croissances		7-1-F-1-7 -2 F-10 COMMINGS	, F

Action des hormones peptidiques:

Les hormones passent par plusieurs étapes :

- 1- la biosynthèse,
- 2- la libération,
- 3- le transport sanguin,
- 4- la fixation sur un récepteur
- 5- l'induction d'une réponse,
- 6- la destruction.
- 7- La régulation

Métabolisme des hormones:

Les hormones passent par plusieurs étapes :

- 1- la biosynthèse,
- 2- la libération,
- 3- le transport sanguin,
- 4- la fixation sur un récepteur
- 5- l'induction d'une réponse,
- 6- la destruction.
- 7- La régulation

Régulation rétroactive:

Rétrocontrôle négatif:

Ex: Thyroïde TSH / T3 et T4

Rétrocontrôle négatif:

Rétrocontrôle positif:

Ex: Ovaire: LH / oestrogènes

La LH stimule la libération d' œstrogènes par l'ovaire. Les œstrogènes exercent une rétroaction positive sur l'hypophyse et l'hypothalamus

Rythmicité de la sécrétion hormonale:

Figure 7. Pulses of LH, the downstream target of GnRH signaling, directly follow episodes of neural activity from the hypothalamus, detected as multiunit activity (MUA) from an implanted electrode. Adapted from (103) with permission of the S. Karger AG, ©1984.

Rythmicité de la sécrétion hormonale:

Rythmicité de la sécrétion hormonale:

