Space Complexity

Chanathip Namprempre

Computer Science Reed College

Definitions

- 2 Examples
- Relations among Classes

- Definitions
- 2 Examples
- Relations among Classes

Space Complexity

Let $f: \mathbb{N} \to \mathbb{N}$.

Definition

Let M be a deterministic TM. We say that M runs in space f(n) iff

f(n) = the maximum number of tape cells that M scans on any input of length n.

Definition

Let N be a nondeterministic TM. We say that N runs in space f(n) iff

f(n) = the maximum number of tape cells that M scans on any branch of its computation for any input of length n.

Space Complexity Classes

Let $f: \mathbb{N} \to \mathbb{R}^+$.

Definition

```
SPACE(f(n)) = \{L \mid L \text{ is a language decided by an } O(f(n)) 

SPACE(f(n)) = \{L \mid L \text{ is a language decided by an } O(f(n)) \}
```

```
NSPACE(f(n)) = \{L \mid L \text{ is a language decided by an } O(f(n))
space \  \, nondeterministic \ TM \ \} \ .
```

Space Complexity Classes

Let $n \in \mathbb{Z}^+$.

Definition

$$\mathsf{PSPACE} = \bigcup_{k} \mathsf{SPACE}(n^k)$$

$$\mathsf{NPSPACE} = \bigcup_{k} \mathsf{NSPACE}(n^k)$$

- Definitions
- 2 Examples
- Relations among Classes

$SAT \in SPACE(n)$

Theorem

 $SAT \in SPACE(n)$

Proof.

Define *M* as follows:

M= "On input $\langle \phi \rangle$ where ϕ is a boolean formula

- For each truth assignment to the variables x_1, \ldots, x_m of ϕ :
- 2 Evaluate ϕ on that truth assignment.
- 3 If ϕ ever evaluated to 1, accept. Otherwise, reject.

So,

$SAT \in SPACE(n)$

Theorem

 $SAT \in SPACE(n)$

Proof.

Define M as follows:

M = "On input $\langle \phi \rangle$ where ϕ is a boolean formula:

- For each truth assignment to the variables x_1, \ldots, x_m of ϕ :
- **2** Evaluate ϕ on that truth assignment.
- **3** If ϕ ever evaluated to 1, accept. Otherwise, reject."

So,

$All_{NFA} \in co-NSPACE(n)$

We define the following language:

$$\mathsf{AII}_\mathsf{NFA} = \{ \langle A \rangle \mid A \text{ is an NFA such that } L(A) = \Sigma^* \}$$
 .

Theorem

$All_{NFA} \in co-NSPACE(n)$

Proof Idea

- Construct an NTM N that, on input an NFA A,
 non-deterministically guesses bit-by-bit an input w that A rejects
- If q is the number of states of A, then N uses a q-bit array s to keep track of the subsets that A can be in upon processing the each bit of w; that is,

position s_i is 1 iff A lands on s_i upon processing the current input symbol

$AII_{NFA} \in co-NSPACE(n)$

We define the following language:

$$\mathsf{AII}_\mathsf{NFA} = \{ \langle A \rangle \mid A \text{ is an NFA such that } L(A) = \Sigma^* \}$$
 .

Theorem

 $All_{NFA} \in co-NSPACE(n)$

Proof Idea:

- Construct an NTM N that, on input an NFA A, non-deterministically guesses bit-by-bit an input w that A rejects.
- If q is the number of states of A, then N uses a q-bit array s to keep track of the subsets that A can be in upon processing the each bit of w; that is,

position s_i is 1 iff A lands on s_i upon processing the current input symbol.

$AII_{NFA} \in co-NSPACE(n)$ (cont.)

Example: Suppose A is the following NFA.

Try simulating A on, say, 00. What does the tree look like?

$AII_{NFA} \in co-NSPACE(n)$ (cont.)

Proof.

We define N for $\overline{\text{All}_{NFA}}$ so that N takes linear space as follows.

N = "On input $\langle A \rangle$ where A is an NFA:

- \bullet Let q be the number of states in A.
- ② Let s be a q-bit array.
- \odot Repeat 2^q times.
 - Keep track of the set of states A is in using s.
 - **Q** Guess w one bit at a time.
 - 3 Simulate A on the current bit of w.
 - If no states in s are accepting, then accept A.

- Definitions
- 2 Examples
- Relations among Classes

Relating time and space complexity

Theorem

For $t(n) \geq n$,

$$\mathsf{TIME}(t(n)) \subseteq \mathsf{SPACE}(t(n))$$
.

So,

$$P \subseteq PSPACE$$

Theorem

For $t(n) \geq n$,

$$\mathsf{SPACE}(t(n)) \subseteq \mathsf{TIME}(2^{O(t(n))}) = \bigcup \mathsf{TIME}(c^{t(n)})$$
.

Relating the class NP to space complexity

Theorem

$NP \subseteq PSPACE$

This is true because

- \bullet SAT \in PSPACE,
- SAT is NP-Complete, and
- **3** If $A \leq_p B$ and $B \in \mathsf{PSPACE}$, then $A \in \mathsf{PSPACE}$.

$$coNP \subseteq PSPACE$$

because PSPACE = coPSPACE.

Relating deterministic space to nondeterministic space

Clearly, for any function $f: \mathbb{N} \to \mathbb{R}^+$,

Lemma

$$SPACE(f(n)) \subseteq NSPACE(f(n))$$

Savitch's Theorem

Theorem

For any function $f: \mathbb{N} \to \mathbb{R}^+$ where $f(n) \ge n$,

$$NSPACE(f(n)) \subseteq SPACE(f^2(n))$$

Savitch's Theorem: Proof idea

Given an NTM N, we construct a deterministic TM M as follows: M = "On input w,

- ① Let q be the number of states of N.
- **2** Let $d = |\Gamma|$ be the number of tape symbols for N.
- **3** Let n = |w|.
- **5** Output the result of $CY(c_{\text{start}}, c_{\text{accept}}, 2^t)$ "

Savitch's Theorem: Proof (cont.)

```
CanYield = "On input c_1, c_2, g,
```

- If g = 1, then test directly whether c_1 can yield c_2 or whether $c_1 = c_2$. Accept if either succeeds. Reject otherwise.
- ② If g > 1, then for each configuration c_m
 - Run CanYield $(c_1, c_m, g/2)$
 - 2 Run CanYield $(c_m, c_2, g/2)$
 - If both of these accept, then accept.
- Reject.

Analysis

- The total number of possible configurations is t.
- Each recursion level stores one config = O(f(n)) space.
- Number of levels = $\log t = O(f(n))$.
- Total space is $O(f^2(n))$.

Relations among classes

$$\mathsf{P} \subset \mathsf{NP} \subset \mathsf{PSPACE} = \mathsf{NPSPACE} \subset \mathsf{EXP}$$

There is much we don't know. For example, we don't know whether $\mathsf{P} = \mathsf{PSPACE}.$