First Class Boolean Type in First-Order Theorem Proving and TPTP

Evgeny Kotelnikov Laura Kovács Andrei Voronkov

ST Winter Meeting February 3, 2015

A translation from source code to FOL

A code snippet

```
if (r(a)) {
   a := a + 1
} else {
   a := a + q(a)
}
```

A translation from source code to FOL

A code snippet

```
if (r(a)) {
   a := a + 1
} else {
   a := a + q(a)
}
```

The next state function for a

```
a' = if r(a) then
    let a = a + 1 in a
    else
    let a = a + q(a) in a
```

A translation from source code to FOL

A code snippet

```
if (r(a)) {
   a := a + 1
} else {
   a := a + q(a)
```

}

The next state function for a

```
a' = if r(a) then
    let a = a + 1 in a
    else
    let a = a + q(a) in a
```

The TPTP translation

Boolean flags

```
void bubbleSort(int n, int array[]) {
   bool isSorted;
   do {
       isSorted = true;
       for (int i = 0; i < n - 1; i++) {
           if (array[i] > array[i + 1]) {
              swap(array[i], array[i + 1]);
               isSorted = false;
              break;
   } while (!isSorted);
```

FOL with first class boolean sort

$$FOL + bool = FOOL$$

- 1. The bool sort
- 2. Terms of the sort bool can be returned from a function and be passed as arguments
- 3. Terms of the sort bool and formulas are interchangeble
- 4. if-then-else and let-in included

Type system of FOL

Type system of FOOL

Translation from FOOL to FOL

Implementation in a theorem prover

Type system of FOL

Type system of FOOL

Translation from FOOL to FOL

Implementation in a theorem prove

Syntax of FOL

```
term \rightarrow constant
                   variable
                \mid function(term, \ldots)
connective \rightarrow \vee, \wedge, \Rightarrow, \Leftrightarrow, \dots
   formula \rightarrow predicate(term, ...)
                   term = term
                formula connective formula
                \mid \neg formula
                \forall variable formula
                \mid \exists variable formula
```

Sorts in FOL

Terms: $atomic (\alpha, \beta, ...)$

Formulas: bool

Variables: atomic

Function symbols: $atomic \times ... \times atomic \rightarrow atomic$

Predicate symbols: $atomic \times ... \times atomic \rightarrow bool$

Typing rules in FOL

Function application

$$\frac{\Gamma \vdash t_1 : \sigma_1, \dots, \Gamma \vdash t_n : \sigma_n \qquad \Gamma \vdash f : \sigma_1 \times \dots \times \sigma_n \to \tau}{\Gamma \vdash f(t_1, \dots, t_n) : \tau}$$

Predicate application

$$\frac{\Gamma \vdash t_1 : \sigma_1, \dots, \Gamma \vdash t_n : \sigma_n \qquad \Gamma \vdash P : \sigma_1 \times \dots \times \sigma_n \to \text{bool}}{\Gamma \vdash P(t_1, \dots, t_n) : \text{bool}}$$

Logical connectives

$$\frac{\Gamma \vdash P : \text{bool} \qquad \Gamma \vdash Q : \text{bool}}{\Gamma \vdash P \otimes Q : \text{bool}} \otimes \in \{ \lor, \land, \Rightarrow, \Leftrightarrow, \ldots \}$$

Extension with if-then-else and let-in

```
term \rightarrow \dots
        $ite_t(formula, term, term)
        \theta
        \theta
formula \rightarrow \dots
       f(formula, formula, formula)
        \theta
        formula = formula, formula
```

Type system of FOL

Type system of FOOL

Translation from FOOL to FOL

Implementation in a theorem prove

Syntax of FOOL

```
term \rightarrow constant \\ | variable \\ | function(term, ...) \\ | term = term \\ | \forall variable term \\ | \exists variable term \\ | if term then term else term \\ | let function = term in term
```

Interpreted function symbols: true, false, \vee , \wedge , \Rightarrow , \Leftrightarrow

Sorts in FOOL

Terms: atomic (bool, α, β, \ldots)

Variables: atomic

Function symbols: $atomic \times ... \times atomic \rightarrow atomic$

Typing rules in FOOL

Function application

$$\frac{\Gamma \vdash t_1 : \sigma_1, \dots, \Gamma \vdash t_n : \sigma_n \qquad \Gamma \vdash f : \sigma_1 \times \dots \times \sigma_n \to \tau}{\Gamma \vdash f(t_1, \dots, t_n) : \tau}$$

if-then-else

$$\frac{\Gamma \vdash P : \text{bool} \qquad \Gamma \vdash s : \sigma \qquad \Gamma \vdash t : \sigma}{\Gamma \vdash \text{if } P \text{ then } s \text{ else } t : \sigma}$$

let-in

$$\frac{\Gamma \vdash s : \sigma \qquad \Gamma, c : \sigma \vdash t : \tau}{\Gamma \vdash \text{let } c = s \text{ in } t : \tau}$$

Type system of FOL

Type system of FOOL

Translation from FOOL to FOL

Implementation in a theorem prove

Translation from FOOL to FOL

Replace subterms that are invalid in FOL

- 1. Boolean variables as arguments to connectives or directly under quantifiers
- 2. Formulas as arguments to function symbols
- 3. if-then-else expressions
- 4. let-in expressions

Translation from FOOL to FOL

Step 1

- ϕ in FOOL becomes $\bigwedge_{\psi \in S} \psi \Rightarrow \phi'$:
 - 1. Replace x with x = true
 - 2. Replace ϕ with g, add $\phi \Leftrightarrow g = \text{true to } S$
 - 3. Replace if ϕ then s else t with g, add $\phi \Rightarrow g = s$ and $\neg \phi \Rightarrow g = t$ to S
 - 4. Replace let $f(x_1, \ldots, x_n) = s$ in t with t, where each $f(t_1, \ldots, t_n)$ is replaced with $g(t_1, \ldots, t_n)$, add $\forall x_1, \ldots, x_n (g(x_1, \ldots, x_n) = s)$ to S

Translation from FOOL to FOL

Step 2

Append two axioms that shape the boolean sort:

- 1. Finite domain axiom: $\forall (x : bool)(x = true \lor x = false)$
- 2. Distinct constants axiom: $true \neq false$

$$\bigwedge_{\psi \in S} \psi \Rightarrow \phi' \text{ becomes } FD \land DC \land \bigwedge_{\psi \in S} \psi \Rightarrow \phi'$$

Type system of FOL

Type system of FOOL

Translation from FOOL to FOL

Implementation in a theorem prover

Implementation in a theorem prover

The paramodulation rule

$$\frac{\phi \vee s = t \quad \psi[s]}{\phi \vee \psi[t]}$$

Implementation in a theorem prover

The paramodulation rule

$$\frac{\phi \vee s = t \quad \psi[s]}{\phi \vee \psi[t]}$$

A good paramodulation with the finite domain axiom

$$\frac{\phi[t:\text{bool}] \qquad t=\text{true} \lor t=\text{false}}{\phi[\text{true}] \lor t=\text{false}}$$

Implementation in a theorem prover

The paramodulation rule

$$\frac{\phi \vee s = t \qquad \psi[s]}{\phi \vee \psi[t]}$$

A good paramodulation with the finite domain axiom

$$\phi[t: \text{bool}] \qquad t = \text{true} \lor t = \text{false}$$

$$\phi[\text{true}] \lor t = \text{false}$$

A bad paramodulation with the finite domain axiom

$$\frac{x = \text{true} \lor x = \text{false} \qquad y = \text{true} \lor y = \text{false}}{x = \text{false} \lor y = \text{false} \lor x = y}$$

Type system of FOL

Type system of FOOL

Translation from FOOL to FOL

Implementation in a theorem prove

- 1. Implementation in Vampire
- 2. Better translation of if-then-else and let-in
- 3. A starting point for further refinement of the type system