Tâche 4 – Couche physique ADS-B Synchronisation en temps

Durée 4h

Projet TS229 – Année 2019/2020

Guillaume Ferré, Romain Tajan et Baptiste Laporte-Fauret

Pré-requis

La tâche 1 est nécessaire pour réaliser cette tâche.

Objectifs

Deux défauts n'ont pas été pris en compte dans les tâches précédentes :

- la synchronisation temporelle : le signal subit un délai de propagation δ_t , il faut le compenser,
- la synchronisation fréquentielle : l'effet Doppler introduit par le mouvement de l'avion ansi que les défauts d'oscillateurs locaux introduisent un décalage en fréquence δ_f .

Ces deux effets sont pris en compte avec le modèle en bande de base suivant

$$y_l(t) = s_l(t - \delta_t)e^{-j2\pi\delta_f t} + n_l(t)$$

où δ_t et δ_f représentent respectivement les désynchronisations temporelle et fréquentielle du signal.

Sous-tâches

Sous-tâche 1 - Théorie - Quelle est l'ordre de grandeur du décalage de fréquence Doppler d'un avion se déplaçant à 900km/h?

Sous-tâche 2 - Théorie - On va désormais considérer l'architecture de communication présentée sur le figure 1.

- 1. Montrer que $|y_l(t)|^2 = s_l^2(t \delta_t) + z_l(t)$. $z_l(t)$ est-il un bruit blanc gaussien ? $z_l(t)$ est-il indépendant de $s_l(t)$?
- 2. Quel est l'avantage de prendre le carré du module de l'enveloppe complexe du signal reçu?

La synchronisation est réalisée à la réception en utilisant un signal $s_p(t)$ de durée $T_p=8~\mu s$ appelé préambule et envoyé en entête des trames ADS-B. Le préambule est le signal donné en Figure 2. Une telle forme d'onde ne peut pas être présente dans le signal $s_l(t)$. En effet si vous essayez d'obtenir $s_p(t)$ à partir d'une combinaison binaire de 8 bits en sortie du modulateur PPM

Figure 1 – Chaîne de communication complète

FIGURE 2 – Préambule $s_p(t)$ de $T_p=8~\mu s$ débutant les trames ADS-B

vous n'y parviendrez pas. Cette unicité permet de mettre en œuvre une méthode simple et très répandue pour effectuer la synchronisation temps/fréquence d'un signal : **l'intercorrélation**.

Désormais, pour $t \in [0, T_p]$ $s_l(t) = s_p(t)$ de sorte que

$$y_l(t) = s_p(t - \delta_t)e^{-j2\pi\delta_f t} + n_l(t)$$
, pour $t \in [\delta_t, \delta_t + T_p]$

où $s_p(t)$ est le signal de préambule connu de l'émetteur et du récepteur. On effectue la synchronisation temporelle en cherchant le maximum de la corrélation suivante :

$$\rho(\delta_t') = \frac{\int_{\delta_t'}^{\delta_t' + T_p} r_l(t) s_p^*(t - \delta_t') dt}{\sqrt{\int_0^{T_p} |s_p(t)|^2 dt} \cdot \sqrt{\int_{\delta_t'}^{\delta_t' + T_p} |r_l(t)|^2 dt}}.$$

L'estimation est alors réalisée en prenant la valeur de $\hat{\delta}_t$ telle que

$$\hat{\delta}_t = \arg\max_{\delta_t'} |\rho(\delta_t')| \tag{1}$$

Sous-tâche 3 - Théorie - Montrer que $|\rho(\delta_t')| \le 1$ pour tout δ_t' . Donner le cas d'égalité.

Sous-tâche 4 - Matlab - L'objectif de cette implémentation est de mettre en œuvre l'algorithme de synchronisation temporelle du signal. Modifier votre code en conséquence afin que ce dernier soit cohérent avec la figure 1. Les distorsions seront modélisées sachant que :

- Le délai de propagation δ_t est aléatoirement et uniformément réparti entre 0 et $100T_e$,
- Le décalage en fréquence δ_f est aléatoirement et uniformément réparti entre -1kHz et 1kHz.

Il est conseillé d'implémenter l'algorithme de synchronisation dans une fonction Matlab dédiée à cet effet.

Vérification

Sous-tâche 5 - Matlab - Vérifier que sans bruit dans la chaine de communication vous estimez parfaitement le décalage temporel δ_t .

Sous-tâche 6 - Matlab - On cherche maintenant à observer les performances du récepteur proposé malgré les imperfections en temps et en fréquence. Adapter votre précédent code pour désynchroniser aléatoirement chaque nouvelle trame émise et calculer le TEB en fonction de $\frac{E_b}{N_0}$ pour des valeurs allant de 0 à 10dB par pas de 1dB. Superposer cette courbe de résultats avec la courbe de probabilité d'erreur binaire théorique et identifier le nombre de dB perdu pour un $TEB=10^{-3}$.

Validation

Faites valider votre travail par votre encadrant afin de passer à la tâche suivante.