

Sucessões, progressões aritméticas e geométricas

Exercícios de Provas Nacionais e Testes Intermédios

1. Seja (u_n) a sucessão definida por $u_n = 2n + 1$

Determine, sem recorrer à calculadora, a soma dos primeiros duzentos termos de ordem ímpar da sucessão (u_n)

Exame - 2021, Ép. especial

2. Seja (u_n) uma progressão aritmética.

Sabe-se que, relativamente a (u_n) , a soma do sexto termo com o vigésimo é igual a -5 e que o décimo nono termo é igual ao quádruplo do sétimo termo.

Determine a soma dos dezasseis primeiros termos desta progressão.

Exame – 2021, 2.ª Fase

3. Seja (v_n) uma progressão geométrica.

Sabe-se que $v_5 = 4$ e que $v_8 = 108$

Qual é o valor de v_6 ?

- **(A)** 12
- **(B)** 24
- **(C)** 48
- **(D)** 60

Exame - 2021, 1.a Fase

4. Seja (u_n) a sucessão definida por $u_n = 2 + \frac{(-1)^{n+1}}{n}$

Determine, sem recorrer à calculadora, quantos termos de ordem ímpar da sucessão (u_n) pertencem ao intervalo $\left[\frac{83}{41}, \frac{67}{33}\right]$

Exame - 2021, 1.a Fase

5. Considere uma progressão geométrica não monótona (u_n)

Sabe-se que
$$u_3 = \frac{1}{12}$$
 e que $u_{18} = 4u_{20}$

Determine uma expressão do termo geral de (u_n)

Apresente essa expressão na forma $a \times b^n$, em que a e b são números reais.

Exame - 2020, Ép. especial

6. Considere a sucessão (v_n) definida, por recorrência, por

$$v_n = \begin{cases} v_1 = 2 \\ \\ v_{n+1} = \frac{1}{v_n}, \text{ para qualquer número natural } n \end{cases}$$

Qual das afirmações seguintes é verdadeira?

- (A) A sucessão (v_n) é uma progressão aritmética.
- (B) A sucessão (v_n) é uma progressão geométrica.
- (C) A sucessão (v_n) é monótona.
- (**D**) A sucessão (v_n) é limitada.

Exame -2020, Ép. especial

7. De uma progressão aritmética (u_n) sabe-se que o sétimo termo é igual ao dobro do segundo e que a soma dos doze primeiros termos é igual a 57

Sabe-se ainda que 500 é termo da sucessão (u_n)

Determine a ordem deste termo.

Exame – 2020, 2.ª Fase

8. Seja (v_n) a sucessão definida por

$$v_n = \begin{cases} n & \text{se } n < 10\\ 1 + \frac{1}{n} & \text{se } n \ge 10 \end{cases}$$

Qual das afirmações seguintes é verdadeira?

- (A) A sucessão (v_n) tem limite nulo.
- **(B)** A sucessão (v_n) é divergente.
- (C) A sucessão (v_n) é limitada.
- (**D**) A sucessão (v_n) é monótona.

Exame - 2020, 2.ª Fase

9. Considere a sucessão (u_n) de termo geral $u_n = \frac{8n-4}{n+1}$

Estude a sucessão (u_n) quanto à monotonia.

Exame - 2020, 1.a Fase

10. Considere a sucessão (u_n) de termo geral $u_n = \frac{(-1)^{n+1}}{n+1}$

Determine a menor ordem a partir da qual todos os termos da sucessão (u_n) são maiores do que -0.01

Exame – 2019, Ép. especial

11. Sejam a e b dois números reais diferentes de zero.

Sabe-se que 2, a e b são três termos consecutivos de uma progressão geométrica.

Sabe-se ainda que a-2, b e 2 são três termos consecutivos de uma progressão aritmética.

Determine $a \in b$

Exame – 2019, 2.ª Fase

12. Seja r um número real maior do que 1

Sabe-se que r é a razão de uma progressão geométrica de termos positivos.

Sabe-se ainda que, de dois termos consecutivos dessa progressão, a sua soma é igual a 12 e a diferença entre o maior e o menor é igual a 3

Determine o valor de r

Exame – 2019, 1.ª Fase

13. Considere a sucessão (u_n) de termo geral $u_n = \frac{n+5}{n+3}$

Estude a sucessão (u_n) quanto à monotonia.

Exame - 2018, Ép. especial

14. De uma progressão aritmética (u_n) sabe-se que o terceiro termo é igual a 4 e que a soma dos doze primeiros termos é igual a 174

Averigue se 5371 é termo da sucessão (u_n)

Exame – 2018, 2.a Fase

15. Seja a um número real.

Sabe-se que a, a+6 e a+18 são três termos consecutivos de uma progressão geométrica. Relativamente a essa progressão geométrica, sabe-se ainda que a soma dos sete primeiros termos é igual a 381

Determine o primeiro termo dessa progressão.

Exame – 2018, 1.ª Fase

16. Seja (u_n) uma sucessão real em que todos os termos são positivos.

Sabe-se que, para todo o número natural $n,\;\frac{u_{n+1}}{u_n}<1$

Qual das afirmações seguintes é verdadeira?

- (A) A sucessão (u_n) é limitada.
- (B) A sucessão (u_n) é uma progressão aritmética.
- (C) A sucessão (u_n) é crescente.
- (**D**) A sucessão (u_n) é um infinitamente grande.

Exame – 2017, Ép. especial

17. Seja (u_n) a sucessão definida por $u_n = \left(\frac{1}{2}\right)^{1-n}$

Qual das afirmações seguintes é verdadeira?

- (A) A sucessão (u_n) é uma progressão geométrica de razão $\frac{1}{2}$
- (B) A sucessão (u_n) é uma progressão geométrica de razão 2
- (C) A sucessão (u_n) é uma progressão aritmética de razão $\frac{1}{2}$
- (D) A sucessão (u_n) é uma progressão aritmética de razão 2

Exame - 2017, 2.a Fase

18. Seja
$$(u_n)$$
 a sucessão definida por $u_n = \begin{cases} n & \text{se } n \leq 20 \\ (-1)^n & \text{se } n > 20 \end{cases}$

Qual das afirmações seguintes é verdadeira?

- (A) A sucessão (u_n) é monótona crescente.
- (B) A sucessão (u_n) é monótona decrescente.

(C) A sucessão (u_n) é limitada.

(**D**) A sucessão (u_n) é um infinitamente grande.

Exame – 2017, 1.ª Fase

- 19. De uma progressão geométrica (u_n) , monótona crescente, sabe-se que $u_4 = 32$ e que $u_8 = 8192$ Qual é o quinto termo da sucessão (u_n) ? (A) 64 **(B)** 128 (C) 256 **(D)** 512 Exame - 2016, 2.ª Fase
- 20. De uma progressão geométrica (a_n) , sabe-se que o terceiro termo é igual a $\frac{1}{4}$ e que o sexto termo é igual a 2

Qual é o valor do vigésimo termo?

- (A) 8192
- **(B)** 16 384
- (C) 32768
- **(D)** 65 536

Exame – 2015, Ép. especial

- 21. Qual das expressões seguintes é termo geral de uma sucessão monótona e limitada?

- **(A)** $(-1)^n$ **(B)** $(-1)^n.n$ **(C)** $-\frac{1}{n}$ **(D)** $1+n^2$

Exame - 2015, 2.ª Fase

22. Seja a um número real. Considere a sucessão (u_n) definida por

$$\begin{cases} u_1 = a \\ \\ u_{n+1} = -3u_n + 2, \forall n \in \mathbb{N} \end{cases}$$

Qual é o terceiro termo desta sucessão?

- **(A)** 6a + 4
- **(B)** 9a 4 **(C)** 6a 4
- **(D)** 9a + 4

Exame - 2015, 1.a Fase

23. Seja u_n a sucessão definida por recorrência do seguinte modo:

$$\begin{cases} u_1 = 3 \\ u_n = u_{n-1} + 2n \operatorname{se} n > 1 \end{cases}$$

Seja w_n a sucessão de termo geral $w_n = 5n - 13$

Qual é o valor de n para o qual se tem $w_n = u_2$?

- **(A)** 3
- **(B)** 4
- (C) 5 (D) 6

Teste Intermédio 11.º ano - 24.05.2011

24. Estude, quanto à monotonia, a sucessão u_n de termo geral $u_n = \frac{1-2n}{n+3}$

Teste Intermédio 11.º ano - 24.05.2011