1. Rd. an

condicate X" µ=0, 1,2,3 =(ct, x,y, z)

52 = 1/m XM X" = C2t2 - 1X12

Mm = (1 -1 0)

Lorents Xforms

OXIM = MNX which

present topped

Mrs Ma Not = Mrs

1) white : Larentz group

(det: +1 proper

-1 improve

 $\begin{pmatrix} 1 & 0 \\ 0 & R \end{pmatrix}$ $R \in So(3)$

Ex. not around ? (cos a since)

Boosh

Ex hoost alon
$$x$$
, $\Lambda = \begin{pmatrix} f & -\xi f \\ -\xi f & f & 0 \end{pmatrix}$

Improper: spuhal inverse $\begin{pmatrix} 1 & -1 & -1 \\ -1 & -1 & -1 \end{pmatrix}$ $\frac{A - veethrs}{\Delta tensors} \quad 4 - comparent objects \quad V^{M}$ $\frac{\Delta tensors}{\Delta tensors} \quad xform \quad under \quad \Lambda^{M} n \quad as$ $(V^{I})^{M} = \Lambda^{M} n \quad V^{M} n \quad as$ $Ex. \quad Morrowhen \quad P^{M} = \left(E[C, \vec{P}] \right)$

Tensor: $T^{\mu\nu} = P^{\mu}P^{\mu} = E^{2}/c^{2} - IP^{2} = M^{2}c^{2}$ $F^{\mu\nu} = P^{\mu}P^{\mu} = E^{2}/c^{2} - IP^{2} = M^{2}c^{2}$ $F^{\mu\nu} = P^{\mu}P^{\nu} = P^{\mu}P^{\nu}$ $F^{\mu\nu} = P^{\nu}P^{\nu}$ $F^{\nu} = P^{\nu}P^{\nu}$

Ex. Fm = 2mA2 - 2mAp Fm = (0 e'e'e') -D' 0) 4:2 Klein - Gorden egn Le vent a relativistic analog of Schrödige. thoiding : $(\rho_{\mu} = ik\frac{\partial}{\partial x^{\mu}})$ $E = i \frac{k}{2} + p' = -i \frac{k}{2} \frac{\partial}{\partial x}$ Schrile: H 40 = (Fin + Va) parts 10 11 411 (zm = + V(x)) 4 (x, t) Relativistice moss $E^2 = p^2C^2 + m^2C^4$ => -100 = -1c2 000 = + m2c44 $(p^{M}p_{\mu}-m^{2}C^{42})\psi=0$ = 1/m 2 2 J(x)=0

Il leino-	- Gordi	~= 2	end or	·du	diff	eq.	(Schii,	Luy r	(st	مد طب
Proble	u:H	Klein	·- (o-du	•	a argus e estre e servicia de la familia de	10-	i prx"		The section of the se	Tribution they a Sample
place	ware s	دسهلولد	;	ψ(x)	M) id	15/	EPX"	٤ - ١١	Et	
		E'	= p'c	+ m²C	4			* * * * * * * * * * * * * * * * * * * *		
•	W TV	gim	P ho	us	E =	± 161	Salutin	.		
			solution of rec potential	ded to	e. Form	n Con	plete bester that was	- to	Solute	- £
pals. cu		· · · · · · · · · · · · · · · · · · ·	II a							
						VÝ	7 ~ ~		· · · ·	
			_] 4			<u> </u>
پ) <u>ə</u> t	P ₅ =	. ∇ .	105	(27)34 , ** toke to					
				•		pob	donty			
							pal. coa	Э		

Problem once poutly has 2nd order nature of en. (4, 4 both oils. Fors at t=0)
Hiemienly. Ko ignored.
Dine: head 1st order eg. La mession part.
Achally, ± E powher appears because relativistically, really reed many - partite formalism (OFT) neg. E thates in KG are really antiporticles Pauli & Weisskapf (1934) should KG ok for scalar field they - Pichange density. 3 Dirac egn
neq. E states in KG are really antiporticles
Pauli & Weiss Raft (1934) showed KG or to scalar their 1 charge deveity.
3 Dinc egn
1928: Dine [boked & & ford] 1st order relativisie - 1-particle wore equetion.
Doc application of govern
Analogy: E&M
Analogy: E&M - [Maxwell agns one 1st order in E.B., mix cpt]Bo - (each cpt separately ratisfree) []E' = []B' = 0 (Wost sources)
Pirae apposent considued multi-component Colo Guetar 42
1st or a matrix differents! perderega
if $\frac{\partial \psi_1}{\partial x} = \frac{-i\hbar c}{(x^2)^n} \frac{\partial \psi_n}{\partial x^2} + \frac{mc^2}{(x^2)^n} \frac{\partial \psi_n}{\partial x$

Calculate (ih
$$\frac{1}{2}$$
) ψ

require each cut satisfies (their - Gard require each cut satisfies) ($\frac{1}{1}$ + $\frac{m^2c^2}{K^2}$) $\psi = \left[mc^2 \beta - 1hc \alpha_i, \partial_i \right] \left[mc^2 \rho - ihc \alpha_i \partial_i \right] \psi$

$$= \left[m^2c^4 \beta + \frac{1}{2}hmc^2 \left(\beta x_j + \alpha_i \beta \right) \frac{\partial}{\partial x_i} \right]$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j \alpha_i) \frac{\partial}{\partial x_i}$$

$$= -h^2c^2 (\alpha_i \alpha_j + \alpha_j$$

Diresin of matrices: Edigenvalus ±1 & Tr = 0 = even dim N=2? Need 4 anticommutery matrices Know pauli note 5,= (00) 5= (0-1) == (00) 5/03 + 03 5! = 2 Sij But no 4th matrix So smallest Dim 1) DN=4 Explicit rediral from of Proce ego (mult by B/K) ik & 20 = (moc + + iks a;) ()) Define $f' = \beta = \begin{pmatrix} 0 & 1 & 0 \\ 0 & -1 \end{pmatrix}$ $\delta' = \beta X i = \begin{pmatrix} 0 & \delta i \\ -\delta i & 0 \end{pmatrix}$

Dime: it
$$8^{\circ} \partial_{0}\psi = (mc \circ - it 8^{\circ} \partial_{1})\psi$$

$$\Rightarrow (ik 8^{m} \partial_{\mu} - mc) \psi = 0.$$

ofthe written (ik $\beta - mc$) $\psi = 0$.

$$\beta = \beta^{m} \partial_{\mu}$$

Rewrite comm. rel's.

$$f^{\circ} = \beta^{2} = 1$$

$$f^{\circ} f' + \delta' f' = (\beta x; |(\beta x_{j}) + (\beta x_{i})(\beta x_{i})| = -2\delta;$$

$$= -\beta^{2}(x_{i}x_{j} + x_{j}x_{i}) = -2\delta;$$

$$\Rightarrow \beta^{m} \beta^{m} + \beta^{m} \beta^{m} = 2g \gamma^{m}$$

Klein - Gordin again

$$ik \delta^{m} \partial_{\mu} \psi = mc \psi$$

$$-k^{2} (\beta^{m} \partial_{\mu} k \delta^{m} \partial_{\nu}) \psi = 0$$

$$= -k^{2} |\beta^{m} \delta^{m} + \beta^{m} \delta^{m} \partial_{\mu} \partial_{\nu} \psi = 0$$

$$= -k^{2} |\beta^{m} \delta^{m} + \delta^{m} \delta^{m} \partial_{\mu} \partial_{\nu} \psi = 0$$

Man Desired de Salez

cornect conservation of Direct

$$\psi^* \left[\frac{1}{1} k \psi \right] = MC^* \left[\frac{1}{1} k \psi^* \right] + \frac{1}{1} k c \left(\frac{1}{1} k \psi^* \right) \right] \psi^* \left[\frac{1}{1} k \psi^* \right] + \frac{1}{1} k c \left(\frac{1}{1} k \psi^* \right) \right] + \frac{1}{1} k c \left(\frac{1}{1} k \psi^* \right) \right] = 0$$

$$\frac{2}{1} \left[\frac{1}{1} k \psi^* \right] = MC^* \left[\frac{1}{1} k \psi^* \right] + \frac{1}{1} k c \left(\frac{1}{1} k \psi^* \right) \right] = 0$$

$$\frac{2}{1} \left[\frac{1}{1} k \psi^* \right] = MC^* \left[\frac{1}{1} k \psi^* \right] + \frac{1}{1} k c \left(\frac{1}{1} k \psi^* \right) \right] = 0$$

$$\frac{2}{1} \left[\frac{1}{1} k \psi^* \right] = MC^* \left[\frac{1}{1} k \psi^* \right] + \frac{1}{1} k c \left(\frac{1}{1} k \psi^* \right) \right] = 0$$

$$\frac{2}{1} \left[\frac{1}{1} k \psi^* \right] = MC^* \left[\frac{1}{1} k \psi^* \right] + \frac{1}{1} k c \left(\frac{1}{1} k \psi^* \right) \right] = 0$$

$$\frac{2}{1} \left[\frac{1}{1} k \psi^* \right] = MC^* \left[\frac{1}{1} k \psi^* \right] + \frac{1}{1} k c \left(\frac{1}{1} k \psi^* \right) \right] = 0$$

$$\frac{2}{1} \left[\frac{1}{1} k \psi^* \right] = MC^* \left[\frac{1}{1} k \psi^* \right] + \frac{1}{1} k c \left(\frac{1}{1} k \psi^* \right) \right] = 0$$

$$\frac{2}{1} \left[\frac{1}{1} k \psi^* \right] = MC^* \left[\frac{1}{1} k \psi^* \right] + \frac{1}{1} k c \left(\frac{1}{1} k \psi^* \right) \right] + \frac{1}{1} k c \left(\frac{1}{1} k \psi^* \right) \right] = 0$$

$$\frac{2}{1} \left[\frac{1}{1} k \psi^* \right] = MC^* \left[\frac{1}{1} k \psi^* \right] + \frac{1}{1} k c \left(\frac{1}{1} k \psi^* \right) + \frac{1}{1} k c \left(\frac{1}{1} k \psi^* \right) \right] + \frac{1}{1} k c \left(\frac{1}{1} k \psi^* \right) + \frac{1}{1} k c \left(\frac{1}{1} k \psi^* \right) + \frac{1}{1} k c \left(\frac{1}{1} k \psi^* \right) \right] + \frac{1}{1} k c \left(\frac{1}{1} k \psi^* \right)$$

30 20 M. Comed

retici of & Maricer

denote I'm, M=1, -, 16

any 9x4 ntx can be written as M= & Cm [m. [Hu: In indep]

Pauli's Fundamental theorem

Given any 2 sets of 4+4 matrices Fin. Fin solishing = 2 stand pro I = 2 spin = I,

 \exists non-singular & matrix S so that $F_{\mu}' = S F_{\mu} S^{-1}$

So, only one Dirac equation (42 4-compount 42. different representations. Above is "Pauli-Dirac" rep; most useful when kinetic energy low.

((extre 25 into)

Relativistic QM.

So
$$\alpha_r$$
: discussed

Klein-Gordon ean

 $\left(D + \frac{m^2 c^2}{k^2}\right) \cdot \psi = 0$

Direct ean

 $\left(ik \, S^M \partial_M - mc\right) \cdot \psi = 0$

Pauli - Dine representation:
$$S^0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

reps labeled by mass no PMP =
$$m^2$$

spin $W^nW_\mu = -m^2s(s+1)$
 $W_\mu = -\frac{1}{2} \sum_{\mu\nu\lambda\sigma} J^{\nu\lambda} P^{\sigma}$

Direc equation: describer spin-1/2 particle.

Use is 4- component spinor.

Poincon Algebra

Relativistic partic	les 2 Grosp	theory (rel	rel. m: undustand neps of SU(2) . BM: undustand neps of Lorents	3-11 u/poirone go
	The state of the s	y generated hu		
rotations boosts	丁 ; K ;			-
Lie algebra	CROPK	75	(may be sign is	سا
	000	j] = i E ijk Jk (j] = i E ijk K (j] = i E ijk	K J _k	
Who was a second	e oftentali	or government		
unified	Form:	Ju eff	, MElo,1,2,3}	
	Joi = K Jij = 8	Ki Eijk Jk		
[Jur	Jp6] = i	(Mrp Jps - D	Mup Jus + Mus Jup counter algebra] Pu	- Mash
Want to inc	clude transl	ation generators	Pr	
IP,	1, PV] =0 2, Jpo])== i (y mp F	Po-MroPp)	

23-12 Torms Poincai appear group (boasts, rotating & translations) Want to consider [Imps of Poinaie] (Wigner 1939) Coi PMP commute with everything (Casinir of)
-like JZ for su(2) => PMP = m2 0 COSCO Reps distinguished by M2. Also, lign of Po uncharged by Lorentz xfurm. Closer of 188 Pamao, 2 poso Ephysical mo Consider reps with $p^2 = m^2 > 0$, $p_0^2 > 0$. (massive physical state) Choose eigenstate of P^{M}_{\bullet} , $P^{\mu}_{\bullet} | \phi \rangle = P^{\mu}_{\bullet} | \phi \rangle$. "Little goop" of p": subgroup of Poincure learn

P" fixed => SU(2) in this case.

[e.g. for p"= (mc. 0,0,0)] So the characterized by M2, spin s

Clearly Wy PM =0.

Con show $C_2 = W^T W_{\mu} = -m^2 s (s+1)$ is Casimo ope

C. & Cz determe rep. of Poincaré group.

Particles & distinguised by mass & spin.

So group thy + OM - all freed mass, spin.

-cot Dirac eyn describes spin-1/2 particle

(the Yeira 4 component spinu, Khoms until 5=1/2 rep. of 10 Poincaé algebra

desbling of spin def: related to ± E issue for K-Gordungeded for m>0.

mente cosonime of trox earn

(it 8 B D XM - MC)
$$\psi = 0$$

say $X'^{M} = N^{M} \times X^{V}$

Multi how $\psi'_{j} = S_{j}(N\psi \times G \text{ some } S(N))$

10 that

(it 8 D D XM - MC) $\psi' = 0$
 $\partial_{x} X^{V} = N^{V} \partial_{x} X^{V}$
 $\partial_{x} X^{V} = N^{V} \partial_{x} X^{V}$
 $\int_{0}^{1} (S_{j} S^{M} S^{-1}) A_{j} A_{j} X^{V} - MC \int_{0}^{1} \psi'$
 $\int_{0}^{1} (S_{j} S^{M} S^{-1}) A_{j} A_{j} X^{V} - MC \int_{0}^{1} \psi'$
 $\int_{0}^{1} (S_{j} S^{M} S^{-1}) A_{j} A_{j} X^{V} - MC \int_{0}^{1} \psi'$

determines Lorentz x forms $S_{j} = S_{j} S^{M} S^{-1}$
 $\int_{0}^{1} (S_{j} S^{M} S^{-1}) A_{j} A_{j} X^{V} - MC \int_{0}^{1} \psi'$
 $\int_{0}^{1} (S_{j} S^{M} S^{-1}) A_{j} X^{V} + MC \int_{0}^{1} (S_{j} S^{M$

> gives t-conjunt

Spinar representation of Lorente group:

J: = 138 8; 8 x (rotatens)

Ki = \$ = 2 808: (generally, Jun = [8, 80])

Obey Lorette algebra
$$[J,T]=iEJ$$

 $[J,K]=iEK$
 $[K,K]=iEJ$

Examples:

a) Rotation around Z-axis

$$\left[-\frac{1}{3},\frac{1}{3}=-\left(\begin{array}{cc}0&6'\\-6'&0\end{array}\right)\left(\begin{array}{cc}0&0^2\\-2&0\end{array}\right)=i\left(\begin{array}{cc}0^3&0\\0&0^3\end{array}\right)\right]$$

so 1st 2 comparents xform as 2-cpt spirm?

Boost in
$$Z$$
 direction, parameter U (postanh $U = \frac{V}{E}$)

$$S_{B} = \frac{1}{2} \frac{1}{5} \frac{1}{$$

boosts Mix 2 cpt spinors. [Hw]

cl reflection: Must have
$$N_{s}^{s} = S \cdot S^{s} = N_{s}^{s} = (1-1-1)$$

For notation, S is unitary $S^{t} = S^{t}$: Such as $S^{t} = S^{t}$:

[Fo, $S:S; = 0 \Rightarrow S^{t} = S^{t}$

[Fo, $S:S; = 0 \Rightarrow S^{t} = S^{t}$

For hoosts $S: S \cdot S \cdot S^{t} = S^{t}$

ex. $S = e^{\frac{1}{2}(S \cdot S)}$

so & st & = 5 hu bouts + rotection,

Clark Sold Sold to Die

Billner covariant

& transforms as
$$\psi' = S(\Lambda) \psi$$
 under Lorentz xtoms.

$$\overline{\psi} = \psi^{\dagger} \delta$$
.

$$=$$
 φ $\overline{\psi}$ S^{-1}

MISTER TO

define

other f. bitik

Scalu pseudoscala vecha pseudoveu tensu Ψ'ψ' = Ψψ Ψ'ε, ψ' = 6+/1) Ψε, ψ

Solutions to Direct frame
$$p^{i} = 0$$

(it $8^{M} \partial \mu - mc$) $\psi = 0$

It $8^{0} \frac{\partial}{\partial t} \psi = mc \psi$

$$\frac{i(a - 1) \psi}{i(b - 1) \frac{i(a - 1)}{i(a - 1)}} \psi = \frac{mc^{2}}{i(a - 1)^{2}} \psi$$

$$\psi^{(i)}(t) = e^{-i(\frac{mc^{2}}{i(a - 1)})} \psi^{(i)}(t) = e^{-i($$

Hore gerally, gime E, pi
$$\psi = (M) u_B$$

$$\Rightarrow c \in \mathcal{U}_A \bullet \bullet - (p \cdot \sigma) \not\downarrow B - mc \not\downarrow A = 0$$

$$U_A = \frac{C(\sigma \cdot p)}{E - mc^2} U_B$$

Smiles UB =
$$\frac{C(\sigma \cdot p)}{F + mc^2}$$
 UA

$$\begin{bmatrix} c'(\sigma,p)^2 = p^2c^2 \end{bmatrix}$$

$$\Rightarrow E^2 = m^2c^4 + p^2c^2$$

$$U(p) = \frac{1}{p_3 c}$$

$$\frac{p_3 c}{E + mc^2}$$

$$\frac{p_3 c}{E + mc^2}$$

$$U^{(i)}(p) = \begin{cases} 0 \\ 1 \\ (p_i - ip_z)C/E + mc^2 \\ -p_3C/E + mc^2 \end{cases}$$

$$U^{(3)}(p) = \begin{cases} -\rho_3 C/[E] + mC^2 \\ -(\rho_1 + i\rho_2)C/[E] + mC^2 \end{cases}$$

$$U^{(3)}(p) = \begin{cases} -\rho_3 C/[E] + mC^2 \\ 0 \end{cases}$$

$$U^{(3)}(p) = \begin{cases} -\rho_3 C/[E] + mC^2 \\ 0 \end{cases}$$

80 C 30 C

norm. Through
$$U^{(r)+}(p)$$
 $U^{(r)}(p) = \frac{|E|}{mc^2}$

$$\Rightarrow N = \sqrt{\frac{mc^2}{|E|V}}$$

Cen un igrane neg. E state!?

1012 localized in region -

comple coefficient Cpi

Cp. 1 - P, C Cp. 2 - (P1-ip2) C Cp. 2 ~ (E/+mc2

con't ignore when $\Delta p \sim mc$

but this hypers who ax 5 mc

so localred state have significant - E comparents ...

Per Cardon

Energy of stuhi

$$\left(E^2 = m^2c^4 + p^2c^2\right)$$

Klein paradox:

conside potential in 1P

V= V0

N=0

E CO

on left, incoming were $p^{2}C^{2} = (E + mc^{2})(E - mc^{2}) > 0,$ oscillating solution (plane were)

on right, p'c= (E-V+mc2)(E-V-mc2)

when $mc^2 > E - V_0 > - mc^2$,

 $p^2C^2 < 0$, so have damped solution. (usual neffective story)

(M) W	p ² c ² >	0,	ill z huy	soluti.	on RH
	p ² c ² >		eg €	sol Airen)	
Find	reflection	dad	> 1		
	le-particle				do-n.

rext: Cowlond, hole them

Dirac ear in free space
(ih 8"2,n-mc) 4=0
$\{8^{\mu}, 8^{\nu}\} = 2 \eta^{\mu\nu}$, $4 - cpt$ spinor.
Found 4 solution, U"(p) with fixed P, 2 home E>0, 2 Er
Interpret = E solutions as positions with energy - E.
Angular numerium & the Dime ego

26-2 (6i), (-0i 0) dt = -i[L, 808 pig + mcs] dl' = - i [Eikr; pk, 88 pec+mc280] = c Eijk s. siph $S' = \begin{pmatrix} \sigma' \\ \sigma' \end{pmatrix} \frac{k}{2} = \mathcal{E}^{i} \frac{k}{2}$

Eight Stanton (1) dsi = ic [[] paj+mcf°]

= dsi =cE ijk opj x =cE ijk pj f &k

Essential Geature of Dirac: space & spih DOF combined

Peplane
$$E \rightarrow E - e \phi$$

$$P \rightarrow P - \frac{eA}{c}$$

Equivalent to

Set h=c=1 for convoicence

Dime:

$$i\delta''(\partial_{\mu} - ieA_{\mu})\psi - m\psi = 0$$

 $(i\not D - m)\psi = 0$
 $-(i\not D + m)(i\not D - m)\psi = 0$

$$(m^2 + D^HD\mu - e(E \cdot B) + ie(X \cdot E) \downarrow = 0$$

Nonrelativistic limit $(P - ieA)^2 = \frac{eK}{2mc} = \frac{G}{2mc} = \frac{1}{2mc}$
 $g = 2$ for electron, producted by Directhy.

Bo Relativistic Hydrogen Atom

Define

Can show
$$[H,K] = [J,K] = 0$$
.

$$K = S^{\circ} \left(\underline{\mathcal{E}} \cdot (\underline{L} + \frac{\kappa}{2} \underline{\mathcal{Z}}) - \frac{\kappa}{2} \right) = S^{\circ} \left(\underline{\mathcal{Z}} \cdot \underline{L} + \kappa \right)$$
since $[F^{\circ}, \underline{\mathcal{E}}] = 0$.

$$\Rightarrow K^2 = \mathbb{Z} \left(\mathbb{Z} \cdot \mathbb{L} + K \right)^2$$

$$= \mathbb{L}^2 + K \mathbb{Z} \cdot \mathbb{L} + K^2$$

$$\uparrow_{(arch)}$$

$$K^2 = j(j+1) + \frac{1}{4} = (j+\frac{1}{2})^2$$

$$j = 1/2$$
: $K = \pm 1$
 $j = 3/2$: $K = \pm 2$

By Clay &

$$K = \delta^{\circ}(\underline{z} \cdot \underline{L} + 1) = \left(\underline{\sigma} \cdot \underline{L} + 1\right) - \left(\underline{\sigma} \cdot \underline{L} + 1\right)$$

Looking for eigenfunchen
$$\psi = \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix}$$
of K, J^2, J_2

oral K

$$\psi_A \qquad -KK \qquad j(j_H) h^2 \qquad mk$$

$$\psi_B \qquad KK$$

so this, are also efuns of L2, with

$$-K = j(j+1) - l_{A}(l_{A}+1) + \frac{1}{4}$$

$$K = j(j+1) - l_{B}(l_{B}+1) + \frac{1}{4}$$

$$K = j + \frac{1}{2} \implies lA = j - \frac{1}{2}$$

$$K = -j - \frac{1}{2} \implies lA = j - \frac{1}{2}$$

$$lB = j + \frac{1}{2}$$

$$lA = j - \frac{1}{2}$$

$$lB = j + \frac{1}{2}$$

$$lA = j - \frac{1}{2}$$

$$lA = j - \frac{1}{2}$$

$$lB = j + \frac{1}{2}$$

$$lA = j - \frac{1}{2}$$

can write
$$\psi = \begin{pmatrix} \psi_A \end{pmatrix} = \begin{pmatrix} g(a) & \psi_j & \lambda_A \\ i & f(a) & \psi_j & \lambda_B \end{pmatrix}$$

Uje are normalized spin-orgular knets-s

Explicitly. In

 $\int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{2l+1} \int_{0}^{\infty} \int_{0}^{\infty}$

 $C_{i} = -\sqrt{\frac{2-j^{2}+\frac{1}{2}}{22+1}} \begin{cases} 2j^{2-4} & 0 \\ 0 & 0 \end{cases}$ $+\sqrt{\frac{2+j^{2}+\frac{1}{2}}{22+1}} \begin{cases} 2j^{2+4} & 0 \\ 0 & 0 \end{cases}$

To solve Dine in potential V(r), j'est need eas he & f(r), g(r)

Woke Dirac

C(o.p) 40 = (E-V(r)-mc2) 4A C(o.p) 44 = (E-V(r)+mc2) 4B prendoscalar

Nor

gives efunche of J2, J3. L2 with same j, j2, but app. or bild powhy

writing Flr1 = rflr1, G(r) = rg(r)

$$\Rightarrow \left\{ \text{hc} \left(\frac{dF}{dr} - \frac{K}{F} F \right) = -\left(E - V - mc^2 \right) G \right\}$$

$$A \left\{ \text{hc} \left(\frac{dG}{dr} + \frac{K}{F} G \right) = \left(E - V + mc^2 \right) F \right\}$$

set
$$h=c=1$$
, $V=\frac{ze^2}{r}=\frac{z}{r}$

Write

your sever must temper - use large r, mall or behave

megy levels

$$E = \frac{mc^{2}}{\sqrt{1 + \frac{z^{2} x^{2}}{(n' + \sqrt{(j + 1/L)^{2} - z^{2}} x^{2})^{2}}}}$$

unal n=n'+ |K| = n'+j+1/2)

Expandin

$$E = mc^{2} \left[1 - \frac{1}{2} \frac{(2\alpha)^{2}}{h^{2}} - \frac{1}{2} \frac{(2\alpha)^{4}}{h^{3}} \left(\frac{1}{j+\frac{1}{2}} - \frac{3}{4n} \right) + \dots \right]$$
Balow hine shocking

to go to higher order in X, held 2nd qualizant