

Research and Development Technical Report ECOM-3089

CHARACTERISTICS OF META-DINITROBENZENE DRY CELLS

by

James Bruce Doe

January 1969

DISTRIBUTION STATEMENT (1)

This document has been approved for public release and sale; its distribution is unlimited.

ECOM

UNITED STATES ARMY ELECTRONICS COMMAND - FORT MONMOUTH, N.J.

AD 684916

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government indorsement or approval of commercial products or services referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.

Reports Control Symbol OSD-1366

TECHNICAL REPORT ECOM-3089

CHARACTERISTICS OF m-DINITROBENZENE (m-INB) DRY CELLS

ру

James Bruce Doe
Power Sources Division
Electronic Components Laboratory

JANUARY 1969

DA TASK NO. 1T6 62705 A 053 02

U. S. ARMY ELECTRONICS COMMAND FORT MONMOUTH, NEW JERSEY

THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE: ITS DISTRIBUTION IS UNLIMITED

ABSTRACT

The performance of the $\rm Mg/Mg(ClO_{l_1})_2/m\text{-DNB}$ system is evaluated for various temperatures, hourly rates, and shelf-life periods. Extensive data is given for three cell sizes: "R(N)", "A" and "D". Techniques for fabrication of the above cells, which are adaptable for high-speed assembly, are mentioned. Finally, a comparison of the $\rm Mg/Mg(ClO_{l_1})_2/m\text{-DNB}$ system with the $\rm Mg/Mg(ClO_{l_1})_2/MnO_2$ is given with respect to energy densities and performance curves. Improvements in cathode efficiency, corrosion inhibition, and a mechanical seal will have to be initiated in the $\rm Mg/m\text{-DNB}$ system before it will be able to compete with the present $\rm Mg/MnO_2$ system.

CONTENTS	TS
----------	----

	CONTENTS	Page
INTRODUC	CTION	1
CELL ST	RUCTURE	1
DISCHAR	GE DATA	3
TEMPERA	TURE EFFECTS	3
SHELF LI	FE	. 3
SYSTEM (COMPARISONS	24
conclusi	tons	25
RECOMMEN	DATION	28
REFERENC	TES	28
	FIGURES	
1.	Cross-Section View Mg/Mg(ClO ₄) ₂ /m-DNB Dry Cell	4
2.	$Mg/Mg(ClO_{l_i})_2/m$ -DNB Discharge Curves at $7C^OF$ for $"R(N)"$ Cells	5
3•	$Mg/Mg(ClO_{\downarrow})_{2}/m$ -DNB Discharge Curves at $40^{\circ}F$ for "R(N)" Cells	6
4.	$Mg/Mg(ClO_{\downarrow})_2/m$ -DNB Discharge Curves at $20^{\circ}F$ for $"R(N)"$ Cells	7
5•	$Mg/Mg(ClO_{\downarrow})_2/m$ -DNB Discharge Curves at $O^{O}F$ for $"R(N)"$ Cells	8
6.	${\rm Mg/Mg(ClO_4)_2/m\text{-}DNB}$ Discharge Curves at $70^{\rm O}{\rm F}$ for "A" Cells	9
7.	${\rm Mg/Mg(ClO_{l_1})_2/m}$ -DNB Discharge Curves at ${\rm 40}^{\rm O}{\rm F}$ for "A" Cells	10
8.	${\rm Mg/Mg(ClO_{l_4})_2/m}$ -INB Discharge Curves at $20^{\rm O}{\rm F}$ for "A" Cells	n
9•	${\rm Mg/Mg(ClO_{4})_{2}/m\text{-}DNB}$ Discharge Curves at 0°F for "A" Cells	12
10.	Mg/Mg(ClO ₄) ₂ /m-DNB Discharge Curves at 70°F for "D" Cells	12

	CONTENTS	Page
	FIGURES (CONT)	
u.	Mg/Mg(ClO _L) ₂ /m-DNB Discharge Curves at 40°F for "D" Cells	14
12.	$Mg/Mg(ClO_{l_1})_2/m$ -INB Discharge Curves at 20° F for "D" Cells	15
13.	$Mg/Mg(ClO_{l_1})_2/m$ -DNB Discharge Curves at 0° F for "D" Cells	16
14.	Hours of Service at Various Temperatures - Mg/Mg(ClO ₄) ₂ /m-INB "R(N)" Size Cells - Part 1	17
15.	Hours of Service at Various Temperatures - Mg/Mg(ClO ₄) ₂ /m-INB "R(N)" Size Cells - Part 2	18
16.	Hours of Service at Various Temperatures - Mg/Mg(ClO ₄) ₂ /m-DNB "A" Size Cells	19
17.	Hours of Service at Various Temperatures - Mg/Mg(ClO ₄) ₂ /m-DNB "D" Size Cells - Part 1	20
18.	Hours of Service at Various Temperatures - Mg/Mg(ClO) ₂ /m-DNB "D" Size Cells - Part 2	21
19.	Comparison of Discharge Curves at 70° F for "A" Cells - Mg/Mg(ClO _{\downarrow}) ₂ /MnO ₂ and Mg/Mg(ClO _{\downarrow}) ₂ /m-DNB	26
20.	Comparison of Service at Various Temperatures - $Mg/Mg(ClO_{\downarrow})_2/m-DNB$ and $Mg/Mg(ClO_{\downarrow})_2/MnO_2$	27
	TABLES	
1.	Cathode or Depolarizer Mix	1
2.	Dimensions and Weight of Cell Components	2
3•	Shelf-Life Data for $Mg/Mg(ClO_{l_{\downarrow}})_2/m$ -DNB "R(N)" Size Dry Cells	22
4.	Shelf-Life Data for $Mg/Mg(ClO_{\downarrow\downarrow})_2/m$ -DNB "A" Size Dry Cells	23
5.	Shelf-Life Data for Mg/Mg(ClO _{\(\psi\)})2/m-DNB "D" Size Dry Cells	23

24

6. Energy Density Comparisons between Mg/Mg(ClO $_{\rm l_1}$) $_2$ /m-DNB and Mg/Mg(ClO $_{\rm l_2}$) $_2$ /MnO $_2$ at the 25-and 100-Hour Rate

CHARACTERISTICS OF m-DINITROBENZENE (m-DNB) DRY CELLS

INTRODUCTION

The object of this report is to present the evaluation and test results of the Mg/Mg(ClO_h)₂/m-DNB dry cells produced by Bright Star Industries, Inc. under USAECOM Contract DA28-O43-AMC-O1401(E). The fabrication of these cells incorporated optimum techniques that are readily translatable to methods of high-speed fabrication of Mg/Mg(ClO_h)₂/m-DNB dry cells in the "R(N)", "A", and "D" sizes. The "R(N)" notation designates a magnesium can of "R" diameter and "N" height. This type of can configuration provides sufficient magnesium for the electrochemical reaction with m-DNB whereas the standard "N" can does not. All other cell size notations are standard. A comparison of the Mg/Mg(ClO_h)₂/mnO₂ system with the Mg/Mg(ClO_h)₂/m-DNB scheme will be given with respect to hours of service, watt-hours per pound, and watt-hours per cubic inch. Earlier work on the Mg/Mg(ClO_h)₂/m-DNB system was reported by Pawlak^{2,3}, Murphy and Wood⁴, and Doe and Wood⁵.

CELL STRUCTURE

The basic electrochemical cell system incorporates an AZ21 magnesium alloy can as the anode and negative terminal and a carbon rod as the positive terminal and current collector which is surrounded by the cathode mix or depolarizer. This mix is composed of the components listed in Table 1.

TABLE 1

CATHODE OR DEPOLARIZER MIX

FUNCTION	CONSTITUENT	WEIGHT - %
Current Collector	Carbon Black (United XC6310-4)	32.4
Depolarizer	m-Dinitrobenzene (m-DNB) (Containing 17% Water)	64.8
Corrosion Inhibitor	Barium Chromate	2.8
Electrolyte	1.25M Magnesium Perchlorate (Mg(ClO _h) ₂) Containing 0.2 gm/Liter Lithium Chromate (Corrosion Inhibitor)	2 m.l/gon ma-DNB

The cathode mix is prepared in a Patterson-Kelley twin-shell blender (liquid-solids type, with intensifier), and the complete mixing details are given in Reference 1. This cathode mix provides a cell which is comparable in performance to that made by special "hand" techniques.²

The cathode mix and the anode(Mg) are separated by a microporous barrier material (uncoated salt-free Kraft paper liner-0.635-inch thick) which is permeable to the flow of ions, and tends to prevent the migration of insoluble structural or waste products between the cathode mix and the magnesium can. At the bottom of the magnesium can, there is a paper disk ("bottom washer") made of saturating Kraft paper-0.0115-inch thick which acts as an insulator or separator between the magnesium can and the cathode mix.

A carbon rod (Speer Oiled) is inserted in the cathode mix or bobbin to act as a current collector. A brass cap with a vent hole (0.014-inch diameter) is placed on the electrically conducting but chemically inert carbon rod to aid in making electrical contact and to act as a dispersal point for reactant gases. Prior treatment (oil) of the carbon rod enables it to be porous enough to permit the escape of hydrogen produced in the cell especially at the low hourly discharge rates, while at the same time not permitting the escape of electrolyte or water vapor. Since the escape of hydrogen must be allowed, i.e., the cell cannot be hermetically sealed, a seal, such as Mitchell Rand Wax (1850 EX), is employed which minimizes air access and moisture loss by evaporation to increase the shelf life. Support for this seal is given by the seal washer which is made of paraffin-impregnated Kraft board (Tuf Board)-0.038-inch thick. The cells can be sealed immediately with no aging required. Some air space is left between the cathode mix and the seal to provide for expansion of cell ingredients. A mix-washer (saturating Kraft paper-0.0115 inch thick) serves to keep the ejection plunger clean during the bobbin extrusion operation. The assembly of the above cell is accomplished by standard bobbin extrusion and consolidation machines and is well adapted to the mass production procedures of today. Typical cell dimensions and weights are presented in Table 2.

TABLE 2
DIMENSIONS AND WEIGHT OF CELL COMPONENTS

		CELL SIZE	
CH/RACTERISTICS	R(N)	<u>A</u>	D
Overall Height (inches)	1.063	1.875	2.250
Inside Diameter (inches)	0.416	0.547	1.098
Can Wall Thickness (inches)	0.040	0.040	0.075
Can Weight (gms)	2.001	4.366	18.880
Cell Weight (gms)	4.676	13.060	58.940
Bobbin Weight (gms)	1.805	6.420	31. 180

A cross-section of a typical $Mg/Mg(ClO_4)_2/m$ -DNB dry cell is shown in Figure 1.

DISCHARGE DATA

From Figures 2 to 13, it is evident that the $\log/\log(\text{ClO}_{\downarrow})_2/\text{m-IN3}$ cell discharge curve is flat over a fairly long service period from 0°F. to 70°F. except for the rates below four (4) hours. This flat portion of the discharge curve is advantageous in that it is sort of a battery-induced "voltage regulation" up to just before the end-voltage (0.9 volt/cell). This is desirable in equipment requiring minimal voltage fluctuations. From these curves, it is obvious that as the temperature decreases so does the service life to 0.9 volt/cell. The $\log/\log(\text{ClO}_{\downarrow})_2/\text{m-INB}$ system is much more sensitive to temperature of operation than the $\log/\log(\text{ClO}_{\downarrow})_2/\text{mnO}_2$ system. Details concerning these temperature effects are given in the discussion on System Comparisons.

There is some initial delay time (0.3 seconds average at 70°F.) experienced in initiating fresh cells under continuous discharge. At temperatures below 70°F., the delay increases to several minutes. A battery stored for 26 weeks at 113°F. has an initial delay of 15 seconds under a continuous discharge. This may be a function of H₂0 loss caused by the type of seal employed, and additional information will be required for a cell to reach operating voltage (in this case, 0.9 volt/cell or greater) after the circuit is closed. The delay time as used above is the time for a cell to reach operating voltage, i.e., 0.9 volt/cell or greater. Further development will be undertaken to evaluate the intermittent and storage effects on delay time.

TEMPERATURE EFFECTS

The curves presented in Figures 14 to 18 were obtained on fresh cells and indicate that $Mg/Mg(ClO_{\downarrow})_2/m-DNB$ cells employing 1.25 M $Mg(ClO_{\downarrow})_2$ electrolyte are highly dependent upon operating temperature below 70 F. Generally, the most service life from these cells is obtained in the temperature range between 70-ll3 F. It is to be noted that these curves are a partial summary of the data presented in the discharge curve discussion.

SHELF LIFE

Based on cell groups, the storage at 70°F. has the least degradation of the initial capacity as compared to storage at 113°F. and 130°F. In Tables 3 to 5, shelf life data are presented for the "R(N)", "A", and "D" size cells at various temperatures and resistances for a specified storage period.

FIGURE 1. CROSS-SECTION VIEW Mg/Mg(C104)2/m-DNB DRY CELL

DISCHARGE CURVES AT 70°F FOR "R(N)" CELLS

CLOSED CIRCUIT VOLTAGE, VOLTS

CLOSED CIRCUIT VOLTAGE, VOLTS

DISCHARGE CURVES AT 40 F FOR "R(N)" CELLS 500 B 100 HOURS OF SERVICE FIGURE 3

ï

1000 DISCHARGE CURVES AT OF FOR "R(H)" CELLS 100 252 1 10 HOURS OF SERVICE PIGURE 5 CLOSED CIRCUIT VOLTAGE, VOLTS

CLOSED CIRCUIT VOLTAGE, VOLTS

CLOSED CIRCUIT VOLTAGE, VOLTS

1000 DISCHARGE CURVES AT 40°F FOR "D" CELLS 100 HOURS OF SERVICE 10 PIGURE 11 0.1

Table 3 . Shelf-life data for $Mg/Mg(ClO_{\downarrow_1})_2/m$ -DNB "R(N)" SIZE DRY CELLS

TEMPERATURE	LOAD (Ohms)	STORAGE (Months)	HOURS OF SERVICE	% of initial Capacity retained
7 0	18	Fresh	5.6	
70	11	3	4.7	83.9
70	n	3 6	4.2	74.9
70	11	12	3•7	66 . 2
113	**	3	4.1	73.3
113	n	3 6	2.0	35.7
70	60	Fresh	25.6	
70	71		22.3	87.1
70	11	3 12	20.7	80.9
113	17	3 6 3 6	19.0	74.3
113	n	6	17.3	67.6
130	ti	3	17.3	67.6
130	**	6	11.4	4 4 .5
70	252	Fresh	126.0	•
70	**	6	120.0	95.4
70	**	12	102.9	81.6
113	10	3 6	109.0	86.5
113	11	6	105.5	83.9
113	71	12	59.1	46.8
70	24 Ohms (2 Min)	Fresh	36.4	
70	and 450 Ohms (18 Min)	12	17.7	48.6
113	n	3	29.8	81.9

TABLE 4
SHELF-LIFE DATA FOR Mg/Mg(ClO₁₄)₂/m-DMB "A" SIZE DRY CELLS

TEMPERATURE	LOAD (Ohms)	STORAGE (Months)	HOURS OF SERVICE	% OF INITIAL CAPACITY RETAINS
70	5	Fresh	5.6	
70	n	12	4.4	78 . 6
113	11	3	3.7	66. 2
113	Ħ	3 6	4.0	· 72.5
7Ŏ	16-2/3	Fresh	25.6	
70	"	6	25.2	98.5
70	11	12	24.3	94.8
113	11	3 6	18.4	71.9
113	n	6	18.1	70.8
130	n	1	22.2	86.8
70	50	Fresh	9 1 t	
70	n	6	84	89.4
70	70	Fresh	129.9	
70	n	12	124.2	95.9
113	m	3	115.2	88.7
113	•	3 6	74.4	57•3
113	n	12	71.4	55.0
7 0	6-2/3 Ohms (2 Min)	Fresh	38.7	
70	and 125 Ohms (18 Min)	12	34.1	86. 0
113	tt .	3	33.1	85.5
113	11	3 6	15.4	39.8

TABLE 5
SHELF-LIFE DATA FOR Mg/Mg(CLO₁₁)₂/m-DHB "D" SIZE DRY CFLLS

TEMPERATURE	DAOL (amfO)	STORAGE (Months)	HOURS OF SERVICE	% OF INITIAL CAPACITY RETAI
7 0	3-1/3	Fresh	17.3	
70	m	3	15.6	90.2
70	n	12	15.4	89.0
บ๋3	17	3	14.5	83.8
113	n	3 6	10.7	61.8
113	11	12	7.8	45.1
70	14	Fresh	ш.o	•
70	11	12	107.2	96. 8
113	Ħ	3	107.1	96.5
113	11	3 6	91.6	82.6
113	**	12	82.7	74.5
130	99	3	97.3	87.6
130	11	าลั	76.5	68.8

It is believed that further refinements in sealing, such as a more reliable mechanical seal, should increase the capacity as a physical examination of stored cells revealed dryness in the cathode mix. The end-voltage for the useful service life was taken to be 0.9 volt/cell for the data presented in Tables 3, 4 and 5. Individual cell data from the groups analyzed in the tables implies that the system is stable at these temperatures (up to 130° F.) if the cell is manufactured in such a way to retain its moisture and vent hydrogen during discharge. The development of the mechanical seal has been accomplished in the Mg/Mg(ClO_{1})₂/MnO₂ dry cell. It is essential that the Mg/Mg(ClO_{1})₂/m-DNB dry cells be characterized in storage stability up to 160° F. as this is desired for most military applications in order to avoid the need for controlled storage conditions for dry batteries.

Even though some results for storage at 130°F . are indicated in Tables 3, 4 and 5, there was considerable evidence of magnesium can corrosion (pin-holing) for Mg/Mg(ClO₄)₂/m-DNB dry cells stored at this temperature, resulting in poor service life and inoperative dry cells. This type of corrosion was present even at 70°F . and 113°F . storage, but not to the extent which occurred at 130°F . The control of this corrosion aspect must be undertaken in order that the Mg/Mg(ClO₄)₂/m-DNB system be stable at high temperatures (130 to 160°F .).

SYSTEM COMPARISONS

Table 6 gives an indication of the watt-hours per pound and per cubic inch at 70°F. for the various cell sizes for the $Mg/Mg(ClO_{\downarrow})_2/m-DNB$ and $Mg/Mg(ClO_{\downarrow})_2/MnO_2$ systems at the 25-and 100-hour rate.

TABLE 6

ENERGY DENSITY COMPARISONS BETWEEN

Mg/Mg(ClO₄)₂/m-INB and Mg/Mg(ClO₄)₂/MnO₂

at the 25-and 100-Hour Rate

ELECTROCHEMICAL SYSTEM	CELL SIZE	HOURLY RATE	WATT-HR/LB	watt-hr/in ³
Mg/Mg(C10 ₄) ₂ /m-INB	R(N)	25	44.4	2.2
	A	25	58.2	2.9
	D	25	40.4	1.9
	R(N)	100	58.3	2.9
	A	100	76.0	3.8
	D	100	71.6	3.4
Mg/Mg(C10 ₁₄) ₂ /Mn0 ₂ *	A	25	45.3	3.0
	D	25	36.2	2.1
	A	100	50.2	3.4
	D	100	52.5	3.1

^{*} SYNTHETIC MOO2

ALL CELLS TAKEN TO END-VOLTAGE OF 0.9 VOLT/CELL

The discharge curve data are the results of subjecting the cells to various resistances to obtain the desired rates and all data were obtained to an end-voltage of 0.9 volt/cell. From the data presented herein, it is apparent that there is little difference between the two systems at the 25-hour rate, but at the 100-hour rate the Mg/Mg(ClO_{\downarrow})₂/m-DNB system is far superior to the Mg/Mg(ClO_{\downarrow})₂/MnO₂ system based on watt-hours per pound. It is to be noted that the "A" size cell was found to give the best performance at the 25- and 100-hour rate for the Mg/Mg(ClO_{\downarrow})₂/m-DNB system. There is little difference between the watt-hours per cubic inch data for the two systems. No valid comparisons could be made for the "R(N)" cell between the systems because of a lack of "R(N)" data for the Mg/Mg(ClO_{\downarrow})₂/MnO₂ system.

In Figure 19, a comparison of discharge curves at 70°F. for "A" cells is given for the two magnesium systems. It is quite obvious that the Mg/MnO₂ system has a much higher discharge voltage, and its discharge curve is not as flat as the Mg/m-DNB system.

A comparison of service at various temperatures is given in Figure 20 and clearly illustrates that the Mg/m-DNB system gives poor service compared to Mg/MmO₂ at temperatures below 70°F, and only fairly comparable service to the Mg/MmO₂ system above 70°F.

A BA-4520()/U Battery designed with 66 "A" size cells utilizing m-INE would give at least 26 hours of service at 70 F as compared to 23 hours with the MmO₂ version of the battery unit. The Mg/MmO₂ battery weighs approximately 2.7 pounds and the Mg/m-INB battery weighs 2.2 pounds. Both batteries have a volume of 62 cubic inches.

CONCLUSIONS

The Mg/m-DNB system has the following characteristic:

- 1. Operational voltage is approximately 1.0-1.2 volts per cell under a nominal load but a very flat discharge curve is typical.
- 2. Temperature dependence is reflected in decreased service life for temperatures below 70°F, and is greater than the present Mg/MnO₂ system.
- 3. Poor storage is evident at temperatures of 130°F or above. This is recognized to be a function of the wax seal used herein, and apparently uninhibited corrosion effects.
- 4. At 70°F, comparable watt-hours per pound are obtained for the Mg/m-INB and the Mg/MnO₂ at the 25-hour rate. At the 100-hour rate, approximately 50% more watt-hours per pound are obtained with the Mg/m-INB system.

CTORED CIRCUIT NOTINGE' AOFIR

COMPARISON OF SERVICE AT VARIOUS TEMPERATURES Mg/2.5N Mg(ClO₄)₂/MnO₂ end voltage---1.25 volt/cell Mg/2.5N Mg(Cl04)2/m-DNB end voltage---0.9 volt/cell a / CELL "D" CELL "N" CELL "R(N)" CELL

-10 10 8 or 70 50 DISCHARGE TEMPERATURE(°F) 110 130 FIGURE 20 130 25, 20 15 10 5 0 HONES OF SERVICE

RECOMMENDATION

It is apparent that the Mg/m-DNB system requires improvement in the areas of cathode efficiency, corrosion inhibition and mechanical sealing. With the solution or alleviation of these factors, it is anticipated that the Mg/m-DNB system will show more promise and possibly compete with the Mg/MnO₂ system in various areas of utilization.

REFERENCES

- 1. Sol S. Jaffe, "Organic Depolarized Cells Utilizing Meta-Dinitrobenzene," Reports 1 through 5, 15 June 1965 to 15 November 1968, Contract DA28-043-AMC-01401(E) (USAECOM), Bright Star Industries, Inc.
- 2. J. C. Pawlak, "Organic Depolarized Primary Batteries," Technical Report ECOM-2753, July 1966 (Progress Report No. 2) (AD 616120).
- 3. J. C. Pawlak, "Organic Depolarized Primary Batteries," Technical Report ECOM-2567, March 1965 (Progress Report No. 1) (AD 638305).
- 4. J. J. Murphy and D. B. Wood, "Magnesium Battery Program," Proc. 21st Annual Power Sources Conference, 100 (1967).
- 5. J. B. Doe and D. B. Wood, "M-Dinitrobenzene Cell Performance," Proc. 22nd Annual Power Sources Conference, 97 (1968).

ROL DATA - R	& D			
annotation must be				
	1	CURITY CLASSIFICATION		
		lassified		
	Za. GROUP			
) DRY CELLS				
- 				
78. TOTAL NO. O	PAGES	78. NO. OF REFS		
_28		5		
M. ORIGINATOR	REPORT HUM	PE P(8)		
ECOM-308	9			
ab. OTHER REPO	RT HO(S) (Amy of	for maders that may be easigned		
<u> </u>				
U. S. Army Electronics Command Attn: AMSEL-KL-PB Fort Monmouth, New Jersey 07703				
periods. E chniques for y, are menti Mg/Mg(ClO ₄) ₂ Improvements I will have	rtensive di fabricationed. Find /MnO ₂ is go in cathodi to be init:	ata is given for on of the above cells, ally, a comparison iven with respect to e efficiency, iated in the Mg/m-INB		
	DRY CELLS 72. TOTAL NO. 0 28 28. ORIGINATOR ECOM-308 20. OTHER REPORT MISSING THE PROPERTY Telease and 12. SPONSORING U. S. Arm Attn: AM Fort Mome Periods. E chniques for y, are menti Mg/Mg(ClO ₄) Improvements I will have	DIRY CELLS TA. TOTAL NO. OF PAGES 28 MA. ORIGINATOR'S REPORT NUMBER ECOM-3089 The origination of the control		

Security Classification

Security Classification						
14.	LIN	LINK A LINK B		LINK B LIF C		٠ د
MEY WORDS	ROLE	WT	ROLE	w T	ROLE	WT
			LIN		ROLE	
ESC-FM - 1161 - 69						

(2)