For these problems, you should justify your answers. You do not need to provide a rigorous mathematical proof, but rather an informal argument.

Problem 1. Let A and B be sets.

- (i) Under what conditions do we have $A \times B = B \times A$?
- (ii) When is it true that $|\mathscr{P}(A) \times \mathscr{P}(A)| = |\mathscr{P}(A \times A)|$?
- (iii) What can you conclude if $A B = \emptyset$?
- (iv) Describe in words the set $X = (A \times A) D$, where the subset $D \subseteq A \times A$ is given by $D = \{(a, a) : a \in A\}$.

Solution.

(i) $A \times B = B \times A$ if and only if $(A = B) \vee (A = \emptyset) \vee (B = \emptyset)$

Proof by contraposition:

Suppose $A \neq B \neq \emptyset$, where $x \in A$ but $x \notin B$.

Then,
$$\{(x,b):b\in B\}\subseteq (A\times B)$$
 and $\{(x,b):b\in B\}\nsubseteq (B\times A)$.

Because at least one member is present in $(A \times B)$ and not $(B \times A)$,

$$(A \times B) \neq (B \times A).$$

The true cases are trivial,

Case 1:

If
$$A = B$$
, then $A \times B = A \times A = B \times A$.

Case 2 & 3:

A or B equals \varnothing . The cartesian product of any set and the empty set is the empty set, because their are no elements to iterate over.

(ii)
$$|\mathscr{P}(A) \times \mathscr{P}(A)| = |\mathscr{P}(A \times A)|$$

 $|\mathscr{P}(A)| \cdot |\mathscr{P}(A)| = 2^{(|A| \cdot |A|)}$
 $2^{|A|} \cdot 2^{|A|} = 2^{(|A|^2)}$
 $2^{2|A|} = 2^{(|A|^2)}$
 $2|A| = |A|^2$
 $0 = |A|^2 - 2|A| = |A|(|A| - 2)$
Thus, $|A| \in \{0, 2\}$

(iii) $A - B = \{x : x \in A, x \notin B\} = \varnothing$

No x in A that's not in B. This is the definition of a subset. Thus, $A \subseteq B$.

(iv) X is the empty set.

 $D = \{(a, a) : a \in A\}$ is the simplified definition of the cartesian product if the left and right hand arguments are the same.

$$(A \times A) - D \iff (A \times A) - (A \times A).$$

The difference of a set and itself is the empty set.

Problem 2. Determine whether each of the following is true or false; justify your answer.

- (i) $\mathbb{R}^2 \subset \mathbb{R}^3$
- (ii) $A \times \emptyset = \emptyset$ for every set A.
- (iii) If $A \subseteq B$, then $\mathscr{P}(A) \subseteq \mathscr{P}(B)$.
- (iv) If $\mathscr{P}(A) \subseteq \mathscr{P}(B)$, then $A \subseteq B$.

Solution.

- (i) $\mathbb{R}^2 \subseteq \mathbb{R}^3$ is false because there is at least one element in \mathbb{R}^2 (take the ordered pair (0,0) for example), that is not in \mathbb{R}^3 (which has a similar but different math object (0,0,0)).
- (ii) $A \times \emptyset = \emptyset$ for every set A is true and was demonstrated above. "The cartesian product of any set and the empty set is the empty set, because their are no elements to iterate over."
- (iii) If $A \subseteq B$, then $\mathscr{P}(A) \subseteq \mathscr{P}(B)$ is true.

Each subset of A is also a subset of B and must be a member of a set of all subsets of B.

Thus, $\mathscr{P}(A) \subseteq \mathscr{P}(B)$.

(iv) If $\mathscr{P}(A) \subseteq \mathscr{P}(B)$, then $A \subseteq B$ is true.

Contraposition:

If $A \nsubseteq B$, then $\mathscr{P}(A) \nsubseteq \mathscr{P}(B)$.

Let $x \in A$ and $x \notin B$.

Then, $\{x\} \in \mathscr{P}(A)$ and $\{x\} \notin \mathscr{P}(B)$.

Thus, $\mathscr{P}(A) \nsubseteq \mathscr{P}(B)$.

Direct:

 $\{X:X\subseteq A\}\subseteq\mathscr{P}(B)$, thus, each $X\in\mathscr{P}(B)$ including where X=A.

Because $\mathscr{P}(B)$ contains A as an element, A must be a particular combination of all the elements in B.

All elements in A are in B, thus $A \subseteq B$.