FJA (IB005) - shrnuti

(Strucny a velmi neformalni vypis zakladnich algoritmu a definic, urceno k opakovani. Autor neruci za spravnost informaci.)

REGULARNI JAZYKY

Reg. gramatika:

 $A \rightarrow a$ nebo $A \rightarrow aB$ (plus $S \rightarrow eps.$, pokud S není nikde na prave strane) Formalne ctverice $G = (\{neterminaly\}, \{abeceda\}, pravidla, pocatecni neterminal)$

DFA - deterministic finite automaton:

A = ({stavy}, {abeceda}, prechodova fce, pocatecni stav, {koncove stavy})

Pumping lemma, pouziti pro dukaz neregularity:

Necht n je libovolne. Zvolime slovo w z L, delka w \ge n. Pro vsechna rozdeleni w = xyz, y ruzne od epsilon a delka xy \le n plati: Pro nejake i: pokud xy^iz nepatri do L, pak L neni regularni.

```
Napr. L = {a^nb^n, n > 0}

w = a^n.b^n

x = a^k, k >= 0

y = a^l, l > 0

z = a^n.b^n

pro i = 2: xy^2z = a^k.a^l.a^l.a^n.a^n = a^n.b^n, coz nepatri do L, protoze l >= 0

Z P. L. plyne, ze L neni regularni.
```

Minimalizace:

- 1. odstraneni nedosazitelnych stavu
- 2. ekvivalence stavu podle delky slova v 1. kroku 1. skupina vsechny nekoncove stavy, 2. skupina vsechny koncove. Do nove tabulky zapiseme, do ktere skupiny se z ktereho stavu jde. Nasledne nova

tabulka a znovu udelame skupiny stavu podle toho, ktere vedou do stejnych skupin

Kanonizace:

- 1. Jako prvni dame pocatecni stav, pojmenovat A
- 2. Kazdy dalsi stav, na ktery pri prochazeni od pocatecniho narazime, pojmenujeme nasl. pismenem a pridame do tabulky.

Prevod NFA na DFA:

- Paralelni prochazeni po symbolech.
- pocatecni stav opiseme, ale z mnozin stavu, do kterych se lze dostat, udelame nove stavy.
- napr. kdyz ze stavu 1 se da dostat pod a do stavu 2,3, tak zalozime novy stav {2,3}. Z nej se pak pod a da dostat do sjednoceni stavu, do kterych se pod a dalo dostat ze stavu 2 a 3.

Prevod eps-DFA na DFA:

- 1. pro kazdy stav udelame epsilon okoli, D-e, tj. mnozinu stavu, kam se lze dostat pod epsilonem
- 2. pro kazdy symbol nejprve vytvorime mnozinu stavu X, kam se lze dostat z D-e daneho stavu pod aktualnim symbolem
- 3. Sjednotime D-e mnoziny stavu X
- 4. Oznacime nove koncove stavy vsechny ty, ktere maji nejaky koncovy stav v D-e

Prevod Regex na DFA:

- -q1 a + b q2 = q1 a, b q2 (pouze prepis)
- q1 ->a* q2 = q1 ->eps q3 ->a q3 ->eps q2 (vlozi se novy stav, do- a z- ktereho se jde pres eps. a na nem se cykli)
- q1 ->a.b q2 = q1 ->a q3 ->b q2 (rozlozi se pres novy stav na 2 prechody)

Prevod DFA na Regex:

- 1. a) pridame novy inicialni stav, z nej pod eps. do puv. inic. stavu
 - b) udelame 1 koncovy stav q-f, do nej pod eps. ze vsech puvodnich. konc. stavu
- 2. postupne odstranujeme stavy a tvorime regex, nakonec 1 regex z inic. do koncoveho stavu

BEZKONTEXTOVE JAZYKY (CFL)

Uzaverove vlastnosti:

vsechny zakladni krome: pruniku a doplnku

(pro DCFL: vsechny zakladni vcetne doplnku krome: sjednoceni a pruniku)

CFG:

 $A \rightarrow X$, delka $X \ge 1$ (krome $S \rightarrow eps.$, pokud S není nikde na prave strane)

CFG v CNF (Chomskeho normalni forma):

 $A \rightarrow BC$ nebo $A \rightarrow a$ delka odvozeni 2n-1

CFG v GNF (Greibachove normalni forma):

 $A \rightarrow a(BCD...)^*$ (= neterminal + 0 nebo vice terminalu)

Zasobnikovy automat PDA (push-down automaton):

A = ({neterminaly}, {abeceda}, {zasobnikove symboly}, prechod. fce, inic. stav, inic. zas. symbol, {koncove stavy})

Redukovana gramatika:

- 1. odstranit nenormovane neterminaly, tj. takove, ktere nelze prevest na terminalni retezec
- 2. odstranit nedosazitelne neterminaly, tj. nelze na ne dojit z inic. neterminalu

Dulezite: zachovat poradi kroku!

Odstraneni eps-pravidel:

- 1. vytvorit mnozinu neterminalu N, ktere lze prepsat na epsilon (i ve vice krocich)
- 2. pridat vsechny kombinace pravidel vznikle odstranenim nektereho (nebo vice) prvku z N (napr. $S \rightarrow ABC$, $A \rightarrow a \mid aA \mid eps.$, $B \rightarrow b \mid bB \mid eps.$, $C \rightarrow c \mid cC \mid eps.$ pridame pro S: AB, AC, BC, A, B, C, eps.)
- 3. odstranit puvodni eps. pravidla

Odstraneni jednoduchych pravidel (A -> B)

- 1. pro kazdy neterminal X vytvorit mnozinu neterminalu N-x, na ktere se muze prepsat jedn. prav. (napr. $S \rightarrow A \mid aB, N-s = \{S, A\}$)
- 2. pro kazdy neterminal X odstranit jednoducha pravidla a sjednotit vsechna ostatni pravidla pro vsechny neterminaly z N-x

Odstraneni leve rekurze

Prima:

 $X \rightarrow Xa \mid bY$

 $X \rightarrow bY \mid bYX'$

X' -> a | aX'

Neprima:

- 1. seradit neterminaly libovolne
- 2. pro kazdy neterminal udelej substituci vsech levostrannych vyskytu predchazejicich neterminalu
- 3. pro kazdy neterminal proved eliminaci prime leve rekurze

Prevod do GNF:

- 1. prevest na vlastni (redukovana, bez jednoduchych a bez eps. pravidel) a nelevorekurzivni
- 2. zkonstruovat usporadani, takove, ze je-li A -> BX, pak A < B
- 3. projit neterminaly odzadu a udelat substituci levostrannych neterminalu
- 4. vsechny terminaly na 2. a dalsi pozici zmenit na neterminaly (A -> aBc --> A -> aBc'; c' -> c)

Prevod do CNF:

- 1. odstranit eps. pravidla
- 2. odstranit jednoducha pravidla
- 3. vsechny pravidla jina nez A -> a ci A -> BC prepsat na pravidla typu A -> BC nasledovne:

 $A \rightarrow abCdE$

A -> a'<bCdE>

a' -> a

<bCdE> -> b'<CdE>

 $b' \rightarrow b$

<CdE> -> C<dE>

< dE > -> d'E

 $d' \rightarrow d$

Prevod CFG na PDA:

a) analyza shora dolu:

PDA s jednim stavem. Neterminaly i terminaly (pripadne s carkou pro odliseni od abecedy) tvori zasobnikove symboly.

- 1. Nejprve nacte na zasobnik inic. neterminal
- 2. Kdykoliv muze neterminal na zasobniku prepsat pod eps. krokem dle pravidel gramatiky
- 3. Je-li na zasobniku terminal (resp. symbol znacici terminal), pak ho zkontroluje se slovem a pokud sedi, tak ho smaze a posune se ve slove.

b) analyza zdola nahoru:

Potrebujeme rozsireny PDA, ktery umi cist libovolny pocet symbolu na zasobniku. Obsahuje specialni symbol pro dno zasobniku, prechodova fce je definovana pro retezec zasob. symbolu.

- 1. Postupne nacita slovo a pridava symboly odpovidajicich terminalu
- 2. Kdykoliv je potreba (nedeterministicky), muze si pridat pocatecni neterminal
- 3. Snazi se prepisovat obsah zasobniku tak, aby se zkracoval a postupne na nem zustal jen pocatecni neterminal a dno. V takove chvili (je-li docteno slovo), tak prechazi do akceptujiciho stavu.

Pumping lemma pro CFL:

Priklad: $L = \{a^n.b^n.c^n\}$

Necht n je lib. Zvolime $z = a^n.b^n.c^n$, delka $z \ge n$. Pro kazde u,v,w,x,y (z abecedy) splnujici z = u.v.w.x.y, delka $v.x \ge 0$ plati:

- 1. vwx patri do {a,b}^+; nebo
- 2. vwx patri do {b,c}^+

Pro i = 0 plati $u.v^i.w.x^i.y = u.w.y$ nepatri do L, protoze:

- 1. uwy = p.c^n, p patri do $\{a,b\}^*$, delka p = 2n delka v.x, tedy zjevne p nemuze byt a^n.b^n
- 2. uwy = $a^n.p$, p patri do $\{b,c\}^*$, delka p = 2n delka v.x, tedy zjevne p nemuze byt $b^n.c^n$ Z P. L. plyne, ze L neni CFL.

Vlastnost sebevlozeni:

CFG ma vlastnost sebevlozeni, pokud existuje neterminal: A =>* uAv (u,v patri do abecedy*) CFL ma vlastnosti sebevlozeni, pokud kazda CFG, ktera ho generuje, ma vlastnost sebevlozeni. Regularni jazyky nemaji vlastnost sebevlozeni.

Kazdy CFL, ktery neni regularni, ma vlastnost sebevlozeni.

Kontextove jazyky CSL

CSL = context-sensitive language

CSG

 $X \rightarrow Y$, $|X| \le |Y|$, jinak X a Y libovolne

LBA = Linearly bounded automaton

LBA M je desetice: (stavy, abeceda, paskove symboly, leva zarazka, prava zarazka, prazdne policko, prechodova fce, inic. stav, akcept. stav, zamitajici stav)

Omezeni oproti TM: muze pracovat jen na pasce delky vstupu

Pozn.: Neni znamo, jakou mnozinu jazyku akceptuje deterministicky LBA.

Turingovy stroje, frazove gramatiky a Rek. + R.E. jazyky

Uzavrenost:

Rekurzivni: vse zakladni

R.E.: vse zakladni krome doplnku

TM je devitice: stavy, abeceda, paskove symboly, leva koncova znacka, prazdne policko, prechodova funkce, pocatecni stav, akceptujici stav, zamitajici stav

Uplny TM

- TM, ktery pro kazdy vstup zastavi, tzv. rozhoduje jazyk
- odpovida rekurzivnim jazykum, resp. rozhodnutelnym problemum

(Neuplny) TM

- akceptuje kazdy vstup z L(M), tedy pro kazdy vstup patrici do jazyka zastavi, tzv. akceptuje L
- pro vstupy, ktere nejsou z L, muze zastavit a zamitnout, ale take muze cyklit
- odpovida RE, resp. frazovym gramatikam, resp. castecne rozhodnutelnym problemum
- (- castecne rozhodnutelne problemy jsou zaroven i nerozhodnutelne problemy)

Postova veta

Jazyk L je R.E. a co-L je R.E. <=> L je rekurzivni (a zrejme i co-L je rekurzivni).

Redukce

```
(A z abecedy F*, B z abecedy G*)
```

A se redukuje na B $(A \le B) \le Existuje$ fce f: F*->G*, ktera je rekurzivni a zachovava prislusnost, tzn. plati: w patri do A $\le F(w)$ patri do B.

Pouziti redukce:

 $A \leq B$:

B je rekurzivni (pripadne R.E.) => A je rekurzivni (R.E.)

A neni rekurzivni (pripadne R.E.) => B neni rekurzivni (pripadne R.E.)

```
PP = problem prislusnosti = {<M>#<w> | M akceptuje w}
PZ = HALT = problem zastaveni = {<M>#<w> | M zastavi na w}
```

Dovetailing:

Metoda "simultanniho" vypoctu na vice slovech. Zpusob, jak se vyhnout cykleni.

Pouziti napr. kdyz deterministicky hledame nejake slovo, ktere TM M akceptuje, a potrebujeme predejit cykleni na slovech predchazejicich.

Vypocet se provadi tak, ze postupne dela 1 krok nejprve v 1 slove, pak prida 2. slovo, udela 2. krok v 1. slove, 1. krok v 2. slove, prida 3. slovo a zase v kazdem slove jeden krok atd.

Diagonalizace:

Metoda k vyvraceni spocetnosti. Napr. pro cisla mezi 0 a 1: Predpokladejme, ze mame zapsana a ocislovana vsechna cisla z intervalu 0 a 1 pod sebou v nekonecne tabulce, tedy ze jde o spocetnou mnozinu. Nyni vytvorime nove cislo tak, ze bereme 1 cislo z tabulky za druhym a k 1. cislici 1. cisla pricteme 1 (mod 10), pak k 2. cislici 2. cisla 1 (mod 10), atd. tedy postupujeme po diagonale a vzdy pricteme 1 (mod 10), cimz zajistime, ze se nase nove cislo lisi od kazdeho cisla v tabulce nejmene v te jedne cislici. Takove nove cislo jde pridavat kdykoliv znova a znova, tedy zjevne dana mnozina neni spocetna.

Postuv korespondencni problem, PKP a inPKP:

Instance PKP: 2 seznamy neprazdnych slov nad stejnou abecedou: $A = x_1, ..., x_n$ a $B = y_1, ..., y_n$ Reseni dane instance je posloupnost cisel $i_1, ..., i_k$, takova, ze x_{i1} x_{i2} ... $x_{ik} = y_{i1}$ y_{i2} ... y_{ik} . Tedy vybereme z kazdeho seznamu postupne i_1 -te slovo, i_2 -te slovo, ... a chceme, aby nakonec vysly stejna slova.

PKP je formulovan jako trida problemu rozhodnout pro lib. instanci, zda ma reseni.

InPKP = inicialni PKP = PKP s modifikaci, ze jako prvni bereme vzdy 1. prvek.