Applied Machine Learning and Predictive Modelling I: Modelling Stroke Data

Authors: Larissa Eisele, Fabian Lüthard, Yves Maillard

Module: Applied Machine Learning and Predictive Modelling I

Study Programm: Master of Science in Applied Information and Data Science

Submitted on 10th of June, 2022

SUPERVISOR: MATTEO TANADINI AND DANIEL MEISTER

Lucerne University of Applied Sciences and Arts

Table of Contents

1	Introduction	1
2	Importing Data	1
3	Data Cleaning	1
	3.1 Summaries	2
	3.2 Scatterplots	4
	3.3 Boxplots	8
4	Methodology	14
5	Linear Models	15
	5.1 Selecting Predictors for the model	16
6	Generalised Linear Model with family set to Poisson	22
7	Generalised Linear Model with family set to Binomial	24
8	Generalised Additive Model	29
9	Neural Network Yves	31
10	Support Vector Machine (Larissa)	35
11	Conclusion	50

1 Introduction

Use case: We are a smart watch manufacturer working on a new feature for stroke prevention. According to the World Health Organization (WHO) stroke is the 2nd leading cause of death globally, responsible for approximately 11% of total deaths. Therefore, our aim is to prevent stoke in future with the help of existing data and machine learning models.

In the following project we are going to analyze survey data that we plan to ask our users, complementing it with HR (Heart Rate) and CGM (Continuous Glucose Monitoring) data that our product already measures. We hope that our feature can prevent serious health issues and motivate our users to adopt healthier lifestyles.

We worked with a Stroke Prediction Data set from (https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset?).

In the following document, different calculation and models are used. The different models are intended to reflect both the teaching content from the course and the knowledge that the authors have gained during the learning process itself.

For the following work, different R packages have been used. The respective packages and their installation can be found in the original R Markdown file or the README.

!! Hier evtl auch Schwierigkeit von Linear Models beschreiben??

2 Importing Data

The first step was to research the relevant data. The data was imported into R. For simplicity, not all of the code is included. However, all code can be found in the original R Markdown file.

```
stroke_data <- read_csv('./data/healthcare-dataset-stroke-data.csv')</pre>
## Rows: 5110 Columns: 12
## Delimiter: ","
## chr (6): gender, ever_married, work_type, Residence_type, bmi, smoking_status
## dbl (6): id, age, hypertension, heart_disease, avg_glucose_level, stroke
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
stroke_data$age <- as.integer(stroke_data$age)</pre>
stroke data$smoking status <- as.factor(stroke data$smoking status)
stroke_data$work_type <- as.factor(stroke_data$work_type)</pre>
stroke_data$gender <- as.factor(stroke_data$gender)</pre>
stroke_data$ever_married <- as.factor(stroke_data$ever_married)</pre>
stroke_data$Residence_type <- as.factor(stroke_data$Residence_type)</pre>
stroke_data$stroke_num <- as.numeric(stroke_data$stroke)</pre>
stroke_data$stroke <- as.factor(stroke_data$stroke)</pre>
stroke_data
```

3 Data Cleaning

The data has been prepared for an easier analysis and for fitting the models and calculations.

head(stroke_data)

```
## # A tibble: 6 x 13
##
        id gender
                    age hypertension heart_disease ever_married work_type
##
     <dbl> <fct> <int>
                               <dbl>
                                              <dbl> <fct>
                                                                 <fct>
## 1 9046 Male
                                   0
                                                  1 Yes
                                                                 Private
                     67
## 2 51676 Female
                     61
                                   0
                                                  0 Yes
                                                                 Self-employed
## 3 31112 Male
                     80
                                   0
                                                  1 Yes
                                                                 Private
## 4 60182 Female
                     49
                                   0
                                                  0 Yes
                                                                 Private
## 5 1665 Female
                                                                 Self-employed
                     79
                                                  0 Yes
                                   1
## 6 56669 Male
                                   0
                                                  0 Yes
                                                                 Private
## # ... with 6 more variables: Residence_type <fct>, avg_glucose_level <dbl>,
     bmi <chr>, smoking_status <fct>, stroke <fct>, stroke_num <dbl>
```

```
#rename parameter residence_type to lower case for stylistic purposes
stroke_data <- stroke_data %>% rename("residence_type" = "Residence_type")
```

```
#check for the dimension of the data set
dim(stroke_data)
```

```
## [1] 5110 13
```

The data set contains 201 missing values in "bmi".

```
#check for missing values
colSums(is.na(stroke_data))
```

```
##
                   id
                                  gender
                                                                   hypertension
                                                         age
##
                    0
                                                           0
##
       heart_disease
                            ever_married
                                                   work_type
                                                                 residence type
##
## avg_glucose_level
                                      bmi
                                             smoking_status
                                                                          stroke
##
                                        0
                                                           0
                                                                               0
##
           stroke_num
##
```

As the data set given is already quite small and the missing values also concern data from people who had a stoke, we will replace the missing values with the mean "bmi" value.

```
#convert bmi as number and replace missing values with the mean value of bmi
stroke_data$bmi <- as.numeric(stroke_data$bmi)</pre>
```

```
## Warning: NAs introduced by coercion
```

```
stroke_data$bmi[is.na(stroke_data$bmi)] <- mean(stroke_data$bmi, na.rm = TRUE)</pre>
```

3.1 Summaries

```
#comparing gender with stroke
stroke_by_gender = table(stroke_data$gender, stroke_data$stroke)
names(dimnames(stroke_by_gender)) <- c("Gender", "Stroke")</pre>
stroke_by_gender
##
          Stroke
## Gender 0
    Female 2853 141
    Male 2007 108
##
    Other
            1
#testing the effect of non smokers and smokers
count_by_smoke_status <- stroke_data %>%
 select(smoking_status, stroke) %>%
 group_by(smoking_status, stroke) %>%
summarise(N = n())
## 'summarise()' has grouped output by 'smoking_status'. You can override using the
## '.groups' argument.
#testing the effect of work type
count_by_work_type <- stroke_data %>%
  select(work_type, stroke) %>%
  group_by(work_type, stroke) %>%
  summarise(N = n())
## 'summarise()' has grouped output by 'work_type'. You can override using the
## '.groups' argument.
# testing the effects of residence type
count_by_residence_type <- stroke_data %>%
  select(residence_type, stroke) %>%
  group_by(residence_type, stroke) %>%
  summarise(N = n())
## 'summarise()' has grouped output by 'residence_type'. You can override using the
## '.groups' argument.
# testing the effects of gender
count_by_gender <- stroke_data %>%
  select(gender, stroke) %>%
  group_by(gender, stroke) %>%
 summarise(N = n())
## 'summarise()' has grouped output by 'gender'. You can override using the
## '.groups' argument.
# testing the effects of hypertension
count_by_hypertension <- stroke_data %>%
  select(hypertension, stroke) %>%
  group_by(hypertension, stroke) %>%
  summarise(N = n())
```

'summarise()' has grouped output by 'hypertension'. You can override using the
'.groups' argument.

```
# testing the effects of heart disease
count_by_heart_disease <- stroke_data %>%
   select(heart_disease, stroke) %>%
   group_by(heart_disease, stroke) %>%
   summarise( N = n())
```

'summarise()' has grouped output by 'heart_disease'. You can override using the
'.groups' argument.

```
# testing the effects of marriage status
count_by_marriage <- stroke_data %>%
   select(ever_married, stroke) %>%
   group_by(ever_married, stroke) %>%
   summarise( N = n())
```

'summarise()' has grouped output by 'ever_married'. You can override using the
'.groups' argument.

3.2 Scatterplots

With the following Scatterplots the strength of the relation between the various parameters should be visualized in more detail. These leads to a better understanding of the data. For the sake of simplicity we do not include all plots, the whole code can be found in the rmarkdown file.

```
stroke_data %>%
  ggplot(mapping = aes(x = bmi, y = age, color = stroke)) +
  geom_point() +
  geom_smooth(method = 'lm')
```



```
stroke_data %>%
  filter(stroke == 1) %>%
  ggplot(mapping = aes(x = bmi, y = age, color = smoking_status)) +
  geom_point(method = 'lm') +
  geom_smooth(method = 'lm')
```

Warning: Ignoring unknown parameters: method


```
stroke_data %>%
  ggplot(mapping = aes(x = bmi, y = avg_glucose_level, color = stroke)) +
  geom_point() +
  geom_smooth(method = 'lm')
```



```
stroke_data %>%
  filter(stroke == 1) %>%
  ggplot(mapping = aes(x = bmi, y = avg_glucose_level, color = stroke)) +
  geom_point(method = 'lm') +
  geom_smooth(method = 'lm')
```

Warning: Ignoring unknown parameters: method

3.3 Boxplots

With the following Boxplots the distribution of the data points is visualized Again, not all Boxplots are included.

```
#Boxplot on aug. glucose_level
ggplot(stroke_data, aes(y = avg_glucose_level)) +
  geom_boxplot()
```



```
#Boxplot on BMI
ggplot(stroke_data, aes(y = bmi)) +
geom_boxplot()
```


4 Methodology

1 51676 Female

2 10434 Female

3 60491 Female

61

78

0

0

0

```
set.seed(7406)
n=dim(stroke_data[1]) # number of observations in dataset
n_train=0.70*n # training set is 70%
flag = sort(sample(1:n, size=n_train, replace=FALSE))
## Warning in 1:n: numerical expression has 2 elements: only the first used
 \textit{\# Use df (all data points without ID column) df\_train, and df\_test } \\
# Gender, hypertension, heart disease, ever married, work type, residence type, smoking status, and str
# This should allow for the best modeling options possible for our methods.
df_train = stroke_data[flag,]
df_test = stroke_data[-flag,]
head(df_test)
## # A tibble: 6 x 13
                    age hypertension heart_disease ever_married work_type
##
        id gender
     <dbl> <fct> <int>
                                <dbl>
                                              <dbl> <fct>
```

0 Yes

O No

0 Yes

Self-employed

Private

Private

64

```
## 4 12095 Female
                     61
                                                 1 Yes
                                                               Govt_job
                                                               Self-employed
## 5 58202 Female
                     50
                                                 0 Yes
                                  1
## 6 56112 Male
                     64
                                  0
                                                 1 Yes
## # ... with 6 more variables: residence_type <fct>, avg_glucose_level <dbl>,
## # bmi <dbl>, smoking_status <fct>, stroke <fct>, stroke_num <dbl>
head(df_train)
## # A tibble: 6 x 13
                    age hypertension heart_disease ever_married work_type
##
        id gender
##
     <dbl> <fct> <int>
                              <dbl>
                                            <dbl> <fct>
## 1 9046 Male
                                                1 Yes
                                                               Private
                    67
                                  0
## 2 31112 Male
                                                1 Yes
                     80
                                  0
                                                               Private
## 3 60182 Female
                     49
                                  0
                                                0 Yes
                                                               Private
## 4 1665 Female
                    79
                                                0 Yes
                                                               Self-employed
                                  1
## 5 56669 Male
                     81
                                  0
                                                0 Yes
                                                               Private
## 6 53882 Male
                     74
                                  1
                                                 1 Yes
                                                               Private
## # ... with 6 more variables: residence_type <fct>, avg_glucose_level <dbl>,
## # bmi <dbl>, smoking_status <fct>, stroke <fct>, stroke_num <dbl>
    Linear Models
set.seed(7406)
n=dim(stroke data[1]) # number of observations in dataset
n_train=0.70*n # training set is 70%
flag = sort(sample(1:n, size=n_train, replace=FALSE))
## Warning in 1:n: numerical expression has 2 elements: only the first used
# Use df (all data points without ID column) df_train_linear, and df_test_linear
# Gender, hypertension, heart disease, ever married, work type, residence type, smoking status, and str
# This should allow for the best modeling options possible for our methods.
df_train_linear = stroke_data[flag,]
df_test_linear = stroke_data[-flag,]
head(df_test_linear)
## # A tibble: 6 x 13
                    age hypertension heart_disease ever_married work_type
##
        id gender
     <dbl> <fct> <int>
##
                               <dbl>
                                            <dbl> <fct>
                                                               <fct>
## 1 51676 Female
                    61
                                  0
                                                0 Yes
                                                               Self-employed
## 2 10434 Female
                     69
                                  0
                                                0 No
                                                               Private
## 3 60491 Female
                    78
                                  0
                                                0 Yes
                                                               Private
## 4 12095 Female
                                                 1 Yes
                                                               Govt_job
                     61
                                  0
## 5 58202 Female
                     50
                                  1
                                                0 Yes
                                                               Self-employed
## 6 56112 Male
                                  0
```

1 Yes

... with 6 more variables: residence_type <fct>, avg_glucose_level <dbl>,

bmi <dbl>, smoking_status <fct>, stroke <fct>, stroke_num <dbl>

```
head(df_train_linear)
```

```
## # A tibble: 6 x 13
##
                    age hypertension heart_disease ever_married work_type
        id gender
##
     <dbl> <fct> <int>
                                <dbl>
                                              <dbl> <fct>
## 1 9046 Male
                                                   1 Yes
                      67
                                    0
                                                                  Private
## 2 31112 Male
                      80
                                    0
                                                   1 Yes
                                                                  Private
## 3 60182 Female
                                    0
                      49
                                                   0 Yes
                                                                  Private
## 4 1665 Female
                      79
                                    1
                                                   0 Yes
                                                                  Self-employed
## 5 56669 Male
                                                   0 Yes
                      81
                                    0
                                                                  Private
## 6 53882 Male
                      74
                                    1
                                                                  Private
## # ... with 6 more variables: residence_type <fct>, avg_glucose_level <dbl>,
       bmi <dbl>, smoking_status <fct>, stroke <fct>, stroke_num <dbl>
```

Our aim is to predict strokes, and the stroke variable is always our response variable of interest in this use case. However, simple or multiple linear regression is not the tool of choice, as stroke is a binary response variable. Thus in the following we will nonetheless fit a linear regression model to our data with stroke as the response variable. However, out of all the linear methods, we will only focus on on a binomial model with family set to "binomial" in greater detail.

5.1 Selecting Predictors for the model

Apart from testing out individual variables, we also tested a model with all predictors to find out about the significant ones, as selecting all variables may not necessarily lead to a more accurate model, and we might run into overfitting problems. Furthermore, our variable selection is also informed by our exploratory plots above, and what we intuitively believe to be accurate risk factors for a stroke.

```
# fitting models for simple regression model
lm.stroke.test <- lm(stroke_num ~ ., data = df_train_linear)</pre>
summary(lm.stroke.test)
## Warning in summary.lm(lm.stroke.test): essentially perfect fit: summary may be
## unreliable
##
## Call:
## lm(formula = stroke_num ~ ., data = df_train_linear)
## Residuals:
##
                      1Q
                             Median
                                            3Q
                                                      Max
## -1.124e-15 -2.180e-18 4.000e-20 2.250e-18
##
## Coefficients:
                                Estimate Std. Error
##
                                                       t value Pr(>|t|)
## (Intercept)
                              -4.797e-18 2.196e-18 -2.184e+00 0.029032 *
## id
                               1.498e-23 1.713e-23 8.740e-01 0.382064
## genderMale
                               4.919e-19 7.542e-19 6.520e-01 0.514290
## genderOther
                              -3.276e-18 2.193e-17 -1.490e-01 0.881225
                                          2.793e-20 1.313e+01 < 2e-16 ***
## age
                               3.668e-19
## hypertension
                               4.109e-18 1.265e-18 3.247e+00 0.001176 **
## heart_disease
                               7.985e-18 1.674e-18 4.771e+00 1.91e-06 ***
```

```
## ever marriedYes
                             -4.324e-18 1.093e-18 -3.954e+00 7.83e-05 ***
## work_typeGovt_job
                             -7.648e-18 1.941e-18 -3.941e+00 8.27e-05 ***
## work typeNever worked
                             -3.312e-18 5.611e-18 -5.900e-01 0.555056
## work_typePrivate
                             -5.647e-18 1.630e-18 -3.464e+00 0.000538 ***
## work_typeSelf-employed
                             -9.323e-18 1.981e-18 -4.705e+00 2.63e-06 ***
## residence typeUrban
                              7.382e-20 7.327e-19 1.010e-01 0.919760
## avg glucose level
                              3.220e-20 8.396e-21 3.835e+00 0.000128 ***
## bmi
                             -5.681e-20 5.429e-20 -1.046e+00 0.295421
## smoking_statusnever smoked -8.056e-19
                                         1.086e-18 -7.420e-01 0.458274
## smoking_statussmokes
                             -6.396e-19 1.295e-18 -4.940e-01 0.621509
## smoking_statusUnknown
                             -1.744e-19 1.215e-18 -1.440e-01 0.885900
                              1.000e+00 1.751e-18 5.713e+17 < 2e-16 ***
## stroke1
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 2.187e-17 on 3558 degrees of freedom
## Multiple R-squared:
                           1, Adjusted R-squared:
## F-statistic: 2.006e+34 on 18 and 3558 DF, p-value: < 2.2e-16
```

Out of the significant predictors above, we chose the following model for the linear model, glm, and gam:

```
# fitting models for simple regression model
linear_model <- stroke_num ~ age + hypertension + heart_disease + avg_glucose_level</pre>
```

Although ever_married theoretically returns a significant result, this is most probably confounded by age, as can be seen in the plot below, the subjects that are or were married at some point tend to be significantly older than those that have never married. The same is most likely true for the work type, with those having never worked being younger. What surprised us, though, is that smoking status did not have as big of an effect as we would have anticipated.

```
# fitting models for simple regression model
lm.married <- lm(age ~ ever_married, data = df_train_linear)
summary(lm.married)</pre>
```

```
##
## Call:
## lm(formula = age ~ ever_married, data = df_train_linear)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -36.575 -12.575 -1.575 10.425
                                    59.838
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
                                0.4849
                                         45.70
## (Intercept)
                    22.1622
                                                 <2e-16 ***
## ever marriedYes
                   32.4132
                                0.5944
                                         54.53
                                                 <2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 16.77 on 3575 degrees of freedom
## Multiple R-squared: 0.4541, Adjusted R-squared: 0.454
## F-statistic: 2974 on 1 and 3575 DF, p-value: < 2.2e-16
```

```
plot(age ~ ever_married, data = df_train_linear)
abline(lm.married)
```


fitting models for simple regression model
lm.stroke <- lm(stroke_num ~ age + hypertension + heart_disease * avg_glucose_level, data = df_train_lissummary(lm.stroke)</pre>

```
##
## Call:
## lm(formula = stroke_num ~ age + hypertension + heart_disease *
      avg_glucose_level, data = df_train_linear)
##
##
## Residuals:
                      Median
##
       Min
                 1Q
                                   3Q
                                           Max
## -0.36224 -0.07933 -0.03774 0.00549 1.05000
##
## Coefficients:
##
                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                  -6.569e-02 1.080e-02 -6.084 1.29e-09 ***
                                   1.977e-03 1.695e-04 11.663 < 2e-16 ***
## age
## hypertension
                                   3.939e-02 1.203e-02
                                                         3.275 0.00107 **
## heart_disease
                                  -4.720e-02 3.679e-02 -1.283 0.19961
## avg_glucose_level
                                   1.949e-04 8.464e-05
                                                         2.302 0.02137 *
## heart_disease:avg_glucose_level 9.962e-04 2.476e-04 4.024 5.84e-05 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 0.2102 on 3571 degrees of freedom
## Multiple R-squared: 0.08625,
                                   Adjusted R-squared: 0.08497
## F-statistic: 67.42 on 5 and 3571 DF, p-value: < 2.2e-16
```

plot(stroke_num ~ age + hypertension + heart_disease + avg_glucose_level, data = df_train_linear)

abline(lm.stroke)

Warning in abline(lm.stroke): only using the first two of 6 regression ## coefficients

we evaluate the model fit with a confusion matrix. In the first example, we have constructed one "manually". In all further examples we will be using the caret package's confusionMatrix() function.

Evaluating model fit using predict linear regression, example of a self-constructed confusion matrix

Next,

```
predicted.lm.stroke <- ifelse(predict(lm.stroke, df_test_linear, type = "response") < 0.15, yes = 0, no</pre>
head(predicted.lm.stroke)
## 1 2 3 4 5 6
## 0 0 0 1 0 1
obs.predicted.comp.lm <- data.frame(obs = df_test_linear$stroke_num, predicted = predicted.lm.stroke)
table(obs = obs.predicted.comp.lm$obs, fit = obs.predicted.comp.lm$predicted)
##
      fit
## obs
          0
               1
##
     0 1416
              50
##
     1
         57
              10
table(obs = obs.predicted.comp.lm$obs, fit = obs.predicted.comp.lm$predicted) %%
 prop.table() %>%
 round(digits = 2)
##
      fit
## obs
          0
               1
    0 0.92 0.03
##
     1 0.04 0.01
##
# Evaluating model fit using predict linear regression using confusionMatrix()
predicted.lm.stroke <- ifelse(predict(lm.stroke, df_test_linear, type = "response") < 0.15, yes = 0, no
head(predicted.lm.stroke)
## 1 2 3 4 5 6
## 0 0 0 1 0 1
confusionMatrix(as.factor(predicted.lm.stroke), as.factor(df_test_linear$stroke))
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                 0
                      1
            0 1416
                     57
##
##
                50
                     10
##
##
                  Accuracy : 0.9302
##
                    95% CI: (0.9163, 0.9424)
##
       No Information Rate: 0.9563
       P-Value [Acc > NIR] : 1.0000
##
##
##
                     Kappa : 0.1212
##
## Mcnemar's Test P-Value: 0.5619
##
```

```
##
               Sensitivity: 0.9659
##
               Specificity: 0.1493
##
            Pos Pred Value: 0.9613
##
            Neg Pred Value: 0.1667
##
                Prevalence: 0.9563
           Detection Rate: 0.9237
##
      Detection Prevalence: 0.9609
##
##
         Balanced Accuracy: 0.5576
##
##
          'Positive' Class: 0
##
```

6 Generalised Linear Model with family set to Poisson

```
glm.stroke.poisson <- glm(stroke_num ~ age + heart_disease + hypertension + avg_glucose_level,
family = "poisson",
data = df_train_linear)
summary(glm.stroke.poisson)
##
## Call:
## glm(formula = stroke_num ~ age + heart_disease + hypertension +
       avg_glucose_level, family = "poisson", data = df_train_linear)
##
## Deviance Residuals:
      Min
                1Q
##
                    Median
                                  3Q
                                          Max
## -1.0558 -0.3142 -0.1712 -0.0831
## Coefficients:
##
                     Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                                0.413043 -17.879 < 2e-16 ***
                    -7.384780
                                0.005875 11.319 < 2e-16 ***
## age
                     0.066499
## heart_disease
                     0.356522
                                0.186276
                                           1.914 0.05563 .
                                           1.759 0.07856 .
## hypertension
                     0.296479
                                0.168541
## avg_glucose_level 0.003448
                                0.001222
                                           2.823 0.00476 **
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for poisson family taken to be 1)
##
      Null deviance: 1084.09 on 3576 degrees of freedom
## Residual deviance: 795.51 on 3572 degrees of freedom
## AIC: 1169.5
## Number of Fisher Scoring iterations: 7
#plot(stroke_num ~ age + heart_disease + hypertension + avg_glucose_level, data = df_train_linear)
#abline(glm.stroke_poisson)
ggplot(data = df_train_linear, aes(x = avg_glucose_level, y = stroke_num)) +
```

```
geom_jitter(width = 0, height = 0.05) +
geom_smooth(method = "glm", method.args = list(family = "poisson"))
```

'geom_smooth()' using formula 'y ~ x'

##

##

0 3238

1 130

157

52

Below is comparison of the fitted values versus the actual observed values within the training data set.

```
table(obs = obs.fitted.comp.poisson$obs, fit = obs.fitted.comp.poisson$fitted) %>%
  prop.table() %>%
  round(digits = 2)
##
      fit
##
          0
  obs
               1
     0 0.91 0.04
##
     1 0.04 0.01
##
# Evaluating model fit using predict linear regression using confusionMatrix()
glm.stroke.poisson.prediction <- as.factor(ifelse(predict(glm.stroke.poisson, df_test_linear, type = "r</pre>
head(glm.stroke.poisson.prediction)
## 1 2 3 4 5 6
## 0 0 0 0 0 0
## Levels: 0 1
confusionMatrix(glm.stroke.poisson.prediction, df_test_linear$stroke)
## Confusion Matrix and Statistics
##
##
             Reference
                 0
##
  Prediction
                      1
##
            0 1355
                     46
            1
               111
                     21
##
##
                  Accuracy: 0.8976
##
##
                    95% CI: (0.8813, 0.9123)
##
       No Information Rate: 0.9563
##
       P-Value [Acc > NIR] : 1
##
##
                     Kappa: 0.1625
##
    Mcnemar's Test P-Value: 3.26e-07
##
##
##
               Sensitivity: 0.9243
               Specificity: 0.3134
##
            Pos Pred Value: 0.9672
##
##
            Neg Pred Value: 0.1591
##
                Prevalence: 0.9563
            Detection Rate: 0.8839
##
##
      Detection Prevalence: 0.9139
##
         Balanced Accuracy: 0.6189
##
##
          'Positive' Class: 0
```

7 Generalised Linear Model with family set to Binomial

##

Since we are essentially dealing with a classification issue, using logistic regression in the form of a GLM with family set to "binomial" is the best method to apply out of all the models introduced so far. For this

reason, we shall go into more detail here.

```
# Include all variables to start variable selection
# Plot all of them for visual analysis
glm.stroke.binomial <- glm(stroke ~ age + gender + avg_glucose_level + residence_type + work_type + hea
family = "binomial",
data = df_train_linear)
summary(glm.stroke.binomial)
##
## Call:
## glm(formula = stroke ~ age + gender + avg_glucose_level + residence_type +
      work_type + heart_disease + hypertension + ever_married +
      bmi + smoking_status, family = "binomial", data = df_train_linear)
##
##
## Deviance Residuals:
##
      Min
                1Q
                    Median
                                 3Q
                                         Max
## -1.3023 -0.3211 -0.1577 -0.0778
                                      3.6948
##
## Coefficients:
                             Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                            -7.320e+00 1.079e+00 -6.781 1.19e-11 ***
## age
                            8.025e-02 7.152e-03 11.221 < 2e-16 ***
## genderMale
                             1.941e-01 1.666e-01 1.165 0.24399
                            -1.029e+01 1.455e+03 -0.007 0.99436
## genderOther
## avg_glucose_level
                            3.678e-03 1.397e-03 2.632 0.00848 **
## residence_typeUrban
                            -2.994e-02 1.634e-01 -0.183 0.85465
## work_typeGovt_job
                            -9.598e-01 1.139e+00 -0.843 0.39939
                            -1.015e+01 3.623e+02 -0.028 0.97766
## work_typeNever_worked
## work_typePrivate
                            -7.741e-01 1.122e+00 -0.690 0.49033
## work_typeSelf-employed
                            -1.335e+00 1.145e+00 -1.166 0.24356
## heart_disease
                            4.014e-01 2.150e-01 1.867 0.06191 .
                            3.709e-01 1.903e-01 1.949
## hypertension
                                                          0.05132 .
## ever_marriedYes
                            -2.280e-01 2.667e-01 -0.855 0.39271
## bmi
                             8.944e-03 1.338e-02 0.669 0.50380
## smoking_statusnever smoked -1.636e-01 2.064e-01 -0.793 0.42796
## smoking_statussmokes
                         4.783e-02 2.569e-01 0.186 0.85228
## smoking_statusUnknown
                            -7.281e-02 2.442e-01 -0.298 0.76563
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 1438.7 on 3576 degrees of freedom
## Residual deviance: 1115.1 on 3560 degrees of freedom
## AIC: 1149.1
##
## Number of Fisher Scoring iterations: 14
prediction.glm <- predict(glm.stroke.binomial, df_test_linear, type = "response")</pre>
# InformationValue::optimalCutoff(df_test_linear, prediction.glm)
str(prediction.glm)
```

```
## Named num [1:1533] 0.0411 0.0998 0.1502 0.0839 0.0225 ...
## - attr(*, "names")= chr [1:1533] "1" "2" "3" "4" ...
predicted.glm.stroke.binomial <- as.factor(ifelse(predict(glm.stroke.binomial, df_test_linear, type = "
head(predicted.glm.stroke.binomial)
## 1 2 3 4 5 6
## 0 0 1 0 0 1
## Levels: 0 1
confusionMatrix(predicted.glm.stroke.binomial, df_test_linear$stroke)
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction
                0
                      1
            0 1351
##
                     44
##
            1 115
                     23
##
##
                  Accuracy : 0.8963
                    95% CI: (0.8799, 0.9111)
##
##
      No Information Rate: 0.9563
##
      P-Value [Acc > NIR] : 1
##
##
                     Kappa: 0.1759
##
## Mcnemar's Test P-Value : 2.835e-08
##
##
              Sensitivity: 0.9216
               Specificity: 0.3433
##
##
            Pos Pred Value: 0.9685
            Neg Pred Value: 0.1667
##
                Prevalence: 0.9563
##
##
            Detection Rate: 0.8813
##
     Detection Prevalence : 0.9100
##
         Balanced Accuracy: 0.6324
##
          'Positive' Class: 0
##
##
# First iteration with parameters chosen from intuitive domain knowledge and exploratory analysis of da
glm.stroke.binomial <- glm(stroke ~ age + heart_disease + hypertension + work_type + avg_glucose_level</pre>
family = "binomial",
data = df_train_linear)
summary(glm.stroke.binomial)
##
## Call:
## glm(formula = stroke ~ age + heart_disease + hypertension + work_type +
       avg_glucose_level + smoking_status, family = "binomial",
##
##
       data = df_train_linear)
##
```

```
## Deviance Residuals:
##
      Min
                1Q
                    Median
                                  30
                                          Max
## -1.1696 -0.3241 -0.1595 -0.0771
                                       3.6785
## Coefficients:
                              Estimate Std. Error z value Pr(>|z|)
##
                                          1.036288 -6.792 1.11e-11 ***
## (Intercept)
                              -7.037953
                                          0.006958 11.260 < 2e-16 ***
## age
                               0.078346
## heart_disease
                               0.431469
                                          0.213875
                                                    2.017
                                                            0.0437 *
## hypertension
                               0.378996
                                          0.189527
                                                    2.000
                                                            0.0455 *
## work_typeGovt_job
                              -1.003706
                                          1.105068 -0.908
                                                            0.3637
## work_typeNever_worked
                             -10.077332 362.934034 -0.028
                                                            0.9778
## work_typePrivate
                              -0.818567
                                         1.088363 -0.752
                                                            0.4520
## work_typeSelf-employed
                                          1.112789 -1.243
                              -1.382649
                                                            0.2140
## avg_glucose_level
                                                    2.894
                                                            0.0038 **
                              0.003936
                                          0.001360
## smoking_statusnever smoked -0.186796
                                          0.203452 -0.918
                                                            0.3586
## smoking_statussmokes
                               0.032194
                                          0.256225
                                                    0.126
                                                            0.9000
## smoking_statusUnknown
                              -0.081986
                                          0.243356 -0.337
                                                            0.7362
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 1438.7 on 3576 degrees of freedom
## Residual deviance: 1117.5 on 3565 degrees of freedom
## AIC: 1141.5
##
## Number of Fisher Scoring iterations: 14
#plot(stroke ~ age + heart_disease + hypertension + work_type + aug_glucose_level + smoking_status, dat
#abline(glm.stroke.binomial)
# second iteration only keeping statistically relevant parameters from previous model
glm.stroke.binomial.2 <- glm(stroke_num ~ age + heart_disease + hypertension + avg_glucose_level,
family = "binomial",
data = df_train_linear)
summary(glm.stroke.binomial.2)
##
## Call:
## glm(formula = stroke_num ~ age + heart_disease + hypertension +
##
      avg_glucose_level, family = "binomial", data = df_train_linear)
##
## Deviance Residuals:
      Min
                1Q
                    Median
## -1.1183 -0.3237 -0.1671 -0.0764
                                       3.8413
## Coefficients:
                     Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                    -7.739236
                                0.443953 - 17.433
                                                  <2e-16 ***
## age
                     0.072374
                                0.006312 11.467
                                                  <2e-16 ***
## heart_disease
                     0.465121
                                0.211312
                                         2.201
                                                  0.0277 *
## hypertension
                     0.362843
                                0.187103 1.939
                                                  0.0525 .
```

```
## avg_glucose_level 0.004117
                                0.001351
                                            3.048
                                                    0.0023 **
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 1438.7 on 3576 degrees of freedom
## Residual deviance: 1127.6 on 3572 degrees of freedom
## AIC: 1137.6
##
## Number of Fisher Scoring iterations: 7
# plot(stroke ~ age + heart_disease + hypertension + avg_glucose_level, data = df_train_linear)
# abline(glm.stroke.binomial.2)
pred <- predict(glm.stroke.binomial.2)</pre>
# pred
ggplot(data = df_train_linear, aes(x = age, y = stroke_num)) +
  geom_jitter(width = 0, height = 0.05) +
 geom_smooth(method = "glm", method.args = list(family = "binomial"))
```



```
predicted.glm.stroke.binomial.2 <- as.factor(ifelse(predict(glm.stroke.binomial.2, df_test_linear, type
head(predicted.glm.stroke.binomial.2)
## 1 2 3 4 5 6
## 0 0 0 0 0 0
## Levels: 0 1
# predicted.glm.stroke.binomial.2 <- as.factor(predicted.glm.stroke.binomial.2)</pre>
# predicted.glm.stroke.binomial.2 <- relevel(predicted.glm.stroke.binomial.2, "0")</pre>
confusionMatrix(predicted.glm.stroke.binomial.2, df_test_linear$stroke)
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction
                0
            0 1412
                     54
##
##
                54
                     13
##
                  Accuracy : 0.9295
##
                    95% CI: (0.9156, 0.9419)
##
      No Information Rate : 0.9563
##
      P-Value [Acc > NIR] : 1
##
##
##
                     Kappa: 0.1572
##
   Mcnemar's Test P-Value : 1
##
##
##
              Sensitivity: 0.9632
##
              Specificity: 0.1940
##
            Pos Pred Value: 0.9632
            Neg Pred Value: 0.1940
##
##
                Prevalence: 0.9563
            Detection Rate: 0.9211
##
##
      Detection Prevalence: 0.9563
         Balanced Accuracy: 0.5786
##
##
          'Positive' Class : 0
##
##
    Generalised Additive Model
```

```
library(mgcv)
gam.stroke <- gam(stroke_num ~ age + heart_disease + hypertension + avg_glucose_level,
family = "binomial",
data = df_train_linear)
summary(gam.stroke)</pre>
```

```
##
## Family: binomial
## Link function: logit
##
## Formula:
## stroke_num ~ age + heart_disease + hypertension + avg_glucose_level
## Parametric coefficients:
##
                     Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                    -7.739236 0.443974 -17.432
                                                   <2e-16 ***
## age
                    0.072374
                                0.006312 11.466
                                                   <2e-16 ***
                     0.465121
## heart_disease
                                          2.201
                                                   0.0277 *
                                0.211313
## hypertension
                     0.362843
                                0.187105
                                          1.939
                                                   0.0525 .
                                          3.048
                                                   0.0023 **
## avg_glucose_level 0.004117
                                0.001351
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
##
## R-sq.(adj) = 0.101 Deviance explained = 21.6\%
## UBRE = -0.68197 Scale est. = 1
#plot(stroke ~ smoking_status, data = df_train_linear)
#abline(gam.stroke)
predicted.gam.stroke <- as.factor(ifelse(predict( gam.stroke, df_test_linear, type = "response") < 0.2,</pre>
head(predicted.gam.stroke)
## 1 2 3 4 5 6
## 0 0 0 0 0 0
## Levels: 0 1
confusionMatrix(predicted.gam.stroke, df_test_linear$stroke)
## Confusion Matrix and Statistics
##
##
            Reference
                0
## Prediction
                     1
##
           0 1412
                    54
##
           1
               54
                    13
##
##
                 Accuracy : 0.9295
##
                   95% CI: (0.9156, 0.9419)
##
      No Information Rate: 0.9563
##
      P-Value [Acc > NIR] : 1
##
##
                    Kappa: 0.1572
##
## Mcnemar's Test P-Value : 1
##
##
              Sensitivity: 0.9632
##
              Specificity: 0.1940
##
           Pos Pred Value: 0.9632
```

```
## Neg Pred Value : 0.1940
## Prevalence : 0.9563
## Detection Rate : 0.9211
## Detection Prevalence : 0.9563
## Balanced Accuracy : 0.5786
##
## 'Positive' Class : 0
##
```

9 Neural Network Yves

.. avg_glucose_level = col_double(),

```
# read the csv agein, because the data needs to be idfferently prepared than in other model
stroke_data_nn <- read_csv('./data/healthcare-dataset-stroke-data.csv')</pre>
## Rows: 5110 Columns: 12
## -- Column specification ------
## Delimiter: ","
## chr (6): gender, ever_married, work_type, Residence_type, bmi, smoking_status
## dbl (6): id, age, hypertension, heart_disease, avg_glucose_level, stroke
##
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
# have a look at the data -> it is discovered, that bmi is not numeric, let's change that
str(stroke_data_nn)
## spec tbl df [5,110 x 12] (S3: spec tbl df/tbl df/tbl/data.frame)
## $ id : num [1:5110] 9046 51676 31112 60182 1665 ...
## $ gender : chr [1:5110] "Male" "Female" "Male" "Female" ...
## $ age : num [1:5110] 67 61 80 49 79 81 74 69 59 78 ...
## $ hypertension : num [1:5110] 0 0 0 0 1 0 1 0 0 0 ...
## $ heart_disease : num [1:5110] 1 0 1 0 0 0 1 0 0 0 ...
## $ ever_married : chr [1:5110] "Yes" "Yes" "Yes" "Yes" ...
## $ work_type : chr [1:5110] "Private" "Self-employed" "Private" "Private" ...
## $ Residence_type : chr [1:5110] "Urban" "Rural" "Rural" "Urban" ...
## $ avg_glucose_level: num [1:5110] 229 202 106 171 174 ...
## $ bmi : chr [1:5110] "36.6" "N/A" "32.5" "34.4" ...
## $ smoking_status : chr [1:5110] "formerly smoked" "never smoked" "never smoked" "smokes" ...
                        : num [1:5110] 1 1 1 1 1 1 1 1 1 1 ...
## $ stroke
## - attr(*, "spec")=
##
     .. cols(
     .. id = col double(),
##
##
     .. gender = col_character(),
##
     .. age = col double(),
##
     .. hypertension = col_double(),
     .. heart_disease = col_double(),
##
     .. ever_married = col_character(),
##
     .. work type = col character(),
     .. Residence_type = col_character(),
##
```

```
##
         bmi = col_character(),
##
         smoking_status = col_character(),
##
    .. stroke = col_double()
##
    ..)
## - attr(*, "problems")=<externalptr>
stroke_data_nn[10] <- sapply(stroke_data_nn[10], as.numeric)</pre>
## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion
str(stroke_data_nn)
## spec tbl df [5,110 x 12] (S3: spec tbl df/tbl df/tbl/data.frame)
## $ id
                     : num [1:5110] 9046 51676 31112 60182 1665 ...
## $ gender
                      : chr [1:5110] "Male" "Female" "Male" "Female" ...
                    : num [1:5110] 67 61 80 49 79 81 74 69 59 78 ...
## $ age
## $ hypertension : num [1:5110] 0 0 0 0 1 0 1 0 0 0 ...
## $ heart_disease : num [1:5110] 1 0 1 0 0 0 1 0 0 0 ...
## $ ever_married
                      : chr [1:5110] "Yes" "Yes" "Yes" "Yes" ...
                      : chr [1:5110] "Private" "Self-employed" "Private" "Private" ...
## $ work_type
## $ Residence_type : chr [1:5110] "Urban" "Rural" "Rural" "Urban" ...
## $ avg_glucose_level: num [1:5110] 229 202 106 171 174 ...
## $ bmi
                      : num [1:5110] 36.6 NA 32.5 34.4 24 29 27.4 22.8 NA 24.2 ...
## $ smoking_status
                      : chr [1:5110] "formerly smoked" "never smoked" "never smoked" "smokes" ...
## $ stroke
                      : num [1:5110] 1 1 1 1 1 1 1 1 1 1 ...
## - attr(*, "spec")=
##
    .. cols(
##
    .. id = col double(),
##
    .. gender = col_character(),
    .. age = col_double(),
##
##
    .. hypertension = col_double(),
##
    .. heart_disease = col_double(),
##
     .. ever_married = col_character(),
##
    .. work_type = col_character(),
##
    .. Residence_type = col_character(),
    .. avg_glucose_level = col_double(),
##
         bmi = col_character(),
##
         smoking_status = col_character(),
##
    . .
##
         stroke = col_double()
    ..)
   - attr(*, "problems")=<externalptr>
#install.packages("caret")
# make a df with only numeric values
#numeric_var_original_scale <- stroke_data_nn %>% select(where(is.numeric) & !where(is.integer))
#cat_var <- stroke_data_nn[,!(names(stroke_data_nn) %in% names(numeric_var_original_scale))] %>% select
#target_var= (stroke_data_nn %>% select(stroke)) %>%
# mutate(stroke=as.factor(ifelse(stroke==0, "no_stroke","stroke")))
```

```
# have a look at the structure of each df
#str(numeric_var)
#str(cat var)
#str(target_var)
#qet parameters of center scale to use in train and unseen data with caret library
#library(caret)
#preproc.param_comp <- numeric_var_original_scale %>% preProcess(method = c("center", "scale"))
#numeric_var <- preproc.param_comp %>% predict(numeric_var_original_scale)
#predictors_var= cbind.data.frame(cat_var,numeric_var)
#now we have:
#head(target_var)
#NA values are already solved, so lets see if some predictors have small variances:
# Identify near zero variance predictors: remove_cols
#remove_cols <- nearZeroVar(numeric_var, names = TRUE,</pre>
                            freqCut = 10, uniqueCut = 20)
#remove_cols
#lets see if some predictor have some high leverage point
#plot(numeric_var)
#it's ok for me, lets see correlation between variables matrix
#numeric_varcor = numeric_var_original_scale
#names(numeric_varcor) = c("Age", "Avg. glucose level", "BMI")
#correlationMatrix1 <- round(cor(numeric_varcor),2)</pre>
#highlyCorrelated <- findCorrelation(correlationMatrix1, cutoff=0.75) #useful for large matrices
#print(highlyCorrelated)
#library(GGally)
#corplot1 = ggpairs(numeric_varcor, diag=list(continuous= wrap("densityDiag", fill="palegreen1")),
#
                    lower= list(continuous = wrap("points", color = "red", alpha = 0.5)))+theme_bw()
#full_data = cbind.data.frame(target_var, predictors_var)
#70-30
#train.index <- createDataPartition(target_var$stroke, p = 0.7, list = FALSE)</pre>
#train_data_imb <- full_data[ train.index,]</pre>
```

```
#test_data0 <- full_data[-train.index,]</pre>
#dim(train_data_imb)
#dim(test_data0)
\#Let's\ upsampling\ to\ balance\ the\ data
#dummycar <- dummyVars(" ~ .", data=train_data_imb %>% select(-stroke))
#train dummies
#train data imb dummy <- cbind.data.frame(stroke= train data imb %>% select(stroke),
                                           predict(dummycar, newdata = train data imb %>% select(-stroke
#names(train_data_imb_dummy) <- make.names(names(train_data_imb_dummy), unique=TRUE)</pre>
#test dummies
#test data <- cbind.data.frame(stroke= test data0 %>% select(stroke),
                                predict(dummycar, newdata = test_data0 %>% #select(-stroke)))
#names(test_data) <- make.names(names(test_data), unique=TRUE)</pre>
#install.packages("imbalance")
#library(imbalance)
#print("Before upsampling")
#table(train_data_imb_dummy$stroke)
\#numInst = table(train_data_imb_dummy\$stroke)[1] - table(train_data_imb_dummy\$stroke)[2]
#mwmote1 <- mwmote(train data imb dummy, numInstances = numInst,classAttr="stroke")</pre>
#I will set the decimals in the categories to 0 or 1, otherwise the variables would be treated as conti
#mwmote2=mwmote1 %>% select(-c(stroke,age,avg_glucose_level,bmi)) %>%
 # apply(2, FUN=function(x) ifelse(x > 0.5, 1, 0))
#mwmote3=cbind.data.frame(stroke=mwmote1[["stroke"]], mwmote2 ,
                           mwmote1 %>% select(age,avg_glucose_level,bmi ))
#train_data=rbind.data.frame(train_data_imb_dummy, mwmote3)
#print("After upsampling")
#table(train_data$stroke)
\#tune\_grid\_nnet = expand.grid(size = seq(from = 39, to = 42, by = 1), decay = c(0,0.1,0.5))
#Create custom trainControl
myControl <- trainControl(</pre>
  method = "repeatedcv",
 number = 10,repeats=3,
  summaryFunction = prSummary, #to include F1 score
 classProbs = TRUE, search = "grid",
verboseIter = TRUE, savePredictions =TRUE)
```

```
# let's train the model -> can the up to 3 hours depending on your procesor
#install.packages('MLmetrics')
#nnet_model <- train(
      stroke~.,
# data=train_data,
# method = "nnet", metric="F",
# trControl = myControl,
# tuneGrid = tune_grid_nnet
#lets have a look at the outcome
#nnet_model
#lets check to confusion matrix on test data
#prediction_nnet0= predict(nnet_model, test_data, type="prob")
#dim(prediction_nnet0)
# If p exceeds threshold of 0.5
#thresh_nnet = ifelse(prediction_nnet0[, "stroke"] > 0.5, "stroke", "no_stroke")
# Convert to factor
#p_class_nnet =as.factor(thresh_nnet)
# Create confusion matrix# as the matrix shows -> the model could reach an accuracy of 94.97% in previo
\#conf\_matrix\_nnet = confusionMatrix(p\_class\_nnet, test\_data[["stroke"]], positive = "stroke", mode = "evelower | formula | formu
#conf_matrix_nnet
```

10 Support Vector Machine (Larissa)

Stroke Data Classification using a Support Vector Machine. In the following two different approaches for the Stroke Data Classification are used. On one hand to compare the different approaches and on the other hand for the learning purpose.

In the following model "svm_linear" the SVM model is implemented with the caret package. Our target variable is the stroke parameter which contains 0 (no-stroke) and 1 (stroke) which we want to predict. The first step is to split the data set into training and testing data. The training data is used for building the model and the testing data for evaluating the model.

```
head(stroke_data)
```

```
## # A tibble: 6 x 13
##
        id gender
                    age hypertension heart_disease ever_married work_type
                                              <dbl> <fct>
##
     <dbl> <fct> <int>
                               <dbl>
                                                                 <fct>
## 1 9046 Male
                                   0
                                                  1 Yes
                     67
                                                                 Private
## 2 51676 Female
                                   0
                                                  0 Yes
                     61
                                                                 Self-employed
## 3 31112 Male
                                   0
                     80
                                                  1 Yes
                                                                 Private
## 4 60182 Female
                     49
                                   0
                                                  0 Yes
                                                                 Private
## 5 1665 Female
                     79
                                                                 Self-employed
                                   1
                                                  0 Yes
## 6 56669 Male
                     81
                                   0
                                                  0 Yes
                                                                 Private
## # ... with 6 more variables: residence_type <fct>, avg_glucose_level <dbl>,
     bmi <dbl>, smoking_status <fct>, stroke <fct>, stroke_num <dbl>
```

As we need different data types and have to remove the gender "other" data point for an optimal performance of the SVM model, we create a need data set variable in the following.

```
#define new data set
svm_stroke <- stroke_data</pre>
head(svm_stroke)
## # A tibble: 6 x 13
                    age hypertension heart_disease ever_married work_type
        id gender
##
     <dbl> <fct> <int>
                               <dbl>
                                              <dbl> <fct>
                                                                 <fct>
## 1 9046 Male
                     67
                                   0
                                                  1 Yes
                                                                 Private
## 2 51676 Female
                     61
                                   0
                                                  0 Yes
                                                                 Self-employed
                     80
                                   0
## 3 31112 Male
                                                  1 Yes
                                                                 Private
                     49
## 4 60182 Female
                                   0
                                                  0 Yes
                                                                 Private
## 5 1665 Female
                     79
                                   1
                                                  0 Yes
                                                                 Self-employed
## 6 56669 Male
                     81
                                   0
                                                  0 Yes
                                                                 Private
## # ... with 6 more variables: residence_type <fct>, avg_glucose_level <dbl>,
## # bmi <dbl>, smoking_status <fct>, stroke <fct>, stroke_num <dbl>
#replace gender "Other" with "Female
svm_stroke[svm_stroke == "Other"] <- "Female"</pre>
#set numeric stoke data type to NUll
svm_stroke$stroke_num <- NULL</pre>
head(svm_stroke)
## # A tibble: 6 x 12
                    age hypertension heart_disease ever_married work_type
##
        id gender
##
     <dbl> <fct> <int>
                               <dbl>
                                             <dbl> <fct>
                                                                 <fct>
## 1 9046 Male
                     67
                                   0
                                                  1 Yes
                                                                 Private
## 2 51676 Female
                                                  0 Yes
                                                                 Self-employed
                     61
                                   0
## 3 31112 Male
                     80
                                   0
                                                  1 Yes
                                                                 Private
## 4 60182 Female
                     49
                                   0
                                                  0 Yes
                                                                 Private
## 5 1665 Female
                     79
                                   1
                                                  0 Yes
                                                                 Self-employed
## 6 56669 Male
                     81
                                   0
                                                  0 Yes
                                                                 Private
## # ... with 5 more variables: residence_type <fct>, avg_glucose_level <dbl>,
## # bmi <dbl>, smoking status <fct>, stroke <fct>
#split the data into test and train data with a split of 70 (training) / 30 (testing)
set.seed(7406)
intrain <- createDataPartition(y = svm_stroke$stroke, p = 0.7, list = FALSE)
                                                                                 #selecting our target va
training <- svm_stroke[intrain, ]</pre>
testing <- svm_stroke[-intrain, ]</pre>
#checking the dimension of the training and testing data set
dim(training)
## [1] 3578
              12
dim(testing)
```

```
## [1] 1532 12
```

Implement the trainControl Method. This function will control the computation overheads which allow us to use the train function which is implemented by the caret package. In the following we use the trainControl function with the repeated cross-validation method, with a iteration of 10 and with repeates set to 3 to compute the repeated cross-validation 3 times.

```
#implement the train control method with the repeated cross-validation method,
trctrl <- trainControl(method = "repeatedcv", number = 10, repeats = 3)</pre>
```

In the following we pass the trainControl function to our training method. In the train function we pass our target variable stroke and set the method to linear. The following output shows our train method. As our model was trained with the C value as one we now can predict our testing data set.

```
## Support Vector Machines with Linear Kernel
##
## 3578 samples
##
     11 predictor
      2 classes: '0', '1'
##
##
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 3 times)
## Summary of sample sizes: 3220, 3219, 3221, 3220, 3221, 3220, ...
## Resampling results:
##
##
                Kappa
     Accuracy
     0.9337557 0.0543292
##
##
## Tuning parameter 'C' was held constant at a value of 1
```

When running our testing model we will get the prediction values with 0 (no-stroke) and 1 (stroke). In the following we use the predict function and pass the trained model and as new data we pass the testing data.

```
#test predict with testing data
test_pred <- predict(svm_linear, newdata = testing)
test_pred</pre>
```

In the next step we are going to test the accuracy of our model. We do this with the help of the confusionMatrix. The following output shows, that our model has an accuracy of 94%. Which seems to be quite good. However for the sake of completeness, we going to improve our model with customizing cost values and the crossvalidation method.

```
#testing the accuracy of our model with confusionMatrix
confusionMatrix(table(test_pred, testing$stroke))
```

Confusion Matrix and Statistics

```
##
##
## test_pred
                     1
                0
##
           0 1441
                    69
           1
               17
##
                     5
##
##
                  Accuracy: 0.9439
                    95% CI : (0.9311, 0.9549)
##
       No Information Rate: 0.9517
##
##
       P-Value [Acc > NIR] : 0.9292
##
##
                     Kappa: 0.0839
##
##
    Mcnemar's Test P-Value: 3.809e-08
##
##
               Sensitivity: 0.98834
##
               Specificity: 0.06757
##
            Pos Pred Value: 0.95430
##
            Neg Pred Value: 0.22727
##
                Prevalence: 0.95170
##
            Detection Rate: 0.94060
##
      Detection Prevalence: 0.98564
         Balanced Accuracy: 0.52795
##
##
##
          'Positive' Class: 0
##
#define different values for c
grid \leftarrow expand.grid(C = c(0, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2.5))
```

The following output shows that the model shows the final value used for the model was C = 0.01.

```
## Support Vector Machines with Linear Kernel
##
## 3578 samples
## 11 predictor
## 2 classes: '0', '1'
##
## Pre-processing: centered (17), scaled (17)
## Resampling: Cross-Validated (10 fold, repeated 3 times)
## Summary of sample sizes: 3221, 3221, 3221, 3220, 3221, 3219, ...
## Resampling results across tuning parameters:
##
```

```
##
     C
           Accuracy
                       Kappa
     0.00
##
                      NaN
                 NaN
##
     0.01
           0.9510919
           0.9510919
##
     0.05
                         0
##
     0.10
           0.9510919
                         0
##
     0.25 0.9510919
                         0
           0.9510919
##
     0.50
                         0
##
     0.75
           0.9510919
                         0
##
     1.00
           0.9510919
                         0
##
     1.25
           0.9510919
                         0
##
     1.50
           0.9510919
                         0
##
     1.75
           0.9510919
                         0
##
     2.50
           0.9510919
                         0
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was C = 0.01.
```

```
test_pred_grid <- predict(svm_linear_grid, newdata = testing)
test_pred_grid</pre>
```

```
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
```

With the new test_pred_grid we can achieve an Accuracy of 95% which meand we could improve our model about 1%.

confusionMatrix(table(test_pred_grid, testing\$stroke))

```
## Confusion Matrix and Statistics
##
##
## test_pred_grid
                     0
                          1
##
                0 1458
                         74
##
                1
                     0
                          0
##
##
                  Accuracy : 0.9517
##
                    95% CI : (0.9397, 0.9619)
##
       No Information Rate: 0.9517
##
       P-Value [Acc > NIR] : 0.5309
##
##
                     Kappa: 0
##
##
   Mcnemar's Test P-Value : <2e-16
##
##
               Sensitivity: 1.0000
               Specificity: 0.0000
##
##
            Pos Pred Value: 0.9517
##
            Neg Pred Value :
##
                Prevalence: 0.9517
            Detection Rate: 0.9517
##
##
      Detection Prevalence : 1.0000
##
         Balanced Accuracy: 0.5000
##
##
          'Positive' Class : 0
##
```

In the following the second approach for the SVM Model is presented. In a first step we again split the data set into training and testing data sets.

```
#create train and test data set for SVM Model with a split 70 (training) / 30 (test)
set.seed(7406)
n=dim(svm_stroke[1]) # number of observations in dataset
n_train=0.70*n # training set is 70%
flag = sort(sample(1:n, size=n_train, replace=FALSE))
## Warning in 1:n: numerical expression has 2 elements: only the first used
#use all parameters without first column id
df_train_svm = svm_stroke[flag,]
df_test_svm = svm_stroke[-flag,]
#define stroke train and test variables
ytrain = df_train_svm$stroke
ytest = df_test_svm$stroke
table(df_train_svm$stroke)
##
##
     0
          1
## 3395 182
summary(df_train)
                                                  hypertension
##
          id
                      gender
                                      age
##
          :
              67
                   Female:2111
                                       : 0.00
                                                 Min.
                                                         :0.000
   \mathtt{Min}.
                                 Min.
   1st Qu.:17762
                   Male :1465
                                 1st Qu.:26.00
##
                                                 1st Qu.:0.000
## Median :37290
                   Other: 1
                                 Median :45.00
                                                 Median :0.000
          :36768
                                       :43.74
## Mean
                                 Mean
                                                 Mean
                                                        :0.106
##
   3rd Qu.:55220
                                 3rd Qu.:61.00
                                                 3rd Qu.:0.000
## Max.
          :72940
                                 Max.
                                        :82.00
                                                 Max.
                                                        :1.000
## heart_disease
                      ever_married
                                          work_type
                                                       residence_type
## Min.
         :0.00000
                     No :1196
                                                : 467
                                                       Rural:1742
                                  children
##
   1st Qu.:0.00000
                     Yes:2381
                                  Govt_job
                                                : 453
                                                       Urban:1835
## Median :0.00000
                                  Never_worked: 16
## Mean
         :0.05703
                                  Private
                                                :2063
## 3rd Qu.:0.00000
                                  Self-employed: 578
## Max.
          :1.00000
   avg_glucose_level
##
                          bmi
                                             smoking_status stroke
## Min.
          : 55.22
                            :10.30
                                     formerly smoked: 620
                                                            0:3395
                     Min.
## 1st Qu.: 77.46
                      1st Qu.:24.00
                                     never smoked
                                                            1: 182
                                                    :1323
## Median : 92.14
                     Median :28.50
                                     smokes
                                                     : 553
                     Mean
                           :29.01
                                     Unknown
## Mean
         :107.03
                                                    :1081
                     3rd Qu.:32.80
## 3rd Qu.:115.69
           :267.76
## Max.
                     Max.
                            :92.00
##
      stroke_num
## Min.
           :0.00000
## 1st Qu.:0.00000
```

```
## Median :0.00000
## Mean :0.05088
## 3rd Qu::0.00000
## Max. :1.00000
```

summary(df_test)

```
hypertension
                                                                heart_disease
##
          id
                      gender
                                      age
          : 121
                                             Min.
##
   Min.
                   Female:883
                                      : 0
                                                    :0.00000
                                                               Min. :0.00000
                                Min.
   1st Qu.:17608
                                              1st Qu.:0.00000
                   Male :650
                                 1st Qu.:24
                                                                1st Qu.:0.00000
  Median :36471
                   Other: 0
                                Median:44
                                             Median :0.00000
                                                               Median :0.00000
##
## Mean
         :35934
                                Mean
                                        :42
                                              Mean
                                                     :0.07763
                                                               Mean
                                                                       :0.04697
## 3rd Qu.:53815
                                 3rd Qu.:59
                                              3rd Qu.:0.00000
                                                                3rd Qu.:0.00000
## Max. :72911
                                 Max.
                                        :82
                                             Max.
                                                     :1.00000
                                                               Max.
                                                                       :1.00000
##
   ever_married
                                    residence_type avg_glucose_level
                        work_type
  No :561
                 children
                              :220
                                     Rural:772
                                                    Min.
                                                         : 55.12
                                                    1st Qu.: 76.68
##
   Yes:972
                 Govt_job
                              :204
                                     Urban:761
##
                                                    Median : 91.16
                Never_worked : 6
##
                Private
                              :862
                                                    Mean
                                                          :104.09
##
                 Self-employed:241
                                                    3rd Qu.:111.37
##
                                                    Max.
                                                           :271.74
##
         bmi
                            smoking_status stroke
                                                      stroke num
          :11.30
                   formerly smoked:265
                                          0:1466
                                                           :0.00000
##
   Min.
                                                    Min.
   1st Qu.:23.40
                   never smoked
                                   :569
                                           1: 67
                                                    1st Qu.:0.00000
##
  Median :28.10
                   smokes
                                   :236
                                                    Median :0.00000
## Mean
         :28.62
                   Unknown
                                   :463
                                                    Mean
                                                          :0.04371
##
   3rd Qu.:32.60
                                                    3rd Qu.:0.00000
## Max.
          :97.60
                                                    Max.
                                                           :1.00000
```

In the following SVM Model we set the kernel to radial and cost to 5. In the following the SVM Classification Plot is shown. It seems that Age is the bigger influence on having a stroke or not compared to the BMI.

```
svm_model_radial <- svm(stroke ~. , data = df_train_svm, type = "C-classification", kernel = "radial",</pre>
summary(svm_model_radial)
##
## Call:
## svm(formula = stroke ~ ., data = df_train_svm, type = "C-classification",
##
       kernel = "radial", cost = 5)
##
##
## Parameters:
##
      SVM-Type: C-classification
##
   SVM-Kernel: radial
##
          cost: 5
##
## Number of Support Vectors:
##
##
   ( 182 418 )
##
##
## Number of Classes: 2
```

#setup our sum model with kernel set to radial

```
##
## Levels:
## 0 1

plot(svm_model_radial, data = df_train_svm, bmi ~ age, slice = list(avg_glucose_level = 3))
```

SVM classification plot

In the following we checked the model fit with a confusion matrix with the help of the caret package's confusionMatrix() function. The following output shows an Accuracy of 94% again. It seems that we receive the same results for the linear and the radial approach.

```
#confusion matrix for training error
svm_training_prediction <- predict(svm_model_radial, newdata = df_train_svm)
svm_training_error <- mean(svm_training_prediction != ytrain)
confusionMatrix(svm_training_prediction, df_train_svm$stroke)</pre>
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                 0
                       1
                    180
##
            0 3395
##
            1
                 0
                       2
##
##
                  Accuracy : 0.9497
##
                     95% CI: (0.942, 0.9566)
##
       No Information Rate: 0.9491
##
       P-Value [Acc > NIR] : 0.459
##
##
                      Kappa: 0.0207
##
```

```
Mcnemar's Test P-Value : <2e-16
##
##
               Sensitivity: 1.00000
##
               Specificity: 0.01099
##
            Pos Pred Value: 0.94965
##
            Neg Pred Value: 1.00000
##
                Prevalence: 0.94912
            Detection Rate: 0.94912
##
##
      Detection Prevalence: 0.99944
##
         Balanced Accuracy: 0.50549
##
          'Positive' Class: 0
##
##
svm_training_error
## [1] 0.0503215
confusionMatrix(svm_training_prediction,df_train_svm$stroke)
## Confusion Matrix and Statistics
##
             Reference
                 0
## Prediction
                      1
            0 3395 180
##
##
                 0
##
                  Accuracy : 0.9497
##
##
                    95% CI: (0.942, 0.9566)
##
       No Information Rate: 0.9491
##
       P-Value [Acc > NIR] : 0.459
##
##
                     Kappa: 0.0207
##
   Mcnemar's Test P-Value : <2e-16
##
##
##
               Sensitivity: 1.00000
               Specificity: 0.01099
##
##
            Pos Pred Value: 0.94965
##
            Neg Pred Value: 1.00000
##
                Prevalence: 0.94912
            Detection Rate: 0.94912
##
##
      Detection Prevalence: 0.99944
##
         Balanced Accuracy: 0.50549
##
          'Positive' Class : 0
##
##
#confusion matrix for test data
svm_prediction <- predict(svm_model_radial, newdata = df_test_svm)</pre>
svm_test_error <- mean(svm_prediction != ytest)</pre>
confusionMatrix(svm_prediction,df_test_svm$stroke)
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                 0
                       1
##
            0 1466
                      67
            1
                 0
                      0
##
##
##
                  Accuracy: 0.9563
                    95% CI : (0.9448, 0.966)
##
       No Information Rate: 0.9563
##
##
       P-Value [Acc > NIR] : 0.5324
##
##
                     Kappa: 0
##
##
    Mcnemar's Test P-Value : 7.433e-16
##
##
               Sensitivity: 1.0000
##
               Specificity: 0.0000
##
            Pos Pred Value: 0.9563
##
            Neg Pred Value :
##
                Prevalence: 0.9563
##
            Detection Rate: 0.9563
##
      Detection Prevalence: 1.0000
         Balanced Accuracy: 0.5000
##
##
##
          'Positive' Class: 0
##
svm_test_error
```

[1] 0.04370515

- best parameters:

0

- best performance: 0.0511627

epsilon cost

##

##

##

In the following we tune the parameters for the SVM while changing C.

```
#tune parameters for svm
set.seed(123)
tuned_svm <- tune(svm, stroke ~ . , data = df_train_svm, ranges = list(epsilon = seq(0, 1, 0.1), cost =
tuned_svm

##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##</pre>
```

In the following plot we see the Performance of the SVM. The darker the colour, the lower the misclassification error. Therefore, we can say, the lower values and epsilon works best for our model.

plot(tuned_svm)

summary(tuned_svm)

```
##
## Parameter tuning of 'svm':
##
##
   - sampling method: 10-fold cross validation
##
##
   - best parameters:
    epsilon cost
##
##
          0
##
  - best performance: 0.0511627
##
##
## - Detailed performance results:
##
      epsilon cost
                         error dispersion
## 1
          0.0
                 4 0.05116270 0.009243078
## 2
          0.1
                 4 0.05116270 0.009243078
## 3
          0.2
                 4 0.05116270 0.009243078
## 4
          0.3
                 4 0.05116270 0.009243078
## 5
          0.4
                 4 0.05116270 0.009243078
          0.5
## 6
                 4 0.05116270 0.009243078
## 7
          0.6
                 4 0.05116270 0.009243078
## 8
          0.7
                 4 0.05116270 0.009243078
## 9
          0.8
                 4 0.05116270 0.009243078
## 10
          0.9
                 4 0.05116270 0.009243078
                 4 0.05116270 0.009243078
## 11
          1.0
```

```
8 0.05255935 0.009581009
## 12
          0.0
## 13
                 8 0.05255935 0.009581009
          0.1
                 8 0.05255935 0.009581009
## 14
          0.2
                 8 0.05255935 0.009581009
## 15
          0.3
## 16
          0.4
                 8 0.05255935 0.009581009
## 17
          0.5
                 8 0.05255935 0.009581009
## 18
          0.6
                 8 0.05255935 0.009581009
          0.7
                 8 0.05255935 0.009581009
## 19
## 20
          0.8
                 8 0.05255935 0.009581009
## 21
          0.9
                 8 0.05255935 0.009581009
## 22
          1.0
                 8 0.05255935 0.009581009
## 23
          0.0
                16 0.05507253 0.011706023
## 24
          0.1
                16 0.05507253 0.011706023
## 25
          0.2
                16 0.05507253 0.011706023
## 26
          0.3
                16 0.05507253 0.011706023
## 27
          0.4
                16 0.05507253 0.011706023
## 28
          0.5
                16 0.05507253 0.011706023
## 29
          0.6
                16 0.05507253 0.011706023
## 30
          0.7
                16 0.05507253 0.011706023
## 31
          0.8
                16 0.05507253 0.011706023
## 32
          0.9
                16 0.05507253 0.011706023
## 33
          1.0
                16 0.05507253 0.011706023
## 34
          0.0
                32 0.05954963 0.011728863
## 35
          0.1
                32 0.05954963 0.011728863
## 36
          0.2
                32 0.05954963 0.011728863
## 37
          0.3
                32 0.05954963 0.011728863
## 38
          0.4
                32 0.05954963 0.011728863
## 39
                32 0.05954963 0.011728863
          0.5
## 40
          0.6
                32 0.05954963 0.011728863
## 41
          0.7
                32 0.05954963 0.011728863
## 42
          0.8
                32 0.05954963 0.011728863
## 43
          0.9
                32 0.05954963 0.011728863
                32 0.05954963 0.011728863
## 44
          1.0
```

Now, lets choose the best model for our Data.

```
#choose the best model based on hyperparameter
svm_after_tuned <- tuned_svm$best.model
summary(svm_after_tuned)</pre>
```

```
##
## Call:
  best.tune(method = svm, train.x = stroke ~ ., data = df_train_svm,
##
       ranges = list(epsilon = seq(0, 1, 0.1), cost = 2^2(2:5))
##
##
##
  Parameters:
##
      SVM-Type:
                 C-classification
##
    SVM-Kernel:
                 radial
##
          cost:
##
## Number of Support Vectors:
##
```

```
## ( 182 414 )
##
##
## Number of Classes: 2
##
## Levels:
## 0 1

#plot the tuned SVM model
plot(svm_after_tuned, data = df_train_svm, bmi ~ age, slice = list(avg_glucose_level = 3))
```

SVM classification plot

Again, we checked the Accuracy of the model after tuning the hyperparameters with the help of the confusion matrix. As we can see, the model receives an accuracy of 95%. Again, we receive the same results with the radial kernel as we did with the linear kernel.

```
# Confusion matrix after tuning hyperparameters
svm_prediction_tuned <- predict(svm_after_tuned, newdata = df_test_svm)
svm_tuned_test_error <- mean(svm_prediction_tuned != ytest)
confusionMatrix(svm_prediction_tuned,df_test_svm$stroke)</pre>
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                       1
                      67
##
            0 1466
##
                       0
##
##
                   Accuracy: 0.9563
                     95% CI: (0.9448, 0.966)
##
```

##

##

##

Balanced Accuracy: 0.5000

'Positive' Class: 0

```
No Information Rate: 0.9563
##
       P-Value [Acc > NIR] : 0.5324
##
##
##
                     Kappa: 0
##
##
   Mcnemar's Test P-Value: 7.433e-16
##
               Sensitivity: 1.0000
##
##
               Specificity: 0.0000
##
            Pos Pred Value: 0.9563
##
            Neg Pred Value :
                Prevalence: 0.9563
##
            Detection Rate: 0.9563
##
##
      Detection Prevalence: 1.0000
##
         Balanced Accuracy: 0.5000
##
##
          'Positive' Class : 0
##
svm_tuned_test_error
## [1] 0.04370515
#compare the tuned prediction with the test data
confusionMatrix(svm_prediction_tuned,df_test_svm$stroke)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                 0
                      1
##
            0 1466
                     67
##
            1
                 0
                      0
##
##
                  Accuracy : 0.9563
                    95% CI: (0.9448, 0.966)
##
##
       No Information Rate: 0.9563
##
       P-Value [Acc > NIR] : 0.5324
##
                     Kappa: 0
##
##
##
   Mcnemar's Test P-Value: 7.433e-16
##
##
               Sensitivity: 1.0000
               Specificity: 0.0000
##
##
            Pos Pred Value: 0.9563
##
            Neg Pred Value :
##
                Prevalence: 0.9563
##
            Detection Rate: 0.9563
##
      Detection Prevalence : 1.0000
```

11 Conclusion