

 $\uparrow \downarrow \downarrow$

Svolgere l'analisi cinematica geometrica ed analitica.

Determinare matrice di congruenza e di equilibrio.

Determinare le reazioni vincolari a terra col PLV (Le=0).

Determinare le azioni interne in A (asta AC) col PLV (Le=0).

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

Piano di scorrimento del vincolo con inclinazione assegnata.

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.11.04.07

Es.N.001

EQUAZIONI DI EQUILIBRIO

Traslazione orizzontale globale

 $H_F + H_H = F$

Rotazione globale intorno a J

 $-4V_{B}b + 2H_{E}b = 16Fb - 3qb^{2}$

Rotazione intorno a C: aste CA AB AF FD

 $-2V_{B}b + 2H_{DF}b + 2V_{AH}b = qb^{2}$

Rotazione intorno a C: aste CD DE

 $2H_Eb - 2H_{DF}b - 2H_{DJ}b = 0$

Rotazione intorno a C: aste CG GH HA

 $-2V_{AH}b = 8Fb$

Rotazione intorno a A: aste AF FD

 $2H_{DF}b = 3qb^2$

Matrice di equilibrio

	$[V_B b]$	$H_E b$	$H_H b$	$H_{DF}b$	$V_{AH}b$	$H_{DJ}b$		[Fb	qb^2
\mathbf{u}_{J}	0	1	1	0	0	0		1	0
ϕ_{J}	-4	2	0	0	0	0		16	-3
ϕ_{CA}	-2	0	0	2	2	0	_	0	1
ϕ_{CD}	0	2	0	-2	0	-2	-	0	1 0
ϕ_{CG}	0	0	0	0	-2	0		8	0
ϕ_{AF}	-4 -2 0 0	0	0	2	0	0		0	3]

$$\begin{bmatrix} H_E b \\ V_B b \\ H_H b \\ H_{DF} b \\ V_{AH} b \\ H_{DJ} b \end{bmatrix} = \begin{bmatrix} Fb & qb^2 \\ 0 & 1/2 \\ -4 & 1 \\ 1 & -1/2 \\ 0 & 3/2 \\ -4 & 0 \\ 0 & -1 \end{bmatrix}$$

(±) ⊢ 6 Fb

 $\uparrow \downarrow \downarrow$

Svolgere l'analisi cinematica geometrica ed analitica.

Determinare matrice di congruenza e di equilibrio.

Determinare le reazioni vincolari a terra col PLV (Le=0).

Determinare le azioni interne in A (asta AC) col PLV (Le=0).

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

Piano di scorrimento del vincolo con inclinazione assegnata.

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.11.04.07

(H)

Traslazione orizzontale globale

 $H_F + H_H = 2F$

Rotazione globale intorno a J

 $-4V_{B}b - 2H_{F}b = 12Fb - 9/2qb^{2}$

Rotazione intorno a C: aste CA AB AF FD

 $-2V_Bb + 2V_{DF}b + 2H_{AH}b = 3/2qb^2$ Rotazione intorno a C: aste CD DE

 $-2H_{E}b - 2V_{DE}b - 2V_{DJ}b = 0$

Rotazione intorno a C: aste CG GH HA

 $-2H_{AH}b = 6Fb$

Rotazione intorno a A: aste AF FD

 $2V_{DF}b = 9/2qb^2$

Matrice di equilibrio

$$\begin{bmatrix} V_B b & H_E b & H_H b & V_{DF} b & H_{AH} b & V_{DJ} b \end{bmatrix} \\ U_J & \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ -4 & -2 & 0 & 0 & 0 & 0 & 0 \\ -2 & 0 & 0 & 2 & 2 & 0 \\ 0 & -2 & 0 & 0 & -2 & 0 & -2 \\ \phi_{CG} & \phi_{CG} & 0 & 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} Fb & qb^2 \\ 2 & 0 & 12 & -9/2 \\ 0 & 3/2 & 0 & 3/2 \\ 0 & 0 & 6 & 0 \\ 0 & 9/2 \end{bmatrix}$$

		[Fb	qb^2
H _E b		0	-3/4
V _B b		-3	3/2
H _H b		2	3/4
V _{DF} b	=	0	9/4
H _{AH} b		-3	0
V _{DJ} b		0	-3/2

 $\uparrow \downarrow \downarrow$

Svolgere l'analisi cinematica geometrica ed analitica.

Determinare matrice di congruenza e di equilibrio.

Determinare le reazioni vincolari a terra col PLV (Le=0).

Determinare le azioni interne in A (asta AC) col PLV (Le=0).

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

Piano di scorrimento del vincolo con inclinazione assegnata.

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.11.04.07

(H)

Traslazione verticale globale

$$V_{F} + V_{H} = -2F + 4qb$$

Rotazione globale intorno a J

$$2H_{B}b - 4V_{H}b = -6qb^{2}$$

Rotazione intorno a C: aste CA AB AF FD

$$2H_{B}b + 2H_{DE}b + 2V_{AH}b = 2qb^{2}$$

Rotazione intorno a C: aste CD DE

$$2V_{E}b - 2H_{DF}b - 2H_{DJ}b = 0$$

Rotazione intorno a C: aste CG GH HA

$$-2V_{H}b - 2V_{AH}b = 0$$

Rotazione intorno a A: aste AF FD

$$2H_{DF}b = 6qb^2$$

Matrice di equilibrio

	[H _B b	$V_E b$	$V_H b$	$H_{DF}b$	$V_{AH}b$	$H_{DJ}b$		[Fb	qb ²
V_{J}	0	1	1	0	0	0		-2	4
ϕ_{J}	2	0	-4	0	0	0		0	-6
ϕ_{CA}	2	0	0	2	2	0	_	0	2
ϕ_{CD}	0	2	0	-2	0	-2	-	0	0
ϕ_{CG}	0	0	-2	0	-2	0		0	0
ϕ_{AF}	2 2 0 0 0 0	0	0	2	0	0		0	6

$$\begin{bmatrix} V_E b \\ H_B b \\ V_H b \\ H_{DF} b \\ H_{DJ} b \\ V_{AH} b \end{bmatrix} = \begin{bmatrix} Fb & qb^2 \\ -2 & 3 \\ 0 & -1 \\ 0 & 1 \\ 0 & 3 \\ -2 & 0 \\ 0 & -1 \end{bmatrix}$$

(±) ⊢—12.5 Fb

 $\longleftarrow \boxed{+} \longrightarrow$

 $\uparrow \downarrow \downarrow$

Svolgere l'analisi cinematica geometrica ed analitica.

Determinare matrice di congruenza e di equilibrio.

Determinare le reazioni vincolari a terra col PLV (Le=0).

Determinare le azioni interne in A (asta AC) col PLV (Le=0).

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

Piano di scorrimento del vincolo con inclinazione assegnata.

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.11.04.07

(H)

Traslazione verticale globale

$$V_F + V_H = -F + qb$$

Rotazione globale intorno a J

$$-2H_{B}b - 4V_{H}b = -3/2qb^{2}$$

Rotazione intorno a C: aste CA AB AF FD

$$-2H_Bb + 2V_{DF}b + 2H_{AH}b = 1/2qb^2$$

Rotazione intorno a C: aste CD DE

$$2V_{E}b - 2V_{DF}b - 2V_{DJ}b = 0$$

Rotazione intorno a C: aste CG GH HA

$$-2V_{H}b - 2H_{AH}b = 0$$

Rotazione intorno a A: aste AF FD

$$2V_{DE}b = 3/2qb^2$$

Matrice di equilibrio

	$[H_Bb]$	$V_E b$	$V_H b$	$V_{DF}b$	$H_{AH}b$	$V_{DJ}b_{\underline{J}}$		[Fb	qb^2
V_{J}	0	1	1	0	0	0		-1	1]
ϕ_{J}	-2 -2 0 0	0	-4	0	0	0		0	-3/2
ϕ_{CA}	-2	0	0	2	2	0	_	0	1/2
ϕ_{CD}	0	2	0	-2	0	-2	_	0	0
ϕ_{CG}	0	0	-2	0	-2	0		0	0
ϕ_{AF}	0	0	0	2	0	0		0	3/2

		[Fb	qb ²
「V _E b]		-1	3/4
H _B b		0	1/4
V _H b		0	1/4
V _{DF} b	=	0	3/4
V _{DJ} b		-1	0
H _{AH} b		0	-1/4

Es.N.004

(<u>+</u>) ⊢ 6 FI

 $\uparrow \downarrow \downarrow$

 $\uparrow \downarrow \downarrow$

Svolgere l'analisi cinematica geometrica ed analitica.

Determinare matrice di congruenza e di equilibrio.

Determinare le reazioni vincolari a terra col PLV (Le=0).

Determinare le azioni interne in A (asta AC) col PLV (Le=0).

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

Piano di scorrimento del vincolo con inclinazione assegnata.

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.11.04.07

(H)

Traslazione orizzontale globale

 $H_F + H_H = 2F$

Rotazione globale intorno a J

 $-4V_{B}b + 2H_{E}b = 12Fb + 10qb^{2}$

Rotazione intorno a C: aste CA AB AF FD

 $-2V_{B}b + 2H_{DE}b + 2V_{AH}b = 2qb^{2}$

Rotazione intorno a C: aste CD DE

 $2H_{E}b - 2H_{DF}b - 2H_{DJ}b = 0$

Rotazione intorno a C: aste CG GH HA

 $-2V_{AH}b = 6Fb$

Rotazione intorno a A: aste AF FD

 $2H_{DE}b = -2qb^2$

Matrice di equilibrio

$$\begin{bmatrix} V_B b & H_E b & H_H b & H_{DF} b & V_{AH} b & H_{DJ} b \end{bmatrix} \\ U_J & \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ -4 & 2 & 0 & 0 & 0 & 0 \\ -2 & 0 & 0 & 2 & 2 & 0 \\ 0 & 2 & 0 & -2 & 0 & -2 \\ \phi_{CB} & \phi_{AF} & 0 & 0 & 0 & 2 & 0 \end{bmatrix} = \begin{bmatrix} F b & q b^2 \end{bmatrix} \\ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 12 & 10 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} H_{E}b \\ V_{B}b \\ H_{H}b \\ H_{DF}b \\ V_{AH}b \\ H_{DJ}b \end{bmatrix} = \begin{bmatrix} Fb & qb^{2} \\ 0 & 1 \\ -3 & -2 \\ 2 & -1 \\ 0 & -1 \\ -3 & 0 \\ 0 & 2 \end{bmatrix}$$

(±) ⊢ 6 Fb

 $\longleftarrow \boxed{+} \longrightarrow$

 $\uparrow \downarrow \downarrow$

Svolgere l'analisi cinematica geometrica ed analitica.

Determinare matrice di congruenza e di equilibrio.

Determinare le reazioni vincolari a terra col PLV (Le=0).

Determinare le azioni interne in A (asta AC) col PLV (Le=0).

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

Piano di scorrimento del vincolo con inclinazione assegnata.

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.11.04.07

(H)

Traslazione orizzontale globale

 $H_F + H_H = 3F$

Rotazione globale intorno a J

 $-4V_{B}b - 2H_{E}b = 8Fb + 15/2qb^{2}$

Rotazione intorno a C: aste CA AB AF FD

 $-2V_Bb + 2V_{DF}b + 2H_{AH}b = 3/2qb^2$ Rotazione intorno a C: aste CD DE

 $-2H_{E}b - 2V_{DE}b - 2V_{DJ}b = 0$

Rotazione intorno a C: aste CG GH HA

 $-2H_{AH}b = 4Fb$

Rotazione intorno a A: aste AF FD

 $2V_{DF}b = -3/2qb^2$

Matrice di equilibrio

$$\begin{bmatrix} V_B b & H_E b & H_H b & V_{DF} b & H_{AH} b & V_{DJ} b \end{bmatrix} \\ U_J & \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ -4 & -2 & 0 & 0 & 0 & 0 \\ -2 & 0 & 0 & 2 & 2 & 0 \\ 0 & -2 & 0 & 0 & 2 & 2 & 0 \\ \phi_{CG} & \phi_{CG} & 0 & 0 & 0 & -2 & 0 \\ \phi_{AF} & 0 & 0 & 0 & 0 & 2 & 0 & 0 \end{bmatrix} = \begin{bmatrix} F b & q b^2 \end{bmatrix} \\ \begin{bmatrix} 3 & 0 \\ 8 & 15/2 \\ 0 & 3/2 \\ 0 & 0 \\ 4 & 0 \\ 0 & -3/2 \end{bmatrix}$$

		[Fb	qb^2
H _E b		0	-3/4
V _B b		-2	-3/2
H _H b		3	3/4
V _{DF} b	=	0	-3/4
H _{AH} b		-2	0
V _{DJ} b		0	3/2

 $\uparrow \downarrow \downarrow$

Svolgere l'analisi cinematica geometrica ed analitica.

Determinare matrice di congruenza e di equilibrio.

Determinare le reazioni vincolari a terra col PLV (Le=0).

Determinare le azioni interne in A (asta AC) col PLV (Le=0).

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

Piano di scorrimento del vincolo con inclinazione assegnata.

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.11.04.07

(H)

Traslazione verticale globale

$$V_F + V_H = -F - 2qb$$

Rotazione globale intorno a J

$$2H_Bb - 4V_Hb = 5qb^2$$

Rotazione intorno a C: aste CA AB AF FD

$$2H_{B}b + 2H_{DF}b + 2V_{\Delta H}b = qb^{2}$$

Rotazione intorno a C: aste CD DE

$$2V_{E}b - 2H_{DF}b - 2H_{DJ}b = 0$$

Rotazione intorno a C: aste CG GH HA

$$-2V_{H}b - 2V_{AH}b = 0$$

Rotazione intorno a A: aste AF FD

$$2H_{DF}b = -qb^2$$

Matrice di equilibrio

	$[H_{B}b$	$V_E b$	$V_H b$	$H_{DF}b$	$V_{AH}b$	$H_{DJ}b$		[Fb	qb^2	
V_{J}	0	1	1	0	0	0			-2	
$\varphi_{.1}$	2	0	-4	0	0	0		0	5	
φ_{C}	2 0	0	0	2	2	0				
ϕ_{Cl}	0	2	0	-2	0	-2	=	0	1 0	
φ_{C}		0	-2	0	-2	0		0	0	
ϕ_{AF}	0	0	0	2	0	0		0	-1	

		[Fb	qb ²
V _E b		-1	-1/2
H _B b		0	-1/2
V _H b		0	-3/2
H _{DF} b	=	0	-1/2
H _{DJ} b		-1	0
V _{AH} b]		0	3/2_

Es.N.007

Svolgere l'analisi cinematica geometrica ed analitica.

Determinare matrice di congruenza e di equilibrio.

Determinare le reazioni vincolari a terra col PLV (Le=0).

Determinare le azioni interne in A (asta AC) col PLV (Le=0).

Carichi e deformazioni date hanno verso efficace in disegno. Calcolare reazioni vincolari della struttura e delle aste. Tracciare i diagrammi delle azioni interne nelle aste.

Piano di scorrimento del vincolo con inclinazione assegnata. @ Adolfo Zavelani Rossi, Politecnico di Milano, vers.11.04.07

 $\leftarrow \boxed{+} \rightarrow$

 $\uparrow \boxed{+} \downarrow$

(H)

Traslazione verticale globale

$$V_{F} + V_{H} = -4F - qb$$

Rotazione globale intorno a J

$$-2H_{B}b - 4V_{H}b = 5/2qb^{2}$$

Rotazione intorno a C: aste CA AB AF FD

 $-2H_Bb + 2V_{DF}b + 2H_{AH}b = 1/2qb^2$ Rotazione intorno a C: aste CD DE

 $2V_{E}b - 2V_{DF}b - 2V_{DJ}b = 0$

Rotazione intorno a C: aste CG GH HA

 $-2V_{H}b - 2H_{AH}b = 0$

Rotazione intorno a A: aste AF FD

 $2V_{DF}b = -1/2qb^2$

Matrice di equilibrio

$$\begin{bmatrix} H_B b & V_E b & V_H b & V_{DF} b & H_{AH} b & V_{DJ} b \end{bmatrix} \\ V_J & \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ -2 & 0 & -4 & 0 & 0 & 0 & 0 \\ \phi_{CA} & -2 & 0 & 0 & 2 & 2 & 0 \\ \phi_{CD} & 0 & 2 & 0 & -2 & 0 & -2 \\ \phi_{CG} & 0 & 0 & -2 & 0 & -2 & 0 \\ \phi_{AF} & 0 & 0 & 0 & 2 & 0 & 0 \end{bmatrix} = \begin{bmatrix} Fb & qb^2 \end{bmatrix}$$

		[Fb	qb ²
V _E b		-4	-1/4
H _B b		0	1/4
V _H b		0	-3/4
V _{DF} b	=	0	-1/4
V _{DJ} b		-4	0
H _{AH} b		0	3/4

(±) ⊢ 6 F

 $\uparrow \boxed{+} \downarrow$

 $\uparrow \downarrow \downarrow$

Svolgere l'analisi cinematica geometrica ed analitica.

Determinare matrice di congruenza e di equilibrio.

Determinare le reazioni vincolari a terra col PLV (Le=0).

Determinare le azioni interne in A (asta AC) col PLV (Le=0).

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

Piano di scorrimento del vincolo con inclinazione assegnata.

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.11.04.07

(H)

Traslazione orizzontale globale

 $H_F + H_H = F$

Rotazione globale intorno a J

 $-4V_Bb + 2H_Fb = 16Fb + 9/2qb^2$

Rotazione intorno a C: aste CA AB AF FD

 $-2V_{B}b + 2H_{DF}b + 2V_{\Delta H}b = -3/2qb^{2}$ Rotazione intorno a C: aste CD DE

 $2H_{E}b - 2H_{DF}b - 2H_{DJ}b = 0$

Rotazione intorno a C: aste CG GH HA

 $-2V_{AH}b = 8Fb$

Rotazione intorno a A: aste AF FD

 $2H_{DF}b = -9/2qb^2$

Matrice di equilibrio

	$[V_B b]$	$H_E b$	$H_H b$	$H_{DF}b$	$V_{AH}b$	$H_{DJ}b$		[Fb	qb ²
\mathbf{u}_{J}	0	1	1	0	0	0]		1	0
ϕ_{J}	-4	2	0	0	0	0		16	9/2
ϕ_{CA}	-2	0	0	2	2	0	_	0	-3/2
ϕ_{CD}	0	2	0	-2	0	-2	-	0	0
ϕ_{CG}	0	0	0	0	-2	0		8	0
ϕ_{AF}	-4 -2 0 0 0	0	0	2	0	0]		0	-9/2

		[Fb	qb^2
「H _E b]		0	-3/4
V _B b		-4	-3/2
H _H b		1	3/4
H _{DF} b	=	0	-9/4
V _{AH} b		-4	0
H _{DJ} b		0	3/2

(<u>+</u>) ⊢ 6 F

Svolgere l'analisi cinematica geometrica ed analitica. Determinare matrice di congruenza e di equilibrio.

Determinare le reazioni vincolari a terra col PLV (Le=0).

Determinare le azioni interne in A (asta AC) col PLV (Le=0).

Carichi e deformazioni date hanno verso efficace in disegno. Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

Piano di scorrimento del vincolo con inclinazione assegnata.

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.11.04.07

 $\leftarrow \boxed{+} \rightarrow$

 $\uparrow \downarrow \downarrow$

(H)

Traslazione orizzontale globale

 $H_F + H_H = 2F$

Rotazione globale intorno a J

 $-4V_{B}b - 2H_{E}b = 12Fb + 3qb^{2}$

Rotazione intorno a C: aste CA AB AF FD

 $-2V_{B}b + 2V_{DF}b + 2H_{AH}b = -qb^{2}$

Rotazione intorno a C: aste CD DE

 $-2H_{E}b - 2V_{DE}b - 2V_{DJ}b = 0$

Rotazione intorno a C: aste CG GH HA

 $-2H_{AH}b = 6Fb$

Rotazione intorno a A: aste AF FD

 $2V_{DF}b = -3qb^2$

Matrice di equilibrio

$$\begin{bmatrix} V_B b & H_E b & H_H b & V_{DF} b & H_{AH} b & V_{DJ} b \end{bmatrix} \\ U_J & \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ -4 & -2 & 0 & 0 & 0 & 0 & 0 \\ -2 & 0 & 0 & 2 & 2 & 0 & 0 \\ 0 & -2 & 0 & 0 & 2 & 2 & 0 \\ 0 & 0 & 0 & 0 & -2 & 0 & -2 \\ \phi_{AF} & 0 & 0 & 0 & 0 & 2 & 0 & 0 \end{bmatrix} = \begin{bmatrix} F b & q b^2 \\ 2 & 0 & 12 & 3 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 6 & 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} H_{\text{E}}b \\ V_{\text{B}}b \\ H_{\text{H}}b \\ V_{\text{DF}}b \\ H_{\text{AH}}b \\ V_{\text{DJ}}b \end{bmatrix} = \begin{bmatrix} Fb & qb^2 \\ 0 & 1/2 \\ -3 & -1 \\ 2 & -1/2 \\ 0 & -3/2 \\ -3 & 0 \\ 0 & 1 \end{bmatrix}$$

Es.N.010

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.11.04.07