Efficient Modeling of Nuclei Through Coupling of Proton and Neutron Wavefunctions

Oliver Gorton

Physics Department, SDSU

April 6, 2018

Introduction: Nuclear structure

- 1 Introduction: Nuclear structure
- 2 Background: Shell Model calculations
- 3 First study: Entanglement entropy
- Second study: Specific framework
- 5 A new shell model code: PNISM
- 6 Summary and future work

Introduction: Big picture

Many experimental investigations require matrix elements of atomic nuclei:

- Direct detection of dark matter (131 Xe) [1]
- Matter-antimatter asymmetry in the early universe (199 Hg) [2]
- Parity violating nuclear 'anapole moment' (133Cs) [3]

$$\langle \Psi_f | \hat{O} | \Psi_i \rangle$$
 (1)

Introduction: A problem with large dimensions

$$\hat{H}\Psi = E\Psi \tag{2}$$

$$\sum_{\beta}^{dim.} H_{\alpha\beta} \Psi_{\beta} = E_{\alpha} \Psi_{\alpha}, \tag{3}$$

Nucleus	Model space	dim.	Typical memory req.
²⁸ Si	sd	$9.4 imes 10^4$	0.2 GB
⁵² Fe	pf	$1.1 imes 10^8$	720 GB
⁵⁶ Ni	pf	1.1×10^9	9600 GB

Table 1: Dimensions of the nuclear matrix eigenvalue problem. [4]

Introduction: Truncate the basis?

$$\{|\alpha\rangle\}, \ \alpha = 1, 2, 3, ..., dim.$$
 (4)

$$\sum_{\beta}^{\text{dim.}} H_{\alpha\beta} \Psi_{\beta} = E \Psi_{\alpha}, \tag{5}$$

Is it possible to find some subset $\{|\alpha\rangle\}$ $\alpha=1,...,$ Q with Q<< dim. such that

$$\sum_{\beta}^{Q\ll dim.} H_{\alpha\beta} \Psi_{\beta} \approx E \Psi_{\alpha}, \tag{6}$$

perhaps in some other basis?

Background: Shell model calculations

- 1 Introduction: Nuclear structure
- 2 Background: Shell Model calculations
- 3 First study: Entanglement entropy
- Second study: Specific framework
- 5 A new shell model code: PNISM
- 6 Summary and future work

Background: Quick notes on configuration interaction / shell model calculations. What's our basis?

N-particle wavefunction $\Psi(r_1, r_2, ..., r_N)$ made up of antisymmetric products of single-particle states

$$\phi_i(r_j), \tag{7}$$

where i = 1, ..., k, j = 1, ..., N.

- Inspired by mean-field theory. (H.O., Woods-Saxon, etc.)
- Carry quantum numbers: $n, l, j, j_z = m$.

Background: Single particle state basis

Harmonic oscillator basis has infinite single-particle states:

$$\{\phi_i\} = \{0s_{1/2}, 1p_{3/2}, 1p_{1/2}, 1d_{5/2}, 2s_{1/2}, 1d_{3/2}, 1f_{7/2}, \ldots\},\tag{8}$$

read: nl_j and l = 0, 1, 2, 3, 4, ... = s, p, d, f, g, ...

- Leave out low-occupation probability states
- Leave out high-occupation probability states

Shell structure indicates a way to do this: "Magic numbers" 2,8,20,28,50,82,126, where binding energy is especially high.

Background: Example shell model space: sd-shell

sd-shell: The infinite space of all 'oscillator' states

$$\{\phi_i\} = \{0s_{1/2}, 1p_{3/2}, 1p_{1/2}, 1d_{5/2}, 2s_{1/2}, 1d_{3/2}, 1f_{7/2}, \ldots\},\tag{9}$$

is divided into:

- **1** An inert core of inactive states: $0s_{1/2}$, $1p_{3/2}$, $1p_{1/2}$
- ② An active space of accessible "valence" single-particle states: $1d_{5/2}, 2s_{1/2}, 1d_{3/2}$
- ullet The remaining and excluded inaccessible single particle states: $1f_{7/2}$,...

Background: Example shell model space: sd-shell

 $1d_{5/2}, 2s_{1/2}, 1d_{3/2}$

Orbit	State #	n	l	j	m	Energy
$1d_{5/2}$	1	1	2	5/2	5/2	E_1
,	2	1	2	5/2	3/2	E_1
	3					
	4					
	5					
	6					
$2s_{1/2}$	7	2	0	1/2	1/2	E_2
,	8	2	0	1/2	-1/2	E_2
$1d_{3/2}$	9	1	2	3/2	3/2	E_3
,	10					
	11					
	12					

Table 2: sd-shell model single-particle states ϕ_i

Background: Quick notes on occupation representation

Many-particle states are represented by:

$$|n_1, n_2, n_3, ..., n_k\rangle = |n_1\rangle |n_2\rangle |n_3\rangle ... |n_k\rangle$$
 (10)

Creation/annihilation operator formalism encodes fermion statistics:

- $\{\hat{c}_i^\dagger,\hat{c}_j\}=\delta_{ij}$ and $\{\hat{c}_i^\dagger\hat{c}_i^\dagger\}=\{\hat{c}_i\hat{c}_j\}=0$
- $n_i = 0, 1.$
- $\Psi(..., r_i, ..., r_j, ...) = -\Psi(..., r_j, ..., r_i, ...)$.

Bit representation of many-particle states:

$$\hat{c}_1^{\dagger} \hat{c}_2^{\dagger} \hat{c}_4^{\dagger} \left| 0 \right\rangle = \left| 110010 \right\rangle \rightarrow 110010 \tag{11}$$

Background: Wavefunctions with two species of nucleon

Two copies of the single-particle space, one for protons, one for neutrons. Then

$$|\pi\rangle = |0101101011\rangle \in \mathcal{H}_{proton}$$

 $|\nu\rangle = |1110111000\rangle \in \mathcal{H}_{neutron}$ (12)

Nuclear wavefunctions:

$$|\Psi\rangle = \sum_{i}^{d_{\pi}} \sum_{j}^{d_{\nu}} \Psi_{ij} |\pi_{i}\rangle \otimes |\nu_{j}\rangle,$$
 (13)

with many-proton basis $\{|\pi_i\rangle\}$, many-neutron basis $\{|\nu_i\rangle\}$.

Background: Wavefunctions with two species of nucleon

Nuclear wavefunctions:

$$|\Psi\rangle = \sum_{i}^{d_{\pi}} \sum_{j}^{d_{\nu}} \Psi_{ij} |\pi_{i}\rangle \otimes |\nu_{j}\rangle,$$
 (14)

 $d_{\pi} \times d_{\nu} = dim$.

Nucleus	Model space	dim.	Typical memory req.
²⁸ Si	sd	9.4×10^4	0.2 GB
⁵² Fe	pf	$1.1 imes 10^8$	720 GB
⁵⁶ Ni	pf	1.1×10^9	9600 GB

Table 3: Dimensions of the nuclear matrix eigenvalue problem. [4]

Background: Many-proton many-neutron coupling scheme

Taking advantage of symmetry: $[\hat{H}, \hat{J}_z] = [\hat{H}, \hat{J}^2] = 0$.

$$\langle M_i | \hat{H} | M_j \rangle = \delta_{M_i, M_j} \tag{15}$$

• Choose to construct basis states with fixed total $J_z = M$:

$$[|\pi_i\rangle\otimes|\nu_j\rangle]_M,$$
 (16)

- "M-scheme" basis
- "J-scheme" also possible

Purpose: Approximating wavefunctions with a truncated basis

Can we leave out certain states and retain a good approximation?

$$\sum_{\beta}^{Q\ll dim.} H_{\alpha\beta} \Psi_{\beta} \approx E \Psi_{\alpha}, \tag{17}$$

Related question: can we approximate wavefunctions in a truncated basis?

$$|\Psi\rangle pprox \sum_{ij}^{Q\ll \min[d_{\pi},d_{\nu}]} \Psi_{ij} |\pi_i\rangle \otimes |\nu_j\rangle \,,$$
 (18)

Answer: It depends on the distribution of Ψ_{ii} .

First study: Entanglement entropy

- 1 Introduction: Nuclear structure
- 2 Background: Shell Model calculations
- 3 First study: Entanglement entropy
- Second study: Specific framework
- 5 A new shell model code: PNISM
- 6 Summary and future work

• In some unknown basis $|\tilde{\pi}_i\rangle \otimes |\tilde{\nu}_i\rangle$:

$$|\Psi\rangle = \sum_{i}^{d_{\pi}} \sum_{j}^{d_{\nu}} \Psi_{ij} |\pi_{i}\rangle \otimes |\nu_{j}\rangle = \sum_{i} \gamma_{i} |\tilde{\pi}_{i}\rangle \otimes |\tilde{\nu}_{i}\rangle.$$
 (19)

• We can compute the eigenvalues of

$$\underline{\Psi} * \underline{\Psi}^{\dagger} = UDV^{\dagger}VD^{\dagger}U^{\dagger} = UD^{2}U^{\dagger}, \tag{20}$$

to find γ_i^2 .

• The distribution of γ_i^2 will tell us if its possible to find an accurate truncation.

$$|\Psi\rangle = \sum_{i}^{d_{\pi}} \sum_{j}^{d_{\nu}} \Psi_{ij} |\pi_{i}\rangle \otimes |\nu_{j}\rangle = \sum_{i} \gamma_{i} |\tilde{\pi}_{i}\rangle \otimes |\tilde{\nu}_{i}\rangle. \tag{21}$$

- Someone has already done this and have shown that the γ_i^2 fall off exponentially. [5,6,7]
- They showed this for light nuclei with equal numbers of protons and neutrons.
- We postulate that γ_i^2 will fall off even faster for nuclei with unequal numbers of protons and neutrons.

Will γ_i^2 will fall off even faster in nuclei with unequal numbers of protons and neutrons?

$$|\Psi\rangle = \sum_{i}^{d_{\pi}} \sum_{j}^{d_{\nu}} \Psi_{ij} |\pi_{i}\rangle \otimes |\nu_{j}\rangle = \sum_{i} \gamma_{i} |\tilde{\pi}_{i}\rangle \otimes |\tilde{\nu}_{i}\rangle.$$
 (22)

Let's compare two sets of nuclei:

- \bullet N > Z
- \bullet N=Z

(Z = number of protons, N = number of neutrons)

• In some unknown basis $|\tilde{\pi}_i\rangle \otimes |\tilde{\nu}_i\rangle$:

$$|\Psi\rangle = \sum_{i}^{d_{\pi}} \sum_{j}^{d_{\nu}} \Psi_{ij} |\pi_{i}\rangle \otimes |\nu_{j}\rangle = \sum_{i} \gamma_{i} |\tilde{\pi}_{i}\rangle \otimes |\tilde{\nu}_{i}\rangle.$$
 (23)

Proton-neutron entanglement entropy

$$S_{pn} = -\sum_{i} \gamma_i^2 \ln \gamma_i^2 \tag{24}$$

$$S_{max} = \ln(d_{\pi}), \tag{25}$$

 $d_{\pi} \leq d_{\nu}$.

$$|\Psi\rangle = \sum_{i}^{d_{\pi}} \sum_{j}^{d_{\nu}} \Psi_{ij} |\pi_{i}\rangle \otimes |\nu_{j}\rangle = \sum_{i} \gamma_{i} |\tilde{\pi}_{i}\rangle \otimes |\tilde{\nu}_{i}\rangle.$$
 (26)

$$S_{pn} = -\sum_{i} \gamma_i^2 \ln \gamma_i^2 \tag{27}$$

Wavefuntion normalization: $1 = \sum_{i}^{d_{\pi}} \gamma_{i}^{2}$.

- If $\{\gamma_i^2\} = \{1, 0, 0, ...\}$, $S_{pn} = S_{min} = 0$
- If $\{\gamma_i^2\}=\{rac{1}{d_\pi},rac{1}{d_\pi},rac{1}{d_\pi},...\}$, $S_{pn}=S_{max}=\ln(d_\pi)$

Figure 1: Proton-neutron entanglement entropy for particle-hole conjugate nuclei

Figure 2: Proton-neutron entanglement entropy versus isospin in the sd-shell

First study: Entanglement entropy (Continued...)

- Introduction: Nuclear structure
- 2 Background: Shell Model calculations
- 3 First study: Entanglement entropy
- Second study: Specific framework
- 5 A new shell model code: PNISM
- 6 Summary and future work

Study: Varying the strength of the proton-neutron interaction

Nuclear Hamiltonian:

$$\hat{H} = \hat{H}_{proton} + \hat{H}_{neutron} + \lambda \hat{H}_{proton-neutron}$$
 (28)

How does the parameter λ affect S_{pn} ?

Figure 3: Proton-neutron entanglement entropy versus proton-neutron interaction strength

Study: Varying the strength of the proton-neutron interaction: Toy model

Toy model Hamiltonian:

$$\hat{H} = \hat{H}_A + \hat{H}_B + \lambda \hat{H}_{AB} = \hat{D}_A + \hat{D}_B + \lambda \sum_{A} V \otimes W,$$
(29)

with random interactions. Will this exhibit the same behavior?

Figure 4: Toy model

Figure 5: Proton-neutron entanglement entropy versus proton-neutron interaction strength with monopole terms removed (responsible for shell structure)

Second study: Specific framework

- Introduction: Nuclear structure
- 2 Background: Shell Model calculations
- 3 First study: Entanglement entropy
- Second study: Specific framework
- 5 A new shell model code: PNISM
- 6 Summary and future work

Method: Strength function decomposition

In principle, there exists a basis that we could truncate to approximate our wavefunctions:

$$|\Psi\rangle = \sum_{ii} \tilde{\Psi}_{ij} |PP\rangle \otimes |NN\rangle,$$
 (30)

$$|\Psi\rangle$$
 (31)

$$c_{\alpha} = \langle \alpha | \Psi \rangle \tag{32}$$

$$|\Psi\rangle = \sum_{\alpha} c_{\alpha} |\alpha\rangle \tag{33}$$

$$c_{\alpha}^{2} = \langle \Psi | \alpha \rangle \langle \alpha | \Psi \rangle \tag{34}$$

Generalize to bipartite system, guess a basis, and examine c_{α}^2 .

Method: Strength function decomposition

Our guess: eigenstates of the proton-proton interaction and of the neutron-neutron interaction:

$$\hat{H}_{proton} |PP\rangle = E_p |PP\rangle,$$

$$\hat{H}_{neutron} |NN\rangle = E_n |NN\rangle.$$
(35)

Plot the strength function coefficients:

$$\langle \Psi | PP \rangle \langle PP | \Psi \rangle = \sum_{P} |\tilde{\Psi}_{NP}|^2 \equiv c_N^2$$
 (36)

$$\langle \Psi | NN \rangle \langle NN | \Psi \rangle = \sum_{N} |\tilde{\Psi}_{NP}|^2 \equiv c_P^2.$$
 (37)

Figure 6: Proton-proton and neutron-neutron strength decomposition of nuclear wavefunctions

Recap

Addressed questions

- Is it possible to find approximate wavefunctions in a truncated basis?
 YES
- Can we expect that truncating in a basis of coupled proton and neutron wavefunctions is such a basis? YES

Un-addressed questions

- How do we select states to keep/leave out?
- Can we still use the M-scheme?

A new shell model code: PNISM

- 1 Introduction: Nuclear structure
- 2 Background: Shell Model calculations
- 3 First study: Entanglement entropy
- Second study: Specific framework
- 5 A new shell model code: PNISM
- 6 Summary and future work

PNISM: Create the proton-neutron coupled basis and truncate

Recall:
$$\hat{H} = \hat{H}_{proton} + \hat{H}_{neutron} + \hat{H}_{proton-neutron}$$

• Use existing ISM code to solve:

$$\hat{H}_{proton} |j_{p}\alpha_{p}\rangle = E_{p} |j_{p}\alpha_{p}\rangle
\hat{H}_{neutron} |j_{n}\beta_{n}\rangle = E_{n} |j_{n}\beta_{n}\rangle ,$$
(38)

dimension d_{π} and d_{ν} problems (and not $d_{\pi} \times d_{\nu}$).

• Use these to build our many-proton many-neutron J-scheme basis:

$$[|j_{p}\alpha_{p}\rangle\otimes|j_{n}\beta_{n}\rangle]_{J} \tag{39}$$

PNISM: Create the proton-neutron coupled basis and truncate

$$\hat{H} = \hat{H}_{proton} + \hat{H}_{neutron} + \hat{H}_{proton-neutron}$$
 Our basis,

$$|a\rangle = [|j_p\alpha_p\rangle \otimes |j_n\beta_n\rangle]_J,$$
 (40)

has $d_\pi \times d_
u$ states. But we truncate to compute:

$$\sum_{b}^{N^2 \ll d_{\pi} \times d_{\nu}} H_{ab} \Psi_b = E \Psi_a, \tag{41}$$

Using $\hat{H} = \hat{D}_{proton} + \hat{D}_{neutron} + \hat{H}_{proton-neutron}$. I wrote a code that does this, PNISM.

Figure 7: Excitation spectra for ²²Na

Figure 8: Excitation spectra for ²⁸Na

Nuclide	Zval	Nval	M-scheme dim.	Ground state E [MeV]
⁵⁶ Ni	8	8	1.09×10^{9}	-72.56190
⁶⁰ Ni	8	12	1.09×10^{9}	-80.26105
⁶⁴ Ge	12	12	1.09×10^{9}	-98.81734

Table 4: M-scheme dimensions for nuclei in the $(p_{1/2}, p_{3/2}, f_{5/2}, f_{7/2})$ model space.

Val. protons	Val. neutrons	M-scheme dim.	
0	8	12022	
8	0	12022	
12	0	12022	
0	12	12022	

Table 5: M-scheme dimensions for \hat{H}_{proton} and $\hat{H}_{neutron}$ which are used by PNISM to build the J-scheme basis for nuclei in the $(p_{1/2}, p_{3/2}, f_{5/2}, f_{7/2})$ model space.

Figure 9: Ground state energy for ⁶⁰Ni

N	J-scheme dim.	Ground state E [MeV]	Abs. error	% error
10	20	-76.731	3.5400	4.398
50	412	-78.839	1.4221	1.778
100	1477	-79.000	1.2611	1.571
200	5424	-79.408	0.8531	1.063
400	20459	-79.869	0.3921	0.4885
600	45086	-80.046	0.2151	0.2679

Table 6: 60 Ni ground state energy as a function of number N of proton and neutron wavefunctions retained for coupled J-scheme basis using M-scheme solutions in the $(p_{1/2}, p_{3/2}, f_{5/2}, f_{7/2})$ model space. $N_{max} = 12022$. J-scheme dimension is the size of the Hamiltonian for fixed J. Absolute error and percent error are computed relative to M-scheme solution from BIGSTICK.

Figure 10: Excitation spectra for ⁶⁰Ni

Summary and future work

- 1 Introduction: Nuclear structure
- 2 Background: Shell Model calculations
- 3 First study: Entanglement entropy
- Second study: Specific framework
- 5 A new shell model code: PNISM
- 6 Summary and future work

Summary

- Showed that the distribution of nuclear wavefunction coefficients points the existence of a truncateable basis
- Studied the properties of proton-neutron entanglement entropy in shell model spaces. (S versus T_z , S versus λ .)
- Demonstrated progress towards a J-scheme interacting shell model code to efficiently model nuclei.

Future work

Short term:

- Optimize memory usage
- Parallel computing
- Investigate convergence of transition rates

Long term:

- Need to improve convergence of our results
 - · Account for basis states left out with effective interaction
- Apply this code to very heavy nuclei

Sources

- [1] V.A. Bednyakov and F. Simkovic, "Nuclear spin structure in dark matter search: The zero momentum transfer limit," Phys.Part.Nucl. 36 (2005) 131-152. arXiv:hep-ph/0406218.
- [2] L. Willmann and K. Jungmann, "Matter-antimatter Asymmetry Aspects at low energy," Annalen der Physik (2015). arXiv:1506.03001.
- [3] W. C. Haxton, C. P. Liu, and M. J. Ramsey-Musolf, "Nuclear anapole moments," Physical Review C 65 (045502), 045502–1–045502–30 (2002).
- [4] C. W. Johnson, W. E. Ormand, and P. G. Krastev, "Factorization in large-scale many-body calculations," Comp. Phys. Comm. 184 (2761), 1–34 (2013)
- [5] T. Papenbrock, and D. J. Dean, "Factorization of shell-model ground states," Physical Review C 67 (051303), 1-5 (2003).
- [6] T. Papenbrock, A. Juodagalvis, and D. J. Dean, "Solution of large scale nuclear structure problems by wave function factorization," Physical Review C 69 (024312), 1–12 (2004). 62
- [7] T. Papenbrock, and D. J. Dean, "Density matrix renormalization group and wavefunction factorization for nuclei," J. .Phys. G: Nucl. .Part. Phys. 31 (S1377S1383), S1377S1383 (2005).

Figure 11: Proton-neutron entanglement entropy versus isospin in the sd-shell

Method: Entanglement entropy: A measure of Ψ_{ij} distributions

Without going into the details...

- Any matrix (e.g. Ψ_{ij}) can be written $\underline{\Psi} = UDV^{\dagger}$
- Diagonal elements of D, γ_i , tell us about

$$|\Psi\rangle = \sum_{i} \gamma_{i} |\tilde{\pi}_{i}\rangle \otimes |\tilde{\nu}_{i}\rangle,$$
 (42)

in some unknown basis $|\tilde{\pi}_i\rangle \otimes |\tilde{\nu}_i\rangle$.

- ullet If γ_i are distributed such that just a few terms make up most of $|\Psi\rangle...$
- At least we know such a basis exists, even if we can't find it yet.

(We should check this before searching for the basis!)

Method: Entanglement entropy: A measure of Ψ_{ij} distributions

- Any matrix (e.g. Ψ_{ij}) can be written $\underline{\Psi} = UDV^{\dagger}$
- Diagonal elements of D, γ_i , tell us about

$$|\Psi\rangle = \sum_{i} \gamma_{i} |\tilde{\pi}_{i}\rangle \otimes |\tilde{\nu}_{i}\rangle,$$
 (43)

in some unknown basis $|\tilde{\pi}_i\rangle \otimes |\tilde{\nu}_i\rangle$.

• We can compute the eigenvalues of

$$\underline{\Psi} * \underline{\Psi}^{\dagger} = UDV^{\dagger}VD^{\dagger}U^{\dagger} = UD^{2}U^{\dagger}, \tag{44}$$

to find γ_i^2 .