Penguin Agent

An agent submitted to the ANAC 2024 SCM league

Kazusa Goh, Takanobu Otsuka

Nagoya Institute of Technology, Aichi, Japan

Outline

- 1. Introduction
- 2. Our Strategy
 - 1. Calculating Needs
 - 2. Make Our Offer
 - 3. Counter Partner's Offer
- 3. Experimental Result
- 4. Conclusion

1. Introduction

In the Real World

Profitable options

- Reducing the cost of creating a product
 - cost of factory land, equipment maintenance, employee wages, inventory management
- Adding value to the product
- Making factory larger

In the SCML World

There are some differences

- The size of factory and the products to be manufactured are fixed
- There are only two types of unnecessary costs
 - costs of raw material inventory, penalties paid for shortages of products to be sold

From these differences, reducing unnecessary costs is effective for generating profits

2. Our Strategy: Calculating Needs

Main strategy

Reduce unnecessary costs

Calculating necessary quantities to buy and sell (Difference from daily production volume)

Calculating necessary quantities of raw materials

Securing the daily production volume

Subtract the existing stock and the contracted quantities at that step from the daily production volume

 $needs = daily_production - stock - contracted_quantities_i$

needs: necessary quantities of raw materials at step i

daily_production: dairy production volume

stock: existing stock of raw materials

contracted_quantities: contracted quantities at step i

2. Our Strategy: Calculating Needs

Calculating necessary quantities to sell

- If there is excess stock of raw materials, producing more than the daily production volume
- Do not exceed the maximum daily production
 - Maximum value as the maximum daily production capacity

 $needs = min(n_lines, daily_production + stock) - contracted_quantities_i$

needs: necessary quantities to sell at step I

n_lines: maximum daily production capacity

daily_production: dairy production volume

stock: existing stock of raw materials

contracted_quantities: contracted quantities at step i

2. Our Strategy: Make Our Offer

Make offers sent from our agent to partners

- We offer necessary quantities in current step to 70% of our partners
- We make future offers to the remaining 30% of our partners our partners

70%	30%
current step offer	future offer

• We divide 30% of our partners into proportions of 50%, 30%, and 20% and make offers for 1, 2, and 3 steps ahead, respectively

our partners(make future offers)

50%	30%	20%
1 step ahead	2 step ahead	3 step ahead

2. Our Strategy: Counter Partner's Offer

 We Separate the received offers into those for the current step and those for the future step

Counter current step offer

- For current offers, we find all subsets of the set of offers and calculate the difference between each subset and the required amount
- We accept the subset of offers with the smallest difference
- Even if the offer quantity exceeds the required amount, we accept it if it exceeds by less than 10%

Counter future step offer

- We record the accepted quantity for each step when accepting the offer.
- We accept the offer if the quantity of raw materials/sales in the offer, combined with the quantity already accepted, falls below the required amount

3. Experimental Result

- We added GreedyStdAgent, SyncRandomStdAgent as competitors
- We ran five simulations

Table: Experiment Result

Experiments	PenguinAgent (MyAgent)	GreedyStdAgent	SyncRandomStdAgent
1	0.99	0.70	0.48
2	1.00	0.66	0.57
3	0.94	0.66	0.53
4	1.13	0.67	0.50
5	1.03	0.75	0.51
Average	1.02	0.69	0.52

This table shows that Penguin Agent has the best score all five times

4. Conclusion

- We created an agent named PenguinAgent
- Our Strategy is to make a profit by reducing unnecessary costs
- We aim to prevent buying/selling excess quantities by calculating the required amount for each step
- As an experimental result, our agent achieved better scores than the other agents in all five runs

