Introducción a la estadística Bases indispensables y uso de

Olivier Devineau

Fundación Charles Darwin

Taller interno, 27-30 abril 2010

Introducción y conceptos importantes

del taller Logística

Agradacimiento

.....

varianz

Diseño experimenta

Otros concepto:

Cosas importantes

• Teoría estadística: 8:30–10:00, 10:30–12:00

• Práctica con R: 13:30–15:00, 15:30–17:00

• Café: 10:00–10:30 y 15h00-15h30

Por favor, apagan los celulares

¡Preguntas bienvenidas en cualquier momento!

del taller
Logística
Agradacimientos

Introduccio

Varianz

Diseno experimenta

Otros conceptos

Agradecimientos

Use material amablemente provisto por:

- Claude-Pierre Guillaume, EPHE, Montpellier, Francia
- Damien Caillaud, UT, Austin, Texas, USA
- Julien Dutheil, CNRS, Montpellier, Francia
- Vladimir Grosbois, CIRAD, Montpellier, Francia

Correcciones, comentarios y sugerencias por

• Eliana Bontti, FCD

del taller
Logística
Agradacimientos

Introducci

Varianz

Diseño experimenta

Otros conceptos

Agradecimientos

Use también:

- Crawley, M.J. 2005. Statistics, an introduction using R. John Wiley & Sons.
- Quinn, G.P., and Keough, M.J. 2002. Experimental design and data analysis for biologists. Cambridge University Press.

Organización del taller

Introducci

¿Qué es?

La verdadera estadística ¿Qué puede hacer la esatística? Descriptiva / inferencial ¿Cómo

ciripeza

varianz

experimenta

Otres

Otros conceptos

¿Qué es la estadística? Definición

- Principios y métodos para recoger, clasificar, resumir y analizar datos
- Aprender, hacer conclusiones y tomar decisiones

Organización del taller

Introducci

¿Qué es?

La verdadera estadística ¿Qué puede hacer la esatística? Descriptiva / inferencial ¿Cómo

empezar

varianz

experimenta

0.

¿Qué es la estadística? Definición

- Principios y métodos para recoger, clasificar, resumir y analizar datos
- Aprender, hacer conclusiones y tomar decisiones

Organización del taller

Introducción

¿Qué es? La verdadera estadística

¿Qué puede hacer la esatística? Descriptiva / inferencial ¿Cómo empezar?

Varian

Diseño

experimenta

conceptos

La verdadera estadística . . .

Evolución de salarios y empleados en una empresa

		Obreros	Ejecutivos	Promedio
Salario	2004	200	2000	1100
	2006	180	1800	990
Empleados	2004	1000	100	550
	2006	600	500	550

Organización del taller

Introducción

La verdadera estadística

hacer la esatística? Descriptiva / inferencial ¿Cómo empezar?

varian

experimenta

0.

La verdadera estadística . . .

Evolución de salarios y empleados en una empresa

		Obreros	Ejecutivos	Promedio
Salario	2004	200	2000	1100
	2006	180	1800	990
Empleados	2004	1000	100	550
	2006	600	500	550

Periódico Salarios bajaron en un 10%

Empresa Salario promedio por empleado aumentó de \$363.6 a \$916.3

Organización del taller

Introducción

La verdadera estadística

hacer la esatística?

Descriptiva / inferencial ¿Cómo empezar?

varian

experimenta

0.

Otros

La verdadera estadística . . .

Evolución de salarios y empleados en una empresa

		Obreros	Ejecutivos	Promedio
Salario	2004	200	2000	1100
	2006	180	1800	990
Empleados	2004	1000	100	550
	2006	600	500	550

Periódico Hubo despidos en la empresa Empresa Igual número de empleados y reclutamiento

Organización del taller

¿Qué es? La verdadera estadística

¿Qué puede hacer la esatística?

Descriptiva / inferencial ¿Cómo empezar?

Varianz

Diseño experimenta

Otros

La estadística...

Puede

- Proveer criterios objetivos para probar hipótesis
- Optimizar esfuerzos
- Evaluar razonamiento de manera crítica

- Decir la verdad
- Compensar ausencia de controles o mala planificación
- Indicar importancia que no es probabilística

Organización del taller

¿Qué es? La verdadera

¿Qué puede hacer la esatística?

Descriptiva / inferencial ¿Cómo empezar?

Varianz

Diseño experimental

Otros conceptos

La estadística...

Puede

- Proveer criterios objetivos para probar hipótesis
- Optimizar esfuerzos
- Evaluar razonamiento de manera crítica

- Decir la verdad
- Compensar ausencia de controles o mala planificación
- Indicar importancia que no es probabilística

Organización del taller

¿Qué es? La verdadera

¿Qué puede hacer la esatística?

Descriptiva / inferencial ¿Cómo empezar?

Varianz

Diseño experimenta

Otros

La estadística

Puede

- Proveer criterios objetivos para probar hipótesis
- Optimizar esfuerzos
- Evaluar razonamiento de manera crítica

- Decir la verdad
- Compensar ausencia de controles o mala planificación
- Indicar importancia que no es probabilística

Organización del taller

Introducción ¿Qué es? La verdadera

¿Qué puede hacer la esatística?

Descriptiva / inferencial ¿Cómo empezar?

Varianz

Diseño experimental

Otres

La estadística...

Puede

- Proveer criterios objetivos para probar hipótesis
- Optimizar esfuerzos
- Evaluar razonamiento de manera crítica

- Decir la verdad
- Compensar ausencia de controles o mala planificación
- Indicar importancia que no es probabilística

Organización del taller

¿Qué es? La verdadera

¿Qué puede hacer la esatística?

Descriptiva / inferencial ¿Cómo

empezar?

Varianz

Diseño experimental

Otros conceptos

La estadística...

Puede

- Proveer criterios objetivos para probar hipótesis
- Optimizar esfuerzos
- Evaluar razonamiento de manera crítica

- Decir la verdad
- Compensar ausencia de controles o mala planificación
- Indicar importancia que no es probabilística

Organización del taller

¿Qué es? La verdadera

¿Qué puede hacer la esatística?

Descriptiva / inferencial ¿Cómo empezar?

Varianz

Diseño

experimenta

Otros conceptos

La estadística...

Puede

- Proveer criterios objetivos para probar hipótesis
- Optimizar esfuerzos
- Evaluar razonamiento de manera crítica

- Decir la verdad
- Compensar ausencia de controles o mala planificación
- Indicar importancia que no es probabilística

Organización del taller

Introducció

La verdadera estadística ¿Qué puede hacer la esatística?

Descriptiva / inferencial

¿Cómo

ciripezai

v ai iaiiz

experimenta

Otras

Primer paso para entender datos: ¡describirlos!

- Distribución normal, poisson, binomial . . .
- Media, mediana
- Varianza, desviación estándar y error estándar

⇒ Estadística descriptiva informa sobre forma, centro y amplitud de los datos

Organización del taller

¿Qué es? La verdadera estadística ¿Qué puede

Descriptiva / inferencial

¿Cómo empezar?

...

v al laliza

Diseño experimenta

Otros

Describir no es suficiente

- No es suficiente averiguar que hay variación
- ¿Variación científicamente interesante o variación natural?

Organización del taller

¿Qué es? La verdadera estadística ¿Qué puede

Descriptiva / inferencial

¿Cómo empezar?

Varianz

Diseño

experimenta

Otros conceptos

Describir no es suficiente

- No es suficiente averiguar que hay variación
- ¿Variación científicamente interesante o variación natural?

Organización del taller

Introducció ¿Qué es?

La verdadera estadística ¿Qué puede hacer la esatística? Descriptiva /

inferencial

¿Cómo empezar?

Varianz

Diseño experimenta

O

Otros

Describir no es suficiente

- No es suficiente averiguar que hay variación
- ¿Variación científicamente interesante o variación natural?

Estadística inferencial permite:

- Distinguir entre señal y ruido
- Deducir información y llegar a conclusiones

Organización del taller

Introducción
¿Qué es?
La verdadera
estadística
¿Qué puede
hacer la
esatística?
Descriptiva /

¿Cómo empezar?

Vanian-

Diseño

experimenta

Otros conceptos

Lo más difícil es empezar

- ¿Qué tipo de análisis?
- Depende de los datos y de la pregunta inicial
- ¿Cómo saber que hacer? ¡habiéndolo hecho miles de veces!

Organización del taller

Introducción
¿Qué es?
La verdadera
estadística
¿Qué puede
hacer la
esatística?
Descriptiva /

¿Cómo empezar?

Varianz

Diseño experimenta

experimental

Lo más difícil es empezar

- ¿Qué tipo de análisis?
- Depende de los datos y de la pregunta inicial
- ¿Cómo saber que hacer? ¡habiéndolo hecho miles de veces!

Organización del taller

Introducción
¿Qué es?
La verdadera
estadística
¿Qué puede
hacer la
esatística?
Descriptiva /

¿Cómo empezar?

Varianz

Diseño experimenta

experimenta

Lo más difícil es empezar

- ¿Qué tipo de análisis?
- Depende de los datos y de la pregunta inicial
- ¿Cómo saber que hacer? ¡habiéndolo hecho miles de veces!

Organización del taller

Introducció

¿Qué es?
La verdadera
estadística
¿Qué puede
hacer la
esatística?

Descriptiva /

¿Cómo empezar?

Varianz

Diseño

experimenta

Otros conceptos

¿Estadística paramétrica o no?

Paramétrica.

- Intervalos regulares
- Hipótesis de distribución normal
- Media y error/desviación estándar

No paramétrica

- Cualquier tipo de escala
- No hipótesis de distribución (independencia)
- Mediana y desviación mediana

Organización del taller

Introducción

La verdadera estadística ¿Qué puede hacer la esatística? Descriptiva /

¿Cómo empezar?

Varianz

Diseño experimenta

experimenta

- ¿Cuál es la variable dependiente?
- ¿De qué tipo es? ¿Medida continua, número, proporción, categoría?
- ¿ Cuáles son las variables independientes?
- ¿Son continuas? ¿Categóricas? ¿Ambos?

Organización del taller

Introducció

¿Qué es?
La verdadera
estadística
¿Qué puede
hacer la
esatística?

Descriptiva /
inferencial

¿Cómo empezar?

Varianz

Diseno experimenta

ехреппени

Otros conceptos

- ¿Cuál es la variable dependiente?
- ¿De qué tipo es? ¿Medida continua, número, proporción, categoría?
- ¿Cuáles son las variables independientes?
- ¿Son continuas? ¿Categóricas? ¿Ambos?

Organización del taller

Introducció

La verdadera estadística ¿Qué puede hacer la esatística? Descriptiva / inferencial

¿Cómo empezar?

Varianz

evperiments

experimenta

Otros conceptos

- ¿Cuál es la variable dependiente?
- ¿De qué tipo es? ¿Medida continua, número, proporción, categoría?
- ¿Cuáles son las variables independientes?
- ¿Son continuas? ¿Categóricas? ¿Ambos?

Organización del taller

Introducció

¿Qué es? La verdadera estadística ¿Qué puede hacer la esatística? Descriptiva /

¿Cómo empezar?

Varianz

evperiments

experimenta

Otros conceptos

- ¿Cuál es la variable dependiente?
- ¿De qué tipo es? ¿Medida continua, número, proporción, categoría?
- ¿Cuáles son las variables independientes?
- ¿Son continuas? ¿Categóricas? ¿Ambos?

Organización del taller

Introducción
¿Qué es?
La verdadera
estadística
¿Qué puede
hacer la
esatística?
Descriptiva /

¿Cómo empezar?

Maniana

varianz

experimenta

Otros

¿Qué análisis? Guía de decisión

1) Variables independientes

Todas continuas

Regresión

Todas categóricas

Anova

Ambas continuas y categóricas

\ncovo

Organización del taller

Introducción
¿Qué es?
La verdadera
estadística
¿Qué puede
hacer la
esatística?
Descriptiva /

¿Cómo empezar?

Varianz

Diseno

ехреппента

Otros conceptos

¿Qué análisis? Guía de decisión

1) Variables independientes

Todas continuas

Regresión

Todas categóricas

Anova

Ambas continuas y categóricas

Ancova

Organización del taller

¿Qué es?
La verdadera estadística
¿Qué puede hacer la esatística?
Descriptiva /

¿Cómo empezar?

Varianz

evperimenta

experimenta

conceptos

¿Qué análisis? Guía de decisión

1) Variables independientes

Todas continuas

Regresión Anova

Todas categóricas

.

• Ambas continuas y categóricas

Ancova

Organización del taller

¿Qué es?

La verdadera estadística ¿Qué puede hacer la esatística? Descriptiva /

¿Cómo empezar?

. . .

Diseño

experimental

Otros conceptos

¿Qué análisis? Guía de decisión 2) Variable dependiente

Continua

Regresión normal, Anova, Ancova

Proporción

Regresión logística

Número

And I let a length in the letter of a

Binaria

Analisis logistico binario

Tiempo hasta la muerte

Organización del taller

Introducción

La verdadera estadística ¿Qué puede hacer la esatística? Descriptiva /

¿Cómo

empezar?

Varianz

Diseño experimental

Otras

¿Qué análisis? Guía de decisión 2) Variable dependiente

Continua

Regresión normal, Anova, Ancova

Proporción

Regresión logística

Número

Regresion log-linear

Binaria

Análisis logístico binario

Tiempo hasta la muerte

Organización del taller

¿Qué es? La verdadera estadística ¿Qué puede

hacer la esatística? Descriptiva

¿Cómo empezar?

\ / - ... -

Disaña

experimental

Otros conceptos

¿Qué análisis? Guía de decisión 2) Variable dependiente

Continua

Proporción

Número

Binaria

• Tiempo hasta la muerte

Regresión normal, Anova, Ancova

Regresión logística

Regresión log-lineal

Análisis logístico binario

Organización del taller

Introducció

La verdadera estadística ¿Qué puede hacer la esatística?

¿Cómo empezar?

\ / - ... -

varianz

Diseno experimental

ехреппента

conceptos

¿Qué análisis? Guía de decisión 2) Variable dependiente

Continua

Proporción

Número

Binaria

• Tiempo hasta la muerte

Regresión normal, Anova, Ancova

Regresión logística

Regresión log-lineal

Análisis logístico binario

Organización del taller

¿Qué es? La verdadera estadística ¿Qué puede

¿Qué puede hacer la esatística? Descriptiva

¿Cómo empezar?

Varianz

Diseño

experimental

conceptos

¿Qué análisis? Guía de decisión 2) Variable dependiente

Continua

Regresión normal, Anova, Ancova

Proporción

Regresión logística

Número

Regresión log-lineal

Binaria

Análisis logístico binario

Tiempo hasta la muerte

Organización del taller

....

Todo varia

Grados de libertad Definición

Diseño experimenta

Otres

Otros

Por qué la estadística? ¡Porque Todo varia!

Mucha variabilidad temporal, espacial y entre individuos:

- Genética
- Factores ambientales
- Azar
- Errores de observación y medida

Organización

Introducción

. . .

Todo varia

Concepto Grados de

Definición

Disser

experimenta

0....

conceptos

Todo varia

Concepto

Grados de

¿Como medir la variabilidad?

• Rango: [5, 15]

Organización del taller

Introducción

Todo varia

Concepto Grados de

Definición

Diseño

Otros

- Rango: [5,15]
- Media y desviaciones de la media

Organización del taller

Introducción

Todo varia

Concepto Grados de

Definición

Diseño

experimenta

Otros conceptos

- Rango: [5,15]
- Media y desviaciones de la media
- Residuales

Organización del taller

Introducción

Todo varia

Concepto Grados de

Definición

Diseño

experimenta

Otros conceptos

- Rango: [5,15]
- Media y desviaciones de la media
- Residuales
- $\sum (y \bar{y})$

Organización del taller

Introducción

Todo varia

Concepto Grados de

Definición Otros aspect

Diseño experiment:

experimenta

Otros conceptos

- Rango: [5,15]
- Media y desviaciones de la media
- Residuales
- $\sum (y \bar{y}) = 0$

Organización

Introducción

Todo varia

Concepto Grados de

Definición Otros aspect

Diseño experiment

experimenta

Otros conceptos

- Rango: [5,15]
- Media y desviaciones de la media
- Residuales
- $\bullet \ \sum (y \bar{y}) = 0$
- $SS = \sum (y \bar{y})^2$

Organización

Introducción

Todo varia

Concepto Grados de

Definición Otros aspect

Diseño experiment

Otros

¿Como medir la variabilidad?

- Rango: [5,15]
- Media y desviaciones de la media
- Residuales

•
$$SS = \sum (y - \bar{y})^2$$

 Suma de los cuadrados (sum of squares)

Organización del taller

Introducción

Vaniana.

Todo varia Concepto

Grados de

libertad

Definición

Diseño

experimenta

Otros conceptos

Una mejor medida de la variabilidad

•
$$SS = \sum (y - \bar{y})^2$$
, $n = 11$

Organización del taller

Introducción

Varianza

Todo varia Concepto

Grados

libertad

Definicion

Diseño

experimenta

Otros conceptos

Una mejor medida de la variabilidad

•
$$SS = \sum (y - \bar{y})^2$$
, $n = 11$

ullet ¿Que pasa con SS si se agrega un punto?

Organización del taller

Introducción

Varianza

Concepto

Grados

Definición

Otros aspect

experimenta

Otros

conceptos

Una mejor medida de la variabilidad

•
$$SS = \sum (y - \bar{y})^2$$
, $n = 11$

- ¿Que pasa con SS si se agrega un punto?
- ullet SS aumenta por cada nuevo punto

Organización del taller

Introducción

Varianza

Concepto

Grados

Definición

Otros aspect

experiment

Otros

conceptos

Una mejor medida de la variabilidad

•
$$SS = \sum (y - \bar{y})^2$$
, $n = 11$

- iQue pasa con SS si se agrega un punto?
- ullet SS aumenta por cada nuevo punto

•
$$MS = \frac{\sum (y - \bar{y})^2}{n}$$

Organización del taller

Introducción

Varianza

Concepto

Grados

Definición

Otros aspect

Diseño

experiment

Otros

Una mejor medida de la variabilidad

•
$$SS = \sum (y - \bar{y})^2$$
, $n = 11$

- ¿Que pasa con SS si se agrega un punto?
- ullet SS aumenta por cada nuevo punto

•
$$MS = \frac{\sum (y - \bar{y})^2}{n}$$

ullet Desviación cuadrática media (Mean square deviation MS)

Organización del taller

Introducción

Todo varia Concepto Grados de

Grados de libertad

Otros aspect

Diseño

Otres

conceptos

Grados de libertad

• Muestra de 5 números: $\bar{y}=4$

Organización

Introducción

Todo varia Concepto Grados de libertad Definición

Otros aspect

experimenta

Otros

Otros conceptos

Grados de libertad

Organización

Introducción

Todo varia Concepto Grados de libertad

Definición Otros aspecto

Diseño

experimenta

Otros conceptos

Grados de libertad

2				
---	--	--	--	--

Organización del taller

Introducción

Todo varia Concepto Grados de

Definición
Otros aspecto

Otros aspecto

experiment

Otros conceptos

Grados de libertad

2	7			
---	---	--	--	--

Organización

Introducción

Todo varia Concepto Grados de libertad

Definición Otros aspecto

Diseño

experiment

Otros conceptos

Grados de libertad

2	7	4		
---	---	---	--	--

Organización

Introducción

Todo varia Concepto Grados de

Definición
Otros aspecto

Diseño

experimenta

Otros

Grados de libertad

2	7	4	0	
---	---	---	---	--

Organización

Introducción

Todo varia Concepto Grados de

Definición Otros aspecto

Diseño

experiment

Otros

Grados de libertad

2	7	4	0	7
---	---	---	---	---

Grados de libertad

Organización del taller

Introducción

Todo varia Concepto Grados de libertad

Definición Otros aspecto

Diseño experimenta

Otros

Otros conceptos • Muestra de 5 números: $\bar{y}=4$, $\sum y=20$

2	7	4	0	7
---	---	---	---	---

ullet Total libertad en la selección de números 1-4

Todo varia Grados de libertad

Grados de libertad

2	7	4	0	7
---	---	---	---	---

- Total libertad en la selección de números 1 − 4
 - \Rightarrow 4 grados de libertad (degrees of freedom d.f.)

Organización del taller

Introducción

Todo varia Concepto Grados de libertad

Definición Otros aspecto

Diseño experimenta

Owner

Otros conceptos

2	7	4	0	7
---	---	---	---	---

- Total libertad en la selección de números 1-4 $\Rightarrow 4$ grados de libertad (degrees of freedom d.f.)
- df = n p

Grados de libertad

Grados de libertad

2	7	4	0	7
---	---	---	---	---

- Total libertad en la selección de números 1 − 4 \Rightarrow 4 grados de libertad (degrees of freedom d.f.)
- df = n p
- n = número de muestras, p = número de parámetrosestimados por el modelo

Organización del taller

Introducción

Varianza

Todo varia Concepto Grados de

Definición

Otros aspecto

Diseño

experimenta

Otros conceptos

Varianza (1) Medida de la variabilidad

•
$$MS = \frac{\sum (y - \bar{y})^2}{n}$$

Organización del taller

Introducción

Varianza

Todo varia Concepto Grados de

Definición

Otros aspect

Diseño

experimenta

·

conceptos

Varianza (1) Medida de la variabilidad

•
$$MS = \frac{\sum (y - \bar{y})^2}{n}$$

 \bullet No se puede calcular MS antes de conocer \bar{y}

Organización del taller

Introducción

Varianza

Todo varia Concepto Grados de

Definición

Otros aspecto

Diseño

experimenta

Otros conceptos

Varianza (1) Medida de la variabilidad

•
$$MS = \frac{\sum (y-\bar{y})^2}{n}$$

- No se puede calcular ${\cal M}{\cal S}$ antes de conocer \bar{y}
- ¿De donde se obtiene \bar{y} ?

Organización del taller

Introducción

Varianza

Concept Grados

Definición

Otros aspect

Diseño

experimenta

Otros conceptos

Varianza (1) Medida de la variabilidad

•
$$MS = \frac{\sum (y-\bar{y})^2}{n}$$

- No se puede calcular ${\cal M}{\cal S}$ antes de conocer \bar{y}
- ¿De donde se obtiene \bar{y} ?
- ullet es un parámetro estimado de los datos

Organización del taller

Introducción

Varianza

Concept Grados o

Definición

Otros aspect

Diseño

experimenta

Otros concepto:

Varianza (1)

•
$$MS = \frac{\sum (y-\bar{y})^2}{n}$$

- ullet No se puede calcular MS antes de conocer $ar{y}$
- ¿De donde se obtiene \bar{y} ?
- ullet g es un parámetro estimado de los datos
- Se pierde un grado de libertad

Organización del taller

Introducción

17----

Todo varia Concepto Grados de

Definición

Otros aspecto

Diseno

cxperiment

concepto

Varianza (2) Formalización y definición

• Medida cuantitativa de la variabilidad:

Organización del taller

Introducción

Varianza

Todo varia Concepto Grados de

Definición

Otros aspecto

Diseño

experiment

Otros

Varianza (2) Formalización y definición

• Medida cuantitativa de la variabilidad:

$$Varianza = \frac{Suma de cuadrados}{Grados de libertad} = \frac{SS}{df}$$

Todo varia Grados de

Definición

Varianza (2) Formalización y definición

Medida cuantitativa de la variabilidad:

$$Varianza = \frac{Suma de cuadrados}{Grados de libertad} = \frac{SS}{df}$$

$$s^2 = \frac{\sum (y - \bar{y})^2}{n - 1}$$

Organización

Introducción

....

Todo varia Concepto Grados de

Definición

Otros aspectos

evperiment

Otros

Varianza y tamaño de muestra

Media: 10, Varianza: 4

Organización

Introducción

Todo varia Concepto Grados de libertad

Otros aspectos

experiment

Otros conceptos

Una medida de fiabilidad

• ¿Fiabilidad de estimaciones cuando $s^2 \nearrow$?

Organización

Introducción

Varianza

Todo varia Concepto Grados de libertad

Otros aspectos

Diseño

experimenta

Otros conceptos

Una medida de fiabilidad

- ¿Fiabilidad de estimaciones cuando $s^2 \nearrow$?
- Fiabilidad $\propto s^2$

Organización del taller

Introducción

\/arianza

Todo varia Concepto Grados de libertad

Otros aspectos

Diseño

experimenta

Otros conceptos

Una medida de fiabilidad

- ¿Fiabilidad de estimaciones cuando $s^2 \nearrow$?
- Fiabilidad $\propto s^2$
- ¿Y qué tal del tamaño de la muestra?

Organización del taller

Introducción

Varianza

Todo varia Concepto Grados de libertad

Otros aspectos

Diseño

experiment

Otros conceptos

Una medida de fiabilidad

- ¿Fiabilidad de estimaciones cuando $s^2 \nearrow ?$
- Fiabilidad $\propto s^2$
- ¿Y qué tal del tamaño de la muestra?
- Fiabilidad $\propto \frac{s^2}{n}$

Organización

Introducción

\/arianza

Concepto Grados de libertad

Otros aspectos

Diseño

experimenta

Otros conceptos

Una medida de fiabilidad

- ¿Fiabilidad de estimaciones cuando $s^2 \nearrow$?
- Fiabilidad $\propto s^2$
- ¿Y qué tal del tamaño de la muestra?
- Fiabilidad $\propto \frac{s^2}{n}$
- Qué son las unidades?

Organización del taller

Introducción

Varianza

Concepto Grados d libertad

Otros aspectos

Diseño

experimenta

Otros conceptos

Una medida de fiabilidad

¡Error estándar de la media!

- ¿Fiabilidad de estimaciones cuando $s^2 \nearrow ?$
- Fiabilidad $\propto s^2$
- ¿Y qué tal del tamaño de la muestra?
- Fiabilidad $\propto \frac{s^2}{n}$
- Qué son las unidades?
 - $SE_{\bar{y}} = \sqrt{\frac{s^2}{n}}$

Organización del taller

Introducción

Todo varia Concepto Grados de libertad

Otros aspectos

Otros aspect

Diseno

experiment

Otros

Intervalos de confianza

Muestreo repetido → rango de valores

Organización del taller

Introducción

Varianza

Todo varia Concepto Grados de libertad

Otros aspectos

- ----

experiment

Otros

Otros conceptos

- Muestreo repetido → rango de valores
- Intervalo de confianza ∝ Fiabilidad

Organización del taller

Introducción

Varianza

Todo varia Concepto Grados de libertad

Otros aspectos

D. ...

experimenta

Otros

Otros conceptos

- Muestreo repetido → rango de valores
- Intervalo de confianza \propto Fiabilidad
- Distribución t de Student

Organización del taller

Introduccion

Varianza

Concepto Grados d libertad

Otros aspectos

Diseño

experimenta

Otros conceptos

- Muestreo repetido → rango de valores
- Intervalo de confianza ∝ Fiabilidad
- Distribución t de Student
- ullet Nivel de confianza lpha y grados de libertad df

Organización del taller

Introducción

Varianza

Concepto Grados de libertad

Otros aspectos

Diseño

experimenta

Otros

conceptos

- Muestreo repetido → rango de valores
- Intervalo de confianza ∝ Fiabilidad
- Distribución t de Student
- Nivel de confianza α y grados de libertad df
- Número de errores estándar que se espera

Otros aspectos

- Muestreo repetido → rango de valores
- Intervalo de confianza ∝ Fiabilidad
- Distribución t de Student
- Nivel de confianza α y grados de libertad df
- Número de errores estándar que se espera

•
$$CI_{95\%} = \bar{y} \pm t_{\alpha,df} \sqrt{\frac{s^2}{n}}$$

Organización del taller

Introducción

Varianza

Diseño experimental

Replicación Seudoreplicación Aleatorización Controles

Otros

Diseño experimental Conceptos claves

Replicación: aumenta fiabilidad

- Si replican y randomizan correctamente, ¡no hay problema!
- Diseño inadecuado buenos resultados

Organización del taller

Introducción

Varianza

Diseño experimental

Replicación
Seudoreplicación
Aleatorización
Controles

Otros

Diseño experimental Conceptos claves

Replicación: aumenta fiabilidad

- Si replican y randomizan correctamente, ¡no hay problema!
- Diseño inadecuado buenos resultados

Organización del taller

Introduccion

Variatiza

Diseño experimental

Seudoreplicación Aleatorización Controles

Otros

Diseño experimental Conceptos claves

Replicación: aumenta fiabilidad

- Si replican y randomizan correctamente, ¡no hay problema!
- Diseño inadecuado buenos resultados

Organización del taller

IIILIOGUCCIOII

Diseño experimental

Replicación Seudoreplicación Aleatorización Controles

Otros

Diseño experimental

Conceptos claves

Replicación: aumenta fiabilidad

- Si replican y randomizan correctamente, ¡no hay problema!
- Diseño inadecuado buenos resultados

Organización del taller

Introducción

. . .

Diseño experiment

Replicación Seudoreplicación Aleatorización Controles

Otros

- Permite aumentar la fiabilidad y cuantificar la variabilidad dentro de un tratamiento
- Medidas repetidas deben:
 - Ser independientes (individuos distintos)
 - No formar una serie temporal
 - No estar agrupadas juntas en un lugar
 - Tener escala espacial adecuada

Organización del taller

Introducción

Diseño

Replicación

Seudoreplicación Aleatorización

Controles Inferiencia

Otros conceptos

- Permite aumentar la fiabilidad y cuantificar la variabilidad dentro de un tratamiento
- Medidas repetidas deben:
 - Ser independientes (individuos distintos)
 - No formar una serie temporal
 - No estar agrupadas juntas en un lugar
 - Tener escala espacial adecuada

Organización del taller

Introducciói

. . .

Diseño experiment

Replicación Seudoreplicaci

Aleatorización Controles

Inferiencia

Otros conceptos

- Permite aumentar la fiabilidad y cuantificar la variabilidad dentro de un tratamiento
- Medidas repetidas deben:
 - Ser independientes (individuos distintos)
 - No formar una serie tempora
 - No estar agrupadas juntas en un lugar
 - Tener escala espacial adecuada

Organización del taller

Introduccioi

\/auiauaa

Diseño experiment

Replicación Seudoreplicac

Seudoreplicación Aleatorización Controles

Inferiencia

Otros conceptos

- Permite aumentar la fiabilidad y cuantificar la variabilidad dentro de un tratamiento
- Medidas repetidas deben:
 - Ser independientes (individuos distintos)
 - No formar una serie temporal
 - No estar agrupadas juntas en un lugar
 - Tener escala espacial adecuada

Organización del taller

Introduccion

Varianza

Diseño experiment

Replicación

Seudoreplicación Aleatorización

Controles Inferiencia

Otros concepto:

- Permite aumentar la fiabilidad y cuantificar la variabilidad dentro de un tratamiento
- Medidas repetidas deben:
 - Ser independientes (individuos distintos)
 - No formar una serie temporal
 - No estar agrupadas juntas en un lugar
 - Tener escala espacial adecuada

Organización del taller

Introduccion

Varianza

Diseño experiment

Replicación

Aleatorización Controles

Inferiencia

Otros concepto

- Permite aumentar la fiabilidad y cuantificar la variabilidad dentro de un tratamiento
- Medidas repetidas deben:
 - Ser independientes (individuos distintos)
 - No formar una serie temporal
 - No estar agrupadas juntas en un lugar
 - Tener escala espacial adecuada

Organización del taller

Introducción

Diseño

experiment Replicación

Seudoreplicación Aleatorización Controles

Otros

Replicación (2)

 Idealmente: una réplica de cada tratamiento debe estar agrupada en un bloque y cada tratamiento debe estar repetido en varios bloques

Organización

Introducció

Varianza

Diseño experimenta

Replicación

Seudoreplicación Aleatorización Controles

Otros

- Tantas como sea posible 😊
- ¿Cómo saber?
 - ⇒ Indicación sobre varianza base y magnitud de la respuesta al tratamiento
- Método práctico (en general): ≥ 30

Organización del taller

Introducción

Diseño experimenta

Replicación Seudoreplicación Aleatorización Controles

Otros

- Tantas como sea posible ©
- ¿Cómo saber?
 - ⇒ Indicación sobre varianza base y magnitud de la respuesta al tratamiento
- Método práctico (en general): ≥ 30

Organización

Introducción

Vaniana

Diseño experimenta

Replicación

Seudoreplicación Aleatorización Controles

Otros

- Tantas como sea posible ©
- ¿Cómo saber? Estudios pilotos y experiencia
 Indicación sobre varianza base y magnitud de la respuesta al tratamiento
- Método práctico (en general): ≥ 30

Organización del taller

Introducción

Varianza

Diseño experimenta

Replicación

Seudoreplicación Aleatorización Controles

Controles Inferiencia

Otros conceptos

- Tantas como sea posible ©
- ¿Cómo saber? Estudios pilotos y experiencia
 - ⇒ Indicación sobre varianza base y magnitud de la respuesta al tratamiento
- Método práctico (en general): ≥ 30

Organización del taller

Introduccion

Diseño

experiment: Replicación

Seudoreplicación Aleatorización

Aleatorización Controles Inferiencia

Otros conceptos

- Tantas como sea posible ©
- ¿Cómo saber? Estudios pilotos y experiencia
 - \Rightarrow Indicación sobre varianza base y magnitud de la respuesta al tratamiento
- Método práctico (en general): ≥ 30

Organización del taller

Introducción

Diseño

experiment Replicación

Seudoreplica Aleatorizació

Aleatorización Controles Inferiencia

Otros concepto

- Tantas como sea posible ©
- ¿Cómo saber? Estudios pilotos y experiencia
 - \Rightarrow Indicación sobre varianza base y magnitud de la respuesta al tratamiento
- Método práctico (en general): ≥ 30

Organización del taller

Introducción

Diseño

Replicación

Seudoreplicación

Controles Inferiencia

Otros

Poder y réplicas

ullet Poder: probabilidad de rechazar H_0 cuando es falsa

Organización del taller

Introducción

D. ...

Diseño experimenta

Replicación Seudoreplicación

Controles Inferiencia

Otros conceptos

- Poder: probabilidad de rechazar H_0 cuando es falsa
- ¿Cuantas réplicas para detectar un efecto δ con 80% probabilidad de no cometer un error?

Organización del taller

Introducción

Diseño

experimenta Replicación

Seudoreplicación Aleatorización Controles

Controles Inferiencia

Otros

- Poder: probabilidad de rechazar H_0 cuando es falsa
- ¿Cuantas réplicas para detectar un efecto δ con 80% probabilidad de no cometer un error?
- Experiencia y/o estudio piloto

Organización del taller

Introducción

Diseño

Replicación Seudoreplicación

Aleatorización Controles Inferiencia

Otros

- Poder: probabilidad de rechazar H_0 cuando es falsa
- ¿Cuantas réplicas para detectar un efecto δ con 80% probabilidad de no cometer un error?
- Experiencia y/o estudio piloto
 - \Rightarrow Primera estimación del efecto δ y de la varianza s^2

Organización del taller

Introducción

Diseño

experimenta Replicación

Seudoreplicación Aleatorización

Controles Inferiencia

Otros

- ullet Poder: probabilidad de rechazar H_0 cuando es falsa
- ¿Cuantas réplicas para detectar un efecto δ con 80% probabilidad de no cometer un error?
- Experiencia y/o estudio piloto
 - \Rightarrow Primera estimación del efecto δ y de la varianza s^2

$$n \approx \frac{8 * s^2}{\delta^2}$$

Organización del taller

Introducción

Varianza

Diseño experimenta

Seudoreplicación Aleatorización Controles

Otros conceptos

Seudoreplicación

Condición importante: independencia de los errores

- Medidas repetidas del mismo individuo ightarrow seudoreplicación temporal
- Varias medidas del mismo lugar → seudoreplicación spacial
- ¿Cuántos grados de libertad?

Organización del taller

Introducción

Varianza

Diseño experimenta

Seudoreplicación Aleatorización Controles

Inferiencia

Otros conceptos

¿Qué hacer con seudoreplicación?

- Promediar seudoreplicación y hacer análisis sobre medias
- Hacer análisis separados por cada período de tiempo
- Usar análisis de series de tiempo o modelos de efectos mixtos

Replicación Seudoreplicación

Aleatorización

Aleatorización

- ¿Cómo seleccionar un árbol al azar en una selva?
- ¿Hojas accesibles?
- ¿Cerca del laboratorio?
- ¿Parece sano?
- ¡Sin insectos?

Organización del taller

Introducción

Varianza

Diseño experiment

Replicación Seudoreplicación

Aleatorización

Controles Inferiencia

Interiencia

Otros conceptos

Aleatorización

- ¿Cómo seleccionar un árbol al azar en una selva?
- ¿Hojas accesibles?
- ¿Cerca del laboratorio?
- ¿Parece sano?
- ¿Sin insectos?
- ⇒ ¡Sesgo en la fotosíntesis

Seudoreplicación

Aleatorización

- ¿Cómo seleccionar un árbol al azar en una selva?
- ¿Hojas accesibles?
- ¿Cerca del laboratorio?
- ¿Parece sano?
- ¡Sin insectos?

Organización del taller

Introducción

varianza

Diseño experiment

Replicación Seudoreplicación

Aleatorización

Controles Inferiencia

Otros conceptos

- ¿Cómo seleccionar un árbol al azar en una selva?
- ¿Hojas accesibles?
- ¿Cerca del laboratorio?
- ¿Parece sano?
- ¿Sin insectos?
- ⇒ ¡Sesgo en la fotosíntesis

Organización

Introducción

varianza

Diseño experimenta

Seudoreplicación
Aleatorización

Controles

Inferiencia

Otros conceptos

- ¿Cómo seleccionar un árbol al azar en una selva?
- ¿Hojas accesibles?
- ¿Cerca del laboratorio?
- ¿Parece sano?
- ¿Sin insectos?
- ⇒ ¡Sesgo en la fotosíntesis

Organización

Introducción

Diseño experiment

Replicación Seudoreplicación Aleatorización

Controles

Inferiencia

Otros conceptos

- ¿Cómo seleccionar un árbol al azar en una selva?
- ¿Hojas accesibles?
- ¿Cerca del laboratorio?
- ¿Parece sano?
- ¿Sin insectos?
- ⇒ ¡Sesgo en la fotosíntesis!

Selección aleatoria de un árbol

Organización del taller

Introducción

Diseño

experiment Replicación

Seudoreplicación Aleatorización

Controles

Otros conceptos

Selección aleatoria de un árbol

Organización

Introducción

Diseño

experiment Replicación

Seudoreplicación Aleatorización

Controles

Otros conceptos

Selección aleatoria de un árbol

Organización

Introducción

Varianza

Diseño

Replicación Seudoreplicación Aleatorización

Controles

Otros conceptos

Controles

Organización del taller

Introducción

. , .

Diseño experiment:

Replicación Seudoreplicación

Controles

Inferienc

Otros

No controles, no conclusiones

Organización del taller

Introducción

Diseño experiment

Replicación Seudoreplicación Aleatorización Controles

Otros

¿Cuánto tiempo?

- Idealmente: determinar duración por adelantado
- NO seguir experimento hasta que se obtenga un "buen" resultado

Organización del taller

Introducción

Varianza

Diseño experiment

Replicación Seudoreplicación Aleatorización Controles

Otros

Otros conceptos

¿Cuánto tiempo?

- Idealmente: determinar duración por adelantado
- NO seguir experimento hasta que se obtenga un "buen" resultado

Organización del taller

IIItroduccio

Diseño experimenta

Seudoreplicación Aleatorización

Inferiencia

Otros concepto

Inferencia fuerte

- Formular una hipótesis clara
- Diseñar un test aceptable
- Sin replicación, aleatorización y controles, no hay progreso

Organización del taller

Introducción

. . .

Diseño experiment

Otros

Otros

Modelaje Parsimonia

Máxima probabilidad

- Datos: lo que pasó
- Descripción → patrones → mecanismos
- Modelo para explicar y predecir
- Varios (muchos) modelos están ajustados a los datos
- → Modelo mínimo y adecuado

Organización del taller

Introducción

. , .

Diseño experiment

Otros

Modelaje

Parsimonia Máxima probabilidad

- Datos: lo que pasó
- Descripción → patrones → mecanismos
- Modelo para explicar y predecir
- Varios (muchos) modelos están ajustados a los datos
- → Modelo mínimo y adecuado

Modelaje

probabilidad

- Datos: lo que pasó
- Descripción → patrones → mecanismos
- Modelo para explicar y predecir

Organización del taller

Introduccion

Diseño experimenta

Otros

concento

Modelaje

Parsimonia Máxima

Modelaje estadístico

- Datos: lo que pasó
- Descripción → patrones → mecanismos
- Modelo para explicar y predecir
- Varios (muchos) modelos están ajustados a los datos

ullet o Modelo mínimo y adecuado

Organización del taller

Introduccion

Diseño

experiment

concept

Modelaje

Parsimonia Máxima probabilida

- Datos: lo que pasó
- Descripción → patrones → mecanismos
- Modelo para explicar y predecir
- Varios (muchos) modelos están ajustados a los datos
- → Modelo mínimo y adecuado

Organización del taller

Introducción

Diseño experiment

Otros

concepto

Modelaje Parsimonia Máxima probabilidad Modelaje estadístico

Mínimo: Suficientemente simple

Adecuado: ¿Por qué usar modelo que no describe los

datos!

Mejor modelo: La menor proporción de varianza que no sea

explicada (desviación residual minima)

Modelaje

probabilidad

Modelaje estadístico

Mínimo: Suficientemente simple

Adecuado: ¿Por qué usar modelo que no describe los

datos?

Modelaje

Modelaje estadístico

Mínimo: Suficientemente simple

Adecuado: ¿Por qué usar modelo que no describe los

datos?

Mejor modelo: La menor proporción de varianza que no sea

explicada (desviación residual mínima)

Organización del taller

Diseño

experiment

concept

Parsimonia Máxima probabilidad

La navaja de Occam

Principio de parsimonia

- Con varias explicaciones igualmente válidas
- Correcta: la más simple

Organización del taller

Diseño experiment:

experiment

Modelaje Parsimoni

Parsimonia Máxima probabilidad

La navaja de Occam

Principio de parsimonia

- Con varias explicaciones igualmente válidas
- Correcta: la más simple

Organización del taller

Introducción

Varianza

experimenta

Otros concepto:

Modelaje Parsimonia

Parsimonia Máxima probabilida

La navaja de Occam

Principio de parsimonia

- Con varias explicaciones igualmente válidas
- Correcta: la más simple

- Tan pocos parámetros como sea posible
- Modelos lineales > no lineales
- Pocas condiciones > muchas
- Pocas variables > muchas
- 1 explicación simple > varias explicaciones complicadas

Organización del taller

Introduccion

Diseño experiment:

Otros

conceptos

Parsimonia Máxima

La navaja de Occam

Principio de parsimonia

- Con varias explicaciones igualmente válidas
- Correcta: la más simple

- Tan pocos parámetros como sea posible
- Modelos lineales > no lineales
- Pocas condiciones > muchas
- Pocas variables > muchas
- 1 explicación simple > varias explicaciones complicadas

Organización del taller

Introducción

Diseño

experimenta

Otros conceptos

Modelaje Parsimonia Máxima

Máxima probabilida

La navaja de Occam

Principio de parsimonia

- Con varias explicaciones igualmente válidas
- Correcta: la más simple

- Tan pocos parámetros como sea posible
- Modelos lineales > no lineales
- Pocas condiciones > muchas
- Pocas variables > muchas
- 1 explicación simple > varias explicaciones complicadas

Organización del taller

Introducción

Diseño

experimenta

Conceptos

Modelaje Parsimonia

Parsimonia Máxima probabilida

La navaja de Occam

Principio de parsimonia

- Con varias explicaciones igualmente válidas
- Correcta: la más simple

- Tan pocos parámetros como sea posible
- Modelos lineales > no lineales
- Pocas condiciones > muchas
- Pocas variables > muchas
- 1 explicación simple > varias explicaciones complicadas

Organización del taller

Introducción

Varianza

experimenta

Otros conceptos

Modelaje Parsimonia Máxima

La navaja de Occam

Principio de parsimonia

- Con varias explicaciones igualmente válidas
- Correcta: la más simple

- Tan pocos parámetros como sea posible
- Modelos lineales > no lineales
- Pocas condiciones > muchas
- Pocas variables > muchas
- 1 explicación simple > varias explicaciones complicadas

Organización del taller

Introducción

IIILIOGUCCIOI

Diseño

Otros

conceptos

Parsimonia Máxima probabilidad

La navaja de Einstein

Einstein: "Un modelo debe ser tan simple como posible.

Pero no más simple"

Organización del taller

Introduccion

Diseño

Otres

concepto Modelaie

Modelaje Parsimonia Máxima probabilidad

Máximo de verosimilitud

(Maximum Likelihood: ML)

- Dado los datos
- Y dado un modelo
- ¿Qué valores de parámetros hacen a los datos observados más probables?
- ⇒ Estimadores sin sesgo que minimizan la varianza

Organización

Introducción

Diagram

experimenta

Otros

concepto

Modelaje

Parsimonia Máxima probabilidad

Máximo de verosimilitud

Organización

Introducción

D: ~

experimenta

Otros

concepto

Modelaje Parsimonia

Máxima probabilidad

Máximo de verosimilitud

Organización del taller

Introducción

D: ~

experimenta

Otros

concepto

Modelaje

Máxima probabilidad

Máximo de verosimilitud

Organización

Introducción

Diseño

Otros

concepto

Modelaje Parsimonia

Máxima probabilidad

Máximo de verosimilitud

Modelaje

Máxima probabilidad

Máximo de verosimilitud

Modelaje

Máxima probabilidad

Máximo de verosimilitud

del taller

Introducción

Varianza

Diseño experimenta

Otros

concepto

Modelaje Parsimonia

Parsimonia Máxima

Máxima probabilidad

Noción de test estadístico

Distribución de probabilidad

• Representación de las probabilidades asociadas con los estados posibles de una variable aleatoria

Ejemplo: X = número de hijos en una familia de 2 niños

- 29, $(10^{\circ}, 19)$, $(19, 10^{\circ})$, 20°
- $p(X = 0 \ \columnwdel{o}) = 1/4$
- $p(X = 1 \circlearrowleft) = 1/4 + 1/4$ $\sum p(X) = 1$
- $p(X = 2 \, \circlearrowleft) = 1/4$

Distribucione

Rinomial

Normal Otras

Procedimiento

¿Cuál test

- Serie de *n* intentos independientes
- Cada intento → Éxito / Fracaso
- Probabilidad de éxito: p

Distribuciones

Rinomial

Poisson Normal

Procedimiento

; Cuál test

- ullet Serie de n intentos independientes
- Cada intento → Éxito / Fracaso
- Probabilidad de éxito: p

Distribuciones

Binomial

Normal Otras

Procedimiento

¿Cuál test

- ullet Serie de n intentos independientes
- Cada intento \rightarrow Éxito / Fracaso
- Probabilidad de éxito: p

Distribuciones

Binomial

Normal Otras

Procedimiento

¿Cuál test

- Serie de *n* intentos independientes
- Cada intento → Éxito / Fracaso
- Probabilidad de éxito: p
- Distribución discontinua
- $X \rightsquigarrow \mathcal{B}(n,p)$
- $P(r) = \binom{n}{r} p^r (1-p)^{n-r}$

Distribuciones

Binomial

Normal Otras

Procedimiento

¿Cuál test

- 39% de los habitantes tienen ojos azules
- $X \sim \mathcal{B}(1, 0.39)$

de persona con ojos azules

Distribuciones

Binomial

Normal Otras

Procedimiento

¿Cuál test

- 39% de los habitantes tienen ojos azules
- $X \sim \mathcal{B}(3, 0.39)$

de persona con ojos azules

Distribuciones

Binomial

Normal

Procedimiento

¿Cuál test

- 39% de los habitantes tienen ojos azules
- $X \sim \mathcal{B}(5, 0.39)$

Distribuciones

Binomial

Normal Otras

Procedimiento

¿Cuál test

- 39% de los habitantes tienen ojos azules
- $X \sim \mathcal{B}(50, 0.39)$

Distribuciones Generalidades Binomial

Poisson Normal Otras

Procedimient

¿Cuál test

Distribución binomial

¿Cuando se aplica?

- Porcentaje de mortalidad
- Tasa de infección
- Proporción: sexos, respuesta a un tratamiento, intenciones de voto . . .

Se necesita saber cuantos individuos hay en categoría *éxito* y cuantos hay en categoría *fracaso*

Distribuciones Generalidades Binomial Poisson

Normal Otras

Procedimient

¿Cuál test

Distribución de Poisson Definición

 Cuantas veces un evento raro occurre por unidad de tiempo/espacio

Distribuciones Generalidades

Poisson Normal Otras

Procedimiento

¿Cuál test?

Distribución de Poisson Definición

- Cuantas veces un evento raro occurre por unidad de tiempo/espacio
- Distribución discontinua

•
$$X \rightsquigarrow \mathcal{P}(\lambda)$$

•
$$P(k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

Distribuciones Generalidades Binomial

Poisson Normal Otras

Procedimiento

¿Cuál test?

Distribución de Poisson Definición

- Cuantas veces un evento raro occurre por unidad de tiempo/espacio
- Distribución discontinua
- $X \rightsquigarrow \mathcal{P}(\lambda)$
- $P(k) = \frac{\lambda^k e^{-\lambda}}{k!}$

Distribuciones Generalidades Binomial

Poisson Normal Otras

Procedimiento

¿Cuál test

Distribución de Poisson Definición

- Cuantas veces un evento raro occurre por unidad de tiempo/espacio
- Distribución discontinua
- $X \sim \mathcal{P}(\lambda)$
- $P(k) = \frac{\lambda^k e^{-\lambda}}{k!}$

Poisson

Distribución de Poisson

- Plantas en una parcela
- Semillas comidas por una ave por minuto
- Bebes naciendo por hora en un hospital
- Errores en un texto
- Degradación de substancia radioactiva

Distribuciones

Generalidad Binomial

Normal

Procedimient

¿Cuál test

- Teorema del límite central
- Suficientes muestras → medias → distribución normal

Distribuciones
Generalidades
Binomial

Procedimiento

; Cuál test

Normal

- Teorema del límite central
- Suficientes muestras → medias → distribución normal

Distribuciones Generalidades

Normal Otras

Procedimiento

¿Cuál test?

- Teorema del límite central
- Suficientes muestras → medias → distribución normal
- Distribución continua

•
$$X \rightsquigarrow \mathcal{N}(\mu, \sigma)$$

•
$$f(y) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}\left(\frac{y-\mu}{\sigma}\right)^2}$$

Distribuciones Generalidades Binomial

Normal Otras

Procedimiento

¿Cuál test?

- Teorema del límite central
- Suficientes muestras → medias → distribución normal
- Distribución continua
- $X \rightsquigarrow \mathcal{N}(\mu, \sigma)$

•
$$f(y) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}\left(\frac{y-\mu}{\sigma}\right)^2}$$

Distribuciones Generalidades Binomial

Poisson Normal Otras

Procedimient

¿Cuál test

- Teorema del límite central
- Suficientes muestras → medias → distribución normal
- Distribución continua
- $X \rightsquigarrow \mathcal{N}(\mu, \sigma)$
- $f(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{y-\mu}{\sigma}\right)^2}$

Distribuciones Generalidades

Generalidad Binomial Poisson Normal

Procedimiento

¿Cuál test?

Distribución normal

- ¡Todo el tiempo!
- Regresión lineal, análisis de varianza ...

Distribuciones Generalidades

Poisson Normal Otras

Procedimiento

¿Cuál test

Distribución normal

- ¡Todo el tiempo!
- Regresión lineal, análisis de varianza ...

Distribuciones Generalidades

Poisson Normal Otras

Procedimiento

¿Cuál test

Distribución normal

- ¡Todo el tiempo!
- Regresión lineal, análisis de varianza ...

Distribuciones Generalidades

Poisson Normal Otras

Procedimiento

¿Cuál test

Distribución normal

- ¡Todo el tiempo!
- Regresión lineal, análisis de varianza ...

Distribuciones Generalidades Rinomial

Poisson Normal Otras

Procedimiento

¿Cuál test

Distribución normal

- ¡Todo el tiempo!
- Regresión lineal, análisis de varianza . . .

Distribuciones
Generalidades
Binomial
Poisson
Normal

Procedimiento

¿Cuál test?

Distribución Normal Estándar

 $X \rightsquigarrow \mathcal{N}(0,1)$

- $\pm 1 \sigma \sim 68\%$
- \pm 2 σ ~ 95%
- $\pm 3 \sigma \sim 99\%$

Distribuciones Generalidades Binomial

Normal

Procedimiento

¿Cuál test?

Distribución Normal Estándar

 $X \sim \mathcal{N}(0,1)$

Distribuciones Generalidades

Normal

Procedimient

¿Cuál test?

Distribución Normal Estándar

 $X \leadsto \mathcal{N}(0,1)$

Distribuciones Generalidades

Poisson Normal

Procedimiento

Cuál test

Distribución Normal Estándar

 $X \sim \mathcal{N}(0,1)$

Distribuciones
Generalidades
Binomial
Poisson
Normal
Otras

Procedimient

¿Cuál test

Otras distribuciones de variables

- Lognormal (largo, peso . . .)
- Exponencial (Tiempo de fracaso)
- Gamma
- Distribución de Weibull
- Beta

Distribuciones
Generalidades
Binomial
Poisson
Normal
Otras

Procedimient

¿Cuál test

Distribuciones de estadísticos

- Distribución z
- Distribución t de Student
- Distribución del χ^2
- Distribución F de Fischer

Distribuciones

Procedimiento

¿Qué es un test?

Hipótesis
Procedimient
Decisión
Poder
Colleción de
datos
Cálculo
Valor P

: Cuál test

¿Qué es un test estadístico?

Herramienta para tomar decisión

- Calcular un estadístico T_{obs} de una muestra
- Comparar T_{obs} con la distribución de T_{teo} cuando la hipótesis es verdadera
- La posición de T_{obs} informa sobre la probabilidad de que la hipótesis sea verdadera

Distribuciones

Procedimiento

¿Qué es un test?

Hipótesis Procedimiento Decisión Poder Colleción de datos Cálculo

Cálculo
Valor P
Significancia

: Cuál test?

- 1 Pregunta biológica: ¿Hay cóndores en el parque?
- ② Pregunta estadística: Hipótesis H_0
- Selección del test estadístico: ¿Cuál usar?
- @ Criterios de decisión: ¿Qué riesgo de error? ¿Qué nivel de confianza?

¿Qué es un test? Generalidades

Poder Colleción de

- 1 Pregunta biológica: ¿Hay cóndores en el parque?
- 2 Pregunta estadística: Hipótesis H_0

Distribuciones

Procedimiento

¿Qué es un test? Generalidades

Hipótesis Procedimiento Decisión Poder Colleción de

datos
Cálculo
Valor P

Cuál test

- 1 Pregunta biológica: ¿Hay cóndores en el parque?
- 2 Pregunta estadística: Hipótesis H_0
- 3 Elección del test estadístico: ¿Cuál usar?
- 4 Criterios de decisión: ¿Qué riesgo de error? ¿Qué nivel de confianza?

Distribuciones

¿Qué es un test?

Generalidades
Hipótesis
Procedimiento

Poder
Colleción de datos
Cálculo
Valor P

Cuál test

- 1 Pregunta biológica: ¿Hay cóndores en el parque?
- **2** Pregunta estadística: Hipótesis H_0
- 3 Elección del test estadístico: ¿Cuál usar?
- 4 Criterios de decisión: ¿Qué riesgo de error? ¿Qué nivel de confianza?

Distribuciones

Procedimiento

¿Qué es un test? Generalidades

Hipótesis Procedimient Decisión Poder Colleción de

datos
Cálculo
Valor P
Significancia

¿Cuál test

- 5 ¡Colección de los datos!
- 6 Cálculo de el estadístico del test
- Inferencia y explicación biológica

Distribuciones

Procedimiento

¿Qué es un test? Generalidades

Procedimient Decisión Poder Colleción de datos Cálculo

Cuál test

Test estadístico: procedimiento

- 5 ¡Colección de los datos!
- 6 Cálculo de el estadístico del test
- 8 Inferencia y explicación biológica

¿Qué es un test? Generalidades

Poder Colleción de

Test estadístico: procedimiento

- ¡Colección de los datos!
- 6 Cálculo de el estadístico del test
- **7** Decisión estadística: ¿Se puede rechazar H_0 o no?

Distribuciones

O /

¿Qué es un test? Generalidades

Hipótesis Procedimiento Decisión Poder Colleción de datos

Cálculo Valor PSignificanci

Cuál test

Test estadístico: procedimiento

- 5 ¡Colección de los datos!
- 6 Cálculo de el estadístico del test
- **7** Decisión estadística: ¿Se puede rechazar H_0 o no?
- 8 Inferencia y explicación biológica

Distribuciones

Dunandindona

¿Qué es un test?

Hipótesis

Procedimiento Decisión
Poder
Colleción de datos
Cálculo
Valor P

Significancia

Buenas y malas hipótesis

• Una buena hipótesis se puede rechazar/falsear

Distribuciones

Procedimient

¿Qué es un test?

Hipótesis

Decisión
Poder
Colleción de datos
Cálculo
Valor P
Significancia

¿Cuál test

Buenas y malas hipótesis

- Una buena hipótesis se puede rechazar/falsear
- 1 Hay cóndores en el parque

Distribuciones

Procedimiento

¿Qué es un test?

Hipótesis

Decisión
Poder
Colleción de datos
Cálculo
Valor P
Significancia

Cuál test?

Buenas y malas hipótesis

- Una buena hipótesis se puede rechazar/falsear
- 1 Hay cóndores en el parque
- 2 No hay cóndores en el parque

Distribuciones

Procedimiento

¿Qué es un test?

Hipótesis

Decisión
Poder
Colleción de datos
Cálculo
Valor P
Significancia

Cuál test

Buenas y malas hipótesis

- Una buena hipótesis se puede rechazar/falsear
- 1 Hay cóndores en el parque
- 2 No hay cóndores en el parque
- ¡Ausencia de prueba no es prueba de ausencia!

Distribuciones

Procedimient

¿Qué es un test?

Hipótesis

Decisión
Poder
Colleción de datos
Cálculo
Valor P

Significanci

¿Cuál test

- "Nada está pasando"
- "Las medias de dos muestras son las mismas"
- "La pendiente de la relación es cero"
- ⇒ La hipótesis nula se puede falsear. Rechazar cuando los datos muestran que es suficientemente improbable

Distribuciones

Procedimient

¿Qué es un test?

Hipótesis

Decisión
Poder
Colleción de datos
Cálculo
Valor P

Significancia

¿Cuál test

- "Nada está pasando"
- "Las medias de dos muestras son las mismas"
- "La pendiente de la relación es cero"
- ⇒ La hipótesis nula se puede falsear. Rechazar cuando los datos muestran que es suficientemente improbable

Distribuciones

Procedimient

¿Qué es un test?

Hipótesis

Decisión Poder Colleción de datos Cálculo

Significancia

¿Cuál test

- "Nada está pasando"
- "Las medias de dos muestras son las mismas"
- "La pendiente de la relación es cero"
- ⇒ La hipótesis nula se puede falsear. Rechazar cuando los datos muestran que es suficientemente improbable

Distribuciones

Procedimiento

¿Qué es un test?

Hipótesis

Decisión
Poder
Colleción de datos
Cálculo
Valor P

¿Cuál test

- "Nada está pasando"
- "Las medias de dos muestras son las mismas"
- "La pendiente de la relación es cero"
- ⇒ La hipótesis nula se puede falsear. Rechazar cuando los datos muestran que es suficientemente improbable

Distribuciones

Procedimiento

¿Qué es un test?

Hipótesis Procedimiento

Decisión

Poder
Colleción de datos
Cálculo
Valor P

Cuál test?

Elección del test

- Tipo de variables: cualitativas, cuantitativas . . .
- Número y tamaño de las muestras
- Condiciones de cada test

¿Qué es un test?

Decisión

Poder

Colleción de

- + 2 $\sigma \sim 95\%$
- Valores umbrales
- 5% menos probable

Distribuciones

o /

¿Qué es un test?

Hipótesis

Frocedimi

Decisión

Poder Colleción de datos

Valor P
Significancia

· Cuál tost?

¿Qué es un test?

Decisión

Poder Colleción de

¿Qué es un test?

Decisión

Poder

Colleción de

- + 2 $\sigma \sim 95\%$
- Valores umbrales
- 5% menos probable

¿Qué es un test?

Decisión Poder

Colleción de

- + 2 $\sigma \sim 95\%$
- Valores umbrales
- 5% menos probable
- Región de rechazo

¿Qué es un test?

Decisión

Poder Colleción de

- + 2 $\sigma \sim 95\%$
- Valores umbrales
- 5% menos probable
- Región de rechazo
- Riesgo α

Distribuciones

¿Qué es un test?

¿Qué es un tes Generalidades

Hipotesis Procedimie

Decisión

Poder Colleción de datos Cálculo

Cálculo Valor *P* Significancia

; Cuál test

Criterios de decisión (2)

• 2 errores posibles :

Tipo I : Rechazar H_0 cuando es verdadera

	Situación real	
Hipótesis nula		

¿Qué es un test?

Decisión

Poder Colleción de datos

Criterios de decisión (2)

• 2 errores posibles :

Tipo I : Rechazar H_0 cuando es verdadera

_	Situación real	
Hipótesis nula	Verdadera	Falsa
Acepta	Decisión correcta Poder $1 - \beta$	Tipo II Riesgo β
Rechaza	Tipo I Riesgo α	Decisión correcta

Distribuciones

Oué es un test

¿Qué es un test? Generalidades

Hipótesis Procedimie

Decisión

Poder Colleción de datos Cálculo

Cálculo Valor P Significancia

¿Cuál test

Criterios de decisión (2)

• 2 errores posibles :

Tipo I: Rechazar H_0 cuando es verdadera

	Situación real	
Hipótesis nula	Verdadera	Falsa
Acepta	Decisión correcta Poder $1-\beta$	Tipo II Riesgo β
Rechaza	Tipo I Riesgo α	Decisión correcta

Distribuciones

Oué es un test

¿Qué es un test? Generalidades

Hipótesis Procedimie

Decisión

Poder

Colleción de datos Cálculo

Valor P Significancia

; Cuál test?

Criterios de decisión (2)

• 2 errores posibles :

Tipo I : Rechazar H_0 cuando es verdadera

_	Situación real		
Hipótesis nula	Verdadera	Falsa	
Acepta	Decisión correcta Poder $1 - \beta$	Tipo II Riesgo β	
Rechaza	Tipo I Riesgo $lpha$	Decisión correcta	

Distribuciones

Oué es un test

¿Qué es un test?

Hipótesis Procedimie

Decisión

Poder Colleción de datos

Cálculo Valor P Significancia

¿Cuál test

Criterios de decisión (2)

• 2 errores posibles :

Tipo I : Rechazar H_0 cuando es verdadera

	Situación real	
Hipótesis nula	Verdadera	Falsa
Acepta	Decisión correcta Poder $1 - \beta$	Tipo II Riesgo eta
Rechaza	Tipo I Riesgo α	Decisión correcta

Distribuciones

Procedimient

¿Qué es un test? Generalidades Hipótesis

Procedimien Decisión Poder

Colleción de datos Cálculo Valor P

Significancia

¿Cuál test?

Hay que comprometer . . .

- ullet Error I: rechazar H_0 cuando es verdadera lpha
- ullet Error II: aceptar H_0 cuando es falsa eta
- Poder: 1β
- α y β relacionados
- Cuando $\alpha \setminus \beta \nearrow$

Distribuciones

¿Qué es un test?

Generalidades Hipótesis

Procedimier Decisión Poder

Colleción de datos Cálculo

Valor P Significancia

¿Cuál test

Poder: Probabilidad de rechazar H_0 cuando es falsa

Hay que comprometer . . .

- ullet Error I: rechazar H_0 cuando es verdadera lpha
- Error II: aceptar H_0 cuando es falsa eta
- Poder: 1β
- α y β relacionados
- Cuando $\alpha \setminus \beta \nearrow$

Distribuciones

¿Qué es un test?

Generalidades Hipótesis Procedimiento

Decisión Poder

Colleción de datos
Cálculo
Valor P

Cuál test

Hay que comprometer . . .

- ullet Error I: rechazar H_0 cuando es verdadera lpha
- Error II: aceptar H_0 cuando es falsa eta
- Poder: 1β
- α y β relacionados
- Cuando $\alpha \searrow \beta \nearrow$

Distribuciones

¿Qué es un test?

Generalidades Hipótesis Procedimiento

Procedimient
Decisión
Poder
Colleción de

datos Cálculo Valor P Significancia

¿Cuál test

Hay que comprometer . . .

- ullet Error I: rechazar H_0 cuando es verdadera lpha
- Error II: aceptar H_0 cuando es falsa eta
- Poder: 1β
- α y β relacionados
- Cuando $\alpha \searrow \beta \nearrow$

Distribuciones

¿Qué es un test?

Generalidades Hipótesis Procedimiento

Procedimient
Decisión
Poder
Colleción de

datos Cálculo Valor P Significancia

¿Cuál test

Hay que comprometer . . .

- ullet Error I: rechazar H_0 cuando es verdadera lpha
- ullet Error II: aceptar H_0 cuando es falsa eta
- Poder: 1β
- α y β relacionados
- Cuando $\alpha \searrow \beta \nearrow$

Distribuciones

¿Qué es un test?

Generalidades Hipótesis Procedimiento

Decisión
Poder
Colleción de

datos Cálculo Valor P Significancia

Cuál test

Hay que comprometer . . .

- \bullet Error I: rechazar H_0 cuando es verdadera lpha
- ullet Error II: aceptar H_0 cuando es falsa eta
- Poder: 1β
- α y β relacionados
- Cuando $\alpha \searrow \beta \nearrow$

Distribuciones

¿Qué es un test?

Generalidades Hipótesis Procedimiento

Procedimien
Decisión
Poder
Colleción de

datos Cálculo Valor P Significancia

Cuál test

Hay que comprometer . . .

- ullet Error I: rechazar H_0 cuando es verdadera lpha
- ullet Error II: aceptar H_0 cuando es falsa eta
- Poder: 1β
- α y β relacionados
- Cuando $\alpha \searrow \beta \nearrow$

Distribuciones

Procedimient

¿Qué es un test? Generalidades Hipótesis

Procedimien Decisión Poder

 $\begin{array}{c} {\rm Colleci\'{o}n\ de} \\ {\rm datos} \\ {\rm C\'{a}lculo} \\ {\rm Valor}\ P \\ {\rm Significancia} \end{array}$

Cuál test

¿Cuando α debe ser alto?

Ejemplo: Efectos secundarios de una droga

- Test final antes de comercializar
- Grupo A: droga | Grupo B: placebo
- H_0 : no hay diferencia entre grupos A y B
- H_1 : A tiene mayor frecuencia de anomalías que B

Distribuciones

riocediment

¿Qué es un test? Generalidades Hipótesis

Procedimient Decisión Poder

Colleción de datos
Cálculo
Valor P
Significancia

Cuál test?

¿Cuándo α debe ser alto?

Aceptar riesgo α más alto para reducir riesgo β

α alto: error de tipo l

- H₀ rechazada pero verdadera
- No se comercializa
- Más estudios para determinar efecto real

Distribuciones

¿Qué es un test?

Generalidades Hipótesis

Procedimient Decisión Poder

Colleción de datos Cálculo Valor P

Cuál test?

¿Cuándo α debe ser alto?

Aceptar riesgo α más alto para reducir riesgo β

α alto: error de tipo I

- H₀ rechazada pero verdadera
- No se comercializa
- Más estudios para determinar efecto real

β alto: error de tipo II

- H_0 "aceptada" pero falsa
- Comercialización
- ¡Mucha gente sufre de los efectos secundarios!

Distribuciones

Procedimient

¿Qué es un test? Generalidades Hipótesis Procedimiento Decisión

Poder Colleción de

datos Cálculo

Valor P Significancia

¿Cuál test

Colección de los datos

¡Acuérdense!

- Aleatorización
- Replicación

¿Qué es un test?

Poder

Colleción de Cálculo

Computación del estadístico del test

Ejemplo: Prevalencia de la malaria

- "La prevalencia es la misma en A y en B"
- $H_0: \mu_A = \mu_B$
- El estadístico del test representa la diferencia de
- Distribución de T corresponde a H_0 verdadera

Distribuciones

Procedimient

¿Qué es un test? Generalidades Hipótesis

Procedimiento Decisión Poder

Colleción de datos Cálculo

Valor P

Cuál test?

Computación del estadístico del test

Ejemplo: Prevalencia de la malaria

- "La prevalencia es la misma en A y en B"
- $H_0: \mu_A = \mu_B$
- El estadístico del test representa la diferencia de prevalencia: $T = f(prev_A prev_B)$
- Distribución de T corresponde a H_0 verdadera

Distribuciones

Procedimient

¿Qué es un test? Generalidades Hipótesis

Procedimiento Decisión Poder

Colleción de datos Cálculo Valor P

Valor PSignificancia

Cuál test?

Computación del estadístico del test

Ejemplo: Prevalencia de la malaria

- "La prevalencia es la misma en A y en B"
- $H_0: \mu_A = \mu_B$
- El estadístico del test representa la diferencia de prevalencia: $T = f(prev_A prev_B)$
- Distribución de T corresponde a H_0 verdadera

¿Qué es un test?

Poder Colleción de

Cálculo

Computación del estadístico del test

Ejemplo: Prevalencia de la malaria

- "La prevalencia es la misma en A y en B"
- $H_0: \mu_A = \mu_B$
- El estadístico del test representa la diferencia de prevalencia: $T = f(prev_A - prev_B)$
- Distribución de T corresponde a H_0 verdadera

Distribuciones

¿Qué es un test?

Generalidades Hipótesis

Procedimiento Decisión

Poder Colleción de

Cálculo

Valor P Significancia

¿Cuál test?

Comparación de T con la distribución teórica

- T_{obs} no está en la región de rechazo
- No se puede rechazar H_0
- No es posible afirmar que hay una diferencia de prevalencia entre A y B

Distribuciones

¿Qué es un test?

Generalidades Hipótesis Procedimiento

Procedimiento Decisión Poder

Colleción de datos Cálculo

Valor *P*Significancia

¿Cuál test?

Comparación de T con la distribución teórica

- T_{obs} está en la región de rechazo
- Se puede rechazar H_0
- Se concluye que la prevalencia de la malaria es diferente entre A y B
- El riesgo de que esta conclusión sea falsa es $\alpha=5\%$

Distribucione

Procedimiento

¿Qué es un test?

Hipótesis

Procedimie Decisión

Poder Colleción de datos

Cálculo Valor P

Valor P Significancia

¿Cuál test?

Valor P

• Medida de la credibilidad de la hipótesis nula

D ISC ISC CONC

¿Qué es un test?

Generalidades Hipótesis

Procedimiento Decisión Poder

Colleción de datos
Cálculo
Valor P

Valor P Significan

¿Cuál test

Medida de la credibilidad de la hipótesis nula

- $H_0: \mu_A = \mu_B$
- p < 0.05
- p = 0.23

Distribucione

Procedimient

¿Qué es un test? Generalidades Hipótesis

Procedimiento Decisión Poder

Colleción de datos
Cálculo
Valor P

¿Cuál test?

• Medida de la credibilidad de la hipótesis nula

- $H_0: \mu_A = \mu_B$
- p < 0.05
- p = 0.23

¿Qué es un test?

Poder Colleción de datos Valor P

Valor P

Medida de la credibilidad de la hipótesis nula

- $H_0: \mu_A = \mu_B$
- $p < 0.05 \Rightarrow$ improbable que H_0 sea verdadera: $\mu_A \neq \mu_B$
- p = 0.23

Distribucione

¿Qué es un test?

Generalidades Hipótesis

Decisión Poder Colleción de datos

Cálculo
Valor P
Significan

¿Cuál test

• Medida de la credibilidad de la hipótesis nula

- $H_0: \mu_A = \mu_B$
- p < 0.05
- p = 0.23

Distribucione

Procedimient

¿Qué es un test? Generalidades Hipótesis

Procedimient Decisión Poder

Colleción de datos
Cálculo
Valor P
Significancia

Cuál test

• Medida de la credibilidad de la hipótesis nula

- $H_0: \mu_A = \mu_B$
- p < 0.05
- $p=0.23 \Rightarrow {\sf No}$ hay suficiente evidencia para rechazar H_0

Distribuciones

riocediment

¿Qué es un test?

Hipótesis

Procedimien Decisión

Decisión Poder

Colleción de datos

Cálculo Valor P

Significancia

¿Cuál test

- ¿Qué significa "Resultado significativo"?
- Diccionario: Que tiene sentido
- Estadística: Improbable que haya ocurrido por azar si la hipótesis nula es verdadera
- Improbable: Occurre menos de 5% de las veces

¿Qué es un test?

Poder Colleción de

Significancia

- ¿Qué significa "Resultado significativo"?
- Diccionario: Que tiene sentido
- Improbable: Occurre menos de 5% de las veces

Distribuciones

¿Qué es un test?

¿Qué es un te

Hipótesis Procedimient

Procedimient Decisión

Poder

Colleción de datos Cálculo

Valor P

Significancia

¿Cuál test

- ¿Qué significa "Resultado significativo"?
- Diccionario: Que tiene sentido
- Estadística: Improbable que haya ocurrido por azar si la hipótesis nula es verdadera
- Improbable: Occurre menos de 5% de las veces

¿Qué es un test?

Poder

Colleción de

Significancia

- ¿Qué significa "Resultado significativo"?
- Diccionario: Que tiene sentido
- Estadística: Improbable que haya ocurrido por azar si la hipótesis nula es verdadera
- Improbable: Occurre menos de 5% de las veces

Distribuciones

¿Qué es un test?

Generalidades Hipótesis

Decisión Poder Colleción de datos

Valor P
Significancia

Significanci

¿Cuál test

- ¿Qué significa "Resultado significativo"?
- Diccionario: Que tiene sentido
- Estadística: Improbable que haya ocurrido por azar si la hipótesis nula es verdadera
- Improbable: Occurre menos de 5% de las veces

Distribuciones

Procedimient

¿Cuál test

Arból de decisión Comparación Asociación Más directrices

¿Como elegir el test adecuado?

Algunas directrices (1)

Distribuciones

Procedimient

¿Cuál test

Arból de decisión Comparación Asociación Más directrices

¿Como elegir el test adecuado? Algunas directrices (2)

Distribuciones

Procedimien

¿Cuál test

Arból de decisión Comparación Asociación Más directrices

Dependencia – Asociación Tests asociados

- Muestras asociadas: vienen del mismo grupo
- Relacionadas por correlación o por regresión
- Conexión espacial
- Conexión temporal
- ⇒ Usar tests específicos: e.g., "paired t-test"

Distribuciones

Procedimien

¿Cuál test

Arból de decisión Comparación Asociación Más directrices

Comparar una muestra con una distribución teórica

⇒ Test de conformidad

- Test t de conformidad
- Test de Wilcoxon
- Test binomial
- Test χ^2 de conformidad
- . . .

Distribucione

Procedimien

¿Cuál test

Arból de decisión Comparación

Asociación Más directric

Comparar dos muestras

- ⇒ Test de comparación (de homogeneidad)
 - Test t (posiblemente "asociado")
 - Test de Mann-Whitney
 - Test de Fisher
 - Test χ^2
 - •

Distribucion

rocedimient

¿Cuál test

Arból de decisión Comparación Asociación

Asociación Más directrio

Comparar más de dos muestras

- ⇒ Test de comparación (continuación)
 - Anova / Manova
 - Test de Kruskal-Wallis
 - Test de Friedman
 - Test χ^2
 - . . .

Distribuciones

Procedimien

¿Cuál test

Arból de decisión Comparación Asociación Más directrices

Evaluar el grado de asociación entre variables

Muestras independientes

⇒ Correlación y regresión

- Correlación de Pearson / de Spearman (n = 2)
- Regresión simple / regresión logística (n=2)
- Regresión no paramétrica
- Regresión múltiple / regresión logística múltiple (n > 2)
- •

Comparar un grupo con una distribución teórica

$\begin{matrix} Medidas \\ X \leadsto \mathcal{N}(\mu, \sigma) \end{matrix}$	Categoría, grado, sin distribución	Binomial
Test t 1 muestra	Test de Wilcoxon	Test χ^2 , test binomial

Comparar 2 grupos no asociados

$\begin{matrix} & Medidas \\ X \leadsto \mathcal{N}(\mu, \sigma) \end{matrix}$	Categoría, grado, sin distribución	Binomial
Test t 1 muestra	Test de Wilcoxon	Test χ^2 , test binomial
Test t no asociado	Test de Mann-Whitney	Test de Fisher, test χ^2

Comparar 2 grupos asociados

$\begin{matrix} & Medidas \\ X \sim \mathcal{N}(\mu, \sigma) \end{matrix}$	Categoría, grado, sin distribución	Binomial
Test t 1 muestra	Test de Wilcoxon	Test χ^2 , test binomial
Test t no asociado	Test de Mann-Whitney	Test de Fisher, test χ^2
Test t asociado	Test de Wilcoxon	Test de McNemar

Comparar $\geqslant 3$ grupos no asociados

$\begin{matrix} Medidas \\ X \leadsto \mathcal{N}(\mu, \sigma) \end{matrix}$	Categoría, grado, sin distribución	Binomial
Test t 1 muestra	Test de Wilcoxon	Test χ^2 , test binomial
Test t no asociado	Test de Mann-Whitney	Test de Fisher, test χ^2
Test t asociado	Test de Wilcoxon	Test de McNemar
Anova simple	Test de Kruskal-Wallis	Test χ^2

Comparar $\geqslant 3$ grupos asociados

$\begin{matrix} Medidas \\ X \leadsto \mathcal{N}(\mu, \sigma) \end{matrix}$	Categoría, grado, sin distribución	Binomial
Test t 1 muestra	Test de Wilcoxon	Test χ^2 , test binomial
Test t no asociado	Test de Mann-Whitney	Test de Fisher, test χ^2
Test t asociado	Test de Wilcoxon	Test de McNemar
Anova simple	Test de Kruskal-Wallis	Test χ^2
Anova con medidas repetidas	Test de Friedman	Test ${\cal Q}$ de Cochran

Cuantificar asociación entre 2 variables

$\begin{matrix} Medidas \\ X \leadsto \mathcal{N}(\mu, \sigma) \end{matrix}$	Categoría, grado, sin distribución	Binomial
Test t 1 muestra	Test de Wilcoxon	Test χ^2 , test binomial
Test t no asociado	Test de Mann-Whitney	Test de Fisher, test χ^2
Test t asociado	Test de Wilcoxon	Test de McNemar
Anova simple	Test de Kruskal-Wallis	Test χ^2
Anova con medidas repetidas	Test de Friedman	$Test\ Q\ de\ Cochran$
Correlación de Pearson	Correlación de Spearman	Coeficientes de contingencia

Predecir valor desde 1 variable

$\begin{matrix} Medidas \\ X \leadsto \mathcal{N}(\mu, \sigma) \end{matrix}$	Categoría, grado, sin distribución	Binomial
Test t 1 muestra	Test de Wilcoxon	Test χ^2 , test binomial
Test t no asociado	Test de Mann-Whitney	Test de Fisher, test χ^2
Test t asociado	Test de Wilcoxon	Test de McNemar
Anova simple	Test de Kruskal-Wallis	Test χ^2
Anova con medidas repetidas	Test de Friedman	$Test\ Q\ de\ Cochran$
Correlación de Pearson	Correlación de Spearman	Coeficientes de contingencia
Regresión (no)lineal simple	Regresión no paramétrica	Regresión logística simple

Predecir valor desde varias variables

$\begin{matrix} Medidas \\ X \leadsto \mathcal{N}(\mu, \sigma) \end{matrix}$	Categoría, grado, sin distribución	Binomial
Test t 1 muestra	Test de Wilcoxon	Test χ^2 , test binomial
Test t no asociado	Test de Mann-Whitney	Test de Fisher, test χ^2
Test t asociado	Test de Wilcoxon	Test de McNemar
Anova simple	Test de Kruskal-Wallis	Test χ^2
Anova con medidas repetidas	Test de Friedman	$Test\ Q\ de\ Cochran$
Correlación de Pearson	Correlación de Spearman	Coeficientes de contingencia
Regresión (no)lineal simple	Regresión no paramétrica	Regresión logística simple
Regresión (no)lineal multiple		Regresión logística multiple

Distribuciones

Procedimien

¿Cuál test

Comparación Asociación Más directrices

Más recursos para elegir un test

- Handbook of Biological Statistics: http://udel.edu/~mcdonald/statbigchart.html
- Statistics Online Computational Resources:
 www.socr.ucla.edu/Applets.dir/ChoiceOfTest.html
- GraphPad / Intuitive Biostatistics:
 www.graphpad.com/www/Book/Choose.htm
- Social Research Methods: www.socialresearchmethods.net/selstat/ssstart.htm
- James D. Leeper, University of Alabama: http://bama.ua.edu/~jleeper/627/choosestat.html
- S. Holttum, B. Blizard, Canterbury Christ Church University: www.whichtest.info/index.html

Distribucione

Dro codimions

: Cuál test

Arból de decisión Comparación

Más directrices

Correlación y regresión

Dos categorías de tests estadísticos

Introdución

Tests de comparación : 1 variable, ≥ 2 poblaciones

Tests de relación : ≥ 2 variables, 1 población

Introdución

Correlaciión

Modelo line

lineal

Otros tipos de regresión

Criticas a los modelos

≥ 2 variables es común en biología

2 variables para el mismo individuo

- Presión sanguínea X_1 , peso X_2
- Abundancia de una especie de planta X_1 , nivel del pH en el suelo X_2 , temperatura X_3
- Datos bivariados o multivariados
- ⇒ ¿Cuál es la relación entre las variables?

Introdución

Correlaciió

Modelo line

lineal

Otros tipos de regresión

Criticas a los modelos

Relación entre ≥ 2 variables

La estadística correlacional

Varios tipos de relación

- No conexión
- Relación |handout: 1 > 0 / < 0, causal / no
- Conexión funcional → predicción

Objetivo de la estadística correlacional

- Determinar validez y fuerza de la relación entre las variables
- Determinar la dirección de la relación

Introdución

Correlaciión

Modelo linea

Regresión lineal

Otros tipos regresión

Criticas a lo

modelos

Estadística correlacional

Correlación: ¿Cómo 2 variables varían juntas?

Regresión: Relación entre 1 variable dependiente y

 $\geqslant 1$ variable independiente

Análisis multivariados: Relación entre ≥ 2 variables

independientes / dependientes / ambos

Noción de

correlación Coeficiente de

Noción de correlación

Ejemplo

- 1 población: 2 variables continuas
- Presión sanguínea X_1 , peso X_2
- Cada muestra i:1 valor por cada variable: x_{i_1} y x_{i_2}
- ¿La presión sanguínea y el peso son correlativas?

Introdución

Correlaciió

Noción de correlación

correlación

Tost

Observacion

Modelo linea

WIOGCIO IIIIC

Otros tipos o

Otros tipos d regresión

Criticas a lo

Noción de correlación (2) Definición

- Varianza de X_1 : $var(X_1)$
- Varianza de X_2 : $var(X_2)$
- ¿Como X_1 y X_2 varian juntas? Covarianza: $cov(X_1,X_2)$
 - ⇒ Coeficiente de correlación

$$r = \frac{cov(X_1, X_2)}{\sqrt{var(X_1) \cdot var(X_2)}}$$

Introdución

Correlaciió

Noción de correlación

correlación

Test

Observacion

Modelo linea

modelo ime

Otros tinos o

Otros tipos d regresión

Criticas a lo

Noción de correlación (2) Definición

- Varianza de X_1 : $var(X_1)$
- Varianza de X_2 : $var(X_2)$
- ¿Como X_1 y X_2 varian juntas? Covarianza: $cov(X_1, X_2)$
 - ⇒ Coeficiente de correlación

$$r = \frac{cov(X_1, X_2)}{\sqrt{var(X_1) \cdot var(X_2)}}$$

Noción de

correlación

Noción de correlación (2) Definición

- Varianza de X_1 : $var(X_1)$
- Varianza de X_2 : $var(X_2)$
- ¿Como X_1 y X_2 varian juntas? Covarianza: $cov(X_1, X_2)$

$$r = \frac{cov(X_1, X_2)}{\sqrt{var(X_1) \cdot var(X_2)}}$$

Introdución

Correlaciió

Noción de correlación

Coeficient

Test

Observacion

Modelo linea

Otros tipos

Otros tipos de regresión

Criticas a los

Noción de correlación (2)

- Varianza de X_1 : $var(X_1)$
- Varianza de X_2 : $var(X_2)$
- ¿Como X_1 y X_2 varian juntas? Covarianza: $cov(X_1,X_2)$
 - ⇒ Coeficiente de correlación

$$r = \frac{cov(X_1, X_2)}{\sqrt{var(X_1) \cdot var(X_2)}}$$

Introdución

Correlaciie

Noción de correlación

Coeficiente de correlación

Observacion

Modelo line

lineal

regresión

Criticas a los modelos

El coeficiente de correlación r

Correlación de Pearson (paramétrica)

- No unidad
- $r \in [-1, 1]$
- Magnitud: fuerza de la relación
- Signo: dirección de la relación
- Muestra: r, Población: ρ

Introdución

Correlacii

Noción de correlación Coeficiente de

Test

Observaciones

Modelo linea

D :/

Otros tipos d

regresión

Criticas a los modelos

¿Qué test para chequear la correlación?

 X_1 : Presión sanguínea y X_2 : peso

• ¿Hipótesis nula?

Introdución

Correlacijo

Noción de correlación Coeficiente de

Test

Observacion

Modelo linea

modelo mici

Otros tipos d

regresión
Criticas a los

¿Qué test para chequear la correlación?

- ¿Hipótesis nula?
- No hay una relación lineal entre la presión sanguínea y el peso

Introdución

Correlaciio

Noción de correlación Coeficiente de

Test

Observacione

Modelo linea

Otros tipos d

Criticas a los

¿Qué test para chequear la correlación?

- ¿Hipótesis nula?
- No hay una relación lineal entre la presión sanguínea y el peso
- $H_0: \rho = 0$

Introdución

Correlaciid

Noción de correlación Coeficiente de

Test

Observacion

Modelo linea

Otros tipos d

Otros tipos de regresión

Criticas a los modelos

¿Qué test para chequear la correlación?

- ¿Hipótesis nula?
- No hay una relación lineal entre la presión sanguínea y el peso
- $H_0: \rho = 0$
- Cuando H_0 es verdadera, $r \rightsquigarrow \mathcal{N}(\mu, \sigma)$

Introdución

Correlaciid

Noción de correlación Coeficiente de

Test

Observacione

Modelo linea

Otros tipos d

regresión

Criticas a los modelos

¿Qué test para chequear la correlación?

- ¿Hipótesis nula?
 - No hay una relación lineal entre la presión sanguínea y el peso
- $H_0: \rho = 0$
- Cuando H_0 es verdadera, $r \rightsquigarrow \mathcal{N}(\mu, \sigma)$
 - \Rightarrow uso de test t de Student

Introdución

Correlaciio

Noción de correlación Coeficiente de

Test Observaciones

Modelo line

lineal

Otros tipos de regresión

Criticas a lo modelos

- ¿Qué hacer cuando los requisitos no se cumplen?
- ⇒ Coeficiente de correlación de rango
 - de Spearman: ho- de Kendall: au
 - ¡Más conservadores!

Introdución

Correlaciio

Noción de correlación Coeficiente de

Observaciones

Modelo line

D 1/

0. ...

regresión

Criticas a lo modelos

- ¿Qué hacer cuando los requisitos no se cumplen?
- ⇒ Coeficiente de correlación de rango
 - de Spearman: ρ
 - de Kendall: au
 - ¡Más conservadores!

Introdución

Correlaciio

Noción de correlación Coeficiente de correlación

Observaciones

Modelo line

lineal

Otros tipos de

regresión

Criticas a lo modelos

- ¿Qué hacer cuando los requisitos no se cumplen?
- ⇒ Coeficiente de correlación de rango
 - de Spearman: ho
 - de Kendall: au
 - ¡Más conservadores!

Introdución

Correlaciio

Noción de correlación Coeficiente de correlación

Observaciones

Modelo line

lineal

Otros tipos de

regresión

Criticas a lo modelos

Correlación no paramétrica

- ¿Qué hacer cuando los requisitos no se cumplen?
- ⇒ Coeficiente de correlación de rango

- de Spearman: ρ

- de Kendall: au

¡Más conservadores!

Introdución

Correlaciid

Noción de correlación Coeficiente de correlación

Observaciones

Modelo line

lineal

Otros tipos de

regresión
Criticas a los

Criticas a los modelos

- ¿Qué hacer cuando los requisitos no se cumplen?
- ⇒ Coeficiente de correlación de rango
 - de Spearman: ho
 - de Kendall: au
 - ¡Más conservadores!

Introdución

.

Noción de correlación

Observaciones

Modelo line

imeai

regresión

Criticas a los

La correlación depende de la escala

¡Las cosas no son siempre como parecen!

Introdución

.

Noción de correlación Coeficiente de

Observaciones

Modelo line

iineai

regresión

Criticas a los

La correlación depende de la escala

¡Las cosas no son siempre como parecen!

Introdución

Noción de correlación Coeficiente de

Observaciones

Modelo line

Regresión

Otros tipos d

Criticas a los

La correlación depende de la escala

¡Las cosas no son siempre como parecen!

Introdución

Correlaciió

Modelo line

Generalidades

Regresiór ineal

Otros tipos regresión

Criticas a los

Modelo lineal: concepto general

• Se puede identificar:

Introdución

Correlaciió

iviodelo line

Generalidades

Regresiór lineal

Otros tipos d regresión

Criticas a los

- Se puede identificar:
 - 1 variable respuesta / dependiente Y

Introdución

Correlaciió

C----

Generalidades

Regresiór lineal

Otros tipos o regresión

Criticas a los

- Se puede identificar:
 - 1 variable respuesta / dependiente Y
 - $\geqslant 1$ variable explicativa / predictiva / independiente / covariable X_1, X_2, \dots

Introdución

Correlaciió

Generalidades

¿Lineal?

Regresión lineal

Otros tipos o regresión

Criticas a los

- Se puede identificar:
 - 1 variable respuesta / dependiente Y
 - $\geqslant 1$ variable explicativa / predictiva / independiente / covariable X_1, X_2, \ldots
- Cada unidad de muestra: $y_i, x_{1_i}, x_{2_i} \dots$

Introdución

Correlaciió

Generalidades

¿Lineal?

lineal

Otros tipos d regresión

Criticas a los modelos

- Se puede identificar:
 - 1 variable respuesta / dependiente Y
 - $\geqslant 1$ variable explicativa / predictiva / independiente / covariable X_1, X_2, \ldots
- Cada unidad de muestra: $y_i, x_{1_i}, x_{2_i} \dots$
- Explicar el patrón de Y con X

Introdución

Correlaciió

Modelo line

Generalidades

Regresiór

Otros tipos

Criticas a lo

Modelo lineal

Forma general de los modelos estadísticos

• $Variable\ dependiente = modelo + error$

Introdución

Correlaciió

Ceneralidade

Generalidades

lineal

regresión

Criticas a lo modelos

Modelo lineal

- $Variable\ dependiente = modelo + error$
- Modelo: covariables y parámetros

Introdución

Correlaciió

Generalidades

¿Lineal?

Otros tipos d

regresión

Criticas a los modelos

Modelo lineal

- $Variable\ dependiente = modelo + error$
- Modelo: covariables y parámetros
- Covariables: continuas / categoricas / ambos

Introdución

Correlaciió

Generalidades

¿Lineal?

Otros tipos o

regresión

Criticas a los modelos

Modelo lineal

- $Variable\ dependiente = modelo + error$
- Modelo: covariables y parámetros
- Covariables: continuas / categoricas / ambos
- Error: parte de la variable dependiente que no esta explicada por el modelo

Introdución

Correlaciió

Generalidades

¿Lineal?

Otros tipos o

regresión

Criticas a lo modelos

Modelo lineal

- $Variable\ dependiente = modelo + error$
- Modelo: covariables y parámetros
- Covariables: continuas / categoricas / ambos
- Error: parte de la variable dependiente que no esta explicada por el modelo
- \bullet Se supone una distribución para el componente del error, y de ahi para la variable dependiente Y

Introdución

Correlaciió

Modelo line

Generalidades ¿Lineal?

Regresió

Otros tipos o

Criticas a los

¿Qué significa lineal?

• Relación de línea recta entre 2 variables

Introdución

Correlaciió

Modelo line

¿Lineal?

lineal

Otros tipos d regresión

Criticas a los modelos

¿Qué significa lineal?

- Relación de línea recta entre 2 variables
- Combinación lineal de parámetros

Introdución

Correlaciió

Modelo line

¿Lineal?

Otros tipos

regresión

Criticas a los modelos

¿Qué significa lineal?

- Relación de línea recta entre 2 variables
- Combinación lineal de parámetros
- No exponente, no multiplicación por otro parámetro

Introdución

Correlaciió

Modelo line

¿Lineal?

lineal

regresión

Criticas a los modelos

¿Qué significa lineal?

- Relación de línea recta entre 2 variables
- Combinación lineal de parámetros
- No exponente, no multiplicación por otro parámetro
- $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$

Introdución

Correlaciió

Modelo linea

Regresión

Regresión

Estimación Evaluación del ajuste Comparación de modelos

Otros tipos

Criticas a lo

Análisis de regresión lineal

 Usar datos de una muestra para estimar valores de parámetros y sus errores estándar

Introdución

Correlaciió

Modelo linea

Regresió lineal

Regresión

Evaluación del ajuste Comparación de modelos Condiciones

Otros tipos o

Criticas a los

Análisis de regresión lineal

- Usar datos de una muestra para estimar valores de parámetros y sus errores estándar
- ¿Cuando se usa?

Introdución

Correlaciió

Modelo linea

Regresió lineal

Regresión

Evaluación del ajuste Comparación de modelos Condiciones

Otros tipos o regresión

Criticas a los modelos

Análisis de regresión lineal

- Usar datos de una muestra para estimar valores de parámetros y sus errores estándar
- ¿Cuando se usa?
- Variables explicativa y dependiente son continuas

Introdución

Correlaciió

Modelo linea

Regresió lineal

Regresión

Evaluación del ajuste
Comparación de modelos
Condiciones

Otros tipos o regresión

Criticas a los

Análisis de regresión lineal

- Usar datos de una muestra para estimar valores de parámetros y sus errores estándar
- ¿Cuando se usa?
- Variables explicativa y dependiente son continuas
- Altura, peso, volumen, temperatura . . .

Introdución

Correlaciió

Modelo linea

Regresió lineal

Regresión

Evaluación del ajuste Comparación de modelos Condiciones

regresión

Criticas a los

Análisis de regresión lineal

- Usar datos de una muestra para estimar valores de parámetros y sus errores estándar
- ¿Cuando se usa?
- Variables explicativa y dependiente son continuas
- Altura, peso, volumen, temperatura . . .
- Nube de puntos → regresión lineal

Introdución

Cannalaatta

Modelo linea

Regresió lineal

Regresión

Evaluación del ajuste Comparación de modelos

Otros tipos o regresión

Criticas a lo modelos

Análisis de regresión lineal Objetivos

- Describir la relación lineal entre Y y X
- Determinar cuánto de la variación en Y se explica por la relación lineal con X y cuánto de esta variación no se puede explicar
- ullet Predecir nuevos valores de Y a partir de valores de X

Introdución

Correlaciió

Modelo linea

Regresió

Regresión

Evaluación del ajuste Comparación de modelos

Otros tipos d

Criticas a lo

Análisis de regresión lineal Objetivos

- ullet Describir la relación lineal entre Y y X
- Determinar cuánto de la variación en Y se explica por la relación lineal con X y cuánto de esta variación no se puede explicar
- Predecir nuevos valores de Y a partir de valores de X

Introdución

Correlaciió

Modelo linea

Regresió lineal

Regresión

Evaluación del ajuste Comparación de modelos

Otros tipos d

Criticas a los

Análisis de regresión lineal Objetivos

- ullet Describir la relación lineal entre Y y X
- Determinar cuánto de la variación en Y se explica por la relación lineal con X y cuánto de esta variación no se puede explicar
- ullet Predecir nuevos valores de Y a partir de valores de X

Introdución

Correlaciió

Modelo linea

Regresió lineal

Regresión

Evaluación del ajuste
Comparación de modelos

Otros tipos o

Criticas a los

Análisis de regresión lineal

Varios tipos de regresión

- Regresión lineal: lo más simple y frecuente
- Regresión polinomial: chequear si una relación es no lineal
- Regresión no lineal
- Regresión no parámetrica: si no hay forma funcional

Introdución

Correlaciió

Modelo line

lineal

Regresión

Estimación Evaluación del

Comparación de modelos

Condiciones

regresión

Criticas a los modelos

Introdución

Cannalaaii4

Modelo line

Regresión

Regresión

Estimación

Evaluación del

Comparación de

modelos

Condiciones

regresión

Criticas a los modelos

Principio de la regresión lineal

• Modelo: y = a + bx

Introdución

Camalaaii4

Modelo line

Regresion

Regresión

Estimación Evaluación del

Comparación de modelos

Condiciones

regresión

Criticas a los modelos

- Datos
- Modelo: y = a + bx
- ¿Cambio en y?

Introdución

Cannala all 4

Modelo line

Regresión

Regresión

Estimación Evaluación del aiuste

Comparación de modelos

Condiciones

regresión

Criticas a los modelos

- Datos
- Modelo: y = a + bx
- ¿Cambio en y? $\delta y = -10$

Introdución

Correlaciió

Modelo linea

Kegresion

Regresión

Estimación Evaluación del ajuste

Comparación de modelos

Condiciones

regresión

Criticas a los

- Datos
- Modelo: y = a + bx
- ¿Cambio en y? $\delta y = -10$
- ¿Cambio en x?

Introdución

Correlaciió

Modelo line

Kegresion

Regresión

Estimación Evaluación del ajuste

Comparación de modelos

Condiciones

regresión

Criticas a los

- Datos
- Modelo: y = a + bx
- ¿Cambio en y? $\delta y = -10$
- ¿Cambio en x? $\delta x = +8$

Regresión

Evaluación del Comparación de

- Datos
- Modelo: y = a + bx
- ¿Cambio en y? $\delta y = -10$
- i Cambio en x? $\delta x = +8$
- Pendiente $b = \delta y/\delta x = -1.25$

Regresión

Evaluación del Comparación de

- **Datos**
- Modelo: y = a + bx
- ¿Cambio en y? $\delta y = -10$
- i Cambio en x? $\delta x = +8$
- Pendiente $b = \delta y/\delta x = -1.25$
- ¿Ordenada al origen?

Introdución

Cannalaaii4

Modelo linea

Regresión

Regresión

Estimación Evaluación del ajuste Comparación de

modelos Condiciones

regresión

Criticas a los modelos

- Datos
- Modelo: y = a + bx
- ¿Cambio en y? $\delta y = -10$
- ¿Cambio en x? $\delta x = +8$
- Pendiente $b = \delta y/\delta x = -1.25$
- ¿Ordenada al origen? a = 12

Introdución

Cannalaaii4

Modelo linea

lineal

Regresión

Evaluación del ajuste Comparación de modelos

Condiciones

regresión

Criticas a los

- Datos
- Modelo: y = a + bx
- ¿Cambio en y? $\delta y = -10$
- ¿Cambio en x? $\delta x = +8$
- Pendiente $b = \delta y/\delta x = -1.25$
- ¿Ordenada al origen? a = 12
- y = 12 1.25x

Introdución

Correlaciid

Modelo linea

Regresió lineal

Regresión

Evaluación del ajuste
Comparación de modelos

regresión

Criticas a los modelos

- Ajustar un modelo a los datos
- Estimar los parámetros del modelo
- Probar varios valores de parámetros hasta encontrar el mejor modelo
- Máxima verosimilitud (Maximum Likelihood ML)
- Mínimos cuadrados (Ordinary Least Square OLS)

Introdución

Correlaciid

Modelo line:

Regresió lineal

Regresión

Evaluación del ajuste Comparación de modelos

regresión

Criticas a los modelos

- Ajustar un modelo a los datos
- Estimar los parámetros del modelo
- Probar varios valores de parámetros hasta encontrar el mejor modelo
- Máxima verosimilitud (Maximum Likelihood ML)
- Mínimos cuadrados (Ordinary Least Square OLS)

Introdución

Correlaciid

Modelo linea

Regresió lineal

Regresión

Estimación
Evaluación del ajuste
Comparación de modelos

regresión

Criticas a los modelos

- Ajustar un modelo a los datos
- Estimar los parámetros del modelo
- Probar varios valores de parámetros hasta encontrar el mejor modelo
- Máxima verosimilitud (Maximum Likelihood ML)
- Mínimos cuadrados (Ordinary Least Square OLS)

Introdución

Correlaciio

Modelo lines

Regresió lineal

Regresión

Evaluación del ajuste Comparación de modelos Condiciones

Otros tipos de regresión

Criticas a los modelos

- Ajustar un modelo a los datos
- Estimar los parámetros del modelo
- Probar varios valores de parámetros hasta encontrar el mejor modelo
- Máxima verosimilitud (Maximum Likelihood ML)
- Mínimos cuadrados (Ordinary Least Square OLS)

Introdución

Correlaciió

Modelo linea

Regresió lineal

Regresión

Evaluación del ajuste Comparación de modelos Condiciones

Otros tipos de regresión

Criticas a los

- Ajustar un modelo a los datos
- Estimar los parámetros del modelo
- Probar varios valores de parámetros hasta encontrar el mejor modelo
- Máxima verosimilitud (Maximum Likelihood ML)
- Mínimos cuadrados (Ordinary Least Square OLS)

Introdución

Corrolaciión

Modelo linea

Regresión

Regresión

Estimación Evaluación del

ajuste
Comparación de

modelos

Condiciones

regresión

Criticas a los modelos

Cuadrados mínimos: principio

Introdución

Correlaciión

Modelo linea

Regresión

Regresión

Estimación

Evaluación del

Comparación de

Condiciones

Otros tipos o

Criticas a los

Cuadrados mínimos: principio

Introdución

Cannalaatti

Modelo linea

Regresión

Regresión

Estimación

Evaluación del

ajuste Comparación de

modelos

Otros tipos

Criticas a lo

Cuadrados mínimos: principio

Introdución

Cannalasiida

Modelo linea

Regresió

Regresión

Estimación

Evaluación del aiuste

Comparación de

Condiciones

Otros tipos o

Criticas a los

Cuadrados mínimos: principio

- Datos
- Modelo y = 10 + 1/6x
- Residual $e_i = y_i \hat{y}_i$

Introdución

Camalaaii4a

Modelo linea

Regresió

Regresión

Estimación

Evaluación del

ajuste Comparación de

modelos

Condiciones

Otros tipos o regresión

Criticas a los

Cuadrados mínimos: principio

- Datos
- Modelo y = 10 + 1/6x
- Residual $e_i = y_i \hat{y}_i$
- $SS = \sum (y_i \hat{y}_i)^2 = 79.85$

Introdución

Correlaciión

Modelo linea

Regresió

Regresión

Estimación Evaluación del

ajuste

Comparación de

modelos

Condicione

Otros tipos d regresión

Criticas a los

Cuadrados mínimos: principio

Introdución

Corrolaciión

Modelo linea

Regresió

Regresión

Estimación

Evaluación del

Comparación de

modelos

Condiciones

regresión

Criticas a los

Cuadrados mínimos: principio

- Datos
- Modelo y = 10 + 1/6x
- Residual $e_i = y_i \hat{y}_i$
- $SS = \sum (y_i \hat{y}_i)^2 = 79.85$
- SS = 30.85
- Modelo seleccionado: SS = 19.58y = 2.03 + 0.48x

Introdución

Correlaciió

Modelo linea

Regresió

Regresió

Evaluación del

ajuste Comparación de

Condicione

Otros tipos

Criticas a lo

Hipótesis nula en regresión

• ¿Cuál seria H_0 ?

Introdución

Correlaciió

Modelo linea

Regresió

Regresión

Evaluación del ajuste

Comparación de modelos

Otros tipos

regresión

Criticas a los

- ¿Cuál seria H_0 ?
- No hay una relación lineal entre las variables

Introdución

Correlaciió

Modelo linea

Regresió

Regresió

Evaluación del

ajuste Comparación de

Condiciones

Otros tipos

Criticas a lo

- ¿Cuál seria H_0 ?
- No hay una relación lineal entre las variables
- Pendiente b = 0

Introdución

Correlaciió

Modelo linea

Regresió

Regresión

Evaluación del

ajuste Comparación de

Condiciones

Otros tipos o

Criticas a los

- ¿Cuál seria H_0 ?
- No hay una relación lineal entre las variables
- Pendiente b = 0
 - \rightarrow Test de Fisher: F

Introdución

Correlaciió

Modelo linea

Regresió

Regresión

Evaluación del ajuste

ajuste Comparación de

Condiciones

Otros tipos

regresión

Criticas a lo modelos

- ¿Cuál seria H_0 ?
- No hay una relación lineal entre las variables
- Pendiente b = 0
 - \rightarrow Test de Fisher: F
 - \rightarrow Test de Student: t

Introdución

Correlaciión

Modelo linea

Regresió lineal

Regresión Estimación

Evaluación del ajuste

Comparación de modelos

Condiciones

regresión

Criticas a los

Varianza explicada

 r^2 : coeficiente de determinación

- ullet Variación de Y explicada por la relación con X
- (coeficiente de correlación)²
- $r^2 \in [0, 1]$
- ¿Como se mejora el ajuste del modelo con pendiente comparado a un modelo sin pendiente?
- r^2 inadecuado para comparar modelos con números de parámetros diferentes

Introdución

Correlaciión

Modelo linea

Regresió lineal

Regresión

Evaluación del ajuste Comparación de

modelos Condiciones

Condiciones

regresión

Criticas a los modelos

Varianza explicada

 r^2 : coeficiente de determinación

- ullet Variación de Y explicada por la relación con X
- (coeficiente de correlación)²
- $r^2 \in [0, 1]$
- ¿Como se mejora el ajuste del modelo con pendiente comparado a un modelo sin pendiente?
- r^2 inadecuado para comparar modelos con números de parámetros diferentes

Introdución

Correlaciión

Modelo linea

lineal

Estimación

Evaluación del ajuste

Comparación de modelos

Condiciones

regresión

Criticas a los

Varianza explicada

 r^2 : coeficiente de determinación

- ullet Variación de Y explicada por la relación con X
- (coeficiente de correlación)²
- $r^2 \in [0,1]$
- ¿Como se mejora el ajuste del modelo con pendiente comparado a un modelo sin pendiente?
- r^2 inadecuado para comparar modelos con números de parámetros diferentes

Introdución

Correlaciión

Modelo linea

Regresió lineal

Estimación Evaluación del

ajuste
Comparación de

modelos Condiciones

Otros tipos d regresión

Criticas a los

Varianza explicada

 r^2 : coeficiente de determinación

- Variación de Y explicada por la relación con X
- (coeficiente de correlación)²
- $r^2 \in [0,1]$
- ¿Como se mejora el ajuste del modelo con pendiente comparado a un modelo sin pendiente?
- r^2 inadecuado para comparar modelos con números de parámetros diferentes

Introdución

Correlaciión

Modelo linea

Regresió lineal

Estimación Evaluación del

ajuste Comparación de

modelos Condiciones

Otros tipos

Criticas a los

Varianza explicada

 r^2 : coeficiente de determinación

- Variación de Y explicada por la relación con X
- (coeficiente de correlación)²
- $r^2 \in [0,1]$
- ¿Como se mejora el ajuste del modelo con pendiente comparado a un modelo sin pendiente?
- r^2 inadecuado para comparar modelos con números de parámetros diferentes

Introdución

Correlaciió

Modelo linea

Regresió lineal

Estimación
Evaluación del
ajuste
Comparación de

modelos

Otros tipos

regresión

Criticas a los

Comparar varios modelos

- Evaluar varias hipótesis → varios modelos
- H_0 : modelo simple, H_1 : modelo más complejo
- Hay que comparar los modelos

Introdución

Correlaciió

Modelo linea

....

lineal Regresión

Estimación Evaluación del ajuste

Comparación de modelos Condiciones

Otros tipos

regresión

Criticas a los modelos

Comparar modelos de regresión

Minimos cuadrados (OLS)

- Ajuste: proporción de varianza explicada
- No-ajuste: proporción de varianza residual
- ⇒ Análisis de varianza

Introdución

Correlaciió

Modelo linea

lineal

Estimación Evaluación del

Comparación de modelos

Condiciones

Otros tipos o

Cuitiana

Comparar modelos de regresión

Minimos cuadrados (OLS)

- Ajuste: proporción de varianza explicada
- No-ajuste: proporción de varianza residual
- ⇒ Análisis de varianza

Introdución

Correlaciión

Modelo linea

D :/

Regresión

Estimación Evaluación del ajuste

Comparación de modelos

Condiciones

Otros tipos o

Criticas a lo

Comparar modelos de regresión

Minimos cuadrados (OLS)

- Ajuste: proporción de varianza explicada
- No-ajuste: proporción de varianza residual
- ⇒ Análisis de varianza

Introdución

Correlaciió

Modelo linea

Regresio

Regresión Estimación Evaluación del

Comparación de modelos

modelos Condiciones

Otros tipos d regresión

regresión

Criticas a los modelos

Comparar modelos de regresión

Minimos cuadrados (OLS)

- Ajuste: proporción de varianza explicada
- No-ajuste: proporción de varianza residual
- ⇒ Análisis de varianza

Máxima verosimilitud (ML)

- Ajuste: tamaño de la verosimilitud
- ⇒ Prueba de la razón de verosimilitud (Likelihood Ratio Test o AIC)

Introdución

Correlaciió

Modelo linea

Regresión

Regresión

Estimación Evaluación del

Comparación de modelos

Condiciones

Otros tipos de regresión

Criticas a los

Comparar modelos de regresión

Minimos cuadrados (OLS)

- Ajuste: proporción de varianza explicada
- No-ajuste: proporción de varianza residual
- ⇒ Análisis de varianza

Máxima verosimilitud (ML)

- Ajuste: tamaño de la verosimilitud
- ⇒ Prueba de la razón de verosimilitud (Likelihood Ratio Test o AIC)

Introdución

Correlaciió

Modelo line

Regresió lineal

Estimación Evaluación del ajuste Comparación de

modelos Condiciones

regresión

Criticas a los modelos

Comparar modelos de regresión (2) Siempre la misma lógica

- Medir el ajuste de cada modelo
- Comparar los ajustes de diferente modelos para examinar hipótesis sobre los parámetros

Ejemplo: presión sanguínea y peso

- Modelo 1: $P = \beta_0 + \varepsilon$
- Modelo 2: $P = \beta_0 + \beta_1 * peso + \varepsilon$
- Comparar M_1 y M_2 es equivalente a evaluar $H_0: \beta_1 = 0$

Introdución

Correlaciió

Modelo linea

Regresió lineal

Estimación Evaluación del ajuste Comparación de

Condiciones

Otros tipos de regresión

Criticas a los

Condiciones del análisis de regresión (1)

- Involucran de los términos de errores (ε_i)
- De la variable dependiente Y
- Importantes para intervalos de confianza
- Importantes para tests de hipótesis con distribución t o F
- Residuales importantes para chequear condiciones

Introdución

Correlaciió

Modelo linea

Regresió

Regresión
Estimación
Evaluación del
ajuste
Comparación de

Condiciones

Condicion

regresión

Criticas a los modelos

Condiciones del análisis de regresión (2)

- Normalidad: ε tiene una distribución normal
- Homogeneidad de la varianza: ε tiene la misma varianza por cada x_i : $\sigma_1^2 = \sigma_2^2 = \ldots = \sigma_i^2 = \ldots = \sigma_\varepsilon^2$
- Independencia: ε son independientes: Los valores de Y para cualquier x_i no influyen los valores de Y para otra x_i

Introdución

Correlaciió

Modelo linea

Regresió lineal

Regresión
Estimación
Evaluación del
ajuste
Comparación de

Condiciones

Otros tipos o

Criticas a los modelos

Condiciones del análisis de regresión (2)

- Normalidad: ε tiene una distribución normal
- Homogeneidad de la varianza: ε tiene la misma varianza por cada x_i : $\sigma_1^2 = \sigma_2^2 = \ldots = \sigma_i^2 = \ldots = \sigma_\varepsilon^2$
- Independencia: ε son independientes: Los valores de Y para cualquier x_i no influyen los valores de Y para otra x_i

Introdución

Correlaciió

Modelo linea

Regresió

Regresión
Estimación
Evaluación del
ajuste
Comparación de

Condiciones

Otros tipos o

regresión

Criticas a los modelos

Condiciones del análisis de regresión (2)

- Normalidad: ε tiene una distribución normal
- Homogeneidad de la varianza: ε tiene la misma varianza por cada x_i : $\sigma_1^2 = \sigma_2^2 = \ldots = \sigma_i^2 = \ldots = \sigma_\varepsilon^2$
- Independencia: ε son independientes: Los valores de Y para cualquier x_i no influyen los valores de Y para otra x_i

Introdución

Correlaciión

Modelo linea

Regres

Regresión

Estimación Evaluación del

ajuste Comparación de

Condiciones

regresión

Criticas a los modelos

Homogeneidad de la varianza

No tendencia

Introdución

Correlaciión

Modelo linea

Regre

Regresión Estimación Evaluación del

ajuste Comparación de

Condiciones

Otros tipos o regresión

Criticas a los modelos

Homogeneidad de la varianza

Heteroscedasticidad

Introdución

Modelo linea

Regres

Regresión
Estimación
Evaluación del
ajuste
Comparación de
modelos
Condiciones

O+--- +i---

regresión

Homogeneidad de la varianza

Heteroscedasticidad

• Test de Levene, test de Barttlett

Introdución

KAR JULY BUSINESS

Regresió

Regresión

Regresio

Evaluación del

ajuste Comparación de

modelos

Condiciones

Otros tipos

Criticas a los

Normalidad de los residuales

Introdución

-

Modelo line

lineal

Regresió

Estimación

Evaluación del

Comparación de

Condiciones

Otros tipos

Criticas a los

Normalidad de los residuales

• Test de Shapiro-Wilk

Introdución

Cannala att

Modelo linea

Regresió

Regresión Estimación Evaluación del

ajuste Comparación de

Condiciones

Otros tipos

Criticas a lo

¿Qué hacer si las condiciones no cumplen?

Residuales no son independentes:

Introdución

Correlaciió

Modelo lines

Regresió

Estimación Evaluación del ajuste Comparación de

modelos Condiciones

Otros tipos

Criticas a los

- Residuales no son independentes:
 - Modelos con efectos aleatorios (random effect models)

Introdución

Correlaciió

Modelo linea

Regresió lineal

Estimación
Evaluación del
ajuste
Comparación de

Condiciones

Otros tipos d

Criticas a los

- Residuales no son independentes:
 - Modelos con efectos aleatorios (random effect models)
- Residuales no son normales:

Introdución

Correlaciió

Modelo lines

Regresió lineal

Estimación
Evaluación del
ajuste
Comparación de

Condiciones

Otros tipos d

Criticas a los

- Residuales no son independentes:
 - Modelos con efectos aleatorios (random effect models)
- Residuales no son normales:
 - Alternativa no parámetrica

Introdución

Correlaciió

Modelo lines

Regresió lineal

Regresión Estimación Evaluación del ajuste Comparación de

Condiciones

Otros tipos d regresión

Criticas a los modelos

- Residuales no son independentes:
 - Modelos con efectos aleatorios (random effect models)
- Residuales no son normales:
 - Alternativa no parámetrica
 - Transformación de los datos log, sqrt, exp . . .

Introdución

Correlaciió

Modelo linea

Regresió lineal

Regresión
Estimación
Evaluación del
ajuste
Comparación de

Condiciones

Otros tipos de

Criticas a los modelos

- Residuales no son independentes:
 - Modelos con efectos aleatorios (random effect models)
- Residuales no son normales:
 - Alternativa no parámetrica
 - Transformación de los datos log, sqrt, exp . . .
 - Modelo lineal generalizado (Generalized Linear Model GLM)

Introdución

Correlaciió

Modelo linea

Regresión

Regresión Estimación Evaluación del ajuste Comparación de

Condiciones

Otros tipos de

Criticas a los modelos

- Residuales no son independentes:
 - Modelos con efectos aleatorios (random effect models)
- Residuales no son normales:
 - Alternativa no parámetrica
 - Transformación de los datos log, sqrt, exp . . .
 - Modelo lineal generalizado (Generalized Linear Model GLM)
- Heterogeneidad de la varianza:

Introdución

Correlaciió

Modelo linea

Regresió

Regresión Estimación Evaluación del ajuste Comparación de

Condiciones

Otros tipos de

Criticas a los modelos

- Residuales no son independentes:
 - Modelos con efectos aleatorios (random effect models)
- Residuales no son normales:
 - Alternativa no parámetrica
 - Transformación de los datos log, sqrt, exp . . .
 - Modelo lineal generalizado (Generalized Linear Model GLM)
- Heterogeneidad de la varianza:
 - GLM

Introdución

Correlaciió

Modelo lines

Regresió

Regresión Estimación Evaluación del aiuste

Comparación de modelos

Condiciones

Otros tipos de regresión

Criticas a los

Si el modelo es inadecuado, se puede. . .

- Transformar variable dependiente
- Transformar ≥ 1 variable explicativa
- Probar otras variables explicativas
- Usar una estructura de error diferente (GLM)
- Usar alternativa no parámetrica (smoothing)
- ullet Usar pesos diferentes por diferentes valores de y

Introdución

Correlaciió

Modelo linea

Regresió

Otros tipos de regresión

Regresión polinomial

Regresión no lineal

Modelos lineales generalizados

Criticas a lo modelos

Regresión polinomial

Introdución

Correlaciió

Modelo line

Regresión

Otros tipos d

regresión

Regresión polinomial

Regresión no lineal

Modelos lineales generalizados

Criticas a lo modelos

Regresión polinomial

Ejemplo: Desintegración radioactiva

Regresión lineal: y = ax + b

Introdución

Correlaciió

iviodeio line

Regresión

Otros tipos de regresión

Regresión polinomial

Regresión no lineal

generalizados

Criticas a lo

Regresión polinomial

- Regresión lineal: y = ax + b
- Regresión polinómica

Introdución

Correlaciió

Modelo linea

Regresión

Otros tipos de

Regresión

Regresión no lineal

Modelos lineales generalizados

Criticas a lo

Regresión polinomial

- Regresión lineal: y = ax + b
- Regresión polinómica
- $X_2 = X^2$

Introdución

Correlaciió

Modelo linea

Regres lineal

Otros tipos de regresión

Regresión

polinomial Regresión i

Modelos lineales

Criticas a lo

Regresión polinomial

- Regresión lineal: y = ax + b
- Regresión polinómica
- $X_2 = X^2$
- $y = ax^2 + bx + c$

Introdución

Correlaciió

Modelo linea

Regres lineal

Otros tipos de

Regresión

polinomial

lineal

Modelos lineales

generalizados

Criticas a lo modelos

Regresión polinomial

- Regresión lineal: y = ax + b
- Regresión polinómica
- $X_2 = X^2$
- $y = ax^2 + bx + c$
- $y = ae^{-bx}$

Introdución

Correlaciió

Modelo linea

Regresion lineal

Otros tipos de regresión

Regresión polinomial

Regresión no

Modelos lineales generalizados

Criticas a los

Regresión polinomial

- Regresión lineal: y = ax + b
- Regresión polinómica
- $X_2 = X^2$
- $y = ax^2 + bx + c$
- $y = ae^{-bx}$
- ¡Descripción, no explicación!

Introdución

Correlaciió

Modelo linea

Regre

Otros tipos de regresión

regresión Regresión

Regresión no lineal

Modelos lineal generalizados

Criticas a los

Regresión no lineal y GAM

Introdución

Correlaciió

Modelo linea

Regre

Otros tipos de

regresión Regresión

Regresión no lineal

Modelos lineale generalizados

Criticas a los modelos

Regresión no lineal y GAM

Introdución

Correlaciión

Modelo linea

Regres

Otros tipos de

regresión Regresión

Regresión no lineal

Modelos lineale generalizados

Criticas a lo modelos

Regresión no lineal y GAM

Introdución

Correlaciión

Modelo linea

lineal

Otros tipos de

Regresión polinomial

Regresión no lineal

Modelos lineale generalizados

Criticas a lo modelos

Regresión no lineal y GAM

Introdución

Correlaciión

Modelo linea

Regres lineal

Otros tipos de

Regresión polinomial

Regresión no lineal Modelos lineal

generalizados

Criticas a lo modelos

Regresión no lineal y GAM

- (nls()
- Teoría: $y = a be^{-cx}$
- No información:
 Modelos Aditivos
 Generalizados
 (Generalized Additive
 Models GAM)

Introdución

Correlaciión

Modelo linea

Regresión lineal

Otros tipos regresión

Regresión polinomia Regresión

lineal Modelos lineales

generalizados

Criticas a los

Recordatorio de vocabulario

- Normalidad de los errores:
 - Modelos lineales
- Normalidad + var. descriptivas continuas/categóricas:
 - Modelos lineales generales
- Errores no normales y/o varianza no homogénea:
 - Modelos lineales generalizados (GLM)

Modelos lineales generalizados

Modelos lineales generalizados (2)

Varianza no constante / residuales no normales

⇒ Se puede especificar la distribución de los errores

- Proporciones (regresión logistica) → Binomial

- Tiempo hasta muerte (varianza aumenta) → Exponencial

Introdución

Correlaciió

Modelo lines

Regresión lineal

Otros tipos

Regresión

lineal Modelos lineales

generalizados

Criticas a los

Modelos lineales generalizados (2)

Varianza no constante / residuales no normales

- ⇒ Se puede especificar la distribución de los errores
- Proporciones (regresión logistica) → Binomial
- Conteos (modelo log-lineal) → Poisson
- Variable dependiente binaria (vivo/muerto) → Binomial
- Tiempo hasta muerte (varianza aumenta) \rightarrow Exponencial

Introdución

Correlacijo

Modelo lines

Regresión

Otros tipos d

Criticas a los modelos

(No) enamorarse de su modelo . . .

- Todos los modelos son incorrectos
- Algunos modelos son mejores que otros
- El modelo correcto nunca se puede conocer con certeza
- Cuanto mas simple el modelo mejor

IIILIOGUCIOI

orrelaction.

Modelo linea

Regresión

Otros tipos d regresión

Criticas a los modelos

Análisis de varianza

Introducción

 $\begin{array}{l} \mathsf{Comparar} \geqslant 2 \\ \mathsf{muestras} \\ \mathsf{\mathsf{\&}Tests} \ t \end{array}$

Definició

Anova simp

Otros disend

Comparar $\geqslant 2$ muestras

Control biológico de las plagas del maíz

Ejemplo: 5 tratamientos

- Nematodos del suelo
- Avispas parásitas
- Nematodos y avispas
- Bacterias
- Control

Introducció

Comparar ≥ 2 muestras

Definiteld

Otros diseño

Control biológico (2)

- Muestra aleatoria por cada tratamiento
- Medida del peso de las mazorcas
 - \Rightarrow Media: μ_i , desviación estándar: σ_i
- ¿Cuál tratamiento produce más choclo?
- ¿Como comparar las medias entre tratamientos?

Comparar ≥ 2 ; Tests t

multiples?

; Tests t repetidos?

1 $H_0: \mu_1 = \mu_2$

2 $H_0: \mu_1 = \mu_3$

3 $H_0: \mu_1 = \mu_4$

4 $H_0: \mu_1 = \mu_5$

6 $H_0: \mu_2 = \mu_3$

6 $H_0: \mu_2 = \mu_4$

 $H_0: \mu_2 = \mu_5$

8 $H_0: \mu_3 = \mu_4$

 \bullet $H_0: \mu_3 = \mu_6$

 $\bullet H_0: \mu_4 = \mu_5$

 Cada hipótesis: riesgo de error de tipo I

Comparar ≥ 2 ; Tests tmultiples?

- **1** $H_0: \mu_1 = \mu_2$
- **2** $H_0: \mu_1 = \mu_3$
- **3** $H_0: \mu_1 = \mu_4$
- **4** $H_0: \mu_1 = \mu_5$
- **6** $H_0: \mu_2 = \mu_3$
- **6** $H_0: \mu_2 = \mu_4$
- $H_0: \mu_2 = \mu_5$
- **8** $H_0: \mu_3 = \mu_4$
- **9** $H_0: \mu_3 = \mu_6$
- $\bullet H_0: \mu_4 = \mu_5$

- Cada hipótesis: riesgo de error de tipo I
- Con 1 hipótesis: $\alpha = 0.05$

Introducción

Comparar $\geqslant 2$ muestras

¿Tests t

multiples?

Allova sillipi

Otros diseños

- **2** $H_0: \mu_1 = \mu_3$
- 3 $H_0: \mu_1 = \mu_4$
- $4 H_0: \mu_1 = \mu_5$
- **5** $H_0: \mu_2 = \mu_3$
- **6** $H_0: \mu_2 = \mu_4$
- $H_0: \mu_2 = \mu_5$
- **8** $H_0: \mu_3 = \mu_4$
- $\mathbf{9} \ H_0: \mu_3 = \mu_6$
- $\mathbf{0} H_0: \mu_4 = \mu_5$

- Cada hipótesis: riesgo de error de tipo I
- Con 1 hipótesis: $\alpha = 0.05$
- ¿Valor de α con 2 hipótesis?

Introducción

Comparar $\geqslant 2$ muestras

¿Tests tmultiples?

Definició

Anova simple

Otros diseños

- **2** $H_0: \mu_1 = \mu_3$
- **4** $H_0: \mu_1 = \mu_5$
- **6** $H_0: \mu_2 = \mu_3$
- **6** $H_0: \mu_2 = \mu_4$
- 7 $H_0: \mu_2 = \mu_5$
- Θ $H_0 \cdot \mu_0 = \mu$
- **9** $H_0: \mu_3 = \mu_6$
- $\mathbf{0} H_0: \mu_4 = \mu_5$

- Cada hipótesis: riesgo de error de tipo I
- Con 1 hipótesis: $\alpha = 0.05$
- ¿Valor de α con 2 hipótesis?
- ¿0.025, 0.05, 0.0725, 0.0975, 0.10?

Introducción

Comparar $\geqslant 2$ muestras

¿Tests tmultiples?

Definición

Anova simple

Otros diseño

- **2** $H_0: \mu_1 = \mu_3$
- **4** $H_0: \mu_1 = \mu_5$
- **6** $H_0: \mu_2 = \mu_3$
- **6** $H_0: \mu_2 = \mu_4$
- $H_0: \mu_2 = \mu_4$ $H_0: \mu_2 = \mu_5$
- II
- **8** $H_0: \mu_3 = \mu_4$
- **9** $H_0: \mu_3 = \mu_6$
- $\mathbf{0} H_0: \mu_4 = \mu_5$

- Cada hipótesis: riesgo de error de tipo I
- Con 1 hipótesis: $\alpha = 0.05$
- ¿Valor de α con 2 hipótesis?
- ¿0.025, 0.05, 0.0725, 0.0975, 0.10?
- $1 Pr(no\ error\ de\ tipo\ I)$

Introducción

Comparar $\geqslant 2$ muestras

¿Tests tmultiples?

Definició

Anova simpl

Otros diseño

- **2** $H_0: \mu_1 = \mu_3$
- **4** $H_0: \mu_1 = \mu_5$
- **6** $H_0: \mu_2 = \mu_3$
- **6** $H_0: \mu_2 = \mu_4$
- 7 $H_0: \mu_2 = \mu_5$
- \bullet $H_0 \cdot \mu_0 = \mu$
- **8** $H_0: \mu_3 = \mu_4$
- **9** $H_0: \mu_3 = \mu_6$
- $\mathbf{0} H_0: \mu_4 = \mu_5$

- Cada hipótesis: riesgo de error de tipo I
- Con 1 hipótesis: $\alpha = 0.05$
- ¿Valor de α con 2 hipótesis?
- ¿0.025, 0.05, 0.0725, 0.0975, 0.10?
- $1 Pr(no\ error\ de\ tipo\ I)$
- $\bullet \ 1 0.95 \cdot 0.95 = 0.0975$

Introducción Comparar ≥ 2

muestras ¿Tests t multiples?

Definición

Anova simpl

Otros diseno

¿Tests t repetidos?

¡Amplifica el riesgo de error de tipo I!

número de muestras i	número de hipótesis j	Riesgo total $1 - 0.95^j$
2	1	0.05
3	3	0.14
4	6	0.26
5	10	0.40
6	15	0.54
10	45	0.90

Introducción

Comparar $\geqslant 2$ muestras

¿Tests tmultiples?

Definició

Anova simpl

Otros diseño

El problema con tests t multiples

- Riesgo de error de tipo I más grande
- Solo considera variación para 2 muestras al mismo tiempo ⇒ precisión baja
- No es posible considerar estructuras complicadas (e.g. 2 factores experimentales)
 - ⇒ El análisis de varianza se encarga de estos problemas

Introducción

Definición

Concepto

Objetivos

Anova simple

Otros diseño

- Variables explicativas categóricas = factores
- $\geqslant 2$ niveles / grupos / tratamientos
- Dividir entre variación no explicada y variación explicada por las variables explicativas
- Ajustar modelos lineales para explicar o predecir valores de la variable dependiente

Introducción

Definición

Concepto

Objetivos /arios tino

Anova simple

Allova simple

Otros diseño

- Variables explicativas categóricas = factores
- $\geqslant 2$ niveles / grupos / tratamientos
- Dividir entre variación no explicada y variación explicada por las variables explicativas
- Ajustar modelos lineales para explicar o predecir valores de la variable dependiente

Introducción

Definición

Concepto

Objetivos Varios tipo

Anova simple

Otros diseño

- Variables explicativas categóricas = factores
- $\geqslant 2$ niveles / grupos / tratamientos
- Dividir entre variación no explicada y variación explicada por las variables explicativas
- Ajustar modelos lineales para explicar o predecir valores de la variable dependiente

Introducción

Definición

Ohietiyos

Objetivos

Anova simple

Otros diseño

- Variables explicativas categóricas = factores
- ≥ 2 niveles / grupos / tratamientos
- Dividir entre variación no explicada y variación explicada por las variables explicativas
- Ajustar modelos lineales para explicar o predecir valores de la variable dependiente

Introducción

Introducción

Concepto Objetivos

Anova simpl

Objetivos del Anova

- Examinar la contribución relativa de diferentes fuentes de variación sobre la cantidad total de variación de la variable dependiente
- Evaluar la hipótesis H_0 que las medias de los grupos / tratamientos son iguales

Introducción

Introducciói

Objetivos

Anova simple

Otros diseño

Objetivos del Anova

- Examinar la contribución relativa de diferentes fuentes de variación sobre la cantidad total de variación de la variable dependiente
- Evaluar la hipótesis ${\cal H}_0$ que las medias de los grupos / tratamientos son iguales

Introducción

Concepto Objetivos

Varios tipos

Anova simple

Otros disend

- 1 factor, 2 niveles → test t
- 1 factor, ≥ 3 niveles \rightarrow anova simple (one-way anova)
- \geqslant 2 factores \rightarrow anova de 2 or 3 factores (two/three-way anova)
- Replicación por cada nivel → diseño factorial ⇒ permite estudiar las interacciones entre variables

Introducción

Objetivos

Varios tipos

Anova simple

Otros diseño

- 1 factor, 2 niveles → test t
- 1 factor, ≥ 3 niveles \rightarrow anova simple (one-way anova)
- \geqslant 2 factores \rightarrow anova de 2 or 3 factores (two/three-way anova)
- Replicación por cada nivel → diseño factorial ⇒ permite estudiar las interacciones entre variables

Introducción

miroduccio

Concepto Objetivos

Varios tipos

Anova simple

Otros disend

- 1 factor, 2 niveles → test t
- 1 factor, ≥ 3 niveles \rightarrow anova simple (one-way anova)
- $\geqslant 2$ factores \rightarrow anova de 2 or 3 factores (two/three-way anova)
- Replicación por cada nivel → diseño factorial ⇒ permite estudiar las interacciones entre variables

Introducción

Introducción

Objetivos Varios tipos

Anova simpl

Otros diseño

- 1 factor, 2 niveles → test t
- 1 factor, ≥ 3 niveles \rightarrow anova simple (one-way anova)
- $\geqslant 2$ factores \rightarrow anova de 2 or 3 factores (two/three-way anova)
- Replicación por cada nivel → diseño factorial ⇒ permite estudiar las interacciones entre variables

Introducción

D 0 . . . /

Anova simple

Ejemplo: ozono

Resumen En el jardín Tabla de anov Condiciones

Otros diseño

Análisis de varianza ¿para comparar medias?

Ejemplo: Cantidad de ozono

- Variable dependiente Y: concentración de ozono
- ullet Variable explicativa: 1 factor JARDÍN, 2 niveles A y B
- 10 réplicas por jardín
- ¿La concentración de ozono es la misma?

Mucha dispersión

- Mucha dispersión
- Concentración media

- Mucha dispersión
- Concentración media

 $y_i - \bar{y}$

- Mucha dispersión
- Concentración media

 $(y_i - \bar{y})^2$

- Mucha dispersión
- Concentración media

$$\sum (y_i - \bar{y})^2$$

- Mucha dispersión
- Concentración media
- $SSY = \sum (y_i \bar{y})^2$
- Residuales: suma total de los cuadrados (total sum of squares SSY)

- Mucha dispersión
- Concentración media
- $SSY = \sum (y_i \bar{y})^2$
- Residuales: suma total de los cuadrados (total sum of squares SSY)
- Variación entre los tratamientos

• ¿Qué pasa con los residuales si $\bar{y}_{A}=\bar{y}_{B}$?

• ¿Qué pasa con los residuales si $\bar{y}_{\scriptscriptstyle A} = \bar{y}_{\scriptscriptstyle B}$?

- ¿Qué pasa con los residuales si $\bar{y}_{\scriptscriptstyle A} = \bar{y}_{\scriptscriptstyle B}$?
- ¿Y si $\bar{y}_A \neq \bar{y}_B$?

- ¿Qué pasa con los residuales si $\bar{y}_{\scriptscriptstyle A} = \bar{y}_{\scriptscriptstyle B}$?
- ¿Y si $\bar{y}_{\scriptscriptstyle A} \neq \bar{y}_{\scriptscriptstyle B}$?
 - $\sum (y_{ij} \bar{y}_j)^2$

- ¿Qué pasa con los residuales si $\bar{y}_A = \bar{y}_B$?
- ¿Y si $\bar{y}_A \neq \bar{y}_B$?
- $SSE = \sum_{j=1}^{k} \sum (y_{ij} \bar{y}_j)^2$

- ¿Qué pasa con los residuales si $\bar{y}_{\scriptscriptstyle A} = \bar{y}_{\scriptscriptstyle B}$?
- ¿Y si $\bar{y}_A \neq \bar{y}_B$?
- $SSE = \sum_{j=1}^{k} \sum (y_{ij} \bar{y}_j)^2$
- Suma de cuadrados del error (Error sum of squares SSE)

- ¿Qué pasa con los residuales si $\bar{y}_{\scriptscriptstyle A} = \bar{y}_{\scriptscriptstyle B}$?
- ¿Y si $\bar{y}_A \neq \bar{y}_B$?
- $SSE = \sum_{j=1}^{k} \sum (y_{ij} \bar{y}_j)^2$
- Suma de cuadrados del error (Error sum of squares SSE)
- Variación dentro de los tratamientos

- ¿Qué pasa con los residuales si $\bar{y}_{\scriptscriptstyle A} = \bar{y}_{\scriptscriptstyle B}$?
- ¿Y si $\bar{y}_A \neq \bar{y}_B$?
- $SSE = \sum_{j=1}^{k} \sum (y_{ij} \bar{y}_j)^2$
- Suma de cuadrados del error (Error sum of squares SSE)
- Variación dentro de los tratamientos
- ξSSE versus SSY ?

- ¿Qué pasa con los residuales si $\bar{y}_{\scriptscriptstyle A} = \bar{y}_{\scriptscriptstyle B}$?
- ¿Y si $\bar{y}_A \neq \bar{y}_B$?
- $SSE = \sum_{j=1}^{k} \sum (y_{ij} \bar{y}_j)^2$
- Suma de cuadrados del error (Error sum of squares SSE)
- Variación dentro de los tratamientos
- ξSSE versus SSY ?
- $\mathsf{i} SSE < SSY!$

miroducci

Definición

Anova simple

Ejemplo: ozone

Resumen

En el jardín

Tabla de ano Condiciones

Otros diseño

Para resumir

Análisis de varianza para comparar medias

• Cuando $\bar{y}_{\scriptscriptstyle A} \neq \bar{y}_{\scriptscriptstyle B}$, SSE < SSY

Introducción

Definición

Anova simple

Eiemplo: ozon

Principio Resumen

En el jardí

Tabla de ano Condiciones

Otros diseño

Para resumir

- Cuando $\bar{y}_{\scriptscriptstyle A} \neq \bar{y}_{\scriptscriptstyle B}$, SSE < SSY
- Variación total = modelo + error

Introducción

Definición

Anova simple

Fiemplo: ozon

Principio Resumen

En el jardín

Condiciones

Otros diseno

Para resumir

- Cuando $\bar{y}_{\scriptscriptstyle A} \neq \bar{y}_{\scriptscriptstyle B}$, SSE < SSY
- Variación total = modelo + error
- SSY = SSA + SSE

Introducción

5 0 1 17

Anova simple

Fiemplo: ozon

Principio Resumen

En el jardín

Tabla de anov Condiciones

Otros disend

Para resumir

- Cuando $\bar{y}_{\scriptscriptstyle A} \neq \bar{y}_{\scriptscriptstyle B}$, SSE < SSY
- Variación total = modelo + error
- SSY = SSA + SSE
- SSA: proporción de varianza explicada

Introducción

Definición

Anova simple

Eiemplo: ozon

Principio Resumen

En el jar

Tabla de anov Condiciones

Otros diseño

Para resumir

- Cuando $\bar{y}_{\scriptscriptstyle A} \neq \bar{y}_{\scriptscriptstyle B}$, SSE < SSY
- Variación total = modelo + error
- SSY = SSA + SSE
- SSA: proporción de varianza explicada
- Si $SSE < SSY \Rightarrow \bar{y}_A \neq \bar{y}_B$

Introducción

Definición

Anova simple

Principio

Resumen

En el jardín

Tabla de ano Condiciones

Otros diseño

De vuelta al jardín . . .

- SSY = 44
- ¿Cuanto es atribuible a la diferencia entre $\bar{y}_{\scriptscriptstyle A}$ y $\bar{y}_{\scriptscriptstyle B}$?
- Jardín A: $SSE_A = 12$, Jardín B: $SSE_B = 12$
- Suma de cuadrados de error $SSE = SSE_A + SSE_B = 12 + 12 = 24$
- Suma de cuadrados del tratamiento: SSA = SSY SSE = 44 24 = 20

Introducción

Definición

Anova simple

Ejemplo: ozon Principio

Resumen En el jardín

Tabla de anova

Condiciones

Otros diseno

Fuente	Suma de cuadrados	Grados de libertad	Cuadrado medio	Razón-F
Jardín	SSA = 20.0	1	20.0	15.0
Error	SSE = 24.0	18	$s^2 = 1.33$	
Total	SSY = 44.0	19		

Introducción

Definición

Anova simple

Principio Resumen

En el jardín Tabla de anova

Otros diseños

Tabla de Anova

Fuente	Suma de cuadrados	Grados de libertad	Cuadrado medio	Razón-F
Jardín	SSA = 20.0	1	20.0	15.0
Error	SSE = 24.0	18	$s^2=1.33$	
Total	SSY = 44.0	19		

• $F_{teo}=4.41$, ¿Qué se puede concluir?

Introducción

Definición

Anova simple

Resumen

En el jardín Tabla de anova

Condiciones

Otros diseño

Fuente	Suma de cuadrados	Grados de libertad	Cuadrado medio	Razón-F
Jardín	SSA = 20.0	1	20.0	15.0
Error	SSE = 24.0	18	$s^2=1.33$	
Total	SSY = 44.0	19		

- $F_{teo} = 4.41$, ¿Qué se puede concluir?
- No se puede aceptar H_0

Introducción

Definición

Anova simple
Ejemplo: ozono
Principio
Resumen
En el jardín
Tabla de anova

Otros diseño

Fuente	Suma de cuadrados	Grados de libertad	Cuadrado medio	Razón-F
Jardín	SSA = 20.0	1	20.0	15.0
Error	SSE = 24.0	18	$s^2=1.33$	
Total	SSY = 44.0	19		

- $F_{teo} = 4.41$, ¿Qué se puede concluir?
- No se puede aceptar H_0
- $\bullet \ \bar{y}_{\scriptscriptstyle A} \neq \bar{y}_{\scriptscriptstyle B}$

Introducción

Definición

Anova simple Ejemplo: ozon Principio Resumen

En el jardín Tabla de anova

Otros diseño

Fuente	Suma de cuadrados	Grados de libertad	Cuadrado medio	Razón-F
Jardín	SSA = 20.0	1	20.0	15.0
Error	SSE = 24.0	18	$s^2=1.33$	
Total	SSY = 44.0	19		

- $F_{teo} = 4.41$, ¿Qué se puede concluir?
- No se puede aceptar H_0
- $\bar{y}_{\scriptscriptstyle A} \neq \bar{y}_{\scriptscriptstyle B}$
- ullet Concentración de ozono es diferente entre los jardines A y B

Introducción

Definición

Anova simple

Principio
Resumen
En el jardín
Tabla de anova

Otros diseño

Condiciones del anova ¡Las mismas que por la regresión!

- Independencia
- Homogeneidad de las varianzas
- Normalidad

¡Condiciones sobre los residuales! \Rightarrow hacer los tests despues del análisis

Definición

Anova simpl

Otros diseño

Diseño factorial

Diseños factoriales

- $\geqslant 2$ factores
- $\geqslant 2$ niveles per factor
- Replicación para cada combinación de niveles
- Interacciones: respuesta a un factor depende del nivel de otro factor

Introducción

Definición

Anova simple

O. 11 ~

Diseño factorial

Reconocer diseños complicados para evitar seudoreplicación (Nested design and Split plots)

- Muestreo jerárquico: medidas repetidas del mismo individuo o estudios con varias escalas espaciales
- Parcelas subdivididas: diferentes tratamientos en diferentes parcelas de diferentes tamaños

Introducción

miroduccio

Anova simple

Otros diseño

Diseño factorial

Tipos de factores

Un ejemplo de diseño "split plot"

Introducción

Definición

Anova simpl

Diseño factoria Tipos de

Factores fijos (Fixed effects)

- Todos los niveles estan incluidos
- No extrapolación fuera de estos niveles
- Si se repite el estudio → mismos niveles
- Modelos con efectos fijos (fixed effects models)
- Anova tipo I
- Ejemplo: nivel de zinc (Fondo, bajo, medio alto), fertilizantes . . .

Introducción

Definición

Anova simpl

Diseño factori Tipos de

Factores aleatorios (Random effects)

- Muestra aleatoria de los niveles posibles
- Inferencia (extrapolación) sobre todos los grupos
- Si se repite el estudio → otros niveles
- Modelos de efectos aleatorios (random effect models)
- Anova tipo II
- Ejemplo: Sitios de estudio, ...