Отчет о выполнении лабораторной работы 3.2.5 Вынужденные колебания в электрическом контуре

Трунов Владимир, группа Б01-103

1 Введение

Цель работы: Исследование вынужденных колебаний в электрическом контуре и процессов их установления.

Оборудование: генератор звуковой частоты, осциллограф, вольтметр, частотометр, конденсатор, катушка индуктивности, магазин сопротивлений.

В работе исследуются вынужденные колебания, возникающие в электрическом контуре (рис??) при подаче на него переменного ЭДС, гармонически изменяющегося со временем. При этом, параметры колебаний будут зависеть как от параметров самого контура — индуктивности катушки, емкости конденсатора, а также его сопротивления, так и от параметров источника ЭДС — частоты колебания ЭДС и амплитуды данных колебаний. Основное явление, которое можно наглядным образом наблюдать в подобной системе — явление резонанса. Резонанс — явление резкого увеличения амплитуды вынужденных колебаний при частотах источника ЭДС близких к собственной частоте контура.

Рис. 1: Схема исследуемого контура

Кривая, описывающая зависимость амплитуды вынужденных колебаний от частоты источника ЭДС называется резонансной кривой. Первая часть работы будет посвящена исследованию резонансных кривых для контура в двух конфигурациях — при наличии постоянного сопротивления контура и при его отсутствии.

Исследование резонансных кривых позволит определить *добротность* контура в различных конфигурациях.

Для этого можно воспользоваться формулой:

$$Q = \frac{\omega_0}{2\Delta\Omega} \tag{1}$$

где ω_0 – собственная частота контура, $\Delta\Omega=|\Omega-\omega_0|$.

Другим же методом, который позволит определить добротность контура является метод исследования процессов установления и затухания колебаний. Данный метод основан на исследовании зависимости амплитуды колебаний в процессе затухания или установления колебаний. График зависимости амплитуды от времени приведен на (рис. ??). В этом случае очень удобно можно получить логарифмический декремент затухания:

Рис. 2: График зависимости амплитуды от времени

$$\Theta = \frac{1}{n} \ln \left(\frac{U_0 - U_k}{U_0 - U_{k+n}} \right) \tag{2}$$

Зная логарифмический декремент затухания, нетрудно выразить добротность контура:

$$Q = \frac{\pi}{\Theta} \tag{3}$$

2 Схема установки

Рис. 3: Схема установки

3 Ход выполнения работы

3.1 Построение резонансных кривых

	R =	= 0 Ом		$R=100~\mathrm{Om}$			
ν, Гц	U, B	I, мк A	A, см	ν, Гц	U, B	I, мк A	A, см
1641	31	45,9	3,80	1639	10,5	$46,\!85$	2,40
1597	19,5	51,1	2,40	1528	7	45,7	1,60
1592	18,2	50,87	2,20	1503	6,2	45,01	1,40
1586	16,6	50,45	2,00	1473	5,5	44,15	1,20
1568	13,1	49,3	1,60	1436	4,6	43,15	1,00
1543	12,9	46,75	1,20	1383	3,7	41,63	0,80
1682	19,6	43,01	2,40	1797	6,9	49,15	1,60
1691	17,7	43,36	2,00	1835	6,1	50,24	1,40
1722	12,7	45,05	1,60	1892	5,3	51,9	1,20
1753	10	46,57	1,20	1979	4,5	54,4	1,00
				2121	3,8	58,3	0,80

Таблица 1: Результаты измерения зависимости амплитуды напряжения колебаний в контуре при R=0 Ом и R=100 Ом

Рис. 4: Резонансная кривая, $R = 0 \, \text{Ом}$

Рис. 5: Резонансная кривая, $R=100\,{
m Om}$

3.2 Исследование процессов установления и затухания колебаний

Для определения добротности с помощью исследования процессов установления и затухания вынужденных колебаний необходимо получить зависимость амплитуды вынужденных колебаний в режиме генератора "цуги". На основе полученных изображений получим зависимость амплитуд напряжений в процессе установления колебаний (Таблица ??) и затухания колебаний (Таблица ??)

		R = 0 Om						R =	= 100	Ом			
n	1	2	3	4	5	6	12	14	1	2	3	4	10
U_n , mm	4	16	24	30	36	42	60	66	15	26	35	39	46

Таблица 2: Результаты измерения зависимости амплитуды вынужденных колебаний при их установлении

	R = 0 Om				I	R = 1	00 Oı	M	
n	1	5	10	12	16	1	2	3	4
U_n , MM	8	12	22	26	46	12	20	36	46

Таблица 3: Результаты измерения зависимости амплитуды вынужденных колебаний при их затухании

4 Получение добротности контура и определение погрешностей

4.1 Исследование установления и затухания колебаний

Для каждого расчета построим таблицу.

$U_{\mathbf{k}}$	$\mathbf{U_{k+n}}$	n	Θ	Q
0.2	0.3	3	0.0959	32.8
0.2	0.4	7	0.0990	31.7
0.4	0.5	7	0.0990	31.7
0.3	0.5	11	0.0999	31.5

Таблица 4: Расчёт добротности на установлении при R=0

$U_{\mathbf{m}}$	$\mathbf{U_{m+n}}$	n	Θ	Q
0.5	0.2	10	0.0916	34.3
0.2	0.1	10	0.0693	45.3
0.3	0.2	4	0.101	31.0
0.6	0.4	5	0.0811	38.7

Таблица 5: Расчёт добротности на затухании при R=0

$\mathbf{U}_{\mathbf{k}}$	$U_k + n$	n	Θ	Q
0.04	0.15	12	0.392	8.00
0.075	0.125	3	0.358	8.79
0.1	0.15	10	0.393	7.99

Таблица 6: Расчёт добротности на установлении при $R=100~{
m Om}$

$\mathbf{U_m}$	$\mathbf{U_m} + \mathbf{n}$	\mathbf{n}	Θ	\mathbf{Q}
0.15	0.025	5	0.358	8.77
0.075	0.025	3	0.366	8.58
0.19	0.1	2	0.321	9.79

Таблица 7: Расчёт добротности на затухании при $R=100~{
m Om}$

Усредним эти значения:

$$Q_{R=0} = 34 \pm 2 \tag{4}$$

$$Q_{R=100} = 8.6 \pm 0.2 \tag{5}$$

4.2 Оценка погрешностей

Погрешности в первом опыте оценивались в предположении, что ошибка U/U_0 существенно больше, чем ν/ν_0 . В свою очередь, погрешность U/U_0 оценивалась по формуле:

$$\sigma_{\frac{U}{U_0}} = \frac{U}{U_0} \sqrt{((\sigma_U/U)^2 + (\sigma_U/U_0)^2)}.$$
 (6)

Погрешности второго опыта рассчитаны в программе *Origin* по формуле стандартной ошибки среднего.

4.3 Теоретический расчёт

Определив параметры контура, занесём их в таблицу $\ref{eq:constraint}$. На их основе рассчистаем Q:

$$Q_{R=0} = 39.125 \pm 0.9 \tag{7}$$

$$Q_{R=100} = 8.15 \pm 0.19 \tag{8}$$

ν , Γ ц	L, мГн	R, Om
50	99.975	22.910
500	99.953	23.975
1500	99.961	25.554

Таблица 8: Параметры RLC-контура

5 Исследование картины биений вблизи собственной частоты контура

Для получения картины биений вблизи собственной частоты контура установим на генераторе частоту такую, что графиком сигнала на осциллографе будет синусоида с максимальной амплитудой. Затем, немного отклонив частоту генератора на экране осциллографа получим картину биений, представленную на рисунке

Рис. 6: Картина биений вблизи собственной частоты контура

6 Итоги

- 1. В данной работе проведены измерения добротности колебательной системы, представляющей собой электрический колебательный контур, состоящий из последовательно соединенных катушки, резистора переменной емкости (магазин сопротивлений) и конденсатора. Получены значения добротности контура в различных конфигурациях: при R=0 Ом и R=100 Ом.
- 2. Проведены измерения погрешностей определения добротности колебательной системы. Установлено, что значения, полученные всеми способами определения добротности колебательной системы, предложенными для проверки, согласуются с теоретическими значениями добротности в различных конфигурациях.
- 3. Наибольшая погрешность возникла при определении добротности с помощью метода анализа резонансной кривой, так как для хорошей статистической обеспеченности полученного результата пришлось брать довольно широкий диапазон частот, для которых проводилось измерение, что привело к увеличению погрешности. кроме того, отдельно отметим тот факт, что при измерении резонансной кривой для конфигурации с нулевым сопротивлением была совершена неточность, которая привела к искусственному расширению кривой (подробно данная ошибка описана в п. 3.1)
- 4. Относительная точность всех измерений не превосходит $\varepsilon_{max} \approx 20\%$
- 5. Наибольший вклад в определение погрешности полученных величин внесли статистические (случайные) ошибки, а так же ошибки, связанные с определением величин амплитуд сигнала на экране осциллографа.
- 6. Установлено, что при R=0 Ом предпочтительнее проводить измерения добротности методом исследования процессов установления и затухания колебаний, нежели исследованием резонансной кривой. Для R=100 Ом недостаточно данных для установления приоритета.
- 7. Полученная картина биений соответствует теоретически предсказанной картине.