Software Systems Verification and Validation

Assoc. Prof. Andreea Vescan Babeș-Bolyai University

> Cluj-Napoca 2018-2019

Lecture 09: Model checking

Spin Model Checker

Outline

- Spin
- Promela Model
 - Statements
 - Examples
- Concurrency and Interleaving Semantics
 - Examples
- Linear Temporal Logic
 - Examples
- JSpin
- Questions

Model checking

Spin

- Developed at Bell Labs.
- In 2002, recognized by the ACM with Software System Award.
- SPIN (= Simple Promela Interpreter)
- is a tool for analyzing the logical consistency of concurrent systems
- Concurrent systems are described in the modelling language called Promela (= Protocol/Process Meta Language)

Promela

- Promela (= Protocol/Process Meta Language)
- allows for the dynamic creation of concurrent processes.
- communication via message channels can be defined to be
 - synchronous (i.e. rendezvous),
 - asynchronous (i.e. buffered).

Promela Model

- Promela model consist of:
 - type declarations
 - channel declarations
 - variable declarations
 - process declarations
 - [init process]
- A process type (proctype) consist of
 - a name
 - a list of formal parameters
 - local variable declarations
 - Body

- A process
 - is defined by a proctype definition
 - executes concurrently with all other processes, independent of speed of behaviour
 - communicate with other processes
 - using global (shared) variables
 - using channels
- There may be several processes of the same type.
- Each process has its own local state:
 - process counter (location within the proctype)
 - contents of the local variables

Statements

- The body of a process consists of a sequence of statements.
- A statement is either
 - executable: the statement can be executed immediately.
 - blocked: the statement cannot be executed.
- An assignment is always executable.
- An expression is also a statement; it is executable if it evaluates to non-zero
- The skip statement is always executable.
 - "does nothing", only changes process' process counter
- A printf statement is always executable (but is not evaluated during verification, of course).
- assert(<expr>);
 - The assert-statement is always executable.
 - If <expr> evaluates to zero, SPIN will exit with an error, as
- the <expr> "has been violated".
 - The assert-statement is often used within Promela models,
- to check whether certain properties are valid in a state.

Examples (01 Simple Examples)

- ReversingDigits.pml
 - Check
 - Random
- DiscriminantOfQuadraticEquation.pml
 - Check
 - Random
- NumberDaysInMonth.pml
 - Check
 - Random
- MaximumNondeterminism.pml
 - Check
 - Random
 - "Branch 1" and "Branch 2"
- Maximum –second example-MaximumIfElse.pml
 - Check
 - Random
- GCD.pml
 - Check
 - Random
- IntegerDivison01.pml
 - Check
 - Random

Concurrency and Interleaving Semantics

02 Concurrency and interleaving semantics

- Promela processes execute concurrently.
 - Non-deterministic scheduling of the processes.
 - Processes are interleaved (statements of different processes do not occur at the same time).
 - exception: rendez-vous communication.
- All statements are atomic; each statement is executed without interleaving with other processes.
- Each process may have several different possible actions enabled at each point of execution only one choice is made, non-deterministically.
- InterleavingStatements.pml
 - Check
 - Random
 - 6 possibilities of the execution
 - n1,p,n2,q;
 - n1,n2,p,q;
 - n1,n2,q,p;
 - n2,q,n1,p;
 - n2,n1,q,p;
 - n2,n1,p,q.
 - Interactive simulation Interactive button
- InterferenceBetweenProcesses.pml
- InterferenceBetweenProcessesDeterministic.pml

Examples 03 Critical section

- CriticalSection Incorrect.pml
 - both processes in the critical section
- CriticalSection_MutualExclusion.pml not satisfied
 - Mutual exclusion at most one process is executing its critical section at any time.
- CriticalSection_With_Deadlock.pml
 - Blocking on an expression user Interactive simulation
 - Absence of deadlock it is impossible to reach a state in which come processes are trying to enter their critical sections, but no process is successful.
- CriticalSection_SolutionAtomic.pml
 - The atomic sequence may be blocked from executing, but once it starts executing, both statements are executed without interference from the other process.

Linear Temporal Logic

- Temporal logic formulae can specify both safety and liveness properties.
- LTL ≡ propositional logic + temporal operators

[]P always P

<>₽ eventually P

P U Q P is true until Q becomes true

Examples 04 LTL examples

- CriticalSection MutualExclusionLTL.pml
 - LTL formula:
 - []mutex
 - Translate
 - Verify
- CriticalSection_MutualExclusionLTL02.pml
 - LTL formula:
 - []mutex
 - Translate
 - Verify
- CriticalSection_With_Starvation.pml
 - LTL formula:
 - <>csp
 - Translate
 - Acceptance
 - Verify

JSpin

- http://spinroot.com/
- Installation JSpin

http://jspin.software.informer.com/5.0/

Surprise!

JSpin

Take Home - Bonus

- PromelaMerryMe question
- Model a system with 2 actor: He/She
- He asks "Merry me" and She "finally" answers "YES".
- LTL property: question is addressed, then eventually YES will be answered
- 2 versions:
 - Use an intermediary state: notDecidedYet
 - Model that: She/He takes 3 seconds to answer.

- Work in teams (2 students)
- Delivery: Lecture 11
- Deliverables
 - Promela program
 - Version 1 with notDecidedYet
 - Version 2 3 seconds to answer
 - LTL properties

- 25 XP
 - Problem + LTL property checked
- Study
 - Lecture09-Demo
 - Lecture09-JSpin-install

Questions

• Thank You For Your Attention!

References

Sources

- [1] Baier Christel, Katoen Joost-Pieter, Principles of Model Checking, ISBN 9780262026499, The MIT Press, 2008
 - Chapter 1 System verification, Chapter 2 Modelling Concurrent systems (pag. 19-20), Chapter 3 (pag. 89, 107, 120-121), Chapter 5 Linear Temporal Logic (pag. 229-233), Chapter 6 Computation Tree Logic (pag. 313-323)
- [2] Ben-Ari, Mordechai, Principles of the Spin Model Checker, ISBN 978-1-84628-770-1, Springer-Verlag London, 2008