Untitled

Frequency distribution of digits of square root of irrational number

```
::: {.cell execution_count=1}
``` {.python .cell-code}
import decimal
from collections import Counter
import matplotlib.pyplot as plt
import seaborn as sns
def Frequency(number, digits):
 d2 = decimal.Decimal(number)
 d = decimal.Context(prec = digits)
 value = d2.sqrt(d)
 div= str(value).split('.')
 vad = div[1]
 splt = [int(i) for i in str(vad)]
 v = Counter(splt)
 color = sns.color_palette("magma",len(v.keys()))
 gr = plt.bar(v.keys(),v.values(), color = color)
 plt.bar_label(gr, label = v.values(),label_type="center", rotation =
 plt.axhline(y = digits//10, color = "red")
 plt.title("Frequncy barplot")
 plt.xlabel("Digits")
 plt.ylabel("Count")
 plt.xticks([0,1,2,3,4,5,6,7,8,9])
 plt.show()
. . .
:::
```

#### Frequency distribution for $\sqrt{2}$ .

Frequency(2,100000)



## Frequency distribution of $\sqrt{3}\,$

Frequency(3,100000)



## Frequency distribution of $\sqrt{5}\,$

Frequency(5,100000)



# Frequency distribution of $\sqrt{7}\,$

Frequency(7,100000)



## Frequency distribution of $\sqrt{11}\,$

Frequency(11,100000)



## Frequency distribution of $\sqrt{5}\,$

Frequency(13,100000)

