1 Ciała, przestrzenie liniowe, liniowa niezależność, eliminacja Gaußa

1.1 Ciała

Zadanie 1. Pokaż, że \mathbb{Z}_p istnieje element odwrotny, tj. dla każdego $a \in \mathbb{Z}_p$ różnego od 0 istnieje a^{-1} takie że $a \cdot a^{-1} = 1$. Możesz to zrobić według następującego schematu:

- dla ustalonego $a \neq 0$ rozważ $a, 2a, 3a, \ldots, (p-1)a;$
- pokaż, że elementy w tym ciągu są niezerowe i różne;
- wywnioskuj z tego, że a ma element odwrotny w \mathbb{Z}_p .

1.2 Przestrzenie liniowe

Zadanie 2. Niech M będzie zbiorem skończonym. Na zbiorze jego podzbiorów 2^M określamy operacje:

$$U + V := V \triangle U$$
, $1 \cdot U = U$, $0 \cdot U = \emptyset$,

gdzie \triangle oznacza różnicę symetryczną, tj. $U\triangle V=(U\setminus V)\cup (V\setminus U)$. Pokaż, że tak określony zbiór jest przestrzenią liniową nad \mathbb{Z}_2 .

1.3 Podprzestrzenie liniowe

Zadanie 3. Niech V — przestrzeń liniowa nad \mathbb{F} oraz $S, T \leq V$ będą podprzestrzeniami przestrzeniV. Zdefiniujmy $S \cap T, S + T \subseteq V$ z operacjami takimi, jak w V:

- $S \cap T$ jako zbiór to $S \cap T$ (przecięcie/iloczyn przestrzeni liniowych)
- $S + T = \{s + t : s \in S, t \in T\}$ (suma przestrzeni liniowych)

Pokaż, że $S \cap T$ oraz S + T są odpowiednio: największą przestrzenią zawartą w S i T oraz najmniejszą zawierającą S i T.

Pokaż też, że dla przestrzeni liniowych S,T nad tym samym ciałem \mathbb{F} , iloczyn kartezjański $S\times T$ z dodawaniem i mnożeniem po współrzednych jest przestrzenia liniowa nad \mathbb{F} .

Zadanie 4. Sprawdź, czy następujące podzbiory \mathbb{R}^n są podprzestrzeniami liniowymi:

- 1. $\{(a, b, c) \in \mathbb{R}^3 : 5a + 2b = 0\}$
- 2. $\{(a, b, c) \in \mathbb{R}^3 : 2a c = 0\}$
- 3. $\{(a,b,c) \in \mathbb{R}^3 : 5a + 2b = 2a c = 0\}$
- 4. $\{(a,b) \in \mathbb{R}^2 : |2a| + |b| = 0\}$
- 5. $\{(a,b) \in \mathbb{R}^2 : |ab| = 1\}$
- 6. $\{(a,b) \in \mathbb{R}^2 : ab = a\}$

Zadanie 5. Pokaż, że zbiór funkcji

$$\{f \in \mathbb{R}^{\mathbb{R}} : \text{zbi\'or } \{r : f(r) \neq 0\} \text{ jest przeliczalny} \}$$

jest podprzestrzenią liniową $\mathbb{R}^{\mathbb{R}}$.

Zadanie 6. Pokaż, że zbiór funkcji

$$\{f \in \mathbb{R}^{\mathbb{R}} : |f(\mathbb{R})| \text{ jest skończony}\}$$

jest podprzestrzenią liniową $\mathbb{R}^{\mathbb{R}}$. $(f(A) \text{ rozumiemy jako } \{f(a) : a \in A\}.)$

Zadanie 7. Pokaż, że każda podprzestrzeń liniowa \mathbb{R}^2 jest jednej z postaci:

- jedynie wektor zerowy: $\{\vec{0}\}$
- \bullet wielokrotności ustalonego wektora z \mathbb{R}^2 (czyli wektory stanowiace prostą przechodzącą przez (0,0))
- całe \mathbb{R}^2 .

1.4 Kombinacje liniowe wektorów

Zadanie 8. Niech V, przestrzeń liniowa nad ciałem \mathbb{F} , $A = \{v_1, v_2, \dots, v_k\} \subseteq V$ zbiór wektorów, zaś $\alpha_1, \dots, \alpha_k \in \mathbb{F}$ ciąg skalarów, takich że $\alpha_1 \neq 0$. Pokaż, że

$$\operatorname{LIN}\left(\left\{\sum_{i=1}^{k} \alpha_{i} v_{i}, v_{2} \dots, v_{k}\right\}\right) = \operatorname{LIN}\left(\left\{v_{1}, v_{2} \dots, v_{k}\right\}\right).$$

Zadanie 9. Przedstaw wektor w jako kombinację podanych wektorów v_1, v_2, \ldots, v_k (lub uzasadnij, że to niemożliwe), nad ciałem \mathbb{R} :

- 1. $w = (1, 5), v_1 = (1, 1), v_2 = (2, 0).$
- 2. $w = (5, 10, 11), v_1 = (1, 2, 3), v_2 = (0, 3, 2), v_3 = (1, 1, 1).$
- 3. $w = (5, 10, 11), v_1 = (1, 2, 3), v_2 = (0, 3, 2), v_3 = (1, 8, 7).$
- 4. $w = (4, 17, 18), v_1 = (1, 2, 3), v_2 = (0, 3, 2), v_3 = (3, 9, 11).$

Zadanie 10. Rozważmy przestrzeń \mathbb{Z}_3^3 (zbiór trzyelementowych ciągów elementów z \mathbb{Z}_3 , nad ciałem \mathbb{Z}_3). Ile wektorów należy do LIN((1,2,1),(2,1,1))? A ile do LIN((1,2,1),(2,1,2))?

Zadanie 1. Pokaż równoważność następujących warunków (dla $B = \{v_1, v_2, \dots, v_k\}$):

- \bullet Zbiór B jest liniowo niezależny.
- Wektor $\vec{\mathbf{0}}$ ma dokładnie jedno przedstawienie w postaci kombinacji liniowej wektorów ze zbioru B.
- Pewien wektor z LIN(B) ma dokładnie jedno przedstawienie w postaci kombinacji liniowej wektorów ze zbioru B.
- ullet Każdy wektor z LIN(B) ma najwyżej jedno przedstawienie w postaci kombinacji liniowej wektorów z B.

Zaneguj powyższe warunki, aby uzyskać charakteryzację zbiorów liniowo zależnych.

2 Baza przestrzeni liniowej, Wymiar

2.1 Eliminacja Gaußa

Zadanie 2. Uzasadnij, że poniższe zbiory wektorów są liniowo niezależne (w odpowiednim \mathbb{R}^n), rozszerz je do bazy (odpowiedniego) \mathbb{R}^n :

- (2,2,7,-1),(3,-1,2,4),(1,1,3,1);
- (2,3,-4,-1),(1,-2,1,3);
- \bullet (4,3,-1,1,1), (2,1,-3,2,-5), (1,-3,0,1,-2), (1,5,2,-2,6);
- (2,3,5,-4,1),(1,-1,2,3,5).

Zadanie 3. Dla poniższych zbiorów wektorów sprawdź, czy są one bazą przestrzeni \mathbb{R}^4 . Jeśli nie, to wybierz z nich maksymalny zbiór liniowo niezależny X i podaj dowolny zbiór wektorów Y, taki że $X \cup Y$ jest bazą.

- $\{(1,0,-1,2),(2,3,4,1),(0,0,1,0)\}$
- $\{(1,1,0,0),(1,0,1,0),(0,0,1,1),(0,1,0,1)\}$
- $\{(1,1,0,0),(1,0,1,0),(0,0,1,1),(0,0,0,1)\}$
- $\{(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)\}$
- $\{(1,0,1,0),(1,0,0,1),(2,0,1,1),(-1,0,1,-2)\}$

Zadanie 4. Rozważamy przestrzenie nad \mathbb{R} . Niech v_1, v_2, \dots, v_n będą liniowo niezależne. Dla jakich wartości $\alpha \in \mathbb{R}$ zbiory wektorów

- $\{\alpha v_1 + v_2, v_1 + \alpha v_2\}$
- $\{v_1 + v_2, v_2 + v_3, v_3 + v_4, \dots, v_{n-1} + v_n, v_n + \alpha v_1\}$

n: Można bezpośrednio z definicji, ale szybciej: zauważ, że v_1, \ldots, v_n są bazą przestrzeni swiej). Można na nich zastosować eliminację Gaußa.

2.2 Baza

Zadanie 5 (Twierdzenie Steinitza o wymianie). Udowodnij Twierdzenie Steinitza o wymianie:

Załóżmy, że V jest przestrzenią skończenie-wymiarową. Niech U—zbiór liniowo niezależny a B jest skończoną bazą V. Pokaż, że albo U jest bazą, albo istnieje $v \in B$, taki że $\{v\} \cup U$ jest liniowo niezależny.

2.3 Wymiar

Zadanie 6. Załóżmy, że dla przestrzeni liniowych U, V (będących podprzestrzeniami W) zachodzi

$$\dim(U+V) = 1 + \dim(U \cap V) .$$

Udowodnij, że suma U+V jest jedną z przestrzeni U,V, a przecięcie $U\cap V$ —drugą.

Zadanie 7. Wyznacz wymiary $LIN(S) \cap LIN(T)$ oraz LIN(S) + LIN(T) dla

- $S = \{(1, 2, 0, 1), (1, 1, 1, 0)\}, T = \{(1, 0, 1, 0), (1, 3, 0, 1)\};$
- $S = \{(1, 1, 1, 1), (1, -1, 1, -1), (1, 3, 1, 3)\}, T = \{(1, 2, 0, 2), (1, 2, 1, 2), (3, 1, 3, 1)\};$
- $S = \{(2, -1, 0, -2), (3, -2, 1, 0), (1, -1, 1, -1)\}, T = \{(3, -1, -1, 0), (0, -1, 2, 3), (5, -2, -1, 0)\}.$

Zadanie 8. Uwaga: w tym zadaniu nie można korzystać z twierdzenia o równoliczności baz ani z lematu o wymianie.

Używając eliminacji Gaußa udowodnij następujące twierdzenie:

Jeśli $B = \{b_1, \ldots, b_k\}$ jest bazą przestrzeni liniowej V, to zbiór liczący k+1 wektorów jest liniowo zależny.

W tym celu wyraź wektory v_1,\dots,v_{k+1} w bazie B i przeprowadź na tej reprezentacji eliminację Gaußa.

Wywnioskuj z tego twierdzenia, że każde dwie bazy przestrzeni skończenie wymiarowej są równoliczne.

2.4 Warstwy

Zadanie 9. Niech $W \leq V$ będą przestrzeniami liniowymi, zaś $U \subseteq V$. Udowodnij, że następujące warunki są równoważne:

- 1. istnieje wektor $u \in V$, taki że U = u + W;
- 2. istnieje wektor $u \in U$, taki że U = u + W;
- 3. dla każdego wektora $u \in U$ zachodzi U = u + W.

Udowodnij też równoważność poniższych warunków:

- 1. istnieje wektor $u \in V$, taki że U-u jest przestrzenią liniową;
- 2. istnieje wektor $u \in U$, taki że U u jest przestrzenia liniowa;
- 3. dla każdego wektora $u \in U$ zbiór U u jest przestrzenią liniową.

Zadanie 10. Niech $V' \leq V$ będzie podprzestrzenią liniową, zaś U i U' jej warstwami. Pokaż, że

$$U = U'$$
 lub $U \cap U' = \emptyset$.

Możesz skorzystać z Zadania 9, nawet jeśli nie potrafisz go udowodnić.

Zadanie 1. Niech V będzie przestrzenią liniową, $W,W' \leq V$ jej podprzestrzeniami, zaś U i U' warstwami tych podprzestrzeni.

Pokaż, że ich przecięcie $U \cap U'$ jest puste lub jest warstwą podprzestrzeni $W \cap W'$.

3 Przekształcenia liniowe

Zadanie 2. Wyznacz bazę obrazu dla następujących przekształceń liniowych (z \mathbb{R}^3)

- F(x, y, z) = (2x + y, 3x z, 5x + y z, -2x + 2y 2z);
- G(x, y, z) = (x + y, y 2z, 3z, x y);
- H(x, y, z) = (x + y, y + z);
- I(x, y, z) = (x + y, 2y + z, y z);
- J(x, y, z) = (x + y, 2x + 2y, 3x + 3y).

$$LIN(F(v_1), \ldots, F(v_k)) = Im F.$$

Wskazówka: Możesz skorzystać z faktu: jeśli $F:V\to W$ oraz LIN $(b_1,\ldots,b_k)=V$ to

Zadanie 3. Które z poniższych przekształceń są liniowe (dziedzinami i przeciwdziedzinami przekształceń są przestrzenie \mathbb{R}^n dla odpowiednich n)?

- L(x,y) = (2x y, x + 3y 1, 5x + 2y),
- L'(x, y, z) = (3x + 5y 2z, 2x y),
- L''(x, y, z) = (x + y + z, -2x z, -2y z).

Dla tych z powyższych przekształceń, które są liniowe znajdź ich rzędy oraz opisz jądra i obrazy.

Zadanie 4. Niech V będzie przestrzenią liniową wymiaru n nad ciałem \mathbb{F} , zaś $F:V\to\mathbb{F}$ niezerowym (tj. istnieje $v\in V$ takie że $F(v)\neq\vec{\mathbf{0}}$) przekształceniem liniowym (takie przekształcenia nazywamy funkcjonalami liniowymi).

- Jaki jest wymiar jądra $\ker F$?
- Ustalmy dowolny wektor $w \in V \setminus \ker F$. Pokaż, że LIN $(\ker F \cup \{w\}) = V$.
- Niech F, G będą dowolnymi funkcjonałami liniowymi na V o tym samym jądrze, tj. ker $F = \ker G$. Korzystając z poprzedniego punktu pokaż, że wtedy istnieje $\beta \in \mathbb{F}$, taka że $F = \beta G$.

Zadanie 5. Dla przestrzeni liniowych \mathbb{F}^n oraz \mathbb{F}^m nad ciałem \mathbb{F} , funkcjonałem dwuliniowym nazywamy dowolną funkcję $F: \mathbb{F}^n \times \mathbb{F}^m \to \mathbb{F}$, taką że dla dowolnych $v \in \mathbb{F}^n, w \in \mathbb{F}^m$ funkcje $F_v: \mathbb{F}^m \to \mathbb{F}$ oraz $F_w: \mathbb{F}^n \to \mathbb{F}$ zadane odpowiednio jako $F_v(y) = F(v,y)$ oraz $F_w(x) = F(x,w)$ są funkcjonałami liniowymi.

Pokaż, że dla dowolnych funkcjonałów liniowych $F_i: \mathbb{F}^n \to \mathbb{F}$ oraz $G_i: \mathbb{F}^m \to \mathbb{F}$, gdzie $i \in \{1, 2, ..., k\}$, funkcja $H: \mathbb{F}^n \times \mathbb{F}^m \to \mathbb{F}$ zdefiniowana wzorem

$$H((x_1,\ldots,x_n),(y_1,\ldots,y_m)) = \sum_{i=1}^k F_i((x_1,\ldots,x_n))G_i((y_1,\ldots,y_m))$$

jest funkcjonałem dwuliniowym.

Zadanie 6. Niech $F: \mathbb{F}^n \to \mathbb{F}$ będzie funkcjonałem liniowym. Pokaż, że istnieją $\alpha_1, \dots, \alpha_n \in \mathbb{F}$ takie że

$$F((x_1,\ldots,x_n)) = \sum_{i=1}^n \alpha_i x_i .$$

Podobnie, niech $G: \mathbb{F}^n \times \mathbb{F}^m \to \mathbb{F}$ będzie funkcjonałem dwuliniowym. Pokaż, że istnieją $\{\alpha_{ij}\}_{\substack{i=1,\ldots,n\\j=1,\ldots,m}}$ z ciała \mathbb{F} takie że

$$G((x_1,\ldots,x_n),(y_1,\ldots,y_j)) = \sum_{i=1}^n \sum_{j=1}^m \alpha_{ij} x_i y_j$$
.

Wskazówka: Wystarczy zadać F na bazie standardowej.

Zadanie 7. Rozważmy przestrzeń wielomianów o stopniu najwyżej 7 nad ciałem \mathbb{Z}_5 oraz przekształcenie liniowe zdefiniowane jako suma pierwszej i drugiej pochodnej, tj.:

$$F(x^{i}) = ix^{i-1} + i(i-1)x^{i-2} ,$$

gdzie $i(i-1)x^{i-2}$ dla i < 2 oznacza 0.

Podaj bazy jądra $\ker F$ i obrazu $\operatorname{Im} F$ tego przekształcenia. Podaj ich wymiary.

wiscego, ze $\dim(V) = \dim(\ker F) + \dim(\operatorname{Im} F)$.

Wskazówka: Możesz skorzystać ze wskazówki do zadania 6 oraz (nieudowodnionego) twierdzenia mó-

Zadanie 8. Dane jest przekształcenie liniowe $F:V\to W.$ Udowodnij, że następujące warunki są równoważne:

- F jest różnowartościowe;
- $\dim(\ker(F)) = 0$;
- $\ker(F)$ składa się z jednego wektora;
- $\dim(\operatorname{Im}(F)) = \dim(V)$.

Zadanie 9. Załóżmy, że dla przekształcenia liniowego $L: \mathbb{R}^2 \to \mathbb{R}^2$ zachodzi $L^3(v) = \vec{\mathbf{0}}$, dla każdego wektora $v \in \mathbb{R}^2$. Pokaż, że wtedy również $L^2(v) = \vec{\mathbf{0}}$, dla każdego wektora v.

Udowodnij uogólnienie tego faktu:

Jeśli dla $L: \mathbb{R}^n \to \mathbb{R}^n$ oraz pewnego k > n zachodzi $L^k(v) = \vec{\mathbf{0}}$ dla dowolnego v, to zachodzi również $L^n(v) = \vec{\mathbf{0}}$.

Wskazówka: Rozważ wektory
$$v, L(v), L^2(v), \ldots, L^n(v)$$
. Są one liniowo zależne.

Zadanie 10. Niech V,W będą przestrzeniami liniowymi nad tym samym ciałem, niech mają one wymiary, odpowiednio, m,n. Pokaż, że przestrzeń liniowa przekształceń liniowych z V w W ma wymiar $m \cdot n$.

oraz
$$F_{i,j}(v_i) = w_j$$
.

Wskazówka: Dla baz
$$v_1,\ldots,v_m,\,w_1,\ldots,w_n$$
 rozważ przekształcenia $F_{i,j},$ takie że $F_{i,j}(v_k)=\vec{\mathbf{0}}$ dla $i\neq k$

Zadanie 11 (Nierówność Frobeniusa; Nie liczy się do podstawy.). Udowodnij, że dla dowolnych przekształceń liniowych F, G, H (o odpowiednich dziedzinach i przeciwdziedzinach) zachodzi:

$$rk(FG) + rk(GH) \le rk(G) + rk(FGH)$$
.

4 Macierze

4.1 Macierze: definicje i podstawowe operacje

Zadanie 1. Pokaż, że dla macierzy A, B, C odpowiednich wymiarów oraz skalara α zachodzą następujące zależności (Id oznacza macierze identycznościową/jednostkową odpowiedniego wymiaru, tj. mającą na przekątnej jedynkę oraz zera w innych miejscach):

$$\operatorname{Id} \cdot A = A \quad B \cdot \operatorname{Id} = B$$

$$A \cdot (B + C) = A \cdot B + A \cdot C$$

$$(A + B) \cdot C = A \cdot C + B \cdot C$$

$$\alpha(A \cdot B) = (\alpha A) \cdot B = A \cdot (\alpha B)$$

$$A[B|C] = [AB|AC]$$

$$\left[\frac{B}{C}\right] A = \left[\frac{BA}{CA}\right]$$

Zadanie 2. Pokaż, że

$$(A \cdot B)^T = B^T \cdot A^T .$$

Zadanie 3. Zdefiniujmy $f_0 = 0, f_1 = 1$ oraz $f_{n+2} = f_{n+1} + f_n$. Rozważmy macierz $M = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$. Pokaż, że dla $k \ge 1$ zachodzi

$$M^k = \begin{bmatrix} f_{k-1} & f_k \\ f_k & f_{k+1} \end{bmatrix} .$$

Rozważając równość $M^{n+k} = M^k \cdot M^n$ wyprowadź zależność:

$$f_{n+k} = f_{k-1}f_n + f_kf_{n+1} = f_kf_{n-1} + f_{k+1}f_n.$$

Zadanie 4. Podaj zwartą postać macierzy (nad \mathbb{R})

$$\begin{bmatrix} \alpha & 1 \\ 1 & \alpha \end{bmatrix}^n .$$

Wskazówka: Postać zwarta nie zawiera sum, wielokropków itp..

Zadanie 5. Oblicz (macierze są nad \mathbb{R})

$$\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}^2; \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}^3; \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \\ 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 2 & 1 & 2 & 2 \\ 2 & 1 & -2 & 2 & 1 & 2 & 2 \\ 2 & 1 & -2 & 2 & 1 & -2 \\ 2 & -2 & 1 & 2 & -2 & 1 \end{bmatrix}.$$

Zadanie 6. Ustalmy macierz A wymiaru $n \times n$. Pokaż, że zbiór macierzy B, takich że AB = BA, jest przestrzenią liniową.

Znajdź wszystkie macierze B wymiaru 2×2 spełniające warunek $B \cdot \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \cdot B$.

Wskazówka: Można na palcach, ale można też prawie bez rachunków: zauważ, że każda macierz komutuje z Id oraz M komutuje z M. Oblicz też wymiar przestrzeni tych macierzy.

Zadanie 7 (Macierze symetryczne). Kwadratową macierz $M = (a_{ij})_{i,j=1,\dots,n}$ nazywamy symetryczną, jeśli $a_{ij} = a_{ji}$ dla każdego i, j (innymi słowy: $M^T = M$).

Niech M,N będą macierzami symetrycznymi rozmiaru $n\times n$. Pokaż, że:

- M + N jest macierzą symetryczną;
- MN jest macierzą symetryczną wtedy i tylko wtedy gdy M,N komutują (tj. MN=NM).

Zadanie 8. Niech M,N będą macierzami górnotrójkątnymi. Pokaż, że:

- ich suma M + N też jest macierzą górnotrójkątną;
- ich iloczyn też jest macierzą górnotrójkatną.

Pokaż też analogiczną własność macierzy dolnotrójkatnych.

4.2 Macierze jako przekształcenie liniowe

Zadanie 9. Wyznacz bazy: obrazu i jądra przekształcenia liniowego zadanego przez macierz (o wyrazach rzeczywistych):

$$\begin{bmatrix} 1 & 0 & 3 & 2 & 0 \\ 2 & 1 & -3 & -3 & 1 \\ 3 & -2 & -1 & 0 & 1 \\ 0 & 3 & 1 & -1 & 0 \end{bmatrix}.$$

Zadanie 10. Niech M będzie macierzą kwadratową $n \times n$. Pokaż, że:

- $\ker(L_M) \subseteq \ker(L_{M^2})$, gdzie L_M to przekształcenie $v \mapsto Mv$, analogicznie L_{M^2} ;
- $\operatorname{rk}(M + M^2) \le \operatorname{rk}(M)$.

Zadanie 11 (Nie takie trudne, ale powiedzmy, że nie liczy się do podstawy). Niech M będzie macierzą wymiaru $n \times n$:

$$M = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 2 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 3 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & n-1 \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{bmatrix}.$$

Oblicz rząd macierzy M^k dla każdego $k \geq 1$.

4.3 Macierze odwracalne

Zadanie 1. Pokaż, że każdą macierz odwracalną A wymiaru $n \times n$ można przedstawić jako iloczyn (pewnej liczby) macierzy elementarnych. Co więcej, macierze $D_{i\alpha}$ mogą być ostatnie lub pierwsze.

Pokaż też, że każdą macierz A wymiaru $n \times n$ można przedstawić jako iloczyn (pewnej liczby) macierzy elementarnych oraz (jednej) macierzy przekątniowej.

i wierszach, potem postępuj podobnie.

Wskazówka: Skorzystaj z łaktu, że używając eliminacji Gaussa można sprowadzić macierz odwracalną do macierzy diagonalnej. Zinterpretuj te operacje jako mnożenie macierzy i odwróć kolejne operacje. Dla macierzy nieodwracalnej skorzystaj z faktu używającego jednocześnie eliminacji na kolumnach

Zadanie 2. Niech A, B będą macierzami kwadratowymi tego samego rozmiaru. Pokaż, że

- ullet Jeśli AB jest odwracalna to A i B również są odwracalne.
- Jeśli A, B są odwracalne, to AB też jest odwracalne i $(AB)^{-1} = B^{-1}A^{-1}$.
- Jeśli A jest odwracalna, to $(A^T)^{-1} = (A^{-1})^T$.
- Jeśli A jest odwracalna, to A^{-1} jest odwracalna i $(A^{-1})^{-1} = A$.

Zadanie 3. Niech M będzie odwracalną macierzą dolnotrójkątną/górnotrójkątną/symetryczną/diagonalną. Pokaż, że M^{-1} również jest dolnotrójkątna/górnotrójkątna/symetryczna/diagonalna.

Zadanie 4. Pokaż, że jeśli A jest macierzą odwracalną a B macierzą odpowiedniego rozmiaru (tzn. taką, że mnożenie AB jest określone) to

$$rk(AB) = rk(B)$$
.

Zadanie 5. Sprawdź, czy podane poniżej macierze są odwracalne i podaj ich macierze odwrotne:

$$\begin{bmatrix} \alpha & 1 \\ 1 & \alpha \end{bmatrix}, \qquad \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}^2, \qquad \begin{bmatrix} 3 & 0 & 2 \\ 0 & 1 & 3 \\ 2 & 2 & 0 \\ 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & -1 & 2 \\ 2 & -1 & 1 & 2 \\ 2 & 1 & 1 & 2 \end{bmatrix}, \qquad \begin{bmatrix} 1 & 2 & -1 & 2 \\ 2 & -1 & 1 & 2 \\ 2 & 1 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 3 & 0 & 2 \\ 0 & 1 & 3 \\ 2 & 2 & 0 \\ 0 & 1 & 0 \end{bmatrix} \ .$$

5 Macierz przekształcenia liniowego w bazie.

Zadanie 6. Wyznacz macierze poniższych przekształceń w bazie standardowej odpowiedniego \mathbb{R}^n :

- $(x_1, x_2, x_3) \mapsto (x_1, x_1 + 2x_2, x_2 + 3x_3);$
- obrót przestrzeni \mathbb{R}^2 o kąt α (w lewo, tj. przeciwnie do ruchu wskazówek zegara);
- symetrii \mathbb{R}^2 względem prostej zadanej równaniem y=2x.

Zadanie 7. Niech V będzie przestrzenią wielomianów o współczynnikach z $\mathbb R$ i stopnia najwyżej 3. Rozważmy układy wektorów x^0, x^1, x^2, x^3 oraz $x^0, x^0 + x^1, x^0 + x^1 + x^2, x^0 + x^1 + x^2 + x^3$. Udowodnij, że są one bazami. Zapisz macierz przejścia między tymi bazami.

Rozważmy przekształcenie $F: V \to V$ zadane jako F(f) = f' + 2f'' + f''', gdzie ' oznacza pochodną. Wyznacz macierz tego przekształcenia w dwóch podanych powyżej bazach.

6 Wyznacznik

Zadanie 8. Oblicz wyznaczniki:

$$\begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 10 & 9 & 8 & 7 & 6 \\ 11 & 12 & 13 & 14 & 15 \\ 20 & 19 & 18 & 17 & 16 \\ 21 & 22 & 23 & 24 & 25 \end{vmatrix}, \begin{vmatrix} 1 & a_1 & a_2 & \dots & a_n \\ 1 & a_1 + b_1 & a_2 & \dots & a_n \\ 1 & a_1 & a_2 + b_2 & \dots & a_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & a_1 & a_2 & \dots & a_n + b_n \end{vmatrix}.$$

Zadanie 9. Oblicz wyznaczniki:

$$\begin{vmatrix} 1 & 5 & 3 & 5 & -4 \\ 3 & 1 & 2 & 9 & 8 \\ -1 & 7 & -3 & 8 & -9 \\ 3 & 4 & 2 & 4 & 7 \\ 1 & 8 & 3 & 3 & 5 \end{vmatrix}, \begin{vmatrix} 4 & -2 & 0 & 5 \\ 3 & 2 & -2 & 1 \\ -2 & 1 & 3 & -1 \\ 2 & 3 & -6 & -3 \end{vmatrix}.$$

Zadanie 10. Na wykładzie podany był dowód rozwinięcia Laplace'a dla pierwszej kolumny. Uogólnij ten dowód na dowolną kolumnę i wiersz, tj. pokaże, że dla dowolnego *j* zachodzi

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{i,j} \det(A_{i,j})$$

oraz dla dowolnego i zachodzi

$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{i,j} \det(A_{i,j}),$$

gdzie $A_{i,j}$ jest minorem powstałym przez wykreślenie z macierzy A jej i-tego wiersza oraz j-tej kolumny.

Wskazówka: Wystarczy transpozycja i zamiana kolumn.

Zadanie 11 (Alternatywny dowód tw. Cauchy'ego; nie liczy się do podstawy). Zadanie to polega na pokazaniu alternatywnego dowodu tw. Cauchy'ego.

Niech A, B, C będą macierzami wymiaru $n \times n$, gdzie C = AB oraz $\operatorname{rk}(A) = \operatorname{rk}(B) = n$.

Rozważ macierz $\begin{bmatrix} A & \mathbf{0} \\ -\operatorname{Id} & B \end{bmatrix}$. Ile wynosi jej wyznacznik?

Pokaż, że przy pomocy operacji kolumnowych (tj. zamiany kolumn i dodawania do kolumny wielokrotności innej kolumny) można macierz $\begin{bmatrix} A & \mathbf{0} \\ -\operatorname{Id} & B \end{bmatrix}$ przekształcić do macierzy $\begin{bmatrix} A & C \\ -\operatorname{Id} & \mathbf{0} \end{bmatrix}$ a tą do

macierzy $\begin{bmatrix} C & A \\ \mathbf{0} & -\operatorname{Id} \end{bmatrix}$. Ile wynosi wyznacznik tej macierzy?

Zadanie 1. Liczby 144228, 532270, 257567, 209270, 289017, 519792 są podzielne przez 17. Udowodnij, że

$$\begin{vmatrix} 1 & 4 & 4 & 2 & 2 & 8 \\ 5 & 3 & 2 & 2 & 7 & 0 \\ 2 & 5 & 7 & 5 & 6 & 7 \\ 2 & 0 & 9 & 2 & 7 & 0 \\ 2 & 8 & 9 & 0 & 1 & 7 \\ 5 & 1 & 9 & 7 & 9 & 2 \end{vmatrix}$$

też dzieli się przez 17. W miarę możliwości — bez obliczania tego wyznacznika.

Wskazówka: \mathbb{Z}_{17} i metoda eliminacji.

Zadanie 2. Niech $A = \begin{bmatrix} a & b & c & d \\ b & -a & d & -c \\ c & -d & -a & b \\ d & c & -b & -a \end{bmatrix}$. Oblicz AA^T i jej wyznacznik. Wywnioskuj z tego, ile wynosi $\det(A)$.

Zadanie 3. Oblicz wyznacznik

$$\begin{vmatrix} 1 & 10 & 100 & 1000 & 10000 & 100000 \\ 0,1 & 2 & 30 & 400 & 5000 & 60000 \\ 0 & 0,1 & 3 & 60 & 1000 & 15000 \\ 0 & 0 & 0,1 & 4 & 100 & 2000 \\ 0 & 0 & 0 & 0,1 & 5 & 150 \\ 0 & 0 & 0 & 0 & 0,1 & 6 \end{vmatrix}$$

Zadanie 4. Pokaż, że układ równań uzyskany przez

- zamianę *i*-tego oraz *j*-tego równania
- dodanie do j-tego równania wielokrotności i-tego
- przemnożenie *i*-tego równania przez stałą $\alpha \neq 0$

jest równoważny wejściowemu.

które są odwracalne.

Wskazówka: Można na palcach, ale prościej jest zinterpretować to jako wierszowe operacje elementarne,

Zadanie 5. Ile rozwiązań ma poniższy układ równań w zależności od parametru λ ? Układ jest nad \mathbb{Z}_{13} , tym samym $\lambda \in \mathbb{Z}_{13}$.

$$\begin{cases} \lambda x + \lambda^2 y + \lambda^3 z = 1 \\ x + \lambda^2 y + \lambda^3 z = \lambda \\ x + y + \lambda^3 z = \lambda^2 \end{cases}.$$

Zadanie 6. Rozwiąż przy użyciu wzorów Cramera, tj. $x_i = \frac{\det(A_{x_i})}{\det(A)}$, układy równań:

$$\begin{bmatrix} 2 & -1 \\ 1 & 16 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 17 \end{bmatrix}, \qquad \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \cos \beta \\ \sin \beta \end{bmatrix}, \qquad \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \\ 2 \end{bmatrix}.$$

Zadanie 7. Ile rozwiązań mają poniższe układy równań (w zależności od parametru p):

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 2 & 1 & 3 & 2 \\ 4 & 1 & 5 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2p \\ p \end{bmatrix}, \qquad \begin{bmatrix} p & p & p \\ 1 & p & p \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} p \\ p \end{bmatrix}.$$

Zadanie 8. Podaj jedno rozwiązanie szczególne oraz postać rozwiązania ogólnego dla:

$$\begin{bmatrix} 2 & 5 & -8 \\ 4 & 3 & -9 \\ 2 & 3 & -5 \\ 1 & 8 & -7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 8 \\ 9 \\ 7 \\ 12 \end{bmatrix}, \quad \begin{bmatrix} -9 & 6 & 7 & 10 \\ -6 & 4 & 2 & 7 \\ -3 & 2 & -11 & -15 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 3 \\ 7 \\ 10 \end{bmatrix}, \quad \begin{bmatrix} 5 & 3 & 5 & 12 \\ 2 & 2 & 3 & 5 \\ 1 & 7 & 9 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 10 \\ 4 \\ 2 \end{bmatrix}.$$

Preferowana metoda eliminacji.

Zadanie 9. Zbadaj ilość rozwiązań w zależności od parametru λ .

$$\begin{bmatrix} -6 & 8 & -5 & -1 \\ -2 & 4 & 7 & 3 \\ -3 & 5 & 4 & 2 \\ -3 & 7 & 17 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 9 \\ 1 \\ 3 \\ \lambda \end{bmatrix}.$$

Zadanie 10. Opisz przestrzeń rozwiązań poniższych układów równań (np. poprzez podanie bazy odpowiedniej przestrzeni liniowej)

Zadanie 1. Udowodnij, że jeśli $\lambda_1, \lambda_2, \dots, \lambda_k$ są różnymi wartościami własnymi macierzy M, to odpowiadające im wektory własne v_1, v_2, \dots, v_k są liniowo niezależne.

Wskazówka: Pokaż przez indukcję po ℓ , że v_{ℓ} jest liniowo niezależny od $\{v_1, \dots, v_{\ell-1}\}$.

Zadanie 2. Pokaż, że jeśli λ jest wartością własną macierzy A to λ^k jest wartością własną A^k .

Zadanie 3. Znajdź wartości własne i odpowiadające im wektory własne dla podanych przekształceń liniowych:

$$L((x, y, z)) = (2x - y, 0, y + z)$$
 oraz $L((x, y, z)) = (0, 0, y)$.

Zadanie 4. Znajdź wartości własne macierzy (nad \mathbb{R}), podaj ich krotności geometryczne i algebraiczne:

$$\begin{bmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{bmatrix}, \begin{bmatrix} 4 & -5 & 7 \\ 1 & -4 & 9 \\ -4 & 0 & 5 \end{bmatrix}.$$

Dla jednej z nich oblicz odpowiadające wektory własne.

Zadanie 5. Znajdź wartości własne i odpowiadające wektory własne przekształcenia $L: \mathbb{R}^3 \to \mathbb{R}^3$:

$$L(x, y, z) = (y + z, x + 2z, 0)$$
.

Zadanie 6. Pokaż, że jeśli λ^2 jest wartością własną macierzy M^2 , to M wa wartość własną λ lub $-\lambda$.

Wskazówka:
$$a^2 - b^2 = (a - b)(a + b)$$

Zadanie 7. Rozważmy macierz kwadratową M oraz jej macierz transponowaną M^T . Udowodnij, że M oraz M^T mają te same wartości własne oraz że dla ustalonej wartości własnej λ

- jej krotności algebraiczne dla M oraz M^T sa takie same;
- \bullet jej krotności geometryczne dla M oraz M^T sa takie same.

$$Wskazowka: det(A) = det(A^T), rk(A) = rk(A^T).$$

Zadanie 8 (Nie liczy się do podstawy). Udowodnij, że dla macierzy kwadratowych A, B wielomiany charakterystyczne macierzy AB oraz BA są takie same.

Wskazówka: Pokaż tezę najpierw dla B odwracalnego. Następnie dla B, które ma na przekątnej najpierw same 1 a potem same 0. Następnie udowodnij (eliminacja Gaußa), że każda macierz M jest iloczynem macierzy elementarnych oraz macierzy ww. postaci.

Zadanie 9. Niech $A:V\to V$ będzie przekształceniem liniowym. Pokaż, że ker A oraz Im A są przestrzeniami niezmienniczymi A.

Zadanie 10. Sprawdź, które z poniższych macierzy są diagonalizowalne.

$$\begin{bmatrix} 7 & -12 & 6 \\ 10 & -19 & 10 \\ 12 & -24 & 13 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{bmatrix}.$$

Zadanie 11. Dla wielomianu $\varphi(x) = \sum_{i=0}^k a_i x^i$ możemy zdefiniować naturalnie wartość tego wielomianu na macierzy kwadratowej, jako $\varphi(M) = \sum_{i=0}^k a_i M^i$, gdzie $M^0 = \operatorname{Id}$.

Niech $M=AJA^{-1}$, gdzie J jest macierzą Jordana (tzn. na przekątnej ma klatki Jordana), zaś φ_M jej wielomianem charakterystycznym. Pokaż, że $\varphi_M(M)$ jest macierzą zerową.

(W pełnej ogólności to zadanie powinno mówić, że A, J są macierzami nad \mathbb{C} , ale w zasadzie nie nie zmienia to w dowodzie: wystarczy, że pokażesz to dla \mathbb{R} .)

Zadanie 1. Niech $\langle \cdot, \cdot \rangle$ będzie standardowym iloczynem skalarnym na \mathbb{R}^n , tj. dla wektorów $v = [v_1, v_2, \dots, v_n]^T$, $u = [u_1, u_2, \dots, u_n]^T$

$$\langle v, u \rangle = \sum_{i=1}^{n} u_i v_i .$$

Pokaż, że

$$\left[\langle u, v \rangle \right] = u^T v .$$

(Formalnie $\langle u,v\rangle$ jest liczbą, a u^Tv macierzą, ale staramy się ignorować takie drobnostki.) Wywnioskuj z tego, że dla dowolnej macierzy M zachodzi

$$\langle u, Mv \rangle = \langle M^T u, v \rangle$$
.

Zadanie 2. Niech M będzie macierzą symetryczną (tj. $M=M^T$) wymiaru $n\times n$ a $\langle\cdot,\cdot\rangle$ będzie standardowym iloczynem skalarnym na \mathbb{R}^n . Pokaż, że

$$\langle u, Mv \rangle = \langle Mu, v \rangle$$

(możesz skorzystać z Zadania 1).

Wywnioskuj z tego, że jeśli $\lambda \neq \lambda'$ są różnymi wartościami własnymi macierzy symetrycznej M o wektorach własnych v oraz v', to $\langle v, v' \rangle = 0$, tj. v i v' są prostopadłe.

Zadanie 3. Niech $B = v_1, \ldots, v_n$ będzie bazą ortonormalną V a $v \in V$ dowolnym wektorem w V. Pokaż, że jeśli $[v]_B = (\alpha_1, \ldots, \alpha_n)^T$ to

$$||v|| = \sqrt{\sum_{i=1}^n \alpha_i^2} .$$

Zadanie 4 (Nierówność Bessela; równość Parsevala). Niech $\{e_1,\ldots,e_k\}$ będą układem ortonormalnym, tj.:

- $\forall i \langle e_i, e_i \rangle = 1;$
- $\forall i \neq j \langle e_i, e_j \rangle = 0$.

(Nie zakładamy, że jest bazą).

Pokaż, że dla dowolnego wektora v:

$$\sum_{i=1}^{k} |\langle e_i, v \rangle|^2 \le ||v||^2$$

i równość dla każdego v implikuje, że $\{e_1, \ldots, e_k\}$ jest bazą.

Zadanie 5 (Macierz Grama, nie liczy się do podstawy). Zdefiniujmy macierz Grama układu wektorów $\{v_1, \ldots, v_k\}$ w przestrzeni V z iloczynem skalarnym jako

$$G(A) = (\langle v_i, v_j \rangle)_{i,j=1,\dots,k}$$
.

Udowodnij, że

- $\det(G(A))$ jest nieujemny
- det(G(A)) = 0 wtedy i tylko wtedy, gdy A jest liniowo zależny.

 $\cdot \gamma_{\Omega} \cdot \cdot \cdot \cdot \cdot \tau_{\Omega}$

Wskazówka: Co dzieje się z macierzą Grama, gdy ortonormalizujemy ten układ wektorów? Alternatywnie: spróbuj przedstawić tę macierz jako iloczyn AA^{T} . Macierz A reprezentuje jakoś wektory

Zadanie 6. Niech V będzie przestrzenią liniową z iloczynem skalarnym nad ciałem \mathbb{R} , zaś $V_1, V_2 \leq V$ jej podprzestrzeniami (z tym samym iloczynem skalarnym). Pokaż, że:

- $V_1 \leq V_2 \iff V_1^{\perp} \geq V_2^{\perp}$,
- $(V_1 + V_2)^{\perp} = V_1^{\perp} \cap V_2^{\perp}$,
- $(V_1 \cap V_2)^{\perp} = V_1^{\perp} + V_2^{\perp}$.

Zadanie 7. Zdefiniujmy iloczyn skalarny na przestrzeni wielomianów jako

$$\langle g, h \rangle = \frac{1}{2} \int_{-1}^{1} g(x)h(x) dx$$
.

Dokonaj ortonormalizacji (dowolnej) bazy przestrzeni wielomianów stopnia nie większego niż 2. Zrzutuj prostopadle na tą przestrzeń wielomiany x^3 oraz $x^3 - x^2 + x - 1$.

Wskazówka: Do drugiej części: to jest rzut. Co więcej, rzut jest przekształceniem liniowym.

Zadanie 8. Uzupełnij do bazy a następnie zortonormalizuj podane układy wektorów:

- $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}), (\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2});$
- \bullet $(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}), (\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}).$

Zadanie 9. Dokonaj ortonormalizacji baz:

- (1,2,2),(1,1,-5),(3,2,8);
- (1,1,1),(-1,1,-1),(2,0,1).

Zadanie 10. Niech V: przestrzeń liniowa z iloczynem skalarnym, B: baza V, a $F:V\to V$: przekształcenie liniowe. Pokaż, że F jest izometrią wtedy i tylko wtedy, gdy

$$\forall_{u,v \in B} \langle F(u), F(v) \rangle = \langle u, v \rangle$$
.

Tj. gdy F zachowuje iloczyn skalarny wektorów z bazy.

Zadanie 11. Pokaż, że następujące przekształcenia są izometriami.

- ullet obrót o kąt α na płaszczyźnie
- zamiana jednej ze współrzędnych (w bazie ortonormalnej) na przeciwną. (Przez "współrzędne" rozumiemy standardowe współrzędne \mathbb{R}^n .)

Zadanie 1. Udowodnij, że jeśli M jest macierzą ortogonalną, to $det(M) \in \{-1, 1\}$. Wywnioskuj z tego, że jeśli F jest izometrią, to $det F \in \{-1, 1\}$.

Zadanie 2. Niech b_1, \ldots, b_n będzie bazą przestrzeni liniowej \mathbb{R}^n (nad \mathbb{R}) ze standardowym iloczynem skalarnym $\langle \cdot, \cdot \rangle$. Niech M będzie macierzą kwadratową $n \times n$ o elementach z \mathbb{R} .

Pokaż, że M jest ortogonalna wtedy i tylko wtedy, gdy dla każdych i, j

$$\langle b_i, b_i \rangle = \langle Mb_i, Mb_i \rangle$$
.

Zadanie 3 (Nierówność Hadamarda, nie liczy się do podstawy). Niech $M = [C_1|C_2|\cdots|C_n]$ będzie macierzą kwadratową a C_1,\ldots,C_n jej kolumnami. Pokaż, że

$$|\det(M)| \le \prod_{i=1}^n ||C_i|| ,$$

gdzie $||\cdot||$ to długość w standardowym iloczynie skalarnym. Pokaż też, że jeśli M jest ortogonalna, to obie strony są równe.

stronami równości?

Wskazówka: Potraktuj kolumny M jako wektory i przeprowadź ortonormalizację. Co się dzieje ze

Zadanie 4. Sprawdź, czy podane poniżej macierze są dodatnio określone:

$$\begin{bmatrix} 1 & 2 & 0 \\ -2 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 2 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 6 & 2 & 4 \\ 2 & 1 & 1 \\ 4 & 1 & 5 \end{bmatrix}, \begin{bmatrix} 6 & 7 & 3 & 3 \\ 7 & 15 & 7 & 3 \\ 3 & 7 & 11 & 1 \\ 3 & 3 & 1 & 2 \end{bmatrix}.$$

Zadanie 5. Przedstaw poniższe macierze dodatnio określone w postaci B^TB .

$$\begin{bmatrix} 3 & 2 & 1 \\ 2 & 4 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 9 \end{bmatrix}.$$

dardowa, zas A: baza ortonormalna.

Wskazówka: Dla przypomnienia: jako macierz B możesz wziąć macierz M_{EA} , gdzie E to baza stan-

Zadanie 6. Pokaż, że:

- suma dwóch macierzy dodatnio określonych jest dodatnio określona;
- macierz odwrotna do macierzy dodatnio określonej jest dodatnio określona.

Zadanie 7. Niech $M=(m_{i,j})_{i,j=1,\dots,n}$ będzie macierzą dodatnio określoną. Udowodnij, że

$$|\det(M)| \leq \prod_{i=1}^n m_{ii}$$
.

Wskazówka: Skorzystaj z nierówności Hadamarda.

Zadanie 8. Na podstawie poniższych tabel działań określ, który zbiór z działaniem jest grupą.

Zadanie 9. Podaj tabelkę działań grupy obrotów i symetrii kwadratu.

Zadanie 10. Rozważamy trzy grupy:

- 1. grupą symetrii trójkąta równobocznego (trzy obroty i trzy symetrie osiowe),
- 2. grupą obrotów sześciokąta foremnego,
- 3. grupą $(\mathbb{Z}_6, +_6)$ (czyli z dodawaniem mod 6).

Przedstaw ich tabelki działań. Które z tych grup są izomorficzne?

Zadanie 11. Pokaż, że $(ab)^{-1} = b^{-1}a^{-1}$.

Pokaż, że równość

$$(ab)^r = a^r b^r$$

zachodzi dla dowolnego r (naturalnego) oraz dowolnych $a,b\in G$ wtedy i tylko wtedy, gdy grupa G jest przemienna.

Zadanie 1. Pokaż, że, z dokładnością do izomorfizmu, istnieje tylko jedna grupa trzyelementowa (dokładniej: $(\mathbb{Z}_3, +)$) oraz dwie grupy czteroelementowe: $(\mathbb{Z}_4, +)$ oraz $\mathbb{Z}_2 \times \mathbb{Z}_2$ z dodawaniem po współrzednych.

Wskazówka: W drugim punkcie: jakie są możliwe rzędy elementów?

Zadanie 2. Niech H_1 i H_2 będą podgrupami grupy G.

- Pokaż, że $H_1 \cup H_2$ nie musi być podgrupą G.
- Pokaż, że jeśli $H_1 \cup H_2$ jest podgrupą G, to $H_1 \leq H_2$ lub $H_2 \leq H_1$.
- Pokaż, że jeśli G jest przemienna, to $\langle H_1 \cup H_2 \rangle = \{h_1 h_2 : h_1 \in H_1, h_2 \in H_2\}$. (Dla przypomnienia: $\langle A \rangle$ to najmniejsza grupa generowana przez A.)
- Jeśli $\{H_i\}_{i\in I}$ jest dowolną kolekcją podgrup G, to również $\bigcap_{i\in I} H_i$ jest podgrupą G.

Zadanie 3. Centralizatorem elementu a w grupie G nazywamy zbiór elementów przemiennych z a, czyli

$$G(a) = \{b \in G : ab = ba\} .$$

Centrum grupy G nazywamy zbiór

$$Z(G) = \{a : \forall b \in G : ab = ba\}$$

(czyli: przemiennych ze wszystkimi elementami w G). Udowodnij, że dla dowolnej grupy G i elementu a centralizator G(a) oraz centrum Z(G) są podgrupami G. Pokaż też, że

$$Z(G) = \bigcap_{g \in G} G(g) .$$

Zadanie 4. Czy zbiór $\{e, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)\}$ z działaniem składania permutacji jest podgrupą grupy S_4 ? Czy jeśli dodamy do tego zbioru wszystkie cykle trzyelementowe to czy otrzymamy podgrupą S_4 ?

Zadanie 5. Niech S_n będzie grupą permutacji n elementów. Pokaż, że:

- $\langle (i, i+1); (1, 2, 3, ..., n) \rangle = S_n$ dla dowolnego i = 1, ..., n-1;
- $\langle (1,2); (2,3,\ldots,n) \rangle = S_n$.

Zadanie 6 (Grupa alternująca). Udowodnij, że jeśli G jest podgrupą grupy permutacji S_n to

- zbiór G_p permutacji parzystych z G jest podgrupą G;
- $|G_p| = |G|$ lub $|G_p| = \frac{|G|}{2}$.

W przypadku, gdy $G = S_n$ to ta podgrupa G_p to grupa alternująca A_n .

Zadanie 7. Dla macierzy $(a_{i,j})_{i,j=1,2,...,n}$ rozpatrzmy funkcje:

$$f((a_{i,j})_{i,j=1,2,\dots,n}) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{\sigma(i),i} ,$$

$$f'((a_{i,j})_{i,j=1,2,...,n}) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}$$
.

Pokaż, że obie definiują wyznacznik.

Wskazówka: Możesz np. sprawdzić, że spełnia aksjomaty wyznacznika. Tylko zamiana kolumn jest nietrywialna: rozpatrz, jak zmienia się znak konkretnego iloczynu po zamianie kolumn.

Zadanie 8. Pokaż, że każda permutacja z A_n (czyli permutacja parzysta) jest złożeniem cykli trzy-elementowych.

dwóch takich cykli.

Wskazówka: Pokaż najpierw, że iloczyn dwóch transpozycji da się przedstawić jako złożenie najwyżej

Zadanie 9. Dla podanych poniżej permutacji σ

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 7 & 4 & 1 & 2 & 9 & 8 & 3 & 5 & 10 & 6 \end{pmatrix} ,$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ 12 & 5 & 7 & 14 & 6 & 2 & 1 & 10 & 4 & 9 & 13 & 3 & 11 & 8 \end{pmatrix} ,$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ 7 & 3 & 10 & 1 & 13 & 14 & 9 & 6 & 4 & 12 & 5 & 2 & 11 & 8 \end{pmatrix} .$$

podaj permutację odwrotną σ^{-1} ; rozłóż σ oraz σ^{-1} na cykle. Podaj rząd σ oraz σ^{-1} . Określ ich parzystość.

Zadanie 10. • Wyznacz permutacje odwrotne do permutacji $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 4 & 5 & 2 \end{pmatrix}$ oraz $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 2 & 1 & 3 \end{pmatrix}$.

- Przedstaw permutację $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 3 & 7 & 8 & 10 & 11 & 2 & 6 & 5 & 4 & 9 & 1 & 12 \end{pmatrix}$ jako złożenie cykli rozłącznych.
- Przedstaw permutacje $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 3 & 4 \end{pmatrix}$ oraz $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 2 & 5 & 4 & 1 \end{pmatrix}$ jako złożenia transpozycji.
- Jakie są rzędy permutacji z powyższych podpunktów?

Zadanie 1. Znajdź grupę obrotów sześcianu.

interpretacle.

Wskazówka: Oblicz rząd grupy używając zależności $|O_c|\cdot |G_c| = |G|$; każdy obrót ma naturalną

Zadanie 2. Wyznacz rzędy grup obrotów brył platońskich: czworościanu foremnego, sześcianu foremnego, ośmiościanu foremnego, dwunastościanu foremnego, dwudziestościanu foremnego.

$$Wskazówka: |O_c| \cdot |G_c| = |G|.$$

Zadanie 3 (Grupa dihedralna). Rozpatrzmy grupę obrotów i odbić n-kąta foremnego (nazywamy ją $grupą \ dihedralną \ D_n$). Ile ma ona elementów? Pokaż, że nie ma innych przekształceń zachowujących ten wielokąt (tj. przekształceń z wierzchołków w wierzchołki, które zachowują sąsiedztwo wierzchołków).

$$Wskazówka: |O_c| \cdot |G_c| = |G|.$$

Zadanie 4. W grupie S_{10} rozpatrzmy grupy generowane przez

1.
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 5 & 8 & 3 & 9 & 4 & 10 & 6 & 2 & 1 & 7 \end{pmatrix}$$

$$2. \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 7 & 4 & 6 & 1 & 8 & 3 & 2 & 9 & 5 & 10 \end{pmatrix}$$

3.
$$(1,6,9)(2,10)(3,4,5,7,8)$$
.

Dla każdego elementu ze zbioru $\{1, 2, ..., 10\}$ wyznacz jego orbitę oraz stabilizator dla naturalnego działania działania tych podgrup na zbiorze $\{1, 2, ..., 10\}$.

Zadanie 5. Rozpatrzmy kwadraty, w których malujemy wierzchołki na biało lub czerwono. Dwa kwadraty uznajemy za identyczne, jeśli można je przekształcić na siebie przez obrót. Ile jest rozróżnialnych kwadratów mających

- 0
- 1
- 2
- 3
- 4

wierzchołków białych? Jak zmieni się odpowiedź, jeśli dopuścimy też symetrie kwadratu?

Zadanie 6. W pięciokącie foremnym prowadzimy wszystkie pięć przekątnych. Dzielą one ten pięciokąt na dziesięć trójkątów oraz jeden (mniejszy) pięciokąt foremny. Każdą z tych jedenastu figur kolorujemy na jeden z pięciu (różnych) kolorów. Uzyskaną figurę możemy obracać oraz przekładać na drugą stronę (czyli działać na niej grupą obrotów i symetrii pięciokąta foremnego). Ile jest rozróżnialnych (ze względu na obroty i symetrie) takich kolorowań tej figury przy użyciu pięciu kolorów?

Zadanie 7. W grupie obrotów kwadratu opisz warstwy (prawostronne i lewostronne) podgrupy generowanej przez obrót o 180⁰.

W grupie obrotów i symetrii kwadratu opisz warstwy (prawostronne i lewostronne) podgrupy generowanej przez

- obrót o 180° .
- obrót o 90⁰.
- symetrię wzdłuż przekątnej (wybierz dowolną).

Zadanie 8. Opisz warstwy lewostronne i prawostronne podgrupy S_3 w S_4 . Czy potrafisz uogólnić tę obserwację na dowolne $S_{n-1} \leq S_n$?

Wskazówka: Można na palcach, ale zastanów się, co się dzieje z obrazem/przeciwobrazem 4?

Zadanie 9 (Nie liczy się do podstawy). Pokaż, że dla dwóch permutacji σ, τ permutacja $\tau^{-1}\sigma\tau$ ma taki sam rozkład na cykle, jak permutacja σ .

Korzystając z tego faktu pokaż, że podgrupa $\{e, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)\} \leq S_4$ jest podgrupą normalną (w S_4). Wybierz dwie nietrywialne warstwy i wymnóż je jako elementy grupy ilorazowej.

Zadanie 10. Znajdź wszystkie podgrupy normalne w grupie obrotów i odbić kwadratu. Dla najmniej licznej z nich podaj tabelę działań w grupie ilorazowej (tj. grupie warstw podgrupy normalne).

Zadanie 11. Załóżmy, że H jest podgrupą G, a N podgrupą normalną G. Pokaż, że wtedy

$$HN = \{hn : h \in H, n \in N\}$$

jest podgrupa G.

Załóżmy, że grupy N_1, N_2 są normalne w G. Pokaż, że N_1N_2 jest podgrupą normalną.

Zadanie 1. Wykonaj poniższe obliczenia modulo 3 oraz 5. Oznaczenie 62^{-1} oznacza element odwrotny do $62 \mod 3 \le \mathbb{Z}_3$ (analogicznie $\le \mathbb{Z}_5$).

- $-(125 \cdot 18 + 32 \cdot 49)^{-1} \cdot (75 \cdot 27 16 \cdot 7) + (77 \cdot 22^{-1} 18 \cdot 255);$
- $15^7 343^{12} \cdot 241^4 + 175 \cdot 123 (176^{-1})^4 \cdot 121^2$.

Zadanie 2. Rozpatrz działanie algorytmu Euklidesa na dwóch kolejnych liczbach Fibonacciego. Jak wygląda para liczb trzymanych po k-tym kroku? Udowodnij, że dla pary liczb (F_{n+1}, F_{n+2}) algorytm wykonuje przynajmniej n kroków.

Pokaż, że algorytm Euklidesa (w którym zastępujemy a przez $a \mod b$, a nie a przez a-b) wykonuje $\mathcal{O}(\log(a) + \log(b))$ kroków.

Wskazówka: Pokaż, że w jednym kroku któraś z liczb zmniejsza się o połowę.

Zadanie 3. Uogólnij algorytm Euklidesa dla większej liczby liczb m_1, m_2, \ldots, m_k . Pokaż, że nwd $(m_1, \ldots, m_k) = \sum_{i=1}^k x_i m_i$ dla pewnych liczb całkowitych x_i .

c
λ
juje bostébn
j ql
s $m_2 m_3 \dots m_k.$

Wskazówka: Rozważ, co zwraca algorytm Euklidesa dla dwóch liczb m_1 oraz $m_2m_3\cdots m_k$. Rekuren-

Zadanie 4. Pokaż, że dla liczb całkowitych a,b>0 są dokładnie dwie pary liczb całkowitych (x,y), takich że:

- xa + yb = nwd(a, b) oraz
- $|x| < \frac{b}{\text{nwd}(a,b)}, |y| < \frac{a}{\text{nwd}(a,b)}.$

Pokaż ponadto, że w jednej z tych par x jest dodatnie, a y niedodatnie, zaś w drugiej odwrotnie.

Wskazówka: Wydziel najpierw przez nwd(a,b).

Zadanie 5. Oblicz nwd dla następujących par liczb. Przedstaw je jako kombinację liniową (o współczynnikach całkowitych) tych liczb.

$$\{743, 342\}, \{3812, 71\}, \{1234, 321\}.$$

Zadanie 6. Pokaż, że jeśli n, m są względnie pierwsze, to $\varphi(nm) = \varphi(n) \cdot \varphi(m)$.

Wskazówka: Możesz z Chińskiego tw. o resztach; da się też "na palcach", ale nie jest to takie łatwe.

Zadanie 7. Ile wynosi $\varphi(p^k)$, gdzie p jest liczbą pierwszą a $k \geq 1$? Używając Zadania 6, określ, ile wynosi $\varphi(p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdots p_k^{\alpha_k})$ dla p_1, p_2, \ldots, p_k —różnych liczb pierwszych.

Zadanie 8. Oblicz φ dla następujących liczb: 7, 9, 27, 77, 143, 105. Możesz skorzystać z Zadania 7.

Zadanie 9. Przypomnijmy, że Chińskie twierdzenie o resztach mówi, że gdy m_1, m_2, \ldots, m_k są parami względnie pierwsze, to naturalny homomorfizm z $\mathbb{Z}_{m_1 \cdot m_2 \cdots m_k}$ w $\mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2} \times \cdots \times \mathbb{Z}_{m_k}$ jest izomorfizmem.

Pokaż, że obrazem $\mathbb{Z}_{m_1 \cdots m_2 \cdots m_k}^*$ (czyli elementów odwracalnych w $\mathbb{Z}_{m_1 \cdots m_2 \cdots m_k}$) tego izomorfizmu jest $\mathbb{Z}_{m_1}^* \times \mathbb{Z}_{m_2}^* \times \cdots \times \mathbb{Z}_{m_k}^*$.

Zadanie 10. Podaj dowolne rozwiązanie w liczbach naturalnych poniższych układów równań.

$$\begin{cases} x \mod 7 &= 2 \\ x \mod 5 &= 1 \end{cases} \begin{cases} x \mod 7 &= 1 \\ x \mod 5 &= 4 \end{cases} \begin{cases} x \mod 9 &= 5 \\ x \mod 11 &= 6 \end{cases} \begin{cases} x \mod 9 &= 8 \\ x \mod 11 &= 3 \end{cases}.$$

Zadanie 1. Wyznacz największy wspólny dzielnik par wielomianów (o ile nie jest napisane inaczej: w $\mathbb{R}[x]$)

- $x^4 + 2x^3 13x^2 14x + 24$ oraz $x^4 + 10x^3 + 35x^2 + 50x + 24$;
- $x^4 + 2x^3 + 2x^2 + x + 4$ oraz $x^4 + 4$ (w $\mathbb{Z}_5[x]$);
- $x^4 2x^3 19x^2 + 8x + 60$ oraz $x^4 + 5x^3 + 5x^2 5x 6$:
- $x^4 + x^3 + 2x^2 + 2x$ oraz $x^4 + 2x^3 + 2x^2 + x$ (w $\mathbb{Z}_3[x]$).

W którymś z przykładów wyraź nwd jako kombinację podanych wielomianów.

Zadanie 2. Wyznacz f+g, $f \cdot g$ dla podanych wielomianów f,g. Podziel też podane pary wielomianów. (O ile nie jest napisane inaczej: w $\mathbb{R}[x]$):

- $f = x^4 + 4x^3 x^2 16x 10$, $g = x^2 4$;
- $f = x^4 + 4x^3 x^2 15x 11$, $g = x^2 4x + 3$;
- $f = x^4 + 1$, $g = x^2 + 3x + 2$ (w $\mathbb{Z}_5[X]$);
- $f = x^2 + 1$, g = x + 1 (w $\mathbb{Z}_2[X]$);
- $f = x^p + 1$, g = x + 1 (w $\mathbb{Z}_p[X]$ dla p—pierwszego).

Wskazówka: Do ostatniego: policz, ile wynosi $(x+1)^p$ w \mathbb{Z}_p .

Zadanie 3. Niech \mathbb{F} będzie ciałem zaś $\mathbb{F}[x]$ pierścieniem wielomianów o współczynnikach z tego ciała. Udowodnij, że każdy wielomian $f \in \mathbb{F}[x]$ da się przedstawić jednoznacznie (z dokładnością do kolejności czynników) w postaci $f = c \cdot f_1 \cdot f_2 \cdots f_k$, gdzie $c \in \mathbb{F}$ jest stałą, a każde $f_i \in \mathbb{F}[x]$ jest wielomianem nierozkładalnym o wiodącym współczynniku równym 1.

Wskazówka: Założenie o współczynniku równym 1 jest tylko po to, by uniknąć arbitralności w wyborze współczynnika wiodącego, co prowadzi do "różnych" rozkładów.

Zadanie 4. Udowodnij uogólnienia twierdzenia z wykładu:

Niech f będzie wielomianem nierozkładalnym a $p_1p_2 \dots p_\ell$ wielomianami w $\mathbb{F}[x]$ oraz $f^k|p_1p_2 \dots p_\ell$. Wtedy istnieją liczby n_1, n_2, \dots, n_ℓ , takie że $\sum_i n_i \geq k$ oraz dla każdego i zachodzi $f^{n_i}|p_i$.

Zadanie 5. Korzystając z tw. Bezout rozłóż poniższe wielomiany z $\mathbb{Z}_2[x]$ na czynniki nierozkładalne

$$x^5 + x^3 + x + 1$$
, $x^4 + x^3 + x^2 + 1$, $x^5 + x^2 + x$, $x^4 + x^2 + 1$, $x^4 + x^2 + x$.

Potraktuj powyższe wielomiany jako wielomiany z $\mathbb{Z}_3[x]$ i również rozłóż je na czynniki nierozkładalne. • europejszczeniu \mathfrak{F} s eiu

Wskazówka: Być moze konieczne tez będzie osobne zastanowienie się, które wielomiany drugiego stop-

Zadanie 6. Wielomian f ma resztę z dzielenia przez $x-c_1$ równą r_1 oraz resztę z dzielenia przez $x-c_2$ równą r_2 . Ile wynosi reszta z dzielenia f przez $(x-c_1)(x-c_2)$?

Wystarczy, że zapiszesz zależność na współczynniki tego wielomianu, nie musisz jej rozwiązywać.

Wskazówka: Skorzystaj z tw. Bezout.

Zadanie 7. Oblicz wartości podanych wielomianów w odpowiednich pierścieniach:

$$x^4 + 3x^2 - 2x + 1 \le 2$$
, w \mathbb{Z}_7 ; $2x^3 - x^2 + x - 2 \le 1$, w \mathbb{Z}_3 ; $3x^4 - 3x^3 + 4x - 5 \le 2$, w \mathbb{Z}_6

Zadanie 8. Niech f, g, f', g', a będą niezerowymi wielomianami z pierścienia wielomianów $\mathbb{F}[x]$. Załóżmy, że f = af' oraz g = ag'.

- Jeśli h' = nwd(f', g'), to ile wynosi nwd(f, g)?
- Jeśli h', r' są ilorazem oraz resztą z dzielenia f' przez g', to ile wynosi iloraz, a ile reszta z dzielenia f przez g?

Zadanie 9. Dane są dwa niezerowe wielomiany $f,g\in\mathbb{F}[x]$ o współczynnikach z ciała \mathbb{F} . Załóżmy, że f=f'f'' oraz nwd(f',g)=1. Celem zadania jest pokazania, jak odtworzyć reprezentację nwd(f,g) jako kombinacji wielomianów f,g z analogicznych reprezentacji dla f'',g oraz f',g.

- Pokaż, że nwd(f,g) = nwd(f'',g).
- Niech $\operatorname{nwd}(f'',g) = af'' + bg$ oraz $1 = \operatorname{nwd}(f',g) = cf' + dg$ dla odpowiednich wielomianów $a,b,c,d \in \mathbb{F}[x]$. Wyraź $\operatorname{nwd}(f,g)$ jako kombinację wielomianów f,g; kombinacja ta zapewne będzie używać wielomianów a,b,c,d,f'.

Zadanie 10. Wylicz resztę z dzielenia następujących wielomianów przez x-c dla podanych wartości c (jeśli nie jest powiedziane inaczej: wielomiany są z $\mathbb{R}[x]$).

- $x^3 5x^2 + 3x + 1$, $c \in \{0, 1, 2\}$;
- $2x^3 + 2x^2 + x + 1 \in \mathbb{Z}_5[x], c \in \{1, 2, 3\};$
- $4x^2 + 3x 2$, $c \in \{-1, 0, 1\}$;
- $x^3 + 2x^2 + 2x + 2 \in \mathbb{Z}_3[x], c \in \{-1, 0, 1\}.$

Zadanie 1. Celem tego zadania jest pokazanie, że wielomiany nierozkładalne w $\mathbb{R}[x]$ są stopnia najwyżej 2. Możesz korzystać z (nie tak prostego) twierdzenia, że wielomiany nierozkładalne nad $\mathbb{C}[x]$ są stopnia najwyżej 1. W tym zadaniu utożsamiamy wielomian z jego wartościowaniem a \overline{x} będzie oznaczać sprzężenie (w \mathbb{C}) liczby zespolonej x.

Ustalmy wielomian $f \in \mathbb{R}[x]$.

- Pokaż, że dla liczby zespolonej c zachodzi $f(\bar{c}) = \overline{f(c)}$.
- Wywnioskuj z tego, że jeśli $c \in \mathbb{C}$ jest miejscem zerowym wielomianu f, to jest nim też \bar{c} .
- Pokaż, że wielomian $(x-c)(x-\overline{c})$ ma współczynniki rzeczywiste.
- Wywnioskuj z tego, że jeśli f jest nierozkładalny (w $\mathbb{R}[x]$), to jest stopnia najwyżej 2.

Zadanie 2. Operację różniczkowania wielomianów nad dowolnym ciałem definiujemy tak jak w przypadku liczb rzeczywistych, tzn. $\left(\sum_{i=0}^{n} a_i x^i\right)' = \sum_{i=1}^{n} i a_i x^{i-1}$.

Udowodnij, że w dowolnym pierścieniu wielomianów o współczynnikach z ciała różniczkowanie ma te same własności, co w przypadku współczynników rzeczywistych, tzn.:

- jest liniowa: $(\alpha f + \beta g)' = \alpha f' + \beta g'$ dla $\alpha, \beta \in \mathbb{F}, f, g \in \mathbb{F}[x]$
- (fg)' = f'g + fg' dla $f, g \in \mathbb{F}[x]$.

do przypadku, w którym $f=x^k,g=x^\ell$.

Wskazówka: Przy dowodzeniu drugiego punktu skorzystaj z punktu pierwszego i sprowadz problem

Zadanie 3. Udowodnij, że dla wielomianu $f \in \mathbb{F}[x]$ liczba $\alpha \in \mathbb{F}$ jest pierwiastkiem k-krotnym tego wielomianu wtedy i tylko wtedy gdy $\overline{f}(\alpha) = \overline{f'}(\alpha) = \overline{f''}(\alpha) = \cdots = \overline{f^{(k-1)}}(\alpha) = 0$.

Zadanie 4. Rozważmy wielomiany o współczynnikach z ciała \mathbb{F} . Dla jakich a, b wielomian

$$X^5 + aX^3 + b$$

ma pierwiastek podwójny (dopuszczamy większe krotności), jeśli

- $\mathbb{F} = \mathbb{R}$?
- $\mathbb{F} = \mathbb{Z}_3$?
- $\mathbb{F} = \mathbb{Z}_5$?

Możesz skorzystać z Zadania 3, nawet jesli nie umiesz go udowodnić.

0=0zs
ro0=nidskyzidyni orozo iswach sakon orozo iswach orozo
 λ

Zadanie 5. Niech \mathbb{F} będzie ciałem skończonym o n elementach. Pokaż, że w $\mathbb{F}[x]$ prawdziwa jest zależność:

$$x^n - x = \prod_{a \in \mathbb{F}} (x - a)$$

Wskazówka: Porównaj pierwiastki obydwu wielomianów oraz ich wiodące współczynniki.

Zadanie 6. Znajdź wielomiany najniższego możliwego stopnia, spełniające warunki

- $\overline{f}(-1) = -12$, $\overline{f}(0) = -7$, $\overline{f}(1) = -6$ (w \mathbb{R});
- $\overline{g}(0) = 3$, $\overline{g}(1) = 4$, $\overline{g}(4) = 3$ (w \mathbb{Z}_5);
- $\overline{h}(0) = 1$, $\overline{h}(1) = 2$, $\overline{g}(h) = 0$ (w \mathbb{Z}_3);
- $\bar{i}(1) = 3$, $\bar{i}(2) = 6$, $\bar{i}(4) = 2$ (w \mathbb{Z}_7);

• $\overline{j}(1) = 3$, $\overline{j}(2) = 10$, $\overline{j}(3) = 23$ (w \mathbb{R}).

Zadanie 7. Udowodnij, że nie istnieją kody korygujące błędy, które poprawiają więcej błędów, niż kody Reeda-Salomona.

W tym celu pokaż, że jeśli w \mathbb{F}^k , które traktujemy jako k-elementowe wektory elementów z \mathbb{F} , mamy wybrane $|\mathbb{F}|^n$ wektorów, to któreś dwa z nich różnią się na najwyżej n-k+1 pozycjach. ${}_{}^{}$ oupóżniądsm ozspep y-u

Wskazówka: Podziel całe \mathbb{F}^n na "stożki": jeden stożek ma ustalone pierwsze k współrzędnych i dowolne

Zadanie 8. Opisz konstrukcję ciała o ośmiu elementach. Wskaż generator grupy multiplikatywnej (np. zgadując go i sprawdzając, że rzeczywiście jest generatorem).

Zadanie 9. Znajdź wszystkie wielomiany nierozkładalne stopnia 2 w $\mathbb{Z}_3[x]$. Dla każdego z nich opisz konstrukcję ciała o dziewięciu elementach. Wskaż izomorfizmy między tymi ciałami.

Zadanie 10. Na wykładzie wspomnieliśmy (bez dowodu), że dla liczby pierwszej p istnieje wielomian nierozkładalny stopnia m w $\mathbb{Z}_p[x]$. Udowodnij to stwierdzenie dla m=2.

Wskazówka: Zlicz wszystkie wielomiany stopnia 2 w $\mathbb{Z}_p[x]$ oraz wszystkie rozkładalne wielomiany stopnia 2 w $\mathbb{Z}_p[x]$: zauważ, że muszą się one rozkładać na wielomiany stopnia 1.