Composable graphs with \mathcal{MMR} queries over vector stores.

Composability allows you to to define lower-level indices for each document, and higher-order indices over a collection of documents. For e.g. imagine defining (1) a tree index for the text within each document, and (2) a list index over each tree index (per document) within your collection.[1]

Querying the index or a graph involves a three main components:

Retreivers \rightarrow	Response Synthesizer \rightarrow	Query Engine
A retriever class retrieves a set of Nodes from an index given a query.	This class takes in a set of Nodes and synthesizes an answer given a query.	This class takes in a query and returns a Response object. It can make use of Retrievers and Response Synthesizer modules under the hood.

For the query logic itself we will use maximum marginal relevance or \mathcal{MMR} . In this we iteratively find documents that are dissimilar to previous results. It has been shown to improve performance for LLM retrievals [2].

The maximum marginal relevance algorithm is as follows:

$$\text{MMR} = \arg \max_{d_i \in D \setminus R} [\lambda \cdot Sim_1(d_i, q) - (1 - \lambda) \cdot \max_{d_j \in R} Sim_2(d_i, d_j)]$$

Here, D is the set of all candidate documents, R is the set of already selected documents, q is the query, Sim_1 is the similarity function between a document and the query, and Sim_2 is the similarity function between two documents. d_i and d_j are documents in D and R respectively.

The parameter λ (mmr_threshold) controls the trade-off between relevance (the first term) and diversity (the second term). If mmr_threshold is close to 1, more emphasis is put on relevance, while a mmr_threshold close to 0 puts more emphasis on diversity.

How to use

1. Rename .env.sample to .env and set environment variables OPENAI_API_KEY.

```
# within main folder
mv .env.example .env
echo "OPENAI_API_KEY=<your/key/here>" >> .env
```

2. Run App

streamlit run main.py

$\begin{tabular}{ll} \mathbb{C} omposable \mathbb{G} raphs with \mathbb{V} ector indices for \mathcal{LLM} queries. \end{tabular}$

What are the origins of manu?	
Submit	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

3. Technologies used

- 1. openai
- 2. llamaindex
- 3. langchain
- 4. streamlit

$\begin{tabular}{ll} \mathbb{C} omposable \mathbb{G} raphs with \mathbb{V} ector indices for \mathcal{LLM} queries. \end{tabular}$

Indices

All example indices can be found in the **storage**/ folder for loading/reusing in other projects! They are primarily based on CC-commons Indic literature and history corpus from gutenberg.