mongoDB

Introducción a MongoDB ¡Bienvenidos!

Fernando Marín fernando@mongodb.com @fmarinperez

Agenda de hoy

- ¿Porqué existe NoSQL?
- Tipos de bases de datos NoSQL
- Características clave de MongoDB
- Tolerancia a fallos y persistencia de datos en MongoDB
- Escalabilidad en MongoDB
- Preguntas

250 Mb \$ 81.000

250 Mb \$ 81.000

250 Mb \$ 81.000 Dennis Ritchie Brian Kernighan \$ 8.000/año ... (los dos)

Relational: RDBMS

PERSON

Pers_ID	Surname	First_Name	City	
0	Miller	Paul	London	
1	Ortega	Alvaro	Valencia	NORE
2	Huber	Urs	Zurich	
3	Blanc	Gaston	Paris	
4	Bertolini	Fabrizio	Rome	
Car_ID				
Car_ID				
	Model	Year	Value	Pers_ID
01	Model Bently	Year 1973	Value 100000	Pers_ID 0
101 102 103	Bently	1973	100000	0
102 103	Bently Rolls Royce	1973 1965	100000 330000	0
102 103 104 105	Bently Rolls Royce Peugeot Ferrari Renault	1973 1965 1993 2005 1998	100000 330000 500 150000 2000	0 0 3 4 3
102 103 104 105	Bently Rolls Royce Peugeot Ferrari Renault	1973 1965 1993 2005	100000 330000 500 150000 2000	0 0 3 4 3

Relational: RDBMS

Relational: RDBMS

El origen de NoSQL (2000's)

- Google y Amazon
 - Sistemas distribuídos
 - Open source
 - No relacionales

El origen de NoSQL (2000's)

- Google y Amazon
 - Sistemas distribuídos
 - Open source
 - No relacionales

Mayo 2009 → twitter hashtag #nosql

El origen de NoSQL (2000's)

- Google y Amazon
 - Sistemas distribuídos
 - Open source
 - No relacionales

Mayo 2009 → twitter hashtag #nosql

Tipos de Bases de Datos NoSQL

- Key-Value
- Wide Column
- Graph
- Document

Key Value Stores

Key Value Stores

Key Value Stores

- An associative array
- Single key lookup
- Very fast single key lookup

Key	Value
12345	4567.3456787
12346	{ addr1 : "The Grange", addr2: "Dublin" }
12347	"top secret password"
12358	"Shopping basket value : 24560"
12787	12345

- A series of consecutive seeks can retrieve a column efficiently
- Compressing similar data is super efficient
- So reads can grab more data off disk in a single seek
- How do I align my rows? By order or by inserting a row ID
- IF you just need a small number of columns you don't need to read all the rows
 - But → Updating and deleting by row is expensive
- Append only is preferred
- Better for OLAP than OLTP

Graph Stores

- Store graphs (edges and vertexes)
- E.g. social networks
- Designed to allow efficient traversal
- Optimised for representing connections
- Can be implemented as a key value stored with the ability to store links
- If your use case is not a graph you don't need a graph database

Document Store

- Not PDFs or Microsoft Word.
- Documents are rich structures like XML or Javascript Object Notation (JSON)

```
name : "Rubén Terceño",
title : "Senior Solutions Architect",
employee number : 653,
location : {
                 type : "Point",
                 coordinates : [ 43.34, -3.26 ]},
expertise: [ "MongoDB", "Java", "Geospatial" ],
address : {
                          address1 : "Recoletos 11",
                          address2 : "Piso 1, Oficina 2",
                          zipcode : "28010",
```

Documents are Rich Structures

```
name : "Rubén Terceño", < String
                      title : "Senior Solutions Architect",
                      employee number : 653,
                    location : {
                                      type : "Point",
Fields
                                      coordinates : [ 43.34, -3.26 ]},
                      expertise: [ "MongoDB", "Java", "Geospatial" ], Fields can contain arrays
                      address : {
                                      address1 : "Recoletos 11",
                                      address2 : "Piso 1, Oficina 2",

<u>√</u> zipcode : "28010",
```

Document Stores

The CAP theorem

Agenda de hoy

- ¿Porqué existe NoSQL?
- Tipos de bases de datos NoSQL
- Características clave de MongoDB
- Tolerancia a fallos y persistencia de datos en MongoDB
- Escalabilidad en MongoDB
- Preguntas

Relational

Relational / Expressive Query Language & Secondary Indexes

- Queries to access data in sophisticated ways
- Indexes for efficient access to data for reads/writes
- Table stakes for a database

pressive Query Language & Secondary Indexes Strong Consistency Enterprise Management

Relational / Strong Consistency

- Provide the most up-to-date copy of the data
- Complicated to build an application around eventually consistent model, even for the most sophisticated teams

pressive Query Language & Secondary Indexes Strong Consistency Enterprise Management & Interprise Management

Relational / Enterprise Management & Integrations

Database is just one piece of the puzzle and it needs to fit into the enterprise IT stack:

- Streamline ops according to best practices
- Visualize data / schema to make informed decisions and ensure data integrity
- Encrypt data & restrict access to database in accordance with existing security infrastructure
- Employ standard BI and visualization tools

The World Has Changed

Data Risk Time Cost

Information Management Has Changed

Your Data Has Changed

Big Data Driving Factors

What are the primary data issues driving you to consider Big Data?*

"Of Gartner's "3Vs" of big data (volume, velocity, variety), the variety of data sources is seen by our clients as both the greatest challenge and the greatest opportunity."

FORRESTER[®]

^{*} From Big Data Executive Summary of 50+ execs from F100, gov orgs

Development – Methods are Changing

Development – Agile Methodology

Software Has Changed

- Higher up-front costs
- Higher TCO

- Lower up-front costs
- Lower TCO

NoSQL

NoSQL / Flexibility

- Allows faster iteration
- Accommodates various data types
- Data models include document, key-value, wide column

NoSQL / Scalability & Performance

- Scalability through partitioning / sharding
- NoSQL databases designed to deliver better performance than a relational database

NoSQL / Always On, Global Deployments

Support highly available systems that provide a consistent, highquality experience to end users around the world with:

- Run across many computers
- Automatically synchronize data across servers, racks, data centers

Nexus Architecture

Introducción a MongoDB

MongoDB

The leading NoSQL database

General Purpose

Open-Source

MongoDB Business Value

Enabling New Apps

Faster Time to Market

Better Customer Experience

Lower TCO

Fortune 500 & Global 500

40 of the Top Financial Services Institutions

15 of the Top Retailers

15 of the Top Telcos

15 of the Top Technology Companies

15 of the Top Healthcare Companies

10 of the Top Electronics Companies

10 of the Top Media and Entertainment Companies

About MongoDB, Inc.

500+ employees

13 offices worldwide

2,000+ customers

\$311M in funding

MongoDB Use Cases

Single View

stripe

Internet of Things

Mobile

FOURSQUARE

Parse

Real-Time Analytics

Catalog

Personalization

ıntuıt

Content Management

Aer Lingus 🚜

apervita

PEARSON

NBCUniversal

City of Chicago

BuzzFeed

The Weather Channel

theguardian

4th Most Popular, Fastest Growing

RANK	DBMS	MODEL	SCORE	GROWTH (20 MO)
1.	Oracle	Relational DBMS	1,442	-5%
2.	MySQL	Relational DBMS	1,294	2%
3.	Microsoft SQL Server	Relational DBMS	1,131	-10%
4.	MongoDB	Document Store	277	172%
5.	PostgreSQL	Relational DBMS	273	40%
6.	DB2	Relational DBMS	201	11%
7.	Microsoft Access	Relational DBMS	146	-26%
8.	Cassandra	Wide Column	107	87%
9.	SQLite	Relational DBMS	105	19%

Source: DB-engines database popularity rankings; May 2015

The Largest Ecosystem

20,000,000+

MongoDB Downloads

400,000+

Online Education Students

40,000+

MongoDB Cloud Manager Users

35,000+

MongoDB User Group Members

1,000+

Technology and Services Partners

2,000+

Customers Across All Industries

Fastest-Growing Database

MongoDB named A LEADER

in The Forrester Wave™: Big Data NoSQL, Q3 2016

The Forrester Wave™ is copyrighted by Forrester Research, Inc. Forrester and Forrester Wave are trademarks of Forrester Research, Inc. The Forrester Wave is a graphical representation of Forrester's call on a market and is plotted using a detailed spreadsheet with exposed scores, weightings, and comments. Forrester does not endorse any vendor, product, or service depicted in the Forrester Wave. Information is based on best available resources. Opinions reflect judgment at the time and are subject to change.

MongoDB named a leader in The Forrester Wave™: Big Data NoSQL, Q3 2016

Achieving the highest possible scores in 19 of the 26 criteria, MongoDB believes that this report indicates its strength and versatility as an all-purpose database for a variety of mission-critical use cases.

5 out of 5 Points for:

- Data Types
- Streaming and Loading
- Big Data Support
- In-memory
- Performance
- Scalability
- High Availability & Disaster Recovery

- Tools
- Workloads
- Use Cases
- Ability to Execute
- Road Map
- Open Source and Licensing
- Support

The Forrester Wave™ is copyrighted by Forrester Research, Inc. Forrester and Forrester Wave are trademarks of Forrester Research, Inc. The Forrester Wave is a graphical representation of Forrester's call on a market and is plotted using a detailed spreadsheet with exposed scores, weightings, and comments. Forrester does not endorse any vendor, product, or service depicted in the Forrester Wave. Information is based on best available resources. Opinions reflect judgment at the time and are subject to change.

MongoDB named a leader in The Forrester Wave™: Document Stores, Q3 2016

MongoDB received the highest scores possible in

20 of the 27

criteria evaluated, including performance, scalability, tooling, road map, support, product revenue and reach.

The Forrester Wave™ is copyrighted by Forrester Research, Inc. Forrester and Forrester Wave are trademarks of Forrester Research, Inc. The Forrester Wave is a graphical representation of Forrester's call on a market and is plotted using a detailed spreadsheet with exposed scores, weightings, and comments. Forrester does not endorse any vendor, product, or service depicted in the Forrester Wave. Information is based on best available resources. Opinions reflect judgment at the time and are subject to change.

MongoDB named a LEADER in two key Forrester Waves:

The Forrester Wave™: Big Data NoSQL, Q3 2016

The Forrester Wave™: Document Stores, Q3 2016

Operational Database Landscape

- Document Transactions
- Fast, Scalable Read/Writes

Why other Databases Fall Short

Relational Model

In many use cases it's designed to

Scale-up Throughput & Cost make Scale-Up **Impractical**

Scale-Up clusters were never meant to handle today's volumes

How MongoDB Makes it Easy

Document Model

Scale-out

Flexible Multi-Structured Schema is designed to adapt to changes

Scale-out to the end of The World and distribute data where it needs to be

Relational Model

EmplD	Name	Dept	Title	Manager	Payband
9950	Dunham, Justin	Marketing	Product Manager	Neray,Graha m	С

EmpBenPlanI D	₽ ₩e	Den	brmal	ise &
1	9950	100		f ~
2	9950	Materi	alize	IOI

PlanID	Benefit	Plan
100	Health	PPO Plus
200	Dental	Standard

TitleID	Title
1500	Product Manager

Relation Potomeent Model

EmplD	Name	Dept	Title	Manager	Payband	
	Dunham,	Marketing	Product Manager	Neray,Graha m	Health	PPO Plus
	Justin				Dental	Standard

We Denormalise &

```
_id : 9950,
employee_name: "Dunham, Unitate rialize for
department : "Marketing",
title : "Product Manager, Web",
report_up: "Neray, Graham"
pay_band: "C",
benefits : [

{ type : "Health",
    plan : "PPO Plus" } Simplicity
    fype : "Dental",
    plan : "Standard" }
```

No SQL But Still Flexible Querying

Rich Queries

 Find everybody who opened a special account last month in NY between \$100 and \$1000 OR last year more than \$500

Aggregation

 What is the average P&L of the trading desks grouped by a set of date ranges

Text Search

 Find all tweets that mention the bank within the last 2 days

Geospatial

Find all customers that live within 10 miles of NYC

Map Reduce

 Calculate total amount settled position by symbol by settlement venue

How MongoDB Makes it Easy

In-Place Analytics

In Database Analytics provides application scalability

Security

Authentication, Authorization, Auditing and Encryption protect your data

Development - The Past

Development – With MongoDB

Replica Sets

- Replica set 2 to 50 copies
- Replica sets make up a self-healing 'shard'
- Data center awareness
- Replica sets address:
 - High availability
 - Data durability, consistency
 - Maintenance (e.g., HW swaps)
 - Disaster Recovery

Replica Sets – Workload Isolation

- Replica sets enable workload isolation
- Example: Operational workloads on the primary node, analytical workloads on the secondary nodes

Replica Set Creation

Node 1

Node 2

Node 3

Replica Set - Initialize

Replica Set - Failure

Replica Set - Failover

Replica Set - Recovery

Replica Set - Recovered

Elastic Scalability: Automatic Sharding

- Increase or decrease capacity as you go
- Automatic load balancing
- Three types of sharding
 - Hash-based
 - Range-based
 - Tag-aware

Scalability with Sharding

- Shard key partitions the content
- MongoDB automatically balances the cluster
- Shards can be added dynamically to a live system
- Rebalancing happens in the background
- Shard key is immutable
- Shard key can route queries to a specific shard
- Queries without a shard key are sent to all members
 - Each member process its part in parallel.

Query Routing

- Multiple query optimization models
- Each of the sharding options are appropriate for different apps / use cases

Query Routing

- With a sharded cluster we use a routing layer to guide queries
- We use a daemon called MongoS (Mongo Shard Router)
- Daemon is stateless
- Can run as many as required
- Typically one per app server

Agenda de hoy

- ¿Porqué existe NoSQL?
- Tipos de bases de datos NoSQL
- Características clave de MongoDB
- Tolerancia a fallos y persistencia de datos en MongoDB
- Escalabilidad en MongoDB
- Preguntas

¿Preguntas?

mongoDB