chap01 电磁场的普遍规律

	错误	更正
P2: (1.1.17)式 第四个方程	$\nabla \times \boldsymbol{H} = \frac{4\pi}{c} \boldsymbol{j} + \frac{1}{c} \partial_t \boldsymbol{E}$	$\nabla \times \mathbf{B} = \frac{4\pi}{c} \mathbf{j} + \frac{1}{c} \partial_t \mathbf{E}$
P2: (1.1.19)式 第二个方程	$ abla imes oldsymbol{E} = -\partial_t oldsymbol{B}$	$\mathbf{\nabla} \times \mathbf{E} = -\frac{1}{c} \partial_t \mathbf{B}$
P3: (1.2.2)式 上方一行	对于线性介质	对于线性、 <mark>无色散</mark> 介质
P4: (1.2.5)式 下方一行	对于线性介质	对于均匀线性介质
P5: 例题 1-2 的第一行	Schockley - James 佯谬	Shockley - James 佯谬
P9: (1.3.2)式 第二个方程	$\Box \mathbf{A} - \nabla \left(\frac{1}{c^2} \partial_t \phi + \nabla \cdot \mathbf{A} \right) = \mu_0 \mathbf{j}$	$\Box \mathbf{A} + \nabla \left(\frac{1}{c^2} \partial_t \phi + \nabla \cdot \mathbf{A} \right) = \mu_0 \mathbf{j}$
P10: 第 11 行	因此 G ^(±) (k, R) 为方程(1.3.9)的解	因此 G ^(±) (k,R) 为方程(1.3.11)的解
P11: 第三行 公式的中间 表达式	$\int d^3 \boldsymbol{r}' dt \frac{\delta \left(t \mp \frac{R}{c} \right)}{4\pi R} f(t, \boldsymbol{r})$	$\int d^3 \mathbf{r}' d\mathbf{t}' \frac{\delta \left(t - \mathbf{t}' \mp \frac{R}{c}\right)}{4\pi R} f(\mathbf{t}', \mathbf{r})$

chap02 静电场

	错误	更正
P10: (2.3.11)	l = 1,2,	l = 0,1,2,
式		
P13: (2.3.15)	m^2	m^2
式	$sin^2 \theta$	$1-x^2$
P13: (2.3.16) 式后半	$(x^2 - 1)^2$, $\begin{cases} l = 1, 2, \\ m = 0, \pm 1,, \pm l \end{cases}$	$(x^2 - 1)^l$, $\begin{cases} l = 0,1,2,\\ m = 0,\pm 1,,\pm l \end{cases}$
P13: (2.3.16) 式下方	$P_2^0(\cos\theta) = \frac{1}{2}(3\cos^2\theta + 1),$	$P_2^0(\cos\theta) = \frac{1}{2}(3\cos^2\theta - 1),$
	$P_2^1(\cos\theta) = -3\sin\theta\cos\theta$	$P_2^1(\cos\theta) = -3\sin\theta\cos\theta$
	$P_1^{-1} = \frac{1}{2}\sin\theta\cos\theta \ ,$	$P_2^{-1} = \frac{1}{2}\sin\theta\cos\theta ,$
	$P_1^2 = 3\sin^2\theta \ ,$	$P_2^2 = 3\sin^2\theta ,$
	$P_1^2 = \frac{1}{8}\sin^2\theta$	$P_2^{-2} = \frac{1}{8}\sin^2\theta$
P22: 例题 2-	22 -2	222
11 第三行	$\frac{x^2 + y^2}{a^2} + \frac{z^2}{c^2} = 1$	$\frac{x^2 + y^2}{a^2} + \frac{z^2}{b^2} = 1$

P22: 倒数第	$x^2 + y^2 = a^2 \tilde{r}^2 \cos^2 \tilde{\theta} ,$	$x^2 + y^2 = a^2 \tilde{r}^2 \sin^2 \tilde{\theta} ,$
二行	$z^2 = b^2 \tilde{r}^2 \sin^2 \tilde{\theta}$	$z^2 = b^2 \tilde{r}^2 \cos^2 \tilde{\theta}$

chap03 静磁场

错误	更正
	$K_i (i = 1, 2,, N)$
	$K_i (t - 1, 2,, N)$
$M = \sum_{i=1}^{N} I_{i} I_{i}$	$W_m = \frac{1}{2} \sum_{ij}^{N} L_{ij} I_i I_j$
$W_m = \sum_{i i=1}^{L_{ij}I_iI_j}$	$W_m = \frac{1}{2} \sum_{i,j=1}^{L_{ij}I_iI_j} I_{ij}$
	以-1 对工处户设置家的处性人民 整理权
	对于给定磁导率的线性介质,静磁场
(3.1.7)(3.1.8)是完备的,	方程组(3.1.4)或矢势方程组
	(3.1.7)(3.1.8)是完备的,
$n = n_{-}1$	$n = n_{1 \rightarrow 2}$
A (O) but	1 (0) have to 1 5
$A_2(0, \varphi)$ 有限	$A_2(0, \varphi)$ 有限,取为零
3.1 静磁场多级展开	3.3.2静磁场多极展开
3.3.1 矢势多级展开及磁矩	3.3.3 矢势多极展开及磁矩
原点附近的一小团电流在远场	原点附近的一小团 <mark>恒定</mark> 电流在
激发的矢势为	远场激发的矢势为
则磁场偶极项绝对占住	则磁场偶极项绝对占 <mark>主</mark>
	 A₂(0,φ) 有限 3.1 静磁场多级展开 3.3.1 矢势多级展开及磁矩 原点附近的一小团电流在远场 激发的矢势为