תרגיל 5 - אלגברה ליניארית 2 להנדסה ומדעים תשפ"ג 2022-2023

הנחיות: כתבו את הפתרון בכתב יד ברור, בצירוף **שם (פרטי ומשפחה), מספר ת.ז וכותרת ברורה בראש הדף הכוללת את שם הקורס ומספר התרגיל.** סרקו את הפתרון, כאשר השאלות בסדר עולה, והגישו אלקטרונית באתר הקורס עד ל- 10/5/2023 בשעה 22:00.

-ש כך העתקה לינארית כך העתקה $T\colon \mathbb{R}^2 \to \mathbb{R}^2$, ותהי של בסיסים של בסיסים \mathcal{B},\mathcal{D} יהיו

$$[T]_{\mathcal{D}}^{\mathcal{B}} = \left(\begin{array}{cc} 1 & -2 \\ -1 & 3 \end{array}\right)$$

בנוסף נתון כי

$$[T]_{\mathcal{C}}^{\mathcal{B}} = \left(\begin{array}{cc} 1 & -1 \\ 2 & 3 \end{array}\right)$$

 \mathcal{D} כאשר $\mathcal{C}=\left(inom{1}{4},inom{3}{2}
ight)$ בסיס של $\mathcal{C}=\left(inom{1}{4},inom{3}{2}
ight)$

מתקיים מתקיים אבורה מתקה לינארית $T\colon\mathbb{R}^2 o\mathbb{R}^2$ ותהי, \mathbb{R}^2 של בסיסים של בסיסים \mathcal{B},\mathcal{C} יהיו

$$[T]_{\mathcal{B}}^{\mathcal{B}} = \begin{pmatrix} 2 & -1 \\ 1 & -1 \end{pmatrix}, \quad [T \circ T]_{\mathcal{C}}^{\mathcal{B}} = \begin{pmatrix} 1 & 1 \\ 3 & 4 \end{pmatrix}$$

 $[T]_{\mathcal{C}}^{\mathcal{B}}$ א. מצאו את מצאו ה. [$T]_{\mathcal{C}}^{\mathcal{C}}$

יומות! אדומות $K,L\in M_{2 imes2}(\mathbb{R})$ דומות: .3

$$K = \begin{pmatrix} 1 & 5 \\ 1 & 4 \end{pmatrix}$$
 $L = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$.א

$$K = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$$
 $L = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$.e.

$$K = \begin{pmatrix} 1 & 5 \\ 1 & 4 \end{pmatrix}$$
 $L = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$.x $K = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$ $L = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$.a $E = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $L = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & -1 \end{pmatrix}$.3 .3

$$K = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \quad L = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \quad . 7$$

.4 הפריכו או הוכיחו א. הוכיחו א $A\in M_{n\times n}(\mathbb{R})$. הוכיחו א. אם $B^2=I_n$ או אם א אם א. אם $B^2=I_n$ או א אם א $B^2=I_n$ או ב. אם הוכיחו או הוכיחו

– כך של \mathbb{R}^2 טייל המוגדרת עייי $T\colon \mathbb{R}^2 o \mathcal{R}$. האם קיים בסיס $T\colon \mathbb{R}^2 o \mathbb{R}^2$ כך ש

$$[T]_{\mathcal{B}}^{\mathcal{B}} = \left(\begin{array}{cc} 1 & 2\\ 2 & 4 \end{array}\right)$$