

(11)Publication number:

2003-230886

(43) Date of publication of application: 19.08.2003

(51)Int.CI.

CO2F 1/469 BO1D 61/48 B01J 47/00

(21)Application number: 2002-032467

(71)Applicant: JAPAN ORGANO CO LTD

(22)Date of filing:

08.02.2002

(72)Inventor: YAMANAKA KOJI

INOUE HIROSHI KAWAGUCHI OSAMU HIDAKA MASANARI

SATO YUYA

(54) ELECTRIC DEIONIZED WATER MAKING APPARATUS

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an electric deionized water making apparatus capable of achieving the reduction of electric resistance and generating no scale in a concentration chamber even in a long-term continuous operation.

SOLUTION: An electric deionized water making apparatus is constituted so that a chamber demarcated by a cation exchange membrane on one side and an anion exchange membrane on the other side is filled with an ion exchanger to form a desalting chamber. This apparatus is provided with concentration chambers on both sides of the desalting chamber through the cation and anion exchange membranes, with the desalting chamber and the concentration chambers arranged between an anode chamber equipped with an anode and a cathode chamber equipped with a cathode. The concentration chambers are filled with an organic porous ion exchanger having an open-cell structure containing mutually connected macropores and mesopores with a mean pore size of 1-1,000 i m provided in the walls of the macropores.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-230886 (P2003-230886A)

(43)公開日 平成15年8月19日(2003.8.19)

(51) Int.Cl.7	識別記号	FI		テーマコード(参考)
C02F	1/469	B01D	61/48	4 D 0 0 6
B01D	61/48	B 0 1 J	47/00	Z 4D061
B 0 1 J		C 0 2 F	1/46 1 0 3	}

審査請求 未請求 請求項の数5 OL (全 13 頁)

(21)出願番号	特顧2002-32467(P2002-32467)	(71) 出願人	000004400
			オルガノ株式会社
(22)出顧日	平成14年2月8日(2002.2.8)		東京都江東区新砂1丁目2番8号
. ,		(72)発明者	山中 弘次
			東京都江東区新砂1丁目2番8号 オルガ
			ノ株式会社内
<u>.</u>		(72)発明者	井上 詳
			東京都江東区新砂1丁目2番8号 オルガ
			ノ株式会社内
÷		(74)代理人	100098682
			弁理士 赤塚 賢次 (外1名)

最終頁に続く

(54) 【発明の名称】 電気式脱イオン水製造装置

(57)【要約】

【課題】 電気抵抗の低減が図れると共に、長期間の連 続運転においても、濃縮室内にスケールが発生しない電 気式脱イオン水製造装置を提供すること。

【解決手段】 一側のカチオン交換膜、及び他側のアニオン交換膜で区画される室に、イオン交換体を充填して脱塩室を構成し、前記カチオン交換膜、アニオン交換膜を介して脱塩室の両側に濃縮室を設け、これらの脱塩室及び濃縮室を、陽極を備えた陽極室と陰極を備えた陰極室の間に配置してなる電気式脱イオン水製造装置において、前記濃縮室には、互いにつながっているマクロポアとマクロポアの壁内に平均径が1~1000μmのメソポアを有する連続気泡構造を有する有機多孔質イオン交換体を充填させる。

【特許請求の範囲】

【請求項1】 一側のカチオン交換膜、及び他側のアニ オン交換膜で区画される室に、イオン交換体を充填して 脱塩室を構成し、前記カチオン交換膜、アニオン交換膜 を介して脱塩室の両側に濃縮室を設け、これらの脱塩室 及び濃縮室を、陽極を備えた陽極室と陰極を備えた陰極 室の間に配置してなる電気式脱イオン水製造装置におい て、前記濃縮室は互いにつながっているマクロポアとマ クロポアの壁内に平均径が1~1000μmのメソポアを有 する連続気泡構造を有する有機多孔質イオン交換体を充 填して形成されることを特徴とする電気式脱イオン水製 造装置。

一側のカチオン交換膜、他側のアニオン 【請求項2】 交換膜、及び当該カチオン交換膜と当該アニオン交換膜 - の間に位置する中間イオン交換膜で区画される2つの小 脱塩室にイオン交換体を充填して脱塩室を構成し、前記 カチオン交換膜、アニオン交換膜を介して脱塩室の両側 に濃縮室を設け、これらの脱塩室及び濃縮室を、陽極を 備えた陽極室と陰極を備えた陰極室の間に配置してなる 電気式脱イオン水製造装置において、前記濃縮室は互い につながっているマクロポアとマクロポアの壁内に平均 径が1~1000μmのメソポアを有する連続気泡構造を有 する有機多孔質イオン交換体を充填して形成されること を特徴とする電気式脱イオン水製造装置。

【請求項3】 前記中間イオン交換膜と、前記他側のア ニオン交換膜で区画される一方の小脱塩室に充填される イオン交換体は、アニオン交換体であり、前記一側のカ チオン交換膜と前記中間イオン交換膜で区画される他方 の小脱塩室に充填されるイオン交換体は、カチオン交換 体とアニオン交換体の混合体であることを特徴とする請 求項2記載の電気式脱イオン水製造装置。

【請求項4】 前記濃縮室は、互いにつながっているマ クロポアとマクロポアの壁内に平均径が1~1000μmの メソポアを有する連続気泡構造を有する有機多孔質陽イ オン交換体と互いにつながっているマクロポアとマクロ ポアの壁内に平均径が1~1000μmのメソポアを有する 連続気泡構造を有する有機多孔質陰イオン交換体が濃縮 水の流出入方向に対して、交互に積層充填して形成され ることを特徴とする請求項1~3のいずれか1項に記載の 電気式脱イオン水製造装置。

【請求項5】 前記濃縮室に充填される連続気泡構造を 有する有機多孔質イオン交換体は、前記マクロポアとメ ソポアで形成される連続気泡構造とは別途の流路を有す ることを特徴とする請求項1~4のいずれか1項に記載の 電気式脱イオン水製造装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体製造分野、 医薬製造分野、原子力や火力などの発電分野、食品工業 などの各種の産業又は研究所施設において使用される、

省電力スケール発生防止型電気式脱イオン水製造装置に 関するものである。

[0002]

【従来の技術】脱イオン水を製造する方法として、従来 からイオン交換樹脂に被処理水を通して脱イオンを行う 方法が知られているが、この方法ではイオン交換樹脂が イオンで飽和されたときに薬剤によって再生を行う必要 があり、このような処理操作上の不利な点を解消するた め、薬剤による再生が全く不要な電気式脱イオン法によ る脱イオン水製造方法が確立され、実用化に至ってい

【0003】この電気式脱イオン水製造装置は、一側の カチオン交換膜、他側のアニオン交換膜で区画される1 つの脱塩室に、イオン交換体を充填して脱塩室を構成 し、前記カチオン交換膜、アニオン交換膜を介して脱塩 室の両側に濃縮室を設け、これらの脱塩室及び濃縮室 を、陽極を備えた陽極室と陰極を備えた陰極室の間に配 置してなるものであり、電圧を印加しながら脱塩室に被 処理水を流入すると共に、濃縮室に濃縮水を流入して被 処理水中の不純物イオンを除去し、脱イオン水を得るも のである。

【0004】近年、カチオン交換膜及びアニオン交換膜 を離間して交互に配置し、カチオン交換膜とアニオン交 換膜で形成される空間内に一つおきにイオン交換体を充 填して脱塩室とする従前型の電気式脱イオン水製造装置 に代えて、その脱塩室の構造を抜本的に改造した改良型 の電気式脱イオン水製造装置が開発されている(特開20 01-239270号公報)。この改良型の電気式脱イオン水製 造装置は、一側のカチオン交換膜、他側のアニオン交換 膜、及び当該カチオン交換膜と当該アニオン交換膜の間 に位置する中間イオン交換膜で区画される2つの小脱塩 室に、イオン交換体を充填して脱塩室を構成し、前記カ チオン交換膜、アニオン交換膜を介して脱塩室の両側に 濃縮室を設け、これらの脱塩室及び濃縮室を、陽極を備 えた陽極室と陰極を備えた陰極室の間に配置してなるも のであり、電圧を印加しながら一方の小脱塩室に被処理 水を流入し、次いで該小脱塩室の流出水を他方の小脱塩 室に流入すると共に、濃縮室に濃縮水を流入して被処理 水中の不純物イオンを除去し、脱イオン水を得るもので ある。このような構造の電気式脱イオン水製造装置によ れば、2つの小脱塩室のうち、少なくとも1つの脱塩室に 充填されるイオン交換体を、例えばアニオン交換体の み、又はカチオン交換体のみ等の単一イオン交換体もし くはアニオン交換体とカチオン交換体の混合交換体とす ることができ、イオン交換体の種類毎に電気抵抗を低減 し、且つ高い性能を得るための最適な厚みに設定するこ とができ、シリカや炭酸などの従前型の電気式脱イオン 水製造装置では充分な除去効果が得られなかったイオン に対しても、高い除去性能を得ることができる。

【0005】しかしながら、これら従来の電気式脱イオ

50

(3)

10

1

ン水製造装置は、濃縮室の電気抵抗値が大きく、このため定格電流を通電するに要する電圧が高くなり、その結果消費電力が嵩むという問題があった。上述のように、電気式脱イオン水製造装置においては薬液による再生は不要であるため、その運転コストは消費電力によって決定される。交流を直流に変換する際の整流ロスを除けば、電気式脱イオン水製造装置における消費電力は、前記両電極間の直流電流×電圧で表される。

【0006】ここで、直流電流は、被処理水が含有するイオンの量と種類および要求される処理水質によって決定される。即ち、電気式脱イオン水製造装置においては、脱塩室でイオン交換体に捕捉されたイオンを電気的泳動によって連続的に濃縮水側に排出する必要があり、イオンを泳動せしめるに必要な一定以上の電流は、電気・式脱イオン水製造装置がその性能を正常に発揮するために必須のものである。よって、通常の場合、電気式脱イオン水製造装置では、その運転条件において必要な最低電流値を上回る一定の電流値を保持する定電流運転が行われており、これを低減して消費電力の節約を図ることはできない。

【0007】これに対して電圧は、両電極間に配設され た電極室、濃縮室、脱塩室、およびこれらを隔離するイ オン交換膜の電気抵抗によって生じる電位差の総和であ り、該室を構成するイオン交換体やイオン交換膜の性能 や対イオンの種類、また該室内水が含有するイオンの種 類と量などに依存する。中でも、濃縮室の電気抵抗は、 他の電気式脱イオン水製造装置の構成要素に比して大き い。即ち、電極室は通常装置両端に1室ずつしか存在し ない上にその内部のイオン強度が比較的高く、また、イ オン交換膜や脱塩室は両電極間に通常複数配設されてい るが、イオン交換膜はそれ自体がイオン交換基を有する 導電性固体であり、脱塩室もその内部に導電性固体であ るイオン交換体が充填されているので、これらによる電 気抵抗は比較的小さい。これに対して、濃縮室は両電極 間に複数配設され、かつ従来の電気式脱イオン水製造装 置では濃縮室には導電性の充填物が充填されていないの で、その導電性は該室内水が保有するイオンのみによっ ているために電気抵抗が大きく、装置全体の電気抵抗上 昇の主要因となっていた。

【0008】また、従来の電気式脱イオン水製造装置では、流入する被処理水の硬度が高い場合、電気式脱イオン水製造装置の濃縮室において炭酸カルシウムや水酸化マグネシウム等のスケールが発生するという問題があった。スケールが発生すると、その部分での電気抵抗が上昇し、電流が流れにくくなる。すなわち、スケール発生が無い場合と同等の電流を流すためには電圧を上昇させる必要があり、消費電力が増加する。また、スケールの付着場所次第では、濃縮室内で電流密度が異なり、脱塩室内において電流の不均一化が生じる。また、スケール付着量がさらに増加すると、通水差圧が上昇すると共

に、電圧がさらに上昇し、装置の最大電圧値を超えた場合は電流値が低下することとなる。この場合、イオン除去に必要な大きさの電流が流せなくなり、処理水質の低下を招く。さらには、成長したスケールがイオン交換膜内にまで侵食し、最終的にはイオン交換膜を破ってしまう。

【0009】上述の濃縮室に由来する電気抵抗値を低減 させ、かつスケール発生を防止するために、濃縮室にも イオン交換体を充填した電気式脱イオン水製造装置が提 案されている。該濃縮室に充填するイオン交換体とその 充填形態としては、例えば、スチレンージビニルベンゼ ン共重合体にスルホン酸基や4級アンモニウム基を導入 した通常の粒状イオン交換樹脂が知られている。また、 特開2001-225078号公報には、濃縮室に有機多孔質陰イ オン交換体層を設置する電気式脱イオン水製造装置が開 示されている。該有機多孔質陰イオン交換体としては、 例えばポリオレフィン系、あるいは含フッ素樹脂系から なる有機微多孔質膜に、ラジカル重合や放射線重合によ り陰イオン交換基を導入したもの、該有機微多孔質膜に 陰イオン交換基を有する水溶性ポリマーを含浸後、加熱 処理や該水溶性ポリマーと該有機微多孔質膜との反応に よって該水溶性ポリマーを固定化したもの、あるいは粒 状陰イオン交換樹脂を低密度ポリエチレンを主体とする バインダーで接合させて有機多孔質陰イオン交換体とし たものなどが開示されている。

【0010】これらの濃縮室にイオン交換体を充填した電気式脱イオン水製造装置では、該イオン交換体の導電性のために電気抵抗が低減され、また、濃縮室におけるイオンの偏在に起因するカルシウムイオンやマグネシウムイオンと、炭酸イオンや水酸化物イオンとの溶解度積を超えた濃度での局部的な混合が回避されるため、スケール発生を防止することができると謳われている。

[0011]

【発明が解決しようとする課題】しかしながら、前記の従来のイオン交換樹脂、あるいは有機多孔質陰イオン交換体層を充填した濃縮室では、これらのイオン交換体の導電性が不十分であるため、充分な濃縮室の電気抵抗値の低減効果が得られない。このため、濃縮室の厚みは小さく制限されており、上述のスケール発生の原因となるカルシウムイオンやマグネシウムイオンと、炭酸イオンや水酸化物イオンとの溶解度積を超えた濃度での局部的な混合の回避が充分に達成されていないという問題があった。

【0012】一般に電気式脱イオン水製造装置において、イオンが電気的泳動によってイオン交換膜を介して 隣室へ排除される脱塩室とは異なり、濃縮室では流入するイオンは、イオン交換膜によってその電気的泳動を阻止され、流出水とともに出口から排除されるのみとなる。かかる濃縮室にイオン交換体を充填した場合、定常 50 運転時において該イオン交換体の有するイオン交換基は

5

そのほぼ全量が、水素イオンや水酸化物イオン以外の不純物イオンとイオン対を形成する。イオン交換体の導電性は、対イオンの移動度に大きく影響され、水素イオンや水酸化物イオンの移動度が他のイオンに比して数倍以上大きいことから、前記のように対イオンが水素イオンや水酸化物イオン以外の不純物イオンとなっているイオン交換体の電気抵抗は、対イオンが水素イオンや水酸化物イオンのイオン交換体に比べて著しく大きな値となる。これに対して、脱塩室ではイオン交換基の対イオンは、通常運転時において大部分が水素イオンまたは水酸化物イオンであり、これらのイオンの移動度によって、脱塩室の電気抵抗値は、比較的低く維持される。

【0013】即ち、定常運転時において対イオンがほぼ 全量不純物イオンとなる濃縮室に充填されるイオン交換 体では、対イオンが水素イオンまたは水酸化物イオンで あることによる電気抵抗値の低減は見込めないので、イ オン交換体自身が高い導電性を有することが必須条件と なる。しかしながら、前記の従来のイオン交換樹脂や有 機多孔質陰イオン交換体は、イオン交換体自身の導電性 に配慮されたものとはなっていない。即ち、従来のイオ ン交換樹脂としては、一般に、スチレンとジビニルベン ゼン (DVB) の共重合体に、陽イオン交換基としてはス ルホン酸基 (R-SO₂-H^{*}) を、陰イオン交換基としては第 4級アンモニウム塩基 (R-N+R₁R₁R₁) を導入して得られ た直径0.2~0.5mm程度の球状のものが用いられる。この 場合、イオン交換樹脂粒子内における電流伝達、即ちイ オンの伝達は、高分子ゲル内に均一かつ密に存在するイ オン交換基を介して低抵抗で行われるのに対し、イオン 交換樹脂粒子界面においては、イオンの移動に際し該イ オンの水中の泳動距離が長く、かつ樹脂が球状のため粒 子同士の接触面積が小さいのでイオンの流れが該接点部 に集中し、電流伝達の阻害要因、即ち電気抵抗の上昇原 因となる。また、特開2001-225078号公報に開示された 前記有機多孔質陰イオン交換体のうち、有機微多孔質膜 にラジカル重合や放射線重合により陰イオン交換基を導 入したものや、該有機微多孔質膜に陰イオン交換基を有 する水溶性ポリマーを含浸後、加熱処理や該水溶性ポリ マーと該有機微多孔質膜との反応によって該水溶性ポリ マーを固定化したものの場合、基体となる有機微多孔質 膜にはイオン交換基は存在せず、その表面に陰イオン交 換基が導入されているのみであるので、イオン移動はイ オン交換体の表面近傍に限定され、充分な電気抵抗値低 減効果が得られない。また、粒状陰イオン交換樹脂を低 密度ポリエチレンを主体とするバインダーで接合させて 有機多孔質陰イオン交換体としたものでは、バインダー 部分にイオン交換基が存在しないか、または存在する場 合でも、イオン交換樹脂部分とはポリマー母体およびイ オン交換基の構造が異なる上に、イオン交換基の存在密 度がイオン交換樹脂部分に比べて低く、全体が均質なイ オン交換体とはなっていない。このため、イオン移動の

不均一性は残されており、電気抵抗値の改善が十分とは

【0014】これら従来のイオン交換体を充填して濃縮 室を形成した場合、上述のように電気抵抗の低減効果が 十分ではないため、濃縮室の厚みを小さく設定する必要 があり、スケール防止効果が充分に得られないという問 題があった。濃縮室にイオン交換体を充填した場合のス ケール防止機構は、以下の通りである。即ち、濃縮室内 のアニオン交換体充填領域では、アニオン交換膜を透過 したアニオンは濃縮水中に移動せず、導電性の高い該ア ニオン交換体を通り、カチオン交換膜まで移動し、ここ で初めて濃縮水中に移動する。同様に、カチオン交換体 充填領域では、カチオン交換膜を透過したカチオンが濃 縮水に移動せず、導電性の高い該カチオン交換体を通 り、アニオン交換膜まで移動し、ここで初めて濃縮水中 に移動する。このため、濃縮室においてスケール発生原 因となる液中のカルシウムイオンやマグネシウムイオン などと、炭酸イオンや水酸化物イオンなどのそれぞれの 高濃度領域は、濃縮室両端に離間されたアニオン交換膜 およびカチオン交換膜近傍となり、溶解度積を超えた濃 度での混合が回避されてスケール発生を防止することが 出来る。上記のスケール防止機構より明らかなように、 濃縮室において充分なスケール防止効果を得るには、濃 縮室両端に離間されたアニオン交換膜およびカチオン交 換膜の距離、即ち濃縮室の厚みを充分に大きく取る必要 がある。しかしながら、従来の濃縮室に充填されるイオ ン交換体では、上述のように電気抵抗の低減効果が充分 でなく、このため濃縮室の厚みを充分に大きく取ること ができず、スケール防止効果を充分に得られないという 問題があった。

【0015】従って、本発明の目的は、電気抵抗の低減またはスケール発生の問題を、電気式脱イオン水製造装置の濃縮室の構造面から解決し、電気抵抗の低減が図れると共に、長期間の連続運転においても、濃縮室内にスケールが発生しない電気式脱イオン水製造装置を提供することにある。

[0016]

【課題を解決するための手段】かかる実情において、本発明者らは、鋭意検討を行なった結果、連続気泡構造を有する特定の有機多孔質イオン交換体を濃縮室の充填物とすれば、電気式脱イオン水製造装置運転時の電気抵抗を十分に低減でき、このため電圧を低下させて、消費電力即ち運転コストを低減でき、かつ該有機多孔質イオン交換体の低電気抵抗から濃縮室の厚みを大きく取ることが可能となり、スケール発生防止が充分に達成されることなどを見出し、本発明を完成するに至った。

【0017】すなわち、本発明(1)は、一側のカチオン交換膜、及び他側のアニオン交換膜で区画される室に、イオン交換体を充填して脱塩室を構成し、前記カチオン交換膜、アニオン交換膜を介して脱塩室の両側に濃

50

(5)

20

縮室を設け、これらの脱塩室及び濃縮室を、陽極を備えた陽極室と陰極を備えた陰極室の間に配置してなる電気式脱イオン水製造装置において、前記濃縮室は互いにつながっているマクロポアとマクロポアの壁内に平均径が1~1000μmのメソポアを有する連続気泡構造を有する有機多孔質イオン交換体を充填して形成される電気式脱イオン水製造装置を提供するものである。かかる構成を採ることにより、該有機多孔質イオン交換体の高い高に投資を設定しために、濃縮室由来の電気抵抗が低減され、装置運転時の電圧を低減して消費電力を節減し、運転コスを換体の低電気抵抗から濃縮室の厚みを大きく取ることが可能となり、スケール発生防止が確実に達成される

【0018】また、本発明(2)は、一側のカチオン交 ・換膜、他側のアニオン交換膜、及び当該カチオン交換膜 と当該アニオン交換膜の間に位置する中間イオン交換膜 で区画される2つの小脱塩室にイオン交換体を充填して 脱塩室を構成し、前記カチオン交換膜、アニオン交換膜 を介して脱塩室の両側に濃縮室を設け、これらの脱塩室 及び濃縮室を、陽極を備えた陽極室と陰極を備えた陰極 室の間に配置してなる電気式脱イオン水製造装置におい て、前記濃縮室は互いにつながっているマクロポアとマ クロポアの壁内に平均径が1~1000μmのメソポアを有 する連続気泡構造を有する有機多孔質イオン交換体を充 填して形成される電気式脱イオン水製造装置を提供する ものである。かかる構成を採ることにより、改良型の電 気式脱イオン水製造装置においても前記発明と同様の効 果を奏する。また、2つの小脱塩室のうち、少なくも1 つの脱塩室に充填されるイオン交換体を、例えばアニオ ン交換体のみ、またはカチオン交換体のみ等の単一イオ ン交換体、もしくはアニオン交換体とカチオン交換体の 混合イオン交換体とすることができ、イオン交換体の種 類毎に電気抵抗を低減し、且つ高い性能を得るための最 適な厚みに設定することができる。

【0019】また、本発明(3)は、前記中間イオン交換膜と、前記他側のアニオン交換膜で区画される一方の小脱塩室に充填されるイオン交換体は、アニオン交換体であり、前記一側のカチオン交換膜と前記中間イオン交換膜で区画される他方の小脱塩室に充填されるイオン交換体は、カチオン交換体とアニオン交換体の混合体である前記(2)記載の電気式脱イオン水製造装置を提供するものである。かかる構成を採ることにより、前記発明と同様の効果を奏する他、アニオン成分を多く含む被処理水、特にシリカ、炭酸等の弱酸性成分を多く含む被処理水を十分に処理することができる。

【0020】また、本発明(4)は、前記濃縮室は、互いにつながっているマクロポアとマクロポアの壁内に平均径が1~1000μmのメソポアを有する連続気泡構造を有する有機多孔質陽イオン交換体と互いにつながっているマクロポアとマクロポアの壁内に平均径が1~1000μ

mのメソポアを有する連続気泡構造を有する有機多孔質 陰イオン交換体が濃縮水の流出入方向に対して、交互に 積層充填して形成される前記(1)~(3)に記載の電 気式脱イオン水製造装置を提供するものである。かかる 構成を採ることにより、濃縮室内のアニオン交換体充填 領域では、アニオン交換膜を透過したアニオンは濃縮水 中に移動せず、導電性の高い該アニオン交換体を通り、 カチオン交換膜まで移動し、ここで初めて濃縮水中に移 動する。同様に、カチオン交換体充填領域では、カチオ ン交換膜を透過したカチオンが濃縮水に移動せず、導電 性の高い該カチオン交換体を通り、アニオン交換膜まで 移動し、ここで初めて濃縮水中に移動する。本発明の連 続気泡構造を有する有機多孔質イオン交換体は導電性が 高く電気抵抗が小さいために、濃縮室の厚みを大きく設 定することが可能であり、濃縮室においてスケール発生 原因となる液中のカルシウムイオンやマグネシウムイオ ンなどと、炭酸イオンや水酸化物イオンなどのそれぞれ の高濃度領域を、充分に離間された濃縮室両端のアニオ ン交換膜およびカチオン交換膜近傍とすることができ、 溶解度積を超えた濃度での混合が回避されてスケール発 生を防止することが出来る。

【0021】本発明(5)は、前記濃縮室に充填される連続気泡構造を有する有機多孔質イオン交換体には、前記マクロポアとメソポアで形成される連続気泡構造とは別途の流路を有する前記(1)~(4)記載の電気式脱イオン水製造装置を提供するものである。これにより、前記発明と同様の効果を奏しながら、通水差圧を上昇させることがない。

[0022]

【発明の実施の形態】本実施の形態における電気式脱イ オン水製造装置について、図1を参照にして説明する。 図1は電気式脱イオン水製造装置の1例を示す模式図で ある。図1に示すように、カチオン交換膜3、中間イオ ン交換膜5及びアニオン交換膜4を離間して交互に配置 し、カチオン交換膜3と中間イオン交換膜5で形成され る空間内にイオン交換体8を充填して第1小脱塩室 d₁、d₂、d₃、d₁を形成し、中間イオン交換膜5 とアニオン交換膜4で形成される空間内にイオン交換体 8を充填して第2小脱塩室dヒ、 dι、 dι 、 dιを形 成し、第1小脱塩室 d1と第2小脱塩室 d1 で脱塩室 D:、第1小脱塩室d:と第2小脱塩室d:で脱塩室 Di、第1小脱塩室di と第2小脱塩室diで脱塩室 Di、第1小脱塩室di と第2小脱塩室diで脱塩室Di とする。また、脱塩室D1、D1のそれぞれ隣に位置する アニオン交換膜4とカチオン交換膜3で形成されるイオ ン交換体8 a を充填した部分は濃縮水を流すための濃縮 室1とする。これを順次併設して図中、左より脱塩室D i、濃縮室1、脱塩室D1、濃縮室1、脱塩室D1、濃縮 室1、脱塩室D1を形成する。また、脱塩室D1の左にカ チオン交換膜3を経て陰極室2aを、脱塩室D₄の右に

12003-230886

アニオン交換膜4を経て陽極室2bをそれぞれ設ける。 また、中間イオン交換膜5を介して隣り合う2つの小脱 **「塩室において、第2小脱塩室の処理水流出ライン12は** 第1小脱塩室の被処理水流入ライン13に連接されてい

【0023】このような脱塩室は、図2に示すように、 2 つの枠体 2 1 、 2 2 と 3 つのイオン交換膜 3 、 5 、 4 によって形成される脱イオンモジュール20からなる。 即ち、第1枠体21の一側の面にカチオン交換膜3を封 着し、第1枠体21の内部空間にイオン交換体を充填 し、次いで、第1枠体21の他方の面に中間イオン交換 膜5を封着して第1小脱塩室を形成する。次に中間イオ ン交換膜5を挟み込むように第2枠体22を封着し、第 2 枠体 2 2 の内部空間にイオン交換体を充填し、次い -で、第2枠体22の他方の面にアニオン交換膜4を封着 して第2小脱塩室を形成する。第1脱塩室および第2小 脱塩室に充填されるイオン交換体としては、特に制限さ れないが、被処理水が最初に流入する第2小脱塩室には アニオン交換体を充填し、次いで、第2小脱塩室の流出 水が流入する第1小脱塩室にはアニオン交換体とカチオ ン交換体の混合イオン交換体を充填することが、アニオ ン成分を多く含む被処理水、特に、シリカ、炭酸等の弱 酸成分を多く含む被処理水を充分に処理することが出来 る点で好ましい。符号23は枠体補強用のリブである。 【0024】濃縮室1には、互いにつながっているマク ロポアとマクロポアの壁内に平均径が1~1000µm、好

ましくは10~100μmのメソポアを有する連続気泡構造 を有する有機多孔質イオン交換体が充填される。連続気 泡は、通常、平均径2~5000μmのマクロポアとマクロ ポアが重なり合い、この重なる部分が共通の開口となる メソポアを有するもので、その大部分がオープンポア構 造のものである。オープンポア構造は、水を流せば該マ クロポアと該メソポアで形成される気泡内が流路とな る。メソポアの平均径が1μm未満であると、通水時の 圧力損失が大きくなってしまい、一方、メソポアの平均 径が1000µmより大きいと、水の流路が均一に形成され にくくなるため好ましくない。有機多孔質イオン交換体 の構造が上記のような連続気泡構造となることにより、 細孔容積や比表面積を格段に大きくすることができる。

【0025】また、該有機多孔質イオン交換体は、全細 孔容積が1ml/g~50ml/gである多孔質体である。 全細孔容積が1m1/g未満であると、単位断面積当りの 通水量が小さくなってしまい、通水量を大きく取れなく なるため好ましくない。一方、全細孔容積が50m1/g を超えると、ポリマー等の骨格部分の占める割合が低下 し、多孔質体の強度が著しく低下してしまうため好まし くない。連続気泡構造を形成する骨格部分の材料は、架 橋構造等の化学的拘束点や結晶部等の物理的拘束点を有 する有機ポリマー材料を用いる。該ポリマー材料が架橋 構造を有するポリマーである場合、ポリマー材料を構成 する全構成単位に対して、10~90モル%の架橋構造単位 を含むことが好ましい。架橋構造単位が10モル%未満で あると、機械的強度が不足するため好ましくなく、一 方、90モル%を超えると、イオン交換基の導入が困難と なり、イオン交換容量が低下してしまうため好ましくな い。該ポリマー材料の種類には特に制限はなく、例え ば、ポリスチレン、ポリ (α-メチルスチレン)、ポリ ビニルベンジルクロライド等のスチレン系ポリマーやそ れらの架橋体;ポリエチレン、ポリプロピレン等のポリ オレフィンやそれらの架橋体;ポリ塩化ビニル、ポリテ トラフルオロエチレン等のポリ(ハロゲン化オレフィ ン) やそれらの架橋体;ポリアクリロニトリル等のニト リル系ポリマーやそれらの架橋体;ポリメタクリル酸メ チル、ポリアクリル酸エチル等の(メタ)アクリル系ポ リマーやそれらの架橋体;スチレンージビニルベンゼン 共重合体、ビニルベンジルクロライド-ジビニルベンゼ ン共重合体等が挙げられる。上記ポリマーは、単独のモ ノマーを重合させて得られるホモポリマーでも、複数の モノマーを重合させて得られるコポリマーであってもよ く、また、二種類以上のポリマーがブレンドされたもの であってもよい。これら有機ポリマー材料中で、イオン 交換基の導入の容易性と機械的強度の高さから、スチレ ン-ジビニルベンゼン共重合体やビニルベンジルクロラ イド-ジビニルベンゼン共重合体が好ましい材料として 挙げられる。本発明の有機多孔質イオン交換体の連続気 泡構造は、走査型電子顕微鏡 (SEM) を用いること で、比較的容易に観察できる。

【0026】濃縮室に充填される有機多孔質イオン交換 体は、イオン交換基が均一に分布し、イオン交換容量が 0.5mg等量/g乾燥多孔質体以上、好ましくは2.0mg 等量/g乾燥多孔質体以上の多孔質イオン交換体であ る。イオン交換容量が0.5mg等量/g乾燥多孔質体未満 であると、電気抵抗が増大してしまうため好ましくな い。また、イオン交換基の分布が不均一であると、多孔 質イオン交換体内のイオンや電子移動が不均一となり、 電気抵抗の改善が十分でなくなるため好ましくない。な お、ここで言う「イオン交換基が均一に分布している」 とは、イオン交換基の分布が少なくともµmオーダーで 均一であることを言う。イオン交換基の分布状況は、電 子線マイクロアナライザー (EPMA) や二次イオン質 量分析計(SIMS)等を用いることで、比較的簡単に 確認することができる。多孔質イオン交換体に導入され るイオン交換基としては、カルボン酸基、イミノ二酢酸 基、スルホン酸基、リン酸基、リン酸エステル基、芳香 族水酸基等のカチオン交換基;四級アンモニウム基、三 級アミノ基、二級アミノ基、一級アミノ基、ポリエチレ ンイミン、第三スルホニウム基、ホスホニウム基等のア ニオン交換基;アミノリン酸基、ベタイン、スルホベタ イン等の両性イオン交換基が挙げられる。このような連 続気泡構造を採る樹脂内における電流伝達、即ちイオン

12

伝達は、高分子ゲル内に均一かつ密に存在するイオン交換基を介して行なわれるため、該有機多孔質イオン交換 体は高い導電性を示す。

11

【0027】上記有機多孔質イオン交換体の製造方法と しては、特に制限はなく、イオン交換基を含む成分を一 段階で多孔質体にする方法、イオン交換基を含まない成 分により多孔質体を形成し、その後、イオン交換基を導 入する方法等が挙げられる。有機多孔質イオン交換体の 製造方法の一例を次に示す。即ち、当該有機多孔質イオ ン交換体は、イオン交換基を含まない油溶性モノマー、 界面活性剤、水及び必要に応じて重合開始剤とを混合 し、油中水滴型エマルジョンを得た後、これを重合して 多孔質体とし、更にイオン交換基を導入することで製造 される。イオン交換基を含まない油溶性モノマーは、カ - ルポン酸基、スルホン酸基等のイオン交換基を含まず、 水に対する溶解性が低く、親油性のモノマーを指すもの である。これらモノマーの若干の具体例としては、スチ レン、α-メチルスチレン、ピニルトルエン、ピニルベ ンジルクロライド、ジピニルベンゼン、エチレン、プロ ヒレン、イソプテン、ブタジエン、イソプレン、クロロ プレン、塩化ビニル、臭化ビニル、塩化ビニリデン、テ トラフルオロエチレン、アクリロニトリル、メタクリロ ニトリル、酢酸ビニル、アクリル酸メチル、アクリル酸 エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシ ル、トリメチロールプロパントリアクリレート、ブタン ジオールジアクリレート、メタクリル酸メチル、メタク リル酸エチル、メタクリル酸プロビル、メタクリル酸ブ チル、メタクリル酸2-エチルヘキシル、メタクリル酸シ クロヘキシル、メタクリル酸ベンジル、メタクリル酸グ リシジル、エチレングリコールジメタクリレート等が挙 げられる。これらモノマーは、単独で用いられても良い し、2種類以上を混合して用いても差し支えない。ただ し、本発明においては、ジビニルベンゼン、エチレング リコールジメタクリレート等の架橋性モノマーを少なく ともモノマーの一成分として選択し、その含有量を全油 溶性モノマー中、5~90モル%、好ましくは10~80モル %とすることが、後の工程でイオン交換基量を多く導入 するに際して必要な機械的強度が得られる点で好まし

【0028】界面活性剤は、イオン交換基を含まない油溶性モノマーと水とを混合した際に、油中水滴型(W/O)エマルジョンを形成できるものであれば特に制限はなく、ソルビタンモノオレエート、ソルビタンモノラウレート、ソルビタンモノバルミテート、ソルビタンモノステアレート、ソルビタントリオレエート、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンソルビタンモノオレエート等の非イオン界面活性剤;オレイン酸カリウム、ドデシルベンゼンスルホン酸ナトリウム、スルホコハク酸ジオクチルナトリウム等の陰イオン界面活性

剤;ジステアリルジメチルアンモニウムクロライド等の 陽イオン界面活性剤;ラウリルジメチルベタイン等の両 性界面活性剤を用いることができる。これら界面活性剤 は、一種単独または2種類以上を組み合わせて使用する ことができる。なお、油中水滴型エマルジョンとは、油 相が連続相となり、その中に水滴が分散しているエマル ジョンを言う。上記界面活性剤の添加量は、油溶性モノ マーの種類および目的とするエマルジョン粒子(マクロ ポア) の大きさによって大幅に変動するため一概には言 えないが、油溶性モノマーと界面活性剤の合計量に対し て約2~70%の範囲で選択することができる。また、必 ずしも必須ではないが、多孔質体の気泡形状やサイズを 制御するために、メタノール、ステアリルアルコール等 のアルコール;ステアリン酸等のカルボン酸;オクタ ン、ドデカン等の炭化水素を系内に共存させることもで きる。

【0029】重合開始剤としては、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は水溶性であっても油溶性であっても良く、例えば、アゾピスイソブチロニトリル、アゾピスシクロヘキサンニトリル、アゾピスシクロヘキサンカルボニトリル、過酸化ベンゾイル、過硫酸カリウム、過硫酸アンモニウム、過酸化水素-塩化第一鉄、過硫酸ナトリウム一酸性亜硫酸ナトリウム、テトラメチルチウラムジスルフィド等が挙げられる。ただし、場合によっては、重合開始剤を添加しなくても加熱のみや光照射のみで重合が進行する系もあるため、そのような系では重合開始剤の添加は不要である。

【0030】イオン交換基を含まない油溶性モノマー、 沈殿剤、界面活性剤、水および重合開始剤とを混合し、 油中水滴型エマルジョンを形成させる際の混合順序としては特に制限はなく、各成分を一括して一度に混合する 方法;油溶性モノマー、沈殿剤、界面活性剤および油溶性重合開始剤である油溶性成分と、水や水溶性重合開始剤である油溶性成分と、水や水溶性重合開始剤である水溶性成分とを別々に均一溶解させた後、それぞれの成分を混合する方法等が使用できる。エマルジョンを形成させるための混合装置についても特に制限はなく、通常のミキサーやホモジナイザー、高圧ホモジナイザー、遊星式攪拌装置等を用いることができ、目的のエマルジョン粒径を得ることができる乳化条件を任意に設定することができる。

【0031】このようにして得られた油中水滴型エマルジョンを重合させる重合条件は、モノマーの種類、開始剤系により様々な条件が選択できる。例えば、開始剤としてアゾビスイソブチロニトリル、過酸化ベンゾイル、過硫酸カリウム等を用いたときには、不活性雰囲気下の密封容器内において、30~100℃で1~48時間加熱重合させればよく、開始剤として過酸化水素-塩化第一鉄、過硫酸ナトリウム-酸性亜硫酸ナトリウム等を用いたときには、不活性雰囲気下の密封容器内において、0~30℃

で1~48時間重合させれば良い。重合終了後、内容物を取り出し、必要であれば、未反応モノマーと界面活性剤の除去を目的に、イソプロパノール等の溶剤で抽出して多

13

孔質体を得る。 【0032】上記の多孔質体にイオン交換基を導入する 方法としては、特に制限はなく、高分子反応やグラフト 重合等の公知の方法を用いることができる。例えばスル ホン酸基を導入する方法としては、有機多孔質体がスチ レン-ジピニルベンゼン共重合体等であればクロロ硫酸 や濃硫酸、発煙硫酸を用いてスルホン化する方法;有機 多孔質体にラジカル開始基や連鎖移動基を導入し、スチ レンスルホン酸ナトリウムやアクリルアミドー2ーメチ ルプロパンスルホン酸をグラフト重合する方法;同様に グリシジルメタクリレートをグラフト重合した後、官能 基変換によりスルホン酸基を導入する方法等が挙げられ る。また、四級アンモニウム基を導入する方法として は、有機多孔質体がスチレン-ジピニルベンゼン共重合 体等であればクロロメチルメチルエーテル等によりクロ ロメチル基を導入した後、三級アミンと反応させる方 法;有機多孔質体をクロロメチルスチレンとジビニルベ ンゼンの共重合により製造し、三級アミンと反応させる 方法;有機多孔質体にラジカル開始基や連鎖移動基を導 入し、N,N,Nートリメチルアンモニウムエチルアク リレートやN, N, N-トリメチルアンモニウムプロピ ルアクリルアミドをグラフト重合する方法;同様にグリ シジルメタクリレートをグラフト重合した後、官能基変 換により四級アンモニウム基を導入する方法等が挙げら れる。また、ベタインを導入する方法としては、上記の 方法により有機多孔質体に三級アミンを導入した後、モ ノヨード酢酸を反応させ導入する方法等が挙げられる。 なお、導入するイオン交換基としては、前述と同様のも のが挙げられる。

【0033】前記の有機多孔質イオン交換体の濃縮室へ の充填方法としては、特に制限されず、陰イオン交換体 単床、陽イオン交換体単床、陰イオン交換体単床および 陽イオン交換体単床が濃縮水流入方向に対して交互に2 床以上積層される複床、および陰イオン交換体単床と陽 イオン交換体単床が濃縮水流入方向に直交する方向に対 して交互に積層される列状床などを例示することがで き、このうち、陰イオン交換体単床および陽イオン交換 体単床が濃縮水流入方向に対して交互に2床以上積層さ れる複床が、後述するように、スケールが発生し難い構 造となる点で好ましい。図2に示される濃縮室1は、1 側のアニオン交換膜4と、他側のカチオン交換膜3で、 定型寸法に切断された有機多孔質イオン交換体81、8 2を挟み込んで作製される。図2では、有機多孔質イオ ン交換体は、上側の有機多孔質陰イオン交換体81と下 側の有機多孔質陽イオン交換体82の2床の積層床8a からなる。すなわち、平板積層型の電気式脱イオン水製 造装置の濃縮室内に、1枚の有機多孔質陽イオン交換体

81と有機多孔質陽イオン交換体81と同じ大きさの1 枚の有機多孔質陰イオン体82の2床を積層充填する場 合、2床で形成される有機多孔質イオン交換体の縦横寸 法は略両側のイオン交換膜3、4と同じであり、厚み寸 法wが濃縮室内の厚みとなる。また、有機多孔質イオン 交換体の充填形態が複床の場合、濃縮室の流出入方向に 対して積層充填される有機多孔質イオン交換体の順序と しては、特に制限されず、濃縮水入口側から有機多孔質 陽イオン交換体、有機多孔質陰イオン交換体の順序で も、その逆でも、いずれでもよい。また、異なるイオン 10 交換体同士の端面部分は、大きな隙間が生じない限り は、端面同士が当接あるいは近接させて、積層充填され る。このように、濃縮室内に、有機多孔質イオン交換体 を均質に積層充填すれば、当該濃縮室を区画する両側の イオン交換膜同士の電気的導通が得られ、イオンの移動 が行われ、濃縮水中のイオン濃度勾配を低減することが できる。また、これら有機多孔質イオン交換体の形状と しては、上記の板状物に制限されず、ブロック状物およ び不定形状物を1または2以上組合せたものが使用でき る。このうち、板状物またはブロック状物が、低電気抵 抗を確実に達成できるとともに、製作が容易となる点で

【0034】前記連続気泡構造を有する有機多孔質イオ ン交換体には、前記マクロポアと前記メソポアで形成さ れる連続気泡とは異なる別途の流路を設け、濃縮室の通 水差圧を低減させることもできる。該別途の流路として は、特に制限されないが、例えば、濃縮水流入方向に平 行して形成される1以上の貫通穴状の流路、濃縮水流入 方向に平行または直行する連続溝で形成される櫛状の流 路、濃縮水が濃縮室内を蛇行するように配慮した方向性 のないジグザグ状の流路、およびメッシュ状の流路など が挙げられる。これらの流路は、濃縮水流入口から濃縮 水流出口まで連続するものであっても、不連続のもので あってもよい。これらの流路は、連続気泡構造を形成す る重合時に容器形状を選択することにより形成でき、ま た、重合後の連続気泡構造を加工して形成することもで きる。流路の径または隙間寸法は、通常、1~5mm程度 である。更に、別途の流路、すなわち、隙間を確保し、 かつ連続気泡構造を有する有機多孔質イオン交換体の物 理的強度を補強するために、ポリオレフィン系高分子の 斜交網などを有機多孔質イオン交換体と共存させて充填 してもよい。

【0035】濃縮室の厚みは、0.2~15mm、好ましくは0.5~12mm、さらに好ましくは、3~10mmとすることが好ましい。従来、濃縮室の厚みは、電気抵抗が大きくなるため、大きくは採れず、その上限値はせいぜい2~3mmであったところ、本発明においては、その数倍もの厚みを採ることができるため、スケールの発生は確実に抑制できる。濃縮室の厚みが0.2mm未満であると、例え、連続気泡構造を有する有機多孔質イオン交

50

(9)

20

30

40

16

換体の陰イオン交換体単床とメッシュ状の陽イオン交換体単床を充填しても、スケール発生防止効果が得られ難くなり、通水差圧も上昇しやすい。また、15mmを超えると、装置全体の厚みが大きくなり好ましくない。

【0036】前記電気式脱イオン水製造装置は、通常以 下のように運転される。すなわち、陰極6と陽極7間に 直流電流を通じ、また被処理水流入ライン11から被処 理水が流入するとともに、濃縮水流入ライン15から濃 縮水が流入し、かつ陰極水流入ライン17a、陽極水流 入ライン17 b からそれぞれ陰極水、陽極水が流入す る。被処理水流入ライン11から流入した被処理水は第 2小脱塩室 d1、 d1、 d1、 d1を流下し、イオン交換体 8の充填層を通過する際に不純物イオンが除去される。 更に、第2小脱塩室の処理水流入ライン12を通った流 出水は、第1小脱塩室の被処理水流入ライン13を通っ て第1小脱塩室dī、dī、dī、dīを流下し、ここでも イオン交換体8の充填層を通過する際に不純物イオンが 除去され脱イオン水が脱イオン水流出ライン14から得 られる。また、濃縮水流入ライン15から流入した濃縮 水は各濃縮室1を上昇し、カチオン交換膜3及びアニオ ン交換膜4を介して移動してくる不純物イオン、更には 後述するように、濃縮室内の有機多孔質イオン体を介し て移動してくる不純物イオンを受け取り、不純物イオン を濃縮した濃縮水として濃縮室流出ライン16から流出 され、更に陰極水流入ライン17aから流入した陰極水 は陰極水流出ライン18aから流出され、陽極水流入ラ イン17bから流入した陽極水は、陽極水流出ライン1 8 bから流出される。上述の操作によって、被処理水中 の不純物イオンは電気的に除去される。

【0037】次に、本発明の電気式脱イオン水製造装置の濃縮室におけるスケール発生防止作用を、図3~図5を参照して説明する。図3は図1の電気式脱イオン水製造装置を更に簡略的に示した図、図4及び図5は図3の電気式脱イオン水製造装置の濃縮室における不純物イオンの移動を説明する図をそれぞれ示す。図3において、被処理水が最初に流入する第2小脱塩室は、di、diにはアニオン交換体(A)を充填し、第2小脱塩室の流出入する第1小脱塩室は、di、diにはカチオン交換体とアニオン交換体の混合イオン交換体(M)を充填し、4つの濃縮室1には濃縮室の流出入方向に沿って、流出側から流入側へ順に、3次元網目状の連続気泡構造を有する有機多孔質陰イオン交換体単床(A)と同じ連続気泡構造の有機多孔質陽イオン交換体単床(C)を交互に4床充填してある。

【0038】図4において、濃縮室1の多孔質陰イオン交換体単床領域1aでは、アニオン交換膜aを透過した炭酸イオンなどのアニオンは、濃縮水中に移動せず、導電性の高い有機多孔質陰イオン交換体Aを通り、カチオン交換膜cまで移動し、有機多孔質陰イオン交換体Aとカチオン交換膜cの当接部分101において初めて濃縮

水中に移動する(図4中、右向き矢印)。このため、炭酸イオンなどのアニオンは、カチオン交換膜 c に電気的に引き寄せられた状態で、濃縮室1から排出される。すなわち、有機多孔質陰イオン交換体単床領域1 a における炭酸イオンなどのアニオンについて、濃縮水中の濃度勾配は図5のように分布する。一方、有機多孔質陰イオン交換体単床領域1 a において、カチオン交換膜 c を透過したカルシウムイオンなどのカチオンは、濃縮水中を移動する。このため、カルシウムイオン濃度が最も高くなる部分において、スケールを形成する対イオンである炭酸イオンは、有機多孔質陰イオン交換体単床部分を移動するため、スケールを発生し難い。

【0039】同様に、濃縮室1の有機多孔質陽イオン交 換体単床領域1bでは、カチオン交換膜cを透過したカ ルシウムイオンなどのカチオンは濃縮水中に移動せず、 導電性の高い有機多孔質陽イオン交換体Cを通り、アニ オン交換膜aまで移動し、有機多孔質陽イオン交換体C とアニオン交換膜 a の当接部分102において、初めて 濃縮水中に移動する (図4中、左向き矢印)。このた め、カルシウムイオンなどのカチオンは、アニオン交換 膜aに電気的に引き寄せられた状態で、濃縮室1から排 出される。すなわち、有機多孔質陽イオン交換体単床領 域 1 b におけるカルシウムイオンなどのカチオンについ て、濃縮水中の濃度は図5のように分布する。一方、ア ニオン交換膜aを透過した炭酸イオンなどのアニオン は、濃縮水中を移動する。このため、炭酸イオンの濃度 が最も高くなる部分において、スケールを形成する対イ オンであるカルシウムイオンは、有機多孔質陽イオン交 換体単床部分を移動するため、スケールを発生し難い。 このようなイオン移動は、マグネシウムイオン、水素イ オン、水酸化物イオンにおいても同様である。また、濃 縮室内部に有機多孔質陰イオン交換体単床領域1aと有 機多孔質陽イオン交換体単床領域1bを積層することに よって、有機多孔質陽イオン交換体が充填された部分に 移動してきたアニオンは、導電性の低い濃縮水を移動す るよりも、導電性の高いアニオン交換膜を伝わり、有機 多孔質陰イオン交換体1 aまで達し、ここで導電性の高 い有機多孔質陰イオン交換体を移動する。このイオンの 移動形態は、カチオンについても同様である。すなわ ち、濃縮水中を通って対面のイオン交換膜付近に移動す るイオンは、ほとんどなく、ほとんどのイオンは有機多 孔質陽イオン交換体、有機多孔質陰イオン交換体を通っ て対面のイオン交換膜付近まで移動する。

【0040】従来の電気式脱イオン水製造装置では、イオン交換体を再生する目的で印加している電流が水の電気分解を促進し、イオン交換体無充填の濃縮室のイオン交換膜表面でpHシフトを引き起こし、アニオン交換膜近傍ではpHが低くなり、かつ図6に示すように炭酸イオンとカルシウムイオンがともに、高い濃度勾配で接することから、濃縮

室側のアニオン交換膜表面でスケールが発生し易くなっ ていた。しかしながら、本例では、前述のごとく、濃縮 水中のカチオン濃度が最も高いと思われるアニオン交換 膜a表面近傍の濃縮水中には、高い濃度の炭酸イオンな どのアニオンが存在しないから、濃縮室内において、炭 酸イオンとカルシウムイオンが結合して炭酸カルシウム を生成することがない(図5参照)。従って、本例の電 気式脱イオン水製造装置を長時間連続運転しても、濃縮 室にスケールが発生することはない。また、濃縮室1は 密度の高いイオン交換基を充填層全体に均質に有する有 機多孔質イオン交換体が充填されているので、導電性が 高まり、運転電圧を低減して消費電力を節約できる。

【0041】本発明において、被処理水の第1小脱塩室 及び第2小脱塩室での流れ方向は、特に制限されず、上 - 記実施の形態の他、第1小脱塩室と第2小脱塩室での流 れ方向が異なっていても良い。また、被処理水が流入す る小脱塩室は、上記実施の形態の他、まず、被処理水を 第1小脱塩室に流入させ、流下した後、第1小脱塩室の 流出水を第2小脱塩室に流入させても良い。また、濃縮 水の流れ方向も適宜決定される。

【0042】本発明の実施の形態における他の電気式脱 イオン水製造装置を図7を参照して説明する。図7の電 気式脱イオン水製造装置100は、図1に示される改良 型電気式脱イオン水製造装置10における中間イオン交 換膜のない従前型EDIであり、脱塩室内における被処 理水の流れが1パスである。即ち、電気式脱イオン水製 造装置100において、一側のカチオン交換膜101、 及び他側のアニオン交換膜102で区画される室にイオ ン交換体103を充填して脱塩室104を構成し、カチ オン交換膜101、アニオン交換膜102を介して脱塩 室104の両側に濃縮室105を設け、これらの脱塩室 104および濃縮室105を陽極110を備えた陽極室 と陰極109を備えた陰極室の間に配置し、電圧を印加 しながら脱塩室104に被処理水を流入し、次いで、濃 縮室105に濃縮水を流入して被処理水中の不純物イオ ンを除去し、脱イオン水を得る方法において、濃縮室1 05は、上記実施の形態例と同様の構成を採ることによ り、同様の作用効果を奏する。尚、符号111は被処理 水流入ライン、114は脱イオン水流出ライン、115 は濃縮水流入ライン、116は濃縮水流出ライン、11 7は電極水流入ライン、118は電極水流出ラインをそ れぞれ示す。また、本発明の電気式脱イオン水製造装置 の形態としては、特に制限されず、スパイラル型、同心 円筒型および平板積層型などのものが挙げられる。

【0043】本発明の脱イオン水製造方法に用いる被処 理水としては、特に制限されず、例えば、井水、水道 水、下水、工業用水、河川水、半導体製造工場の半導体 デバイスなどの洗浄排水または濃縮室からの回収水など を逆浸透膜処理した透過水、また、半導体製造工場等の ユースポイントで使用された回収水であって、逆浸透膜 処理がされていない水が挙げられる。このようにして供 給される被処理水の一部を濃縮水としても使用する場 合、脱塩室に供給される被処理水及び濃縮室に供給され る濃縮水を軟化後、使用することがスケール発生を更に 抑制できる点で好ましい。軟化の方法は、特に制限され ないが、ナトリウム形のイオン交換樹脂等を用いた軟化 器が好適である。

[0044]

【実施例】次に、実施例を挙げて、本発明を更に具体的 に説明するが、これは単に例示であって本発明を制限す るものではない。

実施例1

20

下記装置仕様及び運転条件において、図7と同様の構成 で6個の脱イオンモジュールを並設して構成される電気 式脱イオン水製造装置を使用した。被処理水は、工業用 水の逆浸透膜透過水を用い、その硬度は200μgCaCO:/1 であった。また、被処理水の一部を濃縮水及び電極水と して使用した。運転時間は4000時間であり、4000時間後 の濃縮室内のスケール発生の有無を観察した。また、同 時間における抵抗率17.9MΩ-cmの処理水を得るための運 転条件を表1に示す。

【0045】〈運転の条件〉

電気式脱イオン水製造装置;試作EDI 脱塩室;幅300mm、高さ600mm、厚さ3mm 脱塩室に充填したイオン交換樹脂;アニオン交換樹脂 (A)とカチオン交換樹脂(C)の混合イオン交換樹脂(混合 比は体積比でA:C=1:1)

濃縮室;幅300mm、高さ600mm、厚さ5mm 濃縮室充填イオン交換体;有機多孔質陰イオン交換体単 床と有機多孔質陽イオン交換体単床を濃縮水の流出入方 向に沿って交互に積層した4床

装置全体の流量;1m³/h

【0046】実施例2

下記装置仕様及び運転条件において、図1と同様の構成 で3個の脱イオンモジュール(6個の小脱塩室)を並設して 構成される電気式脱イオン水製造装置を使用した。被処 理水は、工業用水の逆浸透膜透過水を用い、その硬度は 200μgCaCO₁/1であった。また、被処理水の一部を濃縮 水及び電極水として使用した。運転時間は4000時間であ り、4000時間後の濃縮室内のスケール発生の有無を観察 した。また、同時間における抵抗率17.9MΩ-cmの処理水 を得るための運転条件を表1に示す。

【0047】〈運転の条件〉

電気式脱イオン水製造装置;試作EDI 中間イオン交換膜;アニオン交換膜 第1小脱塩室;幅300mm、高さ600mm、厚さ3mm 第1小脱塩室に充填したイオン交換樹脂;アニオン交換 樹脂(A)とカチオン交換樹脂(C)の混合イオン交換樹脂 (混合比は体積比でA:C=1:1)

第2小脱塩室;幅300mm、高さ600mm、厚さ8mm

第2小脱塩室充填イオン交換樹脂;アニオン交換樹脂 濃縮室;幅300mm、高さ600mm、厚さ5mm

19

濃縮室充填イオン交換体;有機多孔質陰イオン交換体単 床と有機多孔質陽イオン交換体単床を濃縮水の流出入方 向に沿って交互に積層した4床

装置全体の流量;1m3/h

【0048】比較例1

濃縮室厚さを1mmとすること、および濃縮室にイオン交 換体を充填しない以外は、実施例1と同様の方法で行っ た。運転時間は4000時間であり、4000時間後の濃縮室内 10 のスケール発生の有無を観察した。また、同時間におけ*

*る抵抗率17.9MΩ-cmの処理水を得るための運転条件を表

【0049】比較例2

濃縮室厚さを1mmとすること、および濃縮室にイオン交 換体を充填しない以外は、実施例2と同様の方法で行っ た。運転時間は4000時間であり、4000時間後の濃縮室内 のスケール発生の様子を観察した。また、同時間におけ る抵抗率17.9MΩ-cmの処理水を得るための運転条件を表 1に示す。

[0050]

【表1】

			_	
	実施例1	実施例2	比較例1	比較例2
平均印加 建 圧(V)	85	70	150	130
館流(A)	2	2	2	2
4000 時間後の スケール発生の様	無し	無し	有り	有り
子		l		

30

40

初めて移動する点

[0051]

【発明の効果】本発明によれば、電気抵抗の低減または スケール発生の問題を、電気式脱イオン水製造装置の濃 縮室の構造面から解決できる。すなわち、濃縮室に充填 される有機多孔質イオン交換体の高い導電性のために、 濃縮室由来の電気抵抗が低減され、装置運転時の電圧を 低減して消費電力を節減し、運転コストを削減すること が出来る。また、有機多孔質イオン交換体の低電気抵抗 から濃縮室の厚みを大きく取ることが可能となり、スケ ール発生防止が確実に達成される。

【図面の簡単な説明】

【図1】本発明の実施の形態における電気式脱イオン水 製造装置の模式図である。

【図2】脱塩室モジュールおよび濃縮室の構造を説明す る図である。

【図3】図1の電気式脱イオン水製造装置を簡略的に示 した図である。

【図4】濃縮室における不純物イオンの移動を説明する 図である。

【図5】濃縮室における不純物イオンの濃度分布を示す 図である。

【図6】有機多孔質イオン交換体無充填の濃縮室(従来 型) における不純物イオンの濃度分布を示す図である。 【図7】本発明の他の実施の形態における電気式脱イオ ン水製造装置の模式図である。

【符号の説明】

 D_{\bullet} $D_{I} \sim D_{I}$ 104脱塩室 $d_1 \setminus d_2 \setminus d_3 \setminus d_7$ 第1小脱塩室

dı、dı、dı、dı 第2小脱塩室					
1、105 濃縮室					
2 電極室					
3、101 カチオン膜					
4、102 アニオン膜					
5 中間イオン交換膜					
6、109 陰極					
7、110 陽極					
8、103 イオン交換体					
8a 有機多孔質カチオン交換体単床と					
有機多孔質アニオン交換体単床の積層床					
10、100 電気式脱イオン水製造装置					
11、111 被処理水流入ライン					
12 第2小脱塩室の処理水流出ライ					
ン					
13 第1小脱塩室の被処理水流入ラ					
イン					
14、114 脱イオン水流出ライン					
15、115 濃縮水流入ライン					
16、116 濃縮水流出ライン					
17a、17b、117 電極水流入ライン					
18a、18b、118 電極水流出ライン					
20 脱イオンモジュール					
101 炭酸イオンが濃縮水中に初めて					
移動する点					
102 カルシウムイオンが濃縮水中に					

【図6】

フロントページの続き

(72) 発明者 川口 修

東京都江東区新砂1丁目2番8号 オルガ

ノ株式会社内

(72)発明者 日高 真生

東京都江東区新砂1丁目2番8号 オルガ

ノ株式会社内

(72)発明者 佐藤 祐也

東京都江東区新砂1丁目2番8号 オルガ

ノ株式会社内

Fターム(参考) 4D006 GA17 HA41 JA30Z JA43Z

KA31 KB11 MA13 MA14 PA01

PB02 PC01 PC11 PC31 PC42

4D061 DA02 DB13 EA02 EA09 EB04

EB13