Assignment - 01

CSE221: Algorithms

Name : Mohammed Abdul Al Arafat Tanzin

ID : 21301178

Section: 03

Date: 10th July 2023

Time complexity -1

ID: 21301178

number of students, no 400000 number of awards, = 50

Here the time complexity of most officient vortery olgbrithm is O(rlogn).

So time complainty of most efficient of for students -0 (400,000 log 400000).

the top to students one given in a constant time.

So, the time complexity for awards = 0(50)

- Total time complexity = 0 (400000 log 400000) +0(50) = 0 (400000 kg 400000)

Outer loop iterater len (elements)

Annor loop iterates len (elements)

flence those two loops are so rested

: time complexity = den (elements) + len (elements)

 $= O(\eta V)$

(0)

十(h) = 625 T (h/5) + b3

Comparing this with t(n) = at(n/b) + chk

Here, a=625, b=5; K=3

Since, buca

: time complexity = 0 (n log a) = 0 (n log 5625) = 0 (n log 559)

 $= O(n^4)$

(v)

(4)

Here,

For the 1st loop = 0 (log, n)

" 2nd loop = 6 (n/3) = 0(n)

 $n = 3^{rd} = 0(h/1) = 0(h)$

- 4th = = 0 (n/5) = 0(h)

Here 15t & 2nd & 3nd loops are nested and then the 9th

:- Time complexity. [o (log, h) + o(h)] + o(h) + o(h)

= 0 (n2 log, n)

(Aw)

ID: 21301178 SPM

(b)

T(n) = T(n/2) + T(n/4) + n

Here,

Clains Morters Theorem we to get a=1, b=4, K=1

and bx>a

in time complexity = O(n)

Again applying masters theorem on T(n/2) +n

a=1; b=2; K=1

(2)'>1 ⇒ br}a

: time complexity = O(n)

: tolot time complexity = O(n) (Am)

```
Sonting -1
```

To order the tracks using selection nort

型 1 5 7 77 77 77 77 77 77 77 77 77 77 77 77			10:2130 Tms Y	\mathcal{J}
Pon: 9	8 11 15 33 3	9 112 88 41	· •	•
	Souted	To the second se	A Mary	
Pan-6	8 11 15 33 30 Sorted	1 41 88 112		
2m-7				
	8 11 15 33 30	3/41/88/112	b	
	Souted			
	(b)	,		
From (a), order:	we can we,	loop enecution	e en followen	9
1+2+	3+··· + (n-1)			
>> \frac{h}{2}			, , , , , , , , , , , , , , , , , , ,	1
2> 11-	- 7)	1 = 1		

 $\Rightarrow \frac{11-11}{2}$ $\Rightarrow O(N^{V})$ (A.)

<u>(v)</u>

Souting-2

1D: 2130 UTS:, Gel

Here relaction norting in middle

D

0	1	2	3	4	5	6	.7
23	2	19	3	7	11	6	13

Pan-1

5-2

5-3

5-9

5-5

Pan-6

(b)

Sack norted the list in linear time using an algorithm colled counting root. Here are the steps

5-1] Find the maximum and minimum volves in the list: max=23 and min=2

5-21 Create an array with a length equal to the range of value in the list (length = max-min+18=22)

5-31 For each even inden i starting from 0 up to n-2 (eg: i=0,2,4,...)

5-41 For each odd inden i storling from 1 up to 11-2 (e.g: i=1,3,5.7-...)

A 21301178

5-6) The output tist in finally norted

(c)

From (1) we got noted list. [2,3,5,7,11,13,19,23]

If Jack wants to add 16 into this noted test, then

be reals to follow Quick Soit algorithm.

B By wing Quick Sort,

[15, 2, 3, 5, 7, 11, 13, 19, 23]

23571113 15 1023

-: At 6th inder, 15 will be norted

ID: 21301178

Sov ting-2

(b) I support the strategy, because by opplying bubble not to a array everytime at the largest number of that array get positioned respectively. It To find the 5 largest or smallest number we have apply to iterate only 5 times the 5 for most largest number of the array will get their position.

(c) Before the first partition 23 was the prinot of the given array? We know that private get norted position after every the partition function is called. We know 23 got et's position as every left element of 23 is smaller than 23 and sign all the elements of the right side is be greater than 23.

(d) After colling the partition function again using 13 as privat the resultant wray will look like this

11 7 19

7 11 13	13	23	37	29	53	59	41

13 will get it'n novted position.

- 0-

Go Graph - 1

ID: 21301178 : 3

By using BF5, we can draw the graph. Here all players are denoted by the fairt letter of their name,

Player are required for minimum number of prones

coudois -> Rudiger -> Modrie -> Benzema

Total 4 players are required. For anenimum

Triangle (6,9,12)

Yes Bill right. There are at least 4 triangles.

These triangles are made of these following nodes:

Triangle 1 (4, 8, 12)

Triangle (12, 3, 6)

triangle (3, 6, 9)

(0)

10:21301178 ; WHL

7
7 10
9
8
11
5
12
9
6
3

Shortest distance from node 3 to

node (b = 1

nade 5 = 2

nod = 10 = 3

node 11 = 2

node7 = 3

mode 9 = 1

node 12 = 1

node 8 = 2

node 4 = 2

(d)

total number of newly added edges = 3

Total newsper newly edges are between

(3,5), (5,11), (6,10), (10,11), (9,11), (6,7), (9,7), (4,9), (8,9)

PFS tree

the DFS tree contains 8 edges

Her, Bill is right. The equation is achieved by ourning DPS.

rollidation Starting from the nounce node 'C' and from the nounce node, wend '6' and then ':'

now we reached the end, then booktrack to node

'C' and then went to node '2' and then')' next

nod '+' and then node '5' and then node '=' & ds

we reached the end we again backtrack to nod 'C',

to then we reached node '8'

Order of the edges:

(,6→6,÷→(,2→2,)→),+→+,5,→5,=→(,8

(0)

From (a), we got the DFS tree. Nowe, here is the edge classification of the main graph:

From the clamified groph, we can ree that.

There are 8 tree Edger, 2 backward Edger,

A eron Edge but forward edge.