Área generada por
$$\mathbf{u}'$$
 y $\mathbf{v}' = |\mathbf{u}' \times \mathbf{v}'| = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_{11}u_1 + a_{12}u_2 & a_{21}u_1 + a_{22}u_2 & 0 \\ a_{11}v_1 - a_{12}v_2 & a_{21}v_1 + a_{22}v_2 & 0 \end{vmatrix}$
$$= |(a_{11}u_1 + a_{12}u_2)(a_{21}v_1 + a_{22}v_2) - (a_{21}u_1 + a_{22}u_2)(a_{11}v_1 - a_{12}v_2)|$$

La manipulación algebraica verifica que la última expresión es igual a

$$|(a_{11}a_{22} - a_{12}a_{21})(u_1v_2 - u_2v_1)| = \pm \det A$$
 (área generada por **u** y **v**)

Entonces (en este contexto): el determinante tiene el efecto de multiplicar el área. En el problema 48 se pide al lector que demuestre que de cierta forma un determinante de 3×3 tiene el efecto de multiplicar el volumen.

Interpretación geométrica del triple producto escalar

Sean \mathbf{u} , \mathbf{v} y \mathbf{w} tres vectores que no están en el mismo plano. Entonces forman los lados de un **paralelepípedo** en el espacio (vea la figura 4.32). Calculemos su volumen. La base del paralelepípedo es un paralelogramo. Su área, de (3), es igual a $|\mathbf{u} \times \mathbf{v}|$.

Figura 4.32

Tres vectores \mathbf{u} , \mathbf{v} y \mathbf{w} , que no están en el mismo plano, determinarán un paralelepípedo en \mathbb{R}^3 .

El vector $\mathbf{u} \times \mathbf{v}$ es ortogonal tanto a \mathbf{u} como a \mathbf{v} , y por ello es ortogonal al paralelogramo determinado por \mathbf{u} y \mathbf{v} . La altura del paralelepípedo, h, se mide a lo largo del vector ortogonal al paralelogramo.

Del análisis de la proyección, se ve que h es el valor absoluto de la componente de \mathbf{w} en la dirección (ortogonal) $\mathbf{u} \times \mathbf{v}$. Así, de la ecuación (4.3.10):

$$h = \text{componente de } \mathbf{w} \text{ en la dirección } \mathbf{u} \times \mathbf{v} = \left| \frac{\mathbf{w} \cdot (\mathbf{u} \times \mathbf{v})}{|\mathbf{u} \times \mathbf{v}|} \right|$$

Entonces

Volumen del paralelepípedo = área de base × altura

$$= |\mathbf{u} \times \mathbf{v}| \left[\frac{\mathbf{w} \cdot (\mathbf{u} \times \mathbf{v})}{|\mathbf{u} \times \mathbf{v}|} \right] = |\mathbf{w} \cdot (\mathbf{u} \times \mathbf{v})|$$

Es decir,

El volumen del paralelepípedo determinado por los tres vectores \mathbf{u}, \mathbf{v} y \mathbf{w} es igual a $|(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}|$. Dicho de otro modo, valor absoluto del triple producto escalar de \mathbf{u}, \mathbf{v} y \mathbf{w} .

(4.4.4)