

Xai-driven knowledge distillation of Large Language Models for efficient deployment on low-resource devices

Riccardo Cantini, Alessio Orsino, Domenico Talia

Università della Calabria

23-24 Settembre, Napoli

Introduzione

- I Large Language Models hanno riscosso notevole successo per le loro elevate capacità di comprensione e generazione del linguaggio naturale.
- Tuttavia essi richiedono elevate risorse computazionali, il che ostacola il loro utilizzo in contesti low-resource (e.g., edge AI).
- Tecniche di compressione:
 - Pruning: eliminazione di componenti superflue del modello.
 - Quantization: riduzione della precisione numerica dei pesi.
 - **Knowledge Distillation**: trasferimento della conoscenza da un modello di grandi dimensioni (i.e., *teacher*) ad uno più compatto ed efficiente (i.e., *student*).

Knowledge distillation

- La conoscenza viene trasferita minimizzando una loss che combina due contributi:
 - Task loss (L_{CE}): misura l'errore del modello *student* rispetto ai dati annotati, ottimizzandone le prestazioni sul task specifico.
 - **Distillation loss** (L_{KL}): misura la divergenza tra le predizioni del modello *student* e quelle del *teacher*, incoraggiando lo *student* ad imitarne il comportamento.

• Task: «Classifica una recensione come *positiva* o *negativa*». *Classi*: 0 (**negativa**), 1 (**positiva**).

R1: «Buon prodotto, fa il suo dovere.»

R2: «Prodotto eccellente, perfetto in ogni aspetto.»

	R1	R2
Target label (WHAT)	1	1
Teacher output (HOW)	0.75	0.99

Problemi degli approcci attuali

- Le tecniche di distillazione tradizionali non sono sempre in grado di trasferire in maniera efficace la «conoscenza explainable» da modelli complessi (e.g., LLMs) a modelli leggeri.
- Il semplice allineamento degli output dei due modelli potrebbe fallire nel trasferire allo student informazioni
 essenziali sul processo decisionale in accordo al quale il teacher svolge uno specifico task.
 - Perdita di interpretabilità
 - Basse capacità di generalizzazione
- Soluzione proposta: **DiXtill** (XAI-driven Knowledge Distillation)
 - Le spiegazioni locali di un LLM *teacher* vengono utilizzate per guidare il processo di distillazione in un modello *student* energy-efficient e self-explainable.
 - Questo approccio migliora la trustworthiness dello student, con un conseguente impatto positivo sull'accuratezza del modello distillato sul task specifico.

DiXtill: XAI-driven knowledge distillation

- Alla tradizionale loss di distillazione viene aggiunto un termine (L_{XAI}) che promuove l'allineamento tra le spiegazioni *locali* del teacher e dello student.
 - Le spiegazioni del modello *teacher* (σ^T) sono precalcolate mediante l'uso di una tecnica di XAI post-hoc.
 - Le spiegazioni del modello *student* (σ^S) vengono apprese in maniera dinamica durante il processo stesso di distillazione.

R1: "Buon prodotto, fa il suo dovere."

R2: «Prodotto eccellente, perfetto in ogni aspetto.»

	R1	R2
Target label (WHAT)	1	1
Teacher output (HOW)	0.75	0.99
Teacher expl. (WHY)	buon	eccellente

DiXtill: struttura del processo di distillazione

- Modello student: LSTM bi-direzionale
 - Il modello student è self-explainable, ovvero, dato un certo input, fornisce in output sia un risultato sia la relativa spiegazione.
 - Sfrutta un meccanismo di masked attention per attribuire ad ogni termine uno score che misura la sua importanza nel determinare l'output.
 - Tali score (word attributions) costituiscono una spiegazione dell'output del modello student.
 - Il masking consente allo student di ignorare elementi superflui, come il padding, durante il calcolo degli score di attention.

DiXtill: struttura del processo di distillazione

- Modello teacher: BERT
 - Il modello teacher è preaddestrato e finetuned sul task di interesse (e.g., sentiment analysis).
 - Viene usato un Explainer (e.g., integrated gradients) per precalcolare le spiegazioni del teacher per ogni elemento del training set.
 - Le spiegazioni ottenute, sotto forma di **word attributions**, vengono utilizzate per guidare il processo di distillazione (L_{XAI}).
- **DiXtill** loss: $L = (1 \alpha)L_{CE} + \alpha(L_{KL}^{\tau} + L_{XAI})$

Valutazione sperimentale

- Dataset utilizzato: Twitter Financial News Sentiment
 - Classi: bearish (ribassista), bullish (rialzista), neutral
 - 9.938 tweet di training, 2.486 tweet di test
 - Modello fine-tuned: FinBERT (Hugging Face)
- Tecniche confrontate:
 - Distillazione logit-based (KL / MSE loss)
 - Post-Training Quantization (PTQ), int8
 - Attention Head Pruning (AHP), structured

Confronto con le tecniche di distillazione classica

- DiXtill presenta le prestazioni migliori, con un'accuratezza di 0.843 e una macro-F1 di 0.789.
- L'integrazione delle spiegazioni nel processo di distillazione consente di ridurre il divario prestazionale tra teacher e student.
- Vengono mantenute prestazioni elevate a fronte di una importante riduzione del numero di parametri (meno di un milione contro i 110 milioni del modello teacher).

Method	Accuracy	Macro F1
Student w/o distillation	0.802	0.725
Distillation with KL	0.827	0.762
Distillation with MSE	0.816	0.752
DiXtill	0.843	0.789
Teacher	0.855	0.810

Confronto con le tecniche di compressione

- DiXtill raggiunge il miglior trade-off tra accuratezza ed efficienza in termini di compressione (127x) e tempo di inferenza (8.7x).
- La quantizzazione PTQ ottiene una buona accuratezza, al prezzo di uno speed-up (1.52x) ed una compressione limitati (2.4x).
- Il pruning AHP migliora la velocità rispetto a PTQ (2.18x), ma risulta molto sensibile al numero di heads rimosse, con prestazioni insufficienti per elevati fattori di compressione.

Method	Size (C_{ratio})	Inference time (<i>Speedup</i>)
AHP-6	365 MB (↑ 1.20×)	0.28 s († 2.18×)
PTQ	182.5 MB († 2.40×)	0.40 s (↑ 1.52×)
DiXtill	3.45 MB (↑ 127×)	0.07 s (↑ 8.7×)
Teacher	439 MB	0.61 s

Interpretabilità del modello distillato

- DiXtill ha mostrato un maggiore accordo (feature e sign agreement) tra le spiegazioni dei modelli student e teacher, rispetto alle altre tecniche di distillazione.
- Le spiegazioni per **DiXtill** sono selfcomputed, mentre per le altre tecniche sono ottenute tramite IG.
- Esempi di spiegazioni:
 - Tweet con sentiment ribassista: "cut", "stock", "price".
 - Tweet con sentiment rialzista: "raised", "stock", "price".

Conclusioni e sviluppi futuri

- **DiXtill** consente la distillazione efficace di LLM in modelli di piccole dimensioni seguendo un approccio XAI-driven.
- Vantaggi:
 - Elevata accuratezza del modello distillato e maggiore accordo con le spiegazioni del teacher rispetto alla distillazione classica.
 - Fattore di compressione e speed-up significativemente più alti rispetto ad altre tecniche di compressione (PTQ, AHP).
- Sviluppi correnti e futuri:
 - Integrazione con tecniche di **meta-learning** (*learning-to-teach*).
 - Combinazione con tecniche di **neural architecture search** green-aware.
- Codice disponibile su GitHub: https://github.com/SCAlabUnical/DiXtill
- Maggiori dettagli in: Cantini Riccardo, Alessio Orsino, and Domenico Talia. "Xai-driven knowledge distillation of large language models for efficient deployment on low-resource devices." Journal of Big Data 11.1 (2024): 63.

