Task 2

We used curl to send 3 POST requests to each vessel somewhat concurrently. Each vessel checks the time when the first POST arrives and saves that as the start time. When all messages (3*nr of vessels) have arrived and are processed the start time is subtracted from the current time to obtain the time to reach consistency.

The findings are presented in the tables and figure below.

3 vessels		
Vessel	Time (s)	
1	2,476	
2	2,583	
3	2,940	
Average	2,667	

6 vessels		
Vessel	Time (s)	
1	6,007	
2	7,736	
3	10,28	
4	7,557	
5	10,36	
6	11,24	
Average	8,862	

9 vessels	
Vessel	Time (s)
1	16,62
2	17,97
3	18,51
4	13,54
5	18,73
6	18,80
7	19,20
8	20,21
9	20,40
Average	18,22

Time to consistency

