MATH2001-2020-SM2 > ┍► ST Tests & Quizzes

Tests & Quizzes

Quiz 4.1

Return to Assessment List

Part 1 of 1 - A1 10.0 Points

Question 1 of 5

2.0 Points

Which definition is the best one to use to prove the following result:

$$f(x) = \frac{-5}{x}$$
 is not continuous

- A. None of the above.
- \checkmark \bigcirc B. $\forall \varepsilon > 0, \exists \delta > 0, (|x a| < \delta \Rightarrow |f(x) f(a)| < \varepsilon)$
- \checkmark \bigcirc c. $\exists \varepsilon > 0, \forall \delta > 0, \exists x \text{ with } 0 < |x a| < \delta \text{ such that } |f(x) L| \ge \varepsilon$
- \bullet \cap D. $\forall \varepsilon > 0, \exists \delta > 0, (0 < |x a| < \delta \rightarrow |f(x) L| < \varepsilon)$
- \blacktriangleleft \bigcirc E. $\forall A > 0, \exists K > 0, (x > K \rightarrow f(x) > A)$
- \checkmark \cap F. $\forall K > 0, \exists \delta > 0, (0 < |x a| < \delta \rightarrow f(x) > K)$

Answer Key: A

Question 2 of 5

2.0 Points

Which definition is the best one to use to prove the following result:

$$f(x) = 3x^4$$
 is continuous

- \checkmark \bigcirc A. $\exists \varepsilon > 0, \forall \delta > 0, \exists x \text{ with } 0 < |x a| < \delta \text{ such that } |f(x) L| \ge \varepsilon$
- B. None of the above.

•
$$\bullet$$
 \bigcirc c. $\forall A > 0, \exists K > 0, (x > K \rightarrow f(x) > A)$

•
$$\bullet$$
 \cap D. $\forall \varepsilon > 0, \exists \delta > 0, (|x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon)$

•
$$\checkmark$$
 \bigcirc E. $\forall \varepsilon > 0$, $\exists \delta > 0$, $(0 < |x - a| < \delta \rightarrow |f(x) - L| < \varepsilon)$

•
$$\checkmark$$
 \cap F. $\forall K > 0, \exists \delta > 0, (0 < |x - a| < \delta \rightarrow f(x) > K)$

Answer Key: D

Question 3 of 5

2.0 Points

Which definition is the best one to use to prove the following result:

$$\lim_{x \to \infty} \left(\frac{5x^2 + 1}{3x} \right) = \infty$$

•
$$\blacktriangleleft$$
 \cap A. $\forall K > 0$, $\exists \delta > 0$, $(0 < |x - a| < \delta \rightarrow f(x) > K)$

•

B. None of the above.

•
$$\bullet$$
 C . $\forall K < 0, \exists \delta > 0, (0 < |x - a| < \delta \rightarrow f(x) < K)$

•
$$\bullet$$
 \cap D. $\forall \varepsilon > 0, \exists K > 0, (x > K \to |f(x) - L| < \varepsilon)$

•
$$\blacktriangleleft \cap E$$
. $\forall A > 0, \exists K > 0, (x > K \rightarrow f(x) > A)$

•
$$\bullet$$
 \subset E. $\forall \varepsilon > 0, \exists \delta > 0, (|x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon)$

Answer Key: E

Question 4 of 5

2.0 Points

$$\lim_{x \to \infty} \left(\frac{x+1}{x^2 - 1} \right) = 0$$

$$A \rightarrow A$$

•
$$\checkmark$$
 \bigcirc B. $\forall \varepsilon > 0, \exists \delta > 0, (|x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon)$

•
$$\bullet$$
 \subset c. $\forall \varepsilon > 0, \exists K > 0, (x > K \to |f(x) - L| < \varepsilon)$

- 🗸 🔾 D. None of the above.
- \checkmark \bigcirc E. $\forall \varepsilon > 0$, $\exists \delta > 0$, $(0 < |x a| < \delta \rightarrow |f(x) L| < \varepsilon)$

•
$$\bullet$$
 \cap E. $\forall K > 0, \exists \delta > 0, (0 < |x - a| < \delta \rightarrow f(x) > K)$

Answer Key: C

Question 5 of 5

2.0 Points

Which definition is the best one to use to prove the following result:

$$f(x) = 4x^3$$
 is continuous

•
$$\bullet$$
 A . $\forall \varepsilon > 0$, $\exists \delta > 0$, $(|x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon)$

•
$$\blacktriangleleft$$
 \cap B. $\forall A > 0, \exists K > 0, (x > K \rightarrow f(x) > A)$

• •
$$\circ$$
 c. $\forall \varepsilon > 0, \exists \delta > 0, (0 < |x - a| < \delta \rightarrow |f(x) - L| < \varepsilon)$

- \checkmark \bigcirc D. $\exists \varepsilon > 0, \forall \delta > 0, \exists x \text{ with } 0 < |x a| < \delta \text{ such that } |f(x) L| \ge \varepsilon$
- ✓ E. None of the above.

$$\bullet \subset \mathcal{F}$$
 $\forall K > 0, \exists \delta > 0, (0 < |x - a| < \delta \rightarrow f(x) > K)$

Answer Key: A

- Gateway
- Mobile View
- The Sakai Project
- · Powered by Sakai
- Copyright 2003-2020 The Sakai Foundation. All rights reserved. Portions of Sakai are copyrighted by other parties as described in the Acknowledgments screen.

Change Profile Picture

Error removing image Error uploading image Upload Choose File No file chosen Connections Cancel Remove Search for people ... View More My Connections **Pending Connections** You don't have any connnections yet. Search for people above to get started. You have no pending connections.

←Back to My Connections

Search for people ...

\$({cmLoader.getString("connection manager no results")}

Done