Cinética Química

Edvaldo Amaro

Reações químicas são um conjunto de fenômenos nos quais duas ou mais substâncias reagem entre si, dando origem a diferentes compostos. Equação química é a representação gráfica de uma reação química, onde os reagentes aparecem no primeiro membro, e os produtos no segundo.

$$Br2(aq) + HCOOH(aq) \rightarrow 2Br - (aq) + 2H + (aq) + CO2(g)$$

A diminuição da concentração de bromo à medida que o tempo passa manifesta-se por uma perda de cor da solução

Gráfico do consumo de fenolftaleína:

Condições para a ocorrência de uma reação:

- ·Natureza dos reagentes ou a "afinidade química".
- Contato entre os reagentes.
- •Choques eficazes:
 - ✓ Energia de ativação.
 - **✓ Complexo ativado.**

Colisão eficaz

Complexo ativado: é a espécie formada transitoriamente pelas moléculas de reagentes, como resultado da colisão, antes da formação do(s) produto (s).

- Cinética química é a área da química que estuda a velocidade das reações química. Assim como os fatores que influenciam a velocidade destas reações.
- A velocidade de uma reação é a rapidez com que os reagentes são consumidos ou rapidez com que os produtos são formados.
- As velocidades das reações químicas são determinadas através de leis empíricas, chamadas leis da velocidade.

Termodinâmica Química

- •Estuda o sistema do ponto de vista macroscópico("Observador externo").
- •Estuda as condições em que uma reação é realizável (ΔG energia livre de Gibbs).
- •Estuda se uma reação atinge o grau máximo de avanço e permite calcular qual é esse valor.

Cinética Química

- •Estuda o sistema do ponto de vista microscópico (o que realmente está ocorrendo).
- •Estuda a duração de uma reação química.
- •Estuda o comportamento do meio reacional ao longo do tempo.
- •Estuda os fatores que podem vencer a Inércia química.

EQUAÇÃO DE ARRHENIUS

Em que:

k- constante de velocidade

A – fator de frequência (mædida da probabilidade de uma colisão eficaz)

E_a – energia de ativação (kJ/ mol)

R – constante dos gases ideais (em unidades S.I. 8,314 J/K . mol)

T – temperatura absoluta

Quanto menor E_a e maior T, maior k.

Lei da Velocidade de Guldberg/ Waage

Dado a reação abaixo:

$$aA+bB \rightarrow cC+dD$$

Estabele-se a seguinte lei, segundo os experimentos de Guldberg/ Waage:

$$\nu = k[A]^{\alpha}.[B]^{\beta}$$

Equação da velocidade

A maneira mais usual de se medir a velocidade de uma reação química é a relação entre a concentração de um dos reagentes do meio reacional e o tempo. Logo:

$$v = \frac{dC_a}{dt}$$

A velocidade de reação normalmente é representada pela letra r (do inglês rate), e assim a forma realmente usual será então a seguinte:

$$-r_a = -\frac{dC_a}{dt}$$

Velocidade média de uma reação

Dado a reação:

A velocidade média de uma reação é definida como a variação da concentração de produtos ou de reagentes que ocorrem por unidade de tempo. Logo:

$$V_m = -\frac{\Delta[A]}{\Delta t} = \frac{\Delta[B]}{\Delta t}$$

UTILIDADE DAS EQUAÇÕES CINÉTICAS

- 1- Calcular a velocidade de uma reação a partir do conhecimento da constante de velocidade e das concentrações de reagentes;
- 2- Calcular a concentração de reagentes em qualquer instante durante o decorrer de uma reação.

Ordem da reação

O termo "ordem" vem da matemática onde é utilizado na classificação das equações diferenciais. As leis de velocidade são equações diferenciais. Em cinética química, tais equações são classificadas de acordo com a ordem da reação.

A ordem de uma reação é definida como sendo a soma das potências dos termos de concentração que aparecem na equação de velocidade da reação química. É normalmente, um número inteiro pequeno, podendo em casos especiais, ser zero ou fracionário. É importante ressaltar, que a ordem de reação é uma grandeza que normalmente é obtida a partir de dados experimentais, em grande parte das vezes sem o conhecimento real do mecanismo da reação.

Ma Vida

Tempo de mela-vida (t1/2): é o tempo necessário para que a concentração de uma reagente diminua para metade do seu valor inicial.

Tempo de meia vida reação de primeira ordem.

RESUMO DA CINÉTICA DE REAÇÕES DE ORDEM ZERO, 1ª ORDEM E 2ª ORDEM

Ordem	Equação cinética	Equação concentração-tempo	Tempo de meia-vida
0	Velocidade =k	$[A] = [A]_0 - kt$	$t_{1/2} = \frac{[A]_0}{2k}$
1	Velocidade = k[A]	$ln[A] = ln[A]_0 - kt$	$t_{1/2} = \frac{\ln 2}{k}$
2	Velocidade = $k[A]^2$	$\frac{1}{[A]} = \frac{1}{[A]_0} + kt$	$t_{1/2} = \frac{1}{k[A]_0}$

Fatores que influenciam na velocidade de uma reação química

Concentração dos reagentes;

Temperatura;

- •Presença ou não de catalisadores.
 - ✓ Catálise homogênea;

✓ Catálise heterogênea.

Bibliografia:

- ✓http://www.brasikescola.com/quimica/cinetica-quimica.html
- √http://www.marco.eng.br/cinética/index.html
- ✓http://www.cenimig.fae.esfmg.br
- ✓http:///www.mundovestibular.com.br
- /http://qnesc.sbq.org.br/online/qnesc07/historia.p
- ✓ **Química Geral Vol. 2**; Russel, John B.; Editora: Makron Books