Examinee and Assessment Characteristics Matter: Where Do We Go From Here in the Age of Digital Assessments?

Guher Gorgun

Measurement, Evaluation, and Data Science
Center for Research in Applied Measurement and Evaluation
University of Alberta

Research Interests Assessment and examinee characteristics interact

Items as building blocks of assessments

New methods for enhancing assessment practices of diverse populations

Research Interests Assessment and examinee characteristics interact

Items as building blocks of assessments

New methods for enhancing assessment practices of diverse populations

HIGH-STAKES

Important consequences for examinee

LOW-STAKES

No direct consequences for examinees

MOTIVATION

FATIGUE

TEST-WISENESS

TEST ANXIETY

EFFORT

ENGAGED RESPONDING

SOLUTION BEHAVIOR

RAPID GUESSING

CHEATING

CARELESS RESPONDING

IDLE RESPONDING

Ulitzsch, E., Yildirim-Erbasli, S. N., **Gorgun, G.,** & Bulut, O. (2022). An explanatory mixture IRT model for careless and insufficient effort responding in self-report measures. British Journal of Mathematical and Statistical Psychology, 75(3), 668-698. https://doi.org/10.1111/bmsp.12272

HIGH-STAKES

Important consequences for examinee

LOW-STAKES

No direct consequences for examinees

MOTIVATION

FATIGUE

TEST-WISENESS

TEST ANXIETY

EFFORT

ENGAGED RESPONDING

SOLUTION BEHAVIOR

RAPID GUESSING

CHEATING

CARELESS RESPONDING

IDLE RESPONDING

Ulitzsch, E., Yildirim-Erbasli, S. N., **Gorgun, G.,** & Bulut, O. (2022). An explanatory mixture IRT model for careless and insufficient effort responding in self-report measures. British Journal of Mathematical and Statistical Psychology, 75(3), 668-698. https://doi.org/10.1111/bmsp.12272

HIGH-STAKES

Important consequences for examinee

LOW-STAKES

No direct consequences for examinees

MOTIVATION

FATIGUE

TEST-WISENESS

TEST ANXIETY

EFFORT

ENGAGED RESPONDING

SOLUTION BEHAVIOR

RAPID GUESSING

CHEATING

CARELESS RESPONDING

IDLE RESPONDING

Ulitzsch, E., Yildirim-Erbasli, S. N., **Gorgun, G.,** & Bulut, O. (2022). An explanatory mixture IRT model for careless and insufficient effort responding in self-report measures. British Journal of Mathematical and Statistical Psychology, 75(3), 668-698. https://doi.org/10.1111/bmsp.12272

"CONSTRUCT-IRRELEVANT" VARIANCE

Gorgun, G., & Bulut, O. (2022). Identifying aberrant responses in intelligent tutoring systems: An application of anomaly detection methods. *Psychological Testing and Assessment Modeling*, 64(4), 359-384.

Why should we care about construct-irrelevant variance?

Gorgun, G., & Bulut, O. (2022). Considering disengaged responses in Bayesian and deep knowledge tracing. In M. M. Rodrigo, N. Matsuda, A. I. Cristea, & V. Dimitrova (Eds.), *Artificial intelligence in education. Posters and late-breaking results, workshops and tutorials, industry and innovation Tracks, practitioners' and doctoral consortium* (pp. 591-594). Lecture Notes in Computer Science, vol 13356. Springer, Cham. https://doi.org/10.1007/978-3-031-11647-6_122

Digital assessments can provide **process** and **product** information about examinees

How an examinee attempted the item

Whether the response is correct

Zumbo, B. D., & Hubley, A. M. (Eds.). (2017). *Understanding and investigating response processes in validation research* (Vol. 26). Springer International Publishing.

Response time

Number of actions

Action sequences

Eye tracking

Sensor data

Study 1: Minimizing the influence of disengagement on ability estimation

A novel scoring approach blending response times with response accuracy

- Recode not-reached as missing (NA) or incorrect (IN)
- Find response time distributions for each item separating correct and incorrect response time distributions
- Assign partial scores based on response time use

Original scoring method

Optimal 1 0 time Disengaged 1 0

New scoring method

	Correct	Incorrect
Optimal time	3	1
Disengaged	2	0

How it works?

How it works?

How it works?

Scoring models compared

		Not-reached	Scoring approach	
2PL-NA	Baseline	Missing (NA)	Original	
2PL-IN	Baseline	Incorrect (IN)	Original	
GRM3-NA		Missing (NA)	New	
GRM3-IN		Incorrect (IN)	New	

..... 2PL-IN ---- 2PL-NA - GRM3-IN - GRM3-NA

Limitation:

Applied after the assessment is over as a reactive response

Study 2: Alleviating disengagement by enhancing the adaptivity of the assessment

 In computerized adaptive tests we select the most informative item based on the examinees' interim ability

 We developed a new item selection algorithm, so ability and engagement can be considered jointly

In computerized adaptive test, we used response data to calibrate the item parameters

Student ID	Item1	Item2	Item3	Item4	Item5
1	1	0	1	1	1
2	1	1	1	0	1
3	1	0	1	1	0
4	1	1	1	1	0
5	1	0	1	1	1
6	1	1	1	1	0
7	0	0	1	1	0
8	1	0	1	1	0
9	1	1	1	1	0
10	1	1	1	1	1

Item ID	Discrimination	Difficulty
Item1	2.267	-1.010
Item2	2.320	-0.810
Item3	2.064	-1.584
Item4	2.920	-0.988
Item5	1.7042	-0.123

The most informative item is selected based on interim ability maximizing item information function

$$I_{j,\theta}(\theta_i) = a_{j,\theta}^2 P_{j,\theta}(\theta_i) \left(1 - P_{j,\theta}(\theta_i)\right)$$

 $a_{j,\theta}$: discrimination index of item j

 $P_{j,\theta}$: the probability of answer item j

Item ID	Information Function
Item1	0.065
Item2	0.100
Item3	0.034
Item4	0.157
Item5	0.236

We create binary engagement data using response times

Student	Item1	Item2	Item3	Item4	Item5
ID					
1	0.474	1.101	0.645	1.123	1.062
2	1.612	1.384	0.769	1.608	1.258
3	0.629	1.062	1.421	-0.070	1.791
4	0.951	1.381	1.437	0.470	1.367
5	0.825	1.169	0.470	0.571	0.793
6	0.657	0.934	0.733	1.035	1.329
7	0.239	1.329	0.265	0.700	1.493
8	-0.08	-1.007	0.621	-1.632	-1.37
9	0.671	0.637	0.062	0.581	1.278
10	0.466	0.597	0.261	0.451	1.244

We use the binary engagement data to calibrate engagement parameters

Student ID	Item1	Item2	Item3	Item4	Item5
1	1	0	0	1	1
2	1	1	1	1	1
3	0	0	0	0	0
4	1	1	1	1	1
5	1	1	1	1	1
6	1	1	1	1	1
7	1	1	1	1	1
8	0	0	0	1	1
9	1	1	1	1	1
10	1	1	1	1	1

The new algorithm selects the next item that maximizes both ability and engagement item information functions

Ability Information Function

$$I_{j,\theta}(\theta_i) = a_{j,\theta}^2 P_{j,\theta}(\theta_i) \left(1 - P_{j,\theta}(\theta_i)\right)$$

Engagement Information Function

$$I_{j,e}(\theta_{e.i}) = a_{j,e}^2 P_{j,e} (\theta_{e.i}) (1 - P_{j,e}(\theta_{e.i}))$$

Research Interests Assessment and examinee characteristics interact

Items as building blocks of assessments

New methods for enhancing assessment practices of diverse populations Adaptivity in an assessment requires many and diverse items

Created items need to go through an extensive evaluation process

Unknown item quality

Resource-intensive process

Gorgun, G. & Bulut, O. (revise & resubmit). Exploring quality criteria and evaluation methods in automated question generation: A comprehensive survey.

Leveraging large-language models to facilitate item analysis

How do large language models work?

It is finally spring in Edmonton because it stopped ...

raining .025

snowing .672

•

•

•

blooming .004

singing .001

Study 3: Item analysis with large-language models as a filtering process

• N = 1825 cloze items

- Items were rated as either Good or Bad
 - Bad n = 1102
 - Good n = 723

- Instruction-tuned Llama-2
 - 20% used as test set (n = 363)

Enhancing the precision of a large-language model by providing instructions, examples, and output for a specific task

Treat Llama-2 as a content expert

You are a **content expert** helping us understand the cloze question quality. A good question tests a **key concept** from the sentence, is **reasonable to answer**, **unambiguous**, and **specific**. A bad question is unreasonable to answer, too broad, ambiguous, or lacks specificity and depth.

Is this question good or bad?

bad?

Using >1400 examples in training set, we instruction-tuned Llama-2 and evaluated how well it can predict item quality on the test set

Llama-2 performed well for filtering out bad questions from the item bank.

However, almost half of good items were classified as bad.

Research Interests Assessment and examinee characteristics interact

Items as building blocks of assessments

New methods for enhancing assessment practices of diverse populations

Personalized assessments

- •The role of large-language models and computational models?
 - Diverse and inclusive item development
 - Adapting assessments to diverse populations
- Validity framework?

Fusion of computational methods with psychometrics

- Fairness in models trained with past human data
- Validity of new methods

Promote transdisciplinary communication among industry partners and academic researchers

- Reiterate psychometric rigor in learner modeling
- Establish collaboration among practitioners and researchers

Key contributions

Modelled learner behavior (e.g., engagement) across various educational contexts

Enhanced adaptivity of assessments to promote better assessment experiences for examinees

Leveraged theories and concepts in computer science, psychology, and learning sciences to introduce novel psychometric methods

