STAT3008: Applied Regression Analysis 2019/20 Term 2 Mid-Term Examination

Date: 7th April 2020 (Tuesday)

Time: 9:30am – 12:15pm (165 minutes)

Total Score: 100 points

Please present your answers in 4 significant figures.

- Submission Requirement: (1) Name and SID on the 1st page of your work, (2) Only a single file in .pdf or .doc* format (size < 10MB) will be accepted
 - (3) Filename in the format of "LAST NAME First Name SID.pdf/doc*"
- How to submit your exam work? A dropbox button is now available on Blackboard.

Problem 1 [27 points]: Suppose the following regression model is fitted to a data set with observations $\{(x_{ii}, x_{i2}, y_i), i = 1, 2, ..., n\}$:

$$y_i = \beta_1 x_{i1} + \beta_2 x_{i2} + e_i, \quad e_i^{iid} \sim N(0, \sigma^2)$$

Assume that $\sum_{i=1}^{n} x_{i1} x_{i2} = 0$.

$$\sum_{i=1}^{n} x_{i1} x_{i2} = 0$$

- (a) [8 points] Derive the OLS estimates $\hat{\beta}_1$ and $\hat{\beta}_2$.
- (b) [6 points] Setup the log-likelihood function $l(\beta_1, \beta_2, \sigma^2)$.
- (c) [4 points] Do you expect the MLE $\ \widetilde{eta}_{_1}\$ and $\ \widetilde{eta}_{_2}\$ to be the same as their corresponding OLS estimates $\hat{\beta}_1$ and $\hat{\beta}_2$ in part (a)? Explain. (No computation required)
- (d) [5 points] Is $\hat{\beta}_1$ an unbiased estimator for β_i ? Verify.
- (e) [4 points] Does the point $(x_1, x_2, y) = (\overline{x_1^2}, \overline{x_2^2}, \overline{x_1y} + \overline{x_2y}) = (\frac{1}{n} \sum_{i=1}^{n} x_{i1}^2, \frac{1}{n} \sum_{i=1}^{n} x_{i1}^2, \frac{1}{n} \sum_{i=1}^{n} x_{i1}^2, \frac{1}{n} \sum_{i=1}^{n} x_{i2}^2, \frac{1}{$ pass through the regression line based on the OLS estimates? Verify.

Problem 2 [16 points]: Consider multiple linear regression $\mathbf{Y}_{n\times l} = \mathbf{X}_{n\times (p+1)} \boldsymbol{\beta}_{(p+1)\times l} + \mathbf{e}_{n\times l}$ with

$$E(\mathbf{e}) = \mathbf{0}_{n \times 1}$$
 and $Var(\mathbf{e}) = \sigma^2 \mathbf{I}_n$. Let $\mathbf{A} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$ and $\mathbf{B} = \mathbf{I}_n - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$.

- (a) [4 points] Prove or disprove the following: ABA = A.
- (b) [4 points] Prove or disprove the following: $\mathbf{A}^5 = \mathbf{I}_n \mathbf{B}^7$.
- (c) [8 points] Simplify the following in terms of σ^2 , n and p: $E[\mathbf{e'X(X'X)}^{-1}X'Y]$.

Problem 3 [24 points]: A simple linear regression is fitted to the data $\{(x_1, y_1), \dots (x_{48}, y_{48})\}$, with

$$E(Y | X = x) = \beta_0 + \beta_1 x$$
, $Var(Y | X = x) = \sigma^2$

The coefficient table and ANOVA table below shows some of the regression results:

Coefficient Table				
Variable	Coefficient	Std. Error	t-stat	p-value
Constant	?	5.3871	-1.8392	?
Χ	0.6579	?	?	?

ANOVA Table					
Source	df	SS	MS	F-stat	p-value
Regression	?	?	?	?	?
Residuals	?	850.00	?		
Total	?	?			

It's known that $R^2 = 15\%$.

- (a) [16 points] Replicate the two tables above and fill in ALL the missing values (in 4 significant figures).
- (b) [8 points] Based on the results in part (a), test the hypotheses on whether β_o is greater than -2.0 at α =0.05. You should setup the 4 steps of hypothesis testing as on Ch2 page 64.

Note: R functions like "pf", "pt", "qf" and "qt" could be useful in this problem.

Problem 4 [19 points]: Consider multiple linear regression with 3 explanatory variables (EVs) x_1 , x_2 and x_3 . Two hypothesis testing was performed on models with selected EVs, and the results were summarized by the two ANOVA tables below:

$$H_{o} : E(Y \mid \mathbf{X} = \mathbf{x}) = \beta_{0}$$

$$VS \quad H_{I} : E(Y \mid \mathbf{X} = \mathbf{x}) = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2}$$

$$NS \quad H_{I} : E(Y \mid \mathbf{X} = \mathbf{x}) = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2}$$

$$H_{o} : E(Y \mid \mathbf{X} = \mathbf{x}) = \beta_{0} + \beta_{1}x_{1} + \beta_{3}x_{3}$$

$$VS \quad H_{I} : E(Y \mid \mathbf{X} = \mathbf{x}) = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2} + \beta_{3}x_{3}$$

$$VS \quad H_{I} : E(Y \mid \mathbf{X} = \mathbf{x}) = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2} + \beta_{3}x_{3}$$

$$H_{o} : E(Y \mid \mathbf{X} = \mathbf{x}) = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2} + \beta_{3}x_{3}$$

$$VS \quad H_{I} : E(Y \mid \mathbf{X} = \mathbf{x}) = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2} + \beta_{3}x_{3}$$

$$H_{o} : E(Y \mid \mathbf{X} = \mathbf{x}) = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2} + \beta_{3}x_{3}$$

$$H_{o} : E(Y \mid \mathbf{X} = \mathbf{x}) = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2} + \beta_{3}x_{3}$$

$$H_{o} : E(Y \mid \mathbf{X} = \mathbf{x}) = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2} + \beta_{3}x_{3}$$

$$H_{o} : E(Y \mid \mathbf{X} = \mathbf{x}) = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2} + \beta_{3}x_{3}$$

$$H_{o} : E(Y \mid \mathbf{X} = \mathbf{x}) = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2} + \beta_{3}x_{3}$$

$$H_{o} : E(Y \mid \mathbf{X} = \mathbf{x}) = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2} + \beta_{3}x_{3}$$

$$H_{o} : E(Y \mid \mathbf{X} = \mathbf{x}) = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2} + \beta_{3}x_{3}$$

$$H_{o} : E(Y \mid \mathbf{X} = \mathbf{x}) = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2} + \beta_{3}x_{3}$$

$$H_{o} : E(Y \mid \mathbf{X} = \mathbf{x}) = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2} + \beta_{3}x_{3}$$

$$H_{o} : E(Y \mid \mathbf{X} = \mathbf{x}) = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2} + \beta_{3}x_{3}$$

$$H_{o} : E(Y \mid \mathbf{X} = \mathbf{x}) = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2} + \beta_{3}x_{3}$$

$$H_{o} : E(Y \mid \mathbf{X} = \mathbf{x}) = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2} + \beta_{3}x_{3}$$

$$H_{o} : E(Y \mid \mathbf{X} = \mathbf{x}) = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2} + \beta_{3}x_{3}$$

$$H_{o} : E(Y \mid \mathbf{X} = \mathbf{x}) = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2} + \beta_{3}x_{3}$$

$$H_{o} : E(Y \mid \mathbf{X} = \mathbf{x}) = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2} + \beta_{3}x_{3}$$

$$H_{o} : E(Y \mid \mathbf{X} = \mathbf{x}) = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2} + \beta_{3}x_{3}$$

$$H_{o} : E(Y \mid \mathbf{X} = \mathbf{x}) = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2} + \beta_{3}x_{3}$$

$$H_{o} : E(Y \mid \mathbf{X} = \mathbf{x}) = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2} + \beta_{3}x_{3}$$

$$H_{o} : E(Y \mid \mathbf{X} = \mathbf{x}) = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2} + \beta_{3}x_{3}$$

$$H_{o} : E(Y \mid \mathbf{X} = \mathbf{x}) = \beta_{0} + \beta_{1}x_{$$

It's known that the sample correlation between y and each of the x_i are 91.118%, -44.260% and 99.556% respectively. That is, $\hat{\rho}(y,x_1) = 91.118\%$, $\hat{\rho}(y,x_2) = -44.260\%$ and $\hat{\rho}(y,x_3) = 99.556\%$

MS

p-value

F-stat

18.027

(a) [11 points] Replicate the table below, and fill in ALL the missing values (in 4 significant figures). (df and RSS of Model 7: $E(Y | \mathbf{X} = \mathbf{x}) = \beta_0 + \beta_2 x_2 + \beta_3 x_3$ have already been included in the table)

Model	Explanatory Variable(s)	df	RSS
1	Null (No EV, constant only)	?	?
2	x1	?	?
3	x2	?	?
4	x3	?	?
5	x1, x2	?	?
6	x1, x3	?	?
7	x2, x3	51	7.3141
8	x1, x2, x3	?	?

- (b) [4 points] Do you think multicollinearity exists in Model 8: $E(Y | \mathbf{X} = \mathbf{x}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$? Explain.
- (c) [4 points] Do you think the sample correlation between x_i and x_2 (i.e. $\hat{\rho}(x_1, x_2)$) is close to 0? Explain.

Problem 5 [14 points]: Suppose we are interested in explaining the sale price of a house by 4 variables relating to its size and age (grey columns below). The table below shows the data of the first 6 houses in the data set:

A multiple linear regression was fitted into $y = \ln(\text{SalePrice})$ based on the 4 EVs. The table below shows the parameter estimates:

Coefficients:				
	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	8.947e-01	4.175e-01	2.143	0.0323 *
Year	5.231e-03	2.151e-04	24.323	< 2e-16 ***
FirstFloor	3.378e-05	3.102e-05	1.089	0.2764
Basement	-2.274e-04	2.948e-05	-7.714	2.6e-14 ***
Total	3.954e-04	1.446e-05	27.335	< 2e-16 ***
Residual standard error: 0.212 on 1169 degrees of freedom				
Multiple R-sq	uared: 0.735	3, Adjuste	ed R-squa	ared: 0.7344
F-statistic: 811.8 on 4 and 1169 DF, p-value: < 2.2e-16				

Note that most of the parameter estimates are intuitive. For example, $\hat{\beta}_{Year} = 0.005231 > 0$ is consistent with the fact that a <u>newer house (larger Year) is supposed to be sold at a higher price</u>.

- (a) [12 points] Based on the parameter estimates above, comment on whether each of the following are consistent with your intuition:
 - (I) $\hat{\beta}_{\text{Basement}} = -0.0002274 < 0$
 - (II) $\hat{\beta}_{\text{Total}} = 0.0003954 > \hat{\beta}_{\text{FirstFlooi}} = 0.00003378 > 0$
- (b) [2 points] What is the sample size n of the data set?
 - End of the Exam -