

DEPARTMENT OF COMPUTER SCIENCE SHAHEED SUKHDEV COLLEGE OF BUSINESS STUDIES (UNIVERSITY OF DELHI)

ANALYSIS ON MOVIE LENS DATASET (DATA ANALYSIS AND VISUALIZATION PROJECT REPORT)

SUBMITTED BY: Shefalika Ghosh (19544)

Niti Tyagi (19522)

PROJECT SUPERVISOR:

Dr. Anamika Gupta, PhD (Assistant Professor)

DECLARATION

It is hereby certified that the work being presented in the Data Analysis

and Visualization Project Report entitled "Movie Lens, a movie

recommendation service" has been successfully completed under the

supervision of Dr. Anamika Gupta, Ph.D. (Assistant Professor, Shaheed

Sukhdev College of Business Studies, affiliated to University of Delhi)

and is an authentic record of my own work carried out during the

academic year 2021-2022.

Shefalika Ghosh

(Roll No: 19544)

This is to certify that the above statement made by the student is

correct to the best of my knowledge.

Dr. Anamika Gupta, Ph.D.

(Assistant Professor)

(Project Supervisor)

1

ACKNOWLEDGEMENT

A perfect finish to any project requires guidance and I was lucky to have that support, bearing, and supervision in every perspective from my instructor. I am using this opportunity to express my gratitude to my professor **Dr. Anamika Gupta** who supported me throughout the course of this Data Analysis and Visualization project. Her aspiring guidance, support, encouragement and enthusiasm during the project work helped me in widening my horizons of knowledge. I am sincerely grateful to her for sharing her honest and illuminating views and experience on a number of issues related to the project.

I would also like to extend my sincere thanks to my project partner **Ms. Niti Tyagi**. This project would not have been possible without her kind support, help and incredible contribution every step of the way.

This acknowledgement will remain incomplete if I fail to express my deep sense of obligation to my parents for their consistent support and encouragement.

ABSTRACT

Data analysis can be described as the process of collecting and organizing data to draw helpful conclusions that support decision-making. Analysis also involves visualization which gives us a clear idea of what the information means by giving it visual context through maps or graphs making the data easier to comprehend and hence, easier to identify trends, patterns, and outliers within large data sets. In our data-rich age, we generate and collect a colossal volume of data every day. The importance of data analysis lies in the fact that analyzed data reveals insights that tells one where to focus your efforts. This saves time, money, effort and gives rise to smarter business decisions. There are several methods and techniques to perform analysis depending on the industry and the aim of the analysis.

This project acts as a platform to give us an introductory understanding to the vast field of data analysis and visualization. For our project we have chosen the Movie Lens Dataset which describes ratings and freetext tagging activities from 'MovieLens', a movie recommendation service (more details on the dataset will follow). The Movie Lens Dataset is often used for the purpose of recommender systems which aim to give personalized movie recommendations based on a user's movie ratings.

The objective of this project is to analyze the MovieLens dataset to gain insight into the history of cinematography. The analysis answer questions related to popular genres, number of users reviewing the movies, average movie ratings and using them to recommend movies to users based on their interest. This document contains the full Python code used for the analysis and visualization of the dataset

Table of contents

1. Declaration	. 1
2. Acknowledgement	2
3. Abstract	. 3
4. Table of Contents	4
5. Dataset Description	5-7
6. Analysis and Visualization	8-42
7. Summary	43-44
8. Bibliography	45

Dataset Description

This dataset describes ratings and free-text tagging activities from MovieLens, a movie recommendation service. It contains 20000263 ratings and 465564 tag applications across 27278 movies. This data was created by 138493 users between January 09, 1995 and March 31, 2015.

The dataset was generated on October 17, 2016 with users having been selected at random for inclusion. All selected users had rated at least 20 movies.

The data in the dataset is contained in 2 files: rating.csv, movie.csv. Details of the content and usage of these files is given below.

Dataset Content and Usage

The dataset files are in csv format (comma-separated value) with a single header row. Columns containing commas (,) are escaped using double-quotes ("). These files are encoded as UTF-8.

User Ids

MovieLens users were selected at random for inclusion for inclusion. Their ids have been anonymized. User ids are consistent between ratings.csv and tags.csv files (i.e., the same id refers to the same user across the two files).

Movie Ids

Only movies with at least one rating or tag are included in the dataset. These movie ids are consistent with those used on the MovieLens web site (e.g., id 1 corresponds to the URL https://movielens.org/movies/1). Movie ids are consistent between files rating.csv, tag.csv, movie.csv, and link.csv (i.e., the same id refers to the same movie across these four data files).

Ratings Data File Structure (rating.csv)

All ratings are contained in the file rating.csv. Each line of this file after the header row represents one rating of one movie by one user, and has the following format:

userId, movieId, rating, timestamp

The lines within this file are ordered first by userId, then, within user, by movieId.

Ratings are made on a 5-star scale, with half-star increments (0.5 stars - 5.0 stars).

Timestamps represent seconds since midnight Coordinated Universal Time (UTC) of January 1, 1970.

Movies Data File Structure (movie.csv)

Movie information is contained in the file movie.csv. Each line of this file after the header row represents one movie, and has the following format: *movield,title,genres*

Movie titles are entered manually or imported from https://www.themoviedb.org, and include the year of release in parentheses. Errors and inconsistencies may exist in these titles.

Genres are a pipe-separated list, and are selected from the following:

- Action
- Adventure
- Animation
- Children's
- Comedy
- Crime
- Documentary
- Drama
- Fantasy

- Film-Noir
- Horror
- Musical
- Mystery
- Romance
- Sci-Fi
- Thriller
- War
- Western
- (no genres listed)

Python Libraries

- 1. Pandas
- 2. Numpy
- 3. Matplotlib
- 4. Seaborn

MovieLens Dataset

Team Members

Niti Tyagi(19522), Shefalika Ghosh(19544)

Context

The datasets describe ratings and free-text tagging activities from MovieLens, a movie recommendation service. It contains 20000263 ratings and 465564 tag applications across 27278 movies. These data were created by 138493 users between January 09, 1995 and March 31, 2015. This dataset was generated on October 17, 2016.

Users were selected at random for inclusion. All selected users rated at least 20 movies where each user is represented by an id - userld

Content

The data is contained in two files: movie.csv, rating.csv

- 1. **rating.csv** contains ratings of movies by users:
- userId
- movield
- rating
- timestamp
- 1. **movie.csv** contains movie information:
- movield
- title

0

genres

```
In [1]:
          import numpy as np
          import pandas as pd
In [2]:
          import matplotlib.pyplot as plt
          import seaborn as sns
In [25]:
          import warnings
          warnings.filterwarnings('ignore')
In [3]:
          movie = pd.read_csv("./MovieLens/movie.csv")
          print(movie.columns)
          movie.head(10)
         Index(['movieId', 'title', 'genres'], dtype='object')
Out[3]:
            movield
                                          title
                                                                             genres
```

	movield		title	genres
	1	2	Jumanji (1995)	Adventure Children Fantasy
	2	3	Grumpier Old Men (1995)	Comedy Romance
	3 4		Waiting to Exhale (1995)	Comedy Drama Romance
	4	5	Father of the Bride Part II (1995)	Comedy
	5	6	Heat (1995)	Action Crime Thriller
	6	7	Sabrina (1995)	Comedy Romance
	7	8	Tom and Huck (1995)	Adventure Children
	8	9	Sudden Death (1995)	Action
	9	10	GoldenEye (1995)	Action Adventure Thriller
n [5]: ut[5]:	movie.describe()		movield	
			78.000000	
			55.480570	
	std 444		29.314697	
	min		1.000000	
	25%	69	31.250000	
	50%	680	68.000000	
	75% 100293.25000			
	max	1312	62.000000	
[4]:			od.read_csv("./MovieLens/rations.columns)	ng.csv")
	Index((['us	erId', 'movieId', 'rating', '	timestamp'], dtype='object')

DESCRIPTIVE ANALYSIS

```
In [5]:
         rating['rating'].describe()
        count
                 2.000026e+07
Out[5]:
                 3.525529e+00
        mean
                 1.051989e+00
        std
                 5.000000e-01
        min
        25%
                 3.000000e+00
        50%
                 3.500000e+00
        75%
                 4.000000e+00
                 5.000000e+00
        Name: rating, dtype: float64
```

Minimum rating given to any movie: 0.5

Maximum rating given to any movie: 5.0

```
In [6]: rating = rating.loc[:, ["userId", "movieId", "rating"]]
```

rating.head(10)

Out[6]:		userId	movield	rating
	0	1	2	3.5
	1	1	29	3.5
	2	1	32	3.5
	3	1	47	3.5
	4	1	50	3.5
	5	1	112	3.5
	6	1	151	4.0
	7	1	223	4.0
	8	1	253	4.0
	9	1	260	4.0

In [7]: data = pd.merge(movie,rating)
 data.head(10)

Out[7]:		movield	title	genres	userId	rating
	0	1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy	3	4.0
	1	1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy	6	5.0
	2	1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy	8	4.0
	3	1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy	10	4.0
	4	1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy	11	4.5
	5	1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy	12	4.0
	6	1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy	13	4.0
	7	1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy	14	4.5
	8	1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy	16	3.0
	9	1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy	19	5.0

In [8]: data.tail(10)

Out[8]: movield title genres userId rating 20000253 131241 Ants in the Pants (2000) Comedy|Romance 79570 4.0 20000254 131243 Werner - Gekotzt wird später (2003) Animation|Comedy 79570 4.0 20000255 131248 Brother Bear 2 (2006) Adventure|Animation|Children|Comedy|Fantasy 79570 4.0 20000256 131250 No More School (2000) Comedy 79570 4.0 Forklift Driver Klaus: The First Day on 20000257 131252 Comedy|Horror 79570 4.0 the Jo... 20000258 131254 Kein Bund für's Leben (2007) Comedy 79570 4.0 20000259 131256 Feuer, Eis & Dosenbier (2002) Comedy 79570 4.0 20000260 131258 The Pirates (2014) Adventure 28906 2.5

```
movield
                                                       title
                                                                                                  userId rating
                                                                                           genres
          20000261
                    131260
                                          Rentun Ruusu (2001)
                                                                                                  65409
                                                                                   (no genres listed)
                                             Innocence (2014)
          20000262
                    131262
                                                                            Adventure|Fantasy|Horror 133047
                                                                                                            4.0
In [9]:
          print("\nTotal NaN at each column in the DataFrame :")
          data.isnull().sum()
         Total NaN at each column in the DataFrame :
         movieId
Out[9]:
         title
                     0
                     0
         genres
         userId
         rating
                     0
         dtype: int64
In [12]:
          n = data.nunique(axis=0)
          print("No.of.unique values in each column :\n", n)
         No.of.unique values in each column :
          movieId
                       26744
         title
                      26729
         genres
                       1329
                     138493
         userId
         rating
                         10
         dtype: int64
In [13]:
          mid = data['movieId'].unique()
          print("Unique movie ids in dataset: \n", mid)
         Unique movie ids in dataset:
                               3 ... 131258 131260 131262]
                1
                        2
In [14]:
          title = data['title'].unique()
          print("All movies in dataset: \n", title)
          uid = data['userId'].unique()
          print("\n\nAll unique user ids in dataset: \n", uid)
         All movies in dataset:
          ['Toy Story (1995)' 'Jumanji (1995)' 'Grumpier Old Men (1995)' ...
           'The Pirates (2014)' 'Rentun Ruusu (2001)' 'Innocence (2014)']
         All unique user ids in dataset:
               3
                      6
                            8 ... 86872 90947 50542]
In [15]:
          ranking = data['rating'].unique()
          print("Unique ratings: \n", ranking)
         Unique ratings:
          [4. 5. 4.5 3. 1. 3.5 1.5 2. 2.5 0.5]
In [16]:
          #extracting a subset of columns from original dataset
          cols_subset = data.loc[:, ['movieId', 'title', 'userId', 'rating']]
          print("Movie dataset without genre column: \n")
          cols_subset
         Movie dataset without genre column:
Out[16]:
                   movield
                                               title userld rating
```

	movield	title	userId	rating
0	1	Toy Story (1995)	3	4.0
1	1	Toy Story (1995)	6	5.0
2	1	Toy Story (1995)	8	4.0
3	1	Toy Story (1995)	10	4.0
4	1	Toy Story (1995)	11	4.5
20000258	131254	Kein Bund für's Leben (2007)	79570	4.0
20000259	131256	Feuer, Eis & Dosenbier (2002)	79570	4.0
20000260	131258	The Pirates (2014)	28906	2.5
20000261	131260	Rentun Ruusu (2001)	65409	3.0
20000262	131262	Innocence (2014)	133047	4.0

20000263 rows × 4 columns

1.Display all the ratings given to the movie "Toy Story (1995)" by different users and find average rating received by the movie

```
In [17]:
          toyStory = data.loc[:, ['title', 'userId', 'rating']][data.title == 'Toy Story (1995)']
          print(toyStory)
          print("\nAverage rating received by movie Toy Story (1995):", round(toyStory.rating.mean(), 2))
                           title userId rating
         0
                Toy Story (1995)
                                   3
                                            4.0
         1
                Toy Story (1995)
                                      6
                                            5.0
                Toy Story (1995)
                                     8
                                            4.0
         2
         3
                Toy Story (1995)
                                     10
                                            4.0
         4
                Toy Story (1995)
                                     11
                                            4.5
                                    . . .
         49690 Toy Story (1995) 138483
                                            4.0
         49691 Toy Story (1995) 138486
                                            5.0
         49692 Toy Story (1995) 138488
                                            3.0
         49693 Toy Story (1995) 138491
                                            2.0
         49694 Toy Story (1995) 138493
                                            3.5
         [49695 rows x 3 columns]
         Average rating received by movie Toy Story (1995): 3.92
```

2. Display all movie titles rated by user with userId '741'

```
In [18]: cols_subset.loc[:, ['title', 'rating']][cols_subset.userId == 741]
```

Out[18]:		title	rating
	258	Toy Story (1995)	5.0
	49818	Jumanji (1995)	3.0
	72001	Grumpier Old Men (1995)	3.0
	87500	Father of the Bride Part II (1995)	4.0
	99705	Heat (1995)	3.5

	title	rating
18812161	Good Luck Chuck (2007)	0.5
18818718	Seeker: The Dark Is Rising, The (2007)	5.0
18824066	Elizabeth: The Golden Age (2007)	5.0
18831761	Reservation Road (2007)	4.5
18841602	Saw IV (2007)	0.5

2212 rows × 2 columns

Data cleaning and discretization

Cleaning:

- Extracting years from movie titles and creating a new column 'year_of_release'.
- Replacing missing data from column 'year_of_release' and filling it with valid values.
- Conversion of column 'year_of_release' to integer type for further numerical analysis.

Discretization

Binning of 'year_of_release' column.

Analysis:

- Finding which year range received highest average rating and hence list of movies released during that time period.
- Finding top 5 most popular genres based on average rating values.
- For movie with id-2 find the count for no. of users which have have given the movie a particular rating.

```
Out[19]:
               movield
                                                  title
                                                                                              genres
                                        Toy Story (1995) Adventure|Animation|Children|Comedy|Fantasy
                      2
                                         Jumanji (1995)
                                                                           Adventure|Children|Fantasy
            2
                      3
                               Grumpier Old Men (1995)
                                                                                   Comedy|Romance
            3
                                                                             Comedy|Drama|Romance
                                Waiting to Exhale (1995)
                      5 Father of the Bride Part II (1995)
                                                                                            Comedy
```

Movie release year extraction and conversion to integer type

```
In [10]: #movie release year extraction
    movie['year_of_release'] = movie.title.str[-5:-1]

movie['year_of_release'] = movie['year_of_release'].replace(
    ['002)', '948)', '965)', 'lon ', '998)', 'piel', '010)', '008)', '929)','001)','poma','986)','007)',
    ['2002', '1948', '1965', '1993', '1998', '1970', '2010', '2008', '1929','2001','2010','1986','2007',

movie['year_of_release'] = movie['year_of_release'].astype(float)
    movie['year_of_release'] = movie['year_of_release'].fillna(0)
```

```
movie['year_of_release'] = movie['year_of_release'].astype(int)
movie.tail(4)
```

Out[10]:	: movield		title	genres	year_of_release	
	27274	131256	Feuer, Eis & Dosenbier (2002)	Comedy	2002	
	27275	131258	The Pirates (2014)	Adventure	2014	
	27276	131260	Rentun Ruusu (2001)	(no genres listed)	2001	
	27277	131262	Innocence (2014)	Adventure Fantasy Horror	2014	

Binning of 'year_of_release' column

```
In [11]:
          movie['year_of_release'].describe()
         count
                  27278.000000
Out[11]:
         mean
                   1989.381516
         std
                     23.333149
                   1891.000000
                   1976.000000
                   1998.000000
         75%
                   2008.000000
                   2015.000000
         max
         Name: year_of_release, dtype: float64
In [12]:
          bins = [1890,1910,1930,1950,1970,1990,2010,2015]
          movie['year_bins'] = pd.cut(movie['year_of_release'], bins)
          movie.head(8)
```

Out[12]:	movield		title	genres	year_of_release	year_bins
	0	1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy	1995	(1990, 2010]
	1	2	Jumanji (1995)	Adventure Children Fantasy	1995	(1990, 2010]
	2	3	Grumpier Old Men (1995)	Comedy Romance	1995	(1990, 2010]
	3	4	Waiting to Exhale (1995)	Comedy Drama Romance	1995	(1990, 2010]
	4	5	Father of the Bride Part II (1995)	Comedy	1995	(1990, 2010]
	5	6	Heat (1995)	Action Crime Thriller	1995	(1990, 2010]
	6	7	Sabrina (1995)	Comedy Romance	1995	(1990, 2010]
	7	8	Tom and Huck (1995)	Adventure Children	1995	(1990, 2010]

In [13]: movie.tail(10)

year_bins	year_of_release	genres	title	movield		Out[13]:
(1990, 2010]	2000	Comedy Romance	Ants in the Pants (2000)	131241	27268	
(1990, 2010]	2003	Animation Comedy	Werner - Gekotzt wird später (2003)	131243	27269	
(1990, 2010]	2006	Adventure Animation Children Comedy Fantasy	Brother Bear 2 (2006)	131248	27270	
(1990, 2010]	2000	Comedy	No More School (2000)	131250	27271	

	movield		genres	year_of_release	year_bins
27272	131252	Forklift Driver Klaus: The First Day on the Jo	Comedy Horror	2001	(1990, 2010]
27273	131254	Kein Bund für's Leben (2007)	Comedy	2007	(1990, 2010]
27274	131256	Feuer, Eis & Dosenbier (2002)	Comedy	2002	(1990, 2010]
27275	131258	The Pirates (2014)	Adventure	2014	(2010, 2015]
27276	131260	Rentun Ruusu (2001)	(no genres listed)	2001	(1990, 2010]
27277	131262	Innocence (2014)	Adventure Fantasy Horror	2014	(2010, 2015]

In [14]:

movie[1000:1110]

Out[14]:		movield	title	genres	year_of_release	year_bins
	1000	1019	20,000 Leagues Under the Sea (1954)	Adventure Drama Sci-Fi	1954	(1950, 1970]
	1001	1020	Cool Runnings (1993)	Comedy	1993	(1990, 2010]
	1002	1021	Angels in the Outfield (1994)	Children Comedy	1994	(1990, 2010]
	1003	1022	Cinderella (1950)	Animation Children Fantasy Musical Romance	1950	(1930, 1950]
	1004	1023	Winnie the Pooh and the Blustery Day (1968)	Animation Children Musical	1968	(1950, 1970]
	1105	1128	Fog, The (1980)	Horror	1980	(1970, 1990]
	1106	1129	Escape from New York (1981)	Action Adventure Sci-Fi Thriller	1981	(1970, 1990]
	1107	1130	Howling, The (1980)	Horror Mystery	1980	(1970, 1990]
	1108	1131	Jean de Florette (1986)	Drama Mystery	1986	(1970, 1990]
	1109	1132	Manon of the Spring (Manon des sources) (1986)	Drama	1986	(1970, 1990]

110 rows × 5 columns

Total no. of movies released in each of the 7 time frames

year_bins (1890, 1910] 25 (1910, 1930] 472 (1930, 1950] 2059

```
(1950, 1970]
                           3114
         (1970, 1990]
                           4787
         (1990, 2010]
                          12902
         (2010, 2015]
                           3919
         Name: movieId, dtype: int64
In [21]:
          plt.figure(figsize = (8, 6))
          plt.style.use('seaborn-white')
          ax=sns.countplot(x="year_bins", data=movie, facecolor=(0, 0, 0, 0),
                            linewidth=5,edgecolor=sns.color_palette("magma", 3))
          plt.show()
             12000
             10000
              8000
              6000
```

Maximum no. of movies are released in the time frame: 1990-2010

(1890, 1910] (1910, 1930] (1930, 1950] (1950, 1970] (1970, 1990] (1990, 2010] (2010, 2015] year_bins

EXPLORATORY ANALYSIS

4000

2000

3

4

2.86

movield rating 5 3.06

4

```
In [23]:     movie_rating = pd.merge(movie,avg_rating)
     movie_rating.head(6)
```

Out[23]:	n	novield	title	genres	year_of_release	year_bins	rating
	0	1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy	1995	(1990, 2010]	3.92
	1	2	Jumanji (1995)	Adventure Children Fantasy	1995	(1990, 2010]	3.21
	2	3	Grumpier Old Men (1995)	Comedy Romance	1995	(1990, 2010]	3.15
	3	4	Waiting to Exhale (1995)	Comedy Drama Romance	1995	(1990, 2010]	2.86
	4	5	Father of the Bride Part II (1995)	Comedy	1995	(1990, 2010]	3.06
	5	6	Heat (1995)	Action Crime Thriller	1995	(1990, 2010]	3.83

Density Distribution Plot of average_rating

```
plt.figure(figsize = (7, 7))
sns.distplot(movie_rating['rating'],kde=True,kde_kws = {'linewidth': 3}, hist = True).set(ylabel='De plt.show()
```


The density distribution plot above shows that maximum movies received an average rating between 3 and 4. The bell shaped curve represents a normal distribution.

Categorical column (Remarks)

Let's create a categorical column based on rating (avg_rating)of movies:

- 1. For ratings between (0,1], the movie is given the remark 'Super-flop'
- 2. For ratings between (1,2], the movie is given the remark 'Flop'
- 3. For ratings between (2,3], the movie is given the remark 'Hit'
- 4. For ratings between (3,4], the movie is given the remark 'Superhit'
- 5. For ratings between (4,5], the movie is given the remark 'Blockbuster'

```
In [27]:

def create_cat(i):
    if i >= 0 and i <=1:
        return 'Super-flop'
    if i > 1 and i <=2:
        return 'Flop'
    if i > 2 and i <=3:
        return 'Hit'
    if i > 3 and i <=4:
        return 'Superhit'</pre>
```

```
if i > 4 and i <=5:
    return 'Blockbuster'
movie_rating['Remarks'] = movie_rating['rating'].apply(create_cat)</pre>
```

In [28]:

movie_rating.head(10)

Out[28]:	ı	movield	title	genres	year_of_release	year_bins	rating	Remarks
	0	1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy	1995	(1990, 2010]	3.92	Superhit
	1	2	Jumanji (1995)	Adventure Children Fantasy	1995	(1990, 2010]	3.21	Superhit
	2	3	Grumpier Old Men (1995)	Comedy Romance	1995	(1990, 2010]	3.15	Superhit
	3	4	Waiting to Exhale (1995)	Comedy Drama Romance	1995	(1990, 2010]	2.86	Hit
	4	5	Father of the Bride Part II (1995)	Comedy	1995	(1990, 2010]	3.06	Superhit
	5	6	Heat (1995)	Action Crime Thriller	1995	(1990, 2010]	3.83	Superhit
	6	7	Sabrina (1995)	Comedy Romance	1995	(1990, 2010]	3.37	Superhit
	7	8	Tom and Huck (1995)	Adventure Children	1995	(1990, 2010]	3.14	Superhit
	8	9	Sudden Death (1995)	Action	1995	(1990, 2010]	3.00	Hit
	9	10	GoldenEye (1995)	Action Adventure Thriller	1995	(1990, 2010]	3.43	Superhit

Visualisation of categorical column(Remarks)

```
fig = plt.figure(figsize=(6,6))
sns.stripplot(x="Remarks",y="rating",data=movie_rating,palette="viridis")
plt.show()
```


Number of movies based on each remark

```
In [108...
          plt.figure(figsize = (10, 7))
          plt.style.use('seaborn-white')
          sns.countplot(x='Remarks', data=movie_rating, facecolor=(0, 0, 0, 0),
                           linewidth=5,edgecolor=sns.color_palette("viridis", 3))
         <matplotlib.axes._subplots.AxesSubplot at 0x1fa04c81388>
```

Out[108...

Our dataset has maximum no. of Super-Hit movies (movies which have received rating between 3 and 4)

Finding no. of movies released in each genre

```
In [33]:
           gen =movie_rating['genres'].value_counts()
           print(gen,"\n")
          Drama
                                                  4416
          Comedy
                                                  2251
          Documentary
                                                  1879
          Comedy | Drama
                                                  1241
          Drama Romance
                                                  1043
          Animation | Documentary | War
          Action | Crime | Drama | Western
          Action | Comedy | Thriller | Western
          Animation|Children|Comedy|Western
          Name: genres, Length: 1329, dtype: int64
```

Top 10 most commonly watched genres.

```
In [34]:
           gen[0:10]
                                     4416
          Drama
Out[34]:
          Comedy
                                     2251
          Documentary
                                     1879
          Comedy | Drama
                                     1241
          Drama | Romance
                                     1043
          Comedy Romance
                                      741
          Comedy | Drama | Romance
                                      594
          Horror
                                      556
          Crime | Drama
                                      435
```

Drama|Thriller 421 Name: genres, dtype: int64

Maximum no. of movies are released in genre :- Drama

Creating subset of top 5 most commonly watched genres.

sub_set=movie_rating[movie_rating['genres'].isin(['Drama','Comedy','Documentary','Comedy|Drama','Drasub_set.head(10)

Out[36]:	movield		title	genres	year_of_release	year_bins	rating	Remarks
	4	5	Father of the Bride Part II (1995)	Comedy	1995	(1990, 2010]	3.06	Superhit
	13	14	Nixon (1995)	Drama	1995	(1990, 2010]	3.43	Superhit
	16	17	Sense and Sensibility (1995)	Drama Romance	1995	(1990, 2010]	3.97	Superhit
	17	18	Four Rooms (1995)	Comedy	1995	(1990, 2010]	3.37	Superhit
	18	19	Ace Ventura: When Nature Calls (1995)	Comedy	1995	(1990, 2010]	2.61	Hit
	24	25	Leaving Las Vegas (1995)	Drama Romance	1995	(1990, 2010]	3.69	Superhit
	25	26	Othello (1995)	Drama	1995	(1990, 2010]	3.63	Superhit
	27	28	Persuasion (1995)	Drama Romance	1995	(1990, 2010]	4.06	Blockbuster
	30	31	Dangerous Minds (1995)	Drama	1995	(1990, 2010]	3.25	Superhit
	34	35	Carrington (1995)	Drama Romance	1995	(1990, 2010]	3.50	Superhit

Multindex

<Figure size 1600x800 with 0 Axes>

For the 5 most commonly watched genres find the no. of movies released remark wise

```
In [37]:
           sub_set.groupby(['genres'])['Remarks'].value_counts().to_frame()
                                       Remarks
Out[37]:
                   genres
                             Remarks
                  Comedy
                             Superhit
                                           1036
                                  Hit
                                           952
                                 Flop
                                            162
                           Blockbuster
                                            63
                            Super-flop
                                            38
           Comedy|Drama
                             Superhit
                                            832
                                  Hit
                                           330
                           Blockbuster
                                            39
                                 Flop
                                            32
                            Super-flop
                                             8
                             Superhit
             Documentary
                                           1304
                                  Hit
                                            363
                           Blockbuster
                                            148
                                 Flop
                                            54
                            Super-flop
                                            10
                             Superhit
                                           3051
                   Drama
                                  Hit
                                           1008
                           Blockbuster
                                            131
                                 Flop
                            Super-flop
                                            44
          Drama|Romance
                             Superhit
                                           744
                                  Hit
                                            225
                                 Flop
                                            39
                           Blockbuster
                                            28
                                             7
                            Super-flop
In [39]:
           plt.figure(figsize=(16,8))
           sub_set.groupby(["genres","Remarks"]).size().unstack().plot(kind='bar',stacked=True)
           plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0)
           plt.show()
```

23

Maximum no. of superhit and blockbuster movies are of the genre Drama

Plot the temporal trends of the top 5 most commonly watched genre

```
In [40]:
          # Drama, Comedy, Documentary, Comedy|Drama, Drama|Romance
          frame1 = movie_rating[(movie_rating['year_of_release']>=1890) & (movie_rating['year_of_release']<=19</pre>
                                 (movie_rating['genres'].isin(['Drama','Comedy','Documentary','Comedy|Drama','D
          count1 = frame1['genres'].value_counts()
          c1 = dict(count1)
          frame2 = movie_rating[(movie_rating['year_of_release']>=1910) & (movie_rating['year_of_release']<=19</pre>
                                 (movie_rating['genres'].isin(['Drama','Comedy','Documentary','Comedy|Drama','D
          count2 = frame2['genres'].value_counts()
          c2 = dict(count2)
          frame3 = movie_rating[(movie_rating['year_of_release']>=1930) & (movie_rating['year_of_release']<=1930)</pre>
                                 (movie_rating['genres'].isin(['Drama','Comedy','Documentary','Comedy|Drama','D
          count3 = frame3['genres'].value_counts()
          c3 = dict(count3)
          frame4 = movie rating[(movie rating['year of release']>=1950) & (movie rating['year of release']<=1950)</pre>
                                 (movie rating['genres'].isin(['Drama','Comedy','Documentary','Comedy|Drama','D
          count4 = frame4['genres'].value_counts()
          c4 = dict(count4)
          frame5 = movie_rating[(movie_rating['year_of_release']>=1970) & (movie_rating['year_of_release']<=1970)</pre>
                                 (movie_rating['genres'].isin(['Drama','Comedy','Documentary','Comedy|Drama','D
          count5 = frame5['genres'].value_counts()
          c5 = dict(count5)
```

```
frame6 = movie_rating[(movie_rating['year_of_release']>=1990) & (movie_rating['year_of_release']<=20</pre>
                                  (movie rating['genres'].isin(['Drama','Comedy','Documentary','Comedy|Drama','D
           count6 = frame6['genres'].value_counts()
           c6 = dict(count6)
           frame7 = movie_rating[(movie_rating['year_of_release']>=2010) & (movie_rating['year_of_release']<=20</pre>
                                  (movie_rating['genres'].isin(['Drama','Comedy','Documentary','Comedy|Drama','D
           count7 = frame7['genres'].value_counts()
           c7 = dict(count7)
In [41]:
           data = {
               '1890-1910': c1,
               '1910-1930':c2,
               '1930-1950':c3,
               '1950-1970':c4,
               '1970-1990':c5,
               '1990-2010':c6,
               '2010-2015':c7,
           genre trends = pd.DataFrame(data)
           genre_trends
                          1890-1910 1910-1930 1930-1950 1950-1970 1970-1990 1990-2010 2010-2015
Out[41]:
             Documentary
                                 5.0
                                            12
                                                       14
                                                                 60
                                                                           144
                                                                                     1141
                                                                                                 656
                 Comedy
                                 2.0
                                            78
                                                      108
                                                                217
                                                                           458
                                                                                     1097
                                                                                                 403
                  Drama
                                1.0
                                            87
                                                      305
                                                                586
                                                                           774
                                                                                     2176
                                                                                                 755
          Drama|Romance
                                            34
                                                      123
                                                                115
                                                                           142
                                                                                      540
                                                                                                 133
                               NaN
                                                                                                 258
           Comedy|Drama
                               NaN
                                            14
                                                       54
                                                                 80
                                                                           190
                                                                                      725
In [42]:
           genre_trends = genre_trends.reindex(index = ['Drama','Comedy','Documentary','Comedy|Drama','Drama|Rc
           genre trends = genre trends.rename axis('Genre').reset index()
In [43]:
           gen = pd.melt(genre_trends,
                  id vars='Genre',
                  value_vars=['1890-1910','1910-1930','1930-1950','1950-1970','1970-1990','1990-2010','2010-201
                  var_name='Year_Bins',
                  value_name='Frequency')
           gen
                             Year_Bins Frequency
Out[43]:
                      Genre
           0
                            1890-1910
                     Drama
                                             1.0
           1
                    Comedy
                            1890-1910
                                             2.0
           2
                Documentary
                             1890-1910
                                             5.0
              Comedy|Drama
                            1890-1910
                                            NaN
              Drama|Romance
                            1890-1910
                                            NaN
           4
           5
                     Drama 1910-1930
                                            87.0
           6
                    Comedy 1910-1930
                                            78.0
           7
                Documentary 1910-1930
                                            12.0
              Comedy|Drama 1910-1930
                                            14.0
```

	Genre	Year_Bins	Frequency
9	Drama Romance	1910-1930	34.0
10	Drama	1930-1950	305.0
11	Comedy	1930-1950	108.0
12	Documentary	1930-1950	14.0
13	Comedy Drama	1930-1950	54.0
14	Drama Romance	1930-1950	123.0
15	Drama	1950-1970	586.0
16	Comedy	1950-1970	217.0
17	Documentary	1950-1970	60.0
18	Comedy Drama	1950-1970	80.0
19	Drama Romance	1950-1970	115.0
20	Drama	1970-1990	774.0
21	Comedy	1970-1990	458.0
22	Documentary	1970-1990	144.0
23	Comedy Drama	1970-1990	190.0
24	Drama Romance	1970-1990	142.0
25	Drama	1990-2010	2176.0
26	Comedy	1990-2010	1097.0
27	Documentary	1990-2010	1141.0
28	Comedy Drama	1990-2010	725.0
29	Drama Romance	1990-2010	540.0
30	Drama	2010-2015	755.0
31	Comedy	2010-2015	403.0
32	Documentary	2010-2015	656.0
33	Comedy Drama	2010-2015	258.0
34	Drama Romance	2010-2015	133.0
fi sn pl pl	<pre>g_dims = (10, g, ax = plt.su s.lineplot(x = t.xticks(rotat t.title('Plot t.show()</pre>	bplots(fig "Year_Bir ion=90)	ns", y = "F

Temporal trends of the top 5 most commonly watched genre:-

- 1- Drama has maintained its position as the most watched genre from beginning till the end.
- 2- **Documentry** genre started gaining popularity from the year 1970 (notice the sharp rise) reached a peak from 1990-2010 going head to head with **Comedy**. However, after year 2010, it started losing popularity once again.
- 3- It is also interesting to note that the *Romance* genre did not make an appearance until the year 1910.

Which time frame has released the movies with highest average rating?

```
year_bins rating
          3 (1950, 1970]
                          3.22
          4 (1970, 1990]
                          3.10
          5 (1990, 2010]
                          3.11
          6 (2010, 2015]
                          3.13
In [46]:
           maxrating = popular_year['rating'].max()
           rslt_df = popular_year[popular_year['rating'] == maxrating]
           rslt_df
Out[46]:
               year_bins rating
          0 (1890, 1910]
                          3.36
In [48]:
           fig = plt.figure(figsize=(8, 6))
           sns.barplot(y=popular_year['rating'], x=popular_year['year_bins'], palette="magma")
           plt.title('Average Rating received by movies in each time frame')
           plt.show()
```


Hence, we find that year 1890-1910 has the highest average rating for movies

List of movies released during 1890-1910 (period that has received the highest average rating)

In [49]:

Out[49]:		movield	title	genres	year_of_release	year_bins	rating	Remarks
	9995	32898	Trip to the Moon, A (Voyage dans la lune, Le)	Action Adventure Fantasy Sci- Fi	1902	(1890, 1910]	3.74	Superhit
	11460	49389	Great Train Robbery, The (1903)	Crime Western	1903	(1890, 1910]	3.34	Superhit
	16289	82337	Four Heads Are Better Than One (Un homme de tê	Fantasy	1898	(1890, 1910]	3.75	Superhit
	16294	82362	Pyramid of Triboulet, The (La pyramide de Trib	Fantasy	1899	(1890, 1910]	3.62	Superhit
	17597	88674	Edison Kinetoscopic Record of a Sneeze (1894)	Documentary	1894	(1890, 1910]	2.71	Hit
	18656	93162	Moscow Clad in Snow (Moscou sous la neige) (1909)	Documentary	1909	(1890, 1910]	2.50	Hit
	18815	93865	Frankenstein (1910)	Drama Horror Sci-Fi	1910	(1890, 1910]	3.47	Superhit
	18934	94431	Ella Lola, a la Trilby (1898)	(no genres listed)	1898	(1890, 1910]	5.00	Blockbuster
	18964	94657	Turkish Dance, Ella Lola (1898)	(no genres listed)	1898	(1890, 1910]	5.00	Blockbuster
	18980	94737	Boys Diving, Honolulu (1901)	Documentary	1901	(1890, 1910]	5.00	Blockbuster
	19032	94951	Dickson Experimental Sound Film (1894)	Musical	1894	(1890, 1910]	3.43	Superhit
	19160	95541	Blacksmith Scene (1893)	(no genres listed)	1893	(1890, 1910]	3.38	Superhit
	19265	96009	Kiss, The (1896)	Romance	1896	(1890, 1910]	2.93	Hit
	20023	98981	Arrival of a Train, The (1896)	Documentary	1896	(1890, 1910]	3.44	Superhit
	21821	105776	Trip to Mars, A (1910)	Sci-Fi	1910	(1890, 1910]	2.50	Hit
	22808	109524	Woman Always Pays, The (Afgrunden) (Abyss, The	Drama	1910	(1890, 1910]	4.00	Superhit
	23633	113048	Tables Turned on the Gardener (1895)	Comedy	1895	(1890, 1910]	2.25	Hit
	23948	114371	Lonely Villa, The (1909)	Crime Drama	1909	(1890, 1910]	3.00	Hit
	24697	117909	The Kiss (1900)	Romance	1900	(1890, 1910]	3.17	Superhit
	25164	120803	Those Awful Hats (1909)	Comedy	1909	(1890, 1910]	2.75	Hit
	25193	120869	Employees Leaving the Lumière Factory (1895)	Documentary	1895	(1890, 1910]	4.00	Superhit

I	movield	title	genres	year_of_release	year_bins	rating	Remarks
25724	125978	Santa Claus (1898)	Sci-Fi	1898	(1890, 1910]	2.50	Hit
25733	125996	The Black Devil (1905)	Comedy Fantasy	1905	(1890, 1910]	2.50	Hit
26481	129849	Old Man Drinking a Glass of Beer (1898)	(no genres listed)	1898	(1890, 1910]	3.00	Hit
26482	129851	Dickson Greeting (1891)	(no genres listed)	1891	(1890, 1910]	3.00	Hit

Finding count of movies in most watched genres for the time frame 1890-1910

```
In [50]: data1=movie90_10.loc[(movie90_10['genres']=='Drama') |(movie90_10['genres']=='Comedy')|(movie90_10['data1
```

Out[50]:	movield		title	genres	year_of_release	year_bins	rating	Remarks
	17597	88674	Edison Kinetoscopic Record of a Sneeze (1894)	Documentary	1894	(1890, 1910]	2.71	Hit
	18656 93162		Moscow Clad in Snow (Moscou sous la neige) (1909)	Documentary	1909	(1890, 1910]	2.50	Hit
	18980	94737	Boys Diving, Honolulu (1901)	Documentary	1901	(1890, 1910]	5.00	Blockbuster
	20023 98981		Arrival of a Train, The (1896)	Documentary	1896	(1890, 1910]	3.44	Superhit
	22808	109524	Woman Always Pays, The (Afgrunden) (Abyss, The	Drama	1910	(1890, 1910]	4.00	Superhit
	23633 113048		Tables Turned on the Gardener (1895)	Comedy	1895	(1890, 1910]	2.25	Hit
	25164 120803		Those Awful Hats (1909)	Comedy	1909	(1890, 1910]	2.75	Hit
	25193	120869	Employees Leaving the Lumière Factory (1895)	Documentary	1895	(1890, 1910]	4.00	Superhit

```
In [103...
          data1.groupby('genres')['genres'].count()
         genres
Out[103...
         Comedy
                         2
                         5
         Documentary
         Drama
         Name: genres, dtype: int64
In [52]:
          plt.figure(figsize=(6,6))
          colors=['gold', 'yellowgreen','red']
          explode = (0.1, 0,0)
          plt.pie(list(data1['genres'].value_counts()),labels=list(data1['genres'].value_counts().keys()),aut
                  colors=colors,shadow=True,explode= explode,startangle=140)
          plt.legend(loc="upper right")
          plt.show()
```


Majority of movies released during 1890-1910 are from genre Documentary

No.of movies Vs Year of release

```
plt.figure(figsize=(16,8))
    sns.barplot(x=year.index,y=year,palette='icefire')
    plt.xticks(rotation=90)
    plt.xlabel('Year')
    plt.ylabel('No of movies')
    plt.show()
```


Which year has the highest number of movie releases?

```
In [54]:
          print("No. of unique years: ",movie.year_of_release.nunique())
          year=movie['year_of_release'].value_counts()
          print("\nYears with movie release count:")
          print(year)
         No. of unique years: 118
         Years with movie release count:
         2009
                  1114
         2012
                  1022
         2011
                  1017
         2013
                  1012
         2008
                   980
         1893
                     1
         1901
                     1
         1903
                     1
         1902
                     1
         1891
         Name: year of release, Length: 118, dtype: int64
In [55]:
          print(year.idxmax)
         <bound method Series.idxmax of 2009</pre>
                                                   1114
         2012
                  1022
         2011
                  1017
         2013
                  1012
         2008
                   980
         1893
                     1
         1901
                     1
         1903
                     1
         1902
                     1
         1891
         Name: year_of_release, Length: 118, dtype: int64>
```

Maximum number of movies are released in the year 2009 i.e. 1114

Which year has released maximum no. of blockbusters?

```
fam_yr = movie_rating.loc[(movie_rating['Remarks']=='Blockbuster')]
fam_yr
```

Out[56]:	movield		title	genres	year_of_release	year_bins	rating	Remarks
	27	28	Persuasion (1995)	Drama Romance	1995	(1990, 2010]	4.06	Blockbuster
	46	47	Seven (a.k.a. Se7en) (1995)	Mystery Thriller	1995	(1990, 2010]	4.05	Blockbuster
	49	50	Usual Suspects, The (1995)	Crime Mystery Thriller	1995	(1990, 2010]	4.33	Blockbuster
	108	110	Braveheart (1995)	Action Drama War	1995	(1990, 2010]	4.04	Blockbuster
	109	111	Taxi Driver (1976)	Crime Drama Thriller	1976	(1970, 1990]	4.11	Blockbuster
	26655	130996	The Beautiful Story (1992)	Adventure Drama Fantasy	1992	(1990, 2010]	5.00	Blockbuster
	26665	131027	But Forever in My Mind (1999)	Comedy Drama	1999	(1990, 2010]	4.50	Blockbuster
	26667	131050	Stargate SG-1 Children of the Gods - Final Cut	Adventure Sci-Fi Thriller	2009	(1990, 2010]	5.00	Blockbuster
	26682	131082	Playground (2009)	(no genres listed)	2009	(1990, 2010]	4.50	Blockbuster
	26729	131176	A Second Chance (2014)	Drama	2014	(2010, 2015]	4.50	Blockbuster

911 rows × 7 columns

```
In [57]:
          c=fam_yr['year_of_release'].value_counts()
         2009
                  43
Out[57]:
         2012
                  37
         2013
                  36
         2011
                  35
         2008
                  32
         1928
                  2
         1924
         1901
                  1
         1932
                   1
         1927
         Name: year_of_release, Length: 93, dtype: int64
```

Maximum no. of blockbusters are released in year 2009 i.e. 43

It can be seen that 2009 is the most popular year. The reason is twofold:

- 1- 2009 is the year with highest no. of movie releases- 1114.
- 2- We also witness the maximum number of blockbuster movie releases (43 blockbuster movies) in 2009.

List of movies released in the year 2009

```
In [58]: movie2009=movie_rating[(movie_rating['year_of_release'] == 2009)]
    movie2009
```

Out[58]:		movield	title	genres	year_of_release	year_bins	rating	Remarks
	12846	60684	Watchmen (2009)	Action Drama Mystery Sci- Fi Thriller IMAX	2009	(1990, 2010]	3.73	Superhit
	13023	62265	Accidental Husband, The (2009)	Comedy Romance	2009	(1990, 2010]	2.99	Hit
	13091	63072	Road, The (2009)	Adventure Drama Thriller	2009	(1990, 2010]	3.61	Superhit
	13326	65585	Bride Wars (2009)	Comedy Romance	2009	(1990, 2010]	2.87	Hit
	13329	65601	My Bloody Valentine 3-D (2009)	Horror Thriller	2009	(1990, 2010]	2.61	Hit
	26678	131074	Mount St. Elias (2009)	Documentary	2009	(1990, 2010]	2.50	Hit
	26682	131082	Playground (2009)	(no genres listed)	2009	(1990, 2010]	4.50	Blockbuster
	26699	131116	La Première étoile (2009)	Comedy	2009	(1990, 2010]	3.50	Superhit
	26721	131160	Oscar and the Lady in Pink (2009)	Drama	2009	(1990, 2010]	4.00	Superhit
	26724	131166	WWII IN HD (2009)	(no genres listed)	2009	(1990, 2010]	4.00	Superhit

1102 rows × 7 columns

List of movies released in the year 2009 whose genres are one of Drama, Comedy, Documentary, Comedy|Drama, Drama|Romance (5 most commonly watched genres)

Out[59]:	movield		title	genres	year_of_release	year_bins	rating	Remarks
	13448 66503		Rally On! (Ralliraita) (2009)	Comedy	2009	(1990, 2010]	2.35	Hit
	13450 66509 Funny Pe		Funny People (2009)	Comedy Drama	2009	(1990, 2010]	3.26	Superhit
	13462 66581 Still		Still Waiting (2009)	Comedy	2009	(1990, 2010]	2.60	Hit
	13521 67087		I Love You, Man (2009)	Comedy	2009	(1990, 2010]	3.65	Superhit
	13567	67607	We Live in Public (2009)	Documentary	2009	(1990, 2010]	3.33	Superhit
	26566	130388	Black Field (2009)	Drama Romance	2009	(1990, 2010]	0.50	Super-flop
	26600	130516	Glowing Stars (2009)	Drama	2009	(1990, 2010]	3.00	Hit

	movield	title	genres	year_of_release	year_bins	rating	Remarks
26678	131074	Mount St. Elias (2009)	Documentary	2009	(1990, 2010]	2.50	Hit
26699	131116	La Première étoile (2009)	Comedy	2009	(1990, 2010]	3.50	Superhit
26721	131160	Oscar and the Lady in Pink (2009)	Drama	2009	(1990, 2010]	4.00	Superhit

481 rows × 7 columns

Remark-wise distribution of the most commonly watched genres in 2009

```
plt.figure(figsize=(16,8))
sns.countplot(x='genres',hue='Remarks', data=m, palette='magma')
plt.xlabel("Genres")
plt.ylabel("Count")
plt.title("Remark-wise distribution of mostcommonly watched genres in 2009")
plt.show()
```


Amongst the top 5 most common genres (Drama, Comedy, Documentary, Comedy|Drama, Drama|Romance) we can see that movies of genres *Drama* and *Documenary* performed well in the year 2009 too.

Which movie has been rated by maximum no. of viewers (in other words which movie has the most viewership?)

n	movield title		genres	year_of_release	year_bins	no_of_users
293	296	Pulp Fiction (1994)	Comedy Crime Drama Thriller	1994	(1990, 2010]	67310
352	356	Forrest Gump (1994)	Comedy Drama Romance War	1994	(1990, 2010]	66172
315	318	Shawshank Redemption, The (1994)	Crime Drama	1994	(1990, 2010]	63366
587	593	Silence of the Lambs, The (1991)	Crime Horror Thriller	1991	(1990, 2010]	63299
476	480	Jurassic Park (1993)	Action Adventure Sci- Fi Thriller	1993	(1990, 2010]	59715

Plot - movie title Vs. number of ratings received

```
In [63]:
    sorted_rated_df = usr_movie[:10]
    fig = plt.figure(figsize=(10, 8))
    sns.barplot(x=sorted_rated_df['title'], y=sorted_rated_df['no_of_users'], palette="summer")
    plt.xticks(rotation=90)
    plt.title('No. of users rated vs movie title')
    plt.show()
```



```
In [64]: movie_rating[movie_rating['movieId']==296].title
```

Out[64]: 293 Pulp Fiction (1994) Name: title, dtype: object

Pulp Fiction (1994) has the most viewership/ maximum no. of ratings. Note that the movie falls into the Drama, Comedy genre, proving yet again that Drama and Comedy genres are indeed popular.

```
In [65]:    movie_rating[movie_rating['movieId']==296].Remarks

Out[65]:    293    Blockbuster
    Name: Remarks, dtype: object
```

Pulp Fiction (1994) has been categorized as a blockbuster movie.

Let's see the distribution of its ratings using a pie plot

```
In [66]:
          pulp fiction = rating[rating['movieId']==296]
          rating_count = pulp_fiction['rating'].value_counts()
                 27762
Out[66]:
                 16724
         4.0
         4.5
                  7867
         3.0
                  7389
         3.5
                  2913
         2.0
                  1951
                  1595
         1.0
                   628
         2.5
         0.5
                   291
         1.5
                   190
         Name: rating, dtype: int64
In [90]:
          plt.figure(figsize=(6,6))
          colors=['#00876c','#489e71','#75b477','#a2c97f','#d0de8a','#fff199','#fcd07a','#f7ad62','#ef8a54','#
          explode = (0.1, 0,0,0,0,0.5,0.4,0.3,0.2,0.1)
          plt.pie(list(pulp_fiction['rating'].value_counts()),labels=list(pulp_fiction['rating'].value_counts()
                   colors=colors,shadow=False,explode= explode,startangle=140)
          plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0)
          plt.title('Ratings distribution for the movie Pulp Fiction (1994)', x=1.5, y=0.4, fontsize=15)
          plt.show()
                 2.0
                                                                    5.0
              1.0
                                       30
                                                                    4.0
                          3.5
             2.5
                      2.9%
                                                                    4.5
             0.5
                                                                3.0
                                                                3.5
                                                     4.5
                                                                 2.0
                                   11.0%
                              4.3%
                                                                10
                                                                2.5
                                           11.7%
                                                                  0.5
                                                                  1.5
                                                           Ratings distribution for the movie Pulp Fiction (1994)
                                            24.8%
                                                       4.0
             5.0
```

PREDICTIVE ANALYSIS

A basic recommendation system using item-based filtering

Context

Item-item collaborative filtering, or item-based, or item-to-item, is a form of collaborative filtering for recommender systems based on the similarity between items calculated using people's ratings of those items.

Here, we find the correlation between a movie say "movieA" (which has been watched and rated by people) and other movies. The movie having the highest correlation with "movieA" is then recommended.

```
In [92]: rating.head()
Out[92]: userld movield rating
```

	useria	moviela	rating
0	1	2	3.5
1	1	29	3.5
2	1	32	3.5
3	1	47	3.5
4	1	50	3.5

```
In [93]: movie2 = pd.read_csv("./MovieLens/movie.csv")
    data = pd.merge(movie2, rating)
```

(The number of samples in the data frame is 20 million that is too much. If we try to create a pivot table from this data, Jupyter gives 'ValueError: Unstacked DataFrame is too big, causing int32 overflow'. Hence, for this item based recommendation system we use 1 million data samples)

```
In [94]: data2 = data.iloc[:1000000,:]
```

Making a pivot table in which rows indicate user Id, columns indicate movie titles and values are ratings given to any particular movie by any particular user -

```
In [95]:
    pivot_table = data2.pivot_table(index = ["userId"],columns = ["title"],values = "rating")
    pivot_table.head(10)
```

Out[95]:	title	Ace Ventura: When Nature Calls (1995)	Across the Sea of Time (1995)	Amazing Panda Adventure, The (1995)	American President, The (1995)	Angela (1995)	Angels and Insects (1995)	Anne Frank Remembered (1995)	Antonia's Line (Antonia) (1995)	Assassins (1995)	Babe (1995)	 Unfc
	userId											
	1	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
	2	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
	3	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
	4	3.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
	5	NaN	NaN	NaN	5.0	NaN	NaN	NaN	NaN	NaN	NaN	
	6	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
	7	NaN	NaN	NaN	4.0	NaN	NaN	NaN	NaN	NaN	NaN	
	8	1.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
	10	NaN	NaN	NaN	4.0	NaN	NaN	NaN	NaN	NaN	NaN	
	11	3.5	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	

10 rows × 146 columns

- Consider a scenario in which a movie "movieA" is watched and rated by people. The question is that which movie do we recommend these people who watched movie "movieA".
- To answer this question we find similarities between "movieA" and other movies (i.e. correlation between "movieA" and other movies).

```
#creating a function recommender() to implement the simple recommendation system

def recommender(movieA):
    mv_watched = pivot_table[movieA]
    movies_similarity = pivot_table.corrwith(mv_watched) # find correlation between "movieA" and ot
    movies_similarity = movies_similarity.sort_values(ascending=False)
    print(movies_similarity.head())
```

Ex-1) Which movie do we recommend people who have watched the movie - **Bad Boys (1995)**?

```
In [97]: recommender("Bad Boys (1995)")

title
Bad Boys (1995)
Headless Body in Topless Bar (1995)
Last Summer in the Hamptons (1995)
Two Bits (1995)
Shadows (Cienie) (1988)
dtype: float64
```

We can see that "Headless Body in Topless Bar (1995)" has the highest correlation with "Bad Boys (1995)"

```
In [98]:
    mov_watched = pivot_table["Bad Boys (1995)"]
    movies_corr = pivot_table.corrwith(mov_watched)

    data3 = movies_corr.sort_values(ascending=False)[1:11]
    sns.barplot(x=data3.index, y=data3, palette='flare')
    plt.xlabel("Movie titles")
    plt.ylabel("Correlation with 'Bad Boys (1995)'")
    plt.xticks(rotation=90)
    plt.title('Correlation of other movies with movie "Bad Boys (1995)" ')
    plt.show()
```


Hence we can see that we need to recommend "Headless Body in Topless Bar (1995)" movie to people who watched "Bad Boys (1995)"

Movie titles

Ex-2) Which movie do we recommend people who have watched the movie - *Up Close and Personal (1996)*?

```
title
    Up Close and Personal (1996)")

title
    Up Close and Personal (1996)
    Guardian Angel (1994)
    Wings of Courage (1995)
    Race the Sun (1996)
    Silences of the Palace, The (Saimt el Qusur) (1994)
    description of the Palace (1994)
    description of the Palace (1995)
    description of the Palace (1996)
    description of the Palace (1996)
```

We can see that "Guardian Angel (1994)" has the highest correlation with "Up Close and Personal (1996)"

```
In [100...
mov_watched2 = pivot_table["Up Close and Personal (1996)"]
movies_corr2 = pivot_table.corrwith(mov_watched2)
```

```
data4 =movies_corr2.sort_values(ascending=False)[1:11]
sns.barplot(x=data4.index, y=data4, palette='winter')
plt.xlabel("Movie titles")
plt.ylabel("Correlaion with 'Up Close and Personal (1996)'")
plt.xticks(rotation=90)
plt.title('Correlation of other movies with movie "Up Close and Personal (1996)" ')
plt.show()
```


We can see that we need to recommend "Guardian Angel (1994)" movie to people who watched "Up Close and Personal (1996)"

SUMMARY OF RESULTS

1) DESCRIPTIVE ANALYSIS

We find that:

- 1. Maximum rating given to any movie is 5; minimum is 0.5 while the average rating received by any movie is 3.52.
- 2. Highest no. of movie releases (i.e. 12902) was witnessed during the period 1990-2010.

2) EXPLORATORY ANALYSIS

- The density distribution plot for the average rating received by all movies shows that maximum movies received an average rating between 3 and 4. The bell shaped curve represents a normal distribution.
- We create a categorical column 'Remarks' based on average rating of movies:
 - 1. For ratings between (0,1], the movie is given the remark 'Super-flop'
 - 2. For ratings between (1,2], the movie is given the remark 'Flop'
 - 3. For ratings between (2,3], the movie is given the remark 'Hit'
 - 4. For ratings between (3,4], the movie is given the remark 'Superhit'
 - 5. For ratings between (4,5], the movie is given the remark 'Blockbuster'
- We find that our dataset has maximum no. of Super-Hit movies (movies which have received rating between 3 and 4)

Top 10 most commonly watched genres are:

Genre	No. of movies released				
Drama	4416				
Comedy	2251				
Documentary	1879				
Comedy Drama	1241				
Drama Romance	1043				
Comedy Romance	741				
Comedy Drama Romance	594				
Horror	556				
Crime Drama	435				
Drama Thriller	421				

- Maximum movies released are of the genre 'Drama'.
- Amongst the top 5 most commonly watched genres, maximum no. of superhit and blockbuster movies are of the genre 'Drama'.
- Temporal trends of the top 5 most commonly watched genre:-

- 1. *Drama* has maintained its position as the most watched genre from beginning till the end.
- 2. Documentary genre started gaining popularity from the year 1970 (notice the sharp rise) reached a peak from 1990-2010 going head to head with *Comedy*. However, after year 2010, it started losing popularity once again.
- 3. It is also interesting to note that the *Romance* genre did not make an appearance until the year 1910.
- We find that year 1890-1910 has the highest average rating for movies.
- Majority of movies released during 1890-1910 are from genre Documentary
- We also find that 2009 is the most popular year. The reason is twofold:
 - 1- 2009 is the year with highest no. of movie releases- 1114.
 - 2- We also witness the maximum number of blockbuster movie releases (43 blockbuster movies) in 2009.
- Amongst the top 5 most common genres (Drama, Comedy, Documentary, Comedy|Drama, Drama|Romance) we find that movies of genres *Drama* and *Documentary* performed well in the year 2009 too with 120 superhit movies releases of the Drama genre and 100 superhit releases of the Documentary genre.
- Pulp Fiction (1994) has the most viewership/ maximum no. of ratings. Note that the movie falls into the Drama, Comedy genre, proving yet again that Drama and Comedy genres are indeed popular. The movie has also been categorized as a blockbuster movie. More than 50% of the ratings received by 'Pulp Fiction' fall between values 4 and 5.

PREDICTIVE ANALYSIS

We make a basic recommendation system using item-based filtering. The approach is quite simple. We find the correlation between a movie say "movieA" (which has been watched and rated by people) and other movies. The movie having the highest correlation with "movieA" is then recommended.

Bibliography

- https://www.kaggle.com/grouplens/movielens-20m-dataset
- https://stackoverflow.com/
- https://www.geeksforgeeks.org/
- https://www.google.com/