Normally the first step in debugging is to attempt to reproduce the problem. Methods of measuring programming language popularity include: counting the number of job advertisements that mention the language, the number of books sold and courses teaching the language (this overestimates the importance of newer languages), and estimates of the number of existing lines of code written in the language (this underestimates the number of users of business languages such as COBOL). The first computer program is generally dated to 1843, when mathematician Ada Lovelace published an algorithm to calculate a sequence of Bernoulli numbers, intended to be carried out by Charles Babbage's Analytical Engine. After the bug is reproduced, the input of the program may need to be simplified to make it easier to debug. FORTRAN, the first widely used high-level language to have a functional implementation, came out in 1957, and many other languages were soon developed—in particular, COBOL aimed at commercial data processing, and Lisp for computer research. Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. Use of a static code analysis tool can help detect some possible problems. These compiled languages allow the programmer to write programs in terms that are syntactically richer, and more capable of abstracting the code, making it easy to target varying machine instruction sets via compilation declarations and heuristics. Text editors were also developed that allowed changes and corrections to be made much more easily than with punched cards. For this purpose, algorithms are classified into orders using so-called Big O notation, which expresses resource use, such as execution time or memory consumption, in terms of the size of an input. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. Different programming languages support different styles of programming (called programming paradigms). In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. The Unified Modeling Language (UML) is a notation used for both the OOAD and MDA. There are many approaches to the Software development process. Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. There are many approaches to the Software development process. After the bug is reproduced, the input of the program may need to be simplified to make it easier to debug. However, Charles Babbage had already written his first program for the Analytical Engine in 1837. However, because an assembly language is little more than a different notation for a machine language, two machines with different instruction sets also have different assembly languages. For this purpose, algorithms are classified into orders using so-called Big O notation, which expresses resource use, such as execution time or memory consumption, in terms of the size of an input. After the bug is reproduced, the input of the program may need to be simplified to make it easier to debug.