Ostbayerische Technische Hochschule Regensbu

8. Kommunikationssverschlüsselung

Prof. Dr. Christoph Skornia christoph.skornia@oth-regensburg.de

- □ Sicherheitsmängel von IP (Wiederholung)
 - □ keine Vertraulichkeit(Abhören möglich)
 - □ keine Authentifizierung
 - □ kein Fälschungssicherheit
 - kein Schutz vor Replays
- □ Konsequenz: Sicheres IP entwickeln

IP-Sicherheitskonzepte, die in IPv4 und IPv6 integriert werden können

□ Entwicklung

RFC 1636 "Security in the Internet Architecture", 1994

- □ Notwendigkeit von Sicherheitsmaßnahmen in der Internet- Architektur
- ☐ Initiierung der IPsec-Entwicklung (optional IPv4, verpflichtend IPv6)
- □ Initiierung eines Sicherheitsprotokolls für die Transportschicht TLS/SSL

• Ergebnis der Entwicklung: IPSec

• **IPSec** stellt Mittel für eine sichere Übertragung von IP-Paketen über LAN, private und öffentliche WAN sowie das Internet bereit. Es kann den gesamten IP-Datenverkehr verschlüsseln und/oder authentifizieren. Des Weiteren können Sicherheitsrichtlinien (Security *Policies*) umgesetzt werden.

IPsec-Protokolle

- Die IPsec-Protokolle werden als Header-Erweiterungen realisiert, die wie folgt in die beiden IP-Protokollversionen integriert werden.
 - **IPv4** zwischen IP-Header und Payload
 - IPv6
 als Header-Erweiterung

■ Transport-Mode

"Sichere" Kommunikation direkt zwischen Quelle und Ziel

■ Tunnel-Mode

Kommunikation zwischen Quelle und Ziel aber "Sicherung" nur zwischen 2 Gateways

Security Association (SA)

- In der SAs werden die Sicherheitsvorgaben (Verschlüsselungsverfahren, Schlüssel, Authentifizierungsverfahren) für eine Kommunikationsbeziehung zwischen den Partnern festgelegt.
- SAs sind unidirektional: Falls eine 2-Wege-Sicherung erforderlich sind 2 getrennte SAs nötig
- Eine Sicherheitsrelation ist eindeutig durch drei Parameter bestimmt:
 - Security Parameter Index (SPI):
 Identifikation der SA
 - Destination Address:
 Zieladresse (nur Unicast Adressen erlaubt)
 - Security Protocol Identifier:
 nur Authentifizierung oder auch Verschlüsselung

Parameter von Sicherheitsassoziationen

- Sequence Number Counter (32 Bit): dient der Generierung der Sequenznummer in den Headern.
- · Sequence Counter Overflow:

Flag um anzuzeigen, wenn Sequenznummernbereich erschöpft

- Generierung einer Audit-Nachricht
- · keine weitere Übertragung für Pakete mit dieser SA
- Anti-Replay Window: Sliding Window für erlaubte Wiederholungen von Paketen
- · Authentifizierungsinformation:

Authentifikationsalgorithmus, Schlüssel, Schlüssellebenszeiten und zugehörige Parameter, die für die Authentifizierung genutzt werden

· Verschlüsselungsinformation:

Verschlüsselungs- und Authentifikationsalgorithmen, Schlüssel, Initialwerte, Schlüssellebensdauern und zugehörige Parameter, die für ESP genutzt werden

- · Lifetime of this SA
- IPSec Protocol Mode
- Path MTU: maximale Übertragungseinheit der Verbindung

Verwaltung von Sicherheitsassoziationen

- Für die Verwaltung und Festlegung von Sicherheitsassoziationen sind zwei Datenbanken erforderlich:
- Association Database (SADB)
 enthält die jeweils aktiven Sicherheitsassoziationen des Systems
- Policy Database (SPD)

Abspeicherung der Richtlinien-Spezifikationen:

Geben vor, für welche Datenströme Sicherheitsassoziationen mit welchen Parametern eingerichtet werden müssen

Der Authentication Header (AH)

dient der Sicherung der Authentizität und der Integrität von (verbindungslos übertragenen) IP-Paketen.

- Schutz gegen:
 - IP-Spoofing
 - · Modifikation der Paketinhalte
 - Replay-Attacken (optional)
- HMAC für unveränderliche Teile des IP- und AH-Header sowie des IP-Datenteils

Normal Packet

Transport Mode After Applying AH

Tunnel Mode After Applying AH

New IP Header	АН	Orig IP Header	TCP	Data
---------------	----	----------------	-----	------

Byte 0	Byte 1	Byte 2	Byte 3			
Bit 0 1 2 3 4 5 6 7	Bit 0 1 2 3 4 5 6 7	Bit 0 1 2 3 4 5 6 7	Bit 0 1 2 3 4 5 6 7			
Nächster Header	Nutzdaten-Länge	reserviert				
Security Parameters Index (SPI)						
Feld mit Sequenznummern						
Authentizitätsdaten (variabel)						

• Next Header (8 Bit):

Typ des nächsten Headers (IPv6)

• Payload Length (8 Bit):

Länge Authentication Data

· Reserved (16 Bit): reserviert

• Security Parameters Index (32 Bit):

Identifikation der Sicherheits- Assoziation

Sequence Number (32 Bit):

· Authentication Data (variabel):

enthält den MAC für unveränderliche Teile des IP-, AH-Header und IP- Datenteil z. B. keyed MD5

Encapsulating Security Payload (ESP)

- gewährleistet die Vertraulichkeit der Übertragung der IP-Pakete und eine Authentizitätsprüfung.
- Verschlüsselung (optional)
 - symmetrische Verschlüsselung
 - erforderliche Algoritmen AES-CBC, AES-GCM, ChaCha20 + Poly1305 (RFC 8221)
- Authentifizierung (optional)
 - Implementierung muss HMAC-SHA2 unterstützen (RFC 8221)
 - HMAC-Berechnung bezieht sich nur auf ESP-Header, IP-Datenteil und verschlüsselten Teil des ESP-Trailers

Normal Packet

Transport Mode After Applying ESP

Tunnel Mode After Applying ESP

• Security Parameters Index (32 Bit):

Identifikation der Sicherheits- Assoziation

- Sequence Number (32 Bit):
- Payload Data (variabel): verschlüsselte Daten
- Padding (0 255 Bytes):

Auffüllbytes, falls Verschlüsselungsalgorithmus ein Vielfaches einer bestimmten Zahl von Oktetts verlangt

Pad Length (8 Bit):

Zahl der benutzten Padding-Bytes

- Next Header (8 Bit): Verweis auf nächsten Headers
- Authentication Data (variable): MAC für ESP-Header, IP-Datenteil und verschlüsselten Teil des ESP-Trailers

Schlüsselmanagement

• Das Schlüsselmanagement ist **nicht** Bestandteil von IPsec!!!

Herangehensweisen

 manuell manuelle Konfiguration auf der Basis der eigenen Schlüssel und der der Kommunikationspartner (nur praktikabel bei kleineren, statischen Systemen)

automatisch

On Demand-Generierung von Schlüsseln

Default-Annahme: ISAKMP/IKE-Schlüsselaustauschprotokolle

• ISAKMP/IKE

- Internet Security Association and Key Management Protocol (ISAKMP)
 - Protokoll zur Aushandlung von Sicherheitsparametern
 - Instanzen-Authentifizierung
- Internet Key Exchange (IKE)
 - Standard-Authentisierungs- und Schlüsselaustauschprotokoll auf der Basis von Diffie-Hellmann für IPsec
 - Aushandlung von Sicherheitsassoziationen
 - jetzt IKEv2
- anderes Protokoll: Oakley Key Determination Protocol

IKEv2

 Überblick über die IPsec Standardisierung

Transport Layer Security (TLS)

Idee von TLS:

- Vertraulichkeit und Authentizität
- Verwendung des Sitzungskonzepts
 - entstammt OSI-Konzept (Schicht 5)
 - längere Gültigkeitsdauer als eine Verbindung
 - kann mehrere Verbindungen enthalten
 - Kryptographische Verfahren und Hashfunktionen werden pro Verbindung ausgehandelt
 - Weiterentwicklung von SSL 3.1

TLS 1.3 Handshake

Wichtige Teilprotokolle

- TLS Record
 - Berechnung eines MAC
 - Verschlüsselung der Daten und MAC
 - Fragmentierung und Komprimierung der zu übertragenden Daten
- TLS Handshake
 - Aushandlung von Sitzungsparametern
 - Sicherung der Konsistenz von Sitzungsinformationen

TLS Zusammenfassung

Vorteile

- Möglichkeit, jedes höhere Protokoll auf Basis von TLS zu implementieren.
- Unabhängigkeit von Applikationen und System gewährleistet
- wird von fast allen Browsern und Servern unterstützt

Nachteile

- Verbindungsaufbau auf Serverseite sehr rechenintensiv
- keine klare Trennung Authentifizierungs- und Schlüsselalgorithmen (Cipher Suiten implizieren bestimmte Kombinationen)
- keine Verhandlungsdynamik (einfacher Abgleich / Reduzierung der verwendeten Verfahren)

Sicherheitslage von TLS

- TLS 1.3 (und mit Abstrichen) TLS 1.2 gelten als sicher
- TLS 1.1 und ältere SSL-Versionen enthalten eine Reihe von Designschwächen und Sicherheitslücken
- Fallback auf ältere Protokollversionen und schwache CipherSuites wird regelmäßig für Angriffe genutzt

Fortsetzung folgt

