Zadanie 10. (0–4)

Wyznacz wszystkie wartości parametru a, dla których wykresy funkcji f i g, określonych wzorami f(x) = x - 2 oraz g(x) = 5 - ax, przecinają się w punkcie o obu współrzędnych dodatnich.

Zadanie 1. (4 pkt)

Funkcja liniowa f określona jest wzorem f(x) = ax + b dla $x \in R$.

- a) Dla a = 2008 i b = 2009 zbadaj, czy do wykresu tej funkcji należy punkt $P = (2009, 2009^2)$.
- b) Narysuj w układzie współrzędnych zbiór

$$A = \left\{ (x, y) : x \in \langle -1, 3 \rangle \quad \text{i} \quad y = -\frac{1}{2}x + b \quad \text{i} \quad b \in \langle -2, 1 \rangle \right\}.$$

Poziom podstawowy:

Zadanie 8. (0-1)

Na rysunku obok przedstawiono geometryczną interpretację jednego z niżej zapisanych układów równań. Wskaż ten układ, którego geometryczną interpretację przedstawiono na rysunku.

A.
$$\begin{cases} y = x + 1 \\ y = -2x + 4 \end{cases}$$

B.
$$\begin{cases} y = x - 1 \\ y = 2x + 4 \end{cases}$$

c.
$$\begin{cases} y = x - 1 \\ y = -2x + 4 \end{cases}$$

D.
$$\begin{cases} y = x + 1 \\ y = 2x + 4 \end{cases}$$

Zadanie 5. (0-1)

Para liczb x=1, y=-3 spełnia układ równań $\left\{ \begin{array}{l} x-y=a^2 \\ (1+a)x-3y=-4a \end{array} \right.$

Wtedy a jest równe

B.
$$-2$$

C.
$$\sqrt{2}$$

D.
$$-\sqrt{2}$$

Zadanie 7. (1 pkt)

Prostą równoległą do prostej o równaniu $y = \frac{2}{3}x - \frac{4}{3}$ jest prosta opisana równaniem

A.
$$y = -\frac{2}{3}x + \frac{4}{3}$$

B.
$$y = \frac{2}{3}x + \frac{4}{3}$$

C.
$$y = \frac{3}{2}x - \frac{4}{3}$$

A.
$$y = -\frac{2}{3}x + \frac{4}{3}$$
 B. $y = \frac{2}{3}x + \frac{4}{3}$ **C.** $y = \frac{3}{2}x - \frac{4}{3}$ **D.** $y = -\frac{3}{2}x - \frac{4}{3}$

Zadanie 4. (1 pkt)

Rozwiązaniem układu równań $\begin{cases} 3x - 5y = 0 \\ 2x - y = 14 \end{cases}$ jest para liczb (x, y) takich, że

A.
$$x < 0$$
 i $y < 0$

A.
$$x < 0 \text{ i } y < 0$$
 B. $x < 0 \text{ i } y > 0$ **C.** $x > 0 \text{ i } y < 0$ **D.** $x > 0 \text{ i } y > 0$

C.
$$x > 0$$
 i $y < 0$

D.
$$x > 0$$
 i $y > 0$

Zadanie 18. (0-1)

Układ równań $\begin{cases} y = -ax + 2a \\ y = \frac{b}{3}x - 2 \end{cases}$ nie ma rozwiązań dla

A.
$$a = -1 i b = -3$$

B.
$$a = 1 i b = 3$$

C.
$$a = 1 i b = -3$$

D.
$$a = -1 \text{ i } b = 3$$

Zadanie 8. (0-1)

Rozwiązaniem układu równań $\begin{cases} x+y=1\\ x-y=b \end{cases}$ z niewiadomymi x i y jest para liczb dodatnich.

Wynika stad, że

A.
$$b < -1$$

B.
$$b = -1$$

C.
$$-1 < b < 1$$

D.
$$b \ge 1$$

Zadanie 12. (0–1)Układ równań $\begin{cases} 2x-3y=5 \\ -4x+6y=-10 \end{cases}$

A. nie ma rozwiązań.

B. ma dokładnie jedno rozwiązanie.

C. ma dokładnie dwa rozwiązania.

D. ma nieskończenie wiele rozwiązań.

Zadanie 31. (0-2)

Funkcja liniowa f przyjmuje wartość 2 dla argumentu 0, a ponadto f(4) - f(2) = 6. Wyznacz wzór funkcji f.

Zadanie 5. (0–1)

Układ równań $\begin{cases} x - y = 3 \\ 2x + 0,5y = 4 \end{cases}$ opisuje w układzie współrzędnych na płaszczyźnie

A. zbiór pusty.

B. dokładnie jeden punkt.

C. dokładnie dwa różne punkty.

D. zbiór nieskończony.

Zadanie 7. (0-1)

Funkcja liniowa f jest określona wzorem $f(x) = 21 - \frac{7}{3}x$. Miejscem zerowym funkcji f jest

B.
$$-\frac{7}{3}$$

Zadanie 9. (1 pkt)

Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y = ax + b.

Jakie znaki mają współczynniki a i b?

A.
$$a < 0 \text{ i } b < 0$$

B.
$$a < 0 \text{ i } b > 0$$

C.
$$a > 0$$
 i $b < 0$

C.
$$a > 0$$
 i $b < 0$ **D.** $a > 0$ i $b > 0$

Zadanie 23. (0–1)

Na rysunku przedstawione są dwie proste równoległe k i l o równaniach y = ax + b oraz y = mx + n. Początek układu współrzędnych leży między tymi prostymi.

Zatem

A.
$$a \cdot m > 0$$
 i $b \cdot n > 0$

B.
$$a \cdot m > 0 \text{ i } b \cdot n < 0$$

C.
$$a \cdot m < 0$$
 i $b \cdot n > 0$

D.
$$a \cdot m < 0$$
 i $b \cdot n < 0$

Zadanie 8. (0-1)

Funkcja liniowa f(x) = (a-1)x + 3 osiąga wartość najmniejszą równą 3. Wtedy

A.
$$a = -1$$

B.
$$a = 0$$

C.
$$a = 1$$

D.
$$a = 3$$

Zadanie 11. (0–1)

Funkcja liniowa $f(x) = (1 - m^2)x + m - 1$ nie ma miejsc zerowych dla

A.
$$m = 1$$

B.
$$m = 0$$

C.
$$m = -1$$

D.
$$m = -2$$