Incremental Approach to Interpretable Classification Rule Learning

Bishwamittra Ghosh and Kuldeep S. Meel School of Computing, National University of Singapore

CP 2019

Practical applications of machine learning

- Hiring employees
- Giving a loan to a person
- Predicting recidivism: likelihood of a person convicted of a crime to offend again
- **.** . . .

Practical applications of machine learning

- Hiring employees
- ▶ Giving a loan to a person
- Predicting recidivism: likelihood of a person convicted of a crime to offend again
- **>** . . .

Should we believe the prediction of machine learning models?

Practical applications of machine learning

- Hiring employees
- ▶ Giving a loan to a person
- Predicting recidivism: likelihood of a person convicted of a crime to offend again
- **.** . . .

Should we believe the prediction of machine learning models?

Interpretable classification model

Example Dataset

Representation of an interpretable model and a black box model

A sample is predicted as Iris Versicolor if (sepal length > 6.3 **OR** sepal width > 3**OR** petal width < 1.5)

AND

(sepal width ≤ 2.7 **OR** petal length > 4**OR** petal width > 1.2)

AND

(petal length ≤ 5)

Interpretable Model

Black Box Model

Formula

 A CNF (Conjunctive Normal Form) formula is a conjunction of clauses where each clause is a disjunction of literals

$$(a \lor \neg b \lor c) \land (d \lor e)$$

▶ A DNF (Disjunctive Normal Form) formula is a disjunction of clauses where each clause is a conjunction of literals

$$(a \wedge b \wedge \neg c) \vee (d \wedge e)$$

Formula

 A CNF (Conjunctive Normal Form) formula is a conjunction of clauses where each clause is a disjunction of literals

$$(a \lor \neg b \lor c) \land (d \lor e)$$

▶ A DNF (Disjunctive Normal Form) formula is a disjunction of clauses where each clause is a conjunction of literals

$$(a \wedge b \wedge \neg c) \vee (d \wedge e)$$

 Decision rules in CNF and DNF are highly interpretable [Malioutov'18; Lakkaraju'19]

Definition of interpretability in rule-based classifiers

▶ There exists different notions of interpretability of rules

Definition of interpretability in rule-based classifiers

► There exists different notions of interpretability of rules

$$\mathcal{R} = (a \lor b \lor \neg c \lor d \lor e) \land$$

$$(f \lor g \lor h \lor \neg i) \land$$

$$(j \lor k \lor \neg l) \land$$

$$(\neg m \lor n \lor o \lor p \lor q) \land$$

$$\mathcal{R} = (a \lor b \lor \neg c) \land (f \lor g)$$

► Rules with fewer terms are considered interpretable in medical domains [Letham'15]

Definition of interpretability in rule-based classifiers

► There exists different notions of interpretability of rules

$$\mathcal{R} = (a \lor b \lor \neg c \lor d \lor e) \land$$

$$(f \lor g \lor h \lor \neg i) \land$$

$$(j \lor k \lor \neg l) \land$$

$$(\neg m \lor n \lor o \lor p \lor q) \land$$

$$\mathcal{R} = (a \lor b \lor \neg c) \land (f \lor g)$$

- ► Rules with fewer terms are considered interpretable in medical domains [Letham'15]
- ▶ We refer rule size as a proxy of interpretability in rule-based classifiers
- ▶ For rules expressed as CNF/DNF, rule size = number of literals

Outline

- Introduction
- 2 Preliminaries
- 3 Design of an interpretable rule-based classifier
- 4 Incremental learning
- 5 Experimental Evaluation
- Conclusion

Design of an interpretable classifier [Malioutov'18]

- We design objective function to
 - minimize prediction error
 - minimize rule size (i.e., maximize interpretability)

Design of an interpretable classifier [Malioutov'18]

- ▶ We design objective function to
 - minimize prediction error
 - ▶ minimize rule size (i.e., maximize interpretability)
- Consider decision variables:
 - feature variables $b_i^j = \mathbb{1}\{j\text{-th feature is selected in } i\text{-th clause}\}$
 - ▶ noise variables $\eta_q = 1$ {sample q is misclassified}

$$\min \sum_{i,j} b_i^j + \lambda \sum_q \eta_q$$

- Constraints:
 - ▶ a positive labeled sample satisfies the rule
 - a negative labeled sample does not satisfy the rule
 - otherwise the sample is considered as noise

MaxSAT

In MaxSAT

ightharpoonup Hard Clause: always satisfied, weight $=\infty$

Soft Clause: can be falsified, weight $= \mathbb{R}^+$

MaxSAT finds an assignment that satisfies all hard clauses and most soft clauses such that the weight of satisfied soft clauses is maximized

MaxSAT-based approach for interpretable rule-based classification

- the objective function is encoded as soft clauses
- the constraints are encoded as hard clauses

Analysis

▶ To generate a k-clause CNF rule for a dataset of n samples over m boolean features, the number of clauses of the MaxSAT instance is $\mathcal{O}(n \cdot m \cdot k)$

An Incremental Rule-learning Approach [Ghosh'19]

- We attribute large formula size of the MaxSAT instance for the poor scalability
- ▶ We propose mini-batch incremental learning

Solution Technique

▶ We propose a mini-batch incremental learning framework with the following objective function on batch *t*

$$\min \sum_{i,j} b_i^j \cdot I(b_i^j) + \lambda \sum_q \eta_q.$$

where indicator function $I(\cdot)$ is defined as follows.

$$I(b_i^j) = egin{cases} -1 & ext{if } b_i^j = 1 ext{ in the } (t-1) ext{-th batch } (t
eq 1) \ 1 & ext{otherwise} \end{cases}$$

CP 2019

Continued...

$$(t-1)$$
-th batch

we learn assignment

- ▶ $b_1 = 0$
- ▶ $b_2 = 1$
- ▶ $b_3 = 0$
- ▶ $b_4 = 1$

t-th batch

we construct soft unit clause

- $\neg b_1$
- ► *b*₂
- ¬b₃
- ▶ b₄

Experimental Results

Accuracy and training time of different classifiers

Dataset	Size n	Features m	LR	SVC	RIPPER	IMLI
PIMA	768	134	75.32	75.32	75.32	73.38
			(0.3s)	(0.37s)	(2.58s)	(0.74s)
Credit-default	30000	334	80.81	80.69	80.97	79.41
			(6.87s)	(847.93s)	(20.37s)	(32.58s)
Twitter	49999	1050	95.67	Timeout	95.56	94.69
			(3.99s)		(98.21s)	(59.67s)

Table: Each cell in the last 5 columns refers to test accuracy (%) and training time (s).

IMLI exhibits better training time by costing a little bit of accuracy

Size of rules of different rule-based classifiers

Dataset	RIPPER	IMLI	
PIMA	8.25	3.5	
Twitter	21.6	6	
Credit	14.25	3	

Table: Average size of the rules of different rule-based models.

IMLI generates shorter rules compared to other rule-based models

Conclusion

- Interpretable ML model ensures reliability of prediction models in practice
- We propose an incremental learning approach of classification rules
- ▶ IMLI¹ achieves up to three orders of magnitude improvement in training time by sacrificing a bit of accuracy
- ▶ The generated rules appear to be more interpretable

Python library:

pip install rulelearning

Thank You!!

¹Source code: https://github.com/meelgroup/MLIC