第一章第二章检测详解

一、单选题 (共8题,40分)

1,

$$\begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{2} \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}^{5} = ()$$

$$\begin{pmatrix}
9 & 24 & 39 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{pmatrix}$$
B
$$\begin{pmatrix}
3 & 6 & 9 \\
2 & 5 & 8 \\
9 & 24 & 39
\end{pmatrix}$$
C
$$\begin{pmatrix}
39 & 24 & 9 \\
8 & 5 & 2 \\
9 & 6 & 3
\end{pmatrix}$$
D

$$\begin{pmatrix}
5 & 14 & 23 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{pmatrix}$$

正确答案: 0

解析: $\begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ 是一个倍加矩阵,

$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
是一个对调矩阵,
$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}^2 = \mathbf{E} \cdot \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}^5 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^2 \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}^5 = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^2 \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

先对 $\begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$ 做两次倍加行变换 $r_1 + 2r_2$,再将得到的矩阵做 1,3 列的对

调,最后所得矩阵就是答案

$$\label{eq:boundary_equation} \mbox{iff } \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, \mathbf{B} = \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} + a_{21} & a_{32} + a_{22} & a_{33} + a_{23} \end{bmatrix},$$

$$\mathbf{P}_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{P}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \qquad \text{则 () 正确}.$$

$$\mathbf{B} = \mathbf{P}_2 \mathbf{P}_1 \mathbf{A}_{B_1}$$
 $\mathbf{B} = \mathbf{P}_1 \mathbf{P}_2 \mathbf{A}_{C_1}$ $\mathbf{B} = \mathbf{A} \mathbf{P}_1 \mathbf{P}_{2D_1}$ $\mathbf{B} = \mathbf{A} \mathbf{P}_2 \mathbf{P}_1$

正确答案: A

解析: 在 A 的左边乘初等矩阵,表示做初等行变换。

 P_2P_1A 表示先将 A 的 1, 2 行对调,再将得到的矩阵做倍加行变换 $r_3 + r_1$,最后得到的恰为 B

- 3、设A是 $t \times k$ 矩阵, B是 $t \times t$ 矩阵, 若B的第j列元素全为零,则下列结论正确的是()
- A、 AB的第j行元素全为零
- B、 AB的第j列元素全为零
- C、 BA的第j行元素全为零
- D、 BA的第j行元素全为零

正确答案: B

解析:

注: \mathbf{AB} 的第j列= \mathbf{Ab}_{i} , 其中 \mathbf{b}_{i} 为 \mathbf{B} 的第j列,

这可从矩阵乘法的定义来想, 也可从下式来想

AB的第j列=(**AB**) \mathbf{e}_{i} =**A**(**Be**_i) = **Ab**_i, 其中 \mathbf{b}_{i} 为**B**的第j列

4、

与矩阵
$$\begin{pmatrix} 1 & -1 & 1 \\ 2 & -1 & 3 \\ 3 & -2 & 4 \end{pmatrix}$$
等价的矩阵是()

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix}$$
By
$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$
Cy
$$\begin{pmatrix}
1 & -1 & 1 \\
1 & 0 & 2
\end{pmatrix}$$
Dy
$$\begin{pmatrix}
1 & -1 \\
2 & -1 \\
3 & -2
\end{pmatrix}$$

正确答案: A 解析: 略

5,

已知A,B,C均为n阶方阵,则下列性质不正确的是()

$$_{\Delta} \qquad (\mathbf{A}\mathbf{B})\mathbf{C} = \mathbf{A}(\mathbf{B}\mathbf{C})$$

$$(\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{A}\mathbf{C} + \mathbf{B}\mathbf{C}$$

$$C \setminus C(A+B) = CA+CB$$

$$\mathbf{AB} = \mathbf{BA}$$

正确答案: D 解析: 略

6、

已知
$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 2 \\ -1 & 1 & -2 \\ 2 & -2 & 4 \end{bmatrix}$$
, k 为正整数, $\mathbf{A}^k = m\mathbf{A}$, 则 $m = ($)

A,
$$4^{k-1}$$
 B, 6^{k-1} C, 4^k D, 6^k

正确答案: B

7、 如果一个n ≥ 2阶行列式中元素均为±1,则此行列式的值必为()

A、 _{奇数}

В、 偶数

C, -1

D, 1

正确答案: B

解析:

方法 1: 可用数学归纳法证明

 $= 6^{k-1} \begin{bmatrix} 1 & -1 & 2 \\ -1 & 1 & -2 \\ 2 & 2 & 4 \end{bmatrix}$

方法 2: 以三阶行列式为例,三阶行列式共有 6 项,每一项要么为 1,要么为-1. 因为总共有 6 项,若为 1 的项的个数是偶数,则为-1 的项的个数也是

偶数, 行列式的值就是偶数。

因为总共有 6 项, 若为 1 的项的个数是奇数,则为-1 的项的个数也是奇数,行列式的值也是偶数。

对于n阶行列式可类似地思考

方法 3: 用具体的行列式验证,比如 $\begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = 0$, $\begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = 2$

$$\begin{vmatrix} x & y & x+y \\ y & x+y & x \\ x+y & x & y \end{vmatrix}$$

A.
$$2(x+y)(x^2 + xy + y^2)$$

B. $-2(x+y)(x^2 + xy + y^2)$
C. $2(x^3 + y^3)$

$$-2(x^3+y^3)$$

正确答案: D

二、填空题(共7题,35分)

$$\begin{bmatrix} 1 & -1 & 0 & 3 \\ 2 & 2 & -1 & 0 \\ -2 & 3 & 1 & x \\ 0 & 2 & 4 & 1 \end{bmatrix}$$
是 x 的一次多项式,其一次项的系数等于().

正确答案: -18

解析:

x的系数就是x的代数余子式

$$A_{34} = (-1)^{3+4} \begin{vmatrix} 1 & -1 & 0 \\ 2 & 2 & -1 \\ 0 & 2 & 4 \end{vmatrix} = -18$$

2,

$$\begin{vmatrix} 1 & 0 & 2 & 0 \\ -1 & 0 & 3 & 0 \\ 0 & 2 & 0 & -1 \\ 0 & 1 & 0 & 3 \end{vmatrix} = ()$$

正确答案: -35

解析: 对调 2,3 列可化成分块下三角行列式

3,

设
$$A = \begin{pmatrix} 1 & 2 \\ x & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & y \\ 1 & 0 \end{pmatrix}$, 且 $AB = BA$, 则 $y = ($).

正确答案: 2

解析:

4、

设 $\alpha_1, \alpha_2, \alpha_3$ 都是三元列向量, $A = (\alpha_1, \alpha_2, \alpha_3), \phi$

$$B = (\alpha_1 - \alpha_2, 2\alpha_2, \alpha_1 + \alpha_2 - \alpha_3), |A| = 1, |B| = ($$
).

正确答案: -2

解析

$$|\alpha_1 - \alpha_2, 2\alpha_2, \alpha_1 + \alpha_2 - \alpha_3| = 2 |\alpha_1 - \alpha_2, \alpha_2, \alpha_1 + \alpha_2 - \alpha_3|$$
 $c_1 + c_2$

$$= \begin{array}{c} c_1 + c_2 \\ = \\ c_3 - c_1 \end{array} 2 \left| \alpha_1, \alpha_2, \alpha_1 - \alpha_3 \right|^{c_3 - c_1} = 2 \left| \alpha_1, \alpha_2, -\alpha_3 \right| = -2 \left| \alpha_1, \alpha_2, \alpha_3 \right| = -2$$

5,

已知行列式
$$\begin{vmatrix} a & b & c & d \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 2 \end{vmatrix}$$
 , 则 $A_{41} + A_{42} + A_{43} + A_{44} = ($)

正确答案: 0

解析: 性质 2-7 第 2 行的数乘以第 4 行的代数余子式之和等于 0

6、

$$\begin{vmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \end{vmatrix} = ()$$

正确答案: 5

7、

已知
$$\begin{vmatrix} a+2 & a & a & a \\ a & a+1 & a & a \\ a & a & a+2 & a \\ a & a & a & a+1 \end{vmatrix} = ma+4$$
,则 $m=($)

正确答案:

第1空: 12

解析:

$$\begin{vmatrix} a+2 & a & a & a \\ a & a+1 & a & a \\ a & a & a+2 & a \\ a & a & a & a+1 \end{vmatrix} \xrightarrow{\text{avg}} \begin{bmatrix} a+2 & a & a & a \\ -2 & 1 & 0 & 0 \\ -2 & 0 & 2 & 0 \\ -2 & 0 & 0 & 1 \end{vmatrix}$$

做列変換
$$=$$
 $\begin{vmatrix} 6a+2 & a & a & a \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} = 12a+4$

三、多选题 (共7题,35分)

1,

设 \mathbf{A} 为 $\mathbf{4} \times \mathbf{5}$ 型矩阵, \mathbf{B} 为 $\mathbf{5} \times \mathbf{4}$ 型矩阵, \mathbf{C} 为 $\mathbf{4} \times \mathbf{1}$ 型矩阵, \mathbf{D} 为 $\mathbf{5} \times \mathbf{4}$ 型矩阵,判断下列哪些表达式是正确的

A, BAC

B, A(B+D)

C, ABD

D, ABABC

E, AD+BC

正确答案: BD

解析: 矩阵能做乘法运算的前提条件是前一矩阵的列数需要等于后一矩阵的行数

2,

设矩阵
$$A$$
和 C 满足 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} C \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$,则

注意:矩阵的乘法满足结合律

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} \mathbf{C} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} \mathbf{C} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

含义是 $\mathbf{C} \xrightarrow{r_3-2r_1} \mathbf{B} \xrightarrow{c_1 \leftrightarrow c_2} \mathbf{A}$

从上式可得

$$\mathbf{A} \xrightarrow{c_1 \leftrightarrow c_2} \mathbf{B} \xrightarrow{r_3 + 2r_1} \mathbf{C}$$

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} \mathbf{C} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} (\mathbf{C} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix})$$

含义是 $\mathbf{C} \xrightarrow{c_1 \leftrightarrow c_2} \mathbf{B} \xrightarrow{r_3 - 2r_1} \mathbf{A}$

从上式可得

$$\mathbf{A} \xrightarrow{r_3+2r_1} \mathbf{B} \xrightarrow{c_1 \leftrightarrow c_2} \mathbf{C}$$

- 3、下列说法正确的有
- A_{λ} 若 $A^2 = E$,则A = E或A = -E,其中矩阵都是n阶方阵.
- 若矩阵 \mathbf{A} 和 \mathbf{B} 等价,则 \mathbf{B} 和 \mathbf{A} 等价.
- C_{s} 若 A 是反称矩阵,则 A^{2} 是对称矩阵.
- D、 若矩阵 A 和 B 等价, B 和 C 等价,则 A 和 C 等价.
- E_{s} 若 A 和 B 均为 n 阶方阵,则 $(AB)^{k} = A^{k}B^{k}$ (k > 1 为正整数).

正确答案: BCD

解析:

A错的原因: $A^2 = E \Rightarrow (A + E)(A - E) = O$, (A + E)(A - E) = O, (A + E)(A - E)(A + E)(

反例
$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

B、D都对

若能经过有限次初等变换将矩阵A化成矩阵B,则称A与B等价。 初等变换都是可逆的。

C对的原因: $(\mathbf{A}^2)^T = (\mathbf{A}^T)^2 = (-\mathbf{A})^2 = \mathbf{A}^2$

E. 错的原因:矩阵的乘法不满足交换律

4、下列矩阵那些是等价标准形?

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}$$

正确答案: ACDE

解析: 好好看一下等价标准形的定义即可

5,

设 \mathbf{a} , \mathbf{b} 都是n元列向量,则下列选项正确的是(

$$\mathbf{a}^{T}\mathbf{b} = \mathbf{b}^{T}\mathbf{a}$$
 $\mathbf{a}\mathbf{b}^{T} = \mathbf{b}\mathbf{a}^{T}$ $\mathbf{a}^{T}\mathbf{b}^{T} = \mathbf{b}\mathbf{a}^{T}$ $\mathbf{a}^{T}\mathbf{b}^{T} = \mathbf{b}\mathbf{a}^{T}$ $\mathbf{a}^{T}\mathbf{b}^{T} = \mathbf{b}\mathbf{a}^{T}$

正确答案: AC

A对 设**a**=
$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$$
, **b**= $\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$, 则**a**^T**b**= $a_1b_1+a_2b_2+a_3b_3$, **b**^T**a**= $a_1b_1+a_2b_2+a_3b_3$, **a**^T**b**=**b**^T**a**

B错 设
$$\mathbf{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$, 则 $\mathbf{a}\mathbf{b}^T = \begin{bmatrix} 2 & 3 & 4 \\ 2 & 3 & 4 \\ 2 & 3 & 4 \end{bmatrix}$, $\mathbf{b}\mathbf{a}^T = \begin{bmatrix} 2 & 2 & 2 \\ 3 & 3 & 3 \\ 4 & 4 & 4 \end{bmatrix}$, $\mathbf{a}\mathbf{b}^T \neq \mathbf{b}\mathbf{a}^T$

注意: $\mathbf{a}^T \mathbf{b} \mathbf{n} \mathbf{b}^T \mathbf{a} \mathbf{e} \mathbf{b}$, $\mathbf{a} \mathbf{b}^T \mathbf{n} \mathbf{b} \mathbf{a}^T \mathbf{e}$ 矩阵

C对
$$(\mathbf{ab}^T)^2 = (\mathbf{ab}^T)(\mathbf{ab}^T) = \mathbf{a}(\mathbf{b}^T\mathbf{a})\mathbf{b}^T$$

注意: $\mathbf{b}^{T}\mathbf{a}$ 是数,可以提到前面

$$(\mathbf{a}\mathbf{b}^T)^2 = (\mathbf{b}^T\mathbf{a})(\mathbf{a}\mathbf{b}^T)$$

D错 注意: $\mathbf{a}^T \mathbf{b}$ 是数, $\mathbf{b} \mathbf{a}^T$ 是矩阵

6,

设A, B都是n阶方阵,E为n阶单位矩阵,则下列选项正确的是(

$$(\mathbf{A}\mathbf{B})^2 = \mathbf{A}^2 \mathbf{B}^2$$

$$\mathbf{A}^2 - \mathbf{A} - 2\mathbf{E} = (\mathbf{A} - 2\mathbf{E})(\mathbf{A} + \mathbf{E})$$

C,

若
$$A^T A = 0$$
 , 则 $A = 0$

$$(\mathbf{A}\mathbf{B})^T = \mathbf{A}^T \mathbf{B}^T$$

正确答案: BD

解析:

A错 原因是矩阵不满足交换律

$$(AB)^2 = ABAB \neq AABB$$

B对 由于单位矩阵 E与同阶方阵相乘时都可交换,所以这样的公式都对。

C错 反例
$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$$
, $\mathbf{A}^2 = \mathbf{O}$

D对 把A设出来,再把A^TA算出来,重点观察A^TA的对角元, $A^{T}A$ 的对角元都是平方和的样子,由 $A^{T}A$ =O可知,A中的元素全为0

E错 注意 $(\mathbf{A}\mathbf{B})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}$

7、

设A, B都是n阶方阵, k为数,则下列选项正确的是()

$$|k\mathbf{A}| = k^n |\mathbf{A}|$$

$$|\mathbf{A} + \mathbf{B}| = |\mathbf{A}| + |\mathbf{B}|$$

$$\left|\mathbf{A}^T\mathbf{A}\right| = \left|\mathbf{A}\right|^2$$

$$\begin{vmatrix} \mathbf{O} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{vmatrix} = \left| \mathbf{A} \right|^2$$

正确答案: AC

$$\begin{vmatrix} \mathbf{A}^T \mathbf{A} \end{vmatrix} = \begin{vmatrix} \mathbf{A}^T \| \mathbf{A} \end{vmatrix}$$
, $\begin{vmatrix} \mathbf{O} & \mathbf{A} \\ \mathbf{A} & \mathbf{A} \end{vmatrix} = (-1)^n | \mathbf{A} |^2$, 这两个式子与第 2 章第 4 节的内容有