Ergebnisse zu ausgewählten Aufgaben der 1. Übung am 21. September 2023 Thema: Logik, Mengenlehre

Aufgabe 1

Eine Aussage ist ein sinnvolles sprachliches Gebilde, dem eindeutig ein Wahrheitswert zugeordnet werden kann.

- (a) ist eine Aussage; sie ist wahr
- (b) ist eine Aussage; sie ist falsch
- (c) ist keine Aussage (x ist nicht spezifiziert)
- (d) ist eine Aussage; sie ist wahr

Aufgabe 2

- (a) p ist wahr, q ist wahr, r ist falsch
- (b) \overline{p} : "5 ist eine gerade Zahl." \rightarrow falsch
 - $p \wedge q$: "5 ist sowohl ungerade als auch eine Primzahl." \rightarrow wahr
 - $p \lor q$: "5 ist ungerade oder eine Primzahl (oder beides)." \rightarrow wahr
 - $\overline{p \wedge r}$: "5 besitzt nicht die Eigenschaft, sowohl ungerade als auch durch 3 teilbar zu sein." \rightarrow wahr
 - $\overline{p} \vee \overline{r}$: "5 ist gerade oder nicht durch 3 teilbar (oder beides)." \rightarrow wahr

Aufgabe 3

- (a) "Es existiert (mindestens) eine reelle Zahl x, für die gilt: $x^2 = 2$." \rightarrow wahr
- (b) "Es existiert (mindestens) eine natürliche Zahl n, für die gilt: $n^2 = 2$." \rightarrow falsch
- (c) "Für jede reelle Zahl x gilt $x^2 \ge 0$." \rightarrow wahr
- (d) "Für jede reelle Zahl x gilt $x^2 > 0$." \rightarrow falsch

Aufgabe 4

- (a) (a1) $x \geq 2$ ist keine notwendige, aber eine hinreichende Bedingung für $x^2 \geq 4$.
 - (a2) $|x| \ge 2$ ist sowohl eine notwendige als auch eine hinreiche Bedingung für $x^2 \ge 4$.
 - (a3) $2x^2 > 5$ ist eine notwendige, aber keine hinreichende Bedingung für $x^2 \ge 4$.
- (c) (c1) $f'(x^*) = 0$ ist eine notwendige, aber keine hinreichende Bedingung dafür, dass x^* eine lokale Extremstelle von f ist.
 - (c2) $f''(x^*) \neq 0$ ist weder eine notwendige noch eine hinreichende Bedingung dafür, dass x^* eine lokale Extremstelle von f ist.
 - (c3) Dass $f'(x^*) = 0$ und $f''(x^*) \neq 0$ gilt, ist keine notwendige, aber eine hinreichende Bedingung dafür, dass x^* eine lokale Extremstelle von f ist.

Aufgabe 5

(a) $A \cap B = \{2, 4\}, A \cup B = \{1, 2, 3, 4, 6\}, A \setminus B = \{1, 3\}, B \setminus A = \{6\}$

A und B sind nicht disjunkt. Keine der beiden Mengen ist Teilmenge der anderen.

Aufgabe 6

- (a) $A = \{1, 3, 5, 15\}$
- (c) $C = \{1, 4, 9, 16, 25, \ldots\}$ (Cist die Menge der Quadratzahlen)
- (d) $D = \emptyset$

Aufgabe 8

(a) (a1) $A \cup B \cup C$:

(a3) $(A \cap B) \cup C$:

- (b) (b1) $A \cap B \cap C$
 - (b3) $(A \cup B) \cap C$ (oder auch $(A \cap C) \cup (B \cap C)$)

Aufgabe 9

(a) Veranschaulichung der Mengen A und B:

• $A \cap B = (2,3]$

• $A \cup B = (0,4)$

• $A \setminus B = (0, 2]$

• $B \setminus A = (3,4)$

Aufgabe 10

(a)
$$A = [-1, 2)$$

(a)
$$A = [-1, 2)$$
 (c) $C = (-\infty, -1] \cup (1, 2] \cup (7, \infty)$ (e) $E = (1, 3)$

(e)
$$E = (1,3)$$

Aufgabe 11

(a)
$$A \times B = \{(x, y) \mid 1 \le x \le 2, 1 \le y \le 3\}$$

In der folgenden Abbildung ist die Menge $A \times B$ grau gefärbt.

Aufgabe 12

- (a) richtig
- (b) falsch
- (c) richtig
- (d) richtig

- (e) richtig
- (f) falsch
- (g) richtig
- (h) falsch