CLAIMS

1	1.	All a	oparatus for determining field-dependent characteristics comprising:		
2		A)	a sto	rage medium containing canonical quadratures; and	
B) a computation circuit responsive to signals representing th			mputation circuit responsive to signals representing the shape of a		
4			bour	dary that includes geometrical singularities of different angles to:	
5			i)	divide the boundary into problem intervals;	
6			ii)	for each of a number of target nodes, perform a numerical integra-	
7				tion over the boundary of an integrand defined thereon by, for at	
8				least some combinations of target node and problem interval that	
9				contains a geometrical singularity that induces a singularity in the	
10				integrand, performing the integration for that target point node	
l I				over that problem interval in accordance with a canonical quadra-	
12				ture chosen from among the canonical quadratures independently	
13		•		of what, within a given angle range, the value of that geometric	
4				singularity's angle is;	
5			iii)	determine the field-dependent characteristic at least in part by em-	
6				ploying the results of the numerical integration thus performed;	
7				and	
8			iv)	generate an output signal indicative of the characteristic thus de-	
9				termined.	
1	2.	An ap	paratus as defined in claim 1 wherein:		
2		A)	each of the stored quadratures is associated with a respective position of a		
3			targe	t node or a target-node region with respect to a canonical integration	
4			interv	val and is based on the integration, over the canonical integration in-	
5			terva	l, of the product of a kernel function and a density function, to both of	
6			whos	e domains the canonical interval belongs;	
7		B)	each	of a plurality of the quadratures is associated with a respective set of	
8			at lea	st one density-singularity location on the canonical interval:	

- 9 C) the value of the kernel function depends on the relative target-node position associated with that quadrature,
- the density function is independent of the target node's position and exhibits a singularity only at each density-singularity position associated with that quadrature; and
- the quadrature performs the integration for that target point node over a
 problem interval by mapping the problem interval to the canonical interval
 and selecting therefor a said canonical interval associated with a densitysingularity position at each point on the canonical interval to which a
 geometric singularity on that problem interval is thereby mapped.
- 1 3. An apparatus as define in claim 1 wherein the computation circuitry:
- 2 A) applies a Fast Multipole Method (FMM) using far-field quadratures to provide an FMM result;
- B) identifies one or more target points for which the contribution to the FMM result from one or more intervals does not achieve a desired accuracy;
- 6 C) removes from the FMM result for each such target point the contribution
 7 from each such interval based on the determined one or more points,
- performs the canonical-quadrature-integration operation for such intervals to obtain a replacement contribution, and,
- 10 E) adds the second contribution to the FMM result.

1

- 4. An apparatus as defined in claim 1 wherein the number of angle ranges is no more than one thousand.
- 5. An apparatus as defined in claim 4 wherein the number of angle ranges is no more than one hundred.
 - 6. An apparatus as defined in claim 5 wherein there is only a single angle range.