A. Factorization

2 seconds, 256 megabytes

Find the prime factorization of a given integer.

Input

Input contains single integer $n (2 \le n \le 10^9)$.

Output

Output prime factors in non-decreasing order.

input	
17	
output	
17	

input	
60	
output 2 2 3 5	
2 2 3 5	

Statement is not available on English language

В. Большая проверка на простоту больших чисел

2 секунды, 64 мегабайта

Дано n натуральных чисел $a_{\dot{r}}$ Определите для каждого числа, является ли оно простым.

Входные данные

Программа получает на вход число n, $1 \le n \le 5000$ и далее n чисел a_i , $1 \le a_i \le 10^{18}$.

Выходные данные

Если число a_i простое, программа должна вывести YES, для составного числа программа должна вывести N0.

входные данные		
4 1 5 10 239		
выходные данные		
NO YES NO YES		

C. Chinese Reminder Theorem

2 seconds, 64 megabytes

Solve the following system in integers.

 $x = a \pmod{n}$ $x = b \pmod{m}$

It is guaranteed that \emph{n} and \emph{m} are relatively prime. You should choose the smallest non-negative value.

Input

The input file consists of four integers a, b, n and m ($1 \le n$, $m \le 10^6$, $0 \le a < n$, $0 \le b < m$).

Output

The sole line of the output should contain the smallest non-negative value that satisfies the constraints.

input	
1023	
output	
3	

input	
3 2 5 9	

38

Statement is not available on English language

D. Взлом RSA

2 секунды, 64 мегабайта

В 1977 году Ronald Linn Rivest, Adi Shamir и Leonard Adleman предложили новую криптографическую схему RSA, используемую до сих пор. RSA является криптосистемой с открытым ключом: зашифровать сообщение может кто угодно, знающий общеизвестный открытый ключ, а расшифровать сообщение — только тот, кто знает специальный секретный ключ.

Желающий использовать систему RSA для получения сообщений должен сгенерировать два простых числа p и q, вычислить n=pq и сгенерировать два числа e и d такие, что $ed \bmod (p-1)(q-1)=1$ (заметим, что $(p-1)(q-1)=\varphi(n)$). Числа n и e составляют открытый ключ и являются общеизвестными. Число d является секретным ключом, также необходимо хранить в тайне и разложение числа n на простые множители, так как это позволяет вычислить секретный ключ d.

Сообщениями в системе RSA являются числа из Z_n . Пусть M— исходное сообщение. Для его шифрования вычисляется значение $C = M^e \bmod n$ (для этого необходимо только знание открытого ключа). Полученное зашифрованное сообщение C передается по каналу связи. Для его расшифровки необходимо вычислить значение $M = C^d \bmod n$, а для этого необходимо знание секретного ключа.

Вы перехватили зашифрованное сообщение C и знаете только открытый ключ: числа n и e. "Взломайте" RSA — расшифруйте сообщение на основе только этих данных.

Входные данные

Программа получает на вход три натуральных числа: n, e, C, $n \le 10^9$, $e \le 10^9$, C < n. Числа n и e являются частью какой-то реальной схемы RSA, т.е. n является произведением двух простых и e взаимно просто с $\varphi(n)$. Число C является результатом шифрования некоторого сообщения M.

Выходные данные

Выведите одно число M ($0 \le M < n$), которое было зашифровано такой криптосхемой.

входные данные

143

113

выходные данные

123

входные данные

9173503

3 4051753

выходные данные

111111

Statement is not available on English language

Е. Перемножение полиномов

1 секунда, 256 мегабайт

Даны два полинома $A(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$ и $B(x) = b_0 + b_1 x + b_2 x^2 + \ldots + b_n x^n$. Найдите их произведение в виде $C(x) = c_0 + c_1 x + c_2 x^2 + \ldots + c_{2n} x^{2n}$.

Входные данные

Первая строка содержит число n ($1 \le n \le 10^5$). Вторая строка содержит n+1 число $-a_0, a_1, \ldots, a_{n'}$ третья строка содержит n+1 целое число $-b_0, b_1, \ldots, b_n$ ($0 \le a_i, b_i \le 100$).

Выходные данные

Выведите 2n+1 число — c_0, c_1, \ldots, c_{2n} .

входные данные

1 4 2 2 5 6

выходные данные

2 13 30 34 12

Statement is not available on English language

F. Дуэль

2 секунды, 256 мегабайт

Двое дуэлянтов решили выбрать в качестве места проведения поединка тёмную аллею. Вдоль этой аллеи растёт *п* деревьев и кустов. Расстояние между соседними объектами равно одному метру. Дуэль решили проводить по следующим правилам. Некоторое дерево выбирается в качестве стартовой точки. Затем два дерева, находящихся на одинаковом расстоянии от исходного, отмечаются как места для стрельбы. Дуэлянты начинают движение от стартовой точки в противоположных направлениях. Когда соперники достигают отмеченных деревьев, они разворачиваются и начинают стрелять друг в друга.

Дана схема расположения деревьев вдоль аллеи. Требуется определить количество способов выбрать стартовую точку и места для стрельбы согласно правилам дуэли.

Входные данные

Во входном файле содержится одна строка, состоящая из символов '0' и '1' — схема аллеи. Деревья обозначаются символом '1', кусты — символом '0'. Длина строки не превосходит 100000 символов.

Выходные данные

Выведите количество способов выбрать стартовую точку и места для стрельбы согласно правилам дуэли.

входные данные	
101010101	
выходные данные	
4	

входные данные

101001

выходные данные

n

В первом примере возможны следующие конфигурации дуэли (стартовое дерево и деревья для стрельбы выделены жирным шрифтом): **10101**0101, 10**1010101**1 и **10**10**10101**.

Codeforces (c) Copyright 2010-2021 Mike Mirzayanov The only programming contests Web 2.0 platform

Processing math: 100%