Математический анализ ИИИ, 2025

Университет ИТМО Лектор: Ершов А.Р.

Содержание

1	Фев	раль
	1.1	Дифференцируемость функции в точке. Дифференциал
	1.2	Производная
	1.3	Приближение функции, полиномы
	1.4	Уравнение касательной
	1.5	Уравнение нормали
	1.6	Правила дифференцирования
	1.7	Следствия
	1.8	Теорема. Производная композиции функций
	1.9	Теорема. Производная обратной функции
	1.10	Параметрические функции
	1.11	Локальный максимум и минимум функции
		Точка внутреннего экстремума
		Французские теоремы
		1.13.1 Теорема Ферма
		1.13.2 Теорема Ролля
		1.13.3 Теорема Лагранжа и следствия
		1.13.4 Теорема Коши
	1 14	Многочлен Тейлора
	1.11	1.14.1 Определение
		1.14.2 Теорема об общем виде остатка многочлена Тейлора .
		1.14.2 Теорема об бощем виде остатка многочлена темлора
		1.14.4 Остаток в форме Пеано
		1.14.4 Octator b hobme Heano

1 Февраль

1.1 Дифференцируемость функции в точке. Дифференциал.

Определение

Пусть
$$f: E \to \mathbb{R}, E \subset \mathbb{R}, x$$
 — предельная точка $E,$ $(x+h) \in E.$

Если

$$f(x+h) - f(x) = A(x) \cdot h + \alpha(x,h),$$
при $h \to 0$,
$$\lim_{h \to 0} \frac{\alpha(x,h)}{h} = 0,$$

то функция f называется $\partial u \phi \phi e p e h u u p y e m o u в точке <math>x$, а число A(x) называется n p o u s e o d h o u функции f в точке x и обозначается f'(x).

Число $A(x) \cdot h$ называется $\partial u \phi \phi$ еренциалом функции f в точке x и обозначается df(x).

Например, для $f(x) = x^2$:

$$f(x+h)-f(x)=(x+h)^2-x^2=x^2+2xh+h^2-x^2=2xh+h^2, \quad h\to 0$$
 откуда следует $A(x)=2x, \quad h^2=h\cdot h=o(h).$

1.2 Производная

Определение

Пусть $f: E \to \mathbb{R}, E \subset \mathbb{R}, a$ — предельная точка E.

Если $\exists \lim_{x\to a} \frac{f(x)-f(a)}{x-a}$, то его называют производной функции в точке a.

N.B. Пусть x - a = h, то при $x \to a$, $h \to 0$:

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = f'(a).$$

LM (О связи производной и дифференциала) f дифференцируема в точке $x \iff \exists$ конечная f'(x).

Доказательство. \implies (Если f дифференцируема в точке x, то существует конечная f'(x)):

По определению, если функция f дифференцируема в точке x, то существует линейное приближение приращения функции:

$$f(x+h) - f(x) = A(x) \cdot h + \alpha(x,h),$$

где $\alpha(x,h)$ — бесконечно малая функция, то есть $\lim_{h\to 0} \frac{\alpha(x,h)}{h} = 0$.

Тогда A(x) является производной f в точке x, то есть f'(x) = A(x). Следовательно, f'(x) существует и конечна.

 \longleftarrow (Если существует конечная f'(x), то f дифференцируема в точке x):

Если существует конечная производная f'(x), то по определению производной:

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = f'(x).$$

Это означает, что приращение функции можно записать в виде:

$$f(x+h) - f(x) = f'(x) \cdot h + o(h).$$

Следовательно, f дифференцируема в точке x. \square

 $\mathbf{L}\mathbf{M}$ Если f дифференцируема в x_0 , то f непрерывна в x_0 .

Доказательство. По определению, если функция f дифференцируема в точке x_0 , то существует предел:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0).$$

Это означает, что приращение функции можно записать в виде:

$$f(x_0 + h) - f(x_0) = f'(x_0) \cdot h + o(h).$$

Теперь рассмотрим предел $f(x_0 + h)$ при $h \to 0$:

$$\lim_{h \to 0} f(x_0 + h) = \lim_{h \to 0} \left(f(x_0) + f'(x_0) \cdot h + o(h) \right).$$

Поскольку $f'(x_0) \cdot h \to 0$ и $o(h) \to 0$ при $h \to 0$, получаем:

$$\lim_{h \to 0} f(x_0 + h) = f(x_0).$$

Следовательно, f непрерывна в точке x_0 .

N.B. Не работает в обратную сторону.

N.B.
$$tan(\alpha_{\text{касательной}}) = f'(x_0), \quad x_0$$
— точка касания.

1.3 Приближение функции, полиномы

Приближение функции f(x) в точке x_0 в виде

$$f(x) = \sum_{k=0}^{n} c_k (x - x_0)^k + o((x - x_0)^n), \quad x \to x_0,$$

где

$$c_n = \lim_{x \to x_0} \frac{f(x) - \left(c_0 + c_1(x - x_0) + \dots + c_{n-1}(x - x_0)^{n-1}\right)}{(x - x_0)^n}.$$

Является приближением f(x) в полиномиальном виде.

1.4 Уравнение касательной

Касательная к f(x) в точке x_0 определяется уравнением вида

$$k(x) = c_0 + c_1(x - x_0),$$
 что $f(x) - k(x) = o(x - x_0), x o x_0$

Из предыдущего пункта:

$$c_0 = \lim_{x \to x_0} f(x) = f(x_0),$$
 $c_1 = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$
 $k(x) = f(x_0) + f'(x_0) \cdot (x - x_0)$ (Если функция дифференцируема в точке x_0)

1.5 Уравнение нормали

Уравнение нормали функции в точке x_0 задается так:

$$n(x) = f(x_0) - \frac{1}{f'(x_0)} \cdot (x - x_0)$$

1.6 Правила дифференцирования

Теорема

Пусть f и g дифференцируемы в точке x, тогда:

1.
$$(f+g)(x) = f(x) + g(x)$$

$$2. (fg)(x) = f(x) \cdot g(x)$$

3.
$$\frac{f}{g}(x) = \frac{f(x)}{g(x)}, g \neq 0$$

Дифференцируемы в x.

1.
$$(f+g)' = f' + g'$$

$$2. (f \cdot g)' = f' \cdot g + f \cdot g'$$

$$3. \left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2}$$

Доказательство. 1. Так как f и g дифференцируемы в точке x,

$$f(x+h) - f(x) = f'(x) \cdot h + o(h), h \to 0$$

$$g(x+h) - g(x) = g'(x) \cdot h + o(h), h \to 0$$

Рассмотрим

$$(f+g)(x+h) - (f+g)(x) =$$
 $f(x+h) - f(x) + g(x+h) - g(x) = f'(x) \cdot h + o(h) +$
 $g'(x) \cdot h + o(h) = h \cdot (\mathbf{f}'(\mathbf{x}) + \mathbf{g}'(\mathbf{x})) + o(h), h \to 0,$
вида $A(x) \cdot h + o(h)$

 \implies дифференцируемо в x.

$$3. \left(\frac{f}{g}\right)(x+h) - \left(\frac{f}{g}\right)(x) = \frac{f(x+h)}{g(x+h)} - \frac{f(x)}{g(x)} = \frac{f(x+h) \cdot g(x) - f(x) \cdot g(x+h)}{g(x+h) \cdot g(x)}$$

$$= \frac{f(x)g(x) + f'(x)g(x)h - f(x)g(x) - f(x)g'(x)h + o(h)}{g(x) \cdot g(x+h)} =$$

$$=rac{(f'(x)g(x)-f(x)g'x)\cdot h}{g(x)\cdot g(x+h)}=rac{A(x)\cdot h+o(h)}{g^2(h)},$$
 так как $h o 0\Longrightarrow$ дифференцируемо в $x.$

$$(f(x+h) - f(x) = f'(x) \cdot h + o(h)) \implies f(x+h) = f(x) + f'(x) \cdot h + o(h)$$

2. Доказывается аналогично частному.

1.7 Следствия

1.
$$(\sum_{k=0}^{n} \alpha_k \cdot f_k(x))' = \sum_{k=0}^{n} \alpha_k \cdot f'_k(x)$$

2.
$$(\prod_{n=1}^k f_n)' = f_1' \cdot f_2 \cdot \dots \cdot f_n + f_1 \cdot f_2' \cdot \dots \cdot f_n + \dots + f_1 \cdot f_2 \cdot \dots \cdot f_n'$$

1.8 Теорема. Производная композиции функций.

$$(gf)'(x) = (g(f(x)))' = g'(f(x)) \cdot f'(x)$$

 $f:X\to Y,X\subset Y,f$ дифференцируема в x $g:Y\to\mathbb{R},Y\subset\mathbb{R},g$ дифференцируема в y=f(x)

Доказательство. $f(x+h)-f(x)=f'(x)\cdot h+o(h), h\to 0$ $g(y+t)-g(y)=g'(y)\cdot t+o(t), t\to 0$

$$(gf)(x+h) - gf(x) = g(f(x+h)) - g(f(x)) =$$

= $g(f(x) + f'(x) \cdot h + o(h)) - g(f(x))$

$$f(x) = y$$

Возьмем за $t: f'(x) \cdot h + o(h)$, тогда

$$g(f(x)+t)-g(f(x))=g(y+t)-g(y)=g'(y)\cdot t+o(t)=$$
 = $g'(f(x))\cdot (f'(x)\cdot h+o(h))+o(f'(x)\cdot h+o(h))=$ = $g'(x)\cdot f'(x)\cdot h+o(h), h\to 0$ Возьмем за $A(x)\cdot h:g'(x)\cdot f'(x)\cdot h$ $\Longrightarrow A(x)\cdot h+o(h)$, дифференцируемо.

1.9 Теорема. Производная обратной функции

$$f$$
 дифференцируема в $x_0, \exists f^{-1}(x)$ $(f^{-1})'(f(x_0)) = \frac{1}{f'(x_0)}$

Доказательство. возьмем
$$y_0 = f(x_0)$$
 $(f^{-1})' = \lim_{h \to 0} \frac{f^{-1}(y_0 + h) - f^{-1}(y_0)}{h} =$ $= \lim_{y \to y_0} \frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0} =$ $= \lim_{x \to x_0} \frac{f^{-1}(f(x)) - f^{-1}(f(x_0))}{f(x) - f(x_0)} =$ $= \lim_{x \to x_0} \frac{x - x_0}{f(x) - f(x_0)} =$ $= \frac{1}{f'(x)}$

Пример нахождения производной

$$(x^n)' = nx^{n-1}$$

Рассмотрим определение производной:

$$\lim_{h\to 0}\frac{(x+h)^n-x^n}{h}.$$

Вынесем x^n :

$$(x+h)^n = x^n \left(1 + \frac{h}{x}\right)^n.$$

Тогда:

$$\lim_{h \to 0} \frac{x^n \left((1 + \frac{h}{x})^n - 1 \right)}{h}.$$

Используем приближенное разложение $(1+u)^n \approx 1 + nu + o(u)$ при малых u:

$$(1+\frac{h}{x})^n - 1 \approx n\frac{h}{x} + o(h).$$

Подставляем:

$$\lim_{h \to 0} \frac{x^n \left(n \frac{h}{x} + o(h) \right)}{h}.$$

Раскрываем множители:

$$\lim_{h \to 0} \frac{nx^{n-1}h + x^n o(h)}{h}.$$

Author: Vadim Tiganov

Разделяем дробь:

$$\lim_{h \to 0} \left(nx^{n-1} + x^n \frac{o(h)}{h} \right).$$

Так как $\frac{o(h)}{h} \to 0$ при $h \to 0,$ остается:

$$nx^{n-1}$$
.

Следовательно, производная:

$$(x^n)' = nx^{n-1}.$$

1.10 Параметрические функции

$$\begin{cases} x(t) = \cos(t) \\ y(t) = \sin(t) \end{cases}$$
$$y'_x = \frac{y'_t}{x'_t} = \frac{\cos(t)}{-\sin(t)} = -\operatorname{ctg}(t)$$

1.11 Локальный максимум и минимум функции

Пусть функция:

$$f(x): E \to \mathbb{R}, E \subset \mathbb{R}, x_0 \in E$$

Определим локальный максимум(минимум) функции как:

$$\exists U(x_0) \subset E : \forall x \in U(x_0) :$$

$$1.f(x_0) \ge f(x)$$

$$2.f(x_0) \le f(x)$$

В случаях 1. и 2. соответственно точку x_0 называют локальным максимумом или минимумом.

 $f(x_0)$ — локальный максимум или минимум соответственно.

Точка экстремума — точка локального максимума или минимума. (x_0)

1.12 Точка внутреннего экстремума

Точка x_0 будет называться точкой внутреннего экстремума если она является экстремумом, а также:

$$f(x): E \to \mathbb{R}, E \subset \mathbb{R}, x_0 \in E$$

 x_0 - предельная точка E_+ и E_-

$$E_{+} = \{ x \in E | x > x_0 \}$$

$$E_{-} = \{ x \in E | x < x_0 \}$$

 E_{+}, E_{-} — неформально, множества, где всё либо больше, либо меньше E.

1.13 Французские теоремы

1.13.1 Теорема Ферма

Рассмотрим $f(x): E \to \mathbb{R}, E \subset \mathbb{R}, x_0$ — точка внутреннего экстремума, f(x) дифференцируема в $x_0 \Longrightarrow f'(x_0) = 0$

Доказательство.

$$f(x_0 + h) - f(x_0) = f'(x_0) \cdot h + o(h)$$

1. x_0 — точка локального максимума $\implies f(x_0+h)-f(x_0)\leq 0$

Рассмотрим случаи
$$h \to 0_+, h \to 0_-$$
: $1.h \to 0_+, f'(x_0) = \lim_{h \to 0_+} \frac{f(x_0 + h) - f(x_0)}{h} \le 0$

$$2.h \to 0_-, f'(x_0) = \lim_{h \to 0_-} \frac{f(x_0 + h) - f(x_0)}{h} \ge 0$$

$$\implies f'(x_0) = 0$$

Для локального минимума доказывается аналогично, оставим на усмотрение внимательному читателю. \square

NB

Обратное неверно.

1.13.2 Теорема Ролля

$$f(x): E \to \mathbb{R}, f \in C[a,b]$$
 и f —дифференцируема на $(a,b),$ и $f(a)=f(b) \implies \exists \xi \in (a,b): f'(\xi)=0$

Доказательство. Поскольку $f \in C[a,b]$, то по теореме Вейерштрасса f достигает своего наибольшего и наименьшего значений на отрезке [a,b]. Обозначим $M = \max_{x \in [a,b]} f(x)$ и $m = \min_{x \in [a,b]} f(x)$.

Рассмотрим два случая:

- 1. Случай 1: M=m. В этом случае f(x)=const на [a,b]. Следовательно, f'(x)=0 для всех $x\in(a,b)$. Тогда любое $\xi\in(a,b)$ удовлетворяет условию $f'(\xi)=0$.
- 2. Случай 2: M > m. Так как f(a) = f(b), то либо M, либо m достигается во внутренней точке интервала (a,b).
 - Пусть M достигается в точке $\xi \in (a,b)$, то есть $f(\xi) = M$. Тогда ξ точка локального максимума функции f. Поскольку f дифференцируема в точке ξ , то по необходимому условию экстремума $f'(\xi) = 0$.

• Пусть m достигается в точке $\xi \in (a,b)$, то есть $f(\xi) = m$. Тогда ξ - точка локального минимума функции f. Поскольку f дифференцируема в точке ξ , то по необходимому условию экстремума $f'(\xi) = 0$.

В любом случае, существует $\xi \in (a,b)$ такое, что $f'(\xi) = 0$.

Что и требовалось доказать.

1.13.3 Теорема Лагранжа и следствия

Теорема

Пусть $f:[a,b]\to\mathbb{R}$ — непрерывная функция, и f дифференцируема на открытом интервале (a,b). Тогда существует такая точка $\xi\in(a,b)$, что

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

Доказательство. Рассмотрим функцию g(x) на отрезке [a,b], определённую как:

$$g(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a).$$

Поскольку f(x) непрерывна на [a,b] и дифференцируема на (a,b), а $\frac{f(b)-f(a)}{b-a}(x-a)$ также непрерывна на [a,b] и дифференцируема на (a,b), то g(x) также непрерывна на [a,b] и дифференцируема на (a,b).

Теперь вычислим значения g(a) и g(b):

$$g(a) = f(a) - \frac{f(b) - f(a)}{b - a}(a - a) = f(a).$$

Author: Vadim Tiganov

$$g(b) = f(b) - \frac{f(b) - f(a)}{b - a}(b - a) = f(b) - (f(b) - f(a)) = f(a).$$

Таким образом, g(a) = g(b).

Теперь можно применить теорему Ролля к функции g(x) на отрезке [a,b]. Согласно теореме Ролля, существует точка $\xi \in (a,b)$ такая, что $g'(\xi) = 0$.

Вычислим производную g'(x):

$$g'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}.$$

Теперь подставим ξ в g'(x):

$$g'(\xi) = f'(\xi) - \frac{f(b) - f(a)}{b - a} = 0.$$

Отсюда получаем:

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

Что и требовалось доказать.

Следствия

1. Если f(a)=f(b), то $\exists \xi \in (a,b)$ такое, что $f'(\xi)=0$. Доказательство. Пусть f(a)=f(b). Применим теорему Лагранжа:

$$f'(\xi) = \frac{f(b) - f(a)}{b - a} = \frac{f(a) - f(a)}{b - a} = \frac{0}{b - a} = 0.$$

Таким образом, существует $\xi \in (a,b)$ такое, что $f'(\xi) = 0$.

2. Если функция f монотонна на [a,b], то её производная f' не меняет знака на (a,b).

Author: Vadim Tiganov

Доказательство. Пусть f монотонна на [a,b]. Если f не убывает, то $f(a) \leq f(x)$ для всех $x \in [a,b]$. Если бы производная f' меняла знак на (a,b), это означало бы, что существует такая точка $\xi \in (a,b)$ такая, что $f'(\xi) > 0$ и $f'(\eta) < 0$ для какой-то $\eta \in (a,\xi)$. Это противоречит тому, что f монотонна. Аналогично можно показать, что если f не возрастает, то её производная также не меняет знак.

Следовательно, если f монотонна, то её производная f' не меняет знака на (a,b).

1.13.4 Теорема Коши

Теорема

Пусть функции f и g непрерывны на отрезке [a,b] и дифференцируемы на интервале (a,b). Пусть $g'(x) \neq 0$ для всех $x \in (a,b)$. Тогда существует точка $\xi \in (a,b)$ такая, что

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}.$$

Доказательство. Во-первых, заметим, что $g(b)-g(a) \neq 0$. Если бы g(b)=g(a), то по теореме Ролля существовала бы точка $c \in (a,b)$ такая, что g'(c)=0, что противоречит условию $g'(x) \neq 0$ для всех $x \in (a,b)$.

Рассмотрим функцию h(x) на отрезке [a,b], определенную как:

$$h(x) = f(x) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)}(g(x) - g(a)).$$

Функция h(x) непрерывна на [a,b] и дифференцируема на (a,b) как комбинация непрерывных и диффе

ренцируемых функций. Кроме того, вычислим h(a) и h(b):

$$h(a) = f(a) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)}(g(a) - g(a)) = 0.$$

$$h(b) = f(b) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)}(g(b) - g(a)) = f(b) - f(a) - (f(b) - f(a)) = 0.$$

Таким образом, h(a) = h(b) = 0. По теореме Ролля существует точка $\xi \in (a,b)$ такая, что $h'(\xi) = 0$.

Теперь вычислим производную h'(x):

$$h'(x) = f'(x) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(x).$$

Подставим ξ в h'(x):

$$h'(\xi) = f'(\xi) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(\xi) = 0.$$

Отсюда получаем:

$$f'(\xi) = \frac{f(b) - f(a)}{g(b) - g(a)}g'(\xi).$$

Поскольку $g'(\xi) \neq 0$ (по условию), можно разделить обе части на $g'(\xi)$:

$$\frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Что и требовалось доказать.

1.14 Многочлен Тейлора

1.14.1 Определение

Пусть f(x) — функция, имеющая n производных в точке a. Тогда многочленом Тейлора n-ой степени для функции f(x) в точке a называется многочлен вида:

$$T_n(x) = f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n =$$

$$= \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k$$

1.14.2 Теорема об общем виде остатка многочлена Тейлора

Формулировка теоремы

Пусть функция f(x) имеет n+1 производную на отрезке [a,x]. Тогда для любого x из этого отрезка существует такое число ξ между a и x, что остаточный член $R_n(x) = f(x) - T_n(x)$ можно представить в виде:

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}.$$

Это называется формулой Лагранжа для остаточного члена.

Доказательство

Для доказательства используем формулу интеграла для [a,x]:

$$f(x) = T_n(x) + R_n(x),$$

где $R_n(x) = f(x) - T_n(x)$.

Для начала определим функцию g(t):

$$g(t) = f(t) - T_n(t), \quad t \in [a, x].$$

Функция g(t) будет иметь n+1 производную. По теореме о среднем значении для дифференцируемых функций, мы можем записать:

$$g^{(n)}(t) = f^{(n)}(t) - T_n^{(n)}(t),$$

где $T_n^{(n)}(t)-n$ -я производная многочлена Тейлора.

По теореме о среднем значении, существует такое ξ в пределах (a,x) такое, что

$$g(x) - g(a) = g'(\xi)(x - a).$$

Применяя это n раз (для $g', g'', \dots, g^{(n)}$), мы можем выразить $R_n(x)$ как:

$$R_n(x) = \frac{g^{(n)}(\xi)}{n!} (x-a)^{n+1}$$
 для некоторого $\xi \in (a,x),$ откуда

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}.$$

Таким образом, теорема доказана.

1.14.3 Остаток в форме Лагранжа

Формулировка: Пусть функция f(x) имеет n+1 производную на отрезке [a,x]. Тогда для любого x из этого отрезка существует такое число ξ между a и x, что остаточный член $R_n(x) = f(x) - T_n(x)$ можно представить в виде:

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}.$$

Доказательство:

Рассмотрим функцию:

$$g(t) = f(t) - T_n(t),$$

где $T_n(t)$ — многочлен Тейлора n-ой степени в точке a. Мы знаем, что g(a)=0 и $g^{(k)}(a)=0$ для $k=1,2,\ldots,n$. Это приводит нас к выводу о том, что можно использовать теорему о среднем значении.

Применяя теорему о среднем значении n-ого порядка, мы можем выразить остаточный член $R_n(x)$ как:

$$g(x) = g(a) + g'(\xi_1)(x-a) + \frac{g''(\xi_2)}{2!}(x-a)^2 + \dots + \frac{g^{(n)}(\xi_n)}{n!}(x-a)^n,$$

где ξ_i находятся в интервале (a, x).

Таким образом, окончательно мы запишем:

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1},$$

где ξ — некоторая точка на интервале (a, x). Тем самым, теорема о остатке в форме Лагранжа доказана.

1.14.4 Остаток в форме Пеано

Формулировка: Оставшийся член $R_n(x)$ можно выразить в форме

$$R_n(x) = o((x-a)^n),$$

когда $x \to a$. Здесь $o((x-a)^n)$ означает, что остаток стремится к нулю быстрее, чем $(x-a)^n$.

Доказательство:

Для доказательства этой формы также будем использовать выражение для остатка:

$$R_n(x) = f(x) - T_n(x).$$

Как мы уже показали в предыдущем разделе, остаток можно записать как:

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1},$$

где ξ находится между a и x.

Теперь, учитывая, что $f^{(n+1)}(x)$ остается ограниченной на отрезке [a,x]:

$$\lim_{x \to a} R_n(x) = \lim_{x \to a} \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}.$$

С учетом того, что $(x-a)^{n+1}$ стремится к нулю быстрее, чем $(x-a)^n$, можно утверждать, что

$$R_n(x) = o((x-a)^n)$$
 при $x \to a$.

Таким образом, остаток в форме Пеано также доказан.