КНАД, статистика 2024-04-01

1. Время до прихода автобуса в i-й день — случайная величина x_i , имеющая экспоненциальное распределение с неизвестной интенсивностью λ . Величины x_i независимы. Если автобус не приходит за 10 минут, то я ухожу с остановки и иду пешком. Вектор y содержит время, проведённое мной на остановке в каждый день.

- а) [4] Найдите оценку λ методом максимального правдоподобия по выборке y=(5,10,6,10).
- б) [4] Найдите оценку λ методом максимального правдоподобия по произвольной выборке y.
- в) [2] Оцените методом максимального правдоподобия вероятность того, что я иду пешком по произвольной выборке y.
- 2. Величины (x_i) независимы и равномерно распределены на отрезке [-a,2a] с неизвестным a>0. Я наблюдаю величины $y_i=|x_i|$.
 - а) [4] Найдите $\mathbb{E}(y_i)$ и $\mathbb{E}(y_i^2)$.
 - б) [3] Постройте оценку метода моментов параметра a для произвольной выборки $y_1, y_2, ..., y_n$, используя первый момент.
 - в) [3] Постройте оценку метода моментов параметра a для произвольной выборки $y_1, y_2, ..., y_n$, используя второй момент.
- 3. Величины (X_i) независимы и экспоненциально распределены с интенсивностью λ . Рассмотрим оценку неизвестного параметра $a=1/\lambda^2$:

$$\hat{a} = \frac{X_1^2 + X_2^2 + \dots + X_n^2}{2n+1}$$

- а) [5] Является ли оценка несмещённой?
- б) [5] Является ли оценка состоятельной?
- 4. Величины (X_i) независимы и одинаково распределены с ожиданием 2a и дисперсией a^2 . Известно, что оценка $\hat{b}=(4+3\bar{X})/(3+\bar{X})$ является состоятельной для параметра b. По выборке из 1000 наблюдений оказалось, что $\bar{X}=2$.
 - а) [7] Найдите стандартную ошибку $se(\hat{b})$ с помощью дельта-метода.
 - б) [3] Постройте 95% асимптотический доверительный интервал для b.
- 5. Илон Маск оценивает один неизвестный параметр a методом максимального правдоподобия. По выборке из 1000 наблюдений оказалось, что $\hat{a}=12$, а вторая производная лог-правдоподобия равна $\ell''(\hat{a})=-400$.
 - а) [5] Оцените информацию Фишера.
 - б) [3] Постройте 95% асимптотический доверительный интервал для a.
 - в) [2] Постройте 95% асимптотический доверительный интервал для a^3 любым способом.
- 6. Среди 100 случайно выбранных рептилоидов 20 любят вышки 5G. Постройте асимпотический 95%-й доверительный интервал для доли рептилоидов, любящих вышки 5G, двумя способами:

КНАД, статистика 2024-04-01

- а) [5] Используя статистику $(\hat{p}-p)/\sqrt{\widehat{\mathbb{Var}}(\hat{p})}$ с решением линейного неравенства.
- б) [5] Используя статистику $(\hat{p}-p)/\sqrt{\mathbb{V}\mathrm{ar}(\hat{p})}$ с решением квадратного неравенства.

Ответы и подсказки

1. Заметим, что $\mathbb{P}(y_i=10)=\mathbb{P}(x_i\geq 10)=\exp(-10\lambda)$. Функция правдоподобия для данной выборки равна $f(y_1,y_2,y_3,y_4)=\lambda\exp(-5\lambda)\exp(-10\lambda)\lambda\exp(-6\lambda)\exp(-10\lambda)$.

Максимум достигается в точке $\hat{\lambda} = 2/31$.

В общем случае $\hat{\lambda} = K/\sum y_i$, где K — число наблюдений равных 10.

Оценка вероятности получается заменой λ на $\hat{\lambda}$ в формуле для вероятности и равна $\hat{p}=\exp(-10\hat{\lambda})$.

- 2. $\mathbb{E}(y_i) = 5/6a$, $\mathbb{E}(y_i^2) = a^2$; $\hat{a}_1 = 6/5\bar{y}$, $\hat{a}_2 = \sqrt{\sum y_i^2/n}$.
- 3. $\mathbb{E}(\hat{a})=\frac{1}{\lambda^2}\frac{2n}{2n+1}\neq a$, оценка смещённая. plim $\hat{a}=a$, оценка состоятельная.
- 4. $\hat{a} = 1$, $\hat{b} = 2$, $se(\bar{x}) = \hat{a}/\sqrt{1000} = 1/\sqrt{1000}$, $\hat{b} = h(\bar{x})$, $h'(b) = h'(2a) = 5/(2a+3)^2$, $se(\hat{b}) = 5/5^2 se(\bar{x})$.
- 5. $\hat{I}=400,\,se(\hat{a})=1/sqrt400=0.05,$ доверительный интервал $12\pm1.96\cdot se(\hat{a}).$
- 6. $\hat{p}=0.2$, в одном случае решаем относительно p неравенство $|(\hat{p}-p)/\sqrt{\hat{p}(1-\hat{p})/n}| \leq z_{cr}$, во втором случае $-|(\hat{p}-p)/\sqrt{p(1-p)/n}| \leq z_{cr}$