Olimpiada Naţională de Matematică Etapa Naţională, Satu Mare, 4 aprilie 2018

CLASA a XII-a - Soluții și barem

1.	Fie A un inel finit și $a, b \in A$ cu proprietatea că $(ab-1)b = 0$. Arătați că $b(ab-1) = 0$.
	Soluţie:
	Egalitatea din ipoteză este echivalentă cu $ab^2 = b$, iar cea de demonstrat cu $bab = b$.
	Dacă elementul b este idempotent (i.e., $b^2 = b$), atunci $bab = bab^2 = b \cdot b = b^2 = b$.
	Dacă $b^m = b$, cu $m > 2$, atunci $bab = bab^m = bab^2b^{m-2} = b \cdot b \cdot b^{m-2} = b^m = b$.
	2p
	Este suficient să arătăm că există $m \ge 2$ cu proprietatea că $b^m = b$ 1 p
	Inelul A fiind finit, există $1 \leq k < m$ numere naturale, cu k minim, cu proprietatea că
	$b^k = b^m$
	Arătăm că $k=1$.
	Dacă $k > 1$, atunci $ab^k = ab^m = ab^2b^{m-2} = b^{m-1}$ 1p
	Dacă $k=2$, rezultă că $b=ab^2=b^{m-1}$, contrazicând minimalitatea
	Dacă $k > 2$, atunci $b^{k-1} = b \cdot b^{k-2} = ab^2b^{k-2} = ab^k = b^{m-1}$, contrazicând de asemenea
	minimalitatea
	Observație: Nu se acordă puncte pentru discutarea cazului unui inel comutativ.

2. Fie \mathcal{F} multimea funcțiilor continue $f:\mathbb{R}\longrightarrow\mathbb{R}$ care satisfac condiția

$$e^{f(x)} + f(x) \ge x + 1,$$

pentru orice x număr real. Determinați valoarea minimă pe care o poate lua integrala

$$I(f) = \int_0^e f(x) \, dx \,,$$

atunci când f parcurge \mathcal{F} .

Soluţie:

Vom arăta că valoarea minimă este $\frac{3}{2}$. Considerăm funcția $g: \mathbb{R} \longrightarrow \mathbb{R}, \ g(x) = e^x + x - 1$. Aceasta este strict crescătoare și continuă, cu $Im(g) = \mathbb{R}$, deci inversabilă,...... 1p cu inversa de asemenea continuă și strict crescătoare................ 1p Inegalitatea din enunț se scrie sub forma $g(f(x)) \ge x, \ \forall x \in \mathbb{R}$, de unde $f(x) \geq g^{-1}(x), \forall x \in \mathbb{R}.$ 1p Cum $g^{-1} \in \mathcal{F}$, şi $I(f) \geq I\left(g^{-1}\right)$, $\forall f \in \mathcal{F}$, valoarea minimă este $I\left(g^{-1}\right)$. 2p Cu substituția $t = g^{-1}(x)$, avem

$$I\left(g^{-1}\right) = \int_0^e g^{-1}(x) \, dx = \int_0^1 t g'(t) \, dt = \left((t-1)e^t + \frac{t^2}{2}\right)\Big|_0^1 = \frac{3}{2} \, .$$

Observaţie: Ultimul calcul reface demonstraţia teoremei lui Young, care se poate de asemenea invoca pentru obţinerea concluziei.

- **3.** Fie $f:[a,b] \longrightarrow \mathbb{R}$ o funcție integrabilă, iar $(a_n)_{n\geq 1}$ un șir de numere reale strict pozitive cu proprietatea că $\lim_{n\to\infty} a_n = 0$.
 - a) Dacă $A = \{m \cdot a_n | m, n \in \mathbb{N}^*\}$, arătați că orice interval deschis de numere strict pozitive conține elemente din A.
 - b) Dacă pentru orice $n \in \mathbb{N}^*$ și orice $x, y \in [a, b]$ cu $|x y| = a_n$ are loc inegalitatea $\left| \int_{x}^{y} f(t) dt \right| \leq |x y|, \text{ arătați că:}$

$$\left| \int_{x}^{y} f(t) dt \right| \le |x - y|, \quad \forall x, y \in [a, b].$$

Soluţie:

$$\left| \int_{x}^{y} f(t) dt \right| \le |x - y|.$$

Definim, pentru $k = \overline{0, m}$, numerele $z_k \in [a, b]$ prin

$$z_k = x + \frac{k}{m} \cdot (y - x) = \left(1 - \frac{k}{m}\right) \cdot x + \frac{k}{m} \cdot y.$$

Rezultă că $|z_k - z_{k-1}| = a_n$, pentru orice $k = \overline{1, m}$, și

$$\left| \int_{x}^{y} f(t) dt \right| = \left| \int_{z_{0}}^{z_{m}} f(t) dt \right| = \left| \sum_{k=1}^{m} \int_{z_{k-1}}^{z_{k}} f(t) dt \right| \le \sum_{k=1}^{m} \left| \int_{z_{k-1}}^{z_{k}} f(t) dt \right| \le \sum_{k=1}^{m} |z_{k} - z_{k-1}| = |x - y|.$$

......2p

Fie acum $x, y \in [a, b]$ oarecare și d = |x - y|. Pentru d = 0, inegalitatea cerută este evidentă. Presupunem în continuare d > 0. Cum A este densă în $[0, \infty)$, există un șir $(d_n)_{n>1} \subset A$ cu proprietatea că $d_n \nearrow d$. Considerăm

$$y_n = x + \frac{d_n}{d} \cdot (y - x) = \left(1 - \frac{d_n}{d}\right) \cdot x + \frac{d_n}{d} \cdot y.$$

$$\left| \int_{y_n}^{y} f(t) \, dt \right| \le M \cdot |y - y_n| \longrightarrow 0.$$

Obținem atunci că

$$\left| \int\limits_{T}^{y} f(t) \, dt \right| = \left| \int\limits_{T}^{y_n} f(t) \, dt + \int\limits_{y_n}^{y} f(t) \, dt \right| \le \left| \int\limits_{T}^{y_n} f(t) \, dt \right| + \left| \int\limits_{y_n}^{y} f(t) \, dt \right| \le \left| x - y_n \right| + \left| \int\limits_{y_n}^{y} f(t) \, dt \right|.$$

Trecând la limită în ultima inegalitate, obținem inegalitatea cerută.

 $1 \mathrm{p}$

4. Pentru $k \in \mathbb{Z}$ definim polinomul $F_k = X^4 + 2(1-k)X^2 + (1+k)^2$. Să se determine toate valorile $k \in \mathbb{Z}$, astfel încât F_k să fie ireductibil peste \mathbb{Z} şi reductibil peste \mathbb{Z}_p pentru orice p prim.

Solutie:

Vom arăta că numerele care satisfac condiția cerută sunt toate numerele $k \in \mathbb{Z}$ care nu sunt de forma $\pm l^2$, cu $l \in \mathbb{Z}$.

Arătăm că F_k este reductibil peste \mathbb{Z} dacă şi numai dacă F_k se descompune ca produs de două polinoame monice de grad 2.

Într-adevăr, dacă F_k are o rădăcină întreagă m, atunci

- a) dacă m = 0, atunci k = -1, și $F_{-1} = X^2(X^2 + 4)$.
- b) dacă $m \neq 0$, atunci -m este de asemenea rădăcină, şi $X^2 m^2$ divide F_k .

Deci F_k este reductibil peste Z dacă și numai dacă $F_k = (X^2 + aX + b)(X^2 + cX + d)$, cu $a, b, c, d \in \mathbb{Z}$. Prin identificarea coeficienților, avem că $a + c = 0$, $ac + b + d = 2(1 - k)$, $ad + bc = 0$ și $bd = (1 + k)^2$.
Dacă $a = 0$, atunci $c = 0$, $b + d = 2(1 - k)$, $bd = (1 + k)^2$, de unde obţinem $(b - d)^2 = 4(1 - k)^2 - 4(1 + k)^2 = -16k$, astfel că $k = -l^2$, cu $l \in \mathbb{Z}$.
Dacă $a \neq 0$, atunci $c = -a$, $b = d$, $b^2 = (1 + k)^2$, $2b - a^2 = 2(1 - k)$. Dacă $b = -1 - k$, rezultă $a^2 = -4$, imposibil. Deci $b = 1 + k$ şi $a^2 = 4k$, de unde $k = l^2$, cu $l \in \mathbb{Z}$.
Prin urmare, F_k este reductibil peste \mathbb{Z} dacă şi numai dacă $k = \pm l^2$, cu $l \in \mathbb{Z}$ 2p Arătăm că F_k este reductibil peste \mathbb{Z}_p cu p prim, pentru orice $k \in \mathbb{Z}$. Pentru $p = 2$ avem că $F_k = X^4$ sau $F_k = X^4 + \hat{1} = (X + \hat{1})^4$, deci F_k este reductibil. 1p Fie p număr prim impar. Putem presupune că $k \not\equiv 0 \pmod{p}$ şi $k \not\equiv -1 \pmod{p}$.
Ca mai sus, F_k este reductibil peste \mathbb{Z}_p dacă și numai dacă $F_k = (X^2 + \hat{a}X + \hat{b})(X^2 + \hat{c}X + \hat{d})$, cu $a, b, c, d \in \mathbb{Z}$, care verifică condițiile $a + c \equiv 0 \pmod{p}$, $ac + b + d \equiv 2(1 - k) \pmod{p}$, $ad + bc \equiv 0 \pmod{p}$ și $bd \equiv (1 + k)^2 \pmod{p}$.
Dacă $a \equiv 0 \pmod{p}$, avem că $c \equiv 0 \pmod{p}$ şi $(b-d)^2 \equiv -16k \pmod{p}$.(1) Dacă $a \not\equiv 0 \pmod{p}$, atunci $c \equiv -a \pmod{p}$, $b \equiv d \pmod{p}$, $b^2 \equiv (1+k)^2 \pmod{p}$ şi $2b-a^2 \equiv 2(1-k) \pmod{p}$.
Pentru $b \equiv -1 - k \pmod{p}$ avem că $a^2 \equiv -4 \pmod{p}$.(2) Pentru $b \equiv 1 + k \pmod{p}$ avem că $a^2 \equiv 4k \pmod{p}$.(3)
Cum $-16k = -4 \cdot 4k$, cel puţin unul dintre elementele $-\widehat{16k}$, $-\widehat{4}$ şi $\widehat{4k}$ este rest pătratic modulo p , astfel că cel puţin una dintre ecuaţiile (1), (2) sau (3) are soluţii1 \mathbf{p} Cum $F_k = (X^2 + (1-k))^2 - (-16k) = (X^2 - (1+k))^2 - (-4)X^2 = (X^2 + (1+k)) - (4k)X^2$, rezultă că F_k este reductibil peste \mathbb{Z}_p , pentru orice $k \in \mathbb{Z}$