Python, pandas, and NumPy

 $\mathsf{pandas}_{y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it}} \qquad \boxed{ }$


```
x = [1,2,3]

y = [4,5,6]
```

What are x and y?

$$x = [1,2,3]$$

 $y = [4,5,6]$

What are x and y?

x + y

What happens when I do this?

```
x = [1,2,3]

y = [4,5,6]
```

What are x and y?

```
x + y
[1, 2, 3, 4, 5, 6]
```

$$x = [1,2,3]$$

 $y = [4,5,6]$

What are x and y?

x**2

What happens when I do this?

```
x = [1,2,3]

y = [4,5,6]
```

What are x and y?

What if I want to be able to do element-wise operations?

What if I want to be able to do element-wise operations?

One option is to use NumPy arrays


```
import numpy as np

x = np.array([1,2,3])
y = np.array([4,5,6])
```

```
import numpy as np
x = np.array([1,2,3])
y = np.array([4,5,6])
                                        Notice that the results of
                                          these operations are
X + Y
                                                arrays.
array([5, 7, 9])
x**7
array([1, 4, 9])
```



```
cars.cylinders.tolist()
                       [8,
list
                        8,
```

Question: Which of the following are homogeneous (all elements are the same type)?

- A. pandas DataFrames
- B. NumPy Arrays
- C. Lists

Question: Which of the following are homogeneous (all elements are the same type)?

- A. pandas DataFrames
- B. NumPy Arrays
- C. Lists

Everything is treated as an object.

pandas DataFrames

pandas Series

NumPy arrays

For another reference for this topic (and lots of other Python data analysis topics), see section 3.1 of The Python Data Science Handbook

