Spotify 음악 트랙 선호 유무 판별 모델 및 추천 시스템 모델 수립 프로젝트

산업경영공학부 14 / 12기 김도윤

Contents

- 1. 프로젝트 소개
- 2. 프로젝트 목표
- 3. 프로젝트 일정
- 4. 팀원 소개

1. 프로젝트 소개

O Brows

((o)) Radi

YOUR LIBRARY

주제 선정 배경

데이터 셋 소개

모델 수립과 종류

모델 성능 평가 및 선택

최종 모델 결과 해석

Test data set 성능 평가

Follow up action

주제 선정 배경

Play

언어적 표현 yes/no

음악을 즐김: 감정, 기분, 느낌의 움직임을 즐김

음악의 선호도 판별

장르, 아티스트 영향

음악의 선호를 Lingustic 한 방법이 아닌

수치적 속성들을 통해 판별할 수 있을까?

√0/ B

Browse

((0))

Radio

YOUR LIBRARY

주제 선정 배경

데이터 셋 소개

모델 수립과 종류

모델 성능 평가 및 선택

최종 모델 결과 해석

Test data set 성능 평가

Follow up action

데이터 셋 소개

Play

해외 유명 음악 스트리밍 사이트 'Spotify'

음량, 길이, 가사와 음이 있는 소리의 비율, 악기 소리의 비율 등 수치로 나타낼 수 있는 속성들에 대한 정보들을 공개 중

√o/ Bro

Browse

((0))

Radio

YOUR LIBRARY

주제 선정 배경

데이터 셋 소개

모델 수립과 종류

모델 성능 평가 및 선택

최종 모델 결과 해석

Test data set 성능 평가

Follow up action

데이터 셋 소개

Acousticness	float	음원이 악기 소리로 이루어져 있는지
Danceability	float	춤추기에 얼마나 적절한지 (템포, 리듬의 일정성, 비트의 강도)
Duration_ms	int	음원의 길이
Energy	float	빠르고, 강하고, 시끄러운 정도
Instrumentalness	float	가사가 아닌 음가가 있는 소리
Key	int	음원의 조성
Liveness	float	공연 현장의 녹음으로 이루어져있는 정도

New Playlis

Browse

((o)) Radio

YOUR LIBRARY

주제 선정 배경

데이터 셋 소개

모델 수립과 종류

모델 성능 평가 및 선택

최종 모델 결과 해석

Test data set 성능 평가

Follow up action

데이터 셋 소개

valence float

loudness	float	음원의 크기 (단위 :dB)
mode	int	장조 =1 / 단조 = 0
speechiness	float	가사의 비율 / 0.66< : 내레이션 / (0.33,0.66) : 배경음과 가사가 같이 공존 / 0.33> : 가사가 없음
tempo	float	음원의 빠르기 (BPM)
time_signiture	int	how many beats are in each bar / 4beat, 8beat, 16beat 등

음원의 분위기 / 긍정적일수록 높음 / 어두울수록 낮음

New Playlis

□ Browse

((o)) Radio

YOUR LIBRARY

주제 선정 배경

데이터 셋 소개

모델 수립과 종류 모델 성능 평가 및 선택 최종 모델 결과 해석 Test data set 성능 평가 Follow up action

데이터 셋 소개

다음 변수들에서 특정한 패턴을 확인할 수 있었음

Intsrumentalness

0~0.01사이의 관측치 개수가 1,569개로 절반 이상

Liveness

0.1 주변의 관측치 개수가 전체 분포에 많은 비중을 차지

Speechiness

right-skewed 되어 있음

O Browse

((o)) Radio

YOUR LIBRARY

주제 선정 배경

데이터 셋 소개

모델 수립과 종류

모델 성능 평가 및 선택

최종 모델 결과 해석

Test data set 성능 평가

Follow up action

데이터 셋 소개

Play

George McIntire의 데이터 셋

Input 음원의 수치 속성

> Output 선호 유무 (0,1)

Instance

1020개

997개

선호 음원

비선호 음원

New Playlist

(<u>0</u>)

Browse

((0))

Radio

YOUR LIBRARY

주제 선정 배경

데이터 셋 소개

모델 수립과 종류

모델 성능 평가 및 선택

최종 모델 결과 해석

Test data set 성능 평가

Follow up action

데이터 셋 소개

상관 관계가 높은 변수들이 일부 존재

3.513963

acousticness	danceability	duration_ms
1.890721	1.465879	1.143158
instrumentalness	key	liveness
1.315264	1.054382	1.083151
mode	speechiness	tempo
1.054841	1.083285	1.115848
valence	time_signature	loudness
1.434047	1.059941	3.292487
energy		

VIF test 결과 그 수치가 10을 넘는 변수가 없음을 확인 즉 다중공선성을 나타내는 변수가 없음. 특별히 변수의 제거를 실시하지 않음

O Brows

(⊙) Radio

YOUR LIBRARY

주제 선정 배경

데이터 셋 소개

모델 수립과 종류

모델 성능 평가 및 선택

최종 모델 결과 해석

Test data set 성능 평가

Follow up action

모델 수립과 종류

절대적으로 많은 것은 아니나 한 개인에 대한 데이터로는 충분하다고 판단

Logistic Regression

Shirinkage: Ridge, LASSO, Elastic Net

Decision Tree : Gini Index, Deviance

Random Forest

ANN: Full, 5-fold validation

New Playlist

Brows

((o)) Radio

YOUR LIBRARY

주제 선정 배경

데이터 셋 소개

모델 수립과 종류

고델 성능 평가 및 선택

최종 모델 결과 해석

Test data set 성능 평가

Follow up action

모델 성능 평가 및 선택

Validation Data Set 모델 성능을 평가

Confusion Matrix 4가지 평가지표: Recall, Precision, Accuracy, F1-Measure

시각적 해석 지표 : AUC

"이 중 가장 중요하다고 판단한 지표는 F1으로 선정."

New Playlist

O Browse

((⊙)) Radio

YOUR LIBRARY

주제 선정 배경

데이터 셋 소개

모델 수립과 종류

<u>| 델 성능 평가 및 선택</u>

최종 모델 결과 해석

Test data set 성능 평가

Follow up action

Q Search

모델 성능 평가 및 선택

[DT-Deviance]

[DT-Gini Index]

A Now Play

O Brows

((o)) Radio

YOUR LIBRARY

주제 선정 배경

데이터 셋 소개

모델 수립과 종류

고델 성능 평가 및 선택

최종 모델 결과 해석

Test data set 성능 평가

Follow up action

Q Search

모델 성능 평가 및 선택

[Lasso]

(+) New Playlis

O Browse

((o)) Radio

YOUR LIBRARY

주제 선정 배경

데이터 셋 소개

모델 수립과 종류

모델 성능 평가 및 선택

최종 모델 결과 해석

Test data set 성능 평가

follow up action

모델성능평가및선택

Log Lambda

[Elastic Net]

Browse

주제 선정 배경

데이터 셋 소개

모델 수립과 종류

모델 성능 평가 및 선택

최종 모델 결과 해석

Test data set 성능 평가

Follow up action

모델 성능 평가 및 선택

(pink : RF, red : DT, blue : ANN, green : BE)

Random Forest 모델이 가장 좋은 성능

Random Forest
Decision Tree(Gini)
ANN
LASSO
Elastic Net
ANN (5-fold)
Decision Tree
Ridge
Logistic Regression

riccan
0.7377778
0.6755556
0.6800000
0.6355556
0.6355556
0.6581197
0.6133333
0.6266667
0.6311111

Precision	Accurac
0.8217822	0.7721823
0.7342995	0.693045
0.7285714	0.69064
0.7447917	0.685851
0.7409326	0.683453
0.6363636	0.651452
0.7709497	0.693045
0.7382199	0.67865
0.7319588	0.6762590

Accuracy	F1-Measure
0.7721823	0.7775176
0.6930456	0.7037037
0.6906475	0.7034483
0.6858513	0.6858513
0.6834532	0.6842105
0.6514523	0.6470588
0.6930456	0.6831683
0.6786571	0.6778846
0.6762590	0.6778043

ivieasure	AUC
75176	0.8461458
)37037	0.7361111
7034483	0.6915625
858513	0.6901736
842105	0.6875694
470588	0.6516405
831683	0.7482523
6778846	0.6831250
778043	0.6910880

□ Browse

((○)) Radio

YOUR LIBRARY

주제 선정 배경

데이터 셋 소개

모델 수립과 종류

모델 성능 평가 및 선택

최종 모델 결과 해석

Test data set 성능 평가

Follow up action

최종 모델 결과 해석

OOB estimate of error rate: 22.19% Confusion matrix:

0 1 class.error 0 492 123 0.2000000 1 145 448 0.2445194

□ Browse

((○)) Radio

YOUR LIBRARY

주제 선정 배경

데이터 셋 소개

모델 수립과 종류

모델 성능 평가 및 선택

최종 모델 결과 해석

Test data set 성능 평가

Follow up action

최종 모델 결과 해석

MeanDecreaseAccuracy

 Instrumentalness
 111.6863905

 Loudness
 71.7887672

 Danceability
 58.1483537

 Energy
 56.9498823

MeanDecreaseGini

Instrumentalness 75.889884
Loudness 70.133236
Speechiness 61.461251
Danceability 61.357943

•••

☞ Instrumentalness, Loudness, Danceability 가장 중요한 변수

Brows

((o)) Radio

YOUR LIBRARY

주제 선정 배경

데이터 셋 소개

모델 수립과 종류

모델 성능 평가 및 선택

최종 모델 결과 해석

Test data set 성능 평가

Follow up action

Q Search

최종 모델 결과 해석

[Coefficients of LASSO Model]

(Intercept) -4.129548e+00 Acousticness -1.410578e+00 Danceability Duration_ms 2.321664e-06 5.278189e-01 Energy Instrumentalness Key Liveness 4.108626e-01 Loudness -1.114590e-01 Mode Speechiness 3.318261e+00 4.486710e-03 Tempo Time_signature 6.278235e-02 Valence 4.349544e-01

Rythmical 할수록 배경음악 소리가 많을수록, 소리가 크지 않을 수록 해당 음악을 선호할 확률이 높아짐.

O Brow

((o)) Radi

YOUR LIBRARY

주제 선정 배경

데이터 셋 소개

모델 수립과 종류

모델 성능 평가 및 선택

최종 모델 결과 해석

Test data 성능 평가

Follow up action

Test data Set 성능 평가

Recall Precision Accuracy F1-Measure AUC
Random
Forest 0.8069307 0.815 0.8061224 0.8109453 0.8684211

80% 이상의 높은 예측률

따라서 우리는 음악의 수치적 속성으로도 개인의 음악의 선호를 충분히 판별할 수 있음을 확인!

New Playlist

((⊙)) Radio

YOUR LIBRARY

주제 선정 배경

데이터 셋 소개

모델 수립과 종류

성능 평가 및 최종 선택

최종 모델 결과 해석

Test data set 성능 평가

Follow up action

Follow Up Action

음악의 수치적 속성으로도 개인의 음악의 선호를 충분히 판별할 수 있음을 확인

Instance를 개개인에 맞추어 변경한 뒤 모델을 학습

-> 나만의 음악 선호 판별 모델을 만들 수 있음

아티스트, 장르 등의 음원 Background 정보 없이 수치적 속성으로 만든 모델 -> 음악에 대한 편견과 선입견 없이 즐길 수 있음

나아가 음악 추천 시스템의 핵심 모델로도 발전시킬 수 있음

2. 프로젝트 목표

2. 프로젝트 목표

- 다양한 분류 모델 및 머신 러닝 주요 개념 학습 및 실습 경험
- 추천시스템 이론 학습 및 실습 경험
- 데이터 분석 Work Flow 경험
- 파이썬 스킬 향상

3. 프로젝트 일정

3. 프로젝트 일정

- 기간: 3. 11.(목) 4. 8. (목)
- 정기 세션: 화요일 밤 10시 30분
- OT: 3. 11.(목) / 정기 일정 및 계획 설정
- 1차: 3. 16. (화) / 데이터 전처리 완료, Classifier 선택
- 2차: 3. 23. (화) / Classifier 성능 확인, Recommender System 선택
- 3차: 3.30.(화) / Recommender System 성능 확인 및 수정
- 4차: 4.6.(화) / 최종점검
- 프로젝트 발표 : 4. 8. (목)

4. 팀원 소개

4. 팀원 소개

- ▶ 김도윤 / 산업경영공학부 14 / 12기
- 기다연 / 통계학과 19 / 13기 , 대외부
- ▶ 김창현 / 경영학과 대학원 21 / 13기
- 이나윤 / 통계학과 19 / 12기 , 대외부
- ▶ 임효진 / 통계학과 19 / 12기 , 학술부_딥러닝 분반장

Thank you

Spotify 음악 트랙 선호 유무 판별 모델 및 추천시스템 모델 수립 프로젝트

담당자 : 김도윤