Chapter 2, Section 6

James Lee

April 23, 2025

1. Let X be a scheme satisfying (*). Then $X \times \mathbb{P}^n$ also satisfies (*), and $\operatorname{Cl}(X \times \mathbb{P}^n) \cong (\operatorname{Cl} X) \times \mathbb{Z}$.

Proof. Since \mathbb{P}^n is a union of n+1 copies of \mathbb{A}^n , it is not hard to see from (6.6) that $X \times \mathbb{P}^n$ is noetherian and integral. It's left to show it is separated. Indeed, $X \times \mathbb{P}^n \to X$ is a projective morphism of noetherian schemes, hence it is proper by (4.9). Composition of separated morphisms is separated. Hence, $X \times \mathbb{P}^n$ satisfies (*).

The projective *n*-space is the union of a hyperplane \mathbb{P}^{n-1} and a copy of \mathbb{A}^n , and \mathbb{P}^{n-1} is a prime divisor of \mathbb{P}^n . Thus, $X \times \mathbb{P}^{n-1}$ is a prime divisor of $X \times \mathbb{P}^n$ Also, $X \times \mathbb{P}^n - X \times \mathbb{P}^{n-1} = X \times \mathbb{A}^n$, and $\operatorname{Cl}(X \times \mathbb{A}^n) \cong \operatorname{Cl} X$. Hence, we have the exact sequence

$$0 \to \mathbb{Z} \xrightarrow{1 \mapsto X \times \mathbb{P}^{n-1}} \operatorname{Cl}(X \times \mathbb{P}^n) \to \operatorname{Cl} X \to 0.$$

This exact sequence splits via $Y \in \operatorname{Cl} X \mapsto Y \times \mathbb{P}^n \in \operatorname{Cl}(X \times \mathbb{P}^n)$. Injectivity of this map follows from \mathbb{P}^n being birational to \mathbb{A}^n and (6.6). Hence, $\operatorname{Cl}(X \times \mathbb{P}^n) \cong \operatorname{Cl}(X) \times \mathbb{Z}$.

- **2.** Varieties in Projective Space. Let k be an algebraically closed field, and let X be a closed subvariety of \mathbb{P}_k^n which is nonsingular in codimension one (hence satisfies (*)). For any divisor $D = \sum n_i Y_i$ on X, we define the degree of D to be $\sum n_i \deg Y_i$, where $\deg Y_i$ is the degree of Y_i , considered as a projective variety itself.
 - (a) Let V be an irreducible hypersurface in \mathbb{P}^n which does not contain X, and let Y_i be the irreducible components of $V \cap X$. They all have codimension 1 by (I, Ex. 1.8). For each i, let f_i be a local equation for V on some open set U_i of \mathbb{P}^n for which $Y_i \cap U_i \neq \emptyset$, and let $n_i = v_{Y_i}(f_i)$, where f_i is the restriction of f_i to $U_i \cap X$. Then we define the divisor V.X to be $\sum n_i Y_i$. Extend by linearity and show that this gives a well-defined homomorphism from the subgroup of Div \mathbb{P}^n consisting of divisors, none of whose components contain X, to Div X.
 - (b) If D is a principal divisor on \mathbb{P}^n , for which D.X is defined as in (a), show that D.X is principal on X. Thus, we get a homomorphism $\operatorname{Cl} \mathbb{P}^n \to \operatorname{Cl} X$.
 - (c) Show that the integer n_i defined in (a) is the same as the intersection multiplicity $i(X, V; Y_i)$ defined in (I, §7). Then use the generalized Bézout's theorem (I, 7.7) to show that for any divisor D on \mathbb{P}^n , none of whose components contain X,

$$\deg(D.X) = (\deg D) \cdot (\deg X).$$

(d) If D is a principal divisor on X, show that there is a rational function f on \mathbb{P}^n such that D = (f).X. Conclude that $\deg D = 0$. Thus, the degree function defines a homomorphism $\deg : \operatorname{Cl} X \to \mathbb{Z}$. Finally, there is a commutative diagram

$$\begin{array}{ccc} \operatorname{Cl} \mathbb{P}^n & \longrightarrow & \operatorname{Cl} X \\ \cong & & & \operatorname{deg} \\ \mathbb{Z} & \xrightarrow{\cdot (\operatorname{deg} X)} & \mathbb{Z} \end{array}$$

and in particular, we see that the map $\operatorname{Cl} \mathbb{P}^n \to \operatorname{Cl} X$ is injective.

Proof.

- (a) Let f'_i be another local equation for V on some open set U'_i of \mathbb{P}^n for which $Y_i \cap U'_i \neq \emptyset$. Since X is irreducible, $U_i \cap U'_i \cap X \neq \emptyset$, and $f_i/f'_i \in \Gamma(U_i \cap U'_i, \mathscr{O}^*_{\mathbb{P}^n})$. Hence, $\bar{f}_i/\bar{f}'_i \in \Gamma(U_i \cap U'_i \cap X, \mathscr{O}^*_X)$. Hence, n_i is independent of the choice of U_i .
- (b) Suppose D = (f), and let $i: X \hookrightarrow \mathbb{P}^n$ be a closed immersion. Then $D.X = (i^{-1}f)$.

(c) We recall the definition of the intersection multiplicity:

$$i(V, X; Y_i) = \operatorname{length}_{S_{\mathfrak{p}_i}}(S/(I_X + I_V))_{\mathfrak{p}_i},$$

where $S=k[x_0,\ldots,x_n]$, and I_X,I_V are the homogeneous ideals defining X and V, respectively. The homogeneous prime ideal \mathfrak{p}_i defines Y_i . Note that length $S_{\mathfrak{p}}M_{\mathfrak{p}}=\mathrm{length}_{S_{(\mathfrak{p})}}M_{(\mathfrak{p})}$. Let \mathfrak{P}_i be the image of \mathfrak{p}_i in S/I_X , and let $A=(S/I_X)_{(\mathfrak{P}_i)}$. Then A is precisely the valuation ring of Y_i as a prime divisor of X. If we denote I'_V the extension of the ideal I_V in S, it is not hard to see that length $A/I'_V=v_{Y_i}(\overline{f})$, where f is any local equation defining V. Let $D=\sum n_j V_j$ be any \mathbb{P}^n with each V_j an irreducible hypersurface not containing X. By the generalized Bézout's theorem,

$$\deg(D.X) = \sum n_j \deg(V_j.X)$$

$$= \sum n_j \sum i(V_j, X; V_{jk}) \deg V_{jk}$$

$$= \sum n_j (\deg V_j \cdot \deg X)$$

$$= (\deg D) \cdot (\deg X).$$

- (d) Let D = (f) for some $f \in K(X)$, where K(X) is the function field of X. If X is locally defined by an ideal $I \subset k[y_1, \ldots, y_n]$ on some open subset Spec $k[y_1, \ldots, y_n]$ of \mathbb{P}^n where f is regular, then we can write f = g/h for some $g, h \in k[y_1, \ldots, y_n]$ such that h is nowhere zero on some open set in X, which is what we wanted to show. Since any principal divisor has degree zero, by (c), $\deg(D) = \deg((f).X) = 0 \cdot \deg X = 0$.
- **4.** Let k be a field of characteristic $\neq 2$. Let $f \in k[x_1, \ldots, x_n]$ be a square-free nonconstant polynomial, i.e., in the unique factorization of f into irreducible polynomials, there are no repeated factors. Let $A = k[x_1, \ldots, x_n, z]/(z^2 f)$. Show that A is an integrally closed ring.

Proof. The quotient field K of A is just $k(x_1, \ldots, x_n)[\sqrt{f}]$. It is a Galois extension of $k[x_1, \ldots, x_n]$ with Galois group $\mathbb{Z}/2\mathbb{Z}$ generated by $\sqrt{f} \mapsto -\sqrt{f}$. If $\alpha = g + h\sqrt{f} \in K$, where $g, h \in k(x_1, \ldots, x_n)$, then the minimal polynomial of α is $X^2 - 2gX + (g^2 - h^2f)$. Suppose α is integral over $k[x_1, \ldots, x_n]$. Since $k[x_1, \ldots, x_n]$ is integrally closed, the coefficients of p_α lie in $k[x_1, \ldots, x_n]$ (A.M. 5.15). It follows $g, h \in k[x_1, \ldots, x_n]$. Hence, the integral closure of $k[x_1, \ldots, x_n]$ in K lies in K. The converse is immediate by the formula for the minimal polynomial of any K0. Hence, K1 is an integrally closed ring.

7. Let X be the nodal cubic curve $y^2z = x^3 + x^2z$ in \mathbb{P}^2 . Imitate (6.11.4) and show that the group of Cartier divisors of degree 0, CaCl° X, is naturally isomorphic to the multiplicative group \mathbb{G}_m .

Proof. Take Z=(0:0:1) and $P_0=(0:1:0)$. There is a bijection with the closed points of X-Z, the set of non-singular points of X, and CaCl° X. It remains to show $X-Z\cong \mathbb{G}_m$, where $\mathbb{G}_m=\mathbb{A}^1-\{0\}$ is the multiplicative group defined to be the spectrum of the ring $k[t,t^{-1}]$. Looking at the affine subset $z\neq 1$, we see that any line through the singular point Z, which has affine coordinates (0,0), intersects the curve one more time. Plugging in $y=\lambda x$ into the defining equation of X for some $\lambda\in k^*$, we have $x=\lambda^2-1$. Thus, we have a map $k^*-\{\pm 1\}\to X-Z$ defined by $\lambda\mapsto (\lambda^2-1,(\lambda^2-1)^3+(\lambda^2-1)^2)$. Extend this map to all of k^* via $1\mapsto P_0$ and $-1\mapsto (-1,0)$, and we are done.

- **8.** (a) Let $f: X \to Y$ be a morphism of schemes. Show that $\mathscr{L} \mapsto f^*\mathscr{L}$ induces a homomorphism of Picard groups, $f^*: \operatorname{Pic} Y \to \operatorname{Pic} X$.
 - (b) If f is a finite morphism of nonsingular curves, show that this homomorphism corresponds to the homomorphism $f^*: \operatorname{Cl} Y \to \operatorname{Cl} X$ defined in the text, via the isomorphisms of (6.16).
 - (c) If X is a locally factorial integral closed subscheme of \mathbb{P}^n_k , and if $f: X \to \mathbb{P}^n$ is the inclusion map, then f^* on Pic agrees with the homomorphism on divisor class groups defined in (Ex. 6.2) via the isomorphisms of (6.16).

Proof.

(a) If V is an open set in Y such that $\mathscr{L}|_{V} \cong \mathscr{O}_{V}$, then $f^{*}\mathscr{L}|_{f^{-1}V} \cong \mathscr{O}_{f^{-1}V}$.

- (b) Let D be a Weil divisor on Y. We want to show $f^*(\mathscr{O}_Y(D)) \cong \mathscr{O}_X(f^*D)$. By the isomorphism $\operatorname{CaCl} X \cong \operatorname{Cl} X$, there exists a representation $\{(U_i, s_i)\}$ of D as a Cartier divisor. A finite morphism of nonsingular curves induces an inclusion of function fields $K(Y) \to K(X)$. Since the s_i 's are elements of K(Y), by (a), $f^*(\mathscr{O}_X(D))$ is the Cartier divisor defined by $\{(f^{-1}U_i, f^{-1}s_i)\}$. It is clear that the Weil divisor associated to $\{(f^{-1}U_i, f^{-1}s_i)\}$ is f^*D .
- (c) The map defined in (Ex. 6.2) is precisely $f^*: \operatorname{Cl} Y \to \operatorname{Cl} X$ as defined in the text.
- 10. The Grothendiek Group K(X). Let X be a noetherian scheme. We define K(X) to be the quotient of the free abelian group generated by all the coherent sheaves on X, by the subgroup generated by all expressions $\mathscr{F} \mathscr{F}' \mathscr{F}''$, whenever there is an exact sequence $0 \to \mathscr{F}' \to \mathscr{F} \to \mathscr{F}'' \to 0$ of coherent sheaves on X. If \mathscr{F} is a coherent sheaf, we denote by $\gamma(\mathscr{F})$ its image in K(X).

- (a) If $X = \mathbb{A}^1_k$, then $K(X) \cong \mathbb{Z}$.
- (b) If X is any integral scheme, and \mathscr{F} a coherent sheaf, we define the rank of \mathscr{F} to be $\dim_K \mathscr{F}_{\xi}$, where ξ is the generic point of X, and $K = \mathscr{O}_{\xi}$ is the function field of X. Show that the rank function defines a surjective homomorphism rank : $K(X) \to \mathbb{Z}$.
- (c) If Y is a closed subcheme of X, there is an exact sequence

$$K(Y) \longrightarrow K(X) \longrightarrow K(X-Y) \longrightarrow 0,$$

where the first map is extension by zero, and the second map is restriction.

Proof.

(a) Suppose $X = \operatorname{Spec} A$ for some principle ideal domain A. Coherent sheaves on X correspond to finitely generated A-modules. Any such module can be decomposed as a direct sum of a free and torsion submodule. Any torsion module is a direct sum of A/\mathfrak{p} , where \mathfrak{p} is a prime ideal of A. Since A is a principle ideal domain, all prime ideals are rank one A-modules, so $\gamma(A) = \gamma(\mathfrak{p})$. We have the exact sequence

$$0 \to \mathfrak{p} \to A \to A/\mathfrak{p} \to 0$$
,

which implies $\gamma(A/\mathfrak{p}) = 0$. Hence, we can identify elements of K(X) to the rank of their free parts.

- (b) Take $\mathscr{F} = \mathscr{O}_X^{\oplus n}$ for each n, then rank $\mathscr{F} = n$.
- **11.** The Grothendiek Group of a Nonsingular Curve. Let X be a nonsingular curve over an algebraically closed field k. We will show that $K(X) \cong \operatorname{Pic} X \oplus \mathbb{Z}$, in several steps.
 - (a) For any divisor $D = \sum n_i P_i$ on X, let $\psi(D) = \sum n_i \gamma(k(P_i)) \in K(X)$, where $k(P_i)$ is the skyscraper sheaf k at P_i and 0 elsewhere. If D is an effective divisor, let \mathcal{O}_D be the structure sheaf of the associated subscheme of codimension 1, and show that $\psi(D) = \gamma(\mathcal{O}_D)$. Then use (6.18) to show that for any D, $\psi(D)$ depends only on the linear equivalence class of D, so ψ defines a homomorphism $\psi: \operatorname{Cl} X \to K(X)$.
 - (b) For any coherent sheaf \mathscr{F} on X, show that there exist locally free sheaves \mathscr{E}_0 and \mathscr{E}_1 and an exact sequence $0 \to \mathscr{E}_1 \to \mathscr{E}_0 \to \mathscr{F} \to 0$. Let $r_0 = \operatorname{rank} \mathscr{E}_0$, $r_1 = \operatorname{rank} \mathscr{E}_1$, and define $\det \mathscr{F} = (\bigwedge^{r_0} \mathscr{E}_0) \otimes (\bigwedge^{r_1} \mathscr{E}_1)^{-1} \in \operatorname{Pic} X$. Show that $\det \mathscr{F}$ is independent of the resolution chosen, and that it gives a homomorphism $\det : K(X) \to \operatorname{Pic} X$. Finally, show that if D is a divisor, then $\det(\psi(D)) = \mathscr{L}(D)$.
 - (c) if \mathscr{F} is any coherent sheaf of rank r, show that there is a divisor D on X and an exact sequence $0 \to \mathscr{L}^{\oplus r}(D) \to \mathscr{F} \to \mathcal{T} \to 0$, where \mathcal{T} is a torsion sheaf. Conclude that if \mathscr{F} is a sheaf of rank r, then $\gamma(\mathscr{F}) r\gamma(\mathscr{O}_X) \in \operatorname{im} \psi$.
 - (d) Using the maps ψ , det, rank, and $1 \mapsto \gamma(\mathscr{O}_X)$ from $\mathbb{Z} \to K(X)$, show that $K(X) \cong \operatorname{Pic} X \oplus \mathbb{Z}$.

Proof.

- (a) Let $D = \sum n_i P_i$ be an effective divisor, and let $\{(U_i, f_i)\}$ be the effective Cartier divisor associated to D, where $f_i \in \Gamma(U_i, \mathcal{O}_{U_i})$ and $v_{P_i}(f_i) = n_i$ for all i. Thus, if t_i is an uniformizing element of $\mathcal{O}_{P_i,X}$ for each i, then \mathcal{O}_D be can be identified with the direct sum of skyscraper sheaves $\bigoplus \mathcal{O}_{P_i,X}/(t_i^{n_i})$ on each P_i . Note that $\mathcal{O}_{P_i,X}/(t_i^{n_i})$ is non-zero for only finitely many P_i . Since k is algebraically closed, the residue field of $\mathcal{O}_{P_i,X}$ is k, and since each $\mathcal{O}_{P_i,X}$ is a discrete valuation ring, $\mathcal{O}_{P_i,X}/(t_i^{n_i})$ is isomorphic to $k^{\oplus n_i}$ as a k-vector space, so $\gamma(\mathcal{O}_{P_i,X}/(t_i^{n_i})) = \gamma(k(P_i)^{\oplus n_i}) = n_i \gamma(k(P_i)) = \psi(n_i P_i)$, which is what we wanted to show.

 We need to show for any principal divisor D = (f), where $f \in K^*$, the function field of X, $\psi(D) = 0$. Any principal divisor can be written as a difference of two effective principal divisors, so we assume D is effective. Let Y be the associated closed subscheme of D. Then the ideal sheaf \mathscr{I}_Y is generated by f, so we have an isomorphism of \mathcal{O}_X -modules $\mathcal{O}_X \to \mathscr{I}_Y$ defined by multiplication by f. Hence, $\psi(D) = \gamma(\mathcal{O}_D) = \gamma(\mathcal{O}_X/\mathscr{I}_Y) = \gamma(\mathcal{O}_X) \gamma(\mathscr{I}_Y) = 0$ by (6.18).
- (b) Let $U_i = \operatorname{Spec} A_i$ be an open affine cover of X such that $\mathscr{F}|_{U_i} \cong \widetilde{M}_i$ for some finitely generated A_i -module. Since X is noetherian, a finite number will do, and let N > 0 such that the minimal number of generators for M_i is at most N for all i.

- 12. Let X be a complete nonsingular curve. Show that there is a unique way to define the *degree* of any coherent sheaf on X, $\deg \mathscr{F} \in \mathbb{Z}$, such that:
 - (1) If D is a divisor, $\deg \mathcal{L}(D) = \deg D$.
 - (2) If \mathscr{F} is a torsion sheaf (meaning a sheaf whose stalk at the generic point is zero), then

$$\deg \mathscr{F} = \sum_{P \in X} \operatorname{length}(\mathscr{F}_P).$$

(3) If $0 \to \mathscr{F}' \to \mathscr{F} \to \mathscr{F}'' \to 0$ is an exact sequence, then $\deg \mathscr{F} = \deg \mathscr{F}' + \deg \mathscr{F}''$.

Proof. $K(X) \xrightarrow{\det} \operatorname{Pic} X \cong \operatorname{Cl} X \xrightarrow{\deg} \mathbb{Z}.$