引言

马学俊 (主讲) 沈琳 (助教)

苏州大学 数学科学学院

https://xuejunma.github.io/

1 人大真题

人大真题

- 在建立多元线性回归模型进行数据分析时,对数据进行"标准化"是一种常用的做法,请问为什么需要进行数据标准化?标准化的具体步骤是什么?请证明标准化回归系数和原始回归系数之间的关系,并阐述如何解读标准化回归系数?(2022,20分)
- 现欲调查某大学学生对于手机依赖症对成绩绩点(GPA)的影响,设自变量手机依赖症为哑变量(X),成绩绩点(GPA)为因变量,高考成绩(GK),回归模型如下:

$$GPA_i = \beta_0 + \beta_1 GK_i + \beta_2 X_i + \varepsilon_i$$

请问随机误差项 ε ; 和手机依赖症 (X) 有相关性吗?为什么?倘若从该学校抽取 500 分简单随机样本,参数的最小二乘估计量有没有偏差?你认为该模型有哪些需要改进的研究建议?(2021,25)

- 线性回归模型的随机误差项存在序列相关时,会对统计推断带来什么问题?如何处理?(2020)
- 在回归分析中, 说明如何判别是否存在异方差?(2019)
- 选用全部的自变量纳入回归方程的估计模型是否合理? 用什么方法选择自变量?(2017)
- 自变量:出口总额、社会消费品总额、还有一个变量不记得了;因变量:地区生产总值给出了以上变量的线性回归模型分析结果,都是表格,有可决系数,调整的可决系数,方差分析表,回归系数检验结果,VIF(其中两个变量小于10,一个变量为18)(30分)问题:1.这个模型有哪些假定2.这个模型中哪个自变量对因变量的影响更重要?3.请对这个模型做出综合评价.(2016)

人大真题

设地区生产总之(亿元)为因变量,固定资产投资(亿元)、社会消费品零售总额(亿元)、出口总额(亿美元)、地方财政收入(亿元)、电力消费量(亿千瓦时)、居民消费水平(元)为自变量,根据31个样本数据得到回归结果如下:

Estimate	Std. Error	t value	Pr(t)
-2377	1.166	-2.038	0.05270
0.4504	0.08.166	5.515	1.14 e-05
1.110	0.1572	7.060	2.68 e-0.7
18.87	6.379	2.958	0.00686
0.9596	0.6959	1.379	0.18061
0.6683	0.5671	1.178	0.25016
0.1194	0.06949	1.718	0.09868
	-2377 0.4504 1.110 18.87 0.9596 0.6683	-2377 1.166 0.4504 0.08.166 1.110 0.1572 18.87 6.379 0.9596 0.6959 0.6683 0.5671	-2377 1.166 -2.038 0.4504 0.08.166 5.515 1.110 0.1572 7.060 18.87 6.379 2.958 0.9596 0.6959 1.379 0.6683 0.5671 1.178

Residual standard error:	1526	自由度	24
Multiple R-Squared:	0.9944	Adjusted R-squared 0.993	
F -statistic:	708.8	P-Value < 2.2 e-16	

对该回归模型进行综合分析,评价是否需要改进,并给出思路(2018)。

- 简述多元线性回归建模的步骤. (2015)
- 多重共线性的影响以及处理方法 (2014)