Equipe Pandora

lago Magalhães e Vanessa Carvalho

Tópicos

- Motivação do trabalho
- 2 Introdução
- 3 Objetivos
- 4 Materiais e Métodos
- 5 Metodologia
- 6 Resultados
- 7 Conclusão

Motivação do trabalho

Este trabalho visa desenvolver uma solução para correção automática de provas e simulados de múltipla escolha tem como propósito simplificar e otimizar o procedimento de avaliação acadêmica em contextos educacionais, com o intuito de atender às demandas de educadores, professores e instituições de ensino.

Introdução

Neste trabalho buscamos testar arquiteturas de redes neurais convolucionais que melhor se adaptassem ao dataset disponibilizado pela equipe do Hackathon. Após a seleção do melhor modelo, será desenvolvida uma API para utilização da melhor rede para correção automática de provas e simulados.

Objetivos

Objetivo Geral:

Analisar o uso de redes convolucionais no auxílio de leitura de cartões respostas;

Objetivo Específicos:

- Criar um detector de respostas com Deep Learning;
- Analisar desempenho de arquiteturas de CNN;
- Desenvolver uma API para analisar imagens de provas diversas.

Materiais e Métodos

Dataset:

O dataset utilizado para o treino das CNN's foi disponibilizado pela equipe organizadora do Hackathon. Para fins da utilização, tratamento e treino das redes, foi optado por realizar o download dos arquivos no formato 'Pascal VOC XML'. Ao todo são 209 imagens divididas em três conjuntos, sendo treino, teste e validação.

Pré-processamento:

Filtros
Dilatação
Filtro Laplaciano
Filtro Gaussiano
Filtro de Média
Filtro de Mediana
Filtro de Mediana + Binarização
Filtro Gaussiano + Binarização
Filtro de Mediana + Filtro Gaussiano
Filtro de Mediana + Filtro Sobel
Filtro Gaussiano + Canny

Métricas de avaliação:

Para avaliar os resultados obtidos pelas redes convolucionais, são utilizadas métricas estatísticas comumente utilizadas pela comunidade. Neste trabalho as métricas de acurácia e precisão foram utilizadas com fator de seleção do melhor modelo de classificação.

$$Acurácia = \frac{VP + VN}{VP + VN + FP + FN}$$

$$Precisão = \frac{VP}{VP + FP}$$

Redes utilizadas:

Para se desenvolver o classificador, optamos por utilizar redes conhecidas pela comunidade, visando a facilidade de implementação, rapidez no desenvolvimento e utilizando seus resultados anteriores como base para o desenvolvimento de uma solução para o problema.

	Redes CNN's
AlexNet	
EfficientNetB0	
InceptionV3	
LeNet	

Metodologia

A metodologia abordada foi baseada em trabalhos acadêmicos sobre treino de redes convolucionais. O primeiro passo foi organizar o banco de dados em treino, teste e validação visando problemas clássicos como sobreajuste e subajuste. Além disso, foi optado por realizar o pré-processamento das imagens para realizar o agusamento de características da imagem. Logo depois, foi realizado o treinamento das quatro redes CNN's, seguindo os mesmos padrões, tais como, 1000 epócas de treinamento e otimizador Adam. Para seleção do melhor modelo foi levado em conta as métricas de acurácia e precisão.

Resultados

Os resultados obtidos para cada rede podem ser visualizados a seguir. Vale ressaltar que entre os 10 pré-processamentos utilizados, o melhor em todos os modelos foi 'Filtro Gaussiano + Binarização'.

AlexNet:

AlexNet:

AlexNet:

Acurácia: 65%

Precisão: 70%

EfficientNetBO:

EfficientNetBO:

EfficientNetB0:

Acurácia: 90%

Precisão: 93%

InceptionV3:

InceptionV3:

InceptionV3:

Acurácia: 20%

Precisão: 4%

LeNet:

LeNet:

LeNet:

Acurácia: 55%

Precisão: 55.9%

API:

Rota 1: upload de imagens

Rota 2: predição

Rota 3: gabarito

Rota 4: resultados

Conclusão

Neste trabalho foi avaliado o uso de quatro redes convolucionais e técnicas de préprocessamento para se desenvolver um classificador robusto e com alta precisão. Através dos experimentos, a rede EfficientNetBO se mostrou com os melhores resultados de acurácia e precisão, junto com a configuração de pré-processamento 'Filtro Gaussiano + Binarização'.

Dúvidas?

Contato:

iagomagalhaes23@gmail.com vanessacarvalho@alu.ufc.br