Chapter 9 [last chapter!]. Functions and countability.

Let X and Y be sets. A *function* from X to Y is an "algorithm", or a "method", or a "rule", or a "process", or a "machine", or a "black box", which takes as input an element of X, and outputs an element of Y.

Example: cos, the cosine function, is a function from the real numbers to the real numbers; given a real number θ as input, we get an output $\cos(\theta)$, which is again a real number.

Notation: $f: X \to Y$ means that f is a function from X to Y. If we feed in $x \in X$ to f, the output is denoted f(x) (in computer science it is sometimes denoted f(x) without the brackets).

The set X is called the *domain* of the function, and the set Y is called the *codomain*. Some people call Y the *range* of the function, however other people use "range" to mean what some people call the "image" of the function. I'll talk about images later on, but I will avoid the word "range", for the same reason I avoid \mathbb{N} — it seems to me to be ambiguous.

Let X and Y be sets. A *function* from X to Y is a process which takes as input an element of X, and outputs an element of Y.

Properties that a "process" must satisfy in order to be a function from X to Y.

- 1) There can be no randomness involved! If I have a function from X to Y, and I feed in the same element of X twice, I *must* get the same element of Y out twice.
- 2) Related: the function must output *exactly one* element of Y. The "function" $f(x) = \pm \sqrt{x}$ is not a function from the positive reals to the reals, because it cannot seem to make up its mind about whether to output +2 or -2 given an input of 4.
- 3) The function must be defined on *all input values*, that is, on all elements of X. For example the "function" $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \frac{x^2+3}{x^2-9}$ is not a function, because it is undefined at $x = \pm 3$ (and ∞ is not a real number). However $f(x) = \frac{x^2+3}{x^2-9}$ is a well-defined function from $\mathbb{R} \setminus \{3, -3\}$ to \mathbb{R} (the notation means "start with \mathbb{R} and then remove 3 and -3").

[Draw some pictures of functions and non-functions]

Other words for a function: a "mapping" or a "map".

Sometimes you want to talk about a function without giving it a name. For example, let's say I want to talk about the function from the reals to the reals which sends $x \in \mathbb{R}$ to 4x + 3. I could say "define $f : \mathbb{R} \to \mathbb{R}$ by f(x) = 4x + 3", but then I just gave this function the name f. Can I talk about the function without giving it a name?

Mathematicians have some notation for this, which I used to think was pretty cool.

$$\mathbb{R} \to \mathbb{R}$$
$$x \mapsto 4x + 3$$

That's \mapsto in LATEX.

But it turns out that computer scientists have an even cooler name for it: $\lambda \times 4 \times 13$.

But actually \mapsto does seem to have one advantage over λ – if we're talking about the function $x \mapsto 4x + 3$ then we can write $2 \mapsto 11$ to mean "2 maps to 11".

There's now *loads* of definitions we need to get through.

Say *X* and *Y* are sets, and $f: X \to Y$ is a function from *X* to *Y*.

If $S \subseteq X$ is a subset of X, then f also gives us a rule sending elements of S to elements of Y, because if $a \in S$ then $a \in X$ so f(a) makes sense. We call this new function from S to Y the restriction of f to S.

For example we could restrict the cosine function to \mathbb{Z} and get a new function $\mathbb{Z} \to \mathbb{R}$ sending $n \in \mathbb{Z}$ to $\cos(n)$. People still call this function cos of course.

The *image* of f (note that some, but not all, people call this the *range* of f) is the subset $\{y \in Y \mid \exists x \in X, f(x) = y\}$. Alternatively it's $\{f(x) \mid x \in X\}$. It's *much* more easily explained in words!

In words, the *image* of f is the subset of Y consisting of elements that f can actually output, as its inputs run through all the elements of X. For example if $f: \mathbb{R} \to \mathbb{R}$ is the squaring function $f(x) = x^2$, then f only outputs squares, and squares are non-negative. So whatever the value of x, we have $f(x) \geq 0$. And conversely, if $y \geq 0$ and if we believe in the existence of square roots, then setting $x = \sqrt{y}$ we have $f(x) = x^2 = y$. So a real number y is an output of the function f if and only if $y \geq 0$. So in this case, the image of f is $\mathbb{R}_{\geq 0}$, the non-negative real numbers.

Notation: we sometimes write f(X) for the image of X. This is abuse of notation; f is supposed to take an element and we have given it a whole bunch of elements at once.

More abuse of notation: if $S \subseteq X$ then f(S) is defined to be $\{ y \in Y \mid \exists x \in S, \ f(x) = y \}$. Alternatively, $f(S) = \{ f(a) \mid a \in S \}$. In words, f(S) is the *subset* of Y consisting of elements of the form f(a) as a ranges through all of S.

For example, if $f: \mathbb{R} \to \mathbb{R}$ is defined by f(x) = 2x, then f(6) = 12 and f([1,2]) = [2,4]. (note to self: remind students that they should use (3,4] notation and not [3,4] or (3;4] etc).

Now say $f: X \to Y$ is a function, and T is a subset of Y such that the image f(X) of f satisfies $f(X) \subseteq T$. In words – whenever we feed $x \in X$ into f, our output is guaranteed to land in T. Then f gives rise to a function from X to T. Mathematicians just call this function f again :-/.

For example $cos: \mathbb{R} \to \mathbb{R}$ and $cos: \mathbb{R} \to [-1,1]$ are, to a mathematician, "the same function", even though they have different codomains. Mathematicians are just sloppy like that, but it usually doesn't cause confusion.

Now say X, Y and Z are all sets, and $f: X \to Y$ and $g: Y \to Z$ are functions.

Given an element $x \in X$, how can we make an element of Z? Think about it.

First we apply f, to get an element $f(x) \in Y$. And then we can apply g to get an element $g(f(x)) \in Z$.

So we have a process which, given an element of X, spits out an element of Z. So we have a new function from X to Z, built from a function $f: X \to Y$ and a function $g: Y \to Z$. This is called *composition of functions*. We just saw that this new function from X to Z sends X to G(f(X)). There is notation for this function; this function from X to Z is called $G \circ f$.

It's easiest to understand this concept with a picture [draw a commuting triangle].

 $f: X \to Y$ and $g: Y \to Z$. The composition of these functions is $g \circ f: X \to Z$. It's defined by $(g \circ f)(x) = g(f(x))$.

Warning. It looks like $g \circ f$ means "do g, then f" because gcomes before f in the notation. But as we saw above, it means "do f, then g". In a parallel universe, humans decided that the notation for functions f applied to elements x should be (x)finstead of f(x). "Maps go on the right". In this parallel universe, doing f then g came out as ((x)f)g with f before g when you write it down, and they call function composition $f \circ g$, meaning "do f then g". But we don't live in this parallel universe, we're stuck in this universe, so we're stuck with "do f, then g" being written as $g \circ f$.

Example.

Say $X = Y = Z = \mathbb{R}$. Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2$ and define $g : \mathbb{R} \to \mathbb{R}$ by g(y) = y + 1. What is the function $f \circ g$? I've made it extra-hard, with X = Y = Z, to maximise the chance that you go wrong.

Well, $(f \circ g)(x) = f(g(x)) = f(x+1) = (x+1)^2$. So $f \circ g$ is $x \mapsto (x+1)^2$. What is $g \circ f$? That's what you get when you do f then g, so it sends x to x^2+1 (which is not the same as $f \circ g$ – function composition is not commutative. What other multiplication is not commutative? Matrix multiplication is not commutative – but matrices can be regarded as functions so perhaps this is not surprising).

Given any set S, there is always one natural (and rather boring) function from S to S. Can anyone see what the definition of that function could be?

The *identity function*, usually called id by mathematicians, and λx , x by computer scientists, is the process which takes an element of S and then gives it straight back :-) It satisfies $\mathrm{id}(x) = x$ for all $x \in S$. It even works when S is the empty set. Note that there are lots of different identity functions – one for each set!

Say $\operatorname{id}: S \to S$ is the identity function. What is $\operatorname{id} \circ \operatorname{id}$? Well, $\operatorname{id}(\operatorname{id}(s)) = \operatorname{id}(s) = s$, so $\operatorname{id} \circ \operatorname{id} = \operatorname{id}$. Actually, is this definitely right? What does it *mean* for two functions to be equal? To a mathematician it *means* that these functions give the same outputs on all inputs. We proved that $\operatorname{id} \circ \operatorname{id}$ and id give the same outputs on all inputs, so they are equal as functions.

Say $f: X \to Y$ is a function. Here are some *really important definitions*.

Definition 9.1.

- (i) We say f is injective, or an injection, if
- $\forall a, b \in X, f(a) = f(b) \implies a = b.$
- (ii) We say f is *surjective*, or a *surjection*, if f(X) = Y, or equivalently if $\forall y \in Y, \exists x \in X, f(x) = y$.
- (iii) We say *f* is *bijective*, or *a bijection*, if it is both injective and surjective.

What does all that mean? Let's go through them one by one. Remember that a true/false statement $P \Longrightarrow Q$ is logically equivalent to its contrapositive $\neg Q \Longrightarrow \neg P$. The true/false statement in the definition of *injective* is $f(a) = f(b) \Longrightarrow a = b$. Its contrapositive is $a \ne b \Longrightarrow f(a) \ne f(b)$. "Distinct elements of X map to distinct elements of Y".

A function $f: X \to Y$ is injective if distinct elements of X map to distinct elements of Y. That's what you should think. But if I ask you in an exam, write down a formal statement.

Another word for injective – some people say "f is one-to-one".

Definition 9.1.

- (i) We say f is *injective*, or *an injection*, or *one-to-one*, if $\forall a, b \in X$, $f(a) = f(b) \implies a = b$.
- (ii) We say f is *surjective*, or a *surjection*, if f(X) = Y, or equivalently if $\forall y \in Y, \exists x \in X, f(x) = y$.
- (iii) We say *f* is *bijective*, or *a bijection*, if it is both injective and surjective.

We've talked about injective – what does surjective mean? It means that the image f(X) is all of Y, or equivalently that every element of Y is "hit" by an element of X.

Another word for surjective is "onto".

Looking at some of your weekly tests, I get the impression that some of you might not know the difference between $\forall y \in Y, \exists x \in X, f(x) = y$ and $\exists x \in X, \forall y \in Y, f(x) = y$. If you are a maths student, this will become very problematic when you do M1P1 next term. So let's go through this carefully.

Let $X = Y = \mathbb{Z}$ and let f be the *identity function*.

"Every element of Y is hit by an element of X" is an ambiguous statement. It might mean either of the below. Which of the below statements is true?

Quiz!

- 1) True or false? $\forall y \in Y, \exists x \in X, f(x) = y$.
- 2) True or false? $\exists x \in X, \forall y \in Y, f(x) = y$.

Answers:

1) is true – you can let x = y. But 2) is false, if you choose x, then you can let y be anything, so you can let y be x + 1, and then it's not true that f(x) = y.

Injective means that distinct elements of X must map to distinct elements of Y. Surjective means that every element of Y gets hit by some element of X. Don't write this if I ask you what these words mean. Write what I wrote in definition 9.1.

Example: the squaring function $f(x) = x^2$ from \mathbb{R} to \mathbb{R} . Is it injective? No, because $-2 \neq 2$ but f(-2) = 4 = f(2). So different elements of the domain get mapped to the same element of the codomain. Is the squaring function from \mathbb{R} to \mathbb{R} surjective? No, because if $y = -1 \in \mathbb{R}$ then there is no $x \in \mathbb{R}$ such that f(x) = -1, as $x^2 = -1$ has no real solutions.

Example: the cosine function. Is it injective? No, because $\cos(0)=\cos(2\pi)$. Is it surjective? This question is not well-defined. $\cos:\mathbb{R}\to\mathbb{R}$ is not surjective, but $\cos:\mathbb{R}\to[-1,1]$ is surjective. Actually $\cos:\mathbb{Z}_{\geq 0}\to\mathbb{R}$ is injective! These notions of injective and surjective *heavily depend* on the domain and the codomain, and because mathematicians are often sloppy about what the domain and the codomain are, you need to be careful.