Ref #	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L1	3377	frame\$ same ethernet and network	USPAT	OR	ON	2005/10/12 16:21
L2	7	(ethernet adj network) and header same smtp	USPAT	OR	ON	2005/10/12 16:21
L3	256	((stp or simple transfort protocol) and (ethernet adj network)) and ack	USPAT	OR	OFF	2005/10/12 16:22
L4	4	((message same packets) and (stream same header same ethernet)) and smtp	USPAT	OR	ON	2005/10/12 16:22
L5	80	((message same packets) and (stream same header same ethernet)) and (simple transport protocol or smtp)	USPAT	OR	ON	2005/10/12 16:22
L6	199	709/236.ccls. and packets same header	USPAT	OR	ON	2005/10/12 16:22
L7	21	(((stp or simple transfort protocol) and (ethernet adj network)) and ack) and storage adj data	USPAT	OR	OFF	2005/10/12 16:22
L8	56	(((control adj module) and (client same server)) and (clients same register\$4)) and (clients same register\$4 same control\$4)	USPAT	OR	ON	2005/10/12 16:22
L9	80	((message same packets) and (stream same header same ethernet)) and (simple transport protocol or smtp)	USPAT	OR	ON	2005/10/12 16:23
L10	0	lighweight adj transport adj protocol	USPAT	OR	ON	2005/10/12 16:23
L11 .	0	(lighweight adj transport adj protocol)	USPAT	OR	ON	2005/10/12 16:23
L12	152	stream same header same ethernet	USPAT	OR	ON	2005/10/12 16:23
L13	63	(((message same packets) and (stream same header same ethernet)) and (simple transport protocol or smtp)) and use\$4 same generat\$4	USPAT	OR	ON	2005/10/12 16:24
L14	130	((control adj module) and (client same server)) and (clients same register\$4)	USPAT	OR	ON	2005/10/12 16:24
S1	1064	709/223.ccls.	USPAT	OR	OFF	2003/04/24 16:03
S2	314	709/223.ccls. and client adj server	USPAT	OR	OFF	2003/04/24 16:38
S3	0	709/223.ccls. and (client adj server same (redirector adj server) same (latancy or performance))	USPAT	OR	OFF	2003/04/24 16:04

S4	1064	709/223.ccls. or (client adj server same (redirector adj server) same	USPAT	OR	OFF	2003/04/24 16:04
_	_	(latancy or performance))				
S5	0	709/223.ccls. and (client adj server same (redirector adj server) same (latancy or performance))	USPAT	OR	OFF	2003/04/24 16:04
S6	0	709/223.ccls. and client adj server same (redirector adj server) same (latancy or performance)	USPAT	OR	OFF	2003/04/24 16:05
S7	0	709/223.ccls. and client adj server same redirector same (latancy or performance)	USPAT	OR	OFF	2003/04/24 16:05
S8	0	709/223.ccls. and (client adj server) same redirector same (latancy or performance)	USPAT	OR	OFF	2003/04/24 16:05
S9	0	709/223.ccls. and client adj server with (redirector adj server)	USPAT	OR	OFF	2003/04/24 16:06
S10	0	709/223.ccls. and client adj server and (redirector adj server)	USPAT	OR	OFF	2003/04/24 16:06
S11	1	709/223.ccls. and client adj server same redirector	USPAT	OR	OFF	2003/04/24 16:08
S12	1	709/223.ccls. and client adj server same (best adj2 server)	USPAT	OR	OFF	2003/04/25 13:56
S13	3	709/223.ccls. and client adj server and redirector and latency	USPAT	OR	OFF	2003/04/24 16:32
S14	1	("6006264").PN.	USPAT; USOCR	OR	OFF	2003/04/24 16:30
S15	2	709/223.ccls. and client adj server same time\$3 same convert\$3	USPAT	OR	OFF	2003/04/24 16:39
S16	0	("communicationssamemessage\$3 samesmtp").PN.	USPAT; USOCR	OR	OFF	2003/04/25 15:40
S17	0	("communicationssamemessage\$3").PN.	USPAT; USOCR	OR	OFF	2003/04/25 15:59
S18	1	("6453360").PN.	USPAT; USOCR	OR	OFF	2003/04/25 16:07
S19	113	communication same message same stp	USPAT	OR	OFF	2003/04/25 16:01
S20	3	communication same message same stp same ethernet	USPAT	OR	OFF	2003/04/25 16:04
S21	4	communication same message same smtp same ethernet	USPAT	OR	OFF	2003/04/25 16:09
S22	0	communication same message same smtp same encapsulate same ethernet	USPAT	OR	OFF	2003/04/25 16:04
S23	0	communication same message same smtp same packets same ethernet	USPAT	OR	OFF	2003/04/25 16:05

			 			
S24	0	communication same message same header same smtp same ethernet	USPAT	OR	OFF	2003/04/25 16:09
S25	441	709/236.ccls.	USPAT	OR	OFF	2003/10/20 12:57
S26	144	709/236.ccls. and packets same header	USPAT	OR	ON-	2003/10/20 12:57
S27	1117663	smtp or simple transport protocol	USPAT	OR	ON	2003/10/20 12:57
S28	1117663	(smtp or (simple transport protocol))	USPAT	OR	ON	2003/10/20 14:47
S29	8413	(smtp or (simple transport protocol)).ti.	USPAT	OR	ON	2003/10/20 12:58
S30	22	(709/236.ccls. and packets same header) and ((smtp or (simple transport protocol)).ti.)	USPAT	OR	ON	2003/10/20 15:05
S31	98135	encapsulat\$4	USPAT	OR	ON	2003/10/20 12:58
S32	133	encapsulat\$4 adj header	USPAT	OR	ON	2003/10/20 14:50
S33	3	((709/236.ccls. and packets same header) and ((smtp or (simple transport protocol)).ti.)) and (encapsulat\$4 adj header)	USPAT	OR	ON	2003/10/20 13:01
S34	3	simple adj transport adj protocol	USPAT	OR	ON	2003/10/20 15:08
S35	972	simple adj transport adj protocol or smtp	USPAT	OR	ON	2003/10/20 13:21
S36	12	(encapsulat\$4 adj header) and (simple adj transport adj protocol or smtp)	USPAT	OR	ON	2003/10/20 13:02
S37	711	ethernet adj packets	USPAT	OR	ON	2003/10/20 13:22
S38	60	(simple adj transport adj protocol or smtp) and (ethernet adj packets)	USPAT	OR	ON	2003/10/20 15:04
S39	5866	frames same encapsulat\$4	USPAT	OR	ON	2003/10/20 13:23
S40	102	frames same (encapsulat\$4 adj packet)	USPAT	OR	ON	2003/10/20 13:23
S41	24	((simple adj transport adj protocol or smtp) and (ethernet adj packets)) and (frames same (encapsulat\$4 adj packet))	USPAT	OR	ON	2003/10/20 15:00
S42	1126087	(smtp or (simple mail transport protocol))	USPAT	OR	ON	2003/10/20 14:49
S43	9852	(smtp or (simple mail transport protocol)).ti.	USPAT	OR	ON	2003/10/20 14:49
S44	133	encapsulat\$4 adj header	USPAT	OR	ON	2003/10/20 14:58
S45	20	((smtp or (simple mail transport protocol)).ti.) and (encapsulat\$4 adj header)	USPAT	OR	OFF	2003/10/20 14:51

S46	20	((smtp or (simple mail transport protocol)).ti.) and (encapsulat\$4 adj header)	USPAT	OR	ON	2003/10/20 14:51
S47	88	(encapsulat\$4 adj header) same packets	USPAT	OR	ON	2003/10/20 14:59
S48	10	((smtp or (simple mail transport protocol)).ti.) and ((encapsulat\$4 adj header) same packets)	USPAT	OR	ON	2003/10/20 14:59
S49	24	((simple adj transport adj protocol or smtp) and (ethernet adj packets)) and (frames same (encapsulat\$4 adj packet))	USPAT	OR	ON	2003/10/20 15:00
S50	0	(simple adj transport adj protocol or smtp) and (ethernet adj packets).ti.	USPAT	OR	ON	2003/10/20 15:05
S51	22	(709/236.ccls. and packets same header) and ((smtp or (simple transport protocol)).ti.)	USPAT	OR	ON	2003/10/20 15:05
S52	85	encapsulat\$4 same protocol adj header	USPAT	OR	ON	2003/10/20 15:09
S53	1126087	smtp or simple mail transport protocol	USPAT	OR	ON	2003/10/20 15:10
S54	1126087	smtp or simple mail transport protocol	USPAT	OR	ON	2003/10/20 15:10
S55	85	(encapsulat\$4 same protocol adj header) and (smtp or simple mail transport protocol)	USPAT	OR	ON	2003/10/20 15:39
S56	345	frame\$ same ethernet adj network	USPAT	OR	ON	2003/10/20 15:12
S57	1	((encapsulat\$4 same protocol adj header) and (smtp or simple mail transport protocol)) and (frame\$ same ethernet adj network)	USPAT	OR	ON	2003/10/20 15:11
S58	2214	frame\$ same ethernet and network	USPAT	OR	ON	2003/10/20 15:12
S59	32	((encapsulat\$4 same protocol adj header) and (smtp or simple mail transport protocol)) and (frame\$ same ethernet and network)	USPAT	OR	ON	2003/10/20 15:12
S60	969	smtp	USPAT	OR	ON	2003/10/20 15:20
S61	14	((encapsulat\$4 same protocol adj header) and (smtp or simple mail transport protocol)) and smtp	USPAT	OR	ON	2003/10/20 15:30
S62	761	709/206.ccls.	USPAT	OR	ON	2003/10/20 15:31
S63	61099	header	USPAT	OR	ON	2003/10/20 15:31
S64	969	smtp	USPAT	OR	ON	2003/10/20 15:31
S65	348	709/206.ccls. and header	USPAT	OR	ON	2003/10/20 15:31

					·r	,
S66	108	smtp and (709/206.ccls. and header)	USPAT	OR	ON	2003/10/20 15:31
S67	15	(smtp and (709/206.ccls. and header)) and ethernet	USPAT	OR	ON	2003/10/20 15:32
S68	2475	ethernet adj network	USPAT	OR	ON	2003/10/20 15:39
S69	4	(ethernet adj network) and header same smtp	USPAT	OR	ON	2003/10/20 15:40
S70	961860	stp or simple transfort protocol	USPAT	OR	OFF	2003/10/21 10:42
S71	2231	ethernet adj network	USPAT	OR	OFF	2003/10/21 10:42
S72	1844	(stp or simple transfort protocol) and (ethernet adj network)	USPAT	OR	OFF	2003/10/21 10:42
S73	177	((stp or simple transfort protocol) and (ethernet adj network)) and ack	USPAT	OR	OFF	2003/10/21 10:42
S74	11	(((stp or simple transfort protocol) and (ethernet adj network)) and ack) and storage adj data	USPAT	OR	OFF	2003/10/21 10:44
S75	6	((((stp or simple transfort protocol) and (ethernet adj network)) and ack) and storage adj data) and encapsulat\$4	USPAT	OR	OFF	2003/10/21 11:16
S76	6650	stp	USPAT	OR	OFF	2003/10/21 10:45
S77	6653	(simple adj transport adj protocol)or stp	USPAT	OR	OFF	2003/10/21 10:46
S78	3	simple adj transport adj protocol	USPAT	OR	OFF	2003/10/21 10:46
S79	1	("6172990").PN.	USPAT; USOCR	OR	OFF	2003/10/21 11:16
S80	290636	register\$4	USPAT	OR	OFF	2003/10/24 17:44
S81	656	register\$4 same request\$4 adj control	USPAT	OR	ON	2003/10/24 17:44
S82	16626	client same server	USPAT	OR	ON	2003/10/24 17:45
S83	1112	(client same server) and control same master	USPAT	OR	ON	2003/10/24 17:45
S84	4	(register\$4 same request\$4 adj control) and ((client same server) and control same master)	USPAT	OR	ON	2003/10/24 17:47
S85	16549	control adj module	USPAT	OR	ON	2003/10/24 17:53
S86	16626	client same server	USPAT	OR	ON	2003/10/24 17:48
S87	557	(control adj module) and (client same server)	USPAT	OR	ON	2003/10/24 17:53
S88	643	register\$4 same browser	USPAT	OR	ON	2003/10/24 17:53
S89	2781	client same register\$4	USPAT	OR	ON	2003/10/24 17:55
S90	90	((control adj module) and (client same server)) and (client same register\$4)	USPAT	OR	ON	2003/10/24 17:54
	<u> </u>	2/05 4:24:24 DM Dago 5				*

S91	2781	clients same register\$4	USPAT	OR	ON	2003/10/24 17:56
S92	90	((control adj module) and (client same server)) and (clients same register\$4)	USPAT	OR	ON	2003/10/24 17:55
S93	840	clients same register\$4 same control\$4	USPAT	OR	ON	2003/10/24 17:56
S94	36	(((control adj module) and (client same server)) and (clients same register\$4)) and (clients same register\$4 same control\$4)	USPAT	OR	ON	2003/10/24 17:59
S95	9148	master adj control\$4	USPAT	OR	ON	2003/10/24 17:59
S96	1	((((control adj module) and (client same server)) and (clients same register\$4)) and (clients same register\$4 same control\$4)) and (master adj control\$4)	USPAT	OR	ON	2003/10/24 18:02
S97	11879	message same packets	USPAT	OR	ON	2003/10/24 18:02
S98	0	serializ\$4 same stream same header same ethernet	USPAT	OR	ON	2003/10/24 18:03
S99	82	stream same header same ethernet	USPAT	OR	ON	2003/10/24 18:03
S10 0	46	(message same packets) and (stream same header same ethernet)	USPAT	OR	ON	2003/10/24 18:04
S10 1	26	extract\$4 same read\$4 same serializ\$4	USPAT	OR	ON	2003/10/24 18:04
S10 2	0	((message same packets) and (stream same header same ethernet)) and (extract\$4 same read\$4 same serializ\$4)	USPAT	OR	ON	2003/10/24 18:04
S10 3	2	((message same packets) and (stream same header same ethernet)) and serializ\$4	USPAT	OR	ON	2003/10/24 18:07
S10 4	46	((message same packets) and (stream same header same ethernet)) and (simple transport protocol or smtp)	USPAT	OR	ON	2003/10/24 18:09
S10 5	33	(((message same packets) and (stream same header same ethernet)) and (simple transport protocol or smtp)) and use\$4 same generat\$4	USPAT	OR	ON	2003/10/24 18:08
S10 6	11	((((message same packets) and (stream same header same ethernet)) and (simple transport protocol or smtp)) and use\$4 same generat\$4) and encapsulat\$4 same ethernet	USPAT	OR	ON	2003/10/27 10:14

S10 7	3	((message same packets) and (stream same header same ethernet)) and smtp	USPAT	OR	ON	2003/10/24 18:10
S10 8	1	("6172990").PN.	USPAT; USOCR	OR	OFF	2003/10/27 10:14

Home | Login | Logout | Access Information | Alerts |

Welcome United States Patent and Trademark Office

Digital Object Identifier 10.1109/MMSP.2001.962713 AbstractPlus | Full Text: PDF(426 KB) IEEE CNF

Search Res	sults	BROWSE SEARCH IEEE XPLOI				IEEE XPLORE G	RE GUIDE	
Your search	"((stream <in>metadata) h matched 3 of 1243738 do n of 100 results are displaye</in>	cuments.					∰ e-nwii	
» Search O	ptions							
View Sessi	on History	Modi	ify S	Search				
New Searc	<u>h</u>	((str	eam	<in>metadata) <and> (he</and></in>	ader <in>metadata</in>)) <and> (encapsulation<i< td=""><td>in></td></i<></and>	in>	
			Chec	ck to search only within t	his results set			
» Key		Disp	lay	Format: © Citation	O Citation & A	Abstract		
IEEE JNL	IEEE Journal or Magazine	0-14		-41-1-1-8				
IEE JNL	IEE Journal or Magazine	Select	A	rticle Information				
IEEE CNF	IEEE Conference Proceeding		1.	ROHC+: a new header Boggia, G.; Camarda, F	•	cheme for TCP streams	in 3G wirele	
IEE CNF	IEE Conference Proceeding				ICC 2002. IEEE	International Conference 3271 - 3278 vol.5	∍ on	
IEEE STD	IEEE Standard			Digital Object Identifier	10.1109/ICC.200	2.997438		
				AbstractPlus Full Text	<u>PDF(</u> 1434 KB)	IEEE CNF		
			2.	Kurosaki, M.; Munadi, K	(.; Kiya, H.; 3. ICIP 2003. Pro 2003 Page(s):III			
				AbstractPlus Full Text	: <u>PDF</u> (432 KB)	IEEE CNF		
			3.	A data hiding approach channel Bartolini, F.; Manetti, A. Multimedia Signal Proce 3-5 Oct. 2001 Page(s):6	; Piva, A.; Barni, essing, 2001 IEEI		ransmitted o	

View Selected Berns

Help Contact Us Privacy &:

© Copyright 2005 IEEE -

indexed by #Inspec

Subscribe (Full Service) Register (Limited Service, Free) Login

Search: • The ACM Digital Library • The Guide

simple and transport and protocol and storage and encapsulati

Reli

THE ACM DIGITAL LIBRARY

Feedback Report a problem Satisfac

Terms used

<u>simple</u> and <u>transport</u> and <u>protocol</u> and <u>storage</u> and <u>encapsulation</u> and protocol and header and encapsulatic

Sort results by relevance Display results expanded form

Save results to a Binder **?** Search Tips

Try an Advanced Search Try this search in The AC

Open results in a new window

Results 1 - 20 of 200

Result page: **1** <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u> <u>7</u> <u>8</u> <u>9</u> <u>10</u> next

Best 200 shown Storage protocol designs: A study of iSCSI extensions for RDMA (iSER)

Mallikarjun Chadalapaka, Hemal Shah, Uri Elzur, Patricia Thaler, Michael Ko

August 2003 Proceedings of the ACM SIGCOMM workshop on Network-I/O convergence: exp lessons, implications

Full text available: pdf(281.32 KB)

Additional Information: full citation, abstract, references, index terms

The iSCSI protocol is the IETF standard that maps the SCSI family of application protocols onto To convergence of storage traffic on to standard TCP/IP fabrics. The ability to efficiently transfer and on TCP/IP networks is crucial for this convergence of the storage traffic. The iWARP protocol suite Remote Direct Memory Access (RDMA) semantics over TCP/IP networks and enables efficient mer data transfers over an IP fabric. This paper studies the ...

Keywords: DA, DDP, DI, Datamover, MPA, RDMA, RDMAP, SCSI, Verbs, iSCSI, iSER, iWARP

Multiplexing issues in communication system design

C. C. Feldmeier

August 1990 ACM SIGCOMM Computer Communication Review, Proceedings of the ACM sym Communications architectures & protocols, Volume 20 Issue 4

Full text available: pdf(1.30 MB)

Additional Information: full citation, abstract, references, citings, index ter

This paper considers some of the multiplexing issues in communication system design by examini system issues. In particular, we distinguish physical multiplexing of resources from logical multiple streams. Both physical-resource multiplexing and logical multiplexing determine the service that a by a communication system. We also discuss two issues affected by logical multiplexing - flow cor relationship between control and data streams of a connect ...

The design and implementation of hierarchical software systems with reusable components Don Batory, Sean O'Malley

October 1992 ACM Transactions on Software Engineering and Methodology (TOSEM), Volume 1

Full text available: pdf(3.15 MB)

Additional Information: full citation, abstract, references, citings, index ter

We present a domain-independent model of hierarchical software system design and construction on interchangeable software components and large-scale reuse. The model unifies the conceptual independent projects, Genesis and Avoca, that are successful examples of software component/bi technologies and domain modeling. Building-block technologies exploit large-scale reuse, rely on architecture software, and elevate the granularity of programming to ...

Keywords: domain modeling, open system architectures, reuse, software building-blocks, software

ATM: retrospective on systems legacy: A retrospective view of ATM

Charles Kalmanek

November 2002 ACM SIGCOMM Computer Communication Review, Volume 32 Issue 5

Full text available: pdf(222,98 KB)

Additional Information: full citation, abstract, references, index terms

ATM was the focus of active research and significant investment in the early to mid 1990's. This p several visions for ATM prevalent at the time, and analyzes how ATM evolved during this period. 1 considers the implications of this history for current connection-oriented technologies, such as opt networks and MPLS.

Keywords: ATM, MPLS, flow switching, transport networks

Storage protocol designs: NFS over RDMA

Brent Callaghan, Theresa Lingutla-Raj, Alex Chiu, Peter Staubach, Omer Asad

August 2003 Proceedings of the ACM SIGCOMM workshop on Network-I/O convergence: exp lessons, implications

Full text available: pdf(126.79 KB)

Additional Information: full citation, abstract, references

The NFS filesystem was designed as a work-group filesystem, making a central file store available between a number of client workstations. However, more recently NFS has grown in popularity in room, connecting large application servers with back-end file servers. In this environment, where access to data is critical, high capacity interconnects like gigabit Ethernet, Fibre Channel and Infir expected. With RDMA technology we can fully utilize the ...

A protocol for route establishment and packet forwarding across multidomain internets Deborah Estrin, Martha Steenstrup, Gene Tsudik

February 1993 IEEE/ACM Transactions on Networking (TON), Volume 1 Issue 1

Full text available: pdf(1.72 MB)

Additional Information: full citation, references, citings, index terms

Computing curricula 2001

September 2001 Journal on Educational Resources in Computing (JERIC)

Full text available: pdf(613.63 KB) html (2.78 KB)

Additional Information: full citation, references, citings, index terms

Special issue on wireless extensions to the internet: A cooperative approach to user mobility Robin Kravets, Casey Carter, Luiz Magalhães

October 2001 ACM SIGCOMM Computer Communication Review, Volume 31 Issue 5

Full text available: pdf(1.34 MB)

Additional Information: full citation, abstract, references

We propose a networking model that treats a user's set of personal devices as a MObile grouPEd I MOPED, which appears as a single entity to the rest of the Internet. All communication for a user this point of presence. As the user moves through different environments, the devices cooperate user with access to all available communication resources. We present the basic networking funct necessary to enable the operation of MOPEDs and their integrati ...

9

The transport layer: tutorial and survey

Sami Iren, Paul D. Amer, Phillip T. Conrad December 1999 ACM Computing Surveys (CSUR), Volume 31 Issue 4

Full text available: pdf(261.78 KB) Additional Information: full citation, abstract, references, citings, index ter

Transport layer protocols provide for end-to-end communication between two or more hosts. This a tutorial on transport layer concepts and terminology, and a survey of transport layer services at The transport layer protocol TCP is used as a reference point, and compared and contrasted with protocols designed over the past two decades. The service and protocol features of twelve of the protocols are summarized in both text and tables. < ...

Keywords: TCP/IP networks, congestion control, flow control, transport protocol, transport service

10 Video Storage: Periodic broadcast and patching services: implementation, measurement, ar an internet streaming video testbed

Michael K. Bradshaw, Bing Wang, Lixin Gao, Jim Kurose, Prashant Shenoy, Don Towsley, Subhabrata October 2001 Proceedings of the ninth ACM international conference on Multimedia

Full text available: pdf(797.96 KB)

1)

Additional Information: full citation, abstract, references, citings, index ter

Multimedia streaming applications can consume a significant amount of server and network resou broadcast and patching are two approaches that use multicast transmission and client buffering ir ways to reduce server and network load, while at the same time allowing asynchronous access to steams by a large number of clients. Current research in this area has focussed primarily on the a aspects of these approaches, with evaluation performed via analysis ...

Keywords: patching, periodic broadcast, server

¹¹ Principled design of the modern Web architecture

Roy T. Fielding, Richard N. Taylor

May 2002 ACM Transactions on Internet Technology (TOIT), Volume 2 Issue 2

Full text available: pdf(335.47 KB)

Additional Information: full citation, abstract, references, citings, index ter

The World Wide Web has succeeded in large part because its software architecture has been design the needs of an Internet-scale distributed hypermedia application. The modern Web architecture scalability of component interactions, generality of interfaces, independent deployment of compor intermediary components to reduce interaction latency, enforce security, and encapsulate legacy article we introduce the Representational State Transfer (REST) arc ...

Keywords: Network-based applications, REST, World Wide Web

12 Fast detection of communication patterns in distributed executions

Thomas Kunz, Michiel F. H. Seuren

November 1997 Proceedings of the 1997 conference of the Centre for Advanced Studies on C research

Full text available: pdf(4.21 MB)

Additional Information: full citation, abstract, references, index terms

Understanding distributed applications is a tedious and difficult task. Visualizations based on proce diagrams are often used to obtain a better understanding of the execution of the application. The tool we use is Poet, an event tracer developed at the University of Waterloo. However, these diag very complex and do not provide the user with the desired overview of the application. In our exp tools display repeated occurrences of non-trivial commun ...

13 File servers for network-based distributed systems Liba Svobodova

December 1984 ACM Computing Surveys (CSUR), Volume 16 Issue 4

Full text available: pdf(4.23 MB)

3

Additional Information: full citation, references, citings, index terms, revie

14 In-service QoS monitoring of real-time applications using SM MIB

Yong-Hoon Choi, Iksoon Hwang

January 2005 International Journal of Network Management, Volume 15 Issue 1

Full text available: pdf(235.82 KB)

Additional Information: full citation, abstract, references, index terms

Current network management needs an end-to-end overview of various flows rather than the info purely local to the individual devices. The typical manager-centric polling approach, however, is n understand network-wide behavior of a large-scale Internet. In this paper, we propose a new mai information base (MIB) approach called Service Monitoring MIB (SM MIB). The MIB provides a net with dynamic end-to-end management information by utilizing special ...

¹⁵ An architecture for packet-striping protocols

Adiseshu Hari, George Varghese, Guru Parulkar

November 1999 ACM Transactions on Computer Systems (TOCS), Volume 17 Issue 4

Full text available: pdf(220.97 KB)

Additional Information: full citation, abstract, references, index terms, rev

Link-striping algorithms are often used to overcome transmission bottlenecks in computer networ striping algorithms suffer from two major disadvantages. They provide inadequate load sharing in variable-length packets, and may result in non-FIFO delivery of data. We describe a new family of algorithms that solves both problems. Our scheme applies to any layer that can provide multiple I We deal with variable-sized packets by showing h ...

Keywords: causal fair queuing, fair queuing, load sharing, multilink PPP, packet striping, stripe p

16 Protocol architectures: A framework for scalable global IP-anycast (GIA)

Dina Katabi, John Wrocławski

April 2001 ACM SIGCOMM Computer Communication Review, Volume 31 Issue 2 supplement

Full text available: pdf(3,30 MB)

Additional Information: full citation, abstract, references

This paper proposes GIA, a scalable architecture for global IP-anycast. Existing designs for provid must either globally distribute routes to individual anycast groups, or confine each anycast group configured topological region. The first approach does not scale because of excessive growth in th tables, whereas the second one severely limits the utility of the service. Our design scales by dividomain any cast routing into two components. The first compo ...

Keywords: anycast, architecture, internet, routing, scalable

17 Toward Flexible Messaging for SOAP-Based Services

Geoffrey Fox, Shrideep Pallickara, Savas Parastatidis

November 2004 Proceedings of the 2004 ACM/IEEE conference on Supercomputing

Full text available: pdf(247.58 KB)

Additional Information: full citation, abstract

NaradaBrokering provides a messaging abstraction that allows it to provide message-related capa transparent fashion. These capabilities include message-based security, time and causal ordering, virtualization of transport protocol and addressing, and fault tolerance related functionalities. Nara combined with further extensions to its existing capabilities ¿ can also take advantage of the mati Service specifications to build very powerful general ...

Results (page 1): simple and transport and protocol and storage and encapsulation and pro... Page 5 of 5

Keywords: Performance, Design, Reliability, Distributed middleware, Grid computing, Web Servie oriented architectures

18 Smart packets: applying active networks to network management

Beverly Schwartz, Alden W. Jackson, W. Timothy Strayer, Wenyi Zhou, R. Dennis Rockwell, Craig Par February 2000 ACM Transactions on Computer Systems (TOCS), Volume 18 Issue 1

Full text available: 7 pdf(190.33 KB)

ļ

Additional Information: full citation, abstract, references, citings, index ter

This article introduces Smart Packets and describes the smart Packets architecture, the packet for language and its design goals, and security considerations. Smart Packets is an Active Networks r on applying active networks technology to network management and monitoring. Messages in act are programs that are executed at nodes on the path to one or more target hosts. Smart Packets written in a tightly encoded, safe language specifically des ...

Keywords: active networks

¹⁹ Mobility support in IPv6

Charles E. Perkins, David B. Johnson

November 1996 Proceedings of the 2nd annual international conference on Mobile computing networking

Full text available: pdf(1.37 MB)

Additional Information: full citation, references, citings, index terms

20 Distributed systems - programming and management: On remote procedure call

Patrícia Gomes Soares

November 1992 Proceedings of the 1992 conference of the Centre for Advanced Studies on C research - Volume 2

Full text available: Top pdf(4.52 MB)

Additional Information: full citation, abstract, references, citings

The Remote Procedure Call (RPC) paradigm is reviewed. The concept is described, along with the structure of the mechanisms that support it. An overview of works in supporting these mechanism Extensions to the paradigm that have been proposed to enlarge its suitability, are studied. The m of this paper are a standard view and classification of RPC mechanisms according to different pers snapshot of the paradigm in use today and of goals for t ...

Results 1 - 20 of 200

Result page: **1** <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u> <u>7</u> <u>8</u> <u>9</u> <u>10</u>

The ACM Portal is published by the Association for Computing Machinery. Copyright @ 2005 ACM, Inc. Terms of Usage Privacy Policy Code of Ethics Contact Us

Useful downloads: Adobe Acrobat QuickTime Windows Media Player Real Playe