Chapter 12: Mass-Storage Systems

Chapter 12: Mass-Storage Systems

- Overview of Mass Storage Structure
- Disk Structure
- Disk Attachment
- Disk Scheduling
- Disk Management
- Swap-Space Management
- RAID Structure
- Disk Attachment
- Stable-Storage Implementation
- Tertiary Storage Devices
- Operating System Issues
- Performance Issues

Objectives

- Describe the physical structure of secondary and tertiary storage devices and the resulting effects on the uses of the devices
- Explain the performance characteristics of massstorage devices
- Discuss operating-system services provided for mass storage, including RAID and HSM

Overview of Mass Storage Structure

- Magnetic disks provide bulk of secondary storage of modern computers
 - Drives rotate at 60 to 200 times per second
 - Transfer rate is rate at which data flow between drive and computer
 - Positioning time (random-access time) is time to move disk arm to desired cylinder (seek time) and time for desired sector to rotate under the disk head (rotational latency)
 - Head crash results from disk head making contact with the disk surface
 - That's bad
- Disks can be removable
- Drive attached to computer via I/O bus
 - Busses vary, including EIDE, ATA, SATA, USB, Fiber Channel,SCSI
 - Host controller in computer uses bus to talk to disk controller built into drive or storage array

Moving-head Disk Mechanism

磁盘性能参数

为了读写,磁头必须定位于指定的磁道和该磁道中指定的扇区 开始处

□寻道时间

■ 磁头定位到磁道所需要的时间;

□旋转延迟

■ 磁头到达扇区开始位置的时间;

□传送时间

■ 传送所需的时间;

时序比较

平均寻道时间为4ms,转速为7500r/m,每个磁道有500个扇区,读取2500个扇区

顺序访问(假定写也是顺序的)

随机访问

时序比较

平均寻道时间为4ms,转速为7500r/m,每个磁道有500个扇区,读取2500个扇区

顺序访问(假定写也是顺序的)

读第一个磁道4ms(平均寻址)+

4ms(旋转延迟)+

8ms(读500个扇区)=16ms

总时间=16+4* (4+8) =64ms

随机访问

读一个扇区4+4+0.016=8.016ms

总时间=2500*8.016=20040ms

显然,磁盘读取扇区的顺序对I/O性能影响很大!

Overview of Mass Storage Structure (Cont.)

Magnetic tape

- Was early secondary-storage medium
- Relatively permanent and holds large quantities of data
- Access time slow
- Random access ~1000 times slower than disk
- Mainly used for backup, storage of infrequently-used data, transfer medium between systems
- Kept in spool and wound or rewound past read-write head
- Once data under head, transfer rates comparable to disk
- 20-200GB typical storage
- Common technologies are 4mm, 8mm, 19mm, LTO-2 and SDLT

Disk Structure

- Disk drives are addressed as large 1-dimensional arrays of *logical blocks*, where the logical block is the smallest unit of transfer.
- The 1-dimensional array of logical blocks is mapped into the sectors of the disk sequentially.
 - Sector 0 is the first sector of the first track on the outermost cylinder.
 - Mapping proceeds in order through that track, then the rest of the tracks in that cylinder, and then through the rest of the cylinders from outermost to innermost.

Disk Scheduling

- The operating system is responsible for using hardware efficiently — for the disk drives, this means having a fast access time and disk bandwidth.
- Access time has two major components
 - Seek time is the time for the disk are to move the heads to the cylinder containing the desired sector.
 - Rotational latency is the additional time waiting for the disk to rotate the desired sector to the disk head.
- Minimize seek time
- Seek time ≈ seek distance
- Disk bandwidth is the total number of bytes transferred, divided by the total time between the first request for service and the completion of the last transfer.

Disk Scheduling (Cont.)

- Several algorithms exist to schedule the servicing of disk I/O requests.
- We illustrate them with a request queue (0-199).

98, 183, 37, 122, 14, 124, 65, 67

Head pointer 53

FCFS

Illustration shows total head movement of 640 cylinders.

SSTF

- Selects the request with the minimum seek time from the current head position.
- SSTF scheduling is a form of SJF scheduling; may cause starvation of some requests.
- Illustration shows total head movement of 236 cylinders.

SSTF (Cont.)

SCAN

- The disk arm starts at one end of the disk, and moves toward the other end, servicing requests until it gets to the other end of the disk, where the head movement is reversed and servicing continues.
- Sometimes called the *elevator algorithm*.
- Illustration shows total head movement of 208 cylinders.

SCAN (Cont.)

C-SCAN

- Provides a more uniform wait time than SCAN.
- The head moves from one end of the disk to the other. servicing requests as it goes. When it reaches the other end, however, it immediately returns to the beginning of the disk, without servicing any requests on the return trip.
- Treats the cylinders as a circular list that wraps around from the last cylinder to the first one.

C-SCAN (Cont.)

C-LOOK

- Version of C-SCAN
- □ Arm only goes as far as the last request in each direction, then reverses direction immediately, without first going all the way to the end of the disk.

C-LOOK (Cont.)

Selecting a Disk-Scheduling Algorithm

- SSTF is common and has a natural appeal
- SCAN and C-SCAN perform better for systems that place a heavy load on the disk.
- Performance depends on the number and types of requests.
- Requests for disk service can be influenced by the fileallocation method.
- The disk-scheduling algorithm should be written as a separate module of the operating system, allowing it to be replaced with a different algorithm if necessary.
- Either SSTF or LOOK is a reasonable choice for the default algorithm.

Disk Management

- Low-level formatting, or physical formatting Dividing a disk into sectors that the disk controller can read and write.
- To use a disk to hold files, the operating system still needs to record its own data structures on the disk.
 - Partition the disk into one or more groups of cylinders.
 - Logical formatting or "making a file system".
- Boot block initializes system.
 - The bootstrap is stored in ROM.
 - Bootstrap loader program.
- Methods such as sector sparing used to handle bad blocks.

Swap-Space Management

- Swap-space Virtual memory uses disk space as an extension of main memory.
- Swap-space can be carved out of the normal file system,or, more commonly, it can be in a separate disk partition.
- Swap-space management
 - 4.3BSD allocates swap space when process starts; holds text segment (the program) and data segment.
 - Kernel uses swap maps to track swap-space use.
 - Solaris 2 allocates swap space only when a page is forced out of physical memory, not when the virtual memory page is first created.

RAID Structure

RAID – multiple disk drives provides reliability via redundancy.

RAID is arranged into six different levels.

RAID

- **独立磁盘冗余阵列**是利用**一台磁盘阵列控制器**统一管理和控制一组磁盘驱动器,组成一个速度快、可靠性高的大容量磁盘系统。
 - □RAID是一组物理磁盘驱动器,操作系统把它看作 是一个单独的逻辑驱动器;
 - □数据分布在物理驱动器阵列中;
 - □使用冗余的磁盘容量保存奇偶校验信息,从而保证当一个磁盘失败时,数据具有可恢复性;

RAID

strip 0 strip 4 strip 8 strip 12

strip 1 strip 5 strip 9 strip 13

strip 2 strip 6 strip 10 strip 14

strip 3 strip 7 strip 11 strip 15

RAID0 无冗余

(a) RAID 0 (non-redundant)

strip 0 strip 4 strip 8 strip 12

strip 1 strip 5 strip 9 strip 13

strip 2 strip 6 strip 10 strip 14

strip 3 strip 7 strip 11 strip 15

strip 0 strip 4 strip 8 strip 12

strip 1 strip 5 strip 9 strip 13

strip 2 strip 6 strip 10 strip 14

strip 3 strip 7 strip 11 strip 15

RAID1 镜像

(b) RAID 1 (mirrored)

RAID

(c) RAID 2 (redundancy through Hamming code)

RAID3

交错位奇偶校验

(d) RAID 3 (bit-interleaved parity)

SSD

- Magnetic disks are mainstream of secondary storage
- Solid-state disks (SSD) will replace magnetic disk as the secondary storage

End of Chapter 12

