$\begin{array}{c} {\rm MATH1061/1002~Cheatsheet~(Linear~Algebra)} \\ {\rm Semester~1,~2024} \end{array}$

Abyan Majid

<u>O Source</u>

1	Con	nplex numbers	2	2.4 Vector space	4
	1.1	Imaginary unit	2	2.5 Unit vector	5
	1.2	Cartesian, standard polar, exponential		2.6 Linear combination	5
		polar forms	2	2.7 Parallel vectors	5
	1.3	Complex conjugate	2	2.8 Standard basis vectors	5
	1.4	Modulus of a complex number	2	2.9 Dot product	
	1.5	Principal argument	2	2.10 Theorems for dot products	
	1.6	Arithmetic in cartesian form	3	2.11 Angle between vectors using dot product .	6
	1.7	Arithmetic in polar forms	3	2.12 Orthogonal vectors	6
	1.8	Equality of complex numbers	3	2.13 Projections	6
	1.9	Roots of complex numbers	3	2.14 Cross products	6
	1.10	Complex exponential function	3	2.15 Properties for cross products	6
				2.16 Area inscribed by vectors in \mathbb{R}^3	7
2	Vec	tors	4	2.17 Angle between vectors using cross product	7
	2.1	Vector algebra	4	2.18 Forms of lines in \mathbb{R}^2	7
	2.2	Magnitude of a vector	4	2.19 Skewness of lines	7
	2.3	Useful theorems for vector algebra	4	2.20 Forms of planes in \mathbb{R}^3	8

1 Complex numbers

1.1 Imaginary unit

Imaginary unit
$$i = \sqrt{-1}$$

1.2 Cartesian, standard polar, exponential polar forms

Name	Form
Cartesian	z = a + bi
Standard Polar	$r(\cos\theta + i\sin\theta)$
Exponential Polar	$re^{i heta}$

1.3 Complex conjugate

Complex conjugate
Complex conjugate of $z = a + bi$ is $\overline{z} = a - bi$

Complex conjugate properties		
Property	Definition	
Conjugate of a Sum	$\overline{z+w} = \overline{z} + \overline{w}$	
Conjugate of a Product	$\overline{zw} = \overline{z} \times \overline{w}$	
Conjugate of a Power	$\overline{z^n} = (\overline{z})^n$	

1.4 Modulus of a complex number

1.5 Principal argument

Principal argument

The principal argument of $z \in \mathbb{C}$, denoted Arg z, satisfies $-\pi < \text{Arg } z \leq \pi$ So, to get principal argument, add or subtract multiples of 2π to/from θ .

Modulus properties		
Property	Definition	
Multiplicative Property of Moduli	zw = z w	
Division Property of Moduli	$\left \frac{z}{w}\right = \frac{ z }{ w }$	
Triangle Inequality	$ z+w \le z + w $	
Reverse Triangle Inequality	$ z - w \ge z - w $	

2

1.6 Arithmetic in cartesian form

Operation	$\mathbf{let}\ z = a + bi\ \mathbf{and}\ w = c + di$
Addition	z + w = (a+c) + (b+d)i
Subtraction	z - w = (a - c) + (b - d)i
Multiplication	$z \times w = (a+bi)(c+di)$
	$z \times w = ac + adi + bci + bdi^2$
	$z \times w = (ac - bd) + (ad + bc)i$
Division	$z \div w = \frac{z}{w} \times \frac{\overline{w}}{\overline{w}}$
	$z \div w = \frac{w + \overline{w}}{c + di} \times \frac{c - di}{c - di}$

1.7 Arithmetic in polar forms

let $z = re^{i\theta}$ and $w = se^{i\phi}$			
Operation	Exponential polar	Standard polar	
Multiplication	$zw = rse^{i(\theta + \phi)}$	$zw = rs(\cos(\theta + \phi) + i\sin(\theta + \phi))$	
Division	$\frac{z}{w} = (\frac{r}{s})e^{i(\theta - \phi)}$	$\frac{z}{w} = \frac{r}{s}(\cos(\theta - \phi) + i\sin(\theta - \phi))$	
Power	$z^n = r^n e^{in\theta}$ where $n \in \mathbb{Z}$	$z^n = r^n(\cos(n\theta) + i\sin(n\theta))$	

1.8 Equality of complex numbers

Equality in Cartesian form
$$(a+bi)=(c+di)$$
 if and only if $a=c, b=d$

Equality in polar forms
$$re^{i\theta}=se^{i\phi} \text{ if and only if } r=s \text{ and } \theta=\phi+2k\pi \text{ for } k\in\mathbb{Z}$$

1.9 Roots of complex numbers

When asked to find the roots of
$$z^n=\alpha$$

$$z=r^{\frac{1}{n}}e^{i(\frac{\theta+2k\pi}{n})} \text{ satisfy } z^n=\alpha \text{ for each } k=0,1,2,...,n-1.$$

1.10 Complex exponential function

Complex exponential function For z=a+bi, we define $e^z=e^ae^{bi}$, which means $e^z=e^a(\cos b+i\sin b)$ from which we know $|e^z|=e^a$ and $arg(e^z)=b$.

2 Vectors

2.1 Vector algebra

Let $\mathbf{u} = [u_1,, u_n], \mathbf{v} = [v_1,, v_n] \in \mathbb{R}^n, c \in \mathbb{R}$			
Operation What to do		Operation	What to do
Addition	$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 + v_1 \\ \vdots \\ u_n + v_n \end{bmatrix}$	Scalar multiplication	$c\mathbf{u} = \begin{bmatrix} cu_1 \\ \vdots \\ cu_n \end{bmatrix}$
Subtraction	$\mathbf{u} - \mathbf{v} = \begin{bmatrix} u_1 - v_1 \\ \vdots \\ u_n - v_n \end{bmatrix}$	Negation	$-\mathbf{u} = \begin{bmatrix} -u_1 \\ \vdots \\ -u_n \end{bmatrix}$

2.2 Magnitude of a vector

Magnitude of a vector
The magnitude (length) of a vector \mathbf{u} is given by
$ \mathbf{u} = \sqrt{u_1^2 + u_2^2 + \dots + u_n^2}$
Also note that $ c\mathbf{u} = c \mathbf{u} $

2.3 Useful theorems for vector algebra

Let $\mathbf{u} = [u_1,, u_n], \mathbf{v} = [v_1,, v_n] \in \mathbb{R}^n, c, d \in \mathbb{R}$		
and \mathbf{o} be the zero vector		
No	Theorem	
1	$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$	
2	$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$	
3	$\mathbf{u} + \mathbf{o} = \mathbf{u}$	
4	$\mathbf{u} + (-\mathbf{u}) = \mathbf{o}$	
5	$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$	
6	$\mathbf{u}(c+d) = c\mathbf{u} + d\mathbf{u}$	
7	$c(d\mathbf{u}) = (cd)\mathbf{u}$	
8	$1\mathbf{u} = \mathbf{u}$	

2.4 Vector space

Vector Space

A $vector\ space$ is a set V equipped with:

- Addition: For any $\mathbf{u}, \mathbf{v} \in V$, there exists $\mathbf{u} + \mathbf{v} \in V$.
- Scalar multiplication: For any $\mathbf{u} \in V$ and any scalar $c \in \mathbb{R}$, there exists $c\mathbf{u} \in V$.

These operations must satisfy properties (1)-(8) defined in Section 2.3.

Examples: \mathbb{R}^n and \mathbb{C} are both examples of vector spaces.

2.5 Unit vector

Unit vector

A "unit vector" is a vector of length 1. If $\mathbf{u} \in \mathbb{R}^n$, $||\mathbf{u}|| \neq 0$ then $\frac{1}{||\mathbf{u}||} \mathbf{u}$ is a unit vector.

2.6 Linear combination

Linear combination

A "linear combination" of $\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_k} \in \mathbb{R}^n$ is a vector of the form $C_1\mathbf{v_1} + C_2\mathbf{v_2} + ... + C_k\mathbf{v_k}$.

Example: [2, 2] is a linear combination of [-1, 2], [0, 6] because [2, 2] = (-2)[-1, 2] + (1)[0.6]

2.7 Parallel vectors

Parallel vectors

Vectors \mathbf{u} and \mathbf{v} are parallel if $\mathbf{u} = c\mathbf{v}$ or $\mathbf{v} = c\mathbf{u}$ for $c \in \mathbb{R}$.

2.8 Standard basis vectors

Standard basis vectors

 $e_1 = [1, 0, 0], e_2 = [0, 1, 0], e_3 = [0, 0, 1]$ are the standard basis vectors in \mathbb{R}^3 .

Similarly, $\mathbf{e_1} = [1, 0, ..., 0], \mathbf{e_2} = [0, 1, 0, ..., 0], ..., \mathbf{e_n} = [0, 0, ..., 0, 1] \in \mathbb{R}^n$ are the standard basis vectors in \mathbb{R}^n

2.9 Dot product

Dot product

For $\mathbf{u} = [u_1, ..., u_n], \mathbf{v} = [v_1, ..., v_n] \in \mathbb{R}^n$, we define the dot product $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + ... + u_n v_n \in \mathbb{R}$

2.10 Theorems for dot products

Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n, c \in \mathbb{R}$		
No	Theorem	
1	$\mathbf{u} \cdot \mathbf{v}$	
2	$\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$	
3	$(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v})$	
4	$\mathbf{u} \cdot \mathbf{u} \ge 0$	
5	$ \mathbf{u} = \sqrt{\mathbf{u} \cdot \mathbf{u}}$	
6	$ \mathbf{u} \cdot \mathbf{v} \le \mathbf{u} \mathbf{v} $ (Cauchy-Schwarz Inequality)	
7	$ \mathbf{u} + \mathbf{v} \le \mathbf{u} + \mathbf{v} $ (Triangle Inequality)	

2.11 Angle between vectors using dot product

Angle between vectors using dot product

We define angle between vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ to be a unique value $\theta \in [0, \pi]$ such that: $\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}||||\mathbf{v}||}$

which means we can also find $\mathbf{u}\cdot\mathbf{v}$ if we know the the magnitude of u and v, and the angle in between:

$$\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}||||\mathbf{v}|| \cos \theta$$

2.12Orthogonal vectors

Orthogonal vectors

Vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ are orthogonal iff $\mathbf{u} \cdot \mathbf{v} = 0$

$$\mathbf{u} \cdot \mathbf{v} = 0 \Longrightarrow \cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}||||\mathbf{v}||} = 0$$

Note: Orthogonal vectors are perpendicular
$$\mathbf{u} \cdot \mathbf{v} = 0 \Longrightarrow \cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}||||\mathbf{v}||} = 0$$

$$\theta = \cos^{-1}(0) = \frac{\pi}{2}, \text{ i.e. perpendicular.}$$

2.13**Projections**

Projections

The projection of \mathbf{u} onto \mathbf{v} is defined by

$$\mathrm{proj}_{\mathbf{v}}(\mathbf{u}) = (\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}})\mathbf{v}$$

Cross products 2.14

Cross products

Cross product of
$$\mathbf{u} = [u_1, u_2, u_3], \mathbf{v} = [v_1, v_2, v_3] \in \mathbb{R}^3$$
 is the vector
$$\mathbf{u} \times \mathbf{v} = \begin{bmatrix} u_2v_3 - u_3v_2 \\ u_3v_1 - u_1v_3 \\ u_1v_2 - u_2v_1 \end{bmatrix}$$

Properties for cross products 2.15

Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3, c \in \mathbb{R}$		
No	Property	
1	$\mathbf{u} \times \mathbf{v} \neq \mathbf{v} \times \mathbf{u}$ (not commutative)	
2	$\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) \neq (\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$ (not associative)	
3	$\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$ (anti-commutative)	
4	$\mathbf{u} \times \mathbf{u} = 0$	
5	$\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = 0 = \mathbf{v} \cdot (\mathbf{u} \times \mathbf{v})$	
	i.e. given 2 vectors, their cross product is orthogonal to both vectors.	
6	$\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w})$	
7	$c(\mathbf{u} \times \mathbf{v}) = (c\mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (c\mathbf{v})$	

2.16 Area inscribed by vectors in \mathbb{R}^3

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$				
Shape	Area			
Parallelogram	The area of the parallelogram inscribed by \mathbf{u}, \mathbf{v} is $ \mathbf{u} \times \mathbf{v} $			
Triangle	The area of the triangle inscribed by \mathbf{u}, \mathbf{v} is $\frac{1}{2} \mathbf{u} \times \mathbf{v} $			

2.17 Angle between vectors using cross product

Angle between vectors using cross product Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$ and θ the angle between them. Then, $||\mathbf{u} \times \mathbf{v}|| = ||\mathbf{u}|| ||\mathbf{v}|| \sin \theta$ which means $\theta = \sin^{-1} \frac{||\mathbf{u} \times \mathbf{v}||}{||\mathbf{u}|| ||\mathbf{v}||}$

2.18 Forms of lines in \mathbb{R}^2

Let

 ${\bf p}$: position vector pointing to the line

n: normal vector (vector orthogonal to the line)

d: direction vector (vector parallel to the line)

Name	Form	How to obtain	Survives \mathbb{R}^n
Normal form	$\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0$	1) Find $\mathbf{p}, \mathbf{n} \in \mathbb{R}^2$	No
		2) Write $\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0$	
General form	ax + by = c	1) Find the normal form	No
		2) Let $\mathbf{x} = [x, y], \mathbf{n} = [a, b], \text{ and write } c = \mathbf{n} \cdot \mathbf{p}$	
		3) Simplify as follows	
		$\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0$	
		$\implies [a,b] \cdot ([x,y] - \mathbf{p}) = 0$	
		$\implies [a,b] \cdot [x,y] - c = 0$	
		$\implies ax + by = c$	
Vector form	$\mathbf{x} = \mathbf{p} + t\mathbf{d}, t \in \mathbb{R}$	1) Find $\mathbf{p}, \mathbf{d} \in \mathbb{R}^2$	Yes
		2) Write $\mathbf{x} = \mathbf{p} + t\mathbf{d}, t \in \mathbb{R}$	
Parametric equations	$x = p_1 + td_1$	1) Find the vector form	Yes
	$y = p_2 + td_2$	2) Write equations using each corresponding	
	for $t \in \mathbb{R}$	components of \mathbf{x}, \mathbf{p} and \mathbf{d}	

2.19 Skewness of lines

Skewness of lines				
Two lines are "skew" if they are NOT parallel and do NOT intersect.				
(applicable only to \mathbb{R}^3 and above since all non-parallel lines in \mathbb{R}^2 has to intersect)				

7

2.20 Forms of planes in \mathbb{R}^3

Let

 $\mathbf{p}:$ position vector pointing to the line

 ${f n}$: normal vector (vector orthogonal to the line)

 $\mathbf{u},\mathbf{v}:$ direction vector (vector parallel to the line)

Name	Form	How to obtain	Survives \mathbb{R}^n
Normal form	$\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0$	1) Find $\mathbf{p}, \mathbf{n} \in \mathbb{R}^3$	No
		2) Write $\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0$	
General form	ax + by + cz = d	1) Find the normal form	No
		2) Let $\mathbf{x} = [x, y, z], \mathbf{n} = [a, b, c], \text{ and }$	
		write $d = \mathbf{n} \cdot \mathbf{p}$	
		3) Simplify as follows	
		$\mathbf{n} \cdot (\mathbf{x} - \mathbf{p} = 0)$	
		$\implies [a, b, c] \cdot ([x, y, z] - \mathbf{p}) = 0$	
		$\implies ax + by + cz = d$	
Vector form	$\mathbf{x} = \mathbf{p} + s\mathbf{u} + t\mathbf{v}$	1) Find $\mathbf{p}, \mathbf{u}, \mathbf{v} \in \mathbb{R}^3$	Yes
	for $s, t \in \mathbb{R}$	2) Write $\mathbf{x} = \mathbf{p} + s\mathbf{u} + t\mathbf{v}$, for $s, t \in \mathbb{R}$	
Parametric equations	$x = p_1 + su_1 + tv_1$	1) Find the vector form	Yes
	$y = p_2 + su_2 + tv_2$	2) Write equations using each corresponding	
	$z = p_3 + su_3 + tv_3$	components of $\mathbf{x}, \mathbf{p}, \mathbf{u}$ and \mathbf{v}	
	for $s, t \in \mathbb{R}$		