

planetmath.org

Math for the people, by the people.

relation between positive function and its gradient when its Hessian matrix is bounded

 $Canonical\ name \qquad Relation Between Positive Function And Its Gradient When Its Hessian Matrix Is Boundarius Function F$

 Date of creation
 2013-03-22 15:53:10

 Last modified on
 2013-03-22 15:53:10

 Owner
 Andrea Ambrosio (7332)

 Last modified by
 Andrea Ambrosio (7332)

Numerical id 16

Author Andrea Ambrosio (7332)

Entry type Theorem Classification msc 26D10

Let $f: \mathbb{R}^n \to \mathbb{R}$ a positive function, twice differentiable everywhere. Furthermore, let $\|\mathbf{H}_f(\mathbf{x})\|_2 \leq M, M > 0 \ \forall \mathbf{x} \in \mathbb{R}^n$, where $\mathbf{H}_f(\mathbf{x})$ is the Hessian matrix of $f(\mathbf{x})$. Then, for any $\mathbf{x} \in \mathbb{R}^n$,

$$\left\|\nabla f(\mathbf{x})\right\|_2 \le \sqrt{2Mf(\mathbf{x})}$$

Proof. Let \mathbf{x} , $\mathbf{x}_0 \in R^n$ be arbitrary points. By positivity of $f(\mathbf{x})$, writing Taylor expansion of $f(\mathbf{x})$ with Lagrange error formula around \mathbf{x}_0 , a point $\mathbf{c} \in R^n$ exists such that:

$$0 \leq f(\mathbf{x})$$

$$= f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^T \cdot \mathbf{H}_f(\mathbf{c}) \cdot (\mathbf{x} - \mathbf{x}_0)$$

$$= \left| f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^T \cdot \mathbf{H}_f(\mathbf{c}) \cdot (\mathbf{x} - \mathbf{x}_0) \right|$$

$$\leq f(\mathbf{x}_0) + |\nabla f(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0)| + \frac{1}{2} \left| (\mathbf{x} - \mathbf{x}_0)^T \cdot \mathbf{H}_f(\mathbf{c}) \cdot (\mathbf{x} - \mathbf{x}_0) \right|$$

$$\leq f(\mathbf{x}_0) + ||\nabla f(\mathbf{x}_0)||_2 ||\mathbf{x} - \mathbf{x}_0||_2 + \frac{1}{2} ||\mathbf{H}_f(\mathbf{c})||_2 ||\mathbf{x} - \mathbf{x}_0||_2^2 \qquad \text{(by Cauchy-Schwartz inequality)}$$

$$\leq f(\mathbf{x}_0) + ||\nabla f(\mathbf{x}_0)||_2 ||\mathbf{x} - \mathbf{x}_0||_2 + \frac{1}{2} M ||\mathbf{x} - \mathbf{x}_0||_2^2$$

The rightest side is a second degree polynomial in variable $\|\mathbf{x} - \mathbf{x}_0\|_2$; for it to be positive for any choice of $\|\mathbf{x} - \mathbf{x}_0\|_2$ (that is, for any choice of \mathbf{x}), the discriminant

$$\left\|\nabla f(\mathbf{x}_0)\right\|_2^2 - 4 \cdot \frac{1}{2} M f(\mathbf{x}_0)$$

must be negative, whence the thesis.

Note: The condition on the boundedness of the Hessian matrix is actually needed. In fact, in the Lagrange form remainder, the constant \mathbf{c} depends upon the point \mathbf{x} . Thus, if we couldn't rely on the condition $\|\mathbf{H}_f(\mathbf{x})\|_2 \leq M$, we could only state $f(\mathbf{x}_0) + \|\nabla f(\mathbf{x}_0)\|_2 \|\mathbf{x} - \mathbf{x}_0\|_2 + \frac{1}{2} \|\mathbf{H}_f(\mathbf{c}(\mathbf{x}))\|_2 \|\mathbf{x} - \mathbf{x}_0\|_2^2 \geq 0$ which, not being a second degree polynomial, wouldn't imply any particular further condition. Moreover, in the case n = 1, the lemma assumes the simpler form: Let $f: \mathbb{R} \to \mathbb{R}$ a positive function, twice differentiable everywhere. Furthermore, let $f''(x) \leq M, M > 0 \ \forall x \in \mathbb{R}$. Then, for any $x \in \mathbb{R}$, $|f'(x)| \leq \sqrt{2Mf(x)}$.