Transferência de Massa: Coeficientes de difusão

Isabel Coelhoso

imrc@fct.unl.pt

Lic. Engenharia Química e Biológica

Fenómenos de Transferência II

Coeficiente de Difusão

$$\mathbf{J}_{A} = -D_{AB}\nabla C_{A}$$

D = f(P, T, nat. componente)

Valores típicos de D:

Gases: $1 \times 10^{-5} - 1 \times 10^{-4} \text{ m}^2/\text{s}$

Líquidos: $0.5 \times 10^{-9} - 2 \times 10^{-9} \text{ m}^2/\text{s}$

Sólidos: $1 \times 10^{-24} - 1 \times 10^{-12} \text{ m}^2/\text{s}$

Coeficiente de Difusão

$$\mathbf{J}_{A} = -D_{AB}\nabla C_{A}$$

· A constante de proporcionalidade

$$D_{AB} = \frac{-J_{A,z}}{dc_A/dz} = (\frac{M}{L^2t})(\frac{1}{M/L^3 \cdot 1/L}) = \frac{L^2}{t}$$

• Semelhante à viscosidade cinemática, ν , e à difusividade térmica, α

Gas pair	Temperature (°K)	Diffusion coefficient (cm ² sec ⁻¹)
	282	0.196
Air-CH ₄	273.0	0.102
Air-C ₂ H ₅ OH	282	0.148
Air-CO ₂	317.2	0.177
	282	0.710
Air-H ₂	296.8	0.565
Air-D ₂	289.1	0.282
Air-H ₂ O	298.2	0.260
	312.6	0.277
	333.2	0.305
	282	0.658
Air-He	273.0	0.176
Air-O ₂	294	0.080
Air-n-hexane	294	0.071
Air-n-heptane	298.2	0.096
Air-benzene	299.1	0.086
Air-toluene	299.1	0.074
Air-chlorobenzene	299.1	0.074
Air-aniline	298.2	0.086
Air-nitrobenzene	299.1	0.099
Air-2-propanol	299.1	0.087
Air-butanol	299.1	0.089
Air-2-butanol	299.1	0.071
Air-2-pentanol	299.1	0.087
Air-ethylacetate	307.2	0.218
CH ₄ -Ar	298	0.675
CH ₄ -He	298.0	0.726
CH ₄ -H ₂	307.7	0.292
CH_4-H_2O	205.8	0.212

Misturas binárias a baixa pressão Teoria Cinética de Chapman- Enskog

Coeficientes de transporte são função da energia potencial de interacção entre um par de moléculas no gás

$$U(r) = 4 \varepsilon \left[(\sigma/r)^{12} - (\sigma/r)^{6} \right]$$

Potencial de Lennard - Jones Energia de interacção

Diâmetro de colisão

$$D_{AB} = 1,858x10^{-3} \frac{T^{\frac{3}{2}}}{P\sigma_{AB}^{2}\Omega_{D}} \sqrt{\frac{1}{M_{A}} + \frac{1}{M_{B}}}$$

D_{AB} = coeficiente de difusão da espécie A na espécie B em cm²/s M_A e M_B = massas moleculares das substâncias gasosas A e B.

P = pressão total em atm

 $\sigma_i = diâmetro de colisão (Å) (i = A ou B)$

 σ_{AB} = distância limite (Å)

T = temperatura em Kelvin

 Ω = integral de colisão (adimensional)

 $\sigma_{AB} = \acute{E}$ uma distância limite de colisão entre as moléculas A e B, ou seja, quando uma molécula B em movimento vindo ao encontro de uma molécula A parada, a molécula B chegará a uma distância limite, na qual é repelida pela primeira, conforme a figura abaixo.

Função da T e do potencial intermolecular

$$\sigma_{AB} = \frac{\sigma_A + \sigma_B}{2}$$
 $\varepsilon_{AB} = \sqrt{\varepsilon_A \varepsilon_B}$

$$\Omega_{\rm D} = f \left(k \, T / \epsilon_{\rm AB} \right)$$

Estes valores encontram-se tabelados!

Table 5.1-2. Lennard-Jones potential parameters found from viscosities

Substance		$\sigma(A)$	$\varepsilon/k_B({}^{\circ}{ m K})$
Ar	Argon	3.542	93.3
He	Helium	2.551	10.22
Kr	Krypton	3.655	178.9
Ne	Neon	2.820	32.8
Xe	Xenon	4.047	231.0
Air	Air	3.711	78.6
Br_2	Bromine	4.296	507.9
CCl ₄	Carbon tetrachloride	5.947	322.7
CF ₄	Carbon tetrafluoride	4.662	134.0
CHCl ₃	Chloroform	5.389	340.2
CH ₂ Cl ₂	Methylene chloride	4.898	356.3
CH ₃ Br	Methyl bromide	4.118	449.2
CH₃Cl	Methyl chloride	4.182	350
CH ₃ OH	Methanol	3.626	481.8
CH ₄	Methane	3.758	148.6
CO	Carbon monoxide	3.690	91.7
CO ₂	-Carbon dioxide	3.941	195.2
CS ₂	Carbon disulfide	4.483	467
C_2H_2	Acetylene	4.033	231.8
C_2H_4	Ethylene	4.163	224.7
C_2H_6	Ethane	4.443	215.7
C_2H_5Cl	Ethyl chloride	4.898	300
C_2H_5OH	Ethanol	4.530	362.6
CH ₃ OCH ₃	Methyl ether	4.307	395.0
CH_2CHCH_3	Propylene	4.678	298.9
CH₃CCH	Methylacetylene	4.761	251.8
C_3H_6	Cyclopropane	4.807	248.9
C_3H_8	Propane	5.118	237.1
n-C ₃ H ₇ OH	n-Propyl alcohol	4.549	576.7
CH ₃ COCH ₃	Acetone	4.600	560.2
CH ₃ COOCH ₅	Methyl acetate	4.936	469.8
$n-C_4H_{10}$	n-Butane	4.687	531.4
iso-C ₄ H ₁₀	Isobutane	5.278	330.1
$C_2H_5OC_2H_5$	Ethyl ether	5.678	313.8
CH ₃ COOC ₂ H ₅	Ethyl acetate	5.205	521.3

Table 5.1-3. The collision integral Ω					
k_BT/ε	Ω	k_BT/e	Ω	k_BT/ε	. Ω
0.30	2.662	1.65	1.153	4.0	0.8836
0.35	2.476	1.70	1.140	4.1	0.8788
0.40	2.318	1.75	1.128	4.2	0.8740
0.45	2.184	1.80	1.116	4.3	0.8694
0.50	2.066	1.85	1.105	4.4	0.8652
0.55	1.966	1.90	1.094	4.5	0.8610
0.60	1.877	1.95	1.084	4.6	0.8568
0.65	1.798	2.00	1.075	4.7	0.8530
0.70	1.729	2.1	1.057	4.8	0.8492
0.75	1.667	2.2	1.041	4.9	0.8456
0.80	1.612	2.3	1.026	5.0	0.8422
0.85	1.562	2.4	1.012	6	0.8124
0.90	1.517	2.5	0.9996	7	0.7896
0.95	1.476	2.6	0.9878	8	0.7712
1.00	1.439	2.7	0.9770	9	0.7556
1.05	1.406	2.8	0.9672	10	0.7424
1.10	1.375	2.9	0.9576	20	0.6640
1,15	1.346	3.0	0.9490	30	0.6232
1.20	1.320	3.1	0.9406	40	0.5960
1.25	1.296	3.2	0.9328	50	0.5756
1.30	1.273	3.3	0.9256	60	0.5596
1.35	1.253	3.4	0.9186	70	0.5464
1.40	1.233	3.5	0.9120	80	0.5352
1.45	1.215	3.6	0.9058	90	0.5256
1.50	1.198	3.7	0.8998	100	0.5130
1.55	1.182	3.8	0.8942	200	0.4644
1.60	1.167	3.9	0.8888	300	0.4360

Source: Data from Hirschfelder et al. (1954).

Variação com a Pressão e a Temperatura

$$D_{AB_{T_2,P_2}} = D_{AB_{T_1,P_1}} \left(\frac{P_1}{P_2}\right) \left(\frac{T_2}{T_1}\right)^{3/2} \boxed{\Omega_{D|T_1}}$$

$$\Omega_{D|T_2}$$

$$\sim 1 \text{ para Pe T baix as}$$

$$D_{AB} \propto T^{3/2}$$

$$D_{AB} \alpha 1/P$$

Faça uma estimativa do coeficiente de difusão do dióxido de carbono em ar a 20°C e à pressão atmosférica, utilizando a equação de Hirschfelder

$$D_{AB} = 0.001858 \frac{\sqrt{T^3 \left(\frac{1}{M_A} + \frac{1}{M_B}\right)}}{P\sigma_{AB}^2 \Omega_D}$$

$$\sigma_{AB} = 0.5 (\sigma_A + \sigma_B)$$

$$\varepsilon_{AB} = (\varepsilon_A \cdot \varepsilon_B)^{0.5}$$

$$\Omega_D = f (k T/\varepsilon_{AB})$$

$$A=CO_2$$
$$B=ar$$

$$\sigma_A = ?$$
 $\epsilon_A / k = ?$

$$\begin{array}{ll} \sigma_A = ? & \sigma_B = ? \\ \epsilon_A/k = ? & \epsilon_B/k = ? \end{array}$$

$$D_{AB} = 0.001858 \frac{\sqrt{T^3 \left(\frac{1}{M_A} + \frac{1}{M_B}\right)}}{P\sigma_{AB}^2 \Omega_D}$$

$$\begin{split} \sigma_{AB} &= 0.5 \; (\sigma_A + \sigma_B) {=} 3.826 \; \text{Angstrom} \\ \epsilon_{AB}/k {=} \; (\epsilon_A/k. \; \epsilon_B/k) \; ^{0.5} {=} 124 \; K \\ T &= 293 \; K \\ kT/\epsilon_{AB} {=} 2.36 \end{split}$$

$$\Omega_{\rm D} = f \left(kT/\epsilon_{\rm AB} \right) = 1.018$$

$$D_{AB} = 0.001858 \frac{\sqrt{T^3 \left(\frac{1}{M_A} + \frac{1}{M_B}\right)}}{P\sigma_{AB}^2 \Omega_D}$$

$$D_{AB} = 0.150 \text{ cm}^2/\text{s}$$

A=
$$CO_2$$
 B= ar
 σ_A = 3.941 Angstrom σ_B = 3.711 Angstrom
 ϵ_A/k = 195.2 K ϵ_B/k = 78.6 K

Interpolação linear!

kT/
$$\epsilon_{AB}$$
 Ω 2.3 1.026 2.4 1.012

$$D_{AB} = 0.150 \text{ cm}^2/\text{s}$$

A equação de Fuller

$$D_{AB} = \frac{10^{-3} T^{1.75} \left(\frac{1}{M_A} + \frac{1}{M_B}\right)^{1/2}}{P\left(\sum v\right)_A^{1/3} + \left(\sum v\right)_B^{1/3}}$$

Table 24.3 Atomic Diffusion Volumes for use in Estimating $D_{\rm AB}$ by Method of Fuller, Schettler, and Giddings

Atomic and Structure Diffusion-Volume Increments, v			
	16.5	Cl	19.5
Н	1.98	S	17.0
Ö	5.48	Aromatic ring	-20.2
N	5.69	Heterocyclic ring	-20.2

Diffusion Volumes for Simple Molecules, v					
H ₂	7.07	Ar	16.1	H₃O	12.7
D_2	6.70	Kr	22.8	CCIF ₂	114.8
He	2.88	CO	18. 9	SF.	69.7
N ₂	17.9	CO ₁	26.9	Cl_2	37.7
O_2	16.6	N ₁ O	35.9	Br_2	67.2
Δir	20.1	NH ₃	14.9	SO ₂	41.1

$$A = CO_2$$
 $B = ar$

$$D_{AB} = \frac{10^{-3} T^{1.75} \left(\frac{1}{M_A} + \frac{1}{M_B}\right)^{1/2}}{P\left(\sum v\right)_A^{1/3} + \left(\sum v\right)_B^{1/3}\right)^2}$$

$$D_{AB} = 0.152 \text{ cm}^2/\text{s}$$

Difusão em misturas de gases

$$D_{1-\text{mistura}} = \frac{1}{\dot{y_2} / D_{1-2} + \dot{y_3} / D_{1-3} + ... + \dot{y_n} / D_{1-n}}$$

$$y_2' = \frac{y_2}{y_2 + y_3 + \dots + y_n}$$

Difusão em misturas de gases

Determine o coeficiente de difusão do CO numa mistura gasosa cuja composição é:

$$y_{O2} = 0.20$$

 $y_{N2} = 0.70$
 $y_{CO} = 0.10$

A mistura está à temperatura de 298 K e à pressão de 2 atm.

Os coeficientes de difusão do CO em oxigénio e azoto são:

$$\mathcal{D}_{\text{CO-O2}} = 0.185 \text{ x } 10^{-4} \text{ m}^2/\text{s}$$
 273 K, 1 atm $\mathcal{D}_{\text{CO-N2}} = 0.192 \text{ x } 10^{-4} \text{ m}^2/\text{s}$ 288 K, 1 atm

$$\mathcal{D}_{CO\text{-mistura}} = ?$$

Difusão em misturas de gases

A mistura está à temperatura de 298 K e à pressão de 2 atm

$$D_{AB_{T_2,P_2}} = D_{AB_{T_1,P_1}} \left(\frac{P_1}{P_2}\right) \left(\frac{T_2}{T_1}\right)^{3/2} \frac{\Omega_{D|T_1}}{\Omega_{D|T_2}}$$

Os coeficientes de difusão do CO em oxigénio e azoto são:

$$\mathfrak{D}_{\text{CO-O2}} = 0.105 \times 10^{-4} \text{ m}^2/\text{s}$$
 298 K, 2 atm $\mathfrak{D}_{\text{CO-N2}} = 0.101 \times 10^{-4} \text{ m}^2/\text{s}$ 298 K, 2 atm

$$y_2' = \frac{y_2}{y_2 + y_3 + \dots + y_n}$$

$$y_{O2} = 0.20$$
 $y'_{O2} = 0.20/0.9 = 0.22$

$$y_{N2} = 0.70$$
 $y'_{N2} = 0.70/0.9 = 0.78$

$$y_{CO} = 0.10$$

$$D_{1-\text{mistura}} = \frac{1}{y_2' / D_{1-2} + y_3' / D_{1-3} + ... + y_n' / D_{1-n}}$$

$$\mathcal{D}_{\text{CO-mistura}} = 0.102 \times 10^{-4} \text{ m}^2/\text{s}$$

Coeficientes de Difusão em H2O

Solute	$D(\cdot 10^{-5} \mathrm{cm^2/sec})$	
Argon	2.00	
Air	2.00	
Bromine	1.18	
Carbon dioxide	1.92	
Carbon monoxide	2.03	
Chlorine	1.25	
Ethane	1.20	
Ethylene	1.87	
Helium	6.28	
Hydrogen	4.50	
Methane	1.49	
Nitric oxide	2.60	
Nitrogen	1.88	
Oxygen	2.10	
Propane	0.97	
Ammonia	1.64	
Benzene	1.02	
Hydrogen sulfide	1.41	
Sulfuric acid	1.73	
Nitric acid	2.60	
Acetylene	0.88	
Methanol	0.84	
Ethanol	0.84	
1-Propanol	0.87	
2-Propanol	0.87	
n-Butanol	0.77	
	0.04	

Solute ^a	Solvent	$D(\cdot 10^{-5} \text{cm}^2/\text{sec})$
Acetone	Chloroform	2.35
Benzene		2.89
n-Butyl acetate	52	1.71
Ethyl alcohol (15°)		2.20
Ethyl coefee		2.14
Ethyl acetate		2.02
Methyl ethyl ketone		2.13
Acetic acid Aniline	Benzene	2.09
Benzoic acid		1.96
Cyclohexane		1.38
		2.09
Ethyl alcohol (15°) n-Heptane		2.25
Methyl ethyl ketone (30°)		2.10
Oxygen (29.6°)		2.09
Toluene		2.89
Totache		1.85
Acetic acid	Acetone	3.31
Benzoic acid		2.62
Nitrobenzene (20°)	털	2.94
Water		4.56

- Difusão (moléculas ou iões)
- ➤ Teoria hidrodinâmica
- ➤ Teoria de Eyring

Lei de Stokes

$$\frac{1}{6\pi\mu R_A} \sim u_A$$

Equação de Nernst-Einstein

$$D_A = \mu_A RT$$

Mobilidade partícula

$$D_A = \frac{k_B T}{6\pi\mu R_A}$$

Equação de Stokes - Einstein

Soluções diluídas e moléculas esféricas!

Correlação de Wilke-Chang

Soluções diluídas

$$\frac{D_{AB}\mu_B}{T} = \frac{7.4 \times 10^{-8} (\Phi_B M_B)^{1/2}}{V_A^{0.6}}$$

Depende:

✓T

✓ Concentração

$$\Phi_{\rm B}$$
= 2.26 Água
= 1.9 Metanol
= 1.5 Etanol
= 1 Benzeno, éter,...

Ethanol (1) - Water (2) Diffusivities

T 40 °C

Tyn and Calus J.Chem.Eng.Data 20, 310, 1975 Para diluição infinita equação de Hayduk-Laudie:

$$D_{AB} = 13.26 \times 10^{-5} \,\mu_B^{-1.14} V_A^{-0.589}$$

Equação de Scheibel elimina $\Phi_{\rm B}$,

$$\frac{D_{AB}\mu_B}{T} = \frac{K}{V_A^{1/3}} \qquad K = (8.2 \times 10^{-8}) \left[1 + \left(\frac{3V_B}{V_A} \right)^{2/3} \right]$$

Table 24.4 Molecular Volumes at Normal Boiling Point for Some Commonly Encountered Compounds

Compound	Molecular volume, cm ³ /g mole	Compound	Molecular volume, in cm ³ /g mole
Hydrogen, H ₂	14.3	Nitric oxide, NO	23.6
Oxygen, O ₂	25.6	Nitrous oxide, N ₂ O	36.4
Nitrogen, N ₂	31.2	Ammonia, NH ₃	25.8
Air	29.9	Water, H ₂ O	18.9
Carbon monoxide, CO	30.7	Hydrogen sulfide, H ₂ S	32.9
Carbon dioxide, CO ₂	34.0	Bromine, Br ₂	53.2
Carbonyl sulfide, COS	51.5	Chlorine, Cl ₂	48.4
Sulfur dioxide, SO ₂	44.8	Iodine, I ₂	71.5

Determine o valor do coeficiente de difusão do oxigénio em água à temperatura de 25°C utilizando as correlações de Wilke-Chang e Scheibel e compare com o valor experimental $\mathbf{\mathcal{D}}_{\text{oxigénio-água}} = 2.1 \text{ x } 10^{-9} \text{ m}^2/\text{s}.$

$$\frac{D_{AB}\mu_{B}}{T} = \frac{7.4 \times 10^{-8} (\Phi_{B} M_{B})^{1/2}}{V_{A}^{0.6}}$$

$$\begin{array}{c} \mu_B \!\!= 1 cP \\ V_A \!\!=\!\! 25.6 \ cm^3 \!/mol \end{array}$$

$$D=2x10^{-5} \text{ cm}^2/\text{s}$$

$$\frac{D_{AB}\mu_{B}}{T} = \frac{K}{V_{A}^{1/3}}$$

$$K = (8.2 \times 10^{-8}) \left[1 + \left(\frac{3V_{B}}{V_{A}} \right)^{2/3} \right]$$

$$V_{\rm B}=18.9~{\rm cm}^3/{\rm mol}$$

$$D=2.2 \times 10^{-5} \text{ cm}^2/\text{s}$$