

Ayudantía 10 - Semiconductores: Transistores

Pedro Morales Nadal

pedro.morales1@mail.udp.cl

© +56 9 30915977

Edicson Solar Salinas

edicson.solar@mail.udp.cl

© +56 9 92763279

Shi Hao Zhang shi.zhang@mail.udp.cl

© +56 9 90787770

Ingeniería Civil en Informática y Telecomunicaciones

¿Qué veremos?

- Recordatorio de Thévenin
- Transistores
 - ► ¿Qué son?
 - ► ¿Para que se usan?
 - Tipos
 - Curvas
- Ejercicios

Leve aclaración

Recordatorio: Thévenin

Circuito equivalente de Thévenein

Un circuito se reduce a una fuente de tensión (V_{TH}) en serie con una resistencia equivalente (R_{TH})

Pasos

- 1 Retirar la carga
- 2 Calcular resistencia equivalente
 - 2.a Si hay fuente de tensión: cortocircuito
 - 2.b Si hay fuente de corriente: circuito abierto
- 3 Calcular voltage entre terminales abiertas: Thévenin
- 4 Calcular corriente entre terminales cortocircuitadas: Norton

Recordatorio: Thévenin

Ejemplo

Encontrar el circuito equivalente de Thévenin entre los puntos A y B

Recordatorio: Thévenin

Ejemplo

Chao carga y chao fuente

Hola fuente y calcular

Circuito equivalente de Thévenin

$$V_{TH} = V \cdot \frac{R_2}{R_1 + R_2}$$

$$R_{TH} = \frac{R_1 + R_2}{R_1 \cdot R_2}$$

Transistores

¿Qué son?

Transistores ; Para qué?

- Como switches
- Como amplificadores
- Para rajar en el ramo

Transistor NPN

Circuitos

Circuito que nos gusta

Circuito que nos gusta

Voltajes

- V_{CC}: Fuente del colector
- V_{BB}: Fuente de la base
- V_{EE}: Fuente del emisor (tierra)
- $V_{CB} = V_C V_B$
- $V_{BF} = V_B V_F$ (Aprox. 0.7 V)
- $V_{CF} = V_C V_F$

Corrientes

- I_C : C. colectora = βI_B Z. ACTIVA
- I_B: C. basal, tiene que ser chica
- I_E : C. emisora = $I_B + I_C$

Zonas

CORTE

- $I_C = 0$
- $V_{CE} = V_{CC}$
- V_B < V_E

ACTIVA

- $0 < I_C < I_{Cmax}$
- $0 < V_{CE} < V_{CC}$
- V_B ≥ V_E

SATURACIÓN

- $I_C = I_{Cmax}$
- $V_{CE} = 0$
- V_B >> V_E

Gráfico

Ejericicio 1

Sabiendo que para el circuito de la figura $V_{CC}=2V_{CE}$, determine y calcule V_{CC},R_C,β y R. Tome como referencia la curva característica de salida, su recta de carga y punto de operación.

Eiercicio 1: Desarrollo

Gráfico

En corte:

• $I_C = 0 A \land V_{CF} = V_{CC} = 16 V$

En saturación:

•
$$V_{CE} = 0 \Rightarrow I_C = I_{Cmax} = 8 \text{ mA} = \frac{V_{CC}}{R_C}$$

•
$$\frac{V_{CC}}{R_C} \Leftrightarrow R_C = \frac{V_{CC}}{I_{Cmax}} = \frac{16}{8 \times 10^{-3}} = 2 \, k\Omega$$

En zona activa:

•
$$V_{CC} = 2V_{CE} \Leftrightarrow V_{CE} = \frac{V_{CC}}{2} = \frac{16}{2} = 8 V$$

•
$$I_B = 25 \, \mu A \, \wedge \, I_C = 4 \, mA$$

•
$$I_C = \beta I_B \Leftrightarrow \beta = \frac{I_C}{I_B} = \frac{4 \times 10^{-3}}{25 \times 10^{-6}} = 160$$

Ejercicio 1: Desarrollo

Circuito

Reescribiendo el circuito

Eiercicio 1: Desarrollo

Thévenin - Resistencia

Eiercicio 1: Desarollo

Thévenin - Voltaje

Por KVL:

$$V_{CC} - 2I \cdot R = 0 \Leftrightarrow V_{CC} = 2IR$$

 $\Leftrightarrow \frac{V_{CC}}{2R} = I$

Por ley de Ohm:

$$V_{TH} = I \cdot R$$

$$= \frac{V_{CC}}{2R} \cdot R$$

$$= \frac{V_{CC}}{2}$$

Equivalente de Thévenin

Ejercicio 1: Desarrollo

Crcuito lindo - Reemplazar valores

Ejercicio 1: Desarrollo

Circuitlo lindo - Calcular R

Ejericicio 2

Dado un setup (bastante) similar al del ejercicio anterior, encuentre los valores de R, R_C y R_E , sabiendo que $V_E=1.5\ V$

Eiercicio 2: Desarrollo

Gráfico

En corte:

•
$$I_C = 0 A \wedge V_{CE} = V_{CC} = 20 V$$

En zona activa:

•
$$V_{CE} = 3 V, I_B = 120 \mu A, I_C = 12 mA$$

•
$$V_{CE} = 3 \ V \ \land \ V_E = 1.5 \ V \Rightarrow V_C = 4.5 \ V$$

•
$$V_{BE} = 0.7 V \wedge V_E = 1.5 V \Rightarrow V_B = 2.2 V$$

•
$$I_E = I_B + I_C = 12 + 0.12 = 12.12 \, mA$$

•
$$I_C = \frac{V_{CC} - V_C}{R_C} \Rightarrow R_C = \frac{V_{CC} - V_C}{I_C} \approx 1292 \,\mathrm{k}\Omega$$

•
$$I_E = \frac{V_E - V_{EE}}{R_E} \Rightarrow R_E = \frac{V_E - V_{EE}}{I_E} \approx 124 \,\Omega$$

Ejercicio 2: Desarrollo

Circuito

Reescribiendo el circuito

Ejercicio 2: Desarrollo

Thévenin - Resistencia

Chao fuente y carga

Reescribir y en paralelo

$$4R//R = \left(\frac{1}{4R} + \frac{1}{R}\right)^{-1} = \frac{4R}{5}$$

Rth

Ejercicio 2: Desarollo

Thévenin - Voltaje

Hola fuente y calcular voltaje

Por KVL:

$$V_{CC} - 5I \cdot R = 0 \Leftrightarrow V_{CC} = 5IR$$

$$\Leftrightarrow \frac{V_{CC}}{5R} = I$$

Por ley de Ohm:

$$V_{TH} = I \cdot R$$

$$= \frac{V_{CC}}{5R} \cdot R$$

$$= \frac{V_{CC}}{5}$$

Equivalente de Thévenin

Ejercicio 2: Desarrollo

Crcuito lindo - Reemplazar valores

Ejercicio 2: Desarrollo

Circuitlo lindo - Calcular R

¿DUDAS?

CHAO GENTE

