

All Rights Reserved

UNIVERSITY OF GHANA

SECOND SEMESTER EXAMINATIONS, 2012/2013

LEVEL 100: BACHELOR OF SCIENCE IN ENGINEERING FAEN 108: BASIC ELECTRONICS (3 Credits)

TIME ALLOWED: THREE HOURS (3hrs)

Index Number:	Signature:
muex number.	Signature

Answer all questions in the answer booklet.

For all calculation questions, write down your final answers in the space provided. All symbols have their usual meaning.

1. [15 marks] Find the currents flowing through all resistors in the circuit as well as the voltage drops across them.

$$R_1$$
 = 5 Ω , R_2 = 10 Ω , R_3 = 8 Ω , R_4 = 6 Ω , R_5 = 15 Ω , V_1 = 25 V and V_2 = 20 V

$$I_{R1} =$$

$$I_{R2} =$$

$$I_{R3} =$$

$$I_{R4} =$$

$$I_{R5} =$$

$$V_{R1} =$$

$$V_{R2} =$$

$$V_{R3} =$$

$$V_{R4} =$$

$$V_{R5} =$$

2. [L0marks] For the circuit below, calculate the voltages at the nodes. Assume that the diode is ideal with linear forward resistance $R_F = 15k\Omega$ and $V_\phi = 0.7V$

 $R_1=3~K\Omega,~R_2=10~K\Omega,~R_3=6~K\Omega,~R_4=9~K\Omega,~R_5=15~K\Omega$ and Voltage $V_1=15V$

$$Va =$$

$$Vb = \boxed{}$$

3. (a) [10 marks] A silicon junction diode has v = 0.7V at i = 1mA. Find the voltage drop at i = 0.1mA and i = 10mA, given a thermal voltage $V_T = 25mV$.

Hint: Saturation current, I_S is constant for a particular diode.

- (b) [5 marks] Sketch a graph showing the forward and reverse characteristics of a typical silicon diode.
- (c) [5 marks] Briefly explain any two phenomena responsible for the breakdown region of a diode
- 4. (a) [8 marks] Mention four (4) types of diodes and briefly state their peculiar applications
 - (b) [17 marks] For the circuit shown below, measurement indicates that $V_B = -1.5V$. Assuming $V_{BE} = 0.7$, calculate V_E , α , β , V_C . If a transistor with $\beta = \infty$ is used, what values of V_B , V_C and V_E result

٠ ـ .	
Index Number:	
LITUCA F ULLILOCI.	

Signature:

When
$$V_B = -1.5V$$

$$V_E = \boxed{ }$$

$$\alpha = \boxed{ }$$

$$\beta = \boxed{ }$$

 $V_C =$

If
$$\beta = \infty$$

$$V_B = \boxed{ }$$

$$V_C = \boxed{ }$$

$$V_E = \boxed{ }$$

