In [10]: import pandas as pd
import numpy as np
import seaborn as sns
df = pd.read_csv('project-IBM data science\data analysis with python\kc_house_dat
df.head()

Out[10]:

	Unnamed: 0	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot
0	0	7129300520	20141013T000000	221900.0	3.0	1.00	1180	5650
1	1	6414100192	20141209T000000	538000.0	3.0	2.25	2570	7242
2	2	5631500400	20150225T000000	180000.0	2.0	1.00	770	10000
3	3	2487200875	20141209T000000	604000.0	4.0	3.00	1960	5000
4	4	1954400510	20150218T000000	510000.0	3.0	2.00	1680	8080

5 rows × 22 columns

In [17]: df.dtypes

Out[17]: Unnamed: 0 int64 id int64 date object price float64

bedrooms float64 bathrooms float64 sqft living int64 sqft lot int64 floors float64 waterfront int64 view int64 condition int64 grade int64

sqft_above int64 sqft_basement int64 yr_built int64 yr_renovated int64 zipcode int64

lat float64 long float64

sqft_living15 int64
sqft_lot15 int64

dtype: object

```
In [3]: df.drop('id', axis=1, inplace=True)
    df.drop('Unnamed: 0', axis=1, inplace=True)
    df.describe()
```

Out[3]:

	waterfront	floors	sqft_lot	sqft_living	bathrooms	bedrooms	price
21613.00	21613.000000	21613.000000	2.161300e+04	21613.000000	21603.000000	21600.000000)e+04
0.23	0.007542	1.494309	1.510697e+04	2079.899736	2.115736	3.372870	e+05
0.76	0.086517	0.539989	4.142051e+04	918.440897	0.768996	0.926657	?e+05
0.00	0.000000	1.000000	5.200000e+02	290.000000	0.500000	1.000000)e+04
0.00	0.000000	1.000000	5.040000e+03	1427.000000	1.750000	3.000000)e+05
0.00	0.000000	1.500000	7.618000e+03	1910.000000	2.250000	3.000000)e+05
0.00	0.000000	2.000000	1.068800e+04	2550.000000	2.500000	4.000000)e+05
4.00	1.000000	3.500000	1.651359e+06	13540.000000	8.000000	33.000000)e+06

In [7]: df['floors'].value_counts().to_frame()

Out[7]:

	floors
1.0	10680
2.0	8241
1.5	1910
3.0	613
2.5	161
3.5	8

In [12]: sns.boxplot(x='waterfront', y='price', data=df)

Out[12]: <AxesSubplot:xlabel='waterfront', ylabel='price'>

In [14]: sns.regplot(x='sqft_above', y='price', data=df)

Out[14]: <AxesSubplot:xlabel='sqft_above', ylabel='price'>

In [16]: import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression

```
In [19]: X = df[['long']]
         Y = df['price']
         lm = LinearRegression()
         1m
         lm.fit(X,Y)
         lm.score(X, Y)
         U = df[['sqft_living']]
         V = df['price']
         lm.fit(U,V)
         lm.score(U,V)
Out[19]: 0.4928532179037931
In [25]: features =["floors", "waterfront","lat" ,"bedrooms" ,"sqft_basement" ,"view" ,"ba
         lm = LinearRegression()
         1m
         X = df[['floors']]
         Y = df['price']
         lm.fit(X,Y)
         lm.score(X,Y)
Out[25]: 0.06594310068341092
In [27]: Input=[('scale',StandardScaler()),('polynomial', PolynomialFeatures(include_bias=
         pipe=Pipeline(Input)
         pipe
         pipe.fit(X,Y)
         pipe.score(X,Y)
         NameError
                                                    Traceback (most recent call last)
         <ipython-input-27-71cc21f57b41> in <module>
         ----> 1 Input=[('scale', StandardScaler()),('polynomial', PolynomialFeatures(inc
         lude bias=False)),('model',LinearRegression())]
               2 pipe=Pipeline(Input)
               3 pipe
               4 pipe.fit(X,Y)
               5 pipe.score(X,Y)
         NameError: name 'StandardScaler' is not defined
In [32]: from sklearn.model selection import cross val score
         from sklearn.model selection import train test split
         from sklearn.linear model import Ridge
         import matplotlib.pyplot as plt
```

```
In [29]: features =["floors", "waterfront", "lat", "bedrooms", "sqft basement", "view", "basement", "view", "basement, "basemen
                      X = df[features ]
                      Y = df['price']
                      x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.15, random)
                      print("number of test samples :", x test.shape[0])
                      print("number of training samples:",x train.shape[0])
                      number of test samples : 3242
                      number of training samples: 18371
In [33]: pr=PolynomialFeatures(degree=2)
                      x_train_pr=pr.fit_transform(x_train[['floors', 'waterfront','lat' ,'bedrooms' ,'s
                      x_test_pr=pr.fit_transform(x_test[['floors', 'waterfront','lat' ,'bedrooms' ,'sqf
                      RidgeModel=Ridge(alpha=0.1)
                      RidgeModel.fit(x_train_pr, y_train)
                      RidgeModel.score(x_train_pr, y_train)
                      width = 12
                      height = 10
                      plt.figure(figsize=(width, height))
                      plt.plot(ALFA,Rsqu test, label='validation data ')
                      plt.plot(ALFA,Rsqu_train, 'r', label='training Data ')
                      plt.xlabel('alpha')
                      plt.ylabel('R^2')
                      plt.legend()
                                                                                                                         Traceback (most recent call last)
                      NameError
                      <ipython-input-33-bf737e8aeb84> in <module>
                      ---> 1 pr=PolynomialFeatures(degree=2)
                                    2 x_train_pr=pr.fit_transform(x_train[['floors', 'waterfront','lat' ,'bed
                      rooms' ,'sqft_basement' ,'view' ,'bathrooms','sqft_living15','sqft_above','grad
                      e','sqft living']])
                                    3 x test pr=pr.fit transform(x test[['floors', 'waterfront','lat','bedro
                      oms','sqft_basement','view','bathrooms','sqft_living15','sqft_above','grade'
                       ,'sqft living']])
                                    4
                                    5 RidgeModel=Ridge(alpha=0.1)
                      NameError: name 'PolynomialFeatures' is not defined
  In [ ]:
  In [ ]:
```