DEUTSCHE DEMOKRATISCHE REPUBLIK

(12) Wirtschaftspatent

Erteilt gemäß § 17 Absatz 1 Patentgesetz

PATENTSCHRIFT

(19) DD (11) 256 693 A1

4(51) C 07 C 154/02 C 07 D 213/78 C 07 D 285/08

AMT FÜR ERFINDUNGS- UND PATENTWESEN

In der vom Anmelder eingereichten Fassung veröffentlicht

(21) WP C 07 C / 281 057 2 (22) 27.09.85. (44) 18.05.88

(71) VEB Chemiekombinat Bitterfeld, Zörbiger Straße, Bitterfeld, 4400, DD

(72) Walek, Wolfgang, Dr. rer. nat. Dipl.-Chem.; Pallas, Manfred, Dr. rer. nat. Dipl.-Chem.; Steinke, Walter, Dr. rer. nat. Dipl.-Chem.; Kochmann, Werner, Prof. Dr. rer. nat. Dipl.-Chem.; Schöppe, Günter, Dr. rer. nat. Dipl.-Chem., DD

(54) Verfahren zur Herstellung von Cyanimidodithiokohlensäureestern

(57) Die Erfindung betrifft ein Verfahren zur Herstellung von Cyanimidodithiokohlensäureestern der allgemeinen Formel III, in der

R₁ = Alkyl, Alkenyl oder Aralkyl,

R₂ = Aryl oder Hetaryl, die gegebenenfalls substituiert sein können und

X = Sauerstoff oder Schwefel

bedeuten. Erfindungsgemäß werden

Monoester-kaliumsalze der allgemeinen Formel I mit einem 20-30fachem molaren Überschuß an Bromchlormethan in Gegenwart von 0,5 bis 2 Mol-% eines

Phasentransferkatalysators wie

Triethyl-benzyl-ammoniumbromid bei Temperaturen zwischen 30°C und 60°C zunächst chlormethyliert und die erhaltenen Chlormethyl-cyanimidodithiocarbonate der allgemeinen Formel II anschließend mit Alkalithiolaten oder -phenolaten umgesetzt. Formeln (I), (II) und (III)

$$\begin{array}{c}
\text{ES} \\
\text{R}_{1}\text{S}
\end{array}$$

$$\begin{array}{c}
\text{CH}_{2}\text{BrC1}
\end{array}$$

$$\begin{array}{c}
\text{CICH}_{2}\text{S} \\
\text{R}_{1}\text{S}
\end{array}$$

$$\begin{array}{c}
\text{C} = \text{M} - \text{C} = \text{M}
\end{array}$$

$$\begin{array}{c}
\text{R}_{2}\text{III}
\end{array}$$

$$\begin{array}{c}
\text{R}_{2}\text{ICH}_{2}\text{S} \\
\text{R}_{1}\text{S}
\end{array}$$

$$\begin{array}{c}
\text{C} = \text{M} - \text{C} = \text{M}
\end{array}$$

$$\begin{array}{c}
\text{CIII}
\end{array}$$

Erfindungsanspruch:

Verfahren zur Herstellung von Cyanimidodithiokohlensäureestern der allgemeinen Formel III, in der

R₁ = Alkyl, Alkenyl oder Aralkyl,

 R_2 = Aryl oder Hetaryl, die gegebenenfalls substituiert sein können und

X = Sauerstoff oder Schwefel

bedeuten, gekennzeichnet dadurch, daß man Monoester-kaliumsalze der allgemeinen Formel I mit einem 20–30fachem molaren Überschuß an Bromchlormethan in Gegenwart von 0,5 bis 2 Mol-% eines Phasentransferkatalysators wie Triethyl-benzyl-ammoniumbromid bei Temperaturen zwischen 30°C und 60°C zunächst chlormethyliert und die erhaltenen Chlormethyl-cyanimidodithiocarbonate der allgemeinen Formel II anschließend mit Alkalithiolaten oder -phenolaten umsetzt.

Hierzu 1 Seite Formeln

Anwendungsgebiet der Erfindung

Die Erfindung betrifft ein Verfahren zur Herstellung bestimmter unsymmetrisch substituierter Ester der Cyanimidodithiokohlensäure, die u. a. als Zwischenprodukte von Interesse sind.

Charakteristik der bekannten technischen Lösungen

Unsymmetrisch substituierte Ester der Cyanimidodithiokohlensäure sind seit längerem bekannt (J. Org. Chemistry 32, 1566 [1967]).

Aryl- bzw. Hetarylthiomethyl- und Aryl- bzw. Hetaryloxymethylcyanimidodithiocarbonate sind in der Literatur bisher nicht beschrieben worden. Sie sind prinzipiell jedoch durch Alkylierung der Monoester-kalium-salze der Cyanimidodithiokohlensäure mit Aryl- und Hetaryl-chlormethylethern bzw. -thioethern zugänglich.

Aryl-chlormethylether sind bekanntlich aber wenig stabil, recht hydrolyseempfindlich und nur unter großem präparativem Aufwand herstellbar (J. appl. Chem. 3, 266 [1953]).

Die Verfahren zur Herstellung von Aryl-chlormethylthioethern, beispielsweise aus den entsprechenden Thiolen und Formaldehyd/Salzsäure (J. Amer. Chem. Soc. 67, 655 [1945]) oder mit Bromchlormethan (J. org. Chemistry 42, 3094 [1977]) sind nicht generell anwendbar, so daß bestimmte, vor allem Hetaryl-chlormethylthioether auf diesem Wege nicht herstellbar und aus der Literatur bisher nicht bekannt sind.

Ziel der Erfindung

Ziel der Erfindung ist es, ein einfaches Verfahren zur Herstellung bestimmter unsymmetrisch substituierter Ester der Cyanimidodithiokohlensäure zu entwickeln.

Darlegung des Wesens der Erfindung

Diese Aufgabe, Cyanimidodithiokohlensäureester der allgemeinen Formel III, in der

R₁ = Alkyi, Alkenyi oder Aralkyi,

R₂ = Aryl oder Hetaryl, die gegebenenfalls substituiert sein können und

X = Sauerstoff oder Schwefel

bedeuten, herzustellen, wird erfindungsgemäß dadurch gelöst, daß man Monoester-kaliumsalze der allgemeinen Formel I mit einem 20–30fachem molaren Überschuß an Bromchlormethan in Gegenwart von 0,5 bis 2 Mol-% eines Phasentransferkatalysators wie Triethyl-benzyl-ammoniumbromid bei Temperaturen zwischen 30°C und 60°C zunächst

Phasentransferkatalysators wie Triethyl-benzyl-ammoniumbromid bei Temperaturen zwischen 30°C und 60°C zunächst chlormethyliert und die erhaltenen Chlormethyl-cyanimidodithiocarbonate der allgemeinen Formel II anschließend mit Alkalithiolaten oder -phenolaten umsetzt.

Die als Ausgangsprodukt dienenden Monoester-kaliumsalze der Cyanimidodithiokohlensäureester (Formel I) sind nach bekannten Methoden zugänglich (J. Org. Chemistry 32, 1566 [1967]).

Ausführungsbeispiel

Die Beispiele sollen das erfindungsgemäße Verfahren näher erläutern.

Beispiel 1:

Herstellung von Chlormethyl-cyanimidodithiocarbonaten (Formel II)

a) Chlormethyl-methyl-cyanimidodithiocarbonat: 68 g (0,4 mol) Kalium-methyl-cyanimidodithiocarbonat werden in 800 ml Bromchlormethan suspendiert und nach Zusatz von 1,5 g Triethylbenzyl-ammoniumbromid 15 Stunden bei 35–45°C gerührt. Dann trennt man vom ausgeschiedenen Kaliumbromid ab, wäscht die Lösung mit Wasser und destilliert das überschüssige Bromchlormethan ab. Der erhaltene Rückstand wird aus Ethanol umkristallisiert.

Ausbeute: 40-52g (55-72%)

Schmelzpunkt: 58-60°C

Auf analoge Weise können aus 0,1 mol der entsprechenden Monoester-kalium-salze der Cyanimidodithiokohlensäure erhalten werden:

b) Chlormethyl-ethyl-cyanimidodithiocarbonat

Ausbeute: 11,2g (58%)

ÕΙ

c) Chlormethyl-n-propyl-cyanimidodithiocarbonat

Ausbeute: 13,6g (65%)

ŌΙ

d) Chlormethyl-isopropyl-cyanimidodithiocarbonat

Ausbeute: 16,7g (80%)

Ol

e) Allyl-chlormethyl-cyanimidodithiocarbonat

Ausbeute: 18,5g (90%)

. Öl

f) Benzyl-chiormethyl-cyanimidodithiocarbonat

Ausbeute: 18,7g (73%) Schmelzpunkt: 96–99°C

Beispiel 2:

Aryl-bzw. Hetarylthiomethyl-cyanimidodithiocarbonate (Formel III, X = S)

a) (Benzothiazol-2-yl-thiomethyl)-methyl-cyanimidodithiocarbonat: 8,4 g (0,05 mol) 2-Mercapto-benzothiazol, 9 g (0,05 mol) des nach Beispiel 1 a erhaltenen Chlormethyl-methyl-cyanimidodithiocarbonats, 3,5 g wasserfreies Kaliumkarbonat und 50 ml Aceton werden vier Stunden unter Rückfluß gerührt. Nach Filtrieren und Abziehen des Acetons wird der verbleibende Rückstand mit Ethanol verrieben, abgesaugt und umkristallisiert.

Ausbeute: 10,2g (65,5%) Schmelzpunkt: 96–99°C

Auf analoge Weise können beispielsweise aus 0,05 mol des nach Beispiel 1 a erhaltenen Chlormethylmethylcyanimidodithiocarbonats und 0,05 mol des entsprechenden Thiols hergestellt werden:

b) (3-Allylthio-1,2,4-thiadiazol-5-yl-thiomethyl)-methyl-cyanimidodithiocarbonat

Ausbeute: 7,5g (45%) Schmelzpunkt: 86-88°C

c) (4,6-Dimethyl-pyrimidin-2-yl-thiomethyl)-methyl-cyanimidodithiocarbonat

Ausbeute: 9,4g (66%) Schmelzpunkt: 116–118°C

d) (Benzimidazol-2-yl-thiomethyl)-methyl-cyanimidodithiocarbonat

Ausbeute: 3,5g (24%)

Schmeizpunkt: 194-198°C (Zers.)

e) Methyl-(4-nitro-phenyl-thiomethyl)-cyanimidodithiocarbonat

Ausbeute: 15g (50%)
Schmelzpunkt: 110-113°C

f) (Benzothiazol-2-yl-thiomethyl)-benzyl-cyanimidodithiocarbonat

Aus 8,4g (0,05mol) 2-Mercapto-benzothiazol und 12,8 g (0,05mol) des nach Beispiel 1f erhaltenen Benyzi-chlormethylcyanimidodithiocarbonats

Ausbeute: 7,7g (40%) Öl

Beisple! 3:

Aryloxymethyl-cyanimidodithiocarbonate (Formel III, X = 0)

a) Methyl-(4-nitro-phenoxy-methyl)-cyanimidodithiocarbonat: 8g (0,05 mol) Natrium-4-nitro-phenolat, 9g (0,05 mol) Chlormethyl-methyl-cyanimidodithiocarbonat und 1g Kaliumjodid werden in 75 ml trockenem Aceton sechs Stunden unter Rückfluß erhitzt. Nach Abtrennen des ausgeschiedenen Natriumchlorids wird die Lösung eindestilliert und der verbleibende Rückstand umkristallisiert.

Ausbeute: 7,4g (52,5%)

Schmelzpunkt: 118,5-120,5°C

Auf analoge Weise können aus 0,05 mol Chlormethyl-methyl-cyanimidodithiocarbonat und 0,05 mol des entsprechenden Natrium- oder Kalium-phenolats erhalten werden:

b) (4-Chlor-3-methyl-phenoxy-methyl)-methyl-cyanimidodithiocarbonat

Ausbeute: 8,1 g (56,5%) Schmelzpunkt: 111-113°C

c) Methyl-(3-nitro-phenoxy-methyl)-cyanimidodithiocarbonat

Ausbeute: 8,4g (59,5%) Schmelzpunkt: 103–104°C

Formelblatt

$$R_{1}S$$

$$C = N - C \equiv N$$

$$CH_{2}BrC1$$

$$C1CH_{2}S$$

$$R_{1}S$$

$$C = N - C \equiv N$$

$$R_{2}XH$$

$$(II)$$

New cyanimido-dithiocarbonate ester(s) prodn. - by reaction of monoester potassium salts with bromo-chloro-methane followed by sodium thiolate or phenolate

Patent Assignee: VEB CHEMIEKOMB BITTERFELD

Inventors: KOCHMANN W; PALLAS M; SCHOPPE G; STEINKE W; WALEK W

Patent Family

Patent Number	Kind	Date	Application Number	Kind	Date	Week Type
DD 256693	Α	19880518	DD 281057	Α	19850927	198840 B

Priority Applications (Number Kind Date): DD 281057 A (19850927)

Patent Details

Patent	Kind	Language	Page	Main	IPC	Filing Not	es
DD 256693	Α		4				

Abstract:

DD 256693 A

New (but unclaimed) cyanimido-dithiocarbonic acid esters of formula (III) are prepd. by reaction of a monoester potassium salt (I) with a 20- to 30-fold molar excess of bromochloromethane in the presence of 0.5-2 mol.% of a phase-transfer catalyst (e.g. triethylbenzylammonium bromide) at 30-60 deg.C and reaction of the resulting chloromethyl cyanimidodithiocarbonate (II) with an alkali thiolate or phenolate. In the formulae, R1 is alkyl, alkenyl or aralkyl; R2 is aryl or heteroaryl (opt. substd.); X is O or S.

USE - The products are useful as intermediates.

0/0

Derwent World Patents Index © 2005 Derwent Information Ltd. All rights reserved. Dialog® File Number 351 Accession Number 7645039