Guven Araliklari, Hipotez Testleri

Guven Araliklari

Diyelim ki $X_1,...,X_i$ orneklemi birbirinden bagimsiz, ayni dagilimli ve ortalamasi μ , standart sapmasi σ ve yine ayni olan bir nufus dagilimindan geliyor. O zaman biliyoruz ki, Merkezi Limit Teorisi (Central Limit Theorem) teorisine gore, orneklem ortalamasi $\bar{X} = \frac{1}{n}X_1 + ... + X_n$, ortalamasi μ , standart sapmasi σ/n^2 olan bir normal dagilima yaklasiyor.

Peki veriyi (yani orneklemi) ve CLT'yi kullanarak μ hakkinda bir tahmin yapabilir miyiz? Yani Buyuk Sayilar Kanunua gore μ hakkinda noktasal tahmin yapabiliriz fakat, belki ondan bir adim otesi, bir "guven araligi" hesaplamaktan bahsediyoruz. Bu tahmin "gercek μ , %95 ihtimalde su iki deger arasindadir" turunde bir tahmin olacak.

Bu araligin hesabi icin once \bar{X}' i standardize edelim, yani N(0,1) haline cevirelim,

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

Z-skorlarini isledigimiz yazida

$$P(z_1 < Z < z_2) = \Phi(z_1) - \Phi(z_2)$$

gibi bir ifade gorduk. Esitligin sag tarafi aslinda bir alan hesabidir, surekli fonksiyonlarda olasilik bir entegral, ya da iki kumulatif yogunluk fonksiyonunun farki. Guven araligi icin bize lazim olan da bir olasilik, hatta "kesin" bir olasilik, %95 olasiligi. Demek ki esitligin sag tarafi .95 olacak. .95 hesabi icin, normal egrisini dusunursek, sagindan ve solundan 0.25 buyuklugunde iki parcayi "kirpmamiz" lazim. O zaman 0.975 olasiliginin z degeri ile, 0.025 olasiliginin z degeri arasindaki olasilikta olmamiz lazim. Bu hesaplarda baz alinan $z_{\alpha/2}$ degeri ve bu $100 \cdot \alpha/2$ ust yuzdelik kismina, ornegimizde 0.975 kismina tekabul ediyor. Normal dagilimin simetrisi sebebiyle onun eksisi alinmis hali oteki (soldaki) parcayi verir, yani $-z_{\alpha/2}$.

z-skoru hesaplarken tabloya danismistik, simdi tabloya tersinden bakacagiz, kesisme noktasinda 0.975 diyen yeri bulup kordinatlari alacagiz, ki bu deger 1.96. Istatistik kaynaklarinda "sihirli deger" seklinde tarif edilen bir deger bu, gozlerimiz kamasmasin, geldigi yer burasi iste. Simdi formulu buna gore degistirelim,

$$P\bigg(-z_{\alpha/2}\leqslant rac{ar{X}-\mu}{\sigma/\sqrt{n}}\leqslant z_{\alpha/2}\bigg)=1-lpha$$

 $P(\cdot)$ icinde biraz duzenleme, tum terimleri σ/\sqrt{n} ile carpalim, \bar{X} cikartalim, ve -1 ile carpalim,

$$P\bigg(\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \leqslant \mu \leqslant \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\bigg) = 1 - \alpha$$

Guven araligi ifadesine aslina erismis olduk. Eger %95 kesinlikten bahsediyor olsaydik, ve nufusun gercek varyansi σ^2 biliniyor olsaydi, $P(\dot)$ icine bu degerleri gececektik, \bar{X} zaten verinin aritmetik ortalamasindan ibarettir, bu bize μ' nun solunda ve saginda bazi degerler dondurecekti. Bu degerler bizim guven araligimiz olacakti. Mesela veri 64.1, 64.7, 64.5, 64.6, 64.5, 64.3, 64.6, 64.8, 64.2, 64.3 seklinde, n=10 cunku 10 nokta var, $\sigma=1$ olarak verilmis. Ortalamayi hesapliyoruz, 64.46. $\alpha=0.05$ icin

$$P\bigg(64.46 - 1.96 \frac{1}{\sqrt{10}} \leqslant \mu \leqslant 64.46 + 1.96 \frac{1}{\sqrt{10}}\bigg) = 0.95$$
$$P\bigg(63.84 \leqslant \mu \leqslant 65.08\bigg) = 0.95$$

Yani %95 guven araligi $63.84 \leqslant \mu \leqslant 65.08$.

Neler yaptik? CLT bilgisinden hareketle \bar{X} hakkinda bir seyler biliyorduk. Fakat \bar{X} 'in kesin hangi normal dagilima yaklastigini bilmek icin nufus paremetreleri μ , σ da bilinmelidir. Diger yandan eger tek bilinmeyen μ ise, teoriyi bu bilinmez

etrafinda tamamen tekrar sekillendirip / degistirip CLT'yi bilinmeyen μ etrafinda bir guven araligi yaratmak icin kullandik.

Kac Tane n?

Hatirlarsak guven araligini ustteki sekilde hesaplayabilmemizin sebebi CLT sayesinde \bar{X} 'in normal dagilima yaklasiyor olmasiydi. Ve, teoriyi tekrar dusunursek yaklasma $n \to \infty$ oldugu zaman oluyordu. Buradan \bar{X} 'in normalliginin "buyukce" n degerleri icin daha gecerli olacagi sonucuna varabiliriz. Peki n ne kadar buyuk olmali? Literature gore CLT'nin genellikle $n \ge 30$ durumunda gecerli oldugu soylenir. Tabii nufus dagiliminin ne oldugu da onemlidir, eger nufus normal ise, ya da genel olarak simetrik tek tepeli dagilim ise orneklem daha ufak kalsa da bazi sonuclara varabiliriz. Eger nufus dagilimi cok yamuk (skewed), etekleri genis dagilim ise o zaman daha buyuk orneklem daha iyi olur.

Soru

IO 800 yillarinda Italya'da Etrusali (Etruscan) toplumu vardi. Bu toplum geldigi gibi birdenbire ortadan kayboldu. Bilimciler bu toplumun Italyalilar ile fizyolojik, genetik ve kulturel olarak baglantisi olup olmadigini hep merak etmistir. Bazilari hafa olculerine bakarak sonuclara varmaya ugrasmistir. Arkeolojik kazilarda yapilan olcumlerde 84 Etrusyalinin kafasi olculmustur. Ayrica bugunku Italyanlarin kafa olcumlerinin normal dagilimda $\mu=132.4$ mm, $\sigma=6.0$ mm oldugu bilinmektedir. O zaman, veriye bakarak kafa olcumu ortalamasi icin bir %95 guvenlik araligi olusturuz, ve eger bugunku Italyanlarin olcusu o araliga dusmuyorsa, bugunku Italyanlarin Etrusyalilarla baglantisinin olmadigi iddia edilebilir.

```
import pandas as pd
df = pd.read_csv('etrus.csv')
print float(df.mean()-1.96*(6.0/np.sqrt(84)))
print float(df.mean()+1.96*(6.0/np.sqrt(84)))
142.524107721
145.09035011
```

Bugunku Italyanlarin kafa ortalamasi $\mu=132.4$ bu araliga dusmuyor. Diger bir deyisle, 84 tane orneklemden gelen orneklem ortalamasi 143.8 buyuk bir ihtimalle $\mu-132.4$, $\sigma=6.0$ boyutlarindaki bir normal dagilimdan gelmemistir. Buna gore, buyuk bir ihtimalle Etrusyalilar Italyanlarin atasi degildir.

Bilinmeyen σ

Eger σ bilinmiyorsa, bu durumda σ yerine orneklem varyansi S kullanilabilir,

$$S^2 = \frac{1}{n} \sum (X_i - \bar{X})^2$$

ki ustteki degerin karekoku S olacaktir. σ yerine S kullanmanin buyuk n degerlerinde CLT'yi etkilemedigi ispat edilmistir [5].

Binom Dagilimlar ve Normal Yaklasiksallik

Binom ile Bernoulli dagilimi arasindaki baglantiyi biliyoruz. Diyelim ki $X_1, ..., X_n$ birbirinden bagimsiz ve ayni Bernoulli olarak dagilmis, Bernoulli dagilimini temsil eden Y tanimlayalim, o zaman

$$Y = \sum_{i=1}^{n} X_i$$

Simdi orneklem ortalamasini hatirlayalim,

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

O zaman

$$Y = n\bar{X}$$

Merkezi Limit Teorisinden \bar{X}' in nufus beklentisi ve sapmasini iceren $N(\mu,\sigma)$ olarak dagilacagini biliyoruz. Nufus parametreleri nedir? Her X_i 'in ayni olan μ,σ 'si ile alakli, durumda Bernoulli parametrelerini alip $N(\cdot)$ icinde direk kullanabiliriz,

$$E(X_i) = p, Var(X_i) = p(1-p)$$

o zaman

$$\bar{X} \sim N(\mu, \sigma), \mu = p, \sigma = \sqrt{\frac{p(1-p)}{n}}$$

Y ile \bar{X} baglantisi: Bir genel teoriye gore eger \bar{X} normal ise $n\bar{X}'$ in de normal oldugu bilinir, ve bu dagilim $N(n\mu,\sqrt{n}\sigma)$ olarak gosterilir. Bu teorinin ispatini simdilik vermeyecegiz. O zaman $Y=n\bar{X}$ is ve normal olarak dagilmis ise, o zaman

$$Y \sim N\left(np, \sqrt{np(1-p)}\right)$$

demek dogru olacaktir. Standardize etmek gayet basit,

$$Z = \frac{Y - np}{\sqrt{np(1-p)}}$$

ya da, bolum ve boleni n ile bolersek,

$$Z = \frac{Y/n - p}{\sqrt{p(1-p)/n}}$$

$$Z = \frac{Y/n - p}{\sqrt{\frac{p(1-p)}{n}}}$$

Soru

Amerikalilarin yuzde 12'sinin zenci oldugunu biliyoruz. Eger 1500 kisiyi iceren bir orneklem alsaydik, bu orneklemde 170'den daha az zenci olmasinin olasiligi nedir?

Cevap

%12 nufus parametresidir, yani p=0.12. Orneklem n=1500. Normal yaklasik-sallamasi ile

```
from scipy.stats import norm
n = 1500
p = 0.12
mu = n*p
std = np.sqrt(n*p*(1-p))
print mu,std
print 'olasilik',norm.cdf(170,loc=mu,scale=std)
180.0 12.585706178
olasilik 0.213437028747
```

Yani N(180, 12.58) dagilimini elde ettik ve hesaplari onun uzerinden yaptik. Sonuc diyor ki verilen orneklem ve nufus p degeri ile 170 altinda zenci sayisi elde etmek oldukca dusuk bir ihtimalde.

Binom Guven Araligi

Eger p bilinmiyor ise onun icin maksimum olurluk tahmin edicisi (maximum likelihood estimator) Y/n'dir [ispati simdilik vermiyoruz].

$$Z = \frac{X/n - p}{\sqrt{\frac{(X/n)(1 - (X/n))}{n}}}$$

Bu durumda Z uzerinden, aynen daha once yaptigimiz gibi, bir guvenlik araligi tanimlayabiliriz. Baslamak icin

$$P\bigg(-z_{\alpha/s}\leqslant \frac{X/n-p}{\sqrt{\frac{(X/n)(1-(X/n))}{n}}}\leqslant z_{\alpha/s}\bigg)=1-\alpha$$

ve yine daha oncekine benzer cebirsel islemler sonrasi, ve Binom deneydeki basari sayisi olarak X yerine k kullanalim, P() ifadesini cikartalim, cunku zaten o ifadenin icinde olusacak sayilarla ilgileniyoruz,

$$\left(\frac{k}{n} - z_{\alpha/s}\sqrt{\frac{(k/n)(1-(k/n))}{n}}, \frac{k}{n} + z_{\alpha/s}\sqrt{\frac{(k/n)(1-(k/n))}{n}}\right)$$

Ustteki iki sayi bize gerekli guven araligini verecektir.

Soru

Amerika'da 2009 yilinda halkin ne kadarinin arabalarinda yakit tasarrunu destekledigi merak konusuydu. Bir Gallup telefon anketinde bu soru 1012 yetiskine (18 ve ustu yasta) bu soruyu sordu. Cevap 810 kisinin tasarrufu destekledigi yonundeydi. Yani n = 1012, k = 810. O zaman p icin %95 guven araligini bulun.

Cevap

$$\left(\frac{810}{1012} - 1.96 \frac{(810/1012)(1 - 810/1012)}{1012}, 1.96 \frac{(810/1012)(1 - 810/1012)}{1012}\right)$$

$$= (0.776, 0825)$$

Hipotez Testleri (Hypothesis Testing)

Istatistik tek ya da araliklar olarak sayisal tahminler uretmenin otesinde, "iki sey arasinda birisini secmek" turunde bir karar baglaminda da kullanilabilir. Bir psikolog bir davaya uzman gorus vermek icin cagrilmistir ve sanik hakkinda 'akli olarak dengesiz ya da dengeli' arasinda bir secim yapacaktir. Ilac regulasyonu ile ugrasan kurum yeni bir ilac hakkinda 'etkili' ya da 'etkisiz' seklinde bir karara ulasacaktir.

Bir deneyin mumkun sonuclarini belli seceneklere yonlendirip olasilik teorisini kullanarak bunlardan birisini secmeye Istatistik biliminde Hipotez Test Etmek adi verilir.

Birbiriyle yaris halinde olan iki hipotez vardir, bunlar sifir hipotezi (H₀ olarak yaziliyor) ve alternatif hipotezdir (H₁ olarak yaziliyor). H_o ve H₁ arasinda nasil secim yapacagimiz kavramsal olarak bir davada jurinin yaptigi secime benzer: aynen sanigin, tersi ispatlanana kadar, masum kabul edilmesi gibi eger veri tersi sonuca varmaya yetmezse H₀ da "kabul edilir", yani sucsuzlugun devam etmesi gibi H₀ gorusu terkedilmemis olur. Statusko devam eder. Bu karari verirken mahkemenin kanitlari incelemesi, hipotez testinde rasgele degiskenlerle verinin uzerinden hesaplar yapmaya benzer.

Bunu bir ornek uzerinden daha iyi anlayabiliriz. Diyelim ki araba ureten bir sirket yakit performansini (gas mileage) arttirmaya ugrasiyor. Benzine katilan yeni bir madde uzerinde deneyler yapiyorlar, deney icin Boston / Los Angales arasinda 30 tane araba sefer yapiyor. Yeni katki maddesi olmadigi durumda, normalde, yakit performansinin ortalama 25.0 mil/galon ve standart sapmanin 2.4 mil/galon oldugu biliniyor. Diyelim ki deney sonrasinda arabalar ortalama olarak \bar{y} =26.3 mil/galon performansi gostermisler. Katki maddesi etkili mi, etkili degil mi?

Arastirmacilar 25.0'dan 26.3'e olan degisikligi daha once bahsettigimiz mahkeme

ornegindeki gibi bir cercevede incelerler. Tipik olarak sifir hipotezi statukoyu temsil eder, yani degismesi icin "ezici sekilde aksi yonde veri olmasi gereken sey" budur. Oyle degil mi? Eger etkisiz bir katki maddesine evet dersek, ve ileride oyle olmadigi belli olursa bunun sirket icin cok negatif etkileri olacaktir, aynen masum bir kisiyi yanlislikla hapse atmis olmak gibi. O yuzden kalmak istedigimiz guvenli konum H₀'i temsil etmelidir.

Bu noktada problemi rasgele degiskenlerin terminolojisi uzerinden tekrar tanimlamak faydali olur. Diyelim ki test sirasinda 30 tane aldigimiz olcum $y_1, ..., y_n$, her y_i normal olarak dagilmis ve bu dagilimlarin μ 'su ayni, ve bu μ bilinmiyor. Daha onceki tecrubelerimiz gosteriyor ki $\sigma = 2.4$ (bunu daha once gosterdik). Yani,

$$f_Y(y;\mu) = \frac{1}{\sqrt{2\pi}(2.4)} e^{-\frac{1}{2}(\frac{y-\mu}{2.4})^2}, -\infty < y < \infty$$

Hipotezleri soyle tanimlayalim,

 H_0 : $\mu = 25.0$ (Katki maddesi etkili *degildir*)

 H_0 : $\mu > 25.0$ (Katki maddesi etkilidir)

Burada birkac secim yaptik - yeni deneyden gelen orneklemleri bir dagilim ile orneklemeyi sectik mesela, ve bu dagilim bir Gaussian'dir dedik. Daha sonra hipotezleri bu Gaussian'in ortalamasinin ne olup olmadigi uzerinden tanimladik. Eger $\mu = 25.0$ ise, daha once katkisiz yapilmis olan deneylerle olan "aynilik" ortaya cikacak, μ > 25.0 ayniligin olmadigi hakkinda kanit sunacak. Bu ne kadar gercekci bir secim? $\mu = 25.0$ ama alinan olcumler bazen ondan az, bazen fazla olamaz mi? Fakat dikkat, burada olumlerin degil, yeni tanimlanan dagilimin µ'su hakkinda bir irdeleme yapiyoruz. Eski katkisiz deneylerde de tum alinan sonuclar 25.0 cikmamistir muhakkak, bazen ondan az, bazen ondan fazla cikmistir, fakat biz yeni orneklem uzerinden bir dagilim tanimladik, ve onun "eski dagilimla" ne kadar uyusup uyusmadigini tartiyoruz, hatta onun eski dagilimla tipatip ayni olup olmadigini test ediyoruz. μ karsilastirmasi bu bakimdan onemli. Ama hangi degerle karsilastirma yapmak gerekli? Ve hangi olasilik degerini, ve onun tekabul ettigi hangi ū* degerini esik degeri olarak kabul etmeliyiz? Dikkat, hala hipotez test etme altyapisini gelistiriyoruz, her problemde bu dusunce zincirinden tamamini kullanmayacagiz.

Simdi yeni dagilimi standardize edip, bir hayali orneklem degeri uzerinden bir olasilik ortaya cikartalim. Diyelim ki test ettigimiz deger 25.25 (esas amac 26.3 ama oraya gelecegiz),

$$P(\bar{Y} \geqslant 25.25)$$

 \bar{Y}' yi standardize edelim, o sirada esitsizligin sag tarafi da degisir,

$$P(\frac{\bar{Y} - 25.0}{2.4/\sqrt{30}} \geqslant \frac{25.25 - 25.0}{2.4/\sqrt{30}})$$

$$P(Z \ge 0.57)$$

z-Skoru tablosunu kullanakarak bu hesabi yapmak icin

$$1 - P(Z < 0.57)$$

0.57'nin z-skoru (satir 0.5 kolon .07) 0.7157 olarak gosterilmis, o zaman 1-0.7157 = 0.2843. Demek ki

$$P(Z \ge 0.57) = 0.2843$$

Sezgisel olarak bu olasiligin buyuk oldugunu gorebiliriz. Bu esigin hangi tarafina dusersek duselim, icimiz rahat olmazdi. Az farkla sucsuzdur desek ya ufak bir ihtimalle supheli suclu ise? Ustteki olasilik pek ufak sayilmaz! Ya da araba orneginde (ve pozitif baglamda) yeni yakit kesinlikle etkisizdir diyemiyoruz, bu olasilik yeni yakit hakkinda (iyimser) supheler baslatti aklimizda. Hic etkisizdir deyip cok karli bir bulusu kullanmamis olabiliriz! Yani hipotez testi altyapisi pek iyi olmadi, bize daha kesin noktalar lazim, aklimizda bize "acaba?" dedittirecek esik degerleri istemiyoruz.

O zaman hayali esik noktasi \bar{y}^* 'nin daha buyuk olmasi gerekiyor (ki ona bagli olan sagdaki olasilik kuculsun, ya da kucuk bir olasiliga tekabul eden bir \bar{y}^* bulalim). Eger $\bar{y}^* = 26.50$ olsaydi? Ayni hesap

$$P(\frac{\bar{Y} - 26.5}{2.4/\sqrt{30}} \geqslant \frac{26.50 - 25.0}{2.4/\sqrt{30}})$$

$$P(Z \ge 3.42)$$

Bu olasilik ise cok kucuk, yani esik degeri cok buyuk! Citayi cok fazla kaldirdik, mahkeme durumunda sanki diyoruz ki sucun 1000 tane tanigi lazim, sanik sucunu itiraf etmis olmali, hersey apacik olmali, bir de herseyi bizzat ben gormus olmaliyim. Yoksa kabul etmem. Araba orneginde katki maddesi arabaya Formula-1 yarisi kazandirmazsa biz bu yakiti daha iyi olarak kabul etmeyiz diyoruz.

Peki eger 0.28 cok fazla, 0.0003 cok kucuk ise hangi olasilik en iyi esik degerini verir? Bu soruya kesin olarak ve matematiksel bir cevap vermek mumkun degil, fakat hipotez test etme teknigini kullanan arastirmacilarin ulastigi konsensus 0.05 olasilik seviyesinin en iyi sonuclar verdigidir.

Binom Testi

Bazen Hipotez testi (bir veriye dayanarak) farzedilen bir parametreyi bir sabit degerle karsilastirmak, ya da iki parametreyi birbiriyle karsilastirmak icin kullanilir.

Diyelim ki elimizde bir Web sitesinin gunluk ziyaret, tiklama sayilarini gosteren bir veri seti var (CVR ziyaretcilerin, sitedeki tiklayan musteriye "cevirme' orani, -conversion-)

```
import pandas as pd
from scipy import stats
a = pd.DataFrame({'tiklama': [20.,2.,40.,5.,10.,100.],
                  'ziyaret': [100.,10.,300.,400.,30.,800.]})
a['cvr'] = a['tiklama'] / a['ziyaret']
print a
   tiklama ziyaret
0
        20
              100 0.200000
        2
                10 0.200000
1
2
        40
                300
                    0.133333
        5
3
                400
                    0.012500
                30 0.333333
4
       10
5
       100
               800 0.125000
```

Bu veri seti icin cvr'in 0.16, yani yuzde 16 oldugunu onceden biliyoruz. Ustteki basari orani binom dagili ile modellenebilir, ziyaretler "deneylerdir", yani orneklem buyuklugunu gosterirler. Tiklama ise basaridir,

Tek Orneklem t Testi (One-sample t test)

Bu test verinin Normal dagilimdan geldigini farzeder, tek orneklem durumunda elde $x_1,...,x_n$ verisi vardir, ve bu veri $N(\mu, \Sigma)$ dagilimindan gelmistir ve test etmek istedigimiz hipotez / karsilastirma $\mu = \mu_0$.

```
from scipy.stats import ttest_1samp, wilcoxon, ttest_ind
import pandas as pd
daily_intake = np.array([5260,5470,5640,6180,6390,6515, 6805,7515,7515,8230,8770])
df = pd.DataFrame(daily_intake)
print df.describe()
count 11.000000
mean 6753.636364
      1142.123222
min
      5260.000000
25%
     5910.000000
50% 6515.000000
75% 7515.000000
max 8770.000000
t_statistic, p_value = ttest_1samp(daily_intake, 7725)
print "one-sample t-test", p_value
one-sample t-test 0.0181372351761
```

Sonuc p_value 0.05'ten kucuk cikti yani yuzde 5 onemliligini (significance) baz aldik bu durumda veri hipotezden onemli derecede (significantly) uzakta. Demek ki ortalamanin 7725 oldugu hipotezini reddetmemiz gerekiyor.

Testi iki orneklemli kullanalim, gruplar 0/1 degerleri ile isaretlendi, ve test etmek istedigimiz iki grubun ortalamasinin (mean) ayni oldugu hipotezini test etmek. t-test bu arada varyansin ayni oldugunu farzeder.

```
energ = np.array([
[9.21, 0],
[7.53, 1],
[7.48, 1],
[8.08, 1],
[8.09, 1],
[10.15, 1],
[8.40, 1],
[10.88, 1],
[6.13, 1],
[7.90, 1],
[11.51, 0],
[12.79, 0],
[7.05, 1],
[11.85, 0],
[9.97, 0],
[7.48, 1],
[8.79, 0],
[9.69, 0],
[9.68, 0],
[7.58, 1],
[9.19, 0],
[8.11, 1]])
group1 = energ[energ[:, 1] == 0][:, 0]
group2 = energ[energ[:, 1] == 1][:, 0]
t_statistic, p_value = ttest_ind(group1, group2)
print "two-sample t-test", p_value
two-sample t-test 0.00079899821117
```

p-value < 0.05 yani iki grubun ortalamasi ayni degildir. Ayni oldugu hipotezi reddedildi.

Eslemeli t-Test (Paired t-test)

Eslemeli testler ayni deneysel birimin olcumu alindigi zaman kullanilabilir, yani olcum alinan ayni grupta, deney sonrasi deneyin etki edip etmedigi test edilebilir. Bunun icin ayni olcum deney sonrasi bir daha alinir ve "farklarin ortalamasinin sifir oldugu" hipotezi test edilebilir. Altta bir grup hastanin deney oncesi ve sonrasi ne kadar yiyecek tukettigi listelenmis.

```
intake = np.array([
[5260, 3910],
[5470, 4220],
[5640, 3885],
[6180, 5160],
[6390, 5645],
[6515, 4680],
[6805, 5265],
[7515, 5975],
[7515, 6790],
[8230, 6900],
[8770, 7335],
])
pre = intake[:, 0]
```

```
post = intake[:, 1]
t_statistic, p_value = ttest_1samp(post - pre, 0)
print "paired t-test", p_value
paired t-test 3.05902094293e-07
```

Wilcoxon isaretli-sirali testi (Wilcoxon signed-rank test)

t Testleri Normal dagilima gore sapmalari yakalamak acisindan, ozellikle buyuk orneklemler var ise, oldukca saglamdir. Fakat bazen verinin Normal dagilimdan geldigi faraziyesini yapmak istemeyebiliriz. Bu durumda dagilimdan bagimsiz metotlar daha uygundur, bu tur metotlar icin verinin yerine cogunlukla onun sira istatistiklerini (order statistics) kullanir.

Tek orneklemli Wilcoxon testi icin prosedur μ_0 'i tum veriden cikartmak ve geri kalan (farklari) isaretine bakmadan numerik degerine gore siralamak, ve bu sira degerini bir kenara yazmak. Daha sonra geri donup bu sefer cikartma islemi sonucunun isaretine bakmak, ve eksi isareti tasiyan sira degerlerini toplamak, ayni islemi arti isareti icin yapmak, ve eksi toplami arti toplamindan cikartmak. Sonucta elimize bir istatistik W gelecek. Bu test istatistigi aslinda 1..n tane sayi icinden herhangi birini 1/2 olasiligiyla secmek, ve sonuclari toplamaya tekabul etmektedir. Ve bu sonuc yine 0.05 ile karsilastirilir.

```
z_statistic, p_value = wilcoxon(daily_intake - 7725)
print "one-sample wilcoxon-test", p_value
one-sample wilcoxon-test 0.0279991628713
```

Hipotezi yine reddettik.

Ustte yaptigimiz eslemeli t-testi simdi Wilcoxon testi ile yapalim,

```
z_statistic, p_value = wilcoxon(post - pre)
print "paired wilcoxon-test", p_value
paired wilcoxon-test 0.00463608893545
```

Gaussian Kontrolu

Diyelim ki Gaussian dagilimina sahip oldugunu dusundugumuz $\{x_i\}$ verilerimiz var. Bu verilerin Gaussian dagilimina uyup uymadigini nasil kontrol edecegiz? Normal bir dagilimin her veri noktasi icin soyle temsil edebiliriz,

$$y_{i} = \Phi\left(\frac{x_{i} - \mu}{\sigma}\right)$$

Burada Φ standart Gaussian'i temsil ediyor (detaylar icin *Istatistik Ders 1*) ve CDF fonksiyonuna tekabul ediyor. CDF fonksiyonunun ayni zamanda ceyregi (quantile) hesapladigi soylenir, aslinda CDF son derece detayli bir olasilik degeri verir fakat evet, dolayli yoldan noktanin hangi ceyrek icine dustugu de gorulecektir.

Simdi bir numara yapalim, iki tarafa ters Gaussian formulunu uygulayalim, yani Φ^{-1} .

$$\Phi^{-1}(y_i) = \Phi^{-1}\left(\Phi\left(\frac{x_i - \mu}{\sigma}\right)\right)$$

$$\Phi^{-1}(y_i) = \frac{x_i - \mu}{\sigma}$$

$$x_i = \Phi^{-1}(y_i)\sigma + \mu$$

Bu demektir ki elimizdeki verileri $\Phi^{-1}(y_i)$ bazinda grafiklersek, bu noktalar egimi σ , baslangici (intercept) μ olan bir duz cizgi olmalidir. Eger kabaca noktalar duz cizgi olusturmuyorsa, verimizin Gaussian dagilima sahip olmadigina karar verebiliriz.

Ustte tarif edilen grafik, olasilik grafigi (probability plot) olarak bilinir.

Ters Gaussian teorik fonksiyonunu burada vermeyecegiz, Scipy scipy.stats.invgauss hesaplar icin kullanilabilir. Fakat y_i 'nin kendisi nereden geliyor? Eger y_i , CDF'in bir sonucu ise, pur veriye bakarak bir CDF degeri de hesaplayabilmemiz gerekir. Bunu yapmak icin bir baska numara lazim.

- 1. Eldeki sayilari artan sekilde siralayin
- 2. Her veri noktasina bir derece (rank) atayin (siralama sonrasi hangi seviyede oldugu yeterli, 1'den baslayarak).
- 3. Ceyrek degeri y_i bu sira / n + 1, n eldeki verinin buyuklugu.

Bu teknik niye isliyor? x'in CDF'i $x_i < x$ sartina uyan x_i 'lerin orani degil midir? Yani bir siralama soz konusu ve ustteki teknik te bu siralamayi biz elle yapmis olduk, ve bu siralamadan gereken bilgiyi aldik.

- [1] Introductory Statistics with R
- [2] Introduction to Probability and Statistics Using R
- [3] https://gist.github.com/mblondel/1761714
- [4] Applied Statistics and Probability for Engineers
- [5] http://math.stackexchange.com/questions/243348/sample-variance-conver