

#### **CS5228: Knowledge Discovery and Data Mining**

Lecture 6 — Classification & Regression II

#### **Course Logistics — Update**

#### Assignment 2

- Submission deadline: Oct 03, 11.59 pm
- Don't forget to check the Discussion and Errata page on Canvas

#### Midterm

- Check new Canvas page for midterm exam
- Report any issues with the practice exam early enough
- If needed, 2nd practice exam during Recess Week
- Coming up: survey regarding request for loaner laptop

#### Project

■ Submission deadline for progress report: Oct 10, 11.59 om

### Quick Recap — Classification & Regression

#### Pattern of interest

- Matching or function between input features and output
- Goal: use matching to predict outputs for unseed samples
- Categorical output → classification
- Numerical output → regression
- Important: Evaluation of predictions
  - Straightforward for regression
  - Series of metrics for classification (accuracy, recall, precision, f1, AUC-ROC)

| Age | Edu-<br>cation | Marital<br>Status | Income<br>Level | Credit<br>Approval | Credit<br>Limit |
|-----|----------------|-------------------|-----------------|--------------------|-----------------|
| 23  | Masters        | Single            | Mid             | No                 | \$\$5,000       |
| 35  | College        | Married           | High            | Yes                | \$\$7,000       |
| 26  | Masters        | Single            | High            | No                 | \$\$9,000       |
| 41  | PhD            | Single            | Mid             | Yes                | \$\$5,000       |
| 18  | Poly           | Single            | Low             | No                 | \$\$6,000       |
| 55  | Poly           | Married           | High            | Yes                | \$\$10,000      |
| 30  | College        | Single            | High            | Yes                | \$\$8,000       |
| 35  | PhD            | Married           | High            | Yes                | \$\$10,000      |
| 28  | Masters        | Married           | Mid             | Yes                | \$\$5,000       |
| 45  | Masters        | Married           | Mid             | ???                | ???             |

### Quick Recap — KNN Algorithm

#### Intuition behind KNN:

- Label of an unseen data point *x* derives from the labels of the k-nearest neighbors of *x*
- Similar data points → similar labels
- Caveats due to reliance of similarity metric



- Effects of hyperparameter k
  - Tradeoff between (risks of) underfitting and overfitting









#### **Outline**

#### • Decision Trees

- Overview
- Training Decision Trees
- Overfitting

#### Tree Ensembles

- Bagging
- Random Forest
- Boosting

#### **Decision Tree**

• Example: Decision Tree for classification

| Age | Edu-<br>cation | Marital<br>Status | Annual<br>Income | Credit<br>Approval |
|-----|----------------|-------------------|------------------|--------------------|
| 23  | Masters        | Single            | 75k              | Yes                |
| 35  | Bachelor       | Married           | 50k              | No                 |
| 26  | Masters        | Single            | 70k              | Yes                |
| 41  | PhD            | Single            | 95k              | Yes                |
| 18  | Bachelor       | Single            | 40k              | No                 |
| 55  | Masters        | Married           | 85k              | No                 |
| 30  | Bachelor       | Single            | 60k              | No                 |
| 35  | PhD            | Married           | 60k              | Yes                |
| 28  | PhD            | Married           | 65k              | Yes                |





#### **Decision Tree**

- Decision Tree idea
  - Represent mapping between features and label/value as flowchart-like structure
- Components (a bit simplified at the moment)
  - (Inner) node test on a single feature
  - Branch outcome of a test; corresponds to a feature values or range of values
  - Leaf label (classification) or real value (regression)



# **Decision Tree** — Application to Unseen Data



#### **Decision Tree**

- Same dataset, different Decision Tree
  - In general, there are multiple trees that match a dataset

| ID | Age | Edu-<br>cation | Marital<br>Status | Annual<br>Income | Credit<br>Approval |
|----|-----|----------------|-------------------|------------------|--------------------|
| 1  | 23  | Masters        | Single            | 75k              | Yes                |
| 2  | 35  | Bachelor       | Married           | 50k              | No                 |
| 3  | 26  | Masters        | Single            | 70k              | Yes                |
| 4  | 41  | PhD            | Single            | 95k              | Yes                |
| 5  | 18  | Bachelor       | Single            | 40k              | No                 |
| 6  | 55  | Masters        | Married           | 85k              | No                 |
| 7  | 30  | Bachelor       | Single            | 60k              | No                 |
| 8  | 35  | PhD            | Married           | 60k              | Yes                |
| 9  | 28  | PhD            | Married           | 65k              | Yes                |





#### Which Decision Tree is Better?



| Age | Edu-   | Marital | Annual | Credit   |
|-----|--------|---------|--------|----------|
|     | cation | Status  | Income | Approval |
| 50  | PhD    | Single  | 70k    | Yes      |



| Age | Edu-<br>cation | Marital<br>Status | Annual<br>Income | Credit<br>Approval |
|-----|----------------|-------------------|------------------|--------------------|
| 50  | PhD            | Single            | 70k              | NO                 |

## Quick Quiz

| Age       | Edu-<br>cation | Marital<br>Status | Annual<br>Income | Credit<br>Approval |
|-----------|----------------|-------------------|------------------|--------------------|
| 50        | PhD            | Married           | 70k              | ???                |
|           |                |                   |                  |                    |
|           |                |                   |                  |                    |
| Age       | Edu-<br>cation | Marital<br>Status | Annual<br>Income | Credit<br>Approval |
| Age<br>50 |                |                   |                  |                    |

What to do in case of **unknown values** for a feature?



### **Decision Tree** — **Diversity (Sneak Preview)**

#### Different branching factors





#### Different depth

- Leaves can have more than one label or real value
- Required based on dataset or based on choice (→ Pruning)
- Final output: majority label (classification) or mean of values (regression)



#### **Outline**

- Decision Trees
  - Overview
  - **■** Training Decision Trees
  - Overfitting
- Tree Ensembles
  - Bagging
  - Random Forest
  - Boosting

#### **Building a Decision Tree**

#### Notations

- $D_t$  set of records that reach node t
- $\blacksquare$   $D_0$  set of all records at root node

#### General procedure

- If  $|D_t| = 1$  or all records in  $D_t$  have the same class or value  $\rightarrow t$  is leaf node
- Otherwise, choose test (feature + conditions) to split D<sub>t</sub> into smaller subsets (i.e., subtrees)
- Recursively apply procedure to each subtree

| ID | Age | Edu-<br>cation | Marital<br>Status | Annual<br>Income | Credit<br>Approval |
|----|-----|----------------|-------------------|------------------|--------------------|
| 1  | 23  | Masters        | Single            | 75k              | Yes                |
| 2  | 35  | Bachelor       | Married           | 50k              | No                 |
| 3  | 26  | Masters        | Single            | 70k              | Yes                |
| 4  | 41  | PhD            | Single            | 95k              | Yes                |
| 5  | 18  | Bachelor       | Single            | 40k              | No                 |
| 6  | 55  | Masters        | Married           | 85k              | No                 |
| 7  | 30  | Bachelor       | Single            | 60k              | No                 |
| 8  | 35  | PhD            | Married           | 60k              | Yes                |
| 9  | 28  | PhD            | Married           | 65k              | Yes                |



| ID | Age | Edu-<br>cation | Marital<br>Status | Annual<br>Income | Credit<br>Approval |
|----|-----|----------------|-------------------|------------------|--------------------|
| 1  | 23  | Masters        | Single            | 75k              | Yes                |
| 2  | 35  | Bachelor       | Married           | 50k              | No                 |
| 3  | 26  | Masters        | Single            | 70k              | Yes                |
| 4  | 41  | PhD            | Single            | 95k              | Yes                |
| 5  | 18  | Bachelor       | Single            | 40k              | No                 |
| 6  | 55  | Masters        | Married           | 85k              | No                 |
| 7  | 30  | Bachelor       | Single            | 60k              | No                 |
| 8  | 35  | PhD            | Married           | 60k              | Yes                |
| 9  | 28  | PhD            | Married           | 65k              | Yes                |



|    |     |                |                   |                  |                                              | 1,2,3,4,0,7,0,0                 |     |
|----|-----|----------------|-------------------|------------------|----------------------------------------------|---------------------------------|-----|
| ID | Age | Edu-<br>cation | Marital<br>Status | Annual<br>Income | Credit                                       | Education                       |     |
|    |     | Cation         | Status            | Ilicome          | Approval                                     |                                 |     |
|    |     |                |                   |                  |                                              |                                 |     |
| _  |     |                |                   |                  |                                              | Bachelor Master, P              | )hD |
| 2  | 35  | Bachelor       | Married           | 50k              | No                                           | Bachelor Master, P              | טוו |
|    |     |                |                   |                  |                                              |                                 |     |
|    |     |                |                   |                  |                                              |                                 |     |
|    |     |                |                   |                  |                                              | 2,5,7 1,3,4,6,8                 | 3,9 |
| 5  | 18  | Dashalas       | Cinala            | 401              | Na                                           |                                 |     |
| 5  | 18  | Bachelor       | Single            | 40k              | No                                           |                                 |     |
|    |     |                |                   |                  | <b>                                     </b> |                                 |     |
|    |     |                |                   |                  |                                              |                                 |     |
| 7  | 30  | Bachelor       | Single            | 60k              | No                                           |                                 |     |
|    |     |                |                   |                  |                                              |                                 |     |
|    |     |                |                   |                  |                                              | All the same labels → leaf node |     |
|    |     |                |                   |                  |                                              |                                 |     |
|    |     |                |                   |                  |                                              |                                 |     |

1.2.3.4.6.7.8.9

| ID | Age | Edu-<br>cation | Marital<br>Status | Annual<br>Income | Credit<br>Approval |
|----|-----|----------------|-------------------|------------------|--------------------|
|    |     |                |                   |                  |                    |
| 2  | 35  | Bachelor       | Married           | 50k              | No                 |
|    |     |                |                   |                  |                    |
|    |     |                |                   |                  |                    |
| 5  | 18  | Bachelor       | Single            | 40k              | No                 |
|    |     |                |                   |                  |                    |
| 7  | 30  | Bachelor       | Single            | 60k              | No                 |
|    |     |                |                   |                  |                    |
|    |     |                |                   |                  |                    |



| ID | Age | Edu-<br>cation | Marital<br>Status | Annual<br>Income | Credit<br>Approva |     | al |
|----|-----|----------------|-------------------|------------------|-------------------|-----|----|
| 1  | 23  | Masters        | Single            | 75k              |                   | Yes |    |
|    |     |                |                   |                  |                   |     |    |
| 3  | 26  | Masters        | Single            | 70k              |                   | Yes | П  |
| 4  | 41  | PhD            | Single            | 95k              |                   | Yes |    |
|    |     |                |                   |                  |                   |     | ×  |
| 6  | 55  | Masters        | Married           | 85k              |                   | No  |    |
|    |     |                |                   |                  |                   |     |    |
| 8  | 35  | PhD            | Married           | 60k              |                   | Yes |    |
| 9  | 28  | PhD            | Married           | 65k              |                   | Yes |    |



Different labels → split set of records

Here: select feature "age" and threshold "50" (this selection process is the core of DTL and will be defined later)

| ID | Age | Edu-<br>cation | Marital<br>Status | Annual<br>Income | Credit<br>Approval |
|----|-----|----------------|-------------------|------------------|--------------------|
| 1  | 23  | Masters        | Single            | 75k              | Yes                |
|    |     |                |                   |                  |                    |
| 3  | 26  | Masters        | Single            | 70k              | Yes                |
| 4  | 41  | PhD            | Single            | 95k              | Yes                |
|    |     |                |                   |                  |                    |
| 6  | 55  | Masters        | Married           | 85k              | No                 |
|    |     |                |                   |                  |                    |
| 8  | 35  | PhD            | Married           | 60k              | Yes                |
| 9  | 28  | PhD            | Married           | 65k              | Yes                |





| ID | Age | Edu-<br>cation | Marital<br>Status | Annual<br>Income | Credit<br>Approval |
|----|-----|----------------|-------------------|------------------|--------------------|
| 1  | 23  | Masters        | Single            | 75k              | Yes                |
|    |     |                |                   |                  |                    |
| 3  | 26  | Masters        | Single            | 70k              | Yes                |
| 4  | 41  | PhD            | Single            | 95k              | Yes                |
|    |     |                |                   |                  |                    |
|    |     |                |                   |                  |                    |
|    |     |                |                   |                  |                    |
| 8  | 35  | PhD            | Married           | 60k              | Yes                |
| 9  | 28  | PhD            | Married           | 65k              | Yes                |





| ID | Age | Edu-<br>cation | Marital<br>Status | Annual<br>Income | Credit<br>Approval |
|----|-----|----------------|-------------------|------------------|--------------------|
|    |     |                |                   |                  |                    |
|    |     |                |                   |                  |                    |
|    |     |                |                   |                  |                    |
|    |     |                |                   |                  |                    |
|    |     |                |                   |                  |                    |
|    |     |                |                   |                  |                    |
|    |     |                |                   |                  |                    |
|    |     |                |                   |                  |                    |

All records covered → Done!



### **How to Split?** — **Nominal Attributes**

#### Binary split

- Partition all d values into two subsets
- $= \frac{2^d 2}{2}$  possible splits







#### Multiway split

- Each value yields on subtree
- In principle, arbitrary splits into
   2 ≤ s ≤ d subtrees possible, but
   number of possible splits explodes



### How to Split? — Ordinal Attributes

#### Binary split

- Partition all d values into two subsets
- Partitions must preserve natural order of values
- lacksquare d-1 possible splits







#### Multiway split

■ Each value yields on subtree



**Note:** Whether "Education" is treated as nominal or ordinal feature is up to interpretation and a design choice of the user

## **How to Split?** — Numerical Values

Binary split



Multiway split



| Age |  |  |
|-----|--|--|
| 23  |  |  |
| 35  |  |  |
| 26  |  |  |
| 41  |  |  |
| 18  |  |  |
| 55  |  |  |
| 30  |  |  |
| 35  |  |  |
| 28  |  |  |



# Quick Quiz

A



For the **energy rating** of a building, what is generally **not** a suitable split?

B

A, D B, C

C



D



### Finding the Best Splits?

Which feature to use for splitting the training records



Why choose **Age** over **Education**, or vice versa?

How to split the w.r.t. a selected feature?



What makes **{B,M}/{P}** a better split then **{B}/{MP}**, or vice versa — or any other alternative way?

### Finding the Best Splits

- Global optimum
  - Best splits = splits that result in a Decision Tree with the highest accuracy
  - Problem: Finding the optimal tree is NP-complete → not practical for large datasets
- Greedy approach
  - Fast(er) heuristics but no guarantees for optimal results
  - Basic approach: Pick the split that minimizes the **impurity** of subtrees (w.r.t. class labels)



### Finding the Best Splits

- General procedure
  - lacktriangle Calculate impurity I(t) of node t before splitting
  - For each possible / considered split, calculate impurity of split  $I_{split}$  (weighted average of impurities of resulting child nodes)
  - lacksquare Select split with lowest impurity  $I_{split}$
  - $\,\blacksquare\,$  Perform split if  $I_{split} < I(t)$  (not necessarily always the case)

# Impurity of a Node (Classification)

#### **Gini Index**

#### **Entropy**

$$Gini(t) = 1 - \sum_{c \in C} P(c|t)^2$$

$$Entropy(t) = -\sum_{c \in C} P(c|t) \log P(c|t)$$

0x YES 6x NO

$$1 - (1.0^2 + 0^2) = 0$$

$$-(0\log_2 0 + 1\log_2 1) = 0$$

2x NO

$$1 - ((4/6)^2 + (2/6)^2) = 0.44$$

$$-(4/6\log_2 4/6 + 2/6\log_2 2/6) = 0.92$$

P(c|t) = relative frequency of class c in node t

## Impurity of a Node (Classification)

• Gini Index vs. Entropy for 2-class problem



### Impurity of a Split (Classification)

#### Assume node t is split into k children

- lacksquare number of records at i-th child
- $\blacksquare$   $\eta$  number of records at node t
- I(i) impurity of node (e.g., Gini, Entropy)

#### Information Gain IG

- $\hfill\blacksquare$  Difference between I(t) and  $I_{split}$
- Choose split that minimizes  $I_{split}$  = split that maximizes IG
- $\blacksquare$  Required condition: IG > 0

Sum of impurity values of all children, weighted by the number of records at each child.

$$I_{split} = \sum_{i}^{k} \frac{n_i}{n} I(i)$$

$$IG = I(t) - I_{split}$$

### Impurity of Split (Classification) — Example



$$Gini(t_{parent}) = 1 - \left( \left( \frac{5}{9} \right)^2 + \left( \frac{4}{9} \right)^2 \right) = 0.49$$

$$Gini(t_{single}) = 1 - \left( \left( \frac{3}{5} \right)^2 + \left( \frac{2}{5} \right)^2 \right) = 0.48$$

$$Gini(t_{married}) = 1 - \left(\left(\frac{2}{4}\right)^2 + \left(\frac{2}{4}\right)^2\right) = 0.5$$

$$Gini_{split} = \frac{5}{9} \cdot Gini(t_{single}) + \frac{4}{9} \cdot Gini(t_{married}) = 0.49$$

$$IG = Gini(t_{parent}) - Gini_{split} = 0$$



$$Gini(t_{parent}) = 1 - \left( \left( \frac{5}{9} \right)^2 + \left( \frac{4}{9} \right)^2 \right) = 0.49$$

$$Gini(t_B) = 1 - \left( \left( \frac{0}{3} \right)^2 + \left( \frac{3}{3} \right)^2 \right) = 0$$

$$Gini(t_{M/P}) = 1 - \left(\left(\frac{5}{6}\right)^2 + \left(\frac{1}{6}\right)^2\right) = 0.28$$

$$Gini_{split} = \frac{3}{9} \cdot Gini(t_B) + \frac{6}{9} \cdot Gini(t_{M/P}) = 0.19$$

$$IG = Gini(t_{parent}) - Gini_{split} = 0.3$$

### Impurity of a Split (Regression)

#### **Residual Sum of Squares (RSS)**

$$RSS_{split} = \sum_{k=1}^{K} \sum_{i \in R_k} (y_i - \mu_{R_k})^2$$

| Edu-<br>cation | Annual<br>Income |
|----------------|------------------|
| Masters        | 75k              |
| Bachelor       | 50k              |
| Masters        | 70k              |
| PhD            | 95k              |
| Bachelor       | 40k              |
| Master         | 85k              |
| Bachelor       | 60k              |
| PhD            | 60k              |
| PhD            | 65k              |





# Impurity of a Split (Regression)



$$\mu_{R_{Bachelor}} = 50$$

$$\mu_{R_{Master}} = 76.67$$

$$\mu_{R_{PhD}} = 73.33$$

| K Bachelor Master PhD                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $RSS_{split} = \sum_{k=1}^{\infty} \sum_{i \in R_k} (y_i - \mu_{R_k})^2$                                                                                       |
| $= \sum_{i \in R_{Bachelor}} (y_i - \mu_{R_{Bachelor}})^2 + \sum_{i \in R_{Master}} (y_i - \mu_{R_{Master}})^2 + \sum_{i \in R_{PhD}} (y_i - \mu_{R_{PhD}})^2$ |
| $= (50 - 50)^2 + (40 - 50)^2 + (60 - 50)^2$                                                                                                                    |
| $+ (75 - 76.67)^2 + (70 - 76.67)^2 + (85 - 76.67)^2$                                                                                                           |
| $+ (95 - 73.33)^2 + (60 - 73.33)^2 + (65 - 73.33)^2$                                                                                                           |
| = 1033.34                                                                                                                                                      |

| Edu-<br>cation | Annual<br>Income |
|----------------|------------------|
| Masters        | 75k              |
| Bachelor       | 50k              |
| Masters        | 70k              |
| PhD            | 95k              |
| Bachelor       | 40k              |
| Master         | 85k              |
| Bachelor       | 60k              |
| PhD            | 60k              |
| PhD            | 65k              |
|                |                  |

### **Decision Trees** — **Pros & Cons**

#### Pros

- Inexpensive to train and test
- Easy to interpret (if tree is not too large)
- Can handle categorical and numerical data

#### Cons

- Sensitive to small changes in the training data (Hierarchical structure: errors early on propagate down)
- Greedy approach does not guarantee optimal tree
- Each decision involves only a single feature
- Does not take interactions between features into account

### **Decision Trees** — Interaction between Features

Optimal decision boundary



#### **Decision Tree boundaries**



### **Outline**

#### • Decision Trees

- Overview
- Training Decision Trees
- Overfitting

#### Tree Ensembles

- Bagging
- Random Forest
- Boosting

# **Decision Trees** — **Underfitting & Overfitting**

#### Underfitting





#### Good fit





#### Overfitting





# **Decision Trees** — **Underfitting & Overfitting**



# **Decision Trees** — **Underfitting & Overfitting**



## Decision Trees — Overfitting

- Decision Tree algorithm can always split the training data perfectly\*
  - Keep splitting (i.e., increase height of tree)
     until each leaf contains only one data sample
  - One data sample → 100% pure



- Solution: Limit size/height of Decision Tree → Pruning
  - Pre-pruning: Stop splitting nodes ahead of time
  - Post-pruning: Build full tree, but then remove leaves/splits if beneficial
  - ... combination of multiple approaches

# **Pre-Pruning: Maximum Depth**

- Define maximum depth/height of tree
  - Stop splitting if maximum depth is reached

• Example: maximum depth = 3





# **Pre-Pruning: Minimum Sample Count**

- Define minimum number of samples each node must have
  - Stop splitting if node has less than the minimum number of samples

Example: minimum sample count = 16





# Post-Pruning: Prune Leaves/Splits using Validation



 $F1_{pruned} > F1_{input}$  ightharpoonup Remove split from Decision Tree (and continue checking next split)

# Quick Quiz

What is the **maximum** possible **depth** of a Decision Tree given a dataset with *N* data points?





$$\bigcap$$
  $O(N \log N)$ 

$$O(\log \log N)$$

# Quick Quiz





### **Outline**

#### • Decision Trees

- Overview
- Training Decision Trees
- Overfitting

#### • Tree Ensembles

- Bagging
- Random Forest
- Boosting

#### **Tree Ensembles**

- Aim to address limitations of (single) Decision Trees
  - High variance i.e., sensitivity to small changes in training data
  - Typically not the same accuracy as other approaches
- Countermeasure: Tree Ensembles
   Construct many decision trees and combine their predictions
  - Bagging
  - Random Forests
  - Boosting

#### **Basic trade-off of ensemble methods:**

Higher accuracy, lower variance vs.

Lower interpretability, longer training time

### **Outline**

- Decision Trees
  - Overview
  - Training Decision Trees
  - Overfitting

#### • Tree Ensembles

- Bagging
- Random Forest
- Boosting

## **Bagging** — Bootstrap Aggregation

- Bagging basic idea (not limited to Decision Trees)
  - Train many models (classifiers/regressors) of different training data
  - Combine predictions of each models for final prediction
  - Increases accuracy and lowers variance
- Where to get more training data from? → Bootstrap Sampling
  - Take repeated samples from a single training dataset *D*
  - Bootstrap sample  $D_i$  sampled from D, uniformly and with replacement  $(|D_i| = |D|)$
  - Train a model over each bootstrap dataset D<sub>i</sub>

# **Bagging** — Bootstrap Aggregation







| Sample 2  | ID | Age | Edu-<br>cation | Credit<br>Approval |
|-----------|----|-----|----------------|--------------------|
| Sam       | 2  | 35  | Bachelor       | No                 |
|           | 2  | 35  | Bachelor       | No                 |
| Bootstrap | 4  | 41  | PhD            | Yes                |
| Вос       | 4  | 41  | PhD            | Yes                |
|           |    |     |                |                    |

...

Education

Bachelor PhD, Masters

NO YES

Majority Vote

tetran Cample

| Sample N  | ID | •   • • |          | Credit<br>Approval |
|-----------|----|---------|----------|--------------------|
| San       | 1  | 23      | Masters  | Yes                |
| ab        | 2  | 35      | Bachelor | No                 |
| Bootstrap | 3  | 26      | Masters  | Yes                |
| Boo       | 4  | 41      | PhD      | Yes                |



# **Bagging** — Bootstrap Aggregation

#### Limitations

- Assume original dataset *D* has one or more strong predictors features that yield splits with a (very) high information gain
- Bootstrap samples *D*<sub>i</sub> are also likely to have those strong predictors

#### → Consequences

- Most bagged trees will use strong predictors on top
- Most bagged trees will look very similar
- Predictions of bagges trees will be highly correlated

→ Only limited reduction in variance!

### **Outline**

- Decision Trees
  - Overview
  - Training Decision Trees
  - Overfitting

#### • Tree Ensembles

- Bagging
- **■** Random Forest
- Boosting

### **Random Forests**

- Random Forest = bootstrap sampling (bagging) + feature sampling
  - Create bootstrap samples *D*, like for bagging
  - Feature sampling: For each  $D_i$ , consider only a random subset of features of size m



d features



| Edu-<br>cation | Annual<br>Income | Credit<br>Approval |  |  |  |
|----------------|------------------|--------------------|--|--|--|
| Masters        | 75k              | Yes                |  |  |  |
| Bachelor       | 50k              | No                 |  |  |  |
| Masters        | 70k              | Yes                |  |  |  |
| PhD            | 95k              | Yes                |  |  |  |
| Bachelor       | 40k              | No                 |  |  |  |
| Masters        | 70k              | Yes                |  |  |  |
| Masters        | 75k              | Yes                |  |  |  |
| Bachelor       | 40k              | No                 |  |  |  |
| Bachelor       | 40k              | No                 |  |  |  |

m features

### **Random Forests**

- Effects of feature sampling
  - Strong predictors in *D* are often absent in *D*,
  - Resulting trees often look very different
  - Predictions of trees much less correlated
- → Higher reduction in variance + typically higher accuracy



### Random Forests — Pros & Cons (Compared to Decision Trees)

#### Pros

- High accuracy fairly close to state of the art
- Sampling and training independent across  $D_i \rightarrow$  parallelizable!
- Not much tuning required

#### Cons

- Less Interpretable
- Slower training and prediction

### **Outline**

- Decision Trees
  - Overview
  - Training Decision Trees
  - Overfitting

#### • Tree Ensembles

- Bagging
- Random Forest
- Boosting

# **Boosting**

- Like bagging, boosting combines multiple trees (in general, multiple models)
- So what are the key differences?

|            | Bagging                                                       | Boosting                                                                                             |  |
|------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|
| Training   | Trees are trained independently (and can be done in parallel) | Trees are trained in sequence; (the accuracy of the last tree affects the training of the next tree) |  |
| Prediction | All trees have the same amount of say in the final prediction | Trees have different amount of say in the final prediction (depending on their individual accuracy)  |  |

# **Boosting & Weak Learners**

- So far, all models discussed are Strong Learners
  - Goal: perform as best as possible on a given classification or regression task

#### Weak Learner

- Goal: perform (slightly) better than guessing
- Very common weak learner: Decision Stump (e.g., decision tree of height 1, i.e., only one split)
- Very simple model → very fast training



- Boosting: Combine many weak classifiers into a single strong learner
  - Basic idea: subsequent models try to improve the errors of previous models

### AdaBoost — Adaptive Boosting (for Decision Trees)

#### AdaBoost

- Applicable to many classification/regression algorithms to improve performance
- Very commonly combined with Decision Trees

#### Basic training algorithm

- Train a Weak Learner over D<sub>i</sub> (e.g., Decision Stump)
- Identify all misclassified samples
- Calculate error rate of learner to quantify its amount of say
- Sample D<sub>i+1</sub> such that misclassified samples are more likely to be picked than correctly classified samples
- Repeat...

#### • Step 1:

- 1a) Train Decision Stump  $h_m$  over sampled dataset  $D_m$  (original dataset D in the beginning)
- 1b) Identify all misclassified training samples in D

| Sample<br>Weight w |  |
|--------------------|--|
| 1/9                |  |
| 1/9                |  |
| 1/9                |  |
| 1/9                |  |
| 1/9                |  |
| 1/9                |  |
| 1/9                |  |
| 1/9                |  |
| 1/9                |  |

| Age | Edu-<br>cation | Marital<br>Status | Annual<br>Income | Credit<br>Approval |
|-----|----------------|-------------------|------------------|--------------------|
| 23  | Masters        | Single            | 75k              | Yes                |
| 35  | Bachelor       | Married           | 50k              | No                 |
| 26  | Masters        | Single            | 70k              | Yes                |
| 41  | PhD            | Single            | 95k              | Yes                |
| 18  | Bachelor       | Single            | 40k              | No                 |
| 55  | Master         | Married           | 85k              | No                 |
| 30  | Bachelor       | Single            | 60k              | No                 |
| 35  | PhD            | Married           | 60k              | Yes                |
| 28  | PhD            | Married           | 65k              | Yes                |





- Step 2
  - 2a) Calculate total error  $\epsilon_{\rm m}$

$$\epsilon_m = \sum_i^N w_i \cdot \underbrace{\delta(h_m(x_i) \neq y_i)}_{\text{0, if } \textit{x}_i \text{ is correctly classified}}$$

2b) Calculate "amount of say"  $\alpha_m$  of  $h_m$ 

$$\alpha_m = \frac{1}{2} \ln \frac{1 - \epsilon_m}{\epsilon_m}$$

$$\epsilon_m = 1/9$$

$$\alpha_m = 1.04$$

- Step 3
  - 3a) Update sample weights

3b) Normalize sample weights

| Age | Edu-<br>cation | Marital<br>Status | Annual<br>Income | Credit<br>Approval |          |
|-----|----------------|-------------------|------------------|--------------------|----------|
| 23  | Masters        | Single            | 75k              | Yes                | <b>/</b> |
| 35  | Bachelor       | Married           | 50k              | No                 | ~        |
| 26  | Masters        | Single            | 70k              | Yes                | /        |
| 41  | PhD            | Single            | 95k              | Yes                | /        |
| 18  | Bachelor       | Single            | 40k              | No                 | 1        |
| 55  | Master         | Married           | 85k              | No                 | ×        |
| 30  | Bachelor       | Single            | 60k              | No                 |          |
| 35  | PhD            | Married           | 60k              | Yes                | 1        |
| 28  | PhD            | Married           | 65k              | Yes                |          |

$$w_i = w_i \cdot \begin{cases} e^{\alpha_m}, & \text{if } x_i \text{ was misclassified} \\ e^{-\alpha_m}, & \text{if } x_i \text{ was correctly classified} \end{cases}$$

$$w_i = \frac{w_i}{\sum_{i=1}^{N} w_i}$$

#### Sum up to 1

| Sample<br>Weight w | 3a)  | 3b)    |  |  |
|--------------------|------|--------|--|--|
| 1/9                | 0.04 | 0.0635 |  |  |
| 1/9                | 0.04 | 0.0635 |  |  |
| 1/9                | 0.04 | 0.0635 |  |  |
| 1/9                | 0.04 | 0.0635 |  |  |
| 1/9                | 0.04 | 0.0635 |  |  |
| 1/9                | 0.31 | 0.492  |  |  |
| 1/9                | 0.04 | 0.0635 |  |  |
| 1/9                | 0.04 | 0.0635 |  |  |
| 1/9                | 0.04 | 0.0635 |  |  |
|                    |      |        |  |  |



| 0.0635 |
|--------|
| 0.0635 |
| 0.0635 |
| 0.0635 |
| 0.0635 |
| 0.492  |
| 0.0635 |
| 0.0635 |
| 0.0635 |
|        |

Sample

#### • Step 4

- 4a) Generate new  $D_i$  based on sample weights (misclassified samples are much more likely to be picked)
- 4b) With new  $D_i$ , go to Step 1 and continue

| Sample<br>Weight w |
|--------------------|
| 0.0635             |
| 0.0635             |
| 0.0635             |
| 0.0635             |
| 0.0635             |
| 0.492              |
| 0.0635             |
| 0.0635             |
| 0.0635             |

| Age | Edu-<br>cation | Marital<br>Status | Annual<br>Income | Credit<br>Approval |
|-----|----------------|-------------------|------------------|--------------------|
| 23  | Masters        | Single            | 75k              | Yes                |
| 35  | Bachelor       | Married           | 50k              | No                 |
| 26  | Masters        | Single            | 70k              | Yes                |
| 41  | PhD            | Single            | 95k              | Yes                |
| 18  | Bachelor       | Single            | 40k              | No                 |
| 55  | Master         | Married           | 85k              | No                 |
| 30  | Bachelor       | Single            | 60k              | No                 |
| 35  | PhD            | Married           | 60k              | Yes                |
| 28  | PhD            | Married           | 65k              | Yes                |



#### New input for Step 1

| Age | Edu-<br>cation | Marital<br>Status | Annual<br>Income | Credit<br>Approval |
|-----|----------------|-------------------|------------------|--------------------|
| 23  | Masters        | Single            | 75k              | Yes                |
| 55  | Master         | Married           | 85k              | No                 |
| 26  | Masters        | Single            | 70k              | Yes                |
| 41  | PhD            | Single            | 95k              | Yes                |
| 55  | Master         | Married           | 85k              | No                 |
| 55  | Master         | Married           | 85k              | No                 |
| 26  | Masters        | Single            | 70k              | Yes                |
| 35  | PhD            | Married           | 60k              | Yes                |
| 55  | Master         | Married           | 85k              | No                 |

# AdaBoost Training — Basic Algorithm

**Initialization:** Dataset D, |D|=N, with initial sample weights

$$w_i = \frac{1}{N}$$

for m = 1 to M do:

Generate  $D_m$  by sampling from D w.r.t. sampling weights w

Train Decision Stump  $h_m$  over  $D_m$ 

Apply  $h_m$  to all samples in D and identify misclassified samples

Calculate total error

$$\epsilon_m = \sum_{i}^{N} w_i \cdot \delta(h_m(x_i) \neq y_i)$$

Calculate amount of say

$$\alpha_m = \frac{1}{2} \ln \frac{1 - \epsilon_m}{\epsilon_m}$$

Update sample weights

$$w_i = w_i \cdot \begin{cases} e^{\alpha_m}, & \text{if } x_i \text{ was misclassified} \\ e^{-\alpha_m}, & \text{if } x_i \text{ was correctly classified} \end{cases}$$
 &  $w_i = \frac{w_i}{\sum_{i=1}^{N} w_i}$ 

$$\mathbf{k} \quad w_i = \frac{w_i}{\sum_i^N u}$$

end for

### **AdaBoost Prediction**

- Assume 8 boosted Decision Stumps h<sub>1</sub>, ..., h<sub>8</sub>
  - $\blacksquare$  Each tree has an "amount of say"  $\alpha_{\it m}$
  - Let  $h_1$ ,  $h_3$ ,  $h_8$  say "Yes"; all other trees say "No"

$$\alpha_m = \frac{1}{2} \ln \frac{1 - \epsilon_m}{\epsilon_m}$$

$$h_1$$
  $\alpha_1 = 0.34$ 
 $h_3$   $\alpha_3 = 1.20$ 
 $h_8$   $\alpha_8 = 0.97$ 
 $h_2$   $\alpha_2 = 0.14$ 
 $h_4$   $\alpha_4 = 0.58$ 
 $h_5$   $\alpha_5 = 0.09$ 
 $h_6$   $\alpha_6 = 0.62$ 
 $h_7$   $\alpha_7 = 0.45$ 

$$0.34 + 1.20 + 0.97 = 2.51$$

Final prediction: "Yes"

$$0.14 + 0.58 + 0.09 + 0.62 + 0.45 = 1.88$$

#### **Gradient Boosted Trees**

#### Gradient Boosting

- Mainly applied to regression algorithms to improve performance
- Very commonly combined with Decision Trees (for regression)

#### Basic training algorithm

- Start with a initial prediction (e.g., mean over all values)
- Calculate residuals = error between true value and current prediction
- Train Decision Stump to predict residuals
- Update predictions based on predicted residuals
- Repeat...

#### • Step 1:

- 1a) Calculate residuals  $r_{i,m} = y_i f_{m-1}(x_i)$
- 1b) Fit Decision Stump  $h_m$  to residuals  $r_{i,m}$

| Age | Edu-<br>cation | Marital<br>Status | Annual<br>Income | Credit<br>Limit y | f <sub>m-1</sub> (x) | r <sub>m</sub> (x) |
|-----|----------------|-------------------|------------------|-------------------|----------------------|--------------------|
| 23  | Master         | Single            | 75k              | 1,400             | 1,000                | 400                |
| 35  | Bachelor       | Married           | 50k              | 900               | 1,000                | -100               |
| 26  | Master         | Single            | 70k              | 1,300             | 1,000                | 300                |
| 41  | PhD            | Single            | 95k              | 1,500             | 1,000                | 500                |
| 18  | Bachelor       | Single            | 40k              | 500               | 1,000                | -500               |
| 55  | Master         | Married           | 85k              | 1,200             | 1,000                | 200                |
| 30  | Bachelor       | Single            | 60k              | 800               | 1,000                | -200               |
| 35  | PhD            | Married           | 60k              | 800               | 1,000                | -200               |
| 28  | PhD            | Married           | 65k              | 600               | 1,000                | -400               |

Assume m = 1 
$$f_0(x_i) = 1000$$



#### • Step 2:

- 1a) Calculate predicted residuals  $h_m(x_i)$  for all training samples
- 1b) Calculate new predictions  $f_m(x_i) = f_{m-1} + \eta \cdot h_m(x_i)$  (here:  $\eta = 0.1$ )
- 1c) Set m = m+1, go to Step 1

| Age | Edu-<br>cation | Marital<br>Status | Annual<br>Income | Credit<br>Limit y | f <sub>m-1</sub> (x) | r <sub>m</sub> (x) | h <sub>m</sub> (x) | f <sub>m</sub> (x) |
|-----|----------------|-------------------|------------------|-------------------|----------------------|--------------------|--------------------|--------------------|
| 23  | Master         | Single            | 75k              | 1,400             | 1,000                | 400                | 350                | 1,035              |
| 35  | Bachelor       | Married           | 50k              | 900               | 1,000                | -100               | -300               | 970                |
| 26  | Master         | Single            | 70k              | 1,300             | 1,000                | 300                | 350                | 1,035              |
| 41  | PhD            | Single            | 95k              | 1,500             | 1,000                | 500                | 350                | 1,035              |
| 18  | Bachelor       | Single            | 40k              | 500               | 1,000                | -500               | -300               | 970                |
| 55  | Master         | Married           | 85k              | 1,200             | 1,000                | 200                | 350                | 1,035              |
| 30  | Bachelor       | Single            | 60k              | 800               | 1,000                | -200               | -266               | 973                |
| 35  | PhD            | Married           | 60k              | 800               | 1,000                | -200               | -266               | 973                |
| 28  | PhD            | Married           | 65k              | 600               | 1,000                | -400               | -266               | 973                |

**Note:** long-term trend

- The residuals  $r_m$  go towards 0
- The predicted values f<sub>m</sub> are closer to the true values y

f<sub>m-1</sub>(x)

1,000

1.000

1,000

1.000

1.000

1,000

1.000

1,000

1.000

Credit

Limit v

1,400

900

1,300

1.500

500

1,200

800

800

600

Output for after Step 1 & 2 for m+1

Annual

Income

75k

50k

70k

95k

40k

85k

60k

60k

65k

Age

23

35

26

41

18

55

30

35

28

Edu-

cation

Master

Bachelor

Master

PhD

Bachelor

Master

Bachelor

PhD

PhD

Marital

**Status** 

Single

Married

Single

Single

Single

Married

Single

Married

Married



# Gradient Boosting Training — Basic Algorithm

```
Initialization: Dataset D, f_0(x_i) = mean(y) \eta = 0.1
```

for m = 1 to M do:

Calculate residuals  $r_{i,m} = y_i - f_{m-1}(x_i)$ 

Train Decision Stump  $h_m$  over D with with  $r_{i,m}$  as targets

Predicted residuals  $h_m(x_i)$  for all training samples

Calculate new predictions  $f_m(x_i) = f_{m-1} + \eta \cdot h_m(x_i)$ 

end for

**Output:** M Decision Stumps  $h_1, h_2, ..., h_M$ 

# Gradient Boosting Training — Convergence for $x_0$ and $x_1$



## **Gradient Boosting Prediction**



# Boosting Methods — Pros & Cons (Compared to Decision Trees)

#### Pros

■ High accuracy — often state of the art

#### Cons

- Less Interpretable (arguably even less compared to Random Forests)
- Slower training and prediction → sequential processing → not parallelizable

### **Summary**

#### Decision Trees

- Intuitive model for classification and regression → interpretable!
- Can handle categorical and numerical data (although tricky in practice)
- Typically good but not great results

#### Tree Ensembles

- Aim to address limitations of single decision trees (particularly high variance)
- Ensembles of independent models: Bagging, Random Forests
- Ensembles of dependent models: AdaBoost, Gradient Boosted Trees
- State of the art in many application contexts

### Solutions to Quick Quizzes

- Slide 11: Throw error (safe default), use majority label of subtree
- Slide 27: B ("natural" ranking of energy labels is broken)
- Slide 47: A