Moderated Regression

Gemma Wallace & Neil Yetz

What is Moderation?

- A moderator is a variable that changes (i.e., moderates) the relationship between two (or more) other variables
- Moderation models are used to determine if the magnitude and/or direction of a certain regression slope varies as a function of some third variable

What is moderation?

An interaction term = the predicted difference in the effect of x on y for a one-unit increase in z

(i.e., how the simple slope of x on y changes as z increases)

What does an interaction (aka moderation) effect look like?

Note: crossed lines would also indicate an interaction

Load libraries

```
11 * ## Load libraries
12 * ```{r}
13 library(psych)
14 library(tidyverse)
15 library(olsrr)
16 ```
```

Read in Data

```
18 - ## Read in data
19 - ```{r}
    dat <- read_csv("moderation_demo.csv")</pre>
21
     Parsed with column specification:
     cols(
       att1 = col_double(),
       att2 = col_double(),
       att3 = col_double(),
       att4 = col_double(),
       att5 = col_double(),
       group1 = col_double(),
       group2 = col_double(),
       out1 = col_double(),
       out2 = col_double(),
       out3 = col_double(),
       out4 = col_double()
```

Calculate descriptives

This is a simulated dataset (i.e., the variables don't have specific meaning)

```
23 * ## Get descriptives
24 * ```{r, rows.print = 11}
25 describe(dat)
```

								OE.	∴ ×
	vars <dbl></dbl>	n <dbl></dbl>	mean <dbl></dbl>	sd <dbl></dbl>	median <dbl></dbl>	trimmed <dbl></dbl>	mad <dbl></dbl>	min <dbl></dbl>	max <dbl> ▶</dbl>
att1	1	692	1.14	1.52	0	0.88	0.00	0	9
att2	2	692	1.94	0.88	2	1.88	1.48	1	9
att3	3	692	1.48	1.44	1	1.30	1.48	0	9
att4	4	692	1.17	1.39	1	0.98	1.48	0	9
att5	5	692	1.26	1.51	1	1.06	1.48	0	9
group1	6	692	2.58	1.17	2	2.50	1.48	1	9
group2	7	692	1.59	0.49	2	1.62	0.00	1	2
outl	8	692	1.39	1.41	2	1.32	0.00	0	9
out2	9	692	1.21	1.55	1	0.97	1.48	0	9
out3	10	692	1.38	1.43	2	1.30	0.00	0	9
out4	11	692	1.39	1.48	2	1.29	0.00	0	9

1-11 of 11 rows | 1-10 of 13 columns

Our variables of interest

```
23 - ## Get descriptives
24 · ```{r, rows.print = 11}
    describe(dat)
                                                                                                                         \hat{\sim}
                                                                       median
                                                                                       trimmed
                                                                                                                min
                                                            sd
                                                                                                                        max

<dbl> ▶
                                                                                                      mad
                           vars
                                              mean
                                        n
                           <dbl>
                                    <dbl>
                                               <dbl>
                                                          <dbl>
                                                                                                      <dbl>
                                                                                                               <dbl>
                                                                          <dbl>
                                                                                           <dbl>
                                     692
                                               1.14
                                                          1.52
                                                                                           0.88
       att1
                                                                            0
                                                                                                      0.00
                                                                                                                  0
                                                                                                                           9
       att3
                                                          1.44
                              3
                                     692
                                               1.48
                                                                                           1.30
                                                                                                      1.48
                                                                                                                  0
                                                                                                                           9
                                                   Predictors
                                                    Outcome
                             11
                                     692
                                               1.39
                                                          1.48
                                                                            2
                                                                                           1.29
                                                                                                      0.00
       out4
                                                                                                                  0
      1-11 of 11 rows | 1-10 of 13 columns
```

Examine correlations between the predictors

```
28 * ## Examine correlation between att1 & att3
29 * ```{r}
30 cor(dat$att1, dat$att3)
31 ```
```

In general, we want to avoid multicollinearity in multiple linear regression

Examine correlations between the predictors

Examine correlations between the predictors

Create the cross-product of the two predictors

```
34 * ## Create the cross product of att1 & att3
35 * ```{r}
36  dat <- mutate(dat, att1att3 = att1*att3)
37</pre>
```

The cross-product is the interaction term. We'll include this as an additional predictor in the regression model.

Create the cross product

```
34 - ## Create the cross product of att1 & att3
35 + ```\{r\}
    dat <- mutate(dat, att1att3 = att1*att3)</pre>
36
```

1	3	1	
2	0	0	
3	3	2	
4	0	1	
5	0	0	
6	4	0	
7	0	1	
8	0	1	
9	1	2	
10	0	2	
11	2	1	
12	0	2	
13	2	0	
14	0	2	
15	2	3	
16	2	2	

att1att3

Run the main effects model

```
42 | 43 * ### Main Effects model 44 * ```{r}
45 modME <- lm(out4 ~ att1 + att3, data = dat) 46 ols_regress(modME) 47
```

This is just a regular multiple linear regression. We first want to examine the main effects between each predictor and the outcome before adding the interaction term.

Main effects model results

Model Summary

R	0.453	RMSE	1.317
R-Squared	0.206	Coef. Var	94.839
Adj. R-Squared	0.203	MSE	1.735
Pred R-Squared	0.179	MAE	0.905

RMSE: Root Mean Square Error

MSE: Mean Square Error MAE: Mean Absolute Error

ANOVA

	Sum of Squares	DF	Mean Square	F	Sig.
Regression Residual Total	309.277 1195.156 1504.432	2 689 691	154.638 1.735	89.148	0.0000

Parameter Estimates

model	Beta	Std. Error	Std. Beta	t	Sig	lower	upper
(Intercept) att1 att3	0.655 0.049 0.458	0.080 0.033 0.035	0.050 0.448	8.185 1.480 13.190	0.000 0.139 0.000	0.498 -0.016 0.390	0.812 0.114 0.527

Run the same model with the interaction term (aka a Moderated Regression)

```
49 - ### Interaction model
50 - ```{r}
51  modINT <- lm(out4 ~ att1 + att3 + att1att3 , data = dat)
52  ols_regress(modINT)
53</pre>
```

att1att3 is the cross-product variable we made earlier It represents att1*att3

		PIOUCI Jummu	' y					
R-Squared Adj. R-Squared Pred R-Squared		0.462 RMSE 0.213 Coef. Var 0.210 MSE 0.176 MAE		1.311 94.435 1.720 0.907		Model results with		
RMSE: Root MSE: Mean S					intera	action	1	
MAE: Mean A	bsolute Err	or				term		
		ANO	VA					
	Sum of Squares	DF	Mean Square	F	Sig.			
Regression Residual Total	321.154 1183.278 1504.432	3 688 691	107.051 1.720	62.243	0.0000	Simple Slopes		raction
		P	arameter Estima	ates				
model	Beta	Std. Error	Std. Beta	t	Sig	lower	upper	
(Intercept)	0.757	0.089		8.539	0.000	0.583	0.931	
att1 att3	-0.032 0.393	0.045 0.043		-0.716 9.210	0.474 0.000	-0.121 0.309	0.056 0.477	
att1att3	0.049	0.019		2.628	0.009	0.012	0.085	

Interpreting the moderated regression

R	0.462	RMSE	1.311
R-Squared	0.213	Coef. Var	94.435
Adj. R-Squared	0.210	MSE	1.720
Pred R-Squared	0.176	MAE	0.907

RMSE: Root Mean Square Error

MSE: Mean Square Error MAE: Mean Absolute Error

ANOVA

	Sum of Squares	DF	Mean Square	F	Sig.
Regression Residual Total	321.154 1183.278 1504.432	3 688 691	107.051 1.720	62.243	0.0000

Parameter Estimates

model	Beta	Std. Error	Std. Beta	t	Sig	lower	upper
(Intercept) att1 att3 att1att3	0.757 -0.032 0.393 0.049	0.089 0.045 0.043 0.019	-0.033 0.384 0.140	8.539 -0.716 9.210 2.628	0.000 0.474 0.000 0.009	0.583 -0.121 0.309 0.012	0.931 0.056 0.477 0.085

att1: This is the predicted change in our outcome for every 1 unit increase in att1 when att3 is 0.

att3: This is the predicted change in our outcome for every 1 unit increase in att3 when att1 is 0.

att1att3: This is the predicted change in effect in the effect of att1 on our outcome for every one unit increase in att3.

Compare the two models via hierarchical regression

```
# Compare the two models
```{r}
anova(modME, modINT)
Analysis of Variance Table
Model 1: out4 \sim att1 + att3
Model 2: out4 \sim att1 + att3 + att1att3
 Res.Df RSS Df Sum of Sq F Pr(>F)
 689 1195.2
 2 688 1183.3 1 11.877 6.9058 0.008783 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Does including the interaction term significantly improve the amount of variance our model explains in out4?

# Compare the two models via hierarchical regression

```
Compare the two models
 ``{r}
anova(modME, modINT)
Analysis of Variance Table
Model 1: out4 \sim att1 + att3
Model 2: out4 \sim att1 + att3 + att1att3
 Res.Df RSS Df Sum of Sq F Pr(>F)
 689 1195.2
 688 1183.3 1 11.877 6.9058 0.008783 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

At p<0.05, the moderated regression model explained significantly more variance in out4 than the main effects model

# Our interaction - Visualized

Predicted values of out4



# Our interaction - Visualized

Predicted values of out4



# Example APA write up

The differential effect of att1 on out4, using att3 as a moderator, was examined among 692 participants. A moderation model was estimated, out4 was regressed on att1, att3, and the interaction between the two. The simple slope of att1 was not statistically significant (b = -0.03, 95%Cl -0.12, 0.06) and the simple slope of att3 (b = 0.39, 95%Cl 0.31, 0.48) was statistically significant. The interaction term is statistically significant (b = 0.05, 95%Cl 0.01, 0.09), indicating that the effect of att1 on out4 is larger as att3 increases.

# Additional considerations for moderation

- Power is important!
  - N needed to detect interaction effect can be up to 9x larger than for detecting main effects (e.g., Wahlsten, 1991)
  - o For every interaction term you add, N needed to detect effect increases

- You can examine interactions between more than two variables
  - E.g., 3-day interactions
- Interpretation is easier with categorical predictors
  - E.g. You can turn continuous variables into categorical by using cut-off scores