Hamburg University

Optimization

Notes

Department of Mathematics, Hamburg University, Bundesstrasse 55, 20146, Hamburg, Germany

Abstract:

Keywords: Optimization● Convexity

Introduction

0.1. Definitions

Definition 0.1.

We say a functional J is proper if dom $J \neq \emptyset$ and $J > -\infty$.

0.2. Useful lemmas and Theorems.

Lemma 0.1.

Let $(x_n)_{n\in\mathbb{N}}$ be a bounded sequence in a Hilbert Space H. Then $(x_n)_{n\in\mathbb{N}}$ possesses a weakly convergent subsequence.

Lemma 0.2.

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in a Hilbert Space H. Then $(x_n)_{n\in\mathbb{N}}$ converges if and only if it is bounded and possesses at most one weak sequential cluster point.

Theorem 0.1.

Let $f: H \to (\infty, \infty]$ be a convex functional on a Hilbert space. Then the following are equivalent:

- (i) f is weakly sequentially lower semicontinuous.
- (ii) f is sequentially lower semicontinuous.
- (iii) f is lower semicontinuous.
- (iv) f is weakly lower semicontinuous.

Lemma 0.3.

A convex set is closed if and only if it is weakly closed.

Lemma 0.4.

Every bounded linear operator over a Banach Space is weakly continuos.

Lemma 0.5 (Parallelogram law).

$$||x + y||^2 + ||x - y||^2 = 2 ||x||^2 + 2 ||y||^2$$

Lemma 0.6.

Let \mathcal{X} be a Hausdorff space and let $(f_i)_{i\in I}$ be a family of lower semicontinuous functions from \mathcal{X} to $[-\infty,\infty]$. Then $\sup_{i\in I} f_i$ is lower semi-continuous. If I is finite, then $\min_{i\in I} f_i$ is lower-semicontinuous.

Definition 0.2.

Let \mathcal{X} be a Hausdorff space. The lower semicontinuous envelope of $f: \mathcal{X} \to [-\infty, \infty]$ is

$$\overline{f} = \sup \left\{ g: \mathcal{X} \to [-\infty, \infty] \mid \quad g \leq f \text{ and } g \text{ is lower semicontinuous} \right\}.$$

1. Lecture 1

Fact 1.1.

Let $x \in H$, let U be a neighborhood of x, let G be a real Banach space, let $T: U \to G$, let V be a neighborhood of Tx, and let $R: V \to K$. Suppose that T is Frechet differentiable at x and that R is Gteaux differentiable at Tx. Then $R \circ T$ is Gateâux differentiable at x and $D(R \circ T)(x) = (DR(Tx)) \circ DT(x)$. If R is Fréchet differentiable at x, then so is $R \circ T$.

Fact 1.2.

Let $x \in H$, let U be a neighborhood of x, let K be a real Banach space, and let $T: U \to K$. Suppose that T is twice Fréchet differentiable at x. Then $\forall (y,z) \in H \times H$, $(\mathsf{D}^2T(x)y)z = (\mathsf{D}^2T(x)z)y$.

Definition 1.1.

Let $x \in H$, let $C \in \mathcal{V}(x)$, and let $T : C \to K$. Then T is Fréchet differentiable at x if there exists an operator $\mathbf{D}T(x) \in B(H,K)$, called the Frchet derivative of T at x, such that

$$\lim_{0\neq \|y\|\to 0}\frac{\|T(x+y)-Tx-\mathsf{D}T(x)y\|}{\|y\|}=0$$

2. Lecture 2

2.1. Convexity

Definition 2.1.

Let U be linear space. A functional $J: U \to \overline{\mathbb{R}}$ is called convex, if for $t \in [0, 1]$ and $u_1, u_2 \in U$.

$$J(tu_1 + (1-t)u_2) \le tJ(u_1) + (1-t)J(u_2) \tag{1}$$

holds such that the right hand side is well defined.

- J is strictly convex if (1) holds strictly for $\forall u_1, u_2 \in U, u_1 \neq u_2 \text{ and } t \in (0,1) \text{ with } J(u_1) < \infty \text{ and } J(u_2) < \infty.$
- An optimization problem,

$$\min_{u \in C} J(u)$$

is called convex if both C and J are convex.

Lemma 2.1.

If C and V are convex in U, then

- $\alpha V = \{w = \alpha v, v \in C\}$ is convex.
- \bullet C + V is convex.

Proof.

Lemma 2.2.

Let V be a collection of convex sets in U, then $C = \bigcap_{K \in V} K$ is convex.

Proof. If $C = \emptyset$, then C the statement is vacuously true. Consider $C \neq \emptyset$ and $u_1, u_2 \in C$ then $u_1, u_2 \in K$ for all $K \in V$

$$\implies tu_1 + (1-t)u_2 \in K, \quad \forall K \in V \implies tu_1 + (1-t)u_2 \in \bigcap_{K \in V} K$$

Lemma 2.3.

Let $C \in U$ convex and $J: C \to \mathbb{R}$. Define $\alpha = \inf_{u \in C} J(u)$. Then the set $\Psi = u|J(u) = \alpha$ is convex, i.e. the solution of

$$\min_{u \in C} J(u)$$

is a convex set.

Proof. Let $u_1, u_2 \in \Psi$ and $u_t = tu_1 + (1-t)u_2$. Sinc J is convex, it holds that $J(u_t) \leq tJ(u_t) + (1-t)J(u_t) = \alpha$. Thus $J(u_t) = \alpha$, $\forall t \in [0, 1]$. Implying $u_t \in \Psi$ Hence Ψ is convex.

Lemma 2.4.

Let U be linear normed space, and $C \subset U$ a convex set and $J: U \to \overline{\mathbb{R}}$ convex functional. Let $\overline{u} \in C$ such that

$$J(\overline{u}) \le J(u) \quad \forall u \in B_{\epsilon}(\overline{u}) \cap C,$$

for some ball $B_{\epsilon}(\overline{u})$ in U with center in \overline{u} . Then $J(\overline{u}) = \inf_{u \in C} J(u)$. In other words, the local minimizer of a convex optimization problem is also a global minimizer.

Proof. Let $B_{\epsilon}(\overline{u})$ be an open neighborhood of \overline{u} with $J(\overline{u}) \leq J(u)$ for all $u \in B_{\epsilon}(\overline{u}) \cap C$. Take an arbitrary $u^* \in C$ and consider $u_t = t\overline{u} + (1-t)u^*$. Since C is convex $u_t \in C$. For some $t \in (0,1), u_t \in B_{\epsilon}(\overline{u})$. Thus,

$$J(\overline{u}) \le J(u_t) \le tJ(\overline{u}) + (1-t)J(u^*).$$

We have $\forall t \in [0,1]$ that $(1-t) \leq 0$, then

$$(1-t)J(\overline{u}) \le (1-t)J(u^*) \qquad \forall u^* \in C$$

Therefore, \overline{u} is a local minimizer for C.

Theorem 2.1.

Let U is Banach Space, $C \subset U$ convex and $J: C \to \mathbb{R}$ Gateâux differentiable. Consider the minimization problem.

$$\min_{u \in C} J(u)$$

1. Let \overline{u} be a local solution. Then $J'(\overline{u}; u - \overline{u}) \geq 0$, $\forall u \in C$.

- 2. If J is convex on C, then $J'(\overline{u}; u \overline{u}) \geq 0$, $\forall u \in C$ is necessary and sufficient for global optimality of \overline{u}
- 3. If J is strictly convex on C, then the minimization problem admits at most one solution.
- 4. If C is closed, and J is convex and continuous with

$$\lim_{\substack{u \in C \\ \|u\| \to \infty}} J(u) = \infty.$$

Then a global solution $\overline{u} \in C$ exists.

Proof.

1. Let \overline{u} be a local solution $J(\overline{u}) \leq J(u)$, $\forall u \in B_{\epsilon}(\overline{u}) \cap C$, let $t \in [0,1]$, $u_t = \overline{u} + t(u - \overline{u})$, then $u_t \in C$, since C is convex.

For small t > 0,

$$0 \le \frac{1}{t} \left[J(u_t) - J(u) \right] \le \frac{1}{t} \left[J(\overline{u} + t(u - \overline{u})) - J(u) \right] \xrightarrow{t \downarrow 0} J'(\overline{u}; u - \overline{u})$$

2. Since J is convex we have for $u \in C$, $J(\overline{u} + t(u - \overline{u})) \leq J(\overline{u}) + t[J(u) - J(\overline{u})]$, for t > 0

$$\implies J(u) - J(\overline{u}) \ge \frac{1}{t} \left[J(\overline{u} + t(u - \overline{u})) - J(\overline{u}) \right] \xrightarrow{t \downarrow 0} J'(\overline{u}; u - \overline{u}) \ge 0.$$

Therefore \overline{u} is a global minimizer.

- 3. Assume, that there are two solution for the minimization problem, $\overline{u}, u^* \in C$, such that $\overline{u} \neq u^*$ and $J(\overline{u}) = J(u^*) = \inf_{u \in C} J(u)$. Since J is strictly convex $J(u_t) = J(t\overline{u} + (1-t)u^*) < tJ(\overline{u}) + (1-t)J(u^*) = \alpha$ for all $t \in [0, 1]$. Contradicting our assumption that u^* and \overline{u} are solutions.
- 4. $\alpha = \inf_{u \in C} J(u) \in \mathbb{R} \cup \{-\infty\}$, choose a minimizing sequence $(u_k)_k \subset C$ with $J(u_k) \xrightarrow{k \to \infty} \alpha$
 - $\implies (u_k)_k$ is bounded, because $J \to \infty$ as $||u|| \to \infty$.
 - $\Longrightarrow (u_k)_k$ contains a weakly convergent subsequence $u_{k_e} \xrightarrow[e \to \infty]{} \overline{u} \in C$. Since C is closed and convex.
 - \implies J is weakly-lower semicontinuos because it is convex and continuos.

3. Lecture 3

Now consider Hilbert space $(H, \langle \cdot, \cdot \rangle)$ with the norm defined as $\| \cdot \| = \sqrt{(\cdot, \cdot)}$.

Let be $J: H \to \mathbb{R}$ a functional over a Hilbert space H, we define the set,

$$\underset{v \in C \subseteq H}{\arg\min} J(x) := \{ x \mid x \in C \land \forall v \in C : J(x) \le J(v) \}.$$

By Riesz-Fréchet representation formula, exists a unique vector $\nabla J(x) \in H$ such that,

$$(\forall y \in H) \quad J'(x;y) = \langle y, \nabla J(x) \rangle$$

namely Gateâux gradient of J at x.

Lemma 3.1.

Let H Hilbert space and $C \subset H$ closed and convex. Define $P_C : H \to C$,

$$P_C(x) = \underset{v \in C}{\arg\min} [||v - x||].$$

Then,

- 1. P_C is well defined, i.e. $\forall x \in H$, $\exists ! u \in C$ such that $P_C(x) = \{u\}$.
- 2. $\forall u, x \in H$, we have $u = P_C(x) \iff u \in C$ and $\langle x u, v u \rangle \leq 0 \ \forall v \in C$.
- 3. $||P_C(u) P_C(\overline{u})|| \le ||u \overline{u}|| \quad \forall u, \overline{u} \in H$, i.e. The projection P_C is non expansive.
- 4. $\langle P_C(u) P_C(\overline{u}), u \overline{u} \rangle \leq 0, \quad \forall u, \overline{u} \in H$
- 5. Let be t>0 a real number, then $\forall u\in C$, and $\forall v\in H$, $\phi(t)=\frac{1}{t}\|P_C\left(u+tv\right)-u\|$ is non-increasing.

Proof. 1. First we prove existence, let be $(v_k)_k$ a minimizing sequence in C, such that

$$||x - v_k|| \to \alpha = \inf_{v \in C} ||x - v||,$$

By the parallelogram law,

$$2 \|v_{j} - x\|^{2} + 2 \|v_{i} - x\|^{2} = \|v_{j} - v_{i}\|^{2} + \|v_{j} + v_{i} - 2x\|^{2}$$

$$2 \|v_{j} - x\|^{2} + 2 \|v_{i} - x\|^{2} = \|v_{j} - v_{i}\|^{2} + 4 \left\|\frac{v_{j} + v_{i}}{2} - x\right\|^{2}$$

$$\implies 2 \|v_{j} - x\|^{2} + 2 \|v_{i} - x\|^{2} - 4 \left\|\frac{v_{j} + v_{i}}{2} - x\right\|^{2} = \|v_{j} - v_{i}\|^{2}$$

Since C is convex $\frac{v_i+v_j}{2} \in C$, then by definition of α ,

$$0 \le \alpha \le \left\| \frac{v_j + v_i}{2} - x \right\|$$

Therefore the above equations become in the following inequality,

$$2 \|v_j - x\|^2 + 2 \|v_i - x\|^2 - 4\alpha^2 \ge \|v_j - v_i\|^2$$

Since $||v_i - x|| \to \alpha$ and $||v_j - x|| \to \alpha$, we have that $||v_j - v_i|| \to 0$, therefore the series is Cauchy and then converges. Since C is closed the series converges to a point $v \in C$.

Second we prove uniqueness, we proceed by contradiction, take $v, v' \in C$ such $v \neq v'$, and both of them minimizing the distant with respect the point x, i.e.

$$||x - v|| = ||x - v'|| = \alpha = \min_{u \in C} ||u - x||$$

By the parallelogram law,

$$2 \|x - v\|^2 + 2 \|x - v'\|^2 = \|2x - v - v'\|^2 + \|v - v'\|^2$$

Since C is convex, $\left\| \frac{v+v'}{2} - x \right\| \ge \alpha$

$$||v - v'||^{2} = 2 ||x - v||^{2} + 2 ||x - v'||^{2} - ||2x - v - v'||^{2}$$

$$||v - v'||^{2} = 2 ||x - v||^{2} + 2 ||x - v'||^{2} - 4 ||x - \frac{v - v'}{2}||^{2}$$

$$||v - v'||^{2} = 2\alpha^{2} + 2\alpha^{2} - 4 ||x - \frac{v - v'}{2}||^{2} \le 0$$

Therefore ||v - v'|| = 0, and v = v'.

By the uniqueness and existence $\underset{u \in C}{\arg\min} [\|u - x\|]$ is not empty set and has only one element for each $x \in H$. Thus, P_C is well defined.

Theorem 3.1.

Let H be Hilbert space, $C \subset H$ closed and convex, $J: C \to \mathbb{R}$, Gateâux differentiable at the local solution \overline{u} of $\min_{u \in C} J(u)$. Thus, $J'(\overline{u}; u - \overline{u}) \geq 0$, $\forall u \in C$ and it is equivalent to $\overline{u} = P_C(\overline{u} - \delta \nabla J(\overline{u}))$, $\forall \delta > 0$.

Proof. Since every Hilbert Space is a Banach space, and C is closed and Convex subset of H, and \overline{u} is a solution of minimization problem; we can apply 2.1.

Thus $J'(\overline{u}; u - \overline{u}) \ge 0 \iff \langle u - \overline{u}, \nabla J(\overline{u}) \rangle \ge 0 \ \forall u \in C$.

For all $\delta > 0$, we multiply the Gateâux gradient $(-\delta)$ and we have,

$$\langle u - \overline{u}, -\delta \nabla J(\overline{u}) \rangle < 0 \ \forall u \in C,$$

adding zero to the gradient, $\langle u - \overline{u}, \overline{u} - \delta \nabla J(\overline{u}) - \overline{u} \rangle \leq 0$. Then we set $w \in H$ as $w := \overline{u} - \delta \nabla J(\overline{u})$, and applying lemma 3.1 we have,

$$\overline{u} = P_C(w) \iff \langle u - \overline{u}, w - \overline{u} \rangle$$

Thus,

$$\overline{u} = P_C(\overline{u} - \delta J(\overline{u}))$$

3.1. Application

Consider U, Y, Z Hilbert spaces. Let be $J: Y \times U \to \mathbb{R}$ a functional. Consider the minimization problem,

$$\begin{cases} \overline{u} = \min_{y,u} J(y,u) \\ Ay = Bu \quad u \in U_{ad} \subset U \end{cases}$$

For some set U_{ad} closed, convex and bounded. And $A \in \mathcal{B}(Y, Z)$ bounded and invertible with $A^{-1} \in \mathcal{B}(Z, Y)$ and $B \in \mathcal{B}(U, Z)$.

Then we can write $y \in Y$ as a function of $u \in U$,

$$y = y(u) = A^{-1}Bu$$

Consider the reduced cost functional F(u) := J(y(u), u), then our problem is equivalent to

$$\overline{u}_{ad} = \min_{u \in U_{ad}} F(u)$$

Let $(u_k)_k \in U_{ad}$ denote a minimizing sequence, i.e. $F(u_k) \to \inf_{u \in U_{ad}} F(u)$, since $u_k \in U_{ad}$ the sequence is bounded. Therefore we can find a convergent subsequence $u_{k_l} \xrightarrow[l \to \infty]{} \overline{u}$, moreover since U_{ad} is closed and convex U_{ad} is weakly closed, implying $\overline{u} \in U_{ad}$

Proposition 3.1.

If J is continuous and weakly lower semicontinuous, then $\overline{u} = \underset{u \in U_{ad}}{\arg \min} [F(u)].$

Proof. If J is weakly lower semicontinuos

$$J(y(\overline{u}), \overline{u}) \leq \liminf_{l \to \infty} J(y(u_k), u_k)$$

That is,

$$F(\overline{u}) \le \liminf_{l \to \infty} F(u_k) = \alpha$$

Since
$$u_{k_l} \xrightarrow[l \to \infty]{} \overline{u}$$
, $\Longrightarrow y(u_k) \rightharpoonup y(\overline{u})$ and $A^{-1}Bu_k \rightharpoonup A^{-1}B\overline{u}$

J is Gateâux differentiable, applying the chain rule to F and valuating in u we have

$$F_u(u; h) = J_u(y; \alpha(u; h), u) + J_u(y, u; h)$$

$$0 \leq \langle u - \overline{u}, \nabla_u F(\overline{u}) \rangle \quad \forall u \in U_{ad}$$

$$= \langle A^{-1}B(u - \overline{u}), \nabla_y J(\overline{y}, \overline{u}) \rangle_{Y^*Y} + \langle u - \overline{u}, \nabla_u J(\overline{y}, \overline{u}) \rangle_{U^*U}$$

$$= \langle A^{-1}B(u - \overline{u}), \nabla_y J(\overline{y}, \overline{u}) \rangle_{Y^*Y} + \langle u - \overline{u}, \nabla_u J(\overline{y}, \overline{u}) \rangle_{U^*U}$$

$$= \langle u - \overline{u}, (A^{-1}B)^* \nabla_y J(y, \overline{u}) \rangle_{U^*U} + \langle u - \overline{u}, \nabla_u J(y, \overline{u}) \rangle_{U^*U}$$

$$= \langle u - \overline{u}, (A^{-1}B)^* \nabla_y J(\overline{y}, \overline{u}) + \nabla_u J(\overline{y}, \overline{u}) \rangle_{U^*U}$$

Setting $p^* = (A^{-1}B)^* \nabla_y J(\overline{y}, \overline{u})$. We have that $\overline{u} = P_{U_{ad}}(\overline{u} - \delta(p^* + \nabla_u J(\overline{y}, \overline{u})))$

4. Lecture 4

Lemma 4.1.

Let U be linear space and $J: U \to \overline{\mathbb{R}}$. Then

- 1. If J is convex, then the effective domain $dom(J) = \{u \in U | J(u) < \infty\}$ is convex.
- 2. J is convex \iff epi $(J) = \{(u, \alpha) \in U \times \mathbb{R} | J(u) \leq \alpha\}$ is convex.

Proof. Since U and \mathbb{R} are linear spaces, is easy to see that scalar multiplications and sums are well defined over $U \times \mathbb{R}$ and so over epi (J).

1. Assume J convex. If $u_1 \in \text{dom}(J)$ and u_2 are elements of dom(J). Therefore, $J(u_1) < \infty$, and $J(u_2) < \infty$, therefore for $t \in [0,1]$, we have $tJ(u_1) < \infty$ and $(1-t)J(u_2) < \infty$. Since J is convex,

$$J(tu_1 + (1-t)u_2) \le tJ(u_1) + (1-t)J(u_2) < \infty$$

Therefore, $tu_1 + (1-t)u_2 \in \text{dom}(J)$. Hence dom J is convex.

2. First consider J a convex functional, then we have for all $u_1, u_2 \in U$,

$$J(tu_1 + (1-t)u_2) \le tJ(u_1) + (1-t)J(u_2) \quad \forall t \in [0,1]$$

Let (u_1, α_1) , (u_2, α_2) elements of epi (J), then $J(u_1) < \alpha_1$ and $J(u_2) < \alpha_2$. Since J is convex.

$$J(tu_1 + (1-t)u_2) \le t\alpha_1 + (1-t)\alpha_2$$

Then $(tu_1 + (1-t)u_2, t\alpha_1 + (1-t)\alpha_2) \in epi(J)$. Therefore, if J is convex, and $(u_1, \alpha_1), (u_2, \alpha_2)$ are elements of epi(J) then,

$$t(u_1, \alpha_1) + (1-t)(u_2, \alpha_2) = (tu_1 + (1-t)u_2, t\alpha_1 + (1-t)\alpha_2) \in epi(J)$$

Hence epi(J) is convex.

Now assume epi (J) convex. Let (u_1, α_1) , (u_2, α_2) elements of epi (J) then $(tu_1 + (1-t)t\alpha_1 + (1-t)\alpha_2)$, then

$$J(tu_1 + (1-t)u_2) \le t\alpha_1 + (1-t)\alpha_2 \quad \forall t \in [0,1]$$

By definition of epi (J), if $u_1, u_2 \in \text{dom } J$, then $(u_1, J(u_1))$ and $(u_2, J(u_2))$, are elements of epi (J), therefore

$$J(tu_1 + (1-t)u_2) < tJ(u_1) + (1-t)J(u_2) \quad \forall t \in [0,1]$$

Implying that J is convex.

Definition 4.1.

Let U a Banach space. Then the function $J:U\to\overline{\mathbb{R}}$ is called lower semi-continuous at $u_0\in U$ if the following conditions holds:

- If $\forall \epsilon > 0$ there is a neighborhood $B_{\delta}(u_0)$ of u_0 , such that $J(u_0) \epsilon \leq J(u) \ \forall u \in B_{\delta}(u_0)$.
- If $J(u_0) \leq \liminf_{n \to \infty} J(u_n)$ holds for each sequence $u_n \in U$.

Remark 4.1.

If the second condition holds, J is called sometimes sequentially semi-continuous. If J is continuous it is also lower semi-continuous.

Theorem 4.1.

Let U be a Banach space and $J: U \to \overline{\mathbb{R}}$. Then sthe following conditions are equivalent.

- 1. J is lower semi-continuous, i.e., J is lower semi-continuous at every point in U.
- 2. The epi(J) is closed.

3. The level sets $\mu_{\xi} = \{u \in U | J(u) \leq \xi\}$ is a closed set. Note that the sets μ_{ξ} are closed if and only if the sets $\gamma_{\xi} = \{u \in U | J(u) > \xi\}$ are open. (Since $\mu_{\xi}^{c} = \gamma_{\xi}$).

Proof.

• (1) \Longrightarrow (2) Let (u_n, ξ_n) , be a sequence in epi (J), such that converges to (u, ξ) in $U \times \mathbb{R}$. Then

$$J(u) \le \liminf_{n \to \infty} J(u_n) \le \liminf_{n \to \infty} \xi_n = \xi.$$

Hence $(u, \xi) \in \text{epi}(J)$.

- (2) \Longrightarrow (3)Let $\xi \in \mathbb{R}$ and assume that $(u_n)_{n \in \mathbb{N}}$ is a sequence in μ_{ξ} that converges to u. Then the set $(u_n, \xi)_{n \in \mathbb{N}}$ is in epi (J). Since epi (J) is closed, we conclude that $(u, \xi) \in \text{epi }(J)$, and hence $u \in \mu_k$.
- (3) \Longrightarrow (1) Let bet $u \in U$ an arbitrary member of the Banach space U, and let $(u_n)_{n \in \mathbb{N}}$ be a sequence that converges to u. And we set the number $\eta = \liminf_{n \to \infty} J(u_n)$. Then we have to prove that $J(u) \leq \eta$. When $\eta = \infty$, the inequality is clear. Therefore we assume that $\eta < +\infty$. Since every sequence in \mathbb{R} has a subsequence that converges to the liminf, the sequence $(u_n)_n$ has a subsequence $(u_k)_k$, such that $J(u_k) \xrightarrow{k \to \infty} \eta$. Now, we can fix $\xi \in (\eta, \infty)$. By convergence we can find c such that $k \geq c$ implies that $(J(u_k))$ belongs to $(-\infty, \xi)$, therefore the set

$$\{u_k | k \ge c \in \mathbb{N}\} \subset \mu_{\xi}.$$

Since the sequence $u_n \to u$, the subsequence $u_k \to u$. And μ_{ξ} closed implies $u \in \mu_{\xi}$. Since this holds for all $\eta < \infty$, we take $\xi \downarrow \eta$. Implying $J(u) \leq \eta$.

Example 4.1.

The indicator function of a set $C \subset U$, i.e. the function $I_C: U \to [-\infty, \infty]$

$$I_C(u) = \begin{cases} 0, & \text{if } u \in C \\ +\infty, & \text{otherwise,} \end{cases}$$

is lower semi-continuous if and only if C is closed.

Proof. Take $\xi \in \mathbb{R}$. If $\xi < 0$, the set $\mu_{\xi} = \emptyset$. If $\xi > 0$, the set $\mu_{\xi} = C$. Therefore the sets m_{ξ} , for all $\xi \in \mathbb{R}$ is closed if and only if C is closed. By the theorem 4.1 I_C is lower semi-continuous if and only if C is closed.

The Dual Systems of Linear Spaces

Two linear spaces X and Y over the same scalar field Γ define a dual system if a fixed bilinear functional on their product is given:

$$(\cdot,\cdot):X\times Y\to \Gamma$$

The bilinear functional is sometimes omitted.

The dual system is called separated if the following two properties hold:

- 1. $\forall x \in X \setminus \{0\}$ there is $y \in Y$ such that $(x, y) \neq 0$.
- 2. $\forall y \in Y \setminus \{0\}$ there is $x \in X$ such that $(x, y) \neq 0$.

C

In other words, X separates points in Y and Y separates points in X. We consider only separated dual systems. For each $x \in X$, we define the application $f_x : Y \to \Gamma$ by

$$f_x(y) = (x, y) \quad \forall y \in Y$$

We observe that f_x is a linear functional on Y and the mapping $x \to f_x$, $\forall x \in X$, is linear and injective, as can be seen from condition (1). Hence, the correspondence is an embedding. Thus, the elements of X can be identified with the linear functionals on Y. In a similar way, the elements of Y can be considered as linear functionals of X, identifying an element $y \in Y$ with $g_y : X \to \Gamma$, defined by

$$g_y(x) = (x, y), \quad \forall x \in X.$$

Therefore, each dual system of linear spaces defines a mapping from either of the two linear spaces into the space of linear functionals on the other. We set,

$$p_y(x) = |(x,y)| = |g_y(x)|, \quad \forall x \in X$$

$$q_x(y) = |(x, y)| = |f_x(y)|, \quad \forall y \in Y$$

and we observe that $\mathcal{P} = \{p_y | y \in Y\}$ is a family of seminorms on X and $\mathcal{Q} = \{q_x | y \in X\}$ is a family of seminorms on Y.

Definition 4.2.

If U is a normed space, the the dual space $U^* = \mathcal{B}(U, \mathbb{R})$. Consists of all linear and bonded functionals mapping from U to \mathbb{R} .

Theorem 4.2.

Let be U a Banach space, then the dual U^* is also a Banach space relative to the norm of the functionals defined by

$$||u^*|| = \sup_{||u||_U \le 1} |u^*(u)|$$

Example 4.2.

Let $\Omega \subset \mathbb{R}$ be a measurable set. Let $f \in L^p(\Omega)$. Consider the functional $\phi_g : L^p(\Omega) : \to \mathbb{R}$ defined by,

$$\phi_g(f) = \int_{\Omega} f g d\mu$$

characterized for some g mapping Ω to the real line. This is a linear functional with respect $L^p(\Omega)$. We want an

estimate of the norm of this functional. For this purpose we apply Hölder inequality, with $\frac{1}{p} + \frac{1}{q} = 1$, and p, q > 1,

$$\|\phi_g\| = \sup_{1 \ge \|f\|_{L^p(\Omega)}} \left| \int_{\Omega} gf d\mu \right|$$
$$\le \sup_{1 \ge \|f\|_{L^p(\Omega)}} \int_{\Omega} |gf| d\mu$$

By Hölder inequality

$$\leq \sup_{1\geq \|f\|_{L^{p}(\Omega)}} \left(\int_{\Omega} |f|^{p} d\mu \right)^{\frac{1}{p}} \left(\int_{\Omega} |g|^{q} d\mu \right)^{\frac{1}{q}}$$

$$= \left(\int_{\Omega} |g|^{q} d\mu \right)^{\frac{1}{q}} \sup_{1\geq \|f\|_{L^{p}(\Omega)}} \left(\int_{\Omega} |f|^{p} d\mu \right)^{\frac{1}{p}}$$

$$= \left(\int_{\Omega} |g|^{q} d\mu \right)^{\frac{1}{q}} = \|g\|_{L^{q}(\Omega)}$$

This result implies that if $g \in L^q(\Omega)$, then ϕ_g is bounded, hence for all $g \in L^q(\Omega)$ we have that the functionals characterized by g, $\phi_g \in (L^p(\Omega))^*$. It's possible to demonstrate that all $\phi \in (L^p(\Omega))^*$ can be characterized by some g in $L^q(\Omega)$. Thus,

$$L^{q}(\Omega) = (L^{p}(\Omega))^{*}$$

Remark 4.2.

There is a natural duality between U and U^* determined by the bilinear functional $(\cdot, \cdot): U \times U^* \to \mathbb{R}$, defined as

$$(u, u^*) = u^*(u), \quad \forall u \in U, \forall u^* \in U^*$$

Definition 4.3.

A sequence $(u_n)_n$ in a Banach space is called weakly convergent to some $u \in U$ if for all linears continuous functionals $u^* \in U^*$ we have

$$\lim_{n \to \infty} u^*(u_n) = u^*(u)$$

u is also called the weak-limit and we write $u_n \xrightarrow[n \to \infty]{} u$.

Theorem 4.3.

A sequence $(u_n)_n$ in U converges to $u \in U$ if and only if $\sup_{n \in \mathbb{N}} ||u_n|| < \infty$ and $u_n \xrightarrow[n \to \infty]{} u$

Theorem 4.4 (Bourbaki-Alaoglu-Katulami).

The closed unit ball in a Banach space U is weakly compact if and only if U is reflexive. If U is in an addition separable, then it's weakly sequentially compact.

Definition 4.4.

Let U be a Banach space and $J: U \to \mathbb{R}$, J is called weakly (sequentially) lower semi-continuous at point u_0 if for every weakly convergent sequence $(u_n)_n$ converges to u_0 , i.e. $u_n \to u_0$, it holds

$$J(u) \le \liminf_{n \to \infty} J(u_n)$$

Definition 4.5.

A non empty set $C \subset U$ is called weakly closed if for every weakly convergent sequence $(u_n)_n$ in C follows that the weak limit belongs to C. i.e. $u_n \rightharpoonup u$, with $u_n \in C$, implies $u \in C$.

Definition 4.6.

A non empty set $C \subset U$ is called weakly sequentially compact if for every sequence in C contains a weakly convergent subsequence whose limit belongs to C.

Theorem 4.5.

Let U be a Banach space and $J: U \to \overline{\mathbb{R}}$ the the following conditions are equivalent:

- J is weakly lower semi-continuous on U for all $u \in U$.
- The level sets $\mu_{\xi} = \{u \in U | J(u) \leq \xi\}$ is weakly closed for each $\xi \in \mathbb{R}$.

Lemma 4.2.

Let be $J: U \to \mathbb{R}$ a convex and lower semicontinuous functional. Assume there is $u_0 \in U$ such that $J(u_0) = -\infty$, then J is nowhere finite.

Proof. Assume that there is $v \in U$ such that $-infty < J(v) < \infty$. Then by convexity $J(\lambda u_0 + (1 - \lambda)v) = -\infty$, $\forall \lambda \in [0, 1]$. Because J is lower semicontinuos it follows that in the limit $\lambda \to 0$,

$$(\lambda u_0 + (1 - \lambda)v) \to v \implies J(v) \le J(\lambda u_0 + (1 - \lambda)v) = -\infty$$

Lemma 4.3.

Every lower semi-continuous and convex function on a linear space U is weakly lower semi-continuous.

Corollary 4.1.

Assume that U is a reflexive Banach space, then every bounded sequence $(u_n)_n \in U$ that is $\sup_{n \in \mathbb{N}} ||u_n|| < \infty$ has a subsequence $(u_k)_k$ which is weakly convergent to some $u \in U$.

Remark 4.3.

Since every Hilbert space is reflexive the corollary applies to this case.

Lemma 4.4.

A closed set C is weakly closed if and only if the set is convex.

Definition 4.7.

Let U be a real linear space and $J: U \to \overline{\mathbb{R}}$. We said that J is sublinear if:

$$J(\lambda u) = \lambda J(u) \qquad \forall u \in U, \text{ and } \mathbb{R} \ni \lambda > 0$$

$$J(u+v) \le J(u) + J(v) \qquad \forall u, v \in U$$

Remark 4.4.

Every sublinear function is convex.

Theorem 4.6.

Let U be a real linear space $J:U\to\overline{\mathbb{R}}$ a sublinear functional. Then there is a linear functional f on U such that,

$$f(u) \le J(u) \quad \forall u \in U$$

Definition 4.8.

Let $J:U\to\overline{\mathbb{R}}$, we said that J is locally bounded around u_0 if $\exists V\subset U$ neighborhood of u_0 such that for some $M\in\mathbb{R}$

$$|J(u)| < M \qquad \forall u \in V$$

Lemma 4.5.

Let $J: U \to \mathbb{R}$ convex and U is a Banach space. If J is locally bounded around u, then J is lower semi-continuous in u

Proof. Let $u_k \to u$ as $k \to \infty$. For each $\epsilon > 0$ we can find a sequence α_k such that $\left\| \frac{u - u_k}{\alpha_k} \right\| < \epsilon$, and $\alpha_k \to 0$ as $k \to \infty$. (Please read Maximal Monotone Operators and Evolution Systems in Banach Spaces of Barbu. Details Still to be recovered).

Moreover, for k sufficiently large we have $||u - u_k|| < \epsilon$. Choose ϵ such that J is bounded in $\overline{B_{2\epsilon}(u)}$ by M and define $v_k = u_k + \frac{u - u_k}{\alpha_k} \in \overline{B_{2\epsilon}(u)}$, since $||v_k - u|| \le ||u_k - u|| + \left|\left|\frac{u - u_k}{\alpha_k}\right|\right| \le 2\epsilon$. Since J is convex

$$J(u) \le \alpha_k J(v_k) + (1 - \alpha_k) J(u_k) \le \alpha_k M + J(u_k)$$

Since $\alpha_k \to 0$, then

$$J(u) \leq \liminf_{k \to \infty} (\alpha_k M + J(u_k)) = \liminf_{k \to \infty} J(u_k)$$

Thus is if J is convex and locally bounded around u, then is lower semi-continuous around u.

Remark 4.5.

The result that convexity and local boundedness imply lower semi-continuity is similar to classical result for linear operators where local boundness implies continuity. In general convexity plays in optimization the same role as linearity in solving equations.

5. Lecture 5

5.1. Subgradients

Characterization for J'' still to be analized the professor's notes are flawed.

Definition 5.1.

Let U be a Banach space and let $J:U\to (-\infty,\infty]$ be a convex and proper function. The subdifferential at a point $u\in \operatorname{dom} J$ is a mapping,

$$\partial J: U \to 2^{U^*}, \qquad \partial J(u) := \{ p^* \in U^* \mid J(v) \ge J(u) + p^*(v - u), \ \forall v \in U \}$$

The elements of $p^* \in \partial J(u)$ are called subgradients of J at u.

Example 5.1.

Consider $J: \mathbb{R} \to \mathbb{R}$, $u \to |u|$ which is not differentiable at u = 0. If u > 0, then J(u) = u and we can find 0 < v < u < w. Then $p^* \in \partial J(u)$ implies by definition of subdifferential

$$v - u \ge p^*(v - u) \equiv (1 - p^*)(u - v) \le 0$$

$$w - u \ge p^*(w - u) \equiv (1 - p^*)(w - u) \ge 0.$$

which implies for u > 0, $p^* \le 1 \le p^*$, then $p^* = 1$.

In the same way we obtain for u < 0, $p^* \ge -1 \ge p^*$. In the case u = 0, we need to satisfy $|v| \ge p^*v$, which is fulfilled if and only if $|p^*| \le 1$. Hence for J(u) = |u|,

$$\partial |u| = \begin{cases} \{1\}, & u > 0 \\ [-1, 1], & u = 0 \\ \{-1\}, & u < 0 \end{cases}.$$

Example 5.2.

A convex function which is not subdifferentiable everywhere $J: \mathbb{R} \to \mathbb{R}$,

$$J(u) = \begin{cases} -\sqrt{1 - |u|^2} & |u| \le 1\\ \infty & \text{otherwise} \end{cases}$$

For $|u| \geq 1$, we have $\partial J(u) = \emptyset$.

Example 5.3.

Let C be a convex and closed subset of U and I_C function defined by

$$I_C(u) = \begin{cases} 0 & u \in C \\ \infty & \text{otherwise} \end{cases}$$

The subdifferentiable is the definition of normal cone at u

$$\partial I_C(u) = \{ u^* \in U^* \mid u^*(u - v) \ge \forall v \in C \} = \mathcal{N}_C(u)$$

.

Theorem 5.1.

Let U be a Banach space. And $J:U\to\overline{\mathbb{R}}$ a subdifferentiable function. Then $\partial J(u)$ is convex and weakly closed.

Remark 5.1.

Most of the rules for derivates also hold for subdifferentials with some additional assumptions,

- $J: U \to \overline{\mathbb{R}}, \lambda > 0, \partial J(\lambda u) = \lambda J(u).$
- $\partial (J+F)(u) \supseteq \partial J(u) + \partial F(u)$.

Theorem 5.2 (Rockafeller).

Let U be a Banach space and $J: U \to \mathbb{R}$ proper and convex functions for i = 1, ..., n. The sum-rule

$$\partial (J_1 + \dots + J_n)(u) = \partial J_1(u) \dots \partial J_n(u), \qquad n \ge 2$$

holds if there exists $u_0 \in U$ such that all $J_i(u_0)$ are finite and all J_i except at most one J_k , $k \in \{1, 2, ...n\}$ are continuous at u_0

6. Lecture 6

Theorem 6.1.

Let V, U, Hilbert Spaces. Let $J: V \to \overline{\mathbb{R}}$ convex. U and V Banach spaces, $A: U \to V$ linear and continuous with $A^*: U^* \to V^*$. Moreover, J is lower semi-continuous and let $A\overline{u}$ be a point where J is continuous and finite. Then te compose function $J \circ A: U \to \overline{\mathbb{R}}$ is subdifferentiable for all $u \in V$ and,

$$\partial(J \circ A)(u) = A^* [\partial J(Au)]$$

Proof. Let $p^* \in \partial J(Au)$,

$$J(p) \ge J(Au) + p^*(p - Au) \quad \forall p \in V$$

where p = Av with $v \in U$,

$$(J \circ A)(v) \ge (J \circ A)(u) + p^*(A(v - u)) \quad \forall v \in U$$
(2)

$$= (J \circ A)(u) + A^* p^* (v - u) \quad \forall v \in U$$
(3)

i.e. $A^*p^* \in \partial(J \circ A)(u) \implies A^*\partial J(Au) \subseteq \partial(J \circ A)(u)$. Proof based again on the weak separation theorem of convex sets. (We have to check Bauschke)

Theorem 6.2.

If $J: U \to \overline{\mathbb{R}}$ is convex and Frechét-differentiable at $u \in U$, then $\partial J(u) = \{J'(u)\}$

Proof. Let $p^* \in \partial J(u)$. Then for each t > 0, $J(u + tv) - J(u) \ge p^*(tv) = tp^*(v)$, diving by t and takin the limit $t \to 0$ we obtain,

$$J'(u)(v) \ge p^*(v) \quad \forall v \in U \tag{4}$$

$$\Longrightarrow (J'(u) - p^*)(v) \ge 0 \quad \forall v \in U.$$
 (5)

Since J'(u) is Frechét differentiable the operator J'(u) is linear with respect to v and $p^* \in U^*$ implies $(J'(u) - p^*)$ is linear, taking $-v \in U$, we obtain that $(J'(u) - p^*)(v) \le 0$. Therefore $p^* = J'(u)$.

On the other hand, if J is differentiable, it follows that $J'(u) \in \partial J(u)$. For $v \in U$, we set w = v - u, $u \in U$ we have,

$$J(u+w) - J(u) > (J'(u))(w)$$
(6)

$$\implies J(v) - J(u) \ge (J'(u))(v - u) \tag{7}$$

Since the above inequality holds for all $v \in U$ implies $J'(u) \in \partial J(u)$.

Remark 6.1.

The subgradient can be used to obtain local optimality conditions that are necessary and sufficient for convex problem.

Theorem 6.3.

Let U be a Banach Space and $J: U \to \mathbb{R}$ convex and proper. Then each local minimum is global minimum. Moreover $\overline{u} \in U$ is a minimizer if and only if $0 \in \partial J(\overline{u})$.

Proof. If $0 \in \partial J(\overline{u})$: $J(v) \geq J(\overline{u}) + (0)(v - \overline{u}) = J(\overline{u})$, $\forall v \in U$, and hence \overline{u} is a global minimizer. Assume that $0 \notin J(\overline{u})$, then $\exists v \in U$, such that

$$J(v) < J(\overline{u}) + (0)(v - \overline{u}) = J(\overline{u}).$$

Therefore \overline{u} cannot be a minimizer.

Duality

Let $J:U\to\overline{\mathbb{R}}$, and U a Banach space. Then the convex conjugate function $J^*:U^*\to\mathbb{R}$ is defined by

$$J^*(p^*) = \sup_{u \in U} \{ p^*(u) - J(u) \}$$

implies that $-\sup_{u \in U} \{p^*(u) - J(u)\} = -J^*(p^*) = \inf_{u \in U} \{J(u) - p^*(u)\}.$

Example 6.1.

Consider the indicator function of a convex set $C, I_C: U \to \overline{\mathbb{R}}$

$$I_C(u) = \begin{cases} 0 & u \in C \\ \infty & \text{otherwise.} \end{cases}$$

Then we have that the convex conjugate is given by

$$J^*(p^*) = \sup_{u \in U} \{p^*(u) - I_C(u)\} = \sup_{u \in C} \{p^*(u)\}.$$

Example 6.2.

Let $J: \mathbb{R} \to \mathbb{R}$, such that $J(u) = \exp u$, then $J^*(p^*) = \sup_{u \in \mathbb{R}} \{p^*u - \exp u\}$. Let $f(u) = p^*u - \exp(u)$, therefore $f'(u) = p^* - \exp u$, $\forall u \in \mathbb{R}$. Which is zero for $\overline{u} = \ln p^*$, if $p^* > 0$. Since f''(u) < 0, then \overline{u} is indeed maximum. And we see that $\lim_{u \to \pm \infty} f(u) = -\infty$. If $p^* = 0$, $f(u) = -\exp u < 0$ and therefore the $\sup_{u \in \mathbb{R}} f(u) = 0$ (Consider the limit when $u \to -\infty$). Then we have,

$$J^*(p^*) = \begin{cases} p^*(\ln p^* - 1) & p^* > 0\\ 0 & p^* = 0 \end{cases}$$

Example 6.3.

Let U be a Hilbert space and $J(u) = \frac{1}{2} ||u||^2$. Since U is Hilbert, by Riesz, for each linear and bounded functional $\phi_{p^*} \in H$, $\exists p^* \in H$ such that, $\phi_{p^*}(u) = \langle u, p^* \rangle$. Using the definition of conjugate function,

$$J^{*}(p^{*}) = \sup_{u \in U} \left\{ \langle u, p^{*} \rangle - \frac{1}{2} \|u\|^{2} \right\}$$
$$= -\inf_{u \in U} \left\{ \frac{1}{2} \|u\|^{2} - \langle u, p^{*} \rangle \right\}$$

Note that,

$$\frac{1}{2} \|u - p^*\|^2 = \frac{1}{2} \|u\|^2 - \langle u, p^* \rangle + \frac{1}{2} \|p^*\|^2$$

Therefore we can substitute in the above equation to find an equivalent form to the conjugate function,

$$J^{*}(p^{*}) = -\inf_{u \in U} \left\{ \frac{1}{2} \left(\|u - p^{*}\|^{2} - \|p^{*}\|^{2} \right) \right\}$$
$$= -\frac{1}{2} \inf_{u \in U} \left\{ \|u - p^{*}\|^{2} \right\} + \frac{1}{2} \|p^{*}\|^{2}$$

We have $||u - p^*|| \ge 0$, $\forall u \in H$, then,

$$\inf_{u \in U} \left\{ \|u - p^*\|^2 \right\} = 0,$$

since we can take $u = p^*$. Hence,

$$J^*(p^*) = \frac{1}{2} \|p^*\|^2 \tag{8}$$

Theorem 6.4.

Let U be a Banach space and $J:U\to\overline{\mathbb{R}}$. Then J^* is convex.

Proof. Let $p^*, q^* \in U^*$, and $\lambda \in [0, 1]$,

$$J^*(\lambda p^* + (1 - \lambda)q^*) = \sup_{u \in U} \{ (\lambda p^* + (1 - \lambda)q^*)(u) - J(u) \}$$
(9)

$$= \sup_{u \in U} \{ \lambda p^*(u) - \lambda J(u) + (1 - \lambda)q^*(u) - (1 - \lambda)J(u) \}$$
 (10)

$$\leq \sup_{v,u \in U} \left\{ \lambda p^*(u) - \lambda J(u) + (1 - \lambda) q^*(v) - (1 - \lambda) J(v) \right\}$$
 (11)

$$= \sup_{u \in U} \{\lambda p^*(u) - \lambda J(u)\} + \sup_{v \in U} \{(1 - \lambda)q^*(v) - (1 - \lambda)J(v)\}$$
 (12)

$$= \lambda J^*(p^*) + (1 - \lambda)J^*(q^*). \tag{13}$$

Hence J^* is convex.

7. Lecture 7

Remark 7.1.

Some elementary properties of conjugate functions

- Young inequality $J(u) + J^*(p^*) \ge p^*(u) \quad \forall u \in U, \forall p^* \in U^*$
- $J^*(0) = \sup_{u \in U} ((0, u) J(u)) = \sup_{u \in U} (-J(u)) = \inf_{u \in U} J(u)$

In many applications in optimization, is used the equivalent formulation,

$$\inf_{u \in U} J(u) = -J^*(0).$$

 $J < F \implies J^* > F^*$

Theorem 7.1.

Let U a Banach space and $J^*: U^* \to \overline{\mathbb{R}}$ be the conjugate of the $J: U \to \overline{\mathbb{R}}$. Then for all $u \in U$.

$$p^* \in \partial J(u) \iff J(u) + J^*(p^*) = p^*(u)$$

Proof. content...

Corollary 7.1.

It follows from previous theorem that $\partial J(u) = \{p^* \in U^* | J(u) + J^*(p^*) = (p^*, u)\}.$

Theorem 7.2.

Let U be a Banach space and $J: U \to \mathbb{R}$ be proper function. If $p^* \in \partial J(u)$ then $u \in \partial J^*(p^*)$

Proof. Let $p^* \in \partial J(u)$. For any $g^* \in U^*$, it follows

$$J^*(g^*) = \sup_{v \in U} \{g^*(v) - J(v)\} \ge g^*(u) - J(u) \ge g^*(u) - J(u)$$

From theorem 7.1

$$J^*(g^*) \le g^*(u) - p^*(u) + J^*(p^*) = (g^* - p^*)(u) + J^*(p^*) \implies u \in \partial J^*(p^*).$$

By iteration the definition, we obtain the bipolar function $(J^*)^* = J^{**}: U^{**} \to \overline{\mathbb{R}}$,

$$J^{**}(u) = \sup_{p^* \in U^*} \{ p^*(u) - J^*(p^*) \}$$

Theorem 7.3.

Let U be a reflexive Banach space. The J^{**} is the maximum convex functional below J (also called convex envelope), i.e. $J^{**}(u) \leq J(u)$, $\forall u \in U$ and $F(u) \leq J^{**}(u)$, $\forall u \in U$ if F is also convex and $F(u) \leq J(u)$, $\forall u$. In particular $J^{**} = J$ if and only if J is convex.

Proof.

$$J^{**}(u) = \sup_{p^* \in U^*} \{ p^*(u) - J^*(p^*) \}$$
 (14)

$$= \sup_{p^* \in U^*} \left\{ p^*(u) - \sup_{v \in U} \left\{ p^*(v) - J(v) \right\} \right\}$$
 (15)

$$= \sup_{p^* \in U^*} \left\{ p^*(u) + \inf_{v \in U} \left\{ p^*(v) - J(v) \right\} \right\}$$
 (16)

(17)

Since for any $p^* \in U^*$,

$$\inf_{v \in U} \left\{ p^* \left(u - v \right) + J(v) \right\} \le p^* (u - u) + J(u)$$

We have that $J^{**}(u) \leq J(u)$.

Now we assume that F is a convex functional and $g^* \in \partial F(u)$ for $u \in U$.

$$\implies F(v) \ge F(v) + q^*(v - u) \tag{18}$$

$$F^{**}(u) = \sup_{p^* \in U^*} \inf_{v \in U} \left\{ p^*(u - v) + F(u) + q^*(v - u) \right\}$$
 (19)

$$\geq \sup_{p^* \in U^*} \inf_{v \in U} \left\{ (p^* - q^*) (u - v) + F(u) \right\} \tag{20}$$

$$\geq \inf_{v \in U} \{ (q^* - q^*)(u - v) + F(u) \}$$
 (21)

$$= F(u) \tag{22}$$

If F is convex,

$$\implies F(u) \le F^{**}(u) \le F(u) \implies F(u) = F^{**}(u), \tag{23}$$

$$F(u) = F^{**}(u) = \sup_{p^* \in U^*} \inf_{v \in U} \left\{ p^*(u - v) + F(v) \right\} \le J^{**}(u)$$
(24)

8. Lecture 8

Definition 8.1.

Let U and Y Banach spaces and $J:U\to\overline{\mathbb{R}}$ is a proper function. We consider an optimization problem (P) called primal problem

$$\inf_{u \in U} J(u) \tag{P}$$

Then the problem is said to be nontrivial if there is $\overline{u} \in U$ such that $J(\overline{u}) < \infty$. A function $\Phi : U \times Y \to \overline{\mathbb{R}}$ is said to be a perturbation function of J,

$$\inf_{u \in U} \Phi(u, p) \tag{Pp}$$

if $\Phi(u,0) = J(u)$ for all $u \in U$. For each $p \in Y$, the minimization problem (Pp) is called a perturbation problem. The variable p is called perturbation parameter. If we denote by Φ^* the convex conjugate function of Φ , the *dual problem*, with respect to Φ is defined by

$$\sup_{p^* \in Y^*} -\Phi^*(0, p^*) \tag{P*}$$

where $\Phi^*: (U \times Y)^* \cong U^* \times Y^* \to \overline{\mathbb{R}}$, a function defined as follows.

$$\Phi^* (u^*, p^*) = \sup_{\substack{u \in U \\ p \in Y}} \{ u^*(u) + p^*(p) - \Phi(u, p) \}$$

Remark 8.1.

For p = 0, $(P^*) \equiv (Pp)$. We denote the infimum for problem (P) by $\inf (P)$ and the supremum for problem (P^*) by $\sup (P^*)$

Lemma 8.1 (Weak duality).

For the problem (P) and (P*) it holds that

$$-\infty \le \sup (\mathbf{P}^*) \le \inf (\mathbf{P}) \le \infty.$$

Proof. Let $p^* \in Y^*$. It follows

$$-\Phi^*(0, p^*) = -\sup_{\substack{u \in U \\ p \in Y}} \{0(u) + p^*(p) - \Phi(u, p)\}$$
 (25)

$$= \inf_{\substack{u \in U \\ p \in Y}} \{ \Phi(u, p) - p^*(p) \}$$
 (26)

$$\leq \Phi(u,0) - p^*(0) \quad \forall u \in U, p^* \in Y^*$$
 (27)

$$\Longrightarrow \sup_{p^* \in Y^*} \left\{ -\Phi\left(0, p^*\right) \right\} \le \inf_{u \in U} \Phi(u, 0) = \inf(P) \tag{28}$$

By iteration we can define, a bidual problem

$$-\sup_{u\in U} \{-\Phi^*(u,0)\} = \inf_{u\in U} \Phi^*(u,0) \tag{P**}$$

In case the space U is reflexive then ${U^*}^* = U$.

If the perturbation function $\Phi(u, p)$ is proper, convex and weakly lower semicontinuous. Then $\Phi^{**} = \Phi$. In this case $\Phi(u, 0) = \Phi^{**}(u, 0)$ i.e $(P) \equiv (P^{**})$

Definition 8.2.

Consider the infimal value function

$$h(p) = \inf (\mathbf{Pp}) = \inf_{u \in U} \Phi(u, p)$$

The problem (P) is called stable if h(0) is finite and its sub-differentiable in zero is not empty.

Theorem 8.1.

The primal problem (P) is stable if and only if the following conditions are simultaneously satisfied:

• The dual problem (P*) has a solution.

• There is no duality gap, i.e.

$$\inf(P) = \sup(P^*) \le \infty$$

Theorem 8.2 (Extremal relation).

Let $\Phi: U \times Y \to \overline{\mathbb{R}}$, be convex the following statements are equivalent:

- 1. (P) and (Pp) have solutions \overline{u} and $\overline{p^*}$ and $\inf(P) = \sup(P^*)$
- 2. $\Phi(\overline{u}, 0) + \Phi^*(0, \overline{p^*}) = 0$
- 3. $(0, \overline{p^*}) \in \partial \Phi(u, 0)$ and $(\overline{u}, 0) \in \partial \Phi^*(0, p^*)$

Proof. We proceed by parts:

- 1. (1) \Longrightarrow (2): \overline{u} solution of inf (P) and $\overline{p^*}$ solution of $\sup(P^*)$ and $\inf(P) = \sup(P^*)$. This properties implies, $\Phi(\overline{u}, 0) = \inf(P) = \sup(P^*) = -\Phi(0, \overline{p^*}) \Longrightarrow \Phi(\overline{u}, 0) + \Phi^*(0, \overline{p^*}) = 0$.
- 2. (2) \Longrightarrow (1): $-\Phi^*(0,\overline{p^*}) = \sup(P^*) \le \inf(P) = \Phi(\overline{u},0) = -\Phi^*(0,\overline{p^*}) \Longrightarrow \sup(P^*) = \inf(P)$
- 3. (2) \iff (3): $\Phi(\overline{u},0) + \Phi^*(0,\overline{p^*}) = 0 = (0,\overline{u}) + (\overline{p^*},0) = ((0,\overline{p^*}),(\overline{u},0)) \iff (0,\overline{p^*}) \in \partial\Phi(\overline{u},0) \ \forall u \in U, \forall p^* \in \partial J(u) \iff J(u) + J^*(p^*) = (p^*,u)$

Fencel duality.

Consider the functional $J: U \to \overline{\mathbb{R}}$,

$$J(u) = F(u) + G(Au)$$

with $F:U\to\overline{\mathbb{R}}$, G convex function $G:V\to\overline{\mathbb{R}}$ and $A:U\to V$ bounded and linear.

We introduce the perturbation $\Phi(u, p) = F(u) + G(Au - p)$. The dual problem is obtained with,

$$\Phi^*(0, p^*) = \sup_{\substack{u \in U \\ p \in V}} \{ p^*(p) - F(u) - G(Au - p) \}$$

For fixed u we set q: Au - p.

$$\begin{split} \Phi^*(0,p^*) &= \sup_{u \in U} \sup_{p \in V} \left\{ p^* \left(Au - q \right) - F(u) - G(q) \right\} \\ &= \sup_{u \in U} \sup_{p \in V} \left\{ p^* \left(Au \right) - p^*(q) - F(u) - G(q) \right\} \\ &= \sup_{u \in U} \left\{ p^* \left(Au \right) - F(u) \right\} + \sup_{p \in V} \left\{ (-p^*)(q) - G(q) \right\} \\ &= \sup_{u \in U} \left\{ A^* \left(p^* \left(u \right) \right) - F(u) \right\} + \sup_{p \in V} \left\{ (-p^*)(q) - G(q) \right\} \\ &= F^*(A^*p^*) + G^*(-p^*) \end{split}$$

Where $A^*p^* \in U^*$.

References