

팀번호 팀번호 입력

2024-1학기 창의학기제 주간학습보고서 (5주차)

창의과제	세종대학교 집현캠퍼스를 개선시킨 웹서비스 개발				
이름	신찬영	학습기간	5월 1일 ~ 5월 8일		
학번	23012094	학습주차	3	학습시간	3
학과(전공)	인공지능	과목명	자기주도창의전공1	수강학점	3
* 수강학점에 따른 회차별 학습시간 및 10주차 이상 학습 준수					
금주 학습목표	본격적으로 수집한 데이터를 모델에 사용하기위해 harcascade로 짜르고 pytorch 라이브러리를 사용해 데이터를 전처리 후 MobileNet과 샴네트워크를 결합한 신경망에 학습시킨다(기존에 한번 시도했던 것(3주차의 이지민 학생의 보고서 참고)이지만 지금은 다른 데이터 셋을이 달라졌고 코드도 일부 달라 졌기 때문에 다시 시도한다.)				
학습내용	다른 데이터 셋을이 달라졌고 코드도 일부 달라 졌기 때문에 다시 시도한다.) 샴네트워크 구조의 신경망을 학습시키기 위해 나의 얼굴 사진과 Ifw데이터 중 일부를 사용하였다. Ifw데이터는 여러 유명인의 얼굴이 모여있는 데이터 셋이다. ***				

```
def save_detect_image(folder_path, padding_factor=0.1):
              if folder_path[-1] ==
                  save_folder_path = folder_path[:-1] + '_face'
                   save_folder_path = folder_path + '_face'
              Path(save_folder_path).mkdir(parents=True, exist_ok=True)
              cascade_path = cv2.data.haarcascades + "haarcascade_frontalface_default.xml"
face_cascade = cv2.CascadeClassifier(cascade_path)
              for filename in os.listdir(folder_path):
                   image_path = os.path.join(folder_path, filename)
                   image = cv2.imread(image_path)
                   if image is None:
                   gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
                   faces = face_cascade.detectMultiScale(gray, 1.1, 4)
                   for (x, y, w, h) in faces:
                      padding_w = int(w * padding_factor)
padding_h = int(h * padding_factor)
                      x_pad = max(x - padding_w, 0)
y_pad = max(y - padding_h, 0)
w_pad = min(w + 2 * padding_w, image.shape[1] - x_pad)
h_pad = min(h + 2 * padding_h, image.shape[0] - y_pad)
                       face_img_with_padding = image[y_pad:y_pad+h_pad, x_pad:x_pad+w_pad]
                       save_path = os.path.join(save_folder_path, filename)
                       cv2.imwrite(save_path, face_img_with_padding)
              return save_folder_path
2주차에 했던 harcascade를 이용해 사진을 잘라주는 코드이다.
(자세한 코드 설명은 2주차 이지민 보고서에 있다.)
```

```
def __init__(self, others_directory, my_directory, transform=None):
    self.others_images = [os.path.join(others_directory, img) for img in os.listdir(others_directory)]
    self.my_images = [os.path.join(my_directory, img) for img in os.listdir(my_directory)]
    random.shuffle(self.others_images)
    self.count=0
       if len(self.others_images) < len(self.my_images):
    for i in range(0,len(self.my_images)-len(self.others_images)):
        if self.count==len(self.others_images):</pre>
                        self.count=0
                 self.others_images.append(self.others_images[self.count])
self.count+=1
     self.my_images.append(self.my_images[self.count])
     # 고양이는 0, 강아지는 1로 2
self.labels = []
for i in self.others_images:
if 'chan' in i:
                 self.labels.append(1)
     self.labels.append(0)
self.cat_len=len(self.others_images)
     self.my_len=len(self.my_images)
def __getitem__(self, index):
     img1_path = self.my_images[index]
label = self.labels[index]
     img2_path = self.others_images[index]
     img1 = Image.open(img1_path)
img2 = Image.open(img2 path)
     if self.transform is not No
           img1 = self.transform(img1)
img2 = self.transform(img2)
    return img1, img2, torch.from_numpy(np.array([int(label)], dtype=np.float32))
     return len(self.others images)
```

내가 준비한 데이터를 파이썬에서 쉽게 접근할 수 있게 Dataset클래스를 정의해 주었다. 먼저 데이터셋에서 사진이 저장되어 있는 경로를 받는다. 그리고 사진의 경로들을 리스트에 저장해 준다.

샴네트워크 모델을 학습시킬떄 두 폴더의 데이터의 수가 다르면 안된다. 왜냐하면 샴네트워 크의 원리가 신경망을 통과시킨 두 결과 값의 벡터값을 이용하여 가중치를 업데이트하는 방 식이기 때문이다. 따라서 두 폴더의 데이터수를 맞추기 위해 수가 부족한 폴더의 경로 리스 트에다 개수가 같아질 때까지 똑같은 경로를 복사해주었다.

ex)

 $[1,2,3],[4,5,6,7,8,9] \longrightarrow [1,2,3,1,2,3],[4,5,6,7,8,9]$

이렇게 만들어진 경로를 이용해 모델이 이미지를 요청하면 경로를 이용해 이미지를 불러온 다음 transform을 이용하여 전처리를 하고 이미지를 반환해준다.

```
# 데이터 전처리 정의
transform = transforms.Compose([
    transforms.Resize((120, 120)),
    transforms.ToTensor(),
])
# 데이터셋 인스턴스 생성
dataset = SiameseDataset(cat_directory=r'./others_face', my_directory=r'./my_face', transform=transform)
val_dataset=SiameseDataset(cat_directory=r'./others_v_face',my_directory=r'./my_v_face', transform=transform
# 데이터로더 설정
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
val_dataloader=DataLoader(val_dataset,batch_size=32,shuffle=True)
dataloader_dict={'train':dataloader,'val':val_dataloader}
```

준비된 이미지 데이터 셋을 모델에 학습 시키기 위해 120*120의 해상도로 맞추고 텐서 형태로 바꿔 준다. 또한 미니 배치를 사용해기위해 DataLoder로 32개씩 묶어준다.

학습에 쓸 손실함수를 정의해준다.(자세한 설명은 이지민 3주차 보고서에 있다.)

```
from torchvision.models import mobilenet_v3_large
class SiameseNetwork(nn.Module):
   def __init__(self):
        super(SiameseNetwork, self).__init__()
        self.model=mobilenet_v3_large(pretrained=True)
       self.fc = nn.Sequential(
            nn.Linear(960, 512),
            nn.ReLU(inplace=True),
           nn.Linear(512, 512),
           nn.ReLU(inplace=True),
            nn.Linear(512, 5))
        self.model.classifier=self.fc
   def forward(self, input1, input2):
       output1 = self.model(input1)
        output2 = self.model(input2)
        return output1, output2
```

모바일 넷과 샴네트워크를 결합한 신경망이다. 우리는 컴퓨터 리소스 자원이 부족하여 완전 연결층만 학습시키는 전이학습을 하였다.

학습 시킨 결과물이다. 위의 사진처럼 잘 구별하는 모습을 보여준다.

	그러나 위의 사진같이 치명적인 오류가 일부 존재한다.
학습방법	위의 코드들은 공식 파이토치사이트의 튜토리얼을 보고 작성하였다.
학습성과 및 목표달성도	성공적으로 데이터를 자르고 파이씬에서 데이터셋 형태로 바꿔주었다. 그러나 이미지 데이터를 얼굴만 자르는 과정에서 harcascade가 잘 못 자르는 경우가 있어서 잘 못자른 데이터는 걸러주었다.
	모델의 학습 결과는 성곡적이지만 일부 치명적인 오류가 있었다. 이것은 우리가 평가기준 없이 임의의 하이퍼 파라미터를 설정해 생긴 오류로 추정된다.
참고자료 및 문헌	https://tutorials.pytorch.kr/ https://vis-www.cs.umass.edu/lfw/
내주 계획	하이퍼파라미터를 수정하기 위해 인공지능에 사용되는 평가 기준에 대해 조사할 것이다.

2024 년 5월 2 일

지도교수 (인)