Tarea

Fecha de entrega: 25 de octubre de 2016

- 1. Considere una dirección de descenso de la forma $p_k = -B_k^{-1} \nabla f(x_k)$ con B_k definida positiva. Muestre que si $\kappa(B_k) = ||B_k|| ||B_k^{-1}|| \le M$ para todo k, entonces $\cos \theta_k \ge \frac{1}{M}$ para todo k, y por la tanto el método converge globalmente.
- 2. Considere la función $f(x) = c^T x \sum_{j=1}^m \log(1 a_j^T x) \sum_{i=1}^n \log(1 x_i^2)$. Tome n = 500 y m = 200 con vectores c y a_j escogidos arbitrariamente. Para todos lo métodos inicie las iteraciones en $x_0 = 0$ y criterio de parada de la forma $\|\nabla f(x_k)\| \le \epsilon$. Grafique $\log(f(x_k) f^*)$ en cada iteración (estime lo mejor posible f^*).
 - a) Use el método del gradiente con un tamaño de paso constante indicando cual usa y jusificando la escogencia.
 - b) Use el método del gradiente con backtracking con diferentes valores de los parámetros.
 - c) Use el método de Newton.
 - d) Use el método quasi-Newton BFGS junto con backtracking para escoger el tamaño del paso. Grafique el número de condición de B_k en cada iteración.
 - e) Escoja el "mejor" de los métodos anteriores y minimize la función con diferentes valores de m y n. Justifique su escogencia del método.
- 3. Use el método de la barrera logarítmica para resolver un problema lineal en \mathbb{R}^2 de su escogencia. Grafique la región factible y el camino que siguen los x_k . Especifique claramente la escogencia de los parámetros del método y cómo resuleve el problema sin restricciones.

Mauricio Junca