Spaceship Titanic

Predict which passengers are transported to an alternate dimension

OUR TEAM

EID: eh28834

EID:hk25297

OUR PREVIEW

Exploratory
Data Analysis

Model Selection **Best Possible Prediction**

01

02

Logistic Regression, KNN, Decision Tree, Boosting 03

Exploratory Data Analysis

- PassengerId Unique ID for each passenger
- HomePlanet The planet the passenger departed from
- CryoSleep Whether the passenger elected to be put into suspended animation for the duration of the voyage. Passengers in cryosleep are confined to their cabins
- Cabin The cabin number where the passenger is staying. Takes the form deck/num/side, where side can be either P for *Port* or S for *Starboard*
- Destination The planet the passenger will be debarking to
- Age The age of the passenger
- VIP Whether the passenger has paid for special VIP service during the voyage
- RoomService, FoodCourt, ShoppingMall, Spa, VRDeck Amount the passenger has billed at each of the Spaceship Titanic's many luxury amenities
- Name The first and last names of the passenger

Filling Missing Values of Expenditures

DATA EXTRACTION

Split 'Cabin' Column

Deck number

Sign

Convert Categorical data

To Factor data type

Recode as 0 or 1

01

Logistic Regression

Logistic Regression

Model created from Step function:

```
Transported = CryoSleep + Spa +
HomePlanet + VRDeck + RoomService +
FoodCourt + Deck + Side + ShoppingMall +
Destination + Age
```

AIC: 7363.3

Logistic Regression

Confusion Matrix and Statistics

Reference

Prediction 0 1

0 612 125

1 209 576

Accuracy : 0.7806

95% CI: (0.7589, 0.8011)

No Information Rate : 0.5394

P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.5622

02

KNN

What we did

- Converted categorical variables to dummy variables
- Normalized numerical data (Not to skew the results)
- Response variable as a factor
- Used recursive feature elimination to pick the important predictors (CryoSleep, Spa, RoomService, VRDeck, FoodCourt)
- Tried various k-fold CV's to find the optimal error rate

KNN

K value with minimum error rate	25
Minimum error rate	0.2112
Accuracy	78.88 %
K-fold CV selected	8

03

Decision Tree

Decision Tree/Pruning

Accuracy Level of Big Tree on Training set: **0.9128447**POTENTIAL OVERFITTING!!!!

Accuracy Level on Test set: **0.7486726**<u>BIG TREE</u> WAS A DEFINITE OVERFITTING

Decision Tree/Pruning

Best alpha: **0.0015**

Size of Pruned Tree: 16

Accuracy of Pruned Tree on test set: **0.7699115**

Variable importance plot for Bagging

Bagging

- > cat('Accuracy of bagging on test
 set: ',accuracy_v_bag,'\n')
- > Accuracy of bagging on test set:
 0.7758112

Random Forest

Variable importance plot for mtry: 9

> cat('Best mtry:', best_mtry)

Best mtry: **9**> cat('Best Accuracy:', best_accuracy)

Best Accuracy: **0.7899705**

04

Xtrem Gradient Boosting

xgBoosting

- Hyperparameter Tuning and Cross-Validation
- Model training and evaluation
- Best model selection and testing
- Visualization

eta	Learning Rate
max_depth	Tree Depth
nrounds	Boosting Rounds
subsample	Subsample Ratio

Accuracy: 81.13%

xgBoosting

xgBoosting

eta	0.01
max_depth	7
nrounds	500
subsample	0.8

Accuracy: 81.13%

BEST PREDICTION

ACCURACY RATE COMPARISON

Logistic Regression	78.06%	
KNN	78.88%	
Decision Tree	78.99% [Random Forest]	
xgBoosting	81.13%	

THANK YOU

Do you have any questions?