Exam on Dynamical Systems, June 26, 2020

- 1. (1p=0.2+0.4+0.4) Denote by \mathbb{R}^{∞} the linear space of all sequences of real numbers $x=(x_k)_{k\geq 0}$, with the natural operations. Let $S\subset \mathbb{R}^{\infty}$ be the set of solutions of the difference equation $x_{k+2}-(\sin k)x_k=k,\ k\geq 0$. Let $T:S\to\mathbb{R}^2$ be defined by $T(x)=(x_0,x_1)$ for all $x\in S$. Justify that $S\neq\emptyset$ and that T is bijective. Is S a linear space of finite dimension? Justify.
 - 2. (1p) Find the general solution of the differential equation x'' + 2tx' = 0.
 - 3. Consider the planar system $\dot{x} = -y(y+x), \ \dot{y} = x(y+x).$
 - (a) (1.75p=0.25+0.5+0.25+0.75) Represent its phase portrait.
- (b) (0.75p=0.5+0.25) Reading the phase portrait, find $\lim_{t\to\infty} \varphi(t,3,0)$, and $\lim_{t\to\infty} \varphi(t,1,0)$ (if they exist). Here, $\varphi(t,\eta_1,\eta_2)$ denotes, as usual, the flow of the system.
 - (c) (0.25p) Specify whether $\varphi(t,3,0)$ and $\varphi(t,1,0)$ are periodic functions.
- 4. (0.75p=0.25+0.25+0.25) Let x(t) be the concentration of a radioactive substance at time t. We have that $\dot{x}=-0.05(x-10)$. Find the flow associated to this differential equation. Find the time T>0 in which the coffee cool down from 80° to 40° .
- 5. (a) (2p) Find the solution of the IVP $x_{k+1} = -x_k + 3y_k$, $y_{k+1} = -3x_k y_k$, $x_0 = 0$, $y_0 = 2$, reducing the system to a second order difference equation.
- (b) (0.5p) Find $\lim_{n\to\infty} A^{-n} \begin{pmatrix} 0\\2 \end{pmatrix}$, where A is the matrix of the system from (a).
- 6. (1p=0.25+0.75) Let $f: \mathbb{R} \to \mathbb{R}$ be a C^1 map such that f(2)=-5 and f(-5)=2. Justify that $\{-5, 2\}$ is a 2-cycle for f. Prove that, if |f'(-5)f'(2)| < 1 then the 2-cycle $\{-5, 2\}$ is an attractor.