Multi-Omics Integration for Personalised Medicine

EMBL-EBI Course

Introduction to Multi-Omics Data Integration and Visualisation
Group Project

Project Introduction

What to expect

Integration of Multi-Omics Data

Integration of Multi-Omics Data

Multi-Omics Factor Analysis (MOFA)

MOFA Downstream analysis

Variance decomposition by factor

Imputation of missing values

Inspection of factors

Annotation of factors

Inspection of loadings Feature set enrichment analysis

Application to a chronic lymphocytic leukemia (CLL) data set

Somatic mutations

200 patients 69 mutation loci

Transcriptome

136 patients 5000 transcripts

DNA methylation

200 patients 200 methylation sites

Ex vivo drug response

200 patients 62 drugs (5 concentrations)

Patient metadata:

- Gender
- Age
- IC50 before treatment
- Treated after data collection
- Survival

Project Overview

Tuesday Data handling and the CLL data set

Wednesday

Training a MOFA model

Thursday

Downstream analysis

Friday

Time for questions and presentation preparation

Data Handling

AnnData, MuData, and the CLL data set

From the Sequencing Machine to Count Matrices

How to Represent Count Matrices (in Python)

Array (Numpy)

2	5	•••	0
0	3	•••	8
•••	•••	•••	••
2	1	•••	0

DataFrame (Pandas)

	Cell 1	Cell 2	•••	Cell N
Gene 1	2	5	•••	0
Gene 2	0	3	•••	8
•••				
Gene D	2	1		0

AnnData

https://anndata.readthedocs.io/

How to Create Your Own AnnData Object

Manually

```
adata_X = np.array(...)
adata_obs = pd.DataFrame(...)
adata_var = pd.DataFrame(...)

adata = ad.AnnData(
    X=adata_X,
    obs=adata_obs,
    var=adata_var,
    )
```

With ScanPy

```
sc.read(...)
sc.read_10x_h5(...)
sc.read_10x_mtx(...)
sc.read_visium(...)
sc.read_h5ad(...)
sc.read_csv(...)
sc.read_excel(...)
sc.read_hdf(...)
sc.read_loom(...)
sc.read_loom(...)
sc.read_text(...)
sc.read_text(...)
```

https://scanpy.readthedocs.io/ en/1.10.x/api/reading.html

MuData

https://muon.readthedocs.io

The CLL Data Set

Somatic mutations

200 patients 69 mutation loci

Binary encoding (0 or 1)

Transcriptome

136 patients 5000 transcripts

Transformed counts

DNA methylation

200 patients 200 methylation sites

M-value

Ex vivo drug response

200 patients 62 drugs (5 concentrations)

Viability score (0 to 1)

Patient metadata:

- Gender
- Age
- IC50 before treatment
- Treated after data collection
- Survival

Factor Models and MOFA

An introduction

Omics Data is High-Dimensional

Modality Number of features / dimensions

Proteome e.g. 10 000 proteins

Transcriptome e.g. 20 000 genes

Genome e.g. 5 million SNPs

Epigenome e.g. 20 million CpG sites

... often in just 100s to 1000s of cells / samples \rightarrow

 $n_{\text{dimensions}} \gg n_{\text{observations}}$

The Curse of Dimensionality

$$D = 1$$

$$D = 2$$

$$D = 3$$

$$\frac{1}{1} = 1$$

$$\frac{\pi \cdot 0.5^2}{1} \cong 0.78$$

$$\frac{\frac{4}{3}\pi \cdot 0.5^3}{1} \cong 0.52$$

$$\approx 0$$

In very high dimensions...

- spheres around data points fill vanishingly small volumes
- it becomes difficult to establish relations between data points
- → High dimensions are typically not suitable for direct analysis

Dimensionality Reduction Methods

	Gene 1	Gene 2	Gene 3	•••	Gene D
Cell 1	2	5	2		0
•••					
Cell N	2	1	0		0

	Dim 1	Dim 2
Cell 1	0.4	-6.2
•••		•••
Cell N	0.0	9.1

Linear Methods

Principal Component Analysis (PCA)
Independent Component Analysis (ICA)
Latent Dirichlet Allocation (LDA)
Factor Analysis (FA)
Non-Negative Matrix Factorization (NMF)

..

Non-Linear Methods

(Variational) Autoencoder (VAE)
Deep Matrix Factorization
t-SNE
UMAP
Spectral Embedding

. . .

What is a Factor Model Intuitively?

- Factors can be seen as meta-features that summarise the behaviour of groups of features
- The reduced data is represented as factor scores (a matrix of dimensions $n_{samples} imes n_{factors}$
- Factors are linked to all the original features via factor loadings (a matrix of dimensions $n_{factors} \times n_{features}$)

An Example: Movie Recommendations

- A streaming service has access to the star ratings its users have given for different movies.
- The service wants to know **how much a user would like another movie** to provide better recommendations
- What could the factors represent in this situation? Do they always represent something "real"?
- What about positive and negative factor scores and loadings?
- How could movie ratings be predicted?

What is a Factor Model Mathematically?

- Factor scores and loadings are called latent variables
- Given the **observed data**, the goal is to **infer** the latent variables

Matrix Factorisation

$$y_{nd} \cong \sum_{k=1}^{K} z_{nk} w_{kd}$$

$$Y \in \mathbb{R}^{N \times D}$$
 Observed data $Z \in \mathbb{R}^{N \times K}$ Factor scores $W \in \mathbb{R}^{K \times D}$ Factor loadings

Probabilistic Formulation

$$y_{nd} \sim \mathcal{N}(\mu_{nd}, \sigma_d^2)$$

$$\mu_{nd} = \sum_{k=1}^{K} z_{nk} w_{kd}$$

$$z_{nk} \sim p(z_{nk})$$

$$w_{kd} \sim p(w_{kd})$$

Multi-Omics Factor Analysis (MOFA)

MOFA Downstream analysis

Variance decomposition by factor

Imputation of missing values

Inspection of factors

Annotation of factors

Inspection of loadings Feature set enrichment analysis

Gene Set Enrichment Analysis (GSEA)

Bayesian Latent Variable Models

Generative Model

("Telling a story of the data")

Latent variables

Graphical Model

08/03/2025

25

The Power of Prior Distributions

$$p(w_{dk}) = ?$$
$$p(z_{nk}) = ?$$

$$p(\sigma_d) = ?$$

Prior distributions encode **a-priori assumptions about the variables** before seeing any data

"Values should be close to 0"

"Values could also be quite large"

"Values should (for whatever reason) be close to 2"

Bayes' Theorem

Thomas Bayes 1701 – 1761 Statistician and Presbyterian minister Posterior Likelihood Prior

$$p(A \mid B) = \frac{p(B \mid A)p(A)}{p(B)}$$

Marginal likelihood

Bayesian Inference

Given the prior distribution and data likelihood, the posterior should be easy to compute...

$$p(A \mid B) = \frac{p(B \mid A)p(A)}{p(B)}$$

Computationally not tractable

Solution: Approximate inference

$$q(A) \approx p(A \mid B)$$

$$ELBO = \ln(p(B)) - D_{KL}(q(A) \mid\mid p(A \mid B))$$