Information Retrieval

Information Retrieval

Domains, Applications, and Tasks

- Web search
- Vertical search
- Enterprise search
- Media search
- Question answering
- Recommender systems
- Advertising
- Personal item search
- Passage retrieval

- Filtering
- Summarization
- Clustering
- Topic detection
- Cross-language
- Federated search
- Metasearch
- Social search
- Novel-item retrieval

What is IR?

- Gerard Salton, 1968:
 - Information retrieval is a field concerned with the structure, analysis, organization, storage, searching, and retrieval of information.
- This class is about computational methods for the structure, analysis, organization, storage, searching, and retrieval of information.
 - And primarily about text documents.

What is a Document?

Examples:

 web pages, email, books, news stories, scholarly papers, text messages, WordTM, PowerpointTM, PDF, forum postings, patents, IM sessions, etc.

Common properties:

- Significant text content.
- Some structure (e.g., title, author, date for papers; subject, sender, destination for email).

Examples of Documents

Documents vs. Database Records

- Database records are typically made up of well-defined fields (or attributes)
 - e.g. company names ,addresses ,account numbers, drug names, patent numbers, investigation file numbers.
- Easy to compare fields with well-defined semantics to queries in order to find matches.
- Our query has no fields and our documents have little structure.

IR vs. Databases

Information Retrieval

- Data:
 - Semi-structured.
 - Heterogeneous.
 - Noisy.
- Unstructured or semistructured queries.
- Natural language semantics.
- Infrequent off-line index changes.

Databases

- Data:
 - Structured.
 - Homogeneous.
 - Clean.
- Structured queries.
- Well-defined field semantics.
- Frequent on-line index changes.

Generic Drugs – Illegal Activities by Manufacturers

```
CDOCK:
                          «TROCE»
et Dittellite
                          <DOCIDSfr.10-1</pre>
                                         <DOCNO>ZF109-649-919</DOCNO>
< DOCS90549SU9909244</p>
                          で管理を関する
                                          KD0C5
cpro = 898824 /1
                 cocsood <iTAG tagnum=6</pre>
KBNN 890824-0049
                          KITAG tagnum-4
                                         GJUURNAL>FC Magazine Dec 11 1990 v9 n21 p428(2)
                 CTEXTS:
KHI2 Politica &
                                          * Full Text COPYRIGHT Eiff-Davis Publishing Co.
                 Interpre
8 FUA Focuses
                          <ITAG tagnum=5 1990, amu
                 cytotox
8 06 E14
                          to Withdraw Ap
                                         < J_{\rm A} TOURS FALS.
        KDDCD:
                 Histoles
 In Des
                          Applications:
                                         cTITLE>Generic 3D Drafting. (Software Review) (one
        cpocsupa necroti.
                                          of three evaluations of low-cost 3D CAD programs in
        «FILEID» apparent
8 Probe
                          CT2>SUBMILEY: <
                                          'Low-cost CAD: modeling for the masses.')
        KFIRSTON drung ad
S TO BOX
                          (FDA) proposes
                                         favaluation)
        KEEDONDA microcol
6 Banuti
                          new drug appli
                                         </TITLE>
        KHEADOFD differen
0 ----
                          72-337 held by CAUTHORNHause, Bruce. 6M;
        Ponish C maintain
8 By B11
                          Ridge Rd., Spr </authors
        KEYLINES structus
8 Staff
                          grounds for th countary Generic Software Inc's $349 Generic 3D
        <BYLINES </PRET>
KDDO 08
                          applications o Drafting is a low-cost_
        SDATELIN S/DOC>
KERON MIM
                          fact, and (2)
                                         < /STIMMARYS
        化丁烷化丁烷
ecce LLA
                          evaluated togel cpgcgIPT>
        The Food and Drud
KIND DRI
                          the applicatio
        on Friday the age
                                         Company: Generic Software Inc. (Products), &Or
46777 800
                          substantial ev
                                         Product: Generic 3-D Drafting 1.1 (CAD
        generic drug comp
47 TEMPOTER |
                          effects they p
                                         Software). SO:
        and misrepresent
Food and
                          under the cond
                                         Topic: Computer-Aided Design
looking
                          or suggested i
        </TEXT>
problem
                          c/TTAE>
        c/DBCb
                                          4 Co.
                                          CTERRITY.
                          S/TEXTE:
                          K/DOO%
                                          </TEXT>
ペプ軍を選集さ
                                          4 / DOCS
```

Comparing Text

- Determining whether a document matches a query is a fundamental problem of IR.
- Exact match is not enough:
 - Many different ways to state the same information
 - Documents may be relevant even when lacking some of the query terms.
 - Documents may be nonrelevant even if they contain all the query terms.

Relevance

- What does it mean for a document to be relevant?
 - Simple definition: A relevant document contains information that a person was looking for when they submitted a query to the search engine.
 - Many factors influence a person's decision about what is relevant: e.g., task, context, novelty, style.
 - Topical relevance (same topic) vs. user relevance (everything else).
- How can we build an engine that retrieves relevant documents?

Retrieval

- Retrieval models define a view of relevance.
- Ranking algorithms used in search engines are based on retrieval models.
- Most models describe statistical properties of text rather than linguistic properties.
 - i.e. counting simple text features such as words.
 - Statistical approach started with Luhn in the '50s.
 - Linguistic features can be part of a statistical model.

Evaluation

- How do we know whether the engine is doing a good job of finding relevant documents?
 - Evaluation is experimental procedures and measures for comparing system output with user expectations.
 - IR evaluation methods now used in many fields.
 - Recall and precision are examples of effectiveness measures.

Not Just Documents

- New applications increasingly involve media.
 - e.g. video, photos, music, speech
- Like text, contents is difficult to describe and compare.
 - text may be used to represent them (e.g. tags).
- IR approaches to search and evaluation are appropriate.

Dimensions of IR

Content	Applications	Tasks
Text	Web search	Ad hoc search
Images	Vertical search	Filtering
Video	Enterprise search	Classification
Scanned docs	Desktop search	Question answering
Audio	Forum search	
Music	P2P search	
	Literature search	

IR Tasks

- Ad-hoc search:
 - Find relevant documents for an arbitrary text query.
- Filtering:
 - Identify relevant user profiles for a new document.
- Classification:
 - Identify relevant labels for documents.
- Question answering:
 - Give specific answer to a question.

IR and Search Engines

- A search engine is the practical application of information retrieval techniques to large scale text collections.
- Relevance, retrieval, evaluation are issues.
- So are users and information needs, performance, coverage, updating, scalability, adaptability, and ability to handle specific problems (like spam).

Components of a Search Engine

Building a Search Engine

- Text processing and indexing.
 - Parsing; tokenizing; stopping and stemming; inverting indexes; scalability; index updates.
- Query processing and ranking.
 - Query languages; index look-up; retrieval models; features; relevance feedback; user interaction.
- Evaluation.
 - Effectiveness at performing task; querying speed; user satisfaction.

Course Overview

- This course is about information retrieval in practice: the application of IR to search engine design and implementation.
- Course project:
 - Design and implement a small search engine capable of indexing and searching Wikipedia pages.
 - Evaluate its performance over provided queries.
 - Add something interesting to it.