22/00/22

Interface 4 most 4 k memory chips, out of which 2 are ROM chips.

You can use 74LS138 Decoder.

No. of address lines = log (4k) = 12

lets assume starting address of first Rom chip is 0000 H.

	chep select	Address select lines	
	ALS ALY ALS ALZ	A,	A3 A3 A, A0
1St (OOOO H ROM L OFFFH		000000000	0000
and 1000H	0001	00000000	0 0 0 0
ram { 2000H	0 0 1 0	11111111	0000
2nd 3000 H RAM L3FFF H	0 0 1 1	(0000

$$A_{13}=0$$
, $A_{12}=0$ $A_{13}=0$, $A_{12}=1$ $A_{13}=1$, $A_{12}=0$ $A_{13}=1$, $A_{12}=1$

Instead of Digital hagic for Control signal, he can use 74LS 138 (3×8)
Deceder

28/9/22

- 1) Interface the following memory with 8085.
 - a) SKX8-bit RAM
 - 2) yexs-bit Rom.

Steps:

Rom select 4K > -12 Address, lines

8k = 13 Address select RAM lines

- i) find ASL for each chip (Address select lines)
- 2) Design chip select logic
- 3) Write circuit diagram

_	A15 A14 A13 A	A A A A A A A 8	A, A, A, A,	A3 A2 A1 A0	
ROM N=12	0000	0000	0000	0000	0000 H 0FFF H
	CSL		Address selec	lines.	
RAM N=13	100 1:1	1111	0000	0000	2000 H 3FFF H.
any comois	nation CSL all & possibilities excep past of CSL in	000	ASL it of ASL in L	2AM	

it clashes with ROM

> insert another 4k Rom in between them

RAM.

- a) 2,4K ROM
- b) 1,8k RAM

1.0.	A15 A14 A13 A12	A11 A10 A9 A8	A, A	
ROM 1			0000 0000 0000 H 0.0)	
ROM 2			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
RAM	. 0 0 1 1	1111	1111 1111 3FFF H Selor	ò

Question: Design an interface for.

a) 8k RAM using 8kx4-bit memony chips 0000H.

b) provide a space to interface additional 8k memory

2c) 16k memory using skx8bit chips and Ending address is FFFF H.

No. of address lines = $\frac{\log(8k)}{\log 2}$ = 13

	A15 A14 A131 A12	A11 A10 A9 A8	Az A6 A5 A4	A3 A2 A1 A0	
BUN) 8K	0 0 0 0	0 0 0 0	0000	0000	0000 H
	00011	1 1 1 1	1111	((()	IFFFH
8 K Space	0010	0 0 0 0	0000	0000	2000 H
space	0011	, , , ,	1111	(() (3FFFH
10K) ~	11000	6000	0000	0000	C000 H.
Wewow	7. (1 D)	1 1 1 1	in the		DPFFH
	1 1 1 70	D D D D	0000	0000	D'EBBDH
		1 1 1 1			FFFF H

10/10/22

Digital State Machine

Upon the application of clock pulse, it is moving from one state to other state means

In synchronous with clock pulse.

- Microprocessor is called as state machine
- Body also (breath in and breatheout)

Consider the instruction MVI A,#80H.

Time taken by the processor to execute the a instruction completely is called instruction cycle.

Thus everything happens in T states

- Each T state is in synchronous with clock pulse
 - . As counter moves from one state to other state, processor also moves from one state to other state in synchronous with clock pulse.

Thus, Processoris also called Digital Slate Machine.

(- from Start to end process move torounds to execution)

Memory read

TI.AB七PC PCKPC+1.

TR. OKMEMR

T3: DB+[M]
A+DB / by the end of T3

Thus,

- Opcode fetch is 4 states
- Memory level is of 37 states

Instruction ayıle decimated

Machine cycle decimated

RTL

if memory read/write is 2T states.

- then it implies memory is twice slower than processor
- if frequency same for Clockpulse & memory then it takes only 1 state
- 2 Tstates => twice slower - 3 4 T states => 4 time slower.
- Q. if frequency 7 of clock pulse 2 3MHz, the calculate time taken to execute MVI A, #80H

i) OF:4T

1T state = 1 clock pulse

2) MR:3T

if frequency = 3MHz

Pime = 1 3x10 = a

77 77 = 7x1 106 = 2.3x106 = 2.3 Ms.

This all is one way of representing the Enstruction.

There is other way - pictural represented (studied further)

MOV B, A | 1Byte | 1M/c | 4T | 4x & = 1.33 Les MV J A, 80 | 2 Byte | 2 M/c | IT | TX 1/3 = 2.33 Les LX 1 H, Claso | 3 Byte | 3 M/c | 10 T | TX 1/3 * 2.33 7+3-73

MOV MA I BYTE & MICHT 2.33 US.

D M/c of cycle

TI: AB < pc

Ta: O + MEMR

T3: DB < [M] AB

Ty: Decode & execute

2) M/c Mw cycle

TS: AB + HL

16: 04 MEMW

T7: DB+A
[M]HL+DB.

11/10/22

Pictorial Representation

Pinning Diagram

Other than Iolin, kw, we there are another two statesignals s, \$50.

	MMEMW	MEMBOR	S,	180.	
Opcode fetch	1	0	1	١	
MEMW	0	trate of Co	0	1 ()	
MEMR	1	0	1	0	
HLT		0	0	O	
0 12				-	

it is like opcode fetch.

1 MOV AB ACB

Timing diagram of this instruction is the

- Pictorial representation of all instruction cycle, machine cycles and Registre Transfer level activities (7 States).

2 MVI A, 47 H.

Extend the previous timing diagram.

