Constants

• Normdruck: $p_{ref} = 1atm = 1.01325 \ bar$

• Normtemperatur: $T_{ref} = 298 \ K \approx 25^{\circ} \ C$

• Pferdestärke: 1 hp = 1 PS = 0.735 kW

• Elementarladung: $e = 1.60219 \cdot 10^{-19} C$

• Faraday-Konstante: $F = N_A \cdot e = 96485.3 \frac{C}{mol} = \frac{A \cdot s}{mol}$

• ppm = parts per million: $1 ppm = 10^{-6}$

 • Gaskonstante: $\overline{R}=8.314\frac{J}{molK}$, spez. – $R=\frac{\overline{R}}{M}[\frac{J}{kgK}]$

Parameters

- Aerodynamic Force F_A
- Aerodynamic Moment M_A
- Lift Coefficient $C_l = L/(1/2\rho V^2 c)$
- Drag Coefficient $C_d = D/(1/2\rho V^2 c)$
- Moment Coefficient $C_m = M_A/(1/2\rho V^2 c^2)$
- Angle of Attack α angle between connection leading and the trailing edge and reference line
- Lift curve slope $a = C_l/\alpha$

Steady Aerofoil and Wing Section Aerodynamics

- Aerofoil = 2-D wing section with goal to generate lift force perpendicular to the relative airspeed
- Convention: Lift is up, Drag is in direction of windspeed and Aerodynamic moment in clockwise direction acting on the aerodynamic center. Aerodynamic center is normally at the quarter chord position $c_{m,c/4}$ for syymetric airfoils. $x_{ac}=-m_0/2\pi+0.25$ with m_0 as a shape constant

- \bullet Further assumptions: No viscosity, incompressible fluid, Ma < 0.2, 0.3, no vortices, potential flow (Navier-Stokes)
- Another centre is the shear center (elastic axis) from mechanics
- $L=1/2\rho V^2 ca \alpha$, with a from tables (CFD and Wind Tunnel)
- $M_a = 1/2\rho V^2 c^2 c_{m\phi}$ with $c_{m\phi}$ also from tables

Lift curve $C_l(\alpha)$ and drag curve $C_d(\alpha)$

- At small ranges of α , both lift and drag increase with: $C_l \propto \alpha$ and $C_d \propto \alpha^2$
- In aeroelasticity and this course, α will be very small, hence drag will be negligble small

The aerodynamic moment M_A

- The aerodynamic moment is much more important than drag C_d
- M_A varies with α in the small ranges of the angle of attack
- Important to note: There exist a point at which the aerodynamic moment does not depend on α . This is the the aerodynamic centre
- The aerodynamic centre is not the same as the centre of pressure, which is defined as the point where the aerodynamic moment is zero given a certain angle of attack
- Symmetric airfoils at $\alpha=0$ have no aerodynamic moment at all times $(M_A=0=const)$. At the aerodynamic centre for symmetric foils results into no moment
- Asymmetric airfoils at $\alpha=0$ have a non-zero aerodynamic moment at all times (all angles α)

Assessment of C_l/α