Analysis of Variance:

Frequently, experimenters want to compare more than the treatments or results due to three or more leaching techniques; or miles per liters obtained from many different types of Compact Cars.

hie discussed how to compare the means of two normal distributions. More generally, let us now consider M-mormal distributions with unknown means H11M21-11/m and an unknown, but lommon, variance 52.

Ho: H1=H2= ... = Mm

14: at least one is different from others.

Let XiI, Xiz, ..., Xin; represent à random sample of size ni from the normal distributions $N(Hi, \sigma^2)$,

l,	V				Row		
[=1,21.	., m.				Means		
[×, : [Χ _{II}	Y ₁₂		×in	×ı.	I (Sample Means)
1- Level X2:	χ_{2}	×22	,	χ_{2n_2}	\overline{X}_{2} .		
Target State 1 a t				· · ·	:	0.1	
Xm :	×mı	× _{m2}	.	Xmnm	X _m .		
Grand	Mean				\ X		

Let
$$N = n_1 + n_2 + \cdots + n_m$$

$$\overline{X}_{..} = \frac{1}{N} \sum_{i=1}^{m} \sum_{j=1}^{n_i} x_{ij} + \overline{X}_{i.} = \frac{1}{n_i} \sum_{j=1}^{n_i} x_{ij}, i=1,2...,m.$$

To determine a critical region for a test of Ho, we shall partition the sum of squares associated with the variance of the combined samples into two parts.

ANOVA SUM OF Squares Identity:

The total Sum of Squares (TSS) = $\sum_{i=1}^{m} \sum_{j=1}^{n_i} (x_{ij} - \overline{x}_{..})^2$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n_i} (x_{ij} - \overline{x}_{i.})^2 + \sum_{i=1}^{m} n_i (\overline{x}_{i.} - \overline{x}_{..})^2$$

BSS = Between Sum of Squares =
$$\sum_{i=1}^{m} n_i (\bar{x}_i - \bar{x}_{i.})^2$$

WSS = Within Sum of Squares =
$$\sum_{j=1}^{m} \frac{n_i}{\sum_{j=1}^{n} (x_{ij} - \overline{x}_{i.})^2}$$

Remark:

NSS - Often called as the error Bfum of Squares

BSS - Often called as the between treatment.

Sum of Squares.

One-way Analysis of Variance:

Source of Variation	Sum of Squares Degrees of Mean Sum of Squares	·F-Yatio
Between	$BSS = \sum_{i=1}^{m} n_i (\overline{x}_i - \overline{x}) m-1 \qquad \frac{BSS}{m-1} = MS_B$	BSS/M-1 WSS/N-M
Within	$WSS = \sum_{i=1}^{m} \sum_{j=1}^{n} (x_{i,j} - \overline{x}_{i,j}) N-m \qquad \frac{WSS}{N-m} = MS_{N}$	•
Total	$V TSS = \sum_{i=1}^{m} \sum_{j=1}^{n_i} (x_{ij} - \overline{x}_{-j})^2 N-1 $	1+

N= ni+ne+...+nm TAICCEPT HO if Fobs \leftarrow \(\frac{1}{\alpha} \) \(\frac{1}{\alpha} \). Fobs = -

Reject to it Fobs > Fx (m-1, N-m).

The hotions of between Sample Variation & within

degrees of freedom Partition: N-1 = (m-1)+(N-m)

There are nithit of nm = N observations, thus TSS has N-1 degrees of freedom. There are m levels of the factor, 50 BSS has m-1 degrees of freedom Finally, within any treatment, it contributes ni-1 degrees of freedom. =) WSS bas (n,-1)+(nz-1)+...+(nm-1)= N-m

(P) Let X1, X2, X3-1, X4 be independent Y. Vs that have normal distributions $N(Hi, \sigma^2)$, i=1,2,3,4.

We Shall fest Ho: H1 = M2 = M3 = H4 = Ju

Hi: atleast one of two Hi is different

On the basis of a random sample of size n;=3 from each of the four distributions

•	O	Means Xi.		
X	13	8	9	10
X ₂ :	15	11	13	-13
	8	12	7	9
X ₃ :	0	15	10	12
Xqs	 		1	-11
Carrand	mean	X		

For the given data, $T5S = (13-11)^{2} + (8-11)^{2} + \cdots + (15-11)^{2} + (10-11)^{2} = 80$ BSS = $3((10-11)^2 + (13-11)^2 + (9-11)^2 + (12-11)^2) = 30$ $WSS = (13-10)^{2} + (8-10)^{2} + \dots + (15-12)^{2} + (10-12)^{2} = 50.$ Note that TSS = BSS+WSS, Only two of the three Values need to be calculated directly from the data.

$$F_{obs} = \frac{MS\dot{B}}{MS_W} = \frac{30/4-1}{50/42-4} = 1.6$$

Here
$$n = n_1 + n_2 + n_3 + n_4 = 12$$

 $m = 4$.

$$F_{\alpha}(m-1,n-m) = F_{0.05}(3,8) = 4.07$$
.

Sino Fobs
$$< F_{0.05}(3.8)$$