MA-2115: Matemáticas 4

Semana 10

10.1 Ecuaciones differenciales lineales de orden n

1. Teorema para ecuaciones homogeneas a coeficientes constantes

La ecuación differencial lineal

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y = 0,$$

define el polinomio caracteristico

$$p(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0$$

= $(\lambda - \lambda_1)^{m_1}(\lambda - \lambda_2)^{m_2} \dots (\lambda - \lambda_k)^{m_k},$

donde $\sum_{i} m_{i} = n$ (el número total de raíces es n, contando repeticiones).

Las raices λ_j de $p(\lambda)$ determina la solución general de la forma

$$y(x) = c_1 y_1(x) + c_2 y_2(x) + \cdots + c_n y_n(x),$$

donde las soluciones fundamentales $y_i(x)$ tienen la forma:

- $x^l e^{\lambda_j x}$ si λ_j es raiz no compleja de $p(\lambda)$ donde $l = 0, \ldots, m_j 1$. Es decir, una raíz λ_j que se repite m_j veces define m_j soluciones de la forma $e^{\lambda_j x}$, $x e^{\lambda_j x}$, $x^2 e^{\lambda_j x}$ hasta $t^{m_j - 1} e^{\lambda_j x}$.
- $x^l e^{a_j x} \cos(b_j x)$ y $x^l e^{a_j x} \sin(b_j x)$ si $\lambda_j = a_j + i b_j$ es una raiz compleja de $p(\lambda)$. Es decir, en el caso complejo esas soluciones anteriores con seno y coseno reemplazan $x^l e^{\lambda_j x}$ y $x^l e^{\bar{\lambda}_j x}$, y las repeticiones se tratan con en el punto anterior.

2. Encuentre la solución del problema a valores iniciales

$$y'' + by' + 4y = 0$$
, $y(0) = 1$, $y'(0) = 0$,

para b = 5, 4, 2.

3. Encuentre la solución general

$$y^{(4)} + 2y^{(3)} + 2y'' + 2y' + y = 0.$$

4. Coeficientes indeterminados

Para conseguir una solución particular $y_p(t)$ de

$$ay'' + by' + cy = g(t),$$

dependiendo las raíces del polinomio caracteristico

g(t)	$y_{p(t)}$	Comentarios
Ct^m	$A_m t^m + \cdots + A_1 t + A_0$	r=0 no es raíz
$C\cos(\beta t)$ or $C\sin(\beta t)$	$A\cos(\beta t) + B\sin(\beta t)$	$r=i\beta$ no es raíz
Ct^me^{rt}	$t^s(A_mt^m+\cdots A_1t+A_0)e^{rt}$	$s=0,1,2 \ (r \text{ no es raíz},$
	$p_{m(t)}$	es simple, or es doble)
$Ct^m e^{\alpha t} \cos(\beta t)$ or \sin	$t^{s}p_{m}(t)e^{\alpha t}\cos(\beta t) + t^{s}q_{m}(t)e^{\alpha t}\sin(\beta t)$	$s = 0, 1 (\alpha + i\beta \text{ no es},$
	$ \underbrace{\hspace{1cm}}_{\neq p_m}$	sí es) y p_m y q_m son
	, ,	polinomios (filas ante-
		riores)

5. Encuentre la solución general de la ecuación

$$y'' - 4y' + 13y = \sin(3t).$$

6. Variacion de parámetros

Si $y_1(t)$ y $y_2(t)$ son soluciones lineal mente independientes de la ecuación homogenea

$$y''(t) + p(t)y'(t) + q(t)y(t) = 0$$

son p(t), q(t) and q(t) son continuas, entonces la solución particular de

$$y''(t) + p(t)y'(t) + q(t)y(t) = g(t),$$

viene dada por

$$y_n(t) = v_1(t)y_1(t) + v_2(t)y_2(t),$$

donde

$$v_1(t) = -\int \frac{g(t)y_2(t)}{W[y_1, y_2](t)} dt, \quad v_2(t) = \int \frac{g(t)y_1(t)}{W[y_1, y_2](t)} dt,$$

con

$$W[y_1, y_2](t) = \begin{vmatrix} y_1(t) & y_2(t) \\ y'_1(t) & y'_2(t) \end{vmatrix} = y_1(t)y'_2(t) - y'_1(t)y_2(t).$$

7. Encuentre la solución general de la ecuación

$$5y'' + -20y' + 20y = t^{-2}e^{2t} + 20, t > 0.$$

8. La ecuación de Cauchy-Euler

$$ax^2y'' + bxy' + cy = f(x),$$

se convierte en coeficientes constantes

$$az'' + (b-a)z' + cz = f(e^t).$$

despues de usar la substituciones $x = e^t$ y $z(t) = y(e^t)$.

9. Resuelva el problema

$$x^2y'' + 3xy' + y = 5x^{-1}\ln x.$$