AI & Robotics

State space and game Al

Goals

The junior-colleague

- can describe & explain in own words the position game AI as a subfield
- can describe in own words the link between tree search and game AI
- can explain in own words the differences between simple and more complex board games in context of game AI using real world games
- can explain in own words the term "contingency" of a problem
- can describe in own words how a game AI using tree search on an abstract level
- can explain in own words Minimax in context of game Al
- can explain in own words the time and space complexity of Minimax
- can implement Minimax for a given problem
- can explain in own words an improvement of Minimax
- can implement an improvement of Minimax
- can explain in own words Alpha-Beta pruning in context of game Al
- can explain in own words the best case and worst case gain of Alpha-Beta pruning in context of game Al
- can describe in own words the term Heuristic continuation in context of game AI and what problem it solves in context of Alpha-Beta pruning using a real world example
- can implement Alpha-Beta pruning for a given problem
- can implement Heuristic continuation for a given problem

Why?

- One of the oldest subfields of AI
- Abstract and pure form of competition that seems to require intelligence
- Game playing is a special case of a search problem, with some new requirements.

How?

- Simple board games
 - Easy to represent the states and actions
 - Very little world knowledge required!
 - "Contingency" problem:
 - => We do not know the opponents move!
 - The size of the search space:
 - Chess: +/- 15 moves possible per state, 80 plays => 15^{80} nodes in tree
 - Go: +/- 200 moves per state, 300 plays \Rightarrow 200³⁰⁰ nodes in tree
- More complex games
 - State space representation becomes increasingly difficult
 - => How to represent a game world?

How?

Game playing algorithms:

- Search tree only up to some depth bound
- Use an evaluation function at the depth bound
- Propagate the evaluation upwards in the tree

- Consider a board game with 2 players:
 - MAX (Al player)
 - MIN (opponent)
- Each player alternates between taking a turn
- The game ends when either:
 - One of the 2 players reaches a winning state
 - No more moves are possible
- Assumptions:
 - Deterministic
 - Perfect information

- Select a depth-bound (say: 2) and evaluation function
- Construct the tree up till the depth-bound
- Compute the evaluation function for the leaves

- MAX-player wants to maximize
 MIN-player's ultimate score
- MIN-player wants to minimize MAX-player's ultimate score
- => Propagate the evaluation function Upwards:
 - Take minima in MIN
 - Take maxima in MAX


```
init depthBound
function miniMax(board, depth):
        if depth == depthBound
            return eval(board)
   else if maximizer(depth)
        for each child c of board
            value = max(value, miniMax(child, depth + 1))
        return value
    else [minimizer]
        for each child c of board
                 value = min(value, miniMax(child, depth + 1))
            return value
```

Analysis

- Time complexity
- => Same as iterative deepening (search bounded by depth m): O(b^m)
- Space complexity
- => Same as iterative deepening (search bounded by depth m): O(b*m)

- 2 players: X and O
- State representation of the board: i.e. matrix
- Production rules:
 - X move: place X on a free spot on the board
 - O move: place O on a free spot on the board
- Start state: empty board
- Goal state:
 - 3 X's in a row
 - 3 O's in a row
 - Full board

- MAX-player (X) wins: +10
- MIN-player (O) wins: -10

```
function eval(board, depth):
        if maximizer(depth)
             return 10
        else if
 minimizer(depth)
             return -10
        else
             return 0
```


X Wins +10

MAX-player X's turn in State 1

- State 1: generates states 2, 3, and 4 and calls minimax on those states
- State 2: goal state
 - => X win: return +10 to state 1
- State 3: generates states 5 and 6 and calls minimax on them
- State 4: generates states 7 and 8 and calls minimax on them
- State 5: goal state
 - => O win: return -10 to state 3
- State 7: goal state
 - => O win: return -10 to state 4

- State 6 and 8: generate states 9 and 10 and call minimax on them
- State 9 and 10: goal states
 - => return +10 to states 6 and 8
 - => return +10 to states 3 and 4
- State 3 and 4: O's turn
 - => **MIN**imize score: **MIN**(-10, +10) = -10
 - => states 3 and 4 return -10
- State 1: X's turn
 - => **MAX**imize score **MAX**(+10, -10, -10) = +10
 - => Choose State 2

MiniMax: Improvement

Problem

Early demise: algorithm doesn't differentiate between an early and a late defeat

=> O player could choose state 2, 4 or 5 instead of state 3

MiniMax: Improvement

Solution

Delay demise: take depth into account for evaluation score

function eval(board, depth):

if maximizer(depth)

return 10 - depth

else if minimizer(depth)

return depth - 10

else

return 0

4 - 10 = -6

- Optimization for MiniMax
- Instead of:
 - first creating the entire tree (up to depth-level)
 - then doing all propagation
- Interleave the generation of the tree and the propagation of values.
- => some of the obtained values in the tree will provide information that other (non-generated) parts are redundant and do not need to be generated.

- Generate the tree depth-first, left to right
- Propagate final values of nodes as initial estimates for their parent node
- The MIN-value (1) is already smaller than the MAX-value of the parent (2)
- The MIN-value can only decrease further
- The MAX-value is only allowed to increase
- No point in computing further below this node

- The values at MAX nodes are Alpha-values
- The values at MIN nodes are Beta-values

If an **Alpha-value** is larger or equal to the **Beta-value** of a descendant node:

=> Stop generation of the children of the descendant

If an **Beta-value** is smaller or equal to the **Alpha-value** of a descendant node:

=> Stop generation of the children of the descendant

Best case gain:

- At every layer, the best node is the left-most one:
 - => only is explored
- Evaluations saved:
 O(b^{d/2})

Worst case gain:

No improvement

Best case gain:

Example of a perfectly ordered

tree

Alpha-Beta pruning: Problem

- Depth-bound is limiting factor
- It's preferable to delay disasters, but they are not prevented
 - => possible solution: heuristic continuation

Alpha-Beta pruning: Heuristic continuation

- Change behaviour in certain situations
 - Strategically crucial:
 - e.g. chess: king in danger, pawn can convert to queen, etc
 - => extend search beyond the depth bound

