BIO331 Protein Structure and Function

OVocleidin Estogen Receptor VI tamin-d binding protein Egg White lysozyme

Dr. Zhiyi Wei SUSTC

Aims

- Master structural features of proteins
 - The relationship between protein sequence and structure
 - Secondary/tertiary/quaternary structures
- Know how to analyze protein structures
 - Architectures
 - Intra/inter-molecular interfaces
 - Protein dynamics
- Learn to apply structural information to understand protein function
 - Structures -> Functions -> Applications (medicine/industry)

Contents

- Chap 1. From sequence to structure
 - Primary and secondary structure
 - Tertiary structure, domain, and motif
 - Protein folding and flexibility
 - Quaternary structure
- Chap 2. From structure to function
 - Functional sites in protein structures
 - Catalysis
 - Membrane protein
 - Structural proteins
 - Flexibility and protein function
- Chap 3. Control of protein function
 - Environmental control
 - Effector and allostery
 - Protein switches
 - Control by post-translational modification
 - Kinase and signaling regulation
 - Regulation by splicing, proteolysis, and degradation
- Chap 4. Methods and case studies

Experiments

- EXP1. Sequence analysis I
 - Conservation and evolution analysis
 - Secondary structure analysis
- EXP2. Sequence analysis II
 - Functional domain/motif prediction
 - Protein profiling
- EXP3. Structure DIY
 - Manually build hemoglobin β subunit
 - Manually build any protein structure (video record)
- EXP4. Protein databases
 - PDB, understanding coordinates
 - Other structure-based databases
 - Visualizing protein structures using PyMOL
- EXP5. Structure comparison
 - Structural superposition
 - Structural based alignment
- EXP6. Surface analysis
 - Conservation
 - Electrostatistics
 - Hydrophobicity

- EXP7. Identification of functional sites
 - Binding site
 - Active site
- EXP8. Membrane protein analysis
 - Transmembrane region prediction
 - Structural analysis
- EXP9. Interaction analysis I
 - Protein-protein interaction
- EXP10. Interaction analysis II
 - Protein-ligand interaction
- EXP11. Protein structure prediction
 - Homology modeling
 - Other modeling methods
- EXP12. Structural quality check

Requirements

- Assessment
 - Experiments: 30%
 - Journal club: 20%
 - Project: 20%
 - Final exam: 30%
- Experimental requirements
 - RM201 (Computer Room), Teaching building 2
 - Attendance
 - Duration: 1-3 hrs
 - Software: PyMOL
- Presentation requirements
 - Journal club
 - One presentation
 - Duration: 15-min talk + 5-min discussion
 - Prepare figures or movies by PyMOL
- Project requirements
 - A proper-formatted article
 - A final presentation: 30-min talk + 5-min discussion

Final Project

- Title: Structure based functional implications of XXX domain
- Article format
 - Introduction
 - Why do you select this domain?
 - Structural analysis
 - Figures
 - Functional implications
 - Figures
 - Conclusions
 - What do you learn in this case study?
 - References
 - All citations should be academic articles
 - NOT from baidu or wikipedia
- Wikipedia* (not required)
 - Create a new article or improve an existing article
- Presentation
 - Include a movie showing the structural analysis

PyMOL

You can learn everything about PyMOL from www.pymolwiki.org

Gallery 1

Gallery 2

BIO331 Protein Structure and Function

Protein Data Bank (www.pdb.org)

Bonus 1: Play Game (up to 5 points)

Bonus 2: Find Error (up to 5 points)

- Find any errors in the teaching material including,
 - Textbook
 - PPT slides
 - Journal club papers
- Find one error get one point!

Readings

Textbook

Reference book

Other Resource

- Internet
 - PDB
 - Google
 - WikiBooks
 - YouTube
- Journals
 - Current Opinion in Structural Biology
 - Annual Review of Biochemistry
 - Nature Structural and Molecular Biology
 - Structure
 - Nature/Cell/Science

Proteins: the most versatile macromolecules of the cell

Protein function

- Molecular level: the biochemical function of the protein molecule in isolation
- Molecular/Cellular level: the cellular function that the protein performs as part of an assemblage or complex with other molecules
- Cellular/Organism level: the phenotype that the protein produces in the cell or organism

Biochemical functions

- Protein-protein, protein-DNA/RNA, or protein-ligand interactions (binding)
- Catalysis
- Molecular switches
- Structural components
- The function of every protein depends on its 3D structure.

Collagen - Structure

Binding

TATA binding protein

The TATA binding protein binds a specific DNA sequence and serves as the platform for a complex that initiates transcription of genetic information. (PDB **1TGH**)

Myoglobin binds a molecule of oxygen reversibly to the iron atom in its heme group. It stores oxygen for use in muscle tissues. (PDB **1A6K**)

Structural features contribute to the binding specificity

- Shape complementarity
- Polar interactions
 - Hydrogen bonding
 - Charge-charge interactions
- Hydrophobic interactions

Catalysis

DNA replication is catalyzed by a specific polymerase that copies the genetic material and edits the product for errors in the copy. (PDB **1PBX**)

HIV protease

Replication of the AIDS virus HIV depends on the action of a protein-cleaving enzyme called HIV protease. This enzyme is the target for protease-inhibitor drugs. (PDB **1A8K**)

Structural features contribute to the enzymatic catalysis

- Holding reacting groups together in an orientation favorable for reaction
 - proximity
- Binding the transition state of the reaction more tightly than ground state complexes
 - transition state stabilization
- Acid-base catalysis

• . . .

Switching

The GDP-bound ("off"; PDB **1PLL**) state of Ras differs significantly from the GTP-bound ("on"; PDB **121P**) state. This difference causes the two states to be recognized by different proteins in signal transduction pathways.

Structural Proteins

Silk derives its strength and flexibility from its structure: a giant stack of antiparallel β-sheets. Its strength comes from the covalent and H-bonds within each sheet; the flexibility from the van der Waals interactions that hold the sheets together. (PDB **1SLK**)

Actin fibers are important for muscle contraction and for the cytoskeleton. They are helical assemblies of actin and actin-associated proteins.

(PDB **4A7N**)