Dynamic Branch Predictor

 Describe (the answer has to be effectively supported) a 1-BHT and a 2-BHT able to execute the following assembly code (R0 is set to 2000, R1 is set to 0)

LOOP:	LD	F1	0	R0
	ADDD	F2	F1	F1
	ADDI	R1	R1	100
LOOP2:	MULTD) F2	F2	F1
	SUBI	R1	R1	1
	BNEZ	R1	LOOP2	
	SUBI	R0	R0	2
	BNEZ	R0	LOOP	

 The obtained result, in terms of mispredictions, is inline with theoretical characteristics of the two predictors? Please effectively support your answer.

Dynamic Branch Predictor

Describe (the answer has to be effectively supported) a 1-BHT and a 2-BHT able to execute the following assembly code (R0 is set to 1, R1 is set to 300)

LOOP: LD F3 0 (R0)

ADDD F1 F3 F3

ADDI R1 R1 3000

LOOP2:

MULTD F2 F2 F3

SUBI R1 R1 3

BNEZ R1 LOOP2

SUBI R0 R0 2

BNEZ RØ LOOP

 The obtained result, in terms of mispredictions, is inline with theoretical characteristics of the two predictors? Please effectively support your answer.

