Lista de Exercícios

Montgomery, D.C., Runger, G.C., Estatística Aplicada e Probabilidade para Engenheiros, Quinta Edição, LTC, 2012.

Capítulo 13

13-7. Um engenheiro eletrônico está interessado no efeito sobre a condutividade do tubo, de cinco tipos diferentes de recobrimento de tubos de raios catódicos em uma tela de um sistema de telecomunicações. Os seguintes dados de condutividade são obtidos:

Tipo de Recobrimento	Condutividade			
1	143	141	150	146
2	152	149	137	143
3	134	133	132	127
4	129	127	132	129
5	147	148	144	142

- (a) Há qualquer diferença na condutividade devido ao tipo de recobrimento? Use $\alpha = 0.01$.
- (b) Analise os resíduos provenientes desse experimento.
- (c) Construa uma estimativa do intervalo de 95% para a média do tipo 1 de recobrimento. Construa uma estimativa do intervalo de 99% para a diferença média entre os tipos 1 e 4 de recobrimento.
- 13-11. Um trabalho no periódico *Journal of the Association of Asphalt Paving Technologists* (Vol. 59, 1990) descreve um experimento com o objetivo de determinar o efeito de bolhas de ar sobre a percentagem da resistência preservada do asfalto. Para finalidades do experimento, bolhas de ar são controladas em três níveis: baixo (2-4%), médio (4-6%) e alto (6-8%). Os dados são mostrados na seguinte tabela:

Bolhas de Ar	Resistência Preservada (%)							
Baixo	106	90	103	90	79	88	92	95
Médio	80	69	94	91	70	83	87	83
Alto	78	80	62	69	76	85	69	85

- (a) Os diferentes níveis de bolhas de ar afetam significativamente a resistência média preservada? Use $\alpha = 0.01$.
- (b) Encontre o valor *P* para a estatística *F* calculada no item (a).
- (c) Analise os resíduos provenientes desse experimento.
- (d) Encontre um intervalo de confiança de 95% para a resistência preservada, em que há um nível alto de bolhas de ar.
- (e) Encontre um intervalo de confiança de 95% para a diferença na resistência média preservada, nos níveis baixo e alto de bolhas de ar.

Capítulo 14

14-1. Um artigo no periódico *Industrial Quality Control* (1956, pp. 5-8) descreve um experimento para investigar o efeito de dois fatores (tipo de vidro e tipo de fósforo) sobre o brilho de um tubo de televisão. A variável de resposta medida é a corrente (em microampères) necessária para obter um nível especificado de brilho. Os dados são mostrados na seguinte tabela:

Tipo de	Tipo de Fósforo			
Vidro	1	2	3	
1	280	300	290	
	290	310	285	
	285	295	290	
2	230	260	220	
	235	240	225	
	240	235	230	

- (a) Estabeleça as hipóteses de interesse nesse experimento.
- (b) Teste as hipóteses anteriores e tire conclusões, usando a análise de variância com $\alpha = 0.05$.
- (c) Analise os resíduos desse experimento.

14-2. Um engenheiro suspeita que o acabamento de uma superfície de peças metálicas seja influenciado pelo tipo de tinta usada e pelo tempo de secagem. Ele selecionou três tempos de secagem – 20, 25 e 30 minutos – e usou dois tipos de tinta. Três peças são testadas com cada combinação de tipo de tinta e tempo de secagem. Os dados são apresentados a seguir:

	Tempo de Secagem (min)			
Tinta	20	25	30	
1	74	73	78	
	64	61	85	
	50	44	92	
2	92	98	66	
	86	73	45	
	68	88	85	

- (a) Estabeleça as hipóteses de interesse nesse experimento.
- (b) Teste as hipóteses anteriores e tire conclusões, usando a análise de variância com $\alpha = 0.05$.
- (c) Analise os resíduos a partir desse experimento.