Artin: Rings

James Pagan

February 2024

Contents

1	Rings		
	1.1	Ring Axioms	2
	1.2	Subrings and Ideals	3
	1.3	Ring Homomorphisms	4
	1.4	Isomorphism Theorems	6
	1.5	Assorted Rings	7
2	Mis	cellaneous Artin Shenanigans	8

1 Rings

1.1 Ring Axioms

A **ring** R is a set endowed with two binary operations, here denoted "+" and "×", such that if $a, b, c \in R$, the following ten axioms are satisfied:

• Additive Axioms

- 1. Closure: $a + b \in R$.
- 2. Associativity: a + (b + c) = (a + b) + c.
- 3. **Identity**: There is $0 \in R$ such that a + 0 = 0 + a = a.
- 4. **Invertability**: There is $-a \in R$ such that a + (-a) = (-a) + a = 0.
- 5. Commutativity: a + b = b + a.

• Multiplicative Axioms

- 6. Closure: $ab \in R$.
- 7. Associativity: a(bc) = (ab)c.
- 8. **Identity**: There is $1 \in R$ such that a1 = 1a = a.

• Distributive Axioms

- 9. Left Distributivity: a(b+c) = ab + ac.
- 10. Right Distributivity: (a + b)c = ac + bc.

Since (R, +) is an Abelian group, the following properties hold for $a, b \in R$: the additive identity 0 is unique, the additive inverse -a is unique, -(-a) = a, and -(a + b) = -a - b.

Theorem 1. The following properties hold for any ring R and $a, b \in R$:

- 1. 1 is the unique multiplicative inverse of R.
- 2. If a has a multiplicative inverse a^{-1} , it is unique.
- 3. a0 = 0a = a.
- 4. -a = (-1)a.
- 5. a(-b) = (-a)b = -ab.
- 6. (-a)(-b) = ab.

Proof. (1) and (2) follow from the monoid/group axioms. For the rest:

- 3. As 0 + 0 = 0, we have that a0 = a(0 + 0) = a0 + a0; subtracting by a0 yields a0 = 0. Similarly, 0a = 0.
- 4. We have that

$$(-1)a + a = (-1)a + 1a = (-1+1)a = 0a = 0,$$

so
$$(-1)a = -a$$
.

5. See that

$$a(-b) + ab = a(-b+b) = a0 = 0,$$

so
$$a(-b) = -ab$$
. Similarly, $(-a)b = -ab$.

6. Using (5), we find that

$$(-a)(-b) = -(a)(-b) = -(-ab) = ab,$$

as desired.

This yields the desired six properties.

1.2 Subrings and Ideals

A subring R' of R is a subset of R that is also a ring. This relation is denoted $R' \subseteq R$.

Theorem 2. A subset R' of R is a subring if it is nonempty, closed under addition and multiplication, contains additive inverses, and contains the multiplicative identity.

Proof. The conditions that (R', +) is nonempty, closed, and contains inverses ensures that it is a group. Note that (R', \times) is closed and contains the multiplicative identity.

The final properties are implied by the fact R' is a subset of R; all the elements of R' satisfy both associative and distributive laws, plus additive commutativity. We deduce that R' is a subring.

All rings contain at least two subrings: the 0 ring and R itself.

A ideal \mathfrak{a} of R is a subset of R that satisfies the following twokproperties:

- 1. Additive: \mathfrak{a} is an additive subgroup of R.
- 2. Multiplicative: For all $a \in \mathfrak{a}$ and $x \in R$, we have $ax, xa \in \mathfrak{a}$.

All rings contain at least two ideals: one is R itself, one is a maximal ideal (Section 2.3).

Theorem 3. If R' is both a subring and an ideal of R if and only if R' is R or 0.

Proof. Suppose that $R' \neq 0$ is both a subring and an ideal of R. As R' is a subring, $1 \in R'$; as R' is an ideal, $a = a1 \in R'$ for all $a \in R$. Then R' = R. Clearly, R itself and 0 are both ideals and subrings — which yields the desired result.

1.3 Ring Homomorphisms

A **ring homomorphism** between two rings R and R' is a mapping $\phi: R \to R'$ such that for all $a, b \in R$,

$$\phi(a+b) = \phi(a) + \phi(b)$$
$$\phi(ab) = \phi(a)\phi(b)$$
$$\phi(1) = 1.$$

By the group axioms, $\phi(-a) = -\phi(a)$ and $\phi(0) = 0$ for all $a \in R$. If a has a multiplicative inverse a^{-1} , then $\phi(a^{-1}) = \phi(a)^{-1}$.

The **image** of R under ϕ is the set $\{\phi(a) \mid a \in R\}$, and is denoted $\phi(R)$.

Theorem 4. The image of any ring homomorphism $\phi: R \to R'$ is a subring of R'.

Proof. Realize that $\phi(R)$ is nonempty, and for all $\phi(a), \phi(b) \in \phi(R)$, we have that

- 1. $\phi(a) + \phi(b) = \phi(ab) \in \phi(R)$.
- 2. $\phi(a)\phi(b) = \phi(ab) \in \phi(R)$.
- 3. $-\phi(a) = \phi(-a) \in \phi(R)$.
- 4. $\phi(1) \in R$.

Hence, $\phi(R)$ is a subring of R'.

The **kernel** of R under ϕ is the set $\{a \in R \mid \phi(r) = 0\}$ and is denoted Ker ϕ .

Theorem 5. Ker ϕ is an ideal of R.

Proof. Since ϕ is a homomorphism of the Abelian groups (R, +) and (R', +), the kernel of ϕ is an Abelian group with respect to addition. We need only verify the multiplicative condition; for all $a \in R$ and $k \in \text{Ker } \phi$,

$$\phi(ak) = \phi(a)\phi(k) = 0\phi(a) = 0 = \phi(a)0 = \phi(a)\phi(k) = \phi(ak).$$

Then $ak \in \text{Ker } \phi$. Thus, $\text{Ker } \phi$ is an ideal.

Categories of group homomorphisms — like monomorphisms, epimorphisms, isomorphisms, endomorphisms, automorphisms — have equivalent formulations for ring homomorphisms. An isomorphism between R and R' is denoted the same as groups:

$$R\cong R'$$
.

We can extend the notion of a quotient group to a ring R with an ideal \mathfrak{a} as follows, yielding a **quotient ideal**:

Theorem 6. The quotient group R / \mathfrak{a} is a ring under the product $(a + \mathfrak{a})(b + \mathfrak{a}) = ab + \mathfrak{a}$ for $a, b \in R$.

Proof. The quotient group R / \mathfrak{a} exists, since \mathfrak{a} is an additive subgroup of R and all subgroups of Abelian groups are normal. We must demonstrate that the product is well-defined.

Suppose $a + \mathfrak{a} = a' + \mathfrak{a}$ and $b + \mathfrak{a} = b' + \mathfrak{a}$. Then since $a - a' \in \mathfrak{a}$ and $b - b' \in \mathfrak{a}$,

$$ab - a'b \in \mathfrak{a}$$
 and $a'b - a'b' \in \mathfrak{a}$.

Thus, $ab - a'b' \in \mathfrak{a}$ and $ab + \mathfrak{a} = a'b' + \mathfrak{a}$. Then the product is well-defined. Proving that the product is closed and associative is trivial; the multiplicative identity of R / \mathfrak{a} is $1 + \mathfrak{a}$, and the distributivity with addition is trivial — so R / \mathfrak{a} is a ring.

The canonical mapping $\phi: R \to R / \mathfrak{a}$ is thus a surjective homomomorphism with kernel \mathfrak{a} . A similar definition exists for the quotient of two ideals — say, $\mathfrak{a} / \mathfrak{b}$ for $\mathfrak{a} \supseteq \mathfrak{b}$.

1.4 Isomorphism Theorems

All three Isomorphism Theorems and the Correspondence Theorem have their equivalencies for rings.

Theorem 7 (First Isomorphism Theorem). For all homomorphisms $\phi : R \to R'$ with kernel \mathfrak{t} .

$$R/\mathfrak{k} \cong \phi(R)$$

by the mapping $\psi(a + \mathfrak{k}) = \phi(a)$.

Proof. We must first demonstrate that ψ is a homomorphism. If $a, b \in R$, then the following three identities hold:

- 1. $\psi(a+b+\mathfrak{k}) = \phi(a+b) = \phi(a) + \phi(b) = \psi(a+\mathfrak{k}) + \psi(b+\mathfrak{k})$.
- 2. $\psi(ab + \mathfrak{k}) = \phi(ab) = \phi(a)\phi(b) = \psi(a + \mathfrak{k})\psi(b + \mathfrak{k}).$
- 3. $\psi(1+\mathfrak{k}) = \phi(1)$.

Thus, ψ is a homomorphism. For all $\phi(a) \in \phi(R)$, realize that $\psi(a + \mathfrak{k}) = \phi(a)$; thus ψ is surjective. Finally, let $\psi(a + \mathfrak{k}) = \psi(b + \mathfrak{k})$; then $\phi(a) = \phi(b)$, so

$$\phi(a-b) = \phi(a) - \phi(b) = 0.$$

Hence, $a - b \in \mathfrak{k}$ and $a + \mathfrak{k} = b + \mathfrak{k}$. We conclude that ψ is injective, implying the desired isomorphism.

The Correspondence Theorem expands upon the result of the First Isomorphism Theorem.

Theorem 8 (Correspondence Theorem). There is a one-to-one correspondence between ideals of $\phi(R)$ and ideals of R that contain \mathfrak{k} .

Proof. For an ideal \mathfrak{a}' of $\phi(R)$, define $\mathfrak{a} = \{a \in R \mid \phi(a) \in \mathfrak{a}'\}$. By the Correspondence Theorem for groups, \mathfrak{a} is an additive subgroup of R. For all $a \in \mathfrak{a}$ and $b \in R$, we have $\phi(a) \in \mathfrak{a}'$; thus

$$\phi(ab) = \phi(a)\phi(b) \in \mathfrak{a}'$$

since \mathfrak{a}' is an ideal. Thus $ab \in \mathfrak{a}$, so \mathfrak{a} is an ideal of R. Since $0 \in R'$, we have that \mathfrak{k} is a subideal of \mathfrak{a} . It is now relatively trivial to establish a one-to-one correspondence.

Corollary 1. There is a one-to-one correspondence between ideals of R / \mathfrak{a} and ideals of R that contain \mathfrak{a} .

The two remaining Isomorphism Theorems will be proven at another time.

1.5 Assorted Rings

We will consider the following three types of rings in this section:

- 1. A **commutative ring** is a ring R such that ab = ba for all $a, b \in R$.
- 2. An **integral domain** is a nonzero commutative ring R such that ab = 0 implies a = 0 or b = 0 for all $a, b \in R$.
- 3. A **field** is a commutative division ring.

Note that integral domains and fields must be nonzero. Henceforth, all rings we shall define are commutative unless stated otherwise.

Theorem 9. All finite domains are fields.

Proof. Let R be a finite domain. Then for nonzero $a \in R$, consider the set

$${a, a^2, \dots, a^{|R|+1}}.$$

By the Pigeonhole Principle, two elements of this set must be equal: $a^i = a^j$ for $i, j \in \{1, \ldots, n\}$ with i < j. Thus $a^j(a^{i-j} - 1) = 0$, so $a^{i-j} = 1$ and $a^{i-j-1} = a^{-1}$. Since all nonzero elements of R are invertible, we conclude that R is a field.

Theorem 10. R is a field if and only if the only ideals of R are 0 and R itself.

Proof. Let R be a field and let \mathfrak{a} be nonzero ideal of R. Then for $a \in \mathfrak{a}$,

$$R = (a) \subseteq \mathfrak{a} \subseteq R$$
.

Thus, $\mathfrak{a} = R$. Now, suppose that the only ideals of R are 0 and R itself; then for all nonzero $a \in R$,

$$(a) = R,$$

where (a) denotes the principal ideal (Section 2.1). Thus, there exists $a^{-1} \in R$ such that $aa^{-1} = 1$, so R is a field.

An element $a \in R$ is a **unit** if it is invertible. It is trivial to verify that all the units of R constitute a multiplicative Abelian group (non-units form a commutative semigroup!)

2 Miscellaneous Artin Shenanigans

Polynomial Rings

Let R be a ring. The **polynomial ring** $R[x_1, ..., x_n]$ denotes the ring of all polynomials with variables $x_1, ..., x_n$ and coefficients in R.

Theorem 11. Suppose R is a ring, and let $f, g \in R[x]$ such that the leading coefficient of g is a unit. Then there exists $q, r \in R[x]$ such that

$$f(x) = g(x)q(x) + r(x),$$

with $\deg r < \deg g$.

Corollary 2. If F is a field, then F[x] is a Euclidean domain.

If R is a Unique Factorization Domain, then so is R[x]. The Remainder Theorm holds in a general ring: the remainder dividing f(x) by $(x - \alpha)$ is $f(\alpha)$.

Homomorphisms and Ideals

Theorem 12 (Substitution Principle). Let $\phi : R \to R'$ be a homomorphism, and select $\alpha_1, \ldots, \alpha_n \in R'$ arbitrarily. Then there exists a unique homomorphism

$$\Phi: R[x_1,\ldots,x_n] \to R'$$

that agrees with ϕ on constant polynomials and sends x_i to α_i .

Proof. Defining Φ as the map which sends 1 to 1 and x_i to α_i , it is easy to show that Φ is a homomorphism. The unqueness of Φ follows from the fact these elements generate the totality of $R[x_1, \ldots, x_i]$, hence its image is unique.

The next theorem illustrates the use of the Substitution Principle:

Theorem 13. Let $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_m)$ be sets of variables. Then $R[x, y] \cong R[x][y]$ which sends the variables to themselves.

Proof. Let $\phi: R \to R[x][y]$ be an embedding. The Substitution Principle guarantees that there exists a homomorphism $\Phi: R[x,y] \to R[x][y]$ by mapping each variable to itself. To demonstrate that Φ is bijective, we may simply demonstrate an inverse. \square

Theorem 14. Let R be a ring. There exists a unique homomorphism $\phi : \mathbb{Z} \to R$ defined by $\phi(n) = 1 + \cdots + 1$, added n times, and $\phi(-n) = -\phi(n)$.

The proof of the above assertion is relatively trivial. Here are some neat fun facts:

Theorem 15. Any homomorphism $\phi: F \to R$ is injective.

Proof. The kernel of ϕ is an ideal of F. It cannot be F itself, since ϕ must map 1 to 1; thus $\text{Ker } \phi = 0$, so ϕ is injective.

The next result concerns adjoining elements:

Theorem 16. Suppose the leading coefficient of $f \in R[x]$ is a unit. Then R[x]/(f) contains constants and polynomials of degree strictly less than f.

Product Rings

In the following theorem, let R be a ring with ideals $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$; define a homomorphism

$$\phi: R \to \prod_{i=1}^n R / \mathfrak{a}_i$$

by $\phi(a) = (a + \mathfrak{a}_1, \dots, a + \mathfrak{a}_n).$

Theorem 17. The following two properties of ϕ hold:

- 1. ϕ is injective if and only if $\cap \mathfrak{a}_i = 0$.
- 2. ϕ is surjective if and only if \mathfrak{a}_i and \mathfrak{a}_i are relatively prime whenever $i \neq j$.

Proof. For (1), the following sequence of claims is easy to verify:

$$k \in \operatorname{Ker} \phi \iff \phi(k) = 0$$

 $\iff k \in \mathfrak{a}_i \text{ for each } i \in \{1, \dots, n\}$
 $\iff k \in \mathfrak{a}_1 \cap \dots \cap \mathfrak{a}_n.$

Thus, Ker f = 0 if and only if $\cap \mathfrak{a}_i = 0$. Now for (2): suppose that ϕ is surjective. For \mathfrak{a}_i and \mathfrak{a}_j , there exists $a \in R$ such that $\phi(a)$ returns $(\ldots, 0, 1, 0, \ldots)$, where 1 is in the *i*-th

place. Then $a-1 \in \mathfrak{a}_i$ and $a \in \mathfrak{a}_j$, so

$$1 = (1 - a) + a \in (\mathfrak{a}_i + \mathfrak{a}_j),$$

so \mathfrak{a}_i and \mathfrak{a}_j are relatively prime. Now, suppose that \mathfrak{a}_i and \mathfrak{a}_j are relatively prime for each $i \neq j$. We need only show that the element $(\ldots, 0, 1, 0, \ldots)$ lies in the image of ϕ ; the 1 may be anywhere by similarity, so we can generate all elements of $\prod R/\mathfrak{a}_i$.

For each $i \in \{1, ..., n\}$, we have \mathfrak{a}_i and $\prod_{j \neq i} \mathfrak{a}_j$ are coprime; thus there exists a_i in the former and a in the latter such that

$$a_i + a = 1.$$

Thus, $a \in (1 + \mathfrak{a}_i)$. We conclude that $\phi(a) = (\dots, 0, 1, 0, \dots,)$, from which we construct as aforementioned and demonstrate the surjectivity of ϕ .

In other words, one can express R is a direct product if relatively prime, mutually exclusive ideals may be located.

Theorem 18. Let $e \in R$ be idempotent. Then e' = 1 - e is idempotent, e' + e = 1, and ee' = 0.

The proof of the above is trivial. It is easy to deduce that (e) is a ring with identity e; it is not a subring unless e = 1. Thus we can demonstrate that $R \cong (e) \times (e')$.

Artin describes the process by which fields of fractions may be constructed. We leave such technical machinery out of this document; I have already proven that $S^{-1}R$ is a ring of fractions.

Maximal Ideals

In the interest of time, I will not prove Krull's Theorem here. It is clear that the maximal ideals of \mathbb{Z} are (p) for prime p. The following theorem is relatively easy to observe:

Theorem 19. Let R[x] be a Principal Ideal Domain. Then the maximal ideals of R[x] are precisely the ideals generated by monic irreducible polynomials.

Since the irreducible polynomials in $\mathbb{C}[x]$ are $(x - \alpha)$ for $\alpha \in \mathbb{C}$, there is a bijection between maximal ideals in $\mathbb{C}[x]$ and points in \mathbb{C} .

Theorem 20 (Weak Nullstellensatz). There exists a bijection between maximal ideals of $\mathbb{C}[x_1,\ldots,x_n]$ and points in \mathbb{C}^n .

Proof. Select $(\alpha_1, \ldots, \alpha_n) \in \mathbb{C}^n$ abitrarily. We may use the substitution map from $\mathbb{C}[x_1, \ldots, x_n] \to \mathbb{C}$ defined by $x_1 \to \alpha_1$; it is easy to prove that the map is surjective, so its kernel is a maximal ideal.

It is harder to prove that all maximal ideals are the kernel of such a map. We ommmit the proof from here in the interest of brevity. \Box