y и x в базисе $\{g_i\}_{i=1}^n$. Матрица A_g оператора \hat{A} в базисе $\{g_i\}_{i=1}^n$ связывает Y_g и X_g :

$$Y_g = A_g X_g. (142)$$

Пусть $T_{e \to g}$ – матрица преобразования координат при переходе от базиса $\{e_i\}_{i=1}^n$ к базису $\{g_i\}_{i=1}^n$. Тогда:

$$X_e = T_{e \to g} X_g, \quad Y_e = T_{e \to g} Y_g. \tag{143}$$

Подставим X_e и Y_e из (143) в формулу (141):

$$T_{e\to g}Y_g = A_e T_{e\to g}X_g \implies Y_g = T_{e\to g}^{-1} A_e T_{e\to g}X_g. \tag{144}$$

Сравнивая формулы (144) и (142), получим матрицу линейного оператора в новом базисе:

$$A_g = T_{e \to g}^{-1} A_e T_{e \to g}. \tag{145}$$

Если пространство евклидово и $T_{e\to g}$ – ортогональная матрица $(T_{e\to g}^{-1}=T_{e\to g}^T)$, то формулу (145) можно упростить:

$$A_g = T_{e \to g}^T A_e T_{e \to g}. \tag{146}$$

3.5 Самосопряженные и унитарные операторы

Рассмотрим комплексное евклидово пространство E, то есть в нем определено умножение вектора на комплексное число и скалярное произведение является комплексным числом. Рассмотрим оператор \hat{A} , действующий в E. $\hat{A}: E \to E$.

Определение

Оператор \hat{A}^* называется сопряженным к оператору \hat{A} , если выполнено:

$$(\hat{A}x, y) = (x, \hat{A}^*y), \quad \forall x, y \in E. \tag{147}$$

Примеры построения сопряженных операторов

1) $\hat{I}^* = \hat{I}$, где \hat{I} – единичный оператор.

Действительно,

$$(\hat{I}x,y) = (x,y) = (x,\hat{I}y) = (x,\hat{I}^*y) \quad \forall x,y \in E \ \Rightarrow \ \hat{I}y = \hat{I}^*y \quad \forall y \in E.$$

2) Пусть \hat{A} – оператор умножения на число $\mu \in \mathbb{C}$: $\hat{A}x = \mu x \quad \forall x \in E$. Построим \hat{A}^* .

$$(\hat{A}x, y) = (\mu x, y) = \mu(x, y) = (x, \overline{\mu}y) = (x, \hat{A}^*y) \quad \forall x, y \in E \implies \hat{A}^*y = \overline{\mu}y \quad \forall y \in E.$$

3) Пусть \hat{A} – оператор поворота в \mathbb{R}^2 на угол α . Здесь мы рассматриваем вещественное евклидово пространство \mathbb{R}^2 . Для построения \hat{A}^* возьмем два произвольных вектора $x,y\in\mathbb{R}^2$. Пусть φ – угол между y и x.

По определению скалярного произведения в \mathbb{R}^2 :

$$(\hat{A}x, y) = |\hat{A}x||y|\cos(\widehat{A}x, y) = |x||y|\cos(\varphi + \alpha). \tag{148}$$

Для того, чтобы найти \hat{A}^* , нужно записать выражение (148) в виде (x, y^*) , где y^* принимается за $\hat{A^*y}$. По определению скалярного произведения в \mathbb{R}^2 :

$$(x, y^*) = |x||y^*|\cos(\widehat{x, y^*}).$$
 (149)

Сравнивая формулы (148) и (149), получаем:

$$|y^*| = |y|, \qquad \widehat{(x, y^*)} = \varphi + \alpha.$$

Следовательно, оператор \hat{A}^* не меняет длины вектора, то есть это оператор поворота. Но так как по определению сопряженного оператора действие оператора перекидывается на вектор y, то и поворачивать нужно

не вектор x, а вектор y. Для обеспечения угла $\varphi + \alpha$ нужно повернуть на угол $(-\alpha)$.

Итак, \hat{A}^* — это оператор поворота на угол (- α). Выясним как связаны матрицы операторов \hat{A} и \hat{A}^* . В базисе $\{\vec{i}, \vec{j}\}$ матрица оператора \hat{A} имеет следующий вид (формула (121)):

$$A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}. \tag{150}$$

Матрица оператора \hat{A}^* в том же базисе – это матрица поворота на угол $(-\alpha)$:

$$A^* = \begin{pmatrix} \cos(-\alpha) & -\sin(-\alpha) \\ \sin(-\alpha) & \cos(-\alpha) \end{pmatrix} = \begin{pmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{pmatrix} = A^T.$$
 (151)

Свойства сопряженных операторов:

1)

$$(\hat{A} + \hat{B})^* = \hat{A}^* + \hat{B}^*. \tag{152}$$

Доказательство:

$$((\hat{A} + \hat{B})x, y) = (\hat{A}x + \hat{B}x, y) = (\hat{A}x, y) + (\hat{B}x, y) =$$

$$= (x, \hat{A}^*y) + (x, \hat{B}^*y) = (x, (\hat{A}^* + \hat{B}^*)y). \tag{153}$$

С другой стороны, по определению сопряженного оператора:

$$((\hat{A} + \hat{B})x, y) = (x, (\hat{A} + \hat{B})^*y). \tag{154}$$

Сравнивая (154) и (153), получаем, $(\hat{A} + \hat{B})^* = \hat{A}^* + \hat{B}^*$

2)

$$(\hat{A}\hat{B})^* = \hat{B}^*\hat{A}^*. \tag{155}$$

Доказательство:

$$(\hat{A}\hat{B}x, y) = (\hat{B}x, \hat{A}^*y) = (x, \hat{B}^*\hat{A}^*y). \tag{156}$$

С другой стороны,

$$((\hat{A}\hat{B})x, y) = (x, (\hat{A}\hat{B})^*y). \tag{157}$$

Сравнивая (157) и (156), получаем: $(\hat{A}\hat{B})^* = (\hat{B}^*\hat{A}^*)$.

3) Если \hat{A}^{-1} существует, то выполнено:

$$(\hat{A}^{-1})^* = (\hat{A}^*)^{-1}. (158)$$

Доказательство:

$$\hat{A}^*(\hat{A}^*)^{-1} = \hat{I} = \hat{I}^* = (\hat{A}^{-1}\hat{A})^* = \hat{A}^*(A^{-1})^*.$$

4) Пусть оператор \hat{A} имеет в ортонормированном базисе матрицу A. Тогда матрица A^* оператора \hat{A}^* в том же базисе имеет вид:

$$A^* = \overline{A^T}. (159)$$

/Если пространство вещественное, то: $A^* = A^T$ /

Доказательство:

Пусть $\{e_i\}_{i=1}^n$ – ортонормированный базис в E.

 $(\hat{A}e_k, e_i) = /$ согласно определению матрицы оператора (формула (117))/ = $= \left(\sum_{j=1}^n a_{jk}e_j, e_i\right) = /\{e_i\}_{i=1}^n - \text{ортонормированный базис}/= a_{ik}. \quad (160)$

С другой стороны,

$$(\hat{A}e_k, e_i) = (e_k, \hat{A}^*e_i) = \left(e_k, \sum_{j=1}^n a_{ji}^* e_j\right) = \overline{a_{ki}^*}.$$
 (161)

Из сравнения (160) и (161) получаем:

$$\overline{a_{ki}^*} = a_{ik} \Leftrightarrow a_{ki}^* = \overline{a_{ik}}, \text{ то есть } A^* = \overline{A^T}.$$

Определение

Оператор \hat{A} называется самосопряженным, если выполнено

$$\hat{A}^* = \hat{A}.\tag{162}$$

Свойства самосопряженных операторов

1) Если операторы \hat{A} и \hat{B} – самосопряженные, то оператор $(\hat{A} + \hat{B})$ также будет самосопряженным.

Доказательство:

$$\frac{A}{(\hat{A}+\hat{B})^*} = \hat{A}^* + \hat{B}^* = \hat{A} + \hat{B} \quad (\text{в силу самосопряженности } \hat{A} \text{ и } \hat{B}).$$

2) Пусть \hat{A} и \hat{B} – самосопряженные коммутирующие операторы, тогда оператор $\hat{A}\hat{B}$ будет самосопряженным.

Доказательство:

$$(\hat{A}\hat{B})^* = \hat{B}^*\hat{A}^* = /\hat{A}$$
 и \hat{B} — самосопряженные/ = $\hat{B}\hat{A} = /\hat{A}$ и \hat{B} — коммутирующие/ = $\hat{A}\hat{B}$.

3) Пусть самосопряженный оператор \hat{A} имеет обратный. Тогда оператор \hat{A}^{-1} будет самосопряженным.

Доказательство:

$$(\hat{A}^{-1})^* = \hat{A}^* = \hat{A}^* = \hat{A} - \text{ самосопряженный} = \hat{A}^{-1}.$$

4) Если оператор \hat{A} самосопряженный, то его матрица в ортонормированном базисе обладает свойством:

$$\overline{A^T} = A. (163)$$

Такие матрицы называются эрмитовыми. Если пространство вещественное, то для матрицы оператора будет выполнено:

$$A^T = A. (164)$$

Такие матрицы называются симметрическими.

Доказательство:

$$A^* = \overline{A^T}$$
 (формула (159)).

Оператор \hat{A}^* — самосопряженный, то есть $\hat{A}^* = \hat{A}$. В силу взаимнооднозначного соответствия операторов и матриц, их матрицы также совпадают: $A^* = A$.

Сравнивая последние две формулы, получаем:

$$\overline{A^T} = A.$$

Определение

Оператор \hat{A} в конечномерном комплексном евклидовом пространстве E называется унитарным, если выполнено:

$$(\hat{A}x, \hat{A}y) = (x, y) \quad \forall x, y \in E. \tag{165}$$

Таким образом, унитарный оператор не меняет скалярного произведения. Унитарные операторы в вещественном евклидовом пространстве называют ортогональными.

Теорема 8

Для унитарного оператора будет выполнено:

$$\hat{A}^* = \hat{A}^{-1}. (166)$$

Доказательство:

Согласно определению сопряженного оператора:

$$(\hat{A}x, \hat{A}y) = (x, \hat{A}^*\hat{A}y) \quad \forall x, y \in E.$$
 (167)

Согласно определению унитарного оператора:

$$(\hat{A}x, \hat{A}y) = (x, y) \quad \forall x, y \in E. \tag{168}$$

Сравнивая (167) и (168), получаем:

$$(x, \hat{A}^* \hat{A} y) = (x, y) \Leftrightarrow (x, \hat{A}^* \hat{A} y - y) = 0 \quad \forall x, y \in E,$$

то есть вектор $\hat{A}^*\hat{A}y - y$ ортогонален любому вектору пространства (в том числе и самому себе).

Следовательно,

$$\hat{A}^* \hat{A} y - y = \mathbb{O}$$
, то есть $\hat{A}^* \hat{A} y = y \quad \forall y \in E$. (169)

Следовательно, $\hat{A}^*\hat{A} = \hat{I}$.

Докажем теперь, что $\hat{A}\hat{A}^*=\hat{I}$. Нетрудно убедиться в том, что для унитарного оператора будет выполнено:

$$\hat{A}x = 0 \iff x = 0. \tag{170}$$

Действительно,

$$\hat{A}x=0 \Leftrightarrow \|\hat{A}x\|=0 \Leftrightarrow (\hat{A}x,\hat{A}x)=0 \Leftrightarrow$$
 \Leftrightarrow /по определению унитарного оператора/ $\Leftrightarrow (x,x)=0 \Leftrightarrow$ $\Leftrightarrow \|x\|=0 \Leftrightarrow$ /по свойству нормы/ $\Leftrightarrow x=0$.

Таким образом, уравнение $\hat{A}x = 0$ имеет только тривиальное решение, то есть $Ker(\hat{A}) = \{\mathbb{O}\}$. Следовательно, $\dim Ker\hat{A} = 0$.

Тогда по теореме 3 (формула (113)):

 $\dim \operatorname{Im} \hat{A} = \dim E = n$, то есть базис (максимальное число линейно независимых веторов) в $\operatorname{Im} \hat{A}$ будет базисом в E. Так как базисы совпали, то и пространства должны совпасть:

$$Im \hat{A} = E. \tag{171}$$

Уравнение $\hat{A}x=0$ в фиксированном ортонормированном базисе эквивалентно матричному уравнению: $AX=\mathbb{O}$. Как мы показали в формуле (170), оно имеет только нулевое решение. Следовательно, по альтернативе Фредгольма, $\det A \neq 0 \Rightarrow \det \overline{A^T} \neq 0$.

Значит уравнение

 $\overline{A^T}X=\mathbb{O} \Leftrightarrow /\text{формула} \ (159)/ \Leftrightarrow A^*X=\mathbb{O}$ имеет только тривиальное решение, то есть:

$$\hat{A}^*x = \mathbb{O} \iff x = \mathbb{O}. \tag{172}$$

По уже доказанному (формула (169)):

$$\hat{A}^*\hat{A} = \hat{I} \implies \hat{A}^*\hat{A}\hat{A}^*\hat{A} = \hat{I}\hat{I} = \hat{I} = \hat{A}^*\hat{A} \iff \hat{A}^*\hat{A}\hat{A}^*\hat{A} - \hat{A}^*\hat{A} = 0 \iff \hat{A}^*(\hat{A}\hat{A}^* - \hat{I})\hat{A} = 0, \text{ то есть } \hat{A}^*(\hat{A}\hat{A}^* - \hat{I})\hat{A}x = 0 \implies \forall x \in E \iff (\hat{A}\hat{A}^* - \hat{I})\hat{A}x = 0 \implies \forall x \in E \implies (\hat{A}\hat{A}^* - \hat{I})y = 0 \implies \forall y \in E. \quad (173)$$

/ Поскольку $\text{Im} \hat{A} = E$, то $y = \hat{A}x$ пробегает все пространство E. /

Значит $\hat{A}\hat{A}^* = \hat{I}$. Итак, $\hat{A}\hat{A}^* = \hat{A}^*\hat{A} = \hat{I}$, то есть $\hat{A}^* = \hat{A}^{-1}$.

Замечание (согласование названий матриц и операторов)

По теореме 8 для унитарного оператора будет выполнено:

$$\hat{A}^* = \hat{A}^{-1} \implies A^* = A^{-1}$$
 По формуле (159): $A^* = \overline{A^T} = A^T$ (для вещественного пр-ва E) \Rightarrow $A^T = A^{-1}$, то есть матрица A ортогональна.

В вещественном пространстве унитарный оператор называется ортогональным. Таким образом, ортогональному оператору в ортонормированном базисе соответствует ортогональная матрица. Аналогично можно показать, что матрица унитарного оператора будет унитарной $(\overline{A^T} = A^{-1})$.

Утверждение

В конечномерном евклидовом пространстве E будет выполнено:

$$\hat{A}^{**} = \hat{A}.\tag{174}$$

Доказательство:

$$(\hat{A}x,y)=(x,\hat{A}^*y)=\overline{(\hat{A}^*y,x)}=\overline{(y,(\hat{A}^*)^*x)}=(\hat{A}^{**}x,y)\quad\forall x,y\in E.$$

Следовательно, $\hat{A}^{**}x = \hat{A}x \quad \forall x \in E$.

3.6 Собственные векторы и собственные значения линейного оператора

Пусть $\hat{A}: E \to E$ — линейный оператор в евклидовом пространстве E. Пусть E_1 — линейное подпространство E. Заметим, что если $x \in E_1$, то вектор $\hat{A}x$ не обязательно принадлежит E_1 .

Определение

Подпространство E_1 называется инвариантным подпространством оператора \hat{A} , если $\forall x \in E_1$ выполнено: $\hat{A}x \in E_1$.

Простейшее из инвариантных подпространств описывается с помощью понятия собственного вектора.

Определение

Ненулевой вектор x называется собственным вектором оператора \hat{A} , если существует число λ такое, что:

$$\hat{A}x = \lambda x. \tag{175}$$

Данное число λ называется собственным значением (собственным числом) оператора \hat{A} , отвечающим вектору x.

Определение

Множество собственных значений оператора \hat{A} в конечномерном пространстве E называется спектром оператора \hat{A} .

Замечание

Собственный вектор x, отвечающий собственному значению λ , оператора \hat{A} порождает одномерное инвариантное подпространство $\{\alpha x\}, \quad \alpha \in \mathbb{C}$ – линейную оболочку вектора x. Нетрудно убедится в том, что оператор \hat{A} не выводит из множества. Действительно,

 $\hat{A}(\alpha x)=\alpha \hat{A}x=\alpha \lambda x$ — принадлежит линейной оболочке вектора x.

Алгоритм поиска собственных чисел и собственных векторов Запишем уравнение $\hat{A}x = \lambda x$ в матричной форме.

Пусть A — матрица оператора \hat{A} в некотором фиксированном базисе.

$$X = \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_n \end{pmatrix}$$
 – столбец координат вектора x в этом базисе. Тогда уравнение (175) примет вид:

$$\hat{A}x = \lambda x \iff (A - \lambda I)X = \mathbb{O},\tag{176}$$

то есть нужно решить однородную систему линейных уравнений. В соответствии с альтернативой Фредгольма, условие существования нетривиальных решений такой системы – это равенство нулю её определителя:

$$\det(A - \lambda I) = 0. \tag{177}$$

Уравнение (177) называется характеристическим уравнением оператора \hat{A} . Полином $\det(A-\lambda I)$ называется характеристическим полиномом оператора \hat{A} . Собственные значения – это корни характеристического полинома.

Нетрудно увидеть, что характеристический полином
$$\det(A-\lambda I) = \begin{vmatrix} a_{11}-\lambda & a_{12} & \dots & a_{1n}\\ a_{21} & a_{22}-\lambda & \dots & a_{2n}\\ \dots & \dots & \dots & \dots\\ a_{n1} & a_{n2} & \dots & a_{nn}-\lambda \end{vmatrix}$$
 — это полином степени n . Следовательно, он имеет n комплексных корней (с учетом кратности).

Замечание

Матрица A оператора \hat{A} зависит от выбора базиса. Означает ли это, что собственные числа оператора зависят от выбора базиса? Нет, не зависят. Докажем это.

Определение

Скалярная функция оператора, не зависящая от выбора базиса, называется инвариантом оператора.

Теорема 9

Характеристический полином оператора не зависит от выбора базиса.

Доказательство:

Пусть в пространстве E заданы два базиса: $\{e_i\}_{i=1}^n$ и $\{g_i\}_{i=1}^n$, а также $T_{e o g}$ – матрица перехода от базиса $\{e_i\}_{i=1}^n$ к $\{g_i\}_{i=1}^n$. Пусть A_e и A_g – матрицы оператора \hat{A} в базисах $\{e_i\}_{i=1}^n$ и $\{g_i\}_{i=1}^n$ соответственно. Согласно формуле (145), матрица линейного оператора при переходе к новому базису меняется по правилу:

$$A_g = T_{e \to g}^{-1} A_e T_{e \to g}.$$

Рассмотрим характеристический полином:

$$\det(A_g - \lambda I) = \det\left(T_{e \to g}^{-1} A_e T_{e \to g} - \lambda T_{e \to g}^{-1} T_{e \to g}\right) = \det\left(T_{e \to g}^{-1} (A_e - \lambda I) T_{e \to g}\right) =$$
/Теорема об умножении определителей (формула (25))/

$$= \det(T_{e \to g}^{-1}) \cdot \det(A_e - \lambda I) \cdot \det(T_{e \to g}) =$$

$$/ \det T \cdot \det T^{-1} = \det(T \cdot T^{-1}) = \det I = 1 \implies \det T^{-1} = \frac{1}{\det T} /$$

$$= \frac{1}{\det(T_{e \to g})} \cdot \det(A_e - \lambda I) \cdot \det T_{e \to g} = \det(A_e - \lambda I),$$

то есть характеристические полиномы в базисах $\{e_i\}_{i=1}^n$ и $\{g_i\}_{i=1}^n$ оказались равными.

Следствие 1

Коэффициенты характеристического полинома – это инварианты оператора.

Следствие 2

Корни характеристического полинома (то есть собственные значения) – это инварианты оператора.

Некоторые инварианты оператора

Найдем некоторые коэффициенты характеристического полинома:

$$\det(A - \lambda I) = \begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{vmatrix} =$$

$$= (-1)^n \lambda^n + (-1)^{n-1} \lambda^{n-1} \sum_{i=1}^n a_{ii} + \dots + \det A.$$
 (178)

Коэффициенты λ^n и λ^{n-1} получаются из перемножения диагональных членов. Свободный член по теореме Безу – это значение полинома при $\lambda=0$, то есть это $\det A$.

Определение

След матрицы – это сумма её диагональных членов:

$$\operatorname{Tr} A = \sum_{i=1}^{n} a_{ii}. \tag{179}$$

Итак, $\det A$ и $\mathrm{Tr}A$ – инварианты оператора (как коэффициенты характеристического полинома)

Пример поиска собственных чисел и собственных векторов оператора.

1) Сначала необходимо найти собственные числа, решив уравнение:

$$\det(A - \lambda I) = 0. \tag{180}$$

2) Подставляем найденные собственные числа $\lambda_1, \ldots, \lambda_n$ в уравнение:

$$(A - \lambda I)X = \mathbb{O}. \tag{181}$$

Решая матричное уравнение, находим собственные векторы X_1, X_2, \ldots, X_n .

Пример

Найти собственные числа и собственные векторы оператора, заданного матрицей $A=\begin{pmatrix}2&1\\1&2\end{pmatrix}$ в ортонормированном базисе в пространстве \mathbb{C}^2 :

$$\det(A - \lambda I) = 0 \iff (2 - \lambda)^2 - 1 = 0 \iff \lambda^2 - 4\lambda + 3 = 0 \iff \begin{bmatrix} \lambda = 3, \\ \lambda = 1. \end{bmatrix}$$

$$(A - \lambda I)X = 0 \iff \left(\begin{array}{cc} 2 - \lambda & 1\\ 1 & 2 - \lambda \end{array}\right) \left(\begin{array}{c} \xi_1\\ \xi_2 \end{array}\right) = \left(\begin{array}{c} 0\\ 0 \end{array}\right).$$

1) $\lambda_1 = 3$.

$$\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{cases} -\xi_1 + \xi_2 = 0, \\ \xi_1 - \xi_2 = 0. \end{cases}$$

Пусть $\xi_1 = t \in \mathbb{C}$. Тогда $\xi_1 = \xi_2 = t$:

$$X_1 = t \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix}, ||X_1|| = \sqrt{t^2 + t^2} = \sqrt{2}t.$$

Для получения ортонормированного базиса векторы необходимо нормировать:

$$||X_1|| = 1 \iff t = \frac{1}{\sqrt{2}} \implies X_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

2) $\lambda_2 = 1$.

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \iff \xi_1 + \xi_2 = 0.$$

Пусть $\xi_1 = t \in \mathbb{C}$. Тогда $\xi_2 = -t$:

$$X_2 = t \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix}, ||X_2|| = \sqrt{t^2 + (-t)^2} = \sqrt{2}t.$$

Hормируем вектор X_2 :

$$||X_2|| = \sqrt{2}t = 1 \implies t = \frac{1}{\sqrt{2}} \implies X_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

Рис. 5: Ортонормированный базис

Обратим внимание на две закономерности, полученные в данной задаче:

$$\lambda_1, \lambda_2 \in \mathbb{R}, \ X_1 \perp X_2.$$

Теорема 10

Собственные значения самосопряженного оператора вещественны.

Доказательство:

Пусть λ — собственное значение оператора \hat{A} : $\hat{A}x = \lambda x$, где x — соответствующий собственный вектор.

$$\left. \begin{array}{c} (\hat{A}x,x) = (\lambda x,x) = \lambda(x,x) \\ \text{ C другой стороны:} \\ (\hat{A}x,x) = (x,\hat{A}x) = (x,\lambda x) = \overline{\lambda}(x,x) \end{array} \right\} \ \Rightarrow \ \lambda = \overline{\lambda} \ \ (\text{так как } (x,x) \neq 0).$$

Теорема 11

Собственные векторы самосопряженного оператора, отвечающие различным собственным значениям, ортогональны.

Доказательство:

Пусть $\hat{A}x_1 = \lambda_1 x_1$ и $\hat{A}x_2 = \lambda_2 x_2$, $\lambda_1 \neq \lambda_2$.

$$(\hat{A}x_1, x_2) = (\lambda_1 x_1, x_2) = \lambda_1(x_1, x_2).$$

С другой стороны:

$$(\hat{A}x_1, x_2) = (x_1, \hat{A}x_2) = (x_1, \lambda_2 x_2) = \overline{\lambda_2}(x_1, x_2) =$$

$$= / \text{ по теореме } 10 / = \lambda_2(x_1, x_2).$$

Поскольку $\lambda_1 \neq \lambda_2$, получаем, что: $(x_1, x_2) = 0$.

Теорема 12

Пусть E — конечномерное евклидово пространство и $\hat{A}: E \to E$ — самосопряженный оператор. Тогда в пространстве E существует ортонормированный базис из собственных векторов оператора \hat{A} .

Без доказательства.

Теорема 13

В базисе из собственных векторов матрица оператора диагональна, причем диагональные элементы – это собственные числа.

Доказательство:

Пусть e_1, e_2, \ldots, e_n — базис из собственных векторов оператора \hat{A} , отвечающих собственным числам $\lambda_1, \lambda_2, \ldots, \lambda_n$:

$$\hat{A}e_1 = \lambda_1 e_1, \quad \hat{A}e_2 = \lambda_2 e_2, \dots, \quad \hat{A}e_n = \lambda_n e_n.$$

Запишем координаты векторов $\hat{A}e_1, \ldots, \hat{A}e_n$ в базисе $\{e_1, e_2, \ldots, e_n\}$:

$$\hat{A}e_1 = (\lambda_1, 0, \dots, 0), \dots, \hat{A}e_n = (0, 0, \dots, \lambda_n).$$

Составим матрицу оператора \hat{A} из столбцов координат векторов $\hat{A}e_1, \ldots, \hat{A}e_n$:

$$A = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}.$$

Замечание

Перейти к базису из собственных векторов можно с помощью матрицы перехода. Она составляется из столбцов координат собственных векторов в исходном базисе.

3.7 Квадратичные формы и их приведение к сумме квадратов

В аналитической геометрии на плоскости одна из основных задач состоит в приведении общего уравнения кривой второго порядка к каноническому виду при помощи перехода к новой системе координат. Общее уравнение кривой второго порядка с центром симметрии в начале коорднат имеет следующий вид:

$$Ax^2 + 2Bxy + Cy^2 = D. (182)$$

Преобразование координат производится по формулам;

$$\begin{cases} x = a_{11}x' + a_{12}y', \\ y = a_{21}x' + a_{22}y'. \end{cases}$$
 (183)

где a_{11} , a_{12} , a_{21} , a_{22} – некоторые числа (обычно это синусы и косинусы угла поворота осей). В результате уравнение (182) приобретает более простой вид:

$$A'(x')^{2} + B'(y')^{2} = D. (184)$$

Аналогичная задача может быть поставлена в пространстве любого числа измерений. Теория квадратичных форм основной своей целью имеет решение этой задачи и задач, связанных с ней.

Квадратичная форма – это квадратичная функция нескольких переменных. Её можно описать на языке линейной алгебры.

Определение

Пусть e_1, e_2, \ldots, e_n – ортонормированный базис в евклидовом про-

странстве
$$E$$
. Рассмотрим вектор $X=\begin{pmatrix} \xi_1\\ \vdots\\ \xi_n \end{pmatrix}$, заданный в базисе $\{e_i\}_{i=1}^n$.

Выражение

$$\Phi(\xi_1, \dots, \xi_n) = a_{11}\xi_1^2 + a_{12}\xi_1\xi_2 + a_{13}\xi_1\xi_3 + \dots + a_{1n}\xi_1\xi_n + a_{21}\xi_2\xi_1 + a_{22}\xi_2^2 + a_{23}\xi_2\xi_3 + \dots + a_{2n}\xi_2\xi_n + a_{2n}\xi_2\xi_n + \dots + a_{nn}\xi_n\xi_1 + a_{n2}\xi_n\xi_2 + a_{n3}\xi_n\xi_3 + \dots + a_{nn}\xi_n^2$$
(185)

называется квадратичной формой, а его коэффициенты $a_{ij}=a_{ji}\in\mathbb{R}$ – коэффициентами квадратичной формы.

Замечание

Заметим, что если $a_{ij} \neq a_{ji} \in \mathbb{R}$, то их всегда можно сделать равными. Для этого возьмем:

$$a'_{ij} = \frac{a_{ij} + a_{ji}}{2} = a'_{ji}.$$

Определение

Матрица из коэффициентов квадратичной формы:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$
 (186)

называется матрицей квадратичной формы. Так как $a_{ij}=a_{ji}$, то эта матрица симметрична. Следовательно, соответствующий ей оператор \hat{A} самосопряжен (в силу формулы (164)). Квадратичную форму можно записать в виде:

$$\Phi(\xi_1, \dots, \xi_n) = X^T \cdot A \cdot X. \tag{187}$$

Действительно,

$$X^{T} \cdot A \cdot X = (\xi_{1}, \xi_{2}, \dots, \xi_{n}) \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} \xi_{1} \\ \xi_{2} \\ \vdots \\ \xi_{n} \end{pmatrix} =$$

$$= (\xi_{1}, \xi_{2}, \dots, \xi_{n}) \begin{pmatrix} a_{11}\xi_{1} + a_{12}\xi_{2} + \dots + a_{1n}\xi_{n} \\ a_{21}\xi_{1} + a_{22}\xi_{2} + \dots + a_{2n}\xi_{n} \\ \dots & \dots \\ a_{n1}\xi_{1} + a_{n2}\xi_{2} + \dots + a_{nn}\xi_{n} \end{pmatrix} =$$

$$= \xi_{1}(a_{11}\xi_{1} + a_{12}\xi_{2} + a_{13}\xi_{3} + \dots + a_{1n}\xi_{n}) + \dots$$

$$\dots + \xi_{n}(a_{n1}\xi_{1} + a_{n2}\xi_{2} + a_{n3}\xi_{3} + \dots + a_{nn}\xi_{n}),$$

что соответствует формуле (185).

Поскольку оператор \hat{A} самосопряжен, то по теореме 12 в пространстве E существует ортонормированный базис из его собственных векторов e'_1, e'_2, \ldots, e'_n . Посмотрим, как преобразуется квадратичная

форма при переходе к этому базису.

Пусть T – это матрица перехода от базиса $\{e_i\}_{i=1}^n$ к базису $\{e_i'\}_{i=1}^n$:

$$X = TX', (188)$$

где
$$X=\begin{pmatrix} \xi_1\\ \vdots\\ \xi_n \end{pmatrix}$$
 и $X'=\begin{pmatrix} \eta_1\\ \vdots\\ \eta_n \end{pmatrix}$ — представления одного и того же вектора

в базисах $\{e_i\}_{i=1}^n$ и $\{e_i'\}_{i=1}^n$ соответственно.

Поскольку базисы $\{e_i\}_{i=1}^n$ и $\{e_i'\}_{i=1}^n$ – ортонормированные, то по теореме 7 матрица T будет ортогональной:

$$T^T = T^{-1}. (189)$$

Подставим X из формулы (188) в формулу (187):

$$\Phi(\eta_1, \dots, \eta_n) = (TX')^T \cdot A \cdot (TX') =
= (X')^T T^T A T X' = (X')^T T^{-1} A T X',$$
(190)

то есть по формуле (187) матрица квадратичной формы в новом базисе такова: $T^{-1}AT$, что совпадает с матрицей оператора \hat{A} после замены базиса (см. формулу (145)). Следовательно, мы можем воспользоваться теоремами о матрице оператора \hat{A} .

Поскольку базис $\{e_i'\}_{i=1}^n$ состоит из собственных векторов, то по теореме 13 матрица оператора в этом базисе диагональна, причем на диагонали стоят собственные числа: $\lambda_1, \ \lambda_2, \ \ldots, \lambda_n$. Следовательно, в базисе из собственных векторов квадратичная форма приобретает вид суммы квадратов:

$$\Phi(\eta_1, \ldots, \eta_n) = \lambda_1 \eta_1^2 + \lambda_2 \eta_2^2 + \ldots + \lambda_n \eta_n^2.$$
 (191)

Столбцы матрицы T перехода к новому базису состоят из координат собственных векторов оператора \hat{A} в исходном базисе.

Пример

Приведем к каноническому виду (к сумме квадратов) уравнение поверхности второго порядка и построим её.

$$9x^2 + 20y^2 + 20z^2 - 40yz - 4 = 0$$

Квадратичная форма, соответствующая этому уравнению, имеет вид:

$$9x^2 + 20y^2 + 20z^2 - 40yz$$
, а её матрица $A = \begin{pmatrix} 9 & 0 & 0 \\ 0 & 20 & -20 \\ 0 & -20 & 20 \end{pmatrix}$.

Найдем собственные числа.

$$\det(A - \lambda I) = 0 \Leftrightarrow \begin{vmatrix} 9 - \lambda & 0 & 0 \\ 0 & 20 - \lambda & -20 \\ 0 & -20 & 20 - \lambda \end{vmatrix} = 0 \Leftrightarrow$$

$$\Leftrightarrow (9 - \lambda)((20 - \lambda)^2 - \underbrace{400}_{20^2}) = 0 \Leftrightarrow (9 - \lambda)(40 - \lambda)(-\lambda) = 0.$$

Следовательно, собственные числа матрицы A имеют вид: $\lambda_1 = 9$, $\lambda_2 = 40$, $\lambda_3 = 0$. Тогда в новых координатах x', y', z' квадратичная форма приобретает вид суммы квадратов (формула (191)):

$$\Phi(x', y', z') = 9(x')^2 + 40(y')^2.$$

Найдем ортогональное преобразование, связывающее координаты (x,y,z) с новыми координатами (x',y',z').

$$(A - \lambda I)X = \mathbb{O} \iff \begin{pmatrix} 9 - \lambda & 0 & 0 \\ 0 & 20 - \lambda & -20 \\ 0 & -20 & 20 - \lambda \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

1)
$$\lambda_1 = 9$$
.

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 11 & -20 \\ 0 & -20 & 11 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{cases} 11\xi_2 - 20\xi_3 = 0 \\ -20\xi_2 + 11\xi_3 = 0 \end{cases} \Leftrightarrow \begin{cases} \xi_2 = \frac{20}{11}\xi_3 \\ -\frac{400}{11}\xi_3 + 11\xi_3 = 0 \end{cases} \Leftrightarrow \begin{cases} \xi_2 = 0, \\ \xi_3 = 0. \end{cases}$$

 ξ_1 – любое число. Пусть $\xi_1=t\in\mathbb{R}.$

$$X_1 = t \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad ||X_1|| = \sqrt{t^2} = |t|.$$

Для получения ортонормированного базиса векторы необходимо нормировать $||X_1|| = 1 \iff |t| = 1$.

Выберем
$$t=1$$
, тогда $X_1=\begin{pmatrix}1\\0\\0\end{pmatrix}$.

2) $\lambda_2 = 40$.

$$\begin{pmatrix} -31 & 0 & 0 \\ 0 & -20 & -20 \\ 0 & -20 & -20 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{cases} -31\xi_1 = 0 \\ -20\xi_2 - 20\xi_3 = 0 \\ -20\xi_2 - 20\xi_3 = 0 \end{cases} \Leftrightarrow \begin{cases} \xi_1 = 0, \\ \xi_2 + \xi_3 = 0. \end{cases}$$

Пусть $\xi_2 = t \in \mathbb{R}$, тогда $\xi_3 = -t$.

$$X_2 = t \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \quad ||X_2|| = \sqrt{t^2 + (-t)^2} = \sqrt{2}|t|.$$

Нормируем вектор X_2 .

$$||X_2|| = 1 \iff \sqrt{2}|t| = 1 \iff |t| = \frac{1}{\sqrt{2}}.$$

Выберем
$$t = \frac{1}{\sqrt{2}}$$
, тогда $X_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$.

3) $\lambda_3 = 0$.

$$\begin{pmatrix} 9 & 0 & 0 \\ 0 & 20 & -20 \\ 0 & -20 & 20 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{cases} 9\xi_1 = 0 \\ 20\xi_2 - 20\xi_3 = 0 \\ -20\xi_2 + 20\xi_3 = 0 \end{cases} \Leftrightarrow \begin{cases} \xi_1 = 0, \\ \xi_2 - \xi_3 = 0. \end{cases}$$

Пусть
$$\xi_2 = t \in \mathbb{R} \implies \xi_3 = t$$
.

$$X_3 = t \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad ||X_3|| = \sqrt{t^2 + t^2} = \sqrt{2}|t|.$$

Hормируем вектор X_3 .

$$||X_3|| = 1 \iff \sqrt{2}|t| = 1 \iff |t| = \frac{1}{\sqrt{2}}.$$

Выберем
$$t = \frac{1}{\sqrt{2}}$$
. Тогда $X_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$.

Составим матрицу T из координат собственных векторов оператора \hat{A} :

$$T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}.$$

Координаты x, y, z выражаются через координаты x', y', z' по следующему правилу:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = T \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} \Leftrightarrow \begin{cases} x = x', \\ y = \frac{1}{\sqrt{2}}y' + \frac{1}{\sqrt{2}}z', \\ z = -\frac{1}{\sqrt{2}}y' + \frac{1}{\sqrt{2}}z'. \end{cases}$$

Столбцы T – это координаты собственных векторов оператора \hat{A} в исходном базисе. Итак, векторы нового базиса имеют вид:

$$e'_1 = X_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}; \quad e'_2 = X_2 = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}; \quad e'_3 = X_3 = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}.$$

Исходное уравнение в новых координатах приобретает вид:

$$9(x')^2 + 40(y')^2 - 4 = 0 \iff \frac{(x')^2}{\left(\frac{2}{3}\right)^2} + \frac{(y')^2}{\left(\frac{1}{\sqrt{10}}\right)^2} = 1.$$

