Ill-Posed Linear Operator Equations

Aditya Ganeshan

Indian Institute of Technology, Roorkee

December 13, 2016

Table of Content

Introduction

Introduction

Hadamard's definition of well-posedness Ill-posed problem in terms of linear operators

Hadamard's Definition Of Well-Posedness

For all admissible data, a solution exists.	(1)
---	-----

For all admissible data, the solution is unique. (2)

The solution depends continuously on the data. (3)

- 1. (1) is ensured by relaxing the notion of a solution.
- (2) is much more serious problem. In inverse problems, one is looking for the cause for and observed effect, not cause for a desired effect.
- Violation of (3) creates numerical issues. Traditional numerical methods become unstable.

- 1. (1) is ensured by relaxing the notion of a solution.
- 2. (2) is much more serious problem. In inverse problems, one is looking for the cause for and observed effect, not cause for a desired effect.
- 3. Violation of (3) creates numerical issues. Traditional numerical methods become unstable.

- 1. (1) is ensured by relaxing the notion of a solution.
- 2. (2) is much more serious problem. In inverse problems, one is looking for the cause for and observed effect, not cause for a desired effect.
- 3. Violation of (3) creates numerical issues. Traditional numerical methods become unstable.

Introduction

OO

OO

Ill-posed problem in terms of linear operators

Definition

Let $T: X \longrightarrow Y$ be a bounded linear operator between Hilbert spaces X and Y. We call y *Attainable* if

$$y \in R(T) \tag{4}$$

- 1. (1) is equivalent to the condition that y is attainable for every $y \in Y$.
- 2. (2) is equivalent to the condition that T^{-1} exists $\iff N(T) = 0$.
- 3. (3) is equivalent to

 T^{-1} is continuous

- 1. (1) is equivalent to the condition that *y* is attainable for every $y \in Y$.
- 2. (2) is equivalent to the condition that T^{-1} exists $\iff N(T) = 0$.

Introduction

OO

OO

- 1. (1) is equivalent to the condition that y is attainable for every $y \in Y$.
- 2. (2) is equivalent to the condition that T^{-1} exists $\iff N(T) = 0$.
- 3. (3) is equivalent to T^{-1} is continuous.

Table of Content

Moore-Penrose Generalized Inverse

Definitions

Propositions and Theorems

Definition (1.1)

Let $T: X \longrightarrow Y$ be bounded linear operator.

1. $x \in X$ is called a least-squares solution of Tx = y, if

$$||Tx - y|| = \inf\{||Tx - y|| | x \in X\}$$
 (5)

Definition (1.1)

Let $T: X \longrightarrow Y$ be bounded linear operator.

2. $x \in X$ is called best-approximate solution of Tx = y if, x is a least-squares solution of Tx = Y and

$$||x|| = \inf\{||x|| | x \text{ is least - squares solution}\}$$
 (6)

Definitions

Definition (1.2)

The Moore-Penrose Generalized inverse T^{\dagger} of $T \in L(X, Y)$ is defined as the unique linear extension of \tilde{T}^{-1} to

$$D(T^{\dagger}) = R(T) + R(T)^{\perp} \tag{7}$$

$$N(T^{\dagger}) = R(T)^{\perp} \tag{8}$$

Where,

$$\widetilde{T} := T|_{N(T)^{\perp}} : N(T)^{\perp} \to R(T) \tag{9}$$

Proposition (1.3)

Let P and Q be the orthogonal projectors onto NT and $\overline{R\{T\}}$, respectively. Then $R(T^{\dagger}) = N(T)^{\perp}$, and the four "Moore-Penrose Equations" hold:

$$TT^{\dagger} = Q|_{D(T^{\dagger})},\tag{10}$$

$$T^{\dagger}T = I - P,\tag{11}$$

$$TT^{\dagger}T = T, \tag{12}$$

$$T^{\dagger}TT^{\dagger} = T^{\dagger}. \tag{13}$$

Proposition (1.4)

The Moore-Penrose generalized inverse T^{\dagger} has a closed graph $gr(T^{\dagger})$. Furthermore, T^{\dagger} is bounded(i.e. continuous) if and only if R(T) is closed.

Theorem 1.5

Theorem

Let $y \in D(T^{\dagger})$. Then, Tx = y has a unique best-approximate solution, which is given by

$$x^{\dagger} := T^{\dagger} y. \tag{14}$$

The set of all least-square solutions is $x^{\dagger} + N(T)$ *.*

IIT Roorkee

Theorem 1.6

Theorem

Let $y \in D(T^{\dagger})$. Then, Tx = y is the least-squares solution of Tx = y if and only if the normal equation

$$T^*Tx = T^*y \tag{15}$$

holds.

It follows from Theorem 1.6 that $T^{\dagger}y$ is the solution of $T^*Tx = T^*y$ of minimal norm,i.e.,

$$T^{\dagger} = (T^*T)^{\dagger}T^* \tag{16}$$

Table of Content

Compact Linear Operators

Introduction

Propositions and Theorems

Picard Criterion and Stability

- We study Compact Linear operators since integral operators are compact under suitable assumptions.

$$Kx = \sum_{n=1}^{\infty} \lambda_n \langle x, v_n \rangle v_n$$

- We study Compact Linear operators since integral operators are compact under suitable assumptions.
- For selfadjoint linear operator Eigensystem $(\lambda_n; v_n)$ consists of:-

- All non-zero eigenvalues λ_n
- A corresponding complete set of eigenvectors v_n

$$Kx = \sum_{n=1}^{\infty} \lambda_n \langle x, v_n \rangle v_n$$

- We study Compact Linear operators since integral operators are compact under suitable assumptions.
- For selfadjoint linear operator *Eigensystem* (λ_n ; v_n) consists of :-
 - All non-zero eigenvalues λ_n
 - A corresponding complete set of eigenvectors v_n
- ► The operator K can be diagonalized as follows:

$$Kx = \sum_{n=1}^{\infty} \lambda_n \langle x, v_n \rangle v_n$$

- ▶ If *K* is not sefladjoint, no eigenvalues need to exist.
- ▶ By the (15), we construct a *singular system* $(\sigma_n; v_n, u_n)$
- ▶ If $K^* : Y \longrightarrow X$ denotes the adjoint of K,

- ▶ If *K* is not sefladjoint, no eigenvalues need to exist.
- ▶ By the (15), we construct a *singular system* $(\sigma_n; v_n, u_n)$
- ▶ If $K^* : Y \longrightarrow X$ denotes the adjoint of K,

• $\{\sigma_n^2\}_{n\in\mathbb{N}}$ are the non zero eigenvalues of the self adjoint operator $K^*K($ and also $KK^*)$,

 \(\varphi_t\)\(\varphi_{meN}\) are the corresponding complete orthonormal system of eigenvectors of K*K.

- ▶ If *K* is not sefladjoint, no eigenvalues need to exist.
- By the (15), we construct a *singular system* $(\sigma_n; v_n, u_n)$
- If $K^* : Y \longrightarrow X$ denotes the adjoint of K,
 - $\{\sigma_n^2\}_{n\in\mathbb{N}}$ are the non zero eigenvalues of the self adjoint operator $K^*K(\text{and also }KK^*)$,

- $\{v_n^2\}_{n\in\mathbb{N}}$ are the corresponding complete orthonormal system of eigenvectors of K^*K .
- $\{u_n^2\}_{n\in\mathbb{N}}$ are defined as vectors -

$$u_n := \frac{Kv_n}{\|Kv_n\|}$$

- If K is not sefladjoint, no eigenvalues need to exist.
- By the (15), we construct a singular system $(\sigma_n; v_n, u_n)$
- If $K^*: Y \longrightarrow X$ denotes the adjoint of K,
 - $\{\sigma_n^2\}_{n\in\mathbb{N}}$ are the non zero eigenvalues of the self adjoint operator K^*K (and also KK^*),

$$u_n := \frac{Kv_n}{\|Kv_n\|}$$

- ▶ If *K* is not sefladjoint, no eigenvalues need to exist.
- By the (15), we construct a *singular system* $(\sigma_n; v_n, u_n)$
- ▶ If $K^* : Y \longrightarrow X$ denotes the adjoint of K,
 - $\{\sigma_n^2\}_{n\in\mathbb{N}}$ are the non zero eigenvalues of the self adjoint operator K^*K (and also KK^*),

- $\{v_n^2\}_{n\in\mathbb{N}}$ are the corresponding complete orthonormal system of eigenvectors of K^*K .
- $\{u_n^2\}_{n\in\mathbb{N}}$ are defined as vectors -

$$u_n := \frac{Kv_n}{\|Kv_n\|}$$

- If K is not sefladjoint, no eigenvalues need to exist.
- By the (15), we construct a singular system $(\sigma_n; v_n, u_n)$
- If $K^*: Y \longrightarrow X$ denotes the adjoint of K,
 - $\{\sigma_n^2\}_{n\in\mathbb{N}}$ are the non zero eigenvalues of the self adjoint operator K^*K (and also KK^*),

- $\{v_n^2\}_{n\in\mathbb{N}}$ are the corresponding complete orthonormal system of eigenvectors of K^*K .
- $\{u_n^2\}_{n\in\mathbb{N}}$ are defined as vectors -

$$u_n := \frac{Kv_n}{\|Kv_n\|}$$

•
$$\{v_n^2\}_{n\in N}$$
 span $\overline{R(K^*)} = \overline{R(K^*K)}$

•
$$\{u_n^2\}_{n\in\mathbb{N}}$$
 span $\overline{R(K)} = \overline{R(KK^*)}$

$$Kv_n = \sigma_n u_n, \tag{17}$$

$$K^* u_n = \sigma_n v_n, \tag{18}$$

$$Kx = \sum_{n=1}^{\infty} \sigma_n < x, v_n > u_n, \tag{19}$$

$$K^* y = \sum_{n=1}^{\infty} \sigma_n < y, u_n > v_n$$
 (20)

•
$$\{v_n^2\}_{n\in\mathbb{N}}$$
 span $\overline{R(K^*)} = \overline{R(K^*K)}$

•
$$\{u_n^2\}_{n\in\mathbb{N}}$$
 span $\overline{R(K)} = \overline{R(KK^*)}$

▶ The following formulas hold:

$$Kv_n = \sigma_n u_n, \tag{17}$$

$$K^* u_n = \sigma_n v_n, \tag{18}$$

$$Kx = \sum_{n=1}^{\infty} \sigma_n < x, v_n > u_n, \tag{19}$$

$$K^* y = \sum_{n=1}^{\infty} \sigma_n < y, u_n > v_n$$
 (20)

- $\{v_n^2\}_{n\in\mathbb{N}}$ span $\overline{R(K^*)} = \overline{R(K^*K)}$
- $\{u_n^2\}_{n\in\mathbb{N}}$ span $\overline{R(K)} = \overline{R(KK^*)}$
- The following formulas hold:

$$Kv_n = \sigma_n u_n, \tag{17}$$

$$K^* u_n = \sigma_n v_n, \tag{18}$$

$$Kx = \sum_{n=1}^{\infty} \sigma_n < x, v_n > u_n, \tag{19}$$

$$K^* y = \sum_{n=1}^{\infty} \sigma_n < y, u_n > v_n$$
 (20)

•0

Propositions and Theorems

Proposition (1.7)

Let $K: X \longrightarrow Y$ be compact, $dimR(K) = \infty$. Then K^{\dagger} is a densely defined unbounded linear operator with closed graph.

Theorem (1.8)

Let $(\sigma_n; v_n, u_n)$ be a singular system for the compact linear operator K , $y \in Y$. Then we have:

$$y \in D(K^{\dagger}) \iff \sum_{n=1}^{\infty} \frac{|\langle y, u_n \rangle|^2}{\sigma_n^2} < \infty$$
 (21)

• For
$$y \in D(k^{\dagger})$$
,

$$K^{\dagger} y = \sum_{n=1}^{\infty} \frac{\langle y, u_n \rangle}{\sigma_n} v_n. \tag{22}$$

Picard Criterion

- A best-approximate solution of Kx = y exists only if the generalized Fourier coefficients $(\langle y, u_n \rangle)$ decay fast enough relative to σ_n
- Stability
 - Error components which correspond to large singular value are harmless.
 - Error which correspond to small σ_n are dangerous.

Picard Criterion

• A best-approximate solution of Kx = y exists only if the generalized Fourier coefficients $(\langle y, u_n \rangle)$ decay fast enough relative to σ_n

Stability

- Error components which correspond to large singular value are harmless.
- Error which correspond to small σ_n are dangerous.
- If $dimR(K) = \infty$, data errors of fixed size can be amplified arbitrarily without bound.

Picard Criterion

• A best-approximate solution of Kx = y exists only if the generalized Fourier coefficients $(\langle y, u_n \rangle)$ decay fast enough relative to σ_n

Stability

- Error components which correspond to large singular value are harmless.
- Error which correspond to small σ_n are dangerous.
- If $dimR(K) = \infty$, data errors of fixed size can be amplified arbitrarily without bound.

Picard Criterion

• A best-approximate solution of Kx = y exists only if the generalized Fourier coefficients $(\langle y, u_n \rangle)$ decay fast enough relative to σ_n

Stability

- Error components which correspond to large singular value are harmless.
- Error which correspond to small σ_n are dangerous.
- If $dimR(K) = \infty$, data errors of fixed size can be amplified arbitrarily without bound.

Picard Criterion

• A best-approximate solution of Kx = y exists only if the generalized Fourier coefficients $(\langle y, u_n \rangle)$ decay fast enough relative to σ_n

Stability

- Error components which correspond to large singular value are harmless.
- Error which correspond to small σ_n are dangerous.
- If $dimR(K) = \infty$, data errors of fixed size can be amplified arbitrarily without bound.

Degree of Ill-Posedness

- A problem is *mildly ill-posed* if $\sigma_n = O(n^{-\alpha})$
- A problem is severely ill-posed if $\sigma_n = O(e^{-n})$

Picard Criterion and Stability

Example 1.9

One dimesional backwards heat equation

$$\frac{du}{dt}(x,t) = \frac{d^2u}{dx^2}(x,t), \quad x \in [0,\pi], t \ge 0,$$
 (23)

with homogeneous Dirichlet boundary conditions

$$u(0,t) = u(\pi,t) = 0, \quad x \in [0,\pi],$$
 (24)

and assume the final temperature

$$f(x) := u(x, 1), \quad x \in [0, \pi]$$
 (25)

is given with $f(0) = f(\pi) = 0$; Find the initial temperature

$$v_0(x) := u(x, 0), \quad x \in [0, \pi].$$
 (26)

Table of Content

Spectral Theory and Functional Calculus

Introduction

Definitions, Propositions and Theorems

More Propositions

Spectral Theory and Functional Calculus

• For $\lambda \in R$ and $x \in X$, we define

$$E_{\lambda}x := \sum_{\substack{n=1\\\sigma_n^2 < \lambda}}^{\infty} \langle x, v_n \rangle v_n \quad (+P)$$
 (27)

where P is the orthogonal projector onto $N(K^*K)$ and only when $\lambda > 0$.

$$\chi_{\lambda} := span\{v_n | n \in \mathbb{N}, \, \sigma_n^2 < \lambda\} \quad (+N(K^*K), if \quad \lambda > 0) \quad (28)$$

Spectral Theory and Functional Calculus

• For $\lambda \in R$ and $x \in X$, we define

$$E_{\lambda}x := \sum_{\substack{n=1\\\sigma_n^2 < \lambda}}^{\infty} \langle x, v_n \rangle v_n \quad (+P)$$
 (27)

where *P* is the orthogonal projector onto $N(K^*K)$ and only when $\lambda > 0$.

• For all λ , E_{λ} is an orthogonal projector and projects onto

$$\chi_{\lambda} := span\{v_n | n \in \mathbb{N}, \, \sigma_n^2 < \lambda\} \quad (+N(K^*K), if \quad \lambda > 0) \quad (28)$$

- E_{λ} is known as the spectral family.
- E_{λ} has jumps at $\lambda = \sigma_n^2$ of "height"

$$\sum_{\substack{n=1\\\sigma_n^2<\lambda}}^{\infty} \langle \cdot, v_n \rangle v_n$$

Hence we write

$$K^*Kx = \sum_{n=1}^{\infty} \sigma_n^2 \langle x, v_n \rangle v_n = \int \lambda E_{\lambda} x.$$
 (29)

- E_{λ} is known as the spectral family.
- E_{λ} has jumps at $\lambda = \sigma_n^2$ of "height"

$$\sum_{\substack{n=1\\\sigma_n^2<\lambda}}^{\infty} \langle \cdot, v_n \rangle v_n$$

Hence we write

$$K^*Kx = \sum_{n=1}^{\infty} \sigma_n^2 \langle x, v_n \rangle v_n = \int \lambda E_{\lambda} x.$$
 (29)

- E_{λ} is known as the spectral family.
- E_{λ} has jumps at $\lambda = \sigma_n^2$ of "height"

$$\sum_{\substack{n=1\\\sigma_n^2<\lambda}}^{\infty} \langle \cdot, v_n \rangle v_n$$

Hence we write

$$K^*Kx = \sum_{n=1}^{\infty} \sigma_n^2 \langle x, v_n \rangle v_n = \int \lambda E_{\lambda} x.$$
 (29)

$$\int_{-\infty}^{+\infty} f(\lambda) dE_{\lambda} x = \sum_{n=1}^{\infty} f(\sigma_n^2) \langle x, v_n \rangle v_n$$
 (30)

$$d\langle E_{\lambda}x, y\rangle = \sum_{n=1}^{\infty} f(\sigma_n^2) \langle x, v_n \rangle \langle y, u_n \rangle$$
 (31)

$$\int_{-\infty}^{+\infty} f(\lambda) d\|E_{\lambda}x\|^2 = \sum_{n=0}^{\infty} f(\sigma_n^2) |\langle x, v_n \rangle|^2$$
 (32)

$$\int_{-\infty}^{+\infty} f(\lambda) dE_{\lambda} x = \sum_{n=1}^{\infty} f(\sigma_n^2) \langle x, v_n \rangle v_n$$
 (30)

$$\int_{-\infty}^{+\infty} f(\lambda) d\langle E_{\lambda} x, y \rangle = \sum_{n=1}^{\infty} f(\sigma_n^2) \langle x, v_n \rangle \langle y, u_n \rangle$$
 (31)

$$\int_{-\infty}^{+\infty} f(\lambda) d\|E_{\lambda} x\|^2 = \sum_{n=1}^{\infty} f(\sigma_n^2) |\langle x, v_n \rangle|^2$$
 (32)

$$\int_{-\infty}^{+\infty} f(\lambda) dE_{\lambda} x = \sum_{n=1}^{\infty} f(\sigma_n^2) \langle x, v_n \rangle v_n$$
 (30)

$$\int_{-\infty}^{+\infty} f(\lambda) d \langle E_{\lambda} x, y \rangle = \sum_{n=1}^{\infty} f(\sigma_n^2) \langle x, v_n \rangle \langle y, u_n \rangle$$
 (31)

$$\int_{-\infty}^{+\infty} f(\lambda) d\|E_{\lambda}x\|^2 = \sum_{n=1}^{\infty} f(\sigma_n^2) |\langle x, v_n \rangle|^2$$
 (32)

$$\int_{-\infty}^{+\infty} f(\lambda) dE_{\lambda} x = \sum_{n=1}^{\infty} f(\sigma_n^2) \langle x, v_n \rangle v_n$$
 (30)

$$\int_{-\infty}^{+\infty} f(\lambda) d\langle E_{\lambda} x, y \rangle = \sum_{n=1}^{\infty} f(\sigma_n^2) \langle x, v_n \rangle \langle y, u_n \rangle$$
 (31)

$$\int_{-\infty}^{+\infty} f(\lambda) d\|E_{\lambda} x\|^2 = \sum_{n=1}^{\infty} f(\sigma_n^2) |\langle x, v_n \rangle|^2$$
 (32)

This in turn, motivates the definitions -

•

$$f(K^*Kx) := \int f(\lambda)E_{\lambda}x := \sum_{n=1}^{\infty} f(\sigma_n^2) \langle x, v_n \rangle v_n$$
 (33)

$$f(KK^*x) := \int f(\lambda)F_{\lambda}x := \sum_{n=1}^{\infty} f(\sigma_n^2) \langle x, u_n \rangle u_n$$
 (34)

We can derive this result

$$f(K^*K)K^* = K^*f(KK^*)$$
 (35)

This in turn, motivates the definitions -

•

$$f(K^*Kx) := \int f(\lambda)E_{\lambda}x := \sum_{n=1}^{\infty} f(\sigma_n^2) \langle x, v_n \rangle v_n$$
 (33)

$$f(KK^*x) := \int f(\lambda)F_{\lambda}x := \sum_{n=1}^{\infty} f(\sigma_n^2) \langle x, u_n \rangle u_n$$
 (34)

We can derive this resul

$$f(K^*K)K^* = K^*f(KK^*)$$
 (35)

This in turn, motivates the definitions -

١

$$f(K^*Kx) := \int f(\lambda)E_{\lambda}x := \sum_{n=1}^{\infty} f(\sigma_n^2) \langle x, v_n \rangle v_n$$
 (33)

$$f(KK^*x) := \int f(\lambda)F_{\lambda}x := \sum_{n=1}^{\infty} f(\sigma_n^2) \langle x, u_n \rangle u_n$$
 (34)

We can derive this result

$$f(K^*K)K^* = K^*f(KK^*)$$
 (35)

Definition (1.10)

A family $\{E_{\lambda}\}_{{\lambda}\in R}$ of orthogonal projectors in X i called a spectral family or a resolution of the identity if it satisfies the following conditions:

- $E_{\lambda}E_{\mu} = E_{min\{\lambda,\mu\}}, \quad \lambda, \mu \in R,$
- ► $E_{-\infty} = 0$, $E_{+\infty} = I$, where $E_{\pm \infty} x = \lim_{\lambda \to \pm \infty} E_{\lambda} x$ for all $x \in X$.
- $E_{\lambda-0} = E_{\lambda}$, where $E_{\lambda-0}x = \lim_{\epsilon \to 0^+} E_{\lambda-\epsilon}x$ for all $x \in X$.

Proposition (1.11)

Let $f: R \to R$ be a continuous function. Then the limit of the *Riemann sum*

Niemann sum
$$\sum_{i=1}^{n} f(\xi_i)(E_{\lambda_i} - E_{\lambda_{i-1}})x,$$
 exists in X for $\max_{1 \leq i \leq n} |\lambda_i - \lambda_{i-1}| \to 0$, where,
$$-\infty < a = \lambda_0 < \dots < \lambda_n = b < \infty, \ \xi_i \in (\lambda_{i-1}, \lambda_i],$$
 and is denoted by
$$\int_a^b f(\lambda) dE_{\lambda} x$$

Definitions, Propositions and Theorems

Definition (1.12)

For any given $x \in X$ and any continuous function F on R the integral $\int_{-\infty}^{+\infty} f(\lambda) dE_{\lambda}x$ is defined as the limit in X if it exists, of $\int_a^b f(\lambda) dE_{\lambda}x$ when $a \to -\infty$ and $b \to +\infty$

Proposition (1.13)

For $x \in X$ and $f : R \to R$ a continuous function, the following conditions are equivalent:

$$\int_{-\infty}^{+\infty} f(\lambda) dE_{\lambda} x \quad exists, \tag{36}$$

$$\int_{-\infty}^{+\infty} f(\lambda) dE_{\lambda} x \quad exists, \tag{36}$$

$$\int_{-\infty}^{+\infty} f^{2}(\lambda) d\|E_{\lambda} x\|^{2} < \infty \tag{37}$$

Proposition (1.14)

Let A be a selfsufficient operator in X. Then there exists a unique spectral family $\{E_{\lambda}\}_{{\lambda}\in \mathbb{R}}$, such that

$$D(A) = \{ x \in X \mid \int_{-\infty}^{+\infty} \lambda^2 d \| E_{\lambda} x \|^2 < \infty \}$$
 (38)

and

$$Ax = \int_{-\infty}^{+\infty} \lambda dE_{\lambda} x, \quad x \in D(A).$$
 (39)

We use the symbolic notation

$$A = \int_{-\infty}^{+\infty} \lambda dE_{\lambda}.$$
 (40)

IIT Roorkee

Definition (1.15)

Let *A* be a selfadjoint operator in *X* with spectral family $\{E_{\lambda}\}_{{\lambda}\in\mathbb{R}}$. Moreover let M_0 denote the set of all functions measurable with respect to the measure $d|E_{\lambda}x|^2$ for all $x \in X$. Then f(A) is the operator defined by the formula

$$f(A)x = \int_{-\infty}^{+\infty} f(\lambda)dE_{\lambda}x, \quad x \in D(f(A)), \tag{41}$$

where,

$$D(f(A)) = \{ x \in X \mid \int_{-\infty}^{+\infty} f^2(\lambda) d \| E_{\lambda} x \|^2 < \infty \}.$$
 (42)

Proposition (1.16)

Let A be a self adjoint operator in X with spectral family $\{E_{\lambda}\}_{{\lambda}\in\mathbb{R}}$. and let $f, g \in M_0$.

- If $x \in D(f(A))$ and $y \in D(f(A))$, then $\langle f(A)x, g(A)y \rangle = \int_{-\infty}^{+\infty} f(\lambda)g(\lambda)d\langle E_{\lambda}x, y \rangle$
- If $x \in D(f(A))$, then $f(A)x \in D(g(A))$ if and only if $x \in D((gf)(A))$; furthermore g(A)f(A)x = (gf)(A)x.
- If D(f(A)) is dense in X, then f(A) is selfadjoint.
- f(A) commutes with E_{λ} for all $\lambda \in R$.

Proposition (1.17)

Let A be a selfadjoint operator in X with spectral family $\{E_{\lambda}\}_{{\lambda}\in\mathbb{R}}$.

- $\lambda_0 \in \sigma(A)$ if and only if $E_{\lambda_0} \neq E_{\lambda_0+\varepsilon}$ for all $\varepsilon > 0$.
- λ_0 is an eigenvalue of A if and only if $E_{\lambda_0} \neq E_{\lambda_0+0^+} = \lim_{\epsilon \to 0} E_{\lambda_0+\epsilon}$; the corresponding eigenspace is given by $(E_{\lambda_0+0^+}-E_{\lambda_0})(X)$

Proposition (1.18)

Let $T: X \to Y$ be a linear bounded operator. Then

$$R(T^*) = R((T^*T^{1/2}))$$
(43)