Indicadores de concentración Concentración y poder de mercado La pérdida de eficiencia asignativa Fusiones y adquisiciones Concentración y eficiencia productiva

Concentración Organización Industrial

Leandro Zipitría

Universidad de Montevideo

Licenciatura en Economía

Objetivos

- Presentar los principales indicadores de concentración
- Vincular el poder de mercado a la concentración
- Introducir los efectos de la concentración: la pérdida de eficiencia productiva
- Balances de eficiencia: la eficiencia productiva

Presentación

- La concentración tiene impacto sobre el desempeño de los mercados
- Es importante poder medirla en forma objetiva
- También analizar el impacto sobre la eficiencia

- 1 Indicadores de concentración
 - Índice de concentración
 - Índice de Herfindahl
 - Hirschman
- Concentración y poder de mercado
 - Modelo
 - Estimación: derivadas conjeturales
- 3 La pérdida de eficiencia asignativa

- Efectos de la concentración sobre el bienestar
- Búsqueda de rentas
- Fusiones y adquisiciones
 - Introducción
 - Discusión
- 6 Concentración y eficiencia productiva
 - Eficiencia productiva
 - La competencia no siempre es beneficiosa

Índice C_k

- Mercado con *n* empresas ordenadas de mayor a menor
- ullet Sea s_i la cuota de mercado de la empresa i

$$C_k = \sum_{i=1}^k s_i$$

• Ejemplo: el índice C_4 dice la cuota de mercado agregada de las 4 empresas más grandes del mercado

- Indicadores de concentración
 - Índice de concentración
 - Índice de Herfindahl Hirschman
- 2 Concentración y poder de mercado
 - Modelo
 - Estimación: derivadas conjeturales
- 3 La pérdida de eficiencia asignativa

- Efectos de la concentración sobre el bienestar
- Búsqueda de rentas
- 4 Fusiones y adquisiciones
 - Introducción
 - Discusión
- 6 Concentración y eficiencia productiva
 - Eficiencia productiva
 - La competencia no siempre es beneficiosa

HHI

• El HHI se define como:

$$HHI = \sum_{i=1}^{n} s_i^2$$

- Se cumple que $0 \le HHI \le 10{,}000$, donde 0 corresponde al valor de competencia y $10{,}000$ al monopolio
- Es un indicador que "penaliza" la concentración
- El HHI crece con la varianza de las cuotas de mercado:

$$\sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} \left(s_{i} - \frac{1}{n} \right)^{2} \Rightarrow n\sigma^{2} = \sum_{i=1}^{n} \left(s_{i} - \frac{1}{n} \right)^{2} \Leftrightarrow$$

$$n\sigma^{2} = \sum_{i=1}^{n} \left(s_{i}^{2} + \frac{1}{n^{2}} - \frac{2s_{i}}{n} \right) \Leftrightarrow n\sigma^{2} = \sum_{i=1}^{n} s_{i}^{2} + \frac{1}{n} - \frac{2}{n}$$

$$\Leftrightarrow n\sigma^{2} = HHI - \frac{1}{n} \Leftrightarrow$$

$$HHI = n\sigma^2 + \frac{1}{n}$$

Ejemplo

	M1	M2	М3	M4	M5
E1	50	75	25	50	80
E2	50	25	25	25	10
E 3	0	0	25	20	5
E4	0	0	25	5	5
ННІ	5.000	6.250	2.500	3.550	6.550

Lineamientos DoJ

- No existe una "regla" internacional que establezca qué es razonable en términos de concentración
- En EE.UU. el Departamento de Justicia tiene umbrales para analizar fusiones:
 - $1,500 < HHI \Rightarrow$ mercado competitivo (≈ 8 empresas iguales)
 - $1,500 < HHI < 2,500 \Rightarrow$ mercado moderadamente concentrado
 - $HHI > 2,500 \Rightarrow$ mercado altamente concentrado (\approx 4 empresas iguales)

- Indicadores de concentración
 - Índice de concentración
 - Índice de Herfindahl
 - Hirschman
- Concentración y poder de mercado
 - Modelo
 - Estimación: derivadas conjeturales
- 3 La pérdida de eficiencia asignativa

- Efectos de la concentración sobre el bienestar
- Búsqueda de rentas
- Fusiones y adquisiciones
 - Introducción
 - Discusión
- 6 Concentración y eficiencia productiva
 - Eficiencia productiva
 - La competencia no siempre es beneficiosa

Supuestos

• Índice de Lerner cuando las empresas tienen diferentes costos:

$$L \equiv \sum_{i=1}^{n} s_i \left(\frac{p - CMg_i}{p} \right)$$

- Sea un Cournot con costos diferentes: $\pi_i = p(q)q_i c_iq_i$, donde $q = q_i + \sum_{j \neq i} q_j$
- CPO (n ecuaciones) $\frac{\partial \pi_i}{\partial q_i} = \frac{\partial p(q)}{\partial q_i} q_i + p(q) c_i = 0 \Leftrightarrow \frac{\partial \pi_i}{\partial q_i} = 0 \Leftrightarrow p(q) c_i = -\frac{\partial p(q)}{\partial q_i} q_i$
- Dividiendo ambos lados por $p^*(q) = p^*$ y multiplicando y dividiendo entre q el lado izquierdo:

$$\frac{p^*(q) - c_i}{p^*(q)} = -\frac{\partial p(q)}{\partial q_i} \frac{q}{p^*(q)} \frac{q_i}{q}$$

Equilibrio

- En equilibrio de Cournot $-\frac{\partial p(q)}{\partial q_i} = -\frac{\partial p(q)}{\partial q}$ (la producción de las demás empresas está dada)
- Además se cumple que $\frac{1}{\varepsilon} = -\frac{\partial p(q)}{\partial q_i} \frac{q}{p^*(q)}$ y $s_i = \frac{q_i}{q}$, de donde se obtiene: $L_i = \frac{p^*(q) c_i}{p^*(q)} = \frac{s_i}{\varepsilon}$
- Si $L = \sum_i s_i L_i$, se tiene

$$L = \frac{p - \overline{c}}{p} = \sum_{i} \frac{s_{i}^{2}}{\varepsilon} = \frac{HHI}{\varepsilon}$$

• \overline{c} es el costo marginal promedio $(\overline{c} = \sum_i s_i c_i)$

Interpretación: poder de mercado

- "Hipótesis de colusión": la concentración del mercado (↑ HHI), asociada a altas barreras a la entrada, ⇒↑ L mayor poder de mercado
- Vínculo causal: concentración (HHI) ⇒ colusión ⇒ poder de mercado ⇒ beneficios extra normales
- La teoría establece una correlación positiva entre concentración (HHI), comportamiento de las empresas (colusión) y beneficios (o sea un vínculo lineal entre E-C-R)
- Correlato de política económica: actuar sobre la concentración de mercados

Interpretación: eficiencia

- "Hipótesis de eficiencia": algunos mercados tienen pocas empresas porque éstas son más eficientes y, por tanto, obtienen mayores beneficios como recompensa
- Relación causal: mayor eficiencia productiva \Rightarrow empresas con mayor cuota de mercado $(s_i) \Rightarrow$ poder de mercado \Rightarrow beneficios
- En el índice de Lerner las empresas con menores costos (más eficientes) tienen mayor cuota de mercado: $L_i = \frac{p^* c_i}{p^*} = \frac{s_i}{\varepsilon}$
- Resultado de política económica: debido a que la concentración de los mercados es el resultado natural de la eficiencia económica, desconcentrar mercados implica penalizar a empresas eficientes

- Indicadores de concentración
 - Índice de concentración
 - Índice de Herfindahl
- Hirschman
 Concentración y poder de mercado
 - Modelo
 - Estimación: derivadas conjeturales
- 3 La pérdida de eficiencia asignativa

- Efectos de la concentración sobre el bienestar
- Búsqueda de rentas
- 4 Fusiones y adquisiciones
 - Introducción
 - Discusión
- 6 Concentración y eficiencia productiva
 - Eficiencia productiva
 - La competencia no siempre es beneficiosa

Aplicación

- Los juegos de Bertrand y de Cournot tienen implícitas conjeturas o, en términos de la teoría de juegos, creencias respecto a lo que los otros jugadores hace
 - Cournot: cada empresa decide su nivel de producto y considera dada la producción de los restantes empresas
 - Bertrand: las empresas fijan el precio tomando como un dato el precio de las restantes.
- En el único punto donde las empresas confirman sus conjeturas es en los respectivos equilibrios de Nash

Derivadas conjeturales (I)

- Antes se había calculado que $\frac{p^*(q)-c_i}{p^*(q)}=-\frac{\partial p(q)}{\partial q_i}\frac{q}{p^*(q)}\frac{q_i}{q}$, y que $\frac{\partial p(q)}{\partial q_i}=\frac{\partial p(q)}{\partial q}$ por supuesto de Cournot
- En realidad, se cumple que $\frac{\partial p(q)}{\partial q_i} = \frac{\partial p(q)}{\partial q} \frac{\partial q}{\partial q_i}$, \Rightarrow en el caso de dos empresas $\frac{\partial q}{\partial q_i} = \frac{\partial (q_i + q_j)}{\partial q_i} = 1 + \frac{\partial q_j}{\partial q_i}$
- $\frac{\partial q}{\partial q_i} = 1 + \frac{\partial q_j}{\partial q_i}$ mide el efecto esperado del aumento en el producto de la industria de un aumento en el producto de la empresa i,
- Dos componentes: <u>Efecto directo</u> (aumento en una unidad de la empresa i); <u>Efecto indirecto</u> (respuesta de los competidores de i al aumento en el producto de i)
- El efecto indirecto es la variación conjetural: mide la conjetura o creencia que tiene la empresa i sobre la respuesta de las restantes empresas al cambio del producto

Derivadas conjeturales (II)

• Si se define la variación conjetural como $\lambda = \frac{\partial q_J}{\partial q_i}$,

$$\Rightarrow \frac{p^*(q) - c_i}{p^*(q)} = -\frac{\partial p(q)}{\partial q} \frac{\partial q}{\partial q_i} \frac{q}{p^*(q)} \frac{q_i}{q} \Leftrightarrow L_i = -\frac{\partial p(q)}{\partial q} \frac{q}{p^*(q)} \left(1 + \frac{\partial q_i}{\partial q_i}\right) \frac{q_i}{q}$$

$$L_i = \frac{(1+\lambda)s_i}{\varepsilon}$$

- Estos elementos nos permiten definir los siguientes casos:
 - 1 si $\lambda = 0 \Rightarrow L_i = \frac{s_i}{\varepsilon} \Rightarrow$ equilibrio de Nash Cournot
 - ② si $\lambda = -1 \Rightarrow L_i = 0 \Rightarrow$ competencia perfecta: cualquier aumento de la producción va a ser compensado por un descenso en la producción de las restantes empresas del mercado
 - **3** si $\lambda = 1 \Rightarrow L_i = \frac{2s_i}{\varepsilon} \Rightarrow$ si las cuotas de mercado son iguales $(s_i = s_j = 0, 5) \Rightarrow$ colusión $(L_i = \frac{1}{\varepsilon})$; si aumento la producción en una unidad las restantes empresas me imitan

Derivadas conjeturales (III)

- Las derivadas conjeturales $-1 \le \lambda \le 1$.
- El índice de Lerner para el mercado es

$$L = \frac{(1+\lambda)HHI}{\varepsilon}$$

- Se puede estimar empíricamente el grado de competencia en los mercados: $L=\theta\frac{HHI}{\varepsilon}$ con $\theta=(1+\lambda)$ determina el grado de competencia en el mercado
- *HHI* se puede calcular y ε se puede estimar econométricamente,
- L es más difícil de determinar: se necesitan datos del costo marginal de las empresas

Discusión (positiva)

- Bertrand y Cournot son juegos en una etapa ⇒ no hay lugar para dinámica o ajustes
- Kreps; lo que distingue los distintos modelos de duopolio son las conjeturas que cada participante de la industria realiza sobre las acciones y reacciones de su rival
 - En esta visión, el equilibrio existe cuando se dan dos situaciones: (i) ninguna de las empresas, dada sus conjeturas, desea modificar lo que hace; y (ii) las acciones de cada empresa son consistentes con sus conjeturas

Discusión (negativa)

- Tirole señala que esta formalización sufre de una seria limitación: un juego estático es, por definición, uno donde la elección de cada empresa es independiente de las elecciones de los rivales
 - Por la propia estructura de información y la secuencia del juego, las empresas no pueden "reaccionar"
 - Cualquier conjetura sobre la reacción del oponente que difiera de la no reacción es irracional

- Indicadores de concentración
 - Índice de concentración
 - Índice de Herfindahl
 - Hirschman
- 2 Concentración y poder de mercado
 - Modelo
 - Estimación: derivadas conieturales
- 3 La pérdida de eficiencia asignativa

- Efectos de la concentración sobre el bienestar
- Búsqueda de rentas
- Fusiones y adquisiciones
 - Introducción
 - Discusión
- 6 Concentración y eficiencia productiva
 - Eficiencia productiva
 - La competencia no siempre es beneficiosa

Presentación

- Uno de los principales efectos de la concentración es la aparición de ineficiencias asignativas
- Para su estudio supondremos tecnologías dadas (costos) y que la tecnología más eficiente está disponible y en uso.
- El monopolio en el mercado produce un pérdida de eficiencia asignativa: se dejan de utilizar recursos en este mercado asignándolos a otros con la consiguiente distorsión en la asignación de recursos
- Supongamos un monopolista que produce con una tecnología de rendimientos constantes a escala que se expresan en una función de costos CMg=c

Gráfica

Interpretación

- Competencia perfecta: $ET^{CP} = EC$, ya que el EP = 0. En el gráfico corresponde al área $ET^{CP} = EC = OSp^{cp}$
- Monopolio: $EP = p^{cp} TRp^m$, $EC = ORp^m \Rightarrow ET^M = EP + EC = p^{cp} TRO$.
 - <u>Pérdida social</u>: es la pérdida de bienestar que genera pasar de una situación competitiva a una monopólica: ET^M – ET^{CP} = p^{cp}TRO – Op^{cp}S = –RTS
 - La competencia perfecta aumenta el bienestar, pero no significa una mejora en el sentido de Pareto: los productores tienen una pérdida de excedente

Pérdida social

- **1** Existe una pérdida social $\forall p : p > CMg$.
- ② A mayor *p* mayor la pérdida social (el bienestar disminuye con el poder de mercado).
- **3** A medida que $\downarrow \varepsilon \Rightarrow$ aumenta el poder de mercado y, por tanto, la pérdida social.
- El valor absoluto de la pérdida social depende del tamaño del mercado: si la demanda se corre paralelamente a la derecha, entonces aumenta la pérdida social

- Indicadores de concentración
 - Índice de concentración
 - Índice de Herfindahl
 - Hirschman
- Concentración y poder de mercado
 - Modelo
 - Estimación: derivadas conieturales
- 3 La pérdida de eficiencia asignativa

- Efectos de la concentración sobre el bienestar
- Búsqueda de rentas
- 4 Fusiones y adquisiciones
 - Introducción
 - Discusión
- Concentración y eficiencia productiva
 - Eficiencia productiva
 - La competencia no siempre es beneficiosa

Búsqueda de rentas

- Si hay monopolios, las empresas intentarán ejercer presión sobre el sistema político de forma de mantenerlo o aumentarlo
- Para ello utilizan recursos que podrían utilizar en fines más productivos
- Posner señala que el costo social del monopolio debería incluir un área total que podría alcanzar todas las rentas monopólicas (EP)
 - Los agentes competirían para apropiarse de estas rentas a través de sobornos, formando grupos de presión, etc. y, por tanto, las rentas se disiparían
- Supuestos: (i) existe competencia perfecta entre los agentes que realizan la búsqueda de rentas; (ii) la "tecnología" de búsqueda de rentas tiene rendimientos constantes a escala; (iii) los costos incurridos en obtener el monopolio no tienen ningún otro fin social

- Indicadores de concentración
 - Índice de concentración
 - Índice de Herfindahl

Hirschman

- Concentración y poder de mercado
 - Modelo
 - Estimación: derivadas conjeturales
- 3 La pérdida de eficiencia asignativa

- Efectos de la concentración sobre el bienestar
- Búsqueda de rentas
- Fusiones y adquisiciones
 - Introducción
 - Discusión
- Concentración y eficiencia productiva
 - Eficiencia productiva
 - La competencia no siempre es beneficiosa

Modelo

- Alternativa para aumentar la cuota de mercado: fusionarse con empresas competidoras
- Sin embargo, ¿es beneficioso fusionarse?
- N > 2 empresas producen un bien homogéneo y compiten a la Cournot
- Costos: $C(q_i) = cq_i$ para i = 1, ..., N
- Demanda con función inversa $p = a bq = a b(q_i + q_{-i})$,
- Beneficios $\pi_i(q_i, q_{-i}) = q_i[a b(q_i + q_{-i}) c]$

Resultado

EN simétrico:

$$\pi_i^C = \frac{(a-c)^2}{b(N+1)^2}$$

• Ahora se fusionan $M \geq 2$ empresas, con $M < N \Rightarrow$ la empresa fusionada elige q_m para max

$$\pi_m(q_m, q_{-m}) = q_m[a - b(q_m + q_{-m}) - c]$$

• Como hay N-M empresas en el mercado

$$\pi_m^C = \frac{(a-c)^2}{b(N-M+2)^2}$$

Condición

• Las empresas querrán fusionarse $\Leftrightarrow \pi_m^C \ge M\pi_i^C$ o

$$\frac{(a-c)^2}{b(N-M+2)^2} \ge M \frac{(a-c)^2}{b(N+1)^2}$$

- $\Leftrightarrow (N+1)^2 \ge M(N-M+2)^2$
- Depende sólo del número de empresas en el mercado
- Paradoja: es difícil encontrar incentivos para que las empresas se fusionen.

- Indicadores de concentración
 - Índice de concentración
 - Índice de Herfindahl
 - Hirschman
- Concentración y poder de mercado
 - Modelo
 - Estimación: derivadas conjeturales
- 3 La pérdida de eficiencia asignativa

- Efectos de la concentración sobre el bienestar
- Búsqueda de rentas
- Fusiones y adquisiciones
 - Introducción
 - Discusión
- Concentración y eficiencia productiva
 - Eficiencia productiva
 - La competencia no siempre es beneficiosa

Escenarios

- Sea $M = \alpha N$, con $0 < \alpha < 1$ (α = proporción de empresas que se fusionan en el mercado)
- La fusión es beneficiosa ⇔

$$\alpha(N) = \frac{3 + 2N - \sqrt{5 + 4N}}{2N}$$

N	5	10	15	20	25
$\alpha(N)$		81,5%	83,1%	84,5%	85,5%
M	4	9	13	17	22

Cuadro: Condiciones necesarias para que una fusión sea beneficiosa.

Escenarios

- Sea $M = \alpha N$, con $0 < \alpha < 1$ (α = proporción de empresas que se fusionan en el mercado)
- La fusión es beneficiosa ⇔

$$\alpha(N) = \frac{3 + 2N - \sqrt{5 + 4N}}{2N}$$

N	5	10	15	20	25
$\alpha(N)$	80%	81,5%	83,1%	84,5%	85,5%
М	4	9	13	17	22

Cuadro: Condiciones necesarias para que una fusión sea beneficiosa.

Resultado

Fusión de empresas idénticas

En este marco, a las empresas no les resulta beneficioso fusionarse

- La fusión es beneficiosa si:
 - diferencias en los costos de las empresas
 - competencia en precios
- Ejemplo: la fusión puede reducir costos fijos (se puede demostrar que las empresas se benefician de la fusión de otras empresas, pero no por fusionarse ellas mismas, ver Pepall (2005) página 392)

Resultado

Fusión de empresas idénticas

En este marco, a las empresas no les resulta beneficioso fusionarse

- La fusión es beneficiosa si:
 - diferencias en los costos de las empresas
 - competencia en precios
- Ejemplo: la fusión puede reducir costos fijos (se puede demostrar que las empresas se benefician de la fusión de otras empresas, pero no por fusionarse ellas mismas, ver Pepall (2005) página 392)

Reducción de costos

- Fusión reduce los costos variables
- 3 empresas iguales en el mercado \Rightarrow la fusión reduce los costos de λc a c, con $\lambda > 1$
- Beneficios antes de la fusión son $\pi_i^C = \frac{(a-\lambda c)^2}{16b}$
- Beneficios de la empresa fusionada $\pi_m^C = \frac{(a+\lambda c-2c)^2}{9b} \Rightarrow la fusión es beneficiosa si$

$$\pi_m^C = \frac{(a + \lambda c - 2c)^2}{9b} \ge 2\pi_i^C = 2\frac{(a - \lambda c)^2}{16b}$$

- Se cumple $\Leftrightarrow \lambda > \frac{\left(3-\sqrt{8}\right)a+2c\sqrt{8}}{\left(3+\sqrt{8}\right)} \Rightarrow$ la ganancia de eficiencia de la empresa fusionada tiene que ser alta
- Farrell y Shapiro (1990) demuestran que los consumidores se beneficien si las ventajas de costo son muy importantes

Competencia en precios

- Si las empresas compiten en precios en un marco de bienes diferenciados
- La fusión de dos empresas aumenta los precios de las empresas ⇒ es beneficioso para todas las empresas
- Si bienes diferenciados ⇒ las funciones de reacción con pendiente positiva ⇒ al reducirse el número de competidores las empresas aumentan sus precios

Conclusiones

Conclusión 1:

Para que las empresas se fusiones y el mercado se concentre

- 1- tienen que existir importantes ventajas de costo (Cournot)
- 2- la competencia debe ser en precios entre bienes diferenciados

Conclusión 2

Las fusiones tienen como resultado mayores precios para los consumidores, o un incremento en el poder de mercado de la empresa fusionada

Conclusiones

Conclusión 1:

Para que las empresas se fusiones y el mercado se concentre

- 1- tienen que existir importantes ventajas de costo (Cournot)
- 2- la competencia debe ser en precios entre bienes diferenciados

Conclusión 2

Las fusiones tienen como resultado mayores precios para los consumidores, o un incremento en el poder de mercado de la empresa fusionada

Eficiencia

- Motta (2004): si no hay ganancias de eficiencia una fusión solamente incrementa el poder de mercado de las empresas
- Si hay ganancias de eficiencia ⇒ problema distributivo:
 - el bienestar social puede aumentar debido a la fusión
 - se reducen los costos y aumentan los beneficios de las empresas
 - pero si éstas incrementan el precio de mercado el excedente del consumidor puede ser menor

Gráfico: problema de eficiencia

Figura: El balance de eficiencia en las fusiones (Williamson 1968)

Interpretación

- Situación inicial competitiva: costos marginales $c \Rightarrow$ el excedente total es ABG
- Dos empresas se fusionan \Rightarrow sus costos caen a c' pero el precio de mercado aumenta a $P \Rightarrow$ el excedente total es ahora ADEF
- Se produce una pérdida social igual al triángulo gris
- En general se cumple que el área rayada -incrementos en el excedente del productor- > a la pérdida de eficiencia asignativa (Whinston 2006, página 59)

Índice

- Indicadores de concentración
 - Índice de concentración
 - Índice de Herfindahl
 - Hirschman
- Concentración y poder de mercado
 - Modelo
 - Estimación: derivadas conjeturales
- 3 La pérdida de eficiencia asignativa

- Efectos de la concentración sobre el bienestar
- Búsqueda de rentas
- Fusiones y adquisiciones
 - Introducción
 - Discusión
- 5 Concentración y eficiencia productiva
 - Eficiencia productiva
 - La competencia no siempre es beneficiosa

Ineficiencia productiva

- La evidencia demuestra que los monopolios no tienen incentivos a usar los recursos en forma eficiente
- Sea una empresa que opera en un entorno competitivo con CMg = c, y un monopolista que opera con CMg' = c' > c
- La pérdida social es mayor al triángulo RTS de la ineficiencia asignativa
- En monopolio: $ET^m = EP + EC = OR'Vp'_c \Rightarrow PS = ET^c ET^m = RTS + R'RTp_cp'_cVR > RTS$

Gráfica

Explicación I: Incentivos

- Principal (dueño de la empresa) quiere inducir al agente (el gerente) a que maximice su pago
- El esfuerzo del gerente no es observable
- Existen dos tipos de empresas: las que maximizan beneficios (sus gerentes responden a incentivos monetarios), y las que no maximizan beneficios (sus gerentes no responden a incentivos monetarios)
- Shock exógeno en las condiciones de demanda ⇒ las empresas maximizadoras de beneficios innovan para reducir costos
- $\downarrow p \Rightarrow$ para que las empresas que no maximizan beneficios no quiebren, tienen que esforzarse para bajar costos
- Si no hay presión competitiva los gerentes de monopolio tienden a relajarse (managerial slack)

Explicación II: selección natural

- Selección natural: cuando existe competencia, sólo las empresas más eficientes sobreviven
- Si existe un monopolio este mecanismo no opera y una empresa ineficiente podría subsistir
- Desde el punto de vista empírico, este argumento predice que la competencia incrementará la productividad de la industria a través de un proceso de entrada y salida de empresas

Evidencia: Uruguay

- Tansini estudia la eficiencia de 541 empresas industriales uruguayas
 - la apertura de la economía (aumento en la competencia) provoca mejora en la eficiencia técnica de las empresas, tanto en lo que refiere a la incorporación de tecnología como a la mejor utilización de la misma
- Sanin y Zimet estudian la eficiencia técnica en el mercado de seguros en el período 1995 - 2001, inmediatamente posterior a la desmonopolización del mismo
 - la productividad aumentó en el período debido a la mejora en la eficiencia técnica en el mercado, aunque en el caso del BSE este aumento se dio a través de aumentos en la eficiencia de escala más que en la eficiencia técnica

Evidencia: internacional

- Edmond, Midrigan y Xu (2015, AER): estudian el impacto de la apertura comercial en Taiwan
 - La apertura comercial (aumento competencia):
 - 1 redujo los márgenes de las empresas
 - mejoró la productividad total de los factores

Índice

- Indicadores de concentración
 - Índice de concentración
 - Índice de Herfindahl
 - Hirschman
- Concentración y poder de mercado
 - Modelo
 - Estimación: derivadas conjeturales
- 3 La pérdida de eficiencia asignativa

- Efectos de la concentración sobre el bienestar
- Búsqueda de rentas
- Fusiones y adquisiciones
 - Introducción
 - Discusión
- Concentración y eficiencia productiva
 - Eficiencia productiva
 - La competencia no siempre es beneficiosa

Modelo

- Cuando existen costos fijos o irrecuperables, evitar su duplicación también es eficiente
- n empresas: $CT_i = cq_i + F$, competencia en cantidades
- Demanda tiene la forma p = 1 q, con $q = nq_i$, i = 1, ..., n
- Cada empresa i, calcula: $\max_{q_i} \pi_i, \pi_i = (1 q c)q_i F$
- CPO $\frac{\partial \pi_i}{\partial q_i} = 1 q q_i c = 0 \Rightarrow (1 c \sum q_{-i}) = 2q_i \Rightarrow q_i = \frac{(1 c \sum q_{-i})}{2}$, donde $\sum q_{-i}$ es $\sum_{j \neq i} q_j$

Equilibrio

- Imponiendo simetría en la solución $q_i=q_j=q_c^\star$: $q_c^\star=rac{(1-c)}{n+1}$
- Precio de equilibrio: $p = 1 q = 1 nq_c^* \Rightarrow p^* = \frac{(n+1)-n(1-c)}{n+1}$ $\Rightarrow p^* = \frac{1+nc}{n+1}$
- Estática comparativa:

Excedente del productor

•
$$\pi^{C} = (p^{c} - c)q^{c} - F = \left(\frac{(1+nc)}{n+1} - c\right)\left(\frac{1-c}{n+1}\right) - F \Rightarrow \pi^{*} = \frac{(1-c)^{2}}{(n+1)^{2}} - F$$

•
$$EP = \sum \pi^* = n \frac{(1-c)^2}{(n+1)^2} - nF$$

•
$$\lim_{n \to \infty} EP = \lim_{n \to \infty} \underbrace{n \frac{(1-c)^2}{(n+1)^2}}_{\to 0} - \underbrace{nF}_{\to \infty} = -\infty$$

La competencia no es siempre beneficiosa

La competencia implica $\downarrow p, \uparrow q$, pero la duplicación de los *CF* y, por tanto, una pérdida de eficiencia

Excedente del productor

•
$$\pi^{C} = (p^{c} - c)q^{c} - F = \left(\frac{(1+nc)}{n+1} - c\right)\left(\frac{1-c}{n+1}\right) - F \Rightarrow \pi^{*} = \frac{(1-c)^{2}}{(n+1)^{2}} - F$$

•
$$EP = \sum \pi^* = n \frac{(1-c)^2}{(n+1)^2} - nF$$

•
$$\lim_{n \to \infty} EP = \lim_{n \to \infty} \underbrace{n \frac{(1-c)^2}{(n+1)^2}}_{\to 0} - \underbrace{nF}_{\to \infty} = -\infty$$

La competencia no es siempre beneficiosa

La competencia implica $\downarrow p$, $\uparrow q$, pero la duplicación de los *CF* y, por tanto, una pérdida de eficiencia