ASSIGNMENT Z SELECTED SOUTHOUS

SINCE $a, b, m \in \mathbb{Z}$ => $a \le 3m$ and $b \le 2m$ => 2(a) + 3(b) = 6m + 6m= $12m \le 12m + 1$

$$n = 1$$

$$1 \le 2 - \frac{1}{2} = 1.5$$

$$1 + \frac{1}{4} + \frac{1}{6} + \dots + \frac{1}{k^2} + \frac{1}{(k+1)^2} \le 2 - \frac{1}{k+1}$$

$$1 + \frac{1}{4} +$$

$$=2-(k-\frac{1}{(k+1)^2})$$

$$=2-\frac{1}{k}\left(\frac{k+1}{k+1}-\frac{1}{k+1}\right)$$

$$=2-\frac{1}{k}\left(\frac{k}{kn}\right)$$

THUS P(k) => P(k+1)

(II) a) Assume $x_2 > x_1$ NEED TO SHOW $f(x_1) > f(x_1)$ or $f(x_2) - f(x_1) > 0$ $f(x_1) - f(x_1) = e^{x_1} + 2x_1 - e^{x_1} - 2x_1$ $e^{x_2} - e^{x_1} + 2(x_2 - x_1)$ NOTICE SIME $x_2 > x_1$ $e^{x_2} - e^{x_2} - e^{x_2} > 0$

THUS of 15 STRICTLY INCREASING

PRECILL # SEQUENCE $\{x,3\}$ is CAUCHY

IFF VEDO \exists NEIN st. $n, n \ge N \Rightarrow$ $|x_m - x_n| < \xi$ LET $\xi = 1$ THUS $|x_p| < |x_N| + 1$ $\forall p > N$ LET $M = \max_{x \in X_n} \{|x_n|, |x_n|, |x_n|, |x_n| + 1\}$ THUS $\{x,x\}$ is Bounder.

(B) LET lin Xn = lin Zn = l Arp Xn \le yn \le Zn \le In \(\xi \)

LET ÉZO. WE MUIT STION I NEW

S.t. n > N IMPLIES / yn-l/< E

NOTICE THAT $\lim_{N \to \infty} |x_n - \ell| \le 3 = N, \in \mathbb{N}$ sit. $n \ge N, \Rightarrow |x_n - \ell| < \varepsilon, \text{ ox } x_n \in (\ell - \varepsilon, \ell + \varepsilon)$ And $\lim_{N \to \infty} |x_n - \ell| < \varepsilon, \text{ ox } x_n \in (\ell - \varepsilon, \ell + \varepsilon)$ sit. $n \ge N_2 \Rightarrow |x_n - \ell| < \varepsilon, \text{ ox } x_n \in (\ell - \varepsilon, \ell + \varepsilon)$

LET $N = \max \{N_1, N_2\}$ $\Rightarrow y_n \in (l-\xi, l+\xi), \text{ on in other}$ words $|y_n - \ell| / \xi$ for $\forall n \geq N$