Keras

Ordre du jour

- 1. Introduction
- 2. Keras
- 3. Les réseaux neuronaux
- 4. Quelques exemples

Introduction

Que'est-ce que c'est Keras?

"Keras est une **bibliothèque logicielle** open source qui fournit une interface Python pour les **réseaux de neurones artificiels**. Keras agit comme une interface pour la bibliothèque TensorFlow."

"Jusqu'à la version 2.3, Keras prenait en charge plusieurs backends, notamment TensorFlow, Microsoft Cognitive Toolkit, Theano et PlaidML. A partir de la version 2.4, seul TensorFlow est pris en charge."

Introduction

Pourquoi Keras?

- Réseaux récurrents (RNN) et réseaux convolutifs (CNN)
- Dilution (dropout), normalisation de batch et pooling
- Support pour GPU et TPU
- Support pour modèles en mode mobile (iOS et Android)

Keras

TensorFlow vs. Keras (rappel)

TF	Keras
Générique (plusieurs tâches de ML)	Spécifique
Flexible	Intuitif
Utile pour faire de la recherche	Utile pour mettre un modèle en production

^{*}Keras est compris dans le package TensorFlow pour Python

Keras

Functional API vs. Sequential API

- L'API Functional est plus flexible, mais plus difficile à utiliser.
- Pour une utilisation basique, l'API Sequential suffit.
- L'API Functional est nécessaire notamment pour
 - le partage de couches
 - inputs/outputs multiples

Les réseaux neuronaux

Le modèle de base

Les réseaux neuronaux

Le réseau de neurones récurrents (RNN)

An unrolled recurrent neural network.

• Plus utilisé pour "speech recognition" et "natural language processing" (NLP)

Les réseaux neuronaux

Le réseau de neurones convolutif (CNN)

• Plus utilisé pour reconnaissance d'images

Les differents types de couches en Keras:

- Input: données d'entrée
- Dense: la couche "de base"
- Flatten: transforme les "arrays d'arrays" en 1 array
- Dropout: ignore un % des features d'entrée, pour éviter l'overfitting
- Conv2D: couche de convolution
- MaxPooling2D:

Une couche de convolution

- Convolution: utiliser un kernel pour extraire des features d'un image.
- Cela nous permet d'identifier des formes plus ou moins simples (même des visages ou des objets)

Une couche de "pooling"

- Pooling: aggrégation de plusieurs pixels
- Cela rend le modèle plus robuste

```
model = keras.Sequential(
        keras.Input(shape=input shape),
        layers.Conv2D(32, kernel size=(3, 3), activation="relu"),
        layers.MaxPooling2D(pool size=(2, 2)),
        layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
        layers.MaxPooling2D(pool size=(2, 2)),
        layers.Flatten(),
        layers.Dropout(0.5),
        layers.Dense(num_classes, activation="softmax"),
batch size = 128
epochs = 15
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
model.fit(x train, y train, batch size=batch size, epochs=epochs, validation split=0.1)
```