Fultionentheone, Tutorium 3

8.5.2020

Analysis IV: Funktionentheorie

Übungsblatt 2

Bitte bearbeiten bis Montag 4.5.

- 1. Reell- versus komplex-lineare Abbildungen. Seien V, W C-Vektorräume und $A:V\to W$ eine R-lineare Abbildung. Zeigen Sie:
 - (i) Die durch $v\mapsto A(v)-iA(iv)$ definierte Abbildung $V\to W$ ist $\mathbb{C}\text{-linear}.$
 - (i') Die durch $v\mapsto A(v)+iA(iv)$ definierte Abbildung $V\to W$ ist $\mathbb C\text{-antilinear}.$
 - (ii) Die Abbildung A ist genau dann C-linear, wenn die Gleichung A(iv) = iA(v) für die Vektoren v einer C-Basis von V erfüllt ist.
 - (iii) Eine \mathbb{R} -Linearform $\alpha:\mathbb{C}\to\mathbb{C}$ ist genau dann \mathbb{C} -linear, wenn ihre Matrix relativ zur Standard- \mathbb{R} -Basis $\{1,i\}$ von \mathbb{C} die Form

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix} \tag{1}$$

 $\text{mit } a,b \in \mathbb{R} \text{ hat.}$

$$A(2 \vee) = A(z_1 + iz_2) \vee) = A(z_1 \vee + z_2 \vee)$$

$$B(iv) = A(iy) - i A(i^2v) = A(iv) + i A(v) = v \in V$$
 believing
$$ER = i (A(i) - i A(iv) = i A(iv$$

(1)
$$C: V \mapsto A(V) + A(V) = R - linear$$

$$C(iv) = A(iv) + iA(i^2v) = A(iv) - iA(v) =$$

$$= -i(A(v) + iA(iv)) = -iC(v)$$

Beh:

(ii) Es geningt
$$A(iv) = i k(v)$$
 for alle $v \in B$
 $C - Basis van V$

nach suprifier.

(iv) = $A(v)$ is $A(iv)$ is to die

pullably index

(6 gruight, $C(v) = 0$ any ever Dasis on parten, oha C C -auchturen is C .)

(iii) $A : C \rightarrow C$ C -linear

 $A : C \rightarrow C$ $A(iv) = i A(iv) = i A(iv)$
 $A(iv) = A + ib$, $A(iv) = i A(iv) = i A(iv)$
 $A(iv) = A(iv) = i A(iv) = i A(iv)$
 $A(iv) = A(iv) = i A(iv) = i A(iv)$
 $A(iv) = A(iv) = A(iv) = i A(iv)$
 $A(iv) = A(iv) = A(iv)$
 $A(iv) = A(i$

i (a + ib) = id(1)

 $\alpha(i) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -b \\ a \end{pmatrix} = -b + i\alpha$

1 ist C-Basis von C & (ii) => 1

- 4. Sei $U \subset \mathbb{C}$ ein Gebiet, dh
 offen und zusammenhängend, und sei $f:U \to \mathbb{R}$ eine reell-wertige holomorphe Funktion. Zeigen Sie:
 - Die Ableitung von f verschwindet.
 - (ii) f ist konstant.
 - (iii) Beweisen Sie dies allgemeiner für holomorphe Funktionen, deren Werte in einer 1-dim differenzierbaren Untermannigfaltigkeit von $\mathbb C$ liegen (zB in einem Kreis).

(i)
$$f = 2 + i \vee , \quad u, \vee : \mathcal{U} \to \mathbb{R}$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} = 0$$

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = 0$$

$$\int f(z) = f(z) \text{ id}_{C}$$

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = 0$$

$$\int f(z) = \int (z \in \mathcal{U}) = \int (z \in \mathcal{U$$

 \Rightarrow f: $z \mapsto f(z_0)$ ist knowstant

(iii)
$$f: \mathcal{U} \longrightarrow \mathcal{M} \subseteq \mathbb{C}$$
 belower the state of the contraction of of the

 Komplexe Differenzierbarkeit der Exponentialfunktion. Wir wissen (aus Analysis I), daß die Exponentialreihe

$$e^z := \exp(z) := \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

für alle $z \in \mathbb{C}$ absolut konvergiert und so auf ganz \mathbb{C} die komplexe Exponentialfunktion definiert. Wir wissen auch, daß die Funktionalgleichung

$$e^{z+w} = e^z \cdot e^w$$

für $z, w \in \mathbb{C}$ gilt. Zeigen Sie:

(i) Die auf C − {0} definierte Funktion

$$h \mapsto \frac{e^h - 1 - h}{h^2}$$

ist durch eine auf ganz C absolut konvergente Potenzreihe um 0 darstellbar und auf jeder punktierten Scheibe $\dot{D}_r(0) = \{h \mid 0 < |h| < r\}, r > 0$, beschränkt.

(ii) Es gilt

in) Es gut
$$\lim_{h\to 0}\frac{e^h-1}{h}\stackrel{\mathbf{z}\in \mathbf{0}}{=}1.$$
(iii) Allgemein gilt für $z\in \mathbb{C}$

(iii) Allgemein gilt für z ∈ C

$$\frac{\exp^{1}(z)}{\lim_{h\to 0}\frac{e^{z+h}-e^{z}}{h}} = e^{z}.$$

$$\frac{(i)}{\text{F(h)}} = \frac{e^{h}-1-h}{h^{2}} = \frac{\sum_{n=0}^{\infty}\frac{h^{n}}{n!}-1-h}{\sum_{n=0}^{\infty}\frac{h^{n}}{n!}-1-h} = \frac{\sum_{n=0}^{\infty}\frac{h^{n}}{n!}}{h^{2}}$$

$$= \sum_{n=2}^{\infty}\frac{h^{n-2}}{n!} = \sum_{n=0}^{\infty}\frac{h^{n}}{(n+2)!}$$

about theoretical Reine and
$$C$$
:
$$\sum_{n=0}^{\infty} \frac{|h|^n}{(n+2)!} = \sum_{n=0}^{\infty} \frac{|h|^n}{n!} = \exp|h|$$

tar h∈Dr(0) git: $|F(G)| = \left| \sum_{n=1}^{\infty} \frac{n^n}{(n+2)!} \right| \leq \sum_{n=0}^{\infty} \frac{|n|^n}{(n+2)!}$

 $\lim_{h \to 0} \left(\frac{e^{h} - 1}{h} - 1 \right) = \lim_{h \to 0} \frac{e^{h} - 1 - h}{h}$

$$\lim_{k \to 0} \frac{e^{2\pi h} - e^2}{h} = e^2 \lim_{k \to 0} \frac{e^h - 1}{h} = e^h$$

$$= 1$$

- 2. Rechenregeln für die komplexe Differentiation. Seien $U\subset\mathbb{C}$ eine offene Teilmenge, $z_0\in U$ ein Punkt und $f,g:U\to\mathbb{C}$ Funktionen, die in z_0 komplex differenzierbar sind. Zeigen Sie:
 - (i) f+g ist komplex differenzierbar in z_0 mit Ableitung $f'(z_0)+g'(z_0)$. Für jede Konstante $c\in\mathbb{C}$ ist cf komplex differenzierbar in z_0 mit Ableitung $cf'(z_0)$.
- (ii) fg ist komplex differenzierbar in z_0 mit Ableitung $f'(z_0)g(z_0) + f(z_0)g'(z_0)$.
- (iii) Falls $g(z_0) \neq 0$, so ist $\frac{f}{g}$ komplex differenzierbar in z_0 mit Ableitung

$$\frac{f'(z_0)g(z_0) - f(z_0)g'(z_0)}{g^2(z_0)}.$$

(iv) Ist $V \subset \mathbb{C}$ eine offene Umgebung von $f(z_0)$ und $h: V \to \mathbb{C}$ komplex differenzierbar in $f(z_0)$, so ist $h \circ f$ komplex differenzierbar in z_0 mit Ableitung $h'(f(z_0))f'(z_0)$.

(v) Gilt außerdem $h \circ f = \mathrm{id}_{\mathbb{C}}$ nahe z_0 , so $f'(z_0) \neq 0$ und $h'(f(z_0)) = \frac{1}{f'(z_0)}$.

(i)
$$\forall h \in C : z_0 + h \in \mathcal{U}$$

 $\Rightarrow \exists f'(z_0) \in C : f(z_0 + h) = f(z_0) + f'(z_0) \cdot h + o(|h|)$
"f of offin linear approximation."

 $g(z_0 + h) = g(z_0) + g'(z_0) \cdot h + o(h)$
 $f'(z_0 + h) = f(z_0 + h) + g(z_0 + h) = f(z_0 + h) + g(z_0) + f'(z_0) \cdot h + o(h)$
 $f'(z_0 + h) = f(z_0) + f'(z_0) + f'(z_0) \cdot h + o(h)$
 $f'(z_0 + h) = f(z_0 + h) + g(z_0 + h) = f'(z_0 + h) + g'(z_0)$
 $f'(z_0 + h) = f(z_0 + h) + g(z_0) \cdot h + o(h)$
 $f'(z_0 + h) = f(z_0 + h) + g(z_0) \cdot f(z_0 + h) + g(z_0) \cdot f(z_0 + h) - f(z_0)$
 $f'(z_0 + h) = g(z_0 + h) + g(z_0) \cdot f(z_0 + h) + g(z_0) \cdot f(z_0 + h) - f(z_0)$
 $f'(z_0 + h) = g(z_0 + h) + g(z_0) \cdot f(z_0 + h) + g(z_0) \cdot f(z_0 + h) - f(z_0)$
 $f'(z_0 + h) = g(z_0 + h) + g(z_0) \cdot f(z_0 + h) + g(z_0) \cdot f(z_0 + h) - f(z_0)$
 $f'(z_0 + h) = g(z_0 + h) + g(z_0) \cdot f(z_0 + h) + g(z_0) \cdot f(z_0 + h) - f(z_0)$
 $f'(z_0 + h) = g(z_0 + h) + g(z_0) \cdot f(z_0 + h) + g(z_0) \cdot f(z_0 + h) - f(z_0)$
 $f'(z_0 + h) = g(z_0 + h) + g(z_0) \cdot f(z_0 + h) + g(z_0) \cdot f(z_0 + h) - f(z_0)$
 $f'(z_0 + h) = g(z_0 + h) + g(z_0) \cdot f(z_0 + h) + g(z_0) \cdot f(z_0 + h) - f(z_0)$
 $f'(z_0 + h) = g(z_0 + h) + g(z_0) \cdot f(z_0 + h) + g(z_0) \cdot f(z_0 + h) - f(z_0)$
 $f'(z_0 + h) = g(z_0 + h) + g(z_0) \cdot f(z_0 + h) + g(z_0) \cdot f(z_0 + h) - f(z_0)$
 $f'(z_0 + h) = g(z_0 + h) + g(z_0 + h) + g(z_0) \cdot f(z_0 + h) - f(z_0)$
 $f'(z_0 + h) = g(z_0 + h) + g(z_0 + h) + g(z_0) \cdot f(z_0 + h) - f(z_0)$
 $f'(z_0 + h) = g(z_0 + h) + g(z_0) \cdot f(z_0 + h) + g(z_0) \cdot f(z_0 + h) - f(z_0)$
 $f'(z_0 + h) = g(z_0 + h) + g(z_0) \cdot f(z_0 + h) + g(z_0 + h) + g(z_0) \cdot f(z_0 + h) + g(z_0) \cdot f(z_0 + h) + g(z_0) \cdot f(z_$

Grentwertsatze

(iv)
$$f(z_0+h) = f(z_0) + f'(z_0) \cdot h + o(h)$$

 $h(f(z_0)+h) = h(f(z_0)) + h'(f(z_0)) \cdot h + o(h)$
 $h \circ f(z_0+h) = h(f(z_0)) + h'(f(z_0)) \cdot h + o(h)) =$
 $= h(f(z_0)) + h'(f(z_0)) \cdot f'(z_0) \cdot h + o(h)$
 $= h(f(z_0)) + h'(f(z_0)) \cdot f'(z_0) \cdot h + o(h)$
 $\Rightarrow (h \cdot f)'(z_0) = h'(f(z_0)) \cdot f'(z_0)$
 $\Rightarrow (h \cdot f)'(z_0) = h'(f(z_0)) \cdot f'(z_0)$
 $\Rightarrow (h \cdot f)'(z_0) + h'(f(z_0)) \cdot f'(z_0)$
 $\Rightarrow (h \cdot f)'(z_0) + h'(f(z_0)) \cdot h'(z_0)$
 $\Rightarrow (h \cdot f)'(z_0) + h'(f(z_0))$