FINAL SUBMITTAL

ENERGY SURVEYS OF

ARMY INDUSTRIAL FACILITIES

ENERGY ENGINEERING ANALYSIS PROGRAM

RADFORD ARMY AMMUNITION PLANT

RADFORD, VIRGINIA

VOLUME II

APPENDICES

89

CONTRACT NO. DACA65-€5-C-0154

PREPARED FOR:

U.S. ARMY CORPS OF ENGINEERS NORFOLK, VIRGINIA

DITIC QUALITY INSPECTED 2

PREPARED BY:

ENERGY AND ENVIRONMENTAL SERVICES DEPARTMENT REYNOLDS, SMITH AND HILLS, INC.
P.O. BOX 4850
JACKSONVILLE, FLORIDA 32201

MARCH 1991

DEPARTMENT OF THE ARMY

CONSTRUCTION ENGINEERING RESEARCH LABORATORIES, CORPS OF ENGINEERS
P.O. BOX 9005
CHAMPAIGN, ILLINOIS 61826-9005

REPLYTTO ATTENTION OF:

TR-I Library

17 Sep 1997

Based on SOW, these Energy Studies are unclassified/unlimited. Distribution A. Approved for public release.

Marie Wakeffeld,

Librarian Engineering

VOLUME II

TABLE OF CONTENTS

Appendix A - Prenegotiation Minutes and Scope of Work

Appendix B - Backup Data, Calculations and Cost Estimates

APPENDIX A PRENEGOTIATION MINUTES AND SCOPE OF WORK

APPENDIX A

PRENEGOTIATION MINUTES NOTES RADFORD AAP INDUSTRIAL FACILITIES STUDY

Attendees: Graham Ellixson

Paul Hutchins

Date:

08/25/89

- o Entire project will require about 13 months.
- o Give formal presentation at each conference (2).
- o Graham will provide a list of submission copies requirements.
- Intent is to find energy savings in industrial processes, not buildings. Therefore, much of the data requested in the SOW for building envelop data [SOW 3.1.4] is superfluous and should have been gathered in the previous EEAP. Graham suggested that I use my judgement in these matters. Our philosophy concerning this is as follows: if the building is conditioned because of process-related requirements, then building envelop data are required. If the building is conditioned for personnel comfort only, then the envelop data are not required.
- o Remove EMCS from SOW.
- o Concentrate on smaller projects--stay away from ECIP.
- o Update three projects from previous EEAP.
- o No solar.
- Will send Graham examples of linear regression analysis.
- o Rescheduling of production lines at Radford will be difficult.
- o Send map of Radford areas and building lists to Graham.
- o RAAP has requested that A/E <u>not</u> package projects for funding source and documentation. RAAP prefers to do this.

CENAO-EN-MP

July 1989

DETAIL/GENERAL SCOPE OF WORK

ENERGY SURVEYS OF ARMY INDUSTRIAL FACILITIES

ENERGY ENGINEERING ANALYSIS PROGRAM (EEAP)

RADFORT ARMY AMMUNITION PLANT (RAAP)

RADFORD, VIRGINIA

SCOPE OF WORK ENERGY SURVEYS OF ARMY INDUSTRIAL FACILITIES ENERGY ENGINEERING ANALYSIS PROGRAM

TABLE OF CONTENTS

- 1. BRIEF DESCRIPTION OF WORK
- 2. GENERAL
- 3. WORK TO BE ACCOMPLISHED
 - 3.1 Audit
 - 3.2 Analysis
 - 3.3 Identify ECOs
 - 3.4 Energy Monitoring and Control Systems (EMCS)/Process-Control-System (PGS)-
 - 3.5 Documentation
- 4. DETAILED SCOPE OF WORK
- 5. PROJECT MANAGEMENT
- 6. SUBMITTALS, PRESENTATIONS AND REVIEWS
- 7. OPERATION AND MAINTENANCE INSTRUCTION
- 8. ENTRY AND EXIT INTERVIEWS
- 9. SERVICES AND MATERIALS

ANNEX

- A ENERGY CONSERVATION OPPORTUNITIES
- B REQUIRED DO FORM 1391 DATA
- C EXECUTIVE SUMMARY
- D DETAILED SCOPE OF WORK

- 1. BRIEF DESCRIPTION OF WORK: The Architect-Engineer (AE) shall:
- 1.1 Perform a complete energy audit and analysis of the industrial facility.
- 1.2 Identify all Energy Conservation Opportunities (ECOs) including low cost/no cost ECOs and perform complete evaluations of each.
- 1.3 Prepare programming and implementation documentation for all justifiable energy conservation opportunities.
 - 1.4 List and prioritize all recommended energy conservation opportunities.
- 1.5 Prepare a comprehensive report which will document the work accomptions.

2. GENERAL:

- 2.1 A coordinated energy study, including a detailed energy survey, shall be accomplished for the industrial facility. The study shall integrate the results of and any available data from prior or ongoing energy conservation studies, projects, designs, or plans. This Scope of Work is not intended to prescribe the methods in which the study is to be conducted or limit the AE in the exercise of his professional engineering expertise, good judgment or investigative ingenuity. However, the information and analyses outlined herein are considered to be minimum essentials for adequate performance of this study. The study shall include a comprehensive energy report documenting study methods and results.
- 2.2 All ECOs recommended shall comply with all current criteria (e.g., environmental, safety) for the industrial facility. These criteria may have changed since the facility was constructed. Replacement of people with automation systems may allow reductions in outside air quantities, ventilation rates, and similar items resulting in significant energy savings. Stated requirements for special environments (temperature/humidity control) for industrial equipment and processes shall be researched as needed by the AK to verify (a) the requirement and (b) the degree of control essential for the industrial mission.
- 2.3 All recommended ECOs, including maintenance, operational and low cost/no cost opportunities as well as Energy Conservation Investment Program (ECIP) and Energy Conservation and Management Program (ECAM) projects shall be ranked in order of highest to lowest Savings Investment Ratio (SIR).
- 2.4 An Energy Engineering Analysis Program (EEAP) study has been accomplished for the installation. Applicable portions of the study, 4f-any, shall be updated as needed and incorporated into the report. The report shall list

the recommended ECOs from the previous study that pertain or should pertain to industrial facilities processes. This list shall summarize the ECOs (cost, short description, and anticipated energy savings) and identify the fiscal year for which the project was or is programmed. Any industrial facility related ECO identified in the previous studies but not recommended shall be reevaluated under this contract. Any industrial facility related ECO recommended from the previous studies but not implemented nor programmed for implementation shall be updated in accordance with the latest ECIP criteria. Three (3) projects as per D-5.

- 2.5 The terms "industrial," "production," and "process" are used interchangeably in this Scope of Work and should be interpreted broadly to include research, test and development, end item maintenance and repair, supply and distribution, as well as the typical "production centers" in Army industrial facilities. The term "facility" means one or more buildings or enclosures together with the equipment installed therein. It implies an integrated production system which requires a coordinated approach to achieve the best overall results.
- 2.6 The "Energy Conservation Investment Program (ECIP) Guidance," described in letter from DAEN-MPO-U, 10 August 1982 and revised by letters from DAEN-ZCF-U, 4 March 1985 and 11 June 1986, establishes criteria for ECIP/ECAM Projects and shall be used for performing the economic analyses of all ECOs and projects. Construction cost escalation for DD Form 1391 submission shall be calculated using the guidelines contained in AR 415-17 and the latest Tri-Service MCP index. The Tri-Service MCP Index, when updated, is contained in the latest applicable edition of the Engineer Improvement Recommendation System (EIRS) bulletin.
- 2.7 Energy conservation opportunities determined to be technically and economically feasible shall be developed into projects acceptable to installation personnel. This may involve combining similar ECOs into larger packages which will qualify for ECIP/ECAM or MCA funding, and determining, in coordination with installation personnel, the appropriate packaging and implementation approach for all feasible ECOs.
- 2.8 Projects which qualify for ECIP/ECAM funding shall be identified, separately listed, and prioritized by Savings Investment Ratio (SIR).
- 2.9 All energy saving opportunities shall be listed and prioritized by SIR.

3. WORK TO BE ACCOMPLISHED:

3.1 Audit. The audit consists of gathering data and inspecting industrial facilities in the field, including those which are government-owned, contractor operated (GOCO). These activities shall be closely coordinated with the contractor operator at GOCOs, facilities or plant engineer representatives, production engineers, the installation commander or his representative, and the Government's representative. The AE shall become thoroughly familiar with the facility and its industrial mission and undertake all necessary field trips to

obtain required data. The AE shall consolidate or summarize the survey data to make it concise, and shall submit the summarized data as part of the report. Data sources shall be identified and assumptions clearly stated and justified. All test and/or measurement equipment shall be properly calibrated prior to its use.

- 3.1.1 Boiler plants, chilled water plants, incinerators, and similar facilities listed in Annex D that are associated with the industrial facility shall be included in the study. The intent is to determine the condition of existing equipment, efficiency of boiler plant equipment, operational procedures, adequacy of plant capacity, and heat recovery possibilities in addition to the general items listed.
- for industrial processes shall be identified. Tremendous amounts of steam and hot water are used in industrial facilities dictating active consideration and analysis of potential solar applications.
- 3.1.3 The audit shall be conducted with the view that the term "industrial facility" means an integrated production infrastructure including the building envelope, industrial equipment, process standards, materials, utilities and other components of the industrial operation which have an energy value.

Envelope energy and process energy are interrelated. Inputs and outputs, particularly of thermal energy, should be balanced in order to optimize overall energy efficiency of industrial facilities. ECOs should therefore reflect the "systems" approach for a totally integrated facility, and assure that any energy trade-offs between buildings and processes are analyzed.

- 3.1.4 Data collected during the audit shall, as a minimum, include:
- 3.1.4.1 Building data.
- a. Building number, building age, number of floors, and gross square feet.
- b. Floor area, HVAC zones, nonair-conditioned spaces, and usage of space ("industrial" or "other").
 - c. Glass areas.
- d. Wall and roof surface areas and condition, type of construction, and "U" factors.
- e. Drawings, equipment schedules, shop layouts, utilities distribution diagrams, etc.
 - f. Nameplate data of energy related building equipment.
 - g. Any major expansions, alterations, or modernization projects.

- 3.1.4.2 Weather information.
- 3.1.4.3 Operating methods.
- a. Pacilities operating hours (peacetime).
- b. Personnel strength (direct labor).
- c. Facilities system and equipment operating and maintenance schedules.
- d. 3.1.4.3.4 Control set points, chilled water temperatures, and freeze protection temperatures.
 - e. Rooms, areas, or zones with special or critical requirements.
 - . 3.1.4.4 Past performance records.
 - a. Energy peak demands.
- b. Latest annual energy consumption (Gross BTU/yr, BTU/SF/yr, BTU/end product/yr) for total installation and facility(ies) being studied.
 - c. Utility rate schedules.
- d. Energy conservation projects (ECIP/ECAM/other) in facilities being studied.
 - 3.1.4.5 Energy sources.
 - 3.1.4.6 Production data.
- a. Production areas by type utilization (e.g., fabrication, finishing, assembly, test, storage, etc.).
- b. Production equipment schedules, age, utilization, and energy requirements.
 - c. Production equipment replacement or modernization plans.
 - d. Process flow layouts.
 - e. Production rates/quantities.
 - f. Material handling systems.
 - g. Expected changes (equipment, process, facilities, workload, etc.).
- 3.2 Analysis. The energy analysis is a comprehensive study of the industrial facilities energy usage. It includes a detailed investigation of the operation, environment and equipment. Computer modeling shall be used to in-

corporate field survey data, weather data, production data, operation schedules, building construction data, energy distribution systems and equipment data into a model of the total facility. The computer program shall, for varying production rates (peacetime levels and full mobilization), develop load profiles, calculate energy savings, and evaluate the energy requirements of the industrial facility, using a "Linear Regression" model program. The computer results should be verified by comparing them to any available past utility bills or records. The A-E shall submit a sample computer run with an explanation of all input and output data, and a summary of program methodology and energy evaluation capabilities for approval by the Contracting Offiver prior to use of the program for analysis.

- 3.2.1 The energy analysis shall provide the following types of information:
- a. A baseline of energy usage of the existing facility (at current production capacity prior to implementing ECOs generated by this study).
 - b. Comparison of equipment capacities with current workloads.
- c. Process related energy usage by systems (lighting, heating, cooling, process, etc.).
 - d. Basis for evaluating ECOs.
- e. A baseline of energy usage of the facility after incorporation of all recommended ECOs (assuming no change in production level).
- 3.2.2 The AE shall develop graphic presentations, i.e. graphs and charts which depict a complete energy consumption picture for the industrial facility both presently and after implementation of energy saving recommendations.
- 3.2.3 The AE shall develop a listing of each shop, zone, or area of the facility as appropriate. The list shall include the air handling system and humidity setpoints, lighting levels and similar data. The valid criteria requirements for supply, return and exhaust air quantities, temperature and humidity setpoints, lighting levels, etc., shall also be shown. The listing shall be in sufficient detail so that areas with potential energy savings can be identified. The AE shall be familiar with the latest Army environmental and safety criteria and shall evaluate installed systems for possible energy saving revisions which may be permitted by current criteria.
- 3.2.4 If data is available, the AE shall develop an historical load profile by year for the past three fiscal years for each energy source utilized.
- 3.2.5 The AE shall project energy costs for three fiscal years from the date of contract award. Department of Energy (DOE) projections are acceptable.

3.3 Identify ECOs. All methods of energy conservation which are reasonable and practical shall be considered, including improvements of operational methods and procedures and maintenance practices as well as the physical facilities. A list of energy conservation opportunities is included as Annex A to this scope. This list is not intended to limit or guide the AE but only to assure that at least these opportunities are considered. Each of the items shall be discussed in the report. Those items on the list which are not practical, have been previously accomplished, are inappropriate or can be eliminated from detailed analysis based on preliminary analysis shall be listed in the report along with the reason for elimination from further analysis. All potential ECOs which are not eliminated by preliminary considerations shall be thoroughly documented and evaluated as to technical and economic feasibility. The AE shall provide all data needed to support the recommended ECO. All assumptions shall be clearly stated. Calculations shall be prepared showing how all numbers in the ECO were figured. Calculations shall be an orderly step-by-step progression from the first assumption to the final number. Life Cycle Cost Analysis Summary Sheet shall be prepared for each ECO and included as part of the supporting data.

3.4 Energy Monitoring and Control Systems (EMCS)/Process Control System (RCS).

3.4.1 The AE shall determine the feasibility of an EMCS/PCS for the industrial facility. The intent of this study is to determine the basic conceptual architecture of the EMCS/PCS to the extent that primary economic calculations can be made to determine feasibility per ECIP criteria. The documentation shall be of sufficient accuracy to insure that future project design calculations that will be done after completion of this study will not deviate more than 20 percent from the results of this study.

3.4.2 The AE shall survey all buildings and perform feasibility evaluations in accordance with guidance in HNDSP-84-076-ED-ME. Any existing basewide EMCS project or any currently under design or study shall be considered and evaluated for intergration. The use of existing survey data is acceptable only if it is in sufficient detail and can be easily revalidated by building walk through inspections. The standard evaluation forms contained in HNDSP-84-076-ED-ME shall be a part of the submittal. EMCS/PCS analyses and evaluations shall be developed using TM 5-815-2. Energy savings calculations shall be in accordance with NCEL CR 82.030. The AE shall consider connection of the industrial facility to this basewide system. An independent system for the industrial facility and some type of communication with the basewide system for monitoring and data gathering shall also be considered. EMCS/PCS evaluations shall consider but not be limited to the following features:

a. Start/Stop Programs

Scheduling
Duty cycling
Load shedding for electrical demand limiting
Lighting control
Start/Stop Optimization

by Ventilation and Recirculation Programs

Dry bulb economizer
Outside air reduction
Industrial process economizer
Exhaust air reduction/optimization (based on production activity)

c. Temperature Reset Programs

Space temperature night setback
Process temperature night setback
Hot and cold deck
Reheat coil
Chilled water
Chiller selection
Boiler selection

- d. Labor Savings/Monitoring (Example: Boiler plant monitoring (EMCS/PCS logging of points which are present are manually logged.)
 - e. Machine run time, production profiles and maintenance management
- 3.4.3 The AE's recommendations for an EMGS/PCS shall be in sufficient detail to define the system configuration, the approximate quantity and types of control instruments and sensors, and the data transmission system. The selection of points to be monitored and controlled shall be given priority based upon ECIP criteria. The control system functions, expected energy reduction, and monetary savings (including the manner in which these savings are to be achieved) shall be explained.
- 3.4.4 The AE shall prepare and provide recommendations in narrative form. Input/output (I/O) summary tables shall be prepared and provided for each system selected in accordance with HNDSP-84-076-ED-ME. Cost estimates shall be prepared and provided in accordance with HNDSP-84-076-ED-ME for the mechanical and electrical modifications required to implement the EMCS/PCS.
- 3.4.5 Inoperative controls shall be surveyed in accordance with The 5-815-2. Cost estimates to repair and replace inoperative controls shall be as described in HNDSP-84-076-ED-ME.
- 3.4.6 Labor savings/monitoring shall be included, provided the SIR is not affected to the extent of jeopardizing the ECIP requirements.
- 3.5 Project Documentation. All energy conservation opportunities (ECOs) the AE has considered shall be included in one of the following categories and presented as such in the report:
- 3.5.1 ECIP/ECAM Projects. To qualify as an ECIP/ECAM project, an ECO, or several ECOs which have been combined, must have a construction cost estimate greater than \$200,000 and Savings Investment Ratio greater than one and a

simple payback period of less than ten years. For ECAM projects, the \$200,000 limitation may not apply. The AE shall check with the installation for guidance. The overall project, and each discrete part of the project, shall have a SIR greater than one. For all projects meeting the above criteria, complete programming documentation will be required. Programming documentation shall consist of a DD Form 1391, Life Cycle Cost Analysis Summary Sheet(s) (with necessary backup data to verify the numbers presented), and a project development brochure (PDB). These forms shall be separate from the report. They shall be bound similarly to the final report in a manner which will facilitate repeated disassembly and reassembly. A Life Cycle Cost Analysis Summary Sheet shall be developed for each ECO and for the overall project when more than one ECO is combined. For projects and ECOs updated or developed from the previous studies, the backup data shall consist of copies of the original calculations and analysis, with new pages updating and revising the original calculations and analysis. In addition, the backup data shall include as much of the following as is available: the increment of work the project or ECO was developed under in the previous study, title(s) of the project(s), the energy to cost (E/C) ratio, the benefit to cost (B/C) ratio, the current working estimate (CWE), and the payback period. This information shall be included as part of the backup data. The purpose of this information is to provide a means to prevent duplication of projects in any future reports. For projects or ECOs the installation wants submitted as ECIP/ECAM projects, complete programming documentation shall be prepared.

ments shall be prepared in accordance with AR 415-15 and the supplemental requirements in Annex 8. A complete DD Form 1391 shall be prepared for each project. The form shall include a statement that the project results from an EEAP study. Documents shall be complete as required for submission to higher DA headquarters. These programming documents will require review and signatures by the proper installation officials. All documents shall be complete except for the required signatures.

- 3.5.1.2 Project Development Brochures (PDBs). Preparation of PDBs requires the AE to delineate the functional requirements of the project as related to the specific site. The AE shall prepare PDBs in accordance with AR 415-20 and TM 5-800-3. Most projects will not require all the forms and checklists included in the Technical Manual (TM). Only that information needed for the project shall be included. The PDB-I format described in the TM shall be used for whatever information is needed.
- 3.5.1.3 Supporting Data. The AE shall provide all data and calculations needed to support the recommended project. Descriptions of the products, manufacturers catalog cuts, pertinent drawings, and sketches shall also be included. A Life Cycle Cost Analysis Summary Sheet shall be prepared for each ECIP project and each discrete part of the project and included as part of the supporting data.
- 3.5.2 Non-ECIP/ECAM Projects. Projects which normally do not meet ECIP/ECAM criteria, but which have an overall SIR greater than one shall be

individually packaged and fully documented. The Life Cycle Cost Analysis Summary Sheet shall be completed through and including line 6 for all projects or ECOs. Each shall be analyzed to determine if they are feasible even if they do not meet ECIP/ECAM criteria. These ECOs or projects may not meet the nonenergy qualification test. For projects or ECOs which meet this criteria, the Life Cycle Cost Analysis Summary Sheet, completely filled out, with all the necessary backup data to verify the numbers presented, a complete description of the project and the simple payback period shall be included in the report. Additionally, these projects shall have the necessary documentation prepared, in accordance with the requirements of the Covernment's representative, for one of the following categories:

a. Quick Return on Investment Program (QRIP). This program is for projects which have a total cost not over \$100,000 and a simple payback period of two years of less.

- b. OSD Productivity Investment Funding (OSD PIF). This program is for projects which have a total cost greater than \$100,000 and a simple payback period of four years or less.
- c. Productivity Enhancing Sapital Investment Program (PECIP). This program is for projects which have a total cost of more than \$3,000 and a simple payback period of four years of less.

The above programs are described and documentation shall be prepared in accordance with AR 5-4, Change No. 1.

- d. Regular Military Construction Army (MCA) Program. This program is for projects which have a total cost greater than \$200,000 and a simple payback period of ten to twenty-five years. Projects or ECOs which qualify for this program shall be economically analyzed in accordance with the requirements for Special Directed Studies in Engineering Technical Letter (ETL) 1110-3-332. Documentation shall be in accordance with paragraph 3.5.1 except that the economic analysis required by ETL 1110-3-332 shall be included in lieu of the ECIP Life Cycle Cost Analysis.
- e. Low Cost/No Cost Projects. These are projects that the installation can perform using their funds. For these projects the following information shall be provided:
 - (1) Brief description of the project.
 - (2) Brief description of the reasons for the modification.
 - (3) Specific instructions for performing the modification.
 - (4) Estimated dollar and energy savings per year.
- (5) Estimated manhours and labor and materials costs. Costs shall be calculated for the current calendar year and so marked. Manhours shall be

listed by trade. For projects that would repair an existing system so that it will function properly, also include the estimated manhours by trade and labor and material costs necessary to maintain the system in that condition. Some of the simple practical modifications may be developed on a per unit basis. An example of this type of modification would be the repair or replacement of steam traps on an as needed basis. As a rule, however, the AE should develop complete projects, if at all possible, rather than per unit modifications. Separate sheets for each project showing the above information shall be prepared and included in the report.

- 3.5.3 Nonfessible ECOs. All ECOs which the AE has considered but which are not fessible, shall be documented in the report with reasons and justifications showing why they were rejected.
- 4. <u>DETAILED SCOPE OF WORK:</u> The general Scope of Work is intended to apply to contract efforts for all Army industrial facilities except as modified by the detailed Scope of Work for each specific installation. The detailed Scope of Work is contained in Annex D.

5. PROJECT MANAGEMENT

- as a point of contact and liaison for all work required under this contract.

 Upon award of this contract, the individual shall be immediately designated in writing. The AE's designated project manager must be approved by the Contracting Officer prior to commencement of work. This designated individual shall be responsible for coordination of work under this contract. The Contracting Officer will designate a project manager to serve as the Government's point of contact and liaison for all work required under this contract. This individual will be the Government's representative. The Project Manager designated for the Norfolk District Corps of Engineers is Mr. Graham J. Ellixson, Ph. (804) 441-
- 5.2 Installation assistance. The Commanding Officer or contractor operator at each installation will designate an individual who will serve as the point of contact for obtaining information and assisting in establishing contacts with the proper individuals and organizations as necessary to accomplish the work required under this contract. That individual designated for RAAP is Ms. Joanne Wills.
- 5.3 Public disclosures. The AE shall make no public announcements or disclosures relative to information contained or developed under this contract, except as authorized by the Contracting Officer.
- 5.4 Meetings. Meetings will be scheduled whenever requested by the AE or the Contracting Officer for the resolution of questions or problems encountered in the performance of the work. The AE and/or the designated representative(s) shall be required to attend and participate in all meetings pertinent to the work required under this contract as directed by the Contracting Officer.

5.5 Site visits, inspections, and investigations. The AE, consultants, if applicable, and/or designated representative(s) thereof shall visit and inspect/investigate the site of the project as necessary and required during the preparation and accomplishment of the work.

5.6 Records

- 5.6.1 The AE shall provide a record of all significant conferences, meetings, discussions, verbal directions, telephone conversations, etc., with Government representative(s) relative to this contract in which the AE and/or designated representatives(s) thereof participated. These records shall be dated and shall identify the contract number, and modification number if applicable, participating personnel, subject discussed and conclusions reached. The AE shall forward to the Contracting Officer within ten (10) calendar days, a reproducible copy of the records.
- 5.6.2 The AE shall provide a record of requests for and/or receipt of Government-furnished material, data, documents, information, etc., which if not furnished in a timely manner, would significantly impair the normal progression of work under this contract. The records shall be dated and shall identify the contract number and modification number, if applicable. The AE shall forward to the Contracting Officer within ten calendar days, a reproducible copy of the record or receipt.

6. SUBMITTALS, PRESENTATIONS AND REVIEWS

- 6.1 General. The work accomplished shall be fully documented by a comprehensive report. The report shall have a table of contents and be indexed. Tabs and dividers shall clearly and distinctly divide sections, subsections, and appendices. All pages shall be numbered. The AE shall give a formal presentation of all but the final submittal to installation, command, and other government personnel. During the presentation, the personnel in attendance shall be given ample opportunity to ask questions and discuss any changes deemed necessary to the study. A review conference will be conducted on the same day following the presentation. Each comment presented at the review conference will be discussed and resolved or action items assigned. The AE shall provide all comments and written notification of the action taken on each comment to all reviewing agencies within three weeks after the review meeting. It is anticipated that each presentation and review conference will require approximately one working day. The presentation and review conferences will be at the installation on the date(s) agreeable to the AE and the Government's representative. The Contracting Officer may require a resubmittal of any document(s), if such document(s) are not approved because they are determined by the Contracting Officer to be inadequate for the intended purpose. Conference schedules are as provided in the Detail Scope.
- 6.2 Interim submittal. An interim report shall be submitted for review after completion of the field survey and an analysis has been performed on all of the ECOs. The report shall indicate the work which has been accomplished to date, illustrate the methods and justifications of the approaches taken and

contain a plan of the work remaining to complete the study. Calculations showing energy and dollar savings and SIRs of all the ECOs shall be included. The simple payback period of all ECOs shall be calculated and shown on the report. The AE shall submit the Scope of Work and any modifications to the Scope of Work as an appendix to the report. A narrative summary describing the work and results to date shall be a part of this submittal. During the review period, the Government's representative and Facilities Energy Coordinator shall provide the A-E with direction for packaging or combining ECOs for programming purposes. A sample programming document (DD Form 1391), PDB and supporting data) for one ECIP/ECAM-project shall be submitted with this submittal for review and approval prior

- possible, the project selected for the sample submission shall be typical of the majority of subsequent projects to be submitted. This sample shall consist of complete project documentation with primary emphasis on format and manner of presentation rather than precise accuracy of cost estimates and energy saving data. The survey forms completed during the audit shall be submitted with this report. The survey forms only may be submitted in final form with this submittal. They should be clearly marked at the time of submission that they are to be retained. They shall be bound in a standard three-ring binder which will allow repeated disassembly and reassembly of the material contained within.
 - 6.3 Prefinal submittal. The AE shall prepare and submit the prefinal report when all of the work under this contract is complete. The AE shall submit the Scope of Work for the installation studied and any modifictions to the Scope of Work as an appendix to the submittal. The report shall contain a narrative summary of conclusions and recommendations, together with all raw and supporting data, methods used, and sources of information. The report shall integrate all aspects of the study. The report shall include an order of priority by SIR in which the recommended ECOs should be accomplished. Completed programming and implementation documents for all recommended new and reevaluated projects shall be included. The programming and implementation documents shall be ready for review and signature by the installation commander. The prefinal report, Executive Summary, and all appendices shall be bound in standard three-ring binders which will allow repeated disassembly and reassembly. The prefinal submittal shall be arranged to include (a) a separately bound Executive Summary, to give a brief overview of what was accomplished and the results of this study using graphs, tables and charts as much as possible (see Annex C for minimum requirements), (b) the narrative report containing a copy of the Executive Summary at the beginning of the volume and describing in detail what was accomplished and the results of this study, (c) appendices to include the detailed calculations and all backup material and (d) the programming and implementation documentation. A list of all projects and ECOs developed during this study shall be included in the Executive Summary and shall include the following data from the Life Cycle Cost Analysis Summary Sheet: the cost (construction plus SIOH), the annual energy savings (type and amount), the annual dollar savings, the SIR and the analysis date. For all programmed projects also include the year in which it is programmed and the programmed year cost. The simple payback period shall also be shown for these projects and ECOs.

- made during the review of the prefinal report or during the presentation shall be incorporated into the final report. These revisions or corrections may be in the form of replacement pages, which may be inserted in the prefinal report. or complete new volumes. Pen and ink changes or errata sheets will not be acceptable. If replacement pages are to be issued, it shall be clearly stated with the prefinal submittal that the submitted documents will be changed only to comply with the comments made during the prefinal conference and that the volumes issued at the time of the prefinal submittal should be retained. Failure to do so will require resubmission of the complete volumes. If new volumes are submitted, they shall be in standard three-ring binders and shall contain all the information presented in the prefinal report with any necessary changes made. Detailed instructions of what to do with the replacement pages should be securely attached to the replacement pages.
- 7. OPERATION AND MAINTENANCE INSTRUCTION. The AE shall prepare a one-day instructional course for the mechanical and electrical operation and maintenance personnel and affected production supervisors to explain possible energy saving potentials due to modified equipment and systems operation. The course will identify operational items noted during the audit, in both facilities and process areas, which will effect energy conservation, and will explain the saving possible. This course will be held near the end of the study period at a time! agreeable to the AE and the Government's representative. This course is in addition to the formal review and presentations required. An outline of the topics that will be covered shall be submitted with the prefinal report.
- 8. ENTRY AND EXIT INTERVIEWS. The AE and the Government's representative shall conduct entry and exit interviews with the Facilities or Plant Engineer and other interested managers before starting work at the facility and after completion of the field work. The Government's representative shall schedule the interviews at least one week in advance.
- 8.1 The entry interview shall thoroughly describe the intended procedures for the survey. As a minimum, the interview shall cover the following points:
 - a. Schedules.
 - b. Names of energy analysts who will be conducting the site survey.
 - c. Proposed working hours.
 - d. Support requirements from the facilities or plant engineer.
 - e. Limitations imposed by production operations.
 - f. Plant security and safety procedures.
- 8.2 The exit interview shall include a thorough briefing describing the work accomplished, problems encountered, probable areas of energy conservation, and any follow-on efforts which may be required.

9. SERVICES AND MATERIALS. All services, supplies, materials (except those specifically enumerated to be furnished by the Government), plant, labor, superintendence and travel necessary to perform the work and render the data required under this contract shall be included in the lump sum price of the contract.

ANNEX A

ENERGY CONSERVATION OPPORTUNITIES (ECOs)

ECOs shall not be recommended if their implementation would be detrimental to the facility's mission during peacetime. ECOs which may pose a constraint on mobilization production requirements shall include an analysis thereof, along with recommended contingency actions. Industrial process ECOs shall include, but not be limited to, the following:

- a. Production equipment replacements, modifications, disposals.
- b. Energy efficient motors and variable frequency drives.
- c. Scheduling/loading of production equipment.
- d. Waste heat recovery from industrial processes.
- e. Automated control of production equipment integrated with existing or proposed EMCS equipment, if appropriate.
 - f. Improve facility layout and space utilization.
 - g. Solar applications.
 - h. Consolidate processes and equipment requiring special environments.
 - i. Building ventilation, exhaust systems.
 - 1. Production equipment maintenance.
- k. Improved methods/controls to reduce scrap, rework, and "goldplating," which consume energy without contributing to production mission.
 - 1. Steam distribution and condensate return systems.
 - m. Compressed air distribution systems, equipment and controls.
 - a. Lighting control (zones, levels, etc.). (Efficient types)
 - o. Electrical Distribution.
 - p. Radiant heating.
 - Loading dock seals.
 - r. Thermal storage.

CONTINUATION OF ANNEX A

ENERGY CONSERVATION OPPORTUNITIES (ECOs)

- Boiler flue gas recirculation
- Ventilation versus air conditioning
- -Insulation
- Reduction of glass area
- Improve efficiency of compressed air systems
- Cargo door strip curtains for controlled humidity warehouses
- Energy efficient ballasts

ANNEX B

REQUIRED DD FORM 1391 DATA

To facilitate ECIP/ECAM project approval, the following supplemental dara shall be provided:

- a. In title block, clearly identify project as "ECIP" or ECAM
- b. Complete description of each item of work to be accomplished including quantity, square footage, etc.
- c. A comprehensive list of building zones, or areas including building numbers, square foot floor area and usage (administration, production, etc.).
- d. Complete list of production equipment, process controls and ancillary equipment to be installed or retrofitted.
- e. List references, assumptions and provide calculations to support life cycle dollar and energy savings and indicate any added costs.
- (1) If a specific building, zone or area is used for sample calculations identify the building, zone or area, category, age, square footage floor area, window and wall area for such. For a specific piece of production equipment or system provide complete description, environmental requirement, manner of operation, age, etc.
 - (2) Identify weather data source, if applicable.
- (3) Compare process-building systems interface before and after improvements.
- (4) Provide and justify process criteria and temperature profiles before and after retrofit of buildings or modification of process. Include source of expertise and demonstrate savings claimed by process energy contributions, exhaust or outside air quantities, temperatures, humidity, production flow, etc.
- f. Recommended process/equipment efficiency improvements must identify data to support present properly adjusted operation and future expected efficiency. If full replacement of equipment is indicated, explain rejection of alternatives such as repair, nonfunctioning controls, etc. Assessment of the complete existing installation is required to make accurate determinations of required retrofit/replacement.

- g. An ECIP/ECAM Life Cycle Cost Analysis Summary Sheet as shown in the ECIP guidance will be provided for the complete project and for each discrete part included in the project. The SIR is applicable to all segments of the project. Supporting documentation consisting of basic engineering and economic calculations showing how savings were determined shall be included.
- h. The DD Form 1391 face sheet shall include, for the complete project, the annual dollar and MBTU savings, SIR, simple amortization period and a statement attesting that all buildings and production equipment will be in active use throughout the amortization period.
- i. The calendar year in which the cost was calculated shall be clearly shown on the DD Form 1391.
- j. For each temporary building rucluded in a project, separate documentation is required showing (1) a minimum 10-year continuing need, based on the installation's annual real property utilization survey, for active building retention after retrofit, (2) the specific ratrofit action applicable, and (3) an economic analysis supporting the specific retrofit.
- k. Nonappropriated funded facilities will not be included in the ECIP project without an accompanying statement certifying that utility costs are not reimbursable.
- 1. Any requirements required by ECIP guidance dated 10 August 1982, and any revisions thereto. Note that unescalated costs/savings are so be used in the economic analyses.
- The five digit category code number for all ECIP/ECAM projects developed under this scope of work is 80000.

ANNEX C

EXECUTIVE SUMMARY GUIDELINE

- 1. Introduction.
- 2. Building Data.
- 3. Present Energy Consumption.
 - o Total Annual Energy Used.
 - o Source Energy Consumption.

Electricity - KWH, Dollars, BTU
Fuel Oil - GALS, Dollars, BTU
Natural Gas - THERMS, Dollars, BTU
Propane - GALS, Dollars, BTU
Other - QTY, Dollars, BTU

- o Energy Consumption by Systems.
- 4. Historical Energy Consumption.
- 5. Production Profile and Trends.
- 6. Energy Conservation Analysis.
 - o ECOs Investigated.
 - o ECOs Recommended.
 - o ECOs Rejected. (Provide economics or reasons)
 - o ECIP/ECAM Projects Developed. (Provide list)*
 - o Non-ECIP/ECAM Projects Developed. (Provide list)*
 - o Operational or Policy Change Recommendations.
- * Include the following data from the Life Cycle Cost Analysis Summary Sheet: the cost (construction plus SIOH), the annual energy savings (type and amount), the annual dollar savings, the SIR and the analysis date. For all programmed projects also include the year in which it is programmed and the programmed year cost. Show the simple payback period for all ECOs.

- 7. Energy and Cost Savings.
 - o Total Potential Energy and Cost Savings.
 - o Percentage of Energy Conserved.
 - o Energy Use and Cost Before and After the Energy Conservation Opportunities are Implemented Based on Projected Workloads.
- 8. Energy Plan.
 - o Project Breakouts with Total Cost and SIR.
 - o Schedule of Energy Conservation Project Implementation

ANNEX D

DETAIL SCOPE OF WORK

ENERGY SURVEYS OF ARMY INDUSTRIAL FACILITIES

ENERGY ENGINEERING ANALYSIS PROGRAM

TABLE OF CONTENTS

Areas/Buildings to be Audited	D-2,3
Specific ECO ^s	D-4
Update of Previous Studies	D-5,6
Schedule of Activities	D-7
Submittal Distribution List	D-8,9
Government Furnished Criteria	D-9,10
Special Requirements and Information	D-11

AREAS/BUILDINGS TO BE AUDITED

Due to the large number of buildings and diversity of building types it is impractical to list each individual building number. The intent is to survey buildings that contain the more energy intensive processes. It has been determined through discussions with RAAP personnel and review of existing energy data that the following production areas are the large energy users. Where there are multiple buildings of the same type, a single representative building will be surveyed.

AREAS	BLDG. NOS.	OF BLDGS.
Nitrogylcerin #2	9 400's	57
Nitroceilulose	·	
В	2000's (28)	
C	3000's (39), 4026	68
Waste Acid A & B	420 's	9
Cast Propellent	4912-1 thru 4912-27 (62) 4912-36, 4913 (4), 4915 (5) 4919 (2), 4921 (4), 4924-1-7 (9), 4928, 4952	
	1321-1-7 (3), 1328, 1352	86
Pilot "B"	4912-28 thru 4912-54 (52), 4925, 8902, 8903, 9126	56
Pilot "A"	5008's (4)	4
Ignitor Line	5010, 5011, 5012, 5016, 5027	5
Solvent Propellent		
Green Lines		
В	2500's (40),	
C	3500's (48), 3670-3693 (34)	122
Inert Gas Plant	421, 4903	2
Solvent Recovery		
B	1609-1617 (36), 1659-1667 (27),	
	1728-1730 (12)	75
C	1618-1626 (36), 1668-1676 (27),	/ 3
	4910's (9), 1731-1733 (15), 4911's (9)	94
Finish Areas		
В	1757-1762 (6)	6
C	1763-1765 (3), 3655-3658 (4),	6
	3675-3678 (8)	15
Common Finish Area	1825-1888 (36), 4934's (2)	38

AREAS	BLDG. NOS.	OP BLDGS.
Wastewater Treatment	4325, 7226, 424, 470's (3), 9126 5502	8
Incinerators	425, 429, 440, 441, 450	5
Acid	700's	32
Solventless Propellent		73
Premii 1	7102's (7), 7103's (8) 3647-3650 (4), 4904, 4905, 4932	22
RP1	7104-7112 (31), 7121 (2), 7124-7160 (11), 7221 (3), 3712-3751 (18)	65
Grain Finish	7800-7803 (5)	5
F-Line	7113	. 1
RP4	9300's (42)	42
Supplying these produc	tion lines with energy are the following	:
Boiler/Power Houses	400, 4329	2
Compressed Air	700, 4705-01, 4333	3
Pump Houses	407, 408, 409, 404, 455, 4330	6

SPECIFIC ECOS

- 1. Incinerators Building 440 and 441, oil fired, study alternative fuels.
- 2. Boilers and Chillers Other boilers in addition to Buildings 400 and 4329 and small chillers as located in Buildings in the study.

SUMMARY OF ENERGY CONSERVATION OPPORTUNITIES (IN DESCENDING E/C PRIORITY)

		sting steam			_			Ą		1 > 2/			(Design
Atilon	Valve alicady installed	Dropped because of existing steam trap maintenance program	d Increment 6	d Increment A	d Increment A	Timers sheady installed	I Increment A	Condensate system ali cady Installed	Submitted - Inc. careut A	Not submitted because B/C <	Submitted - Increment B	Increment G.	Submitted - Increment B (Design Completed under WE project)
	Valve al	Dropped trap mat	Submitted In	Submitted	Submitted	Timers a	Submitted	Condensa	Submiller	Not subm	Submitted	Submitted EC/CC = 1	Submitted Completed
Payback Period, Years	7.7	3.2	9.6	f. 7	L . 9	1 9	•	•	7.8	1 . 88	1.5	15.4	7. 7
Bullar B Saved, \$/Year	11.761	7.437	\$2.57 8	19,816	15,284	5,134	36.000	33, 142	306.448	18,146	328,520	1.185	1.098.614
Saved, MBTU/Yr.	3,224	1.695	13,295	25,808	3,352	495	3.838	6 . 240	60.349	16,225	79.716	.	. 111.901
B/C Ratio	1	1	1.1	1.1	3.0	,	4.2	L.	9.	92.	<u>-</u>	<u>.</u>	7.2
E/C Ratio	230.0	70. 6	69 .4	=	32.6	31.6	28.4	25.5	25.3	23.5	21.1	21.0	20.3
CWE In 1984 Dellara	14.021	23,955	191,537	536.089	102.895	31,454	135,200	323,384	2,365,729	690,755	3,786,679	18.254	6,881,510
Project Description	Install Gate Valve in 8" Main at TNT: Area	Replace Defective Steam Traps	Replacement and Installation of Gate Valves	Ambient Senaing Steam Control Valves	Individual Bay Heaters for FAD Houses	Final Wringer Timers	Change House Modifications	Return Condensate System for TNT Area	liest Pipe for FAD Houses	Heat Recovery For Air Dry House	Return Condensate System Plant-Wide	Replace Plastic Blow-out Panels with Insulated Panels, Mix House	Steam Tie-Line Linking Power House 400 with Horseshoe Area
Project No.		:	J- 102-G	T - 105	T - 101	:	T-108	1 1	T· 104	;	J 106	MO-111G	T. 107

_ ,

SCHEDULE OF ACTIVITIES

Activity	Calendar Days	(NTP	Plus
NTP	0		
Interim Submittal	205		
Interim Review Conference	250		
Prefinal Submittal	295		
Prefinal Review Conference	335		
Prefinal (Corrected)/Final Submittal	365		

SCHEDULE OF ACTIVITIES

Activity	Calendar Days (NTP	Plus)
NTP 10/23/89	0	
Interim Submittal	205	1. 45.5
Interim Review Conference	250 -	
Prefinal Submittal	295	2 .,
Prefinal Review Conference	335	7.,3
Prefinal (Corrected)/Final Submittal	365 ~	E.1

SUBMITTAL DISTRIBUTION LIST

ADDRESS	INTER IM (60%)	PREFINAL (90%)	FINAL (100%)	
Commander				
U. S. Army Engineer Division, North Atlantic				
ATTN: CENAD-EN-MM 90 Church Street				
New York, NY 10007	2 cys	2 cys	1 cy	
Commander				
Office of Chief of Engineers				
ATTN: CEEC-EE (McCarty) Pulaski Building	Executive S	ummarv only		
Washington, DC 20314		l cy	l cy	
Commander				
U. S. Army Engineer District, Norfolk				
ATTN: CENAO-EN-MP (Ellixson)				ļ
903 Front Street	2	3 cys	2 cys	
Norfolk, Virginia 23510	3 cys	3 Cys	2 Cys	
Army Energy Office ATTN: DALO-LEP (Keath)				
New Cumberland Army Depot	Executive S	ummary only		
New Cumberland, PA 17070				
Commander	_			
USAMC Installations & Services Activity				
ATTN: AMXEN_B (G. Badtram)				
Building 60, 2nd Floor	,	1		
Rock Island, IL 61299-7190	1 c y	l cy	l cy	
Commander				
U. S. Army Ammunitions PDN Base Modernization Agency,				
Picatinny Arsenal				
ATTN: AMSMC-PBE(D) (Yose Yamoza)				
Building 171 Annex	2	2	l cy	
Dover, NJ 07801	2 c ys	2 c ys	1 Cy	
Commander				
Radford Army Ammunition Plant ATIN: SMCRA-OR (J. Wills)				
Radford, VA 24141-0298	2 c ys	2 cys	<u>1 cy</u>	
			8 cys	
Totals	10 cys	12 c ys	o cys	

GOVERNMENT FURNISHED CRITERIA

- (1) Building information schedule (manual).
- (2) Production equipment schedule.
- (3) Utility procurement records (including reimbursable).
- (4) Facilities engineering technical data support.
- (5) Equipment modernization/acquisition plan.
- (6) Basic utility systems information maps.
- (7) Equipment layout and utilization records.
- (8) Final reports of previously completed studies performed under the Energy Engineering Analysis Program (EEAP). Only portions pertaining to the industrial facilities, if any, need to be made available (attached, See D-5, D-6).
- (9) Latest copies of any other energy studies performed since the previous EEAP study. Only portions pertaining to the industrial facilities, if any, need to be made available.
 - (10) Installation Energy Plan.
 - (11) Army Facilities Energy Plan.
- (12) ETLs 1110-3-282, Energy Conservation; 1110-3-318, Procedures for Programming Energy Monitoring and Control Systems (EMCS) Funded through the MCA Program; and 1110-3-332, Economic Studies.
 - (13) Energy Conservation Investment Program (ECIP) Guidance, dated 10 August 1982, and revisions dated 4 March 1985 and 11 June 1986.
- (14) Information on Existing EMCS Studies, Designs, Construction Contracts, or Operating Systems.
- (15) TM 5-785, Engineering Weather Data; TM 5-800-2, General Criteria Preparation of Cost Estimates; TM 5-800-3, Project Development Brochure; and TM-5-815-2, Energy Monitoring and Control Systems (EMCS). (TM-5-815-2 need only be furnished if items 14, 17, and 18 are furnished.)

- (16) AR 415-15, Military Construction Army (MCA) Program
 Development; AR 415-17, Cost Estimating for Military Programming; AR 415-20,
 Construction, Project Development and Design Approval; AR 415-28, Department
 of the Army Facility Classes and Construction Categories; AR 415-35,
 Construction, Minor Construction; AR 420-10, General Provisions, Organization,
 functions, and Personnel; AR 11-27, Army Energy Program; and AR 5-4, change
 No. 1, Department of the Army Productivity Improvement Program.
- (17) ENDSF 84-076-ED ME, Preliminary Survey and Feasibility Studyfor Energy Manitoring and Control Systems.
 - (18) NCEL CR 82.030. Standardized EMCS Energy Savings Calculations.
- (19) The latest applicable Engineer Improvement Recommendation System (EIRS) Bulletin.
- (20) An example of a correctly completed programming document for an ECIP/ECAM Project.
 - (21) Production data.
- (22) Architectural and Engineering Instructions, DAEN-ECE-A, dated 13 March 1987.

SPECIAL REQUIREMENTS AND INFORMATION

1. Point of contact at Radford AAP and Liaison for all work required under this contract is:

Joanne Wills
Radford Army Ammunition Plant
ATTN: SMCRA-OR
Radford, Virginia 24141-0298
Phone: AV 931-7480, (804) 639-7480

- 2. The Fiscal Year to which all ECIP projects should be estimated to and programming or implementation documents prepared for is FY 92. Depending on project packaging, the Installation Commander may determine different program years for the final report. Remaining projects shall be escalated to a FY TBD.
- 3. A computer program titled Life Cycle Costing in Design (LCCID) is available from the BLAST Support Office in Urbana, Illinois for a nominal fee. The computer program can be used for performing the economic calculations for ECIP and non-ECIP ECO's. The A-E is encouraged to obtain this computer program. The BLAST Support Office can be contacted at 144 Mechanical Engineering Building, 1206 West Green Street, Urbana, Illinois 61801. The telephone number is (217) 333-3977. A-E shall indicate in writing what program will be used.
- 4. Consolidated review comments will be provided to A-E by Project Manager about 14 days prior to review conferences. A-E will review each comment and provide consolidated proposed reponses to Project Manager 48 hours prior to conference.
- 5. A-E will provide cover letter with all submittals noting a review is required and that a Review Conference is scheduled approximately 45 days hence. Letter will also inform recipients of letter to follow from Norfolk District C.O.E. setting exact conference date.

APPENDIX B BACKUP DATA AND CALCULATIONS

TABLE OF CONTENTS

- 1. Energy Prices and Economic Parameters
- 2. Effects of Steam Savings on Powerhouse #1 Coal Use and Power Production
- 3. Hourly Electrical Demand Data
- 4. Energy Distribution Analysis Back Up
- 5. Selected Production Data
- 6. Preliminary Evaluation of ECOs
- 7. ECO Calculations
 - Cover water dry tank surface with insulating spheres FN-II-1 FN-U-2 Insulate fiberglass water dry tanks GP-B-1 Install energy-efficient motors GP-B-2 Install energy-efficient motors--upon failure Install energy-efficient motors instead of rewind GP-B-3 GP-B-4 Install variable frequency drives on plant water pumps Replace existing IGG with heat recovery type GP-D-1 Install Condensing Heat Exchanger at Power House #1 GP-D-2 Replace incandescents with 35 W HPS screw-ins GP-N-1 GP-N-2 Replace incandescents with Circline fluorescents Replace exterior incandescents with fluorescents GP-N-3 Replace 40 W fluorescents with 34 W GP-N-4 GP-N-5 Replace lamps and ballasts with energy-efficient types Replace incandescents with HPS fixtures GP-N-6 Replace inefficient ballasts GP-N-7 Replace incandescents with color-corrected HPS screw-ins GP-N-8 GP-N-9 Replace 40 W fluorescents with 34 W upon failure GP-N-10 Replace inefficient ballasts upon failure GP-W-1 Install vinyl strip door curtains Reduce exhaust gas temperature in incinerator GP-X-1 GP-X-2 Reduce water flow into incinerator GP-X-3 Reduce incinerator excess air GP-X-4 Install turning vanes in boiler ductwork GP-X-5 Install thermostatic control system in motor houses GP-X-6 Change incinerator fuel to natural gas MF-X-1 Install preheat controls in FADs NC-U-1 Insulate boiling and poacher tubs NC-X-1 Modify boiling tub heating method Remove steam coils in Activated Carbon Area SR-I-1
- 8. Low Cost/No Cost ECO Calculations
- 9. Programming Documents Backup

Energy Prices and Economic Parameters

Energy Prices:

Purchased Electricity, 3,413 Btu/Kwh, \$8.87/MBtu, \$0.03026/kwh (average cost)

Energy charge: \$4.93/MBtu, \$0.0168/kwh Demand Charge: \$7.12/KW/Month

Source: Rate schedule and Radford AAP estimate

Fuel Oil #2, 138,690 Btu/Gallon, \$4.27/MBtu

Source: November 2, 1989 invoice

Natural Gas, 1.031 MBtu/Kcf, \$3.36/MBtu

Source: October 1989 Natural Gas Billing

Coal (Bituminous), 24.58 MBtu/Ton, PH#1 - \$1.61/MBtu, PH#2 - \$1.78/MBtu

Source: Radford AAP CY 1990 average delivered coal costs

Energy Savings/Costs:

Coal Savings: 1.32 MBtu coal/MBtu 40 psig steam

1.21 MBtu coal/MBtu 275 psig steam

Electricity Purchase vs. Generation Price

Differential Cost:

\$1.11/MBtu 40 psig steam \$0.35/MBtu 275 psig steam

Basis For Cost Estimates:

<u>Adjustment</u>	Labor	<u>Material</u>	Comments
Location	0.683	1.002	Only for estimates by Means, based on Roanoke, VA values
Sales Tax	N.A.	4.5 %	Includes state and local
FICA/Insurance	20.0%	N.A.	<u>-</u>
Overĥead	15.0	1 %	-
Profit	10.0) %	-
Performance Bond	1.0) %	-
Contingency	5.0		New construction
	7.5		Modernization
	10.0) %	Renovation work
Hercules Support	6.0) %	-
SIOH	5.5	%	-
Design Fees	6.0) %	-

All costs are adjusted to January 1990.

REYNOLDS,	SMITH	AND	HILLS
ARCHITECTS .	ENGINEE	RS · PL	ANNERS
11	CORPORATE	D	

SUBJECT Hercules Support	
SUBJECT	AEP NO
Services	SHEET OF
DESIGNER	DATE 5/18
•	

Hercules Support Services

Total job	Lencules Support
\$ 23,000,000	3.5 %
\$ 8,000,000	2.6 %
\$ 5,000,000	7.0 %
\$ 12,000,000	5.8 %
\$ 3,200,000	3.8 %

EFFECTS OF STEAM SAVINGS ON POWERHOUSE #1 COAL USE AND POWER PRODUCTION

It is known that when process steam flow is reduced at the point of use in the production areas, there are two effects on energy purchases at Powerhouse #1. First, coal use is decreased and second, less electricity is generated due to the decrease in steam flow. Therefore, less coal is purchased and more utility-generated electricity is purchased. The following are the detailed calculations used to determine the change in coal use and electricity production at Powerhouse #1 when steam use is reduced due to implementation of an energy saving project.

The approach taken was to perform heat balances for three cases:

Base Case: Typical operating conditions

Case 1: 10,000 #/hr reduction in 40 psig process steam

Case 2: 10,000 #/hr reduction in 275 psig process steam

All pressures, temperatures and enthalpies were provided by RAAP except the final exhaust enthalpy. The final exhaust enthalpy was calculated using the turbine/generator performance chart and determining power production with no extractions. Coal use and electricity production were calculated for each case using fundamental engineering principles. The differences between the Base Case and Case 1 and the Base Case and Case 2 provided the steam-to-coal conversion factors and electricity price differential costs which are summarized at the beginning of this section.

STEAM-TO-COAL CONVERSION FACTOR

AND ELECTRICITY PRICE DIFFERENTIAL COST EXAMPLES

Example #1

Calculate savings due to 1 MBtu reduction in 40 psig steam use.

Example #2

Calculate savings due to 1 MBtu reduction in 275 psig steam use.

Coal savings =
$$1.21 \text{ MBtu (coal)/MBtu (steam)} * 1 \text{ MBtu = } 1.21 \text{ MBtu (steam)} * (steam) * (coal)$$

Example #3

Value of Steam at Powerhouse #1:

Coal savings - electricity price differential costs

40 psig:
$$1.32 * 1.61 - 1.11 = $1.02/MBtu$$
 275 psig: $1.21 * 1.61 - 0.35 = $1.60/MBtu$

EUGENE DIETZGEN GO.

1. b. 3. K.

JUNEAU DIE LEIEN GRAUM MILLIMETER

CURVE NO. BOUTOU

				l : : ::::	lassian	1::::1:::::
	11:1:1:1:1:	1::::			1::::1:1:1	
				1 : 4:1.		
		4-11-11-11-11-11-11-11-11-11-11-11-11-11				
				1 1:11:11		
1	: :: :: ::			76.		
			۱. ا	\mathbf{Y}_{-}		331 331
				1.14111	111111111	
			Y	1. 12 1 1 1 1 1 .		
	4-14-111-111		7	::::	1::::::	!!i.:!-:::
			200		1::::	-::: :::::
	Harata Hara			l i	1::::1:!!!	
		7::		· · · · · · · · · · · · · · · · · · ·		77.11
	4666		75	$\Delta \Delta \Delta$.	BS./	/R
	11.11.11.//	7:1:1:	1			
]::::[:::i	
				L.B	\$ /	
	-///		םם, סם	D	S/HR	,
		:1::::1::::	ila i Jar		l::::i:lii	liiil ::il
	///			1:::1:::		
	//::::	7::::1::::				
2 3 3 7 / / /	/::::::				1111	
3 11////]::::::::::::::::::::::::::::::::::::::	
				1 ::: 1 :: 1		
	:1:[::::.[::	: :::::::::::::::::::::::::::::::::::::	4:-:: ::::	:		:::::
		1	1::::::::::::::::::::::::::::::::::::::			1.:::1 ::1
		1::::1:::	17, 1111	100	I	
1//		1 2	10			(<u>44)</u>
		n_{λ}	ïI.			1 11 1 11 11
	da di 🚱 '	1111	[::::]::::			[::::1.22]
	HRITE	1				
110,000	40-4-44				1:1	1
2000	11: - 1: - 1:		1	{- ii iii.		
1101			1			
<u> </u>			11111111		<u> </u>	
		::::	linibilities.	1000	-: :	[si:d ::]
	1:::: :::::::::::::::::::::::::::::::::	:::: ::::	1:			
	: l::::: ::::i:::::		[i, :: i: :: i			
		1107	ADE	D AT	7	'~'ie'
TE: TURB	INE W	ובט	UPE	NAL	10	IME
RIGH	T OF T	HF:1	Half	PRE	รรรม	RE
			A			
EXTR	ACITION	リニトし	DW.	LIMI	1 L.	NE 5,
- Filiriila, minita	Translation (10111111111	10,004001	111111	lassa sad	1:., .
		41 [1111		11111		1 1
00 #/km						
oo#/4=						
· • • • • • • • • • • • • • • • • • • •						
oo#//a=						
0.0.1//4-						
*#/hr						
*#/hr */hr	MANC	E	146			
#/hr s/hr PERFOR						
#/hr s/hr PERFOR						
PERFOR	STEA	MF	LOW			
PERFOR	STEA	M F	LOW RMY			
PERFOR	STEA	M F	LOW RMY			
PERFOR POWER: VS INC:/ RA	STEA ADFOR IUNITI	M F D A ON	LOW RMY PLA	NT		
PERFOR POWER VS INC. RA	STEA DFOR IUNITI 14001E	M F D A ON B	LOW RMY PLA G.O.	TN 887	-000	3
PERFOR POWER VS INC. RA	STEA DFOR IUNITI 14001E	M F D A ON B	LOW RMY PLA G.O.	TN 887	-000	5
PERFOR POWER YS INC. RA AMM EB BBC	STEA DFOR IUNITI 14001E ACTION	M F D A DN B /	LOW RMY PLA G.O.	NT 1788 NE		3
PERFOR POWER YS INC. RA AMM EB BBC	STEA DFOR IUNITI 14001E ACTION	M F D A DN B /	LOW RMY PLA G.O.	NT 1788 NE		5
PERFOR POWER VS INC. RA INC. RA EB BBC SLE EXTR	STEA DEOR IUNITI 4001E ACTION 251G / 4	M F D A DN B / V TL	LOW RMY PLA G.O.	NT 1788 NE		5
PERFOR POWER YS INC. RA AMM EB BBC	STEA DEOR IUNITI 4001E ACTION 251G / 4	M F D A DN B / V TL	LOW RMY PLA G.O.	NT 1788 NE		5
PERFOR POWER VS INC. RA INC. RA EB BBC SLE EXTR	STEA DEOR IUNITI 4001E ACTION 251G / 4	M F D A DN B / V TL	LOW RMY PLA G.O.	NT 1788 NE		3
PERFOR POWER VS INC. RA INC. RA EB BBC SLE EXTR	STEA DEOR IUNITI 4001E ACTION 251G / 4	M F D A DN B / V TL	LOW RMY PLA G.O.	NT 1788 NE		5
PERFOR POWER VS INC. RA INC. RA EB BBC SLE EXTR	STEA DEOR IUNITI 4001E ACTION 251G / 4	M F D A DN B / V TL	LOW RMY PLA G.O.	NT 1788 NE		5
PERFOR POWER VS INC. RA INC. RA EB BBC SLE EXTR	STEA DEOR IUNITI 4001E ACTION 251G / 4	M F D A DN B / V TL	LOW RMY PLA G.O.	NT 1788 NE		3
PERFOR POWER VS INC. RA INC. RA EB BBC	STEA DFOR IUNITI 4001E ACTION	M F D A DN B / V TL	LOW RMY PLA G.O.	NT 1788 NE		3
PERFOR POWER VS INC. RA INC. RA EB BBC SLE EXTR	STEA DFOR IUNITI 4001E ACTION	M F D A DN B / V TL	LOW RMY PLA G.O.	NT 1788 NE		3
PERFOR POWER VS INC. RA INC. RA EB BBC SLE EXTR	STEA DFOR IUNITI 4001E ACTION	M F D A DN B / V TL	LOW RMY PLA G.O.	NT 1788 NE		5
PERFOR POWER VS INC. RA INC. RA EB BBC SLE EXTR	STEA DFOR IUNITI 4001E ACTION	M F D A DN B / V TL	LOW RMY PLA G.O.	NT 1788 NE		3
PERFOR POWER VS INC. RA INC. RA EB BBC SLE EXTR	STEA DFOR IUNITI 4001E ACTION	M F D A DN B / V TL	LOW RMY PLA G.O.	NT 1788 NE		5
PERFOR POWER VS INC. RA INC. RA EB BBC SLE EXTR	STEA DFOR IUNITI 4001E ACTION	M F D A DN B / V TL	LOW RMY PLA G.O.	NT 1788 NE		5
PERFOR POWER VS INC. RA INC. RA EB BBC SLE EXTR	STEA DFOR IUNITI 4001E ACTION	M F D A DN B / V TL	LOW RMY PLA G.O.	NT 1788 NE		5

RSH_®

SUBJECT	AEP NO
	SHEETOF/4/
DESIGNER	DATE (/ 10/9/
CHECKER	DATE

Heat Balance Calculations

Temperatures and pressures provided by RAAP

Typical operating conditions allow minimum flow to the condensing section; From the terbine/ generator curves de this would be 20,000 #/hr.

Calculate exhaust enthalpy

For 20,000 #/hr Hhrottle and no extractions, the power generated is 1500 kW (from extent the Turbine/Generator Performance Graph):
Therefore, assuming a 95% generator efficiency:

$$20,000 (1389 - h) + 0.95 = 1500$$

WINDSTAND

$$20,000 * 1389 - 20,000 h$$
 = $1500 * 3413$ 0.95

$$h = \frac{1500 \times 3413 + 20,000 \times 1389}{0.95}$$

SUBJECT		AEP NO
		SHEET 2 OF 14
DESIGNER	Ø#	DATE
CHECKER		DATE

I sentropie expansion (100% efficiency) from throthe to achainst yields an enthalpy of 927 Btu/16. From this efficiencies can be calculated for the various flow rates.

$$\frac{\text{Eff}}{1389 - h} = \frac{1389 - h}{1389 - 927} = \frac{1389 - h}{462}$$

RSH	æ
-----	---

SUBJECT		AEP NO	_ AEP NO	
		SHEET 3 /	OF <u>/</u> 4	
DESIGNER	种州	DATE 1 Z	s 91	
CHECKER		DATE		

Calculate effects of saving steam at point of lead.

Assumptions: (provided by Hercules personnel)

- Boiler efficiency = 0.85
- Flow to condenser is 20,000 #/hr. (estimated)
- 275 psig return is 40% of production
- 40 psig veturn is zero 275 pig undensate return temp. is 60F
- enthalpy Steam plant temp. pressure

415a (400 prig) throttle 750 F 1389 extraction 1 290a (275 prig) 1360 684F 55a (40 pris) 1254 extraction? 440F 2"47 final ext.

The purpose of these calculations are to show the coal savings due to a veduction in steam use and also the amount of electricity that must be purchased to make up for the reduction in production. The method used is to perform a heat balance for the Base Case or typical operating condition, and two other cases. Case it is for a 10,000 # /hr reduction in to psig steam. Cape 2 is for a 10,000 #/hr reduction in 275 paig steam. & Meass and every balances are performed around the deaerator toute (DA). and the The turbine/generator performance curves are used to calculate the final extraction on thatpy. It is further assumed that a reduction in steam load at the point of use will & result in a reduction in steam production,

RSH	
	,

SUBJECT Radford Turbine	AEP NO
Conducing Section	SHEET OF 14
DESIGNER PFH	DATE 1/28/91
CHECKER	DATE

- · Calculate final exhaust outhalpy
- · Use the turbino/generator performance graph with no extractions to get flow and power values
- · Knowing the throttle flow enthalpy is 1389 Btu/16 (see assumptions) the exhaust enthalpy can be calculated

where
$$m = mass$$
 flow rate (16/hr)

where $m = mass$ flow rate (16/hr)

wh = difference between initial

and final enthalpys (B+u/16)

wh= wook done to turbine/generator (Bm)

ng = generator eff. (20.95)

 $E_{X,2}$ 20,000 $1b/hr \cdot (1389 - X) Etu/16 \cdot 0.95 = 1500 kW \cdot 8413 Btu/16$ X = 1120 Btu/16

· Cost of electricity per kwh =

where $\mathcal{E} = \text{solprise}(4/8tu)$ AR = boiler iff:

From (tw)

Ex.: 1.61(#/msta)(mrsta) (20,000 165/hr)(1389-69) Btu/16

PE = 3.3 4/kwh

3/3/

REYNOLDS, SMITH AND HILLS ARCHITECTS • ENGINEERS • PLANNERS INCORPORATED

SUBJECT Radford Turbine	AEP NO 290 - 0379-000
	SHEET 5 OF 14
DESIGNER	DATE 9/20/90

The results of the previously described calculations are shown below:

CHECKER

k#/hr	EXHAUST Entholpy (2"HgA	Efficiency	k <u>w</u>	24/huh
4/5	:046	74	4300	2.6
30	1073	67	2600	2, 9
70	1120	58	1500	<i>3</i> . 3
15	1161	49	750	3.9
10	12 45	21	400	6.3
7.5	1317	16	150	12.5

RSH	•
)

SUBJECT

DESIGNER _______

SHEET 6 OF 14

DATE _

BASE CASE (see recompanying diogram)

CHECKER

DA HEAT BALANCE

$$20 + m_1 + m_2 + 20 - 100 = 0$$
 $m_1 + m_2 = 60 - m_1$

CUESTHUTING & CEBRAGIO

$$m_1 = \frac{(00(234) - 20(49) - (20)(28) - (60)(1254)}{(28 - 254)}$$

Power Propuction

$$0.95 \times 100 (1389-1360) + 50 (1360-1254) + 20 (1254-1120) = 3028 kw$$

CHSE

BASE

SUBJECT RADFORD AAP	AEP NO
	SHEET <u>7</u> of 14
DESIGNER 6, FALLON	DATE 9-19-90

3028 kW 大の市 1120 h m= 20 k#/hr P1113 ر -40 paig m=50k# 275 psiz 17 = 30 k#/hr 2902 684F 1360 h 1101 69 h m2=16.3 55°02 440 F 1254h D. A. m = 13.7 k#/hr 4152 750 F 1389 h M = 100 k#/hr 型量 28h M=20 KH 28h hr m= 0k# 86h hr 86h m 275 RET (40%) 40 RET (0%) MAKE-UP BOILER N= .85 267F 236h 135.6 Mistu/hr Coxc

SUBJECT		AEP NO	AEP NO		
		SHEET 8	OF 14		
DESIGNER	S.T.	DATE			
CHECKER	A.	DATE			

CASE 1 REDUCE HODERS STEAM FLOW Ly 10,000 #/HR.

(see accompanying diagram)

D.A. HEAT RALANCE

①
$$\leq m = 0$$
 $20 + m_1 + m_2 + 20 - 88 = 0$ $m_1 + m_2 = 48$ $m_2 - 48 - m_1$

SUBSTITUTING & REGIRANGINA

$$\frac{88(220) - 20(69) - (20)(28) - (48)(1254)}{(28 - 1254)}$$

$$m_1 = 33.7 lbs/hu$$

Power PRODUCTION

$$0.95 \times 88,000 (1389-1360) + 38,000 (1360-1254) + 20,000 (1254-1120)$$

$$= 2577 \text{ kW}$$

FUEL USE

$$Q = \frac{M\Delta h}{n} = \frac{88(1389 - 236)}{.35} = \frac{119369}{119.4} \times \frac{119.4}{m} \times \frac{119.4}{$$

13540

SUBJECT RADFORD AAP	AEP NO		
	SHEETOF	14	
DESIGNER G. FALLON	DATE 9-19-90		
CHECKER	DATE		

<i>5</i>		CHECKER	A		DATE
	Kw = 2577 kw		k#/hr		UAIE
# AR REDUCTION OF THE FLOW	40 paig 275 paig 83 k#/hr	3.7 k#/hr 1360 h 1360 h m=50 44/hr 1254h 17 = 18 k#/hr		3h = 26 3h K#Mr 69h	267 m=0k# 400 267 m=133.7 m1=33.7 hr 236h
10,000	4152 750 F 1389 H	BOILE R. R 85	MBty Mr	275 RET 28	267 F 236h

	4	S	ေ	7
_			-	B

CASE 2

10,000 \$/AR REDUCTION IN 275 12115 F4000

D.A. HEAT BALANCE

$$16 + m_1 + m_2 + 20 - 88 = 0$$

 $m_1 + m_2 = 52$
 $m_2 = 52 - m_1$

SUBSTITUTING & REMIRANGING

$$m_1 = \frac{88(222) - 20(69) - (16)(28) - 52(1254)}{(28 - 1254)}$$

Fower PRODUCTION

$$0.95 \times 38,000(1389-1360) + 48,000(1360-1254) + 20,000(1254-1120)$$

= 2873 kW

HEAT INPUT

$$Q = \frac{m \circ h}{n} = \frac{88(1389 - 236)}{0.85} = \frac{119.4 \text{ MStu/hr}}{}$$

CASE 2

SUBJECT RADFORD AAP	AEP NO
	SHEETOF14
DESIGNER G. FALLON	DATE 9-19-90
CHECKER	DATE

	Kw = 2873 KW		k#/hr		
10,000 # (Mr REDUCTION IN 275 PSIG EXTRACTION FLOW	415a 275 250 F 1389 h m = 88 k#/hr	BOILER RH/hr 13.7K#/hr m= 40 1360 h 1360 h 1264 h	m= 20 k#/hr	26h m = 37.7 m = 37.7	267F 236h

REYNOLDS.	SMITH	AND	HILLS
ARCHITECTS	ENGINEE	RS · PL	ANNERS
1	NCORPORAT	ED	

SUBJECT		AEP NO
		SHEET 12 OF 14
DESIGNER	GWF FAII	DATE
	A PH	DATE

CALCULATE ENERGY FUEL SAVINGS AND EFFECT OF REDUCED POWER GENERATION DUE TO EAVING 40 PSIG STEAM

REFERENCE: HEAT BALANCES
(BASE (ASE & CASE 1)

COAL SAVINGS PER MBHU OF 40 PSIG STEAM SAVED

$$\frac{(135.6 \, \text{MBtu/hr} - 119.4 \, \text{MBtu/hr})}{(10,000 \pm /\text{hr})(1254h - 28h) * \frac{\text{MBtu}}{10^{6}15t \, \text{h}}} = \frac{1.32 \, \text{MBtu} \, \cos f}{\text{MBtu}}$$

$$\frac{1.32 \, \text{MBtu} \, \cos f}{\text{MBtu}}$$

CALCULATE INCREASED COSTS INCURRED DUE TO PURCHASING ELECTRICITY RATHER THAN PRODUCING IT ON-SITE

= \$1.11 ADDITIONAL PURCHASED ELECTRICITY COSTS

PER MISTU 40 PSIG STEAM SAVED

25	6	
		A R

SUBJECT		AEP NO				
		SHEET	13	OF	14	
DESIGNER	GWF	DATE				_
CHECKER	Pl4H	DATE				_

CALCULATE THE FUEL SAVINGS DUE TO 275 PSIG STEMM REDUCTION)

275 PSIG SAVINGS FACTION - USING HEAT BALANCES

(PASE CASE & CASE 2)

COKE SAVINGS PER WISTU OF 275 PSIG STEAM SAVED:

$$\frac{(135.6 - 119.4) \, \text{MBtu/hr}}{(10,000 \, \#/\text{hr}) (1360 - 78) \, h} = 1.21 \, \text{MBTu}$$

CALCULATE ADDITIONAL COSTS INCURRED DUE TO PURCHASING ELECTRICITY RATHER THAN PRODUCING IT ON-SITE

$$= \frac{(3028 - 2873) \text{ kW} \times (0.03026 + /\text{kwh})}{(10,000 \text{ lb/hr}) (1360-28) \text{h}}$$

= \$ 0.35 ADDITIONAL PURCHASED ELECTRICITY

COSTS FER MBTH 275 PSIG

STEAM SAVED

REYNOLDS. SMITH AND HILLS		SHE
ARCHITECTS · ENGINEERS · PLANNERS	DESIGNER	DAT
INCORPORATED	CHECKER 5 +	DAT

E

(MRSTEN STEAM)

CAL QUILLATIONS EVINIMARY

STEAM SAUWGS FACTORS

COAL SAULUGS

40 PSIG : 1.32

275 PS16 :

1,21

ADDITIONAL COSTS ASSOCIATED WITH ELECTRICITY PURCHASE (#/m/sta stram) VERSUS GENERATION

. 40 PSIG : \$ 1.11 275 PSIG : \$ 0.35

VA. S.C.C. TARIFF NO. 13

Seventh Revision of Original Sheet No. 9-1 VA. S.C.C. TARIFF NO. 13 Cancelling Sixth Revision of Sheet No. 9-1

SCHEDULE I.P.
Industrial Power Service

AVAILABILITY OF SERVICE

This rate Schedule is available for industrial, railroad, or pipeline customers having capacity requirements equal to or greater than 7,500 KW. Service shall be delivered and measured at voltage levels which have been designated as primary distribution, subtransmission, or transmission voltages for service in the general area, but not less than 2.4 KV. Each customer shall contract for a definite amount of electrical capacity in kilowatts which shall be sufficient to meet the customer's normal maximum demand, but in no case shall the capacity contracted for be less than 7,500 KW. The Company shall not be required to supply capacity in excess of that for which the customer has contracted. Contracts shall be in multiples of 100 KW.

MONTHLY RATE	DELIVERY VOLTAGE				
	Primary Distribution 2.4-40 KV (\$)	Sub-Transmission 41-90 KV (\$)	Transmission Above 90 KV (\$)		
Customer Charge	183.00/month	538.00/month	876.00/month		
Demand Charge: Each KW of monthly billing demand	7.77/KW	7.12/KW	7.66/KW		
Energy Charge: All Billing KWH	0.00184/KWH	0.00092/KWH	0.00068/KWH		
Reactive Demand Charge: For each KVAR of lagging reactive demand in excess of 50% of the monthly billing demand	0.59/KVAR	0.59/KVAR	0.59/KVAR		
Levelized Fuel Factor: All Billing KWH	0.01589/KWH	0.01589/KWH	0.01589/кwн		
MEASUREMENT AND DETERMINATION OF DEMAN	ND AND ENERGY	01681	•		

The billing demand in KW shall be taken each month as the highest single 30-minute integrated peak in KW as registered during the month by a demand meter or indicator, or, at the Company's option, as the highest registration of a thermal type demand meter or indicator, but the monthly billing demand so established shall in no event be less than 60% of the contract capacity of the customer, nor less than 7,500 KW.

The reactive demand in KVAR shall be taken each month as the highest single 30-minute integrated peak in KVAR as registered during the month by a demand meter or indicator, or, at the Company's option, as the highest registration of a thermal type demand meter or indicator.

Billing KWH shall be metered KWH, except, when the Company elects to measure energy at the secondary side of transformers owned by the customer, billing KWH shall be metered KWH multiplied by 1.04, billing KW shall be metered KW multiplied by 1.04, and billing KVAR shall be metered KVAR multiplied by 1.04.

EQUIPMENT SUPPLIED BY CUSTOMER

Customers who as of October 7, 1983, owned, operated and maintained all equipment and apparatus beyond the delivery point of service, were receiving equipment credit for such ownership, and whose service was supplied at a delivery voltage of 34,500 volts (primary delivery voltage) shall receive a credit of \$0.51 per KW of monthly billing demand.

MINIMUM CHARGE

This Schedule is subject to a minimum monthly charge equal to the sum of the customer charge, demand charge, energy charge, reactive demand charge of the monthly rate, levelized fuel factor, and credits as determined under the clause "Equipment Supplied by Customer."

First Revision of Original Sheet No. 9-2 VA. S.C.C. TARLET NO. 13 Cancelling Original Sheet No. 9-2

VA. S.C.C. TARIFF NO. 13

SCHEDULE I.P.
Industrial Power Service
(continued)

PAYMENT

Bills are due upon presentation. Any amount due and not received at the main or branch offices, or authorized collection agencies, of the Company within twenty (20) days of the bill preparation date shall be subject to a delayed payment charge of 1½%. This charge shall not be applicable to local consumer utility taxes.

TERM OF CONTRACT

Contracts under this Schedule will be made for an initial period of not less than two (2) years and shall continue thereafter until either party has given twelve (12) months written notice to the other of the intention to terminate the contract. The company will have the right to make contracts for initial periods longer than two (2) years.

SPECIAL TERMS AND CONDITIONS

See Terms and Conditions of Service.

Seventh Revision of Original Sheet No. 6 VA. S.C.C. TARIFF NO. 13 Cancelling Sixth Revision of Sheet No. 6

VA. S.C.C. TARIFF NO. 13

SCHEDULE S.G.S. (Small General Service)

AVAILABILITY OF SERVICE

Available for small general service customers with normal maximum electrical capacity requirements of less than 300 KW per month.

When a customer being served under this Sabadula and the sabad

When a customer being served under this Schedule establishes or exceeds a normal maximum requirement of 300 KW per month, the customer will be placed on the appropriate rate Schedule and required to contract for such capacity requirements.

MONTHLY RATE

Levelized Fuel Factor All Metered KWH . . .

1.589¢ per kwH

.0405

DETERMINATION OF BILLING DEMAND

The billing demand in KW shall be taken each month as the highest registration of a 15-minute demand meter or indicator.

Industrial and coal mining customers having 10 KW or higher normal maximum demand shall contract for capacity sufficient to meet their normal maximum requirements in KW. Monthly billing demands of these customers shall not be less than 60% of contract capacity. Monthly billing demands will be rounded to the nearest tenth.

EQUIPMENT SUPPLIED BY CUSTOMER

When the customer owns, operates, and maintains the complete substation equipment, including any and all transformers and/or switches and/or other apparatus necessary for the customer to take his entire service at the primary voltage of the transmission or distribution line from which said customer is to receive service, a credit of \$0.30 per KW of monthly billing demand will be applied to each mon

MINIMUM CHARGE

This Schedule is subject to a minimum monthly charge equal to the customer charge, plus such additional charges as are derived from application of the demand charge, energy charge, levelized fuel factor and, if applicable, equipment credits.

PAYMENT

Bills are due upon presentation. Any amount due and not received at the main or branch offices, or authorized collection agencies, of the Company within twenty (20) days of the bill preparation date shall be subject to a delayed payment charge of 14%. This charge shall not be applicable to local consumer utility taxes.

TERM

Variable, but not less than one (1) year initial period and shall continue thereafter until either party has given sixty (60) days written notice to the other of the intention to terminate the contract.

SPECIAL TERMS AND CONDITIONS.

See Terms and Conditions of Service.

her her is affect on oall

Appala 'an Power Company | PO BOX _700 ROANOKE VA 24094

H 2 611 94 66250 3 1

RADFORD VA 24141

2611946625011 0343436870343436870 OCTGEER 1985 After Last Pay Date Add Please Return This Portion With Your Payment 5,151.55 Meter Types Account Number: (Please Use When You Call or Write) K - Kilowatt Hour . E · Estimated D - KW Demand C - Meter Change Service Address
HERCULES INC A - KVA Demand O - Off Peak R - RKVAH V - KVAR Demand RADFCRD VA 24141 Revenue OCTOBER 1989 BUS' 91 EPE Schedule PULASKI Office Previous Readings Meter Constant Metered Usage 02769 1563-C00 21000-11655000 10004 Contract Capacity 13,000 " mar (and

MONTHLY RATE BILLING
REACTIVE DEPAND @ .590
GROSS AMOUNT
TOTAL MONTHLY BILLING
LATE PAYMENT CHARGE
PREVIOUS EALANCE
TOTAL AMOUNT DUE Billing KVAR 28.0 RKVAH Metered Demand 19,952 Power Factor Billing Demand 19,952 7.12 #/KW Metered KWH 6 0.01681 \$/KNH TIME 11,655,000 Power Factor Constant Adjusted KWH 11,655,000 Voltage Ac. KWH Billing KWH 11,655,000 **5**5. 0 1F = 20% IF PAID AFTER NOV 14 ADD \$5,151.55

APPALACHIAN POWER

MAIL CATE

10-25-89

COAL MARKETING CORP.

P. O. Box 734 ABINGDON, VIRGINIA 24210 (703) 628-4507

-----INVOICE ----

Hercules Incorporated

Radford Army Ammunition Plant

Radford, VA

SHIPPED TO:	_ Pepper, VA
J 1 DD 10.	

FOR PH NO I

ER NO.	MINE NAME	MINE # 576	10-23-89	2036	SALESMAN George Barker
	DESCRIPTION	1	UANTITY SHIPPED	PRICE PER TON	AMOUNT
	SOU 76229	105	5.00	\$25.68	\$ 2,696.40
	NW 14469	92	2.95	·	2,386.96
	SOU 78469		0.10		2,544.89
-	SOU 76034	106	5.20		2,727.22
	SOU 77190		.50		2,555.16
	NW 139419	98	3.15		2,520.49
	NW 8942-	96	5.60		2,480.69
	SOU 360916-	98	8.80		2,537.18
	SOU 360913 -	96	5.55		2,479.40
	NW 4402 -	93	3.45		2,399.80
ŀ	NW 119799		.90		2,334.31
,	NW 118425	94	1.55		2,428.04
	NW 138726	N Company of the Comp	.45		2,451.16
	NW 10173		.45		2,322.76
	NW 75591	i i	3.60		2,146.85
	NW 92959	l l	1.00		2,413.92
	NW 132898		5.50		2,452.44
	NW 132303		1.30		2,421.62
	NW 116381		3.05	ļ	2,389.52
	NW 142009	I	7.55		2,505.08
	NW 132913		2.50	-	2,375.40
	NW 74668		3.85		2,024.87
	NW 119793		.55		2,351.00
	NW 92796		3.55		2,402.36
	NW 93220	I	3.35		2,448.59
	NW 120232	I	3.70		2,406.22
	NW 11910		5.10		2,442.17
į	NW 9105		7.00		2,490.96
	NW 6572		0.25		2,574.42
	NW 138706		0.85		2,589.83
	NW 166672		3.75		2,535.90
	50U 360629		3.50		2,657.88
	SOU 351004		2.60		2,634.77
	SOU 360127		5.85		2,487.11
	SOU 360769	1	B. 9 0		2,539.75
	SOU 76739 -		70		
	300 ,0733				2,585.98
		3,45	5.65 tons	⇒ \$25. 68	\$88,741.10

MAILING ADDRESS POST OFFICE 30X 190

MINERS AND SHIPPERS OF BITUMINOUS COAL SINCE 1910

INVOICE NO.

KALAMAZOO, MICHIGAN 49005

23893

D # #2

PHONE AREA CODE 616 343-5531

MONTH, SUBJECT T	O 1% INTEREST. ANNUAL PATE OF 12%.		
9-30-89	VOUR ORDER NO. VT 23457	N/S	6032
2 00 00			

Hercules, Incorporated Attn: Acct. Pay. Caller Service 1

Radford Army Ammunition Plant

Cowan, VA

VA	24141-0299
	_

DATE		CAR			DATE	CAR		POUNDS
HIPPED	INITIAL		NUMBER	POUNDS	SHIPPED	INITIAL	NUMBER	
e 8 - 0 3	NEW	1432	664 106 241	1734 1777 1732				
_				+ FRT	AT 14,	13 Ton		
		CARS	POUNDS	TONS	PRICE	AMOUN	T	
VOICE		3	5243	262.15	28.50	7,471.28		PAY THIS AMOUNT

RAILROAD WEIGHTS TO GOVERN ALL SETTLEMENTS

UNITED CITIES GAS COMPANY

703-639-1661 ■ ADDRESS INQUIRIES TO THIS ADDRESS
TN 37601-006 P.O. BOX 60 JOHNSON CITY

DATE RENDERED 1 1/02/89

ACCOUNT NO

67-0020643-01

23 DUE DATE

11/20/89

AMOUNT DUE

TOTAL PAYMENT \$

\$10,656.18

RADFORD ARSENAL % MS. ANN KING BOX 1

RADFORD

VA

24141

PLEASE RETURN THIS PORTION WITH YOUR PAYMENT

UNITED CITIES GAS COMPANY

BRING BOTH PORTIONS TO PAY IN PERSON

FATCLLASS PE	ETER Albert	[4	METER RE	 MULTIFIER OF FRESC PEFACTOR	BTU FACTOR	CCF THERMS	PURCHASEL GAS ALDUSTIMENT	AN'OU'."	
į '	. 1			 		·			_

1526 I

1065618

AMOUNT DUE SEF LICE ADDRESS DUE DATE AMOUNT DUE 11/20/89 \$106561.8 ATLABLE IN CUR OFFICE UPON REQUEST

1 (1 cm - 100000 bin

3/Metu

INVOICE

INVOICE DATE

INVOICE PAGE

10/12/89

NO. 15113 1

JID ASPHALTS . HEATING OILS . GASOLINES PETROLEUM PRODUCT TRANSPORTATION P. O. Box 12626

ROANOKE, VIRGINIA 24027-02626 PHONE (703) 345-8865

FED. ID# 54-0486527

002364-000

HERCULES INC.

RADFORD ARMY AMMN. PLANT

P. O. BOX 1

SOLD

RADFORD, VA 24141 FUEL OIL ACCOUNT

SHIP TO

VB02602

ORDER NO.	ORDER DATE	CUSTOMER NO.	SALES MAN	PURCHASE ORDER NO.		SHIP VIA		SHIP DATE	TERMS	741
784	10/12/89	2364	. i	F0 #2	No	ship via	1	0/11/89	NET 30 DAYS	

QTY. SHIPPED PRICE UNIT PRICE QUANTITY **ITEM NUMBER** ITEM DESCRIPTION UNIT ITEM DISCOUNT QTY. BACK ORD. EXTENDED PRICE 7,192 GL D/S #2-TL FUEL OIL #2 -TRAILER LOAD HGL 59.95

4,311.60

ROAD TAXES Fed 0.00 State 0.00 Total 0.00 SALE AMOUNT 4,311.60 MISC. CHARGES .00

INANCE CHARGE IS COMPUTED BY A "PERIODIC RATE" OF 1 1/2 % PER MONTH (OR A MINIMUM CHARGE OF 50 CENTS PER MONTH ON BALANCES THE SON WHICH IS AN ANNUAL PERCENTAGE RATE OF 18% PER MONTH (OR A MINIMUM CHARGE OF 50 CENTS PER MONTH ON BALANCES AND HICH IS AN ANNUAL PERCENTAGE RATE OF 18% APPLIED TO ALL CHARGES OR ITEMS WHICH HAVE BECOME MORE THAN 30 AYS PAST DUE. FUEL OIL AND EQUIPMENT CO., INC. ROANOKE, VIRGINIA LEASE PAY FROM THIS INVOICE. NO STATEMENT WILL BE SUBMITTED UNLESS REQUESTED.

FREIGHT .00 **SALES TAX** .00 TOTAL 4.311.60 PAYMENT REC'D.

BALANCE DUE

WEBB'S OIL CORPORATION

P.O. BOX 7098 ROANOKE, VIRGINIA 24019-0098 (703) 362-3795

56245

INVOICE

INVOICE: DATE	INVOICE, NO.	PAGE
11/02/89	42875	1

TERMS 1

439130-005

SOLD

HERCULES AEROSPACE DIV HERCULES INCORPORATED RADFORD, VA 24141-0299

ORDER NO. ORDER DATE CUSTOMER SALES-

SHIP

SHIP'VIA

HERCULES AEROSPACE DIV HERCULES INCORPORATED RADFORD

SHIP DATE

- - Dr Dr

* (J-1*

MDEN NO.	ONDEN DAJLE	NO. MAN	ORDER NO.	SHIP VIA	SHIP DATE	7.1	LENING AND
46187	11/01/69	439130	VL-02755	TRUCK	11/02/65	NET -	10-10VB-
JANTITY ORD UNIT	QUANTITY QUANTITY BACK ORD.	ITEM NO.	ë s∤ e e IŢE	M DESCRIPTION	UNIT PRICE	PRC.	EXTENDED PRICE
237.0	7237 . 0	12	# 2 HEATI	ING DIL	59.8	25 HG	4,287.92
						N	1989 E.
	÷	Ht. Hei	0.00	State (00 To	tal	0.00
					CALEANO	11111	

THHAS YOU FOR YOUR ORDER

Due date 11/12/89

SALE AMOUNT 4, 287. 92

MISC. CHARGES . 00

SALES TAX . 00

FREIGHT . 00

TOTAL 4, 287. 92

PAYMENT REC'D

Terms NET 10 DAYS

Radford AAP Electric Demand Friday - November 10, 1989 (i) N 4 ट् Ó 'n <u>a</u> ပို (Thousands) WX bnameD

ENERGY DISTRIBUTION ANHLYSIS BACKUP

ELECTRICITY	SUMMER (1/89)	WINTER (8/89)	AVERAGE	8	ASSIGNED AREA
PH#1	1,070,000	1,517,000	1,293,500	9.9	UTIL
BUS LOSS	227,850	595,550	411,700	3.1	UTIL
CAST PROP	546,590	576,580	561,585	4.3	S'LESS
SOLVENT	2,440,031	2,170,701	2,305,366	17.6	SOLVENT
SOLVENTLESS	1,702,616	1,885,691	1,794,154	13.7	S'LESS
NG	178,542	349,109	263,826	2.0	OTHER
ACID	1,660,940	1,200,914	1,430,927	10.9	ACID/NC
NC	2,296,520	1,213,374	1,754,947	13.4	ACID/NC
TNT	10,800	9,600	10,200	0.1	OTHER
WASTE ACID	204,575	201,737	203,156	1.6	ACID/NC
PLANT WATER	721,000	800,000	760,500	5.8	UTIL
CAST WATER	61,295	102,960	82,128	0.6	UTIL
PLANT AIR	420,480	386,880	403,680	3.1	UTIL
PH #2	129,759	216,948	173,354	1.3	UTIL
ASBP	1,146,000	333,240	739,620	5.6	ADM/HEAT
AMBP	741,000	15,000	378,000	2.9	ADM/HEAT
HOUSING	18,490	23,624	21,057		ADM/HEAT
OTHERS	216,800	222,160	219,480		OTHER
INDIRECT	359,712	234,932	297,322	2.3	OTHER

	01/30/89	MMUNITION PLANT	POWER DISTRIBUTION	0000
)	RUN DATE 01	ARMY AM	CEST POWER	200
	DF 8001	RADF		

DISTRIBUTED POW

128 N 20 0 0 1 1 3 0 1 1 8. 401-000 333,240 349,109 1,200,914 1,213,374 THE STATE 201.737 102,960 386,880 15.000 2,170,701 1,920 2,057 936 1.473 847 1,480 908 772 •658 666 1.400 23,624 276,015 245,784 215,000 SOLVENT PROPELLANT SOLVENTLESS PROPELLAND TOTAL STAFF VILLAGE CORPS OF ENGINEERS TOTAL OTHERS USAGE IOTAL PLANT USAGE WASTE ACID PLANT CAST PROPELLANT NITROCELLULOSE WITROGLYCERIN STAFF VILLAG PLANT NATER SOUER HOUSE CAST WATER IBAISA 450 CAST AIR HOUSE A C 1 D ASBP AMBP 12.6 2,543,000 2,695,000 2,954,000 1,517,000 3,864,000 346,000 1,400 148,000 586,000 755,000 842,250 240.000 567,000 22,000 17,940 87,000 12,056,000 130,300 616,000 967,000 5,970,200 614,000 3,973,250 35 1,000 X POWER HOUSE DISTRIBUTION 69KV LOOP DISTRIBUTION HOUSE GENERATION TOTAL PEAK DEMAND DATE 01/09/89 TIME 2000 AVERAGE MONTHLY KU TOTAL GENTPURCH POWER GENERATED PEAK DEMAND PURCHASED PEAK DEMAND SUBTOTAL PWR HSE BIST PURCHASED POWER-APCO SUBTOTAL LOOP DIST. POWER HOUSE USAGE TOTAL GENERATION PROPEL JORDAN FL 000L TG LIGHTING ACID PLT WATERUKS GENERATOR NO 2 Generator no 3 Generator no 4 NITROC PROPEL NITROC JORDAN C PROPEL LIGHTING NITROC ADM AREA NET GENERATION SHOPS PUNP **C.S.S.T.** ASBP AMBP 4RP GENERATOR CKT 16-17 0-13

9,708,518

TOTAL METERED USAGE

INDIRECT

6.4

595,550

9,943,450+

FOTAL POWER DIST.

BUS LOSS

234,932

				<u> </u>		<u> </u>		6										R E				5 %									1 1 x	3 3		3 8	5 3	J	3 5)	= =		
A. 6	70	<u>+</u>	اء و	13.6	- 0	i i i	•	، <u>ه</u> . ۱ ــ	જ I		- I	 	8	2,7	-															2		0.2		ڊ د						-		2,2	
20125	9/2	177	18.0	3.5.	6.7	-0	J	<u>۲</u> .	، بو - ف	0,7	2.5	- - -	8'Z	•0		e de la composition della comp	333	. 5	6.5													2,0	.	8,								6.1	
Stend	થ	** \$	17.2	12.0	5,1	7.91		J. 1		20,4	ا _ا ا	0.9	8.0	7.0			422		7 7 7			17. 21								-		70	3	5:1					:			2,5	
				1.702,616.		,	10,800.													11.0									,*· 									•					
466	20,20	546.590	031	-	1.660.940	2,296,520	Bolot	204,575	41 205	420.480		129,759	1,146,000	12,260,148		٠	858	7 0 C	727	1.185	٠.		532	75067	10.020	1,399	5 S S	201	825	1,167	0 09	18,490		004,402	5.600	0			235,290	83 7 SO 7 C	-	359,712	
_ '		AWS CAST PROPELLANT	ROPELLANT	SULVENILESS PROPELLANT NITROGLYCERIN		MITROCELLULOSE	TNT 10 3 UACTE ACTO	OIDE ALID		PLANT AIR.	H	POWER HOUSE 2	7 0 0 5 4	TOTAL PLANT USAGE		VILL	HOUSE NO 1	0 Z	02		NO 7	2	NO	2 =	10 12 % WAY 15 15 15 15 15 15 15 15 15 15 15 15 15	0 2	NO 1	•	E 20 -	SE NO 1	HOUSE NO 20	TOTAL STAFF VILLAGE	804184 480		S OF ENGINEE	CENTEX (CONTRACTOR)			TOTAL OTHERS USAGE	TOTAL METERED USAGE		3.5 INDIRECT USAGE	
WER DISTRIBUTION	(KUH	289,00	768	O	ממט טינ א	1.070.000 7/6 12.9		4,200,000	,883,000	•	14,153,000		12,900	00 HRS	i		RIBUTION	KWM	102,700	158,200	317,000	163,000	749,000	228,000	2,060,000		531,000	3	0	7,593,900	2	_	767,250		1,227,000	1,312,000	<u>.</u>	5,261,250	12,855,150	,	6.4 4.1 11 (16 4.7 2 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
ELECT POWER DIS		USF	2 C	GENERATOR NO 3	e Z	TOTAL GENERATION	OUSE USA		ENERATION	PURCHASED POWER-APCO	and manual	STALL SERVICE FOREX	ON A	- 1	E 21			POWER HOUSE DIST	NAME	OODLTG Ghting	SHOPS	PROPEL	A NITROC	PROPEL	63 0	6 ACID PLT	WATERUKS	LIGHTING 2	12 C NITROC	ADM AREA 3	SUBTOTAL PUR HSE DIST	THEISTSTE GOOD NASS	TNT 433	1 8 P	PUMP	200	4 d d	d B M M	SUBTOTAL LOOP DIST.	TOTAL POWER DIST.	3 3 0 1 S I B	3	

		HR5/MU	(MBTU/YR)		TOTAL	AREAS	
ELECTRICITY GENERATION	_	_	599,111	(#2)	16.5	UTII	
ADP	10 720	400	39,256	1 4 1 1	1 3	ACID/NC	
NAC/SAC (2)	49 797	700	110 874		14.5	ACID/NC	
NAC/SAC (2)	2 224	700	440,874 20,660		0.7	ACID/NC	
COTTON DRY (1)	40.070	700	20,000		12.2	ACID/NC	
NITRATOR (1) BOILING TUBS (1 HOUSE)	42,368	760	3/2,334	1401	2.4	HCID/NC	
BOILING TUBS (1 HOUSE)	-	-	113,374	(183)	3.0	HCID/NC	
POACHER/BLENDER (1 HOUSE)	-	-	61,544	(183)	2.0	ACID/NC	
DEHY (2) MIX HOUSES (5).	1,092	/20	7,198 33,353 111,026 47,762 54,023 110,341		0.2	SULVENT	
MIX HOUSES (5).	5,060	/20	33,353		1.1	SULVENT	
VERTICAL PRES/CUT (4)	16,844	720	111,026		3./	SOLVENT	
HORIZONTAL PRESS/CUT (2)	7,246	720	47,762		1.6	SOLVENT	
SOLVENT RECOVERY (7) WATER DRY (6)	8,196	720	54,023		1.8	SOLVENT	
WATER DRY (6)	16,740	720	110,341		3.6	SOLVENT	
OPEN AIR DRY TANK BLDGS (4)							
BLDG (2)	9,504	360	31,322		1.0	SOLVENT	
BLOG (2)	7,564	720	49,858		1.6	SOLVENT	
ACTIVATED CARBON RECOVERY (2)	26,832	720	176,861		5.8	SOLVENT	
FIHER STILL (1)	11,986	720	79,005		2.6	SOLVENT	
CAUSTIC SCREEN (1)	655	720	4,317		0.1	OTHER	
ATH R D (ALL)	38.754	720	255.444		8.4	S'LESS	
TOT D D /EINICHING/CHDING/ETC	35 09/	720	231 320		7.6	STIESS	
PASTE AIR DRY HOUSES (3)	3.486	720	22.978		0.8	S'LESS	
CASBL BLDG HEAT	5,561	_	6,700	(#4)	0.2	ADM/HEAT	
COMFORT HEAT	74,865	-	90,500	(#4)	3.0	ADM/HEAT	
			2,961,202				
COAL - PH#2		ACT	2,961,202				
FAD BLDGS							
HEAT CYCLE (5)	32.520	720	192,121		6.3	S'LESS	
TEMP. CONTROL (5)	13,809	720	81,581		2.7	S'LESS	
N6#2	23.547	720	139,111		4.6	OTHER	
SMALL GRAIN CURING (6)	16.410	720	96,947	,	3.2	S'LESS	
CONDITIONING BLDGS (5)	20,180		119,219			S'LESS	
CONING/SLEEVE/PACK-OUT/#4925	817		4,827			S'LESS	
SOLVENTLESS PRESS (3)	4,983		29,439				
COMFORT HEAT	20,180					ADM/HEAT	
COMPORT ACHT						-	
		SUM	677,744				
		ACT	677,744	Į.			
TOTAL			3,638,946				
			2 /20 04/	,			
ACT			3,638,946)			

^(#1) HERCULES STEAM ESTIMATES

^(#2) PH1 POWER GENERATION AT 29% EFFICIENCY

^(#3) BASED ON 1408 #/HR, 1175 BTU/LB,930 CYCLES/YR (ECO NC-X-1), & 75 HRS/CYCLE

^(#4) CALCULATED USING BIN TEMPERATURE METHOD

14,850

PEACETIME-STEAM REQUIREMENTS FOR PH-1

Ref: Hercules letter to COR (87-824-52) dated June 29, 1987.

Steam requirements based upon Proposed Production. Schedule dated March 16, 1987 for production levels in November 1989, an ambient temperature of 0 degrees F, 28.7% Powerhouse 1 internal steam usage and 15% line losses.

AREA LINE		PEAK GENERATED POUNDS OF STEAM PER HOUR	APFC: MONTHE HOUR: Wee
Oleum Plant	Not Required on a continuous	838	_0-
Start-Up and	basis, therefore net export of		
Sulfur	43,000 lbs. of steam per hr can no	ot	
Storage Tanks	be considered to reduce peak steam requirements	n	
Old Ammonia	Modern AOP not in operation.	10,720	40.
Oxidation Plant (AOP)			
One NAC/SAÇ No. 735-2	2 NAC/SEE	68,797	m 70
One Cotton		3,224	70
Dry House			
One Improved	le Time - 480/m + 480/no for B.	42,368	96
Nitrator			
One Boiling	Three tubs on heat build-up		
Tub House	79 TubisMo 2 x 9,984 X his =	29,952	

Six tubs on boil cycle

AF	EA,	LINE
OR	FAG	CILITY

COMMENTS

PEAK GENERATED	APFE'T
POUNDS OF STEAM	MONTH.
PER HOUR	STERM

		PER HOUR	
Poacher/Blender	Three tubs on heat build-up		
	19/3 \$ x 9.984 x _ lurs	29,952	
wedarrea	Six tubs on boil cycle		
•	79/4 8 x 2.475 X _ hrs	14,850	
NG Area No. 1	Required for DEGDN production,	24,750	-0 -
	not in referenced production schedule)	
Two Dehy Press Houses	One house each, B-line and C-line		786240
•	2 x 546 × 24 × 3ン	1,092	184 = 1
Five Mix Houses	One house B-line, Four houses C-line		7/47 206
	5 x 1,012 × (24×5°)		3643,200
Four Vertical Press	4 x 4,211 × (24×34)	16,844	2,127,68c m
and Cut Houses			-21712
Two Horizontal Press	$2 \times 3.623 \times (2 \checkmark \times 3 \circ)$	ر 7,246	
and Cut Houses	•	. م	3 200
Seven Solvent Recovery	Five on heat cycle	499 6,810	,5 ²⁰
(SR) Buildings	5 x 1.362* $\times/24\times30$		
	Two on temperature control	991	7,920
	2 x 693 x (24 x 30)	1, 386	
Six Water Dry Buildings	Five on heat cycle	12 <i>0</i> 16,740	52 200 m
	5 x 3,348 $\times (\mathbb{Z}4 \times 30)$		

One on temp. control

401

PEACETIME STEAM REQUIREMENTS FOR PH-1, continued

AREA LINE
OR FACILITY

COMMENTS

PEAK GENERATED
POUNDS OF STEAM
PER HOUR

Four Open Tank Air
Dry (AD) Buildings

- Five Tank Buildings One on heat build-up
One on temp. control

8.811 m

693

7504=
3421,440

- Two Tank Buildings Two on heat build-up
2 x 3,782

720 × 7,564 =

Two Activated Carbon Recovery 2 x 13,416

19319040 720 ≠ 26,832 m

Buildings

One Ether Still

House

8029920 720 < 11,986

One Alcohol Rectification

Building

29,212 _ 0 _

One Caustic Screen House 720 4 655 471,600

All Fourth Rolled Powder

27,902,880 720 1 38,754 m

Buildings

25,20680

No. 7113, One Roto-Clone Building No. 6304, One Box Wash, One Sub-Cal LAW Curing Building, and Four First Rolled Powder Houses.

First Rolled Powder Line, RAP Finishing Building

720 × 35,094 m**

PEACETIME STEAM REQUIREMENTS FOR PH-1, continued

AREA LINE
OR FACILITY

COMMENTS

PEAK GENERATED
POUNDS OF STEAM

PER HOUR

Four First Rolled Powder Houses required to meet production schedule for MK90 which increases 31,500 grains per month from referenced production schedule

Three Paste

3 x 1,162 x 720

25099Z3 3,486

Air Dry Houses

CASBL in Standby

Bldg HPr

5,561 m

Comfort Heat

74,865

Total steam requirements for Powerhouse 1,

539,393

during peacetime operations

- * Use of 1,362 lb/hr for solvent recovery buildings is an estimated value. Previously supplied meter reading value of 5,000 lb/hr in referenced letter (87-824-52) dated June 29, 1987 excessively greater than previously metered or estimated values, possibly resulting from an equipment malfunction.
- ** Use of 35,094 lb/hr is metered value from February 9, 1987 steam balance presented in April 15, 1987 memorandum. Previously supplied meter reading of 90,628 lb/hr from June 29, 1987 letter is excessively greater than previous metered or estimated values, possibly resulting from an equipment malfunction.

m - metered value, adjusted to 0°F

1989
PEACETIME STEAM REQUIREMENTS FOR PH-2

Ref: Hercules letter to COR (87-170-108) dated September 10, 1987.

Steam requirements based upon Proposed Production Schedule dated July 17, 1987 for production levels during the winter of 1987-88, an ambient temperature of 0 degrees F, 15% Powerhouse 2 internal steam usage and 15% line losses.

AREA LINE OR FACILITY	comments hrs.	PEAK GENERATED POUNDS OF STEAM PER HOUR
Forced Air Dry Buildings	Five on heat cycle \$\footnote{1.504}\$	32,520 m 23,414, 400
	Three on temperature control 3 x 4,603 / 720	9942 420 13,809 m
NG Area No. 2		1695384° 23,547 m
CAMBL		26.938 m
Six small grain Curing Houses	6 x 2.735* ×(24 x 30)	11,215,200 16,410 m
Five conditioning buildings	5 x 4.036 4720.	20,180 /4 529,600

^{*-}Use of metered value of 2,735 lb/hr from June 29, 1987 letter from Hercules to COR (87-824-52). Meter reading value of 5,703 lb/hr used in referenced letter 87-170-108 excessively greater than 2,735 lb/hr meter reading and previous Hercules estimate of 2,630 lb/hr, possibly resulting from an equipment malfunction.

PEACETIME STEAM REQUIREMENTS FOR PH-2, continued

AREA LINE
OR FACILITY

COMMENTS

PEAK GENERATED
POUNDS OF STEAM

PER HOUR

One coning, sleeve 817

insertion, sleeve trimming,
inspection and pack—out
building, No. 4925

Three Solventless Press 3 x 1,661

4,983

Comfort heat for remaining
buildings in Horseshoe Area

Total Steam requirements for Powerhouse 2, during Peacetime

151,347

m-metered value, adjusted to 0°F

COMFORT HEAT

BIN TEMPS	TOTAL HRS	EST'D #/HR	MBtu/YR
50-54	707	10,000	7,424
45-49	682	15,000	10,742
40-44	702	20,000	14,742
35-39	687	25,000	18,034
30-34	563	30,000	17,735
25-29	292	40,000	12,264
20-24	162	50,000	8,505
15-19	82	60,000	5,166
10-14	25	70,000	1,838
5- 9	9	80,000	756
TOTAL			97,204

TOTAL = PEAK

97,200 MB

80,000 #/HR

PEAK	MBTU/YR
5,561	6,700
74,865	90,500
20 180	14 500

FUEL OIL CY88	(GAL)	(%)	ASSIGNED AREA
PH#1	240,000	12	UTIL
INCINERATOR	800,000	40	OTHER
PH#2	943,000	47	UTIL
HOUSING	17,000	1	ADM/HEAT
OTHER	2,500	0	OTHER
TOTAL	2,002,500	100	
NATURAL GAS FY89	(CF)	(%)	ASSIGNED AREA
NAC/SAC	9,794,607	24	ACID/NC
IGP	27,180,000	67	SOLVENT
DECON OVENS	3,437,863	9	OTHER
·	40,412,470	100	

.

PH2. Ontwo 0.0 O 0000 $\boldsymbol{\alpha}$ 20 \sim 0 5 000000000) \$3,729AC म् 00000 0 000000000 8

Concern flow grant

NATURAL GAS USAGE 1989

									FT		_
MONTH	NAC/SAC	1	INERT GAS	PLANT	I DECON O		I SAR	į			i
CHARGED	620-16400	4 1	745-2440	00	1 594-2040	60	1620-164104	1	TOTAL	TOTAL	
OUT	QTY	\$ 1	QTY	\$	I QTY	\$	I QTY	\$!	QTY	\$ 	} 1
22202223	=======================================		22222222		173,573	588	i ^	0 1	3,107,100	10,533	ŀ
JANUARY	1 360,527		2,573,000	8,723						15,036	
FEBRUARY	1 1,284,444		1,937,000	7,688	1 566,856	2,250		0 1		•	
MARCH	681,357	5,953 1	2,121,000	18,533	1 289,443	2,529		0 1		27,015	
APRIL	448,595	2,272	2,383,000	8,345	1 404,105	1,415	1 0	0 1	, ,	12,032	
MAY	532,879		2,150,000	7,596	175,921	955	1 0	0 1	2,858,800	10,101	į
JUNE #		•	2,014,000	. 0		0	1 0	0 1	2,454,300	0	ı
JULY +		` 0 1		0	.	0	1 0	0 1	1,173,300	0	l
AUGUST 3	•		1,080,000	2,087	•	393	1 0	0 1	1,702,300	3,522	l
			1,354,000	4,713	•	743		0 1	2,111,300	7,349	1
SEPTEMBER			2,089,000	7,057	•	181		0 1		8,123	
OCTOBER	1 261,823	883 1	2,007,000	1,001	1 20,777		i	1	0	0	
NOVEMBER	,				i		1	1	0	Ŏ	
\ DECEMBER	1	l			1				v	V	,
\	ļ	1	ļ		i		1				!
TOTAL	1 5,227,846	20,248 1	118,627,000	64,742	12,272,354	8,721	1 0	0 1	26,127,200	93,711	I
100	30 20.	.0	71.3		8.7						

* NO DOLLARS CHARGED DUE TO OVERSTATEMENT OF \$15490 IN MARCH.

3 CREDIT ADJUSTMENT OF \$2651 DUE TO OVERSTATEMENT IN MARCH.

Thru October

RADFORD ARMY AMMUNITION PLANT FY 1985-89 PRODUCTION DATA

FILE NAME: D	ATA8589
--------------	---------

MONTH	PH#1 MBTU	PH#2 MBTU	COAL TOT MBTU	ELEC GEN MBTU	ELEC PUR Mbtu	TOT ELEC MBTU	NC PROD LBS	AOP LBS	NAC/SAC LBS	NG LBS	4DD ======
Oct-84	283260	33330	316590	27133	21359	48492	3089744	5312073	854687 <u>9</u>	436271	132
Nov-84	306783	56952	363735	25188	19638	44826	2854925	4696735	7900459	439519	680
Dec-84	394263	100041	494304	37877	23150	61028	3875115	5344706	8637984	605425	641
Jan-85	380916	83941	464857	28509	17990	46499	3311986	4363163	8363588	379338	1121
Feb-85	410240	83597	493837	27352	20355	47707	3430135	5371200	8710445	144267	845
Mar-85	437254	99008	536262	33007	24727	57734	3862863	6778329	10127456	0	586
Apr-85	312043	64670	376713	23748	21789	45536	3011494	4273522	7219176	Û	312
May-85	274608	47415	322023	21690	22434	44123	3061532	4039199	7373783	0	97
Jun-85	304276	47562	351838	25574	29529	55103	3768219	5400836	10606032	0	31
Jul -85	235132	34068	269200	19529	2565 9	45188	2585736	5033050	8061918	0	0
Aug-85	279892	44318	324210	22949	32253	55202	3347315	5994096	8691353	0	15
Sep-85	224956	37534	262490	16365	25372	41738	2642476	4183251	6995404	0	101
Oct-85	238279	35420	273698	18208	23795	42004	2666589	4829712	7188631	0	244
Nov-85	362432	84449	426881	24638	26877	51516	3294400	5434380	9214510	0	356
c-85	371133	76223	447356	26946	16341	43287	2428622	3538124	5575507	0	983
Jan-86	377991	91929	469920	28662	11754	40417	2371698	3838576	6795980	87869	997
Feb-86	404710	79246	483956	27925	16987	44912	2639278	4728086	6929907	167158	773
Mar-86	430568	92986	523554	32693	19423	52117	3105896	4617368	7557531	183234	650
Apr-86	279720	55649	335370	24130	20355	44485	2171343	2295739	4220611	148704	296
May-86	260032	84916	324948	21055	28167	49222	1549930	3344565	4262647	224913	135
Jun-86	180049	42548	222596	15928	24512	40441	1075013	3500519	3600585	155107	0
Jul-86	195853	38394	234247	15174	25157	40331	1684649	4494215	5610274	169276	1
Aug-86	236460	46923	283383	22621	33615	56236	2510808	3724641	7374045	189136	20
Sep-86	205710	37214	242924	15539	21789	37328	1602221	1664775	4733546	87861	53
Oct-86	215984	42302	258287	19109	16270	35379	1849585	2718971	4180717	124797	345
Nov-86	381580	71823	453403	25185	20498	45683	1866578	2784873	5270456	194445	595
Dec-86	281711	73175	354886	23884	16628	40512	1842285	1171941	3689246	217152	897
Jan-87	408864	102646	511510	29188	15911	45099	2563214	3361257	5766875	227585	1027
Feb-87	365972	87972	453943	26877	13976	40854	2483119	2434790	5106834	178408	806
Mar -87	320843	78238	399081	24539	14621	39161	2314053	2651569	4714036	275331	666
Apr-87	302088	73937	376025	23000	18563	41564	3102295	3497919	6501074	244518	450
May-87	298377	74182	372559	21898	28956	50854	3794927	3742102	9647327	364196	90
Jun-87	211216	44932	256148	15997	25516	41512	2914324	3574194	6396072	256875	15
Jul -87	206865	45473	252338	16068	24942	41011	3034934	1859272	6822250	197917	4
Aug-87	254723	55379	310101	19809	32611	52420	3940281	5227243	10055102	384967	7
Sep-87	189020	45842	234862	16952	24512	41465	2617012	3769549	6949571	272632	75

RADFORD ARMY AMMUNITION PLANT FY 1985-89 PRODUCTION DATA FILE NAME: DATAB589

HONTH	PH#1 MBTU	PH#2 MBTU	COAL TOT MBTU	ELEC GEN Mbtu	ELEC PUR MBTU	TOT ELEC	NC PROD LBS	AOP LBS	NAC/SAC LBS	NG LBS	HDD
Oct-87	347242	74232	421473	28833	26161	54994	3265020	4717950	11678597	376823	547
Nov-87	283579	63564	347143	23584	19208	42792	2624519	2759250	4909316	250071	594
Dec-87	392813	91561	484373	26301	18492	44792	2863991	3229258	5954979	285035	839
Jan-88	464341	80868	545209	34260	21287	55547	3529253	3779441	7335130	333804	1220
Feb-88	307668	76640	384308	25611	18133	43744	3073848	2822051	6093826	376424	943
Mar-88	398983	71970	470953	23840	22792	46632	3422157	4964739	11088583	253766	673
Apr -88	362309	82835	445144	25601	26161	51762	3734380	4375497	9499569	269594	452
May-88	245136	47906	293043	19304	22577	41881	2761406	2 9 04756	55 56980	292462	211
Jun-88	206325	33994	240319	16604	23007	39611	2578299	2627555	6234479	158275	101
Jul -88	263227	49086	312313	19765	34475	54239	3298155	3478576	9983961	234032	10
Aug-88	220753	38615	259368	17208	30318	47526	3097861	3108895	9569329	304725	11
Sep-89	211019	40213	251232	16099	24512	40611	2812986	3203245	7305359	363272	135
Oct-88	353706	74428	428134	27127	22219	49345	3907912	4145719	11330094	446377	518
Nov-88	252879	30725	283604	22307	14335	36642	2084293	3506661	5697900	298957	597
c -88	477245	94436	571682	33253	16771	50024	3344439	3795318	6545238	464398	900
Jan-89	352674	75584	428257	25925	13188	39113	2719628	2523300	6692200	327700	828
Feb-89	320474	74527	395001	24591	13188	37778	1626232	2643400	4229800	195400	837
Mar -89	250151	70692	320843	0	27522	27522	1750724	730100	2172200	183100	659
Apr-89	286603	66735	353338	14079	31536	45615	3085460	3664300	6186100	230100	452
May-89	171372	44711	216083	20475	32038	52512	2501288	3335600	5233100	366300	290
Jun-89	94707	34142	128848	5986	21000	26987	9 87067	1312200	2573300	161000	10
Jul -89	91339	38836	130176	0	26806	26806	1530282	1970200	2734800	291600	0
Aug-89	135608	31118	166726	0	36482	36482	2305368	2321700	4711900	306500	31
Sep-89	174444	41811	216255	0	43577	43577	2033241	3261600	7044700	432900	119
TOTALS	17488400	3683460	21171860	1295701	1391818	2687519	163202403	218775851	409759251	13559516	25023

Count	Bldg.	No.	Name/Process	Location	Similar
1	266	-03	Refrigeration Equipment House	Ballistics Range	1
2	400	-00	Power House #1	Power	1
3	407	-00	Filter Plant & Pump Station	Plant Water	1
4	408	-00	River Pump House Filter Plant Drinking Water Plant	Plant Water	1
5	409	-00	Filter Plant	Plant Water	1
6	419	-00	Drinking Water Plant	Plant Water	1
ž	420	-02	Acid Waste Disposal (C-Line)	Waste Acid	1
8	421	-00	Inert Gas Producer & Burn Hse.	Inert Gas	1
ğ					1
10	440	-00	Incinerator 6A	Incinerator	1
11	441	-00	Incinerator 6B	Incinerator Incinerator	1
12	442	-00	Grind House	Incinerator	1
13	470	-00	Biological Treatment Building	Waste Water	1
14	700	-00	Air Compressor House	Acid	1
15			Oxidation House	Acid	1
16	735		NAC/SAC Plant	Acid	1
17	736	-00	NAC/SAC Cooling Tower	Acid	· 1
18	1000	-00	Cotton Linter Warehouse	NC, A&B-Line	1
19	3 5 0 5	~ ~	a)	Chann & Line	3
20	1606	-00	Open Tank Air Dry	Sol. Recovery, A-Line	10
21	1611	-00	Solvent Recovery House Water Dry House Glaze House	Sol. Recovery, B-Line	27
22	1674	-00	Water Dry House	Sol. Recovery, C-Line	32
23	1800	-00	Glaze House	Finish, A-Line	3
24			Final Blend House	Finish	4
25			Can Pack house	Finish	3 2 3 3 3 3 3
26	2000	-00	Cotton Linter Warehouse	NC, A&B-Line	2
27	2010	-00	Dry House and Conveyer	NC, B-Line	3
28	2019	-00	Boiling Tub House	NC, B-Line	3
29	2022	-00	Beater House	NC, B-Line	3
30	2024	-00	Poacher & Blending House	NC, B-Line	3
31	2026	-00	Final Wringer House	Green, B-Line	3
32	2046	-00	Control House	NC, B-Line	2
33	2050	-00	Molecular Sieve Building	NC, B-Line	2
34	2500	-00	Dehy Press House	Green, B-Line	3
35	2506	-00	Diphenylamine Mix House	Green, B-Line	3
36	2508	-00	Mix House	Green, B-Line	6
37	2510	-00	Pre. & Horizontal Press House	Green, B-Line	9
38	2516	-00	Finishing Press & Cut House	Green, B-Line	4
39	2521	-00	Hydraulic Pump House	Green, B-Line	3
40	2555	-00	Activated Carbon Vapor Recov.	Green, B-Line	3
41	3513	-00	C-l Press & Cutting House	Green, C-Line	3
42	3523	-00	Cooling Tower	Green, C-Line	2
43	3647	-00	Premix House Number 1	NG #1	2
44	3805	-00	Glycerin/Soda/Refrig. House	NG #1	1
45	4329	-00	Power House #2	Cast Prop. (Rocket)	1

46 47 48	4903 -00 4906 -00 4908 -00	Inert Gas Producer & Burn Hse. Final Mix House Press and Cutting House	Inert Gas Green, C-Line Green, C-Line	1 1 3
49	4912 -03	MK 43 Sawing and Inhibiting		
50	4912 -03	Vacuum & Air Conditioning Hse.		4 1
51	4912 -04	SG Evacuation and Casting	Cast Prop. (Rocket)	1
52	4912 -07	Pin Assembly *	Cast Prop. (Rocket) Cast Prop. (Rocket)	2
53	4912 -11	LG Mold Loading House	Cast Prop. (Rocket)	1
54	4912 -15	Spiral Wrap House SG Curing Hse Carpet Rolls	Cast Prop. (Rocket)	10
55 5 6	4912 -27 4912 -34	Forced Air Dry House	Pilot B	2
5 0 57	4912 -34	Forced Air Dry House	Pilot B	19
58	4915 -00	Small Grain Mold Assembly	Cast Prop. (Rocket)	ĺ
59	4921 -00	Inspect/Clean NG Tanks *	Cast Prop. (Rocket)	$\bar{1}$
60	4924 -01	LG Motor Load House	Cast Prop. (Rocket)	1
61	4924 -05	MK 43 Dowel Rod & Spiral Wrap		. 1
62	4924 -06	Machine and Saw House	Cast Prop. (Rocket)	1
63	4925 -00	MK 43 Finishing Operations	Pilot B	1
64	4951 -02	TOW Launch Saw House	Pilot B	1 3
65	5008 -01	15 Inch Press House	Pilot A	3
66	5010 -00	Igniter Assemble & Inspect		1
67	6304 -00	Paste Blending House	lst R P	1
68	7104 -00	Diff. & Even Speed Roll House		5
· 69	7106 -06	Dry House #6 (Dry Packing)	lst R P	7
70	7113 -00	Roll House (Rolled Powder)	lst R P (F-Line)	1
71	7113 -00	Cut, Mill, Bore & Trim	Grain Finish	1
72	7127 -00	Carpet Roll and Slitter House		1
73	7801 -00	Extruded Grain Finishing	Grain Finish	2
74	9304 -00	Slurry Mix House	Premix 2 4th Rolled Powder 4th Rolled Powder	2
75	9309 -03	Rolled Powder Building	4th Rolled Powder	1
76	9309 -04			1 2
77 78	9310 -02	Rolled Powder Building Blender House	4th Rolled Powder	1
78 79	9334 -15 9334 -17	Rest House	4th Rolled Powder	8
80	9354 -17	Compressor House	4th Rolled Powder	1
	9465 -00	Glycerin/Soda/Sol/Refrig Hse.		1
	9467 -00	Generator House	NG #2	ī
83	9488 -00	Compressor House	NG #2	ī
- -				

Number Of Buildings Represented By The 83 Buildings Surveyed:

255

Some ECOs are not practical, have been previously accomplished, or can be eliminated from detailed analysis based on preliminary analysis. The following pages represent the results of the preliminary evaluation of all ECOs for each building surveyed. If an ECO has been previously accomplished, causes a safety hazard, or does not apply to that building (i.e., a thermal energy storage project for a building with no air conditioning system) then it is considered "Not Applicable." Based on previous experience and engineering judgement the potential savings for some projects are very low compared to the probable installation cost. These projects are considered to have "Low Potential Savings" and were eliminated from further detailed analysis.

A. Production equipment changes Not Applicable B. Efficient motors & var. speed drive Not Applicable C. Production equipment scheduling Not Applicable D. Waste heat recovery Not Applicable E. Automated production controls Not Applicable F. Improve facility layout Not Applicable G. Solar applications Not Applicable H. Consolidate process Not Applicable I. Building ventilation systems Not Applicable J. Production equipment maintenance ECO Analysis Performed K. Improved methods/controls Not Applicable L. Steam/condensate distribution Not Applicable N. Lighting systems Not Applicable N. Lighting systems Not Applicable N. Lighting systems Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals Not Applicable R. Thermal energy storage Not Applicable S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Not Applicable U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable X. Other applicable ECO's Not Applicable X. Other applicable ECO's	ARE	A: <u>GP</u> BUILDING NAME: <u>Power House</u>	# 1	NUMBER: 0400-00
B. Efficient motors & var. speed drive Not Applicable C. Production equipment scheduling Not Applicable D. Waste heat recovery Not Applicable E. Automated production controls Not Applicable F. Improve facility layout Not Applicable G. Solar applications Not Applicable H. Consolidate process Not Applicable I. Building ventilation systems Not Applicable J. Production equipment maintenance ECO Analysis Performed K. Improved methods/controls Not Applicable L. Steam/condensate distribution Not Applicable M. Compressed air systems Not Applicable N. Lighting systems Not Applicable O. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals Not Applicable R. Thermal energy storage Not Applicable T. Ventilation instead of A/C Not Applicable U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable		ECO Description		Project Status
C. Production equipment scheduling D. Waste heat recovery E. Automated production controls F. Improve facility layout G. Solar applications H. Consolidate process Not Applicable H. Consolidate process I. Building ventilation systems J. Production equipment maintenance ECO Analysis Performed K. Improved methods/controls Not Applicable L. Steam/condensate distribution M. Compressed air systems Not Applicable M. Compressed air systems Not Applicable Not Applicable O. Electrical distribution Not Applicable P. Radiant heating Q. Loading dock seals R. Thermal energy storage Not Applicable S. Flue gas recirculation T. Ventilation instead of A/C Not Applicable V. Reduction of glass area Not Applicable V. Reduction of glass area Not Applicable V. Reduction of glass area Not Applicable Not Applicable	Α.	Production equipment changes	Not	Applicable
D. Waste heat recovery E. Automated production controls F. Improve facility layout Mot Applicable F. Improve facility layout Not Applicable G. Solar applications Not Applicable H. Consolidate process Not Applicable I. Building ventilation systems Not Applicable J. Production equipment maintenance K. Improved methods/controls Not Applicable L. Steam/condensate distribution Mot Applicable M. Compressed air systems Not Applicable N. Lighting systems Not Applicable O. Electrical distribution Not Applicable P. Radiant heating Q. Loading dock seals Not Applicable R. Thermal energy storage Not Applicable S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Not Applicable U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	В.	Efficient motors & var. speed drive	Not	Applicable
E. Automated production controls F. Improve facility layout G. Solar applications H. Consolidate process Not Applicable H. Consolidate process Not Applicable I. Building ventilation systems J. Production equipment maintenance K. Improved methods/controls L. Steam/condensate distribution M. Compressed air systems Not Applicable M. Lighting systems Not Applicable N. Lighting systems Not Applicable O. Electrical distribution P. Radiant heating Q. Loading dock seals R. Thermal energy storage Not Applicable S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable Not Applicable	C.	Production equipment scheduling	Not	Applicable
F. Improve facility layout G. Solar applications H. Consolidate process I. Building ventilation systems J. Production equipment maintenance K. Improved methods/controls I. Steam/condensate distribution M. Compressed air systems Not Applicable N. Lighting systems Not Applicable N. Lighting systems Not Applicable R. Radiant heating Q. Loading dock seals R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable Not Applicable	D.	Waste heat recovery	Not	Applicable
G. Solar applications H. Consolidate process I. Building ventilation systems J. Production equipment maintenance K. Improved methods/controls L. Steam/condensate distribution M. Compressed air systems Not Applicable Loading dock seals R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C Not Applicable V. Reduction of glass area Not Applicable Not Applicable Not Applicable Not Applicable	E.	Automated production controls	Not	Applicable
H. Consolidate process I. Building ventilation systems Not Applicable J. Production equipment maintenance ECO Analysis Performed K. Improved methods/controls Not Applicable L. Steam/condensate distribution Not Applicable M. Compressed air systems Not Applicable N. Lighting systems Not Applicable O. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals Not Applicable R. Thermal energy storage Not Applicable S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Not Applicable U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	F.	Improve facility layout	Not	Applicable
I. Building ventilation systems Not Applicable J. Production equipment maintenance ECO Analysis Performed K. Improved methods/controls Not Applicable L. Steam/condensate distribution Not Applicable M. Compressed air systems Not Applicable N. Lighting systems Not Applicable O. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals Not Applicable R. Thermal energy storage Not Applicable S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Not Applicable U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	G.	Solar applications	Not	Applicable
J. Production equipment maintenance K. Improved methods/controls L. Steam/condensate distribution M. Compressed air systems Not Applicable N. Lighting systems Not Applicable O. Electrical distribution P. Radiant heating Q. Loading dock seals R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation V. Reduction of glass area Not Applicable V. Reduction of glass area Not Applicable V. Reduction of glass area Not Applicable V. Reduction of strip curtains Not Applicable Not Applicable	н.	Consolidate process	Not	Applicable
K. Improved methods/controls L. Steam/condensate distribution M. Compressed air systems Not Applicable N. Lighting systems Not Applicable O. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals Not Applicable R. Thermal energy storage S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Not Applicable U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	ī.	Building ventilation systems	Not	Applicable
L. Steam/condensate distribution Not Applicable M. Compressed air systems Not Applicable N. Lighting systems Not Applicable O. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals Not Applicable R. Thermal energy storage Not Applicable S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Not Applicable U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	J.	Production equipment maintenance	ECO	Analysis Performed
M. Compressed air systems Not Applicable N. Lighting systems Not Applicable O. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals Not Applicable R. Thermal energy storage Not Applicable S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Not Applicable U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	к.	Improved methods/controls	Not	Applicable
N. Lighting systems O. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals Not Applicable R. Thermal energy storage Not Applicable S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Not Applicable U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	L.	Steam/condensate distribution	Not	Applicable
O. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals Not Applicable R. Thermal energy storage Not Applicable S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Not Applicable U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	М.	Compressed air systems	Not	Applicable
P. Radiant heating Q. Loading dock seals R. Thermal energy storage Not Applicable S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	N.	Lighting systems	Not	Applicable
Q. Loading dock seals R. Thermal energy storage Not Applicable S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Not Applicable U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	0.	Electrical distribution	Not	Applicable
R. Thermal energy storage S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	Р.	Radiant heating	Not	Applicable
S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Not Applicable U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	Q.	Loading dock seals	Not	Applicable
T. Ventilation instead of A/C Not Applicable U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	R.	Thermal energy storage	Not	Applicable
U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	s.	Flue gas recirculation	Not	Applicable
V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	т.	Ventilation instead of A/C	Not	Applicable
W. Cargo door strip curtains Not Applicable	υ.	Insulation	Not	Applicable
	V.	Reduction of glass area	Not	Applicable
X. Other applicable ECO's Not Applicable	W.	Cargo door strip curtains	Not	Applicable
	х.	Other applicable ECO's	Not	Applicable

BUILDING NAME: Filter Plant & Pump Station

AREA	Filter Plant & BUILDING NAME: Pump Station	NUMBER: 407
	ECO Description	Project Status
Α.	Production equipment changes	. NA
В.	Efficient motors & var. speed drive	LPS
c.	Production equipment scheduling	· NA
D.	Waste heat recovery	NA
E.	Automated production controls	NA
F.	Improve facility layout	LPS
G.	Solar applications	NA
H.	Consolidate process	NA
ī.	Building ventilation systems	LPS
J.	Production equipment maintenance	LPS
Κ.	Improved methods/controls	LPS
L.	Steam/condensate distribution	LPS
M.	Compressed air systems	NA ·
N.	Lighting systems	LPS
0.	Electrical distribution	LPS
P.	Radiant heating	LPS
Q.	Loading dock seals	NA
R.	Thermal energy storage	NA
s.	Flue gas recirculation	NA
T.	Ventilation instead of A/C	NA
U.	Insulation	LPS
٧.	Reduction of glass area	LPS
W.	Cargo door strip curtains	NA
Χ.	Other applicable ECOs	LPS

AREA: Plant Water BUILDING NAME: River Pump House NUMBER: 408

	ECO Description	Project Status
Α.	Production equipment changes	NA
B.	Efficient motors & var. speed drive	ECO
c.	Production equipment scheduling	NA .
D.	Waste heat recovery	NA
E.	Automated production controls	NA
F.	Improve facility layout	NA
G.	Solar applications	NA
Н.	Consolidate process	NA
ī.	Building ventilation systems	NA
J.	Production equipment maintenance	NA
ĸ.	Improved methods/controls	ECO
L.	Steam/condensate distribution	NA
M.	Compressed air systems	NA
N.	Lighting systems	LPS
0.	Electrical distribution	LPS
Ρ.	Radiant heating	LPS
Q.	Loading dock seals	NA
R.	Thermal energy storage	NA
<u>s.</u>	Flue gas recirculation	NA
T.	Ventilation instead of A/C	NA
U.	Insulation	LPS
٧.	Reduction of glass area	LPS
W.	Cargo door strip curtains	NA
Χ.	Other applicable ECOs	LPS

AREA: Plant Water BUILDING NAME: Filter Plant NUMBER: 409

	ECO Description	Project Status
Α.	Production equipment changes	NA
В.	Efficient motors & var. speed drive	ECO .
c.	Production equipment scheduling	NA
D.	Waste heat recovery	NA
Ε.	Automated production controls	NA
F.	Improve facility layout	NA
G.	Solar applications	NA
Н.	Consolidate process	NA
ī.	Building ventilation systems	NA
J.	Production equipment maintenance	LPS
Κ.	Improved methods/controls	LPS
<u>L.</u>	Steam/condensate distribution	NA
M.	Compressed air systems	NA
N.	Lighting systems	LPS
0.	Electrical distribution	LPS
<u>P.</u>	Radiant heating	LPS
Q.	Loading dock seals	NA
R.	Thermal energy storage	NA
s.	Flue gas recirculation	NA
<u>T.</u>	Ventilation instead of A/C	NA
U.	Insulation	LPS
٧.	Reduction of glass area	LPS
W.	Cargo door strip curtains	NA
X.	Other applicable ECOs	LPS

AREA: Plant Water BUILDING NAME: Water Plant

____NUMBER: 419__

Α.	Production equipment changes	
	Froduction equipment changes	NA NA
В.	Efficient motors & var. speed drive	ECO
c.	Production equipment scheduling	NA
D.	Waste heat recovery	NA
Ε.	Automated production controls	LPS
F.	Improve facility layout	NA
G.	Solar applications	NA
н.	Consolidate process	NA
ī.	Building ventilation systems	LPS
J.	Production equipment maintenance	LPS
Κ.	Improved methods/controls	LPS
L.	Steam/condensate distribution	LPS
M.	Compressed air systems	NA
N.	Lighting systems	LPS
0.	Electrical distribution	LPS
Р.	Radiant heating	LPS
Q.	Loading dock seals	NA NA
R.	Thermal energy storage	NA
s.	Flue gas recirculation	NA
T.	Ventilation instead of A/C	NA
U.	Insulation	LPS
٧.	Reduction of glass area	LPS
W.	Cargo door strip curtains	NA
Χ.	Other applicable ECOs	LPS

Acid Waste

AREA: Waste Acid BUILDING NAME: Disposal NUMBER: 420-02

	ECO Description	Project Status
Α.	Production equipment changes	NA
B .	Efficient motors & var. speed drive	ECO ECO
c.	Production equipment scheduling	NA
D.	Waste heat recovery	NA
<u>E.</u>	Automated production controls	NA
F.	Improve facility layout	NA
G.	Solar applications	NA
H.	Consolidate process	NA
ī.	Building ventilation systems	NA
J.	Production equipment maintenance	LPS
K.	Improved methods/controls	LPS
L.	Steam/condensate distribution	LPS
M.	Compressed air systems	, NA
N.	Lighting systems	LPS
0.	Electrical distribution	LPS
P.	Radiant heating	LPS
Q.	Loading dock seals	NA
R.	Thermal energy storage	NA
s.	Flue gas recirculation	NA
<u>T.</u>	Ventilation instead of A/C	NA
Ū.	Insulation	LPS
٧.	Reduction of glass area	LPS
W.	Cargo door strip curtains	NA
x .	Other applicable ECOs	LPS

ARE	A: <u>GP</u> BUILDING NAME: <u>Inert Gas Pr</u>	od. NUMBER: 0421-00
•	ECO Description	Project Status
Α.	Production equipment changes	Not Applicable
В.	Efficient motors & var. speed drive	Not Applicable
C.	Production equipment scheduling	Not Applicable
D.	Waste heat recovery	ECO Analysis Performed
Ε.	Automated production controls	Not Applicable
F.	Improve facility layout	Not Applicable
G.	Solar applications	Not Applicable
н.	Consolidate processes	Not Applicable
ī.	Building ventilation systems	Not Applicable
J.	Production equipment maintenance	Not Applicable
ĸ.	Improved methods/controls	Not Applicable
L.	Steam/condensate distribution	Not Applicable
М.	Compressed air systems	Not Applicable
N.	Lighting systems	Not Applicable
0.	Electrical distribution	Not Applicable
Р.	Radiant heating	Not Applicable
Q.	Loading dock seals	Not Applicable
R.	Thermal energy storage	Not Applicable
s.	Flue gas recirculation	Not Applicable
T.	Ventilation instead of A/C	Not Applicable
υ.	Insulation	Not Applicable
v.	Reduction of glass area	Not Applicable
W.	Cargo door strip curtains	Not Applicable
х.	Other applicable ECO's	Not Applicable

Sewage Disposal

AREA:	Waste Water	BUILDING NAME:	<u>Plant</u>	NUMBER:	424
-------	-------------	----------------	--------------	---------	-----

	ECO Description	Project Status
Α.	Production equipment changes	NA
В.	Efficient motors & var. speed drive	ECO
c.	Production equipment scheduling	, NA
D.	Waste heat recovery	NA
E.	Automated production controls	NA
F.	Improve facility layout	NA
G.	Solar applications	NA
н.	Consolidate process	NA
ī.	Building ventilation systems	LPS
J.	Production equipment maintenance	LPS
Κ.	Improved methods/controls	LPS
L.	Steam/condensate distribution	LPS
M:	Compressed air systems	NA
N.	Lighting systems	LPS
0.	Electrical distribution	LPS
<u>P.</u>	Radiant heating	LPS
Q.	Loading dock seals	NA
R.	Thermal energy storage	NA
s.	Flue gas recirculation	NA
<u>T.</u>	Ventilation instead of A/C	NA
U.	Insulation	LPS
٧.	Reduction of glass area	LPS
W.	Cargo door strip curtains	NA ·
<u>x.</u>	Other applicable ECOs	LPS

A. Production equipment changes	ARE	A: <u>GP</u> BUILDING NAME: <u>Incinerator</u>	NUMBER: 0440-00
B. Efficient motors & var. speed drive Not Applicable C. Production equipment scheduling Not Applicable D. Waste heat recovery Not Applicable E. Automated production controls Not Applicable F. Improve facility layout Not Applicable G. Solar applications Not Applicable H. Consolidate processes Not Applicable I. Building ventilation systems Not Applicable J. Production equipment maintenance Not Applicable K. Improved methods/controls ECO Analysis Performed L. Steam/condensate distribution Not Applicable M. Compressed air systems Not Applicable N. Lighting systems Not Applicable O. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals Not Applicable R. Thermal energy storage Not Applicable S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Not Applicable U. Insulation Not Applicable V. Reduction of glass area Not Applicable V. Reduction of glass area Not Applicable V. Reduction of glass area Not Applicable	,	ECO Description	Project Status
C. Production equipment scheduling D. Waste heat recovery E. Automated production controls F. Improve facility layout G. Solar applications H. Consolidate processes Not Applicable I. Building ventilation systems J. Production equipment maintenance K. Improved methods/controls ECO Analysis Performed L. Steam/condensate distribution M. Compressed air systems Not Applicable N. Lighting systems Not Applicable O. Electrical distribution P. Radiant heating Q. Loading dock seals R. Thermal energy storage Not Applicable Not Applicable T. Ventilation instead of A/C Not Applicable V. Reduction of glass area Not Applicable Not Applicable V. Reduction of glass area Not Applicable Not Applicable V. Reduction of glass area Not Applicable Not Applicable Not Applicable Not Applicable	Α.	Production equipment changes	ECO Analysis Performed
D. Waste heat recovery E. Automated production controls F. Improve facility layout G. Solar applications H. Consolidate processes Not Applicable I. Building ventilation systems J. Production equipment maintenance K. Improved methods/controls ECO Analysis Performed L. Steam/condensate distribution M. Compressed air systems Not Applicable N. Lighting systems Not Applicable O. Electrical distribution Not Applicable P. Radiant heating Q. Loading dock seals R. Thermal energy storage S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C V. Reduction of glass area Not Applicable Not Applicable	В.	Efficient motors & var. speed drive	Not Applicable
E. Automated production controls F. Improve facility layout G. Solar applications H. Consolidate processes Not Applicable H. Consolidate processes Not Applicable I. Building ventilation systems J. Production equipment maintenance K. Improved methods/controls L. Steam/condensate distribution M. Compressed air systems Not Applicable M. Lighting systems Not Applicable N. Lighting systems Not Applicable P. Radiant heating Q. Loading dock seals R. Thermal energy storage Not Applicable T. Ventilation instead of A/C Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable Not Applicable	c.	Production equipment scheduling	Not Applicable
F. Improve facility layout G. Solar applications H. Consolidate processes Not Applicable I. Building ventilation systems J. Production equipment maintenance K. Improved methods/controls L. Steam/condensate distribution M. Compressed air systems Not Applicable M. Compressed air systems Not Applicable N. Lighting systems Not Applicable O. Electrical distribution P. Radiant heating Q. Loading dock seals Not Applicable R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable Not Applicable	D.	Waste heat recovery	Not Applicable
G. Solar applications H. Consolidate processes I. Building ventilation systems J. Production equipment maintenance K. Improved methods/controls L. Steam/condensate distribution M. Compressed air systems Not Applicable N. Lighting systems Not Applicable N. Lighting systems Not Applicable P. Radiant heating Q. Loading dock seals R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C V. Reduction of glass area Not Applicable Not Applicable Not Applicable Not Applicable Not Applicable Not Applicable	E.	Automated production controls	Not Applicable
H. Consolidate processes I. Building ventilation systems Not Applicable J. Production equipment maintenance K. Improved methods/controls ECO Analysis Performed L. Steam/condensate distribution Not Applicable M. Compressed air systems Not Applicable N. Lighting systems Not Applicable O. Electrical distribution P. Radiant heating Q. Loading dock seals R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C V. Reduction of glass area Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	F.	Improve facility layout	Not Applicable
I. Building ventilation systems Not Applicable J. Production equipment maintenance Not Applicable K. Improved methods/controls ECO Analysis Performed L. Steam/condensate distribution Not Applicable M. Compressed air systems Not Applicable N. Lighting systems Not Applicable O. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals Not Applicable R. Thermal energy storage Not Applicable S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Not Applicable U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	G.	Solar applications	Not Applicable
J. Production equipment maintenance K. Improved methods/controls ECO Analysis Performed L. Steam/condensate distribution Not Applicable M. Compressed air systems Not Applicable N. Lighting systems Not Applicable O. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals Not Applicable R. Thermal energy storage Not Applicable S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Not Applicable U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	н.	Consolidate processes	Not Applicable
K. Improved methods/controls ECO Analysis Performed L. Steam/condensate distribution Not Applicable M. Compressed air systems Not Applicable N. Lighting systems Not Applicable O. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals Not Applicable R. Thermal energy storage Not Applicable S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Not Applicable U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	ī.	Building ventilation systems	Not Applicable
L. Steam/condensate distribution Not Applicable M. Compressed air systems Not Applicable N. Lighting systems Not Applicable O. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals Not Applicable R. Thermal energy storage Not Applicable S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Not Applicable U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	J.	Production equipment maintenance	Not Applicable
M. Compressed air systems Not Applicable Not Applicable O. Electrical distribution P. Radiant heating Not Applicable Q. Loading dock seals R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation Not Applicable V. Reduction of glass area Not Applicable Not Applicable Not Applicable Not Applicable Not Applicable Not Applicable	ĸ.	Improved methods/controls	ECO Analysis Performed
N. Lighting systems O. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals R. Thermal energy storage Not Applicable S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable Not Applicable	L.	Steam/condensate distribution	Not Applicable
O. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals Not Applicable R. Thermal energy storage Not Applicable S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Not Applicable U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	M.	Compressed air systems	Not Applicable
P. Radiant heating Q. Loading dock seals R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable Not Applicable	N.	Lighting systems	Not Applicable
Q. Loading dock seals R. Thermal energy storage Not Applicable S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	0.	Electrical distribution	Not Applicable
R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	Р.	Radiant heating	Not Applicable
S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Not Applicable U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	Q.	Loading dock seals	Not Applicable
T. Ventilation instead of A/C Not Applicable U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	R.	Thermal energy storage	Not Applicable
U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	s.	Flue gas recirculation	Not Applicable
V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	T.	Ventilation instead of A/C	Not Applicable
W. Cargo door strip curtains Not Applicable	U.	Insulation	Not Applicable
	٧.	Reduction of glass area	Not Applicable
X. Other applicable ECO's Not Applicable	W.	Cargo door strip curtains	Not Applicable
	х.	Other applicable ECO's	Not Applicable

ARE	A: <u>GP</u> BUILDING NAME: <u>Grind House</u>	NUMBER: 442-00
	ECO Description	Project Status
Α.	Production equipment changes	Low Potential Savings
В.	Efficient motors & var. speed drive	ECO Analysis Performed
c.	Production equipment scheduling	Not Applicable
D.	Waste heat recovery	Not Applicable
E.	Automated production controls	Low Potential Savings
F.	Improve facility layout	Not Applicable
G.	Solar applications	Not Applicable
н.	Consolidate processes	Low Potential Savings
ī.	Building ventilation systems	Low Potential Savings
J.	Production equipment maintenance	Not Applicable
ĸ.	Improved methods/controls	ECO Analysis Performed
L.	Steam/condensate distribution	Not Applicable
М.	Compressed air systems	Not Applicable
N.	Lighting systems	Low Potential Savings
0.	Electrical distribution	Not Applicable
Ρ.	Radiant heating	Not Applicable
Q.	Loading dock seals	Low Potential Savings
R.	Thermal energy storage	Not Applicable
s.	Flue gas recirculation	Not Applicable
T.	Ventilation instead of A/C	Not Applicable
U.	Insulation	Low Potential Savings
v .	Reduction of glass area	Low Potential Savings
W.	Cargo door strip curtains	Not Applicable
х.	Other applicable ECO's	Not Applicable

BUILDING NAME: Treatment Bldg.

ARE	A: <u>Waste Water</u> BUILDING NAME:	Treatment Bldg. NUMBER: 47	0
	ECO Description	Project S	tatus
Α.	Production equipment changes	NA	
B.	Efficient motors & var. speed drive	ECO	
c.	Production equipment scheduling	NA	
D.	Waste heat recovery	NA	
E.	Automated production controls	NA NA	
F.	Improve facility layout	NA .	
G.	Solar applications	NA	
н.	Consolidate process	NA .	
ī.	Building ventilation systems	LPS	
J.	Production equipment maintenance	LPS	
Κ.	Improved methods/controls	LPS	
L.	Steam/condensate distribution	LPS	
M.	Compressed air systems	NA	
N.	Lighting systems .	LPS	
0.	Electrical distribution	LPS	
P.	Radiant heating	LPS	
Q.	Loading dock seals	NA	
R.	Thermal energy storage	NA	
s.	Flue gas recirculation	NA	
T.	Ventilation instead of A/C	NA	
U.	Insulation	LPS	
٧.	Reduction of glass area	LPS	
W.	Cargo door strip curtains	NA	
<u>x.</u>	Other applicable ECOs	LPS	

AREA: Plant Air BUILDING NAME: Compressor Bldg. NUMBER: 700

	ECO Description	Project Status
Α.	Production equipment changes	LPS
В.	Efficient motors & var. speed drive	LPS
c.	Production equipment scheduling	NA
D.	Waste heat recovery	LPS
E.	Automated production controls	NA
F.	Improve facility layout	NA NA
G.	Solar applications	NA
Н.	Consolidate process	NA
ī.	Building ventilation systems	NA
J.	Production equipment maintenance	NA
ĸ.	Improved methods/controls	NA
L.	Steam/condensate distribution	NA
M.	Compressed air systems	LPS
N.	Lighting systems	LPS
0.	Electrical distribution	LPS
P.	Radiant heating	LPS
Q.	Loading dock seals	NA .
R.	Thermal energy storage	NA
s.	Flue gas recirculation	NA
T.	Ventilation instead of A/C	NA NA
U.	Insulation	LPS
٧.	Reduction of glass area	LPS
W.	Cargo door strip curtains	NA
χ.	Other applicable ECOs	LPS

AREA: Acid BUILDING NAME: Oxidation House NUMBER: 702

	ECO Description	Project Status
Α.	Production equipment changes	LPS
В.	Efficient motors & var. speed drive	EC0
c.	Production equipment scheduling	LPS
D.	Waste heat recovery	EXISTS
Ε.	Automated production controls	EXISTS
F.	Improve facility layout	LPS
G.	Solar applications	NA
Н.	Consolidate process	NA NA
ī.	Building ventilation systems	LPS
J.	Production equipment maintenance	LPS
Κ.	Improved methods/controls	LPS
L.	Steam/condensate distribution	LPS
M.	Compressed air systems	NA
N.	Lighting systems	LPS
0.	Electrical distribution	LPS
P.	Radiant heating	LPS
Q.	Loading dock seals	NA
R.	Thermal energy storage	NA
s.	Flue gas recirculation	NA
<u>T.</u>	Ventilation instead of A/C	NA
U.	Insulation	LPS
٧.	Reduction of glass area	LPS
W.	Cargo door strip curtains	NA
χ.	Other applicable ECOs	LPS

ARE	A: <u>NC</u> BUILDING NAME: <u>Cotton Wareho</u>	use NUMBER: 1000-00
	ECO Description	Project Status
Α.	Production equipment changes	Not Applicable
В.	Efficient motors & var. speed drive	Not Applicable
С.	Production equipment scheduling	Not Applicable
D.	Waste heat recovery	Not Applicable
E.	Automated production controls	Not Applicable
F.	Improve facility layout	Not Applicable
G.	Solar applications	Low Potential Savings
н.	Consolidate process	Not Applicable
ī.	Building ventilation systems	Low Potential Savings
J.	Production equipment maintenance	Not Applicable
к.	Improved methods/controls	Low Potential Savings
L.	Steam/condensate distribution	Not Applicable
М.	Compressed air systems	Not Applicable
N.	Lighting systems	ECO Analysis Performed
ο.	Electrical distribution	Not Applicable
Ρ.	Radiant heating	Not Applicable
Q.	Loading dock seals	Low Potential Savings
R.	Thermal energy storage	Not Applicable
s.	Flue gas recirculation	Not Applicable
Τ.	Ventilation instead of A/C	Not Applicable
U.	Insulation	Low Potential Savings
٧.	Reduction of glass area	Not Applicable
W.	Cargo door strip curtains	Low Potential Savings
x .	Other applicable ECO's	Not Applicable

AREA: Green A-Line BUILDING NAME: Change House NUMBER: 1505

	ECO Description	Project Status
Α.	Production equipment changes	NA
B.	Efficient motors & var. speed drive	NA
c.	Production equipment scheduling	NA
D.	Waste heat recovery	NA
Ε.	Automated production controls	NA
F.	Improve facility layout	NA
G.	Solar applications	NA
Н.	Consolidate process	NA
ī.	Building ventilation systems	NA
J.	Production equipment maintenance	NA
Κ.	Improved methods/controls	NA
L.	Steam/condensate distribution	NA
M.	Compressed air systems	NA
N.	Lighting systems	LPS
0.	Electrical distribution	LPS
P.	Radiant heating	LPS
Q.	Loading dock seals	NA
R.	Thermal energy storage	NA
s.	Flue gas recirculation	NA
<u>T.</u>	Ventilation instead of A/C	NA
U.	Insulation	LPS
٧.	Reduction of glass area	LPS
W.	Cargo door strip curtains	NA
Χ.	Other applicable ECOs	LPS

A: <u>FN</u> BUILDING NAME: <u>Open Tank Ai</u>	r Dry NUMBER: 1606-00
ECO Description	Project Status
Production equipment changes	Low Potential Savings
Efficient motors & var. speed drive	ECO Analysis Performed
Production equipment scheduling	Low Potential Savings
Waste heat recovery	ECO Analysis Performed
Automated production controls	Low Potential Savings
Improve facility layout	Low Potential Savings
Solar applications	Low Potential Savings
Consolidate process	Not Applicable
Building ventilation systems	Low Potential Savings
Production equipment maintenance	Not Applicable
Improved methods/controls	Not Applicable
Steam/condensate distribution	Review Previous EEAP
Compressed air systems	Not Applicable
Lighting systems	ECO Analysis Performed
Electrical distribution	Not Applicable
Radiant heating	Not Applicable
Loading dock seals	Not Applicable
Thermal energy storage	Not Applicable
Flue gas recirculation	Not Applicable
Ventilation instead of A/C	Not Applicable
Insulation	Low Potential Savings
Reduction of glass area	Not Applicable
Cargo door strip curtains	Not Applicable
Other applicable ECO's	ECO Analysis Performed
	ECO Description Production equipment changes Efficient motors & var. speed drive Production equipment scheduling Waste heat recovery Automated production controls Improve facility layout Solar applications Consolidate process Building ventilation systems Production equipment maintenance Improved methods/controls Steam/condensate distribution Compressed air systems Lighting systems Electrical distribution Radiant heating Loading dock seals Thermal energy storage Flue gas recirculation Ventilation instead of A/C Insulation Reduction of glass area Cargo door strip curtains

ARE	A: <u>SR</u> BUILDING NAME: <u>Solvent Reco</u>	very NUMBER: 1611-00
	ECO Description	Project Status
Α.	Production equipment changes	Low Potential Savings
в.	Efficient motors & var. speed drive	ECO Analysis Performed
c.	Production equipment scheduling	Not Applicable
D.	Waste heat recovery	Low Potential Savings
Ε.	Automated production controls	Not Applicable
F.	Improve facility layout	Not Applicable
G.	Solar applications	Low Potential Savings
н.	Consolidate process	Not Applicable
Ī.	Building ventilation systems	Not Applicable
J.	Production equipment maintenance	Not Applicable
K.	Improved methods/controls	Low Potential Savings
L.	Steam/condensate distribution	Review Previous EEAP
М.	Compressed air systems	Not Applicable
N.	Lighting systems	ECO Analysis Performed
0.	Electrical distribution	Not Applicable
Ρ.	Radiant heating	Not Applicable
Q.	Loading dock seals	Not Applicable
R.	Thermal energy storage	Not Applicable
s.	Flue gas recirculation	Not Applicable
Т.	Ventilation instead of A/C	Not Applicable
U.	Insulation	Low/No Cost Project
v.	Reduction of glass area	Not Applicable
W .	Cargo door strip curtains	ECO Analysis Performed
	Other applicable ECO's	Not Applicable

A: FN BUILDING NAME: Water Dry	NUMBER: 1674-00
ECO Description	Project Status
Production equipment changes	Low Potential Savings
Efficient motors & var. speed drive	ECO Analysis Performed
Production equipment scheduling	Not Applicable
Waste heat recovery	Low Potential Savings
Automated production controls	Low Potential Savings
Improve facility layout	Not Applicable
Solar applications	Low Potential Savings
Consolidate process	Not Applicable
Building ventilation systems	Low Potential Savings
Production equipment maintenance	Not Applicable
Improved methods/controls	Low Potential Savings
Steam/condensate distribution	Review Previous EEAP
Compressed air systems	Not Applicable
Lighting systems	ECO Analysis Performed
Electrical distribution	Not Applicable
Radiant heating	Not Applicable
Loading dock seals	Not Applicable
Thermal energy storage	Not Applicable
Flue gas recirculation	Not Applicable
Ventilation instead of A/C	Not Applicable
Insulation	ECO Analysis Performed
Reduction of glass area	Not Applicable
Cargo door strip curtains	Not Applicable
Other applicable ECO's	ECO Analysis Performed
	ECO Description Production equipment changes Efficient motors & var. speed drive Production equipment scheduling Waste heat recovery Automated production controls Improve facility layout Solar applications Consolidate process Building ventilation systems Production equipment maintenance Improved methods/controls Steam/condensate distribution Compressed air systems Lighting systems Electrical distribution Radiant heating Loading dock seals Thermal energy storage Flue gas recirculation Ventilation instead of A/C Insulation Reduction of glass area Cargo door strip curtains

ARE	A: FN BUILDING NAME: Glaze House	NUMBER: 1800-00
	ECO Description	Project Status
Α.	Production equipment changes	Not Applicable
В.	Efficient motors & var. speed drive	Not Applicable
c.	Production equipment scheduling	Not Applicable
D.	Waste heat recovery	Not Applicable
E.	Automated production controls	Not Applicable
F.	Improve facility layout	Not Applicable
G.	Solar applications	Not Applicable
н.	Consolidate processes	Not Applicable
ī.	Building ventilation systems	Not Applicable
J.	Production equipment maintenance	Not Applicable
K.	Improved methods/controls	Not Applicable
L.	Steam/condensate distribution	Not Applicable
М.	Compressed air systems	Not Applicable
N.	Lighting systems	Not Applicable
0.	Electrical distribution	Not Applicable
Ρ.	Radiant heating	Not Applicable
Q.	Loading dock seals	Not Applicable
R.	Thermal energy storage	Not Applicable
s.	Flue gas recirculation	Not Applicable
T.	Ventilation instead of A/C	Not Applicable
υ.	Insulation	Not Applicable
v .	Reduction of glass area	Not Applicable
W.	Cargo door strip curtains	Not Applicable
х.	Other applicable ECO's	Not Applicable

AREA	A: <u>FN</u> BUILDING NAME: <u>Final Blend</u>	NUMBER: 1827-00
	ECO Description	Project Status
Α.	Production equipment changes	Not Applicable
В.	Efficient motors & var. speed drive	Not Applicable
c.	Production equipment scheduling	Not Applicable
D.	Waste heat recovery	Not Applicable
E.	Automated production controls	Not Applicable
F.	Improve facility layout	Not Applicable
G.	Solar applications	Not Applicable
н.	Consolidate processes	Not Applicable
ī.	Building ventilation systems	Not Applicable
J.	Production equipment maintenance	Not Applicable
к.	Improved methods/controls	Not Applicable
L.	Steam/condensate distribution	Not Applicable
М.	Compressed air systems	Not Applicable
N.	Lighting systems	Not Applicable
0.	Electrical distribution	Not Applicable
Р.	Radiant heating	Not Applicable
Q.	Loading dock seals	Not Applicable
R.	Thermal energy storage	Not Applicable
s.	Flue gas recirculation	Not Applicable
T.	Ventilation instead of A/C	Not Applicable
U.	Insulation	Not Applicable
V.	Reduction of glass area	Not Applicable
W.	Cargo door strip curtains	Not Applicable
Х.	Other applicable ECO's	Not Applicable

ARE	A: FN BUILDING NAME: Can Pack	NUMBER: 1877-00
	ECO Description	Project Status
Α.	Production equipment changes	Not Applicable
В.	Efficient motors & var. speed drive	Not Applicable
c.	Production equipment scheduling	Not Applicable
D.	Waste heat recovery	Not Applicable
Ε.	Automated production controls	Not Applicable
F.	Improve facility layout	Not Applicable
G.	Solar applications	Not Applicable
н.	Consolidate processes	Not Applicable
ī.	Building ventilation systems	Not Applicable
J.	Production equipment maintenance	Not Applicable
К.	Improved methods/controls	Not Applicable
L.	Steam/condensate distribution	Not Applicable
М.	Compressed air systems	Not Applicable
N.	Lighting systems	Not Applicable
0.	Electrical distribution	Not Applicable
Р.	Radiant heating	Not Applicable
Q.	Loading dock seals	Not Applicable
R.	Thermal energy storage	Not Applicable
s.	Flue gas recirculation	Not Applicable
T.	Ventilation instead of A/C	Not Applicable
U.	Insulation	Not Applicable
V.	Reduction of glass area	Not Applicable
W.	Cargo door strip curtains	Not Applicable
х.	Other applicable ECO's	Not Applicable

ARE	A: <u>NC</u> BUILDING NAME: <u>Cotton Wareh</u>	ouse NUMBER: 2000-00
	ECO Description	Project Status
Α.	Production equipment changes	Not Applicable
В.	Efficient motors & var. speed drive	Not Applicable
c.	Production equipment scheduling	Not Applicable
D.	Waste heat recovery	Not Applicable
E.	Automated production controls	Not Applicable
F.	Improve facility layout	Not Applicable
G.	Solar applications	Low Potential Savings
н.	Consolidate process	Not Applicable
I.	Building ventilation systems	Low Potential Savings
J.	Production equipment maintenance	Not Applicable
κ.	Improved methods/controls	Low Potential Savings
L.	Steam/condensate distribution	Not Applicable
M.	Compressed air systems	Not Applicable
N.	Lighting systems	Low Potential Savings
0.	Electrical distribution	Not Applicable
Ρ.	Radiant heating	Not Applicable
Q.	Loading dock seals	Low Potential Savings
R.	Thermal energy storage	Not Applicable
s.	Flue gas recirculation	Not Applicable
т.	Ventilation instead of A/C	Not Applicable
U.	Insulation	Low Potential Savings
٧.	Reduction of glass area	Low Potential Savings
W.	Cargo door strip curtains	Low Potential Savings
x.	Other applicable ECO's	Not Applicable

ARE	A: <u>NC</u> BUILDING NAME: <u>Dry House &</u>	Conv. NUMBER: 2010-00
	ECO Description	Project Status
Α.	Production equipment changes	Low Potential Savings
В.	Efficient motors & var. speed drive	ECO Analysis Performed
C.	Production equipment scheduling	Not Applicable
D.	Waste heat recovery	Low Potential Savings
E.	Automated production controls	Low Potential Savings
F.	Improve facility layout	Not Applicable
G.	Solar applications	Low Potential Savings
н.	Consolidate process	Low Potential Savings
ī.	Building ventilation systems	Low Potential Savings
J.	Production.equipment maintenance	Not Applicable
к.	Improved methods/controls	Low Potential Savings
L.	Steam/condensate distribution	Review Previous EEAP
M.	Compressed air systems	Low Potential Savings
N.	Lighting systems	ECO Analysis Performed
0.	Electrical distribution	Not Applicable
Ρ.	Radiant heating	Not Applicable
Q.	Loading dock seals	Low Potential Savings
R.	Thermal energy storage	Not Applicable
s.	Flue gas recirculation	Not Applicable
Τ.	Ventilation instead of A/C	Not Applicable
U.	Insulation	Not Applicable
٧.	Reduction of glass area	Low Potential Savings
W.	Cargo door strip curtains	ECO Analysis Performed
×.	Other applicable ECO's	Not Applicable

AREA: NC BUILDING NAME: Boiling Tub House NUMBER: 2019-00			
ECO Description Project Status			
Α.	Production equipment changes	Low Potential Savings	
В.	Efficient motors & var. speed drive	ECO Analysis Performed	
C.	Production equipment scheduling	Not Applicable	
D .	Waste heat recovery	Low/No Cost Project	
E.	Automated production controls	Low Potential Savings	
F.	Improve facility layout	Not Applicable	
G.	Solar applications	Low Potential Savings	
н.	Consolidate process	Not Applicable	
Ι.	Building ventilation systems	Low Potential Savings	
J.	Production equipment maintenance	Not Applicable	
κ.	Improved methods/controls	Low Potential Savings	
L.	Steam/condensate distribution	Review Previous EEAP	
M.	Compressed air systems	Not Applicable	
N.	Lighting systems .	ECO Analysis Performed	
0.	Electrical distribution	Not Applicable	
Ρ.	Radiant heating	Not Applicable	
Q.	Loading dock seals	Not Applicable	
R.	Thermal energy storage	Not Applicable	
s.	Flue gas recirculation	Not Applicable	
т.	Ventilation instead of A/C	Not Applicable	
U.	Insulation	ECO Analysis Performed	
v.	Reduction of glass area	Low Potential Savings	
W.	Cargo door strip curtains	Not Applicable	
x.	Other applicable ECO's	ECO Analysis Performed	

AREA: NC BUILDING NAME: Jordan Beaters NUMBER: 2022-		
	ECO Description	Project Status
Α.	Production equipment changes	Low Potential Savings
В.	Efficient motors & var. speed drive	ECO Analysis Performed
C.	Production equipment scheduling	Low Potential Savings
D.	Waste heat recovery	Not Applicable
Ε.	Automated production controls	Low Potential Savings
F.	Improve facility layout	Not Applicable
G.	Solar applications	Not Applicable
н.	Consolidate process	Not Applicable
Ι.	Building ventilation systems	Low Potential Savings
J.	Production equipment maintenance	Not Applicable
κ.	Improved methods/controls	Low/No Cost Project
L.	Steam/condensate distribution	Not Applicable
М.	Compressed air systems	Not Applicable
Ν.	Lighting systems	ECO Analysis Performed
0.	Electrical distribution	Low Potential Savings
Ρ.	Radiant heating	Not Applicable
Q.	Loading dock seals	Not Applicable
R.	Thermal energy storage	Not Applicable
s.	Flue gas recirculation	Not Applicable
Т.	Ventilation instead of A/C	Not Applicable
U	Insulation	Low Potential Savings
٧.	Reduction of glass area	Low Potential Savings
W	Cargo door strip curtains	Not Applicable
x	Other applicable ECO's	Not Applicable

ARE	A: <u>NC</u> BUILDING NAME: <u>Poacher & Bl</u>	end. NUMBER: 2024-00
	ECO Description	Project Status
Α.	Production equipment changes	Low Potential Savings
В.	Efficient motors & var. speed drive	ECO Analysis Performed
C.	Production equipment scheduling	Low Potential Savings
D .	Waste heat recovery	ECO Analysis Performed
Ε.	Automated production controls	Low Potential Savings
F.	Improve facility layout	Not Applicable
G.	Solar applications	Low Potential Savings
н.	Consolidate process	Low Potential Savings
ī.	Building ventilation systems	Low Potential Savings
J.	Production equipment maintenance	Not Applicable
κ.	Improved methods/controls	Not Applicable
L.	Steam/condensate distribution	Review Previous EEAP
М.	Compressed air systems	Not Applicable
N.	Lighting systems	ECO Analysis Performed
0.	Electrical distribution	Not Applicable
P.,	Radiant heating	Not Applicable
Q.	Loading dock seals	Not Applicable
R.	Thermal energy storage	Not Applicable
s.	Flue gas recirculation	Not Applicable
Т.	Ventilation instead of A/C	Not Applicable
υ.	Insulation	ECO Analysis Performed
٧.	Reduction of glass area	Low Potential Savings
W.	Cargo door strip curtains	Not Applicable
х.	Other applicable ECO's	Not Applicable

AREA: NC BUILDING NAME: Final Wringer NUMBER: 202		NUMBER: 2026-00
	ECO Description	Project Status
Α.	Production equipment changes	Low Potential Savings
В.	Efficient motors & var. speed drive	ECO Analysis Performed
c.	Production equipment scheduling	Low Potential Savings
D.	Waste heat recovery	Not Applicable
E.	Automated production controls	Low Potential Savings
F.	Improve facility layout	Not Applicable
G.	Solar applications	Not Applicable
н.	Consolidate process	Not Applicable
I.	Building ventilation systems	Low Potential Savings
J.	Production equipment maintenance	Not Applicable
ĸ.	Improved methods/controls	Low Potential Savings
L.	Steam/condensate distribution	Review Previous EEAP
М.	Compressed air systems	Not Applicable
N.	Lighting systems	ECO Analysis Performed
0.	Electrical distribution	Not Applicable
Р.	Radiant heating	Not Applicable
Q.	Loading dock seals	Not Applicable
R.	Thermal energy storage	Not Applicable
s.	Flue gas recirculation	Not Applicable
Τ.	Ventilation instead of A/C	Not Applicable
U.	Insulation	Not Applicable
٧.	Reduction of glass area	Low Potential Savings
W.	Cargo door strip curtains	ECO Analysis Performed
x.	Other applicable ECO's	Not Applicable

ARE	A: NC BUILDING NAME: Dehy Press H	ouse NUMBER: 2500-00	
ECO Description Project Status			
Α.	Production equipment changes	Low Potential Savings	
В.	Efficient motors & var. speed drive	ECO Analysis Performed	
c.	Production equipment scheduling	Not Applicable	
D.	Waste heat recovery	Not Applicable	
Ε.	Automated production controls	Not Applicable	
F.	Improve facility layout	Not Applicable	
G.	Solar applications	Not Applicable	
н.	Consolidate process	Not Applicable	
ī.	Building ventilation systems	Low Potential Savings	
J.	Production equipment maintenance	Not Applicable	
κ.	Improved methods/controls	Low Potential Savings	
L.	Steam/condensate distribution	Review Previous EEAP	
M.	Compressed air systems	Not Applicable	
N.	Lighting systems	Not Applicable	
0.	Electrical distribution	Not Applicable	
Ρ.	Radiant heating	Not Applicable	
۵.	Loading dock seals	Not Applicable	
R.	Thermal energy storage	Not Applicable	
s.	Flue gas recirculation	Not Applicable	
Т.	Ventilation instead of A/C	Not Applicable	
U.	Insulation	Not Applicable	
٧.	Reduction of glass area	Low Potential Savings	
₩.	Cargo door strip curtains	Not Applicable	
x.	Other applicable ECO's	Not Applicable	

ARE	A: NC BUILDING NAME: Dip. Mix Hou	<u>se</u> NUMBER: 2506-00
	ECO Description	Project Status
Α.	Production equipment changes	Low Potential Savings
В.	Efficient motors & var. speed drive	ECO Analysis Performed
c.	Production equipment scheduling	Low Potential Savings
D.	Waste heat recovery	Low Potential Savings
Ε.	Automated production controls	Low Potential Savings
F.	Improve facility layout	Not Applicable
G.	Solar applications	Not Applicable
н.	Consolidate processes	Not Applicable
ī.	Building ventilation systems	Low Potential Savings
J.	Production equipment maintenance	Not Applicable
Κ.	Improved methods/controls	Low Potential Savings
L.	Steam/condensate distribution	Low Potential Savings
М.	Compressed air systems	Not Applicable
N.	Lighting systems	Low Potential Savings
0.	Electrical distribution	Not Applicable
Р.	Radiant heating	Not Applicable
Q.	Loading dock seals	Not Applicable
R.	Thermal energy storage	Low Potential Savings
s.	Flue gas recirculation	Not Applicable
T.	Ventilation instead of A/C	Not Applicable
U.	Insulation	Not Applicable
٧.	Reduction of glass area	Low Potential Savings
W.	Cargo door strip curtains	Not Applicable
х.	Other applicable ECO's	Not Applicable

ARE	A: NC BUILDING NAME: Mix House	NUMBER: 2508-00
	ECO Description	Project Status
Α.	Production equipment changes	Low Potential Savings
В.	Efficient motors & var. speed drive	ECO Analysis Performed
c.	Production equipment scheduling	Not Applicable
D.	Waste heat recovery	Not Applicable
Ε.	Automated production controls	Low Potential Savings
<u> </u>	Improve facility layout	Low Potential Savings
G.	Solar applications	Not Applicable
н.	Consolidate process	Not Applicable
ī.	Building ventilation systems	Low Potential Savings
J.	Production equipment maintenance	Not Applicable
κ.	Improved methods/controls	Low Potential Savings
L.	Steam/condensate distribution	Not Applicable
М.	Compressed air systems	Not Applicable
N.	Lighting systems	Low Potential Savings
0.	Electrical distribution	Not Applicable
Ρ.	Radiant heating	Not Applicable
Q.	Loading dock seals	Not Applicable
R.	Thermal energy storage	Low Potential Savings
s.	Flue gas recirculation	Not Applicable
т.	Ventilation instead of A/C	Not Applicable
U.	Insulation	Not Applicable
v.	Reduction of glass area	Not Applicable
W.	Cargo door strip curtains	Not Applicable
x .	Other applicable ECO's	Not Applicable

ARE	A: NC BUILDING NAME: Block House	NUMBER: 2510-00
	ECO Description	Project Status
Α.	Production equipment changes	Low Potential Savings
В.	Efficient motors & var. speed drive	ECO Analysis Performed
С.	Production equipment scheduling	Not Applicable
D.	Waste heat recovery	Not Applicable
Ε.	Automated production controls	Low Potential Savings
F.	Improve facility layout	Not Applicable
G.	Solar applications	Not Applicable
Н.	Consolidate process	Low Potential Savings
I.	Building ventilation systems	Not Applicable
J.	Production equipment maintenance	Not Applicable
к.	Improved methods/controls	Not Applicable
L.	Steam/condensate distribution	Review Previous EEAP
M.	Compressed air systems	Not Applicable
N.	Lighting systems	Low Potential Savings
0.	Electrical distribution	Not Applicable
Ρ.	Radiant heating	Not Applicable
Q.	Loading dock seals	Not Applicable
R.	Thermal energy storage	Not Applicable
s.	Flue gas recirculation	Not Applicable
Т.	Ventilation instead of A/C	Not Applicable
υ.	Insulation	Not Applicable
v.	Reduction of glass area	Low Potential Savings
W .	Cargo door strip curtains	Low Potential Savings
× .	Other applicable ECO's	Not Applicable

Finishing Press & Cut House

ARE	A: <u>Green B-Line</u> BUILDING NAME:	& Cut House	NUMBER: <u>2516</u>
	ECO Description		Project Status
Α.	Production equipment changes		LPS
В.	Efficient motors & var. speed drive		LPS
c.	Production equipment scheduling		LPS
D.	Waste heat recovery		LPS
Ε.	Automated production controls		LPS
F.	Improve facility layout		LPS
G.	Solar applications		NA
Н.	Consolidate process		NA
ī.	Building ventilation systems		LPS
J.	Production equipment maintenance		LPS
ĸ.	Improved methods/controls		LPS
L.	Steam/condensate distribution		LPS
M.	Compressed air systems		NA
N.	Lighting systems		LPS
0.	Electrical distribution		LPS
P.	Radiant heating		LPS
Q.	Loading dock seals		NA
R.	Thermal energy storage		NA
s.	Flue gas recirculation		NA
<u>T.</u>	Ventilation instead of A/C		NA
U.	Insulation		LPS
٧.	Reduction of glass area		LPS
W.	Cargo door strip curtains		NA
x .	Other applicable ECOs		LPS

ARE	A: NC BUILDING NAME: Hydr. Pump H	ouse NUMBER: 2521-00
	ECO Description	Project Status
A.	Production equipment changes	Low Potential Savings
В.	Efficient motors & var. speed drive	Not Applicable
c.	Production equipment scheduling	Low Potential Savings
D.	Waste heat recovery	Low Potential Savings
E.	Automated production controls	Not Applicable
F.	Improve facility layout	Not Applicable
G.	Solar applications	Not Applicable
н.	Consolidate processes	Not Applicable
ī.	Building ventilation systems	Low Potential Savings
J.	Production equipment maintenance	Not Applicable
к.	Improved methods/controls	Low Potential Savings
L.	Steam/condensate distribution	Review Previous EEAP
М.	Compressed air systems	Not Applicable
N.	Lighting systems	Low Potential Savings
0.	Electrical distribution	Low Potential Savings
Р.	Radiant heating	Low Potential Savings
Q.	Loading dock seals	Not Applicable
R.	Thermal energy storage	Not Applicable
s.	Flue gas recirculation	Not Applicable
T.	Ventilation instead of A/C	Not Applicable
υ.	Insulation	Low Potential Savings
٧.	Reduction of glass area	Low Potential Savings
W.	Cargo door strip curtains	Not Applicable
х.	Other applicable ECO's	Low/No Cost Project

AREA: NC BUILDING NAME: A.C. Vapor Recov. NUMBER: 2555-00			
ECO Description Project Status			
Α.	Production equipment changes	Not Applicable	
В.	Efficient motors & var. speed drive	ECO Analysis Performed	
c.	Production equipment scheduling	Not Applicable	
D.	Waste heat recovery	Low Potential Savings	
E.	Automated production controls	Not Applicable	
F.	Improve facility layout	Not Applicable	
G.	Solar applications	Not Applicable	
н.	Consolidate process	Not Applicable	
ī.	Building ventilation systems	ECO Analysis Performed	
J.	Production equipment maintenance	Not Applicable	
κ.	Improved methods/controls	Low Potential Savings	
L.	Steam/condensate distribution	Review Previous EEAP	
М.	Compressed air systems	Not Applicable	
N.	Lighting systems	Low Potential Savings	
0.	Electrical distribution	Not Applicable	
Р.	Radiant heating	Not Applicable	
Q.	Loading dock seals	Not Applicable	
R.	Thermal energy storage	Not Applicable	
s.	Flue gas recirculation	Not Applicable	
т.	Ventilation instead of A/C	Not Applicable	
υ.	Insulation	Low Potential Savings	
٧.	Reduction of glass area	Low Potential Savings	
W.	Cargo door strip curtains	Not Applicable	
х.	Other applicable ECO's	Not Applicable	

AREA: C-Line BUILDING NAME: Cutting and Press NUMBER: 3513

	ECO Description	Project Status
Α.	Production equipment changes	LPS
В.	Efficient motors & var. speed drive	ECO
c.	Production equipment scheduling	LPS
D.	Waste heat recovery	LPS
E.	Automated production controls	LPS
F.	Improve facility layout	LPS
G.	Solar applications	NA
н.	Consolidate process	NA
Ī.	Building ventilation systems	LPS
J.	Production equipment maintenance	LPS
Κ.	Improved methods/controls	LPS
L.	Steam/condensate distribution	LPS
M.	Compressed air systems	NA
N.	Lighting systems	ECO
0.	Electrical distribution	LPS
P.	Radiant heating	LPS
Q.	Loading dock seals	NA
R.	Thermal energy storage	NA
s.	Flue gas recirculation	NA
T.	Ventilation instead of A/C	NA
U.	Insulation	LPS
٧.	Reduction of glass area	LPS
W.	Cargo door strip curtains	ECO
X.	Other applicable ECOs	LPS

AREA: N6 BUILDING NAME: Premix House NUMBER: 3647

	ECO Description	Project Status
Α.	Production equipment changes	LPS
B.	Efficient motors & var. speed drive	ECO
c.	Production equipment scheduling	LPS
D.	Waste heat recovery	LPS
Ε.	Automated production controls	LPS
F.	Improve facility layout	LPS
G.	Solar applications	NA
Н.	Consolidate process	LPS
ī.	Building ventilation systems	LPS
J.	Production equipment maintenance	LPS
Κ.	Improved methods/controls	LPS
L.	Steam/condensate distribution	LPS
M.	Compressed air systems	NA
N.	Lighting systems	ECO
0.	Electrical distribution	LPS
P.	Radiant heating	LPS
Q.	Loading dock seals	NA
R.	Thermal energy storage	NA
s.	Flue gas recirculation	NA
T.	Ventilation instead of A/C	NA
U.	Insulation	LPS
٧.	Reduction of glass area	LPS
W.	Cargo door strip curtains	NA
Χ.	Other applicable ECOs	LPS

ARE	A: <u>GP</u> BUILDING NAME: <u>Power House</u>	# 2 NUMBER: 4329-00
	ECO Description	Project Status
Α.	Production equipment changes	Not Applicable
В.	Efficient motors & var. speed drive	Not Applicable
c.	Production equipment scheduling	Not Applicable
D.	Waste heat recovery	Not Applicable
E.	Automated production controls	Not Applicable
F.	Improve facility layout	Not Applicable
G.	Solar applications	Not Applicable
н.	Consolidate processes	Not Applicable
I.	Building ventilation systems	Not Applicable
J.	Production equipment maintenance	Not Applicable
Κ.	Improved methods/controls	Low/No Cost Project
L.	Steam/condensate distribution	Not Applicable
М.	Compressed air systems	Not Applicable
N.	Lighting systems	Not Applicable
0.	Electrical distribution	Not Applicable
P.	Radiant heating	Not Applicable
Q.	Loading dock seals	Not Applicable
R.	Thermal energy storage	Not Applicable
s.	Flue gas recirculation	Not Applicable
T.	Ventilation instead of A/C	Not Applicable
U.	Insulation	Not Applicable
v.	Reduction of glass area	Not Applicable
W.	Cargo door strip curtains	Not Applicable
х.	Other applicable ECO's	Not Applicable

A. Production equipment changes Not Applicable B. Efficient motors & var. speed drive Not Applicable C. Production equipment scheduling Not Applicable D. Waste heat recovery Not Applicable E. Automated production controls Not Applicable F. Improve facility layout Not Applicable G. Solar applications Not Applicable H. Consolidate processes Not Applicable I. Building ventilation systems Not Applicable J. Production equipment maintenance Not Applicable K. Improved methods/controls Not Applicable L. Steam/condensate distribution Not Applicable M. Compressed air systems Not Applicable N. Lighting systems Not Applicable O. Electrical distribution Not Applicable P. Radiant heating Not Applicable R. Thermal energy storage Not Applicable S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Not Applicable U. Insulation Not Applicable V. Reduction of glass area Not Applicable V. Reduction of glass area Not Applicable V. Reduction of strip curtains Not Applicable X. Other applicable ECO's Not Applicable X. Other applicable ECO's	ARE	A: <u>GP</u> BUILDING NAME: <u>Inert Gas House</u>	NUMBER: 4903-00
B. Efficient motors & var. speed drive Not Applicable C. Production equipment scheduling Not Applicable D. Waste heat recovery Not Applicable E. Automated production controls Not Applicable F. Improve facility layout Not Applicable G. Solar applications Not Applicable H. Consolidate processes Not Applicable I. Building ventilation systems Not Applicable J. Production equipment maintenance Not Applicable K. Improved methods/controls Not Applicable L. Steam/condensate distribution Not Applicable M. Compressed air systems Not Applicable N. Lighting systems Not Applicable O. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals Not Applicable R. Thermal energy storage Not Applicable T. Ventilation instead of A/C Not Applicable U. Insulation Not Applicable V. Reduction of glass area Not Applicable V. Reduction of glass area Not Applicable V. Reduction of strip curtains Not Applicable Not Applicable Not Applicable Not Applicable		ECO Description	Project Status
C. Production equipment scheduling D. Waste heat recovery E. Automated production controls F. Improve facility layout G. Solar applications H. Consolidate processes Not Applicable I. Building ventilation systems J. Production equipment maintenance K. Improved methods/controls L. Steam/condensate distribution M. Compressed air systems Not Applicable N. Lighting systems Not Applicable N. Lighting systems Not Applicable O. Electrical distribution P. Radiant heating Q. Loading dock seals R. Thermal energy storage Not Applicable S. Flue gas recirculation Not Applicable V. Reduction of glass area Not Applicable	Α.	Production equipment changes No	ot Applicable
D. Waste heat recovery E. Automated production controls F. Improve facility layout G. Solar applications H. Consolidate processes Not Applicable I. Building ventilation systems I. Building ventilation systems I. Production equipment maintenance I. Mot Applicable K. Improved methods/controls I. Steam/condensate distribution I. Steam/condensate distribution I. Lighting systems I. Lighting syst	В.	Efficient motors & var. speed drive No	ot Applicable
E. Automated production controls F. Improve facility layout G. Solar applications H. Consolidate processes Not Applicable I. Building ventilation systems J. Production equipment maintenance K. Improved methods/controls L. Steam/condensate distribution M. Compressed air systems Not Applicable N. Lighting systems Not Applicable N. Lighting systems Not Applicable P. Radiant heating Q. Loading dock seals R. Thermal energy storage S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable Not Applicable	C.	Production equipment scheduling No.	ot Applicable
F. Improve facility layout G. Solar applications H. Consolidate processes Not Applicable I. Building ventilation systems J. Production equipment maintenance K. Improved methods/controls L. Steam/condensate distribution M. Compressed air systems Not Applicable N. Lighting systems Not Applicable N. Lighting systems Not Applicable O. Electrical distribution P. Radiant heating Q. Loading dock seals Not Applicable R. Thermal energy storage Not Applicable T. Ventilation instead of A/C U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable Not Applicable	D.	Waste heat recovery No	ot Applicable
G. Solar applications H. Consolidate processes I. Building ventilation systems Not Applicable J. Production equipment maintenance K. Improved methods/controls I. Steam/condensate distribution M. Compressed air systems Not Applicable N. Lighting systems Not Applicable N. Lighting systems Not Applicable P. Radiant heating Q. Loading dock seals R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C Not Applicable V. Reduction of glass area Not Applicable Not Applicable V. Reduction of glass area Not Applicable Not Applicable Not Applicable Not Applicable	Ε.	Automated production controls No	ot Applicable
H. Consolidate processes I. Building ventilation systems Not Applicable J. Production equipment maintenance K. Improved methods/controls L. Steam/condensate distribution Mot Applicable M. Compressed air systems Not Applicable N. Lighting systems Not Applicable O. Electrical distribution P. Radiant heating Q. Loading dock seals R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C Wot Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable Not Applicable	F.	Improve facility layout No	ot Applicable
I. Building ventilation systems J. Production equipment maintenance K. Improved methods/controls L. Steam/condensate distribution M. Compressed air systems Not Applicable N. Lighting systems Not Applicable O. Electrical distribution P. Radiant heating Q. Loading dock seals R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C Not Applicable V. Reduction of glass area Not Applicable V. Reduction of glass area Not Applicable V. Reduction of glass area Not Applicable V. Cargo door strip curtains Not Applicable	G.	Solar applications No.	ot Applicable
J. Production equipment maintenance K. Improved methods/controls L. Steam/condensate distribution M. Compressed air systems Not Applicable M. Lighting systems Not Applicable O. Electrical distribution P. Radiant heating Not Applicable Q. Loading dock seals R. Thermal energy storage Not Applicable S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Not Applicable U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	н.	Consolidate processes No	ot Applicable
K. Improved methods/controls L. Steam/condensate distribution Mot Applicable M. Compressed air systems Not Applicable N. Lighting systems Not Applicable O. Electrical distribution P. Radiant heating Q. Loading dock seals R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable Not Applicable	ī.	Building ventilation systems No	ot Applicable
L. Steam/condensate distribution Not Applicable M. Compressed air systems Not Applicable N. Lighting systems Not Applicable O. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals Not Applicable R. Thermal energy storage Not Applicable S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Not Applicable U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	J.	Production equipment maintenance No	ot Applicable
M. Compressed air systems Not Applicable N. Lighting systems Not Applicable O. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals Not Applicable R. Thermal energy storage Not Applicable S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Not Applicable U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	ĸ.	Improved methods/controls No	ot Applicable
N. Lighting systems O. Electrical distribution P. Radiant heating Q. Loading dock seals R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C Ventilation Not Applicable V. Reduction of glass area Not Applicable V. Cargo door strip curtains Not Applicable Not Applicable	L.	Steam/condensate distribution No.	ot Applicable
O. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals Not Applicable R. Thermal energy storage Not Applicable S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Not Applicable U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	М.	Compressed air systems No	ot Applicable
P. Radiant heating Q. Loading dock seals R. Thermal energy storage S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	N.	Lighting systems No	ot Applicable
Q. Loading dock seals R. Thermal energy storage Not Applicable S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	0.	Electrical distribution No.	ot Applicable
R. Thermal energy storage S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	Р.	Radiant heating No.	ot Applicable
S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Not Applicable U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	Q.	Loading dock seals No	ot Applicable
T. Ventilation instead of A/C Not Applicable U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	R.	Thermal energy storage No.	ot Applicable
U. Insulation Not Applicable V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	s.	Flue gas recirculation No	ot Applicable
V. Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable	T.	Ventilation instead of A/C No.	ot Applicable
W. Cargo door strip curtains Not Applicable	U.	Insulation No.	ot Applicable
	٧.	Reduction of glass area No.	ot Applicable
X. Other applicable ECO's Not Applicable	W.	Cargo door strip curtains No	ot Applicable
	х.	Other applicable ECO's N	ot Applicable

ARE	A: <u>NC</u> BUILDING NAME: <u>Final Mix Ho</u>	use NUMBER: 4906-00
	ECO Description	Project Status
Α.	Production equipment changes	Low Potential Savings
В.	Efficient motors & var. speed drive	ECO Analysis Performed
c.	Production equipment scheduling	Low Potential Savings
D.	Waste heat recovery	Low Potential Savings
E.	Automated production controls	Low Potential Savings
F.	Improve facility layout	Not Applicable
G.	Solar applications	Low Potential Savings
н.	Consolidate process	Not Applicable
ī.	Building ventilation systems	Low Potential Savings
J.	Production equipment maintenance	Not Applicable
κ.	Improved methods/controls	Low Potential Savings
L.	Steam/condensate distribution	Low Potential Savings
М.	Compressed air systems	Not Applicable
N.	Lighting systems	Low Potential Savings
0.	Electrical distribution	Not Applicable
Ρ.	Radiant heating	Not Applicable
Q.	Loading dock seals	Not Applicable
R.	Thermal energy storage	Low Potential Savings
s.	Flue gas recirculation	Not Applicable
т.	Ventilation instead of A/C	Not Applicable
υ.	Insulation	Not Applicable
٧.	Reduction of glass area	Low Potential Savings
W.	Cargo door strip curtains	Not Applicable
x.	Other applicable ECO's	Not Applicable

B. Efficient motors & var. speed drive C. Production equipment scheduling D. Waste heat recovery E. Automated production controls E. Low Potential Savings E. Solar applications E. Low Potential Savings E. Consolidate process Not Applicable I. Building ventilation systems E. Low Potential Savings E. Low Potential Savings E. Steam/condensate distribution E. Steam/condensate distribution E. Steam/condensate distribution E. Low Potential Savings E. Low Potential Savings E. Low Potential Savings Electrical distribution E. Radiant heating E. Loading dock seals E. Not Applicable E. Thermal energy storage E. Flue gas recirculation E. Ventilation instead of A/C E. Not Applicable E. Ventilation E. Low/No Cost Project E. V. Reduction of glass area E. Low Potential Savings	ARE	A: <u>NC</u> BUILDING NAME: <u>Press & Cutt</u>	ing NUMBER: 4908-00
B. Efficient motors & var. speed drive C. Production equipment scheduling D. Waste heat recovery E. Automated production controls E. Improve facility layout E. Ow Potential Savings E. Consolidate process E. Not Applicable E. Building ventilation systems E. Dow Potential Savings E. Low Potential Savings E. Consolidate process E. Low Potential Savings E. Low Potential Savings E. Steam/condensate distribution E. Steam/condensate distribution E. Steam/condensate distribution E. Steam/condensate distribution E. Low Potential Savings E. Low Potential Savings E. Low Potential Savings E. Compressed air systems E. Not Applicable E. Radiant heating E. Loading dock seals E. Not Applicable E. Thermal energy storage E. Not Applicable E. Flue gas recirculation E. Not Applicable E. Ventilation instead of A/C E. Not Applicable E. Not Applica		ECO Description	Project Status
C. Production equipment scheduling D. Waste heat recovery E. Automated production controls F. Improve facility layout G. Solar applications H. Consolidate process I. Building ventilation systems J. Production equipment maintenance K. Improved methods/controls Low Potential Savings Low Potential Savings J. Production equipment maintenance K. Improved methods/controls Low Potential Savings L. Steam/condensate distribution M. Compressed air systems Not Applicable N. Lighting systems D. Electrical distribution Not Applicable Not Applicable R. Thermal energy storage Not Applicable R. Thermal energy storage Not Applicable Low/No Cost Project V. Reduction of glass area Low Potential Savings	Α.	Production equipment changes	Low Potential Savings
D. Waste heat recovery E. Automated production controls E. Automated production controls F. Improve facility layout G. Solar applications H. Consolidate process Not Applicable I. Building ventilation systems J. Production equipment maintenance K. Improved methods/controls L. Steam/condensate distribution M. Compressed air systems Not Applicable N. Lighting systems D. Electrical distribution P. Radiant heating Q. Loading dock seals R. Thermal energy storage Not Applicable Not Applicable Not Applicable Not Applicable R. Thermal energy storage Not Applicable Low/No Cost Project V. Reduction of glass area Low Potential Savings	В.	Efficient motors & var. speed drive	ECO Analysis Performed
E. Automated production controls F. Improve facility layout G. Solar applications H. Consolidate process I. Building ventilation systems J. Production equipment maintenance K. Improved methods/controls Low Potential Savings L. Steam/condensate distribution M. Compressed air systems Not Applicable N. Lighting systems D. Electrical distribution P. Radiant heating Q. Loading dock seals R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation Low Potential Savings Not Applicable Not Applicable Not Applicable Not Applicable Not Applicable Low/No Cost Project U. Reduction of glass area Low Potential Savings	c.	Production equipment scheduling	Low Potential Savings
F. Improve facility layout G. Solar applications H. Consolidate process Not Applicable I. Building ventilation systems J. Production equipment maintenance K. Improved methods/controls L. Steam/condensate distribution M. Compressed air systems Not Applicable N. Lighting systems D. Electrical distribution P. Radiant heating M. Coading dock seals R. Thermal energy storage S. Flue gas recirculation V. Reduction of glass area Low Potential Savings Not Applicable Not Applicable Not Applicable Not Applicable Not Applicable	D.	Waste heat recovery	Low Potential Savings
G. Solar applications H. Consolidate process I. Building ventilation systems J. Production equipment maintenance K. Improved methods/controls Low Potential Savings L. Steam/condensate distribution M. Compressed air systems Not Applicable N. Lighting systems D. Electrical distribution P. Radiant heating G. Loading dock seals R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation Low Potential Savings Not Applicable Not Applicable Not Applicable Not Applicable Not Applicable Not Applicable Low/No Cost Project V. Reduction of glass area Low Potential Savings	Ε.	Automated production controls	Low Potential Savings
H. Consolidate process I. Building ventilation systems J. Production equipment maintenance K. Improved methods/controls L. Steam/condensate distribution Mot Applicable Not Applicable Not Applicable Not Applicable Not Applicable Not Applicable Not Applicable Radiant heating Q. Loading dock seals R. Thermal energy storage Not Applicable Low/No Cost Project V. Reduction of glass area Low Potential Savings	F.	Improve facility layout	Low Potential Savings
I. Building ventilation systems J. Production equipment maintenance K. Improved methods/controls Low Potential Savings L. Steam/condensate distribution M. Compressed air systems Not Applicable N. Lighting systems D. Electrical distribution P. Radiant heating Not Applicable R. Thermal energy storage Not Applicable T. Ventilation instead of A/C Not Applicable U. Insulation Low Potential Savings Not Applicable Not Applicable Not Applicable Low/No Cost Project V. Reduction of glass area Low Potential Savings	G.	Solar applications	Low Potential Savings
J. Production equipment maintenance K. Improved methods/controls Low Potential Savings L. Steam/condensate distribution M. Compressed air systems Not Applicable N. Lighting systems C. Electrical distribution P. Radiant heating Q. Loading dock seals R. Thermal energy storage Not Applicable S. Flue gas recirculation T. Ventilation instead of A/C V. Reduction of glass area Not Applicable Low/No Cost Project V. Reduction of glass area Low Potential Savings	н.	Consolidate process	Not Applicable
K. Improved methods/controls Low Potential Savings L. Steam/condensate distribution M. Compressed air systems Not Applicable N. Lighting systems Low Potential Savings O. Electrical distribution P. Radiant heating Not Applicable Q. Loading dock seals R. Thermal energy storage Not Applicable S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation V. Reduction of glass area Low Potential Savings Low Potential Savings	I.	Building ventilation systems	Low Potential Savings
L. Steam/condensate distribution M. Compressed air systems Not Applicable N. Lighting systems C. Electrical distribution P. Radiant heating Q. Loading dock seals R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C Not Applicable Low/No Cost Project V. Reduction of glass area Low Potential Savings Not Applicable Low/No Cost Project Low Potential Savings	J.	Production equipment maintenance	Not Applicable
M. Compressed air systems Not Applicable N. Lighting systems C. Electrical distribution P. Radiant heating G. Loading dock seals R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C V. Reduction of glass area Not Applicable Low Potential Savings Not Applicable Low/No Cost Project V. Reduction of glass area Low Potential Savings	κ.	Improved methods/controls	Low Potential Savings
N. Lighting systems O. Electrical distribution P. Radiant heating Q. Loading dock seals R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C V. Reduction of glass area Low Potential Savings Low Potential Savings	L.	Steam/condensate distribution	Low Potential Savings
O. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals Not Applicable R. Thermal energy storage Not Applicable S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Not Applicable U. Insulation Low/No Cost Project V. Reduction of glass area Low Potential Savings	М.	Compressed air systems	Not Applicable
P. Radiant heating Q. Loading dock seals R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation Not Applicable Not Applicable Not Applicable Low/No Cost Project V. Reduction of glass area Low Potential Savings	Ν.	Lighting systems	Low Potential Savings
Q. Loading dock seals R. Thermal energy storage S. Flue gas recirculation Not Applicable Not Applicable Not Applicable Not Applicable U. Insulation Low/No Cost Project V. Reduction of glass area Low Potential Savings	0.	Electrical distribution	Not Applicable
R. Thermal energy storage S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C U. Insulation Low/No Cost Project V. Reduction of glass area Low Potential Savings	Ρ.	Radiant heating	Not Applicable
S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Not Applicable U. Insulation Low/No Cost Project V. Reduction of glass area Low Potential Savings	Q.	Loading dock seals	Not Applicable
T. Ventilation instead of A/C U. Insulation Low/No Cost Project V. Reduction of glass area Low Potential Savings	R.	Thermal energy storage	Not Applicable
U. Insulation Low/No Cost Project V. Reduction of glass area Low Potential Savings	s.	Flue gas recirculation	Not Applicable
V. Reduction of glass area Low Potential Savings	Т.	Ventilation instead of A/C	Not Applicable
	υ.	Insulation	Low/No Cost Project
	٧.	Reduction of glass area	Low Potential Savings
W. Cargo door strip curtains Not Applicable	W.	Cargo door strip curtains	Not Applicable
X. Other applicable ECO's Not Applicable	x.	Other applicable ECO's	Not Applicable

NUMBER: 4912-03 BUILDING NAME: Saw & Inhibiting AREA: RK Project Status ECO Description Low Potential Savings Production equipment changes ECO Analysis Performed Efficient motors & var. speed drive В. Production equipment scheduling Low Potential Savings C. Low Potential Savings Waste heat recovery D. Low Potential Savings Automated production controls E. Not Applicable Improve facility layout F. Low Potential Savings Solar applications G. Not Applicable Consolidate processes Η. Low Potential Savings Building ventilation systems . I. Production equipment maintenance Not Applicable J. Low Potential Savings Improved methods/controls Κ. Not Applicable Steam/condensate distribution L. Low Potential Savings Compressed air systems Μ. ECO Analysis Performed Lighting systems N. Not Applicable Electrical distribution Ο. Radiant heating Not Applicable Ρ. Not Applicable Loading dock seals Q. Low Potential Savings Thermal energy storage R. Not Applicable Flue gas recirculation s. Low Potential Savings Ventilation instead of A/C Τ. Low/No Cost Project Insulation U. Low Potential Savings Reduction of glass area Not Applicable W. Cargo door strip curtains Not Applicable Other applicable ECO's Χ.

AREA: RK BUILDING NAME: Saw & Inhibiting NUMBER: 4912-04 Project Status ECO Description Low Potential Savings Production equipment changes Efficient motors & var. speed drive ECO Analysis Performed В. Low Potential Savings С. Production equipment scheduling Low Potential Savings Waste heat recovery D. Low Potential Savings Automated production controls Ε. Improve facility layout Not Applicable F. Low Potential Savings Solar applications Consolidate processes Not Applicable Η. Low Potential Savings Building ventilation systems I. Not Applicable J. Production equipment maintenance Improved methods/controls Low Potential Savings Κ. Not Applicable Steam/condensate distribution Compressed air systems Low Potential Savings Μ. ECO Analysis Performed Lighting systems Ν. Not Applicable Electrical distribution Ο. Radiant heating Not Applicable Ρ. Not Applicable Loading dock seals Q.

Thermal energy storage

Flue gas recirculation

Reduction of glass area

Other applicable ECO's

Cargo door strip curtains

Insulation

Ventilation instead of A/C

R.

S.

T.

U.

V.

₩.

Х.

Low Potential Savings

Low Potential Savings

Low Potential Savings

Not Applicable

Not Applicable

Not Applicable

Not Applicable

ARE	A: <u>RK</u> BUILDING NAME: <u>Pin Assembly</u>	NUMBER: 4912-07
	ECO Description	Project Status
Α.	Production equipment changes	Low Potential Savings
В.	Efficient motors & var. speed drive	ECO Analysis Performed
C.	Production equipment scheduling	Not Applicable
D.	Waste heat recovery	Low Potential Savings
E.	Automated production controls	Low Potential Savings
F.	Improve facility layout	Low Potential Savings
G.	Solar applications	Low Potential Savings
н.	Consolidate process	Not Applicable
ī.	Building ventilation systems	Low Potential Savings
J.	Production equipment maintenance	Not Applicable
κ.	Improved methods/controls	Low Potential Savings
L.	Steam/condensate distribution	Low/No Cost Project
M.	Compressed air systems	Not Applicable
N.	Lighting systems	ECO Analysis Performed
0.	Electrical distribution	Not Applicable
Ρ.	Radiant heating	Not Applicable
Q.	Loading dock seals	Not Applicable
R.	Thermal energy storage	Low Potential Savings
s.	Flue gas recirculation	Not Applicable
Т.	Ventilation instead of A/C	ECO Analysis Performed
U.	Insulation	Low/No Cost Project
v.	Reduction of glass area	Low Potential Savings
W.	Cargo door strip curtains	Not Applicable
х.	Other applicable ECO's	Not Applicable

ARE	A: <u>RK</u> BUILDING NAME: <u>Mold Loading</u>	NUMBER: 4912-11
	ECO Description	Project Status
Α.	Production equipment changes	Low Potential Savings
В.	Efficient motors & var. speed drive	ECO Analysis Performed
C.	Production equipment scheduling	Low Potential Savings
D.	Waste heat recovery	Low Potential Savings
Ε.	Automated production controls	Low Potential Savings
F.	Improve facility layout	Not Applicable
G.	Solar applications	Low Potential Savings
н.	Consolidate processes	Not Applicable
Ι.	Building ventilation systems	Low/No Cost Project
J.	Production equipment maintenance	Not Applicable
к.	Improved methods/controls	Not Applicable
L.	Steam/condensate distribution	Not Applicable .
М.	Compressed air systems	Not Applicable
N.	Lighting systems	ECO Analysis Performed
0.	Electrical distribution	Not Applicable
Р.	Radiant heating	Not Applicable
Q.	Loading dock seals	Not Applicable
R.	Thermal energy storage	Low Potential Savings
s.	Flue gas recirculation	Not Applicable
т.	Ventilation instead of A/C	Low Potential Savings
U.	Insulation	Low/No Cost Project
v.	Reduction of glass area	Low Potential Savings
₩.	Cargo door strip curtains	Not Applicable
x.	Other applicable ECO's	Not Applicable

ARE	A: <u>RK</u> BUILDING NAME: <u>Spiral Wrap</u>	NUMBER: 4912-15
	ECO Description	Project Status
Α.	Production equipment changes	Low Potential Savings
В.	Efficient motors & var. speed drive	ECO Analysis Performed
C.	Production equipment scheduling	Low Potential Savings
D.	Waste heat recovery	Low Potential Savings
Ε.	Automated production controls	Low Potential Savings
F.	Improve facility layout	Low Potential Savings
G.	Solar applications	Low Potential Savings
н.	Consolidate process	Not Applicable
Ι.	Building ventilation systems	Low Potential Savings
J.	Production equipment maintenance	Not Applicable
κ.	Improved methods/controls	Low Potential Savings
L.	Steam/condensate distribution	Not Applicable
М.	Compressed air systems	Not Applicable
N.	Lighting systems	ECO Analysis Performed
0.	Electrical distribution	Not Applicable
Р.	Radiant heating	Not Applicable
Q.	Loading dock seals	Not Applicable
R.	Thermal energy storage	Low Potential Savings
s.	Flue gas recirculation	Not Applicable
Т.	Ventilation instead of A/C	Low Potential Savings
U.	Insulation	Not Applicable
٧.	Reduction of glass area	Low Potential Savings
₩.	Cargo door strip curtains	Not Applicable
x.	Other applicable ECO's	Not Applicable
X.	Other applicable ECO's	Not Applicable

ARE	A: <u>RK</u> BUILDING NAME: <u>Curing House</u>	NUMBER: 4912-27
	ECO Description	Project Status
Α.	Production equipment changes	Low Potential Savings
В.	Efficient motors & var. speed drive	ECO Analysis Performed
c.	Production equipment scheduling	Low Potential Savings
D.	Waste heat recovery	Not Applicable
Ε.	Automated production controls	Low Potential Savings
F.	Improve facility layout	Not Applicable
G.	Solar applications	Low Potential Savings
н.	Consolidate processes	Low Potential Savings
ī.	Building ventilation systems	Low Potential Savings
J.	Production equipment maintenance	Not Applicable
κ.	Improved methods/controls	Not Applicable
L.	Steam/condensate distribution .	Not Applicable
M.	Compressed air systems	Not Applicable
N.	Lighting systems	ECO Analysis Performed
ο.	Electrical distribution	Not Applicable
Ρ.	Radiant heating	Not Applicable
۵.	Loading dock seals	Not Applicable
R.	Thermal energy storage	Not Applicable
s.	Flue gas recirculation	Not Applicable
т.	Ventilation instead of A/C	Not Applicable
U.	Insulation	Not Applicable
٧.	Reduction of glass area	Low Potential Savings
W.	Cargo door strip curtains	Not Applicable
x.	Other applicable ECO's	ECO Analysis Performed

A: MF BUILDING NAME: Forced Air D	ry	NUMBER: 4912-34
ECO Description		Project Status
Production equipment changes	Not	Applicable
Efficient motors & var. speed drive	ECO	Analysis Performed
Production equipment scheduling	Not	Applicable
Waste heat recovery	Not	Applicable
Automated production controls	Not	Applicable
Improve facility layout	Not	Applicable
Solar applications	Low	Potential Savings
Consolidate process	Not	Applicable
Building ventilation systems	Low	Potential Savings
Production equipment maintenance	Not	Applicable
Improved methods/controls	Low	Potential Savings
Steam/condensate distribution	Not	Applicable
Compressed air systems	Not	Applicable
Lighting systems	EC0	Analysis Performed
Electrical distribution	Not	Applicable
Radiant heating	Not	Applicable
Loading dock seals	Not	Applicable
Thermal energy storage	Not	Applicable
Flue gas recirculation	Not	Applicable
Ventilation instead of A/C	Not	Applicable
Insulation	Not	Applicable
Reduction of glass area	Not	Applicable
Cargo door strip curtains	Not	Applicable
Other applicable ECO's	ECO	Analysis Performed
	ECO Description Production equipment changes Efficient motors & var. speed drive Production equipment scheduling Waste heat recovery Automated production controls Improve facility layout Solar applications Consolidate process Building ventilation systems Production equipment maintenance Improved methods/controls Steam/condensate distribution Compressed air systems Lighting systems Electrical distribution Radiant heating Loading dock seals Thermal energy storage Flue gas recirculation Ventilation instead of A/C Insulation Reduction of glass area Cargo door strip curtains	Production equipment changes Not Efficient motors & var. speed drive ECO Production equipment scheduling Not Waste heat recovery Not Automated production controls Not Improve facility layout Not Solar applications Low Consolidate process Not Building ventilation systems Low Production equipment maintenance Not Improved methods/controls Low Steam/condensate distribution Not Compressed air systems ECO Electrical distribution Not Radiant heating Not Thermal energy storage Not Ventilation instead of A/C Not Insulation Not Reduction of glass area Not Cargo door strip curtains

A: MF BUILDING NAME: Forced Air D	ry NUMBER: 4912-40
ECO Description	Project Status
Production equipment changes	Not Applicable
Efficient motors & var. speed drive	ECO Analysis Performed
Production equipment scheduling	Not Applicable
Waste heat recovery	Not Applicable
Automated production controls	Not Applicable
Improve facility layout	Not Applicable
Solar applications	Low Potential Savings
Consolidate processes	Not Applicable
Building ventilation systems	Review Previous EEAP
Production equipment maintenance	Not Applicable
Improved methods/controls	Low Potential Savings
Steam/condensate distribution	Low/No Cost Project
Compressed air systems	Not Applicable
Lighting systems	ECO Analysis Performed
Electrical distribution	Not Applicable
Radiant heating	Not Applicable
Loading dock seals	Not Applicable
Thermal energy storage	Not Applicable
Flue gas recirculation	Not Applicable
Ventilation instead of A/C	Not Applicable
Insulation	Low/No Cost Project
Reduction of glass area	Not Applicable
Cargo door strip curtains	Not Applicable
	ECO Description Production equipment changes Efficient motors & var. speed drive Production equipment scheduling Waste heat recovery Automated production controls Improve facility layout Solar applications Consolidate processes Building ventilation systems Production equipment maintenance Improved methods/controls Steam/condensate distribution Compressed air systems Lighting systems Electrical distribution Radiant heating Loading dock seals Thermal energy storage Flue gas recirculation Ventilation instead of A/C Insulation Reduction of glass area

A. Production equipment changes B. Efficient motors & var. speed drive C. Production equipment scheduling D. Waste heat recovery E. Automated production controls E. Automated production controls E. Automated processes C. Solar applications E. Consolidate processes E. Dow Potential Savings E. Building ventilation systems E. Mot Applicable E. Timprove facility layout E. Automated production controls E. Ow Potential Savings E. Ow Potential Savings E. Dow Potential Savings E. Not Applicable E. Steam/condensate distribution M. Applicable M. Compressed air systems E. Control Project N. Lighting systems E. Control Project E. Control distribution E. Control distribution E. Applicable E. Automated production instead of A/C Not Applicable E. Automated production E. Automated production E. Automated production Not Applicable E. Automated production E. Automated production Not Applicable Automated production Not Applicable Automated production Not Applicable Automated production Not Applicable Automated production No	ARE	A: <u>RK</u> BUILDING NAME: <u>Mold Assembl</u>	y NUMBER: 4915-00
B. Efficient motors & var. speed drive		ECO Description	Project Status
C. Production equipment scheduling D. Waste heat recovery E. Automated production controls F. Improve facility layout G. Solar applications H. Consolidate processes Low Potential Savings H. Consolidate processes Low Potential Savings I. Building ventilation systems J. Production equipment maintenance K. Improved methods/controls Not Applicable K. Steam/condensate distribution M. Compressed air systems Low/No Cost Project N. Lighting systems ECO Analysis Performed D. Electrical distribution Not Applicable P. Radiant heating Not Applicable R. Thermal energy storage Not Applicable S. Flue gas recirculation T. Ventilation instead of A/C Not Applicable U. Insulation V. Reduction of glass area Low Potential Savings W. Cargo door strip curtains Not Applicable	Α.	Production equipment changes	Low Potential Savings
D. Waste heat recovery E. Automated production controls F. Improve facility layout G. Solar applications H. Consolidate processes Low Potential Savings I. Building ventilation systems J. Production equipment maintenance K. Improved methods/controls L. Steam/condensate distribution M. Compressed air systems Low/No Cost Project N. Lighting systems ECO Analysis Performed D. Electrical distribution Not Applicable R. Radiant heating Not Applicable Lowding dock seals Not Applicable Not Applicable Low Potential Savings V. Reduction of glass area Low Potential Savings W. Cargo door strip curtains Not Applicable	В.	Efficient motors & var. speed drive	ECO Analysis Performed
E. Automated production controls F. Improve facility layout G. Solar applications H. Consolidate processes Low Potential Savings H. Consolidate processes Low Potential Savings I. Building ventilation systems J. Production equipment maintenance K. Improved methods/controls Mot Applicable K. Improved methods/controls Mot Applicable M. Compressed air systems Low/No Cost Project N. Lighting systems ECO Analysis Performed D. Electrical distribution Not Applicable P. Radiant heating Not Applicable R. Thermal energy storage Not Applicable S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation V. Reduction of glass area Low Potential Savings W. Cargo door strip curtains Not Applicable	c.	Production equipment scheduling	Not Applicable
F. Improve facility layout G. Solar applications H. Consolidate processes Low Potential Savings H. Consolidate processes Low Potential Savings I. Building ventilation systems Low Potential Savings J. Production equipment maintenance Not Applicable K. Improved methods/controls Not Applicable L. Steam/condensate distribution M. Compressed air systems Low/No Cost Project N. Lighting systems ECO Analysis Performed D. Electrical distribution Not Applicable P. Radiant heating Not Applicable R. Thermal energy storage Not Applicable S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation V. Reduction of glass area Low Potential Savings W. Cargo door strip curtains Not Applicable	D.	Waste heat recovery	Not Applicable
G. Solar applications H. Consolidate processes Low Potential Savings I. Building ventilation systems Low Potential Savings J. Production equipment maintenance K. Improved methods/controls L. Steam/condensate distribution M. Compressed air systems Low/No Cost Project N. Lighting systems ECO Analysis Performed D. Electrical distribution Not Applicable P. Radiant heating Not Applicable R. Thermal energy storage Not Applicable T. Ventilation instead of A/C U. Insulation V. Reduction of glass area Low Potential Savings W. Cargo door strip curtains Not Applicable	Ε.	Automated production controls	Not Applicable
H. Consolidate processes I. Building ventilation systems Low Potential Savings J. Production equipment maintenance K. Improved methods/controls Not Applicable K. Steam/condensate distribution M. Compressed air systems Low/No Cost Project N. Lighting systems ECO Analysis Performed O. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals R. Thermal energy storage Not Applicable S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation V. Reduction of glass area Low Potential Savings W. Cargo door strip curtains Not Applicable	F.	Improve facility layout	Low Potential Savings
I. Building ventilation systems J. Production equipment maintenance K. Improved methods/controls L. Steam/condensate distribution M. Compressed air systems Low/No Cost Project N. Lighting systems ECO Analysis Performed O. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals R. Thermal energy storage Not Applicable S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation V. Reduction of glass area Low Potential Savings W. Cargo door strip curtains Not Applicable	G.	Solar applications	Low Potential Savings
J. Production equipment maintenance K. Improved methods/controls L. Steam/condensate distribution M. Compressed air systems Low/No Cost Project N. Lighting systems ECO Analysis Performed O. Electrical distribution P. Radiant heating Not Applicable Q. Loading dock seals R. Thermal energy storage Not Applicable S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation V. Reduction of glass area Low Potential Savings W. Cargo door strip curtains Not Applicable	н.	Consolidate processes	Low Potential Savings
K. Improved methods/controls L. Steam/condensate distribution M. Compressed air systems Low/No Cost Project N. Lighting systems ECO Analysis Performed O. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals Not Applicable R. Thermal energy storage Not Applicable S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation V. Reduction of glass area Low Potential Savings W. Cargo door strip curtains Not Applicable	I.	Building ventilation systems	Low Potential Savings
L. Steam/condensate distribution M. Compressed air systems Low/No Cost Project N. Lighting systems ECO Analysis Performed O. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals Not Applicable R. Thermal energy storage Not Applicable S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation V. Reduction of glass area Low Potential Savings W. Cargo door strip curtains Not Applicable	J.	Production equipment maintenance	Not Applicable
M. Compressed air systems Low/No Cost Project N. Lighting systems ECO Analysis Performed O. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals Not Applicable R. Thermal energy storage Not Applicable S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C U. Insulation V. Reduction of glass area Low Potential Savings W. Cargo door strip curtains Not Applicable	к.	Improved methods/controls	Not Applicable
N. Lighting systems C. Electrical distribution D. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals R. Thermal energy storage Not Applicable S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation V. Reduction of glass area W. Cargo door strip curtains ECO Analysis Performed Not Applicable Not Applicable Not Applicable Low Potential Savings Not Applicable	L.	Steam/condensate distribution	Not Applicable `
O. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals Not Applicable R. Thermal energy storage Not Applicable S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Not Applicable U. Insulation Low Potential Savings V. Reduction of glass area Low Potential Savings W. Cargo door strip curtains Not Applicable	M.	Compressed air systems	Low/No Cost Project
P. Radiant heating Q. Loading dock seals R. Thermal energy storage S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C U. Insulation V. Reduction of glass area W. Cargo door strip curtains Not Applicable Low Potential Savings Not Applicable	N.	Lighting systems	ECO Analysis Performed
Q. Loading dock seals R. Thermal energy storage Not Applicable S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C U. Insulation V. Reduction of glass area Low Potential Savings W. Cargo door strip curtains Not Applicable	0.	Electrical distribution	Not Applicable
Q. Loading dock seals R. Thermal energy storage Not Applicable S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C U. Insulation V. Reduction of glass area Low Potential Savings W. Cargo door strip curtains Not Applicable Not Applicable	Ρ.	Radiant heating	Not Applicable
S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Not Applicable U. Insulation Low Potential Savings V. Reduction of glass area Low Potential Savings W. Cargo door strip curtains Not Applicable	Q.	Loading dock seals	Not Applicable
T. Ventilation instead of A/C U. Insulation V. Reduction of glass area Low Potential Savings Low Potential Savings Not Applicable	R.	Thermal energy storage	Not Applicable
U. Insulation V. Reduction of glass area Low Potential Savings Low Potential Savings Not Applicable	s.	Flue gas recirculation	Not Applicable
V. Reduction of glass area Low Potential Savings W. Cargo door strip curtains Not Applicable	Т.	Ventilation instead of A/C	Not Applicable
W. Cargo door strip curtains Not Applicable	U.	Insulation	Low Potential Savings
	v.	Reduction of glass area	Low Potential Savings
X. Other applicable ECO's Not Applicable	₩.	Cargo door strip curtains	Not Applicable
	x.	Other applicable ECO's	Not Applicable

AREA: RK BUILDING NAME: Dessicator	Insp. NUMBER: 4921-00
ECO Description	Project Status
A. Production equipment changes	Not Applicable
B. Efficient motors & var. speed drive	ECO Analysis Performed
C. Production equipment scheduling	Not Applicable
D. Waste heat recovery	Not Applicable
E. Automated production controls	Not Applicable
F. Improve facility layout .	Low Potential Savings
G. Solar applications	Low Potential Savings
H. Consolidate processes	Not Applicable
I. Building ventilation systems	Low Potential Savings
J. Production equipment maintenance	Not Applicable
K. Improved methods/controls	Not Applicable
L. `Steam/condensate distribution	Not Applicable
M. Compressed air systems	Not Applicable
N. Lighting systems	ECO Analysis Performed
O. Electrical distribution	Not Applicable
P. Radiant heating	Not Applicable
Q. Loading dock seals	Not Applicable
R. Thermal energy storage	Not Applicable
S. Flue gas recirculation	Not Applicable
T. Ventilation instead of A/C	Not Applicable
U. Insulation	Low Potential Savings
V. Reduction of glass area	Low Potential Savings
W. Cargo door strip curtains	Not Applicable
X. Other applicable ECO's	Not Applicable

ARE	A: <u>RK</u> BUILDING NAME: <u>Motor Load F</u>	House NUMBER: 4924-01
	ECO Description	Project Status
Α.	Production equipment changes	Not Applicable
В.	Efficient motors & var. speed drive	ECO Analysis Performed
C.	Production equipment scheduling	Not Applicable
D.	Waste heat recovery	Low Potential Savings
E.	Automated production controls	Not Applicable
F.	Improve facility layout	Low Potential Savings
G.	Solar applications	Low Potential Savings
н.	Consolidate processes	Not Applicable
I.	Building ventilation systems	Low/No Cost Project
J.	Production equipment maintenance	Not Applicable
к.	Improved methods/controls	Not Applicable
L.	Steam/condensate distribution .	Low/No Cost Project
М.	Compressed air systems	Not Applicable
N.	Lighting systems	ECO Analysis Performed
0.	Electrical distribution	Not Applicable
Ρ.	Radiant heating	Not Applicable
Q.	Loading dock seals	Low Potential Savings
R.	Thermal energy storage	Low Potential Savings
s.	Flue gas recirculation	Not Applicable
Т.	Ventilation instead of A/C	Low Potential Savings
υ.	Insulation	Low Potential Savings
٧.	Reduction of glass area	Low Potential Savings
W.	Cargo door strip curtains	Low Potential Savings
×.	Other applicable ECO's	Not Applicable

ARE	A: <u>RK</u> BUILDING NAME: <u>Dowel Rod</u>	NUMBER: 4924-05
	ECO Description	Project Status
Α.	Production equipment changes	Low Potential Savings
В.	Efficient motors & var. speed drive	ECO Analysis Performed
С.	Production equipment scheduling	Low Potential Savings
D.	Waste heat recovery	Not Applicable
Ε.	Automated production controls	Low Potential Savings
F.	Improve facility layout	Not Applicable
G.	Solar applications	Not Applicable
н.	Consolidate process	Not Applicable
ī.	Building ventilation systems	Low Potential Savings
J.	Production equipment maintenance	Not Applicable
к.	Improved methods/controls	Not Applicable
L.	Steam/condensate distribution	Not Applicable
М.	Compressed air systems	Not Applicable
N.	Lighting systems	ECO Analysis Performed
0.	Electrical distribution	Not Applicable
Р.	Radiant heating	Not Applicable
Q.	Loading dock seals	Not Applicable
R.	Thermal energy storage	Low Potential Savings
s.	Flue gas recirculation	Not Applicable
Т.	Ventilation instead of A/C	Low Potential Savings
U.	Insulation	Not Applicable
v.	Reduction of glass area	Low Potential Savings
W.	Cargo door strip curtains	Not Applicable
x.	Other applicable ECO's	Not Applicable

ARE	A: <u>RK</u> BUILDING NAME: <u>Machine & Sa</u>	wing NUMBER: 4924-06
	ECO Description	Project Status
Α.	Production equipment changes	Low Potential Savings
В.	Efficient motors & var. speed drive	ECO Analysis Performed
C.	Production equipment scheduling	Low Potential Savings
D.	Waste heat recovery	Low Potential Savings
E.	Automated production controls	Low Potential Savings
F.	Improve facility layout	Low Potential Savings
G.	Solar applications	Low Potential Savings
н.	Consolidate process	Low Potential Savings
Ī.	Building ventilation systems	Low Potential Savings
J.	Production equipment maintenance	Not Applicable
ĸ.	Improved methods/controls	Low Potential Savings
L.	Steam/condensate distribution	Low/No Cost Project
M.	Compressed air systems	Not Applicable
N.	Lighting systems	ECO Analysis Performed
0.	Electrical distribution	Not Applicable
Р.	Radiant heating	Not Applicable
Q.	Loading dock seals	Not Applicable
R.	Thermal energy storage	Low Potential Savings
s.	Flue gas recirculation	Not Applicable
T.	Ventilation instead of A/C	Low Potential Savings
U.	Insulation	Not Applicable
v.	Reduction of glass area	Low Potential Savings
₩.	Cargo door strip curtains	Not Applicable
х.	Other applicable ECO's	Not Applicable

A. Production equipment changes	ARE	A: <u>RK</u> BUILDING NAME: <u>Finishing Op</u>	er. NUMBER: 4925-00
B. Efficient motors & var. speed drive C. Production equipment scheduling D. Waste heat recovery E. Automated production controls F. Improve facility layout Composition equipment scheduling D. Waste heat recovery E. Automated production controls E. Automated productions E. Automated production E. Automated production E. Automated productions E. Automated productions E. Automated Savings E. A		ECO Description	Project Status
C. Production equipment scheduling D. Waste heat recovery E. Automated production controls F. Improve facility layout G. Solar applications H. Consolidate processes Low Potential Savings H. Consolidate processes Low Potential Savings I. Building ventilation systems J. Production equipment maintenance K. Improved methods/controls L. Steam/condensate distribution M. Compressed air systems Not Applicable M. Lighting systems C. Electrical distribution P. Radiant heating Q. Loading dock seals R. Thermal energy storage S. Flue gas recirculation V. Reduction of glass area W. Cargo door strip curtains Not Applicable Low Potential Savings Low Potential Savings Low Potential Savings Low Potential Savings V. Reduction of glass area Low Potential Savings V. Reduction of glass area Low Potential Savings	Α.	Production equipment changes .	Low Potential Savings
D. Waste heat recovery E. Automated production controls F. Improve facility layout G. Solar applications H. Consolidate processes Low Potential Savings I. Building ventilation systems J. Production equipment maintenance K. Improved methods/controls L. Steam/condensate distribution M. Compressed air systems Not Applicable M. Compressed air systems Not Applicable N. Lighting systems ECO Analysis Performed D. Electrical distribution Not Applicable P. Radiant heating Not Applicable R. Thermal energy storage Low Potential Savings S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C U. Insulation V. Reduction of glass area Low Potential Savings V. Reduction of glass area Low Potential Savings V. Reduction of glass area Low Potential Savings	В.	Efficient motors & var. speed drive	ECO Analysis Performed
E. Automated production controls F. Improve facility layout G. Solar applications H. Consolidate processes Low Potential Savings H. Consolidate processes Low Potential Savings I. Building ventilation systems J. Production equipment maintenance K. Improved methods/controls L. Steam/condensate distribution M. Compressed air systems Not Applicable M. Lighting systems ECO Analysis Performed O. Electrical distribution Not Applicable P. Radiant heating Not Applicable R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation V. Reduction of glass area Low Potential Savings	С.	Production equipment scheduling	Low Potential Savings
F. Improve facility layout G. Solar applications H. Consolidate processes Low Potential Savings H. Consolidate processes Low Potential Savings I. Building ventilation systems J. Production equipment maintenance K. Improved methods/controls L. Steam/condensate distribution M. Compressed air systems Not Applicable M. Compressed air systems Not Applicable N. Lighting systems ECO Analysis Performed C. Electrical distribution Not Applicable P. Radiant heating Not Applicable R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation V. Reduction of glass area Low Potential Savings V. Reduction of glass area Low Potential Savings V. Reduction of glass area Low Potential Savings	D.	Waste heat recovery	Low Potential Savings
G. Solar applications H. Consolidate processes Low Potential Savings I. Building ventilation systems Low Potential Savings J. Production equipment maintenance K. Improved methods/controls L. Steam/condensate distribution M. Compressed air systems Not Applicable M. Lighting systems C. Electrical distribution P. Radiant heating Q. Loading dock seals R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation V. Reduction of glass area Low Potential Savings V. Reduction of glass area Low Potential Savings V. Reduction of glass area Low Potential Savings V. Cargo door strip curtains Not Applicable	E.	Automated production controls	Not Applicable
H. Consolidate processes I. Building ventilation systems Low Potential Savings J. Production equipment maintenance K. Improved methods/controls Low Potential Savings L. Steam/condensate distribution M. Compressed air systems Not Applicable M. Lighting systems ECO Analysis Performed O. Electrical distribution Not Applicable P. Radiant heating M. Loading dock seals Not Applicable R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation V. Reduction of glass area Low Potential Savings V. Reduction of glass area Low Potential Savings V. Reduction of glass area Low Potential Savings Not Applicable	F.	Improve facility layout	Low Potential Savings
I. Building ventilation systems J. Production equipment maintenance K. Improved methods/controls Low Potential Savings L. Steam/condensate distribution M. Compressed air systems Not Applicable M. Lighting systems ECO Analysis Performed O. Electrical distribution Not Applicable P. Radiant heating Mot Applicable Q. Loading dock seals Not Applicable R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation V. Reduction of glass area Low Potential Savings V. Reduction of glass area Low Potential Savings Not Applicable	G.	Solar applications	Low Potential Savings
J. Production equipment maintenance K. Improved methods/controls L. Steam/condensate distribution M. Compressed air systems Not Applicable N. Lighting systems ECO Analysis Performed O. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation V. Reduction of glass area Low Potential Savings V. Reduction of glass area Low Potential Savings Not Applicable	н.	Consolidate processes	Low Potential Savings
K. Improved methods/controls Low Potential Savings L. Steam/condensate distribution M. Compressed air systems Not Applicable N. Lighting systems ECO Analysis Performed D. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals R. Thermal energy storage Low Potential Savings S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation U. Insulation V. Reduction of glass area Low Potential Savings U. Cargo door strip curtains Not Applicable	ī.	Building ventilation systems	Low Potential Savings
L. Steam/condensate distribution M. Compressed air systems Not Applicable N. Lighting systems ECO Analysis Performed O. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals Not Applicable R. Thermal energy storage Low Potential Savings S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation V. Reduction of glass area Low Potential Savings V. Reduction of glass area Low Potential Savings V. Reduction of glass area Not Applicable	J.	Production equipment maintenance	Not Applicable
M. Compressed air systems Not Applicable ECO Analysis Performed D. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation V. Reduction of glass area W. Cargo door strip curtains Not Applicable Low Potential Savings Low Potential Savings Not Applicable	к.	Improved methods/controls	Low Potential Savings
N. Lighting systems C. Electrical distribution D. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals R. Thermal energy storage Low Potential Savings S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C U. Insulation V. Reduction of glass area Low Potential Savings V. Reduction of glass area Low Potential Savings V. Reduction of glass area Not Applicable	L.	Steam/condensate distribution	Not Applicable
O. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals Not Applicable R. Thermal energy storage Low Potential Savings S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Low Potential Savings U. Insulation Low Potential Savings V. Reduction of glass area Low Potential Savings W. Cargo door strip curtains Not Applicable	М.	Compressed air systems	Not Applicable
P. Radiant heating Q. Loading dock seals R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation V. Reduction of glass area W. Cargo door strip curtains Not Applicable Low Potential Savings Low Potential Savings Not Applicable	N.	Lighting systems	ECO Analysis Performed
Q. Loading dock seals R. Thermal energy storage S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C U. Insulation V. Reduction of glass area W. Cargo door strip curtains Not Applicable Low Potential Savings Low Potential Savings Not Applicable	0.	Electrical distribution	Not Applicable
R. Thermal energy storage S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C U. Insulation Low Potential Savings V. Reduction of glass area Low Potential Savings V. Reduction of glass area Not Applicable	Р.	Radiant heating	Not Applicable
S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Low Potential Savings U. Insulation Low Potential Savings V. Reduction of glass area Low Potential Savings W. Cargo door strip curtains Not Applicable	Q.	Loading dock seals	Not Applicable
T. Ventilation instead of A/C U. Insulation U. Reduction of glass area U. Cargo door strip curtains Low Potential Savings Not Applicable	R.	Thermal energy storage	Low Potential Savings
U. Insulation V. Reduction of glass area Low Potential Savings Low Potential Savings Not Applicable	s.	Flue gas recirculation	Not Applicable
V. Reduction of glass area Low Potential Savings W. Cargo door strip curtains Not Applicable	Т.	Ventilation instead of A/C	Low Potential Savings
W. Cargo door strip curtains Not Applicable	υ.	Insulation	Low Potential Savings
	٧.	Reduction of glass area	Low Potential Savings
X. Other applicable ECO's Not Applicable	W.	Cargo door strip curtains	Not Applicable
	х.	Other applicable ECO's	Not Applicable

AREA: RK BUILDING NAME: TOW Saw House		se NUMBER: 4951-02
	ECO Description	Project Status
Α.	Production equipment changes	Low Potential Savings
В.	Efficient motors & var. speed drive	ECO Analysis Performed
c.	Production equipment scheduling	Low Potential Savings
D.	Waste heat recovery	Not Applicable
Ε.	Automated production controls	Low Potential Savings
F.	Improve facility layout .	Low Potential Savings
G.	Solar applications	Low Potential Savings
н.	Consolidate processes	Not Applicable
Ī.	Building ventilation systems	Low Potential Savings
J.	Production equipment maintenance	Not Applicable
κ.	Improved methods/controls	Not Applicable
Ľ.	Steam/condensate distribution	Review Previous EEAP
М.	Compressed air systems	Not Applicable
N.	Lighting systems	ECO Analysis Performed
0.	Electrical distribution	Not Applicable
Р.	Radiant heating	Not Applicable
Q.	Loading dock seals	Not Applicable
R.	Thermal energy storage	Not Applicable
s.	Flue gas recirculation	Not Applicable
т.	Ventilation instead of A/C	Not Applicable
U.	Insulation	Not Applicable
٧.	Reduction of glass area	Low Potential Savings
W.	Cargo door strip curtains	Not Applicable
×.	Other applicable ECO's	Not Applicable

ARE	A: <u>RK</u> BUILDING NAME: <u>15" Press Ho</u>	use NUMBER: 5008-01
	ECO Description	Project Status .
Α.	Production equipment changes	Low Potential Savings
в.	Efficient motors & var. speed drive	ECO Analysis Performed
c.	Production equipment scheduling	Low Potential Savings
D.	Waste heat recovery	Low Potential Savings
Ε.	Automated production controls	Low Potential Savings
F.	Improve facility layout	Not Applicable
G.	Solar applications	Low Potential Savings
н.	Consolidate processes	Not Applicable
ī.	Building ventilation systems	Low/No Cost Project
J.	Production equipment maintenance	Not Applicable
κ.	Improved methods/controls	Low Potential Savings
L.	Steam/condensate distribution	Low/No Cost Project
М.	Compressed air systems	Not Applicable
N.	Lighting systems	ECO Analysis Performed
0.	Electrical distribution	Not Applicable
Р.	Radiant heating	Not Applicable
۵.	Loading dock seals	Not Applicable
R.	Thermal energy storage	Not Applicable
s.	Flue gas recirculation	Not Applicable
Т.	Ventilation instead of A/C	Not Applicable
U.	Insulation	Low/No Cost Project
٧.	Reduction of glass area	Low Potential Savings
W.	Cargo door strip curtains	Not Applicable
x .	Other applicable ECO's	Not Applicable

			_ NUMBER: <u>5010-00</u>
	ECO Description		Project Status
Α.	Production equipment changes	Not	Applicable
В.	Efficient motors & var. speed drive	EC0	Analysis Performed
C.	Production equipment scheduling	Not	Applicable
D.	Waste heat recovery	Low	Potential Savings
Ε.	Automated production controls	Not	Applicable
F.	Improve facility layout	Low	Potential Savings
G.	Solar applications	Low	Potential Savings
н.	Consolidate processes	Low	Potential Savings
ī.	Building ventilation systems	Low	Potential Savings
J.	Production equipment maintenance	Not	Applicable
κ.	Improved methods/controls	Low	Potential Savings
L.	Steam/condensate distribution	Not	Applicable
М.	Compressed air systems	Not	Applicable
N.	Lighting systems	ECO	Analysis Performed
0.	Electrical distribution	Not	Applicable
Р.	Radiant heating	Not	Applicable
Q.	Loading dock seals	Not	Applicable
R.	Thermal energy storage	Low	Potential Savings
s.	Flue gas recirculation	Not	Applicable
Т.	Ventilation instead of A/C	Low	Potential Savings
U.	Insulation	Not	Applicable
٧.	Reduction of glass area	Low	Potential Savings
W.	Cargo door strip curtains	Not	Applicable
x.	Other applicable ECO's	Not	Applicable

ARE	Paste A: <u>lst R.P.</u> BUILDING NAME: <u>Blending House</u>	NUMBER: 6304
	ECO Description	Project Status
A.	Production equipment changes	LPS
B.	Efficient motors & var. speed drive	ECO
c.	Production equipment scheduling	LPS
D.	Waste heat recovery	LPS
E.	Automated production controls	LPS
F.	Improve facility layout	LPS
G.	Solar applications	LPS
н.	Consolidate process	LPS
<u>ı.</u>	Building ventilation systems	LPS
J.	Production equipment maintenance	LPS
K.	Improved methods/controls	LPS
L.	Steam/condensate distribution	LPS
M.	Compressed air systems	NA
N.	Lighting systems	ECO
0.	Electrical distribution	LPS
Ρ.	Radiant heating	LPS
Q.	Loading dock seals	NA
R.	Thermal energy storage	NA
s.	Flue gas recirculation	NA
T.	Ventilation instead of A/C	NA
U.	Insulation	LPS
٧.	Reduction of glass area	LPS
W.	Cargo door strip curtains	NA
Χ.	Other applicable ECOs	LPS

AREA: 1st R.P. BUILDING NAME: Speed Roll House NUMBER: 7104

	ECO Description	Project Status
A.	Production equipment changes	LPS
B.	Efficient motors & var. speed drive	ECO
c.	Production equipment scheduling	LPS
D.	Waste heat recovery	LPS
Ε.	Automated production controls	LPS
F.	Improve facility layout	LPS
G.	Solar applications	LPS
н.	Consolidate process	LPS
ī.	Building ventilation systems	LPS
J.	Production equipment maintenance	LPS
ĸ.	Improved methods/controls	LPS
L.	Steam/condensate distribution	LPS
M.	Compressed air systems	NA
N.	Lighting systems	ECO
0.	Electrical distribution	LPS
P.	Radiant heating	LPS
Q.	Loading dock seals	NA
R.	Thermal energy storage	NA
<u>s.</u>	Flue gas recirculation	NA
<u>T.</u>	Ventilation instead of A/C	NA
U.	Insulation	LPS
٧.	Reduction of glass area	LPS
W.	Cargo door strip curtains	NA
Χ.	Other applicable ECOs	LPS

ARE	A: <u>RP</u> BUILDING NAME: <u>Dry House No</u>	NUMBER: 7106-06
	ECO Description	Project Status
Α.	Production equipment changes	Not Applicable
В.	Efficient motors & var. speed drive	ECO Analysis Performed
c.	Production equipment scheduling	Not Applicable
D.	Waste heat recovery	ECO Analysis Performed
E.	Automated production controls	Not Applicable
F.	Improve facility layout	Not Applicable
G.	Solar applications	Low Potential Savings
н.	Consolidate process	Not Applicable
I.	Building ventilation systems	Low Potential Savings
J.	Production equipment maintenance	Not Applicable
к.	Improved methods/controls	ECO Analysis Performed
L.	Steam/condensate distribution	Low/No Cost Project
M.	Compressed air systems	Not Applicable
N.	Lighting systems	ECO Analysis Performed
0.	Electrical distribution	Not Applicable
Ρ.	Radiant heating	Not Applicable
Q.	Loading dock seals	Not Applicable
R.	Thermal energy storage	Not Applicable
s.	Flue gas recirculation	Not Applicable
Т.	Ventilation instead of A/C	Not Applicable
U.	Insulation	Low/No Cost Project
٧.	Reduction of glass area	Not Applicable
W .	Cargo door strip curtains	Not Applicable
х.	Other applicable ECO's	ECO Analysis Performed

O. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals Not Applicable R. Thermal energy storage Low Potential Savings S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Low Potential Savings U. Insulation Not Applicable	ARE	A: <u>RK</u> BUILDING NAME: <u>Roll House</u>	NUMBER: _7113-RK
B. Efficient motors & var. speed drive		ECO Description	Project Status
C. Production equipment scheduling D. Waste heat recovery E. Automated production controls E. Automated production controls E. Improve facility layout G. Solar applications H. Consolidate processes Low Potential Savings Low Potential Savings H. Consolidate processes Low Potential Savings Low Potential Savings J. Production equipment maintenance K. Improved methods/controls L. Steam/condensate distribution M. Compressed air systems Not Applicable M. Compressed air systems Not Applicable Not Applicable Not Applicable R. Lighting systems C. Electrical distribution P. Radiant heating Q. Loading dock seals R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C Low Potential Savings U. Insulation	Α.	Production equipment changes	ECO Analysis Performed
D. Waste heat recovery E. Automated production controls E. Automated production controls F. Improve facility layout G. Solar applications H. Consolidate processes Low Potential Savings H. Consolidate processes Low Potential Savings I. Building ventilation systems J. Production equipment maintenance K. Improved methods/controls L. Steam/condensate distribution M. Compressed air systems Not Applicable N. Lighting systems C. Electrical distribution P. Radiant heating Q. Loading dock seals R. Thermal energy storage T. Ventilation instead of A/C U. Insulation Not Applicable Low Potential Savings Not Applicable Low Potential Savings Not Applicable	В.	Efficient motors & var. speed drive	ECO Analysis Performed
E. Automated production controls F. Improve facility layout G. Solar applications H. Consolidate processes Low Potential Savings H. Consolidate processes Low Potential Savings I. Building ventilation systems Low Potential Savings J. Production equipment maintenance K. Improved methods/controls L. Steam/condensate distribution M. Compressed air systems Not Applicable N. Lighting systems ECO Analysis Performed D. Electrical distribution Not Applicable P. Radiant heating Q. Loading dock seals R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation Not Applicable Low Potential Savings U. Insulation Not Applicable	c.	Production equipment scheduling	Low Potential Savings
F. Improve facility layout G. Solar applications H. Consolidate processes Low Potential Savings J. Production equipment maintenance Not Applicable K. Improved methods/controls L. Steam/condensate distribution M. Compressed air systems Not Applicable N. Lighting systems ECO Analysis Performed D. Electrical distribution Not Applicable P. Radiant heating Not Applicable R. Thermal energy storage Low Potential Savings S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Low Potential Savings U. Insulation Not Applicable	D.	Waste heat recovery	Low Potential Savings
G. Solar applications H. Consolidate processes Low Potential Savings I. Building ventilation systems Low Potential Savings J. Production equipment maintenance K. Improved methods/controls L. Steam/condensate distribution M. Compressed air systems Not Applicable N. Lighting systems C. Electrical distribution P. Radiant heating Q. Loading dock seals R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation Low Potential Savings Not Applicable Low Potential Savings Not Applicable	Ε.	Automated production controls	Low Potential Savings
H. Consolidate processes I. Building ventilation systems J. Production equipment maintenance K. Improved methods/controls L. Steam/condensate distribution M. Compressed air systems Not Applicable N. Lighting systems C. Electrical distribution P. Radiant heating Q. Loading dock seals R. Thermal energy storage S. Flue gas recirculation Not Applicable Low Potential Savings S. Flue gas recirculation Not Applicable Low Potential Savings Low Potential Savings Low Potential Savings Not Applicable Low Potential Savings Not Applicable	F.	Improve facility layout	Low Potential Savings
I. Building ventilation systems J. Production equipment maintenance K. Improved methods/controls L. Steam/condensate distribution M. Compressed air systems Not Applicable P. Radiant heating Not Applicable R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation Not Applicable Low Potential Savings Not Applicable	G.	Solar applications	Low Potential Savings
J. Production equipment maintenance K. Improved methods/controls L. Steam/condensate distribution M. Compressed air systems Not Applicable Not Applicable Not Applicable Not Applicable Not Applicable Not Applicable Radiant heating Not Applicable R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation Not Applicable Not Applicable Low Potential Savings Not Applicable Low Potential Savings Not Applicable	н.	Consolidate processes	Low Potential Savings
K. Improved methods/controls L. Steam/condensate distribution Mot Applicable M. Compressed air systems Not Applicable N. Lighting systems ECO Analysis Performed O. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation Not Applicable Not Applicable Not Applicable Not Applicable	ī.	Building ventilation systems	Low Potential Savings
L. Steam/condensate distribution Not Applicable M. Compressed air systems Not Applicable N. Lighting systems ECO Analysis Performed O. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals Not Applicable R. Thermal energy storage Low Potential Savings S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Low Potential Savings U. Insulation Not Applicable	J.	Production equipment maintenance	Not Applicable
M. Compressed air systems Not Applicable N. Lighting systems ECO Analysis Performed D. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation Not Applicable Not Applicable Not Applicable Not Applicable	к.	Improved methods/controls	Not Applicable
N. Lighting systems ECO Analysis Performed D. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation ECO Analysis Performed Not Applicable Not Applicable Low Potential Savings Not Applicable	L.	Steam/condensate distribution	Not Applicable
O. Electrical distribution Not Applicable P. Radiant heating Not Applicable Q. Loading dock seals Not Applicable R. Thermal energy storage Low Potential Savings S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Low Potential Savings U. Insulation Not Applicable	M.	Compressed air systems	Not Applicable
P. Radiant heating Q. Loading dock seals R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation Not Applicable Low Potential Savings Low Potential Savings Not Applicable Not Applicable	N.	Lighting systems	ECO Analysis Performed
Q. Loading dock seals R. Thermal energy storage S. Flue gas recirculation T. Ventilation instead of A/C U. Insulation Not Applicable Not Applicable Not Applicable	0.	Electrical distribution	Not Applicable
R. Thermal energy storage S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C U. Insulation Not Applicable	Ρ.	Radiant heating	Not Applicable
S. Flue gas recirculation Not Applicable T. Ventilation instead of A/C Low Potential Savings U. Insulation Not Applicable	Q.	Loading dock seals	Not Applicable
T. Ventilation instead of A/C Low Potential Savings U. Insulation Not Applicable	R.	Thermal energy storage	Low Potential Savings
U. Insulation Not Applicable	s.	Flue gas recirculation	Not Applicable
	Т.	Ventilation instead of A/C	Low Potential Savings
U. Roduction of glass area. Low Potential Savings	U.	Insulation	Not Applicable
v. Reduction of glass area Low forential savings	v.	Reduction of glass area	Low Potential Savings
W. Cargo door strip curtains Not Applicable	W.	Cargo door strip curtains	Not Applicable
X. Other applicable ECO's Not Applicable	× .	Other applicable ECO's	Not Applicable

ARE	A: <u>RP</u> BUILDING NAME: <u>Roll House</u>	NUMBER: 7113-RP
	ECO Description	Project Status
Α.	Production equipment changes	Low Potential Savings
В.	Efficient motors & var. speed drive	ECO Analysis Performed
C.	Production equipment scheduling	Low Potential Savings
D.	Waste heat recovery	Low Potential Savings
E.	Automated production controls	Low Potential Savings
F.	Improve facility layout	Low Potential Savings
G.	Solar applications	Low Potential Savings
н.	Consolidate processes	Low Potential Savings
ī.	Building ventilation systems	Low/No Cost Project
J.	Production equipment maintenance	Not Applicable
κ.	Improved methods/controls	Low Potential Savings
L.	Steam/condensate distribution	Low/No Cost Project
М.	Compressed air systems	Not Applicable
N.	Lighting systems	ECO Analysis Performed
0.	Electrical distribution	Not Applicable
P.	Radiant heating	Not Applicable
Q.	Loading dock seals	Not Applicable
R.	Thermal energy storage	Not Applicable
s.	Flue gas recirculation	Not Applicable
Т.	Ventilation instead of A/C	Not Applicable
υ.	Insulation	Not Applicable
٧.	Reduction of glass area	Low Potential Savings
W.	Cargo door strip curtains	ECO Analysis Performed
х.	Other applicable ECO's	Not Applicable

Carpet Roll & AREA: 1st R.P. BUILDING NAME: Slitter House NUMBER: 7127

	ECO Description	Project Status
Α.	Production equipment changes	LPS
В.	Efficient motors & var. speed drive	ECO
c.	Production equipment scheduling	LPS
D.	Waste heat recovery	LPS
E.	Automated production controls	LPS
F.	Improve facility layout	LPS
G.	Solar applications	LPS
Н.	Consolidate process	LPS
ī.	Building ventilation systems	LPS
J.	Production equipment maintenance	LPS
Κ.	Improved methods/controls	LPS
L.	Steam/condensate distribution	LPS
M.	Compressed air systems	NA
N.	Lighting systems	ECO
0.	Electrical distribution	LPS
Ρ.	Radiant heating	LPS
Q.	Loading dock seals	NA
R.	Thermal energy storage	NA
s.	Flue gas recirculation	NA
T.	Ventilation instead of A/C	NA
U.	Insulation	LPS
٧.	Reduction of glass area	LPS
W.	Cargo door strip curtains	NA
χ.	Other applicable ECOs	LPS

ARE	A: <u>RK</u> BUILDING NAME: <u>Ex. Grain Fi</u>	nish NUMBER: 7801-00
	ECO Description	Project Status
Α.	Production equipment changes	Low Potential Savings
В.	Efficient motors & var. speed drive	ECO Analysis Performed
C.	Production equipment scheduling	Low Potential Savings
D.	Waste heat recovery	Not Applicable
Ε.	Automated production controls	Low Potential Savings
F.	Improve facility layout	Low/No Cost Project
G.	Solar applications	Not Applicable
н.	Consolidate processes	Not Applicable
ī.	Building ventilation systems	Low Potential Savings
J.	Production equipment maintenance	Not Applicable
K.	Improved methods/controls	Not Applicable
L.	Steam/condensate distribution	Review Previous EEAP
М.	Compressed air systems	Not Applicable
N.	Lighting systems	ECO Analysis Performed
0.	Electrical distribution	Not Applicable
Р.	Radiant heating	Not Applicable
Q.	Loading dock seals	Not Applicable
R.	Thermal energy storage	Low Potential Savings
s.	Flue gas recirculation	Not Applicable
T.	Ventilation instead of A/C	Not Applicable
U.	Insulation	Low Potential Savings
v .	Reduction of glass area	Not Applicable
W.	Cargo door strip curtains	Not Applicable
х.	Other applicable ECO's	Low/No Cost Project

ARE	A: NG BUILDING NAME: Slurry Mix	NUMBER: 9304-00
	ECO Description	Project Status
Α.	Production equipment changes	ECO Analysis Performed
В.	Efficient motors & var. speed drive	Not Applicable
c.	Production equipment scheduling	Not Applicable
D.	Waste heat recovery	Not Applicable
Ε.	Automated production controls	Not Applicable
F.	Improve facility layout	Not Applicable
G.	Solar applications	Not Applicable
Н.	Consolidate processes	Not Applicable
ī.	Building ventilation systems	Not Applicable
J.	Production equipment maintenance	Not Applicable
K.	Improved methods/controls	Not Applicable
L.	Steam/condensate distribution	Not Applicable
М.	Compressed air systems	Not Applicable
N.	Lighting systems	Not Applicable
0.	Electrical distribution	Not Applicable
P.	Radiant heating	Not Applicable
Q.	Loading dock seals	Not Applicable
R.	Thermal energy storage	Not Applicable
s.	Flue gas recirculation	Not Applicable
T.	Ventilation instead of A/C	Not Applicable
U.	Insulation	Low Potential Savings
v.	Reduction of glass area	Not Applicable
W.	Cargo door strip curtains	Not Applicable
х.	Other applicable ECO's	Not Applicable

ARE	A: RP BUILDING NAME: Rolled Powde	er NUMBER: 9309-03
	ECO Description	Project Status
Α.	Production equipment changes	Low Potential Savings
в.	Efficient motors & var. speed drive	ECO Analysis Performed
C.	Production equipment scheduling	Low Potential Savings
D.	Waste heat recovery	ECO Analysis Performed
E.	Automated production controls	Low Potential Savings
F.	Improve facility layout	Low Potential Savings
G.	Solar applications	Low Potential Savings
н.	Consolidate process	Low Potential Savings
ī.	Building ventilation systems	Low Potential Savings
J.	Production equipment maintenance	Not Applicable
ĸ.	Improved methods/controls	Low/No Cost Project
L.	Steam/condensate distribution	Review Previous EEAP
М.	Compressed air systems	Low Potential Savings
N.	Lighting systems	ECO Analysis Performed
0.	Electrical distribution	Not Applicable
Р.	Radiant heating	Not Applicable
Q.	Loading dock seals	Not Applicable
R.	Thermal energy storage	Low Potential Savings
s.	Flue gas recirculation	Not Applicable
т.	Ventilation instead of A/C	Not Applicable
υ.	Insulation	Low/No Cost Project
٧.	Reduction of glass area	Low Potential Savings
₩.	Cargo door strip curtains	Low Potential Savings
х.	Other applicable ECO's	Low/No Cost Project

ARE	A: <u>RP</u> BUILDING NAME: <u>Rolled Powde</u>	r NUMBER: 9309-04
	ECO Description	Project Status
Α.	Production equipment changes	Low Potential Savings
В.	Efficient motors & var. speed drive	ECO Analysis Performed
C.	Production equipment scheduling	Low Potential Savings
D.	Waste heat recovery	Low Potential Savings
Ε.	Automated production controls	Low Potential Savings
F.	Improve facility layout	Low Potential Savings
G.	Solar applications	Low Potential Savings
н.	Consolidate processes	Not Applicable
ī.	Building ventilation systems	Low Potential Savings
J.	Production equipment maintenance	Not Applicable
κ.	Improved methods/controls	Not Applicable
L.	Steam/condensate distribution	Low/No Cost Project
Μ.	Compressed air systems	Not Applicable
N.	Lighting systems	ECO Analysis Performed
0.	Electrical distribution	Not Applicable
Р.	Radiant heating	Not Applicable
Q.	Loading dock seals	Not Applicable
R.	Thermal energy storage	Low Potential Savings
s.	Flue gas recirculation	Not Applicable
Т.	Ventilation instead of A/C	Low Potential Savings
U.	Insulation	Not Applicable
v.	Reduction of glass area	Low Potential Savings
₩.	Cargo door strip curtains	Not Applicable
х.	Other applicable ECO's	Not Applicable

ARE	A: <u>RP</u> BUILDING NAME: Rolled Powde	r NUMBER: 9310-02
	ECO Description	Project Status
Α.	Production equipment changes	Low Potential Savings
В.	Efficient motors & var. speed drive	ECO Analysis Performed
c.	Production equipment scheduling	Low Potential Savings
D.	Waste heat recovery	Not Applicable
E.	Automated production controls	Low Potential Savings
F.	Improve facility layout	Low Potential Savings
G.	Solar applications	Low Potential Savings
н.	Consolidate processes	Not Applicable
Ι.	Building ventilation systems	Low/No Cost Project
J.	Production equipment maintenance	Not Applicable
Κ.	Improved methods/controls	Not Applicable
L.	Steam/condensate distribution	Review Previous EEAP
М.	Compressed air systems	Not Applicable
N.	Lighting systems	ECO Analysis Performed
0.	Electrical distribution	Not Applicable
Р.	Radiant heating	Not Applicable
Q.	Loading dock seals	Not Applicable
R.	Thermal energy storage	Low Potential Savings
s.	Flue gas recirculation	Not Applicable
т.	Ventilation instead of A/C	Low Potential Savings
U	Insulation	Not Applicable
V .	Reduction of glass area	Low Potential Savings
W.	Cargo door strip curtains	Not Applicable
х.	Other applicable ECO's	Not Applicable

ARE	A: <u>RP</u> BUILDING NAME: <u>Blender House</u>	e NUMBER: <u>9334-15</u>
	ECO Description	Project Status
Α.	Production equipment changes	Low Potential Savings
В.	Efficient motors & var. speed drive	ECO Analysis Performed
C.	Production equipment scheduling	Low Potential Savings
D.	Waste heat recovery	Not Applicable
Ε.	Automated production controls	Low Potential Savings
F.	Improve facility layout	Low Potential Savings
G.	Solar applications	Low Potential Savings
н.	Consolidate process	Not Applicable
ī.	Building ventilation systems	Low Potential Savings
J.	Production equipment maintenance	Not Applicable
к.	Improved methods/controls	Not Applicable
L.	Steam/condensate distribution	Review Previous EEAP
М.	Compressed air systems	Not Applicable
N.	Lighting systems	ECO Analysis Performed
0.	Electrical distribution	Not Applicable
Р.	Radiant heating	Not Applicable
Q.	Loading dock seals	Not Applicable
R.	Thermal energy storage	Not Applicable
s.	Flue gas recirculation	Not Applicable
Т.	Ventilation instead of A/C	Not Applicable
U.	Insulation	Not Applicable
٧.	Reduction of glass area	Low Potential Savings
W.	Cargo door strip curtains	Not Applicable
х.	Other applicable ECO's	Not Applicable

ARE	A: RP BUILDING NAME: Rest House	NUMBER: 9334-17
	ECO Description	Project Status
Α.	Production equipment changes	Not Applicable
В.	Efficient motors & var. speed drive	Low Potential Savings
c.	Production equipment scheduling	Not Applicable
D.	Waste heat recovery	Not Applicable
E.	Automated production controls	Not Applicable
F.	Improve facility layout	Not Applicable
G.	Solar applications	Low Potential Savings
н.	Consolidate processes	Not Applicable
ī.	Building ventilation systems	Low Potential Savings
J.	Production equipment maintenance	Not Applicable
K.	Improved methods/controls	Not Applicable
L.	Steam/condensate distribution	Review Previous EEAP
М.	Compressed air systems	Not Applicable
N.	Lighting systems	ECO Analysis Performed
0.	Electrical distribution	Not Applicable
P.	Radiant heating	Not Applicable
Q.	Loading dock seals	Not Applicable
R.	Thermal energy storage .	Not Applicable
s.	Flue gas recirculation	Not Applicable
T.	Ventilation instead of A/C	Not Applicable
U.	Insulation	Not Applicable
٧.	Reduction of glass area	Low Potential Savings
W.	Cargo door strip curtains	Not Applicable
х.	Other applicable ECO's	Not Applicable

ARE	A: RP BUILDING NAME: Compressor	House NUMBER: 9354-00
	ECO Description	Project Status
Α.	Production equipment changes	Not Applicable
В.	Efficient motors & var. speed drive	ECO Analysis Performed
c.	Production equipment scheduling	Low Potential Savings
D.	Waste heat recovery	Low Potential Savings
Ε.	Automated production controls	Not Applicable
F.	Improve facility layout	Not Applicable
G.	Solar applications	Not Applicable
н.	Consolidate processes	Low Potential Savings
I.	Building ventilation systems	Low Potential Savings
J.	Production equipment maintenance	Not Applicable
к.	Improved methods/controls	Low/No Cost Project
L.	Steam/condensate distribution	Not Applicable
М.	Compressed air systems	Low Potential Savings
N.	Lighting systems	Low Potential Savings
0.	Electrical distribution	Low Potential Savings
Р.	Radiant heating	Not Applicable
Q.	Loading dock seals	Not Applicable
R.	Thermal energy storage	Not Applicable
s.	Flue gas recirculation	Not Applicable
T.	Ventilation instead of A/C	Not Applicable
υ.	Insulation	Not Applicable
٧.	Reduction of glass area	Not Applicable
W.	Cargo door strip curtains	Not Applicable
х.	Other applicable ECO's	Not Applicable

ARE	A: NG BUILDING NAME: Generator Ho	use NUMBER: 9467-00
	ECO Description	Project Status
Α.	Production equipment changes	Not Applicable
В.	Efficient motors & var. speed drive	Not Applicable
c.	Production equipment scheduling	Low Potential Savings
D.	Waste heat recovery	Low Potential Savings
E.	Automated production controls	Not Applicable
F.	Improve facility layout	Not Applicable
G.	Solar applications	Not Applicable
н.	Consolidate processes	Low Potential Savings
ī.	Building ventilation systems	Low Potential Savings
J.	Production equipment maintenance	Not Applicable
к.	Improved methods/controls	Not Applicable
L.	Steam/condensate distribution	Not Applicable
М.	Compressed air systems	Low Potential Savings
N.	Lighting systems	Low Potential Savings
ο.	Electrical distribution	Low Potential Savings
Р.	Radiant heating	Not Applicable
Q.	Loading dock seals	Not Applicable
R.	Thermal energy storage	Not Applicable
s.	Flue gas recirculation	Not Applicable
T.	Ventilation instead of A/C	Not Applicable
U.	Insulation	Not Applicable
v .	Reduction of glass area	Not Applicable
W.	Cargo door strip curtains	Not Applicable
х.	Other applicable ECO's	Not Applicable

ARE	A: <u>NG</u> BUILDING NAME: <u>Compressor</u> B	NUMBER: 9488-00
	ECO Description	Project Status
Α.	Production equipment changes	Low Potential Savings
В.	Efficient motors & var. speed drive	Not Applicable
C.	Production equipment scheduling	Low Potential Savings
D.	Waste heat recovery	Low Potential Savings
Ε.	Automated production controls	Not Applicable
F.	Improve facility layout	Not Applicable
G.	Solar applications	Low Potential Savings
н.	Consolidate processes	Low Potential Savings
ī.	Building ventilation systems	Low Potential Savings
J.	Production equipment maintenance	Not Applicable
к.	Improved methods/controls	Not Applicable
L.	Steam/condensate distribution	Not Applicable
М.	Compressed air systems	Low Potential Savings
N .	Lighting systems	Low Potential Savings
0.	Electrical distribution	Low Potential Savings
P.	Radiant heating	Not Applicable
Q.	Loading dock seals	Not Applicable
R.	Thermal energy storage	Not Applicable
s.	Flue gas recirculation	Not Applicable
T.	Ventilation instead of A/C	Not Applicable
U.	Insulation	Not Applicable
٧.	Reduction of glass area	Not Applicable
W.	Cargo door strip curtains	Not Applicable
х.	Other applicable ECO's	Not Applicable

REYNOLDS.	SMITH	AND	HILLS				
ARCHITECTS .	ENGINEE	RS • PL	ANNERS				
INCORPORATED							

SUBJECT	RAAP EEA	P	AEP NO			
	ater Dry Tank	< Surface	SHEET	1	OF	
DESIGNER	W. T. Toda	:(DATE	6-4	-90	
CHECKED	P. Hutchi	in 3	DATE	Whis	10.	

ECO# FN-U-1

COVER WATER DRY TANK SURFACE WITH SPHERES

Assumptions:

- 1. Heat losses due to radiation from the tank are neglected due to the low temperature difference and being indoors.
- 2. Heat losses due to convection from the tank are neglected due to the still air conditions in the building.
- 3. The average room conditions are 70 °F db, 60 % RH, 56°F dew point.
- 4. The tank temperature is 1490F. Waterland & Viar, Industrial Steam System Analysis For RAAP.
- 5. The tank diameter is 16 Feet. RAAP building inventory printont.
- 6. The evaporation rate is given by the following equation: $\dot{M}_{evap}(\frac{16}{hr}) = \frac{A(95 + 0.425 \, V)}{Y}(p_w + p_a)$

ASHRAE HVAC Systems Handbook, 1987, page 20.8.

Calculations:

Area of surface = Trv2 = Trx(8 ft)2 = 201 ft2

aconduction = UAAT

QEVAPORATION = M (CVAP + CP* AT)

REYNOLDS.	SMITH	AND	HILLS
ARCHITECTS .	ENGINEEL	RS · PL	ANNERS
10	CORPORATE	ED	

SUBJECT Cover Water Dry Tank	AEP NO
	SHEET 2 OF
DESIGNER W. Tatodd	DATE
CHECKER	DATE

Plastic Spheres (Continued):

UTOP = 1/RAIN = 1/0.68 = 1.47 Btu/hr.ft? OF

AT = 149°F - 70°F = 79°F

Y=hfg=heat of vaporization @ 1490F = 1008.3 Bty/b Table 4, p.6.15

Cp = | Btu/16.0F

V = air velocity = 1 ft/min

Pw= Sat. Vapor Press. @149°F ≈ ps = 7.394 in. Hg.

ASHRAE Fund. Table 2, p.6.8

Pa = Sat. Vapor Press. @ 56°F (d.pt.) = 0.452 in. Hg.

ASHRAE Fund. Table 2, P.6.6

 $\dot{m}_{evap} = \frac{201 \left(95 + 0.425 \times 1\right)}{1008} \left(7.394 - 0.452\right) = \left(16/h_r\right)$

Mevap = 132 16/hr

FY 89 WD cycles = 181 FY88 WD CYCLES x 25 x 106 #NC = 377:

377 WD Cycles = 15 Active bldgs = 2 tanks/bldg = 12.6 Cycles tank

FY 88 cycles /tank = 181 wo cycles = 8 bldgs = 2 tanks en = 11.3

Use ~ 12 wo cycles/tank per year

Average cycle time = \frac{65000 hours}{181 cycles} \times \frac{1 day}{24 hrs} = 15 \frac{days}{cycle} = 360 \frac{hrs}{cycle} = 12 \frac{cycle}{4320 hours/yr}

REYNOLDS,	SMITH	AND	HILLS
ARCHITECTS .	ENGINEE	RS • PL	ANNERS
ti	NCORPORATE	ED	

SUBJECT COVER Water Dry Tank	AEP NO
,	SHEET 3 OF
DESIGNER W. Ty Todd	DATE
- V-1	DATE

Plastic Spheres (Continued):

$$Q_{\text{Evap}} = 132 \frac{16}{\text{nv}} \times 4320 \frac{\text{hr}}{\text{yr}} \times \left[1008.3 \frac{\text{Btu}}{16} + 1 \frac{\text{Btu}}{16} \times (149-53)^{\circ} \right]$$

$$Q_{\text{Evap}} = 570,240 \frac{16}{\text{yr}} \times \left(1008.3 \frac{\text{Btu}}{16} + 96 \frac{\text{Btu}}{16}\right) = 629.7 \frac{\text{MBtu/yr}}{16}$$

Exposed Surface Area Reduction By Addition of Plastic Spheres:

minimum:

Maximum = 0.884 (See attached calculations)
Use 0.85

Assume 2" plastic spheres with a 1.5" air space

Neglect R-Value of plastic

Minimum RAINSpace = 0.77 Ft2.hir. of 1981 ASHRAE Fund.
Ben Page 23.13, Table 2

Usurface = 0.85 x 0.69 Bth + 0.15 x 1.47 Bth hr. ft2-of

REYNOLDS, SMITH AND HILLS ARCHITECTS • ENGINEERS • PLANNERS INCORPORATED

SUBJECT COVE	r Water Dry 10	ank AEP NO
	- /	SHEET OF
DERIGNER	W. T. Todd	DATE
CHECKER	$\propto \mathcal{K}$	

Plastic Spheres (Continued): (FN-U-1)

$$Q_{\text{cond-new}} = VA\Delta T = 0.51 \frac{\text{Rtn}}{\text{hr.Ft}^{2}\text{of}} \times 201 \text{ft}^{2} \times 79^{\circ} \text{f} \times 4320^{\text{hr}} \text{fr}^{2}$$

$$= 55.6 \text{ MBtu/yr}$$

$$Q_{\text{Evap-new}} = Q_{\text{Evap}} \times (1-0.85) = 629.7 \frac{\text{mBtu}}{\text{hr}} \times 0.15$$

$$= 94.5 \frac{\text{mRtu/yr}}{\text{r}}$$

Steam Savings:

Savings =
$$(Q_{01d} - Q_{11}) * No. Tanks$$

= $\left[(100.8 + 629.7) \frac{m8tu}{Yr} - (55.6 + 94.5) \frac{metn}{Yr} \right] * 2 \frac{Tanks}{bldg} * 8 bldg$
Savings = $9286.4 \frac{m8tu}{Yr}$

REYNOLDS, SMITH AND HILLS ARCHITECTS • ENGINEERS • PLANNERS INCORPORATED

SUBJECT COVE	Water Dry Tanks	AEP NO
FN-11-1	<i>(</i>	SHEET 5 OF
DESIGNER	II.	DATE
CHECKER	E (DATE

FN-4-1

Cost Savings:

Cost Savings = COLL & ALVING - EL PRICE DIFFICOSTS = \$19,735 - 10,308 = \$9427 yr.

Construction Cost:

Project Cost = \$49,899 See Construction Cost Estimate Sheet.

2" polypropylene or HDPE hollow spheres

500 balls x 1702 1ft2 = 500 x 17 ft2/case = 10,9 ft2/case

10.9 ft2/case = 0.85 (% core) = 12.8 ft2 coverage per case

201 ft2 = 12.3 ft4/case = 15.7 = 16 asrs /ta k

Simple Payback

Payback = Fost = Savings = \$49,899 ÷ \$9427 = 5.3 years

CONSTRUCTION COST ESTIMATE				June 4, 1990 SHEET 6 OF					
PROJECT ENERGY ENGINEERING	ANALYS	IS			BASIS F	OR ESTIM			
RADFORD ARMY AMMUNITION PLANT						CODE A (No design completed)			
ARCHITECT ENGINEER						CODE C (Final design)			
REYNOLDS, SMITH AND	D HILLS	A.E.		NC.		CHECKED BY Hutchins			
NA	,		W.T	· Todd	·		PHu	tchin:	3
Plastic Balls SUMMARY	QUANTI	UNIT	PER	LABOR	PER	MATERIA	L	ļ ,	OTAL
	UNITS	MEAS.	UNIT	TOTAL	UNIT		TAL		OST
2" Plastic balls	16	Case	2.50	40.00	123	1	968.00	2	008.00
						<u> </u>			
Subtotal	ļ			40.00			168.00		008.00
Location Adjustments			0.683	(12.68)	1.002	†	3.94		(8.74)
Sales Tax					4.5%		88.74		88.74
FICA/Insurance			20%	5.46					5.46
					·				
Subtotal								1	093.46
Overhead	15 %								314.0Z
Profit	10 %					ļ			240.75
Performance Bond	1 70						·····		26.48
RAAP Support	6%				-,		<u> </u>		160.48
Contingency	10%								283.52
Cost	^ 4	-	1.		! 			-	110 71
Construction Cost	per	Tu		0.	, , ,	1			118.71
•			8 (mildings × 2	tanks	•	g		× 16
Total Contact the	P . /							# 110	000 21
Total Construction C	052							4 77	899.36
			·						
					 			-	
Source: Vendor Qu	ote f	rom	Mid	-America	Pla	4:0	Sha	Konoo	MN
				37.130	1 (0-	رري	, ,,,,,,	1 John Co	1

As = Surface Area = 60×80

Ac= Circle Aveas = 6 × 9 × TM2

C= % Coverage = Ac x100

C= 6x9x Mb2 x 100 60x80 x 100 C= 9x m x 100 = 9m x 100

C= 88.4%

101

-0-

Cover Water Dry Tanks Grains of moisture Pounds of moisture per pound of dry air per pound of dry air \$ # 8 * ° Rosed on Statistical Abstract of the United States, 1987 Data PSYCHROMETRIC CHARI 70 of Ab 61 of wb 56 of do pt. Ambiant Londitions: 58°F db 50°F wb Room Conditions: Assume RSH 38 (3-63) Water Dry House Normal Temperatures Dry Bulb

HunTer

Telephone Call Confirmation

200 11/2 1501		Project No. $\underline{2}$	900379-000
800-468-1501	(Placed)		Date 6/4/90
Local L.D. B. Todd			
		d With Coary L	•
of Mid-America Plas-	tics Rega	arding Hollow P	lastic Spheres
Dia = 3/4" 1000	\$39.40 /	case + shippi	ng
1'2" 1000	\$143.50		•
2" 500	\$123.00		
			· · · · · · · · · · · · · · · · · · ·
4" 100	#203.00		
			·
PolyPropylene or t	HDPE		
		·	
•		90 Fumes	rada tina
		88,3 Eurp.	
		69.5 % Fu	el savings
<u>:</u>		· · · · · · · · · · · · · · · · · · ·	
water with et	her (small an	omts) and alc	chol
Control Control	1 + ; c	./ 4	
Gary will fax pr	oduct into	to me way	
Distribution			
Distribution:			

MID-AMERICA PLASTICS, I Plastic Specialists / Fabrication & Distribution 700 Industrial Circle So. Shakopee, Minneska 66379 612/445-7667 / FAX# 612/446-29/4 800/408-15(x) DATE: TO: BILL TODO X2653 ATTN: Number of pages (Including this cover page) . O REGARDING: ZNAO ONTIPLE Balls MAP FAX #(612) 445-2974

MON STCS

CUT HEAT LOSSES! SAVE FACTORY MAINTENANCE ! IMPROVE SAFETY! REMOVE FUMES AND ODORS

PROVEN to Reduce Fuel Costs 19.5% Reduces Fumes 90% Reducas Evaporation 88.3% ALL PLASTIC FLOATING SIVERES

Spheres finat on surface of liquid in open tank and thereby greatly reduce the excised liquid surface aren — up to 20%. Chimatically diminishes objectionable jumes and odors. Blanker of administrated insulates heated liquid reducing evaporation and heat requirements.

Ideal for plating tanks and similar open tank matallations where the liquid surface can be covered with a blanker of species without impeding access to the tank for process purposes.

Sphere: die hollow and will float on any liquid. Fully round. No welt of rim on which chemicals can deposit and being smooth they ensure a much tighter surface cover.

Polypropylane non-toxic and able to withstand continuous working temperatures of 110°C (230°F) polypropylane is suitable for use in most

known chemicals.

High Density Polyethylene generally suitable as above but with a continuous working temperatura limitation of 50°C (176°F) softening point about 110°C (230°F). High density polyethylene has better chemical resistance to ceriain compounds like oil, and other hydrocarbons. Also less stress cracking at low temperatures than polypropylene. Color white translucant except 100 MM, black for outside use.

HIGH BENSITY **POLYPROPYLEMÉ** Mill Biobs Price Pe

MID AMERICA PLASTICS INC. haile Spacialists / Fubrication & Diatribu joh

700 Industrial Circle S. - Brakor ee I dinnesote 55:379

APPLICATIONS?

METAL WORKING - In Plotting und Chromating

MILTAL WUNDERING — In Florance day Constituting Tanks:

PLATING: Manual Chromium Line Reduces Spray
Splashing.

PITROLEUM: Air Pollution, Nunities Odors, Waste
Collection Pits.

FOID: Reduces Vapor, Smelt in Bacon Manufac

turing POWER STATION: Surge Tank Reservoir of Hot

Boiler -- No Steam. SwiMMING POOLS: Reduces Heat Loss

REYNOLDS, SMITH AND HILLS ARCHITECTS • ENGINEERS • PLANNERS INCORPORATED

SUBJECT RAAP EEAP

Insulate water Dry Tanks

DESIGNER W.T. Todd

CHECKER PHUTCHINS

DATE 6-6-90

DATE 6/12/90

ECO# FN-U-Z

INSULATE FIBERGLASS WATER DRY TANKS

Assumptions:

- 1. The heat loss by radiation from the tank is negelected due to the low temperature difference and being indoors.
- 2. The heat loss by convection from the tank is neglected due to the still air conditions in the building.
- 3. The average room temperature is 70°F.
- 4. The tank temperature is 1490F. Waterland and Viar, Industrial Steam System Analysis.
- 5. The tank dimentions are 9 feet high with a 16 foot diameter.
- 6. The Revalue For the Fiberglass tank is approximately equal to that of 1/4" aspestos cement siding.

Calculations:

Qsides = Usides Asides AT

Usides = 1/Rsides = Rtank + Rair = 0.21+0.68 = 1.12 Btu hv-fezof

Asides = 2 thr h = 2 x T x 8 ft x 9 ft = 452 ft 2

AT = Tank - Tair = 149 °F - 70 °F = 79 °F

REYNOLDS,	SMITH	AND	HILLS
ARCHITECTS .	ENGINEE	RS · PL	ANNERS
IN	CORPORATE	ĔΒ	

SUBJECT Insulate W.D. Tanks

SHEET _____ 2 ___ OF ____

DESIGNER W. T. Todd

FN-U-Z Water Dry Tank Insulation (Continued):

Qsides = 1.12 Btn x 452 Ft2 x 700 = 39,993 Btn/hr

Add 2" Fiberglass insulation wrap with metal jacketing to the sides of the tank.

Qu/ins = 0.13 Rtu x 452 Ft2 x 790F = 4,642 Btu/hr

From ECO FN-5-1 cales., the water dry tanks operate approximately 4320 helye

Steam Sarings:

Savings = (Q sides - Qwins) Op. Hrs. + # trinks = (39,993 Btu - 4642 Btw) * 4320 Nx × 14 tanks Savings = 2138.0 mBt"/yr

Coal Savings:

Energy Savings = 2138.0 meta x 1.32 = 2822 meta met. x 1.61 \$/mpt. = \$ 4543 /yr Cost Savings = = 2138.0 meta × 1.11 mptu = # 2373/yr 3/91 Elec. Price Diff Costs

REYNOLDS.	SMITH	AND	HILLS
ARCHITECTS .	ENGINEE	RS · PL	ANNERS
11	NCORPORATI	ED	

SUBJECT Insulate W.D. Tanks	AEP NO
	SHEET OF
DESIGNER W.T. Todd	DATE
CHECKER	DATE

EN-U-2 Water Dry Tank Insulation (Continued):

Construction Cost:

Project Cost = #43,512

See Construction Cost Estimate Sheet

Simple Payback:

Payback = Cost = Savings
=
$$\#43512 \div 2170 \%_{yr} = 20.1 \text{ years}$$

CONSTRUCTION COST	ESTIMAT	E	·	DATE PREPARED	1900	SHEET	4 OF
PROJECT				June 6	BASIS FO	OR ESTIMATE	
ENERGY ENGINEERING	ANALYS:	IS_			×	CODE A (No design	ompleted)
RADFORD ARMY AMMUN	ITION P	LANT			_	OCE S (Preliminary o	-
ARCHITECT ENGINEER	NUTLIC	Λ.Γ.	0 17	NC.] CODE C (Final dea THER (Specity)	11 6-1 7
REYNOLDS, SMITH AND	HILLS	ESTIM	ATOR,	16.		CHECKED QY	
NA			ATOR)	Todd		Piffuto	lins
Ins. W.D. Tanks SUMMARY	QUANTI	TY	PER	LABOR	PER	MATERIAL	TOTAL
	UNITS	MEAS.	UNIT	TOTAL	UNIT	TOTAL	COST
2" F.G. Insulation	480	SF	1.14	547.20	0.73	350.40	897.60
0.010" Aluminum Jacket	480	SF	2.86	1372.80	0.29	139.20	1512.00
Subtotal				1920.00		489.60	2409.60
Location Adjustments			0.683	(608.64)	1.002	0.98	(607.62)
Sales Tax					4.5%	22.08	22.08
FICA/Insurance			20 %	262.27		·	262.27
·							
Sub total				1573.63		512.66	2086,29
Overhead	15%					·	312.94
Profit	10 %						239.92
Performance Bond	1%						26.39
RAAP Support	6 %			·			159.93
Contingency	10 %						282.55
7 7						·	
Construction Cost pe	r Tan	K					3,108.02
	•		Numb	er of Eibergl	ass ta	nks	×14
Total Construction	Cost						\$43,512.28
				·			
Source = Means Mecl	ANICO	1/	Cost	Data			
200.00	44160						

Telephone Call Confirmation

•			•	Project No. 29	100379000
Loc	al	L.D	Placed	Rec'd	Date <u>6-5-90</u>
	-		Conversed		
Of.					ory Tank Insulation
	Giv	en the co	onditions Sid	suggested	′=
				01	
		1" to 2"	Fiberalass wy	rap @ \$2.5	to \$3,00 per SF
		metal J	Tacketing @	\$ 1,00 per S	GF
			by 2 for		
		7 (3 5 7 7	7		
	The	above va	ilnes are ins	talled cost	· s .
	1				
	* **********		1, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
,					
		· · · · · · · · · · · · · · · · · · ·		······································	
			şı , <u>, , , , , , , , , , , , , , , , , ,</u>		· · · · · · · · · · · · · · · · · · ·
					· · · · · · · · · · · · · · · · · · ·
	·	·			
	 		······································		
_			31°-31-44-41-41-41-41-41-41-41-41-41-41-41-41		
Diei	tribution:			······································	

REYNOLDS.	SMITH	AND	HILLS
ARCHITECTS .	ENGINEE	RS · PL	ANNERS
10	NCORPORAT	ED	

RAF	P EEAP	AEP NO 2900379000
Electric	Motors	SHEET / OF)
ESIGNER	Motors T. Tood	DATE
HECKED		DATE

ECO # GP-B- | REPLACE EXISTING MOTORS 1- ENERGY

Deplacement of existing standard ducky motors with energy efficient types was evaluated for various operating times.

A computer spread sheet was developed to calculate the costs, energy savines, and pay voices for motors ranging from 1 hp to 300 mp. (Page 2 Shows the Formulas which are contained in the spread sheet. Pages 6 through 11 are printouts of the spread sheet, for hows of sperations including:

on a per unit basis

8 hr/day 5 days/wk 8 hr/day 7 days/wk 16 hr/day 5 days/wk 16 hr/day 7 days/wk 24 hr/day 5 days/wk 24 hr/day 7 days/wk

Pages 344 Summarize the costs and saveran for all nectors operating J24 hr/day, 5 days/who which we from 10 hp to 150 hp.

REYNOLDS, SMITH AND HILLS ARCHITECTS • ENGINEERS • PLANNERS INCORPORATED

SUBJECT BAP LEAP

ELECTRIC FOOD ECC'S

DESIGNER T. TODD

AEP NO 290 6379 000

SHEET 2 OF 11

DATE 5-1-90

ECO# GP-B-1
FEPLACE EXISTING MOTORS W/ ENERGY-EFFICIENT MOTORS CALCULATION

CHECKER

ASSUMPTIONS MOTORS AKE EXPLOSION-PROOF FOR CLASS I, GROUP D & CLASSI, F&G
1800 RPM, 460 V, 3-PHASE

MATERIAL COSTS ARE FROM RELIANCE ELECTRIC COMPANY LIST PRICES, WITH A CONTRACTORS DISCOUNT FACTOR OF 0.75 FOR ENERGY EFFICIENT MOTORS.

LABOR POSTS ARE FROM 1989 HEARS ELECTRICAL CATALOG TOR INSTALLATION OF MOTERS BY HP. THIS VALUE WAS MULTIPLIED BY 2 TO ACCOUNT FOR REMOVAL OF THE CLD METOR, THE LATER FACTOR OF 0.683 WAS USED TO ADJUST FOR GEOGRAPHICAL LOCATION.

NET (OST (1940 +) = (1.045 x MAT'L + 1.2 x LAROK) x 1.661

SAVINGS = MOTOR HP & 0.746 KW X 1 1 1 1 YR X \$0.03026 HP S-D NOM. EFF. EE NOM. EFF. YR KWH

FAYEACK = NET COST (\$) = YRS
SAVINGS (\$/YR)

AP ENERGY EFFICIENT MOTOR PROJECTS

TLENAME: RMOTEEV4
DATE: 12 JUNE 90

			CONTRACTOR	LABOR		R	EPLACE OPE	RATING MOTO	RS CALCULAT	'ION
.	50.53 T	NO. OF	RELIANCE	REMOVE OR	CONSTR COST		ENERGY SA	VINGS	COST SA	VINGS
MOTOR SIZE (HP)	TOTAL NO. OF MOTORS	MOTORS OPERATING 3 SH,5 D/WK	ENERGY-EFF. EXP-PROOF (1990\$)	INSTALL MOTOR (1990\$)	(1990\$)	PER MOTOR (KWH/YR)	TOTAL (KWH/YR)	(MMBTU/YR)	PER MOTOR (\$/YR)	TOTAL (\$/YR)
10	523	 105	928	33	164,216	2,837	297,878	1,017	86	9,014
15	412		1,213	42	167,029	5,522	452,777	1,545	. 167	13,701
20	184		1,440	51	89,722	6,873	254,284	868	208	7,695
. 25	288		1,806	53	174,117	7,053	409,079	1,396	213	12,379
30	166		2,029	55	110,752	7,635	251,968	860	231	7,625
40	157	31	•	66	139,564	11,464	355,383	1,213	347	10,754
50	140		3,223	82	148,684	9,373	262,451	896	284	7,942
60	100		4,511	96	147,275	14,090	281,796	962	426	8,527
75	71	14	5,509	109	125,533	19,557	273,794	934	592	8,285
100	67	13	6,900	147	146,468	28,130	365,692	1,248	851	11,066
125	44		9,023	188	132,458	37,709	339,384	1,158	1,141	10,270
150	28		10,273	222	100,716	35,619	213,715	729	1,078	6,467
TOTAL					1,646,533		3,758,200	12,827		113,723

SUMPTION: 20% OF THE MOTORS OPERATE 24 HRS/DAY, 5 DAYS/WEEK

CONSTRUCTION COST	ESTIMA"	ΓE	·	5-17 - 90		SHEET	4 of 11
POJECT ENERGY ENGINEERING	ANALYS	IS				OR ESTIMATE	
RADFORD ARMY AMMUN	ITION I	PLANT				ODE B (Preliminary de	eargn)
ARCHITECT ENGINEER REYNOLDS, SMITH AND	ם וווער	ΛΕ	D 11	VC	_	CODE C (Final deal THER (Specify)	(ng)
DRAWING NO.	J HILLS	ECTIV				CHECKED BY	
E(0+GP-B-1	QUANT		1.00	LABOR		MATERIAL	
Motor Replacementummary	NO. UNITS	UNIT MEAS.	PER	TOTAL	PER	TOTAL	TOTAL COST
Replace Standard duty	436	ea.	varies	26404		1027334	1053738
motors with energy efficient							
motors - 10 hpother 150 hp	!						
Saks Tax	4.5%					46230	46230
FICA/Insurance	70.0%			5281			5281
Subtotal				31685		1073564	1105249
Overhead	15.0%						165787
Profit	10.0%						127104
FENOMANCE LOUK	1.5/						13981
Hercules Support	6:0%						24727
Continuency JU	10.0%						149685
Construction (co)							1646533
				•			

CONSTRUCTION COST	ESTIMAT	ΓE		5-1-90		SHEET	5 of 11
PROJECT ENERGY ENGINEERING	ANALYS	IS			İ	OR ESTIMATE	
RADECTE ALITY A			. \ 11	ANT		CODE A (No design DOE B (Preliminary d	·
ARCHITECT ENGINEER] CODE C (Final dea THER (Specify)	(gn)
REYNOLDS, SMITH AND	HILLS	A.E.		NC.		CHECKED BY	
ECO # GP-B-1	F		TOD		1		
Moior Foracement summary	NO. UNITS	UNIT	PER	TOTAL	PER	TOTAL	TOTAL COST
5 hp motor	1	la	29	58	636	636	694
Prievau- Aticient.							
explosion - proof							
explosion - proot (remove old install new)						
Sales tax	4.5%					29	29
FICA/Insurance	20.0%			12			12
Subtotal				70		665	735
Overhead	15.0%	,					110
Profit	10.0%		-				<u>85</u> 9
Parlorniance Bond	1.0%						56
Hercules Support	6.0%						100
Construction Cost	10.0%						1095
CONSTRUCTION COSE							
·							
							•
	· · · · · · · · · · · · · · · · · · ·						
						·	
	····						
			·				
		<u> </u>				11	

RAAP ENERGY EFFICIENT MOTOR PROJECTS FILENAME: RNOTEE3 DATE: 8 MAY 98

1	1214 121	20.000		Ę	mi t a tubor		,						
RE HOTOR ENER SIZE EXP	RELIANCE RELIANCE SIZE EXP-PROOF	RELIANCE ENERGY-EFF. EXP-PROOF	REMOVE OR INSTALL MOTOR	REMOVE OR INSTALL MOTOR (1990s)	PRICE W/ MARKUPS (1998s)	RELIANCE STD NOTOR NIN. EFF.	RELIANCE STD MOTOR NOM. EFF.	RELIANCE EXP-PR XE NIN EFF. (X)	RELIANCE EXP-PR XE NOM EFF. (X)	ENERGY SAVINGS (KWH/YR)	REDUCED DEMAND (KW)	COST SAVINGS (\$/YR)	SIMPLE PAYBACK (YRS)
1	869	@	43	29	921	74.87		82.51	84.6%	168	•	S	- E
. 5.	724	543		73	961	75.51		84.8%	85.5%	243	9.1	1	138
~	769	570	C	53	1981	78.5%		85.5%	86.51	220		7	158
ı m	765	574	.	29	1010	75.5%		87.51	88.5%	679	6.3	28	\$
יט ו	848	929	5	29	1168	89.87	82.51	87.51	88.5%	6 38	.3	19	57.4
ر د	1878		9	31	1387	81.52		89.5%	98.2%	952	9.5	23	4
=	1237		\$	8	1582	82.51		89.51	98.2%	946	6.5	53	22
2	1617		61	42	2061	82.5%		91.02	21.72	1841	6.9	26	37
20	1928		75	5	2453	84.8%		11.12	92.4%	2291	=	69	33,
3.5	2488		82	53	3837	85.5%		91.72	92.41	2351	1:1	71	45.
2 6	27.05		*	55	3395	86.5%		92.41	93.6%	2545	1.2	11	#
.	3653		97	99	4554	86.5%		93.8%	93.6%	3821	1.8	116	38
· (F	4297		120	82	5372	88.5%		93.0%	93.6%	3124	1.5	35	20
9	6014		140	96	7449	88.5%		94.12	94.5%	4697	2.3	142	25
75	7345		168	189	1.06	88.51		94.5%	95.0%	6219	3.1	161	\$
	9288		215	147	11397	88.5%		95.81	95.4%	9377	4.5	284	7
125	12838		275	881	14888	88.5%		95.4%	95.8%	12578	9.9	388	33
150	13697		325	222	16981	98.2%		95.81	96.21	11873	5.7	329	47
288	16651		396	266	28638	21.12		95.87	96.21	11100	5,3	336	19
258	28342	15257	455	311	25158	93.67		95.61	96.21	11201	5.4	339	74
900	00770		201	900	30220	*0 00		AC 20	65 50	12202	6	272	Ţ

ASSUMPTIONS: CONTRACTORS DISCOUNT FACTOR = 0.65 FOR STANDARD DUTY, 0.75 FOR ENERGY EFFICIENT NOTORS ARE EXPLOSION-PROOF, 1800 RPM, 460 VOLT, 3 PHASE

SAVINGS = HP + 0.746+[(1/5] EFF)-(1/EN EFF)] + HRS/YR + ELECOST OPERATING TIMES:

8 HRS/DAY

2888 HRS/YR 5 DAYS/HK =

\$8.8383 /KWH ELECTRICITY COST: AVERAGE OF ENERGY & DEMAND CHARGES

P. 7 GP-E-1

RAAP ENERGY EFFICIENT NOTOR PROJECTS FILENAME: RMOTEE3 DATE: 8 MAY 98

	LIST PRICE	CONTRACTOR	LABOR	1	MAT'L & LABOR			EFICIENCIES	1 1 1 1 1 1 1 1	REPLACE	DPERATING	REPLACE OPERATING NOTORS CALCULATION	ULATION
NOTOR 5175	RELIANCE NOTOR ENERGY-EFF.	RELIANCE ENERGY-EFF. Exp-proof	REMOVE OR INSTALL MOTOR	REMOVE OR INSTALL MOTOR	PRICE W/ MARKUPS	RELIANCE STD MOTOR MIN. EFF.	RELIANCE STD MOTOR NOM. EFF.	RELIANCE EXP-PR XE MIN EFF.	RELIANCE EXP-PR XE NOM EFF.	ENERGY	REDUCED	COST	SIMPLE PAYBACK
€	(\$8661)	(\$8661)	(MEANS 19898)	(\$8661)	(18861)	(2)		(1)	(%)	(KWH/YR)	(KH)	(\$/YR)	(YRS)
-	869	1 1 1 1 1	43	23	921	74.0%				236	9.1	7	129.1
.5	724		43	29	961	75.5%				341	æ. 	=	93.2
~	99/		43	23		78.5%				383	=	6	107.4
ന	765		43	23		75.5%				146	8 .3	28	35.5
, ico	848		43	23		89.6%				892	.3	27	48.9
.5	1878		46	3		81.5%				1337	6.5	7	34.3
=	1237		64	33		82.51				1328	. 5	7	33.4
2	1617		19	42		82.5%				2584	6.9	78	26.4
28	1928		. 75	51		84.8%				3216	-:	97	25.2
72	2408		78	53		85.5%				3368	-:	8	39.4
8	2785		18	55		86.5%				3573	1.2	881	31.4
4	3653		76	99		86.52				5365	8.1	162	28.1
	4297		120	82		88.5%				4386	1.5	133	40.5
99	6914		140	96		88.51				6593	2.3	200	37.3
75	7345		160	681		88.5%				9152	3.1	111	32.8
90	9598		215	147		88.51				13163	4.5	398	28.6
125	12838		275	188	_	88.5%				17646	9.9	234	27.9
150	13697		325	222		98.23				16668	5.7	284	33.7
200	16651		398	266	. •	77.16				15583	5,3	472	43. 8
258	28342		455	311		93.0%	79.67	95.81	96.2%	15725	5.4	476	52.9
30	21438	9 16079	528	355	26605	93.63				17272	5.9	223	56.9
}										,			

ASSUMPTIONS: CONTRACTORS DISCOUNT FACTOR = 0.65 FOR STANDARD DUTY, 0.75 FOR ENERGY EFFICIENT

NOTORS ARE EXPLOSION-PROOF, 1888 RPM, 468 VOLI, 3 PHASE SAVINGS = HP * 8.746*[(1/S] EFF)-(1/EN EFF)] * HRS/VR * ELECOST OPERATING TIMES: 8 HRS/DAY

\$8.8383 /KWH 7 DAYS/WK = 2920 HRS/YR ELECTRICITY COST: AVERAGE OF ENERGY & DEMAND CHARGES \$0.

RAAP ENERGY EFFICIENT MOTOR PROJECTS

FILENANE: RNDTEE3 Date: 8 may 98

	LIST PRICE	LIST PRICE CONTRACTOR	LABOR		MAT'L & LABOR		•	EFFICIENCIES		REPLACE (DPERATING	REPLACE OPERATING NOTORS CALCULATION	CULATION
	RELIANCE	REL IANCE	REMOVE OR	KENDVE OR	PRICE	RELIANCE	RELIANCE	REL IANCE	RELIANCE				
M0T0R	₩.	ENERGY-EFF.	INSTALL	INSTALL	W/ MARKUPS	STD NOTOR	STO MOTOR NOM. EFF.	EXP-PR XE MIN EFF.	EXP-PR XE NOW EFF.	ENERGY SAVINGS	REDUCED	COST SAVINGS	SIMPLE Payback
£ €		_	(HEANS 1989\$)	(\$8661)	(18661)	(%)	3	3	(%)	(KWH/YR)	(KB)	(\$/YR)	(YRS)
-	869		43	29	921	74.0%			_	336		=	9.86
5.1	724		43	29	196	75.5%			_	485	8 .1	15	65.4
7	768		43	29	1884	78.5%		-	_	410	 	13	75.4
(*)	765		43	29	1919	75.51			_	1340	. 3	7	24.9
د`ب ا	848	_	43	29	1168	80.81			_	1275	. .	33	28.7
7.5	_		9	31	1387	81.5%				1985	6.5	28	24.1
=			6+	33	1582	82.51				1881		27	27.6
15	1617		19	42	2061	82.5%	85.5%	91.67	21.12	3681	6 8	==	18.5
28	1926		75	51	2453	84.0%		-		4582	-:	139	11.7
25	248		78	53	3837	85.51				4782	-:	142	21.3
1 e	278		35	55	3395	86.5%		•	-	2898	1.2	154	22.8
4			16	99	4554	86.5%			-	7643	æ: -:	231	19.7
			128	82	5372	88.5%			•	6249	1.5	88	28. ♦
9			148	96	7449	88.5%				9393	2.3	284	26.2
75			160	189	1/86	88.5%				13038	3.1	395	23.8
3			215	147	11397	88.53				18753	4.5	267	28.1
125			275	188	14888	88.53				25140	9.9	761	19.6
156		_	325	222	18691	98.23				23746	5.7	719	23.6
200			398	566	28638	17.16				22288	5.3	672	30.7
256			455	311	25158	93.83				22402	5.4	678	37.1
980	21438	6/891 8	528	355	26605	93.61				24686	5.9	745	35.7
j								•					

ASSUMPTIONS: CONTRACTORS DISCOUNT FACTOR = 0.65 FOR STANDARD DUTY, 0.75 FOR ENERGY EFFICIENT

MOTORS ARE EXPLOSION-PROOF, 1880 RPM, 460 VOLT, 3 PHASE SAVINGS = HP \pm 0.746 \pm [(1/ST EFF)-(1/EN EFF)] \pm HRS/YR \pm ELECOST

16 HRS/DAY 5 DAYS/WK = 4168 HRS/YR

OPERATING TIMES:

ELECTRICITY COST: AVERAGE OF ENERGY & DEMAND CHARGES \$8.8383 /KWH

PROJECTS	
3 0103	
EFF ICIENT	0111070
ENERGY	
RAAP	1777

FILENAME: RNOTEE3 BATE: 8 MAY 98

F010R ENE S12E E)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												
	RELIANCE ENERGY-EFF. EXP-PROOF (1990\$)	RELIANCE ENERGY-EFF. EXP-PROOF (19906)	REMOVE OR INSTALL MOTOR (NEANS 1989%)	RENDVE OR INSTALL HOTOR (1998\$)	PRICE W/ MARKUPS (19981)	RELIANCE STD MOTOR Him. EFF.	RELIANCE STO MOTOR NOM. EFF.	RELIANCE EXP-PR XE MIN EFF. (X)	RELIANCE EXP-PR XE NOM EFF. (X)	ENERGY SAVINGS (KWH/YR)	REDUCED DEMAND (KW)	COST SAVINGS (\$/YR)	SIMPLE PAYBACK (YRS)
-	8 69		43	29	921	74.6%				471		+1	64.6
- v	724		. 64	5 3	961	75.5%	•	_		682		21	46.6
; `	769	S78	. .	23	1881	78.51	81.5%	85.51	86.5%	618	-	61	53.7
4 6	765		. 4	32		75.5%				1881	6.3	21	17.7
יט כי	848		<u>.</u>		1188	80.0%				1790		Š	20.
۰ د	1878		9	. 	1387	81.5%				2674	6.5	8	17.1
<u> </u>	1237		\$	33	1582	82.5%				2655	_		26
5	1617		61	42	2061	82.51				2168	_		33
	1928		75	5	2453	84.67				6432			15.0
χ.	2488		78	53	3837	85.5%				1999			2.
2 5	27.05		8	55	3395	86.5%				7146			12.
, 4	2652		6	99	4554	86.5%				18729			7.
3 4	607		128	82	5372	88.5%				8772			58 .
3 5	7189		148	96	7449	88.51				13187			<u>æ</u>
, K	7345		160	189	1/06	88.5%				18383			.91
2 4	9866		215	147	11397	88.5%				26327			14.
36	90801		275	88	14888	88.51				35292			Ë
77	12692	18273	325	222	16981	98.23				33336	5.7		16.
900	16651		388	266	28638	91.72				31165			21.
250	28347		455	311	25150	93.63				31458	_		7 6.
900	31736		528	355	26605	93.63				34544			25.

ASSUMPTIONS: CONTRACTORS DISCOUNT FACTOR = 0.65 FOR STANDARD DUTY, 0.75 FOR ENERGY EFFICIENT

MOTORS ARE EXPLOSION-PROOF, 1800 RPM, 460 VOLI, 3 PHASE SAVINGS = HP * 0.746*[(1/ST EFF)-(1/EN EFF)] * HRS/YR * ELECOST OPERATING TIMES:

16 HRS/DAY

\$0.8383 /KHH 7 DAYS/WK = 5840 HRS/YR ELECTRICITY COST: AVERAGE OF ENERGY & DEMAND CHARGES \$0.

PROJECTS	
MOTOR	
E FFICIENT	: RMOTEE3
ENERGY	ILENANE: PH
RAAP	FILE

DATE: 8 MAY 98

M010R EN S12E E	RELIANCE ENERGY-EFF. EXP-PROOF (1990s)	RELIANCE ENERGY-EFF. EXP-PROOF (1990\$)	REMOVE OR INSTALL MOTOR (HEANS 1989\$)	RENOVE OR INSTALL NOTOR (1998\$)	PRICE W/ MARKUPS (1998\$)	RELIANCE STD MOTOR MIN. EFF.	RELIANCE STO MOTOR NOM. EFF.	RELIANCE EXP-PR XE NIN EFF. (%)	RELIANCE EXP-PR XE NOM EFF. (X)	ENERGY SAVINGS (KWH/YR)	REDUCED DEMAND (KW)	COST SAVINGS (\$/YR)	SINPLE PAYBACK (YRS)
-	969	518	43	29	921	74.0%				284	6.1	15	68.
1.5	724	543	43	23	961	75.5%	78.5%	84.61	85.5%	728	9 .1	22	43.6
7	760	570	(3	2	1084	78.5%				999	6. 1	28	3 5
m	765	574	43	23	1918	75.57				2010	.3	19	16.
S	848	636	43	52	11.08	89.83				1913	6.3	85	19.
7.5	1078	698	46	3	1387	81.52			•	2857	9.5	98	16.
=	1237		64	33	1582	82.51				2837	6.5	98	8
12	1617		61	42		82.52				5522	6.9	167	12.
58	1920		75	5		84.6%				6873	=	887	=
72	2408		78	53		85.53				7053	-:		÷
8	2705		8	55		86.52				7635	1.2		±
4	3653		97	99		86.53				11464	1.8		13.
	4297		128	85		88.53				9373	1.5		18.
99	6814		140	*		88.51				14698	2.3		17.
72	7345		160	681	9871	88.53				19557	3.1		15.
981	9200		215	147	11397	88.53				28130	4.5		13.
125	12030	9823	275	188		88.53				37709	9.9	_	13.
158	13697		325	222		98.23				35619	5.7	_	15.
280	16651		396	792		91.73				33388	5.3	_	78
258	20342	15257	455	311		93.60				33684	5.4	_	₹
388	06716		900	220	•	100				91030	u	•	50

ASSUMPTIONS: CONTRACTORS DISCOUNT FACTOR = 0.65 FOR STANDARD DUTY, 0.75 FOR ENERGY EFFICIENT

MOTORS ARE EXPLOSION-PROOF, 1880 RPM, 460 VOLT, 3 PHASE SAVINGS = HP * 8.746*[(1/ST EFF)-(1/EN EFF)] * HRS/YR * ELECOST 24 HRS/DAY OPERATING TIMES:

6248 HRS/YR 5 DAYS/WK =

\$8.0383 /KWH ELECTRICITY COST: AVERAGE OF ENERGY & DENAND CHARGES

	LIST PRICE CONTRACTOR	CONTRACTOR	LABOR	08 0	MAT'L & LABOR		_	EFFICIENCIES	1 9 9 8 8 9	REPLACE	OPERAT ING	REPLACE OPERATING NOTORS CALCULATION	CULATION
NOTOR S17E	: 35 W	RELIANCE ENERGY-EFF. EXP-PROOF	REMOVE OR Install Motor	2	PRICE W/ MARKUPS	RELIANCE STD HOTOR MIN. EFF.	RELIANCE STD NOTOR NON. EFF.	RELIANCE EXP-PR XE MIN EFF.	RELIANCE EXP-PR XE NON EFF.	ENERGY	REDUCED Denand	COST	SIMPLE
€	(18861)	(1990\$)	(NEANS 1989\$)	(18861)	(\$8661)	(1)	(2)	(1)	(2)	(KWH/YR)	(KB)	(\$/YR)	(YKS)
	869		₹	29	921	74.6%	77.6%	_		787		77	43.0
1.5			43	29	196	75.51				1022	~·	31	31.1
7	760		43	29	1881	78.51		_		927	=	58	35.8
m	765		43	29	1010	75.51				2822	6.3	82	11.8
ν'n	848	929	43	23	1168	88.81		87.5%	88.51	2685	9. 3	8	13.6
7.5			46	31	1387	81.5%		_		191	0.5	121	11.4
91	1237	928	6#	33	1582	82.51				3983	6.5	121	13.1
15	1617			45		82.5%				7752	6.	235	8.8
28	1920		75	51		84.81		•		9648		292	₩
25				53		85.5%				1866		388	18.1
30	_	2829		55		86.5%				18719	1.2	324	10.5
#	_		197	99		86.5%				16894	8.	487	9.4
ŝ	_		120	82	•	88.5%				13159		398	13.5
9	6814			3 6		88.5%				19788	2.3	299	12.4
75				100		88.5%				27455	3.1	831	18.9
100				147		88.51				39498	4.5	1195	9.5
125	_			188		88.5%				52938	9	1682	9.3
150	_	18273	325	222	16981	98.2%				59984	5.7	1513	11.2
286			390	266	28638	21.72				46748	5,3	1415	14.6
258	_	15257	455	311	25159	43.87				47174	5.4	1427	17.6
380	_	_	528	355	26685	93.0%				51815	5.9	1268	17.0

ASSUMPTIONS: CONTRACTORS DISCOUNT FACTOR = 0.65 FOR STANDARD DUTY, 0.75 FOR ENERGY EFFICIENT

MOTORS ARE EXPLOSION-PROOF, 1888 RPM, 468 VOLT, 3 PHASE SAVINGS = HP * 0.746*[(1/ST EFF)-(1/EN EFF)] * HRS/YR * ELECOST OPERATING TIMES:

24 HRS/DAY

HMX/ 6868.8\$ T DAYS/WK = 8760 HRS/VR ELECTRICITY COST: AVERAGE OF ENERGY & DEMAND CHARGES \$0

REYNOLDS,	SMITH	AND	HILLS
ARCHITECTS .	ENGINEE	RS · PL	ANNERS
, if	CORPORATI	EÐ	

and the second s

SUBJECT RAAP EEAP	AEP NO 290 0379 00
Electric Motors	_
+ $+$ $+$ 0	DATE
	DATE

ECO#	GP-8-Z	INSTALL	ENERGY	EFFICIENT	MOTORS	UPON
		FAILURE			_	

A compactor spreadsheet was developed to calculate the costs, energy savings, and paybacks for motors varying from 1 hp to 300 hp. Page Z shows the calculations that are contained in the spread sheet. Pages 3 through 8 are printents of the Spreadsheet on a per unit basis for hours of operation previous from 8 hr/day, 5 days/wk to 24 hr/day, 7 days/wk.

REYNOLDS, SMITH AND HILLS ARCHITECTS ENGINEERS PLANNERS INCORPORATED

ELECTRIC MOTOR ECO'S

EP NO 290 0279 000

DESIGNER T. TODD

DATE 5-1-90

CHECKER

DATE

ECO # GP-B-2

ENERGY-EFFICIENT MOTER INSTALLATION

UPON FAILURE & FOR NEW MOTORS

ASSIMPTIONS

MOTORS ARE EXPLOSION PROOF FOR CLASS I, GROUP D

CLASS II, GROUPS F& G

1800 RPH, 460 VOLT, 3- PHASE

(05TS

NO ADD'L LABOR IS INCLUDED FOR REMOVAL & INSTALLATION SINCE A MOTOR WILL BE REPLACED OF INSTALLED IN BOTH CASES.

STANDARD-LUTY: MATERIAL COSTS ARE FROM RELIANCE ELECTRIC

COMPANY LIST PRICES, WITH A CONTRACTORS

DISCOUNT FACTOR OF 0.65 FOR STANDARD-DUTY

MOTORS.

TOTAL STD-DUTY COST = MAT'L × 1.045 x 1.507

ENERGY-EFFICIENT; MATERIAL COSIS FROM RELIANCE ELECTRIC COMPANY LIST PRICES, WITH A CONTRACTORS DISCOUNT FACTOR OF 0,45 TOK ENERGY-EFFICIENT MOTORS.

10TAL ENERGY-EFF COST = MAT'L × 1.045 × 1.507

NET COST (1990\$) = TOTAL ENERGY - EFF COST - TOTAL STD-DUTY COST

SAVINGS = MOTOR HP x 0.746 KW x [1] = 1 | X HPS x \$ 10.03026 KWH

= \$ / YR

FAYEACK - NET COST (\$) = 1000 SANINGS (\$/YE)

RAAP ENERGY EFFICIENT NOTOR PROJECTS FILENAME: RMOTSE3 DATE: 8 MAY 98

RELIANCI SIZE EXP-PRODI (HP) (1998) 1 5 1 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											
	RELIANCE STD DUTY EXP-PROOF	بية نيد	14-	RELIANCE ENERGY-EFF. EXP-PROOF	RELIANCE STD DUTY EXP-PRODF	RELIANCE ENERGY-EFF. EXP-PROOF	RELIANCE STØ MOTOR MIN. EFF.	RELIANCE STO NOTOR NON. EFF.	RELIANCE EXP-PR XE MIN EFF.	RELIANCE EXP-PR XE NBM EFF.	ENERGY SAVINGS (YUM/YE)	REDUCED DEMAND (KM)	COST SAVINGS	SINPLE PAYBACK (YRS)
- 52 - 2	3365)	61)	(13361)	REI	,	2611		\ 4 \	\&\				,	
1.5	512		333		524							=	n	7./c
~	546		355		559							-: -	7	48.3
	578		376		592				-			=	1	45.9
Υ,	536		348		549							.3	58	17.5
יטי	785		38		598							.3	<u>\$</u>	20.
. 5	754		167		112							.5	53	17.
=	88		575		985							6.5	53	19.
: 52	1186	1617	171	1213	1214	1918	82.51	85.51	91.07	91.7%	1841	9 .9	32	12.
. 2	148		916		1433							-:	69	12.
: 52	1748		1131		1781							-:	71	<u> </u>
2 5	2884		1303		2051							1.2	11	Ξ
3 4	7777		1773		2791							1.8	116	13.
	3282		2133		3368							1.5	35	<u>æ</u>
3 5	4659		3828		4769							2.3	142	16.
1 12	5788		3710		5843							3.1	197	Ξ.
=	7841		4577		7287							4.5	284	12.
125	9895		5912		9318							9.9	388	12.
158	10701		9269	_	10954							5.7	328	.
288	12597		8188		12895	_					_	5.3	336	70 .
258	15443		19838		15888	•					_	5.4	339	24.
300	36771	•	11522		18145	•						5.9	372	19.

ASSUMPTIONS: CONTRACTORS DISCOUNT FACTOR = 0.65 FOR STANDARD DUTY, 0.75 FOR ENERGY EFFICIENT NOTORS ARE EXPLOSION-PROOF, 1888 RPM, 468 VOLT, 3 PHASE SAVINGS = HP * 0.746*[(1/ST NDM EFF)-(1/EE NDM EFF)] * HRS/YR * ELECOST

2080 HRS/YR

\$8.8383 /KWH OPERATING TIMES: 8 HRS/BAY
5 DAYS/NK = 2888 HR
ELECTRICITY COST: AVERAGE OF ENERGY & DEMAND CHARGES

4P-B-2 p.4 of 8

	LIST PRICES	RICES	CONTRACI	CONTRACTORS PRICE	PRICES WITH	S WITH MARKUPS			EFF ICIENCIES	1 1 1 1 1 1 1	STANDARD	STANDARD VS ENERGY EFF CALCULATION	EFF CALCU	LAT ION
M010R	RELIANCE STD DUTY EXP-PROOF	RELIANCE ENERGY-EFF. FYP-PROOF	RELIANCE STD BUTY EYP-PROOF	RELIANCE ENERGY-EFF. EXP-PROOF	RELIANCE STD DUTY EXP-PROOF	RELIANCE ENERGY-EFF. EXP-PROOF	RELIANCE STD MOTOR MIM. EFF.	RELIANCE STO NOTOR NOM. EFF.	RELIANCE EXP-PR XE NIN EFF.	RELIANCE EXP-PR XE NOM EFF.	ENERGY SAVINGS	REDUCED	COST SAVINGS	SIMPLE Payback
€	_	(\$8661)	(1898)	(\$8661)	(\$86)	(\$8661)	(1)	(2)	(1)	(1)		(KH)	(\$/YR)	(YRS)
-	515	1		6 6 8 9 1	524		74.0%	, -		-	736		7	40.8
. 5.1			355		523	855	75.51	78.51	84.02	85.51	341		=	28.7
7					592		78.5%	-	_		383	=	₽	32.7
~	536				549		75.5%				7	. .	78	12.5
יא פ	286			·. 	298		_				895	6.3	23	14.9
7.5					172		_		_		1337	9.5	48	12.4
					985		_				1328	6.5	7	13.8
5	1186				1214						2584	6.9	78	8.9
28	1466				1433		-		•		3216	=	41	9.8
25	1746				1781						3364	-:	=	18.6
: e	2984				2051						3573	1.2	3	18.6
7	2727				2791						5365	æ.	162	9.4
· 57	3287				3360						4386	1.5	133	12.9
199	1 465				4769						6293	2.3	288	11.7
75	5786				5843						9152	3.1	111	10.2
					7287	_					13163	4.5	398	9.2
125					9318	_					17646	9.9	234	9.2
15	_			_	18954	_					16668	5.7	584	19.4
206	_			_	12895	_					15583	5.3	472	14.4
256				_	15888	•					15725	5.4	476	17.3
386	17726	5 21438	11522	6/891 3	18145	25321					17272	5.9	523	13.7

RAAP ENERGY EFFICIENT MOTOR PROJECTS

FILENANE: RNOTSE3 Date: 8 may 98

ASSUMPTIONS: CONTRACTORS DISCOUNT FACTOR = 8.65 FOR STANDARD DUTY, 8.75 FOR ENERGY EFFICIENT

MOTORS ARE EXPLOSION-PROOF, 1888 RPM, 468 VOLT, 3 PHASE SAVINGS = HP * 8.746*[(1/ST NOM EFF)-(1/EE NOM EFF)] * HRS/YR * ELECOST OPERATING TIMES:

2928 HRS/YR

\$8.8383 /KWH GPERATING TIMES: 8 HRS/DAY
7 DAYS/WK = 2920 HB
ELECTRICITY COST: AVERAGE OF ENERGY & DEMAND CHARGES

RAAP ENERGY EFFICIENT NOTOR PROJECTS FILENAME: RM0TSE3 DATE: 8 NAY 98

, <u>40</u>	RELIANCE STD DUTY	RELIANCE ENERGY-EFF.	RELIANCE STD DUTY	REL JANCE ENERGY-EFF.		RELIANCE ENERGY-EFF.		RELIANCE STD NOTOR	RELIANCE EXP-PR XE	RELIANCE EXP-PR XE	ENERGY	REDUCED	1803	SIMPLE
SIZE (HP)	EXP-PROOF (19988)	EXP-PROOF (199 8\$)		EXP-PROOF (1998\$)	EXP-PROOF (1998s)	EXP-PROOF (1990\$)	NIN. EFF. (X)	NDM. EFF. (X)	MIN EFF. (X)	NOM EFF.	SAVINGS (KWH/YR)	DEMAND (KW)	SAVINGS (\$/YR)	PAYBACK (YRS)
-	512	• • • • •	333		524	1 1 1 1 1 1	74.0%	 			336	-	=	28.6
1.5	546	724	355	543	559	855	75.5%	78.5%	84.81	85.5%	485	=	15	28.2
7	578		376		592		78.51			-	#	=	13	23.8
ന	536		348		549						1348	.3	7	8.8
S	584		380		598					_	1275	6.3	æ	10.5
7.5	754		49		172						1985	6.5	88	8.7
=	88		575		982					-	1881	5.5	23	9.7
15	1186		171		1214	1918					3681	6.9	111	6.2
5	1488		916		1433						4582	=	139	6.8
52	1748		1131		1781						4782	1:1	142	7.5
8	2884		1303		2051						2838	1.2	154	7.4
\$	2727		1773		2791						7643		231	6.6
S	3282		2133		3360						6549	1.5	189	3.
99	4659		3028		4169						9393	2.3	284	8.2
75	5708		3718		5843						13038	3.1	395	7.7
188	7841		4577		7287	_					18753	4.5	267	6.4
125	3698		2912		9316	_					25140	9.9	191	6.4
150	10701		9269	_	10954	_					23746	5.7	719	7.3
280	12597		818	_	12895	_					22288	5.3	672	
250	15443	•	18638	_	15868	•					22482	5.4	678	12.1
		•	00411		1,101	•						•	,	•

ASSUMPTIONS: CONTRACTORS DISCOUNT FACTOR = 0.65 FOR STANDARD DUTY, 0.75 FOR EMERGY EFFICIENT

MOTORS ARE EXPLOSION-PROOF, 1880 RPH, 468 VOLT, 3 PHASE
SAVINGS = HP + 0.746+[(1/5T NDM EFF)-(1/EE NOM EFF)] + HRS/YR + ELECOST
OPERATING TIMES:
5 DAYS/WK = 4168 HRS/YR
ELECTRICITY COST: AVERAGE OF ENERGY & DEMAND CHARGES + 10.8383 /KWH

RAAP ENERGY EFFICIENT NOTOR PROJECTS

FILENAME: RM015E3 DATE: 8 MAY 98

											1	1 1 1		
MOTOR SIZE E	RELIANCE STD DUTY EXP-PROOF	RELIANCE ENERGY-EFF. EXP-PROOF	است	5 	RELIANCE STD DUTY EXP-PRODF	RELIANCE ENERGY-EFF. EXP-PROOF	RELIANCE STD NOTOR NIN. EFF.	RELIANCE STD NOTOR NOM. EFF.	RELIANCE EXP-PR XE NIN EFF.	RELIANCE EXP-PR XE NOM EFF.	ENERGY SAVINGS	REDUCED DENAND	COST SAVINGS	SINPLE PAYBACK (YPS)
i	(49261)	(1)	(0861)	261)			_ i :					•	2	đ
_	512		333		224		74.87			-	-	-:	-	7
1.5	546		355		559		75.5%			_	682		21	<u>÷</u>
7	578		376		592		78.51		_		819	 	61	16.4
m	236		348		549	984	75.5%				1881		23	9
, vo	584		388		598						1790	6.3	Š	7.
7.5	754		498		112						2674	.5	8	ۅ
=	88		575		982				-		2655	6.5	æ	9
22	1186	1617	111	1213	1214	1918	82.5%	85.51	20.16	21.72	5168	6.9	156	4.4
58	1400		916		1433						6432	:	195	+
25	1748		1131		1781						1099	-:	286	S.
8	2004		1383		2051						7146	1.2	216	หร
7	2727		1773		2791						18729	-8	325	+
	3282		2133		3368						8772	.5	265	ڼې
9	4659		3028		4169						13187	2.3	399	'n
75	5788		3710		5843						18383	3.1	554	ķ
100	7841		4577		7287						26327	4.5	797	4.
125	9895		5912		9316						35292	6.8	1868	÷
158	10701		9269	_	18954						33336	5.7	1889	5.
280	12597		8188		12895						31165	5,3	943	7.
258	15443		18838		15888	•					31450	5.4	952	æ

ASSUMPTIONS: CONTRACTORS DISCOUNT FACTOR = 0.65 FOR STANDARD DUTY, 0.75 FOR ENERGY EFFICIENT MOTORS ARE EXPLOSION-PROOF, 1800 RPH, 460 VOLT, 3 PHASE SAVINGS = HP * 0.746*[(1/51 NOM EFF)-(1/EE NOM EFF)] * HRS/YR * ELECOST OPERATING TIMES:

7 DAYS/WK = 5840 HRS/YR
ELECTRICITY COST: AVERAGE OF ENERGY & DEMAND CHARGES \$0.0303 /KWH

MOTOR PROJECTS		
RAAP ENERGY EFFICIENT	FILENAME: RNOTSE3	BATE: 8 MAY 98

	LISI FRICES			CURIFICATION AND L	FRICES WITH	WITH HARANI O		-	EL L'ICIENCIES					
MOTOR S17E (HP)	RELIANCE STD DUTY EXP-PRODF (19986)	REL JANCE ENERGY-EFF. EXP-PROOF (1998)	RELIANCE STD OUTY EXP-PROOF (1998s)	RELIANCE ENERGY-EFF. EXP-PROOF (1998\$)	RELIANCE STD DUTY EXP-PROOF (1998\$)	RELIANCE ENERGY-EFF. EXP-PROOF (1998)	RELIANCE STD MOTOR MIN. EFF. (X)	REL IANCE STD NOTOR NOM. EFF. (1)	REL IANCE EXP-PR XE NIN EFF. (X)	RELIANCE EXP-PR XE NOM EFF. (X)	ENERGY SAVINGS (KWH/YR)	REDUCED Demand (KW)	COST SAVINGS (\$/YR)	SIMPLE PAYBACK (YRS)
-	512		333	! ! ! !	524	 	74.0%				284	0.1	15	1.61
1.5	546	724	355	543	559	855	75.5%	78.5%	84.81	85.5%	728		22	13.4
~	578		376		592		78.5%				999		78	15.3
m	236		348		549		75.5%				2818	e.	19	5.8
S	584		386		298		20.02				1913	6.3	88	7.6
7.5	754		498		772		81.5%				2827	6.5	98	5.8
=	\$88		575		985		82.51				2837	6.5	8	6.5
2	1186	1617	171		1214	1918	82.5%				5522	6.9	167	4.2
28	1480		916		1433		84.0%				6873	=	788	+.
1 2	1748		1131		1781		85.5%				7053		213	S. 6
8	2884		1303		2851		86.51				7635	1.2	231	4.9
4	2727		1773		2791		86.52				11464	1.8	347	4.4
5	3282		2133		3360		88.51				9373	5	58 4	6.6
9	4659		3028		4769		88.5%				14898	2,3	426	5.5
75	5768		3710	٠.	5843		88.5%				19557	3.1	265	4.8
	7841		4577		7287	_	88.5%				28139	4.5	821	4.3
125	3692		5912		9318	_	88.51				37789	6.8	1141	4.3
150	10701		9269		18954	_	98.22				32619	5.7	1078	4.B
288	12597	16651	8188		12895	_	17.16				33306	5,3	1668	6.7
258	15443		16838		15888		93.62				33684	5.4	1817	8.7
200	30261	•	44600		27 101	•	*0 00				20010	ď	1111	7 7

ASSUMPTIONS: CONTRACTORS DISCOUNT FACTOR = 8.65 FOR STANDARD DUTY, 8.75 FOR ENERGY EFFICIENT

NOTORS ARE EXPLOSION-PROOF, 1800 RPM, 460 VOLT, 3 PHASE
SAVINGS = HP + 0.746+[(1/ST NON EFF)-(1/EE NON EFF)] + HRS/YR + ELECOST
OPERATING TIMES:
5 DAYS/WK = 6240 HRS/YR
ELECTRICITY COST: AVERAGE OF ENERGY & DEMAND CHARGES +0.0303 /KWH

RAAP ENERGY EFFICIENT NOTOR PROJECTS FILENAME: RNOTSE3 DATE: 8 NAY 98

	LIST PRICES	RICES	CONTRACT	CONTRACTORS PRICE	PRICES WITH	WITH MARKUPS		ш	EFFICIENCIES		STANDARD	STANDARD VS ENERGY EFF CALCULATION	EFF CALCU	LATION
M0708	STD DUTY	RELIANCE ENERGY-EFF.	RELIANCE STD DUTY	RELIANCE ENERGY-EFF.	RELIANCE STD DUTY	RELIANCE ENERGY-EFF.		RELIANCE STO MOTOR NOW FFF	RELIANCE EXP-PR XE MIN FFF.	RELIANCE EXP-PR XE NOM EFF.	ENERGY	REDUCED	COST	SIMPLE Payback
(He)	(199 0\$)	(199 8 \$)	(19981)		5 ~	(\$8661)	(2)	i	(3)	(1)	(KWH/YR)	(KN)	(\$/YR)	(YRS)
-		!	333		524						787	9 .1	21	13.6
- V			355		559							.	31	9.6
•			376		592		78.51	81.5%	85.5%	86.5%			58	6.9
4 ("	536		348		549							.3	83	4.2
יט ני	385		388		598							e.3	8	S.
, r	754		864		772							9.5	121	- ;
	788		575		962							6.5	121	4. 6
5	181		177		1214							6.9	235	3.6
2 5	707		816		1433							=	292	2.9
, K	174		1131		1781						•	==	98	3.5
3 5	7880		1383		2851							1.2	324	3.5
9 9	626		1773		2791							æ. 	487	3.1
9 9	3080		2133		3360							1.5	338	* .3
	¥5.54		3828	•	4769							2.3	299	3.9
75	578		3718		5843							3.1	831	ب 4.
9	784		4577		7287							.5	1195	
25			5912		9318	_						9.9	1602	
3 5	(8/B)		9269		18954	_						5.7	1513	3,5
9 6	1254	. –	8818		12895							5.3	1415	₩.
950	775		38838		15886	•						5.4	1427	5.8
300	17726	5 21438	11522	2 16079	18145	5 25321						5.9	1268	9.4
}														

ASSUMPTIONS: CONTRACTORS DISCOUNT FACTOR = 0.65 FOR STANDARD DUTY, 0.75 FOR ENERGY EFFICIENT MOTORS ARE EXPLOSION-PROOF, 1800 RPM, 460 VOLT, 3 PHASE SAVINGS = HP * 0.746*[(1/51 NDM EFF)-(1/EE NOM EFF)] * HRS/YR * ELECOST OPERATING TIMES:
7 DAYS/WK = 8760 HRS/YR

HMX/ E000.0\$ ELECTRICITY COST: AVERAGE OF ENERGY & DENAND CHARGES

REYNOLDS.	SMITH	AND	HILLS
ARCHITECTS .	ENGINEE	RS • PL	ANNERS
11	NCORPORAT	ED.	

SUBJECT RAAP ELAP	
Electri Motors	
DESIGNER TOOK	

AEP NO 790 6379 000 SHEET OF 9

ECO # GP-B-3 INSTALL ENERGY EFFICIENT MOTORS RATHER

A computer spread sheet was developed to calculate the costs, energy pavings, and partacks for motors ranging from 1 hp to 300 kg. Pages 2 & 3 show the calculations that are intained in the spreadsheet. Pages 4 through 9 are printouts of the spreadsheet in a per unit tracis for hours of operation ranging from 8 h/day, 5 days /wh to 24 hr/day, I days /wh. REYNOLDS, SMITH AND HILLS ARCHITECTS · ENGINEERS · PLANNERS

SUBJECT RAAP EEAP ELECTRIC MOTOR ECO'S

AEP NO 290 0379 000 SHEET 2 OF 9

DESIGNER T. TODD

DATE 5-1-90

ECO # GP-B-3

CHECKER

REWIND VS. REPLACE CALCULATION

DATE

ASSUMPTIONS

MOTORS AIRE EXPLOSION - PROOF FOR CLASS I, GROUP D AND CLASS II, GROUPS F & 9

1800 RPM , 460 VOLT , 3-PHASE

ELECTRICITY (OST IS AVA OF ENERGY & DEMAND CHARGES = \$ 0.03026 / KWH

COSTS NO ADDILLABOR IS INCLUDED FOR REMOVAL & INSTALLATION SINCE THIS IS THE SAME FOR BOTH REWIND AND REPLACE.

REWIND: LABOR COSTS AREE FTECH ESTIMATE FROM
LLOYD ELECTRIC CO., ROANOKE, VA.

FOR TEFC MOTORS + 15% FOR EXPLOSION-PROOF.

MATERIAL COSTS ARE 15% OF LABOR COSTS,

TOTAL REMIND COST = [LABOR X 1.2] + (MAT'L X1.045)]

X 1.15 x 1.10 x 1.01 x 1.05 x 1.06 x 1.06

= (1.2 × LAEOR + 1.045 × MAT'L) × 1.507

REPLACE: MATERIAL COSTS ARE FROM RELIANCE ELECTRIC
COMPANY LIST PRICES, WITH IT CONTRACTORS
DISCOUNT FACTOR OF 0.75 FOR ENERGY-EFFICIENT
MOTORS.

TOTAL REPLACEMENT COST = (1.045 x MAT'L) x 1.507

NET COST(3)=707AL REPLACEMENT COST - TOTAL REWIND COST

REYNOLDS, SMITH AND HILLS ARCHITECTS · ENGINEERS · PLANNERS

SUBJECT RAAP EEAP
ELECTRIC MOTOR ECO'S
DESIGNER TO TODD

AEP NO 290 03-79 000 SHEET 3 OF 9 DATE 5-1-90

E(0 # GP-B-3

SAVINGS

PAYBACK

CHECKER

RAAP ENERGY EFFICIENT MOTOR PROJECTS

FILENAME: RMOTRR3 DATE: 8 NAY 98

DAIR: 8 MAT 38	nat 30 LIST PRICE	CONTRACTOR	REWIND PRICES	RICES	MAT'L AND PRICES WITH	AND LABOR Ith Markups		u.	EFFICIENCIES		REPLACE	REPLACE VS REWIND CALCULATION	ID CALCULA	NOI 1
MOTOR S17E (HP)	RELIANCE ENERGY-EFF. EXP-PROOF	RELIANCE ENERGY-EFF, EXP-PROOF (1990\$)	LLOYD LABOR PRICE (1998\$)	BEARING PRICE (1998\$)	RELIANCE ENERGY-EFF. EXP-PROOF (1990s)	REWIND (1998s)	RELIANCE STD NOTOR MIN. EFF.	RELIANCE STB NOTOR NOM. EFF.	RELIANCE EXP-PR XE NIN EFF. (X)	RELIANCE EXP-PR XE NOM EFF.	ENERGY SAVINGS (KWH/YR)	REDUCED DEMAND (KW)	COST SAVINGS (\$/YR)	SIMPLE PAYBACK (YRS)
_	869	# # # ! ! !	141	22	815	294	74.6%	# 	; ; ;	84.8%	168		S	102.5
1.5	724	543	152	23		316	75.51	78.5%	84.87	85.5%	243	-	7	74.2
2	768		191	24	868	329	78.51			86.51	228	 •	7	85.3
(,,)	165		173	76		353	75.5%			88.5%	9 /9	6.3	28	27.2
S	848		198	58	1802	388	89.07			88:51	638	6.3	<u>\$</u>	31.8
7.5			219	33		447	81.5%			98.2%	952	9.5	29	28.7
=======================================		928	259	33		529	82.51			90.2%	946	6.5	53	32.6
15	1617	_	322	4		628	82.51			21.72	1841	6.9	26	22.5
26	1928		374	38		764	84.61			92.4%	1231	-:	59	21.7
25	2408		431	65		882	85.51			92.4%	2351	1:1	71	27.6
36	2785		512	11	3195	1846	86.5%			93.01	2545	1.2	11	27.9
7	3653		610	16	4315	1246	86.5%			93.6%	3821	æ: -	116	26.5
30	1 4297		736	110		1585	88.51			93.61	3124	1.5	3 5	37.8
19	1 6814		834	125	7103	1705	88.57			94.5%	4697	2.3	145	38.8
75			978	147		1999	88.51			95.0%	6213	3.1	197	33.8
188	9288	8869	1231	185	_	2516	88.5%			95.4%	9377	4.5	284	29.4
125		_	1466	228	14289	2998	88.57			95.81	12570	9.9	386	29.5
150		_	1754	263		3586	98.2%			96.21	11873	5.7	329	35.0
286	_		2156	323		4489	91.72	•		96.21	11100	5,3	336	42.4
256	_	2 15257	2556	383		5227	93.8%			96.21	11281	5.4	339	55.5
388	21438		2956	443		6844	93.07			96.51	12303	5.9	372	51.8

ASSUMPTIONS: CONTRACTORS DISCOUNT FACTOR = 0.65 FOR STANDARD DUTY, 0.75 FOR ENERGY EFFICIENT

MOTORS ARE EXPLOSION-PROOF, 1888 RPM, 468 VOLI, 3 PHASE SAVINGS = HP * 8.746*[(1/ST NON EFF)-(1/EE NON EFF)] * HRS/YR * ELECOST

OPERATING TIMES: 8 HRS/DAY
5 DAYS/UK = 2088 HRS/YR
ELECTRICITY COST: AVERAGE OF ENERGY & DENAND CHARGES \$0.0303 /KWH

RAAP ENERGY EFFICIENT MOTOR PROJECTS

10TRR3	FILENAME: RMOTRR3 Date: 8 may 98		
		10TRR3	#

MIE: B MAY 98	NAY 98 List price	CONTRACTOR	REWIND PRICES	83018 8	MAT'L AND	D LABOR H MARKUPS			EFFICIENCIES		REPLACI	VS REWIN	REPLACE VS REWIND CALCULATION	NO I I
							1 1 1 1 1 1 1			1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
		REL I ANCE	TTOAD	BEARING	RELIANCE	RENIND	REL JANCE	RELIANCE	REL TANCE	RELIANCE	CUCOCV	OCONICCA	1900	CIMON
X010X	ENERGY-EFF.	ENERGY-EFF.	LABUK	PX ICE	ENEKGY-EFF.		AIR. EFF.	NOT. EFF.	MIN EFF.	EAT TR AC	SAVINGS	DEMAND	SAVINGS	PAYBACK
£ €		(18861)	(\$8661)	(\$8661)	(\$8661)	(18861)	(1)	(1)	(1)	(X)	(KWH/YR)	(KW)	(\$/YR)	(YRS)
-	869		141	22		294	74.0%				236		7	73.8
1.5	724	543	152	23	855	310	75.5%	78.51	84.01	85.51	341	 •	9.	52.8
7			191	24		329	78.5%	_			383	=	ም	8.99
ന	765		173	26		353	75.5%				941	.3	28	19.4
ζ.	348		861	58	1882	388	80.87				895	8 .3	23	22.7
7.5			219	33		447	81.52				1337	8.5	7	20.4
=			259	33		529	82.51				1328	9.5	4	23.2
12	1617		322	4		658	82.51				2584	6.	78	16.8
28	1926		374	35		764	84.61				3216	=	41	15.5
25			431	65		882	85.5%				3366	==	90	19.6
8		5 2829	512	11	3195	1046	86.5%	88.5%			3573	1.2	88	19.9
9			618	16		1246	86.52			-	5365		162	18.9
5			736	==		1585	88.51				4386	1.5	133	26.9
99			834	125		1785	88.51				6593	2.3	208	27.1
75			978	147		6661	88.21				9152	3.1	111	24.1
188			1231	185	_	2516	88.57				13163	4.5	398	21.8
125			1466	228		2998	88.51				17646	9.9	234	21.6
158			1754	263		3586	98.23				16668	5.7	284	25.8
286		_	2156	323		4489	91.72				12283	5.3	412	32.4
258			2556	383	3 24826	5227	93.87				15725	5.4	476	39.2
300	21438	8 16879	2956	443		6844	93.67				17272	5.9	523	36.9

ASSUMPTIONS: CONTRACTORS DISCOUNT FACTOR = 8.65 FOR STANDARD DUTY, 8.75 FOR ENERGY EFFICIENT NOTORS ARE EXPLOSION-PROOF, 1888 RPM, 468 VOLT, 3 PHASE SAVINGS = HP * 8.746*[(1/ST NOM EFF)-(1/EE NOM EFF)] * HRS/YR * ELECOST

8 HRS/DAY OPERATING TIMES:

7 DAYS/HK = 2920 HRS/YR ELECTRICITY COST: AVERAGE OF ENERGY & DEMAND CHARGES \$0.0303 /KWH

jane a jud

RAAP ENERGY EFFICIENT NOTOR PROJECTS FILENAME: RHOTRR3 DATE: 8 MAY 98

DAIE: 8 NAT 96	BY YE				MAT'L AND	0 LABOR				•				
	LIST PRICE	CONTRACTOR	REWIND PRICES	RICES	PRICES WITH	H MARKUPS		Lac	EFF ICIENCIES	1	REPLACE	REPLACE VS REWIND CALCULATION	ID CALCULA	NOT
00101	RELIANCE OCHEDOV-ECE	RELIANCE	LLOYD	BEARING	RELIANCE FINFOGY-FFF	REWIND			RELIANCE EXP-PR XE	KELIANCE EXP-PR XE	ENERGY	REDUCED		SIMPLE
S17E (FF)			PRICE (1998s)	(\$8661)	EXP-PROOF (1998\$)	(\$8661)	MIN. EFF.	NON. EFF.	MIN EFF.	NOM EFF. (X)	SAVINGS (KWH/YR)	DENAND (KW)	SE C.	PAYBACK (YRS)
-	1 69	518	141	22	815	294	74.8%	77.8%	 	 	336	9.1	=	51.3
_	5 724	4 543	152	23	852	318	75.5%	78.51	84.81	85.5%	482		12	37.1
	2 768		191	24		329	78.51				448	. .	13	42.7
	3 76.	5 574	173	26		353	75.5%				1348	er 60.	41	13.6
	5 848		198	58			20.08				1275	.	33	15.9
7.	.5 1878		219	33			81.5%				1985	6.5	28	14,3
	-		259	39			82.51				1881	6.5	21	16.3
-	15 1617		322	8			82.5%				3681	6. 8	==	11.2
	20 192		374	36			84.6%				4283	1:1	139	8.8
. • •	25 248		431	59			85.5%				4782	==	142	13.8
. 4-7	30 2785	5 2829	512	11		_	86.51				2898	1.2	124	13.9
. •	48 365		619		4315		86.5%				7643	1.8	231	13.3
u 7	58 429		736				88.51				6249	 	68	18.9
-	68 681		834	125			88.5%				9393	2.3	584	19.8
	75 734		978	147			88.5%				13038	3.1	398	16.9
			1231	185			88.57				18753	4.	267	14.7
: ==	_		1466	220			88.52				25146	9.9	761	14.7
-	158 13697	_	1754	263			98.2%				23746	5.7	719	17.5
7	-		2156	323			17.16				22288	5,3	672	22.7
. ~			2556	383			93.63				22482	5.4	8/9	11.1
i ₹	300 21438	16879	2956	443	25321	6844	93.0%				24686	5.9	745	25.9
ì														

ASSUMPTIONS: CONTRACTORS DISCOUNT FACTOR = 8.65 FOR STANDARD DUTY, 8.75 FOR ENERGY EFFICIENT MOTORS ARE EXPLOSION-PROOF, 1888 RPH, 468 VOLT, 3 PHASE SAVINGS = HP * 8.746*[(1/5] NOM EFF)-(1/EE NOM EFF)] * HRS/YR * ELECOST

4168 HRS/YR 16 HRS/DAY 5 DAYS/WK =

OPERATING TIMES:

ELECTRICITY COST: AVERAGE OF ENERGY & DEHAND CHARGES \$0.0383 /KWH

GREE = 729

RAAP ENERGY EFFICIENT MOTOR PROJECTS FILENAME: RMOTRR3 Date: 8 may 90

RELIANCE LLOVD BEARING RELIANCE RE	20100 Tal 1	OC CONTRACTOR		557100	MAT'L AND	D LABOR		•	SELLENGILLES		PEPI ACI	REPLACE US REWIND CALCINATION		NULL
RELIANCE			1	245			1 1 1 1 1			111111111111111111111111111111111111111				
C59 110 C10 C10 <th>RELIAN</th> <th></th> <th></th> <th>BEARING</th> <th>RELIANCE CMEDGY-EFF</th> <th>REWIND</th> <th></th> <th>RELIANCE</th> <th>RELIANCE FYP-PD YF</th> <th>RELIANCE FYP-PP YF</th> <th>FNFRA</th> <th>PEDINCER</th> <th>Cest</th> <th>3 1011 25</th>	RELIAN			BEARING	RELIANCE CMEDGY-EFF	REWIND		RELIANCE	RELIANCE FYP-PD YF	RELIANCE FYP-PP YF	FNFRA	PEDINCER	Cest	3 1011 25
(1938) (1938)<	JA EMEKATIFEL ZE EXP-PROM		_	7 N 10 C	EXP-PROOF			NON. EFF.	MIN EFF.		SAVINGS	DEMAND	SAVINGS	PAYBACK
698 518 144 22 815 294 74.8% 77.8% 85.5% 47.1 6.1 14 724 513 112 23 855 318 75.5% 78.5% 86.5% 66.2% 618 0.1 19 76 574 113 26 994 353 75.5% 78.5% 86.5% 66.5% 618 0.1 19 765 574 113 26 994 353 75.5% 78.5% 86.5% 66.5% 618 0.1 19 1870 636 199 329 1461 529 82.5% 86.5% 86.5% 96.7%			(18861)	(\$8661)	(\$8661)	(\$8661)	į	(1)	(1)	(%)	(KWH/YR)	(KA)	(\$/YR)	(785)
724 543 152 23 855 318 75.57 78.57 94.67 85.57 68.57 68.57 68.57 68.9 9.1 21 766 570 161 24 898 329 75.57 78.57 85.57 86.57 618 6.1 19 765 574 173 26 984 353 75.57 78.57 86.57 86.57 188 6.1 19 19 6.6 6.1 19 19 6.6 86.57			141	22	815	294	74.02			. —	471		=	36.5
768 574 161 24 898 329 78.5% 86.5% 66.5% 618 0.1 19 765 574 173 26 944 353 75.5% 78.5% 86.5% 68.5% 618 0.1 19 848 6.56 190 28 1902 388 80.81 87.5% 87.5% 1790 0.3 57 1878 89 23 1273 447 81.5% 87.5% 98.2% 2674 8.5 89.3% 98.2% 98.2% 99.2% 10.1 10.9%			_	23	855	310	75.5%				682		21	26.4
765 574 173 26 984 353 75.57 78.57 87.57 89.52 1881 8.3 57 848 6.36 198 28 1882 38 18.61 82.53 87.52 87.52 88.52 1799 8.3 54 1878 889 229 33 1451 529 82.53 89.53 99.23 2674 8.5 89.53 99.23 2679 8.5 89.53 99.23 2679 8.5 89.53 99.23 2679 8.5 89.53 99.23 2679 8.5 89.53 99.23 2679 8.5 89.53 99.23 2679 8.5 89.53 99.23 2679 8.5 89.53 99.23 2679 8.5 89.53 99.24 8.5 89.53 99.44 89.53 99.24 89.53 11.1 195 89.53 99.24 99.24 66.81 11.1 196 49.53 11.2 99.24 89.53 <td< td=""><td>7</td><td></td><td></td><td>24</td><td>868</td><td>329</td><td>78.51</td><td></td><td></td><td></td><td>819</td><td></td><td>61</td><td>30.4</td></td<>	7			24	868	329	78.51				819		61	30.4
848 636 196 28 1862 388 88.00 80.00 27 81.57 81.57 88.57 1796 0.3 54 1878 889 219 33 1273 447 81.51 84.00 89.52 98.27 264 0.5 81 1237 928 229 39 1461 529 82.52 85.52 98.27 56.7 98.27 56.5 0.5 81 1507 1213 322 48 1916 658 82.52 81.00 91.72 92.41 6432 1.1 156 98.25 91.07 92.41 6432 1.1 156 98.52 91.07 92.41 6681 1.1 110 110 86.52 88.52 91.07 92.41 6681 1.1 110 110 86.52 88.52 91.07 92.41 6681 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 <td>6</td> <td></td> <td></td> <td>79</td> <td>786</td> <td>353</td> <td>75.5%</td> <td></td> <td></td> <td></td> <td>1881</td> <td>. 3</td> <td>27</td> <td>9.7</td>	6			79	78 6	353	75.5%				1881	. 3	27	9.7
1878 889 219 33 1273 447 81.53 86.51 98.53 98.21 2674 8.5 81 1237 928 259 39 1461 529 82.51 86.51 91.71 5655 6.5 89 15 89 15 89 15 89 15 89 15 89 15 89 15 89 15 89 15 89 15 89 15 89 15 89 15 89 15 89 15 89 15 89 15 89 15 15 15 89 17 91 15 16 86 23 88 17 91 17 186 86 53 91 17 189 86 53 91 17 189 86 53 91 17 91 96 96 17 91 96 96 17 91 96	S			28	1002	388	18.81				1798	. 3	š	11.3
1237 928 259 92.5X 85.5X 99.5X 99.2X 2655 0.5 98.7 99.2X 2655 0.5 99.2X		_		33	1273	447	81.57				2674	6.5	8	10.2
1617 1213 322 48 1918 658 82.53 91.00 91.71 5168 6.9 156 1920 1440 374 56 2268 764 84.00 86.53 91.71 92.47 6432 1.1 195 2468 1866 431 65 2844 882 85.51 91.71 92.47 6481 1.1 195 2765 2829 512 77 3195 1846 86.51 88.51 92.41 92.41 6681 1.1 195 2765 2829 512 77 3195 1846 86.51 88.51 92.41 92.41 92.41 195 11 92.41 187 186 1.2 186 1.2 186 1.2 186 1.2 186 1.2 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.				33	1461	529	82.51				2655	_	2	11.6
1920 1440 374 56 2268 764 84.07 86.57 91.72 92.47 6432 1.1 195 2488 1886 431 65 2844 882 85.57 87.51 91.72 92.47 6681 1.1 200 2705 2829 512 77 3195 1846 86.57 88.51 92.47 93.61 1746 1.2 216 3653 2748 618 91 4315 1246 86.57 88.51 92.47 93.67 1746 1.2 216 4297 3223 736 118 5875 1585 88.57 96.21 94.57 1746 1.5 23 6814 4511 88.5 186.5 96.2 94.12 94.57 118 554 7345 5589 97.8 147 86.7 96.2 94.12 95.4 4.5 196.2 14.6 14.6 1.5 14.6 1.5	- S			48	1918	658	82.51				2168		156	8. 8.
2488 1886 431 65 2844 882 85.5x 87.5x 91.7x 92.4x 6681 1.1 208 2705 2029 512 77 3195 1846 86.5x 88.5x 92.4x 93.0x 7146 1.2 216 3653 2748 618 91 4315 1246 86.5x 98.2x 93.0x 7146 1.2 216 4297 3223 736 110 5875 1585 88.5x 90.2x 93.0x 87.7z 1.5 25 6814 4511 834 125 7183 1785 88.5x 90.2x 94.5x 1377 1.5 25 9280 694 1231 1865 2516 88.5x 90.2x 95.8x 1383 3.1 554 1283 9023 1466 2516 188.5x 90.2x 95.8x 1383 1 57 1968 1283 9023 1468 <td>-</td> <td></td> <td></td> <td>35</td> <td>2268</td> <td>764</td> <td>84.01</td> <td></td> <td></td> <td></td> <td>6432</td> <td></td> <td>195</td> <td>1.7</td>	-			35	2268	764	84.01				6432		195	1.7
2785 2029 512 77 3195 1046 86.5X 88.5X 92.4X 93.6X 7146 1.2 216 3653 2748 618 91 4315 1246 86.5X 88.5X 93.6X 93.6X 10729 1.8 325 4297 3223 736 110 5075 1505 88.5X 96.2X 94.1X 94.5X 10729 1.8 325 6014 4511 834 125 7163 1705 88.5X 96.2X 94.1X 94.5X 13107 2.3 399 9280 6940 1231 147 8675 1999 88.5X 96.2X 94.5X 95.0X 13107 2.3 399 12030 92.3 1466 226 14209 299 88.5X 96.2X 95.0X				65	2844	882	85.57				1899		599	8.6 8.
3653 2748 618 91 4315 1246 86.5x 88.5x 93.6x 93.6x 10729 1.8 325 4297 3223 736 110 5875 1585 88.5x 90.2x 93.6x 8772 1.5 265 6914 4511 834 125 7183 1785 188.5x 90.2x 94.1x 94.5x 13187 2.3 399 6914 4511 834 125 7183 1785 88.5x 90.2x 94.1x 94.5x 13187 2.3 399 7345 5589 97.8 147 86.75 190.2x 96.2x 95.0x 1833 3.1 554 12030 1966 226 147.89 299 88.5x 90.2x 95.0x 95.0x 35.9x 4.5 77 95.0x				11	3195	1046	86.51				7146		216	9.9
4297 3223 736 110 5875 1505 88.5% 90.2% 93.0% 93.6% 8772 1.5 265 6814 4511 834 125 7103 1705 88.5% 90.2% 94.1% 94.5% 13187 2.3 399 6814 4511 834 125 7103 1999 88.5% 90.2% 94.5% 95.0% 18303 3.1 554 9280 6980 1231 185 10866 2516 88.5% 90.2% 95.0% 95.0% 4.5 797 9280 6980 1231 1466 226 14209 2998 88.5% 90.2% 95.0% 95.0% 4.5 797 1203 10273 1754 26.2% 96.2% 95.0% 95.0% 5.3 94.3 1565 10273 1667 4489 91.7% 95.0% 96.2% 31450 5.4 95.2 20342 15557 2556				16	4315	1246	86.5%				10729		325	9.5
6814 4511 834 125 7183 1785 88.5% 98.2% 94.1% 94.5% 13187 2.3 399 7345 5589 978 147 8675 1999 88.5% 96.2% 94.5% 95.8% 18383 3.1 554 7345 5589 1231 1866 2516 88.5% 96.2% 95.8% 95.4% 26327 4.5 797 12836 90.2 278 96.2 95.8% 95.8% 95.8% 96.2 3529 6.0 1868 13697 10273 1754 263 16178 3586 96.2 95.8% 96.2% 37336 5.7 1889 1651 12489 2156 323 14409 91.7% 93.8% 96.2% 31450 5.4 95.2 28342 15257 2556 383 24826 5227 93.6% 93.6% 95.2% 3454 5.9 1845 21439				911	5875	1505	88.51				8772		5 92	13.5
7345 5589 978 147 8675 1999 88.5% 90.2% 94.5% 95.8% 18393 3.1 554 9280 698 1231 185 1866 2516 88.5% 96.2% 95.8% 95.4% 26327 4.5 797 1283 90.23 1466 228 14289 2998 88.5% 90.2% 95.8% 95.8% 95.8% 95.8% 96.2% 33336 5.7 1869 1369 1678 3586 98.2% 91.7% 95.8% 96.2% 33336 5.7 1869 1651 12489 2156 323 14489 91.7% 93.8% 96.2% 31458 5.4 95. 28342 15557 2556 383 24826 5227 93.8% 95.8% 96.5% 3454 5.9 1845				125	7183	1785	88.5%				13187		399	13.5
9200 6908 1231 185 10866 2516 88.51 90.21 95.81 26.41 26.327 4.5 797 1203 9023 1466 220 14209 2998 88.51 90.21 95.81 95.81 35.92 6.0 1868 1369 10273 1754 263 16178 3586 90.21 95.81 96.21 3336 5.7 1809 1651 12488 2156 323 19667 4409 91.71 93.01 95.81 96.21 31165 5.3 943 20342 15257 2556 383 24826 5227 93.01 94.11 96.21 36.51 5.9 1845 21439 1667 443 2527 93.01 94.11 96.21 96.51 36.51 5.9 1845				147.		1999	88.5%				18393		554	13.1
12830 90.23 1466 228 14289 2998 88.51 90.21 95.41 95.81 35.82 6.0 1868 1367 10273 1754 263 16178 3586 90.21 91.71 95.81 96.21 33336 5.7 1809 1651 12488 2156 323 1967 4489 91.71 93.81 96.21 31165 5.3 943 28342 15257 2556 383 24826 5227 93.01 94.11 96.21 31458 5.4 952 2438 1643 2527 93.01 94.11 96.21 34544 5.9 1845			_	185	_	2516	88.57				26327		797	18.5
13697 10273 1754 263 16178 3586 98.2% 91.7% 95.8% 96.2% 33336 5.7 1889 1651 12488 2156 323 19667 4489 91.7% 93.8% 96.2% 31165 5.3 943 28342 15257 2556 383 24826 527 93.8% 95.8% 96.2% 31458 5.4 95 2438 2656 443 25321 6844 93.8% 94.1% 96.2% 34544 5.9 1845				220		2998	88.5%				35292		1868	19.5
16651 12488 2156 323 19667 4489 91.7% 93.8% 95.8% 96.2% 31165 5.3 943 28342 15257 2556 383 24826 527 93.8% 95.8% 96.2% 31458 5.4 95.2 21438 295.6 443 25321 6844 93.8% 94.1% 96.2% 34544 5.9 1845				263		3286	98.2%				33336		1889	12.5
28342 15257 2556 383 24826 5227 93.8% 93.6% 95.8% 96.2% 31458 5.4 952 21834 5.4 95.2%				323		4489	21.72				31165		943	16.2
214.38 16.87 2956 443 25321 6844 93.8% 94.1% 96.2% 96.5% 34544 5.9 1845		_		383		5227	93.0%				31458		927	19.8
		_	_	443		6844	93.01				34544		1845	18.4

ASSUMPTIONS: CONTRACTORS DISCOUNT FACTOR = 8.65 FOR STANDARD DUTY, 8.75 FOR EMERGY EFFICIENT

MOTORS ARE EXPLOSION-PROOF, 1840 RPM, 460 VOLT, 3 PHASE SAVINGS = HP * 0.746*[(1/S] NOM EFF)-(1/EE NOM EFF)] * HRS/YR * ELECOST

16 HRS/DAY
7 DAVG/UK

OPERATING TIMES:

7 DAYS/WK = 5848 HRS/YR

ELECTRICITY COST: AVERAGE OF ENERGY & DEMAND CHARGES \$8.8383 /KWH

RAAP ENERGY EFFICIENT NOTOR PROJECTS

FILENAME: RMOTRR3 DATE: 8 MAY 98

	LIST PRICE	CONTRACTOR	REWIND PRICES	RICES	MAT'L AND PRICES WITH	LABOR Markups		u	EFFICIENCIES		REPLACE	REPLACE VS REWIND CALCULATION	ID CALCULA	NOIL
M0108	RELIANCE R ENERGY-EFF.	RELIANCE ENERGY-EFF.	LLOYD	BEARING	RELIANCE ENERGY-EFF.	REWIND	RELIANCE STD HOTOR	RELIANCE STD NOTOR	RELIANCE EXP-PR XE	RELIANCE EXP-PR XE	ENERGY	REDUCED	1503	SIMPLE
3718	ш	EXP-PROOF	PRICE	(48001)	EXP-PROOF	(*8001)	MIN. EFF.	NOM. EFF.	MIN EFF.	NON EFF.	SAVINGS	DEMAND	SAVINGS	PAYBACK (VOC)
<u>€</u>	(\$9661)	(\$9551)	(49551)	(897.7.1)	(48551)	(13368)	(7)	(7)	(7)	(4)	(KMI/IK)	(NW)	(A) (A)	(1K3)
	969 1		Ξ		812	294	74.0%	77.01	82.5%	84.8%	584	9 .1	15	34.2
-	5 724	543	152	23	822	310	75.5%				728	. .	22	24.7
•	2 768		191	24	868	329	78.5%		_		899	<u>-</u>	58	28.4
	3 765		173	92	186	323	75.5%				2010	er ′	19	9.1
	5 846		961	28	1882	388	86.61				1913	e. 3	28	10.6
7.5	_		219	33	1273	447	81.5%				2857	6.5	98	9.6
			259	33	1461	529	82.51			•	2837	. 5	98	10.9
-	5 1617		322	48	1916	658	82.51				5522	6.8	167	7.5
2	1926		374	26	2268	764	84.8%			•	6873	-:	208	7.2
7	5 2486		431	65	2844	882	85.5%				7053	-:	213	9.5
(7)	9 2785		512	11	3195	1046	86.51				7635	1.2	231	9.3
4	365		619	16	4315	1246	86.5%				11464	1.8	347	8.8
S	4297		736	118		1585	88.5%				9373	1.5	284	12.6
Φ.			834	125	7183	1785	88.5%				14898	2.3	426	12.7
_	75 7345		978	147		1999	88.51				19557	3.1	292	11.3
			1231	185		2516	88.5%				28139	4.5	821	9.8
125		9023	1466	228	14209	2998	88.51				37709	9.9	14	8.8
15		_	1754	263		3586	98.2%				32619	5.7	1078	11.7
26			2156	323		4409	77.16				33366	6,3	1968	12.1
258	_		2556	383		5227	93.8%				33684	5.4	1017	18.5
386	21438	_	2956	£## ·		6944	93.6%				36910	5.9	1111	17.3

ASSUMPTIONS: CONTRACTORS DISCOUNT FACTOR = 8.65 FOR STANDARD DUTY, 8.75 FOR ENERGY EFFICIENT

MOTORS ARE EXPLOSION-PROOF, 1800 RPM, 460 VOLT, 3 PHASE SAVINGS = HP * 0.746*[(1/ST NON EFF)-(1/EE NON EFF)] * HRS/YR * ELECOST

24 HRS/DAY

OPERATING TIMES:

6248 HRS/YR 5 DAYS/HK =

HHX/ E0E0.0\$ ELECTRICITY COST: AVERAGE OF ENERGY & DEMAND CHARGES

GREET P. POPS

RAAP ENERGY EFFICIENT MOTOR PROJECTS FILENANE: RMOTRR3 DATE: 8 MAY 98

	LIST PRICE	CONTRACTOR	REWIND PRICES	PRICES	NAT'L AND PRICES WITH	D LABOR H MARKUPS			EFFICIENCIES		REPLACE	E VS REWIN	REPLACE VS REWIND CALCULATION	WOIL
M010R S17E (HP)	RELIANCE REMERGY-EFF. E EXP-PROOF (1990\$)	RELIANCE EXP-PROOF (1998s)	LL0YD LABOR PRICE (1998s)	BEARING PRICE (19906)	RELIANCE ENERGY-EFF. EXP-PROOF (1990\$)	REWIND (1998s)	RELIANCE STD HOTOR NIN. EFF.	RELIANCE STD MOTOR NOM. EFF.	RELIANCE EXP-PR XE NIN EFF. (X)	RELIANCE EXP-PR XE NOM EFF. (X)	ENERGY SAVINGS (KWH/YR)	REDUCED DEMAND (KW)	COST SAVINGS (\$/YR)	SINPLE PAYBACK (YRS)
	169		144	22		294	74.62				787	6	21	24.3
-	5 724	543	152	2	852	318	75.5%	78.5%	84.0%	85.5%	1822		31	17.6
	2 766		191	24		329	78.51			-	927	1 .	28	20.3
	3 76		173	26		353	75.5%			_	2822	. .3	92	6.5
	5 848		198	58		388	20.08				2685	6.3	æ	1.6
7.	5 1 .0 78		219	33		447	81.5%			•	4811	9.5	121	8.9
Ξ	123		259	39		529	82.51				3983	8.5	121	1.1
==	5 1617		322	48	1918	658	82.51			-	7752	6.0	235	5,3
7	1921		374	56		764	84.87				9648	=	292	5.2
7.	5 248		431	. 65		882	85.51				1966	-:	386	6.5
ਲ	9 278:		512	11	3195	1846	86.51				10719	1.2	324	9.9
7	8 365;		610	16	4315	1246	86.5%				16094	1.8	487	6.3
ភ	429.		736	110		1505	88.57				13159	1.5	398	9.6
5	.109 6		834	125		1785	88.5%				19788	2.3	299	9.6
75			978	147		6661	88.5%				27455	3.1	831	æ.
198			1231	185		2516	88.5%				39498	4.5	1195	7.0
12	_		1466	228		2998	88.57				52938	9.9	1602	7.8
150		7 18273	1754	263		3586	98.2%				58884	5.1	1513	8.3
2 9		_	2156	323		4489	91.71				46748	5.3	1415	10.8
25	_	_	2556	383		5227	93.6%				47174	5.4	1427	13.2
300	10 21438	8 16079	2956	E++	1 25321	6844	93.8%				51815	5.9	1568	12.3

ASSUMPTIONS: CONTRACTORS DISCOUNT FACTOR = 0.65 FOR STANDAKD DUTY, 0.75 FOR ENERGY EFFICIENT MOTORS ARE EXPLOSION-PROOF, 1800 RPM, 460 VOLT, 3 PHASE SAVINGS = HP * 0.746*[(1/ST NOM EFF)-(1/FE NOM EFF)] * NRS/YR * ELECOST 24 HRS/DAY

OPERATING TIMES: 24 HRS/DAY
7 DAYS/WK = 8768 HRS/YR
ELECTRICITY COST: AVERAGE OF ENERGY & DEHAND CHARGES \$0.0303 /KWH

在では、中でから

	SUBJECT		AEP NO	
REYNOLDS, SMITH AND HILLS			SHEETOF	
RCHITECTS . ENGINEERS . PLANNERS	DESIGNER	PEH	DATE 5/31/90	
INCORPORATED	CHECKER		DATE:	

Eco # GP-B-4

Install variable frequency trives in main plant water supply pumps

1. Calculate current energy use

Current proctice is to operate 1-600 hp turbine pump plus 1-100 hp deep well and 1-400 hp booster pump in combination. The aurent average flow rate is 24 million gal/da. Average usage is about 12 million gal/da. Turbine pump:

= 2300. 127. \(\frac{3}{5}\) 1000 = 506 kW

Deep well pump:

kw = 2300.23. 13/1000 = 92 kw

Booster pump

kWB = 2200-130. \3/1000 = 495 kW

Total kW = 506+92+495 = 1093 kW

Average annual usage = 1093.3760 = 9.574,680 kWh Average annual cost = 9,574,680 x 0.03 = \$287,240 Cinnual usage (MBtn) = 9,574,680 x 3413 = 32,678 M15th

	SUBJECT	AEP NO
S		SHEETOF
S	DESIGNER	DATE

REYNOLDS, SMITH AND HILLS RCHITECTS . ENGINEERS . PLANNER

2. Calculate every savings

Calculate septem head for following current

ehp= 1093 kW

 $n_{\mu} = 0.70$ $n_{m} = 0.95$ Q = 24,000,000 gal/da = 16,667 gpm

ehp = bhp/nm

kw = 0.75 * ehp

bhp = whp/np

ehp = kw/0.75

ehp = whp/nm/np

whp = H·Q

 $ehp = \frac{H \cdot Q}{3960 \cdot \eta_P \cdot \eta_m} = \frac{kW}{0.75}$

kw. 3960. np.nm

1093 . 3960 . 0,70 . 0,95

230 feet

Assume static heat is about 150 feet.

Water Plant System Jurue

Eximple = current use - rurrent $\pm \frac{\text{new hoad}}{\text{old hoad}}$ = current use $\left(1 - \frac{\text{Hn}}{\text{Ho}}\right)$ = $32,678 \text{ MBHn} \left(1 - \frac{153}{230}\right) = \frac{10,940 \text{ mBHn}}{2300} \left(\text{electricity}\right)$

Telephone Gall Confirmation

Project No. <u>290 - 0379 - 000</u> (904) 281 - 0394

reynolds, smith and hills

cal	_ L.D	Placed_	Recd	Date _5/29/9
P. Hutch	uis_	Conve	rsed with	KIHLE T
Westinglie	ouse tla	<u>le. Comp.</u> Re	egarding <u>Yaviable</u>	Date 5/29/9 Riffle Frequency Driver
MR ac	Ne bu	daet estimat	n for variable	speed drives
		8	<u> </u>	
		\$ 2000	materials \$ 60,000	
600	hp	\$ 2000		
450	hp	\$ 2000	\$ 40,000	
(00	hp	\$ 2000	\$ 12,000	
			·	
stribution:				

CONSTRUCTION COST ESTIMATE				DATE PREPARED		SHEET	OF	
ENERGY ENGINEERING	ANALYS	IS			BASIS FOR ESTIMATE			
RADFORD ARMY AMMUN		CODE A (No design completed): CODE 8 (Preliminary design):						
ARCHITECT ENGINEER. REYNOLDS, SMITH AND HILLS A.E.P., INC.								
DRAWING NO.		ESTIM.	ATOR			CHECKED BY		
ECO#GP-B-	QUANT	170		Hutch ins		MATERIAL		
VARIABLE SPEED SUMMARY DRIVES	NO. UNITS	UNIT MEAS.	PER	TOTAL	PER	TOTAL	TOTAL COST:	
1-600 hp VSD	1	ea		2000		60,000	62,000	
1-400 hp VSD		ea		2 000		40,000	42,000	
1-100 hp VSD	. (ea		2000		12,000	14,000	
Subtotal			-	6000		112,000	118,000	
Solos Tay (4,5%)						5040	5040	
FICA/Ins. (20%)				1200			1200	
Subtotal.				7200		117,040	124,240	
Overhead (15%)		·					18,636	
Profit (10%)							14,288	
cond (1%)							1572	
Horales Support (60%)							9524	
(ontingency (10%)							16826	
. 5							4	
Construction (ost							1185,086	
						=		
				_			·	
							·	
Vendor quete	Nest u	rah	our					
)								

ECO # GP-D-1 INERT GAS SYSTEM Replacement

SAVINGS FROM CARTURING HEAT & GENERATING STEAM

(40 ports)

PERMEA ESTIMATES 1800 L85, STEAM/ARFrom 60,000 CFH

UNIT. Steam Davings are:

1800 L85/HR X 1175.9 BTU/B X 8760 = 18542 Mbtu/yr.

Coal Davings: 18,542 Mbtus x 1.32 Mbtus = 24,475 MR+tu/yr

24,475 Mbtus x 1.61 Mmbtus = \$39,405/yr

Electrical Product Para Otto:

Electricity Purchase Penalty: 18,542 * 0.111 * 6.87 = \$ 18,256/yr.

Reduced Power House O'Em:

18,542 motus x 1.01/motus = \$18,727/xv

Non Ruergy Savings = \$18,727-18,256 = \$471/yr

CONSTRUCTION COST ESTIMATE DATE PREPARED 2 3 -9							SHEET	/ OF
ENERGY ENGINEERING ANALYSIS						BASIS FOR ESTIMATE CODE A (No design completed) CODE B (Preliminary design) CODE C (Final design)		
RADFORD ARMY AMMUNITION PLANT								
ARCHITECT ENGINEER REYNOLDS, SMITH AND	HILLS	A.E.	.P., II	NC.	ľ	HER (Spi	city)	
DRAWING NO.		1	ATOR FALL	onl		CHECKE	AQ.	
	QUANT			LABOR	,	MATERIA	L	
SUMMARY	NO. ÚNITS	UNIT MEAS.	L	TOTAL	PER	701	PAL .	COST
INERT GAS GEN. BOILER		ea s	2400	2400	177,000	17	7,000	189,000
TAX 4.5%	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					,	7,965	7,965
FICA /INSURANCE 20%				600				600
		,						188,565
SUB FOTAL								<u>'</u>
OVERHEAD 15%								28,284
SUB TOTAL								216,850
PROFIT 10%								21,685
SUB TOTAL								23 <i>8,535</i>
BOND 1%								2.385
l								240920
SUB TOTAL CONTINGENCY 7.58	·							18,069
SUB YOTAL								258,989
Hercules 6.0%							•	. ,
SUBTOTAL.								15,539 274,528
	="							.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
				· .				
							•	
								

Count on KEMP for

COGENERATION

Kemp ERG—the energy recovery generator for plant processes requiring inert gas and steam or nitrogen and steam.

This ERG qualifies for a 10% tax credit if applied to P.L. #96-223 for waste heat recovery.

For Inert/Nitrogen Generation

The Kemp ERG System will produce inert or nitrogen gas. It is the result of Kemp's unique handcrafted nozzle mix burner system that promotes the complete reaction of air and fuel.

For Steam Generation

The Kemp ERG offers "two for one" use of your fuel! The boiler is sized with your inert gas requirements

in mind but has an efficiency rating of over 80%. The residual steam is rated at 150 PSIG or can be provided in other pressures on request. Such high efficiency provides great advantages over conventional systems:

- Accelerated payback—half the normal capital equipment time span.
- Lower water requirements—75% less than a standard generator.
- Percentage tax depreciation and waste heat credit.

PH Series Inert Gas Generators

- Low Cost Inert Gas
- High Purity
- Simplified Installation
- Indirect Cooling

HunTer

Telephone Call Confirmation

			•	10-03/9	
Local	L.D _	Placed _	Rec'd	<u>22 - ک</u> Date	-90
		Converse	d With DALE	JAUKS	
Of PER (7/3)	MEA ZNC.	Rega	arding /NERT 6	95 GEN.	
NEU					
60,0	DOO ACFH I	66 WILL	PRODUCE	1800 LRS ST	EAM H
		\$177,000	DELIVERED	Made and the second	
20,	000 ACFH A	100,000	INSTALLED	DELIVERED	
P-070-77-70-71-10-10-10-10-10-10-10-10-10-10-10-10-10	FLOW &	: 600 ppH.			
				·	
- 5174 Set		· · · · · · · · · · · · · · · · · · ·			
			·		
istribution:					

HUNTER Form 102

DESIGNER G, FALL CHECKER	ON DATE 10-19-90 DATE
GP-D-2 REDUCE STACK TE	MPERATURE
REFER TO CHX DATA A	ITTACHED. (MEDIUM ORSE)
TOTAL ENERGY RECOVERE	O (SAVED)
26.8 MBTL/HR x 8030	> H/yr = 215,204 MBTU/yr
TOTAL COAL COST SAYED	· · · · · · · · · · · · · · · · · · ·
215,204 MBTU/grx #1.61/n	18+4 = \$346,478 /yr.
ADDITIONAL FLECTRIC DE	

34 HP X.746 × 8030 = 203673 Kwh 203673 KWN x #0.03026/KWN = 6163

NET SAVINGS

\$ 346,478/yr-\$6163/yr = \$340315/yr =>\$349000

COMPANY
LOCATION
HRS PROPOSAL NO.
REPRESENTATIVE
PROPOSAL STATUS
PPOPOSAL DATE
APPLICATION
BOILER NAMEPLATE RATING

HERCULES - RAAP
RADFORD, VA
820-02
JCJ
PRELIMINARY
AUGUST 20, 1990
HEAT BUILER MAKEUP WATER
510,000 LBS/HOUR

CASE 1 OF 5

HRS SYSTEM MODEL # 3-416-160 DW 7

DESIGN PARAMETERS

AVERAGE STEAMLOAD FOR CASE	225,000	LBS/HOUR
AVAILABLE FLUE GAS MASS	331,239	LBS/HOUR
BOILER FEEDWATER TEMPERATURE	268.0	DEGREES F.
STEAM PRESSURE (750 DEG. F)	400	PSIG
EXCESS COMBUSTION AIR	30.00	PERCENT
FLUE GAS TEMP & SOURCE	350.0	DEGREES F.
MAXIMUM WATERFLOW AVAILABLE TO HX	718	GAL/MIN
FLUE GAS WATER VAPOR DEWPOINT	102.6	DEGREES F.
FLUE GAS DENSITY	0.0523	LBS/CU.FT.
SPECIFIC HEAT OF FLUE GAS	0.2504	BTU/LB DEG. F.
HOURS OF OPERATION FOR CASE	~~~Z0\$	HOURS/YEAR
FUEL FIRED		COAL!
FUEL COST	\$1.60	DOLLARS/MM BTU
EXISTING FUEL TO STEAM EFFICIENCY	85.74	PERCENT
EXISTING THERMAL EFFICIENCY	87.32	PERCENT

HEAT EXCHANGER PERFORMANCE

FLUE GAS MASS FLOW @ HX INLET	331,239 LBS/HOUR
FLUE GAS FLOW & INLET TO HX	105,472 ACFM
FLUE GAS INLET TEMP	350.0 DEGREES F.
FLUE GAS OUTLET TEMPERATURE	102.3 DEGREES F.
WATERFLOW THROUGH HX	405.0 GAL/MIN
WATER INLET TEMPERATURE	55.0 DEGREES F.
WATER OUTLET TEMPERATURE	187.6 DEGREES F.
SENSIBLE HEAT RECOVERED	20,545,662 BTUS/HOUR
LATENT HEAT RECOVERED	6.251.306 BTUS/HOUR
TOTAL HEAT RECOVERY	THE PROPERTY OF THE PARTY OF TH
SAVINGS FOR THIS CASE	A STATE OF THE PARTY OF THE PAR

ENGINEERING DATA

NEW BOILER FUEL TO STEAM EFFICIENCY
NEW THERMAL EFFICIENCY
EFFICIENCY INCREASE
FUEL SAVINGS
WATERSIDE PRESSURE DROP
THEORETICAL FAN POWER
HEAT EXCHANGER FLUE GAS PRESSURE DROP
PLENUM, DUCT AND BREECHING LOSS
CONDENSATE FLOW RATE

94.60	PERCENT
All of the same of	
10.33	PERCENT
2.97	PSIG.
0.25	IN. W.C.
12.2	GAL/MIN

COA	AL ANALY	SIS USE	D FOR	THIS CA	SE		
%C	%H2	*N2	%02	% S	%H20	%ASH	HHV
				2.30			

Condensing Heat Exchanger Corp.

Route 7, Drawer H • Warnerville, N.Y. 12187 • (518) 234-2541

August 20, 1990

Mr. Steven L. DeBusk Industrial Engineer Hercules - RAAP P.O. Box 1 Radford, VA 24141

Dear Steve,

The enclosed performance printouts are divided into 3 groups; low, medium and high, to represent possible production requirements, with 5 cases in each group to represent firing levels at different times of the year or times of the day. Because the CHX Condensing Economizer is normally installed as a slip stream device and therefore can be sized for the heat duty rather than the nameplate capacity of the boilers, the heat exchanger size for the "low" scenario is smaller than the model we originally discussed and the size for "medium and high" is larger than the original.

The preliminary size choice for the "low" condition is a CHX Model 2-416-120 DW7 which would generate net energy savings of about \$306,000 per year. The current budget equipment cost estimate for this size is \$725,000. The "medium and high" condition would require a CHX Model 3-416-160 DW7. The current budget equipment cost estimate for this size is \$1,250,000. The "medium" condition would generate net energy savings of \$531,000. The "high" condition net savings would be \$596,000.

If particulate emission reduction is a major factor in the evaluation of this energy recovery project, the equipment configuration and subsiquent performance can be optimized to generate more condensate flow which will improve removal efficiency. This would probably increase the pay-back period. Another method to enhance removal efficiency is to spray additional water into the heat exchanger. This would reduce energy recovery slightly.

I will call you next week to further discuss this possible energy recovery/particulate removal project.

Very tryly yours,

(=15) 798- 9637

John C. Joseph

Dir Applications Engineering

CONSTRUCTION COST ESTIMATE				DATE PREPARED			SHEET	OF
PROJECT FNEDGY ENGINEEDING	ANAL VS	15			BASIS FO	OR ESTIMA	ATE	
ENERGY ENGINEERING ANALYSIS						_	_	n completed) decian)
RADFORD AMP, RADFORD, VA.					CODE & (Proliminary design)			
REYNOLDS, SMITH AN	D HILLS		.P., I		l u°	CHECKE		
The state of the s				GWF	,	CHECKE	P	1
CONDENSING SUMMARY HEAT EXCHANGER	QUANT	UNIT	PER	LABOR	PER	MATERIAL	,	TOTAL
HEAT EXCHANGER	UNITS	MEAS.	1	TOTAL	UNIT	TOT	AL	COST
				726		72-	00-	4
HEAT EXCHINGER	1			725,000		125,	008	1, 450,000
							V	
THIS AMOUNT	INCL	ubi	£ S.	the mar	K-UP	s	<u></u>	
SINCE IT IS	1							
FURTHER		r	i	uis incl		D.		
		·					·	
								,
						<u></u>		<u> </u>
						.•		
								,
						······································		
						·		
-		1						

EVNOLDS SMITH AND HILLS	GNER TOOLS		1 0F 10
_	NDESCENTS WITH N-PROOF FIXTURE		PEW-INS FOR
Calculations were mad	le on a per-u	uit basis for i	nstalling
35 W HPS "units"	within the exist	ing explosion-joo	<u> </u>
incandescent fixtures.	these units course	st of a HPS lam	b and
a ballast with a mediu	m tase adapter	, which screws in	into the
incandescent socket. H	Le per-unt colons	iations are on pas	je Z.
From the building survey	y data, a list i	was compiled of the	
buildings with bolential Only areas with lighting It is assumed that 90	incardescent light of the interior	to Idag 50% of the	page 3). were considered, exterior
fixtures can be retrotitled	L in the manner	discribed above.	for this ECO.
Total fixtures =	0.9(1536) + 0.	5(717) = 1741)
Total fixtures = Energy savings = 674 km Energy cost savings = \$ yr-f	6/yr x 0,003413 M 20.39 x 1740 fixth	Bh// 2 wh × 1740 tixtum ures = $\frac{4}{35}$, 47	9/yr
labor 1 moth cost savings	= \$ 17.44 x 170	40 = \$39,346	lyr
Total cost surings = \$	35479 f \$3634	6 = \$65,825/y	
Project cost = \$80.4 fixety (Construction cost =	6 , 1740 fixture	25 = \$140,000	er er ser i de i de er
(Construction cost =	= \$149,000 /1.11	$5 = \{125, 561\}$	

Simple payback = \$140,000 = 2.1 yr

EYNOLDS, SMITH AND HILLS RCHITECTS • ENGINEERS • PLANNERS INCORPORATED	SUBJECT RAAP Lighting Project Screening Calcs. DESIGNER Todd CHECKER	## AEP NO 790 0349 000 SHEET 2 OF 10 DATE DATE
GP-N-1 Replace intle screw-in retro	et 150-200W incardescent fits for explosion-proof app	3 with 35 W HPS plications *
	(150 W- 42 W) x 24 hr x day	
	= 674 kwh \$ 10.03026 =	
	rings = { Includ, Cost - HPS (750 hm 16000	
750 ×	6240hr = \$17.44 417.44	6 matl + \$6.45 labor × 0,683×1.2) 16,000 hr
104a1 1051 Savings -	\$ 20.39 + 37.83 gr gr gr for fixture or lamp	(1990 Huder into.)
Labor cost = ± 1.20	× 1.20 × 1.20 exp-proof × 0.68	2 = \$1.18 Lacing exp-proof incand, +20%
Project Cost=[Simple payback	$(1.045 \times $45) + (1.2 \times $60.46) = 2.1$	yr < 10 yr
Note: HPS lamps a	re replaceable in the network	e stra all lightures.

RSH	•
	١

SUBJECT	AEP NO		
	SHEET	OF	
DESIGNER	DATE		
CHECKER	DATE		

QRIP Celeis

Current energy use for 1740 lamps: 150 W * 24 * 260 * 0.03026 * 1740 = #49,280/yr

Current matil ? labor costs:

· 2.11 +1.2 x 0.68x12x 6240 x 1740 = # 44, 781/yr

Current labor costs

1.2 × 0.68 × 6240 × 1740 = # 11,813/y-

New energy use

42W x 24 x 260 x 0,03026 x 1740 = # 13,799/Jr

New matil & labor costs :

16+6.45 x 0.68 x 1.2 x 6240 x 1740 = #14,429/yr

New labor costs

6.45 × 0.68 × 1.2 × 6240 × 1740 = #3572/yr

Radford Army Ammunition Plant List of Buildings with Incandescent Lighting

Bldg No	Name/Process	Location	Similar	Fixtures/Bldg.	Total Fixtures
1000 -00	Cotton Linter Warehouse	NC, A&B-Line		17	17
1606 -00	Open Tank Air Dry	Sol. Recovery, A-Line	10	20	200
1611 -00	Solvent Recovery House	Sol. Recovery, B-Line	27	- 12	324
3513 -00	C-1 Press & Cutting House	Green. C-Line	3	20	60
4912 -27	SG Curing Hse Carpet Rolls	Cast Prop. (Rocket)	10	5	50
	Machine and Saw House		1	6	6
7106 -04	Dry House #4 (Cure Grain)	1st R P	7.	8	. 56
	Blender House		1	4	4
TOTAL FOR	EXTERIOR FIXTURES				717
420 -02	Acid Waste Disposal (C-Line)		1	. <u></u> 8	8
	Boiling Tub House		3	50	150
2022 -00	Beater House	NC, B-Line	3	40	120
2024 -00	Poacher & Blending House	NC, B-Line	3	30	90
3513 -00	C-1 Press & Cutting House	Green, C-Line	3	50	150
4912 -40	Forced Air Dry House	Pilot B	21	10	210
4912 -11	LG Mold Loading House	Cast Prop. (Rocket)	2	6	12
4912 -03	MK 43 Sawing and Inhibiting	Cast Prop. (Rocket)		4	4
4915 -00	Small Grain Mold Assembly	Cast Prop. (Rocket)		7	7
4921 -00	Inspect/Clean NG Tanks *	Cast Prop. (Rocket)	1	21	21
	TOW Launch Saw House		1	8	8
5008 -01	15 Inch Press House	Pilot A	3	2	6
6304 -00	Paste Blending House	1st R P	1	20	20
7113 -00	Roll House (Rolled Powder)	1st R P (F-Line)	1	130	130
9310 -02	Roll House (Rolled Powder) Rolled Powder Building	4th Rolled Powder	2	300	600
TOTAL FOR	INTERIOR FIXTURES				1536

CONSTRUCTION COST	ESTIMAT	ΓE		DATE PREPARED 6-9			4 of 10
ROJECT ENERGY ENGINEERING	ANALYS	IS			1	R ESTIMATE	
RADFORD ARMY AMMUN	ITION F	LANT				CODE A (No deergr	(e eign)
ARCHITECT ENGINEER REYNOLDS, SMITH AND	HILLS	A.E.	P., II	NC.	1	CODE C (Final dea THER (Specity)	(ap)
DRAWING NO. GP-N-1		ESTIM			1.	CHECKED BY	
	QUANT	TY	7. 10	LABOR	T	MATERIAL	
Incaud to 35 WHESUMMARY	NO. UNITS	UNIT MEAS.	PER	TOTAL	PER	TOTAL	TOTAL COST
Replace incardescent	1740	fivt.	1.18	2053	45.00	78300	80 353
lamps with 35 W HFS							
screw-in tetrofits							
Sales Tax	4.5%					3524	3524
FICA/ Insurance	20,0%	,		411			411.
Subtotal	PUJUIL			2464		81824	84288
Overhead	15.0%					2,01	12643
Profit	10.0%						9693
Performance Bond	1.0%						1066
	60%						6461
Heraites Support Contingency	10.0%						11415
Construction Cost	10.0/8						125566
LOUSIVOCION COST	•						
1, 40 g 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1							
	· · · · · · · · · · · · · · · · · · ·						
							
			-				·

GPN-1 p. 5 of 10

ECP ENERGY CONSERVATION PRODUCTS, 511 CANAL STREET, NYC, NY, 10013-TEL (212)-925-5991

POWER CONSUMPTION AND LUMEN CUTPUT DATA

* WATTS LINE WATTS LUMEN CUTPUT PER WATT RATED LIFE ******** MERCURY VAFOR (DELUXE WHITE) * 1000 1075 63000 59 24000 * 400 450 23000 56 24000	
* WATTS LINE WATTS LUMEN CUTPUT PER WATT RATED LIFE ******** MERCURY VAPOR (DELUXE WHITE) * 1000 1075 63000 59 24000	*
* 1000 1075 63000 59 24000	*
* 1000 1075 63000 59 24000	*
2000	*
~ 400 410 2000 50 E1000	*
* 250 290 13000 42 24000	*
* 175 205 8500 49 24000	*
* 100 120 4500 42 24000	
* 75 93 3150 37 16000	*
* 50 61 1680 31 16000	×
****** METAL HALIDE	*
* 1500 1600 155000 103 3000	*
* 1000 1100 11000 100 12000 1	*
* 400 460 34000 85 15000	*
* 175 210 14000 85 7500	*
******* HIGH PRESSURE SODIUM	*
* 1000 1080 140000 130 24000	*
* 400 480 50000 104 24000	*
* 250 310 27500 89 24000	*
* 150 200 16000 80 24000	*
* 100 135 9500 70 24000	
* 70 85 5800 68 24000 * 50 70 4000 57 24000	*
	*
* 35 42 2850 67 18000	IZ22244
********FLUORESCENT	*
STRAIGHT 40 48 3150 66 20000+	*
CIRCLINE 32 37 1830 50 12000+	*
CIRCLINE 22 25 1050 42 12000+	*
CIRCLINE 20 23 850 37 12000+	
	*
TWIN TUBE 13 16 900 56 10000+	
TWIN TUBE 13 16 900 56 10000+ TWIN TUBE 9 12 600 50 10000+	*
TWIN TUBE 13 16 900 56 10000+ TWIN TUBE 9 12 600 50 10000+ STRAIGHT 8 11 400 36 7500+	*
TWIN TUBE 13 16 900 56 10000+ TWIN TUBE 9 12 600 50 10000+ STRAIGHT 8 11 400 36 7500+ TWIN TUBE 7 10 400 40 10000+	* *
TWIN TUBE 13 16 900 56 10000+ TWIN TUBE 9 12 600 50 10000+ STRAIGHT 8 11 400 36 7500+ TWIN TUBE 7 10 400 40 10000+ STRAIGHT 6 9 300 33 7500+	# # #
TWIN TUBE 13 16 900 56 10000+ TWIN TUBE 9 12 600 50 10000+ STRAIGHT 8 11 400 36 7500+ TWIN TUBE 7 10 400 40 10000+ STRAIGHT 6 9 300 33 7500+ TWIN TUBE 5 8 250 31 10000+	* * * * ** ** ** *
TWIN TUBE 13 16 900 56 10000+ TWIN TUBE 9 12 600 50 10000+ STRAIGHT 8 11 400 36 7500+ TWIN TUBE 7 10 400 40 10000+ STRAIGHT 6 9 300 33 7500+ TWIN TUBE 5 8 250 31 10000+ *********************************	* * * * * * * * * * * * * * * * * *
TWIN TUBE 13 16 900 56 10000+ TWIN TUBE 9 12 600 50 10000+ STRAIGHT 8 11 400 36 7500+ TWIN TUBE 7 10 400 40 10000+ STRAIGHT 6 9 300 33 7500+ TWIN TUBE 5 8 250 31 10000+ ********************************	* * * * * * * * * * * * * * *
TWIN TUBE 13 16 900 56 10000+ TWIN TUBE 9 12 600 50 10000+ STRAIGHT 8 11 400 36 7500+ TWIN TUBE 7 10 400 40 10000+ STRAIGHT 6 9 300 33 7500+ TWIN TUBE 5 8 250 31 10000+ ********************************	* * * * * * * * * * * *
TWIN TUBE 13 16 900 56 10000+ TWIN TUBE 9 12 600 50 10000+ STRAIGHT 8 11 400 36 7500+ TWIN TUBE 7 10 400 40 10000+ STRAIGHT 6 9 300 33 7500+ TWIN TUBE 5 8 250 31 10000+ ********************************	* * * * * * * * * * * * * * * * * *
TWIN TUBE 13 16 900 56 10000+ TWIN TUBE 9 12 600 50 10000+ STRAIGHT 8 11 400 36 7500+ TWIN TUBE 7 10 400 40 10000+ STRAIGHT 6 9 300 33 7500+ TWIN TUBE 5 8 250 31 10000+ ********************************	* * * * * * * * * * * * * * * * * *
TWIN TUBE 13 16 900 56 10000+ TWIN TUBE 9 12 600 50 10000+ STRAIGHT 8 11 400 36 7500+ TWIN TUBE 7 10 400 40 10000+ STRAIGHT 6 9 300 33 7500+ TWIN TUBE 5 8 250 31 10000+ ********************************	* * * * * * * * * * * * * * * * *
TWIN TUBE 13 16 900 56 10000+ TWIN TUBE 9 12 600 50 10000+ STRAIGHT 8 11 400 36 7500+ TWIN TUBE 7 10 400 40 10000+ STRAIGHT 6 9 300 33 7500+ TWIN TUBE 5 8 250 31 10000+ ********************************	* * * * * * * * * * * * * * * * * * *
TWIN TUBE 13 16 900 56 10000+ TWIN TUBE 9 12 600 50 10000+ STRAIGHT 8 11 400 36 7500+ TWIN TUBE 7 10 400 40 10000+ STRAIGHT 6 9 300 33 7500+ TWIN TUBE 5 8 250 31 10000+ ********************************	* * * * * * * * * * * * * * * * * * * *
TWIN TUBE 13 16 900 56 10000+ TWIN TUBE 9 12 600 50 10000+ STRAIGHT 8 11 400 36 7500+ TWIN TUBE 7 10 400 40 10000+ STRAIGHT 6 9 300 33 7500+ TWIN TUBE 5 8 250 31 10000+ ********************************	* * * * * * * * * * * * * * * * * * *
TWIN TUBE 13 16 900 56 10000+ TWIN TUBE 9 12 600 50 10000+ STRAIGHT 8 11 400 36 7500+ TWIN TUBE 7 10 400 40 10000+ STRAIGHT 6 9 300 33 7500+ TWIN TUBE 5 8 250 31 10000+ ********************************	* * * * * * * * * * * * * * * * * * * *
TWIN TUBE 13 16 900 56 10000+ TWIN TUBE 9 12 600 50 10000+ STRAIGHT 8 11 400 36 7500+ TWIN TUBE 7 10 400 40 10000+ STRAIGHT 6 9 300 33 7500+ TWIN TUBE 5 8 250 31 10000+ ********************************	* * * * * * * * * * * * * * * * * * * *

LAMP	WATTAGE	APPX LUMENS	AVERAGE LIFE HRS.	STANDARD CASE CITY
RAPID START FLL	JORESCE	NT U LAMI	PS	
FB40/U6/CW/EW	34 40	2,600 2,950	12,000 12,000	12 12

F72T12/CW	55	4,550	12,000	12
F96T12/CW/EW	60	5,600	15,000	15
F96T12/CW	75	6,200	12,000	15

HIGH & VERY HIGH OUTPUT FLUORESCENT LAMPS

F96T12/CW/H0/EW	95	8,300	12,000	15
F96T12/CW/H0	110	9.200	12,000	15
	185	14.000	12,000	15
		15.500	12.000	15
F96T12/CW/VH0/EW F96T12/CW/VH0	185 215	14,000 15,500		

METAL HALIDE UNIVERSAL BURN MEDIUM BASE LAMPS

MH35/U	35	2,300	5,000	12
MH50/U	50	3,400	5,000	12
MH70/U	70	5,500	5,000	12
MH100/U	100	7,200	7,500	12
MH150/U		12,000	10,000	12

METAL HALIDE UNIVERSAL BURN MOGAL BASE LAMPS

MH175/U	175	14,000	10,000	12
MH175/C/U	175	14,000	10,000	12
MH250/U	250	20.500	10,000	12
MH250/C/U	250	20,500	10,000	.12
MH400/U	400	36.000	20,000	6
MH400/C/U	400	36.000	20.000	6
MH1000/U	1000	110.000	12.000	6
MH1000/C/U	1000	105.000	12.000	6

COMPACT DOUBLE ENDED HQI METAL HALIDE LAMPS

HQI 70	70	5.000	10.000	12	Į
HQI 150	150	11,000	10,000	12	-
HQI 250	250	19,000	10,000	12	ĺ
HQI 400	400	25.000	10.000	12	1

HIGH PRESSURE	SODIUM	MEDIUM 8	ASE LAMPS
LU35/MED	35	2.250	16.000

LU35/MED	35	2.250	16.000	12	
LU35/D/MED	35	2,150	16.000	12	
LU50/MED	50	4,000	24,000	12	-
LU50/D/MED	50	3.800	24,000	12	1
LU70/MED	70	6,300	24,000	12	
LU70/D/MED	70	5,985	24,000	12	
LU100/MED	100	9,500	24.000	12	
LU100/D/MED	100	8,800	24,000	12	-
LU150/MED	150	16,000	24.000	12	
LU150/D/MED	150	15,000	24,000	12	
					_

COLOR IMPROVED HIGH PRESSURE SODIUM LAMP

NHT50SDX	50	2,500	12.000 12	12

HIGH PRESSURE SODIUM ED-231/2 MOGUL BASE LAMPS

114111111111111111111111111111111111111				,
LU50	50	4,000	24,000	12
LU50/D	50	3,800	24.000	12
LU70	70	6.300	24.000	12
LU70/D	70	5.985	24,000	12
LU100	100	9.500	24.000	12
LU100/D	100	8.800	24.000	12
LU150/55	150	16.000	24.000	12
LU150/55/D	150	15.000	24,000	12

LAMP

STANDARD CASE CITY. APPX LUMENS AVERAGE LIFE HRS. HIGH PRESSURE SODIUM E-18 MOGUL BASE LAMPS

WATTAGE

LU200	200	22,000	24.000	12
LU250	250	29,000	24,000	12
LU250/D	250	26.000	24,000	12
LU310	310	37,000	24.000	12
LU400	400	50,000	24.000	12

LOW PRESSURE SODIUM LAMPS

PO II I III DOG					_
SOX10	10	1,000	9,000	20	١
SOX18	18	1.800	14,000	20	
S0X35	35	4.800	18.000	12	i
S0X55	55	8.000	18.000	9	
· · · ·	90	13.500	18.000	9	
S0X90	135	22.500	18.000	9	i
S0X135		33.000	18.000	9	
S0X180	180	33,000	10,000		_

MR16 I OW VOLTAGE 12V TUNGSTEN HALDGEN LAMPS

MU IO MM AOI	NAME IS A 14	311001 511 11		
ESX (N)	20	3,300	2,000	20
BAB (W)	20	460	2.000	20
EYR (N)	42	7,300	2,000	20
EYS (M)	42	2,500	2,000	20
EYP (W)	42	1,200	2,000	20
EXT (N)	50	9,150	3.000	20
EXZ (M)	50	3.000	3,000	20
EXN (W)	50	1,500	3,000	20
EYF (N)	75	11,500	3,500	20
EYJ (M)	75	4,500	3,500	20
EYC (W)	75	2.000	3,500	20

MR16 LINE VOLTAGE 120V MEDIUM BASE TUNGSTEN HALDGEN LAMPS

I UNGOLEN HALL	GEN CVIII	ГJ		
M/JDR75W/N	75	6,300	2,000	12
M/JDR75W/M	75	3,500	2.000	12
M/JDR75W/W	75	2,100	2.000	12
M/JDR100/N	100	8.500	2,000	12
M/JDR100/M	100	4.500	2,000	12
M/ IDR100/W	100	3,000	2.000	12

MR16 LINE VOLTAGE 120V INTERMEDIATE BASE

2000	1
I/JDR75W/N 75 6.300 2.000 I/JDR75W/M 75 3.500 2.000 I/JDR75W/W 75 2.100 2.000 I/JDR100/N 100 8.500 2.000 I/JDR100/M 100 4.500 2.000 I/JDR100/W 100 3.000 2.000	12 12 12 12 12 12

TUNGSTEN HALOGEN LINE VOLTAGE MEDIUM BASE TUBULAR LAMPS

I OBOLAN LAM	- 0			
64484/CL	75	1,200	2.000	15
64484/FR	75	1,140	2.000	15
64486/CL	100	1,600	2.000	15
64486/FR	100	1.520	2.000	15
64488/CL	150	2.760	2.000	15
64488/FR	150	2.622	2.000	15

TUNGSTEN HALOGEN LINE VOLTAGE DOUBLE ENDED LAMPS

DOODLE ENDED	CAIRLO			
Q100T3/CL	100	1.600	200	12
Q150T3/CL	150	2.800	200	12
Q200T3/CL	200	3,600	200	12
Q300T3/CL	300	6,000	200	12
Q500T3/CL	500	11.000	200	12
0150003/01	1500	33.000	200	12

BROOKLYN, NEW YORK

TEL. (800) 552-3465

(718) 851-4577

FAX (718) 853-2390

1	66	Lighting											A Spirit
			Г		DAILY	MAN-			BARE	COSTS		TOTAL	7
	1 6	6 100 Lighting	CR	REW	OUTPUT	HOURS	UNIT	MAT.	LABOR	EQUIP.	TOTAL	INCL OAP	
140	1600	90 watt	1	Elec	.30	26.670	Ç	5,140	645		5,785	6,600	140
	1650	135 watt			.20	40		6,905	970		7,875	9,025	j '
1	1700	180 watt	Π		.20	40		7,308	970		8,278	9,475	
- 1	1750	Quartz line, clear, 500 watt	1		1.10	7.270		1,872	175		2,047	2,325	
	1760	1500 watt	П		.20	40		3,427	970		4,397	5,200	l
	1800	Incandescent, interior, A21, 100 watt	L	<u> </u>	1.60	5		173	120		293	370	j
- 1	1900	A21, 150 watt	Π	Г	1.60	5		(211)	120		331	410	
	2000	A23, 200 watt	1		1.60	5		227	120		347	430]
1	2200	PS 30, 300 watt	П		1.60	5		330	120		450	540	ł
- 1	2210	PS 35, 500 watt			1.60	5		576	120		696	810]
ı	2230	PS 52, 1000 watt	Π		1.30	6.150		1,525	150		1,675	1,900	į
	2240	PS 52, 1500 watt	l		1.30	6.150		2,382	150		2,532	2,850]
	2300	R30, 75 watt	Г		1.30	6.150		375	150		525	630	İ
ı	2400	R40, 150 watt	1	1	1.30	6.150		408	150		558	670	1
	2500	Exterior, PAR 38, 75 watt	Г	İ	1.30	6.150		566	150		716	840	l
l	2600	PAR 38, 150 watt	1		1.30	6.150		525	150		675	795	1
ı	2700	PAR 46, 200 watt	Т	T	1.10	7.270		1,928	175		2,103	2,375	Ĭ
	2800	PAR 56, 300 watt	ł		1.10	7.270		2,193	175		2,368	2,675	1
- 1	3000	Guards, fluorescent lamp, 4' long	Т		1	8		375	195		570	695]
	3200	8' long	1	ļ	.90	8.890		535	215		750	905	<u>L</u>
145		RESIDENTIAL FIXTURES	Τ										145
	0400	Fluorescent, interior, surface, circline, 32 watt & 40 watt	1	Elec	20	.400	Ea.	48	9.70		57.70	67	1
	0500	2' x 2', two U 40 watt	Τ	Π	8	1		66	24		90	110	
	0700	Shallow under cabinet, two 20 watt	1		16	.500		45	12.15		57.15	67	1
	0900	Wall mounted, 41., one 40 watt, with baffle	Т		10	.800		41	19.40		60.40	74	
	200	Incandescent, exterior lantern, wall mounted, 60 watt	1		16	.500		36	12.15		48.15	57	j
	00	Post light, 150W, with 7' post	Т		4	2		104	49		153	185	1
1	2500	Lamp holder, weatherproof with 150W PAR	1		16	.500		16	12.15		28.15	35	1
	2550	With reflector and guard	T		12	.667		31	16.15		47.15	58	
j	2600	Interior pendent, globe with shade, 150 watt	1		20	.400		78	9.70		87.70	100	L
150		TRACK LIGHTING	Τ	•									150
	0080	Track, 1 circuit, 4' section	1	Elec	6.70	1.190	Ea.	33	29	ļ	62	79]
	0100	8' section 12' section	T	T	5.30	1.510		48	37		85	105	
	0200	12' section			4.40	1.820		81	44		125	155	1
	0300	3 circuits, 4' section	Т		6.70	1.190		36	29		65	82	1
	0400		1		5.30	1.510		48	37		85	105	1
	0500	12' section	Т		4.40	1.820		88	44		132	160	1
	1000	8' section 12' section Feed kit, surface mounting	1		16	.500		12	12.15	<u> </u>	24.15	31	_
	1100	End cover	Т		24	.333		1.98	8.10		10.08	14.00	5
	1200	Feed kit, stern mounting, 1 circuit			16	.500		16	12.15		28.15	35	_
	1300	3 circuit	T		16	.500		16	12.15		28.15	35	ı
	2000	Electrical joiner for continuous runs, 1 circuit			32	.250		6.55	6.05	1	12.60		의
	2100	3 circuit	T		32	.250		12.10	6.05		18.15	1	i
	2200	Fixtures, spotlight, 150 PAR			16	.500		47	12.15		59.15	70	
	3000	Wall washer, 250 watt tungsten halogen	\top	1	16	.500		101	12.15		113.15	130	1
	3100	Low voltage, 2% watt, 1 circuit			16	.500		102	12.15	1	114.15	130	_
	3120	3 circuit	\top	1	16	.500		109	12.15		121.15	140	
	""		1	•			`					<u> </u>	
			_				^						

		П	$\neg \neg$	DAILY	MAN-			BARE		,	TOTAL	1
166	100 Lighting	CRI	EW	OUTPUT	HOURS	UNIT	MAT.	LABOR	EQUIP.	TOTAL	INCL 0&P	1
5100	175 watt metal halide	1 E	lec	8	1	Ea.	479	24		503	565	ľ
5110	250 watt metal halide		Ш	8	1		500	24		524	585	4
5120	150 watt high pressure sodium			8	1		535	24		559	625	I
5130	250 watt high pressure sodium			8	1		556	24		580	645	1
5140	72"H 18" sq., 400 watt metal halide		П	8	1		525	24		549	615	ı
5150	250 watt high pressure sodium			8	1		556	24		580	645	4
5160	400 watt high pressure sodium	\Box	\Box	8	1	. 🔻	581	24		605	675	
5190	Portable rectangle, 6" high 13.5" x 20"											┛
5200	175 watt metal halide	1 E	lec	12	.667	Ea.	293	16.15		309.15	345	ł
5210	250 watt metal halide			12	.667		314	16.15		330.15	370	1
5220	150 watt high pressure sodium		П	12	.667		335	16.15		351.15	390	١
5230	250 watt high pressure sodium			12	.667		360	16.15		376.15	420	┙
5240	8" high 18" x 24", 400 watt metal halide	1		12	.667		365	16.15		381.15	425	ı
5250	250 watt high pressure sodium			12	.667		376	16.15		392.15	435	l
5260	400 watt high pressure sodium			12	.667		398	16.15		414.15	460	I
I 1	Portable square, 15" high 13.5" sq., 175 watt metal halide			12	.667		324	16.15		340.15	380	
5270	250 watt metal halide	1	Н	12	.667		376	16.15		392.15	435	1
5280	150 watt high pressure sodium	1		12	.667		360	16.15		376.15	420	
5290	250 watt high pressure sodium	1		12	.667		386	16.15		402.15	450	٦
5300	Pendent 16" round/square, 175 watt metal halide	1		3.20	2.500		355	61		416	480	
5400	250 watt metal halide	1		2.70	2.960		370	72		442	515	7
5410	400 watt metal halide	1		2.40	3.330		398	81		479	555	_
5420	150 watt high pressure sodium	1	\vdash	3.20	2.500		398	61		459	525	7
5430	250 watt high pressure sodium	i		2.70	2.960		428	72	İ	500	575	. 1
5440	400 watt high pressure sodium	+	一	2.40	3.330		454	81		535	620	7
0100	Fluorescent, rapid start, cool white, 2' long, 20 watt 4' long, 40 watt			.90	8.890		198	215		413 657	535 805	
0120	3' long, 30 watt	4-	╄	.90	8.890		442	215	-	1,119	1,325	ᅥ
0150	U-40 watt	1		.80	10		874	245 215		485	615	
0170	4' long, 35 watt energy saver	+	┿	.90	8.890	1	270	215		833	995	ᅥ
0200	Slimline, 4' long, 40 watt	1		.90	8.890	1	618	245		822	990	ı
0300	8' long, 75 watt	-	┿	.80	10	-	577	245	 	848	1,025	_
0350	8' long, 60 watt energy saver	1		.80	10		603 750	215		965	1,150	
0400	High output, 4' long, 60 watt		╄	.90	8.890	-	775	245	 	1,020	1,200	_
0500	8' long, 110 watt			.80	10		1	215		1,500	1,725	
0520	Very high output, 4' long, 110 watt	-	+	.90	8.890	+	1,285 1,285	275	 	1,560	1,825	-
0550	8' long, 215 watt			.70 .30	11.430 26.670	1	2,142	645		2.787	3,300	
0600	Mercury vapor, mogul base, deluxe white, 100 watt	+	+-	.30	26.670	_	1,663	645	 	2,308	2,775	
0650	175 watt	1		.30	26.670	1 1	2,968	645		3,613	4,225	
0700	250 watt		┿	.30	26.670	_	2,340	645		2,985	3,525	_
0800	400 watt	1		.20	40		5,100	970		6,070	7,025	
0900	1000 watt	+	╁	.30	26.670		3,749	645		4,394	5,075	_
1000	Metal halide, mogul base, 175 watt	1		.30	26.670		4,712	645		5,357	6,125	
1100	250 watt	+	+-	.30	26.670		4,386	645		5,031	5,775	_
1200	400 watt	-		.20	40		9,894	970		10.864	12,300	
1300		+-	┿	.20	40	1 +	9,960	970		10,930	12,400	
1320	1000 watt, 125,000 initial lumens	-	1	.20	40	1	9,268	970		10,238	11,600	
1330	1500 watt	-	+-	.30	26.670	1-	4,712	645	 	5,357	6,125	_
1350	Sodium high pressure, 70 watt			1	26.670		4,871	645		5,516	6,300	
860	100 watt	┨—	+	.30	26.670		5,059	645	+	5,704	6,525	_
370	150 watt	ı		.30	1		5,380	645		6,025	6,875	
1380	250 watt	+	+-	.30	26.670	_	5,727	645		6,372	7.250	
1300			1	.30	26.670	4 1	3,727	040	1	3.57		
1400	400 watt			i	40	1 1	12 262	970		14.322	16.100	
	400 watt 1000 watt Low pressure, 35 watt	\perp	1	.20	40 26.670	. -	13.352 3,963	970 645	ļ	14,322 4,608	16,100 5,300	

**

HunTen

(7P-N-1 7 9 of 10 Telephone Call Confirmation:

	Project No. 290 0379 000
(718) Local LD. <u>851-4577</u> Placed	Rec'd. Date 6-7-90
T. Todd Conven	and With Mr. Singer
or American Scientific Lighting Co. Re	parding HPS retrotits
OI MINIOTARIO DE MARIO	garding
For retrofits of incandescent f	extures, the "Bulb Lumenight"
and "Colorlight" products are	ecommended. The lamps one "colorlight" is more whitish. amp) for quantities of 100+
replaceable in both and the	"colorlight" is more whitish.
Contractors costs (including 1	amp for guantities of 100+
are as follows:	0 0 0 -
Bulb Lumenight 35	5W - \$45 (lamps only) W - \$45 ($*16 - *20$) 100W 150W) W - \$67 (lamps only)
50	W - \$45 (\$16-\$20)
(also come in 70 W	100 W 150 W)
Colorlight 50	W - \$67 (lamps only \$30)
	⁽⁾ ≠ 30)
They will send a copy of 7	Leir rotalog for dimensions.
Distribution:	

FLUOR-A-LAMPTM SERIES: COMPACT FLUORESCENT LAMPS

GLOBE LAMP/LUMA LAMP

- LAMP: Compact disposable fluorescent globe or tubular lamp/standard or tapered base
- WATTAGE: Fifteen
- LUMENS: 720
- COLOR: Warm white/2800k
- USE: Indoor only
- . BURNING POSITION: Any
- LAMP LIFE: 9,000 hours
- INSTALLATION: Screws into any 120V medium base socket
- PACKAGING: Ten lamps per master carton

CATALOG NUMBER	LAMP	DIMENSIONS
FGL S/15	BFG15 LE/A	Lamp Diameter 3¾" Overall Length 6¼"
FGL T/15	BFG15 LE/T	Lamp Diameter 3¾" Overall Length 6¾"
FLL S/15	BFT15 LE/A	Lamp Diameter 31/6"
FLL T/15	BFT15 LE/T	Overall Length 63/6" Lamp Diameter 31/6" Overall Length 7"

CONVERT-A-LITE^{IM} SERIES: SCREW-IN FLUORESCENT ADAPTER CONVERSIONS

ECONOMY CUP CONVERSION

- ADAPTER: Moided Norei[®] thermal plastic/Sealed and potted to protect internal components
- FINISH: White
- LAMP: Centered on top of adapter/Not dimmable
- INSTALLATION: Adapter screws into any standard 120v medium based socket/No additional wiring or modified circuitry required
- PACKAGING: Bulk packed/Lamp included

PREMIUM CUP CONVERSION

- ADAPTER: Molded Norei[®] thermal plastic/Sealed to protect internal components
- FINISH: Black
- LAMP: Centered/Recessed inside of adapter/Not dimmable
- INSTALLATION: Adapter screws into any standard 120v medium base socket/No additional wiring or modified circuitry required/Ratched screw base prevents over tightening
- PACKAGING: Bulk packed/Lamp included

CATALOG NUMBER	LAMP	DIMENSIONS
		Adapter Diameter 21/5"
CC/5/E	PL5	Overall Length 63/4"
CC/7/E	PL7	Overall Length 71/2"
CC/9/E	PL9	Overall Length 8%"
CC/13/E	PL13	Overall Length 91%,"
CC/Q9/E	Quad 9	Overall Length 65/4"
CC/Q13/E	Quad 13	Overall Length 7"
CATALOG NUMBER	LAMP	DIMENSIONS
		Adapter Diameter 2¾"
CC/5/P	PL5	Overall Length 51/2"
00/7/7	PL7	Overall Length 61%,6"
CC/7/P	1 4	G . G. E. E. E. Sur E .//0
CC//P	PL9	Overall Length 8"
		•
CC/9/P	PL9	Overall Length 8"
CC/9/P CC/13/P	PL9 PL13	Overall Length 8" Overall Length 81%,"
CC/9/P CC/13/P CC/Q9/P	PL9 PL13 QUAD 9	Overall Length 8" Overall Length 81%,6" Overall Length 57%,"
CC/9/P CC/13/P CC/Q9/P CC/Q13/P	PL9 PL13 QUAD 9 QUAD 13	Overail Length 8" Overail Length 81%," Overail Length 5%" Overail Length 6%"

CONVERT-A-LITE™ SERIES: SCREW-IN HPS ADAPTER CONVERSIONS

BULB LUMENIGHT™

- ADAPTER: Heavy gauge spun aluminum
- FINISH: Caustic etching
- INSTALLATION: Adapter screws into a standard 120V medium base porcelin socket/No additional wiring or modified circuitry required/Safety weight ground wire
- . PACKAGING: Four per carton/Lamp included

CATALOG NUMBER	LAMP	DIMENSIONS
BL/35 BL/50	LU35 LU50	Diameter 31/6" Overall Length 93/6"
BL/70	LU70	Diameter 31/4" Overall Length 10 1/16"
BL/100 BL/150	LU100 LU150	Diameter 4" Overall Length 101/6"
OPTIONS: HBR High Bay Reflector LBR Low Bay Reflector		DW Direct Wire

AMERICAN SCIENTIFIC LIGHTING CORPORATION

BROOKLYN, NEW YORK

TEL. (800) 522-3465

718) 851-4577

·FAX (718) 853-2390

	BUBJECT RAAP Lighting Projects	AEP NO 290 0379 060
EYNOLDS, SMITH AND HILLS INCORPORATED	DESIGNER T. TOOL	DATE DATE
GP-N-2 REPLACE	INCANDESCENTS WITH CIRCLI	ne fluorescents
Calculations were made	our a per-unit bodis for in tures in place of incendes.	italling 32 W
interior non-explosion	or proof applications. The	fer-unit
	page 2. From the building with potential incandescen	
was compiled (page	3). It is assumed for this	ECO that
10% of the interior	fertures are non-explosion	shifts/day 5 days luk were
Total fixtures =	is manher. Only areas operating 3 0.1 × 1536 = 154	
Evergy Sovings = 7	05 Rush x 0.003413 MEtu x 15 gv kurb = \$21.34 x 154 fuctures = yr-fixture	4 = 371 MBtu/gr
Energy cost surings	yr-fixture	· · · · · · · · · · · · · · · · · · ·
Matl & labor cost so	wings = \$20.33 × 154 =	* 3131 /bV
Total cost saving Project cost = \$9	4.47 154 = 14.548	134
	4.47 = 15+ = +14,548 cture	
	ost= $14.548/1.115 = $13,0$	
4.0	\$14,548 = 2.3 yr \$6417/yr	

		Lighting 7	AEP	NO 290 0	37 0
NOLDS, SMITH AND HILLS ITECTS • ENGINEERS • PLANNERS	Screen T.	Tood (alcs	SHE	ет 2е	of
INCORPORATED	CHECKER		DAT	E	
1P-N-2 Replace unterior	100-150W in	candescents	with 32	W screw	-in
fllorescent fix	tures for	non-expl	osion proof	applica	tions
- Assume orginal lia	ne revers	strong a mot	Jo reman		J
(32 W fluor. pr	prides lume	n outfut be	trocen 100V	V and 152	DW inco
		U		:	
Dogger Saving - (1	50W-37W	241.	260 Agus -	705 1	ranti-
Energy savings = (1	30 00 37 00	day	yr yr	,,,,	yv
Energy cost savings = 70	25 kwh	F0.03026	= \$21.34		
	194	kuth	- gr		-
Labor 4 mat'l cost sa	$\frac{1}{10000000000000000000000000000000000$	acoul cost	Fluor, cost	× 6240	hr
The contract of the contract o	7 / 7	750 hr	12000 hr) * •	gr
			7		ر ل
= (+2.11 matil + \$	1.20 labor x 0.	683) _(15.5	5×14 mat + \$2.	45 laborx 0	(683)
750	Ar		12,000	hr	22
		X	6240 hr	. 4	!
			<u> </u>	gr	
		k.)	υ	· · · · · · · · · · · · · · · · · · ·
Total cost savings =	\$21.34	120.33	141.67		
Total cost savings =	\$21.34 +	\$20.33	= \$41.67 yr		
		gr	yr	24	
Math 105+ = \$42.9	30 for fixtur	e * 1.10 i	uflation (198	34 vender	
Mat'l cost = \$42.9	30 for fixfur \$5.55 for la	e x 1.10 i	uflation (198 fl. = \$53	. 30	li Ævá
Mat'l cost = \$42.9	30 for fixfur \$5.55 for la	e x 1.10 i	uflation (198 fl. = \$53	. 30	li Ævá
Math cost = \$42.9 + Labor cost = \$1.20	00 for fixtur \$5.55 for las	e x 1.10 i	uflation (198 fl. = \$53 t of replacing	in cand. b	litera
Mat'l cost = \$42.9	00 for fixtur \$5.55 for las	e x 1.10 i	uflation (198 fl. = \$53 t of replacing	in cand. b	litera
Math cost = \$42.9 tabor cost = \$1.20 Project cost=[0]	\$0 for fixfur \$5.55 for las \times 1.20 \times 0	e x 1.10 i mp x 1.10 i 1.633 (005 3.30) + (1.2	uflation (198 if f = \$53 t of reflacing f = f	in cand. b	litera
Matil 10st = \$42.9 tabor 10st = \$1,20 Project 10st = 1	\$0 for fixfur \$5.55 for las \times 1.20 \times 0	e x 1.10 i mp x 1.10 i 1.633 (005 3.30) + (1.2	uflation (198 if f = \$53 t of reflacing f = f	in cand. b	litera
Matil 10st = \$42.9 tabor 10st = \$1,20 Project 10st = 1	\$0 for fixfur \$5.55 for las \times 1.20 \times 0	e x 1.10 i mp x 1.10 i 1.633 (005 3.30) + (1.2	uflation (198 fl. = \$53 t of replacing	in cand. b × 1.661 =	litera

Radford Army Ammunition Plant List of Buildings with Incandescent Lighting

Bldg No	Name/Process	Location	Similar	Fixtures/Bldg.	Total Fixtures
1000 -00	Cotton Linter Warehouse	NC, A&B-Line	1	17	17
1606 -00	Open Tank Air Dry	Sol. Recovery, A-Line	10	20	200
1611 -00	Solvent Recovery House	Sol. Recovery, B-Line	27	12	324
3513 -00	C-1 Press & Cutting House SG Curing Hse Carpet Rolls	Green, C-Line	3	· 20	60
4912 -27	SG Curing Hse Carpet Rolls	Cast Prop. (Rocket)	10	5	50
4924 -06	Machine and Saw House	Cast Prop. (Rocket)	1	6	6
	Dry House #4 (Cure Grain)		7	8	56
9334 -15	Blender House	4th Rolled Powder	1	4	4
TOTAL FOR	EXTERIOR FIXTURES				717
420 -02	Acid Waste Disposal (C-Line)	Waste Acid	1	8	8
	Boiling Tub House		3	50	150
2022 -00	Beater House	NC, B-Line	3	40	120
2024 -00	Beater House Poacher & Blending House	NC, B-Line	3	30	90
3513 -00	C-1 Press & Cutting House	Green, C-Line	3	50	150
4912 -40	Forced Air Dry House	Pilot B	21	10	210
4912 -11	LG Mold Loading House	Cast Prop. (Rocket)	2	6	12
4912 -03	MK 43 Sawing and Inhibiting	Cast Prop. (Rocket)	1	4	4
4915 -00	Small Grain Mold Assembly	Cast Prop. (Rocket)	1 .	7	7
4921 -00	Inspect/Clean NG Tanks *		1	21	21
	TOW Launch Saw House		1	8	8
5008 -01	15 Inch Press House	Pilot A	3	2	6
6304 -00	Paste Blending House	1st R P	1	20	20
7113 -00	Roll House (Rolled Powder)	1st R P (F-Line)	1	130	130
9310 -02	Rolled Powder Building	4th Rolled Powder	2	300	600 600
TOTAL FOR	INTERIOR FIXTURES				1536

RADFORD ARMY AMMUNITION PLANT ARCHITECT ENGINEER REYNOLDS, SMITH AND HILLS A.E.P., INC. DRAWING NO. DRAWI	CONSTRUCTION COST	DATE PREPARED)	SHEET	4 of 11			
RADFORD ARMY AMMUNITION PLANT ARCHITECT ENGINEER REYNOLDS, SMITH AND HILLS A.E.P., INC. DRAWING NG. P-N-Z TNCAUD. TO FLUOY. SUMMARY NO. UNIT PER UNIT TOTAL UNIT TOTAL UNIT TOTAL UNIT TOTAL UNIT TOTAL CIVILINE SCHEW-INS Sales tax FICA Insuvance 20.0% 30 369 Subtotal 0.07 1314 Prote 10.07 10.07 10.07 1186 Coutingercy 10.0% 1186	•							
ARCHITECT ENGINEER REYNOLDS, SMITH AND HILLS A.E.P., INC. DRAWING NG. The Caud. To Fluor. Summary NO. UNITY MEAR. UNITY MEAR. UNITY TOTAL TOTAL COST TOTAL T	LOCATION	1						
Incaud. to fluor. Summary Ouantity LABOR MATERIAL TOTAL COST Replace incovalscent 154 fixt 0.98 151 53.30 8208 8359 Lalys with 32 W fluor, circline screw-ins Sales tax 4.5% 30 369 369 FICA I trisuvance 20.0% 30 30 30 Subtotal 15.0% 181 8577 8758 Overhead 15.0% 10.07 Performance Bond 1.0% 1116 Hetriles Support 6.0% (971) Contingency 10.0% 1186	ARCHITECT ENGINEER	, . -						
Incaud. to fluor. Summary No. UNITY PER TOTAL TOTAL COST Replace incondencent 154 fixt. 0.98 151 53.30 8208 8359 Lawys with 32 W fluor. Circline 5(rew-ins) Sales tax 4.5% 369 FICA Insurance 20.0% 30 369 Substotal 181 8577 8758 Over head 15.0% 1314 Profit 10.0% 1007 Performance Bond 1.0% 1116 Contingency 10.0% 1186		·	CHECKED BY					
Incaud. to fluor. Summary NO. UNIT PER TOTAL PER UNIT TOTAL COST Replace incandescent 154 fixt. 0.98 151 53.30 8208 8359 lamps with 32 W fluor. Circline screw-ins Sales tax 4.57 369 369 FICA Insurance 20.0%. 30 30 Subtotal 15.0% 181 8577 8758 Over head 15.0% 10.07 Performance Bond 1.0%. 111 Hetrines Support 6.0% 10.0% 1186	,			7.			MATERIAL	
Idmps with 32 W fluor. Civiline Screw-ins Sales tax 4.5% FICA Insurance 20.0% Subtotal 181 Overhead 15.0% Profit 10.0% Performance Bond 1.0% Iterrules Support 6.0% Contingency 10.0%	Incaud. to fluor. summary	NO.	UNIT		-	PER		
Idmps with 32 W fluor. Civiline Screw-ins Sales tax 4.5% FICA Insurance 20.0% Subtotal 181 Overhead 15.0% Profit 10.0% Performance Bond 1.0% Iterrules Support 6.0% Contingency 10.0%	Replace incondescent	154	fixt.	0,98	151	53.30	8208	8359
Sales tax 1.5% 369 FICA Insurance 20.0% 30 Subtotal 181 8577 8758 Overhead 15.0% 1314 Profit 10.0% 1007 Performance Bond 1.0% 111 Hetrices Support 6.0% 671 Contingency 10.0% 1186								
FICA Insurance 20.0% 30 30 Subtotal 181 8577 8758 Overhead 15.0% 1314 Profit 10.0% 1007 Performance Bond 1.0% 111 Hitrales Support 6.0% 671 Contingency 10.0% 1186	1 11 -							
FICA Insurance 20.0% 30 30 Subtotal 181 8577 8758 Overhead 15.0% 1314 Profit 10.0% 1007 Performance Bond 1.0% 111 Hitrales Support 6.0% 671 Contingency 10.0% 1186		a						
Subtotal Overhead Overhead 181 8577 8758 1314 Profit 10.07 Performance Bond 1.0% 111 Hitrales Support 6.0% Contingency 10.0%							369	
Overhead 15.0% 1314 Profit 10.0% 1007 Performance Bond 1.0% 111 Hitches Support 6.0% 671 Contingency 10.0% 1186		20.0%	,	-			0 - 1-1	
Profit 10.07 1007 Performance Bond 1.0% 111 Hetrales Support 6.0% 671 Contingency 10.0% 1186		1. س			181		8577	
Performance Bond 1.0% 111 Hercules Support 6.0% 671 Contingency 10.0% 1186				· · · · · · · · ·				
Histories Support 6.0% 671 Contingency 10.0% 1186		10.0/						1007
contingency 10.06	Hertormance Dona							671
	Continue Suggest C							
		10.0%						
	TON STRUCTURE 4021							
								·
	·							
		-						
				. 				
		-						
								

GP-N-2 p.50f 11

ECP ENERGY CONSERVATION PRODUCTS, 511 CANAL STREET, NYC, NY, 10013—TEL (212)—925-5991

POWER CONSUMPTION AND LUMEN CUTPUT DATA

				·	•
* WAITS	LINE WATTS	TOTAL LUMEN CUTPUT	LUMENS PER WATT	HOURS OF RATED LIFE	*
****** MERCU	IRY VAPOR (DELUX	E WHITE)			*
* 1000	1075	63000	. 59	24000	*
* 400	450	23000	56	24000	
* 250	290	13000	42	24000	*
* 175	205	8500 4500	49 42	24000 24000	*
* 100 * 75	120 93	3150	37	16000	* -
* 50	61	1680	31	16000	*
****** METAL	HALIDE				*
* 1500	1600	155000	103	3000	*
* 1000_	1100	110000	100	12000	*
* 400	460	34000	85	15000	*
* 175	210	14000	85	7500 ===================================	*
	PRESSURE SODIUM			24000	*
* 1000	1080	140000	130	24000 24000	*
<u>* 400</u>	480 310	50000 27500	104 8 9	24000	
* 250 * 150	200	16000	80	24000	*
* 100	135	9500	70	24000	*
70	85	5800	68	24000	*
50	70	4000	57	24000	*
* 35	42	2850	67	18000	
*******FWOR	ESCENT				. * *
STRAIGHT 40	48	3150	66	20000+	*
CIRCLINE 32	<u>37</u> 25	(1830)	50	12000+	*
CIRCLINE 22	25	1050	42	12000+	*
CIRCLINE 20	23	850	37 56	12000+ 10000+	*
TWIN TUBE 13 TWIN TUBE 9	16 12	900 600	50°	10000+	*
STRAIGHT 8	11	400	36	7500+	*
TWIN TUBE 7	10	400	40	10000+	*
STRAIGHT 6	9	300	33	7500+	*
TWIN TUBE 5	8	250	31	10000+	***
	NDESCENT				*
* 1000	1000	23740	24	1000	*
* 750	750 500	17040	23	1000	. .
* 500	500	10850	22	1000 750	· · · *·
* 200 * 150	200 150	3710 (2880)	19 19	750	*
100	100	(1750)	18	750	*
* 75	75	1190	16	750	*-
***** CUAR	TS—IODINF.				*
1500	15.00	35800	24	3000	*
* 100 0	1000	23400	23	2000	*
* 500	500	10950	22	2600	
* 250	250	4850	19	2000	7

<u>66</u>	Lighting			15								
		Т		DAILY	MAN-			BARE	COSTS		TOTAL	
16	66 100 Lighting	CR	EW	OUTPUT	HOURS	UNIT	MAT.	LABOR	EQUIP.	TOTAL	INCL O&P	Ì
1600	90 watt	1 6	lec	.30	26.670	С	5,140	645		5,785	6,600	140
1650	135 watt			.20	40		6,905	970		7,875	9,025	
1700	180 watt	1		.20	40		7,308	970		8,278	9,475	1
1750	Quartz line, clear, 500 watt			1.10	7.270	'	1,872	175		2,047	2,325	
1760	1500 watt			.20	40		3,427	970		4,397	5,200	1
1800	Incandescent, interior, A21, 100 watt	1		1.60	5		173	120		293	370	
1900	A21, 150 watt			1.60	5		211	120		331	410	
2000	A23, 200 watt	1		1.60	5		227	120 .		347	430	
2200	PS 30, 300 watt			1.60	5		330	120		450	540	1
2210	PS 35, 500 watt			1.60	5		576	120		696	810	j
2230	PS 52, 1000 watt	_		1.30	6.150		1,525	150		1,675	1,900	1
2240	PS 52, 1500 watt			1.30	6.150		2,382	150		2,532	2,850	ı
2300	R30, 75 watt	十一		1.30	6.150		375	150		525	630	1
2400	R40, 150 watt	1		1.30	6.150		408	150		558	670	
2500	Exterior, PAR 38, 75 watt	_		1.30	6.150		566	150		716	840	1
	PAR 38, 150 watt	1		1.30	6.150		525	150		675	795	1
2600	PAR 46, 200 watt	┪┈	_	1.10	7.270		1.928	175		2,103	2.375	1
2700 2800	PAR 56, 300 watt			1.10	7.270		2,193	175		2,368	2,675	l
	Guards, fluorescent larmo, 4' long	\dashv	-	1	8	\vdash	375	195		570	695	1
3000		Į		.90	8.890		535	215		750	905	
3200	8' long RESIDENTIAL FIXTURES	╅	<u>. </u>	.50	0.000							1/4
0010	Fluorescent, interior, surface, circline, 32 watt & 40 watt	١.,	Elec	20	.400	Ea.	48	9.70		57.70	67	l
0400	2' x 2', two U 40 watt	+-	I	8	1	H	66	24		90	110	1
0500	Shallow under cabinet, two 20 watt			16	500		45	12.15		57.15	67	1
0700	Wall mounted, 41, one 40 watt, with baffle	+	 	10	.800		41	19.40		60.40	74	1
0900		1		16	.500		36	12.15		48.15	57	1
00	Incandescent, exterior lantem, wall mounted, 60 watt	-	+	4	2		104	49		153	185	1
2100	Post light, 150W, with 7' post	- [16	.500		16	12.15		28.15	35	l
2500	Lamp holder, weatherproof with 150W PAR		+	12	.667		31	16.15		47.15	58	1
2550	With reflector and guard	1		20	.400		78	9.70		87.70		
2600	Interior pendent, globe with shade, 150 watt	+-	<u>. </u>	20	.400	-	1 10	0.70				1
0010	TRACK LIGHTING	١.	Elec	6.70	1.190	Ea.	33	29		62	79	ľ
0080	Track, 1 circuit, 4' section 8' section 12' section		FIEC	5.30	1.510	Ea.	48	37		85	105	1
0100	8' section 12' section		1	4.40	1.820		81	44	-	125	155	ı
0200			+-	 	1.190	++	36	29		65	82	1
0300	3 circuits, 4' section			6.70 5.30	1.510		48	37]	85	105	ı
0400	8' section 12' section Feed kit, surface mounting		+	4.40	1.820	++	88	44		132	160	1
0500	12' section Feed kit, surface mounting		1	16	.500		12	12.15		24.15	1	١
1000	 		╁╴	24	.333	+-	1.98	+		10.08	*	5
1100	End cover	1		16	.500		16	12.15	1	28.15		
1200	Feed kit, stern mounting, 1 circuit		+	16	.500	1	16	12.15	7	28.15	-	1
1300	3 circuit			i	250		6.55	F	1	12.60		ol
2000	Electrical joiner for continuous runs, 1 circuit		+	32		+	12.10			18.15		7
2100	3 circuit	ļ		32	.250		47	12.15	1	59.15	i	
2200	Fixtures, spottight, 150 PAR		+	16	.500	1-				113.15		1
3000	Wall washer, 250 watt tungsten halogen			16	.500		101	12.15	1		1	
3100	Low voltage, 25 watt, 1 circuit	_ _	4	16	.500	+	102	12.15		114.15		-
3120	3 circuit	. 1	į.	16	.500	1 1	109	12.15	1	121.15	1 140	1

GF-N-2 p. 7 of 11

66	Lighting				7. 7 <u>. 7</u> 3						
			DAILY	MAN-			BARE	COSTS		TOTAL	Π
16	66 100 Lighting	CREV	/ OUTPUT	HOURS	UNIT	MAT.	LABOR	EQUIP.	TOTAL	INCL O&P	L
5100	175 watt metal halide	1 Ele	c 8	1	Ea.	479	24		503	565	13
5110	250 watt metal halide		8	1		500	24		524	585	1
5120	150 watt high pressure sodium		8	1		535	24		559	625	ł
5130	250 watt high pressure sodium		8	1		556	24		580	645	1
	72"H 18" sq., 400 watt metal halide		8	1		525	24		549	615	
5140	250 watt high pressure sodium		8	1 1		556	24		580	645]
5150	400 watt high pressure sodium		8	1		581	24		605	675	
5160	- ·	'			'						
5190	Portable rectangle, 6" high 13.5" x 20"	1 Ele	c 12	.667	Ea.	293	16.15		309.15	345	1
5200	175 watt metal halide	ľĩ	12	.667	ΙŢ	314	16.15		330.15	370	1
5210	250 watt metal halide		12	.667		335	16.15		351.15	390	1
5220	150 watt high pressure sodium		12	.667		360	16.15		376.15	420	
5230	250 watt high pressure sodium		12	.667	 	365	16.15		381.15	425	1
5240	8" high 18" x 24", 400 watt metal halide	1	12	.667		376	16.15		392.15	435	ı
5250	250 watt high pressure sodium	-			\vdash	398	16.15		414.15	460	1
5260	400 watt high pressure sodium		12	.667		324	16.15		340.15	380	-
5270	Portable square, 15" high 13.5" sq., 175 watt metal halide	1	12	.667		376	16.15		392.15	435	1
5280	250 watt metal halide		12	.667		360	16.15		376.15	420	
5290	150 watt high pressure sodium	1 +	12	.667	-	 	16.15		402.15	450	1
5300	250 watt high pressure sodium		12	.667		386	1	1	416	480	
5400	Pendent 16" round/square, 175 watt metal halide	+	3.20	2.500		355	61 72	-	442	515	1
5410	250 watt metal halide		2.70	2.960		370	1			555	1
5420	400 watt metal halide	1	2.40	3.330	 	398	81		479	525	1
5430	150 watt high pressure addium		3.20	2.500		398	61		459		ı
5440	250 watt high pressure sodium	1	2.70	2.960		428	72	ļ	500	575	4
5450	400 watt high pressure sodium	↓	2.40	3.330	, •	454	81		535	620	ı
		<u> </u>			<u> </u>						+
c010	LAMP8	i			ì						1
0080	Fluorescent, rapid start, cool white, 2' long, 20 watt	1 Ek	ec 1	8	C	348	195	 	543	670	4
0100	4' long, 40 watt	11	.90	8.890		198	215	1	413	535	ı
0120	3' long, 30 watt		.90	8.890	1—	. 442	215	<u> </u>	657	805	4
0150	U-40 watt		.80	10		874	245		1,119	1,325	ı
0170	4' long, 35 watt energy saver		.90	8.890	 	270	215	ļ	485	615	4
0200	Simline, 4' long, 40 watt		.90	8.890	1	618	215		833	995	١
0300	8' long, 75 watt		.80	10		577	245		822	990	4
0350	8' long, 60 watt energy saver		.80	10	1	603	245		848	1,025	1
0400	High output, 4' long, 60 watt		.90	8.890		750	215		965	1,150	4
0500	8' long, 110 watt		.80	10	1	775	245		1,020	1,200	1
0520	Very high output, 4' long, 110 watt		.90	8.890		1,285	215		1,500	1,725	_
0550	8' long, 215 watt		.70	11.430		1,285	275		1,560	1,825	1
0600	Mercury vapor, mogul base, deluxe white, 100 watt		.30	26.670		2.142	645		2,787	3,300	┙
0650	175 watt	1	.30	26.670		1,663	645		2,308	2,775	1
0700	250 watt		.30	26.670		2,968	645		3,613	4,225	L
	400 watt		.30	26.670		2,340	645		2,985	3,525	
0800	1000 watt		.20	40		5,100	970		6,070	7,025	╝
0900	Metal halide, mogul base, 175 watt	1	.30	26.670		3,749	645		4,394	5,075	
1000	·	1 1	.30	26.670		4,712	645		5.357	6,125	┚
1100	250 watt	1	.30	26.670	_	4,386	645		5,031	5,775	7
1200	400 watt	1 1	.20	40		9,894	970		10,864	12,300	
1300	1000 watt		.20	40	1	9,960	970		10,930	12,400	
1320	1000 watt, 125,000 initial lumens		.20	40		9.268	970		10,238	11,600	
1330	1500 watt	+	.30	26.670	1	4,712	645		5,357	6,125	٦
1350	Sodium high pressure, 70 watt	1	.30	26.670	1 1	4.871	645		5,516	6,300	١
360	100 watt	1-	_	26.670	_	5,059	645	 	5,704	6,525	7
1370	150 watt		.30	1		· ·	645	1	6,025	6.875	ı
1380	250 watt	1	.30	26.670		5,380	645	+	6,372	7.250	1
1400	400 watt		.30	26.670	1	5,727	970	1	14,322	16.100	1
1450	1000 watt	1	.20	40	+	13,352		+	4,608	5,300	-
1500	Low pressure, 35 watt	1	.30	26.670	1 1	3,963	645			5,775	ı
	55 watt	1 1	.30	26.670	D1 +	4,386	645	1	5,031	1 3,773	

n de la companya de l

GP-N-3

ECP ENERGY CONSERVATION PRODUCTS 511 CANAL STREET NEW YORK, N.Y. 10013 (212)925-5991

EFFECTIVE 3/1/84

LAMP	PRICES
------	--------

				·		
	ORDERING CODE	TYPE	WATTAGE	LIST	CONT.	MIN QTY
	F4T5/CW F4T5/WW	FLUORESCENT FLUORESCENT	14 14	6.37 7.17	3.19 3.59	12 12
	F6T5/CW F6T5/WW	FLUORESCENT FLUORESCENT	6 6	6.37 8.79	3.20 4.40	12 12
	F8T5/CW F8T5/WW	FLUORESCENT FLUORESCENT	8 8	6.03 7.15	3.02 3.58	12 12
	FC6T9/CW FC6T9/ww	FLUORESCENT FLUORESCENT	20 20	10.00	5.00 5.68	12 12
	FC8T9/CW FC8T9/WW	FLUORESCENT FLUORESCENT	22 22	10.00	5.00 5.68	12 12
	FC12T9/CW FC12T9/WW	FLUORESCENT FLUORESCENT	32 32	11.10 12.50	5.55	12 12
9	FC16T9/CW FC16T9/WW	FLUORESCENT FLUORESCENT	40 40	13.00 14.75	6.50 7.38	12 12
	PL-7 PL-9 PL-13	FLUORESCENT FLUORESCENT FLUORESCENT	7 9 13	13.00 13.00 14.00	6.50 6.50 7.00	10 10 10
	LU-35 LU-50 LU-70 LU-100 LU-150	H.P.S. H.P.S. H.P.S. H.P.S.	35 50 70 100 150	70.00 70.00 70.00 80.00 80.00	35.00 35.00 35.00 40.00 40.00	66666
	ESX (NARROW) BAB (WIDE)	QUARTZ HALOGEN QUARTZ HALOGEN	20 20	20.00 20.00	10.00	<u>1</u> ,
	EXT (NARROW) EXN (WIDE)	QUARTZ HALOGEN QUARTZ HALOGEN	50 50	21.00 21.00	10.50 10.50	1 4
	EYF (NARROW) EYC (WIDE)	QUARTZ HALOGEN QUARTZ HALOGEN	75 75	22.00 22.00	11.00 11.00	14 14

with 32 watt screw-in flourescent fixture... replaces 150 watt bulb

(available in 54 watts)

Advantages

- 1. Immediate savinas (no rewiring)
- 2. Long life (12,000 hrs)
- 3. Unbreakable (poly carbonate) lens
- 4. Reduced heat load (saves on refrigeration costs)
- 5. Easy cleaning
- 6. Equal illumination

After

COMPARE COSTS*

150 watt RS/TF incandescent bulb vs. 32 watt flourescent screw-in

VS

\$11.54

(Including Ballast)

\$32.56

savings

Lamp & maintenance cost

\$21.31 By reducing the heat load caused by the incandescent bulb,

\$46.80

VS

\$ 1.82

\$19.49

you can achieve additional savings on refrigeration costs tifused on 12 hour burn. Sidavs berliveek

Total Savings

\$62,90

\$10.85

DISTRIBUTED BY:

Energy Cost

TWIST OF THE WRIST® BRAND ENERGY SAVING LIGHTING FIXTURES

MODEL 23 32 WATT OR 54 WATT

SOCKET: Standard Medium Base HOUSING:

Aluminum

DIFFUSER: Clear Polycarbonate

BALLAST: Robertson R32AP-WS (32 watt)

Robertson R2232P-WS (54 watt)

MODEL =	LAMP	WATTAGE	TEMPERATURE RANGE
23-32 23-54	FC12T10 FC12T10 FC8T9	32 32 22	Down to 32 F Down to 32 F
23-32-0′ 23-54-0′	FC12T10 FC12T10	32 32	Down to 0 F Down to 0 F

GRNZ piliof 11

ECP ENERGY CONSERVATION PRODUCTS
511 CANAL STREET NEW YORK, N.Y. 10013 (212)925-5991

EFFECTIVE 3/1/84 212)925-5991

PRICING -	MODEL.	#	23	SCREW_IN	FILIORESCENT	CONVERSIONS
I WICING -	.400	IT	رے	CULLATIO	LUCOURDORNI	CONACUSTONS

FIXTURE PRICES (OO NOT INCLUDE LAMPS.			
MODEL	DESCRIPTION	LIST	CONT.	MIN QTY
	32 WATT SCREW IN FLUORESCENT FIXTURE (WHITE FINISH) WITH LEXAN DIFFUSER.	85 . 80	42.90	3
23 - 54 =====	54 WATT SCREW IN FLUORESCENT FIXTURE (WHITE FINISH) WITH LEXAN DIFFUSER.	99.30	49.65.	3
DIFFUSER	N - WITHOUT LEXAN DIFFUSER DEDUCT	9.90	4.95	· -
BALLAST	V - 277 VOLT BALLAST	12.00	6.00	
	O - ZERO DEGREE HALLAST(DOWN TO O F) 32WATT 54WATT	16.00 16.00	8.00 8.00	-

STANDARD MODEL BALLAST WILL LIGHT DOWN TO 32 F. ORDERS BELOW MINIMUM ADD 10%

	PRICING - MODEL #25 RECESSED CEILING	FIXTURE	RETRO-FIT	
FIXTURE PRICES D	O NOT INCLUDE LAMP.			
MODEL	DESCRIPTION	LIST	CONT.	MIN QTY
25-20-DW ======	20 WATT RECESSED FLUORESCENT CONVERSION FIXTURE WITH SCREW IN ADAPTOR AND WHITE ACRYLIC DIFFUSER (WHITE FINISH)	91.80	45.90	5
25-22-DW	22 WATT - SAME AS ABOVE	104.00	52.00	100
	OPTIONS			
DIFFUSER	PQ - PARASQUARE PA - PARAHEX	13.40 14.90	6.70 7.45	- -
BODY TYPE	A - ADJUSTABLE STEM		CONSULT FA	CTORY
BALLAST	C - COLD WEATHER BALLAST	14.00	7.00	-

ORDERS BELOW MINIMUM ADD 10%

	RAAP	Lighting Project	ts AEP NO 290	0379000
NOLDS, SMITH AND HILLS IITECTS • ENGINEERS • PLANNERS INCORPORATED		Todal	SHEET	OF
GP-N-3 REPLACE	EEXTERIOR	INCANDESCEN	175 WITH	COMPACT
PLUORES	CENT FLOOD	5		
		-10		
Many buildings a	t RAAP are	list with in	efficient in	cardescent
			OU	
lighting. This ECC) onalyzes t	he replacement	t of exterio	r incord.
	0			
floods with 13 WPL	- compact fl	novescent floor	d retrofito	which
	$U \cup \mathcal{D}$		<i>U</i> .	
Acrew into the inco	rdescent sock	ets. This tay	se of proj	ect is
			000	
suitable for non-e	chlosion pro	of fixtures	in areas w	Rene
a 20-30% reduct	on in hight	level is accep	ptable. Com	its and
33 33 33				4
Andrea Indra Calcula	ted on a se	Junt basis	as shown	on page 2
Oulu Great operation	3 shill day	5 days link we	ère conside	red.O
Savings were calcula Only areas operating A list of buildings	with a carde	seent lighting	was comp	Ild from
<i>b</i>			U_{\perp}	0
the building survey	dota / page	2 3). It is	155 uned the	× 50 %
The processing proving	100			
		list are mon-		proof floor
h the appoint garry		V S S S S S S S S S S S S S S S S S S S		
Number of fixtur	05=05/7	17 = 359		
10 mapes of tox for	ATE . D	0.603413 MBtu	359 = 10	24 MBtu
ENERGY Santas =	Land And And And And And And And And And A	K.P.	The state of the s	40
	7	, , , , , , , , , , , , , , , , , , ,		
ri la de la la la la la la la la la la la la la	\$ 15.30	359 figures =	49083	lux
Europy cost Sourings =	y fixture	733 14 WC5 E		3
7		1963 26	9 = \$6688	lw
Mall + Labor cost	sames +	18.63 x 35	5 5 00	0
		0		
1.00.40.	anaz J	- 6688 = \$ 18	5,771/4V	The second secon
Total cost Suring	9= 9083 t	WEOU IC) '-' '- ()	
Project cost = \$6	6.73/ frichure x	1359 7 \$23	956	
			21 425)	
Construction	COST = 4, 3	4-4-7	72 -4	
	\$23,556 //17			

	Screening C	iting Projects	AEP NO	290 6379 000
YNOLDS, SMITH AND HILLS	7.7	alcs.	SHEET	2 of 10
CHITECTS • ENGINEERS • PLANNERS INCORPORATED	DESIGNER CHECKER		DATE	
0-12 12 1	1: :/0/	101- 4-	d 101	0000 000
GP-N-3 Reduce light leve	15 - limited	applications	o to	w-in retrafits
150 W Ancandesce	ents with 13 W	7)	on sar	W-IL HITERTS
- Assume original ligh	+ lacola can be no	deved by 70	- 30%	
12 une ortana atom	A MACCA CERC /CA	of C	3 - 20	
- Assume non-explos	ion proof appl	ication		
	0 6 00			
Energy savings = (1	50 W-16W) L	24 hr x 260	days =	836 Kuff
<i>(</i>) ()		day	you	y
			<i>J</i> a	9
Energy cost savings	= 836 kwh x	\$ 0.63026 =	\$ 25.3	0
0 0	9	kurh	0	
Labor 4 mot l cost savin	$c = /T \cdot 1$ so t	# luov. cos	+ \ , &	240 her
Labor 9 max Cost savy	1 Frank	10 000 K	_ , ,	av
_ [(\$2,11 model + \$1.20	<i></i>			×0.683) × 6240h
750 hr) Hr	yr
	\$ 18.63			9.
	yr			
Total cost sivings =	25.30	8.63 = 4	43.93	
<u> </u>	yv	yr -	yv .	
11 110 - 127	an C Ad	· · · · () - ·	6/10	189 A
Mat 1 cost = \$37.	32 for fixture p	nce including	Re	Flect-A-Stor flood
1 above 1 sept = \$1.70	×1,2 ×0.683	Cost of regla	one incar	1. +20%)
Labor cost = \$1.20	, , , , ,	0		
Project cost=	(1.045 × \$ 37.32)	+(1.2 x \$ 0.5	98) × 1.6	6 = \$66.73
troject cost=[
Simple paypack = \$	66.73 - 1	5 yr < 10) yr =	recommended
\$4	66.73 = 1 3.93/yr	U	0	
			1.	

R	Se	H
		(RO

SUBJECT	AEP NO
	SHEETOF
DESIGNER PFH	DATE 10/29/90
CHECKER	DATE

QRIP Cale's

Current energy costs:

150W x 24 hr x 260 dn = 1000 x 35 laups x #0.3026/kwh=

= #10,168/gr.

Current material & labor costs:

cost/lamp * 359 * 6240hrs

2.11 + 1.2 × 0.68 × 359 × 6240 = \$8750/yr

New energy conts:

16 x 24 x 260 = 1000 x 359 x 0,03826 = \$1085/gr.

New matil & labor conts

7.88 +1.95 x 0.68 x 359 x 6240 = \$ 2062/y-

Labor sowings

(1.2 × 0.68 - 1.95 × 0.68) × 359 × 6240 = \$ 2140/yr

For fluorescents, replace both lamp only.

Radford Army Ammunition Plant List of Buildings with Incandescent Lighting

Bldg No	Name/Process	Location	Similar	Fixtures/Bldg.	Total Fixtures
1000 -00	Cotton Linter Warehouse	NC, A&B-Line	1	17	17
1404 -00	Open Tank Air Dry	Sol. Recovery, A-Line	10	20	200
1411 -00	Solvent Recovery House	Sol Recovery, B-Line	2/	12	324
3513 -00	C-1 Press & Cutting House SG Curing Hse Carpet Rolls	Green, C-Line	. 3	20	60
4912 -27	SG Curing Hse Carpet Rolls	Cast Prop. (Rocket)	10	5	. 50
4924 -06	Machine and Saw House Dry House #4 (Cure Grain)	Cast Prop. (Rocket)	1	6	6
7106 -04	Dry House #4 (Cure Grain)	1st R P	7	8	56
9334 -15	Blender House	4th Rolled Powder	1	4	4
	EXTERIOR FIXTURES	·			717
420 -02	Acid Waste Disposal (C-Line)	Waste Acid	1	8	8
2019 -00	Roiling Jub House	NC. B-Line	3	50	150
2022 -00	Boiling Tub House Beater House Poacher & Blending House	NC, B-Line	3	40	120
2024 -00	Poacher & Blending House	NC. B-Line	3	30	
3513 -00	C-1 Press & Cutting House	Green, C-Line	3	50	
4912 -40	Forced Air Dry House	Pilot B	21	10	•
4912 -11	LG Mold Loading House MK 43 Sawing and Inhibiting	Cast Prop. (Rocket)	2	6	
4912 -03	MK 43 Sawing and Inhibiting	Cast Prop. (Rocket)	1	4	4
4915 -00	Small Grain Mold Assembly	Cast Prop. (Rocket)	1	7	
4921 -00	Inspect/Clean NG Tanks *	Cast Prop. (Rocket)	1	21	21
	TOW Launch Saw House		1	8	8
5008 -01	15 Inch Press House	Pilot A	3	2	
6304 -00	Paste Blending House	1st R P	1	20	20
7113 -00	Roll House (Rolled Powder)	1st R P (F-Line)	1	130	
9310 -02	Roll House (Rolled Powder) Rolled Powder Building	4th Rolled Powder	2	300	600
TOTAL FOR	INTERIOR FIXTURES				1536

RSH.
. (8)

SUBJECT		AEP NO		_
		SHEET	OF	
DESIGNER	M	DATE		_
CHECKER		DATE		_

Current mal'l corte:

New mal'l costs

Carrent labor !

New labor:

CONSTRUCTION COST	ESTIMAT	ΓE		DATE PREPARED	, כ	SHEET 4	or 10			
ENERGY ENGINEERING	ΔΝΔΙ Υς	15	······································		BASIS FOR ESTIMATE					
LOCATION					CODE A (No design completed)					
RADFORD ARMY AMMUN	I I I UN F	LANI			CODE C (Final design)					
REYNOLDS, SMITH AND	HILLS			1C.	07	HER (Specify)				
DRAWING NO. GP-N-3		ESTIM	ATOR T	. Todd		CHECKED BY				
	QUANT	TY		LABOR	MATERIAL		TOTAL			
Tucaud to fluor, flood Summary	NO. UNITS	UNIT	PER	TOTAL	PER	TOTAL	COST			
Replace in consescent	359	fivt.	0.98	352	37.32	13398	13750			
floods with 13W PL										
fluorescent floods										
Sales Tax	4.5%					603	603			
FICA/Insurance	20.0%	•		70			70			
Subtotal				422		14001	14423			
Overhead	15.0%						2163			
Profit	10.07						1659			
Performance Bond	1.07						182			
Herales Support	6.0%						1106			
Contingency	10.0%						1953			
Construction Cost							21486			
						·				
		·			·					
				·						
						·				
		ļ								

P. 5 of 10 GP-N-3

INCANDESCENT LAMPS

GENERAL ELECTRIC LAMPS

	A-21	G-16	6½ R-40						G-40	7	H-30
Bulb	Base	Prod. Code	Lamp Ordering Code	Volts	Pkg.	Fila- ment Desgn	MOL (In.)	LCL (In.)	Rated Avg. Life Hours	App. Init Lum.	DESCRIPTION See Incandescent footnotes pg. 46
100 W	ATTS (Cont	1 nued) 39627	100G40/W	120	24	cc-e	61%		2500	1280	Pearl (White)
G-40	Medium	49781	100G40/W	6PK 120	6	CC-6	615/15		2500	1280	Pearl (White) Globe. Moonglow
G-40	Medium	13046	100G40/W/L	120	24	cc-e	61 7 16		4000	1220	Pearl (White) Globe
A-23	Medium	18599	100A/B	120	120	CC-6	515/15		750		*B1ue
A-23	Medium		100A/G	120	120	CC-6	519/15		750		*Green
A-23	Medium		100A/B	120	120	CC-6			750 750		*Orange *Red :
A-23	Medium		100A/R	120	120 120	CC-6	51%s	2 1/16	3000	1280	ClearTraffic
A-21	Med.(BB)	18363	100A21/TS	120				.,-			Signal, Rated Watts: 98. BDTH (78)
A-21	Med.(BB)	18365	100A21/TS	130	120		4 3/8	2 1/18	3000	1280	01
A-21	Med.(BB)		100A21/SP	120	.120		43/2	3	200	1340	ClearSpotlight Light I.FMed-
A-21	Med.(BB)	17860	100A21/4SP	120	120	C-5	4 1/1	3	200		ical Spotlight
			100100	120	120	cc-6	51%	4 1/16	750		Inside Frost
A-23	Medium		100A23 100A23/20	120	120				1000		ClearCommer-
A-23	Med.(88)	10542	100A23/20				- 7.0				cial Oven
G-16½	S.C.Bay.	18717	100G16½/29SC	120	60	CC-1		1 3/4	200	1660	ClearSpotlight. BDTH (7,86,99)
G-16%	D.C.Bay.	18721	100G16½/29DC	120	60	CC-1		1 3/1	200	1660	
G-16%	D.C.Bay.	18723	100G16%/29DC	130	60	CC-1		1 3/8	200	1660	Reflector Flood.
R-40	Medium	18871	**100R/FL	120	24	CC-6	6 %		2000	1190	I.F. (4,35,56)
				130	24	CC-6	6 %		2000	1190	*****
R-	Medium		**100R/FL	120	24	CC-6			2000	1190	Refl. SpotLight
R-4	Medium	18876	100R/SP	120	44		G 7/6		2000		I.F. (4,35,56)
T-8½	Medium	18808	100T8½/9	120	24	CC-1	3 5 1/1	3	50	1920	MicroscopeANSI:
1.02	med i dili	10050	10010/2/3		_		.,				EDR (22,86,99)
T-10	D.C.Med.	18905	100T10/7	6	24	C-6	51/2	2 3/16	50		ffContour Pro-
(HRG)	Ring										jector ANSI: CPS
、	•			_			- 2/	- 11			(1,86.99) ffContour Pro-
T-10	Med.Pref	18907	100T 10P	6	24	C-6	5 1/4	2 1/15	50		jector ANSI: CPT
(HRG)											(1,86,99)
	M	10510	100433	12	120	C-6	51%	4 1/:5	1000		Inside Frost (53)
A-23 PAR-38	Medium Med.Side		100A23 100PAR38/FL	12	12	Č-6	4 %		1000	1400	PARMine Flood
(HRG)	Prong	10022	TOOPARSO/TE	•		• •				٠.	(58)
	Med.Skir	18824	100PAR38/2FL	12	12	C-6	5 1/16		1000	1400	PARFlood
(HRG)	(BB)										(14.56.96)
PAR-64	Scr.Term	>39394	100PAR64	6	12	C-6	4		. 50		CailometerVery Narrow Spot.
(HRG)		•									Filament shielded
	M (88)	- 20500	100000/01	12	. 24	C-6	5 1/4		2000	1200	Reflector Flood
R-30	Med.(BB)	>39503	100R30/CL	14		• •	- / •				Clear (4,14,53)
(HRG) T-8	S.C.Bay.	18881	100T8/1SC	20	24	CC-6	3	23/16	50		Clear-Contour Map
	J. G. Day.		10010, 100				٠.				ANSI: BZA
								612 /	4000		(8,31,61,86,94)
A-21	Medium		100A/RS_	30	120		51/4	313/16 3	1000 500	1610	I.FRough Serv. ClearLocomotive
A-21	Med.(BB)	17845	100A21/3	32	120	C-5	4 3/8	3	300	1310	Headlight (13)
	M = = 11 · · · ·	40004	1004	34	120	C-9	517:0	4 1/16	1000	2160	I.FTrain
A-23	Medium		100A 100A/BB	34	120		51%	4 1/15	1000	2160	М И
A-23 PAR-46	Med.(BB) S Scr.Term		100A/BB	60	12	CC-2	V 31/4		800		Mine Locomotive
(HRG)	(88)	363	1001 ARTO	- -	_						Headlight (71)
A-21	Medium	17976	100A	230	120			313/15	1000	1280	Inside Frost
A-21	Medium		100A	250	120				1000	1280	T E Euch Commit
A-21	Med. (BB)		100A/99	230-	120	C-7A	51/4	313/18	2500		I.FExt. Serv.
			1001/00	250 250	120	C-17	51/4	317/16	1000	960	I.FRough Serv.
A-21	Medium	18334	100A/RS	23U	120	,		·			

Medium

New product listing.
In "base up" use, heat eventually may deteriorate paper-lined or plastic sockets.
Source W x H: 4.5 x 3.0mm. Burn base up.
If Filament offset .100" +-.030" from base axis.
FOR ENERGY SAVING in deep down lights consider the 75ER30 lamp shown on page 23. The resulting sest savings are shown on page 5.

GENERAL ELECTRIC LAMPS

INCANDESCENT LAMPS

INCANDESCENT

R-40

Bulb	Base	Prod. Code	Lamp Ordering Code	Volts	Pkg.	Fila- ment Desgn	MOL (In.)	LCL (In.)	Rated Avg. Life Hours	App. Init	DESCRIPTION See Incandescent footnotes pg. 46
150 WA	ATTS (Con Med.Side	tinued) 41966	150PAR46/3NSP	125	12	CC-1	3 4		2000	1500	
(HRG) PAR-46	Prong Med.Side	41968	150PAR46/3MFL	125	12	CC-1	3 4	· ==	2000	1500	(11,56,58,96) Medium Flood
	Prong Scr.Term	19517	150PAR46	125	12	C-13	3 1/4		1000		(11,56,58,96) Mine Locomotive
(HRG) Par-46 (HRG)	(BB) 3-Prong	>35327	150PAR46/TS	115	12	cc-e	4		6000		Headlight Traffic Signal Stippled
(MKG)		-							. 1 .		Reflector Tapioca lens cover (2)
	Med.Side	44933	150PAR/3VWFL	125	12	C-13	4 %		2000		f MineWide Flood (56,58,96)
(HRG) PAR-38 (HRG)		19497	150PAR/4	125	12	C-13	4 1/15		2000		1 MineSpot (56,58,96)
	Prong Med.Skir (BB)	19509	150PAR/5	125	12	C-13	5 1/16		2000		1 MineSpot (14,56,96)
PAR-46 (HRG)	Scr.Term (BB)	19518	150PAR46/3	175	12	C-13	3¾		800		Mine. Locomotive Headlight (71)
R-40	Medium	19797	**150R/FL	120	24	cc-e	6 %i5		2000	1900	Reflector Flood ANSI: DWC
R-40	Medium	>16445	150R/FL-1	120	30	cc-6	6 %		2000	1900	(4,14,35,56) Standard Re- flector Flood
₹-40	Medium	19799	**150R/FL	130	24	cc-6	6 1/16		2000	1900	(4,14,35,56) Reflector Flood
R-40	Med.(BB)	14715	15OR/FL/CVG	130	24	cc-e	6 %		2000		(4,14,35,56) >>Refl. Flood COV-R-GUARD™
2-40	Medium	19783	15OR/SP	120	24	CC-6	6 %	-	2000	1900	(4.35,56,83) Refl. SpotLight
2-40	Medium	>16446	150R/SP-1 6PK	120	30	cc-e	6 %		2000	1900	I.F. (4,14,35,56) Standard Reflector
R-40	Medium	19785	15OR/SP	130	24	cc-e	6 %		2000	1900	Spot (4,14,35,56) Reflector Spot Light I.F.
R-40	Medium	19844	150R/A	120	24	CC-6	6 %		2000		(4,14,35,56) ReflectorAmber
2-40	Medium	19823	150R/B	120	24	CC-6	6 %		2000		(14,35,36) ReflectorBlue
R-40	Medium	19827	150R/BW	120	24	CC-6	6 1/15		2000		(14,35,36) ReflectorBlue-
R-40	Medium	19831	150R/G	120	24	CC-6	6 %		2000		White (14,35,36) ReflectorGreen
₹-40	Medium	19835	150R/PK	120	24	cc-e	6 %		2000		(14,35,36) ReflectorPink
₹-40	Medium	19841	150R/R	120	24	cc-6	6%		2000		(14,35,36) ReflectorRed
R-40	Medium	19851	150R/Y	120	24	CC-6	6 %		2000		(14,35,36) ReflectorYellow
R-40	Med.(BB)	41627	150R40/PL 6PK	120	24	cc-e	6 %		2000		(14,35,36) Reflector Plant Light*Gro and
2-40	Medium	44674	150R40/TB	120	24	cc-e	6 %5		2000		Sho" (4,14,56) Jewelry Spot Re- flector Transpar-
1-40	Medium	44675	150R40/TB	130	24	cc-e	6 %		2000		ent Daylight Blue (4,14,35,56,76) Jewelry Spot Re-
									*	. 6	flector Transparent Daylight Blue (4,14,35,56,76)
P-25	Med.(88)	19372	150P25/10	120	60	C-5	43/4	3	200	2100	Light I.FSpot- light. Hard glass button

New product listing.
> Teflon® Coated. Teflon is a registered trademark of Dupont.

Operating position horizontal with locating lug up or down, and with lamp supported by bulb rim.

* FOR ENERGY SAVING in deep down lights consider the 75ER30 lamp shown on page 23 . The resulting cost savings are shown on page 5.

	66	Lighting											A. T.
			Π		DAILY	MAN-			BARE	COSTS	:	TOTAL	
	16	66 100 Lighting	L CR	REW	OUTPUT	HOURS	UNIT	MAT.	LABOR	EQUIP.	TOTAL	INCL DEP	1
1401	<i></i>	90 watt	-	Elec	.30	26.670	C	5,140	645		5,785	6,600	140
	1650	135 watt			.20	40	ĺ	6,905	970		7,875	9,025	
-	1700	180 watt	t		.20	40		7,308	970		8,278	9,475	
	1750	Quartz line, clear, 500 watt	ĺ		1.10	7.270		1,872	175		2,047	2,325	1 1
-	1760	1500 watt	T	 	.20	40		3,427	970		4,397	5,200	i i
•	1800	Incandescent, interior, A21, 100 watt	ł	1	1.60	5		173	120		293	370	
}	1900	A21, 150 watt	T	1	1.60	5		(211)	120		331	410	
	2000	A23. 200 watt			1.60	5		227	120		347	430	
	2200	PS 30, 300 watt	T	\vdash	1.60	5		330	120		450	540	l i
	2210	PS 35, 500 watt	ł		1.60	5		576	120		696	810	1 1
ŀ	2230	PS 52, 1000 watt	t	T	1.30	6.150		1,525	150		1,675	1,900	1 1
l	2240	PS 52, 1500 watt			1.30	6.150		2,382	150		2,532	2,850	
	2300	R30. 75 watt	t		1.30	6.150		375	150		525	630	1 1
	2400	R40, 150 watt			1.30	6.150		408	150		558	670	
	2500	Exterior, PAR 38, 75 watt	t	+	1.30	6.150		566	150		716	840	
	2600	PAR 38, 150 watt	ı		1.30	6.150		525	150		675	795	
	2700	PAR 46, 200 watt	╁┈	\dagger	1,10	7.270		1,928	175		2,103	2,375	1
•	2800	PAR 56, 300 watt			1.10	7.270		2.193	175		2,368	2,675	
	3000	Guards, fluorescent larmo, 4' long	Н	†	1	8		375	195		570	695	1
	3200	8' long	ļ		.90	8.890		535	215		750	905	'
	0010	RESIDENTIAL FIXTURES	╈	<u>. </u>	1.55	0.000							145
	0400	Fluorescent, interior, surface, circline, 32 watt & 40 watt	1	Elec	20	.400	Ea.	48	9.70		57.70	67	İ
1	0500	2' x 2', two U 40 watt	Ť	Ŧ	8	1		66	24		90	110]
ı	0700	Shallow under cabinet, two 20 watt			16	.500		45	12.15		57.15	67	l
- 1	0900	Wall mounted, 41, one 40 watt, with baffle	1	+-	10	.800	\sqcap	41	19.40		60.40	74	1
	000	Incandescent, exterior lantem, wall mounted, 60 watt	1		16	.500		36	12.15		48.15	57	
	2100	Post light, 150W, with 7' post	t	1	4	2		104	49		153	185	1
	2500	Lamp holder, weatherproof with 150W PAR	1		16	.500		16	12.15	ł	28.15	35	1
	2550	With reflector and guard	T	1	12	.667		31	16.15		47.15	58	7
	2600	Interior pendent, globe with shade, 150 watt	1		20	.400		78	9.70	İ	87.70	100	
150	0010	TRACK LIGHTING	╈								Ī		150
130	0080	- 1 4 streets 46 so when	1,	Elec	6.70	1.190	Ea.	33	29		62	79]
	0100	8' section	Ť	Ť	5.30	1.510		48	37		85	105	1
	0200	12' section	1		4.40	1.820		81	44		125	155	1
	8300	3 circuits, 4' section	1		6.70	1.190		36	29		65	82	1
	0400	8' section	ı		5.30	1.510		48	37		85	105	1
	888	8' section 12' section Feed kit, surface mounting	T	1	4.40	1.820		88	44		132	160	1
	1000	Feed kit, surface mounting	1		16	.500		12	12.15		24.15	31	_
	1100	End cover	十		24	.333		1.98	8.10		10.08	14.05	i i
	1200	Feed kit, stem mounting, 1 circuit			16	.500		16	12.15		28.15	35	1
	1300	3 circuit	T	T	16	.500		16	12.15		28.15	35	1
	2000	Electrical joiner for continuous runs, 1 circuit	1		32	.250		6.55	6.05		12.60	16.10	긔
:	2100	0	T	T	32	.250		12.10	6.05		18.15	22	1
	2200	Fixtures, spotlight, 150 PAR	1		16	.500		47	12.15		59.15	70	1
	3000	Wall washer, 250 watt tungsten halogen	十	1	16	.500		101	12.15		113.15	130	1
	3100	Low voltage, 2% wett, 1 circuit	1		16	.500		102	12.15		114.15	130	
	3120	3 circuit	1		16	.500		109	12.15		121.15	140	
	".2"			٠			1	<u>L</u>					

E	66	Lighting								NA.	E		. 1
7					DAILY	MAN-				COSTS		TOTAL	
ı	66	100 Lighting	CF	REW	OUTPUT	HOURS	UNIT	MAT.	LABOR	EQUIP.	TOTAL	INCL CAP	L
ह्य	5100	175 watt metal halide	1	Elec	8	1	Ea.	479	24		503	565	135
	5110	250 watt metal halide		1	8	1		500	24		524	585	Į
-	5120	150 watt high pressure sodium			8	1		535	24		559	625	1
	5130	250 watt high pressure sodium			8	1 1		556	24		580	645	1
	5140	72"H 18" sq., 400 watt metal halide	Г	Т	8	1		525	24		549	615	l
- 1	5150	250 watt high pressure sodium	l		8	1		556	24		580	645	1
ŀ	5160	400 watt high pressure sodium	Π	$\overline{}$	8.	1		581	24		605	675	1
	5190	Portable rectangle, 6" high 13.5" x 20"		•									1
-		175 watt metal halide	1	Elec	12	.667	Ea.	293	16.15		309.15	345	l
	5200	250 watt metal halide	i	1	12	.667		314	16.15		330.15	370	1
	5210	150 watt high pressure sodium	Т		12	.667		335	16.15		351.15	390	
	5220	• .	1		12	.667		360	16.15		376.15	420	1
	5230	250 watt high pressure sodium	t	+	12	.667		365	16.15		381.15	425	1
- 1	5240	8" high 18" x 24", 400 watt metal halide			12	.667		376	16.15	i	392.15	435	i
- 1-	5250	250 watt high pressure sodium	╁	+	12	.667		398	16.15		414.15	460	1
•	5260	400 watt high pressure sodium	1	1	12	.667		324	16.15	1	340.15	380	1
Ĺ	5270	Portable square, 15" high 13.5" sq., 175 watt metal halide	╄	┿		.667	\vdash	376	16.15		392.15	435	1
ļ	5280	250 watt metal halide			12	.667		360	16.15		376.15	420	1
L	5290	150 watt high pressure sodium	╀	╁	12	.667	-	386	16.15		402.15	450	1
I	5300	250 watt high pressure sodium	1		12			355	61	Ί	416	480	
	5400	Pendent 16" round/square, 175 watt metal halide	╄	+-	3.20	2.500	\vdash		72	+	442	515	1
-	5410	250 watt metal halide			2.70	2.960		370			479	555	ı
ı	5420	400 watt metal hailde	1	—	2.40	3.330	\vdash	398	81 61		459	525	1
Ī	5430	150 watt high pressure sodium	ı		3.20	2.500	1	398	1		500	575	ı
١	5440	250 watt high pressure sodium	1	┸	2.70	2.960	igspace	428	72	 			4
	5450	400 watt high pressure sodium	1	¥	2.40	3.330	+	454	81	1	535	620	Ì
4					<u> </u>			ļ	ļ		-		Ļ
40	U010 L	AMP8	1			1	1	1					1
	0080	Fluorescent, rapid start, cool white, 2' long, 20 watt	11	Elec	1	8	L C	348	(195)	ļ	543	670	-
1	0100	4' long, 40 watt			.90	8.890		198	215	1	413	535	١
	0120	3' long, 30 watt	1.		.90	8.890		442	215	ļ	657	805	4
	0150	U-40 watt		\top	.80	10		874	245		1,119	1,325	1
1	0170	4' long, 35 watt energy saver			.90	8.890		270	215		485	615	4
	0200	Slimline, 4' long, 40 watt	Т	T	.90	8.890		618	215		833	995	ı
	0300	8' long, 75 watt	1		.80	10		577	245		822	990	4
	0350	8' long, 60 watt energy saver	1	Т	.80	10		603	245		848	1,025	1
	i i	High output, 4' long, 60 watt			.90	8.890		750	215		965	1,150	╛
	0400	8' long, 110 watt	十	\top	.80	10		775	245		1,020	1,200	ı
	0500	Very high output, 4' long, 110 watt	ļ		.90	8.890		1,285	215	İ	1,500	1,725	_
	0520		+	+	.70	11.430		1,285	275		1,560	1,825	T
	0550	8' long, 215 watt			.30	26.670	1 1	2,142	645		2,787	3,300	١
	0600	Mercury vapor, mogul base, deluxe white, 100 watt	╅	+	.30	26.670		1,663	645		2,308	2,775	٦
	0650	175 watt	1		.30	26.670		2,968	645	Ì	3,613	4,225	ı
	0700	250 watt	+	+	.30	26.670		2,340	645		2.985	3,525	7
	0800	400 watt	1		.20	40	1	5,100	970		6,070	7,025	1
	0900	1000 watt	+	+			+	3,749	645		4,394	5,075	7
	1000	Metal halide, mogul base, 175 watt			.30	26.670		1	645	İ	5,357	6,125	ı
	1100	250 watt	4	+	.30	26.670	_	4,712	645	_	5,031	5,775	7
	1200	400 watt			.30	26.670	'	4,386	1		10,864	12,300	١
	1300	1000 watt	+	4	.20	40	+	9,894	970	+	10,930	12,400	1
		1000 watt, 125,000 initial lumens	1		.20	40		9,960	970		I.	11,600	ı
	1320	1000 Watt, 123,000 Milital Militals		-	.20	40	1-	9,268	970	-	10,238 5,357	6,125	4
		1500 watt.	1				- E	1 4713	645	1	1 3.33/	£ 0.123	
	1330	1500 watt	╁	\top	.30	26.67		4,712	1				ı
	1330 1350	•	$\frac{1}{1}$.30 .30	26.670 26.670		4,712	645		5,516	6,300	4
	1330 1350 60	1500 watt Sodium high pressure, 70 watt 100 watt	$\frac{1}{1}$			1		4,871 5,059	645 645		5,516 5,704	6,300 6,525	-
	1330 1350 60 1370	1500 watt Sodium high pressure, 70 watt 100 watt 150 watt			.30	26.67		4,871	645		5,516 5,704 6,025	6,300 6,525 6,875	
	1330 1350 60 1370 1380	1500 watt Sodium high pressure, 70 watt 100 watt 150 watt 250 watt			.30	26.67 26.67	0	4,871 5,059	645 645		5,516 5,704 6,025 6,372	6,300 6,525 6,875 7,250	
	1330 1350 60 1370 1380	1500 watt Sodium high pressure, 70 watt 100 watt 150 watt 250 watt 400 watt			.30 .30 .30	26.67 26.67 26.67	0	4,871 5,059 5,380	645 645 645		5,516 5,704 6,025 6,372 14,322	6,300 6,525 6,875 7,250 16,100	
	1330 1350 60 1370 1380	1500 watt Sodium high pressure, 70 watt 100 watt 150 watt 250 watt			.30 .30 .30	26.67 26.67 26.67 26.67	0	4,871 5,059 5,380 5,727	645 645 645 645		5,516 5,704 6,025 6,372	6,300 6,525 6,875 7,250	

CONTRACTOR PRI

GP-N-3 pp 9 of 10

STD. PKG5.

PKGS WGHTON LIST QTYE (LBS.) PRIC

CODE

REFLECTA-STAR"—COMPACT FLUORESCENT FLOODLIGHT-SERIESIN

		3.3.4.5.3.4.5.4.5.4.5.4.5.4.5.4.5.4.5.4.		(44) 1 1 3 m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 3 7 1 3 7 7	The state of the s
		以上的1900年中央企业中国的基础的基础的企业。		12 (14)	1.	A PARTY NEWS
10513T		PL5 3.75" Diameter Reflector	10,_	_, 11	.64.32	32.16
10514T		PL5 4.50° Diametes Reflectors	. 10	:11 2	6432#	
10515T		PL5 5.25* Diameter Feffector	10	11	64.32	1. 1512
10923		PL9Q 3.75" Diameter Reflector:	10	n ;	7314	
10924		PL9Q 4.50" Diameter Reflector	ີ 10 ີ	11	73.14	SEASON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF
10925		PL9Q 5.25 Diameter Reflector	102	7 × 11	7314	
11324		PL13Q 4.50* Diameter Reflector	10	11**	74.64W	
11325		PL13Q 5:25" Diameter Reflector	10	11	74.64	3732
-G		Gold reflector option		عادانات	C + 4	
-	(IIII DIII)	available in all units ADD	:		5.25	2.63
	معاري المعتدان	a a company of the control of the co	-			
10003-P*	***	Pink Lens	10	1	4.35	2.18
10003-W=====		Warmtone Lene	10-	1	4354	
10003-WF		Warmtone Frost Lens	10	1	4.35	72.18
10003-PF		Pink Frost Lens	10	1	4.35	2.18
10003-CF		Clear Frost Lens	10	1	3.00	, 1,50
10003-C		Clear Lens (Standard)	10	1	3.00	1.50
		Aller and the State of the Control o	10		4.35	**************************************
10003-U		Ultraviolet Filter Insert Disk	10		4.00	د اه پيد او د او
XT-125		Socket extender—extends unit 1.25"	25	4	4.95	2.48
V1-123		Adding autolido and has				**************************************

^{*}IMPORTANT: To order optional lenses or filters, please specify reflector size. The last digit of the product code number for the Reflect-A-Star Series indicates the reflector diameter. "3" indicates 3¾," "4" indicates 4½" and "5" indicates 5¼."

RECESSED DOWNLIGHT KIT'

5111325 5121325 5131325

Clear Reflector Trim **Gold Reflector Trim Black Reflector Trim**

88.32 12 70 176.64 176.64 88.32 12 70 176.64

13Quad: 900 lumens as per Bruce Pelton

year on a gar facility.

^{*}The recessed downlight kit consists of a frame-in kit, reflector trim in clear, gold or black Alzak* aluminum and a Reflect number 11325 with standard reflector and lens-The state of the s

[&]quot;Fixture price includes lamp: "PL" or "PLQ" refers to lamp type only. GE, Osram; Philips or Sylvania lamps will be supplied at the of Lumatech. All Reflect-A-Star* and MicroLamp* units are @ and CSA Listed.

MicroLampt FLUORESCENFADAPTOR SERIES

20510 20710 20910		PL5 PL7 PL9	50 28 50 28 50 28	28.17 14.09 28.17 14.09 28.17 14.09
20920 21320		PLQ9	50 28 50 30	39.03 19.52 39.03 19.52
FLUORES	CENT REPLACEMENT LAMPS			
40510 40710 40910 41310		5W Fluorescent "PL" lamp 7W Fluorescent "PL" lamp 9W Fluorescent "PL" lamp 13W Fluorescent "PL" lamp	50 4 50 4 50 5 50 6	9.00 4.50 9.00 4.50 9.00 4.50 9.75 4.88
40920		9W Fluorescent "PLQ" lamp	50 7	15.75 7.88 V

CONDITIONS OF SALE

13W Fluorescent "PLQ" lamp

ORDER ACCEPTANCE

Orders are subject to approval at Lumatech corporate headquarters.

PRICES

41320

Prices are subject to change without notice. Lumatech reserves the right to accept and bill all orders at prices in effect at the time of the shipment.

TERMS

Net 30 days on approved credit only. 11/2% per month will be assessed on past due invoices. Any account submitted for collection is subject to reasonable attorney fees and costs.

FREIGHT

Transportation costs will be pre-paid and billed F.O.B. Oakland, California.

RETURNS

No merchandise may be returned without prior written authorization. Authorization may be requested within 30 days from the date of original shipment. All returns will be subject to a minimum handling and factory inspection charge of 25% of invoiced amounts, plus freight, except on products considered by Lumatech to be defective in workmanship and materials.

CLAIMS FOR DAMAGE OR LOSS IN SHIPMENT

It is the responsibility of the consignee to file a claim with the transportation company in the event of lost or damaged merchandise. Immediately upon receipt of the shipment, the consignee should check for loss or damage. In the event such has occurred the consignee should file a claim with the transportation company promptly.

CANCELLATIONS

Orders are not cancelable except on payment for all costs incurred, engineering work performed, any materials purchased or commitments made on the part of Lumatech. Lumatech reserves the right to assess a minimum cancellation charge equal to 25% of the original purchase price of the order placed by the customer.

PRODUCT SPECIFICATIONS

Subject to change without notice.

CATALOG ERRORS

Every effort is made on the part of Lumatech Corporation to provide accurate pricing, dimensional and physical description information, etc. in our literature and price lists. However, as this information is subject to change without notice, we cannot accept the responsibility for any loss or damages due to informational errors in our publications. We invite your inquiry regarding up to date information.

15.75

MINIMUM ORDER

Minimum net invoice amount is \$50.00. Any order under \$50.00 is subject to a \$10.00 handling charge.

LIMITED WARRANTY

The REFLECT-A-STAR* and MicroLamp* series fixtures are warranted to be free from defects in workmanship and materials, as manufactured, for a period of three years from the date of original invoice. Lamps are warranted for 90 days only.

Our invoice covers only replacement or repair at our factory of the defective part(s), to the original purchaser, and excludes any responsibility for labor or freight expense incurred by the purchaser or others, for servicing such claim during the warranty period. Lumatech reserves the right to issue credit, repair or replace defective merchandise, at our option, upon receipt of written notification by the original purchaser of the alleged defect, within the warranty period. Lumatech further reserves the right to examination of the alleged defective product, or proof satisfactory to Lumatech of the defect. This limited warranty is in lieu of all other responsibility for labor costs in connection with the installation, removal or replacement of warranted products, or for any consequential..... damages. Lumatech further reserves the right to refuse to honor the above warranty for any product(s) altered, improperly installed, or installed in application for which not intended.

For Authorized Dealer Contact:

REYNOLDS.	SMITH	AND	HILLS
ARCHITECTS	ENGINEER	S · PL	ANNERS
t t	NCORPORATE	D	

RIESER RA	AAP Lighting Projects	. AEP NO	200	037900	20
Sincer	ura Calcs.		1	of 3	
DESIGNER	T. Todd			×	

GP-N-4 GROUP RELAMFING PROJECT:

Replace all 40 W fluorescent lange with 34 W fluorescents

Energy Savings = 6 W × 24 hr × 260 days = 37.4 km = 0.128 HHETU yr yr yr yr yr yr

Cost savings = 37.4 this x \$0.03026 = \$1.13

Cost of relamping (1980 Means Electrical): Mat'l = \$2.70, Labor = \$2.15

Adjusted 1-c decetion & experience) finds Mutil - 2.70 · 1.002 = 2.71 Labor - 2.15 × 0.032 × 1.2 = 1.76

Construction cost = $(1.045 \times ^{1} 2.71 + 1.2 \times ^{1} 1.70) = 1...)$

Simple ganback = \frac{\frac{77.45}{1.13/45}}{1.13/45} = 6.6 yr

life of lamp = 20,000 hr x mr = 3.2 mr < 6.6 yr payback

=> Not recommended since life of lamp is less than payback.

166	Lighting	V.	. !	1 1	12		1 . 2.				To January	
	66 100 Lighting			DAILY	MAN-				COSTS		TOTAL	
	66 100 Lighting	CR	EW	OUTPUT	HOURS	UNIT	MAT.	LABOR	EQUIP.	TOTAL	INCL DEP	
135 5100	175 watt metal halide	11	Elec	8	1	Ea.	479	24		503	565	135
5110	250 watt metal halide	╀		8	1		500	24		524	585	
5120		1		8	1		535	24		559	625	
5130		╀	-	8	1		556	24		580	646	
5140	·			8	1		525 556	24 24	•	549 580	615 645	
5150		╀	\vdash	8 8	1		581	24		605	675	
5160	7 .	ı	*	0	•	•	361	29		000	0/3	
5190		1	Elec	12	.667	Ea.	293	16.15		309.15	345	
5200	1	Ι''		12	.667	Ī	314	16.15		330.15	370	
5210 5220		t	П	12	.667		335	16.15		351.15	390	
5230	1	ĺ		12	.667		360	16.15		376.15	420	
5240		T	П	12	.667		365	16.15		381.15	425	
5250				12	.667		376	16.15		392.15	435	
5260				12	.667		398	16.15		414.15	460	
5270	1	ł		12	.667		324	16.15		340.15	380	
5280		П		12	.667		376	16.15		392.15	435	
5290				12	.667		360	16.15		376.15	420	
5300				12	.667		386	16.15		402.15	450	
5400	Pendent 16" round/square, 175 watt metal halide	L		3.20	2.500		355	61		416	480	
5410	250 watt metal halide		ll	2.70	2.960		370	7:2		442	515	
5420	400 watt metal halide	<u> </u>		2.40	3.330		398	81		479	555	İ
5430	150 watt high pressure sodium	l		3.20	2.500		398	61		459	525	
5440	250 watt high pressure sodium	┖		2.70	2.960	_	428	72		500	575	
5450	400 watt high pressure sodium	ı	↓	2.40	3.330	♦	454	81		535	620	
0		┞-										140
148 0010		١.,	-		8	С	348	195		543	670	140
0080		 ' '	Elec	.90	8.890	1	198	215		413	535	Ì
0100	•	1		.90	8.890		442	215		657	805	
0120		╁	\vdash	.80	10		874	245	L	1,119	1,325	1
0150				.90	8.890		(270)	(215)		485	615	
0200		十		.90	8.890	-	618	215		833	995	1
0300		1		.80	10		577	245		822	990	
0350		T		.80	10		603	245		848	1,025	1
0400		1		.90	8.890		750	215		965	1,150	1
0500		Т		.80	10		775	245		1,020	1,200	1
0520	1			.90	8.890		1,285	215		1,500	1,725	1
0550		П		.70	11.430		1,285	275		1,560	1,825	
0600	Mercury vapor, mogul base, deluxe white, 100 watt	L		.30	26.670		2,142	645		2,787	3,300	
0650	175 watt			.30	26.670		1,663	645		2,308	2,775	
0700	250 watt	L	_	.30	26.670		2,968	645		3,613	4,225	1
0800	400 watt			.30	26.670		2,340	645		2,985	3,525	
0900		╄	<u> </u>	.20	40	-	5,100	970		6,070	7,025	ł
1000	Metal halide, mogul base, 175 watt			.30	26.670		3,749	645		4,394	5,075	
1100		╀	-	.30	26.670		4,712	645		5,357 5,031	6,125 5,775	ł
1200		ı		.30	26.670		4,386	645 970		10,864	12,300	
1300		╀	 -	.20	40 40	\vdash	9,894 9,960	970		10,930	12,400	1
1320	_	1		.20 .20	40		9,268	970		10,238	11,600	
1330		╁	+-	.30	26.670	\vdash	4,712	645		5,357	6,125	1
1350	•			.30	26.670		4.871	645		5,516	6,300	1
1000		+-		.30	26,670	_	5,059	645		5,704	6,525	1
1370	i e e e e e e e e e e e e e e e e e e e			.30	26.670		5,380	645		6,025	6,875	
1380		1		.30	26.670		5,727	645		6.372	7,250	1
1400 1450				.20	40		13,352	970		14,322	16,100	l
1500		1		.30	26.670		3,963	645		4,608	5,300	ł
1550	·		↓	.30	26.670		4,386	645		5,031	5,775	<u></u>
1 1330											199)

4-FOOT, R	APID-START LAMPS		z/	A STATE OF THE STA	A CONTRACT	STATE OF STA	de de la constante de la const	ST THE PROPERTY OF	s sugar	
General			\$ 1	3		20	35	a ^g	20	Service and service
Electric	FIOCW/RS/Whit Wass Misses	4	4 .	ro 69.	3	· 6:		• • • • • • • • • • • • • • • • • • •	€	4 2 4
	F40CW/RS/WM Watt-Miser. P40LW/RS/WMII Watt-Miser II. P40SP41/RS/WMIP Watt Miser II.				2 87.4	1% 6	2 4,15 2 4,15	20,0		- \$2.27 -
						P% 70				
	F32T8/SP41/RS (not a retrofit; see footnote)	***************************************	0 2,83 2 2,73							
GTE Sylvania				4 85.	0 99.0	75	4,10	0 20,0	00 \$1.	
012 5y. 	F40CW Standard F40CW/RS/SS SuperSaver F40LW/RS/SS SuperSaver			0 69.	3 _	62	4,20	0 20 0	~	
	F40LW/RS/SS SuperSaver	34	4 2,44		8 81.1					\$2.27 —
						6 48				
						·				
							-,			92 3.48 7.6 months
	FO32 41K/Odman	32	2.60				4,100 3,100	,		
	F40CW Cool White Standard F40/41U Ultratume Trichromatic Standard	32	2,60				4,100			
N.A. Philips	FIOCW Cool White Standard	17.7	Charles in			-		~ 20,00 ~1000 er	00 \$1.9	92 \$3.67 8.7 months
Lighting Corp.	F40/41U Ultratume Trichromatic Standard	40	2,93			67	4,100	20,00	0 ິ⊸	22.26
							4,100			\$6.95
• • •							4,100			53.40
	F40T10/LW-SB/99 Lite White Extended Service	40	-2.72	68.0			4,100 4,100			9.2
·•.						67	4,100			\$5.79
	P40/SPEC41/RW/EW-II SPEC 41 Econ-O-Watt.	34	2,650 2,615				4,100	20,00	0 \$1.4	
			2,620				4,100		51.4	4 \$3.99 4.9 months
	PO32/30 Octohume (Not a retrofit— see footnote)		2,650				4,100 4,100	,		4 \$3.38 9.3 months
8-FOOT/ SLIN	ILINE I AMPS	32	2,650	77.9			4,100			
General		1								
Electric	P96T12/CW Standard. P96T12/CW/WM Watt-Miser. P96T12/LW/WAMI Watt-Miser.		5,800	<i>7</i> 7.3	_	62	4 150	15.000		
			5,150	85.8	88.8%		4,150 4,150	12,000 12,000		\$5.76 —
			5,520	92.0	95.2%		4,200	12,000		
CTE Culmania			5,275	87.9	90.9%		4,100	12,000		
GTE Sylvania	P6T12/CW/Standard P6T12/CW/SS SuperSuper	75	5.800	77.3			· · · · · ·			30.37 0.7 months
	P96T12/CW/SS SuperSaver. P96T12/LW/SS SuperSaver.	60	5,060	84.3	87.2%	62	4,200	12,000		\$3.59
	P6T12/LW/SS SuperSaver. P6T12/D41/SS /I W/N Designer Saver	60	5,380	89.7	92.8%	. 48	4.200	12,000		
	Control of the second of the s	60	5,380	89.7	92.8%		4,150 4,100	12,000	\$3.60	
N.A. Philips	F70112/CVV COOLWhite Standard			بيون يه يه		. تا تانده	4,100	12,000	\$3.60	\$8.62 10.1 months
Lighting Corp.			5,800	<i>7</i> 7.3	-	67	4,100	12,000	_	\$5.75
			5,8 75 5,8 2 0	78.3	101.3%		4,100	12,000	_	\$13.76
			5,150	77.6 85.8	100.3% 88.7%		4,100	12,000	_	\$8.72
	P96T12/SPEC41/FW SPEC 41 Face O M	60	5,345	89.1	92.2%	67 85	4,100	12,000	\$3.60	\$6.66 3.03 months
	F96T12/LW/EW Lite White Econ-O-Watt.	60	5,335	88.9	92.0%	70	4,100 4,100	12,000	\$3.60 \$3.60	
8-FOOT, HIGH	OUTPUT LANGE	60	5,380	89.7	92.8%	51	4,100	12,000	\$3.60	\$8.36 immediately \$8.37 8.7 months
	P%T12/CW/HO Standard									
			8,005	72.8		~~~ 62 ·	··· \ 4.150 ·	12,000		7 '86 74 chartename
			7,220	76.0	90.2%	62	4,150	12,000	\$3.60	\$6.74 \$6.96 0.7 months
	F%T12/SP41/WM Watt-Miser	95	7,655	80.6	95.6%	49	4,200	12,000	\$3.60	\$6.96 0.7 months = \$7.55 2.7 months
			7,840	82.5	97.9%	70	4,100	12,000	\$3.60	\$8.81 6.9 months
/	F%T12/CW/Standard	110	8,000	72.8	_	62	4 200	19 000		
			7,220	76.0	90.3%	62	4,200 4,200	12.000 12.000	S3.60	\$6.95
1	P96T12/D41/SS (LWX) Designer SuperSaver	95	7,655	80.6	95.7%	48	4.150	12.000	\$3.60	\$7.17 22 days \$7.78 2.8 months
			7,655	80.6	95. 7%	67	4,100	12,000	\$3.60	\$7.78 2.8 months \$8.84 6.3 months
Lighting Corp.	POLIZICWING Cont White Standard		8.005	72.8		Manager or 1 and Eng		بريد اسپرت		The second of the second
, g p	P96T12/SPEC41/HO SPEC 41 Standard	110	8,180	74.4	102.2%	67 85	4,150 4,100	12,000	-	\$6.73
			8,160	74.2	101.9%	· 70	4,100	12,000 12,000		\$17.76 \$9.28
			7,220 7,780	76.0	90.3%	67	4,100	12,000	\$3.60	\$6.95, 0.7 months
			7,780 7,650	81.9 80.5	97.2% 95.6%	-∴85 	4,100	12,000	\$3.60	\$17.31 immediately
		95	7,660	80.6	95.7%	- 70 - 51	4,100 4,100	12,000 12,000	\$3.60 \$3.60	\$8.80 immediately
	-HIGH-OUTPUT LAMPS	.	1			×c8≠ "			~a.au	\$7.54 2.7 months
		.								•
General F	%T12/CW/1500 Standard		11,050	51.4	-	62	4, 150	_	\$12.59	
General F Electric F	%T12/CW/1500 Standard %T12/CW/1500/WM Watt-Miser			54.8	91.8%	62	4,150	9,000	57.20	\$12.96 .6 months
General F Electric F	96T12/LW/1500/WMIT Watt-Miser	185	10,140							o months .
General F Electric F	96T12/LW/1500/WMII Watt-Miser II.	· · 185	10,140 10,765	58.2	97.4%	49	4,200	9,000	\$7.20	\$18.49 9.8 months
General F Electric F F P	96T12/LW/1500/WMII Watt-Miser II. 96PG17/CW Power Groove STD	·· 185 ·· 185 ·· 215	10,140	58.2 68.6	97.4% 110.0%	62	4,150	12,000	-	\$18.49 9.8 months \$14.44 —
General F Electric F P P P	%T12/LW/1500/WMI Watt-Miser II. %FG17/CW Power Groove STD. %PG17/CW/WM PG Watt-Miser. %PG17/LW/WMII PG Watt-Miser.	185 185 215 185	10,140 10,765 12,160	58.2	97.4% 110.0% 93.8%	62 62	4, 150 4, 150	12,000 12,000	57.20	\$18.49 9.8 months \$14.44 — \$15.55 1.5 months
General F Electric F F F F F GTE Sylvania P	96T12/LW/I500/WMII Watt-Miser II 96PG17/CW Power Groove STD 96PG17/CW/WM PG Watt-Miser 96PG17/LW/WMI PG Watt-Miser 96PG17/LW/WMII PG Watt-Miser 96PG17/LW/WMII PG Watt-Miser 96PG17/LW/WMII PG Watt-Miser 96PG17/LW/WHO Standard	185 185 215 185 185	10,140 10,765 12,160 10,360 11,025	58.2 68.6 56.0 59.6	97.4% 110.0%	62	4,150	12,000 12,000 12,000	57.20 \$7.20	\$18.49 9.8 months \$14.44 — \$15.55 1.5 months \$19.28 8.1 months
General F Electric F F F F GTE Sylvania P	%T12/LW/1500/WMII Watt-Miser II %F071/CW/WM PG Watt-Miser II %PC17/CW/WM PG Watt-Miser %PC17/LW/WMII PG Watt-Miser %F071/LW/WMII PG Watt-Miser	185 185 215 185 185	10,140 10,765 12,160 10,360 11,025	58.2 68.6 56.0 59.6 53.5	97.4% 110.0% 93.8% 99.8%	62 62 49	4,150 4,150 4,200	12,000 12,000	57.20 \$7.20	\$18.49 9.8 months \$14.44 — \$15.55 1.5 months \$19.28 8.1 months
General F Electric F F F F GTE Sylvania P	%T12/LW/1500/WMI Watt-Miser II %FT12/LW/1500/WMI Watt-Miser II %FT12/LW/VMM PG Watt-Miser %FT12/LW/WMI PG Watt-Miser %FT12/LW/WHO Standard %FT12/LW/VHO/SS Super Savez %FT12/LW/VHO/SS Lite White Super Saver	185 185 215 185 185 195	10,140 10,765 12,160 10,360 11,025 11,050 10,740	58.2 68.6 56.0 59.6 53.5 55.1	97.4% 110.0% 93.8% 99.8%	62 62 49 62 62	4,150 4,150 4,200 4,200 4,200	12,000 12,000 12,000 10,000	57.20 \$7.20	\$18.49 9.8 months \$14.44 \$15.55 1.5 months \$19.28 8.1 months
General F Electric F F F F F GTE Sylvania P F F F F F F F F F F F F F F F F F F F	96T12/LW/I500/WMI Watt-Miser II 96PG17/CW Power Groove STD 96PG17/CW/WM PG Watt-Miser 96PG17/LW/WMI PG Watt-Miser 96F112/CW/VHO Standard 96T12/CW/VHO/SS Super Savez 96T12/LW/VHO/SS Lite White Super Saver	185 185 215 185 185 195 195 195	10,140 10,765 12,160 10,360 11,025	58.2 68.6 56.0 59.6 53.5 55.1 58.5	97.4% 110.0% 93.8% 99.8% 93.4% 99.1%	62 62 49 62 62 62	4,150 4,150 4,200 4,200 4,200 4,150	12,000 12,000 12,000 10,000 10,000 10,000	\$7.20 \$7.20	518.49 9.8 months 514.44 515.55 1.5 months 519.28 8.1 months 512.96 513.35 30 days 519.24 15.7 months
General F Electric F F F F GTE Sylvania P F F P P H H H H H H H H H H H H H H H	%T12/LW/1500/WMI Watt-Miser II %FT12/LW/1500/WMI Watt-Miser II %FT12/LW/VMM PG Watt-Miser %FT12/LW/WMI PG Watt-Miser %FT12/LW/WHO Standard %FT12/LW/VHO/SS Super Savez %FT12/LW/VHO/SS Lite White Super Saver	185 185 215 185 185 215 195 195 215	10,140 10,765 12,160 10,360 11,025 11,050 10,740	58.2 68.6 56.0 59.6 53.5 55.1 58.5	97.4% 110.0% 93.8% 99.8% 93.4% 99.1%	62 62 49 62 62	4,150 4,150 4,200 4,200 4,200 4,150	12,000 12,000 12,000 10,000	\$7.20 \$7.20 \$7.20	518.49 9.8 months 514.44 515.55 1.5 months 519.28 8.1 months 512.96 513.35 30 days

General Electric Ca., Lighting Business Group, Cleveland. Ohio 44112. Company recommends any standard or energy-ericnent magnetic ballast with a high power factor. Operation on low power factor ballasts, dimming and emergency lighting systems (unless approved by the system mendacturer) or operation on reduced current/reduced light output ballasts in not recommended for energy-sensing lamps. F20BX (BLAX) for use with RS ballast designed for this lamp. All stantists besed on Cool White or equivalent Light White phosphore. F2IT least research the Stantists designed for this lamp.

GTE Products Carp., Sylvania Lighting Center, Danvers, Mass. 01973. Company recommends any ANSI-approved standard or energy-arving balast. Oc-tron lamps (1-mch diameter—type 78) are for use with

Ti2TB Repid Start beliase (megnetic or electronic) only.

North American Philips Lighting Corp.. 200 FrankBin Square Drive, Somersee, N. Y. 08673. Econ-O-Watt
lamps are only recommended for use on high-powerfactor, lead indoor beliasts that meet ANSI standards.

The lamps are not recommended for use in drafty
areas, or locations where the temperature is less than 60
degrees F. Also, they should not be operated on
normal power factor ballasts, reduced light or reduced
current ballasts, distraining ballasts or emergency system
inverter ballasts. PO32 Octolume lamps are operated
on Rapid Start beliasts for 32-watt, 18 sources.

In applications for all energy-efficient lamps, the ambient temprature must be at least 60 degrees. Efficiency figures above do not include energy consumed or lost by the ballast.

The "Mean Luments" column lists the mean (mass-tained) lumens enuted by the lamp at 40 percent of its rated lift. The "Lumens Per Watt" column uses the streed lift. The "Lumens Per Watt" column uses the stream honers to figure the lamp's efficiency.

The closer is to reproducing colors accurately, as by sunsigh. The "Color Temperature" (Kelvins) should match other lamps in the room; in candecever lamps are about 2.900 Kelvins and natural sunslight is about 5.500 to 6.500 Kelvins.

Rend life of the lamps listed above is based on 3-hour burning cycles.

The "Electric Cost Per Year" and "Psyback" are both based on 3.000 hours of lamp operation per year and an electricity rate of 8 cents per lalowart hour (Kerh). The "Psyback" listed above is based on the cost pressure of the energy-efficient lamp over the

standard lamp.

The prices of the above lamps are suggested liab prices to the end user for a single lamp. Discounts are usually available with quantity purchases.

The above listing is a representative sample from a range of osterulationers. Space limitations prevent all companies and models from being listed. EUN bakes no responsibility for sensepplication of products, aimore data is based on manufactories* disassements.

Occupancy sensors and heat pumps will be finatured in upcoming Product Guides. Manufacturers are encountinged to send model information including prices in upcoming Product Guide. Manufacturers are encountinged to send model information including prices in product Guide Editor. Energy User News, 7 East 12th St., New York, N.Y. 10003; or so call GUI 2741-4645.

St. in Product Guide is copyright flampy User News, Politzany 1909, and may not be reproduced without guidence.

REYNOLDS, SMITH AND HILLS ARCHITECTS • ENGINEERS • PLANNERS INCORPORATED

SCHECKING O'CAITS,
DESIGNER T. Todd

AEP NO 290 2:49 005
SHEET OF 7

CHECKE

Bailast réplacement and group rélamping project

- -Replace standard 40W lamps with 34 w watnisir plus lamps, and replace standard ballasts with watterniser ballasts. Light level will be 90% of original.
- Assume 4 hr/day, 5 day/week operation
- Calculations are for 2-lamp, 1-ballast fixtures.

Evergy savings = $\frac{181-127 \text{ W}}{2}$ \times $\frac{24 \text{ hr}}{\text{day}}$ \times $\frac{260 \text{ days}}{\text{yr}}$ = $\frac{168.5 \text{ kwh}}{\text{yr}}$

Cost savings = 168.5 kurin x \$5,0300 = \$5.10 yr

 $Matl = 2($2.70) \times 1.002 + $23.04 = 28.45

Labor = $[2(2.15) + 121] \times 0.683 \times 1.2 = 120.74$

(onstruction cost = $[(1.045 \times {}^{t}78.45) + (1.7 \times {}^{t}78.74)] \times 1.507$ = *87.31

Simple payback = $\frac{$182.31}{5.10 \, \text{Jyr}} = 16.1 \, \text{yr} > 10 \, \text{yr}$

THE NEW AGE OF 4-FOOT FLUORESCENT LIGHTING

-THE COMBINATIONS

BALLASTS

**		200 (A) (A)			•			and a	s;	A PLANT OF THE PARTY OF THE PAR	
PERFORMANCE	(ELECTRONIC)	U.L. listed, however FE-MM is recommended	Watts = NA Light = NA	Not recommended Use FE-WM		Not recommended Use FE-WM		Not recommended Use FE-MM		ON	Highest efficiency* Lowest watts LOWEST OP COST
	OPTIMISER	High efficiency Low watts	Watts = 135 Light = 92%	Very high efficiency Lowest watts LOWEST OP COST	Watts = 116 Light = 84%	Not recommended		High efficiency Good light output LOWEST COST OF LIGHT	Watts = 140 Light = 98%	Very high efficiency Very low watts LOWEST OP COST Watts = 120 Light = 88%	ON
7	MAXI-MISER "	Good efficiency High light output	Watts = 168 Light = 104%	Very good efficiency Good light output	Watts = 150 Light = 97%	High efficiency Low watts	Watts = 137 Light = 97%	Very good efficiency Highest light output LOWEST COST OF LIGHT	Watts = 173 Light = 111%	ON	ON
	WATT-MISER"	Good efficiency Moderate watts	Watts = 163 Light = 100%	Very good efficiency Low watts	Watts = 140 Light = 90%	High efficiency Very low watts LOWEST OWN & OP COST	Watts = 127 Light = 90%	Good efficiency High light output LOWEST COST OF LIGHT	Watts = 167 Light = 106%	ON	ON
	STANDARD	Low efficiency High watts	UNECONOMICAL Watts = 181 Light = 100%	Moderate efficiency Moderate watts	Watts = 159 Light = 91%	Good Efficiency Low watts	Watts = 144 Light = 91%	Moderate efficiency High light output	Watts = 186 Light = 106%	ON	ON
	LAMPS		SIANDARD	WATT-MISER®		WATT-MISER® PLUS		MAXI-MISER"		OPŢIMISER	E-TYPE WAŢT-MISER®

NOTE: Applies to performance in 4-lamp 2 × 4 recessed prismatic troffers, energy odet of 8¢ / KWH and 8000 burning hours per year. Light values are based on mean lumens of 8P35 lamps. Conclusions shown in CAPS assume typical costs and can vary—especially with energy rates. Where more than one combination is shown as "LOWEST..." their costs are nearly equal and significantly lower than the rest. "LOWEST OWN & OP!" and "LOWEST OP COST" are costs per furture; "LOWEST COP IN The costs are nearly equal and significantly lower than the rest. "LOWEST OWN & OP!" and "LOWEST OP COST" are costs per furture; "LOWEST OP COST" are costs per furture; "LOWEST OP COST" are costs per furture; "LOWEST OP COST" are costs are nearly equal and significantly lower than the rest. "LOWEST OWN & OP!" and "LOWEST OP COST" are costs per furture; "LOWEST OP COST" are costs are nearly equal and significantly lower than the rest. "LOWEST OWN & OP!" and "LOWEST OP COST" are costs are nearly equal and significantly lower than the rest. "LOWEST OWN & OP!" and "LOWEST OP COST" are costs are nearly equal and significantly lower than the rest. "LOWEST OWN & OP!" and "LOWEST OP COST" are costs are nearly equal and significantly lower than the rest. "LOWEST OWN & OP!" and "LOWEST OP COST" are costs are nearly equal and significantly lower than the rest. "LOWEST OWN & OP!" and "LOWEST OP COST" are costs are nearly equal and significantly lower than the rest. "LOWEST OWN & OP!" and "LOWEST OP COST" are costs are nearly equal and significantly lower than the rest. "LOWEST OWN & OP!" and "LOWEST OP COST" are costs are nearly equal and significantly lower than the rest. "LOWEST OWN & OP!" and "LOWEST OP COST" are costs are further than the cost of the lower than the lower t

GP-N-5

Watts = 117 Light = 90%

Highest efficiency* High light output

9

9

9

9

E-TYPE MAXI-MISER"

Watts = 134 Light = 101%

• The Performance system will typically be LOWEST COST OF LIGHT at higher energy rates and longer burning hours.

YOUR BEST SOURCE FOR BALLASTS AND ENERGY SYSTEMS

General Electric Ballasts and Energy Systems are available locally from your authorized General Electric stocking distributor. To serve your lighting needs, most distributors can provide you "off-the-shelf" delivery of the most popular ballasts used today. Select the ballast or system right for your application—then contact your GE distributor for prompt and courteous service. Quick Reference Guide to the Most Popular Standard & Energy Saving Ballasts

FOR F	LUORE	SCENT	LAMPS

		FUR FLUC	RESCENT LAM	F3	
Product Code	Catalog Number	Line Volts	Pkg. Qty.	Baliast Type	Lamps Operated by Baliasts Number & Type
	Р	ERFORMANCE"	ELECTRONIC	BALLASTS	
14060	E40-120-2	120	20	PERFORMANCE	(2) FE40/WM or
14868	E40-277-2	277	20	PERFORMANCE	(2) FE40/MM or (2) F40T12/RS
14869			20	PERFORMANCE	(3) FE40/WM or
14870	E40-120-3	120			(3) FE40/MM or (3) F40T12/RS
14871	E40-277-3	277	20	PERFORMANCE	(3) F40112/H3
		T8 F	APID START		
16764	8G4126W18	120	20	T-8 WATT-MISER	(2) F32T8RS or
16767	8G4136W18	277	20	TA WATT MISER	(2)F25T8RS
	ELEC	TRO-MAGNETIC	BALLASTS-F3	0 RAPID START	
14282	M28-120F+	120	10	OPTIMISER	(2)
46067	8G3971WF	120	10	Standard	F30 Rapid Start
46035	8G3905WF*	120	10	Low-Temp.	Standard
14283	M28-277F+	277	10	OPTIMISER	or
46070	8G3972WF	277	10	Standard	WATT-MISER*
		F40	RAPID START		
14284	M28-120-1F	120	10	OPTIMISER	(1)
48582	8G1078WF	120	10	MAXI-MISER™ II	F40 Rapid Start
48571	8G1074WF	120	10	<u></u>	Standard
45686	●8G1063WF	120	10	Standard	or
46075	8G5001WF*	120	10	Dimming	WATT-MISER
45900	8G3688WF*	120	10	Low Temp.	or
45900 45210	8G1075F*	120	1 10	Low Power Factor	F40 MAXI-MISER
14285	M28-277-1F	277	10	OPTIMISER	
48589	8G1088WF	277	10	MAXI-MISER II	
48585	8G1084WF	277	10	WATT-MISER	
45709	●8G1068WF	277	10	Standard	
		120	10	OPTIMISER	(2)
14282	M28-120F++	120	10	MAXI-MISER II	F40 Rapid Start
45204	8G1028WF++	120	10	CHATTLAISED	Standard
45203	8G1024WF •8G1022WF	120	10	Standard	or
45201	8G3905WF*	120	10	*Low Temp.	VATT-MISER
46035	8G5007WF*	120	10	Dimming	or
46077 1 4283	M28-277F++	277	10	OPTIMISER	F40 MAXI-MISER
45208	8G1038WF++	277	10	MAXI-MISER II	1
45206 45207	8G1034WF	277	10	VATT-MISER	
45207 45206	•8G1032WF	277	10	Standard	1
	8G1324W**	120	20	ATTHAISER	(3)
14277 14279	8G1334W**	277	20	/\fr-14884	~40 WATT-MISER
		INS	TANT START		
45221	8G1600WF	120	6	Standard	(2)
45789	8G1628WF*	120	6	Low Temp.	F48T12, F40/IS,
45769 45812	8G1710WF	277	6	Standard	F40T17/IS or
45791	8G1631WF*	277	6	Low Temp.	WATT-MISERS
	8G1008WF	120	6	MAXI-MISER II	(2)
4 5213 45212	8G1004WF	120	6		F96/84/72T12
45212 45215	•8G1004WF	120	ő	Standard	Instart Start
45215 45779	8G1490WF*	120	ő	Low Temp.	or
45779 45219	8G1018WF	277	6	MAXI-MISER II	.VATT-MISERS
45219 45216	8G1014WF	277	6	VATT-MISER	
45218	●8G1015WF	277	6	STD6 Leads	
46954	•8G1899WF	277	6	STD4 Leads	
45818	8G1762WF	120	6	Standard-0°F	(1) F96/84/72T12
45821	8G1764WF	277	6	Standard-0°F	instart Start
		HIGH	OUTPUT 800m.a		
46966	8G3885WF	120	6	Standard	(2) E49T12/HO or
40000	8G3900WF	120	6	Low Temp.	F48T12/HO or
46030	8G3887WF	277	6	Standard	VATT-MISERS

Not approved for installation in the state of New York or California.

⁺ U.L. listed only for reduced wattage, F30T12 lamps.

Not recommended for use with Watt-Miser and other reduced wattage type fluorescent lamps.

⁺⁺ Not recommended for use with Watt-Miser U-shaped lamps.

[&]quot;* U.L. listed only for Watt-Miser and other reduced wattage lamps.

GE WATT-MISER BALLASTS USE LESS WATTS PER FIXTURE TO DELIVER HIGH ENERGY SAVINGS

Watt-Miser Ballasts

- Compatible with standard or energy-saving lamps
 (3-lamp WM ballast compatible only with ES lamps)
- Cooler operation extends ballast life
- Dimensionally interchangeable with standard ballasts.
- CBM-certified by ETL with standard lamps.
 (3-lamp WM ballast not CBM certified)
- · UL-listed, Class P.

The GE Watt-Miser ballast is inherently more energy-efficient than a standard ballast. Even greater savings come from pairing Watt-Miser ballasts with today's popular reduced-wattage lamps. Watt-Miser ballasts are offered for 4' Rapid Start; 8' Instant Start; and 8' High Output applications. A 3-lamp Watt-Miser ballast in a standard rapid start case is available for use with four-foot energy-saving lamps. The chart shows fixture watts and energy \$ that can be saved by replacing standard lamps and ballasts with Watt-Miser ballasts and energy-saving lamps.

Lamp/Ballast System Replacement Chart

	Standard Sy	stem(1)		Watt-Miser System		
Fluorescent Fixture Type	Lamp Type	Watts Per Fixture	Lamp Type ⁽²⁾	Watt- Miser Ballast ⁽⁴⁾	Watts Saved Per Fixture	Energy ⁽³⁾ \$ Saved Per Fixture
4-LAMP TROFFER	F40 F40 (34W)	181 159	F40LW/RS/WMII F40LW/RS/WMII	(2)8G1024W (2)8G1024W	41 19	\$ 9.84 \$ 4.56
3-LAMP TROFFER	F40	149	F40LW/RS/WMII	(1)8G1024W and (1)8G1074W (1)8G1324W	40 43	\$ 9.60 \$10.32
2-LAMP INDUSTRIAL	F40 F96T12 F96T12/HO	96 172 255	F40LW/RS/WMII F96T12/LW/WMII F96T12/LW/HO/WMII	8G1024W 8G1004W 8G1154W	25 46 56	\$ 6.00 \$16.56 \$20.16
2-LAMP, SURFACE- MOUNT, WRAP AROUND	F40	82	F40LW/RS/WMII	8G1024W	16	\$ 3.36
4-LAMP, SURFACE- MOUNT, WRAP AROUND	F40	165	F40LW/RS/WMII	(2)8G1024W	32	\$ 6.72

⁾ Fixture equipped with standard ballast and lamp shown.

Other energy-saving lamps may be used to obtain similar savings.

⁽³⁾ Annual energy savings at 8° KWH; 3000 Hrs.—F40; 4500 Hrs.—F96.

⁽⁴⁾ Ballast codes shown are 120-volt. For complete application information, see product tables.

10	66	Lighting			T. A.	12.3	* 					TOTAL	
	16	66 100 Lighting	_ ا		DAILY	MAN- HOURS	TINU	MAT.	BARE	COSTS EQUIP.	TOTAL	TOTAL INCL 02P	
			_	EW	OUTPUT 8	1	Ea.	479	24	LIZOIT.	503	565	135
135	5100	175 watt metal halide	' '	Elec 	8	1		500	24		524	585	
	5110	250 watt metal halide	┢		8	1	_	535	24		559	625	
	5120	150 watt high pressure godium			8	1		556	24		580	645	:
i	5130	250 watt high pressure sodium 72 "H 18" sq., 400 watt metal halide	┢		8			525	24		549	615	
	5140	250 watt high pressure sodium			8	1		556	24		580	· 645	İ
	5150	400 watt high pressure sodium	T		8	1		581	24		605	675	
	5160	Portable rectangle, 6" high 13.5" x 20"		•			'						1
	5190 5200	175 watt metal halide	11	Elec	12	.667	Ea.	293	16.15		309.15	345	1
	5210	250 watt metal halide	ł		12	.667		314	16.15		330.15	370	ļ
	5220	150 watt high pressure sodium	Г		12	.667		335	16.15		351.15	390	
	5230	250 watt high pressure sodium	Ĺ		12	.667		360	16.15		376.15	420	l
	5240	8" high 18" x 24", 400 watt metal halide			12	.667		365	16.15		381.15	425	
	5250	250 watt high pressure sodium	L		12	.667		376	16.15		392.15	435	
	5260	400 watt high pressure sodium			12	.667		398	16.15		414.15	460	
	5270	Portable square, 15" high 13.5" sq., 175 watt metal halide			12	.667		324	16.15		340.15	380	1
	5280	250 watt metal halide			12	.667		376	16.15		392.15	435	
	5290	150 watt high pressure sodium	$oldsymbol{ol}}}}}}}}}}}}}$	_	12	.667		360	16.15	<u> </u>	376.15	420	ł
	5300	250 watt high pressure sodium			12	.667		386	16.15		402.15	450 -480	
	5400	Pendent 16" round/square, 175 watt metal halide	ļ	↓_	3.20	2.500		355	81		416	515	ł
	5410	250 watt metal halide			2.70	2.960		370	72		442	555	1
	5420	400 watt metal halide	₽-	-	2.40	3.330	-	398	81 61		459	525	1
	5430	150 watt high pressure sodium		ļ	3.20	2.500		398 428	72		500	575	l
	5440	250 watt high pressure sodium	╀	┼	2.70	2.960	\vdash	454	81		535	620	1
	5450	400 watt high pressure sodium		*	2.40	3.330	'	~~	٠,	1		"-	
_{-	210		╁										140
1407	0010	LAMP8 Fluorescent, rapid start, cool white, 2' long, 20 watt	1	Elec	1	8	С	348	195		543	670	
	0080 0100	4' long, 40 watt	十	T	.90	8.890		198	215		413	535	1
	0120	3' long, 30 watt			.90	8.890	i	442	215		657	805	_
	0150	U-40 watt	T	1	.80	10		874	245		1,119	1,325	1
	0170	4' long, 35 watt energy saver			.90	8.890		270	215		485	615	4
	0200	Slimline, 4' long, 40 watt	Т		.90	8.890		618	215		833	995	
	0300	8' long, 75 watt			.80	10_		577	245	ļ	822	990	4
	0350	8' long, 60 watt energy saver	Г		.80	10		603	245	1	848	1,025	1
	0400	High output, 4' long, 60 watt			.90	8.890	.	750	215		965	1,150	-}
	0500	8' long, 110 watt	ł		.80	10		775	245		1,020	1,200	1
	0520	Very high output, 4' long, 110 watt	<u> </u>		.90	8.890	!	1,285	215	 	1,500	1,725	-
	0550	8' long, 215 watt	1		.70	11.430		1,285	275		1,560	1,825 3,300	1
	0600	Mercury vapor, mogul base, deluxe white, 100 watt	1	 	.30	26.670	_	2,142	645	 	2,787 2,308	2,775	-
	0650	175 watt	1		.30	26.670		1,663	645 645		3,613	4,225	1
	0700	250 watt	╀	+-	.30	26.670		2,968	645	+	2,985	3,525	1
	0800	400 watt	1		.30	26.670		5,100	970		6,070	7,025	
	0900	1000 watt	╁┈	+	.20	26.670	++	3,749	645	 	4,394	5,075	1
	1000	Metal halide, mogul base, 175 watt			.30	26.670	1 1	4,712	645		5,357	6.125	
	1100	250 watt	╁	+	.30	26.670		4,386	645		5,031	5,775	1
	1200	400 watt			.20	40	1	9,894	970		10,864	12,300	i
	1300	1000 watt 1000 watt, 125,000 initial lumens	╁	+	.20	40		9,960	970		10,930	12,400	7
	1320	1500 watt			.20	40		9,268	970		10,238	11,600	
	1330	Sodium high pressure, 70 watt	1	\top	.30	26.670		4,712	645		5,357	6,125	İ
	1350 60	100 watt			.30	26.670		4.871	645		5,516	6,300	4
	1370	150 watt	T	\top	.30	26.670		5,059	645		5,704	6,525	1
	1380	250 watt			.30	26.670		5,380	645	<u> </u>	6,025	6,875	4
	1400	400 watt	Τ	T	.30	26.670		5,727	645		6,372	7,250	
	1450	1000 watt			.20	40		13,352	970		14,322	16,100	4
	1500	Low pressure, 35 watt	Γ		.30	26.670	1 1	3.963	645		4,608	5,300	İ
	1550	55 watt		•	.30	26.670		4,386	645	<u> </u>	5,031	5,775 19	
_						·						19	J

Telephone Gall

Project No. 84-210-00

PTAC No. 865911

TENTETTE reynolds; smith and hills

Local 396-7446 L.D. 988-7351 P	laced -	Rec'd	Date5	13-07-
T. Masters				House
Of G.E. Lamp Marketing / Engineer				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	O CONTRACTOR OF THE CONTRACTOR	ger in our war war of started	PAGE	
Stan Jetson provided costs	Too How	leu marid	01 154 11 00 5	1514
	, 500 11000	1-29 PVOOIA	ent out mags	7 8
output, lifetimes				
4ft	<u>C</u> os	st <u>l</u>	-ife (function	not heat)
Standard 8G 1022WF	(5) \$15	.86	10-12 yr	
Waltmiser 89 1024 WF	(W) \$ 2	1.94)	24 yr	A STATE OF THE STA
MaxinuserII 8G LO 28 WF		17.89	24 yr ene	efficient.
Optimiser M28-120F	(0) 43	34.10	30 yr	
- Maximiser II - patente	A Lol Oi	elet outher	\mathcal{O}	4 Savina
•	11 (, ()	_	_
•		•	with this or	
- Optimiser - patented,	newest, l	lowest wat	tage input	****
			0	
8ft				
Standard 861011WF	(s) \$ 25	5,90	12 yr	***************************************
Wathiniser 861004 WF	(w) \$ 36	. 86	24 yr	
MAXIMISERIT 861008WF	,	9.17	24 W	
			U	

Distribution:

Acc 1

(1P-N-5 D.7 of 7

1	66	Lighting	4						in the second			
-				DAILY	MAN-			BARE	COSTS		TOTAL	
_	16	6 100 Lighting	CREW	OUTPUT	HOURS	UNIT	MAT.	LABOR	EQUIP.	TOTAL	INCL O&P	
	020	Recessed, 200 watt	1 Elec	6.70	1.190	Ea.	51	29		80	99	130
~	6030	Pendent, 200 watt		6.70	1.190		43	29		72	90	
ł	6040	Wall, 200 watt		8	1		44	24		68	84	ŀ
1	6100	Fluorescent, surface mounted, 2 lamps, 41, RS, 40 watt		3.20	2.500		70	61		131	165	
- 1	6110	Industrial, 2 lamps 4' long in tandem, 430 MA		2.20	3.640		139	88	:	227	280	
- 1	6130	2 tamps 4' long, 800 MA		1.90	4.210		100	100		200	260	ļ
	6160	Pendent, indust, 2 lamps 41. in tandem, 430 MA		1.90	4.210		149	100		249	315	
	6170	2 kmps 4' long, 430 MA		2.30	3.480	$oxed{oxed}$	80	84		164	210	1
1	6180	2 lamps 4' long, 800 MA		1.70	4.710		109	115		224	290	
	6200	Mercury vapor with ballast, 175 watt		3.20	2.500		226	61		287	340	ł
-	6300	Explosionproof				ŀ						İ
	6310	Metal halide, ballast, ceiling, surface mounted, 175 watt	1 Elec	+	2.760	Ea.	668	67		735	835	ł
	6320	250 watt		2.70	2.960		775	72		847	960	
	6330	400 watt	lacksquare	2.40	3.330	-	836	81		917	1,050	ł
	6340	Ceiling, pendent mounted, 175 watt		2.60	3.080		640	75		715	815	
	6350	250 watt	lacksquare	2.40	3.330		745	81		826	940	1
	6360	400 watt		2.10	3.810		816	92		908	1,025	1
ı	6370	Wall, surface mounted, 175 watt		2.90	2.760	\vdash	698	67		765	865 990	ł
ļ	6380	250 watt		2.70	2.960	1	805	72		877 937	1.050	
	6390	400 watt		2.40	3.330	 -	856	81		7 89	890	ł
	6400	High pressure sodium, ceiling surface mounted, 70 watt		3	2.670		724	65 65		803	905	
	6410	100 watt		3	2.670	├ ─	738	72		837	945	1
	6420	150 watt		2.70	2.960		678	72		750	850	
	6430	Pendent mounted, 70 watt	-	2.70	2.960	╂-┼-	698	72	<u> </u>	770	875	1
	6440	100 watt		2.70	2.960		724	81		805	915	1
	6450	150 watt	+	2.40	3.330	╂╌┼╌	750	65		815	920	1
	5460	Wall mounted, 70 watt		3	2.670		775	65		840	945	
	6470	100 watt	++	2.70	2.670	1-	780	72	 	852	965	1
	6480	150 watt		4	2.500		250	49		299	345	1
	6510	Incandescent, ceiling mounted, 200 watt	++	3.50	2.290	1	219	55		274	320	1
•	6520	Pendent mounted, 200 watt		3.50	2.250	1	270	49		319	370	İ
	6530	Wall mounted, 200 watt	╂┼	2.70	2.960		1,310	72		1,382	1,550	1
	6600	Fluorescent, RS, 4' long, ceiling mounted, two 40 watt		2.20	3.640		1,915	88		2,003	2,225	İ
	6610	Three 40 watt	++	1.90	4.210	1	2,490	100		2,590	2,900	1
	6620	Four A0 watt Pendent mounted, two 40 watt	1	2.30	3.480		1,390	84		1,474	1,650	1
	6630	Three 40 watt		1.90	4.210		2,020	100		2,120	2,375	7
	6640	Four 40 watt	1	1.70	4.710		2,570	115		2,685	3,000	
	6650	Mercury vapor with ballast, surface mounted, 175 watt		2.70	2.960	T	545	72		617	705	
	6700 6710	250 watt		2.70	2.960		586	72		658	750	1
	6740	400 watt		2.40	3.330	_	714	81		795	905	1
	6750	Pendent mounted, 175 watt		2.40	3.330		550	81		631	725	1
	6760	250 watt		2.40	3.330		561	81		642	735	1
	6770	400 watt	1	2.10	3.810		683	92		775	885	1
	6780	Wall mounted, 175 watt		2.70	2.960		576	72		648	740	1
	6790	250 watt		2.70	2.960		632	72		704	800	4
	6820	400 watt		2.40	3.330		750	81	1	831	945	1
	6850	Vandalproof, surface mounted, fluorescent, two 40 watt		3.20	2.500		105	61	ļ	166	205	4
	6860	Incandescent, one 150 watt		8	1		45	24		69	85	1
	6900	Mirror light, fluorescent, RS, acrylic enclosure, two 40 watt		8	1	11	61_	24		85	105	4
	6910	One 40 watt		8	1		56	24	_	80	97	1
_	6920	One 20 watt		12	.667	1	49	16.15	5	65.15		-
	7000	Low bay, aluminum reflector. 70 watt, high pressure sodium		4	2		298	49		347	400	
	7010	250 watt, high pressure sodium		3.20		_	535	61	-	596	680. 720	-
	7020	400 watt, high pressure sodium		2.50	3.200	1	561	78	1	639	730	1
	7500	Ballast replacement, by weight of ballast, to 15' high		<u> </u>		+_		+		19.40	29	1
	7520	indoor fluorescent, less than 2 lbs.	1 Ele	_ I	.800	Ea.		19.4		38	49	1
	7540	2 40W, watt reducer, 2 to 5 lbs.	<u> </u>	9.40	.851	1	17	21		1 30	19)5
_												-

YNOLDS, SMITH AND HILLS CHITECTS • ENGINEERS • PLANNERS INCORPORATED	SUBJECT RAAP Lighting Pro Screening Calcs, DESIGNER T. Todd CHECKER	jects AEP NO SHEET DATE DATE	290 0379 000 1 of 10
GP-N-6 Replace explosion	proof 150W incandescent	3 with 50 W	HPS fixtures
Note: 50 W HPS has equivalent lume	s been color corrected us but yellowish light	. 35 w HPS	would provide
Energy savings = (150 W - 70W) x 24 h	x x 365 days =	701 kwh
Energy Cost Savings =	701 kwh , \$0.03026	$= \frac{$21.2(}{9}$	
Mat'l & Labor cost Savi	ings = Incard. cost _ t	4,000 hr) x 8	3760 hr gr
= (\$ Z,11 mate + \$1,20			•
750 x 8760 hr	hr \$ 13.25 = ** 23.25	24,600	45 labor × 0,683×1,2
Total cost savings =	\$21.21 + \$23.25 =	\$ 44.46 y	
Mattle cost = \$220 for	fixture w/lamp x1.15 infration	(1985 vend	or quote)
	2 exp frost x 0.683 =		Q
Construction cost = [4 7	253 × 1.045) + (+ 59.01 ×	1.2)] ×1.507 =	\$ 505
	\$ 505 = 11.4 g		

GP-N-6 p. 2 of 10

ECP ENERGY CONSERVATION PRODUCTS, 511 CANAL STREET, NYC, NY, 10013—TEL (212)-925-5991

POWER CONSUMPTION AND LUMEN CUTPUT DATA

	2223				
*	LINE WATTS	TOTAL LUMEN OUTPUT	LUMENS PER WATT	HOURS OF RATED LIFE	*
* WAITS	TIME MALLS	WIEN WIFOI	FER WIT	****************	
***** MERCUR	Y VAPOR (DELUXI	E WHITE)			*
* 1000	1075	63000	59	24000	*
* 400	450	23000	56	24000	<u></u>
* 250	290	13000	42	24000	*
* 175	205	8500	49	24000 24000	*
* 100	120	4500	42	16000	
* 75	93	3150 1680	37 31	16000	*
* 50	61 ========		7. ==========		
***** METAL	HALIDE				*
* 1500	1600	155000	103	3000	# _
* 1000	1100	110000	100	12000	
* 400	460	34000	85	15000	*
* 175	210	14000	85 	7500	
***** HIGH P	RESSURE SODIUM				*
* 1000	1080	140000	130	24000	* `
* 400	480	50000	104	24000	
* 250	310	27500	89	24000	*
* 150	200	16000	80	24000	
* 100	135	9500		24000 24000	
70	$\frac{85}{70}$	5800 4000	57	24000	*
* 50 35	(42)	2850	67	18000	*
=======================================					
********F <u>LU</u> ORES	CENT				*
STRAIGHT 40	48	3150	66	20000+	*
CIRCLINE 32	37	1830	50	12000+	π -
CIRCLINE 22	25	1050	42	12000+ 12000+	*
CIRCLINE 20	23	850	· 37 56	12000+	*
TWIN TUBE 13 TWIN TUBE 9	16 12	900 600	50 50	10000+	*
TWIN TUBE 9 STRAIGHT 8		400	36 ⁻	7500+	*
TWIN TUBE 7	10	400	40	10000+	*
STRAIGHT 6	9	300	33	7500+	*
TWIN TUBE 5	8	250	31	10000+	* ***
******* TNCANI	DESCENT				*
* 1000	1000	23740	24	1000	* ***
* 750	750	17040	23	1000	*
* 50 0	50 0	10850	22	1000	*
₹ 200	200	3710	19	750	*
* (150)	150	2880	19	750	*
* 100	100	1750	18	750	
* 75	75	1190	16	750	
	5—IODINF.				*
1500	1500	35800	24	3000	*
* 1000	1000	23400	23	2000	* +
* 500	500	10950	22	2600	-
* 250	250	4850	19	2000	

	Lighting			DAILY	MAH-			BARE	COST8		TOTAL	T
16	6 100 Lighting	CRE	w	OUTPUT	HOURS	UNIT	MAT.	LABOR	EQUIP.	TOTAL	INCL O&P	Į
1600	90 watt	1 E	ес	.30	26.670	С	5,140	645		5,785	6,600	1
1650	135 watt			.20	40		6,905	970		7,875	9,025	l
1700	180 watt			.20	40		7,308	970		8,278	9,475	1
1750	Quartz line, clear, 500 watt			1.10	7.270		1,872	175		2,047	2,325	ı
1760	1500 watt			.20	40		3,427	970		4,397	5,200	1
1800	Incandescent, interior, A21, 100 watt			1.60	5		173	120		293	370	ı
1900	A21, 150 watt		一	1.60	5		(211)	(120)		331	410	1
- 1	A23, 200 watt	1 1		1.60	5		227	120		347	430	ŀ
2000	PS 30. 300 watt	1	\neg	1.60	5		330	120		450	540	1
2200	/ -			1.60	5		576	120		696	810	ı
2210	PS 35, 500 watt	\dashv	\dashv		6.150		1.525	150		1.675	1,900	1
2230	PS 52, 1000 watt	1 1		1.30			2,382	150		2.532	2.850	I
2240	PS 52, 1500 watt	+	-	1.30	6.150			150		525	630	┨
2300	R30, 75 watt			1.30	6.150		375			1		ı
2400	R40, 150 watt	-		1.30	6.150		408	150		558	670	4
2500	Exterior, PAR 38, 75 watt			1.30	6.150		566	150		716	840	1
2600	PAR 38, 150 watt			1.30	6.150		525	150		675	795	4
2700	PAR 46, 200 watt			1.10	7.270		1,928	175		2,103	2,375	ı
2800	PAR 56, 300 watt			1.10	7.270	\sqcup	2,193	175		2,368	2.675	4
3000	Guards, fluorescent lamp, 4' long			1	8		375	195	·	570	695	
3200	8' long			.90	8.890	•	535	215		750	905	4
0010	RESIDENTIAL FIXTURES								ļ].	1	١
0400	Fluorescent, interior, surface, circline, 32 watt & 40 watt	1 E	lec	20	.400	Ea.	48	9.70	<u> </u>	57.70		4
0500	2' x 2', two U 40 watt			8	1		66	24	1	90	110	ı
0700	Shallow under cabinet, two 20 watt			16	.500		45	12.15		57.15		4
0900	Wall mounted, 41, one 40 watt, with baffle			10	.800		41	19.40	İ	60.40	1	ı
1 000	Incandescent, exterior lantern, wall mounted, 60 watt			16	.500		36	12.15		48.15		4
200	Post light, 150W, with 7' post			4	2		104	49	İ	153	185	
2500	Lamp holder, weatherproof with 150W PAR			16	.500		16	12.15		28.15		╛
2550	With reflector and guard			12	.667		31	16.15	ļ	47.15	58	
2600	Interior pendent, globe with shade, 150 watt		,	20	.400	↓	78	9.70		87.70	100	
_	TRACK LIGHTING		`									٦
0080	Turk desirant Alexandra	1 8	lec	6.70	1.190	Ea.	33	29		62	79	
0100	8' section			5.30	1.510		48	37		85	105	
0200	Track, 1 circuit, 4' section 8' section 12' section			4.40	1.820		81	44	ļ	125	155	
0300	3 circuits, 4' section			6.70	1.190		36	29		65	82	•
0400	e a			5.30	1.510		48	37	}	85	105	
0500	8' section 12' section Feed kit, surface mounting	╅		4.40	1.820		88	44		132	160	
1000	Feed kit, surface mounting	ļ		16	.500		12	12.15		24.15	31	i
	End cover	\dashv	-	24	.333		1.98		4	10.08	14.0	5
1100	Feed kit, stem mounting, 1 circuit	1		16	.500		16	12.15	4	28.15	35	
1200		+-		16	.500		16	12.15		28.15	35	_
1300	3 circuit			32	.250		6.55	1		12.60	1	0
2000	Electrical joiner for continuous runs, 1 circuit	+-	-	32	.250	[12.10			18.15		
2100	3 circuit			1	.500		47	12.15	1	59.15		
2200	Fixtures, spotlight, 150 PAR		-	16		1-+	101	12.15		113.15		_
3000	Wall washer, 250 watt tungsten halogen			16	.500		L	1	ı	114.15		
3100	Low voltage, 2% watt, 1 circuit		<u> </u>	16	.500	1	102	12.15		121.15		-
3120	3 circuit			16	.500	1 +	1 109	12.15	71	1 121.10	1 170	

Hunter

Distribution:

GP-N-6 p.4of10 Telephone Call Confirmation

		Project No	290	0379000	
(718) Local LD. <u>85 -4577</u> Placed					
Local LD. 851-4577 Placed T 7544	anyorsed With	Mr	Sina	ev	****
T. Todd. co of American Scientific Lighting Co	Miversed with	HPS	remoti	ts	
of Almerian Soundific Algority a	2. Regarding.		. 9,, 5, 6	•	· · · · · ·
For retrofits of incandescent and "Colorlight" products ar replaceable in both and to Contractors costs (including are as follows:	t fixtur	es, the	. "Bul	b Lumenight"	
and "Colorlight" products ar	e recom	mended	. The	lamps are	,
blaceable in both and t	he "color	light"	is Migr	e whitish.	
Chatractors cocts (includin	4 lamb	V Jor	guenz	tities of 100 +	-
G. C. A. C. Harris) ~~~	10	0	Ď	
Rulh Lavarenial t	35 W	- \$4	15 /	lamps only	1
Bulb Lumenight (also come in 70) Colorlight	50 W	- \$4	15 (\$16-\$20	7
(also come in 70) W 100	W 150	W)		
CNOCSO COME CK	,	<u> </u>			
Colorliabet	50 W	- \$6	7 (lamps only	<u>) </u>
Colorlight.				lamps only \$30 %	
the sil cond a copy	of their	(otal	'Da f	or dimension	<u> </u>
they will send a copy	1 10		J		
			<u></u>		<u>-</u>
		Aller of the second second second second second second second second second second second second second second			
					

1	66	Lighting		-t.	Ā	i		The state of the s	ţ.,			70741	
		100 Lighting		REW	DAILY	MAN- HOURS	UNIT	MAT.	BARE LABOR	COSTS EQUIP.	TOTAL	TOTAL INCL 0&P	
		175 watt metal halide		Elec	8	1	Ea.	479	LABOR 24	BUUIF.	503	565	135
135	5100 5110	250 watt metal halide	'	LIGC	8	1	Ī	500	24		524	585	
	5120	150 watt high pressure sodium	T		8	1		535	24		559	625	
	5130	250 watt high pressure sodium			8	1		556	24		580	645	
	5140	72"H 18" sq., 400 watt metal halide	T		8	1		525	24		549	615	
	5150	250 watt high pressure sodium			8	1		556	24		580	645	
	5160	400 watt high pressure sodium	Γ		8	1		581	24		605	675	İ
	5190	Portable rectangle, 6" high 13.5" x 20"	L										
	5200	175 watt metal halide	11	Elec	12	.667	Ea.	293	16.15	l i	309.15	345	1
	5210	250 watt metal halide	1_		12	.667	<u> </u>	314	16.15		330.15	370	
	5220	150 watt high pressure sodium	1		12	.667		335	16.15	ł l	351.15	390	
	5230	250 watt high pressure sodium	1		12	.667	_	360	16.15		376.15	420	ŀ
	5240	8" high 18" x 24", 400 watt metal halide			12	.667		365	16.15	ļ	381.15	425 435	
	5250	250 watt high pressure sodium	╂-	-	12	.667	\vdash	376	16.15		392.15 414.15	460	
	5260	400 watt high pressure sodium			12	.667 .667		398 324	16.15 16.15		340.15	380	
	5270	Portable square, 15" high 13.5" sq., 175 watt metal halide	╁	-	12 12	.667	\vdash	376	16.15		392.15	435	Ì
	5280	250 watt metal halide	1		12	.667		360	16.15		376.15	420	
	5290	150 watt high pressure sodium 250 watt high pressure sodium	╁	-	12	.667	\vdash	386	16.15		402.15	450	1
	5300 5400	Pendent 16" round/square, 175 watt metal halide			3.20	2.500		355	61		416	480	
	5410	250 watt metal halide	T	1	2.70	2.960		370	72		442	515	1
	5420	400 watt metal halide			2.40	3.330		398	81		479	555	
	5430	150 watt high pressure sodium	1		3.20	2.500		398	61		459	525]
	5440	250 watt high pressure sodium	i		2.70	2.960		428	72		500	575	1
	5450	400 watt high pressure sodium	Τ	Ţ	2.40	3.330	—	454	81		535	620	1
												<u> </u>	
140	0010 L	AMP8	Т										140
	0080	Fluorescent, rapid start, cool white, 2' long, 20 watt	1	Elec	1	8	Ç	348	195		543	670	4
	0100	4' long, 40 watt			.90	8.890	1	198	215		413	535	Ì
	0120	3' long, 30 watt	╀-	-	.90	8.890	-	442	215		657	805	ł
	0150	U- 40 watt			.80	10	1	874	245	l	1,119	1,325	1
	0170	4' long, 35 watt energy saver	╂-	+	.90	8.890	 	270	215		485 833	615 995	1
	0200	Slimline, 4' long, 40 watt			.90	8.890		618	215 245		822	990	
	0300	8' long, 75 watt	+-	╁	.80	10		577 603	245	 	848	1,025	1
	0350	8' long, 60 watt energy saver	1		.80 .90	10 8.890		750	215		965	1,150	1
	0400	High output, 4' long, 60 watt	╁	+	.80	10		775	245		1,020	1,200	1
	0500	8' long, 110 watt			.90	8.890		1,285	215		1,500	1,725	
	0520	Very high output, 4' long, 110 watt 8' long, 215 watt	+	+	.70	11.430		1,285	275		1,560	1,825	1
	0650 0600	Mercury vapor, mogul base, deluxe white, 100 watt	1		.30	26.670		2,142	645		2,787	3,300	
	0650	175 watt	十	_	.30	26.670		1,663	645		2,308	2,775	1
	0700	250 watt	1		.30	26.670		2,968	645		3,613	4,225]
	0800	400 watt	1	1	.30	26.670		2,340	645		2,985	3,525	
	0900	1000 watt	1		.20	40		5,100	970		6,070	7,025	1
	1000	Metal halide, mogul base, 175 watt	Т	T	.30	26.670		3,749	645		4,394	5,075	
	1100	250 watt	1_		.30	26.670		4,712	645		5,357	6,125	1
	1200	400 watt	T		.30	26.670		4,386	645		5,031	5,775	
	1300	1000 watt		$oldsymbol{\perp}$.20	40		9,894	970		10,864	12,300	-
	1320	1000 watt, 125,000 initial lumens			.20	40		9,960	970		10,930	12,400	
	1330	1500 watt	1	\perp	.20	40	1	9,268	970		10,238	11,600	-
	1350	Sodium high pressure, 70 watt	ŀ		.30	26.670	<u> </u>	4,712	645	1	5,357	6,125	
	1360	100 watt	1	4	.30	26.670		4,871	645	-	5,516	6,300 6,525	1
	1370	150 watt			.30	26.670	1	5,059	645		5,704 6,025	6,875	
	1380	250 watt	+	+	.30	26.670	-	5,380	645 645	-	6,372	7,250	1
	1400	400 watt			.30	26.670		5.727	970		14,322	16,100	1
	1450	1000 watt	+	+	.20	26.670	 	13,352 3,963	645	 	4,608	5,300	1
	1500	Low pressure, 35 watt			.30	26.670	1	4,386	645		5,031	5,775	
	1550	55 watt				1 20.07 0	11	1 .,		<u> </u>	<u> </u>	199	9

GP-N-6 p.7 of 10

HAZLUX35/50

ENCLOSED & GASKETED

CLASSI, DIVISION 2

CLASS III, DIVISIONS 1 and 2
CLASS III

UL 844/UL 595 LISTED

NOW, 35 WATT HIGH PRESSURE SODIUM FOR HAZARDOUS LOCATION APPLICATIONS

SUITABLE FOR MOST INDUSTRIAL APPLICATIONS...

The HAZIUX 35/50 is the first low wattage High Pressure Sodium fixture designed for hazardous location operations. It is UL 844 listed and is ideal for eye-level operations where fixtures are lower and closer to production such as corridors, production sites, and low overhead facilities like stairwells, catwalks, and tunnels.

RETURN ON INVESTMENT IN ONE TO THREE YEARS...

Depending on your application, the HAZLUX 35/50 fixture can pay for itself in one to three years. It uses less energy, provides more light, and dramatically reduces relamping maintenance in comparison to incandescent fixtures.

MORE LIGHT USING LESS ENERGY ...

The HAZLUX 35/50 uses efficient High Pressure Sodium lamps which use less power to produce more light. A 35 Watt H.P.S. lamp provides 25% more lumens using less than half the power of a 100 Watt incandescent.

LESS RELAMPING SAVES LAMP COSTS & LABOR...

High Pressure Sodium lamps operate up to 24,000 hours; typical incandescent lamps last only 750 hours. Compare the HAZLUX 35/50 which requires relamping once or twice in five years to an incandescent fixture demanding more than 30 relampings in the same period.

THE IDEAL RETROFIT FOR EXISTING INCANDESCENT FIXTURES...

The HAZLUX 35/50 leasily fits on existing incandescent fittings through the use of HAZLUX Outlet box "V010" which fits standard "ordinary location" four inch outlet boxes. Retrofitting to more economical and more efficient High Pressure Sodium 35 or 50 Wattlamps could not be easier.

THE TYPICAL COST TO OPERATE ONE HAZLUX 35/50 IS \$20.05 ANNUALLY...COMPARED TO \$101.88 TO OPERATE AN INCANDESCENT FIXTURE FOR ONE YEAR.

COMPARE THE FACTS

- 1. H.P.S. lamps consume less energy but produce more lumens than incandescents.
- 2. H.P.S. lamps last more than 30 times longer than incandescents.

COST COMPARISON CHART

	HAZLUX 35W H.P.S.	HAZLUX 50W H.P.S.	INCANDESCE		INCANDESCE	NT FIXTURES I		oww
LUMENS	2200	4000 3	1750	1490	2880	2310	401 0	3410
ENERGY CONSUMED	43 W	60 W	100 W	100 W	150 W	150 W	200 W	200 W
ENERGY COST PER YEAR	\$9.42	\$13.14	\$21.90	\$21.90 °	\$32.85	\$32.85	\$43.80	\$43.80
LAMP LIFE IN HOURS	16,000 1	24,000	750	2,500	750	2,500	750	2,500
LAMPS BOUGHT PER YEAR	.27	.18	5.8	1.75	5.8	1.75	5.8	1.75
COST OF LAMPS BOUGHT PER YEAR	\$8.21	\$5.47	\$2.92	\$1.75	\$5.84	\$3.50	\$11.68	\$7.00
LAMPING LABORA PER YEAR	\$2516	\$1:44	\$46:40	\$14.00	\$4 61.462	\$14.00	\$461.4	KS PALOO
ANNUAL	\$19.79	\$20.05	\$71.22	\$37.65	\$85.09	\$50.35	\$101.88	\$64.80

Determined at .05 KWH.

A) This lamp may soon be upgraded to 24,000 hours

²⁾ Determined at \$8.00 per relamping

ATALOG NUMBERS & PRICING

(120 V.A.C. STANDARD)

					ø	
	PENDANT	CONE PENDANT	WALL	STANCHION	CEILING	OUTLET BOX
	35 WATT DS03P12-GG-P2	DS03P12-GG-A2	DS03P12-GG-B2	DS03P12-GG-S4	D\$03P12-GG-C2	DS03P12-GG-010
ARD 3E	\$207.00	\$238.00	\$226.00	\$226.00	\$210.00	\$210.00
STAND	50 WAFE	DSOSPTEQG-A218	DS05P12-GG-B2W	DSOSP#2 GG 8 CB	D805P12-GG-C2	DS)
	£220.00	\$28g00#\$	\$239.00	\$23900	\$22.00es	
TR" LOBE	35 WATT DS03P12R-R5G-P2	DS03P12R-R5G-A2	DS03P12R-R5G-B2	DS03P12R-R5G-S4	DS03P12R-R5G-C2	DS03P12R-R5G-010
. a	\$236.00	\$267.00	\$255.00	\$255.00	\$239.00	\$239.00
ADE:	50 WATT"	The Charles				
HREA FRAC	DS05PT2R-R5G-P2**	DSCSSAGNESSAGN	D605012N765 B24	December		
T	\$249.00	\$280.00	\$268.00	\$268.00	\$252.00	3202000

*Catalog Numbers listed include Globe & Guard, 3/4" Conduit Opening; (1 1/4" Stanchion). "TR" Type V Refractor & Guard, 1" Conduit Openings and 1 1/2" Stancion Conduit Openings Available. Angle, Standard Dome Reflectors, and-Types Land III Refractors Available; consult-Factory.

For Flexible Pendant Substitute:"F2" for "P2" in Pendant Mount Catalog Number.

POOTOMETRICS

DIMENSIONS

The HAZLUX 3 enclosed & gasketed 35 to 1000 watts

The HAZLUX 5 explosion-proof 50-250 watts

8676 Pennelli Drive

	Lighting	1	DAILY	MAN-			BARE	COSTS	٠.	TOTAL	Т
160	6 100 Lighting	CREW	OUTPUT	HOURS	TINU	MAT.	LABOR	EQUIP.	TOTAL	INCL DEP	
64	Recessed, 200 watt	1 Elec		1,190	Ea.	51	29		80	99	1
6030	Pendent, 200 watt		6.70	1.190		43	29		72	90	ŀ
6040	Wall. 200 watt		8	1		44	24		68	84	1
6100	Fluorescent, surface mounted, 2 lamps, 4'L, RS, 40 watt		3.20	2.500		70	61		131	165	i
6110	Industrial, 2 lamps 4' long in tandem, 430 MA		2.20	3.640		139	88		227	280	1
6130	2 iamps 4' long, 800 MA		1.90	4.210		100	100		200	260	ı
6160	Pendent, indust, 2 lamps 41. in tandem, 430 MA		1.90	4,210		149	100		249	315	1
6170	2 lamps 4' long, 430 MA		2.30	3.480		80	84		164	210	ı
6180	2 lamps 4' long, 800 MA	 	1.70	4.710		109	115		224	290	1
- 1	Mercury vapor with ballast, 175 watt	1]	3.20	2.500		226	61		287	340	ļ
6200		┰	0.20	2.000				-			1
6300	Explosionproof Metal halide, ballast, ceiling, surface mounted, 175 watt	1 Elec	2.90	2.760	Ea.	668	67		735	835	I
6310	250 watt	LEC	2.70	2.960		775	72		847	960	1
6320			2.40	3.330		836	81		917	1.050	1
6330	400 watt	lacktriangledown	2.60	3.080		640	75		715	815	1
6340	Ceiling, pendent mounted, 175 watt		2.40	3.330		745	81		826	940	١
6350	250 watt		2.10	3.810		816	92		908	1.025	1
6360	400 watt		2.90	2.760		698	67		765	865	I
6370	Wall, surface mounted, 175 watt	-	2.70	2.960	-	805	72		877	990	1
6380	250 watt	1	2.40	3.330		856	81		937	1.050	١
6390	400 watt	1	3	2.670	-	724	65		789	890	1
6400	High pressure addium, cailing surface mounted, 70 watt		3	2.670		738	65		803	905	ı
6410	100 watt	╂─┼─	2.70	2.960		765	72		837	945	┪
6420	150 watt			_		678	72	,	750	850	1
6430	Pendent mounted, 70 watt	+	2.70	2.960	 	 			770	875	┨
6440	100 watt	1	2.70	2.960		698	91		805	915	ı
6450	150 watt	}	2.40	3.330	\vdash	724	81		815	920	┨
	Wall mounted, 70 watt	1	3	2.670	1	750	65		840	945	ı
6470	100 watt	╂─┼	3	2.670		775	65		852	965	┨
6480	150 watt		2.70	2.960		780	72		299	345	١
6510	Incandescent, ceiling mounted, 200 watt	╂─┼─	4	2		250	49 55		274	320	┨
6520	Pendent mounted, 200 watt		3.50	2.290	1	219			319	370	Ì
6530	Wall mounted, 200 watt	╀╌┼╌	4	2	\vdash	270	49			1,550	┨
6600	Fluorescent, RS, 4' long, ceiling mounted, two 40 watt		2.70	2.960		1,310	72	:	1,382	2,225	
6610	Three 40 watt	1	2.20	3.640	\vdash	1,915	88		2,003		┨
6620	Four 40 watt		1.90	4.210		2,490	100		2,590 1,474	2,900 1,650	
6630	Pendent mounted, two 40 watt	-	2.30	3.480	\vdash	1,390	84		2,120	2,375	┥
6640	Three 40 watt		1.90	4.210		2,020	100	1	2,120	3,000	ı
6650	Four 40 watt		1.70	4.710	$\vdash \vdash$	2,570	115			705	┪
6700	Mercury vapor with ballast, surface mounted, 175 watt	1	2.70	2.960		545	72		617	750	١
6710	250 watt	1	2.70	2.960	} ──	586	72	 	658	905	┨
6740	400 watt		2.40	3.330		714	81		795	725	1
6750	Pendent mounted, 175 watt	\bot	2.40	3.330	 	550	81	 	631	735	\dashv
6760	250 watt		2.40	3.330	!	561	81	1	642		I
6770	400 watt	+	2.10	3.810	├	683	92	<u> </u>	775	885 740	4
6780	Wall mounted, 175 watt		2.70	2.960		576	72		648		-
6790	250 watt	\bot	2.70	2.960	1	632	72	 	704	800 945	4
6820	400 watt		2.40	3.330		750	81		831	1	
6850	Vandalproof, surface mounted, fluorescent, two 40 watt	1	3.20	2.500		105	61	 	166	205	4
6860	Incandescent, one 150 watt		8	1		45	24]	69	85	1
6900	Mirror light, fluorescent, RS, acrylic enclosure, two 40 watt	1	8	1	-	61	24	-	85	105	ᅱ
6910	One 40 watt		8	1		56	24		80	97	
5920	One 20 watt		12	.667	1	49	16.15		65.15		4
	Low bay, aluminum reflector, 70 watt, high pressure sodium		4	2		298	49		347	400	
7010	250 watt, high pressure sodium		3.20	2.500		535	61	<u> </u>	596	680	_
7020	400 watt, high pressure sodium	1	2.50	3.200	1	561	78		639	730	j
7500	Ballast replacement, by weight of ballast, to 15' high						ļ			 	4
7520	Indoor fluorescent, less than 2 lbs.	1 Elec	10	.800	Ea.		19.40	1	19.40		
7540	2 40W, watt reducer, 2 to 5 lbs.		9.40	.851	1 .	17	21	1	38	49	

REYNOLDS,	SMITH	AND	HILLS
ARCHITECTS .	ENGINEE	RS • PL	ANNERS
17	NCORPORAT	ED	

SUBJECT RAAP	Ballast	Project
Screening	Calc.	
ナブ	TAAA	

AEP NO 290 0379 000

GP-N-7 Replace existing ballasts with energy efficient ballasts in fluorescent 4' fixtures

-Assume lamps will be retrofited with ballasts for compatibility & acceptable light output.

- Calculations show energy savings and costs for bailasts only.

- Assume standard Z-lamp industrial ballast is replaced with watt-miser Z-lamp ballast.

Energy savings = [96-2(40)]-[71-2(34)]W = 13 W/fixture

= 13 W x 24 hr , 365 days = 114 kuch max.

Cost savings = $114 \text{ kwh} \times \frac{50.03026}{\text{kwh}} = \frac{3.45}{\text{yr}}$

Lost for mat'l only = \$21.94 (1987 vender jucie)

assuming 5% inflation to 1990\$, material cost = \$23.04 Cost for labor = \$21 (1989 Means Electrical) Construction cost = $[$23.04 + ($21 \times 0.683)] \times 1.507 = 56.34

Simple payback = \frac{756.34}{\$3.45/yr} 16.3 yr > 10 yr

this project is not recommended due to high particies our when continuous operation is assumed.

(see combination ballast/relamping project)

GE WATT-MISER" BALLASTS USE LESS WATTS PER FIXTURE TO DELIVER HIGH ENERGY SAVINGS

Watt-Miser Ballasts

- Compatible with standard or energy-saving lamps (3-lamp WM ballast compatible only with ES lamps)
- Cooler operation extends ballast life
- Dimensionally interchangeable with standard ballasts.
- CBM-certified by ETL with standard lamps. (3-lamp WM ballast not CBM certified)
- UL-listed, Class P.

The GE Watt-Miser ballast is inherently more energyefficient than a standard ballast. Even greater savings come from pairing Watt-Miser ballasts with today's popular reduced-wattage lamps. Watt-Miser ballasts are offered for 4' Rapid Start; 8' Instant Start; and 8' High Output applications. A 3-lamp Watt-Miser ballast in a standard rapid start case is available for use with four-foot energysaving lamps. The chart shows fixture watts and energy \$ that can be saved by replacing standard lamps and ballasts with Watt-Miser ballasts and energy-saving lamps.

Lamp/Ballast System Replacement Chart

	Standard Sy	stem(1)	Watt-Miser System							
Fluorescent Fixture Type	Lamp Type	Watts Per Fixture	Lamp Type ⁽²⁾	Watt- Miser Ballast ⁽⁴⁾	Watts Saved Per Fixture	Energy ⁽³⁾ \$ Saved Per Fixture				
4-LAMP TROFFER	F40 F40 (34W)	181 159	F40LW/RS/WMII F40LW/RS/WMII	(2)8G1024W (2)8G1024W	41 19	\$ 9.84 \$ 4.56				
3-LAMP TROFFER	F40	149	F40LW/RS/WMII	(1)8G1024W and (1)8G1074W (1)8G1324W	40 43	\$ 9.60 \$10.32				
2-LAMP INDUSTRIAL	F40 F96T12 F96T12/HO	96 172 255	F40LW/RS/WMII F96T12/LW/WMII F96T12/LW/HO/WMII	8G1024W 8G1004W 8G1154W	25 46 56	\$ 6.00 \$16.56 \$20.16				
2-LAMP, SURFACE- MOUNT, WRAP AROUND	F40	82	F40LW/RS/WMII	8G1024W	16	\$ 3.36				
4-LAMP, SURFACE- MOUNT, WRAP AROUND	F40	165	F40LW/RS/WMII	(2)8G1024W	32	\$ 6.72				

⁽²⁾ Other energy-saving lamps may be used to obtain similar savings.

⁽³⁾ Annual energy savings at 8° KWH; 3000 Hrs. -- F40; 4500 Hrs. -- F96.

⁽⁴⁾ Ballast codes shown are 120-volt. For complete application information, see product tables.

Telephone Gall

Project Not-87-710-06

PTAC No. 865911

reynolds; smith and hills

Local-396-7446	LD 980-7351	Placed	Recd	Date	5-27-87
	sters				
	larketing / Engineer				
Williams of the control of the contr	Services of the Control of the Contr		establem neerti, mette neme n. en en de strakk historis telebours	California de Carrer de Carrer de Carrer de Carrer de Carrer de Carrer de Carrer de Carrer de Carrer de Carrer	
Stan Jetson	provided costs	500	the day to	rided water	60 8- 1.>1.+
		-	<u> </u>	(5 7 8
- output, life	etimes	2	and the second of the second o	<u>.</u>	The second secon
4 ft			Cost	Life (fund	ction of heat)
Standard	8G 1022WF	(5)	\$ 15.86	10-12 yr	
Waltmiser	8G 1024 WF	(W)	121.94	24 ur	gag yan sa
	89 10 28 WF	(M)	\$ 72.89		energy- efficient
optimiser	M28-120F	(0)	\$ 34.10	30 yr	
- Maximis	er II - patente	ed, h	el light out	out using en	ergy Saving
		()			
	J		be able to dela	V	
Optimise	- potented	, newe	st, lowest i	vattage into	<u> </u>
8 ft					
Standard	861011WF	(5)	\$ 25.90	12 yr	
Wathinser	861004 WF	(w)	\$ 36,86	24 yr	
			•		
Maximiser	L 861008WF	(m)	\$39.17	24 yr	

GP-N-7 p. 4 of A

66	Lighting					1					
		<u> </u>	DAILY	MAN-			BARE (COSTS		TOTAL	
160	6 100 Lighting	CREW	OUTPUT	HOURS	UNIT	MAT.	LABOR	EQUIP.	TOTAL	INCL O&P	ļ
		1 Elec	6.70	1.190	Ea.	51	29		80	99	130
6020	Recessed, 200 watt	EBC	6.70	1.190		43	29		72	90	
6030	Pendent, 200 watt	\vdash	8	1.150		44	24		68	84	1
6040	Wall, 200 watt		3.20	2.500		70	61		131	165	
6100	Fluorescent, surface mounted, 2 lamps, 41., RS, 40 watt	╂╌┼╌	2.20	3.640	-	139	88	-	227	280	1
6110	Industrial, 2 lamps 4' long in tandem, 430 MA		1.90	4.210		100	100		200	260	1
6130	2 lamps 4' long, 800 MA	╂┼┼	1.90	4.210	├-┼-	149	100		249	315	1
6160	Pendent, indust, 2 lamps 41. in tandem, 430 MA		2.30	3.480		80	84		164	210	1
6170	2 lamps 4' long, 430 MA	╂╌┼╌	1.70	4.710	\vdash	109	115		224	290	1
6180	2 lamps 4' long, 800 MA		3.20	2.500		226	61		287	340	1
6200	Mercury vapor with ballast, 175 watt		3.20	2.500							1
6300	Explosionproof	1 Elec	2.90	2.760	Ea.	668	67		735	835	
6310	Metal halide, ballast, ceiling, surface mounted, 175 watt	LICIOL	2.70	2.960	1.A.	775	72		847	960	1
6320	250 watt			3.330		836	81		917	1,050	1
6330	400 watt	 	2.40	3.080		640	75		715	815	1
6340	Ceiling, pendent mounted, 175 watt		2.60	3.330		745	81		826	940	ł
6350	250 watt	╂╾┼╾		3.810	-	816	92		908	1.025	1
6360	400 watt.		2.10	2.760		698	67		765	865	1
6370	Wall, surface mounted, 175 watt	+	2.90	2.760	-	805	72		877	990	1
6380	250 watt		2.70	3.330		856	81		937	1.050	
6390	400 watt.	1	2.40	2.670		724	65		789	890	1
6400	High pressure sodium, ceiling surface mounted, 70 watt		3	2.670		738	65		803	905	1
6410	100 watt	+	2.70	2.960		765	72		837	945	1
6420	150 watt		2.70	2.960		678	72		750	850	1
6430	Pendent mounted, 70 watt	1	2.70	2.960		698	72		770	875	1
6440	100 watt		2.40	3.330		724	81		805	915	1
6450	150 watt	+	+			750	65		815	920	1
6460	Wall mounted, 70 watt		3	2.670 2.670		775	65		840	945	
6470	100 watt	+-	3		╂─┼╌	780	72		852	965	1
6480	150 watt		2.70	2.960		250	49		299	345	1
6510	Incandescent, ceiling mounted, 200 watt		4	2.290	╁┼	219	55		274	320	1
6520	Pendent mounted, 200 watt		3.50			270	49		319	370	
6530	Wall mounted, 200 watt		4	2	╂┼┼	1,310	72		1.382	1,550	1
6600	Fluorescent, RS, 4' long, ceiling mounted, two 40 watt		2.70	2.960 3.640		1,915	88	1	2,003	2,225	
6610	Three 40 watt	++	2.20	1	╂╌┼╴	2,490	100		2,590	2,900	
6620	Four 40 watt	1 1	1.90	4.210		1,390	84		1,474	1,650	1
6630	Pendent mounted, two 40 watt		2.30	3.480	-	2.020	100		2,120	2,375	1
6640	Three 40 watt	1	1.90	4.210		2,520	115		2,685	3,000	ı
6650	Four 40 watt		1.70	4.710 2.960	\blacksquare	545	72	 	617	705	1
6700	Mercury vapor with ballast, surface mounted, 175 watt		2.70			586	72		658	750	1
6710	250 watt	+	2.70	2.960 3.330	\vdash	714	81		795	905	1
6740	400 witt		2.40			550	81		631	725	1
6750	Pendent mounted, 175 watt	++	2.40	3.330	1	561	81	 	642	735	1
6760	250 watt		2.40	3.810		683	92		775	885	
6770	400 watt	+-		2.960		576	72	<u> </u>	648	740	1
6780	Wall mounted, 175 watt		2.70	2.960		632	72		704	800	
6790	250 watt	+	2.70		_	750	81	 	831	945	1
6820	400 watt		2.40	3.330 2.500		105	61		166	205	
6850	Vandalproof, surface mounted, fluorescent, two 40 watt		3.20			45	24	 	69	85	7
6860	Incandescent, one 150 watt		8	1		61	24		85	105	
6900	Mirror light, fluorescent, RS, acrylic enclosure, two 40 watt		8	1	1	56	24	 	80	97	7
6910	One 40 watt		8	1 667		49	16.15		65,15		1
5920	One 20 watt	+-	12	.667	╂-┼-		49	-	347	400	1
7000	Low bay, aluminum reflector. 70 watt, high pressure sodium		4	2		298	61		596	680	1
7010	250 watt, high pressure sodium	+-	3.20	2.500	_	535 561	78	 	639	730	7
7020	400 watt, high pressure sodium	+	2.50	3.200	1 *	301	/*			1 ~	1
7500	Ballast replacement, by weight of ballast, to 15' high	1_	+	000	F-	+	19.40	1	19.40	29	7
7520	indoor fluorescent, less than 2 lbs. 2 40W, watt reducer, 2 to 5 lbs.	1 Elec	9.40	.800	Ea.	17	21		38	49	

	SUBJECT KAAP L	ighting Projects	AEP NO 298 0379 000
EYNOLDS, SMITH AND HILLS RCHITECTS · ENGINEERS · PLANNERS	the second second second second	odd	SHEET OF 10
INCORPORATED	CHECKER	·	DATE
GP-N-8 REPLACE	INCANDESCEN	TS WITH COLOR-C	ORRECTED HPS
SCREW-IN	5 FOR EXPLO	SION PROOF FIXTUI	CES
Calculationes were made		and the same of the same of the same of the same of the same of the same of the same of the same of the same of	
HPS color-corrected,		•	
includesant fixture	s. the per-uni	t calculations are	e ou page Z.
includescent fixture Only areas operating 35 From the bulding Au	wey data, a l	us whe were come	as with potential
incondercent lighting	projects was	compiled (page 3), It is
assumed for this E	10 that 90,	of the interior	r fixtures are
explosion groof and can	· ·		
of fixtures and screw	-un retrofits	should be ver	
Total fixtures - 0.	9 (1536) = 1	382	
Energy Savings = 4	19.9 Kuth x 0.00	13413 MBfu x 1382-	fixtures = 2354 M Etu
thoram cost surings =			
Hade & Labor Cost Sa	rings = \$7.39 9.50	1382 = \$10,2 K.	13/4/
Total cost savings	= 20,882 t	10,213 = 151,0	95 /yv
Project cost = \$	118.65 x 1382	= \$163,974	· ·
(Construction	cost = \$163,9	74/1.115 = \$14	7,062)
Simple payback =			
<u> </u>	. A second community of the se	and the state of t	and a second of the second of

	SUBJECT RA	AP Lighting ening Calc	Projects	AEP NO	290 037	9000
EYNOLDS, SMITH AND HILLS	Sche	enino Calc	1.	SHEET	,2 of	10
RCHITECTS • ENGINEERS • PLANNERS INCORPORATED	DESIGNER	J. Tod		DATE		
	CHECKER					
GP-N-8 Replace inten	or 150-	200 W inco	ude scouts	with	50 W H7	25
GP-N-8 Replace inten	ofits for	explosion -	proof app	lication	5	
15.0	1-1.		\mathcal{A}		c _ +P	
- Assume color reu 50 w HPS (color- excled reguireme	action 1	: Importara	in this	area) lusance	는 -
50 W HTS (color)	COVICECTED) is chosen	a even ru	ovan	(Orders	
excled beguntine	~ ·			. <u> </u>		
<i>O</i>			gg gagaranin * ga			
Energy Savings = (158		-	•			
Energy cost savings =	- 499 <u>k</u>	$wh_{\times} 40.0$	3026 -	\$ 15.11	· · · · · · · · · · · · · · · · · · ·	
Labor & Matleost sa						
=[/\$2.11 mate + \$1.20 10	Lbox ×0.683	×1.2) (\$3	0.00mete + \$	16.45 lab	ov × 0,683	×1.2)
750 lu			12,0	00 hr		
	x.67	240 hr =	\$7.39			
=[(\$2.11 matl + \$1.20 lo 750 lu	,	y	yr			
Total cost savings	= \$ 15.1 yr	+ + 7.39	$\frac{1}{2} = \frac{1}{2}$	3v		

Labor cost = \$1.20 × 1.20 × 1.20 × 1.20 × 1.2 × 1.18 | \times 1.20 × 1.20 × 1.20 × 1.18 | \times 1.661 = \$118.65 | Simple payback = $\frac{118.65}{122.50/yr}$ = 5.3 yr < 10 yr

(1990 vencor into.)

Note: HPS lamps are replaceable in the retrofit ballasts.

Mattle cost = \$ 67.00 for fixture w/lamp

Radford Army Ammunition Plant List of Buildings with Incandescent Lighting

Bldg No	Name/Process	Location	Similar	Fixtures/Bldg.	Total Fixtures
1000 -00	Cotton Linter Warehouse	NC, A&B-Line	1	17	17
1606 -00	Open Tank Air Dry	Sol. Recovery, A-Line	10	20	200
1611 -00	Solvent Recovery House	Sol. Recovery, B-Line	27	12	324
2512 _00	C_1 Droce & Cutting House	Green. C-Line	3	20	60
4912 -27	SG Curing Hse Carpet Rolls	Cast Prop. (Rocket)	10	5	50
4924 -06	Machine and Saw House	Cast Prop. (Rocket)	1	6	6
7104 -04	Dry House #4 (Cure Grain)	1st R P	/	. 8	56
9334 -15	Blender House	4th Rolled Powder	1	4	. 4
TOTAL FOR	EXTERIOR FIXTURES				717
420 -02	Acid Waste Disposal (C-Line)	Waste Acid	1	 8	8
2010 00	Doiling Tub House	NC R-line	3	50	150
2022 -00	Beater House	NC. B-Line	3 3 3	40	120
2024 -00	Poacher & Blending House	NC. B-Line	3	30	90
3513 -00	C-1 Press & Cutting House	Green. C-Line		- 50	150
4912 -40	Forced Air Dry House	Pilot B	21	10	210
4912 -11	Forced Air Dry House LG Mold Loading House	Cast Prop. (Rocket)	2	6	12
4912 -03	MK 43 Sawing and Inhibiting	Cast Prop. (Rocket)	1	4	4
4915 -00	Small Grain Mold Assembly	Cast Prop. (Rocket)	1	7	7
4921 -00	Inspect/Clean NG Tanks *	Cast Prop. (Rocket)	1	21	21
				8	8
5008 -01	15 Inch Press House	Pilot A	3	2	6
6304 -00	TOW Launch Saw House 15 Inch Press House Paste Blending House	1st R P	1	20	20
7112 00	Doll Mouse (Dolled Dowder)	1ct R P (}- ine	1	130	130
9310 -02	Rolled Powder Building	4th Rolled Powder	2	300	600
	INTERIOR FIXTURES				1536

CONSTRUCTION COST ESTIMATE			DATE PREPARED 6/90			SHEET	4 of 10	٦	
ROJECT ENERGY ENGINEERING	ANAL YS	IS			BASIS FOR ESTIMATE				
LOCATION						-	. (No deelgr teliminary d	completed)	
ARCHITECT ENGINEER						CODE (: (Finel des ectly)	ign)	
REYNOLDS, SMITH AND	HILLS	ESTIM	ATOR			CHECKE			긕
GP-N-8			T. Too		,				_
Incand to 50W HPS SUMMARY	THAUD.	UNIT	PER	TOTAL	PER	TO	TAL	TOTAL COST	Ì
Replace incandescent	1382	 		1631	67.00	9	2594	94 22	5
lamps with 50 W HPS		11712						3	
screw-in retrofits	·							-	
Sales Tax	4.5%						4167		,
FICA/Insurance	20.0%			326				326	
Subtotal				1957		9	6761	98718	
Overhead	15.0%					•		14808	
Profit	10.0%							1135	
Performance Bond	1.0%							1249	
Hercutes Support	6.0%							7568	
Contingency (10.0%							1337	-
Construction Cost		-						14706	쒸
									\dashv
									ᅴ
									ᅥ
									ㅋ
			- '						
								<u> </u>	
									_
								· · · · · · · · · · · · · · · · · · ·	
					1	<u> </u>			

GP-N-8 p.5 of 10

ECP ENERGY CONSERVATION PRODUCTS, 511 CANAL STREET, NYC, NY, 10013—TEL (212)—925-5991

POWER CONSUMPTION AND LUMEN CUTPUT DATA

*		TOTAL	LUMENS	HOURS OF	*
* WATTS	LINE WATTS	LIMEN CUIPUI	PER WATT	RATED LIFE	*
****** MEDITE	Y VAPOR (DELUX	E WHITE)			*
* 1000	1075	63000	59	24000	*
* 400	450	23000	56	24000	*
* 250	290	13000	42	24000	*
* 175	205	85 00	49	24000	# _
* 100	120	4500	42	24000	
* 75	93	3150	37	16000	*
* 50	61	1680	31	16000	
****** METAL	HALIDE				*
* 1500	1600	155000	103	3000	* .
* 1000	1100	110000	100	12000	
* 400	460	34000	85	15000	*
* 175	210	14000	85 	7500	* =======
******* HIGH I	PRESSURE SODIUM				*
* 1000	1080	140000	130	24000	*
* 400	480	50000	104	24000	
* 250	310	27500	89	24000	*
* 150	200	16000	80	24000	*
* 100_	135	9500		24000 24000	***
70	70	5800	57	24000 24000	*
70 50 35	(42)	4000 2850	67	18000	*
(33)	12/	2000			
*******FWORE	SCENT				*
STRAIGHT 40	48	3150	66	20000+	*
CIRCLINE 32	37	1830	50	12000+	*
CIRCLINE 22	25	1050	42	12000+	*
CIRCLINE 20	23	850	37	12000+	*
TWIN TUBE 13	16	900	56	10000+	*
TWIN TUBE 9	12	600	50	10000+	
STRAIGHT 8	11	400	36	7500+	
TWIN TUBE 7	10	400	40	10000+	*
STRAIGHT 6	9	300	33	7500+ 10000+	· **
TWIN TUBE 5	8 ==========	250	31 - 	======================================	
	DESCENT				* #
1000	1000	23740	24	1000	*
* 750	750	17040	23	1000	*
* 500	500	10850	22	1000	*
* 200 * 150	200	<u> </u>	19	750 750	*
	150	2880	19 10	750	*
* 100 * 75	100 75	1750 1190	18 16	750	
		• **************			*
* 20ART	S—IODINF. 15J0	35800	24	3000	
* 1000	1000	23400	23	2000	*
* 500	500	10950	22	2600	*
250	250	4850	19	2000	

STANDARD

AVERAGE

24,000

LAMP	WATTAGE	APPX LUMENS	AVERAGE LIFE HRS.	STANDARD CASE CITY.

RAPID START FLUORESCENT U LAMPS

FB40/U6/CW/EW FB40/16/CW	34 40	2,600 2,950	12,000 12,000	12	
FB40VUOVCVV	40	2,330	12,000		

INSTANT START SLIMLINE FLUORESCENT LAMPS

F72T12/CW 55	4,550	12,000	12	
F96T12/CW/EW 60	5,600	15,000	15	
F96T12/CW 75	6,200	12,000	15	

HIGH & VERY HIGH OUTPUT FLUORESCENT LAMPS

F96T12/CW/H0/EW 95 8.300 12.000 F96T12/CW/H0 110 9.200 12.000 F96T12/CW/H0/EW 185 14.000 12.000 F96T12/CW/YH0 215 15.500 12.000	15 15 15 15
---	----------------------

METAL HALIDE UNIVERSAL BURN MEDIUM BASE LAMPS

MH35/U	35	2,300	5,000	12
MH50/U	50	3,400	5.000	12
MH70/U	70	5.500	5.000	12
MH100/U	100	7,200	7,500	12
MH150/U	150	12,000	10.000	12

METAL HALIDE UNIVERSAL BURN MOGAL BASE LAMPS

MH175/U	175	14.000	10,000	12
MH175/C/U	175	14,000	10,000	12
MH250/U	250	20.500	10,000	12
MH250/C/U	250	20.500	10.000	12
MH400/U	400	36,000	20.000	6
MH400/C/U	400	36,000	20.000	6
MH1000/U	1000	110,000	12.000	6
MH1000/C/U	1000	105,000	12.000	6

COMPACT DOUBLE ENDED HQI METAL HALIDE LAMPS

HQI 70	70	5.000	10.000	12	İ
HQI 150	150	11,000	10.000	12	i
HQI 250	250	19.000	10.000	12	ļ
HOLADO	400	25,000	10,000	12	1

HIGH PRESSURE	SODIUM	MEDIUM	BASE LAMPS	
LU35,MED	35	2.250	16.000	
11135/D/MED	35	2.150	16.000	

LU35, MED	, 35	2.230	0.000	14	- :
LU35/D/MED	35	2.150	16.000	12	1
LU50/MED	50	4.000	24.000	12	1
LU50/D/MED	50	3.800	24.000	12	1
LU70/MED	70	6.300	24.000	12	
LU70/D/MED	70	5.985	24.000	12	
LU100/MED	100	9,500	24.000	12	- 1
LU100/D/MED	100	8,800	24.000	12	-
LU150/MED	150	16,000	24,000	12	- 1
LU150/D/MED	150	15.000	24.000	12	į

AND THE PROPERTY WICH PRESCRIPE SUBMINE I AMP

CULUK IMPHUN	רא חוטה עש/	ESSURE S	UDITUE DAM	r
"HT50SDX	50	2.500	12.000	12

HIGH PRESSURE SODIUM ED-231/2 MOGUL BASE LAMPS

LU50	50	4.000	24.000	12
LU50/D	50	3.800	24.000	12
LU70	1 70	6,300	24.000	12
2070/0	1 70	5.985	24,000	12
LU100	100	9.500	24.000	12
LU100/D	100	8.800	24.000	12
LU150/55	150	16.000	24.000	12
111150/55/D	150	15.000	24.000	12

LAMP

LU400

		LUMENS	LIFE HRS.	CASE CITY.
HIGH PRESSU	RE SODIUM	E-18 MOGU	IL BASE LA	MPS
1.U200	200	22,000	24.000	12
LU250	250	29.000	24,000	12
LU250/D	250	26.000	24,000	12
LU310	310	37,000	24.000	12
1 250.0	1 7.7	1		

50.000

WATTAGE APPX

LOW PRESSURE SODIUM LAMPS

MA LUESSOI	IC GODIOM E	, IIII C		
S0X10 S0X18 S0X35 S0X55 S0X90 S0X135	10 18 35 55 90 135	1.000 1.800 4.800 8.000 13.500 22.500	9,000 14,000 18,000 18,000 18,000	20 20 12 9 9
SOX180	180	33.000	18,000	9

MR16 LOW VOLTAGE 12V TUNGSTEN HALOGEN LAMPS

ESX (N)	20	3.300	2.000	20
BAB (W)	20	460	2.000	20
EYR (N)	42	7.300	2.000	20
EYS (M)	42	2.500	2.000	20
EYP (W)	42	1.200	2,000	20
EXT (N)	50	9.150	3.000	20
EXZ (M)	50	3.000	3,000	20
EXN (W)	50	1,500	3,000	20
EYF (N)	75	11.500	3.500	20
EYJ (M)	75	4.500	3,500	20
EYC (W)	75	2.000	3,500	20

MR16 LINE VOLTAGE 120V MEDIUM BASE TUNGSTEN HALOGEN LAMPS

M/JDR75W/N	75	6.300	2.000	12
M/JDR75W/M	75	3.500	2.000	12
M/JDR75W/W	75	2,100	2.000	12
M/JDR100/N	100	8.500	2.000	12
M/JDR100/M	100	4 500	2.000	12
M/JDR100/W	100	3.000	2.000	12

MR16 LINE VOLTAGE 120V INTERMEDIATE BASE

TUNGSTEN HALL	IGEN LAM	r3		
/JDR75W/N /JDR75W/M /JDR75W/W /JDR100/N /JDR100/M	75 75 75 100 100	6.300 3.500 2.100 8.500 4 500 3.000	2.000 2.000 2.000 2.000 2.000 2.000	12 12 12 12 12 12 12

TUNGSTEN HALOGEN LINE VOLTAGE MEDIUM BASE

1080FAU FAW	rð			
64484/CL 64484/FR 64486/CL 64486/FR 64488/CL	75 75 100 100	1.200 1.140 1.600 1.520 2.760	2.000 2.000 2.000 2.000 2.000	15 15 15 15 15
64488/FR	150	2.622	2.000	15

TUNGSTEN HALOGEN LINE VOLTAGE DOUBLE ENDED LAMPS

DCF = 14DFD ==	
00T3/CL 00T3/CL 00T3/CL 00T3/CL 00T3/CL	12 12 12 12 12 12 12

BROOKLYN, NEW YORK

TEL. (800) 552-3465

(718) 851-4577 · FAX (718) 853-2390

77	66	Lighting	Ng.			1.5	in the			(6)			No. 15
			.,,		DAILY	MAN-			BARE	COSTS		TOTAL	
j	6	6 100 Lighting	CR	EW	OUTPUT	HOURS	UNIT	MAT.	LABOR	EQUIP.	TOTAL	INCL CAP	
140		90 watt	-	Elec	.30	26.670	С	5.140	645		5,785	6,600	140
140	1600 1650	135 watt	' '		.20	40	Ĭ	6.905	970		7,875	9.025	
lł	1700	180 watt	T	H	.20	40		7,308	970		8,278	9,475	
	1750	Quartz line, clear, 500 watt	i		1.10	7:270		1,872	175		2.047	2,325	1
	1760	1500 watt	┢		20	40		3,427	970		4,397	5,200	
	1800	Incandescent, interior, A21, 100 watt			1.60	5		173	120		293	370	1
	1900	A21, 150 watt	T	\Box	1.60	5		(211)	120		331	410	
	2000	A23. 200 watt			1.60	5		227	120		347	430	1 1
	2200	PS 30, 300 watt	\vdash		1.60	5		330	120		450	540	
ll	2210	PS 35, 500 watt	1		1.60	5		576	120		696	810	
		PS 52, 1000 watt	✝	Н	1.30	6.150	١.	1,525	150		1,675	1,900	
	2230	PS 52, 1500 watt	1		1.30	6.150		2,382	150		2,532	2,850	
3	2240	R30, 75 watt	十	\vdash	1.30	6.150		375	150		525	630	
	2300				1.30	6.150		408	150		558	670	1
	2400	R40, 150 watt Exterior, PAR 38, 75 watt	╁╌	\vdash	1.30	6,150		566	150		716	840	1
	2500		1		1.30	6.150		525	150	,	675	795	
ĺ	2600	PAR 38, 150 watt	╀		1.10	7.270	\vdash	1,928	175		2,103	2,375	1
	2700.	PAR 46, 200 watt	1		1.10	7.270		2.193	175	,	2,368	2.675	
	2800	PAR 56, 300 watt	╁		1.10	8	┝╌┼╌	375	195		570	695	1
li	3000	Guards, fluorescent lamp, 4' long			.90	8.890		535	215		750	905	1
	3200	8' long	╁	1	.30	0.050	├-						145
145	55.5	RESIDENTIAL FIXTURES	١.	Elec	20	.400	Ea.	48	9.70		57.70	67	
	0400	Fluorescent, interior, surface, circline, 32 watt & 40 watt	╁	CIGC	8	1		66	24		90	110	1
	0500	2' x 2', two U 40 watt			16	.500		45	12.15		57.15	67	
	0700	Shallow under cabinet, two 20 watt	╁╌	+-	10	.800	-	41	19.40		60.40	74	1
	200	Wall mounted, 41., one 40 watt, with baffle	1		16	.500		36	12.15	i	48.15	57	1
	0	Incandescent, exterior lantern, wall mounted, 60 watt	╁╌	╁	4	2	-	104	49		153	185	1
	2100	Post light, 150W, with 7' post	1		16	.500		16	12.15		28.15	35	1
	2500	Lamp holder, weatherproof with 150W PAR	╁	┿	12	.667		31	16.15		47.15	58	1
	2550	With reflector and guard	1		20	400		78	9.70	1	87.70	100	
	2600	Interior pendent, globe with shade, 150 watt	┿	1	20	.400	-	70	3.70				150
150	33.5	TRACK LIGHTING	Ι.	- 1	6.70	1.190	Ea.	33	29		62	79	1
	0080	Track, 1 circuit, 4' section	+-	Elec	6.70 5.30	1.510		48	37		85	105	1
	0100	O SECTION	1		4.40	1.820		81	44		125	155	1
	0200	12' section <u>a</u> <u>a</u> <u>a</u> <u>a</u>	╁	+-		1.190	+	36	29		65	82	1
	(300)	3 circuits, 4' section			6.70	1.510		48	37		85	105	l l
	0400	8' section	╁	+-	5.30	1.820	-	88	44		132	160	1
	0500	≂	1		4.40	.500		12	12.15	.]	24.15	1	
	1000	Feed kit, surface mounting 🚊 🚊	╁	+-		+		1.98		+	10.08		5
	1100	End cover	1		24	.333		16	12.15	1	28.15	I .	
	1200	Feed kit, stem mounting, 1 circuit	╀	+	16		+	16	12.15		28.15		7
	1300	3 circuit			16	.500	1	6.55			12.60	I	o
	2000	Electrical joiner for continuous runs, 1 circuit	+	+	32		1	12.10			18.15	+	1
	2100	3 circuit			32	.250		47	12.15	1	59.15	1	1
	2200	Fixtures, spottight, 150 PAR	+	+-	16	.500	1 +	101	12.15		113.15		7
	3000	Wall washer, 250 watt tungsten halogen			16	.500		101	12.15	1	114.15	1	1
	3100	Low voltage, 25 watt, 1 circuit	+	+	16	.500	++	102	12.15		121.15		1
	3120	3 circuit		*	16	.500	1 '	103	12.15	1		1	
	1		┸		<u></u>			i					مبييهاي

	66	Lighting				, 2 , 3,					i ji	
				DAILY	MAN-		1000		COSTS	TOTAL	TOTAL	
	9 66	100 Lighting	CREW	OUTPUT	HOURS	UNIT	MAT.	LABOR	EQUIP.	TOTAL	INCL OEP	135
135	5100	175 watt metal halide	1 Elec	1	1	Ea.	479	24 24		503 524	565 585	۳'ا
	5110	250 watt metal halide	\vdash	8	1		500			559	625	
	5120	150 watt high pressure sodium		8	1		535 556	24 24		580	646	
	5130	250 watt high pressure sodium		8	1		525	24		549	615	Ì
	5140	72"H 18" sq., 400 watt metal halide		8	1		556	24		580	645	ĺ
	5150	250 watt high pressure sodium	-	8	1	+	581	24		605	675	İ
	5160	400 watt high pressure sodium	٠	8	1	7	~	6.7			5.75	
	5190	Portable rectangle, 6" high 13.5" x 20"	1 Ele	c 12	.667	Ea.	293	16.15		309.15	345	İ
	5200	175 watt metal halide	35	12	.667		314	16.15		330.15	370	
	5210	250 watt metal halide		12	.667		335	16.15		351.15	390	1
	5220	150 watt high pressure sodium		12	.667		360	16.15		376.15	420	
	5230	250 watt high pressure sodium 8" high 18" x 24", 400 watt metal halide		12	.667		365	16.15		381.15	425	1
	5240	250 watt high pressure sodium		12	.667		376	16.15		392.15	435	
	5250	400 watt high pressure sodium		12	.667		398	16.15		414.15	460	1
į	5260	Portable square, 15" high 13.5" sq., 175 watt metal halide		12	.667		324	16.15		340.15	380]
	5270	250 watt metal halide	1-	12	.667		376	16.15		392.15	435	I
	5280 5290	150 watt high pressure sodium	1	12	.667		360	16.15		376.15	420	1
	5300	250 watt high pressure sodium		12	.667		386	16.15		402.15	450	1
	5400	Pendent 16" round/square, 175 watt metal halide		3.20	2.500		355	61		416	480	1
	5410	250 watt metal halide		2.70	2.960		370	72		442	515	1
	5420	400 watt metal halide	1 1	2.40	3.330		398	81		479	555	1
	5430	150 watt high pressure sodium		3.20	2.500		398	61		459	525	1
	5440	250 watt high pressure sodium		2.70	2.960		428	72		500	575	4
		400 watt high pressure sodium	1	2.40	3.330		454	81	i	535	620	
(<u> </u>						<u> </u>	
140	0010 LAI	MP8										140
	0080	Fluorescent, rapid start, cool white, 2' long, 20 watt	1 Ele	c 1	8	C	348	195	ļ	543	670	-
	0100	4' long, 40 watt		.90	8.890	1	198	215	į	413	535	1
	0120	3' long, 30 watt		.90	8.890	1	442	215		657	805	-
	0150	U-40 watt	1	.80	10	1	874	245		1,119	1,325	1
	0170	4' long, 35 watt energy saver	\bot	.90	8.890	 	270	215		485	615 995	┪
	0200	Slimline, 4' long, 40 watt	1	.90	8.890		618	215		833 822	990	1
	0300	8' long, 75 watt	1	.80	10	╀	577	245	+	848	1,025	1
	0350	8' long, 60 watt energy saver		.80	10		603	245 215		965	1,150	
	0400	High output, 4' long, 60 watt	1-+	.90	8.890		750 775	245	 	1,020	1,200	1
	0500	8' long, 110 watt		.80	10			215		1,500	1,725	
	0520	Very high output, 4' long, 110 watt	+-+	.90	8.890	1	1,285	275	 	1,560	1,825	7
	0550	8' long, 215 watt		.70	11.430		1,285	645		2,787	3,300	
	0600	Mercury vapor, mogul base, deluxe white, 100 watt	++	.30	26.670 26.670	_	2.142 1.663	645	 	2,308	2,775	1
	0650	175 watt		.30	26.670	1 1	2,968	645		3.613	4,225	
	0700	250 watt	++	.30	26.670		2,340	645	<u> </u>	2.985	3,525	7
	0800	400 watt		.20	40		5,100	970		6.070	7,025	1
	0900	1000 watt	╂┼	.30	26.670	++	3,749	645	1	4,394	5,075	7
	1000	Metal halide, mogul base, 175 watt		.30	26.670	B 1	4,712	645		5. 357	6,125	_i
	1100	250 watt		.30	26.670	_	4,386	645		5,031	5,775	7
	1200	400 watt		.20	40		9,894	970		10,864	12.300	⅃
	1300	1000 watt 1000 watt. 125,000 initial lumens	1	.20	40	1	9,960	970		10.930	12,400	1
	1320	1500 watt. 125,000 kintai luiriens		.20	40		9,268	970		10.238	11.600	_
	1330	Sodium high pressure, 70 watt	1	.30	26.670		4,712	(645)		5,357	6,125	1
(0			.30	26.670		4,871	645		5,516	6,300	
	200	100 watt	1	.30	26.670	_	5,059	645		5,704	6,525	
	1370	150 watt 250 watt		.30	26.670		5,380	645		6,025	6,875	_
	1380	250 Watt 400 watt	1-+	.30	26.670	_	5.727	645		6,372	7.250	
	1400	1000 watt		.20	40		13,352	970		14,322	16,100	4
	1450	Low pressure, 35 watt	1	.30	26.670	1	3,963	645		4,608	5,300	1
	1500	55 watt		.30	26.670	1 1	4,386	645		5,031	5.775	
_	1550	₩au	<u> </u>								19	99

HunTen

Distribution:

GP-N-8 P. 9 of 10 Telephone Call Confirmation

(718) Project No. 290 0379 000
(718) Local D. 85 - 1577 Placed Rec'd Date 6-7-90
T To AA
T. Todd. Conversed With Mr. Singer Of American Scientific Lighting Co. Regarding HPS reprofits
of timery an successific discrete to. Regarding 1113 reported
T 1 22 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
For retrofits of incandescent fixtures, the "Bulb Lumenight"
and "Colorlight" products are recommended. The lamps we
riplaceable in both and the "colorlight" is more whitish.
Contractors costs (including lamp) for quantities of 100+
and "Colorlight" products are recommended. The lamps one riplaceable in both and the "colorlight" is more whitish. Ontractors costs (including lamp) for quantities of 100 + are as follows:
Bulb Lymenialit 35 W - \$45 / lamps only
Bulb Lumenight 35 W - \$45 (lamps only 50 W - \$45 (\$16-\$20) (also come in 70 W 100 W 150 W) Colorlidat 50 W - \$67 (lamps only
(also come in 70 W 100 W 150 W)
Colorlight 50 W - \$67 (lamps only \$30)
<i>\$</i> 30)
They will send a copy of their notalog for dimensions.

DOWNLITE™ CONVERSION SERIES: COMPACT FLUORESCENT REFLECTOR LAMPS

GLOBE FLECTOR™ LUMA FLECTOR™

- LAMP: Compact disposable fluorescent globe or tubular lamp/Standard or tapered base
- REFLECTOR: Highly polished aluminum
- WATTAGE: Fifteen
- LUMENS: 1350
- COLOR: Warm white/2800k
- · USE: Indoor only
- BURNING POSITION: Any
- LAMP LIFE: 9,000 hours
- INSTALLATION: Screws into any 120V medium base socket
- PACKAGING: Ten conversions per carton

CATALOG NUMBER	LAMP	DIMENSIONS
DGF S/15	BFG15 LE/A	Reflector Diameter 51/6" Overall Length 61/4"
DGF T/15	BFG15 LE/T	Reflector Diameter 51/s' Overall Length 63/4"
DLF S/15	BFT15 LE/A	Reflector Diameter 51/6" Overall Length 63/6"
DLF T/15	BFT15 LE/T	Reflector Diameter 51/s' Overall Length 7"

LINE VOLTAGE/LOW VOLTAGE MR16 HALOGEN CONVERSIONS

HALOGENLITE™ 120V

- LAMP: MR16 Dichro-Cool tungsten halogen/Medium base or intermediate with medium adapter base and clip on lens/Line voltage/Cool crisp white light 3000k/Dimmable up to twenty five percent/Medium beam spread.
- · LAMP LIFE: 2,000 hours/High lumen maintenance
- INSTALLATION: Screws directly into any ventilated 120V medium base porcelin socket rated above 100 watt/Minimum front diameter opening 43/4"
- PACKAGING: Ten lamps per carton

HALOGENLITE™12V

- ADAPTER: Molded Valox^a plastic/Vented to cool internal
- · FINISH: Black
- . LAMP:MR16 Dichro-Cool tungsten halogen/Low voltage/Stepgown transformer/Dimmable/Cool crisp white light 3000k/Natural sunlight appearance
- LIFE: 2000 hours 20 watt/3000 hours 50 watt
- INSTALLATION: DH 12/20 screws into any medium base porcelin socket rated for 75 watts/DH 12/50 into socket rated for 150 watts
- PACKAGING: Four conversions per carton/Lamp

CATALOG NUMBER	LAMP	DIMENSIONS
MEDIUM		
DH 120 M/75	JDR75	Lamp Diameter 2"
DH 120 M/100	JDR100	Overall Length 2 5/16"
INTERMEDIATE		
DH 120 I/75	JDR75	Lens Diameter 21/6"
DH 120 I/100	JDR100	Overall Length 51/4"
OPTIONS:		M Medium Beam
R Reflector		Spread 18*
N Narrow Beam	Spread 10°	W Wide Beam Spread 28°

NUMBER			
DH 12/20 DH 12/50	JR/20 JR50		dapter Diameter 31/41 verall Length 6"
DH 12/20/R4 DH 12/50/R4		0	iapter Diameter 3¼' verall Length 7¾'' ens Diameter 5"
OPTIONS:	0w	EXT EXZ	Narrow Spot/50w Narrow Flood/50w

LAMP

DIMENSIONS

CATALOG

EXN Flood/50w ESX Narrow Spot/20w

COLOR IMPROVED HPS HIGH HAT CONVERSION

COLORLITE 50™

- ADAPTER: Heavy gauge spun aluminum
- FINISH: Caustic etcning
- REFLECTOR: Highly polished aluminum/Vented slots for cool operation
- . LAMP COLOR: 2500K . LAMP LIFE: 12000 Hours
- INSTALLATION: Adapter screws into a standard 120V high hat fixture/Medium base porcelain socket required/ Fixture rated for a minimum of 150 watts/Minimum front diameter opening 5"
- · PACKAGING: Four conversions per carton/Lamp included

	MBE		DIMENSIONS
DC	C/50	NHT50 SDX	Adapter Diameter 31/e" Reflector Diameter 51/4" Overall Height 81/2"
65		(718) 851-4577	• FAX (718) 853-2390

AMERICAN SCIENTIFIC LIGHTING CORPORATION

BROOKLYN, NEW YORK

TEL. (800) 552-34

•	eun ISCT	RAAP Li	phting Proj	ects	NO 290	037900
YNOLDS, SMITH AND HILLS CHITECTS • ENGINEERS • PLANNERS INCORPORATED	SCH.	eniag Co	olding Projector todd	SHE	ET	of Z
	40 W	fluoresce	nt lamp	s with 3	54 w 41	vorescents
ECO#GP-N-9 Replace all upon fail	vre *		0			
- Assume no add would be replace	'd lab Longn	or losts	are inc	urved s	ince lan	,ps
Energy savings = 6	W X	24 hr x	760 days	= 37, 4	lauh yr	0/12/3 M3/1/1/
Cost Savings = 37.	4 kurl yr	x 10.0	3026 =	\$1.13 yr		
Mæl'l cost = cost = \$2.7	of 341	w flaor. 1.98 =	- cost # \$ 0.72	f 40W +	Tuov.	
Project cost =	i		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and the second s		
Simple payback=	\$0.75	=_(yv).7 yr			
Life of lan	mp = 20	5,000 hr	x <u>yr</u> 6240 hr	= 3.	2 yr)	0.7 yr
	A SECTION OF THE SECT					
			:			
· · · · · · · · · · · · · · · · · · ·						
			!			
						-

GP-N-9 p. 20+2

166	Lighting			,				*				. Constants
				DAILY	MAN-		10.00	BARE		TOTAL	TOTAL INCL 0&P	
	66 100 Lighting	₩	EW	OUTPUT	HOURS	UNIT	MAT.	LABOR	EQUIP.		565	135
135 5100		1 8	lec	8	1	Ea.	479	24 24		503 524	585	1 3
5110		—		8			500 535	24		559	625	1
5120	· · · · · · · · · · · · · · · · · · ·			8	1		556	24		580	645	
5130		-		· 8		_	525	24		549	615	1
5140				8	' I		556	24		580	645	
5150		-		8	1	-	581	24		605	675	İ
5160		· '	•	۰	'	•	~		*	-		
5190		١,,	lec	12	.667	Ea.	293	16.15		309.15	345	l
5200		Ι''		12	.667	Ī	314	16.15		330.15	370	l
5210		╁╌		12	.667		335	16.15	•	351.15	390	1
5220				12	.667		360	16.15		376.15	420	1
5230		╁	\vdash	12	.667		365	16.15		381.15	425	l
524		l	İ	12	.667		376	16.15		392.15	435	
5250		一		12	.667		398	16.15		414.15	460	Ì
5260	and the specific of the specific builds	l	1	12	.667		324	16.15		340.15	380	
5270		1	Т	12	.667		376	16.15		392.15	435	
528 529			1	12	.667		360	16.15		376.15	420	1
530		T		12	.667		386	16.15		402.15	450	1
540	450	l		3.20	2.500		355	61		416	480	1
541				2.70	2.960		370	72		442	515	l
542			1	2.40	3.330		398	81		479	555	1
543		T		3.20	2.500		398	61	ļ	459	525	
544				2.70	2.960		428	72	<u> </u>	500	575	4
545		П	1	2.40	3.330	+	454	81		535	620	1
				ļ		<u> </u>				ļ		
148 001	O LAMPS	Т						i				140
008		1	Elec	1	8	Ç	348	195	ļ <u>.</u>	543	670	4
010	0 4' long, 40 watt	1		.90	8.890		198	215		413	535	1
012	0 3' long, 30 watt	1	1	.90	8.890	-	442	215		657	805	4
015	0 U-40 watt	Į.		.80	10		874	245	1	1,119	1,325	
017	0 4' long, 35 watt energy saver	┺	_	.90	8.890	╀┼	270	215	 	485 833	995	-{
020	O Slimline, 4' long, 40 watt			.90	8.890		618	215		822	990	
030	0 8' long, 75 watt	4-	+	.80	10	-	577	245	-	848	1,025	1
035				.80	10	1	603	245		965	1,150	
040		╀	┿	.90	8.890	\vdash	750	245	-	1,020	1,200	1
050		İ		.80	10		775 1,285	215		1,500	1,725	1
052		+	┿	.90	8.890		1,285	275		1,560	1,825	1
055				.70	11.430 26.670		2,142	645		2,787	3,300	
060		╁	+-	.30	26.670	_	1,663	645	1	2,308	2,775	1
06		1	1	.30	26.670		2,968	645		3,613	4,225	1
070		╁	+	.30	26.670		2,340	645		2,985	3,525	1
080		1	1	.20	40		5,100	970		6,070	7,025	
090	475	+	+	.30	26.670		3,749	645	1	4,394	5,075	7
100				.30	26.670		4,712	645		5,357	6,125	
110		╁	+	.30	26.670	_	4,386	645		5,031	5,775	7
120	V: //	ı		.20	40		9,894	970		10,864	12,300	
130	100 000 1 101 1 100 000	+	+	.20	40	1	9,960	970		10,930	12,400	
13	- }			.20	40		9,268	970		10,238	11,600	4
13	~	1	\top	.30	26.670		4,712	645		5,357	6,125	1
13	~ 1			.30	26.670		4,871	645		5,516	6,300	4
_		十	\top	.30	26.670	_	5,059	645		5,704	6,525	1
137	~ 1			.30	26.670		5,380	645	<u> </u>	6,025	6,875	4
13		1	\top	.30	26.670		5,727	645	1	6,372	7,250	ı
14	~			.20	40		13,352	970		14,322	16,100	4
14		T	\top	.30	26.670	ηT	3,963	645		4,608	5,300	
15 15	~ !		_	.30	26.670		4,386	645		5,031	5,775	<u>Ļ</u>
1 13	N !										19	19

	RAAP L	ighting trojects	AFP NO 790 0379000
	Screening Co	ales,	AEP NO 790 0379000 SHEET OF 3
REYNOLDS, SMITH AND HILLS ARCHITECTS · ENGINEERS · PLANNERS	DESIGNER JT.	Todd	DATE
INCORPORATED	CHECKER		DATE
ECO # GP- N-	10		1 1 1 .00
Replace all 5	tandard effic	iency fluorescent on failure	ballasts with
high efficience	y ballasts up	on failure	
	· · · · · · · · · · · · · · · · · · ·		
- Assume no adout	ional labor	costs would be 4	icurred since
ballasts would be	replaced an	yway.	
- Assume no addit ballasts would be - Assume 2 lamps per	ballact for 4%	the Advers.	r en en en en en en en en en en en en en
Energy savings =	(96-2/40)]-	171-2(34) W=	13 W fixture
Energy Savings		4 - 12	
<u> </u>	13 11 74 1.	160 days - 6	21 kul
	Solve X Dim	x De day -	31 kmh perfixture yv =
	1 x1000e aug		0 = n n n n n n n n n n n n n n n n n n
21 - 3 - 3 - 81 -	.d. ka 0307/	\$ 2.45	P. J. Stranger
Cost savings of E	Mr. X 40,0300	= The per	tixture
Cost savings = 81 k	Jr Kurh	<u> </u>	
· · · · · · · · · · · · · · · · · · ·		the second secon	the community of the contract
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			of standard ballast
= (* 21,	94 - \$ 15.	86) × 1.05 inflat	hion = \$6.38
Project cost	= \$ 6.38 ×	1.045 = \$6.67	
$\mathcal{O}_{\mathcal{O}}}}}}}}}}$		war -	
Simple pauback =	\$ 6.67	= 2.7 yr	
Simple pauback =	\$2.45/yr		
Life of ball	last = 24	yr > 2.7 yr p	av back
	(<u> </u>	

GE WATT-MISER" BALLASTS USE LESS WATTS PER FIXTURE TO DELIVER IGH ENERGY SAVINGS

Watt-Miser Ballasts

- Compatible with standard or energy-saving lamps (3-lamp WM ballast compatible only with ES lamps)
- Cooler operation extends ballast life
- Dimensionally interchangeable with standard ballasts.
- CBM-certified by ETL with standard lamps. (3-lamp WM ballast not CBM certified)
- UL-listed, Class P.

The GE Watt-Miser ballast is inherently more energyefficient than a standard ballast. Even greater savings come from pairing Watt-Miser ballasts with today's popular reduced-wattage lamps. Watt-Miser ballasts are offered for 4' Rapid Start; 8' Instant Start; and 8' High Output applications. A 3-lamp Watt-Miser ballast in a standard rapid start case is available for use with four-foot energysaving lamps. The chart shows fixture watts and energy \$ that can be saved by replacing standard lamps and ballasts with Watt-Miser ballasts and energy-saving lamps.

amp Ballast System Replacement Chart

	Standard Sv	stem(1)		Watt-Miser System		
Fluorescent Fixture Type	Lamp Type	Watts Per Fixture	Lamp Type ⁽²⁾	Watt- Miser Ballast ⁽⁴⁾	Watts Saved Per Fixture	Energy ⁽²⁾ \$ Saved Per Fixture
4-LAMP TROFFER	F40 F40 (34W)	181 159	F40LW/RS/WMII F40LW/RS/WMII	(2)8G1024W (2)8G1024W	41 19	\$ 9.84 \$ 4.56
3-LAMP TROFFER	F40	149	F40LW/RS/WMII	(1)8G1024W and (1)8G1074W (1)8G1324W	40 43	\$ 9.60 \$10.32
2-LAMP INDUSTRIAL	F40 F96T12 F96T12/HO	96 172 255	F40LW/RS/WMII F96T12/LW/WMII F96T12/LW/HO/WMII	8G1024W 8G1004W 8G1154W	25 46 56	\$ 6.00 \$16.56 \$20.16
2-LAMP, SURFACE- MOUNT, WRAP AROUND	F40	82	F40LW/RS/WMII	8G1024W	16	\$ 3.36
4-LAMP, SURFACE- MOUNT, WRAP AROUND	F40	165	F40LW/RS/WMII	(2)8G1024W	32	\$ 6.72

⁽¹⁾ Fixture equipped with standard ballast and lamp shown.

⁽²⁾ Other energy-saving lamps may be used to obtain similar savings.

⁽³⁾ Annual energy savings at 8° KWH; 3000 Hrs. -- F40; 4500 Hrs. -- F96.

⁽⁴⁾ Ballast codes snown are 120-volt. For complete application information, see product tables.

GP-N-10 P. 3 of 3

Telephore Gall

PTAC No. 865911

reynolds; smith and hills

Ocal 396-7446 L					Date 5-27-87
G.E. Lamp Man	keting / Enginee	vina Reg	arding ball	acts	7 9951100
Stan Jetson ;	vovided cost	s, Joe	Howley p	vovided w	affages light
output, like			<u> </u>		<u> </u>
46			Cost	Life (function of hea
Standard 8	G 1022WF	(5)	\$ 15.86	10-124	Υ
Waltmiser	8G 1024 WF	(W)	121.94	24 ur	
MaxinuserII	8G 1028WF	(M)	\$ 72.89	24 y)	energy- ethicien
Optimiser	M28-120F	(0)	\$ 34.1D	30 yy	
- Maximiser	II - patent	ed, ful	el light on	tout ming	energy savi
	lang;	may b	e virte to de	lang with	This one
- Optimiser	- potented	, newes	t; lowest	wattage)	input
St					
Standard	861011WF	(5)	\$ 25.90	12 yr	
Wathhiser	861004 WF	(w)	\$ 36.86	24 yr	
Maximiser It	861008WF	(m)	\$ 39.17	24 yr	
stribution:					

REYNOLDS, SMITH AND HILLS ARCHITECTS • ENGINEERS • PLANNERS INCORPORATED

SUBJECT RAAP EAAP

Install Strip Curtains SHEE

DESIGNER W. T. Todd DATE

CHECKER BY DATE

AEP NO 290-0379-000
SHEET | OF |
DATE 6-11-90

ECO#GP-W-1

INSTALL VINYL STRIP CURTAINS

Assumptions:

- 1. The average outdoor air temperature is 45°F.
- 2. The indoor design temperature is 75 of.
- 3. Average wind speed is 9 knots according to the facility Design and Planning, Engineering Weather Data, Department of the Army Technical Manual. Assume the average wind speed at the door openings is 3 miles per hour.
- 4. Assume a door opening of 8 feet by 8 feet, and the door(s) are open for 1 shift perday.

Calculations:

The savings occur 8760 \frac{hr}{Yr} \times \frac{4mo}{12-o} \times \frac{8hr}{24hr} = 973 hours per year if utilized for the months of December - March when the normal claily mean temperature is 41 of.

REYNOLDS, SMITH AND HILLS ARCHITECTS • ENGINEERS • PLANNERS INCORPORATED

SUBJECT RAAP EEAP	А
Install Strip Cartains	5
DESIGNER W.T. Todd	ח
CHECKER	5

AEP NO
SHEET _____ OF......
DATE

GP-W-1 Calculations (continued):

Steam Savings:

0.5 MBtu/hr x 973 hr/yr x 25 bldgs = 12,162.5 MBtu/yr

Coal Savings:

12,162.5 mBtm/yr * 1.32 = 16,055 metm/yr

16,055 inelalyr x \$1.61 /meta = 25,849 /yr

Elec. Price Diff. Costs

12,163 MBtu/yr * # 1.11 = #13,501/yr

Project (ost:

Construction Cost = # 18,247 Sec Cost Estimate Sheet

Simple Payback:

Payback = Cost = Cavings = $^{$\pm 18,247 = (\pm 25,849)/yr - \pm 13501/yr)}$ = $^{$\pm 18,247 = \pm 12,348/yr = 1.5 year}$

REYNOLDS, SMITH AND HILLS ARCHITECTS • ENGINEERS • PLANNERS INCORPORATED

SUBJECT RAAP EEAP	AEP NO
Install Strip Curtains	
DESIGNER W. Toward	DATE
CHECKER	DATE

Buildings Identified During Survey With Potential For Utilization Of Clear Vinyl Strip Curtains.

Area	No. Bldgs.	Typ. Bldg. No.	Building Name
Sol. Rec.	15	1611-00	Solvent Recovery
NC-B &C	2	2010-00	Dry House & Conveyor
NC-BÉC	2	2026-00	Final Wringer House
1st RP	l	7113-00	Roll House
4th RP	. 4	9309-04	Rolled Powder
Rocket		4924-01	Motor Load House
Total	25		

CONSTRUCTION COST ESTIMATE				DATE PREPARED	-12-	90	SHEET	4 of
ROJECT ENERGY ENGINEERING ANALYSIS				BASIS FOR ESTIMATE CODE A (No design completed) CODE B (Preliminary design)				
RADFORD ARMY AMMUNITION PLANT								
ARCHITECT ENGINEER REYNOLDS, SMITH AND) HILLS	A.E.	P., II	NC.	_		(Finel dec ecity)	el (gn.)
DRAWING NO.		ESTIM	ATOR	.T. Todd	L	CHECKE	27	
	QUANTI	TY		LABOR		MATERIA	١.	
Strip Curtains SUMMARY	NG. ETINU	UNIT MEAS.	PER	TOTAL	PER Unit	то	TAL	TOTAL COST
B'x B' Vinyl Strip Door		Ea.	100	100,00	354	3	54.00	454.00
Sales Tax					4.5%	,	15.93	15.93
FICA/Insurance			20%	20,00				20.00
			1					
Subtotal		-						489.93
Overhead	1500							73.49
Profit	10 70							56.34
Performance Bond	190						-	6.20
Hercules Support	670							37.56
Contingency	10 %						·	66.35
Subtotal							·	729.87
x 25 Buildings							•	× 25
Construction Cost							• .	#18,246.75
								, , , , , , , , , , , , , , , , , , , ,
							•	·
				•				
			-	·	·			
Source = Grainger	Cata	log	198	B, pg. 820	Ţ	neve	ased	by 5%
Source = Crainger per year to take 4	for	198	9 an	d 1990.	Labo	v w	as a	ssumed
to take 4	manha	√s a	t #	25 per h	our.			
				•				

RSH.	, h
------	--------

SUBJECT		AEP NO	AEP NO		
		SHEET	OF		
DESIGNER	G. FALLON	DATE	14/90		
CHECKER	P. HUTCHINS	DATE6//	14/90		

ECO# GP-X-1 REDUCE EXIT GAS TEMP. IN INCINERATOR

THE COMBUSTION PROGRAM WAS ADAPTED TO DETERMINE EXIT GAS HEAT LOSS BY ZEROING THOSE INPUT PARAMETERS APPLICABLE TO BOILERS. THE INPUT" PAGE SHOWS THE VALUES THAT WERE ZEROED.

THE INCINERATOR RECEIVES 3,9 9pm (22000 LBS/HR) OF WATER.

THE OIL FLOW WAS ITERATED UNTIL THE HEAT ADDED

EQUALLED THE HEAT LOST IN THE 500° EXIT GASES. AT

THIS POINT THE MASS FENERAY FLOWS BALANCE.

TO GENERATE THE GRAPH, THE EXIT GAS TEMPERATURE WAS INCREASED IN 100° INCREMENTS. THE PROSERM CALCULATES THE HEAT CONTENT OF THE COMPUSTION PORODUCTS (ENERGY LOSS) FOR EACH EXIT TEMPERATURE. THE ENERGY LOSSES WERE THEN ANNUALIZED AND ADTUSTED FOR INCINERATOR LOAD FACTOR AS FOLLOWS:

ANNUAL ENERGY LOSS & 500 FEGT

ENERGY LOSS FROM PAGE & 15 2.88 MBTU/HR

INCINERATOR DATA INDICATES A 50% LOAD FACTOR.

2,88 mBTU/nr. × 8760 Hg/4r × ·5 = 12614 MBTU/Yr

BUT THIS IS BASE OF GRAPH SO 12614-12614=0

0 = GRAPH VALUE

ANNUAL ENERGY LOSS FROM PAGE 5 IS 4.97 MBTW/AIL

4.97 MBTW/HR X 8760X .5 = 21768 MBTU ENERGY SAVINGS

RELATIVE TO 500° F BASE - 21768 - 12614 = 9/54 MBTU/yr =

GRAPH VALUE. TOR 2 TIME NOTE 2 - 12614 = 9/54 MBTU/yr

DATE 14-Jun-90	************ I N P U T- I	NPUT-I	NPUT- I	NPUT- 1	NPUT- 1	NPUT-
FUEL ULTIMATE ANALYSIS	CLIENT	COE		[DATE	14-Jun-90
DRY FUEL DRY & ADJUSTED	PLANT	RAAP.		TIME		12:44 PM
CONSTITUENT WT.PCT. RECEIVED ASH FREE FUEL CARBON 9.85 86.40 86.40 86.40 HYDROGEN 1.45 12.70 12.70 12.70 OXYGEN 0.01 0.10 0.10 0.10 NITROGEN 0.01 0.10 0.10 0.10 SULFUR 0.08 0.70 0.70 0.70 CHLORINE 0.00 0.00 0.00 0.00 WATER 88.60 0.00 0.00 0.00 INERTS 0.00 0.00 0.00 0.00 INERTS 0.00 100.00 100.00 100.00 FUEL RATE (TONS/DAY) TOTAL 100.00 100.00 100.00 100.00 FUEL HIGHER HEATING VALUE (BTU/LB) HEAT LOSS DUE TO UNBURNED CARBON (%) 0.00 CARBON IN RESIDUE (%) 0.00 EXIT GAS TEMPERATURE (Deg. F) 500 AMBIENT DRY BULB TEMP (Deg. F) 80 HUMIDITY RATIO (LBS H20/LB DRY AIR) 0.0132	FUEL ULTIMATE	ANALYSIS	NPY FIIFI	NPY &	ANTIISTEN	
HYDROGEN 1.45 12.70 12.70 12.70 0XYGEN 0.01 0.10 0.10 0.10 NITROGEN 0.01 0.10 0.10 0.10 SULFUR 0.08 0.70 0.70 0.70 CHLORINE 0.00 0.00 0.00 0.00 WATER 88.60 0.00 0.00 0.00 INERTS 0.00 0.00 0.00 0.00 TOTAL 100.00 100.00 100.00 100.00 FUEL RATE (TONS/DAY) 27 TOTAL AIR ASSIGNED (%) 115 FUEL HIGHER HEATING VALUE (BTU/LB) 1274 HEAT LOSS DUE TO UNBURNED CARBON (%) 0.00 CARBON IN RESIDUE (%) 0.00 EXIT GAS TEMPERATURE (Deg. F) 500 AMBIENT DRY BULB TEMP (Deg.F) 80 HUMIDITY RATIO (LBS H20/LB DRY AIR) 0.0132	CONSTITUENT	WT.PCT.				
OXYGEN 0.01 0.10 0.10 0.10 NITROGEN 0.01 0.10 0.10 0.10 SULFUR 0.08 0.70 0.70 0.70 CHLORINE 0.00 0.00 0.00 0.00 WATER 88.60 0.00 0.00 0.00 INERTS 0.00 0.00 0.00 0.00 TOTAL 100.00 100.00 100.00 100.00 FUEL RATE (TONS/DAY) 27 TOTAL AIR ASSIGNED (%) 115 FUEL HIGHER HEATING VALUE (BTU/LB) 1274 HEAT LOSS DUE TO UNBURNED CARBON (%) 0.00 CARBON IN RESIDUE (%) 0.00 EXIT GAS TEMPERATURE (Deg. F) 500 AMBIENT DRY BULB TEMP (Deg.F) 80 HUMIDITY RATIO (LBS H20/LB DRY AIR) 0.0132	CARBON	9.85	86.40	86.40		
NITROGEN 0.01 0.10 0.10 0.10 SULFUR 0.08 0.70 0.70 0.70 CHLORINE 0.00 0.00 0.00 0.00 WATER 88.60 0.00 0.00 0.00 INERTS 0.00 0.00 0.00 0.00 FUEL RATE (TONS/DAY) 27 TOTAL AIR ASSIGNED (%) 115 FUEL HIGHER HEATING VALUE (BTU/LB) 1274 HEAT LOSS DUE TO UNBURNED CARBON (%) 0.00 CARBON IN RESIDUE (%) 0.00 EXIT GAS TEMPERATURE (Deg. F) 500 AMBIENT DRY BULB TEMP (Deg.F) 80 HUMIDITY RATIO (LBS H20/LB DRY AIR) 0.0132	HYDROGEN					
SULFUR 0.08 0.70 0.70 0.70 CHLORINE 0.00 0.00 0.00 0.00 WATER 88.60 0.00 0.00 0.00 INERTS 0.00 0.00 0.00 0.00 TOTAL 100.00 100.00 100.00 100.00 FUEL RATE (TONS/DAY) 27 TOTAL AIR ASSIGNED (%) 115 FUEL HIGHER HEATING VALUE (BTU/LB) 1274 HEAT LOSS DUE TO UNBURNED CARBON (%) 0.00 CARBON IN RESIDUE (%) 0.00 EXIT GAS TEMPERATURE (Deg. F) 500 AMBIENT DRY BULB TEMP (Deg.F) 80 HUMIDITY RATIO (LBS H20/LB DRY AIR) 0.0132	OXYGEN					
CHLORINE 0.00 0.00 0.00 0.00 WATER 88.60 0.00 0.00 0.00 INERTS 0.00 0.00 0.00 0.00 TOTAL 100.00 100.00 100.00 100.00 FUEL RATE (TONS/DAY) 27 TOTAL AIR ASSIGNED (%) 115 FUEL HIGHER HEATING VALUE (BTU/LB) 1274 HEAT LOSS DUE TO UNBURNED CARBON (%) 0.00 CARBON IN RESIDUE (%) 0.00 EXIT GAS TEMPERATURE (Deg. F) 500 AMBIENT DRY BULB TEMP (Deg.F) 80 HUMIDITY RATIO (LBS H20/LB DRY AIR) 0.0132						
WATER 88.60 0.00 0.00 0.00 INERTS 0.00 0.00 0.00 0.00 TOTAL 100.00 100.00 100.00 100.00 FUEL RATE (TONS/DAY) 27 TOTAL AIR ASSIGNED (%) 115 FUEL HIGHER HEATING VALUE (BTU/LB) 1274 HEAT LOSS DUE TO UNBURNED CARBON (%) 0.00 CARBON IN RESIDUE (%) 0.00 EXIT GAS TEMPERATURE (Deg. F) 500 AMBIENT DRY BULB TEMP (Deg.F) 80 HUMIDITY RATIO (LBS H20/LB DRY AIR) 0.0132						
TOTAL 100.00 10						
FUEL RATE (TONS/DAY) TOTAL AIR ASSIGNED (%) FUEL HIGHER HEATING VALUE (BTU/LB) HEAT LOSS DUE TO UNBURNED CARBON (%) CARBON IN RESIDUE (%) EXIT GAS TEMPERATURE (Deg. F) AMBIENT DRY BULB TEMP (Deg.F) HUMIDITY RATIO (LBS H20/LB DRY AIR) 100.00 100.						
FUEL RATE (TONS/DAY) TOTAL AIR ASSIGNED (%) FUEL HIGHER HEATING VALUE (BTU/LB) HEAT LOSS DUE TO UNBURNED CARBON (%) CARBON IN RESIDUE (%) EXIT GAS TEMPERATURE (Deg. F) AMBIENT DRY BULB TEMP (Deg.F) HUMIDITY RATIO (LBS H20/LB DRY AIR) 27 115 1274 0.00 0.00 0.00 EXIT GAS TEMPERATURE (Deg. F) 80 HUMIDITY RATIO (LBS H20/LB DRY AIR) 0.0132	INEKIS	···	0.00			
TOTAL AIR ASSIGNED (%) 115 FUEL HIGHER HEATING VALUE (BTU/LB) 1274 HEAT LOSS DUE TO UNBURNED CARBON (%) 0.00 CARBON IN RESIDUE (%) 0.00 EXIT GAS TEMPERATURE (Deg. F) 500 AMBIENT DRY BULB TEMP (Deg.F) 80 HUMIDITY RATIO (LBS H20/LB DRY AIR) 0.0132	TOTAL	100.00	100.00	100.00	100.00	
TOTAL AIR ASSIGNED (%) FUEL HIGHER HEATING VALUE (BTU/LB) HEAT LOSS DUE TO UNBURNED CARBON (%) CARBON IN RESIDUE (%) EXIT GAS TEMPERATURE (Deg. F) AMBIENT DRY BULB TEMP (Deg.F) HUMIDITY RATIO (LBS H20/LB DRY AIR) 115 1274 0.00 0.00 80 HUMIDITY RATIO (LBS H20/LB DRY AIR) 115 1274 0.00	FUEL RATE (TO	INS/DAY)			27	·
FUEL HIGHER HEATING VALUE (BTU/LB) 1274 HEAT LOSS DUE TO UNBURNED CARBON (%) 0.00 CARBON IN RESIDUE (%) 0.00 EXIT GAS TEMPERATURE (Deg. F) 500 AMBIENT DRY BULB TEMP (Deg. F) 80 HUMIDITY RATIO (LBS H20/LB DRY AIR) 0.0132						
CARBON IN RESIDUE (%) 0.00 EXIT GAS TEMPERATURE (Deg. F) 500 AMBIENT DRY BULB TEMP (Deg.F) 80 HUMIDITY RATIO (LBS H20/LB DRY AIR) 0.0132	FUEL HIGHER H	REATING VALU				
EXIT GAS TEMPERATURE (Deg. F) 500 AMBIENT DRY BULB TEMP (Deg.F) 80 HUMIDITY RATIO (LBS H20/LB DRY AIR) 0.0132			D CARBON (%)			
AMBIENT DRY BULB TEMP (Deg.F) 80 HUMIDITY RATIO (LBS H20/LB DRY AIR) 0.0132		•		•		
HUMIDITY RATIO (LBS H20/LB DRY AIR) 0.0132						
HOMEDIA WAS TO FEEL WEST AND THE						
					29.92	
BHROHETRIO TRESSORE (INTIGE)			ny.)			
RADIATION LOSS (%) 0.00 UNACCOUNTABLE LOSS (%) 0.00						
ENTHALPY ADDED IN BOILER (BTU/LB)			(BTU/LB)			

OUTPUT-OU

PLANT	RAAP	TIME	12:44 PM
CLIENT	COE	DATE	14-Jun-90

HEAT LOSSES .	MMBTU/HR	PERCENT
IN DRY FLUE GAS	0.44	15.40
FROM H20 IN AIR	0.00	-0.08
FROM H20 IN FUELSENSIBLE	-0.09	-3.15
FROM H20 IN FUELLATENT	2.53	87.83
TOTAL IN WET FLUE GAS	2.88	100.00
DUE TO UNBURNED CARBON	0.00	0.00
DUE TO HOT ASH	0.00	0.00
DUE TO RADIATION & UNACCOUNTABLE	0.00	0.00
TOTAL	2.88	100.00

BOILER EFFICIENCY (%)	0.00
STEAM GENERATED (LBS/HR)	ERR
UNBURNED CARBON (LBS/HR)	0
LBS OF WET FLUE GAS PER LB FUEL	2.90
SPEC.VOL.OF WET FLUE GAS (CU.FT./LB)	28.72
AIR TO FUEL RATIO (LB AIR/LB FUEL)	1.88
COMB. AIR SPECIFIC VOL. (CU.FT/LB)	13.712
COMBUSTION AIR FLOW (LBS/HR)	- 4295

FLUE GAS ANALYSIS

% BY VOLUME			% BY WEIGHT		
	WET	DRY	WET	DRY	
002	6.89	13.39	12.43	19.38	
S02	0.0209	0.0406	0.0549	0.0856	
02	1,49	2.89	1.95	3.04	
HCL	0.0000	0.0000	0.0000	0.0000	
N2	43.08	83.68	49.72	77,49	
H20	48.52	*****	35.83		

FLUE GAS FLOWS

	WET	ORY
MASS (LBS/HR)	5552	4204
VOLUME (ACFM)	3137	1615
(SCFM)(70DEG.F.)	1732	891
@ 12% CO2	995	995
F FACTOR	•	
(DSCF/MMBTU @12% CO2)		20749

**************************************	NPUT- 1	INPUT-I	NPUT-I	NPUT- 1	NPUT-
CLIENT	COE		(DATE	14-Jun-90
PLANT	RAAP		. 1	TIME	12:46 PM
FUEL ULTIMATE		DRY FUEL	004 1	AD THETED	
CONSTITUENT	WT.PCT.	RECEIVED		FUEL	
CARBON HYDROGEN OXYGEN NITROGEN SULFUR CHLORINE WATER INERTS	9.85 1.45 0.01 0.01 0.08 0.00 88.60 0.00				
TOTAL	100.00	100.00	100.00	100.00	
FUEL RATE (TONS/DAY) TOTAL AIR ASSIGNED (%) FUEL HIGHER HEATING VALUE (BTU/LB) HEAT LOSS DUE TO UNBURNED CARBON (%) CARBON IN RESIDUE (%) EXIT GAS TEMPERATURE (Deg. F) AMBIENT DRY BULB TEMP (Deg.F)				27 115 1274 0.00 0.00 1400	·
AMBIENT DRY BULB TEMP (DEG.F) HUMIDITY RATIO (LBS H2O/LB DRY AIR) BAROMETRIC PRESSURE (IN.Hg.) RADIATION LOSS (%) UNACCOUNTABLE LOSS (%) ENTHALPY ADDED IN BOILER (BTU/LB)			0.0132 29.92 0.00 0.00		

CLIENT	COE	DATE	14-Jun-90
PLANT	RAAP	TIME	12:46 PM
	•		

HEAT LOSSES	MMBTU/HR	PERCENT
IN DRY FLUE GAS	1.46	50.59
FROM H20 IN AIR	0.02	0.82
FROM H20 IN FUELSENSIBLE	0.97	33.62
FROM H20 IN FUELLATENT	2.53	87.83
TOTAL IN WET FLUE GAS	4.97	172.86
DUE TO UNBURNED CARBON	0.00	0.00
DUE TO HOT ASH	0.00	0.00
DUE TO RADIATION & UNACCOUNTABLE	0.00	0.00
TOTAL	4.97	172.86

BOILER EFFICIENCY (%)	-72.86
STEAM GENERATED (LBS/HR)	ERR
UNBURNED CARGON (LBS/HR)	0
LBS OF WET FLUE GAS PER LB FUEL	2.90
SPEC.VOL.OF WET FLUE GAS (CU.FT./LB)	55.65
AIR TO FUEL RATIO (LB AIR/LB FUEL)	1.88
COMB. AIR SPECIFIC VOL. (CU.FT/LB)	13.712
COMBUSTION AIR FLOW (LBS/HR)	4295

FLUE GAS ANALYSIS

	% BY V0	LUNE	% BY WE	IGHT
	WET	ORY	WET	DRY
002	6.89	13.39	12.43	19.38
S02	0.0209	0.0406	0.0549	0.0856
02	1.49	2.89	1.95	3.04
∃CL	0.0000	0.0000	0.0000	0.0000
N2	43.08	83.68	49.72	77.49
H20	48.52		35.83	

FLUE GAS FLOWS

	WET	ORY
W.CC / LDC (UG.)	6552	4204
MASS (LBS/HR)	9332	4204
VOLUME (ACFM)	6077	3129
(SCFM)(70DEG.F.)	1732	891
@ 12% CO2	995	995
"F" FACTOR		
(DSCE/MMRTU @12% CO2)		20749

Radford Army Ammunition Plant

DCI	7
ROIL	(20)

SUBJECT		_ AEP NO		
		SHEET	OF	
DESIGNER	G, FALLON	DATE	114/90	
CHECKER	P. Huthins	DATE	014/90	

ECO# GP-X-2 REDUCE WATER FLOW INTO INCINERATOR

The Combustion program was adapted to Eliminate boiler Absorbtims of Heat by Zeroing the appropriate parameters. Those are shown on the "INPUT" pages of the ENCLOSED runs.

THE INCINERATOR EVAPORATES 2000 LBS/HR OF WATER. THE
FUEL FLOW DECESSARY TO ACCOMPLISH THAT WHILE MAINTAINING
A 1000°FEXIT GAS TEMPERATURE WAS DETERMINED BY ITERATION.
This relationship was subsequently maintained FOR THE
REMAINING COMPUTER PURS.

The graph was Generated by Varying THE WATER FLOW (and therefore Fuel Flow) while maintaining The 1000'F Exit GAS Temperature.

ENERGY LOSS OF 2000 LRS HE HLO
COMPUTER SHEETS

ENERGY LOSS From PAGE 3 = 4.45 MBTL /HR

ENERGY LOSS DT 1800-35/HR HLO
COMPUTER SHEETS

ENERGY LOSS FROM PAGES = 4,00 MATU/HR

PNNUAL ENERGY SAVED FROM EACH INCINERATOR

DATA SHOWS 50% INCINERATOR LOAD FACTOR

(4.45-4.00) mbty 8760 1/4rx. 5 = 197/ MB+4/yr

ENERGY SAVINGS FIR BOTH INCINERATORS

1971 MBTU/yr x2 = 3942 MBTU/yr

R	S	H
		 ®

SUBJECT		AEP NO
		SHEETOF
DESIGNER	PFH	DATE10/29/96
CHECKER		DATE

For PRIP

current energy use for 1 incinerator

From Table z-1 annual quel oil bill is #343,763 (Other, # z fuel oil)

For one incinerator # 343,763/2 = \$ 171,882/yr.

Savings for one incinerator hydroclone is

3942/2 = 1971 MBta fueloil

Value of savings =

1971 * #4.27 = #8416/yr.

*********	******	{ **********	******	*******	*****
CLIENT	COE		{	DATE	14-Jun-90
PLANT -	RAAP			TIME	12:31 PM
FUEL ULTIMATE	ANALYSIS	DRY FIIFI	DRY &	ADJUSTED	
CONSTITUENT	WT.PCT.				
CARBON	12.48	86.40	86.40	86.40	
HYDROGEN	1.83	12.70	12.70	12.70	
OXYGEN	0.01	0.10	0.10	0.10	
NITROGEN	0.01	0.10	0.10	0.10	
SULFUR	0.10	0.70	0.70	0.70	
CHLORINE	0.00	0.00	0.00	0.00	
WATER	85.56	0.00	0.00	0.00	
INERTS	. 0.00	0.00	0.00	0.00	
TOTAL	100.00	100.00	100.00	100.00	

- 		
FUEL RATE (TONS/DAY)	28	
TOTAL AIR ASSIGNED (%)	115	
FUEL HIGHER HEATING VALUE (BTU/LB)	1902	
HEAT LOSS DUE TO UNBURNED CARBON (%)	0.00 -	
CARBON IN RESIDUE (%)	0.00	
EXIT GAS TEMPERATURE (Deg. F)	1000	
AMBIENT DRY BULB TEMP (Deg.F)	80	
HUMIDITY RATIO (LBS H2C/LB DRY AIR)	0.0132	
BAROMETRIC PRESSURE (IN.Hg.)	29.92	
RADIATION LOSS (%)	0.00	
UNACCOUNTABLE LOSS (%)	0.00	
ENTHALPY ADDED IN BOILER (8TU/LB)	0	

CLIENT	COE	DATE	14-Jun-90
PLANT	RAAP	TIME	12:31 PM

HEAT LOSSES	MMBTU/HR	PERCENT
IN DRY FLUE GAS	1.31	29.37
FROM H20 IN AIR	0.02	0.35
FROM H20 IN FUELSENSIBLE	0.50	11.21
FROM H20 IN FUELLATENT	2.63	59.06
TOTAL IN WET FLUE GAS	4.45	100.00
DUE TO UNBURNED CARBON	0.00	0.00
DUE TO HOT ASH	0.00	0.00
DUE TO RADIATION & UNACCOUNTABLE	0.00	0.00
TOTAL	4.45	100.00

BOILER EFFICIENCY (%)	0.00
STEAM GENERATED (LBS/HR)	ERR
NBURNEO CARBON (LBS/HR)	0
LBS OF WET FLUE GAS PER LB FUEL	3.41
SPEC.VOL.OF WET FLUE GAS (CU.FT./LB)	42.47
AIR TO FUEL RATIO (LB AIR/LB FUEL)	2.38
COMB. AIR SPECIFIC VOL. (CU.FT/LB)	13.712
COMBUSTION AIR FLOW (LBS/HR)	5635

FLUE GAS ANALYSIS

	% BY VOLUME		% BY WE	IGHT
	WET	ORY	WET	DRY
C02	7.64	13.39	13.41	19.38
S02	0.0232	0.0406	0.0592	0.0856
02	1.65	2.89	2.11	3.04
HCL	0.0000	0.0000	0.0000	0.0000
N2	47.77	83.68	53.61	77.49
H20	42.91		30.81	

FLUE GAS FLOWS

	WET	DRY
MASS (LBS/HR)	7972	5516
VOLUME (ACFM)	5643	3222
(SCFM)(70DEG.F.)	2049	1170
₱ 12% CO2	1305	1305
"F" FACTOR		
(DSCF/MMBTU @12% CO2)		17605

********	*********	********	{*****************	*******
INPUT-	INPUT-	INPUT-	INPUT- INPUT- I	N P U T-
********	********	*****	************	********

CLIENT	COE	DATE	14-Jun-90
PLANT	raap	TIME	06:54 PM
			•

FUEL ULTIMATE	ANALYSIS	DRY FUEL	DRY &	ADJUSTED
CONSTITUENT	WT.PCT.	RECEIVED	ASH FREE	FUEL
CARBON	12.48	86.40	86.40	86.40
HYDROGEN	1.83	12.70	12.70	12.70
OXYGEN	0.01	0.10	0.10	0.10
NITROGEN	0.01	0.10	0.10	0.10
SULFUR	0.10	0.70	0.70	0.70
CHLORINE	0.00	0.00	0.00	0.00
WATER	85.56	0.00	0.00	0.00
INERTS	0.00	0.00	0.00	0.00
TOTAL	100.00	100.00	100.00	100.00

FUEL RATE (TONS/DAY)	25
TOTAL AIR ASSIGNED (%)	115
FUEL HIGHER HEATING VALUE (BTU/LB)	1902
HEAT LOSS DUE TO UNBURNED CARBON (%)	0.00
CARBON IN RESIDUE (%)	0.00
EXIT GAS TEMPERATURE (Deg. F)	1000
AMBIENT DRY BULB TEMP (Deg.F)	80
HUMIDITY RATIO (LBS H2O/LB DRY AIR)	0.0132
BAROMETRIC PRESSURE (IN.Hg.)	29.92
RADIATION LOSS (%)	0.00
UNACCOUNTABLE LOSS (%)	0.00
ENTHALPY ADDED IN BOILER (BTU/LB)	0

CLIENT	COE	DATE	14-Jun-90
PLANT	RAAP	TIME	06:54 PM

HEAT LOSSES	MMBTU/HR	PERCENT
IN DRY FLUE GAS	1.18	29.37
FROM H2O IN AIR	0.01	0.35
FROM H20 IN FUELSENSIBLE	0.45	11.21
FROM H20 IN FUELLATENT	2.36	59.07
TOTAL IN WET FLUE GAS	4.00	100.00
DUE TO UNBURNED CARBON	0.00	0.00
DUE TO HOT ASH	0.00	0.00
DUE TO RADIATION & UNACCOUNTABLE	0.00	0.00
TOTAL	4.00	100.00
BOILER EFFICIENCY (%)	0.00	
OFFICE ALTER ALDONDA	CDD.	

BOILER EFFICIENCY (%)	0.00
STEAM GENERATED (LBS/HR)	ERR
UNBURNED CARBON (LBS/HR)	0
LBS OF WET FLUE GAS PER LB FUEL	3.41
SPEC.VOL.OF WET FLUE GAS (CU.FT./LB)	42.47
AIR TO FUEL RATIO (LB AIR/LB FUEL)	2.38
COMB. AIR SPECIFIC VOL. (CU.FT/LB)	13.712
COMBUSTION AIR FLOW (LBS/HR)	5071

FLUE GAS ANALYSIS

	% 8Y VO	LUME	% BY WE	IGHT
	WET	DRY	WET	ORY
C02	7.64	13.39	13.41	19.38
S02	0.0232	0.0406	0.0592	0.0856
02	1.65	2.89	2.11	3.04
HCL	0.0000	0.0000	0.0000	0.0000
N2	47.77	83.68	53.61	77.49
H20	42.91		30.81	

FLUE GAS FLOWS

	WET	ORY
MASS (LBS/HR)	7175	4964
TINGO (CDO) TIN)	,	
VOLUME (ACFM)	5079	2899
(SCFM)(70DEG.F.)	1844	1053
@ 12% CO2	1174	1174
F FACTOR		
(DSCF/MMBTU @12% CO2)	-	17605

Radford Army Ammunition Plant

Annual Energy Savings (Mbtu)

Current Water Flow (%)

HunTer

Telephone Call Confirmation

ocal	ΙD	×	Placed X	_			5-22-90
OCAI	L.D						(404) 394-62
	5 D 2 B						
)f	<u> WOKOK</u>	OLIVER	<u> </u>	garding	440150C	LONES	
. 11					0 -	•	•
	•						PARTICLES
CAN	PASS 4	mm OR	IFICE.	wire	get	50/50	SPLIT
Dow N	TO 3	o ju	ET 50	PS16	DP.	COST	is \$100.0
. :) _{II}						
			· · · · · · · · · · · · · · · · · · ·		•		
		· · · · · · · · · · · · · · · · · · ·					
				· · · · · · · · · · · · · · · · · · ·			
	· · · · · · · · · · · · · · · · · · ·			·			
							· · · · · · · · · · · · · · · · · · ·

	·						
							
							•
· · · · · · · · · · · · · · · · · · ·			····				
						<u> </u>	

TO STOLICTION COCT POTINGTO			DATE PREPARED			SHEET	1 05	
PROJECT ENERGY ENGINEERING ANALYSIS				BASIS FOR ESTIMATE CODE A (No design completed) CODE B (Preliminary design)				
RADFORD ARMY AMMUNITION PLANT								
ARCHITECT ENGINEER			0 7		_	CODE C (Final design)		
REYNOLDS, SMITH AND	D HIFF?	A.E.		NC.		CHECKE		
	r		FA	LLON			QA	
ADD HYDROCLONE SUMMARY	QUANT	UNIT	PER	LABOR	PER	MATERIA		TOTAL
TO INCIN. SCURRY LINE	UNITS	MEAS.	UNIT	TOTAL	UNIT	TO	TAL	COST
IN HYDROCLONE	1	EA	30	30	#100		00	/30
1" 316SS pipe	300	ft	3.99	1197	7,42	22	26	3423
Fiberglass Insulation								
WD SERVICE JACKET								
I"WALL, I"piec	300	\$T	1.56	468	1.37	4	11	879
SUB TOTAL				1695		27	37	4402
LOCATION		·	·683	1158	1.002	27	42_	3900
	1							
SALES TAX 45	101		•	0		1 '	23	123
SUB 407AC				1158		28	65	4023
FICA/INSURANCE	20%)							805
SUB TOT								4828
OH (15%)								724
20B 402								5552
PROFIT (10%)							•	555
SUB 404								6107
BOND (1%)							· · · · · · · · · · · · · · · · · · ·	61
1,000 BUS								6168
CONTINGENCY (7,5%)		<u>.</u>	-		·		463
SUB 407		[6631
Hercules Supposer (2))							393
TOTAL								7029
				Two h	ydro	lon	سيه	12
							_	4
					SIM			#14,058
								,
	1	-			1			

RS	T
	 •

SUBJECT		AEP NO		
		SHEETOF		
DESIGNER	G. FALLON	DATE 6/14/90		
CHECKER	P. HUTCHINS	DATE 6/14/90		

ECO # GP-X-3 REDUCE INCINERATOR EXCESS AIR

COMBUSTION PROGRAM

THE BOILER / COMBUSTION PROGRAM NAS ADAPTED TO IGNORE HEAT ABSORBTIONS BY ZEROING BOILER RELATED INDUSTRIANS PARAMETERS.

WITH THE MASS FENERAY FLOWS BALANCED FOR A 1000°F EXIT GAS TEMPERATURE AND 115 % AIR FLOW, THE HEAT LOSSES IN THE STACK GASES ARE 4.45 MBTU/HR (PAGE 2). FOR 300% AIR FLOW (25% OL IN STACK) The LOSSES ARE 6.57 MBTU/HR (PAGE 5).

ANNUAL ENERGY SAVINGS

(6,57 - 4,45) MOTUL/HR X 3760X .5 = 9286 M8TU/47

FOR BOTH INCINERATORS

9286 XZ = 18572.1718TU/yr.

COST SAVINGS

18572 MBTU/yrx \$4.27 /MBTU = \$79,300/yr.

ADIABATIC FLAME TEMPERATURE & COMBUSTION CALCULATIONS

CLIENT	COE		[DATE	14-Jun-90
PLANT .	RAAP		1	LIWĖ	01:08 P
FUEL ULTIMATE		DRY FUEL	nov ř	ADJUSTED	
CONSTITUENT				FUEL	
CARBON Hydrogen	12.48	86.40 12.70	86.40 12.70		
OXYGEN NITROGEN SULFUR	0.01 0.01 0.10	0.10 0.10 0.70	0.10 0.10 0.70	0.10	
CHLORINE WATER INERTS	0.00 85.56 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	
TOTAL		100.00			
)				•	
FUEL RATE (TO TOTAL AIR ASS				28 115	
FUEL HIGHER HI HEAT LOSS DUE CARBON IN RES	EATING VALU TO UNBURNE IDUE (%)	D CARBON (%)		1902 0.00 0.00	
EXIT GAS TEMPERATURE (Deg. F) AMBIENT DRY BULB TEMP (Deg.F) HUMIDITY RATIO (L8S H20/LB DRY AIR)			1000 80 0.0132		
BAROMETRIC PR RADIATION LOS UNACCOUNTABLE	s (%)	Hg.)		29.92 0.00 0.00	
ENTHALPY ADDE		(8TU/L8)		0	

ADIABATIC FLAME TEMPERATURE & COMBUSTION CALCULATIONS

01:08 PM

CLIENT COE DATE 14-Jun-90

PLANT RAAP TIME

MMBTU/HR PERCENT HEAT LOSSES 29.37 1.31 IN DRY FLUE GAS 0.02 0.35 FROM H20 IN AIR FROM H20 IN FUEL--SENSIBLE 0.50 11.21 59.07 2.63 FROM H20 IN FUEL--LATENT 4.45 100.00 TOTAL IN WET FLUE GAS 0.00 0.00 DUE TO UNBURNED CARBON 0.00 0.00 DUE TO HOT ASH DUE TO RADIATION & UNACCOUNTABLE 0.00 0.00 100.00 4.45 TOTAL

BOILER EFFICIENCY (%) 0.00 ERR STEAM GENERATED (LBS/HR) .0 NBURNED CARBON (LBS/HR) 3.41 LBS OF WET FLUE GAS PER LB FUEL SPEC. VOL. OF WET FLUE GAS (CU.FT./LB) 42.47 AIR TO FUEL RATIO (LB AIR/LB FUEL) 2.38 COMB. AIR SPECIFIC VOL. (CU.FT/LB) 13.712 5635 COMBUSTION AIR FLOW (LBS/HR)

FLUE GAS ANALYSIS

	% BY VOLUME		% BY WEIGHT		
	WET	DRY	WET	DRY	
CO2	7.64	13.39	13.41	19.38	
S02	0.0232	0.0406	0.0592	0.0856	
02	1.65	2.89	2.11	3.04	
HCL	0.0000	0.0000	0.0000	0.0000	
N2	47.77	83.68	53.61	77.49	
H20	42.91		30.81		

FLUE GAS FLONS

	WET.	DRY
MASS (LBS/HR)	7972	5516
VOLUME (ACFM)	5643	3222
(SCFM)(700EG.F.)	2049	1169
@ 12% CO2	1305	1305
"F" FACTOR		
(DSCF/MMBTU @12% CO2)		17605

ADIABATIC FLAME TEMPERATURE & COMBUSTION CALCULATIONS

**************************************	NPUT- 1	NPUT- I	NPUT- I	NPUT- 1	NPUT-
CLIENT	COE		[DATE	14-Jun-90
PLANT	RAAP		. 1	TIME	01:19 PM
FUEL ULTIMATE		DRY FUEL	npy &	ANTHSTEN	
CONSTITUENT	WT.PCT.	RECEIVED			
CARBON HYDROGEN OXYGEN NITROGEN SULFUR CHLORINE WATER INERTS	0.01 0.01 0.10 0.00 85.56 0.00	86.40 12.70 0.10 0.10 0.70 0.00 0.00 0.00	12.70 0.10 0.10 0.70 0.00 0.00	12.70 0.10 0.10 0.70 0.00 0.00	
FUEL RATE (TOI TOTAL AIR ASS FUEL HIGHER HI HEAT LOSS DUE CARBON IN RES EXIT GAS TEMPI AMBIENT DRY BI HUMIDITY RATIO BAROMETRIC PRI RADIATION LOSS UNACCOUNTABLE ENTHALPY ADDE	IGNED (%) EATING VALU TO UNBURNE IDUE (%) ERATURE (De ULB TEMP (D D (LBS H2O/ ESSURE (IN. S (%) LOSS (%)	D CARBON (%) g. F) eg.F) LB DRY AIR) Hg.)		28 300 1902 0.00 0:00 1000 80 0.0132 29.92 0.00 0.00	

ADIABATIC FLAME TEMPERATURE & COMBUSTION CALCULATIONS

CLIENT	COE	DATE	14-Jun-90
PLANT	RAAP	TIME	01:19 PM

HEAT LOSSES	MMBTU/HR	PERCENT
IN DRY FLUE GAS FROM H20 IN AIR FROM H20 IN FUELSENSIBLE FROM H20 IN FUELLATENT TOTAL IN WET FLUE GAS DUE TO UNBURNED CARBON DUE TO HOT ASH DUE TO RADIATION & UNACCOUNTABLE	3.41 0.04 0.50 2.63 6.57 0.00 0.00 0.00	76.62 0.90 11.21 59.07 147.80 0.00 0.00 0.00
TOTAL	0.3/	147.00

BOILER EFFICIENCY (%)	-47.80
STEAM GENERATED (LBS/HR)	ERR
UNBURNED CARBON (LBS/HR)	0
LBS OF WET FLUE GAS PER LB FUEL	7.29
SPEC.VOL.OF WET FLUE GAS (CU.FT./LB)	39.60
AIR TO FUEL RATIO (LB AIR/LB FUEL)	6.21
COMB. AIR SPECIFIC VOL. (CU.FT/LB)	13.712
COMBUSTION AIR FLOW (LBS/HR)	14699

FLUE GAS ANALYSIS

	% BY VOLUME		% BY WEIGHT		
		DRY	WET	DRY	
			-		
CO2	3.84	4.95	6.27	7.39	
S02	0.0116	0.0150	0.0277	0.0327	
02	11.05	14.27	13.14	15.48	
нCL	0.0000	0.0000	0.0000	0.0000	
N2	62.54	80.76	65.44	77.09	
H20	22.57		15.11		

FLUE GAS FLOWS .

	WET	ORY
MASS (LBS/HR)	17036	14462
VOLUME (ACFM)	11245	8707
(SCFM)(70DEG.F.)	4082	3161
€ 12% CO2	1305	1305
'F' FACTOR		
(DSCF/MMBTU @12% CO2)		17605

. 0

Radford Army Ammunition Plant

Annual Heat loss (Mbtu) (Thousands)

ECO#GP-X-4 INSTALL TURNING VAWES IN BOILER DUCTS PRESSURE DROP WITH EXISTING SQUARE CORNER ASSUME: 5280 FT/min, 300° EXITGAS TEMP. ASPECT RATIO (WO) =1 FROM FIG 20 (ATTACHED) PRESSURE DROP IS O.B IN.W.C PRESSURE DRUP WITH 24 ! RADIUS BEND IN LIEW OF SQUARE CORNER ASSUME 6'X6' DUCT. FROM FIG 20 AP = 0.28 IN. W.C. FAN ENERGY SAVED VOLUME = 6'X6' X 5280 FT/mIN = 190,000 ACFM ENERGY = (190,000) (0.8 - 0.28) × 746 = 16.56 KW ASSUME 50% LOAD FACTOR ON FAN 16,56 kw x 8760 yp x . 5 = 72532 kwh /yr. 72532 Kwh/yr x 3413 Kwh X10-6 meter = 248 morulyn Typically 3 boilers operate in writer and zin assuming 2.5 boilers and 4 elbours per boiler ques 25 * 4 * 243 MBty/yr = 2480 MBTN/yr

SUBJECT	•	AEP NO	
		SHEET	OF
DESIGNER	PFH	DATE	
CHECKER		DATE	

Derreit energy we =

(190,000) (0.8) y 1/16 x 3760 x 0.03020 = 1/1/2/20

4 1000 2

3378 * 10 2lbrus = # 5 3,760/97

FRICTION LOSS IN RECTANGULAR DUCTS

All of the losses are figured for unlined steel ducts at 70 F and A/B ratio = 1. Correct for other temperatures and ratios as shown.

FRICTION LOSS IN PLAIN RECTANGULAR ELBOWS

All of the losses are figured for unlined steel elbows at 70 F and W/D ratio = 1. Correct for other temperatures and ratios as shown.

72

73

24" RADIUS RENO MATIL COST ASSUME: 7 gage PLATE, 6 ST WIDE DUCT., 12/LB STEEL 84 IN X 15t X211 X 6 St = 18.85 St2/bend weight 7 gage PLATE weighs 7.5 LBS/FT2 18.85 Ft bend x 7.5 LBS FT2 = 141 LBS bend Cost STEEL PLATE COSTS ABOUT 12/LB FARRICATED 141 LBS/bond x #2/LB = \$282/bend.

CONSTRUCTION COST ESTIMATE)		SHEET	OF		
ENERGY ENGINEERING ANALYSIS						BASIS FOR ESTIMATE CODE A (No design completed) CODE B (Preliminary design)				
RADFORD ARMY AMMUNITION PLANT					1 -					
ARCHITECT ENGINEER		. ^ _	D 71	\.	, -	CODE C (Final design)				
REYNOLDS, SMITH AND	D HILLS	ESTIM	ATOR			1		1 /		
	1	<u> </u>	6,	Fallou	,	~		cheis		
ROUNDED DUCT SUMMARY	QUANT	UNIT	PER	TOTAL	PER	MATERIA		TOTAL		
CORNER.	UNITS	MEAS.	UNIT	10122	UNIT	TOT		COST		
·	,	-								
BEND COST MATIL	,	ea			000		~ 0	0.00		
·LABOR Q9	3		341.32	1039	282	2	82	282		
REMOVE EXICTING		J	7020	100/				1039		
CORNER CREW Q9	.5	days	346.32	173		2 /	31	455		
TOVAL				1212			92	1494		
LOCATION			.683	828	1.002		82	1110		
SALES TAX			1.00	828	1.045		95	1/23		
FICA			1.20	994	1.00		75	1289		
OVERHEAD 15%								1482		
PROFIT 10%						-		1631		
BONO 1%								1647		
CONTINGENCY 10%								1812		
Hercules 6%								1920		
TOTAL PER A	L BOW							1920		
Fi. 1.0 F. M		_		· · · · · · · · · · · · · · · · · · ·			·			
Five boilers & 4 elbou	19 Dec	h						X20		
										
TOTAL CONSTRUC	1 1011	Cock	1					\$38,400		
·										
	·									
							•			
						· · · · · · · · · · · · · · · · · · ·				

REYNOLDS, SMITH AND HILLS RCHITECTS • ENGINEERS • PLANNERS

RMAP EEAP T-Stat Control System DESIGNER W. T. Todd AEP NO 2900379000 6/12/90

ECO # GP-X-5

INSTALL THERMOSTAT CONTROL IN MOTOR HOUSES Assumptions:

P. Hutchius

- 1. Based on the Department of the Army Technical Manual a Freeze is possible for Roanoke, VA From October to May. This analysis assumes the radiators in the motor houses are left on for this period.
- 2. The main plant boiler efficiency is 76.600 15% distribution losses.
- 3. The average motor house dimensions are 7.5' by 7.5' by 7.5'.
- 4. The 99% winter design temperature is 9°F for Radford Ordnance Works (DA Technical Manual).
- 5. The design temperature for the motor house is assumed to be 60 °F.

Current Energy Consumption:

Heat loss = 9 = U.A. DT

Outside air film (15mph) Aspestos shingles (1/4", lapped)

Wood siding (1/2" pine) Inside air film (still)

R= 0.17 Hr. Seft. of

R= 0.21

R= 0.63

R= 0.68

A = Surface Area = (7.5ft x 7.5ft)/exposure x 5exposures = 281 ft2

AT = Inside Temp - Outside Temp = 60°F-9°F = 51°F

REYNOLDS, SMITH AND HILLS ARCHITECTS • ENGINEERS • PLANNERS INCORPORATED

SUBJECT	AEP NO
T-stat (ontrol Sys.	SHEET OF
DESIGNER WIT, Jodd	DATE
CHECKER	DATE

GP-X-5 Calculations (continued):

Since the radiators currently have no thermostat, the radiator output is assumed constant for all outside air temperatures.

$$Q = U \cdot A \cdot \Delta T$$
, existing energy consumption
$$Q = 0.59 \frac{Btu}{hr \cdot Ft^2 \cdot oF} * 281 Ft^2 * 51 \circ F = 8455 \frac{Btu}{hr}$$

With thermostatic control, the motor house can be maintained at 40°F to prevent freezing. The on/off control value will reduce the radiator operating times.

Current operating time = 8 mo × 30 day × 24 hr = 5760 hrs

New operating time = 1833 hours Shept. of Army?

(hours temp. is at or below 40 ° F) Tech. Manual

Steam Savings = $8455 \frac{Etu}{hr} * (5760-1833) hrs/yr * 105 buildings$ Steam Savings = $33.2 \frac{mBtu}{yr} \times 105 = 3486 \frac{mRtu}{yr}$

Coal Savings = 3486
$$\frac{\text{MBtn}}{\text{Yr}} \times 1.22 = \frac{4602 \text{ MBtn}}{\text{Yr}} \times 1.61 = \frac{4602 \text{ MBtn}}{\text{Yr}} \times 1.61 = \frac{4602 \text{ MBtn}}{\text{MBtn}} = \frac{4602 \text{ MBtn}}{\text{Yr}} \times 1.61 = \frac{4602 \text{ MBtn}}{\text{MBtn}} = \frac{4602 \text{ MBtn}}{\text{Yr}} \times 1.61 = \frac{4602 \text{ MBtn}}{\text{MBtn}} = \frac{4602 \text{ MBtn}}{\text{Yr}} \times 1.61 = \frac{4602 \text{ MBtn}}{\text{Yr}} \times 1.61 = \frac{4602 \text{ MBtn}}{\text{MBtn}} = \frac{4602 \text{ MBtn}}{\text{Yr}} \times 1.61 = \frac{4602 \text{ MBtn}}{\text{Yr}} \times 1.61 = \frac{4602 \text{ MBtn}}{\text{MBtn}} = \frac{4602 \text{ MBtn}}{\text{Yr}} \times 1.61 = \frac{4602 \text{$$

REYNOLDS, SMITH AND HILLS ARCHITECTS • ENGINEERS • PLANNERS INCORPORATED

SUBJECT T-St	at Control Sv	tem AEP NO
		SHEET3OF
DESIGNER	W. T. Todd	DATE
CHECKER	j.K.	

GP-X-5 Calculations (continued):

Net cost sovings = \$7409-3869 = \$3540/yr

Construction lost:

Project Cost = \$40,273

See construction cost estimate sheet for details.

Simple Payback

Payback = Cost + Annual Savings = \$40,273 = 3540 \$/yr = 11.4 years

CONSTRUCTION COST	ESTIMAT	E		DATE PREPARED Sept. 19	, 190	O SHEET	4 of		
PROJECT ENERGY ENGINEERING	ANALYS	I S			BASIS FO	OR ESTIMATE			
LOCATION					CODE A (No design completed)				
ARCHITECT ENGINEER	RADFORD ARMY AMMUNITION PLANT] CODE C (Final dec THER (Specify)	ni gn)		
REYNOLDS, SMITH AND	HILLS	A.E.		۷C		CHECKED BY			
NA			W	T. Todd		CH			
T-Stat Control SUMMARY	QUANTI	TY	PER	LABOR -	PER	MATERIAL	TOTAL		
	UNITS	MEAS.	UNIT	TOTAL	UNIT	TOTAL	COST		
Steam Valve - 2 Position		Ea	15	15.00	125	125.00	140.00		
Thermostat - J.C. #T-26	1	Ea	25		50	50.00	75.00		
Power Connection	1	Ea	25	25,00	20	20.00	45.00		
				/ () -					
Subtotal		<u> </u>	- /	65.00		195.00	260.00		
Location Adjustments		<u> </u>	0.683	(20.61)	1.002		(20.22)		
Sales Tax				0.00	4.5%	8.79	8.79		
FICA / Insurance			20%	8.88			8.88		
							2 57 16		
Sub total	15%						2 <i>57.45</i> 38.62		
Overhead D- C-+							29.61		
Profit	10%						.3.26		
Performance Bond	6%				· · · · · · · · · · · · · · · · · · ·		19.74		
RAAP Support	10%						34.86		
Contingency									
Construction Cost	(eac	h 1	build	ina			# 383.55		
				9					
				•					
Construction Cost (for	05	build	inas)			\$ 40,272,75		
Vendor Quote For M	ateria	1 0	osts	- Johnson	Con	trols			
Labor Costs From M	eans	Me	chani	cal Cost	Date				
·									

Telephone Call Confirmation

	•		Project No	190-0379-00	0
Local	733-1411 L.D.	Placed	Rec'd	Date <u>9</u>	-19-90
	Bill Todd			_	
Of	Johnson Controls	Rega	rding T-stat (a	entrol - Rad	Ford AAP
			,		
	Radiators c	ian be con	trolled with	a thermos	tat
	and a steam	n valve. I	he thermos	itat is a	J.C.
	model #T-26	and costs	about \$50	D. Johnson	· Control
	does not m				
	bat many ot	•			
	From \$100 to			·	<i>,</i>
				•	
		:			
٠,		·			
				·	
		•			
				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Dietrik	oution:				

REYNOLDS.	SMITH	AND	HILLS
ARCHITECTS .	ENGINEE	RS · PL	ANNERS
41	CORPORATI	ED	

SUBJECT AEP NO SHEET CHECKER DATE

	•	CHECKER		DATE	
	Name	TOR HOUSES Area		100 Ft ² Number	Page #'s
	Motor House	NC-A	48	2	9
	Motor House	A-Green	47	1 .	10
_	Elevator Mtv. Hse.	Sol. Rec.	56	63	11-16
_	Elevator Mtr Hse.	A-Finish	56	5	16-17
	Motor House	NC-B	48	1	19
	Motor House	B-Green	47	1	20
	Motor House	NC-C	48		21
9_	Motor House	C-Green	47		22
	Elevator Mtr. Hse.	C-Finish	36		. 24
_	Elevator Mtr. Hse.	C-Green	56	2 2	24
	Motor House	Premix-1	96	2.	30
	Motor House	Double Base	78		30
_	Elev. Mtv. Hse.	Double Base	56		30
_	Elevator Mtr. Hse.	Sol. Rec.	56	12	30-31
_	Motor House	A-Finish	55	4	34-35
	Motor House	Premix 1	54,78,53		36
NEW TO	Motor House	RP-4	99		45
	A Company				

TOTAL 105

ROLL	RSI	
------	-----	--

SUBJECT		AEP NO	_
	·	SHEETOF	
DESIGNER	G. FALLON	DATE 6/14/90	
CHECKER	P. HUTCHING	DATE 6/14/90	
		•	

FLO # GP - X-6 CHANGE INCINERATOR FURL TO NAT. GAS INCINERATOR FUEL COST SAVINGS

FUEL OIL SAVINGS = 86,217 MBPL/yr

NAT GAS INCREASE = 86,217 MATE / yr

Current energy costs = #368,146/gv.

New every costs:

86,217 + 3,36 = # 289,689 / yr.

- Daving = \$ 18,458/yr.

.

.

and watering of

.

د د محمد و این از ا

as the second of

ye is a particular term of the second

CONSTRUCTION COST	ESTIMAT	TE DATE PREPARED SHEET OF				OF				
ENERGY ENGINEERING ANALYSIS						BASIS FOR ESTIMATE CODE A (No design completed) CODE 8 (Preliminary design)				
RADFORD ARMY AMMUNITION PLANT										
ARCHITECT ENGINEER			_		l	CODE C	(Final des	(m)		
REYNOLDS, SMITH AND	HILLS	A.E.		₹C.						
ECO # GP- X-6		E311m		LLON	CHECKED BY					
INCIN, NAT. GAS SUMMARY	QUANT	UNIT	PER	LABOR	PER	MATERIA	<u> </u>	TOTAL		
LINE	UNITS	MEAS.	UNIT	TOTAL	UNIT	TO	TAL	COST		
								· .		
					ļ	 				
		•		·						
						<u> </u>				
							<u>-</u>			
Hercules Estimate	-						,	166,000		
SUBTOTAL COST								166,000		
OVERHEAD 15%				``				191,000		
PROFIT 10%	-		! !					210,000		
BOND 1%								212,000		
CONTINGENCY 5% SIOH 6%								222,000		
DESIGN FEES 10%						<u> </u>		250,000		
707A L								250,000		
, 0										

Project No. 290 - 03 19 - 088
Local L.D. X Placed X Rec'd. Date 5-31-90 G. T. Conversed With Pat ZEEK
G. T. Conversed With Pat ZEEK
Of Radford (us. Gravn'T) Regarding las line for incinerators
Incineration Gas line - Past study citation.
Date of Study - 37 86
Score of morh - 1e: Incinerator Burners new? NO
Dato of Study - 37 '86 Scope of work - 1e: Incinerator Burners new? NO Total installed cost - 4142,960 +
Ann Enerm Sarviner ? - (NO.)
three much - 0
Amy Energy Savings? - NO.) How MUCH - O "Put or Pay" Contract With Saw Company is uncle negatistion and proceeding slawly.
- Fut or you company
is uncer negasiour and proceeding
slowly.
Original # 87-130,000/yr. sanings
200-250k installed cont.
Because of level aid and natural arm price
Because of fuel oil and natural gas price fluctuation Radford projects as 25-30% Cost saving to suitth to natural gas.
quemons ranger propers as 2000
Cost saving to secure to nacular gas.
Distribution:

REYNOLDS,	SMITH	AND	HILLS
ARCHITECTS .	ENGINEE	RS • PL	ANNERS
IN	CORPORATI	ED	

SUBJECT	RAAP	EEAP	_
Shut	off Pr	eheat Coils	
DESIGNER	W.T.	Todd	

AEP NO 290-0379-000 SHEET 1 OF 6-8-90

CO#MF-X-1

AUTOMATIC SHUT-OFF OF PRE-HEAT COIL AT FA.D.'S

Assumptions:

- 1. The outside air opening is 3'x 3' and the flow rate is 11,000 ft3/min for each side of the FAD buildings.
- 2. The steam pre-hent coil is made from iron pipe that an inside cliameter of I Inch and an outside diameter of 11/4 inches, and is 30 feet in length.
- 3. 40 lb. Steam is supplied to the pre-heat coils from October through May. They are currently controlled manually.
- 4. There are 4005 hours during October May when the temperature is greater than or equal to 40°F. Department of the Army Technical Manual, Engineering Weather Data, Pages 3-398 & 3-399.
 - 5. Temperature in the FAD's is controlled about 50 % of the time.
- 6. Assume the coils will only operate when the outside air temperature is below 40°F, and the average temperature during these months is 49°F, Statistical Abstract of the U.S., 1987.

Calculations:

Evaluate properties at Tm = (Tpipe + To)/2

From steam tables @ 40 psig: Tp:pe= 2870F

Tm = (287°F+49°F)/2 = 168°F

REYNOLDS	•	SMITH	A	ND	HIL	LS
ARCHITECTS	•	ENGINEE	RS	• PL	ANN.	ERS
i	ı	CORPORAT	ED			

	AEP NO
Shut off Preheat Coils	SHEET 2 OF
DESIGNER W.T. Todd	DATE
CHECKER XIA	DATE

Calculations (continued):

When FAD is not operating-heat transfer from preheat coil occurs due to natural convection (h_{nc}) and radiation (h_r) .

ht = hnc + hr

hnc = (Nnu * k)/Lc

Lc= D = 0.104 Ft

Nnu = C (Ngr Npr) n

Ngr = Lc * p 2 * B * DT*g/u2

Npr = Cp * u/k = 0.72

U = 1.390 EE-5 16/ft. sec

P = 0.064 16/Ft3

B = 1.61 EE -3 1/0F

9B02 = 1.14 EE 6 1/Ft3.0F

PE Review Manual Appendix 3.4

Ngr = (0.104ft) * 238°F * 1.14 EE 6 \frac{1}{Ft^3.0F} = 3.05 EE 5

NgrNpr = 3.05 EE 5 * 0.72 = 2.20 EE 5

C = 0.53 , n = 0.25

Table 3.7, pg 3-17 PE Review Manual

REYNOLDS, SMITH AND HILLS ARCHITECTS • ENGINEERS • PLANNERS INCORPORATED

SUBJECT	AEP NO
Shut-off Preheat Coils	SHEET 3 OF
DESIGNER W. T. Todd	DATE
CHECKER	

Calculations (continued):

$$N_{nu} = \frac{h_{nc}L_{c}}{k} = C \left(N_{gr}N_{pr} \right)^{n} = 0.53 \left(2.20 \, \epsilon_{E} 5 \right)^{0.25} = 11.37$$

$$h_{nc} = 11.37 * k/L_{c} = \frac{11.37 * 0.0168 \, \frac{Btu}{hr.ft.o_{F}}}{0.104 \, ft} = 1.84 \, \frac{Btu}{hr.ft.o_{F}}$$

$$h_{r} = \frac{F_{c} \, F_{a} \, \sigma \, \left(T_{A}^{4} - T_{w}^{4} \right)}{T_{p} - T_{a}}$$

Tp = Temperature of pipe = 287°F = 747°R

Tw = Temperature of wall = 49°F = 509°R

Ta = Ambiant air temp. = 49°F = 509°R

o = 5-8 constant = 0.1713 EE-8 Btm/hr.ft. 0R4

Ep = emissivity of pipe = 0.64 oxidized castivon at 168°F Appendix 3.5, pg 3-30

Fe = Ep (For enclosed body, Aw >> Ap) = 0.64 Table 3.11

Fa = Shape Factor = 1 (for surrounded radiator) Page 3-24

hr = 0.64 * 1 * 0.1713 EE -8 Btu [(7470R)4-(5090R)4]
(287-49)0F

hr = 267.8 Btu/hr.ft2 = 1.13 Btu/hr.ft2.0F

ht = hnc +hr = 1.84 + 1.13 = 2.97 Btu/hr.ft2. of

REYNOLDS.	SMITH	AND	HILLS
ARCHITECTS .	ENGINEE	RS • PL	ANNERS
IN	CORPORAT	ED	

SUBJECT	Off Preheat Coils	AEP NO
JACK	on the White Courts	SHEET
ESIGNER	W.T. Todd	DATE
NECKER		DATE

MF-X-1 Calculations (continued):

Steam Savings:

Coal Savings:

Elec Price Diff Costs

Net COST SAVINGS

Savings = #706 - 204 =
$$\frac{$502/yr}{}$$

REYNOLDS.	SMITH	AND	HILLS
ARCHITECTS .	ENGINEE	RS • PL	ANNERS
11	CORPORAT	ED	

SUBJECT	AEP NO
Shut Off Preheat Coils	SHEET 5OF
DESIGNER W. Tout	
CHECKER	

MF-X-1 Calculations (Continued):

Project Cost:

Construction Cost = \$60,871

See Cost Estimate Sht.

Simple Payback:

Payback = Cost + Forings

= $$60,871 \div $502/4r = 121.24cars$

CONCERNATION CONT.				DATE PREPARED			/
CONSTRUCTION COST ESTIMATE					5-11-	90 SHEET	6 OF
PROJECT ENERGY ENGINEERING ANALYSIS				BASIS FOR ESTIMATE			
RADFORD ARMY AMMUNITION PLANT						CODE A (No design	
ARCHITECT ENGINEER	111011 7	LANI	·			CODE C (Final des	• 1
REYNOLDS, SMITH AND	HILLS	A.E.	P., I	۷C.	001	THER (Specify)	
DRAWING NO.		ESTIM		11	l	CHECKED BY	
7074	QUANTI		<u> W.</u>	T. Todd		MATERIAL	
S/o Preheat Coils SUMMARY	NO. UNITS	UNIT MEAS.	PER	TOTAL	PER	TOTAL	TOTAL COST
O.A. Temperature Sensor	1	Ea	25	25.00	90	90.00	115.00
						•	
Modulating Setpoint Compination Valve, I")	EA	100	100.00	590	590,00	690.00
Misc. Mechanical	\		25	25.00			50.00
Misc, Electrical			25	25.00	25		50.00
					-	23 (00	
Subtotal			•	175.00		730.00	905.00
Sales Tax				1,3.00	4.5%		32,85
			20%	35.00	7,3 10	72.83	35.00
FICA/Insurance			20%	55.00			32.00
				210.00		7/20-	022 - 5
Subtotal	1			210.00		762.85	972.85
Overhead	15%						145.93
Profit	10%						111.88
Performance Bond	1270						12.31
Hercules Support	6 %						74.58
Contingency	10 070						131.76
Subtotal							1449.31
× 2' systems per	buil	lin	$q \times 2$	1 buildin	g s		× 42
				•			
Construction Cost							\$60,871
							,
Madified Mandan							
Modified vendor a	note	/ 07	- 29	cupment	Cos	T only A	7 33-1411
Johnson	con	cro 1	5,	lacksonvill.	e, 1-1	404/7	33-1411

	703/639-8	EUA	Project No	290 0379 000
Local _		Placed	Rec'd	Date 6-8-90
				, Epperly
Of	RAAP Maintenan			•
				<i>,</i>
	<u> </u>	AD		·
	Bay,	Bay 3	3-15ps: (0-2000	F) preumatic temposenson
		ref		
	Bay ?	Ba 4		
	Steam coil	a.	veraging eleme	nt
		1140	W Valve - ON/OIL	installed in "some" blogs.)
	preheat coil ->	<u> </u>		
)		9. A.		
-				
	Mr. Childers has	the most k	insuledgie of	the FAD
-	buildings - th	is is the	second week	of his 3 week
	vacation.			
•				
9-	19-90 "Called	Steve Dehusk	Tunior Childer	
	Active FAD's a	operate app	roximately 7	10 to 80 hours
	per week. Th	•	•	
	is maintained	_		
		7		
, Distribu	ition:	· · · · · · · · · · · · · · · · · · ·		

Telephone Call Confirmation

			Project No	190-0379-000
Local 733	-14() L.D.	(Placed)	Rec'd	Date 6-11-90
				Pruitt
				Prehent Coil Contro
			_	
P.	re-heat pipes	can be co	introlled eit	her with
	neumatic or			
•				position Outside
	iir thermos	,		
		- UPU U SF		The state of the s
	Pan 10-11 A	- 0 0 0 1 0 0 0 0	-eliminas cla	sign sketch and
	estimate, a			
	estimate, a	~a Ak ~eu	cu to me	Coddy.
			· · · · · · · · · · · · · · · · · · ·	
	a de la composição de 	· · · · · · · · · · · · · · · · · · ·	······································	
		·		
· · · ·	.,			
-				
		•		
	·			
			•	
<u> </u>				
Distribution:		•		

HUNTER Form 102

CONTRULS
8245 Bayberry Road
Jacksonville, FL 32256

PUK # (904) 733-3335

ro: <u>R5H.</u>	DATE: 6-11-90 TIME:	
ATTN: BILL 7	ODD	
TELECOPY # 73		· .
NUMBER OF PAGES (INCLUDIA MESSAGE REMARKS:	MG COVER)	
Mr. 7500		
The airtin	ched are stetches and pri	CES
for Material	only fre 2 ways to a	antal
freheats - No	te this nethod purs the	
Vischange TEN	yo exter O.A. Drops cinde	r.
Control with	and AD Estable sefacint	
		•
PY SENT BY:	n: But	

nold kod have any problems receiving this message, prease contact: at (904) 733-1411.

REYNOLDS.	CMITH	AND	UII 1 C		
RETRULDS, ARCHITECTS					
INCORPORATED					

BUB IECT	Insulate	Boiling Tubs	AEP NO 290 0379 000
		7	SHEETOF
DESIGNER	QF#		SHEETOF
CHECKER			DATE

ECO # NC-4-1

1. Calculate tub heat loss

Assumptions:
Tub dimensions 18 dia 12 hi
Steel thickness 0.25"
Tout = 62 F
Tui = 212 F

Calculate tub surface area

$$top = TD^2/4 = 254 \text{ sf}$$

bottom = " = 254 sf
sides = TDH = 679 sf

Calculate heat transfer coefficients

SIDES

W= 1/ ER = 0.741

w/o insulation

REYNOLDS,	SMITH	AND	HILLS
ARCHITECTS .	ENGINEE	RS • PL	ANNERS
IN	CORPORAT	ED	

SUBJECT		AEP NO	
	. .	SHEET 2	OF
	OH .		
DESIGNER		DATE	•
CHECKER		DATE	

W/o insulation

w/ insulation

4 film

0.61

2. Calculate total heat loss without insulation

$$Q = UAAT = (0.74)(679)(150) + (0.91)(254)(150) + (0.37)(254)(150) =$$

3. Calculate heat loss with insulation on top and sides

$$Q = LAAT (0.10)(679)(150) + (0.096)(254)(150) + (0.31)(254)(150)$$

REYNOLDS.	SMITH	AND	HILLS
ARCHITECTS .	ENGINEE	RS • PL	ANNERS
IN	CORPORAT	ED	

SUBJECT	AEP NO
	SHEETOF
DESIGNER	DATE
CUPOKER	DAYE

NC-4-1

[96,197 Btu/hr) × 1.32 Btu coal = 126,980 Bts/hr

6. Calculate annuel savings per tub assume tub operates 15% of the time

126,980 Btu/hr + 8760 + 0.75 = 834,3 MBtu

Per tub

1. Calculate total annual savings Turidate five boiling tubs and three poachers

> 834,3 x 5 6674 x 1.61 3/ n otc.

= 6674 MBLA = \$10,745/yr

8. Calculate Electricity Price Differential Coda

> (96,197 Btm/m/tub) x 8760 x 0,75 x 8 tubs = 5056 MBtu/yr. 5056 x \$1.11 = \$5612/yr.

Cost Estimate

1NSULATION COSTS (1989 Means Mech. 7) 171)

\$ 6.42/ft = mat

1.11 /ft = labor * 0.68 adj = 0.75

1.57/ft = total # 1.17 * 933sf = 1092

NOTE: FOR SAFETY REASONS INSULATION MAY NOT BE

APPLIED DIRECTLY TO THE TANK WALL. A SINCH

STAND OFF SUPPORT FRAME SHOULD BE USED

RUBBER LIP SEAL TO PREVENT
CHIMNEY EFFECT,

AIR GAP

LEAVE BARE THE WOOD SUPPORTS

RE-PIPING COSTS

ASSUME: SCH40, 316 SS, WELDED, 4" \$, 24 EQUIV.,

\$45/1F (MEANS Pg.75)

#36/LF mot

1 /LF lab * 0.68 (adj.) = 6 lat # 45 /LF total # 42 tot

INSULATION SUPPORT BRACKET

ASSUME: 96 ft 3'x3" STAINLESS 4 \$3,75 LF

ASSUME: I WEEK INSTALLATION, @ \$35.00/MHR,

35 x 2 x 40 = #2800 labor

96 x 3.75 = 360 materials

TOTAL 3160

lab mat \$ 1092 700 392. Re Piping 1008 144 864 3160 2800 360 SUPPORT BRACKET 3644 1616

CONSTRUCTION COST	ESTIMA	ΓE	-	DATE PREPARED	90	SHEET	OF
ENERGY ENGINEERING ANALYSIS					BASIS F	OR ESTIMATE	1 completedle
RADFORD ARMY AMMUNITION PLANT					CODE & (No design completed)		
ARCHITECT ENGINEER REYNOLDS, SMITH AND	HILLS	A.E.	.P., I	NC.	_	CODE C (Final dec	
DRAWING NO. ECO#NC-U-1		ESTIM	ATOR	PFH		CHECKED BY	
	QUANT	ITY		LABOR		MATERIAL	TOTAL
Boiling Tub Ins. SUMMARY	NO. UNITS	UNIT MEAS.	PER	TOTAL	PER- UNIT	TOTAL	COST
Re-piping				144		864	1608
Insulation				700		392	1092
Re-piping Insuldion Brachets				2800		360	3 160
		ļ					
subtatals				3644		1616	5260
4 1							73
sales tax (4.5%)				720		73	
FICA/Ins (20,0%)		-	•	729			129
Subtotale		<u> </u>		4372		1689	6062
Overhaid (15%)			e ^a	7315		1987	909
Prof d (10%)							697
Bond (1%)							77
Contingency (7.5%)	-					,	581
							# 8326
5 Boiling Tubs							
5 Boiling Tubs 3 Poachers							*8
							#66,608
		ļ					
		-					
		-					
		-		-			
		-					
		 			<u></u>		
				1	[1	

RSH	F
	®.

SUBJECT	AEP NO
	SHEETOF
DESIGNER	DATE 9-24-90
CHECKER YH	DATE

ECO # NC -X - 1 FUETHER BOILING THE HEAT EXCHANGER

Hercules date shows hailing tubes consume 1403 LBS /17C of 13 TEAM for a tub on hail.

HEAT CONSUMPTION

1408 LBS/HR/TUB XIITS BTYB = 1.654 mBTU/HR/TUB

13 = BT/MOTU

OTHER DATA CHOWS A TUBIC DA BOIL FOR ABOUT 75% OF ITS CYCLE

ANNUAL HEAT CONSUMED

1.654 MBTIL/HR/TUE X 8760 x .75 = 10,870 MBTIL/yearth

PERCENT HEAT SAVED BY CONDENSING STEAM

$$\frac{9}{h_{\xi}} = \frac{h_{\xi q}}{h_{\xi}} \times 100 = 75.7\%$$

ANNUAL HEAT SAVED @ TUBS

10,870 MBT / year / TUB X . 752 = 8501 MBT & /yr /TUB

ANNUAL COAL SHEEK

SUBJECT		AEP NO
		SHEETOF
DESIGNER	G.F.	DATE
CHECKER		DATE

NC-X-1

Electricity price differential costs:

\$1.11/METE 40#STM. X 8501 MBTU = \$9436 /yr /TUB

KSH.

DATE 9/25/90

Chicutte # of tubs # used pach year 27.9 ×106 # NC/yr = 30,000 LBS NC/TUB CYCLE = 930 TUB eyeles/41 930 TUB CY/4r X100 HR/cy = 10.6 TUBS & 11 TUBS.

B760 FR/4r

assuming 85% AVAILABILITY

11 tobs = 12.7 2 13 Tubo.

RAAP COAL ENERGY SAVINGS

11,221 MBTy / TUB X 11 TUBS = 123,431 march coallyr 123,431 * 1.61 = \$198,724/yr.

Electricity Price Differential Costs:

8501 MBHu * #1.11/MBHu * 11 tubs = #103,797

RAAP NET SAVINAS \$ 198,724-103,797 = \$ 94,927/yr

RSH	
®)

SUBJECT		AEP NO
		SHEETOF
DESIGNER	GF.	DATE
011701770	CRA CRA	DATE

NC-X-L

COST = 44613 FOR 5 TUES

SIMPLE PAYRACK

 $\frac{4_{1/5,993}}{94,927} = 1.2 \text{ yrs}$

For ORIP:

TOTAL COAL USED PERTUS

10,370 mBtn/gr/tub + 1.32 Mostucal = 14,348 mBth

ruel cost = 14,348 more \$ 1.61/more = \$23,100

SAUINGS = COR SAUINGS - ELEC PRICE DIFF COSTS

= $(11, 221 \text{ MPM } \pm^{\#}1.61) - \pm^{\#}9436 = \pm^{\#}8630$

(Proposed METHOD) = \$14,470

COST = #115,993/5 = = #3924

CONSTRUCTION COST	ESTIMAT	E	1	DATE: PREPARED	:	SHEET	OF
ENERGY ENGINEERING ANALYSIS					BASIS FO	R ESTIMATE	
ENERGY ENGINEERING ANALYSIS				CODE & (No design completed)			
RADFORD ARMY AMMUNITION PLANT			ı — ·	CODE C (Final dec	• •		
ARCHITECT ENGINEER REYNOLDS, SMITH AND	HILLS	A.E.	P., IN	IC.		HER (Specify)	
ECO # GENC-X-	-1	ESTIM	ATOR (Stallon		CHECKED BY	
PERC. LINE H/X SUMMARY	QUANTI	TY		LABOR	†	ATERIAL	TOTAL
TERC. LINE HIX SUMMARY	NO. UNITS	UNIT MEAS.	PER	TOTAL	PER	TOTAL	COST
HEAT EXCHANGER				•			
3" SS 150 LB FLANGE	4	ea	29.00	116	129:15	517	033
S\$ 140 LB 4X3 REOVCE	2	la	30,00	60	100.00	200	260
3" SCH BO 316 PIPĒ	೩೦	P	8.60	172	57,28	1145	1317
4" SCH 40 316 BIPE	20	p-	9,05	181	35.56	707	888
Pump							
mecit	1	ea	88	98	1500	1560	1648
ELEC (means pg 277)	/	ea	430	430	290	290	720
INSULATION							
4" pipe - 2"THK	20	127	2.99	40	5.57	1(1	171
					ļ		·
SUB TOTAL (ONE TUB)				1107		45-30	5637
5 7085	5		1107	5335	4530	22650	28185
LOCATION FACTOR			. 683	3780	1.002		26475
SALES TAX			1	3780	1,048	23716	27496
FICA INS			1.2	4536	1,00	23716	28252
OVER HEAD 15%				• , .			32490
PROFIT 10%		-					35739
BOND 1%							36096
CONTINGENCY 10°10				·			39706
Hercules 6º10					<u> </u>		42088
DESIGN FEE 606		<u> </u>					44613
					<u> </u>		-
TOVAL					<u> </u>		44613
	12/-				 		# 11/2 0 2 1
13 Tubs	13/5				ļ		115,994
1920	- A . 1 -				 		
Source: 1989 N	EANS	<u> </u>			1		

REYNOLDS, SMITH AND HILLS ARCHITECTS • ENGINEERS • PLANNERS

Remove Steam Coils
DESIGNER W.T. Todd

AEP NO 290 0379 000

SHEET OF

DATE 5/21/90

DATE 6//2/90

ECO# SR-I-1

REMOVE STEAM COIL FROM A.C.S.R. DUCTWORK

Assumptions:

- 1. The 450 hp exhaust fan motors are oversized by 20%.
- 2. The total pressure on the Fan is 20 inches of water.
- 3. The efficiency of the fan and drive assembly is 65 %.
- 4. The efficiency of the fan motor is 85%.
- 5. There are three steam coils with I row and 14 fins per inch. The pressure drop across each coil is 0.75 inches of water.
- 6. The exhaust system operates 24 hours per day, 260 days per year (6240 hrs/yr).

Current Energy Consumption:

Bhp = Motor hp = 1.2 = 450 hp = 1.2 = 375 Bhp

Annual energy use = $329 \text{ kw} \times 6240 \frac{\text{hrs}}{\text{yr}} = \frac{2,052,960 \text{ kwh/yr}}{2,052,960 \text{ kwh/yr}} = \frac{2,052,960 \text{ kwh/yr}}{2,052,960 \text{ kwh}} \times 3.413 \frac{\text{NBtu}}{\text{Mwh}} = \frac{7007 \text{ MBtu/yr}}{2,052,960 \text{ kwh}} = \frac{7007 \text{ MBtu/yr}}{2,052,960 \text{ kwh}} = \frac{462,123 \text{ kwh}}{2,052,$

REYNOLDS,			
IN	ICORPORATI	ED	

BUBLECT	AEP NO
Remove Steam Coils	SHEET 3
DESIGNER W.T. Todd	DATE
CHECKER	DATE

ECO Costs:

Cost for removing steam coils, replacing ductwork and adjusting fan drive = \$16,997

Refer to Construction Cost Estimate sheet for detailed itemization of costs.

Simple Payback =

A Charge Marie

ECO Payback = Cost = Savings

Payback = \$16,997 = \$13,973 /yr = 1.2 Years

Company of the second of the s

REYNOLDS,	SMITH	AND	HILLS
ARCHITECTS .	ENGINEE	RS • PL	ANNERS
41	CORPORATI	ED	

Remove Steam Coils

DESIGNER W.T. Todd

SHEET _____ OF____

Additional Energy Consumption:

There is no additional energy consumption required by this Eco.

Energy Savings:

Exhaust CFM = Bhp x Fau. Eff. x 6350 Total Pressure

CFM = 375 hp x 0.65 x 6350 = 77,390 cu.ft.

The reduction in total pressure by removing the steam coils would be:

TP, = 0.75 in. H20/coil ×3 coils = 2.25 in. H20

The reduction in fan horsepower required is:

$$HP_r = \frac{CFM * TP_r}{Fan. EFF. \times 6350} = \frac{77390 \times 2.25}{0.65 \times 6350} = 42 hp$$

Energy Savings = 2 bldgs × 37 kw × 6240 hr/yr = 461,760 Kwh/yr

Energy Savings = 461.76 mwh 3.413 MBu = 1576 MBtu/yr

Annual cost savings = 461,760 Kwh × 0.03026 1/kwh = \$13,973/yr

	CONSTRUCTION COST	ESTIMA"	ΓE		DATE PREPARED 5/21	190	SHEET	H OF	
	PROJECT ENERGY ENGINEERING ANALYSIS				OR ESTIMATE				
٠,	RADFORD ARMY AMMUNITION PLANT					CODE A (No design completed) CODE B (Preliminary design)			
	ARCHITECT ENGINEER REYNOLDS, SMITH AND HILLS A.E.P., INC.] CODE C (Final de THER (Specify)	neign)			
	DRAWING NO.	n HIFF2	A.E.	ATOR			CHECKED BY		
	NΑ	QUANT		$\overline{\mathbf{w}}$	T. Todd		<u> </u>	7	
	Remove Steam Coilsummary	NO. UNITS	UNIT MEAS.	PER	TOTAL	PER UNIT	TOTAL	TOTAL COST	
	Duct Demolition, 72"	30	LF	2.70	81.00	_	-	81.00	
	Coil Removal, 500 16 ea	1.5	Ton	395	592.50		_	592.50	
	Duct, 72" Stainless Steel	30	LF	31	930.00	63	1890.00	2820.00	
	Duct insulation; 121/1/18	565	SF	1.07	604.55	0.52	293.80	898.35	
	Duct ins. Jacket, Gal. Steel	30	LF	22.95	688.50	28.52	855.60	1544.10	
1	Adjust fan, balance air	ļ	EA	15.0	150.00	25	25.00	175.00	
I									
	Subtotal				3046.05		3064.40	6110.45	
	Location Adjustments		·	0.683	(965.60)	1.002	6.13	(9:59.47)	
	Sales Tax					4.5%	137-62	137.62	
	FICA/Insurance			20%	416.09			416.09	
1									
ı	Subtotal	-						5704.69	
ı	Overhead	15%						855.70	
ı	Profit	10%						656.04	
l	Performance Bond	170						72.16	
	Contingency	10%						728.86	
	RAAP Support	670						481.05	
İ		1 -							
	Construction Cost	(for t	ach	buil	ding)		· · · · · · · · · · · · · · · · · · ·	8498.50	
	Construction Cost	(for	-tu	o bu	ildings)			\$16997.00	
					,				
	Source:								
7	Means Mechanical Co	st D	ata	, 198	9, Bare	Costs			
I	i			ļ	•	ı		1 1	

Telephone Call Confirmation

			Project No2	1900379 000
Local	(L.D.)	Placed	Rec'd	Date <u>5/17/90</u>
Bill	Todd	Conversed	With Everett	Grubb /H. Hill
of RAA	P Maintenanc	Regard	ding Activated	Carbon Sol. Recovery
Mr. C	évubb was no	ot available	so I spok	e with an
	tant about			
			• 1	
*	Solvent cond	lenser uses filt	eved water (not chilled water)
	at 40 lbs			
*	Steam coils	ave not u	scd. The s	team valves
		coils have be		
•				
			······································	· · · · · · · · · · · · · · · · · · ·
				······································
	A construction for the first terms of the first ter			
Distribution				

REYNOLDS,	SMITH	AND	HILLS		
ARCHITECTS .	ENGINEE	RS · PL	ANNERS		
INCORPORATED					

SUBJECT Remove Steam Coils	AEP NO
	SHEETOF
DESIGNER W. T.Todd	DATE
CHECKER	DATE

Cost ESTUMATE BACKUP

Means Mech page

Coil removal

500 lb each

\$395/ton

12

Duct removal

72" wide

\$ 2.70 / LF

231

New Duct - 5. Steel 72" round

 $\text{Mat} = \left(\frac{35 - 31.5}{4}\right) \times 32 + 35 = 463.00 / \text{LF}$

Lab= (15.4-13.45) x 32+15.40=\$31.00/LF

Duct insulation

274 rl = 2x3,14 x 3Ft x 30Ft = 565 sq. Ft.

insulation jacket 74" Ø

galsteel

mat = (13.95-11.65) × 38 + 13.95 = \$28.52/LF

Lab = (13.45-11.95) ×38 × 13.45 = \$22.95/LF

Fan adjustment (air balance)

\$175 each

REYNOLDS.	SMITH	AND	HILLS	
ARCHITECTS .	ENGINEE	RS • PL	ANNERS	DE
IN	CORPORAT	ED '		
				СН

SUBJECT	AEP NO
	SHEETOF
DESIGNER B. Todd.	DATE
CHECKER	DATE

COST ESTIMATE BACKUP

Means Mech. page

Coil removal 500 16 each

\$395/ton

Duct removal 72" wide \$2.70/LF

New Duct - 5. Steel 72" round

nat= (35-31.5) x 32 + 35 = 463.00 /LF

Lab= (15.4-13.45) x 32+15.40=\$31.00/LF

Duct insulation

2744 = 2×3,14 × 3Ft × 30Ft = 565 sq. Ft.

229

insulation jacket 74" Ø

gal steel

mat = (13.95-11.65) x 38 + 13.95 = \$28.52/LF

Lab = (13.45-11.95) ×38 × 13.45 = \$22.95/LF

256

Fan adjustment (air balance)

\$175 each

RSH

SUBJECT		AEP NO	
		SHEETOF	
DESIGNER	14H	DATE	
CHECKER		DATE	

Low/bot, No/ Best labourations

LCNC 1

1. Repair steam levies (assume all are valves)

labor materials # 1000

4 hours — II # 11,000 44 Istal hos Nource 39/90 Means

TOTAL COST = \$ 11,785 Tuing

5 13" hole 40 years from Desir 500 menty.

willing to I RADWA THE

1.32 MRtu war for I MBtu stant (App. 16 - Stan - to- Coal inversion factors)

500 × 1.32 \ 11 = 7260 mBilly / 4 K 7620 x \$1.51/WBTU = #11,689 /Jr.

Elec. Price Diff costs

500 x 11 + \$1.11 = \$6105/yr. Net SAUINGS = #11,689-6105 = #5584/yr

PIPING HEAT LOSSES

CALCULATED HEAT LOSS DUE TO STEAM LEAKS

RSH	7
	➂

SUBJECT	AEP NO	_
	OFOF	_
DESIGNER	DATE	_
CHECKER	DATE	_

LCNC=2 Turn off Unneeded Lights

Fenery Savings
20 instances x 10 lights (aug) x 60 watts

x 10 hrs/da * 365 da/yr = 43,800 kwh

Jr

Cost savings = 43,800 * \$0.03026

= \$\frac{4}{1325}/yr.

and the contract of the contra

and the second of the second o

and the second of the second o

and the control of th

and the second of the second of the second of the second of the second of the second of the second of the second of

RSH	
	,

SUBJECT		AEP NO		
		SHEET	OF	
DESIGNER	TH	DATE	11/3/20	
CHECKER		DATE		

LCNC 3 Repair Hoam Pipe Insulation

2" Lelium rilierte with aluminum jacket

Losts/If Labor Materials

Source 39/90 Means

hrs #

0.25 446 \$4.75

Eight metances @ 10' per

Times

Manhous 055 + 10 + 18 = +5 later # 115 x 17.82 = #302 Material 1,75 x 10 x 18 = #365

total cost = # 1657

Friend Swing

Not loss (per da gran)

ins modificar, a perse, and to so a good tollow

Elec. Price Diff. Costs = \$700 x 8760x8x 1,11:106 = 238

3700 Ellyher

Energy Cost swing = 3700 x 1.32 x 3760 x 8 = 342 m Blu/gr Net Saving = 551-238 = \$263/yr 3/91

PIPING HEAT LOSSES

CALCULATED HEAT LOSS DUE TO STEAM LEAKS

RSH	
	Ø

SUBJECT		AEP NO		
		SHEET	OF	
DESIGNER	- SA	DATE		
CHECKER		DATE		

LCNC 4 Turn of stram when not record.

a radiator user about 2000 Btu/hr (3f42, 4 column)

If used during the non-healing season

2000 Et u x 5 neordles x Erda x Erlbs x 1.32 = 9.5 M Bles/yr
hr Terr da stra (1921)

Einstances, 2 guerant to = 7.2 mBty stra

7 radiafore leach = 7.2 mBty stra

Coal Savings = 95 x 21 = 200 in 15th/yr (coal)

Doal wet Savings = 200 x 1.61 = #322/yr.

Elee. Price Diff Coats = 7.2 x 21 x \$1.11 = \$168/yr

Net Savings = \$322-\$168 = \$154/yr

had for turning off 20 pet roll tables and

roder obtained on weekenis

1000 per table - 2016 = 150 of

From ACHREE 100 Blu/hr/sf = 34.6 M Blu (1004)

Every Saucey=130 * 200 * Encor * 3/1 * * 1/16 * 1.32 45.6 M Blu (1004)

Francy Cost

Saucey= 46 × 1.61 = # 74/gr/fable * 4 table. = 296/gr = 134 MB.

Flec Price Deff Cost = 34.6 * 1.11 * 4= \$154/gr Net Saucey= \$142/gr

Totals = 384 MBH/yr 3# 296/yr.

3/91

RSH	
	,

SUBJECT	AEP NO
	OF
DESIGNER	DATE
CHECKER	DATE

34 : 115 to /yr

LCNC 5 Repair sompressed air lacks

Savings

From acheme, a 1/3" hole wastes #932/yr

at 44/kwh

at 3.0264/kwh => #742/yr

142/3.0264 = 24,550 kwh

Cocks

Labor Moteriela

2 hrs #50 prume 59/90 moon =

35.66 50

TOTAL COST = \$ 66

TYPICAL COSTS FOR STUCK OPEN STEAM TRAPS (1)

STEAM PRESSURE	= 100 PSIG	(342 F))	STEAM PF	ESSURE =	200 PSIG
TRAP SIZE (INCHES) =>	1/8	3/16	1/4	1/8	3/16	1/4
STEAM ENERGY LOSS (MBTU/YR) ===>	500	1100	2100	1250	2200	4000
STEAM COST (\$/MBTU)						
\$3.00	\$1,000	\$2,200	\$4,200	\$2,500	\$4,400	\$8,000
\$3.58 (Note 2)	\$1,789	\$3,936	\$7,514	\$4,473	\$7,872	\$14,313
\$5.00	\$2,500	\$5,500	\$10,500	\$6,250	\$11,000	\$20,000

⁽¹⁾ BASED ON A STEAM ENERGY VALUE OF 1000 BTU/LB AND STEAM LEAKAGE RATES AS GIVEN IN THE BARRON'S MANUAL OF ENERGY SAVINGS IN EXISTING PLANTS.

ANNUAL COST FOR TYPICAL COMPRESSED AIR LEAKS

SYSTEM PRESSURE	HOLE DIAMETER	CUBIC FEET OF COMPRESSED AIR WASTED PER YEAR	COST OF ENERGY WASTED \$/YEAR (1)
100 PSIG	3/8-inch	79,000,000	\$8,734
	1/8-inch	8,880,000	\$982
	1/32-inch	553,000	\$61
70 PSIG	3/8-inch	59,100,000	\$5,300
	1/8-inch	6,560,000	\$588
	1/32-inch	410,000	\$37

⁽¹⁾ BASED ON AN AVERAGE LOCAL ELECTRICITY COST OF 4.0¢/kWh INCLUDING DEMAND CHARGES.

⁽²⁾ CALCULATED USING A NATURAL GAS COST OF \$2.29/MBTU AND ASSUMING A COMBUSTION EFFICIENCY OF 80% AND 20% DISTRIBUTION SYSTEM LOSSES.

Telephone Gall reynolds, smith and hills

Project	No
	(103) 639- 2762

Deta 1/1/90
Date 11/1/90 P. Stutchin Conversed with John Parkins Of Hereules (Radjord) Regarding Programming Doc's
De Description Programming Doc's
Of Regarding
- 50 returned and call a dealer instructions for
- JP returned my call and gave instructions for
completing QRIP and OSD PIF forms
- He also said no forms need to be completed for
ECAM projects, as they would combine many
projects into a single annual submittal under
the Production Support and Equipment Replacement
\cdot
program. He would need a project write up and
lifecycle cost analysis with bade up calc's.
WRIP and OSD PIF FY92 implementation date
F CAM PY 95 "
Escalate construction costs at _ % per year
7.09 92 1,1358 FY 92 Call letter for \$7 85 Eil 1.1264 93 1.1737 FY 93 Secuments Project Colministration 1.1965 95 1.2488 FY 95
1.1264 33 1.1737 FY 93 Secureut Project administrator
Distribution:

Telephone Gall Confirmation

Project No. 290 0379-000 (309) 182-5743

reynolds, smith and hills

Local	_L.D <u>レ</u>	Placed	_ Rec'd	Date <u>8/3//5=</u>
P. Hur	2 L I H	Conversed with	Cary Box	dtram
Of AMC	com	Regarding	Every Proj	ed Funding
			01. 9.	, , ,
		+ 10 1 11	1	
6.13. wo	licated Tha	it the following	uj change	s u
	_			Amo
Pro	year com	28 cursmouts	apped the	////CO
	all attons.			
	DTA P.	ect Cost Range	#	100 000
<u>Q</u>	KTL - (to	per cost range	- 5000 -	100,004
PE	CIP.		≥ \$ 100	0 000
			•	and the second s
	SO PIF -		2 \$ (0	00,000 (DOD)
TAP do	nos writ area	ly for Gocos	use ECA	ul instead
ECXW r	equires for	rm P-15 (s	ee AR 700.	-90). If
- manta	y 2. 15 7 200	000, it regu	A A	1301
XXXXX	Thom 4200,	, ooo, a rega	art June	<u> </u>
OSD PIF	- Sunds are	e vecommended	OVER PECI	o because the
			·	
Money	is from DD	15		
	<u> </u>			
A				
Distribution:			<u> </u>	

Telephone Gall reynolds, smith and hills

Local Of	P. Hutebu Hercules	Placed	RecdRecd ersed with Regarding	Pifer Iles Labo	r Rales
	TP said at th	to use \$17. e Pipe Sti	. B3/hn fer	labor	hule
Distribu	tion:				