

4.	(Currently Amended)	The power generation plant as claimed in one of the
prece	eding-claims <u>claim 1</u> , characteri	zed in that wherein the gas turbine cycle comprises a
CO ₂ /	H ₂ O gas turbine cycle is involv	ved in which capable of producing CO ₂ and H ₂ O produced,
via c	orresponding, and further comp	orising:
	means for removing CO ₂ and	d H_20 including means for compression, (6) and/or means for
cooli	ng (7) , <u>or both</u> are removed from	n the gas turbine cycle, in particular preferably in such a way
as to	branch off directly downstream	n of the compressor (1), and in particular in a liquid and/or
supe	reritical form;; and in that	
	means for supplying the gas	turbine cycle is supplied with largely substantially pure
oxyg	en in particular via an air separ	ration plant (9).
5.	(Currently Amended)	The power generation plant as claimed in claim 4claim 20,
chara	acterized in that wherein the air	separation plant (9) is comprises a cryogenic plant or a
diapl	nragm-based process plant base	ed on a diaphragm process.
6.	(Currently Amended)	The power generation plant as claimed in one of the
prece	eding claims <u>claim 1,</u> characteri	zed in that wherein said compressor, said combustion
cham	ber, and said gas turbine toget	her comprise a gas turbine plant;
	wherein the steam turbine cy	cle is of essentially substantially closed design and has
inclu	des at least one steam turbine (10, 19) and at least one generator (11) coupled thereto, to the
at lea	ast one steam turbine; and in the	aŧ
	wherein the steam turbine cy	ycle, with the use when solely of hot gas is fed in via the first
mear	ns , while and when gas is simul	taneously expelled via the second means, ean-is configured
and a	arranged to be operated in such	a way so that the at least one generator (11) of the steam
turbi	ne cycle generates sufficient er	iergy in order to <u>:</u>
	put the said gas turbi	ne plant-(1-3) and an optional air separation plant (9)
possi	ibly present into operation, or r	espectively in order to serve
	operate as an emerge	ency generating unit in the event of a failure of the said gas

turbine plant (1-3).

- 8. (Currently Amended) The power generation plant as claimed in one of the preceding claims lambda l
- 9. (Currently Amended) The power generation plant as claimed in one of the preceding claims l, characterized in that wherein the steam turbine cycle comprises a topping steam turbine (19), the that produces partly expanded exhaust steam; and of which, after injection

wherein the steam turbine cycle is configured and arranged to inject said partly expanded exhaust steam into the gas turbine cycle medium upstream of, in, and/or-downstream of, or combinations thereof, the combustion chamber (2), is expanded and thereafter expand said partly expanded exhaust steam to ambient pressure in the gas turbine (3), with to deliver power being delivered, in particular a switch-over member (18) being provided with which the exhaust steam can be directed past the gas turbine directly for liquefaction into a cooler (5) arranged in the gas turbine cycle.

10. (Currently Amended) A method of starting up a power generation plant as claimed in one of claims claim 1 to 9, characterized in that, first of all, the method comprising:

______ in a first phase, putting into operation the steam turbine cycle is put into operation with hot gas fed in via the first means (12), while at the same time simultaneously the exhaust gases are at least partly expelled via the second means (15), then,;

comp	ensate for the feed of oxyger	and fuel , and;
	wherein the composition o	f the circulating gas progressively approaching approaches an
equil	ibrium , in which <u>;</u> and	
	when said equilibrium is re	eached, starting the separation and liquefaction of the
comb	oustion products can be starte	d .
12.	(Currently Amended)	The method as claimed in claim 11, characterized in that
wher	ein the gas turbine cycle is a	CO ₂ /H ₂ O gas turbine cycle, and in that further comprising:
	starting the separation and	liquefaction of excess carbon dioxide ean be started by
comp	oressing the carbon dioxide, in	n a compressor (6), being brought to the a pressure required for
furth	er use; and being further dried	d
	drying and liquefied liquef	ying the excess carbon dioxide in a cooler-(7).
13.	(Currently Amended)	The method as claimed in one of claims claim 10 to 12,
ehara	eterized in that further comp	rising:
	at least partly using the cur	rrent available after the first phase via-from the steam turbine
<u>cycle</u>	generator (11) is at least par	tly used for operating the an air separation plant, (9) and thus
for p	roviding largely <u>substantially</u>	pure oxygen for the combustion process in the combustion
cham	ber- (2) .	
14.	(Currently Amended)	The method as claimed in one of claims claim 10-to 13,
chara	eterized in that, further comp	orising:
	during or after the first pha	se, making available a large proportion of the start-up output is
made	available in the form of heat	by means of the auxiliary burners (13).
15.	(Currently Amended)	A method of operating a power generation plant as claimed
in on	e of claims claim 1 to 9, char	acterized in that, the method comprising:
	when the gas turbine cycle	is not operating, operating only the steam turbine cycle is

operated via the by feeding-in of hot air with the first means (12) and via the by expelling of exhaust gases with the second means (15); and in that

providing current with the steam turbine cycle generator-(11) arranged in the steam turbine cycle thus provides current in particular in the sense of an emergency generating unit.

- 16. (New) The power generation plant as claimed in claim 2, wherein the switch-over members comprise resetting air flaps.
- 17. (New) The power generation plant as claimed in claim 3, further comprising: a blower configured and arranged to supply said at least one auxiliary burner with fresh air.
- 18. (New) The power generation plant as claimed in claim 4, wherein the means for removing branches off directly downstream of the compressor.
- 19. (New) The power generation plant as claimed in claim 18, wherein the means for removing comprises means for removing the CO₂ and H₂O in a liquid form, a supercritical form, or both.
- 20. (New) The power generation plant as claimed in claim 4, wherein the means for supplying substantially pure oxygen comprises an air separation plant.
- 21. (New) The power generation plant as claimed in claim 9, wherein the gas turbine cycle further comprises a cooler, and wherein the steam turbine cycle comprises a switch-over member configured and arranged to direct the partly expanded exhaust steam past the gas turbine into the cooler directly for liquefaction.
- 22. (New) The method as claimed in claim 10, wherein delivering further comprises

feeding additional, substantially pure oxygen.

- 23. (New) The method as claimed in claim 11, further comprising:

 at least partly using the current available after the first phase from the steam turbine cycle
 generator for operating an air separation plant, for providing substantially pure oxygen for the
 combustion process in the combustion chamber.
- 24. (New) The method as claimed in claim 11, further comprising:

 during or after the first phase, making available a large proportion of the start-up output in the form of heat by auxiliary burners.
- 25. (New) The method as claimed in claim 15, wherein providing current comprises providing as an emergency generating unit.