

Organización de Computadoras 2021

Clase 8

Temas de Clase

- Organización de Registros
- Instrucciones

Notas de Clase 8

Organización de registros

- Registros visibles al usuario: son utilizados por el programador.
- Registros de control y estado: son utilizados por la UC para controlar la operación de la CPU (no son visibles por el programador).

Notas de Clase 8

3

Registros visibles al usuario

- Propósito general
- **≻**Datos
- Dirección
- Códigos de condición

Notas de Clase 8

Registros visibles al usuario(2)

- Pueden ser asignados a una variedad de funciones:
 - ✓ cualquier registro de propósito general puede contener el operando para cualquier código de operación (verdadero propósito)
 - ✓ pueden existir restricciones (ej. registros dedicados a operaciones en PF)

Notas de Clase 8

5

Registros visibles al usuario(3)

- ✓ se pueden utilizar para direccionamiento (ej. indirecto de registro)
- √ sólo para datos ó sólo para direcciones
- ✓ los registros de dirección pueden ser asignados para un mdd (ej. reg índice para direccionamiento autoindexado)

Notas de Clase 8

Discusión

- ¿Todos los registros de propósito general ó especializar su uso?
 - Todos de propósito general: afecta al tamaño de las instrucciones.
 - *Especializados: puede estar implícito en el código de operación a qué registro se refiere (ej. Acumulador). Se ahorran bits. Limitan la flexibilidad del programador.
- ❖No hay una receta.

Notas de Clase 8

7

Número de registros

- ❖Afecta al tamaño de la instrucción.
- ❖Mayor Nº de registros, más bits para especificarlos en la instrucción.
- ❖Pocos registros: más referencias a memoria
- ❖Nº óptimo: entre 8 y 32 reg. Más, no hay gran mejora (aumenta tamaño de la instrucción).
- ❖ 2^{do} cuatrimestre: discutimos RISC.

Notas de Clase 8

Longitud de los registros

- ➤ De direcciones: deben ser capaces de almacenar la dirección más grande.
- De datos: deben estar habilitados para almacenar la mayoría de los tipos de datos.
- Algunas máquinas permiten 2 registros contiguos utilizados como un solo registro para almacenar valores de doble longitud.

Notas de Clase 8

^

Bits de condición (banderas)

- Bits establecidos por la CPU como resultado de operaciones.
- Pueden ser utilizados por las instrucciones de bifurcación condicional.
- Generalmente no son alterados por el programador.

Notas de Clase 8

Registros de control y estado

- Empleados para controlar la operación de la CPU. En la mayoría de las máquinas no son visibles al usuario.
- Los 4 esenciales para la ejecución de instrucciones:
 - Contador de programa (PC)
 - Registro de instrucción (IR)
 - Registro de dirección de memoria (MAR)
 - Registro buffer de memoria (MBR)

Notas de Clase 8

11

Reg. de control y estado (2)

- Los 4 reg recién mencionados se emplean para el movimiento de datos entre la cpu y memoria.
- Dentro de la CPU los datos se deben presentar a la ALU para procesamiento, ésta puede acceder al MBR y a los reg visibles por el usuario. Puede haber también reg temporales adicionales para intercambiar datos con el MBR y demás reg visibles.

Notas de Clase 8

Organización de registros CPU PII Intel (principales)(4)

- AX : acumulador, es el principal en las operaciones aritméticas
- BX : puntero base (dir de memoria)
- CX : contador, interviene en instrucciones de ciclo
- DX : datos, participa en multiplicación y división

Notas de Clase 8

Organización de registros CPU PII Intel (principales)(5)

- SI y DI : apuntadores que utilizan las instrucciones que recorren arreglos o tablas
- BP y SP: también son apuntadores a memoria, pero a una zona especial: pila ó stack
- E : reg de 32 bits

Notas de Clase 8

17

Organización de registros CPU MOTOROLA 68000

De Datos
D0
D1
D2
D3
D4
D5
D6
D7

ganización de registi OU MOTOROLA 68000	
Apuntador del stack usuario Apuntador del stack supervisor	De A0 Direcciones A1 A2 A3 A4 A5 A6 A7 A7'

Instrucciones - Intel

➤ Tienen la forma :

instrucción destino, fuente

destino y fuente son 2 operandos, donde c/u de ellos está especificado por alguno de los mdd vistos, el otro operando es un registro de la CPU

Notas de Clase 8

21

Instrucciones - Intel (2)

- Llamando:
 - mem = especificación de una dirección de memoria
 - reg = registro de la CPU
 - inm = dato inmediato

Las instrucciones tienen la forma

Notas de Clase 8

Instrucciones - Intel (3)

- Instrucción mem, reg
- Instrucción reg , mem
- Instrucción reg , reg
- Instrucción reg , inm
- Instrucción mem, inm

Notas de Clase 8

23

Instrucciones - Intel (4)

- ➤ El nombre destino y fuente proviene del hecho que si hay un movimiento de datos, es desde la derecha (fuente) hacia la izquierda (destino).
- ➤ En una suma hay 2 operandos y el resultado se almacena en el lugar del operando izquierdo (destino).

Notas de Clase 8

Instrucciones - Intel 8086

Ejemplos:

- ADD AX,BX → AX=AX+BX
- ADD AL,AH → AL=AL+AH
- MOV AL,CH AL=CH
- SUB AX,BX → AX=AX BX
- Direccionamiento por registro

Notas de Clase 8

25

Instrucciones - Intel 8086 (2)

Ejemplos:

- ADD AX,35AFh → AX=AX+35AFh
- MOV AL,3Eh→ AL=3Eh
- SUB AX,1234h → AX=AX 1234h
- Direccionamiento Inmediato

Notas de Clase 8

Instrucciones - Intel 8086 (3)

Ejemplos:

- ADD AX, [35AFh]
- \rightarrow AX = AX + contenido direcc. 35AFh y 35B0h
 - ADD AL, DATO
- \longrightarrow AL = AL + contenido variable DATO (8 bits)
 - MOV CH, NUM1
- CH = contenido variable NUM1 (8 bits)
 - Direccionamiento Directo

Notas de Clase 8

27

Instrucciones - Intel 8086 (4)

Ejemplos:

- ADD AX, [BX]
- AX = AX + dato almacenado en dirección contenida en BX y la que sigue
 - MOV [BX], AL
- → dato en la dirección contenida en BX = AL
 - Direccionamiento Indirecto por registro

Notas de Clase 8

Instrucciones - Intel 8086 (5)

Ejemplos:

- MOV CX, [BX+SI]
- CX = dato almacenado en la direcc. BX+SI y la siguiente
 - MOV [BX+DI], AL
 dato almacenado en la direcc. BX+DI = AL
 - Direccionamiento base + índice

Notas de Clase 8

29

Instrucciones - Intel 8086 (6)

Ejemplos:

- MOV AL, [BX+2]
- AL=dato almacenado en dir BX+2
 - MOV [BX+2Ah], AX
- dato almacenado en dir BX+2Ah y la que sigue = AX (16 bits)
 - Direccionamiento Relativo por registro

Notas de Clase 8

Instrucciones - Intel 8086 (7)

Ejemplos:

- MOV AL, [BX+SI+2]
- AL = dato almacenado en la dir BX+SI+2
 - MOV [BX+DI+2Ah], AX
- dato almacenado en la dir BX+DI+2Ah y la que sigue = AX (16 bits)
 - Direccionamiento relativo base+índice

Notas de Clase 8

31

Formatos de instrucción-Criterios de diseño

- ✓ ¿Instrucciones cortas ó largas?
- √ Nº de bits/seg
 - ✓ ancho de banda de la memoria
- √ Velocidad procesador/Velocidad memoria
- ✓ Instrucciones más cortas
 - ✓ el procesador "parece" más rápido.

Notas de Clase 8

Formatos de instrucción-Criterios de diseño (2)

- ✓ Suficientes bits para expresar todas las operaciones deseadas.
- ✓ La experiencia demuestra dejar bits libres para el futuro.
- ✓ Cantidad de bits de datos.

Notas de Clase 8

33

Ejemplo para MSX88

- Editar prueba.asm
 - Usar Editor de textos
- Ensamblar prueba.asm
 - Usar Asm88
 - Prueba.o y Prueba.lst
- Enlazar prueba.o
 - Usar Link88
 - Prueba.eje
- Usar MSX88
 - Cargar prueba.eje y ejecutar

Notas de Clase 8

ORG 2000H MOV BX,3000H MOV AX,[BX] ADD BX, 02H MOV CX,[BX] ADD AX,CX PUSH AX POP DX HLT

org 3000h db 55h, 33h, 44h, 22h END

mas información ...

- Organización de los registros
 - Capítulo 11 apartado 11.2. Stallings, W., 5º Ed.
- Formatos de instrucciones
 - Capítulo 10 apartado 10.3.y 10.4 Stallings, W., 5º Ed.
- Links de interés
 - http://www.intel.com/museum/online/hist_micro/hof/index.htm
- Simulador MSX88
 - En Descargas de página web de cátedra

Notas de Clase 8