CS4100: Computer System Design Memory Hierarchy Design

Madhu Mutyam

PACE Laboratory
Department of Computer Science and Engineering Indian Institute of Technology Madras

Aug 31, 2015

Basic Cache Optimizations

Average Memory Access Time (AMAT)

 $AMAT = Hit_Time + Miss_Rate \times Miss_Penalty$

- ► Reducing the miss rate
 - larger block size, larger cache size, and higher associativity
- ▶ Reducing the miss penalty
 - multilevel caches, giving reads priority over writes
- ▶ Reducing the hit time
 - avoiding address translation when indexing the cache

Effects on Cache Miss Rate

Cold	Capacity	Conflict	Overall	
Misses	Misses	Misses	Misses	
No effect	Increase	May	May	
		increase	increase	
No effect	Decrease	May	May	
		decrease	decrease	
Increase	May	May	Varies	
	decrease	decrease		
Decrease	May	May	Varies	
	increase	increase		
No effect	No effect	May	May	
		increase	increase	
No effect	No effect	May	May	
		decrease	decrease	
	Misses No effect No effect Increase Decrease No effect	Misses Misses No effect Increase No effect Decrease Increase May decrease Decrease May increase No effect No effect	MissesMissesMissesNo effectIncreaseMay increaseNo effectDecreaseMay decreaseIncreaseMay decreaseMay decreaseDecreaseMay increaseMay increaseNo effectNo effectMay increaseNo effectNo effectMay	

HitTime

Reducing the Miss Penalty: Multi-Level Caches

 $Miss_{L1} = Hit_{L2} + Miss_{Rate_{L2}} \times Miss_{Penalty_{L2}}$ $\mathsf{AMAT}_{2Level} \ = \ \mathsf{Hit_Time}_{L1} + \mathsf{Miss_Rate}_{L1} \times (\mathsf{Hit_Time}_{L2}$ $+ Miss_Rate_{L,2} \times Miss_Penalty_{L,2}$

- Local miss rate is w.r.t. the number of memory accesses to the cache
 - Miss_Rate_{L1} and Miss_Rate_{L2}
- Global miss rate is w.r.t. the number of memory accesses generated by the processor
 - $\color{red} \blacktriangleright \ \, \text{Miss_Rate}_{L1} \ \, \text{and} \ \, (\text{Miss_Rate}_{L1} \times \text{Miss_Rate}_{L2})$

Different Types of Cache Hierarchies

Inclusive Cache

Non-Inclusive Cache

Reducing the Miss Penalty: Prioritize Reads Over Writes

- ▶ Write buffers improve performance in both write-through and write-back
- ▶ Write buffers can create *Read-After-Write* (RAW) hazards through memory
 - ► Check the contents of the write buffer on a read miss
 - ▶ If there are no conflicts, and if the memory system is available, send the read before write

Reducing the Hit Time: Avoid Address Translation during the Cache Indexing

- ▶ Physically indexed and physically tagged caches
- Virtually indexed and physically tagged caches

Advanced Optimizations

- ▶ Reducing the hit time
 - ► Small and simple first-level caches, and way-prediction
- ▶ Increasing the cache bandwidth
 - ▶ Pipelined caches, non-blocking caches, and multi-banked caches
- ▶ Reducing the miss penalty
 - ► Critical word first, early restart, and merging write buffers
- ► Reducing the miss rate
 - Compiler optimizations
- ▶ Reducing the miss penalty or miss rate via parallelism
 - Hardware and compiler prefetching

Madhu Mutyam (HT Madras)

Aug 31, 20

32nm; 1 bank; 1 read/write por

6/17

Madhu Mutyam (IIT Madra

Aug 31, 201

2015

Small and Simple First-Level Caches

Cache access = set decoding + tag
comparison + data read + data out

comparison + data read + data out

► CACTI tool from HP (http://www.hpl.hp.com/research/cacti/)

Way Prediction

- ► Cache hit time can be reduced
 - ▶ Misprediction increases the hit time
- ▶ Way prediction can also reduce the energy significantly
- ► Instruction caches can have better accuracy than data caches

ladhu Mutyam (HT Madras

ng 31, 2015

8/17

um (HT Madras)

A 21 2015

9/1

Pipelined Caches

Tag Index Block offset Bitlines Tag Array Data Array Data Array Data output Data output Data output

- ▶ Pipeline cache access to improve bandwidth
 - ► Pentium: 1 cycle; Pentium Pro Pentium III: 2 cycles; Pentium IV Core i7: 4 cycles
- Makes it easier to increase associativity
- ► Increases branch misprediction penalty

Non-Blocking Caches

- ► Allow hits before previous misses
 - ► Hit under miss or Hit under multiple misses

6

Madhu Mutyam (HT Madras)

Aug 31, 2015

<u>e</u>

Madhu Mutyam (IIT Madras)

Aug 31, 2015

10/17

Multi-Banked Caches

- Organize the cache as independent banks to support simultaneous access
 - ▶ Intel Core i7 supports 4 banks for L1 and 8 banks for L2
- ▶ Multiple banks are also a way to reduce power consumption

Servicing a Load Request

Critical Word First

Early Restart

▶ Benefits depend on the cache block size and the likelihood of another access to the portion of the block that has not yet been fetched

Merging Write Buffers

Write Address V				٧	٧	٧		
	100		1	Mem[100]	0	0	0	
	108		1	Mem[108]	0	0	0	
	116		1	Mem[116]	0	0	0	
	124		1	Mem[124]	0	0	0	

Write Address V		V	V			٧	V			
	100		1	Mem[100]	1	Mem[108]	1	Mem[116]	1	Mem[124]
			0		0		0		0	
			0		0		0		0	
			0		0		0		0	

- ▶ When storing to a block that is already pending in the write buffer, update the write buffer
- ▶ Do not apply to I/O addresses

Compiler Optimizations

▶ Loop interchange

for(j=0; j<100; j++) for(i=0; i<5000; i++) for (i=0; i<5000; i++)for(j=0; j<100; j++) x[i][j] = 2*x[i][j]x[i][j] = 2*x[i][j]

► Blocking

Prefetching

- ▶ Prefetch data before the processor requests them
- Hardware prefetching
 - ► Stream-based and stride-based
 - ► Ex: Intel Core i7 supports simple stream-based hardware prefetching into both L1 and L2
 - ► Aggressive hardware prefetching may sometimes degrade the performance
- Software prefetching
 - ► Insert prefetch instructions before data is needed
 - Register prefetching and cache prefetching

Thank You