Cours

Probabilité

Espace probabilisé

Définition :

- 1. Ω est l'ensemble des possibles de toutes les expériences, supposé fini.
- 2. Un évènement est un sous-ensemble $A \subset \Omega$.
- 3. Un évènement élémentaire est un singleton $\{\omega\}\subset\Omega$
- 4. L'ensemble des parties de Ω est $P(\Omega)$ = {les sous-ensembles de Ω }

Évènements disjoints

• Des évènementes A_1, \ldots, A_n sont deux à deux **disjoints** si $i \neq j \Rightarrow A_i \cap A_j \neq \emptyset$.

Leur union : $A_1 \cup \ldots \cup A_n = A_1 \sqcup \ldots \sqcup A_n$

Ces évènements forment alors une partition de Ω si

$$igsqcup_{i=1}^n A_i = A_1 \sqcup \ldots \sqcup A_n = \Omega$$

Fonction de probabilité

Une probabilité sur un ensemble Ω est une application

$$P: egin{cases} P(\Omega) &
ightarrow & [0;1] \ A & \mapsto & P(A) \end{cases}$$

vérifiant :

$$1. P(\Omega) = 1$$

2.
$$\forall (A,B) \in [P(\Omega)]^2, A \cap B = \varnothing, P(A \sqcup B) = P(A) + P(B)$$

Le triplet $(\Omega, P(\Omega), P)$ est un espace probabilisé.

Propriétés:

1.
$$P(\emptyset) = 0$$

2.
$$\forall (A, B) \in [P(\Omega)]^2, P(A) = P(A|B) + P(A \cap B)$$

3.
$$\forall (A, B) \in [P(\Omega)]^2, P(A \cup B) + P(A \cap B) = P(A) + P(B)$$

Cas équiprobable

Cas équiprobable : $\Omega = \{\omega_1, \dots \omega_n\}$, $P(\omega_i) = C$

• Condition:

$$\sum_{i=1}^n P(\omega_i) = 1 \Rightarrow n imes C = 1 \Rightarrow C = rac{1}{n} = rac{1}{Card(\Omega)}$$

 $ullet \ orall A \in P(\Omega), A = \{w_k 1, \dots w_k p\}$

$$oxed{P(A) = \sum_{i=1}^n P(\omega_i) = p imes C = rac{Card(A)}{Card(\Omega)}}$$

exemple : lancer de dé. $P(r\acute{e}sultat <= 2) = P(1,2) = \frac{2}{6} = \frac{1}{3}$

Formule de Bayes

$$P(A|B) = rac{P(B|A)P(A)}{P(B)}$$

Variables aléatoires

Définition: On définit une variable aléatoire en associant un nombre réel à chaque éventualité d'une expérience aléatoire.

Une variable aléatoire X est une application

$$X:\Omega o\mathbb{R}$$

Conséquences : $\forall B \subset X(\Omega), P_X(B) = P(X \in B) = P(A)$

La distribution de la variablea aléatoire X est donnée par **UNE LOI DE** X

- l'ensemble des valeurs prises par X : $X(\Omega) = \{x_1, x_2, \ldots, x_n\}$
- les valeurs $P(X) = x_1, P(X) = x_2, \dots, P(X) = x_i$

Loi binomiale

$$oxed{ orall k \in \llbracket 0; n
brack , P(X=k) = inom{n}{k} p^k (1-p)^{n-k} }$$

Éspérance

L'éspérance est la moyenne arithmétique de X.

$$oxed{E(X) = \sum_{i=1}^n x_i imes P(X = x_i)}$$

Variance

La variance permet d'estimer la dispersion des valeurs de X autour de E(X).

$$egin{aligned} V(X) &= E((x_i - E(X)))^2 \ &= \sum_{i=1}^n (x_i - E(X))^2 imes P(X = x_i) \ &= E(X^2) - (E(X))^2 \end{aligned}$$

avec:

$$oxed{E(X^2) = \sum_{i=1}^n {x_i}^2 imes P(X=x_i)}$$

Soit $(\alpha, \beta) \in \mathbb{R}^2, X$ et Y deux variables aléatoires,

$$E(\alpha X + \beta) = \alpha E(X) + \beta$$

$$V(\alpha X + \beta) = \alpha^2 V(X)$$

exemple: voir exercice 4.12 polycopié