# LOW-COST COSMIC RAY DETECTORS - FIRST STEPS

Hendrik Borras

Supervisor: Michael Schmelling

#### GOALS AND RESOURCES

#### Test and verify a low cost silicon detector

- Targeting: Enthusiast, schools, outreach
- Research opportunities
  - Large scale cosmic ray flux data
  - Observation of showers
  - Better understanding of the impact of cosmic rays on cloud formation
  - Collaboration with <u>CREDO</u> for data collection

#### Resources

- Two CosMO scintillator detectors from the "Netzwerk Teilchenwelt"
- Two prototype µTelescope silicon detectors
- NIM-Crate
- Oscilloscope and resources from the lab

#### COSMO-DETECTOR

- Two units available
- Parts: DAQ-Card, Laptop, 3x scintillator boxes with SiPMs
- Detector area: 400 cm^2
- 4 Channels
- Timing precision: < 24 ns
- Port for external GPS
- Cost: ~ 2000€



CosMO-Detectors 1 and 2; only one available laptop is being used

#### COSMO-DETECTOR: DAQ

Precise pulse edge measurements

Different channel and trigger modes

- Control via Serial interface
- Internal amplifier
- Non obvious auto reset





DAQ-Card of the CosMO-Detector; Important parts are highlighted in red

#### COSMO-DETECTOR: DAQ

Precise signal edge measurements

Different channel and trigger modes

- Control via Serial interface
- Internal amplifier
- Non obvious auto reset





DAQ-Card of the CosMO-Detector; Important parts are highlighted in red

#### EFFICIENCY MEASUREMENTS

- Measurable via DAQ-Card and NIM-Crate
- On all tested scintillators efficiencies
  > 98%
- The NIM-Crate seems to perform significantly better

| Tested detector           | DAQ          | Efficiency [%] |
|---------------------------|--------------|----------------|
| Scintillator-box #1 MPIK1 | NIM          | 98.972 ± 0.001 |
| Scintillator-box #2 MPIK1 | NIM          | 99.345 ± 0.001 |
| Scintillator-box #2 MPIK1 | DAQ-<br>Card | 98.507 ± 0.002 |
| Scintillator-box #3 MPIK1 | NIM          | 99.572 ± 0.001 |



NIM-Crate setup for the CosMO-Detector

# SIMULATIONS: ACCEPTANCE WITH DETECTOR DISTANCE

- Geometric simulation of cosmic ray flux
- Geometric simulation of a twofold detector
- Current setup should already have a significant acceptance loss
- Detector size adjustable
- >2 Million events per second on one thread
- Written with: Python, numpy, Jupyter



### µTELESCOPE-DETECTOR

- Two units available
- Parts: Detector prototype PCB, noise shields, Raspberry Pi
- 32 PIN-Diodes as a matrix and row/column readout (expandable)
- Detector area: 1.4 cm^2
- Timing precision goal: < 60 µs (~100 clock cycles)</li>
- Additional are addressable (Accelerometer, Magnetometer, GPS)
- User interface via WiFi
- Pocket-sized
- Cost per prototype: ~220€ (Design goal: < \$500)</li>
- Designed by: James Devine and Hendrik Borras



Schematics of the µTelescope (top layer)

### µTELESCOPE: HARDWARE

μController (μC) ATMEL328 (Arduino Uno)

12-Bit ADC

Expansion headers (four in total)

μC programming port

Raspberry Pi Pin-header Operational amplifiers (all IC's with this package)

Parallel to Serial Converter

Low-noise HV supply

5V supply

μTelescope: Prototype PCB (front); Important parts are highlighted in red

E REZ

16 PIN-Diodes per side

## µTELESCOPE: HARDWARE

Expansion headers (four in total)

Operational amplifiers (all IC's with this package)

16 PIN-Diodes per side with noise shield



Raspberry Pi Pin-header

μTelescope: Prototype PCB (back); Important parts are highlighted in red

#### COSMICPI – E.G. A BIT OF HISTORY

- CERN based project aiming to build low-cost cosmic ray detectors
- Mostly voluntary CERN staff/affiliates and summer students
- Worked there as a summer student
  - Improvement of the CosmicPi V1 -> V1.5; a scintillator/SiPM based detector
  - Testing and verification of the CosmicPi V1.5
  - Designing of the µTelescope
    - Intresting as an alternative to the scintillator based approach
    - Uses off-the-shelf components
    - Easy to optimize for manufacturing
    - Designed for higher spatial resolution



#### **NEXT STEPS**

- Monte-carlo simulation
  - Verify acceptance results
  - Include measured detector efficiencies
  - Simulate how a rotating detector behaves
- CosMO-Detector
  - Longer efficiency measurements
  - Measurements at increasing detector distances
- µTelescope-Detector
  - Verify components placement
  - Smoke test
  - Component testing
  - µC-programming
  - Efficiency testing