

Beijing-Dublin International College

SEMESTER 1 FINAL EXAMINATION - (2017/2018)

School of Computer Science

SAMPLE-2006J Operating Systems - Sample Paper

Prof. Pádraig Cunningham Dr. Vivek Nallur*

Time Allowed: 120 minutes

Instructions for Candidates:

Answer succinctly and to the point

BJUT Student ID:	UCD Student ID:
I have read and clearly understand the Examina	ation Rules of both Beijing University of Tech-
nology and University College Dublin. I am awa	re of the Punishment for Violating the Rules of
Beijing University of Technology and/or University	sity College Dublin. I hereby promise to abide
by the relevant rules and regulations by not give	ving or receiving any help during the exam. If
caught violating the rules, I accept the punishm	nent thereof.
Honesty Pledge:	(Signature)

Instructions for Invigilators

No rough-work paper is to be provided for candidates.

- 1. Why do we need *File Management*, when a process can easily store information inside its address space?
- 2. Briefly describe four computer security threats.
- 3. Briefly describe four Page Replacement algorithms
- 4. Describe the following architectures and their advantages and disadvantages in relation to each other:
 - (a) Monolithic architecture
 - (b) Layered architecture
 - (c) Microkernel architecture
- 5. Describe how the following memory management techniques work:
 - (a) Paging
 - (b) Segmentation
 - (c) Fixed Partitioning
 - (d) Variable Partitioning
- 6. What is a *thread*? How is it different from a *process*? Explain the motivation behind its development.
- 7. What is the *Dining Philosophers* problem? Explain one possible solution to the problem.
- 8. Why is memory protection important and how is this achieved using base and limit registers?
- 9. What is a *child process*? On unix, after a *fork* system call, how do we know if a child is executing or a parent?
- 10. What are the most important properties of a real-time operating system?
- 11. Why is memory protection important? Explain how it is achieved using a base and limit register
- 12. In a virtual memory system, what are the sequence of events that occur when an address is not in main memory?
- 13. Why do we need *File Management*, when a process can easily store information inside its address space?
- 14. What are protected instructions? Why are they required in an operating system?