Data

Data set overview

Four data sets

	1 Operating Condition	6 Operating Conditions
HPC Degradation Failure	FD001	FD002
HPC Degradation and Fan Degradation	FD003	FD004

We chose to focus on HPC Degradation only, so we used data sets FD001 and FD002.

Training data format

Sensor readings per engine/cycle

Engine	Time in Cycles	Sensor 1 Reading	 Sensor 26 Reading
1	1	34.99	 1.02
1	2	41.67	 1.02
•••	•••		
1	143	63.12	 1.26

In Train, there is one record per cycle until failure.

Test set is same format, except data for each unit truncates at a mystery point in time before failure.

Target definition

In Train data, we calculated for engine *i* in time period *t*:

Cycles until Failure_{it} = (Max cycle_i) - (Current cycle)_{it}

Why XGboost?

Can be used for regression-type prediction

Not much needed for data prep – doesn't need standardizing, and our data was already all numeric

Robust to outliers

Speedy

Data exploration

- Sensor readings gradually increase or decrease over time as they approach failure
- The readings are very noisy

Feature engineering

XGboost 1st training evaluation

Iterative improvement through feature engineering + hyperparameter tuning

Model Version	Model Description	Validation RMSE for Dataset FD001
1	Limited feature engineering, No hyperparameter tuning	36.5
2	Limited feature engineering, With hyperparameter tuning	36.2
3	Feature engineering round 1 (std deviation from baseline)	32.9
4	Feature engineering round 2 (rolling avg sensor readings)	28.5
5	Feature engineering round 3 (rolling avg of std deviation from baseline)	27.0
6	With hyperparameter tuning	16.5

"If we had time..."

Additional feature engineering

•There are papers with some cool feature engineering to identify signals in each engine's sensor data over time

Clustering of similarly behaving engine units

- •Can be used to further segment population
- •Or as an input in predictive model

Try alternate populations

- •We trained 1 model for the 1 operating condition data set (FD001) and a separate model for the 6 operating condition data set (FD002).
- •Can we successfully combine those populations in one model?

Try alternate target definitions

- •We completely ignored Fan Degradation failure type.
- •Can we successfully model both failure types with the same model? Or are we more accurate training separate models?

Try alternate modeling algorithms

•Linear Learner, etc.

Try alternate evaluation metric

•It may make sense to train to minimize Mean Absolute Percent Error (MAPE) instead of RMSE, because as you get closer to failure, a small number of cycles off is more of a problem than when you're farther from failure.

Further evaluation of our residuals (errors)

To diagnose where we perform well/poorly