

Global ocean wind speed estimation with CyGNSSnet

Tackling Climate Change with Machine Learning Workshop at NeurlPS 2021

Caroline Arnold

Al Consultant Earth & Environment

(German Climate Computing Center)

Milad Asgarimehr GFZ Potsdam

Global Ocean Wind Speed Estimation

Cyclone GNSS

Mission

- CyGNSS: 8 satellites for remote sensing
- Global navigation system signals (GNSS) reflected off the ocean surface
- Surface roughness ↔ wind speed

Impact

- Provide global ocean wind speed measurement
- Monitor cyclone evolution

CyGNSS Dataset

Jan 2018 - Mar 2019

- Main measurement: Delay-Doppler map
- 10 additional parameters (→ paper)
- Label: Wind speed (ERA5 reanalysis)

- 7.2 million training samples
- Wind speed distribution non-uniform
- Extreme values beyond 12 m/s 5%

CyGNSSnet

Hierarchical model

- Supervised learning
- Trained two instances of CyGNSSnet
 - Standard: all wind speeds
 - Extreme: only wind speeds > 10 m/s

Classifier: XGBoost

Test set predictions

Different wind speed ranges

- Test set separated in time
- Current operational algorithm: MVE
- RMSE = 1.39 m/s \rightarrow -27% to MVE

- Performance degrades at high wind speed
 - Few samples
 - Generally harder task
- Hierarchical model improves performance

Test set predictions

Time and space

- Comparable performance in different regions
- Error constant in time
- → Important for potential operational use

More details? Have a chat at the virtual poster session!

