2020-2021学年秋季学期

自然语言处理 Natural Language Processing

授课教师: 胡玥

助 教: 于静

中国科学院大学网络空间安全学院专业核心课

自然语言处理 Natural Language Processing

第7章循环神经网络

授课教师: 胡玥

授课时间: 2020.9

基于深度学习的自然语言处理课程内容

语言处 理方法

第7章 循环神经网络

概要

本章主要内容:

- 1. 介绍循环神经网络 (RNN) 的基本概念,模型结构以及参数 学习方法
- 2. 介绍循环神经网络RNN的改进长短记忆网络 LSTM

本章教学目的:

了解并掌握循环神经网络 (RNN) 的相关知识, 掌握 LSTM网络模型

内容提要

- 7.1 概述
- 7.2 循环神经网络结构
- 7.3 循环神经网络训练
- 7.4 循环神经网络改进及变形
- 7.5 循环神经网络应用

问题引入:

1. DNN、CNN 输入、输出定长;处理输入、输出变长问题效率不高。 而自然语言处理中的语句通常其长度不固定。

2. 单一 DNN、CNN 无法处理时序相关序列问题

例如:

Output: 1 dimension $x^3 \quad x^2 \quad x^1$ Input: 2 dimensions $1 \quad 7 \quad 7$

解决方法:

循环神经网络核心思想:

将处理问题在时序上分解为一系列相同的"单元",单元的神经网络可以在时序上展开,且能将上一时刻的**结果传递给下一时刻**,整个网络按时间轴展开。即可变长。

例如: 加法问题

三位加法单元

内容提要

- 7.1 概述
- 7.2 循环神经网络结构
- 7.3 循环神经网络训练
- 7.4 循环神经网络改进及变形
- 7.5 循环神经网络应用

RNN单元结构:

输入: X + 来自上时刻隐藏层 信息传播:

输出: Y + 给下时刻隐藏层 $h(t) = \sigma(W_iX + W_h h(t-1) + b)$

参数: W_i 、 W_o 、 W_h $Y = softmax(W_oh(t))$

RNN网络结构 (按时序展开):

Input data: x^1 x^2 x^3 x^N

输入: X (x¹x²x³)

输出: Y (y¹y²y³)

参数: W_i、W_o、W_h

RNN网络结构(按时序展开):

Input data: x^1 x^2 x^3 x^N

输入: X (x¹x²x³)

信息传播:

输出: Y (y¹y²y³)

 $h(t) = \sigma(W_iX + W_h h(t-1) + b)$

参数: W_i 、 W_o 、 W_h $Y = softmax(W_oh(t))$

输入输出结构:

RNN输入和输出结构可以等长或不等长

内容提要

- 7.1 概述
- 7.2 循环神经网络结构
- 7.3 循环神经网络训练
- 7.4 循环神经网络改进及变形
- 7.5 Encoder-Decoder 框架 RNN
- 7.6 循环神经网络应用

RNN参数

RNN参数: W_i、W_o、W_h、b

 $h(t) = \sigma(W_iX + W_h h(t-1) + b)$

 $Y = softmax(W_oh(t))$

用 yⁱ 与 yⁱ 的误差定义
 损失函数: L(θ) 或 C(θ)

$$\Theta = \{ W_i, W_o, W_h, b \}$$

● 梯度下降法学习参数

$$\Rightarrow w \leftarrow w - \eta \partial C^n / \partial w$$

BPTT (Backpropagation through time)

Backward Pass

 $\delta^{L} = \sigma'(z^{L}) \bullet \nabla C_{x}(y)$

 $\delta^{L-1} = \sigma' \left(z^{L-1} \right) \bullet \left(W^L \right)^T \delta^L$

.....

 $\mathcal{S}^{l} = \sigma'(z^{l}) \bullet (W^{l+1})^{T} \mathcal{S}^{l+1}$

DNN

BPTT

RNN 误差反传

C^n

梯度消失/爆炸 问题

会出现和深度前馈神经网络类似的梯度消失问题。

在训练循环神经网络时,更经常出现的是梯度消失问题,训练较难

循环神经网络的长期依赖问题

问题: 距当前节点越远的节点对当前节点处理影响越小, 无法建模长时间的依赖

例如:

- The cat, which already ate a bunch of food, (was) full.
- The cats, which already ate a bunch of food, (were) full.

解决方法: LSTM、GRU 等

内容提要

- 7.1 概述
- 7.2 循环神经网络结构
- 7.3 循环神经网络训练
- 7.4 循环神经网络改进及变形
- 7.5 循环神经网络应用

1. 长短时记忆神经网络: LSTM

LSTM基本思想

LSTM单元不仅接受 x_t 和 h_{t-1} ,还需建立一个机制(维持一个细胞状态 C_t) 能保留前面远处结点信息在长距离传播种不会被丢失

LSTM 通过设计"门"结构实现保留信息和选择信息功能,每个门结构由一个 sigmoid 层和一个poinewise操作构成

LSTM 单元结构:

细胞状态信息

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

(在生成的**当前保留信息**中输入 产生 新信息和旧信息各占多少)

输入产生新信息:

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

细胞状态信息

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

输入门it

$$i_t = \sigma\left(W_i \cdot [h_{t-1}, x_t] + b_i\right)$$

(决定加入多少新信息)

细胞状态信息

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

遗忘门ft:

$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$$

(决定丢弃多少旧信息)

细胞状态信息

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

隐状态输出

$$h_t = o_t * \tanh(C_t)$$

输出门 Ot

$$o_t = \sigma\left(W_o\left[h_{t-1}, x_t\right] + b_o\right)$$

LSTM 单元结构:

参数: Wf,Wi,WoWc

输入: h_{t-1}, x_t

细胞状态: $C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$

新信息: $\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$

输入门: $i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$

遗忘门: $f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$

输出: $h_t = o_t * \tanh(C_t)$

输出门: $o_t = \sigma(W_o[h_{t-1}, x_t] + b_o)$

2. LSTM 简化 GRU

输入门和遗忘门合并为更新门(更新门决定隐状态保留放弃部分)

更新门: $z_t = \sigma(W_z \cdot [h_{t-1}, x_t])$

重置门: $r_t = \sigma(W_r \cdot [h_{t-1}, x_t])$

新信息: $\tilde{h}_t = \tanh(W \cdot [r_t * h_{t-1}, x_t])$ W_z,W_r,W

参数:

隐状态: $h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$

$$h(t) = \sigma(W_iX + W_h h(t-1) + b)$$

$$Y = softmax(W_oh(t))$$

$$Y = softmax(W_oh(t))$$

$$Y = softmax(W_oh(t))$$

Deep RNN

$$h^{i}(t) = \sigma(W^{i}_{i} h^{i-1}(t) + W^{i}_{h} h^{i}(t-1) + b^{i})$$

 $Y = softmax(W_{o}h^{L}(t))$

深度RNN采用多个隐层,每个隐层向后一层传递序列信息

Bidirectional RNNs

每个时刻都有一个正向输入的隐层 \overline{ht} 和·一个反向输入隐层 $\overline{h_t}$ 两个隐层分别可以表示一个词的上文信息和下文信息

Deep Bidirectional RNN

$$\vec{h}_{t}^{(i)} = f(\vec{W}^{(i)} h_{t}^{(i-1)} + \vec{V}^{(i)} \vec{h}_{t-1}^{(i)} + \vec{b}^{(i)})$$

$$\vec{h}_{t}^{(i)} = f(\vec{W}^{(i)} h_{t}^{(i-1)} + \vec{V}^{(i)} \vec{h}_{t+1}^{(i)} + \vec{b}^{(i)})$$

$$y_{t} = g(U[\vec{h}_{t}^{(L)}; \vec{h}_{t}^{(L)}] + c)$$

深度双向RNN采用多个隐层,每个隐层向后一层传递序列信息

内容提要

- 7.1 概述
- 7.2 循环神经网络结构
- 7.3 循环神经网络训练
- 7.4 循环神经网络改进及变形
- 7.5 循环神经网络应用

RNN/LSTM 建模的序列问题

如:

POS Tagging

 Input and output are vector sequences with <u>the same</u> length

Caption generation

• Input is one vector, but output is a vector sequence

Many to one

• Input is a vector sequence, but output is only one vector

Both input and output are vector sequences with different lengths. → Sequence to sequence learning

参考文献:

李宏毅课程

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML16.html

邱锡鹏, 《神经网络与深度学习》讲义

刘鹏飞, 卷积神经网络和递归 神经网络实践

刘昕,深度学习一线实战暑期研讨班深度学习基础

在此表示感谢!

游游各位!

课程编码 201M4005H 课程名称 自然语言处理 授课团队名单 胡玥、于静