

Interim Report of HR Data Capstone Project

Submitted By

Satya Raga Sudha

Akashatra Sharma

Research Supervisor

Surya Prakash

Contents

1.	Introduction	5
judį whi	team plays a crucial role in determining the salary of an employee in an organization. If any of the gement or consideration goes wrong, it will affect the performance due to employee dissatisfaction ch might lead to disengagement of employee. HR team need to manage well to retain the talent in organization	1
	he current situation, people are moving out of organizations frequently and the organization need lacements as well as for new project requirements.	5
det	overcome such problems, if we have some prediction tools which can probably predict the salary ails of each employee recruited by the company, such that it will reduce the stress or work carried by the HR team for negotiating the salary and avoid discrimination in the company.	5
2.	Problem Statement, Objective, Scope & Significance of the project	5
syst sati	have a problem statement related to an organization Delta ltd. The HR team of Delta want to have em, which can predict the salary of employees, which will lead to no discrimination & employee sfaction based on their past data, easy to use, avoid manual judgement & effective tool with minin plyement	nal
	have a scope of developing a tool, which help them out in solving their issue & reduce their effort ary calculation. It will be easy to use and avoid manual work out.	
use data	objective, we have here is, to collect past data of all employees of Delta Itd, which are presently d for estimation of Annual salary of an employee by HR. then we understand the data &analyze the a & prepare a model to predict the salary of new employee with similar kind of profile & avoid nual judgement. We test the model by comparing it with existing data as confirmation	
3.	Data Source and Description	5
para	have collected data (25000 Applicants) from the HR team of Delta ltd. It contains 29 different ameter on which the salary judgement(Expected CTC) is processed. We have observed it contains h numerical & categorical data	5
field	merical data – There are 12 Parameters such as Index, Application ID, Total experience, Experience d, passing years of graduation, PG & PHD, Current CTC, No. of companied worked, No.of publication dification & expected CTC	n,
App edu	egorical data - Remaining 17 out of 29 are categorical data. Ordinal categorical data are – Educatio praisal Rating and Designation. We do have Missing values in Department, Roles, Designation, location, education related columns. Most of the missing values have arisen due to freshers & under	r
_	duates. The fresher are outliers	
4.	Data Pre-processing	
l. 	Data Info	
II. 	Descriptive Statistics	
Ш	Skewness	7

IV.	Checking For Anomalies / Bad Data	8
٧.	Descriptive Stats For categorical and numerical variables	8
VI.	Check For Duplicate Data	9
VII.	Creating Duplicate Dataset	.10
VIII.	ANOVA Test	.10
IX.	Label Encoding	.15
Χ.	Dropping All Insignificant Variables	
XI.	Grouping	
5.	Exploratory Data Analysis	
	oh shown below department & organization as independent variable with reference to expected	
	have considered "Median of expected CTC" for identification of correlation with independent	.16
6.	Modelling Approach	.21
7.	Actionable insights and recommendations to the stakeholder	.26
We	need to identify few insights from EDA & Reason being for such pattern observation	.26
don	need to reduce further the MAE & RMSE values & reduce the difference within them which can be by identifying further outliers, by elimination of parameter which has minimal relationship with endent variables & by model tuning.	
	convert the data into 70:30 ratio to train, test & verify the model as user experience to validate the decuracy.	
8.	References and Bibliography	.26
1.	Great Learning class videos	.26
2.	Tableau	.26
9.	Appendix	.26
Tal	ble OF Figures	
	ure 1 : Data Info	
_	ure 2 : Null Values Variable Names	
_	ure 3 : Data - Descriptive Statisticsure 4 : Skewness	
_	ure 5 : Categorical Variable - Check for Anomalies	
_	ure 6 : Numerical Variables - Check For Anomalies	
_	ure 7 : Descriptive Stats : Categorical	
_	ure 8 : Descriptive Stats : Numerical	

Figure 9 : Check For Duplicates	9
Figure 10 : Object to Categorical Conversion	10
Figure 11 :ANOVA TEST 1	
Figure 12 : ANOVA TEST 2	11
Figure 13 : Level OF Significance	12
Figure 14 : ANOVA TEST 3	12
Figure 15 : ANOVA TEST 4	13
Figure 16 : ANOVA TEST 5	14
Figure 17 : ANOVA TEST 6	15
Figure 18 :Dropping the Insignificant Variables	15
Figure 19: Grouping	16
Figure 20 : Department vs Expected_CTC – Tableau	17
Figure 21 : Organization vs Expected_CTC - Tableau	17
Figure 22 : Tableau Insights 1	18
Figure 23 : Correlation Heatmap	18
Figure 24 : Correlation - Tableau 1	19
Figure 25 : Correlation - Tableau 2	19
Figure 26 : Univariate Analysis – Histogram	20
Figure 27 : Pairplot	21
Figure 28 : Outliers Present	22
Figure 29 : Outliers not present	22
Figure 30 : Base Model - Linear Regression	
Figure 31 : VIF - Base Model	24
Figure 32 : Best Model - Linear Regression	24
Figure 33 : Scatter Plot	25
Figure 34 : Density Plot - Expected CTC	25
Figure 35 :EDA 1 - Tableau	26
Figure 36 : EDA 2 - Tableau	27
Figure 37 : EDA 3 - Tableau	28
Figure 38 · FDA 4 - Tableau	28

1. Introduction

HR team plays a crucial role in determining the salary of an employee in an organization. If any of the judgement or consideration goes wrong, it will affect the performance due to employee dissatisfaction which might lead to disengagement of employee. HR team need to manage well to retain the talent in any organization.

In the current situation, people are moving out of organizations frequently and the organization need replacements as well as for new project requirements.

To overcome such problems, if we have some prediction tools which can probably predict the salary details of each employee recruited by the company, such that it will reduce the stress or work carried out by the HR team for negotiating the salary and avoid discrimination in the company.

2. Problem Statement, Objective, Scope & Significance of the project

We have a problem statement related to an organization Delta ltd. The HR team of Delta want to have a system, which can predict the salary of employees, which will lead to no discrimination & employee satisfaction based on their past data, easy to use, avoid manual judgement & effective tool with minimal involvement.

We have a scope of developing a tool, which help them out in solving their issue & reduce their effort in salary calculation. It will be easy to use and avoid manual work out.

The objective, we have here is, to collect past data of all employees of Delta ltd, which are presently used for estimation of Annual salary of an employee by HR. then we understand the data & prepare a model to predict the salary of new employee with similar kind of profile & avoid manual judgement. We test the model by comparing it with existing data as confirmation

3. Data Source and Description

We have collected data (25000 Applicants) from the HR team of Delta ltd. It contains 29 different parameter on which the salary judgement(Expected CTC) is processed. We have observed it contains both numerical & categorical data.

Numerical data – There are 12 Parameters such as Index, Application ID, Total experience, Experience in field, passing years of graduation, PG & PHD, Current CTC, No. of companied worked, No. of publication, certification & expected CTC.

Categorical data - Remaining 17 out of 29 are categorical data. Ordinal categorical data are – Education, Appraisal Rating and Designation. We do have Missing values in Department, Roles, Designation, education, education related columns. Most of the missing values have arisen due to freshers & under graduates. The fresher are outliers.

4. Data Pre-processing

I. Data Info

The data info gave us multiple information. They were as follows:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 25000 entries, 0 to 24999
Data columns (total 29 columns):
                              Non-Null Count Dtvpe
 # Column
                               -----
   IDX
                               25000 non-null int64
   Applicant_ID
Total_Experience
                             25000 non-null int64
1
                              25000 non-null int64
    Total_Experience_in_field_applied 25000 non-null int64
22222 non-null object
 4 Department
dtypes: float64(3), int64(10), object(16)
memory usage: 5.5+ MB
```

Figure 1 : Data Info

- There 3 float data type, 10 integer data type & 16 object data type.
- Many variables were representing null values. Hence, they must be checked upon and a solution to it shall be found out.

```
a. Department
b. Role
c. Industry
d. Organization
e. Designation
f. Graduation_Specialization
g. University_Grad
h. Passing_Year_Of_Graduation
i.PG_Specialization
j. University_PG
K. Passing_Year_Of_PG
L. PHD_Specialization
M. University_PHD
N. Passing_Year_Of_PHD
O. Last_Appraisal_Rating
```

Figure 2: Null Values Variable Names

There were 25000 entries with total columns equal to 29. Thus, the data shape is

```
no. of rows: 25000
no. of columns: 29
(25000,29).
```

II. Descriptive Statistics

	count	mean	std	min	25%	50%	75%	max
IDX	25000.0	1.250050e+04	7.217023e+03	1.0	6250.75	12500.5	18750.25	25000.0
Applicant_ID	25000.0	3.499324e+04	1.439027e+04	10000.0	22583.75	34974.5	47419.00	60000.0
Total_Experience	25000.0	1.249308e+01	7.471398e+00	0.0	6.00	12.0	19.00	25.0
Total_Experience_in_field_applied	25000.0	6.258200e+00	5.819513e+00	0.0	1.00	5.0	10.00	25.0
Passing_Year_Of_Graduation	18820.0	2.002194e+03	8.316640e+00	1986.0	1996.00	2002.0	2009.00	2020.0
Passing_Year_Of_PG	17308.0	2.005154e+03	9.022963e+00	1988.0	1997.00	2006.0	2012.00	2023.0
Passing_Year_Of_PHD	13119.0	2.007396e+03	7.493801e+00	1995.0	2001.00	2007.0	2014.00	2020.0
Current_CTC	25000.0	1.760945e+08	9.202125e+05	0.0	1027311.50	1802567.5	2443883.25	3999693.0
No_Of_Companies_worked	25000.0	3.482040e+00	1.690335e+00	0.0	2.00	3.0	5.00	6.0
Number_of_Publications	25000.0	4.089040e+00	2.606612e+00	0.0	2.00	4.0	6.00	8.0
Certifications	25000.0	7.736800e-01	1.199449e+00	0.0	0.00	0.0	1.00	5.0
International_degree_any	25000.0	8.172000e-02	2.739431e-01	0.0	0.00	0.0	0.00	1.0
Expected_CTC	25000.0	2.250155e+08	1.160480e+06	203744.0	1306277.50	2252136.5	3051353.75	5599570.0

Figure 3: Data - Descriptive Statistics

Interpretations:

- By comparing mean and median(50%) from the describe function, we got to know that most of the columns are very close to normal distribution. Very slight difference is there in the values of mean and median which put each of the variable into left skewed and right skewed distribution.
- International_degree_any had maximum skewness followed by Certifications which had 2nd highest skewness
 in the dataset.

III. Skewness

The skewness of the following variables were as follows:

IDX	0.000000
Applicant_ID	0.003409
Total_Experience	0.004109
Total_Experience_in_field_applied	0.961951
Passing_Year_Of_Graduation	0.061408
Passing_Year_Of_PG	-0.066166
Passing_Year_Of_PHD	0.014436
Current_CTC	0.097643
No_Of_Companies_worked	-0.068026
Number_of_Publications	-0.075217
Certifications	1.610907
International_degree_any	3.054017
Expected_CTC	0.331972
dtype: float64	

Figure 4: Skewness

IV. Checking For Anomalies / Bad Data

- We first separated the categorical and numerical variables and then check for anomalies/bad data.
- For categorical, the output was as follows:

```
Department : 0
Role: 0
Industry : 0
Organization: 0
Designation: 0
Education : 0
Graduation_Specialization : 0
University Grad: 0
PG_Specialization: 0
University_PG: 0
PHD Specialization: 0
University_PHD: 0
Curent_Location : 0
Preferred_location: 0
Inhand_Offer : 0
Last_Appraisal_Rating : 0
```

Figure 5: Categorical Variable - Check for Anomalies

- For numerical variables, output was as follows:

```
IDX : 0
Applicant_ID : 0
Total_Experience : 0
Total_Experience_in_field_applied : 0
Passing_Year_Of_Graduation : 0
Passing_Year_Of_PG : 0
Passing_Year_Of_PHD : 0
Current_CTC : 0
No_Of_Companies_worked : 0
Number_of_Publications : 0
Certifications : 0
International_degree_any : 0
Expected_CTC : 0
```

Figure 6: Numerical Variables - Check For Anomalies

Interpretation:

- No external variables was present in the categorical & numerical dataset.
- Hence as per the above code, there were no anomalies/ '?' present in the data set.

V. Descriptive Stats For categorical and numerical variables

For categorical , it was as follows :

	count	unique	top	freq
Department	22222	12	Marketing	2379
Role	24037	24	Others	2248
Industry	24092	11	Training	2237
Organization	24092	16	M	1574
Designation	21871	18	HR	1648
Education	25000	4	PG	6326
Graduation_Specialization	18820	11	Chemistry	1785
University_Grad	18820	13	Bhubaneswar	1510
PG_Specialization	17308	11	Mathematics	1800
University_PG	17308	13	Bhubaneswar	1377
PHD_Specialization	13119	11	Others	1545
University_PHD	13119	13	Kolkata	1089
Curent_Location	25000	15	Bangalore	1742
Preferred_location	25000	15	Kanpur	1720
Inhand_Offer	25000	2	N	17418
Last_Appraisal_Rating	24092	5	В	5501

Figure 7 : Descriptive Stats : Categorical

- For numerical, it was as follows:

	count	mean	std	min	25%	50%	75%	max
IDX	25000.0	1.250050e+04	7.217023e+03	1.0	6250.75	12500.5	18750.25	25000.0
Applicant_ID	25000.0	3.499324e+04	1.439027e+04	10000.0	22563.75	34974.5	47419.00	60000.0
Total_Experience	25000.0	1.249308e+01	7.471398e+00	0.0	6.00	12.0	19.00	25.0
Total_Experience_in_field_applied	25000.0	6.258200e+00	5.819513e+00	0.0	1.00	5.0	10.00	25.0
Passing_Year_Of_Graduation	18820.0	2.002194e+03	8.316640e+00	1986.0	1996.00	2002.0	2009.00	2020.0
Passing_Year_Of_PG	17308.0	2.005154e+03	9.022963e+00	1988.0	1997.00	2006.0	2012.00	2023.0
Passing_Year_Of_PHD	13119.0	2.007396e+03	7.493601e+00	1995.0	2001.00	2007.0	2014.00	2020.0
Current_CTC	25000.0	1.760945e+08	9.202125e+05	0.0	1027311.50	1802567.5	2443883.25	3999693.0
No_Of_Companies_worked	25000.0	3.482040e+00	1.690335e+00	0.0	2.00	3.0	5.00	6.0
Number_of_Publications	25000.0	4.089040e+00	2.606612e+00	0.0	2.00	4.0	6.00	8.0
Certifications	25000.0	7.736800e-01	1.199449e+00	0.0	0.00	0.0	1.00	5.0
International_degree_any	25000.0	8.172000e-02	2.739431e-01	0.0	0.00	0.0	0.00	1.0
Expected_CTC	25000.0	2.250155e+08	1.160480e+06	203744.0	1306277.50	2252136.5	3051353.75	5599570.0

Figure 8 : Descriptive Stats : Numerical

VI. Check For Duplicate Data

We checked for the duplicate data in the dataset, but there were no duplicates present.

Number of duplicate rows = 0

Figure 9 : Check For Duplicates

VII. Creating Duplicate Dataset

- We created a duplicate dataset named as "data" and we worked everything on it.
- This was a predetermined precaution in order to avoid any harms/unchangeable actions to our main dataset.

VIII. ANOVA Test

- **Analysis of variance** (**ANOVA**) Analysis of variance (ANOVA) is an analysis tool used in statistics that splits an observed aggregate variability found inside a data set into two parts: systematic factors and random factors. The systematic factors have a statistical influence on the given data set, while the random factors do not. ANOVA test to determine the influence that independent variables have on the dependent variable in a regression study.
- We converted the object data type into categorical data type before performing ANOVA test.

Figure 10 : Object to Categorical Conversion

We then performed ANOVA Test on all the relevant variables. They were as follows:

a) Variable: 'Department' -

 H_0 : $\mu_{M1} = \mu_{M2} = \mu_{M3}$

 H_0 : Mean 'Department' for an for all the Employees/Individuals are equal.

 H_1 : $\mu_{M1} \neq \mu_{M2} = \mu_{M3}$ or H_1 : $\mu_{M1} = \mu_{M2} \neq \mu_{M3}$ or H_1 : $\mu_{M1} = \mu_{M3} \neq \mu_{M2}$ or H_1 : $\mu_{M1} \neq \mu_{M2} \neq \mu_{M3}$

 H_1 : At least one of the mean 'Department' for the various categories of education are unequal.

b) Variable :'Role' -

 H_0 : $\mu_{M1} = \mu_{M2} = \mu_{M3}$

 H_0 : Mean 'Role' for an for all the Employees/Individuals are equal.

 H_1 : $\mu_{M1} \neq \mu_{M2} = \mu_{M3}$ or H_1 : $\mu_{M1} = \mu_{M2} \neq \mu_{M3}$ or H_1 : $\mu_{M1} = \mu_{M3} \neq \mu_{M2}$ or H_1 : $\mu_{M1} \neq \mu_{M2} \neq \mu_{M3}$

H₁: At least one of the mean 'Role' are unequal.

c) Variable :'Industry' -

 H_0 : $\mu_{M1} = \mu_{M2} = \mu_{M3}$

 H_0 : Mean 'Industry' for an for all the Employees/Individuals are equal.

 H_1 : $\mu_{M1} \neq \mu_{M2} = \mu_{M3}$ or H_1 : $\mu_{M1} = \mu_{M2} \neq \mu_{M3}$ or H_1 : $\mu_{M1} = \mu_{M3} \neq \mu_{M2}$ or H_1 : $\mu_{M1} \neq \mu_{M2} \neq \mu_{M3}$

H₁: At least one of the mean 'Industry' are unequal.

Figure 11: ANOVA TEST 1

d) Variable :'Organization' -

 H_0 : $\mu_{M1} = \mu_{M2} = \mu_{M3}$

 H_0 : Mean 'Organization' for an for all the Employees/Individuals are equal.

 $H_1: \mu_{M1} \neq \mu_{M2} = \mu_{M3}$ or $H_1: \mu_{M1} = \mu_{M2} \neq \mu_{M3}$ or $H_1: \mu_{M1} = \mu_{M3} \neq \mu_{M2}$ or $H_1: \mu_{M1} \neq \mu_{M2} \neq \mu_{M3}$

 H_1 : At least one of the mean 'Organization' are unequal.

e) Variable :'Designation' -

 H_0 : $\mu_{M1} = \mu_{M2} = \mu_{M3}$

 H_0 : Mean 'Designation' for an for all the Employees/Individuals are equal.

 H_1 : $\mu_{M1} \neq \mu_{M2} = \mu_{M3}$ or H_1 : $\mu_{M1} = \mu_{M2} \neq \mu_{M3}$ or H_1 : $\mu_{M1} = \mu_{M3} \neq \mu_{M2}$ or H_1 : $\mu_{M1} \neq \mu_{M2} \neq \mu_{M3}$

H₁: At least one of the mean 'Designation' are unequal.

Figure 12: ANOVA TEST 2

• We assumed Level of Significance = 0.05 by default.

Level of significance:

 $\alpha = 0.05$

Figure 13: Level OF Significance

Conclusion:

- As per the ANOVA results, the variables which are found to be in significant are 'Department', 'Role', 'Designation'.
- We also inferred that , the categorical variables which are found to be significant are 'Industry' & 'Organization' .
- As a result, the insignificant variables are not needed in the model building and thus they needed to be dropped from the table.
- We then did the same procedure for other variables:

a) Variable :'Graduation_Specialization' -

```
H_0: \mu_{M1} = \mu_{M2} = \mu_{M3}
```

 H_0 : Mean 'Graduation_Specialization' for an for all the Employees/Individuals are equal.

 H_1 : $\mu_{M1} \neq \mu_{M2} = \mu_{M3}$ or H_1 : $\mu_{M1} = \mu_{M2} \neq \mu_{M3}$ or H_1 : $\mu_{M1} = \mu_{M3} \neq \mu_{M2}$ or H_1 : $\mu_{M1} \neq \mu_{M2} \neq \mu_{M3}$

 H_1 : At least one of the mean 'Graduation_Specialization' are unequal.

)b Variable :'University_Grad' -

```
H_0: \mu_{M1} = \mu_{M2} = \mu_{M3}
```

 H_0 : Mean 'University_Grad' for an for all the Employees/Individuals are equal.

 H_1 : $\mu_{M1} \neq \mu_{M2} = \mu_{M3}$ or H_1 : $\mu_{M1} = \mu_{M2} \neq \mu_{M3}$ or H_1 : $\mu_{M1} = \mu_{M3} \neq \mu_{M2}$ or H_1 : $\mu_{M1} \neq \mu_{M2} \neq \mu_{M3}$

H₁: At least one of the mean 'University_Grad' are unequal.

c) Variable :'PG_Specialization' -

```
H_0: \mu_{M1} = \mu_{M2} = \mu_{M3}
```

 H_0 : Mean 'PG_Specialization' for an for all the Employees/Individuals are equal.

 H_1 : $\mu_{M1} \neq \mu_{M2} = \mu_{M3}$ or H_1 : $\mu_{M1} = \mu_{M2} \neq \mu_{M3}$ or H_1 : $\mu_{M1} = \mu_{M3} \neq \mu_{M2}$ or H_1 : $\mu_{M1} \neq \mu_{M2} \neq \mu_{M3}$

 H_1 : At least one of the mean 'PG_Specialization' are unequal.

Figure 14: ANOVA TEST 3

d) Variable :'University_PG' -

 H_0 : $\mu_{M1} = \mu_{M2} = \mu_{M3}$

H₀: Mean 'University_PG' for an for all the Employees/Individuals are equal.

 H_1 : $\mu_{M1} \neq \mu_{M2} = \mu_{M3}$ or H_1 : $\mu_{M1} = \mu_{M2} \neq \mu_{M3}$ or H_1 : $\mu_{M1} = \mu_{M3} \neq \mu_{M2}$ or H_1 : $\mu_{M1} \neq \mu_{M2} \neq \mu_{M3}$

H₁: At least one of the mean 'University_PG' are unequal.

e) Variable :'PHD_Specialization' -

 H_0 : $\mu_{M1} = \mu_{M2} = \mu_{M3}$

 H_0 : Mean 'PHD_Specialization' for an for all the Employees/Individuals are equal.

 H_1 : $\mu_{M1} \neq \mu_{M2} = \mu_{M3}$ or H_1 : $\mu_{M1} = \mu_{M2} \neq \mu_{M3}$ or H_1 : $\mu_{M1} = \mu_{M3} \neq \mu_{M2}$ or H_1 : $\mu_{M1} \neq \mu_{M2} \neq \mu_{M3}$

 H_1 : At least one of the mean 'PHD_Specialization' are unequal.

f) Variable :'University_PHD' -

 H_0 : $\mu_{M1} = \mu_{M2} = \mu_{M3}$

 H_0 : Mean 'University_PHD' for an for all the Employees/Individuals are equal.

 H_1 : $\mu_{M1} \neq \mu_{M2} = \mu_{M3}$ or H_1 : $\mu_{M1} = \mu_{M2} \neq \mu_{M3}$ or H_1 : $\mu_{M1} = \mu_{M3} \neq \mu_{M2}$ or H_1 : $\mu_{M1} \neq \mu_{M2} \neq \mu_{M3}$

H₁: At least one of the mean 'University_PHD' are unequal.

Figure 15: ANOVA TEST 4

- All three variables 'Passing_Year_Of_Graduation', 'Passing_Year_Of_PG', 'Passing_Year_Of_PHD' are time stamps and are discrete values. Thus, they can be considered as categorical variables also.
- As a result, we would do ANOVA Test to them as well to consider every possibility.

a) Variable :'Passing_Year_Of_Graduation' -

 H_0 : $\mu_{M1} = \mu_{M2} = \mu_{M3}$

 H_0 : Mean 'Passing_Year_Of_Graduation' for an for all the Employees/Individuals are equal.

 H_1 : $\mu_{M1} \neq \mu_{M2} = \mu_{M3}$ or H_1 : $\mu_{M1} = \mu_{M2} \neq \mu_{M3}$ or H_1 : $\mu_{M1} = \mu_{M3} \neq \mu_{M2}$ or H_1 : $\mu_{M1} \neq \mu_{M2} \neq \mu_{M3}$

 H_1 : At least one of the mean 'Passing_Year_Of_Graduation' are unequal.

b) Variable :'Passing_Year_Of_PG' -

 H_0 : $\mu_{M1} = \mu_{M2} = \mu_{M3}$

 H_0 : Mean 'Passing_Year_Of_PG' for an for all the Employees/Individuals are equal.

 H_1 : $\mu_{M1} \neq \mu_{M2} = \mu_{M3}$ or H_1 : $\mu_{M1} = \mu_{M2} \neq \mu_{M3}$ or H_1 : $\mu_{M1} = \mu_{M3} \neq \mu_{M2}$ or H_1 : $\mu_{M1} \neq \mu_{M2} \neq \mu_{M3}$

 H_1 : At least one of the mean 'Passing_Year_Of_PG' are unequal.

c) Variable :'Passing_Year_Of_PHD' -

 H_0 : $\mu_{M1} = \mu_{M2} = \mu_{M3}$

 H_0 : Mean 'Passing_Year_Of_PHD' for an for all the Employees/Individuals are equal.

 H_1 : $\mu_{M1} \neq \mu_{M2} = \mu_{M3}$ or H_1 : $\mu_{M1} = \mu_{M2} \neq \mu_{M3}$ or H_1 : $\mu_{M1} = \mu_{M3} \neq \mu_{M2}$ or H_1 : $\mu_{M1} \neq \mu_{M2} \neq \mu_{M3}$

 H_1 : At least one of the mean 'Passing_Year_Of_PHD' are unequal.

Figure 16: ANOVA TEST 5

Conclusion :

- As per the ANOVA test, the variables 'Graduation_Specialization', 'University_Grad', 'PG_Specialization', 'University_PG', 'PHD_Specialization' & 'University_PHD' were found to be significant and thus they shall not be dropped.
- But as per the ANOVA results for other variables that is the variables which are found to be insignificant are 'Passing_Year_Of_Graduation', 'Passing_Year_Of_PG', 'Passing_Year_Of_PHD'.
- We know that 'Graduation_Specialization' & 'University_Grad' are correlated to 'Passing_Year_Of Graduation' and same for 'PG_Specialization' & 'PHD_Specialization'. So, as 'Passing_Year_Of_Grad', 'Passing_Year_Of_PG' & 'Passing_Year_Of_PHD' were found to be insignificant that means there correlated variables must also become irrelevant for model building.
- As a result, the insignificant variables are not needed in the model building and thus they needed to be dropped from the table.
- At last we did for these two variables:

a) Variable :'Curent_Location' -

 H_0 : $\mu_{M1} = \mu_{M2} = \mu_{M3}$

 H_0 : Mean 'Curent_Location' for an for all the Employees/Individuals are equal.

 H_1 : $\mu_{M1} \neq \mu_{M2} = \mu_{M3}$ or H_1 : $\mu_{M1} = \mu_{M2} \neq \mu_{M3}$ or H_1 : $\mu_{M1} = \mu_{M3} \neq \mu_{M2}$ or H_1 : $\mu_{M1} \neq \mu_{M2} \neq \mu_{M3}$

H₁: At least one of the mean 'Curent_Location' are unequal.

b) Variable :'Preferred_location' -

 H_0 : $\mu_{M1} = \mu_{M2} = \mu_{M3}$

 H_0 : Mean 'Preferred_location' for an for all the Employees/Individuals are equal.

 H_1 : $\mu_{M1} \neq \mu_{M2} = \mu_{M3}$ or H_1 : $\mu_{M1} = \mu_{M2} \neq \mu_{M3}$ or H_1 : $\mu_{M1} = \mu_{M3} \neq \mu_{M2}$ or H_1 : $\mu_{M1} \neq \mu_{M2} \neq \mu_{M3}$

H₁: At least one of the mean 'Preferred_location' are unequal.

Figure 17: ANOVA TEST 6

Conclusion:

- As per the ANOVA test, the variables 'Curent_Location' & 'Preferred_location' were found to be significant and thus they shall not be dropped.
- We will group them so as to make work easy and efficient.

IX. Label Encoding

- We did label encoding to 'Education' & 'Inhand_Offer' variables and transformed it into numerical(integer) format.

X. Dropping All Insignificant Variables

- We dropped all the insignificant variables and then we finish encoding the categorical variables into numerical format so as to build the model.

Conclusion:

- All the insignificant variables had been dropped out successfully.
- Now, we will proceed to further make changes whereever necessary for model building

Figure 18: Dropping the Insignificant Variables

- We imputed values in 'Last_Appraisal_Rating', 'Industry', 'Organization' variables using the mode as there were less than 1% missing values.
- There was no need to do KNN imputation as the they were categorical variables at that time and KNN imputation is valid for only numerical. Moreover atleast 25% of missing values or less should be present in order to use KNN.
- Afterwards, we performed ordinal encoding in it and convert it into numerical format.

XI. Grouping

- We grouped the cities of these variables: 'Curent_Location' & 'Preferred_location' into Tier_1, Tier2, Tier_3.

	Applicant_ID	Total_Experience	Total_Experience_in_field_applied	Industry	Organization	Education	Curent_Location	Preferred_location	Current_CTC	Inhar
0	22753	0	0	NaN	NaN	2	Tier_3	Tier_1	0	
1	51087	23	14	Analytics	Н	3	Tier_1	Tier_3	2702664	
2	38413	21	12	Training	J	3	Tier_1	Tier_2	2236661	
3	11501	15	8	Aviation	F	3	Tier_2	Tier_1	2100510	
4	58941	10	5	Insurance	Е	1	Tier_1	Tier_1	1931644	
4										-

Figure 19: Grouping

- This will help us easy to work and much reliable than creating dummies as it would become messier if we do with that approach.
- After grouping, we transformed both of them into numerical variables using ordinal encoding.
- We dropped 'IDX', 'Applicant ID' also as they were of no use to us.
- Thus, we can now proceed to EDA and after that model building.

5. Exploratory Data Analysis

Graph shown below department & organization as independent variable with reference to expected CTC.

We have considered "Median of expected CTC" for identification of correlation with independent variable.

OUTLIERS

Figure 20 : Department vs Expected_CTC - Tableau

Figure 21 : Organization vs Expected_CTC - Tableau

Figure 22: Tableau Insights 1

Correlation Using Python

Figure 23: Correlation Heatmap

Figure 24: Correlation - Tableau 1

Figure 25 : Correlation - Tableau 2

Univariate Analysis

We created histograms for all the variables and then go for the modelling part.

Figure 26 : Univariate Analysis - Histogram

Pairplot

- We plotted the pairplot as it is very important for providing useful insights.
- It also gives us the approach and relation between the variables . Pairplot is as follows :

Figure 27 : Pairplot

6. Modelling Approach

- After all data pre-processing and EDA, we finally entered into the model building. But we must know what approach we should take during model building.
- For our problem statement, Linear Regression is the best approach as it will help us predict the correct candidate for the job and get our target variable "Expected_CTC" accurately.
- This problem is a regression based problem so we will go with linear regression . Logistic regression would not be applied as it is not a classification problem.

- PCA is not required in it as , we are not determined to do dimension reduction. Here we need to build a model that can predict the Expected CTC for a candidate who will apply for the respective company.
- We did check for outliers after all data pre-processing. We did find in some of them but they were treated .

Figure 28 : Outliers Present

Figure 29 : Outliers not present

Interpretations:

- After inferring insights, it was confirmed that in "International_degree_any" no outliers were present. The dots representing them are actual values and that are 0 & 1 only. They cannot be treated as outliers.
- Apart from that, outliers from other variables had been treated well.
- The boxplot with outliers and without outliers can easily be seen after comparing both boxplots.
- After outlier treatment, we builded the base linear regression model using statsmodel library. The output was as follows:

Figure 30 : Base Model - Linear Regression

- With this we need to check for multi-colinearity, so we used VIF to check it.


```
Total_Experience VIF = 5.14

Total_Experience_in_field_applied VIF = 1.7

Industry VIF = 1.03

Organization VIF = 1.01

Education VIF = 1.52

Curent_Location VIF = 1.0

Preferred_location VIF = 1.0

Current_CTC VIF = 4.92

Last_Appraisal_Rating VIF = 1.13

No_Of_Companies_worked VIF = 1.22

Number_of_Publications VIF = 1.09

Certifications VIF = 1.19

International_degree_any VIF = 1.01

Inhand_Offer VIF = 1.22
```

Figure 31: VIF - Base Model

- Then we inferred that p_value for many variables were higher than level of significance, so the most insignificant variable must be removed one at a time and better model was created.
- WE did the same procedure and removed insignificant variables until all the p values were gone below level of significance (0.05).
- Then , that model was our best model. It was as follows :

OLS Regression Res	ults							
Dep. Variable:	Expec	ted_CTC	R-s	quared:		0.987		
Model:		OLS	Adj. R-s	quared:		0.987		
Method:	Least	Squares	F-s	tatistic:	1.5	892e+05		
Date:	Sun, 201	Nov 2022	Prob (F-st	atistic):		0.00		
Time:		21:50:09	Log-Like	elihood:	-2.8	998e+05		
No. Observations:		21944		AIC:	5.	800e+05		
Df Residuals:		21934		BIC:	5.	801e+05		
Df Model:		9						
Covariance Type:	П	onrobust						
		coe	f std e	err	t	P> t	[0.025	0.975]
	ntercept	-1.201e+0	5 3777.3	38 -31	.792	0.000	-1.27e+05	-1.13e+05
	Industry	-7227.1489	9 281.2	89 -25	.695	0.000	-7778.454	-6675.840
Orga	nization	3092.545	7 195.5	49 15	.815	0.000	2709.256	3475.836
E	ducation	7.832e+04	4 870.8	51 89	.941	0.000	7.66e+04	8e+04
Curr	ent_CTC	1.229	1 0.0	01 1113	.463	0.000	1.227	1.231
Last_Appraisa	I_Rating	7.48e+0	4 701.8	74 106	.567	0.000	7.34e+04	7.62e+04
No_Of_Companies	_worked	-1.903e+0	4 580.3	00 -32	.800	0.000	-2.02e+04	-1.79e+04
Number_of_Pub	lications	3039.955	1 357.2	38 8	.510	0.000	2339.743	3740.167
International_deg	gree_any	-1.148e+0	4 3290.8	58 -3	.487	0.000	-1.79e+04	-5025.612
Inhai	nd_Offer	2.048e+04	4 2158.9	25 9	.487	0.000	1.62e+04	2.47e+04
Omnibus: 1	1923.901	Durbin-	Watson:	1.	996			
Prob(Omnibus):	0.000	Jarque-B	era (JB):	153498.	521			
Skew:	2.341	Р	rob(JB):	(0.00			
Kurtosis:	15.082	С	ond. No.	8.61e	+08			

Figure 32: Best Model - Linear Regression

- Now, all statistical parameters being checked, so this model had all the appropriate things which must be required in our linear regression model.
- Then we checked for the scatter plot for the predicted values and actual values.

Figure 33 : Scatter Plot

- It was a linear strong relationship scatter plot.
- As per the scatter plot, we inferred that the predicted and actuals are very close to eachother. Hence the R2 is high.
- Density plot was as follows:

Figure 34 : Density Plot - Expected CTC

Conclusion

- From the distplot, we inferred that the predicted values and actual values were
 predicting very much likely or in other words we can say they are very much similar to
 each other.
- It means that our linear regression model was very good.

Note: We also build the linear regression model using Sklearn Library, you can refer to it on Jupyter notebook attached with this report.

7. Actionable insights and recommendations to the stakeholder

We need to identify few insights from EDA & Reason being for such pattern observation. We need to reduce further the MAE & RMSE values & reduce the difference within them which can be done by identifying further outliers, by elimination of parameter which has minimal relationship with dependent variables & by model tuning.

We convert the data into 70:30 ratio to train, test & verify the model as user experience to validate the model accuracy.

8. References and Bibliography

- 1. Great Learning class videos
- 2. Tableau

9. Appendix

Figure 35 :EDA 1 - Tableau

Figure 36 : EDA 2 - Tableau

Figure 37: EDA 3 - Tableau

Figure 38 : EDA 4 - Tableau

