```
In [38]:
```

```
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
```

In [39]:

```
traindf = pd.read_csv('mnist_train.csv')
testdf = pd.read_csv('mnist_test.csv')
```

In [40]:

```
traindf.head()
```

Out[40]:

	label	1x1	1x2	1x3	1x4	1x5	1x6	1x7	1x8	1x9	 28x19	28x20	28x21	28x22	28x23	2
0	5	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	
1	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	
2	4	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	
3	1	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	
4	9	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	

5 rows × 785 columns

In [41]:

```
traindf.label.unique()
```

Out[41]:

```
array([5, 0, 4, 1, 9, 2, 3, 6, 7, 8])
```

In [42]:

```
# define x train and y train

xtrain = traindf.iloc[:, 1:].to_numpy()
ytrain = traindf.iloc[:, 0].to_numpy()

# reshape and normalize xtrain => (28x28 pixels and 1 is for black and white)
xtrain = xtrain.reshape([-1, 28, 28, 1])
xtrain = xtrain / 255  # so that it is between 0 to 1 (normalization)
```

In [45]:

```
# define xtest and reshape and normalize this as well

xtest = testdf.iloc[:, 1:].to_numpy()

xtest = xtest.reshape([-1, 28,28, 1])
xtest = xtest / 255

ytest = testdf.iloc[:, 0].to_numpy()
```

In [35]:

```
import tensorflow as tf
models = tf.keras.models
layers = tf.keras.layers

model = models.Sequential()

model.add(layers.Conv2D(filters=64,kernel_size=(3,3),input_shape=(28,28,1),activation=0.3d(layers.MaxPooling2D(pool_size=(2,2)))
model.add(layers.Dropout(rate=0.3))
model.add(layers.Flatten())

model.add(layers.Dense(units=32, activation='relu'))
model.add(layers.Dense(units=10, activation='softmax'))

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accmodel.summary()
```

Model: "sequential_4"

Layer (type)	Output Shape	Param #
conv2d_3 (Conv2D)	(None, 26, 26, 64)	640
<pre>max_pooling2d_3 (MaxPoolin g2D)</pre>	(None, 13, 13, 64)	0
<pre>dropout_3 (Dropout)</pre>	(None, 13, 13, 64)	0
flatten_3 (Flatten)	(None, 10816)	0
dense_6 (Dense)	(None, 32)	346144
dense_7 (Dense)	(None, 10)	330
=======================================	=======================================	========

Total params: 347114 (1.32 MB)
Trainable params: 347114 (1.32 MB)
Non-trainable params: 0 (0.00 Byte)

In [36]:

```
model.fit(xtrain, ytrain, epochs=3, batch_size=1200, validation_split=0.05)
Epoch 1/3
48/48 [=============] - 7s 136ms/step - loss: 0.7548
- accuracy: 0.7948 - val_loss: 0.2207 - val_accuracy: 0.9347
Epoch 2/3
48/48 [============= ] - 8s 172ms/step - loss: 0.2634
- accuracy: 0.9230 - val_loss: 0.1521 - val_accuracy: 0.9603
Epoch 3/3
- accuracy: 0.9460 - val_loss: 0.1165 - val_accuracy: 0.9707
Out[36]:
<keras.src.callbacks.History at 0x2af8b9250>
In [44]:
ypred1 = model.predict(xtest)
ypred = ypred1.argmax(axis = -1)
ypred
313/313 [=========== ] - 0s 1ms/step
Out[44]:
array([7, 2, 1, ..., 4, 5, 6])
```

In [46]:

```
plt.plot(ypred, color='blue')
plt.plot(ytest, color='red')
```

Out[46]:

[<matplotlib.lines.Line2D at 0x29a86ef90>]

In []: