

19 BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENT- UND MARKENAMT

[®] Patentschrift[®] DE 199 11 179 C 1

Aktenzeichen: 199 11 179.0-35 2) Anmeldetag: 12. 3. 1999

43 Offenlegungstag: -

45 Veröffentlichungstag der Patenterteilung: 2. 11. 2000

(5) Int. CI.⁷: H 04 B 7/216

H 04 B 17/00 H 04 B 7/005 H 04 Q 7/38 H 04 Q 7/24

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(73) Patentinhaber:

DeTeMobil Deutsche Telekom MobilNet GmbH, 53227 Bonn, DE

12 Erfinder:

Bemmer, Renè, 53175 Bonn, DE; Zhongrong, Liu, Dr., 53225 Bonn, DE

(56) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

US 58 45 215 A US 57 51 903 A US 57 01 294 A

- (A) Verfahren zur Adaption der Betriebsart eines Multi-Mode-Codecs an sich verändernde Funkbedingungen in einem CDMA-Mobilfunknetz
- Die Erfindung betrifft ein Verfahren zur Adaption der Betriebsart eines Multi-Mode-Codecs an sich verändernde Funkbedingungen in einem CDMA-Mobilfunknetz. Die Aufgabe besteht darin, die Adaption der Codec-Betriebsart beider beteiligter Funkschnittstellen zu koordinieren. Dies wird erreicht, indem während einer bestehenden Kommunikationsverbindung ständig die Qualität der Funkverbindungen auf den Funkstrecken ermittelt wird, wobei bei sich ändernder Funkverbindungsqualität von einer an der Kommunikationsverbindung beteiligten Einrichtung ein Wechsel der Codec-Betriebsart initiiert wird, und die vorgenommene oder vorzunehmende Änderung der Codec-Betriebsart zwischen den übrigen, an der Kommunikationsverbindung beteiligten Einrichtungen ausgetauscht wird.

Beschreibung

Die Erfindung betrifft ein Verfahren zur Adaption der Betriebsart eines Multi-Mode-Codecs an sich verändernde Funkbedingungen in einem CDMA-Mobilfunknetz.

Mobilfunknetze codieren Sprachsignale in einem anderen Verfahren als Festnetze. Die Sprachcodierung, wie sie zwischen Mobilstation (MS) und dem Radio Access Network (RAN) verwendet wird, berücksichtigt – im Gegensatz zur Sprachcodierung im Festnetz – in besonderem Maß die Ausbreitungseigenschaften der Funkstrecke. Für Gespräche zwischen Mobilstationen im gleichen Mobilnetz ist eine Umsetzung auf unterschiedliche Sprachcodierungen (Transcodierung) nicht unbedingt notwendig, wohingegen diese Notwendigkeit bei Gesprächen zwischen Benutzern einer 15 Mobilstation und eines Festnetztelefons besteht. Gespräche zwischen Mobilstationen ohne eine Umsetzung auf unterschiedliche Sprachcodierungen werden transcoderfrei genannt.

Die Ausbreitungsbedingungen einer Funkstrecke sind 20 ständigen Änderungen unterzogen. Dabei handelt es sich zum einen um die Änderungen der Ausbreitungsbedingungen und zum anderen um Interferenzen. Sowohl die Ausbreitungsbedingungen als auch die Interferenzen können sich während einer bestehenden Kommunikationsverbindung schnell ändern. Für die Interferenzen sind Teilnehmer im gleichen Netz oder andere Funksysteme verantwortlich. Je nach gegebenen Ausbreitungsbedingungen sind Anpassungen in der Quellcodierung notwendig.

Um die Qualität der Verbindung bei sich ändernden Be- 30 dingungen der Funkstrecke möglichst aufrecht zu erhalten, kann man in einem CDMA-System folgende Methoden verwenden:

- Adaption der Brutto-Bitrate
- Adaption der Sendeleistung
- Adaption der Codec-Betriebsart: d. h. z. B. Wechseln zu einer robusteren Codec-Betriebsart bei sich verschlechternden Funkbedingungen.

Unter einer robusteren Codec-Betriebsart versteht man eine reduzierte Nettobitrate (Bitrate der Sprachcodierung) und eine dafür erhöhte Kanalcodierung. Unter Codec wird eine Funktion verstanden, die Sprachsignale senderseitig für die Übertragung codiert und empfängerseitig empfangene 45 Sprachsignale decodiert.

Die beschriebenen Methoden werden in Kombination verwendet.

Bisher wurde die Adaption für jede Funkschnittstelle separat vorgenommen. Bei einer MS-zu-MS-Verbindung 50 ben. wurde die Codierung des Sprachsignals auf jeder Funkschnittstelle unabhängig voneinander angepasst. Bei einem Übergang in das drahtgebundene Netz wurde das Sprachsignal jeweils transcodiert. Durch diese doppelte Umsetzung ist eine Unabhängigkeit der Adaptionen auf den beteiligten 55 der Funkschnittstellen gegeben.

In der US 5,701,294 A ist ein zellulares Mobilfunksystem dargelegt, welches in Abhängigkeit von den sich ändernden Bedingungen und der sich ändernden Funkverbindungsqualität auf dem jeweiligen Funkkanal u. a. auch den Sprachcodierer bzw. den Betriebsmodus des Codecs hinsichtlich optimaler und ökonomischer Sprachqualität einstellt. Die Einstellung kann dabei von dem Mobilfunksystem oder von den Mobilstationen des Systems vorgenommen oder kontrolliert werden.

Aus der US 5,751,903 A ist ein Verfahren zum Anpassen der Betriebsart eines Multi-Mode-Codecs (CELP) in einem Mobilfunksystem bekannt, wobei in Abhängigkeit von un-

2

terschiedlichen Signalarten (Sprachsignal/kein Sprachsignal) ein entsprechender Codec-Mode eingestellt wird.

Die US 5,845,215 A beschreibt ein FDMA/TDMA/CDMA-Mobilfunksystem, bei dem ein Codec mit einer halben oder einer vollen Datenrate in Abhängigkeit von den dazu eingesetzten Zeitschlitzen verwendet wird.

Alle drei US-Patente behandeln die Steuerung der Codec-Betriebsart in MS und Transcoder im Netz auf lediglich einer Funkschnittstelle, wobei ein Verfahren für transcoderfreie MS-zu-MS-Verbindungen einer Koordination der Auswahl und Adaption der Codec-Betriebsart auf beiden Funkschnittstellen nicht beschrieben sind. Auch ein spezielles Verfahren für CDMA-Systeme mit Inband- und Outband-Signalisierung wird nicht behandelt.

Alle bekannten Verfahren berücksichtigen nicht die Eigenschaften des CDMA-Systems, insbesondere das Softhandover. Durch die Notwendigkeit des Softhandover im CDMA-System müssen sämtliche an einer Verbindung beteiligten Funkschnittstellen berücksichtigt werden.

Es ist Aufgabe der vorliegenden Erfindung, ein Verfahren zur Adaption der Betriebsart eines Multi-Mode-Codecs an sich verändernde Funkbedingungen in einem CDMA-Mobilfunknetz anzugeben, das eine automatische Adaption der Codec-Betriebsart während einer Kommunikationsverbindung vornimmt, und dadurch eine möglichst effiziente Übertragung von Sprachsignalen im Mobilfunknetz und zwischen Mobilfunknetz und Festnetz erlaubt.

Diese Aufgabe wird durch die Merkmale des unabhängigen Patentanspruchs gelöst.

Wesentliches Merkmal der Erfindung ist es also, daß bei sich ändernder Funkverbindungsqualität diejenige Mobilstation, an deren Luftschnittstelle sich die Funkbedingungen ändern und welche daher die Codec-Betriebsart ändert, die andere Mobilstation im Fall einer MS-zu-MS-Verbindung oder den Transcoder im Fall einer MS-zu-Festnetz-Verbindung ebenfalls zur Änderung der Codec-Betriebsart veranlasst.

Damit wird in vorteilhafter Weise erreicht, dass bei sich ändernden Funkbedingungen auf der Funkstrecke zwischen Mobilstationen und Basisstationen während einer Kommunikationsverbindung automatisch eine Optimierung der verwendeten Codec-Betriebsart auf die augenblicklichen Funkbedingungen erfolgt.

Dies erhöht merklich die Störresistenz und Übertragungsqualität im Mobilfunknetz und trägt zur optimalen Ausnutzung der Netzresourcen, wie z. B. Frequenzökonomie, benötigte Sendeleistungen, etc. bei.

Vorteilhafte Weiterbildungen und Ausführungen der Erfindung sind in den abhängigen Patentansprüchen angegeben

Nachfolgend wird die Erfindung anhand eines Ausführungsbeispiels unter Bezugnahme auf mehrere Zeichnungsfiguren näher beschrieben. Dabei gehen aus den Zeichnungen und ihrer Beschreibung weitere Merkmale und Vorteile der Erfindung hervor.

Es zeigen:

Fig. 1: Ein Beispiel für ein Mobilfunknetz mit tanscoderfreier MS-MS-Verbindung und MS-Festnetzverbindung unter Verwendung eines Transcoders;

Fig. 2: Eine Darstellung der Übertragung der Sprachinformation auf allen Teilstrecken zwischen MS und MS, und MS und Festnetz;

Fig. 3: Ein Beispiel für einen Übertragungsrahmen mit Feldern für Inband-Signalisierung;

Fig. 4: Eine Darstellung der Übertragung der Sprachinformation zwischen MS und MS im Ausgangszustand;

Fig. 5: Eine Darstellung der Signalisierung zur Änderung der Codec-Betriebsart; und

3

Fig. 6: Eine Darstellung nach Änderung der Codec-Betriebsart auf einer Funkstrecke, d. h. asymmetrisches Senden und Empfangen.

Es wird zunächst eine Netzarchitektur gemäß Fig. 1 zugrundegelegt.

Das in Fig. 1 dargestellte CDMA-Mobilfunknetz besteht aus zwei Teilnetzen, dem Radio Access Network (RAN) 1 und dem Core Network (CN) 2. Das RAN 1 umfasst die Knotentypen Radio Network Controller (RNC) 3, auch zu bezeichnen als Basisstationssteuerung, und Node-B 4, auch 10 zu bezeichnen als Basisstation. Im Fall eines soft-handover sind an einer Gesprächsverbindung zwei oder mehrere Node-B 4 beteiligt. Das CN 2 umfasst den Knotentyp U-MSC 5, auch zu bezeichnen als Mobilvermittlungsstelle. Zwischen einer Mobilstation (MS) 6 und dem RAN 1 liegt 15 die Funkstrecke oder Luftschnittstelle. Das CN2 ist mit dem Festnetz 8 (ISDN, PSTN) verbunden. Für das beschriebene Ausführungsbeispiel gelten folgende Annahmen:

- In allen Mobilstationen 6 wird ein Multi-Mode- 20 Codec (MMC) implementiert, d. h. es können unterschiedlichen Sprachcodierungen mit variablen Codierparametern verwendet werden. Bei Multi-Mode-Codecs entspricht ein fester Parametersatz einer Codec-Betriebsart. Die möglichen unterschiedlichen 25 Betriebsarten eines MMC dienen der Adaption der Sprachcodierung an die Bedingungen auf der Funkstrecke.
- Ein Transcoder 7 wird im CN 1 positioniert; dieser dient der Umsetzung der jeweiligen Sprachcodierung 30 zwischen Mobilfunknetz 1, 2 und Festnetz 8.
- Eine MS-zu-MS-Verbindung 10 ist eine transcoderfreie Verbindung, d. h. sie erfolgt ohne eine Umcodierung der Sprache auf dem Verbindungsweg zwischen beiden Mobilstationen 6a, 6b. Dies erfordert, daß die 35 beiden Mobilstationen 6a, 6b für die Verbindung in einer Duplex-Richtung immer die gleiche Codec-Betriebsart verwenden.

Das erfindungsgemässe Verfahren zur Adaption der 40 Codec-Betriebsart für ein in der Fig. 1 dargestelltes Mobilfunknetz arbeitet wie nachfolgend beschrieben und verfügt über folgende Eigenschaften:

- Zwischen den an einer Verbindung beteiligten 45 RNC's 3a, 3b oder zwischen RNC 3 und Transcoder 7 wird eine Inband-Signalisierung benutzt, d. h. Nutzund Signalisierungsinformation werden im gleichen Kanal übertragen.
- In beiden Duplex-Verbindungsrichtungen können 50 station in die Verbindung involviert ist. zur gleichen Zeit unterschiedliche Codec-Betriebsarten verwendet werden, d. h. die Codec-Betriebsart für MS 6a zu MS 6b (die erste MS sendet, die zweite MS empfängt) kann unterschiedlich sein zur Codec-Betriebsart für MS 6b zu MS 6a (die zweite MS sendet, die erste 55 MS empfängt).
- Innerhalb des RAN 1 wird eine Outband-Signalisierung für die Änderung der Codec-Betriebsart verwendet.
- Der RNC 3 trifft die Entscheidung, die Codec-Be- 60 triebsart zu wechseln.
- Der RNC 3 entscheidet bei einem Wechsel der Codec-Betriebsart über den zu verwendenden physikalischen Funkkanal, d. h. über die Parameter der Kanalcodierung, die Brutto-Bitrate und die Sendeleistung für 65 die neue Codec-Betriebsart.

Im folgenden wird angenommen, daß die Anzahl der zur

4

Verfügung stehenden Codec-Betriebsarten N ist und daß die Betriebsart n + 1 robuster als die Betriebsart n ist. L entspricht der maximalen Anzahl der Stufen, die bei einem Wechsel der Codec-Betriebsart übersprungen werden dür-5 fen, wenn die Funkbedingungen sich verbessert haben.

Die Sprachdaten für eine bestimmte Zeitperiode werden im Mobilfunknetz in sequentiellen Rahmen 12 übertragen. Gemäss Fig. 3 entspricht jeder Rahmen 12 dem quellcodierten Sprachsignal 13 und einem Präfix. Die Zeitperiode wird als Rahmenlänge bezeichnet und beträgt beispielsweise 20 ms. Der Präfix besteht aus zwei Feldern 14, 15. Das erste Feld 14 wird als Codec Mode Identification (CMI) bezeichnet. CMI gibt an, welche Codec-Betriebsart für diesen Sprachrahmen 13 verwendet wird. Der Empfänger führt eine Sprachdecodierung gemäß der in CMI angegebenen Betriebsart n durch.

Das zweite Feld 15 wird als Better Radio condition Indication (BRI) bezeichnet. BRI wird verwendet, wenn sich die Funkbedingungen auf dem gesamten Verbindungsweg, d. h. auf zwei Funkstrecken im Fall einer MS-MS-Verbindung 10 und auf einer Funkstrecke im Fall einer MS-Festnetz-Verbindung, verbessert haben, und dadurch ein Wechsel zu einer weniger robusten Codec-Betriebsart durchgeführt werden kann. Ist beispielsweise der Wert BRI = 0, haben sich die Funkbedingungen nicht verbessert. Wird der Wert BRI auf BRI > 1 gesetzt, dann haben sich die Funkbedingungen verbessert. Je grösser der Wert BRI, desto mehr haben sich die Funkbedingungen verbessert.

Fig. 2 gibt an, wie die Sprachinformation auf den jeweiligen Teilstrecken, übertragen wird. Hierbei wird zur Vereinfachung angenommen, daß jeweils nur ein Node-B 4 in die Verbindung involviert ist.

Für den Wechsel der Betriebsart gelten folgende Regeln:

- Ein Wechsel zu einer robusteren Betriebsart wird durchgeführt, wenn sich die Funkbedingungen auf einer der beiden Funkstrecken verschlechtern.
- Ein Wechsel zu einer weniger robusten Betriebsart wird durchgeführt, wenn sich die Funkbedingungen auf beiden Funkstrecken verbessern.

Vor einem Wechsel in eine andere Betriebsart herrscht folgender Ausgangszustand:

Gemäss Fig. 4 besteht zwischen einer ersten MS 6a und einer zweiten MS 6b eine Kommunikationsverbindung. Die Mobilstationen 6a und 6b senden und empfangen in der selben Codec-Betriebsart, die durch das Rahmenpräfix 14a (CMIa) gekennzeichnet ist. Auch hier wird der Einfachheit halber angenommen, daß jeweils nur ein Node-B pro Mobil-

Jeder an der Verbindung beteiligte RNC 3a, 3b empfängt ständig Meßberichte von allen ihm zugeordneten, in die Funkverbindung involvierten Node-B 6a bzw. 6b. Stellt z. B. der der MS 6a zugeordnete RNC 3a fest, daß die Funkbedingungen auf der Luftschnittstelle zwischen dem Node-B 4a und der MS 6a schlechter werden, so ist ein Wechsel der Codec-Betriebsart notwendig.

Auf dem Signalisierungskanal (Outband-Signalisierung) weist der RNC 3a die MS 6a an, eine neue Betriebsart, z. B. n + 1, zu verwenden und gibt zusätzlich den Zeitpunkt der Umschaltung an. Dies erfolgt auf dem Signalisierungskanal. Der Zeitpunkt wird mittels der Rahmenkennung angegeben. Diese Kennung wird zwischen dem RNC 3a und der MS 6a ausgetauscht, um eine gegenseitige Synchronisierung zu gewährleisten.

Da sich die MS 6a mit jedem in die Verbindung involvierten Node-B 4a, 4a.1, 4a.2 synchronisieren muß, werden auf jeder Funkschnittstelle zwischen MS 6a und dem jeweiligen

5

Node-B 4a, 4a.1, 4a.2 unterschiedliche Rahmenkennungen für den inhaltlich gleichen Rahmen 12 verwendet, so wie es in Fig. 5 dargestellt ist. Die MS 6a sendet ab dem angegebenen Zeitpunkt in der neuen Betriebsart n + 1, die durch das Präfix 14b (CMIb) gekennzeichnet ist.

Der RNC 3a empfängt von der MS 6a Sprachsignale in geänderter Betriebsart n + 1 und sendet diese an den RNC 3b weiter. Zusätzlich wird im Nutzkanal, d. h. Inband, die neue CMI 14b, entsprechend nun CMIb, übertragen bzw. signalisiert. Der RNC 3a empfängt Sprachsignale in unverän- 10 8 Festnetz derter Betriebsart n, entsprechend CMIa 14a, von dem RNC 3b, wie es in Fig. 6 dargestellt ist.

Der RNC 3b empfängt den Sprachrahmen 13 in geänderter Betriebsart n + 1 und ermittelt CMI, in diesem Fall CMIb. Der RNC 3b entscheidet aufgrund der Funkbedin- 15 13 Sprachrahmen gungen in seinem Bereich über den physikalischen Kanal (Funkkanal), die Kanalcodierung, die Brutto-Bitrate und Sendeleistung für die neue Codec-Betriebsart n + 1 und teilt dies allen involvierten Node-B's 4b mit. Zugleich kopiert der RNC 3b den Sprachrahmen 12 und sendet diesen an alle 20 involvierten Node-B 4b.

Die MS 6b empfängt den Sprachrahmen 12 in geänderter Betriebsart n + 1 und führt die Sprachdecodierung gemäß CMIb aus. Der Node-B 4b (bzw. alle Node-B's) teilt für jeden physikalischen Kontrollkanal der MS 6b die Kanalco- 25 dierung mit, damit die MS 6b entsprechend die Kanaldecodierung durchführt.

Die MS 6b sendet ab sofort in veränderter Betriebsart entsprechend CMIb.

Damit ist der Zielzustand erreicht, in dem die MS 6a und 30 MMC Multi-Mode-Codec Mehrmodus Codec die MS 6b in geänderter Betriebsart n + 1 senden und empfangen.

Solange sich die Funkbedingungen bei einem RNC 3a bzw. 3b nicht verbessern, enthalten alle Sprachrahmen den Wert BRI = 0. Die augenblickliche Codec-Betriebsart wird 35 beibehalten.

Sobald ein RNC 3a bzw. 3b feststellt, daß sich die Funkbedingungen verbessert haben und ein Wechsel von seiner Seite aus von der momentan verwendeten Codec-Betriebsart n auf n – I möglich ist, teilt er dies der zugeordneten MS 6a 40 bzw. 6b mit. Die MS 6a bzw. 6b sendet daraufhin in ihren Sprachrahmen einen Wert BRI > 0, z. B. BRI = I. Auf beiden Funkstrecken wird jedoch unverändert die bisherige Codec-Betriebsart n verwendet.

Empfängt ein RNC 3a bzw. 3b Sprachrahmen mit BRI = 45 I1 > 0 und sendet Sprachrahmen BRI = I2 > 0, leitet er einen Wechsel der Codec-Betriebsart von n auf n – I ein, wobei I den kleineren Wert aus I1 und I2 darstellt. Vorzugsweise wird also immer die Codec-Betriebsart gewählt, die den Funkbedingungen auf der schlechtesten Teilstrecke ent- 50 spricht.

Die Verfahrensweise für den nachfolgenden Wechsel der Codec-Betriebsart ist identisch mit dem bereits beschriebenen Algorithmus.

Die Adaption der Codec-Betriebsart bei einer MS-Fest- 55 netz-Verbindung stellt einen Sonderfall der angegebenen Verfahren dar. Es betrifft hier einen Wechsel der Codec-Betriebsart in RNC 3 einerseits und im Transcoder 7 andererseits.

In diesem Fall ist die BRI für die vom Transcoder gesen- 60 deten Sprachrahmen, d. h. bei der Verbindung in Downlink oder MS-terminierender Richtung, immer gleich dem maximalen Wert L. Das bedeutet, dass die verwendete Codec-Betriebsart für die Verbindung ins Festnetz (über den Transcoder) keine Rolle spielt. Welche Codec-Betriebsart verwen- 65 det wird, hängt nur von der Funkstrecke von/zur Mobilstation ab.

Zeichnungslegende und Verzeichnis der Abkürzungen

1 RAC

2 CN 5 3, 3a, 3b RNC

4, 4a, 4b Node-B

5, 5a, 5b U-MSC

6, 6a, 6b MS

7 Transcoder

9 Festnetzteilnehmer

10 MS-zu-MS Verbindung

11 MS-Festnetz-Verbindung

12, 12a, 12b Übertragungsrahmen

14, 14a, 14b Präfix CMI

15 Präfix BRI

CDMA Code Division Multiple Access Vielfachzugriff im Codemultiplex

MS Mobile Station Mobilstation

RAN Radio Access Network Mobilfunkteil

RNC Radio Network Controller Basisstationssteuerung

Node-B B-Knoten, Basisstation

CN Core Network Kernnetzwerk

U-MSC U-Mobile Services Switching Center Mobilvermittlungsstelle

PSTN Public Switching Telephone Network Festnetz ISDN Integrated Services Digital Network

TE1 Teilnehmereinheit

CMI Codec Mode Identification Identifikator des Codec-Modus

BRI Better Radio Condition Indication Indikator für bessere Verbindung

Patentansprüche

- 1. Verfahren zur Adaption der Betriebsart eines Multi-Mode-Codecs an sich verändernde Funkbedingungen in einem CDMA-Mobilfunknetz, dadurch gekennzeichnet, dass bei sich ändernder Funkverbindungsqualität diejenige Mobilstation (MS1; MS2), an deren Luftschnittstelle sich die Funkbedingungen ändern und welche daher die Codec-Betriebsart ändert, die andere Mobilstation (MS2; MS1) im Fall einer MS-zu-MS-Verbindung oder den Transcoder (7) im Fall einer MSzu-Festnetz-Verbindung, ebenfalls zur Anderung der Codec-Betriebsart veranlasst.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein Wechsel zu einer robusteren Codec-Betriebsart durchgeführt wird, wenn sich die Funkbedingungen auf einer Seite der an der Verbindung beteiligten Funkstrecken verschlechtern.
- 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein Wechsel zu einer weniger robusten Betriebsart wird durchgeführt, wenn sich die Funkbedingungen auf allen an der Verbindung beteiligten Funkstrecken verbessern.
- 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Entscheidung zum Wechsel der Codec-Betriebsart von Basisstationssteuerungen RNC (3) des Mobilfunknetzes ausgeht.
- 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Basisstationssteuerungen RNC (3) bei einem Wechsel der Codec-Betriebsart über den zu verwendenden physikalischen Funkkanal entscheidet.
- 6. Verfahren nach einem der Ansprüche 1 bis 5, da-

6

25

8

durch gekennzeichnet, dass die Node B's (4) der Basisstationssteuerung RNC (3) über die Funkbedingungen im uplink berichten und die MS (6) via Node B's (4) der Basisstationssteuerung RNC (3) anhand der Messwerte über einen Wechsel der Codec-Betriebsart ent- 5 scheidet.

- 7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass zwischen der Basisstationssteuerung RAN (3) und der MS (6) eine Outband-Signalisierung für die Änderung der Codec-Betriebsart 10 verwendet wird.
- 8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass zwischen den beteiligten Basisstationssteuerungen RNC (3) oder zwischen Basisstationssteuerung RNC (3) und einem Transcoder 15 (7) eine Inband-Signalisierung zum Austausch der verwendeten Codec-Betriebsart benutzt wird.
- 9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Inband-Signalisierung in speziellen Feldern des Übertragungsrahmens (12) 20 erfolgt, wobei ein erstes Feld CMI (14) angibt, welche Codec-Betriebsart für diesen Übertragungsrahmen (12) verwendet wird, und ein zweites Feld BRI (15) eine Anderung der Funkbedingungen der betreffenden Funkschnittstelle anzeigt.
- 10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass in beiden Duplex-Richtungen einer Verbindung zur gleichen Zeit unterschiedliche Codec-Betriebsarten verwendet werden können.
- 11. Verfahren nach einem der Ansprüche 1 bis 10, da- 30 durch gekennzeichnet, dass die Basisstationssteuerung RNC (3) nach ihrer Entscheidung, die Codec-Betriebsart zu wechseln, die Mobilstation MS (6) auf einem Signalisierungskanal zwischen RNC (3) und MS (6) anweist, eine neue Codec-Betriebsart zu verwenden und 35 den Zeitpunkt der Umschaltung angibt.
- 12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass der Zeitpunkt der Umschaltung mittels einer Rahmenkennung zwischen RNC (3) und MS (6) angegeben wird.
- 13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Mobilstation MS (6) ab dem angegebenen Zeitpunkt in einer neuen Betriebsart sendet.
- 14. Verfahren nach einem der Ansprüche 1 bis 13, da- 45 durch gekennzeichnet, dass die Basisstationssteuerung RNC (3) von der Mobilstation MS (6) Übertragungsrahmen (12) mit Sprachsignale in geänderter Coded-Betriebsart empfängt und diese an andere, an der Verbindung beteiligte Basisstationssteuerungen RNC (3) 50 weitergibt.

Hierzu 3 Seite(n) Zeichnungen

55

Nummer: Int. Cl.⁷: Veröffentlichungstag: **DE 199 11 179 C1 H 04 B 7/216**2. November 2000

Nummer: Int. Cl.⁷: Veröffentlichungstag: DE 199 11 179 C1 H 04 B 7/216 2. November 2000

FIG. 4

Nummer: Int. Cl.⁷: Veröffentlichungstag: DE 199 11 179 C1 H 04 B 7/216 2. November 2000

FIG. 5

FIG. 6