Transformers LLMs RAG

Arun sharma K

15/09/2024

Elements of Transformers

Encoder

- Word embedding
- · Position encoding
- Multi-headed self-Attention
- Skip Connections and Layer Normalization
- Feed forward

Transformers

Processes the input sequence and encodes its representation

Decoder

- · Position encoding
- Masked Multi-headed attention
- Encoder-Decoder attention
- Skip Connections and Layer Normalization
- Linear and SoftMax

Generates the output sequence (such as the translated sentence) by attending to both the encoded input and the previously generated output

Encode-Decoder

Transformer types

Multi-headed self-attention

The meaning of the word depends on words that may or may not be in the immediate neighbourhood

Self-Attention is a way to determine this dependency

One of the core elements of Transformers is Multi-headed Self-attention

Each word will look at what word is relevant to it

As part of this exercise, multiple relationships might stem out

Each Self-attention captures one of such relations

Multi-headed attention captures multiple relations

Multi headed self-attention

The meaning of the word depends on words that may or may not be in the immediate neighbourhood

Self-Attention is a way to determine this dependency

One of the core elements of Transformers is Multi-headed Self-attention

	amit	loves	supercars	he	is	driving	а	bugatti	A main (a a
amit									AM-1 Amit 's a
loves									AM-2 About w
supercars									AM-3 Pronoun rei
he									AM-4 Multi-h
is									Self-Att
driving									AM-5 Action
а									
bugatti									AM-6 Motivation

Amit is driving a Bugatti since he loves supercars

Transformers

Feed Forward Neural Network

Self-Attention

Feed Forward

Encoder-Decoder Attention

Self-Attention

All encoders have the same architecture.

All decoders have the same architecture.

The encoder's inputs first flow through a **selfattention** layer. It helps the encoder look at other words in the input sentence as it encodes a specific word

The decoder has SA and FF and also, a layer between them: an attention layer that helps the decoder focus on relevant parts of the input sentence

Each word is embedded into a vector of size 512

One key property of the Transformer, which is that the word in each position flows through its own path in the encoder {positional encoding}, dependencies captured only in SA.

Steps in SA:

- Create three vectors from each of the encoder's input vectors. For each word, we create a Query vector, a Key vector, and a Value vector
- These vectors are created by multiplying the embedding by three matrices that we trained during the training process

Steps in SA:

STEP-1

- Create three vectors from each of the encoder's input vectors. For each word, we create a Query vector, a Key vector, and a Value vector
- These vectors are created by multiplying the embedding by three matrices that we trained during the training process

Steps in SA:

STEP-2

- Calculate scores for each word input against the other words. The score determines how much focus to place on other parts of the input sentence as we encode a word at a certain position
- The score is calculated by taking the dot product of the query vector with the key vector of the respective word we're scoring

Steps in SA:

STEP-3 and 4

- Divide by 8
- Pass the result through a SoftMax operation. SoftMax normalizes the scores so they're all positive and add up to 1

This SoftMax score determines how much each word will be expressed at this position. Clearly the word at its position will have the highest SoftMax score, but it's useful to attend to another word that is relevant to the current word

Steps in SA:

STEP-5 and 6

- multiply each value vector by the SoftMax score. The intuition here is to keep intact the values of the word(s) we want to focus on, and drown-out irrelevant words
- Sum up the weighted value vectors. This produces the output of the self-attention layer at this position

This SoftMax score determines how much each word will be expressed at a position. Clearly the word at its own position will have the highest SoftMax score, but it's useful to attend to another word that is relevant to the current word

Multiheaded attention

Multi-head attention

kicked

Transformer: more details

Transformer: positional encoding

https://d2l.ai/chapter_attention-mechanisms/self-attention-and-positional-encoding.html#subsec-positional-encoding

10.6.3. Positional Encoding

Unlike RNNs that recurrently process tokens of a sequence one by one, self-attention ditches sequential operations in favor of parallel computation. To use the sequence order information, we can inject absolute or relative positional information by adding *positional encoding* to the input representations. Positional encodings can be either learned or fixed. In the following, we describe a fixed positional encoding based on sine and cosine functions [Vaswani et al., 2017]

Suppose that the input representation $\mathbf{X} \in \mathbb{R}^{n \times d}$ contains the d-dimensional embeddings for n tokens of a sequence. The positional encoding outputs $\mathbf{X} + \mathbf{P}$ using a positional embedding matrix $\mathbf{P} \in \mathbb{R}^{n \times d}$ of the same shape, whose element on the i^{th} row and the $(2i)^{\text{th}}$ or the $(2i+1)^{\text{th}}$ column is

$$p_{i,2j} = \sin\left(\frac{i}{10000^{2j/d}}\right),$$
 (10.6.2)
$$p_{i,2j+1} = \cos\left(\frac{i}{10000^{2j/d}}\right).$$

At first glance, this trigonometric-function design looks weird. Before explanations of this design, let us first implement it in the following PositionalEncoding class.

Besides capturing absolute positional information, the above positional encoding also allows a model to easily learn to attend by relative positions

Transformer: positional encoding

Masked Multi headed self-attention

Masked Multi headed self-attention

Example of masking:

"It is going to rain heavily today"

Token to be trained as a response

"It is"

Currently predicted tokens

 $[x.xx, y.yy, -10^8, -10^8, -10^8, -10^8, -10^8]$

Masked matrix for predicting the next word ("going") → Q.K output

[0.65, 0.35, 0, 0, 0, 0, 0]

Attention scores

Large Language Models

Large Language Models Capable of understanding and generating human language Pre-trained on a large corpus of text

data

Learn the complex patterns and rules of human language

task automation, customer service chatbots, subject research, document summarization and content generation (text, images, audio, video, code)

Open-source proprietary

pricing, parameter size, context window, customization options, deployability

Web Interface, API Interface, Third-Party Platforms

Popular LLMs

- 1.GPT-NeoX
- 2.BLOOM
- 3.LLaMA 2
- 4.BERT
- 5.XGen-7B
- 6.Falcon-180B
- 7.Vicuna-33B
- 8.Dolly 2.0 9.CodeGen
- 10.latypus 2

Training Large Language Models

Generative Vs Discriminative

	Generative Models	Discriminative Models
Focus	Joint probability distribution P(x, y)	Conditional probability P(y x)
Goal	Model the underlying data distribution	Learn a decision boundary
Learning Process	Maximize likelihood	Minimize classification error
Applications	Data generation, anomaly detection	Classification, regression

Generative models model P(x,y), which can be factored as:

$$P(x,y) = P(x)P(y|x)$$

or

$$P(x,y) = P(y)P(x|y)$$

P(x): Prior probability of data.

P(y|x): Conditional probability of labels given data.

P(x|y): Likelihood of data given labels.

Generative models

Training Large Language Models

Response ranking based on human annotation

Frame works for building Applications

MetaGPT (multi-agent collaboration for complex problem-solving tasks). utilizes multiple intelligent agents, each with a specialized role, to simulate team-like collaboration, mimicking the way human teams work together.

Frameworks for building LLMs

Feature	LangChain	LangGraph
Workflow Structure	Linear or sequential chains	Graph-based, non-linear workflows
Task Management	Sequential execution of tasks	Flexible execution with nodes and edges
Complexity	Suited for simple and moderately complex tasks	Ideal for complex, interconnected workflows
Dynamic Decisions	Limited support for dynamic branching	Supports conditional and branching logic
Scalability	Moderate scalability	High scalability for multi-agent systems
Primary Use Cases	Single-agent chatbots, RAG systems	Multi-agent collaboration, dynamic pipelines
Multi-Agent Systems	Limited support	Built-in support for multi-agent workflows
Reusability	Limited modularity	High modularity with reusable nodes
Integration	Integrates tools (LLMs, APIs, databases)	Integrates tools with complex dependencies
Key Strengths	Simplifies LLM-driven pipelines	Handles sophisticated, dynamic dependencies
Execution Model	Tasks execute sequentially	Tasks execute based on graph dependencies
Learning Curve	Easier to learn for beginners	Requires understanding of graph structures
Flexibility	Good for most LLM-powered applications	Ideal for highly dynamic and non-linear systems

Vector databases- Options

Database/Library	Description	Features	Use Cases		
	In-memory database with vector	Real-time queries, Redisearch for hybrid queries,			
Redis (Vector Module)	capabilities	widely used	Real-time recommendations, fast hybrid search		
		Developer-friendly, filtering, scoring, local and cloud	Multimedia search, similarity matching,		
Qdrant	Al-oriented vector database	deployments	recommendations		
Com		Combines text and vector search, scalable, k-NN plugin			
ElasticSearch (k-NN)	Search engine with vector search plugin	for similarity queries	Hybrid search, recommendations		
		High performance, supports CPU/GPU, efficient on			
FAISS	Similarity search library	large datasets	R&D, prototyping, academic use		
		Memory-efficient, designed for static datasets, high			
Annoy	Lightweight search library	speed	Music recommendation, small-scale vector search		
		Scalable, serverless, high-dimensional vector search,			
Pinecone	Fully managed vector database	ML workflow integration	NLP, recommendations, image/document search		
		Hybrid search, schema-free ingestion, integrates with			
Weaviate	Open-source vector search engine	OpenAI/Cohere, graph relationships	Semantic search, knowledge graphs, AI search		
	Cloud-native, open-source vector	Distributed deployment, supports multiple distance	Image/video search, recommendations,		
Milvus	database	metrics, integrates with ML frameworks	autonomous driving		
		Fast prototyping, LLM integration, high-performance			
Chroma	AI-focused vector database	querying	Conversational AI, document embeddings		
		Integrates text/structured/vector search, customizable	,		
Vespa	Real-time search engine	supports ANN search	E-commerce search, analytics, personalization		

Vector databases-Tasks

Task	Description	Examples
	Finding vectors in the database closest to a given	Searching for similar documents, recommending products, or finding visually
Similarity Search	query vector based on similarity metrics.	similar images.
	Efficiently finding nearest neighbors for high-	
Approximate Nearest Neighbour (ANN)	dimensional data, trading off exact accuracy.	Real-time recommendation systems, image deduplication, multimedia retrieval.
	Combining vector similarity search with traditional	Searching for documents by filters like publication year, or products within a price
Hybrid Search	queries or metadata filtering.	range.
	Grouping vectors into clusters based on similarity to	Segmenting customer profiles, identifying communities, grouping similar
Clustering	identify patterns or categories.	documents.
	Enabling searches that rely on the meaning of queries	Retrieving documents answering user queries, searching images based on text
Semantic Search	rather than exact matches.	descriptions.
	Providing personalized recommendations by	
Recommendation Systems	comparing user or item embeddings.	Suggesting movies, books, or music; recommending products based on user history.
	Identifying vectors that deviate significantly from the	Detecting fraud in transactions, spotting unusual user behavior, identifying outlier
Anomaly Detection	norm in a dataset.	images.
	Using dimensionality reduction to visually explore	
Data Exploration and Visualization	high-dimensional data.	Analyzing cluster distributions, visualizing relationships between data points.
	Handling searches across different data types like text,	
Multi-Modal Search	images, and audio.	Searching for images similar to text descriptions, or videos matching audio queries.

Vector databases-Tasks

Task	Description	Examples		
Vector Ingestion	Adding vector embeddings and associated metadata to the database.	Uploading image embeddings or document embeddings with metadata.		
Updating and Deleting Vectors	Modifying or removing embeddings and their metadata.	Updating embeddings for products or removing outdated data points.		
Real-Time Querying	Handling live, low-latency vector searches for instant responses.	Recommending products in real-time or matching live queries with stored embeddings.		
Ranking and Scoring	Assigning relevance scores to vectors based on similarity to the query and metadata constraints.	Ranking search results based on user preferences or product relevance.		
Index Optimization	Building and maintaining efficient indices to ensure fast retrieval of vectors.	Constructing tree or hash-based indices for large datasets, tuning for speed and accuracy.		

Vector databases (in-memory databases) used to enable intelligent search, recommendations, and scalable real-time querying, making them critical for Al-driven applications

LangChain

LangChain is an open-source framework designed to simplify the process of integrating LLMs with external data sources, tools, and workflows to create intelligent, context-aware applications like chatbots, retrieval-augmented generation (RAG) systems.

Core Components of LangChain

1.LLM Wrapper:

• Interfaces for interacting with LLMs (OpenAI, Cohere, Hugging Face, etc.).

2.Chains:

• Workflow logic that connects multiple steps, such as generating a prompt, calling an API, or retrieving data.

3.Memory:

• State management to retain conversation context over multiple interactions.

4.Agents:

• Autonomous decision-making modules that allow LLMs to choose and execute tasks dynamically.

5.Tools and Connectors:

• Pre-built connectors for external tools (e.g., APIs, databases, Python functions).

6.Retrievers:

• Interfaces to search and retrieve data from vector databases like Pinecone, Weaviate, and Milvus.

7.Prompts:

• Utilities for creating and managing prompts, including template generation and formatting.

RAG

Application using RAG

- A model trained in 2023
- Cannot answer who won the world cup in 2024

- A model trained in 2023
- Can answer who won the world cup in 2024

The generative AI model training strategy consists of the 'found content' and the 'question asked' in the prompt

Datasets

- General purpose:
- https://commoncrawl.org/
- https://dumps.wikimedia.org/

Handson-1

 You are building a news aggregation app. You want to group the news articles based on the content into different categories. The app has a filter based on which you channel only news articles of specific category (selected by the user)

Handson-1

 You are building a news aggregation app. You want to group the news articles based on the content into different categories. The app has a filter based on which you channel only news articles of specific category (selected by the user)

Handson-2

 You are building an application to collect feedback from the customers in restaurants and provide a response after receiving a feedback.

