Московский физико-технический университет Физтех-школа радиотехники и компьютерных технологий

Лабораторная работа № 3.4.5

Петля гистерезиса (динамический метод)

Работу выполнил: Шурыгин Антон Б01-909

г. Долгопрудный 2020 год

1 Цель работы

Исследование петель гистерезиса ферромагнитных материалов с помощью осциллографа.

В работе используются: понижающий трансформатор, реостат, амперметр и вольтметр (мультиметры), резистор, делитель напряжения, интегрирующая цепочка, электронный осциллограф, тороидальные образцы с двумя обмотками.

2 Теоретическая часть

Магнитную индукцию удобно определять с помощью ЭДС, возникающей при изменении магнитного потока Φ в катушке, намотанной на образец: $E=-\frac{d\Phi}{dt}$.

Пусть катушка плотно обхватывает образец, и индукция ${\bf B}$ в образце однородна. Тогда $\Phi=BSN$, где N - число витков в измерительной катушке, а S – число витков. Подставим Φ в формулу ЭДС, после интегрирования найдем:

$$|B| = \frac{1}{SN} \int Edt$$

Таким образом, для определения B нужно проинтегрировать сигнал, наведенный меняющимся магнитным полем на измерительную катушку, намотанную на образец.

Для интегрирования сигнала применяют интегрирующие схемы. На рис.1 изображена простейшая из них. При этом сопротивление R заметно превышает сопротивление конденсатора ($U \ll U$).

В данном случае $I \approx U/R$, а напряжение на емкости

$$U = qC = \frac{1}{C} \int I dt \approx \frac{1}{RC} \int U dt$$

Чем больше постоянная времени $\tau=RC$ превосходит характерное время процесса, тем этот вывод ближе к истине. Для синусоидальных напряжений $U_{\text{вых}}=U_{\text{вх}}/RC\Omega$, где Ω - частота сигнала.

Обозначив параметры интегрирующей ячейки через R,C,N, получим:

$$|B| = RCSNU$$

3 Экспериментальная установка

Ток в обмотке N_0 измеряется мультиметром А. Напряжение с сопротивления R_0 , включенного последовательно с обмоткой N_0 , подается на вход X электронного осциллографа (ЭО). Это напряжение пропорционально току в обмотке N_0 , а следовательно, и напряженности H магнитного поля в образце.

Для измерения магнитной индукции B с измерительной обмотки N_i на вход интегрирующей NC-цепочки подается напряжение U_{BX} , пропорциональное производной B, а с выхода снимается напряжение $U_{EX}=U_C$, пропорциональное B и подается на вход Y.

Замкнутая кривая, возникающая на экране, воспроизводит в некотором масштабе (различном для X и Y) петлю гистерезиса. Необходимо провести калибровку каналов X и Y ЭО и установить масштабы изображения. Для этого надо узнать, каким напряжениям (или токам) соответствуют амплитуды сигналов, видимых на экране, и каким значениям B и H соответствуют напряжения (или токи).

Для измерения напряжения с помощью осциллографа:

$$2U_{X,0} = 2x \cdot K_X;$$
 $2U_{Y,0} = 2y \cdot K_Y;$ (1)

$$H = \frac{IN_0}{2\pi R} \tag{2}$$

$$|B| = \frac{R_u \cdot C_u}{SN_u} U_{ex} \tag{3}$$

Проверка калибровки горизонтальной оси Θ 0 с помощью амперметра: (при закороченной обмотке N_0)

$$m_X = 2R_0\sqrt{2}I_{ef}/(2x)$$
 (4)

Проверка калибровки вертикальной оси ЭО с помощью вольтметра: (при отключенном тороиде)

$$m_X = 2R_0 \sqrt{2} I_{ef} / (2x) \tag{5}$$

Для измерения постоянной времени *RC*-цепочки:

$$\tau = RC = \frac{U_{in}}{\Omega U_{ex}} \tag{6}$$

4 Ход работы

4.1 Петля гистерезиса на экране ЭО

Соберем схему согласно рисунку выше, подготовим приборы к работе и включим схему в сеть. Подберем ток питания в намагничивающей обмотке и коэффициенты усиления ЭО, так, чтобы предельная петля гистерезиса занимала большую часть экрана, но при этом исчезли "усы". Проверим центровку вертикальных и горизонтальных лучей.

Для каждого материала зафиксируем предельную петлю и снимем начальную кривую намагничивания, плавно уменьшая ток до нуля и отмечая вершины наблюдаемых частных петель. Затем восстановим предельную петлю, измерим на экране двойные амплитуды для коэрцитивной силы [2x(c)] и индукции насыщения [2y(s)]. Запишем соответствующие значения K_x и K_y . Занесем полученные измерения в таблицу 1.

Параметры схемы: $R_0=0,3$ Om, $R_u=20$ kOm, $C_u=20$ мкФ. Представим фотографии трех предельных петель гистерезиса для трех различных тороидов:

Таблица 1: Результаты измерений

,	Пермаллой	Феррит	Кремнистое железо
K_X , м $\mathrm{B}/\mathrm{дел}$	100	20	50
K_Y , м $\mathrm{B}/\mathrm{дел}$	100	20	50
I_{ef} , MA	255	210	650
$2\pi R$, cm	24	25	10
N_0 ,витков	35	40	40
N_L ,витков	220	400	400
S , 2	3,8	3,0	1,2
Коэрц. сила $2x(c)$, дел.	0,6	0,6	1,6
Индукц нас. $2y(s)$, дел.	4,4	2	3,0

Предельная кривая. Пермаллой

Начальная кривая. Пермаллой

Предельная кривая. Феррит

Начальная кривая. Феррит

Предельная кривая. Кремнистое железо

Предельная кривая. Кремнистое железо

4.2 Проверка калибровки оси X ЭО с помощью амперметра

Отключим намагничивающую обмотку N_0 от цепи, подберем такой ток через R_0 с помощью автотрансформатора, при котором горизонтальная прямая занимает большую часть экрана. Рассчитаем чувствительность канала m_X по формуле и сравним с выбранным K_X .

Данные, полученные при измерении: 2x=7.0 , $I_{ef}=155$ mA, $R_0=0.3$ Om, $K_x=20$ мВ.

Расчет:

$$m_x = \frac{2R_0\sqrt{2}I_{ef}}{(2x)}$$

$$m_x = \frac{2\cdot 0.3\sqrt{2}\cdot 155}{7.5} \approx 19,4$$

Каллибровка проведена успешно.

4.3 Проверка калибровки оси Y ЭО с помощью вольтметра

Разберем цепь тороида; подберем с помощью автотрансформатора напряжение, при котором вертикальная прямая занимает большую часть экрана. Измерим двойную амплитуду сигнала. Определим эффективное значение напряжения.

Данные, полученные при каллибровке: 2y=8 делений, $U_{ef}=0.13$ В, $K_y=50$ мВ.

Рассчеты:

$$m_y = \frac{2\sqrt{2}U_{ef}}{(2y)}$$

$$m_y = \frac{2\sqrt{2} \cdot 130}{8} \approx 46$$

Каллибровка проведена успешно.

4.4 Определение au - постоянной времени RC-цепочки

Определим напряжения на входе и выходе интегрирующей ячейки: подключим Y-вход и отключим X-вход; установим чувствительность $K_Y \approx$

n В/дел. подберем такой ток (с помощью реостата), при котором горизонтальная прямая занимает большую часть экрана. Определим входное напряжение на RC-цепочке. Переключим Y-вход ЭО к интегрирующей емкости и определим U_{ex} . Рассчитаем постоянную времени τ .

Напряжение на входе ячейки $U_{in}=2$ В, напряжение на выходе ячейки $U_{out}=12$ mB, $\Omega=50$ Γ ц.

С одной стороны:

$$\tau = R_u C_u = 400 \; msec$$

С другой стороны:

$$\tau = RC = \frac{U_{in}}{\Omega U_{ex}} = 333 \, msec$$

Таким образом, проверили справедливость формул () и (), т.е. выполнение $\tau=RC\approx \frac{U_{in}}{\Omega U_{ex}}$

4.5 Дифференциальная магнитная проницаемость

Вычислим максимальные значения дифференциальной магнитной проницаемости для каждого из трех образцов по формуле:

$$\mu_{dif} = \frac{1}{\mu_0} \frac{dB}{dH} \tag{7}$$

где μ_0 - магнитная постоянная ($\mu_0 \approx 1,256~H/A^2$), а значение $\frac{dB}{dH}$ определим по графикам (максимальный наклон касательных к петлям гистерезиса, который достигается в точках с B=0, т.к. эти точки находятся наиболее далеко от областей насыщения).

Также рассчитаем H_c , B_s по формулам (2), (3), учтя, что полученнеы значения необходимо домножить на число снятых делений.

Пусть $[2x(c)] = l_c, [2y(s)] = l_s.$

Также пусть $\sigma_R=0.0005$ м, $\sigma_{l_c}=\frac{l_c}{10}$, аналогично $\sigma_{l_s}=\frac{l_s}{10}$, $\sigma_S=2\sigma_r=0.001$.

Погрешности $\sigma_{H_c}\sigma_{B_s}$ рассчитаем по формулам:

$$\sigma_{H_s} = H_s \cdot \sqrt{\left(\frac{\sigma_R}{R}\right)^2 + \left(\frac{\sigma_{l_c}}{l_c}\right)^2} \tag{8}$$

$$\sigma_{B_s} = B_s \cdot \sqrt{\left(\frac{\sigma_S}{S}\right)^2 + \left(\frac{\sigma_{l_s}}{l_s}\right)^2} \tag{9}$$

Результаты занесем в итоговую таблицу.

Таблица 2: Итоговые результаты

	,	1 0	
	Кремнистое железо	Пермаллой	Феррит
H_c , A/M	172.8 ± 8.6	44.6±2.2	67.2 ± 3.4
B_s , Тл	1.25 ± 0.06	0.20 ± 0.01	0.080 ± 0.004
$\mu^{\text{max}}, 10^3$	9.8	50	2.7

5 Вывод

Провели исследование петель гистерезиса трех ферромагнитных материалов (кремнистое железо, пермаллой и феррит). Для них мы построили начальные кривые гистерезиса для каждой из петель, нашли коэрцитивную силу и индукцию насыщения для каждого образца, оценили максимальные значения дифференциальной магнитной проницаемости для каждого образца, а также произвели калибровку осей ЭО и нашли постоянную RC-цепочки. Все экспериментально полученные результаты совпали с табличными кроме H_c и $\mu^{\rm max}$ для Пермаллоя — магнитная проницаемость достаточно меньше табличного значения, вследствие чего, скорее всего не совпало и значения для H_c . Такое отклонение можно связать стем, что образец может быть довольно старым и изношенным, из-за чего у него и поменялись стандартные магнитные свойства. Полученные характеристики для данных материалов представляют практический интерес, т.к. часто используются в трансформаторах, дросселях, машинах переменного тока и пр.