МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Лабораторная работа №4 «Анализ и моделирование систем с цифровым ПД-регулятором» по дисциплине «Компьютерное управление мехатронными системами»

Выполнил: студент гр. R3425 Борисов М. В. Преподаватель: Ловлин С. Ю.

1 Цель работы

- 1. Исследовать принцип работы цифрового ПД-регулятора
- 2. Исследовать компенсацию постоянной времени апериодического звена с помощью $\Pi \mathcal{A}$ -регулятора
- 3. Синтезировать систему с ОУ и ПД-регулятором
- 4. Показать эквивалентность аналоговой и цифровой систем

2 Дано

$$K_1 = 0.956, K_2 = 1.009, T_1 = 1.092$$

3 Выполнение работы

3.1 Исследование цифрового ПД-регулятора

Цифровой ПД-регулятор отличается от аналогого наличием времени дискретезации T_0 , определяющим характеристики регулятора.

Рис. 1: Система исследования цифрового ПД-регулятора

Рис. 2: Сравнение аналогового и цифрового ПД-регулятора

На графике видно, что идеальный аналоговый $\Pi Д$ –регулятор имеет реакцию в виде мгновенного импульса (δ – функции) в момент скачка задания после чего сразу принимает установившееся значение согласно пропорциональному коэффициенту. Цифровой $\Pi Д$ –регулятор, в свою очередь, в момент скачка задания не имеет мгновенного импульса, но принимает некоторое конечное значение на период дискретизации. По прошествию этого времени $\Pi Д$ –регулятор принимает установившееся значение.

3.2 Компенсация постоянной времени

Рис. 3: Система исследования компенсации постоянной времени

Проведём моделирование системы с последовательным соединением ПД-регулятора и апериодического звена с постоянной времени T_1 . Примем $K_{pa}=K_p=1$ и $K_{da}=K_d=T_1$, время дискретизации $T_0=0.1$.

Рис. 4: Сравнение аналогового и цифрового ПД-регулятора

На графике видно, что при данных условиях реакции систем практически совпадают и требуют некоторого времени до достижения установившегося значения. Что означает наличие некоторой нескомпенсированной постоянной времени.

3.3 Методы расчёта K_d

Рис. 5: Система исследования методов расчёта K_d

Для компенсации остаточной постоянной времени необходимо уточнить коэффициенты регулятора. Коэффициент дифференцирующей составляющей цифрового ПД-регулятора K_d можно посчитать зная коэффициент K_{da} аналогового ПД-регулятора и время дискретизации T_0 двумя методами:

$$K_d = \frac{K_{da}}{T_0}$$

$$K_d = \frac{1}{\exp\left(\frac{T_0}{K_{da}} - 1\right)}$$

Рис. 6: Сравнение аналогового и цифрового ПД-регулятора при $K_d = \frac{K_{da}}{T_0}$

Рис. 7: Сравнение аналогового и цифрового ПД-регулятора при $K_d = \frac{1}{\exp\left(\frac{T_0}{K_{da}} - 1\right)}$

По графикам видно, что оба метода компенсируют остаточную постоянную времени (не считая время дискретизации). Однако первый способ менее точен, из-за чего возникает значительное перерегулирование сигнала и требуется время до достижения установившегося значения.

Второй способ напротив не имеет перерегулирования и реагирует сразу (за один период дискретизации), опережая аналоговый регулятор.

3.4 Синтез системы с ПД регулятором

Вывод ПД-регулятора

Допустим производится настройка системы на технический оптимум.

$$W_{\text{oy}}(s) = \frac{K_1 K_2}{s(T_1 s + 1)}$$
 — передаточная функция объекта управления

$$W_{
m oy}(s)=rac{K_1K_2}{s(T_1s+1)}$$
 — передаточная функция объекта управления $W_{
m pc}(s)=rac{1}{2T_\mu s(T_\mu s+1)}$ — передаточная функция разомкнутой системы.

$$W_{\text{per}}(s) = \frac{W_{\text{pc}}(s)}{W_{\text{oy}}(s)} = \frac{\frac{1}{2T_{\mu}s(T_{\mu}s+1)}}{\frac{K_1K_2}{s(T_1s+1)}} = \frac{1}{2T_{\mu}K_1K_2}\frac{T_1s+1}{T_{\mu}s+1}$$

Синтез системы без запаздывания аналогового сигнала 3.4.2

Составим модель в которой будем управлять объектом с помощью ПД-регулятора.

Рис. 8: Система без запаздывания аналогового сигнала

Рис. 9: Сравнение аналогового и цифрового ПД-регулятора

На графике видно существенную разницу в реакциях аналоговой и цифровой систем. Цифровой регулятор имеет более колебательный, длительный переходный процесс и заметно большее перерегулирование чем аналоговый, что связано с запаздыванием из-за наличия времени дискретизации.

3.4.3 Синтез системы с запаздыванием аналогового сигнала

Для компенсации запаздывания проделаем те же операции, что в предыдущих работах – внесём запаздывание в аналоговую систему и компенсируем его с учётом $T_{\mu}=T_{\mu r}+\frac{T_0}{2}$.

Рис. 10: Система с запаздыванием аналогового сигнала

Рис. 11: Сравнение аналогового и цифрового ПД-регулятора

На графике видно, что после компенсации запаздывания реакции систем снова стали совпадать.

4 Вывод

В работе был изучен цифровой ПД-регулятор, его характеристики и отличия от аналогового регулятора.

Изучены различные методы расчёта коэффициента дифференцирующей составляющей цифрового ПД-регулятора и показано, что метод с экспонентой является более точным, однако его использование может быть ограничено точностью вычислений цифровой системы. В таком случае возможно применение более простого соотношения $K_d = \frac{K_{da}}{T_0}$.

Изучено явление запаздывания сигнала и возможность компенсации с помощью представления звена запаздывания как апериодического первого порядка.

Также было показано, что возможно синтезировать систему с цифровым ПД-регулятором эквивалентную аналоговой с заданными параметрами, однако прямо использовать коэффициенты аналоговой системы в цифровой в данном случае нельзя и необходимо пользоваться одним из рассмотренных соотношений для расчёта коэффициентов.