Ottica e Laboratorio - canale M-Z

Relazione sulla prima esperienza di laboratorio

L. Pietropaoli

27 settembre 2024

1 Modello teorico

Quando si indaga la (auto)coerenza spazio-temporale di un laser a He-Ne, un interferometro come quello di Michelson è utile per studiare la funzione di mutua correlazione (Γ_{12}) e il grado di correlazione (γ_{12}) dei fasci laser splittati (1 e 2):

$$\Gamma_{12}(\tau) = \langle E(t) \, E^*(t+\tau) \rangle_t \; ; \qquad \gamma_{12}(\tau) = \frac{\Gamma_{12}(\tau)}{\sqrt{\Gamma_{11}(\tau=0) \, \Gamma_{22}(\tau=0)}} = \frac{\Gamma_{12}(\tau)}{\sqrt{I_1 \, I_2}} \; ; \qquad \tau = \frac{\text{OPD}}{c} = \frac{2 \, |d_2 - d_1|}{c} \; .$$

Con I è indicata l'intensità del campo elettromagnetico (E) emesso da una sorgente luminosa, che se risulta dalla sovrapposizione delle due componenti precedentemente divise e poi ricongiunte dal beam splitter, sarà

$$I = \langle E E^* \rangle_t = \langle (E_1 + E_2) (E_1^* + E_2^*) \rangle_t = \langle |E_1|^2 \rangle_t + \langle |E_2|^2 \rangle_t + 2 \Re \langle E_1 E_2^* \rangle_t$$

Nella presente esperienza di laboratorio si è misurata una quantità che prende il nome di visibilità,

$$V(\tau) = \frac{2\sqrt{I_1 I_2}}{I_1 + I_2} |\gamma_{12}(\tau)| , \qquad (1.1)$$

e si è voluto inferire un'espressione per il valore assoluto del grado di correlazione (che in generale, per inciso, è una funzione complessa), che si calcola invertendo l'Equazione 1.1:

$$\left|\gamma_{12}(\tau)\right| = \frac{I_1 + I_2}{2\sqrt{I_1 I_2}} V(\tau) \quad .$$
 (1.2)

Se ci si restringe a voler studiare la coerenza temporale del laser - che è il caso dell'interferometro di Michelson, in cui un fotodiodo rileva la sovrapposizione dei fasci ricongiunti, dopo che quest'ultima è magnificata attraverso una lente che inoltre ne attenua l'intensità - si può calcolare la visibilità dalle misure dei massimi di oscillazione nelle frange di interferenza dell'intensità luminosa:

$$V(\tau) = \frac{I_{\text{MAX}} - I_{\text{min}}}{I_{\text{MAX}} + I_{\text{min}}} \quad . \tag{1.3}$$

2 Dati sperimentali

I punti raccolti e altri dati utili sono visibili in Tabella 1 e Tabella 2. Per quanto riguarda la valutazione dell'errore sulle misure di intensità I_1 e I_2 , effettuate oscurando uno specchio alla volta, si è tenuto conto sia della scala e del fatto che a tale scala la lettura della misura fosse meglio effettuata come una media delle fluttuazioni - giudicate stocastiche - del valore entro un certo intervallo, ad esempio:

$$\langle I_{1}^{[0]} \rangle = \frac{1}{2} \left(\max \{ I_{1}^{[0]} \} + \min \{ I_{1}^{[0]} \} = \frac{1}{2} \left(72.4 + 65.0 \right) \text{mV} = 68.7 \text{ mV}$$

$$\sigma_{I_{1}} = \frac{\text{scala}}{10} = 0.2 \text{ mV} \left(\approx 0.3\% \right) \quad \text{oppure} \quad \sigma_{I_{1}} = \frac{1}{2} \left(\max \{ I_{1}^{[0]} \} - \min \{ I_{1}^{[0]} \} \right) = 3.7 \text{ mV} \left(\approx 5.4\% \right)$$

Come si vede, in quadratura l'incertezza di scala viene sovrastata da quella calcolata sull'intervallo di oscillazione; quest'ultima sembra perciò sufficientemente accurata per essere affiancata alle misure di intensità dei singoli fasci splittati. In maniera simile - e, laddove i contributi fossero confrontabili, facendo il calcolo preciso - sono state stimate le incertezze sulle misure di corrente minima e massima, mentre il valore atteso è stato stimato con una misura diretta al cursore.

3 Analisi e risultati

Si vuole inferire essenzialmente la lunghezza della cavità del laser L e il suo tempo di coerenza τ_c , nonché quanti siano i modi di oscillazione del laser. L'espressione, con cui fittare i dati variando N (numero di modi), che esprime il grado di coerenza è

$$\frac{|\gamma(\tau)|}{N} = \frac{e^{-\delta (|\tau|/2)}}{N} \frac{\sin(N \Delta \omega \frac{\tau}{2})}{\sin(\Delta \omega \frac{\tau}{2})} \; ; \qquad \delta \equiv \frac{2}{\tau_c} \; ; \qquad \Delta \omega \; (= \text{FSR}) = \frac{\pi \, c}{\Delta L} \; .$$

Essendo il caso N=1 un esponenziale decrescente, si indagano i casi N>1. Inoltre, per $N\geq 4$, si riscontra che con i bounds¹ opportunamente inseriti nel fit, si osservano valori della visibilità maggiori di 1: poiché per costruzione non stiamo studiando la risonanza, scartiamo questi casi. Restano i casi N=2 e N=3: in Figura 1 si vedono i risultati ottenuti. Calcolando il χ^2 per i due casi si ottiene

$$\chi^2 = \frac{\sum_{k=1}^{15} (\mathrm{E}[|\gamma_k|] - |\gamma_k|)^2}{\sigma_{|\gamma_k|}^2} \approx \begin{cases} 99 & N_{\text{modi}} = 2\\ 142 & N_{\text{modi}} = 3 \end{cases},$$

su un valore atteso per il χ^2 di questa misura pari a $N_{samples}$ – d.o.f. = 15 – 2 = 13.² Sembra, dai valori di tabella reperibili su qualsiasi sito web, che la misura non sia accettabile a nessun grado di confidenza. Ovviamente non è sensato concludere che l'esperimento è stato un fallimento: il limitato numero di misure non ha permesso, probabilmente, di comprendere più a fondo l'andamento della funzione di coerenza, e questo si è riflettuto nell'assegnare incertezze (preponderantemente strumentali) ai punti in sottostima rispetto a ciò che si sarebbe dovuto fare per ottenere un valore di χ^2 più basso. Tuttavia, come si può osservare anche in Figura 1, un buon discriminante lo costituisce la stima dei parametri τ_c e ΔL , che risultano fisicamente sensati in entrambi i casi, ma nel caso N=3 sono da scartare in base ai valori della lunghezza di cavità riportati nel datasheet. Concludiamo, pertanto, che il modello da considerare migliore per descrivere il laser studiato è quello a **due modi** di oscillazione, con un **tempo di coerenza** $\tau_c = (4.4 \pm 1.1)$ ns e una **lunghezza di cavità** $\Delta L = (40.9 \pm 1.7)$ cm, compatibile a una sigma con il valore di datasheet.

Figura 1: A sinistra, grafico dei punti sperimentali per la visibilità e il grado di coerenza in funzione del tempo, con le relative incertezze su tutte le variabili. A destra, il grafico dei fit ai punti usando le versioni a due e tre modi della funzione evidenziata.

¹Il programma impiegato per implementare la regressione ha la possibilità di ricevere delle condizioni sui parametri da inserire nel fit. Questo è diventato necessario poiché, visto l'esiguo numero di punti che si è riusciti a prendere in laboratorio durante l'esperienza, senza alcun intervento l'algoritmo collassava sul fit esponenziale, ossia con tempo di coerenza che tende a zero. Allora, oltre a chiedere un tempo di coerenza maggiore di zero, si è imposto che la lunghezza della cavità laser rientrasse nei parametri esposti nel datasheet dell'oggetto usato (https://www.thorlabs.com/thorproduct.cfm?partnumber=HNL050L#ad-image-0 - lunghezza interna 400.56 mm).

 $^{^2}$ I due gradi di libertà sono da attribuire all'inferenza dei parametri δ e $\Delta\omega$, da cui poi si ottengono τ_c e ΔL .

Osservazioni sperimentali (15 punti)										
	$d_1 \text{ (cm)}$	$I_1 \text{ (mV)}$	$I_2 \text{ (mV)}$	sc. (mV)	I_{\min} (mV)	$I_{\mathrm{MAX}} \; (\mathrm{mV})$	sc. (mV)			
d_1	9.0 ± 0.1	66.7 ± 4.2	75.5 ± 4.1	5	10 ± 10	268 ± 10	50			
$d_1 + 1 \cdot \Delta d$	11.5 ± 0.1	66.7 ± 4.2	64.5 ± 3.4	5	24 ± 10	232 ± 10	50			
$d_1 + 2 \cdot \Delta d$	14.0 ± 0.2	66.7 ± 4.2	65.7 ± 3.2	5	38 ± 10	220 ± 10	50			
$d_1 + 3 \cdot \Delta d$	16.5 ± 0.3	66.7 ± 4.2	58.9 ± 3.1	5	66 ± 8	180 ± 8	20			
$d_1 + 4 \cdot \Delta d$	19.0 ± 0.4	66.7 ± 4.2	62.7 ± 2.9	5	77 ± 8	176 ± 8	20			
$d_1 + 5 \cdot \Delta d$	21.5 ± 0.5	66.7 ± 4.2	61.2 ± 3.1	5	82 ± 8	186 ± 8	20			
$d_1 + 6 \cdot \Delta d$	24.0 ± 0.6	66.7 ± 4.2	57.2 ± 3.3	5	91 ± 6	149 ± 6	10			
$d_1 + 7 \cdot \Delta d$	26.5 ± 0.7	66.7 ± 4.2	48.7 ± 3.4	5	106 ± 6	119 ± 6	10			
$d_1 + 8 \cdot \Delta d$	29.0 ± 0.8	121 ± 3	76.8 ± 3.1	5	182 ± 6	203 ± 6	10			
$d_1 + 9 \cdot \Delta d$	31.5 ± 0.9	121 ± 3	82.6 ± 3.1	5	170 ± 6	227 ± 6	10			
$d_1 + 10 \cdot \Delta d$	34.0 ± 1.0	121 ± 3	82.9 ± 3.1	5	169 ± 6	230 ± 6	10			
$d_1 + 11 \cdot \Delta d$	36.5 ± 1.1	121 ± 3	68.5 ± 3.2	5	120 ± 6	249 ± 6	10			
$d_1 + 12 \cdot \Delta d$	39.0 ± 1.2	121 ± 3	56.7 ± 3.2	5	111 ± 6	237 ± 6	10			
$d_1 + 13 \cdot \Delta d$	41.5 ± 1.3	121 ± 3	65.9 ± 3.5	5	110 ± 6	252 ± 6	10			
$d_1 + 14 \cdot \Delta d$	44.0 ± 1.4	121 ± 3	61.5 ± 3.5	5	110 ± 6	245 ± 6	10			

Tabella 1: Punti sperimentali. Si osservi che ai fini della misura abbiamo bisogno delle variabili somma e differenza di I_{\min} e I_{MAX} , quindi in prima analisi non è tragico aver misurato ad esempio il primo minimo di intensità con un'incertezza relativa così alta. La porzione di tabella evidenziata in giallo si riferisce a misure in cui la lente ottica che si frapponeva tra il beam splitter e il fotodiodo è stata avvicinata a quest'ultimo in un tentativo di pulire l'errore relativo sull'output visualizzato all'oscilloscopio concentrando il fascio.

Altre misure utili						
grandezza	valore	unità	descrizione			
d_2	8.1 ± 0.1	cm	specchio fisso			
ν	≈ 8	Hz	frequenza onda triangolare piezoelettrico			
Δd	2.5 ± 0.1	cm	distanza tra due buchi del tavolo ottico			
c	3×10^{8}	${ m ms^{-1}}$	velocità della luce			
fondo	3.32 ± 2.04	mV	rumore luminoso di fondo (luce accesa nel laboratorio)			

Tabella 2: Dati sperimentali utili per interpretare la Tabella 1.