Markov Chains

Probability and Statistics for Data Science

Carlos Fernandez-Granda

These slides are based on the book Probability and Statistics for Data Science by Carlos Fernandez-Granda, available for purchase here. A free preprint, videos, code, slides and solutions to exercises are available at https://www.ps4ds.net

Goal

Model time series

Data: $x_1, x_2, ..., x_n$

 x_i is measurement at time i

Precipitation data

First idea

Represent precipitation at each time by a random variable \tilde{a}_i

Then estimate joint pmf of $\tilde{a}_1, \ldots, \tilde{a}_n$ from data

Entries in joint pmf? 2^n (if n = 100 more than 10^{30} !)

Curse of dimensionality

Second idea

Assume data are i.i.d. random variables with pmf $p_{\tilde{a}}$

$$ho_{ ilde{s}_1,..., ilde{s}_n} = \prod_{i=1}^n
ho_{ ilde{s}}$$

Good news: We only need to estimate one parameter

Bad news: We aren't modeling temporal structure

Third idea

Just model transitions

Markov property

 $\tilde{a}_1, \ \tilde{a}_2, \ \ldots, \ \tilde{a}_n$ satisfy the Markov property if:

$$ilde{a}_{i+1}$$
 is conditionally independent of $ilde{a}_1, \ldots, ilde{a}_{i-1}$ given $ilde{a}_i$
$$p_{ ilde{a}_{i+1} \mid ilde{a}_1, \ldots, ilde{a}_i} (a_{i+1} \mid a_1, a_2, \ldots, a_i) = p_{ ilde{a}_{i+1} \mid ilde{a}_i} (a_{i+1} \mid a_i)$$

$$p_{ ilde{a}_1, ilde{a}_2, \ldots, ilde{a}_n} (a_1, a_2, \ldots, a_n)$$

$$= p_{ ilde{a}_1} (a_1) p_{ ilde{a}_2 \mid ilde{a}_1} (a_2 \mid a_1) p_{ ilde{a}_3 \mid ilde{a}_1, ilde{a}_2} (a_3 \mid a_1, a_2)$$

$$p_{ ilde{a}_4 \mid ilde{a}_1, ilde{a}_2, ilde{a}_3} (a_4 \mid a_1, a_2, a_3) \ldots$$

$$= p_{ ilde{a}_1} (a_1) p_{ ilde{a}_2 \mid ilde{a}_1} (a_2 \mid a_1) p_{ ilde{a}_3 \mid ilde{a}_2} (a_3 \mid a_2)$$

$$p_{ ilde{a}_4 \mid ilde{a}_3} (a_4 \mid a_3) \ldots$$

Third idea

Markov chain model

Requires estimating $p_{\tilde{a}_1}$ and $p_{\tilde{a}_{i+1} \mid \tilde{a}_i}(a_{i+1} \mid a_i)$ for $1 \leq i \leq n-1$

Good news: We only need to estimate 2n-1 parameters

Bad news: We have *n* data points

Fourth idea

Assume transition probabilities are all the same

Number of parameters: 3

Empirical probabilities (2015)

Marginal probabilities

No	88.7
Yes	11.3

1-step conditional probabilities

	Hour h		
+		No	Yes
Hour h -	No	96.0	31.2
Ног	Yes	4.0	68.8

2-step conditional probabilities

No precipitation at h-1 Precipitation at h-1

Hour h			
	Yes		
No	97.1	49.4	
Yes	2.9	50.6	

Hour h

+		No	Yes	
ır h	No	70.6	23.0	
Hour	Yes	29.4	77.0	
				•

Task: Predict precipitation in 2016

Marginal probabilities

No	88.7
Yes	11.3

1-step conditional probabilities

	Hour h		
+		No	Yes
ır h-	No	96.0	31.2
Hour	Yes	4.0	68.8

Test accuracy (2016): 83.4%

Test accuracy (2016): 87.3%

2-step conditional probabilities

No precipitation at h-1

	Hour h			
+		No	Yes	
ır h-	No	97.1	49.4	
Hour	Yes	2.9	50.6	

Precipitation at h-1

	i ioui ii		
+		No	Yes
∀our h+	No	70.6	23.0
Ног	Yes	29.4	77.0

Test accuracy (2016): 87.3%

Finite state Markov chain

Each entry takes value in finite set of states $\{s_1, \ldots, s_m\}$

Marginal pmf represented by state vector:

$$\pi_i := egin{bmatrix} p_{ ilde{s}_i}\left(s_1
ight) \\ p_{ ilde{s}_i}\left(s_2
ight) \\ \dots \\ p_{ ilde{s}_i}\left(s_m
ight) \end{bmatrix}.$$

Time homogeneous finite state Markov chain

All transition probabilities are the same

$$p_{\tilde{a}_{i+1} \mid \tilde{a}_i}(a_{i+1} \mid a_i) = p_{\text{cond}}(a_{i+1} \mid a_i) \qquad 1 \le i \le n-1$$

Transition matrix

$$T := \begin{bmatrix} p_{\text{cond}}(s_1 \mid s_1) & p_{\text{cond}}(s_1 \mid s_2) & \cdots & p_{\text{cond}}(s_1 \mid s_m) \\ p_{\text{cond}}(s_2 \mid s_1) & p_{\text{cond}}(s_2 \mid s_2) & \cdots & p_{\text{cond}}(s_1 \mid s_m) \\ \vdots & \vdots & \ddots & \vdots \\ p_{\text{cond}}(s_m \mid s_1) & p_{\text{cond}}(s_m \mid s_2) & \cdots & p_{\text{cond}}(s_m \mid s_m) \end{bmatrix}$$

Precipitation

1-step conditional probabilities

Hour h

No Yes
No 96.0 31.2
Yes 4.0 68.8

Transition matrix

$$T := \begin{bmatrix} 0.960 & 0.312 \\ 0.040 & 0.688 \end{bmatrix}$$

Car rental

Goal: Model location of cars

3 locations (states): Los Angeles, San Francisco, San Jose

Transition probabilities:

Sa	n Francisco	Los Angeles	San Jos	e	
/	0.6	0.1	0.3	\	San Francisco
	0.2	0.8	0.3		Los Angeles
/	0.2	0.1	0.4	J	San Jose

Car rental

State vector and transition matrix

Cars are initially allocated to each location with same probability

$$\pi_1 := \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$
 $T := \begin{bmatrix} 0.6 & 0.1 & 0.3 \\ 0.2 & 0.8 & 0.3 \\ 0.2 & 0.1 & 0.4 \end{bmatrix}$

Realization

Realization

Realization

Computing probabilities

Probability that a car starts in SF and is in SJ after the 2nd customer

$$p_{\tilde{a}_{1},\tilde{a}_{3}}(1,3) = \sum_{i=1}^{3} p_{\tilde{a}_{1},\tilde{a}_{2},\tilde{a}_{3}}(1,i,3)$$

$$= \sum_{i=1}^{3} p_{\tilde{a}_{1}}(1) p_{\tilde{a}_{2} | \tilde{a}_{1}}(i | 1) p_{\tilde{a}_{3} | \tilde{a}_{2}}(3 | i)$$

$$= \pi_{1}[1] \sum_{i=1}^{3} T_{i1} T_{3i}$$

$$= \frac{0.6 \cdot 0.2 + 0.2 \cdot 0.1 + 0.2 \cdot 0.4}{3} \approx 7.33 \cdot 10^{-2}$$

State vector and transition matrix

$$\pi_{i} := \begin{bmatrix} \rho_{\tilde{a}_{i}}\left(s_{1}\right) \\ \rho_{\tilde{a}_{i}}\left(s_{2}\right) \\ \dots \\ \rho_{\tilde{a}_{i}}\left(s_{m}\right) \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^{m} \rho_{\tilde{a}_{i-1}}\left(s_{j}\right) \rho_{\tilde{a}_{i} \mid \tilde{a}_{i-1}}\left(s_{1} \mid s_{j}\right) \\ \sum_{j=1}^{m} \rho_{\tilde{a}_{i-1}}\left(s_{j}\right) \rho_{\tilde{a}_{i} \mid \tilde{a}_{i-1}}\left(s_{2} \mid s_{j}\right) \\ \dots \\ \sum_{j=1}^{m} \rho_{\tilde{a}_{i-1}}\left(s_{j}\right) \rho_{\tilde{a}_{i} \mid \tilde{a}_{i-1}}\left(s_{m} \mid s_{j}\right) \end{bmatrix}$$

$$= \begin{bmatrix} \rho_{\tilde{a}_{i} \mid \tilde{a}_{i-1}}\left(s_{1} \mid s_{1}\right) & \rho_{\tilde{a}_{i} \mid \tilde{a}_{i-1}}\left(s_{1} \mid s_{2}\right) & \cdots & \rho_{\tilde{a}_{i} \mid \tilde{a}_{i-1}}\left(s_{1} \mid s_{m}\right) \\ \rho_{\tilde{a}_{i} \mid \tilde{a}_{i-1}}\left(s_{2} \mid s_{1}\right) & \rho_{\tilde{a}_{i} \mid \tilde{a}_{i-1}}\left(s_{2} \mid s_{2}\right) & \cdots & \rho_{\tilde{a}_{i} \mid \tilde{a}_{i-1}}\left(s_{2} \mid s_{m}\right) \\ \rho_{\tilde{a}_{i} \mid \tilde{a}_{i-1}}\left(s_{m} \mid s_{1}\right) & \rho_{\tilde{a}_{i} \mid \tilde{a}_{i-1}}\left(s_{m} \mid s_{2}\right) & \cdots & \rho_{\tilde{a}_{i} \mid \tilde{a}_{i-1}}\left(s_{m} \mid s_{m}\right) \end{bmatrix} \begin{bmatrix} \rho_{\tilde{a}_{i-1}}\left(s_{1}\right) \\ \rho_{\tilde{a}_{i-1}}\left(s_{2}\right) \\ \dots \\ \rho_{\tilde{a}_{i-1}}\left(s_{m}\right) \end{bmatrix}$$

$$= T\pi_{i-1}$$

State vector and transition matrix

$$\pi_{i} = T \pi_{i-1}$$

$$= T T \pi_{i-2}$$

$$= T^{i-1} \pi_{1}$$

5th customer

$$\pi_1 := \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$
 $T := \begin{bmatrix} 0.6 & 0.1 & 0.3 \\ 0.2 & 0.8 & 0.3 \\ 0.2 & 0.1 & 0.4 \end{bmatrix}$

$$\pi_6 = T^5 \pi_1 = \begin{vmatrix} 0.281 \\ 0.534 \\ 0.185 \end{vmatrix}$$

Why we use Markov chains to model time series

Basic properties of Markov chains