Question 2

October 2025

1 Yield Curve Modeling Task

- 1. We picked Hong Kong government securities. The data source is from investing.com.
- 2. We picked a range of government bond/notes of different tenor. Eight tenors are selected, they are: 6 months, 1 year, 3 years, 5 years, 7 years, 10 years, 15 years and 20 years.
- 3. We fit the data using the Nelson-Siegel(NS) model. The blue line is the fitted line and the red dot are the actual data.
- 4. We have also fit the data using the Cubic-Spline(CS) model. The blue line is the fitted line and the red dot are the actual data.
- 5. Comparing the fit of NS and CS, we can observe that NS does not perfectly fit all observed data, only a single smooth curve that passes through most points. In contrast, CS demonstrates the ability to fit observed data closely, but its fitted line may exhibit a "kink."

In terms of interpretation:

Figure 1:

Figure 2:

beta 0	3.7992
beta 1	-0.5993
beta 2	-3.450
tau	1.730.

Table 1: Nelson Siegel Curve, the fitted values

- 6. NS offers better interpretability because its fitted line is smooth, potentially yielding more explainable results. Additionally, NS can handle extrapolation effectively. Since CS relies on interpolation, it may not be well-defined for out-of-sample calculations. However, as a parametric method, NS can provide results for out-of-sample inputs.
- 7. NS also provides intuitive meaning for its model parameters. According to M1L3, γ represents the decay rate, which ranges between 0 and 1. The parameter β_0 describes the level of the yield curve, β_1 describes its slope, and β_2 describes its shape.
- 8. For Nelson Siegel Curve, the fitted values are : For Cubic spline the model parameter is:
- 9. Although Nelson-Siegel is smoothing the yield curve, this is not necessarily considered unethical. It is because:

	(0.5 to 1.0)	(1.0 to 3.0)	(3.0 to 5.0)	(5.0 to 7.0)	(7.0 to 10.0)	(10.0 TO 15.0)
$Cubic(x^3)$	0.1938	-0.0574 0.0206	-0.0189	0.0045	0.0007	-0.0005
$Quadratic(x^2)$	0.0000	0.2907	-0.0540	0.0699	-0.0434	-0.0028
Linear(x ¹)	-0.5504	-0.4051	0.0683	0.1002	0.1532	0.0147
$Constant(x^0)$	2.8810	2.6300	2.5230	2.6090	2.9380	3.1290

Table 2: Cubic spline the model parameter

- 10. The smoothing is not intended to mislead the true. The smoothing is by construction of the model design. It is also intend to produce a interpretable representation of the yield curve for analysis.
- 11. In Econometrics, you will smooth time series to filter out noise. Nelson-Siegel can filter out the noise to prevent overfitting. So the intention is not unethical.