1-. Investigar y describir geométricamente cuando se da la convergencia y la divergencia en los - métodos de Newton – Raphson y Punto Fijo

Punto fijo

Para ilustrar geométricamente la convergencia y la divergencia del método del punto fijo, la ecuación de recurrencia es x=g(x) y esta a su vez puede replantearse como $y_1=x$

$$y_2 = g(x)$$

La raíz f(x) = 0 corresponde al valor de la abcisa de la intersección de las curvas definisdas por y_1 y y_2 como podemos observa en la siguiente imagen

Dependiendo de los valores que toma g'(x) en el intevalo $[x_a, x_b]$, pueden disntinguirse los cuatro casos siguientes

Método Newton - Raphson

En su interpretación geométrica el valor inicial para la raíz es X_n , entonces se puede trazar una tangente desde el punto $\left[x_n,f(x_n)\right]$ de la curva. Comúnmente el punto donde está la tangente cruza al eje x y representa una aproximación mejorada de la raíz.

Este método puede deducirse geométricamente al considerar que la primera derivada en x puede aproximarse como la pendiente:

$$f'(x_n) \approx \frac{f(x_n)-0}{x_n-x_{n+1}}$$

Despejando se tiene la fórmula de Newton-Raphson

$$x_{n+1} = x_n - \frac{f(x_n) - 0}{x_n - x_{n+1}}$$

Su algoritmo es el siguiente

Sea la función f(x) y (x_n) un Vlor inicial

- 1. Calcular $X_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$
- 2. Si $f(x_{n+1}) < \text{tol.}$, entonces el rpocedimiento es exitoso
- 3. De no cumplirse el criterio de paro, tomar x_{n+1} cmo x_n y regresar al paso 1

Cuando hay un punto de inflexión en la vecindad de una raíz, las iteraciones que empiezan con x_0 divergen progresivamente de la raíz

Se mantiene oscilando alrededor de un mínimo o máximo local. Tales oscilaciones pueden persistir o, alcanzar una pendiente cercana a cero, después de lo cual la solución se aleja del área de interés.

Un valor inicial cercano a una raíz salta a una posición varias raíces más lejos. Esta tendencia a alejarse del área de interés se debe a que se encuentran pendientes cercanas a cero

Una pendiente cero [f'(x)] causa una división entre cero en la fórmula de Newton-Raphson, esto significa que la solución se dispara horizontalmente y jamás toca al eje x.