CHEM 1032 PRACTICE	NAME:					
UNIT ASSESSMENT 3						
CECTION.	TUID:					
SECTION:		•				•

Before the Unit Assessment begins, read the rest of this page, and follow the instructions.

!!! Do not turn this page until given the signal to begin !!!

Put away everything besides pencil(s) and a scientific calculator.

- Non-programmable (scientific) calculators are permitted. Graphing calculators **are not permitted** (such as these models: TI-83, TI-84, TI-89, Casio FX-9750).
- Any other electronic devices including cell phones, smart phones, and smart watches **are not permitted**. If you are not sure what is permitted, ask *before* the exam begins.

When you are told to begin work, open the booklet and read the directions.

A periodic table and other useful information can be found on the next page.

Grading. Each question is graded by your instructor using the scale below.

1 - Excellent

- The student demonstrates a deep understanding of concepts and problem-solving techniques.
- Calculations are clear and legibly written.
- Any mistakes are minor or careless errors that do not indicate a major conceptual misunderstanding.

0.5 - Fair

- The student demonstrates a partial understanding of concepts and techniques.
- Calculations are clear and legibly written but contain errors.
 - o The student may have started out correctly but gone on a tangent or not finished the problem.
 - o The student may have used pattern matching to answer a different, more familiar question instead.

0 - Unsatisfactory/Incomplete

- The student did not demonstrate an understanding of the problem or has minimal understanding.
- Calculations are unclear, missing, or incomplete.
 - o The student may have written some appropriate formulas or diagrams, but nothing further.
 - o The student may have done something entirely wrong.
 - o The student may have written almost nothing or nothing at all.

Unit Assessment Time: 50 minutes. It is to your advantage to answer every question.

!!! Do not turn this page until given the signal to begin !!!

Units:

amu *atomic mass unit* atm *atmosphere*

g gram
h hour
J joule
K kelvin

mmHg unit of pressure

M molarity
K kelvin
L liter
mol mole
s second

Symbols:

H enthalpyv frequencyM molar massmol mole

P pressure t time

T temperatureV volume

Constants:

 N_A Avogadro's number R ideal gas constant

SI (Metric) Prefixes:

c *centi-*d *deci-*k *kilo-*m *milli-*

П 3 8	© 8	ರೆ %	B 97	S S S	Am s	P ² D	ک 🛭		Pa	5	>
167.26	Ho	162.50 8	158.93 es	64 Gd 157.25(3)	151.96	Sm	Pm	144.24 60	59 140.91	58 140.12	138.91

87 Fr	55 CS	37 Rb 85.468	39.098	Za 11	6.94 .	1.008 工 -	_
_®	56 137.33	38 87.62	20 Ca	Mg	Be		N
89-102 **	57-70 *			7			
103 L r	71 Lu	39 ¥	21 S C 44.956				ω
₽	72	40 Zr 91.224(2)	22				4
Db	180.95 ವ	41 Nb	23				5
Sg	74	42 95.95	24 C 51.996				6
Bh	75	ਰ ਫ	25 Mn _{54.938}				7
H s description	76 OS	P	26 Fe 55.845(2)				8
M t 109	77	P 45	27 Co 58.933				9
D s	78	Pd	28 Ni 58.693				10
₽g	79 Au	47 Ag	29 Cu 63.546(3)				±
C n 112	H 80	48 Cd	30 Z n 65.38(2)				12
4 1 1 3	81 2 04.38	49	31 Ga 89.723	2 6.982	10.81		13
1 114	82	50 Sn	32 Ge	£ <u>28</u> .85	12.011		14
M C 115	28. E. 8	51 Sb	33 AS	30.974	7		15
116 Lv	Po	52 Te	34 Se 78.971(8)	32.06 32.06	8		16
117 TS	At 85	53 126.90	35 Br	17 Ω 35,45	18.998		17
118 Og	R _n	54 Xe 131.29	36 83.798(2)	18 Ar 39.948	10 20.180	2 He	18

FOR CREDIT, BE CLEAR AND WRITE LEGIBLY 1111 !!!!

Solid ammonium hydrogen sulfide (NH₄SH) is hypothesized to be the solid ice component of clouds on Jupiter and Saturn. However, on Earth the compound readily decomposes according to the reaction below which has a K_c of 1.8 x 10^{-4} . The two products of the decomposition have acid base properties if dissolved in water.

$$NH_4SH_{(s)} \rightleftharpoons NH_{3(g)} + H_2S_{(g)}$$

Part I	Multiple	Choice	Questions	(1	pt each	ı)	
--------	----------------------------	--------	-----------	----	---------	----	--

Excellent Answer = 1 pt

Fair Answer = 0.5 pts

 $Unsatisfactory\ Answer = 0\ pts$

- NH₃ is dissolved in water. The K_b expression is:
 - A. NH₃ is a Strong Acid

B.
$$K_b = \frac{[NH_3][OH^-]}{[NH_4^+]}$$

C. $K_b = \frac{[NH_3]}{[H_3O^+][NH_4^+]}$ D. $K_b = \frac{[OH^-][NH_4^+]}{[NH_3]}$

D.
$$K_b = \frac{[OH^-][NH_4^+]}{[NH_3]}$$

- NH₃ has a pK_b = 4.74. A researcher isolates NH₃ from the reaction and dissolves it in 500 mL of water. What is the pH of the solution when it is half neutralized with HCl?
 - A. 4.74
 - B. 5.04
 - C. 8.96
 - D. 9.26
- H₂S can be converted to H₂SO₄ by oxidizing bacteria. In equal volume solutions of 0.500 M H₂S and 0.500 M H₂SO₄, which of the following is true?
 - A. H₂S solution will have a higher pH because it has an equilibrium while H₂SO₄ does not.
 - B. H₂S solution will have a lower pH because HSO₄ is a stronger base than HS⁻.
 - C. H₂S solution will have a higher pOH because the HS⁻ concentration is higher than H₂SO₄⁻.
 - D. The solutions will have the same pH since both are diprotic acids.
- Another way to generate NH₃ in solution is by adding NH₄Cl_(s) to water. What phrase would complete the sentence correctly: The pH of an NH₄Cl solution would be the pH of an NH₃ solution.
 - A. greater than
 - B. less than
 - C. equal to
 - D. More information is needed.
- 5. A 10.0 g sample NH₄SH of is placed in a closed vessel. What is the concentration of NH₃?
 - A. 0.013 M
 - B. 1.8x10⁻⁴ M
 - C. $9.0 \times 10^{-5} \text{ M}$
 - D. $3.0 \times 10^{-8} \text{ M}$

Part II – Open Answer Questions – Sa	ee Page 1	for full	grading	details
--------------------------------------	-----------	----------	---------	---------

Excellent Answer = 1 pt Fair Answer = 0.5 pts Unsatisfactory Answer = 0 pts

		N THIS BOX →	Write the pH here		
work in inis box.					
	, 0.250 M NH ₃	is present in 2	250.0 mL of water	er. What is the pl	H of the solution? K _b
work in this box.					
ne equilibrium	reactions for H ₂	S with water.	Assign the two K	values, 1.1x10	and 9.3x10°.
he decomposition in the equilibrium.	reactions for Ha	XVIII WATER		Values i iviii	9 and 9.3 v 10^{-6}
	he equilibrium : work in this box.	other container, 0.250 M NH ₃ 1.8x10 ⁻⁵ .	other container, 0.250 M NH ₃ is present in 2 1.8x10 ⁻⁵ .	other container, 0.250 M NH ₃ is present in 250.0 mL of wate 1.8x10 ⁻⁵ .	other container, 0.250 M NH ₃ is present in 250.0 mL of water. What is the pl 1.8x10 ⁻⁵ .

Circle ONE.					
	0.500 M HBr	0.500 M CH ₃ NH ₄ Br	0.125 M HCl	0.125 M NaOH	
ustify your choi	ce here				
Which is the	e stronger acid Ha	S or H ₂ O? Justify your a	nswer qualitatively	,	
ıstify your choi		o or rizo. Vastriy your a	his wer quartativery	•	
	CIDCLET	THE STRONGER ACID		H_2S or H_2O	

END OF EXAM !!! DON'T FORGET TO CHECK YOUR WORK !!!!

Useful information:

R = 8.314 J/(mol K) = 0.08206 (L atm)/(mol K)

$$K_P = K_C(RT)^{\Delta n}$$

$$K_aK_b = K_w$$
 $pH = -log[H_3O^+]$ $pOH = -log[OH^-]$

At 25 °C:
$$K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14}$$
 pH + pOH = 14.00 pK_a + pK_b = 14.00

$$pH = pK_a + log\left(\frac{[base]}{[acid]}\right)$$

