Ad-Soyad : No :	Email : mza :				
Vize 1 (05.04.2010) 0112622 - Elektronik Devreler					
S1. (a) İdeal bir işlemsel kuvvetlendirici nin genel özellikle (b) Kazanç×Bant genişliği = 10 ⁶ olan gerçek bir işlem devresinin kazancı 1000 olursa Bant genişliği kaç I	sel kuvvetle	ndirici ku	llanarak gerç	ekleştirilen bir kuv	(5) vetlendirici (10)
S2. Yandaki devre verildiğine göre; devrenin kazancını (A _v), R ₁ , R ₂ , R ₃ ve R _f cinsinden bulu	unuz	(20)	+v _{in} -	R_1 V_1 R_2 V_2 V_3	V _{out} · · · · · · · · · · · · · · · · · · ·
 S3. Yandaki devrede V_{z1}=V_{z2}= 6.3 V, V_F = 0.7 V (zener diye düşümü), R₁= 5 kΩ ve R_f = 100 kΩ olarak verildiğine ge (a) Devrenin kazancını (A_v) bulunuz. (b) Giriş işareti V_{in} = 0.3 sin10t olduğunda devrenin çık (c) Giriş işareti V_{in} = 0.6 cos100t olduğunda devrenin ç (d) Giriş işareti V_{in} = 3 sin(1000t+ π / 6) olduğunda dev bulunuz. 	öre; sışını (V_{out}) sıkışını (V_{out})	(E (E	5) _,	R ₁ R _f	V _{out}
S4. Yandaki diyot devresinde V_{o1} , V_{o2} ve I değerlerini bulun $V_{F(Si)} = 0.7 \ V$ $V_{F(Ge)} = 0.3 \ V$	uz.	(20)	1 kg	$\begin{array}{c c} V_{o1} & 0.47 \text{ k}\Omega \\ \hline \downarrow I & \\ \hline \end{array}$ Si	V_{o2} Ge
 S5. Yandaki tranzistörlü devrede R_B= 470 kΩ , R_C = 3 kΩ , r₀ = 50 kΩ olarak verildiğine göre; (a) I_B, I_E ve r_e değerlerini bulunuz. (b) Giriş direncini (Z_i) bulunuz. (c) Çıkış direncini (Z_o) bulunuz. (b) Devrenin kazancını (A_v) bulunuz. 	β = 100 ve (10) (5) (5) (5)	$V_i \circ \longrightarrow C$	R_B	R_{C} R_{C} I_{o} I_{o} I_{c} I_{c}	V_o

CEVAPLAR

C1. a. İdeal op-amp ın genel özellikleri:

Gerilim kazancı $A_v = \infty$, Giriş direnci $R_i = \infty$ Çıkış direnci $R_0 = 0$

b. Kazanç×Bant genişliği = 10⁶

 $Kazanç = 1000 = 10^3$

Bant genişliği = (Kazanç×Bant genişliği) / Kazanç = 10⁶ / 10³ = 10³ Hz = 1000 Hz

C2.

$$\begin{split} &\frac{V_1 - v_{in}}{R_1} + \frac{V_1 - v_{out}}{R_f} = 0 \quad \Rightarrow \quad \left(\frac{1}{R_1} + \frac{1}{R_f}\right) V_1 = \frac{v_{in}}{R_1} + \frac{v_{out}}{R_f} \quad \Rightarrow \\ &\left(\frac{R_1 + R_f}{R_1 R_f}\right) V_1 = \frac{R_f v_{in} + R_1 v_{out}}{R_1 R_f} \quad \Rightarrow \quad V_1 = \frac{R_f v_{in} + R_1 v_{out}}{R_1 + R_f} \end{split}$$

$$\frac{V_2 - v_{in}}{R_2} + \frac{V_2}{R_3} = 0 \implies \left(\frac{1}{R_2} + \frac{1}{R_3}\right) V_2 = \frac{v_{in}}{R_2} \implies \left(\frac{R_2 + R_3}{R_2 R_3}\right) V_2 = \frac{v_{in}}{R_2} \implies V_2 = \frac{R_3 v_{in}}{R_2 + R_3}$$

$$V_{1} = V_{2} \quad \Rightarrow \quad \frac{R_{f}v_{in} + R_{1}v_{out}}{R_{1} + R_{f}} = \frac{R_{3}v_{in}}{R_{2} + R_{3}} \quad \Rightarrow \quad R_{f}v_{in} + R_{1}v_{out} = \frac{(R_{1} + R_{f})R_{3}v_{in}}{R_{2} + R_{3}} \quad \Rightarrow \quad \frac{v_{out}}{v_{in}} = \frac{R_{3}(R_{1} + R_{f})}{R_{1}(R_{2} + R_{3})} - \frac{R_{f}}{R_{1}(R_{2} + R_{3})} - \frac{R_{f}}{R$$

$$G_{\rm V} = \frac{v_{out}}{v_{in}} = \frac{R_1 R_3 - R_2 R_f}{R_1 (R_2 + R_3)}$$

C3.

a.
$$\frac{0 - v_{in}}{R_1} + \frac{0 - v_{out}}{R_f} = 0 \implies \frac{-v_{in}}{R_1} = \frac{v_{out}}{R_f} \implies G_V = \frac{v_{out}}{v_{in}} = -\frac{R_f}{R_1} = -\frac{100}{5} = -20$$

Zener diyotlarından dolayı devrenin çıkışı $\pm (V_{Z1} + V_F) = \pm (6.3 + 07) = \pm 7$ V değerleriyle sınırlandırılmıştır. Buna göre;

- b. Giriş işareti V_{in} = 0.3 sin10t olduğunda devrenin çıkışı (V_{out}):
 - Tepe değerleri ±0.3x(-20)=±6 V olan kırpılmamış bir sinüsoidal bir işarettir.
- c. Giriş işareti $V_{in} = 0.6 \cos 100 t$ olduğunda devrenin çıkışı (V_{out}):

Zener diyot olmasaydı tepe değerleri ±0.6×(-20)=±12 V olan kırpılmamış sinüsoidal bir işaret olacaktı. Ancak çıkış işareti zenerlerden dolayı kırpılacağı için çıkış işareti, tepe değerleri ±12 V olan sinüsoidal işaretin tepe değerlerinin ±7 V da kırpılmış olduğu bir periodik işaret olacaktır.

- d. Giriş işareti $V_{in} = 3 \sin(1000t + \pi/6)$ olduğunda devrenin çıkışı (V_{out}):
 - Zener diyot olmasaydı tepe değerleri ±3x(-20)=±60 V olan kırpılmamış sinüsoidal bir işaret olacaktı. Ancak çıkış işareti zenerlerden dolayı kırpılacağı için çıkış işareti, tepe değerleri ±60 V olan sinüsoidal işaretin tepe değerlerinin ±7 V da kırpılmış olduğu bir periodik işaret olacaktır.

.....

C4. Her iki diyot iletim yönünde kutuplanmışlardır. Dolayısı ile ikisi de iletimdedir. Buna gore:

$$\begin{split} &V_{o1} = 0.7 \text{ V}, \quad V_{o2} = 0.3 \text{ V} \\ &I_{1 \text{k}\Omega} = \frac{20 - V_{o1}}{1 \text{ k}\Omega} = \frac{20 - 0.7}{1000} = \frac{19.3}{1000} = 0.0193 \text{ A} = 19.3 \text{ mA} \\ &I_{0.47 \text{k}\Omega} = \frac{V_{o1} - V_{o2}}{0.47 \text{ k}\Omega} = \frac{0.7 - 0.3}{470} = \frac{0.4}{470} = 0.000851 \text{ A} = 0.851 \text{ mA} \\ &I_{\text{Sidiode}} = I_{1 \text{k}\Omega} - I_{0.47 \text{k}\Omega} = 19.3 \text{ mA} - 0.851 \text{ mA} = 18.45 \text{ mA} \end{split}$$

C5.

a.
$$I_B = \frac{V_{CC} - V_{BE}}{R_B} = \frac{12 - 0.7}{470 \text{ k}\Omega} = \frac{19.3}{470 \times 10^3} = 0.02404 \times 10^{-3} \text{ A} = 24.04 \times 10^{-6} \text{ A} = 24.04 \ \mu\text{A}$$

$$I_E = (\beta + 1)I_B = (101) \times 24.04 \ \mu\text{A} = 2.428 \text{ mA}$$

$$r_e = \frac{26 \text{ mV}}{I_E} = \frac{26 \text{ mV}}{2.428 \text{ mA}} = 10.71 \ \Omega$$

b. $\beta r_e = 100 \times 10.71 \Omega = 1071 \Omega = 1.071 k\Omega$ $Z_i = R_B \| \beta r_e = \frac{R_B \times \beta r_e}{R_B + \beta r_e} = \frac{470 \times 1.071}{470 + 1.071} = 1.069 k\Omega$

$$Z_o = R_c \| r_o = \frac{R_C \times r_o}{R_C + r_{oe}} = \frac{3 \times 50}{3 + 50} = 2.83 \text{ k}\Omega$$

$$R_C \| r_o = 2.83 \text{ k}\Omega = 2.83 \times 10^3 \Omega = 2830$$

d.
$$A_v = -\frac{R_C \|r_o}{r_e} = -\frac{2.83 \,\mathrm{k}\Omega}{10.71 \,\Omega} = -\frac{2.83 \times 10^3 \,\Omega}{10.71 \,\Omega} = -\frac{2830}{10.71} = -264.24$$