OSS Erlang 開発演習用教材

ブレーキシミュレータ

- 機能仕様書 -

改版履歴

	A (10.4 (1) ~ cm				
版数	日時			変更内容	
0. 1	2010. 04. 19	暫定	賀川	初版	
0. 2	2010. 05. 06	暫定	賀川	レビュー後の改版	
0. 3	2010. 05. 20	暫定	賀川	Output モジュール追加	
1.0	2010. 05. 31	正式	賀川	Ver. 1. 0 初版リリースにあわせて発行	
1. 1	2010. 06. 03	正式	賀川	transmission 追加、図 1.1 変更、タイヤ円周を DB 化	
2. 0	2010. 10. 29	正式	賀川	川 入力レンジを 0100000 へ拡張。路面環境を GUI で変更可能に	
				し、摩擦係数を入力可能にする。空気抵抗の投影面積を変更可	
				能にする。シミュレート結果のデータを保存可能にする。前方	
				の車をシミュレート可能にする。前方距離センサー車間化	
2. 2	2010. 11. 18	正式	賀川	誤記修正・計算式修正	

1	. シ	/ステ	ム概要	. 3
	1.	1	基本アーキテクチャ	. 3
	1.	2	部品間通信方法	. 4
	1.	3	ブロック(Erlang プロセス)構成図	. 5
2	. モ	・ジュ	ール詳細	. 6
	2.	1	シミュレーションアプリケーション層	. 7
	2.	2	シミュレーションプロセス監視	. 7
	2.	3	部品プロセス管理サーバ	. 7
	2.	4	シミュレータデータベース	. 7
	2.	5	車輪回転数管理仕様	. 8
	2.	6	車輪回転数管理 HMI 仕様	14
	2.	7	ブレーキ状態管理仕様	15
	2.	8	ブレーキ状態管理 HMI 仕様	16
	2.	9	スロットル(アクセル)仕様	16
	2.	10	スロットル入力 HMI 仕様	17
	2.	11	センサー仕様	17
	2.	12	センサー入力 HMI 仕様	19
	2.	13	路面環境仕様	20
	2.	19	路面環境入力 HMI 仕様	21
	2.	14	車状況出力(Output)仕様	21
	2.	15	車状況出力(Output)HMI 仕様	24
	2.	16	重心制御 仕様	24
	2.	17	Drive Control Simulate 仕様	24
	2.	18	transmission 仕様	25
	2.2	20 s	scenario	25
	2.2	21 s	scenario HMI	26
	2.	22	計算式	29
3	. 1	インタ	/ ーフェース仕様	32
4	. 構	成フ	アイル一覧	35
5	. D	CS =	ューディング例	36
	別	J紙-	1	38
	別.	J紙-	2	40
	別	J紙 —	3	41

1. システム概要

1. 1 基本アーキテクチャ

図1.1 アプリケーションモジュール関係図

図 1.2 実行イメージ

1. 2 部品間通信方法

使用する OTP ライブラリ: gen_server,関数:cast を使用し、メッセージ通信を行う。

記述例

gen_server:cast(宛先, {メッセージフォーマットは3章参照})

- ・第一引数に宛先を指定し、値は gen_server 名となる。 3 章インターフェース仕様書のアドレス一覧を参照のこと。
- ・第二引数はメッセージを指定する。 ※メッセージフォーマットは、3章インターフェース仕様書を参照のこと。

図1.2 部品間通信イメージ

【送信側の特徴】

Erlnag OTP の gen_server を利用し、それぞれの部品にグローバル(Erlang Beam 分散 ネットワーク内でユニークとなる)を付与することで、アドレス管理の自作は不要となる。 メッセージの宛先は、目的に応じて 3 章インターフェースで取り決めた、アドレス一覧を

メッセージ内の発アドレスは、自部品のアドレスを3章インターフェースで取り決めた値 で指定する。

記述例

指定する。

gen_server:cast({global,wheelFright},{state_inf, brake,[10]}),

【受信側の特徴】

sim_part (gen_server)で受信した、メッセージを部品プロセスへ中継する。

部品プロセスにおいて、パターンマッチを利用することで、メッセージの宛先により処理 を分けることを容易にする。

- ・演習対象 DCS (Drive Control Simulate) に対して、各部品からの状態変化を通知する。
- ・DCSは、各情報を基に計算を行い、フィードバック情報指示をする。

図1.3 部品間ブロック図

2. モジュール詳細

Erlang モジュールとプロセス一覧を表 2-1 に示す。2.1 項以降で各モジュールの仕様を示す。

表 2-1 Erlang モジュールとプロセス一覧

	behaviour	モジ゛ュール名	プロセス名	概要
1	application	sim_app	brakesim	シミュレーションアプリケーシ
				ョン層
2	supervisor	sim_sup	sim_sup	シミュレーションプロセス監視
3	gen_server	sim_part	sim_part	部品プロセス管理サーバ
4		sim_db	sim_db	シミュレータテ゛ータヘ゛ース
5		wheel	wheelFright	前右 車輪回転数管理
6		wheel_gui	wheelFrigh_gui	前右 車輪回転数表示
		wheel	wheelFleft	前左 車輪回転数管理
		wheel_gui	wheelFleft_gui	前左 車輪回転数表示
		wheel	wheelRright	後右 車輪回転数管理
		wheel_gui	wheelRright_gui	後右 車輪回転数表示
		wheel	wheelRleft	後左 車輪回転数管理
		wheel_gui	wheelRleft_gui	後左 車輪回転数表示
7		brake	brake	ブレーキ状態管理
8		brake_gui	brake_gui	ブレーキ入力 HMI
9		throttle	throttle	スロットル (アクセル)
10		throttle_gui	throttle_gui	スロットル入力 HMI
11		distance	frsensor	前方センサー
12		distance_gui	frsensor_gui	前方センサー入力 HMI
		distance	bksensor	後方センサー
		distance_gui	bksensor_gui	後方センサー入力 HMI
		distance	risensor	右センサー
		distance_gui	risensor_gui	右センサー入力 HMI
		distance	lfsensor	左センサー
		distance_gui	lfsensor_gui	左センサー入力 HMI
13		loadenv	loadenv	路面環境
19		loadenv	loadenv_gui	路面環境 HMI
14		output	output	車状況
15		output	output_gui	車状況出力 HMI
16	受講生作成	balancectl.	balancectl.	重心制御
17	受講生作成	dcs	dcs	Drive Control Simulate
18		transmission	transmission	トランスミッション

20	scenario	scenario	シナリオ、ログ制御
21	scenario_gui	scenario_gui	シナリオ、ログ制御 HMI
22	calets		計算モジュール

2. 1 シミュレーションアプリケーション層

Erlang OTP の application として動作させる。

2. 2 シミュレーションプロセス監視

Erlang OTPの supervisor として動作させる。

2. 3 部品プロセス管理サーバ

Erlang OTP の gen_server として動作させ、部品プロセスを生成する機能を有する。部品プロセス毎に、部品プロセス管理サーバを具備させることで、メッセージ通信が容易となる。また、supervisor のワーカーとして動かすことで安定運用も可能となる。

2. 4 シミュレータデータベース

Erlang に内蔵されている、分散データベース Mnesia を利用して各種データを管理する。

【管理データ】

外部環境系データ

動作履歴

計算に使う定数値

【動作方法】

① 外部環境系データ

ErlangBeam 上から次のコマンドを投入

■摩擦係数

>sim_db:add_loavenv_item(ポジション,静摩擦,動摩擦,dummy).

ポジション : wheelFright (車輪前右)

wheelFleft (車輪前左) wheelRright (車輪後右) wheelRright (車輪後右)

摩擦係数: 任意の数字 初期値 0.71

dummy : 現状未使用

■空気抵抗面積

>sim_db: update_areRegist (1.9).

空気抵抗面積 : 0~数値で入力 初期値 1.9 ㎡

② 動作履歴

ErlangBeam 上から次のコマンドを投入

> start_scenario_sav(シナリオ名) ← 収集開始 シナリオ名 : タプルで任意の名前を入力 例 '012'

> stop_scenario_sav () ← 収集停止

> exe_scenario ("シナリオ名") \leftarrow 再生 シナリオ名 : 文字列で入力 例"0123x" start_scenario_sav で指定した名前+数字が 自動的に付加されている(同一名衝突防止)。

③ 計算に使う定数値の変更

ErlangBeam 上から次のコマンドを投入

(node1@localhost)16> sim_db:add_Caldat(tyre,2). {atomic,ok}

<引数> tyre:タイヤ外周 数値(例 2)

2.5 車輪回転数管理仕様

車輪の回転数を管理するプロセスである。便宜上、全てトルクで管理する。

-参考-

- ・トルク=N・m
- $\cdot N (= >) = kg \cdot m/s^2$
- ·加速度=m/s²
- ・馬力=トルク× $rpm \times 0.001396$
- ・タイヤ回転数=rpm(1分間の回転数)
- ·路面摩擦(u 係数)

-前提 車データー

- ・タイヤ円周 = 2m
- ・throttle 値=1Nとする

- ・最高速度 = 300 km/h
- ・タイヤ最高 rpm = 2500 rpm
- ・最大 throttle 値 = 100000
- ・車重量 = 1000 kg
- ・垂直抗力 = 9800 N

名前	意味	値の範囲
state	状態	0~
remaintorqu	処理 throttle 値	$100000\sim100000$
nowtorqu	現 throttle 値	0~100000
rpm	タイヤ回転数 (rpm)	0~2500

【状態】

値	名前	意味
0	安定状態	速度が安定した状態
1	加速状態	通常加速中の状態
2	減速状態	通常減速状態
3	スリップ加速状態	スリップしながら加速している状態
4	スリップ減速状態	スリップしながら減速中している状態

【状態遷移図】- 基本版 state_inf 信号処理 -

図 2.5-1 状態遷移図

【状態遷移図】- フィードバック(update_ind 信号)機能追加内容 -

図 2.5-2 状態遷移図

【状態遷移表】

	update_ind	state_inf 状態	state_inf	state_inf	周期タイマ
	更新指示	通知 brake	状態通知	状態通知	満了
			transmission	output	
0	フィードバック内容保	通知内容保存	通知内容保存	rpm 保存	rpm 表示
	存処理	処理	処理		
1	フィードバック内容保	通知内容保存	通知内容保存	rpm 保存	加速処理
	存処理	処理	処理		
2	フィードバック内容保	通知内容保存	受け付けない	rpm 保存	減速処理
	存処理	処理			
3	フィードバック内容保	通知内容保存	通知内容保存	rpm 保存	スリッフ゜加速
	存処理	処理	処理		処理
4	フィードバック内容保	通知内容保存	受け付けない	rpm 保存	スリッフ゜減速
	存処理	処理			処理

【通知内容保存処理】

状態遷移決定論理と残トルク計算処理を行う。

	值增加	值減少
通常	【ブレーキ踏み込む】	【ブレーキ緩める】
brake 系	I V V V V V V V V V V V V V V V V V V V	
brane //(残トルク=0-通知 throttle 値	 残トルク=0-throttle 値
	スリップ計算	スリップ計算 true->2 減速状態
	^ ^ ^ ^ ^	false->2 減速状態
	false->2 減速状態	Taise > 2 paxential
	祖的人名斯茨斯	
 通常	【アクセル踏み込む】	【アクセル緩める.エンブレ】
throttle		
系	 残トルク=通知 throttle 値-現 throttle	 残トルク=通知 throttle 値-現
		throttle 値
	スリップ計算	スリップ計算
	false->1加速状態	false->1加速状態
スリップ。中	【ブレーキ踏み込む】	【ブレーキ緩める】
brake 系		
	残トルク= 0 -通知 throttle 値	残トルク= 0 -通知 throttle 値
	スリップ計算	スリップ計算
	<u>true->4スリップ減速状態</u>	<u>true->2 減速状態</u>
	<u>false->2 減速状態</u>	<u>false->2 減速状態</u>
スリップ。中	【アクセル踏み込む】	【アクセル緩める,エンブレ】
throttle		
系	残トルク=通知トルク量-現トルク量	残トルク=通知トルク量-現トルク量
	スリップ計算	スリップ計算
	<u>true->3 スリップ加速状態</u>	true->1 加速状態
	<u>false->1加速状態</u>	<u>false->1加速状態</u>

【各擬似動作処理内容】

各種擬似動作の処理内容についてまとめる。

	処理内容
速度安定	【值状態】

	処理残 throttle 值==0
加速	
	【処理内容】
	加速量を求め、処理残 throttle 値と、加速後の throttle 値、rpm を計算
	する。(計算式は計算モジュール項参照)
	HMI 画面表示指示
	output、dcs、transmission への通知
減速	
	【処理内容】
	処理残 throttle 値と、減速後の throttle 値、rpm を計算する。(計算式は
	計算モジュール項参照)HMI 画面表示指示
	output、dcs、transmission への通知
スリップ加速	【処理内容】
	加速量を求め、処理残 throttle 値と、加速後の throttle 値、実 rpm、表
	示用 rpm を計算する。(計算式は計算モジュール項参照)
	HMI 画面表示指示
	output、dcs、transmission への通知
	HMI 画面表示指示
	output,dcs,throttle への通知
	スリップ状態終了でなければ、HMI 画面表示スリップ状態表示へ
スリップ減速	
	【処理内容】
	処理残 throttle 値と、減速後の throttle 値、実 rpm を計算する。表示用
	rpm は 0 に設定。(計算式は計算モジュール項参照) HMI 画面表示指示
	output,dcs,throttle への通知
	スリップ状態終了でなければ、HMI 画面表示スリップ状態表示へ

2. 6 車輪回転数管理 HMI 仕様

【通常状態 GUI】

【前進中状態 GUI】

【スリップ加速状態 GUI】

【スリップ減速状態 GUI】

2. 7 ブレーキ状態管理仕様

名前	意味	値の範囲
val	前回踏み込み量(トルク)	0~100000

値	条件	通知信号内容
		{state_inf, brake,
	前回踏み込み量より	[opetype,brake,userope,speeddown,
	増加	torque,スライドバーの値]}
		{state_inf, brake,
メッセージパラメータ設定	前回踏み込み量より	[opetype,brake,userope, speedup,
内容	減少	torque,スライドバーの値]}

【状態】

値	名前	意味
_	_	特に無し

【ブレーキ処理内容】

	処理内容
通知	各 Wheel への state_inf 状態変更通知
	dcs への state_inf 状態変更通知
	output への state_inf 状態変更通知
	sim_db への通知内容保存依頼

2. 8 ブレーキ状態管理 HMI 仕様

[GUI]

2. 9 スロットル (アクセル) 仕様

名前	意味	値の範囲
val	前回踏み込み量(トルク)	0~100000

値	条件	通知信号内容
		{state_inf, throttle,
	前回踏み込み量より	[opetype, throttle,userope, speedup,
	増加	torque,スライドバーの値]}
		{state_inf, throttle,
メッセージパラメータ設定	前回踏み込み量より	[opetype, throttle,userope, speeddown,
内容	減少	torque,スライドバーの値]}

【状態】

値	名前	意味
_	_	特に無し

【ブレーキ処理内容】

	処理内容
状態変更受信	スロットル入力 HMI へ表示するスロットル値の指示を行う。
通知	各 Wheel への state_inf 状態変更通知
	dcs への state_inf 状態変更通知
	output への state_inf 状態変更通知
	sim_db への通知内容保存依頼

2. 10 スロットル入力 HMI 仕様

[GUI]

2. 11 センサー仕様

名前	意味	値の範囲
_	_	特に無し

値	条件	通知信号内容
メッセージパラメータ設定	前回踏み込み量より	{state_inf, センサー位置,
内容	減少	[distance, スライドバーの値]}

センサー位置値:frsensor 前方センサー

bksensor **後方センサー** risensor 右側センサー lfsensor 左側センサー

【状態】

値	名前	意味
_	_	特に無し

【ブレーキ処理内容】

	処理内容
通知	dcs への state_inf 状態変更通知
	sim_db への通知内容保存依頼

12 センサー入力 HMI 仕様 【GUI】

前方車シナリオ実行中のセンサーHMI

前方車シナリオ動作中の HMI 画面と通常画面は違う。自分の車の速度と前方車の速度から 車間距離を測る。(計算式 は計算モジュール参照)

【センサー動作について】

実時間 0.5s 毎に処理。内部計算も 0.5s で計算する。

①初期 初期値距離

②タイムアウト 自分の車の速度と前方車の速度差を求める

③車間更新 速度差から 0.5s で変化する車間を計算 以降タイムアウトを繰り返し

2. 13 路面環境仕様

路面環境に関するデータは、Erlang 内臓の分散 DB Mnesia を使用している。

【管理データ】

名前	意味	値の範囲
statictor	路面静摩擦係数	0~1
dynamictor	動摩擦係数	静摩擦 2/3
area	空気抵抗面積(m²)	1~

值	条件	通知信号内容
特になし		

【状態】

値	名前	意味
_	_	特に無し

【ブレーキ処理内容】

処理内容
HMI から受け取った値で、DB の値を変更する。

現在も動作中に変更も可能である。sim_dbの仕様を参照のこと。

2. 19 路面環境入力 HMI 仕様

2. 14 車状況出力 (Output) 仕様

名前	意味	値の範囲
state	状態	o~
speed	現走行時速	o~

stopc	停止経過時間	0~ 0.2ms づつ
fl	前方左 rpm	車輪から通知された値
fr	前方右 rpm	車輪から通知された値
rr	後方左 rpm	車輪から通知された値
rl	後方右 rpm	車輪から通知された値

【状態】

値	名前	意味
C	安定状態	速度が安定した状態

【状態遷移表】

	state_inf 状態通	state_inf	state_inf	state_inf	周期タイマ
	知 各 Wheel	態通知 brake	状態 通知	態 通 知	満了
			transmission	throttle	
0	通知内容保存処	停止時間計測	rpmスピード	何もしない	時速再計算
	理	開始	変換		
			wheel へ通知		

【各種値算出方法】

値	条件	算出方法
	全てのタイヤ Orpm	[25,25,25,25]固定
		タイヤ毎に以下の式で計算
重心比率	それ以外	rpm * 100 / (タイヤ 4 本 rpm 合計)
時速	安定状態	transmission から通知された rpm から時速計算
重心方向	特になし	前輪 左右の重心比率から算出

【参考】 前提值一覧

			1	7
タイヤ 円 周	2 m			
最高時速	300	km/H		
タイヤ最高 rpm	2500	rpm		
throttle値	100000			
最高ニュートン	1000000	N		
1トルク	1	throttle		
車重量	1000	Кg		
垂直抗力	9800	N		
摩擦係数	可 変	μ	0.7	乾 い たアスファルト/乾 い たコンクリートか つ、タイヤ は 普 i
	可 変	μ	0.5	濡 れ たアスファルト
	可 変	μ	0.15	固くなった雪
摩擦力	6860	N	乾いたアス	ファルト/乾 いたコンクリートかつ、タイヤ は 普 通
デフォルト値	4900	N	濡れたアス	ファルト
	1470	N	固くなった言	
前方車距離	可 変	m	30	
空気抵抗		•	F=	P * C * S * V^2 / 2 🗆
大 気 密 度 (P)	1			
空 気 抵 抗(C)	0.35			
速 度 (V)	自動取得			
空 気 抵 抗 面 積 (S)	可変	m ²	1.9	

2. 15 車状況出力 (Output) HMI 仕様

[GUI]

2. 16 重心制御 仕様

開発演習対象

2. 17 Drive Control Simulate 仕様

開発演習対象

2. 18 transmission 仕様

スロットルからの入力トルクを駆動輪へ伝える。駆動輪から通知された、現 rpm 値の平均 ε output へ通知する。

【管理データ】

名前	意味	値の範囲
now	各車輪回転数	0~

【各種値算出方法】

值	条件	通知信号内容
現 rpm		駆動輪の平均

【状態】

値	名前	意味
_	_	特に無し

【処理内容】

及在门台	
	処理内容
throttle から状	駆動輪へ中継する。
態変化受信	
update_ind 受	駆動輪へ中継する。
信	
タイムアウト	現平均 rpm を output へ通知する。

2.20 scenario

前方車の動作シリナオを管理する。また、シミュレート結果データを保存する機能も有する。

【管理データ】

名前	意味	値の範囲
scname	作成するシナリオ名	文字列
sc	作成するシナリオ	0.5 秒後毎の速度リスト[速度 1,速度 2]

【状態】

値	名前	意味
_	_	特に無し

【前提情報】

	処理内容	
scenario	.¥scenario	配下をシナリオとみなす。
log	.¥log	配下にログを格納する。

【処理概要】

	処理内容
シナリオ作成	.HMI のシナリオ作成依頼により、指定されたファイル名で scenario 配下
	に csv 形式のシナリオを作成する。
ログ保存	HMI のログ保存依頼により、指定されたファイル名で log 配下にログを格納
	する。

2.21 scenario HMI

[GUI]

■ログ指定入力例

■ログ指定時同じファイル名があった場合の確認画面

■シナリオ実行状態

■シナリオ新規作成

2. 22 計算式

【各種計算式一覧】

種別	内容
	前回車間[m]+(自分車時速[km/h]-前方車時速[km/h])
車間計算[m]	× 1000 / 3600 × 秒比率[s]

■エンブレ時

減速量=加速量/3

・減速量より小さい

0

- 残減速量が減速量より小さい 残減速量
- ·残減速量以上 現状態 throttle 値- 残減速量

■加速時

- ・残りの処理すべき throttle 値より加速量が小さい 現状態 throttle 値+加速量
- ・残りの処理すべき throttle 値より加速量が大きい 現状態 throttle 値 + 残りの処理すべき throttle 値

■スリップ加速時

加速量=加速量/2

- ・残りの処理すべき throttle 値より加速量が小さい 現状態 throttle 値+加速量
- ・残りの処理すべき throttle 値より加速量が大きい 現状態 throttle 値+残りの処理すべき throttle 値

■減速時

減速量=brake 値

- ・残りの減速すべき throttle 値が減速量より小さい 0
- ・残りの減速すべき throttle 値が減速量より大きい 現状態 throttle 値- brake 値×2/3

■スリップ減速時

減速量=動摩擦量/3

- ・残りの減速すべき throttle 値が減速量より小さい 0
- ・残りの減速すべき throttle 値が減速量より大きい

現状態 throttle 値

■エンブレ時
減速量分を足す
■加速時
加速分を引く
■スリップ加速時
加速分を引く
■ → → \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
■スリップ減速時、減速時
残 throttle 値
■スリップ加速時
残 throttle 値+現 throttle 値
から rpm 変換
■スリップ減速時
0
throttle 値から RPM 変換−空気抵抗から計算した値
round((throttle 値) / 40)
round(RPM * 40)
round(1000 ×(1−最大 RPM との比の 2 乗))
静摩擦量から計算した throttle 値×2 > 絶対値(残 throttle 値)
動摩擦量から計算した throttle 値×2 > 絶対値(残 throttle 値)
P(1) * C(0.35) * S * V(speed ² / 2

3. インターフェース仕様

【メッセージ基本構成】

メッセージ名 表 3-1 発アドレス 表 3-2 パラメータ 表 3-3

コーディング例

gen_server:cast({global, wheelFright}),
{update_ind,dcs,[opetype,throttle,userope,speedup,torque,Des]})

下線部が3章で規定する内容である。

DCS (Drive Control Simulation) は gen_server として動作させるため、1. 2項で示した 部品間の通信方法を用いる。他プロセスへは、update_ind メッセージを通じてフィードバック 制御を行う。

表 3-1 メッセージ一覧

	メッセージ名	メッセージ名称	パラメータ	発アドレス
1	state_inf	状態変更通知	opetype, ユーザ操作種別	throttle
			userop, ユーザ操作	brake
			torque トルク	
2	state_inf	状態変更通知	rpm 回転数	wheelFright
			remaintorqu 残トルク	wheelFleft
				wheelRright
				wheelRleft
3	state_inf	状態変更通知	distance 距離	frsensor
				bksensor
				risensor
				lfsensor
4	state_inf	状態変更通知	rpm 回転数	transmission
			opetype, ユーザ操作種別	
			userop, ユーザ操作	
			torque トルク	

5	update_ind	更新指示	opetype, userop, torque	dcs
6	msgsav	メッセージ保存	保存メッセージ内容	frsensor
			【例】	bksensor
			{state_inf,	risensor
			risensor ,[distance,Parameters]}	lfsensor
				throttle
				brake
7	getinfo_req	情報収集	speed	scenario
				output
				distance
8	getinfo_res	情報収集応答	speed	scenario
				output
				distance
9	scenario_req	シナリオ開始	scenario	scenario
				distance
10	scenario_res	シナリオ応答	scenario	scenario
				distance
11	scenario_can	シナリオ中止		scenario
				distance
12	logstart_ind	ログ収集開始指		scenario
		示		distance
13	log_inf	ログ情報	speed, distance	scenario
				distance
14	logstop_ind	ログ収集停止		scenario
				distance

表3-2. メッセージアドレス一覧

		<u> </u>
	アドレス名	名称
1	wheelFright	車輪回転数管理 前右
2	wheelFleft	車輪回転数管理 前左
3	wheelRright	車輪回転数管理 後右
4	wheelRleft	車輪回転数管理 後左
5	brake	ブレーキ
6	throttle	スロットル (アクセル)
7	frsensor	前方センサー
8	bksensor	後方センサー
9	risensor	右センサー
10	lfsensor	左センサー

11	loadenv	路面環境
12	output	車状況
13	balancectl.	重心管理
14	dcs	Drive Control Simulate
15	transmission	トランスミッション
6	scenario	シナリオ

表 3 - 3 メッセージパラメータ名

	パラメータ名	パラメータ名称	値 範囲 単位
1	rpm	回転数	0~5000 1rpm/1 単位
2	torque	トルク	0~100 0.2 トルク/1 単位
3	remaintorqu	残トルク	0~100 0.2 トルク/1 単位
6	distance	センサー識別距離	0~100 残り 1000cm-10cm*単位
			例 前方センサー 50 残り 5m に接近
7	userope	ユーザ操作	speedup,speeddown
8	opetype	操作種別	throttle, brake
9	speed	スピード	
10	scenario	シナリオ	

4. 構成ファイル一覧

	ファイル名	概要
1	sim_app.erl	シミュレーションアプリケーション層
2	sim_sup.erl	シミュレーションプロセス監視
3	sim_part.erl	部品プロセス管理サーバ
4	sim_db.erl	シミュレータテ゛ータへ゛ース
5	wheel.erl	前右 車輪回転数管理
6	wheel_gui.erl	前右 車輪回転数表示
7	brake.erl	ブレーキ状態管理
8	brake_gui.erl	ブレーキ入力 HMI
9	throttle.erl	スロットル (アクセル)
10	throttle_gui.erl	スロットル入力 HMI
11	distance.erl	前方センサー
12	distance_gui.erl	前方センサー入力 HMI
13	balancectl.erl	重心制御
14	dcs.erl	Drive Control Simulate
15	output.erl	車状況出力
16	output_gui.erl	車状況出力 HMI
17	loadenv.erl	路面環境
18	brakesim.app	Erlang アプリケーション定義ファイル
19	make.bat	win 用 コンパイルバッチファイル
20	transmission.erl	トランスミッションソースファイル
21	scenario.erl	シナリオファイル
22	loadenv_gui.erl	路面環境 HMI
23	scenario_gui.erl	シナリオファイル HMI

5. DCS コーディング例

デフォルトの dcs.erl 雛形ファイルについて説明する。


```
%% Internal functions
event_loop() ->
        receive
                {state_inf,frsensor, Parameter} ->
                        Des = getParam(distance,Parameter),
                        gen\_server \hbox{:} cast \hbox{(\{global, wheelFright\},}
                                                                            {update_ind,
dcs,[opetype,throttle,userope,speedup,torque,Des]}),
                        event_loop();
   各種メッセージ受信処理はこ
                {state_inf,throttle, _Parameter} ->
                                                       この処理を膨らませる
                        event_loop();
                {state_inf,brake, _Parameter} ->
                        event_loop();
                {'EXIT', Pid, Why} ->
                        io:format("child process[~p] terminated: ~p~n", [Pid, Why]),
                        exit(error);
                Any ->
                        io:format("DCS unknown type received: ~p~n", [Any]),
                        event_loop()
        end.
                                                 現状は速度変更時に意図的にエラー
%%get parameter from message-----
                                                 メッセージをが表示している。
getParam(Key,[Hk,Hv|_]) when Key =:= Hk->
        Hv;
getParam(Key,[\_,\_|T]) \rightarrow
       getParam(Key,T);
getParam(_,[])->
        false.
                                        メッセージパラメータ取り出し関数
```

インストール手順

1. 概略

1台の PC で node1@localhost と node2@localhost の分散環境で構築した場合を例にとる。

手順1 コンパイル

手順2 シミュレータで必要な Mnesia 環境などを構築

手順3 起動

2. 手順詳細

■手順 1

ソースファイル一覧を解凍する。

OS Window 時は、配布の make.bat をコマンドプロンプトで実行する。

【実行イメージ】

C:\forage work\forage brakesim_V1>make

C:\forall work\forall brakesim_V1>echo off

"#####wheel_gui.erl#####"

"#####wheel.erl#####"

"#####sim_sup.erl#####"

"#####sim_part.erl#####"

"#####dcs.erl#####"

"#####distance.erl#####"

"#####distance_gui.erl#####"

"#####throttle.erl#####"

"#####throttle_gui.erl#####"

"#####brake.erl#####"

"#####brake_gui.erl#####"

"#####output.erl#####"

"#####output_gui.erl#####"

"#####loadenv.erl#####"

"#####sim_db.erl#####"

"#####sim_app.erl#####"

"#####balancectl.erl#####"

■手順2

手順1で解凍した Dir 上で erl を 2 ノード起動

>erl -sname node1@localhost

>erl -sname node2@localhost

いずれかの erlangBeam 上で環境構築コマンド実行 (node2@localhost)3> sim_sup:init_sim().

=INFO REPORT==== 31-May-2010::00:47:55 ===

node1も同様のメッセ ージが出力される。

application: mnesia exited: stopped

type: temporary

ok

(node2@localhost)4>

起動した Dir 配下に次の 2 つの Dir が作成されることを確認する。

Mnesia.node1@localhost

Mnesia.node2@localhost

■ 手順 3

OSS Erlang 開発演習用教材 ブレーキシミュレータは、erlang アプリケーションとしてパッケージ化されている。よって、Erlang アプリケーションの起動方法について示す。

Erlang アプリケーション名: brakesim

起動時 入力方法(注:各ノードを立ち上げておくこと)

(node2@localhost)4> application:start(brakesim).

sim_sup init start

~~以降略~~

終了方法

(node2@localhost)5> application:stop(brakesim).

%タイミングによって、Mnesia の開始が遅れて起動失敗するケースがあるが、再度続けて実行すると 2 度目は成功する。

別紙一2

ノード構成変更方法

2 台以上の PC を使う場合は、erlang の起動方法はインストール時に示した内容ではなく、次の例に示すようなコマンドパラメータとなる (詳細は、Erlang マニュアル参照)。

これを変更

erl –name xxx@IP アドレス(ホスト名) -cookie yyyyyy

■手順1

sim_sup.erl のマクロ定義を変更

例

 $\hbox{-define} (NODE1, \\ \hbox{-node1@localhost'}).$

 $\hbox{-define}(NODE2, \\ \hbox{-node}2@localhost').$

使用するノード名に変更 'xxx@IP アドレス'

■手順2

各部品の起動ノードを、手順1で記述したマクロ名に変更 例

注:分散 DB Mnesia もノードを意識するので、再構築が必要である。(インストール手順1)

別紙一3

ソースファイル追加手順

Erlang ソースファイルを追加した場合の手順について示す。

■手順1

コンパイル用のバッチファイルへ追加する erlang ファイル名を追記

編集ファイル: make.bat

■手順 2

アプリケーション定義ファイルへ追加する erlang モジュール名を追記

編集ファイル: brakesim.app 編集箇所: modules 欄

■手順3 部品(sim_part)として機能させるとき 部品起動処理を追加。

編集ファイル: sim_sup.erl 他部品を参考に編集する。