

Machine Learning

Synthetic Speech Detection & Attribution

Group No 16

Abdul Hannan Anjum Chaudhry 2023-11-0058

Muhammad Hamza 2023-11-0359

Zeeshan Ashraf 2023-02-0083

Overview

- Introduction
- Literary Review
- Methodology
- Implementation
- Results
- Analysis
- Conclusion

- Manipulation of audio, speech and video has become easier
- logical advances in the area of signal processing, machine learning and deep learning
- classification of algorithms used to generate different synthetic audios
- development of a classifier to identify the algorithm used for the generation of a synthetic audio.

•

- 5000 synthetic audio recordings generated from 5 different algorithms
- dataset of 15000 samples of noisy synthetic speech recordings using noise addition, reverberation, filtering, and lossy compression.

Literary Review

Features Extraction

- zero-crossing rate (ZCR),
- harmonic distribution
- Mel-Frequency Cepstral Coefficients
- Constant-Q transform (CQT),

Classification Models

- Logistic Multi Linear Regression
- Gaussian mixture models (GMMs)
- Multilayer perceptron (MLPs))
- Recurrent neural networks (RNNs)
- Kalman filters
- convolutional neural networks (CNNs)

Methodology

- Pre-Processing
- Feature Extraction
- Feature Selection
- Dimensionality Reduction
- Machine Learning Models Selection

	Feature Extraction	 The feature extraction in our models is done through the librosa library, which is very efficient MFCC, Spectral Centroid, Chromagram
Implementation	Dimensionality reduction	 Principle Component Analysis(PCA) to reduce the dimensions because it is difficult to handle large dimensions in the ML models
	Model Implementation	 SVM, KNN, Naïve Bayes, Neural Network, and Logistic regression model using the Sklearn library and Hyperparameter tuning to find the best possible parameters

Features extraction through librosa

```
mfcc list = []
chroma list = []
spectral_centroid=[]
for idx, aud in enumerate(aud_list):
  print(idx)
  signal, sr = librosa.load(aud)
  signal = signal.flatten()
  mfccs = librosa.feature.mfcc(signal, n_mfcc=13,sr=sr) #extracting mfccs
  #now for delta and delta2 mfccs
  delta_mfcc = librosa.feature.delta(mfccs) #the delta features show how the signals vary with time, will be useful for stuff !
  delta2_mfcc=librosa.feature.delta(mfccs,order=2)
  final_mfcc = np.concatenate((mfccs,delta_mfcc,delta2_mfcc))
  #scaling
  final_scaled=np.mean(final_mfcc.T,axis=0) #Scaled features,
  mfcc_list.append(final_scaled)
  chroma_cq = librosa.feature.chroma_stft(y=signal, sr=sr, n_fft=4096) #extracting chroma stft
  chroma cq = np.mean(chroma cq.T,axis=0)
  chroma list.append(chroma cq)
  cent = librosa.feature.spectral centroid(y=signal, sr=sr) #extracting spectral centroid
  cent = np.mean(cent.T,axis=0)
  spectral centroid.append(cent)
```

80 20 split after standardization and PCA implementation

```
scaler = preprocessing.StandardScaler().fit(mfcc clean train)
mfcc clean train scaled = scaler.transform(mfcc clean train)
print(mfcc clean train scaled[0])
mfcc clean test scaled = scaler.transform(mfcc clean test)
from sklearn.decomposition import PCA
pca = PCA(n components = 0.95)
pca.fit(mfcc clean train_scaled)
mfcc train1 = pca.transform(mfcc clean train scaled)
mfcc test1 = pca.transform(mfcc clean test scaled)
print("After mfcc shape")
print(mfcc train1[0].shape)
```

Sklearn implementation of a Neural Network

```
from sklearn.metrics import classification_report
from sklearn.neural_network import MLPClassifier
def NeuralNetwork(X_train,X_test,y_train,y_test):
  parameters = {
    'learning rate init': [0.05, 0.01, 0.005, 0.001],
    'hidden_layer_sizes': [4, 8, 12],
    'activation': ["relu", "logistic", "tanh"],
    'batch_size':[1000],
    'max_iter':[10000]}
  final3 = GridSearchCV(estimator=MLPClassifier(),param grid=parameters,scoring='accuracy',cv=5)
  final4=final3.fit(X_train,y_train)
  predict list= final4.predict(X test)
  acc_score = accuracy_score(y_test,predict_list)
  report = classification report(y test, predict list)
  return((acc_score,final4.best_params_['learning_rate_init'],final4.best_params_['hidden_layer_sizes'],final4.best_params_['activ
```

Results Clean dataset

	precision	recall	f1-score	support	
0	0.99	1.00	1.00	208	
1	0.84	0.89	0.86	202	
2	0.87	0.78	0.82	170	
3	0.97	0.99	0.98	217	
4	1.00	1.00	1.00	203	
accuracy			0.94	1000	
macro avg	0.93	0.93	0.93	1000	
weighted avg	0.94	0.94	0.94	1000	

- MFCCs and Chromagram
- Manhattan distance
- class 0, class 3 and class 4 have a near perfect precision score.

Accuracy 93.6%.

Clean and Augmented dataset combined

- MFCCs and Chromagram
- Manhattan distance
- class 0, class 3 and class 4 have a near perfect precision score.

Accuracy 96.8%.

					
	precision	recall	f1-score	support	
0	0.99	1.00	0.99	816	
1	0.93	0.94	0.93	842	
2	0.94	0.91	0.93	795	
3	0.98	1.00	0.99	772	
4	1.00	0.99	1.00	775	
accuracy			0.97	4000	
macro avg	0.97	0.97	0.97	4000	
weighted avg	0.97	0.97	0.97	4000	

Clean dataset

- MFCCs and Chromagram
- L1 penalty

Accuracy

95%.

For MFCCs+C	hroma						
The classif		d is ision		tegression f1-score		11	penalty
	9	1.00	1.00	1.00	208		
	1	0.90	0.85	0.87	202		
	2	0.83	0.89	0.86	170		
	3	0.99	0.99	0.99	217		
	4	1.00	1.00	1.00	203		
accurac	у			0.95	1000		
macro av	g	0.94	0.94	0.94	1000		
weighted av	g	0.95	0.95	0.95	1000		

Clean and augmented dataset Combined

	precision	recall	f1-score	support	
0	1.00	1.00	1.00	816	
1	0.83	0.86	0.85	842	
2	0.85	0.82	0.83	795	
3	0.99	0.98	0.98	772	
4	1.00	1.00	1.00	775	
accuracy			0.93	4000	
macro avg	0.93	0.93	0.93	4000	
weighted avg	0.93	0.93	0.93	4000	

- MFCCs and Chromagram
- L1 penalty
- elastic net regression

Accuracy L1 ratio

93.075% 0.6666

Clean dataset

- MFCCs and Chromagram
- Class 0, 1, 2, 3, and 4

Accuracy 88.8%

Clean and augmented dataset Combined

- MFCCs, Spectral Centroid and Chromagram
- Class 0, 1, 2, 3, and 4
- precision scores of class 1 and 2 are relatively poorer.

Accuracy 85.4 %

For MFCCs+S					
The classif	ier used	is Naiv∈	e Bayes wi	ith accurac	y 0.854
	preci	sion re	ecall f1-s	score sup	port
	0	0.97	0.93	0.95	771
	1	0.68	0.80	0.74	791
	2	0.73	0.65	0.68	857
	3	0.96	0.92	0.94	785
	4	0.97	1.00	0.98	796
accurac	у			0.85	4000
macro av	g	0.86	0.86	0.86	4000
weighted av	g	0.86	0.85	0.85	4000

Clean dataset

- MFCCs and Chromagram
- Radial basis function as the activation function
- 0.01 regularization parameter
- precision scores of class 1 and 2 are much better as comapred to classes 0,3 and 4.

Accuracy

95%

	precision	recall	f1-score	support
0 1 2 3 4	1.00 0.89 0.87 1.00	1.00 0.87 0.90 0.99 1.00	1.00 0.88 0.88 0.99 1.00	204 203 194 207 192
accuracy macro avg weighted avg	0.95 0.95	0.95 0.95	0.95 0.95 0.95	1000 1000

Clean dataset

- MFCCs and Chromagram
- Radial basis function as the activation function
- 0.01 regularization parameter
- precision scores of class 1 and 2 are much better as comapred to classes 0,3 and 4.

Accuracy

95%

Clean dataset

- MFCCs, and Chromagram
- Relu as the activation function
- 0.001 as the initial learning rate
- Number of hidden layers was 12
- Class 1 low precision of 79%, class 2 precision of 86%.

Accuracy 94%

For MFCCs+Chroma The classifier used is Neural Network with accuracy with the activation function: relu									
	preci	ision r	ecall f1-	score su	upport				
	_								
	0	0.99	1.00	0.99	897				
	1	0.79	0.87	0.83	787				
,	2	0.86	0.79	0.83	799				
	3	0.98	0.97	0.98	845				
	4	1.00	1.00	1.00	762				
accurac	:y			0.92	4000				
macro av	/g	0.93	0.92	0.92	4000				
weighted av	-	0.93	0.92	0.92	4000				

Clean and Augmented dataset combined

Neural Networks

- MFCCs and Chromagram
- Relu as the activation function
- 0.005 as the initial learning rate
- Number of hidden layers was 12

Accuracy 94.625%

	precision	recall	f1-score	support	
0	1.00	1.00	1.00	807	
1	0.86	0.88	0.87	787	
2	0.89	0.86	0.87	799	
3	0.99	0.99	0.99	845	
4	1.00	1.00	1.00	762	
accuracy			0.95	4000	
macro avg	0.95	0.95	0.95	4000	
weighted avg	0.95	0.95	0.95	4000	

Analysis

The First Analysis of Obtained Results

 Classes 1 and 2 suffer from the worst precision scores as compared to other classes

The Second Analysis of Obtained Results

 Highest accuracy we have achieved on the clean data set until now is 95 percent

The Third Analysis of Obtained Results

A major feature we decided to overlook was Fourier transform, so now we will investigate that feature

Insights Amplitude/Signal

Insights

Linear/Log Frequency Power Spectrogram

Conclusion

- Spectral Centroid was not a good feature in terms of synthetic speech algorithm classification
- MFCCs and Chromagram performed the best (in our case)
- Support Vector Machines tend to perform the best with an achieved accuracy of 95% on the clean dataset
- K-Nearest Neighbor performs the best with an achieved accuracy of 96.775% on the augmented + Clean Dataset combined
- Classes 1 and classes 2 suffer from poorer precision scores in KNN algorithm, SVM balances them out a bit with class 4
- Support Vector Machines (which achieved an accuracy of 96.4 on our test data) as the final model

