

RİSE

Automated Test Generation via SAT/SMT Solvers

Automated Test Generation (ATG) and applications

- SAT solving via DPLL
- Encoding of basic (program) operations over bit vectors to SAT
- Z3: SAT/SMT Solver (Python interface)

- ATG of programs via reduction to SAT
- From symbolic execution to dynamic symbolic execution

- Design and implementation of dynamic symbolic execution
 - for Python
 - in Python

Exercises and extensions for you to work on!

• On the power/limits of dynamic symbolic execution

Satisfiability modulo theories (SMT) solvers

Extending DSE for Python with SymbolicDict via array theory

• Strings, Regular Expressions and Symbolic Automata

Automatic Test Generation

via

Dynamic Symbolic Execution

Automated (White Box) Test Generation

Given a program with a set of input parameters, automatically generate a set of input values that will cover as many statements/branches/paths as possible (or find as many bugs as possible)

Applications

Security: Whitebox File Fuzzing (MSR's SAGE)

Software development: Parameterized Unit Testing (MSR's Pex)

- Many others
 - Performance testing of operating systems (MIT's Commuter)
 - Malware analysis (CMU/Berkeley's BitScope)
 - Generate of worm filters (MSR's Vigilante)

- Starting with 100 zero bytes ...
- SAGE generates a crashing test for Media1 parser:

Generation 0 – seed file

- Starting with 100 zero bytes ...
- SAGE generates a crashing test for Media1 parser:

- Starting with 100 zero bytes ...
- SAGE generates a crashing test for Media1 parser:

- Starting with 100 zero bytes ...
- SAGE generates a crashing test for Media1 parser:

- Starting with 100 zero bytes ...
- SAGE generates a crashing test for Media1 parser:

- Starting with 100 zero bytes ...
- SAGE generates a crashing test for Media1 parser:

- Starting with 100 zero bytes ...
- SAGE generates a crashing test for Media1 parser:

- Starting with 100 zero bytes ...
- SAGE generates a crashing test for Media1 parser:

- Starting with 100 zero bytes ...
- SAGE generates a crashing test for Media1 parser:

- Starting with 100 zero bytes ...
- SAGE generates a crashing test for Media1 parser:

- Starting with 100 zero bytes ...
- SAGE generates a crashing test for Media1 parser:

Example

```
void top(char input[4])
                                                    input = "good"
                                           Path constraint:
    int cnt = 0;
    if (input[0] == 'b') cnt++; I_0!='b' \rightarrow I_0='b'

if (input[1] == 'a') cnt++; I_1!='a' \rightarrow I_1='a'

if (input[2] == 'd') cnt++; I_2!='d' \rightarrow I_2='d'
                                                                                    bood
                                                                                    gaod
    if (input[3] == '!') cnt++; I_3!='!' \rightarrow I_3='!'
    if (cnt >3) crash();
                                                                          good
                                                                                       Gen 1
           Negate each constraint in path constraint
          Solve new constraint → new input
```

Whitebox File Fuzzing

SAGE @ Microsoft:

- 1st whitebox fuzzer for security testing
- 400+ machine years (since 2008) →
- 3.4+ Billion constraints
- 100s of apps, 100s of security bugs
- Example: Win7 file fuzzing
 ~1/3 of all fuzzing bugs found by SAGE →
 (missed by everything else...)
- Bug fixes shipped (quietly) to 1 Billion+ PCs
- Millions of dollars saved
 - · for Microsoft + time/energy for the world

Whitebox Testing and Satisfiability (SAT)

	Testing	SAT
Source	Program	Boolean formula
Question	Is there an input that covers some statement?	Is there a satisfying assignment?
Complexity	Undecidable	NP-complete

Propositional Formula (CNF)

$$\varphi = (a \lor \neg b \lor d) \land (a \lor \neg b \lor e) \land$$

$$(\neg b \lor \neg d \lor \neg e) \land$$

$$(a \lor b \lor c \lor d) \land (a \lor b \lor c \lor \neg d) \land$$

$$(a \lor b \lor \neg c \lor e) \land (a \lor b \lor \neg c \lor \neg e)$$

SAT Solving via DPLL

- Standard backtrack search
- ► DPLL(F) :
 - Apply unit propagation
 - ► If conflict identified, return UNSAT
 - Apply the pure literal rule
 - ▶ If F is satisfied (empty), return SAT
 - Select decision variable x
 - ▶ If $DPLL(F \land x) = SAT$ return SAT
 - ▶ return DPLL($F \land \neg x$)

$$\varphi = (a \lor \neg b \lor d) \land (a \lor \neg b \lor e) \land$$

$$(\neg b \lor \neg d \lor \neg e) \land$$

$$(a \lor b \lor c \lor d) \land (a \lor b \lor c \lor \neg d) \land$$

$$(a \lor b \lor \neg c \lor e) \land (a \lor b \lor \neg c \lor \neg e)$$

$$\varphi = (a \lor \neg b \lor d) \land (a \lor \neg b \lor e) \land$$

$$(\neg b \lor \neg d \lor \neg e) \land$$

$$(a \lor b \lor c \lor d) \land (a \lor b \lor c \lor \neg d) \land$$

$$(a \lor b \lor \neg c \lor e) \land (a \lor b \lor \neg c \lor \neg e)$$

$$\varphi = (a \lor \neg b \lor d) \land (a \lor \neg b \lor e) \land$$

$$(\neg b \lor \neg d \lor \neg e) \land$$

$$(a \lor b \lor c \lor d) \land (a \lor b \lor c \lor \neg d) \land$$

$$(a \lor b \lor \neg c \lor e) \land (a \lor b \lor \neg c \lor \neg e)$$

$$conflict$$

$$\varphi = (a \lor \neg b \lor d) \land (a \lor \neg b \lor e) \land (\neg b \lor \neg d \lor \neg e) \land (a \lor b \lor c \lor d) \land (a \lor b \lor c \lor \neg d) \land (a \lor b \lor \neg c \lor e) \land (a \lor b \lor \neg c \lor \neg e)$$

$$\varphi = (a \lor \neg b \lor d) \land (a \lor \neg b \lor e) \land (\neg b \lor \neg d \lor \neg e) \land (a \lor b \lor c \lor d) \land (a \lor b \lor c \lor \neg d) \land (a \lor b \lor \neg c \lor e) \land (a \lor b \lor \neg c \lor \neg e)$$

$$conflict$$

$$\varphi = (a \lor \neg b \lor d) \land (a \lor \neg b \lor e) \land (\neg b \lor \neg d \lor \neg e) \land (a \lor b \lor c \lor d) \land (a \lor b \lor c \lor \neg d) \land (a \lor b \lor \neg c \lor e) \land (a \lor b \lor \neg c \lor \neg e)$$

$$conflict$$

$$\varphi = (a \lor \neg b \lor d) \land (a \lor \neg b \lor e) \land (\neg b \lor \neg d \lor \neg e) \land (a \lor b \lor c \lor d) \land (a \lor b \lor c \lor \neg d) \land (a \lor b \lor \neg c \lor e) \land (a \lor b \lor \neg c \lor \neg e)$$

$$\varphi = (a \lor \neg b \lor d) \land (a \lor \neg b \lor e) \land$$

$$(\neg b \lor \neg d \lor \neg e) \land$$

$$(a \lor b \lor c \lor d) \land (a \lor b \lor c \lor \neg d) \land$$

$$(a \lor b \lor \neg c \lor e) \land (a \lor b \lor \neg c \lor \neg e)$$

Bit-vector / Machine arithmetic

Let x, y and z be 8-bit (unsigned) integers.

Is
$$x > 0 \land y > 0 \land z = x + y \Rightarrow z > 0$$
 valid?

equivalently,

```
Is x > 0 \land y > 0 \land z = x + y \land \neg(z > 0)
unsatisfiable?
```

```
from z3 import *
x = BitVec("x", 8)
y = BitVec("y", 8)
z = BitVec("z", 8)
s = Solver()
s.add (UGT (x, 0), UGT (y, 0), z = x + y)
s.add(Not(UGT(z,0)))
result = s.check()
if result == sat:
       print(s.model())
else:
       print(result)
```

Bit-vector / Machine arithmetic

We can encode bit-vector satisfiability problems in propositional logic.

Idea 1:

Use *n* propositional variables to encode *n*-bit integers.

$$x \rightarrow (x_1, ..., x_n)$$

Idea 2:

Encode arithmetic operations using hardware circuits.

Encoding equality

 $p \Leftrightarrow q$ is equivalent to $(\neg p \lor q) \land (\neg q \lor p)$

The bit-vector equation x = y is encoded as:

$$(x_1 \Leftrightarrow y_1) \wedge ... \wedge (x_n \Leftrightarrow y_n)$$

Encoding addition

We use $(r_1, ..., r_n)$ to store the result of x + y

p xor q is defined as $\neg(p \Leftrightarrow q)$

xor is the 1-bit adder

p	q	p xor q	p∧q	carry
0	0	0	0	
1	0	1	0	
0	1	1	0	
1	1	0	1	

Encoding 1-bit full adder

1-bit full adder

Three inputs: x, y, c_{in}

Two outputs: *r*, *c*_{out}

X	У	C _{in}	$r = x \text{ xor } y \text{ xor } c_{in}$	$c_{out} = (x \wedge y) \vee (x \wedge c_{in}) \vee (y \wedge c_{in})$
0	0	0	0	0
1	0	0	1	0
0	1	0	1	0
1	1	0	0	1
0	0	1	1	0
1	0	1	0	1
0	1	1	0	1
1	1	1	1	1

Encoding n-bit adder

We use $(r_1, ..., r_n)$ to store the result of x + y,

$$r_1 \Leftrightarrow (x_1 \text{ xor } y_1)$$
 $c_1 \Leftrightarrow (x_1 \wedge y_1)$
 $r_2 \Leftrightarrow (x_2 \text{ xor } y_2 \text{ xor } c_1)$
 $c_2 \Leftrightarrow (x_2 \wedge y_2) \vee (x_2 \wedge c_1) \vee (y_2 \wedge c_1)$
...
 $r_n \Leftrightarrow (x_n \text{ xor } y_n \text{ xor } c_{n-1})$
 $c_n \Leftrightarrow (x_n \wedge y_n) \vee (x_n \wedge c_{n-1}) \vee (y_n \wedge c_{n-1})$

Whitebox Testing and Satisfiability (SAT)

	Testing	SAT
Source	Program	Boolean formula
Question	Is there an input that covers some statement?	Is there a satisfying assignment?
Complexity	Undecidable	NP-complete

Reduction of Program Testing to SAT: Bounds!

- Unbounded number of execution paths?
 - Explicit enumeration/exploration of program paths
 - Bound the number of paths explored

- Unbounded execution path length?
 - Bound the input size and/or path length

- Bounded exploration
 - enables conversion of a program path to a (finite) logic formula

Symbolic Execution

- Exploration of all feasible execution paths:
 - Start execution from initial state with symbolic values for all input
 - Program operations yield terms over symbolic values
 - At conditional branch, fork execution for each feasible evaluation of the condition
 - For each path, we get an accumulated path condition
- For each path, check if path condition is satisfiable and generate input

• See: [King76]

Symbolic Execution Illustrated

```
int Max(int a, int b, int c, int d) {
                                                            int Max(int x, int y) {
   return Max(Max(a, b), Max(c, d));
                                                                if (x <= y) return y;</pre>
                                                                else return x;
                                       (a<=b)
                                         True
                                                False
                                  (c \le d)
                                                (c \le d)
                                                                 False
                              False
                                      True
                                                     True
                                                                      (a \le c)
                                 (b \le d)
                                                (a \le d)
                                True
                                      False
                                                    True
                                                                          False
          True
                False
                                                            False
                                                                                   True
                         ′a=1
  b=1
             b=3
                                    b=2
                                                                                   b=1
                         b=1
                                                b=1
                                                           b=1
                                                                       b=1
                                    c=1
                                                                                   c=2
                         c=1
                                                c=1
                                                           c=1
                                                                       c=2
```

Many problems remain

- 1. Code that is hard to analyze
- 2. Path explosion
 - Loops
 - Procedures
- 3. Environment (what are the inputs to the program under test?)
 - pointers, data structures, ...
 - files, data bases, ...
 - threads, thread schedules, ...
 - sockets, ...

1. Code that is hard to analyze

```
int obscure(int x, int y) {
  if (x==complex(y)) error();
  return 0;
}
```

May be very hard to statically generate values for x and y that satisfy "x==complex(y)"!

Sources of complexity:

- Virtual functions (function pointers)
- Cryptographic functions
- Non-linear integer or floating point arithmetic
- Calls to kernel mode

```
•
```

Directed Automated Random Testing [PLDI 2005]

```
int obscure(int x, int y) {
  if (x==complex(y)) error();
  return 0;
}
```

```
Run 1:

- start with (random) x=33, y=42

- execute concretely and symbolically:
if (33!=567) | if (x!=complex(y))
constraint too complex

→ simplify it: x!=567

- solve: x==567 → solution: x=567

- new test input: x=567, y=42
```

Run 2: the other branch is executed All program paths are now covered!

Also known as concolic execution (<u>concrete + symbolic</u>)
Referred to here as <u>dynamic symbolic execution</u>

Dynamic Symbolic Execution

a[0]==1234567890

Code to generate inputs for:

a.Length>0

a = null

a[0]=123...

Choose	next	nath
CHOOSE	IICAL	patri

Constraints to solve	Data	Observed constraints
	null	a==null
a!=null	{}	a!=null && !(a.Length>0)
a!=null && a.Length>0	{0}	a!=null && a.Length>0 && a[0]!=1234567890
a!=null && a.Length>0 &&		a!=null && a.Length>0 && a[0]123/567800

{123..}

Done: There is no path left.

a[0]==1234567890

Execute&Monitor

Dynamic Symbolic Execution

```
Formula F := False

Loop

Find program input i in solve(negate(F)) // stop if no such i can be found

Execute P(i); record path condition C // in particular, C(i) holds

F := F \ C

End
```

Dynamic Symbolic Execution: many implementations

- Defined by execution environment / programming language, symbolic execution precision, and constraint solving
 - Execution environment: C, Java, x86, .NET,...
 - Precision: linear vs. non-linear arithmetic, "gods integers" vs. bitvectors, concrete heap vs. symbolic heap., floating-point values, etc.
 - Solvers: lp_solve, CVCLite, STP, Disolver, Z3,...
- Examples of DSE implementations:
 - DART (Bell Labs), and also CUTE "concolic execution"
 - EXE/EGT/KLEE (Stanford) "constraint-based execution"
 - *Vigilante* (Microsoft) to generate worm filters
 - BitScope (CMU/Berkeley) for malware analysis
 - Sage (Microsoft) for security testing of X86 code
 - Yogi (Microsoft) to verify device drivers (integrated in SLAM)
 - Pex (Microsoft) for parameterized unit testing of .NET code
 - CREST, jCUTE, jFuzz, ...

Recap: Test Generation using SAT solvers

References

- James C. King, Symbolic execution and program testing, Communications of the ACM, v.19 n.7, p.385-394, July 1976
- João P. Marques Silva, Karem A. Sakallah: GRASP: A Search Algorithm for Propositional Satisfiability. IEEE Trans. Computers 48(5): 506-521 (1999)
- Patrice Godefroid, Nils Klarlund, Koushik Sen: DART: directed automated random testing. PLDI 2005: 213-223
- Nikolai Tillmann, Wolfram Schulte: Parameterized unit tests. ESEC/SIGSOFT FSE 2005: 253-262
- Leonardo de Moura, Nikolaj Bjørner: Z3: An Efficient SMT Solver. TACAS 2008: 337-340
- Cristian Cadar, Daniel Dunbar, Dawson R. Engler: KLEE: Unassisted and Automatic Generation of High-Coverage Tests for Complex Systems Programs. OSDI 2008: 209-224
- Dries Vanoverberghe, Nikolai Tillmann, Frank Piessens: Test Input Generation for Programs with Pointers. TACAS 2009: 277-291
- Kenneth L. McMillan: Lazy Annotation for Program Testing and Verification. CAV 2010: 104-118
- Ella Bounimova, Patrice Godefroid, David A. Molnar: Billions and billions of constraints: whitebox fuzz testing in production. ICSE 2013: 122-131

Assignment 1

- Download
 - Python 3.2.3 or later (http://www.python.org/)
 - Z3 'unstable' for your platform (http://z3.codeplex.com/)
 - Git client (http://www.github.com/)
 - Clone https://github.com/thomasjball/PyExZ3.git
- Or get the code I have on USB key for Windows (and Z3 for all platforms)
- Write a Python function to encode n-bit multiplication using Z3 Bools (you can use PyExZ3\examples\adder.py)
- Use Z3 to prove that your multiplier is equivalent to Z3's BitVector multiplier (you can use PyExZ3\examples\check_adder.py)