Matrizes e Sistemas de Equações Lineares

Álgebra Linear e Geometria Analítica - A

Soluções da Folha Prática 1

1. (a)
$$\begin{bmatrix} 2 & 0 \\ 4 & 4 \\ 7 & 9 \end{bmatrix}$$
; (b) $\begin{bmatrix} -1 & 6 \\ 1 & 4 \\ 1 & 0 \end{bmatrix}$; (c) $\begin{bmatrix} -2 & -1 & -4 \\ 0 & -1 & 0 \\ 3 & -2 & 6 \end{bmatrix}$; (d) $\begin{bmatrix} -1 & 0 \\ 5 & 4 \end{bmatrix}$; (e) $\begin{bmatrix} -3 & 1 & -6 \\ 1 & 1 & 2 \\ 8 & 2 & 16 \end{bmatrix}$; (f) $\begin{bmatrix} 0 & 0 \\ -3 & -3 \end{bmatrix}$.

$$2. \quad \begin{bmatrix} -6 & -8 & 3 \\ 3 & 1 & 3 \\ 7 & -1 & 6 \end{bmatrix}.$$

3.
$$ADBC = \begin{bmatrix} 5 \\ -2 \end{bmatrix}$$
 ou $BADC = \begin{bmatrix} 8 \\ 0 \end{bmatrix}$.

4. A primeira coluna é
$$\begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix}$$
 e a segunda linha é $\begin{bmatrix} 3 & 4 \end{bmatrix}$.

6.
$$EA = \begin{bmatrix} 1 & 2 & 3 \\ 7 & 11 & 15 \\ 7 & 8 & 9 \end{bmatrix} \neq AE = \begin{bmatrix} 7 & 2 & 3 \\ 19 & 5 & 6 \\ 31 & 8 & 9 \end{bmatrix}$$
.

7.
$$\begin{bmatrix} \mu_1^4 & 0 & \dots & 0 \\ 0 & \mu_2^4 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \mu_n^4 \end{bmatrix}.$$

9. i.
$$(A+B)^2 = A^2 + AB + BA + B^2$$
;
ii. $(A-B)^2 = A^2 - AB - BA + B^2$;
iii. $(A+B)(A-B) = A^2 - AB + BA - B^2$;
iv. $(AB)^2 = ABAB$.

10. (a) Verdadeira; (b) Falsa; (c) Falsa.

14. (a)
$$AC = \begin{bmatrix} -1 \\ 5 \\ 5 \end{bmatrix}$$
; (b) $AC = \begin{bmatrix} x-y \\ 2x-y+z \end{bmatrix}$ e $C = \begin{bmatrix} 1-z \\ 1-z \\ z \end{bmatrix}$, $z \in \mathbb{R}$.

15. (b) e (d).

i. (a)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$
; (c) $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.
ii. (a) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$; (b) $\begin{bmatrix} 1 & 4/3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$; (c) $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$; (d) $\begin{bmatrix} 1 & 0 & 11/10 & 3/10 \\ 0 & 1 & 1 & 1/2 \end{bmatrix}$.

- 16. (a) $x_1 = t$, $x_2 = \frac{1}{3} 2t$, $x_3 = t$, $t \in \mathbb{R}$;
 - (b) impossível
 - (c) $x_1 = 6 t$, $x_2 = -5 + t$, $x_3 = 3$, $x_4 = -1 t$, $x_5 = t$, $t \in \mathbb{R}$;
 - (d) $x_1 = 4/3$, $x_2 = 4/3$, $x_3 = -2/3$.
- 17. (a) $\alpha = -1$; (b) $\alpha \neq 1 \text{ e } \alpha \neq -1$; (c) $\alpha = 1$.

18. O sistema é impossível se
$$\alpha = 0$$
 ou $\alpha = 1$.

O sistema é possível e determinado se $\alpha \in \mathbb{R} \setminus \{0,1\}$ e nesse caso o conjunto solução é $\left\{\left(0,\frac{1}{\alpha-1},1-\frac{3}{\alpha}\right)\right\}$.

19. O sistema é
$$\begin{cases} \text{impossível} & \text{se } \alpha = 0 \text{ ou } \alpha = -1 \\ \text{possível e indeterminado de grau um} & \text{se } \alpha = -2 \\ \text{possível e determinado} & \text{se } \alpha \in \mathbb{R} \setminus \{0, -1, -2\} \end{cases}$$

20. Se
$$B$$
 é a coluna i de A , então $X = [0 \cdots 1 \cdots 0]^T$ com 1 na linha i e as restantes entradas nulas é uma solução.

21.
$$\begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}$$
 não é singular e
$$\begin{bmatrix} 3 & 2 \\ -6 & -4 \end{bmatrix}$$
 é singular.

(c)
$$C^5 = AD^5B = \begin{bmatrix} 3197 & -1266 \\ 7385 & -2922 \end{bmatrix}$$

23. (a)
$$\begin{bmatrix} 7 & -4 \\ -5 & 3 \end{bmatrix}$$
; (b) $\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$; (c) $\begin{bmatrix} 1 & 3 & 1 \\ 2 & 2 & 1 \\ 3 & 4 & 2 \end{bmatrix}$; (d) $\begin{bmatrix} -1 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -\frac{4}{5} \end{bmatrix}$.

26.
$$(I_n + A + A^2 + \ldots + A^{k-1})(I_n - A) = I_n - A^k = I_n$$
.

$$27. \ \, \text{Sendo} \,\, A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \, \text{tem-se} \,\, A^3 = O, \, \text{logo} \,\, \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}^{-1} \\ = (I_3 - A)^{-1} = I_3 + A + A^2 = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$$

28.
$$\alpha \in \mathbb{R} \setminus \{0\}$$
.

$$30. \quad X = \begin{bmatrix} 4 & -1 \\ 6 & -2 \end{bmatrix}.$$

31.
$$\begin{bmatrix} 3 & 1 \\ -1 & -3 \end{bmatrix}$$
.

32. (a)
$$X = B^T A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -2 \end{bmatrix};$$

(b)
$$X = \begin{bmatrix} -1 & 4 \\ 0 & 4 \end{bmatrix}$$
.

33. (a)
$$\begin{bmatrix} 1 & -1 & 0 \\ 3 & 1 & -3 \\ -2 & 1 & 1 \end{bmatrix}$$
.

(b)
$$x = 1, y = 0, z = -1.$$

$$L = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & -5 & 1 \end{bmatrix}, U = \begin{bmatrix} 3 & -7 & -2 \\ 0 & -2 & -1 \\ 0 & 0 & -1 \end{bmatrix}$$

Resolvendo Ly=b vem $y=\begin{bmatrix} -7 & -2 & 6 \end{bmatrix}^T$. Resolvendo Ux=y vem $x=\begin{bmatrix} 3 & 4 & -6 \end{bmatrix}^T$.

$$L = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}, U = \begin{bmatrix} 2 & -6 & 4 \\ 0 & -4 & 8 \\ 0 & 0 & -2 \end{bmatrix}$$

Resolvendo Ly = b vem $y = \begin{bmatrix} 2 & 0 & 6 \end{bmatrix}^T$.

Resolvendo Ux=y, tem-se $x=\begin{bmatrix} -11 & -6 & -3 \end{bmatrix}^T$.

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & -5 & 1 \end{bmatrix}, U = \begin{bmatrix} 1 & -1 & 2 \\ 0 & -2 & -1 \\ 0 & 0 & -6 \end{bmatrix}$$

Resolvendo Ly = b, $y = \begin{bmatrix} 0 & -5 & -18 \end{bmatrix}^T$. Resolvendo Ux = y, $x = \begin{bmatrix} -5 & 1 & 3 \end{bmatrix}^T$.

37. A resposta ao Exercício 37 (a), depende da forma como o estudante ordena os setores. Se ordenar os setores por manufaturação, agricultura e serviços, então a matriz de consumo é:

$$C = \left[\begin{array}{ccc} 0.1 & 0.6 & 0.6 \\ 0.3 & 0.2 & 0.0 \\ 0.3 & 0.1 & 0.1 \end{array} \right].$$

A demanda interna (necessidades intermédias) para a produção de x é dada por Cx. Neste caso tem-se que

$$Cx = \begin{bmatrix} 0.1 & 0.6 & 0.6 \\ 0.3 & 0.2 & 0.0 \\ 0.3 & 0.1 & 0.1 \end{bmatrix} \begin{bmatrix} 0 \\ 100 \\ 0 \end{bmatrix} = \begin{bmatrix} 60 \\ 20 \\ 10 \end{bmatrix}$$

(b) Resolva a equação x = Cx + d para d.

$$d = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} - \begin{bmatrix} 0.1 & 0.6 & 0.6 \\ 0.3 & 0.2 & 0.0 \\ 0.3 & 0.1 & 0.1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0.9x_1 - 0.6x_2 - 0.6x_3 \\ -0.3x_1 + 0.8x_2 \\ -0.3x_1 - 0.1x_2 + 0.9x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 18 \\ 0 \end{bmatrix}.$$

A solução é
$$x = \begin{bmatrix} 33.33 \\ 35.00 \\ 15.00 \end{bmatrix}$$

- (c) Resolvendo como no ponto anterior d = x Cx vem $x = \begin{bmatrix} 40\\15\\15 \end{bmatrix}$
- (d) Resolvendo como no ponto anterior d = x Cx vem $x = \begin{bmatrix} 73.33 \\ 50 \\ 30 \end{bmatrix}$.

$$38. \ \ x = (I-C)^{-1}d = \left[\begin{array}{cc} 1 & -0.5 \\ -0.6 & 0.8 \end{array} \right]^{-1} \left[\begin{array}{c} 50 \\ 30 \end{array} \right] = \left[\begin{array}{cc} 1.6 & 1 \\ 1.2 & 2 \end{array} \right] \left[\begin{array}{c} 50 \\ 30 \end{array} \right] = \left[\begin{array}{c} 110 \\ 120 \end{array} \right].$$

39.
$$x = (I - C)^{-1}d = \begin{bmatrix} 0.9 & -0.6 \\ -0.5 & 0.8 \end{bmatrix}^{-1} \begin{bmatrix} 18 \\ 11 \end{bmatrix} = \begin{bmatrix} 50 \\ 45 \end{bmatrix}$$
.

40. Já sabemos que
$$(I-C)^{-1} = \begin{bmatrix} 1.6 & 1 \\ 1.2 & 2 \end{bmatrix}$$
. Assim, $x_1 = (I-C)^{-1}d_1 = \begin{bmatrix} 1.6 & 1 \\ 1.2 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1.6 \\ 1.2 \end{bmatrix}$. e $x_2 = (I-C)^{-1}d_2 = \begin{bmatrix} 111.6 \\ 121.2 \end{bmatrix}$.