Esame di Reti di Elaboratori - Parte 2 del 17 Luglio 2018

Quesito n. 1

DHCP: Assumete che lo scenario di partenza sia quello evidenziato nella figura sottostante

Quali sono i messaggi che si scambiano l'host (host che si collega alla rete 223.1.2.0/24) che richiede il servizio DHCP e il server evidenziando quali di questi messaggi vengono spediti in broadcast e quali in unicast e perché di tali scelte (senza le motivazioni le risposte verranno giudicate insufficienti).

Quesito n. 2

Descrivere cosa fa il comando traceroute (o tracert in Windows) e spiegare come tale comando viene implementato mediante ICMP.

Quesito n. 3

Protocollo OSPF: come funziona? E quali sono le sue caratteristiche/peculiarità?

Quesito n. 4

Come realizzare il protocollo di livello trasporto affidabile usando dei servizi di reti che non offrono garanzia di affidabilità. Nel seguito verranno elencati una serie di errori/malfunzionamenti e per ognuno di essi specificare quali sono i meccanismi che un protocollo di livello trasporto dovrebbe implementare per correggerli.

on prorocotto ai tive	Trasporto dovicobe implementare per correggerir.
Problema	Come si può gestire (aggiungere spiegazione)?
1) Alterazione di bit del pacchetto	
2) Conferma della ricezione di un pacchetto	
3) Perdita di un pacchetto e/o	
di un riscontro	
4) Out-of-order (problema	
della ricezione	
di pacchetti in	
ordine diverso da quello usato	
dal mittente)	

Quesito n. 5

TCP e bufferizzazione.

- 1. Spiegare quali sono i principi alla base della gestione dei buffer di TCP
- 2. Evidenziare in quali situazioni la bufferizzazione di TCP risulta non adequata
- Differenze tra modalità push e modalità urgent (e quali sono i campi di TCP interessati da tali modalità).

Quesito n. 6

Si interpreti la traccia di pacchetti riportata in seguito, che corrisponde ad una cattura di pacchetti tra due host.

Cosa riporta tale traccia?

```
Destination
                                                                                Protocol Info
16 11.589295 192.168.10.10 130.192.8.162 TCP 1070
17 11.589583 130.192.8.162 192.168.10.10 TCP 8080
18 11.589645 192.168.10.10 130.192.8.162 TCP 1070
                                                                                                      8080 [SYN] Seq=0 Ack=0 Win=65535 Len=0 MSS=1460
                                                                                                                [SYN, ACK] Seg=0 Ack=1 Win=5840 Len=0 MSS=1460 [ACK] Seg=1 Ack=1 Win=65535 Len=0 [ACK] Seg=1 Ack=1 Win=65535 Len=280
                                                                                                      1070
                                                                                                      8080
     11.590587 192.168.10.10 130.192.8.162
20 11.590944 130.192.8.162 192.168.10.10
21 11.700398 130.192.8.162 192.168.10.10
                                                                                                                [ACK] Seq=1 Ack=281 Win=6432 Len=0
[ACK] Seq=1 Ack=281 Win=6432 Len=384
                                                                               TCP 8080
                                                                                                      1070
                                                                                TCP
                                                                                                      1070
23 11.890110 192.168.10.10 130.192.8.162 TCP 1070 24 12.151789 192.168.10.10 130.192.8.162 TCP 1070 25 12.152171 130.192.8.162 192.168.10.10 TCP 8080
                                                                                                                [ACK] Seq=281 Ack=385 Win=65151 Len=0
[ACK] Seq=281 Ack=385 Win=65151 Len=279
                                                                                                      8080
                                                                                                      8080
                                                                                                                [ACK] Seq=385 Ack=560 Win=7504 Len=0
                                                                                                      1070
     12.223836 130.192.8.162 192.168.10.10 TCP 8080 > 12.223922 130.192.8.162 192.168.10.10 TCP 8080 > 12.223991 192.168.10.10 130.192.8.162 TCP 1070 >
                                                                                                                [ACK] Seg=385 Ack=560 Win=7504 Len=1460 [ACK] Seg=1845 Ack=560 Win=7504 Len=12 [ACK] Seg=560 Ack=1857 Win=65535 Len=0
                                                                                                      1070
                                                                                                      1070
                                                                                                      8080
                                                                                                                [ACK] Seq=1857 Ack=560 Win=7504 Len=1460 [FIN, ACK] Seq=3317 Ack=560 Win=7504 Len=941 [ACK] Seq=560 Ack=4259 Win=65535 Len=0
29 12.225440 130.192.8.162 192.168.10.10 TCP 8080 30 12.225518 130.192.8.162 192.168.10.10 TCP 8080
                                                                                                      1070
                                                                                                      1070
31 12.225627 192.168.10.10 130.192.8.162 TCP 1070
                                                                                                  > 8080
32 12.610469 192.168.10.10 130.192.8.162 TCP 1070 > 8080 [FIN, ACK] Seq=560 Ack=4259 Win=65535 Len=0 33 12.610748 130.192.8.162 192.168.10.10 TCP 8080 > 1070 [ACK] Seq=4259 Ack=561 Win=7504 Len=0
```

Quesito n. 7

Il testo successivo mostra la risposta mandata dal server dopo aver ricevuto il messaggio HTTP GET della domanda. Rispondete alle seguenti domande, indicando dove, nel messaggio di replica a HTTP GET sottostante, trovate le risposte.

HTTP/1.1 200 OK<cr><lf>Date: Tue, 07 Mar 2008 12:39:45GMT<cr><lf>Server: Apache/2.0.52 (Fedora) <cr><|f>Last-Modified: Sat, 10 Dec2005 18:27:46 GMT<cr><|f>ETaq: a88a4c80"<cr><lf>Accept-Ranges: bytes<cr><lf>Content-Length: 3874<cr><lf>Keep-Alive: timeout=max=100<cr><lf>Connection: Keep-Alive<cr><lf>Content-Type: text/html; charset=ISO-8859-1<cr><lf><cr><lf><!doctype "-//w3c//dtd html public transitional//en"><lf><html><lf><head><lf><meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1"><lf> <meta name="GENERATOR" content="Mozilla/4.79 [en] (Windows NT Netscape]"><lf> <title>CMPSCI 453 / 591 /NTU-ST550A homepage</title><lf></head><lf> <much more document text following here (not shown)>

- 1. Il server è stato capace di trovare il documento?
- 2. In quale istante (di tempo) il documento è stato fornito?
- 3. Quando è stato modificato l'ultima volta il documento?
- 4. Quanti byte ci cono nel documento inviato?
- 5. Che cosa sono i primi 5 byte del documento inviato al client?
- 6. Il server ha accettato la connessione permanente?

Quesito n. 8

DNS: cosa sono i resource record di tipo PTR?

Quesito n. 9

DNS: Risoluzione dei nomi iterativa e ricorsiva (discutere le due tecniche in dettaglio) e fornire un esempio di risoluzione iterativa e uno di risoluzione ricorsiva.

Quesito n. 10

Si supponga di voler distribuire un file di 4 GBytes a N client. Il server ha un capacità di upload $u_s=40$ Mbps, e ogni client ha una capacità di download $(d_1=d_2=...=d_N)$ pari a 10 Mbps. Calcolare il tempo di distribuzione del file per N=100 e per N=500.

