A New Key-Agreement-Protocol

Björn Grohmann

Universität Karlsruhe, Fakultät für Informatik, 76128 Karlsruhe, Germany nn@mhorg.de

Abstract

A new 4-pass Key-Agreement-Protocol is presented. The security of the protocol mainly relies on the existence of a (polynomial-time computable) One-Way-Function and the supposed computational hardness of solving a specific system of equations.

Keywords: Key-Agreement, ultra-high density Knapsack, One-Way-Function.

1 Introduction

At the end of a Key-Agreement-Protocol two parties, say Alice and Bob, share a common bit string s. During the protocol they are allowed to exchange a fixed number of messages \mathfrak{m}_i , $\mathfrak{i}=1,\ldots,r$, over a public channel. The protocol is called secure, if no algorithm exist that computes the string s from the \mathfrak{m}_i 's in a polynomial number of steps. Whether secure Key-Agreement-Protocols exist is still an open issue, although quite a few have been proposed – maybe the most popular being the Diffie-Hellman-Protocol [2], where the security is linked to the task of computing the element γ^{ab} of a given cyclic group from the elements γ^a and γ^b .

In this article, we present a new Key-Agreement-Protocol that uses four rounds of message exchange. Its security mainly relies on the existence of a (polynomial-time computable) One-Way-Function and the supposed computational hardness of solving a specific system of equations.

2 The Protocol

Public data: Suppose Alice and Bob want to exchange a secret key. They start by agreeing on a positive integer n and a prime p of size $\sim 2^{\sqrt{n\log n}}$. They further agree on a random matrix $C := (c_{i,j})_{i,j} \in \mathbb{F}_p^{n \times n}$, with $i,j \in \{1,\ldots,n\}$, and an injective (polynomial-time computable) One-Way-Function $h : \mathbb{F}_p \longrightarrow \{0,1\}^m$, where \mathbb{F}_p denotes

the finite field with p elements.

Private data: Next, Alice (resp. Bob) chooses a random element $\alpha \in \mathbb{F}_p$ (resp. β), n random bits t_1, \ldots, t_n (resp. s_1, \ldots, s_n) and a random permutation σ on the set $\{1, \ldots, n\}$ (resp. ρ), all of which she (resp. he) keeps secret.

The computations that follow are all taking place in the finite field \mathbb{F}_{p} .

First round: Alice computes for j = 1, ..., n:

$$\mu_{j} := \sum_{i=1}^{n} t_{i} c_{i,j} + \sigma(j) \alpha \tag{1}$$

and sends $(\mu_j)_j$ to Bob.

Second round: Bob computes for i = 1, ..., n:

$$\nu_{i} := \sum_{j=1}^{n} s_{j} c_{i,j} + \rho(i) \beta \text{ and } \tau_{A} := \sum_{j=1}^{n} s_{j} \mu_{j}$$
 (2)

and sends $((v_i)_i, \tau_A)$ to Alice.

Third round: Alice computes for $k = 1, ..., \frac{n(n-1)}{2}$:

$$h(\tau_A - k\alpha)$$
 and $\tau_B := \sum_{i=1}^n t_i \nu_i$ (3)

and sends $((h(\tau_A - k\alpha))_k, \tau_B)$ to Bob.

Final round: Bob computes for $l=1,\ldots,\frac{n(n-1)}{2}$ the list $(h(\tau_B-l\beta))_l$ until he finds k_0 and l_0 , such that

$$h(\tau_A - k_0 \alpha) = h(\tau_B - l_0 \beta) \tag{4}$$

and sends k_0 to Alice.

Alice and Bob now share a common element $g := \tau_A - k_0 \alpha = \tau_B - l_0 \beta$.

3 Analysis

We start by showing the correctness of the protool and calculate the computational cost:

Theorem 1 After the final step both parties share a common element g. The number of computational steps on both sides equals $O(n^2 \cdot \cos f)$ evaluation of h).

Proof. The correctness of the protocol follows from the easy observation that

$$\tau_{A} = \sum_{i,j=1}^{n} t_{i} s_{j} c_{i,j} + \alpha \sum_{j=1}^{n} s_{j} \sigma(j) = g' + \alpha k',$$
 (5)

and respectively

$$\tau_{B} = \sum_{i,j=1}^{n} t_{i} s_{j} c_{i,j} + \beta \sum_{i=1}^{n} t_{i} \rho(i) = g' + \beta l',$$
 (6)

and the fact that $1 \le k', l' \le n(n-1)/2$, which means that at least one pair of integers (k_0, l_0) within the given range exists, such that $g := \tau_A - k_0 \alpha = \tau_B - l_0 \beta$. The number of computational steps is also clear, since Bob can sort the list $(h(\tau_A - k\alpha))_k$ in $O(n^2 \log n)$ steps, while the evaluation of the injective function h requires $\Omega(\log p)$ operations.

The above protocol gives rise to the following

Challenge 1 Given n, p, h, C, $(\nu_i)_i$, $(\mu_j)_j$, τ_A , τ_B , $(h(\tau_A - k\alpha))_k$ and k_0 , compute an element g, such that $h(g) = h(\tau_A - k_0\alpha)$.

We (i.e. the author of this article) are not aware of any lower bound for the number of steps it takes to compute the element g from Challenge 1.

In what follows, we will present an algorithm that conjecturally requires $\Omega(2^{\varepsilon\sqrt{n\log n}})$ operations, for some constant $\varepsilon > 0$.

We will try to compute the secrect bits t_1, \ldots, t_n of Alice. As is easily seen, the knowledge of these bits will lead in a polynomial number of steps to the secret key. At the beginning there is only one equation for these bits, that is

$$x_1 v_1 + \ldots + x_n v_n = \tau_B. \tag{7}$$

Now, heuristically speaking, while there are 2^n ways to select the values of the x_i 's but only $p \sim 2^{\sqrt{n \log n}}$ possible values for τ_B , there are approximately $2^{n-\log p} \sim 2^{n(1-\sqrt{\log n/n})}$ solutions to equation (7) (in the language of Knapsack-Cryptography, we could speak of an ultra-high density Knapsack, since the density of this Knapsack tends to infinity [4]).

The other equations from (1) involving the t_i 's can not be used immediately, since the permutation σ and the element α are both secret, but we can try to get rid of α by

guessing r values of the permutation σ , say $\sigma'(1), \ldots, \sigma'(r)$, which gives us r-1 additional equations:

$$\begin{array}{lcl} \sum x_i(\sigma'(2)c_{i,1}-\sigma'(1)c_{i,2}) & = & \sigma'(2)\mu_1-\sigma'(1)\mu_2 \\ \sum x_i(\sigma'(3)c_{i,1}-\sigma'(1)c_{i,3}) & = & \sigma'(3)\mu_1-\sigma'(1)\mu_3 \\ & & \vdots \\ \sum x_i(\sigma'(r)c_{i,1}-\sigma'(1)c_{i,r}) & = & \sigma'(r)\mu_1-\sigma'(1)\mu_r. \end{array}$$

Again, by the same heuristic argument, the system of these equations together with equation (7) has approximately $2^{n-r\log p} \sim 2^{n(1-r\sqrt{\log n}/n)}$ solutions, which means that we can not even be sure whether our guess was right, unless $n-r\log p \sim \log^{\kappa} n$, for some constant κ .

To summarize the discussion, the probability of guessing enough equations to compute the t_i (where we did not even talk about the computational cost of really solving these equations) is about $n^{-\epsilon n/\log p} \sim 2^{-\epsilon \sqrt{n\log n}}$, for some constant $\epsilon > 0$, which is, at least from a theoretical point of view not too far away from the probability of guessing the secret α (resp. the secret key \mathfrak{q}) directly.

It is almost superfluous to say that these heuristic considerations do not prove anything about the security of the stated protocol. Nevertheless, in the author's opinion, Challenge 1 seems worth further investigation.

References

- [1] Chor, M.J., Rivest, R.L.: A Knapsack-type Public Key Cryptosystem based on Arithmetik in Finite Fields. In: Blakely, G.R., Chaum, D (eds.) CRYPTO 1984. LNCS vol. 196, pp. 54-65. Springer, Heidelberg (1985)
- [2] Diffie, W., Hellman, E.: New directions in cryptography. In: IEEE Trans. Inform. Theory 22(6), pp. 644-654 (1976)
- [3] Lagarias, J.C., Odlyzko, A.M.: Solving Low-Density Subset Sum Problems. In: Journal of the Association for Computing Machiniery 32(1), pp. 229-246 (1985)
- [4] Nguyen, P., Stern, J.: Adapting Density Attacks to Low-Weight Knapsacks. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol 3788, pp. 41-58. Springer, Heidelberg (2005)