In The Specification:

Please amend the specification as follows:

Please replace the paragraph from page 2, line 18 to page 6, line 6 with the following replacement paragraph:

In one embodiment, the invention provides an ink jet ink composition comprising an aqueous vehicle, a colorant, and dispersed particles of a silyl-terminated sulfopoly(esterurethane) having the formula:

$$\begin{array}{l}
R \longrightarrow \left\{ \begin{matrix}
0 \\
II \\
C - O - R^{D} - (X^{I} - R^{2})_{m} - (X^{I} - R^{H})_{n} - (X^{I} - R^{3})_{s} - X^{2} - R^{3} - Y \\
SO_{3}M \end{matrix} \right\}_{2}$$

wherein

R represents a C_6 - C_{12} aryl triyl or C_1 - C_{20} aliphatic triyl group (trivalent aryl or aliphatic group) wherein M is H⁺, an alkali metal cation, an alkaline earth metal cation, or a primary, secondary, tertiary, or quaternary ammonium cation;

each m independently represents 0 or 1, each n independently represents 0 or 1, each s independently represents s = 0 or 1, with the proviso that, at least one of m or n must be equal to 1;

each RD independently represents:

1) at least one of a divalent linear or branched organic group of 20 to 150 carbon atoms in units of 2 to 12 methylene groups and arylene groups of 6 to 10 carbon atoms separated by at least one of 1 to 50 catenary oxygen atoms and by 1 to 30 oxycarbonyl groups,

$$\left(\begin{array}{c} -O-C \\ -O \end{array}\right)$$

- 2) an organic group selected from the group consisting of a linear or branched alkylene group having 2 to 12 carbon atoms, a cyclopentamethylene group, a cyclohexamethylene group, a 5- or 6-membered azacyclic group, a phenylene group, a naphthalene group, a phenylenemethylenephenylene group, the organic group optionally being substituted by up to four lower alkyl groups having 1 to 4 carbon atoms and a total of up to 15 carbon atoms, which organic group can be chain extended by a transesterification reaction between a diol terminated ester precursor and a lower aliphatic diester of an aliphatic diacid having from 2 to 12 carbons or an aromatic diacid having from 8 to 12 carbons or reaction between a diol terminated ester precursor and an aliphatic lactone of 4 to 6 carbons, or
- 3) the structure $\{-R^1(X^1-R^2-X^1-R^1)_p^-\}$ where p is an integer from 1 to 5, produced by the reaction of a polyol with an isocyanate having the structure OCN-R²-NCO to produce a segment having a molecular weight of from 500 to 4,000;

each R¹ independently represents a linear or branched alkylene group having 2 to 12 carbon atoms, or an arylene group having 6 to 10 carbon atoms;

each X1 independently represents

each R² independently represents an organic group selected from the group consisting of a linear or branched alkylene group having 2 to 12 carbon atoms, a cyclopentamethylene group, a cyclohexamethylene group, a 5- or 6-membered azacyclic group, a phenylene group, a naphthalene group, a phenylenemethylenephenylene group, the organic group optionally being substituted by up to four lower alkyl groups having 1 to 4 carbon atoms and a total of at most 15 carbon atoms;

each X² independently represents

wherein each R^A independently represents hydrogen, lower alkyl having 1 to 4 carbon atoms, or R¹-Y, wherein R¹ and Y are as previously described;

each $R^{\mathbf{H}}$ independently represents a divalent hydrophobic group selected from divalent oligomeric siloxanes having the structure

$$-R^{3} \xrightarrow{\stackrel{R}{\underset{|S|O}{|g}}} R^{5}$$

divalent organic groups having the structure

$$-R^{3}-N-R^{3} X^{3}$$
 X^{6}

or divalent organic groups having one of the structures

$$-R^{3}-N-R^{3}-$$
, $-R^{3}-N-R^{3}-$, $-R^{3}-$

or quaternary salts thereof, wherein

each R³ independently represents a divalent linear or branched alkylene group having 2 to 12 carbon atoms, or a divalent arylene or alkarylene group having 6 to 20 carbon atoms;

each Y independently represents H, an alkyl group having from 1 to 20 carbon atoms, an aryl group having from 6 to 10 carbon atoms, or

$$-\mathrm{Si}(\mathrm{OR}^8)_{\mathrm{z}}(\mathrm{R}^4)_{\mathrm{w}}$$

wherein each R^4 independently represents a monovalent lower alkyl group having from 1 to 4 carbon atoms, each R^8 is H or a monovalent lower alkyl group having from 1 to 4 carbon atoms, each z is independently 2 or 3, each w is independently 0 or 1, and wherein z + w = 3, with the proviso that at least one Y has the formula

$$-\mathrm{Si}(\mathrm{OR}^8)_{\mathrm{z}}(\mathrm{R}^4)_{\mathrm{w}}$$

each R⁵ independently represents a monovalent group selected from the group consisting of alkyl groups of 1 to 12 carbon atoms, aryl having 6 to 10 carbon atoms, or aralkyl groups having 6 to 10 carbon atoms, with at least 70 percent of R⁴ being methyl;

each g independently represents an integer of from 10 to 300; each X^3 independently represents a covalent bond, a carbonyl group,

$$\begin{pmatrix} C \\ II \\ O \end{pmatrix}$$

or a divalent amido group

$$\begin{pmatrix} O \\ II \\ C-NH \end{pmatrix}$$

each R^6 independently represents a monovalent group selected from the group consisting of alkyl groups of about 4 to about 60 carbon atoms;

each R⁷ independently represents a divalent group selected from the group consisting of alkylene groups of 2 to about 12 carbon atoms; and

each R_f independently represents a monovalent saturated fluoroaliphatic group having 6 to 12 carbon atoms, at least four of which are fully-fluorinated carbon atoms.

Please replace the paragraph from page 13, line 21 to page 16, line 23 with the following replacement paragraph:

Each RD independently represents:

1) at least one of a divalent linear or branched organic group of 20 to 150 carbon atoms in units of 2 to 12 methylene groups and arylene groups of 6 to 10 carbon atoms separated by at least one of 1 to 50 catenary oxygen atoms and by 1 to 30 oxycarbonyl groups,

$$\left(\begin{array}{c} O \\ -O \\ -C \end{array}\right)$$

desirably at least one of 1 to 20 catenary oxygen atoms and by 1 to 10 oxycarbonyl groups, the organic group having a molecular weight of 400 to 2,500, desirably 600 to 1,000;

- 2) an organic group selected from the group consisting of a linear or branched alkylene group having 2 to 12 carbon atoms, a cyclopentamethylene group, a cyclohexamethylene group, a 5- or 6-membered azacyclic group, a phenylene group, a naphthalene group, a phenylenemethylenephenylene group, the organic group optionally being substituted by up to four lower alkyl groups having 1 to 4 carbon atoms and a total of up to 15 carbon atoms, which organic group can be chain extended by a transesterification reaction between a diol terminated ester precursor and a lower aliphatic diester of an aliphatic diacid having from 2 to 12 carbons or an aromatic diacid having from 8 to 12 carbons or reaction between a diol terminated ester precursor and an aliphatic lactone of 4 to 6 carbons; or
- 3) the structure $\{-R^1(X^1-R^2-X^1-R^1)_p-\}$ where p is an integer from 1 to 5, produced by the reaction of a polyol with an isocyanate having the structure OCN-R²-NCO to produce a segment having a molecular weight of from 500 to 4,000, desirably 800 to 2,000;

each R¹ independently represents a linear or branched alkylene group having 2 to 12 carbon atoms, or an arylene group having 6 to 10 carbon atoms;

each X1 independently represents

each R² independently represents an organic group desirably selected from the group consisting of a linear or branched alkylene group having 2 to 12 carbon atoms, a cyclopentamethylene group, a cyclohexamethylene group, a 5- or 6-membered azacyclic group, a phenylene group, a naphthalene group, a phenylenemethylenephenylene group, the organic group optionally being substituted by up to four lower alkyl groups having 1 to 4 carbon atoms and a total of at most 15 carbon atoms;

each X² independently represents

wherein each RA independently represents hydrogen or lower alkyl having 1 to 4 carbon atoms;

each $R^{\mbox{\scriptsize H}}$ independently represents a divalent hydrophobic group selected from divalent oligomeric siloxane groups having the structure

$$-R^{3}$$
 $-(SiO)_{\overline{g}}R^{3}$,

divalent organic groups having the structure

$$-R^{3}-N-R^{3} X^{3}$$
 X^{6}

or divalent organic groups having one of the structures

$$-R^{3}-N-R^{3}-$$
, $-R^{3}-N-R^{3}-$, $R^{3}-N-R^{3}-$, $R^{5}-N-R^{3}-$, $R^{7}-N+$, $R^$

or quaternary salts thereof, wherein R_f can be a fluorocarbon pendant group, as defined below; and

each R³ independently represents a divalent organic group, desirably linear or branched alkylene group having 2 to 12 carbon atoms, but it can also be an arylene, such as phenylene or an alkarylene group, each having 6 to 20 carbon atoms;

each Y independently represents H, an alkyl group having from 1 to 20 carbon atoms, an aryl group having from 6 to 10 carbon atoms, or

$$-\operatorname{Si}(\operatorname{OR}^8)_z(\operatorname{R}^4)_w$$

wherein each R^4 independently represents a monovalent lower alkyl group having from 1 to 4 carbon atoms, each R^8 is H or a monovalent lower alkyl group having from 1 to 4 carbon atoms, each z is independently 2 or 3, each w is independently 0 or 1 wherein z + w = 3, with the proviso that at least one Y has the formula

$$-\operatorname{Si}(\operatorname{OR}^8)_{\operatorname{Z}}(\operatorname{R}^4)_{\operatorname{W}}$$

each R^5 independently represents a monovalent group selected from the group consisting of alkyl groups of 1 to 12 carbon atoms, aryl having 6 to 10 carbon atoms, or aralkyl groups having 6 to 10 carbon atoms, with at least 70 percent of R^4 being methyl;

each g independently represents an integer of from 10 to 300;

each X³ independently represents a covalent bond, a carbonyl group,

$$\begin{pmatrix} c \\ c \end{pmatrix}$$

or a divalent amido group

$$\begin{pmatrix} O \\ II \\ C-NH \end{pmatrix}$$
:

each R^6 independently represents a monovalent group selected from the group consisting of alkyl groups of about 4 to about 60 carbon atoms, desirably 12 to 30 carbon atoms;

each R⁷ independently represents a divalent group selected from the group consisting of alkylene groups of 2 to about 12 carbon atoms;

each R_f independently represents a monovalent saturated fluoroaliphatic group having 6 to 12 carbon atoms, at least four of which are fully-fluorinated carbon atoms.