Travail individuel de rédaction en temps libre À rendre le lundi 27 novembre 2023

Exercice 1

On pose

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix}, \qquad D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}, \qquad P = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Partie A

Étude de la matrice A

A1. Montrer que
$$P$$
 est inversible et que $P^{-1} = \begin{pmatrix} \alpha & -\alpha & 0 \\ \alpha & \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}$ avec $\alpha \in \mathbb{R}$ à préciser.

A2. (a) Calculer
$$A - I_3$$
, $A - 3I_3$ puis $(A - 3I_3)^2$. Vérifier que $(A - I_3)(A - 3I_3)^2 = \mathbf{0}_3$.

(b) En déduire que A est inversible et que
$$A^{-1} = \frac{1}{9}A^2 + xA + yI_3$$
 avec (x, y) réels à préciser.

A3. On note
$$T = P^{-1}AP$$
 et on admet que $T = P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix}$. On pose également $J = T - D$.

- (a) La matrice J est-elle inversible ?
- (b) Montrer que pour tout $k \ge 2$, $J^k = \mathbf{0}_3$.
- (c) À l'aide de la formule du binôme, montrer

$$\forall n \ge 2, T^n = D^n + n J D^{n-1}.$$

En déduire l'écriture de T^n pour $n \ge 2$.

(d) Montrer par récurrence

$$\forall n \in \mathbb{N}^{\star}$$
. $A^n = P T^n P^{-1}$.

(e) Calculer PT^n puis donner l'écriture de A^n pour $n \in \mathbb{N}^*$.

Partie B

Étude d'une famille de suites On considère les suites $(u_n)_{n\geq 0}$, $(v_n)_{n\geq 0}$ et $(w_n)_{n\geq 0}$ définies par

$$\left(u_0,v_0,w_0\right)=(\alpha,\beta,\gamma)\in\mathbb{R}^3 \qquad \text{et} \qquad \forall n\in\mathbb{N}^\star, \begin{cases} u_{n+1}&=&2u_n&+v_n&+w_n\\ v_{n+1}&=&u_n&+2v_n&+w_n\\ w_{n+1}&=&&3w_n \end{cases}.$$

1

Pour
$$n \in \mathbb{N}$$
, on pose $X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$.

B1. Déterminer $B \in \mathcal{M}_3(\mathbb{R})$ telle que

$$\forall n\in\mathbb{N}, X_{n+1}=BX_n.$$

B2. Montrer par récurrence

$$\forall n \in \mathbb{N}, X_n = B^n X_0.$$

B3. À l'aide de ce qui précède, déterminer u_n , v_n et w_n en fonction de α , β , γ et n.

Partie C

Commutant de la matrice A

- On utilise dans cette partie la matrice T définie à la partie A3 par $T = P^{-1}AP$; on a donc $PTP^{-1} = A$.
- On note C(A) l'ensemble des matrices qui commutent avec A:

$$C(A) = \left\{ M \in \mathcal{M}_3(\mathbb{R}) \mid AM = MA \right\}.$$

De même, on pose

$$C(T) = \left\{ M \in \mathcal{M}_3(\mathbb{R}) \mid TM = MT \right\}.$$

C1. Montrer

$$\forall (x, y, z) \in \mathbb{R}^3, xI_3 + yT + zT^2 \in C(T).$$

- C2. Réciproquement, soit $M \in C(T)$ avec $M = \begin{pmatrix} a & d & g \\ b & e & h \\ c & f & i \end{pmatrix}$.
 - (a) Calculer TM et MT.
 - (b) En déduire que M est de la forme $M = \begin{pmatrix} a & 0 & 0 \\ 0 & e & h \\ 0 & 0 & e \end{pmatrix}$.
 - (c) Montrer qu'il existe $(x, y, z) \in \mathbb{R}^3$ tel que

$$M = xI_3 + yT + zT^2.$$

C3. Justifier l'égalité

$$C(T) = \left\{ \left. xI_3 + yT + zT^2 \right. \left| \left. (x,y,z) \in \mathbb{R}^3 \right. \right\}.$$

- **C4.** Soit $M \in \mathcal{M}_3(\mathbb{R})$. On pose $N = P^{-1}MP$. Démontrer que $M \in C(A)$ si, et seulement si $N \in C(T)$.
- C5. Déduire de tout ce qui précède que

$$C(A) = \left\{ \left. \alpha I_3 + \beta A + \gamma A^2 \, \right| \, (\alpha, \beta, \gamma) \in \mathbb{R}^3 \, \right\}.$$