

M Rajasekar

Department of Electronics and Communication Engineering

Routing algorithms: Dijkstra algorithm

M Rajasekar

Department of Electronics and Communication Engineering

Routing algorithms: Dijkstra algorithm

Link state algorithm (Dijkstra's algorithm)

- A central controller broadcasts the link state information
- For each node find the MST considering itself as the root
- Nodes implement the LS algorithm in parallel Synchronized
- A forwarding table is constructed based on the MST

Routing algorithms: Dijkstra algorithm

<u>Link state algorithm (Dijkstra's algorithm) (Contd.):</u>

```
Initialization:
   N' = \{u\}
   for all nodes v
     if v is a neighbor of u
        then D(v) = c(u,v)
     else D(v) = \infty
Loop
   find w not in N' such that D(w) is a minimum
   add w to N'
   update D(v) for each neighbor v of w and not in N':
     D(V) = \min_{W} (D(V), \{D(W) + C(W, V)\})_{W \in N}
     D_U(V) = \min\{D_U(W) + C(W, V)\}_{W \in N \setminus \{U, V\}}
    D_{U}(Z) = \min\{D_{U}(V) + C(V,Z), D_{U}(X) + C(X,Z), D_{U}(Y)\}
              + C(Y,Z), D_U(W) + C(W,Z)
  /* new cost to v is either old cost to v or known
   least path cost to w plus cost from w to v */
until N' = N
```

Routing algorithms: Dijkstra algorithm

Link state algorithm (Dijkstra's algorithm) (Contd.):

Example 1:

step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	U	2,u	5, u	1,u	00	00
1	UX	2 ,u	4,x		2,x	00
2	uxy	2,u	3,y		2.0	4 ,y
3	uxyv	T ₁	3,у			4 ,y
4	uxyvw					4,y
5	uxyvwz					.,

Routing algorithms: Dijkstra algorithm

Link state algorithm (Dijkstra's algorithm) (Contd.):

Destination	Link	
V	(u, v)	
W	(u, x)	
X	(u, x)	
У	(u, x)	
Z	(u, x)	

Figure 4.28 • Least cost path and forwarding table for nodule u

step	N'	D(v), p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	U	2,u	5, u	1,u	00	∞
1	UX	2,u	4,x	58	2,x	00
2	uxy	2,u	3,y			4 ,y
3	uxyv	1.	3,y			4 ,y
4	uxyvw					4,y
5	uxyvwz					.,

Routing algorithms: Dijkstra algorithm

<u>Link state algorithm (Dijkstra's algorithm) (Contd.):</u> Example 2:

Routing algorithms: Dijkstra algorithm

Link state algorithm (Dijkstra's algorithm) (Contd.):

Example 2:

		$D(\mathbf{v})D(\mathbf{w})$	ノ(<u>X</u>)L	ノ(y)L	ノ(Z)
Ste	p N'	p(v) p(w)	p(x)	p(y)	p(z)
0	u	7,u (3,u	5,u	∞	∞
1	uw	6,w	(5,u)	11,w	∞
2	uwx	6 ,w		11,w	14,x
3	uwxv			10, y	14,x
4	uwxvy			(12,
5 u	wxvyz				

 $D(\mathbf{v}D(\mathbf{v})D(\mathbf{v})D(\mathbf{v})D(\mathbf{v})$

notes:

- construct shortest path tree by tracing predecessor nodes
- ties can exist (can be broken arbitrarily)

Routing algorithms: Dijkstra algorithm

Numerical 1:

Calculate the cost D(v) (where $v \in \{b, c, d, e, f\}$) for each least-cost path from node a to all other nodes in the network using link state algorithm. Add rows and update the D(v), p(v) in the table below for five iterations. Here, p(v) represents the 1st neighbour to v on the least cost path from a to v.

Iteration		D(b), p(b)	D(c), p(c)	D(d), p(d)	D(e), p(e)	D(f), p(f)
0	а					

Routing algorithms: Dijkstra algorithm

Itera tion		D(b) , p(b)	D(c), p(c)	D(d), p(d)	D(e), p(e)	D(f), p(f)
0	a	1, a	∞	∞	2,a	∞
1	a, b	1,a	3,b	4,b	2, a	5,f
2	a, b, e	1,a	3,b	3,e	2,a	4,e
3	a, b, e, c or a, b, e, d	1 ,a	3,b	3,e	2,a	4,e
4	a, b, e, c, d	1, a	3,b	3,e	2,a	4, e
5	a, b, e, c, d, f					

Routing algorithms: Dijkstra algorithm

PES UNIVERSITY ONLINE

Numerical 2:

Calculate the cost D(v) (where $v \in \{a, b, c, d, e\}$) for each least-cost path from node f to all other nodes in the network using link state algorithm. Add rows and update the D(v), p(v) in the table below for five iterations. Here, p(v) represents the 1st neighbour to v on the least cost path from f to v.

Iterat ion		D(a), p(a)	D(b), p(b)	D(c), p(c)	D(d) , p(d)	D(e), p(e)
0	f					

Routing algorithms: Dijkstra algorithm

Iteratio n		D(a), p(a)	D(b), p(b)	D(c), p(c)	D(d), p(d)	D(e), p(e)
0	f	∞	4,f	∞	∞	2,f
1	f,a	3,e	4,f	7,e	5,e	
2	f,a,e		4,f	7,e	5,e	
3	f,a,e,b			6,b	5,e	
4	f,a,e,b,d			6,b		
5	f,a,e,b,d ,c					

THANK YOU

M Rajasekar

Department of Electronics and Communication Engineering rajasekarmohan@pes.edu