Brute Force

T[1..n]: ez lesz a szöveg

P[1..m] : ez lesz a keresendő szöveg

(X) ha eltérést találunk

(T) ha találatunk van

(V) ha kifutottunk a szövegből és túlindexeltünk

	1	2	3	4	5	6	7	8	9	10	11	_
T[111] =	Α	В	Α	В	В	Α	В	Α	В	Α	В	
P[1 4] =	B(X)	Α	В	Α								
		В	Α	В	A(X)							
			B(X)	Α	В	Α						
				В	A(X)	В	Α					
					В	Α	В	A(T)				
						B(X)	Α	В	Α			
							В	Α	В	A(T)		
								B(X)	Α	В	Α	
									В	Α	В	A(V)

Ha n határozottan nagyobb mint m, akkor a műveletigények:

$$mT(n) \in \theta(n)$$

 $MT(n) \in \theta(n * m)$

Stuktogram:

Quick-search

T[1..n]: ez lesz a szöveg

P[1..m]: ez lesz a keresendő szöveg

(X) ha eltérést találunk

(T) ha találatunk van

Az algoritmus két fontos lépésből áll.

1. Ha a szöveg, minta utáni első karaktere nem fordul elő a mintában, akkor átugorhatjuk teljesen, hiszen biztosan nem lesz egyezés, ameddig azt a kataktert vizsgáljuk.

2. Ha a szöveg, minta utáni első karaktere előfordul a mintában, akkor az előfordulások közül

a jobbra lévőre ugrunk.

Stuktogram:

Példa:

T =	A	D	A	В	Α	D	C	Α	D	Α	В	C	Α	В	Α	D	Α	C	Α	D	Α	D	Α
P =	C_x	Α	D	Α																			
		C_x	Α	D	Α																		
				C_x	Α	D	Α																
					C_x	Α	D	Α															
s = 6							С	Α	D	A_T													
												С	Α	D_X	Α								
														C_X	Α	D	Α						
s = 17																		С	Α	D	A_T		
																				C_x	Α	D	Α

Műveletigény:

$$m\ddot{O}(n,m) = \Theta\left(\frac{n}{m+1}\right)$$
 $M\ddot{O}(n) = \Theta(n * m)$

<u>Legjobb eset:</u> A minta olyan karakterekből áll, amelyek nem fordulnak elő a szövegben, így a minta első karakterénél már elromlik az illeszkedés, továbbá a minta utáni karakter sem fordul elő a mintában, így azt "átugorhatjuk".
Pl:

<u>Legrosszabb eset:</u> A minta végén romlik el az illeszkedés és csak kicsiket tudunk "ugrani". Pl:

Knuth-Morris-Pratt

Amennyiben az illeszkedés elromlik, akkor egy hibás kezdetünk van, de ez a kezdet ismert, mivel az elromlás előtti karakterig egyezett a mintával. Ezt az információt használjuk fel, hogy elkerüljük az állandó visszalépést a szövegben a minta kezdetére

Látható, hogy a minta illeszkedő részének (M[1..5]) van egy olyan valódi kezdőszelete (valódi **prefixe**), amely egyezik ezen illeszkedő rész egy valódi végszeletével (valódi **szuffix**ével), azaz M [1..3] = M [3..5] ('ABA'='ABA').

Α	В	A	В	A	В	A	C
Α	В	A	В	Α	C		
		Α	В	Α	В	Α	С

P[18] =	В	Α	В	A	В	В	Α	В										
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
T[118]=	Α	В	Α	В	Α	В	Α	В	В	Α	В	Α	В	Α	В	В	Α	В
	B_X																	
		В	A	В	A	В	B_X											
s = 3				В	A	В	A	В	B	A	B_T							
									В	A	В	A	В	B_X				

P =	В	Α	В	Α	В	В	Α	В
j	1	2	3	4	5	6	7	8
next(j)	0	0	1	2	3	1	2	3
			В	Α	В	Α		
				В	Α	В		
					В	Α		
						В	Α	В

Stuktogram:

Műveletigény:

 $initNext(): \Theta(m)$

keresés: Θ(n)