Section 1.2

October 22, 2023

Figures for Section 1.2

```
[19]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
```

Figure 1.5

100 simulated values of the cyclical time series (left panel), the stochastic amplitude (middle panel), and the sine part (right panel).

```
[10]: # plot for Cyclical Time Series seq
def genCTS(R,phi):
    t = np.arange(1, 101)
    lmbda = np.pi / 25

    cyc = R * np.sin(lmbda * t + phi)

    return cyc
```

```
[17]: R1 = np.random.uniform(-0.5, 1, 100)
    phi = np.random.uniform(0, 1, 100)
    simulated100 = genCTS(R1,phi)

R2 = np.random.uniform(-1, 1, 100)
    stochasticAm = genCTS(R2,phi)

R3 = np.random.uniform(-0.5, 1, 100)
    phi3 = np.random.standard_normal(100)
    sinePart = genCTS(R3,phi3)
```

```
[21]: fig, axs = plt.subplots(1, 3, figsize=(12,4),constrained_layout = True)
    axs[0].plot(simulated100)
    axs[1].plot(stochasticAm)
    axs[2].plot(sinePart)
    plt.show()
```


Figure 1: 100 simulated values of the cyclical time series (left panel), the stochastic amplitude (middle panel), and the sine part (right panel).

Figure 1.6

1000 simulated values of iid N(0,1) noise (left panel) and a random walk with iid N(0,1) innovations (right panel).

```
[31]: # iid noise
z = np.random.standard_normal(1000)
# random walk
rw = np.cumsum(z)

[32]: fig, axs = plt.subplots(1, 2, figsize=(9,4),constrained_layout = True)
axs[0].plot(z)
axs[1].plot(rw)
```

[32]: [<matplotlib.lines.Line2D at 0x7f9151f2b750>]

Figure 2: 1000 simulated values of iid N(0,1) noise (left panel) and a random walk with iid N(0,1) innovations (right panel).