제 4 장

4.1 1 X X X X X 0 0 0

4.2 0 X X X X 0 0

4.3 1 X X X X X X 0 0 0

4.4

	주소	μ-ops	CD	BR	ADF
NOP:	1000000	001 000	00	00	1000001
LOAD:	1000100	000 000	01	01	0000100
	1000101	010 000	00	00	1000110
	1000110	100 000	00	00	1000111
	1000111	101 000	00	00	0000000
STORE:	1001000	000 000	01	01	0000100
	1001001	010 000	00	00	1001010
	1001010	000 010	00	10	1001011
	1001011	111 000	00	00	0000000
ADD:	1001100	010 000	00	00	1001101
	1001101	100 000	00	00	1001010
	1001010	011 000	00	00	0000000
SUB:	1010000	010 000	00	00	1010001
	1010001	100 000	00	00	1010010
	1010010	000 110	00	00	0000000
JUMP:	1010100 00	00 111 00	00	0000000	
(단, [표4-1](b)의 마지막 항목을 IRTPC로 변경)					

32개의 제어신호 32개의 제어신호

4.6 ORG 88

 $JNZ : IRTPC Z I JMP INDRT ; PC \leftarrow IR(addr)$

단, [표 4-2]에서 AC ≠ 0 일 때, Z 플래그가 1로 세트되는 것으로 가정한다.

4.7 연산-코드 필드 1 : 5비트 → 최대 32개 연산 지정 가능
연산-코드 필드 2 : 4비트 → 최대 16개 연산 지정 가능
결과적으로, 최대 48개의 연산 지정이 가능.

4.8 수직적 마이크로프로그래밍

장점: 마이크로명령어 내에 적은 수의 코드화된 비트들을 포함시킴으로써 제어 기억장 치의 용량을 줄일 수 있다.

단점 : 외부에 해독기들을 접속하여 하드웨어가 복잡해지며, 해독 시간만큼 지연된다.

수평적 마이크로프로그래밍

장점: 제어 기억장치로부터 인출된 마이크로명령어의 마이크로-연산 비트들이 해독기를 통과할 필요 없이 직접 제어 신호로 사용될 수 있기 때문에, 하드웨어가 간단하고 해독에 따른 시간지연이 없다.

단점: 각 마이크로명령어의 길이(비트 수)가 증가하기 때문에 제어 기억장치의 용량이 커진다.

- 4.9 (1) 2³ = 8이므로 세 비트가 필요
 - (2) 주소필드-(연산필드+조건필드+분기필드) 26 - (14 + 3 + 0) = 9 비트
 - $(3) 2^9 \times 26 = 512 \times 26$ 비트