Qn3 (10 marks)

Deadline 9 Sep (Sat), 2359 hrs

A 2nd order IVP is given by
$$\ddot{Y}+4Y=\cos 2t$$
 , $Y(0)=1$, $\dot{Y}(0)=0$

Exact solution:
$$Y = \cos 2t + \frac{1}{4}t \sin 2t$$

Hint:

A 2^{nd} order IVP can be written as a system of 1^{st} order IVP equations, and solved with a 1^{st} order numerical scheme by writting it as $Z_{n+1} = A Z_n$. For a stable numerical scheme, the *magnitude* of the maximum eigenvalue of **A** should not be larger than 1.

There is an 'eig' function in Matlab to determine the eigenvalues of a matrix.

CE5377 students:

- Solve the IVP as a system of 1st order IVP with the Euler Explicit methods.
- Comment on the accuracy and stability.

CE6077 students:

- Solve the IVP as a system of 1st order IVP with the (i) Euler Explicit and (ii) RK4 methods.
- Comment on the accuracy and stability issues of the two methods