Matrix Multiplication Optimization on V100 GPU

Execution Time

My report is about the details of optimization of a matrix multiplication implementation for V100 GPUs. Starting from a baseline GPU implementation with execution time of 2,624 ms, we achieved significant speedup to 315ms - an 8.3x improvement over the naive implementation and 46.5x faster than the CPU version (14,639.82ms).

Implementation Strategy

My implementation uses a multi-tiered approach that selects specialized kernels based on matrix dimensions. I combined several well-established GPU optimization techniques with V100-specific optimizations to achieve this performance.

Core Optimizations

1. Shared Memory Tiling

All kernels employ shared memory tiling to reduce global memory accesses. For an N×N matrix multiplication, this reduces memory accesses from $O(N^3)$ to $O(N^3/TILE_SIZE)$.

2. Bank Conflict Avoidance

Added padding to shared memory arrays (+1 or +4) to prevent bank conflicts:

```
__shared__ float As[BLOCK_SIZE][BLOCK_SIZE+4];
__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE+4];
```

Without padding, consecutive threads accessing consecutive elements in the inner dimension would cause bank conflicts, significantly reducing shared memory throughput.

3. Thread Coarsening / Register Blocking

For matrices 1024×1024 , each thread computes multiple output elements $(2 \times 2 \text{ or } 4 \times 4)$, which:

- Improves arithmetic intensity per thread
- Reduces shared memory accesses
- Increases instruction-level parallelism

```
// Each thread handles a 2 2 or 4 4 block of output values

float accum[ITEMS_PER_THREAD_Y][ITEMS_PER_THREAD_X] = {{0.0f}};
```

4. Read-Only Cache Utilization

Leveraged V100's texture cache path using __ldg() for global memory loads:

```
As[threadIdx.y][threadIdx.x] = __ldg(&A[row * K + tileCol]);
```

This optimization reduces cache thrashing and improves memory access patterns.

5. Double-Precision Accumulation

For improved numerical stability in matrixMultiplyMixedPrecision, we use double-precision accumulation:

6. Memory Transfer Optimizations

We utilize several techniques to optimize memory transfers:

```
// Pinned memory for faster transfers
CUDA_CHECK(cudaMallocHost(&h_A, n*k*sizeof(float)));
```

7. Cache Configuration Optimization

Configured L1/shared memory balance for optimal performance:

```
cudaDeviceSetCacheConfig(cudaFuncCachePreferEqual);
```

8. Block Size Optimization

For V100 GPUs, we use 64×64 blocks for large matrices, which better matches the V100's warp scheduling and register capabilities:

```
constexpr int BLOCK_SIZE = 64;
```

9. Loop Unrolling

Aggressive loop unrolling with **#pragma unroll** to reduce branch overhead and improve instruction scheduling:

```
#pragma unroll
for (int k = 0; k < BLOCK_SIZE; ++k) {
    sum += As[threadIdx.y][k] * Bs[k][threadIdx.x];
4</pre>
```

Matrix Size-Based Kernel Selection

My implementation dynamically selects between specialized kernels based on matrix dimensions:

- 1. **Very Large Matrices** (2048×2048):
 - Uses matrixMultiplyV100Large with 4×4 thread coarsening
 - 64×64 tile sizes for higher occupancy
 - More aggressive thread coarsening
- 2. Medium Matrices (1024×1024) :

- Uses matrixMultiplyV100 with 2×2 thread coarsening
- Good balance between resource usage and parallelism

3. Small Matrices:

- Uses matrixMultiplyMixedPrecision with double-precision accumulation
- Optimizes for numerical precision while maintaining good performance

Performance Analysis

Implementation	Time (ms)	Speedup
CPU Version	14,639.82	$1 \times$
Naive GPU	2,624	$5.57 \times$
Optimized GPU	315	$46.5\times$

For a 2048×2048×2048 matrix multiplication, this represents approximately:

- Theoretical FLOPS: $2 \times 2048 \times 2048 \times 2048 = 17,179,869,184$ operations
- **Performance**: $17,179,869,184 / (0.315 \times 10^9) = 54.54 \text{ GFLOPS}$

Conclusion and Future Improvements

My implementation achieves excellent performance on the V100 GPU, with a speedup of $8.3\times$ over the naive GPU implementation and $46.5\times$ over the CPU version. The combination of shared memory tiling, thread coarsening, and V100-specific optimizations proved highly effective.

Potential future improvements:

- 1. Implementation of Tensor Core operations for half-precision inputs
- 2. Memory prefetching for overlapped memory access and computation
- 3. More sophisticated autotuning to select optimal parameters