Interactive investigations into planetary interiors

Ian Rose

University of California, Berkeley

AGU 2013

AGU Abstract Browser

Games, Interactive Simulations, and Virtual Labs for Science Teaching and Learning I [SWIRL_CM]

Details

Meeting	2013 Fall Meeting
Section	Education and Human Resources
Identifier	ED13H
Conveners	R M Russell, UCAR, Boulder E L Wood, University of Colorado, Boulder

Abstracts

- 1. [ED13H-01] Engaging the Public in the MESSENGER Spacecraft's Confirmation of Water Ice on Mercury by Using Actual Data
- 2. [ED13H-02] Interactive Mapping of the Planets: An Online Activity Using the Google Earth Platform
- 3. [ED13H-03] Computer simulations for the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission through NASA's "Project Spectra!"
- 4. [ED13H-04] Building worlds and learning astronomy on Facebook
- 5. [ED13H-05] Engaging Systems Understanding through Games (Invited)
- 6. [ED13H-06] The Monash University Interactive Simple Climate Model
- 7. [ED13H-07] Games and Simulations for Climate, Weather and Earth Science Education
- 8. [ED13H-08] Educational Videogames: Concept, Design And Evaluation

Mantle convection and plate tectonics education

Cartoons (en.wikipedia.org)

Mantle convection and plate tectonics education

Model screenshots (en.wikipedia.org)

Mantle convection and plate tectonics education

Credit: Wolfgang Bangerth

Goals

- Interactivity
- Speed, speed, speed
- Portability
- Nice to look at
- A minimum of visual clutter

Technical details

- Written in C++
- Renders with OpenGL
- Uses SDL2 for event handling
- On the web: compiles to Javascript via emscripten

Example lesson plan

Rayleigh number-Nusselt number scaling

Extensions

- More lesson plans
- More physics

Takeaways

- Computers have gotten really fast.
- Javascript engines have gotten really clever.
- Compiling software to the web is worth your time.
- Look to professional game development.

Thanks!

Questions?

Email: ian.r.rose@gmail.com

Github: ian-r-rose