UC Berkeley CS285 | Deep Reinforcement Learning (2020)

CS285 (2020)·课程资料包 @ShowMeAl

视频 中英双语字幕

课件 一键打包下载

笔记 官方笔记翻译

代码 作业项目解析

视频·B 站[扫码或点击链接]

https://www.bilibili.com/video/BV12341167kL

课件 & 代码·博客[扫码或点击链接]

http://blog.showmeai.tech/cs285

Berkeley

actor-critic

reinforcement learning 元学习 exploitation

梯度策略

探索与利用

exploration

DQN

迁移学习

逆强化学ス

Q-learning / Q 学习

deep q network

meta learning

Awesome Al Courses Notes Cheatsheets 是**ShowMeAl** 资料库的分支系列,覆盖最具知名度的**TOP20+** 门 Al 课程,旨在为读者和学习者提供一整套高品质中文学习笔记和速查表。

点击课程名称,跳转至课程**资料包**页面,一键下载课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS23In

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏

称为 **AI 内容创作者?** 回复[添砖加瓦]

Model-Based Policy Learning

CS 285

Instructor: Sergey Levine

UC Berkeley

Last time: model-based RL with MPC

model-based reinforcement learning version 1.5:

- 1. run base policy $\pi_0(\mathbf{a}_t|\mathbf{s}_t)$ (e.g., random policy) to collect $\mathcal{D} = \{(\mathbf{s}, \mathbf{a}, \mathbf{s}')_i\}$
- 2. learn dynamics model $f(\mathbf{s}, \mathbf{a})$ to minimize $\sum_i ||f(\mathbf{s}_i, \mathbf{a}_i) \mathbf{s}_i'||^2$
- 3. plan through $f(\mathbf{s}, \mathbf{a})$ to choose actions
- 4. execute the first planned action, observe resulting state s' (MPC)
- 5. append $(\mathbf{s}, \mathbf{a}, \mathbf{s}')$ to dataset \mathcal{D}

The stochastic open-loop case

$$p_{\theta}(\mathbf{s}_1,\ldots,\mathbf{s}_T|\mathbf{a}_1,\ldots,\mathbf{a}_T) = p(\mathbf{s}_1)\prod_{t=1}^{T}p(\mathbf{s}_{t+1}|\mathbf{s}_t,\mathbf{a}_t)$$

$$\mathbf{a}_1, \dots, \mathbf{a}_T = \arg\max_{\mathbf{a}_1, \dots, \mathbf{a}_T} E\left[\sum_t r(\mathbf{s}_t, \mathbf{a}_t) | \mathbf{a}_1, \dots, \mathbf{a}_T\right]$$

why is this suboptimal?

The stochastic closed-loop case

$$p(\mathbf{s}_1, \mathbf{a}_1, \dots, \mathbf{s}_T, \mathbf{a}_T) = p(\mathbf{s}_1) \prod_{t=1}^T \pi(\mathbf{a}_t | \mathbf{s}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$$

$$\pi = \arg\max_{\pi} E_{\tau \sim p(\tau)} \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$

form of π ?

neural net \mathbf{s} time-varying linear $\mathbf{K}_t\mathbf{s}_t+\mathbf{k}_t$

Backpropagate directly into the policy?

model-based reinforcement learning version 2.0:

- 1. run base policy $\pi_0(\mathbf{a}_t|\mathbf{s}_t)$ (e.g., random policy) to collect $\mathcal{D} = \{(\mathbf{s}, \mathbf{a}, \mathbf{s}')_i\}$
- 2. learn dynamics model $f(\mathbf{s}, \mathbf{a})$ to minimize $\sum_i ||f(\mathbf{s}_i, \mathbf{a}_i) \mathbf{s}_i'||^2$
- 3. backpropagate through $f(\mathbf{s}, \mathbf{a})$ into the policy to optimize $\pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$
- 4. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$, appending the visited tuples $(\mathbf{s},\mathbf{a},\mathbf{s}')$ to \mathcal{D}

What's the problem with backprop into policy?

What's the problem with backprop into policy?

What's the problem with backprop into policy?

- Similar parameter sensitivity problems as shooting methods
 - But no longer have convenient second order LQR-like method, because policy parameters couple all the time steps, so no dynamic programming
- Similar problems to training long RNNs with BPTT
 - Vanishing and exploding gradients
 - Unlike LSTM, we can't just "choose" a simple dynamics, dynamics are chosen by nature

What's the solution?

- Use derivative-free ("model-free") RL algorithms, with the model used to generate synthetic samples
 - Seems weirdly backwards
 - Actually works very well
 - Essentially "model-based acceleration" for model-free RL
- Use simpler policies than neural nets
 - LQR with learned models (LQR-FLM Fitted Local Models)
 - Train **local** policies to solve simple tasks
 - Combine them into **global** policies via supervised learning

Model-Free Learning With a Model

What's the solution?

- Use derivative-free ("model-free") RL algorithms, with the model used to generate synthetic samples
 - Seems weirdly backwards
 - Actually works very well
 - Essentially "model-based acceleration" for model-free RL
- Use simpler policies than neural nets
 - LQR with learned models (LQR-FLM Fitted Local Models)
 - Train local policies to solve simple tasks
 - Combine them into global policies via supervised learning

Model-free optimization with a model

Policy gradient:
$$\nabla_{\theta} J(\theta) pprox rac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \hat{Q}_{i,t}^{\pi}$$

Backprop (pathwise) gradient:
$$\nabla_{\theta}J(\theta) = \sum_{t=1}^{T} \frac{dr_{t}}{d\mathbf{s}_{t}} \prod_{t'=2}^{t} \frac{d\mathbf{s}_{t'}}{d\mathbf{a}_{t'-1}} \frac{d\mathbf{a}_{t'-1}}{d\mathbf{s}_{t'-1}}$$

- Policy gradient might be more stable (if enough samples are used)
 because it does not require multiplying many Jacobians
- See a recent analysis here:
 - Parmas et al. '18: PIPP: Flexible Model-Based Policy Search Robust to the Curse of Chaos

Model-free optimization with a model

Dyna

online Q-learning algorithm that performs model-free RL with a model

- 1. given state s, pick action a using exploration policy
- 2. observe s' and r, to get transition (s, a, s', r)
- 3. update model $\hat{p}(s'|s,a)$ and $\hat{r}(s,a)$ using (s,a,s')
- 4. Q-update: $Q(s,a) \leftarrow Q(s,a) + \alpha E_{s',r}[r + \max_{a'} Q(s',a') Q(s,a)]$
- 5. repeat K times:
 - 6. sample $(s, a) \sim \mathcal{B}$ from buffer of past states and actions
 - 7. Q-update: $Q(s, a) \leftarrow Q(s, a) + \alpha E_{s',r}[r + \max_{a'} Q(s', a') Q(s, a)]$

Richard S. Sutton. Integrated architectures for learning, planning, and reacting based on approximating dynamic programming.

General "Dyna-style" model-based RL recipe

- 1. collect some data, consisting of transitions (s, a, s', r)
- 2. learn model $\hat{p}(s'|s,a)$ (and optionally, $\hat{r}(s,a)$)
- 3. repeat K times:
 - 4. sample $s \sim \mathcal{B}$ from buffer
 - 5. choose action a (from \mathcal{B} , from π , or random)
 - 6. simulate $s' \sim \hat{p}(s'|s, a)$ (and $r = \hat{r}(s, a)$)
 - 7. train on (s, a, s', r) with model-free RL
 - 8. (optional) take N more model-based steps

+ still sees diverse states

Model-Based Acceleration (MBA) Model-Based Value Expansion (MVE) Model-Based Policy Optimization (MBPO)

- 1. take some action \mathbf{a}_i and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$, add it to \mathcal{B}
- 2. sample mini-batch $\{\mathbf{s}_j, \mathbf{a}_j, \mathbf{s}'_j, r_j\}$ from \mathcal{B} uniformly
- 3. use $\{\mathbf{s}_j, \mathbf{a}_j, \mathbf{s}_j'\}$ to update model $\hat{p}(\mathbf{s}'|\mathbf{s}, \mathbf{a})$
- 4. sample $\{\mathbf{s}_i\}$ from \mathcal{B}
- 5. for each \mathbf{s}_j , perform model-based rollout with $\mathbf{a} = \pi(\mathbf{s})$
- 6. use all transitions $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$ along rollout to update Q-function
- + why is this a good idea?
- why is this a bad idea?

Gu et al. Continuous deep Q-learning with model-based acceleration. '16 Feinberg et al. Model-based value expansion. '18 Janner et al. When to trust your model: model-based policy optimization. '19

What's the solution?

- Use derivative-free ("model-free") RL algorithms, with the model used to generate synthetic samples
 - Seems weirdly backwards
 - Actually works very well
 - Essentially "model-based acceleration" for model-free RL
- Use simpler policies than neural nets
 - LQR with learned models (LQR-FLM Fitted Local Models)
 - Train **local** policies to solve simple tasks
 - Combine them into **global** policies via supervised learning

What's the solution?

- Use derivative-free ("model-free") RL algorithms, with the model used to generate synthetic samples
 - Seems weirdly backwards
 - Actually works very well
 - Essentially "model-based acceleration" for model-free RL
- Use simpler policies than neural nets
 - LQR with learned models (LQR-FLM Fitted Local Models)
 - Train **local** policies to solve simple tasks
 - Combine them into **global** policies via supervised learning

$$\min_{\mathbf{u}_1,\dots,\mathbf{u}_T} \sum_{t=1}^T c(\mathbf{x}_t,\mathbf{u}_t) \text{ s.t. } \mathbf{x}_t = f(\mathbf{x}_{t-1},\mathbf{u}_{t-1})$$

$$\min_{\mathbf{u}_1,\ldots,\mathbf{u}_T} c(\mathbf{x}_1,\mathbf{u}_1) + c(f(\mathbf{x}_1,\mathbf{u}_1),\mathbf{u}_2) + \cdots + c(f(f(\mathbf{x}_1,\mathbf{u}_1),\mathbf{u}_2)) + \cdots + c(f(f(\mathbf{x}_1,\mathbf{u}_1),\mathbf{u}_2))$$

usual story: differentiate via backpropagation and optimize!

need
$$(\frac{df}{d\mathbf{x}_t}, \frac{df}{d\mathbf{u}_t}) \frac{dc}{d\mathbf{x}_t}, \frac{dc}{d\mathbf{u}_t}$$

$$\operatorname{need}\left(\frac{df}{d\mathbf{x}_t}, \frac{df}{d\mathbf{u}_t}\right) \frac{dc}{d\mathbf{x}_t}, \frac{dc}{d\mathbf{u}_t}$$

idea: just fit $\frac{df}{d\mathbf{x}_t}$, $\frac{df}{d\mathbf{u}_t}$ around current trajectory or policy!

LQR gives us a linear feedback controller

can **execute** in the real world!

$$p(\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{u}_t) = \mathcal{N}(f(\mathbf{x}_t, \mathbf{u}_t), \Sigma)$$
$$f(\mathbf{x}_t, \mathbf{u}_t) \approx \mathbf{A}_t \mathbf{x}_t + \mathbf{B}_t \mathbf{u}_t$$
$$\mathbf{A}_t = \frac{df}{d\mathbf{x}_t} \quad \mathbf{B}_t = \frac{df}{d\mathbf{u}_t}$$

What controller to execute?

iLQR produces: $\hat{\mathbf{x}}_t$, $\hat{\mathbf{u}}_t$, \mathbf{K}_t , \mathbf{k}_t

$$\mathbf{u}_t = \mathbf{K}_t(\mathbf{x}_t - \hat{\mathbf{x}}_t) + \mathbf{k}_t + \hat{\mathbf{u}}_t$$

Version 0.5: $p(\mathbf{u}_t|\mathbf{x}_t) = \delta(\mathbf{u}_t = \hat{\mathbf{u}}_t)$ Doesn't correct deviations or drift

Version 1.0: $p(\mathbf{u}_t|\mathbf{x}_t) = \delta(\mathbf{u}_t = \mathbf{K}_t(\mathbf{x}_t - \hat{\mathbf{x}}_t) + \mathbf{k}_t + \hat{\mathbf{u}}_t)$ Better, but maybe a little too good?

Version 2.0: $p(\mathbf{u}_t|\mathbf{x}_t) = \mathcal{N}(\mathbf{K}_t(\mathbf{x}_t - \hat{\mathbf{x}}_t) + \mathbf{k}_t + \hat{\mathbf{u}}_t, \Sigma_t)$ Add noise so that all samples don't look the same! Set $\Sigma_t = \mathbf{Q}_{\mathbf{u}_t, \mathbf{u}_t}^{-1}$

$$p(\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{u}_t) = \mathcal{N}(f(\mathbf{x}_t, \mathbf{u}_t), \Sigma)$$
$$f(\mathbf{x}_t, \mathbf{u}_t) \approx \mathbf{A}_t \mathbf{x}_t + \mathbf{B}_t \mathbf{u}_t$$
$$\mathbf{A}_t = \frac{df}{d\mathbf{x}_t} \quad \mathbf{B}_t = \frac{df}{d\mathbf{u}_t}$$

How to fit the dynamics?

fit dynamics
$$p(\mathbf{x}_{t+1}|\mathbf{x}_t,\mathbf{u}_t)$$

$$\{(\mathbf{x}_t, \mathbf{u}_t, \mathbf{x}_{t+1})_i\}$$

fit $p(\mathbf{x}_{t+1}|\mathbf{x}_t,\mathbf{u}_t)$ at each time step using linear regression

$$p(\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{u}_t) = \mathcal{N}(\mathbf{A}_t \mathbf{x}_t + \mathbf{B}_t \mathbf{u}_t + \mathbf{c}, \mathbf{N}_t) \qquad \mathbf{A}_t \approx \frac{df}{d\mathbf{x}_t} \quad \mathbf{B}_t \approx \frac{df}{d\mathbf{u}_t}$$

What if we go too far?

How to stay close to old controller?

$$p(\mathbf{u}_t|\mathbf{x}_t) = \mathcal{N}(\mathbf{K}_t(\mathbf{x}_t - \hat{\mathbf{x}}_t) + \mathbf{k}_t + \hat{\mathbf{u}}_t, \Sigma_t)$$

$$p(\tau) = p(\mathbf{x}_1) \prod_{t=1}^{T} p(\mathbf{u}_t | \mathbf{x}_t) p(\mathbf{x}_{t+1} | \mathbf{x}_t, \mathbf{u}_t)$$

What if the new $p(\tau)$ is "close" to the old one $\bar{p}(\tau)$?

If trajectory distribution is close, then dynamics will be close too!

What does "close" mean? $D_{\mathrm{KL}}(p(\tau)||\bar{p}(\tau)) \leq \epsilon$

This is easy to do if $\bar{p}(\tau)$ also came from linear controller!

For details, see: "Learning Neural Network Policies with Guided Policy Search under Unknown Dynamics"

Global Policies from Local Models

What's the solution?

- Use derivative-free ("model-free") RL algorithms, with the model used to generate synthetic samples
 - Seems weirdly backwards
 - Actually works very well
 - Essentially "model-based acceleration" for model-free RL
- Use simpler policies than neural nets
 - LQR with learned models (LQR-FLM Fitted Local Models)
 - Train **local** policies to solve simple tasks
 - Combine them into **global** policies via supervised learning

What's the solution?

- Use derivative-free ("model-free") RL algorithms, with the model used to generate synthetic samples
 - Seems weirdly backwards
 - Actually works very well
 - Essentially "model-based acceleration" for model-free RL
- Use simpler policies than neural nets
 - LQR with learned models (LQR-FLM Fitted Local Models)
 - Train local policies to solve simple tasks
 - Combine them into **global** policies via supervised learning

Guided policy search: high-level idea

Guided policy search: algorithm sketch

- 1. optimize each local policy $\pi_{\text{LQR},i}(\mathbf{u}_t|\mathbf{x}_t)$ on initial state $\mathbf{x}_{0,i}$ w.r.t. $\tilde{c}_{k,i}(\mathbf{x}_t,\mathbf{u}_t)$
- 2. use samples from step (1) to train $\pi_{\theta}(\mathbf{u}_t|\mathbf{x}_t)$ to mimic each $\pi_{\text{LQR},i}(\mathbf{u}_t|\mathbf{x}_t)$
- 3. update cost function $\tilde{c}_{k+1,i}(\mathbf{x}_t, \mathbf{u}_t) = c(\mathbf{x}_t, \mathbf{u}_t) + \lambda_{k+1,i} \log \pi_{\theta}(\mathbf{u}_t | \mathbf{x}_t)$

For details, see: "End-to-End Training of Deep Visuomotor Policies" Lagrange multiplier

Underlying principle: distillation

Ensemble models: single models are often not the most robust – instead train many models and average their predictions

this is how most ML competitions (e.g., Kaggle) are won this is very expensive at test time

Can we make a single model that is as good as an ensemble?

Distillation: train on the ensemble's predictions as "soft" targets

$$p_i = \frac{\exp(z_i/T)}{\sum_{j} \exp(z_j/T)} \leftarrow \text{temperature}$$

Intuition: more knowledge in soft targets than hard labels!

Distillation for Multi-Task Transfer

$$\mathcal{L} = \sum_{\mathbf{a}} \pi_{E_i}(\mathbf{a}|\mathbf{s}) \log \pi_{AMN}(\mathbf{a}|\mathbf{s})$$

(just supervised learning/distillation)

analogous to guided policy search, but for multi-task learning

some other details
(e.g., feature regression objective)
– see paper

Combining weak policies into a strong policy

Divide and Conquer Reinforcement Learning

Divide and conquer reinforcement learning algorithm sketch:

- 1. optimize each local policy $\pi_{\theta_i}(\mathbf{a}_t|\mathbf{s}_t)$ on initial state $\mathbf{s}_{0,i}$ w.r.t. $\tilde{r}_{k,i}(\mathbf{s}_t,\mathbf{a}_t)$
 - 2. use samples from step (1) to train $\pi_{\theta}(\mathbf{u}_t|\mathbf{x}_t)$ to mimic each $\pi_{\theta_i}(\mathbf{u}_t|\mathbf{x}_t)$
 - 3. update reward function $\tilde{r}_{k+1,i}(\mathbf{x}_t, \mathbf{u}_t) = r(\mathbf{x}_t, \mathbf{u}_t) + \lambda_{k+1,i} \log \pi_{\theta}(\mathbf{u}_t | \mathbf{x}_t)$

For details, see: "Divide and Conquer Reinforcement Learning"

Readings: guided policy search & distillation

- L.*, Finn*, et al. End-to-End Training of Deep Visuomotor Policies. 2015.
- Rusu et al. Policy Distillation. 2015.
- Parisotto et al. Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning. 2015.
- Ghosh et al. Divide-and-Conquer Reinforcement Learning. 2017.
- Teh et al. Distral: Robust Multitask Reinforcement Learning. 2017.

UC Berkeley CS285 | Deep Reinforcement Learning (2020)

CS285 (2020)·课程资料包 @ShowMeAl

视频 中英双语字幕

课件 一键打包下载

笔记 官方笔记翻译

代码 作业项目解析

视频·B 站[扫码或点击链接]

https://www.bilibili.com/video/BV12341167kL

课件 & 代码·博客[扫码或点击链接]

http://blog.showmeai.tech/cs285

Berkeley

actor-critic

reinforcement learning 元学习 exploitation

梯度策略

探索与利用

exploration

DQN

迁移学习

逆强化学ス

Q-learning / Q 学习

deep q network

meta learning

Awesome Al Courses Notes Cheatsheets 是**ShowMeAl** 资料库的分支系列,覆盖最具知名度的**TOP20+** 门 Al 课程,旨在为读者和学习者提供一整套高品质中文学习笔记和速查表。

点击课程名称,跳转至课程**资料包**页面,一键下载课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS23In

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏

称为 **AI 内容创作者?** 回复[添砖加瓦]