Fonctions trigonométriques

Dans tout le chapitre on se place dans le plan muni d'un repère orthonormé (O ; l, J). La droite numérique Peut également être appelée droite des réels.

I. Repérage sur le cercle trigonométrique

<u>Définition</u>: cercle trigonométrique.

On appelle cercle trigonométrique le cercle ζ de centre l'origine O du repère et de rayon r=0I=1.

Remarque:

Le périmètre P du cercle trigonométrique est égal à :

 $P=2\pi \times r=2\pi \times 1=2\pi$.

Propriété: orientation sur le cercle trigonométrique.

On choisit une orientation sur le cercle trigonométrique $\ \zeta \ :$

• le sens direct (ou positif ou encore trigonométrique) est contraire au sens de rotation des aiguilles

d' une montre ;

• le sens indirect (ou négatif) est le sens de rotation des aiguilles d'une montre.

Exemple:

Le panneau de signalisation ci-dessous sert à indiquer le sens de parcours à prendre lors de l'abord d'un carrefour giratoire. Le sens utilisé est le sens **trigonométrique**.

Propriété: repérage.

Pour **repérer un M du cercle trigonométrique**, on " enroule " autour du cercle un axe vertical orienté vers le haut, gradué, d'origine le point I.

On peut alors associer un réel x à ce point M, x étant l'abscisse d'un point de l'axe qui

Vient se superposer au M.

On dit alors que ce point M est le **point-image** de x sur le cercle trigonométrique, ce que l'on peut noter M_x .

Remarques:

• Lorsqu'on enroule l'axe dans le sens direct, ce sont des points d'abscisses positives qui

se superposent à M; dans le sens indirect, ce sont des d'abscisses négatives.

• Tout point sur le cercle trigonométrique se repère par plusieurs nombres réels, distants d'un multiple de 2π (périmètre du cercle trigonométrique), selon le nombre de tours complets de l'enroulement de l'axe.

Exemples:

- Les points de la droite des réels O; 2π ; 4π , et plus généralement de la forme $2k\pi(k\in\mathbb{Z})$ ont pour image le même point à savoir I.
- Les points $\frac{\pi}{2}:\frac{\pi}{2}+2\pi=\frac{5\pi}{2}$ et plus généralement de la forme $\frac{\pi}{2}+2k\pi(k\in\mathbb{Z})$ ont pour image le même point, à savoir J.

Remarque:

- A chaque réel x on associe un point M sur le cercle trigonométrique.
- Ce réel x est lié à l'angle au centre et donc la longueur d'arc de cercle trigonométrique associée.

<u>Définition: radian.</u>

Soit \(\) le cercle trigonométrique et M un point du cercle.

La **mesure en radian** de l'angle \widehat{lom} est la longueur d'arc \widehat{lm} intercepté par cet angle.

Le symbole associé à cette mesure est **rad** ou rd.

Remarques:

• Dans ces conditions, 360° correspondent à 2π rad.

(E = I rad)

- Par proportionnalité, on obtient que 30° correspondent à $\frac{\pi}{4}$ rad ; 45° correspondent $\frac{\pi}{4}$ rad ; 90° correspondent à $\frac{\pi}{4}$ rad...
- II faut faire attention au paramétrage de sa calculatrice selon le mule degré ou radian choisi.

II. Coordonnées d'un point du cercle trigonométrique

1.Sinus et cosinus

<u>Définitions</u>: Sinus et cosinus.

Pour tout nombre x, le cosinus et le sinus de x, notés $\cos(x)$ et $\sin(x)$, sont les coordonnées du point M

image de x sur le cercle trigonométrique. On écrit alors $M_*(\cos(x);\sin(x))$.

Exemples:

Le réel 0 est associé au point I sur le cercle trigonométrique.

On obtient donc $\cos(0) = 1$ et $\sin(0) = 0$.

Le réel $\frac{\pi}{2}$ est associé au point J sur le cercle trigonométrique.

On obtient donc $\cos(\frac{\pi}{2})=0$ et $\sin(\frac{\pi}{2})=1$.

Propriétés: sinus et cosinus.

Pour tout nombre réel x :

$$cos2x+sin2x=1$$

$$-1 \le cos x \le 1$$

$$-1 \le sin x \le 1$$

Démonstration:

Soit M le point associé au réel x.

Le repère est orthonormé, on obtient donc la formule suivante : $OM^2 = (x_M - x_O)^2 + (y_M - y_O)^2 = (\cos x - 0)^2 + (\sin x - 0)^2 = \cos^2 x + \sin^2 x$

Or, le cercle trigonométrique est de rayon 1, donc 0M =1, donc 0M²= 1, donc $\cos^2 x + \sin^2 x = 1$

2. Valeurs remarquables

Propriété: valeurs remarquables.

Soit M un point du cercle trigonométrique, image d'un réel x. Alors :

Angle IOM	0°	30°	45°	60°	90°
Réel x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos x$ $\cos \widehat{IOM}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin_{\mathcal{X}}$ $\sin \widehat{IOM}$	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

Démonstrations:

On appelle H le pied de la hauteur issue de M dans le triangle OMI.

1. Calcul de $\cos(\frac{\pi}{3})$ et de $\sin(\frac{\pi}{3})$

Si $x=\frac{1}{3}$ alors le triangle OMI est isocèle en O et son angle principal est égal à $\frac{\pi}{3}$, c'est donc un triangle

équilatéral. Dans un triangle équilatéral, la médiane et la hauteur sont confondues, donc H

est le milieu du segment [OI] de longueur 1, donc $OH = \frac{1}{2}$ et donc $cos(\frac{\pi}{3}) = \frac{1}{2}$.

En appliquant le théorème de Pythagore au triangle OHM rectangle en H, on obtient :

$$MH = \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$$

2.Calcul de $\sin(\frac{r}{4})$

Si $x = \frac{\pi}{4}$ alors la droite (OM) est un axe de symétrie pour le triangle OIJ.

On obtient donc la relation $\cos(\frac{\pi}{4}) = \sin(\frac{\pi}{4})$.

En appliquant le théorème de Pythagore au sein du triangle OHM, on obtient :

$$\cos^{2}(\frac{\pi}{4}) + \sin^{2}(\frac{\pi}{4}) = 1$$
 donc $2\cos^{2}(\frac{\pi}{4}) = 1$ donc $\cos^{2}(\frac{\pi}{4}) = \frac{1}{2}$.

Comme
$$\cos(\frac{\pi}{4}) > 0$$
 alors $\cos(\frac{\pi}{4}) = \sqrt{\frac{1}{2}} = \frac{\sqrt{2}}{2}$ d'où $\cos(\frac{\pi}{4}) = \sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$.

3.Angles associés

Propriété: Angles associés.

III. Fonctions cosinus et sinus

<u>Définition</u>: fonction cosinus.

- La cosinus, notée cos, est la fonction définie sur \mathbb{R} par $\cos : x \to \cos(x)$.
- Un tableau de valeurs de la fonction cosinus est :

x	-π	$-\frac{3\pi}{4}$	$-\frac{\pi}{2}$	$-\frac{\pi}{4}$	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π
cos(x)	-1	$-\frac{\sqrt{2}}{2}$	0	$\frac{\sqrt{2}}{2}$	1	$\frac{\sqrt{2}}{2}$	0	$-\frac{\sqrt{2}}{2}$	-1

• Un tableau de variations de la fonction cosinus sur $]-\pi_i\pi]$ est:

<u>Définition</u>: Fonction sinus.

- La fonction sinus, notée sin, est la fonction définie sur \mathbb{R} par $\sin x \to \sin(x)$.
- Un tableau de valeurs de la fonction sinus est :

x	-π	$-\frac{3\pi}{4}$	$-\frac{\pi}{2}$	$-\frac{\pi}{4}$	0	$\frac{\pi}{4}$	π_2	$\frac{3\pi}{4}$	π
sin(x)	0	$-\frac{\sqrt{2}}{2}$	-1	$-\frac{\sqrt{2}}{2}$	0	$\frac{\sqrt{2}}{2}$	1	$\frac{\sqrt{2}}{2}$	0

• Un tableau de variations de la fonction sinus sur $]-\pi;\pi]$ est :

Remarques:

- Les fonctions **sinus** et **cosinus** sont des fonctions trigonométriques.
- Les fonctions trigonométriques servent modéliser des phénomènes dits superposition de points-images

Propriété:

Soit un réel x et M_s (cos(x); sin(x)) un cercle trigonométrique, alors les points M_s (cos(x); sin(x))

et $M_{s+2\pi}$ (cos($x+2\pi$); sin($x+2\pi$)) sont confondus.

Démonstration :

Le périmètre du cercle trigonométrique est égal à 2π donc, par enroulement de la droite des réels, les

 M_z et $M_{z+2\pi}$ sont confondus.

<u>Propriété</u>: périodicité.

Les fonctions sinus et cosinus sont des fonctions périodiques de période 2π dites

```
« 2\pi-périodiques »

\sin(x+2\pi) = \sin(x) et \cos(x+2\pi) = \cos(x).
```

Propriétés : parité des fonctions cosinus et sinus.

Soit un réel x. Alors:

- la fonction sinus est **impaire**. Sa courbe représentative est alors symétrique par rapport å l'origine du repère.
- la fonction cosinus est **paire**. Sa courbe représentative est alors symétrique par rapport l'axe des ordonnées du repère.

Propriété:

Les courbes φ_{cos} et φ_{sin} sont "décalées" de $\frac{\pi}{2}$.

En effet,
$$\cos(\frac{\pi}{2}-x)=\sin x$$
 et $\sin(\frac{\pi}{2}-x)=\cos x$