

WHAT IS CLAIMED IS:

1. An image reading imaging optical system for imaging image information on a line sensor and reading the image information, characterized by an 5 imaging optical element including a plurality of off-axial reflecting surfaces differing in the direction of incidence and the direction of emergence of a reference axis ray from one another and having curvatures.
- 10 2. An image reading imaging optical system according to Claim 1, characterized in that said imaging optical element has the function of changing the direction of emergence to a direction substantially perpendicular or opposite to the direction of incidence of the reference axis ray.
- 15 3. An image reading imaging optical system according to Claim 1 or 2, characterized in that said imaging optical element comprises a plurality of off-axial reflecting surfaces including at least one set 20 of reflecting surfaces intersecting with each other, and has a stop between the off-axial reflecting surfaces intersecting with each other.
- 25 4. An image reading apparatus having an original supporting table on which an original is

placed, an imaging optical element and a line sensor,
and for causing image information on the surface of
the original to be imaged on the line sensor by the
imaging optical element, and reading the image
5 information by said line sensor, characterized in
that said imaging optical element has a plurality of
off-axial reflecting surfaces differing in the
direction of incidence and the direction of emergence
of a reference axis ray from one another and having
10 curvatures.

5. An image reading apparatus according to
Claim 4, characterized in that the bending direction
of the reference axis ray on each off-axial
15 reflecting surface of said imaging optical element is
in a cross section perpendicular to the line
direction of said line sensor.

6. An image reading apparatus according to
20 Claim 5, characterized in that the direction of the
reference axis ray emerging from said imaging optical
element differs from the direction of the reference
axis ray incident on said imaging optical element.

25 7. An image reading apparatus according to
Claim 6, characterized in that the direction of the
reference axis ray emerging from said imaging optical

element is substantially orthogonal to the direction of the reference axis ray incident on said imaging optical element.

5 8. An image reading apparatus according to
Claim 5, characterized in that the direction of the
reference axis ray emerging from said imaging optical
element is substantially the same direction as the
direction of the reference axis ray incident on said
10 imaging optical element.

9. An image reading apparatus according to
Claim 6, characterized in that the direction of the
reference axis ray incident on said imaging optical
element and the direction of the reference axis ray
emerging from said imaging optical element are
substantially opposite directions.

10. An image reading apparatus according to
20 Claim 4, characterized in that said image information
is not intermediately imaged in said imaging optical
element, but is directly formed on the line sensor.

11. An image reading apparatus according to
25 Claim 10, characterized in that said imaging optical
element has a stop near substantially the center of
the optical path between the light incidence surface

and the light exit surface thereof.

12. An image reading apparatus according to
Claim 11, characterized in that said stop is formed
5 by the effective surface of an off-axial reflecting
surface located near substantially the center of the
optical path between the light incidence surface and
the light exit surface of said imaging optical
element.

10

13. An image reading apparatus according to
Claim 4, characterized in that an internal medium
constituting said imaging optical element is air.

15

14. An image reading apparatus according to
Claim 4, characterized in that an internal medium
constituting said imaging optical element is
optically transparent glass or plastic.

20

15. An image reading apparatus according to
Claim 5, characterized in that when the off-axial
reflecting surface for counter-clockwisely deflecting
the reference axis ray is defined as a plus
deflecting surface, and the off-axial reflecting
25 surface for clockwisely deflecting the reference axis
ray is defined as a minus deflecting surface, said
imaging optical element has at least one set of

RECORDED - INDEXED - SERIALIZED - FILED

constructions in which the plus deflecting surface is continuous or at least one set of constructions in which the minus deflecting surface is continuous.

5 16. An image reading apparatus according to
Claim 5, characterized in that when the off-axial
reflecting surface for counter-clockwisely deflecting
the reference axis ray is defined as a plus
deflecting surface, and the off-axial reflecting
10 surface for clockwisely deflecting the reference axis
ray is defined as a minus deflecting surface, said
imaging optical element has at least one set of
constructions in which the plus deflecting surface is
continuous and at least one set of constructions in
15 which the minus deflecting surface is continuous.

17. An image reading apparatus according to
Claim 5, characterized in that said imaging optical
element is comprised of six off-axial reflecting
20 surfaces, and when the off-axial reflecting surface
for counter-clockwisely deflecting the reference axis
ray is defined as a plus deflecting surface, and the
off-axial reflecting surface for clockwisely
deflecting the reference axis ray is defined as a
25 minus deflecting surface, said imaging optical
element has the same number of plus deflecting
surfaces and minus deflecting surfaces, and the

off-axial reflecting surface most adjacent to the
exit side is disposed on the original side on the
incidence reference axis relative to the off-axial
reflecting surface most adjacent to the incidence
5 side.

18. An image reading apparatus according to
Claim 17, characterized in that said plus deflecting
surfaces and said minus deflecting surfaces are
10 disposed so as to be opposite deflecting surfaces
relative to a stop.

19. An image reading apparatus according to
Claim 17, characterized in that the off-axial
15 reflecting surface of said imaging optical element
which is most adjacent to the incidence side is
designed to have the converging action.

20. An image reading apparatus according to
Claim 17, characterized in that at least one surface
20 of said imaging optical element has a characteristic
of cutting infrared light.

21. An image reading apparatus according to
Claim 17, characterized in that said imaging optical
25 element is disposed in a housing along the surface of
the original in parallel to a reflecting mirror.

22. An image reading apparatus according to
Claim 4, characterized in that when the effective
beam width in a direction perpendicular to the line
direction of the line sensor on the exit surface of
5 said imaging optical element is defined as Φ_s , and
the effective beam width in the line direction of the
line sensor is defined as Φ_m , the condition that

$$\Phi_s < \Phi_m$$

is satisfied.

10

23. An image reading apparatus having an
original supporting table on which an original is
placed, an imaging optical element and a line sensor,
and for causing image information on the surface of
15 the original to be imaged on the line sensor by the
imaging optical element, and reading the image
information by said line sensor, characterized by a
reflecting mirror and an imaging optical element for
reflecting a reference axis ray a plurality of times,
20 and in that said imaging optical element has the
function of changing the direction of emergence to a
direction substantially perpendicular or opposite to
the direction of incidence of the reference axis ray.

25

24. An image reading apparatus according to
Claim 23, characterized in that said imaging optical
element has a plurality of off-axial reflecting

surfaces differing in the direction of incidence and the direction of emergence of the reference axis ray from one another and having curvatures.

5 25. An image reading apparatus according to
Claim 24, characterized in that the bending direction
of the reference axis ray on each off-axial
reflecting surface is in a cross section
perpendicular to the line direction of said line
10 sensor.

26. An image reading apparatus according to
claim 24, characterized by at least two reflecting
mirrors.

15 27. An image reading apparatus according to
Claim 24, characterized in that said imaging optical
element is disposed on the side opposite to the
surface of said original with respect to said
20 reflecting mirror.

28. An image reading apparatus according to
Claim 24, characterized in that said imaging optical
element is disposed in a housing along the surface of
25 said original in parallel to said reflecting mirror.

29. An image reading apparatus having an

original supporting table on which an original is placed, an imaging optical element and a line sensor, and for causing image information on the surface of the original to be imaged on the line sensor, and
5 reading the image information by said line sensor, characterized in that said imaging optical element includes a plurality of off-axial reflecting surfaces including at least one set of reflecting surfaces intersecting with each other, and has a stop between
10 the off-axial reflecting surfaces intersecting with each other.

30. An image reading apparatus according to Claim 29, characterized in that the bending direction
15 of a reference axis ray on each off-axial reflecting surface of said imaging optical element is in a cross section perpendicular to the line direction of said line sensor.

20 31. An image reading apparatus according to Claim 30, characterized in that the stop in said imaging optical element is disposed near substantially the center of the optical path between the light incidence surface and the light exit
25 surface of the imaging optical element.

32. An image reading apparatus according to

Claim 30, characterized in that said stop differs in
the aperture width thereof in a cross section
perpendicular to the line direction of the sensor
line and the aperture width in a direction parallel
5 to the line direction.

33. An image reading apparatus according to
Claim 32, characterized in that said stop is
constructed integrally with the off-axial reflecting
10 surfaces proximate thereto.

34. An image reading apparatus according to any
one of Claims 4 to 33, characterized in that said
image information is a color image.