November 27, 2018

Mr. Winston Crow NGB/A7OR Sheppard Hall 3501 Fetchet Avenue Joint Base Andrews, Maryland 20762-5157

REFERENCE: Contract W9133L-14-D-0007, Delivery Order 0011, FY17 Phase III

Regional Site Inspections for Perfluorinated Compounds at Multiple

**Air National Guard Installations** 

**SUBJECT:** Final Site Inspection Report for Kingsley Field ANGB

Mr. Crow

Attached please find the above referenced document.

Should you have any questions, please contact me at 606.495.5149 or by email at vestm@leidos.com.

LEIDOS

Matthew B. Vest, PMP, PG

Matth B. Vist

Project Manager

cc: Ms. Susan Klypchak – NGB-AQ-E Contracting Specialist

Capt. Aubrey Higginbotham – NGB/A4OR Program Manager

Mr. Tom Barzyk – BB&E Surveillance and Oversight

Capt. Joseph Young - Kingsley Field ANGB Environmental Manager

Ms. Katie Robertson – Oregon DEQ Project Manager

Ms. Connie Samson – Leidos Program Manager

Mr. Selvam Arunachalam – Leidos Deputy Project Manager

Ms. Nancy Wahlquist - Leidos Project Controller

Leidos Project File

# SITE INSPECTION REPORT FOR PERFLUOROOCTANE SULFONATE AND PERFLUOROOCTANOIC ACID AT KINGSLEY FIELD KLAMATH FALLS, OREGON



173<sup>rd</sup> Fighter Wing Oregon Air National Guard Kingsley Field Klamath Falls, Oregon

**November 2018** 



# SITE INSPECTION REPORT FOR PERFLUOROOCTANE SULFONATE AND PERFLUOROOCTANOIC ACID AT KINGSLEY FIELD KLAMATH FALLS, OREGON

173<sup>rd</sup> Fighter Wing Oregon Air National Guard Kingsley Field Klamath Falls, Oregon

November 2018

Contract Number W9133L-14-D-0007 Task Order Number 0011

Prepared for

Air National Guard Restoration Branch NGB/A4OR 3501 Fetchet Avenue Joint Base Andrews, Maryland 20762

Prepared by

Leidos 11951 Freedom Drive Reston, Virginia 20190



# **CONTENTS**

|     |      | AS                                                        |     |
|-----|------|-----------------------------------------------------------|-----|
|     |      | /E SUMMARY                                                |     |
| 1.0 | INTE | RODUCTION                                                 | 1_1 |
| 1.0 | 1.1  | PROJECT OBJECTIVES AND SCOPE                              |     |
|     | 1.2  | REGULATORY OVERVIEW AND SCREENING CRITERIA                |     |
| 2.0 | INST | ALLATION DESCRIPTION                                      | 2-1 |
|     | 2.1  | LOCATION                                                  |     |
|     | 2.2  | ORGANIZATION AND HISTORY                                  |     |
| 3.0 | ENV  | IRONMENTAL SETTING                                        | 3-1 |
| 5.0 | 3.1  | CLIMATE                                                   |     |
|     | 3.2  | TOPOGRAPHY                                                |     |
|     | 3.3  | GEOLOGY                                                   |     |
|     | 3.4  | SOIL                                                      |     |
|     | 3.5  | SURFACE WATER HYDROLOGY                                   |     |
|     | 3.6  | HYDROGEOLOGY                                              | 3-2 |
|     | 3.7  | CRITICAL HABITATS AND ENDANGERED/THREATENED SPECIES       | 3-3 |
|     | 3.8  | WATER WELLS                                               | 3-4 |
| 4.0 | PREI | LIMINARY ASSESSMENT                                       | 4-1 |
|     | 4.1  | PRL 1: HANGAR 333 – FUEL CELL MAINTENANCE DOCK            | 4-1 |
|     | 4.2  | PRL 2: FETA – NORTH                                       | 4-1 |
|     | 4.3  | PRL 3: FETA – SOUTH                                       | 4-2 |
|     | 4.4  | PRL 4: FETA – COMPASS ROSE                                | 4-2 |
|     | 4.5  | PRL 5: BUILDING 573 – FORMER VEHICLE MAINTENANCE BUILDING | 4-2 |
|     | 4.6  | PRL 6: BUILDING 216 – CURRENT AND FORMER FIRE STATION     | 4-2 |
|     | 4.7  | PRLs 7 AND 8: NORTH AND SOUTH OUTFALLS                    | 4-3 |
| 5.0 | SITE | INVESTIGATION FIELD PROGRAM                               | 5-1 |
|     | 5.1  | GENERAL APPROACH                                          | 5-1 |
|     |      | 5.1.1 Field Sampling                                      | 5-1 |
|     |      | 5.1.2 Deviations from the Work Plan                       | 5-2 |
|     |      | 5.1.3 Data Analysis                                       | 5-3 |
|     | 5.2  | INVESTIGATION-DERIVED WASTE                               | 5-4 |
|     | 5.3  | PRL 1: HANGAR 333 – FUEL CELL MAINTENANCE DOCK            |     |
|     |      | 5.3.1 Sampling Activities                                 |     |
|     |      | 5.3.2 Analytical Results                                  |     |
|     | 5.4  | PRL 2: FETA – NORTH                                       |     |
|     |      | 5.4.1 Sampling Activities                                 |     |
|     |      | 5.4.2 Analytical Results                                  | 5-6 |

iii

|       | 5.5        | PRL 3:         | FETA – SOUTH                                              |     |
|-------|------------|----------------|-----------------------------------------------------------|-----|
|       |            | 5.5.1          | Sampling Activities                                       | 5-7 |
|       |            | 5.5.2          | Analytical Results                                        |     |
|       | 5.6        | PRL 4:         | FETA – COMPASS ROSE                                       |     |
|       |            | 5.6.1          | Sampling Activities                                       |     |
|       |            | 5.6.2          | Analytical Results                                        |     |
|       | 5.7        |                | BUILDING 573 – FORMER VEHICLE MAINTENANCE BUILDING        |     |
|       |            | 5.7.1          | Sampling Activities                                       | 5-9 |
|       |            | 5.7.2          | Analytical Results                                        |     |
|       | 5.8        |                | BUILDING 216 – CURRENT AND FORMER FIRE STATION            |     |
|       |            | 5.8.1          | Sampling Activities                                       |     |
|       | <b>7</b> 0 | 5.8.2          | Analytical Results                                        |     |
|       | 5.9        |                | NORTH OUTFALL                                             |     |
|       |            | 5.9.1<br>5.9.2 | Sampling Activities                                       |     |
|       | 5 10       |                | Analytical ResultsRL 8: SOUTH OUTFALL                     |     |
|       | 3.10       | 5.10.1         | Sampling Activities                                       |     |
|       |            | 5.10.1         | Analytical Results                                        |     |
|       |            |                | •                                                         |     |
| 6.0   |            |                | NS AND RECOMMENDATIONS                                    |     |
|       | 6.1        |                | LUSIONS                                                   |     |
|       |            | 6.1.1          | PRL 1: Hangar 333 – Fuel Cell Maintenance Dock            |     |
|       |            | 6.1.2          | PRL 2: FETA – North                                       |     |
|       |            | 6.1.3          | PRL 3: FETA – South                                       |     |
|       |            | 6.1.4          | PRL 4: FETA – Compass Rose                                |     |
|       |            | 6.1.5          | PRL 5: Building 573 – Former Vehicle Maintenance Building |     |
|       |            | 6.1.6<br>6.1.7 | PRL 6: Building 216 – Current and Former Fire Station     |     |
|       |            | 6.1.8          | PRL 8: South Outfall                                      |     |
|       |            | 6.1.9          | PFOS/PFOA Contamination near Installation Boundary        |     |
|       | 6.2        |                | ARY AND RECOMMENDATIONS                                   |     |
|       | -          |                |                                                           |     |
| 7.0   | REFE       | ERENCE         | S                                                         | 7-1 |
| TABI  | LES        |                |                                                           | T-1 |
| FIGU  | RES        |                |                                                           | F-1 |
| APPE  | ENDIX      | A SOI          | L BORINGS AND WELL CONSTRUCTION LOGS                      | A-1 |
| APPE  | ENDIX      | B GRO          | DUNDWATER SAMPLING LOGS                                   | B-1 |
| APPE  | ENDIX      | C SUF          | RVEY REPORT FOR NEW MONITORING WELLS                      | C-1 |
|       |            |                | ΓΑ VALIDATION REPORTS                                     |     |
| Δ DDE | NDIX       | E I A E        | RORATORV ANALYTICAL DATA REPORTS                          | F_1 |

# **TABLES**

| ES-1             | PFOS/PFOA SI Screening Criteria                                                                                                                                                                                                                                           | ES-2                    |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| ES-2             | SI Recommendation Summary Table                                                                                                                                                                                                                                           | ES-4                    |
| 1                | Preliminary Assessment Report Summary and Recommendations                                                                                                                                                                                                                 | T-3                     |
| 2                | PFOS/PFOA SI Screening Criteria                                                                                                                                                                                                                                           | T-3                     |
| 3                | Summary of SI Activities                                                                                                                                                                                                                                                  | T-4                     |
| 4                | Well Construction Details for Kingsley Field ANGB SI                                                                                                                                                                                                                      | T-4                     |
| 5                | Water Level Measurements                                                                                                                                                                                                                                                  |                         |
| 6                | Water Quality Parameters                                                                                                                                                                                                                                                  | T-6                     |
| 7                | Summary of Soil and Sediment Analytical Results                                                                                                                                                                                                                           | T-7                     |
| 8                | Summary of Groundwater and Surface Water Analytical Results                                                                                                                                                                                                               | T-10                    |
| 9                | SI Recommendation Summary Table                                                                                                                                                                                                                                           | T-11                    |
|                  |                                                                                                                                                                                                                                                                           |                         |
|                  | FIGURES                                                                                                                                                                                                                                                                   |                         |
| 1                | FIGURES  Kingsley Field ANGB Location Map                                                                                                                                                                                                                                 | F-3                     |
| 1 2              |                                                                                                                                                                                                                                                                           |                         |
| _                | Kingsley Field ANGB Location Map                                                                                                                                                                                                                                          | F-4                     |
| 2                | Kingsley Field ANGB Location Map                                                                                                                                                                                                                                          | F-4<br>F-5              |
| 2 3              | Kingsley Field ANGB Location Map                                                                                                                                                                                                                                          | F-4<br>F-5<br>F-6       |
| 2<br>3<br>4      | Kingsley Field ANGB Location Map  Kingsley Field ANGB SI Sampling Overview Map  PRLs 1 and 3 SI Soil, and PRL 8 Surface Water Analytical Results  PRL 2 SI Soil and PRL 7 Sediment Analytical Results  PRL 4 SI Soil Analytical Results  PRL 5 SI Soil Analytical Results | F-4 F-5 F-6 F-7 F-8     |
| 2<br>3<br>4<br>5 | Kingsley Field ANGB Location Map                                                                                                                                                                                                                                          | F-4 F-5 F-6 F-7 F-8 F-9 |

THIS PAGE INTENTIONALLY LEFT BLANK.

# **ACRONYMS**

μg/L Micrograms per Liter

AFFF Aqueous Film-Forming Foam
AMSL Above Mean Sea Level
ANG Air National Guard
ANGB Air National Guard Base

BB&E Inc.

BGS Below Ground Surface COC Chemical of Concern

COPC Chemical of Potential Concern
DoD U.S. Department of Defense
DOI U.S. Department of the Interior

DPT Direct Push Technology
DQO Data Quality Objective

EPA U.S. Environmental Protection Agency

FD Fire Department

FETA Fire Department Testing Area
FSS Fire Suppression System
FTA Fire Training Area
FW Fighter Wing
gpm Gallons per Minute
HA Health Advisory

HDPE High-Density Polyethylene HEF High Expansion Foam IDW Investigation-Derived Waste

MS Matrix Spike

MSD Matrix Spike Duplicate
NFA No Further Action
ng/L Nanograms per Liter
PA Preliminary Assessment

PFAS Per- and Polyfluoroalkyl Substances

PFBS Perfluorobutane Sulfonate
PFHpA Perfluoroheptanoic Acid
PFHxS Perfluorohexane Sulfonate
PFNA Perfluorononanoic Acid
PFOA Perfluorooctanoic Acid
PFOS Perfluorooctane Sulfonate
PRL Potential Release Location

QA Quality Assurance QC Quality Control

QSM Quality Systems Manual
RI Remedial Investigation
RPD Relative Percent Difference
RSL Regional Screening Level

SI Site Inspection

TestAmerica Analytical Laboratories, Inc.

UCMR3 Third Unregulated Contaminant Monitoring Rule UFP-QAPP Uniform Federal Policy Quality Assurance Project Plan

USAF U.S. Air Force

U.S. Fish and Wildlife Service **USFWS** 

U.S. Geological Survey Volatile Organic Compound Work Plan USGS VOC

WP

# **EXECUTIVE SUMMARY**

Leidos was contracted to conduct Phase III regional site inspections (SIs) for perfluorinated compounds at multiple Air National Guard Bases (ANGBs). This report documents SI activities conducted at eight potential release locations (PRLs) at the Kingsley Field ANGB, Klamath Falls, Oregon. The primary objective of the SI was to determine the presence or absence of perfluorinated compounds, more specifically per- and polyfluoroalkyl substances (PFAS) on the U.S. Environmental Protection Agency (EPA) Third Unregulated Contaminant Monitoring Rule (UCMR3), including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) perfluorobutane sulfonate (PFBS), perfluorononanoic acid (PFNA), perfluoroheptanoic acid (PFHpA), and perfluorohexane sulfonate (PFHxS), herein collectively referred to as PFOS/PFOA at each PRL, and based on the findings:

- Determine if PFOS/PFOA-contaminated groundwater has reached the Installation boundary;
- Provide a defensible no further action (NFA) decision for qualifying PRLs; and
- Develop data quality objectives (DQOs) for additional investigation for PRLs not meeting the NFA criteria or an interim response action, if appropriate.

To meet the objectives, Leidos performed SIs at the following eight PRLs:

- PRL 1: Hangar 333,
- PRL 2: Fire Equipment Testing Area (FETA) North,
- PRL 3: FETA South,
- PRL 4: FETA Compass Rose,
- PRL 5: Building 573,
- PRL 6: Current and Former Fire Station Building 216,
- PRL 7: North Outfall, and
- PRL 8: South Outfall.

Based on recommendations from the preliminary assessment (PA) and site visit conducted by BB&E, Inc. (BB&E) in September 2015, soil, groundwater, and surface water and sediment (if available) samples were collected and analyzed from eight PRLs. Collected samples were analyzed for PFOS/PFOA compounds. Oregon has established initiation level for four of the six UCMR3 compounds (PFOS, PFOA, PFHpA, and PFNA) in surface water which are to be considered guidance only. Oregon does not have criteria for soil, sediment, or groundwater. The detected PFOS/PFOA concentrations were compared against the more conservative screening criteria for PFOS, PFOA, and PFBS, including the EPA lifetime drinking water Health Advisory (HA) for PFOS and PFOA, the EPA Regional Screening Level (RSL) for PFBS in tap water, the EPA RSL for PFBS in residential soil, and calculated screening levels using the EPA screening level calculator for PFOS and PFOA in soil, as shown in Table ES-1.

PFOS/PFOA compounds were detected above the laboratory detection limits in the soil, groundwater, sediment, and surface water samples collected during the SI. Samples from five monitoring wells (MW-KLA01-01, MW-KLA03-01, MW-KLA04-01, MW-KLA06-01, MW-572-02-PRL05) located near the Installation boundary indicates detection of all six PFOS/PFOA compounds in the groundwater samples. The screening results indicate the consistent presence of PFOS and PFOA at concentrations exceeding the 70-nanograms per liter (ng/L) EPA drinking water HA (EPA 2016a and 2016b) near the Installation boundary.

ES-1

Table ES-1. PFOS/PFOA SI Screening Criteria

| Parameter | Chemical<br>Abstract Service<br>Number | EPA RSL for<br>Tap Water <sup>a</sup><br>(ng/L) | EPA Health<br>Advisory <sup>b</sup><br>(ng/L) | Residential Risk-based<br>Soil Screening Level <sup>c</sup><br>(µg/kg) |
|-----------|----------------------------------------|-------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------|
| PFOS      | 1763-23-1                              | NA                                              | 70.0 <sup>d</sup>                             | 1,260                                                                  |
| PFOA      | 335-67-1                               | NA                                              |                                               | 1,260                                                                  |
| PFBS      | 375-73-5                               | 400,000°                                        | NA                                            | 1,260,000                                                              |

<sup>&</sup>lt;sup>a</sup> EPA RSL for tap water, May 2018; target HQ =1.

μg/kg = Micrograms per kilogram.

EPA = U.S. Environmental Protection Agency.

NA = Not available.

ng/L = Nanograms per liter.

PFBS = Perfluorobutane sulfonate.

PFOA = Perfluorooctanoic acid.

PFOS = Perfluorooctane sulfonate.

RSL = Regional screening level.

SI = Site inspection.

Based on comparison of analytical data to the screening criteria in Table ES-1, Leidos recommends further investigations at all PRLs. Additional investigations are recommended for soil and groundwater at PRLs 1, 2, 3, 4, 5, and 6 and for sediment and surface water at PRLs 7 and 8. The recommendations are summarized in Table ES-2 and described briefly below:

- Further investigation is necessary to determine the nature and extent of PFOS/PFOA contamination due to detectable levels at all PRLs.
- Develop an expanded conceptual site model that considers localized groundwater and surface water flow paths to select future sampling locations.
- Complete the delineation of nature and extent of PFAS as part of an Expanded SI or a remedial investigation (RI) that could consist of:
  - Additional soil and sediment sampling and analysis of an expanded list of PFAS constituents (in addition to the six UCMR3 constituents) to determine if significant source areas related to precursor substances are present. Precursor substances have been demonstrated to oxidize into PFOS and PFOA, and thus could provide a lingering source of these compounds to soil and groundwater.
  - Expanded groundwater sampling program (including analysis of an expanded list of PFAS constituents) to complete horizontal and vertical delineation of the PFOS/PFOA impacts. Further groundwater investigation at the Base boundary is recommended due to the presence of PFAS in groundwater above their screening criteria.

<sup>&</sup>lt;sup>b</sup> Drinking Water Health Advisory for Perfluorooctane Sulfonate (EPA 2016a) and Drinking Water Health Advisory for Perfluorooctanoic Acid (EPA 2016b).

<sup>&</sup>lt;sup>c</sup> Residential risk-based soil screening levels determined by using the EPA RSL calculator (https://epa-prgs.ornl.gov/cgibin/chemicals/csl\_search) and the May 2018 EPA RSL tables (https://epa.gov/risk/regional-screening-levels-rsls-generic-tables- $\frac{\text{may-2018}}{\text{d}}$  for soil and sediment; target HQ = 1.

<sup>70-</sup>ng/L health advisory value.

<sup>&</sup>lt;sup>e</sup> PFBS analytical results for groundwater and surface water have been compared to the tap water screening levels; target HQ =1.

- The installation and sampling of upgradient monitoring wells and downgradient off-Base monitoring wells to better define the upgradient source of PFOS/PFOA as well as impacts of PFOS/PFOA that have migrated off Base.
- o The sampling of upgradient and downgradient off-Base surface water and sediment (including analysis of an expanded list of PFAS constituents) to determine if an upgradient source of PFOS/PFOA exists and better define the nature and extent of PFOS/PFOA in surface water that have migrated off Base.
- Conduct preliminary site-specific risk assessment calculations in order to identify chemicals of potential concern (COPCs) in every media and establish preliminary remedial goals for screening purposes.

DQOs are proposed based on the results of the SI and are presented in Table ES-2. In general, additional samples are required at each PRL in order to establish the nature and extent of PFOA/PFOS constituents for each applicable medium and determine if a complete receptor pathway exists. For soil additional samples are proposed to delineate the nature and extent and to determine if a source area exists, and if so, the vertical and horizontal extent for both the vadose and saturated zones. Additional surface water and sediment samples should be collected at PRLs 7 and 8.

Table ES-2. SI Recommendation Summary Table

| PRL No. | PRL Description                                      | Constituents Above Screening Criteria     | Sampling Recommendations and Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------|------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Hangar 333                                           | <b>Groundwater:</b><br>PFOS + PFOA        | <b>Soil:</b> Although screening criteria were not exceeded, additional surface and subsurface soil samples are proposed to determine if an unidentified source exists and if so, to determine the nature and extent in the vertical and horizontal directions given the potential for soil to groundwater migration. <b>Groundwater:</b> Although soil screening criteria were not exceeded at PRL 1, there were exceedances in groundwater at the downgradient well MW-KLA01-01. Determine the nature and extent both vertically and horizontally through the sampling of existing and additional new monitoring wells. |
| 2       | FETA – North                                         | <b>Groundwater:</b><br>PFOS + PFOA        | Soil: Although screening criteria were not exceeded, additional surface and subsurface soil samples are proposed to determine if an unidentified source exists and if so, to determine the nature and extent in the vertical and horizontal directions given the potential for soil to groundwater migration.  Groundwater: Although soil screening criteria were not exceeded at PRL 2, exceedances occurred in groundwater at downgradient well MW-KLA02-01. Determine the nature and extent both vertically and horizontally through the sampling of existing and additional new monitoring wells.                    |
| 3       | FETA – South                                         | <b>Groundwater:</b><br>PFOS + PFOA        | Soil: Although screening criteria were not exceeded, additional surface and subsurface soil samples are proposed to determine if an unidentified source exists and if so, to determine the nature and extent in the vertical and horizontal directions given the potential for soil to groundwater migration.  Groundwater: Although soil screening criteria were not exceeded at PRL 3, exceedances occurred in groundwater at downgradient well MW-KLA03-01. Determine the nature and extent both vertically and horizontally through the sampling of existing and additional new monitoring wells.                    |
| 4       | FETA – Compass Rose                                  | Soil: PFOS<br>Groundwater:<br>PFOS + PFOA | Soil: Additional surface and subsurface soil samples are proposed to further define the nature and extent of PFOS soil exceedances and to determine if an unidentified source exists and if so, to determine the nature and extent in the vertical and horizontal directions given the potential for soil to groundwater migration.  Groundwater: Determine the nature and extent both vertically and horizontally through the sampling of existing and additional new monitoring wells.                                                                                                                                 |
| \$      | Building 573                                         | Soil: PFOS<br>Groundwater:<br>PFOS + PFOA | Soil: Additional surface and subsurface soil samples are proposed to determine the extent of the one PFOS exceedance and to determine if an unidentified source exists and if so, to determine the nature and extent in the vertical and horizontal directions given the potential for soil to groundwater migration.  Groundwater: Determine the nature and extent both vertically and horizontally through the sampling of existing and additional new monitoring wells.                                                                                                                                               |
| 9       | Current and Former<br>Fire Station – Building<br>216 | Soil: PFOS Groundwater: PFOS + PFOA       | Soil: Additional surface and subsurface soil samples are proposed to determine the extent of the one PFOS exceedance and to determine if an unidentified source exists and if so, to determine the nature and extent in the vertical and horizontal directions given the potential for soil to groundwater migration.  Groundwater: Determine the nature and extent both vertically and horizontally through the sampling of existing and additional new monitoring wells.                                                                                                                                               |

Table ES-2. SI Recommendation Summary Table (continued)

| PRL No. | PRL Description | Constituents Above Screening Criteria | Sampling Recommendations and Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------|-----------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7       | North Outfall   | None                                  | <b>Surface Water and Sediment:</b> PFOS/PFOA compounds were detected in sediment below screening criteria. Determine the PFOS/PFOA impact to surface water through additional upgradient sampling of surface water and sediment and evaluate potential downgradient impacts at the outfall located off Base.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| &       | South Outfall   | None                                  | Surface Water and Sediment: PFOS/PFOA compounds were detected in surface water below screening criteria. Determine the PFOS/PFOA impact to surface water through additional upgradient sampling of surface water and sediment and evaluate potential downgradient impacts at the outfall located off Base.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | General         |                                       | Soil: Collect additional surface and subsurface soil samples to determine the nature and extent both vertically and horizontally of the exceedances and to determine if an unidentified source exists and if so, to determine the nature and extent in the vertical and horizontal directions given the potential for soil to groundwater migration.  Groundwater: (1) Collect additional groundwater samples in upgradient locations to quantify potential impacts from upgradient sources, and (2) collect additional groundwater samples off Base through the installation of a limited number of new monitoring wells to determine if PFOS/PFOA impacts beyond the Base boundary are increasing or decreasing.  Surface Water/Sediment: (1) Collect additional surface water and sediment samples in upgradient locations to quantify potential impacts from upgradient sources; (2) collect additional surface water and sediment samples from downgradient locations off Base to define the nature and extent of PFAS contamination beyond the Base boundary. |

FETA = Fire equipment testing area.
PFOA = Perfluorooctanoic acid.
PFOS = Perfluorooctane sulfonate.
PRL = Potential release location.
SI = Site inspection.

THIS PAGE INTENTIONALLY LEFT BLANK.

# 1.0 INTRODUCTION

Leidos has prepared this Site Inspection (SI) Report to satisfy the requirements of Task Order 0011 of National Guard Bureau Contract Number W9133L-14-D-0007. Under this Task Order, Leidos was contracted to conduct Phase III regional SIs for perfluorinated compounds at multiple Air National Guard Bases (ANGBs). This report documents SI activities conducted at eight potential release locations (PRLs) at the Oregon Air National Guard (ANG) at Kingsley Field, Klamath Falls, Oregon, herein referred to as Kingsley Field ANGB, the Installation, or the Base (Figure 1). (Note that all figures and tables are presented at the end of the document.) All field activities were conducted in accordance with the Work Plan for Fiscal Year 2017 Phase III Regional Site Inspections for Perfluorooctane Sulfonate and Perfluorooctanoic Acid at Kingsley Field Air National Guard Base, Klamath Falls, Oregon (Leidos 2018).

#### 1.1 PROJECT OBJECTIVES AND SCOPE

The primary objective of the SI was to determine the presence or absence of perfluorinated compounds, more specifically per- and polyfluoroalkyl substances (PFAS) on the U.S. Environmental Protection Agency (EPA) Third Unregulated Contaminant Monitoring Rule (UCMR3), including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorobutane sulfonate (PFBS), perfluorononanoic acid (PFNA), perfluoroheptanoic acid (PFHpA), and perfluorohexane sulfonate (PFHxS), herein collectively referred to as PFOS/PFOA.

Surface and subsurface soil, groundwater (downgradient from the PRL and near the Installation boundary), and surface water and sediment (if available) were sampled and analyzed to determine the presence or absence of PFOS/PFOA in environmental media at the PRLs identified during the 2015 preliminary assessment (PA) (BB&E 2015) and to:

- Determine if PFOS/PFOA-contaminated groundwater has reached the Installation boundary;
- Provide a defensible no further action (NFA) decision for qualifying PRLs; and
- Develop data quality objectives (DQOs) for additional investigation for PRLs not meeting the NFA criteria or an interim response action if appropriate.

The scope of work consisted of three inter-related tasks: (1) prepare an SI Work Plan (WP), (2) conduct SI and data collection activities, and (3) evaluate data from the field effort and applicable historical information to present conclusions and recommendations in an SI Report.

Sampling of drinking water sources (other than the on-Base potable water supply that was used for decontamination activities) was not included, and determination of nature and extent of any identified contamination was not within the scope of this SI.

Eight PRLs, as listed in Table 1 and depicted in Figure 2, were selected for SI activities based upon the PA and site visit conducted by BB&E, Inc. (BB&E) in September 2015 and reported in the *Perfluorinated Compounds Preliminary Assessment Site Visit Report, 138<sup>th</sup> Fighter Wing, Oklahoma Air National Guard, Kingsley Field, Klamath Falls, Oregon* (BB&E 2015). This SI Report briefly summarizes the PA, describes SI field activities, presents analytical results of environmental sampling, and provides recommendations for each PRL.

#### 1.2 REGULATORY OVERVIEW AND SCREENING CRITERIA

In 2012, EPA published the UCMR3, which required public water supplies across the country to sample for a list of 30 unregulated contaminants, including 6 chemicals of concern (COCs) relevant to this SI (PFOS, PFOA, PFBS, PFNA, PFHpA, and PFHxS; i.e., PFOS/PFOA). Results of UCMR3-required sampling indicated detections of PFOS/PFOA at numerous locations, including several near U.S. Department of Defense (DoD) facilities. PFOS/PFOA detections at DoD facilities are often linked to the use of aqueous film-forming foam (AFFF), which may contain one or more of these chemicals. AFFF is a firefighting agent used to suppress fires involving petroleum hydrocarbons.

Detected concentrations of PFOS/PFOA in environmental samples collected during the Kingsley Field ANGB SI were compared against soil and water screening criteria for PFOS, PFOA, and PFBS, as described below and listed in Table 2.

The May 2018 EPA generic regional screening level (RSL) table lists a residential risk-based screening level for tap water for PFBS of 400 micrograms per liter (μg/L) (400,000 nanograms per liter (ng/L); target hazard quotient = 1). Currently, no legally enforceable federal standards exist for PFOS/PFOA in water. However, under the Safe Drinking Water Act, EPA issued a series of health advisories (HAs) for PFOS/PFOA, including the most recent in May 2016. To provide Americans, including the most sensitive populations, with a margin of protection from a lifetime of exposure to PFOS/PFOA in drinking water, EPA established an HA level for PFOS and PFOA (combined) of 70 ng/L. The HA of 70 ng/L applies to PFOS and PFOA individually as well as combined. If an individual compound is detected >70 ng/L, the screening criteria are exceeded. However, if individual compounds are <70 ng/L but the sum of the compounds is >70 ng/L, the screening criteria are exceeded. For example, if PFOS = 50 ng/L and PFOA = 25 ng/L, the screening criteria are exceeded. Therefore, screening levels for groundwater and surface water are as follows:

- PFOS and PFOA = 70 ng/L; and
- PFBS = 400,000 ng/L.

There are also no legally enforceable federal standards for PFOS/PFOA in soil or sediment. The May 2018 EPA generic RSL table lists a residential risk-based screening level for soil for PFBS of 1,300,000 µg/kg. Following the process utilized at other ANG Installations around the country, Leidos will use residential risk-based screening levels for soil determined using the EPA RSL calculator and the May 2018 RSL tables. The calculated screening value for PFBS is slightly less than the value listed in the generic RSL table. RSLs are only available for three of the six COCs listed above. The calculated screening levels for these three COCs are as follows:

- PFOS = 1,260  $\mu$ g/kg;
- PFOA = 1,260  $\mu$ g/kg; and
- PFBS =  $1,260,000 \mu g/kg$ .

No surface water or sediment screening criteria have been established by EPA at this time.

As of the preparation of this SI Report, no site-specific soil, sediment, or groundwater screening levels have been developed in Oregon. However, Oregon has established initiation levels for PFOS, PFOA, PFNA, and PFHpA in surface water. The initiation levels for surface water are as follows:

- PFOS = 24,000 ng/L;
- PFOA = 300,000 ng/L;

- PFNA = 1,000 ng/L; and
- PFHpA = 300,000 ng/L.

The initiation levels for surface water are provided for guidance only.

The SI results will be compared against the screening criteria provided in Table 2. Sediment results will be compared with the soil screening criteria and the surface water results will be compared with the groundwater screening criteria provided in this table.

THIS PAGE INTENTIONALLY LEFT BLANK.

# 2.0 INSTALLATION DESCRIPTION

#### 2.1 LOCATION

Kingsley Field ANGB is the home of the 173<sup>rd</sup> Fighter Wing (FW) in Klamath Falls, Klamath County, in southern Oregon. Kingsley Field ANGB is located on the western side of Crater Lake-Klamath Regional Airport, approximately 4 miles south of the city of Klamath Falls. The entire airport comprises approximately 1,200 acres, owned and operated by the city of Klamath Falls. The 173<sup>rd</sup> FW leases approximately 256 acres of Exclusive Use Area in the western portion of Kingsley Field. The Kingsley Field ANGB location is shown in Figure 1.

# 2.2 ORGANIZATION AND HISTORY

The airfield at Kingsley Field was established as Klamath Falls Municipal Airport (currently known as Crater Lake-Klamath Regional Airport) in 1928. In 1942, the U.S. Navy selected the Airport as a site for a naval air station, and construction of that station was completed in 1945. The airfield and building area consisted of 3,200-ft-wide runways of varying lengths, several buildings, and a variety of hangar facilities (NGB 2011).

After World War II, the air station was closed following less than 1 year of operation. A portion of the facility was returned to the city of Klamath Falls for use as a municipal airport, and the remainder was turned over to the U.S. Department of the Interior (DOI). In 1954, the DOI property was transferred to the U.S. Air Force (USAF) to establish an all-weather fighter interceptor complex. Part of the city-owned property was leased to the USAF to meet the requirements of the new mission. Existing buildings were rehabilitated, and new buildings were constructed beginning in 1955. The airport was dedicated as Kingsley Field in 1957 (NGB 2011).

In 1979, the USAF realignment removed active USAF units from Kingsley Field, and in 1981, the 142<sup>nd</sup> Fighter Interceptor Group of the Oregon ANG assumed alert detachment responsibility for air defense alert from USAF. In 1986, unit training assembly weekends began. The fighter training squadron was renamed the 173<sup>nd</sup> FW in 1996. Over the years, the unit has been assigned several different kinds of aircraft. The latest conversion to the F-15 aircraft occurred in 1998. As an F-15 Formal Training Unit, Air Education and Training Command, the mission of the 173<sup>nd</sup> FW is to train air-to-air combat pilots, train flight surgeons (Top Knife), and serve Oregon and the Nation in times of peace and war (NGB 2011).

DoD began investigations at military bases under the Installation Restoration Program with the goal of identifying, evaluating, and remediating areas of contamination (the program is now referred to as the Environmental Restoration Program). These investigations included PAs, site investigations, removal action investigations, and remedial investigations (RIs). Prior to the BB&E 2015 PA, potential releases of PFOS/PFOA from use and storage of AFFF had not been evaluated at Kingsley Field ANGB.

Base operations that could have contributed to PFOS/PFOA contamination of soil, groundwater, sediment, and surface water include fire training areas (FTAs) and non-FTAs. FTA PRLs are sites where AFFF was likely used for fire suppression during training activities. No FTAs are located on Kingsley Field ANGB property. Non-FTA PRLs identified at Kingsley Field ANGB are sites where AFFF was stored, released, and/or likely to have been released, and include the aircraft maintenance building/hangar (PRL 1), former vehicle maintenance building (PRL 5), fire station (PRL 6), Fire Equipment Testing Area (FETA) (PRLs 2, 3, and 4), and stormwater outfalls (PRLs 7 and 8) (BB&E 2015).

2-1

When AFFF is released to the environment, PFOS/PFOA can migrate into soil and groundwater. The amount of PFOS/PFOA that migrates to groundwater depends on the type and amount of AFFF used, where it was used, the type of soil, and other factors. PFOS/PFOA may migrate readily from soil to groundwater. The primary exposure pathway for PFOS/PFOA is the ingestion of contaminated drinking water.

# 3.0 ENVIRONMENTAL SETTING

#### 3.1 CLIMATE

Kingsley Field ANGB is in Klamath County, Oregon, and is located in a semi-arid climate that experiences warm summers and cool winters with occasional periods of cold. The average annual temperature is 45.9°F, ranging from an average low of 20.8°F to an average high of 83.6°F. The mean annual precipitation at Klamath Falls is approximately 20.72 in., with about 70% of the total precipitation occurring from October through May. The average number of days with 0.1 in. or more of precipitation is 55.90. Klamath Falls gets significant snowfall, with an annual average of 65.33 in. of snow and an average of 65.18 days with 1 in. of snow or more (USA.com 2017).

#### 3.2 **TOPOGRAPHY**

Kingsley Field ANGB is generally flat, although regionally, the area slopes gently to the east. The local topography generally slopes to the north toward the Bird Creek drainage area. Tulsa International Airport is 667 ft above mean sea level (AMSL) with Kingsley Field ANGB averaging 610 ft AMSL. Kingsley Field ANGB is located at an elevation of approximately 4,089 ft AMSL.

#### 3.3 **GEOLOGY**

Klamath Falls is located on the dry lower Klamath Lake Bed in south-central Oregon, on a plain that slopes gently to the southeast. The geologic structure of the Klamath Falls area is dominated by a number of northwest/southeast-trending normal faults. Movement along these faults produces horst and graben features that are typical of Basin and Range geologic structure. The uplifted horst blocks commonly form the ridges typical in this area, while the down faulted graben features form the valleys. Kingsley Field is located in such a valley. Faulting that has occurred along the valley floors usually has no obvious surface expression. No faults are known to exist beneath Kingsley Field; however, the existence of a fault a short distance from the facility is suggested by the presence of shallow geothermal water (CH2M Hill 1981).

Klamath Falls is situated within an area that was covered by ancestral Lake Klamath during the Pleistocene Era. The facility is underlain by a thick sequence of Quaternary alluvial sediments. The actual thickness is unknown, but geothermal test wells near the Base have been drilled to depths greater than 1,500 ft below ground surface (BGS) without encountering bedrock (CH2M Hill 1981). The sediments underlying the facility are composed of sand, silt, and clay, primarily of lacustrine origin. The finergrained sediments were deposited in areas of the lake relatively far from the shoreline. The coarser sands were deposited near the shoreline or in beds of streams feeding the lake. This depositional system resulted in alternating layers of fine silty sand, sandy silt, silt, and clayey silt that are laterally discontinuous (ANG 2014). Borings and well installations conducted during the Leidos SI did not encounter bedrock (Appendix A).

#### 3.4 **SOIL**

The soils that underlie the Base are primarily of the Henley, Poe, Laki, Malin, and Hosley series. These are generally poorly drained soils developed on low terraces of floodplains/lake bottoms from alluvial or lacustrine sediments, some from volcanic materials such as ash or tuff. Some of these soils have an indurated hardpan layer beginning at depths of 2 to 3 ft BGS (Science and Technology, Inc. 1993). Native, near-surface soil has been observed to be poorly graded, fine to coarse sand with varying amounts of silt. Soils identified during the Leidos SI typically consisted of sand, silty sand, and gravel.

3-1

# 3.5 SURFACE WATER HYDROLOGY

No natural or significant surface water bodies, navigable waterways, or wetlands are present at Kingsley Field ANGB. Klamath River is the major surface body of water located to the northwest of Kingsley Field ANGB.

Surface water flow at Kingsley Field ANGB is dictated by the Base's man-made surface drainage system. Precipitation will predominantly infiltrate the sandy and permeable shallow surface soils. Precipitation on paved surfaces will generally be collected by the Base's storm drain system and discharge to the drainage ditches and canals located to the east and west of the Base (ANG 2014). These ditches flow to the North and South Outfalls.

The North Outfall (PRL 7) is located outside the northern Base boundary at the northern boundary of the Klamath Falls Airport. The North Outfall appears to drain northward to the Number One C Drain then west to the Klamath River. The South Outfall (PRL 8) is located outside of the Base boundary in the western-central portion of the Klamath Falls Airport. The South Outfall discharges the majority of the stormwater from Kingsley Field ANGB, including five PRLs. The South Outfall appears to drain to the Lost River Diversion Channel and then discharges to the Klamath River.

The Base is located approximately 3 miles west-northwest of Lost River and approximately 3 miles east-southeast of the Klamath River. The Lost River Diversion Canal, which is an irrigation canal, connects the two basins. A series of drainage ditches and culverts control surface runoff throughout Kingsley Field. The surface runoff is eventually diverted to the Lost River Diversion Canal (URS 2010).

#### 3.6 HYDROGEOLOGY

Regional groundwater movement in the Sedimentary Aquifer is generally southeasterly toward the Lost River and the Lost River Diversion Channel. The U.S. Geological Survey (USGS) reports that the regional groundwater flow gradient in the Kingsley Field area is toward the southeast (USGS 2007). In some areas, the Sedimentary Aquifer contains coarser sands of relatively high hydraulic conductivity that can yield moderate quantities of water. In the vicinity of Kingsley Field, only a small quantity of sand is present in the subsurface, and well yields are relatively low. An average specific capacity of 0.45 gal per minute (gpm) per foot of drawdown was indicated for wells completed into the Sedimentary Aquifer (Illian 1971). However, a 79-ft test well drilled in the vicinity yielded 200 gpm with a drawdown of only 25 ft (8 gpm per foot). This well and other nearby test borings indicate the presence of a permeable shallow aquifer in this area. The low yields of other nearby wells indicate that the sand encountered in these test wells is probably of limited areal extent and may be an ancient river channel (CH2M Hill 1981).

The groundwater information collected from the existing monitoring wells in the vicinity of PRL 5 and the five new monitoring wells installed in PRLs 1 through 4 and 6 during the Leidos SI field activities confirmed a southeasterly flow of shallow groundwater. The shallow water table occurs at varying depths within Kingsley ANGB. Soil boring logs indicate shallow groundwater was encountered at depths ranging from 5.5 ft BGS in KLA01-SB3 to 7.5 ft BGS in KLA01-SB2. Groundwater levels collected before purging and sampling monitoring wells installed during the SI indicate the depth to shallow groundwater ranged from 4.65 ft BGS in MW-572-02-PRL05 and MW-573-03-PRL05 to 8.24 ft BGS in MW-KLA06-01.

Groundwater in the vicinity of Kingsley Field is reported to be of moderate quality with high concentrations of methane or iron (CH2M Hill 1981). No drinking water wells are located on Kingsley ANGB, and water used at the Base is supplied by the city of Klamath Falls (ANG 2014). City water supplies are obtained from deep groundwater wells ranging in depth from 300 to more than 1,000 ft (City of Klamath Falls 2017).

#### 3.7 CRITICAL HABITATS AND ENDANGERED/THREATENED SPECIES

According to the U.S. Fish and Wildlife Service (USFWS) and a review of the list of federally listed threatened and endangered species, the following federally listed threatened, endangered, or proposed species are known to or are believed to occur in Klamath County, Oregon (USFWS 2017). The potential for these species to occur in Klamath County does not mean they are present at Kingsley Field ANGB:

# • Amphibians:

Oregon spotted frog (*Rana pretiosa*) – Threatened.

#### Birds:

- Yellow-billed cuckoo (*Coccyzus americanus*) Threatened, and
- o Northern spotted owl (*Strix occidentalis caurina*) Threatened.

# Conifers and cycads:

o Whitebark pine (*Pinus albicaulis*) – Candidate.

#### • Fishes:

- o Lost River sucker (*Deltistes luxatus*) Endangered,
- o Shortnose sucker (Chasmistes brevirostris) Endangered, and
- o Bull trout (Salvelinus confluentus) Threatened.

# • Flowering plants:

- o Hoover's spurge (Chamaesyce hooveri) Threatened,
- o Gentner's fritillary (Fritillaria gentneri) Endangered,
- o Slender orcutt grass (Orcuttia tenuis) Threatened,
- o Greene's tuctoria (*Tuctoria greenei*) Endangered, and
- o Applegate's milk-vetch (*Astragalus applegatei*) Endangered.

#### Mammals:

- o Gray wolf (Canis lupus) Endangered, and
- o Northern American wolverine (*Gulo gulo luscus*) Proposed Threatened.

Kingsley Field has the presence of Applegate's milk-vetch, and the stormwater outfalls lead to water containing the Lost River sucker.

Wetlands have not been formally delineated and mapped to date within the Kingsley Field ANGB Exclusive Use Area. According to USFWS National Wetlands Inventory Maps and the Klamath Falls Airport Wildlife Habitat Management Implementation Plan, however, several areas of wetlands totaling approximately 45 acres are located in the vicinity of Kingsley Field. Other sources, such as the Kingsley Field ANGB Master Plan, indicate as little as about 10 acres of wetlands on the facility (ANG Kingsley Field 2009). These areas fall under the jurisdiction of the U.S. Army Corps of Engineers or the Oregon Department of State Lands. None of the mapped wetland areas, however, are located on the developed sections of Kingsley Field ANGB (although they have seen significant disturbance). Approximately 23 acres of wetlands have been filled by implementing the airport's Wildlife Habitat Management Implementation Plan (Klamath Falls Airport 2005). However, the noted wetlands were not present in the vicinity of the PRLs included in this SI.

# 3.8 WATER WELLS

The PA Report (BB&E 2015) indicates there are no federal or public water wells within a 1-mile radius of the Base. A review of the EDR Radius Map<sup>TM</sup> Report with Geocheck<sup>®</sup> dated July 20, 2015 (EDR 2015) shows two water wells within a 1-mile radius of the Base. Based on the information provided for these two wells located southwest of the Base, they are either observational or test wells. According to Base personnel, no drinking water wells are located at the Base. Water is supplied from the city of Klamath Falls (ANG 2014). City water supplies are obtained from deep groundwater wells ranging in depth from 300 to more than 1,000 ft (City of Klamath Falls 2017).

# 4.0 PRELIMINARY ASSESSMENT

In September 2015, BB&E conducted a PA to identify potential sites of historical environmental releases of PFOS/PFOA related to AFFF usage and storage at Kingsley Field ANGB (BB&E 2015). The PA evaluated a total of eight PRLs and recommended six of these for further investigation under an SI (Table 2; see also Figure 1). At the time of the 2015 PA, no documentation was available showing that soil, groundwater, sediment, and surface water at Kingsley Field ANGB were previously tested for PFOS/PFOA; therefore, these compounds could be present in media at any of these PRLs. However, prior to this SI, ANG requested that all eight PRLs be further investigated (see Section 5.1.2).

BB&E researched the potential existence of any documented FTAs or any other use or release of AFFF. No evidence was found that a current or former FTA that utilized AFFF was located within the footprint of the Kingsley Field ANGB site boundary.

The PA site visit included onsite interviews with active and former personnel from the ANGB and other parties with relevant historical site knowledge. According to Base personnel, 3% AFFF was used at Kingsley Field ANGB from approximately 1987 to 2013, and the only exception is that AFFF is still stored and used at the fire station (PRL 6). One hangar (Hangar 333) was equipped with an AFFF fire suppression system (FSS); the FSS was converted to a high expansion foam (HEF) system.

The sections below briefly describe the operational history and waste characteristics of the PRLs included in this SI, as presented in the PA Report (BB&E 2015). PRL numbers correspond to the area of concern designation used in the PA Report, and all building descriptions, AFFF inventories, and release histories reflect conditions at the time of the 2015 BB&E site visit.

# 4.1 PRL 1: HANGAR 333 – FUEL CELL MAINTENANCE DOCK

Hangar 333's FSS with AFFF was installed in 1987. In 2007, approximately 200 gal of AFFF plus associated water were released at Hangar 333 (total volume unknown). As shown in Figure 1-1, PRL 1 has two distinct areas. Most of the AFFF and water mixture was contained inside the building where floor drains are connected to the sanitary sewer. The floor drains were reportedly plugged at the time of the release. This mixture of AFFF and water was removed by hand (e.g., temporary trash pumps) and discharged east of the hangar, across the taxiway, and into a grassy area adjacent to the taxiway. The FSS was converted from AFFF to HEF in 2012 to 2013.

#### 4.2 PRL 2: FETA – NORTH

From approximately 1995 to 2005, AFFF testing from three fire trucks would occur every Monday at one of three locations: the North FETA, the South FETA, or the Compass Rose FETA. Typically, the fire department (FD) utilized 3% AFFF. The estimated amount of AFFF released weekly was 3 to 4 gal per testing event; exact discharge quantities are unknown. The North FETA is a flat, grass- and dirt-covered area (an estimated 1- to 2-acre area) located southeast of the alert apron adjacent to the Pelican Aviation (Building 8) ramp. Fire trucks would typically pull up near the edge of the paved road area east of Pelican Aviation and conduct foam testing in a northerly direction, to the north of Pelican Aviation, south of Taxiway A, and west of the north-south access road located immediately east of Pelican Aviation (Building 8). AFFF released during testing would likely have infiltrated permeable surface soils in this area.

Because FETA – North was determined to be outside the Base boundary, it was not included in the SI WP. However, ANG requested soil and groundwater samples be collected from this PRL during the SI. The PRL 2 field investigation will be documented as a field change in the SI Report (Section 5.1.2).

#### 4.3 PRL 3: FETA – SOUTH

From approximately 1995 to 2005, AFFF testing from three fire trucks would occur every Monday at one of three locations: the North FETA, the South FETA, or the Compass Rose FETA. Typically, the FD utilized 3% AFFF. The estimated amount of AFFF released weekly was 3 to 4 gal per testing event; exact discharge quantities are unknown. The South FETA is a flat, grass- and dirt-covered area (an estimated approximately 1- to 2- acre area) located along the northern side of the far western end of Runway 725, west of Taxiway D. Fire trucks would typically pull up along the northern edge of Runway 725 at the far western end and conduct foam testing in a northerly direction. AFFF released during testing would likely have infiltrated permeable surface soils in this area.

The PA Report (BB&E 2015) identified the northern portion of this PRL to be within the Base boundary, and this PRL was included in the SI scope. More recent updates to the Base boundary show this PRL to be fully outside the Base boundary, and this information was confirmed during the Installation site visit. The SI focused on the northern portion of PRL 3 originally within the Base boundary.

#### 4.4 PRL 4: FETA – COMPASS ROSE

From approximately 1995 to 2005, AFFF testing from three fire trucks would occur every Monday at one of three locations: the North FETA, the South FETA, or the Compass Rose FETA. Typically, the FD utilized 3% AFFF. The estimated amount of AFFF released weekly was 3 to 4 gal per testing event; exact discharge quantities are unknown. The Compass Rose FETA is a flat, grass- and dirt-covered area located off the eastern edge of the Base's Compass Rose used for the calibration of aircraft directional control systems. Fire trucks would typically pull up near the eastern edge of the paved area surrounding the Compass Rose and discharge into the grassy area northeast, east, and southeast from the Compass Rose. Relative to the other FETAs, the Compass Rose FETA site was used much more frequently than the other two FETAs and would likely have the greatest amount of AFFF released to the ground surface. AFFF released during testing would likely have infiltrated permeable surface soils in this area.

#### 4.5 PRL 5: BUILDING 573 – FORMER VEHICLE MAINTENANCE BUILDING

Small discharges of AFFF mixture have occurred at this building after repairs were completed on fire trucks and as they were tested on an as-needed basis approximately one to two times per year. These small amounts of AFFF would have been discharged into the grassy area on the northern side of Building 573, north of the vehicle bays, and also possibly to the west and south over the fence depending on wind or weather conditions at the time.

# 4.6 PRL 6: BUILDING 216 – CURRENT AND FORMER FIRE STATION

This new fire station was built in 1995 after the old fire station was demolished. At the time of the August 2015 PA site visit, AFFF storage at the fire station included the following:

- 1,014 gal (Chemguard) of AFFF are currently in inventory, including trucks and storage. The maximum capacity of trucks and storage is approximately 1,300 gal.
- Up to 500 gal of AFFF are stored on the 2<sup>nd</sup> floor in two 250-gal poly storage tanks.
- Five 5-gal totes are utilized to fill the 2<sup>nd</sup> floor AFFF poly storage tanks.
- Six firefighting trucks with foam-holding tanks (approximately 800 gal AFFF).
- One support vehicle with a 25-gal AFFF capacity (typically five 5-gal totes).

Firefighting trucks currently pull up alongside the southern end of the fire station building where AFFF from the 2<sup>nd</sup> floor storage totes is gravity-fed into their holding tanks. This method of filling the trucks has

been ongoing for approximately 1 year. Prior to that, the trucks were manually filled with AFFF from 5-gal totes inside the fire station.

Interviews with FD personnel indicate one release of AFFF at Building 216 in 2000. Approximately 5 gal of AFFF entered the sanitary sewer system via the building's floor drains and then into the city's wastewater treatment plant, where foaming was observed and reported.

Monthly AFFF foam testing of one fire truck is performed in the grassy area north of Building 216, in the location of the former Building 216.

The former fire station (Former Building 216) was in operation from approximately the mid-1940s to 1995, when it was demolished. The site is now a vacant grassy area located immediately north of the current fire station building. Per FD personnel, since the beginning of 2015, monthly foam testing is conducted with one truck within the grassy area; discharge quantities are unknown but reported to be small amounts. No additional releases were reported in this area of the former fire station.

#### 4.7 PRLs 7 AND 8: NORTH AND SOUTH OUTFALLS

Although no records or Base personnel accounts of AFFF releases at the North and South Outfalls exist, documented use/storage of AFFF exists within the drainage basin (including PRLs 1, 3, 4, 5, and 6), which may have discharged to the South Outfall. During the Installation site visit, it was determined that none of the PRLs except FETA – North (located outside the Base boundary) would likely contribute surface water runoff to the North Outfall (PRL 7). The North Outfall is located at the northern end of the Klamath Falls Airport. The South Outfall is located in the west-central portion of the Klamath Falls Airport, south of the main portions of the Base boundary. These outfalls may have received any potential releases of AFFF that would have entered the drainage ditches and canals located to the east and west of the Base.

The North Outfall (PRL 7) was not included in the SI WP because the PRL is outside the Base boundary. However, ANG requested sediment and surface water samples (if available) be collected from this PRL during the SI. The field investigation at PRL 7 will be documented as a field change in the SI Report (Section 5.1.2).

THIS PAGE INTENTIONALLY LEFT BLANK.

# 5.0 SITE INVESTIGATION FIELD PROGRAM

This section summarizes the SI field activities, including soil, groundwater, surface water, and sediment sampling, at Kingsley Field ANGB. Analytical results for each PRL are presented and identify the presence or absence of PFOS/PFOA and results for PFOS, PFOA, and PFBS that exceed the screening criteria shown in Table 2 and described in Section 1.2 of this SI Report.

SI field activities were conducted between April 30 and May 7, 2018. All sampling and analytical activities were conducted in accordance with the procedures specified in the SI WP (Leidos 2018), except as noted in Section 5.1.2. Boring logs and monitoring well construction logs are provided in Appendix A and groundwater sampling logs are provided in Appendix B. The groundwater monitoring well survey report is included in Appendix C. The data validation report is provided in Appendix D. The full data package is provided in Appendix E.

# 5.1 GENERAL APPROACH

#### 5.1.1 Field Sampling

SI field activities included the following:

- Surface and subsurface soil sampling;
- Water level measurements at two existing monitoring wells and five newly installed permanent monitoring wells to confirm local groundwater flow at Kingsley Field ANGB;
- Installation and sampling of groundwater from five new monitoring wells and two existing monitoring wells located downgradient from the PRLs and/or at the Installation boundary;
- Surface water and sediment sampling (if available); and
- Global positioning system survey of soil borings, sediment, and surface water locations (the horizontal location and elevation of all newly installed wells were surveyed by a professional licensed surveyor).

Sample locations were based on known historical or potential releases, and site conditions as observed during the PA. Table 3 summarizes the SI sampling activities at Kingsley Field ANGB. Figure 2 shows an overview of the Kingsley Field ANGB SI sample locations. Prior to intrusive activities, an underground utility locator marked and cleared all boring locations.

A total of 17 soil borings were advanced. Borings were advanced in grassy areas using direct push technology (DPT) drilling to first water or refusal, whichever was encountered first (maximum depth was 10 ft BGS). All soil borings were logged for soil lithology. Boring logs are included in Appendix A. Two grab soil samples were collected from each boring—one from within the 0- to 2-ft BGS interval and one from within the 2-ft interval immediately above the water table.

All soil samples were screened by a photoionization detector as a health and safety precaution due to the potential presence of volatile organic compounds (VOCs). Following collection of soil samples, boreholes not co-located with monitoring wells were abandoned by backfilling with hydrated bentonite chips up to approximately 4 to 6 in. from the surface and capped with surrounding soil.

In addition to the two existing wells on Kingsley Field ANGB, five permanent monitoring wells were installed and water levels measured to determine groundwater flow direction. The new wells were developed and seven monitoring wells sampled following ANG guidance, as prescribed in the SI WP (Leidos 2018).

One surface water sample was collected from a storm sewer manhole located within the Base boundary, near the Hangar 333 Release Area (PRL 1). This manhole discharges stormwater to the South Outfall (PRL 8) and is the last available surface water sample location within the Base boundary, as described in the SI WP (Leidos 2018). No sediment was present in the manhole associated with the South Outfall. A sediment sample was collected from a shallow ditch located outside ANG property, near the northern boundary of the Airport north of the North FETA (PRL 2), to evaluate surface water and sediment associated with the North Outfall (PRL 7) leaving the Base and Airport. No surface water was present in the ditch associated with the North Outfall.

Additional details on the field activities for each PRL are provided in Sections 5.3 through 5.10.

#### 5.1.2 Deviations from the Work Plan

The following minor deviations were observed during field activities:

- No sediment was observed in the accessible on-Base manhole for the South Outfall (PRL 8). Therefore, no sediment samples were collected at this PRL.
- Due to an oversight, the field reagent blank was not collected per the Uniform Federal Policy Quality Assurance Project Plan (UFP-QAPP) (Leidos 2018); note, this field quality control (QC) blank is not required under the Quality Systems Manual (QSM) Version 5.1 (DoD 2017) and does not impact the validation qualifiers assigned to the sample data and NFA is required.
- A groundwater sample from an existing well (MW-10-11-PRL04) was not collected because the well could not be located during the SI. As a result, the proposed new well (MW-KLA04-01) was relocated closer to the PRL and a groundwater sample was collected for the evaluation of PRL 4.
- At the request of ANG, a few changes were made to the sampling plan after the SI WP was approved by the Oregon Department of Environmental Quality. The changes were as follows:
  - O PRL 2 was not included in the SI WP (Leidos 2018) because it is located off Base. However, to address ANG's request to collect samples from PRL 2, Leidos collected soil samples from three soil borings at PRL 2 (which included soil samples from a soil boring relocated from PRL 6 to PRL 2) and a groundwater sample from a monitoring well relocated from PRL 1 (MW-KLA01-02) to PRL 2 (MW-KLA02-01).
  - o The proposed well MW-KLA01-01 at PRL 1 was moved slightly to the southeast to serve the dual purpose of a downgradient well and boundary well.
  - o PRL 7 was not included in the SI WP (Leidos 2018) because it is located off Base. However to address ANG's request to collect samples from PRL 7, Leidos collected a sediment sample from a drainage ditch associated with the North Outfall (PRL 7). Surface water was not available at this PRL, and therefore, a surface water sample could not be collected.

# 5.1.3 Data Analysis

# 5.1.3.1 Laboratory

Environmental samples were submitted to TestAmerica Analytical Laboratories, Inc. (TestAmerica), in West Sacramento, California. TestAmerica is accredited under the DoD Environmental Laboratory Accreditation Program and maintains a National Environmental Laboratory Accreditation Program certification.

# 5.1.3.2 Screening criteria

Analytical data for three of the 2012 EPA UCMR3 COCs (PFOS, PFOA, PFBS) were compared to appropriate HA or risk-based screening criteria (Section 1.2 and Table 2) to determine whether further investigation is required. No HA or RSL criteria currently exist for PFHpA, PFHxS, or PFNA.

#### 5.1.3.3 Data validation

A UFP-QAPP was developed for this project as Appendix A of the SI WP (Leidos 2018). The UFP-QAPP was written to apply to all 15 Installations included in the scope of the Phase III SI contract. Specifics on the number and type of samples to be collected in characterizing the site, and the number and type of quality assurance (QA)/QC samples to be used to evaluate the quality of the data obtained, were included in the SI WP (Leidos 2018). Soil and sediment were collected in one 4-oz. high-density polyethylene (HDPE) container with an HDPE cap. Groundwater and surface water samples were collected in two 250-mL HDPE containers with HDPE caps. The following samples were collected during the Kingsley Field ANGB SI:

- Thirty-four soil samples,
- One sediment sample,
- Seven groundwater samples,
- One surface water sample,
- Five soil field duplicate samples,
- One sediment field duplicate,
- One groundwater field duplicate,
- Five equipment rinsates, and
- One field blank.

The results of the data quality evaluation of the investigative field sample data indicate that the overall quality of the data is acceptable to confirm the presence or absence of contamination. Through data verification, validation, and review, the analytical information has been qualified as appropriate. Data are considered usable if they are unqualified or qualified as estimated. For groundwater and surface water, 100% of the data were considered usable. For soil and sediment, 100% of the data were considered usable. The overall quality of the data meets or exceeds the established project objectives.

# Quality Control

Seven field duplicate samples were collected, including five for soil, one for sediment, and one for groundwater, and analyzed for PFOS/PFOA. Field duplicate analytical results were generally consistent with their associated parent samples, indicating no significant issues with field and laboratory precision. The groundwater duplicate pair and four soil pairs had relative percent difference (RPD) values below the UFP-QAPP guidelines of 50% for all detected analytes. Two analytes in one soil field duplicate pair had RPD values above the guideline (64% for PFNA and 68% for PFOA in KLA05-SB1-01/01D).

Two analytes in the sediment field duplicate pair had RPD values above guidelines (81% for PFHxS and 81% for PFOS in KLA07-SD1-01/01D), although all parent results were non-detections. Data are not qualified on the basis of field duplicate results alone since the *Contract Laboratory Program National Functional Guidelines for the Organic Data Review* (EPA 1999), and the DoD QSM Version 5.1 (DoD 2017) do not include control limits for field duplicate RPD values. Five equipment rinsate samples were collected, including four associated with soil samples and one associated with groundwater. In equipment blank samples ER-01, ER-02, ER-04, and ER-05, PFOS/PFOA was detected, although at low estimated concentrations that did not result in additional field sample qualifications. Field blank sample FB-01 was collected from deionized water and analyzed for PFOS/PFOA. In field blank FB-01, PFOS/PFOA was detected at a low estimated concentration that resulted in one sample qualified as non-detect (U). For these reasons, SI data quality was not impacted as a result of PFOS/PFOA detections in the field blanks.

#### PFOS/PFOA

Some PFOS/PFOA compounds were qualified as estimated due to minor QC outliers. Ten PFOS/PFOA results were qualified as estimated (J) due to surrogate recovery results outside control limits. Seventy PFOS/PFOA results were qualified as estimated (J/UJ) due to internal standard outliers. PFHpA and PFOA in KLA06-SB2-01 and PFOS in sample KLA02-SB1-01 were qualified as estimated (J) due to matrix spike/matrix spike duplicate (MS/MSD) recovery outliers. Five PFHxS results were qualified as non-detect due to continuing calibration blank contamination. Twelve PFOS/PFOA results were qualified as estimated due to results reported above the calibration range after maximum dilution. No other QC outliers resulted in qualification of the data during the data validation process.

Except as noted above, data produced for this investigation demonstrate that it can withstand scientific scrutiny; are appropriate for its intended purpose; are technically defensible; and are of known and acceptable sensitivity, precision, and accuracy. Data integrity has been documented through proper implementation of QA and QC measures. The environmental information presented has an established confidence that allows utilization for the project objectives and provides data for future needs.

#### 5.2 INVESTIGATION-DERIVED WASTE

Investigation-derived waste (IDW) was managed in compliance with the SI WP (Leidos 2018). Five drums of non-hazardous soil IDW and six drums of non-hazardous water IDW were transported to a designated drum staging area located onsite. Two IDW samples (one aqueous and one solid) were collected for this event, and the results in conjunction with the historical site process knowledge were used for characterization of generated IDW. The IDW has been characterized as non-hazardous waste and the IDW drums have been removed from the Base for offsite disposal at a permitted facility.

# 5.3 PRL 1: HANGAR 333 – FUEL CELL MAINTENANCE DOCK

A total of three soil borings and one monitoring well were installed and sampled at PRL 1 (Table 3), as described below.

# 5.3.1 Sampling Activities

# 5.3.1.1 Soil sampling

A total of three soil borings were installed on May 2, 2018, in the PRL 1 area. KLA01-SB1 was installed in a grassy area north of the concrete ramp on the eastern portion of Hangar 333 (Figure 3). KLA01-SB2 was installed in a grassy area east of the concrete ramp on the eastern portion of Hangar 333, near the taxiway (Figure 3). KLA01-SB3 was installed in a grassy area east of Hangar 333, across the taxiway where AFFF removed from the Building 333 spill was reportedly discharged (Figure 3). The soil borings were advanced using a DPT drill rig. Borings were advanced to total depth of 10 ft BGS. Soil lithology

descriptions were logged on the soil boring logs (Appendix A). A total of six soil samples were collected and analyzed for PFOS/PFOA compounds.

#### 5.3.1.2 Groundwater

MW-KLA01-01 was drilled in the grassy area southeast of the Hangar 333 Release Area, downgradient from the PRL, near the Installation boundary, and in the general groundwater flow direction on May 1, 2018 (Figure 8). Well construction details are shown in Table 4. The soil lithology descriptions and well construction diagram are included in Appendix A.

MW-KLA01-01 was developed on May 5, 2018, and sampled on May 6, 2018. Water levels are shown in Table 5, and water quality parameters are shown in Table 6. Groundwater sample MW-KLA01-01-01 was collected and analyzed for PFOS/PFOA compounds. The Groundwater Micro Purge Sheet and Groundwater Micro Purge Log are included in Appendix B.

Well MW-KLA01-01 was surveyed by a licensed surveyor, and the well survey report is included in Appendix C.

# 5.3.2 Analytical Results

#### 5.3.2.1 Soil

Six soil samples were collected and analyzed from PRL 1, as described in Section 5.3.1. All surface soil samples showed detections above the laboratory detection limit for PFOS, PFOA, PFBS, and PFHxS, except PFHxS was not detected in KLA01-SB3-01. PFNA was not detected in all three samples, and PFHpA was detected in KLA01-SB1-01 but not detected in KLA01-SB2-01 and KLA01-SB3-01. No screening criteria exist for PFHxS, PFHpA, and PFNA. None of the concentrations of PFOS, PFOA, or PFBS exceeded the soil screening criteria.

In the subsurface soil samples KLA01-SB1-02 and KLA01-SB2-02, PFOS, PFOA, PFBS, PFHpA, PFHxS were detected above the laboratory detection limit, and PFNA was not detected. PFOS and PFHxS were only detected in sample KLA01-SB3-02. All other PFOS/PFOA results were non-detect in KLA01-SB3-02. No screening criteria exist for PFHxS, PFHpA, and PFNA. None of the concentrations of PFOS, PFOA, or PFBS exceeded the soil screening criteria. Soil analytical results for PRL 1 are presented in Table 7 and shown in Figure 3.

# 5.3.2.2 Groundwater

One groundwater sample was collected from MW-KLA01-01 and analyzed as described in Section 5.3.1. All six PFOS/PFOA compounds were detected above laboratory detection limits, and PFOS exceeded the 70-ng/L EPA drinking water HA (EPA 2016a) at a concentration of 500 J ng/L. The combined PFOS/PFOA concentration at this location is 520 ng/L, exceeding the EPA HA. PFOA was below the EPA HA and PFBS was below the EPA RSL. No screening criteria exist for PFHxS, PFHpA, and PFNA. Groundwater analytical results for PRL 1 are presented in Table 8 and shown in Figure 8.

#### 5.4 PRL 2: FETA – NORTH

A total of three soil borings and one monitoring well were installed and sampled at PRL 2 (Table 3), as described below.

# 5.4.1 Sampling Activities

#### 5.4.1.1 Soil

A total of three soil borings were advanced on May 4, 2018, in the PRL 2 area. KLA02-SB1 was advanced in a grassy area in the northwestern portion of the PRL (Figure 4). KLA02-SB2 was advanced in a grassy area in the eastern portion of the PRL (Figure 4). KLA02-SB3 was advanced in a grassy area in the southwestern portion of the PRL (Figure 4). The soil borings were advanced using a DPT drill rig. Borings were advanced to total depths ranging from 7.5 ft BGS (KLA02-SB2) to 10 ft BGS (KLA02-SB3). Soil lithology descriptions were logged on the soil boring logs (Appendix A). A total of eight soil samples (including two field duplicates) were collected and analyzed for PFOS/PFOA compounds.

## 5.4.1.2 Groundwater

MW-KLA02-01 was drilled in the grassy area southeast and downgradient from the PRL, and in the general groundwater flow direction, on May 4, 2018 (Figure 8). Well construction details are shown in Table 4. The soil lithology descriptions and well construction diagram are included in Appendix A.

MW-KLA02-01 was developed on May 5, 2018, and sampled on May 6, 2018. Water levels are shown in Table 5, and water quality parameters are shown in Table 6. Groundwater sample MW-KLA02-01-01 was collected and analyzed for PFOS/PFOA compounds. The Groundwater Micro Purge Sheet and Groundwater Micro Purge Log are included in Appendix B.

Well MW-KLA02-01 was surveyed by a licensed surveyor, and the well survey report is included in Appendix C.

#### 5.4.2 Analytical Results

#### 5.4.2.1 Soil

Eight soil samples from KLA02-SB1, KLA02-SB2, and KLA02-SB3 were collected and analyzed as described in Section 5.4.1. All six PFOS/PFOA compounds were detected above laboratory detection limits in the surface soil samples with the exception of PFNA in KLA02-SB1-01. No screening criteria exist for PFHxS, PFHpA, and PFNA. None of the concentrations of PFOS, PFOA, or PFBS exceeded the soil screening criteria.

In the subsurface soil samples, all six PFOS/PFOA compounds were detected above laboratory detection limits with the exception of PFNA in KLA02-SB1-01. No screening criteria exist for PFHxS, PFHpA, and PFNA. None of the concentrations of PFOS, PFOA, or PFBS exceeded the soil screening criteria. PRL 2 soil analytical results are presented in Table 7 and shown in Figure 4.

## 5.4.2.2 Groundwater

One groundwater sample was collected from MW-KLA02-01 and analyzed as described in Section 5.4.1. All six PFOS/PFOA compounds were detected above laboratory detection limits, and PFOS and PFOA exceeded the 70-ng/L EPA drinking water HA (EPA 2016a and 2016b) at elevated concentrations of 380,000 J and 21,000 J ng/L, respectively. The combined PFOS/PFOA concentration at this location is 401,000 ng/L, significantly exceeding the EPA HA. PFBS was below the EPA RSL. No screening criteria exist for PFHxS, PFHpA, and PFNA. Groundwater analytical results for PRL 2 are presented in Table 8 and shown in Figure 8.

#### 5.5 PRL 3: FETA – SOUTH

A total of three soil borings and one monitoring well were installed and sampled at PRL 3 (Table 3), as described below.

## 5.5.1 Sampling Activities

#### 5.5.1.1 Soil

A total of three soil borings were installed on May 2, 2018, in the PRL 3 area. KLA03-SB1 and KLA03-SB3 were advanced in a grassy area in the northwestern portion of the PRL, within the Base boundary (Figure 3). KLA03-SB2 was installed in a grassy area in the northeastern portion of the PRL, within the Base boundary (Figure 3). The soil borings were advanced using a DPT drill rig. Borings were advanced to a total depth of 10 ft BGS. Soil lithology descriptions were logged on the soil boring logs (Appendix A). A total of seven soil samples (including one field duplicate) were collected and analyzed for PFOS/PFOA compounds.

#### 5.5.1.2 Groundwater

MW-KLA03-01 was drilled in the grassy area in the northeastern portion of the PRL (within the Base boundary) and in the general groundwater flow direction on May 2, 2018 (Figure 8). Well construction details are shown in Table 4. The soil lithology descriptions and well construction diagram are included in Appendix A.

MW-KLA03-01 was developed on May 5, 2018, and sampled on May 6, 2018. Water levels are shown in Table 5, and water quality parameters are shown in Table 6. Groundwater sample MW-KLA03-01-01 was collected and analyzed for PFOS/PFOA compounds. The Groundwater Micro Purge Sheet and Groundwater Micro Purge Log are included in Appendix B.

Well MW-KLA03-01 was surveyed by a licensed surveyor, and the well survey report is included in Appendix C.

## 5.5.2 Analytical Results

#### 5.5.2.1 Soil

Seven soil samples from KLA03-SB1, KLA03-SB2, and KLA03-SB3 were collected and analyzed as described in Section 5.5.1. PFOS, PFHxS, and PFBS were detected above laboratory detection limits in surface soil samples KLA03-SB1-01, KLA03-SB2-01, and KLA03-SB3-01. PFOA was detected in KLA03-SB2-01 and KLA03-SB3-01, and PFHpA was only detected in KLA03-SB3-01. PFNA was not detected in all three samples. No screening criteria exist for PFHxS, PFHpA, and PFNA. None of the concentrations of PFOS, PFOA, or PFBS exceeded the soil screening criteria.

In the subsurface soil samples, PFOS, PFOA, PFBS, and PFHxS were detected in KLA03-SB1-01 KLA03-SB2-01, and KLA03-SB3-01. PFHpA was only detected in KLA03-SB3-01. PFNA was not detected in all three samples. No screening criteria exist for PFHxS, PFHpA, and PFNA. None of the concentrations of PFOS, PFOA, or PFBS exceeded the soil screening criteria. PRL 3 soil analytical results are presented in Table 7 and shown in Figure 3.

#### 5.5.2.2 Groundwater

One groundwater sample was collected from MW-KLA03-01 and analyzed as described in Section 5.5.1. All six PFOS/PFOA compounds were detected above laboratory detection limits, and PFOS and PFOA exceeded the 70-ng/L EPA drinking water HA (EPA 2016a and 2016b) at concentrations of 6,100 and 290 ng/L. The combined PFOS/PFOA concentration at this location is 6,390 ng/L, exceeding the EPA HA. PFBS was detected below the EPA RSL. No screening criteria exist for PFNA, PFHxS, and PFHpA. Groundwater analytical results for PRL 3 are presented in Table 8 and shown in Figure 8.

#### 5.6 PRL 4: FETA – COMPASS ROSE

A total of three soil borings and one monitoring well were installed and sampled at PRL 4 (Table 3), as described below.

# 5.6.1 Sampling Activities

#### 5.6.1.1 Soil

A total of three soil borings were installed on May 5, 2018, in the PRL 4 area. KLA04-SB1 was installed in a grassy area immediately north of the Compass Rose (Figure 5). KLA04-SB2 was installed in a grassy area immediately east of the Compass Rose (Figure 5). KLA04-SB3 was installed in a grassy area immediately southeast of the Compass Rose (Figure 5). The soil borings were advanced using a DPT drill rig. Borings were advanced to total depth of 10 ft BGS. Soil lithology descriptions were logged on the soil boring logs (Appendix A). A total of six soil samples were collected and analyzed for PFOS/PFOA compounds.

## 5.6.1.2 Groundwater

The existing well (MW-10-11-PRL04) was not located during the SI, and no groundwater sample was collected. Therefore, the new well (MW-KLA04-01) was relocated west and closer to the PRL. MW-KLA04-01 was drilled in the grassy area southeast and downgradient from the PRL, and in the general groundwater flow direction, on May 3, 2018 (Figure 8). Well construction details are shown in Table 4. The soil lithology descriptions and well construction diagram are included in Appendix A.

MW-KLA04-01 was developed on May 5, 2018, and sampled on May 6, 2018. Water levels are shown in Table 5, and water quality parameters are shown in Table 6. Groundwater sample MW-KLA04-01-01 was collected and analyzed for PFOS/PFOA compounds. The Groundwater Micro Purge Sheet and Groundwater Micro Purge Log are included in Appendix B.

Well MW-KLA04-01 was surveyed by a licensed surveyor, and the well survey report is included in Appendix C.

#### 5.6.2 Analytical Results

## 5.6.2.1 Soil

Six soil samples from KLA04-SB1, KLA04-SB2, and KLA04-SB3 were collected and analyzed as described in Section 5.6.1. All six PFOS/PFOA compounds were detected above laboratory detection limits in surface soil samples KLA04-SB1-01, KLA04-SB2-01, and KLA04-SB3-01. The PFOS concentrations in surface soil samples KLA04-SB1, KLA04-SB2, and KLA04-SB3 were 2,200 J, 6,600 J, and 4,500 J µg/kg, respectively, and exceeded the EPA RSL. No screening criteria exist for PFHxS, PFHpA, and PFNA. None of the concentrations of PFOA or PFBS exceeded the soil screening criteria.

In the subsurface soil samples, all six PFOS/PFOA compounds were detected above laboratory detection limits. The PFOS concentrations in subsurface soil samples KLA04-SB1, KLA04-SB2, and KLA04-SB3 were 3,600 J, 4,800 J, and 3,800 J  $\mu$ g/kg, respectively, and exceeded the EPA RSL. No screening criteria exist for PFHxS, PFHpA, and PFNA. None of the concentrations of PFOA or PFBS exceeded the soil screening criteria. PRL 4 soil analytical results are presented in Table 7 and shown in Figure 5.

#### 5.6.2.2 Groundwater

One groundwater sample was collected from MW-KLA04-01 and analyzed as described in Section 5.6.1. Five of the six PFOS/PFOA compounds, with the exception of PFNA, were detected above laboratory detection limits, and PFOS exceeded the 70-ng/L EPA drinking water HA (EPA 2016a) at a concentration of 100 ng/L. The combined PFOS/PFOA concentration at this location is 141 ng/L, exceeding the EPA HA. PFOS was below the EPA HA and PFBS was below the EPA RSL. No screening criteria exist for PFHxS, PFHpA, and PFNA. Groundwater analytical results for PRL 4 are presented in Table 8 and shown in Figure 8.

#### 5.7 PRL 5: BUILDING 573 – FORMER VEHICLE MAINTENANCE BUILDING

A total of three soil borings were installed and sampled, and two existing monitoring wells were sampled at PRL 5 (Table 3), as described below.

# 5.7.1 Sampling Activities

#### 5.7.1.1 Soil

A total of three soil borings were installed on May 5, 2018, in the PRL 5 area. KLA05-SB1 was installed in a grassy area north of Building 573 (Figure 6). KLA05-SB2 was installed in a grassy area west of Building 573 (Figure 6). KLA05-SB3 was installed in a grassy area south of Building 573 (Figure 6). The soil borings were advanced using a DPT drill rig. Borings were advanced to total depths ranging from 7.5 ft BGS (KLA05-SB1, KLA05-SB2) to 8 ft BGS (KLA05-SB3). Soil lithology descriptions were logged on the soil boring logs (Appendix A). A total of seven soil samples (including one field duplicate) were collected and analyzed for PFOS/PFOA compounds.

## 5.7.1.2 Groundwater

Groundwater samples were collected from two existing wells (MW-572-02-PRL05, MW-573-03-PRL05). MW-572-02-PRL05 is located in the southeastern portion of the parking lot, near the Base boundary, and in the general direction of groundwater flow. MW-573-03-PRL05 is located just south of Building 573 and in the general direction of groundwater flow.

MW-572-02-PRL05 and MW-573-03-PRL05 were purged and sampled on May 6, 2018. Water levels are shown in Table 5, and water quality parameters are shown in Table 6. Groundwater samples MW-572-02-PRL05-01 (and one field duplicate) and MW-573-03-PRL05-01 were collected and analyzed for PFOS/PFOA compounds. The Groundwater Micro Purge Sheet and Groundwater Micro Purge Log are included in Appendix B.

# 5.7.2 Analytical Results

#### 5.7.2.1 Soil

Seven soil samples from KLA05-SB1, KLA05-SB2, and KLA05-SB3 were collected and analyzed as described in Section 5.7.1. All six PFOS/PFOA compounds were detected above laboratory detection

limits in surface soil samples KLA05-SB1-01, KLA05-SB2-01, and KLA05-SB3-01. The PFOS concentration in surface soil sample KLA05-SB3-01 was 14,000 J µg/kg and exceeded the EPA RSL. No screening criteria exist for PFHxS, PFHpA, and PFNA. None of the concentrations of PFOA or PFBS exceeded the soil screening criteria.

In the subsurface soil samples, all six PFOS/PFOA compounds were detected in KLA05-SB2-02 and KLA05-SB3-02. PFOS, PFOA, PFHxS, and PFBS were detected in KLA05-SB1-02; PFNA and PFHpA were not detected. No screening criteria exist for PFHxS, PFHpA, and PFNA. None of the concentrations of PFOS, PFOA, or PFBS exceeded the soil screening criteria. PRL 5 soil analytical results are presented in Table 7 and shown in Figure 6.

#### 5.7.2.2 Groundwater

A total of three groundwater samples were collected – one from each of the wells (MW-572-02-PRL05, MW-573-03-PRL05) and a field duplicate. The groundwater samples were analyzed as described in Section 5.7.1. All six PFOS/PFOA compounds were detected above laboratory detection limits in both wells. PFOS and PFOA exceeded the 70-ng/L EPA drinking water HA (EPA 2016a and EPA 2016b) in well MW-573-03-PRL05. The PFOS concentration in MW-572-02-PRL05 (primary and duplicate samples) exceeded the EPA HA. The combined PFOS/PFOA concentrations at MW-572-02-PRL05 and MW-573-03-PRL05 are 1,156 ng/L (1,257 ng/L duplicate) and 69,700 ng/L, respectively. PFBS concentrations were below the EPA RSL. No screening criteria exist for PFHxS, PFHpA, and PFNA. Groundwater analytical results for PRL 5 are presented in Table 8 and shown in Figure 8.

#### 5.8 PRL 6: BUILDING 216 – CURRENT AND FORMER FIRE STATION

A total of two soil borings and one monitoring well were installed and sampled at PRL 6 (Table 3), as described below.

# 5.8.1 Sampling Activities

#### 5.8.1.1 Soil

A total of two soil borings were installed on May 1, 2018, in the PRL 6 area. KLA06-SB1 and KLA06-SB2 were installed in a grassy area north of Building 216 where spray testing occurred (Figure 7). The soil borings were advanced using a DPT drill rig. Borings were advanced to total depth 10 ft BGS. Soil lithology descriptions were logged on the soil boring logs (Appendix A). A total of five soil samples (including one field duplicate) were collected and analyzed for PFOS/PFOA compounds.

## 5.8.1.2 Groundwater

MW-KLA06-01 was drilled in the grassy area north of Building 216 where spray testing occurred, east of the two soil borings on May 1, 2018 (Figure 6). Well construction details are shown in Table 4. The soil lithology descriptions and well construction diagram are included in Appendix A.

MW-KLA06-01 was developed on May 5, 2018, and sampled on May 6, 2018. Water levels are shown in Table 5, and water quality parameters are shown in Table 6. Groundwater sample MW-KLA06-01-01 was collected and analyzed for PFOS/PFOA compounds. The Groundwater Micro Purge Sheet and Groundwater Micro Purge Log are included in Appendix B.

Well MW-KLA06-01 was surveyed by a licensed surveyor, and the well survey report is included in Appendix C.

# 5.8.2 Analytical Results

#### 5.8.2.1 Soil

Five soil samples from KLA06-SB1 and KLA06-SB2 were collected and analyzed as described in Section 5.8.1. All six PFOS/PFOA compounds were detected above laboratory detection limits in surface soil samples KLA06-SB1-01 and KLA06-SB2-01. No screening criteria exist for PFHxS, PFHpA, and PFNA. None of the concentrations of PFOS, PFOA, or PFBS exceeded the soil screening criteria.

In the subsurface soil samples KLA06-SB1 and KLA06-SB2, all six PFOS/PFOA compounds were detected above the laboratory detection limits. The PFOS concentration in surface soil sample KLA06-SB2 was 1,600 J  $\mu$ g/kg and exceeded the EPA RSL. No screening criteria exist for PFNA, PFHxS, and PFHpA. None of the concentrations of PFOA or PFBS exceeded the soil screening criteria. PRL 6 soil analytical results are presented in Table 7 and shown in Figure 7.

#### 5.8.2.2 Groundwater

One groundwater sample was collected from MW-KLA06-01 and analyzed as described in Section 5.8.1. All six PFOS/PFOA compounds were detected above laboratory detection limits in both wells. PFOS and PFOA exceeded the 70-ng/L EPA drinking water HA (EPA 2016a and 2016b) at elevated concentrations of 130,000 J and 14,000 ng/L in MW-KLA06-01. The combined PFOS/PFOA concentration at this location is 144,000 ng/L, significantly exceeding the 70-ng/L EPA drinking water HA (EPA 2016a and 2016b). PFBS was below the EPA RSL. No screening criteria exist for PFHxS, PFHpA, and PFNA. Groundwater analytical results for PRL 6 are presented in Table 8 and shown in Figure 8.

#### 5.9 PRL 7: NORTH OUTFALL

The North Outfall is located at the northern boundary of the Klamath Falls Airport and likely discharges stormwater from PRL 2. The outfall also receives stormwater from other facilities at the northern portion of the Klamath Falls Airport. A sediment sample was collected from a drainage ditch prior to the North Outfall.

# 5.9.1 Sampling Activities

#### **5.9.1.1** Sediment

Sediment sample KLA07-SD1-01 was collected from a dry drainage ditch near the North Outfall on May 6, 2018, in the location shown in Figure 4. The sample was analyzed for PFOS/PFOA compounds.

### 5.9.1.2 Surface water

The collection of a surface water sample was attempted in the same location where the sediment sample was collected (Figure 6); however, no water was present in the ditch.

# 5.9.2 Analytical Results

## **5.9.2.1** Sediment

Sediment sample KLA07-SD1-01 was collected and analyzed as described in Section 5.9.1. PFOS/PFOA compounds were not detected at concentrations exceeding the laboratory detection limit in the primary sample. However, five of the six PFOS/PFOA compounds with the exception of PFNA were detected at low concentrations in the duplicate sample. The detected concentrations of PFOS, PFOA, and PFBS were

below the screening criteria. No screening criteria exist for PFHxS, PFHpA, and PFNA. PRL 8 sediment analytical results are presented in Table 8 and shown in Figure 4.

## 5.10 PRL PRL 8: SOUTH OUTFALL

The South Outfall is located in the western-central portion of the Klamath Falls Airport, south of the main portions of the Base boundary, and discharges the majority of the stormwater from Kingsley Field ANGB, including PRLs 1, 3, 4, 5, and 6. The South Outfall is representative of the overall impacts of PFOS/PFOA from the PRLs included in this SI. The outfall also receives stormwater from the Klamath Falls Airport. The last precipitation event was 0.01 in. on April 30, 2018. Surface water sample was collected inside of a storm sewer manhole located within the Installation boundary.

# 5.10.1 Sampling Activities

## 5.10.1.1 Surface water

A surface water sample KLA08-SW1-01 was collected on May 7, 2018, in the location shown in Figure 3. Water quality parameters were measured as shown in Table 6. The samples were analyzed for PFOS/PFOA compounds. The Sample Collection Log is included in Appendix B.

#### **5.10.1.2** Sediment

The collection of a sediment sample was attempted in the same location where the surface water sample was collected (Figure 3); however, no sediment was present in the manhole.

## 5.10.2 Analytical Results

### 5.10.2.1 Surface water

Surface water sample KLA08-SW1-01 was collected and analyzed as described in Section 5.10.1. Five of the six PFOS/PFOA compounds were detected at concentrations exceeding the laboratory detection limit with the exception of PFBS in KLA08-SW1-01. No screening criteria exist for PFHxS, PFHpA, and PFNA. None of the concentrations of PFOS or PFOA exceeded the drinking water screening criteria. PRL 8 surface water analytical results are presented in Table 8 and shown in Figure 3.

## 6.0 CONCLUSIONS AND RECOMMENDATIONS

#### 6.1 CONCLUSIONS

This section presents the SI conclusions and recommendations for each PRL. The recommended DQOs are based on data collected by Leidos during this SI and an evaluation of the analytical results compared to applicable screening criteria.

## 6.1.1 PRL 1: Hangar 333 – Fuel Cell Maintenance Dock

Although PFOS/PFOA compounds were detected in PRL 1 soil samples, evaluation of soil analytical data compared to soil screening criteria indicates there are no EPA RSL exceedances for PFBS and no calculated residential risk-based screening level exceedances for PFOS or PFOA for soil in PRL 1.

Evaluation of groundwater data compared to screening criteria indicates an exceedance of the EPA HA (70 ng/L) in MW-KLA01-01 for PFOS and PFOA (combined), with a result of 520 ng/L.

Based on the SI results, the following DQOs are recommended for PRL 1:

- Additional surface and subsurface soil samples to determine if a previously undetected source area exists that is contributing to the groundwater exceedances; and
- Additional investigation to determine the nature and extent of PFOS/PFOA in groundwater (both laterally and vertically), through sampling of additional new monitoring wells located both upgradient of and downgradient from PRL 1.

#### 6.1.2 PRL 2: FETA – North

Although PFOS/PFOA compounds were detected in PRL 2 soil samples, evaluation of soil analytical data compared to soil screening criteria indicates there are no EPA RSL exceedances for PFBS and no calculated residential risk-based screening level exceedances for PFOS or PFOA for soil in PRL 2.

Evaluation of groundwater data compared to screening criteria indicate exceedances of the EPA HA (70 ng/L) in MW-KLA02-01 for PFOS, PFOA, and PFOS and PFOA (combined), with results of 380,000, 21,000, and 401,000 ng/L. MW-KLA02-01 had the highest reported concentration of PFOS and PFOA in groundwater or surface water for this SI.

Based on the SI results, the following DQOs are recommended for PRL 2:

- Additional surface and subsurface soil samples to determine if a previously undetected source area exists that is contributing to the groundwater exceedances; and
- Additional investigation to determine the nature and extent of PFOS/PFOA in groundwater (both laterally and vertically), through sampling of additional new monitoring wells located both upgradient of and downgradient from PRL 2 (which is located off Base).

#### **6.1.3 PRL 3: FETA – South**

Although PFOS/PFOA compounds were detected in PRL 3 soil samples, evaluation of soil analytical data compared to soil screening criteria indicates there are no EPA RSL exceedances for PFBS and no calculated residential risk-based screening level exceedances for PFOS or PFOA for soil in PRL 3.

Evaluation of groundwater data compared to screening criteria indicates an exceedance of the EPA HA (70 ng/L) in MW-KLA03-01 for PFOS and PFOA (combined), with a result of 6,390 ng/L.

Based on the SI results, the following DQOs are recommended for PRL 3:

- Additional surface and subsurface soil samples to determine if a previously undetected source area exists that is contributing to the groundwater exceedances; and
- Additional investigation to determine the nature and extent of PFOS/PFOA in groundwater (both laterally and vertically), through sampling of additional new monitoring wells located both upgradient of and downgradient from PRL 3.

# 6.1.4 PRL 4: FETA – Compass Rose

Although PFOS/PFOA compounds were detected in PRL 4 soil samples, evaluation of soil analytical data compared to soil screening criteria indicates there are no EPA RSL exceedances for PFBS and no calculated residential risk-based screening level exceedances for PFOA. However, PFOS concentrations in both surface and subsurface soil exceeded the screening criteria at every soil boring in PRL 4. The PFOS concentrations in surface soil samples ranged from 2,200 J to 6,600 J μg/kg and exceeded the screening level (1,260 μg/kg). The PFOS concentrations in subsurface soil samples ranged from 3,600 J to 4,800 J μg/kg and exceeded the screening level (1,260 μg/kg).

Groundwater results for the downgradient well MW-KLA04-01 indicated all PFOS/PFOA compounds were detected, except PFNA. The results also indicated EPA HA exceedances for PFOS, with a result of 100 ng/L, and PFOS and PFOA (combined) (141 ng/L), and no EPA RSL exceedances for PFBS.

Based on the SI results, the following DQOs are recommended for PRL 4:

- Additional surface and subsurface soil samples to determine the extent of the elevated PFOS
  concentrations observed in all three soil borings and to determine if a previously undetected source
  area exists that is contributing to the groundwater exceedances; and
- Additional investigation to determine the nature and extent of PFOS/PFOA in groundwater (both laterally and vertically), through sampling of additional monitoring wells located both upgradient of and downgradient from PRL 4.

## 6.1.5 PRL 5: Building 573 – Former Vehicle Maintenance Building

Although PFOS/PFOA compounds were detected in PRL 5 soil samples, evaluation of soil analytical data compared to soil screening criteria indicates there are no EPA RSL exceedances for PFBS and calculated residential risk-based screening level exceedances for PFOA, and only one screening level exceedance for PFOS for soil in PRL 5. The PFOS concentration in surface soil sample KLA05-SB3 was 14,000 J  $\mu$ g/kg and exceeded the screening level (1,260  $\mu$ g/kg). KLA05-SB3 was the highest reported concentration of PFOS in soil for this SI.

Evaluation of groundwater data compared to screening criteria indicates exceedances of the EPA HA (70 ng/L) in MW-572-02-PRL05 and MW-573-03-PRL05 for PFOS and PFOA (combined), with a result of 69,700 and 1,156 ng/L, respectively.

Based on the SI results, the following DQOs are recommended for PRL 5:

- Additional surface and subsurface soil samples to determine the extent of the elevated PFOS concentration observed in KLA05-SB3 and to determine if a previously undetected source area exists that is contributing to the groundwater exceedances; and
- Additional investigation to determine the nature and extent of PFOS/PFOA in groundwater (both laterally and vertically), through sampling of additional new monitoring wells located both upgradient of and downgradient from PRL 5.

## 6.1.6 PRL 6: Building 216 – Current and Former Fire Station

Although PFOS/PFOA compounds were detected in PRL 6 soil samples, evaluation of soil analytical data compared to soil screening criteria indicates there are no EPA RSL exceedances for PFBS and no calculated residential risk-based screening level exceedance PFOA, and only one screening level exceedance for PFOS for soil in PRL 6. The PFOS concentration in subsurface soil sample KLA06-SB2 was 1,600 J μg/kg and exceeded the screening level (1,260 μg/kg).

Evaluation of groundwater data compared to screening criteria indicates an exceedance of the EPA HA (70 ng/L) in MW-KLA06-01 for PFOS and PFOA (combined), with a result of 144,000 ng/L. There was no EPA RSL exceedance for PFBS.

Based on the SI results, the following DQOs are recommended for PRL 6:

- Additional surface and subsurface soil samples to determine the extent of the elevated PFOS concentration observed in KLA06-SB2 and to determine if a previously undetected source area exists that is contributing to the groundwater exceedances; and
- Additional investigation to determine the nature and extent of PFOS/PFOA in groundwater (both laterally and vertically), through sampling of additional new monitoring wells located both upgradient of and downgradient from PRL 6.

#### 6.1.7 PRL 7: North Outfall

PFOS/PFOA compounds were not detected at concentrations above the laboratory detection limit in the primary sediment sample from KLA07-SD1. However, low concentrations above the laboratory detection limit was detected for five of the six PFOS/PFOA compounds in the duplicate sediment sample from this location. No surface water was available in the ditch prior to the North Outfall; therefore, no surface water sample was collected.

The PA indicated that PRL 2 appeared to discharge to the North Outfall. Given the elevated PFOS concentration (401,000 ng/L) in groundwater at PRL 2 and low concentrations of PFOS/PFOA compounds detected in the sediment in the ditch associated with PRL 7, further investigation of the North Outfall is warranted.

Based on the SI results (including PRL 2), the following DQO is recommended for PRL 7:

• Additional investigation to further evaluate the concentrations of PFOS/PFOA in surface water and sediment.

#### 6.1.8 PRL 8: South Outfall

PFOS/PFOA compounds were not detected at concentrations above the laboratory detection limit in the primary surface water sample from KLA08-SW1. However low concentrations above the laboratory detection limit were detected for five of the six PFOS/PFOA compounds in the duplicate surface water sample from this location. No sediment was available in the storm sewer manhole within the Base boundary (north of the South Outfall, near PRLs 1 and 3); therefore, no sediment samples were collected.

The PA indicated that the South Outfall receives stormwater from PRLs 1, 3, 4, 5, and 6. Given the PFOS/PFOA exceedances in groundwater at all five PRLs and soil exceedances in three of the five PRLs, and the low concentrations of PFOS/PFOA detected in the surface water sample from KLA08-SW1, further investigation is warranted at PRL 8.

Based on the SI results, the following DQO is recommended for PRL 8:

 Additional investigation to further evaluate the concentrations of PFOS/PFOA in surface water and sediment.

## 6.1.9 PFOS/PFOA Contamination near Installation Boundary

Samples from five monitoring wells (MW-KLA01-01, MW-KLA03-01, MW-KLA04-01, MW-KLA06-01, and MW-572-02-PRL05) were used to evaluate the PFOS/PFOA contamination near the Installation boundary. All six PFOS/PFOA compounds were detected in the samples collected from these well locations. The screening results indicate the consistent presence of PFOS and PFOA at concentrations exceeding the 70-ng/L EPA drinking water HA (EPA 2016a and 2016b). Elevated PFOS and PFOA concentrations were observed in the water samples from locations near the northern and southern Installation boundaries (MW-KLA06-01 and MW-KLA03-01, respectively). PFBS concentrations did not exceed the RSL at any of the groundwater sample locations. No screening criteria exist for PFHxS, PFHpA, or PFNA. PFOS/PFOA compounds are likely migrating offsite (Airport property) given their presence and magnitude near the Installation boundary and the groundwater exceedances observed at PRL 2 located north of the Installation boundary.

### 6.2 SUMMARY AND RECOMMENDATIONS

In summary, additional investigations are recommended for soil and groundwater at PRLs 1, 2, 3, 4, 5, and 6, and surface water/sediment at PRLs 7 and 8. The recommendations are summarized in Table 9 and described briefly below:

- Further investigation at all PRLs is necessary to determine the nature and extent of PFOS/PFOA contamination due to detectable levels at the PRLs.
- Develop an expanded conceptual site model that considers localized groundwater and surface water flow paths to select future sampling locations.
- Complete the delineation of nature and extent of PFAS as part of an Expanded SI or an RI that could consist of:
  - O Additional soil and sediment sampling and analysis of an expanded list of PFAS constituents (in addition to the six UCMR3 constituents) to determine if significant source areas related to precursor substances are present. Precursor substances have been demonstrated to oxidize into PFOS and PFOA, and thus could provide a lingering source of these compounds to soil and groundwater.

- O An expanded groundwater sampling program (including analysis of an expanded list of PFAS constituents) to complete horizontal and vertical delineation of the PFOS/PFOA impacts. Further groundwater investigation at the Base boundary is recommended due to the presence of PFAS in groundwater above their respective screening criteria.
- The installation and sampling of upgradient and downgradient off-Base monitoring wells to better define the upgradient source of PFOS/PFOA as well as impacts of PFOS/PFOA that have migrated off Base.
- o The sampling of upgradient and downgradient off-Base surface water and sediment (including analysis of an expanded list of PFAS constituents) to determine if there is an upgradient source of PFOS/PFOA and better define the nature and extent of PFOS/PFOA in surface water that have migrated off Base.
- Conduct preliminary site-specific risk assessment calculations in order to identify chemicals of
  potential concern (COPCs) in every medium and establish preliminary remedial goals for screening
  purposes.

DQOs are proposed based on the results of the SI and are presented in Table 9. In general, additional samples are required at each PRL in order to establish the nature and extent of PFOA/PFOS constituents for each applicable medium and determine if a complete receptor pathway exists. For soil, additional samples are proposed to delineate the nature and extent and to determine if a source area exists, and if so, the vertical and horizontal extent for both the vadose and saturated zones. Additional surface water and sediment samples should be collected at PRLs 7 and 8.

THIS PAGE INTENTIONALLY LEFT BLANK.

# 7.0 REFERENCES

- ANG Kingsley Field 2009. 173<sup>rd</sup> Fighter Wing Master Plan. Prepared by the 173<sup>rd</sup> Fighter Wing, Kingsley Field, Oregon.
- ANG (Air National Guard) 2014. Compliance Restoration Program Western Region 1, Final Site Investigation Report, 173<sup>rd</sup> Fighter Wing, Oregon Air National Guard, Kingsley Field, Klamath Falls, Oregon, February.
- BB&E (BB&E, Inc.) 2015. Perfluorinated Compounds Preliminary Assessment Site Visit Report, Kingsley Field Klamath Falls, Oregon, Final, December.
- CH2M Hill (CH2M Hill, Inc.) 1981. Installation Restoration Program Records Search for Kingsley Field, Oregon, Air Force Engineering and Service Center Directorate of Environmental Planning, Tyndall Air Force Base, Florida.
- City of Klamath Falls 2017. Homepage of the Water Division, Available online at: www.klamathfalls.city/i-want-to/find/city-hall/public-works/water.
- DoD (U.S. Department of Defense) 2017. U.S. Department of Defense Quality Systems Manual for Environmental Laboratories, Version 5.1.
- EDR 2015. EDR Radius Map<sup>TM</sup> Report with Geocheck<sup>®</sup>. December.
- EPA (U.S. Environmental Protection Agency) 1999. Contract Laboratory Program National Functional Guidelines for Organic Data Review, EPA 540/R-99/0008. October.
- EPA 2016a. Drinking Water Health Advisory for Perfluorooctane Sulfonate. Office of Water, Health and Ecological Criteria Division. EPA Document Number: EPA 822-R-16-004. May.
- EPA 2016b. Drinking Water Health Advisory for Perfluorooctanoic Acid. Office of Water, Health and Ecological Criteria Division. EPA Document Number: EPA 822-R-16-005. May.
- EPA 2018. May 2018 EPA Regional Screening Level (RSL) tables. Updated May 2018.
- Illian 1971. State Engineer's Interim Report on the Ground Water in the Klamath Basin, Appendix II of State Water Resources Board.
- Klamath Falls Airport. 2005. Master Plan. January.
- Leidos 2018. Work Plan for Fiscal Year 2017 Phase III Regional Site Inspections for Perfluorooctane Sulfonate and Perfluorooctanoic Acid at Kingsley Field, Klamath Falls, Oregon. Final. February.
- NGB (National Guard Bureau) 2011. Integrated Natural Resources Management Plan and Environmental Assessment of Integrated Natural Resources Management Plan Implementation. October.
- Science and Technology, Inc. 1993. Site Assessment Report, Site 10, Volume 1, 114th Tactical Fighter Training Squadron, Oregon Air National Guard, Kingsley Field, Klamath Falls, Oregon, April

7-1

- URS Group, Inc., 2010. Final Community Involvement Plan. May.
- USA.com. 2017. *Klamath Falls Weather*, Available online at: <a href="http://www.usa.com/klamath-falls-or-weather.htm">http://www.usa.com/klamath-falls-or-weather.htm</a>.
- USFWS (U.S. Fish and Wildlife Service) 2017. *National Wetlands Inventory*, Wetland Mapper. Retrieved from <a href="https://www.fws.gov/wetlands/data/Mapper.html">https://www.fws.gov/wetlands/data/Mapper.html</a>. October 24.
- USGS (U.S. Geological Survey) 2007. Scientific Investigations Report 2007-5050; Ground-Water Hydrology of the Upper Klamath Basin, Oregon and California.

7-2

**TABLES** 

THIS PAGE INTENTIONALLY LEFT BLANK

Table 1. Preliminary Assessment Report Summary and Recommendations

| No. | Potential AFFF PRL      | Rationale                                   | Recommendation                  |
|-----|-------------------------|---------------------------------------------|---------------------------------|
| 1   | Hangar 333              | One documented significant AFFF             | Proceed to SI; focus on soil    |
|     |                         | discharge to grassy area east of the hangar | and groundwater immediately     |
|     |                         | in 2007.                                    | east of taxiway located east of |
|     |                         |                                             | Hangar 333.                     |
| 2   | FETA – North            | Historical testing of FD equipment.         | Proceed to SI, focus on soil    |
|     |                         |                                             | and groundwater.                |
| 3   | FETA – South            | Historical testing of FD equipment.         | Proceed to SI, focus on soil    |
|     |                         |                                             | and groundwater.                |
| 4   | FETA – Compass Rose     | Historical testing of FD equipment. The     | Proceed to SI, focus on soil    |
|     |                         | most heavily used area on the Base.         | and groundwater.                |
| 5   | Building 573            | Minor amounts of AFFF potentially           | Proceed to SI, focus on soil    |
|     |                         | discharged to grassy areas outside fence to | and groundwater.                |
|     |                         | the north, west, and south of Building 573. |                                 |
|     |                         | Likely small amounts of AFFF utilized       |                                 |
|     |                         | during post-repair mini tests.              |                                 |
| 6   | Current and Former Fire | Minor amounts of AFFF likely discharged     | Proceed to SI, focus on soil    |
|     | Station – Building 216  | to grassy surface during more recent foam   | and groundwater.                |
|     |                         | testing in 2015.                            |                                 |
| 7   | North Outfall           | Potential releases of AFFF may enter        | Proceed to SI, focus on         |
|     |                         | drainage ditches through this outfall.      | sediment and surface water.     |
| 8   | South Outfall           | Potential releases of AFFF may enter        | Proceed to SI, focus on         |
|     |                         | drainage ditches through this outfall.      | sediment and surface water.     |

AFFF = Aqueous film-forming foam.

FD = Fire department.

FETA = Fire equipment testing area.

PRL = Potential release location.

SI = Site inspection.

Table 2. PFOS/PFOA SI Screening Criteria

| Parameter | Chemical<br>Abstract<br>Service<br>Number | EPA RSL for<br>Tap Water <sup>a</sup><br>(ng/L) | EPA Health<br>Advisory <sup>b</sup><br>(ng/L) | Residential<br>Risk-based Soil<br>Screening Level <sup>c</sup><br>(µg/kg) |
|-----------|-------------------------------------------|-------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------|
| PFOS      | 1763-23-1                                 | NA                                              | $70.0^{d}$                                    | 1,260                                                                     |
| PFOA      | 335-67-1                                  | NA                                              |                                               | 1,260                                                                     |
| PFBS      | 375-73-5                                  | 400,000 <sup>e</sup>                            | NA                                            | 1,260,000                                                                 |

<sup>&</sup>lt;sup>a</sup> EPA RSL for tap water, May 2018; target HQ = 1.

μg/kg = Micrograms per kilogram.

EPA = U.S. Environmental Protection Agency.

HQ = Hazard quotient.

NA = Not available.

ng/L = Nanograms per liter.

PFBS = Perfluorobutane sulfonate.

PFOA = Perfluorooctanoic acid.

PFOS = Perfluorooctane sulfonate.

RSL = Regional screening level.

SI = Site inspection.

<sup>&</sup>lt;sup>b</sup> Drinking Water Health Advisory for Perfluorooctanoic Acid (EPA 2016b) and Drinking Water Health Advisory for Perfluorooctane Sulfonate (EPA 2016a).

<sup>&</sup>lt;sup>c</sup> Residential risk-based soil screening levels determined by using the EPA RSL calculator (<a href="https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl\_search">https://epa.gov/risk/regional-screening-levels-rsls-generic-tables-may-2018</a>) for soil and sediment; target HQ = 1.

When PFOA and PFOS are both present, the combined detected concentrations of the compounds are compared with the 70-ng/L health advisory value.

<sup>&</sup>lt;sup>e</sup> PFBS analytical results for groundwater and surface water have been compared to the tap water screening levels; target HO = 1.

Table 3. Summary of SI Activities

|                           | Analyzed    | Soil    | Soil    | Groundwater | Stormwater | Sediment |
|---------------------------|-------------|---------|---------|-------------|------------|----------|
| PRL Name                  | Parameters* | Borings | Samples | Samples     | Samples    | Samples  |
| 1. Hangar 333             | PFOS/PFOA   | 3       | 6       | 1           | NA         | NA       |
| 2. FETA – North           | PFOS/PFOA   | 3       | 6       | 1           | NA         | NA       |
| 3. FETA – South           | PFOS/PFOA   | 3       | 6       | 1           | NA         | NA       |
| 4. FETA – Compass Rose    | PFOS/PFOA   | 3       | 6       | 1           | NA         | NA       |
| 5. Building 573           | PFOS/PFOA   | 3       | 6       | 2           | NA         | NA       |
| 6.Current and Former Fire | PFOS/PFOA   | 2       | 4       | 1           | NA         | NA       |
| Station – Building 216    |             |         |         |             |            |          |
| 7. North Outfall          | PFOS/PFOA   | 0       | 0       | 0           | NS         | 1        |
| 8. South Outfall          | PFOS/PFOA   | 0       | 0       | 0           | 1          | NS       |

<sup>\*</sup> PFOS/PFOA is used generically in this SI Report to include the following six 2012 third Unregulated Contaminant Monitoring Rule emerging contaminants: PFOS, PFOA, perfluorobutane sulfonate, perfluorononanoic acid, perfluoroheptanoic acid, and perfluorohexane sulfonate. All samples were analyzed for PFOS/PFOA using U.S. Environmental Protection Agency, Method 537, revision 1.1.

FETA = Fire equipment testing area.

NA = Not Applicable.

NS = No sample collected due to no presence of sediment or surface water.

PFOA = Perfluorooctanoic acid.

PFOS = Perfluorooctane sulfonate.

PRL = Potential release location.

SI = Site inspection.

Table 4. Well Construction Details for Kingsley Field ANGB SI

|                 | Top of Casing<br>Elevation | Ground<br>Elevation | Screened<br>Interval | Total Well<br>Depth | Well<br>Diameter |        |
|-----------------|----------------------------|---------------------|----------------------|---------------------|------------------|--------|
| Monitoring Well | (ft AMSL)                  | (ft AMSL)           | (ft BGS)             | (ft BTOC)           | (in.)            | Casing |
|                 |                            | PRL                 | . 1                  |                     |                  |        |
| MW-KLA01-01     | 4,088.11                   | 4088.01             | 5-15                 | 15.5                | 2                | PVC    |
|                 |                            | PRL                 | . 2                  |                     |                  |        |
| MW-KLA02-01     | 4,088.40                   | 4,088.41            | 5-15                 | 15.6                | 2                | PVC    |
|                 |                            | PRL                 | . 3                  |                     |                  |        |
| MW-KLA03-01     | 4,089.72                   | 4,089.66            | 4.8-14.8             | 16                  | 2                | PVC    |
|                 |                            | PRL                 | . 4                  |                     |                  |        |
| MW-KLA04-01     | 4,086.43                   | 4,086.39            | 5.2-15.2             | 16                  | 2                | PVC    |
|                 |                            | PRL                 | . 6                  |                     |                  |        |
| MW-KLA06-01     | 4,089.08                   | 4,088.98            | 4.7-14.7             | 15.5                | 2                | PVC    |

Source: Top of casing elevation and ground surface elevation data for the new wells are from the monitoring well survey on May 8, 2018, by McBride Surveying Mapping (see Appendix C). Screened interval, total depth, and well diameter data in this table were obtained from the well construction diagrams provided in Appendix A.

AMSL = Above mean sea level.

ANGB = Air National Guard Base.

BGS = Below ground surface.

BTOC = Below top of casing.

PRL = Potential release location.

PVC = Polyvinyl chloride.

SI = Site inspection.

**Table 5. Water Level Measurements** 

|                            |                            |                   | ]                              | May 2018                              |
|----------------------------|----------------------------|-------------------|--------------------------------|---------------------------------------|
| Monitoring Well Identifier | TOC Elevation<br>(ft AMSL) | Screened Interval | Depth to<br>Water<br>(ft BTOC) | Groundwater<br>Elevation<br>(ft AMSL) |
| MW-KLA01-01                | 4,088.11                   | 5-15              | 4.32                           | 4,083.79                              |
| MW-KLA02-01                | 4,088.40                   | 5-15              | 3.89                           | 4,084.51                              |
| MW-KLA03-01                | 4,089.72                   | 4.8-14.8          | 6.25                           | 4,083.47                              |
| MW-KLA04-01                | 4,086.43                   | 5.2-15.2          | 2.55                           | 4,083.88                              |
| MW-KLA06-01                | 4,089.08                   | 4.7-14.7          | 8.24                           | 4,080.84                              |
| MW-572-02-PRL05            | 4088.56                    | 3 – 13            | 4.65                           | 4083.91                               |
| MW-573-03-PRL05            | 4089.35                    | 3 – 13            | 5.22                           | 4084.13                               |

Source: TOC elevation data for new wells are from the monitoring well survey on May 8, 2018 by McBride Surveying Mapping (See Appendix C). Screened interval and depth to water for the new wells were obtained from the well construction diagrams provided in Appendix A. TOC elevation and screening interval for the two existing wells were obtained from the 2014 SI Report (ANG 2014). Depth to water data for the existing wells is from the 2018 SI.

AMSL = Above mean sea level.

BTOC = Below top of casing.

TOC = Top of casing.

Table 6. Water Quality Parameters

|                         |                           |             |             | Groundwater | ľ           |                                                 |                 |
|-------------------------|---------------------------|-------------|-------------|-------------|-------------|-------------------------------------------------|-----------------|
|                         | MW-KLA01-01   MW-KLA02-01 | MW-KLA02-01 | MW-KLA03-01 | MW-KLA04-01 | MW-KLA06-01 | MW-KLA06-01   MW-572-02-PRL05   MW-573-03-PRL05 | MW-573-03-PRL05 |
| Parameter               | 5/6/2018                  | 5/6/2018    | 5/6/2018    | 5/6/2018    | 5/6/2018    | 5/6/2018                                        | 5/6/2018        |
| Dissolved oxygen (mg/L) | 8.16                      | 2.02        | 0.09        | 0.31        | 9.61        | 8.89                                            | 0.23            |
| ORP (mV)                | 128                       | 177         | -247        | -159        | -187        | 168                                             | 115             |
| pH (S.U.)               | 8.00                      | 80.6        | 8.62        | 95.6        | 8.25        | 9.51                                            | 8.69            |
| Conductivity (mS/cm)    | 19.6                      | 4.31        | 1.18        | 1.63        | 66'0        | 0.92                                            | 1.29            |
| Temperature (°C)        | 15.8                      | 16.0        | 14.3        | 15.6        | 14.2        | 15.8                                            | 15.9            |
| Turbidity (NTU)         | 67.7                      | 333         | 471         | 292         | 150         | 43.5                                            | 51.1            |

mg/L = Milligrams per liter.
mS/cm = MicroSiemens per centimeter.
mV = millivolt.
NTU = Nephelometric turbidity unit.
ORP = Oxidation-reduction potential.
S.U. = Standard unit.

Table 7. Summary of Soil and Sediment Analytical Results

| Perfluorononanoic Acid<br>(PFNA)     | NA               | (µg/kg)              |      | 0.25 U       | 0.26 U       | 0.22 U             | $0.26\mathrm{U}$ | 0.25 U       | 0.25 U       | 0.26 U             | $0.24\mathrm{U}$   | 0.26 U             | 0.38         | $0.30 \mathrm{~J}$ | 0.34 J            | 0.40         | 0.12 J       | 0.26 U              | 0.26 U           | 0.25 U             | $0.26\mathrm{U}$   | 0.26 U           | 0.27 U       | 0.27 U       |
|--------------------------------------|------------------|----------------------|------|--------------|--------------|--------------------|------------------|--------------|--------------|--------------------|--------------------|--------------------|--------------|--------------------|-------------------|--------------|--------------|---------------------|------------------|--------------------|--------------------|------------------|--------------|--------------|
| Perfluorohexane<br>Sulfonate (PFHxS) | NA               | (µg/kg)              |      | 18           | 9.1          | 1.5                | 2.4              | 1.3 U        | 0.32 J       | 2.6                | 1.6                | 1.7                | 21           | 130 J              | 110 J             | 5.4          | 9.4          | 0.99                | 2.4              | 0.71               | 0.71               | 1.1              | 2.7          | 12           |
| Perfluoroheptanoic Acid<br>(AqH49)   | NA               | (µg/kg)              |      | 0.38         | 0.32 J       | $0.22\mathrm{U}$   | 0.14 J           | 0.25 U       | 0.25 U       | $0.16  \mathrm{J}$ | $0.18  \mathrm{J}$ | $0.11  \mathrm{J}$ | 1.1          | 6.0                | 5.6               | 0.47         | 0.81         | $0.26\mathrm{U}$    | $0.26\mathrm{U}$ | $0.25\mathrm{U}$   | $0.26\mathrm{U}$   | $0.26\mathrm{U}$ | 0.36 J       | 0.59         |
| Perfluorobutane<br>Sulfonate (PFBS)  | 1,260,000        | (µg/kg)              |      | 0.31 J       | 0.31 J       | 0.072 J            | 0.15 J           | 0.13 J       | 0.23 U       | 0.25 J             | 0.22 J             | 0.21 J             | 5.1          | 26                 | 24                | 0.50         | 1.8          | $0.082 \mathrm{~J}$ | 0.21 J           | $0.10 \mathrm{ J}$ | 0.098 J            | 0.15 J           | 0.21 J       | 0.75         |
| Perfluorooctanoic Acid<br>(PFOA)     | 1,260            | (µg/kg)              |      | 3.9          | 1.0          | $0.30 \mathrm{~J}$ | 0.39             | 0.22 J       | 0.25 U       | 0.46               | $0.28\mathrm{J}$   | 0.25 J             | 2.2          | 18                 | 15                | 0.45         | 1.0          | $0.26\mathrm{U}$    | 0.22 J           | 0.15 J             | $0.16  \mathrm{J}$ | 0.15 J           | 0.37 J       | 1.3          |
| Perfluorooctane<br>Sulfonate (PFOS)  | 1,260            | (µg/kg)              |      | 430 J        | 210 J        | 1.7                | 3.2              | 10           | 1.1 J        | 1.6 J              | 6.1                | 12                 | 390 J        | 570 J              | $490  \mathrm{J}$ | 140 J        | 21           | 3.0                 | 17               | 3.4                | 2.7                | 4.9              | 3.2          | 14           |
| Analyte                              | Screening Level* | Sample<br>Type       | Soil | REG          | REG          | REG                | REG              | REG          | REG          | REG                | REG                | FD                 | REG          | REG                | FD                | REG          | REG          | REG                 | REG              | REG                | FD                 | REG              | REG          | REG          |
|                                      | Screeni          | Sample<br>Depth (ft) |      | 0-2          | 2-6          | 0-2                | 2-9              | 0-2          | 5.5-6.5      | 0-2                | 4.5-5.5            | 4.5-5.5            | 0-2          | 3.5-4.5            | 3.5-4.5           | 0-2          | 4-5          | 0-2                 | 9-9              | 0-2                | 0-2                | 5.5-6.5          | 0-2          | 5.5-6.5      |
|                                      |                  | Sample<br>Date       |      | 5/2/18       | 5/2/18       | 5/2/18             | 5/2/18           | 5/2/18       | 5/2/18       | 5/4/18             | 5/4/18             | 5/4/18             | 5/4/18       | 5/4/18             | 5/4/18            | 5/4/18       | 5/4/18       | 5/1/18              | 5/1/18           | 5/2/18             | 5/2/18             | 5/2/18           | 5/1/18       | 5/1/18       |
|                                      |                  | Sample<br>Identifier |      | KLA01-SB1-01 | KLA01-SB1-02 | KLA01-SB2-01       | KLA01-SB2-02     | KLA01-SB3-01 | KLA01-SB3-02 | KLA02-SB1-01       | KLA02-SB1-02       | KLA02-SB1-02D      | KLA02-SB2-01 | KLA02-SB2-02       | KLA02-SB2-02D     | KLA02-SB3-01 | KLA02-SB3-02 | KLA03-SB1-01        | KLA03-SB1-02     | KLA03-SB2-01       | KLA03-SB2-01D      | KLA03-SB2-02     | KLA03-SB3-01 | KLA03-SB3-02 |
|                                      |                  | Location             |      | KLA01-SB1    | KLA01-SB1    | KLA01-SB2          | KLA01-SB2        | KLA01-SB3    | KLA01-SB3    | KLA02-SB1          | KLA02-SB1          | KLA02-SB1          | KLA02-SB2    | KLA02-SB2          | KLA02-SB2         | KLA02-SB3    | KLA02-SB3    | KLA03-SB1           | KLA03-SB1        | KLA03-SB2          | KLA03-SB2          | KLA03-SB2        | KLA03-SB3    | KLA03-SB3    |
|                                      |                  | PRL                  |      | 1            |              |                    |                  |              |              | 2                  |                    |                    |              |                    |                   |              |              | 3                   |                  |                    |                    |                  |              |              |

Table 7. Summary of Soil and Sediment Analytical Results (continued)

|                                      |                  |                      |              |              |              |                    |              |                   | 1            | 1                 | 1            |              | 1                  |                | 1            |              |              |              |              |               |
|--------------------------------------|------------------|----------------------|--------------|--------------|--------------|--------------------|--------------|-------------------|--------------|-------------------|--------------|--------------|--------------------|----------------|--------------|--------------|--------------|--------------|--------------|---------------|
| Perfluorononanoic Acid<br>(PFNA)     | NA               | (ga/gn)              | 0.16J        | 09.0         | 1.6 J        | 1.6                | 1.1 J        | 1.2               | 0.61         | 2.8               | 0.25 U       | 0.36         | 0.34 J             | 2.6 J          | 0.25 J       | 2.4          | 1.4          | 1.6          | 1.7 J        | 1.8 J         |
| Perfluorohexane<br>Sulfonate (PFHxS) |                  | (ga/gπ)              | 24           | 190 J        | 100          | $1100  \mathrm{J}$ | £3 J         | 130 J             | 18 J         | $300  \mathrm{J}$ | 2.6          | 20           | 8.9                | f 0 <b>S</b> 9 | 15           | 111          | 8.9          | 44 J         | 45 J         | 45 J          |
| Perfluoroheptanoic Acid<br>(AqHAq)   | NA               | (ga/gn)              | 99.0         | 4.4          | 14           | 44 J               | 3.8          | 67                | 1.6          | 1.8               | 0.25 U       | 0.45         | $0.38 \mathrm{ J}$ | 14             | 1.5          | 0.71         | 0.25 J       | 1.2 J        | 1.6          | 1.0           |
| Perfluorobutane<br>Sulfonate (PFBS)  | 1,260,000        | (µg/kg)              | 0.45 J       | 14           | 14 J         | 84 J               | 19           | $110  \mathrm{J}$ | 4.9          | 3.1               | 0.077 J      | 0.32 J       | 0.29 J             | 6.7            | 0.58         | 0.27J        | 0.19 J       | 66.0         | 2.1          | 1.4           |
| Perfluorooctanoic Acid<br>(PFOA)     | 1,260            | (ga/gπ)              | 3.2          | 19           | f 97         | 100                | 12           | f \$8             | 2.3          | 12                | 0.23 J       | 9.1          | 1.2                | 62 J           | 3.8          | 1.3          | 1.1          | ſ L'9        | 6.4          | 4.1           |
| Perfluorooctane<br>Sulfonate (PFOS)  | 1,260            | (µg/kg)              | 2200 J       | 3600 J       | 6600 J       | 4800 J             | 4500 J       | 3800 J            | 170 J        | f 059             | 6.5          | 40 J         | 42 J               | 14000 J        | f 086        | 250 J        | 120 J        | f 096        | 1600 J       | 1100 J        |
| Analyte                              | Screening Level* | Sample<br>Type       | REG          | REG          | REG          | REG                | REG          | REG               | REG          | FD                | REG          | REG          | REG                | REG            | REG          | REG          | REG          | REG          | REG          | FD            |
|                                      | Screeni          | Sample<br>Depth (ft) | 0-2          | 4.5-5.5      | 0-2          | 4.5-5.5            | 0-2          | 5.5-6.5           | 0-2          | 0-2               | 2-6          | 0-2          | 2-6                | 0-2            | 5.5-6.5      | 0-2          | 4.5-5.5      | 0-2          | 4.5-5.5      | 4.5-5.5       |
|                                      |                  | Sample<br>Date       | 5/4/18       | 5/4/18       | 5/4/18       | 5/4/18             | 5/4/18       | 5/4/18            | 5/5/18       | 5/5/18            | 5/5/18       | 5/5/18       | 5/5/18             | 5/5/18         | 5/5/18       | 5/1/18       | 5/1/18       | 5/1/18       | 5/1/18       | 5/1/18        |
|                                      |                  | Sample<br>Identifier | KLA04-SB1-01 | KLA04-SB1-02 | KLA04-SB2-01 | KLA04-SB2-02       | KLA04-SB3-01 | KLA04-SB3-02      | KLA05-SB1-01 | KLA05-SB1-01D     | KLA05-SB1-02 | KLA05-SB2-01 | KLA05-SB2-02       | KLA05-SB3-01   | KLA05-SB3-02 | KLA06-SB1-01 | KLA06-SB1-02 | KLA06-SB2-01 | KLA06-SB2-02 | KLA06-SB2-02D |
|                                      |                  | Location             | KLA04-SB1    | KLA04-SB1    | KLA04-SB2    | KLA04-SB2          | KLA04-SB3    | KLA04-SB3         | KLA05-SB1    | KLA05-SB1         | KLA05-SB1    | KLA05-SB2    | KLA05-SB2          | KLA05-SB3      | KLA05-SB3    | KLA06-SB1    | KLA06-SB1    | KLA06-SB2    | KLA06-SB2    | KLA06-SB2     |
|                                      |                  | PRL                  | 4            |              |              |                    |              |                   | 5            |                   |              |              |                    |                |              | 9            |              |              |              |               |

Table 7. Summary of Soil and Sediment Analytical Results (continued)

| Perfluorononanoic Acid<br>(PFNA)     | NA               | (ga/gη)              |          | $0.22\mathrm{U}$       | $0.27\mathrm{U}$          |
|--------------------------------------|------------------|----------------------|----------|------------------------|---------------------------|
| Perfluorohexane<br>Sulfonate (PFHxS) | NA               | (ga/gn)              |          | $0.22\mathrm{U}$       | 2.1                       |
| Perfluoroheptanoic Acid<br>(APHPA)   | NA               | (ga/gn)              |          | $0.22\mathrm{U}$       | 0.12 J                    |
| Perfluorobutane<br>Sulfonate (PFBS)  | 1,260,000        | (µg/kg)              |          | $0.19\mathrm{U}$       | $0.20 \mathrm{~J}$        |
| Perfluorooctanoic Acid<br>(PFOA)     | 1,260            | (µg/kg)              |          | 0.22 U                 | 0.48                      |
| Perfluorooctane<br>Sulfonate (PFOS)  | 1,260            | (µg/kg)              |          | 1.5 U                  | 51                        |
| Analyte                              | Screening Level* | Sample<br>Type       | Sediment | REG                    | FD                        |
|                                      | Screen           | Sample<br>Depth (ft) |          | 0                      | 0                         |
|                                      |                  | Sample<br>Date       |          | 5/6/18                 | 5/6/18                    |
|                                      |                  | Sample<br>Identifier |          | KLA07-SD1 KLA07-SD1-01 | KLA07-SD1   KLA07-SD1-01D |
|                                      |                  | Location             |          | KLA07-SD1              | KLA07-SD1                 |
|                                      |                  | PRL                  |          | 7                      | •                         |

\* U.S. Environmental Protection Agency (EPA) residential risk-based soil screening level determined using the EPA regional screening level (RSL) calculator and May 2018 EPA RSL tables.

Bold denotes detected concentration.

$$\label{eq:model} \begin{split} \mu g/kg = Micrograms \ per \ kilogram. \\ FD = Field \ duplicate. \end{split}$$

NA = Not applicable. PRL = Potential release location.

REG = Regular.

U = Chemical not detected above the laboratory detection limit. J = Estimated concentration.

Table 8. Summary of Groundwater and Surface Water Analytical Results

| Perfluorononanoic Acid<br>(PFNA)     |                              | NA                             | (ng/L)               |             | 0.56J          | 340J           | 16             | 1.5U           | 3.8                    | 3.9                     | 200J                   | 490J           |               | 0.95 J       |  |
|--------------------------------------|------------------------------|--------------------------------|----------------------|-------------|----------------|----------------|----------------|----------------|------------------------|-------------------------|------------------------|----------------|---------------|--------------|--|
| Perfluorohexane Sulfonate<br>(PFHxS) |                              | NA                             | (ng/L)               |             | 220            | f00099         | 2700J          | f069           | 360J                   | 390J                    | 39000J                 | 680001         |               | 3.7          |  |
| Perfluoroheptanoic Acid<br>(PFHpA)   | NA                           | NA                             | (ng/L)               |             | 9.7            | 7700J          | 200            | 27             | 25                     | 24                      | 5100J                  | 5400J          |               | 1.5 J        |  |
| Perfluorobutane Sulfonate<br>(PFBS)  |                              | 400,000                        | (ng/L)               |             | 39             | 6700J          | 180            | 96             | 27                     | 28                      | 3900J                  | 7900J          |               | 0.96 U       |  |
| PFOS+PFOA                            | 20                           | NA                             | (ng/L)               |             | 520            | 401,000        | 6390           | 141            | 1156                   | 1257                    | 69,700                 | 144,000        |               | 29.8         |  |
| Perfluorooctanoic Acid<br>(PFOA)     |                              | NA                             | (ng/L)               |             | 20             | 21000          | 290            | 41             | 99                     | 57                      | f0029                  | 14000J         |               | 1.8 J        |  |
| Perfluorooctane Sulfonate<br>(PFOS)  | 20                           | NA                             | (ng/L)               |             | \$00J          | 380000J        | 6100J          | 100            | 1100J                  | 1200J                   | 63000J                 | 130000J        |               | 28           |  |
| Analyte                              | Health Advisory <sup>a</sup> | p Water <sup>b</sup>           | Sample<br>Type       | Groundwater | REG            | REG            | REG            | REG            | REG                    | FD                      | REG                    | REG            | Surface water | REG          |  |
|                                      | Health ∤                     | EPA RSL Tap Water <sup>b</sup> | Sample<br>Depth (ft) | Grou        | 10             | 10             | 10             | 10             | 10                     | 10                      | 10                     | 10             | Surf          | NA           |  |
|                                      |                              |                                | Sample<br>Date       |             | 5/6/18         | 5/6/18         | 5/6/18         | 5/6/18         | 5/6/18                 | 5/6/18                  | 5/6/18                 | 5/6/18         |               | 5/7/18       |  |
|                                      |                              |                                | Sample Identifier    |             | MW-KLA01-01-01 | MW-KLA02-01-01 | MW-KLA03-01-01 | MW-KLA04-01-01 | MW-572-02-PRL05-<br>01 | MW-572-02-PRL05-<br>01D | MW-573-03-PRL05-<br>01 | MW-KLA06-01-01 |               | KLA08-SW1-01 |  |
|                                      |                              |                                | Location             |             | MW-KLA01-01    | MW-KLA02-01    | MW-KLA03-01    | MW-KLA04-01    | MW-572-02-<br>PRL05-01 | 02-                     | MW-573-03-<br>PRL05    | MW-KLA06-01    |               | KLA07-SW1    |  |
|                                      |                              |                                | PRL                  |             | 1              | 2              | 3              | 4              | 5                      |                         |                        | 9              |               | 8            |  |

 $<sup>^{\</sup>rm a}$  May 2016 EPA health advisory for PFOS/PFOA combined.  $^{\rm b}$  May 2018 EPA RSL for tap water.

Bold denotes detected concentration.

**801d** highlighted denotes concentration that exceeds screening criteria.

EPA = U.S. Environmental Protection Agency.

FD = Field duplicate.

NA = Not applicable.

ng/L = Nanograms per liter. PRL = Potential release location.

RSL = Regional screening level.

REG = Regular.

Data Qualifiers:

J = Estimated concentration.

U = Chemical not detected above the laboratory detection limit.

Table 9. SI Recommendation Summary Table

| PRL No. | PRL Description                                      | Constituents<br>Above Screening<br>Criteria | Sampling Recommendations and Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------|------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | Hangar 333                                           | Groundwater:<br>PFOS + PFOA                 | Soil: Although screening criteria were not exceeded, additional surface and subsurface soil samples are proposed to determine if an unidentified source exists and if so, to determine the nature and extent in the vertical and horizontal directions given the potential for soil to groundwater migration.  Groundwater: Although soil screening criteria were not exceeded at PRL 1, there were exceedances in groundwater at the downgradient well MW-KLA01-01. Determine the nature and extent both vertically and horizontally through the sampling of existing and additional new monitoring wells.        |
| 2       | FETA – North                                         | Groundwater:<br>PFOS + PFOA                 | Soil: Although screening criteria were not exceeded, additional surface and subsurface soil samples are proposed to determine if an unidentified source exists and if so, to determine the nature and extent in the vertical and horizontal directions given the potential for soil to groundwater migration.  Groundwater: Although soil screening criteria were not exceeded at PRL 2, exceedances occurred in groundwater at downgradient well MW-KLA02-01. Determine the nature and extent both vertically and horizontally through the sampling of existing and additional new monitoring wells.              |
| 8       | FETA – South                                         | <b>Groundwater:</b><br>PFOS + PFOA          | <b>Soil:</b> Although screening criteria were not exceeded, additional surface and subsurface soil samples are proposed to determine if an unidentified source exists and if so, to determine the nature and extent in the vertical and horizontal directions given the potential for soil to groundwater migration. <b>Groundwater:</b> Although soil screening criteria were not exceeded at PRL 3, exceedances occurred in groundwater at downgradient well MW-KLA03-01. Determine the nature and extent both vertically and horizontally through the sampling of existing and additional new monitoring wells. |
| 4       | FETA – Compass Rose                                  | Soil: PFOS<br>Groundwater:<br>PFOS + PFOA   | Soil: Additional surface and subsurface soil samples are proposed to further define the nature and extent of PFOS soil exceedances and to determine if an unidentified source exists and if so, to determine the nature and extent in the vertical and horizontal directions given the potential for soil to groundwater migration.  Groundwater: Determine the nature and extent both vertically and horizontally through the sampling of existing and additional new monitoring wells.                                                                                                                           |
| 8       | Building 573                                         | Soil: PFOS<br>Groundwater:<br>PFOS + PFOA   | Soil: Additional surface and subsurface soil samples are proposed to determine the extent of the one PFOS exceedance and to determine if an unidentified source exists and if so, to determine the nature and extent in the vertical and horizontal directions given the potential for soil to groundwater migration.  Groundwater: Determine the nature and extent both vertically and horizontally through the sampling of existing and additional new monitoring wells.                                                                                                                                         |
| 9       | Current and Former<br>Fire Station – Building<br>216 | Soil: PFOS<br>Groundwater:<br>PFOS + PFOA   | Soil: Additional surface and subsurface soil samples are proposed to determine the extent of the one PFOS exceedance and to determine if an unidentified source exists and if so, to determine the nature and extent in the vertical and horizontal directions given the potential for soil to groundwater migration.  Groundwater: Determine the nature and extent both vertically and horizontally through the sampling of existing and additional new monitoring wells.                                                                                                                                         |

Table 9. SI Recommendation Summary Table (continued)

|         |                 | Constituents<br>Above Screening |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------|-----------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PRL No. | PRL Description | Criteria                        | Sampling Recommendations and Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7       | North Outfall   | None                            | <b>Surface Water and Sediment</b> : PFOS/PFOA compounds were detected in sediment below screening criteria. Determine the PFOS/PFOA impact to surface water through additional upgradient sampling of surface water and sediment and evaluate potential downgradient impacts at the outfall located off Base.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ∞       | South Outfall   | None                            | Surface Water and Sediment: PFOS/PFOA compounds were detected in surface water below screening criteria. Determine the PFOS/PFOA impact to surface water through additional upgradient sampling of surface water and sediment and evaluate potential downgradient impacts at the outfall located off Base.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | General         |                                 | Soil: Collect additional surface and subsurface soil samples to determine the nature and extent both vertically and horizontally of the exceedances and to determine if an unidentified source exists and if so, to determine the nature and extent in the vertical and horizontal directions given the potential for soil to groundwater migration.  Groundwater: (1) Collect additional groundwater samples in upgradient locations to quantify potential impacts from upgradient sources, and (2) collect additional groundwater samples off Base through the installation of a limited number of new monitoring wells to determine if PFOS/PFOA impacts beyond the Base boundary are increasing or decreasing.  Surface Water/Sediment: (1) Collect additional surface water and sediment samples in upgradient locations to quantify potential impacts from upgradient sources; (2) collect additional surface water and sediment samples from downgradient locations off Base to define the nature and extent of PFAS contamination beyond the Base boundary. |

**FIGURES** 

THIS PAGE INTENTIONALLY LEFT BLANK



ROJECT: 987Projects/ANG Phase 3 ST for PPC/sz\_GIS/KlamathFalls/Projects/SIF/Egure 1 Kingsky Field Location Mip\_mod

Final Site Inspection Report
Kingsley Field Air National Guard Base





OJECT: 3827Projects/ANG Phase 3 SI for PFCs/v\_GIS/KlamathFalls/Projects/SIFFigure 3 PRL 01 08 Soil PRL 08 SW Results.mxd

Final Site Inspection Report Kingsley Field Air National Guard Base

F-5



ROJECT: 3827Projects/ANG Phase 3 SI for PFCs/z\_GIS/KlamathFalls/Projects/SIP/gure 4 PRL 02 Soil PRL 07 Sediment Results\_11x17.mxd

Final Site Inspection Report Kingsley Field Air National Guard Base



KOJECT: \\(\begin{align\*} \aligned \text{22PPojects\(\aligned \aligned \

Final Site Inspection Report Kingsley Field Air National Guard Base

F-7



ROJECT: 3827Projects/ANG Phase 3 SI for PFCs/z\_GIS/KlamathFalls/Projects/SIFigure 6 PRL 05 Soil Results\_11x17.mxd

Final Site Inspection Report Kingsley Field Air National Guard Base



Final Site Inspection Report Kingsley Field Air National Guard Base

F-9



Final Site Inspection Report Kingsley Field Air National Guard Base

# APPENDIX A SOIL BORINGS AND WELL CONSTRUCTION LOGS

THIS PAGE INTENTIONALLY LEFT BLANK.

| Client/Installation<br>ANG/Klamati                | h ANGB        | Oversight       | Contractor<br>Leidos       |           | Borehole Number KLA03-SB_3 |  |  |
|---------------------------------------------------|---------------|-----------------|----------------------------|-----------|----------------------------|--|--|
| Project                                           |               | Driller :.C     | assade 5tm                 | Horc      | Page                       |  |  |
| FY17 Phase 3 Regional SI for PF                   | OS/PFOA       |                 | ANG/Klamath ANGB Page 1 of |           |                            |  |  |
| Sizes and Type of Drilling and Si<br>Geoprober 78 |               | /Han.           | lange                      |           | Location Description       |  |  |
| Date/Time Started :                               |               |                 | Date/Time                  | /18       |                            |  |  |
| Overburden Thickness                              |               | oundwater<br>75 |                            |           | th 10 ft                   |  |  |
| Sample for PFOS/PFOA Analysis                     |               |                 | -                          | PFOS/PFOA |                            |  |  |
| Sample ID: KLAOT-SB3                              |               |                 |                            | D: KLAO   |                            |  |  |
| Sample Interval: 0 to 2                           | ft            |                 |                            |           | 5.5 to <u>6</u> 5ft        |  |  |
|                                                   | is Wildt      |                 |                            | M W       |                            |  |  |
| Monitoring Well ID:                               | Backfill Type | en ton          | , bec                      | Date Back | ifilled :                  |  |  |
| Latitude                                          | Longitude     |                 |                            | Elevation | (ft)                       |  |  |
| Notes:                                            |               |                 |                            | •         |                            |  |  |
| Sketch:                                           |               |                 | T                          | 1         | TIT                        |  |  |
|                                                   |               |                 |                            | -         |                            |  |  |
|                                                   |               |                 |                            |           |                            |  |  |
|                                                   | 87 28         | 1               |                            |           |                            |  |  |
|                                                   |               |                 |                            |           |                            |  |  |
|                                                   |               |                 |                            |           |                            |  |  |
|                                                   | Ø 5/          | 3               |                            |           |                            |  |  |
|                                                   |               |                 |                            |           |                            |  |  |
|                                                   |               |                 |                            |           |                            |  |  |

| Client/Installati                               | ANG/Klamath ANGB                                     |                               | mber<br>03-SB                 | Page 2 of 2_     |  |
|-------------------------------------------------|------------------------------------------------------|-------------------------------|-------------------------------|------------------|--|
| roject<br>Y17 Phase 3 Regional SI for PFOS/PFOA |                                                      | Inspector Name<br>Chris Wildt |                               | Date: 5 · 1 · 18 |  |
| Depth                                           | Description of Materials                             | Headspace<br>Reading          | Analytical Sample<br>Interval | Notes:           |  |
| 1 1.5                                           | brown silty SAND<br>SM, Ly Loose                     | 00                            |                               | KLA 03-583-01    |  |
|                                                 | Brown fine SAND<br>SM, Lamp,<br>medium dense         | (0.0                          |                               |                  |  |
| 5                                               | Soun silty SAND<br>solo grown, SM<br>saturated, med. | 0.0                           |                               | KLA03-583-02     |  |
| 9 9.5                                           | BOE                                                  |                               |                               |                  |  |

### SAMPLE COLLECTION/CHAIN-OF-CUSTODY RECORD PROJECT NAME: Kingsley Field ANGB **DELIVERY ORDER 0011** Borehole Data KLA03 -SB3 SAMPLING POINT: SAMPLE LOCATION: Soil SAMPLE MEDIA: SAMPLE TYPE Grab LOGBOOK NUMBER: SAC - TestAmerica Sacramento Sample Data Sample No. 1 FIELD READING UNITS KLA 03 -SB 3-01 0.0 SAMPLE ID NUMBER: PID ppm SAMPLE DEPTH: 0-2' 51.18 0845 Date/Time: NO. CONTAINERS & CONTAINER COLLECTION PRESERVATION TYPE VOLUME TYPE **ANALYSIS** (TYPE/VOL) LABORATORY CODE\*\* PFOS/PFOA 1-40z cold, no preservative SAC plastic READING UNITS Sample Data Sample No. 2 FIELD SAMPLE ID NUMBER: KLA 07-SB3-02 PID 0.0 ppm SAMPLE DEPTH: Date/Time: 5-118 0280 55.65 NO. CONTAINERS & CONTAINER PRESERVATION TYPE COLLECTION VOLUME CODE\*\* TYPE ANALYSIS (TYPE/VOL) LABORATORY 1-40Z plastic PFOS/PFOA cold, no preservative SAC \*\* "X" analysis collected; "IS" insufficient volume; "NR" not required; define other code as appropriate COMMENTS: RELINQUISHED BY: DATE/TIME RELINQUISHED BY: DATE/TIME Chris Wildt COMPANY Leidos COMPANY RECEIVED BY: DATE/TIME RECEIVED BY: DATE/TIME

COMPANY

COMPANY

| Client/Installation<br>ANG/Klan | ent/Installation Oversight Co<br>ANG/Klarnath ANGB |               | Contractor<br>Leidos |                      | Borehole Number KLA 03-SB |  |  |
|---------------------------------|----------------------------------------------------|---------------|----------------------|----------------------|---------------------------|--|--|
| Project                         |                                                    | Driller : Cas | scade                |                      | Page                      |  |  |
| FY17 Phase 3 Regional SI fo     | r PFOS/PFOA                                        | A             | NG/Klamath A         | NGB                  | Page _ 1 _ of _ 2         |  |  |
| Geoprabe 7                      |                                                    |               |                      | Location Description |                           |  |  |
| sate/Time Started : S / 18      | 0855                                               |               | Date/Time F          | inished:             |                           |  |  |
| overburden Thickness            |                                                    | Groundwater   |                      | white was            | io`                       |  |  |
| ample for PFOS/PFOA Analysis    |                                                    |               | Sample for P         | FOS/PFOA             | Analysis                  |  |  |
| Sample ID: KLA 3-SI             | B01                                                |               | Sample II            | : KLAO3              | 2-SB_/02                  |  |  |
| Sample Interval: 0 t            | 0 2 ft                                             |               | Sample In            | ntervalı_            | toft                      |  |  |
| nspector Name                   | Chris Wildt                                        |               | Inspector 5lg        | mature<br>//M        | WA                        |  |  |
| Monitoring Well ID :            | Backfill Ty                                        | se toni       | te                   | Date Back            | filled:                   |  |  |
| atitude                         | Longitude                                          | •             | Elevation (ft)       |                      |                           |  |  |
| Notes:<br>Sketch:               |                                                    |               |                      |                      |                           |  |  |
|                                 |                                                    |               | -                    |                      |                           |  |  |
|                                 |                                                    |               |                      |                      |                           |  |  |
|                                 |                                                    | Q             | SBI                  |                      |                           |  |  |
|                                 |                                                    |               |                      |                      |                           |  |  |
|                                 |                                                    | -             |                      |                      |                           |  |  |
|                                 |                                                    | Ø.            | SAZ                  |                      |                           |  |  |
|                                 |                                                    | -             | -                    | _                    |                           |  |  |
|                                 |                                                    |               |                      |                      |                           |  |  |

| Client/Installa           | ANG/Klamath ANGB                                           |                      | nber<br>07-SB_I               | Page _ 2 _ of _ 2      |  |  |
|---------------------------|------------------------------------------------------------|----------------------|-------------------------------|------------------------|--|--|
| Project<br>FY17 Phase 3 f |                                                            |                      | me<br>is Wildt                | Date: 5 1.18           |  |  |
| Depth                     | Description of Materials                                   | Headspace<br>Reading | Analytical Sample<br>Interval | Notes:                 |  |  |
| 1 1.5                     | 103/Z Very derk grapish<br>brown SAND, SW,<br>dry, 1003e   | 0.1                  |                               | KLASI-SBI-01<br>@ 0900 |  |  |
| 3.5                       | 104R S/3 Brown<br>5.14y SHND SM<br>damp, med. Lenen        | 0.0                  |                               | KLA03-381-02           |  |  |
| 6.5                       | 104R3/1 Very dark<br>gray SAND SM<br>saturated, med. dense |                      |                               | KLA03-381-02           |  |  |
| 9 9.5                     | BOE                                                        |                      |                               |                        |  |  |

# SAMPLE COLLECTION/CHAIN-OF-CUSTODY RECORD PROJECT NAME: Kingsley Field ANGB **DELIVERY ORDER 0011** Borehole Data KLAO3-SB/ SAMPLING POINT: SAMPLE LOCATION: SAMPLE MEDIA: Soil SAMPLE TYPE Grab SAC - TestAmerica Sacramento LOGBOOK NUMBER: Sample No. 1 FIELD READING UNITS Sample Data KLA03 -SB (-01 SAMPLE ID NUMBER: PID ppm SAMPLE DEPTH: Date/Time: \$ / 18 0800 0-2" NO. CONTAINERS & CONTAINER PRESERVATION TYPE COLLECTION LABORATORY CODE\*\* VOLUME TYPE **ANALYSIS** (TYPE/VOL) PFOS/PFOA SAC 1-40z cold, no preservative plastic READING UNITS Sample Data Sample No. 2 FIELD SAMPLE ID NUMBER: KLA\_\_-SB\_\_-02 PID ppm SAMPLE DEPTH: Date/Time: 5-1-18 5-6 0905 NO. CONTAINERS & PRESERVATION TYPE COLLECTION CONTAINER CODE\*\* VOLUME TYPE **ANALYSIS** (TYPE/VOL) LABORATORY 1-40z plastic PFOS/PFOA cold, no preservative SAC \*\* "X" analysis collected; "IS" insufficient volume; "NR" not required; define other code as appropriate COMMENTS: RELINQUISHED BY: DATE/TIME RELINQUISHED BY: DATE/TIME Chris Wildt COMPANY Leidos COMPANY RECEIVED BY: DATE/TIME RECEIVED BY: DATE/TIME COMPANY COMPANY

| Client/Installation<br>ANG/Klamath A | NGB             | Oversight C   | ontractor<br>Leidos |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Borehole Number KLACG-SBZ |       |  |
|--------------------------------------|-----------------|---------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------|--|
| Project                              |                 | Driller : Cas | Driller : Cascade   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page                      |       |  |
| FY17 Phase 3 Regional SI for PFOS/   | PFOA            | A             | NG/Klamath A        | Spinish Street, or other Designation of the last of th | Page 1                    | _ of2 |  |
| Geopole 782                          | eling Equipment |               |                     | and the state of the state of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F AWKLAOG                 | 0     |  |
| S 1.18 / 1330                        |                 |               | Date/Time F         | inished :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1400                      | )     |  |
| Overburden Thickness                 | Depth to G      | iroundwater   |                     | Total Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10'                       |       |  |
| Sample for PFOS/PFOA Analysis        |                 | Sample for P  | FOS/PFOA Ar         | alysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                         |       |  |
| Sample ID: KLA26-SB_201              |                 |               | Sample ID           | ): KLACG-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B <u>2</u> 02             |       |  |
| Sample Interval: 0 to 2 ft           |                 |               | Sample Jr           | terval:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | toft                      |       |  |
| Inspector Name Chris \               | Wildt           |               | Inspector/Sig       | mature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                         |       |  |
| Monitoring Well ID :                 | Backfill Typ    | Forite        | ,                   | Date Backfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ckfilled:                 |       |  |
| Latitude /                           | Longitude       |               | Elevati             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ion (ft)                  |       |  |
| Sketch:                              |                 |               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       |  |
|                                      |                 |               | 8 582               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       |  |
|                                      |                 | -             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       |  |
| 8 81                                 |                 |               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       |  |
|                                      | CONC            | nh            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       |  |
|                                      |                 |               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       |  |

| ANG/Klamath ANGB Project Y17 Phase 3 Regional SI for PFOS/PFOA             |                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Page 2 of 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                            |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date: 5 - 1 - 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Description of Materials                                                   | Headspace<br>Reading                                                                                                                                                                                          | Analytical Sample<br>Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | The state of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 104R4/4 Dark yellowish<br>brown silly SAND<br>5% gravel, SM,<br>dry, loose | 0.0                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | KLAOG-SB-2-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 10VR-3/1 Very darle gray<br>clayery SAND, CL,<br>damp, med. dense          | 00                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RLA06-SB-2-07<br>@ 135-0<br>+ Oup.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 104R 3/4 Oark Vellewish<br>Brown SAND, SW<br>sontrated, loose              | G. O                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                            | ANG/Klamath ANGB  Regional SI for PFOS/PFOA  Description of Materials  2 rass  1048 4/4 Dark yellowish brown SILLY SAND 5% gravel, SM, dry, loose  1048 3/1 Very dark gray clayery SAND, CL, damp, med. Lense | ANG/Klamath ANGB  Regional SI for PFOS/PFOA  Description of Materials  Description of Materials | ANG/Klamath ANGB  Regional SI for PFOS/PFOA  Regional SI for PFOS/PFOA  Description of Materials  Description of Materials | ANG/Klamath ANGB  Regional SI for PFOS/PFOA  Description of Materials  Reading  Analytical Sample Interval  Notes:  KLAOG -SB-Z-OI  DIVE 4/4 Dank Valibuish O.O  DIVE 5/9 gravel, SM,  Drown Silly SAND  Sy gravel, SM,  Dry, loose  ICYR-3/1 Very donle gray clayery SAND, CL,  damp, Med. derse  O DEC 1350  FOAP. |  |

SAMPLE COLLECTION/CHAIN-OF-CUSTODY RECORD PROJECT NAME: Kingsley Field ANGB **DELIVERY ORDER 0011** Borehole Data KLAOG-SBZ SAMPLING POINT: SAMPLE LOCATION: SAMPLE MEDIA: Soil SAMPLE TYPE Grab LOGBOOK NUMBER: SAC - TestAmerica Sacramento Sample Data Sample No. 1 FIELD READING UNITS KLA06-SB Z-01 SAMPLE ID NUMBER: PID ppm SAMPLE DEPTH: 0-2 Date/Time: 5 / 18 345 NO. CONTAINERS & CONTAINER PRESERVATION TYPE COLLECTION VOLUME LABORATORY CODE\*\* TYPE ANALYSIS (TYPE/VOL) 1-4oz PFOS/PFOA cold, no preservative SAC plastic READING UNITS Sample Data Sample No. 2 FIELD SAMPLE ID NUMBER: KLAOG-SBZ-02 PID ppm SAMPLE DEPTH: 4.5-55 Date/Time: 5-1-18 135 NO. CONTAINERS & CONTAINER PRESERVATION TYPE COLLECTION VOLUME TYPE ANALYSIS LABORATORY CODE\*\* (TYPE/VOL) 1-40z PFOS/PFOA cold, no preservative plastic SAC \*\* "X" analysis collected; "IS" insufficient volume; "NR" not required; define other code as appropriate + MS/MSD COMMENTS: RELINQUISHED BY: DATE/TIME RELINQUISHED BY: DATE/TIME Chris Wildt COMPANY Leidos COMPANY RECEIVED BY: DATE/TIME RECEIVED BY: DATE/TIME

COMPANY

COMPANY

| Client/Instal                                  | ANG/Klamath ANGB          |                   | Oversight C   | ontractor<br>Leidos       |                                      | Borehole Number KLA06-SB |  |  |  |
|------------------------------------------------|---------------------------|-------------------|---------------|---------------------------|--------------------------------------|--------------------------|--|--|--|
| Project                                        |                           |                   | Driller : Cas | cade Str                  | Page                                 |                          |  |  |  |
| THE RESERVE AND ADDRESS OF THE PERSON NAMED IN | Regional SI for PFOS/PF   |                   | -             | ANG/Klamath ANGB Page 1 0 |                                      |                          |  |  |  |
|                                                | pe of Drilling and Sampli | ng Equipment      |               |                           |                                      | of SBZ                   |  |  |  |
| S · / - 18                                     | tarted: 1410              |                   |               | Date/Time I               |                                      |                          |  |  |  |
| Verburden<br>31                                | Thickness                 | The second second | Groundwater   |                           | -                                    | 101                      |  |  |  |
| ample for P                                    | FOS/PFOA Analysis         |                   |               | Sample for I              | Name and Address of the Owner, where |                          |  |  |  |
| Sample II                                      | : KLA06-SB_101            |                   |               | Sample II                 | : KLACK                              | SSB_1 02                 |  |  |  |
| Sample Ir                                      | nterval: 0 to 2 ft        |                   |               | Sample J                  | nterval: 4                           | 1.5 to 5.5 ft            |  |  |  |
| nspector Na                                    | ime                       |                   |               | Inspector Si              |                                      | /                        |  |  |  |
|                                                | Chris W                   |                   |               | 1//m                      | MAY                                  |                          |  |  |  |
| Monitoring \                                   | Well ID :                 | Backfill To       | for ite       | Date Backfilled:          |                                      |                          |  |  |  |
| atitude                                        |                           | Longitude         |               |                           | Elevation                            | (ft)                     |  |  |  |
| Notes:                                         |                           |                   |               |                           |                                      |                          |  |  |  |
| Sketch:                                        |                           | 1                 | T             |                           |                                      |                          |  |  |  |
|                                                |                           | -                 | +             |                           | -                                    |                          |  |  |  |
|                                                |                           |                   |               |                           |                                      |                          |  |  |  |
|                                                |                           |                   |               | & 5B                      | 2                                    |                          |  |  |  |
|                                                |                           |                   |               |                           |                                      |                          |  |  |  |
|                                                |                           |                   |               |                           |                                      |                          |  |  |  |
|                                                | ∞ 68.1                    |                   |               |                           |                                      |                          |  |  |  |
|                                                |                           | -                 |               |                           |                                      |                          |  |  |  |
|                                                | conenc                    | 1                 |               |                           |                                      |                          |  |  |  |

| Client/Installation ANG/Klamath ANGB |                                                                                                                 | Borehole Nu<br>KLA   | mber                         | Page of2                |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------|------------------------------|-------------------------|
| Project<br>FY17 Phase 3              | Regional SI for PFOS/PFOA                                                                                       | Inspector Na         | -                            | S 1.18                  |
| Depth                                | Description of Materials                                                                                        | Headspace<br>Reading | Analytical Sampl<br>Interval |                         |
| 1 15 2                               | 104R 5/3 Brain silty<br>SAND w/ 12/6 grand,<br>SM, Cose, dry                                                    | 0.0                  |                              | KLAGG-SB-1-01           |
| 4 =                                  | 104R3/1 Very dark gray Silly SAND, SM, damp, red Line  104R3/2 very dark grayish brown SAND, SW, wit, med dense |                      |                              | KLAUG SB-1-02<br>@ 1420 |
| 6.5                                  | SAA                                                                                                             |                      |                              |                         |

SAA - same as above

## SAMPLE COLLECTION/CHAIN-OF-CUSTODY RECORD **DELIVERY ORDER 0011** PROJECT NAME: Kingsley Field ANGB Borehole Data KLACG -SB SAMPLING POINT: SAMPLE LOCATION: SAMPLE MEDIA: Soil Grab SAMPLE TYPE LOGBOOK NUMBER: SAC - TestAmerica Sacramento READING UNITS Sample No. 1 FIELD Sample Data KLACG -SB / -01 SAMPLE ID NUMBER: PID 0.0 ppm SAMPLE DEPTH: 0-2" Date/Time: 1415 51.18 NO. CONTAINERS & CONTAINER PRESERVATION TYPE COLLECTION VOLUME TYPE ANALYSIS LABORATORY CODE\*\* (TYPE/VOL) PFOS/PFOA 1-4oz plastic cold, no preservative SAC Sample No. 2 FIELD READING UNITS Sample Data KLACG-SB 1-02 SAMPLE ID NUMBER: PID ppm SAMPLE DEPTH: 4.5-55 1420 Date/Time: 51-18 NO. CONTAINERS & CONTAINER PRESERVATION TYPE COLLECTION VOLUME TYPE **ANALYSIS** (TYPE/VOL) LABORATORY CODE\*\* 1-4oz plastic PFOS/PFOA cold, no preservative SAC \*\* "X" analysis collected; "IS" Insufficient volume; "NR" not required; define other code as appropriate COMMENTS: RELINQUISHED BY: DATE/TIME RELINQUISHED BY: DATE/TIME Chris Wildt COMPANY Leidos COMPANY RECEIVED BY: DATE/TIME RECEIVED BY: DATE/TIME COMPANY COMPANY

| Client/Insta            | liation<br>ANG/Klan      | nath ANG        | 1            | Oversight C   | Leidos        |               | Borehole Nu    | mber<br>V-KLA <u>O</u> £ | <u>s-01</u> |
|-------------------------|--------------------------|-----------------|--------------|---------------|---------------|---------------|----------------|--------------------------|-------------|
| Project                 |                          |                 |              | Driller : 686 | eade Strak    | 9             | Page           |                          |             |
| FY17 Phase              | 3 Regional SI fo         | r PFOS/PFOA     |              | A             | NG/Klamath A  | NGB           | Pag            | e_1_ of_                 | 4           |
| Sizes and Ty<br>Geopral | rpe of Drilling and T&22 | nd Sampling I   | Equipment    |               |               |               | Cation Descrip | shor Pi                  | +           |
| S / 1 / 18              |                          | )               |              |               | Date/Time F   | 18/           |                |                          |             |
| Overburden<br>-         |                          |                 | Depth to Gro | undwater<br>G | , ,           | Total Depth   | 5' (ref        | usul)                    |             |
|                         | PFOS/PFOA Ana            | -               |              |               |               |               |                |                          |             |
|                         | D: MW-KLA                | <u>06-01</u> 01 |              |               | 1 1/2         | An            |                |                          |             |
| Inspector N             |                          | Chris Wild      | ÷            |               | Inspector Sig | Unit          |                |                          |             |
| Monitoring<br>MW-1      | Well ID:<br>CLA 06 - (   |                 | Benton       |               | 0             | Date Backfill |                | 370                      |             |
| Latitude                |                          |                 | Longitude    |               |               | Elevation (ft | )              |                          |             |
| Notes:<br>Sketch:       |                          |                 |              |               |               |               |                |                          |             |
|                         |                          |                 |              |               |               |               |                |                          |             |
|                         |                          | 7,911           |              |               |               |               |                |                          |             |
|                         |                          |                 |              |               |               | co bbles      | nu             |                          |             |
|                         |                          |                 | Ø MW         |               |               | Land Sco      |                | ly y                     | J           |
|                         |                          |                 |              |               |               |               |                | Conc                     |             |
|                         |                          |                 |              |               | 1             |               | H              |                          |             |
| A,                      | Con                      | inle            |              |               |               |               |                |                          |             |
| NN                      |                          |                 |              |               |               |               |                |                          |             |

| llent/installation ANG/Klamath ANGB |                                     | Borehole Num<br>MW-K | ber<br>LACG-OI               | Page 2 of 4     |  |  |
|-------------------------------------|-------------------------------------|----------------------|------------------------------|-----------------|--|--|
| Project<br>FY17 Phase 3 R           | egional SI for PFOS/PFOA            |                      | Wildt                        | Date: S · 1   8 |  |  |
| Depth                               | Description of Materials            | Headspace<br>Reading | Analytical Sampi<br>Interval | Notes:          |  |  |
| 0.5                                 | 10484/3 Brawn silly<br>SAND, SM, dy | 0.0                  |                              |                 |  |  |
| 3.5                                 |                                     |                      |                              |                 |  |  |
| 5.5                                 | brown SAND, SM with med tree        | 0.1                  |                              |                 |  |  |

| Client/installation                |                                          | Borehole Num      |                   | Page  |             |              |
|------------------------------------|------------------------------------------|-------------------|-------------------|-------|-------------|--------------|
| ANG/Klamath ANGB                   |                                          | The second second | LACE- OI          | -     | ge_3_ of_4_ |              |
| Project                            | 2004                                     | Inspector Nan     |                   | Date: | 8           |              |
| FY17 Phase 3 Regional SI for PFOS/ | PFOA                                     |                   | Analytical Sample |       | 0           |              |
| Depth Descriptio                   | n of Materials                           | Reading           | Interval          |       | Notes:      |              |
|                                    |                                          |                   |                   |       |             | =            |
| 10.5                               |                                          |                   |                   |       |             | -            |
|                                    |                                          |                   |                   | 1     |             | -            |
| = =                                |                                          |                   |                   |       |             | =            |
| 11.0                               |                                          |                   |                   | 1     |             | -            |
| =                                  |                                          |                   |                   |       |             | =            |
| 11.5                               | 01                                       |                   |                   |       |             | -            |
| 3 104R414                          | HURYU 10013 L                            | 0.0               |                   | 1     |             | =            |
| 12.0 - Carl NA                     | SAND SW                                  |                   |                   | 1     |             | -            |
| = 3/00                             | 1 . 1 1                                  |                   |                   |       |             | -            |
| 12.5 _ Saturin les                 | Darkyellowish<br>SAND, SW<br>L, med. des | 4                 |                   |       |             | Man          |
| =                                  |                                          |                   |                   |       |             | =            |
| 13.0                               |                                          | 1                 |                   |       |             |              |
|                                    |                                          | 1 3               |                   |       |             | -            |
| 13.5                               |                                          |                   |                   | 1     |             | =            |
|                                    |                                          |                   |                   |       |             | -            |
| 3                                  |                                          |                   |                   |       |             | -            |
| 4.0                                |                                          |                   |                   |       |             |              |
| =                                  |                                          |                   |                   |       |             |              |
| 14.5                               |                                          |                   |                   |       |             | _            |
| =                                  |                                          |                   |                   |       |             | =            |
| 5.0 - too return                   | 1000                                     | 1                 |                   | 1     |             | _            |
| 3                                  |                                          |                   |                   |       |             | =            |
| 5 - V                              |                                          | _                 |                   |       |             | _            |
|                                    |                                          | 1                 |                   |       |             | =            |
| 50 = Be                            | E                                        | 1                 |                   |       |             | _            |
| = 125                              |                                          |                   |                   | 1     |             | =            |
| 6.5                                |                                          |                   |                   |       |             | COLUMN TOWNS |
| ==                                 |                                          |                   |                   | 1     |             | -            |
| 3                                  |                                          |                   |                   |       |             |              |
| 17.0                               |                                          |                   |                   |       |             | =            |
| =                                  |                                          |                   |                   |       |             | =            |
| 17.5                               |                                          |                   |                   |       |             | -            |
| =                                  |                                          |                   |                   |       |             |              |
| 18.0                               |                                          |                   |                   |       |             | -            |
| 3                                  |                                          |                   |                   |       |             | E            |
| 18.5                               |                                          |                   |                   |       |             | -            |
| =                                  |                                          |                   |                   | 1     |             | E            |
| 19.0                               |                                          |                   |                   |       |             |              |
| $\exists$                          |                                          |                   |                   |       |             |              |
| 10.5                               |                                          |                   |                   |       |             | =            |
| 19.5                               |                                          |                   |                   |       |             |              |
| =                                  |                                          |                   |                   |       |             | -            |
| 20.0                               |                                          |                   |                   | 1     |             | _            |

| llent/installati                                             |                          | Borehole Num  |                               | Page                   |    |  |
|--------------------------------------------------------------|--------------------------|---------------|-------------------------------|------------------------|----|--|
| NG/Klamath ANGB roject Y17 Phase 3 Regional SI for PFOS/PFOA |                          |               | LACE-DI                       | Page _4 of _4<br>Date: |    |  |
|                                                              |                          | Inspector Nam |                               |                        |    |  |
|                                                              |                          |               | Wildt                         |                        |    |  |
| Depth                                                        | Description of Materials | Reading       | Analytical Sample<br>Interval | Notes:                 |    |  |
| рерип                                                        | Description of Materials | -             |                               | Mutes                  |    |  |
|                                                              |                          |               |                               | 1                      |    |  |
| 0.5                                                          |                          |               |                               | 1                      | _  |  |
|                                                              |                          |               |                               |                        | =  |  |
|                                                              |                          |               |                               | I.                     |    |  |
| 1 =                                                          |                          |               |                               | II.                    |    |  |
| =                                                            |                          |               |                               |                        | =  |  |
| 1.5                                                          |                          |               |                               | 1                      | _  |  |
| =                                                            |                          | 1 1           |                               |                        | =  |  |
| 12                                                           |                          |               |                               |                        | =  |  |
|                                                              |                          |               |                               | 1                      |    |  |
| =                                                            |                          |               |                               |                        | 13 |  |
| 2.5                                                          |                          |               |                               |                        |    |  |
| =                                                            |                          |               |                               |                        | =  |  |
| 3                                                            |                          |               | /                             |                        | _  |  |
| =                                                            |                          |               | /                             |                        |    |  |
| 3.5                                                          |                          |               | /                             |                        | =  |  |
| -                                                            |                          |               |                               |                        |    |  |
| =                                                            | Not                      | 110           |                               |                        |    |  |
| 24                                                           | 1.                       | ASS           |                               |                        |    |  |
|                                                              | 1/25                     | 1             |                               |                        | -  |  |
| 4.5                                                          | 100                      |               |                               |                        | -  |  |
| =                                                            | 1                        | 1 1           |                               |                        |    |  |
| 25                                                           |                          |               |                               |                        | -  |  |
| _                                                            |                          |               |                               |                        | -  |  |
| $\equiv$                                                     |                          | 1 1           |                               |                        | 3  |  |
| 55                                                           |                          |               |                               |                        |    |  |
| =                                                            |                          |               |                               |                        | =  |  |
| 26                                                           |                          | 1 1           |                               |                        |    |  |
| =                                                            |                          | 1 1           |                               |                        |    |  |
| 6.5                                                          |                          |               |                               |                        | =  |  |
|                                                              |                          | 1 1           |                               |                        |    |  |
| =                                                            |                          | 1 1           |                               |                        | 13 |  |
| 27                                                           |                          | 1 1           |                               |                        | -3 |  |
| =                                                            |                          |               |                               |                        |    |  |
| 7.5                                                          |                          |               |                               |                        | =  |  |
| =                                                            |                          |               |                               |                        | -  |  |
| 28 =                                                         |                          |               |                               |                        | =  |  |
|                                                              |                          |               |                               |                        | -= |  |
| =                                                            |                          |               |                               |                        | =  |  |
| 8.5                                                          |                          |               |                               |                        | -  |  |
| =                                                            |                          |               |                               |                        | =  |  |
| 29 =                                                         |                          |               |                               |                        | =  |  |
| =                                                            |                          |               |                               |                        |    |  |
| . =                                                          |                          |               |                               |                        | =  |  |
| 9.5                                                          |                          |               |                               |                        | 13 |  |
| =                                                            |                          |               |                               |                        | =  |  |
| 30                                                           |                          |               |                               |                        |    |  |



| Client/Installation<br>ANG/Klamath Al                                      | IGB                 | Oversight Contractor<br>Leidos |            |                   | Borehole Number MW-KLA03-01 |
|----------------------------------------------------------------------------|---------------------|--------------------------------|------------|-------------------|-----------------------------|
| Project                                                                    |                     |                                | ade Stra   |                   | Page                        |
| FY17 Phase 3 Regional SI for PFOS/P                                        |                     | A!                             | NG/Klamath | The second second | Page 1 of 4_                |
| Sizes and Type of Drilling and Sample<br>T822<br>Geograph T822<br>Hollowsh | ing Equipment       |                                |            |                   | of New fix station          |
| Date/Time Started : S Z /8 0930                                            |                     |                                | Date/Time  | Finished:         | 1200                        |
| Overburden Thickness                                                       |                     | Depth to Groundwater           |            | Total Dep         | eh 6 '                      |
| Sample for PFOS/PFOA Analysis                                              |                     |                                |            |                   |                             |
| Sample ID: MW-KLA <u>B-U</u> 0                                             | 1                   |                                |            |                   | .0                          |
| Inspector Name<br>Chris V                                                  | The second second   |                                |            | mw                | MC                          |
| Monitoring Well ID: ANU - KLAO3 -0 (                                       | Backfill Typ<br>Bea | Forite                         | , 7        | Date Back         | filled:<br>2.18             |
| Latitude                                                                   | Longitude           |                                |            | (ft)              |                             |
| Notes:                                                                     |                     | ,                              |            |                   |                             |
| Sketch:                                                                    |                     |                                |            |                   |                             |
|                                                                            |                     |                                |            |                   |                             |
|                                                                            |                     |                                |            |                   |                             |
| construction                                                               |                     |                                |            |                   | tarmore                     |
| aned                                                                       |                     |                                |            |                   |                             |
|                                                                            |                     | <b>@</b> /                     | ner        |                   |                             |
| DN                                                                         | -                   | -                              | _          | -                 |                             |

| Client/Installation          | ANG/Klamath ANGB         | Borehole Number MW-KLA03 - U |                               | Page 2 of 4 |  |
|------------------------------|--------------------------|------------------------------|-------------------------------|-------------|--|
| Project<br>FY17 Phase 3 Regi | onal SI for PFOS/PFOA    | Annual Section 1             | s Wildt                       | S . 2 · 18  |  |
| Depth                        | Description of Materials | Headspace<br>Reading         | Analytical Sampli<br>Interval | Notes:      |  |
|                              | SAA                      | 00                           |                               |             |  |
| 4.5                          | SAND, SM, wet, med. Juse |                              |                               |             |  |

\* SAA = same as above

| Client/Installation<br>ANG/Klamath ANGB |                                                   | Borehole Number<br>MW-KLA <u>03-01</u>  |                             | Page 3 of 4   |  |  |
|-----------------------------------------|---------------------------------------------------|-----------------------------------------|-----------------------------|---------------|--|--|
| Project<br>FY17 Phase 3 Re              | egional SI for PFOS/PFOA                          | Chris Wildt Headspace Analytical Sample |                             | S 2 · 18      |  |  |
| Depth                                   | Description of Materials                          | Reading                                 | Analytical Samp<br>Interval | Notes:        |  |  |
| 10.5                                    | SHND, SM, sat dense santed, and dense santed, and | 0-3                                     |                             | Heaving Sonds |  |  |





| Client/installation ANG/Klamath         | ANGB                  | Oversight Contractor<br>Leidos |                     | Borehole Number<br>KLA 63-SB Z |  |  |  |  |
|-----------------------------------------|-----------------------|--------------------------------|---------------------|--------------------------------|--|--|--|--|
| Project                                 | VIII S GO SIII DAN SI | Driller : Cascad               | le                  | Page                           |  |  |  |  |
| Y17 Phase 3 Regional SI for PFOS        | /PFOA                 | ANG                            | /Klamath ANGB       | Page 1 of 2_                   |  |  |  |  |
| Geophe T                                |                       |                                | Boreho              | NU . F MW 1                    |  |  |  |  |
| S 2.18 12                               | 10                    |                                | S Z-18              |                                |  |  |  |  |
| Overburden Thickness Z                  | Depth to 0            | Froundwater                    | Total D             | 10                             |  |  |  |  |
| Sample for PFOS/PFOA Analysis           |                       |                                | sample for PFOS/PFO | A Analysis                     |  |  |  |  |
| Sample ID: KLA <u>©</u> -SB <u>Z</u> 0: | 1                     |                                | Sample ID: KLA      |                                |  |  |  |  |
| Sample Interval: 0 to 2 ft              |                       |                                | Sample Interval     | 155 to 6.5 ft                  |  |  |  |  |
| nspector Name<br>Chris                  | Wildt                 |                                | nspector Signature  | 111                            |  |  |  |  |
| Monitoring Well ID:                     | Backfill Ty           | ntrite                         | () Gate Ba          | ickfilled:<br>2-18             |  |  |  |  |
| atitude                                 | Longitude             |                                | Elevation (ft)      |                                |  |  |  |  |
| Notes:                                  |                       |                                |                     |                                |  |  |  |  |
| 5ketch:                                 |                       | T                              |                     | TTT                            |  |  |  |  |
|                                         |                       |                                |                     |                                |  |  |  |  |
|                                         |                       |                                |                     |                                |  |  |  |  |
|                                         |                       |                                |                     |                                |  |  |  |  |
|                                         |                       |                                |                     |                                |  |  |  |  |
|                                         |                       |                                |                     |                                |  |  |  |  |
|                                         |                       | 1                              |                     |                                |  |  |  |  |
|                                         |                       |                                |                     |                                |  |  |  |  |
|                                         |                       | -                              |                     |                                |  |  |  |  |
|                                         |                       |                                |                     |                                |  |  |  |  |
|                                         |                       | -                              |                     |                                |  |  |  |  |
|                                         |                       |                                |                     |                                |  |  |  |  |
|                                         |                       |                                |                     |                                |  |  |  |  |
|                                         |                       |                                |                     |                                |  |  |  |  |
|                                         |                       |                                |                     |                                |  |  |  |  |

| Client/Install                          | ation ANG/Klamath ANGB                                                               | Borehole Nur          | nber<br>03-SB_Z               | Page 2 of 2 Date: S. Z. (8' |  |
|-----------------------------------------|--------------------------------------------------------------------------------------|-----------------------|-------------------------------|-----------------------------|--|
| Project<br>FY17 Phase 3                 | Regional SI for PFOS/PFOA                                                            | Inspector Nar<br>Chri | ne<br>s Wildt                 |                             |  |
| Depth                                   | Description of Materials                                                             | Headspace<br>Reading  | Analytical Sample<br>Interval | Notes:                      |  |
| 1 15 11 2                               | Brown silly SAND,<br>SM, Ly, loose                                                   | 0.5<br>1801           |                               | (KLAC3-5BZ-01               |  |
| 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Brown silty SAND<br>SM, damp, ned                                                    | 0.7                   |                               |                             |  |
| 5                                       | 104R 3/6, burk yellowst<br>brown silty SAND, SM<br>w/ 20% grand, wit<br>gravel lease | 0.5                   | 1/1/11                        | KLA03- SBZ-07<br>C 1220     |  |
| 7.5                                     | 10YR4/6 dark yellan<br>Brown SAND, SW,<br>saturated, med. Luse                       | rh.                   |                               |                             |  |

AR PID malfunction, cleaned + recalibrated

### SAMPLE COLLECTION/CHAIN-OF-CUSTODY RECORD PROJECT NAME: Kingsley Field ANGB **DELIVERY ORDER 0011** Borehole Data KLAO7 -SBZ SAMPLING POINT: SAMPLE LOCATION: Soil SAMPLE MEDIA: SAMPLE TYPE Grab SAC - TestAmerica Sacramento LOGBOOK NUMBER: READING UNITS Sample Data Sample No. 1 FIELD CW to KLAC3 -SB 2-01 PID SAMPLE ID NUMBER: ppm 1215 SAMPLE DEPTH: 0-21 Date/Time: NO. CONTAINERS & PRESERVATION TYPE COLLECTION CONTAINER LABORATORY VOLUME **ANALYSIS** CODE\*\* TYPE (TYPE/VOL) PFOS/PFOA cold, no preservative SAC 1-402 plastic READING UNITS Sample Data Sample No. 2 FIELD KLAC3 -SB 2-02 0.5 PID SAMPLE ID NUMBER: ppm 1220 5.5-6.5 5.2.18 SAMPLE DEPTH: Date/Time: NO. CONTAINERS & PRESERVATION TYPE COLLECTION CONTAINER CODE\*\* VOLUME TYPE **ANALYSIS** (TYPE/VOL) LABORATORY 1-402 plastic PFO5/PFOA cold, no preservative SAC \*\* "X" analysis collected; "IS" Insufficient volume; "NR" not required; define other code as appropriate Very high PID both - PID malfurcherin COMMENTS: RELINQUISHED BY: DATE/TIME RELINQUISHED BY: DATE/TIME Chris Wildt COMPANY Leidos COMPANY RECEIVED BY: DATE/TIME RECEIVED BY: DATE/TIME COMPANY COMPANY

\* AP pulle chapter Fixed

| Client/Installation<br>ANG/Klamati              | h ANGB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Oversight Contro |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Borehole Number KLAOL -SBZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Project                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Driller : Gas    | cade Stock   | tus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| FY17 Phase 3 Regional SI for PF                 | THE RESERVE TO SERVE THE PROPERTY OF THE PROPE | A                | NG/Klamath A | the same of the sa | Page _1 _ of _2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Sizes and Type of Drilling and S<br>Geoprobe 18 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              | The party of the state of the party of the state of the s | cation Description  GF Noad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| S-2-18 13/0                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Date/Time I  | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Overburden Thickness                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | roundwater       |              | Total Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Sample for PFOS/PFOA Analysis                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | Sample for I | PFOS/PFOA An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | alysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Sample ID: KLA <u>P(</u> -SB2                   | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |              | D: KLA <u>01</u> -S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | The state of the s |  |
| Sample Interval: 0 to 2                         | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | Sample I     | nterval: 🕞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _to <del>7_</del> ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Inspector Name<br>Chr                           | is Wildt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | Inspector Si | gnature /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Monitoring Well ID:                             | Backfill Typ<br>Ber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | inite            | 0            | Date Backfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ed:<br>2.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Latitude                                        | Longitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |              | Elevation (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Notes:<br>Sketch:                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 /              | Г            | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Throat                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 1.000        | Lind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                | ande         | [w.]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| ./                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| MAI                                             | 0 592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| TIV                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

| lent/Installa           | tion ANG/Klamath ANGB              | Borehole Nur         | 1-SBZ                        | Page Page 2 of 2 Date: 5 - 2 - 18 |       |
|-------------------------|------------------------------------|----------------------|------------------------------|-----------------------------------|-------|
| roject<br>/17 Phase 3 F | Regional SI for PFOS/PFOA          | Inspector Na<br>Chr  | me<br>is Wildt               |                                   |       |
| Depth                   | Description of Materials           | Headspace<br>Reading | Analytical Sampl<br>Interval |                                   |       |
|                         | grass                              | -                    |                              |                                   |       |
| 1 =                     | 10404/4 Oak, yellow,               | 0.7                  |                              | CLAO1-SBZ-C1 @ 1315               |       |
| , III                   | brown silty SANK<br>SM, dry, loose |                      | 1/                           |                                   |       |
| , <u> </u>              |                                    |                      |                              |                                   |       |
| 4                       | brown 5.1ky Sand<br>SM, damp, ned. |                      |                              |                                   |       |
| 5                       | SM, damp, red.                     |                      |                              |                                   |       |
| 5.5                     |                                    |                      |                              | -                                 |       |
| 5.5                     | 164R3/4 dark                       | 0.9                  |                              | KLA01-SB2-02                      |       |
| <sup>7</sup> =          | rellowish brown                    |                      | 1///                         | 1320                              |       |
| .5                      | SAMO SW<br>saturaled, red          |                      |                              |                                   |       |
| 5 =                     | duse                               |                      |                              |                                   |       |
|                         | SAA                                |                      |                              |                                   |       |
| 5 =                     |                                    |                      |                              |                                   | 11111 |

# SAMPLE COLLECTION/CHAIN-OF-CUSTODY RECORD PROJECT NAME: Kingsley Field ANGB **DELIVERY ORDER 0011** Borehole Data KLAOI -SBZ SAMPLING POINT: SAMPLE LOCATION: SAMPLE MEDIA: Soil SAMPLE TYPE Grab SAC - TestAmerica Sacramento LOGBOOK NUMBER: Sample No. 1 FIELD READING UNITS Sample Data 6.7 KLAC | -582-01 SAMPLE ID NUMBER: PID ppm 315 SAMPLE DEPTH: Date/Time: 5 2 . 18 0-2' NO. CONTAINERS & CONTAINER PRESERVATION TYPE COLLECTION LABORATORY CODE\*\* VOLUME TYPE **ANALYSIS** (TYPE/VOL) cold, no preservative PFOS/PFOA SAC 1-40z plastic FIELD READING UNITS Sample Data Sample No. 2 KLAO | -SB Z -02 0.9 PID SAMPLE ID NUMBER: ppm 5.2.18 320 SAMPLE DEPTH: 6-7 Date/Time: NO. CONTAINERS & CONTAINER PRESERVATION TYPE COLLECTION LABORATORY CODE\*\* VOLUME TYPE **ANALYSIS** (TYPE/VOL) 1-40z plastic PFOS/PFOA cold, no preservative SAC \*\* "X" analysis collected; "IS" insufficient volume; "NR" not required; define other code as appropriate COMMENTS: RELINQUISHED BY: DATE/TIME RELINQUISHED BY: DATE/TIME Chris Wildt COMPANY Leidos COMPANY

DATE/TIME

RECEIVED BY:

COMPANY

DATE/TIME

RECEIVED BY:

COMPANY

| Client/Installation ANG/Klamat    | h ANGB                                  | Oversight Co      | entractor<br>Leidos |              | Borehole Number KLAO/-SB_ |  |
|-----------------------------------|-----------------------------------------|-------------------|---------------------|--------------|---------------------------|--|
| Project                           | *************************************** | Driller : Case    | : Cascade Stratus   |              | Page                      |  |
| FY17 Phase 3 Regional SI for PF   | OS/PFOA                                 | Al                | NG/Klamath /        | ANGB         | Page _1 of _2             |  |
| Sizes and Type of Drilling and S  |                                         |                   |                     | Borehole Lo  | N of thoat                |  |
| Date/Time Started:<br>5 2 · 18 13 | SO                                      |                   | Date/Time           | 15           | 5.2 18                    |  |
| Overburden Thickness              | Depth to G                              | roundwater<br>. S |                     | Total Depti  | 101                       |  |
| Sample for PFOS/PFOA Analysi      | s                                       |                   | Sample for I        | PFOS/PFOA A  | nalysis                   |  |
| Sample ID: KLACI-SB               | 01                                      |                   | Sample I            | D: KLAGI-    | SB_02                     |  |
| Sample Interval: 0 to 2           | ft                                      |                   | Sample I            | nterval: S   | to/6 ft                   |  |
| Inspector Name<br>Chi             | ris Wildt                               |                   | Inspector/5         |              | W                         |  |
| Monitoring Well ID :              | Backfill Typ                            | endon L           |                     | Date Backfi  | lled:<br>- Z. 18          |  |
| Latitude                          | Longitude                               |                   |                     | Elevation (f | t)                        |  |
| Notes:                            |                                         |                   |                     |              |                           |  |
| Sketch:                           |                                         | T                 |                     | T            | TTTT                      |  |
|                                   |                                         |                   |                     |              |                           |  |
|                                   |                                         | 1                 |                     |              |                           |  |
|                                   |                                         |                   |                     |              |                           |  |
|                                   |                                         | _                 | -                   | -            |                           |  |
|                                   |                                         |                   |                     |              |                           |  |
|                                   | _                                       |                   |                     | -            |                           |  |
|                                   |                                         |                   |                     |              |                           |  |
|                                   |                                         | -                 | -                   | -            |                           |  |
|                                   |                                         |                   |                     |              |                           |  |
|                                   |                                         |                   |                     |              |                           |  |
|                                   |                                         | +                 |                     |              |                           |  |
|                                   |                                         |                   |                     |              |                           |  |
|                                   |                                         |                   |                     |              |                           |  |

| lient/Installation ANG/Klamath ANGB |                                                                                               |                      | 57-SB_1                     | Page 2 of 2_          |  |
|-------------------------------------|-----------------------------------------------------------------------------------------------|----------------------|-----------------------------|-----------------------|--|
| roject<br>Y17 Phase 3 Re            | egional SI for PFOS/PFOA                                                                      | Inspector Na<br>Chr  | me<br>is Wildt              | Date: 5 2.18          |  |
| Depth                               | Description of Materials                                                                      | Headspace<br>Reading | Analytical Samp<br>Interval | Notes:                |  |
| 3 35 4                              | OVRS/4 Vellowish by<br>SAND, SW,<br>Lry, loose<br>brown silty SAN<br>SM, damp,<br>med. dusing |                      |                             | KLA01-SB1-07<br>C1410 |  |

# SAMPLE COLLECTION/CHAIN-OF-CUSTODY RECORD PROJECT NAME: Kingsley Field ANGB **DELIVERY ORDER 0011** Borehole Data KLAO1-SB SAMPLING POINT: SAMPLE LOCATION: SAMPLE MEDIA: Soil SAMPLE TYPE Grab LOGBOOK NUMBER: SAC - TestAmerica Sacramento FIELD READING UNITS Sample Data Sample No. 1 KLAC( -SB ] -01 SAMPLE ID NUMBER: PID SAMPLE DEPTH: 0-2 Date/Time: 5 Z · /8 NO. CONTAINERS & CONTAINER PRESERVATION TYPE COLLECTION VOLUME CODE\*\* TYPE **ANALYSIS** (TYPE/VOL) LABORATORY PFOS/PFOA 1-40Z plastic cold, no preservative SAC READING UNITS Sample Data Sample No. 2 FIELD KLA 0 / -SB / -02 SAMPLE ID NUMBER: 0-1 PID ppm SAMPLE DEPTH: 52.18 1410 Date/Time: NO. CONTAINERS & CONTAINER PRESERVATION TYPE COLLECTION VOLUME TYPE ANALYSIS (TYPE/VOL) LABORATORY CODE \*\* 1-4oz plastic PFOS/PFOA cold, no preservative SAC \*\* "X" analysis collected; "IS" insufficient volume; "NR" not required; define other code as appropriate COMMENTS: RELINQUISHED BY: DATE/TIME RELINQUISHED BY: DATE/TIME Chris Wildt COMPANY Leidos COMPANY RECEIVED BY: DATE/TIME RECEIVED BY: DATE/TIME COMPANY COMPANY

| Client/installation ANG/Klamath ANG    | GB .          | Oversight Cont |                                       |           | Borehole Number KLAOL-SB_3       |
|----------------------------------------|---------------|----------------|---------------------------------------|-----------|----------------------------------|
| Project                                |               | Driller : Cas  | cade                                  |           | Page                             |
| FY17 Phase 3 Regional SI for PFOS/PFO  | )A            | A              | NG/Klamath A                          | -         | Page 1 of 2_                     |
| Sizes and Type of Drilling and Samplin |               |                |                                       |           | Cocation Description  Frequirity |
| Date/Time Started: 1420 · S·2·18       |               |                | S-2                                   | inished:  | 1440                             |
| Overburden Thickness                   | Depth to Gr   | oundwater<br>7 |                                       | _         | 101                              |
| Sample for PFOS/PFOA Analysis          |               |                | Sample for P                          |           |                                  |
| Sample ID: KLACI-SB301                 |               |                | Sample II                             | 10000     | (Sect) 10                        |
| Sample Interval: 0 to 2 ft             |               |                |                                       |           | tg ft                            |
| Inspector Name<br>Chris Wi             |               |                | Inspector Sig                         | 1/1/4     | WIF                              |
| Monitoring Well ID:                    | Backfill Type | ton to         | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | -         | filled: S 2 18                   |
| Latitude                               | Longitude     |                |                                       | Elevation | (ft)                             |
| Notes:                                 |               |                |                                       |           |                                  |
| Sketch:                                |               |                |                                       |           |                                  |
|                                        |               |                |                                       |           |                                  |
|                                        | 14            |                | 66 .                                  | 07        |                                  |
| 700                                    | المور         |                | 05                                    | B3        |                                  |
| Y Sa                                   |               |                |                                       |           |                                  |
| MAI                                    |               |                |                                       |           |                                  |
| VIV                                    |               |                |                                       |           |                                  |
|                                        |               |                |                                       |           |                                  |

| ANG/Klamath ANGB                         |                                                                   | Borehole Number KLACI -SB3 |                              | Page 2 of 2            |  |
|------------------------------------------|-------------------------------------------------------------------|----------------------------|------------------------------|------------------------|--|
| roject<br>Y17 Phase 3                    | Regional SI for PFOS/PFOA                                         | Inspector Na<br>Chr        | me<br>is Wildt               | 5. Z 18                |  |
| Depth                                    | Description of Materials                                          | Headspace<br>Reading       | Analytical Sampl<br>Interval |                        |  |
| 0.5                                      | brown silty SAMB                                                  | 0.7                        |                              | KLACI-SB3-01 -         |  |
| 2.5                                      | SM, dy, loon                                                      |                            |                              |                        |  |
| 4.5 ———————————————————————————————————— | 10 YR 5/6 vellouish<br>brown silty SAND<br>SM, wet, med.<br>derse | 0.8                        |                              | KLA01-583-02<br>C 1430 |  |
| 9   9.5                                  |                                                                   |                            |                              |                        |  |

SAA: sam us obour

### SAMPLE COLLECTION/CHAIN-OF-CUSTODY RECORD PROJECT NAME: Kingsley Field ANGB **DELIVERY ORDER 0011** Borehole Data KLAOI -SB3 SAMPLING POINT: SAMPLE LOCATION: SAMPLE MEDIA: Soil SAMPLE TYPE Grab LOGBOOK NUMBER: SAC - TestAmerica Sacramento Sample No. 1 READING UNITS Sample Data FIELD 07 SAMPLE ID NUMBER: KLA 01 -SB3 -01 PID ppm 2.18 SAMPLE DEPTH: 0-2' Date/Time: 5 1475 NO. CONTAINERS & CONTAINER PRESERVATION TYPE COLLECTION VOLUME TYPE CODE\*\* ANALYSIS LABORATORY (TYPE/VOL) 1-40z plastic PFOS/PFOA cold, no preservative SAC Sample Data Sample No. 2 READING UNITS FIELD 08 KLAC1-SB3-02 SAMPLE ID NUMBER: PID ppm 5 2.18 5.5-65 SAMPLE DEPTH: Date/Time: 14130 NO. CONTAINERS & CONTAINER PRESERVATION TYPE COLLECTION VOLUME TYPE **ANALYSIS** LABORATORY CODE\*\* (TYPE/VOL) 1-4oz plastic PFOS/PFOA cold, no preservative 5AC \*\* "X" analysis collected; "IS" insufficient volume; "NR" not required; define other code as appropriate COMMENTS: RELINQUISHED BY: DATE/TIME RELINQUISHED BY: DATE/TIME Chris Wildt COMPANY Leidos COMPANY RECEIVED BY: DATE/TIME RECEIVED BY: DATE/TIME COMPANY COMPANY

| Client/Installation ANG/Klam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ath ANGB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oversight Contra  | etor<br>Leidos    | Borehole Number MW-KLA (1) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|----------------------------|
| Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ANG/Klamath ANGB  e 3 Regional SI for PFOS/PFOA  Type of Drilling and Sampling Equipment  7 8 2 2  Holldus  Started: 18 0800  en Thickness 21  PFOS/PFOA Analysis  ID: MW-KLQ/I-C/01  Name  Chris Wildt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Driller : Goscade | Stratus           | Page                       |
| FY17 Phase 3 Regional SI for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PFOS/PFOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ANG/K             | Jamath ANGS       | Page _ 1 _ of _ 4          |
| Sizes and Type of Drilling an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                   | tween take ways            |
| Date/Time Started:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Da                | te/Time Finished: | . , .                      |
| Overburden Thickness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Depth t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | o Groundwater     | Total Dept        | 15.5                       |
| Sample for PFOS/PFOA Anal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ysls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                   |                            |
| Sample ID: MW-KLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>7/-0/</u> 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 1                 | /_//                       |
| SHART SALES OF THE | Name and Address of the Owner, where the Parket of the Owner, where the Parket of the Owner, where the Owner, which is the Owner, wh |                   | pector Signature  | 0                          |
| Monitoring Well ID:<br>MW-KLAOI -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -C1 Backfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bertonite         | Date Back         |                            |
| Latitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Longitu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | de                | Elevation (       | (ft)                       |
| Notes:<br>refusal @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15', hear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ing sands         | 10.5 bi           | igs sind                   |
| Sketch:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                   |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | old tax           | riway             |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                   |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8× 1/10           | J1                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                   |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | New               | taknway           |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                   |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                   |                            |

|                             | Depth Description of Materials  G (95) |                                  | mber<br>KLACI - OI                    | Page 2 of 4    |  |
|-----------------------------|----------------------------------------|----------------------------------|---------------------------------------|----------------|--|
| Project<br>FY17 Phase 3 I   | Regional SI for PFOS/PFOA              | Inspector Na<br>Chr<br>Headspace | me<br>is Wildt<br>  Analytical Sample | Date: 5. 3. 18 |  |
| Depth                       | Description of Materials               | Reading                          | Interval                              | Nates:         |  |
| 0.5                         |                                        | 0,0                              |                                       | Nates:         |  |
| 7.5<br>8<br>8.5<br>9<br>9.5 | dense                                  |                                  |                                       |                |  |

| Hent/Installation                      |                          | Borehole Nur         |                               | Page         |     |  |
|----------------------------------------|--------------------------|----------------------|-------------------------------|--------------|-----|--|
| THE RESERVE OF THE PARTY OF THE PARTY. | GB                       |                      | LACI-CI                       | Page 3 of    | 4   |  |
| roject                                 | and a second             | Inspector Nam        |                               | Date: 5.3 18 |     |  |
| /17 Phase 3 Regi                       | ional SI for PFOS/PFOA   |                      | s Wildt                       |              |     |  |
| Depth                                  | Description of Materials | Headspace<br>Reading | Analytical Sample<br>Interval | Notes:       |     |  |
|                                        |                          |                      |                               |              |     |  |
| 0.5                                    |                          |                      |                               |              | L   |  |
|                                        |                          |                      |                               |              |     |  |
| 1.0                                    |                          |                      |                               |              |     |  |
|                                        | ula Romal                | 1                    |                               | 1            |     |  |
| 1.5                                    | 100 E 4 1.2 0)100        | 0.0                  |                               |              |     |  |
| =                                      | 1010-11                  |                      |                               |              | 日   |  |
| 2.0                                    | - NIVI SW,               | رايت                 |                               |              | =   |  |
|                                        | SKINDING                 | T                    |                               |              |     |  |
| 2.5                                    | Landed, No               |                      |                               |              |     |  |
|                                        | SAND, SW, swad a         |                      |                               |              |     |  |
| -                                      |                          | 1                    |                               |              | 13. |  |
| 3.0                                    |                          | 1                    |                               |              |     |  |
| =                                      |                          |                      |                               |              |     |  |
| 3.5                                    |                          |                      |                               |              |     |  |
| 4.0                                    |                          |                      |                               |              |     |  |
| 4.0                                    |                          |                      |                               |              |     |  |
| =                                      | Heaving Sands            | _                    |                               |              | 13. |  |
| 4.5                                    | Hearing sour             |                      |                               |              |     |  |
| =                                      | chusel 1                 |                      |                               | 1            | 13. |  |
| 5.0                                    |                          | -                    |                               |              |     |  |
| =                                      | W V                      |                      |                               |              |     |  |
| 5.5                                    |                          | _                    |                               |              |     |  |
| 6.0                                    |                          |                      |                               |              | □.  |  |
| =                                      |                          |                      |                               |              |     |  |
| 6.5                                    |                          |                      |                               |              | 三   |  |
| 0.3                                    |                          |                      |                               |              |     |  |
| 7.0                                    |                          |                      |                               |              |     |  |
| =                                      |                          |                      |                               |              | 日   |  |
| 7.5                                    |                          |                      |                               |              |     |  |
|                                        |                          |                      |                               |              | =   |  |
| 8.0                                    |                          |                      |                               |              |     |  |
|                                        |                          |                      |                               |              | =   |  |
| 8.5                                    |                          |                      |                               |              | 3   |  |
| -                                      |                          |                      |                               |              | 13  |  |
| =                                      |                          |                      |                               |              | 13  |  |
| 9.0                                    |                          |                      |                               |              | 1=1 |  |
| 3                                      |                          |                      |                               |              | E   |  |
| 9.5                                    |                          |                      |                               |              | 1=1 |  |
|                                        |                          |                      |                               |              |     |  |



| Client/Installation ANG/Klamath ANGB           | Oversight Co     | ntractor<br>Leidos  | Borehole Number MW-KLA | 4-01      |
|------------------------------------------------|------------------|---------------------|------------------------|-----------|
| Project                                        | Driller : Casca  | ade                 | Page                   |           |
| FY17 Phase 3 Regional SI for PFOS/PFOA         | AN               | G/Klamath ANGB      | Page 1 of _            | 4         |
| Sizes and Type of Drilling and Sampling Equipm |                  |                     | ocation Description    |           |
| Geoprobe 7822 1                                | tallowster       | 1 Beda              | and Etakiwaj           | u         |
| Date/Time Started : 5-3 18 1230                |                  | Date/Time Finished: | 1505                   |           |
| 1.                                             | h to Groundwater | Total Dept          | th                     |           |
| Sample for PFOS/PFOA Analysis                  |                  |                     |                        |           |
| Sample ID: MW-KLA <u>04</u> - <u>01</u> 01     |                  | /                   | 11                     |           |
| Inspector Name<br>Chris Wildt                  |                  | Inspected Signature | H                      |           |
| Monitoring Well ID:  MW-KLAOH-O                | Butonite         | Date Back           | 18 3 18                |           |
|                                                | itude            | Elevation (         | ft)                    |           |
| Moved west From organ                          | al locution,     | located in low      | w spot, 3 bigs         | berbouter |
| 1045                                           |                  |                     |                        |           |
| COMP 0 9B                                      |                  |                     |                        |           |
|                                                | -                |                     |                        |           |
| A OSB                                          |                  |                     |                        |           |
|                                                |                  |                     | ⊗ MW                   |           |
| 11                                             |                  |                     |                        |           |

| Client/Installat                                                                                   | ANG/Klamath ANGB                                                  |                       | (LA04-01                      | Page _ 2 _ of _ 4 |  |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------|-------------------------------|-------------------|--|
| Project<br>FY17 Phase 3 R                                                                          | egional SI for PFOS/PFOA                                          | Inspector Nar<br>Chri | ne<br>is Wildt                | Date: 53-16       |  |
| Depth                                                                                              | Description of Materials                                          | Headspace<br>Reading  | Analytical Sample<br>Interval | Notes:            |  |
| 0.5   1   1.5   2   2.5   3   3.5   4   4.5   5   5.5   6   6.5   7   7.5   8   8.5   9   9.5   10 | Dark yellowsh brown<br>104R414 SIH<br>SKND SM<br>Damp i<br>Damp i | 0.3                   |                               |                   |  |

| Client/installa<br>ANG/Klamath |                                                                                                                                              | -                    | KLASH O                       | Page _ 3 _ of _ 4 |  |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------|-------------------|--|
| Project<br>FY17 Phase 3 F      | tegional SI for PFOS/PFOA                                                                                                                    |                      | is Wildt                      | Date: 5.3.18      |  |
| Depth                          | Description of Materials                                                                                                                     | Headspace<br>Reading | Analytical Sample<br>Interval | Notes:            |  |
| 10.5                           | 10 YR3/6 dark yellowish brown SAND, SW, saturated, med. du  SAND, SW, saturated, med. du  SAND, SiJ, saturated, med. dus saturated, med. dus | 0.0                  | midvar                        | BOE               |  |
| 18.5                           |                                                                                                                                              |                      |                               |                   |  |

| llent/installa                                     |                           | Borehole Nu  |                   | Page          |   |  |
|----------------------------------------------------|---------------------------|--------------|-------------------|---------------|---|--|
| NG/Klamath                                         | ANGB                      | MW-          |                   | Page _4 of _4 |   |  |
| oject                                              |                           | Inspector Na |                   | Date:         |   |  |
| /17 Phase 3 F                                      | Regional SI for PFOS/PFOA |              | is Wildt          |               |   |  |
| 1                                                  |                           | Headspace    | Analytical Sample |               |   |  |
| Depth                                              | Description of Materials  | Reading      | Interval          | Notes:        | + |  |
| 21 22 23 23.5 24 25 25 26 27 27.5 28 29 29 29 5 30 |                           | X            |                   |               |   |  |



| Client/Instalia                   | tion<br>ANG/Klamat | h ANGB   |            | Oversight Co   | Leidos        |             | Borehole Number<br>KLA 04-SB/ |
|-----------------------------------|--------------------|----------|------------|----------------|---------------|-------------|-------------------------------|
| Project                           |                    |          |            | Driller : Caso | ade           |             | Page                          |
| Y17 Phase 3 R                     | tegional SI for PF | OS/PFOA  |            | AN             | IG/Klamath A  | NGB         | Page _1 _ of _2               |
|                                   | of Drilling and S  |          |            | 2              |               | 1           | borehole                      |
| S. C/.                            | rted:              | 0830     | )          |                | Date/Time F   | inished :   | 8 0845                        |
| Dverburden Ti<br>Z <sup>I</sup> ( | rickness           | De       | pth to Gro | oundwater      |               | Total Dept  | 10'                           |
| iample for PFC                    | OS/PFOA Analysi    | s        |            |                | Sample for P  |             |                               |
| Sample ID:                        | KLAC4-SB/          | 01       |            |                | Sample ID     |             |                               |
| Sample Int                        | erval: 0 to 2      | ft       |            |                | Sample In     | terval:     | 4.5 to 5.5ft                  |
| Inspector Nam                     |                    | is Wildt |            |                | inspector 5ig |             | . //                          |
| Monitoring We                     | ell ID :           | Ba       | Be1        | to rive        |               | Date Back   | Riled:<br>4-18                |
| Latitude                          |                    |          | ngitude    |                |               | Elevation ( | ft)                           |
| Notes:                            |                    |          |            |                |               |             |                               |
| Sketch:                           |                    | T        |            |                |               |             |                               |
|                                   | Ja (               |          |            |                |               |             |                               |
|                                   |                    |          | 1          |                |               |             |                               |
|                                   |                    |          |            |                |               |             |                               |
|                                   |                    |          |            | 1 @ Z          |               |             |                               |
|                                   |                    |          | /          |                |               |             |                               |
|                                   |                    | 1        |            |                |               |             |                               |
|                                   | 1                  | 23       |            |                |               |             |                               |

| Client/Install          | ation ANG/Klamath ANGB                                         |                      | 24-SBO1                       | -     | Page _ 2 _ of _   | 2   |
|-------------------------|----------------------------------------------------------------|----------------------|-------------------------------|-------|-------------------|-----|
| Project<br>FY17 Phase 3 | Regional SI for PFOS/PFOA                                      | Inspector Na<br>Chr  | me<br>is Wildt                | Date: | 1.18              |     |
| Depth                   | Description of Materials                                       | Headspace<br>Reading | Analytical Sample<br>Interval |       | Notes:            |     |
| 1                       | 104R4/3 Brown<br>SILT ML<br>dry, 100Se                         | 1.4                  |                               | KLA   | 904 CI-<br>0835   | -01 |
| 3                       | 104R4/2 dark grayich brown siThy SAND, SM saturated, mid. Just | 1.1                  |                               | KG    | 104 -01<br>08 4 C | -07 |

| PROJECT NAME:                     | Kingsley Fig      | eld ANGB                       | DELIVERY ORDI                   | ER 0011       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------|-------------------|--------------------------------|---------------------------------|---------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   | Borehole D        | ata                            | 7                               |               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SAMPLING PO                       | INT:              | KLAOH -SBOI                    |                                 |               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SAMPLE LOCA                       | TION:             |                                | 1                               |               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SAMPLE MEDI                       | A:                | Soil                           |                                 |               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SAMPLE TYPE                       |                   | Grab                           |                                 |               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LOGBOOK NUI                       | MBER:             |                                | SAC - TestAmerica               | Sacrament     | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample                            | e Data            | Sample No. 1                   | FIELD                           | READING       | UNITS  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SAMPLE ID NU                      | MBER:             | KLAC4-SB 1-01                  | PID                             |               | pp     | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SAMPLE DEPT                       | H:                | 0-2'                           | Date/Time: S.                   | 418           | 0879   | Acres de la companya del la companya de la companya |
|                                   |                   |                                |                                 |               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| O. CONTAINERS &                   | CONTAINER         |                                | PRESERVATION TYPE               |               |        | COLLECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| VOLUME                            | TYPE              | ANALYSIS                       | (TYPE/VOL)                      | LABORA        | ATORY  | CODE*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1-4oz                             | plastic           | PFOS/PFOA                      | cold, no preservative           | SA            | С      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Samula                            | Data              | Samula No. 2                   | FIELD                           | READING       | UNITS  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample<br>SAMPLE ID NU            |                   | Sample No. 2<br>KLAO 4-SB_1-02 |                                 | READING       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SAMPLE DEPTI                      |                   | 4.5-5.5                        | PID Date/Time:                  | 5.4.18        |        | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SAMPLE DEPT                       | 7;                | 7.4 - 3.3                      | _ Date/Time:                    | 3.4.12        | 08     | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| IO. CONTAINERS & VOLUME           | CONTAINER<br>TYPE | ANALYSIS                       | PRESERVATION TYPE<br>(TYPE/VOL) | LABORA        | ATORY  | COLLECTI<br>CODE*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1-4oz                             | plastic           | PFOS/PFOA                      | cold, no preservative           | SA            | С      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| "X" analysis collecti<br>OMMENTS: | ed; "IS" Insuffic | ient volume; "NR" not          | required; define other code a   | s appropriate | - X 11 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ELINQUISHED BY:<br>hris Wildt     |                   | DATE/TIME                      | RELINQUISHED BY:                |               | I      | DATE/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DMPANY Leidos                     |                   |                                | COMPANY                         |               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ECEIVED BY:                       |                   | DATE/TIME                      | RECEIVED BY:                    |               | T.     | DATE/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                   |                   |                                |                                 |               | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| CONTRACTOR AND ADDRESS OF THE PARTY OF THE P | ent/Installation ANG/Klamath ANGB |                |             |               | Contractor<br>Leldos |                                         | Barehole Number KLACY -SB 3 |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------|-------------|---------------|----------------------|-----------------------------------------|-----------------------------|--|--|
| Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                |             | Driller : Gas | seade                |                                         | Page                        |  |  |
| FY17 Phase 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Regional SI f                     | or PFOS/PFOA   |             | 1             | NG/Klamath           | ANGB                                    | Page 1 of 2                 |  |  |
| Sizes and Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   | and Sampling 1 |             |               |                      | 100000000000000000000000000000000000000 | Solary of KLBC4             |  |  |
| Date/Time Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | arted: 08                         | CC             |             |               | Date/Time Finished:  |                                         |                             |  |  |
| Overburden T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | hickness                          |                | Depth to 0  | 7             |                      | Total Dept                              | h /01                       |  |  |
| Sample for PF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OS/PFOA Ar                        | nalysis        |             |               | Sample for           | PFOS/PFOA                               | Analysis                    |  |  |
| Sample ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | KLACH-S                           | 6B301          |             |               | Sample I             | D: KLACE                                | -SBZ_02                     |  |  |
| Sample Int                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | terval: 0                         | to 2 ft        |             |               | Sample I             | nterval: S                              | 5/ to 95 ft                 |  |  |
| Inspector Nan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ne                                | Chris Wild     | t           |               | Inspector Si         | In w                                    | 16                          |  |  |
| Monitoring W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ell,ID:                           |                | Backfill Ty | sendano       | le "                 | Date Back                               | filled:<br>. 4.18           |  |  |
| Latitude /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                | Longitude   |               |                      | Elevation (                             | (ft)                        |  |  |
| Notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                |             |               |                      |                                         |                             |  |  |
| Sketch:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                 | SBI            |             |               |                      |                                         |                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                |             | +             |                      | -                                       |                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                |             |               |                      |                                         |                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                |             | Ø 5           | 32                   |                                         |                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                | /           |               |                      |                                         |                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | /              |             |               | _                    |                                         |                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | Ø 50           | 3           |               |                      |                                         |                             |  |  |

| Client/Installation       | n<br>ANG/Klamath ANGB                                      | -                    | K4583                         | Page _ Z _ of _ 2      |  |
|---------------------------|------------------------------------------------------------|----------------------|-------------------------------|------------------------|--|
| roject<br>Y17 Phase 3 Reg | ional SI for PFOS/PFOA                                     |                      | s Wildt                       | Date: 5 · 4 · 18       |  |
| Depth                     | Description of Materials                                   | Headspace<br>Reading | Analytical Sample<br>Interval | Notes:                 |  |
| 0.5                       | SILY/4 DK Yellowsh<br>Soun<br>Sildy SAND, SM<br>dry, looce | 1.8                  |                               | 1CLAC4-5B3-01          |  |
| 3.5                       | OYR 5/3 Brown<br>sandy SICT, SM,<br>wet, mid. dense_       | 10                   |                               | KCA04-583-02<br>Q 0810 |  |

| PROJECT NAME:                | Kingsley Fi       | eld ANGB              | DELIVERY ORDE                     | R 0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
|------------------------------|-------------------|-----------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                              | Borehole D        | ata                   | 7                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| SAMPLING PO                  | INT:              | KLACH -SB 3           |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| SAMPLE LOCA                  | TION:             |                       | 1                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| SAMPLE MEDI                  | A:                | Soil                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| SAMPLE TYPE                  |                   | Grab                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| LOGBOOK NU                   | MBER:             | 1                     | SAC - TestAmerica                 | Sacramento                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| Sample                       | e Data            | Sample No. 1          | FIELD                             | READING UN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VITS              |
| SAMPLE ID NU                 | MBER:             | KLA04-SB3-01          | PID                               | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ppm               |
| SAMPLE DEPT                  | H:                | 0-2'                  | Date/Time: 5.4                    | 18 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CS                |
| IO. CONTAINERS &             | CONTAINER         | ANTALVEIC             | PRESERVATION TYPE                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COLLECTION        |
| VOLUME<br>1-4oz              | TYPE              | ANALYSIS<br>PFOS/PFOA | (TYPE/VOL)  cold, no preservative | LABORATO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RY CODE**         |
| 1-402                        | plastic           | Frostron              | Colo, no preservative             | 1 SAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| Sample                       | e Data            | Sample No. 2          | FIELD                             | READING UN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VITS              |
| SAMPLE ID NU                 |                   | KLA 0€/-SB -02        |                                   | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ppm               |
| SAMPLE DEPT                  |                   | 55-65                 | Date/Time:                        | The second secon | 2810              |
| IO. CONTAINERS & VOLUME      | CONTAINER         | ANALYSIS              | PRESERVATION TYPE<br>(TYPE/VOL)   | LABORATO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | COLLECTION CODE** |
| 1-402                        | plastic           | PFOS/PFOA             | cold, no preservative             | SAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |
| "X" analysis collect         | ed; "IS" insuffic | ient volume; "NR" not | required; define other code as    | appropriate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
| ELINQUISHED BY:              |                   | DATE/TIME             | RELINQUISHED BY:                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATE/TIME         |
| SADANIN I-I-                 |                   |                       | COMPANY                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| DMPANY Leidos                |                   |                       | RECEIVED BY:                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATE/TIME         |
| OMPANY Leidos<br>ECEIVED BY: |                   |                       | 1                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |

| Client/Installation ANG/Klamath Al                   | NGB                   | Oversight Contractor<br>Leidos |                  |                                                | Borehole Number  MW-KLACZ-01 |  |  |
|------------------------------------------------------|-----------------------|--------------------------------|------------------|------------------------------------------------|------------------------------|--|--|
| Project                                              |                       | Driller : 6a6                  | cade Sfran       | tus                                            | Page                         |  |  |
| FY17 Phase 3 Regional SI for PFOS/F                  | FOA                   | A                              | NG/Klamath       | THE RESERVE AND ADDRESS OF THE PERSON NAMED IN | Page 1 of 4_                 |  |  |
| Sizes and Type of Drilling and Samp<br>Geoprale 7822 | Hollowsk              | em a                           | ngv              |                                                | conur of PRCOZ               |  |  |
| S.4 18 0950                                          |                       |                                | Date/Time<br>S 4 | 18                                             |                              |  |  |
| Overburden Thickness                                 | Depth to Gr           | oundwater<br>7                 |                  | Total Depth                                    | \$ 6                         |  |  |
| Sample for PFOS/PFOA Analysis                        |                       |                                |                  |                                                |                              |  |  |
| Sample ID: MW-KLA <u>OZ-01</u> (                     | 01                    |                                |                  | ,                                              |                              |  |  |
| Inspector Name<br>Chris V                            | Vildt                 |                                | Inspector Si     | gnature 1                                      | A                            |  |  |
| Monitoring Well ID:                                  |                       | 1                              |                  | Date Backfill                                  | ed:                          |  |  |
| MW-KLAOZ-01                                          | Backfill Type<br>Gent | inte                           |                  | 5.4                                            | 4 18                         |  |  |
| Latitude                                             | Longitude             |                                |                  | Elevation (ft)                                 |                              |  |  |
| Notes:<br>10.5 bags so                               | nd, 2                 | begs                           | kerbon           | h, 1.                                          | 5 cenert                     |  |  |
| Sketch:                                              |                       |                                |                  |                                                |                              |  |  |
| 19.                                                  |                       |                                |                  | 1.1                                            |                              |  |  |
|                                                      |                       |                                | Port             |                                                |                              |  |  |
|                                                      | MW                    |                                |                  |                                                |                              |  |  |
|                                                      | -                     |                                |                  |                                                |                              |  |  |
| 1                                                    | COCAN                 | 6                              |                  |                                                |                              |  |  |
|                                                      |                       |                                |                  |                                                |                              |  |  |
|                                                      |                       |                                |                  |                                                |                              |  |  |

| Client/Installati        | on<br>ANG/Klamath ANGB       | -               | LADZ UI                     | Page _ 2 _ of _ 4 |   |
|--------------------------|------------------------------|-----------------|-----------------------------|-------------------|---|
| roject<br>Y17 Phase 3 Re | gional SI for PFOS/PFOA      |                 | Wildt                       | Date: S-418       |   |
| Depth                    | Description of Materials     | Reading Reading | Analytical Samp<br>Interval | Notes:            | _ |
| 0.5                      | Sondy SILT<br>SM, dry, loose | 0.0             |                             |                   |   |
| 4                        | SAA, damp                    | 0-1             |                             |                   |   |

SAA: same is above

| Client/Installation                               | NGB MW-KLACZ- CI                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | Page 3 of 4   |  |  |
|---------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------|--|--|
| Project<br>FY17 Phase 3 Regional SI for PFOS/PFOA |                                                        | Inspector Nam<br>Chris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | wildt                         | Date: 5, 4.18 |  |  |
| Depth                                             | Description of Materials                               | A CONTRACTOR OF THE PARTY OF TH | Analytical Sample<br>Interval |               |  |  |
| 11.0                                              |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |               |  |  |
| 3.0                                               | 10 1 R 4/2 dark<br>10 rayish brown<br>clayey saturated | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |               |  |  |
| 5.5                                               | med BOE                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |               |  |  |
| 17.0                                              |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |               |  |  |
| 8.0                                               |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |               |  |  |
| 9.0                                               |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |               |  |  |
| 20.0                                              |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |               |  |  |



| ANG/Klamath ANGB                       |                     | Oversight Co   | entractor<br>Leidos        | Bore            | hole Number<br>KLA | -SB_Z_ |
|----------------------------------------|---------------------|----------------|----------------------------|-----------------|--------------------|--------|
| Project                                |                     | Driller : Cast | Driller : Cascade          |                 | Page               |        |
| FY17 Phase 3 Regional SI for PFOS/PFOA |                     | Al             | NG/Klamath ANG             | В               | Page 1             | _ of2  |
| Coprebe                                |                     |                | В                          | midd/           | Description & born | ing    |
| S 4-18 08                              | 15                  |                | Date/Time Finis            |                 |                    |        |
| Overburden Thickness                   | Depth to 6          | G (            | To                         | otal Depth      |                    |        |
| ample for PFOS/PFOA Analys             | is                  |                | Sample for PFOS            | S/PFOA Analysis |                    |        |
| Sample ID: KLA <u>0</u> 4SBZ           | 01                  |                |                            | KLACESBZ        |                    |        |
| Sample Interval: 0 to 2                | ft ft               | III.           | Sample Inte                | rval: 4.5 to    | 5.5 ft             |        |
| nspector Name<br>Ch                    | ris Wildt           | Zimie:         | Inspector Signat           | ture, [ IAL     |                    |        |
| Monitoring Well ID :                   | Backfill Ty<br>Beno | bute           | Date Backfilled:<br>5.4.18 |                 |                    |        |
| atitude                                | Longitude           |                | Elevation (ft)             |                 |                    |        |
| Sketch:                                | 1                   |                |                            |                 |                    | -      |
|                                        |                     |                |                            |                 | +                  | +      |
|                                        |                     | 02             |                            |                 |                    |        |
|                                        |                     |                |                            |                 |                    |        |
|                                        | _/_                 | -              |                            |                 |                    | _      |
|                                        | 107                 | }              |                            |                 | -                  | -      |
|                                        |                     |                |                            |                 |                    |        |

| lient/installatio         | ANG/Klamath ANGB                |         | KLAUY-SBZ                     |             | ge _ 2 _ of _ 2_  |    |
|---------------------------|---------------------------------|---------|-------------------------------|-------------|-------------------|----|
| roject<br>Y17 Phase 3 Rej | gional SI for PFOS/PFOA         | -       | ls Wildt                      | Date: S . 4 | .18               |    |
| Depth                     | Description of Materials        | Reading | Analytical Sample<br>Interval | 9           | Notes:            |    |
| 1.5                       | SILT, ML<br>dry, med, dense     | 01      | 1/1                           | KLA04       | · 582· 0          | 3/ |
| 3 3 3 3 3 3 5 3 5         |                                 |         |                               |             |                   |    |
| 45                        | MID 4/3 Brown                   |         |                               |             |                   |    |
| 55                        | sandy SILT, SM<br>wet, and duce | C.7     | 1/1                           |             | - 987 -0;<br>0875 | 2  |
| 65                        |                                 |         |                               |             |                   |    |
| 7.5 8 8.5 9 9.5           |                                 |         |                               |             |                   |    |
| 8.5                       |                                 |         |                               |             |                   |    |
| 9.5                       |                                 |         |                               |             |                   |    |

# SAMPLE COLLECTION/CHAIN-OF-CUSTODY RECORD PROJECT NAME: Kingsley Field ANGB **DELIVERY ORDER 0011** Borehole Data KLA04-SBZ SAMPLING POINT: SAMPLE LOCATION: SAMPLE MEDIA: Soil SAMPLE TYPE Grab LOGBOOK NUMBER: SAC - TestAmerica Sacramento FIELD READING UNITS Sample Data Sample No. 1 KLA 04-SB 2-01 SAMPLE ID NUMBER: PID ppm SAMPLE DEPTH: 0-21 Date/Time: 5.4-18 0520 NO. CONTAINERS & CONTAINER PRESERVATION TYPE COLLECTION VOLUME TYPE ANALYSIS (TYPE/VOL) LABORATORY CODE\*\* 1-40z PFOS/PFOA plastic cold, no preservative SAC Sample Data Sample No. 2 FIELD READING UNITS KLA04-SB2-02 SAMPLE ID NUMBER: PID ppm 5.4-18 0825 4.5-55 SAMPLE DEPTH: Date/Time: NO. CONTAINERS & CONTAINER PRESERVATION TYPE COLLECTION CODE\*\* VOLUME TYPE ANALYSIS (TYPE/VOL) LABORATORY 1-402 PFOS/PFOA cold, no preservative SAC plastic \*\* "X" analysis collected; "IS" insufficient volume; "NR" not required; define other code as appropriate COMMENTS: RELINQUISHED BY: DATE/TIME DATE/TIME RELINQUISHED BY: Chris Wildt COMPANY COMPANY Leidos RECEIVED BY: DATE/TIME RECEIVED BY: DATE/TIME COMPANY COMPANY

| Client/Installation                            |             | Oversight C   |                                   |              | Borehole N        |             |  |
|------------------------------------------------|-------------|---------------|-----------------------------------|--------------|-------------------|-------------|--|
| ANG/Klamath ANGB                               |             | -             | Leidos                            |              |                   | LACL-SB_    |  |
| Project FY17 Phase 3 Regional SI for PFOS/PFOA |             | Driller : Gos | NG/Klamath                        | LIMS<br>ANGR | Page              | n 1 of 2    |  |
| Sizes and Type of Drilling and Sa              |             | A             | NG/Kiamath                        |              | Location Descrip  | ge_1_ of_2_ |  |
| Geoprobe 7                                     | 812         |               |                                   |              |                   | Boring      |  |
| Date/Time Started:                             | 335         |               | Date/Time<br>5-4                  | Finished:    | 13                | 50          |  |
| Overburden Thickness                           | Depth to 0  | G l           |                                   | Total Dep    | 81                |             |  |
| Sample for PFOS/PFOA Analysis                  |             |               | the same named in column 2 is not | PFOS/PFOA    | The second second |             |  |
| Sample ID: KLACZ_SB_1                          | 01          |               |                                   | D: KLA       |                   |             |  |
| Sample Interval: 0 to 2                        | ft          |               |                                   |              | 4.5 No 55         | ft          |  |
| Inspector Name<br>Chr                          | s Wildt     |               | Inspector \$                      | ignature     | M                 |             |  |
| Monitoring Well ID:                            | Backfill Ty | pe tente      | U                                 | Date Back    | filled:           |             |  |
| Latkude                                        | Longitude   |               | Elevation (ft)                    |              |                   |             |  |
| Notes:                                         |             | 1             |                                   |              | _                 |             |  |
| Jacob                                          | - 1         |               |                                   |              |                   |             |  |
|                                                |             | 8             | SBI                               |              |                   |             |  |
|                                                |             | 1             |                                   |              |                   |             |  |
|                                                |             |               |                                   |              | N N               | 32          |  |
|                                                |             |               |                                   |              | l v               |             |  |
| 1                                              |             | 1             |                                   | 1            |                   |             |  |
|                                                |             | 05            | 65                                |              |                   |             |  |
|                                                |             |               |                                   |              |                   |             |  |

| Client/Installation ANG/Klamath ANGB Project FY17 Phase 3 Regional SI for PFOS/PFOA |                                                  |                      | 2SB_                         | Page _ 2 _ of _ 2 |
|-------------------------------------------------------------------------------------|--------------------------------------------------|----------------------|------------------------------|-------------------|
|                                                                                     |                                                  | -                    | is Wildt                     | Date: 5-4-18      |
| Depth                                                                               | Description of Materials                         | Headspace<br>Reading | Analytical Sampl<br>Interval | Notes:            |
| 1.5                                                                                 | 10 YRS/2 grayish<br>brown SAND, SW<br>Lry, loose | 4.0                  |                              | 1540 = 1340       |
| 3 4 4 4.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                           | SAA, Jamp                                        | 0,4                  | T//h                         | C 1345            |
| 7.5                                                                                 | BOUE                                             |                      |                              |                   |

SAA: same as above

# SAMPLE COLLECTION/CHAIN-OF-CUSTODY RECORD PROJECT NAME: Kingsley Field ANGB **DELIVERY ORDER 0011** Borehole Data KLACZ -SB 1 SAMPLING POINT: SAMPLE LOCATION: SAMPLE MEDIA: Soil SAMPLE TYPE Grab LOGBOOK NUMBER: SAC - TestAmerica Sacramento READING UNITS Sample Data Sample No. 1 FIELD KLAGZ-SB /-01 4.0 SAMPLE ID NUMBER: PID ppm SAMPLE DEPTH: 0-2" Date/Time: 5-4-18 1340 NO. CONTAINERS & CONTAINER PRESERVATION TYPE COLLECTION VOLUME TYPE ANALYSIS (TYPE/VOL) LABORATORY CODE\*\* 1-40z plastic PFOS/PFOA cold, no preservative SAC Sample Data Sample No. 2 FIELD READING UNITS KLA 02-SB 1-02 04 SAMPLE ID NUMBER: PID ppm 4.5-55 SAMPLE DEPTH: Date/Time: NO. CONTAINERS & CONTAINER PRESERVATION TYPE COLLECTION LABORATORY CODE\*\* VOLUME TYPE ANALYSIS (TYPE/VOL) 1-40z plastic PFOS/PFOA cold, no preservative SAC \*\* "X" analysis collected; "IS" insufficient volume; "NR" not required; define other code as appropriate COMMENTS: DATE/TIME RELINQUISHED BY: DATE/TIME RELINQUISHED BY: Chris Wildt COMPANY COMPANY Leidos RECEIVED BY: DATE/TIME RECEIVED BY: DATE/TIME COMPANY COMPANY

| Client/Installation ANG/Klamath   | ANGB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Oversight Contractor  Leidos  Driller: Geseade. |                          |                            | Borehole Number KLAC2-SB Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Project                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                          |                            | Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| FY17 Phase 3 Regional SI for PFOS | 17 Phase 3 Regional St for PFOS/PFOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | ANG/Klamath A            | NGB                        | Page _1 _ of _2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| G co probe                        | Action to the second se |                                                 |                          |                            | Eastern Buring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| S.LI.                             | 310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | Date/Time I              | Finished:                  | 1330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Overburden Thickness              | Depth to Gro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | oundwater                                       |                          |                            | .51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Sample for PFOS/PFOA Analysis     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                          | PFOS/PFOA An               | CAROLINA CONTRACTOR OF THE CON |  |  |
| Sample ID: KLACLSB 10:            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 | The second second second | D: KLAOL-S                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Sample Interval: 0 to 2 ft        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | Sample II                | nterval: 3.5               | 5 tg/4.5 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Inspector Name<br>Chris           | Wildt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 | Inspector Sig            | gnatura /                  | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Monitoring Well ID:               | Backfill Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tonite                                          | ,                        | Vate Backfilled:<br>S-4 18 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Latitude                          | Longitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                 | Elevation (ft)           |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Notes:                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Sketch:                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                   | Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 561                                             |                          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                          | er 50 Z                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .07                                             |                          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 11/                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$83                                            |                          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |

| ANG/Klamath ANGB |                                             | Inspector Name |                              | ANGB KLAGE-SB 2 Inspector Name |   | Page 2 of 2 |  |
|------------------|---------------------------------------------|----------------|------------------------------|--------------------------------|---|-------------|--|
| 17 Phase 3 R     | egional SI for PFOS/PFOA                    | Chr            | is Wildt<br>Analytical Sampl | Date: 5.4.18                   |   |             |  |
| Depth            | Description of Materials                    | Reading        | interval                     | Notes:                         | _ |             |  |
| 1.5              | 10YRS/2 Brown<br>SAND, SW<br>dry, loose     | 2.3            |                              | KLA0Z-SBZ-01<br>(0 1320)       |   |             |  |
| 3.5              | 104R4/4 Brown silty SAND SA damp, med Lusse | 4.7            |                              | KLA07-582-02<br>C1375          |   |             |  |

# SAMPLE COLLECTION/CHAIN-OF-CUSTODY RECORD PROJECT NAME: Kingsley Field ANGB **DELIVERY ORDER 0011** Borehole Data SAMPLING POINT: KLA 0Z-SB Z SAMPLE LOCATION: SAMPLE MEDIA: Soll SAMPLE TYPE Grab LOGBOOK NUMBER: SAC - TestAmerica Sacramento Sample Data Sample No. 1 FIELD READING UNITS SAMPLE ID NUMBER: KLA 02-SB Z-01 PID SAMPLE DEPTH: Date/Time: 54.18 1320 0-2 NO. CONTAINERS & CONTAINER PRESERVATION TYPE COLLECTION VOLUME TYPE ANALYSIS LABORATORY CODE\*\* (TYPE/VOL) 1-40z PFO5/PFOA plastic cold, no preservative SAC Sample Data Sample No. 2 FIELD READING UNITS KLA02-5B2-02 4.7 SAMPLE ID NUMBER: PID ppm 3.5-4.5 SAMPLE DEPTH: Date/Time: 5.4.18 1325 COLLECTION NO. CONTAINERS & CONTAINER PRESERVATION TYPE VOLUME LABORATORY CODE\*\* TYPE ANALYSIS (TYPE/VOL) 1-40z plastic PFOS/PFOA cold, no preservative SAC \*\* "X" analysis collected; "IS" insufficient volume; "NR" not required; define other code as appropriate COMMENTS: RELINQUISHED BY: DATE/TIME RELINQUISHED BY: DATE/TIME Chris Wildt COMPANY Leidos COMPANY RECEIVED BY: DATE/TIME RECEIVED BY: DATE/TIME COMPANY COMPANY

| Cilent/installation                    |             | Oversight Co       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Borehola Number   |
|----------------------------------------|-------------|--------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| ANG/Klamath                            | ANGB        |                    | Leidos                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KLACZ-SB3         |
| Project                                |             | Driller : Case     | cade                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page              |
| FY17 Phase 3 Regional SI for PFOS/PFOA |             |                    | NG/Klamath                     | The state of the law o | Page _ 1 _ of _ 2 |
| Sizes and Type of Drilling and Sa      |             |                    |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Souther Boring    |
| Date/Time Started:                     | 55          |                    | Date/Tim                       | 4. 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 140               |
| Overburden Thickness                   | Depth to    | Groundwater<br>5.5 |                                | Total Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                 |
| Sample for PFOS/PFOA Analysis          |             |                    | Sample fo                      | r PFOS/PFOA Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nalysis           |
| Sample ID: KLAC2_SB3                   | 01          |                    | Sample                         | ID: KLAOZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 68 <u>3</u> 02 _  |
| Sample Interval: 0 to 2                | ft          |                    | Sample                         | Interval: 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tg5_ft            |
| Inspector Name                         | s Wildt     |                    | THE RESERVE THE PARTY NAMED IN | Signature (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                 |
| Monitoring Well ID:                    | Backfill Ty | in tonit           | e                              | Date Backfil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | led:<br>3 4-18    |
| Latitude                               | Longitude   |                    |                                | Elevation (ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                 |
| Notes:                                 |             |                    |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Sketch:                                |             | T                  |                                | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
|                                        |             | 05                 | 31                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                                        |             | +-                 |                                | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8 562-            |
|                                        |             |                    |                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 709               |
| Ø                                      |             |                    |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 4                                      | 6           | 3 563              |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                                        | ,           | y , , ,            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |

| Client/Installa                          | ANG/Klamath ANGB                                                     | Borehole Nu<br>KLA<br>Inspector Na | 02-SB3                        | Page 2 of 2 Date:      |
|------------------------------------------|----------------------------------------------------------------------|------------------------------------|-------------------------------|------------------------|
|                                          | Regional SI for PFOS/PFOA                                            | Chris Wildt                        |                               | 5.418                  |
| Depth                                    | Description of Materials                                             | Headspace<br>Reading               | Analytical Sample<br>Interval | Notes:                 |
| 1 1.5 2 2.5                              | 104R S (Z grayish<br>brown SAND, SW<br>Lry, 1002                     | 1.2                                | 1/1/2                         | CLAOZ-SB3 01           |
| 3.5                                      | 10YR3/4 Dork<br>yellowish brown<br>SIHY SAND, SM<br>damp, med. derse | 09                                 | Mh                            | KCA02-583-02<br>Q 1400 |
| 6.5 ———————————————————————————————————— | 104/2 S/2 grapash<br>brewn S/RWD, SW<br>saturaded, and danse         |                                    |                               |                        |

# SAMPLE COLLECTION/CHAIN-OF-CUSTODY RECORD PROJECT NAME: Kingsley Field ANGB **DELIVERY ORDER 0011** Borehole Data KLAOZ -SB3 SAMPLING POINT: SAMPLE LOCATION: SAMPLE MEDIA: Soil SAMPLE TYPE Grab LOGBOOK NUMBER: SAC - TestAmerica Sacramento Sample Data Sample No. 1 FIELD READING UNITS KLA 02-583-01 SAMPLE ID NUMBER: PID ppm SAMPLE DEPTH: 0-2 54.18 1355 Date/Time: NO. CONTAINERS & CONTAINER PRESERVATION TYPE COLLECTION VOLUME LABORATORY TYPE **ANALYSIS** (TYPE/VOL) CODE\*\* 1-4oz plastic PFOS/PFOA cold, no preservative SAC Sample Data Sample No. 2 FIELD READING UNITS KLACZ -SB 3-02 0.9 SAMPLE ID NUMBER: PID ppm 54.18 1400 SAMPLE DEPTH: 4-51 Date/Time: NO. CONTAINERS & CONTAINER PRESERVATION TYPE COLLECTION VOLUME TYPE ANALYSIS (TYPE/VOL) LABORATORY CODE\*\* 1-40z plastic PFOS/PFOA cold, no preservative SAC \*\* "X" analysis collected; "IS" insufficient volume; "NR" not required; define other code as appropriate COMMENTS: RELINQUISHED BY: DATE/TIME RELINQUISHED BY: DATE/TIME Chris Wildt COMPANY Leidos COMPANY RECEIVED BY: DATE/TIME RECEIVED BY: DATE/TIME COMPANY COMPANY

| Client/Installation ANG/Klamath ANGB    |                | Oversight Co                  | ntractor<br>Leidos      | Borehole Number KLA05-SB |  |  |  |
|-----------------------------------------|----------------|-------------------------------|-------------------------|--------------------------|--|--|--|
| Project                                 | Driller : Gaso | ado strabus                   | Page                    |                          |  |  |  |
| FY17 Phase 3 Regional SI for PFOS/      | AR             | IG/Klamath ANGB               | Page _ 1 _ of _ 2       |                          |  |  |  |
| Geograph 782                            |                |                               | Boreh                   | W Benny                  |  |  |  |
| Date/Time Started:                      | 20             |                               | Date/Time Finished      | 0950                     |  |  |  |
| Overburden Thickness<br>Z               |                | G. S                          |                         | 7. 5                     |  |  |  |
| Sample for PFOS/PFOA Analysis           |                | Sample for PFOS/PFOA Analysis |                         |                          |  |  |  |
| Sample ID: KLA <u>85</u> -SB <u></u> 01 |                |                               | Sample ID: KLA05-SB_102 |                          |  |  |  |
| Sample Interval: 0 to 2 ft              |                | Sample Interval: S No 6 ft    |                         |                          |  |  |  |
| Inspector Name<br>Chris                 |                | Inspector Signature           |                         |                          |  |  |  |
| Monitoring Well ID :                    | Backfill Ty    | perfoni-                      | Date I                  | Sackfilled:<br>5.5.18    |  |  |  |
| Latitude                                | Longitude      |                               | Elevat                  | ion (ft)                 |  |  |  |
| Notes: compact s                        | eils ci        | rushing                       | sample                  | tubes                    |  |  |  |
| Sketch:                                 | T              | 1                             |                         |                          |  |  |  |
|                                         |                | 01                            |                         |                          |  |  |  |
|                                         |                |                               |                         |                          |  |  |  |
|                                         | 1              |                               |                         |                          |  |  |  |
|                                         |                | -                             |                         |                          |  |  |  |
|                                         |                |                               |                         |                          |  |  |  |
| 2                                       |                |                               |                         |                          |  |  |  |
| 4                                       |                |                               |                         |                          |  |  |  |
|                                         | _              |                               |                         |                          |  |  |  |
|                                         |                |                               |                         |                          |  |  |  |
|                                         |                |                               |                         |                          |  |  |  |
|                                         |                |                               |                         |                          |  |  |  |
|                                         | 4              | 8 3                           |                         |                          |  |  |  |
|                                         |                | 1                             |                         |                          |  |  |  |
|                                         |                |                               |                         |                          |  |  |  |
|                                         |                |                               |                         |                          |  |  |  |

| Client/Installatio                                            | ANG/Klameth ANGB                                                              |                      | <u>s-sbz</u>                  | Page _ 2 _ of _ 2 Date: |  |
|---------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------|-------------------------------|-------------------------|--|
| Project<br>Y17 Phase 3 Reg                                    | pional SI for PFOS/PFOA                                                       | Inspector Na<br>Chr  | ne<br>is Wildt                |                         |  |
| Depth                                                         | Description of Materials                                                      | Headspace<br>Reading | Analytical Sample<br>Interval | Nates:                  |  |
| 0.5                                                           | 104R4/2 Park grayish brown silty 5HNO SM, dry, loose                          | 0.5                  |                               | KLAOS-SB7-01<br>@ 0930  |  |
| 4 4.5 5 5.5 6 6.5 7 7.5 8 8 8 8 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 10VR 4/4, dark<br>yellowish brown<br>silty SAND<br>SM, saturded,<br>med. duse | 2.1                  | May                           | KLA05-SBZ-02<br>C 0940  |  |

# SAMPLE COLLECTION/CHAIN-OF-CUSTODY RECORD PROJECT NAME: Kingsley Field ANGB **DELIVERY ORDER 0011** Borehole Data KLAOS -SB -SAMPLING POINT: SAMPLE LOCATION: SAMPLE MEDIA: Soil SAMPLE TYPE Grab LOGBOOK NUMBER: SAC - TestAmerica Sacramento Sample Data Sample No. 1 FIELD READING UNITS KLACS -SB\_2-01 0.5 SAMPLE ID NUMBER: PID ppm SAMPLE DEPTH: 0-2 Date/Time: 5.5.18 0930 NO. CONTAINERS & CONTAINER PRESERVATION TYPE COLLECTION VOLUME TYPE ANALYSIS LABORATORY CODE\*\* (TYPE/VOL) 1-402 plastic PFOS/PFOA cold, no preservative SAC Sample Data Sample No. 2 FIELD READING UNITS KLA C5 -SB Z-02 211 SAMPLE ID NUMBER: PID ppm 5.5.18 5-6 0940 SAMPLE DEPTH: Date/Time: NO. CONTAINERS & CONTAINER PRESERVATION TYPE COLLECTION CODE\*\* VOLUME TYPE LABORATORY ANALYSIS (TYPE/VOL) 1-4oz plastic PFOS/PFOA cold, no preservative SAC \*\* "X" analysis collected; "IS" insufficient volume; "NR" not required; define other code as appropriate COMMENTS: RELINQUISHED BY: DATE/TIME RELINQUISHED BY: DATE/TIME Chris Wildt COMPANY COMPANY Leidos RECEIVED BY: DATE/TIME RECEIVED BY: DATE/TIME COMPANY COMPANY

| Client/Installation ANG/Klamath ANGB   |                   | В   | Oversight Contractor<br>Leidos |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Borehole Number KLA05-SB 3         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|----------------------------------------|-------------------|-----|--------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Project                                |                   |     | Driller: Gasende Structus      |                    | stys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Page                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| FY17 Phase 3 Regional SI for PFOS/PFOA |                   |     | A                              | NG/Klamath A       | Topic and the latest | Page _ 1 _ of _ 2                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                        | pe of Drilling an |     |                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    | Bolly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| S-S (                                  |                   | 000 |                                |                    | Date/Time I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Finished:                          | 1030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Overburden Thickness Depth to 6        |                   |     |                                | oundwater Total De |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    | 854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Sample for PFOS/PFOA Analysis          |                   |     |                                |                    | Sample for I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PFOS/PFOA                          | Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Sample II                              | D: KLAUSSB        | 301 |                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D: KLA OS                          | The state of the s |  |  |
| Sample Interval: 0 to 2 ft             |                   |     |                                |                    | NAME AND ADDRESS OF THE OWNER, WHEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | THE RESERVE OF THE PERSON NAMED IN | S to G S ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Inspector Name<br>Chris Wildt          |                   |     |                                |                    | Inspector Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Monitoring Well ID: Backfill Typ       |                   |     | Backfill Type                  | ntonite            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Date Back                          | filled:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                        |                   |     | Longitude                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Elevation (                        | (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Notes:                                 |                   |     |                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Sketch:                                | П                 |     | T                              | T                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T                                  | TTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                        |                   |     |                                | B-1                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                        |                   |     |                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                        | 28                |     |                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                        |                   | 1   |                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                        |                   |     |                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                        |                   |     |                                | Ø/3                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                        |                   |     |                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |

| lient/installatio                         | ANG/Klamath ANGB                                        | Borehole Nu          | <u>25-58</u>                | Page _ 2 _ of _ 2    |  |
|-------------------------------------------|---------------------------------------------------------|----------------------|-----------------------------|----------------------|--|
| roject<br>Y17 Phase 3 Rep                 | gional SI for PFOS/PFOA                                 | Inspector Na<br>Chr  | me<br>is Wildt              | Date: S · S · /8     |  |
| Depth                                     | Description of Materials                                | Headspace<br>Reading | Analytical Samp<br>Interval | Notes:               |  |
| 1.5                                       | 10 VR4/3 Brown<br>solty SAND<br>SM, Ly, loose           | 1.0                  |                             | , KCAOS · SB3 · OI   |  |
| 3.5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 104RS/3 Brown<br>Silty SANO<br>SM, daup, radius<br>duse | 0.4                  |                             | KLA-563-02<br>C 1020 |  |

| Client/Installation ANG/Klarr | nath ANGB            |               | Oversight Co    | ntractor<br>Leidos |            | Borehole Number KLACS -SB / |  |  |
|-------------------------------|----------------------|---------------|-----------------|--------------------|------------|-----------------------------|--|--|
| Project                       |                      |               | Driller : Gess  | ada sta            | his        | Page                        |  |  |
| FY17 Phase 3 Regional SI fo   | PFOS/PFOA            |               | AN              | G/Klamath          | ANGB       | Page 1 of 2_                |  |  |
| Sizes and Type of Drilling as | nd Sampling E<br>787 | quipment      |                 |                    | Borehole   | N Song                      |  |  |
| Date/Time Started:            | 840                  |               |                 | Date/Time          | Finisped:  | 0910                        |  |  |
| Overburden Thickness          |                      | Depth to Gro  | oundwater D     |                    | Total Dep  | 7.5                         |  |  |
| Sample for PFOS/PFOA Ana      |                      |               |                 |                    | PFO5/PFOA  |                             |  |  |
| Sample ID: KLA <u>05</u> -SI  |                      |               |                 |                    |            | SSB 1 02                    |  |  |
| Sample Interval: 0 to         | o 2 ft               |               |                 | Sample I           | nterval:   | S No G ft                   |  |  |
| Inspector Name                | Chris Wild           | -             | 444             | Inspector          | Ignature W | UT                          |  |  |
| Monitoring Well ID :          |                      | Backfill Type | Forite Date Bar |                    |            | Selfed 18                   |  |  |
| Latitude                      |                      | Longitude     | Elevation       |                    |            | (ft)                        |  |  |
| Notes:                        |                      |               |                 |                    |            |                             |  |  |
| Sketch:                       |                      |               |                 |                    | T          |                             |  |  |
|                               |                      |               | 10              | į                  |            |                             |  |  |
|                               | 2                    |               |                 |                    | -          |                             |  |  |
|                               | 6                    |               |                 |                    |            |                             |  |  |
| 1                             |                      |               |                 |                    |            |                             |  |  |
| MA                            |                      |               | 87              |                    | -          |                             |  |  |

| Client/Instalia                         | ANG/Klamath ANGB                               | Borehole Nur<br>KLA  | ∑-SB_                         | Page of2               |  |  |
|-----------------------------------------|------------------------------------------------|----------------------|-------------------------------|------------------------|--|--|
|                                         | Regional SI for PFOS/PFOA                      | Chr                  |                               | Date: 5.5. 18          |  |  |
| Depth                                   | Description of Materials                       | Headspace<br>Reading | Analytical Sample<br>Interval | Notes:                 |  |  |
| 1 11 11 11 11 11 11 11 11 11 11 11 11 1 | 10XR4/3 Brown<br>silty SAND, SM                | 0.7                  | Mh                            | KLA05-SBI-01<br>@ 0900 |  |  |
| 2.5                                     | 101R5/3 Brown SANO, SW well graded, damp loose | 1,5                  |                               | KCAOS_SB1-07<br>E 0910 |  |  |

#### SAMPLE COLLECTION/CHAIN-OF-CUSTODY RECORD PROJECT NAME: Kingsley Field ANGB **DELIVERY ORDER 0011** Borehole Data KLAOS -SB SAMPLING POINT: SAMPLE LOCATION: Soil SAMPLE MEDIA: SAMPLE TYPE Grab LOGBOOK NUMBER: 1 SAC - TestAmerica Sacramento READING UNITS Sample Data Sample No. 1 FIELD KLA05-SB 1-01 PID SAMPLE ID NUMBER: ppm SAMPLE DEPTH: 0-2" Date/Time: S S 18 NO. CONTAINERS & CONTAINER PRESERVATION TYPE COLLECTION VOLUME TYPE ANALYSIS (TYPE/VOL) LABORATORY CODE\*\* PFOS/PFOA cold, no preservative 1-40z plastic SAC READING UNITS Sample Data Sample No. 2 FIELD KLADS -SB 1 -02 1991.5 SAMPLE ID NUMBER: PID ppm SAMPLE DEPTH: 5-61 Date/Time: 5.5 18 0910 NO. CONTAINERS & CONTAINER PRESERVATION TYPE COLLECTION VOLUME LABORATORY TYPE ANALYSIS CODE\*\* (TYPE/VOL) 1-4oz PFOS/PFOA cold, no preservative SAC plastic \*\* "X" analysis collected; "IS" insufficient volume; "NR" not required; define other code as appropriate COMMENTS: RELINQUISHED BY: DATE/TIME RELINQUISHED BY: DATE/TIME Chris Wildt COMPANY Leidos COMPANY RECEIVED BY: DATE/TIME RECEIVED BY:

COMPANY

COMPANY

DATE/TIME

THIS PAGE INTENTIONALLY LEFT BLANK.

# APPENDIX B GROUNDWATER SAMPLING LOGS

THIS PAGE INTENTIONALLY LEFT BLANK.

|         |                              |                  | G           | ROUN      | D WAT        | <b>ER DEVELO</b> | PMENT        | LOG                |                                |                  |
|---------|------------------------------|------------------|-------------|-----------|--------------|------------------|--------------|--------------------|--------------------------------|------------------|
|         |                              |                  |             |           |              |                  |              | WELL ID:           | MIN-                           | KLA02-01         |
| PROJECT | NAME: Kir                    | ngsley Fiel      | d ANGB      |           |              |                  |              |                    | ORDER 001                      |                  |
| Date:   | Volume<br>Purged<br>(liters) | PURGE<br>RATE (A | ORP<br>(mv) | TEMP (°C) | pH<br>(s.u.) | SpecCondS/cm     | DO<br>(mg/L) | TURBIDITY<br>(NTU) | DEPTH TO<br>WATER<br>(FT BTOC) | COMMENTS         |
| 1110    | (                            |                  | 155         | 14.8      | 6.17         | (.16             | 12.58        |                    | 3.94                           | Wew hose on pray |
| 1135    | Sgal                         | Igpm             | (53         | 14.3      | 9.38         | 2.73             | 12.67        | , _                | 9.20                           |                  |
| 1145    | 15                           | 11               | 162         | 15.3      | 9.25         | 2.68             | 12.41        | _                  | 11.05                          |                  |
| 1150    | 20                           | 31               | 161         | 15.2      | 9.31         | 2.69             | 1701         | _                  | DV                             |                  |
| 1200    | 25                           |                  | 153         | 14.5      | 9.25         |                  | 11.36        |                    | Dhy                            |                  |
|         |                              |                  |             |           |              |                  |              |                    | /                              |                  |
|         | \                            |                  |             |           |              |                  |              |                    |                                |                  |
|         |                              |                  |             |           |              |                  |              |                    |                                |                  |
|         |                              |                  |             |           |              |                  |              |                    |                                |                  |
|         |                              |                  |             |           |              |                  |              |                    |                                |                  |
|         |                              |                  |             |           |              |                  |              |                    |                                |                  |
|         |                              |                  |             |           |              |                  |              |                    |                                |                  |
|         |                              |                  |             |           |              |                  |              |                    |                                |                  |
|         |                              |                  | /           |           |              |                  |              |                    |                                |                  |
|         |                              | 1                |             |           |              |                  |              |                    |                                |                  |
| RECO    | ORDED BY:                    | MA               | (Signate    | ure)      |              | QA CHECKED BY    | :            |                    | (Signati                       | ure)             |

### **GROUND WATER DEVELOPMENT LOG** WELL ID: MW-KLAOG-01 PROJECT NAME: Kingsley Field ANGB **DELIVERY ORDER 0011** PURGE **DEPTH TO** Volume Date: 5-5-18 Purged (tillers) RATE ORP DO TURBIDITY WATER pH (15026in) TEMP (°C) (mv) (s.u.) SpecCond \_\_S/cm (mg/L) (FT BTOC) TIME (NTU) COMMENTS S -377 gpm 8.76 8.90 1220 12.2 12.43 12.53 0.89 10 12.6 1275 -250 8.01 12:41 11 140 0.90 187 8.62 10-16 1230 12 11 17:15 Very Glow recharge 10.79 0.97 12.9 8.51 1245 6.5 -180 1330 RECORDED BY: QA CHECKED BY: (Signature) (Signature)

|         | 4                            |                           | C           | ROLINI    | ) MAT        | ER DEVELO                        | DMENI        | LIOG               |                                |                |
|---------|------------------------------|---------------------------|-------------|-----------|--------------|----------------------------------|--------------|--------------------|--------------------------------|----------------|
|         |                              |                           |             | INCOM     | JVVAI        | LIVULVELO                        | I IVILIV     |                    | 101.1-1                        | CLAD4-01       |
| BBOIECT | NIANAE, Vim                  | aslav Fial                | ANCD        |           |              |                                  |              |                    | ORDER 001                      |                |
|         | NAME: Kin                    |                           | ANGB        |           |              |                                  |              | DELIVERY           |                                | 1              |
| Date:   | Volume<br>Purged<br>(liters) | PURGE<br>RATE<br>(mL/min) | ORP<br>(mv) | TEMP (°C) | pH<br>(s.u.) | SpecCondS/cm                     | DO<br>(mg/L) | TURBIDITY<br>(NTU) | DEPTH TO<br>WATER<br>(FT BTOC) | COMMENTS       |
| 1340    | 0.5                          | 0.5                       | -7          | 14.2      | 10.3         | 1,0(                             | 11.57        | ~                  | 2.60                           |                |
| 1345    | 2.5                          | 0.5                       | 68          | 126       | 9.78         | 1-16                             | 12.30        | -30                | 4.34                           |                |
| 1350    | 5.0                          | 0.5                       | 34          | 12.3      | 9.74         | 1.27                             | 11.83        | -5.0               | 4.42                           |                |
| 1355    | 7.5                          | 1.0                       | MY-43       |           | 9.76         | 1.34                             | 10.07        | -5.0               | 5.05                           |                |
| 1900    | 12.5                         | 1.0                       | -15         | 12.1      | 9.46         | 1.37                             | 5.45         | -5.0               | 5.89                           |                |
| 1405    | 17.5                         | 1.0                       | 29          | 12.9      | 9.51         | 149                              | 6.87         | -S. 1              | 6.15                           |                |
| 1410    | 22.5                         | 1.0                       | 14          | 13. 0     | 9.51         | 1.36                             | 4:72         | - 5.0              | 6.80                           |                |
| 1415    | 27.5                         | (0)                       | -3          | 13.0      | 9.72         | 1.35                             | 11.77        | -50                | 6.95                           |                |
| 1420    | 32.5                         | 1.0                       | 37          | 12.2      | 9.59         | 1.37                             | 12.35        | -5.0               | 7.20                           |                |
| 1425    | 37.5                         | (.0                       | 36          | 12.3      | 9.67         | 1.40                             | 15.33        | -5.0               | 7.50                           |                |
| 1430    | 42.5                         | 1.0                       | -2          | 11.9      | 9.44         | 1.40                             | 4.88         | -5.0               | 8.05                           |                |
| 1435    | 47.5                         | 1.0                       | 12          | 11.9      | 9.51         | 1.40                             | 7.29         | - 5.0              | 8.15                           |                |
| 1440    | 52.5                         | 1.0                       | 14          | 11.8      | 9.50         | 1.40                             | 7.06         |                    | 8.35                           |                |
| 1490    | 57.5                         | 1.0                       | -12         | 11.5      | 9.42         | 1.40                             | 6.25         | -5.0               | 8.89                           |                |
|         |                              |                           | 1, 1        | ~         |              | M-W                              |              |                    |                                | Ent pury dondo |
| RECO    | ORDED BY:                    | 1 1/2                     | 101A        |           |              | QA CHECKED BY                    | :            |                    |                                | Shedulary      |
|         |                              | 111                       | (Signatu    | ure)      |              | emakers and American and Provide |              |                    | (Signatu                       | rice)          |

|                         | GROUND WATER DEVELOPMENT LOG                           |                           |             |           |              |                        |              |                    |                                |                                       |
|-------------------------|--------------------------------------------------------|---------------------------|-------------|-----------|--------------|------------------------|--------------|--------------------|--------------------------------|---------------------------------------|
|                         |                                                        |                           |             |           |              |                        |              | WELL ID:           | Mhs-                           | KLA83-01                              |
| PROJECT I               | NAME: Kir                                              | ngsley Field              | d ANGB      |           |              |                        |              | 23                 | ORDER 001:                     | · · · · · · · · · · · · · · · · · · · |
| Date:<br>S-S-IS<br>TIME | Volume<br>Purged<br>(liters)                           | PURGE<br>RATE<br>(mL/min) | ORP<br>(mv) | TEMP (°C) | pH<br>(s.u.) | SpecCond <u>M</u> S/cm | DO<br>(mg/L) | TURBIDITY<br>(NTU) | DEPTH TO<br>WATER<br>(FT BTOC) | COMMENTS                              |
| 1600                    | 0.5                                                    | 1 gpm                     | -385        | 138       | 9.12         | 1.45                   | 5.07         | -50                | 7.60                           |                                       |
| 1005                    | S                                                      | Igpm                      | -340        | 12.4      | 8.85         | 1.19                   | 7.82         | -5.0               | 8.95                           |                                       |
| 1010                    | (0                                                     | įί.                       |             |           |              | -1.08                  |              | - A - P - P        |                                |                                       |
| 1620                    | 20                                                     | UY                        | -203        | 12.3      | 8.68         | 1.08                   | 10.80        | ~                  | 9.50                           |                                       |
| 1025                    | 25                                                     | L1                        | -185        | 12.9      | 8.98         | 1.07                   | 12.90        |                    | 9.95                           |                                       |
| 1530                    | 30                                                     | 13                        | -52         | 13.4      | 8.78         | 1.08                   | 8 64         |                    | 10.09                          | 140                                   |
| 1635                    | 35                                                     | IN.                       | - SI        | 13.3      | 8.80         | 1.07                   | ***          |                    | 10.20                          |                                       |
| 1640                    | 40                                                     | ic                        | -140        | 12.5      | 8.55         | 1.08                   | 3.92         |                    | 1030                           |                                       |
| 1645                    | 45                                                     | 11                        | -135        | 12.1      | 8.61         | 1-09                   | 3.85         |                    | 10.35                          |                                       |
| 1650                    | 50                                                     | - 1,                      | -140        | 12.9      | 8.71         | 1.10                   | 3.81         |                    | 10.41                          |                                       |
| 170C                    | 60                                                     | l\                        | -5.5        | 14.0      | 8-87         | - 1.08                 | 17.14        | 1 2                | 10,41                          |                                       |
| 1705                    | 65                                                     | ν(                        | -36         | 13.0      | 8.81         | 1.05                   | 12.63        | )                  | 10.51                          |                                       |
| 1710                    | 70                                                     | 11                        | -40         | 13.1      | 8.82         | 1.10                   | 12.61        | -                  | 10.60                          |                                       |
| 1715                    | 75                                                     | 11                        | - 41        | 13.0      | 8.79         | 1.01                   | 12-60        | -                  | 16-65                          |                                       |
|                         |                                                        |                           |             | M         |              |                        |              |                    |                                |                                       |
| RECO                    | RECORDED BY:  OA CHECKED BY:  (Signature)  (Signature) |                           |             |           |              |                        |              |                    | re)                            |                                       |

#### **GROUND WATER DEVELOPMENT LOG** WELLID: MW-KLAOI-OI PROJECT NAME: Kingsley Field ANGB **DELIVERY ORDER 0011** PURGE **DEPTH TO** Date: Volume 5.5.18 Purged RATE (min) WATER ORP DO TURBIDITY pH SpecCond MS/cm TEMP (°C) TIME (mv) (s.u.) (mg/L) (NTU) (FT BTOC) COMMENTS 6.01 0.5 8.89 SCYD 13.5 441 11.05 0 9.37 5.0 8.39 1.0 8.30 505 526 12.6 9.78 10,0 1.0 -4 8.16 6 74 -5.0 1510 11.35 8.03 9.80 1.0 1515 98 150 -5-0 12.36 -5 20.0 10.38 1.0 9.96 -50 12.5 1570 ~33 7.81 12.08 1515 25.0 19.4 11.59 7.80 -S.O 10,65 12.6 10 -16 10.80 1530 1-0 8.03 -6 -5.0 30.0 20.3 12.6 .0 1535 35.0 -14 680 12.6 20.8 6.81 6. 400 390 1540 1-80 7.78 20.1 6. 1545 -0 7.75 200 -13 20.3 2.01 550 20.4 90 00 12.4 2.50 94 12.5 -10 12.89 1555 7.73 20,3 RECORDED BY: QA CHECKED BY: (Signature) (Signature)

#### GROUND WATER LOW-FLOW PURGE LOG WELL ID: MWS 73-03-PRLOS PROJECT NAME: Kingsley Field ANGB **DELIVERY ORDER 0011** Volume PURGE **DEPTH TO** Date: 3-6-18 Purged RATE ORP рН DO TURBIDITY WATER SpecCond MS/cm TEMP (°C) (s.u.) (mL/min) TIME (liters) (mv) (mg/L) (NTU) (FT BTOC) **COMMENTS** 0.043 100 66 7.29 0840 16. i 10.88 280 5.22 8.74 0.5 100 1.29 120 0845 19.9 8.72 - Z8 0850 100 0,91 5.38 100 0855 11 0.68 104 8.72 . 28 551 0900 109 11 . 28 56.5 5 52 0905 0.36 11 - 30 52.1 110 8.69 5.60 51.5 15.9 1.31 0.77 11 8.70 0910 RECORDED BY: OA CHECKED BY: (Signature) (Signature)

## GROUND WATER LOW-FLOW PURGE SHEFT PROJECT NAME: Kingsley Field ANGB **DELIVERY ORDER 0011** DATE: S.G.18 TIME: 0830 WELL ID NUMBER: MW-573-03-PRL05 WELL LOCATION: Bldg 573 DEPTH OF SCREENED INTERVAL (toc notch): S ft. to 15 tf. TYPE: PUC ID: Z" INNER CASING: WATER QUALITY METER ID: 82551 WATER LEVEL INDICATOR ID: 82662 PUMP ID: 83008 TURBIDITY ID: 82551 PID ID: 81470 DEPTH TO WATER: S. 22 FT FROM MEASURE POINT DEPTH TO TOP OF SCREEN: ~ S FT FROM MEASURE POINT DEPTH TO PUMP INTAKE: FT FROM MEASURE POINT PURGE/SAMPLE METHOD: [ ] Monsoon | Peristaltic Pump [ ] Other Pump Type 0910 PURGE END TIME: (liters) TOTAL VOLUME PURGED: M1 Yes [ ] No IF NO, WHY WAS A DEVIATION NECESSARY: S&A PLAN SAMPLING PROCEDURE FOLLOWED: RECORDED BY: QA CHECKED BY: (Signature)

# SAMPLE COLLECTION

PROJECT NAME: Kingsley Field ANGB

**DELIVERY ORDER 0011** 

DATE: S-G-18
Sample Location: Building 573

| SAMPLE ID NUMBER: | MW-573-03-PRL05-01 |
|-------------------|--------------------|
| SAMPLE LOCATION:  | MW-573-03-PRL05    |
| SAMPLE DEPTH:     | 101                |
| SAMPLING POINT:   |                    |
| SAMPLE MEDIA:     | GW                 |
| SAMPLE TYPE       | Grab               |

|              |         |            | H&S   |
|--------------|---------|------------|-------|
| FIELD        | READING | UNITS      | (Y/N) |
| Conductivity | 1.29    | S/cm       |       |
| DO           | 0.23    | mg/L       |       |
| ORP          | 115     | mV         |       |
| Temperature  | 15.9    | degrees, C |       |
| Turbidity    | 51.1    | NTUs       |       |
| рН           | 8.69    | S.U.       |       |
| PID          | 0.1     | ppm        |       |
|              |         |            |       |

COMMENTS: JMS/MSD

| NO. CONTAINERS & VOLUME               | CONTAINER<br>TYPE | ANALYSIS  | PRESERVATION TYPE (TYPE/VOL) | LABORATORY | COLLECTION<br>CODE** |
|---------------------------------------|-------------------|-----------|------------------------------|------------|----------------------|
| 2 ea - 250-mL polypro<br>polypropylen |                   | PFOS/PFOA | Cool to 4°C ±2°              | SAC        |                      |

<sup>\*\* &</sup>quot;X" analysis collected; "IS" insufficient volume; "NR" not required; define other code as appropriate

SAC - TestAmerica Sacramento

TRIP BLANK ID:

## **GROUND WATER LOW-FLOW PURGE SHEET** PROJECT NAME: Kingsley Field ANGB **DELIVERY ORDER 0011** DATE: 5-6-18 TIME: 1030 WELL LOCATION: Bldg 573 WELL ID NUMBER: MW-572-02-PRL05 DEPTH OF SCREENED INTERVAL (toc notch): S ft. to 15 ft. TYPE: PUC ID: 2" INNER CASING: 82551 WATER QUALITY METER ID: WATER LEVEL INDICATOR ID: 82667 PUMP ID: 83 008 TURBIDITY ID: \$255 PID ID: 81470 DEPTH TO WATER: 4.65 FT FROM MEASURE POINT DEPTH TO TOP OF SCREEN: FT FROM MEASURE POINT DEPTH TO PUMP INTAKE: FT FROM MEASURE POINT PURGE/SAMPLE METHOD: [ ] Monsoon [ | Peristaltic Pump [ ] Other Pump Type PURGE END TIME: 1025 PURGE START TIME: 1000 (liters) TOTAL VOLUME PURGED: Yes [ ] No IF NO, WHY WAS A DEVIATION NECESSARY: S&A PLAN SAMPLING PROCEDURE FOLLOWED: RECORDED BY: QA CHECKED BY: (Signature) (Signature)

|                   |                              |                           | GR          | OUND      | WATER        | R LOW-FLOV                 | N PUR        | GE LOG             | i i                            |            |
|-------------------|------------------------------|---------------------------|-------------|-----------|--------------|----------------------------|--------------|--------------------|--------------------------------|------------|
|                   |                              |                           |             |           |              |                            |              | WELL ID:           | MIN ST                         | 2-02-PRLOS |
| PROJECT           | NAME: Kir                    | ngsley Fiel               | d ANGB      |           |              |                            |              |                    | ORDER 001                      |            |
| Date: 5.6.18 TIME | Volume<br>Purged<br>(liters) | PURGE<br>RATE<br>(mL/min) | ORP<br>(mv) | TEMP (°C) | pH<br>(s.u.) | SpecCond /\subsection 5/cm | DO<br>(mg/L) | TURBIDITY<br>(NTU) | DEPTH TO<br>WATER<br>(FT BTOC) | COMMENTS   |
| 1000              | -                            | 100                       | 140         | 16.1      | 9.79         | 0.90                       | 13.57        | 257                | 4.75                           |            |
| (005              | 0.5                          | 100                       | 157         | 15.5      | 9.61         | 6.90                       | 9.55         | 175                | 4.78                           |            |
| 1010              | 1.0                          | 11                        | 160         | 15.5      | 9.64         | 0.90                       | 9.23         | 87.5               |                                |            |
| 1015              | 1.5                          | )!                        | 167         | 15.8      | 9.52         | 0.90                       | 8.83         | 43,1               | 41.85                          |            |
| 1020              | 2.0                          | II                        | 169         | 15.7      | 9.52         | 091                        | 8.90         | 47.1               | 4.85                           |            |
| 1025              | 2.5                          | f\                        | 1G8         | 15.8      | 9.51         | 0.92                       | 8.89         | 435                | 4.88                           |            |
|                   |                              |                           |             |           |              |                            |              |                    |                                |            |
|                   | [                            |                           |             |           |              |                            |              |                    |                                |            |
|                   |                              |                           |             |           |              |                            |              |                    |                                |            |
|                   |                              |                           |             |           |              |                            |              |                    |                                |            |
|                   |                              |                           |             |           |              |                            |              |                    |                                |            |
|                   |                              |                           |             |           |              |                            |              |                    |                                |            |
|                   |                              |                           |             |           |              |                            |              |                    |                                |            |
|                   |                              |                           |             |           |              |                            |              |                    |                                |            |
|                   |                              |                           | LA          |           |              |                            |              |                    |                                |            |
| RECO              | ORDED BY:                    | Mil                       | (Signatu    | ıre)      |              | QA CHECKED BY: (Signature) |              |                    |                                | ıre)       |

#### SAMPLE COLLECTION PROJECT NAME: Kingsley Field ANGB DELIVERY ORDER 0011 DATE: S.6.18 TIME: 1030 Sample Location: Building 573 H&S SAMPLE ID NUMBER: **FIELD** READING UNITS MW-572-02-PRL05-01 (Y/N) 0.92 SAMPLE LOCATION: MW-572-02-PRL05 Conductivity S/cm 8.89 10, DO mg/L SAMPLE DEPTH: 168 SAMPLING POINT: ORP mV Temperature 15.8 degrees, C SAMPLE MEDIA: GW 43.5 SAMPLE TYPE Grab Turbidity **NTUs** 9.51 S.U. pH PID 1.0 ppm COMMENTS: + Duplicate on this well NO. CONTAINERS & CONTAINER PRESERVATION TYPE COLLECTION CODE\*\* VOLUME TYPE **ANALYSIS** (TYPE/VOL) **LABORATORY** 2 ea - 250-mL polypropylene with polypropylene cap PFOS/PFOA Cool to 4°C ±2° SAC

SAC - TestAmerica Sacramento

TRIP BLANK ID:

## SAMPLE COLLECTION SEDIMENT/SURFACE WATER PROJECT NAME: Kingsley Field ANGB **DELIVERY ORDER 0011** DATE: 5.6-18 Sample Location: North and fall TIME: /130 H&S SAMPLE ID NUMBER: KLAQ7-SQ1-01 **FIELD** READING UNITS (Y/N) KLA07-SD1 SAMPLE LOCATION: Conductivity S/cm Surface DO mg/L SAMPLE DEPTH: SAMPLING POINT: ORP mV 50,1 SAMPLE MEDIA: Temperature degrees, C SAMPLE TYPE Grab **Turbidity NTUs** S.U. pH PID ! ppm COMMENTS: + Ouplicate 4402 NO. CONTAINERS & CONTAINER PRESERVATION TYPE COLLECTION VOLUME TYPE **ANALYSIS** (TYPE/VOL) **LABORATORY** CODE\*\* 2 ea - 250-mL polypropylene with polypropylene-cap PFOS/PFOA Cool to 4°C ±2° SAC \*\* "X" analysis collected; "IS" insufficient volume; "NR" not required; define other code as appropriate SAC - TestAmerica Sacramento

TRIP BLANK ID:

## GROUND WATER LOW-FLOW PURGE SHEFT PROJECT NAME: Kingsley Field ANGB **DELIVERY ORDER 0011** DATE: S. 6.18 TIME: 1140 WELL LOCATION: SE COMM. of PRLOZ WELL ID NUMBER: MW-KLAOZ-01 DEPTH OF SCREENED INTERVAL (toc notch): 5 ft. to 15 ft. INNER CASING: TYPE: PVC ID: 2 inches WATER QUALITY METER ID: \$2551 WATER LEVEL INDICATOR ID: 82662 PUMP ID: 83908 TURBIDITY ID: 8255/ PID ID: 91470 DEPTH TO WATER: 3-89 FT FROM MEASURE POINT DEPTH TO TOP OF SCREEN: FT FROM MEASURE POINT FT FROM MEASURE POINT DEPTH TO PUMP INTAKE: PURGE/SAMPLE METHOD: [ ] Monsoon [ ] Peristaltic Pump [ ] Other Pump Type PURGE END TIME: 1205 PURGE START TIME: 1140 TOTAL VOLUME PURGED: (liters) [X] Yes [ ] No IF NO, WHY WAS A DEVIATION NECESSARY: S&A PLAN SAMPLING PROCEDURE FOLLOWED: RECORDED BY: QA CHECKED BY: (Signature)

#### GROUND WATER LOW-FLOW PURGE LOG WELLID: MW-KLAGZ-G) **DELIVERY ORDER 0011** PROJECT NAME: Kingsley Field ANGB PURGE **DEPTH TO** Date: 5-6-18 Volume RATE WATER Purged ORP pH DO TURBIDITY (mL/min) (mv) TEMP (°C) (s.u.) SpecCond A S/cm (mg/L) (NTU) (FT BTOC) TIME (liters) COMMENTS 3.99 100 17.1 9,57 4750) 3.89 1140 157 12.68 11 160 4.31 11,94 4710 9,34 1143 0.3 6-11 16.6 9.24 4.28 5.18 455.0 3.99 1145 4.23 17.2 4.01 11 173 7.28 4140 1150 9.09 4.32 1155 11 16.7 392.0 174 2.22 3560 11 16.5 9.08 4.05 1200 2.0 4.28 2.16 15.9 11 9.09 4.31 340.01 4.08 203 7.3 2.62 201 9.08 4.31 3330 4.09 1205 16.0 11 RECORDED BY: QA CHECKED BY: (Signature)

### SAMPLE COLLECTION PROJECT NAME: Kingsley Field ANGB **DELIVERY ORDER 0011** DATE: 5-6-18 Sample Location: 1012-112-112 TIME: 1205 H&S MW-KLAGZ-01-01 SAMPLE ID NUMBER: **FIELD** READING **UNITS** (Y/N) SAMPLE LOCATION: MW-KLAQZ-01 Conductivity 4.31 S/cm 10' DO 7-02 SAMPLE DEPTH: mg/L ORP 177 SAMPLING POINT: mV 16-0 SAMPLE MEDIA: GW Temperature degrees, C 3320 SAMPLE TYPE Grab Turbidity **NTUs** 9.08 pН S.U. 0.0 PID ppm **COMMENTS:** NO. CONTAINERS & CONTAINER PRESERVATION TYPE COLLECTION VOLUME TYPE CODE\*\* **ANALYSIS** (TYPE/VOL) LABORATORY 2 ea - 250-mL polypropylene with polypropylene cap PFOS/PFOA Cool to 4°C ±2° \*\* "X" analysis collected; "IS" insufficient volume; "NR" not required; define other code as appropriate SAC - TestAmerica Sacramento TRIP BLANK ID:

## **GROUND WATER LOW-FLOW PURGE SHEET** PROJECT NAME: Kingsley Field ANGB **DELIVERY ORDER 0011** DATE: 5-6-18 TIME: 124 WELL LOCATION: SE come of PRLOG WELL ID NUMBER: MW-KLA 06 -01 DEPTH OF SCREENED INTERVAL (toc notch): 5 ft. to 15 ft. INNER CASING: TYPE: PVC ID: 2 inches WATER QUALITY METER ID: 8255 ( WATER LEVEL INDICATOR ID: 82 GC 2 83008 PUMP ID: TURBIDITY ID: \$7 SS PID ID: 814 DEPTH TO WATER: FT FROM MEASURE POINT DEPTH TO TOP OF SCREEN: FT FROM MEASURE POINT DEPTH TO PUMP INTAKE: FT FROM MEASURE POINT PURGE/SAMPLE METHOD: [ ] Monsoon [ ] Peristaltic Pump [ ] Other Pump Type PURGE START TIME: 1245 **PURGE END TIME:** TOTAL VOLUME PURGED: (liters) Yes [ ] No IF NO, WHY WAS A DEVIATION NECESSARY: S&A PLAN SAMPLING PROCEDURE FOLLOWED: RECORDED BY: QA CHECKED BY: (Signature)

#### SAMPLE COLLECTION PROJECT NAME: Kingsley Field ANGB **DELIVERY ORDER 0011** DATE: 5.6.18 TIME: 1315 Sample Location: MWHAOG -0) H&S MW-KLA/36-01-01 SAMPLE ID NUMBER: FIELD READING UNITS (Y/N) MW-KLAUG-01 0-99 SAMPLE LOCATION: Conductivity S/cm 101 9.61 mg/L SAMPLE DEPTH: DO -167 ORP mV SAMPLING POINT: 14.2 SAMPLE MEDIA: GW Temperature degrees, C 150.0 NTUs SAMPLE TYPE Turbidity Grab 8.25 S.U. pH 00 PID ppm **COMMENTS:** NO. CONTAINERS & CONTAINER COLLECTION PRESERVATION TYPE CODE\*\* VOLUME TYPE **ANALYSIS** (TYPE/VOL) LABORATORY 2 ea - 250-mL polypropylene with polypropylene cap PFOS/PFOA Cool to 4°C ±2° SAC \*\* "X" analysis collected; "IS" insufficient volume; "NR" not required; define other code as appropriate SAC - TestAmerica Sacramento TRIP BLANK ID:

## **GROUND WATER LOW-FLOW PURGE LOG** WELLID: MW-KLAGG-01 PROJECT NAME: Kingsley Field ANGB **DELIVERY ORDER 0011** Date: 5.6 18 PURGE Volume **DEPTH TO** Purged RATE ORP рН DO TURBIDITY WATER TEMP (°C) SpecCond MS/cm TIME (mL/min) (mv) (s.u.) (mg/L) (FT BTOC) (liters) (NTU) COMMENTS 151.0 \$8.35 -193 15.0 1.17 100 1245 8.61 13.24 1.02 14.1 8.70 11 -191 8.30 155.0 10.91 1250 9.25 14.0 -188 8.21 0.98 157.0 8.80 1259 1500 8.85 0.99 8.25 11 -187 1300 RECORDED BY: QA CHECKED BY: (Signature) (Signature)

## GROUND WATER LOW-FLOW PURGE SHEET PROJECT NAME: Kingsley Field ANGB **DELIVERY ORDER 0011** TIME: (1494 1340) DATE: 5618 WELL LOCATION: SU corner PRLOY WELL ID NUMBER: MW-KLAO" -01 DEPTH OF SCREENED INTERVAL (toc notch): S ft. to ( ) ft. INNER CASING: TYPE: PVC ID: 2 inches 82551 WATER QUALITY METER ID: WATER LEVEL INDICATOR ID: PUMP ID: TURBIDITY ID: \$75 PID ID: DEPTH TO WATER: 2.55 FT FROM MEASURE POINT DEPTH TO TOP OF SCREEN: FT FROM MEASURE POINT DEPTH TO PUMP INTAKE: FT FROM MEASURE POINT PURGE/SAMPLE METHOD: [ ] Monsoon [ ] Peristaltic Pump [ ] Other Pump Type PURGE START TIME: 1340 PURGE END TIME: 1410 TOTAL VOLUME PURGED: 3 (liters) Yes [ ] No IF NO, WHY WAS A DEVIATION NECESSARY: S&A PLAN SAMPLING PROCEDURE FOLLOWED: RECORDED BY: QA CHECKED BY: (Signature) (Signature)

#### GROUND WATER LOW-FLOW PURGE LOG WELLID: MW-KLA04-01 PROJECT NAME: Kingsley Field ANGB **DELIVERY ORDER 0011** 5 6 - 18 PURGE Volume **DEPTH TO** Purged RATE ORP На DO TURBIDITY WATER SpecCond M S/cm TIME (liters) (mL/min) (mv) TEMP (°C) (s.u.) (mg/L) (NTU) (FT BTOC) COMMENTS 9.86 289.0 2.58 9.44 1340 -47 17.9 -64 17.0 100 2880 2.61 11 9.70 1345 -101 5-29 9.65 350 288.0 2.62 1.78 11 9.60 291.0 2.63 11 -134 1-01 1355 11 -141 9.56 0.44 2910 1400 16 0.40 290 0 2 64 9.5G -145 1405 1.64 11 0.36 15.8 9.56 1.65 2920 2.65 1410 3.0 11 -151 RECORDED BY: QA CHECKED BY: (Signature) (Signature)

### SAMPLE COLLECTION PROJECT NAME: Kingsley Field ANGB **DELIVERY ORDER 0011** DATE: 5-6-18 TIME: 1415 Sample Location : PREOU H&S SAMPLE ID NUMBER: MW-KLA04-01-01 FIELD READING UNITS (Y/N) 1.63 MW-KLA04-01 SAMPLE LOCATION: Conductivity M\_S/cm 0.31 101 DO mg/L SAMPLE DEPTH: -159 ORP mV SAMPLING POINT: 15.6 SAMPLE MEDIA: GW Temperature degrees, C 292.0 SAMPLE TYPE Turbidity **NTUs** Grab 9.56 рН S.U. 0-1 PID ppm COMMENTS: NO. CONTAINERS & CONTAINER PRESERVATION TYPE COLLECTION **LABORATORY** CODE\*\* VOLUME TYPE ANALYSIS (TYPE/VOL) 2 ea - 250-mL polypropylene with polypropylene cap PFOS/PFOA Cool to 4°C ±2° \*\* "X" analysis collected; "IS" insufficient volume; "NR" not required; define other code as appropriate SAC - TestAmerica Sacramento TRIP BLANK ID:

## **GROUND WATER LOW-FLOW PURGE SHEET** PROJECT NAME: Kingsley Field ANGB **DELIVERY ORDER 0011** TIME: (430) DATE: 5-6-18 WELL LOCATION: SE COME PELO! WELL ID NUMBER: MW-KLA () -01 5 ft. to 10 ft. DEPTH OF SCREENED INTERVAL (toc notch): INNER CASING: TYPE: PVC ID: 2 inches WATER QUALITY METER ID: WATER LEVEL INDICATOR ID: 82662 83008 PUMP ID: TURBIDITY ID: 82551 PIDID: 814 DEPTH TO WATER: 4.32 FT FROM MEASURE POINT DEPTH TO TOP OF SCREEN: FT FROM MEASURE POINT DEPTH TO PUMP INTAKE: FT FROM MEASURE POINT PURGE/SAMPLE METHOD: [ ] Monsoon [X] Peristaltic Pump [ ] Other Pump Type PURGE START TIME: **PURGE END TIME:** TOTAL VOLUME PURGED: (liters) [X] Yes [ ] No IF NO, WHY WAS A DEVIATION NECESSARY: S&A PLAN SAMPLING PROCEDURE FOLLOWED: RECORDED BY: QA CHECKED BY: (Signature)

#### SAMPLE COLLECTION PROJECT NAME: Kingsley Field ANGB **DELIVERY ORDER 0011** DATE: 5.6 18 TIME: 1450 Sample Location : PRLO ( H&S MW-KLA<u>01</u>-01-01 SAMPLE ID NUMBER: FIELD READING **UNITS** (Y/N) MW-KLAU 1-01 19.6 SAMPLE LOCATION: Conductivity S/cm SAMPLE DEPTH: 101 DO 8.16 mg/L 128 mid point of screen SAMPLING POINT: ORP mV 15.8 SAMPLE MEDIA: GW Temperature degrees, C SAMPLE TYPE Grab 67.7 **NTUs Turbidity** pH 8.00 S.U. PID 0 ppm **COMMENTS:** NO. CONTAINERS & CONTAINER PRESERVATION TYPE COLLECTION VOLUME TYPE **ANALYSIS** (TYPE/VOL) **LABORATORY** CODE\*\* 2 ea - 250-mL polypropylene with polypropylene cap PFOS/PFOA SAC Cool to 4°C ±2° \*\* "X" analysis collected; "IS" insufficient volume; "NR" not required; define other code as appropriate SAC - TestAmerica Sacramento TRIP BLANK ID:

|              |                    |                  |             | un and    | 1000         |                 |              |                    |                    |          |
|--------------|--------------------|------------------|-------------|-----------|--------------|-----------------|--------------|--------------------|--------------------|----------|
|              |                    |                  | GR          | OUND      | WATER        | R LOW-FLOV      | W PUR        | GE LOG             | i                  |          |
|              |                    |                  |             |           |              |                 |              | WELL ID:           | MW-                | KLA01-01 |
| ROJECT       | IAME: Kir          | ngsley Field     | d ANGB      |           |              |                 |              |                    | ORDER 001          | •        |
| Date: 5 6 18 | Volume             | PURGE            |             |           |              |                 |              | 77.1               | DEPTH TO           |          |
| TIME         | Purged<br>(liters) | RATE<br>(mL/min) | ORP<br>(mv) | TEMP (°C) | pH<br>(s.u.) | SpecCond / S/cm | DO<br>(mg/L) | TURBIDITY<br>(NTU) | WATER<br>(FT BTOC) | COMMENTS |
| 1430         |                    | 100              | 149         | 16.2      | 8.11         | 20.3            |              |                    | 4.35               | COMMENTS |
| 1435         | 0.5                | 11               | 137         | 15.8      | 8.02         | 197             | 12.34        | 63.2               | 4.40               |          |
| 1438         | 0.8                | 11               | 133         | 15.9      | 8.02         | 19.6            | 8-69         | 64.2               | 4.41               |          |
| 1441         | 1.1                | 11               | 131         | 15.8      | 8.01         | 19.6            | 8.51         | 72.1               | 4.45               | 100      |
| 1445         | 1,5                | 11               | 129         | 15.8      | 8.00         | 19.6            | 8-35         | 70.1               | 4.46               |          |
|              |                    |                  |             |           |              |                 |              | 701                | 1,10               |          |
| ***          |                    |                  |             |           |              |                 |              |                    |                    |          |
|              |                    |                  |             |           |              |                 |              |                    |                    |          |
|              |                    |                  |             |           |              |                 |              |                    |                    |          |
|              |                    |                  |             | 1807.     |              |                 |              |                    |                    |          |
|              |                    |                  |             |           |              |                 |              |                    |                    |          |
|              |                    |                  |             |           |              |                 |              |                    |                    |          |
| 1            |                    |                  |             |           |              |                 |              |                    |                    |          |
|              |                    |                  |             |           |              |                 |              |                    |                    | <b>—</b> |
|              |                    | 1                | 1           | Λ         |              |                 |              |                    |                    |          |
|              |                    |                  | 1           | MIA       | L            | <u> </u>        |              |                    | 1                  |          |
| RECO         | RDED BY:           |                  | (Signatu    | 17/1/     |              | QA CHECKED BY   | :            |                    | (Signatu           | Ite)     |
|              |                    |                  | 12,8,100    | 1 ~ /     | - Land       | 3(1)            |              |                    | (Signate           |          |

# GROUND WATER LOW-FLOW PURGE SHEET PROJECT NAME: Kingsley Field ANGB **DELIVERY ORDER 0011** DATE: 5.6.18 TIME: (500) WELL LOCATION: SE COME OF PRUOS WELL ID NUMBER: MW-KLA03-01 INNER CASING: TYPE: PVC ID: 2 inches WATER QUALITY METER ID: 87551 WATER LEVEL INDICATOR ID: 82662 PUMP ID: 83008 TURBIDITY ID: 82551 PID ID: \_\_\_\_81470 DEPTH TO WATER: 6 25 FT FROM MEASURE POINT DEPTH TO TOP OF SCREEN: FT FROM MEASURE POINT DEPTH TO PUMP INTAKE: 10 FT FROM MEASURE POINT PURGE/SAMPLE METHOD: [ ] Monsoon [X] Peristaltic Pump [ ] Other Pump Type PURGE START TIME: (505 PURGE END TIME: (550) TOTAL VOLUME PURGED: 4.5 (liters) [ Yes [ ] No IF NO, WHY WAS A DEVIATION NECESSARY: S&A PLAN SAMPLING PROCEDURE FOLLOWED: RECORDED BY: QA CHECKED BY: (Signature)

#### GROUND WATER LOW-FLOW PURGE LOG WELLID: MW-KLAO3-01 PROJECT NAME: Kingsley Field ANGB **DELIVERY ORDER 0011** PURGE **DEPTH TO** Date: Volume S.6 1X Purged RATE ORP WATER pH DO TURBIDITY TIME (liters) (mL/min) (mv) TEMP (°C) (s.u.) SpecCond (LS/cm (mg/L) (NTU) (FT BTOC) COMMENTS 8.97 1305 -204 6 28 turb over 1.44 100 16.3 1355 8.8 100 1.26 3.48 6.29 1510 0.5 -237 -243 15 9 8.74 475.0 G. 29 1.23 1515 13 1.0 474.0 G 30 -253 15) .20 1.5 1520 11 8.65 19 475.06.31 1525 2.0 -252 -249 472.0 6.32 0.28 2.5 15.1 8.63 1530 473.0 6.33 12 8.61 05.0 1535 3.0 -249 .17-15.2 1540 3.5 -234 470.0 6.34 471.0 0.34 14.9 4.0 -243 1.18 1545 11 8-61 472.0 6.35 1.18 4.5 11 8.61 - 245 14.7 0.10 550 **RECORDED BY:** QA CHECKED BY: (Signature) (Signature)

#### SAMPLE COLLECTION PROJECT NAME: Kingsley Field ANGB **DELIVERY ORDER 0011** DATE: 5.6.18 TIME: 1555 Sample Location: SE Corner PRLU3 H&S MW-KLA 5-01-01 SAMPLE ID NUMBER: FIELD READING UNITS (Y/N) 1.18 MW-KLACS-01 M S/cm SAMPLE LOCATION: Conductivity SAMPLE DEPTH: 10 DO 0.09 mg/L -247 SAMPLING POINT: ORP mV 14.3 SAMPLE MEDIA: GW Temperature degrees, C SAMPLE TYPE Grab Turbidity 471.0 NTUs 8.62 pH S.U. 0.0 PID ppm **COMMENTS: NO. CONTAINERS &** CONTAINER PRESERVATION TYPE COLLECTION VOLUME TYPE (TYPE/VOL) CODE\*\* **ANALYSIS** LABORATORY 2 ea - 250-mL polypropylene with polypropylene cap PFOS/PFOA Cool to 4°C ±2° SAC \*\* "X" analysis collected; "IS" insufficient volume; "NR" not required; define other code as appropriate SAC - TestAmerica Sacramento TRIP BLANK ID:

#### SAMPLE COLLECTION SEDIMENT/SURFACE WATER PROJECT NAME: Kingsley Field ANGB **DELIVERY ORDER 0011** TIME: 0830 DATE: 5.7 18 South Outfall Sample Location: H&S SAMPLE ID NUMBER: KLAO8-SWL-01 **FIELD** READING **UNITS** (Y/N) 0.397 KLA08 -9/1 SAMPLE LOCATION: Conductivity S/cm DO mg/L SAMPLE DEPTH: 6-62 -27 ORP mV SAMPLING POINT: 13.2 SAMPLE MEDIA: Temperature degrees, C OVE SAMPLE TYPE Grab Turbidity **NTUs** 8.80 S.U. На PID ppm COMMENTS: NO. CONTAINERS & CONTAINER PRESERVATION TYPE COLLECTION VOLUME TYPE **ANALYSIS** (TYPE/VOL) LABORATORY CODE\*\* 2 ea - 250-mL polypropylene with polypropylene cap PFOS/PFOA Cool to 4°C ±2° SAC \*\* "X" analysis collected; "IS" insufficient volume; "NR" not required; define other code as appropriate

SAC - TestAmerica Sacramento

TRIP BLANK ID:

# APPENDIX C SURVEY REPORT FOR NEW MONITORING WELLS

THIS PAGE INTENTIONALLY LEFT BLANK.

### 1045-18 LEIDOS KINGSLEY FIELD WELL LOCATIONS (5-8-18)

| MW-K                 | LA01-01        | WELL CAP    | RIM      | GROUND   |
|----------------------|----------------|-------------|----------|----------|
| SPCS, OR 3062, USFT, | NORTHING       | 181,574.9   |          |          |
| NAD83                | EASTING        | 4,584,702.1 |          |          |
| MCCOA (DD)           | LATITUDE       | 42.158031   |          |          |
| WGS84 (DD)           | LONGITUDE      | -121.741191 |          |          |
| NAVD88               | ELEVATION (FT) |             | 4,088.11 | 4,088.01 |
| MW-K                 | LA02-01        | WELL CAP    | RIM      | GROUND   |
| SPCS, OR 3062, USFT, | NORTHING       | 185,270.4   |          |          |
| NAD83                | EASTING        | 4,584,293.7 |          |          |
| MCCOV (DD)           | LATITUDE       | 42.168153   |          |          |
| WGS84 (DD)           | LONGITUDE      | -121.742899 |          |          |
| NAVD88               | ELEVATION (FT) |             | 4,088.40 | 4,088.41 |
| MW-KI                | LA03-01        | WELL CAP    | RIM      | GROUND   |
| SPCS, OR 3062, USFT, | NORTHING       | 181,398.1   |          |          |
| NAD83                | EASTING        | 4,584,309.8 |          |          |
| MCCOA (DD)           | LATITUDE       | 42.157530   |          |          |
| WGS84 (DD)           | LONGITUDE      | -121.742628 |          |          |
| NAVD88               | ELEVATION (FT) |             | 4,089.72 | 4,089.66 |
| MW-KI                | A04-01         | WELL CAP    | RIM      | GROUND   |
| SPCS, OR 3062, USFT, | NORTHING       | 182,222.0   |          |          |
| NAD83                | EASTING        | 4,584,912.3 |          |          |
| MCCOA (DD)           | LATITUDE       | 42.159815   |          |          |
| WGS84 (DD)           | LONGITUDE      | -121.740451 |          |          |
| NAVD88               | ELEVATION (FT) |             | 4,086.43 | 4,086.39 |
| MW-KLA06-01          |                | WELL CAP    | RIM      | GROUND   |
| SPCS, OR 3062, USFT, | NORTHING       | 183,564.5   |          |          |
| NAD83                | EASTING        | 4,583,923.5 |          |          |
| MCCOA (DD)           | LATITUDE       | 42.163458   |          |          |
| WGS84 (DD)           | LONGITUDE      | -121.744171 |          |          |
| NAVD88               | ELEVATION (FT) |             | 4,089.08 | 4,088.98 |

| VERTICAL  | FLEVATION. | BENCHMARK |
|-----------|------------|-----------|
| VLIVIICAL | LLLVAIION  | DENCINAMA |

| DID: NIVOSEO                 | NORTHING       | 185,913.9851   |
|------------------------------|----------------|----------------|
| PID: NY0350<br>NGS Datasheet | EASTING        | 4,585,944.5715 |
| NG3 Datasheet                | ELEVATION (FT) | 4,089.17       |

REGISTERED PROFESSIONAL LAND SURVEYOR

OREGON
SEPTEMBER 13, 2016
MICHELLE McBRIDE
91128PLS

EXPIRATION DATE: 12/31/18

THIS PAGE INTENTIONALLY LEFT BLANK.

## APPENDIX D DATA VALIDATION REPORTS

THIS PAGE INTENTIONALLY LEFT BLANK.

### **LEIDOS Laboratory Data Verification Checklist** Kingsley Project: Page 1 of 3 **PFCs** SDG No: J39023 Analyte Group: Sample Matrix: Water/Soil EDD (Y/N): Disposition of Data Package: NCR No. (if applicable): 1. Case Narrative Read SDG Case Narrative Check Laboratory sample ID vs. Project sample ID lists Check that discussion covers each analytical type included in the SDG Υ Check for identified nonconforming items (e.g., missed holding times, etc.) 2. Chain-of-Custody (COC) Check COC sample collection, shipping, and receiving dates Check that COC signature blocks are complete Υ Check COC project sample IDs vs. Lab IDs and Result Form IDs Match COC requested analyses with Case Narrative and with data package content (Result Forms) 3. Analytical Results Form Verify that a Result Form is present for each sample and analysis On each Result Form check: SDG No. Sample ID Lab ID **Date Collected Date Extracted** Date Analyzed Υ Result Matrix Result Units

|                     |                        |                                                                                                                                                                                                    | Page 2 of             | 3             |
|---------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------|
| 4. Project Verifica | ation                  |                                                                                                                                                                                                    |                       |               |
|                     | Check project anal     | lyte list vs. analytes reported                                                                                                                                                                    | _                     | Υ             |
|                     | Check project requ     | uested methods vs. analytical methods performed                                                                                                                                                    | l _                   | Υ             |
|                     | Check analyte rep      | orting levels vs. project reporting level goals                                                                                                                                                    | -                     | Υ             |
| 5 Analytical Qua    | lity Control Informati | on                                                                                                                                                                                                 |                       |               |
| o. Analytical Qua   | •                      | te recovery results (e.g., org. form II)                                                                                                                                                           | -                     | Υ             |
|                     | Check for LCS res      | ults (e.g., org. form III, inorg. form XII)                                                                                                                                                        | _                     | Υ             |
|                     | Check for method       | blank results ( e.g., org. form IV, inorg. form III)                                                                                                                                               | _                     | Υ             |
|                     | Check for MS/MSI       | O results (e.g., inorg. form V)                                                                                                                                                                    | _                     | Υ             |
|                     | Check for laborato     | ry duplicate results (e.g., inorg. form VI)                                                                                                                                                        | _                     | NA            |
|                     | Check for Method       | Calibration and Run Documentation                                                                                                                                                                  |                       |               |
|                     | organic:               | instrument performance check initial calibration data continuing calibration data internal standard areas internal standard retention times sample clean-up documentation (org. forms V through X) | -<br>-<br>-<br>-<br>- | Y Y Y Y Y Y Y |
|                     | metal:                 | initial calibration data<br>continuing calibration data<br>method detection limits<br>method linear range<br>sample run sequence<br>(inorg. forms II, IV, and VIII through XIV)                    | -<br>-<br>-<br>-      |               |
|                     | other:                 | initial calibration data<br>continuing calibration data<br>method detection limits<br>sample run sequence                                                                                          | -<br>-<br>-<br>-      |               |

|                    |                                                                                                 |                  | Page 3 of 3     |
|--------------------|-------------------------------------------------------------------------------------------------|------------------|-----------------|
| . Incorrect Inforn | nation                                                                                          |                  |                 |
|                    | Identify missing items or incorrect information (i.e., incorrect sample IDs, etc.)              | missing forms,   | unsigned forms, |
|                    | Contact the laboratory or project personnel to obtai or correct information                     | n missing inforn | nation          |
| Document of        | corrections below:                                                                              |                  |                 |
|                    |                                                                                                 |                  |                 |
|                    |                                                                                                 |                  |                 |
|                    |                                                                                                 |                  |                 |
|                    |                                                                                                 |                  |                 |
|                    |                                                                                                 |                  |                 |
|                    |                                                                                                 |                  |                 |
|                    |                                                                                                 |                  |                 |
|                    |                                                                                                 |                  |                 |
|                    |                                                                                                 |                  |                 |
| . Nonconforming    | Items                                                                                           |                  |                 |
|                    | Document all nonconforming items that can not be a Non-Conformance Report (NCR), complete form, |                  |                 |
|                    | NCR # Item                                                                                      |                  |                 |
|                    |                                                                                                 |                  |                 |
|                    |                                                                                                 |                  |                 |
|                    |                                                                                                 |                  |                 |
| Reviewed By:       | Brooks Francis                                                                                  | Date:            | 6/15/18         |
| A Review By:       | Nochmen Stack                                                                                   | Date:            | 7/2/18          |

## **LEIDOS Laboratory Data Package Detail Form** Kingsley Project: Page 1 of 3 J39023 **Analyte Group:** SDG No: PFC \*\*SEE ATTACHED\*\* Field Matrix Analysis Notes: Lab Sample ID ID# Comments:

## Sample Summary

Client: Leidos, Inc. Project/Site: Phase III, ANG-Kingsley

TestAmerica Job ID: 320-39023-1

| Lab Sample ID | Client Sample ID    | Matrix | Collected      | Received       |
|---------------|---------------------|--------|----------------|----------------|
| 320-39023-1   | MW-KLA01-01-01      | Water  | 05/06/18 14:50 | 05/08/18 09:00 |
| 320-39023-2   | MW-KLA02-01-01      | Water  | 05/06/18 12:05 | 05/09/18 09:20 |
| 320-39023-3   | MW-KLA03-01-01      | Water  | 05/06/18 15:55 | 05/08/18 09:00 |
| 320-39023-4   | MW-KLA04-01-01      | Water  | 05/06/18 14:15 | 05/08/18 09:00 |
| 320-39023-5   | MW-573-03-PRL05-01  | Water  | 05/06/18 09:15 | 05/08/18 09:00 |
| 320-39023-6   | MW-572-02-PRL05-01  | Water  | 05/06/18 10:30 | 05/08/18 09:00 |
| 320-39023-7   | MW-KLA06-01-01      | Water  | 05/06/18 13:15 | 05/08/18 09:00 |
| 320-39023-8   | KLA08-SW1-01        | Water  | 05/07/18 08:30 | 05/08/18 09:00 |
| 320-39023-9   | KLA-01-SB1-01       | Solid  | 05/02/18 14:00 | 05/09/18 09:20 |
| 320-39023-10  | KLA-01-SB1-02       | Solid  | 05/02/18 14:10 | 05/09/18 09:20 |
| 320-39023-11  | KLA-01-SB2-01       | Solid  | 05/02/18 13:15 | 05/09/18 09:20 |
| 320-39023-12  | KLA-01-SB2-02       | Solid  | 05/02/18 13:20 | 05/09/18 09:20 |
| 320-39023-13  | KLA-01-SB3-01       | Solid  | 05/02/18 14:25 | 05/09/18 09:20 |
| 320-39023-14  | KLA-01-SB3-02       | Solid  | 05/02/18 14:30 | 05/09/18 09:20 |
| 320-39023-15  | KLA02-SB1-01        | Solid  | 05/04/18 13:40 | 05/09/18 09:20 |
| 320-39023-16  | KLA02-SB1-02        | Solid  | 05/04/18 13:45 | 05/09/18 09:20 |
| 320-39023-17  | KLA02-SB2-01        | Solid  | 05/04/18 13:20 | 05/09/18 09:20 |
| 320-39023-18  | KLA02-SB2-02        | Solid  | 05/04/18 13:25 | 05/09/18 09:20 |
| 320-39023-19  | KLA02-SB3-01        | Solid  | 05/04/18 13:55 | 05/09/18 09:20 |
| 320-39023-20  | KLA02-SB3-02        | Solid  | 05/04/18 14:00 | 05/09/18 09:20 |
| 320-39023-21  | KLA03-SB1-01        | Solid  | 05/01/18 09:00 | 05/09/18 09:20 |
| 320-39023-22  | KLA03-SB1-02        | Solid  | 05/01/18 09:05 | 05/09/18 09:20 |
| 320-39023-23  | KLA03-SB2-01        | Solid  | 05/02/18 12:15 | 05/09/18 09:20 |
| 320-39023-24  | KLA03-SB2-02        | Solid  | 05/02/18 12:20 | 05/09/18 09:20 |
| 320-39023-25  | KLA03-SB3-01        | Solid  | 05/01/18 08:45 | 05/09/18 09:20 |
| 320-39023-26  | KLA03-SB3-02        | Solid  | 05/01/18 08:50 | 05/09/18 09:20 |
| 320-39023-27  | KLA04-SB1-01        | Solid  | 05/04/18 08:35 | 05/09/18 09:20 |
| 320-39023-28  | KLA04-SB1-02        | Solid  | 05/04/18 08:40 | 05/09/18 09:20 |
| 320-39023-29  | KLA04-SB2-01        | Solid  | 05/04/18 08:20 | 05/09/18 09:20 |
| 320-39023-30  | KLA04-SB2-02        | Solid  | 05/04/18 08:25 | 05/09/18 09:20 |
| 320-39023-31  | KLA04-SB3-01        | Solid  | 05/04/18 08:05 | 05/09/18 09:20 |
| 320-39023-32  | KLA04-SB3-02        | Solid  | 05/04/18 08:10 | 05/09/18 09:20 |
| 320-39023-33  | KLA05-SB1-01        | Solid  | 05/05/18 09:00 | 05/09/18 09:20 |
| 320-39023-34  | KLA05-SB1-02        | Solid  | 05/05/18 09:10 | 05/09/18 09:20 |
| 320-39023-35  | KLA05-SB2-01        | Solid  | 05/05/18 09:30 | 05/09/18 09:20 |
| 320-39023-36  | KLA05-SB2-02        | Solid  | 05/05/18 09:40 | 05/09/18 09:20 |
| 320-39023-37  | KLA05-SB3-01        | Solid  | 05/05/18 10:10 | 05/09/18 09:20 |
| 320-39023-38  | KLA05-SB3-02        | Solid  | 05/05/18 10:20 | 05/09/18 09:20 |
| 320-39023-39  | KLA06-SB1-01        | Solid  | 05/01/18 14:15 | 05/09/18 09:20 |
| 320-39023-40  | KLA06-SB1-02        | Solid  | 05/01/18 14:20 | 05/09/18 09:20 |
| 320-39023-41  | KLA06-SB2-01        | Solid  | 05/01/18 13:45 | 05/09/18 09:20 |
| 320-39023-42  | KLA06-SB2-02        | Solid  | 05/01/18 13:50 | 05/09/18 09:20 |
| 320-39023-43  | KLA07-SD1-01        | Solid  | 05/06/18 11:30 | 05/09/18 09:20 |
| 320-39023-44  | ER-01               | Water  | 05/01/18 15:30 | 05/09/18 09:20 |
| 320-39023-45  | FB-01               | Water  | 05/01/18 15:50 | 05/09/18 09:20 |
| 320-39023-46  | ER-02               | Water  | 05/02/18 09:40 | 05/09/18 09:20 |
| 320-39023-47  | ER-03               | Water  | 05/03/18 10:30 | 05/08/18 09:00 |
| 320-39023-48  | ER-04               | Water  | 05/04/18 11:00 | 05/09/18 09:20 |
| 320-39023-49  | MW-572-02-PRL05-01D | Water  | 05/06/18 10:30 | 05/08/18 09:00 |
| 320-39023-51  | KLA03-SB-2-01D      | Solid  |                | 05/09/18 09:20 |
| 320-39023-52  | KLA06-SB-2-02D      | Solid  |                | 05/09/18 09:20 |
| 320-39023-53  | KLA02-SB2-02D       | Solid  |                | 05/09/18 09:20 |
| 320-39023-54  | KLA02-SB1-02D       | Solid  | 05/04/18 13:45 |                |

## Sample Summary

Client: Leidos, Inc. Project/Site: Phase III, ANG-Kingsley

TestAmerica Job ID: 320-39023-1

| Lab Sample ID | Client Sample ID       | Matrix | Collected Received            |
|---------------|------------------------|--------|-------------------------------|
| 320-39023-55  | KLA05-SB1-01D          | Solid  | 05/05/18 09:00 05/09/18 09:20 |
| 320-39023-56  | ER-05                  | Water  | 05/06/18 16:00 05/08/18 09:00 |
| 320-39023-57  | IDW-KINGSLEY-SO-LDOS01 | Solid  | 05/07/18 09:45 05/08/18 09:00 |
| 320-39023-58  | IDW-KINGSLEY-WA-LDOS01 | Water  | 05/07/18 09:30 05/08/18 09:00 |
| 320-39023-59  | KLA07-SD1-01D          | Solid  | 05/06/18 11:30 05/08/18 09:00 |

## Leidos - Horsham Project Specific PFASs by LC/MS/MS Methods Data Verification/Validation

| SDG No:  Laboratory:  Test America  Matrix:  The above data package has been reviewed and the analytical quality cordata have been summarized. The general criteria used to assess the analytical auditor of the following:  Case Narrative  Analytical quality cordata validation of the following:  Instrument Sensitivity Internal Standard Perport of the properties of the following:  Instrument Sensitivity Internal Standard Perport of the following:  Instrument Sensitivity Internal Standa | Checks formance and Differences  Indary Dilution  Ilidation criteria in this procedure. In are required for one point  Ile.  I |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The above data package has been reviewed and the analytical quality cordata have been summarized. The general criteria used to assess the analytical on DOD QSM 5.1 guidance and examination of the following:  Case Narrative Instrument Sensitivity Analytical Holding Times Internal Standard Per Sample Preservation MS/MSD Recoveries Method Calibration LCS Recoveries Method and Project Blanks Re-analysis and Second Project Specific QA/QC or contract requirements may take priority over variet If this SDG requires full validation; recalculations from the raw data for each ICAL, one CCV, one of each QC sample, and one field samp Data verification and data validation are essentially identical, with the requires results to be recalculated from the raw data.  Remarks: DoD QSM  Some results were qualified as estimated due to surrogate, IS, and/or MS/MSD decrease.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Water/Soil  Introl/quality assurance performance alytical integrity of the data were  Checks formance and Differences and Differences and are required for one point le.  Le exception that validation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| The above data package has been reviewed and the analytical quality cordata have been summarized. The general criteria used to assess the anabased on DOD QSM 5.1 guidance and examination of the following:  Case Narrative Instrument Sensitivity Analytical Holding Times Internal Standard Persample Preservation MS/MSD Recoveries Method Calibration LCS Recoveries Method and Project Blanks Re-analysis and Second Project Specific QA/QC or contract requirements may take priority over variety this SDG requires full validation; recalculations from the raw data for each ICAL, one CCV, one of each QC sample, and one field samp Data verification and data validation are essentially identical, with the requires results to be recalculated from the raw data.  Remarks: DoD QSM  Some results were qualified as estimated due to surrogate, IS, and/or MS/MSD decrease.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ctrol/quality assurance performance lytical integrityof the data were  Checks formance and Differences and Differences and references are required for one point le.  Le exception that validation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| data have been summarized. The general criteria used to assess the analysised on DOD QSM 5.1 guidance and examination of the following:  Case Narrative Instrument Sensitivity Analytical Holding Times Internal Standard Per Sample Preservation MS/MSD Recoveries Method Calibration LCS Recoveries Method and Project Blanks Re-analysis and Second Project Specific QA/QC or contract requirements may take priority over valled this SDG requires full validation; recalculations from the raw data for each ICAL, one CCV, one of each QC sample, and one field samp Data verification and data validation are essentially identical, with the requires results to be recalculated from the raw data.  Remarks: DoD QSM  Some results were qualified as estimated due to surrogate, IS, and/or MS/MSD description.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Checks formance and Differences  Indary Dilution  Ilidation criteria in this procedure. In are required for one point  Ile.  I |
| Case Narrative Instrument Sensitivity Analytical Holding Times Internal Standard Per Sample Preservation MS/MSD Recoveries Method Calibration LCS Recoveries Method and Project Blanks Re-analysis and Second Project Specific QA/QC or contract requirements may take priority over vailed this SDG requires full validation; recalculations from the raw data for each ICAL, one CCV, one of each QC sample, and one field samp Data verification and data validation are essentially identical, with the requires results to be recalculated from the raw data.  Remarks: DoD QSM  Some results were qualified as estimated due to surrogate, IS, and/or MS/MSD december 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Checks formance and Differences andary Dilution didation criteria in this procedure. a are required for one point de. e exception that validation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Analytical Holding Times Internal Standard Per Sample Preservation MS/MSD Recoveries Method Calibration LCS Recoveries Method and Project Blanks Re-analysis and Second Project Specific QA/QC or contract requirements may take priority over varies at If this SDG requires full validation; recalculations from the raw data for each ICAL, one CCV, one of each QC sample, and one field samp Data verification and data validation are essentially identical, with the requires results to be recalculated from the raw data.  Remarks: DoD QSM  Some results were qualified as estimated due to surrogate, IS, and/or MS/MSD decorrections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | formance and Differences  Indary Dilution  Ilidation criteria in this procedure.  In are required for one point  Ile.  Ile exception that validation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sample Preservation MS/MSD Recoveries Method Calibration LCS Recoveries Method and Project Blanks Re-analysis and Second Project Specific QA/QC or contract requirements may take priority over value at the same of the same  | and Differences  Indary Dilution  Ilidation criteria in this procedure.  In are required for one point  Ile.  Ile exception that validation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Method Calibration LCS Recoveries Method and Project Blanks Re-analysis and Second Project Specific QA/QC or contract requirements may take priority over value.  * If this SDG requires full validation; recalculations from the raw data for each ICAL, one CCV, one of each QC sample, and one field samp Data verification and data validation are essentially identical, with the requires results to be recalculated from the raw data.  Remarks: DoD QSM  Some results were qualified as estimated due to surrogate, IS, and/or MS/MSD data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ndary Dilution didation criteria in this procedure. a are required for one point de. e exception that validation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Method and Project Blanks Re-analysis and Second Project Specific QA/QC or contract requirements may take priority over value. If this SDG requires full validation; recalculations from the raw data for each ICAL, one CCV, one of each QC sample, and one field samp Data verification and data validation are essentially identical, with the requires results to be recalculated from the raw data.  Remarks: DoD QSM  Some results were qualified as estimated due to surrogate, IS, and/or MS/MSD description.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | alidation criteria in this procedure.  In are required for one point  Ile.  Ile exception that validation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Project Specific QA/QC or contract requirements may take priority over variation and the results to be recalculated from the raw data.  Remarks: DoD QSM  Some results were qualified as estimated due to surrogate, IS, and/or MS/MSD decrease.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | alidation criteria in this procedure.  In are required for one point  Ile.  Ile exception that validation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| * If this SDG requires full validation; recalculations from the raw data for each ICAL, one CCV, one of each QC sample, and one field samp Data verification and data validation are essentially identical, with the requires results to be recalculated from the raw data.  Remarks: DoD QSM  Some results were qualified as estimated due to surrogate, IS, and/or MS/MSD descriptions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | are required for one point le. e exception that validation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| * If this SDG requires full validation; recalculations from the raw data for each ICAL, one CCV, one of each QC sample, and one field samp Data verification and data validation are essentially identical, with the requires results to be recalculated from the raw data.  Remarks: DoD QSM  Some results were qualified as estimated due to surrogate, IS, and/or MS/MSD data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | are required for one point le. e exception that validation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| for each ICAL, one CCV, one of each QC sample, and one field samp Data verification and data validation are essentially identical, with the requires results to be recalculated from the raw data.  Remarks: DoD QSM  Some results were qualified as estimated due to surrogate, IS, and/or MS/MSD descriptions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | le.<br>e exception that validation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Data verification and data validation are essentially identical, with the requires results to be recalculated from the raw data.  Remarks: DoD QSM  Some results were qualified as estimated due to surrogate, IS, and/or MS/MSD described in the raw data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e exception that validation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| requires results to be recalculated from the raw data.  Remarks: DoD QSM  Some results were qualified as estimated due to surrogate, IS, and/or MS/MSD d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Remarks: DoD QSM  Some results were qualified as estimated due to surrogate, IS, and/or MS/MSD d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | iscrepancies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Remarks: DoD QSM  Some results were qualified as estimated due to surrogate, IS, and/or MS/MSD d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | iscrepancies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Some results were qualified as estimated due to surrogate, IS, and/or MS/MSD d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | iscrepancies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iscrepancies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Some results were qualified as non-detect due to blank contamination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Definition of Qualifiers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| "U", not detected at the associated level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| "UJ", not detected and associated value estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| "J", associated value estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| "R", associated value unusable or analyte identity unfo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | punded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Brooks Francis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Verification/Validation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 04540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Red /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6/15/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| QA Reviewed by! / Chran Stack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

# Page 2 of 10 **Case Narrative** Verify direct statements made within the Laboratory Case Narrative (note discrepancies). No additional discrepancies were noted Remarks: Re-analysis and Secondary Dilutions Verify that re-analysis and secondary dilutions were performed and reported as necessary. Determine appropriate results to report. Some samples were reanalyzed at a dilution Remarks: Several samples had analyte concentrations that still exceeded the upper calibration range after the maximum technically possible dilution (100x) without performing serial dilutions; these results were qualified as estilamted with reason code N03: N03: Professional judgment used to qualify data that exceeded calibration range after maximum dilution

#### **Holding Times**

Waters - Cool 4°C; 14 days to extraction; 28 days to analysis collection. Note: Trizma preservative is recommended for aqueous samples, but not required.

Soils - Cool 4°C; extraction within 28 days of sample collection; analysis within 28 days of sample extraction

#### **Deviations:**

| Doviduoio. |                   |                  |          |
|------------|-------------------|------------------|----------|
| Sample #   | Date<br>Collected | Date<br>Analyzed | Comments |
|            | 001100100         | 7 thaty 20 d     | Commente |
|            |                   |                  |          |
|            |                   |                  |          |
|            |                   |                  |          |
|            |                   |                  |          |
|            |                   |                  |          |
|            |                   |                  |          |
|            |                   |                  |          |
|            |                   |                  |          |
|            |                   |                  |          |
|            |                   |                  |          |
|            |                   |                  |          |
|            |                   |                  |          |
|            |                   |                  |          |
|            |                   |                  |          |
|            |                   |                  |          |
|            |                   |                  |          |
|            |                   |                  |          |
|            |                   |                  |          |

#### **Actions:**

- 1. If holding times are exceeded, all results are qualified as estimated (J/UJ)
- 2. If holding times are exceeded by more than 2X, reviewer may qualify non-detected results as unusable (R)

| Remarks: | All holding times were met |  |
|----------|----------------------------|--|
|          |                            |  |
|          |                            |  |
|          |                            |  |
|          |                            |  |
|          |                            |  |
|          |                            |  |
|          |                            |  |

#### Injection Internal Standards (IS)

List any field samples, field QC samples, or laboratory QC samples where injection internal standards are not within 50 to 150% of the peak areas from the ICAL midpoint or daily inititial CCV, as applicable.

\*\*See attached for additional discrepancies \*\*

#### **Deviations:**

| Sample #        | Injection IS/% Rec | Affected PFAS Compounds |
|-----------------|--------------------|-------------------------|
| KLA-01-SB1-01DL | PFOA 228222        |                         |
|                 |                    |                         |
|                 |                    |                         |
|                 |                    |                         |
|                 |                    |                         |
|                 |                    |                         |
|                 |                    |                         |
|                 |                    |                         |
|                 |                    |                         |
|                 | 0+                 |                         |
|                 |                    |                         |
|                 |                    |                         |
|                 |                    |                         |
|                 |                    |                         |
|                 |                    |                         |

| lf any injection | IS is <25%, | qualify detects as | J; non-detects as R |
|------------------|-------------|--------------------|---------------------|
|------------------|-------------|--------------------|---------------------|

If any Injection IS is > upper control limit; qualify detects as J, no action for non-detects

Lab Name: TestAmerica Sacramento Job No.: 320-39023-1

SDG No.:

Sample No.: CCV 320-225818/3 Date Analyzed: 05/28/2018 07:15

Instrument ID: A8\_N GC Column: GeminiC18 3x100 ID: 3(mm)

Lab File ID (Standard): 2018.05.27LLADX 003 Heated Purge: (Y/N) N

Calibration ID: 39198

|                    | 13PFO.                    | A        |      |        |      |        |      |
|--------------------|---------------------------|----------|------|--------|------|--------|------|
|                    |                           | AREA #   | RT # | AREA # | RT # | AREA # | RT # |
| 12/24 HOUR STD     |                           | 5150922  | 2.70 |        |      |        |      |
| UPPER LIMIT        |                           | 7726383  | 2.90 |        |      |        |      |
| LOWER LIMIT        |                           | 2575461  | 2.50 |        |      |        |      |
| LAB SAMPLE ID      | CLIENT SAMPLE ID          |          |      |        |      |        |      |
| CCB 320-225818/1   |                           | 4948330  | 2.70 |        |      |        |      |
| CCVL 320-225818/2  |                           | 4974159  | 2.70 |        |      |        | -    |
| MB 320-223615/1-A  |                           | 4525357  | 2.70 |        |      |        | -    |
| LCS 320-223615/2-A |                           | 5050927  | 2.71 |        |      |        |      |
| CCV 320-225818/14  |                           | 5195418  | 2.70 |        |      |        |      |
| CCV 320-225818/25  |                           | 4983990  | 2.70 |        |      |        |      |
| CCV 320-225820/1   |                           | 5071434  | 2.70 |        |      |        |      |
| MB 320-224065/1-A  |                           | 4644358  | 2.71 |        |      |        |      |
| LCS 320-224065/2-A |                           | 5665654  | 2.71 |        |      |        |      |
| 320-39023-1        | MW-KLA01-01-01            | 5410474  | 2.70 |        |      |        |      |
| 320-39023-2        | MW-KLA02-01-01            | 1305306Q | 2.71 |        |      |        |      |
| 320-39023-3        | MW-KLA03-01-01            | 5330619  | 2.71 |        |      |        |      |
| 320-39023-5        | MW-573-03-PRL05-01        | 2314739Q | 2.71 |        |      |        |      |
| 320-39023-5 MS     | MW-573-03-PRL05-01 MS     | 2201473Q | 2.71 |        |      |        |      |
| 320-39023-5 MSD    | MW-573-03-PRL05-01<br>MSD | 2321634Q | 2.72 |        |      |        |      |
| 320-39023-6        | MW-572-02-PRL05-01        | 4879691  | 2.71 |        |      |        |      |
| CCV 320-225820/12  |                           | 4860082  | 2.71 |        |      |        |      |
| 320-39023-7        | MW-KLA06-01-01            | 1650740Q | 2.72 |        |      |        |      |
| 320-39023-49       | MW-572-02-PRL05-01D       | 6287034  | 2.71 |        |      |        |      |
| CCV 320-225820/16  |                           | 4898728  | 2.70 |        |      |        |      |

13PFOA = 13C2-PFOA13PFOA = 13C2-PFOA

Area Limit = 50%-150% of internal standard area RT Limit =  $\pm$  0.2 minutes of internal standard RT

# Column used to flag values outside QC limits

Lab Name: TestAmerica Sacramento Job No.: 320-39023-1

SDG No.:

Sample No.: CCV 320-225899/3 Date Analyzed: 05/29/2018 07:19

Instrument ID: A8\_N GC Column: GeminiC18 3x100 ID: 3(mm)

Lab File ID (Standard): 2018.05.28LLB\_033.d Heated Purge: (Y/N) N

Calibration ID: 39198

|                      | 13PFO.               | A       |      |        |      |        |      |
|----------------------|----------------------|---------|------|--------|------|--------|------|
|                      |                      | AREA #  | RT # | AREA # | RT # | AREA # | RT # |
| 12/24 HOUR STD       |                      | 4832975 | 2.70 |        |      |        |      |
| UPPER LIMIT          |                      | 7249463 | 2.90 |        |      |        |      |
| LOWER LIMIT          |                      | 2416488 | 2.50 |        |      |        |      |
| LAB SAMPLE ID        | CLIENT SAMPLE ID     |         |      |        |      |        |      |
| 320-39023-10 DL      | KLA-01-SB1-02 DL     | 239883Q | 2.71 |        |      |        |      |
| 320-39023-39 DL      | KLA06-SB1-01 DL      | 255085Q | 2.71 |        |      |        |      |
| 320-39023-40 DL      | KLA06-SB1-02 DL      | 236462Q | 2.71 |        |      |        |      |
| CCV 320-226044/8     |                      | 4769042 | 2.71 |        |      |        |      |
| 320-39023-41 DL2     | KLA06-SB2-01 DL2     | 52350Q  | 2.71 |        |      |        |      |
| 320-39023-41 MS DL2  | KLA06-SB2-01 MS DL2  | 53260Q  | 2.72 |        |      |        |      |
| 320-39023-41 MSD DL2 | KLA06-SB2-01 MSD DL2 | 52931Q  | 2.71 |        |      |        |      |
| 320-39023-42 DL2     | KLA06-SB2-02 DL2     | 53215Q  | 2.71 |        |      |        |      |
| 320-39023-52 DL2     | KLA06-SB-2-02D DL2   | 56168Q  | 2.71 |        |      |        |      |
| 320-39023-55 DL      | KLA05-SB1-01D DL     | 55907Q  | 2.71 |        |      |        |      |
| 320-39023-41 DL      | KLA06-SB2-01 DL      | 500756Q | 2.71 |        |      |        |      |
| 320-39023-41 MS DL   | KLA06-SB2-01 MS DL   | 488067Q | 2.71 |        |      |        |      |
| 320-39023-41 MSD DL  | KLA06-SB2-01 MSD DL  | 522528Q | 2.71 |        |      |        |      |
| CCV 320-226044/19    |                      | 4840719 | 2.71 |        |      |        |      |
| 320-39023-42 DL      | KLA06-SB2-02 DL      | 481468Q | 2.72 |        |      |        |      |
| 320-39023-52 DL      | KLA06-SB-2-02D DL    | 455759Q | 2.71 |        |      |        |      |
| CCV 320-226044/23    |                      | 4662987 | 2.71 |        |      |        |      |
| CCV 320-226051/1     |                      | 4655044 | 2.71 |        |      |        |      |
| 320-39023-34         | KLA05-SB1-02         | 4607254 | 2.71 |        |      |        |      |
| 320-39023-19 DL      | KLA02-SB3-01 DL      | 243200Q | 2.71 |        |      |        |      |
| 320-39023-33 DL      | KLA05-SB1-01 DL      | 270174Q | 2.71 |        |      |        |      |
| 320-39023-35 DL      | KLA05-SB2-01 DL      | 520023Q | 2.72 |        |      |        |      |
| 320-39023-36 DL      | KLA05-SB2-02 DL      | 523724Q | 2.71 |        |      |        |      |
| 320-39023-17 DL      | KLA02-SB2-01 DL      | 54227Q  | 2.71 |        |      |        |      |
| CCV 320-226051/12    |                      | 4909517 | 2.71 |        |      |        |      |
| 320-39023-27 DL      | KLA04-SB1-01 DL      | 52579Q  | 2.71 |        |      |        |      |
| 320-39023-28 DL2     | KLA04-SB1-02 DL2     | 52259Q  | 2.71 |        |      |        |      |
| 320-39023-29 DL      | KLA04-SB2-01 DL      | 51909Q  | 2.72 |        |      |        |      |

13PFOA = 13C2-PFOA13PFOA = 13C2-PFOA

Area Limit = 50%-150% of internal standard area RT Limit =  $\pm$  0.2 minutes of internal standard RT

# Column used to flag values outside QC limits

Lab Name: TestAmerica Sacramento Job No.: 320-39023-1

SDG No.:

Sample No.: CCV 320-225899/3 Date Analyzed: 05/29/2018 07:19

Instrument ID: A8\_N GC Column: GeminiC18 3x100 ID: 3(mm)

Lab File ID (Standard): 2018.05.28LLB\_033.d Heated Purge: (Y/N) N

Calibration ID: 39198

|                   |                  | 13PF0   | A    |        |      |        |      |
|-------------------|------------------|---------|------|--------|------|--------|------|
|                   |                  | AREA #  | RT # | AREA # | RT # | AREA # | RT # |
| 12/24 HOUR STD    |                  | 4832975 | 2.70 |        |      |        |      |
| UPPER LIMIT       |                  | 7249463 | 2.90 |        |      |        |      |
| LOWER LIMIT       |                  | 2416488 | 2.50 |        |      |        |      |
| LAB SAMPLE ID     | CLIENT SAMPLE ID |         |      |        |      |        |      |
| 320-39023-30 DL   | KLA04-SB2-02 DL  | 52642Q  | 2.71 |        |      |        |      |
| 320-39023-31 DL2  | KLA04-SB3-01 DL2 | 57055Q  | 2.71 |        |      |        |      |
| 320-39023-32 DL2  | KLA04-SB3-02 DL2 | 56058Q  | 2.72 |        |      |        |      |
| 320-39023-37 DL   | KLA05-SB3-01 DL  | 50302Q  | 2.72 |        |      |        |      |
| 320-39023-38 DL   | KLA05-SB3-02 DL  | 50073Q  | 2.71 |        |      |        |      |
| CCV 320-226051/23 |                  | 4597435 | 2.71 |        |      |        |      |
| 320-39023-18 DL   | KLA02-SB2-02 DL  | 244352Q | 2.71 |        |      |        |      |
| 320-39023-28 DL   | KLA04-SB1-02 DL  | 237462Q | 2.70 |        |      |        |      |
| 320-39023-31 DL   | KLA04-SB3-01 DL  | 252970Q | 2.71 |        |      |        |      |
| 320-39023-32 DL   | KLA04-SB3-02 DL  | 242527Q | 2.71 |        |      |        |      |
| 320-39023-53 DL   | KLA02-SB2-02D DL | 281812Q | 2.70 |        |      |        |      |
| CCV 320-226051/32 |                  | 4791311 | 2.71 |        |      |        |      |

13PFOA = 13C2-PFOA13PFOA = 13C2-PFOA

Area Limit = 50%-150% of internal standard area RT Limit =  $\pm$  0.2 minutes of internal standard RT

 $\ensuremath{\text{\#}}$  Column used to flag values outside QC limits

Lab Name: TestAmerica Sacramento Job No.: 320-39023-1

SDG No.:

Sample No.: CCV 320-226055/3 Date Analyzed: 05/29/2018 18:33

Instrument ID: A8\_N GC Column: GeminiC18 3x100 ID: 3(mm)

Lab File ID (Standard):  $2018.05.29LLB_004.d$  Heated Purge: (Y/N) N

Calibration ID: 39198

|                    |                              | 13PFO    | A    |        |      |        |      |
|--------------------|------------------------------|----------|------|--------|------|--------|------|
|                    |                              | AREA #   | RT # | AREA # | RT # | AREA # | RT # |
| 12/24 HOUR STD     |                              | 4490167  | 2.71 |        |      |        |      |
| UPPER LIMIT        |                              | 6735251  | 2.91 |        |      |        |      |
| LOWER LIMIT        |                              | 2245084  | 2.51 |        |      |        |      |
| LAB SAMPLE ID      | CLIENT SAMPLE ID             |          |      |        |      |        |      |
| CCB 320-226055/1   |                              | 4995766  | 2.71 |        |      |        |      |
| CCVL 320-226055/2  |                              | 4987736  | 2.71 |        |      |        |      |
| 320-39023-1 DL     | MW-KLA01-01-01 DL            | 1186556Q | 2.71 |        |      |        |      |
| 320-39023-2 DL     | MW-KLA02-01-01 DL            | 65701Q   | 2.72 |        |      |        |      |
| 320-39023-3 DL     | MW-KLA03-01-01 DL            | 120036Q  | 2.71 |        |      |        |      |
| 320-39023-4 DL     | MW-KLA04-01-01 DL            | 1297832Q | 2.71 |        |      |        |      |
| 320-39023-4        | MW-KLA04-01-01               | 5705596  | 2.72 |        |      |        |      |
| 320-39023-5 DL     | MW-573-03-PRL05-01 DL        | 55596Q   | 2.71 |        |      |        |      |
| 320-39023-5 MS DL  | MW-573-03-PRL05-01 MS        | 56729Q   | 2.71 |        |      |        |      |
| 320-39023-5 MSD DL | MW-573-03-PRL05-01<br>MSD DL | 59482Q   | 2.71 |        |      |        |      |
| CCV 320-226055/14  |                              | 4699321  | 2.72 |        |      |        |      |
| 320-39023-6 DL     | MW-572-02-PRL05-01 DL        | 680737Q  | 2.72 |        |      |        |      |
| 320-39023-7 DL2    | MW-KLA06-01-01 DL2           | 78115Q   | 2.71 |        |      |        |      |
| 320-39023-49 DL    | MW-572-02-PRL05-01D<br>DL    | 689713Q  | 2.71 |        |      |        |      |
| 320-39023-56       | ER-05                        | 4587675  | 2.71 |        |      |        |      |
| CCV 320-226055/25  |                              | 4360000  | 2.71 |        |      |        |      |

13PFOA = 13C2-PFOA13PFOA = 13C2-PFOA

Area Limit = 50%-150% of internal standard area RT Limit =  $\pm$  0.2 minutes of internal standard RT

 $\ensuremath{\text{\#}}$  Column used to flag values outside QC limits

#### **Surrogates/Extraction Internal Standards (IS)**

List any field samples, field QC samples, or laboratory QC samples where surrogates/extraction internal standards are not within 50% ± of their true value.

**Note**: Extraction Internal Standards and surrogates are the same thing. For purposes of data validation and applying validation reason codes, they will be treated as surrogates. Injection internal standards will be treated as internal standards and the use of internal standard reason codes will be used.

|    |     | 4.5 |    |    |
|----|-----|-----|----|----|
| De | VIZ | 111 | იn | e. |

\*\*SEe attached for additional discrepancies\*\*

| Sample #       | Surrogate - % Rec | Affected PFAS Compounds |
|----------------|-------------------|-------------------------|
| KLA-01-SB1-01  | PFOS 48%          |                         |
| KLA06-SB2-02   | PFNA 44%          |                         |
|                | PFOS 40%          |                         |
| KLA06-SB-2-02D | PFNA 47%          |                         |
|                | PFOS 44%          |                         |
|                |                   |                         |
|                |                   |                         |
|                |                   |                         |
|                |                   |                         |
|                |                   |                         |
|                |                   |                         |
| _              |                   |                         |
|                |                   |                         |
|                |                   |                         |

#### **Actions:**

If any injection IS is <25%, qualify detects as J; non-detects as R

If any Injection IS is > upper control limit; qualify detects as J, no action for non-detects

If any surrogate is ≥ 25%, but < the lower control limit, then qualify detects as J, non-detects as UJ

| Surrogate - | Target | PFAS | Compounds | <b>Associations:</b> |
|-------------|--------|------|-----------|----------------------|
|-------------|--------|------|-----------|----------------------|

| 13C3-PFBS - PFBS   |
|--------------------|
| 13C3-PFHxS - PFHxS |
| 13C4-PFHpA - PFHpA |
| 13C8-PFOA - PFOA   |
| 13C9-PFNA - PFNA   |
| 13C8-PEOS - PEOS   |

| Remarks: |  |      |  |
|----------|--|------|--|
|          |  |      |  |
|          |  |      |  |
|          |  | <br> |  |
|          |  |      |  |

## FORM II LCMS SURROGATE RECOVERY

| Lab Name: TestAmerica Sacramento Job | No.: | 320-39023-1 |
|--------------------------------------|------|-------------|
|--------------------------------------|------|-------------|

SDG No.:

Matrix: Solid Level: Low

GC Column (1): GeminiC18 3 ID: 3 (mm)

| Client Sample ID | Lab Sample ID    | PFBS | # | PFHpA # | PFHxS # | PFOA # | PFOS | #      | PFNA | #      |
|------------------|------------------|------|---|---------|---------|--------|------|--------|------|--------|
| KLA02-SB1-01     | 320-39023-15     | 81   |   | 93      | 88      | 93     | 86   |        | 100  |        |
| KLA02-SB1-02     | 320-39023-16     | 71   |   | 81      | 77      | 84     | 76   |        | 85   |        |
| KLA02-SB2-01     | 320-39023-17     | 78   |   | 85      | 78      | 94     | 55   |        | 66   |        |
| KLA02-SB2-01 DL  | 320-39023-17 DL  | 94   | М | 72      | 66      | 87     | 68   |        | 84   |        |
| KLA02-SB2-02     | 320-39023-18     | 82   |   | 78      | 72      | 89     | 60   |        | 71   |        |
| KLA02-SB2-02 DL  | 320-39023-18 DL  | 71   |   | 78      | 82      | 91     | 71   |        | 86   |        |
| KLA02-SB3-01     | 320-39023-19     | 78   |   | 86      | 82      | 92     | 68   |        | 85   |        |
| KLA02-SB3-01 DL  | 320-39023-19 DL  | 77   | Μ | 84      | 75      | 91     | 74   |        | 100  |        |
| KLA02-SB3-02     | 320-39023-20     | 75   |   | 80      | 80      | 90     | 76   |        | 92   |        |
| KLA04-SB1-01     | 320-39023-27     | 87   |   | 98      | 87      | 88     | 30   | Q      | 37   | Q      |
| KLA04-SB1-01 DL  | 320-39023-27 DL  | 99   | Μ | 77      | 67      | 93     | 70   |        | 79   |        |
| KLA04-SB1-02     | 320-39023-28     | 95   |   | 85      | 78      | 84     | 26   | Q      | 34   | Q      |
| KLA04-SB1-02 DL  | 320-39023-28 DL  | 70   | Μ | 84      | 71      | 84     | 59   |        | 76   |        |
| KLA04-SB1-02 DL2 | 320-39023-28 DL2 | 96   | Μ | 80      | 76      | 95     | 63   |        | 73   |        |
| KLA04-SB2-01     | 320-39023-29     | 96   |   | 88      | 86      | 83     | 18   | Q      | 25   | Q      |
| KLA04-SB2-01 DL  | 320-39023-29 DL  | 111  | Μ | 74      | 64      | 80     | 58   |        | 68   |        |
| KLA04-SB2-02     | 320-39023-30     | 125  |   | 69      | 65      | 82     | 39   | Q      | 55   |        |
| KLA04-SB2-02 DL  | 320-39023-30 DL  | 133  | Μ | 70      | 78      | 95     | 61   |        | 78   |        |
| KLA04-SB3-01     | 320-39023-31     | 86   |   | 88      | 77      | 84     | 20   | Q      | 28   | Q      |
| KLA04-SB3-01 DL  | 320-39023-31 DL  | 54   |   | 75      | 69      | 82     | 47   | Q      | 59   |        |
| KLA04-SB3-01 DL2 | 320-39023-31 DL2 | 71   | Μ | 74      | 53      | 78     | 57   |        | 73   |        |
| KLA04-SB3-02     | 320-39023-32     | 109  |   | 77      | 65      | 87     | 39   | Q      | 51   |        |
| KLA04-SB3-02 DL  | 320-39023-32 DL  | 88   |   | 84      | 76      | 87     | 63   |        | 78   |        |
| KLA04-SB3-02 DL2 | 320-39023-32 DL2 | 72   | Μ | 62      | 69      | 89     | 64   |        | 78   |        |
| KLA05-SB1-01     | 320-39023-33     | 72   |   | 81      | 68      | 90     | 68   |        | 74   |        |
| KLA05-SB1-01 DL  | 320-39023-33 DL  | 54   |   | 83      | 75      | 97     | 69   |        | 90   |        |
| KLA05-SB1-02     | 320-39023-34     | 68   |   | 81      | 70      | 88     | 72   |        | 88   |        |
| KLA05-SB2-01     | 320-39023-35     | 69   |   | 85      | 71      | 92     | 73   |        | 89   |        |
| KLA05-SB2-01 DL  | 320-39023-35 DL  | 59   |   | 82      | 70      | 86     | 69   |        | 89   |        |
| KLA05-SB2-02     | 320-39023-36     | 70   |   | 74      | 74      | 85     | 72   |        | 87   |        |
| KLA05-SB2-02 DL  | 320-39023-36 DL  | 72   |   | 77      | 72      | 92     | 70   | $\neg$ | 85   | $\neg$ |
| KLA05-SB3-01     | 320-39023-37     | 122  |   | 66      | 46 Q    | 87     | 13   | Q      | 19   | Q      |
| KLA05-SB3-01 DL  | 320-39023-37 DL  | 60   | Μ | 80      | 75      | 82     | 53   | $\neg$ | 68   | $\neg$ |
| KLA05-SB3-02     | 320-39023-38     | 73   |   | 81      | 73      | 87     | 40   | Q      | 50   |        |
| KLA05-SB3-02 DL  | 320-39023-38 DL  | 78   | Μ | 81      | 79      | 99     | 70   |        | 98   |        |

|                    | QC LIMITS |
|--------------------|-----------|
| PFBS = 13C3-PFBS   | 50-150    |
| PFHpA = 13C4-PFHpA | 50-150    |
| PFHxS = 1802 PFHxS | 50-150    |
| PFOA = 13C4 PFOA   | 50-150    |
| PFOS = 13C4 PFOS   | 50-150    |
| PFNA = 13C5 PFNA   | 50-150    |
|                    |           |

 $<sup>\</sup>ensuremath{\text{\#}}$  Column to be used to flag recovery values

## FORM II LCMS SURROGATE RECOVERY

| Lab | Name: | TestAmerica | Sacramento | Job | No.: | 320-39023-1 |
|-----|-------|-------------|------------|-----|------|-------------|
|-----|-------|-------------|------------|-----|------|-------------|

SDG No.:

Matrix: Water Level: Low

GC Column (1): GeminiC18 3 ID: 3 (mm)

|                              |                       |      |   |       |   |         |        |      |   |      | —        |
|------------------------------|-----------------------|------|---|-------|---|---------|--------|------|---|------|----------|
| Client Sample ID             | Lab Sample ID         | PFBS | # | PFHpA | # | PFHxS # | PFOA # | PFOS | # | PFNA | #        |
| MW-KLA01-01-01               | 320-39023-1           | 75   |   | 79    |   | 80      | 87     | 74   |   | 81   | $\dashv$ |
| MW-KLA01-01-01 DL            | 320-39023-1 DL        | 72   |   | 77    |   | 72      | 83     | 67   |   | 77   | $\neg$   |
| MW-KLA02-01-01               | 320-39023-2           | 321  | Q | 44    | Q | 77      | 65     | 28   | Q | 40   | Q        |
| MW-KLA02-01-01 DL            | 320-39023-2 DL        | 176  | Q | 54    |   | 96      | 68     | 44   | Q | 53   |          |
| MW-KLA03-01-01               | 320-39023-3           | 75   |   | 69    |   | 66      | 85     | 54   |   | 62   | $\neg$   |
| MW-KLA03-01-01 DL            | 320-39023-3 DL        | 68   | Μ | 72    |   | 72      | 83     | 75   |   | 77   | $\neg$   |
| MW-KLA04-01-01               | 320-39023-4           | 71   |   | 74    |   | 69      | 80     | 69   |   | 79   |          |
| MW-KLA04-01-01 DL            | 320-39023-4 DL        | 63   |   | 65    |   | 62      | 75     | 62   |   | 67   | $\neg$   |
| MW-573-03-PRL05-01           | 320-39023-5           | 136  |   | 46    | Q | 54      | 77     | 48   | Q | 58   | $\neg$   |
| MW-573-03-PRL05-01<br>DL     | 320-39023-5 DL        | 99   | Μ | 64    |   | 73      | 73     | 66   |   | 69   |          |
| MW-572-02-PRL05-01           | 320-39023-6           | 85   |   | 83    |   | 81      | 89     | 74   |   | 82   |          |
| MW-572-02-PRL05-01<br>DL     | 320-39023-6 DL        | 69   | Μ | 79    |   | 77      | 92     | 75   |   | 84   |          |
| MW-KLA06-01-01               | 320-39023-7           | 233  | Q | 37    | Q | 54      | 52     | 36   | Q | 50   |          |
| MW-KLA06-01-01 DL2           | 320-39023-7 DL2       | 145  | М | 53    |   | 76      | 58     | 46   | Q | 51   |          |
| MW-572-02-PRL05-01<br>D      | 320-39023-49          | 59   |   | 60    |   | 58      | 65     | 55   |   | 61   |          |
| MW-572-02-PRL05-01<br>D DL   | 320-39023-49 DL       | 53   |   | 56    |   | 52      | 63     | 53   |   | 60   |          |
| ER-05                        | 320-39023-56          | 84   |   | 93    |   | 87      | 98     | 91   |   | 104  |          |
|                              | MB<br>320-224065/1-A  | 88   |   | 93    |   | 94      | 103    | 92   |   | 106  |          |
|                              | LCS<br>320-224065/2-A | 66   |   | 70    |   | 70      | 74     | 66   |   | 72   |          |
| MW-573-03-PRL05-01<br>MS     | 320-39023-5 MS        | 146  |   | 48    | Q | 55      | 80     | 48   | Q | 62   |          |
| MW-573-03-PRL05-01<br>MS DL  | 320-39023-5 MS<br>DL  | 107  | Μ | 64    |   | 82      | 86     | 61   |   | 71   |          |
| MW-573-03-PRL05-01<br>MSD    | 320-39023-5 MSD       | 134  |   | 45    | Q | 54      | 76     | 45   | Q | 58   |          |
| MW-573-03-PRL05-01<br>MSD DL | 320-39023-5 MSD<br>DL | 107  | Μ | 65    |   | 76      | 76     | 64   |   | 72   |          |

|                    | QC LIMITS |
|--------------------|-----------|
| PFBS = 13C3-PFBS   | 50-150    |
| PFHpA = 13C4-PFHpA | 50-150    |
| PFHxS = 1802 PFHxS | 50-150    |
| PFOA = 13C4 PFOA   | 50-150    |
| PFOS = 13C4 PFOS   | 50-150    |
| PFNA = 13C5 PFNA   | 50-150    |

<sup>#</sup> Column to be used to flag recovery values

#### VI. Blanks

A method blank was reported for each aqueous analytical batch and one method blank was reported for each soil extraction batch? (Y/N)

Review associated laboratory and project blank samples. List documented contamination below:

#### **Laboratory Method Blanks:**

| Date:   | Sample ID#    | Compound | Conc.     |
|---------|---------------|----------|-----------|
| 5/21/18 | MB 320-224509 | PFOS     | 1.82 ng/L |
|         |               |          |           |
| -       |               |          |           |
|         | -             |          |           |
|         |               |          |           |
|         |               |          |           |
|         |               |          |           |
|         |               |          |           |
|         |               |          |           |

#### Associated Project Blanks (e.g., equipment rinsates, field reagent blanks, source blanks, etc.)

| Date   | Sample ID # | Compound | Conc.     |
|--------|-------------|----------|-----------|
| 5/6/18 | ER-05       | PFOA     | 0.74 ng/L |
|        |             | PFBS     | 0.52 ng/L |
|        |             | PFOS     | 13 ng/L   |
| 5/4/18 | ER-04       | PFOS     | 1.3 ng/L  |
| 5/1/18 | FB-01       | PFOS     | 1.7 ng/L  |
| 5/1/18 | ER-01       | PFHpA    | 0.88 ng/L |
|        |             | PFOA     | 1.7 ng/L  |
|        |             | PFBS     | 0.40 ng/L |
|        |             | PFOS     | 8.7 ng/L  |
| 5/2/18 | ER-02       | PFOA     | 0.52 ng/L |
|        |             | PFOS     | 4.4 ng/L  |

| Remarks: |  |  |  |
|----------|--|--|--|
|          |  |  |  |
|          |  |  |  |
|          |  |  |  |
|          |  |  |  |
|          |  |  |  |
|          |  |  |  |

Page 7 of 10

#### VI. Blanks (continued)

Calculate the action level based on 5X the highest blank concentration

Sample weights, volumes, and dilution factors must be taken into account when applying the 5X criteria.

1.82 ng/L \* 0.01L/0.25L = 0.00909 ng/mL \*10mL/0.25L=

#### **Deviations:**

| Maximum Conc. Detected, (ppb) | Action Level (ppb)                                                                                                                                                             | Samples Affected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.82 ng/L                     | 0.364 ng/L                                                                                                                                                                     | 320-224509 320-39023-8 MB <b>320-224</b> 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.00909 ng/mL                 | 0.0909 ug/kg or 1.81 ng                                                                                                                                                        | L CCB All samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                                                                                                                                | Sampled 5/1/18 Results either ND or >AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.7 ng/L                      | 8.5 ng/L 0.017 ug/k                                                                                                                                                            | D II M AID AI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.40 ng/L                     | 2.0 ng/L 0.004 ug/k                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8.7 ng/L                      | 43.5 ng/L 0.087 ug/k                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.7 ng/L 8.5                  | 8.5 ng/L 0.017 ug/kg                                                                                                                                                           | All samples Results either ND or >AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.52 ng/L                     |                                                                                                                                                                                | Sampled 5/2/18 Results either ND or >A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4.4 ng/L                      | 22.0 ng/L 0.04 ug/kg                                                                                                                                                           | Results either ND or >AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.3 ng/L                      | 6.5 ng/L                                                                                                                                                                       | Sampled 5/4/18 Results either ND or >AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.74 ng/L 3.7                 | 3.7 ng/L                                                                                                                                                                       | Sampled 5/6/18 Results either ND or >AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.52 ng/L 2.6                 |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 13 ng/L 65                    | 65 ng/L                                                                                                                                                                        | Results either ND or >AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| blanks (ER) prepared th       | ne same as aqueous s                                                                                                                                                           | amples so AL is ER*5 for any aqueous sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                               | Detected, (ppb)  1.82 ng/L  0.00909 ng/mL  0.88 ng/L  1.7 ng/L  0.40 ng/L  8.7 ng/L  1.7 ng/L  8.5  0.52 ng/L  4.4 ng/L  1.3 ng/L  0.74 ng/L  3.7  0.52 ng/L  2.6  13 ng/L  65 | Detected, (ppb)       0.364 ng/L         0.00909 ng/mL       0.0909 ug/kg or 1.81 ng         0.88 ng/L       4.40 ng/L       0.008 ug/kg         1.7 ng/L       8.5 ng/L       0.017 ug/kg         0.40 ng/L       2.0 ng/L       0.004 ug/kg         8.7 ng/L       43.5 ng/L       0.087 ug/kg         1.7 ng/L       8.5       8.5 ng/L       0.017 ug/kg         0.52 ng/L       2.6 ng/L       0.005 ug/kg         4.4 ng/L       22.0 ng/L       0.04 ug/kg         1.3 ng/L       6.5 ng/L         0.74 ng/L       3.7       3.7 ng/L         0.52 ng/L       2.6 ng/L |

#### **Actions:**

- 1. If compound results exceed the action levels, the data are not qualified
- 2. If compound results are below the required reporting level, report results as non-detect (U) at the LOD
- 3. If the compound is detected above the reporting level, but below the action level, qualify as not-detected (U)
- 4. If contamination exists in method blanks < 1/2 LOQ, samples must be re-extracted and reanalyzed.

  Unlesss the MB results are < 1/10 the amount in associated samples or < 10 the action level, which ever is greater

| Remarks: |  |  |
|----------|--|--|
|          |  |  |
|          |  |  |
|          |  |  |

#### VII. Initial & Contining Calibration

| Date of initial calibration:<br>%RSD of RFs < 20% or<br>Analytes within 70-130%<br>ICV within ± 30% of true  | $r^2 \ge 0.99 \text{ for their tree}$ |                            | •                         | AL standard?                                                                                         |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------|---------------------------|------------------------------------------------------------------------------------------------------|
| Date(s) of continuing ca<br>CCV analyzed at beginn<br>CCV within ± 30% of true                               | ing and er                            | nd of analy                | rtical sequ               | ence and after every 10 field samples?                                                               |
| Instrument sensitivity che ICS within ± 30% of true                                                          |                                       | performed                  | at the LC                 | Q prior to analysis and every 12 hours?                                                              |
| Deviations:                                                                                                  |                                       |                            |                           |                                                                                                      |
| Compound                                                                                                     | Date                                  | r value                    | %Drift                    | Samples Affected                                                                                     |
| ·                                                                                                            |                                       |                            |                           |                                                                                                      |
|                                                                                                              |                                       |                            |                           |                                                                                                      |
|                                                                                                              |                                       |                            |                           |                                                                                                      |
|                                                                                                              |                                       |                            |                           |                                                                                                      |
|                                                                                                              |                                       |                            |                           |                                                                                                      |
|                                                                                                              |                                       |                            |                           |                                                                                                      |
|                                                                                                              |                                       |                            |                           |                                                                                                      |
|                                                                                                              |                                       | -                          |                           |                                                                                                      |
|                                                                                                              |                                       |                            |                           |                                                                                                      |
|                                                                                                              |                                       |                            |                           |                                                                                                      |
|                                                                                                              |                                       |                            |                           |                                                                                                      |
| Actions:                                                                                                     |                                       |                            |                           |                                                                                                      |
| estimated (UJ), using pro<br>then only qualify those re                                                      | ofessional ju<br>sults near t         | udgement (<br>the low star | i.e. if only t<br>ndard). | we results as estimated (J) and non-detects as he low standard is out, and the higher stards are in, |
|                                                                                                              |                                       |                            |                           | V does bracket field samples, then CCV actions apply                                                 |
|                                                                                                              |                                       |                            |                           | s estimated (J). Nondects require no action. ry, qualify results as estimated (J/UJ).                |
|                                                                                                              |                                       |                            |                           | J) and nondetects as rejected (R)                                                                    |
| <ul><li>6. If CCVs were not analyze</li><li>7. If ISC is &gt; UCL, estimate reject (R) non-detects</li></ul> |                                       |                            |                           | rofessional judgement.<br>tects; If ISC is < LCL, estimate data (J/UJ), if ISC is < 30%              |
| Remarks:                                                                                                     | All calibrati                         | on results m               | et control lir            | nits                                                                                                 |
|                                                                                                              |                                       |                            |                           |                                                                                                      |

#### IX. Matrix Spike/Matrix Spike Duplicate Information

General MS/MSD Criteria:

percent recovery (%R) in-house limits relative percent difference (RPD) 30% RPD

Project Sample(s) Spiked: MW-573-03-PRL05-01 MW-573-03-PRL05-01DL

KLA02-SB1-01 KLA06-SB2-01 KLA06-SB2-01DL

**Deviations:** KLA07-SD1-01D

|          | %R      | %R     | RPD | RPD    |                  |
|----------|---------|--------|-----|--------|------------------|
| Compound |         | Limits |     | Limits | Samples Affected |
| PFHpA    | 125/141 | 76-124 |     |        | KLA06-SB2-01     |
| PFOA     | 151/205 | 76-121 |     |        | KLA06-SB2-01     |
| PFHpA    | 181/194 | 76-124 |     |        | KLA06-SB2-01DL   |
| PFOA     | 177/226 | 76-121 |     |        |                  |
| PFBS     | 153     | 73-124 |     |        |                  |
| PFOS     | 48      | 69-131 |     |        | KLA02-SB1-01     |
|          |         |        |     |        |                  |
|          |         |        |     |        |                  |
|          |         |        |     |        |                  |
|          |         |        |     |        |                  |
|          |         |        |     |        |                  |
|          |         |        |     |        |                  |
|          |         |        |     |        |                  |
|          |         |        |     |        |                  |
|          |         |        |     |        |                  |

#### **Actions:**

- 1. If the spike recovery is above the upper control limit (UCL), qualify all positive values in the unspiked sample as estimated (J) and non-detects as estimated (UJ).
- 2. If the spike recovery is below the lower control limit (LCL), qualifty positive values as estimated (J). And non-detects as estimated (UJ).
- 3. If the spike recovery is <10%, qualify non-detect values as unusable (R)
- 4. If the RPD does not meet criteria, qualify positive values in the unspiked sample as estimated (J)
- 5. Use professional judgement to qualify additional samples in the analytical group based on MS/MSD results
- 6. Use professional judgement for qualification of data for unspiked compounds
- \* If this SDG requires full validation; recalculate at least one % recovery and one % RPD from the raw data. Attach all calculations at the end of the validation checklist.

| _ |   |   |   |    |   |   |   |
|---|---|---|---|----|---|---|---|
| R | Δ | m | а | ri | K | S | • |

Sample concentrations > 4 x the spike amount precluded an assessment of accuracy; results were not qualified for samples with elevated native concentrations

#### X. Laboratory Control Sample Information

General LCS Criteria:
Percent recovery (%R) = in-house limits
RPD if LCSD performed = 30% RPD

Laboratory LCS Identifications: LCS 320-223091 LCS 320-223092 LCS 320-223346 LCS 320-223615

LCS 320-223901 LCS 320-224065 LCS 320-224254 LCS/D 320-224509

#### **Deviations:**

| Compound | Date | %R | Samples Affected/Qualifiers Applied |
|----------|------|----|-------------------------------------|
|          |      |    |                                     |
|          |      |    |                                     |
|          |      |    |                                     |
|          |      |    |                                     |
|          |      |    |                                     |
|          |      |    |                                     |
|          |      |    |                                     |
|          |      |    |                                     |
|          |      |    |                                     |
|          |      |    |                                     |
|          |      |    |                                     |
|          |      |    |                                     |
|          |      |    |                                     |

#### **Actions:**

\* If this SDG requires full validation; recalculate at least one % recovery and one % RPD (if LCSD was performed) from the raw data. Attach all calculations at the end of the validation checklist.

Action should be based on both the number of compounds outside the criterion and the magnitude of the exceedance.

- 1. If the LCS recovery is below limits but > one- half the lower limit, qualify valves as estimated (J/UJ).
- 2. If the LCS recovery is < one-half the lower limit, qualify detect (J) and non-detects (R)
- 3. If the LCS recovery is greater than the upper limit, qualify positive valves for that analyte as estimated (J).
- 5. Use professional judgement for qualification of data for compounds with no LCS information

| Remarks: | All LCS/LCSD %R and RPD results met control limits |
|----------|----------------------------------------------------|
|          |                                                    |
|          |                                                    |
|          |                                                    |
|          |                                                    |
|          |                                                    |

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: MW-KLA01-01-01 Lab Sample ID: 320-39023-1

Date Collected: 05/06/18 14:50 Matrix: Water Date Received: 05/08/18 09:00

| Analyte                                                                                                                                                                                                                                                         | Result                                                          | Qualifier                        | LOQ                                                                                              | DL                       | Unit                         | D          | Prepared                                                                                                                                                                           | Analyzed                                                                                                                                                     | Dil Fac                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------|--------------------------|------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                 | 7.6                                                             |                                  | 1.9                                                                                              | 0.59                     | ng/L                         |            | 05/18/18 10:26                                                                                                                                                                     | 05/28/18 11:18                                                                                                                                               | 1                                     |
| Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                   | 20                                                              |                                  | 1.9                                                                                              | 0.52                     | ng/L                         |            | 05/18/18 10:26                                                                                                                                                                     | 05/28/18 11:18                                                                                                                                               | 1                                     |
| Perfluorononanoic acid (PFNA)                                                                                                                                                                                                                                   | 0.56                                                            | J M J                            | 1.9                                                                                              | 0.50                     | ng/L                         |            | 05/18/18 10:26                                                                                                                                                                     | 05/28/18 11:18                                                                                                                                               | 1                                     |
| Perfluorobutanesulfonic acid (PFBS)                                                                                                                                                                                                                             | 39                                                              | M =                              | 1.9                                                                                              | 0.44                     | ng/L                         |            | 05/18/18 10:26                                                                                                                                                                     | 05/28/18 11:18                                                                                                                                               | 1                                     |
| Perfluorohexanesulfonic acid (PFHxS)                                                                                                                                                                                                                            | 220                                                             |                                  | 1.9                                                                                              | 0.37                     | ng/L                         |            | 05/18/18 10:26                                                                                                                                                                     | 05/28/18 11:18                                                                                                                                               | 1                                     |
| Perfluorooctanesulfonic acid (PFOS)                                                                                                                                                                                                                             | 510                                                             | E *                              | 3.9                                                                                              | 1.1                      | ng/L                         |            | 05/18/18 10:26                                                                                                                                                                     | 05/28/18 11:18                                                                                                                                               | 1                                     |
| Isotope Dilution                                                                                                                                                                                                                                                | %Recovery                                                       | Qualifier                        | Limits                                                                                           |                          |                              |            | Prepared                                                                                                                                                                           | Analyzed                                                                                                                                                     | Dil Fac                               |
| 13C3-PFBS                                                                                                                                                                                                                                                       | 75                                                              |                                  | 50 - 150                                                                                         |                          |                              |            | 05/18/18 10:26                                                                                                                                                                     | 05/28/18 11:18                                                                                                                                               | 1                                     |
| 13C4-PFHpA                                                                                                                                                                                                                                                      | 79                                                              |                                  | 50 - 150                                                                                         |                          |                              |            | 05/18/18 10:26                                                                                                                                                                     | 05/28/18 11:18                                                                                                                                               | 1                                     |
| 13C4 PFOA                                                                                                                                                                                                                                                       | 87                                                              |                                  | 50 - 150                                                                                         |                          |                              |            | 05/18/18 10:26                                                                                                                                                                     | 05/28/18 11:18                                                                                                                                               | 1                                     |
| 13C5 PFNA                                                                                                                                                                                                                                                       | 81                                                              |                                  | 50 - 150                                                                                         |                          |                              |            | 05/18/18 10:26                                                                                                                                                                     | 05/28/18 11:18                                                                                                                                               | 1                                     |
| 1802 PFHxS                                                                                                                                                                                                                                                      | 80                                                              |                                  | 50 <sub>-</sub> 150                                                                              |                          |                              |            | 05/18/18 10:26                                                                                                                                                                     | 05/28/18 11:18                                                                                                                                               | 1                                     |
| 1002 FF1133                                                                                                                                                                                                                                                     | 00                                                              |                                  | 30 - 130                                                                                         |                          |                              |            | 00000.                                                                                                                                                                             | 00.200                                                                                                                                                       |                                       |
|                                                                                                                                                                                                                                                                 | 74                                                              |                                  | 50 - 150                                                                                         |                          |                              |            |                                                                                                                                                                                    | 05/28/18 11:18                                                                                                                                               | 1                                     |
| 13C4 PFOS<br>Method: EPA 537 (Mod) - PFA                                                                                                                                                                                                                        | 74<br>S for QSM !                                               | 5.1, Table B<br>Qualifier        | 50 - 150                                                                                         | DL                       | Unit                         | D          |                                                                                                                                                                                    |                                                                                                                                                              | 1<br>Dil Fac                          |
| 13C4 PFOS  Method: EPA 537 (Mod) - PFAS  Analyte  Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                               | 74 S for QSM ! Result                                           |                                  | 50 - 150<br>- <b>15 - DL</b>                                                                     |                          | Unit<br>ng/L                 | <u>D</u>   | 05/18/18 10:26  Prepared                                                                                                                                                           | 05/28/18 11:18                                                                                                                                               |                                       |
| Method: EPA 537 (Mod) - PFA<br>Analyte<br>Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                       | 74 S for QSM ! Result                                           | Qualifier  J D *                 | 50 - 150<br>3-15 - DL<br>LOQ                                                                     | 2.9                      |                              | <u>D</u>   | 05/18/18 10:26  Prepared  05/18/18 10:26                                                                                                                                           | 05/28/18 11:18  Analyzed                                                                                                                                     | Dil Fac                               |
| 13C4 PFOS<br>Method: EPA 537 (Mod) - PFA<br>Analyte                                                                                                                                                                                                             | 74 S for QSM ! Result 7.5 22                                    | Qualifier  J D *                 | 50 - 150<br>6-15 - DL<br>LOQ<br>9.7                                                              | 2.9<br>2.6               | ng/L                         | <u>D</u>   | 05/18/18 10:26  Prepared  05/18/18 10:26  05/18/18 10:26                                                                                                                           | 05/28/18 11:18  Analyzed  05/29/18 18:41                                                                                                                     | Dil Fac                               |
| Method: EPA 537 (Mod) - PFA: Analyte Perfluoroheptanoic acid (PFHpA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid                                                                                                                                 | 74 S for QSM ! Result 7.5 22 7.2                                | Qualifier J D * D                | 50 - 150<br>3-15 - DL<br>LOQ<br>9.7<br>9.7                                                       | 2.9<br>2.6<br>2.5        | ng/L<br>ng/L                 | <u>D</u>   | 05/18/18 10:26  Prepared  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26                                                                                                           | 05/28/18 11:18  Analyzed  05/29/18 18:41 05/29/18 18:41                                                                                                      | Dil Fac 5                             |
| Method: EPA 537 (Mod) - PFA: Analyte Perfluoroheptanoic acid (PFHpA) Perfluoronoctanoic acid (PFOA) Perfluorononanoic acid (PFNA)                                                                                                                               | 74 S for QSM ! Result 7.5 22 7.2                                | Qualifier J D * D U M D M        | 50 - 150<br>S-15 - DL<br>LOQ<br>9.7<br>9.7<br>9.7<br>9.7                                         | 2.9<br>2.6<br>2.5<br>2.2 | ng/L<br>ng/L<br>ng/L         | <u>D</u>   | Prepared 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26                                                                                                | 05/28/18 11:18  Analyzed  05/29/18 18:41  05/29/18 18:41  05/29/18 18:41                                                                                     | <b>Dil Fac</b> 5 5 5                  |
| Method: EPA 537 (Mod) - PFA: Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid                                                               | 74 S for QSM ! Result 7.5 22 7.2 40                             | Qualifier J D * D U M D M        | 50 - 150<br>5-15 - DL<br>LOQ<br>9.7<br>9.7<br>9.7<br>9.7                                         | 2.9<br>2.6<br>2.5<br>2.2 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u> _ | Prepared 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26                                                                                                | Analyzed  05/29/18 18:41 05/29/18 18:41 05/29/18 18:41 05/29/18 18:41                                                                                        | <b>Dil Fac</b> 5 5 5                  |
| Method: EPA 537 (Mod) - PFA<br>Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS)                                               | 74 S for QSM ! Result 7.5 22 7.2 40                             | Qualifier JD * D UM DM D D J K01 | 50 - 150<br>5-15 - DL<br>LOQ<br>9.7<br>9.7<br>9.7<br>9.7<br>9.7                                  | 2.9<br>2.6<br>2.5<br>2.2 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u>   | Prepared 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26                                                                                                | Analyzed  05/29/18 18:41 05/29/18 18:41 05/29/18 18:41 05/29/18 18:41 05/29/18 18:41                                                                         | Dil Fac 5 5 5 5 5                     |
| Method: EPA 537 (Mod) - PFA: Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution                                | 74 S for QSM ! Result 7.5 22 7.2 40 230 500                     | Qualifier JD * D UM DM D D J K01 | 50 - 150<br>5-15 - DL<br>LOQ<br>9.7<br>9.7<br>9.7<br>9.7<br>9.7                                  | 2.9<br>2.6<br>2.5<br>2.2 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u>   | Prepared 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26                                                                                 | Analyzed  O5/29/18 18:41  O5/29/18 18:41  O5/29/18 18:41  O5/29/18 18:41  O5/29/18 18:41  Analyzed                                                           | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 |
| Method: EPA 537 (Mod) - PFA: Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS                      | 74 S for QSM ! Result 7.5 22 7.2 40 230 500 %Recovery           | Qualifier JD * D UM DM D D J K01 | 50 - 150<br>5-15 - DL<br>LOQ<br>9.7<br>9.7<br>9.7<br>9.7<br>9.7<br>19                            | 2.9<br>2.6<br>2.5<br>2.2 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u>   | Prepared  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  Prepared  05/18/18 10:26                                                 | Analyzed  O5/29/18 18:41  O5/29/18 18:41  O5/29/18 18:41  O5/29/18 18:41  O5/29/18 18:41  Analyzed                                                           | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA            | 74 S for QSM 9 Result 7.5 22 7.2 40 230 500  %Recovery          | Qualifier JD * D UM DM D D J K01 | 50 - 150  6-15 - DL LOQ 9.7 9.7 9.7 9.7 9.7 19  Limits 50 - 150                                  | 2.9<br>2.6<br>2.5<br>2.2 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u>   | Prepared  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  Prepared  05/18/18 10:26  05/18/18 10:26                                 | Analyzed  05/29/18 18:41 05/29/18 18:41 05/29/18 18:41 05/29/18 18:41 05/29/18 18:41 05/29/18 18:41  4nalyzed 05/29/18 18:41                                 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 |
| Method: EPA 537 (Mod) - PFA: Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid                                                        | 74 S for QSM 9 Result 7.5 22 7.2 40 230 500  %Recovery 72 77    | Qualifier JD * D UM DM D D J K01 | 50 - 150<br>6-15 - DL<br>LOQ<br>9.7<br>9.7<br>9.7<br>9.7<br>19<br>Limits<br>50 - 150<br>50 - 150 | 2.9<br>2.6<br>2.5<br>2.2 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u>   | Prepared  05/18/18 10:26  Prepared  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  Prepared  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26       | Analyzed  05/29/18 18:41 05/29/18 18:41 05/29/18 18:41 05/29/18 18:41 05/29/18 18:41  05/29/18 18:41  Analyzed  05/29/18 18:41 05/29/18 18:41                | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 |
| Method: EPA 537 (Mod) - PFA: Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA 13C4 PFOA | 74 S for QSM 8 Result 7.5 22 7.2 40 230 500  %Recovery 72 77 83 | Qualifier JD * D UM DM D D J K01 | 50 - 150  5-15 - DL LOQ 9.7 9.7 9.7 9.7 19  Limits 50 - 150 50 - 150 50 - 150                    | 2.9<br>2.6<br>2.5<br>2.2 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u>   | Prepared 05/18/18 10:26  Prepared 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26  Prepared 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 | Analyzed  05/29/18 18:41 05/29/18 18:41 05/29/18 18:41 05/29/18 18:41 05/29/18 18:41  05/29/18 18:41  Analyzed  05/29/18 18:41 05/29/18 18:41 05/29/18 18:41 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 |

Client Sample ID: MW-KLA02-01-01

Date Collected: 05/06/18 12:05

Lab Sample ID: 320-39023-2

Matrix: Water

Date Received: 05/09/18 09:20

| Analyte                              | Result | Quali | fier      | LOQ | DL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|--------|-------|-----------|-----|------|------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 7300   | E     | *         | 1.8 | 0.55 | ng/L |   | 05/18/18 10:26 | 05/28/18 11:26 | 1       |
| Perfluorooctanoic acid (PFOA)        | 13000  | ΕM    | *         | 1.8 | 0.49 | ng/L |   | 05/18/18 10:26 | 05/28/18 11:26 | 1       |
| Perfluorononanoic acid (PFNA)        | 340    | M     | J G02 K01 | 1.8 | 0.47 | ng/L |   | 05/18/18 10:26 | 05/28/18 11:26 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 1500   | EM    | *         | 1.8 | 0.42 | ng/L |   | 05/18/18 10:26 | 05/28/18 11:26 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 14000  | E M   | *         | 1.8 | 0.34 | ng/L |   | 05/18/18 10:26 | 05/28/18 11:26 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 88000  | E M   | *         | 3.6 | 1.0  | ng/L |   | 05/18/18 10:26 | 05/28/18 11:26 | 1       |

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Isotope Dilution

Client Sample ID: MW-KLA02-01-01 Lab Sample ID: 320-39023-2

Date Collected: 05/06/18 12:05 **Matrix: Water** Date Received: 05/09/18 09:20

Limits

Prepared

Analyzed

Dil Fac

%Recovery Qualifier

| 13C3-PFBS                            | 321         | Q          | 50 - 150                |     |      |   | 05/18/18 10:26 | 05/28/18 11:26 | 1       |
|--------------------------------------|-------------|------------|-------------------------|-----|------|---|----------------|----------------|---------|
| 13C4-PFHpA                           | 44          | Q          | 50 - 150                |     |      |   | 05/18/18 10:26 | 05/28/18 11:26 | 1       |
| 13C4 PFOA                            | 65          |            | 50 - 150                |     |      |   | 05/18/18 10:26 | 05/28/18 11:26 | 1       |
| 13C5 PFNA                            | 40          | Q          | 50 - 150                |     |      |   | 05/18/18 10:26 | 05/28/18 11:26 | 1       |
| 18O2 PFHxS                           | 77          |            | 50 - 150                |     |      |   | 05/18/18 10:26 | 05/28/18 11:26 | 1       |
| 13C4 PFOS                            | 28          | Q          | 50 - 150                |     |      |   | 05/18/18 10:26 | 05/28/18 11:26 | 1       |
| Method: EPA 537 (Mod) - PFAS         | S for QSM 5 | 5.1. Table | B-15 - DL               |     |      |   |                |                |         |
| Analyte                              |             | Qualifier  | LOQ                     | DL  | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Perfluoroheptanoic acid (PFHpA)      | 7700        | D *        | J K01 180               | 55  | ng/L |   | 05/18/18 10:26 | 05/29/18 18:49 | 100     |
| Perfluorooctanoic acid (PFOA)        | 21000       | D *        | J K01 180               | 49  | ng/L |   | 05/18/18 10:26 | 05/29/18 18:49 | 100     |
| Perfluorononanoic acid (PFNA)        | 340         | DM *       | J K01 180               | 47  | ng/L |   | 05/18/18 10:26 | 05/29/18 18:49 | 100     |
| Perfluorobutanesulfonic acid (PFBS)  | 9700        |            | 180<br>J K01            | 42  | ng/L |   | 05/18/18 10:26 | 05/29/18 18:49 | 100     |
| Perfluorohexanesulfonic acid (PFHxS) | 66000       | ED JKO     | )1 , N03 <sup>180</sup> | 34  | ng/L |   | 05/18/18 10:26 | 05/29/18 18:49 | 100     |
| Perfluorooctanesulfonic acid         | 380000      | ED JG      | 02 K01 360              | 100 | ng/L |   | 05/18/18 10:26 | 05/29/18 18:49 | 100     |
| (PFOS)                               |             |            | N03                     |     |      |   |                |                |         |
| Isotope Dilution                     | %Recovery   | Qualifier  | Limits                  |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 176         | Q          | 50 - 150                |     |      |   | 05/18/18 10:26 | 05/29/18 18:49 | 100     |
| 13C4-PFHpA                           | 54          |            | 50 - 150                |     |      |   | 05/18/18 10:26 | 05/29/18 18:49 | 100     |
| 13C4 PFOA                            | 68          |            | 50 - 150                |     |      |   | 05/18/18 10:26 | 05/29/18 18:49 | 100     |
| 13C5 PFNA                            | 53          |            | 50 - 150                |     |      |   | 05/18/18 10:26 | 05/29/18 18:49 | 100     |
| 1802 PFHxS                           | 96          |            | 50 - 150                |     |      |   | 05/18/18 10:26 | 05/29/18 18:49 | 100     |
| 13C4 PFOS                            | 44          | ^          | 50 <sub>-</sub> 150     |     |      |   | 05/40/40 40 00 | 05/29/18 18:49 | 100     |

Client Sample ID: MW-KLA03-01-01 Lab Sample ID: 320-39023-3

| Method: EPA 537 (Mod) - PFA          | S for QSM 5 | 5.1, Table I | 3-15     |      |      |   |                |                |         |
|--------------------------------------|-------------|--------------|----------|------|------|---|----------------|----------------|---------|
| Analyte                              | Result      | Qualifier    | LOQ      | DL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Perfluoroheptanoic acid (PFHpA)      | 200         |              | 2.0      | 0.61 | ng/L |   | 05/18/18 10:26 | 05/28/18 11:34 | 1       |
| Perfluorooctanoic acid (PFOA)        | 290         |              | 2.0      | 0.54 | ng/L |   | 05/18/18 10:26 | 05/28/18 11:34 | •       |
| Perfluorononanoic acid (PFNA)        | 16          | M =          | 2.0      | 0.52 | ng/L |   | 05/18/18 10:26 | 05/28/18 11:34 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 180         |              | 2.0      | 0.46 | ng/L |   | 05/18/18 10:26 | 05/28/18 11:34 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 1800        | E *          | 2.0      | 0.38 | ng/L |   | 05/18/18 10:26 | 05/28/18 11:34 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 5200        | E *          | 4.0      | 1.1  | ng/L |   | 05/18/18 10:26 | 05/28/18 11:34 | •       |
| Isotope Dilution                     | %Recovery   | Qualifier    | Limits   |      |      |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 75          |              | 50 - 150 |      |      |   | 05/18/18 10:26 | 05/28/18 11:34 | 1       |
| 13C4-PFHpA                           | 69          |              | 50 - 150 |      |      |   | 05/18/18 10:26 | 05/28/18 11:34 | 1       |
| 13C4 PFOA                            | 85          |              | 50 - 150 |      |      |   | 05/18/18 10:26 | 05/28/18 11:34 | 1       |
| 13C5 PFNA                            | 62          |              | 50 - 150 |      |      |   | 05/18/18 10:26 | 05/28/18 11:34 |         |
| 18O2 PFHxS                           | 66          |              | 50 - 150 |      |      |   | 05/18/18 10:26 | 05/28/18 11:34 | 1       |
| 13C4 PFOS                            | 54          |              | 50 - 150 |      |      |   | 05/18/18 10:26 | 05/28/18 11:34 | 1       |

Result Qualifier DL Unit Prepared Analyzed 100 05/18/18 10:26 05/29/18 19:04 Perfluoroheptanoic acid (PFHpA) 190 D \* 30 ng/L

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

13C4 PFOS

Client Sample ID: MW-KLA03-01-01 Lab Sample ID: 320-39023-3

Date Collected: 05/06/18 15:55 Matrix: Water Date Received: 05/08/18 09:00

| Analyte                              | Result    | Qual | ifier | LOQ      | DL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|------|-------|----------|----|------|---|----------------|----------------|---------|
| Perfluorooctanoic acid (PFOA)        | 300       | D    | *     | 100      | 27 | ng/L |   | 05/18/18 10:26 | 05/29/18 19:04 | 50      |
| Perfluorononanoic acid (PFNA)        | 75        | U    | *     | 100      | 26 | ng/L |   | 05/18/18 10:26 | 05/29/18 19:04 | 50      |
| Perfluorobutanesulfonic acid (PFBS)  | 170       | D    | *     | 100      | 23 | ng/L |   | 05/18/18 10:26 | 05/29/18 19:04 | 50      |
| Perfluorohexanesulfonic acid (PFHxS) | 2700      | D    | J K01 | 100      | 19 | ng/L |   | 05/18/18 10:26 | 05/29/18 19:04 | 50      |
| Perfluorooctanesulfonic acid (PFOS)  | 6100      | D M  | J K01 | 200      | 55 | ng/L |   | 05/18/18 10:26 | 05/29/18 19:04 | 50      |
| Isotope Dilution                     | %Recovery | Qual | ifier | Limits   |    |      |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 68        | М    |       | 50 - 150 |    |      |   | 05/18/18 10:26 | 05/29/18 19:04 | 50      |
| 13C4-PFHpA                           | 72        |      |       | 50 - 150 |    |      |   | 05/18/18 10:26 | 05/29/18 19:04 | 50      |
| 13C4 PFOA                            | 83        |      |       | 50 - 150 |    |      |   | 05/18/18 10:26 | 05/29/18 19:04 | 50      |
| 13C5 PFNA                            | 77        |      |       | 50 - 150 |    |      |   | 05/18/18 10:26 | 05/29/18 19:04 | 50      |
| 1802 PFHxS                           | 72        |      |       | 50 - 150 |    |      |   | 05/18/18 10:26 | 05/29/18 19:04 | 50      |
| 13C4 PFOS                            | 75        |      |       | 50 - 150 |    |      |   | 05/18/18 10:26 | 05/29/18 19:04 | 50      |

Client Sample ID: MW-KLA04-01-01

Date Collected: 05/06/18 14:15

Lab Sample ID: 320-39023-4

Matrix: Water

Date Collected: 05/06/18 14:15
Date Received: 05/08/18 09:00

69

| Analyte                              | Result    | Qualifier | LOQ      | DL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|----------|------|------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 27        |           | 2.0      | 0.60 | ng/L |   | 05/18/18 10:26 | 05/29/18 19:20 | 1       |
| Perfluorooctanoic acid (PFOA)        | 41        |           | 2.0      | 0.53 | ng/L |   | 05/18/18 10:26 | 05/29/18 19:20 | 1       |
| Perfluorononanoic acid (PFNA)        | 1.5       | UM U      | 2.0      | 0.51 | ng/L |   | 05/18/18 10:26 | 05/29/18 19:20 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 96        |           | 2.0      | 0.45 | ng/L |   | 05/18/18 10:26 | 05/29/18 19:20 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 610       | E *       | 2.0      | 0.38 | ng/L |   | 05/18/18 10:26 | 05/29/18 19:20 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 100       |           | 4.0      | 1.1  | ng/L |   | 05/18/18 10:26 | 05/29/18 19:20 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier | Limits   |      |      |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 71        |           | 50 - 150 |      |      |   | 05/18/18 10:26 | 05/29/18 19:20 | 1       |
| 13C4-PFHpA                           | 74        |           | 50 - 150 |      |      |   | 05/18/18 10:26 | 05/29/18 19:20 | 1       |
| 13C4 PFOA                            | 80        |           | 50 - 150 |      |      |   | 05/18/18 10:26 | 05/29/18 19:20 | 1       |
| 13C5 PFNA                            | 79        |           | 50 - 150 |      |      |   | 05/18/18 10:26 | 05/29/18 19:20 | 1       |
| 1802 PFHxS                           | 69        |           | 50 - 150 |      |      |   | 05/18/18 10:26 | 05/29/18 19:20 | 1       |

| Analyte                              | Result | Qualifier      | LOQ | DL  | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|--------|----------------|-----|-----|------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 31     | D *            | 9.9 | 3.0 | ng/L |   | 05/18/18 10:26 | 05/29/18 19:12 | 5       |
| Perfluorooctanoic acid (PFOA)        | 43     | D *            | 9.9 | 2.7 | ng/L |   | 05/18/18 10:26 | 05/29/18 19:12 | 5       |
| Perfluorononanoic acid (PFNA)        | 7.4    | U M *          | 9.9 | 2.6 | ng/L |   | 05/18/18 10:26 | 05/29/18 19:12 | 5       |
| Perfluorobutanesulfonic acid (PFBS)  | 95     | D *            | 9.9 | 2.3 | ng/L |   | 05/18/18 10:26 | 05/29/18 19:12 | 5       |
| Perfluorohexanesulfonic acid (PFHxS) | 690    | <b>D</b> J K01 | 9.9 | 1.9 | ng/L |   | 05/18/18 10:26 | 05/29/18 19:12 | 5       |
| Perfluorooctanesulfonic acid (PFOS)  | 100    | D *            | 20  | 5.4 | ng/L |   | 05/18/18 10:26 | 05/29/18 19:12 | 5       |

50 - 150

05/18/18 10:26 05/29/18 19:20

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: MW-KLA04-01-01 Lab Sample ID: 320-39023-4

Date Collected: 05/06/18 14:15 Matrix: Water Date Received: 05/08/18 09:00

| Isotope Dilution | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------|-----------|-----------|----------|----------------|----------------|---------|
| 13C3-PFBS        | 63        |           | 50 - 150 | 05/18/18 10:26 | 05/29/18 19:12 | 5       |
| 13C4-PFHpA       | 65        |           | 50 - 150 | 05/18/18 10:26 | 05/29/18 19:12 | 5       |
| 13C4 PFOA        | 75        |           | 50 - 150 | 05/18/18 10:26 | 05/29/18 19:12 | 5       |
| 13C5 PFNA        | 67        |           | 50 - 150 | 05/18/18 10:26 | 05/29/18 19:12 | 5       |
| 18O2 PFHxS       | 62        |           | 50 - 150 | 05/18/18 10:26 | 05/29/18 19:12 | 5       |
| 13C4 PFOS        | 62        |           | 50 - 150 | 05/18/18 10:26 | 05/29/18 19:12 | 5       |

Date Collected: 05/06/18 09:15 Matrix: Water

| Method: EPA 537 (Mod) - PFA<br>Analyte                                                                                                                                                                                                                                                             |                                                                        | Qualifier                                                                      |                                                    | LOQ                                                                                | DL                         | Unit                         | D          | Prepared                                                                                                                                                                     | Analyzed                                                                                                                                                                    | Dil Fa                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------|----------------------------|------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                                                    | 4400                                                                   | E J1                                                                           | *                                                  | 2.0                                                                                | 0.60                       | ng/L                         |            | 05/18/18 10:26                                                                                                                                                               | 05/28/18 11:50                                                                                                                                                              |                                                          |
| Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                                                      | 4700                                                                   | E J1                                                                           | *                                                  | 2.0                                                                                | 0.54                       | ng/L                         |            | 05/18/18 10:26                                                                                                                                                               | 05/28/18 11:50                                                                                                                                                              |                                                          |
| Perfluorononanoic acid (PFNA)                                                                                                                                                                                                                                                                      | 200                                                                    | J1 J                                                                           | K01                                                | 2.0                                                                                | 0.52                       | ng/L                         |            | 05/18/18 10:26                                                                                                                                                               | 05/28/18 11:50                                                                                                                                                              | 1                                                        |
| Perfluorobutanesulfonic acid (PFBS)                                                                                                                                                                                                                                                                | 1900                                                                   | E J1 M                                                                         | *                                                  | 2.0                                                                                | 0.46                       | ng/L                         |            | 05/18/18 10:26                                                                                                                                                               | 05/28/18 11:50                                                                                                                                                              | 1                                                        |
| Perfluorohexanesulfonic acid (PFHxS)                                                                                                                                                                                                                                                               | 12000                                                                  | E J1                                                                           | *                                                  | 2.0                                                                                | 0.38                       | ng/L                         |            | 05/18/18 10:26                                                                                                                                                               | 05/28/18 11:50                                                                                                                                                              | 1                                                        |
| Perfluorooctanesulfonic acid (PFOS)                                                                                                                                                                                                                                                                | 32000                                                                  | J1 E M                                                                         | *                                                  | 4.0                                                                                | 1.1                        | ng/L                         |            | 05/18/18 10:26                                                                                                                                                               | 05/28/18 11:50                                                                                                                                                              | 1                                                        |
| Isotope Dilution                                                                                                                                                                                                                                                                                   | %Recovery                                                              | Qualifier                                                                      |                                                    | Limits                                                                             |                            |                              |            | Prepared                                                                                                                                                                     | Analyzed                                                                                                                                                                    | Dil Fa                                                   |
| 13C3-PFBS                                                                                                                                                                                                                                                                                          | 136                                                                    |                                                                                |                                                    | 50 - 150                                                                           |                            |                              |            | 05/18/18 10:26                                                                                                                                                               | 05/28/18 11:50                                                                                                                                                              |                                                          |
| 13C4-PFHpA                                                                                                                                                                                                                                                                                         | 46                                                                     | Q                                                                              |                                                    | 50 - 150                                                                           |                            |                              |            | 05/18/18 10:26                                                                                                                                                               | 05/28/18 11:50                                                                                                                                                              | 1                                                        |
| 13C4 PFOA                                                                                                                                                                                                                                                                                          | 77                                                                     |                                                                                |                                                    | 50 - 150                                                                           |                            |                              |            | 05/18/18 10:26                                                                                                                                                               | 05/28/18 11:50                                                                                                                                                              | 1                                                        |
| 13C5 PFNA                                                                                                                                                                                                                                                                                          | 58                                                                     |                                                                                |                                                    | 50 - 150                                                                           |                            |                              |            | 05/18/18 10:26                                                                                                                                                               | 05/28/18 11:50                                                                                                                                                              |                                                          |
|                                                                                                                                                                                                                                                                                                    |                                                                        |                                                                                |                                                    |                                                                                    |                            |                              |            | 05/40/40 40:06                                                                                                                                                               | 05/28/18 11:50                                                                                                                                                              | 1                                                        |
| 1802 PFHxS                                                                                                                                                                                                                                                                                         | 54                                                                     |                                                                                |                                                    | 50 - 150                                                                           |                            |                              |            | 05/18/18 10:26                                                                                                                                                               | 03/20/10 11.30                                                                                                                                                              | ,                                                        |
| 1802 PFHxS<br>13C4 PFOS                                                                                                                                                                                                                                                                            |                                                                        | Q                                                                              |                                                    | 50 - 150<br>50 - 150                                                               |                            |                              |            |                                                                                                                                                                              | 05/28/18 11:50                                                                                                                                                              |                                                          |
|                                                                                                                                                                                                                                                                                                    | 48<br>S for QSM !                                                      | •                                                                              | le B-1                                             | 50 - 150                                                                           | DL                         | Unit                         | D          | 05/18/18 10:26                                                                                                                                                               | 05/28/18 11:50                                                                                                                                                              | 1                                                        |
| 13C4 PFOS<br>Method: EPA 537 (Mod) - PFA<br>Analyte                                                                                                                                                                                                                                                | 48 S for QSM ! Result                                                  | 5.1, Tabl                                                                      | le B-1                                             | 50 <sub>-</sub> 150                                                                |                            | Unit<br>ng/L                 | <u>D</u>   | 05/18/18 10:26  Prepared                                                                                                                                                     |                                                                                                                                                                             | Dil Fac                                                  |
| 13C4 PFOS  Method: EPA 537 (Mod) - PFA Analyte  Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                    | S for QSM Result                                                       | 5.1, Tabl<br>Qualifier<br>J1 D                                                 | l <b>e B-1</b>                                     | 50 - 150<br>15 - DL<br>LOQ                                                         | 60                         | ng/L                         | <u>D</u>   | 05/18/18 10:26  Prepared  05/18/18 10:26                                                                                                                                     | 05/28/18 11:50 Analyzed                                                                                                                                                     | Dil Fac                                                  |
| Method: EPA 537 (Mod) - PFA<br>Analyte<br>Perfluoroheptanoic acid (PFHpA)<br>Perfluorooctanoic acid (PFOA)                                                                                                                                                                                         | 48 S for QSM ( Result 5100 6700                                        | 5.1, Tabl<br>Qualifier<br>J1 D                                                 | le <b>B-1</b> J K01 J K01                          | 50 - 150<br>15 - DL<br>LOQ<br>200                                                  | 60<br>54                   | ng/L<br>ng/L                 | <u>D</u>   | 05/18/18 10:26  Prepared  05/18/18 10:26  05/18/18 10:26                                                                                                                     | 05/28/18 11:50  Analyzed 05/29/18 19:28                                                                                                                                     | Dil Fac                                                  |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid                                                                                                                                       | 48 S for QSM 4 Result 5100 6700 190                                    | 5.1, Tabl<br>Qualifier<br>J1 D<br>J1 D<br>J J1 D N                             | le <b>B-1</b> J K01 J K01                          | 50 - 150<br>15 - DL<br>LOQ<br>200<br>200                                           | 60<br>54<br>52             | ng/L                         | <u>D</u>   | 05/18/18 10:26  Prepared  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26                                                                                                     | 05/28/18 11:50  Analyzed  05/29/18 19:28 05/29/18 19:28                                                                                                                     | Dil Fac<br>100<br>100<br>100                             |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA)                                                                                                                                                                    | 48 S for QSM ( Result 5100 6700 190 3900                               | 5.1, Tabl<br>Qualifier<br>J1 D<br>J1 D<br>J J1 D N                             | J K01<br>J K01<br>J K01                            | 50 - 150<br>15 - DL<br>LOQ<br>200<br>200<br>200                                    | 60<br>54<br>52<br>46       | ng/L<br>ng/L<br>ng/L         | <u>D</u>   | Prepared 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26                                                                                          | 05/28/18 11:50  Analyzed  05/29/18 19:28  05/29/18 19:28  05/29/18 19:28                                                                                                    | Dil Fac<br>100<br>100<br>100                             |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid                                                                                            | 48 S for QSM (  Result  5100 6700 190 3900                             | 5.1, Tabl<br>Qualifier<br>J1 D<br>J1 D<br>J J1 D N<br>J1 D                     | J K01<br>J K01<br>J K01<br>J K01                   | 50 - 150<br>15 - DL<br>LOQ<br>200<br>200<br>200<br>200<br>200                      | 60<br>54<br>52<br>46<br>38 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u>   | Prepared  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26                                                                                     | Analyzed  05/29/18 19:28 05/29/18 19:28 05/29/18 19:28 05/29/18 19:28                                                                                                       | Dil Face 1000 1000 1000 1000 1000                        |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFHxS)                                                                                    | 48 S for QSM (  Result  5100 6700 190 3900                             | 5.1, Tabl<br>Qualifier<br>J1 D<br>J1 D<br>J J1 D N<br>J1 D<br>E J1 D           | J K01 J K01 J K01 J K01 J K01 J K01                | 50 - 150<br>15 - DL<br>LOQ<br>200<br>200<br>200<br>200<br>100<br>100<br>100<br>100 | 60<br>54<br>52<br>46<br>38 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u> _ | Prepared  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26                                                                                     | Analyzed  05/29/18 19:28 05/29/18 19:28 05/29/18 19:28 05/29/18 19:28 05/29/18 19:28                                                                                        | Dil Fac<br>100<br>100<br>100<br>100<br>100               |
| Method: EPA 537 (Mod) - PFA Analyte  Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid                                                                                                  | 48 Result 5100 6700 190 3900 39000 63000  **Recovery*                  | 5.1, Tabl<br>Qualifier<br>J1 D<br>J1 D<br>J J1 D N<br>J1 D<br>E J1 D           | J K01<br>J K01<br>J K01<br>J K01<br>J K01          | 50 - 150<br>  5 - DL<br>LOQ<br>200<br>200<br>200<br>200<br>1 N0300                 | 60<br>54<br>52<br>46<br>38 | ng/L<br>ng/L<br>ng/L<br>ng/L | D          | Prepared  05/18/18 10:26  Prepared  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  Prepared                                                 | Analyzed  05/29/18 19:28 05/29/18 19:28 05/29/18 19:28 05/29/18 19:28 05/29/18 19:28                                                                                        | Dil Face 1000 1000 1000 1000 1000 1000 1000              |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS                                                          | 48 Result 5100 6700 190 3900 39000 63000  **Recovery*                  | 5.1, Tabl<br>Qualifier<br>J1 D<br>J1 D<br>J J1 D M<br>J1 D<br>E J1 D<br>J1 E D | J K01<br>J K01<br>J K01<br>J K01<br>J K01          | 50 - 150    5 - DL                                                                 | 60<br>54<br>52<br>46<br>38 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u>   | Prepared  05/18/18 10:26  Prepared  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  Prepared  05/18/18 10:26                                 | Analyzed  O5/29/18 19:28  O5/29/18 19:28  O5/29/18 19:28  O5/29/18 19:28  O5/29/18 19:28  O5/29/18 19:28  Analyzed                                                          | 100 100 100 100 100 100 100 100 100 100                  |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA                                               | 48 S for QSM 8 Result 5100 6700 190 3900 39000 63000  **Recovery 99    | 5.1, Tabl<br>Qualifier<br>J1 D<br>J1 D<br>J J1 D M<br>J1 D<br>E J1 D<br>J1 E D | J K01<br>J K01<br>J K01<br>J K01<br>J K01          | 50 - 150    5 - DL                                                                 | 60<br>54<br>52<br>46<br>38 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u>   | Prepared  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  Prepared  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26           | Analyzed  05/29/18 19:28 05/29/18 19:28 05/29/18 19:28 05/29/18 19:28 05/29/18 19:28 05/29/18 19:28  Analyzed  05/29/18 19:28                                               | Dil Fac  100  100  100  100  100  100  Dil Fac  100  100 |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFNA) Perfluorobutanesulfonic acid (PFNS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA 13C4 PFOA | 48 S for QSM 5 Result 5100 6700 190 3900 39000 63000  **Recovery 99 64 | 5.1, Tabl<br>Qualifier<br>J1 D<br>J1 D<br>J J1 D M<br>J1 D<br>E J1 D<br>J1 E D | J K01<br>J K01<br>J K01<br>J K01<br>J K01<br>J K01 | 50 - 150  15 - DL  LOQ  200  200  200  200  1 N0300  Limits  50 - 150  50 - 150    | 60<br>54<br>52<br>46<br>38 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u>   | Prepared  05/18/18 10:26  Prepared  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  Prepared  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26 | Analyzed  05/29/18 19:28 05/29/18 19:28 05/29/18 19:28 05/29/18 19:28 05/29/18 19:28 05/29/18 19:28  Analyzed  05/29/18 19:28 05/29/18 19:28                                | Dil Fac  100  100  100  100  100  100  100  1            |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution                                                                    | 48 Result 5100 6700 190 3900 39000 63000  **Recovery 99 64 73          | 5.1, Tabl<br>Qualifier<br>J1 D<br>J1 D<br>J J1 D M<br>J1 D<br>E J1 D<br>J1 E D | J K01<br>J K01<br>J K01<br>J K01<br>J K01<br>J K01 | 50 - 150    5 - DL                                                                 | 60<br>54<br>52<br>46<br>38 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u>   | Prepared 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26  Prepared 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26     | Analyzed  05/29/18 19:28 05/29/18 19:28 05/29/18 19:28 05/29/18 19:28 05/29/18 19:28  05/29/18 19:28  Analyzed  05/29/18 19:28 05/29/18 19:28 05/29/18 19:28 05/29/18 19:28 | Dil Face 1000 1000 1000 1000 1000 1000 1000 10           |

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15

Client Sample ID: MW-572-02-PRL05-01 Lab Sample ID: 320-39023-6

Date Collected: 05/06/18 10:30 **Matrix: Water** 

Date Received: 05/08/18 09:00

| Analyte                                                                                                                                                                                                                                                                                   |                                                                    | Qualifier                                       | LOQ                                                    |                                 | Unit                         | D        | Prepared                                                                                                                                                                 | Analyzed                                                                                                                                                    | Dil Fac                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------|---------------------------------|------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                                           | 25                                                                 |                                                 | 1.9                                                    | 0.57                            | ng/L                         |          | 05/18/18 10:26                                                                                                                                                           | 05/28/18 12:13                                                                                                                                              | 1                                               |
| Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                                             | 56                                                                 |                                                 | 1.9                                                    | 0.51                            | ng/L                         |          | 05/18/18 10:26                                                                                                                                                           | 05/28/18 12:13                                                                                                                                              | 1                                               |
| Perfluorononanoic acid (PFNA)                                                                                                                                                                                                                                                             | 3.8                                                                |                                                 | 1.9                                                    | 0.49                            | ng/L                         |          | 05/18/18 10:26                                                                                                                                                           | 05/28/18 12:13                                                                                                                                              | 1                                               |
| Perfluorobutanesulfonic acid (PFBS)                                                                                                                                                                                                                                                       | 27                                                                 |                                                 | 1.9                                                    | 0.43                            | ng/L                         |          | 05/18/18 10:26                                                                                                                                                           | 05/28/18 12:13                                                                                                                                              | 1                                               |
| Perfluorohexanesulfonic acid (PFHxS)                                                                                                                                                                                                                                                      | 360                                                                | E *                                             | 1.9                                                    | 0.36                            | ng/L                         |          | 05/18/18 10:26                                                                                                                                                           | 05/28/18 12:13                                                                                                                                              | 1                                               |
| Perfluorooctanesulfonic acid (PFOS)                                                                                                                                                                                                                                                       | 1100                                                               | EM *                                            | 3.8                                                    | 1.0                             | ng/L                         |          | 05/18/18 10:26                                                                                                                                                           | 05/28/18 12:13                                                                                                                                              | 1                                               |
| Isotope Dilution                                                                                                                                                                                                                                                                          | %Recovery                                                          | Qualifier                                       | Limits                                                 |                                 |                              |          | Prepared                                                                                                                                                                 | Analyzed                                                                                                                                                    | Dil Fac                                         |
| 13C3-PFBS                                                                                                                                                                                                                                                                                 | 85                                                                 |                                                 | 50 - 150                                               |                                 |                              |          | 05/18/18 10:26                                                                                                                                                           | 05/28/18 12:13                                                                                                                                              | 1                                               |
| 13C4-PFHpA                                                                                                                                                                                                                                                                                | 83                                                                 |                                                 | 50 - 150                                               |                                 |                              |          | 05/18/18 10:26                                                                                                                                                           | 05/28/18 12:13                                                                                                                                              | 1                                               |
| 13C4 PFOA                                                                                                                                                                                                                                                                                 | 89                                                                 |                                                 | 50 - 150                                               |                                 |                              |          | 05/18/18 10:26                                                                                                                                                           | 05/28/18 12:13                                                                                                                                              | 1                                               |
| 13C5 PFNA                                                                                                                                                                                                                                                                                 | 82                                                                 |                                                 | 50 - 150                                               |                                 |                              |          | 05/18/18 10:26                                                                                                                                                           | 05/28/18 12:13                                                                                                                                              | 1                                               |
| 1802 PFHxS                                                                                                                                                                                                                                                                                | 81                                                                 |                                                 | 50 - 150                                               |                                 |                              |          | 05/18/18 10:26                                                                                                                                                           | 05/28/18 12:13                                                                                                                                              | 1                                               |
| 1002 F1 1133                                                                                                                                                                                                                                                                              |                                                                    |                                                 |                                                        |                                 |                              |          |                                                                                                                                                                          |                                                                                                                                                             |                                                 |
| 13C4 PFOS<br>Method: EPA 537 (Mod) - PFA                                                                                                                                                                                                                                                  | 74<br>S for QSM                                                    | 5.1, Table E                                    | 50 - 150<br><b>3-15 - DL</b>                           |                                 |                              |          | 05/18/18 10:26                                                                                                                                                           | 05/28/18 12:13                                                                                                                                              | 1                                               |
| 13C4 PFOS                                                                                                                                                                                                                                                                                 | S for QSM (                                                        | Qualifier                                       |                                                        | DL                              | Unit                         | D        | 05/18/18 10:26  Prepared                                                                                                                                                 | 05/28/18 12:13 Analyzed                                                                                                                                     | 1<br>Dil Fac                                    |
| 13C4 PFOS<br>Method: EPA 537 (Mod) - PFA                                                                                                                                                                                                                                                  | S for QSM t                                                        | Qualifier                                       | 3-15 - DL                                              |                                 | Unit<br>ng/L                 | <u>D</u> | Prepared                                                                                                                                                                 |                                                                                                                                                             | Dil Fac                                         |
| 13C4 PFOS<br>Method: EPA 537 (Mod) - PFA<br>Analyte                                                                                                                                                                                                                                       | S for QSM (                                                        | Qualifier *                                     | 3-15 - DL<br>LOQ                                       | 5.7                             |                              | <u>D</u> | Prepared 05/18/18 10:26                                                                                                                                                  | Analyzed                                                                                                                                                    | Dil Fac                                         |
| Method: EPA 537 (Mod) - PFA<br>Analyte<br>Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                 | S for QSM 8 Result 23 55                                           | Qualifier *                                     | 3-15 - DL<br>LOQ<br>19                                 | 5.7<br>5.1                      | ng/L                         | <u>D</u> | Prepared<br>05/18/18 10:26<br>05/18/18 10:26                                                                                                                             | Analyzed 05/29/18 20:07                                                                                                                                     | 10                                              |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA)                                                                                                                                                                                         | S for QSM 8 Result 23 55                                           | Qualifier  D *  D *  U M *                      | 3-15 - DL<br>LOQ<br>19                                 | 5.7<br>5.1<br>4.9               | ng/L<br>ng/L                 | <u>D</u> | Prepared 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26                                                                                                                    | Analyzed 05/29/18 20:07 05/29/18 20:07                                                                                                                      | Dil Fac<br>10<br>10<br>10                       |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid                                                                                                                              | S for QSM 8  Result  23  55  14                                    | Qualifier  D *  D *  U M *  D *                 | 3-15 - DL<br>LOQ<br>19<br>19<br>19                     | 5.7<br>5.1<br>4.9<br>4.3        | ng/L<br>ng/L<br>ng/L         | <u>D</u> | Prepared 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26                                                                                                     | Analyzed 05/29/18 20:07 05/29/18 20:07 05/29/18 20:07                                                                                                       | Dil Fac<br>10<br>10<br>10                       |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid                                                                                          | S for QSM 8  Result  23  55  14  27                                | Qualifier  D *  D *  U M *  D *  D *            | 3-15 - DL<br>LOQ<br>19<br>19<br>19<br>19               | 5.7<br>5.1<br>4.9<br>4.3<br>3.6 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u> | Prepared 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26                                                                                      | Analyzed 05/29/18 20:07 05/29/18 20:07 05/29/18 20:07 05/29/18 20:07                                                                                        | Dil Fac<br>10<br>10<br>10<br>10                 |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid                                                                                   | S for QSM 8 Result 23 55 14 27                                     | Qualifier  D *  D *  U M *  D *  D J K01        | 3-15 - DL<br>LOQ<br>19<br>19<br>19<br>19               | 5.7<br>5.1<br>4.9<br>4.3<br>3.6 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u> | Prepared 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26                                                                                      | Analyzed  05/29/18 20:07  05/29/18 20:07  05/29/18 20:07  05/29/18 20:07                                                                                    | Dil Fac 10 10 10 10 10                          |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFHxS)                                                                           | S for QSM 8  Result  23  55  14  27  360  1100                     | Qualifier  D * D * U M * D * D J K01  Qualifier | 3-15 - DL<br>LOQ<br>19<br>19<br>19<br>19<br>19         | 5.7<br>5.1<br>4.9<br>4.3<br>3.6 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u> | Prepared  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26                                                                 | Analyzed 05/29/18 20:07 05/29/18 20:07 05/29/18 20:07 05/29/18 20:07 05/29/18 20:07                                                                         | Dil Fac 10 10 10 10 10 10 Dil Fac               |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution                                                           | S for QSM 8  Result  23  55  14  27  360  1100  %Recovery          | Qualifier  D * D * U M * D * D J K01  Qualifier | 19 19 19 19 38 <i>Limits</i>                           | 5.7<br>5.1<br>4.9<br>4.3<br>3.6 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u> | Prepared  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  Prepared  05/18/18 10:26                                                       | Analyzed  05/29/18 20:07  05/29/18 20:07  05/29/18 20:07  05/29/18 20:07  05/29/18 20:07  05/29/18 20:07  Analyzed                                          | Dil Fac 10 10 10 10 10 10 10 10 10              |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution                                                           | S for QSM 8  Result  23  55  14  27  360  1100  %Recovery  69      | Qualifier  D * D * U M * D * D J K01  Qualifier | 19<br>19<br>19<br>19<br>19<br>38<br>Limits<br>50 - 150 | 5.7<br>5.1<br>4.9<br>4.3<br>3.6 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u> | Prepared  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  Prepared  05/18/18 10:26  05/18/18 10:26                                       | Analyzed  05/29/18 20:07 05/29/18 20:07 05/29/18 20:07 05/29/18 20:07 05/29/18 20:07  05/29/18 20:07  Analyzed  05/29/18 20:07                              | Dil Fac  10 10 10 10 10 10 10 10 10 10 10 10 10 |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA | S for QSM \$  Result  23  55  14  27  360  1100  %Recovery  69  79 | Qualifier  D * D * U M * D * D J K01  Qualifier | 19 19 19 19 38 Limits 50 - 150 50 - 150                | 5.7<br>5.1<br>4.9<br>4.3<br>3.6 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u> | Prepared  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  Prepared  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26       | Analyzed  05/29/18 20:07 05/29/18 20:07 05/29/18 20:07 05/29/18 20:07  05/29/18 20:07  Analyzed  05/29/18 20:07 05/29/18 20:07                              | Dil Fac  10 10 10 10 10 10 10 10 10 10 10 10 10 |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA 13C4 PFOA                            | S for QSM s Result 23 55 14 27 360 1100 %Recovery 69 79 92         | Qualifier  D * D * U M * D * D J K01  Qualifier | 19 19 19 19 38 Limits 50 - 150 50 - 150 50 - 150       | 5.7<br>5.1<br>4.9<br>4.3<br>3.6 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u> | Prepared 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26  Prepared 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 | Analyzed  05/29/18 20:07 05/29/18 20:07 05/29/18 20:07 05/29/18 20:07 05/29/18 20:07  Analyzed  05/29/18 20:07 05/29/18 20:07 05/29/18 20:07 05/29/18 20:07 | Dil Fac<br>10<br>10<br>10<br>10                 |

Client Sample ID: MW-KLA06-01-01

Lab Sample ID: 320-39023-7 Date Collected: 05/06/18 13:15 **Matrix: Water** 

Date Received: 05/08/18 09:00

| Analyte                              | Result | Qualifier | LOQ | DL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|--------|-----------|-----|------|------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 6100   | E *       | 1.9 | 0.59 | ng/L |   | 05/18/18 10:26 | 05/28/18 12:29 | 1       |
| Perfluorooctanoic acid (PFOA)        | 11000  | EM        | 1.9 | 0.52 | ng/L |   | 05/18/18 10:26 | 05/28/18 12:29 | 1       |
| Perfluorononanoic acid (PFNA)        | 500    | EM        | 1.9 | 0.50 | ng/L |   | 05/18/18 10:26 | 05/28/18 12:29 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 1600   | E         | 1.9 | 0.45 | ng/L |   | 05/18/18 10:26 | 05/28/18 12:29 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 17000  | EM        | 1.9 | 0.37 | ng/L |   | 05/18/18 10:26 | 05/28/18 12:29 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 57000  | E         | 3.9 | 1.1  | ng/L |   | 05/18/18 10:26 | 05/28/18 12:29 | 1       |

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: MW-KLA06-01-01 Lab Sample ID: 320-39023-7

%Recovery Qualifier

Date Collected: 05/06/18 13:15 **Matrix: Water** 

Prepared

Analyzed

Dil Fac

Limits

Date Received: 05/08/18 09:00

Isotope Dilution

| 13C3-PFBS                            | 233         | Q       |         | 50 -           | . 150 |     |      |   | 05/18/18 10:26 | 05/28/18 12:29 | 1       |
|--------------------------------------|-------------|---------|---------|----------------|-------|-----|------|---|----------------|----------------|---------|
| 13C4-PFHpA                           | 37          | Q       |         | 50 -           | . 150 |     |      |   | 05/18/18 10:26 | 05/28/18 12:29 | 1       |
| 13C4 PFOA                            | 52          |         |         | 50 -           | . 150 |     |      |   | 05/18/18 10:26 | 05/28/18 12:29 | 1       |
| 13C5 PFNA                            | 50          |         |         | 50 -           | 150   |     |      |   | 05/18/18 10:26 | 05/28/18 12:29 | 1       |
| 1802 PFHxS                           | 54          |         |         | 50 -           | . 150 |     |      |   | 05/18/18 10:26 | 05/28/18 12:29 | 1       |
| 13C4 PFOS                            | 36          | Q       |         | 50 -           | . 150 |     |      |   | 05/18/18 10:26 | 05/28/18 12:29 | 1       |
| _<br>Method: EPA 537 (Mod) - PFAS    | S for QSM 5 | 5.1, Ta | able B  | -15 -          | DL2   |     |      |   |                |                |         |
| Analyte                              | Result      |         |         |                | LOQ   | DL  | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Perfluoroheptanoic acid (PFHpA)      | 5400        | D       | J K01   |                | 190   | 59  | ng/L |   | 05/18/18 10:26 | 05/29/18 20:31 | 100     |
| Perfluorooctanoic acid (PFOA)        | 14000       | D       | J K01   |                | 190   | 52  | ng/L |   | 05/18/18 10:26 | 05/29/18 20:31 | 100     |
| Perfluorononanoic acid (PFNA)        | 490         | D       | J K01   |                | 190   | 50  | ng/L |   | 05/18/18 10:26 | 05/29/18 20:31 | 100     |
| Perfluorobutanesulfonic acid (PFBS)  | 7900        | D       | J K01   |                | 190   | 45  | ng/L |   | 05/18/18 10:26 | 05/29/18 20:31 | 100     |
| Perfluorohexanesulfonic acid (PFHxS) | 68000       | E D     | J K01   | N03            | 190   | 37  | ng/L |   | 05/18/18 10:26 | 05/29/18 20:31 | 100     |
| Perfluorooctanesulfonic acid         | 130000      | E D     | J G02 I | <b>&lt;</b> 01 | 390   | 110 | ng/L |   | 05/18/18 10:26 | 05/29/18 20:31 | 100     |
| (PFOS)                               |             |         |         | N03            |       |     |      |   |                |                |         |
| Isotope Dilution                     | %Recovery   | Qualit  | fier    | Lin            | nits  |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 145         | М       |         | 50 -           | . 150 |     |      |   | 05/18/18 10:26 | 05/29/18 20:31 | 100     |
| 13C4-PFHpA                           | 53          |         |         | 50 -           | . 150 |     |      |   | 05/18/18 10:26 | 05/29/18 20:31 | 100     |
| 13C4 PFOA                            | 58          |         |         | 50 -           | . 150 |     |      |   | 05/18/18 10:26 | 05/29/18 20:31 | 100     |
| 13C5 PFNA                            | 51          |         |         | 50 -           | . 150 |     |      |   | 05/18/18 10:26 | 05/29/18 20:31 | 100     |
| 1802 PFHxS                           | 76          |         |         | 50 -           | . 150 |     |      |   | 05/18/18 10:26 | 05/29/18 20:31 | 100     |
| 13C4 PFOS                            | 46          | Q       |         | 50             | . 150 |     |      |   | 05/18/18 10:26 | 05/29/18 20:31 | 100     |

Client Sample ID: KLA08-SW1-01

Lab Sample ID: 320-39023-8 Date Collected: 05/07/18 08:30 **Matrix: Water** 

| Method: EPA 537 (Mod) - PFA Analyte  | Result    |      |       | LOQ      | DL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|------|-------|----------|------|------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 1.5       | J M  |       | 1.9      | 0.58 | ng/L |   | 05/21/18 12:01 | 05/31/18 04:51 | 1       |
| Perfluorooctanoic acid (PFOA)        | 1.8       | J M  | Ĵ     | 1.9      | 0.52 | ng/L |   | 05/21/18 12:01 | 05/31/18 04:51 | 1       |
| Perfluorononanoic acid (PFNA)        | 0.95      | J M  | J     | 1.9      | 0.50 | ng/L |   | 05/21/18 12:01 | 05/31/18 04:51 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.96      | UM   | U     | 1.9      | 0.44 | ng/L |   | 05/21/18 12:01 | 05/31/18 04:51 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 3.7       | M    | =     | 1.9      | 0.36 | ng/L |   | 05/21/18 12:01 | 05/31/18 04:51 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 28        | M    | =     | 3.8      | 1.1  | ng/L |   | 05/21/18 12:01 | 05/31/18 04:51 | 1       |
| Isotope Dilution                     | %Recovery | Qual | ifier | Limits   |      |      |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 76        |      |       | 50 - 150 |      |      |   | 05/21/18 12:01 | 05/31/18 04:51 | 1       |
| 13C4-PFHpA                           | 76        |      |       | 50 - 150 |      |      |   | 05/21/18 12:01 | 05/31/18 04:51 | 1       |
| 13C4 PFOA                            | 95        |      |       | 50 - 150 |      |      |   | 05/21/18 12:01 | 05/31/18 04:51 | 1       |
| 13C5 PFNA                            | 103       |      |       | 50 - 150 |      |      |   | 05/21/18 12:01 | 05/31/18 04:51 | 1       |
| 1802 PFHxS                           | 93        |      |       | 50 - 150 |      |      |   | 05/21/18 12:01 | 05/31/18 04:51 | 1       |
| 13C4 PFOS                            | 101       |      |       | 50 - 150 |      |      |   | 05/21/18 12:01 | 05/31/18 04:51 | 1       |

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: KLA-01-SB1-01

Lab Sample ID: 320-39023-9 Date Collected: 05/02/18 14:00 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 79.0

| Analyte                                                                                                                                                                                                                                                        | Result                                                       | Qualifier                                        | LOQ                                                                              |                                 | Unit                                      | D                | Prepared                                                                                                                                                           | Analyzed                                                                                                                                                                   | Dil Fac                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------|-------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                | 0.38                                                         |                                                  | 0.38                                                                             | 0.098                           | ug/Kg                                     | ₩                | 05/14/18 13:10                                                                                                                                                     | 05/29/18 03:32                                                                                                                                                             | 1                                               |
| Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                  | 3.9                                                          |                                                  | 0.38                                                                             | 0.13                            | ug/Kg                                     | ₩                | 05/14/18 13:10                                                                                                                                                     | 05/29/18 03:32                                                                                                                                                             | 1                                               |
| Perfluorononanoic acid (PFNA)                                                                                                                                                                                                                                  | 0.25                                                         | UM U                                             | 0.38                                                                             | 0.10                            | ug/Kg                                     | ☼                | 05/14/18 13:10                                                                                                                                                     | 05/29/18 03:32                                                                                                                                                             | 1                                               |
| Perfluorobutanesulfonic acid (PFBS)                                                                                                                                                                                                                            | 0.31                                                         | J                                                | 0.50                                                                             | 0.074                           | ug/Kg                                     | ₿                | 05/14/18 13:10                                                                                                                                                     | 05/29/18 03:32                                                                                                                                                             | 1                                               |
| Perfluorohexanesulfonic acid (PFHxS)                                                                                                                                                                                                                           | 18                                                           |                                                  | 0.38                                                                             | 0.078                           | ug/Kg                                     | ₩                | 05/14/18 13:10                                                                                                                                                     | 05/29/18 03:32                                                                                                                                                             | 1                                               |
| Perfluorooctanesulfonic acid (PFOS)                                                                                                                                                                                                                            | 240                                                          | E *                                              | 1.3                                                                              | 0.30                            | ug/Kg                                     | ₽                | 05/14/18 13:10                                                                                                                                                     | 05/29/18 03:32                                                                                                                                                             | 1                                               |
| Isotope Dilution                                                                                                                                                                                                                                               | %Recovery                                                    | Qualifier                                        | Limits                                                                           |                                 |                                           |                  | Prepared                                                                                                                                                           | Analyzed                                                                                                                                                                   | Dil Fac                                         |
| 13C3-PFBS                                                                                                                                                                                                                                                      | 74                                                           |                                                  | 50 - 150                                                                         |                                 |                                           |                  | 05/14/18 13:10                                                                                                                                                     | 05/29/18 03:32                                                                                                                                                             | 1                                               |
| 13C4-PFHpA                                                                                                                                                                                                                                                     | 82                                                           |                                                  | 50 - 150                                                                         |                                 |                                           |                  | 05/14/18 13:10                                                                                                                                                     | 05/29/18 03:32                                                                                                                                                             | 1                                               |
| 13C4 PFOA                                                                                                                                                                                                                                                      | 86                                                           |                                                  | 50 - 150                                                                         |                                 |                                           |                  | 05/14/18 13:10                                                                                                                                                     | 05/29/18 03:32                                                                                                                                                             | 1                                               |
| 13C5 PFNA                                                                                                                                                                                                                                                      | 60                                                           |                                                  | 50 - 150                                                                         |                                 |                                           |                  | 05/14/18 13:10                                                                                                                                                     | 05/29/18 03:32                                                                                                                                                             | 1                                               |
|                                                                                                                                                                                                                                                                |                                                              |                                                  |                                                                                  |                                 |                                           |                  |                                                                                                                                                                    |                                                                                                                                                                            |                                                 |
| 1802 PFHxS                                                                                                                                                                                                                                                     | 78                                                           |                                                  | 50 - 150                                                                         |                                 |                                           |                  | 05/14/18 13:10                                                                                                                                                     | 05/29/18 03:32                                                                                                                                                             | 1                                               |
| 1802 PFHxS<br>13C4 PFOS                                                                                                                                                                                                                                        | 78<br>48                                                     | Q                                                | 50 - 150<br>50 - 150                                                             |                                 |                                           |                  |                                                                                                                                                                    | 05/29/18 03:32<br>05/29/18 03:32                                                                                                                                           | -                                               |
| 13C4 PFOS<br>Method: EPA 537 (Mod) - PFA                                                                                                                                                                                                                       | 48<br>S for QSM !                                            | 5.1, Table                                       | 50 - 150<br><b>B-15 - DL</b>                                                     | DL                              | Unit                                      | D                | 05/14/18 13:10                                                                                                                                                     | 05/29/18 03:32                                                                                                                                                             | 1                                               |
| 13C4 PFOS<br>Method: EPA 537 (Mod) - PFA<br>Analyte                                                                                                                                                                                                            | 48 S for QSM ( Result                                        | 5.1, Table  <br>Qualifier                        | 50 - 150<br>B-15 - DL<br>LOQ                                                     |                                 | Unit<br>ua/Ka                             | <b>D</b>         | 05/14/18 13:10<br>Prepared                                                                                                                                         | 05/29/18 03:32 Analyzed                                                                                                                                                    | 1<br>Dil Fac                                    |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                            | AS for QSM Sesult 5.0                                        | 5.1, Table  <br>Qualifier<br>U *                 | 50 - 150  B-15 - DL  LOQ  7.5                                                    | 2.0                             | ug/Kg                                     |                  | 05/14/18 13:10  Prepared  05/14/18 13:10                                                                                                                           | 05/29/18 03:32  Analyzed 05/29/18 11:07                                                                                                                                    | Dil Fac                                         |
| 13C4 PFOS  Method: EPA 537 (Mod) - PFA Analyte  Perfluoroheptanoic acid (PFHpA)  Perfluorooctanoic acid (PFOA)                                                                                                                                                 | 48 S for QSM ( Result 5.0 3.9                                | 5.1, Table  <br>Qualifier<br>U *                 | 50 - 150<br>B-15 - DL<br>LOQ<br>7.5<br>7.5                                       | 2.0<br>2.5                      | ug/Kg<br>ug/Kg                            | <del></del>      | 05/14/18 13:10  Prepared  05/14/18 13:10  05/14/18 13:10                                                                                                           | 05/29/18 03:32  Analyzed  05/29/18 11:07 05/29/18 11:07                                                                                                                    | Dil Fac 20 20                                   |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluoronoctanoic acid (PFOA) Perfluorononanoic acid (PFNA)                                                                                                                               | 48 S for QSM (  Result  5.0  3.9  5.0                        | 5.1, Table   Qualifier U * U * U *               | 50 - 150  B-15 - DL  LOQ  7.5  7.5  7.5                                          | 2.0<br>2.5<br>2.0               | ug/Kg<br>ug/Kg<br>ug/Kg                   | <del></del>      | 05/14/18 13:10  Prepared  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10                                                                                           | 05/29/18 03:32  Analyzed  05/29/18 11:07  05/29/18 11:07  05/29/18 11:07                                                                                                   | Dil Fac 20 20 20                                |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid                                                               | 48 S for QSM ( Result 5.0 3.9                                | 5.1, Table   Qualifier   U * U * U *             | 50 - 150<br>B-15 - DL<br>LOQ<br>7.5<br>7.5                                       | 2.0<br>2.5<br>2.0<br>1.5        | ug/Kg<br>ug/Kg                            | <del>\$</del> \$ | Prepared 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10                                                                                               | 05/29/18 03:32  Analyzed  05/29/18 11:07 05/29/18 11:07                                                                                                                    | Dil Fac<br>20<br>20<br>20<br>20                 |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS)                                                                                                                          | 48 S for QSM (  Result  5.0  3.9  5.0  4.5                   | Gualifier  U  J D M *  U  *  U  *  D  *          | 50 - 150<br>B-15 - DL<br>LOQ<br>7.5<br>7.5<br>7.5<br>10<br>7.5                   | 2.0<br>2.5<br>2.0<br>1.5<br>1.6 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | \$<br>\$<br>\$   | Prepared 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10                                                                                               | Analyzed  05/29/18 03:32  Analyzed  05/29/18 11:07  05/29/18 11:07  05/29/18 11:07  05/29/18 11:07                                                                         | Dil Fac<br>20<br>20<br>20<br>20<br>20           |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid                                                        | 48 S for QSM (  Result  5.0  3.9  5.0  4.5  17               | 5.1, Table   Qualifier U * J D M * U * D * D J K | 50 - 150<br>B-15 - DL<br>LOQ<br>7.5<br>7.5<br>7.5<br>10<br>7.5                   | 2.0<br>2.5<br>2.0<br>1.5<br>1.6 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | #<br>#<br>#<br># | Prepared  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10                                                                           | Analyzed  05/29/18 03:32  Analyzed  05/29/18 11:07  05/29/18 11:07  05/29/18 11:07  05/29/18 11:07                                                                         | Dil Fac<br>20<br>20<br>20<br>20<br>20           |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS)                   | 48 S for QSM (  Result  5.0  3.9  5.0  4.5  17               | 5.1, Table   Qualifier   U *                     | 50 - 150  B-15 - DL LOQ 7.5 7.5 7.5 10 7.5                                       | 2.0<br>2.5<br>2.0<br>1.5<br>1.6 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | #<br>#<br>#<br># | Prepared 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10                                                                 | Analyzed 05/29/18 11:07 05/29/18 11:07 05/29/18 11:07 05/29/18 11:07 05/29/18 11:07                                                                                        | Dil Fac<br>20<br>20<br>20<br>20<br>20<br>20     |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution                                | 48 Result 5.0 3.9 5.0 4.5 17 430  %Recovery                  | 5.1, Table   Qualifier   U *                     | 50 - 150  B-15 - DL LOQ 7.5 7.5 7.5 10 7.5 25  Limits                            | 2.0<br>2.5<br>2.0<br>1.5<br>1.6 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | #<br>#<br>#<br># | Prepared  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  Prepared  05/14/18 13:10                                 | Analyzed  O5/29/18 03:32  Analyzed  O5/29/18 11:07  O5/29/18 11:07  O5/29/18 11:07  O5/29/18 11:07  O5/29/18 11:07  Analyzed                                               | 20 20 20 20 20 20 20 20 20 20 20 20 20 2        |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS                      | 48 S for QSM 8 Result 5.0 3.9 5.0 4.5 17 430  **Recovery* 79 | 5.1, Table   Qualifier   U *                     | 50 - 150  B-15 - DL LOQ 7.5 7.5 7.5 7.5 10 7.5 25  Limits 50 - 150               | 2.0<br>2.5<br>2.0<br>1.5<br>1.6 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | #<br>#<br>#<br># | Prepared  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  Prepared  05/14/18 13:10  05/14/18 13:10                 | Analyzed  05/29/18 11:07 05/29/18 11:07 05/29/18 11:07 05/29/18 11:07 05/29/18 11:07 05/29/18 11:07  Analyzed  05/29/18 11:07                                              | Dil Face 200 200 200 200 200 200 200 200 200 20 |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA           | 48 Result 5.0 3.9 5.0 4.5 17 430  **Recovery 79 89           | 5.1, Table   Qualifier   U *                     | 50 - 150  B-15 - DL LOQ 7.5 7.5 7.5 10 7.5 25  Limits 50 - 150 50 - 150          | 2.0<br>2.5<br>2.0<br>1.5<br>1.6 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | #<br>#<br>#<br># | Prepared  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  Prepared  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10 | Analyzed  05/29/18 03:32  Analyzed  05/29/18 11:07  05/29/18 11:07  05/29/18 11:07  05/29/18 11:07  Analyzed  05/29/18 11:07  05/29/18 11:07                               | Dil Fac 20 20 20 20 20 20 20 20 20 20 20 20 20  |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA 13C4 PFOA | 48 Result 5.0 3.9 5.0 4.5 17 430  **Recovery 79 89 90        | 5.1, Table   Qualifier   U *                     | 50 - 150  B-15 - DL LOQ 7.5 7.5 7.5 10 7.5 25  Limits 50 - 150 50 - 150 50 - 150 | 2.0<br>2.5<br>2.0<br>1.5<br>1.6 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | #<br>#<br>#<br># | Prepared  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  Prepared  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10 | Analyzed  05/29/18 11:07 05/29/18 11:07 05/29/18 11:07 05/29/18 11:07 05/29/18 11:07 05/29/18 11:07  Analyzed  05/29/18 11:07 05/29/18 11:07 05/29/18 11:07 05/29/18 11:07 | Dil Fac 20 20 20 20 20 20 20 20 20 20 20 20 20  |

Client Sample ID: KLA-01-SB1-02

Date Collected: 05/02/18 14:10 **Matrix: Solid** Percent Solids: 77.4 Date Received: 05/09/18 09:20

| Analyte                              | Result | Qualifier | LOQ  | DL    | Unit  | D  | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|--------|-----------|------|-------|-------|----|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 0.32   | J         | 0.38 | 0.10  | ug/Kg | ₩  | 05/14/18 13:10 | 05/29/18 03:40 | 1       |
| Perfluorooctanoic acid (PFOA)        | 1.0    |           | 0.38 | 0.13  | ug/Kg | ₩  | 05/14/18 13:10 | 05/29/18 03:40 | 1       |
| Perfluorononanoic acid (PFNA)        | 0.26   | UM U      | 0.38 | 0.10  | ug/Kg | ₽  | 05/14/18 13:10 | 05/29/18 03:40 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.31   | J         | 0.51 | 0.075 | ug/Kg | \$ | 05/14/18 13:10 | 05/29/18 03:40 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 9.1    |           | 0.38 | 0.079 | ug/Kg | ₽  | 05/14/18 13:10 | 05/29/18 03:40 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 150    | E *       | 1.3  | 0.31  | ug/Kg | ☼  | 05/14/18 13:10 | 05/29/18 03:40 | 1       |

Lab Sample ID: 320-39023-10

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Isotope Dilution

12C2 DEBS

1802 PFHxS

13C4 PFOS

13C5 PFNA

1802 PFHxS

13C4 PFOS

Client Sample ID: KLA-01-SB1-02

Date Collected: 05/02/18 14:10 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 77.4

Limits

EO 1EO

| 13C3-PFBS                            | 69        |         |        | 50 - 150 |     |       |    | 05/14/18 13:10 | 05/29/18 03:40 | 1       |
|--------------------------------------|-----------|---------|--------|----------|-----|-------|----|----------------|----------------|---------|
| 13C4-PFHpA                           | 83        |         |        | 50 - 150 |     |       |    | 05/14/18 13:10 | 05/29/18 03:40 | 1       |
| 13C4 PFOA                            | 82        |         |        | 50 - 150 |     |       |    | 05/14/18 13:10 | 05/29/18 03:40 | 1       |
| 13C5 PFNA                            | 67        |         |        | 50 - 150 |     |       |    | 05/14/18 13:10 | 05/29/18 03:40 | 1       |
| 1802 PFHxS                           | 75        |         |        | 50 - 150 |     |       |    | 05/14/18 13:10 | 05/29/18 03:40 | 1       |
| 13C4 PFOS                            | 54        |         |        | 50 - 150 |     |       |    | 05/14/18 13:10 | 05/29/18 03:40 | 1       |
| _<br>Method: EPA 537 (Mod) - PFAS    | S for QSM | 5.1, Ta | able B | -15 - DL |     |       |    |                |                |         |
| Analyte                              | Result    |         |        | LOQ      | DL  | Unit  | D  | Prepared       | Analyzed       | Dil Fac |
| Perfluoroheptanoic acid (PFHpA)      | 5.1       | U *     |        | 7.7      | 2.0 | ug/Kg | ☼  | 05/14/18 13:10 | 05/29/18 11:15 | 20      |
| Perfluorooctanoic acid (PFOA)        | 5.1       | UM      | *      | 7.7      | 2.6 | ug/Kg | ₩  | 05/14/18 13:10 | 05/29/18 11:15 | 20      |
| Perfluorononanoic acid (PFNA)        | 5.1       | U       | *      | 7.7      | 2.1 | ug/Kg | ₽  | 05/14/18 13:10 | 05/29/18 11:15 | 20      |
| Perfluorobutanesulfonic acid (PFBS)  | 4.6       | UM      | *      | 10       | 1.5 | ug/Kg | \$ | 05/14/18 13:10 | 05/29/18 11:15 | 20      |
| Perfluorohexanesulfonic acid (PFHxS) | 9.1       | D ,     | *      | 7.7      | 1.6 | ug/Kg | ₩  | 05/14/18 13:10 | 05/29/18 11:15 | 20      |
| Perfluorooctanesulfonic acid (PFOS)  | 210       | D ,     | J K01  | 26       | 6.1 | ug/Kg | ₩  | 05/14/18 13:10 | 05/29/18 11:15 | 20      |
| Isotope Dilution                     | %Recovery | Quali   | fier   | Limits   |     |       |    | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 71        | М       |        | 50 - 150 |     |       |    | 05/14/18 13:10 | 05/29/18 11:15 | 20      |
| 13C4-PFHpA                           | 78        |         |        | 50 - 150 |     |       |    | 05/14/18 13:10 | 05/29/18 11:15 | 20      |
| •                                    |           |         |        |          |     |       |    |                |                |         |
| 13C4 PFOA                            | 89        |         |        | 50 - 150 |     |       |    | 05/14/18 13:10 | 05/29/18 11:15 | 20      |

50 - 150

50 - 150

Client Sample ID: KLA-01-SB2-01

Lab Sample ID: 320-39023-11 Date Collected: 05/02/18 13:15 Date Received: 05/09/18 09:20

70

63

92

71

72

%Recovery Qualifier

Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 Analyzed Analyte Result Qualifier 100 DL Unit Prepared Dil Fac Perfluoroheptanoic acid (PFHpA) 0.22 U 0.34 0.088 ug/Kg 05/14/18 13:10 05/29/18 03:48 Perfluorooctanoic acid (PFOA) 0.30 J 0.34 0.11 ug/Kg 05/14/18 13:10 05/29/18 03:48 1 Perfluorononanoic acid (PFNA) 0.22 U 0.34 05/14/18 13:10 05/29/18 03:48 0.091 ug/Kg 1 05/14/18 13:10 05/29/18 03:48 Perfluorobutanesulfonic acid 0.072 J 0.45 0.066 ug/Kg 1 © 05/14/18 13:10 05/29/18 03:48 Perfluorohexanesulfonic acid 1.5 0.34 0.070 ug/Kg 1 (PFHxS) © 05/14/18 13:10 05/29/18 03:48 Perfluorooctanesulfonic acid 1.7 1.1 0.27 ug/Kg 1 (PFOS) Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C3-PFBS 68 50 - 150 05/14/18 13:10 05/29/18 03:48 1 13C4-PFHpA 84 50 - 150 05/14/18 13:10 05/29/18 03:48 1 13C4 PFOA 88 50 - 150 05/14/18 13:10 05/29/18 03:48 1

50 - 150

50 - 150

50 - 150

Lab Sample ID: 320-39023-10

05/14/19 12:10 05/20/19 02:40

05/14/18 13:10 05/29/18 11:15

05/14/18 13:10 05/29/18 11:15

05/14/18 13:10 05/29/18 03:48

05/14/18 13:10 05/29/18 03:48

05/14/18 13:10 05/29/18 03:48

20

20

1

1

Matrix: Solid

Percent Solids: 87.9

Analyzed

Prepared

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

13C4 PFOS

Client Sample ID: KLA-01-SB2-02 Lab Sample ID: 320-39023-12

 Date Collected: 05/02/18 13:20
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 75.7

| Analyte                              | Result    | Qualifier | LOQ                 | DL    | Unit  | D         | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|---------------------|-------|-------|-----------|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 0.14      | J         | 0.39                | 0.10  | ug/Kg | ₽         | 05/14/18 13:10 | 05/29/18 03:56 | 1       |
| Perfluorooctanoic acid (PFOA)        | 0.39      |           | 0.39                | 0.13  | ug/Kg | ☼         | 05/14/18 13:10 | 05/29/18 03:56 | 1       |
| Perfluorononanoic acid (PFNA)        | 0.26      | UM U      | 0.39                | 0.11  | ug/Kg | ☼         | 05/14/18 13:10 | 05/29/18 03:56 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.15      | J         | 0.52                | 0.077 | ug/Kg | <b>\$</b> | 05/14/18 13:10 | 05/29/18 03:56 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 2.4       |           | 0.39                | 0.081 | ug/Kg | ₽         | 05/14/18 13:10 | 05/29/18 03:56 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 3.2       | M =       | 1.3                 | 0.31  | ug/Kg | ₩         | 05/14/18 13:10 | 05/29/18 03:56 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier | Limits              |       |       |           | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 71        |           | 50 - 150            |       |       |           | 05/14/18 13:10 | 05/29/18 03:56 | 1       |
| 13C4-PFHpA                           | 83        |           | 50 - 150            |       |       |           | 05/14/18 13:10 | 05/29/18 03:56 | 1       |
| 13C4 PFOA                            | 84        |           | 50 - 150            |       |       |           | 05/14/18 13:10 | 05/29/18 03:56 | 1       |
| 13C5 PFNA                            | 87        |           | 50 - 150            |       |       |           | 05/14/18 13:10 | 05/29/18 03:56 | 1       |
| 1802 PFHxS                           | 76        |           | 50 - 150            |       |       |           | 05/14/18 13:10 | 05/29/18 03:56 | 1       |
| 13C4 PFOS                            | 74        |           | 50 <sub>-</sub> 150 |       |       |           | 05/14/18 13:10 | 05/29/18 03:56 | 1       |

Client Sample ID: KLA-01-SB3-01 Lab Sample ID: 320-39023-13

 Date Collected: 05/02/18 14:25
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 77.4

| Analyte                              | Result    | Qualifier | LOQ                 | DL    | Unit  | D            | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|---------------------|-------|-------|--------------|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 0.25      | U         | 0.38                | 0.099 | ug/Kg | <del>\</del> | 05/14/18 13:10 | 05/29/18 04:04 | 1       |
| Perfluorooctanoic acid (PFOA)        | 0.22      | J         | 0.38                | 0.13  | ug/Kg | ₩            | 05/14/18 13:10 | 05/29/18 04:04 | 1       |
| Perfluorononanoic acid (PFNA)        | 0.25      | U M U     | 0.38                | 0.10  | ug/Kg | ☼            | 05/14/18 13:10 | 05/29/18 04:04 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.13      | J         | 0.51                | 0.075 | ug/Kg | ₽            | 05/14/18 13:10 | 05/29/18 04:04 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 1.3       | U F06     | 0.38                | 0.079 | ug/Kg | ☼            | 05/14/18 13:10 | 05/29/18 04:04 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 10        |           | 1.3                 | 0.30  | ug/Kg | ₽            | 05/14/18 13:10 | 05/29/18 04:04 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier | Limits              |       |       |              | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 67        |           | 50 - 150            |       |       |              | 05/14/18 13:10 | 05/29/18 04:04 | 1       |
| 13C4-PFHpA                           | 82        |           | 50 - 150            |       |       |              | 05/14/18 13:10 | 05/29/18 04:04 | 1       |
| 13C4 PFOA                            | 84        |           | 50 - 150            |       |       |              | 05/14/18 13:10 | 05/29/18 04:04 | 1       |
| 13C5 PFNA                            | 84        |           | 50 - 150            |       |       |              | 05/14/18 13:10 | 05/29/18 04:04 | 1       |
| 18O2 PFHxS                           | 73        |           | 50 <sub>-</sub> 150 |       |       |              | 05/14/18 13:10 | 05/29/18 04:04 | 1       |

Client Sample ID: KLA-01-SB3-02 Lab Sample ID: 320-39023-14

50 - 150

Date Collected: 05/02/18 14:30 Matrix: Solid
Date Received: 05/09/18 09:20 Percent Solids: 78.1

| Method: EPA 537 (Mod) - PFAS        | for QSM 5.1, Table B | B-15 |       |       |              |                |                |         |
|-------------------------------------|----------------------|------|-------|-------|--------------|----------------|----------------|---------|
| Analyte                             | Result Qualifier     | LOQ  | DL    | Unit  | D            | Prepared       | Analyzed       | Dil Fac |
| Perfluoroheptanoic acid (PFHpA)     | 0.25 U               | 0.38 | 0.099 | ug/Kg | <del>\</del> | 05/14/18 13:10 | 05/29/18 04:12 | 1       |
| Perfluorooctanoic acid (PFOA)       | 0.25 U               | 0.38 | 0.13  | ug/Kg | ₩            | 05/14/18 13:10 | 05/29/18 04:12 | 1       |
| Perfluorononanoic acid (PFNA)       | 0.25 U               | 0.38 | 0.10  | ug/Kg | ₩            | 05/14/18 13:10 | 05/29/18 04:12 | 1       |
| Perfluorobutanesulfonic acid (PFBS) | 0.23 U               | 0.51 | 0.075 | ug/Kg | ₽            | 05/14/18 13:10 | 05/29/18 04:12 | 1       |

05/14/18 13:10 05/29/18 04:04

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

13C4 PFOS

Client Sample ID: KLA-01-SB3-02 Lab Sample ID: 320-39023-14

| Analyte                              | Result    | Qualifier | LOQ      | DL    | Unit  | D           | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|----------|-------|-------|-------------|----------------|----------------|---------|
| Perfluorohexanesulfonic acid (PFHxS) | 0.32      | J         | 0.38     | 0.078 | ug/Kg | <del></del> | 05/14/18 13:10 | 05/29/18 04:12 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 1.1       | J         | 1.3      | 0.30  | ug/Kg | ☼           | 05/14/18 13:10 | 05/29/18 04:12 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier | Limits   |       |       |             | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 67        |           | 50 - 150 |       |       |             | 05/14/18 13:10 | 05/29/18 04:12 | 1       |
| 13C4-PFHpA                           | 80        |           | 50 - 150 |       |       |             | 05/14/18 13:10 | 05/29/18 04:12 | 1       |
| 13C4 PFOA                            | 80        |           | 50 - 150 |       |       |             | 05/14/18 13:10 | 05/29/18 04:12 | 1       |
| 13C5 PFNA                            | 82        |           | 50 - 150 |       |       |             | 05/14/18 13:10 | 05/29/18 04:12 | 1       |
| 1802 PFHxS                           | 70        |           | 50 - 150 |       |       |             | 05/14/18 13:10 | 05/29/18 04:12 | 1       |
| 13C4 PFOS                            | 64        |           | 50 - 150 |       |       |             | 05/14/18 13:10 | 05/29/18 04:12 | 1       |

Client Sample ID: KLA02-SB1-01 Lab Sample ID: 320-39023-15

 Date Collected: 05/04/18 13:40
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 77.4

| Analyte                              | Result    | Qua | alifier | LOQ      | DL    | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----|---------|----------|-------|-------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 0.16      | J   |         | 0.39     | 0.10  | ug/Kg | ☼ | 05/14/18 14:03 | 05/29/18 07:43 | 1       |
| Perfluorooctanoic acid (PFOA)        | 0.46      | M   | =       | 0.39     | 0.13  | ug/Kg | ☼ | 05/14/18 14:03 | 05/29/18 07:43 | 1       |
| Perfluorononanoic acid (PFNA)        | 0.26      | U   |         | 0.39     | 0.11  | ug/Kg | ≎ | 05/14/18 14:03 | 05/29/18 07:43 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.25      | J   |         | 0.52     | 0.077 | ug/Kg | ₽ | 05/14/18 14:03 | 05/29/18 07:43 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 2.6       |     |         | 0.39     | 0.081 | ug/Kg | ☼ | 05/14/18 14:03 | 05/29/18 07:43 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 7.6       | J1  | J H02   | 1.3      | 0.31  | ug/Kg | ☼ | 05/14/18 14:03 | 05/29/18 07:43 | 1       |
| Isotope Dilution                     | %Recovery | Qua | alifier | Limits   |       |       |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 81        |     |         | 50 - 150 |       |       |   | 05/14/18 14:03 | 05/29/18 07:43 | 1       |
| 13C4-PFHpA                           | 93        |     |         | 50 - 150 |       |       |   | 05/14/18 14:03 | 05/29/18 07:43 | 1       |
| 13C4 PFOA                            | 93        |     |         | 50 - 150 |       |       |   | 05/14/18 14:03 | 05/29/18 07:43 | 1       |
| 13C5 PFNA                            | 100       |     |         | 50 - 150 |       |       |   | 05/14/18 14:03 | 05/29/18 07:43 | 1       |
| 1802 PFHxS                           | 88        |     |         | 50 - 150 |       |       |   | 05/14/18 14:03 | 05/29/18 07:43 | 1       |

Client Sample ID: KLA02-SB1-02 Lab Sample ID: 320-39023-16

50 - 150

86

 Date Collected: 05/04/18 13:45
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 80.8

| Analyte                              | Result | Qualifier | LOQ  | DL    | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|--------|-----------|------|-------|-------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 0.18   | J         | 0.36 | 0.095 | ug/Kg | ₩ | 05/14/18 14:03 | 05/29/18 08:07 | 1       |
| Perfluorooctanoic acid (PFOA)        | 0.28   | JM J      | 0.36 | 0.12  | ug/Kg | ₩ | 05/14/18 14:03 | 05/29/18 08:07 | 1       |
| Perfluorononanoic acid (PFNA)        | 0.24   | U M U     | 0.36 | 0.098 | ug/Kg | ₩ | 05/14/18 14:03 | 05/29/18 08:07 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.22   | J         | 0.49 | 0.072 | ug/Kg | ₩ | 05/14/18 14:03 | 05/29/18 08:07 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 1.6    |           | 0.36 | 0.075 | ug/Kg | ₽ | 05/14/18 14:03 | 05/29/18 08:07 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 6.1    |           | 1.2  | 0.29  | ug/Kg | ☼ | 05/14/18 14:03 | 05/29/18 08:07 | 1       |

05/14/18 14:03 05/29/18 07:43

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: KLA02-SB1-02

Lab Sample ID: 320-39023-16 Date Collected: 05/04/18 13:45 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 80.8

| Isotope Dilution | %Recovery Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------|---------------------|----------|----------------|----------------|---------|
| 13C3-PFBS        | 71                  | 50 - 150 | 05/14/18 14:03 | 05/29/18 08:07 | 1       |
| 13C4-PFHpA       | 81                  | 50 - 150 | 05/14/18 14:03 | 05/29/18 08:07 | 1       |
| 13C4 PFOA        | 84                  | 50 - 150 | 05/14/18 14:03 | 05/29/18 08:07 | 1       |
| 13C5 PFNA        | 85                  | 50 - 150 | 05/14/18 14:03 | 05/29/18 08:07 | 1       |
| 1802 PFHxS       | 77                  | 50 - 150 | 05/14/18 14:03 | 05/29/18 08:07 | 1       |
| 13C4 PFOS        | 76                  | 50 - 150 | 05/14/18 14:03 | 05/29/18 08:07 | 1       |

Client Sample ID: KLA02-SB2-01 Lab Sample ID: 320-39023-17

Date Collected: 05/04/18 13:20 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 79.0

| Pate Received: 05/09/18 09:20                                                                                                                                                              |                                                                                 |                           |                 |                                                                                  |                        |                                  |                |                                                                                                                                                                            | Percent Solid                                                                                                                                            | 3. 7 J.                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------|-----------------|----------------------------------------------------------------------------------|------------------------|----------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Method: EPA 537 (Mod) - PFA<br>Analyte                                                                                                                                                     | S for QSM !<br>Result                                                           |                           |                 | 15<br>LOQ                                                                        | DL                     | Unit                             | D              | Prepared                                                                                                                                                                   | Analyzed                                                                                                                                                 | Dil Fa                                               |
| Perfluoroheptanoic acid (PFHpA)                                                                                                                                                            | 1.1                                                                             |                           |                 | 0.37                                                                             | 0.097                  | ug/Kg                            | ₩              | 05/14/18 14:03                                                                                                                                                             | 05/29/18 08:14                                                                                                                                           |                                                      |
| Perfluorooctanoic acid (PFOA)                                                                                                                                                              | 2.2                                                                             |                           |                 | 0.37                                                                             | 0.12                   | ug/Kg                            | ☼              | 05/14/18 14:03                                                                                                                                                             | 05/29/18 08:14                                                                                                                                           |                                                      |
| Perfluorononanoic acid (PFNA)                                                                                                                                                              | 0.38                                                                            |                           |                 | 0.37                                                                             | 0.10                   | ug/Kg                            | ☼              | 05/14/18 14:03                                                                                                                                                             | 05/29/18 08:14                                                                                                                                           |                                                      |
| Perfluorobutanesulfonic acid (PFBS)                                                                                                                                                        | 5.1                                                                             |                           |                 | 0.50                                                                             | 0.074                  | ug/Kg                            | <b>\$</b>      | 05/14/18 14:03                                                                                                                                                             | 05/29/18 08:14                                                                                                                                           |                                                      |
| Perfluorohexanesulfonic acid (PFHxS)                                                                                                                                                       | 21                                                                              |                           |                 | 0.37                                                                             | 0.077                  | ug/Kg                            | ₽              | 05/14/18 14:03                                                                                                                                                             | 05/29/18 08:14                                                                                                                                           | •                                                    |
| Perfluorooctanesulfonic acid (PFOS)                                                                                                                                                        | 270                                                                             | Е                         | *               | 1.2                                                                              | 0.30                   | ug/Kg                            | ₩              | 05/14/18 14:03                                                                                                                                                             | 05/29/18 08:14                                                                                                                                           | •                                                    |
| Isotope Dilution                                                                                                                                                                           | %Recovery                                                                       | Qual                      | lifier          | Limits                                                                           |                        |                                  |                | Prepared                                                                                                                                                                   | Analyzed                                                                                                                                                 | Dil Fa                                               |
| 13C3-PFBS                                                                                                                                                                                  | 78                                                                              | -                         |                 | 50 - 150                                                                         |                        |                                  |                | 05/14/18 14:03                                                                                                                                                             | 05/29/18 08:14                                                                                                                                           |                                                      |
| 13C4-PFHpA                                                                                                                                                                                 | 85                                                                              |                           |                 | 50 - 150                                                                         |                        |                                  |                | 05/14/18 14:03                                                                                                                                                             | 05/29/18 08:14                                                                                                                                           |                                                      |
| 13C4 PFOA                                                                                                                                                                                  | 94                                                                              |                           |                 | 50 - 150                                                                         |                        |                                  |                | 05/14/18 14:03                                                                                                                                                             | 05/29/18 08:14                                                                                                                                           |                                                      |
| 13C5 PFNA                                                                                                                                                                                  | 66                                                                              |                           |                 | 50 - 150                                                                         |                        |                                  |                | 05/14/18 14:03                                                                                                                                                             | 05/29/18 08:14                                                                                                                                           |                                                      |
| 1802 PFHxS                                                                                                                                                                                 | 78                                                                              |                           |                 | 50 - 150                                                                         |                        |                                  |                | 05/14/18 14:03                                                                                                                                                             | 05/29/18 08:14                                                                                                                                           |                                                      |
| 13C4 PFOS                                                                                                                                                                                  | 55                                                                              |                           |                 | 50 - 150                                                                         |                        |                                  |                | 05/14/18 14:03                                                                                                                                                             | 05/29/18 08:14                                                                                                                                           |                                                      |
| Method: EPA 537 (Mod) - PFA<br>Analyte                                                                                                                                                     | S for QSM (                                                                     |                           |                 | 15 - DL<br>LOQ                                                                   | DI                     | Unit                             | D              | Prepared                                                                                                                                                                   | Analyzed                                                                                                                                                 | Dil Fa                                               |
| Perfluoroheptanoic acid (PFHpA)                                                                                                                                                            | 25                                                                              |                           |                 | LOQ                                                                              | DL                     |                                  | U              | •                                                                                                                                                                          | -                                                                                                                                                        | DII Fat                                              |
|                                                                                                                                                                                            |                                                                                 | 11                        | *               | 37                                                                               | 0.7                    | ua/Ka                            | <del></del>    | 05/14/18 14:03                                                                                                                                                             | 05/20/18 15:02                                                                                                                                           | 100                                                  |
| Porfluoroactanoic acid (PEOA)                                                                                                                                                              |                                                                                 |                           | *               | 37                                                                               |                        | ug/Kg                            | <u>∓</u>       | 05/14/18 14:03                                                                                                                                                             |                                                                                                                                                          | 100                                                  |
|                                                                                                                                                                                            | 25                                                                              | U                         | *               | 37                                                                               | 12                     | ug/Kg                            | ₩              | 05/14/18 14:03                                                                                                                                                             | 05/29/18 15:02                                                                                                                                           | 100                                                  |
| Perfluorononanoic acid (PFNA)                                                                                                                                                              | 25<br>25                                                                        | U<br>U                    | *               | 37<br>37                                                                         | 12<br>10               | ug/Kg<br>ug/Kg                   |                | 05/14/18 14:03<br>05/14/18 14:03                                                                                                                                           | 05/29/18 15:02<br>05/29/18 15:02                                                                                                                         | 100<br>100                                           |
| Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS)                                                                                            | 25<br>25<br>22                                                                  | U<br>U                    | *               | 37<br>37<br>50                                                                   | 12<br>10<br>7.4        | ug/Kg<br>ug/Kg<br>ug/Kg          | \$<br>\$       | 05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03                                                                                                                         | 05/29/18 15:02<br>05/29/18 15:02<br>05/29/18 15:02                                                                                                       | 100<br>100<br>100                                    |
| Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS)                                                                                     | 25<br>25<br>22<br><b>21</b>                                                     | U<br>U<br>U<br><b>J D</b> | * * *           | 37<br>37<br>50<br>37                                                             | 12<br>10<br>7.4<br>7.7 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$<br>\$<br>\$ | 05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03                                                                                                       | 05/29/18 15:02<br>05/29/18 15:02<br>05/29/18 15:02<br>05/29/18 15:02                                                                                     | 100<br>100<br>100<br>100                             |
| Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid                                                                                             | 25<br>25<br>22                                                                  | U<br>U<br>U<br><b>J D</b> | *               | 37<br>37<br>50                                                                   | 12<br>10<br>7.4<br>7.7 | ug/Kg<br>ug/Kg<br>ug/Kg          | \$<br>\$       | 05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03                                                                                                       | 05/29/18 15:02<br>05/29/18 15:02<br>05/29/18 15:02                                                                                                       | 100<br>100<br>100<br>100                             |
| Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS)                                                 | 25<br>25<br>22<br>21<br>390<br>%Recovery                                        | U<br>U<br>J D<br>D        | * * * * * J K01 | 37<br>37<br>50<br>37                                                             | 12<br>10<br>7.4<br>7.7 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$<br>\$<br>\$ | 05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03                                                                                                       | 05/29/18 15:02<br>05/29/18 15:02<br>05/29/18 15:02<br>05/29/18 15:02                                                                                     | 100<br>100                                           |
| Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution                                | 25<br>25<br>22<br>21<br>390<br>%Recovery                                        | U<br>U<br>J D<br>D        | * * * * * J K01 | 37<br>37<br>50<br>37<br>120                                                      | 12<br>10<br>7.4<br>7.7 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$<br>\$<br>\$ | 05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br><i>Prepared</i>                                                                  | 05/29/18 15:02<br>05/29/18 15:02<br>05/29/18 15:02<br>05/29/18 15:02<br>05/29/18 15:02                                                                   | 100<br>100<br>100<br>100                             |
| Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid                                                        | 25<br>25<br>22<br>21<br>390<br>%Recovery                                        | U<br>U<br>J D<br>D        | * * * * * J K01 | 37<br>37<br>50<br>37<br>120                                                      | 12<br>10<br>7.4<br>7.7 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$<br>\$<br>\$ | 05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>Prepared<br>05/14/18 14:03                                                       | 05/29/18 15:02<br>05/29/18 15:02<br>05/29/18 15:02<br>05/29/18 15:02<br>05/29/18 15:02<br>Analyzed                                                       | 100<br>100<br>100<br>100<br>100<br><b>Dil Fa</b>     |
| Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA           | 25<br>25<br>22<br>21<br>390<br>%Recovery                                        | U<br>U<br>J D<br>D        | * * * * * J K01 | 37<br>37<br>50<br>37<br>120<br><b>Limits</b><br>50 - 150                         | 12<br>10<br>7.4<br>7.7 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$<br>\$<br>\$ | 05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>Prepared<br>05/14/18 14:03<br>05/14/18 14:03                                     | 05/29/18 15:02<br>05/29/18 15:02<br>05/29/18 15:02<br>05/29/18 15:02<br>05/29/18 15:02<br>Analyzed<br>05/29/18 15:02                                     | 100<br>100<br>100<br>100<br>100<br>100<br>100        |
| Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA 13C4 PFOA | 25<br>25<br>22<br><b>21</b><br><b>390</b><br><i>%Recovery</i><br>94<br>72       | U<br>U<br>J D<br>D        | * * * * * J K01 | 37<br>37<br>50<br>37<br>120<br><b>Limits</b><br>50 - 150<br>50 - 150             | 12<br>10<br>7.4<br>7.7 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$<br>\$<br>\$ | 05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>Prepared<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03                   | 05/29/18 15:02<br>05/29/18 15:02<br>05/29/18 15:02<br>05/29/18 15:02<br>05/29/18 15:02<br>Analyzed<br>05/29/18 15:02<br>05/29/18 15:02                   | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |
| Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS                      | 25<br>25<br>22<br><b>21</b><br><b>390</b><br><b>%Recovery</b><br>94<br>72<br>87 | U<br>U<br>J D<br>D        | * * * * * J K01 | 37<br>37<br>50<br>37<br>120<br><b>Limits</b><br>50 - 150<br>50 - 150<br>50 - 150 | 12<br>10<br>7.4<br>7.7 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$<br>\$<br>\$ | 05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>Prepared<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03 | 05/29/18 15:02<br>05/29/18 15:02<br>05/29/18 15:02<br>05/29/18 15:02<br>05/29/18 15:02<br>Analyzed<br>05/29/18 15:02<br>05/29/18 15:02<br>05/29/18 15:02 | 100<br>100<br>100<br>100<br>100                      |

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: KLA02-SB2-02

Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15

Lab Sample ID: 320-39023-18 Date Collected: 05/04/18 13:25 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 59.2

| Analyte                                                                                                                                                                                                                                                        | Result                                                              | Qualifier                               | LOQ                                                                                            |                                 | Unit                                      | D                                                        | Prepared                                                                                                                                                           | Analyzed                                                                                                                                                     | Dil Fac                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                | 6.0                                                                 |                                         | 0.51                                                                                           | 0.13                            | ug/Kg                                     | ₩                                                        | 05/14/18 14:03                                                                                                                                                     | 05/29/18 08:22                                                                                                                                               | 1                                                        |
| Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                  | 18                                                                  |                                         | 0.51                                                                                           | 0.17                            | ug/Kg                                     | ☼                                                        | 05/14/18 14:03                                                                                                                                                     | 05/29/18 08:22                                                                                                                                               | 1                                                        |
| Perfluorononanoic acid (PFNA)                                                                                                                                                                                                                                  | 0.30                                                                | J                                       | 0.51                                                                                           | 0.14                            | ug/Kg                                     | ₽                                                        | 05/14/18 14:03                                                                                                                                                     | 05/29/18 08:22                                                                                                                                               | 1                                                        |
| Perfluorobutanesulfonic acid (PFBS)                                                                                                                                                                                                                            | 26                                                                  |                                         | 0.68                                                                                           | 0.10                            | ug/Kg                                     | <b>\$</b>                                                | 05/14/18 14:03                                                                                                                                                     | 05/29/18 08:22                                                                                                                                               | 1                                                        |
| Perfluorohexanesulfonic acid (PFHxS)                                                                                                                                                                                                                           | 110                                                                 | E *                                     | 0.51                                                                                           | 0.10                            | ug/Kg                                     | ₽                                                        | 05/14/18 14:03                                                                                                                                                     | 05/29/18 08:22                                                                                                                                               | 1                                                        |
| Perfluorooctanesulfonic acid (PFOS)                                                                                                                                                                                                                            | 410                                                                 | E *                                     | 1.7                                                                                            | 0.41                            | ug/Kg                                     | ≎                                                        | 05/14/18 14:03                                                                                                                                                     | 05/29/18 08:22                                                                                                                                               | 1                                                        |
| Isotope Dilution                                                                                                                                                                                                                                               | %Recovery                                                           | Qualifier                               | Limits                                                                                         |                                 |                                           |                                                          | Prepared                                                                                                                                                           | Analyzed                                                                                                                                                     | Dil Fac                                                  |
| 13C3-PFBS                                                                                                                                                                                                                                                      | 82                                                                  |                                         | 50 - 150                                                                                       |                                 |                                           |                                                          | 05/14/18 14:03                                                                                                                                                     | 05/29/18 08:22                                                                                                                                               | 1                                                        |
| 13C4-PFHpA                                                                                                                                                                                                                                                     | 78                                                                  |                                         | 50 - 150                                                                                       |                                 |                                           |                                                          | 05/14/18 14:03                                                                                                                                                     | 05/29/18 08:22                                                                                                                                               | 1                                                        |
| 13C4 PFOA                                                                                                                                                                                                                                                      | 89                                                                  |                                         | 50 - 150                                                                                       |                                 |                                           |                                                          | 05/14/18 14:03                                                                                                                                                     | 05/29/18 08:22                                                                                                                                               | 1                                                        |
| 13C5 PFNA                                                                                                                                                                                                                                                      | 71                                                                  |                                         | 50 - 150                                                                                       |                                 |                                           |                                                          | 05/14/18 14:03                                                                                                                                                     | 05/29/18 08:22                                                                                                                                               | 1                                                        |
| 1802 PFHxS                                                                                                                                                                                                                                                     | 72                                                                  |                                         | 50 - 150                                                                                       |                                 |                                           |                                                          | 05/14/18 14:03                                                                                                                                                     | 05/29/18 08:22                                                                                                                                               | 1                                                        |
| 100 / 0500                                                                                                                                                                                                                                                     | 60                                                                  |                                         | 50 <sub>-</sub> 150                                                                            |                                 |                                           |                                                          | 05/14/18 14:03                                                                                                                                                     | 05/29/18 08:22                                                                                                                                               | 1                                                        |
| 13C4 PFOS<br>:<br>Method: EPA 537 (Mod) - PFA                                                                                                                                                                                                                  |                                                                     | 5.1, Table I                            |                                                                                                |                                 |                                           |                                                          |                                                                                                                                                                    |                                                                                                                                                              |                                                          |
| Method: EPA 537 (Mod) - PFA<br>Analyte                                                                                                                                                                                                                         | S for QSM &                                                         | Qualifier                               | 3-15 - DL<br>LOQ                                                                               |                                 | Unit                                      | D                                                        | Prepared                                                                                                                                                           | Analyzed                                                                                                                                                     |                                                          |
| Method: EPA 537 (Mod) - PFA<br>Analyte<br>Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                      | S for QSM (Result                                                   | Qualifier  J D *                        | B-15 - DL<br>LOQ<br>10                                                                         | 2.6                             | ug/Kg                                     | D                                                        | Prepared 05/14/18 14:03                                                                                                                                            | Analyzed 05/29/18 17:07                                                                                                                                      | 20                                                       |
| Method: EPA 537 (Mod) - PFA<br>Analyte<br>Perfluoroheptanoic acid (PFHpA)<br>Perfluorooctanoic acid (PFOA)                                                                                                                                                     | S for QSM (Result 6.4                                               | Qualifier  J D *  D *                   | 3-15 - DL<br>LOQ<br>10                                                                         | 2.6<br>3.4                      | ug/Kg<br>ug/Kg                            |                                                          | Prepared 05/14/18 14:03 05/14/18 14:03                                                                                                                             | Analyzed 05/29/18 17:07 05/29/18 17:07                                                                                                                       | 20<br>20                                                 |
| Method: EPA 537 (Mod) - PFA<br>Analyte<br>Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                      | S for QSM (Result                                                   | Qualifier  J D *  D *                   | 3-15 - DL<br>LOQ<br>10<br>10                                                                   | 2.6<br>3.4<br>2.7               | ug/Kg<br>ug/Kg<br>ug/Kg                   |                                                          | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                                              | Analyzed  05/29/18 17:07  05/29/18 17:07  05/29/18 17:07                                                                                                     | 20<br>20<br>20<br>20                                     |
| Method: EPA 537 (Mod) - PFA<br>Analyte<br>Perfluoroheptanoic acid (PFHpA)<br>Perfluorooctanoic acid (PFOA)                                                                                                                                                     | S for QSM (Result 6.4                                               | Qualifier  J D *  D *  U *              | 3-15 - DL<br>LOQ<br>10                                                                         | 2.6<br>3.4<br>2.7               | ug/Kg<br>ug/Kg                            |                                                          | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                               | Analyzed 05/29/18 17:07 05/29/18 17:07 05/29/18 17:07 05/29/18 17:07                                                                                         | 20<br>20<br>20<br>20                                     |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid                                                                                                   | S for QSM 8  Result  6.4  17  6.8                                   | Qualifier J D * D * U * D *             | 3-15 - DL<br>LOQ<br>10<br>10<br>10                                                             | 2.6<br>3.4<br>2.7<br>2.0        | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | <del></del>                                              | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                               | Analyzed  05/29/18 17:07  05/29/18 17:07  05/29/18 17:07                                                                                                     | 20<br>20<br>20<br>20<br>20                               |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid                                                               | S for QSM 8  Result  6.4  17  6.8  30  130                          | Qualifier J D * D * U * D *             | 3-15 - DL<br>LOQ<br>10<br>10<br>10<br>14                                                       | 2.6<br>3.4<br>2.7<br>2.0<br>2.1 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$<br>\$                                                 | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                | Analyzed 05/29/18 17:07 05/29/18 17:07 05/29/18 17:07 05/29/18 17:07                                                                                         | 20<br>20<br>20<br>20<br>20                               |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid                          | S for QSM 8  Result  6.4  17  6.8  30  130                          | Qualifier JD * D * U * D * D JK0 DM JK0 | 3-15 - DL<br>LOQ<br>10<br>10<br>10<br>14                                                       | 2.6<br>3.4<br>2.7<br>2.0<br>2.1 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                | Analyzed  05/29/18 17:07 05/29/18 17:07 05/29/18 17:07 05/29/18 17:07                                                                                        | 20<br>20<br>20<br>20<br>20<br>20                         |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFHxS)                                                | S for QSM 8  Result  6.4  17  6.8  30  130  570                     | Qualifier JD * D * U * D * D JK0 DM JK0 | 3-15 - DL<br>LOQ<br>10<br>10<br>10<br>14<br>1<br>1 10                                          | 2.6<br>3.4<br>2.7<br>2.0<br>2.1 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                 | Analyzed 05/29/18 17:07 05/29/18 17:07 05/29/18 17:07 05/29/18 17:07 05/29/18 17:07                                                                          | 20<br>20<br>20<br>20<br>20<br>20<br>20                   |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution                                | S for QSM 8  Result  6.4  17  6.8  30  130  570  %Recovery          | Qualifier JD * D * U * D * D JK0 DM JK0 | 3-15 - DL<br>LOQ<br>10<br>10<br>10<br>14<br>1<br>1 10<br>21 34<br>Limits                       | 2.6<br>3.4<br>2.7<br>2.0<br>2.1 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03                                                 | Analyzed  05/29/18 17:07  05/29/18 17:07  05/29/18 17:07  05/29/18 17:07  05/29/18 17:07  05/29/18 17:07  Analyzed                                           | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20             |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS                      | S for QSM 8  Result  6.4  17  6.8  30  130  570  %Recovery          | Qualifier JD * D * U * D * D JK0 DM JK0 | 3-15 - DL<br>LOQ<br>10<br>10<br>10<br>14<br>1 10<br>11<br>34<br>Limits<br>50 - 150             | 2.6<br>3.4<br>2.7<br>2.0<br>2.1 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03  05/14/18 14:03                                 | Analyzed  05/29/18 17:07  05/29/18 17:07  05/29/18 17:07  05/29/18 17:07  05/29/18 17:07  05/29/18 17:07  Analyzed  05/29/18 17:07                           | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA           | S for QSM \$  Result  6.4  17  6.8  30  130  570  %Recovery  71  78 | Qualifier JD * D * U * D * D JK0 DM JK0 | 3-15 - DL<br>LOQ<br>10<br>10<br>10<br>14<br>1 10<br>11<br>34<br>Limits<br>50 - 150<br>50 - 150 | 2.6<br>3.4<br>2.7<br>2.0<br>2.1 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03  Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                       | Analyzed  05/29/18 17:07  05/29/18 17:07  05/29/18 17:07  05/29/18 17:07  05/29/18 17:07  Analyzed  05/29/18 17:07  05/29/18 17:07                           | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA 13C4 PFOA | S for QSM 8 Result 6.4 17 6.8 30 130 570  **Recovery 71 78 91       | Qualifier JD * D * U * D * D JK0 DM JK0 | 10 10 14 10 10 34 Limits 50 - 150 50 - 150 50 - 150                                            | 2.6<br>3.4<br>2.7<br>2.0<br>2.1 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03 | Analyzed  05/29/18 17:07 05/29/18 17:07 05/29/18 17:07 05/29/18 17:07  05/29/18 17:07  Analyzed  05/29/18 17:07 05/29/18 17:07 05/29/18 17:07 05/29/18 17:07 | 20<br>20                                                 |

Client Sample ID: KLA02-SB3-01 Lab Sample ID: 320-39023-19

Date Collected: 05/04/18 13:55 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 83.8

| Analyte                              | Result Qualifier | LOQ  | DL    | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|------------------|------|-------|-------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 0.47             | 0.36 | 0.094 | ug/Kg | ₩ | 05/14/18 14:03 | 05/29/18 08:30 | 1       |
| Perfluorooctanoic acid (PFOA)        | 0.45             | 0.36 | 0.12  | ug/Kg | ₩ | 05/14/18 14:03 | 05/29/18 08:30 | 1       |
| Perfluorononanoic acid (PFNA)        | 0.40             | 0.36 | 0.098 | ug/Kg | ☼ | 05/14/18 14:03 | 05/29/18 08:30 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.50             | 0.48 | 0.071 | ug/Kg | ₽ | 05/14/18 14:03 | 05/29/18 08:30 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 5.4              | 0.36 | 0.075 | ug/Kg | ₽ | 05/14/18 14:03 | 05/29/18 08:30 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 110 EM *         | 1.2  | 0.29  | ug/Kg | ₽ | 05/14/18 14:03 | 05/29/18 08:30 | 1       |

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Isotope Dilution

| Client Sam | ple ID: | KLA02-5 | SB3-01 |
|------------|---------|---------|--------|
|------------|---------|---------|--------|

Date Collected: 05/04/18 13:55 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 83.8

Limits

%Recovery Qualifier

| 130tope Dilution                     | /orvecovery | Qua               | IIIICI  | Lillits  |     |       |   | rrepareu       | Allalyzeu      | Diriac  |
|--------------------------------------|-------------|-------------------|---------|----------|-----|-------|---|----------------|----------------|---------|
| 13C3-PFBS                            | 78          |                   |         | 50 - 150 |     |       |   | 05/14/18 14:03 | 05/29/18 08:30 | 1       |
| 13C4-PFHpA                           | 86          |                   |         | 50 - 150 |     |       |   | 05/14/18 14:03 | 05/29/18 08:30 | 1       |
| 13C4 PFOA                            | 92          |                   |         | 50 - 150 |     |       |   | 05/14/18 14:03 | 05/29/18 08:30 | 1       |
| 13C5 PFNA                            | 85          |                   |         | 50 - 150 |     |       |   | 05/14/18 14:03 | 05/29/18 08:30 | 1       |
| 1802 PFHxS                           | 82          |                   |         | 50 - 150 |     |       |   | 05/14/18 14:03 | 05/29/18 08:30 | 1       |
| 13C4 PFOS                            | 68          |                   |         | 50 - 150 |     |       |   | 05/14/18 14:03 | 05/29/18 08:30 | 1       |
| _<br>Method: EPA 537 (Mod) - PFA     | S for QSM   | 5.1, <sup>-</sup> | Гable В | -15 - DL |     |       |   |                |                |         |
| Analyte                              | Result      |                   |         | LOQ      | DL  | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Perfluoroheptanoic acid (PFHpA)      | 4.8         | U                 | *       | 7.2      | 1.9 | ug/Kg | ☼ | 05/14/18 14:03 | 05/29/18 14:30 | 20      |
| Perfluorooctanoic acid (PFOA)        | 4.8         | U                 | *       | 7.2      | 2.4 | ug/Kg | ☼ | 05/14/18 14:03 | 05/29/18 14:30 | 20      |
| Perfluorononanoic acid (PFNA)        | 4.8         | U                 | *       | 7.2      | 2.0 | ug/Kg | ☼ | 05/14/18 14:03 | 05/29/18 14:30 | 20      |
| Perfluorobutanesulfonic acid (PFBS)  | 4.3         | U                 | *       | 9.6      | 1.4 | ug/Kg |   | 05/14/18 14:03 | 05/29/18 14:30 | 20      |
| Perfluorohexanesulfonic acid (PFHxS) | 5.7         | J D               | *       | 7.2      | 1.5 | ug/Kg | ₽ | 05/14/18 14:03 | 05/29/18 14:30 | 20      |
| Perfluorooctanesulfonic acid (PFOS)  | 140         | D                 | J K01   | 24       | 5.8 | ug/Kg | ₩ | 05/14/18 14:03 | 05/29/18 14:30 | 20      |
| Isotope Dilution                     | %Recovery   | Qua               | lifier  | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 77          | М                 |         | 50 - 150 |     |       |   | 05/14/18 14:03 | 05/29/18 14:30 | 20      |
| 13C4-PFHpA                           | 84          |                   |         | 50 - 150 |     |       |   | 05/14/18 14:03 | 05/29/18 14:30 | 20      |
| 13C4 PFOA                            | 91          |                   |         | 50 - 150 |     |       |   | 05/14/18 14:03 | 05/29/18 14:30 | 20      |
| 13C5 PFNA                            | 100         |                   |         | 50 - 150 |     |       |   | 05/14/18 14:03 | 05/29/18 14:30 | 20      |
| 1802 PFHxS                           | 75          |                   |         | 50 - 150 |     |       |   | 05/14/18 14:03 | 05/29/18 14:30 | 20      |
| 13C4 PFOS                            | 74          |                   |         | 50 - 150 |     |       |   | 05/14/18 14:03 | 05/29/18 14:30 | 20      |
| _                                    |             |                   |         |          |     |       |   |                |                |         |

Client Sample ID: KLA02-SB3-02

Date Collected: 05/04/18 14:00

Lab Sample ID: 320-39023-20 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 72.4

| date Received. 05/03/16 03.20          |           |                           |             |       |       |          |                | Percent Sono   | 15. 12.4 |
|----------------------------------------|-----------|---------------------------|-------------|-------|-------|----------|----------------|----------------|----------|
| Method: EPA 537 (Mod) - PFA<br>Analyte |           | 5.1, Table I<br>Qualifier | B-15<br>LOQ | DL    | Unit  | D        | Prepared       | Analyzed       | Dil Fac  |
| Perfluoroheptanoic acid (PFHpA)        | 0.81      |                           | 0.41        | 0.11  | ug/Kg | <u> </u> | 05/14/18 14:03 | 05/29/18 08:38 | 1        |
| Perfluorooctanoic acid (PFOA)          | 1.0       |                           | 0.41        | 0.14  | ug/Kg | ₩        | 05/14/18 14:03 | 05/29/18 08:38 | 1        |
| Perfluorononanoic acid (PFNA)          | 0.12      | JM J                      | 0.41        | 0.11  | ug/Kg | ₩        | 05/14/18 14:03 | 05/29/18 08:38 | 1        |
| Perfluorobutanesulfonic acid (PFBS)    | 1.8       |                           | 0.55        | 0.081 | ug/Kg | ☼        | 05/14/18 14:03 | 05/29/18 08:38 | 1        |
| Perfluorohexanesulfonic acid (PFHxS)   | 9.4       |                           | 0.41        | 0.086 | ug/Kg | ₩        | 05/14/18 14:03 | 05/29/18 08:38 | 1        |
| Perfluorooctanesulfonic acid (PFOS)    | 21        | M =                       | 1.4         | 0.33  | ug/Kg | ₽        | 05/14/18 14:03 | 05/29/18 08:38 | 1        |
| Isotope Dilution                       | %Recovery | Qualifier                 | Limits      |       |       |          | Prepared       | Analyzed       | Dil Fac  |
| 13C3-PFBS                              | 75        |                           | 50 - 150    |       |       |          | 05/14/18 14:03 | 05/29/18 08:38 | 1        |
| 13C4-PFHpA                             | 80        |                           | 50 - 150    |       |       |          | 05/14/18 14:03 | 05/29/18 08:38 | 1        |
| 13C4 PFOA                              | 90        |                           | 50 - 150    |       |       |          | 05/14/18 14:03 | 05/29/18 08:38 | 1        |
| 13C5 PFNA                              | 92        |                           | 50 - 150    |       |       |          | 05/14/18 14:03 | 05/29/18 08:38 | 1        |
| 1802 PFHxS                             | 80        |                           | 50 - 150    |       |       |          | 05/14/18 14:03 | 05/29/18 08:38 | 1        |
| 13C4 PFOS                              | 76        |                           | 50 - 150    |       |       |          | 05/14/18 14:03 | 05/29/18 08:38 | 1        |
|                                        |           |                           |             |       |       |          |                |                |          |

Lab Sample ID: 320-39023-19

Analyzed

Prepared

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

13C4 PFOS

Client Sample ID: KLA03-SB1-01 Lab Sample ID: 320-39023-21

Date Collected: 05/01/18 09:00 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 77.7

| Analyte                              | Result    | Qualifier | LOQ                 | DL    | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|---------------------|-------|-------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 0.26      | U         | 0.39                | 0.10  | ug/Kg | ₩ | 05/14/18 13:10 | 05/29/18 04:19 | 1       |
| Perfluorooctanoic acid (PFOA)        | 0.26      | UMU       | 0.39                | 0.13  | ug/Kg | ₩ | 05/14/18 13:10 | 05/29/18 04:19 | 1       |
| Perfluorononanoic acid (PFNA)        | 0.26      | U         | 0.39                | 0.10  | ug/Kg | ₩ | 05/14/18 13:10 | 05/29/18 04:19 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.082     | J         | 0.52                | 0.076 | ug/Kg | ☼ | 05/14/18 13:10 | 05/29/18 04:19 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 0.99      |           | 0.39                | 0.080 | ug/Kg | ₩ | 05/14/18 13:10 | 05/29/18 04:19 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 3.0       |           | 1.3                 | 0.31  | ug/Kg | ☼ | 05/14/18 13:10 | 05/29/18 04:19 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier | Limits              |       |       |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 68        |           | 50 - 150            |       |       |   | 05/14/18 13:10 | 05/29/18 04:19 | 1       |
| 13C4-PFHpA                           | 83        |           | 50 - 150            |       |       |   | 05/14/18 13:10 | 05/29/18 04:19 | 1       |
| 13C4 PFOA                            | 85        |           | 50 - 150            |       |       |   | 05/14/18 13:10 | 05/29/18 04:19 | 1       |
| 13C5 PFNA                            | 83        |           | 50 - 150            |       |       |   | 05/14/18 13:10 | 05/29/18 04:19 | 1       |
| 1802 PFHxS                           | 71        |           | 50 - 150            |       |       |   | 05/14/18 13:10 | 05/29/18 04:19 | 1       |
| 13C4 PFOS                            | 69        |           | 50 <sub>-</sub> 150 |       |       |   | 05/14/18 13:10 | 05/29/18 04:19 | 1       |

Lab Sample ID: 320-39023-22 Client Sample ID: KLA03-SB1-02

Date Collected: 05/01/18 09:05 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 74.7

| Analyte                              | Result    | Qualifier | LOQ                 | DL    | Unit  | D            | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|---------------------|-------|-------|--------------|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 0.26      | U         | 0.40                | 0.10  | ug/Kg | <del>\</del> | 05/14/18 13:10 | 05/29/18 04:27 | 1       |
| Perfluorooctanoic acid (PFOA)        | 0.22      | JM J      | 0.40                | 0.13  | ug/Kg | ☼            | 05/14/18 13:10 | 05/29/18 04:27 | 1       |
| Perfluorononanoic acid (PFNA)        | 0.26      | U         | 0.40                | 0.11  | ug/Kg | ☼            | 05/14/18 13:10 | 05/29/18 04:27 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.21      | J         | 0.53                | 0.078 | ug/Kg | ₽            | 05/14/18 13:10 | 05/29/18 04:27 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 2.4       |           | 0.40                | 0.082 | ug/Kg | ₽            | 05/14/18 13:10 | 05/29/18 04:27 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 17        |           | 1.3                 | 0.32  | ug/Kg | ₽            | 05/14/18 13:10 | 05/29/18 04:27 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier | Limits              |       |       |              | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 70        |           | 50 - 150            |       |       |              | 05/14/18 13:10 | 05/29/18 04:27 | 1       |
| 13C4-PFHpA                           | 83        |           | 50 - 150            |       |       |              | 05/14/18 13:10 | 05/29/18 04:27 | 1       |
| 13C4 PFOA                            | 87        |           | 50 - 150            |       |       |              | 05/14/18 13:10 | 05/29/18 04:27 | 1       |
| 13C5 PFNA                            | 91        |           | 50 - 150            |       |       |              | 05/14/18 13:10 | 05/29/18 04:27 | 1       |
| 18O2 PFHxS                           | 74        |           | 50 <sub>-</sub> 150 |       |       |              | 05/14/18 13:10 | 05/29/18 04:27 | 1       |

Client Sample ID: KLA03-SB2-01 Lab Sample ID: 320-39023-23

50 - 150

71

Date Collected: 05/02/18 12:15 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 81.0

| Analyte                             | Result | Qualifier | LOQ  | DL    | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-------------------------------------|--------|-----------|------|-------|-------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)     | 0.25   | U         | 0.37 | 0.096 | ug/Kg | ₩ | 05/14/18 13:10 | 06/06/18 22:47 | 1       |
| Perfluorooctanoic acid (PFOA)       | 0.15   | J         | 0.37 | 0.12  | ug/Kg | ₽ | 05/14/18 13:10 | 06/06/18 22:47 | 1       |
| Perfluorononanoic acid (PFNA)       | 0.25   | U M U     | 0.37 | 0.099 | ug/Kg | ₽ | 05/14/18 13:10 | 06/06/18 22:47 | 1       |
| Perfluorobutanesulfonic acid (PFBS) | 0.10   | J         | 0.49 | 0.072 | ug/Kg | ₽ | 05/14/18 13:10 | 06/06/18 22:47 | 1       |

05/14/18 13:10 05/29/18 04:27

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

13C4 PFOS

Client Sample ID: KLA03-SB2-01

Lab Sample ID: 320-39023-23 Date Collected: 05/02/18 12:15 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 81.0

| Analyte                              | Result    | Qualifier | LOQ      | DL    | Unit  | D           | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|----------|-------|-------|-------------|----------------|----------------|---------|
| Perfluorohexanesulfonic acid (PFHxS) | 0.71      |           | 0.37     | 0.076 | ug/Kg | <del></del> | 05/14/18 13:10 | 06/06/18 22:47 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 3.4       |           | 1.2      | 0.29  | ug/Kg | ☼           | 05/14/18 13:10 | 06/06/18 22:47 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier | Limits   |       |       |             | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 69        |           | 50 - 150 |       |       |             | 05/14/18 13:10 | 06/06/18 22:47 | 1       |
| 13C4-PFHpA                           | 83        |           | 50 - 150 |       |       |             | 05/14/18 13:10 | 06/06/18 22:47 | 1       |
| 13C4 PFOA                            | 83        |           | 50 - 150 |       |       |             | 05/14/18 13:10 | 06/06/18 22:47 | 1       |
| 13C5 PFNA                            | 81        |           | 50 - 150 |       |       |             | 05/14/18 13:10 | 06/06/18 22:47 | 1       |
| 1802 PFHxS                           | 73        |           | 50 - 150 |       |       |             | 05/14/18 13:10 | 06/06/18 22:47 | 1       |
| 13C4 PFOS                            | 72        |           | 50 - 150 |       |       |             | 05/14/18 13:10 | 06/06/18 22:47 | 1       |

Client Sample ID: KLA03-SB2-02 Lab Sample ID: 320-39023-24

Date Collected: 05/02/18 12:20 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 77.2

| Analyte                              | Result    | Qualifier | LOQ      | DL    | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|----------|-------|-------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 0.26      | U         | 0.38     | 0.10  | ug/Kg | ₩ | 05/14/18 13:10 | 06/06/18 22:55 | 1       |
| Perfluorooctanoic acid (PFOA)        | 0.15      | J         | 0.38     | 0.13  | ug/Kg | ☼ | 05/14/18 13:10 | 06/06/18 22:55 | 1       |
| Perfluorononanoic acid (PFNA)        | 0.26      | U         | 0.38     | 0.10  | ug/Kg | ☼ | 05/14/18 13:10 | 06/06/18 22:55 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.15      | J         | 0.51     | 0.075 | ug/Kg | ₽ | 05/14/18 13:10 | 06/06/18 22:55 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 1.1       |           | 0.38     | 0.079 | ug/Kg | ₽ | 05/14/18 13:10 | 06/06/18 22:55 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 4.9       | M =       | 1.3      | 0.31  | ug/Kg | ₽ | 05/14/18 13:10 | 06/06/18 22:55 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier | Limits   |       |       |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 68        |           | 50 - 150 |       |       |   | 05/14/18 13:10 | 06/06/18 22:55 | 1       |
| 13C4-PFHpA                           | 83        |           | 50 - 150 |       |       |   | 05/14/18 13:10 | 06/06/18 22:55 | 1       |
| 13C4 PFOA                            | 82        |           | 50 - 150 |       |       |   | 05/14/18 13:10 | 06/06/18 22:55 | 1       |
| 13C5 PFNA                            | 78        |           | 50 - 150 |       |       |   | 05/14/18 13:10 | 06/06/18 22:55 | 1       |
| 1802 PFHxS                           | 75        |           | 50 - 150 |       |       |   | 05/14/18 13:10 | 06/06/18 22:55 | 1       |

Client Sample ID: KLA03-SB3-01 Lab Sample ID: 320-39023-25

50 - 150

70

Date Collected: 05/01/18 08:45 **Matrix: Solid** Percent Solids: 74.9 Date Received: 05/09/18 09:20

| Analyte                              | Result | Qualifier | LOQ  | DL    | Unit  | D            | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|--------|-----------|------|-------|-------|--------------|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 0.36   | J         | 0.41 | 0.11  | ug/Kg | <del>\</del> | 05/14/18 13:10 | 06/06/18 23:03 | 1       |
| Perfluorooctanoic acid (PFOA)        | 0.37   | J         | 0.41 | 0.14  | ug/Kg | ₩            | 05/14/18 13:10 | 06/06/18 23:03 | 1       |
| Perfluorononanoic acid (PFNA)        | 0.27   | U M U     | 0.41 | 0.11  | ug/Kg | ₩            | 05/14/18 13:10 | 06/06/18 23:03 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.21   | J         | 0.54 | 0.080 | ug/Kg | ₩            | 05/14/18 13:10 | 06/06/18 23:03 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 2.7    |           | 0.41 | 0.084 | ug/Kg | ₽            | 05/14/18 13:10 | 06/06/18 23:03 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 3.2    |           | 1.4  | 0.32  | ug/Kg | ₩            | 05/14/18 13:10 | 06/06/18 23:03 | 1       |

05/14/18 13:10 06/06/18 22:55

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

1802 PFHxS

13C4 PFOS

Client Sample ID: KLA03-SB3-01 Lab Sample ID: 320-39023-25

 Date Collected: 05/01/18 08:45
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 74.9

| Isotope Dilution | %Recovery Qu | ualifier Limits     | Prepared       | Analyzed       | Dil Fac |
|------------------|--------------|---------------------|----------------|----------------|---------|
| 13C3-PFBS        | 78           | 50 - 150            | 05/14/18 13:10 | 06/06/18 23:03 | 1       |
| 13C4-PFHpA       | 85           | 50 <sub>-</sub> 150 | 05/14/18 13:10 | 06/06/18 23:03 | 1       |
| 13C4 PFOA        | 85           | 50 <sub>-</sub> 150 | 05/14/18 13:10 | 06/06/18 23:03 | 1       |
| 13C5 PFNA        | 87           | 50 <sub>-</sub> 150 | 05/14/18 13:10 | 06/06/18 23:03 | 1       |
| 1802 PFHxS       | 83           | 50 <sub>-</sub> 150 | 05/14/18 13:10 | 06/06/18 23:03 | 1       |
| 13C4 PFOS        | 79           | 50 - 150            | 05/14/18 13:10 | 06/06/18 23:03 | 1       |

Client Sample ID: KLA03-SB3-02 Lab Sample ID: 320-39023-26

| Method: EPA 537 (Mod) - PFA          | S for QSM | 5.1, Table | B-15     |       |       |   |                |                |         |
|--------------------------------------|-----------|------------|----------|-------|-------|---|----------------|----------------|---------|
| Analyte                              | Result    | Qualifier  | LOQ      | DL    | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Perfluoroheptanoic acid (PFHpA)      | 0.59      |            | 0.41     | 0.11  | ug/Kg | ₩ | 05/14/18 13:10 | 06/06/18 23:10 | 1       |
| Perfluorooctanoic acid (PFOA)        | 1.3       |            | 0.41     | 0.14  | ug/Kg | ☼ | 05/14/18 13:10 | 06/06/18 23:10 | 1       |
| Perfluorononanoic acid (PFNA)        | 0.27      | U          | 0.41     | 0.11  | ug/Kg | ☼ | 05/14/18 13:10 | 06/06/18 23:10 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.75      |            | 0.54     | 0.080 | ug/Kg | ₿ | 05/14/18 13:10 | 06/06/18 23:10 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 12        |            | 0.41     | 0.084 | ug/Kg | ₽ | 05/14/18 13:10 | 06/06/18 23:10 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 14        | M =        | 1.4      | 0.32  | ug/Kg | ☼ | 05/14/18 13:10 | 06/06/18 23:10 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier  | Limits   |       |       |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 77        |            | 50 - 150 |       |       |   | 05/14/18 13:10 | 06/06/18 23:10 | 1       |
| 13C4-PFHpA                           | 85        |            | 50 - 150 |       |       |   | 05/14/18 13:10 | 06/06/18 23:10 | 1       |
| 13C4 PFOA                            | 84        |            | 50 - 150 |       |       |   | 05/14/18 13:10 | 06/06/18 23:10 | 1       |
| 13C5 PFNA                            | 83        |            | 50 - 150 |       |       |   | 05/14/18 13:10 | 06/06/18 23:10 | 1       |

Client Sample ID: KLA04-SB1-01 Lab Sample ID: 320-39023-27

50 - 150

50 - 150

79

76

 Date Collected: 05/04/18 08:35
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 72.6

| 7410 TCCCTTC4. 00/00/10 00.20          |           |                            |            |       |       |         |                | i crociii oona | 3. 7 <b>2</b> .0 |
|----------------------------------------|-----------|----------------------------|------------|-------|-------|---------|----------------|----------------|------------------|
| Method: EPA 537 (Mod) - PFA<br>Analyte |           | 5.1, Table B-<br>Qualifier | -15<br>LOQ | DL    | Unit  | D       | Prepared       | Analyzed       | Dil Fac          |
| Perfluoroheptanoic acid (PFHpA)        | 0.66      |                            | 0.42       | 0.11  | ug/Kg | <u></u> | 05/14/18 14:03 | 05/29/18 08:54 | 1                |
| Perfluorooctanoic acid (PFOA)          | 3.2       |                            | 0.42       | 0.14  | ug/Kg | ☼       | 05/14/18 14:03 | 05/29/18 08:54 | 1                |
| Perfluorononanoic acid (PFNA)          | 0.16      | <b>J M</b> J G02           | 0.42       | 0.11  | ug/Kg | ₩       | 05/14/18 14:03 | 05/29/18 08:54 | 1                |
| Perfluorobutanesulfonic acid (PFBS)    | 0.45      | J                          | 0.56       | 0.082 | ug/Kg | ☼       | 05/14/18 14:03 | 05/29/18 08:54 | 1                |
| Perfluorohexanesulfonic acid (PFHxS)   | 24        |                            | 0.42       | 0.086 | ug/Kg | ₩       | 05/14/18 14:03 | 05/29/18 08:54 | 1                |
| Perfluorooctanesulfonic acid (PFOS)    | 930       | E *                        | 1.4        | 0.33  | ug/Kg | ₩       | 05/14/18 14:03 | 05/29/18 08:54 | 1                |
| Isotope Dilution                       | %Recovery | Qualifier                  | Limits     |       |       |         | Prepared       | Analyzed       | Dil Fac          |
| 13C3-PFBS                              | 87        |                            | 50 - 150   |       |       |         | 05/14/18 14:03 | 05/29/18 08:54 | 1                |
| 13C4-PFHpA                             | 98        |                            | 50 - 150   |       |       |         | 05/14/18 14:03 | 05/29/18 08:54 | 1                |
| 13C4 PFOA                              | 88        |                            | 50 - 150   |       |       |         | 05/14/18 14:03 | 05/29/18 08:54 | 1                |
| 13C5 PFNA                              | 37        | Q                          | 50 - 150   |       |       |         | 05/14/18 14:03 | 05/29/18 08:54 | 1                |
| 1802 PFHxS                             | 87        |                            | 50 - 150   |       |       |         | 05/14/18 14:03 | 05/29/18 08:54 | 1                |
| 13C4 PFOS                              | 30        | Q                          | 50 - 150   |       |       |         | 05/14/18 14:03 | 05/29/18 08:54 | 1                |
|                                        |           |                            |            |       |       |         |                |                |                  |

TestAmerica Sacramento

05/14/18 13:10 06/06/18 23:10

05/14/18 13:10 06/06/18 23:10

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

| Analyte                              | Result    | Qual | ifier | LOQ      | DL  | Unit  | D   | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|------|-------|----------|-----|-------|-----|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 28        | U    | *     | 42       | 11  | ug/Kg | - ☆ | 05/14/18 14:03 | 05/29/18 15:33 | 100     |
| Perfluorooctanoic acid (PFOA)        | 28        | U M  | *     | 42       | 14  | ug/Kg | ₩   | 05/14/18 14:03 | 05/29/18 15:33 | 100     |
| Perfluorononanoic acid (PFNA)        | 28        | U    | *     | 42       | 11  | ug/Kg | ₩   | 05/14/18 14:03 | 05/29/18 15:33 | 100     |
| Perfluorobutanesulfonic acid (PFBS)  | 25        | U    | *     | 56       | 8.2 | ug/Kg | ₩   | 05/14/18 14:03 | 05/29/18 15:33 | 100     |
| Perfluorohexanesulfonic acid (PFHxS) | 23        | J D  | *     | 42       | 8.6 | ug/Kg | ☼   | 05/14/18 14:03 | 05/29/18 15:33 | 100     |
| Perfluorooctanesulfonic acid (PFOS)  | 2200      | D    | J K01 | 140      | 33  | ug/Kg | ₽   | 05/14/18 14:03 | 05/29/18 15:33 | 100     |
| Isotope Dilution                     | %Recovery | Qual | ifier | Limits   |     |       |     | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 99        | M    |       | 50 - 150 |     |       |     | 05/14/18 14:03 | 05/29/18 15:33 | 100     |
| 13C4-PFHpA                           | 77        |      |       | 50 - 150 |     |       |     | 05/14/18 14:03 | 05/29/18 15:33 | 100     |
| 13C4 PFOA                            | 93        |      |       | 50 - 150 |     |       |     | 05/14/18 14:03 | 05/29/18 15:33 | 100     |
| 13C5 PFNA                            | 79        |      |       | 50 - 150 |     |       |     | 05/14/18 14:03 | 05/29/18 15:33 | 100     |
| 1802 PFHxS                           | 67        |      |       | 50 - 150 |     |       |     | 05/14/18 14:03 | 05/29/18 15:33 | 100     |
| 13C4 PFOS                            | 70        |      |       | 50 - 150 |     |       |     | 05/14/18 14:03 | 05/29/18 15:33 | 100     |

Client Sample ID: KLA04-SB1-02 Lab Sample ID: 320-39023-28

| Date Collected: 05/04/18 08:40 Date Received: 05/09/18 09:20 |                       |                   |                |      |       |       |       |              |                | Matrix<br>Percent Solid | : Solid<br>ls: 77.2 |
|--------------------------------------------------------------|-----------------------|-------------------|----------------|------|-------|-------|-------|--------------|----------------|-------------------------|---------------------|
| Method: EPA 537 (Mod) - PFA<br>Analyte                       | S for QSM !<br>Result |                   |                | B-15 | LOQ   | DL    | Unit  | D            | Prepared       | Analyzed                | Dil Fac             |
| Perfluoroheptanoic acid (PFHpA)                              | 4.4                   |                   |                |      | 0.39  | 0.10  | ug/Kg | <del>\</del> | 05/14/18 14:03 | 05/29/18 09:02          | 1                   |
| Perfluorooctanoic acid (PFOA)                                | 19                    |                   |                |      | 0.39  | 0.13  | ug/Kg | ₩            | 05/14/18 14:03 | 05/29/18 09:02          | 1                   |
| Perfluorononanoic acid (PFNA)                                | 0.60                  | M                 | <sub>=</sub> J | G02  | 0.39  | 0.11  | ug/Kg | ☼            | 05/14/18 14:03 | 05/29/18 09:02          | 1                   |
| Perfluorobutanesulfonic acid (PFBS)                          | 14                    |                   |                |      | 0.52  | 0.077 | ug/Kg | <b>\$</b>    | 05/14/18 14:03 | 05/29/18 09:02          | 1                   |
| Perfluorohexanesulfonic acid (PFHxS)                         | 130                   | E                 | *              |      | 0.39  | 0.081 | ug/Kg | ₽            | 05/14/18 14:03 | 05/29/18 09:02          | 1                   |
| Perfluorooctanesulfonic acid (PFOS)                          | 1800                  | EM                | *              |      | 1.3   | 0.31  | ug/Kg | ₽            | 05/14/18 14:03 | 05/29/18 09:02          | 1                   |
| Isotope Dilution                                             | %Recovery             | Qua               | lifier         | Lin  | nits  |       |       |              | Prepared       | Analyzed                | Dil Fac             |
| 13C3-PFBS                                                    | 95                    |                   |                | 50   | - 150 |       |       |              | 05/14/18 14:03 | 05/29/18 09:02          | 1                   |
| 13C4-PFHpA                                                   | 85                    |                   |                | 50   | - 150 |       |       |              | 05/14/18 14:03 | 05/29/18 09:02          | 1                   |
| 13C4 PFOA                                                    | 84                    |                   |                | 50   | - 150 |       |       |              | 05/14/18 14:03 | 05/29/18 09:02          | 1                   |
| 13C5 PFNA                                                    | 34                    | Q                 |                | 50   | - 150 |       |       |              | 05/14/18 14:03 | 05/29/18 09:02          | 1                   |
| 1802 PFHxS                                                   | 78                    |                   |                | 50   | - 150 |       |       |              | 05/14/18 14:03 | 05/29/18 09:02          | 1                   |
| 13C4 PFOS                                                    | 26                    | Q                 |                | 50   | - 150 |       |       |              | 05/14/18 14:03 | 05/29/18 09:02          | 1                   |
| Method: EPA 537 (Mod) - PFA                                  | S for QSM !           | 5.1, <sup>-</sup> | Table          | B-15 | - DL  |       |       |              |                |                         |                     |
| Analyte                                                      | Result                |                   |                |      | LOQ   |       | Unit  | D            | Prepared       | Analyzed                | Dil Fac             |
| Perfluoroheptanoic acid (PFHpA)                              | 4.0                   | J D               | *              |      | 7.8   | 2.0   | ug/Kg | ₽            | 05/14/18 14:03 | 05/29/18 17:15          | 20                  |
| Perfluorooctanoic acid (PFOA)                                | 19                    | D                 | *              |      | 7.8   | 2.6   | ug/Kg | ₩            | 05/14/18 14:03 | 05/29/18 17:15          | 20                  |
| Perfluorononanoic acid (PFNA)                                | 5.2                   | U                 | *              |      | 7.8   | 2.1   | ug/Kg | ☼            | 05/14/18 14:03 | 05/29/18 17:15          | 20                  |
| Perfluorobutanesulfonic acid (PFBS)                          | 15                    | D                 | *              |      | 10    | 1.5   | ug/Kg | ₽            | 05/14/18 14:03 | 05/29/18 17:15          | 20                  |
| Perfluorohexanesulfonic acid (PFHxS)                         | 190                   | D                 | J K0           | 1    | 7.8   | 1.6   | ug/Kg | ₽            | 05/14/18 14:03 | 05/29/18 17:15          | 20                  |
| Perfluorooctanesulfonic acid (PFOS)                          | 2900                  | E D               | *              |      | 26    | 6.3   | ug/Kg | ☼            | 05/14/18 14:03 | 05/29/18 17:15          | 20                  |
| Isotope Dilution                                             | %Recovery             | Qua               | lifier         | Lin  | nits  |       |       |              | Prepared       | Analyzed                | Dil Fac             |
| 13C3-PFBS                                                    | 70                    | M                 |                | 50   | - 150 |       |       |              | 05/14/18 14:03 | 05/29/18 17:15          | 20                  |
| 13C4-PFHpA                                                   | 84                    |                   |                | 50   | - 150 |       |       |              | 05/14/18 14:03 | 05/29/18 17:15          | 20                  |
| 13C4 PFOA                                                    | 84                    |                   |                |      |       |       |       |              | 05/44/40 44:00 | 05/00/40 47:45          | 20                  |
| 1304110A                                                     | 84                    |                   |                | 50   | - 150 |       |       |              | 05/14/18 14:03 | 05/29/18 17:15          | 20                  |

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

| Client Sam | ple ID: | KLA04-9 | SB1-02 |
|------------|---------|---------|--------|
|------------|---------|---------|--------|

Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 - DL (Continued)

Date Collected: 05/04/18 08:40 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 77.2

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /letnod: EPA 537 (Wod) - PFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                        |                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                           |                                          |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                              |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 - DL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        | Qualifi                                                        | er     | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                |                                           |                                          | Prepared                                                                                                                                                                                                                | Analyzed                                                                                                                                                                                                                                                     | Dil Fa           |
| Mothod: EPA 537 (Mod) - PFAS for OSM 5.1, Table B-15 - DL2   Result   Qualifier   LOQ   DL   Unit   D   Prepared   Analyzed   Dill   Unit   D   Prepared   Dill   Unit   D   D   D   Unit   D   D   D   D   D   D   D   D   D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                           |                                          |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                              | 2                |
| Result   Caufifier   LOQ   DL   Unit   D   Prepared   Analyzed   Differention   Preflucione patient of (PFIpA)   26 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3C4 PFOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 59                                                                                                                                     |                                                                |        | 50 - 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |                                           |                                          | 05/14/18 14:03                                                                                                                                                                                                          | 05/29/18 17:15                                                                                                                                                                                                                                               | 2                |
| Perfluoronceptanoic acid (PFHpA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Method: EPA 537 (Mod) - PFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S for QSM                                                                                                                              | 5.1, Ta                                                        | ole B- | -15 - DL2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                |                                           |                                          |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                              |                  |
| Perfluoronoctanole acid (PFOA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nalyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Result                                                                                                                                 | Qualifi                                                        | er     | LOQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DL                                             | Unit                                      | D                                        | Prepared                                                                                                                                                                                                                | Analyzed                                                                                                                                                                                                                                                     | Dil Fa           |
| Perfluorononancia caid (PFNA) 26 U 39 11 ug/Kg 0 05/14/18 14.03 05/22/18 15.41 Perfluorobutanesulfonic acid 10 J D 52 7.7 ug/Kg 0 05/14/18 14.03 05/22/18 15.41 Perfluorobutanesulfonic acid 160 D 39 8.1 ug/Kg 0 05/14/18 14.03 05/22/18 15.41 Perfluorotexanesulfonic acid 3600 E D M J K01, N0f80 31 ug/Kg 0 05/14/18 14.03 05/22/18 15.41 Perfluoroctanesulfonic acid 3600 E D M J K01, N0f80 31 ug/Kg 0 05/14/18 14.03 05/22/18 15.41 Perfluoroctanesulfonic acid 3600 E D M J K01, N0f80 31 ug/Kg 0 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15 | erfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26                                                                                                                                     | U                                                              | *      | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                             | ug/Kg                                     | ₩                                        | 05/14/18 14:03                                                                                                                                                                                                          | 05/29/18 15:41                                                                                                                                                                                                                                               | 10               |
| Perfluorononancia caid (PFNA) 26 U 39 11 ug/Kg 0 05/14/18 14.03 05/22/18 15.41 Perfluorobutanesulfonic acid 10 J D 52 7.7 ug/Kg 0 05/14/18 14.03 05/22/18 15.41 Perfluorobutanesulfonic acid 160 D 39 8.1 ug/Kg 0 05/14/18 14.03 05/22/18 15.41 Perfluorotexanesulfonic acid 3600 E D M J K01, N0f80 31 ug/Kg 0 05/14/18 14.03 05/22/18 15.41 Perfluoroctanesulfonic acid 3600 E D M J K01, N0f80 31 ug/Kg 0 05/14/18 14.03 05/22/18 15.41 Perfluoroctanesulfonic acid 3600 E D M J K01, N0f80 31 ug/Kg 0 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15.41 05/14/18 14.03 05/22/18 15 | Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17                                                                                                                                     | J D                                                            | *      | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13                                             | ug/Kg                                     | ≎                                        | 05/14/18 14:03                                                                                                                                                                                                          | 05/29/18 15:41                                                                                                                                                                                                                                               | 10               |
| PFBS    Perfluorobexanesulfonic acid   160 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Perfluorononanoic acid (PFNA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26                                                                                                                                     | U                                                              | *      | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                                             | ug/Kg                                     | ⇔                                        | 05/14/18 14:03                                                                                                                                                                                                          | 05/29/18 15:41                                                                                                                                                                                                                                               | 10               |
| Perfluorontexanesulfonic acid   160 D * 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Perfluorobutanesulfonic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                     | JD                                                             | *      | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                | 0 0                                       | Φ.                                       | 05/14/18 14:03                                                                                                                                                                                                          | 05/29/18 15:41                                                                                                                                                                                                                                               | 10               |
| Perflucroctanesulfonic acid   PFPOS   PFPOS   Perflucroctanesulfonic acid   PFPOS   PERFLORM   PERFLOR   | Perfluorohexanesulfonic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 160                                                                                                                                    | D                                                              | *      | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.1                                            | ug/Kg                                     | ₩                                        | 05/14/18 14:03                                                                                                                                                                                                          | 05/29/18 15:41                                                                                                                                                                                                                                               | 10               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Perfluorooctanesulfonic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3600                                                                                                                                   | EDM                                                            | J K    | 01 , <b>N0</b> \$30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31                                             | ug/Kg                                     | ₩                                        | 05/14/18 14:03                                                                                                                                                                                                          | 05/29/18 15:41                                                                                                                                                                                                                                               | 1                |
| 13G3.PFBS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | %Recovery                                                                                                                              | Qualifi                                                        | er     | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                |                                           |                                          | Prepared                                                                                                                                                                                                                | Analvzed                                                                                                                                                                                                                                                     | Dil F            |
| 13C4-PFHpA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>'</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                        |                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                           |                                          | •                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                            | 1                |
| 1305 PFNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                           |                                          |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                              | 1                |
| 1802 PFNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        |                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                           |                                          |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                              | 1                |
| Rocy PFHxS   76   50 - 150   05/14/18 14:03   05/29/18 15:41   05/14/18 14:03   05/29/18 15:41   05/14/18 14:03   05/29/18 15:41   05/14/18 14:03   05/29/18 15:41   05/14/18 14:03   05/29/18 15:41   05/14/18 14:03   05/29/18 15:41   05/14/18 14:03   05/29/18 15:41   05/14/18 14:03   05/29/18 15:41   05/14/18 14:03   05/29/18 15:41   05/14/18 14:03   05/29/18 15:41   05/14/18 14:03   05/29/18 15:41   05/14/18 14:03   05/29/18 15:41   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                           |                                          |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                              |                  |
| Ilient Sample ID: KLA04-SB2-01   Lab Sample ID: 320-39023-   Matrix: So Percent Solids: 7th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                           |                                          |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                              | 1                |
| Lab Sample ID: KLA04-SB2-01   Matrix: So Percent Solids: 74   Matrix: Solids   | 0U2 FFRX3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                        |                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                           |                                          |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                              |                  |
| ### Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20    Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 03                                                                                                                                     |                                                                |        | 50 - 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |                                           |                                          | 05/14/18 14:03                                                                                                                                                                                                          | 05/29/18 15:41                                                                                                                                                                                                                                               | 1                |
| Perfluoroheptanoic acid (PFHpA)  14  0.38  0.10  0.10  0.17  0.14  1.0  0.18  0.10  0.17  0.14  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.11  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18  0.18   | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SB2-01                                                                                                                                 |                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                           | La                                       | •                                                                                                                                                                                                                       | Matrix                                                                                                                                                                                                                                                       | c: Sol           |
| Perfluorooctanoic acid (PFOA) 27 E * 0.38 0.13 ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20 Method: EPA 537 (Mod) - PFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S for QSM !                                                                                                                            |                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                           |                                          |                                                                                                                                                                                                                         | Matrix<br>Percent Solic                                                                                                                                                                                                                                      | c: Sol<br>ls: 78 |
| Perfluorononanoic acid (PFNA)  1.6 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20 Method: EPA 537 (Mod) - PFA malyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S for QSM !                                                                                                                            |                                                                |        | LOQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |                                           | D                                        | Prepared                                                                                                                                                                                                                | Matrix<br>Percent Solic<br>Analyzed                                                                                                                                                                                                                          | c: Sol<br>ls: 78 |
| Perfluorobutanesulfonic acid PPFBS) Perfluorohexanesulfonic acid PPFBS) Perfluorohexanesulfonic acid PPFBS) Perfluoroctanesulfonic acid PPFBS) Perfluoroctanesulfonic acid PPFBS) Perfluoroctanesulfonic acid PPFBS) Perfluoroctanesulfonic acid PPFBS Perfluoroctanesulfonic acid PPFBS Perfluoroctanesulfonic acid PPFBS PPFOS) Perfluoroctanesulfonic acid PPFBS PPFOS PPFO | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20 Method: EPA 537 (Mod) - PFA chalyte Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S for QSM S                                                                                                                            | Qualific                                                       |        | LOQ<br>0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.10                                           | ug/Kg                                     | <b>D</b>                                 | Prepared 05/14/18 14:03                                                                                                                                                                                                 | Matrix<br>Percent Solid<br>Analyzed<br>05/29/18 09:09                                                                                                                                                                                                        | c: Sol<br>ls: 78 |
| PFBS) Perfluorohexanesulfonic acid PFHxS) Perfluorooctanesulfonic acid PFFXS) Perfluorooctanesulfonic acid PFFXS) Perfluorooctanesulfonic acid PFOS) Perfluorooctanesulfonic acid PFOS) Perfluorooctanesulfonic acid PFOS) PFOS) PFOS) PFOS PFOS PFOS PFOS PFOS PFOS PFOS PFOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20 Method: EPA 537 (Mod) - PFA analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S for QSM S                                                                                                                            | Qualific                                                       |        | 0.38<br>0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.10<br>0.13                                   | ug/Kg<br>ug/Kg                            | <b>D</b>                                 | Prepared 05/14/18 14:03 05/14/18 14:03                                                                                                                                                                                  | Matrix<br>Percent Solid<br>Analyzed<br>05/29/18 09:09<br>05/29/18 09:09                                                                                                                                                                                      | c: Sol<br>ls: 78 |
| PFHxS)         Perfluorooctanesulfonic acid         2600 E         *         1.3         0.31 ug/Kg         *         05/14/18 14:03         05/29/18 09:09           PFOS)         Sotope Dilution         %Recovery         Qualifier         Limits         Prepared         Analyzed         Dil Mark           /3C3-PFBS         96         50 - 150         05/14/18 14:03         05/29/18 09:09         05/14/18 14:03         05/29/18 09:09         05/14/18 14:03         05/29/18 09:09         05/14/18 14:03         05/29/18 09:09         05/14/18 14:03         05/29/18 09:09         05/14/18 14:03         05/29/18 09:09         05/14/18 14:03         05/29/18 09:09         05/14/18 14:03         05/29/18 09:09         05/14/18 14:03         05/29/18 09:09         05/14/18 14:03         05/29/18 09:09         05/14/18 14:03         05/29/18 09:09         05/14/18 14:03         05/29/18 09:09         05/14/18 14:03         05/29/18 09:09         05/14/18 14:03         05/29/18 09:09         05/14/18 14:03         05/29/18 09:09         05/14/18 14:03         05/29/18 09:09         05/14/18 14:03         05/29/18 09:09         05/14/18 14:03         05/29/18 09:09         05/14/18 14:03         05/29/18 09:09         05/14/18 14:03         05/29/18 09:09         05/14/18 14:03         05/29/18 09:09         05/14/18 14:03         05/29/18 09:09         05/14/18 14:03         05/29/18 09:09<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20 Method: EPA 537 (Mod) - PFA analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S for QSM (Result 14 27                                                                                                                | Qualific<br>E *                                                | er _   | 0.38<br>0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.10<br>0.13                                   | ug/Kg<br>ug/Kg                            | D \$\frac{\pi}{\pi}\$                    | Prepared 05/14/18 14:03 05/14/18 14:03                                                                                                                                                                                  | Matrix<br>Percent Solid<br>Analyzed<br>05/29/18 09:09<br>05/29/18 09:09                                                                                                                                                                                      | c: Sol<br>ls: 78 |
| Procest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20 Method: EPA 537 (Mod) - PFA malyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFNA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S for QSM (  Result  14  27  1.6                                                                                                       | Qualific<br>E *                                                | er _   | 0.38<br>0.38<br>0.38<br>0.38<br>0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.10<br>0.13<br>0.10<br>0.075                  | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | D \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                                                                                    | Matrix<br>Percent Solid<br>Analyzed<br>05/29/18 09:09<br>05/29/18 09:09<br>05/29/18 09:09<br>05/29/18 09:09                                                                                                                                                  | c: Sol<br>ls: 78 |
| 3C3-PFBS   96   50 - 150   05/14/18 14:03   05/29/18 09:09   05/14/18 14:03   05/29/18 09:09   05/14/18 14:03   05/29/18 09:09   05/14/18 14:03   05/29/18 09:09   05/14/18 14:03   05/29/18 09:09   05/14/18 14:03   05/29/18 09:09   05/14/18 14:03   05/29/18 09:09   05/14/18 14:03   05/29/18 09:09   05/14/18 14:03   05/29/18 09:09   05/14/18 14:03   05/29/18 09:09   05/14/18 14:03   05/29/18 09:09   05/14/18 14:03   05/29/18 09:09   05/14/18 14:03   05/29/18 09:09   05/14/18 14:03   05/29/18 09:09   05/14/18 14:03   05/29/18 09:09   05/14/18 14:03   05/29/18 09:09   05/14/18 14:03   05/29/18 09:09   05/14/18 14:03   05/29/18 09:09   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14:03   05/29/18 15:49   05/14/18 14   | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20  Method: EPA 537 (Mod) - PFA malyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFNA) Perfluorobutanesulfonic acid (PFNA) Perfluorohexanesulfonic acid (PFNS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S for QSM (  Result  14  27  1.6  24                                                                                                   | E * M E *                                                      | er _   | 0.38<br>0.38<br>0.38<br>0.51<br>0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.10<br>0.13<br>0.10<br>0.075<br>0.079         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | D                                        | Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                                                                    | Matrix<br>Percent Solid<br>Analyzed<br>05/29/18 09:09<br>05/29/18 09:09<br>05/29/18 09:09<br>05/29/18 09:09                                                                                                                                                  | c: Sol<br>ls: 78 |
| 3C4-PFHpA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20 Method: EPA 537 (Mod) - PFA malyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFNA) Perfluorobutanesulfonic acid (PFNA) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFHxS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S for QSM (Result 14 27 1.6 24 140 2600                                                                                                | E * M E * E *                                                  | J G0   | 0.38<br>0.38<br>0.38<br>0.51<br>0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.10<br>0.13<br>0.10<br>0.075<br>0.079         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | D                                        | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                                                                     | Matrix<br>Percent Solid<br>Analyzed<br>05/29/18 09:09<br>05/29/18 09:09<br>05/29/18 09:09<br>05/29/18 09:09                                                                                                                                                  | c: Sol<br>ls: 78 |
| 3C4 PFOA 83 50 - 150 05/14/18 14:03 05/29/18 09:09 3C5 PFNA 25 Q 50 - 150 05/14/18 14:03 05/29/18 09:09 802 PFHxS 86 50 - 150 05/14/18 14:03 05/29/18 09:09 3C4 PFOS 18 Q 50 - 150 05/14/18 14:03 05/29/18 09:09  Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 - DL Analyte Result Qualifier LOQ DL Unit D Prepared Analyzed Dil I Perfluoroheptanoic acid (PFHpA) 14 J D * 38 10 ug/Kg 05/14/18 14:03 05/29/18 15:49  Perfluorooctanoic acid (PFOA) 26 J D M J K01 38 13 ug/Kg 05/14/18 14:03 05/29/18 15:49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20 Method: EPA 537 (Mod) - PFA malyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFNA) Perfluorobutanesulfonic acid (PFNA) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFHxS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S for QSM s Result 14 27 1.6 24 140 2600 %Recovery                                                                                     | E * M E * E *                                                  | J G0   | 0.38<br>0.38<br>0.38<br>0.51<br>0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.10<br>0.13<br>0.10<br>0.075<br>0.079         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | D                                        | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                                                      | Matrix Percent Solid  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09  05/29/18 09:09                                                                                                                                   | c: Sol           |
| 3C5 PFNA       25 Q       50 - 150       05/14/18 14:03 05/29/18 09:09         8O2 PFHxS       86 50 - 150       05/14/18 14:03 05/29/18 09:09         3C4 PFOS       18 Q 50 - 150       05/14/18 14:03 05/29/18 09:09         Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 - DL         Inalyte       Result Qualifier       LOQ       DL Unit       D       Prepared       Analyzed       Dil I         Perfluoroheptanoic acid (PFHpA)       14 J D *       38       10 ug/Kg       05/14/18 14:03 05/29/18 15:49         Perfluorooctanoic acid (PFOA)       26 J D M J K01       38       13 ug/Kg       05/14/18 14:03 05/29/18 15:49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20 ate Received: 05/09/ | S for QSM s Result 14 27 1.6 24 140 2600 %Recovery                                                                                     | E * M E * E *                                                  | J G0   | 0.38<br>0.38<br>0.38<br>0.51<br>0.38<br>1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.10<br>0.13<br>0.10<br>0.075<br>0.079         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | D                                        | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                                                      | Matrix Percent Solid  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09  4nalyzed  05/29/18 09:09                                                                                                                         | c: Sol           |
| 802 PFHxS 86 50 - 150 05/14/18 14:03 05/29/18 09:09 05/14/18 14:03 05/29/18 09:09 05/14/18 14:03 05/29/18 09:09 05/14/18 14:03 05/29/18 09:09 05/14/18 14:03 05/29/18 09:09 05/14/18 14:03 05/29/18 09:09 05/14/18 14:03 05/29/18 09:09 05/14/18 14:03 05/29/18 09:09 05/14/18 14:03 05/29/18 09:09 05/14/18 14:03 05/29/18 09:09 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20  Method: EPA 537 (Mod) - PFA malyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFNA) Perfluorobutanesulfonic acid PFBS) Perfluorobexanesulfonic acid PFHxS) Perfluorooctanesulfonic acid PFHxS) Perfluorobexanesulfonic acid PFOS) Perfluorobexanesulfonic acid PFOS) Perfluorobexanesulfonic acid PFOS) Perfluorobexanesulfonic acid PFOS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S for QSM 9 Result 14 27 1.6 24 140 2600 %Recovery                                                                                     | E * M E * E *                                                  | J G0   | 0.38 0.38 0.51 0.38 0.51 0.38 0.51 0.38 50.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.10<br>0.13<br>0.10<br>0.075<br>0.079         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | D                                        | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                                                      | Matrix Percent Solid  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09  4nalyzed  05/29/18 09:09                                                                                                                         | c: Solls: 78     |
| Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 - DL analyte     Result Qualifier     LOQ DL Unit     D Prepared     Analyzed Dil Usion Distriction       Perfluoroheptanoic acid (PFHpA)     14 J D * 38 10 ug/Kg     38 10 ug/Kg     05/14/18 14:03 05/29/18 15:49       Perfluorooctanoic acid (PFOA)     26 J D M J K01 38 13 ug/Kg     05/14/18 14:03 05/29/18 15:49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20 ate Received: 05/09/ | S for QSM s Result 14 27 1.6 24 140 2600 %Recovery 96 88                                                                               | E * M E * E *                                                  | J G0   | 0.38 0.38 0.38 0.51 0.38 0.51 0.38 1.3  Limits 50 - 150 50 - 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.10<br>0.13<br>0.10<br>0.075<br>0.079         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | D                                        | Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03  05/14/18 14:03                                                                                      | Matrix Percent Solid  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09                                                                                           | c: Solls: 78     |
| // Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 - DL       LOQ       DL Unit       D Prepared       Analyzed       Dil I         Analyte       Result Qualifier       LOQ       DL Unit       D vig/Kg       05/14/18 14:03       05/29/18 15:49         Perfluorooctanoic acid (PFA)       26 J D M J K01       38       13 ug/Kg       05/14/18 14:03       05/29/18 15:49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20 ate Received: 05/09/ | S for QSM !  Result  14  27  1.6  24  140  2600  **Recovery  96  88  88  83                                                            | Qualific  E * M E * E * Qualific                               | J G0   | 0.38 0.38 0.38 0.51 0.38 1.3  Limits 50 - 150 50 - 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.10<br>0.13<br>0.10<br>0.075<br>0.079         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | D                                        | Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03                                                                      | Matrix Percent Solid  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09                                                                            | c: Sol           |
| Analyte         Result         Qualifier         LOQ         DL unit         D wit         D value         Prepared         Analyzed         Dil value           Perfluoroheptanoic acid (PFHpA)         14         J D *         38         10         ug/Kg         305/14/18 14:03         05/29/18 15:49           Perfluorooctanoic acid (PFOA)         26         J D M J K01         38         13         ug/Kg         05/14/18 14:03         05/29/18 15:49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20  Method: EPA 537 (Mod) - PFA malyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFNA) Perfluorobutanesulfonic acid (PFNA) Perfluorooctanesulfonic acid (PFNA) Perfluorooctanesulfonic acid (PFNA) Perfluorobutanesulfonic acid (PFNA) Perfluorooctanesulfonic acid (PFNA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S for QSM sesult  14 27 1.6 24 140 2600  %Recovery 96 88 83 25                                                                         | Qualific  E * M E * E * Qualific                               | J G0   | 0.38 0.38 0.51 0.38 1.3  Limits 50 - 150 50 - 150 50 - 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.10<br>0.13<br>0.10<br>0.075<br>0.079         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | D                                        | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03  Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                               | Matrix Percent Solid  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09                                                             | c: Sol           |
| Analyte         Result Qualifier         LOQ         DL unit         D wit         D value         Prepared Distriction         Analyzed Distriction         Distriction           Perfluoroheptanoic acid (PFHpA)         14         J D *         38         10         ug/Kg         05/14/18 14:03         05/29/18 15:49           Perfluorooctanoic acid (PFOA)         26         J D M J K01         38         13         ug/Kg         05/14/18 14:03         05/29/18 15:49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20 ate Received: 05/09/ | S for QSM sesult  14 27 1.6 24 140 2600  **Recovery 96 88 83 25 86                                                                     | Qualific  E * M E * E * Qualific                               | J G0   | 0.38 0.38 0.51 0.38 1.3  Limits 50 - 150 50 - 150 50 - 150 50 - 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.10<br>0.13<br>0.10<br>0.075<br>0.079         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | D                                        | Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03                                      | Matrix Percent Solid  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09                                              | C: So            |
| Perfluorooctanoic acid (PFOA)         26 J D M J K01         38         13 ug/Kg         © 05/14/18 14:03 05/29/18 15:49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20 ate Received: 05/09/ | S for QSM sesult  14 27 1.6 24 140 2600  %Recovery  96 88 83 25 86 18                                                                  | Qualific  E * M E * E * Qualific                               | J G0   | LOQ  0.38  0.38  0.51  0.38  1.3  Limits  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.10<br>0.13<br>0.10<br>0.075<br>0.079         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | D                                        | Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03                                      | Matrix Percent Solid  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09                                              | c: Solls: 78     |
| Perfluorooctanoic acid (PFOA)         26 J D M J K01         38         13 ug/Kg         © 05/14/18 14:03 05/29/18 15:49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20  Method: EPA 537 (Mod) - PFA malyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFNA) Perfluorobutanesulfonic acid  | S for QSM (Result 14 27 1.6 24 140 2600 %Recovery 96 88 83 25 86 18 S for QSM (STORT)                                                  | Qualific  E * M E * E * Qualific                               | J G0   | LOQ  0.38  0.38  0.51  0.38  1.3  Limits  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.10<br>0.13<br>0.10<br>0.075<br>0.079<br>0.31 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | D                                        | Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03      | Matrix Percent Solid  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09                               | Dil F            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20  Method: EPA 537 (Mod) - PFA malyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFNA) Perfluorobutanesulfonic acid  | S for QSM (Result 14 27 1.6 24 140 2600 %Recovery 96 88 83 25 86 18 S for QSM (Result Result 14 15 15 15 15 15 15 15 15 15 15 15 15 15 | Qualific  E * M E * E * Qualific                               | J G0   | LOQ  0.38  0.38  0.51  0.38  1.3  Limits  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.10<br>0.13<br>0.10<br>0.075<br>0.079<br>0.31 | ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg             | D                                        | Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03               | Matrix Percent Solid  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09                               | Dil F            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20  Method: EPA 537 (Mod) - PFA malyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFNA) Perfluorobutanesulfonic acid (PFNA) Perfluorobutanesulfonic acid (PFNA) Perfluorobutanesulfonic acid (PFNA) Perfluorobutanesulfonic acid (PFNA) Perfluorobetanesulfonic acid (PFNA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S for QSM (Result 14 27 1.6 24 140 2600 %Recovery 96 88 83 25 86 18 S for QSM (Result 14                                               | Qualified E * M E * E * Qualified Q Q Q 5.1, Tal Qualified J D | J G0   | LOQ  0.38  0.38  0.51  0.38  1.3  Limits  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150  150 - 150 | 0.10<br>0.13<br>0.10<br>0.075<br>0.079<br>0.31 | ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg       | D                                        | Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03  Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 | Matrix Percent Solid  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 | c: Sol           |

Lab Sample ID: 320-39023-28

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

| Client Sam | ple ID: | KLA04-9 | SB2-01 |
|------------|---------|---------|--------|
|------------|---------|---------|--------|

Lab Sample ID: 320-39023-29 Date Collected: 05/04/18 08:20 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 78.9

| Analyte                              | Result    | Qualifier | LOQ                      | DL  | Unit  | D        | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|--------------------------|-----|-------|----------|----------------|----------------|---------|
| Perfluorobutanesulfonic acid (PFBS)  | 14        | JD JK     | (01 51                   | 7.5 | ug/Kg | <u>∓</u> | 05/14/18 14:03 | 05/29/18 15:49 | 100     |
| Perfluorohexanesulfonic acid (PFHxS) | 200       | Jr        | <01 <sup>38</sup>        | 7.9 | ug/Kg | ₽        | 05/14/18 14:03 | 05/29/18 15:49 | 100     |
| Perfluorooctanesulfonic acid (PFOS)  | 6600      | ED JK     | (01 , N03 <sub>130</sub> | 31  | ug/Kg | ₩        | 05/14/18 14:03 | 05/29/18 15:49 | 100     |
| Isotope Dilution                     | %Recovery | Qualifier | Limits                   |     |       |          | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 111       | М         | 50 - 150                 |     |       |          | 05/14/18 14:03 | 05/29/18 15:49 | 100     |
| 13C4-PFHpA                           | 74        |           | 50 - 150                 |     |       |          | 05/14/18 14:03 | 05/29/18 15:49 | 100     |
| 13C4 PFOA                            | 80        |           | 50 - 150                 |     |       |          | 05/14/18 14:03 | 05/29/18 15:49 | 100     |
| 13C5 PFNA                            | 68        |           | 50 - 150                 |     |       |          | 05/14/18 14:03 | 05/29/18 15:49 | 100     |
| 1802 PFHxS                           | 64        |           | 50 - 150                 |     |       |          | 05/14/18 14:03 | 05/29/18 15:49 | 100     |
|                                      |           |           |                          |     |       |          |                |                |         |

Client Sample ID: KLA04-SB2-02

Lab Sample ID: 320-39023-30 Date Collected: 05/04/18 08:25

| ate Collected: 05/04/18 08:25 ate Received: 05/09/18 09:20 |             |     |        |                     |       |       |              |                | Matrix<br>Percent Solid |        |
|------------------------------------------------------------|-------------|-----|--------|---------------------|-------|-------|--------------|----------------|-------------------------|--------|
| Method: EPA 537 (Mod) - PFA<br>Analyte                     | S for QSM ( |     |        | 3-15<br>LOQ         | DL    | Unit  | D            | Prepared       | Analyzed                | Dil Fa |
| Perfluoroheptanoic acid (PFHpA)                            | 45          | E   | *      | 0.39                | 0.10  | ug/Kg | <del>\</del> | 05/14/18 14:03 | 05/29/18 09:17          |        |
| Perfluorooctanoic acid (PFOA)                              | 200         | Е   | *      | 0.39                | 0.13  | ug/Kg | ☼            | 05/14/18 14:03 | 05/29/18 09:17          |        |
| Perfluorononanoic acid (PFNA)                              | 1.6         |     |        | 0.39                | 0.11  | ug/Kg | ☼            | 05/14/18 14:03 | 05/29/18 09:17          |        |
| Perfluorobutanesulfonic acid (PFBS)                        | 91          | Е   | *      | 0.53                | 0.078 | ug/Kg | ☼            | 05/14/18 14:03 | 05/29/18 09:17          |        |
| Perfluorohexanesulfonic acid (PFHxS)                       | 510         | E   | *      | 0.39                | 0.082 | ug/Kg | ☼            | 05/14/18 14:03 | 05/29/18 09:17          |        |
| Perfluorooctanesulfonic acid (PFOS)                        | 2100        | E   | *      | 1.3                 | 0.32  | ug/Kg | ☼            | 05/14/18 14:03 | 05/29/18 09:17          |        |
| Isotope Dilution                                           | %Recovery   | Qua | lifier | Limits              |       |       |              | Prepared       | Analyzed                | Dil F  |
| 13C3-PFBS                                                  | 125         |     |        | 50 - 150            |       |       |              | 05/14/18 14:03 | 05/29/18 09:17          |        |
| 13C4-PFHpA                                                 | 69          |     |        | 50 - 150            |       |       |              | 05/14/18 14:03 | 05/29/18 09:17          |        |
| 13C4 PFOA                                                  | 82          |     |        | 50 - 150            |       |       |              | 05/14/18 14:03 | 05/29/18 09:17          |        |
| 13C5 PFNA                                                  | 55          |     |        | 50 - 150            |       |       |              | 05/14/18 14:03 | 05/29/18 09:17          |        |
| 1802 PFHxS                                                 | 65          |     |        | 50 <sub>-</sub> 150 |       |       |              | 05/14/18 14:03 | 05/29/18 09:17          |        |
| 13C4 PFOS                                                  | 39          | Q   |        | 50 - 150            |       |       |              | 05/14/18 14:03 | 05/29/18 09:17          |        |
| Method: EPA 537 (Mod) - PFA                                |             |     |        |                     |       |       |              |                |                         |        |
| Analyte                                                    | Result      |     | lifier | LOQ                 |       | Unit  | D            | Prepared       | Analyzed                | Dil F  |
| Perfluoroheptanoic acid (PFHpA)                            | 44          | D   | J K    |                     |       | ug/Kg | ☼            |                | 05/29/18 15:57          | 10     |
| Perfluorooctanoic acid (PFOA)                              | 210         | D   | J K    | )1 39               | 13    | ug/Kg | ☼            | 05/14/18 14:03 | 05/29/18 15:57          | 1      |
| Perfluorononanoic acid (PFNA)                              | 26          | U M | *      | 39                  | 11    | ug/Kg | ₽            | 05/14/18 14:03 | 05/29/18 15:57          | 1      |
| Perfluorobutanesulfonic acid (PFBS)                        | 84          | D   | Jŀ     | K01 <sup>53</sup>   | 7.8   | ug/Kg | ≎            | 05/14/18 14:03 | 05/29/18 15:57          | 1      |
| Perfluorohexanesulfonic acid (PFHxS)                       | 1100        | D   | Jk     | K01 <sup>39</sup>   | 8.2   | ug/Kg | ☼            | 05/14/18 14:03 | 05/29/18 15:57          | 1      |
| Perfluorooctanesulfonic acid (PFOS)                        | 4800        | E D | M JK   | 01 , <b>N03</b> 30  | 32    | ug/Kg | ☼            | 05/14/18 14:03 | 05/29/18 15:57          | 1      |
| Isotope Dilution                                           | %Recovery   | Qua | lifier | Limits              |       |       |              | Prepared       | Analyzed                | Dil F  |
| 13C3-PFBS                                                  | 133         | М   |        | 50 - 150            |       |       |              | 05/14/18 14:03 | 05/29/18 15:57          | 10     |
|                                                            |             |     |        |                     |       |       |              |                |                         |        |

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Perfluorooctanoic acid (PFOA)

| Client Sample ID: KLA04-SB2-02 |
|--------------------------------|
|--------------------------------|

Lab Sample ID: 320-39023-30 Date Collected: 05/04/18 08:25 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 76.0

| Method: EPA 537 (Mod | d) - PFAS for QSM 5.1, Table I | B-15 - DL (Continued) |                |                |         |
|----------------------|--------------------------------|-----------------------|----------------|----------------|---------|
| Isotope Dilution     | %Recovery Qualifier            | Limits                | Prepared       | Analyzed       | Dil Fac |
| 13C4 PFOA            | 95                             | 50 - 150              | 05/14/18 14:03 | 05/29/18 15:57 | 100     |
| 13C5 PFNA            | 78                             | 50 - 150              | 05/14/18 14:03 | 05/29/18 15:57 | 100     |
| 1802 PFHxS           | 78                             | 50 - 150              | 05/14/18 14:03 | 05/29/18 15:57 | 100     |
| 13C4 PFOS            | 61                             | 50 - 150              | 05/14/18 14:03 | 05/29/18 15:57 | 100     |

Client Sample ID: KLA04-SB3-01 Lab Sample ID: 320-39023-31

Date Collected: 05/04/18 08:05 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 78.4

| Analyte                                                                                                                                                                                                            | Result                                                                   | Qualifier                                                  | LOQ                                                                                                                     | DL                       | Unit                             | D                                     | Prepared                                                                                                                                                                                     | Analyzed                                                                                                                                                                                           | Dil Fa |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                    | 3.8                                                                      |                                                            | 0.38                                                                                                                    | 0.10                     | ug/Kg                            | ☼                                     | 05/14/18 14:03                                                                                                                                                                               | 05/29/18 09:25                                                                                                                                                                                     |        |
| Perfluorooctanoic acid (PFOA)                                                                                                                                                                                      | 12                                                                       |                                                            | 0.38                                                                                                                    | 0.13                     | ug/Kg                            | ₽                                     | 05/14/18 14:03                                                                                                                                                                               | 05/29/18 09:25                                                                                                                                                                                     |        |
| Perfluorononanoic acid (PFNA)                                                                                                                                                                                      | 1.1                                                                      | M J G02                                                    | 0.38                                                                                                                    | 0.10                     | ug/Kg                            | ☼                                     | 05/14/18 14:03                                                                                                                                                                               | 05/29/18 09:25                                                                                                                                                                                     |        |
| Perfluorobutanesulfonic acid                                                                                                                                                                                       | 19                                                                       |                                                            | 0.51                                                                                                                    | 0.076                    | ug/Kg                            | ₩                                     | 05/14/18 14:03                                                                                                                                                                               | 05/29/18 09:25                                                                                                                                                                                     |        |
| Perfluorohexanesulfonic acid PFHxS)                                                                                                                                                                                | 51                                                                       | E *                                                        | 0.38                                                                                                                    |                          | ug/Kg                            | ₩                                     | 05/14/18 14:03                                                                                                                                                                               | 05/29/18 09:25                                                                                                                                                                                     |        |
| Perfluorooctanesulfonic acid (PFOS)                                                                                                                                                                                | 1600                                                                     | E *                                                        | 1.3                                                                                                                     | 0.31                     | ug/Kg                            | ₩                                     | 05/14/18 14:03                                                                                                                                                                               | 05/29/18 09:25                                                                                                                                                                                     |        |
| lsotope Dilution                                                                                                                                                                                                   | %Recovery                                                                | Qualifier                                                  | Limits                                                                                                                  |                          |                                  |                                       | Prepared                                                                                                                                                                                     | Analyzed                                                                                                                                                                                           | Dil Fa |
| 13C3-PFBS                                                                                                                                                                                                          | 86                                                                       |                                                            | 50 - 150                                                                                                                |                          |                                  |                                       | 05/14/18 14:03                                                                                                                                                                               | 05/29/18 09:25                                                                                                                                                                                     |        |
| 13C4-PFHpA                                                                                                                                                                                                         | 88                                                                       |                                                            | 50 - 150                                                                                                                |                          |                                  |                                       | 05/14/18 14:03                                                                                                                                                                               | 05/29/18 09:25                                                                                                                                                                                     |        |
| 13C4 PFOA                                                                                                                                                                                                          | 84                                                                       |                                                            | 50 - 150                                                                                                                |                          |                                  |                                       | 05/14/18 14:03                                                                                                                                                                               | 05/29/18 09:25                                                                                                                                                                                     |        |
| 13C5 PFNA                                                                                                                                                                                                          | 28                                                                       | Q                                                          | 50 - 150                                                                                                                |                          |                                  |                                       | 05/14/18 14:03                                                                                                                                                                               | 05/29/18 09:25                                                                                                                                                                                     |        |
| 1802 PFHxS                                                                                                                                                                                                         | 77                                                                       |                                                            | 50 - 150                                                                                                                |                          |                                  |                                       | 05/14/18 14:03                                                                                                                                                                               | 05/29/18 09:25                                                                                                                                                                                     |        |
| 13C4 PFOS                                                                                                                                                                                                          | 20                                                                       | Q                                                          | 50 - 150                                                                                                                |                          |                                  |                                       | 05/14/18 14:03                                                                                                                                                                               | 05/29/18 09:25                                                                                                                                                                                     |        |
| Perfluorooctanoic acid (PFOA)                                                                                                                                                                                      | 12                                                                       |                                                            |                                                                                                                         |                          |                                  |                                       |                                                                                                                                                                                              | 05/29/18 17:23                                                                                                                                                                                     |        |
| Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA)                                                                                                                                                      | 12                                                                       | D *                                                        |                                                                                                                         |                          |                                  |                                       |                                                                                                                                                                                              | 03/23/10 17.23                                                                                                                                                                                     | 2      |
| Perfluorononanoic acid (PFNA)  Perfluorobutanesulfonic acid                                                                                                                                                        |                                                                          | UM *                                                       | 7.7<br>7.7<br>10                                                                                                        | 2.1                      | ug/Kg<br>ug/Kg<br>ug/Kg          | \$<br>\$                              | 05/14/18 14:03                                                                                                                                                                               | 05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23                                                                                                                                                 | :      |
| Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid                                                                                                                                                   | 5.1                                                                      | U M *                                                      | 7.7                                                                                                                     | 2.1<br>1.5               | ug/Kg                            |                                       | 05/14/18 14:03<br>05/14/18 14:03                                                                                                                                                             | 05/29/18 17:23<br>05/29/18 17:23                                                                                                                                                                   |        |
| Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid                                                                                                              | 5.1<br>24<br>53                                                          | U M *                                                      | 7.7                                                                                                                     | 2.1<br>1.5<br>1.6        | ug/Kg<br>ug/Kg                   | \$<br>\$                              | 05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03                                                                                                                                           | 05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23                                                                                                                                                 | :      |
| Perfluorobutanesulfonic acid PFBS) Perfluorohexanesulfonic acid PFHxS) Perfluorooctanesulfonic acid PFOS)                                                                                                          | 5.1<br>24<br>53                                                          | UM * D * D J K01 E D *                                     | 7.7<br>10<br>7.7                                                                                                        | 2.1<br>1.5<br>1.6        | ug/Kg<br>ug/Kg<br>ug/Kg          | \$<br>\$                              | 05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03                                                                                                                                           | 05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23                                                                                                                               |        |
| Perfluorobutanesulfonic acid PFBS) Perfluorohexanesulfonic acid PFHxS) Perfluorooctanesulfonic acid PFOS) sotope Dilution                                                                                          | 5.1<br>24<br>53<br>3500                                                  | UM * D * D J K01 E D *                                     | 7.7<br>10<br>7.7<br>26                                                                                                  | 2.1<br>1.5<br>1.6        | ug/Kg<br>ug/Kg<br>ug/Kg          | \$<br>\$                              | 05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br><i>Prepared</i>                                                                                                      | 05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23                                                                                                             |        |
| Perfluorobutanesulfonic acid PFBS) Perfluorohexanesulfonic acid PFHxS) Perfluorooctanesulfonic acid PFOS) Isotope Dilution                                                                                         | 5.1<br>24<br>53<br>3500<br>%Recovery                                     | UM * D * D J K01 E D *                                     | 7.7<br>10<br>7.7<br>26<br><i>Limits</i>                                                                                 | 2.1<br>1.5<br>1.6        | ug/Kg<br>ug/Kg<br>ug/Kg          | \$<br>\$                              | 05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br><b>Prepared</b><br>05/14/18 14:03                                                                                    | 05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23<br>Analyzed                                                                                                 | Dil F  |
| Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) (Sotope Dilution (13C3-PFBS) (13C4-PFHpA)                                                             | 5.1<br>24<br>53<br>3500<br>%Recovery                                     | UM * D * D J K01 E D *                                     | 7.7<br>10<br>7.7<br>26<br><b>Limits</b><br>50 - 150                                                                     | 2.1<br>1.5<br>1.6        | ug/Kg<br>ug/Kg<br>ug/Kg          | \$<br>\$                              | 05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br><b>Prepared</b><br>05/14/18 14:03<br>05/14/18 14:03                                                                  | 05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23<br>Analyzed<br>05/29/18 17:23                                                                               | Dil F  |
| Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) (sotope Dilution (3C3-PFBS) (13C4-PFHpA) (13C4 PFOA)                                                  | 5.1<br>24<br>53<br>3500<br>%Recovery<br>54<br>75                         | UM * D * D J K01 E D *                                     | 7.7<br>10<br>7.7<br>26<br><b>Limits</b><br>50 - 150<br>50 - 150                                                         | 2.1<br>1.5<br>1.6        | ug/Kg<br>ug/Kg<br>ug/Kg          | \$<br>\$                              | 05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br><b>Prepared</b><br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03                                                | 05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23<br>Analyzed<br>05/29/18 17:23<br>05/29/18 17:23                                                             | Dil F  |
| Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) (Sotope Dilution (3C3-PFBS) (3C4-PFHpA) (3C4 PFOA)                                                    | 5.1<br>24<br>53<br>3500<br>%Recovery<br>54<br>75<br>82                   | UM * D * D J K01 E D *                                     | 7.7<br>10<br>7.7<br>26<br><b>Limits</b><br>50 - 150<br>50 - 150<br>50 - 150                                             | 2.1<br>1.5<br>1.6        | ug/Kg<br>ug/Kg<br>ug/Kg          | \$<br>\$                              | 05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br><b>Prepared</b><br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03                              | 05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23<br>Analyzed<br>05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23                                           | Dil F  |
| Perfluorobutanesulfonic acid PFBS) Perfluorohexanesulfonic acid PFHxS) Perfluorooctanesulfonic acid PFOS) sotope Dilution 3C3-PFBS 3C4-PFHpA 3C4 PFOA 3C5 PFNA                                                     | 5.1<br>24<br>53<br>3500<br>%Recovery<br>54<br>75<br>82<br>59<br>69       | UM * D * D J K01 E D *                                     | 7.7<br>10<br>7.7<br>26<br><b>Limits</b><br>50 - 150<br>50 - 150<br>50 - 150                                             | 2.1<br>1.5<br>1.6        | ug/Kg<br>ug/Kg<br>ug/Kg          | \$<br>\$                              | 05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br><b>Prepared</b><br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03            | 05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23<br>Analyzed<br>05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23                         |        |
| Perfluorobutanesulfonic acid PFBS) Perfluorohexanesulfonic acid PFHxS) Perfluorooctanesulfonic acid PFOS) Sotope Dilution 13C3-PFBS 13C4-PFHpA 13C5 PFNA 18O2 PFHxS 13C4 PFOS                                      | 5.1<br>24<br>53<br>3500<br>%Recovery<br>54<br>75<br>82<br>59<br>69<br>47 | UM * D * D JK01 ED * Qualifier Q                           | 7.7 10 7.7 26  Limits 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150                                    | 2.1<br>1.5<br>1.6<br>6.1 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | * *                                   | 05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>Prepared<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03                   | 05/29/18 17:23<br>05/29/18 17:23 |        |
| Perfluorobutanesulfonic acid PFBS) Perfluorohexanesulfonic acid PFHxS) Perfluorooctanesulfonic acid PFOS) Isotope Dilution I3C3-PFBS I3C4-PFHpA I3C4 PFOA I3C5 PFNA I3C4 PFOS  Method: EPA 537 (Mod) - PFA Analyte | 5.1<br>24<br>53<br>3500<br>%Recovery<br>54<br>75<br>82<br>59<br>69<br>47 | UM * D * D JK01 ED *  Qualifier  Q  5.1, Table B Qualifier | 7.7 10 7.7 26  Limits 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 -150 -150 -150 -150 -150 -150 -150 | 2.1<br>1.5<br>1.6<br>6.1 | ug/Kg ug/Kg ug/Kg ug/Kg          | * * * * * * * * * * * * * * * * * * * | 05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>Prepared<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03                   | 05/29/18 17:23<br>05/29/18 17:23 | Dil F  |
|                                                                                                                                                                                                                    | 5.1<br>24<br>53<br>3500<br>%Recovery<br>54<br>75<br>82<br>59<br>69<br>47 | UM * D * D JK01 ED *  Qualifier  Q  5.1, Table B Qualifier | 7.7 10 7.7 26  Limits 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150                                    | 2.1<br>1.5<br>1.6<br>6.1 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | * *                                   | 05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>Prepared<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03 | 05/29/18 17:23<br>05/29/18 17:23 |        |

100

© 05/14/18 14:03 05/29/18 16:12

38

13 ug/Kg

13 J D \*

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

(PFHxS)

Perfluorooctanesulfonic acid

Client Sample ID: KLA04-SB3-01 Lab Sample ID: 320-39023-31

 Date Collected: 05/04/18 08:05
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 78.4

| Analyte                              | Result    | Qualifier      | LOQ       | DL  | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|----------------|-----------|-----|-------|---|----------------|----------------|---------|
| Perfluorononanoic acid (PFNA)        | 26        | U *            | 38        | 10  | ug/Kg | ₩ | 05/14/18 14:03 | 05/29/18 16:12 | 100     |
| Perfluorobutanesulfonic acid (PFBS)  | 16        | JD *           | 51        | 7.6 | ug/Kg | ☼ | 05/14/18 14:03 | 05/29/18 16:12 | 100     |
| Perfluorohexanesulfonic acid (PFHxS) | 61        | D *            | 38        | 7.9 | ug/Kg | ₽ | 05/14/18 14:03 | 05/29/18 16:12 | 100     |
| Perfluorooctanesulfonic acid (PFOS)  | 4500      | <b>ED</b> JK01 | , N03 130 | 31  | ug/Kg | ☼ | 05/14/18 14:03 | 05/29/18 16:12 | 100     |
| Isotope Dilution                     | %Recovery | Qualifier      | Limits    |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 71        | M              | 50 - 150  |     |       |   | 05/14/18 14:03 | 05/29/18 16:12 | 100     |
| 13C4-PFHpA                           | 74        |                | 50 - 150  |     |       |   | 05/14/18 14:03 | 05/29/18 16:12 | 100     |
| 13C4 PFOA                            | 78        |                | 50 - 150  |     |       |   | 05/14/18 14:03 | 05/29/18 16:12 | 100     |
| 13C5 PFNA                            | 73        |                | 50 - 150  |     |       |   | 05/14/18 14:03 | 05/29/18 16:12 | 100     |
| 1802 PFHxS                           | 53        |                | 50 - 150  |     |       |   | 05/14/18 14:03 | 05/29/18 16:12 | 100     |
| 13C4 PFOS                            | 57        |                | 50 - 150  |     |       |   | 05/14/18 14:03 | 05/29/18 16:12 | 100     |

Client Sample ID: KLA04-SB3-02 Lab Sample ID: 320-39023-32

 Date Collected: 05/04/18 08:10
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 65.2

| Date Received: 05/09/18 09:20          |             |      |            |             |       |       |         |                | Percent Solid  | ls: 65.2 |
|----------------------------------------|-------------|------|------------|-------------|-------|-------|---------|----------------|----------------|----------|
| Method: EPA 537 (Mod) - PFA<br>Analyte | S for QSM ( |      |            | 3-15<br>LOQ | DL    | Unit  | D       | Prepared       | Analyzed       | Dil Fac  |
| Perfluoroheptanoic acid (PFHpA)        | 29          |      |            | 0.46        | 0.12  | ug/Kg | <u></u> | 05/14/18 14:03 | 05/29/18 09:33 |          |
| Perfluorooctanoic acid (PFOA)          | 83          | Е    | *          | 0.46        | 0.15  | ug/Kg | ☼       | 05/14/18 14:03 | 05/29/18 09:33 | 1        |
| Perfluorononanoic acid (PFNA)          | 1.2         |      |            | 0.46        | 0.12  | ug/Kg | ☼       | 05/14/18 14:03 | 05/29/18 09:33 | 1        |
| Perfluorobutanesulfonic acid (PFBS)    | 80          | Е    | *          | 0.61        | 0.091 | ug/Kg | ₽       | 05/14/18 14:03 | 05/29/18 09:33 |          |
| Perfluorohexanesulfonic acid (PFHxS)   | 410         | E    | *          | 0.46        | 0.095 | ug/Kg | ₽       | 05/14/18 14:03 | 05/29/18 09:33 | 1        |
| Perfluorooctanesulfonic acid (PFOS)    | 1900        | ΕN   | <b>/</b> * | 1.5         | 0.37  | ug/Kg | ☼       | 05/14/18 14:03 | 05/29/18 09:33 | 1        |
| Isotope Dilution                       | %Recovery   | Qu   | alifier    | Limits      |       |       |         | Prepared       | Analyzed       | Dil Fac  |
| 13C3-PFBS                              | 109         |      |            | 50 - 150    |       |       |         | 05/14/18 14:03 | 05/29/18 09:33 | 1        |
| 13C4-PFHpA                             | 77          |      |            | 50 - 150    |       |       |         | 05/14/18 14:03 | 05/29/18 09:33 | 1        |
| 13C4 PFOA                              | 87          |      |            | 50 - 150    |       |       |         | 05/14/18 14:03 | 05/29/18 09:33 | 1        |
| 13C5 PFNA                              | 51          |      |            | 50 - 150    |       |       |         | 05/14/18 14:03 | 05/29/18 09:33 | 1        |
| 18O2 PFHxS                             | 65          |      |            | 50 - 150    |       |       |         | 05/14/18 14:03 | 05/29/18 09:33 | 1        |
| 13C4 PFOS                              | 39          | Q    |            | 50 - 150    |       |       |         | 05/14/18 14:03 | 05/29/18 09:33 | 1        |
| Method: EPA 537 (Mod) - PFA            | S for QSM   | 5.1, | Table I    | B-15 - DL   |       |       |         |                |                |          |
| Analyte                                | Result      | Qua  | alifier    | LOQ         | DL    | Unit  | D       | Prepared       | Analyzed       | Dil Fac  |
| Perfluoroheptanoic acid (PFHpA)        | 27          | D    | *          | 9.2         | 2.4   | ug/Kg | ₩       | 05/14/18 14:03 | 05/29/18 17:31 | 20       |
| Perfluorooctanoic acid (PFOA)          | 85          | D    | J K01      | 9.2         | 3.1   | ug/Kg | ☼       | 05/14/18 14:03 | 05/29/18 17:31 | 20       |
| Perfluorononanoic acid (PFNA)          | 6.1         | UN   | 1 *        | 9.2         | 2.5   | ug/Kg | ☼       | 05/14/18 14:03 | 05/29/18 17:31 | 20       |
| Perfluorobutanesulfonic acid (PFBS)    | 110         | D    | J K01      | 12          | 1.8   | ug/Kg | ₽       | 05/14/18 14:03 | 05/29/18 17:31 | 20       |
| Perfluorohexanesulfonic acid           | 730         | ΕC   | *          | 9.2         | 1.9   | ug/Kg | ☼       | 05/14/18 14:03 | 05/29/18 17:31 | 20       |

 Isotope Dilution
 %Recovery 13C3-PFBS
 Qualifier 250-150
 Limits 250-150
 Prepared 250-150
 Analyzed 250-150
 Dil Fac 250-150

3500 E D M \*

31

7.4 ug/Kg

20

☼ 05/14/18 14:03 05/29/18 17:31

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

| Client Sample   | ID: KLA04-SB3-02  |  |
|-----------------|-------------------|--|
| Olicit Gallibic | ID. IXEAUT-ODU-UE |  |

Lab Sample ID: 320-39023-32 Date Collected: 05/04/18 08:10 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 65.2

| Isotope Dilution                     | %Recovery   | Qualif  | ier    | Limits   |       |       |                  | Prepared       | Analyzed       | Dil Fac  |
|--------------------------------------|-------------|---------|--------|----------|-------|-------|------------------|----------------|----------------|----------|
| 13C4-PFHpA                           | 84          |         |        | 50 - 150 |       |       |                  | 05/14/18 14:03 | 05/29/18 17:31 | 20       |
| 13C4 PFOA                            | 87          |         |        | 50 - 150 |       |       |                  | 05/14/18 14:03 | 05/29/18 17:31 | 20       |
| 13C5 PFNA                            | 78          |         |        | 50 - 150 |       |       |                  | 05/14/18 14:03 | 05/29/18 17:31 | 20       |
| 1802 PFHxS                           | 76          |         |        | 50 - 150 |       |       |                  | 05/14/18 14:03 | 05/29/18 17:31 | 20       |
| 13C4 PFOS                            | 63          |         |        | 50 - 150 |       |       |                  | 05/14/18 14:03 | 05/29/18 17:31 | 20       |
| Method: EPA 537 (Mod) - PFA          |             |         |        |          |       |       | _                |                |                | D.: -    |
| Analyte                              |             | Qualifi |        | LOQ      |       | Unit  | D                | Prepared       | Analyzed       | Dil Fac  |
| Perfluoroheptanoic acid (PFHpA)      |             | JD      | *      | 46       |       | ug/Kg | <b>☆</b>         |                | 05/29/18 16:20 | 100      |
| Perfluorooctanoic acid (PFOA)        | 79          | _       | *      | 46       |       | ug/Kg | <b>☆</b>         |                | 05/29/18 16:20 | 100      |
| Perfluorononanoic acid (PFNA)        |             | UM      | *      | 46       |       | ug/Kg | : <del>Q</del> : |                | 05/29/18 16:20 | 100      |
| Perfluorobutanesulfonic acid (PFBS)  | 110         | D       | *      | 61       | 9.1   | ug/Kg | Đ.               | 05/14/18 14:03 | 05/29/18 16:20 | 100      |
| Perfluorohexanesulfonic acid (PFHxS) | 730         | D       | J K01  | 46       | 9.5   | ug/Kg | ☆                | 05/14/18 14:03 | 05/29/18 16:20 | 100      |
| Perfluorooctanesulfonic acid (PFOS)  | 3800        | E D M   | J K01  | , N03150 | 37    | ug/Kg | ₩                | 05/14/18 14:03 | 05/29/18 16:20 | 100      |
| Isotope Dilution                     | %Recovery   | Qualif  | ier    | Limits   |       |       |                  | Prepared       | Analyzed       | Dil Fac  |
| 13C3-PFBS                            | 72          | M       |        | 50 - 150 |       |       |                  | 05/14/18 14:03 | 05/29/18 16:20 | 100      |
| 13C4-PFHpA                           | 62          |         |        | 50 - 150 |       |       |                  | 05/14/18 14:03 | 05/29/18 16:20 | 100      |
| 13C4 PFOA                            | 89          |         |        | 50 - 150 |       |       |                  | 05/14/18 14:03 | 05/29/18 16:20 | 100      |
| 13C5 PFNA                            | 78          |         |        | 50 - 150 |       |       |                  | 05/14/18 14:03 | 05/29/18 16:20 | 100      |
| 1802 PFHxS                           | 69          |         |        | 50 - 150 |       |       |                  | 05/14/18 14:03 | 05/29/18 16:20 | 100      |
| 13C4 PFOS                            | 64          |         |        | 50 - 150 |       |       |                  | 05/14/18 14:03 | 05/29/18 16:20 | 100      |
| Client Sample ID: KLA05-             | SB1-01      |         |        |          |       |       | La               | ıb Sample      | ID: 320-390    | 23-33    |
| Pate Collected: 05/05/18 09:00       |             |         |        |          |       |       |                  | _              | Matrix         | : Solid  |
| Pate Received: 05/09/18 09:20        |             |         |        |          |       |       |                  |                | Percent Solid  | ls: 79.9 |
| Method: EPA 537 (Mod) - PFA          | S for QSM ! | 5.1, Ta | ble B- | 15       |       |       |                  |                |                |          |
| Analyte                              | Result      | Qualifi | ier    | LOQ      |       | Unit  | D                | Prepared       | Analyzed       | Dil Fac  |
| Perfluoroheptanoic acid (PFHpA)      | 1.6         |         |        | 0.38     | 0.098 | ug/Kg | <del></del>      | 05/14/18 14:03 | 05/29/18 09:41 | 1        |
| Perfluorooctanoic acid (PFOA)        | 2.3         |         |        | 0.38     |       | ug/Kg | ₩                | 05/14/18 14:03 | 05/29/18 09:41 | 1        |
| Perfluorononanoic acid (PFNA)        | 0.61        | M =     |        | 0.38     | 0.10  | ug/Kg | ☼                | 05/14/18 14:03 | 05/29/18 09:41 | 1        |
| Perfluorobutanesulfonic acid (PFBS)  | 4.9         |         |        | 0.50     | 0.074 | ug/Kg | ₽                | 05/14/18 14:03 | 05/29/18 09:41 | 1        |
| Perfluorohexanesulfonic acid (PFHxS) | 74          | E *     |        | 0.38     | 0.078 | ug/Kg | ☼                | 05/14/18 14:03 | 05/29/18 09:41 | 1        |
| Perfluorooctanesulfonic acid         | 130         | Ε .     | *      | 1.3      | 0.30  | ug/Kg | ≎                | 05/14/18 14:03 | 05/29/18 09:41 | 1        |

| Perfluorooctanesulfonic acid (PFOS) | 130       | E *       | 1.3      | 0.30 ug/Kg | ₩ | 05/14/18 14:03 | 05/29/18 09:41 | 1       |
|-------------------------------------|-----------|-----------|----------|------------|---|----------------|----------------|---------|
| Isotope Dilution                    | %Recovery | Qualifier | Limits   |            |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                           | 72        |           | 50 - 150 |            |   | 05/14/18 14:03 | 05/29/18 09:41 | 1       |
| 13C4-PFHpA                          | 81        |           | 50 - 150 |            |   | 05/14/18 14:03 | 05/29/18 09:41 | 1       |
| 13C4 PFOA                           | 90        |           | 50 - 150 |            |   | 05/14/18 14:03 | 05/29/18 09:41 | 1       |
| 13C5 PFNA                           | 74        |           | 50 - 150 |            |   | 05/14/18 14:03 | 05/29/18 09:41 | 1       |
| 1802 PFHxS                          | 68        |           | 50 - 150 |            |   | 05/14/18 14:03 | 05/29/18 09:41 | 1       |
| 13C4 PFOS                           | 68        |           | 50 - 150 |            |   | 05/14/18 14:03 | 05/29/18 09:41 | 1       |

| Method: EPA 537 (Mod) - PFA     | S for QSM 5.1, Table B-1 | 15 - DL |           |   |                |                |         |
|---------------------------------|--------------------------|---------|-----------|---|----------------|----------------|---------|
| Analyte                         | Result Qualifier         | LOQ     | DL Unit   | D | Prepared       | Analyzed       | Dil Fac |
| Perfluoroheptanoic acid (PFHpA) | 5.0 U *                  | 7.6     | 2.0 ug/Kg | ☼ | 05/14/18 14:03 | 05/29/18 14:38 | 20      |

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: KLA05-SB1-01 Lab Sample ID: 320-39023-33

 Date Collected: 05/05/18 09:00
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 79.9

| Analyte                              | Result    | Quali | ifier | LOQ      | DL  | Unit  | D            | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-------|-------|----------|-----|-------|--------------|----------------|----------------|---------|
| Perfluorooctanoic acid (PFOA)        | 5.0       | UM    | *     | 7.6      | 2.5 | ug/Kg | <del>\</del> | 05/14/18 14:03 | 05/29/18 14:38 | 20      |
| Perfluorononanoic acid (PFNA)        | 5.0       | U     | *     | 7.6      | 2.0 | ug/Kg | ₩            | 05/14/18 14:03 | 05/29/18 14:38 | 20      |
| Perfluorobutanesulfonic acid (PFBS)  | 6.2       | JD    | *     | 10       | 1.5 | ug/Kg | ☼            | 05/14/18 14:03 | 05/29/18 14:38 | 20      |
| Perfluorohexanesulfonic acid (PFHxS) | 78        | D     | J K01 | 7.6      | 1.6 | ug/Kg | ₩            | 05/14/18 14:03 | 05/29/18 14:38 | 20      |
| Perfluorooctanesulfonic acid (PFOS)  | 170       | D     | J K01 | 25       | 6.0 | ug/Kg | ☼            | 05/14/18 14:03 | 05/29/18 14:38 | 20      |
| Isotope Dilution                     | %Recovery | Qual  | ifier | Limits   |     |       |              | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 54        |       |       | 50 - 150 |     |       |              | 05/14/18 14:03 | 05/29/18 14:38 | 20      |
| 13C4-PFHpA                           | 83        |       |       | 50 - 150 |     |       |              | 05/14/18 14:03 | 05/29/18 14:38 | 20      |
| 13C4 PFOA                            | 97        |       |       | 50 - 150 |     |       |              | 05/14/18 14:03 | 05/29/18 14:38 | 20      |
| 13C5 PFNA                            | 90        |       |       | 50 - 150 |     |       |              | 05/14/18 14:03 | 05/29/18 14:38 | 20      |
| 1802 PFHxS                           | 75        |       |       | 50 - 150 |     |       |              | 05/14/18 14:03 | 05/29/18 14:38 | 20      |
| 13C4 PFOS                            | 69        |       |       | 50 - 150 |     |       |              | 05/14/18 14:03 | 05/29/18 14:38 | 20      |

Client Sample ID: KLA05-SB1-02 Lab Sample ID: 320-39023-34

 Date Collected: 05/05/18 09:10
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 78.5

| Analyte                              | Result    | Qualifier | LOQ                 | DL    | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|---------------------|-------|-------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 0.25      | U         | 0.38                | 0.098 | ug/Kg | ₩ | 05/14/18 14:03 | 05/29/18 14:15 | 1       |
| Perfluorooctanoic acid (PFOA)        | 0.23      | J         | 0.38                | 0.13  | ug/Kg | ₽ | 05/14/18 14:03 | 05/29/18 14:15 | 1       |
| Perfluorononanoic acid (PFNA)        | 0.25      | U         | 0.38                | 0.10  | ug/Kg | ₽ | 05/14/18 14:03 | 05/29/18 14:15 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.077     | J         | 0.50                | 0.074 | ug/Kg | ₽ | 05/14/18 14:03 | 05/29/18 14:15 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 2.6       |           | 0.38                | 0.078 | ug/Kg | ₽ | 05/14/18 14:03 | 05/29/18 14:15 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 6.5       |           | 1.3                 | 0.30  | ug/Kg | ₽ | 05/14/18 14:03 | 05/29/18 14:15 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier | Limits              |       |       |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 68        |           | 50 - 150            |       |       |   | 05/14/18 14:03 | 05/29/18 14:15 | 1       |
| 13C4-PFHpA                           | 81        |           | 50 - 150            |       |       |   | 05/14/18 14:03 | 05/29/18 14:15 | 1       |
| 13C4 PFOA                            | 88        |           | 50 <sub>-</sub> 150 |       |       |   | 05/14/18 14:03 | 05/29/18 14:15 |         |

| 1303-PFBS    | 08 | 50 - 150 | 05/14/18 14:03 | 05/29/18 14:15 | 7 |
|--------------|----|----------|----------------|----------------|---|
| 13C4-PFHpA   | 81 | 50 - 150 | 05/14/18 14:03 | 05/29/18 14:15 | 1 |
| 13C4 PFOA    | 88 | 50 - 150 | 05/14/18 14:03 | 05/29/18 14:15 | 1 |
| 13C5 PFNA    | 88 | 50 - 150 | 05/14/18 14:03 | 05/29/18 14:15 | 1 |
| 1802 PFHxS   | 70 | 50 - 150 | 05/14/18 14:03 | 05/29/18 14:15 | 1 |
| 13C4 PFOS    | 72 | 50 - 150 | 05/14/18 14:03 | 05/29/18 14:15 | 1 |
| <del>-</del> |    |          |                |                |   |

Client Sample ID: KLA05-SB2-01 Lab Sample ID: 320-39023-35

| Analyte                         | Result Qualifier | LOQ  | DL    | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|---------------------------------|------------------|------|-------|-------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA) | 0.45             | 0.36 | 0.092 | ug/Kg | ₩ | 05/14/18 14:03 | 05/29/18 09:56 | 1       |
| Perfluorooctanoic acid (PFOA)   | 1.6              | 0.36 | 0.12  | ug/Kg | ₩ | 05/14/18 14:03 | 05/29/18 09:56 | 1       |
| Perfluorononanoic acid (PFNA)   | 0.36             | 0.36 | 0.096 | ug/Kg | ₩ | 05/14/18 14:03 | 05/29/18 09:56 | 1       |
| Perfluorobutanesulfonic acid    | 0.32 J           | 0.47 | 0.070 | ug/Kg | ₽ | 05/14/18 14:03 | 05/29/18 09:56 | 1       |

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

| Client Sam | ple ID: | KLA05-9 | SB2-01 |
|------------|---------|---------|--------|
|------------|---------|---------|--------|

Lab Sample ID: 320-39023-35 Date Collected: 05/05/18 09:30 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 85.2

| Analyte                                                                                                                  | Result                                  | Qua    | lifier     | LOQ                                                            | DL    | Unit           | D             | Prepared                                                                                                                    | Analyzed                                                                                                  | Dil Fa                        |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------|------------|----------------------------------------------------------------|-------|----------------|---------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------|
| Perfluorohexanesulfonic acid (PFHxS)                                                                                     | 20                                      |        |            | 0.36                                                           | 0.073 | ug/Kg          | <del></del>   | 05/14/18 14:03                                                                                                              | 05/29/18 09:56                                                                                            |                               |
| Perfluorooctanesulfonic acid (PFOS)                                                                                      | 37                                      | E      | *          | 1.2                                                            | 0.28  | ug/Kg          | ₩             | 05/14/18 14:03                                                                                                              | 05/29/18 09:56                                                                                            |                               |
| Isotope Dilution                                                                                                         | %Recovery                               | Qua    | lifier     | Limits                                                         |       |                |               | Prepared                                                                                                                    | Analyzed                                                                                                  | Dil Fa                        |
| 13C3-PFBS                                                                                                                | 69                                      |        |            | 50 - 150                                                       |       |                |               | 05/14/18 14:03                                                                                                              | 05/29/18 09:56                                                                                            |                               |
| 13C4-PFHpA                                                                                                               | 85                                      |        |            | 50 - 150                                                       |       |                |               | 05/14/18 14:03                                                                                                              | 05/29/18 09:56                                                                                            |                               |
| 13C4 PFOA                                                                                                                | 92                                      |        |            | 50 - 150                                                       |       |                |               | 05/14/18 14:03                                                                                                              | 05/29/18 09:56                                                                                            |                               |
| 13C5 PFNA                                                                                                                | 89                                      |        |            | 50 - 150                                                       |       |                |               | 05/14/18 14:03                                                                                                              | 05/29/18 09:56                                                                                            |                               |
| 1802 PFHxS                                                                                                               | 71                                      |        |            | 50 - 150                                                       |       |                |               | 05/14/18 14:03                                                                                                              | 05/29/18 09:56                                                                                            |                               |
| 13C4 PFOS                                                                                                                | 73                                      |        |            | 50 - 150                                                       |       |                |               | 05/14/18 14:03                                                                                                              | 05/29/18 09:56                                                                                            |                               |
| Perfluorononanoic acid (PFNA)                                                                                            |                                         | UM     |            | 3.6                                                            |       | ug/Kg          | <b>#</b>      | 05/14/18 14:03                                                                                                              | 05/29/18 14:46                                                                                            | 1                             |
| Perfluoroheptanoic acid (PFHpA)  Perfluorooctanoic acid (PFOA)  Perfluoropaga acid (PFNA)                                |                                         | J D    |            | 3.6<br>3.6                                                     | 1.2   | ug/Kg<br>ug/Kg | \$<br>\$<br>* | 05/14/18 14:03<br>05/14/18 14:03                                                                                            |                                                                                                           | 1                             |
| Perfluorobutanesulfonic acid (PERS)                                                                                      | 2.1                                     | 11     | *          | 17                                                             | 0.70  | ua/ka          | -0-           |                                                                                                                             | 05/20/18 11:46                                                                                            |                               |
| Perfluorobutanesulfonic acid (PFBS)                                                                                      | 2.1                                     |        | *          | 4.7<br>3.6                                                     | 0.70  | 0 0            | ₽             |                                                                                                                             | 05/29/18 14:46<br>05/29/18 14:46                                                                          |                               |
| Perfluorohexanesulfonic acid                                                                                             | 2.1<br><b>20</b>                        |        | *          | 4.7<br>3.6                                                     |       | ug/Kg<br>ug/Kg | ф<br>Ф        |                                                                                                                             | 05/29/18 14:46<br>05/29/18 14:46                                                                          |                               |
| Perfluorobutanesulfonic acid (PFBS)  Perfluorohexanesulfonic acid (PFHxS)  Perfluorooctanesulfonic acid (PFOS)           |                                         | D      |            |                                                                | 0.73  | 0 0            | \$<br>\$      | 05/14/18 14:03                                                                                                              |                                                                                                           | 1                             |
| Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS)                                                 | 20                                      | D<br>D | *<br>J K01 | 3.6                                                            | 0.73  | ug/Kg          |               | 05/14/18 14:03                                                                                                              | 05/29/18 14:46                                                                                            | 1<br>1<br>1<br><b>Dil F</b> a |
| Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution                                | 20<br>40                                | D<br>D | *<br>J K01 | 3.6<br>12                                                      | 0.73  | ug/Kg          |               | 05/14/18 14:03<br>05/14/18 14:03<br><b>Prepared</b>                                                                         | 05/29/18 14:46<br>05/29/18 14:46                                                                          | 1                             |
| Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS                      | 20<br>40<br>%Recovery                   | D<br>D | *<br>J K01 | 3.6<br>12<br><i>Limits</i>                                     | 0.73  | ug/Kg          |               | 05/14/18 14:03 05/14/18 14:03  Prepared 05/14/18 14:03                                                                      | 05/29/18 14:46<br>05/29/18 14:46<br><i>Analyzed</i>                                                       | 1<br>1<br><i>Dil Fa</i>       |
| Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA           | 20<br>40<br>%Recovery<br>59             | D<br>D | *<br>J K01 | 3.6<br>12<br><i>Limits</i><br>50 - 150                         | 0.73  | ug/Kg          |               | 05/14/18 14:03<br>05/14/18 14:03<br><b>Prepared</b><br>05/14/18 14:03<br>05/14/18 14:03                                     | 05/29/18 14:46<br>05/29/18 14:46<br><b>Analyzed</b><br>05/29/18 14:46                                     | 1 1 Dil Fa                    |
| Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA 13C4 PFOA | 20<br>40<br>%Recovery<br>59<br>82       | D<br>D | *<br>J K01 | 3.6<br>12<br><b>Limits</b><br>50 - 150<br>50 - 150             | 0.73  | ug/Kg          |               | 05/14/18 14:03<br>05/14/18 14:03<br><b>Prepared</b><br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03                   | 05/29/18 14:46<br>05/29/18 14:46<br><b>Analyzed</b><br>05/29/18 14:46<br>05/29/18 14:46                   | 1<br>1<br>Dil Fa<br>1<br>1    |
| Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid                                                        | 20<br>40<br>%Recovery<br>59<br>82<br>86 | D<br>D | *<br>J K01 | 3.6<br>12<br><b>Limits</b><br>50 - 150<br>50 - 150<br>50 - 150 | 0.73  | ug/Kg          |               | 05/14/18 14:03<br>05/14/18 14:03<br><b>Prepared</b><br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03 | 05/29/18 14:46<br>05/29/18 14:46<br><b>Analyzed</b><br>05/29/18 14:46<br>05/29/18 14:46<br>05/29/18 14:46 | 1 1 Dil Fa                    |

Client Sample ID: KLA05-SB2-02 Lab Sample ID: 320-39023-36

Date Collected: 05/05/18 09:40 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 75.4

| Analyte                              | Result    | Qualifier | LOQ      | DL    | Unit  | D            | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|----------|-------|-------|--------------|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 0.38      | J         | 0.40     | 0.10  | ug/Kg | <del>\</del> | 05/14/18 14:03 | 05/29/18 10:04 | 1       |
| Perfluorooctanoic acid (PFOA)        | 1.2       |           | 0.40     | 0.13  | ug/Kg | ☼            | 05/14/18 14:03 | 05/29/18 10:04 | 1       |
| Perfluorononanoic acid (PFNA)        | 0.34      | JM J      | 0.40     | 0.11  | ug/Kg | ☼            | 05/14/18 14:03 | 05/29/18 10:04 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.29      | J         | 0.53     | 0.078 | ug/Kg | ₽            | 05/14/18 14:03 | 05/29/18 10:04 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 8.9       |           | 0.40     | 0.082 | ug/Kg | ₩            | 05/14/18 14:03 | 05/29/18 10:04 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 40        | E *       | 1.3      | 0.32  | ug/Kg | ☼            | 05/14/18 14:03 | 05/29/18 10:04 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier | Limits   |       |       |              | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 70        |           | 50 - 150 |       |       |              | 05/14/18 14:03 | 05/29/18 10:04 | 1       |
| 13C4-PFHpA                           | 74        |           | 50 - 150 |       |       |              | 05/14/18 14:03 | 05/29/18 10:04 | 1       |
| 13C4 PFOA                            | 85        |           | 50 - 150 |       |       |              | 05/14/18 14:03 | 05/29/18 10:04 | 1       |
| 13C5 PFNA                            | 87        |           | 50 - 150 |       |       |              | 05/14/18 14:03 | 05/29/18 10:04 | 1       |
| 18O2 PFHxS                           | 74        |           | 50 - 150 |       |       |              | 05/14/18 14:03 | 05/29/18 10:04 | 1       |

TestAmerica Sacramento

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: KLA05-SB2-02 Lab Sample ID: 320-39023-36

 Date Collected: 05/05/18 09:40
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 75.4

| Isotope Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %Recovery                                                                                                | Qualifier                                                                        | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |                                           |                                       | Prepared                                                                                                                                                                                                                                                  | Analyzed                                                                                                                                                                                                                                                                           | Dil Fa |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 13C4 PFOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 72                                                                                                       |                                                                                  | 50 - 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |                                           |                                       | 05/14/18 14:03                                                                                                                                                                                                                                            | 05/29/18 10:04                                                                                                                                                                                                                                                                     |        |
| Method: EPA 537 (Mod) - PFA                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S for QSM                                                                                                | 5.1, Table                                                                       | B-15 - DL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |                                           |                                       |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                    |        |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Result                                                                                                   | Qualifier                                                                        | LOQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DL                                               | Unit                                      | D                                     | Prepared                                                                                                                                                                                                                                                  | Analyzed                                                                                                                                                                                                                                                                           | Dil F  |
| Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.7                                                                                                      | U *                                                                              | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0                                              | ug/Kg                                     | ₩                                     | 05/14/18 14:03                                                                                                                                                                                                                                            | 05/29/18 14:54                                                                                                                                                                                                                                                                     |        |
| Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.3                                                                                                      | J D *                                                                            | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.3                                              | ug/Kg                                     | ☼                                     | 05/14/18 14:03                                                                                                                                                                                                                                            | 05/29/18 14:54                                                                                                                                                                                                                                                                     |        |
| Perfluorononanoic acid (PFNA)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.7                                                                                                      | U *                                                                              | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.1                                              | ug/Kg                                     | ≎                                     | 05/14/18 14:03                                                                                                                                                                                                                                            | 05/29/18 14:54                                                                                                                                                                                                                                                                     |        |
| Perfluorobutanesulfonic acid (PFBS)                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.4                                                                                                      | U *                                                                              | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.78                                             | ug/Kg                                     | ф.                                    | 05/14/18 14:03                                                                                                                                                                                                                                            | 05/29/18 14:54                                                                                                                                                                                                                                                                     |        |
| Perfluorohexanesulfonic acid (PFHxS)                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.7                                                                                                      | D *                                                                              | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  | ug/Kg                                     | ₩                                     | 05/14/18 14:03                                                                                                                                                                                                                                            | 05/29/18 14:54                                                                                                                                                                                                                                                                     |        |
| Perfluorooctanesulfonic acid (PFOS)                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42                                                                                                       | D M                                                                              | I K01 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.2                                              | ug/Kg                                     | ₩                                     | 05/14/18 14:03                                                                                                                                                                                                                                            | 05/29/18 14:54                                                                                                                                                                                                                                                                     |        |
| Isotope Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %Recovery                                                                                                | Qualifier                                                                        | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |                                           |                                       | Prepared                                                                                                                                                                                                                                                  | Analyzed                                                                                                                                                                                                                                                                           | Dil F  |
| 13C3-PFBS                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 72                                                                                                       |                                                                                  | 50 - 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |                                           |                                       | 05/14/18 14:03                                                                                                                                                                                                                                            | 05/29/18 14:54                                                                                                                                                                                                                                                                     |        |
| 13C4-PFHpA                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 77                                                                                                       |                                                                                  | 50 - 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |                                           |                                       | 05/14/18 14:03                                                                                                                                                                                                                                            | 05/29/18 14:54                                                                                                                                                                                                                                                                     |        |
| 13C4 PFOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 92                                                                                                       |                                                                                  | 50 - 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |                                           |                                       | 05/14/18 14:03                                                                                                                                                                                                                                            | 05/29/18 14:54                                                                                                                                                                                                                                                                     |        |
| 13C5 PFNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 85                                                                                                       |                                                                                  | 50 - 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |                                           |                                       | 05/14/18 14:03                                                                                                                                                                                                                                            | 05/29/18 14:54                                                                                                                                                                                                                                                                     |        |
| 1802 PFHxS                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 72                                                                                                       |                                                                                  | 50 <sub>-</sub> 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                                           |                                       | 05/14/18 14:03                                                                                                                                                                                                                                            | 05/29/18 14:54                                                                                                                                                                                                                                                                     |        |
| 13C4 PFOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70                                                                                                       |                                                                                  | 50 <sub>-</sub> 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                                           |                                       | 05/14/18 14:03                                                                                                                                                                                                                                            | 05/29/18 14:54                                                                                                                                                                                                                                                                     |        |
| ate Collected: 05/05/18 10:10                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                          |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                                           |                                       |                                                                                                                                                                                                                                                           | Matrix                                                                                                                                                                                                                                                                             |        |
| ate Collected: 05/05/18 10:10<br>ate Received: 05/09/18 09:20                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                          |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                                           |                                       |                                                                                                                                                                                                                                                           | Percent Solid                                                                                                                                                                                                                                                                      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S for QSM !                                                                                              | 5.1, Table                                                                       | B-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  |                                           |                                       |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                    |        |
| ate Received: 05/09/18 09:20                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          | 5.1, Table<br>Qualifier                                                          | B-15<br>LOQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DL                                               | Unit                                      | D                                     | Prepared                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                    |        |
| ate Received: 05/09/18 09:20<br>Method: EPA 537 (Mod) - PFA                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                          |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  | Unit<br>ug/Kg                             | <b>D</b>                              | Prepared                                                                                                                                                                                                                                                  | Percent Solid                                                                                                                                                                                                                                                                      | ls: 83 |
| ate Received: 05/09/18 09:20<br>Method: EPA 537 (Mod) - PFA<br>Analyte                                                                                                                                                                                                                                                                                                                                                                                                          | Result                                                                                                   |                                                                                  | LOQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.092                                            |                                           |                                       | Prepared 05/14/18 14:03                                                                                                                                                                                                                                   | Percent Solid                                                                                                                                                                                                                                                                      | ls: 83 |
| ate Received: 05/09/18 09:20  Method: EPA 537 (Mod) - PFA  Analyte  Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                                                                                                                                                             | Result 14                                                                                                | Qualifier<br>E *                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.092<br>0.12<br>0.096                           | ug/Kg<br>ug/Kg<br>ug/Kg                   | <del></del>                           | Prepared 05/14/18 14:03 05/14/18 14:03                                                                                                                                                                                                                    | Analyzed 05/29/18 10:20                                                                                                                                                                                                                                                            | ls: 83 |
| ate Received: 05/09/18 09:20  Method: EPA 537 (Mod) - PFA Analyte  Perfluoroheptanoic acid (PFHpA)  Perfluorooctanoic acid (PFOA)  Perfluorononanoic acid (PFNA)  Perfluorobutanesulfonic acid (PFBS)                                                                                                                                                                                                                                                                           | Result 14 57 2.6 6.7                                                                                     | Qualifier  E * M                                                                 | 0.36<br>0.36<br>0.36<br>0.36<br>0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.092<br>0.12<br>0.096<br>0.070                  | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | \$<br>\$<br>\$                        | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                                                                                                                      | Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20                                                                                                                                                                                                              | ls: 83 |
| ate Received: 05/09/18 09:20  Method: EPA 537 (Mod) - PFA Analyte  Perfluoroheptanoic acid (PFHpA)  Perfluorooctanoic acid (PFOA)  Perfluorononanoic acid (PFNA)  Perfluorobutanesulfonic acid (PFBS)  Perfluorohexanesulfonic acid (PFHxS)                                                                                                                                                                                                                                     | Result 14 57 2.6 6.7 430                                                                                 | Qualifier  E * M                                                                 | 0.36<br>0.36<br>0.36<br>0.36<br>0.47<br>0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.092<br>0.12<br>0.096<br>0.070<br>0.073         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | \$ \$ \$                              | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                                                                                                                      | Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20                                                                                                                                                                                               | ls: 83 |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFHxS)                                                                                                                                                                                                                                                                 | Result 14 57 2.6 6.7 430 4600                                                                            | Qualifier  E * M  E *                                                            | 0.36<br>0.36<br>0.36<br>0.47<br>0.36<br>1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.092<br>0.12<br>0.096<br>0.070<br>0.073         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | \$<br>\$<br>\$                        | Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                                                                                                      | Analyzed 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20                                                                                                                                                                                 | Dil F  |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution                                                                                                                                                                                                                                                 | Result 14 57 2.6 6.7 430 4600 %Recovery                                                                  | Qualifier  E * M  E *                                                            | 0.36<br>0.36<br>0.36<br>0.47<br>0.36<br>1.2<br>Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.092<br>0.12<br>0.096<br>0.070<br>0.073         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | \$ \$ \$                              | Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                                                                                       | Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20  05/29/18 10:20  Analyzed                                                                                                                                                      | Dil F  |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFHxS) Perfluorophexanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS                                                                                                                                                                                                 | Result 14 57 2.6 6.7 430 4600 %Recovery                                                                  | Qualifier  E * M  E *                                                            | 0.36<br>0.36<br>0.36<br>0.47<br>0.36<br>1.2<br>Limits<br>50 - 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.092<br>0.12<br>0.096<br>0.070<br>0.073         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | \$ \$ \$                              | Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03                                                                                                                            | Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20  Analyzed  05/29/18 10:20                                                                                                                                                      | Dil F  |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFHxS) Perfluorobutanesulfonic acid (PFHxS) Perfluorobutanesulfonic acid (PFHxS) 13C3-PFBS 13C4-PFHpA                                                                                                                                                                  | Result 14 57 2.6 6.7 430 4600 %Recovery 122 66                                                           | Qualifier  E * M  E *                                                            | 0.36 0.36 0.36 0.47 0.36 1.2  Limits 50 - 150 50 - 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.092<br>0.12<br>0.096<br>0.070<br>0.073         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | \$ \$ \$                              | Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03 05/14/18 14:03                                                                                                             | Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20  Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20                                                                                                                        | Dil F  |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFHxS) Perfluorophexanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS                                                                                                                                                                                                 | Result 14 57 2.6 6.7 430 4600 %Recovery                                                                  | Qualifier  E * M  E *                                                            | 0.36<br>0.36<br>0.36<br>0.47<br>0.36<br>1.2<br>Limits<br>50 - 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.092<br>0.12<br>0.096<br>0.070<br>0.073         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | \$ \$ \$                              | Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03 05/14/18 14:03                                                                                                             | Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20  Analyzed  05/29/18 10:20                                                                                                                                                      | Dil F  |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFHxS) Perfluorobutanesulfonic acid (PFHxS) Perfluorobutanesulfonic acid (PFHxS) 13C3-PFBS 13C4-PFHpA                                                                                                                                                                  | Result 14 57 2.6 6.7 430 4600 %Recovery 122 66                                                           | Qualifier  E * M  E * Qualifier                                                  | 0.36 0.36 0.36 0.47 0.36 1.2  Limits 50 - 150 50 - 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.092<br>0.12<br>0.096<br>0.070<br>0.073         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | \$ \$ \$                              | Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03  Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                                              | Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20  Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20                                                                                                                        | Dil F  |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA 13C4 PFOA                                                                                                                                                                                                                  | Result 14 57 2.6 6.7 430 4600  **Recovery 122 66 87                                                      | Qualifier  E * M  E * Qualifier                                                  | UGO2 0.36 0.36 0.47 0.36 1.2 Limits 50 - 150 50 - 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.092<br>0.12<br>0.096<br>0.070<br>0.073         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | \$ \$ \$                              | Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03  Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                               | Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20  Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20                                                                                                         | Dil F  |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA 13C4 PFOA                                                                                                                                                                                                                  | Result 14 57 2.6 6.7 430 4600 %Recovery 122 66 87 19                                                     | Qualifier  E * M  E * Qualifier                                                  | UGQ 0.36 0.36 0.47 0.36 1.2 Limits 50 - 150 50 - 150 50 - 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.092<br>0.12<br>0.096<br>0.070<br>0.073         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | \$ \$ \$                              | Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                | Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20  05/29/18 10:20  Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20                                                                                         | Dil I  |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFNA) Perfluorobutanesulfonic acid (PFNA) Perfluorobutanesulfonic acid (PFNS) Perfluoroctanesulfonic acid (PFNS) Perfluorooctanesulfonic acid (PFNS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA 13C4 PFOA 13C5 PFNA 18O2 PFHxS 13C4 PFOS  Method: EPA 537 (Mod) - PFA                                            | ## Result  14  57  2.6  6.7  430  4600  ## Recovery  122  66  87  19  46  13  S for QSM 4                | Qualifier  E * M  E * Qualifier                                                  | 0.36 0.36 0.36 0.47 0.36 1.2  Limits 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.092<br>0.12<br>0.096<br>0.070<br>0.073<br>0.28 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | * * * *                               | Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03  Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                   | Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20  Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20                                             | Dil F  |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFNA) Perfluorobutanesulfonic acid (PFNA) Perfluorobutanesulfonic acid (PFNS) Perfluorooctanesulfonic acid (PFNS) Perfluorooctanesulfonic acid (PFNS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA 13C4 PFOA 13C5 PFNA 18O2 PFHxS 13C4 PFOS  Method: EPA 537 (Mod) - PFA Analyte                                   | ## Result    14                                                                                          | Qualifier  E * M  E * Qualifier                                                  | LOQ 0.36 0.36 0.36 0.47 0.36 1.2  Limits 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.092<br>0.12<br>0.096<br>0.070<br>0.073<br>0.28 | ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg             | □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ | Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03  Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                  | Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20  Analyzed 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20                | Dil F  |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFNA) Perfluorobutanesulfonic acid (PFNA) Perfluorobutanesulfonic acid (PFNX) Perfluoroctanesulfonic acid (PFNXS) Perfluorooctanesulfonic acid (PFNXS) Perfluorooctanesulfonic acid (PFNXS) Isotope Dilution 13C3-PFBS 13C4-PFHpA 13C4 PFOA 13C5 PFNA 18O2 PFHxS 13C4 PFOS  Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) | ## Result    14                                                                                          | Qualifier  E * M  E * Qualifier                                                  | 0.36 0.36 0.36 0.47 0.36 1.2  Limits 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.092<br>0.12<br>0.096<br>0.070<br>0.073<br>0.28 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | * * * *                               | Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03  Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                  | Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20  Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20                                             | Dil F  |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFNA) Perfluorobutanesulfonic acid (PFNA) Perfluorobutanesulfonic acid (PFNS) Perfluorooctanesulfonic acid (PFNS) Perfluorooctanesulfonic acid (PFNS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA 13C4 PFOA 13C5 PFNA 18O2 PFHxS 13C4 PFOS  Method: EPA 537 (Mod) - PFA Analyte                                   | Result  14  57  2.6  6.7  430  4600  **Recovery  122  66  87  19  46  13  S for QSM (Result)  Result  13 | Qualifier  E * M  E * Qualifier                                                  | LOQ 0.36 0.36 0.36 0.47 0.36 1.2  Limits 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.092<br>0.12<br>0.096<br>0.070<br>0.073<br>0.28 | ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg             | □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ | Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                               | Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20  Analyzed 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20                | ls: 83 |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFNA) Perfluorobutanesulfonic acid (PFNA) Perfluorobutanesulfonic acid (PFNX) Perfluoroctanesulfonic acid (PFNXS) Perfluorooctanesulfonic acid (PFNXS) Perfluorooctanesulfonic acid (PFNXS) Isotope Dilution 13C3-PFBS 13C4-PFHpA 13C4 PFOA 13C5 PFNA 18O2 PFHxS 13C4 PFOS  Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) | Result  14  57  2.6  6.7  430  4600  **Recovery  122  66  87  19  46  13  S for QSM (Result)  Result  13 | Qualifier  E * M  E * Qualifier  Q Q Q Q Q Q  5.1, Table Qualifier J D * D J K01 | LOQ<br>0.36<br>0.36<br>0.36<br>0.47<br>0.36<br>1.2<br>Limits<br>50 - 150<br>50 - 150<br>30 - 150 | 0.092<br>0.12<br>0.096<br>0.070<br>0.073<br>0.28 | ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg       | - D - D                               | Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 | Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20  Analyzed 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 | Dil F  |

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: KLA05-SB3-01 Lab Sample ID: 320-39023-37

 Date Collected: 05/05/18 10:10
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 83.8

| Analyte                              | Result    | Qualifier        | LOQ                  | DL  | Unit  | D            | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|------------------|----------------------|-----|-------|--------------|----------------|----------------|---------|
| Perfluorohexanesulfonic acid (PFHxS) | 650       | D J K01          | 36                   | 7.3 | ug/Kg | <del>\</del> | 05/14/18 14:03 | 05/29/18 16:28 | 100     |
| Perfluorooctanesulfonic acid (PFOS)  | 14000     | <b>E D</b> J K01 | , N03 <sup>120</sup> | 28  | ug/Kg | ₩            | 05/14/18 14:03 | 05/29/18 16:28 | 100     |
| Isotope Dilution                     | %Recovery | Qualifier        | Limits               |     |       |              | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 60        | M                | 50 - 150             |     |       |              | 05/14/18 14:03 | 05/29/18 16:28 | 100     |
| 13C4-PFHpA                           | 80        |                  | 50 - 150             |     |       |              | 05/14/18 14:03 | 05/29/18 16:28 | 100     |
| 13C4 PFOA                            | 82        |                  | 50 - 150             |     |       |              | 05/14/18 14:03 | 05/29/18 16:28 | 100     |
| 13C5 PFNA                            | 68        |                  | 50 - 150             |     |       |              | 05/14/18 14:03 | 05/29/18 16:28 | 100     |
| 1802 PFHxS                           | 75        |                  | 50 - 150             |     |       |              | 05/14/18 14:03 | 05/29/18 16:28 | 100     |
| 13C4 PFOS                            | 53        |                  | 50 - 150             |     |       |              | 05/14/18 14:03 | 05/29/18 16:28 | 100     |

Client Sample ID: KLA05-SB3-02 Lab Sample ID: 320-39023-38

 Date Collected: 05/05/18 10:20
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 80.4

| ate Received: 05/09/18 09:20                                                                                                                                                                                                                                                                                                                                                      |                                                                                                 |                                           |                                       |                                                                                                          |                               |                                           |                      | <u> </u>                                                                                                                                                           | Percent Solid                                                                                                                                                |                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Method: EPA 537 (Mod) - PFA<br>Analyte                                                                                                                                                                                                                                                                                                                                            | S for QSM &                                                                                     |                                           |                                       | -15<br>LOQ                                                                                               | DI                            | Unit                                      | D                    | Prepared                                                                                                                                                           | Analyzed                                                                                                                                                     | Dil Fa                                          |
| Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                                                                                                                                   | 1.5                                                                                             | Quui                                      |                                       | 0.37                                                                                                     |                               | ug/Kg                                     | — <del> </del>       | 05/14/18 14:03                                                                                                                                                     | •                                                                                                                                                            | - Dil 1 u                                       |
| Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                                                                                                                                     | 3.8                                                                                             |                                           |                                       | 0.37                                                                                                     |                               | ug/Kg                                     | ₩                    | 05/14/18 14:03                                                                                                                                                     |                                                                                                                                                              |                                                 |
| Perfluorononanoic acid (PFNA)                                                                                                                                                                                                                                                                                                                                                     | 0.25                                                                                            | J M                                       | J                                     | 0.37                                                                                                     |                               | ug/Kg                                     | ₩                    |                                                                                                                                                                    | 05/29/18 10:28                                                                                                                                               |                                                 |
| Perfluorobutanesulfonic acid PFBS)                                                                                                                                                                                                                                                                                                                                                | 0.58                                                                                            |                                           |                                       | 0.50                                                                                                     |                               | ug/Kg                                     |                      |                                                                                                                                                                    | 05/29/18 10:28                                                                                                                                               |                                                 |
| Perfluorohexanesulfonic acid PFHxS)                                                                                                                                                                                                                                                                                                                                               | 15                                                                                              |                                           |                                       | 0.37                                                                                                     | 0.077                         | ug/Kg                                     | ☼                    | 05/14/18 14:03                                                                                                                                                     | 05/29/18 10:28                                                                                                                                               |                                                 |
| Perfluorooctanesulfonic acid                                                                                                                                                                                                                                                                                                                                                      | 560                                                                                             | E *                                       |                                       | 1.2                                                                                                      | 0.30                          | ug/Kg                                     | ₩                    | 05/14/18 14:03                                                                                                                                                     | 05/29/18 10:28                                                                                                                                               | 1                                               |
| sotope Dilution                                                                                                                                                                                                                                                                                                                                                                   | %Recovery                                                                                       | Qual                                      | lifier                                | Limits                                                                                                   |                               |                                           |                      | Prepared                                                                                                                                                           | Analyzed                                                                                                                                                     | Dil Fac                                         |
| 13C3-PFBS                                                                                                                                                                                                                                                                                                                                                                         | 73                                                                                              |                                           |                                       | 50 - 150                                                                                                 |                               |                                           |                      | 05/14/18 14:03                                                                                                                                                     | 05/29/18 10:28                                                                                                                                               |                                                 |
| 13C4-PFHpA                                                                                                                                                                                                                                                                                                                                                                        | 81                                                                                              |                                           |                                       | 50 - 150                                                                                                 |                               |                                           |                      | 05/14/18 14:03                                                                                                                                                     | 05/29/18 10:28                                                                                                                                               | 1                                               |
| 13C4 PFOA                                                                                                                                                                                                                                                                                                                                                                         | 87                                                                                              |                                           |                                       | 50 - 150                                                                                                 |                               |                                           |                      | 05/14/18 14:03                                                                                                                                                     | 05/29/18 10:28                                                                                                                                               | 1                                               |
| 13C5 PFNA                                                                                                                                                                                                                                                                                                                                                                         | 50                                                                                              |                                           |                                       | 50 - 150                                                                                                 |                               |                                           |                      | 05/14/18 14:03                                                                                                                                                     | 05/29/18 10:28                                                                                                                                               |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                 |                                           |                                       | 30 - 130                                                                                                 |                               |                                           |                      |                                                                                                                                                                    |                                                                                                                                                              |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                   | 73                                                                                              |                                           |                                       | 50 - 150<br>50 - 150                                                                                     |                               |                                           |                      | 05/14/18 14:03                                                                                                                                                     | 05/29/18 10:28                                                                                                                                               | 1                                               |
| 1802 PFHxS                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                 | Q                                         |                                       |                                                                                                          |                               |                                           |                      |                                                                                                                                                                    | 05/29/18 10:28<br>05/29/18 10:28                                                                                                                             | 1<br>1                                          |
| 1802 PFHxS<br>13C4 PFOS<br>Method: EPA 537 (Mod) - PFA<br>Analyte                                                                                                                                                                                                                                                                                                                 | 73<br>40<br>S for QSM &<br>Result                                                               | 5.1, T<br>Qual                            |                                       | 50 - 150<br>50 - 150<br>-15 - DL<br>LOQ                                                                  |                               | Unit                                      | D                    | 05/14/18 14:03<br>Prepared                                                                                                                                         | 05/29/18 10:28 Analyzed                                                                                                                                      | Dil Fac                                         |
| 18O2 PFHxS<br>13C4 PFOS<br>Method: EPA 537 (Mod) - PFA<br>Analyte<br>Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                                                              | 73<br>40<br>S for QSM (<br>Result<br>25                                                         | <b>5.1, T</b><br><b>Q</b> ual             |                                       | 50 - 150<br>50 - 150<br>-15 - DL<br>LOQ<br>37                                                            | 9.7                           | ug/Kg                                     | D<br>ङ               | 05/14/18 14:03  Prepared  05/14/18 14:03                                                                                                                           | 05/29/18 10:28  Analyzed 05/29/18 16:44                                                                                                                      |                                                 |
| 18O2 PFHxS<br>13C4 PFOS<br>Method: EPA 537 (Mod) - PFA<br>Analyte<br>Perfluoroheptanoic acid (PFHpA)<br>Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                             | 73<br>40<br>S for QSM 8<br>Result<br>25<br>25                                                   | <b>5.1, T Qual</b> U                      | ifier                                 | 50 - 150<br>50 - 150<br>-15 - DL<br>LOQ<br>37<br>37                                                      | 9.7<br>12                     | ug/Kg<br>ug/Kg                            |                      | 05/14/18 14:03  Prepared  05/14/18 14:03  05/14/18 14:03                                                                                                           | 05/29/18 10:28  Analyzed  05/29/18 16:44  05/29/18 16:44                                                                                                     | Dil Fac                                         |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorononanoic acid (PFNA)                                                                                                                                                                                                                                                                                 | 73<br>40<br>S for QSM (<br>Result<br>25                                                         | <b>5.1, T Qual</b> U                      | ifier<br>*                            | 50 - 150<br>50 - 150<br>-15 - DL<br>LOQ<br>37                                                            | 9.7<br>12                     | ug/Kg                                     | <del></del>          | 05/14/18 14:03  Prepared  05/14/18 14:03  05/14/18 14:03                                                                                                           | 05/29/18 10:28  Analyzed 05/29/18 16:44                                                                                                                      | Dil Fac                                         |
| 1802 PFHxS<br>13C4 PFOS<br>Method: EPA 537 (Mod) - PFA<br>Analyte                                                                                                                                                                                                                                                                                                                 | 73<br>40<br>S for QSM 8<br>Result<br>25<br>25                                                   | <b>5.1, T Qual</b> U U U                  | ifier<br>*                            | 50 - 150<br>50 - 150<br>-15 - DL<br>LOQ<br>37<br>37                                                      | 9.7<br>12<br>10               | ug/Kg<br>ug/Kg                            | <u>₩</u>             | 05/14/18 14:03  Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03                                                                                           | 05/29/18 10:28  Analyzed  05/29/18 16:44  05/29/18 16:44                                                                                                     | Dil Fac                                         |
| 1802 PFHxS 13C4 PFOS  Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA)                                                                                                                                                                                                                             | 73<br>40<br>S for QSM (<br>Result<br>25<br>25<br>25<br>25<br>22                                 | <b>5.1, T Qual</b> U U U                  | ifier<br>*<br>*                       | 50 - 150<br>50 - 150<br>-15 - DL<br>LOQ<br>37<br>37<br>37                                                | 9.7<br>12<br>10<br>7.4        | ug/Kg<br>ug/Kg<br>ug/Kg                   | <u>₩</u>             | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                | 05/29/18 10:28  Analyzed  05/29/18 16:44  05/29/18 16:44  05/29/18 16:44                                                                                     | Dil Fac<br>100<br>100<br>100                    |
| 1802 PFHxS 13C4 PFOS  Method: EPA 537 (Mod) - PFA Analyte  Perfluoroheptanoic acid (PFHpA)  Perfluoroctanoic acid (PFOA)  Perfluorononanoic acid (PFNA)  Perfluorobutanesulfonic acid (PFBS)  Perfluorohexanesulfonic acid                                                                                                                                                        | 73<br>40<br>S for QSM (<br>Result<br>25<br>25<br>25<br>25<br>22                                 | 5.1, T<br>Qual<br>U<br>U<br>U<br>U<br>U   | * * * *                               | 50 - 150<br>50 - 150<br>-15 - DL<br>LOQ<br>37<br>37<br>37<br>50                                          | 9.7<br>12<br>10<br>7.4<br>7.7 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | \$<br>\$<br>\$<br>\$ | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                | Analyzed  05/29/18 10:28  Analyzed  05/29/18 16:44  05/29/18 16:44  05/29/18 16:44  05/29/18 16:44                                                           | Dil Fac<br>100<br>100<br>100<br>100             |
| 1802 PFHxS 13C4 PFOS  Method: EPA 537 (Mod) - PFA Analyte  Perfluoroheptanoic acid (PFHpA)  Perfluorooctanoic acid (PFOA)  Perfluorononanoic acid (PFNA)  Perfluorobutanesulfonic acid (PFBS)  Perfluorohexanesulfonic acid (PFHxS)  Perfluorooctanesulfonic acid                                                                                                                 | 73<br>40<br>S for QSM (<br>Result<br>25<br>25<br>25<br>22<br>13<br>980<br>%Recovery             | 5.1, T<br>Qual<br>U<br>U<br>U<br>U<br>J D | * * * * * * * * * * * * * * * * * * * | 50 - 150<br>50 - 150<br>-15 - DL<br>LOQ<br>37<br>37<br>37<br>50<br>37                                    | 9.7<br>12<br>10<br>7.4<br>7.7 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$<br>\$<br>\$<br>\$ | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                | Analyzed  05/29/18 10:28  Analyzed  05/29/18 16:44  05/29/18 16:44  05/29/18 16:44  05/29/18 16:44                                                           | Dil Face 100 100 100 100 100 100 100            |
| 1802 PFHxS 13C4 PFOS  Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS)                                                                                                                                              | 73<br>40<br>S for QSM (<br>Result<br>25<br>25<br>25<br>25<br>22<br>13                           | 5.1, T<br>Qual<br>U<br>U<br>U<br>U<br>J D | * * * * * * * * * * * * * * * * * * * | 50 - 150<br>50 - 150<br>-15 - DL<br>LOQ<br>37<br>37<br>37<br>50<br>37                                    | 9.7<br>12<br>10<br>7.4<br>7.7 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$<br>\$<br>\$<br>\$ | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                 | Analyzed  05/29/18 10:28  Analyzed  05/29/18 16:44  05/29/18 16:44  05/29/18 16:44  05/29/18 16:44  05/29/18 16:44                                           | Dil Face 1000 1000 1000 1000 1000 1000 1000     |
| 1802 PFHxS 13C4 PFOS  Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution                                                                                               | 73<br>40<br>S for QSM (<br>Result<br>25<br>25<br>25<br>22<br>13<br>980<br>%Recovery             | 5.1, T<br>Qual<br>U<br>U<br>U<br>U<br>J D | * * * * * * * * * * * * * * * * * * * | 50 - 150<br>50 - 150<br>-15 - DL<br>LOQ<br>37<br>37<br>37<br>50<br>37<br>120                             | 9.7<br>12<br>10<br>7.4<br>7.7 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$<br>\$<br>\$<br>\$ | Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03                                 | Analyzed  05/29/18 10:28  Analyzed  05/29/18 16:44  05/29/18 16:44  05/29/18 16:44  05/29/18 16:44  05/29/18 16:44  Analyzed                                 | Dil Fac  100  100  100  100  100  100  100  1   |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluoroctanesulfonic acid (PFHxS) Perfluorobutanesulfonic acid (PFHxS) Perfluorobutanesulfonic acid (PFHxS) Perfluorobutanesulfonic acid (PFHxS) Perfluoroctanesulfonic acid (PFOS) Usotope Dilution | 73<br>40<br>S for QSM 8<br>Result<br>25<br>25<br>25<br>22<br>13<br>980<br>%Recovery             | 5.1, T<br>Qual<br>U<br>U<br>U<br>U<br>J D | * * * * * * * * * * * * * * * * * * * | 50 - 150<br>50 - 150<br>-15 - DL<br>LOQ<br>37<br>37<br>50<br>37<br>120<br>Limits<br>50 - 150             | 9.7<br>12<br>10<br>7.4<br>7.7 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$<br>\$<br>\$<br>\$ | Prepared  05/14/18 14:03  Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03  05/14/18 14:03       | Analyzed  O5/29/18 10:28  Analyzed  O5/29/18 16:44  O5/29/18 16:44  O5/29/18 16:44  O5/29/18 16:44  Analyzed  O5/29/18 16:44                                 | Dil Face  100 100 100 100 100 100 100 100 100 1 |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorobexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFHxS) Perfluorobexanesulfonic acid (PFBS) Perfluorobexanesulfonic acid (PFBS) Parfluorooctanesulfonic acid (PFBS) 13C3-PFBS 13C4-PFHpA                                  | 73<br>40<br>S for QSM 8<br>Result<br>25<br>25<br>25<br>22<br>13<br>980<br>%Recovery<br>78<br>81 | 5.1, T<br>Qual<br>U<br>U<br>U<br>U<br>J D | * * * * * * * * * * * * * * * * * * * | 50 - 150<br>50 - 150<br>-15 - DL<br>LOQ<br>37<br>37<br>50<br>37<br>120<br>Limits<br>50 - 150<br>50 - 150 | 9.7<br>12<br>10<br>7.4<br>7.7 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$<br>\$<br>\$<br>\$ | Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03 | Analyzed  05/29/18 10:28  Analyzed  05/29/18 16:44  05/29/18 16:44  05/29/18 16:44  05/29/18 16:44  05/29/18 16:44  Analyzed  05/29/18 16:44  05/29/18 16:44 | Dil Fac<br>100<br>100<br>100                    |

TestAmerica Sacramento

TestAmerica Job ID: 320-39023-1 Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: KLA05-SB3-02

Lab Sample ID: 320-39023-38 Date Collected: 05/05/18 10:20 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 80.4

Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 - DL (Continued)

Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 70 05/14/18 14:03 05/29/18 16:44 13C4 PFOS 50 - 150 100

Client Sample ID: KLA06-SB1-01

(PFHxS)

Lab Sample ID: 320-39023-39 Date Collected: 05/01/18 14:15 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 73.2

| Analyte                              | Result    | Quali  | fier  | LOQ       | DL    | Unit  | D         | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|--------|-------|-----------|-------|-------|-----------|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 0.71      | -      |       | 0.41      | 0.11  | ug/Kg | ☼         | 05/14/18 13:10 | 06/06/18 23:18 | 1       |
| Perfluorooctanoic acid (PFOA)        | 1.3       |        |       | 0.41      | 0.14  | ug/Kg | ☼         | 05/14/18 13:10 | 06/06/18 23:18 | 1       |
| Perfluorononanoic acid (PFNA)        | 2.4       |        |       | 0.41      | 0.11  | ug/Kg | ☼         | 05/14/18 13:10 | 06/06/18 23:18 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.27      | J      |       | 0.54      | 0.080 | ug/Kg | *         | 05/14/18 13:10 | 06/06/18 23:18 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 11        |        |       | 0.41      | 0.084 | ug/Kg | ≎         | 05/14/18 13:10 | 06/06/18 23:18 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 190       | ME     | *     | 1.4       | 0.32  | ug/Kg | ☼         | 05/14/18 13:10 | 06/06/18 23:18 | 1       |
| Isotope Dilution                     | %Recovery | Quali  | ifier | Limits    |       |       |           | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 72        | -      |       | 50 - 150  |       |       |           | 05/14/18 13:10 | 06/06/18 23:18 | 1       |
| 13C4-PFHpA                           | 77        |        |       | 50 - 150  |       |       |           | 05/14/18 13:10 | 06/06/18 23:18 | 1       |
| 13C4 PFOA                            | 79        |        |       | 50 - 150  |       |       |           | 05/14/18 13:10 | 06/06/18 23:18 | 1       |
| 13C5 PFNA                            | 62        |        |       | 50 - 150  |       |       |           | 05/14/18 13:10 | 06/06/18 23:18 | 1       |
| 1802 PFHxS                           | 73        |        |       | 50 - 150  |       |       |           | 05/14/18 13:10 | 06/06/18 23:18 | 1       |
| 13C4 PFOS                            | 62        |        |       | 50 - 150  |       |       |           | 05/14/18 13:10 | 06/06/18 23:18 | 1       |
| Method: EPA 537 (Mod) - PFA          | S for QSM | 5.1, T | able  | B-15 - DL |       |       |           |                |                |         |
| Analyte                              | Result    | Quali  | fier  | LOQ       | DL    | Unit  | D         | Prepared       | Analyzed       | Dil Fac |
| Perfluoroheptanoic acid (PFHpA)      | 5.4       | U      | *     | 8.1       | 2.1   | ug/Kg | ☼         | 05/14/18 13:10 | 05/29/18 11:30 | 20      |
| Perfluorooctanoic acid (PFOA)        | 5.4       | U M    | *     | 8.1       | 2.7   | ug/Kg | ☼         | 05/14/18 13:10 | 05/29/18 11:30 | 20      |
| Perfluorononanoic acid (PFNA)        | 2.5       | J D    | *     | 8.1       | 2.2   | ug/Kg | ≎         | 05/14/18 13:10 | 05/29/18 11:30 | 20      |
| Perfluorobutanesulfonic acid (PFBS)  | 4.9       | U      | *     | 11        | 1.6   | ug/Kg | <b>\$</b> | 05/14/18 13:10 | 05/29/18 11:30 | 20      |
| Perfluorohexanesulfonic acid         | 11        | D      | *     | 8.1       | 17    | ug/Kg | ₩         | 05/14/18 13:10 | 05/20/18 11:30 | 20      |

| Perfluorooctanesulfonic acid (PFOS)  | 250            | <b>D</b> J K01 | 27                               | 6.5 ug/Kg | ₩ | 05/14/18 13:10                                     | 05/29/18 11:30                                     | 20             |
|--------------------------------------|----------------|----------------|----------------------------------|-----------|---|----------------------------------------------------|----------------------------------------------------|----------------|
| Isotope Dilution                     | %Recovery      | Qualifier      | Limits                           |           |   | Prepared                                           | Analyzed                                           | Dil Fac        |
| 13C3-PFBS                            | 67             |                | 50 - 150                         |           |   | 05/14/18 13:10                                     | 05/29/18 11:30                                     | 20             |
| 13C4-PFHpA                           | 76             |                | 50 - 150                         |           |   | 05/14/18 13:10                                     | 05/29/18 11:30                                     | 20             |
| 13C4 PFOA                            | 82             |                | 50 - 150                         |           |   | 05/14/18 13:10                                     | 05/29/18 11:30                                     | 20             |
| 13C5 PFNA                            | 79             |                | 50 - 150                         |           |   | 05/14/18 13:10                                     | 05/29/18 11:30                                     | 20             |
| 18O2 PFHxS                           | 71             |                | 50 - 150                         |           |   | 05/14/18 13:10                                     | 05/29/18 11:30                                     | 20             |
| 13C4 PFOS                            | 68             |                | 50 - 150                         |           |   | 05/14/18 13:10                                     | 05/29/18 11:30                                     | 20             |
| 13C4 PFOA<br>13C5 PFNA<br>18O2 PFHxS | 82<br>79<br>71 |                | 50 - 150<br>50 - 150<br>50 - 150 |           |   | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10 | 05/29/18 11:30<br>05/29/18 11:30<br>05/29/18 11:30 | 20<br>20<br>20 |

Client Sample ID: KLA06-SB1-02 Lab Sample ID: 320-39023-40

Date Collected: 05/01/18 14:20 Matrix: Solid Date Received: 05/09/18 09:20 Percent Solids: 79.6

| Method: EPA 537 (Mod) - PFAS    |                  |      |       |       |          |                |                |         |
|---------------------------------|------------------|------|-------|-------|----------|----------------|----------------|---------|
| Analyte                         | Result Qualifier | LOQ  | DL    | Unit  | D        | Prepared       | Analyzed       | Dil Fac |
| Perfluoroheptanoic acid (PFHpA) | 0.25 J           | 0.37 | 0.097 | ug/Kg | <b>☆</b> | 05/14/18 13:10 | 06/06/18 23:26 | 1       |
| Perfluorooctanoic acid (PFOA)   | 1.1              | 0.37 | 0.12  | ug/Kg | ₽        | 05/14/18 13:10 | 06/06/18 23:26 | 1       |

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

| Cliont | Sample | ID: KI | AOG   | CD4 02  |  |
|--------|--------|--------|-------|---------|--|
| Cilent | Samble | ID: NL | -OUA- | 3D I-UZ |  |

Lab Sample ID: 320-39023-40 Date Collected: 05/01/18 14:20 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 79.6

| Analyte                                                                                                                                                                                                                                                          | Result                                                   | Qualifier                                           | LOQ                                          | DL                              | Unit                                      | D                                     | Prepared                                                                                                                                                                                     | Analyzed                                                                                                                                                                   | Dil Fac                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|----------------------------------------------|---------------------------------|-------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Perfluorononanoic acid (PFNA)                                                                                                                                                                                                                                    | 1.4                                                      |                                                     | 0.37                                         | 0.10                            | ug/Kg                                     | - ☆                                   | 05/14/18 13:10                                                                                                                                                                               | 06/06/18 23:26                                                                                                                                                             | 1                                                                               |
| Perfluorobutanesulfonic acid (PFBS)                                                                                                                                                                                                                              | 0.19                                                     | J                                                   | 0.50                                         | 0.073                           | ug/Kg                                     | \$                                    | 05/14/18 13:10                                                                                                                                                                               | 06/06/18 23:26                                                                                                                                                             | 1                                                                               |
| Perfluorohexanesulfonic acid (PFHxS)                                                                                                                                                                                                                             | 6.8                                                      |                                                     | 0.37                                         | 0.077                           | ug/Kg                                     | ₩                                     | 05/14/18 13:10                                                                                                                                                                               | 06/06/18 23:26                                                                                                                                                             | 1                                                                               |
| Perfluorooctanesulfonic acid (PFOS)                                                                                                                                                                                                                              | 100                                                      | M E *                                               | 1.2                                          | 0.30                            | ug/Kg                                     | \$                                    | 05/14/18 13:10                                                                                                                                                                               | 06/06/18 23:26                                                                                                                                                             | 1                                                                               |
| Isotope Dilution                                                                                                                                                                                                                                                 | %Recovery                                                | Qualifier                                           | Limits                                       |                                 |                                           |                                       | Prepared                                                                                                                                                                                     | Analyzed                                                                                                                                                                   | Dil Fac                                                                         |
| 13C3-PFBS                                                                                                                                                                                                                                                        | 68                                                       |                                                     | 50 - 150                                     |                                 |                                           |                                       | 05/14/18 13:10                                                                                                                                                                               | 06/06/18 23:26                                                                                                                                                             | 1                                                                               |
| 13C4-PFHpA                                                                                                                                                                                                                                                       | 81                                                       |                                                     | 50 - 150                                     |                                 |                                           |                                       | 05/14/18 13:10                                                                                                                                                                               | 06/06/18 23:26                                                                                                                                                             | 1                                                                               |
| 13C4 PFOA                                                                                                                                                                                                                                                        | 76                                                       |                                                     | 50 - 150                                     |                                 |                                           |                                       | 05/14/18 13:10                                                                                                                                                                               | 06/06/18 23:26                                                                                                                                                             | 1                                                                               |
| 13C5 PFNA                                                                                                                                                                                                                                                        | 70                                                       |                                                     | 50 - 150                                     |                                 |                                           |                                       | 05/14/18 13:10                                                                                                                                                                               | 06/06/18 23:26                                                                                                                                                             | 1                                                                               |
| 1802 PFHxS                                                                                                                                                                                                                                                       | 72                                                       |                                                     | 50 - 150                                     |                                 |                                           |                                       | 05/14/18 13:10                                                                                                                                                                               | 06/06/18 23:26                                                                                                                                                             | 1                                                                               |
| 13C4 PFOS                                                                                                                                                                                                                                                        | 68                                                       |                                                     | 50 - 150                                     |                                 |                                           |                                       | 05/14/18 13:10                                                                                                                                                                               | 06/06/18 23:26                                                                                                                                                             | 1                                                                               |
| Method: EPA 537 (Mod) - PFA                                                                                                                                                                                                                                      |                                                          |                                                     |                                              | D.                              | l lmi4                                    |                                       | Dropored                                                                                                                                                                                     | Analyzad                                                                                                                                                                   | Dil For                                                                         |
| Method: EPA 537 (Mod) - PFA                                                                                                                                                                                                                                      | AS for QSM 5                                             | 5.1, Table B                                        | -15 - DL                                     |                                 |                                           |                                       |                                                                                                                                                                                              |                                                                                                                                                                            |                                                                                 |
| Analyte                                                                                                                                                                                                                                                          | Result                                                   | Qualifier                                           | LOQ                                          |                                 | Unit                                      | <b>D</b>                              | Prepared                                                                                                                                                                                     | Analyzed                                                                                                                                                                   |                                                                                 |
| Analyte Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                          | Result 5.0                                               | Qualifier U M *                                     | LOQ<br>7.4                                   | 1.9                             | ug/Kg                                     | <b>D</b>                              | 05/14/18 13:10                                                                                                                                                                               | 05/29/18 11:38                                                                                                                                                             | 20                                                                              |
| Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA)                                                                                                                                                                                            | 5.0<br>5.0                                               | Qualifier U M * U *                                 | 7.4<br>7.4                                   | 1.9<br>2.5                      | ug/Kg<br>ug/Kg                            |                                       | 05/14/18 13:10<br>05/14/18 13:10                                                                                                                                                             | 05/29/18 11:38<br>05/29/18 11:38                                                                                                                                           | 20                                                                              |
| Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA)                                                                                                                                                              | 5.0<br>5.0<br>5.0                                        | Qualifier UM * U * UM *                             | 7.4<br>7.4<br>7.4                            | 1.9<br>2.5<br>2.0               | ug/Kg<br>ug/Kg<br>ug/Kg                   |                                       | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10                                                                                                                                           | 05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38                                                                                                                         | 20<br>20<br>20<br>20                                                            |
| Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid                                                                                             | Result 5.0 5.0 5.0 4.5                                   | Qualifier UM * U * UM *                             | 7.4<br>7.4                                   | 1.9<br>2.5<br>2.0<br>1.5        | ug/Kg<br>ug/Kg                            | <del>\$</del>                         | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10                                                                                                                         | 05/29/18 11:38<br>05/29/18 11:38                                                                                                                                           | 20<br>20<br>20                                                                  |
| Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS)                                                                                                                          | Result 5.0 5.0 5.0 4.5                                   | Qualifier  U M *  U M *  U M *  U M *               | 7.4<br>7.4<br>7.4<br>9.9<br>7.4              | 1.9<br>2.5<br>2.0<br>1.5<br>1.5 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | #<br>#<br>#                           | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10                                                                                                                         | 05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38                                                                                     | 20<br>20<br>20<br>20<br>20                                                      |
| Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid                                                        | 5.0<br>5.0<br>5.0<br>5.0<br>4.5<br><b>6.6</b>            | Qualifier  U M *  U M *  U M *  U M *  U M *  J D * | 7.4<br>7.4<br>7.4<br>9.9<br>7.4              | 1.9<br>2.5<br>2.0<br>1.5<br>1.5 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | * * * * * * * * * * * * * * * * * * * | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10                                                                                                       | 05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38                                                                                     | 20                                                                              |
| Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS)                                                 | 5.0<br>5.0<br>5.0<br>4.5<br>6.6                          | Qualifier  U M *  U M *  U M *  U M *  U M *  J D * | 7.4<br>7.4<br>7.4<br>9.9<br>7.4              | 1.9<br>2.5<br>2.0<br>1.5<br>1.5 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | * * * * * * * * * * * * * * * * * * * | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10                                                                                     | 05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38                                                                                     | 20<br>20<br>20<br>20<br>20<br>20                                                |
| Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution                                | 5.0 5.0 5.0 4.5 6.6 120                                  | Qualifier  U M *  U M *  U M *  U M *  U M *  J D * | 7.4<br>7.4<br>7.4<br>9.9<br>7.4<br>25        | 1.9<br>2.5<br>2.0<br>1.5<br>1.5 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | * * * * * * * * * * * * * * * * * * * | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>Prepared<br>05/14/18 13:10                                                       | 05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38                                                                   | 20<br>20<br>20<br>20<br>20<br>20<br>20                                          |
| Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution                                | \$5.0 \$5.0 \$5.0 \$4.5 \$6.6 \$120 \$\$%Recovery \$69\$ | Qualifier  U M *  U M *  U M *  U M *  U M *  J D * | 7.4 7.4 9.9 7.4 25  Limits 50 - 150          | 1.9<br>2.5<br>2.0<br>1.5<br>1.5 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | * * * * * * * * * * * * * * * * * * * | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>Prepared<br>05/14/18 13:10<br>05/14/18 13:10                                     | 05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>Analyzed<br>05/29/18 11:38                                     | 20<br>20<br>20<br>20<br>20<br>20<br>20                                          |
| Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA           | \$5.0                                                    | Qualifier  U M *  U M *  U M *  U M *  U M *  J D * | 7.4 7.4 9.9 7.4 25 Limits 50 - 150           | 1.9<br>2.5<br>2.0<br>1.5<br>1.5 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | * * * * * * * * * * * * * * * * * * * | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>Prepared<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10                   | 05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>Analyzed<br>05/29/18 11:38<br>05/29/18 11:38                   | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2 |
| Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA 13C4 PFOA | Result                                                   | Qualifier  U M *  U M *  U M *  U M *  U M *  J D * | 7.4 7.4 9.9 7.4 25  Limits 50 - 150 50 - 150 | 1.9<br>2.5<br>2.0<br>1.5<br>1.5 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | * * * * * * * * * * * * * * * * * * * | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>Prepared<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10 | 05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>Analyzed<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38 | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2 |

Client Sample ID: KLA06-SB2-01 Lab Sample ID: 320-39023-41

Date Collected: 05/01/18 13:45 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 63.5

| Analyte                              | Result    | Qualifier       | LOQ      | DL    | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------------|----------|-------|-------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 1.2       | <b>J1</b> J H01 | 0.48     | 0.12  | ug/Kg | ₽ | 05/14/18 13:10 | 06/06/18 23:34 | 1       |
| Perfluorooctanoic acid (PFOA)        | 6.7       | <b>J1</b> J H01 | 0.48     | 0.16  | ug/Kg | ₽ | 05/14/18 13:10 | 06/06/18 23:34 | 1       |
| Perfluorononanoic acid (PFNA)        | 1.6       |                 | 0.48     | 0.13  | ug/Kg | ₽ | 05/14/18 13:10 | 06/06/18 23:34 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.99      |                 | 0.64     | 0.094 | ug/Kg | ₽ | 05/14/18 13:10 | 06/06/18 23:34 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 42        | E J1 *          | 0.48     | 0.099 | ug/Kg | ₽ | 05/14/18 13:10 | 06/06/18 23:34 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 580       | E J1 *          | 1.6      | 0.38  | ug/Kg | ☼ | 05/14/18 13:10 | 06/06/18 23:34 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier       | Limits   |       |       |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 82        |                 | 50 - 150 |       |       |   | 05/14/18 13:10 | 06/06/18 23:34 | 1       |
| 13C4-PFHpA                           | 82        |                 | 50 - 150 |       |       |   | 05/14/10 12:10 | 06/06/18 23:34 | 1       |

TestAmerica Sacramento

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

 Date Collected: 05/01/18 13:45
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 63.5

| Isotope Dilution                                                                                                                                                                                                                                                                                                            | %Recovery                                                            | Qualifier                               |                                         | imits                                                                                             |                              |                                           |                                                                                                                                     | Prepared                                                                                                                                                                 | Analyzed                                                                                                                                                                     | Dil Fa                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| 13C4 PFOA                                                                                                                                                                                                                                                                                                                   | 84                                                                   |                                         |                                         | 0 - 150                                                                                           |                              |                                           |                                                                                                                                     | 05/14/18 13:10                                                                                                                                                           | 06/06/18 23:34                                                                                                                                                               |                                                |
| 13C5 PFNA                                                                                                                                                                                                                                                                                                                   | 54                                                                   |                                         | 5                                       | 0 - 150                                                                                           |                              |                                           |                                                                                                                                     | 05/14/18 13:10                                                                                                                                                           | 06/06/18 23:34                                                                                                                                                               |                                                |
| 1802 PFHxS                                                                                                                                                                                                                                                                                                                  | 75                                                                   |                                         | 5                                       | 50 - 150                                                                                          |                              |                                           |                                                                                                                                     | 05/14/18 13:10                                                                                                                                                           | 06/06/18 23:34                                                                                                                                                               |                                                |
| 13C4 PFOS                                                                                                                                                                                                                                                                                                                   | 54                                                                   |                                         | 5                                       | 50 - 150                                                                                          |                              |                                           |                                                                                                                                     | 05/14/18 13:10                                                                                                                                                           | 06/06/18 23:34                                                                                                                                                               |                                                |
| Method: EPA 537 (Mod) - PFA                                                                                                                                                                                                                                                                                                 |                                                                      | 5.1, Table<br>Qualifier                 | e B-1                                   | 5 - DL<br>LOQ                                                                                     | DI                           | Unit                                      | D                                                                                                                                   | Dranavad                                                                                                                                                                 | Analyzad                                                                                                                                                                     | Dil Fa                                         |
| Analyte Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                                                                     |                                                                      | J D J1                                  |                                         | 4.8                                                                                               |                              | ug/Kg                                     | — <del>=</del>                                                                                                                      | Prepared                                                                                                                                                                 | Analyzed 05/29/18 12:49                                                                                                                                                      | 10 Fa                                          |
|                                                                                                                                                                                                                                                                                                                             |                                                                      | D J1                                    | *                                       | 4.8                                                                                               |                              | ug/Kg<br>ug/Kg                            | ☆                                                                                                                                   |                                                                                                                                                                          | 05/29/18 12:49                                                                                                                                                               | 1                                              |
| Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                                                                               |                                                                      |                                         | *                                       |                                                                                                   |                              |                                           | *                                                                                                                                   |                                                                                                                                                                          |                                                                                                                                                                              |                                                |
| Perfluorononanoic acid (PFNA)                                                                                                                                                                                                                                                                                               |                                                                      | JD                                      | *                                       | 4.8                                                                                               |                              | ug/Kg                                     | #.                                                                                                                                  |                                                                                                                                                                          | 05/29/18 12:49                                                                                                                                                               | 1(                                             |
| Perfluorobutanesulfonic acid (PFBS)                                                                                                                                                                                                                                                                                         |                                                                      | J D J1                                  | *                                       | 6.4                                                                                               |                              | ug/Kg                                     | <b>‡</b>                                                                                                                            |                                                                                                                                                                          | 05/29/18 12:49                                                                                                                                                               | 10                                             |
| Perfluorohexanesulfonic acid (PFHxS)                                                                                                                                                                                                                                                                                        | 44                                                                   | D J1                                    | J K01                                   | 4.8                                                                                               | 0.99                         | ug/Kg                                     | ☼                                                                                                                                   | 05/14/18 13:10                                                                                                                                                           | 05/29/18 12:49                                                                                                                                                               | 10                                             |
| Perfluorooctanesulfonic acid (PFOS)                                                                                                                                                                                                                                                                                         | 860                                                                  | EDMJ1                                   | *                                       | 16                                                                                                | 3.8                          | ug/Kg                                     | ☼                                                                                                                                   | 05/14/18 13:10                                                                                                                                                           | 05/29/18 12:49                                                                                                                                                               | 10                                             |
| Isotope Dilution                                                                                                                                                                                                                                                                                                            | %Recovery                                                            | Qualifier                               | L                                       | imits                                                                                             |                              |                                           |                                                                                                                                     | Prepared                                                                                                                                                                 | Analyzed                                                                                                                                                                     | Dil Fac                                        |
| 13C3-PFBS                                                                                                                                                                                                                                                                                                                   | 67                                                                   | -                                       | 5                                       | 0 - 150                                                                                           |                              |                                           |                                                                                                                                     | 05/14/18 13:10                                                                                                                                                           | 05/29/18 12:49                                                                                                                                                               | 10                                             |
| 13C4-PFHpA                                                                                                                                                                                                                                                                                                                  | 80                                                                   |                                         | 5                                       | 50 <sub>-</sub> 150                                                                               |                              |                                           |                                                                                                                                     | 05/14/18 13:10                                                                                                                                                           | 05/29/18 12:49                                                                                                                                                               | 10                                             |
| 13C4 PFOA                                                                                                                                                                                                                                                                                                                   | 85                                                                   |                                         | 5                                       | 50 <sub>-</sub> 150                                                                               |                              |                                           |                                                                                                                                     | 05/14/18 13:10                                                                                                                                                           | 05/29/18 12:49                                                                                                                                                               | 10                                             |
| 13C5 PFNA                                                                                                                                                                                                                                                                                                                   | 77                                                                   |                                         | 5                                       | 0 - 150                                                                                           |                              |                                           |                                                                                                                                     | 05/14/18 13:10                                                                                                                                                           | 05/29/18 12:49                                                                                                                                                               | 10                                             |
|                                                                                                                                                                                                                                                                                                                             |                                                                      |                                         | -                                       | 0 450                                                                                             |                              |                                           |                                                                                                                                     |                                                                                                                                                                          |                                                                                                                                                                              |                                                |
| 18O2 PFHxS                                                                                                                                                                                                                                                                                                                  | 74                                                                   |                                         | 5                                       | 50 - 150                                                                                          |                              |                                           |                                                                                                                                     | 05/14/18 13:10                                                                                                                                                           | 05/29/18 12:49                                                                                                                                                               | 10                                             |
| 1802 PFHxS<br>13C4 PFOS                                                                                                                                                                                                                                                                                                     | 74<br>64                                                             |                                         |                                         | 50 - 150<br>50 - 150                                                                              |                              |                                           |                                                                                                                                     |                                                                                                                                                                          | 05/29/18 12:49<br>05/29/18 12:49                                                                                                                                             | 10<br>10                                       |
|                                                                                                                                                                                                                                                                                                                             | 64                                                                   | 5.1, Tabl                               | 5                                       | 50 - 150                                                                                          |                              |                                           |                                                                                                                                     |                                                                                                                                                                          |                                                                                                                                                                              |                                                |
| 13C4 PFOS<br>Method: EPA 537 (Mod) - PFA<br>Analyte                                                                                                                                                                                                                                                                         | 64 S for QSM ! Result                                                | Qualifier                               | 5                                       | 50 - 150                                                                                          |                              | Unit                                      | D                                                                                                                                   |                                                                                                                                                                          |                                                                                                                                                                              |                                                |
| 13C4 PFOS<br>Method: EPA 537 (Mod) - PFA<br>Analyte                                                                                                                                                                                                                                                                         | 64<br>S for QSM !                                                    | Qualifier                               | 5                                       | 50 - 150<br><b>5 - DL2</b>                                                                        |                              | Unit<br>ug/Kg                             | D<br>ङ                                                                                                                              | 05/14/18 13:10  Prepared                                                                                                                                                 | 05/29/18 12:49                                                                                                                                                               | 10                                             |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                                         | 64 S for QSM ! Result                                                | Qualifier<br>U                          | 5                                       | 50 - 150<br>5 - DL2<br>LOQ                                                                        | 12                           |                                           |                                                                                                                                     | 05/14/18 13:10  Prepared  05/14/18 13:10                                                                                                                                 | 05/29/18 12:49 Analyzed                                                                                                                                                      | Dil Fac                                        |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                           | S for QSM (Result                                                    | Qualifier<br>U<br>U                     | 5                                       | 50 - 150<br>5 - DL2<br>LOQ<br>48                                                                  | 12<br>16                     | ug/Kg                                     | <del>\</del>                                                                                                                        | 05/14/18 13:10  Prepared  05/14/18 13:10  05/14/18 13:10                                                                                                                 | 05/29/18 12:49  Analyzed  05/29/18 12:02                                                                                                                                     | Dil Fac                                        |
| 13C4 PFOS<br>Method: EPA 537 (Mod) - PFA                                                                                                                                                                                                                                                                                    | S for QSM ( Result 32 32                                             | Qualifier U U U                         | 5                                       | 50 - 150<br>5 - DL2<br>LOQ<br>48<br>48                                                            | 12<br>16<br>13               | ug/Kg<br>ug/Kg                            |                                                                                                                                     | 05/14/18 13:10  Prepared  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10                                                                                                 | 05/29/18 12:49  Analyzed  05/29/18 12:02 05/29/18 12:02                                                                                                                      | Dil Fac<br>100<br>100                          |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid                                                                                                                            | S for QSM (Result 32 32 32 29                                        | Qualifier U U U                         | 5                                       | 50 - 150<br>5 - DL2<br>LOQ<br>48<br>48<br>48                                                      | 12<br>16<br>13               | ug/Kg<br>ug/Kg<br>ug/Kg                   |                                                                                                                                     | Prepared 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10                                                                                                     | 05/29/18 12:49  Analyzed  05/29/18 12:02  05/29/18 12:02  05/29/18 12:02                                                                                                     | Dil Fac<br>100<br>100<br>100                   |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid                                                                                                                     | S for QSM (Result 32 32 32 29 39                                     | Qualifier U U U U                       | 5                                       | 50 - 150<br>5 - DL2<br>LOQ<br>48<br>48<br>48<br>48<br>64<br>48                                    | 12<br>16<br>13<br>9.4<br>9.9 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | - <del>-</del> | Prepared 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10                                                                                      | Analyzed  05/29/18 12:49  Analyzed  05/29/18 12:02  05/29/18 12:02  05/29/18 12:02  05/29/18 12:02                                                                           | Dil Fac 100 100 100 100 100                    |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFHxS)                                                                                                             | S for QSM (Result 32 32 32 29 39                                     | Qualifier U U U U J D J1 D M J1         | e B-18                                  | 50 - 150<br>5 - DL2<br>LOQ<br>48<br>48<br>48<br>48<br>64<br>48                                    | 12<br>16<br>13<br>9.4<br>9.9 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | - <del>-</del> | Prepared 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10                                                                                      | Analyzed  05/29/18 12:49  Analyzed  05/29/18 12:02  05/29/18 12:02  05/29/18 12:02  05/29/18 12:02  05/29/18 12:02                                                           | Dil Fac 100 100 100 100 100 100                |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution                                                                                             | S for QSM ! Result 32 32 32 29 39 960 %Recovery                      | Qualifier U U U U J D J1 D M J1         | * * * * * * * * * * * * * * * * * * *   | 5 - DL2<br>LOQ<br>48<br>48<br>48<br>64<br>48                                                      | 12<br>16<br>13<br>9.4<br>9.9 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | - <del>-</del> | Prepared 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10                                                                       | Analyzed 05/29/18 12:02 05/29/18 12:02 05/29/18 12:02 05/29/18 12:02 05/29/18 12:02 05/29/18 12:02                                                                           | Dil Fac  100 100 100 100 100 100 100 100 100 1 |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFHxS) Perfluoroputanesulfonic acid (PFBS) Perfluoroputanesulfonic acid (PFBS) Perfluoroputanesulfonic acid (PFBS) | S for QSM ! Result 32 32 32 29 39 960 %Recovery                      | Qualifier U U U J D J1 D M J1 Qualifier | # B-18  * *  * *  J K01                 | 5 - DL2<br>LOQ<br>48<br>48<br>48<br>64<br>48<br>1 160                                             | 12<br>16<br>13<br>9.4<br>9.9 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | - <del>-</del> | Prepared  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  Prepared  05/14/18 13:10                                       | Analyzed  O5/29/18 12:49  Analyzed  O5/29/18 12:02  O5/29/18 12:02  O5/29/18 12:02  O5/29/18 12:02  O5/29/18 12:02  Analyzed                                                 | Dil Fac  100  100  100  100  100  100  100  1  |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorobexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFBS) Isotope Dilution 13C3-PFBS 13C4-PFHpA                                   | \$ for QSM \$ Result   32   32   32   29   39   960   %Recovery   68 | Qualifier U U U J D J1 D M J1 Qualifier | *  *  J K01  L 55                       | 50 - 150<br>5 - DL2<br>LOQ<br>48<br>48<br>48<br>64<br>48<br>160<br>Limits<br>50 - 150             | 12<br>16<br>13<br>9.4<br>9.9 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | - <del>-</del> | Prepared  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  Prepared  05/14/18 13:10  05/14/18 13:10                       | Analyzed  05/29/18 12:49  Analyzed  05/29/18 12:02  05/29/18 12:02  05/29/18 12:02  05/29/18 12:02  05/29/18 12:02  Analyzed  05/29/18 12:02                                 | 100 100 100 100 100 100 100 100 100 100        |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFBS) Perfluorooctanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFDS) Isotope Dilution 13C3-PFBS 13C4-PFHpA                                    | 64 S for QSM ( Result  32 32 32 29 39 960  %Recovery 68 66 81        | Qualifier U U U J D J1 D M J1 Qualifier | *  *  J K01                             | 50 - 150<br>5 - DL2<br>LOQ<br>48<br>48<br>48<br>64<br>48<br>1 160<br>Limits<br>50 - 150           | 12<br>16<br>13<br>9.4<br>9.9 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | - <del>-</del> | Prepared  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  Prepared  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10       | Analyzed  05/29/18 12:49  Analyzed  05/29/18 12:02  05/29/18 12:02  05/29/18 12:02  05/29/18 12:02  05/29/18 12:02  Analyzed  05/29/18 12:02  05/29/18 12:02                 | Dil Fac                                        |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS)                                                                                                                                                  | \$ for QSM !  Result  32 32 32 29 39 960  **Recovery 68 66           | Qualifier U U U J D J1 D M J1 Qualifier | # * * * * * * * * * * * * * * * * * * * | 50 - 150<br>5 - DL2<br>LOQ<br>48<br>48<br>48<br>64<br>48<br>160<br>-imits<br>50 - 150<br>50 - 150 | 12<br>16<br>13<br>9.4<br>9.9 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | - <del>-</del> | Prepared 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10  Prepared 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10 | Analyzed  05/29/18 12:49  Analyzed  05/29/18 12:02  05/29/18 12:02  05/29/18 12:02  05/29/18 12:02  05/29/18 12:02  Analyzed  05/29/18 12:02  05/29/18 12:02  05/29/18 12:02 | Dil Fac  100 100 100 100 100 100 100 100 100 1 |

Client Sample ID: KLA06-SB2-02 Lab Sample ID: 320-39023-42

 Date Collected: 05/01/18 13:50
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 70.3

| Method: EPA 537 (Mod) - PFAS    | for QSM 5. | .1, Table E | 3-15 |      |       |   |                |                |         |
|---------------------------------|------------|-------------|------|------|-------|---|----------------|----------------|---------|
| Analyte                         | Result     | Qualifier   | LOQ  | DL   | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Perfluoroheptanoic acid (PFHpA) | 1.6        |             | 0.43 | 0.11 | ug/Kg | ₩ | 05/14/18 13:10 | 06/07/18 00:13 | 1       |
| Perfluorooctanoic acid (PFOA)   | 6.4        |             | 0.43 | 0.14 | ug/Kg | ≎ | 05/14/18 13:10 | 06/07/18 00:13 | 1       |
| Perfluorononanoic acid (PFNA)   | 1.7        | J G02       | 0.43 | 0.12 | ug/Kg | ₩ | 05/14/18 13:10 | 06/07/18 00:13 | 1       |

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Lab Sample ID: 320-39023-42 Date Collected: 05/01/18 13:50 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 70.3

| Method: EPA 537 (Mod) - PFAS                       |                | 5.1, Table B<br>Qualifier | •                                |       | Unit  | D              | Droparad                | Analyzod                         | Dil F  |
|----------------------------------------------------|----------------|---------------------------|----------------------------------|-------|-------|----------------|-------------------------|----------------------------------|--------|
| Analyte                                            |                | Qualifier                 | LOQ                              |       |       | — <del>¤</del> | Prepared 05/14/18 13:10 | Analyzed                         | חווע - |
| Perfluorobutanesulfonic acid PFBS)                 | 2.1            |                           | 0.57                             |       | ug/Kg |                | 00/11/10/10:10          |                                  |        |
| Perfluorohexanesulfonic acid PFHxS)                | 40             | E *                       | 0.43                             | 0.089 | ug/Kg | <del>.</del>   | 05/14/18 13:10          | 06/07/18 00:13                   |        |
| Perfluorooctanesulfonic acid PFOS)                 | 920            | E *                       | 1.4                              | 0.34  | ug/Kg | ₽              | 05/14/18 13:10          | 06/07/18 00:13                   |        |
| sotope Dilution                                    | %Recovery      | Qualifier                 | Limits                           |       |       |                | Prepared                | Analyzed                         | Dil F  |
| 3C3-PFBS                                           | 81             |                           | 50 - 150                         |       |       |                | 05/14/18 13:10          | 06/07/18 00:13                   |        |
| 13C4-PFHpA                                         | 83             |                           | 50 - 150                         |       |       |                | 05/14/18 13:10          | 06/07/18 00:13                   |        |
| 13C4 PFOA                                          | 83             |                           | 50 - 150                         |       |       |                | 05/14/18 13:10          | 06/07/18 00:13                   |        |
| 13C5 PFNA                                          | 44             | Q                         | 50 - 150                         |       |       |                | 05/14/18 13:10          | 06/07/18 00:13                   |        |
| 1802 PFHxS                                         | 75             | ·                         | 50 - 150                         |       |       |                | 05/14/18 13:10          | 06/07/18 00:13                   |        |
| 13C4 PFOS                                          | 40             | Q                         | 50 - 150                         |       |       |                |                         | 06/07/18 00:13                   |        |
| Method: EPA 537 (Mod) - PFAS                       | S for QSM      | 5.1, Table B              | -15 - DL                         |       |       |                |                         |                                  |        |
| Analyte                                            |                | Qualifier                 | LOQ                              |       | Unit  | D              | Prepared                | Analyzed                         | Dil F  |
| Perfluoroheptanoic acid (PFHpA)                    | 1.8            | JD *                      | 4.3                              | 1.1   | ug/Kg | <del>\</del>   | 05/14/18 13:10          | 05/29/18 13:28                   |        |
| Perfluorooctanoic acid (PFOA)                      | 6.2            | D *                       | 4.3                              | 1.4   | ug/Kg | ☼              | 05/14/18 13:10          | 05/29/18 13:28                   |        |
| Perfluorononanoic acid (PFNA)                      | 1.8            | JD *                      | 4.3                              | 1.2   | ug/Kg | ₽              | 05/14/18 13:10          | 05/29/18 13:28                   |        |
| Perfluorobutanesulfonic acid                       | 2.1            | JD *                      | 5.7                              | 0.84  | ug/Kg |                | 05/14/18 13:10          | 05/29/18 13:28                   |        |
| Perfluorohexanesulfonic acid PFHxS)                | 45             | D J K01                   | 4.3                              | 0.89  | ug/Kg | ☼              | 05/14/18 13:10          | 05/29/18 13:28                   |        |
| Perfluorooctanesulfonic acid PFOS)                 | 1300           | ED *                      | 14                               | 3.4   | ug/Kg | ☼              | 05/14/18 13:10          | 05/29/18 13:28                   |        |
| sotope Dilution                                    | %Recovery      | Qualifier                 | Limits                           |       |       |                | Prepared                | Analyzed                         | Dil F  |
| 13C3-PFBS                                          | 73             |                           | 50 - 150                         |       |       |                | •                       | 05/29/18 13:28                   |        |
| 13C4-PFHpA                                         | 78             |                           | 50 <sub>-</sub> 150              |       |       |                | 05/14/18 13:10          | 05/29/18 13:28                   |        |
| 13C4 PFOA                                          | 90             |                           | 50 - 150                         |       |       |                |                         | 05/29/18 13:28                   |        |
| 13C5 PFNA                                          | 75             |                           | 50 - 150                         |       |       |                |                         | 05/29/18 13:28                   |        |
| 1802 PFHxS                                         | 72             |                           | 50 - 150<br>50 - 150             |       |       |                |                         | 05/29/18 13:28                   |        |
| 13C4 PFOS                                          | 61             |                           | 50 - 150<br>50 - 150             |       |       |                |                         | 05/29/18 13:28                   |        |
| Method: EPA 537 (Mod) - PFAS                       | S for QSM !    | 5.1. Table B              | -15 - DL2                        |       |       |                |                         |                                  |        |
| Analyte                                            |                | Qualifier                 | LOQ                              | DL    | Unit  | D              | Prepared                | Analyzed                         | Dil F  |
| Perfluoroheptanoic acid (PFHpA)                    | 29             | <u>U</u> *                | 43                               | 11    | ug/Kg | <u> </u>       | 05/14/18 13:10          | 05/29/18 12:25                   | 1      |
| Perfluorooctanoic acid (PFOA)                      | 29             | U M *                     | 43                               | 14    | ug/Kg | ☼              | 05/14/18 13:10          | 05/29/18 12:25                   | 1      |
| Perfluorononanoic acid (PFNA)                      | 29             |                           | 43                               |       | ug/Kg | ₽              | 05/14/18 13:10          |                                  | 1      |
| Perfluorobutanesulfonic acid (PFBS)                | 26             |                           | 57                               |       | ug/Kg |                | 05/14/18 13:10          |                                  | 1      |
| Perfluorohexanesulfonic acid                       |                | JD *                      | 43                               |       | ug/Kg | ₽              |                         | 05/29/18 12:25                   | 1      |
| PFHxS)<br>Perfluorooctanesulfonic acid<br>PFOS)    | 1600           | <b>D</b> J K01            | 140                              | 34    | ug/Kg | ₽              | 05/14/18 13:10          | 05/29/18 12:25                   | 1      |
| sotope Dilution                                    | %Recovery      | Qualifier                 | Limits                           |       |       |                | Prepared                | Analyzed                         | Dil F  |
| 13C3-PFBS                                          |                | M                         | 50 - 150                         |       |       |                | 05/14/18 13:10          | 05/29/18 12:25                   | 1      |
|                                                    | 72             |                           | 50 - 150                         |       |       |                | 05/14/18 13:10          | 05/29/18 12:25                   | 1      |
| 13C4-PFHpA                                         |                |                           |                                  |       |       |                | 05/14/18 13:10          |                                  | 1      |
| '                                                  | 78             |                           | 50 - 150                         |       |       |                | 00/17/10 10.10          | 00/29/10 12.23                   |        |
| 13C4 PFOA                                          |                |                           |                                  |       |       |                |                         |                                  |        |
| 13C4-PFHpA<br>13C4 PFOA<br>13C5 PFNA<br>18O2 PFHxS | 78<br>78<br>64 |                           | 50 - 150<br>50 - 150<br>50 - 150 |       |       |                | 05/14/18 13:10          | 05/29/18 12:25<br>05/29/18 12:25 | 1      |

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

13C4 PFOS

Client Sample ID: KLA07-SD1-01 Lab Sample ID: 320-39023-43

 Date Collected: 05/06/18 11:30
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 92.9

| Analyte                              | Result    | Qualifier | LOQ                 | DL    | Unit  | D  | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|---------------------|-------|-------|----|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 0.22      | U         | 0.32                | 0.084 | ug/Kg | ₩  | 05/14/18 13:10 | 06/07/18 00:52 | 1       |
| Perfluorooctanoic acid (PFOA)        | 0.22      | U         | 0.32                | 0.11  | ug/Kg | ☼  | 05/14/18 13:10 | 06/07/18 00:52 | 1       |
| Perfluorononanoic acid (PFNA)        | 0.22      | U         | 0.32                | 0.088 | ug/Kg | ₽  | 05/14/18 13:10 | 06/07/18 00:52 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.19      | U         | 0.43                | 0.064 | ug/Kg | \$ | 05/14/18 13:10 | 06/07/18 00:52 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 0.22      | U         | 0.32                | 0.067 | ug/Kg | ₽  | 05/14/18 13:10 | 06/07/18 00:52 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 1.5       | U F04     | 1.1                 | 0.26  | ug/Kg | ₽  | 05/14/18 13:10 | 06/07/18 00:52 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier | Limits              |       |       |    | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 68        |           | 50 - 150            |       |       |    | 05/14/18 13:10 | 06/07/18 00:52 | 1       |
| 13C4-PFHpA                           | 80        |           | 50 - 150            |       |       |    | 05/14/18 13:10 | 06/07/18 00:52 | 1       |
| 13C4 PFOA                            | 84        |           | 50 - 150            |       |       |    | 05/14/18 13:10 | 06/07/18 00:52 | 1       |
| 13C5 PFNA                            | 82        |           | 50 - 150            |       |       |    | 05/14/18 13:10 | 06/07/18 00:52 | 1       |
| 1802 PFHxS                           | 73        |           | 50 - 150            |       |       |    | 05/14/18 13:10 | 06/07/18 00:52 | 1       |
| 13C4 PFOS                            | 75        |           | 50 <sub>-</sub> 150 |       |       |    | 05/14/18 13:10 | 00/07/40 00 50 |         |

Client Sample ID: ER-01 Lab Sample ID: 320-39023-44

Date Collected: 05/01/18 15:30 Matrix: Water Date Received: 05/09/18 09:20

| Analyte                              | Result    | Qualifier | LOQ      | DL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|----------|------|------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 0.88      | J         | 1.7      | 0.51 | ng/L |   | 05/15/18 12:48 | 05/21/18 14:03 | 1       |
| Perfluorooctanoic acid (PFOA)        | 1.7       |           | 1.7      | 0.46 | ng/L |   | 05/15/18 12:48 | 05/21/18 14:03 | 1       |
| Perfluorononanoic acid (PFNA)        | 1.3       | U         | 1.7      | 0.44 | ng/L |   | 05/15/18 12:48 | 05/21/18 14:03 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.40      | JM J      | 1.7      | 0.39 | ng/L |   | 05/15/18 12:48 | 05/21/18 14:03 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 1.9       |           | 1.7      | 0.32 | ng/L |   | 05/15/18 12:48 | 05/21/18 14:03 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 8.7       |           | 3.4      | 0.93 | ng/L |   | 05/15/18 12:48 | 05/21/18 14:03 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier | Limits   |      |      |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 88        |           | 50 - 150 |      |      |   | 05/15/18 12:48 | 05/21/18 14:03 | 1       |
| 13C4-PFHpA                           | 88        |           | 50 - 150 |      |      |   | 05/15/18 12:48 | 05/21/18 14:03 | 1       |
| 13C4 PFOA                            | 90        |           | 50 - 150 |      |      |   | 05/15/18 12:48 | 05/21/18 14:03 | 1       |
| 13C5 PFNA                            | 92        |           | 50 - 150 |      |      |   | 05/15/18 12:48 | 05/21/18 14:03 | 1       |
| 1802 PFHxS                           | 88        |           | 50 - 150 |      |      |   | 05/15/18 12:48 | 05/21/18 14:03 | 1       |

Client Sample ID: FB-01 Lab Sample ID: 320-39023-45

50 - 150

82

Date Collected: 05/01/18 15:50 Matrix: Water Date Received: 05/09/18 09:20

| Analyte                              | Result | Qualifier      | LOQ | DL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|--------|----------------|-----|------|------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 1.2    | U              | 1.7 | 0.51 | ng/L |   | 05/15/18 12:48 | 05/19/18 06:46 | 1       |
| Perfluorooctanoic acid (PFOA)        | 1.2    | U              | 1.7 | 0.45 | ng/L |   | 05/15/18 12:48 | 05/19/18 06:46 | 1       |
| Perfluorononanoic acid (PFNA)        | 1.2    | U              | 1.7 | 0.43 | ng/L |   | 05/15/18 12:48 | 05/19/18 06:46 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.83   | U              | 1.7 | 0.38 | ng/L |   | 05/15/18 12:48 | 05/19/18 06:46 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 0.61   | <b>J</b> U F06 | 1.7 | 0.32 | ng/L |   | 05/15/18 12:48 | 05/19/18 06:46 | 1       |

05/15/18 12:48 05/21/18 14:03

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: FB-01 Lab Sample ID: 320-39023-45

Date Collected: 05/01/18 15:50 Matrix: Water Date Received: 05/09/18 09:20

| Analyte                             | Result    | Qualifier | LOQ      | DL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|-------------------------------------|-----------|-----------|----------|------|------|---|----------------|----------------|---------|
| Perfluorooctanesulfonic acid (PFOS) | 1.7       | J         | 3.3      | 0.91 | ng/L |   | 05/15/18 12:48 | 05/19/18 06:46 | 1       |
| Isotope Dilution                    | %Recovery | Qualifier | Limits   |      |      |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                           | 91        |           | 50 - 150 |      |      |   | 05/15/18 12:48 | 05/19/18 06:46 | 1       |
| 13C4-PFHpA                          | 101       |           | 50 - 150 |      |      |   | 05/15/18 12:48 | 05/19/18 06:46 | 1       |
| 13C4 PFOA                           | 94        |           | 50 - 150 |      |      |   | 05/15/18 12:48 | 05/19/18 06:46 | 1       |
| 13C5 PFNA                           | 105       |           | 50 - 150 |      |      |   | 05/15/18 12:48 | 05/19/18 06:46 | 1       |
| 1802 PFHxS                          | 93        |           | 50 - 150 |      |      |   | 05/15/18 12:48 | 05/19/18 06:46 | 1       |
| 13C4 PFOS                           | 95        |           | 50 - 150 |      |      |   | 05/15/18 12:48 | 05/19/18 06:46 | 1       |

Client Sample ID: ER-02

Date Collected: 05/02/18 09:40

Lab Sample ID: 320-39023-46

Matrix: Water

Date Collected: 05/02/18 09:40 Date Received: 05/09/18 09:20

| Analyte                              | Result    | Qualifier      | LOQ      | DL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|----------------|----------|------|------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 1.3       | U              | 1.7      | 0.53 | ng/L |   | 05/16/18 14:51 | 05/28/18 09:29 | 1       |
| Perfluorooctanoic acid (PFOA)        | 0.52      | J M J          | 1.7      | 0.47 | ng/L |   | 05/16/18 14:51 | 05/28/18 09:29 | 1       |
| Perfluorononanoic acid (PFNA)        | 1.3       | U              | 1.7      | 0.45 | ng/L |   | 05/16/18 14:51 | 05/28/18 09:29 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.87      | U              | 1.7      | 0.40 | ng/L |   | 05/16/18 14:51 | 05/28/18 09:29 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 1.0       | <b>J</b> U F06 | 1.7      | 0.33 | ng/L |   | 05/16/18 14:51 | 05/28/18 09:29 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 4.4       | M =            | 3.5      | 0.96 | ng/L |   | 05/16/18 14:51 | 05/28/18 09:29 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier      | Limits   |      |      |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 75        |                | 50 - 150 |      |      |   | 05/16/18 14:51 | 05/28/18 09:29 | 1       |
| 13C4-PFHpA                           | 71        |                | 50 - 150 |      |      |   | 05/16/18 14:51 | 05/28/18 09:29 | 1       |
| 13C4 PFOA                            | 80        |                | 50 - 150 |      |      |   | 05/16/18 14:51 | 05/28/18 09:29 | 1       |
| 13C5 PFNA                            | 84        |                | 50 - 150 |      |      |   | 05/16/18 14:51 | 05/28/18 09:29 | 1       |
| 1802 PFHxS                           | 75        |                | 50 - 150 |      |      |   | 05/16/18 14:51 | 05/28/18 09:29 | 1       |
| 13C4 PFOS                            | 77        |                | 50 - 150 |      |      |   | 05/16/18 14:51 | 05/28/18 09:29 | 1       |

Client Sample ID: ER-03

Date Collected: 05/03/18 10:30

Lab Sample ID: 320-39023-47

Matrix: Water

Date Received: 05/08/18 09:00

| Analyte                              | Result    | Qualifier | LOQ      | DL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|----------|------|------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 1.3       | U         | 1.8      | 0.55 | ng/L |   | 05/17/18 14:42 | 05/25/18 23:59 | 1       |
| Perfluorooctanoic acid (PFOA)        | 1.3       | U         | 1.8      | 0.49 | ng/L |   | 05/17/18 14:42 | 05/25/18 23:59 | 1       |
| Perfluorononanoic acid (PFNA)        | 1.3       | U         | 1.8      | 0.47 | ng/L |   | 05/17/18 14:42 | 05/25/18 23:59 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.90      | U         | 1.8      | 0.41 | ng/L |   | 05/17/18 14:42 | 05/25/18 23:59 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 0.90      | U         | 1.8      | 0.34 | ng/L |   | 05/17/18 14:42 | 05/25/18 23:59 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 2.7       | U         | 3.6      | 0.99 | ng/L |   | 05/17/18 14:42 | 05/25/18 23:59 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier | Limits   |      |      |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 65        |           | 50 - 150 |      |      |   | 05/17/18 14:42 | 05/25/18 23:59 | 1       |
| 13C4-PFHpA                           | 66        |           | 50 - 150 |      |      |   | 05/17/18 14:42 | 05/25/18 23:59 | 1       |
| 13C4 PFOA                            | 69        |           | 50 - 150 |      |      |   | 05/17/18 14:42 | 05/25/18 23:59 | 1       |
| 13C5 PFNA                            | 71        |           | 50 - 150 |      |      |   | 05/17/18 14:42 | 05/25/18 23:59 | 1       |
| 1802 PFHxS                           | 63        |           | 50 - 150 |      |      |   | 05/17/18 14:42 | 05/25/18 23:59 | 1       |

TestAmerica Sacramento

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: ER-03 Lab Sample ID: 320-39023-47

Date Collected: 05/03/18 10:30
Date Received: 05/08/18 09:00

64

69

Result Qualifier

24 D \*

62 D \*

Client Sample ID: ER-04

Date Collected: 05/04/18 11:00

Lab Sample ID: 320-39023-48

Matrix: Water

50 - 150

Date Received: 05/09/18 09:20

13C4 PFOS

13C4 PFOS

Analyte

Perfluoroheptanoic acid (PFHpA)

Perfluorooctanoic acid (PFOA)

| Analyte                              | Result    | Qualifier      | LOQ                 | DL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|----------------|---------------------|------|------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 1.4       | U              | 1.9                 | 0.57 | ng/L |   | 05/17/18 14:42 | 05/26/18 00:15 | 1       |
| Perfluorooctanoic acid (PFOA)        | 1.4       | U M U          | 1.9                 | 0.50 | ng/L |   | 05/17/18 14:42 | 05/26/18 00:15 | 1       |
| Perfluorononanoic acid (PFNA)        | 1.4       | U              | 1.9                 | 0.48 | ng/L |   | 05/17/18 14:42 | 05/26/18 00:15 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.93      | U              | 1.9                 | 0.43 | ng/L |   | 05/17/18 14:42 | 05/26/18 00:15 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 0.46      | <b>J</b> U F06 | 1.9                 | 0.35 | ng/L |   | 05/17/18 14:42 | 05/26/18 00:15 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 1.3       | J              | 3.7                 | 1.0  | ng/L |   | 05/17/18 14:42 | 05/26/18 00:15 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier      | Limits              |      |      |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 70        |                | 50 - 150            |      |      |   | 05/17/18 14:42 | 05/26/18 00:15 | 1       |
| 13C4-PFHpA                           | 70        |                | 50 - 150            |      |      |   | 05/17/18 14:42 | 05/26/18 00:15 | 1       |
| 13C4 PFOA                            | 73        |                | 50 - 150            |      |      |   | 05/17/18 14:42 | 05/26/18 00:15 | 1       |
| 13C5 PFNA                            | 78        |                | 50 - 150            |      |      |   | 05/17/18 14:42 | 05/26/18 00:15 | 1       |
| 1802 PFHxS                           | 69        |                | 50 <sub>-</sub> 150 |      |      |   | 05/17/18 14:42 | 05/26/18 00:15 | 1       |

50 - 150

Date Collected: 05/06/18 10:30 Matrix: Water Date Received: 05/08/18 09:00

| Analyte                              | Result    | Qualifier | LOQ      | DL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|----------|------|------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 24        |           | 1.9      | 0.58 | ng/L |   | 05/18/18 10:26 | 05/28/18 12:37 | 1       |
| Perfluorooctanoic acid (PFOA)        | 57        |           | 1.9      | 0.51 | ng/L |   | 05/18/18 10:26 | 05/28/18 12:37 | 1       |
| Perfluorononanoic acid (PFNA)        | 3.9       |           | 1.9      | 0.50 | ng/L |   | 05/18/18 10:26 | 05/28/18 12:37 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 28        |           | 1.9      | 0.44 | ng/L |   | 05/18/18 10:26 | 05/28/18 12:37 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 370       | E *       | 1.9      | 0.36 | ng/L |   | 05/18/18 10:26 | 05/28/18 12:37 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 1200      | E *       | 3.8      | 1.0  | ng/L |   | 05/18/18 10:26 | 05/28/18 12:37 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier | Limits   |      |      |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 59        |           | 50 - 150 |      |      |   | 05/18/18 10:26 | 05/28/18 12:37 | 1       |
| 13C4-PFHpA                           | 60        |           | 50 - 150 |      |      |   | 05/18/18 10:26 | 05/28/18 12:37 | 1       |
| 13C4 PFOA                            | 65        |           | 50 - 150 |      |      |   | 05/18/18 10:26 | 05/28/18 12:37 | 1       |
| 13C5 PFNA                            | 61        |           | 50 - 150 |      |      |   | 05/18/18 10:26 | 05/28/18 12:37 | 1       |
| 1802 PFHxS                           | 58        |           | 50 - 150 |      |      |   | 05/18/18 10:26 | 05/28/18 12:37 | 1       |
| 13C4 PFOS                            | 55        |           | 50 - 150 |      |      |   | 05/18/18 10:26 | 05/28/18 12:37 | 1       |

TestAmerica Sacramento

Analyzed

05/18/18 10:26 05/29/18 20:54

05/18/18 10:26 05/29/18 20:54

Dil Fac

10

**Matrix: Water** 

05/17/18 14:42 05/25/18 23:59

05/17/18 14:42 05/26/18 00:15

LOQ

19

19

DL Unit

5.8 ng/L

5.1 ng/L

D

Prepared

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Date Collected: 05/06/18 10:30 Matrix: Water

Date Received: 05/08/18 09:00

| Analyte                              | Result    | Qual | ifier | LOQ      | DL  | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|------|-------|----------|-----|------|---|----------------|----------------|---------|
| Perfluorononanoic acid (PFNA)        | 14        | U M  | *     | 19       | 5.0 | ng/L |   | 05/18/18 10:26 | 05/29/18 20:54 | 10      |
| Perfluorobutanesulfonic acid (PFBS)  | 28        | D    | *     | 19       | 4.4 | ng/L |   | 05/18/18 10:26 | 05/29/18 20:54 | 10      |
| Perfluorohexanesulfonic acid (PFHxS) | 390       | D    | J K01 | 19       | 3.6 | ng/L |   | 05/18/18 10:26 | 05/29/18 20:54 | 10      |
| Perfluorooctanesulfonic acid (PFOS)  | 1200      | D    | J K01 | 38       | 10  | ng/L |   | 05/18/18 10:26 | 05/29/18 20:54 | 10      |
| Isotope Dilution                     | %Recovery | Qual | ifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 53        |      |       | 50 - 150 |     |      |   | 05/18/18 10:26 | 05/29/18 20:54 | 10      |
| 13C4-PFHpA                           | 56        |      |       | 50 - 150 |     |      |   | 05/18/18 10:26 | 05/29/18 20:54 | 10      |
| 13C4 PFOA                            | 63        |      |       | 50 - 150 |     |      |   | 05/18/18 10:26 | 05/29/18 20:54 | 10      |
| 13C5 PFNA                            | 60        |      |       | 50 - 150 |     |      |   | 05/18/18 10:26 | 05/29/18 20:54 | 10      |
| 1802 PFHxS                           | 52        |      |       | 50 - 150 |     |      |   | 05/18/18 10:26 | 05/29/18 20:54 | 10      |
|                                      |           |      |       |          |     |      |   |                | 05/29/18 20:54 | 10      |

Client Sample ID: KLA03-SB-2-01D Lab Sample ID: 320-39023-51

Date Collected: 05/02/18 12:15

Matrix: Solid

Date Received: 05/09/18 09:20

Percent Solids: 78.6

| Analyte                              | Result    | Qualifier | LOQ      | DL    | Unit  | D            | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|----------|-------|-------|--------------|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 0.26      | U         | 0.38     | 0.10  | ug/Kg | <del>\</del> | 05/14/18 13:10 | 06/07/18 01:00 | 1       |
| Perfluorooctanoic acid (PFOA)        | 0.16      | J         | 0.38     | 0.13  | ug/Kg | ☼            | 05/14/18 13:10 | 06/07/18 01:00 | 1       |
| Perfluorononanoic acid (PFNA)        | 0.26      | U         | 0.38     | 0.10  | ug/Kg | ₽            | 05/14/18 13:10 | 06/07/18 01:00 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.098     | J         | 0.51     | 0.076 | ug/Kg | \$           | 05/14/18 13:10 | 06/07/18 01:00 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 0.71      |           | 0.38     | 0.080 | ug/Kg | ₩            | 05/14/18 13:10 | 06/07/18 01:00 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 2.7       |           | 1.3      | 0.31  | ug/Kg | ₩            | 05/14/18 13:10 | 06/07/18 01:00 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier | Limits   |       |       |              | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 79        |           | 50 - 150 |       |       |              | 05/14/18 13:10 | 06/07/18 01:00 | 1       |
| 13C4-PFHpA                           | 90        |           | 50 - 150 |       |       |              | 05/14/18 13:10 | 06/07/18 01:00 | 1       |
| 13C4 PFOA                            | 89        |           | 50 - 150 |       |       |              | 05/14/18 13:10 | 06/07/18 01:00 | 1       |
| 13C5 PFNA                            | 93        |           | 50 - 150 |       |       |              | 05/14/18 13:10 | 06/07/18 01:00 | 1       |
| 1802 PFHxS                           | 84        |           | 50 - 150 |       |       |              | 05/14/18 13:10 | 06/07/18 01:00 | 1       |
| 13C4 PFOS                            | 82        |           | 50 - 150 |       |       |              | 05/14/18 13:10 | 06/07/18 01:00 | 1       |

Client Sample ID: KLA06-SB-2-02D Lab Sample ID: 320-39023-52

Date Collected: 05/01/18 13:50 Matrix: Solid
Date Received: 05/09/18 09:20 Percent Solids: 67.8

| Analyte                              | Result Q | ualifier | LOQ  | DL    | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|----------|----------|------|-------|-------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 1.0      |          | 0.44 | 0.12  | ug/Kg | ₩ | 05/14/18 13:10 | 06/07/18 00:21 | 1       |
| Perfluorooctanoic acid (PFOA)        | 4.1      |          | 0.44 | 0.15  | ug/Kg | ₩ | 05/14/18 13:10 | 06/07/18 00:21 | 1       |
| Perfluorononanoic acid (PFNA)        | 1.8      | J G02    | 0.44 | 0.12  | ug/Kg | ☼ | 05/14/18 13:10 | 06/07/18 00:21 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 1.4      |          | 0.59 | 0.087 | ug/Kg | ₽ | 05/14/18 13:10 | 06/07/18 00:21 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 41 E     | *        | 0.44 | 0.091 | ug/Kg | ☼ | 05/14/18 13:10 | 06/07/18 00:21 | 1       |

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

| Client Sample ID: KLA06-SB-2-02D | Lab Sample ID: 320-39023-52 |
|----------------------------------|-----------------------------|
|                                  |                             |

 Date Collected: 05/01/18 13:50
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 67.8

| Method: EPA 537 (Mod) - PFA<br>Analyte                                                                                                                                                    | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |        | LOQ                                       |      | Unit  | D           | Prepared                                                             | Analyzed                                                 | Dil Fa                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|-------------------------------------------|------|-------|-------------|----------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------|
| Perfluorooctanesulfonic acid (PFOS)                                                                                                                                                       | 690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E        | *      | 1.5                                       | 0.35 | ug/Kg | <del></del> | 05/14/18 13:10                                                       | 06/07/18 00:21                                           |                                            |
| Isotope Dilution                                                                                                                                                                          | %Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Qua      | lifier | Limits                                    |      |       |             | Prepared                                                             | Analyzed                                                 | Dil Fa                                     |
| 13C3-PFBS                                                                                                                                                                                 | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |        | 50 - 150                                  |      |       |             | 05/14/18 13:10                                                       | 06/07/18 00:21                                           |                                            |
| 13C4-PFHpA                                                                                                                                                                                | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |        | 50 - 150                                  |      |       |             | 05/14/18 13:10                                                       | 06/07/18 00:21                                           |                                            |
| 13C4 PFOA                                                                                                                                                                                 | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |        | 50 - 150                                  |      |       |             | 05/14/18 13:10                                                       | 06/07/18 00:21                                           |                                            |
| 13C5 PFNA                                                                                                                                                                                 | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Q        |        | 50 - 150                                  |      |       |             | 05/14/18 13:10                                                       | 06/07/18 00:21                                           |                                            |
| 1802 PFHxS                                                                                                                                                                                | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |        | 50 - 150                                  |      |       |             | 05/14/18 13:10                                                       | 06/07/18 00:21                                           |                                            |
| 13C4 PFOS                                                                                                                                                                                 | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Q        |        | 50 - 150                                  |      |       |             | 05/14/18 13:10                                                       | 06/07/18 00:21                                           |                                            |
| Method: EPA 537 (Mod) - PFA                                                                                                                                                               | S for QSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.1, 7   | able B | -15 - DL                                  |      |       |             |                                                                      |                                                          |                                            |
| Analyte                                                                                                                                                                                   | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Qua      | ifier  | LOQ                                       |      | Unit  | D           | Prepared                                                             | Analyzed                                                 | Dil Fa                                     |
| Perfluoroheptanoic acid (PFHpA)                                                                                                                                                           | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | J D      | *      | 4.4                                       |      | ug/Kg | ₩           | 05/14/18 13:10                                                       | 05/29/18 13:36                                           | 1                                          |
| Perfluorooctanoic acid (PFOA)                                                                                                                                                             | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D        | *      | 4.4                                       |      | ug/Kg | ₩           | 05/14/18 13:10                                                       |                                                          | 1                                          |
| Perfluorononanoic acid (PFNA)                                                                                                                                                             | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | J D      | *      | 4.4                                       | 1.2  | ug/Kg | ₩           | 05/14/18 13:10                                                       | 05/29/18 13:36                                           | 1                                          |
| Perfluorobutanesulfonic acid (PFBS)                                                                                                                                                       | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | J D      | *      | 5.9                                       | 0.87 | ug/Kg | ₿           | 05/14/18 13:10                                                       | 05/29/18 13:36                                           | 1                                          |
| Perfluorohexanesulfonic acid (PFHxS)                                                                                                                                                      | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D        | J K01  | 4.4                                       | 0.91 | ug/Kg | ₽           | 05/14/18 13:10                                                       | 05/29/18 13:36                                           | 1                                          |
| Perfluorooctanesulfonic acid (PFOS)                                                                                                                                                       | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E D      | *      | 15                                        | 3.5  | ug/Kg | ☼           | 05/14/18 13:10                                                       | 05/29/18 13:36                                           | ,                                          |
| Isotope Dilution                                                                                                                                                                          | %Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Qua      | lifier | Limits                                    |      |       |             | Prepared                                                             | Analyzed                                                 | Dil Fa                                     |
| 13C3-PFBS                                                                                                                                                                                 | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |        | 50 - 150                                  |      |       |             | 05/14/18 13:10                                                       | 05/29/18 13:36                                           | 1                                          |
| 13C4-PFHpA                                                                                                                                                                                | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |        | 50 - 150                                  |      |       |             | 05/14/18 13:10                                                       | 05/29/18 13:36                                           | 1                                          |
| 13C4 PFOA                                                                                                                                                                                 | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |        | 50 - 150                                  |      |       |             | 05/14/18 13:10                                                       | 05/29/18 13:36                                           | 1                                          |
| 13C5 PFNA                                                                                                                                                                                 | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |        | 50 - 150                                  |      |       |             | 05/14/18 13:10                                                       | 05/29/18 13:36                                           |                                            |
| 1802 PFHxS                                                                                                                                                                                | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |        | 50 - 150                                  |      |       |             | 05/14/18 13:10                                                       | 05/29/18 13:36                                           | 1                                          |
| 13C4 PFOS                                                                                                                                                                                 | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |        | 50 - 150                                  |      |       |             | 05/14/18 13:10                                                       | 05/29/18 13:36                                           | 1                                          |
| Method: EPA 537 (Mod) - PFA                                                                                                                                                               | S for QSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.1, 7   | able B | -15 - DL2                                 |      |       |             |                                                                      |                                                          |                                            |
| Analyte                                                                                                                                                                                   | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Qua      | ifier  | LOQ                                       |      | Unit  | D           | Prepared                                                             | Analyzed                                                 | Dil Fa                                     |
| Perfluoroheptanoic acid (PFHpA)                                                                                                                                                           | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U        | *      | 44                                        | 12   | ug/Kg | ☼           | 05/14/18 13:10                                                       | 05/29/18 12:33                                           | 10                                         |
| Perfluorooctanoic acid (PFOA)                                                                                                                                                             | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U M      | *      | 44                                        | 15   | ug/Kg | ÷           | 05/14/18 13:10                                                       | 05/29/18 12:33                                           | 10                                         |
| Perfluorononanoic acid (PFNA)                                                                                                                                                             | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U        | *      | 44                                        | 12   | ug/Kg | ÷           | 05/14/18 13:10                                                       | 05/29/18 12:33                                           | 10                                         |
|                                                                                                                                                                                           | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U        | *      | 59                                        | 8.7  | ug/Kg | Þ           | 05/14/18 13:10                                                       | 05/29/18 12:33                                           | 10                                         |
| Perfluorobutanesulfonic acid (PFBS)                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -        | *      | 44                                        | 9.1  | ug/Kg | ₩           | 05/14/18 13:10                                                       | 05/29/18 12:33                                           | 10                                         |
| Perfluorohexanesulfonic acid                                                                                                                                                              | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D        |        |                                           |      |       |             |                                                                      |                                                          |                                            |
| Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid                                                                                                                         | 46<br>1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | J K01  | 150                                       |      | ug/Kg | ☼           | 05/14/18 13:10                                                       | 05/29/18 12:33                                           | 10                                         |
| Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) (sotope Dilution                                                                                                 | 1100<br>%Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D<br>Qua | J K01  | 150                                       |      | ug/Kg | ☼           | Prepared                                                             | Analyzed                                                 | Dil Fa                                     |
| Perfluorohexanesulfonic acid PFHxS) Perfluorooctanesulfonic acid PFOS) Isotope Dilution 13C3-PFBS                                                                                         | 1100<br>%Recovery<br>51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D<br>Qua | J K01  | 150 <b>Limits</b> 50 - 150                |      | ug/Kg | ❖           | <b>Prepared</b> 05/14/18 13:10                                       | Analyzed 05/29/18 12:33                                  | Dil Fa                                     |
| Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) (Sotope Dilution (13C3-PFBS) (13C4-PFHpA)                                                                        | 1100<br>%Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D<br>Qua | J K01  | 150                                       |      | ug/Kg | ₩           | Prepared 05/14/18 13:10 05/14/18 13:10                               | Analyzed 05/29/18 12:33 05/29/18 12:33                   | Dil Fa                                     |
| Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA                                                                            | 1100<br>%Recovery<br>51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D<br>Qua | J K01  | 150 <b>Limits</b> 50 - 150                |      | ug/Kg | ₩           | Prepared 05/14/18 13:10 05/14/18 13:10                               | Analyzed 05/29/18 12:33                                  | <b>Dil Fa</b>                              |
| Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA 13C4 PFOA                                                                  | 1100<br>%Recovery 51 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D<br>Qua | J K01  | 150  Limits  50 - 150 50 - 150            |      | ug/Kg | **          | Prepared  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10             | Analyzed 05/29/18 12:33 05/29/18 12:33                   | <b>Dil Fa</b>                              |
| Perfluorobutanesulfonic acid (PFBS)  Perfluorohexanesulfonic acid (PFHxS)  Perfluorooctanesulfonic acid (PFOS)  Isotope Dilution  13C3-PFBS  13C4-PFHpA  13C4 PFOA  13C5 PFNA  18O2 PFHxS | ## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## 1100 %## | D<br>Qua | J K01  | 150  Limits  50 - 150  50 - 150  50 - 150 |      | ug/Kg | *           | Prepared 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10 | Analyzed  05/29/18 12:33  05/29/18 12:33  05/29/18 12:33 | 10<br>Dil Fa<br>10<br>10<br>10<br>10<br>10 |

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: KLA02-SB2-02D Lab Sample ID: 320-39023-53

 Date Collected: 05/04/18 13:25
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 59.1

| Analyte                                                                                                                                                                                                                                                        | Result                                                        | Qualifier                                            | LOQ                                        | DL                              | Unit                                      | D              | Prepared                                                                                                                                                                 | Analyzed                                                                                                                                                           | Dil Fa                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------|--------------------------------------------|---------------------------------|-------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                | 5.6                                                           |                                                      | 0.50                                       | 0.13                            | ug/Kg                                     | ₩              | 05/14/18 14:03                                                                                                                                                           | 05/29/18 10:36                                                                                                                                                     |                                          |
| Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                  | 15                                                            |                                                      | 0.50                                       | 0.17                            | ug/Kg                                     | ☼              | 05/14/18 14:03                                                                                                                                                           | 05/29/18 10:36                                                                                                                                                     |                                          |
| Perfluorononanoic acid (PFNA)                                                                                                                                                                                                                                  | 0.34                                                          | JM J                                                 | 0.50                                       | 0.14                            | ug/Kg                                     | ☼              | 05/14/18 14:03                                                                                                                                                           | 05/29/18 10:36                                                                                                                                                     | 1                                        |
| Perfluorobutanesulfonic acid (PFBS)                                                                                                                                                                                                                            | 24                                                            |                                                      | 0.67                                       | 0.099                           | ug/Kg                                     |                | 05/14/18 14:03                                                                                                                                                           | 05/29/18 10:36                                                                                                                                                     | 1                                        |
| Perfluorohexanesulfonic acid (PFHxS)                                                                                                                                                                                                                           | 95                                                            | E *                                                  | 0.50                                       | 0.10                            | ug/Kg                                     | ₩              | 05/14/18 14:03                                                                                                                                                           | 05/29/18 10:36                                                                                                                                                     | 1                                        |
| Perfluorooctanesulfonic acid (PFOS)                                                                                                                                                                                                                            | 380                                                           | E *                                                  | 1.7                                        | 0.40                            | ug/Kg                                     | ₩              | 05/14/18 14:03                                                                                                                                                           | 05/29/18 10:36                                                                                                                                                     | 1                                        |
| Isotope Dilution                                                                                                                                                                                                                                               | %Recovery                                                     | Qualifier                                            | Limits                                     |                                 |                                           |                | Prepared                                                                                                                                                                 | Analyzed                                                                                                                                                           | Dil Fac                                  |
| 13C3-PFBS                                                                                                                                                                                                                                                      | 78                                                            |                                                      | 50 - 150                                   |                                 |                                           |                | 05/14/18 14:03                                                                                                                                                           | 05/29/18 10:36                                                                                                                                                     |                                          |
| 13C4-PFHpA                                                                                                                                                                                                                                                     | 78                                                            |                                                      | 50 - 150                                   |                                 |                                           |                | 05/14/18 14:03                                                                                                                                                           | 05/29/18 10:36                                                                                                                                                     | 1                                        |
| 13C4 PFOA                                                                                                                                                                                                                                                      | 84                                                            |                                                      | 50 - 150                                   |                                 |                                           |                | 05/14/18 14:03                                                                                                                                                           | 05/29/18 10:36                                                                                                                                                     | 1                                        |
| 13C5 PFNA                                                                                                                                                                                                                                                      | 71                                                            |                                                      | 50 - 150                                   |                                 |                                           |                | 05/14/18 14:03                                                                                                                                                           | 05/29/18 10:36                                                                                                                                                     | 1                                        |
| 1802 PFHxS                                                                                                                                                                                                                                                     | 73                                                            |                                                      | 50 - 150                                   |                                 |                                           |                | 05/14/18 14:03                                                                                                                                                           | 05/29/18 10:36                                                                                                                                                     | 1                                        |
|                                                                                                                                                                                                                                                                |                                                               |                                                      |                                            |                                 |                                           |                |                                                                                                                                                                          |                                                                                                                                                                    |                                          |
| 13C4 PFOS<br>Method: EPA 537 (Mod) - PFA                                                                                                                                                                                                                       | 60<br>S for QSM !                                             | 5.1, Table B                                         | 50 - 150<br>- <b>15 - DL</b>               |                                 |                                           |                | 05/14/18 14:03                                                                                                                                                           | 05/29/18 10:36                                                                                                                                                     | 1                                        |
| Method: EPA 537 (Mod) - PFA<br>Analyte                                                                                                                                                                                                                         | S for QSM (                                                   | Qualifier                                            | -15 - DL<br>LOQ                            |                                 | Unit                                      | D              | Prepared                                                                                                                                                                 | Analyzed                                                                                                                                                           | Dil Fac                                  |
| Method: EPA 537 (Mod) - PFA<br>Analyte<br>Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                      | S for QSM (Result                                             | Qualifier  J D *                                     | -15 - DL<br>LOQ<br>10                      | 2.6                             | ug/Kg                                     | <del>-</del>   | Prepared 05/14/18 14:03                                                                                                                                                  | Analyzed 05/29/18 17:38                                                                                                                                            | Dil Fac                                  |
| Method: EPA 537 (Mod) - PFA<br>Analyte<br>Perfluoroheptanoic acid (PFHpA)<br>Perfluorooctanoic acid (PFOA)                                                                                                                                                     | S for QSM !<br>Result<br>5.5                                  | Qualifier J D * D *                                  | 10 10                                      | 2.6<br>3.3                      | ug/Kg<br>ug/Kg                            | — <del>□</del> | Prepared 05/14/18 14:03 05/14/18 14:03                                                                                                                                   | Analyzed 05/29/18 17:38 05/29/18 17:38                                                                                                                             | <b>Dil Fac</b> 20                        |
| Method: EPA 537 (Mod) - PFA<br>Analyte<br>Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                      | S for QSM !<br>Result<br>5.5<br>14<br>6.7                     | Qualifier J D * D * U M *                            | 10 10                                      | 2.6<br>3.3<br>2.7               | ug/Kg<br>ug/Kg<br>ug/Kg                   | <del></del>    | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                                                    | Analyzed 05/29/18 17:38 05/29/18 17:38 05/29/18 17:38                                                                                                              | 20<br>20<br>20                           |
| Method: EPA 537 (Mod) - PFA<br>Analyte<br>Perfluoroheptanoic acid (PFHpA)<br>Perfluorooctanoic acid (PFOA)                                                                                                                                                     | S for QSM (Result 5.5                                         | Qualifier J D * D * U M *                            | 10 10                                      | 2.6<br>3.3<br>2.7               | ug/Kg<br>ug/Kg                            | \$<br>\$<br>\$ | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                                     | Analyzed 05/29/18 17:38 05/29/18 17:38 05/29/18 17:38 05/29/18 17:38                                                                                               | 20<br>20<br>20<br>20                     |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid                                                                                                   | S for QSM !<br>Result<br>5.5<br>14<br>6.7                     | Qualifier  J D *  D *  U M *  D *  D *               | 10 10                                      | 2.6<br>3.3<br>2.7<br>2.0<br>2.1 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$<br>\$<br>\$ | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                      | Analyzed  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38                                                                                           | 20<br>20<br>20<br>20<br>20               |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid                                                               | S for QSM (<br>Result<br>5.5<br>14<br>6.7<br>23               | Qualifier  J D *  D *  U M *  D *  D *               | 10 10 13                                   | 2.6<br>3.3<br>2.7<br>2.0<br>2.1 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | \$<br>\$<br>\$ | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                                     | Analyzed  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38                                                                                           | 20<br>20<br>20<br>20<br>20               |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid                          | S for QSM (Result 5.5 14 6.7 23 110 490 %Recovery             | Qualifier  JD * D * UM * D * D JK01 D JK01 Qualifier | 10 10 10 10 10                             | 2.6<br>3.3<br>2.7<br>2.0<br>2.1 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$<br>\$<br>\$ | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                      | Analyzed  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38                                                                                           | 20<br>20<br>20<br>20<br>20<br>20         |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFHxS)                                                | S for QSM (Result 5.5 14 6.7 23 110 490 %Recovery             | Qualifier  J D *  D *  U M *  D *  D J K01  D J K01  | 10 10 13 10 33                             | 2.6<br>3.3<br>2.7<br>2.0<br>2.1 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$<br>\$<br>\$ | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                       | Analyzed 05/29/18 17:38 05/29/18 17:38 05/29/18 17:38 05/29/18 17:38 05/29/18 17:38                                                                                | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 |
| Method: EPA 537 (Mod) - PFA Analyte  Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution                               | S for QSM (Result 5.5 14 6.7 23 110 490 %Recovery             | Qualifier  JD * D * UM * D * D JK01 D JK01 Qualifier | 10 10 13 10 33 <i>Limits</i>               | 2.6<br>3.3<br>2.7<br>2.0<br>2.1 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$<br>\$<br>\$ | Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03                                           | Analyzed  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38  Analyzed                                                 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS                      | S for QSM 4 Result 5.5 14 6.7 23 110 490  **Recovery** 74     | Qualifier  JD * D * UM * D * D JK01 D JK01 Qualifier | 10 10 13 10 33 Limits 50 - 150             | 2.6<br>3.3<br>2.7<br>2.0<br>2.1 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$<br>\$<br>\$ | Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03  05/14/18 14:03                                       | Analyzed  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38  4nalyzed  05/29/18 17:38                                                 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA           | S for QSM 4 Result 5.5 14 6.7 23 110 490  **Recovery 74 72    | Qualifier  JD * D * UM * D * D JK01 D JK01 Qualifier | 10 10 10 13 10 33 Limits 50 - 150 50 - 150 | 2.6<br>3.3<br>2.7<br>2.0<br>2.1 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$<br>\$<br>\$ | Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03  Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                             | Analyzed  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38  Analyzed  05/29/18 17:38  05/29/18 17:38                                 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA 13C4 PFOA | S for QSM 4 Result 5.5 14 6.7 23 110 490  **Recovery 74 72 86 | Qualifier  JD * D * UM * D * D JK01 D JK01 Qualifier | 10 10 10 10 10 10 10 10 10 10 10 10 10 1   | 2.6<br>3.3<br>2.7<br>2.0<br>2.1 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$<br>\$<br>\$ | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03  Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 | Analyzed  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38  Analyzed  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38 | <b>Dil Fac</b> 20 20                     |

Client Sample ID: KLA02-SB1-02D Lab Sample ID: 320-39023-54

 Date Collected: 05/04/18 13:45
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 75.9

| Analyte                                 | Result | Qualifier | LOQ  | DL    | Unit  | D  | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------------|--------|-----------|------|-------|-------|----|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)         | 0.11   | J         | 0.39 | 0.10  | ug/Kg | ₩  | 05/14/18 14:03 | 05/29/18 10:43 | 1       |
| Perfluorooctanoic acid (PFOA)           | 0.25   | JM J      | 0.39 | 0.13  | ug/Kg | ₩  | 05/14/18 14:03 | 05/29/18 10:43 | 1       |
| Perfluorononanoic acid (PFNA)           | 0.26   | UM U      | 0.39 | 0.11  | ug/Kg | ₽  | 05/14/18 14:03 | 05/29/18 10:43 | 1       |
| Perfluorobutanesulfonic acid (PFBS)     | 0.21   | J         | 0.52 | 0.077 | ug/Kg | \$ | 05/14/18 14:03 | 05/29/18 10:43 | 1       |
| Perfluorohexanesulfonic acid<br>(PFHxS) | 1.7    |           | 0.39 | 0.081 | ug/Kg | ₽  | 05/14/18 14:03 | 05/29/18 10:43 | 1       |
| Perfluorooctanesulfonic acid (PFOS)     | 12     |           | 1.3  | 0.31  | ug/Kg | ₽  | 05/14/18 14:03 | 05/29/18 10:43 | 1       |

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: KLA02-SB1-02D Lab Sample ID: 320-39023-54

 Date Collected: 05/04/18 13:45
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 75.9

| Isotope Dilution | %Recovery Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------|---------------------|----------|----------------|----------------|---------|
| 13C3-PFBS        | 73                  | 50 - 150 | 05/14/18 14:03 | 05/29/18 10:43 | 1       |
| 13C4-PFHpA       | 83                  | 50 - 150 | 05/14/18 14:03 | 05/29/18 10:43 | 1       |
| 13C4 PFOA        | 91                  | 50 - 150 | 05/14/18 14:03 | 05/29/18 10:43 | 1       |
| 13C5 PFNA        | 96                  | 50 - 150 | 05/14/18 14:03 | 05/29/18 10:43 | 1       |
| 18O2 PFHxS       | 81                  | 50 - 150 | 05/14/18 14:03 | 05/29/18 10:43 | 1       |
| 13C4 PFOS        | 80                  | 50 - 150 | 05/14/18 14:03 | 05/29/18 10:43 | 1       |

Client Sample ID: KLA05-SB1-01D Lab Sample ID: 320-39023-55

| Date Received: 05/09/18 09:20                                                                                                                                                                                                                                     |                                                              |                         |                   |                                                                                  |                                |                                           |                    |                                                                                                                                                                                              | Percent Solid                                                                                                                                                              | s: 82.2                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------|-------------------|----------------------------------------------------------------------------------|--------------------------------|-------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Method: EPA 537 (Mod) - PFA                                                                                                                                                                                                                                       | S for QSM (                                                  |                         |                   | -15<br>LOQ                                                                       | DI                             | Unit                                      | D                  | Prepared                                                                                                                                                                                     | Analyzed                                                                                                                                                                   | Dil Fac                                                         |
| Analyte                                                                                                                                                                                                                                                           | 1.8                                                          | Qua                     | iiiiei –          | 0.37                                                                             |                                | ug/Kg                                     | — <del>=</del>     | 05/14/18 13:10                                                                                                                                                                               | •                                                                                                                                                                          | 1 Tac                                                           |
| Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                   | 1.8                                                          |                         |                   | 0.37                                                                             |                                |                                           | ₩                  | 05/14/18 13:10                                                                                                                                                                               |                                                                                                                                                                            | 1                                                               |
| Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                     |                                                              |                         |                   |                                                                                  |                                | ug/Kg                                     | ≎                  |                                                                                                                                                                                              |                                                                                                                                                                            | -                                                               |
| Perfluorononanoic acid (PFNA)                                                                                                                                                                                                                                     | 2.8                                                          |                         |                   | 0.37                                                                             |                                | ug/Kg                                     |                    | 05/14/18 13:10                                                                                                                                                                               |                                                                                                                                                                            |                                                                 |
| Perfluorobutanesulfonic acid (PFBS)                                                                                                                                                                                                                               | 3.1                                                          |                         |                   | 0.49                                                                             |                                | ug/Kg                                     | ₽                  | 05/14/18 13:10                                                                                                                                                                               |                                                                                                                                                                            | 1                                                               |
| Perfluorohexanesulfonic acid (PFHxS)                                                                                                                                                                                                                              | 170                                                          | Е                       | *                 | 0.37                                                                             | 0.076                          | ug/Kg                                     | ☼                  | 05/14/18 13:10                                                                                                                                                                               | 06/07/18 00:29                                                                                                                                                             | 1                                                               |
| Perfluorooctanesulfonic acid (PFOS)                                                                                                                                                                                                                               | 390                                                          | E                       | *                 | 1.2                                                                              | 0.29                           | ug/Kg                                     | ₽                  | 05/14/18 13:10                                                                                                                                                                               | 06/07/18 00:29                                                                                                                                                             | 1                                                               |
| Isotope Dilution                                                                                                                                                                                                                                                  | %Recovery                                                    | Qua                     | lifier            | Limits                                                                           |                                |                                           |                    | Prepared                                                                                                                                                                                     | Analyzed                                                                                                                                                                   | Dil Fac                                                         |
| 13C3-PFBS                                                                                                                                                                                                                                                         | 77                                                           |                         |                   | 50 - 150                                                                         |                                |                                           |                    | 05/14/18 13:10                                                                                                                                                                               | 06/07/18 00:29                                                                                                                                                             | 1                                                               |
| 13C4-PFHpA                                                                                                                                                                                                                                                        | 64                                                           |                         |                   | 50 - 150                                                                         |                                |                                           |                    | 05/14/18 13:10                                                                                                                                                                               | 06/07/18 00:29                                                                                                                                                             | 1                                                               |
| 13C4 PFOA                                                                                                                                                                                                                                                         | 84                                                           |                         |                   | 50 - 150                                                                         |                                |                                           |                    | 05/14/18 13:10                                                                                                                                                                               | 06/07/18 00:29                                                                                                                                                             | 1                                                               |
| 13C5 PFNA                                                                                                                                                                                                                                                         | 56                                                           |                         |                   | 50 - 150                                                                         |                                |                                           |                    | 05/14/18 13:10                                                                                                                                                                               | 06/07/18 00:29                                                                                                                                                             | 1                                                               |
| 1802 PFHxS                                                                                                                                                                                                                                                        | 64                                                           |                         |                   | 50 - 150                                                                         |                                |                                           |                    | 05/14/18 13:10                                                                                                                                                                               | 06/07/18 00:29                                                                                                                                                             | 1                                                               |
| 13C4 PFOS                                                                                                                                                                                                                                                         | 57                                                           |                         |                   | 50 - 150                                                                         |                                |                                           |                    | 05/14/18 13:10                                                                                                                                                                               | 06/07/18 00:29                                                                                                                                                             | 1                                                               |
| Method: EPA 537 (Mod) - PFA                                                                                                                                                                                                                                       |                                                              |                         |                   | 15 - DL                                                                          |                                | 11                                        |                    |                                                                                                                                                                                              |                                                                                                                                                                            |                                                                 |
| Analyte                                                                                                                                                                                                                                                           | Result                                                       | Qua                     | llitier           | LOQ                                                                              | DL                             | Unit                                      | D                  | Prepared                                                                                                                                                                                     | Analyzed                                                                                                                                                                   | Dil Fac                                                         |
| Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                   | Result 24                                                    |                         | ilitier<br>*      | LOQ 37                                                                           |                                | ug/Kg                                     | — D<br>⊕           | 05/14/18 13:10                                                                                                                                                                               | •                                                                                                                                                                          | Dil Fac                                                         |
|                                                                                                                                                                                                                                                                   | 24                                                           |                         | *                 |                                                                                  | 9.5                            |                                           |                    |                                                                                                                                                                                              | 05/29/18 12:41                                                                                                                                                             |                                                                 |
| Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                   | 24                                                           | U<br>J D                | *                 | 37                                                                               | 9.5<br>12                      | ug/Kg                                     | <del></del>        | 05/14/18 13:10                                                                                                                                                                               | 05/29/18 12:41<br>05/29/18 12:41                                                                                                                                           | 100                                                             |
| Perfluoroheptanoic acid (PFHpA)  Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                    | 24<br>13                                                     | U<br>J D<br>U           | *                 | 37<br>37                                                                         | 9.5<br>12<br>9.9               | ug/Kg<br>ug/Kg<br>ug/Kg                   | <del></del>        | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10                                                                                                                                           | 05/29/18 12:41<br>05/29/18 12:41                                                                                                                                           | 100                                                             |
| Perfluoroheptanoic acid (PFHpA)  Perfluorooctanoic acid (PFOA)  Perfluorononanoic acid (PFNA)  Perfluorobutanesulfonic acid (PFBS)  Perfluorohexanesulfonic acid                                                                                                  | 24<br>13<br>24                                               | U<br><b>J D</b><br>U    | * * *             | 37<br>37<br>37                                                                   | 9.5<br>12<br>9.9<br>7.2        | ug/Kg<br>ug/Kg                            | — <del>\$</del> \$ | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10                                                                                                                                           | 05/29/18 12:41<br>05/29/18 12:41<br>05/29/18 12:41<br>05/29/18 12:41                                                                                                       | 100<br>100<br>100                                               |
| Perfluoroheptanoic acid (PFHpA)  Perfluorooctanoic acid (PFOA)  Perfluorononanoic acid (PFNA)  Perfluorobutanesulfonic acid (PFBS)                                                                                                                                | 24<br>13<br>24<br>22                                         | U D                     | * * * * * *       | 37<br>37<br>37<br>37<br>49                                                       | 9.5<br>12<br>9.9<br>7.2<br>7.6 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | \$<br>\$<br>\$     | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10                                                                                                                         | 05/29/18 12:41<br>05/29/18 12:41<br>05/29/18 12:41<br>05/29/18 12:41<br>05/29/18 12:41                                                                                     | 100<br>100<br>100<br>100<br>100                                 |
| Perfluoroheptanoic acid (PFHpA)  Perfluorooctanoic acid (PFOA)  Perfluorononanoic acid (PFNA)  Perfluorobutanesulfonic acid (PFBS)  Perfluorohexanesulfonic acid (PFHxS)  Perfluorooctanesulfonic acid                                                            | 24<br>13<br>24<br>22<br>300                                  | U<br>J D<br>U<br>U<br>D | * * * J K01 J K01 | 37<br>37<br>37<br>49<br>37                                                       | 9.5<br>12<br>9.9<br>7.2<br>7.6 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | **                 | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10                                                                                                       | 05/29/18 12:41<br>05/29/18 12:41<br>05/29/18 12:41<br>05/29/18 12:41<br>05/29/18 12:41                                                                                     | 100<br>100<br>100<br>100                                        |
| Perfluoroheptanoic acid (PFHpA)  Perfluorooctanoic acid (PFOA)  Perfluorononanoic acid (PFNA)  Perfluorobutanesulfonic acid (PFBS)  Perfluorohexanesulfonic acid (PFHxS)  Perfluorooctanesulfonic acid (PFOS)                                                     | 24<br>13<br>24<br>22<br>300<br>650                           | U J D U D D Qua         | * * * J K01 J K01 | 37<br>37<br>37<br>49<br>37                                                       | 9.5<br>12<br>9.9<br>7.2<br>7.6 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | **                 | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>Prepared                                                                         | 05/29/18 12:41<br>05/29/18 12:41<br>05/29/18 12:41<br>05/29/18 12:41<br>05/29/18 12:41<br>05/29/18 12:41                                                                   | 100<br>100<br>100<br>100<br>100<br>100                          |
| Perfluoroheptanoic acid (PFHpA)  Perfluorooctanoic acid (PFOA)  Perfluorononanoic acid (PFNA)  Perfluorobutanesulfonic acid (PFBS)  Perfluorohexanesulfonic acid (PFHxS)  Perfluorooctanesulfonic acid (PFOS)  Isotope Dilution                                   | 24<br>13<br>24<br>22<br>300<br>650<br>%Recovery              | U J D U D D Qua         | * * * J K01 J K01 | 37<br>37<br>37<br>49<br>37<br>120                                                | 9.5<br>12<br>9.9<br>7.2<br>7.6 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | **                 | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>Prepared<br>05/14/18 13:10                                                       | 05/29/18 12:41<br>05/29/18 12:41<br>05/29/18 12:41<br>05/29/18 12:41<br>05/29/18 12:41<br>05/29/18 12:41<br>05/29/18 12:41                                                 | 100<br>100<br>100<br>100<br>100<br>100<br><b>Dil Fac</b>        |
| Perfluoroheptanoic acid (PFHpA)  Perfluorooctanoic acid (PFOA)  Perfluorononanoic acid (PFNA)  Perfluorobutanesulfonic acid (PFBS)  Perfluorohexanesulfonic acid (PFHxS)  Perfluorooctanesulfonic acid (PFOS)  Isotope Dilution  13C3-PFBS                        | 24<br>13<br>24<br>22<br>300<br>650<br>%Recovery              | U J D U D D Qua         | * * * J K01 J K01 | 37<br>37<br>37<br>49<br>37<br>120<br><b>Limits</b><br>50 - 150                   | 9.5<br>12<br>9.9<br>7.2<br>7.6 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | **                 | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>Prepared<br>05/14/18 13:10<br>05/14/18 13:10                                     | 05/29/18 12:41<br>05/29/18 12:41<br>05/29/18 12:41<br>05/29/18 12:41<br>05/29/18 12:41<br>05/29/18 12:41<br><i>Analyzed</i><br>05/29/18 12:41                              | 100<br>100<br>100<br>100<br>100<br>100<br><b>Dil Fac</b><br>100 |
| Perfluoroheptanoic acid (PFHpA)  Perfluorooctanoic acid (PFOA)  Perfluorononanoic acid (PFNA)  Perfluorobutanesulfonic acid (PFBS)  Perfluorohexanesulfonic acid (PFHxS)  Perfluorooctanesulfonic acid (PFOS)  Isotope Dilution  13C3-PFBS  13C4-PFHpA            | 24<br>13<br>24<br>22<br>300<br>650<br>**Recovery<br>82<br>69 | U J D U D D Qua         | * * * J K01 J K01 | 37<br>37<br>37<br>49<br>37<br>120<br><b>Limits</b><br>50 - 150<br>50 - 150       | 9.5<br>12<br>9.9<br>7.2<br>7.6 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | **                 | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>Prepared<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10                   | 05/29/18 12:41<br>05/29/18 12:41<br>05/29/18 12:41<br>05/29/18 12:41<br>05/29/18 12:41<br>05/29/18 12:41<br>Analyzed<br>05/29/18 12:41<br>05/29/18 12:41                   | 100<br>100<br>100<br>100<br>100<br>100                          |
| Perfluoroheptanoic acid (PFHpA)  Perfluorooctanoic acid (PFOA)  Perfluorononanoic acid (PFNA)  Perfluorobutanesulfonic acid (PFBS)  Perfluorohexanesulfonic acid (PFHxS)  Perfluorooctanesulfonic acid (PFOS)  Isotope Dilution  13C3-PFBS  13C4-PFHpA  13C4 PFOA | 24 13 24 22 300 650  **Recovery 82 69 81                     | U J D U D D Qua         | * * * J K01 J K01 | 37<br>37<br>49<br>37<br>120<br><b>Limits</b><br>50 - 150<br>50 - 150<br>50 - 150 | 9.5<br>12<br>9.9<br>7.2<br>7.6 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | **                 | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>Prepared<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10 | 05/29/18 12:41<br>05/29/18 12:41<br>05/29/18 12:41<br>05/29/18 12:41<br>05/29/18 12:41<br>05/29/18 12:41<br>Analyzed<br>05/29/18 12:41<br>05/29/18 12:41<br>05/29/18 12:41 | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100     |

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: ER-05 Lab Sample ID: 320-39023-56

Date Collected: 05/06/18 16:00 Matrix: Water Date Received: 05/08/18 09:00

| Analyte                              | Result    | Qualifier | LOQ                 | DL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|---------------------|------|------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 1.4       | U         | 1.9                 | 0.58 | ng/L |   | 05/18/18 10:26 | 05/29/18 21:18 | 1       |
| Perfluorooctanoic acid (PFOA)        | 0.74      | J M J     | 1.9                 | 0.51 | ng/L |   | 05/18/18 10:26 | 05/29/18 21:18 | 1       |
| Perfluorononanoic acid (PFNA)        | 1.4       | U         | 1.9                 | 0.49 | ng/L |   | 05/18/18 10:26 | 05/29/18 21:18 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.52      | J         | 1.9                 | 0.44 | ng/L |   | 05/18/18 10:26 | 05/29/18 21:18 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 3.4       | U F06     | 1.9                 | 0.36 | ng/L |   | 05/18/18 10:26 | 05/29/18 21:18 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 13        |           | 3.8                 | 1.0  | ng/L |   | 05/18/18 10:26 | 05/29/18 21:18 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier | Limits              |      |      |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 84        |           | 50 - 150            |      |      |   | 05/18/18 10:26 | 05/29/18 21:18 | 1       |
| 13C4-PFHpA                           | 93        |           | 50 - 150            |      |      |   | 05/18/18 10:26 | 05/29/18 21:18 | 1       |
| 13C4 PFOA                            | 98        |           | 50 - 150            |      |      |   | 05/18/18 10:26 | 05/29/18 21:18 | 1       |
| 13C5 PFNA                            | 104       |           | 50 - 150            |      |      |   | 05/18/18 10:26 | 05/29/18 21:18 | 1       |
| 18O2 PFHxS                           | 87        |           | 50 - 150            |      |      |   | 05/18/18 10:26 | 05/29/18 21:18 | 1       |
| 13C4 PFOS                            | 91        |           | 50 <sub>-</sub> 150 |      |      |   | 05/18/18 10:26 | 05/29/18 21:18 | 1       |

Client Sample ID: IDW-KINGSLEY-SO-LDOS01 Lab Sample ID: 320-39023-57

Date Collected: 05/07/18 09:45

Date Received: 05/08/18 09:00

Matrix: Solid

| Analyte                      | Result    | Qualifier | LOQ      | DL     | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|--------|------|---|----------|----------------|---------|
| Benzene                      | 0.0040    | U         | 0.010    | 0.0016 | mg/L |   |          | 05/29/18 15:26 | 1       |
| 2-Butanone (MEK)             | 0.040     | U         | 0.10     | 0.018  | mg/L |   |          | 05/29/18 15:26 | 1       |
| Carbon tetrachloride         | 0.0040    | U         | 0.010    | 0.0019 | mg/L |   |          | 05/29/18 15:26 | 1       |
| Chlorobenzene                | 0.0040    | U         | 0.010    | 0.0017 | mg/L |   |          | 05/29/18 15:26 | 1       |
| Chloroform                   | 0.0040    | U         | 0.010    | 0.0016 | mg/L |   |          | 05/29/18 15:26 | 1       |
| 1,2-Dichloroethane           | 0.0040    | U         | 0.010    | 0.0013 | mg/L |   |          | 05/29/18 15:26 | 1       |
| 1,1-Dichloroethene           | 0.0080    | U         | 0.010    | 0.0023 | mg/L |   |          | 05/29/18 15:26 | 1       |
| Tetrachloroethene            | 0.0040    | U         | 0.010    | 0.0020 | mg/L |   |          | 05/29/18 15:26 | 1       |
| Trichloroethene              | 0.0040    | U         | 0.010    | 0.0016 | mg/L |   |          | 05/29/18 15:26 | 1       |
| Vinyl chloride               | 0.0020    | U         | 0.010    | 0.0010 | mg/L |   |          | 05/29/18 15:26 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |        |      |   | Prepared | Analyzed       | Dil Fac |
| Toluene-d8 (Surr)            | 101       |           | 78 - 120 |        |      | - |          | 05/29/18 15:26 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 98        |           | 64 - 129 |        |      |   |          | 05/29/18 15:26 | 1       |
| 4-Bromofluorobenzene (Surr)  | 90        |           | 78 - 121 |        |      |   |          | 05/29/18 15:26 | 1       |
| Dibromofluoromethane (Surr)  | 103       |           | 79 - 119 |        |      |   |          | 05/29/18 15:26 | 1       |

| Analyte             | Result | Qualifier | LOQ   | DL     | Unit | D | Prepared       | Analyzed       | Dil Fac |
|---------------------|--------|-----------|-------|--------|------|---|----------------|----------------|---------|
| 2-Methylphenol      | 0.010  | U         | 0.050 | 0.0049 | mg/L |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |
| 3 & 4 Methylphenol  | 0.0025 | U         | 0.050 | 0.0013 | mg/L |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |
| 1,4-Dichlorobenzene | 0.020  | U         | 0.020 | 0.0016 | mg/L |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |
| 2,4-Dinitrotoluene  | 0.022  | U         | 0.050 | 0.0083 | mg/L |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |
| Hexachlorobenzene   | 0.010  | U         | 0.050 | 0.0033 | mg/L |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |
| Hexachlorobutadiene | 0.050  | U         | 0.050 | 0.017  | mg/L |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |
| Hexachloroethane    | 0.022  | U         | 0.050 | 0.011  | mg/L |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |
| Nitrobenzene        | 0.010  | U         | 0.050 | 0.0041 | mg/L |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |
| Pentachlorophenol   | 0.20   | U         | 0.25  | 0.10   | mg/L |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |

TestAmerica Sacramento

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: IDW-KINGSLEY-SO-LDOS01

Date Collected: 05/07/18 09:45 Matrix: Solid

Date Received: 05/08/18 09:00

| Analyte                     | Result    | Qualifier | LOQ                 | DL     | Unit | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|---------------------|--------|------|---|----------------|----------------|---------|
| Pyridine                    | 0.022     | U         | 0.10                | 0.0057 | mg/L |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |
| 2,4,5-Trichlorophenol       | 0.0050    | U         | 0.050               | 0.0022 | mg/L |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |
| 2,4,6-Trichlorophenol       | 0.0050    | U         | 0.025               | 0.0014 | mg/L |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits              |        |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl            | 100       |           | 49 - 120            |        |      |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |
| 2-Fluorophenol (Surr)       | 90        |           | 50 - 120            |        |      |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |
| 2,4,6-Tribromophenol (Surr) | 97        |           | 51 - 120            |        |      |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |
| Nitrobenzene-d5 (Surr)      | 88        |           | 51 - 120            |        |      |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |
| Phenol-d5 (Surr)            | 78        |           | 47 - 120            |        |      |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |
| Terphenyl-d14 (Surr)        | 94        |           | 56 <sub>-</sub> 120 |        |      |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |

Client Sample ID: IDW-KINGSLEY-WA-LDOS01 Lab Sample ID: 320-39023-58

Date Collected: 05/07/18 09:30 Matrix: Water

Date Received: 05/08/18 09:00

| Analyte                      | Result    | Qualifier | LOQ      | DL     | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|--------|------|---|----------|----------------|---------|
| Benzene                      | 0.0040    | U         | 0.010    | 0.0016 | mg/L |   |          | 05/21/18 17:50 | 1       |
| 2-Butanone (MEK)             | 0.040     | U         | 0.10     | 0.018  | mg/L |   |          | 05/21/18 17:50 | 1       |
| Carbon tetrachloride         | 0.0040    | U         | 0.010    | 0.0019 | mg/L |   |          | 05/21/18 17:50 | 1       |
| Chlorobenzene                | 0.0040    | U         | 0.010    | 0.0017 | mg/L |   |          | 05/21/18 17:50 | 1       |
| Chloroform                   | 0.0040    | U         | 0.010    | 0.0016 | mg/L |   |          | 05/21/18 17:50 | 1       |
| 1,2-Dichloroethane           | 0.0040    | U         | 0.010    | 0.0013 | mg/L |   |          | 05/21/18 17:50 | 1       |
| 1,1-Dichloroethene           | 0.0080    | U         | 0.010    | 0.0023 | mg/L |   |          | 05/21/18 17:50 | 1       |
| Tetrachloroethene            | 0.0040    | U         | 0.010    | 0.0020 | mg/L |   |          | 05/21/18 17:50 | 1       |
| Trichloroethene              | 0.0040    | U         | 0.010    | 0.0016 | mg/L |   |          | 05/21/18 17:50 | 1       |
| Vinyl chloride               | 0.0020    | U         | 0.010    | 0.0010 | mg/L |   |          | 05/21/18 17:50 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |        |      |   | Prepared | Analyzed       | Dil Fac |
| Toluene-d8 (Surr)            | 100       |           | 78 - 120 |        |      |   |          | 05/21/18 17:50 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 109       |           | 64 - 129 |        |      |   |          | 05/21/18 17:50 | 1       |
| 4-Bromofluorobenzene (Surr)  | 95        |           | 78 - 121 |        |      |   |          | 05/21/18 17:50 | 1       |
| Dibromofluoromethane (Surr)  | 103       |           | 79 - 119 |        |      |   |          | 05/21/18 17:50 | 1       |

| 4-Bromondorobenzene (San)   | 30           |           | 10-121      |        |      |   |                | 00/21/10 11.00 | ,       |
|-----------------------------|--------------|-----------|-------------|--------|------|---|----------------|----------------|---------|
| Dibromofluoromethane (Surr) | 103          |           | 79 - 119    |        |      |   |                | 05/21/18 17:50 | 1       |
| Method: 8270D - Semivolatil | e Organic Co | mpounds   | (GC/MS) - T | CLP    |      |   |                |                |         |
| Analyte                     | Result       | Qualifier | LÓQ         | DL     | Unit | D | Prepared       | Analyzed       | Dil Fac |
| 2-Methylphenol              | 0.010        | U         | 0.050       | 0.0049 | mg/L |   | 05/21/18 08:46 | 05/25/18 20:46 | 1       |
| 3 & 4 Methylphenol          | 0.0025       | U         | 0.050       | 0.0013 | mg/L |   | 05/21/18 08:46 | 05/25/18 20:46 | 1       |
| 1,4-Dichlorobenzene         | 0.020        | U         | 0.020       | 0.0016 | mg/L |   | 05/21/18 08:46 | 05/25/18 20:46 | 1       |
| 2,4-Dinitrotoluene          | 0.022        | U         | 0.050       | 0.0083 | mg/L |   | 05/21/18 08:46 | 05/25/18 20:46 | 1       |
| Hexachlorobenzene           | 0.010        | U         | 0.050       | 0.0033 | mg/L |   | 05/21/18 08:46 | 05/25/18 20:46 | 1       |
| Hexachlorobutadiene         | 0.050        | U         | 0.050       | 0.017  | mg/L |   | 05/21/18 08:46 | 05/25/18 20:46 | 1       |
| Hexachloroethane            | 0.022        | U         | 0.050       | 0.011  | mg/L |   | 05/21/18 08:46 | 05/25/18 20:46 | 1       |
| Nitrobenzene                | 0.010        | U         | 0.050       | 0.0041 | mg/L |   | 05/21/18 08:46 | 05/25/18 20:46 | 1       |
| Pentachlorophenol           | 0.20         | U         | 0.25        | 0.10   | mg/L |   | 05/21/18 08:46 | 05/25/18 20:46 | 1       |
| Pyridine                    | 0.022        | U         | 0.10        | 0.0057 | mg/L |   | 05/21/18 08:46 | 05/25/18 20:46 | 1       |
| 2,4,5-Trichlorophenol       | 0.0050       | UM        | 0.050       | 0.0022 | mg/L |   | 05/21/18 08:46 | 05/25/18 20:46 | 1       |
| 2,4,6-Trichlorophenol       | 0.0050       | UM        | 0.025       | 0.0014 | mg/L |   | 05/21/18 08:46 | 05/25/18 20:46 | 1       |
|                             |              |           |             |        | •    |   |                |                |         |

Lab Sample ID: 320-39023-57

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: IDW-KINGSLEY-WA-LDOS01

Lab Sample ID: 320-39023-58

Date Collected: 05/07/18 09:30 **Matrix: Water** Date Received: 05/08/18 09:00

| Surrogate                   | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|----------------|----------------|---------|
| 2-Fluorobiphenyl            | 68        |           | 49 - 120 | 05/21/18 08:46 | 05/25/18 20:46 | 1       |
| 2-Fluorophenol (Surr)       | 51        |           | 50 - 120 | 05/21/18 08:46 | 05/25/18 20:46 | 1       |
| 2,4,6-Tribromophenol (Surr) | 92        |           | 51 - 120 | 05/21/18 08:46 | 05/25/18 20:46 | 1       |
| Nitrobenzene-d5 (Surr)      | 56        |           | 51 - 120 | 05/21/18 08:46 | 05/25/18 20:46 | 1       |
| Phenol-d5 (Surr)            | 51        |           | 47 - 120 | 05/21/18 08:46 | 05/25/18 20:46 | 1       |
| Terphenyl-d14 (Surr)        | 90        |           | 56 - 120 | 05/21/18 08:46 | 05/25/18 20:46 | 1       |
| <u></u>                     |           |           |          |                |                |         |

Client Sample ID: KLA07-SD1-01D Lab Sample ID: 320-39023-59

Date Collected: 05/06/18 11:30 **Matrix: Solid** Percent Solids: 73.7 Date Received: 05/08/18 09:00

| Analyte                              | Result    | Qualifier | LOQ                 | DL    | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|---------------------|-------|-------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 0.12      | J         | 0.40                | 0.10  | ug/Kg | ☆ | 05/19/18 09:21 | 05/31/18 02:30 | 1       |
| Perfluorooctanoic acid (PFOA)        | 0.48      |           | 0.40                | 0.13  | ug/Kg | ☼ | 05/19/18 09:21 | 05/31/18 02:30 | 1       |
| Perfluorononanoic acid (PFNA)        | 0.27      | U         | 0.40                | 0.11  | ug/Kg | ☼ | 05/19/18 09:21 | 05/31/18 02:30 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.20      | J         | 0.54                | 0.079 | ug/Kg | ₩ | 05/19/18 09:21 | 05/31/18 02:30 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 2.1       |           | 0.40                | 0.083 | ug/Kg | * | 05/19/18 09:21 | 05/31/18 02:30 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 15        | J1 =      | 1.3                 | 0.32  | ug/Kg | ☼ | 05/19/18 09:21 | 05/31/18 02:30 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier | Limits              |       |       |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 73        |           | 50 - 150            |       |       |   | 05/19/18 09:21 | 05/31/18 02:30 | 1       |
| 13C4-PFHpA                           | 81        |           | 50 - 150            |       |       |   | 05/19/18 09:21 | 05/31/18 02:30 | 1       |
| 13C4 PFOA                            | 88        |           | 50 - 150            |       |       |   | 05/19/18 09:21 | 05/31/18 02:30 | 1       |
| 13C5 PFNA                            | 94        |           | 50 - 150            |       |       |   | 05/19/18 09:21 | 05/31/18 02:30 | 1       |
| 1802 PFHxS                           | 79        |           | 50 - 150            |       |       |   | 05/19/18 09:21 | 05/31/18 02:30 | 1       |
| 13C4 PFOS                            | 78        |           | 50 <sub>-</sub> 150 |       |       |   | 05/19/18 09:21 | 05/31/18 02:30 | 1       |

# APPENDIX E LABORATORY ANALYTICAL DATA REPORTS

THIS PAGE INTENTIONALLY LEFT BLANK.



#### **ANALYTICAL REPORT**

Job Number: 320-39023-1

Job Description: Phase III, ANG-Kingsley

For: Leidos, Inc. 11251 Roger Bacon Drive Reston, VA 20190

Attention: Selvam Arunachalam

Approved for release David R Alltucker Project Manager I 6/13/2018 2:08 PM

David R Alltucker, Project Manager I 880 Riverside Parkway, West Sacramento, CA, 95605 (916)374-4383 david.alltucker@testamericainc.com 06/13/2018



# **Table of Contents**

| Cover Title Page           | 1    |
|----------------------------|------|
| Data Summaries             | 5    |
| Definitions                | 5    |
| Case Narrative             | 6    |
| Detection Summary          | 10   |
| Client Sample Results      | 25   |
| Default Detection Limits   | 65   |
| Surrogate Summary          | 67   |
| Isotope Dilution Summary   | 69   |
| QC Sample Results          | 72   |
| QC Association             | 91   |
| Chronicle                  | 100  |
| Certification Summary      | 119  |
| Method Summary             | 120  |
| Sample Summary             | 121  |
| Manual Integration Summary | 123  |
| Reagent Traceability       | 166  |
| COAs                       | 294  |
| Organic Sample Data        | 906  |
| GC/MS VOA                  | 906  |
| Method 8260B               | 906  |
| Method 8260B QC Summary    | 907  |
| Method 8260B Sample Data   | 923  |
| Standards Data             | 931  |
| Method 8260B ICAL Data     | 931  |
| Method 8260B CCAL Data     | 1306 |

# **Table of Contents**

| Raw QC Data                   | 1386 |
|-------------------------------|------|
| Method 8260B Tune Data        | 1386 |
| Method 8260B Blank Data       | 1410 |
| Method 8260B LCS/LCSD Data    | 1424 |
| Method 8260B Run Logs         | 1436 |
| Method 8260B Prep Data        | 1473 |
| GC/MS Semi VOA                | 1515 |
| Method 8270 DOD               | 1515 |
| Method 8270 DOD QC Summary    | 1516 |
| Method 8270 DOD Sample Data   | 1526 |
| Standards Data                | 1542 |
| Method 8270 DOD ICAL Data     | 1542 |
| Method 8270 DOD CCAL Data     | 1693 |
| Raw QC Data                   | 1710 |
| Method 8270 DOD Tune Data     | 1710 |
| Method 8270 DOD Blank Data    | 1728 |
| Method 8270 DOD LCS/LCSD Data | 1746 |
| Method 8270 DOD MS/MSD Data   | 1756 |
| Method 8270 DOD Run Logs      | 1774 |
| Method 8270 DOD Prep Data     | 1779 |
| LCMS                          | 1805 |
| Method PFC DOD                | 1805 |
| Method PFC DOD QC Summary     | 1806 |
| Method PFC DOD Sample Data    | 1858 |
| Standards Data                | 2474 |
| Method PFC DOD ICAL Data      | 2474 |

# **Table of Contents**

| Method PFC DOD CCAL Data         | 2687 |
|----------------------------------|------|
| Raw QC Data                      | 3342 |
| Method PFC DOD Blank Data        | 3342 |
| Method PFC DOD LCS/LCSD Data     | 3526 |
| Method PFC DOD MS/MSD Data       | 3626 |
| Method PFC DOD Run Logs          | 3792 |
| Method PFC DOD Prep Data         | 3811 |
| Inorganic Sample Data            | 3831 |
| General Chemistry Data           | 3831 |
| Gen Chem Cover Page              | 3832 |
| Gen Chem MDL                     | 3833 |
| Gen Chem Analysis Run Log        | 3835 |
| Gen Chem Prep Data               | 3839 |
| Subcontracted Data               | 3844 |
| Shipping and Receiving Documents | 3845 |
| Client Chain of Custody          | 3846 |
| Sample Receipt Checklist         | 3860 |

## **Definitions/Glossary**

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

#### Qualifiers

#### **GC/MS VOA**

Qualifier Qualifier Description

Undetected at the Limit of Detection.

#### GC/MS Semi VOA

| Qualifier | Qualifier Description                 |
|-----------|---------------------------------------|
| U         | Undetected at the Limit of Detection. |
| M         | Manual integrated compound.           |

J Estimated: The analyte was positively identified; the quantitation is an estimation

#### **LCMS**

| Qualifier | Qualifier Description                                                                                                                                     |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| M         | Manual integrated compound.                                                                                                                               |
| J         | Estimated: The analyte was positively identified; the quantitation is an estimation                                                                       |
| E         | Result exceeded calibration range.                                                                                                                        |
| D         | The reported value is from a dilution.                                                                                                                    |
| U         | Undetected at the Limit of Detection.                                                                                                                     |
| J1        | Estimated: The quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.                           |
| Q         | One or more quality control criteria failed.                                                                                                              |
| 4         | MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable. |

#### **Glossary**

TEQ

Toxicity Equivalent Quotient (Dioxin)

| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |
|----------------|-------------------------------------------------------------------------------------------------------------|
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |
| %R             | Percent Recovery                                                                                            |
| CFL            | Contains Free Liquid                                                                                        |
| CNF            | Contains No Free Liquid                                                                                     |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                      |
| Dil Fac        | Dilution Factor                                                                                             |
| DL             | Detection Limit (DoD/DOE)                                                                                   |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |
| DLC            | Decision Level Concentration (Radiochemistry)                                                               |
| EDL            | Estimated Detection Limit (Dioxin)                                                                          |
| LOD            | Limit of Detection (DoD/DOE)                                                                                |
| LOQ            | Limit of Quantitation (DoD/DOE)                                                                             |
| MDA            | Minimum Detectable Activity (Radiochemistry)                                                                |
| MDC            | Minimum Detectable Concentration (Radiochemistry)                                                           |
| MDL            | Method Detection Limit                                                                                      |
| ML             | Minimum Level (Dioxin)                                                                                      |
| NC             | Not Calculated                                                                                              |
| ND             | Not Detected at the reporting limit (or MDL or EDL if shown)                                                |
| PQL            | Practical Quantitation Limit                                                                                |
| QC             | Quality Control                                                                                             |
| RER            | Relative Error Ratio (Radiochemistry)                                                                       |
| RL             | Reporting Limit or Requested Limit (Radiochemistry)                                                         |
| RPD            | Relative Percent Difference, a measure of the relative difference between two points                        |
| TEF            | Toxicity Equivalent Factor (Dioxin)                                                                         |

# Job Narrative 320-39023-1

#### Receipt

The samples were received on 5/8/2018 9:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.9° C.

#### **Receipt Exceptions**

The container label time for the following samples did not match the information listed on the Chain-of-Custody (COC): IDW-KINGSLEY-SO-LDOS01 (320-39023-57). The container time lists 09:40, while the COC lists 09:45.

Samples #33 and #55 were labeled the same, neither label had indication it was a Duplicate. The label that was hand written #55 was used as the duplicate sample. KLA05-SB1-01 (320-39023-33) and KLA05-SB1-01D (320-39023-55)

#### GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

#### **LCMS**

Method(s) 537 (modified), EPA 537 (Mod), EPA 537(Mod): The first level standard from the initial calibration curve is used to evaluate the tune criteria. The instrument mass windows are set at +/- 0.5amu; therefore, detection of the analyte serves as verification that the assigned mass is within +/- 0.5amu of the true value, which meets the DoD/DOE QSM tune criterion.

Method(s) EPA 537 (Mod): Isotope dilution analyte (IDA) recovery was outside acceptance limits for the following matrix spike (MS) sample: (320-38935-A-32-B MS). The parent sample's surrogate recovery was within limits. The MS sample has been qualified and reported.

Method(s) EPA 537 (Mod): The native sample, matrix spike, and matrix spike duplicate (MS/MSD) associated with preparation batch 320-223615 and analytical batch 320-225818 were performed at the same dilution. Due to the additional level of analyte present in the spiked samples, the concentration of Perfluorobutanesulfonic acid (PFBS), Perfluorohexanesulfonic acid (PFHxS), Perfluorohexanoic acid (PFHxA) and Perfluorooctanoic acid (PFOA) in the MS/MSD was above the instrument calibration range. The data have been reported and qualified.

Method(s) EPA 537 (Mod): Due to the high concentration of Perfluorobutanesulfonic acid (PFBS), Perfluorohexanesulfonic acid (PFHxS), Perfluorohexanoic acid (PFHxA) and Perfluoroctanoic acid (PFOA), the matrix spike / matrix spike duplicate (MS/MSD) for preparation batch 320-223615 and analytical batch 320-225818 could not be evaluated for accuracy and precision. The associated laboratory control sample (LCS) met acceptance criteria.

Method(s) EPA 537 (Mod): The matrix spike / matrix spike duplicate (MS/MSD) recoveries for multi analytes for preparation batch 320-223091 and analytical batch 320-227681 were outside control limits. Sample matrix interference are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method(s) EPA 537 (Mod): Due to the high concentration of Perfluorohexanesulfonic acid (PFHxS) and Perfluorooctanesulfonic acid (PFOS), the matrix spike / matrix spike duplicate (MS/MSD) for preparation batch 320-223091 and analytical batchs 320-227681 and 320-226044 could not be evaluated for accuracy and precision. The associated laboratory control sample (LCS) met acceptance criteria.

Method(s) EPA 537 (Mod): Due to the high concentration of several analytes, the matrix spike / matrix spike duplicate (MS/MSD) for preparation batch 320-224065 and analytical batch 320-226055 could not be evaluated for accuracy and precision. The associated laboratory control sample (LCS) met acceptance criteria.

Method(s) EPA 537 (Mod): Due to the high concentration of Perfluorooctanesulfonic acid (PFOS), the matrix spike / matrix spike duplicate (MS/MSD) for preparation batch 320-224254 and analytical batch 320-226343 could not be evaluated for accuracy and precision for this analyte. The associated laboratory control sample (LCS) met acceptance criteria.

Method(s) EPA 537 (Mod): The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 320-224065 and analytical batch 320-225820 were outside control limits for several analytes. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method(s) EPA 537 (Mod): The matrix spike duplicate (MSD) recovery for preparation batch 320-223092 and analytical batch 320-225899 was outside control limits for Perfluorooctanesulfonic acid (PFOS). Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method(s) EPA 537 (Mod): The concentration of Perfluorooctanesulfonic acid (PFOS) associated with the following samples exceeded the instrument calibration range: MW-KLA01-01-01 (320-39023-1), MW-KLA03-01-01 (320-39023-3), MW-572-02-PRL05-01 (320-39023-6) and MW-572-02-PRL05-01D (320-39023-49). This analyte has been qualified; however, the peaks did not saturate the instrument detector. A dilution was performed to bring the concentration of this analyte within instrument calibration range and both sets of data have been reported.

Method(s) EPA 537 (Mod): The concentration of several analytes associated with the following samples exceeded the instrument calibration range: MW-KLA02-01-01 (320-39023-2), MW-573-03-PRL05-01 (320-39023-5), MW-573-01 (320-39025-5), MW-573-01 (320-39025-5), MW-573-01 (320-39025-5), MW-5

MW-573-03-PRL05-01 (320-39023-5[MSD]) and MW-KLA06-01-01 (320-39023-7). These analytes have been qualified; however, the peaks did not saturate the instrument detector. A dilution was performed to bring the concentration of these analytes within instrument calibration range and both sets of data have been reported.

Method(s) EPA 537 (Mod): The concentration of Perfluorohexanesulfonic acid (PFHxS) associated with the following sample exceeded the instrument calibration range: MW-KLA04-01-01 (320-39023-4). This analyte has been qualified; however, the peak did not saturate the instrument detector. This sample has been diluted to bring the concentration of PFHxS within instrument calibration range and both sets of data have been reported.

Method(s) EPA 537 (Mod): The concentration of Perfluorohexanesulfonic acid (PFHxS) and Perfluorooctanesulfonic acid (PFOS) associated with the following samples exceeded the instrument calibration range: MW-573-03-PRL05-01 (320-39023-5), MW-573-03-PRL05-01 (320-39023-5[MS]), MW-573-03-PRL05-01 (320-39023-5[MSD]) and MW-KLA06-01-01 (320-39023-7). These analytes have been qualified; however, the peaks did not saturate the instrument detector. These samples have been analyzed at the maximum dilution of 100X and, by client request, were not diluted further to bring the concentration of these analytes within instrument calibration range. Historical data indicate that for the isotope dilution method, dilution and re-analysis will not produce significantly different results from those reported above the calibration range.

Method(s) EPA 537 (Mod): Results for samples KLA-01-SB1-01 (320-39023-9), KLA-01-SB1-02 (320-39023-10), KLA06-SB1-01 (320-39023-39), KLA06-SB1-02 (320-39023-40), KLA06-SB2-01 (320-39023-41), KLA06-SB2-01 (320-39023-41[MSD]), KLA06-SB2-02 (320-39023-42), KLA06-SB2-02 (320-39023-52) and KLA05-SB1-01D (320-39023-55) were reported from the analysis of a diluted extract due to high concentration of target analytes in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits

Method(s) EPA 537 (Mod): The concentration of Perfluorooctanesulfonic acid (PFOS) associated with the following samples exceeded the instrument calibration range: KLA-01-SB1-01 (320-39023-9), KLA-01-SB1-02 (320-39023-10), KLA06-SB1-01 (320-39023-39) and KLA06-SB1-02 (320-39023-40). This analyte has been qualified; however, the peaks did not saturate the instrument detector. These samples have been diluted to bring the concentration of PFOS within instrument calibration range and both sets of data have been reported.

Method(s) EPA 537 (Mod): Results for samples KLA02-SB2-01 (320-39023-17), KLA02-SB2-02 (320-39023-18), KLA02-SB3-01 (320-39023-19), KLA04-SB1-01 (320-39023-27), KLA04-SB1-02 (320-39023-28), KLA04-SB2-01 (320-39023-29), KLA04-SB2-02 (320-39023-30), KLA04-SB3-01 (320-39023-31), KLA04-SB3-02 (320-39023-32), KLA05-SB1-01 (320-39023-33), KLA05-SB2-01 (320-39023-35), KLA05-SB2-02 (320-39023-36), KLA05-SB3-01 (320-39023-37), KLA05-SB3-02 (320-39023-38) and KLA02-SB2-02D (320-39023-53) were reported from the analysis of a diluted extract due to high concentration of target analytes in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits

Method(s) EPA 537 (Mod): The concentration of Perfluorooctanesulfonic acid (PFOS) associated with the following samples exceeded the instrument calibration range: KLA02-SB2-01 (320-39023-17), KLA02-SB3-01 (320-39023-19), KLA04-SB1-01 (320-39023-27), KLA05-SB2-01 (320-39023-35), KLA05-SB2-02 (320-39023-36) and KLA05-SB3-02 (320-39023-38). This analyte has been qualified; however, the peaks did not saturate the instrument detector. These samples have been diluted to bring the concentration of target analytes within instrument calibration range and both sets of data have been reported.

Method(s) EPA 537 (Mod): The concentration of Perfluorohexanesulfonic acid (PFHxS) and Perfluorooctanesulfonic acid (PFOS) associated with the following samples exceeded the instrument calibration range: KLA02-SB2-02 (320-39023-18), KLA04-SB1-02 (320-39023-28), KLA04-SB3-01 (320-39023-31), KLA05-SB1-01 (320-39023-33) and KLA02-SB2-02D (320-39023-53). These analytes have been qualified; however, the peaks did not saturate the instrument detector. These samples have been diluted to bring the concentration of target analytes within instrument calibration range and both sets of data have been reported.

Method(s) EPA 537 (Mod): The concentration of Perfluorooctanesulfonic acid (PFOS) associated with the following samples exceeded the instrument calibration range: KLA04-SB1-02 (320-39023-28), KLA04-SB3-01 (320-39023-31), KLA05-SB3-01 (320-39023-37) and KLA05-SB3-02 (320-39023-38). This analyte has been qualified; however, the peak did not saturate the instrument detector. Historical data indicate that for the isotope dilution method, dilution and re-analysis will not produce significantly different results from those reported above the calibration range. The maximum dilution was performed. The client was contacted and permission was given to report with an "E" qualifier.

Method(s) EPA 537 (Mod): Results for samples KLA04-SB1-02 (320-39023-28) and KLA04-SB3-01 (320-39023-31) were reported from the analysis of a diluted extract due to high concentration of Perfluorooctanesulfonic acid (PFOS) in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits

Method(s) EPA 537 (Mod): The concentration of several analytes associated with the following samples exceeded the instrument calibration range: KLA04-SB2-01 (320-39023-29), KLA04-SB2-02 (320-39023-30), KLA04-SB3-02 (320-39023-32) and KLA05-SB3-01 (320-39023-37). These analytes have been qualified; however, the peaks did not saturate the instrument detector. These samples have been diluted to bring the concentration of target analytes within instrument calibration range and both sets of data have been reported.

Method(s) EPA 537 (Mod): The concentration of Perfluorohexanesulfonic acid (PFHxS) and Perfluorooctanesulfonic acid (PFOS) associated with the following samples exceeded the instrument calibration range: KLA06-SB2-01 (320-39023-41), KLA06-SB2-01 (320-39023-41[MSD]), KLA06-SB2-02 (320-39023-42), KLA06-SB2-02 (320-39023-52) and KLA05-SB1-01D (320-39023-55). These analytes have been qualified; however, the peaks did not saturate the instrument detector.

These samples have been diluted to bring the concentration of these analytes within instrument calibration range and both sets of data have been reported.

Method(s) EPA 537 (Mod): The Isotope Dilution Analyte (IDA) recovery associated with the following sample is below the method recommended limit for 13C4 PFOS and 18O2 PFHxS: (320-38935-A-32-B MS). Matrix interference is suspected because these samples were diluted due to high target analytes and the IDA recoveries in the analysis of the diluted extract were within method recommended limits. Both sets of data have been reported. Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample.

Method(s) EPA 537 (Mod): Internal standard (ISTD) responses for the following samples were outside control limits: MW-KLA02-01-01 (320-39023-2), MW-573-03-PRL05-01 (320-39023-5), MW-573-03-PRL05-01 (320-39023-5[MS]), MW-573-03-PRL05-01 (320-39023-5[MSD]) and MW-KLA06-01-01 (320-39023-7). Matrix interference is suspected because the samples were diluted to bring the concentrations of several target analytes within instrument calibration range and the ISTD responses in the analysis of the diluted extracts were within control limits.

Method(s) EPA 537 (Mod): The Isotope Dilution Analyte (IDA) recovery associated with the following samples is below the method recommended limit for 13C4-PFHpA and 13C4 PFOS: MW-573-03-PRL05-01 (320-39023-5), MW-573-03-PRL05-01 (320-39023-5[MSD]), MW-573-03-PRL05-01 (320-39023-5[MSD]) and MW-KLA06-01-01 (320-39023-7). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the samples.

Method(s) EPA 537 (Mod): The Isotope Dilution Analyte (IDA) recovery associated with the following sample is below the method recommended limit for several analytes: MW-KLA02-01-01 (320-39023-2). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample.

Method(s) EPA 537 (Mod): The Isotope Dilution Analyte (IDA) recovery associated with the following samples is below the method recommended limit for 13C4 PFOS: MW-KLA02-01-01 (320-39023-2) and MW-KLA06-01-01 (320-39023-7). Interference from the native analyte is suspected due to the high levels of PFOS in the sample. By client request, a larger dilution was not performed to bring the concentration of the target analyte within calibration range. Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample.

Method(s) EPA 537 (Mod): The Isotope Dilution Analyte (IDA) recovery associated with the following samples is below the method recommended limit for 13C4 PFOS: KLA-01-SB1-01 (320-39023-9), KLA06-SB2-01 (320-39023-41[MS]), KLA06-SB2-01 (320-39023-41[MSD]), KLA06-SB2-02 (320-39023-42) and KLA06-SB2-02D (320-39023-52). Matrix interference is suspected because these samples were diluted due to high targets and the IDA recoveries associated with the diluted extracts were within method recommended limits. Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the samples.

Method(s) EPA 537 (Mod): The Isotope Dilution Analyte (IDA) recovery associated with the following samples is below the method recommended limit for 13C5 PFNA: KLA06-SB2-01 (320-39023-41[MS]), KLA06-SB2-01 (320-39023-41[MSD]) and KLA06-SB2-02 (320-39023-42). Sample matrix interference is suspected because the samples were diluted due to high targets and the IDA recoveries associated with the diluted extracts are within the method recommended limits. Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the samples.

Method(s) EPA 537 (Mod): The Isotope Dilution Analyte (IDA) recovery associated with the following samples is below the method recommended limit for 13C5 PFNA and 13C4 PFOS: KLA04-SB1-01 (320-39023-27), KLA04-SB1-02 (320-39023-28), KLA04-SB2-01 (320-39023-29) and KLA04-SB3-01 (320-39023-31). Sample matrix interference is suspected because these samples were diluted to bring the concentration of target analytes within instrument calibration range and IDA recoveries in the diluted extracts were within method recommended limits. Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the samples.

Method(s) EPA 537 (Mod): The Isotope Dilution Analyte (IDA) recovery associated with the following samples is below the method recommended limit for 13C4 PFOS: KLA04-SB2-02 (320-39023-30), KLA04-SB3-02 (320-39023-32) and KLA05-SB3-02 (320-39023-38). Sample matrix interference is suspected because these samples were diluted to bring the concentration of target analytes within instrument calibration range and IDA recoveries in the diluted extracts were within method recommended limits. Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the samples.

Method(s) EPA 537 (Mod): The Isotope Dilution Analyte (IDA) recovery associated with the following sample is below the method recommended limit for several analytes: KLA05-SB3-01 (320-39023-37). Sample matrix interference is suspected because this sample was diluted to bring the concentration of target analytes within instrument calibration range and IDA recoveries in the diluted extract were within method recommended limits. Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **Organic Prep**

Method(s) 3535: The following sample: MW-KLA01-01-01 (320-39023-1), MW-KLA02-01-01 (320-39023-2), MW-KLA03-01-01 (320-39023-3), MW-KLA04-01-01 (320-39023-4) and MW-KLA06-01-01 (320-39023-7) in preparation batch 320-224065 was observed to be a yellow color prior to extraction.

Method(s) 3535: The following samples: MW-KLA01-01-01 (320-39023-1), MW-KLA02-01-01 (320-39023-2), MW-KLA03-01-01 (320-39023-3), MW-KLA04-01-01 (320-39023-4) and MW-KLA06-01-01 (320-39023-7) in preparation batch 320-224065 were centrifuged prior to preparation due to having sediment present, which could potentially clog the solid-phase column.

Method(s) 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-224509.

Method(s) 3535: The following samples: KLA08-SW1-01 (320-39023-8) in preparation batch 320-224509 were observed to be a yellow color prior to extraction.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

TestAmerica Job ID: 320-39023-1

### Client Sample ID: MW-KLA01-01-01

## Lab Sample ID: 320-39023-1

| Analyte                                     | Result | Qualifier | LOQ | DL   | Unit | Dil Fac | D | Method        | Prep Type |
|---------------------------------------------|--------|-----------|-----|------|------|---------|---|---------------|-----------|
| Perfluoroheptanoic acid (PFHpA)             | 7.6    |           | 1.9 | 0.59 | ng/L | 1       | _ | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA)               | 20     |           | 1.9 | 0.52 | ng/L | 1       |   | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA)               | 0.56   | J M       | 1.9 | 0.50 | ng/L | 1       |   | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)         | 39     | M         | 1.9 | 0.44 | ng/L | 1       |   | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS)        | 220    |           | 1.9 | 0.37 | ng/L | 1       |   | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)         | 510    | E         | 3.9 | 1.1  | ng/L | 1       |   | EPA 537 (Mod) | Total/NA  |
| Perfluoroheptanoic acid (PFHpA) - DL        | 7.5    | JD        | 9.7 | 2.9  | ng/L | 5       |   | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA) - DL          | 22     | D         | 9.7 | 2.6  | ng/L | 5       |   | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS) - DL    | 40     | D M       | 9.7 | 2.2  | ng/L | 5       |   | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL   | 230    | D         | 9.7 | 1.8  | ng/L | 5       |   | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) -<br>DL | 500    | D         | 19  | 5.3  | ng/L | 5       |   | EPA 537 (Mod) | Total/NA  |

## Client Sample ID: MW-KLA02-01-01

## Lab Sample ID: 320-39023-2

| Analyte                                   | Result | Qualifier | LOQ | DL   | Unit | Dil Fac | D | Method        | Prep Type |
|-------------------------------------------|--------|-----------|-----|------|------|---------|---|---------------|-----------|
| Perfluoroheptanoic acid (PFHpA)           | 7300   | E         | 1.8 | 0.55 | ng/L | 1       | _ | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA)             | 13000  | EM        | 1.8 | 0.49 | ng/L | 1       |   | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA)             | 340    | M         | 1.8 | 0.47 | ng/L | 1       |   | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)       | 1500   | ΕM        | 1.8 | 0.42 | ng/L | 1       |   | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS)      | 14000  | EM        | 1.8 | 0.34 | ng/L | 1       |   | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)       | 88000  | EM        | 3.6 | 1.0  | ng/L | 1       |   | EPA 537 (Mod) | Total/NA  |
| Perfluoroheptanoic acid (PFHpA) - DL      | 7700   | D         | 180 | 55   | ng/L | 100     |   | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA) - DL        | 21000  | D         | 180 | 49   | ng/L | 100     |   | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA) - DL        | 340    | D M       | 180 | 47   | ng/L | 100     |   | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS) - DL  | 9700   | D         | 180 | 42   | ng/L | 100     |   | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL | 66000  | ED        | 180 | 34   | ng/L | 100     |   | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) - DL  | 380000 | ED        | 360 | 100  | ng/L | 100     |   | EPA 537 (Mod) | Total/NA  |

### Client Sample ID: MW-KLA03-01-01

### Lab Sample ID: 320-39023-3

| Analyte                                   | Result | Qualifier | LOQ | DL   | Unit | Dil Fac D | Method        | Prep Type |
|-------------------------------------------|--------|-----------|-----|------|------|-----------|---------------|-----------|
| Perfluoroheptanoic acid (PFHpA)           | 200    |           | 2.0 | 0.61 | ng/L |           | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA)             | 290    |           | 2.0 | 0.54 | ng/L | 1         | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA)             | 16     | M         | 2.0 | 0.52 | ng/L | 1         | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)       | 180    |           | 2.0 | 0.46 | ng/L | 1         | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS)      | 1800   | E         | 2.0 | 0.38 | ng/L | 1         | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)       | 5200   | E         | 4.0 | 1.1  | ng/L | 1         | EPA 537 (Mod) | Total/NA  |
| Perfluoroheptanoic acid (PFHpA) - DL      | 190    | D         | 100 | 30   | ng/L | 50        | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA) - DL        | 300    | D         | 100 | 27   | ng/L | 50        | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS) - DL  | 170    | D         | 100 | 23   | ng/L | 50        | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL | 2700   | D         | 100 | 19   | ng/L | 50        | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) -     | 6100   | D M       | 200 | 55   | ng/L | 50        | EPA 537 (Mod) | Total/NA  |

Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: MW-KLA04-01-01

### Lab Sample ID: 320-39023-4

TestAmerica Job ID: 320-39023-1

| Analyte                                   | Result | Qualifier | LOQ | DL   | Unit | Dil Fac | D | Method        | Prep Type |
|-------------------------------------------|--------|-----------|-----|------|------|---------|---|---------------|-----------|
| Perfluoroheptanoic acid (PFHpA)           | 27     |           | 2.0 | 0.60 | ng/L | 1       | _ | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA)             | 41     |           | 2.0 | 0.53 | ng/L | 1       |   | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)       | 96     |           | 2.0 | 0.45 | ng/L | 1       |   | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS)      | 610    | E         | 2.0 | 0.38 | ng/L | 1       |   | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)       | 100    |           | 4.0 | 1.1  | ng/L | 1       |   | EPA 537 (Mod) | Total/NA  |
| Perfluoroheptanoic acid (PFHpA) - DL      | 31     | D         | 9.9 | 3.0  | ng/L | 5       |   | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA) - DL        | 43     | D         | 9.9 | 2.7  | ng/L | 5       |   | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS) - DL  | 95     | D         | 9.9 | 2.3  | ng/L | 5       |   | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL | 690    | D         | 9.9 | 1.9  | ng/L | 5       |   | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) - DL  | 100    | D         | 20  | 5.4  | ng/L | 5       |   | EPA 537 (Mod) | Total/NA  |

## Client Sample ID: MW-573-03-PRL05-01

### Lab Sample ID: 320-39023-5

| Analyte                                   | Result | Qualifier | LOQ | DL   | Unit | Dil Fac D | Method        | Prep Type |
|-------------------------------------------|--------|-----------|-----|------|------|-----------|---------------|-----------|
| Perfluoroheptanoic acid (PFHpA)           | 4400   | E J1      | 2.0 | 0.60 | ng/L |           | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA)             | 4700   | E J1      | 2.0 | 0.54 | ng/L | 1         | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA)             | 200    | J1        | 2.0 | 0.52 | ng/L | 1         | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)       | 1900   | E J1 M    | 2.0 | 0.46 | ng/L | 1         | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS)      | 12000  | E J1      | 2.0 | 0.38 | ng/L | 1         | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)       | 32000  | J1 E M    | 4.0 | 1.1  | ng/L | 1         | EPA 537 (Mod) | Total/NA  |
| Perfluoroheptanoic acid (PFHpA) - DL      | 5100   | J1 D      | 200 | 60   | ng/L | 100       | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA) - DL        | 6700   | J1 D      | 200 | 54   | ng/L | 100       | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA) - DL        | 190    | J J1 D M  | 200 | 52   | ng/L | 100       | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS) - DL  | 3900   | J1 D      | 200 | 46   | ng/L | 100       | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL | 39000  | E J1 D    | 200 | 38   | ng/L | 100       | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) - DL  | 63000  | J1 E D    | 400 | 110  | ng/L | 100       | EPA 537 (Mod) | Total/NA  |

## Client Sample ID: MW-572-02-PRL05-01

## Lab Sample ID: 320-39023-6

| Analyte                                   | Result | Qualifier | LOQ | DL   | Unit | Dil Fac | O Method      | Prep Type |
|-------------------------------------------|--------|-----------|-----|------|------|---------|---------------|-----------|
| Perfluoroheptanoic acid (PFHpA)           | 25     |           | 1.9 | 0.57 | ng/L |         | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA)             | 56     |           | 1.9 | 0.51 | ng/L | 1       | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA)             | 3.8    |           | 1.9 | 0.49 | ng/L | 1       | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)       | 27     |           | 1.9 | 0.43 | ng/L | 1       | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS)      | 360    | E         | 1.9 | 0.36 | ng/L | 1       | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)       | 1100   | EM        | 3.8 | 1.0  | ng/L | 1       | EPA 537 (Mod) | Total/NA  |
| Perfluoroheptanoic acid (PFHpA) - DL      | 23     | D         | 19  | 5.7  | ng/L | 10      | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA) - DL        | 55     | D         | 19  | 5.1  | ng/L | 10      | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS) - DL  | 27     | D         | 19  | 4.3  | ng/L | 10      | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL | 360    | D         | 19  | 3.6  | ng/L | 10      | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) - DI  | 1100   | D         | 38  | 10   | ng/L | 10      | EPA 537 (Mod) | Total/NA  |

## Client Sample ID: MW-KLA06-01-01

Lab Sample ID: 320-39023-7

This Detection Summary does not include radiochemical test results.

TestAmerica Sacramento

Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

TestAmerica Job ID: 320-39023-1

### Client Sample ID: MW-KLA06-01-01 (Continued)

## Lab Sample ID: 320-39023-7

| Analyte                                      | Result | Qualifier | LOQ | DL   | Unit | Dil Fac | D Method      | Prep Type |
|----------------------------------------------|--------|-----------|-----|------|------|---------|---------------|-----------|
| Perfluoroheptanoic acid (PFHpA)              | 6100   | E         | 1.9 | 0.59 | ng/L | 1       | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA)                | 11000  | EM        | 1.9 | 0.52 | ng/L | 1       | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA)                | 500    | EM        | 1.9 | 0.50 | ng/L | 1       | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)          | 1600   | E         | 1.9 | 0.45 | ng/L | 1       | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS)         | 17000  | EM        | 1.9 | 0.37 | ng/L | 1       | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)          | 57000  | E         | 3.9 | 1.1  | ng/L | 1       | EPA 537 (Mod) | Total/NA  |
| Perfluoroheptanoic acid (PFHpA) -<br>DL2     | 5400   | D         | 190 | 59   | ng/L | 100     | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA) - DL2          | 14000  | D         | 190 | 52   | ng/L | 100     | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA) - DL2          | 490    | D         | 190 | 50   | ng/L | 100     | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS) - DL2    | 7900   | D         | 190 | 45   | ng/L | 100     | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL2   | 68000  | ED        | 190 | 37   | ng/L | 100     | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) -<br>DL2 | 130000 | ED        | 390 | 110  | ng/L | 100     | EPA 537 (Mod) | Total/NA  |

## Client Sample ID: KLA08-SW1-01

### Lab Sample ID: 320-39023-8

| Analyte                              | Result | Qualifier | LOQ | DL   | Unit | Dil Fac | D | Method        | Prep Type |
|--------------------------------------|--------|-----------|-----|------|------|---------|---|---------------|-----------|
| Perfluoroheptanoic acid (PFHpA)      | 1.5    | JM        | 1.9 | 0.58 | ng/L | 1       | _ | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA)        | 1.8    | J M       | 1.9 | 0.52 | ng/L | 1       |   | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA)        | 0.95   | J M       | 1.9 | 0.50 | ng/L | 1       |   | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) | 3.7    | M         | 1.9 | 0.36 | ng/L | 1       |   | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)  | 28     | M         | 3.8 | 1.1  | ng/L | 1       |   | EPA 537 (Mod) | Total/NA  |

### Client Sample ID: KLA-01-SB1-01

## Lab Sample ID: 320-39023-9

| Analyte                                   | Result | Qualifier | LOQ  | DL    | Unit  | Dil Fac | D            | Method        | Prep Type |
|-------------------------------------------|--------|-----------|------|-------|-------|---------|--------------|---------------|-----------|
| Perfluoroheptanoic acid (PFHpA)           | 0.38   |           | 0.38 | 0.098 | ug/Kg | 1       | <del>\</del> | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA)             | 3.9    |           | 0.38 | 0.13  | ug/Kg | 1       | ₩            | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)       | 0.31   | J         | 0.50 | 0.074 | ug/Kg | 1       | ₩            | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS)      | 18     |           | 0.38 | 0.078 | ug/Kg | 1       | т.<br>Д      | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)       | 240    | E         | 1.3  | 0.30  | ug/Kg | 1       | ₩            | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA) - DL        | 3.9    | JDM       | 7.5  | 2.5   | ug/Kg | 20      | ₩            | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL | 17     | D         | 7.5  | 1.6   | ug/Kg | 20      | ₩            | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) -     | 430    | D         | 25   | 6.0   | ug/Kg | 20      | ₩            | EPA 537 (Mod) | Total/NA  |

### Client Sample ID: KLA-01-SB1-02

### Lab Sample ID: 320-39023-10

| Analyte                                   | Result | Qualifier | LOQ  | DL    | Unit  | Dil Fac | D  | Method        | Prep Type |
|-------------------------------------------|--------|-----------|------|-------|-------|---------|----|---------------|-----------|
| Perfluoroheptanoic acid (PFHpA)           | 0.32   | J         | 0.38 | 0.10  | ug/Kg |         | \$ | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA)             | 1.0    |           | 0.38 | 0.13  | ug/Kg | 1       | ₩  | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)       | 0.31   | J         | 0.51 | 0.075 | ug/Kg | 1       | ₽  | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS)      | 9.1    |           | 0.38 | 0.079 | ug/Kg | 1       |    | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)       | 150    | E         | 1.3  | 0.31  | ug/Kg | 1       | ₽  | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL | 9.1    | D         | 7.7  | 1.6   | ug/Kg | 20      | ₽  | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) -     | 210    | D         | 26   | 6.1   | ug/Kg | 20      | ₽  | EPA 537 (Mod) | Total/NA  |

Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

TestAmerica Job ID: 320-39023-1

| Client Sample ID: KLA-01-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B2-01                                                                                       |                                         |                                                                                                         |                                                                                                                      |                                                                        | Lab Sa                                                                                                                                                                                                                               | am                                      | ple ID: 320                                                                                                                                                                                                                                                                                                  | -39023-1                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| _<br>Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Result                                                                                      | Qualifier                               | LOQ                                                                                                     | DL                                                                                                                   | Unit                                                                   |                                                                                                                                                                                                                                      |                                         | Method                                                                                                                                                                                                                                                                                                       | Prep Type                                                                                                                                                                                                |
| Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.30                                                                                        | J                                       | 0.34                                                                                                    | 0.11                                                                                                                 | ug/Kg                                                                  | 1                                                                                                                                                                                                                                    | \$                                      | EPA 537 (Mod)                                                                                                                                                                                                                                                                                                | Total/NA                                                                                                                                                                                                 |
| Perfluorobutanesulfonic acid (PFBS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.072                                                                                       | J                                       | 0.45                                                                                                    | 0.066                                                                                                                | ug/Kg                                                                  | 1                                                                                                                                                                                                                                    | ₽                                       | EPA 537 (Mod)                                                                                                                                                                                                                                                                                                | Total/NA                                                                                                                                                                                                 |
| Perfluorohexanesulfonic acid (PFHxS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.5                                                                                         |                                         | 0.34                                                                                                    | 0.070                                                                                                                | ug/Kg                                                                  | 1                                                                                                                                                                                                                                    | ₩                                       | EPA 537 (Mod)                                                                                                                                                                                                                                                                                                | Total/NA                                                                                                                                                                                                 |
| Perfluorooctanesulfonic acid (PFOS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.7                                                                                         |                                         | 1.1                                                                                                     | 0.27                                                                                                                 | ug/Kg                                                                  | 1                                                                                                                                                                                                                                    | ₩.                                      | EPA 537 (Mod)                                                                                                                                                                                                                                                                                                | Total/NA                                                                                                                                                                                                 |
| Client Sample ID: KLA-01-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B2-02                                                                                       |                                         |                                                                                                         |                                                                                                                      |                                                                        | Lab Sa                                                                                                                                                                                                                               | am                                      | ple ID: 320                                                                                                                                                                                                                                                                                                  | -39023-1                                                                                                                                                                                                 |
| _<br>Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Result                                                                                      | Qualifier                               | LOQ                                                                                                     | DL                                                                                                                   | Unit                                                                   | Dil Fac                                                                                                                                                                                                                              | D                                       | Method                                                                                                                                                                                                                                                                                                       | Prep Type                                                                                                                                                                                                |
| Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.14                                                                                        | J                                       | 0.39                                                                                                    | 0.10                                                                                                                 | ug/Kg                                                                  | 1                                                                                                                                                                                                                                    | ₩                                       | EPA 537 (Mod)                                                                                                                                                                                                                                                                                                | Total/NA                                                                                                                                                                                                 |
| Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.39                                                                                        |                                         | 0.39                                                                                                    | 0.13                                                                                                                 | ug/Kg                                                                  |                                                                                                                                                                                                                                      |                                         | EPA 537 (Mod)                                                                                                                                                                                                                                                                                                | Total/NA                                                                                                                                                                                                 |
| Perfluorobutanesulfonic acid (PFBS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.15                                                                                        | J                                       | 0.52                                                                                                    | 0.077                                                                                                                | ug/Kg                                                                  | 1                                                                                                                                                                                                                                    | ₩                                       | EPA 537 (Mod)                                                                                                                                                                                                                                                                                                | Total/NA                                                                                                                                                                                                 |
| Perfluorohexanesulfonic acid (PFHxS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.4                                                                                         |                                         | 0.39                                                                                                    | 0.081                                                                                                                | ug/Kg                                                                  | 1                                                                                                                                                                                                                                    | <b></b>                                 | EPA 537 (Mod)                                                                                                                                                                                                                                                                                                | Total/NA                                                                                                                                                                                                 |
| Perfluorooctanesulfonic acid (PFOS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.2                                                                                         | М                                       | 1.3                                                                                                     |                                                                                                                      | ug/Kg                                                                  | 1                                                                                                                                                                                                                                    | ₩                                       | EPA 537 (Mod)                                                                                                                                                                                                                                                                                                | Total/NA                                                                                                                                                                                                 |
| Client Sample ID: KLA-01-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B3-01                                                                                       |                                         |                                                                                                         |                                                                                                                      |                                                                        | Lab Sa                                                                                                                                                                                                                               | am                                      | ple ID: 320                                                                                                                                                                                                                                                                                                  | -39023-1                                                                                                                                                                                                 |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Result                                                                                      | Qualifier                               | LOQ                                                                                                     | DL                                                                                                                   | Unit                                                                   | Dil Fac                                                                                                                                                                                                                              | D                                       | Method                                                                                                                                                                                                                                                                                                       | Prep Type                                                                                                                                                                                                |
| Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.22                                                                                        |                                         | 0.38                                                                                                    | 0.13                                                                                                                 | ug/Kg                                                                  |                                                                                                                                                                                                                                      |                                         | EPA 537 (Mod)                                                                                                                                                                                                                                                                                                | Total/NA                                                                                                                                                                                                 |
| Perfluorobutanesulfonic acid (PFBS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.13                                                                                        |                                         | 0.51                                                                                                    |                                                                                                                      | ug/Kg                                                                  |                                                                                                                                                                                                                                      |                                         | EPA 537 (Mod)                                                                                                                                                                                                                                                                                                | Total/NA                                                                                                                                                                                                 |
| Perfluorohexanesulfonic acid (PFHxS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.3                                                                                         |                                         | 0.38                                                                                                    |                                                                                                                      | ug/Kg                                                                  | 1                                                                                                                                                                                                                                    |                                         | EPA 537 (Mod)                                                                                                                                                                                                                                                                                                | Total/NA                                                                                                                                                                                                 |
| Perfluorooctanesulfonic acid (PFOS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                          |                                         | 1.3                                                                                                     |                                                                                                                      | ug/Kg                                                                  |                                                                                                                                                                                                                                      |                                         | EPA 537 (Mod)                                                                                                                                                                                                                                                                                                | Total/NA                                                                                                                                                                                                 |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             |                                         | 1.5                                                                                                     |                                                                                                                      |                                                                        | Lab Sa                                                                                                                                                                                                                               |                                         | ple ID: 320                                                                                                                                                                                                                                                                                                  | -39023-1                                                                                                                                                                                                 |
| Client Sample ID: KLA-01-S  Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B3-02<br>Result                                                                             | Qualifier                               | LOQ                                                                                                     | DL                                                                                                                   | Unit                                                                   | Dil Fac                                                                                                                                                                                                                              | an<br>D                                 | nple ID: 320                                                                                                                                                                                                                                                                                                 | Prep Type                                                                                                                                                                                                |
| Client Sample ID: KLA-01-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B3-02                                                                                       | J                                       |                                                                                                         | <b>DL</b> 0.078                                                                                                      |                                                                        | Dil Fac                                                                                                                                                                                                                              | am<br>D<br>≅                            | ple ID: 320                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                          |
| Client Sample ID: KLA-01-S  Analyte Perfluorohexanesulfonic acid (PFHxS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Result 0.32 1.1                                                                             | J                                       | LOQ<br>0.38                                                                                             | <b>DL</b> 0.078                                                                                                      | Unit<br>ug/Kg                                                          | Dil Fac                                                                                                                                                                                                                              | D                                       | Method<br>EPA 537 (Mod)                                                                                                                                                                                                                                                                                      | Prep Type<br>Total/NA<br>Total/NA                                                                                                                                                                        |
| Analyte Perfluoronexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Result<br>0.32<br>1.1                                                                       | J                                       | LOQ<br>0.38                                                                                             | <b>DL</b><br>0.078<br>0.30                                                                                           | Unit<br>ug/Kg                                                          | Dil Fac 1 1 1 Lab Sa                                                                                                                                                                                                                 | am<br>D<br>©                            | Method<br>EPA 537 (Mod)<br>EPA 537 (Mod)                                                                                                                                                                                                                                                                     | Prep Type Total/NA Total/NA -39023-1                                                                                                                                                                     |
| Analyte Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS)  Client Sample ID: KLA02-SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Result<br>0.32<br>1.1                                                                       | J<br>J<br>Qualifier                     | LOQ<br>0.38<br>1.3                                                                                      | 0.078<br>0.30                                                                                                        | Unit<br>ug/Kg<br>ug/Kg                                                 | Dil Fac 1 1 Lab Sa                                                                                                                                                                                                                   | am<br>D = x                             | Method<br>EPA 537 (Mod)<br>EPA 537 (Mod)                                                                                                                                                                                                                                                                     | Prep Type Total/NA Total/NA -39023-1                                                                                                                                                                     |
| Analyte Perfluorooctanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS)  Client Sample ID: KLA02-SE Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Result 0.32 1.1  31-01  Result                                                              | J<br>J<br>Qualifier                     | 0.38<br>1.3                                                                                             | DL<br>0.078<br>0.30<br>DL<br>0.10                                                                                    | Unit<br>ug/Kg<br>ug/Kg                                                 | Dil Fac  Lab Sa  Dil Fac  Dil Fac                                                                                                                                                                                                    | D &                                     | Method EPA 537 (Mod) EPA 537 (Mod) Mple ID: 320 Method                                                                                                                                                                                                                                                       | Prep Type Total/NA Total/NA -39023-1                                                                                                                                                                     |
| Analyte Perfluorooctanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS)  Client Sample ID: KLA02-SE  Analyte Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                                                                                                                                                                                                                             | Result 0.32 1.1  31-01  Result 0.16                                                         | J<br>J<br>Qualifier<br>J                | LOQ<br>0.38<br>1.3                                                                                      | DL<br>0.078<br>0.30<br>DL<br>0.10<br>0.13                                                                            | Unit ug/Kg ug/Kg                                                       | Dil Fac   1   1     Lab Sa                                                                                                                                                                                                           |                                         | Method EPA 537 (Mod) EPA 537 (Mod)  Method EPA 537 (Mod)  Method EPA 537 (Mod)                                                                                                                                                                                                                               | Prep Type Total/NA Total/NA -39023-1 Prep Type Total/NA                                                                                                                                                  |
| Analyte Perfluoronexanesulfonic acid (PFHxS) Perfluoroctanesulfonic acid (PFOS)  Client Sample ID: KLA02-SE  Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                                                                                                                                                                                                | Result 0.32 1.1  81-01  Result 0.16 0.46                                                    | J<br>J<br>Qualifier<br>J                | LOQ<br>0.38<br>1.3<br>LOQ<br>0.39<br>0.39                                                               | DL<br>0.078<br>0.30<br>DL<br>0.10<br>0.13<br>0.077                                                                   | Unit ug/Kg ug/Kg  Unit ug/Kg ug/Kg                                     | Dil Fac  1 1 Lab Sa  Dil Fac 1 1 1 1 1 1                                                                                                                                                                                             | D & &                                   | Method EPA 537 (Mod) EPA 537 (Mod)  Method EPA 537 (Mod) EPA 537 (Mod) EPA 537 (Mod) EPA 537 (Mod)                                                                                                                                                                                                           | Prep Type Total/NA Total/NA  -39023-1  Prep Type Total/NA Total/NA                                                                                                                                       |
| Analyte Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS)  Client Sample ID: KLA02-SE  Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS)                                                                                                                                                                                                                                                                                                                                                                           | Result 0.32 1.1  31-01  Result 0.16 0.46 0.25                                               | Qualifier J M J                         | LOQ<br>0.38<br>1.3<br>LOQ<br>0.39<br>0.39<br>0.52                                                       | DL<br>0.078<br>0.30<br>DL<br>0.10<br>0.13<br>0.077<br>0.081                                                          | Unit ug/Kg ug/Kg  Unit ug/Kg ug/Kg ug/Kg ug/Kg                         | Dil Fac  1 1 1 Lab Sa  Dil Fac 1 1 1 1 1                                                                                                                                                                                             | D & & & & & & & & & & & & & & & & & & & | Method EPA 537 (Mod) EPA 537 (Mod)  Method EPA 537 (Mod)                                                                                                                                                                                             | Prep Type Total/NA Total/NA  -39023-1 Prep Type Total/NA Total/NA Total/NA                                                                                                                               |
| Analyte Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS)  Client Sample ID: KLA02-SE  Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS)                                                                                                                                                                                                                                                                                                                                      | Result 0.32 1.1  31-01  Result 0.16 0.46 0.25 2.6 7.6                                       | Qualifier J M J                         | LOQ<br>0.38<br>1.3<br>LOQ<br>0.39<br>0.39<br>0.52<br>0.39                                               | DL<br>0.078<br>0.30<br>DL<br>0.10<br>0.13<br>0.077<br>0.081                                                          | Unit ug/Kg ug/Kg  Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg                   | Dil Fac  Dil Fac  Dil Fac  1  1  1  1  1  1                                                                                                                                                                                          |                                         | Method EPA 537 (Mod) EPA 537 (Mod)  Method EPA 537 (Mod)                                                                                                                                                                 | Prep Type Total/NA Total/NA -39023-1 Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA                                                                                                              |
| Analyte Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS)  Client Sample ID: KLA02-SE  Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFHpA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanosulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS)                                                                                                                                                                                                                                                            | Result 0.32 1.1  31-01  Result 0.16 0.46 0.25 2.6 7.6                                       | Qualifier J M J                         | LOQ<br>0.38<br>1.3<br>LOQ<br>0.39<br>0.39<br>0.52<br>0.39                                               | DL<br>0.078<br>0.30<br>DL<br>0.10<br>0.13<br>0.077<br>0.081<br>0.31                                                  | Unit ug/Kg ug/Kg  Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg                   | Dil Fac  1 1 Lab Sa  Dil Fac 1 1 1 1 1 Lab Sa                                                                                                                                                                                        |                                         | Method EPA 537 (Mod)                                                                                                                                             | Prep Type Total/NA Total/NA  -39023-1 Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA                                                                                                    |
| Analyte Perfluoronexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS)  Client Sample ID: KLA02-SE  Analyte Perfluorooctanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorobexanesulfonic acid (PFHxS) Perfluorooctanoic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS)  Client Sample ID: KLA02-SE                                                                                                                                                                                                                                        | Result 0.32 1.1  31-01  Result 0.16 0.46 0.25 2.6 7.6                                       | Qualifier J M J J1                      | LOQ<br>0.38<br>1.3<br>LOQ<br>0.39<br>0.39<br>0.52<br>0.39<br>1.3                                        | DL<br>0.078<br>0.30<br>DL<br>0.10<br>0.13<br>0.077<br>0.081<br>0.31                                                  | Unit ug/Kg ug/Kg  Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg             | Dil Fac  Dil Fac  Dil Fac  1  1  Lab Sa  Dil Fac  Dil Fac  Dil Fac  Dil Fac                                                                                                                                                          |                                         | Method EPA 537 (Mod) EPA 537 (Mod) EPA 537 (Mod)  Method EPA 537 (Mod)                                                                                                                                     | Prep Type Total/NA Total/NA  -39023-1 Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA                                                                                                    |
| Analyte Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS)  Client Sample ID: KLA02-SE  Analyte Perfluoroheptanoic acid (PFHpA) Perfluoroheptanoic acid (PFHpA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS)  Client Sample ID: KLA02-SE  Analyte                                                                                                                                                                                                                                                           | Result 0.32 1.1  31-01  Result 0.16 0.46 0.25 2.6 7.6  31-02  Result                        | Qualifier J J  Qualifier J  Qualifier J | LOQ<br>0.38<br>1.3<br>LOQ<br>0.39<br>0.39<br>0.52<br>0.39<br>1.3                                        | DL<br>0.078<br>0.30<br>DL<br>0.10<br>0.13<br>0.077<br>0.081<br>0.31                                                  | Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg                   | Dil Fac  Dil Fac  1  Lab Sa  Dil Fac  1  1  1  Dil Fac  Dil Fac  Dil Fac  Dil Fac                                                                                                                                                    |                                         | Method EPA 537 (Mod) EPA 537 (Mod) EPA 537 (Mod)  Method EPA 537 (Mod)                                                                                           | Prep Type Total/NA Total/NA  Prep Type Total/NA                                                                |
| Analyte Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS)  Client Sample ID: KLA02-SE  Analyte Perfluorooctanoic acid (PFHpA) Perfluoroheptanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS)  Client Sample ID: KLA02-SE  Analyte Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                             | Result 0.32 1.1  31-01  Result 0.46 0.25 2.6 7.6  31-02  Result 0.18                        | Qualifier J J1  Qualifier J J M         | LOQ<br>0.38<br>1.3<br>LOQ<br>0.39<br>0.39<br>0.52<br>0.39<br>1.3                                        | DL<br>0.078<br>0.30<br>DL<br>0.10<br>0.077<br>0.081<br>0.31<br>DL<br>0.095<br>0.12                                   | Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg                   | Dil Fac  Dil Fac  1  Lab Sa  Dil Fac  1  1  1  Lab Sa  Dil Fac  Dil Fac  1  1  1                                                                                                                                                     |                                         | Method EPA 537 (Mod)                                                                                                                 | Prep Type Total/NA Total/NA  Prep Type Total/NA                                                                         |
| Analyte Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS)  Client Sample ID: KLA02-SE  Analyte Perfluorooctanoic acid (PFHpA) Perfluoroheptanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorobutanesulfonic acid (PFHxS) Perfluorooctanoic acid (PFOS)  Client Sample ID: KLA02-SE  Analyte Perfluorohexanesulfonic acid (PFOS)  Client Sample ID: KLA02-SE  Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA)                                                                                                                            | Result 0.32 1.1  31-01  Result 0.16 0.46 0.25 2.6 7.6  31-02  Result 0.18 0.28              | Qualifier J J1  Qualifier J J M         | LOQ<br>0.38<br>1.3<br>LOQ<br>0.39<br>0.39<br>0.52<br>0.39<br>1.3<br>LOQ<br>0.36<br>0.36                 | DL<br>0.078<br>0.30<br>DL<br>0.10<br>0.077<br>0.081<br>0.31<br>DL<br>0.095<br>0.12<br>0.072                          | Unit ug/Kg       | Dil Fac  Dil Fac  1 1 1 Lab Sa  Dil Fac 1 1 1 1 1 Lab Sa  Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                              |                                         | Method EPA 537 (Mod) EPA 537 (Mod) EPA 537 (Mod)  EPA 537 (Mod) EPA 537 (Mod) EPA 537 (Mod) EPA 537 (Mod) EPA 537 (Mod) EPA 537 (Mod) EPA 537 (Mod) EPA 537 (Mod) EPA 537 (Mod) EPA 537 (Mod) EPA 537 (Mod) EPA 537 (Mod)                                                                                    | Prep Type Total/NA Total/NA  Prep Type Total/NA                                              |
| Analyte Perfluorooctanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS)  Client Sample ID: KLA02-SE  Analyte Perfluorooctanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorooctanesulfonic acid (PFOS)  Client Sample ID: KLA02-SE  Analyte Perfluorooctanoic acid (PFHpA) Perfluorooctanoic acid (PFHpA) Perfluorooctanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorooctanoic acid (PFOA)                                                                                                     | Result 0.32 1.1  31-01  Result 0.16 0.46 0.25 2.6 7.6  31-02  Result 0.18 0.28 0.22         | Qualifier J J1  Qualifier J J M         | LOQ 0.38 1.3 LOQ 0.39 0.52 0.39 1.3 LOQ 0.36 0.36 0.49                                                  | DL<br>0.078<br>0.30<br>DL<br>0.10<br>0.13<br>0.077<br>0.081<br>0.31<br>DL<br>0.095<br>0.12<br>0.072                  | Unit ug/Kg       | Dil Fac    Dil Fac   Dil Fac   1                                                                                                                                                                                                     |                                         | Method EPA 537 (Mod) EPA 537 (Mod) EPA 537 (Mod)  Method EPA 537 (Mod)                                   | Prep Type Total/NA Total/NA  Prep Type Total/NA                            |
| Analyte Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS)  Client Sample ID: KLA02-SE  Analyte Perfluorooctanoic acid (PFHpA) Perfluorooctanoic acid (PFHpA) Perfluorobutanesulfonic acid (PFBS) Perfluorobutanesulfonic acid (PFHxS) Perfluorooctanoic acid (PFOS)  Client Sample ID: KLA02-SE  Analyte Perfluorohexanesulfonic acid (PFHxS) Perfluorobutanesulfonic acid (PFOS)  Perfluorohexanesulfonic acid (PFHpA) Perfluorohexanesulfonic acid (PFHpA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFBS)                                       | Result 0.32 1.1  31-01  Result 0.46 0.25 2.6 7.6  31-02  Result 0.18 0.28 0.22 1.6 6.1      | Qualifier J J1  Qualifier J J M         | LOQ<br>0.38<br>1.3<br>LOQ<br>0.39<br>0.39<br>0.52<br>0.39<br>1.3<br>LOQ<br>0.36<br>0.36<br>0.49<br>0.36 | DL<br>0.078<br>0.30<br>DL<br>0.10<br>0.13<br>0.077<br>0.081<br>0.31<br>DL<br>0.095<br>0.12<br>0.072                  | Unit ug/Kg | Dil Fac    Dil Fac   Dil Fac   Dil Fac   Dil Fac   Dil Fac   Dil Fac   Dil Fac   Dil Fac   Dil Fac   Dil Fac   Dil Fac   Dil Fac   Dil Fac   Dil Fac   Dil Fac   Dil Fac   Dil Fac   Dil Fac   Dil Fac   Dil Fac   Dil Fac   Dil Fac |                                         | Method EPA 537 (Mod)                             | Prep Type Total/NA Total/NA  Prep Type Total/NA |
| Analyte Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS)  Client Sample ID: KLA02-SE  Analyte Perfluoroheptanoic acid (PFHpA) Perfluorobutanesulfonic acid (PFBS) Perfluorobutanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS)  Client Sample ID: KLA02-SE  Analyte Perfluorohexanesulfonic acid (PFHpA) Perfluoroheptanoic acid (PFHpA) Perfluoroheptanoic acid (PFDA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFDS) | Result 0.32 1.1  31-01  Result 0.16 0.46 0.25 2.6 7.6  31-02  Result 0.18 0.28 0.22 1.6 6.1 | Qualifier J J1  Qualifier J J M         | LOQ<br>0.38<br>1.3<br>LOQ<br>0.39<br>0.39<br>0.52<br>0.39<br>1.3<br>LOQ<br>0.36<br>0.36<br>0.49<br>0.36 | DL<br>0.078<br>0.30<br>DL<br>0.10<br>0.13<br>0.077<br>0.081<br>0.31<br>DL<br>0.095<br>0.12<br>0.072<br>0.075<br>0.29 | Unit ug/Kg | Dil Fac    Dil Fac   1                                                                                                                                                                                                               |                                         | Method EPA 537 (Mod) | Prep Type Total/NA Total/NA  Prep Type Total/NA |

This Detection Summary does not include radiochemical test results.

Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

TestAmerica Job ID: 320-39023-1

## Client Sample ID: KLA02-SB2-01 (Continued)

## Lab Sample ID: 320-39023-17

| Analyte                                   | Result ( | Qualifier | LOQ  | DL    | Unit  | Dil Fac | D             | Method        | Prep Type |
|-------------------------------------------|----------|-----------|------|-------|-------|---------|---------------|---------------|-----------|
| Perfluorooctanoic acid (PFOA)             | 2.2      |           | 0.37 | 0.12  | ug/Kg | 1       | <del>\\</del> | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA)             | 0.38     |           | 0.37 | 0.10  | ug/Kg | 1       | ₽             | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)       | 5.1      |           | 0.50 | 0.074 | ug/Kg | 1       | ф             | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS)      | 21       |           | 0.37 | 0.077 | ug/Kg | 1       | ₽             | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)       | 270 I    | E         | 1.2  | 0.30  | ug/Kg | 1       | ₽             | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL | 21 .     | JD        | 37   | 7.7   | ug/Kg | 100     | ₩             | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) - DL  | 390 [    | D         | 120  | 30    | ug/Kg | 100     | ₽             | EPA 537 (Mod) | Total/NA  |

## Client Sample ID: KLA02-SB2-02

### Lab Sample ID: 320-39023-18

| Analyte                                   | Result | Qualifier | LOQ  | DL   | Unit  | Dil Fac | D  | Method        | Prep Type |
|-------------------------------------------|--------|-----------|------|------|-------|---------|----|---------------|-----------|
| Perfluoroheptanoic acid (PFHpA)           | 6.0    |           | 0.51 | 0.13 | ug/Kg | 1       | ₩  | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA)             | 18     |           | 0.51 | 0.17 | ug/Kg | 1       | ☼  | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA)             | 0.30   | J         | 0.51 | 0.14 | ug/Kg | 1       | ☼  | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)       | 26     |           | 0.68 | 0.10 | ug/Kg | 1       | ¢  | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS)      | 110    | E         | 0.51 | 0.10 | ug/Kg | 1       | ₩  | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)       | 410    | E         | 1.7  | 0.41 | ug/Kg | 1       | ₩  | EPA 537 (Mod) | Total/NA  |
| Perfluoroheptanoic acid (PFHpA) - DL      | 6.4    | JD        | 10   | 2.6  | ug/Kg | 20      | ₩. | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA) - DL        | 17     | D         | 10   | 3.4  | ug/Kg | 20      | ₩  | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS) - DL  | 30     | D         | 14   | 2.0  | ug/Kg | 20      | ₩  | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL | 130    | D         | 10   | 2.1  | ug/Kg | 20      | ₩  | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) - DL  | 570    | DM        | 34   | 8.1  | ug/Kg | 20      | ₩  | EPA 537 (Mod) | Total/NA  |

### Client Sample ID: KLA02-SB3-01

### Lab Sample ID: 320-39023-19

| Analyte                                   | Result | Qualifier | LOQ  | DL    | Unit  | Dil Fac | D            | Method        | Prep Type |
|-------------------------------------------|--------|-----------|------|-------|-------|---------|--------------|---------------|-----------|
| Perfluoroheptanoic acid (PFHpA)           | 0.47   |           | 0.36 | 0.094 | ug/Kg |         | <del>\</del> | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA)             | 0.45   |           | 0.36 | 0.12  | ug/Kg | 1       | ☼            | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA)             | 0.40   |           | 0.36 | 0.098 | ug/Kg | 1       | ☼            | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)       | 0.50   |           | 0.48 | 0.071 | ug/Kg | 1       | ₽            | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS)      | 5.4    |           | 0.36 | 0.075 | ug/Kg | 1       | ☼            | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)       | 110    | EM        | 1.2  | 0.29  | ug/Kg | 1       | ☼            | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL | 5.7    | JD        | 7.2  | 1.5   | ug/Kg | 20      | T            | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) - DL  | 140    | D         | 24   | 5.8   | ug/Kg | 20      | ₩            | EPA 537 (Mod) | Total/NA  |

### Client Sample ID: KLA02-SB3-02

### Lab Sample ID: 320-39023-20

| Analyte                              | Result | Qualifier | LOQ  | DL    | Unit  | Dil Fac | D | Method        | Prep Type |
|--------------------------------------|--------|-----------|------|-------|-------|---------|---|---------------|-----------|
| Perfluoroheptanoic acid (PFHpA)      | 0.81   |           | 0.41 | 0.11  | ug/Kg |         | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA)        | 1.0    |           | 0.41 | 0.14  | ug/Kg | 1       | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA)        | 0.12   | J M       | 0.41 | 0.11  | ug/Kg | 1       | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)  | 1.8    |           | 0.55 | 0.081 | ug/Kg | 1       | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) | 9.4    |           | 0.41 | 0.086 | ug/Kg | 1       | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)  | 21     | M         | 1.4  | 0.33  | ug/Kg | 1       | ₩ | EPA 537 (Mod) | Total/NA  |

Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

TestAmerica Job ID: 320-39023-1

| Client Sample ID: KLA03-SE           | 31-01  |           |      |       |       | Lab San        | nple ID: 320  | -39023-2  |
|--------------------------------------|--------|-----------|------|-------|-------|----------------|---------------|-----------|
| -<br>Analyte                         | Result | Qualifier | LOQ  | DL    | Unit  | Dil Fac D      | Method        | Prep Type |
| Perfluorobutanesulfonic acid (PFBS)  | 0.082  | J         | 0.52 | 0.076 | ug/Kg | <u> </u>       | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) | 0.99   |           | 0.39 | 0.080 | ug/Kg | 1 ፟            | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)  | 3.0    |           | 1.3  | 0.31  | ug/Kg | 1 <sup>‡</sup> | EPA 537 (Mod) | Total/NA  |
| Client Sample ID: KLA03-SE           | 31-02  |           |      |       |       | Lab San        | nple ID: 320  | -39023-2  |
| -<br>Analyte                         | Result | Qualifier | LOQ  | DL    | Unit  | Dil Fac D      | Method        | Prep Type |
| Perfluorooctanoic acid (PFOA)        | 0.22   | JM        | 0.40 | 0.13  | ug/Kg | 1 🌣            | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)  | 0.21   | J         | 0.53 | 0.078 | ug/Kg | 1 🌣            | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) | 2.4    |           | 0.40 | 0.082 | ug/Kg | 1 🌣            | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)  | 17     |           | 1.3  | 0.32  | ug/Kg | 1 🌣            | EPA 537 (Mod) | Total/NA  |
| Client Sample ID: KLA03-SE           | 32-01  |           |      |       |       | Lab San        | nple ID: 320  | -39023-2  |
| <br>Analyte                          | Result | Qualifier | LOQ  | DL    | Unit  | Dil Fac D      | Method        | Prep Type |
| Perfluorooctanoic acid (PFOA)        | 0.15   | J         | 0.37 | 0.12  | ug/Kg | 1 🌣            | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)  | 0.10   | J         | 0.49 | 0.072 | ug/Kg | 1 🌣            | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) | 0.71   |           | 0.37 | 0.076 | ug/Kg | 1 🌣            | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)  | 3.4    |           | 1.2  | 0.29  | ug/Kg | 1 🌣            | EPA 537 (Mod) | Total/NA  |
| Client Sample ID: KLA03-SE           | 32-02  |           |      |       |       | Lab San        | nple ID: 320  | -39023-2  |
| -<br>Analyte                         | Result | Qualifier | LOQ  | DL    | Unit  | Dil Fac D      |               | Prep Type |
| Perfluorooctanoic acid (PFOA)        | 0.15   | J         | 0.38 | 0.13  | ug/Kg | <u> </u>       | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)  | 0.15   | J         | 0.51 | 0.075 | ug/Kg | 1 🌣            | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) | 1.1    |           | 0.38 | 0.079 | ug/Kg | 1 🌣            | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)  | 4.9    | М         | 1.3  | 0.31  | ug/Kg | 1 <sup>‡</sup> | EPA 537 (Mod) | Total/NA  |
| Client Sample ID: KLA03-SE           | 33-01  |           |      |       |       | Lab San        | nple ID: 320  | -39023-2  |
| Analyte                              | Result | Qualifier | LOQ  | DL    | Unit  | Dil Fac D      | Method        | Prep Type |
| Perfluoroheptanoic acid (PFHpA)      | 0.36   | J         | 0.41 | 0.11  | ug/Kg | 1 🌣            | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA)        | 0.37   | J         | 0.41 | 0.14  | ug/Kg | 1 🌣            | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)  | 0.21   | J         | 0.54 |       | ug/Kg |                | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) | 2.7    |           | 0.41 | 0.084 | ug/Kg | 1 🌣            | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)  | 3.2    |           | 1.4  | 0.32  | ug/Kg | <b>1</b> 🌣     | EPA 537 (Mod) | Total/NA  |
| Client Sample ID: KLA03-SE           | 33-02  |           |      |       |       | Lab San        | nple ID: 320  | -39023-2  |
| -<br>Analyte                         | Result | Qualifier | LOQ  |       | Unit  | Dil Fac D      |               | Prep Type |
| Perfluoroheptanoic acid (PFHpA)      | 0.59   |           | 0.41 | 0.11  | ug/Kg | <u> </u>       | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA)        | 1.3    |           | 0.41 | 0.14  | ug/Kg | 1 🌣            | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)  | 0.75   |           | 0.54 | 0.080 | ug/Kg | 1 🌣            | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) | 12     |           | 0.41 | 0.084 | ug/Kg | 1 🌣            | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)  | 14     | M         | 1.4  | 0.33  | ug/Kg | 1 ☆            | EPA 537 (Mod) | Total/NA  |

This Detection Summary does not include radiochemical test results.

Analyte

Perfluoroheptanoic acid (PFHpA)

**Prep Type** 

Total/NA

Dil Fac D Method

1 EPA 537 (Mod)

LOQ

0.42

DL Unit

0.11 ug/Kg

Result Qualifier

0.66

Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

TestAmerica Job ID: 320-39023-1

## Client Sample ID: KLA04-SB1-01 (Continued)

## Lab Sample ID: 320-39023-27

| Analyte                                   | Result | Qualifier | LOQ  | DL    | Unit  | Dil Fac | D            | Method        | Prep Type |
|-------------------------------------------|--------|-----------|------|-------|-------|---------|--------------|---------------|-----------|
| Perfluorooctanoic acid (PFOA)             | 3.2    |           | 0.42 | 0.14  | ug/Kg | 1       | <del>\</del> | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA)             | 0.16   | J M       | 0.42 | 0.11  | ug/Kg | 1       | ₩            | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)       | 0.45   | J         | 0.56 | 0.082 | ug/Kg | 1       | **           | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS)      | 24     |           | 0.42 | 0.086 | ug/Kg | 1       | ₩            | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)       | 930    | E         | 1.4  | 0.33  | ug/Kg | 1       | ₩            | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL | 23     | JD        | 42   | 8.6   | ug/Kg | 100     | ₽            | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) - DL  | 2200   | D         | 140  | 33    | ug/Kg | 100     | ₩            | EPA 537 (Mod) | Total/NA  |

## Client Sample ID: KLA04-SB1-02

### Lab Sample ID: 320-39023-28

| Analyte                                    | Result | Qualifier | LOQ  | DL    | Unit  | Dil Fac | D | Method        | Prep Type |
|--------------------------------------------|--------|-----------|------|-------|-------|---------|---|---------------|-----------|
| Perfluoroheptanoic acid (PFHpA)            | 4.4    |           | 0.39 | 0.10  | ug/Kg |         | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA)              | 19     |           | 0.39 | 0.13  | ug/Kg | 1       | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA)              | 0.60   | M         | 0.39 | 0.11  | ug/Kg | 1       | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)        | 14     |           | 0.52 | 0.077 | ug/Kg | 1       | ÷ | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS)       | 130    | E         | 0.39 | 0.081 | ug/Kg | 1       | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)        | 1800   | EM        | 1.3  | 0.31  | ug/Kg | 1       | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluoroheptanoic acid (PFHpA) - DL       | 4.0    | JD        | 7.8  | 2.0   | ug/Kg | 20      | ÷ | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA) - DL         | 19     | D         | 7.8  | 2.6   | ug/Kg | 20      | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS) - DL   | 15     | D         | 10   | 1.5   | ug/Kg | 20      | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL  | 190    | D         | 7.8  | 1.6   | ug/Kg | 20      | ₽ | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) - DL   | 2900   | ED        | 26   | 6.3   | ug/Kg | 20      | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA) - DL2        | 17     | J D       | 39   | 13    | ug/Kg | 100     | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS) - DL2  | 10     | JD        | 52   | 7.7   | ug/Kg | 100     | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL2 | 160    | D         | 39   | 8.1   | ug/Kg | 100     | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) - DL2  | 3600   | EDM       | 130  | 31    | ug/Kg | 100     | ₩ | EPA 537 (Mod) | Total/NA  |

### Client Sample ID: KLA04-SB2-01

#### Lab Sample ID: 320-39023-29

| Analyte                                   | Result | Qualifier | LOQ  | DL    | Unit  | Dil Fac | D        | Method        | Prep Type |
|-------------------------------------------|--------|-----------|------|-------|-------|---------|----------|---------------|-----------|
| Perfluoroheptanoic acid (PFHpA)           | 14     |           | 0.38 | 0.10  | ug/Kg |         | ₩        | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA)             | 27     | E         | 0.38 | 0.13  | ug/Kg | 1       | ₩        | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA)             | 1.6    | M         | 0.38 | 0.10  | ug/Kg | 1       | ₩        | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)       | 24     | E         | 0.51 | 0.075 | ug/Kg | 1       | ÷        | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS)      | 140    | E         | 0.38 | 0.079 | ug/Kg | 1       | ₩        | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)       | 2600   | E         | 1.3  | 0.31  | ug/Kg | 1       | ₩        | EPA 537 (Mod) | Total/NA  |
| Perfluoroheptanoic acid (PFHpA) - DL      | 14     | JD        | 38   | 10    | ug/Kg | 100     | <b>*</b> | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA) - DL        | 26     | JDM       | 38   | 13    | ug/Kg | 100     | ₩        | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS) - DL  | 14     | JD        | 51   | 7.5   | ug/Kg | 100     | ₩        | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL | 200    | D         | 38   | 7.9   | ug/Kg | 100     | ₩        | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) - DL  | 6600   | E D       | 130  | 31    | ug/Kg | 100     | ₩        | EPA 537 (Mod) | Total/NA  |

Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

TestAmerica Job ID: 320-39023-1

## Client Sample ID: KLA04-SB2-02

## Lab Sample ID: 320-39023-30

| Analyte                                     | Result | Qualifier | LOQ  | DL    | Unit  | Dil Fac | D                                      | Method        | Prep Type |
|---------------------------------------------|--------|-----------|------|-------|-------|---------|----------------------------------------|---------------|-----------|
| Perfluoroheptanoic acid (PFHpA)             | 45     | E         | 0.39 | 0.10  | ug/Kg | 1       | ₩                                      | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA)               | 200    | E         | 0.39 | 0.13  | ug/Kg | 1       | ₩                                      | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA)               | 1.6    |           | 0.39 | 0.11  | ug/Kg | 1       | ₩                                      | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)         | 91     | E         | 0.53 | 0.078 | ug/Kg | 1       | ₩.                                     | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS)        | 510    | E         | 0.39 | 0.082 | ug/Kg | 1       | ₩                                      | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)         | 2100   | E         | 1.3  | 0.32  | ug/Kg | 1       | ₩                                      | EPA 537 (Mod) | Total/NA  |
| Perfluoroheptanoic acid (PFHpA) - DL        | 44     | D         | 39   | 10    | ug/Kg | 100     | ₩.                                     | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA) - DL          | 210    | D         | 39   | 13    | ug/Kg | 100     | ₩                                      | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS) - DL    | 84     | D         | 53   | 7.8   | ug/Kg | 100     | ₽                                      | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL   | 1100   | D         | 39   | 8.2   | ug/Kg | 100     | ************************************** | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) -<br>DL | 4800   | EDM       | 130  | 32    | ug/Kg | 100     | ₩                                      | EPA 537 (Mod) | Total/NA  |

# Client Sample ID: KLA04-SB3-01

## Lab Sample ID: 320-39023-31

| Analyte                                    | Result | Qualifier | LOQ  | DL    | Unit  | Dil Fac | D  | Method        | Prep Type |
|--------------------------------------------|--------|-----------|------|-------|-------|---------|----|---------------|-----------|
| Perfluoroheptanoic acid (PFHpA)            | 3.8    |           | 0.38 | 0.10  | ug/Kg |         | ₩  | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA)              | 12     |           | 0.38 | 0.13  | ug/Kg | 1       | ₽  | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA)              | 1.1    | M         | 0.38 | 0.10  | ug/Kg | 1       | ₽  | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)        | 19     |           | 0.51 | 0.076 | ug/Kg | 1       |    | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS)       | 51     | E         | 0.38 | 0.079 | ug/Kg | 1       | ₩  | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)        | 1600   | E         | 1.3  | 0.31  | ug/Kg | 1       | ₩  | EPA 537 (Mod) | Total/NA  |
| Perfluoroheptanoic acid (PFHpA) - DL       | 3.7    | JD        | 7.7  | 2.0   | ug/Kg | 20      | T. | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA) - DL         | 12     | D         | 7.7  | 2.6   | ug/Kg | 20      | ₩  | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS) - DL   | 24     | D         | 10   | 1.5   | ug/Kg | 20      | ₽  | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL  | 53     | D         | 7.7  | 1.6   | ug/Kg | 20      | Ϋ́ | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) - DL   | 3500   | ED        | 26   | 6.1   | ug/Kg | 20      | ☼  | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA) - DL2        | 13     | JD        | 38   | 13    | ug/Kg | 100     | ☼  | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS) - DL2  | 16     | JD        | 51   | 7.6   | ug/Kg | 100     | ₽  | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL2 | 61     | D         | 38   | 7.9   | ug/Kg | 100     | ₩  | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) - DL2  | 4500   | ED        | 130  | 31    | ug/Kg | 100     | ₩  | EPA 537 (Mod) | Total/NA  |

## Client Sample ID: KLA04-SB3-02

## Lab Sample ID: 320-39023-32

| Analyte                               | Result | Qualifier | LOQ  | DL    | Unit  | Dil Fac | D | Method        | Prep Type |
|---------------------------------------|--------|-----------|------|-------|-------|---------|---|---------------|-----------|
| Perfluoroheptanoic acid (PFHpA)       | 29     |           | 0.46 | 0.12  | ug/Kg | 1       | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA)         | 83     | E         | 0.46 | 0.15  | ug/Kg | 1       | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA)         | 1.2    |           | 0.46 | 0.12  | ug/Kg | 1       | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)   | 80     | E         | 0.61 | 0.091 | ug/Kg | 1       | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS)  | 410    | E         | 0.46 | 0.095 | ug/Kg | 1       | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)   | 1900   | EM        | 1.5  | 0.37  | ug/Kg | 1       | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluoroheptanoic acid (PFHpA) - DL  | 27     | D         | 9.2  | 2.4   | ug/Kg | 20      | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA) - DL    | 85     | D         | 9.2  | 3.1   | ug/Kg | 20      | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS) - | 110    | D         | 12   | 1.8   | ug/Kg | 20      | ₩ | EPA 537 (Mod) | Total/NA  |

Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

TestAmerica Job ID: 320-39023-1

## Client Sample ID: KLA04-SB3-02 (Continued)

## Lab Sample ID: 320-39023-32

| Analyte                                      | Result | Qualifier | LOQ | DL  | Unit  | Dil Fac | D  | Method        | Prep Type |
|----------------------------------------------|--------|-----------|-----|-----|-------|---------|----|---------------|-----------|
| Perfluorohexanesulfonic acid (PFHxS) - DL    | 730    | ED        | 9.2 | 1.9 | ug/Kg | 20      | ☼  | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) - DL     | 3500   | EDM       | 31  | 7.4 | ug/Kg | 20      | Ϋ́ | EPA 537 (Mod) | Total/NA  |
| Perfluoroheptanoic acid (PFHpA) - DL2        | 33     | JD        | 46  | 12  | ug/Kg | 100     | ₩  | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA) - DL2          | 79     | D         | 46  | 15  | ug/Kg | 100     | Д  | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS) - DL2    | 110    | D         | 61  | 9.1 | ug/Kg | 100     | ₩  | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL2   | 730    | D         | 46  | 9.5 | ug/Kg | 100     | ₩  | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) -<br>DL2 | 3800   | EDM       | 150 | 37  | ug/Kg | 100     | T  | EPA 537 (Mod) | Total/NA  |

## Client Sample ID: KLA05-SB1-01

## Lab Sample ID: 320-39023-33

| Analyte                                   | Result | Qualifier | LOQ  | DL    | Unit  | Dil Fac | D       | Method        | Prep Type |
|-------------------------------------------|--------|-----------|------|-------|-------|---------|---------|---------------|-----------|
| Perfluoroheptanoic acid (PFHpA)           | 1.6    |           | 0.38 | 0.098 | ug/Kg | 1       | ₩       | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA)             | 2.3    |           | 0.38 | 0.13  | ug/Kg | 1       | ₩       | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA)             | 0.61   | M         | 0.38 | 0.10  | ug/Kg | 1       | ₩       | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)       | 4.9    |           | 0.50 | 0.074 | ug/Kg | 1       | т.<br>Д | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS)      | 74     | E         | 0.38 | 0.078 | ug/Kg | 1       | ₩       | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)       | 130    | E         | 1.3  | 0.30  | ug/Kg | 1       | ₩       | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS) - DL  | 6.2    | JD        | 10   | 1.5   | ug/Kg | 20      | Þ.      | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL | 78     | D         | 7.6  | 1.6   | ug/Kg | 20      | ₩       | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) - DL  | 170    | D         | 25   | 6.0   | ug/Kg | 20      | ₩       | EPA 537 (Mod) | Total/NA  |

### Client Sample ID: KLA05-SB1-02

### Lab Sample ID: 320-39023-34

| Analyte                              | Result | Qualifier | LOQ  | DL    | Unit  | Dil Fac | D | Method        | Prep Type |
|--------------------------------------|--------|-----------|------|-------|-------|---------|---|---------------|-----------|
| Perfluorooctanoic acid (PFOA)        | 0.23   | J         | 0.38 | 0.13  | ug/Kg | 1       | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)  | 0.077  | J         | 0.50 | 0.074 | ug/Kg | 1       | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) | 2.6    |           | 0.38 | 0.078 | ug/Kg | 1       | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)  | 6.5    |           | 1.3  | 0.30  | ug/Kg | 1       |   | EPA 537 (Mod) | Total/NA  |

#### Client Sample ID: KLA05-SB2-01

#### Lab Sample ID: 320-39023-35

| Analyte                                   | Result | Qualifier | LOQ  | DL    | Unit  | Dil Fac | D | Method        | Prep Type |
|-------------------------------------------|--------|-----------|------|-------|-------|---------|---|---------------|-----------|
| Perfluoroheptanoic acid (PFHpA)           | 0.45   |           | 0.36 | 0.092 | ug/Kg |         | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA)             | 1.6    |           | 0.36 | 0.12  | ug/Kg | 1       | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA)             | 0.36   |           | 0.36 | 0.096 | ug/Kg | 1       | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)       | 0.32   | J         | 0.47 | 0.070 | ug/Kg | 1       | ÷ | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS)      | 20     |           | 0.36 | 0.073 | ug/Kg | 1       | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)       | 37     | E         | 1.2  | 0.28  | ug/Kg | 1       | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA) - DL        | 1.8    | JD        | 3.6  | 1.2   | ug/Kg | 10      |   | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL | 20     | D         | 3.6  | 0.73  | ug/Kg | 10      | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) - DL  | 40     | D         | 12   | 2.8   | ug/Kg | 10      | ₩ | EPA 537 (Mod) | Total/NA  |

Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

TestAmerica Job ID: 320-39023-1

### Client Sample ID: KLA05-SB2-02

## Lab Sample ID: 320-39023-36

| Analyte                                   | Result | Qualifier | LOQ  | DL    | Unit  | Dil Fac | D            | Method        | Prep Type |
|-------------------------------------------|--------|-----------|------|-------|-------|---------|--------------|---------------|-----------|
| Perfluoroheptanoic acid (PFHpA)           | 0.38   | J         | 0.40 | 0.10  | ug/Kg |         | <del>\</del> | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA)             | 1.2    |           | 0.40 | 0.13  | ug/Kg | 1       | ₩            | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA)             | 0.34   | J M       | 0.40 | 0.11  | ug/Kg | 1       | ₽            | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)       | 0.29   | J         | 0.53 | 0.078 | ug/Kg | 1       |              | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS)      | 8.9    |           | 0.40 | 0.082 | ug/Kg | 1       | ₩            | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)       | 40     | E         | 1.3  | 0.32  | ug/Kg | 1       | ☼            | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA) - DL        | 1.3    | JD        | 4.0  | 1.3   | ug/Kg | 10      |              | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL | 9.7    | D         | 4.0  | 0.82  | ug/Kg | 10      | ₩            | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) - DL  | 42     | D M       | 13   | 3.2   | ug/Kg | 10      | ₩            | EPA 537 (Mod) | Total/NA  |

### Client Sample ID: KLA05-SB3-01

### Lab Sample ID: 320-39023-37

| Analyte                                   | Result | Qualifier | LOQ  | DL    | Unit  | Dil Fac | D | Method        | Prep Type |
|-------------------------------------------|--------|-----------|------|-------|-------|---------|---|---------------|-----------|
| Perfluoroheptanoic acid (PFHpA)           | 14     |           | 0.36 | 0.092 | ug/Kg |         | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA)             | 57     | E         | 0.36 | 0.12  | ug/Kg | 1       | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA)             | 2.6    | M         | 0.36 | 0.096 | ug/Kg | 1       | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)       | 6.7    |           | 0.47 | 0.070 | ug/Kg | 1       |   | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS)      | 430    | E         | 0.36 | 0.073 | ug/Kg | 1       | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)       | 4600   | E         | 1.2  | 0.28  | ug/Kg | 1       | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluoroheptanoic acid (PFHpA) - DL      | 13     | JD        | 36   | 9.2   | ug/Kg | 100     | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA) - DL        | 62     | D         | 36   | 12    | ug/Kg | 100     | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS) - DL  | 7.3    | JD        | 47   | 7.0   | ug/Kg | 100     | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL | 650    | D         | 36   | 7.3   | ug/Kg | 100     | T | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) - DL  | 14000  | ED        | 120  | 28    | ug/Kg | 100     | ₩ | EPA 537 (Mod) | Total/NA  |

### Client Sample ID: KLA05-SB3-02

### Lab Sample ID: 320-39023-38

| Analyte                                   | Result | Qualifier | LOQ  | DL    | Unit  | Dil Fac | D            | Method        | Prep Type |
|-------------------------------------------|--------|-----------|------|-------|-------|---------|--------------|---------------|-----------|
| Perfluoroheptanoic acid (PFHpA)           | 1.5    |           | 0.37 | 0.097 | ug/Kg |         | <del>\</del> | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA)             | 3.8    |           | 0.37 | 0.12  | ug/Kg | 1       | ₩            | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA)             | 0.25   | J M       | 0.37 | 0.10  | ug/Kg | 1       | ₩            | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)       | 0.58   |           | 0.50 | 0.074 | ug/Kg | 1       | т.<br>Д      | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS)      | 15     |           | 0.37 | 0.077 | ug/Kg | 1       | ₩            | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)       | 560    | E         | 1.2  | 0.30  | ug/Kg | 1       | ₩            | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL | 13     | JD        | 37   | 7.7   | ug/Kg | 100     | ₽            | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) - DL  | 980    | D         | 120  | 30    | ug/Kg | 100     | ₩            | EPA 537 (Mod) | Total/NA  |

## Client Sample ID: KLA06-SB1-01

## Lab Sample ID: 320-39023-39

| Analyte                              | Result Qualifier | LOQ  | DL    | Unit  | Dil Fac | D | Method        | Prep Type |
|--------------------------------------|------------------|------|-------|-------|---------|---|---------------|-----------|
| Perfluoroheptanoic acid (PFHpA)      | 0.71             | 0.41 | 0.11  | ug/Kg | 1       | ☼ | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA)        | 1.3              | 0.41 | 0.14  | ug/Kg | 1       | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA)        | 2.4              | 0.41 | 0.11  | ug/Kg | 1       | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)  | 0.27 J           | 0.54 | 0.080 | ug/Kg | 1       | ₽ | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) | 11               | 0.41 | 0.084 | ug/Kg | 1       | ₩ | EPA 537 (Mod) | Total/NA  |

Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

TestAmerica Job ID: 320-39023-1

## Client Sample ID: KLA06-SB1-01 (Continued)

### Lab Sample ID: 320-39023-39

| Analyte                                   | Result | Qualifier | LOQ | DL   | Unit  | Dil Fac | D  | Method        | Prep Type |
|-------------------------------------------|--------|-----------|-----|------|-------|---------|----|---------------|-----------|
| Perfluorooctanesulfonic acid (PFOS)       | 190    | ME        | 1.4 | 0.32 | ug/Kg | 1       | \$ | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA) - DL        | 2.5    | JD        | 8.1 | 2.2  | ug/Kg | 20      | ₩  | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL | 11     | D         | 8.1 | 1.7  | ug/Kg | 20      | ₽  | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) - DL  | 250    | D         | 27  | 6.5  | ug/Kg | 20      | ₩  | EPA 537 (Mod) | Total/NA  |

#### Client Sample ID: KLA06-SB1-02

#### Lab Sample ID: 320-39023-40

| Analyte                                   | Result | Qualifier | LOQ  | DL    | Unit  | Dil Fac | D  | Method        | Prep Type |
|-------------------------------------------|--------|-----------|------|-------|-------|---------|----|---------------|-----------|
| Perfluoroheptanoic acid (PFHpA)           | 0.25   | J         | 0.37 | 0.097 | ug/Kg |         | ₩  | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA)             | 1.1    |           | 0.37 | 0.12  | ug/Kg | 1       | ₩  | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA)             | 1.4    |           | 0.37 | 0.10  | ug/Kg | 1       | ☼  | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)       | 0.19   | J         | 0.50 | 0.073 | ug/Kg | 1       | \$ | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS)      | 6.8    |           | 0.37 | 0.077 | ug/Kg | 1       | ☼  | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)       | 100    | ME        | 1.2  | 0.30  | ug/Kg | 1       | ☼  | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL | 6.6    | JD        | 7.4  | 1.5   | ug/Kg | 20      | Þ  | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) - DL  | 120    | D         | 25   | 6.0   | ug/Kg | 20      | ₩  | EPA 537 (Mod) | Total/NA  |

## Client Sample ID: KLA06-SB2-01

## Lab Sample ID: 320-39023-41

| Analyte                                    | Result ( | Qualifier | LOQ  | DL    | Unit  | Dil Fac | D        | Method        | Prep Type |
|--------------------------------------------|----------|-----------|------|-------|-------|---------|----------|---------------|-----------|
| Perfluoroheptanoic acid (PFHpA)            | 1.2      | J1        | 0.48 | 0.12  | ug/Kg |         | \$       | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA)              | 6.7      | J1        | 0.48 | 0.16  | ug/Kg | 1       | ₩        | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA)              | 1.6      |           | 0.48 | 0.13  | ug/Kg | 1       | ₩        | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)        | 0.99     |           | 0.64 | 0.094 | ug/Kg | 1       | т.<br>Д  | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS)       | 42 l     | E J1      | 0.48 | 0.099 | ug/Kg | 1       | ₩        | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)        | 580 I    | E J1      | 1.6  | 0.38  | ug/Kg | 1       | ₩        | EPA 537 (Mod) | Total/NA  |
| Perfluoroheptanoic acid (PFHpA) - DL       | 1.2      | J D J1    | 4.8  | 1.2   | ug/Kg | 10      | т.<br>Д  | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA) - DL         | 6.7      | D J1      | 4.8  | 1.6   | ug/Kg | 10      | ₩        | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA) - DL         | 1.6      | J D       | 4.8  | 1.3   | ug/Kg | 10      | ₩        | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS) - DL   | 1.0      | J D J1    | 6.4  | 0.94  | ug/Kg | 10      | ₽        | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL  | 44 [     | D J1      | 4.8  | 0.99  | ug/Kg | 10      | ₩        | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) - DL   | 860 I    | E D M J1  | 16   | 3.8   | ug/Kg | 10      | ₩        | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL2 | 39 .     | J D J1    | 48   | 9.9   | ug/Kg | 100     | <b>*</b> | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) - DL2  | 960 [    | D M J1    | 160  | 38    | ug/Kg | 100     | ₩        | EPA 537 (Mod) | Total/NA  |

### Client Sample ID: KLA06-SB2-02

#### Lab Sample ID: 320-39023-42

| Analyte                              | Result Qualifier | LOQ  | DL    | Unit  | Dil Fac | D | Method        | Prep Type |
|--------------------------------------|------------------|------|-------|-------|---------|---|---------------|-----------|
| Perfluoroheptanoic acid (PFHpA)      | 1.6              | 0.43 | 0.11  | ug/Kg | 1       | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA)        | 6.4              | 0.43 | 0.14  | ug/Kg | 1       | ☼ | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA)        | 1.7              | 0.43 | 0.12  | ug/Kg | 1       | ☼ | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)  | 2.1              | 0.57 | 0.084 | ug/Kg | 1       | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) | 40 E             | 0.43 | 0.089 | ug/Kg | 1       | ☼ | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)  | 920 E            | 1.4  | 0.34  | ug/Kg | 1       | ₩ | EPA 537 (Mod) | Total/NA  |

Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

TestAmerica Job ID: 320-39023-1

| Client Sample ID: KLA06-SE                 | 32-02 (C | ontinued) |     |      |       | Lab Sa  | am | ple ID: 320   | -39023-42 |
|--------------------------------------------|----------|-----------|-----|------|-------|---------|----|---------------|-----------|
| Analyte                                    | Result   | Qualifier | LOQ | DL   | Unit  | Dil Fac | D  | Method        | Prep Type |
| Perfluoroheptanoic acid (PFHpA) - DL       | 1.8      | J D       | 4.3 | 1.1  | ug/Kg | 10      | ₹  | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA) - DL         | 6.2      | D         | 4.3 | 1.4  | ug/Kg | 10      | Ď. | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA) - DL         | 1.8      | JD        | 4.3 | 1.2  | ug/Kg | 10      | ☆  | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS) - DL   | 2.1      | JD        | 5.7 | 0.84 | ug/Kg | 10      | ₽  | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL  | 45       | D         | 4.3 | 0.89 | ug/Kg | 10      | ₽  | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) - DL   | 1300     | ED        | 14  | 3.4  | ug/Kg | 10      | ₩  | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL2 | 42       | JD        | 43  | 8.9  | ug/Kg | 100     | ₽  | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) - DL2  | 1600     | D         | 140 | 34   | ug/Kg | 100     | ☼  | EPA 537 (Mod) | Total/NA  |
| Client Sample ID: KLA07-SD                 | 01-01    |           |     |      |       | Lab Sa  | am | ple ID: 320   | -39023-4  |
| Analyte                                    | Result   | Qualifier | LOQ | DL   | Unit  | Dil Fac | D  | Method        | Prep Type |
| Perfluorooctanesulfonic acid (PFOS)        | 1.5      |           | 1.1 | 0.26 | ug/Kg | 1       | ₩  | EPA 537 (Mod) | Total/NA  |
| Client Sample ID: ER-01                    |          |           |     |      |       | Lab Sa  | am | ple ID: 320   | -39023-4  |
| Analyte                                    | Result   | Qualifier | LOQ | DL   | Unit  | Dil Fac | D  | Method        | Prep Type |
| Perfluoroheptanoic acid (PFHpA)            | 0.88     | J         | 1.7 | 0.51 | ng/L  |         | _  | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA)              | 1.7      |           | 1.7 | 0.46 | ng/L  | 1       |    | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)        | 0.40     | J M       | 1.7 | 0.39 | ng/L  | 1       |    | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS)       | 1.9      |           | 1.7 | 0.32 | ng/L  | 1       |    | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)        | 8.7      |           | 3.4 | 0.93 | ng/L  | 1       |    | EPA 537 (Mod) | Total/NA  |
| Client Sample ID: FB-01                    |          |           |     |      |       | Lab Sa  | am | ple ID: 320   | -39023-4  |
| Analyte                                    | Result   | Qualifier | LOQ | DL   | Unit  | Dil Fac | D  | Method        | Prep Type |
| Perfluorohexanesulfonic acid (PFHxS)       | 0.61     | J         | 1.7 | 0.32 | ng/L  |         | _  | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)        | 1.7      | J         | 3.3 | 0.91 | ng/L  | 1       |    | EPA 537 (Mod) | Total/NA  |
| Client Sample ID: ER-02                    |          |           |     |      |       | Lab Sa  | am | ple ID: 320   | -39023-4  |
| Analyte                                    |          | Qualifier | LOQ | DL   | Unit  | Dil Fac | D  | Method        | Prep Type |
| Perfluorooctanoic acid (PFOA)              | 0.52     |           | 1.7 | 0.47 | ng/L  | 1       | _  | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS)       | 1.0      | J         | 1.7 | 0.33 | ng/L  | 1       |    | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)        | 4.4      | M         | 3.5 | 0.96 | ng/L  | 1       |    | EPA 537 (Mod) | Total/NA  |
| Client Sample ID: ER-03                    |          |           |     |      |       | Lab Sa  | am | ple ID: 320   | -39023-4  |
| No Detections.                             |          |           |     |      |       |         |    |               |           |
| Client Sample ID: ER-04                    |          |           |     |      |       | Lab Sa  | am | ple ID: 320   | -39023-4  |
| Analyte                                    |          | Qualifier | LOQ |      | Unit  | Dil Fac | D  | Method        | Prep Type |
| Perfluorohexanesulfonic acid (PFHxS)       | 0.46     | J         | 1.9 | 0.35 | ng/L  | 1       | _  | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)        | 1.3      | 1         | 3.7 | 1.0  | ng/L  | 1       |    | EPA 537 (Mod) | Total/NA  |

Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

TestAmerica Job ID: 320-39023-1

### Client Sample ID: MW-572-02-PRL05-01D

## Lab Sample ID: 320-39023-49

| Analyte                                   | Result | Qualifier | LOQ | DL   | Unit | Dil Fac | D | Method        | Prep Type |
|-------------------------------------------|--------|-----------|-----|------|------|---------|---|---------------|-----------|
| Perfluoroheptanoic acid (PFHpA)           | 24     |           | 1.9 | 0.58 | ng/L | 1       | _ | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA)             | 57     |           | 1.9 | 0.51 | ng/L | 1       |   | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA)             | 3.9    |           | 1.9 | 0.50 | ng/L | 1       |   | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)       | 28     |           | 1.9 | 0.44 | ng/L | 1       |   | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS)      | 370    | E         | 1.9 | 0.36 | ng/L | 1       |   | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)       | 1200   | E         | 3.8 | 1.0  | ng/L | 1       |   | EPA 537 (Mod) | Total/NA  |
| Perfluoroheptanoic acid (PFHpA) - DL      | 24     | D         | 19  | 5.8  | ng/L | 10      |   | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA) - DL        | 62     | D         | 19  | 5.1  | ng/L | 10      |   | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS) - DL  | 28     | D         | 19  | 4.4  | ng/L | 10      |   | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL | 390    | D         | 19  | 3.6  | ng/L | 10      |   | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) - DL  | 1200   | D         | 38  | 10   | ng/L | 10      |   | EPA 537 (Mod) | Total/NA  |

### Client Sample ID: KLA03-SB-2-01D

#### Lab Sample ID: 320-39023-51

| Analyte                              | Result | Qualifier | LOQ  | DL    | Unit  | Dil Fac | D | Method        | Prep Type |
|--------------------------------------|--------|-----------|------|-------|-------|---------|---|---------------|-----------|
| Perfluorooctanoic acid (PFOA)        | 0.16   | J         | 0.38 | 0.13  | ug/Kg | 1       | ₩ | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)  | 0.098  | J         | 0.51 | 0.076 | ug/Kg | 1       | ☼ | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) | 0.71   |           | 0.38 | 0.080 | ug/Kg | 1       | ☼ | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)  | 2.7    |           | 1.3  | 0.31  | ug/Kg | 1       | ₩ | EPA 537 (Mod) | Total/NA  |

## Client Sample ID: KLA06-SB-2-02D

## Lab Sample ID: 320-39023-52

| Analyte                                    | Result | Qualifier | LOQ  | DL    | Unit  | Dil Fac | D  | Method        | Prep Type |
|--------------------------------------------|--------|-----------|------|-------|-------|---------|----|---------------|-----------|
| Perfluoroheptanoic acid (PFHpA)            | 1.0    |           | 0.44 | 0.12  | ug/Kg | 1       | ₩  | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA)              | 4.1    |           | 0.44 | 0.15  | ug/Kg | 1       | ₩  | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA)              | 1.8    |           | 0.44 | 0.12  | ug/Kg | 1       | ₩  | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)        | 1.4    |           | 0.59 | 0.087 | ug/Kg | 1       | ₩. | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS)       | 41     | E         | 0.44 | 0.091 | ug/Kg | 1       | ₩  | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)        | 690    | E         | 1.5  | 0.35  | ug/Kg | 1       | ₩  | EPA 537 (Mod) | Total/NA  |
| Perfluoroheptanoic acid (PFHpA) - DL       | 1.4    | JD        | 4.4  | 1.2   | ug/Kg | 10      |    | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA) - DL         | 4.4    | D         | 4.4  | 1.5   | ug/Kg | 10      | ₩  | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA) - DL         | 1.8    | JD        | 4.4  | 1.2   | ug/Kg | 10      | ₩  | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS) - DL   | 1.3    | JD        | 5.9  | 0.87  | ug/Kg | 10      | Þ  | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL  | 45     | D         | 4.4  | 0.91  | ug/Kg | 10      | ☼  | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) - DL   | 1000   | ED        | 15   | 3.5   | ug/Kg | 10      | ☼  | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL2 | 46     | D         | 44   | 9.1   | ug/Kg | 100     | ₩  | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) - DL2  | 1100   | D         | 150  | 35    | ug/Kg | 100     | ☼  | EPA 537 (Mod) | Total/NA  |

#### Client Sample ID: KLA02-SB2-02D

#### Lab Sample ID: 320-39023-53

| Analyte                         | Result Qualifier | LOQ  | DL Unit    | Dil Fac D Method Prep  | Туре |
|---------------------------------|------------------|------|------------|------------------------|------|
| Perfluoroheptanoic acid (PFHpA) | 5.6              | 0.50 | 0.13 ug/Kg | 1 EPA 537 (Mod) Tota   | I/NA |
| Perfluorooctanoic acid (PFOA)   | 15               | 0.50 | 0.17 ug/Kg | 1 🌣 EPA 537 (Mod) Tota | I/NA |
| Perfluorononanoic acid (PFNA)   | 0.34 J M         | 0.50 | 0.14 ug/Kg | 1 🌣 EPA 537 (Mod) Tota | I/NA |

Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

TestAmerica Job ID: 320-39023-1

#### Client Sample ID: KLA02-SB2-02D (Continued)

| Analyte                                   | Result | Qualifier | LOQ  | DL    | Unit  | Dil Fac | D  | Method        | Prep Type |
|-------------------------------------------|--------|-----------|------|-------|-------|---------|----|---------------|-----------|
| Perfluorobutanesulfonic acid (PFBS)       | 24     |           | 0.67 | 0.099 | ug/Kg |         | ☼  | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS)      | 95     | E         | 0.50 | 0.10  | ug/Kg | 1       | ∴  | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)       | 380    | E         | 1.7  | 0.40  | ug/Kg | 1       | ₩  | EPA 537 (Mod) | Total/NA  |
| Perfluoroheptanoic acid (PFHpA) - DL      | 5.5    | JD        | 10   | 2.6   | ug/Kg | 20      | ₩. | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA) - DL        | 14     | D         | 10   | 3.3   | ug/Kg | 20      | ₩  | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS) - DL  | 23     | D         | 13   | 2.0   | ug/Kg | 20      | ₩  | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL | 110    | D         | 10   | 2.1   | ug/Kg | 20      | ₩  | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) - DL  | 490    | D         | 33   | 8.0   | ug/Kg | 20      | ₩  | EPA 537 (Mod) | Total/NA  |

#### Client Sample ID: KLA02-SB1-02D

#### Lab Sample ID: 320-39023-54

| Analyte                              | Result | Qualifier | LOQ  | DL    | Unit  | Dil Fac | D        | Method        | Prep Type |
|--------------------------------------|--------|-----------|------|-------|-------|---------|----------|---------------|-----------|
| Perfluoroheptanoic acid (PFHpA)      | 0.11   | J         | 0.39 | 0.10  | ug/Kg | 1       | <b>\</b> | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA)        | 0.25   | J M       | 0.39 | 0.13  | ug/Kg | 1       | ₩        | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)  | 0.21   | J         | 0.52 | 0.077 | ug/Kg | 1       | ₩        | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) | 1.7    |           | 0.39 | 0.081 | ug/Kg | 1       | ₩        | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)  | 12     |           | 1.3  | 0.31  | ug/Kg | 1       | ₩        | EPA 537 (Mod) | Total/NA  |

### Client Sample ID: KLA05-SB1-01D

### Lab Sample ID: 320-39023-55

| Analyte                                   | Result | Qualifier | LOQ  | DL    | Unit  | Dil Fac | D            | Method        | Prep Type |
|-------------------------------------------|--------|-----------|------|-------|-------|---------|--------------|---------------|-----------|
| Perfluoroheptanoic acid (PFHpA)           | 1.8    |           | 0.37 | 0.095 | ug/Kg |         | <del>\</del> | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA)             | 12     |           | 0.37 | 0.12  | ug/Kg | 1       | ₩            | EPA 537 (Mod) | Total/NA  |
| Perfluorononanoic acid (PFNA)             | 2.8    |           | 0.37 | 0.099 | ug/Kg | 1       | ₽            | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)       | 3.1    |           | 0.49 | 0.072 | ug/Kg | 1       | ф            | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS)      | 170    | E         | 0.37 | 0.076 | ug/Kg | 1       | ₽            | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)       | 390    | E         | 1.2  | 0.29  | ug/Kg | 1       | ₽            | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA) - DL        | 13     | JD        | 37   | 12    | ug/Kg | 100     | ₽            | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) - DL | 300    | D         | 37   | 7.6   | ug/Kg | 100     | ₩            | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS) - DL  | 650    | D         | 120  | 29    | ug/Kg | 100     | ₩            | EPA 537 (Mod) | Total/NA  |

#### Client Sample ID: ER-05

| Lah | Sample | ID: | 320-39023-56 |
|-----|--------|-----|--------------|
| Lab | Sample | ID. | 320-33023-30 |

| Analyte                              | Result | Qualifier | LOQ | DL   | Unit | Dil Fac | D | Method        | Prep Type |
|--------------------------------------|--------|-----------|-----|------|------|---------|---|---------------|-----------|
| Perfluorooctanoic acid (PFOA)        | 0.74   | JM        | 1.9 | 0.51 | ng/L | 1       | _ | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)  | 0.52   | J         | 1.9 | 0.44 | ng/L | 1       |   | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) | 3.4    |           | 1.9 | 0.36 | ng/L | 1       |   | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)  | 13     |           | 3.8 | 1.0  | ng/L | 1       |   | EPA 537 (Mod) | Total/NA  |

#### Client Sample ID: IDW-KINGSLEY-SO-LDOS01

Lab Sample ID: 320-39023-57

No Detections.

## Client Sample ID: IDW-KINGSLEY-WA-LDOS01

Lab Sample ID: 320-39023-58

No Detections.

Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

TestAmerica Job ID: 320-39023-1

## Client Sample ID: KLA07-SD1-01D

## Lab Sample ID: 320-39023-59

| Analyte                              | Result | Qualifier | LOQ  | DL    | Unit  | Dil Fac | D            | Method        | Prep Type |
|--------------------------------------|--------|-----------|------|-------|-------|---------|--------------|---------------|-----------|
| Perfluoroheptanoic acid (PFHpA)      | 0.12   | J         | 0.40 | 0.10  | ug/Kg | 1       | <del>\</del> | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanoic acid (PFOA)        | 0.48   |           | 0.40 | 0.13  | ug/Kg | 1       | ₩            | EPA 537 (Mod) | Total/NA  |
| Perfluorobutanesulfonic acid (PFBS)  | 0.20   | J         | 0.54 | 0.079 | ug/Kg | 1       | ₽            | EPA 537 (Mod) | Total/NA  |
| Perfluorohexanesulfonic acid (PFHxS) | 2.1    |           | 0.40 | 0.083 | ug/Kg | 1       | <b>\</b>     | EPA 537 (Mod) | Total/NA  |
| Perfluorooctanesulfonic acid (PFOS)  | 15     | J1        | 1.3  | 0.32  | ug/Kg | 1       | ₩            | EPA 537 (Mod) | Total/NA  |

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: MW-KLA01-01-01 Lab Sample ID: 320-39023-1

Date Collected: 05/06/18 14:50 Matrix: Water Date Received: 05/08/18 09:00

| Analyte                                                                                                                                                                                                                                                                                            | Result                                                           | Qualifier                                    | LOQ                                                                                        | DL                       | Unit                         | D        | Prepared                                                                                                                                                                 | Analyzed                                                                                                                                                           | Dil Fac                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------|------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                                                    | 7.6                                                              |                                              | 1.9                                                                                        | 0.59                     | ng/L                         |          | 05/18/18 10:26                                                                                                                                                           | 05/28/18 11:18                                                                                                                                                     | 1                                                           |
| Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                                                      | 20                                                               |                                              | 1.9                                                                                        | 0.52                     | ng/L                         |          | 05/18/18 10:26                                                                                                                                                           | 05/28/18 11:18                                                                                                                                                     | 1                                                           |
| Perfluorononanoic acid (PFNA)                                                                                                                                                                                                                                                                      | 0.56                                                             | J M                                          | 1.9                                                                                        | 0.50                     | ng/L                         |          | 05/18/18 10:26                                                                                                                                                           | 05/28/18 11:18                                                                                                                                                     | 1                                                           |
| Perfluorobutanesulfonic acid (PFBS)                                                                                                                                                                                                                                                                | 39                                                               | M                                            | 1.9                                                                                        | 0.44                     | ng/L                         |          | 05/18/18 10:26                                                                                                                                                           | 05/28/18 11:18                                                                                                                                                     | 1                                                           |
| Perfluorohexanesulfonic acid (PFHxS)                                                                                                                                                                                                                                                               | 220                                                              |                                              | 1.9                                                                                        | 0.37                     | ng/L                         |          | 05/18/18 10:26                                                                                                                                                           | 05/28/18 11:18                                                                                                                                                     | 1                                                           |
| Perfluorooctanesulfonic acid (PFOS)                                                                                                                                                                                                                                                                | 510                                                              | E                                            | 3.9                                                                                        | 1.1                      | ng/L                         |          | 05/18/18 10:26                                                                                                                                                           | 05/28/18 11:18                                                                                                                                                     | 1                                                           |
| Isotope Dilution                                                                                                                                                                                                                                                                                   | %Recovery                                                        | Qualifier                                    | Limits                                                                                     |                          |                              |          | Prepared                                                                                                                                                                 | Analyzed                                                                                                                                                           | Dil Fac                                                     |
| 13C3-PFBS                                                                                                                                                                                                                                                                                          | 75                                                               | -                                            | 50 - 150                                                                                   |                          |                              |          | 05/18/18 10:26                                                                                                                                                           | 05/28/18 11:18                                                                                                                                                     | 1                                                           |
| 13C4-PFHpA                                                                                                                                                                                                                                                                                         | 79                                                               |                                              | 50 - 150                                                                                   |                          |                              |          | 05/18/18 10:26                                                                                                                                                           | 05/28/18 11:18                                                                                                                                                     | 1                                                           |
| 13C4 PFOA                                                                                                                                                                                                                                                                                          | 87                                                               |                                              | 50 - 150                                                                                   |                          |                              |          | 05/18/18 10:26                                                                                                                                                           | 05/28/18 11:18                                                                                                                                                     | 1                                                           |
| 13C5 PFNA                                                                                                                                                                                                                                                                                          | 81                                                               |                                              | 50 - 150                                                                                   |                          |                              |          | 05/18/18 10:26                                                                                                                                                           | 05/28/18 11:18                                                                                                                                                     | 1                                                           |
| 1802 PFHxS                                                                                                                                                                                                                                                                                         | 80                                                               |                                              | 50 <sub>-</sub> 150                                                                        |                          |                              |          | 05/18/18 10:26                                                                                                                                                           | 05/28/18 11:18                                                                                                                                                     | 1                                                           |
| 1002111M0                                                                                                                                                                                                                                                                                          |                                                                  |                                              |                                                                                            |                          |                              |          |                                                                                                                                                                          |                                                                                                                                                                    |                                                             |
| 13C4 PFOS                                                                                                                                                                                                                                                                                          | 74                                                               |                                              | 50 - 150                                                                                   |                          |                              |          | 05/18/18 10:26                                                                                                                                                           | 05/28/18 11:18                                                                                                                                                     | 1                                                           |
| 13C4 PFOS<br>Method: EPA 537 (Mod) - PFA                                                                                                                                                                                                                                                           | 74<br>AS for QSM !                                               | 5.1, Table                                   | B-15 - DL                                                                                  | DI                       | Unit                         | n        |                                                                                                                                                                          |                                                                                                                                                                    |                                                             |
| 13C4 PFOS<br>Method: EPA 537 (Mod) - PFA<br>Analyte                                                                                                                                                                                                                                                | 74 AS for QSM (                                                  | 5.1, Table  <br>Qualifier                    | B-15 - DL<br>LOQ                                                                           |                          | Unit na/l                    | <u>D</u> | Prepared                                                                                                                                                                 | Analyzed                                                                                                                                                           | Dil Fac                                                     |
| 13C4 PFOS  Method: EPA 537 (Mod) - PFA Analyte  Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                    | AS for QSM Result 7.5                                            | 5.1, Table  <br>Qualifier<br>J D             | B-15 - DL<br>LOQ<br>9.7                                                                    | 2.9                      | ng/L                         | <u>D</u> | Prepared 05/18/18 10:26                                                                                                                                                  | Analyzed 05/29/18 18:41                                                                                                                                            | Dil Fac                                                     |
| Method: EPA 537 (Mod) - PFA<br>Analyte<br>Perfluoroheptanoic acid (PFHpA)<br>Perfluorooctanoic acid (PFOA)                                                                                                                                                                                         | 74 AS for QSM 9 Result 7.5 22                                    | 5.1, Table  <br>Qualifier<br>J D<br>D        | B-15 - DL<br>LOQ<br>9.7<br>9.7                                                             | 2.9<br>2.6               | ng/L                         | <u>D</u> | Prepared 05/18/18 10:26 05/18/18 10:26                                                                                                                                   | Analyzed 05/29/18 18:41 05/29/18 18:41                                                                                                                             | Dil Fac 5                                                   |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid                                                                                                                                       | 74 S for QSM ( Result 7.5 22 7.2                                 | 5.1, Table  <br>Qualifier<br>J D             | B-15 - DL<br>LOQ<br>9.7                                                                    | 2.9<br>2.6<br>2.5        | ng/L                         | <u>D</u> | Prepared 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26                                                                                                                    | Analyzed 05/29/18 18:41                                                                                                                                            | Dil Fac                                                     |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHPA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid                                                                                                   | 74 S for QSM ( Result 7.5 22 7.2                                 | 5.1, Table   Qualifier   J D   D   U M   D M | B-15 - DL<br>LOQ<br>9.7<br>9.7<br>9.7                                                      | 2.9<br>2.6<br>2.5<br>2.2 | ng/L<br>ng/L<br>ng/L         | <u>D</u> | Prepared 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26                                                                                                     | Analyzed 05/29/18 18:41 05/29/18 18:41 05/29/18 18:41                                                                                                              | <b>Dil Fac</b> 5 5 5                                        |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid                                                                                            | 74 S for QSM ( Result 7.5 22 7.2 40                              | 5.1, Table   Qualifier   J D D U M D M       | B-15 - DL<br>LOQ<br>9.7<br>9.7<br>9.7<br>9.7                                               | 2.9<br>2.6<br>2.5<br>2.2 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u> | Prepared 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26                                                                                      | Analyzed 05/29/18 18:41 05/29/18 18:41 05/29/18 18:41 05/29/18 18:41                                                                                               | <b>Dil Fac</b> 5 5 5                                        |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFHxS)                                                                                    | 74 AS for QSM ( Result 7.5 22 7.2 40 230                         | D M                                          | B-15 - DL<br>LOQ<br>9.7<br>9.7<br>9.7<br>9.7                                               | 2.9<br>2.6<br>2.5<br>2.2 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u> | Prepared 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26                                                                                      | Analyzed  05/29/18 18:41  05/29/18 18:41  05/29/18 18:41  05/29/18 18:41                                                                                           | Dil Fac 5 5 5 5 5                                           |
| Method: EPA 537 (Mod) - PFA Analyte  Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution                                                                   | 74 AS for QSM ( Result 7.5 22 7.2 40 230 500                     | D M                                          | B-15 - DL<br>LOQ<br>9.7<br>9.7<br>9.7<br>9.7<br>9.7                                        | 2.9<br>2.6<br>2.5<br>2.2 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u> | Prepared 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26                                                                       | Analyzed 05/29/18 18:41 05/29/18 18:41 05/29/18 18:41 05/29/18 18:41 05/29/18 18:41                                                                                | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                       |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS                                                          | 74 AS for QSM 9 Result 7.5 22 7.2 40 230 500 %Recovery           | D M                                          | B-15 - DL<br>LOQ<br>9.7<br>9.7<br>9.7<br>9.7<br>9.7<br>19                                  | 2.9<br>2.6<br>2.5<br>2.2 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u> | Prepared 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26  Prepared 05/18/18 10:26                                              | Analyzed  05/29/18 18:41  05/29/18 18:41  05/29/18 18:41  05/29/18 18:41  05/29/18 18:41  Analyzed                                                                 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                       |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA                                               | 74 Result 7.5 22 7.2 40 230 500  **Recovery* 72                  | D U M D M D Qualifier                        | B-15 - DL<br>LOQ<br>9.7<br>9.7<br>9.7<br>9.7<br>9.7<br>19<br>Limits<br>50 - 150            | 2.9<br>2.6<br>2.5<br>2.2 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u> | Prepared  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  Prepared  05/18/18 10:26  05/18/18 10:26                                       | Analyzed  05/29/18 18:41  05/29/18 18:41  05/29/18 18:41  05/29/18 18:41  05/29/18 18:41  Analyzed  05/29/18 18:41                                                 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                       |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS)                                                                                                                         | 74 Result 7.5 22 7.2 40 230 500  %Recovery 72 77                 | D Qualifier  D U M  D M  D  Qualifier        | B-15 - DL<br>LOQ<br>9.7<br>9.7<br>9.7<br>9.7<br>19<br>Limits<br>50 - 150<br>50 - 150       | 2.9<br>2.6<br>2.5<br>2.2 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u> | Prepared  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  Prepared  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26       | Analyzed  05/29/18 18:41  05/29/18 18:41  05/29/18 18:41  05/29/18 18:41  05/29/18 18:41  Analyzed  05/29/18 18:41  05/29/18 18:41                                 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                       |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFNA) Perfluorobutanesulfonic acid (PFNS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA 13C4 PFOA | 74 AS for QSM 9 Result 7.5 22 7.2 40 230 500  %Recovery 72 77 83 | D Qualifier J D D U M D M D Qualifier        | 9.7<br>9.7<br>9.7<br>9.7<br>9.7<br>9.7<br>19<br>Limits<br>50 - 150<br>50 - 150<br>50 - 150 | 2.9<br>2.6<br>2.5<br>2.2 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u> | Prepared 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26  Prepared 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 | Analyzed  05/29/18 18:41  05/29/18 18:41  05/29/18 18:41  05/29/18 18:41  05/29/18 18:41  Analyzed  05/29/18 18:41  05/29/18 18:41  05/29/18 18:41  05/29/18 18:41 | Dil Fac 5 5 5 5 5 5 6 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 |

Client Sample ID: MW-KLA02-01-01 Lab Sample ID: 320-39023-2

Date Collected: 05/06/18 12:05 Matrix: Water Date Received: 05/09/18 09:20

| Analyte                              | Result | Qualifier | LOQ | DL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|--------|-----------|-----|------|------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 7300   | E         | 1.8 | 0.55 | ng/L |   | 05/18/18 10:26 | 05/28/18 11:26 | 1       |
| Perfluorooctanoic acid (PFOA)        | 13000  | EM        | 1.8 | 0.49 | ng/L |   | 05/18/18 10:26 | 05/28/18 11:26 | 1       |
| Perfluorononanoic acid (PFNA)        | 340    | M         | 1.8 | 0.47 | ng/L |   | 05/18/18 10:26 | 05/28/18 11:26 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 1500   | EM        | 1.8 | 0.42 | ng/L |   | 05/18/18 10:26 | 05/28/18 11:26 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 14000  | EM        | 1.8 | 0.34 | ng/L |   | 05/18/18 10:26 | 05/28/18 11:26 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 88000  | EM        | 3.6 | 1.0  | ng/L |   | 05/18/18 10:26 | 05/28/18 11:26 | 1       |

TestAmerica Job ID: 320-39023-1 Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: MW-KLA02-01-01 Lab Sample ID: 320-39023-2

Date Collected: 05/06/18 12:05 Date Received: 05/09/18 09:20

**Matrix: Water** 

| Isotope Dilution                     | %Recovery   | Qualifier  | Limits    |     |      |   | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-------------|------------|-----------|-----|------|---|----------------|----------------|---------|
| 13C3-PFBS                            | 321         | Q          | 50 - 150  |     |      |   | 05/18/18 10:26 | 05/28/18 11:26 |         |
| 13C4-PFHpA                           | 44          | Q          | 50 - 150  |     |      |   | 05/18/18 10:26 | 05/28/18 11:26 |         |
| 13C4 PFOA                            | 65          |            | 50 - 150  |     |      |   | 05/18/18 10:26 | 05/28/18 11:26 | 1       |
| 13C5 PFNA                            | 40          | Q          | 50 - 150  |     |      |   | 05/18/18 10:26 | 05/28/18 11:26 |         |
| 1802 PFHxS                           | 77          |            | 50 - 150  |     |      |   | 05/18/18 10:26 | 05/28/18 11:26 |         |
| 13C4 PFOS                            | 28          | Q          | 50 - 150  |     |      |   | 05/18/18 10:26 | 05/28/18 11:26 | •       |
| Method: EPA 537 (Mod) - PFA          | S for QSM 5 | 5.1, Table | B-15 - DL |     |      |   |                |                |         |
| Analyte                              |             | Qualifier  | LOQ       | DL  | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Perfluoroheptanoic acid (PFHpA)      | 7700        | D          | 180       | 55  | ng/L |   | 05/18/18 10:26 | 05/29/18 18:49 | 100     |
| Perfluorooctanoic acid (PFOA)        | 21000       | D          | 180       | 49  | ng/L |   | 05/18/18 10:26 | 05/29/18 18:49 | 100     |
| Perfluorononanoic acid (PFNA)        | 340         | D M        | 180       | 47  | ng/L |   | 05/18/18 10:26 | 05/29/18 18:49 | 100     |
| Perfluorobutanesulfonic acid (PFBS)  | 9700        | D          | 180       | 42  | ng/L |   | 05/18/18 10:26 | 05/29/18 18:49 | 100     |
| Perfluorohexanesulfonic acid (PFHxS) | 66000       | E D        | 180       | 34  | ng/L |   | 05/18/18 10:26 | 05/29/18 18:49 | 100     |
| Perfluorooctanesulfonic acid (PFOS)  | 380000      | ED         | 360       | 100 | ng/L |   | 05/18/18 10:26 | 05/29/18 18:49 | 100     |
| Isotope Dilution                     | %Recovery   | Qualifier  | Limits    |     |      |   | Prepared       | Analyzed       | Dil Fa  |
| 13C3-PFBS                            | 176         | Q          | 50 - 150  |     |      |   | 05/18/18 10:26 | 05/29/18 18:49 | 100     |
| 13C4-PFHpA                           | 54          |            | 50 - 150  |     |      |   | 05/18/18 10:26 | 05/29/18 18:49 | 100     |
| 13C4 PFOA                            | 68          |            | 50 - 150  |     |      |   | 05/18/18 10:26 | 05/29/18 18:49 | 100     |
| 13C5 PFNA                            | 53          |            | 50 - 150  |     |      |   | 05/18/18 10:26 | 05/29/18 18:49 | 100     |
| 1802 PFHxS                           | 96          |            | 50 - 150  |     |      |   | 05/18/18 10:26 | 05/29/18 18:49 | 100     |
| 100211110                            |             |            |           |     |      |   |                |                |         |

Client Sample ID: MW-KLA03-01-01 Lab Sample ID: 320-39023-3

Date Collected: 05/06/18 15:55

Perfluoroheptanoic acid (PFHpA)

Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 - DL

Result Qualifier

190 D

| Date Received: 05/08/18 09:00        |           |                           |             |      |      |   |                |                |         |
|--------------------------------------|-----------|---------------------------|-------------|------|------|---|----------------|----------------|---------|
| Method: EPA 537 (Mod) - PFA Analyte  |           | 5.1, Table I<br>Qualifier | B-15<br>LOQ | DL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Perfluoroheptanoic acid (PFHpA)      | 200       |                           | 2.0         | 0.61 | ng/L |   | 05/18/18 10:26 | 05/28/18 11:34 | 1       |
| Perfluorooctanoic acid (PFOA)        | 290       |                           | 2.0         | 0.54 | ng/L |   | 05/18/18 10:26 | 05/28/18 11:34 | 1       |
| Perfluorononanoic acid (PFNA)        | 16        | M                         | 2.0         | 0.52 | ng/L |   | 05/18/18 10:26 | 05/28/18 11:34 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 180       |                           | 2.0         | 0.46 | ng/L |   | 05/18/18 10:26 | 05/28/18 11:34 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 1800      | E                         | 2.0         | 0.38 | ng/L |   | 05/18/18 10:26 | 05/28/18 11:34 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 5200      | E                         | 4.0         | 1.1  | ng/L |   | 05/18/18 10:26 | 05/28/18 11:34 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier                 | Limits      |      |      |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 75        |                           | 50 - 150    |      |      |   | 05/18/18 10:26 | 05/28/18 11:34 |         |
| 13C4-PFHpA                           | 69        |                           | 50 - 150    |      |      |   | 05/18/18 10:26 | 05/28/18 11:34 | 1       |
| 13C4 PFOA                            | 85        |                           | 50 - 150    |      |      |   | 05/18/18 10:26 | 05/28/18 11:34 | 1       |
| 13C5 PFNA                            | 62        |                           | 50 - 150    |      |      |   | 05/18/18 10:26 | 05/28/18 11:34 | 1       |
| 1802 PFHxS                           | 66        |                           | 50 - 150    |      |      |   | 05/18/18 10:26 | 05/28/18 11:34 | 1       |
| 13C4 PFOS                            | 54        |                           | 50 - 150    |      |      |   | 05/18/18 10:26 | 05/28/18 11:34 | 1       |

TestAmerica Sacramento

Analyzed

05/18/18 10:26 05/29/18 19:04

Prepared

**Matrix: Water** 

100

DL Unit

30 ng/L

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: MW-KLA03-01-01 Lab Sample ID: 320-39023-3

Date Collected: 05/06/18 15:55 **Matrix: Water** Date Received: 05/08/18 09:00

| Analyte                              | Result    | Qualifier | LOQ      | DL | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|----------|----|------|---|----------------|----------------|---------|
| Perfluorooctanoic acid (PFOA)        | 300       | D         | 100      | 27 | ng/L |   | 05/18/18 10:26 | 05/29/18 19:04 | 50      |
| Perfluorononanoic acid (PFNA)        | 75        | U         | 100      | 26 | ng/L |   | 05/18/18 10:26 | 05/29/18 19:04 | 50      |
| Perfluorobutanesulfonic acid (PFBS)  | 170       | D         | 100      | 23 | ng/L |   | 05/18/18 10:26 | 05/29/18 19:04 | 50      |
| Perfluorohexanesulfonic acid (PFHxS) | 2700      | D         | 100      | 19 | ng/L |   | 05/18/18 10:26 | 05/29/18 19:04 | 50      |
| Perfluorooctanesulfonic acid (PFOS)  | 6100      | D M       | 200      | 55 | ng/L |   | 05/18/18 10:26 | 05/29/18 19:04 | 50      |
| Isotope Dilution                     | %Recovery | Qualifier | Limits   |    |      |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 68        | М         | 50 - 150 |    |      |   | 05/18/18 10:26 | 05/29/18 19:04 | 50      |
| 13C4-PFHpA                           | 72        |           | 50 - 150 |    |      |   | 05/18/18 10:26 | 05/29/18 19:04 | 50      |
| 13C4 PFOA                            | 83        |           | 50 - 150 |    |      |   | 05/18/18 10:26 | 05/29/18 19:04 | 50      |
| 13C5 PFNA                            | 77        |           | 50 - 150 |    |      |   | 05/18/18 10:26 | 05/29/18 19:04 | 50      |
| 1802 PFHxS                           | 72        |           | 50 - 150 |    |      |   | 05/18/18 10:26 | 05/29/18 19:04 | 50      |
| 13C4 PFOS                            | 75        |           | 50 - 150 |    |      |   | 05/18/18 10:26 | 05/29/18 19:04 | 50      |

Client Sample ID: MW-KLA04-01-01 Lab Sample ID: 320-39023-4 **Matrix: Water** 

Date Collected: 05/06/18 14:15

(PFOS)

| Date Received: 05/08/18 09:00   |             |              |      |      |      |   |                |                |         |
|---------------------------------|-------------|--------------|------|------|------|---|----------------|----------------|---------|
| Method: EPA 537 (Mod) - PFAS    | S for QSM 5 | 5.1, Table E | 3-15 |      |      |   |                |                |         |
| Analyte                         | Result      | Qualifier    | LOQ  | DL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Perfluoroheptanoic acid (PFHpA) | 27          |              | 2.0  | 0.60 | ng/L |   | 05/18/18 10:26 | 05/29/18 19:20 | 1       |

| Isotope Dilution                    | %Recovery | Qualifier | Limits |      |      | Prepared       | Analyzed       | Dil Fac |
|-------------------------------------|-----------|-----------|--------|------|------|----------------|----------------|---------|
| Perfluorooctanesulfonic acid (PFOS) | 100       |           | 4.0    | 1.1  | ng/L | 05/18/18 10:26 | 05/29/18 19:20 | 1       |
| (PFHxS)                             |           |           | 4.0    |      |      | 05/40/40 40 00 | 05/00/40 40 00 |         |
| (PFBS) Perfluorohexanesulfonic acid | 610       | E         | 2.0    | 0.38 | ng/L | 05/18/18 10:26 | 05/29/18 19:20 | 1       |
| Perfluorobutanesulfonic acid        | 96        |           | 2.0    | 0.45 | ng/L | 05/18/18 10:26 | 05/29/18 19:20 | 1       |
| Perfluorononanoic acid (PFNA)       | 1.5       | U M       | 2.0    | 0.51 | ng/L | 05/18/18 10:26 | 05/29/18 19:20 | 1       |
| Perfluorooctanoic acid (PFOA)       | 41        |           | 2.0    | 0.53 | ng/L | 05/18/18 10:26 | 05/29/18 19:20 | 1       |
| Perfluoroheptanoic acid (PFHpA)     | 27        |           | 2.0    | 0.60 | ng/L | 05/18/18 10:26 | 05/29/18 19:20 | 1       |

| Isotope Dilution | %Recovery | Qualifier Limi | ts Pre    | pared    | Analyzed       | Dil Fac |
|------------------|-----------|----------------|-----------|----------|----------------|---------|
| 13C3-PFBS        | 71        | 50 - 1         | 50 05/18/ | 18 10:26 | 05/29/18 19:20 | 1       |
| 13C4-PFHpA       | 74        | 50 - 1         | 50 05/18/ | 18 10:26 | 05/29/18 19:20 | 1       |
| 13C4 PFOA        | 80        | 50 - 1         | 50 05/18/ | 18 10:26 | 05/29/18 19:20 | 1       |
| 13C5 PFNA        | 79        | 50 - 1         | 50 05/18/ | 18 10:26 | 05/29/18 19:20 | 1       |
| 18O2 PFHxS       | 69        | 50 - 1         | 50 05/18/ | 18 10:26 | 05/29/18 19:20 | 1       |
| 13C4 PFOS        | 69        | 50 - 1         | 50 05/18/ | 18 10:26 | 05/29/18 19:20 | 1       |

| Analyte                                 | Result | Qualifier | LOQ | DL  | Unit | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------------|--------|-----------|-----|-----|------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)         | 31     | D         | 9.9 | 3.0 | ng/L |   | 05/18/18 10:26 | 05/29/18 19:12 | 5       |
| Perfluorooctanoic acid (PFOA)           | 43     | D         | 9.9 | 2.7 | ng/L |   | 05/18/18 10:26 | 05/29/18 19:12 | 5       |
| Perfluorononanoic acid (PFNA)           | 7.4    | UM        | 9.9 | 2.6 | ng/L |   | 05/18/18 10:26 | 05/29/18 19:12 | 5       |
| Perfluorobutanesulfonic acid (PFBS)     | 95     | D         | 9.9 | 2.3 | ng/L |   | 05/18/18 10:26 | 05/29/18 19:12 | 5       |
| Perfluorohexanesulfonic acid<br>(PFHxS) | 690    | D         | 9.9 | 1.9 | ng/L |   | 05/18/18 10:26 | 05/29/18 19:12 | 5       |
| Perfluorooctanesulfonic acid            | 100    | D         | 20  | 5.4 | ng/L |   | 05/18/18 10:26 | 05/29/18 19:12 | 5       |

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: MW-KLA04-01-01 Lab Sample ID: 320-39023-4

Date Collected: 05/06/18 14:15

Matrix: Water

Date Received: 05/08/18 09:00

| Isotope Dilution | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------|-----------|-----------|----------|----------------|----------------|---------|
| 13C3-PFBS        | 63        |           | 50 - 150 | 05/18/18 10:26 | 05/29/18 19:12 | 5       |
| 13C4-PFHpA       | 65        |           | 50 - 150 | 05/18/18 10:26 | 05/29/18 19:12 | 5       |
| 13C4 PFOA        | 75        |           | 50 - 150 | 05/18/18 10:26 | 05/29/18 19:12 | 5       |
| 13C5 PFNA        | 67        |           | 50 - 150 | 05/18/18 10:26 | 05/29/18 19:12 | 5       |
| 18O2 PFHxS       | 62        |           | 50 - 150 | 05/18/18 10:26 | 05/29/18 19:12 | 5       |
| 13C4 PFOS        | 62        |           | 50 - 150 | 05/18/18 10:26 | 05/29/18 19:12 | 5       |

Client Sample ID: MW-573-03-PRL05-01 Lab Sample ID: 320-39023-5

Date Collected: 05/06/18 09:15 Matrix: Water Date Received: 05/08/18 09:00

| Analyte                                                                                                                                                                                                                                                                                      | Result                                                           | Qualifier                                                              | LOQ                                                                                          | DL                         | Unit                         | D          | Prepared                                                                                                                                                                           | Analyzed                                                                                                                                                    | Dil Fac                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------|------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                                              | 4400                                                             | E J1                                                                   | 2.0                                                                                          | 0.60                       | ng/L                         |            | 05/18/18 10:26                                                                                                                                                                     | 05/28/18 11:50                                                                                                                                              | 1                                                             |
| Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                                                | 4700                                                             | E J1                                                                   | 2.0                                                                                          | 0.54                       | ng/L                         |            | 05/18/18 10:26                                                                                                                                                                     | 05/28/18 11:50                                                                                                                                              | 1                                                             |
| Perfluorononanoic acid (PFNA)                                                                                                                                                                                                                                                                | 200                                                              | J1                                                                     | 2.0                                                                                          | 0.52                       | ng/L                         |            | 05/18/18 10:26                                                                                                                                                                     | 05/28/18 11:50                                                                                                                                              | 1                                                             |
| Perfluorobutanesulfonic acid (PFBS)                                                                                                                                                                                                                                                          | 1900                                                             | E J1 M                                                                 | 2.0                                                                                          | 0.46                       | ng/L                         |            | 05/18/18 10:26                                                                                                                                                                     | 05/28/18 11:50                                                                                                                                              | 1                                                             |
| Perfluorohexanesulfonic acid (PFHxS)                                                                                                                                                                                                                                                         | 12000                                                            | E J1                                                                   | 2.0                                                                                          | 0.38                       | ng/L                         |            | 05/18/18 10:26                                                                                                                                                                     | 05/28/18 11:50                                                                                                                                              | 1                                                             |
| Perfluorooctanesulfonic acid (PFOS)                                                                                                                                                                                                                                                          | 32000                                                            | J1 E M                                                                 | 4.0                                                                                          | 1.1                        | ng/L                         |            | 05/18/18 10:26                                                                                                                                                                     | 05/28/18 11:50                                                                                                                                              | 1                                                             |
| Isotope Dilution                                                                                                                                                                                                                                                                             | %Recovery                                                        | Qualifier                                                              | Limits                                                                                       |                            |                              |            | Prepared                                                                                                                                                                           | Analyzed                                                                                                                                                    | Dil Fac                                                       |
| 13C3-PFBS                                                                                                                                                                                                                                                                                    | 136                                                              |                                                                        | 50 - 150                                                                                     |                            |                              |            | 05/18/18 10:26                                                                                                                                                                     | 05/28/18 11:50                                                                                                                                              | 1                                                             |
| 13C4-PFHpA                                                                                                                                                                                                                                                                                   | 46                                                               | Q                                                                      | 50 <sub>-</sub> 150                                                                          |                            |                              |            | 05/18/18 10:26                                                                                                                                                                     | 05/28/18 11:50                                                                                                                                              | 1                                                             |
| 13C4 PFOA                                                                                                                                                                                                                                                                                    | 77                                                               |                                                                        | 50 <sub>-</sub> 150                                                                          |                            |                              |            | 05/18/18 10:26                                                                                                                                                                     | 05/28/18 11:50                                                                                                                                              | 1                                                             |
| 13C5 PFNA                                                                                                                                                                                                                                                                                    | 58                                                               |                                                                        | 50 - 150                                                                                     |                            |                              |            | 05/18/18 10:26                                                                                                                                                                     | 05/28/18 11:50                                                                                                                                              | 1                                                             |
| 18O2 PFHxS                                                                                                                                                                                                                                                                                   | 54                                                               |                                                                        | 50 <sub>-</sub> 150                                                                          |                            |                              |            | 05/18/18 10:26                                                                                                                                                                     | 05/28/18 11:50                                                                                                                                              | 1                                                             |
|                                                                                                                                                                                                                                                                                              |                                                                  |                                                                        |                                                                                              |                            |                              |            |                                                                                                                                                                                    |                                                                                                                                                             |                                                               |
| 13C4 PFOS                                                                                                                                                                                                                                                                                    | 48                                                               | ·                                                                      | 50 - 150                                                                                     |                            |                              |            | 05/18/18 10:26                                                                                                                                                                     | 05/28/18 11:50                                                                                                                                              | 1                                                             |
| Method: EPA 537 (Mod) - PFA<br>Analyte                                                                                                                                                                                                                                                       | S for QSM !<br>Result                                            | 5.1, Table  <br>Qualifier                                              | B-15 - DL<br>LOQ                                                                             |                            | Unit                         | <u>D</u>   | Prepared                                                                                                                                                                           | Analyzed                                                                                                                                                    | Dil Fac                                                       |
| Method: EPA 537 (Mod) - PFA<br>Analyte<br>Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                    | S for QSM (Result                                                | 5.1, Table Qualifier                                                   | B-15 - DL<br>LOQ<br>200                                                                      | 60                         | ng/L                         | <u>D</u>   | Prepared 05/18/18 10:26                                                                                                                                                            | Analyzed 05/29/18 19:28                                                                                                                                     | Dil Fac                                                       |
| Method: EPA 537 (Mod) - PFA<br>Analyte<br>Perfluoroheptanoic acid (PFHpA)<br>Perfluorooctanoic acid (PFOA)                                                                                                                                                                                   | S for QSM !<br>Result<br>5100<br>6700                            | 5.1, Table Qualifier  J1 D  J1 D                                       | B-15 - DL<br>LOQ<br>200                                                                      | 60<br>54                   | ng/L<br>ng/L                 | <u>D</u>   | Prepared 05/18/18 10:26 05/18/18 10:26                                                                                                                                             | Analyzed 05/29/18 19:28 05/29/18 19:28                                                                                                                      | 100<br>100                                                    |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA)                                                                                                                                                              | S for QSM 8  Result  5100 6700 190                               | 5.1, Table Qualifier J1 D J1 D J J1 D M                                | B-15 - DL<br>LOQ<br>200<br>200<br>200                                                        | 60<br>54<br>52             | ng/L<br>ng/L<br>ng/L         | <u>D</u>   | Prepared 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26                                                                                                                              | Analyzed 05/29/18 19:28 05/29/18 19:28 05/29/18 19:28                                                                                                       | 100<br>100                                                    |
| Method: EPA 537 (Mod) - PFA<br>Analyte<br>Perfluoroheptanoic acid (PFHpA)<br>Perfluorooctanoic acid (PFOA)                                                                                                                                                                                   | S for QSM 8  Result  5100 6700 190                               | 5.1, Table Qualifier  J1 D  J1 D                                       | B-15 - DL<br>LOQ<br>200                                                                      | 60<br>54<br>52<br>46       | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u>   | Prepared 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26                                                                                                                              | Analyzed 05/29/18 19:28 05/29/18 19:28                                                                                                                      | 100<br>100<br>100<br>100                                      |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid                                                                                                                                 | S for QSM 9<br>Result<br>5100<br>6700<br>190<br>3900             | 5.1, Table Qualifier J1 D J1 D J J1 D M                                | B-15 - DL<br>LOQ<br>200<br>200<br>200                                                        | 60<br>54<br>52<br>46<br>38 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u>   | Prepared 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26                                                                                                               | Analyzed 05/29/18 19:28 05/29/18 19:28 05/29/18 19:28                                                                                                       | 100<br>100<br>100<br>100                                      |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid                                                                                             | Result 5100 6700 190 3900                                        | 5.1, Table Qualifier J1 D J1 D J1 D J J1 D M J1 D                      | B-15 - DL<br>LOQ<br>200<br>200<br>200<br>200                                                 | 60<br>54<br>52<br>46<br>38 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u>   | Prepared 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26                                                                                                | Analyzed  05/29/18 19:28  05/29/18 19:28  05/29/18 19:28  05/29/18 19:28                                                                                    | Dil Fac<br>100<br>100<br>100<br>100                           |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid                                                        | Result 5100 6700 190 3900                                        | 5.1, Table Qualifier J1 D J1 D J J1 D M J1 D E J1 D                    | B-15 - DL<br>LOQ<br>200<br>200<br>200<br>200<br>200                                          | 60<br>54<br>52<br>46<br>38 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u>   | Prepared 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26                                                                                                | Analyzed  05/29/18 19:28  05/29/18 19:28  05/29/18 19:28  05/29/18 19:28                                                                                    | Dil Fac<br>100<br>100<br>100<br>100<br>100                    |
| Method: EPA 537 (Mod) - PFA Analyte  Perfluoroheptanoic acid (PFHpA)  Perfluorooctanoic acid (PFOA)  Perfluorobutanesulfonic acid (PFBS)  Perfluorohexanesulfonic acid (PFHxS)  Perfluorooctanesulfonic acid (PFHxS)                                                                         | Result 5100 6700 190 3900 63000 %Recovery                        | 5.1, Table Qualifier J1 D J1 D J J1 D M J1 D E J1 D                    | B-15 - DL<br>LOQ<br>200<br>200<br>200<br>200<br>200<br>400                                   | 60<br>54<br>52<br>46<br>38 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u>   | Prepared 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26                                                                                 | Analyzed 05/29/18 19:28 05/29/18 19:28 05/29/18 19:28 05/29/18 19:28 05/29/18 19:28                                                                         | 100<br>100<br>100<br>100<br>100<br>100<br>100                 |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution                                | Result 5100 6700 190 3900 63000 %Recovery                        | Gualifier J1 D Qualifier                 | B-15 - DL<br>LOQ<br>200<br>200<br>200<br>200<br>200<br>400<br>Limits                         | 60<br>54<br>52<br>46<br>38 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u> _ | Prepared 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26  Prepared 05/18/18 10:26                                                        | Analyzed  05/29/18 19:28  05/29/18 19:28  05/29/18 19:28  05/29/18 19:28  05/29/18 19:28  05/29/18 19:28  Analyzed                                          | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100          |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS                      | S for QSM 4 Result 5100 6700 190 3900 39000 63000  **Recovery 99 | 5.1, Table Qualifier J1 D J1 D J J1 D M J1 D E J1 D J1 E D Qualifier M | B-15 - DL<br>LOQ<br>200<br>200<br>200<br>200<br>200<br>400<br>Limits<br>50 - 150             | 60<br>54<br>52<br>46<br>38 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u> _ | Prepared 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26 05/18/18 10:26  Prepared 05/18/18 10:26 05/18/18 10:26                                         | Analyzed  05/29/18 19:28  05/29/18 19:28  05/29/18 19:28  05/29/18 19:28  05/29/18 19:28  4nalyzed  05/29/18 19:28                                          | Dil Fac  100  100  100  100  100  100  100  Dil Fac  100  100 |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA           | Result 5100 6700 190 3900 39000 63000  **Recovery 99 64          | 5.1, Table Qualifier J1 D J1 D J1 D M J1 D E J1 D J1 E D Qualifier M   | B-15 - DL<br>LOQ<br>200<br>200<br>200<br>200<br>200<br>400<br>Limits<br>50 - 150<br>50 - 150 | 60<br>54<br>52<br>46<br>38 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u> _ | Prepared  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  Prepared  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26                 | Analyzed  05/29/18 19:28 05/29/18 19:28 05/29/18 19:28 05/29/18 19:28 05/29/18 19:28  Analyzed  05/29/18 19:28 05/29/18 19:28                               | Dil Face 1000 1000 1000 1000 1000 1000 1000 10                |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA 13C4 PFOA | Result 5100 6700 190 3900 39000 63000  **Recovery 99 64 73       | Qualifier J1 D J1 D J1 D M J1 D E J1 D J1 E D Qualifier M              | B-15 - DL<br>LOQ<br>200<br>200<br>200<br>200<br>200<br>400<br>Limits<br>50 - 150<br>50 - 150 | 60<br>54<br>52<br>46<br>38 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u>   | Prepared  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  Prepared  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26  05/18/18 10:26 | Analyzed  05/29/18 19:28 05/29/18 19:28 05/29/18 19:28 05/29/18 19:28 05/29/18 19:28  Analyzed  05/29/18 19:28 05/29/18 19:28 05/29/18 19:28 05/29/18 19:28 | Dil Fac  100 100 100 100 100 100 100 100 100 1                |

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: MW-572-02-PRL05-01 Lab Sample ID: 320-39023-6

Date Collected: 05/06/18 10:30 **Matrix: Water** 

Date Received: 05/08/18 09:00

| Analyte                                                                                                                                                                                                                                                                                            |                                                            | 5.1, Table  <br>Qualifier       | LOQ                                                                              | DL                              | Unit                         | D        | Prepared                                                                                                                                                                                     | Analyzed                                                                                                                                                                   | Dil Fac                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------|---------------------------------|------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                                                    | 25                                                         |                                 | 1.9                                                                              | 0.57                            | ng/L                         |          | 05/18/18 10:26                                                                                                                                                                               | 05/28/18 12:13                                                                                                                                                             | -                                                        |
| Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                                                      | 56                                                         |                                 | 1.9                                                                              | 0.51                            | ng/L                         |          | 05/18/18 10:26                                                                                                                                                                               | 05/28/18 12:13                                                                                                                                                             |                                                          |
| Perfluorononanoic acid (PFNA)                                                                                                                                                                                                                                                                      | 3.8                                                        |                                 | 1.9                                                                              | 0.49                            | ng/L                         |          | 05/18/18 10:26                                                                                                                                                                               | 05/28/18 12:13                                                                                                                                                             |                                                          |
| Perfluorobutanesulfonic acid (PFBS)                                                                                                                                                                                                                                                                | 27                                                         |                                 | 1.9                                                                              | 0.43                            | ng/L                         |          | 05/18/18 10:26                                                                                                                                                                               | 05/28/18 12:13                                                                                                                                                             |                                                          |
| Perfluorohexanesulfonic acid (PFHxS)                                                                                                                                                                                                                                                               | 360                                                        | E                               | 1.9                                                                              | 0.36                            | ng/L                         |          | 05/18/18 10:26                                                                                                                                                                               | 05/28/18 12:13                                                                                                                                                             | •                                                        |
| Perfluorooctanesulfonic acid (PFOS)                                                                                                                                                                                                                                                                | 1100                                                       | EM                              | 3.8                                                                              | 1.0                             | ng/L                         |          | 05/18/18 10:26                                                                                                                                                                               | 05/28/18 12:13                                                                                                                                                             | ,                                                        |
| Isotope Dilution                                                                                                                                                                                                                                                                                   | %Recovery                                                  | Qualifier                       | Limits                                                                           |                                 |                              |          | Prepared                                                                                                                                                                                     | Analyzed                                                                                                                                                                   | Dil Fa                                                   |
| 13C3-PFBS                                                                                                                                                                                                                                                                                          | 85                                                         |                                 | 50 - 150                                                                         |                                 |                              |          | 05/18/18 10:26                                                                                                                                                                               | 05/28/18 12:13                                                                                                                                                             | 1                                                        |
| 13C4-PFHpA                                                                                                                                                                                                                                                                                         | 83                                                         |                                 | 50 - 150                                                                         |                                 |                              |          | 05/18/18 10:26                                                                                                                                                                               | 05/28/18 12:13                                                                                                                                                             | 1                                                        |
| 13C4 PFOA                                                                                                                                                                                                                                                                                          | 89                                                         |                                 | 50 - 150                                                                         |                                 |                              |          | 05/18/18 10:26                                                                                                                                                                               | 05/28/18 12:13                                                                                                                                                             | 1                                                        |
| 13C5 PFNA                                                                                                                                                                                                                                                                                          | 82                                                         |                                 | 50 - 150                                                                         |                                 |                              |          | 05/18/18 10:26                                                                                                                                                                               | 05/28/18 12:13                                                                                                                                                             |                                                          |
| 1802 PFHxS                                                                                                                                                                                                                                                                                         | 81                                                         |                                 | 50 - 150                                                                         |                                 |                              |          | 05/18/18 10:26                                                                                                                                                                               | 05/28/18 12:13                                                                                                                                                             |                                                          |
| 13C4 PFOS                                                                                                                                                                                                                                                                                          | 74                                                         |                                 | 50 - 150                                                                         |                                 |                              |          | 05/18/18 10:26                                                                                                                                                                               | 05/28/18 12:13                                                                                                                                                             | 1                                                        |
|                                                                                                                                                                                                                                                                                                    |                                                            | 5.1. Table                      |                                                                                  |                                 |                              |          |                                                                                                                                                                                              |                                                                                                                                                                            |                                                          |
| Method: EPA 537 (Mod) - PFA<br>Analyte                                                                                                                                                                                                                                                             | S for QSM !<br>Result                                      | Qualifier                       | B-15 - DL<br>LOQ                                                                 |                                 | Unit                         | <u>D</u> | Prepared                                                                                                                                                                                     | Analyzed                                                                                                                                                                   | Dil Fac                                                  |
| Method: EPA 537 (Mod) - PFA<br>Analyte<br>Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                          | S for QSM (Result                                          | Qualifier D                     | B-15 - DL<br>LOQ<br>19                                                           | 5.7                             | ng/L                         | <u>D</u> | 05/18/18 10:26                                                                                                                                                                               | 05/29/18 20:07                                                                                                                                                             | 10                                                       |
| Method: EPA 537 (Mod) - PFA<br>Analyte<br>Perfluoroheptanoic acid (PFHpA)<br>Perfluorooctanoic acid (PFOA)                                                                                                                                                                                         | S for QSM !<br>Result<br>23<br>55                          | Qualifier D                     | B-15 - DL<br>LOQ<br>19                                                           | 5.7<br>5.1                      | ng/L<br>ng/L                 | <u>D</u> | 05/18/18 10:26<br>05/18/18 10:26                                                                                                                                                             | 05/29/18 20:07<br>05/29/18 20:07                                                                                                                                           | 10                                                       |
| Method: EPA 537 (Mod) - PFA<br>Analyte<br>Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                          | S for QSM !  Result  23  55  14                            | Qualifier D D U M               | B-15 - DL<br>LOQ<br>19<br>19                                                     | 5.7<br>5.1<br>4.9               | ng/L<br>ng/L<br>ng/L         | <u>D</u> | 05/18/18 10:26<br>05/18/18 10:26<br>05/18/18 10:26                                                                                                                                           | 05/29/18 20:07<br>05/29/18 20:07<br>05/29/18 20:07                                                                                                                         | 10<br>10<br>10                                           |
| Method: EPA 537 (Mod) - PFA<br>Analyte<br>Perfluoroheptanoic acid (PFHpA)<br>Perfluorooctanoic acid (PFOA)                                                                                                                                                                                         | S for QSM !<br>Result<br>23<br>55                          | Qualifier D D U M               | B-15 - DL<br>LOQ<br>19                                                           | 5.7<br>5.1<br>4.9<br>4.3        | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u> | 05/18/18 10:26<br>05/18/18 10:26<br>05/18/18 10:26<br>05/18/18 10:26                                                                                                                         | 05/29/18 20:07<br>05/29/18 20:07<br>05/29/18 20:07<br>05/29/18 20:07                                                                                                       | 10<br>10<br>10                                           |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid                                                                                                                                       | S for QSM !  Result  23  55  14                            | Qualifier D U U M               | B-15 - DL<br>LOQ<br>19<br>19                                                     | 5.7<br>5.1<br>4.9<br>4.3        | ng/L<br>ng/L<br>ng/L         | <u>D</u> | 05/18/18 10:26<br>05/18/18 10:26<br>05/18/18 10:26<br>05/18/18 10:26                                                                                                                         | 05/29/18 20:07<br>05/29/18 20:07<br>05/29/18 20:07                                                                                                                         | 10                                                       |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid                                                                                                   | S for QSM (  Result  23  55  14  27                        | Qualifier D D U M D             | B-15 - DL<br>LOQ<br>19<br>19<br>19<br>19                                         | 5.7<br>5.1<br>4.9<br>4.3<br>3.6 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u> | 05/18/18 10:26<br>05/18/18 10:26<br>05/18/18 10:26<br>05/18/18 10:26<br>05/18/18 10:26                                                                                                       | 05/29/18 20:07<br>05/29/18 20:07<br>05/29/18 20:07<br>05/29/18 20:07                                                                                                       | 10<br>10<br>10                                           |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid                                                              | S for QSM 9  Result  23  55  14  27  360                   | Qualifier D D U M D D           | B-15 - DL<br>LOQ<br>19<br>19<br>19<br>19                                         | 5.7<br>5.1<br>4.9<br>4.3<br>3.6 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u> | 05/18/18 10:26<br>05/18/18 10:26<br>05/18/18 10:26<br>05/18/18 10:26<br>05/18/18 10:26                                                                                                       | 05/29/18 20:07<br>05/29/18 20:07<br>05/29/18 20:07<br>05/29/18 20:07<br>05/29/18 20:07                                                                                     | 10<br>10<br>10<br>10                                     |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution                                                                    | S for QSM 8 Result 23 55 14 27 360 1100                    | Qualifier D D U M D D Qualifier | B-15 - DL<br>LOQ<br>19<br>19<br>19<br>19<br>19                                   | 5.7<br>5.1<br>4.9<br>4.3<br>3.6 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u> | 05/18/18 10:26<br>05/18/18 10:26<br>05/18/18 10:26<br>05/18/18 10:26<br>05/18/18 10:26<br>05/18/18 10:26<br><i>Prepared</i>                                                                  | 05/29/18 20:07<br>05/29/18 20:07<br>05/29/18 20:07<br>05/29/18 20:07<br>05/29/18 20:07<br>05/29/18 20:07                                                                   | 10<br>10<br>10<br>10<br>10                               |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution                                                                    | S for QSM 9  Result  23  55  14  27  360  1100  %Recovery  | Qualifier D D U M D D Qualifier | B-15 - DL<br>LOQ<br>19<br>19<br>19<br>19<br>19<br>38                             | 5.7<br>5.1<br>4.9<br>4.3<br>3.6 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u> | 05/18/18 10:26<br>05/18/18 10:26<br>05/18/18 10:26<br>05/18/18 10:26<br>05/18/18 10:26<br>05/18/18 10:26<br>Prepared<br>05/18/18 10:26                                                       | 05/29/18 20:07<br>05/29/18 20:07<br>05/29/18 20:07<br>05/29/18 20:07<br>05/29/18 20:07<br>05/29/18 20:07<br>Analyzed                                                       | 10<br>10<br>10<br>10<br>10<br>10<br>10                   |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS                                                          | S for QSM 4 Result 23 55 14 27 360 1100 %Recovery 69       | Qualifier D D U M D D Qualifier | B-15 - DL<br>LOQ<br>19<br>19<br>19<br>19<br>38<br>Limits<br>50 - 150             | 5.7<br>5.1<br>4.9<br>4.3<br>3.6 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u> | 05/18/18 10:26<br>05/18/18 10:26<br>05/18/18 10:26<br>05/18/18 10:26<br>05/18/18 10:26<br>05/18/18 10:26<br>Prepared<br>05/18/18 10:26<br>05/18/18 10:26                                     | 05/29/18 20:07<br>05/29/18 20:07<br>05/29/18 20:07<br>05/29/18 20:07<br>05/29/18 20:07<br>05/29/18 20:07<br>Analyzed<br>05/29/18 20:07                                     | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA                                               | S for QSM 4 Result 23 55 14 27 360 1100 %Recovery 69 79    | Qualifier D D U M D D Qualifier | B-15 - DL<br>LOQ<br>19<br>19<br>19<br>19<br>38<br>Limits<br>50 - 150<br>50 - 150 | 5.7<br>5.1<br>4.9<br>4.3<br>3.6 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u> | 05/18/18 10:26<br>05/18/18 10:26<br>05/18/18 10:26<br>05/18/18 10:26<br>05/18/18 10:26<br>05/18/18 10:26<br>Prepared<br>05/18/18 10:26<br>05/18/18 10:26<br>05/18/18 10:26                   | 05/29/18 20:07<br>05/29/18 20:07<br>05/29/18 20:07<br>05/29/18 20:07<br>05/29/18 20:07<br>05/29/18 20:07<br>Analyzed<br>05/29/18 20:07<br>05/29/18 20:07                   | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10       |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA 13C4 PFOA | S for QSM 4 Result 23 55 14 27 360 1100 %Recovery 69 79 92 | Qualifier D D U M D D Qualifier | B-15 - DL<br>LOQ<br>19<br>19<br>19<br>19<br>38<br>Limits<br>50 - 150<br>50 - 150 | 5.7<br>5.1<br>4.9<br>4.3<br>3.6 | ng/L<br>ng/L<br>ng/L<br>ng/L | <u>D</u> | 05/18/18 10:26<br>05/18/18 10:26<br>05/18/18 10:26<br>05/18/18 10:26<br>05/18/18 10:26<br>05/18/18 10:26<br>Prepared<br>05/18/18 10:26<br>05/18/18 10:26<br>05/18/18 10:26<br>05/18/18 10:26 | 05/29/18 20:07<br>05/29/18 20:07<br>05/29/18 20:07<br>05/29/18 20:07<br>05/29/18 20:07<br>05/29/18 20:07<br>Analyzed<br>05/29/18 20:07<br>05/29/18 20:07<br>05/29/18 20:07 | 10<br>10<br>10<br>10<br>10<br>10                         |

Client Sample ID: MW-KLA06-01-01

Lab Sample ID: 320-39023-7 Date Collected: 05/06/18 13:15 **Matrix: Water** 

Date Received: 05/08/18 09:00

| Analyte                              | Result | Qualifier | LOQ | DL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|--------|-----------|-----|------|------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 6100   | E         | 1.9 | 0.59 | ng/L |   | 05/18/18 10:26 | 05/28/18 12:29 | 1       |
| Perfluorooctanoic acid (PFOA)        | 11000  | EM        | 1.9 | 0.52 | ng/L |   | 05/18/18 10:26 | 05/28/18 12:29 | 1       |
| Perfluorononanoic acid (PFNA)        | 500    | EM        | 1.9 | 0.50 | ng/L |   | 05/18/18 10:26 | 05/28/18 12:29 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 1600   | E         | 1.9 | 0.45 | ng/L |   | 05/18/18 10:26 | 05/28/18 12:29 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 17000  | EM        | 1.9 | 0.37 | ng/L |   | 05/18/18 10:26 | 05/28/18 12:29 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 57000  | E         | 3.9 | 1.1  | ng/L |   | 05/18/18 10:26 | 05/28/18 12:29 | 1       |

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

13C4 PFOS

Client Sample ID: MW-KLA06-01-01 Lab Sample ID: 320-39023-7

Date Collected: 05/06/18 13:15 Date Received: 05/08/18 09:00

**Matrix: Water** 

| Isotope Dilution                     | %Recovery   | Qualifier  | Limits              |     |      |   | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-------------|------------|---------------------|-----|------|---|----------------|----------------|---------|
| 13C3-PFBS                            | 233         | Q          | 50 - 150            |     |      |   | 05/18/18 10:26 | 05/28/18 12:29 | 1       |
| 13C4-PFHpA                           | 37          | Q          | 50 - 150            |     |      |   | 05/18/18 10:26 | 05/28/18 12:29 | 1       |
| 13C4 PFOA                            | 52          |            | 50 - 150            |     |      |   | 05/18/18 10:26 | 05/28/18 12:29 | 1       |
| 13C5 PFNA                            | 50          |            | 50 - 150            |     |      |   | 05/18/18 10:26 | 05/28/18 12:29 | 1       |
| 1802 PFHxS                           | 54          |            | 50 - 150            |     |      |   | 05/18/18 10:26 | 05/28/18 12:29 | 1       |
| 13C4 PFOS                            | 36          | Q          | 50 - 150            |     |      |   | 05/18/18 10:26 | 05/28/18 12:29 | 1       |
| Method: EPA 537 (Mod) - PFA          | S for QSM 5 | 5.1, Table | B-15 - DL2          |     |      |   |                |                |         |
| Analyte                              |             | Qualifier  | LOQ                 | DL  | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Perfluoroheptanoic acid (PFHpA)      | 5400        | D          | 190                 | 59  | ng/L |   | 05/18/18 10:26 | 05/29/18 20:31 | 100     |
| Perfluorooctanoic acid (PFOA)        | 14000       | D          | 190                 | 52  | ng/L |   | 05/18/18 10:26 | 05/29/18 20:31 | 100     |
| Perfluorononanoic acid (PFNA)        | 490         | D          | 190                 | 50  | ng/L |   | 05/18/18 10:26 | 05/29/18 20:31 | 100     |
| Perfluorobutanesulfonic acid (PFBS)  | 7900        | D          | 190                 | 45  | ng/L |   | 05/18/18 10:26 | 05/29/18 20:31 | 100     |
| Perfluorohexanesulfonic acid (PFHxS) | 68000       | ED         | 190                 | 37  | ng/L |   | 05/18/18 10:26 | 05/29/18 20:31 | 100     |
| Perfluorooctanesulfonic acid (PFOS)  | 130000      | ED         | 390                 | 110 | ng/L |   | 05/18/18 10:26 | 05/29/18 20:31 | 100     |
| Isotope Dilution                     | %Recovery   | Qualifier  | Limits              |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 145         | М          | 50 - 150            |     |      |   | 05/18/18 10:26 | 05/29/18 20:31 | 100     |
| 13C4-PFHpA                           | 53          |            | 50 - 150            |     |      |   | 05/18/18 10:26 | 05/29/18 20:31 | 100     |
| 13C4 PFOA                            | 58          |            | 50 - 150            |     |      |   | 05/18/18 10:26 | 05/29/18 20:31 | 100     |
| 13C5 PFNA                            | 51          |            | 50 - 150            |     |      |   | 05/18/18 10:26 | 05/29/18 20:31 | 100     |
| 1802 PFHxS                           | 76          |            | 50 - 150            |     |      |   | 05/18/18 10:26 | 05/29/18 20:31 | 100     |
| 13C4 PFOS                            | 46          | Q          | 50 <sub>-</sub> 150 |     |      |   | 05/18/18 10:26 | 05/29/18 20:31 | 100     |

Client Sample ID: KLA08-SW1-01 Lab Sample ID: 320-39023-8

101

Date Collected: 05/07/18 08:30 **Matrix: Water** Date Received: 05/08/18 09:00

| Analyte                              | Result    | Qualifier | LOQ      | DL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|----------|------|------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 1.5       | J M       | 1.9      | 0.58 | ng/L |   | 05/21/18 12:01 | 05/31/18 04:51 | 1       |
| Perfluorooctanoic acid (PFOA)        | 1.8       | J M       | 1.9      | 0.52 | ng/L |   | 05/21/18 12:01 | 05/31/18 04:51 | 1       |
| Perfluorononanoic acid (PFNA)        | 0.95      | J M       | 1.9      | 0.50 | ng/L |   | 05/21/18 12:01 | 05/31/18 04:51 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.96      | UM        | 1.9      | 0.44 | ng/L |   | 05/21/18 12:01 | 05/31/18 04:51 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 3.7       | M         | 1.9      | 0.36 | ng/L |   | 05/21/18 12:01 | 05/31/18 04:51 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 28        | M         | 3.8      | 1.1  | ng/L |   | 05/21/18 12:01 | 05/31/18 04:51 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier | Limits   |      |      |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 76        |           | 50 - 150 |      |      |   | 05/21/18 12:01 | 05/31/18 04:51 | 1       |
| 13C4-PFHpA                           | 76        |           | 50 - 150 |      |      |   | 05/21/18 12:01 | 05/31/18 04:51 | 1       |
| 13C4 PFOA                            | 95        |           | 50 - 150 |      |      |   | 05/21/18 12:01 | 05/31/18 04:51 | 1       |
| 13C5 PFNA                            | 103       |           | 50 - 150 |      |      |   | 05/21/18 12:01 | 05/31/18 04:51 | 1       |
| 1802 PFHxS                           | 93        |           | 50 - 150 |      |      |   | 05/21/18 12:01 | 05/31/18 04:51 | 1       |

05/21/18 12:01 05/31/18 04:51

50 - 150

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: KLA-01-SB1-01

Lab Sample ID: 320-39023-9 Date Collected: 05/02/18 14:00 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 79.0

| Analyte                                                                                                                                                                                                                                                                                            | Result                                                                                                                           | Qualifier                                                                                                  | LOQ                                                                              |                                 | Unit                                      | D                     | Prepared                                                                                                                                                                 | Analyzed                                                                                                                                                                | Dil Fac                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------|-------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                                                    | 0.38                                                                                                                             |                                                                                                            | 0.38                                                                             | 0.098                           | ug/Kg                                     | ☼                     | 05/14/18 13:10                                                                                                                                                           | 05/29/18 03:32                                                                                                                                                          | 1                                              |
| Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                                                      | 3.9                                                                                                                              |                                                                                                            | 0.38                                                                             | 0.13                            | ug/Kg                                     | ₽                     | 05/14/18 13:10                                                                                                                                                           | 05/29/18 03:32                                                                                                                                                          | 1                                              |
| Perfluorononanoic acid (PFNA)                                                                                                                                                                                                                                                                      | 0.25                                                                                                                             | UM                                                                                                         | 0.38                                                                             | 0.10                            | ug/Kg                                     | ₽                     | 05/14/18 13:10                                                                                                                                                           | 05/29/18 03:32                                                                                                                                                          | 1                                              |
| Perfluorobutanesulfonic acid (PFBS)                                                                                                                                                                                                                                                                | 0.31                                                                                                                             | J                                                                                                          | 0.50                                                                             | 0.074                           | ug/Kg                                     | <b>\$</b>             | 05/14/18 13:10                                                                                                                                                           | 05/29/18 03:32                                                                                                                                                          | 1                                              |
| Perfluorohexanesulfonic acid (PFHxS)                                                                                                                                                                                                                                                               | 18                                                                                                                               |                                                                                                            | 0.38                                                                             | 0.078                           | ug/Kg                                     | ☼                     | 05/14/18 13:10                                                                                                                                                           | 05/29/18 03:32                                                                                                                                                          | 1                                              |
| Perfluorooctanesulfonic acid (PFOS)                                                                                                                                                                                                                                                                | 240                                                                                                                              | E                                                                                                          | 1.3                                                                              | 0.30                            | ug/Kg                                     | ₽                     | 05/14/18 13:10                                                                                                                                                           | 05/29/18 03:32                                                                                                                                                          | 1                                              |
| Isotope Dilution                                                                                                                                                                                                                                                                                   | %Recovery                                                                                                                        | Qualifier                                                                                                  | Limits                                                                           |                                 |                                           |                       | Prepared                                                                                                                                                                 | Analyzed                                                                                                                                                                | Dil Fac                                        |
| 13C3-PFBS                                                                                                                                                                                                                                                                                          | 74                                                                                                                               |                                                                                                            | 50 - 150                                                                         |                                 |                                           |                       | 05/14/18 13:10                                                                                                                                                           | 05/29/18 03:32                                                                                                                                                          | 1                                              |
| 13C4-PFHpA                                                                                                                                                                                                                                                                                         | 82                                                                                                                               |                                                                                                            | 50 - 150                                                                         |                                 |                                           |                       | 05/14/18 13:10                                                                                                                                                           | 05/29/18 03:32                                                                                                                                                          | 1                                              |
| 13C4 PFOA                                                                                                                                                                                                                                                                                          | 86                                                                                                                               |                                                                                                            | 50 - 150                                                                         |                                 |                                           |                       | 05/14/18 13:10                                                                                                                                                           | 05/29/18 03:32                                                                                                                                                          | 1                                              |
| 13C5 PFNA                                                                                                                                                                                                                                                                                          | 60                                                                                                                               |                                                                                                            | 50 - 150                                                                         |                                 |                                           |                       | 05/14/18 13:10                                                                                                                                                           | 05/29/18 03:32                                                                                                                                                          | 1                                              |
|                                                                                                                                                                                                                                                                                                    |                                                                                                                                  |                                                                                                            |                                                                                  |                                 |                                           |                       |                                                                                                                                                                          |                                                                                                                                                                         |                                                |
| 1802 PFHxS                                                                                                                                                                                                                                                                                         | 78                                                                                                                               |                                                                                                            | 50 - 150                                                                         |                                 |                                           |                       | 05/14/18 13:10                                                                                                                                                           | 05/29/18 03:32                                                                                                                                                          | 1                                              |
| 18O2 PFHxS<br>13C4 PFOS                                                                                                                                                                                                                                                                            | 78<br>48                                                                                                                         | Q                                                                                                          | 50 - 150<br>50 - 150                                                             |                                 |                                           |                       |                                                                                                                                                                          | 05/29/18 03:32<br>05/29/18 03:32                                                                                                                                        | 1                                              |
| 13C4 PFOS<br>Method: EPA 537 (Mod) - PFA                                                                                                                                                                                                                                                           | 48<br>S for QSM !                                                                                                                | 5.1, Table                                                                                                 | 50 - 150<br><b>B-15 - DL</b>                                                     | DL                              | Unit                                      | D                     | 05/14/18 13:10                                                                                                                                                           | 05/29/18 03:32                                                                                                                                                          | 1                                              |
| 13C4 PFOS<br>Method: EPA 537 (Mod) - PFA<br>Analyte                                                                                                                                                                                                                                                | 48<br>S for QSM !                                                                                                                | 5.1, Table  <br>Qualifier                                                                                  | 50 - 150                                                                         |                                 | Unit<br>ua/Ka                             | D                     | 05/14/18 13:10<br>Prepared                                                                                                                                               |                                                                                                                                                                         | -                                              |
| Method: EPA 537 (Mod) - PFA<br>Analyte Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                             | S for QSM Result                                                                                                                 | 5.1, Table  <br>Qualifier                                                                                  | 50 - 150  B-15 - DL  LOQ  7.5                                                    | 2.0                             | ug/Kg                                     | _                     | 05/14/18 13:10  Prepared  05/14/18 13:10                                                                                                                                 | 05/29/18 03:32 Analyzed                                                                                                                                                 | Dil Fac 20                                     |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                  | S for QSM Result                                                                                                                 | 5.1, Table  <br>Qualifier<br>U<br>J D M                                                                    | 50 - 150  B-15 - DL  LOQ  7.5  7.5                                               | 2.0<br>2.5                      | ug/Kg<br>ug/Kg                            | <del>\</del>          | 05/14/18 13:10  Prepared  05/14/18 13:10  05/14/18 13:10                                                                                                                 | 05/29/18 03:32  Analyzed  05/29/18 11:07                                                                                                                                | Dil Fac 20 20                                  |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluoronoctanoic acid (PFOA) Perfluorononanoic acid (PFNA)                                                                                                                                                                   | 48 S for QSM ( Result 5.0 3.9                                                                                                    | 5.1, Table   Qualifier U                                                                                   | 50 - 150  B-15 - DL  LOQ  7.5                                                    | 2.0<br>2.5<br>2.0               | ug/Kg<br>ug/Kg<br>ug/Kg                   | <u> </u>              | 05/14/18 13:10  Prepared  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10                                                                                                 | 05/29/18 03:32  Analyzed  05/29/18 11:07 05/29/18 11:07                                                                                                                 | Dil Fac 20                                     |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid                                                                                                   | 48 S for QSM (  Result  5.0  3.9  5.0                                                                                            | 5.1, Table  <br>Qualifier<br>U<br>J D M<br>U                                                               | 50 - 150  B-15 - DL  LOQ  7.5  7.5  7.5                                          | 2.0<br>2.5<br>2.0<br>1.5        | ug/Kg<br>ug/Kg                            |                       | Prepared 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10                                                                                                     | 05/29/18 03:32  Analyzed  05/29/18 11:07  05/29/18 11:07  05/29/18 11:07                                                                                                | Dil Fac 20 20 20                               |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS)                                                                                                                                | 48 S for QSM (  Result  5.0  3.9  5.0  4.5                                                                                       | 5.1, Table   Qualifier   U   U   U   D                                                                     | 50 - 150  B-15 - DL LOQ 7.5 7.5 7.5 10                                           | 2.0<br>2.5<br>2.0<br>1.5<br>1.6 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | #<br>#<br>#           | Prepared 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10                                                                                      | Analyzed  05/29/18 11:07 05/29/18 11:07 05/29/18 11:07 05/29/18 11:07                                                                                                   | Dil Fac 20 20 20 20                            |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid                                                                                            | 48 S for QSM (  Result  5.0  3.9  5.0  4.5  17                                                                                   | 5.1, Table   Qualifier U U U D D                                                                           | 50 - 150  B-15 - DL LOQ 7.5 7.5 7.5 10 7.5                                       | 2.0<br>2.5<br>2.0<br>1.5<br>1.6 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | #<br>#<br>#<br>#<br># | Prepared 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10                                                                                      | Analyzed  05/29/18 03:32  Analyzed  05/29/18 11:07  05/29/18 11:07  05/29/18 11:07  05/29/18 11:07                                                                      | Dil Fac 20 20 20 20 20                         |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution                                                                    | 48 S for QSM (  Result  5.0  3.9  5.0  4.5  17                                                                                   | 5.1, Table   Qualifier   U   U   D   D   Qualifier   D   Qualifier   D   D   D   C   C   C   C   C   C   C | 50 - 150  B-15 - DL LOQ 7.5 7.5 7.5 10 7.5 25                                    | 2.0<br>2.5<br>2.0<br>1.5<br>1.6 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | #<br>#<br>#<br>#<br># | Prepared 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10                                                                       | Analyzed  05/29/18 11:07 05/29/18 11:07 05/29/18 11:07 05/29/18 11:07 05/29/18 11:07 05/29/18 11:07  Analyzed                                                           | Dil Fac 20 20 20 20 20 20                      |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFHxS)                                                                                    | \$\frac{18}{8}\$ S for QSM \$\frac{1}{8}\$ Result \$\frac{5.0}{5.0}\$ \$\frac{4.5}{4.5}\$ \$\frac{17}{430}\$ \$\partial Recovery | 5.1, Table   Qualifier   U   U   D   D   Qualifier   D   Qualifier   D   D   D   C   C   C   C   C   C   C | 50 - 150  B-15 - DL LOQ 7.5 7.5 7.5 10 7.5 25  Limits                            | 2.0<br>2.5<br>2.0<br>1.5<br>1.6 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | #<br>#<br>#<br>#<br># | Prepared  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  Prepared  05/14/18 13:10                                       | Analyzed  05/29/18 03:32  Analyzed  05/29/18 11:07  05/29/18 11:07  05/29/18 11:07  05/29/18 11:07  05/29/18 11:07  Analyzed                                            | Dil Fac 20 20 20 20 20 20 Dil Fac              |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA          | 48 S for QSM 8 Result 5.0 3.9 5.0 4.5 17 430  **Recovery* 79                                                                     | 5.1, Table   Qualifier   U   U   D   D   Qualifier   D   Qualifier   D   D   D   C   C   C   C   C   C   C | 50 - 150  B-15 - DL LOQ 7.5 7.5 7.5 7.5 25  Limits 50 - 150                      | 2.0<br>2.5<br>2.0<br>1.5<br>1.6 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | #<br>#<br>#<br>#<br># | Prepared  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  Prepared  05/14/18 13:10  05/14/18 13:10                       | Analyzed  05/29/18 11:07 05/29/18 11:07 05/29/18 11:07 05/29/18 11:07 05/29/18 11:07 05/29/18 11:07  Analyzed  05/29/18 11:07                                           | Dil Fac 20 20 20 20 20 20 20 20 20             |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluoroctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS                                                           | 48 S for QSM (  Result  5.0 3.9 5.0 4.5 17 430  **Recovery  79 89                                                                | 5.1, Table   Qualifier   U   U   D   D   Qualifier   D   Qualifier   D   D   D   C   C   C   C   C   C   C | 50 - 150  B-15 - DL LOQ 7.5 7.5 7.5 10 7.5 25  Limits 50 - 150 50 - 150          | 2.0<br>2.5<br>2.0<br>1.5<br>1.6 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | #<br>#<br>#<br>#<br># | Prepared  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  Prepared  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10       | Analyzed  05/29/18 03:32  Analyzed  05/29/18 11:07  05/29/18 11:07  05/29/18 11:07  05/29/18 11:07  Analyzed  05/29/18 11:07  05/29/18 11:07                            | Dil Fac 20 20 20 20 20 20 20 20 20 20 20 20 20 |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA 13C4 PFOA | 48 S for QSM (  Result  5.0  3.9  5.0  4.5  17  430  **Recovery  79  89  90                                                      | 5.1, Table   Qualifier   U   U   D   D   Qualifier   D   Qualifier   D   D   D   C   C   C   C   C   C   C | 50 - 150  B-15 - DL LOQ 7.5 7.5 7.5 10 7.5 25  Limits 50 - 150 50 - 150 50 - 150 | 2.0<br>2.5<br>2.0<br>1.5<br>1.6 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | #<br>#<br>#<br>#<br># | Prepared 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10  Prepared 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10 05/14/18 13:10 | Analyzed  05/29/18 03:32  Analyzed  05/29/18 11:07 05/29/18 11:07 05/29/18 11:07 05/29/18 11:07  05/29/18 11:07  Analyzed  05/29/18 11:07 05/29/18 11:07 05/29/18 11:07 | Dil Fac 20 20 20 20 20 20 20 20 20 20 20 20 20 |

Client Sample ID: KLA-01-SB1-02

Date Collected: 05/02/18 14:10 **Matrix: Solid** Percent Solids: 77.4 Date Received: 05/09/18 09:20

| Analyte                                 | Result | Qualifier | LOQ  | DL    | Unit  | D         | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------------|--------|-----------|------|-------|-------|-----------|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)         | 0.32   | J         | 0.38 | 0.10  | ug/Kg | ₩         | 05/14/18 13:10 | 05/29/18 03:40 | 1       |
| Perfluorooctanoic acid (PFOA)           | 1.0    |           | 0.38 | 0.13  | ug/Kg | ≎         | 05/14/18 13:10 | 05/29/18 03:40 | 1       |
| Perfluorononanoic acid (PFNA)           | 0.26   | U M       | 0.38 | 0.10  | ug/Kg | ₽         | 05/14/18 13:10 | 05/29/18 03:40 | 1       |
| Perfluorobutanesulfonic acid (PFBS)     | 0.31   | J         | 0.51 | 0.075 | ug/Kg | <b>\$</b> | 05/14/18 13:10 | 05/29/18 03:40 | 1       |
| Perfluorohexanesulfonic acid<br>(PFHxS) | 9.1    |           | 0.38 | 0.079 | ug/Kg | ₽         | 05/14/18 13:10 | 05/29/18 03:40 | 1       |
| Perfluorooctanesulfonic acid (PFOS)     | 150    | E         | 1.3  | 0.31  | ug/Kg | ₽         | 05/14/18 13:10 | 05/29/18 03:40 | 1       |

Lab Sample ID: 320-39023-10

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

| Client Sam | ple | ID: K | <b>LA-01</b> | -SB1-02 |
|------------|-----|-------|--------------|---------|
|------------|-----|-------|--------------|---------|

**Matrix: Solid** Date Collected: 05/02/18 14:10 Date Received: 05/09/18 09:20 Percent Solids: 77.4

| Isotope Dilution     | %Recovery Qualifier             | Limits              | Prepared Analyzed            | Dil Fac |
|----------------------|---------------------------------|---------------------|------------------------------|---------|
| 13C3-PFBS            | 69                              | 50 - 150            | 05/14/18 13:10 05/29/18 03:4 | 7       |
| 13C4-PFHpA           | 83                              | 50 - 150            | 05/14/18 13:10 05/29/18 03:4 | ) 1     |
| 13C4 PFOA            | 82                              | 50 - 150            | 05/14/18 13:10 05/29/18 03:4 | ) 1     |
| 13C5 PFNA            | 67                              | 50 - 150            | 05/14/18 13:10 05/29/18 03:4 | 1       |
| 1802 PFHxS           | 75                              | 50 - 150            | 05/14/18 13:10 05/29/18 03:4 | ) 1     |
| 13C4 PFOS            | 54                              | 50 <sub>-</sub> 150 | 05/14/18 13:10 05/29/18 03:4 | ) 1     |
|                      |                                 |                     |                              |         |
| Method: FPA 537 (Mod | d) - $PFAS$ for $QSM 5.1$ Table | B-15 - DI           |                              |         |

| Method: EPA 537 (Mod) - PFA          | S for QSM | 5.1, Table | B-15 - DL |     |       |   |                |                |         |
|--------------------------------------|-----------|------------|-----------|-----|-------|---|----------------|----------------|---------|
| Analyte                              | Result    | Qualifier  | LOQ       | DL  | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Perfluoroheptanoic acid (PFHpA)      | 5.1       | U          | 7.7       | 2.0 | ug/Kg | ☆ | 05/14/18 13:10 | 05/29/18 11:15 | 20      |
| Perfluorooctanoic acid (PFOA)        | 5.1       | UM         | 7.7       | 2.6 | ug/Kg | ☼ | 05/14/18 13:10 | 05/29/18 11:15 | 20      |
| Perfluorononanoic acid (PFNA)        | 5.1       | U          | 7.7       | 2.1 | ug/Kg | ☼ | 05/14/18 13:10 | 05/29/18 11:15 | 20      |
| Perfluorobutanesulfonic acid (PFBS)  | 4.6       | UM         | 10        | 1.5 | ug/Kg | ₽ | 05/14/18 13:10 | 05/29/18 11:15 | 20      |
| Perfluorohexanesulfonic acid (PFHxS) | 9.1       | D          | 7.7       | 1.6 | ug/Kg | ☼ | 05/14/18 13:10 | 05/29/18 11:15 | 20      |
| Perfluorooctanesulfonic acid (PFOS)  | 210       | D          | 26        | 6.1 | ug/Kg | ₩ | 05/14/18 13:10 | 05/29/18 11:15 | 20      |
| Isotope Dilution                     | %Recovery | Qualifier  | Limits    |     |       |   | Prepared       | Analyzed       | Dil Fac |

|            | , or to correctly distances |          |                | , <b>,</b>     |    |
|------------|-----------------------------|----------|----------------|----------------|----|
| 13C3-PFBS  | 71 M                        | 50 - 150 | 05/14/18 13:10 | 05/29/18 11:15 | 20 |
| 13C4-PFHpA | 78                          | 50 - 150 | 05/14/18 13:10 | 05/29/18 11:15 | 20 |
| 13C4 PFOA  | 89                          | 50 - 150 | 05/14/18 13:10 | 05/29/18 11:15 | 20 |
| 13C5 PFNA  | 79                          | 50 - 150 | 05/14/18 13:10 | 05/29/18 11:15 | 20 |
| 1802 PFHxS | 70                          | 50 - 150 | 05/14/18 13:10 | 05/29/18 11:15 | 20 |
| 13C4 PFOS  | 63                          | 50 - 150 | 05/14/18 13:10 | 05/29/18 11:15 | 20 |
|            |                             |          |                |                |    |

Client Sample ID: KLA-01-SB2-01

Lab Sample ID: 320-39023-11 Date Collected: 05/02/18 13:15 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 87.9

| pate Neceived. 05/05/10 05.20        | <u>'</u>  |                         |             |       |       |          |                | ercent Jone    | 13. 07.3 |
|--------------------------------------|-----------|-------------------------|-------------|-------|-------|----------|----------------|----------------|----------|
| Method: EPA 537 (Mod) - PF           |           | 5.1, Table<br>Qualifier | B-15<br>LOQ | DL    | Unit  | D        | Prepared       | Analyzed       | Dil Fac  |
| Perfluoroheptanoic acid (PFHpA)      | 0.22      | U                       | 0.34        | 0.088 | ug/Kg | <u> </u> | 05/14/18 13:10 |                | 1        |
| Perfluorooctanoic acid (PFOA)        | 0.30      | J                       | 0.34        | 0.11  | ug/Kg | ₩        | 05/14/18 13:10 | 05/29/18 03:48 | 1        |
| Perfluorononanoic acid (PFNA)        | 0.22      | U                       | 0.34        | 0.091 | ug/Kg | ₩        | 05/14/18 13:10 | 05/29/18 03:48 | 1        |
| Perfluorobutanesulfonic acid (PFBS)  | 0.072     | J                       | 0.45        | 0.066 | ug/Kg | ₽        | 05/14/18 13:10 | 05/29/18 03:48 | 1        |
| Perfluorohexanesulfonic acid (PFHxS) | 1.5       |                         | 0.34        | 0.070 | ug/Kg | ☼        | 05/14/18 13:10 | 05/29/18 03:48 | 1        |
| Perfluorooctanesulfonic acid (PFOS)  | 1.7       |                         | 1.1         | 0.27  | ug/Kg | ₩        | 05/14/18 13:10 | 05/29/18 03:48 | 1        |
| Isotope Dilution                     | %Recovery | Qualifier               | Limits      |       |       |          | Prepared       | Analyzed       | Dil Fac  |
| 13C3-PFBS                            | 68        |                         | 50 - 150    |       |       |          | 05/14/18 13:10 | 05/29/18 03:48 | 1        |
| 13C4-PFHpA                           | 84        |                         | 50 - 150    |       |       |          | 05/14/18 13:10 | 05/29/18 03:48 | 1        |
| 13C4 PFOA                            | 88        |                         | 50 - 150    |       |       |          | 05/14/18 13:10 | 05/29/18 03:48 | 1        |
| 13C5 PFNA                            | 92        |                         | 50 - 150    |       |       |          | 05/14/18 13:10 | 05/29/18 03:48 | 1        |
| 1802 PFHxS                           | 71        |                         | 50 - 150    |       |       |          | 05/14/18 13:10 | 05/29/18 03:48 | 1        |
| 13C4 PFOS                            | 72        |                         | 50 - 150    |       |       |          | 05/14/18 13:10 | 05/29/18 03:48 | 1        |
|                                      |           |                         |             |       |       |          |                |                |          |

Lab Sample ID: 320-39023-10

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

1802 PFHxS

13C4 PFOS

Client Sample ID: KLA-01-SB2-02 Lab Sample ID: 320-39023-12

 Date Collected: 05/02/18 13:20
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 75.7

| Analyte                              | Result    | Qualifier | LOQ                 | DL    | Unit  | D         | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|---------------------|-------|-------|-----------|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 0.14      | J         | 0.39                | 0.10  | ug/Kg | ₽         | 05/14/18 13:10 | 05/29/18 03:56 | 1       |
| Perfluorooctanoic acid (PFOA)        | 0.39      |           | 0.39                | 0.13  | ug/Kg | ☼         | 05/14/18 13:10 | 05/29/18 03:56 | 1       |
| Perfluorononanoic acid (PFNA)        | 0.26      | UM        | 0.39                | 0.11  | ug/Kg | ☼         | 05/14/18 13:10 | 05/29/18 03:56 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.15      | J         | 0.52                | 0.077 | ug/Kg | <b>\$</b> | 05/14/18 13:10 | 05/29/18 03:56 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 2.4       |           | 0.39                | 0.081 | ug/Kg | ₽         | 05/14/18 13:10 | 05/29/18 03:56 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 3.2       | M         | 1.3                 | 0.31  | ug/Kg | ₩         | 05/14/18 13:10 | 05/29/18 03:56 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier | Limits              |       |       |           | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 71        |           | 50 - 150            |       |       |           | 05/14/18 13:10 | 05/29/18 03:56 | 1       |
| 13C4-PFHpA                           | 83        |           | 50 - 150            |       |       |           | 05/14/18 13:10 | 05/29/18 03:56 | 1       |
| 13C4 PFOA                            | 84        |           | 50 - 150            |       |       |           | 05/14/18 13:10 | 05/29/18 03:56 | 1       |
| 13C5 PFNA                            | 87        |           | 50 - 150            |       |       |           | 05/14/18 13:10 | 05/29/18 03:56 | 1       |
| 1802 PFHxS                           | 76        |           | 50 - 150            |       |       |           | 05/14/18 13:10 | 05/29/18 03:56 | 1       |
| 13C4 PFOS                            | 74        |           | 50 <sub>-</sub> 150 |       |       |           | 05/14/18 13:10 | 05/29/18 03:56 | 1       |

Client Sample ID: KLA-01-SB3-01 Lab Sample ID: 320-39023-13

 Date Collected: 05/02/18 14:25
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 77.4

| Analyte                              | Result    | Qualifier | LOQ      | DL    | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|----------|-------|-------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 0.25      | U         | 0.38     | 0.099 | ug/Kg | ☼ | 05/14/18 13:10 | 05/29/18 04:04 | 1       |
| Perfluorooctanoic acid (PFOA)        | 0.22      | J         | 0.38     | 0.13  | ug/Kg | ₩ | 05/14/18 13:10 | 05/29/18 04:04 | 1       |
| Perfluorononanoic acid (PFNA)        | 0.25      | UM        | 0.38     | 0.10  | ug/Kg | ₩ | 05/14/18 13:10 | 05/29/18 04:04 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.13      | J         | 0.51     | 0.075 | ug/Kg | ₽ | 05/14/18 13:10 | 05/29/18 04:04 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 1.3       |           | 0.38     | 0.079 | ug/Kg | ₽ | 05/14/18 13:10 | 05/29/18 04:04 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 10        |           | 1.3      | 0.30  | ug/Kg | ☼ | 05/14/18 13:10 | 05/29/18 04:04 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier | Limits   |       |       |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 67        |           | 50 - 150 |       |       |   | 05/14/18 13:10 | 05/29/18 04:04 | 1       |
| 13C4-PFHpA                           | 82        |           | 50 - 150 |       |       |   | 05/14/18 13:10 | 05/29/18 04:04 | 1       |
| 13C4 PFOA                            | 84        |           | 50 - 150 |       |       |   | 05/14/18 13:10 | 05/29/18 04:04 | 1       |
| 13C5 PFNA                            | 84        |           | 50 - 150 |       |       |   | 05/14/18 13:10 | 05/29/18 04:04 | 1       |

Client Sample ID: KLA-01-SB3-02 Lab Sample ID: 320-39023-14

50 - 150

50 - 150

73

Date Collected: 05/02/18 14:30 Matrix: Solid
Date Received: 05/09/18 09:20 Percent Solids: 78.1

| Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 |                  |      |       |       |   |                |                |         |
|------------------------------------------------------|------------------|------|-------|-------|---|----------------|----------------|---------|
| Analyte                                              | Result Qualifier | LOQ  | DL    | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Perfluoroheptanoic acid (PFHpA)                      | 0.25 U           | 0.38 | 0.099 | ug/Kg | ☆ | 05/14/18 13:10 | 05/29/18 04:12 | 1       |
| Perfluorooctanoic acid (PFOA)                        | 0.25 U           | 0.38 | 0.13  | ug/Kg | ☼ | 05/14/18 13:10 | 05/29/18 04:12 | 1       |
| Perfluorononanoic acid (PFNA)                        | 0.25 U           | 0.38 | 0.10  | ug/Kg | ☼ | 05/14/18 13:10 | 05/29/18 04:12 | 1       |
| Perfluorobutanesulfonic acid (PFBS)                  | 0.23 U           | 0.51 | 0.075 | ug/Kg | ₽ | 05/14/18 13:10 | 05/29/18 04:12 | 1       |

05/14/18 13:10 05/29/18 04:04

05/14/18 13:10 05/29/18 04:04

1

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: KLA-01-SB3-02

Lab Sample ID: 320-39023-14 Date Collected: 05/02/18 14:30 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 78.1

| Analyte                              | Result    | Qualifier | LOQ      | DL    | Unit  | D        | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|----------|-------|-------|----------|----------------|----------------|---------|
| Perfluorohexanesulfonic acid (PFHxS) | 0.32      | J         | 0.38     | 0.078 | ug/Kg | <u>∓</u> | 05/14/18 13:10 | 05/29/18 04:12 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 1.1       | J         | 1.3      | 0.30  | ug/Kg | ₽        | 05/14/18 13:10 | 05/29/18 04:12 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier | Limits   |       |       |          | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 67        |           | 50 - 150 |       |       |          | 05/14/18 13:10 | 05/29/18 04:12 | 1       |
| 13C4-PFHpA                           | 80        |           | 50 - 150 |       |       |          | 05/14/18 13:10 | 05/29/18 04:12 | 1       |
| 13C4 PFOA                            | 80        |           | 50 - 150 |       |       |          | 05/14/18 13:10 | 05/29/18 04:12 | 1       |
| 13C5 PFNA                            | 82        |           | 50 - 150 |       |       |          | 05/14/18 13:10 | 05/29/18 04:12 | 1       |
| 1802 PFHxS                           | 70        |           | 50 - 150 |       |       |          | 05/14/18 13:10 | 05/29/18 04:12 | 1       |
| 13C4 PFOS                            | 64        |           | 50 - 150 |       |       |          | 05/14/18 13:10 | 05/29/18 04:12 | 1       |

Client Sample ID: KLA02-SB1-01 Lab Sample ID: 320-39023-15

Date Collected: 05/04/18 13:40 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 77.4

| Analyte                              | Result    | Qualifier | LOQ                 | DL    | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|---------------------|-------|-------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 0.16      | J         | 0.39                | 0.10  | ug/Kg | ☼ | 05/14/18 14:03 | 05/29/18 07:43 | 1       |
| Perfluorooctanoic acid (PFOA)        | 0.46      | M         | 0.39                | 0.13  | ug/Kg | ₩ | 05/14/18 14:03 | 05/29/18 07:43 | 1       |
| Perfluorononanoic acid (PFNA)        | 0.26      | U         | 0.39                | 0.11  | ug/Kg | ☼ | 05/14/18 14:03 | 05/29/18 07:43 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.25      | J         | 0.52                | 0.077 | ug/Kg | ₽ | 05/14/18 14:03 | 05/29/18 07:43 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 2.6       |           | 0.39                | 0.081 | ug/Kg | ₽ | 05/14/18 14:03 | 05/29/18 07:43 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 7.6       | J1        | 1.3                 | 0.31  | ug/Kg | ☼ | 05/14/18 14:03 | 05/29/18 07:43 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier | Limits              |       |       |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 81        |           | 50 - 150            |       |       |   | 05/14/18 14:03 | 05/29/18 07:43 | 1       |
| 13C4-PFHpA                           | 93        |           | 50 - 150            |       |       |   | 05/14/18 14:03 | 05/29/18 07:43 | 1       |
| 13C4 PFOA                            | 93        |           | 50 - 150            |       |       |   | 05/14/18 14:03 | 05/29/18 07:43 | 1       |
| 13C5 PFNA                            | 100       |           | 50 - 150            |       |       |   | 05/14/18 14:03 | 05/29/18 07:43 | 1       |
| 1802 PFHxS                           | 88        |           | 50 - 150            |       |       |   | 05/14/18 14:03 | 05/29/18 07:43 | 1       |
| 13C4 PFOS                            | 86        |           | 50 <sub>-</sub> 150 |       |       |   | 05/14/19 14:02 | 05/29/18 07:43 | 1       |

Client Sample ID: KLA02-SB1-02 Lab Sample ID: 320-39023-16

Date Collected: 05/04/18 13:45 **Matrix: Solid** Percent Solids: 80.8 Date Received: 05/09/18 09:20

| Analyte                                 | Result | Qualifier | LOQ  | DL    | Unit  | D            | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------------|--------|-----------|------|-------|-------|--------------|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)         | 0.18   | J         | 0.36 | 0.095 | ug/Kg | <del>\</del> | 05/14/18 14:03 | 05/29/18 08:07 | 1       |
| Perfluorooctanoic acid (PFOA)           | 0.28   | J M       | 0.36 | 0.12  | ug/Kg | ₩            | 05/14/18 14:03 | 05/29/18 08:07 | 1       |
| Perfluorononanoic acid (PFNA)           | 0.24   | UM        | 0.36 | 0.098 | ug/Kg | ₩            | 05/14/18 14:03 | 05/29/18 08:07 | 1       |
| Perfluorobutanesulfonic acid (PFBS)     | 0.22   | J         | 0.49 | 0.072 | ug/Kg | ₽            | 05/14/18 14:03 | 05/29/18 08:07 | 1       |
| Perfluorohexanesulfonic acid<br>(PFHxS) | 1.6    |           | 0.36 | 0.075 | ug/Kg | ₽            | 05/14/18 14:03 | 05/29/18 08:07 | 1       |
| Perfluorooctanesulfonic acid (PFOS)     | 6.1    |           | 1.2  | 0.29  | ug/Kg | ☼            | 05/14/18 14:03 | 05/29/18 08:07 | 1       |

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: KLA02-SB1-02 Lab Sample ID: 320-39023-16

 Date Collected: 05/04/18 13:45
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 80.8

| Isotope Dilution | %Recovery Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------|---------------------|----------|----------------|----------------|---------|
| 13C3-PFBS        | 71                  | 50 - 150 | 05/14/18 14:03 | 05/29/18 08:07 | 1       |
| 13C4-PFHpA       | 81                  | 50 - 150 | 05/14/18 14:03 | 05/29/18 08:07 | 1       |
| 13C4 PFOA        | 84                  | 50 - 150 | 05/14/18 14:03 | 05/29/18 08:07 | 1       |
| 13C5 PFNA        | 85                  | 50 - 150 | 05/14/18 14:03 | 05/29/18 08:07 | 1       |
| 1802 PFHxS       | 77                  | 50 - 150 | 05/14/18 14:03 | 05/29/18 08:07 | 1       |
| 13C4 PFOS        | 76                  | 50 - 150 | 05/14/18 14:03 | 05/29/18 08:07 | 1       |

Client Sample ID: KLA02-SB2-01 Lab Sample ID: 320-39023-17

| Date Received: 05/09/18 09:20         |           |            |                     |       |       |              |                | Percent Solid                       | ls: 79.0 |
|---------------------------------------|-----------|------------|---------------------|-------|-------|--------------|----------------|-------------------------------------|----------|
| Method: EPA 537 (Mod) - PFA           |           |            |                     |       |       | _            |                |                                     |          |
| Analyte                               |           | Qualifier  | LOQ                 |       | Unit  | D            | Prepared       | Analyzed                            | Dil Fac  |
| Perfluoroheptanoic acid (PFHpA)       | 1.1       |            | 0.37                |       | ug/Kg | <b>☆</b>     |                | 05/29/18 08:14                      | 1        |
| Perfluorooctanoic acid (PFOA)         | 2.2       |            | 0.37                |       | ug/Kg | <b>:</b>     |                | 05/29/18 08:14                      | 1        |
| Perfluorononanoic acid (PFNA)         | 0.38      |            | 0.37                |       | ug/Kg |              |                | 05/29/18 08:14                      | 1        |
| Perfluorobutanesulfonic acid (PFBS)   | 5.1       |            | 0.50                | 0.074 | ug/Kg | ₽            | 05/14/18 14:03 | 05/29/18 08:14                      | 1        |
| Perfluorohexanesulfonic acid (PFHxS)  | 21        |            | 0.37                | 0.077 | ug/Kg | ☼            | 05/14/18 14:03 | 05/29/18 08:14                      | 1        |
| Perfluorooctanesulfonic acid (PFOS)   | 270       | E          | 1.2                 | 0.30  | ug/Kg | ₽            | 05/14/18 14:03 | 05/29/18 08:14                      | 1        |
| Isotope Dilution                      | %Recovery | Qualifier  | Limits              |       |       |              | Prepared       | Analyzed                            | Dil Fac  |
| 13C3-PFBS                             | 78        |            | 50 - 150            |       |       |              | 05/14/18 14:03 | 05/29/18 08:14                      | 1        |
| 13C4-PFHpA                            | 85        |            | 50 <sub>-</sub> 150 |       |       |              | 05/14/18 14:03 | 05/29/18 08:14                      | 1        |
| 13C4 PFOA                             | 94        |            | 50 <sub>-</sub> 150 |       |       |              | 05/14/18 14:03 | 05/29/18 08:14                      | 1        |
| 13C5 PFNA                             | 66        |            | 50 - 150            |       |       |              | 05/14/18 14:03 | 05/29/18 08:14                      | 1        |
| 1802 PFHxS                            | 78        |            | 50 <sub>-</sub> 150 |       |       |              | 05/14/18 14:03 | 05/29/18 08:14                      | 1        |
| 13C4 PFOS                             | 55        |            | 50 - 150            |       |       |              | 05/14/18 14:03 | 05/29/18 08:14                      | 1        |
| Method: EPA 537 (Mod) - PFA           | S for QSM | 5.1, Table | B-15 - DL           |       |       |              |                |                                     |          |
| Analyte                               |           | Qualifier  | LOQ                 | DL    | Unit  | D            | Prepared       | Analyzed                            | Dil Fac  |
| Perfluoroheptanoic acid (PFHpA)       | 25        | U          | 37                  | 9.7   | ug/Kg | <del>\</del> | 05/14/18 14:03 | 05/29/18 15:02                      | 100      |
| Perfluorooctanoic acid (PFOA)         | 25        | U          | 37                  | 12    | ug/Kg | ☼            | 05/14/18 14:03 | 05/29/18 15:02                      | 100      |
| Perfluorononanoic acid (PFNA)         | 25        | U          | 37                  | 10    | ug/Kg | ☼            | 05/14/18 14:03 | 05/29/18 15:02                      | 100      |
| Perfluorobutanesulfonic acid (PFBS)   | 22        | U          | 50                  | 7.4   | ug/Kg |              | 05/14/18 14:03 | 05/29/18 15:02                      | 100      |
| Perfluorohexanesulfonic acid (PFHxS)  | 21        | J D        | 37                  | 7.7   | ug/Kg | ₩            | 05/14/18 14:03 | 05/29/18 15:02                      | 100      |
| Perfluorooctanesulfonic acid (PFOS)   | 390       | D          | 120                 | 30    | ug/Kg | ≎            | 05/14/18 14:03 | 05/29/18 15:02                      | 100      |
| Isotope Dilution                      | %Recovery | Qualifier  | Limits              |       |       |              | Prepared       | Analyzed                            | Dil Fac  |
| 13C3-PFBS                             | 94        | M          | 50 - 150            |       |       |              | 05/14/18 14:03 | 05/29/18 15:02                      | 100      |
| 13C4-PFHpA                            | 72        |            | 50 - 150            |       |       |              | 05/14/18 14:03 | 05/29/18 15:02                      | 100      |
| 13C4 PFOA                             | 87        |            | 50 - 150            |       |       |              | 05/14/18 14:03 | 05/29/18 15:02                      | 100      |
| 13C5 PFNA                             | 84        |            | 50 - 150            |       |       |              |                | 05/29/18 15:02                      | 100      |
| 1802 PFHxS                            | 66        |            | 50 - 150            |       |       |              | 05/14/18 14:03 | 05/29/18 15:02                      | 100      |
| 13C4 PFOS                             | 68        |            | 50 - 150            |       |       |              |                | 05/29/18 15:02                      | 100      |
| · · · · · · · · · · · · · · · · · · · | •         |            |                     |       |       |              |                | · · · · · · · · · · · · · · · · · · |          |

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: KLA02-SB2-02

Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15

Lab Sample ID: 320-39023-18 Date Collected: 05/04/18 13:25 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 59.2

| Analyte                                                                                                                                                                                                                                                        | Result                                                      | Qualifier               | LOQ                                                                                    |                                 | Unit                             | D                                       | Prepared                                                                                                                                                                 | Analyzed                                                                                                                                                           | Dil Fac                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------|---------------------------------|----------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                | 6.0                                                         |                         | 0.51                                                                                   | 0.13                            | ug/Kg                            | <del>\</del>                            | 05/14/18 14:03                                                                                                                                                           | 05/29/18 08:22                                                                                                                                                     | 1                                            |
| Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                  | 18                                                          |                         | 0.51                                                                                   | 0.17                            | ug/Kg                            | ₩                                       | 05/14/18 14:03                                                                                                                                                           | 05/29/18 08:22                                                                                                                                                     | 1                                            |
| Perfluorononanoic acid (PFNA)                                                                                                                                                                                                                                  | 0.30                                                        | J                       | 0.51                                                                                   | 0.14                            | ug/Kg                            | ☼                                       | 05/14/18 14:03                                                                                                                                                           | 05/29/18 08:22                                                                                                                                                     | 1                                            |
| Perfluorobutanesulfonic acid (PFBS)                                                                                                                                                                                                                            | 26                                                          |                         | 0.68                                                                                   | 0.10                            | ug/Kg                            | ₽                                       | 05/14/18 14:03                                                                                                                                                           | 05/29/18 08:22                                                                                                                                                     | 1                                            |
| Perfluorohexanesulfonic acid (PFHxS)                                                                                                                                                                                                                           | 110                                                         | E                       | 0.51                                                                                   | 0.10                            | ug/Kg                            | ₽                                       | 05/14/18 14:03                                                                                                                                                           | 05/29/18 08:22                                                                                                                                                     | 1                                            |
| Perfluorooctanesulfonic acid (PFOS)                                                                                                                                                                                                                            | 410                                                         | E                       | 1.7                                                                                    | 0.41                            | ug/Kg                            | ₩                                       | 05/14/18 14:03                                                                                                                                                           | 05/29/18 08:22                                                                                                                                                     | 1                                            |
| Isotope Dilution                                                                                                                                                                                                                                               | %Recovery                                                   | Qualifier               | Limits                                                                                 |                                 |                                  |                                         | Prepared                                                                                                                                                                 | Analyzed                                                                                                                                                           | Dil Fac                                      |
| 13C3-PFBS                                                                                                                                                                                                                                                      | 82                                                          |                         | 50 - 150                                                                               |                                 |                                  |                                         | 05/14/18 14:03                                                                                                                                                           | 05/29/18 08:22                                                                                                                                                     | 1                                            |
| 13C4-PFHpA                                                                                                                                                                                                                                                     | 78                                                          |                         | 50 - 150                                                                               |                                 |                                  |                                         | 05/14/18 14:03                                                                                                                                                           | 05/29/18 08:22                                                                                                                                                     | 1                                            |
| 13C4 PFOA                                                                                                                                                                                                                                                      | 89                                                          |                         | 50 - 150                                                                               |                                 |                                  |                                         | 05/14/18 14:03                                                                                                                                                           | 05/29/18 08:22                                                                                                                                                     | 1                                            |
| 13C5 PFNA                                                                                                                                                                                                                                                      | 71                                                          |                         | 50 - 150                                                                               |                                 |                                  |                                         | 05/14/18 14:03                                                                                                                                                           | 05/29/18 08:22                                                                                                                                                     | 1                                            |
| 1802 PFHxS                                                                                                                                                                                                                                                     | 72                                                          |                         | 50 - 150                                                                               |                                 |                                  |                                         | 05/14/18 14:03                                                                                                                                                           | 05/29/18 08:22                                                                                                                                                     | 1                                            |
|                                                                                                                                                                                                                                                                |                                                             |                         |                                                                                        |                                 |                                  |                                         | 05/14/19 14:02                                                                                                                                                           | 05/29/18 08:22                                                                                                                                                     | 1                                            |
| 13C4 PFOS<br>:<br>  Method: EPA 537 (Mod) - PFA                                                                                                                                                                                                                | 60<br>S for QSM !                                           | 5.1. Table I            | 50 - 150<br>B-15 - DL                                                                  |                                 |                                  |                                         | 03/14/10 14.03                                                                                                                                                           | 03/29/10 00.22                                                                                                                                                     | ,                                            |
| 13C4 PFOS<br>Method: EPA 537 (Mod) - PFA<br>Analyte                                                                                                                                                                                                            | S for QSM !<br>Result                                       | Qualifier               |                                                                                        | DL                              | Unit                             | D                                       | Prepared                                                                                                                                                                 | Analyzed                                                                                                                                                           | Dil Fac                                      |
| Method: EPA 537 (Mod) - PFA                                                                                                                                                                                                                                    | S for QSM !<br>Result                                       | •                       | B-15 - DL                                                                              |                                 |                                  | D<br>                                   |                                                                                                                                                                          | Analyzed                                                                                                                                                           |                                              |
| Method: EPA 537 (Mod) - PFA<br>Analyte                                                                                                                                                                                                                         | S for QSM !<br>Result                                       | Qualifier J D           | B-15 - DL<br>LOQ                                                                       | 2.6                             |                                  |                                         | Prepared 05/14/18 14:03                                                                                                                                                  | Analyzed                                                                                                                                                           | Dil Fac                                      |
| Method: EPA 537 (Mod) - PFA<br>Analyte<br>Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                      | S for QSM (Result                                           | Qualifier J D D         | B-15 - DL<br>LOQ<br>10                                                                 | 2.6<br>3.4                      | ug/Kg                            |                                         | Prepared 05/14/18 14:03 05/14/18 14:03                                                                                                                                   | Analyzed 05/29/18 17:07                                                                                                                                            | Dil Fac                                      |
| Method: EPA 537 (Mod) - PFA<br>Analyte<br>Perfluoroheptanoic acid (PFHpA)<br>Perfluorooctanoic acid (PFOA)                                                                                                                                                     | S for QSM !<br>Result<br>6.4<br>17                          | Qualifier  J D  D  U    | B-15 - DL<br>LOQ<br>10                                                                 | 2.6<br>3.4<br>2.7               | ug/Kg<br>ug/Kg                   |                                         | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                                                    | Analyzed<br>05/29/18 17:07<br>05/29/18 17:07                                                                                                                       | 20<br>20<br>20<br>20                         |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid                                                                                                   | S for QSM !  Result  6.4  17  6.8                           | Qualifier J D D U       | B-15 - DL<br>LOQ<br>10<br>10                                                           | 2.6<br>3.4<br>2.7<br>2.0        | ug/Kg<br>ug/Kg<br>ug/Kg          | <del>*</del> *                          | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                                                    | Analyzed 05/29/18 17:07 05/29/18 17:07 05/29/18 17:07 05/29/18 17:07                                                                                               | 20<br>20<br>20<br>20                         |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid                                                               | S for QSM 9  Result  6.4  17  6.8  30  130                  | Qualifier J D D U       | B-15 - DL<br>LOQ<br>10<br>10<br>10                                                     | 2.6<br>3.4<br>2.7<br>2.0<br>2.1 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | *                                       | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                                     | Analyzed  05/29/18 17:07  05/29/18 17:07  05/29/18 17:07  05/29/18 17:07                                                                                           | 20<br>20<br>20<br>20<br>20                   |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid                          | S for QSM 9  Result  6.4  17  6.8  30  130                  | Qualifier J D D U D D D | B-15 - DL<br>LOQ<br>10<br>10<br>10<br>14                                               | 2.6<br>3.4<br>2.7<br>2.0<br>2.1 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                      | Analyzed  05/29/18 17:07  05/29/18 17:07  05/29/18 17:07  05/29/18 17:07                                                                                           | 20<br>20<br>20<br>20<br>20<br>20             |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFHxS)                                                | S for QSM 8  Result  6.4  17  6.8  30  130  570             | Qualifier J D D U D D D | B-15 - DL<br>LOQ<br>10<br>10<br>10<br>14<br>10<br>34                                   | 2.6<br>3.4<br>2.7<br>2.0<br>2.1 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                       | Analyzed 05/29/18 17:07 05/29/18 17:07 05/29/18 17:07 05/29/18 17:07 05/29/18 17:07                                                                                | 20<br>20<br>20<br>20<br>20<br>20             |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution                                | S for QSM (Result 6.4 17 6.8 30 130 570 %Recovery           | Qualifier J D D U D D D | B-15 - DL<br>LOQ<br>10<br>10<br>10<br>14<br>10<br>34                                   | 2.6<br>3.4<br>2.7<br>2.0<br>2.1 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03                                           | Analyzed  05/29/18 17:07  05/29/18 17:07  05/29/18 17:07  05/29/18 17:07  05/29/18 17:07  05/29/18 17:07  Analyzed                                                 | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS                      | S for QSM 4 Result 6.4 17 6.8 30 130 570 %Recovery          | Qualifier J D D U D D D | B-15 - DL<br>LOQ<br>10<br>10<br>10<br>14<br>10<br>34<br>Limits<br>50 - 150             | 2.6<br>3.4<br>2.7<br>2.0<br>2.1 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03  05/14/18 14:03                                       | Analyzed  05/29/18 17:07  05/29/18 17:07  05/29/18 17:07  05/29/18 17:07  05/29/18 17:07  05/29/18 17:07  Analyzed  05/29/18 17:07                                 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2     |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA           | S for QSM 4 Result 6.4 17 6.8 30 130 570 %Recovery 71 78    | Qualifier J D D U D D D | B-15 - DL<br>LOQ<br>10<br>10<br>10<br>14<br>10<br>34<br>Limits<br>50 - 150<br>50 - 150 | 2.6<br>3.4<br>2.7<br>2.0<br>2.1 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03  Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                             | Analyzed  05/29/18 17:07  05/29/18 17:07  05/29/18 17:07  05/29/18 17:07  05/29/18 17:07  Analyzed  05/29/18 17:07  05/29/18 17:07                                 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2     |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA 13C4 PFOA | S for QSM 4 Result 6.4 17 6.8 30 130 570 %Recovery 71 78 91 | Qualifier J D D U D D D | B-15 - DL<br>LOQ<br>10<br>10<br>10<br>14<br>10<br>34<br>Limits<br>50 - 150<br>50 - 150 | 2.6<br>3.4<br>2.7<br>2.0<br>2.1 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03  Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 | Analyzed  05/29/18 17:07  05/29/18 17:07  05/29/18 17:07  05/29/18 17:07  05/29/18 17:07  Analyzed  05/29/18 17:07  05/29/18 17:07  05/29/18 17:07  05/29/18 17:07 | Dil Fac<br>20<br>20                          |

Client Sample ID: KLA02-SB3-01 Lab Sample ID: 320-39023-19

Date Collected: 05/04/18 13:55 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 83.8

| Analyte                              | Result Qualifier | LOQ  | DL    | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|------------------|------|-------|-------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 0.47             | 0.36 | 0.094 | ug/Kg | ₩ | 05/14/18 14:03 | 05/29/18 08:30 | 1       |
| Perfluorooctanoic acid (PFOA)        | 0.45             | 0.36 | 0.12  | ug/Kg | ₩ | 05/14/18 14:03 | 05/29/18 08:30 | 1       |
| Perfluorononanoic acid (PFNA)        | 0.40             | 0.36 | 0.098 | ug/Kg | ₽ | 05/14/18 14:03 | 05/29/18 08:30 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.50             | 0.48 | 0.071 | ug/Kg | ₽ | 05/14/18 14:03 | 05/29/18 08:30 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 5.4              | 0.36 | 0.075 | ug/Kg | ₽ | 05/14/18 14:03 | 05/29/18 08:30 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 110 E M          | 1.2  | 0.29  | ug/Kg | ₽ | 05/14/18 14:03 | 05/29/18 08:30 | 1       |

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

| Client Samp | le ID: | KLA02- | SB3-01 |
|-------------|--------|--------|--------|
|-------------|--------|--------|--------|

Date Collected: 05/04/18 13:55 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 83.8

| Isotope Dilution            | %Recovery Qualifier    | Limits    |         | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|------------------------|-----------|---------|----------------|----------------|---------|
| 13C3-PFBS                   | 78                     | 50 - 150  |         | 05/14/18 14:03 | 05/29/18 08:30 | 1       |
| 13C4-PFHpA                  | 86                     | 50 - 150  |         | 05/14/18 14:03 | 05/29/18 08:30 | 1       |
| 13C4 PFOA                   | 92                     | 50 - 150  |         | 05/14/18 14:03 | 05/29/18 08:30 | 1       |
| 13C5 PFNA                   | 85                     | 50 - 150  |         | 05/14/18 14:03 | 05/29/18 08:30 | 1       |
| 1802 PFHxS                  | 82                     | 50 - 150  |         | 05/14/18 14:03 | 05/29/18 08:30 | 1       |
| 13C4 PFOS                   | 68                     | 50 - 150  |         | 05/14/18 14:03 | 05/29/18 08:30 | 1       |
| Method: EPA 537 (Mod) - PFA | S for QSM 5.1, Table I | B-15 - DL |         |                |                |         |
| Analyte                     | Result Qualifier       | LOQ       | DL Unit | D Prepared     | Analyzed       | Dil Fac |

| Analyte                              | Result    | Qualifier | LOQ    | DL  | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|--------|-----|-------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 4.8       | U         | 7.2    | 1.9 | ug/Kg | ₩ | 05/14/18 14:03 | 05/29/18 14:30 | 20      |
| Perfluorooctanoic acid (PFOA)        | 4.8       | U         | 7.2    | 2.4 | ug/Kg | ☼ | 05/14/18 14:03 | 05/29/18 14:30 | 20      |
| Perfluorononanoic acid (PFNA)        | 4.8       | U         | 7.2    | 2.0 | ug/Kg | ☼ | 05/14/18 14:03 | 05/29/18 14:30 | 20      |
| Perfluorobutanesulfonic acid (PFBS)  | 4.3       | U         | 9.6    | 1.4 | ug/Kg | ₽ | 05/14/18 14:03 | 05/29/18 14:30 | 20      |
| Perfluorohexanesulfonic acid (PFHxS) | 5.7       | J D       | 7.2    | 1.5 | ug/Kg | ₽ | 05/14/18 14:03 | 05/29/18 14:30 | 20      |
| Perfluorooctanesulfonic acid (PFOS)  | 140       | D         | 24     | 5.8 | ug/Kg | ₩ | 05/14/18 14:03 | 05/29/18 14:30 | 20      |
| Isotope Dilution                     | %Recovery | Qualifier | Limits |     |       |   | Prepared       | Analyzed       | Dil Fac |

|            | •    |          | •              | •              |    |
|------------|------|----------|----------------|----------------|----|
| 13C3-PFBS  | 77 M | 50 - 150 | 05/14/18 14:03 | 05/29/18 14:30 | 20 |
| 13C4-PFHpA | 84   | 50 - 150 | 05/14/18 14:03 | 05/29/18 14:30 | 20 |
| 13C4 PFOA  | 91   | 50 - 150 | 05/14/18 14:03 | 05/29/18 14:30 | 20 |
| 13C5 PFNA  | 100  | 50 - 150 | 05/14/18 14:03 | 05/29/18 14:30 | 20 |
| 1802 PFHxS | 75   | 50 - 150 | 05/14/18 14:03 | 05/29/18 14:30 | 20 |
| 13C4 PFOS  | 74   | 50 - 150 | 05/14/18 14:03 | 05/29/18 14:30 | 20 |
|            |      |          |                |                |    |

Client Sample ID: KLA02-SB3-02

Lab Sample ID: 320-39023-20 Date Collected: 05/04/18 14:00 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 72.4

| Date Received. 05/03/16 03.20          |           |                           |             |       |       |          |                | Percent Sono   | 5. 12.4 |
|----------------------------------------|-----------|---------------------------|-------------|-------|-------|----------|----------------|----------------|---------|
| Method: EPA 537 (Mod) - PFA<br>Analyte |           | 5.1, Table  <br>Qualifier | B-15<br>LOQ | DL    | Unit  | D        | Prepared       | Analyzed       | Dil Fac |
| Perfluoroheptanoic acid (PFHpA)        | 0.81      |                           | 0.41        | 0.11  | ug/Kg | <u> </u> | 05/14/18 14:03 | 05/29/18 08:38 | 1       |
| Perfluorooctanoic acid (PFOA)          | 1.0       |                           | 0.41        | 0.14  | ug/Kg | ₩        | 05/14/18 14:03 | 05/29/18 08:38 | 1       |
| Perfluorononanoic acid (PFNA)          | 0.12      | J M                       | 0.41        | 0.11  | ug/Kg | ₩        | 05/14/18 14:03 | 05/29/18 08:38 | 1       |
| Perfluorobutanesulfonic acid (PFBS)    | 1.8       |                           | 0.55        | 0.081 | ug/Kg | ☼        | 05/14/18 14:03 | 05/29/18 08:38 | 1       |
| Perfluorohexanesulfonic acid (PFHxS)   | 9.4       |                           | 0.41        | 0.086 | ug/Kg | ₩        | 05/14/18 14:03 | 05/29/18 08:38 | 1       |
| Perfluorooctanesulfonic acid (PFOS)    | 21        | M                         | 1.4         | 0.33  | ug/Kg | ₽        | 05/14/18 14:03 | 05/29/18 08:38 | 1       |
| Isotope Dilution                       | %Recovery | Qualifier                 | Limits      |       |       |          | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                              | 75        |                           | 50 - 150    |       |       |          | 05/14/18 14:03 | 05/29/18 08:38 | 1       |
| 13C4-PFHpA                             | 80        |                           | 50 - 150    |       |       |          | 05/14/18 14:03 | 05/29/18 08:38 | 1       |
| 13C4 PFOA                              | 90        |                           | 50 - 150    |       |       |          | 05/14/18 14:03 | 05/29/18 08:38 | 1       |
| 13C5 PFNA                              | 92        |                           | 50 - 150    |       |       |          | 05/14/18 14:03 | 05/29/18 08:38 | 1       |
| 1802 PFHxS                             | 80        |                           | 50 - 150    |       |       |          | 05/14/18 14:03 | 05/29/18 08:38 | 1       |
| 13C4 PFOS                              | 76        |                           | 50 - 150    |       |       |          | 05/14/18 14:03 | 05/29/18 08:38 | 1       |
| _                                      |           |                           |             |       |       |          |                |                |         |

Lab Sample ID: 320-39023-19

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

13C4 PFOS

Client Sample ID: KLA03-SB1-01 Lab Sample ID: 320-39023-21

 Date Collected: 05/01/18 09:00
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 77.7

| Analyte                              | Result    | Qualifier | LOQ                 | DL    | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|---------------------|-------|-------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 0.26      | U         | 0.39                | 0.10  | ug/Kg | ₩ | 05/14/18 13:10 | 05/29/18 04:19 | 1       |
| Perfluorooctanoic acid (PFOA)        | 0.26      | UM        | 0.39                | 0.13  | ug/Kg | ₩ | 05/14/18 13:10 | 05/29/18 04:19 | 1       |
| Perfluorononanoic acid (PFNA)        | 0.26      | U         | 0.39                | 0.10  | ug/Kg | ₩ | 05/14/18 13:10 | 05/29/18 04:19 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.082     | J         | 0.52                | 0.076 | ug/Kg | ☼ | 05/14/18 13:10 | 05/29/18 04:19 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 0.99      |           | 0.39                | 0.080 | ug/Kg | ₽ | 05/14/18 13:10 | 05/29/18 04:19 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 3.0       |           | 1.3                 | 0.31  | ug/Kg | ☼ | 05/14/18 13:10 | 05/29/18 04:19 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier | Limits              |       |       |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 68        |           | 50 - 150            |       |       |   | 05/14/18 13:10 | 05/29/18 04:19 | 1       |
| 13C4-PFHpA                           | 83        |           | 50 - 150            |       |       |   | 05/14/18 13:10 | 05/29/18 04:19 | 1       |
| 13C4 PFOA                            | 85        |           | 50 - 150            |       |       |   | 05/14/18 13:10 | 05/29/18 04:19 | 1       |
| 13C5 PFNA                            | 83        |           | 50 - 150            |       |       |   | 05/14/18 13:10 | 05/29/18 04:19 | 1       |
| 1802 PFHxS                           | 71        |           | 50 - 150            |       |       |   | 05/14/18 13:10 | 05/29/18 04:19 | 1       |
| 13C4 PFOS                            | 69        |           | 50 <sub>-</sub> 150 |       |       |   | 05/14/18 13:10 | 05/29/18 04:19 | 1       |

Client Sample ID: KLA03-SB1-02 Lab Sample ID: 320-39023-22

 Date Collected: 05/01/18 09:05
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 74.7

| Analyte                              | Result    | Qualifier | LOQ                 | DL    | Unit  | D        | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|---------------------|-------|-------|----------|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 0.26      | U         | 0.40                | 0.10  | ug/Kg | ☼        | 05/14/18 13:10 | 05/29/18 04:27 | 1       |
| Perfluorooctanoic acid (PFOA)        | 0.22      | J M       | 0.40                | 0.13  | ug/Kg | ☼        | 05/14/18 13:10 | 05/29/18 04:27 | 1       |
| Perfluorononanoic acid (PFNA)        | 0.26      | U         | 0.40                | 0.11  | ug/Kg | ☼        | 05/14/18 13:10 | 05/29/18 04:27 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.21      | J         | 0.53                | 0.078 | ug/Kg | <b>‡</b> | 05/14/18 13:10 | 05/29/18 04:27 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 2.4       |           | 0.40                | 0.082 | ug/Kg | ₽        | 05/14/18 13:10 | 05/29/18 04:27 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 17        |           | 1.3                 | 0.32  | ug/Kg | ₽        | 05/14/18 13:10 | 05/29/18 04:27 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier | Limits              |       |       |          | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 70        |           | 50 - 150            |       |       |          | 05/14/18 13:10 | 05/29/18 04:27 | 1       |
| 13C4-PFHpA                           | 83        |           | 50 - 150            |       |       |          | 05/14/18 13:10 | 05/29/18 04:27 | 1       |
| 13C4 PFOA                            | 87        |           | 50 - 150            |       |       |          | 05/14/18 13:10 | 05/29/18 04:27 | 1       |
| 13C5 PFNA                            | 91        |           | 50 - 150            |       |       |          | 05/14/18 13:10 | 05/29/18 04:27 | 1       |
| 18O2 PFHxS                           | 74        |           | 50 <sub>-</sub> 150 |       |       |          | 05/14/18 13:10 | 05/29/18 04:27 | 1       |

Client Sample ID: KLA03-SB2-01 Lab Sample ID: 320-39023-23

50 - 150

71

Date Collected: 05/02/18 12:15 Matrix: Solid
Date Received: 05/09/18 09:20 Percent Solids: 81.0

| Analyte                             | Result | Qualifier | LOQ  | DL    | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-------------------------------------|--------|-----------|------|-------|-------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)     | 0.25   | U         | 0.37 | 0.096 | ug/Kg | ☼ | 05/14/18 13:10 | 06/06/18 22:47 | 1       |
| Perfluorooctanoic acid (PFOA)       | 0.15   | J         | 0.37 | 0.12  | ug/Kg | ☼ | 05/14/18 13:10 | 06/06/18 22:47 | 1       |
| Perfluorononanoic acid (PFNA)       | 0.25   | U M       | 0.37 | 0.099 | ug/Kg | ☼ | 05/14/18 13:10 | 06/06/18 22:47 | 1       |
| Perfluorobutanesulfonic acid (PFBS) | 0.10   | J         | 0.49 | 0.072 | ug/Kg | ₩ | 05/14/18 13:10 | 06/06/18 22:47 | 1       |

05/14/18 13:10 05/29/18 04:27

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: KLA03-SB2-01

Lab Sample ID: 320-39023-23 Date Collected: 05/02/18 12:15 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 81.0

| Analyte                              | Result    | Qualifier | LOQ                 | DL    | Unit  | D        | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|---------------------|-------|-------|----------|----------------|----------------|---------|
| Perfluorohexanesulfonic acid (PFHxS) | 0.71      |           | 0.37                | 0.076 | ug/Kg | <u>∓</u> | 05/14/18 13:10 | 06/06/18 22:47 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 3.4       |           | 1.2                 | 0.29  | ug/Kg | ☼        | 05/14/18 13:10 | 06/06/18 22:47 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier | Limits              |       |       |          | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 69        |           | 50 - 150            |       |       |          | 05/14/18 13:10 | 06/06/18 22:47 | 1       |
| 13C4-PFHpA                           | 83        |           | 50 - 150            |       |       |          | 05/14/18 13:10 | 06/06/18 22:47 | 1       |
| 13C4 PFOA                            | 83        |           | 50 - 150            |       |       |          | 05/14/18 13:10 | 06/06/18 22:47 | 1       |
| 13C5 PFNA                            | 81        |           | 50 - 150            |       |       |          | 05/14/18 13:10 | 06/06/18 22:47 | 1       |
| 1802 PFHxS                           | 73        |           | 50 - 150            |       |       |          | 05/14/18 13:10 | 06/06/18 22:47 | 1       |
| 13C4 PFOS                            | 72        |           | 50 <sub>-</sub> 150 |       |       |          | 05/14/18 13:10 | 06/06/18 22:47 | 1       |

Client Sample ID: KLA03-SB2-02 Lab Sample ID: 320-39023-24

Date Collected: 05/02/18 12:20 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 77.2

| Analyte                              | Result    | Qualifier | LOQ                 | DL    | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|---------------------|-------|-------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 0.26      | U         | 0.38                | 0.10  | ug/Kg | ☼ | 05/14/18 13:10 | 06/06/18 22:55 | 1       |
| Perfluorooctanoic acid (PFOA)        | 0.15      | J         | 0.38                | 0.13  | ug/Kg | ₩ | 05/14/18 13:10 | 06/06/18 22:55 | 1       |
| Perfluorononanoic acid (PFNA)        | 0.26      | U         | 0.38                | 0.10  | ug/Kg | ₩ | 05/14/18 13:10 | 06/06/18 22:55 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.15      | J         | 0.51                | 0.075 | ug/Kg | ☼ | 05/14/18 13:10 | 06/06/18 22:55 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 1.1       |           | 0.38                | 0.079 | ug/Kg | ₽ | 05/14/18 13:10 | 06/06/18 22:55 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 4.9       | M         | 1.3                 | 0.31  | ug/Kg | ☼ | 05/14/18 13:10 | 06/06/18 22:55 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier | Limits              |       |       |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 68        |           | 50 - 150            |       |       |   | 05/14/18 13:10 | 06/06/18 22:55 | 1       |
| 13C4-PFHpA                           | 83        |           | 50 - 150            |       |       |   | 05/14/18 13:10 | 06/06/18 22:55 | 1       |
| 13C4 PFOA                            | 82        |           | 50 - 150            |       |       |   | 05/14/18 13:10 | 06/06/18 22:55 | 1       |
| 13C5 PFNA                            | 78        |           | 50 - 150            |       |       |   | 05/14/18 13:10 | 06/06/18 22:55 | 1       |
| 1802 PFHxS                           | 75        |           | 50 - 150            |       |       |   | 05/14/18 13:10 | 06/06/18 22:55 | 1       |
| 13C4 PFOS                            | 70        |           | 50 <sub>-</sub> 150 |       |       |   | 05/14/18 13:10 | 06/06/18 22:55 | 1       |

Lab Sample ID: 320-39023-25 Client Sample ID: KLA03-SB3-01

Date Collected: 05/01/18 08:45 **Matrix: Solid** Percent Solids: 74.9 Date Received: 05/09/18 09:20

| Analyte                              | Result | Qualifier | LOQ  | DL    | Unit  | D            | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|--------|-----------|------|-------|-------|--------------|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 0.36   | J         | 0.41 | 0.11  | ug/Kg | <del>\</del> | 05/14/18 13:10 | 06/06/18 23:03 | 1       |
| Perfluorooctanoic acid (PFOA)        | 0.37   | J         | 0.41 | 0.14  | ug/Kg | ☼            | 05/14/18 13:10 | 06/06/18 23:03 | 1       |
| Perfluorononanoic acid (PFNA)        | 0.27   | UM        | 0.41 | 0.11  | ug/Kg | ₩            | 05/14/18 13:10 | 06/06/18 23:03 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.21   | J         | 0.54 | 0.080 | ug/Kg | ₽            | 05/14/18 13:10 | 06/06/18 23:03 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 2.7    |           | 0.41 | 0.084 | ug/Kg | ₽            | 05/14/18 13:10 | 06/06/18 23:03 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 3.2    |           | 1.4  | 0.32  | ug/Kg | ₽            | 05/14/18 13:10 | 06/06/18 23:03 | 1       |

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

13C4 PFOS

Client Sample ID: KLA03-SB3-01 Lab Sample ID: 320-39023-25

 Date Collected: 05/01/18 08:45
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 74.9

| Isotope Dilution | %Recovery Qu | ualifier Limits     | Prepared       | Analyzed       | Dil Fac |
|------------------|--------------|---------------------|----------------|----------------|---------|
| 13C3-PFBS        | 78           | 50 - 150            | 05/14/18 13:10 | 06/06/18 23:03 | 1       |
| 13C4-PFHpA       | 85           | 50 <sub>-</sub> 150 | 05/14/18 13:10 | 06/06/18 23:03 | 1       |
| 13C4 PFOA        | 85           | 50 <sub>-</sub> 150 | 05/14/18 13:10 | 06/06/18 23:03 | 1       |
| 13C5 PFNA        | 87           | 50 <sub>-</sub> 150 | 05/14/18 13:10 | 06/06/18 23:03 | 1       |
| 1802 PFHxS       | 83           | 50 <sub>-</sub> 150 | 05/14/18 13:10 | 06/06/18 23:03 | 1       |
| 13C4 PFOS        | 79           | 50 - 150            | 05/14/18 13:10 | 06/06/18 23:03 | 1       |

Client Sample ID: KLA03-SB3-02 Lab Sample ID: 320-39023-26

| Analyte                              | Result    | Qualifier | LOQ      | DL    | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|----------|-------|-------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 0.59      |           | 0.41     | 0.11  | ug/Kg | ☼ | 05/14/18 13:10 | 06/06/18 23:10 | 1       |
| Perfluorooctanoic acid (PFOA)        | 1.3       |           | 0.41     | 0.14  | ug/Kg | ☼ | 05/14/18 13:10 | 06/06/18 23:10 | 1       |
| Perfluorononanoic acid (PFNA)        | 0.27      | U         | 0.41     | 0.11  | ug/Kg | ☼ | 05/14/18 13:10 | 06/06/18 23:10 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.75      |           | 0.54     | 0.080 | ug/Kg | ₽ | 05/14/18 13:10 | 06/06/18 23:10 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 12        |           | 0.41     | 0.084 | ug/Kg | ₽ | 05/14/18 13:10 | 06/06/18 23:10 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 14        | M         | 1.4      | 0.32  | ug/Kg | ☼ | 05/14/18 13:10 | 06/06/18 23:10 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier | Limits   |       |       |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 77        |           | 50 - 150 |       |       |   | 05/14/18 13:10 | 06/06/18 23:10 | 1       |
| 13C4-PFHpA                           | 85        |           | 50 - 150 |       |       |   | 05/14/18 13:10 | 06/06/18 23:10 | 1       |
| 13C4 PFOA                            | 84        |           | 50 - 150 |       |       |   | 05/14/18 13:10 | 06/06/18 23:10 | 1       |
| 13C5 PFNA                            | 83        |           | 50 - 150 |       |       |   | 05/14/18 13:10 | 06/06/18 23:10 | 1       |
| 1802 PFHxS                           | 79        |           | 50 - 150 |       |       |   | 05/14/18 13:10 | 06/06/18 23:10 | 1       |

Client Sample ID: KLA04-SB1-01 Lab Sample ID: 320-39023-27

50 - 150

76

 Date Collected: 05/04/18 08:35
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 72.6

|                                        |           |                           |             |       |       |              |                | · Oroonic Gonia | 101 1210 |
|----------------------------------------|-----------|---------------------------|-------------|-------|-------|--------------|----------------|-----------------|----------|
| Method: EPA 537 (Mod) - PFA<br>Analyte |           | 5.1, Table I<br>Qualifier | B-15<br>LOQ | DL    | Unit  | D            | Prepared       | Analyzed        | Dil Fac  |
| Perfluoroheptanoic acid (PFHpA)        | 0.66      |                           | 0.42        | 0.11  | ug/Kg | <del>\</del> | 05/14/18 14:03 | 05/29/18 08:54  | 1        |
| Perfluorooctanoic acid (PFOA)          | 3.2       |                           | 0.42        | 0.14  | ug/Kg | ☼            | 05/14/18 14:03 | 05/29/18 08:54  | 1        |
| Perfluorononanoic acid (PFNA)          | 0.16      | J M                       | 0.42        | 0.11  | ug/Kg | ₩            | 05/14/18 14:03 | 05/29/18 08:54  | 1        |
| Perfluorobutanesulfonic acid (PFBS)    | 0.45      | J                         | 0.56        | 0.082 | ug/Kg | <b>*</b>     | 05/14/18 14:03 | 05/29/18 08:54  | 1        |
| Perfluorohexanesulfonic acid (PFHxS)   | 24        |                           | 0.42        | 0.086 | ug/Kg | ₩            | 05/14/18 14:03 | 05/29/18 08:54  | 1        |
| Perfluorooctanesulfonic acid (PFOS)    | 930       | E                         | 1.4         | 0.33  | ug/Kg | ₽            | 05/14/18 14:03 | 05/29/18 08:54  | 1        |
| Isotope Dilution                       | %Recovery | Qualifier                 | Limits      |       |       |              | Prepared       | Analyzed        | Dil Fac  |
| 13C3-PFBS                              | 87        |                           | 50 - 150    |       |       |              | 05/14/18 14:03 | 05/29/18 08:54  | 1        |
| 13C4-PFHpA                             | 98        |                           | 50 - 150    |       |       |              | 05/14/18 14:03 | 05/29/18 08:54  | 1        |
| 13C4 PFOA                              | 88        |                           | 50 - 150    |       |       |              | 05/14/18 14:03 | 05/29/18 08:54  | 1        |
| 13C5 PFNA                              | 37        | Q                         | 50 - 150    |       |       |              | 05/14/18 14:03 | 05/29/18 08:54  | 1        |
| 1802 PFHxS                             | 87        |                           | 50 - 150    |       |       |              | 05/14/18 14:03 | 05/29/18 08:54  | 1        |
| 13C4 PFOS                              | 30        | Q                         | 50 - 150    |       |       |              | 05/14/18 14:03 | 05/29/18 08:54  | 1        |
|                                        |           |                           |             |       |       |              |                |                 |          |

TestAmerica Sacramento

05/14/18 13:10 06/06/18 23:10

Client: Leidos, Inc. Project/Site: Phase III, ANG-Kingsley TestAmerica Job ID: 320-39023-1

| Method: EPA 537 (Mod) - PFA          | S for QSM | 5.1, Table I | B-15 - DL |     |       |   |                |                |         |
|--------------------------------------|-----------|--------------|-----------|-----|-------|---|----------------|----------------|---------|
| Analyte                              | Result    | Qualifier    | LOQ       | DL  | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Perfluoroheptanoic acid (PFHpA)      | 28        | U            | 42        | 11  | ug/Kg | ₩ | 05/14/18 14:03 | 05/29/18 15:33 | 100     |
| Perfluorooctanoic acid (PFOA)        | 28        | UM           | 42        | 14  | ug/Kg | ₩ | 05/14/18 14:03 | 05/29/18 15:33 | 100     |
| Perfluorononanoic acid (PFNA)        | 28        | U            | 42        | 11  | ug/Kg | ₩ | 05/14/18 14:03 | 05/29/18 15:33 | 100     |
| Perfluorobutanesulfonic acid (PFBS)  | 25        | U            | 56        | 8.2 | ug/Kg | ₽ | 05/14/18 14:03 | 05/29/18 15:33 | 100     |
| Perfluorohexanesulfonic acid (PFHxS) | 23        | JD           | 42        | 8.6 | ug/Kg | ≎ | 05/14/18 14:03 | 05/29/18 15:33 | 100     |
| Perfluorooctanesulfonic acid (PFOS)  | 2200      | D            | 140       | 33  | ug/Kg | ₩ | 05/14/18 14:03 | 05/29/18 15:33 | 100     |
| Isotope Dilution                     | %Recovery | Qualifier    | Limits    |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 99        | М            | 50 - 150  |     |       |   | 05/14/18 14:03 | 05/29/18 15:33 | 100     |
| 13C4-PFHpA                           | 77        |              | 50 - 150  |     |       |   | 05/14/18 14:03 | 05/29/18 15:33 | 100     |
| 13C4 PFOA                            | 93        |              | 50 - 150  |     |       |   | 05/14/18 14:03 | 05/29/18 15:33 | 100     |
| 13C5 PFNA                            | 79        |              | 50 - 150  |     |       |   | 05/14/18 14:03 | 05/29/18 15:33 | 100     |
| 1802 PFHxS                           | 67        |              | 50 - 150  |     |       |   | 05/14/18 14:03 | 05/29/18 15:33 | 100     |
| 13C4 PFOS                            | 70        |              | 50 - 150  |     |       |   | 05/14/18 14:03 | 05/29/18 15:33 | 100     |

| Client Sample ID: KLA04-SB1-02 | Lab Sample ID: 320-39023-28 |
|--------------------------------|-----------------------------|
| Date Collected: 05/04/18 08:40 | Matrix: Solid               |
| Date Received: 05/09/18 09:20  | Percent Solids: 77.2        |

| ment Sample ID. NLA04-C              | JD 1-02     |             |           |       |       | LC        | ib Gample      | ID. 320-390    |          |
|--------------------------------------|-------------|-------------|-----------|-------|-------|-----------|----------------|----------------|----------|
| Pate Collected: 05/04/18 08:40       |             |             |           |       |       |           |                |                | : Solid  |
| Pate Received: 05/09/18 09:20        |             |             |           |       |       |           |                | Percent Solid  | ls: 77.2 |
| Method: EPA 537 (Mod) - PFA          | S for OSM   | 5 1 Table I | R-15      |       |       |           |                |                |          |
| Analyte                              |             | Qualifier   | LOQ       | DL    | Unit  | D         | Prepared       | Analyzed       | Dil Fac  |
| Perfluoroheptanoic acid (PFHpA)      | 4.4         |             | 0.39      | 0.10  | ug/Kg | <u> </u>  | 05/14/18 14:03 | 05/29/18 09:02 |          |
| Perfluorooctanoic acid (PFOA)        | 19          |             | 0.39      | 0.13  | ug/Kg | ₩         | 05/14/18 14:03 | 05/29/18 09:02 | 1        |
| Perfluorononanoic acid (PFNA)        | 0.60        | M           | 0.39      | 0.11  | ug/Kg | ☼         | 05/14/18 14:03 | 05/29/18 09:02 | 1        |
| Perfluorobutanesulfonic acid         | 14          |             | 0.52      | 0.077 | ug/Kg | <b>\$</b> | 05/14/18 14:03 | 05/29/18 09:02 | 1        |
| Perfluorohexanesulfonic acid (PFHxS) | 130         | E           | 0.39      | 0.081 | ug/Kg | ₽         | 05/14/18 14:03 | 05/29/18 09:02 | 1        |
| Perfluorooctanesulfonic acid (PFOS)  | 1800        | E M         | 1.3       | 0.31  | ug/Kg | ₩         | 05/14/18 14:03 | 05/29/18 09:02 | 1        |
| Isotope Dilution                     | %Recovery   | Qualifier   | Limits    |       |       |           | Prepared       | Analyzed       | Dil Fac  |
| 13C3-PFBS                            | 95          |             | 50 - 150  |       |       |           | 05/14/18 14:03 | 05/29/18 09:02 | 1        |
| 13C4-PFHpA                           | 85          |             | 50 - 150  |       |       |           | 05/14/18 14:03 | 05/29/18 09:02 | 1        |
| 13C4 PFOA                            | 84          |             | 50 - 150  |       |       |           | 05/14/18 14:03 | 05/29/18 09:02 | 1        |
| 13C5 PFNA                            | 34          | Q           | 50 - 150  |       |       |           | 05/14/18 14:03 | 05/29/18 09:02 |          |
| 1802 PFHxS                           | 78          |             | 50 - 150  |       |       |           | 05/14/18 14:03 | 05/29/18 09:02 | 1        |
| 13C4 PFOS                            | 26          | Q           | 50 - 150  |       |       |           | 05/14/18 14:03 | 05/29/18 09:02 | 1        |
| Method: EPA 537 (Mod) - PFA          | S for QSM ! | 5.1, Table  | B-15 - DL |       |       |           |                |                |          |
| Analyte                              |             | Qualifier   | LOQ       | DL    | Unit  | D         | Prepared       | Analyzed       | Dil Fac  |
| Perfluoroheptanoic acid (PFHpA)      | 4.0         | J D         | 7.8       | 2.0   | ug/Kg | ₩         | 05/14/18 14:03 | 05/29/18 17:15 | 20       |
| Perfluorooctanoic acid (PFOA)        | 19          | D           | 7.8       | 2.6   | ug/Kg | ₽         | 05/14/18 14:03 | 05/29/18 17:15 | 20       |
| Perfluorononanoic acid (PFNA)        | 5.2         | U           | 7.8       | 2.1   | ug/Kg | ₽         | 05/14/18 14:03 | 05/29/18 17:15 | 20       |
| Perfluorobutanesulfonic acid (PFBS)  | 15          | D           | 10        | 1.5   | ug/Kg |           | 05/14/18 14:03 | 05/29/18 17:15 | 20       |
| Perfluorohexanesulfonic acid (PFHxS) | 190         | D           | 7.8       | 1.6   | ug/Kg | ₩         | 05/14/18 14:03 | 05/29/18 17:15 | 20       |
| Perfluorooctanesulfonic acid (PFOS)  | 2900        | E D         | 26        | 6.3   | ug/Kg | ₩         | 05/14/18 14:03 | 05/29/18 17:15 | 20       |
| Isotope Dilution                     | %Recovery   | Qualifier   | Limits    |       |       |           | Prepared       | Analyzed       | Dil Fac  |
| 13C3-PFBS                            | 70          | М           | 50 - 150  |       |       |           | 05/14/18 14:03 | 05/29/18 17:15 | 20       |
| 13C4-PFHpA                           | 84          |             | 50 - 150  |       |       |           | 05/14/18 14:03 | 05/29/18 17:15 | 20       |
| 13C4 PFOA                            | 84          |             | 50 - 150  |       |       |           | 05/14/18 14:03 | 05/29/18 17:15 | 20       |
| 13C5 PFNA                            | 76          |             | 50 - 150  |       |       |           | 05/14/18 14:03 | 05/29/18 17:15 | 20       |

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

| Client Sam | ple ID: | KLA04-9 | SB1-02 |
|------------|---------|---------|--------|
|------------|---------|---------|--------|

Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 - DL (Continued)

Date Collected: 05/04/18 08:40 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 77.2

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | wethod: EPA 537 (Mod) - PFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                                                                                                                              |                                                |                                           |                                          |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                              |                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 - DL2   Result Qualifier   LOQ   DL Unit   D   Prepared   Analyzed   Dil Fare Perfluoroptanoic acid (PFHpA)   26 U   39   10 Ug/Kg   0 05/14/18 14:03 05/29/18 15:41   10 Perfluoroptanoic acid (PFPA)   26 U   39   11 Ug/Kg   0 05/14/18 14:03 05/29/18 15:41   11 Ug/Kg   0 05/14/18 1   | sotope Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Qualifier                                                      | Limits                                                                                                                                                       |                                                |                                           |                                          | Prepared                                                                                                                                                                                                                | Analyzed                                                                                                                                                                                                                                                     | Dil Fa                       |
| Mothod: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 - DL2   Result   Qualifler   LOQ   DL Unit   D   Prepared   Analyzed   Dil Fa Feriturorheptanoic acid (PFHpA)   28 U   39   10   ug/Kg   0   05/14/18 14:03   05/29/18 15:41   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                | 50 - 150                                                                                                                                                     |                                                |                                           |                                          | 05/14/18 14:03                                                                                                                                                                                                          | 05/29/18 17:15                                                                                                                                                                                                                                               | 2                            |
| Analyse Result Qualifier LOQ DL Unit D Prepared Analysed DIF Perfluoroneance acid (PFHA) 26 U 39 10 ug/Kg 10 05/14/18 14:03 05/29/18 15:41 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3C4 PFOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                | 50 - 150                                                                                                                                                     |                                                |                                           |                                          | 05/14/18 14:03                                                                                                                                                                                                          | 05/29/18 17:15                                                                                                                                                                                                                                               | 2                            |
| Perfluorocheptanole acid (PFHpA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Method: EPA 537 (Mod) - PFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S for QSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.1, Table                                                     | B-15 - DL2                                                                                                                                                   |                                                |                                           |                                          |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                              |                              |
| Perfluorocotanolo acid (PFDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Qualifier                                                      | LOQ                                                                                                                                                          | DL                                             | Unit                                      | D                                        | Prepared                                                                                                                                                                                                                | Analyzed                                                                                                                                                                                                                                                     | Dil Fa                       |
| Perfluorononancia caid (PFNA)   26 U   39   11 ug/Kg   05/44/18 14:03 05/29/18 15:41   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                              | 39                                                                                                                                                           | 10                                             | ug/Kg                                     | ☆                                        | 05/14/18 14:03                                                                                                                                                                                                          | 05/29/18 15:41                                                                                                                                                                                                                                               | 10                           |
| Perfluorobutanesulfonic acid   10 J D   52   7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | J D                                                            | 39                                                                                                                                                           | 13                                             | ug/Kg                                     | ≎                                        | 05/14/18 14:03                                                                                                                                                                                                          | 05/29/18 15:41                                                                                                                                                                                                                                               | 10                           |
| PFBS    Perfluorobexanesulfonic acid   160 D   39   8.1 ug/Kg   0   05/14/18 14.03   05/29/18 15/41   10   (PFHxS)   Perfluorobexanesulfonic acid   3600 E D M   130   31 ug/Kg   0   05/14/18 14.03   05/29/18 15/41   10   (PFDS)     13/23-PFBS   96 M   50.150   0   05/14/18 14.03   05/29/18 15/41   10   13/23-PFBS   96 M   50.150   0   05/14/18 14.03   05/29/18 15/41   10   13/23-PFBS   36 M   50.150   0   05/14/18 14.03   05/29/18 15/41   10   13/24-PFDA   30   50.150   0   05/14/18 14.03   05/29/18 15/41   10   13/24-PFDA   30   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Perfluorononanoic acid (PFNA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                                                              | 39                                                                                                                                                           | 11                                             | ug/Kg                                     | ≎                                        | 05/14/18 14:03                                                                                                                                                                                                          | 05/29/18 15:41                                                                                                                                                                                                                                               | 10                           |
| Perfluoroctanesulfonic acid   160   D   39   8.1 ug/Kg   © 05/14/18 14-03   05/29/18 15-41   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JD                                                             | 52                                                                                                                                                           | 7.7                                            | ug/Kg                                     | ₽                                        | 05/14/18 14:03                                                                                                                                                                                                          | 05/29/18 15:41                                                                                                                                                                                                                                               | 10                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D                                                              | 39                                                                                                                                                           | 8.1                                            | ug/Kg                                     | ₽                                        | 05/14/18 14:03                                                                                                                                                                                                          | 05/29/18 15:41                                                                                                                                                                                                                                               | 10                           |
| 1303.PFBS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EDM                                                            | 130                                                                                                                                                          | 31                                             | ug/Kg                                     | ☼                                        | 05/14/18 14:03                                                                                                                                                                                                          | 05/29/18 15:41                                                                                                                                                                                                                                               | 10                           |
| 13C4-PFHpA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sotope Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Qualifier                                                      | Limits                                                                                                                                                       |                                                |                                           |                                          | Prepared                                                                                                                                                                                                                | Analyzed                                                                                                                                                                                                                                                     | Dil Fa                       |
| 13C4-PFHpA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3C3-PFBS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                | 50 - 150                                                                                                                                                     |                                                |                                           |                                          | 05/14/18 14:03                                                                                                                                                                                                          | 05/29/18 15:41                                                                                                                                                                                                                                               | 10                           |
| 13C4 PFOA   95   50.150   05/14/18 14:03   05/29/18 15:41   10.10   13C5 PFNA   73   50.150   05/14/18 14:03   05/29/18 15:41   10.10   13C5 PFNA   73   50.150   05/14/18 14:03   05/29/18 15:41   10.10   13C5 PFNA   76   50.150   05/14/18 14:03   05/29/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   05/24/18 15:41   10.10   | 3C4-PFHpA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                | 50 - 150                                                                                                                                                     |                                                |                                           |                                          |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                              | 10                           |
| 13C5 PFNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                                                                                                                              |                                                |                                           |                                          |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                              | 10                           |
| 1802 PFHxS   76   50 - 150   05/14/18 14:03   05/29/18 15:41   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                                                                                                                              |                                                |                                           |                                          |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                              | 10                           |
| Company   Comp   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                                                                                                                              |                                                |                                           |                                          |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                              |                              |
| Collected: 05/04/18 08:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 002111110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                                                                                                                              |                                                |                                           |                                          |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                              |                              |
| ### Collected: 05/04/18 09:20    Matrix: Solide Received: 05/09/18 09:20    Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15   Result   Qualifier   LOQ   DL   Unit    | I3C4 PEOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                | 00 - 100                                                                                                                                                     |                                                |                                           |                                          |                                                                                                                                                                                                                         | 00.20.10.10.11                                                                                                                                                                                                                                               |                              |
| Analyte   Result   Qualifier   LOQ   DL   Unit      | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SB2-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |                                                                                                                                                              |                                                |                                           | La                                       | •                                                                                                                                                                                                                       | Matrix                                                                                                                                                                                                                                                       | c: Soli                      |
| Perfluorooctanoic acid (PFOA)   27   E   0.38   0.13   ug/Kg   0.5/14/18 14:03   0.5/29/18 09:09     Perfluorononanoic acid (PFNA)   1.6   M   0.38   0.10   ug/Kg   0.5/14/18 14:03   0.5/29/18 09:09     Perfluorobutanesulfonic acid   24   E   0.51   0.075   ug/Kg   0.5/14/18 14:03   0.5/29/18 09:09     Perfluorohexanesulfonic acid   140   E   0.38   0.079   ug/Kg   0.5/14/18 14:03   0.5/29/18 09:09     Perfluoroctanesulfonic acid   2600   E   1.3   0.31   ug/Kg   0.5/14/18 14:03   0.5/29/18 09:09     Perfluoroctanesulfonic acid   2600   E   1.3   0.31   ug/Kg   0.5/14/18 14:03   0.5/29/18 09:09     Perfluoroctanesulfonic acid   2600   E   1.3   0.31   ug/Kg   0.5/14/18 14:03   0.5/29/18 09:09     Perfluoroctanesulfonic acid   2600   E   1.3   0.31   ug/Kg   0.5/14/18 14:03   0.5/29/18 09:09     Perfluoroctanesulfonic acid   2600   E   1.3   0.31   ug/Kg   0.5/14/18 14:03   0.5/29/18 09:09     Perfluoroctanesulfonic acid   2600   E   1.3   0.31   ug/Kg   0.5/14/18 14:03   0.5/29/18 09:09     Perpared   Analyzed   Dil Ferman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lient Sample ID: KLA04-State Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.1, Table                                                     | B-15                                                                                                                                                         |                                                |                                           | La                                       | •                                                                                                                                                                                                                       | Matrix                                                                                                                                                                                                                                                       | c: Soli                      |
| Perfluoronanaioc acid (PFNA)   1.6 M   0.38   0.10 ug/Kg   0.5/14/18 14:03 05/29/18 09:09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lient Sample ID: KLA04-S<br>ate Collected: 05/04/18 08:20<br>ate Received: 05/09/18 09:20<br>Method: EPA 537 (Mod) - PFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S for QSM !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |                                                                                                                                                              | DL                                             | Unit                                      |                                          |                                                                                                                                                                                                                         | Matrix<br>Percent Solic                                                                                                                                                                                                                                      | c: Solid<br>ls: 78.9         |
| Perfluorobutanesulfonic acid   24 E   0.51   0.075   ug/Kg   0.5/14/18 14:03   0.5/29/18 09:09   (PFBS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lient Sample ID: KLA04-State Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20 Method: EPA 537 (Mod) - PFA Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S for QSM (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                | LOQ                                                                                                                                                          |                                                |                                           | D                                        | Prepared                                                                                                                                                                                                                | Matrix<br>Percent Solic<br>Analyzed                                                                                                                                                                                                                          | c: Solid<br>ls: 78.          |
| Perfluorohexanesulfonic acid   140   E   0.38   0.079   ug/Kg   0.5/14/18 14:03   0.5/29/18 09:09   Perfluorohexanesulfonic acid   2600   E   1.3   0.31   ug/Kg   0.5/14/18 14:03   0.5/29/18 09:09   Perfluorooctanesulfonic acid   2600   E   1.3   0.31   ug/Kg   0.5/14/18 14:03   0.5/29/18 09:09   O.5/14/18 14:03   O.5/29/18 09:09   O.5/29/29/29/29/29/29/29/29/29/29/29/29/29/              | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20  Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S for QSM 9<br>Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Qualifier                                                      |                                                                                                                                                              | 0.10                                           | ug/Kg                                     | <b>D</b>                                 | Prepared 05/14/18 14:03                                                                                                                                                                                                 | Matrix<br>Percent Solid<br>Analyzed<br>05/29/18 09:09                                                                                                                                                                                                        | c: Soli<br>ls: 78.           |
| Perfluorooctanesulfonic acid   2600 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20  Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S for QSM (Result 14 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Qualifier<br>E                                                 | 0.38<br>0.38                                                                                                                                                 | 0.10<br>0.13                                   | ug/Kg<br>ug/Kg                            | D                                        | Prepared 05/14/18 14:03 05/14/18 14:03                                                                                                                                                                                  | Matrix<br>Percent Solid<br>Analyzed<br>05/29/18 09:09<br>05/29/18 09:09                                                                                                                                                                                      | c: Solidis: 78.              |
| Solution   Section   Sec   | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20  Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S for QSM (<br>Result<br>14<br>27<br>1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Qualifier E M                                                  | 0.38<br>0.38<br>0.38                                                                                                                                         | 0.10<br>0.13<br>0.10                           | ug/Kg<br>ug/Kg<br>ug/Kg                   | D \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                                                                                                   | Matrix<br>Percent Solid<br>Analyzed<br>05/29/18 09:09<br>05/29/18 09:09<br>05/29/18 09:09                                                                                                                                                                    | c: Solidis: 78.              |
| 13C3-PFBS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20  Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFNA) Perfluorobutanesulfonic acid PFBS) Perfluorohexanesulfonic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Result 14 27 1.6 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Qualifier  E M E                                               | 0.38<br>0.38<br>0.38<br>0.51                                                                                                                                 | 0.10<br>0.13<br>0.10<br>0.075<br>0.079         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | D \$\pi\$                                | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                                                                                    | Matrix<br>Percent Solid<br>Analyzed<br>05/29/18 09:09<br>05/29/18 09:09<br>05/29/18 09:09<br>05/29/18 09:09                                                                                                                                                  | c: Solids: 78.               |
| 13C4-PFHpA 88 50 - 150 05/14/18 14:03 05/29/18 09:09 13C4 PFOA 83 50 - 150 05/14/18 14:03 05/29/18 09:09 13C5 PFNA 25 Q 50 - 150 05/14/18 14:03 05/29/18 09:09 18O2 PFHxS 86 50 - 150 05/14/18 14:03 05/29/18 09:09 13C4 PFOS 18 Q 50 - 150 05/14/18 14:03 05/29/18 09:09 13C4 PFOS 18 Q 50 - 150 05/14/18 14:03 05/29/18 09:09  Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 - DL Analyte Result Qualifier LOQ DL Unit D Prepared Analyzed Dil Fa Perfluoroheptanoic acid (PFHpA) 14 J D 38 10 ug/Kg 05/14/18 14:03 05/29/18 15:49 10 Perfluorooctanoic acid (PFOA) 26 J D M 38 13 ug/Kg 05/14/18 14:03 05/29/18 15:49 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20  Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFNA) Perfluorobutanesulfonic acid (PFNA) Perfluorobutanesulfonic acid (PFHpS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFHxS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S for QSM (Result 14 27 1.6 24 140 2600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Qualifier  E M E                                               | 0.38<br>0.38<br>0.38<br>0.51                                                                                                                                 | 0.10<br>0.13<br>0.10<br>0.075<br>0.079         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | D                                        | Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                                                                    | Matrix<br>Percent Solid<br>Analyzed<br>05/29/18 09:09<br>05/29/18 09:09<br>05/29/18 09:09<br>05/29/18 09:09                                                                                                                                                  | c: Solids: 78.               |
| 13C4 PFOA 83 50 - 150 05/14/18 14:03 05/29/18 09:09 13C5 PFNA 25 Q 50 - 150 05/14/18 14:03 05/29/18 09:09 18O2 PFHxS 86 50 - 150 05/14/18 14:03 05/29/18 09:09 13C4 PFOS 18 Q 50 - 150 05/14/18 14:03 05/29/18 09:09  Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 - DL Analyte Result Qualifier LOQ DL Unit D Prepared Analyzed Dil Fa Perfluoroheptanoic acid (PFHpA) 14 J D 38 10 ug/Kg 05/14/18 14:03 05/29/18 15:49 10 Perfluorooctanoic acid (PFOA) 26 J D M 38 13 ug/Kg 05/14/18 14:03 05/29/18 15:49 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20  Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFNA) Perfluorobutanesulfonic acid (PFNA) Perfluorobutanesulfonic acid (PFHpS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFHxS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S for QSM (Result 14 27 1.6 24 140 2600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Qualifier  E M E                                               | 0.38<br>0.38<br>0.38<br>0.51<br>0.38                                                                                                                         | 0.10<br>0.13<br>0.10<br>0.075<br>0.079         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | D                                        | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                                                      | Matrix<br>Percent Solid<br>Analyzed<br>05/29/18 09:09<br>05/29/18 09:09<br>05/29/18 09:09<br>05/29/18 09:09<br>05/29/18 09:09<br>Analyzed                                                                                                                    | c: Soli<br>ls: 78.           |
| 13C5 PFNA 25 Q 50 - 150 05/14/18 14:03 05/29/18 09:09 18O2 PFHxS 86 50 - 150 05/14/18 14:03 05/29/18 09:09 13C4 PFOS 18 Q 50 - 150 05/14/18 14:03 05/29/18 09:09 05/14/18 14:03 05/29/18 09:09 05/14/18 14:03 05/29/18 09:09 05/14/18 14:03 05/29/18 09:09 05/14/18 14:03 05/29/18 09:09 05/14/18 14:03 05/29/18 09:09 05/14/18 14:03 05/29/18 09:09 05/14/18 14:03 05/29/18 09:09 05/14/18 14:03 05/29/18 09:09 05/14/18 14:03 05/29/18 09:09 05/14/18 14:03 05/29/18 09:09 05/14/18 14:03 05/29/18 09:09 05/14/18 14:03 05/29/18 09:09 05/14/18 14:03 05/29/18 09:09 05/14/18 14:03 05/29/18 09:09 05/14/18 14:03 05/29/18 09:09 05/14/18 14:03 05/29/18 09:09 05/14/18 14:03 05/29/18 09:09 05/14/18 14:03 05/29/18 09:09 05/14/18 14:03 05/29/18 09:09 05/14/18 14:03 05/29/18 09:09 05/14/18 14:03 05/29/18 09:09 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 15:49 05/14/18 14:03 05/29/18 1 | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20  Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFNA) Perfluorobutanesulfonic acid (PFNA) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFNS) Perfluorooctanesulfonic acid (PFNS) Perfluorooctanesulfonic acid (PFOS) Sotope Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S for QSM 9  Result  14  27  1.6  24  140  2600  %Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Qualifier  E M E                                               | 0.38<br>0.38<br>0.38<br>0.51<br>0.38                                                                                                                         | 0.10<br>0.13<br>0.10<br>0.075<br>0.079         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | D                                        | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                                                      | Matrix<br>Percent Solid<br>Analyzed<br>05/29/18 09:09<br>05/29/18 09:09<br>05/29/18 09:09<br>05/29/18 09:09<br>05/29/18 09:09<br>Analyzed                                                                                                                    | c: Soli<br>ls: 78.           |
| 1802 PFHxS       86       50 - 150       05/14/18 14:03 05/29/18 09:09         13C4 PFOS       18 Q       50 - 150       05/14/18 14:03 05/29/18 09:09         Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 - DL         Analyte       Result Qualifier       LOQ DL Unit ug/Kg       D Prepared Not/14/18 14:03 05/29/18 15:49       Dil Fa         Perfluoroheptanoic acid (PFHpA)       14 J D       38       10 ug/Kg       05/14/18 14:03 05/29/18 15:49       10         Perfluorooctanoic acid (PFOA)       26 J D M       38       13 ug/Kg       05/14/18 14:03 05/29/18 15:49       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20  Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFNA) Perfluorobutanesulfonic acid (PFNA) Perfluorobutanesulfonic acid (PFNS) Perfluorobexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFNS) Porfluorooctanesulfonic acid (PFNS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S for QSM 9 Result 14 27 1.6 24 140 2600  **Recovery* 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Qualifier  E M E E Qualifier                                   | 0.38 0.38 0.38 0.51 0.38 1.3  Limits 50 - 150                                                                                                                | 0.10<br>0.13<br>0.10<br>0.075<br>0.079         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | D                                        | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                                                      | Matrix Percent Solid  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09  4nalyzed  05/29/18 09:09                                                                                                                         | c: Soli<br>ls: 78.<br>Dil Fa |
| 1802 PFHxS       86       50 - 150       05/14/18 14:03 05/29/18 09:09         13C4 PFOS       18 Q       50 - 150       05/14/18 14:03 05/29/18 09:09         Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 - DL         Analyte       Result Qualifier       LOQ DL Unit ug/Kg       D Prepared Not/14/18 14:03 05/29/18 15:49       Dil Fa         Perfluoroheptanoic acid (PFHpA)       14 J D       38       10 ug/Kg       05/14/18 14:03 05/29/18 15:49       10         Perfluorooctanoic acid (PFOA)       26 J D M       38       13 ug/Kg       05/14/18 14:03 05/29/18 15:49       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20  Method: EPA 537 (Mod) - PFA Analyte  Perfluoroheptanoic acid (PFHpA)  Perfluorooctanoic acid (PFNA)  Perfluorobutanesulfonic acid (PFNA)  Perfluorobutanesulfonic acid (PFNS)  Perfluorobexanesulfonic acid (PFNS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S for QSM 9 Result 14 27 1.6 24 140 2600 %Recovery 96 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Qualifier  E M E E C Qualifier                                 | 0.38 0.38 0.38 0.51 0.38 1.3  Limits 50 - 150 50 - 150                                                                                                       | 0.10<br>0.13<br>0.10<br>0.075<br>0.079         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | D                                        | Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03  05/14/18 14:03                                                                                      | Matrix Percent Solid  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09                                                                                           | c: Solids: 78.  Dil Fa       |
| Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 - DL         DL         Unit         D         Prepared         Analyzed         Dil Fa           Perfluoroheptanoic acid (PFHpA)         14         J D         38         10         ug/Kg         ©5/14/18 14:03         05/29/18 15:49         10           Perfluorooctanoic acid (PFOA)         26         J D M         38         13         ug/Kg         ©5/14/18 14:03         05/29/18 15:49         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20  Method: EPA 537 (Mod) - PFA  Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFNA) Perfluorobutanesulfonic acid (PFNA) Perfluorobutanesulfonic acid (PFNA) Perfluorobutanesulfonic acid (PFNS) Perfluorooctanesulfonic acid (PFNS) Page 13/03/19/19/19/19/19/19/19/19/19/19/19/19/19/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14 27 1.6 24 140 2600 %Recovery 96 88 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Qualifier  E M E E C Qualifier                                 | 0.38 0.38 0.51 0.38 1.3  Limits 50 - 150 50 - 150                                                                                                            | 0.10<br>0.13<br>0.10<br>0.075<br>0.079         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | D                                        | Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03                                                                      | Matrix Percent Solid  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09                                                                            | c: Soli<br>ls: 78.<br>Dil Fa |
| Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 - DL           Analyte         Result         Qualifier         LOQ         DL         Unit         D         Prepared         Analyzed         Dil Fa           Perfluoroheptanoic acid (PFHpA)         14         J D         38         10         ug/Kg         © 05/14/18 14:03         05/29/18 15:49         10           Perfluorooctanoic acid (PFOA)         26         J D M         38         13         ug/Kg         © 05/14/18 14:03         05/29/18 15:49         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20  Method: EPA 537 (Mod) - PFA  Analyte  Perfluoroheptanoic acid (PFHpA)  Perfluorooctanoic acid (PFNA)  Perfluorobutanesulfonic acid  PFBS)  Perfluorohexanesulfonic acid  PFHxS)  Perfluorooctanesulfonic acid  PFHxS)  Perfluorooctanesulfonic acid  PFOS)  sotope Dilution  3C3-PFBS  3C4-PFHpA  3C4 PFOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S for QSM (Result 14 27 1.6 24 140 2600 %Recovery 96 88 83 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Qualifier  E M E E C Qualifier                                 | 0.38 0.38 0.51 0.38 1.3  Limits 50 - 150 50 - 150 50 - 150                                                                                                   | 0.10<br>0.13<br>0.10<br>0.075<br>0.079         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | D                                        | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03  Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                               | Matrix Percent Solid  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09                                                                            | c: Soli<br>ls: 78.           |
| Analyte         Result Qualifier         LOQ         DL unit         D unit         D verpared Distriction         Analyzed Distriction         Distriction           Perfluoroheptanoic acid (PFHpA)         14 J D         38         10 ug/Kg         05/14/18 14:03         05/29/18 15:49         10           Perfluorooctanoic acid (PFOA)         26 J D M         38         13 ug/Kg         05/14/18 14:03         05/29/18 15:49         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20 ate Received: 05/09/ | S for QSM (Result 14 27 1.6 24 140 2600 %Recovery 96 88 83 25 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Qualifier  E M E E Qualifier                                   | 0.38 0.38 0.51 0.38 1.3  Limits 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150                                                                                 | 0.10<br>0.13<br>0.10<br>0.075<br>0.079         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | D                                        | Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03                                      | Matrix Percent Solid  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09                                              | c: Soli<br>ls: 78.           |
| Perfluoroheptanoic acid (PFHpA)         14 J D         38         10 ug/Kg         © 05/14/18 14:03         05/29/18 15:49         10 ug/Kg           Perfluorooctanoic acid (PFOA)         26 J D M         38         13 ug/Kg         © 05/14/18 14:03         05/29/18 15:49         10 ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20 ate Received: 05/09/ | S for QSM (Result 14 27 1.6 24 140 2600 %Recovery 96 88 83 25 86 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Qualifier  E M E E Qualifier  Q                                | 0.38 0.38 0.51 0.38 1.3  Limits 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150                                                                        | 0.10<br>0.13<br>0.10<br>0.075<br>0.079         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | D                                        | Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03                                      | Matrix Percent Solid  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09                                              | c: Soli<br>ls: 78.           |
| Perfluorooctanoic acid (PFOA) 26 J D M 38 13 ug/Kg © 05/14/18 14:03 05/29/18 15:49 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20  Method: EPA 537 (Mod) - PFA  Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFNA) Perfluorobutanesulfonic acid (PFNA) Perfluorobutanesulfonic acid (PFNA) Perfluorobexanesulfonic aci | S for QSM (Result 14 27 1.6 24 140 2600 %Recovery 96 88 83 25 86 18 S for QSM (S for QSM | Qualifier  E M E E Qualifier  Q Q Q 5.1, Table                 | LOQ  0.38  0.38  0.38  0.51  0.38  1.3  Limits  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150                               | 0.10<br>0.13<br>0.10<br>0.075<br>0.079<br>0.31 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | D                                        | Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03      | Matrix Percent Solid  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09                               | Dil Fa                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20 ate Received: 05/09/ | S for QSM (Result 14 27 1.6 24 140 2600 %Recovery 96 88 83 25 86 18 S for QSM (Result Result 14 15 15 15 15 15 15 15 15 15 15 15 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Qualifier  E M E E Qualifier  Q Q Q Q 5.1, Table Qualifier     | LOQ  0.38  0.38  0.38  0.51  0.38  1.3  Limits  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  B-15 - DL  LOQ     | 0.10<br>0.13<br>0.10<br>0.075<br>0.079<br>0.31 | ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg       | D                                        | Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03               | Matrix Percent Solid  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09                               | Dil Fa                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lient Sample ID: KLA04-Sate Collected: 05/04/18 08:20 ate Received: 05/09/18 09:20  Method: EPA 537 (Mod) - PFA  Analyte  Perfluoroheptanoic acid (PFHpA)  Perfluorooctanoic acid (PFNA)  Perfluorobutanesulfonic acid (PFNA)  Perfluorobutanesulfonic acid (PFNA)  Perfluorobutanesulfonic acid (PFNA)  Perfluorooctanesulfonic acid (PFNA)  Perfluorooctanesulfonic acid (PFNA)  Perfluorooctanesulfonic acid (PFNA)  Perfluorooctanesulfonic acid (PFNA)  Sotope Dilution  SC3-PFBS  SC4-PFHpA  SC4-PFHpA  SC4-PFOS  Method: EPA 537 (Mod) - PFA  Analyte  Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S for QSM (Result 14 27 1.6 24 140 2600 %Recovery 96 88 83 25 86 18 S for QSM (Result 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Qualifier  E M E E Qualifier  Q Q Q Q D.1, Table Qualifier J D | LOQ  0.38  0.38  0.38  0.51  0.38  1.3  Limits  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 350  B-15 - DL  LOQ  38 | 0.10<br>0.13<br>0.10<br>0.075<br>0.079<br>0.31 | ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg       | D                                        | Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03  Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 | Matrix Percent Solid  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09  Analyzed  05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 05/29/18 09:09 | Dil Fa                       |

Lab Sample ID: 320-39023-28

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: KLA04-SB2-01

Lab Sample ID: 320-39023-29 Date Collected: 05/04/18 08:20 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 78.9

| Analyte                              | Result    | Qualifier | LOQ      | DL  | Unit  | D             | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|----------|-----|-------|---------------|----------------|----------------|---------|
| Perfluorobutanesulfonic acid (PFBS)  | 14        | J D       | 51       | 7.5 | ug/Kg | <del>\$</del> | 05/14/18 14:03 | 05/29/18 15:49 | 100     |
| Perfluorohexanesulfonic acid (PFHxS) | 200       | D         | 38       | 7.9 | ug/Kg | \$            | 05/14/18 14:03 | 05/29/18 15:49 | 100     |
| Perfluorooctanesulfonic acid (PFOS)  | 6600      | E D       | 130      | 31  | ug/Kg | ₽             | 05/14/18 14:03 | 05/29/18 15:49 | 100     |
| Isotope Dilution                     | %Recovery | Qualifier | Limits   |     |       |               | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 111       | М         | 50 - 150 |     |       |               | 05/14/18 14:03 | 05/29/18 15:49 | 100     |
| 13C4-PFHpA                           | 74        |           | 50 - 150 |     |       |               | 05/14/18 14:03 | 05/29/18 15:49 | 100     |
| 13C4 PFOA                            | 80        |           | 50 - 150 |     |       |               | 05/14/18 14:03 | 05/29/18 15:49 | 100     |
| 13C5 PFNA                            | 68        |           | 50 - 150 |     |       |               | 05/14/18 14:03 | 05/29/18 15:49 | 100     |
| 1802 PFHxS                           | 64        |           | 50 - 150 |     |       |               | 05/14/18 14:03 | 05/29/18 15:49 | 100     |
| 13C4 PFOS                            | 58        |           | 50 - 150 |     |       |               | 05/14/18 14:03 | 05/00/40 45:40 | 100     |

Client Sample ID: KLA04-SB2-02 Lab Sample ID: 320-39023-30

Date Collected: 05/04/18 08:25

| ate Collected: 05/04/18 08:25 ate Received: 05/09/18 09:20 |           |            |             |       |       |                  |                | Matrix<br>Percent Solid | :: Solid<br>ls: 76.0 |
|------------------------------------------------------------|-----------|------------|-------------|-------|-------|------------------|----------------|-------------------------|----------------------|
| Method: EPA 537 (Mod) - PFA                                |           | *          | B-15<br>LOQ | DI    | Unit  |                  |                |                         | Dil Fac              |
| Analyte                                                    |           | Qualifier  | 0.39        |       |       | D<br><u>∓</u>    | Prepared       | Analyzed 05/29/18 09:17 |                      |
| Perfluoroheptanoic acid (PFHpA)                            | 45        |            |             |       | ug/Kg | 74.<br>24.       |                |                         | 1                    |
| Perfluorooctanoic acid (PFOA)                              | 200       | E          | 0.39        |       | ug/Kg | <del>1,</del>    |                | 05/29/18 09:17          | 1                    |
| Perfluorononanoic acid (PFNA)                              | 1.6       |            | 0.39        |       | ug/Kg | - <del>Q</del> - |                | 05/29/18 09:17          |                      |
| Perfluorobutanesulfonic acid (PFBS)                        | 91        | E          | 0.53        | 0.078 | ug/Kg | ₽                | 05/14/18 14:03 | 05/29/18 09:17          | 1                    |
| Perfluorohexanesulfonic acid (PFHxS)                       | 510       | E          | 0.39        | 0.082 | ug/Kg | ☼                | 05/14/18 14:03 | 05/29/18 09:17          | 1                    |
| Perfluorooctanesulfonic acid<br>(PFOS)                     | 2100      | E          | 1.3         | 0.32  | ug/Kg | ₩                | 05/14/18 14:03 | 05/29/18 09:17          | 1                    |
| Isotope Dilution                                           | %Recovery | Qualifier  | Limits      |       |       |                  | Prepared       | Analyzed                | Dil Fac              |
| 13C3-PFBS                                                  | 125       |            | 50 - 150    |       |       |                  | 05/14/18 14:03 | 05/29/18 09:17          | 1                    |
| 13C4-PFHpA                                                 | 69        |            | 50 - 150    |       |       |                  | 05/14/18 14:03 | 05/29/18 09:17          | 1                    |
| 13C4 PFOA                                                  | 82        |            | 50 - 150    |       |       |                  | 05/14/18 14:03 | 05/29/18 09:17          | 1                    |
| 13C5 PFNA                                                  | 55        |            | 50 - 150    |       |       |                  | 05/14/18 14:03 | 05/29/18 09:17          | 1                    |
| 1802 PFHxS                                                 | 65        |            | 50 - 150    |       |       |                  | 05/14/18 14:03 | 05/29/18 09:17          | 1                    |
| 13C4 PFOS                                                  | 39        | Q          | 50 - 150    |       |       |                  | 05/14/18 14:03 | 05/29/18 09:17          | 1                    |
| Method: EPA 537 (Mod) - PFA                                | S for QSM | 5.1, Table | B-15 - DL   |       |       |                  |                |                         |                      |
| Analyte                                                    |           | Qualifier  | LOQ         | DL    | Unit  | D                | Prepared       | Analyzed                | Dil Fac              |
| Perfluoroheptanoic acid (PFHpA)                            | 44        | D          | 39          | 10    | ug/Kg | ₽                | 05/14/18 14:03 | 05/29/18 15:57          | 100                  |
| Perfluorooctanoic acid (PFOA)                              | 210       | D          | 39          | 13    | ug/Kg | ☼                | 05/14/18 14:03 | 05/29/18 15:57          | 100                  |
| Perfluorononanoic acid (PFNA)                              | 26        | UM         | 39          | 11    | ug/Kg | ≎                | 05/14/18 14:03 | 05/29/18 15:57          | 100                  |
| Perfluorobutanesulfonic acid (PFBS)                        | 84        | D          | 53          | 7.8   | ug/Kg | ☼                | 05/14/18 14:03 | 05/29/18 15:57          | 100                  |
| Perfluorohexanesulfonic acid (PFHxS)                       | 1100      | D          | 39          | 8.2   | ug/Kg | ₽                | 05/14/18 14:03 | 05/29/18 15:57          | 100                  |
| Perfluorooctanesulfonic acid<br>(PFOS)                     | 4800      | E D M      | 130         | 32    | ug/Kg | ₩                | 05/14/18 14:03 | 05/29/18 15:57          | 100                  |
| Isotope Dilution                                           | %Recovery | Qualifier  | Limits      |       |       |                  | Prepared       | Analyzed                | Dil Fac              |
| 13C3-PFBS                                                  | 133       | М          | 50 - 150    |       |       |                  | 05/14/18 14:03 | 05/29/18 15:57          | 100                  |
| 13C4-PFHpA                                                 | 70        |            | 50 - 150    |       |       |                  | 05/44/40 44:00 | 05/29/18 15:57          | 100                  |

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

|--|

Lab Sample ID: 320-39023-30 Date Collected: 05/04/18 08:25 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 76.0

| Method: EPA 537 (Mod) | ) - PFAS for QSM 5.1, Table I | B-15 - DL (Continued) |                |                |         |
|-----------------------|-------------------------------|-----------------------|----------------|----------------|---------|
| Isotope Dilution      | %Recovery Qualifier           | Limits                | Prepared       | Analyzed       | Dil Fac |
| 13C4 PFOA             | 95                            | 50 - 150              | 05/14/18 14:03 | 05/29/18 15:57 | 100     |
| 13C5 PFNA             | 78                            | 50 - 150              | 05/14/18 14:03 | 05/29/18 15:57 | 100     |
| 1802 PFHxS            | 78                            | 50 - 150              | 05/14/18 14:03 | 05/29/18 15:57 | 100     |
| 13C4 PFOS             | 61                            | 50 - 150              | 05/14/18 14:03 | 05/29/18 15:57 | 100     |

Client Sample ID: KLA04-SB3-01 Lab Sample ID: 320-39023-31

Date Collected: 05/04/18 08:05 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 78.4

| Analyte                                                                                                                | Result                                                     | Qualifier                      | LOQ                                                                                       | DL    | Unit                    | D        | Prepared                                                                                                                               | Analyzed                                                                                                             | Dil Fa                                    |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------|-------|-------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Perfluoroheptanoic acid (PFHpA)                                                                                        | 3.8                                                        |                                | 0.38                                                                                      | 0.10  | ug/Kg                   | ☼        | 05/14/18 14:03                                                                                                                         | 05/29/18 09:25                                                                                                       |                                           |
| Perfluorooctanoic acid (PFOA)                                                                                          | 12                                                         |                                | 0.38                                                                                      | 0.13  | ug/Kg                   | ☼        | 05/14/18 14:03                                                                                                                         | 05/29/18 09:25                                                                                                       |                                           |
| Perfluorononanoic acid (PFNA)                                                                                          | 1.1                                                        | M                              | 0.38                                                                                      | 0.10  | ug/Kg                   | ☼        | 05/14/18 14:03                                                                                                                         | 05/29/18 09:25                                                                                                       |                                           |
| Perfluorobutanesulfonic acid (PFBS)                                                                                    | 19                                                         |                                | 0.51                                                                                      | 0.076 | ug/Kg                   | ₩        | 05/14/18 14:03                                                                                                                         | 05/29/18 09:25                                                                                                       |                                           |
| Perfluorohexanesulfonic acid (PFHxS)                                                                                   | 51                                                         | E                              | 0.38                                                                                      | 0.079 | ug/Kg                   | ₩        | 05/14/18 14:03                                                                                                                         | 05/29/18 09:25                                                                                                       |                                           |
| Perfluorooctanesulfonic acid (PFOS)                                                                                    | 1600                                                       | E                              | 1.3                                                                                       | 0.31  | ug/Kg                   | ₽        | 05/14/18 14:03                                                                                                                         | 05/29/18 09:25                                                                                                       |                                           |
| Isotope Dilution                                                                                                       | %Recovery                                                  | Qualifier                      | Limits                                                                                    |       |                         |          | Prepared                                                                                                                               | Analyzed                                                                                                             | Dil Fa                                    |
| 13C3-PFBS                                                                                                              | 86                                                         |                                | 50 - 150                                                                                  |       |                         |          | 05/14/18 14:03                                                                                                                         | 05/29/18 09:25                                                                                                       |                                           |
| 13C4-PFHpA                                                                                                             | 88                                                         |                                | 50 - 150                                                                                  |       |                         |          | 05/14/18 14:03                                                                                                                         | 05/29/18 09:25                                                                                                       |                                           |
| 13C4 PFOA                                                                                                              | 84                                                         |                                | 50 - 150                                                                                  |       |                         |          | 05/14/18 14:03                                                                                                                         | 05/29/18 09:25                                                                                                       |                                           |
| 13C5 PFNA                                                                                                              | 28                                                         | Q                              | 50 - 150                                                                                  |       |                         |          | 05/14/18 14:03                                                                                                                         | 05/29/18 09:25                                                                                                       |                                           |
| 1802 PFHxS                                                                                                             | 77                                                         |                                | 50 - 150                                                                                  |       |                         |          | 05/14/18 14:03                                                                                                                         | 05/29/18 09:25                                                                                                       |                                           |
| 13C4 PFOS                                                                                                              | 20                                                         | Q                              | 50 - 150                                                                                  |       |                         |          | 05/14/18 14:03                                                                                                                         | 05/29/18 09:25                                                                                                       |                                           |
| Method: EPA 537 (Mod) - PFA<br>Analyte                                                                                 |                                                            | 5.1, Table I<br>Qualifier      | 3-15 - DL<br>LOQ                                                                          | DL    | Unit                    | D        | Prepared                                                                                                                               | Analyzed                                                                                                             | Dil Fa                                    |
| Perfluoroheptanoic acid (PFHpA)                                                                                        | 3.7                                                        | JD                             | 7.7                                                                                       | 2.0   | ug/Kg                   | <u>₩</u> | 05/14/18 14:03                                                                                                                         | 05/29/18 17:23                                                                                                       | 2                                         |
| Perfluorooctanoic acid (PFOA)                                                                                          | 12                                                         | D                              | 7.7                                                                                       | 2.6   | ug/Kg                   | ☼        | 05/14/18 14:03                                                                                                                         | 05/29/18 17:23                                                                                                       | 2                                         |
| Perfluorononanoic acid (PFNA)                                                                                          | 5.1                                                        | U M                            | 7.7                                                                                       | 2.1   | ug/Kg                   | ☼        | 05/14/18 14:03                                                                                                                         | 05/29/18 17:23                                                                                                       | 2                                         |
| Perfluorobutanesulfonic acid (PFBS)                                                                                    | 24                                                         | D                              | 10                                                                                        | 1.5   | ug/Kg                   | ₽        | 05/14/18 14:03                                                                                                                         | 05/29/18 17:23                                                                                                       |                                           |
| Perfluorohexanesulfonic acid (PFHxS)                                                                                   | 53                                                         | D                              | 7.7                                                                                       | 1.6   | ug/Kg                   | ₩        | 05/14/18 14:03                                                                                                                         | 05/29/18 17:23                                                                                                       | :                                         |
| Perfluorooctanesulfonic acid (PFOS)                                                                                    | 3500                                                       | E D                            | 26                                                                                        | 6.1   | ug/Kg                   | ₩        | 05/14/18 14:03                                                                                                                         | 05/29/18 17:23                                                                                                       | 2                                         |
|                                                                                                                        |                                                            |                                |                                                                                           |       |                         |          | Prepared                                                                                                                               | Analyzed                                                                                                             | Dil F                                     |
| Isotope Dilution                                                                                                       | %Recovery                                                  | Qualifier                      | Limits                                                                                    |       |                         |          | rroparoa                                                                                                                               | Allalyzeu                                                                                                            |                                           |
| •                                                                                                                      | %Recovery 54                                               | Qualifier                      | 50 - 150                                                                                  |       |                         |          |                                                                                                                                        | 05/29/18 17:23                                                                                                       |                                           |
| 13C3-PFBS                                                                                                              | -                                                          | Qualifier                      |                                                                                           |       |                         |          | 05/14/18 14:03                                                                                                                         |                                                                                                                      | - 2                                       |
| 13C3-PFBS<br>13C4-PFHpA                                                                                                | 54                                                         | Qualifier                      | 50 - 150                                                                                  |       |                         |          | 05/14/18 14:03<br>05/14/18 14:03                                                                                                       | 05/29/18 17:23                                                                                                       |                                           |
| 13C3-PFBS<br>13C4-PFHpA<br>13C4-PFOA                                                                                   | 54<br>75                                                   | Qualifier                      | 50 - 150<br>50 - 150                                                                      |       |                         |          | 05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03                                                                                     | 05/29/18 17:23<br>05/29/18 17:23                                                                                     | 2                                         |
| 13C3-PFBS<br>13C4-PFHpA<br>13C4 PFOA<br>13C5 PFNA                                                                      | 54<br>75<br>82                                             | Qualifier                      | 50 - 150<br>50 - 150<br>50 - 150                                                          |       |                         |          | 05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03                                                                   | 05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23                                                                   |                                           |
| 13C3-PFBS<br>13C4-PFHpA<br>13C4 PFOA<br>13C5 PFNA<br>18O2 PFHxS                                                        | 54<br>75<br>82<br>59                                       |                                | 50 - 150<br>50 - 150<br>50 - 150<br>50 - 150                                              |       |                         |          | 05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03                                                 | 05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23                                                 |                                           |
| Isotope Dilution 13C3-PFBS 13C4-PFHpA 13C4 PFOA 13C5 PFNA 18O2 PFHxS 13C4 PFOS  Method: EPA 537 (Mod) - PFA            | 54<br>75<br>82<br>59<br>69<br>47                           | Q<br>5.1, Table I              | 50 - 150<br>50 - 150<br>50 - 150<br>50 - 150<br>50 - 150<br>50 - 150<br><b>3-15 - DL2</b> |       |                         |          | 05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03                               | 05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23             | 2 2 2 2 2                                 |
| 13C3-PFBS<br>13C4-PFHpA<br>13C4 PFOA<br>13C5 PFNA<br>18O2 PFHxS<br>13C4 PFOS<br>Method: EPA 537 (Mod) - PFA<br>Analyte | 54<br>75<br>82<br>59<br>69<br>47<br>AS for QSM {           | Q<br>5.1, Table I<br>Qualifier | 50 - 150<br>50 - 150<br>50 - 150<br>50 - 150<br>50 - 150<br>50 - 150<br><b>3-15 - DL2</b> |       | Unit                    | D        | 05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03                               | 05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23<br>Analyzed | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| 13C3-PFBS<br>13C4-PFHpA<br>13C4 PFOA<br>13C5 PFNA<br>18O2 PFHxS<br>13C4 PFOS<br>Method: EPA 537 (Mod) - PFA            | 54<br>75<br>82<br>59<br>69<br>47<br>AS for QSM {<br>Result | Q<br>5.1, Table I              | 50 - 150<br>50 - 150<br>50 - 150<br>50 - 150<br>50 - 150<br>50 - 150<br><b>3-15 - DL2</b> | 10    | <b>Unit</b> ug/Kg ug/Kg | <b>D</b> | 05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>05/14/18 14:03<br>Prepared<br>05/14/18 14:03 | 05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23<br>05/29/18 17:23<br>Analyzed | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2   |

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Isotope Dilution

13C3-PFBS

Client Sample ID: KLA04-SB3-01

Lab Sample ID: 320-39023-31 Date Collected: 05/04/18 08:05 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 78.4

| Analyte                              | Result    | Qualifier | LOQ      | DL  | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Perfluorononanoic acid (PFNA)        | 26        | U         | 38       | 10  | ug/Kg | ₽ | 05/14/18 14:03 | 05/29/18 16:12 | 100     |
| Perfluorobutanesulfonic acid (PFBS)  | 16        | J D       | 51       | 7.6 | ug/Kg | ₩ | 05/14/18 14:03 | 05/29/18 16:12 | 100     |
| Perfluorohexanesulfonic acid (PFHxS) | 61        | D         | 38       | 7.9 | ug/Kg | ₩ | 05/14/18 14:03 | 05/29/18 16:12 | 100     |
| Perfluorooctanesulfonic acid (PFOS)  | 4500      | E D       | 130      | 31  | ug/Kg | ₽ | 05/14/18 14:03 | 05/29/18 16:12 | 100     |
| Isotope Dilution                     | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 71        | М         | 50 - 150 |     |       |   | 05/14/18 14:03 | 05/29/18 16:12 | 100     |
| 13C4-PFHpA                           | 74        |           | 50 - 150 |     |       |   | 05/14/18 14:03 | 05/29/18 16:12 | 100     |
| 13C4 PFOA                            | 78        |           | 50 - 150 |     |       |   | 05/14/18 14:03 | 05/29/18 16:12 | 100     |
| 13C5 PFNA                            | 73        |           | 50 - 150 |     |       |   | 05/14/18 14:03 | 05/29/18 16:12 | 100     |
| 1802 PFHxS                           | 53        |           | 50 - 150 |     |       |   | 05/14/18 14:03 | 05/29/18 16:12 | 100     |
| 13C4 PFOS                            | 57        |           | 50 - 150 |     |       |   | 05/14/18 14:03 | 05/29/18 16:12 | 100     |

Client Sample ID: KLA04-SB3-02 Lab Sample ID: 320-39023-32

Date Collected: 05/04/18 08:10 **Matrix: Solid** 

| Date Received: 05/09/18 09:20           |             |            |           |       |       |   |                | Percent Solid  | ls: 65.2 |
|-----------------------------------------|-------------|------------|-----------|-------|-------|---|----------------|----------------|----------|
| Method: EPA 537 (Mod) - PFA             | S for QSM ( | 5.1, Table | B-15      |       |       |   |                |                |          |
| Analyte                                 | Result      | Qualifier  | LOQ       | DL    | Unit  | D | Prepared       | Analyzed       | Dil Fa   |
| Perfluoroheptanoic acid (PFHpA)         | 29          |            | 0.46      | 0.12  | ug/Kg | ₩ | 05/14/18 14:03 | 05/29/18 09:33 |          |
| Perfluorooctanoic acid (PFOA)           | 83          | E          | 0.46      | 0.15  | ug/Kg | ₩ | 05/14/18 14:03 | 05/29/18 09:33 | 1        |
| Perfluorononanoic acid (PFNA)           | 1.2         |            | 0.46      | 0.12  | ug/Kg | ₩ | 05/14/18 14:03 | 05/29/18 09:33 | 1        |
| Perfluorobutanesulfonic acid (PFBS)     | 80          | E          | 0.61      | 0.091 | ug/Kg | ₽ | 05/14/18 14:03 | 05/29/18 09:33 | 1        |
| Perfluorohexanesulfonic acid<br>(PFHxS) | 410         | E          | 0.46      | 0.095 | ug/Kg | ₽ | 05/14/18 14:03 | 05/29/18 09:33 | 1        |
| Perfluorooctanesulfonic acid (PFOS)     | 1900        | E M        | 1.5       | 0.37  | ug/Kg | ☼ | 05/14/18 14:03 | 05/29/18 09:33 | 1        |
| Isotope Dilution                        | %Recovery   | Qualifier  | Limits    |       |       |   | Prepared       | Analyzed       | Dil Fac  |
| 13C3-PFBS                               | 109         |            | 50 - 150  |       |       |   | 05/14/18 14:03 | 05/29/18 09:33 | 1        |
| 13C4-PFHpA                              | 77          |            | 50 - 150  |       |       |   | 05/14/18 14:03 | 05/29/18 09:33 | 1        |
| 13C4 PFOA                               | 87          |            | 50 - 150  |       |       |   | 05/14/18 14:03 | 05/29/18 09:33 | 1        |
| 13C5 PFNA                               | 51          |            | 50 - 150  |       |       |   | 05/14/18 14:03 | 05/29/18 09:33 | 1        |
| 1802 PFHxS                              | 65          |            | 50 - 150  |       |       |   | 05/14/18 14:03 | 05/29/18 09:33 | 1        |
| 13C4 PFOS                               | 39          | Q          | 50 - 150  |       |       |   | 05/14/18 14:03 | 05/29/18 09:33 | 1        |
| Method: EPA 537 (Mod) - PFA             | S for QSM ! | 5.1, Table | B-15 - DL |       |       |   |                |                |          |
| Analyte                                 | Result      | Qualifier  | LOQ       | DL    | Unit  | D | Prepared       | Analyzed       | Dil Fac  |
| Perfluoroheptanoic acid (PFHpA)         | 27          | D          | 9.2       | 2.4   | ug/Kg | ☼ | 05/14/18 14:03 | 05/29/18 17:31 | 20       |
| Perfluorooctanoic acid (PFOA)           | 85          | D          | 9.2       | 3.1   | ug/Kg | ₩ | 05/14/18 14:03 | 05/29/18 17:31 | 20       |
| Perfluorononanoic acid (PFNA)           | 6.1         | U M        | 9.2       | 2.5   | ug/Kg | ₩ | 05/14/18 14:03 | 05/29/18 17:31 | 20       |
| Perfluorobutanesulfonic acid (PFBS)     | 110         | D          | 12        | 1.8   | ug/Kg | ₽ | 05/14/18 14:03 | 05/29/18 17:31 | 20       |
| Perfluorohexanesulfonic acid (PFHxS)    | 730         | E D        | 9.2       | 1.9   | ug/Kg | ☼ | 05/14/18 14:03 | 05/29/18 17:31 | 20       |
| Perfluorooctanesulfonic acid (PFOS)     | 3500        | EDM        | 31        | 7.4   | ug/Kg | ₽ | 05/14/18 14:03 | 05/29/18 17:31 | 20       |

Analyzed

Dil Fac

Prepared

05/14/18 14:03 05/29/18 17:31

Limits

50 - 150

%Recovery Qualifier

88

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Isotope Dilution

1802 PFHxS

13C4 PFOS

Perfluoroheptanoic acid (PFHpA)

Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 - DL (Continued)

%Recovery Qualifier

| Client Sample ID: KLA04-SB3-02 | Lab Sample ID: 320-39023-32 |
|--------------------------------|-----------------------------|
|--------------------------------|-----------------------------|

 Date Collected: 05/04/18 08:10
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 65.2

Prepared

Analyzed

Dil Fac

| 1201 DELLa A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                      | Qualifier                 |                                                                                                  |                                         |                                           |                       | riepaieu                                                                                                                                                     | Allalyzeu                                                                                                                                                                         |                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 13C4-PFHpA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 84                                                                                                   |                           | 50 - 150                                                                                         |                                         |                                           |                       | 05/14/18 14:03                                                                                                                                               | 05/29/18 17:31                                                                                                                                                                    | 20                                                                 |
| 13C4 PFOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 87                                                                                                   |                           | 50 - 150                                                                                         |                                         |                                           |                       | 05/14/18 14:03                                                                                                                                               | 05/29/18 17:31                                                                                                                                                                    | 20                                                                 |
| 13C5 PFNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 78                                                                                                   |                           | 50 - 150                                                                                         |                                         |                                           |                       | 05/14/18 14:03                                                                                                                                               | 05/29/18 17:31                                                                                                                                                                    | 20                                                                 |
| 1802 PFHxS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 76                                                                                                   |                           | 50 - 150                                                                                         |                                         |                                           |                       | 05/14/18 14:03                                                                                                                                               | 05/29/18 17:31                                                                                                                                                                    | 20                                                                 |
| 13C4 PFOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63                                                                                                   |                           | 50 - 150                                                                                         |                                         |                                           |                       | 05/14/18 14:03                                                                                                                                               | 05/29/18 17:31                                                                                                                                                                    | 20                                                                 |
| Method: EPA 537 (Mod) - PFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S for QSM !                                                                                          | 5.1. Table l              | 3-15 - DL2                                                                                       |                                         |                                           |                       |                                                                                                                                                              |                                                                                                                                                                                   |                                                                    |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                      | Qualifier                 | LOQ                                                                                              | DL                                      | Unit                                      | D                     | Prepared                                                                                                                                                     | Analyzed                                                                                                                                                                          | Dil Fac                                                            |
| Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33                                                                                                   | JD                        | 46                                                                                               | 12                                      | ug/Kg                                     | ₩                     | 05/14/18 14:03                                                                                                                                               | -                                                                                                                                                                                 | 100                                                                |
| Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 79                                                                                                   | D                         | 46                                                                                               | 15                                      | ug/Kg                                     | ₽                     | 05/14/18 14:03                                                                                                                                               | 05/29/18 16:20                                                                                                                                                                    | 100                                                                |
| Perfluorononanoic acid (PFNA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31                                                                                                   | UM                        | 46                                                                                               | 12                                      | ug/Kg                                     | ₽                     | 05/14/18 14:03                                                                                                                                               | 05/29/18 16:20                                                                                                                                                                    | 100                                                                |
| Perfluorobutanesulfonic acid (PFBS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110                                                                                                  | D                         | 61                                                                                               | 9.1                                     | ug/Kg                                     | ₽                     | 05/14/18 14:03                                                                                                                                               | 05/29/18 16:20                                                                                                                                                                    | 100                                                                |
| Perfluorohexanesulfonic acid (PFHxS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 730                                                                                                  | D                         | 46                                                                                               | 9.5                                     | ug/Kg                                     | ₩                     | 05/14/18 14:03                                                                                                                                               | 05/29/18 16:20                                                                                                                                                                    | 100                                                                |
| Perfluorooctanesulfonic acid (PFOS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3800                                                                                                 | EDM                       | 150                                                                                              | 37                                      | ug/Kg                                     | ₩                     | 05/14/18 14:03                                                                                                                                               | 05/29/18 16:20                                                                                                                                                                    | 100                                                                |
| Isotope Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | %Recovery                                                                                            | Qualifier                 | Limits                                                                                           |                                         |                                           |                       | Prepared                                                                                                                                                     | Analyzed                                                                                                                                                                          | Dil Fac                                                            |
| 13C3-PFBS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 72                                                                                                   | М                         | 50 - 150                                                                                         |                                         |                                           |                       | 05/14/18 14:03                                                                                                                                               | 05/29/18 16:20                                                                                                                                                                    | 100                                                                |
| 13C4-PFHpA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 62                                                                                                   |                           | 50 - 150                                                                                         |                                         |                                           |                       | 05/14/18 14:03                                                                                                                                               | 05/29/18 16:20                                                                                                                                                                    | 100                                                                |
| 13C4 PFOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 89                                                                                                   |                           | 50 - 150                                                                                         |                                         |                                           |                       | 05/14/18 14:03                                                                                                                                               | 05/29/18 16:20                                                                                                                                                                    | 100                                                                |
| 12CE DENA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 78                                                                                                   |                           | 50 - 150                                                                                         |                                         |                                           |                       | 05/14/18 14:03                                                                                                                                               | 05/29/18 16:20                                                                                                                                                                    | 100                                                                |
| 13C5 PFNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70                                                                                                   |                           | 30 - 130                                                                                         |                                         |                                           |                       |                                                                                                                                                              |                                                                                                                                                                                   |                                                                    |
| 1305 PFNA<br>1802 PFHxS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 69                                                                                                   |                           | 50 - 150<br>50 - 150                                                                             |                                         |                                           |                       | 05/14/18 14:03                                                                                                                                               | 05/29/18 16:20                                                                                                                                                                    | 100                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |                           |                                                                                                  |                                         |                                           |                       |                                                                                                                                                              | 05/29/18 16:20<br>05/29/18 16:20                                                                                                                                                  | 100<br>100                                                         |
| 1802 PFHxS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 69<br>64                                                                                             |                           | 50 - 150                                                                                         |                                         |                                           | La                    | 05/14/18 14:03                                                                                                                                               |                                                                                                                                                                                   | 100                                                                |
| 1802 PFHxS<br>13C4 PFOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 69<br>64                                                                                             |                           | 50 - 150                                                                                         |                                         |                                           | La                    | 05/14/18 14:03                                                                                                                                               | 05/29/18 16:20<br>ID: <b>320-39</b> 0                                                                                                                                             | 100                                                                |
| 1802 PFHxS<br>13C4 PFOS<br>Client Sample ID: KLA05-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 69<br>64                                                                                             |                           | 50 - 150                                                                                         |                                         |                                           | La                    | 05/14/18 14:03<br>ab Sample                                                                                                                                  | 05/29/18 16:20<br>ID: <b>320-39</b> 0                                                                                                                                             | 100<br>23-33<br>:: Solid                                           |
| 1802 PFHxS<br>13C4 PFOS<br>Client Sample ID: KLA05-3<br>Date Collected: 05/05/18 09:00<br>Date Received: 05/09/18 09:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 69<br>64<br>SB1-01                                                                                   | 5.1 Table                 | 50 - 150<br>50 - 150                                                                             |                                         |                                           | La                    | 05/14/18 14:03<br>ab Sample                                                                                                                                  | 05/29/18 16:20 ID: 320-390 Matrix                                                                                                                                                 | 100<br>23-33<br>:: Solid                                           |
| 1802 PFHxS<br>13C4 PFOS<br>Client Sample ID: KLA05-State Collected: 05/05/18 09:00<br>Date Received: 05/09/18 09:20<br>Method: EPA 537 (Mod) - PFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 69<br>64<br>SB1-01                                                                                   | 5.1, Table  <br>Qualifier | 50 - 150<br>50 - 150                                                                             | DL                                      | Unit                                      | La                    | 05/14/18 14:03<br>ab Sample                                                                                                                                  | 05/29/18 16:20 ID: 320-390 Matrix                                                                                                                                                 | 100<br>23-33<br>:: Solid                                           |
| 1802 PFHxS<br>13C4 PFOS<br>Client Sample ID: KLA05-Coate Collected: 05/05/18 09:00<br>Oate Received: 05/09/18 09:20<br>Method: EPA 537 (Mod) - PFA<br>Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 69<br>64<br>SB1-01                                                                                   |                           | 50 - 150<br>50 - 150<br>3-15                                                                     |                                         | <b>Unit</b> ug/Kg                         | D                     | 05/14/18 14:03<br><b>b Sample</b>                                                                                                                            | 05/29/18 16:20  ID: 320-390  Matrix Percent Solid  Analyzed                                                                                                                       | 100<br>23-33<br>:: Solid<br>s: 79.9                                |
| 1802 PFHxS 13C4 PFOS  Client Sample ID: KLA05-3 Date Collected: 05/05/18 09:00 Date Received: 05/09/18 09:20  Method: EPA 537 (Mod) - PFA Analyte  Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SB1-01 S for QSM (Result                                                                             |                           | 50 - 150<br>50 - 150<br>3-15<br>LOQ                                                              | 0.098                                   |                                           | D                     | 05/14/18 14:03 <b>Ib Sample</b> Prepared                                                                                                                     | 05/29/18 16:20 ID: 320-390 Matrix Percent Solid  Analyzed  05/29/18 09:41                                                                                                         | 100<br>23-33<br>:: Solid<br>s: 79.9                                |
| 1802 PFHxS 13C4 PFOS  Client Sample ID: KLA05-3 Date Collected: 05/05/18 09:00 Date Received: 05/09/18 09:20  Method: EPA 537 (Mod) - PFA Analyte  Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 69<br>64<br>SB1-01<br>S for QSM 8<br>Result<br>1.6                                                   | Qualifier                 | 50 - 150<br>50 - 150<br>3-15<br>LOQ<br>0.38                                                      | 0.098<br>0.13                           | ug/Kg                                     | <b>D</b> ☆            | 05/14/18 14:03 <b>Prepared</b> 05/14/18 14:03                                                                                                                | 05/29/18 16:20  ID: 320-390  Matrix Percent Solid  Analyzed  05/29/18 09:41 05/29/18 09:41                                                                                        | 100<br>23-33<br>:: Solid<br>s: 79.9                                |
| 1802 PFHxS 13C4 PFOS  Client Sample ID: KLA05-3 Date Collected: 05/05/18 09:00 Date Received: 05/09/18 09:20  Method: EPA 537 (Mod) - PFA Analyte  Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 69<br>64<br>SB1-01<br>S for QSM 4<br>Result<br>1.6<br>2.3                                            | Qualifier                 | 50 - 150<br>50 - 150<br>B-15<br>LOQ<br>0.38<br>0.38                                              | 0.098<br>0.13<br>0.10                   | ug/Kg<br>ug/Kg                            | D \$\frac{\pi}{\pi}\$ | 05/14/18 14:03 <b>Prepared</b> 05/14/18 14:03 05/14/18 14:03                                                                                                 | 05/29/18 16:20  ID: 320-390  Matrix Percent Solid  Analyzed  05/29/18 09:41 05/29/18 09:41 05/29/18 09:41                                                                         | 100<br>23-33<br>:: Solid<br>s: 79.9                                |
| 1802 PFHxS 13C4 PFOS  Client Sample ID: KLA05-3 Date Collected: 05/05/18 09:00 Date Received: 05/09/18 09:20  Method: EPA 537 (Mod) - PFA Analyte  Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 69<br>64<br>SB1-01<br>S for QSM !<br>Result<br>1.6<br>2.3<br>0.61                                    | Qualifier<br>M            | 50 - 150<br>50 - 150<br>B-15<br>LOQ<br>0.38<br>0.38<br>0.38                                      | 0.098<br>0.13<br>0.10                   | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | — <b>D</b>            | O5/14/18 14:03  Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                       | 05/29/18 16:20  ID: 320-390  Matrix Percent Solid  Analyzed  05/29/18 09:41  05/29/18 09:41  05/29/18 09:41                                                                       | 100<br>23-33<br>:: Solid<br>s: 79.9<br>Dil Fac                     |
| 1802 PFHxS 13C4 PFOS  Client Sample ID: KLA05-3 Date Collected: 05/05/18 09:00 Date Received: 05/09/18 09:20  Method: EPA 537 (Mod) - PFA Analyte  Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SB1-01 S for QSM (Result 1.6 2.3 0.61 4.9                                                            | Qualifier M               | 50 - 150<br>50 - 150<br>B-15<br>LOQ<br>0.38<br>0.38<br>0.38<br>0.50                              | 0.098<br>0.13<br>0.10<br>0.074<br>0.078 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | D                     | Prepared  05/14/18 14:03  Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03                                                           | 05/29/18 16:20  ID: 320-390  Matrix Percent Solid  Analyzed  05/29/18 09:41  05/29/18 09:41  05/29/18 09:41                                                                       | 100<br>23-33<br>:: Solid<br>s: 79.9<br>Dil Fac                     |
| 2 PFHxS 13C4 PFOS  Client Sample ID: KLA05-3 Date Collected: 05/05/18 09:00 Date Received: 05/09/18 09:20  Method: EPA 537 (Mod) - PFA Analyte  Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 69<br>64<br>SB1-01<br>S for QSM 4<br>Result<br>1.6<br>2.3<br>0.61<br>4.9                             | M E E                     | 50 - 150<br>50 - 150<br>3-15<br>LOQ<br>0.38<br>0.38<br>0.38<br>0.50<br>0.38                      | 0.098<br>0.13<br>0.10<br>0.074<br>0.078 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | D                     | Prepared  05/14/18 14:03  Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03                                                           | 05/29/18 16:20  ID: 320-390  Matrix Percent Solid  Analyzed  05/29/18 09:41 05/29/18 09:41 05/29/18 09:41 05/29/18 09:41 05/29/18 09:41                                           | 100<br>23-33<br>:: Solid<br>s: 79.9<br>Dil Fac                     |
| Client Sample ID: KLA05-30 Date Collected: 05/05/18 09:00 Date Received: 05/09/18 09:20 Description of the Collected: 05/05/18 09:00 Description of the Collected: 05/05/18 09:20 Description of the Coll | 69<br>64<br>SB1-01<br>S for QSM 8<br>Result<br>1.6<br>2.3<br>0.61<br>4.9<br>74                       | M E E                     | 3-15<br>LOQ<br>0.38<br>0.38<br>0.38<br>0.50<br>0.38                                              | 0.098<br>0.13<br>0.10<br>0.074<br>0.078 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | D                     | Prepared 05/14/18 14:03  Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                 | 05/29/18 16:20  ID: 320-390 Matrix Percent Solid  Analyzed  05/29/18 09:41 05/29/18 09:41 05/29/18 09:41 05/29/18 09:41 05/29/18 09:41  05/29/18 09:41                            | 100<br>23-33<br>:: Solid<br>s: 79.9<br>Dil Fac<br>1<br>1<br>1<br>1 |
| Client Sample ID: KLA05-30 Date Collected: 05/05/18 09:00 Date Received: 05/09/18 09:20 Detected: 05/09/18 Detected:  | 69<br>64<br>SB1-01<br>S for QSM 8<br>Result<br>1.6<br>2.3<br>0.61<br>4.9<br>74<br>130<br>%Recovery   | M E E                     | 50 - 150<br>50 - 150<br>B-15<br>LOQ<br>0.38<br>0.38<br>0.38<br>0.50<br>0.38<br>1.3               | 0.098<br>0.13<br>0.10<br>0.074<br>0.078 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | D                     | Prepared  05/14/18 14:03  Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03                 | 05/29/18 16:20  ID: 320-390 Matrix Percent Solid  Analyzed  05/29/18 09:41 05/29/18 09:41 05/29/18 09:41 05/29/18 09:41 05/29/18 09:41  05/29/18 09:41                            | Dil Fac  Dil Fac  Dil Fac  Dil Fac  Dil Fac                        |
| Dient Sample ID: KLA05-30 Date Collected: 05/05/18 09:00 Date Received: 05/09/18 09:20 Date Received: 05/09/18 09:20 Defined by the Collected: 05/09/18 Defin | 69<br>64<br>SB1-01<br>S for QSM (Result<br>1.6<br>2.3<br>0.61<br>4.9<br>74<br>130<br>%Recovery<br>72 | M E E                     | 50 - 150<br>50 - 150<br>B-15<br>LOQ<br>0.38<br>0.38<br>0.50<br>0.38<br>1.3<br>Limits<br>50 - 150 | 0.098<br>0.13<br>0.10<br>0.074<br>0.078 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | D                     | Prepared  05/14/18 14:03  Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03  05/14/18 14:03 | 05/29/18 16:20  ID: 320-390  Matrix Percent Solid  Analyzed  05/29/18 09:41 05/29/18 09:41 05/29/18 09:41 05/29/18 09:41 05/29/18 09:41  05/29/18 09:41  Analyzed  05/29/18 09:41 | 100 23-33 :: Solid s: 79.9  Dil Fac 1 1 1 1 1 Dil Fac 1            |

© 05/14/18 14:03 05/29/18 14:38 20

Analyzed

05/14/18 14:03 05/29/18 09:41

05/14/18 14:03 05/29/18 09:41

Prepared

1

7.6

DL Unit

2.0 ug/Kg

50 - 150

50 - 150

68

68

Result Qualifier

5.0 U

Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 - DL

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: KLA05-SB1-01 Lab Sample ID: 320-39023-33

 Date Collected: 05/05/18 09:00
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 79.9

| Analyte                              | Result    | Qualifier | LOQ      | DL  | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Perfluorooctanoic acid (PFOA)        | 5.0       | UM        | 7.6      | 2.5 | ug/Kg | ₩ | 05/14/18 14:03 | 05/29/18 14:38 | 20      |
| Perfluorononanoic acid (PFNA)        | 5.0       | U         | 7.6      | 2.0 | ug/Kg | ☼ | 05/14/18 14:03 | 05/29/18 14:38 | 20      |
| Perfluorobutanesulfonic acid (PFBS)  | 6.2       | J D       | 10       | 1.5 | ug/Kg | ☼ | 05/14/18 14:03 | 05/29/18 14:38 | 20      |
| Perfluorohexanesulfonic acid (PFHxS) | 78        | D         | 7.6      | 1.6 | ug/Kg | ₽ | 05/14/18 14:03 | 05/29/18 14:38 | 20      |
| Perfluorooctanesulfonic acid (PFOS)  | 170       | D         | 25       | 6.0 | ug/Kg | ☼ | 05/14/18 14:03 | 05/29/18 14:38 | 20      |
| Isotope Dilution                     | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 54        |           | 50 - 150 |     |       |   | 05/14/18 14:03 | 05/29/18 14:38 | 20      |
| 13C4-PFHpA                           | 83        |           | 50 - 150 |     |       |   | 05/14/18 14:03 | 05/29/18 14:38 | 20      |
| 13C4 PFOA                            | 97        |           | 50 - 150 |     |       |   | 05/14/18 14:03 | 05/29/18 14:38 | 20      |
| 13C5 PFNA                            | 90        |           | 50 - 150 |     |       |   | 05/14/18 14:03 | 05/29/18 14:38 | 20      |
| 1802 PFHxS                           | 75        |           | 50 - 150 |     |       |   | 05/14/18 14:03 | 05/29/18 14:38 | 20      |
| 13C4 PFOS                            | 69        |           | 50 - 150 |     |       |   | 05/14/18 14:03 | 05/29/18 14:38 | 20      |

Client Sample ID: KLA05-SB1-02 Lab Sample ID: 320-39023-34

 Date Collected: 05/05/18 09:10
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 78.5

| Analyte                              | Result    | Qualifier | LOQ                 | DL    | Unit  | D            | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|---------------------|-------|-------|--------------|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 0.25      | U         | 0.38                | 0.098 | ug/Kg | <del>\</del> | 05/14/18 14:03 | 05/29/18 14:15 | 1       |
| Perfluorooctanoic acid (PFOA)        | 0.23      | J         | 0.38                | 0.13  | ug/Kg | ☼            | 05/14/18 14:03 | 05/29/18 14:15 | 1       |
| Perfluorononanoic acid (PFNA)        | 0.25      | U         | 0.38                | 0.10  | ug/Kg | ☼            | 05/14/18 14:03 | 05/29/18 14:15 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.077     | J         | 0.50                | 0.074 | ug/Kg | ₽            | 05/14/18 14:03 | 05/29/18 14:15 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 2.6       |           | 0.38                | 0.078 | ug/Kg | ₿            | 05/14/18 14:03 | 05/29/18 14:15 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 6.5       |           | 1.3                 | 0.30  | ug/Kg | ₽            | 05/14/18 14:03 | 05/29/18 14:15 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier | Limits              |       |       |              | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 68        |           | 50 - 150            |       |       |              | 05/14/18 14:03 | 05/29/18 14:15 | 1       |
| 13C4-PFHpA                           | 81        |           | 50 - 150            |       |       |              | 05/14/18 14:03 | 05/29/18 14:15 | 1       |
| 13C4 PFOA                            | 88        |           | 50 <sub>-</sub> 150 |       |       |              | 05/14/18 14:03 | 05/29/18 14:15 | 1       |

| 1303-2503  | 00 | 30 - 130 | 05/14/16 14.03 | 05/29/10 14.15 | 1 |
|------------|----|----------|----------------|----------------|---|
| 13C4-PFHpA | 81 | 50 - 150 | 05/14/18 14:03 | 05/29/18 14:15 | 1 |
| 13C4 PFOA  | 88 | 50 - 150 | 05/14/18 14:03 | 05/29/18 14:15 | 1 |
| 13C5 PFNA  | 88 | 50 - 150 | 05/14/18 14:03 | 05/29/18 14:15 | 1 |
| 1802 PFHxS | 70 | 50 - 150 | 05/14/18 14:03 | 05/29/18 14:15 | 1 |
| 13C4 PFOS  | 72 | 50 - 150 | 05/14/18 14:03 | 05/29/18 14:15 | 1 |
|            |    |          |                |                |   |

Client Sample ID: KLA05-SB2-01 Lab Sample ID: 320-39023-35

 Date Collected: 05/05/18 09:30
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 85.2

| Analyte                             | Result Qualifier | LOQ  | DL    | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-------------------------------------|------------------|------|-------|-------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)     | 0.45             | 0.36 | 0.092 | ug/Kg | ₩ | 05/14/18 14:03 | 05/29/18 09:56 | 1       |
| Perfluorooctanoic acid (PFOA)       | 1.6              | 0.36 | 0.12  | ug/Kg | ₩ | 05/14/18 14:03 | 05/29/18 09:56 | 1       |
| Perfluorononanoic acid (PFNA)       | 0.36             | 0.36 | 0.096 | ug/Kg | ₽ | 05/14/18 14:03 | 05/29/18 09:56 | 1       |
| Perfluorobutanesulfonic acid (PFBS) | 0.32 J           | 0.47 | 0.070 | ug/Kg | ☼ | 05/14/18 14:03 | 05/29/18 09:56 | 1       |

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

| Client Sam | ple ID: | KLA05-9 | SB2-01 |
|------------|---------|---------|--------|
|------------|---------|---------|--------|

Lab Sample ID: 320-39023-35 Date Collected: 05/05/18 09:30 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 85.2

| Analyte                              | Result    | Qualifier   | LOQ                 | DL    | Unit  | D           | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-------------|---------------------|-------|-------|-------------|----------------|----------------|---------|
| Perfluorohexanesulfonic acid (PFHxS) | 20        |             | 0.36                | 0.073 | ug/Kg | <del></del> | 05/14/18 14:03 | 05/29/18 09:56 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 37        | E           | 1.2                 | 0.28  | ug/Kg | ☼           | 05/14/18 14:03 | 05/29/18 09:56 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier   | Limits              |       |       |             | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 69        |             | 50 - 150            |       |       |             | 05/14/18 14:03 | 05/29/18 09:56 | 1       |
| 13C4-PFHpA                           | 85        |             | 50 - 150            |       |       |             | 05/14/18 14:03 | 05/29/18 09:56 | 1       |
| 13C4 PFOA                            | 92        |             | 50 - 150            |       |       |             | 05/14/18 14:03 | 05/29/18 09:56 | 1       |
| 13C5 PFNA                            | 89        |             | 50 - 150            |       |       |             | 05/14/18 14:03 | 05/29/18 09:56 | 1       |
| 1802 PFHxS                           | 71        |             | 50 - 150            |       |       |             | 05/14/18 14:03 | 05/29/18 09:56 | 1       |
| 13C4 PFOS                            | 73        |             | 50 - 150            |       |       |             | 05/14/18 14:03 | 05/29/18 09:56 | 1       |
| Method: EPA 537 (Mod) - PFA          | S for OSM | 5 1 Table I | B-15 - DI           |       |       |             |                |                |         |
| Analyte                              |           | Qualifier   | LOQ                 | DL    | Unit  | D           | Prepared       | Analyzed       | Dil Fac |
| Perfluoroheptanoic acid (PFHpA)      | 2.4       | U           | 3.6                 | 0.92  | ug/Kg | ₩           | 05/14/18 14:03 | 05/29/18 14:46 | 10      |
| Perfluorooctanoic acid (PFOA)        | 1.8       | J D         | 3.6                 | 1.2   | ug/Kg | ☼           | 05/14/18 14:03 | 05/29/18 14:46 | 10      |
| Perfluorononanoic acid (PFNA)        | 2.4       | U M         | 3.6                 | 0.96  | ug/Kg | ☼           | 05/14/18 14:03 | 05/29/18 14:46 | 10      |
| Perfluorobutanesulfonic acid (PFBS)  | 2.1       | U           | 4.7                 | 0.70  | ug/Kg |             | 05/14/18 14:03 | 05/29/18 14:46 | 10      |
| Perfluorohexanesulfonic acid (PFHxS) | 20        | D           | 3.6                 | 0.73  | ug/Kg | ₽           | 05/14/18 14:03 | 05/29/18 14:46 | 10      |
| Perfluorooctanesulfonic acid (PFOS)  | 40        | D           | 12                  | 2.8   | ug/Kg | ₩           | 05/14/18 14:03 | 05/29/18 14:46 | 10      |
| Isotope Dilution                     | %Recovery | Qualifier   | Limits              |       |       |             | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 59        |             | 50 - 150            |       |       |             | 05/14/18 14:03 | 05/29/18 14:46 | 10      |
| 13C4-PFHpA                           | 82        |             | 50 - 150            |       |       |             | 05/14/18 14:03 | 05/29/18 14:46 | 10      |
| 13C4 PFOA                            | 86        |             | 50 - 150            |       |       |             | 05/14/18 14:03 | 05/29/18 14:46 | 10      |
| 13C5 PFNA                            | 89        |             | 50 - 150            |       |       |             | 05/14/18 14:03 | 05/29/18 14:46 | 10      |
| 1802 PFHxS                           | 70        |             | 50 <sub>-</sub> 150 |       |       |             | 05/14/18 14:03 | 05/29/18 14:46 | 10      |
| 13C4 PFOS                            | 69        |             | 50 <sub>-</sub> 150 |       |       |             | 05/14/10 14:00 | 05/29/18 14:46 | 10      |

Client Sample ID: KLA05-SB2-02

Date Collected: 05/05/18 09:40 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 75.4

| Method: EPA 537 (Mod) - PFA          | S for QSM | 5.1, Table | B-15     |       |       |             |                |                |         |
|--------------------------------------|-----------|------------|----------|-------|-------|-------------|----------------|----------------|---------|
| Analyte                              | Result    | Qualifier  | LOQ      | DL    | Unit  | D           | Prepared       | Analyzed       | Dil Fac |
| Perfluoroheptanoic acid (PFHpA)      | 0.38      | J          | 0.40     | 0.10  | ug/Kg | <del></del> | 05/14/18 14:03 | 05/29/18 10:04 | 1       |
| Perfluorooctanoic acid (PFOA)        | 1.2       |            | 0.40     | 0.13  | ug/Kg | ☼           | 05/14/18 14:03 | 05/29/18 10:04 | 1       |
| Perfluorononanoic acid (PFNA)        | 0.34      | J M        | 0.40     | 0.11  | ug/Kg | ☼           | 05/14/18 14:03 | 05/29/18 10:04 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.29      | J          | 0.53     | 0.078 | ug/Kg | ₽           | 05/14/18 14:03 | 05/29/18 10:04 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 8.9       |            | 0.40     | 0.082 | ug/Kg | ₽           | 05/14/18 14:03 | 05/29/18 10:04 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 40        | E          | 1.3      | 0.32  | ug/Kg | ☼           | 05/14/18 14:03 | 05/29/18 10:04 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier  | Limits   |       |       |             | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 70        |            | 50 - 150 |       |       |             | 05/14/18 14:03 | 05/29/18 10:04 | 1       |
| 13C4-PFHpA                           | 74        |            | 50 - 150 |       |       |             | 05/14/18 14:03 | 05/29/18 10:04 | 1       |
| 13C4 PFOA                            | 85        |            | 50 - 150 |       |       |             | 05/14/18 14:03 | 05/29/18 10:04 | 1       |
| 13C5 PFNA                            | 87        |            | 50 - 150 |       |       |             | 05/14/18 14:03 | 05/29/18 10:04 | 1       |
| 1802 PFHxS                           | 74        |            | 50 - 150 |       |       |             | 05/14/18 14:03 | 05/29/18 10:04 | 1       |

TestAmerica Sacramento

Lab Sample ID: 320-39023-36

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: KLA05-SB2-02

Lab Sample ID: 320-39023-36 Date Collected: 05/05/18 09:40 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 75.4

| Isotope Dilution                                                                                                                                                                                                                                                                                                                                                                                                                         | %Recovery                                                                                                                           | 5.1, Table<br>Qualifier                                             | Limits                                                                                                                               | ,                                                |                                           |                                       | Prepared                                                                                                                                                                                                                    | Analyzed                                                                                                                                                                                                                                                             | Dil Fa                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 13C4 PFOS                                                                                                                                                                                                                                                                                                                                                                                                                                | 72                                                                                                                                  |                                                                     | 50 - 150                                                                                                                             |                                                  |                                           |                                       | 05/14/18 14:03                                                                                                                                                                                                              | 05/29/18 10:04                                                                                                                                                                                                                                                       |                       |
| Method: EPA 537 (Mod) - PFA                                                                                                                                                                                                                                                                                                                                                                                                              | S for QSM !                                                                                                                         | 5.1. Table                                                          | B-15 - DL                                                                                                                            |                                                  |                                           |                                       |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                      |                       |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                     | Qualifier                                                           | LOQ                                                                                                                                  | DL                                               | Unit                                      | D                                     | Prepared                                                                                                                                                                                                                    | Analyzed                                                                                                                                                                                                                                                             | Dil Fa                |
| Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                                                                                                                                                                                          | 2.7                                                                                                                                 | U                                                                   | 4.0                                                                                                                                  | 1.0                                              | ug/Kg                                     | <del>\</del>                          | 05/14/18 14:03                                                                                                                                                                                                              | 05/29/18 14:54                                                                                                                                                                                                                                                       | 1                     |
| Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                                                                                                                                                                                            | 1.3                                                                                                                                 | J D                                                                 | 4.0                                                                                                                                  | 1.3                                              | ug/Kg                                     | ₽                                     | 05/14/18 14:03                                                                                                                                                                                                              | 05/29/18 14:54                                                                                                                                                                                                                                                       | 1                     |
| Perfluorononanoic acid (PFNA)                                                                                                                                                                                                                                                                                                                                                                                                            | 2.7                                                                                                                                 | U                                                                   | 4.0                                                                                                                                  | 1.1                                              | ug/Kg                                     | ₽                                     | 05/14/18 14:03                                                                                                                                                                                                              | 05/29/18 14:54                                                                                                                                                                                                                                                       | 1                     |
| Perfluorobutanesulfonic acid (PFBS)                                                                                                                                                                                                                                                                                                                                                                                                      | 2.4                                                                                                                                 | U                                                                   | 5.3                                                                                                                                  | 0.78                                             | ug/Kg                                     |                                       | 05/14/18 14:03                                                                                                                                                                                                              | 05/29/18 14:54                                                                                                                                                                                                                                                       | 1                     |
| Perfluorohexanesulfonic acid (PFHxS)                                                                                                                                                                                                                                                                                                                                                                                                     | 9.7                                                                                                                                 | D                                                                   | 4.0                                                                                                                                  | 0.82                                             | ug/Kg                                     | ☼                                     | 05/14/18 14:03                                                                                                                                                                                                              | 05/29/18 14:54                                                                                                                                                                                                                                                       | 1                     |
| Perfluorooctanesulfonic acid (PFOS)                                                                                                                                                                                                                                                                                                                                                                                                      | 42                                                                                                                                  | D M                                                                 | 13                                                                                                                                   | 3.2                                              | ug/Kg                                     | ☼                                     | 05/14/18 14:03                                                                                                                                                                                                              | 05/29/18 14:54                                                                                                                                                                                                                                                       | 1                     |
| Isotope Dilution                                                                                                                                                                                                                                                                                                                                                                                                                         | %Recovery                                                                                                                           | Qualifier                                                           | Limits                                                                                                                               |                                                  |                                           |                                       | Prepared                                                                                                                                                                                                                    | Analyzed                                                                                                                                                                                                                                                             | Dil Fa                |
| 13C3-PFBS                                                                                                                                                                                                                                                                                                                                                                                                                                | 72                                                                                                                                  | -                                                                   | 50 - 150                                                                                                                             |                                                  |                                           |                                       | 05/14/18 14:03                                                                                                                                                                                                              | 05/29/18 14:54                                                                                                                                                                                                                                                       | 1                     |
| 13C4-PFHpA                                                                                                                                                                                                                                                                                                                                                                                                                               | 77                                                                                                                                  |                                                                     | 50 - 150                                                                                                                             |                                                  |                                           |                                       | 05/14/18 14:03                                                                                                                                                                                                              | 05/29/18 14:54                                                                                                                                                                                                                                                       | 1                     |
| 13C4 PFOA                                                                                                                                                                                                                                                                                                                                                                                                                                | 92                                                                                                                                  |                                                                     | 50 - 150                                                                                                                             |                                                  |                                           |                                       | 05/14/18 14:03                                                                                                                                                                                                              | 05/29/18 14:54                                                                                                                                                                                                                                                       | 1                     |
| 13C5 PFNA                                                                                                                                                                                                                                                                                                                                                                                                                                | 85                                                                                                                                  |                                                                     | 50 - 150                                                                                                                             |                                                  |                                           |                                       | 05/14/18 14:03                                                                                                                                                                                                              | 05/29/18 14:54                                                                                                                                                                                                                                                       | 1                     |
| 1802 PFHxS                                                                                                                                                                                                                                                                                                                                                                                                                               | 72                                                                                                                                  |                                                                     | 50 - 150                                                                                                                             |                                                  |                                           |                                       | 05/14/18 14:03                                                                                                                                                                                                              | 05/29/18 14:54                                                                                                                                                                                                                                                       | 1                     |
| 13C4 PFOS                                                                                                                                                                                                                                                                                                                                                                                                                                | 70                                                                                                                                  |                                                                     | 50 <sub>-</sub> 150                                                                                                                  |                                                  |                                           |                                       | 05/14/18 14:03                                                                                                                                                                                                              | 05/29/18 14:54                                                                                                                                                                                                                                                       | 1                     |
| Pate Collected: 05/05/18 10:10                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                     |                                                                     |                                                                                                                                      |                                                  |                                           |                                       |                                                                                                                                                                                                                             | Darsont Calid                                                                                                                                                                                                                                                        | 10. 02                |
| pate Received: 05/09/18 09:20                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                     |                                                                     |                                                                                                                                      |                                                  |                                           |                                       |                                                                                                                                                                                                                             | Percent Solid                                                                                                                                                                                                                                                        | ls: 83.               |
| Method: EPA 537 (Mod) - PFA                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                     |                                                                     |                                                                                                                                      |                                                  | Unit                                      | n                                     |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                      |                       |
| Method: EPA 537 (Mod) - PFA<br>Analyte                                                                                                                                                                                                                                                                                                                                                                                                   | Result                                                                                                                              | 5.1, Table<br>Qualifier                                             | LOQ                                                                                                                                  |                                                  | Unit                                      | D_                                    | Prepared                                                                                                                                                                                                                    | Analyzed                                                                                                                                                                                                                                                             |                       |
| Method: EPA 537 (Mod) - PFA<br>Analyte<br>Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                                                                                                                                                | Result 14                                                                                                                           | Qualifier                                                           | <b>LOQ</b>                                                                                                                           | 0.092                                            | ug/Kg                                     |                                       | Prepared 05/14/18 14:03                                                                                                                                                                                                     | Analyzed 05/29/18 10:20                                                                                                                                                                                                                                              |                       |
| Method: EPA 537 (Mod) - PFA<br>Analyte<br>Perfluoroheptanoic acid (PFHpA)<br>Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                                                                                                               | Result 14 57                                                                                                                        | Qualifier<br>E                                                      | 0.36<br>0.36                                                                                                                         | 0.092<br>0.12                                    | ug/Kg<br>ug/Kg                            | <del></del>                           | Prepared 05/14/18 14:03 05/14/18 14:03                                                                                                                                                                                      | Analyzed 05/29/18 10:20 05/29/18 10:20                                                                                                                                                                                                                               |                       |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid                                                                                                                                                                                                                                                                                                           | Result 14                                                                                                                           | Qualifier<br>E                                                      | <b>LOQ</b>                                                                                                                           | 0.092<br>0.12<br>0.096                           | ug/Kg                                     | <del></del>                           | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                                                                                                       | Analyzed 05/29/18 10:20                                                                                                                                                                                                                                              |                       |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid                                                                                                                                                                                                                                                                       | Result 14 57 2.6                                                                                                                    | Qualifier E M                                                       | 0.36<br>0.36<br>0.36                                                                                                                 | 0.092<br>0.12<br>0.096<br>0.070<br>0.073         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | <del></del>                           | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                                                                                                       | Analyzed 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20                                                                                                                                                                                                 |                       |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid                                                                                                                                                                                                                                  | Result 14 57 2.6 6.7                                                                                                                | Qualifier  E M                                                      | 0.36<br>0.36<br>0.36<br>0.47                                                                                                         | 0.092<br>0.12<br>0.096<br>0.070<br>0.073         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | # # # # # # # # # # # # # # # # # # # | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                                                                                        | Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20                                                                                                                                                                                 |                       |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution                                                                                                                                                                                                          | Result 14 57 2.6 6.7 430                                                                                                            | E M E                                                               | 0.36<br>0.36<br>0.36<br>0.47<br>0.36                                                                                                 | 0.092<br>0.12<br>0.096<br>0.070<br>0.073         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | # # # # # # # # # # # # # # # # # # # | Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                                                         | Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20  Analyzed                                                                                                                                                        | Dil Fa                |
| Method: EPA 537 (Mod) - PFA<br>Analyte<br>Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                                                                                                                                                | Result 14 57 2.6 6.7 430 4600                                                                                                       | E M E                                                               | 0.36<br>0.36<br>0.36<br>0.47<br>0.36                                                                                                 | 0.092<br>0.12<br>0.096<br>0.070<br>0.073         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | # # # # # # # # # # # # # # # # # # # | Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                                                         | Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20                                                                                                                                                                  | Dil Fa                |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution                                                                                                                                                                                                          | Result  14  57  2.6  6.7  430  4600  %Recovery                                                                                      | E M E                                                               | 0.36<br>0.36<br>0.36<br>0.47<br>0.36<br>1.2                                                                                          | 0.092<br>0.12<br>0.096<br>0.070<br>0.073         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | # # # # # # # # # # # # # # # # # # # | Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03                                                                                              | Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20  Analyzed                                                                                                                                                        | Dil Fa                |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFHxS) Perfluoropetanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS                                                                                                                                                           | Result 14 57 2.6 6.7 430 4600 %Recovery                                                                                             | E M E                                                               | 0.36 0.36 0.36 0.47 0.36 1.2  Limits 50-150                                                                                          | 0.092<br>0.12<br>0.096<br>0.070<br>0.073         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | # # # # # # # # # # # # # # # # # # # | Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03 05/14/18 14:03                                                                               | Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20  Analyzed  05/29/18 10:20                                                                                                                                        | Dil Fa                |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA 13C4 PFOA                                                                                                                                                                           | Result 14 57 2.6 6.7 430 4600 %Recovery 122 66                                                                                      | Qualifier  E M  E  Qualifier                                        | 0.36 0.36 0.36 0.47 0.36 1.2  Limits 50 - 150 50 - 150                                                                               | 0.092<br>0.12<br>0.096<br>0.070<br>0.073         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | # # # # # # # # # # # # # # # # # # # | Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03  Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                | Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20  05/29/18 10:20  Analyzed  05/29/18 10:20 05/29/18 10:20                                                                                                                        | Dil Fa                |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluoroctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA 13C5 PFNA 18O2 PFHxS                                                                                                                                                                 | Result 14 57 2.6 6.7 430 4600  **Recovery 122 66 87                                                                                 | Qualifier  E M  E Qualifier                                         | 0.36 0.36 0.36 0.47 0.36 1.2  Limits 50 - 150 50 - 150                                                                               | 0.092<br>0.12<br>0.096<br>0.070<br>0.073         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | # # # # # # # # # # # # # # # # # # # | Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03  Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                 | Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20  Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20                                                                                           | Dil Fa                |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFHxS) Perfluorobutanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA 13C4 PFOA                                                                                                 | Result 14 57 2.6 6.7 430 4600  **Recovery 122 66 87 19                                                                              | Qualifier  E M  E Qualifier  Qualifier                              | 0.36 0.36 0.36 0.47 0.36 1.2  Limits 50 - 150 50 - 150 50 - 150                                                                      | 0.092<br>0.12<br>0.096<br>0.070<br>0.073         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | # # # # # # # # # # # # # # # # # # # | Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03                                          | Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20  Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20                                                                            | Dil Fa                |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluoroctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA 13C5 PFNA 18O2 PFHxS                                                                                                                                                                 | ## Result  14  57  2.6  6.7  430  4600  ## Recovery  122  66  87  19  46  13                                                        | Qualifier  E M  E Qualifier  Q Q Q Q                                | LOQ  0.36  0.36  0.36  0.47  0.36  1.2  Limits  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150                                     | 0.092<br>0.12<br>0.096<br>0.070<br>0.073         | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | # # # # # # # # # # # # # # # # # # # | Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03                                          | Analyzed  05/29/18 10:20  05/29/18 10:20  05/29/18 10:20  05/29/18 10:20  05/29/18 10:20  Analyzed  05/29/18 10:20  05/29/18 10:20  05/29/18 10:20  05/29/18 10:20  05/29/18 10:20  05/29/18 10:20  05/29/18 10:20                                                   | Dil Fa                |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFNA) Perfluorobutanesulfonic acid (PFNS) Perfluorohexanesulfonic acid (PFHxS) Perfluoroctanesulfonic acid (PFNS) Isotope Dilution 13C3-PFBS 13C4-PFHpA 13C4 PFOA 13C5 PFNA 18O2 PFHxS 13C4 PFOS  Method: EPA 537 (Mod) - PFA                                                                            | ## Result  14  57  2.6  6.7  430  4600  ## Recovery  122  66  87  19  46  13  ## S for QSM \$  ***                                  | Qualifier  E M  E Qualifier  Q Q Q Q                                | LOQ  0.36  0.36  0.36  0.47  0.36  1.2  Limits  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150                                     | 0.092<br>0.12<br>0.096<br>0.070<br>0.073<br>0.28 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | # # # # # # # # # # # # # # # # # # # | Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03                                          | Analyzed  05/29/18 10:20  05/29/18 10:20  05/29/18 10:20  05/29/18 10:20  05/29/18 10:20  Analyzed  05/29/18 10:20  05/29/18 10:20  05/29/18 10:20  05/29/18 10:20  05/29/18 10:20  05/29/18 10:20  05/29/18 10:20                                                   | Dil Fa                |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluoroctanesulfonic acid (PFHxS) Perfluorobexanesulfonic acid (PFDS) Isotope Dilution 13C3-PFBS 13C4-PFHpA 13C4 PFOA 13C5 PFNA 18O2 PFHxS 13C4 PFOS                                                                                                        | ## Result    14   14   157   2.6   6.7   430   4600   ## Recovery   122   66   87   19   46   13   13   15   15   15   15   15   15 | Qualifier  E M  E Qualifier  Q Q Q Q 5.1, Table                     | LOQ  0.36  0.36  0.36  0.47  0.36  1.2  Limits  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150       | 0.092<br>0.12<br>0.096<br>0.070<br>0.073<br>0.28 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | * * * * *                             | Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                   | Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20  Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20                               | Dil Fa                |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFNA) Perfluorobutanesulfonic acid (PFNA) Perfluorobutanesulfonic acid (PFNS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA 13C4 PFOA 13C5 PFNA 18O2 PFHxS 13C4 PFOS  Method: EPA 537 (Mod) - PFA Analyte                               | ## Result    14   14   157   2.6   6.7   430   4600   ## Recovery   122   66   87   19   46   13   13   15   15   15   15   15   15 | Qualifier  E M  E Qualifier  Q Q Q Q Q D D 1.1, Table Qualifier J D | LOQ  0.36  0.36  0.36  0.47  0.36  1.2  Limits  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  B-15 - DL  LOQ | 0.092<br>0.12<br>0.096<br>0.070<br>0.073<br>0.28 | ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg       | □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ | Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03  Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03     | Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20  Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 | Dil Fa  Dil Fa  10 10 |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFNA) Perfluorobutanesulfonic acid (PFNA) Perfluorobutanesulfonic acid (PFNS) Perfluoroctanesulfonic acid (PFNS) Perfluorooctanesulfonic acid (PFNS) Isotope Dilution 13C3-PFBS 13C4-PFHpA 13C4 PFOA 13C5 PFNA 18O2 PFHxS 13C4 PFOS  Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) | Result  14  57  2.6  6.7  430  4600  **Recovery  122  66  87  19  46  13  S for QSM & Result  13                                    | Qualifier  E M  E Qualifier  Q Q Q Q Q D D D                        | LOQ  0.36  0.36  0.36  0.47  0.36  1.2  Limits  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  50 - 150  B-15 - DL  LOQ  36       | 0.092<br>0.12<br>0.096<br>0.070<br>0.073<br>0.28 | ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg       | □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ | Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 | Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20  Analyzed  05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 05/29/18 10:20 | Dil Fa                |

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: KLA05-SB3-01 Lab Sample ID: 320-39023-37

 Date Collected: 05/05/18 10:10
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 83.8

| Analyte                              | Result    | Qualifier | LOQ      | DL  | Unit  | D           | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|----------|-----|-------|-------------|----------------|----------------|---------|
| Perfluorohexanesulfonic acid (PFHxS) | 650       | D         | 36       | 7.3 | ug/Kg | <del></del> | 05/14/18 14:03 | 05/29/18 16:28 | 100     |
| Perfluorooctanesulfonic acid (PFOS)  | 14000     | E D       | 120      | 28  | ug/Kg | ₩           | 05/14/18 14:03 | 05/29/18 16:28 | 100     |
| Isotope Dilution                     | %Recovery | Qualifier | Limits   |     |       |             | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 60        | M         | 50 - 150 |     |       |             | 05/14/18 14:03 | 05/29/18 16:28 | 100     |
| 13C4-PFHpA                           | 80        |           | 50 - 150 |     |       |             | 05/14/18 14:03 | 05/29/18 16:28 | 100     |
| 13C4 PFOA                            | 82        |           | 50 - 150 |     |       |             | 05/14/18 14:03 | 05/29/18 16:28 | 100     |
| 13C5 PFNA                            | 68        |           | 50 - 150 |     |       |             | 05/14/18 14:03 | 05/29/18 16:28 | 100     |
| 1802 PFHxS                           | 75        |           | 50 - 150 |     |       |             | 05/14/18 14:03 | 05/29/18 16:28 | 100     |
| 13C4 PFOS                            | 53        |           | 50 - 150 |     |       |             | 05/14/18 14:03 | 05/29/18 16:28 | 100     |

Client Sample ID: KLA05-SB3-02 Lab Sample ID: 320-39023-38

 Date Collected: 05/05/18 10:20
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 80.4

| Analyte                              | Result    | Qualifier | LOQ                  | DL    | Unit  | D               | Prepared       | Analyzed                         | Dil Fac |
|--------------------------------------|-----------|-----------|----------------------|-------|-------|-----------------|----------------|----------------------------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 1.5       |           | 0.37                 | 0.097 | ug/Kg | ₽               | 05/14/18 14:03 | 05/29/18 10:28                   | 1       |
| Perfluorooctanoic acid (PFOA)        | 3.8       |           | 0.37                 | 0.12  | ug/Kg | ₽               | 05/14/18 14:03 | 05/29/18 10:28                   | 1       |
| Perfluorononanoic acid (PFNA)        | 0.25      | J M       | 0.37                 | 0.10  | ug/Kg | ₽               | 05/14/18 14:03 | 05/29/18 10:28                   | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.58      |           | 0.50                 | 0.074 | ug/Kg | \$              | 05/14/18 14:03 | 05/29/18 10:28                   | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 15        |           | 0.37                 | 0.077 | ug/Kg | ₩               | 05/14/18 14:03 | 05/29/18 10:28                   | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 560       | E         | 1.2                  | 0.30  | ug/Kg | ₽               | 05/14/18 14:03 | 05/29/18 10:28                   | 1       |
| Isotope Dilution                     | %Recovery | Qualifier | Limits               |       |       |                 | Prepared       | Analyzed                         | Dil Fac |
| 13C3-PFBS                            | 73        |           | 50 - 150             |       |       |                 | 05/14/18 14:03 | 05/29/18 10:28                   | 1       |
| 13C4-PFHpA                           | 81        |           | 50 - 150             |       |       |                 | 05/14/18 14:03 | 05/29/18 10:28                   | 1       |
| 13C4 PFOA                            | 87        |           | 50 - 150             |       |       |                 | 05/14/18 14:03 | 05/29/18 10:28                   | 1       |
| 13C5 PFNA                            | 50        |           | 50 - 150             |       |       |                 | 05/14/18 14:03 | 05/29/18 10:28                   | 1       |
| 1802 PFHxS                           | 73        |           | 50 - 150             |       |       |                 | 05/14/18 14:03 | 05/29/18 10:28                   | 1       |
| 13C4 PFOS                            | 40        | Q         | 50 - 150             |       |       |                 | 05/14/18 14:03 | 05/29/18 10:28                   | 1       |
|                                      |           |           |                      |       |       |                 |                |                                  |         |
| Method: EPA 537 (Mod) - PFA          |           |           |                      |       |       | _               |                |                                  |         |
| Analyte                              |           | Qualifier | LOQ                  |       | Unit  | D               | Prepared       | Analyzed                         | Dil Fac |
| Perfluoroheptanoic acid (PFHpA)      | 25        |           | 37                   |       | ug/Kg | <b>☆</b>        |                | 05/29/18 16:44                   | 100     |
| Perfluorooctanoic acid (PFOA)        | 25        |           | 37                   |       | ug/Kg | <b>☆</b>        |                | 05/29/18 16:44                   | 100     |
| Perfluorononanoic acid (PFNA)        | 25        |           | 37                   |       | ug/Kg |                 |                | 05/29/18 16:44                   | 100     |
| Perfluorobutanesulfonic acid (PFBS)  | 22        |           | 50                   |       | ug/Kg | <del>;</del> Q: |                | 05/29/18 16:44                   | 100     |
| Perfluorohexanesulfonic acid (PFHxS) | 13        | JD        | 37                   | 7.7   | ug/Kg | ₿               |                | 05/29/18 16:44                   | 100     |
| Perfluorooctanesulfonic acid (PFOS)  | 980       | D         | 120                  | 30    | ug/Kg | ₽               | 05/14/18 14:03 | 05/29/18 16:44                   | 100     |
| Isotope Dilution                     | %Recovery | Qualifier | Limits               |       |       |                 | Prepared       | Analyzed                         | Dil Fac |
|                                      | 78        | M         | 50 - 150             |       |       |                 | 05/14/18 14:03 | 05/29/18 16:44                   | 100     |
| 13C3-PFBS                            |           |           | 50 - 150             |       |       |                 | 05/14/18 14:03 | 05/29/18 16:44                   | 100     |
| 13C3-PFBS<br>13C4-PFHpA              | 81        |           |                      |       |       |                 |                |                                  |         |
|                                      | 81<br>99  |           | 50 - 150             |       |       |                 | 05/14/18 14:03 | 05/29/18 16:44                   | 100     |
| 13C4-PFHpA                           |           |           | 50 - 150<br>50 - 150 |       |       |                 |                | 05/29/18 16:44<br>05/29/18 16:44 | 100     |

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: KLA05-SB3-02

Lab Sample ID: 320-39023-38 Date Collected: 05/05/18 10:20 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 80.4

| Met | thod: EPA | 537 (Mod) | - PFAS for | QSM 5.1. | . Table B-15 - | DL (Continued) |
|-----|-----------|-----------|------------|----------|----------------|----------------|
|     |           |           |            |          |                |                |

Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C4 PFOS 70 50 - 150 05/14/18 14:03 05/29/18 16:44 100

Client Sample ID: KLA06-SB1-01

Lab Sample ID: 320-39023-39 Date Collected: 05/01/18 14:15 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 73.2

| Analyte                              | Result    | Qualifier  | LOQ       | DL    | Unit  | D            | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|------------|-----------|-------|-------|--------------|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 0.71      |            | 0.41      | 0.11  | ug/Kg | ₩            | 05/14/18 13:10 | 06/06/18 23:18 | 1       |
| Perfluorooctanoic acid (PFOA)        | 1.3       |            | 0.41      | 0.14  | ug/Kg | ☼            | 05/14/18 13:10 | 06/06/18 23:18 | 1       |
| Perfluorononanoic acid (PFNA)        | 2.4       |            | 0.41      | 0.11  | ug/Kg | ☼            | 05/14/18 13:10 | 06/06/18 23:18 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.27      | J          | 0.54      | 0.080 | ug/Kg | ₽            | 05/14/18 13:10 | 06/06/18 23:18 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 11        |            | 0.41      | 0.084 | ug/Kg | ₿            | 05/14/18 13:10 | 06/06/18 23:18 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 190       | ME         | 1.4       | 0.32  | ug/Kg | ₽            | 05/14/18 13:10 | 06/06/18 23:18 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier  | Limits    |       |       |              | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 72        |            | 50 - 150  |       |       |              | 05/14/18 13:10 | 06/06/18 23:18 | 1       |
| 13C4-PFHpA                           | 77        |            | 50 - 150  |       |       |              | 05/14/18 13:10 | 06/06/18 23:18 | 1       |
| 13C4 PFOA                            | 79        |            | 50 - 150  |       |       |              | 05/14/18 13:10 | 06/06/18 23:18 | 1       |
| 13C5 PFNA                            | 62        |            | 50 - 150  |       |       |              | 05/14/18 13:10 | 06/06/18 23:18 | 1       |
| 1802 PFHxS                           | 73        |            | 50 - 150  |       |       |              | 05/14/18 13:10 | 06/06/18 23:18 | 1       |
| 13C4 PFOS                            | 62        |            | 50 - 150  |       |       |              | 05/14/18 13:10 | 06/06/18 23:18 | 1       |
| Method: EPA 537 (Mod) - PFA          | S for QSM | 5.1, Table | B-15 - DL |       |       |              |                |                |         |
| Analyte                              | Result    | Qualifier  | LOQ       | DL    | Unit  | D            | Prepared       | Analyzed       | Dil Fac |
| Perfluoroheptanoic acid (PFHpA)      | 5.4       | U          | 8.1       | 2.1   | ug/Kg | <del>-</del> | 05/14/18 13:10 | 05/29/18 11:30 | 20      |
| Perfluorooctanoic acid (PFOA)        | 5.4       | UM         | 8.1       | 2.7   | ug/Kg | ☼            | 05/14/18 13:10 | 05/29/18 11:30 | 20      |
| Perfluorononanoic acid (PFNA)        | 2.5       | J D        | 8.1       | 2.2   | ug/Kg | ☼            | 05/14/18 13:10 | 05/29/18 11:30 | 20      |
| Perfluorobutanesulfonic acid (PFBS)  | 4.9       | IJ         | 11        | 1.6   | ug/Kg |              | 05/14/18 13:10 | 05/29/18 11:30 | 20      |

| Analyte                              | Result                                                                                                                                                                                            | Qualifier                                                                                                                                                                                                             | LOQ                                                                                                                                                                                                                                          | DL                                                                                                                                                                                                                                                                | Unit                                                                                                                                                                                                                                                                                        | D                                                                                                                                                                                                                                                                                                                               | Prepared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DII Fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Perfluoroheptanoic acid (PFHpA)      | 5.4                                                                                                                                                                                               | U                                                                                                                                                                                                                     | 8.1                                                                                                                                                                                                                                          | 2.1                                                                                                                                                                                                                                                               | ug/Kg                                                                                                                                                                                                                                                                                       | ₩                                                                                                                                                                                                                                                                                                                               | 05/14/18 13:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 05/29/18 11:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Perfluorooctanoic acid (PFOA)        | 5.4                                                                                                                                                                                               | U M                                                                                                                                                                                                                   | 8.1                                                                                                                                                                                                                                          | 2.7                                                                                                                                                                                                                                                               | ug/Kg                                                                                                                                                                                                                                                                                       | ₽                                                                                                                                                                                                                                                                                                                               | 05/14/18 13:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 05/29/18 11:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Perfluorononanoic acid (PFNA)        | 2.5                                                                                                                                                                                               | J D                                                                                                                                                                                                                   | 8.1                                                                                                                                                                                                                                          | 2.2                                                                                                                                                                                                                                                               | ug/Kg                                                                                                                                                                                                                                                                                       | ₽                                                                                                                                                                                                                                                                                                                               | 05/14/18 13:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 05/29/18 11:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Perfluorobutanesulfonic acid (PFBS)  | 4.9                                                                                                                                                                                               | U                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                           | 1.6                                                                                                                                                                                                                                                               | ug/Kg                                                                                                                                                                                                                                                                                       | ☼                                                                                                                                                                                                                                                                                                                               | 05/14/18 13:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 05/29/18 11:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Perfluorohexanesulfonic acid (PFHxS) | 11                                                                                                                                                                                                | D                                                                                                                                                                                                                     | 8.1                                                                                                                                                                                                                                          | 1.7                                                                                                                                                                                                                                                               | ug/Kg                                                                                                                                                                                                                                                                                       | ₩                                                                                                                                                                                                                                                                                                                               | 05/14/18 13:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 05/29/18 11:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Perfluorooctanesulfonic acid (PFOS)  | 250                                                                                                                                                                                               | D                                                                                                                                                                                                                     | 27                                                                                                                                                                                                                                           | 6.5                                                                                                                                                                                                                                                               | ug/Kg                                                                                                                                                                                                                                                                                       | ☼                                                                                                                                                                                                                                                                                                                               | 05/14/18 13:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 05/29/18 11:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                      | Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid | Perfluoroheptanoic acid (PFHpA) 5.4 Perfluorooctanoic acid (PFOA) 5.4 Perfluorononanoic acid (PFNA) 2.5 Perfluorobutanesulfonic acid (PFBS) 4.9 Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid 250 | Perfluoroheptanoic acid (PFHpA) 5.4 U Perfluorooctanoic acid (PFOA) 5.4 U M  Perfluorononanoic acid (PFNA) 2.5 J D  Perfluorobutanesulfonic acid (PFBS) 4.9 U  Perfluorohexanesulfonic acid 11 D  (PFHxS) Perfluorooctanesulfonic acid 250 D | Perfluoroheptanoic acid (PFHpA) 5.4 U 8.1 Perfluorooctanoic acid (PFOA) 5.4 U M 8.1  Perfluorononanoic acid (PFNA) 2.5 J D 8.1 Perfluorobutanesulfonic acid (PFBS) 4.9 U 11  Perfluorohexanesulfonic acid 11 D 8.1  (PFHxS) Perfluorooctanesulfonic acid 250 D 27 | Perfluoroheptanoic acid (PFHpA) 5.4 U 8.1 2.1 Perfluorooctanoic acid (PFOA) 5.4 U M 8.1 2.7  Perfluorononanoic acid (PFNA) 2.5 J D 8.1 2.2  Perfluorobutanesulfonic acid (PFBS) 4.9 U 11 1.6  Perfluorohexanesulfonic acid 11 D 8.1 1.7  (PFHxS)  Perfluorooctanesulfonic acid 250 D 27 6.5 | Perfluoroheptanoic acid (PFHpA) 5.4 U 8.1 2.1 ug/Kg Perfluorooctanoic acid (PFOA) 5.4 U M 8.1 2.7 ug/Kg  Perfluorononanoic acid (PFNA) 2.5 J D 8.1 2.2 ug/Kg  Perfluorobutanesulfonic acid (PFBS) 4.9 U 11 1.6 ug/Kg  Perfluorohexanesulfonic acid 11 D 8.1 1.7 ug/Kg  (PFHxS)  Perfluorooctanesulfonic acid 250 D 27 6.5 ug/Kg | Perfluoroheptanoic acid (PFHpA)         5.4         U         8.1         2.1         ug/Kg         ©           Perfluorooctanoic acid (PFOA)         5.4         U M         8.1         2.7         ug/Kg         ©           Perfluorononanoic acid (PFNA)         2.5         J D         8.1         2.2         ug/Kg         ©           Perfluorobutanesulfonic acid (PFBS)         4.9         U         11         1.6         ug/Kg         ©           Perfluorohexanesulfonic acid (PFHxS)         11         D         8.1         1.7         ug/Kg         ©           Perfluorooctanesulfonic acid         250         D         27         6.5         ug/Kg         © | Perfluoroheptanoic acid (PFHpA)         5.4         U         8.1         2.1         ug/Kg         □ 05/14/18 13:10           Perfluorooctanoic acid (PFOA)         5.4         U M         8.1         2.7         ug/Kg         □ 05/14/18 13:10           Perfluorononanoic acid (PFNA)         2.5         J D         8.1         2.2         ug/Kg         □ 05/14/18 13:10           Perfluorobutanesulfonic acid (PFBS)         4.9         U         11         1.6         ug/Kg         □ 05/14/18 13:10           Perfluorohexanesulfonic acid         11         D         8.1         1.7         ug/Kg         □ 05/14/18 13:10           (PFHxS)           Perfluorooctanesulfonic acid         250         D         27         6.5         ug/Kg         □ 05/14/18 13:10 | Perfluoroheptanoic acid (PFHpA)         5.4 U         8.1         2.1 ug/Kg         © 05/14/18 13:10         05/29/18 11:30           Perfluorooctanoic acid (PFOA)         5.4 U M         8.1         2.7 ug/Kg         © 05/14/18 13:10         05/29/18 11:30           Perfluorononanoic acid (PFNA)         2.5 J D         8.1         2.2 ug/Kg         © 05/14/18 13:10         05/29/18 11:30           Perfluorobutanesulfonic acid (PFBS)         4.9 U         11         1.6 ug/Kg         © 05/14/18 13:10         05/29/18 11:30           Perfluorohexanesulfonic acid (PFHxS)         8.1         1.7 ug/Kg         © 05/14/18 13:10         05/29/18 11:30           Perfluoroctanesulfonic acid         250 D         27         6.5 ug/Kg         © 05/14/18 13:10         05/29/18 11:30 |

%Recovery Qualifier Isotope Dilution Limits Prepared Analyzed Dil Fac 13C3-PFBS 67 50 - 150 05/14/18 13:10 05/29/18 11:30 20 76 50 - 150 13C4-PFHpA 05/14/18 13:10 05/29/18 11:30 20 13C4 PFOA 82 50 - 150 05/14/18 13:10 05/29/18 11:30 20 79 50 - 150 20 13C5 PFNA 05/14/18 13:10 05/29/18 11:30 1802 PFHxS 71 50 - 150 05/14/18 13:10 05/29/18 11:30 20 13C4 PFOS 68 50 - 150 05/14/18 13:10 05/29/18 11:30 20

Client Sample ID: KLA06-SB1-02

Date Collected: 05/01/18 14:20 Matrix: Solid Date Received: 05/09/18 09:20 Percent Solids: 79.6

| Method: EPA 537 (Mod) - PFA     | S for QSM 5.1, Table B | -15  |             |   |                |                |         |
|---------------------------------|------------------------|------|-------------|---|----------------|----------------|---------|
| Analyte                         | Result Qualifier       | LOQ  | DL Unit     | D | Prepared       | Analyzed       | Dil Fac |
| Perfluoroheptanoic acid (PFHpA) | 0.25 J                 | 0.37 | 0.097 ug/Kg | ☆ | 05/14/18 13:10 | 06/06/18 23:26 | 1       |
| Perfluorooctanoic acid (PFOA)   | 1.1                    | 0.37 | 0.12 ug/Kg  | ₽ | 05/14/18 13:10 | 06/06/18 23:26 | 1       |

Lab Sample ID: 320-39023-40

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: KLA06-SB1-02 Lab Sample ID: 320-39023-40

| Analyte                                                                                                                                                                                                                                                           | Result                                                 | Qualifier                       | LOQ                                              | DL                              | Unit                                      | D              | Prepared                                                                                                                                                                                     | Analyzed                                                                                                                                                                   | Dil Fac                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------|--------------------------------------------------|---------------------------------|-------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Perfluorononanoic acid (PFNA)                                                                                                                                                                                                                                     | 1.4                                                    |                                 | 0.37                                             | 0.10                            | ug/Kg                                     | ₩              | 05/14/18 13:10                                                                                                                                                                               | 06/06/18 23:26                                                                                                                                                             |                                                                                 |
| Perfluorobutanesulfonic acid (PFBS)                                                                                                                                                                                                                               | 0.19                                                   | J                               | 0.50                                             | 0.073                           | ug/Kg                                     | ☼              | 05/14/18 13:10                                                                                                                                                                               | 06/06/18 23:26                                                                                                                                                             | 1                                                                               |
| Perfluorohexanesulfonic acid (PFHxS)                                                                                                                                                                                                                              | 6.8                                                    |                                 | 0.37                                             | 0.077                           | ug/Kg                                     | ₩              | 05/14/18 13:10                                                                                                                                                                               | 06/06/18 23:26                                                                                                                                                             | 1                                                                               |
| Perfluorooctanesulfonic acid (PFOS)                                                                                                                                                                                                                               | 100                                                    | ME                              | 1.2                                              | 0.30                            | ug/Kg                                     | ₽              | 05/14/18 13:10                                                                                                                                                                               | 06/06/18 23:26                                                                                                                                                             | 1                                                                               |
| Isotope Dilution                                                                                                                                                                                                                                                  | %Recovery                                              | Qualifier                       | Limits                                           |                                 |                                           |                | Prepared                                                                                                                                                                                     | Analyzed                                                                                                                                                                   | Dil Fac                                                                         |
| 13C3-PFBS                                                                                                                                                                                                                                                         | 68                                                     |                                 | 50 - 150                                         |                                 |                                           |                | 05/14/18 13:10                                                                                                                                                                               | 06/06/18 23:26                                                                                                                                                             | 1                                                                               |
| 13C4-PFHpA                                                                                                                                                                                                                                                        | 81                                                     |                                 | 50 - 150                                         |                                 |                                           |                | 05/14/18 13:10                                                                                                                                                                               | 06/06/18 23:26                                                                                                                                                             | 1                                                                               |
| 13C4 PFOA                                                                                                                                                                                                                                                         | 76                                                     |                                 | 50 - 150                                         |                                 |                                           |                | 05/14/18 13:10                                                                                                                                                                               | 06/06/18 23:26                                                                                                                                                             | 1                                                                               |
| 13C5 PFNA                                                                                                                                                                                                                                                         | 70                                                     |                                 | 50 - 150                                         |                                 |                                           |                | 05/14/18 13:10                                                                                                                                                                               | 06/06/18 23:26                                                                                                                                                             | 1                                                                               |
| 1802 PFHxS                                                                                                                                                                                                                                                        | 72                                                     |                                 | 50 - 150                                         |                                 |                                           |                | 05/14/18 13:10                                                                                                                                                                               | 06/06/18 23:26                                                                                                                                                             | 1                                                                               |
| 13C4 PFOS                                                                                                                                                                                                                                                         | 68                                                     |                                 | 50 - 150                                         |                                 |                                           |                | 05/14/18 13:10                                                                                                                                                                               | 06/06/18 23:26                                                                                                                                                             | 1                                                                               |
| Method: EPA 537 (Mod) - PEA                                                                                                                                                                                                                                       | S for OSM                                              | 5 1 Table I                     | B-15 - DI                                        |                                 |                                           |                |                                                                                                                                                                                              |                                                                                                                                                                            |                                                                                 |
| Method: EPA 537 (Mod) - PFA<br>Analyte                                                                                                                                                                                                                            | Result                                                 | Qualifier                       | B-15 - DL<br>LOQ                                 | DL                              | Unit                                      | D              | Prepared                                                                                                                                                                                     | Analyzed                                                                                                                                                                   | Dil Fac                                                                         |
| Analyte Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                           | Result 5.0                                             | Qualifier<br>U M                |                                                  | 1.9                             | ug/Kg                                     | D<br><u>☆</u>  | 05/14/18 13:10                                                                                                                                                                               | 05/29/18 11:38                                                                                                                                                             | 20                                                                              |
| Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA)                                                                                                                                                                                             | Result                                                 | Qualifier<br>U M                | LOQ                                              | 1.9                             |                                           |                | 05/14/18 13:10                                                                                                                                                                               | -                                                                                                                                                                          | 20                                                                              |
| Analyte Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                           | 5.0<br>5.0                                             | Qualifier<br>U M                |                                                  | 1.9<br>2.5<br>2.0               | ug/Kg<br>ug/Kg<br>ug/Kg                   | <del></del>    | 05/14/18 13:10                                                                                                                                                                               | 05/29/18 11:38<br>05/29/18 11:38                                                                                                                                           | 20                                                                              |
| Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA)                                                                                                                                                                                             | 5.0<br>5.0<br>5.0<br>5.0                               | Qualifier<br>U M<br>U           | 10Q<br>7.4<br>7.4                                | 1.9<br>2.5<br>2.0               | ug/Kg<br>ug/Kg                            | <del></del>    | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10                                                                                                                                           | 05/29/18 11:38<br>05/29/18 11:38                                                                                                                                           | 20<br>20<br>20<br>20                                                            |
| Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA)                                                                                                                                                               | Result 5.0 5.0 5.0 4.5                                 | Qualifier U M U U M             | 7.4<br>7.4<br>7.4                                | 1.9<br>2.5<br>2.0<br>1.5        | ug/Kg<br>ug/Kg<br>ug/Kg                   | ф<br>\$<br>\$  | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10                                                                                                                         | 05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38                                                                                                                         | 20<br>20<br>20                                                                  |
| Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid                                                                                              | Result 5.0 5.0 5.0 4.5                                 | Qualifier U M U U M U M U M J D | 7.4<br>7.4<br>7.4<br>7.4<br>9.9                  | 1.9<br>2.5<br>2.0<br>1.5        | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | \$<br>\$<br>\$ | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10                                                                                                                         | 05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38                                                                                     | 20<br>20<br>20<br>20<br>20                                                      |
| Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid                                                         | 5.0<br>5.0<br>5.0<br>4.5<br><b>6.6</b>                 | Qualifier U M U U M U M D D     | 7.4<br>7.4<br>7.4<br>9.9<br>7.4                  | 1.9<br>2.5<br>2.0<br>1.5        | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | *              | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10                                                                                                       | 05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38                                                                                     | 20<br>20<br>20                                                                  |
| Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS)                                                  | 5.0<br>5.0<br>5.0<br>4.5<br>6.6                        | Qualifier U M U U M U M D D     | 7.4<br>7.4<br>7.4<br>9.9<br>7.4                  | 1.9<br>2.5<br>2.0<br>1.5<br>1.5 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | *              | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10                                                                                     | 05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38                                                                   | 20<br>20<br>20<br>20<br>20<br>20                                                |
| Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution                                 | \$5.0 \$5.0 \$5.0 \$4.5 \$6.6 \$120 \$%Recovery        | Qualifier U M U U M U M D D     | 7.4 7.4 7.4 9.9 7.4 25  Limits                   | 1.9<br>2.5<br>2.0<br>1.5<br>1.5 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | *              | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>Prepared<br>05/14/18 13:10                                                       | 05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38                                                                   | 20<br>20<br>20<br>20<br>20<br>20<br>20                                          |
| Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS                       | \$5.0 \$5.0 \$5.0 \$4.5 \$6.6 \$120 \$%Recovery \$69\$ | Qualifier U M U U M U M D D     | 7.4 7.4 9.9 7.4 25  Limits 50 - 150              | 1.9<br>2.5<br>2.0<br>1.5<br>1.5 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | *              | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>Prepared<br>05/14/18 13:10<br>05/14/18 13:10                                     | 05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>Analyzed<br>05/29/18 11:38                                     | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2 |
| Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA            | 8esult 5.0 5.0 5.0 4.5 6.6 120 %Recovery 69 76         | Qualifier U M U U M U M D D     | 7.4 7.4 9.9 7.4 25  Limits 50 - 150 50 - 150     | 1.9<br>2.5<br>2.0<br>1.5<br>1.5 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | *              | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>Prepared<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10                   | 05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>Analyzed<br>05/29/18 11:38<br>05/29/18 11:38                   | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2 |
| Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution  13C3-PFBS 13C4-PFHpA 13C4 PFOA | Result                                                 | Qualifier U M U U M U M D D     | LOQ 7.4 7.4 9.9 7.4 25  Limits 50 - 150 50 - 150 | 1.9<br>2.5<br>2.0<br>1.5<br>1.5 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | *              | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>Prepared<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10 | 05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38<br>Analyzed<br>05/29/18 11:38<br>05/29/18 11:38<br>05/29/18 11:38 | 20<br>20<br>20<br>20<br>20<br>20<br>20                                          |

Client Sample ID: KLA06-SB2-01 Lab Sample ID: 320-39023-41

Date Collected: 05/01/18 13:45 Matrix: Solid
Date Received: 05/09/18 09:20 Percent Solids: 63.5

| Analyte                              | Result    | Qualifier | LOQ      | DL    | Unit  | D         | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|----------|-------|-------|-----------|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 1.2       | J1        | 0.48     | 0.12  | ug/Kg | ₩         | 05/14/18 13:10 | 06/06/18 23:34 | 1       |
| Perfluorooctanoic acid (PFOA)        | 6.7       | J1        | 0.48     | 0.16  | ug/Kg | ₽         | 05/14/18 13:10 | 06/06/18 23:34 | 1       |
| Perfluorononanoic acid (PFNA)        | 1.6       |           | 0.48     | 0.13  | ug/Kg | ₽         | 05/14/18 13:10 | 06/06/18 23:34 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.99      |           | 0.64     | 0.094 | ug/Kg | <b>\$</b> | 05/14/18 13:10 | 06/06/18 23:34 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 42        | E J1      | 0.48     | 0.099 | ug/Kg | ₽         | 05/14/18 13:10 | 06/06/18 23:34 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 580       | E J1      | 1.6      | 0.38  | ug/Kg | ₩         | 05/14/18 13:10 | 06/06/18 23:34 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier | Limits   |       |       |           | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 82        |           | 50 - 150 |       |       |           | 05/14/18 13:10 | 06/06/18 23:34 | 1       |
| 13C4-PFHpA                           | 82        |           | 50 - 150 |       |       |           | 05/14/18 13:10 | 06/06/18 23:34 | 1       |

TestAmerica Sacramento

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: KLA06-SB2-01

Lab Sample ID: 320-39023-41 Date Collected: 05/01/18 13:45 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 63.5

| Isotope Dilution                                       | %Recovery                 | Qualifier      | Limits                           |      |       |             | Prepared                                                             | Analyzed                                           | Dil Fa                   |
|--------------------------------------------------------|---------------------------|----------------|----------------------------------|------|-------|-------------|----------------------------------------------------------------------|----------------------------------------------------|--------------------------|
| 13C4 PFOA                                              | 84                        |                | 50 - 150                         |      |       |             | 05/14/18 13:10                                                       | 06/06/18 23:34                                     |                          |
| 13C5 PFNA                                              | 54                        |                | 50 - 150                         |      |       |             | 05/14/18 13:10                                                       | 06/06/18 23:34                                     |                          |
| 1802 PFHxS                                             | 75                        |                | 50 - 150                         |      |       |             | 05/14/18 13:10                                                       | 06/06/18 23:34                                     |                          |
| 13C4 PFOS                                              | 54                        |                | 50 - 150                         |      |       |             | 05/14/18 13:10                                                       | 06/06/18 23:34                                     |                          |
| Method: EPA 537 (Mod) - PFA<br>Analyte                 |                           | 5.1, Table E   | 3-15 - DL<br>LOQ                 | DL   | Unit  | D           | Prepared                                                             | Analyzed                                           | Dil Fa                   |
| Perfluoroheptanoic acid (PFHpA)                        |                           | J D J1         | 4.8                              | 1.2  | ug/Kg | <del></del> | •                                                                    | 05/29/18 12:49                                     | 1                        |
| Perfluorooctanoic acid (PFOA)                          |                           | D J1           | 4.8                              | 1.6  | ug/Kg | ₽           |                                                                      | 05/29/18 12:49                                     | 1                        |
| Perfluorononanoic acid (PFNA)                          |                           | J D            | 4.8                              |      | ug/Kg | ☼           |                                                                      | 05/29/18 12:49                                     | 1                        |
| Perfluorobutanesulfonic acid                           |                           | J D J1         | 6.4                              |      | ug/Kg | \$          |                                                                      | 05/29/18 12:49                                     | 1                        |
| (PFBS) Perfluorohexanesulfonic acid (PFHxS)            | 44                        | D J1           | 4.8                              | 0.99 | ug/Kg | ₩           | 05/14/18 13:10                                                       | 05/29/18 12:49                                     | 10                       |
| Perfluorooctanesulfonic acid (PFOS)                    | 860                       | EDMJ1          | 16                               | 3.8  | ug/Kg | ₽           | 05/14/18 13:10                                                       | 05/29/18 12:49                                     | 1                        |
| Isotope Dilution                                       | %Recovery                 | Qualifier      | Limits                           |      |       |             | Prepared                                                             | Analyzed                                           | Dil Fa                   |
| 13C3-PFBS                                              | 67                        |                | 50 - 150                         |      |       |             | 05/14/18 13:10                                                       | 05/29/18 12:49                                     | 1                        |
| 13C4-PFHpA                                             | 80                        |                | 50 - 150                         |      |       |             | 05/14/18 13:10                                                       | 05/29/18 12:49                                     | 1                        |
| 13C4 PFOA                                              | 85                        |                | 50 - 150                         |      |       |             | 05/14/18 13:10                                                       | 05/29/18 12:49                                     | 1                        |
| 13C5 PFNA                                              | 77                        |                | 50 - 150                         |      |       |             | 05/14/18 13:10                                                       | 05/29/18 12:49                                     | 1                        |
| 1802 PFHxS                                             | 74                        |                | 50 - 150                         |      |       |             | 05/14/18 13:10                                                       | 05/29/18 12:49                                     | 1                        |
| 13C4 PFOS                                              | 64                        |                | 50 - 150                         |      |       |             | 05/14/18 13:10                                                       | 05/29/18 12:49                                     | 1                        |
| Method: EPA 537 (Mod) - PFA                            | S for QSM                 | 5.1, Table I   | 3-15 - DL2                       |      |       |             |                                                                      |                                                    |                          |
| Analyte                                                | Result                    | Qualifier      | LOQ                              | DL   | Unit  | D           | Prepared                                                             | Analyzed                                           | Dil Fa                   |
| Perfluoroheptanoic acid (PFHpA)                        | 32                        | U              | 48                               | 12   | ug/Kg | ☼           | 05/14/18 13:10                                                       | 05/29/18 12:02                                     | 100                      |
| Perfluorooctanoic acid (PFOA)                          | 32                        | U              | 48                               | 16   | ug/Kg | ☼           | 05/14/18 13:10                                                       | 05/29/18 12:02                                     | 10                       |
| Perfluorononanoic acid (PFNA)                          | 32                        | U              | 48                               | 13   | ug/Kg | ₩           | 05/14/18 13:10                                                       | 05/29/18 12:02                                     | 10                       |
| Perfluorobutanesulfonic acid (PFBS)                    | 29                        | U              | 64                               | 9.4  | ug/Kg |             | 05/14/18 13:10                                                       | 05/29/18 12:02                                     | 10                       |
| Perfluorohexanesulfonic acid (PFHxS)                   | 39                        | J D J1         | 48                               | 9.9  | ug/Kg | ₽           | 05/14/18 13:10                                                       | 05/29/18 12:02                                     | 10                       |
| ,                                                      | 960                       | D M J1         | 160                              | 38   | ug/Kg | ₽           | 05/14/18 13:10                                                       | 05/29/18 12:02                                     | 10                       |
| Perfluorooctanesulfonic acid (PFOS)                    |                           |                |                                  |      |       |             |                                                                      |                                                    |                          |
|                                                        | %Recovery                 | Qualifier      | Limits                           |      |       |             | Prepared                                                             | Analyzed                                           | Dil Fa                   |
| (PFOS)                                                 | %Recovery                 | Qualifier<br>M | Limits 50 - 150                  |      |       |             |                                                                      | Analyzed 05/29/18 12:02                            |                          |
| (PFOS) Isotope Dilution 13C3-PFBS                      | %Recovery                 | -              |                                  |      |       |             | 05/14/18 13:10                                                       |                                                    | 10                       |
| (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA           | %Recovery                 | -              | 50 - 150                         |      |       |             | 05/14/18 13:10<br>05/14/18 13:10                                     | 05/29/18 12:02                                     | 10                       |
| (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA 13C4 PFOA | <b>%Recovery</b> 68 66    | -              | 50 - 150<br>50 - 150             |      |       |             | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10                   | 05/29/18 12:02<br>05/29/18 12:02                   | 10<br>10<br>10           |
| (PFOS)<br>Isotope Dilution                             | <b>%Recovery</b> 68 66 81 | -              | 50 - 150<br>50 - 150<br>50 - 150 |      |       |             | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10 | 05/29/18 12:02<br>05/29/18 12:02<br>05/29/18 12:02 | 100<br>100<br>100<br>100 |

Client Sample ID: KLA06-SB2-02 Lab Sample ID: 320-39023-42

Date Collected: 05/01/18 13:50 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 70.3

| Method: EPA 537 (Mod) - PFAS    | for QSM 5.1, Table B | -15  |        |       |   |                |                |         |
|---------------------------------|----------------------|------|--------|-------|---|----------------|----------------|---------|
| Analyte                         | Result Qualifier     | LOQ  | DL I   | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Perfluoroheptanoic acid (PFHpA) | 1.6                  | 0.43 | 0.11 ι | ug/Kg | ₩ | 05/14/18 13:10 | 06/07/18 00:13 | 1       |
| Perfluorooctanoic acid (PFOA)   | 6.4                  | 0.43 | 0.14 ι | ug/Kg | ☼ | 05/14/18 13:10 | 06/07/18 00:13 | 1       |
| Perfluorononanoic acid (PFNA)   | 1.7                  | 0.43 | 0.12 ι | ug/Kg | ₩ | 05/14/18 13:10 | 06/07/18 00:13 | 1       |

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

| Client Sample ID: KLA06-SB2-02 Lab Sample ID: 320-39023-4 |
|-----------------------------------------------------------|
|-----------------------------------------------------------|

 Date Collected: 05/01/18 13:50
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 70.3

| Method: EPA 537 (Mod) - PFA<br>Analyte             |                | Qualifier    | LOQ                  | ,     | Unit  | D           | Prepared       | Analyzed                         | Dil Fa |
|----------------------------------------------------|----------------|--------------|----------------------|-------|-------|-------------|----------------|----------------------------------|--------|
| Perfluorobutanesulfonic acid                       | 2.1            |              | 0.57                 | 0.084 | ug/Kg | <del></del> | 05/14/18 13:10 | 06/07/18 00:13                   |        |
| PFBS) Perfluorohexanesulfonic acid                 | 40             | Ē            | 0.43                 | 0.089 | ug/Kg |             | 05/14/18 13:10 | 06/07/18 00:13                   |        |
| PFHxS)<br>Perfluorooctanesulfonic acid<br>PFOS)    | 920            | E            | 1.4                  | 0.34  | ug/Kg | ₽           | 05/14/18 13:10 | 06/07/18 00:13                   |        |
| Isotope Dilution                                   | %Recovery      | Qualifier    | Limits               |       |       |             | Prepared       | Analyzed                         | Dil Fa |
| 13C3-PFBS                                          | 81             |              | 50 - 150             |       |       |             | 05/14/18 13:10 | 06/07/18 00:13                   | -      |
| 13C4-PFHpA                                         | 83             |              | 50 - 150             |       |       |             | 05/14/18 13:10 | 06/07/18 00:13                   |        |
| 3C4 PFOA                                           | 83             |              | 50 <sub>-</sub> 150  |       |       |             | 05/14/18 13:10 | 06/07/18 00:13                   |        |
| 3C5 PFNA                                           | 44             | Q            | 50 - 150             |       |       |             | 05/14/18 13:10 | 06/07/18 00:13                   |        |
| 1802 PFHxS                                         | 75             | •            | 50 - 150             |       |       |             |                | 06/07/18 00:13                   |        |
| 3C4 PFOS                                           |                | Q            | 50 - 150             |       |       |             |                | 06/07/18 00:13                   |        |
| Method: EPA 537 (Mod) - PFA                        | S for QSM !    | 5.1. Table I | B-15 - DL            |       |       |             |                |                                  |        |
| Analyte                                            |                | Qualifier    | LOQ                  | DL    | Unit  | D           | Prepared       | Analyzed                         | Dil Fa |
| Perfluoroheptanoic acid (PFHpA)                    | 1.8            | JD           | 4.3                  | 1.1   | ug/Kg | ₩           | 05/14/18 13:10 | 05/29/18 13:28                   | -      |
| Perfluorooctanoic acid (PFOA)                      | 6.2            | D            | 4.3                  | 1.4   | ug/Kg | ₽           | 05/14/18 13:10 | 05/29/18 13:28                   |        |
| Perfluorononanoic acid (PFNA)                      | 1.8            | J D          | 4.3                  | 1.2   | ug/Kg | ₩           | 05/14/18 13:10 | 05/29/18 13:28                   |        |
| Perfluorobutanesulfonic acid                       | 2.1            | JD           | 5.7                  | 0.84  | ug/Kg | <b>\$</b>   | 05/14/18 13:10 | 05/29/18 13:28                   |        |
| Perfluorohexanesulfonic acid PFHxS)                | 45             | D            | 4.3                  | 0.89  | ug/Kg | ₽           | 05/14/18 13:10 | 05/29/18 13:28                   |        |
| Perfluorooctanesulfonic acid PFOS)                 | 1300           | E D          | 14                   | 3.4   | ug/Kg | ₽           | 05/14/18 13:10 | 05/29/18 13:28                   |        |
| sotope Dilution                                    | %Recovery      | Qualifier    | Limits               |       |       |             | Prepared       | Analyzed                         | Dil F  |
| 13C3-PFBS                                          | 73             |              | 50 - 150             |       |       |             | 05/14/18 13:10 | 05/29/18 13:28                   |        |
| 3C4-PFHpA                                          | 78             |              | 50 - 150             |       |       |             | 05/14/18 13:10 | 05/29/18 13:28                   |        |
| 3C4 PFOA                                           | 90             |              | 50 - 150             |       |       |             | 05/14/18 13:10 | 05/29/18 13:28                   |        |
| 3C5 PFNA                                           | 75             |              | 50 - 150             |       |       |             | 05/14/18 13:10 | 05/29/18 13:28                   |        |
| 1802 PFHxS                                         | 72             |              | 50 <sub>-</sub> 150  |       |       |             |                | 05/29/18 13:28                   |        |
| 13C4 PFOS                                          | 61             |              | 50 - 150             |       |       |             |                | 05/29/18 13:28                   |        |
| Method: EPA 537 (Mod) - PFA                        | S for QSM !    | 5.1. Table I | B-15 - DL2           |       |       |             |                |                                  |        |
| Analyte                                            |                | Qualifier    | LOQ                  | DL    | Unit  | D           | Prepared       | Analyzed                         | Dil F  |
| Perfluoroheptanoic acid (PFHpA)                    | 29             | U            | 43                   | 11    | ug/Kg | <u> </u>    | 05/14/18 13:10 | 05/29/18 12:25                   | 1      |
| Perfluorooctanoic acid (PFOA)                      | 29             | U M          | 43                   | 14    | ug/Kg | ₩           | 05/14/18 13:10 | 05/29/18 12:25                   | 1      |
| Perfluorononanoic acid (PFNA)                      | 29             | U            | 43                   | 12    | ug/Kg | ☼           | 05/14/18 13:10 | 05/29/18 12:25                   | 1      |
| Perfluorobutanesulfonic acid (PFBS)                | 26             | U            | 57                   | 8.4   | ug/Kg |             | 05/14/18 13:10 | 05/29/18 12:25                   | 1      |
| Perfluorohexanesulfonic acid                       | 42             | J D          | 43                   |       | ug/Kg | ₽           | 05/14/18 13:10 | 05/29/18 12:25                   | 1      |
| Perfluorooctanesulfonic acid                       | 1600           | D            | 140                  | 34    | ug/Kg | ₩           | 05/14/18 13:10 | 05/29/18 12:25                   | 1      |
| sotope Dilution                                    | %Recovery      | Qualifier    | Limits               |       |       |             | Prepared       | Analyzed                         | Dil F  |
| 3C3-PFBS                                           | 61             | M            | 50 - 150             |       |       |             | 05/14/18 13:10 | 05/29/18 12:25                   | 1      |
|                                                    | 72             |              | 50 - 150             |       |       |             | 05/14/18 13:10 | 05/29/18 12:25                   | 1      |
| 3C4-PFHpA                                          |                |              | 50 - 150             |       |       |             |                | 05/29/18 12:25                   | 1      |
| ·                                                  | 78             |              | 00 - 100             |       |       |             |                |                                  |        |
| 13C4 PFOA                                          |                |              |                      |       |       |             | 05/14/18 13:10 | 05/29/18 12:25                   | 1      |
| 13C4-PFHpA<br>13C4 PFOA<br>13C5 PFNA<br>18O2 PFHxS | 78<br>78<br>64 |              | 50 - 150<br>50 - 150 |       |       |             |                | 05/29/18 12:25<br>05/29/18 12:25 | 1      |

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: KLA07-SD1-01 Lab Sample ID: 320-39023-43

 Date Collected: 05/06/18 11:30
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 92.9

| Analyte                              | Result    | Qualifier | LOQ                 | DL    | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|---------------------|-------|-------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 0.22      | U         | 0.32                | 0.084 | ug/Kg | ₽ | 05/14/18 13:10 | 06/07/18 00:52 | 1       |
| Perfluorooctanoic acid (PFOA)        | 0.22      | U         | 0.32                | 0.11  | ug/Kg | ☼ | 05/14/18 13:10 | 06/07/18 00:52 | 1       |
| Perfluorononanoic acid (PFNA)        | 0.22      | U         | 0.32                | 0.088 | ug/Kg | ☼ | 05/14/18 13:10 | 06/07/18 00:52 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.19      | U         | 0.43                | 0.064 | ug/Kg | ₽ | 05/14/18 13:10 | 06/07/18 00:52 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 0.22      | U         | 0.32                | 0.067 | ug/Kg | ☼ | 05/14/18 13:10 | 06/07/18 00:52 | 1       |
| Perfluorooctanesulfonic acid         | 1.5       |           | 1.1                 | 0.26  | ug/Kg | ₩ | 05/14/18 13:10 | 06/07/18 00:52 | 1       |
| (PFOS) Isotope Dilution              | %Recovery | Qualifier | Limits              |       |       |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 68        |           | 50 - 150            |       |       |   | 05/14/18 13:10 | 06/07/18 00:52 | 1       |
| 13C4-PFHpA                           | 80        |           | 50 - 150            |       |       |   | 05/14/18 13:10 | 06/07/18 00:52 | 1       |
| 13C4 PFOA                            | 84        |           | 50 - 150            |       |       |   | 05/14/18 13:10 | 06/07/18 00:52 | 1       |
| 13C5 PFNA                            | 82        |           | 50 - 150            |       |       |   | 05/14/18 13:10 | 06/07/18 00:52 | 1       |
| 1802 PFHxS                           | 73        |           | 50 - 150            |       |       |   | 05/14/18 13:10 | 06/07/18 00:52 | 1       |
| 13C4 PFOS                            | 75        |           | 50 <sub>-</sub> 150 |       |       |   | 05/44/40 42:40 | 06/07/18 00:52 | 1       |

Client Sample ID: ER-01

Date Collected: 05/01/18 15:30

Lab Sample ID: 320-39023-44

Matrix: Water

Date Received: 05/09/18 09:20

13C4 PFOS

| Analyte                              | Result    | Qualifier | LOQ      | DL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|----------|------|------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 0.88      | J         | 1.7      | 0.51 | ng/L |   | 05/15/18 12:48 | 05/21/18 14:03 | 1       |
| Perfluorooctanoic acid (PFOA)        | 1.7       |           | 1.7      | 0.46 | ng/L |   | 05/15/18 12:48 | 05/21/18 14:03 | 1       |
| Perfluorononanoic acid (PFNA)        | 1.3       | U         | 1.7      | 0.44 | ng/L |   | 05/15/18 12:48 | 05/21/18 14:03 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.40      | J M       | 1.7      | 0.39 | ng/L |   | 05/15/18 12:48 | 05/21/18 14:03 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 1.9       |           | 1.7      | 0.32 | ng/L |   | 05/15/18 12:48 | 05/21/18 14:03 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 8.7       |           | 3.4      | 0.93 | ng/L |   | 05/15/18 12:48 | 05/21/18 14:03 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier | Limits   |      |      |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 88        |           | 50 - 150 |      |      |   | 05/15/18 12:48 | 05/21/18 14:03 | 1       |
| 13C4-PFHpA                           | 88        |           | 50 - 150 |      |      |   | 05/15/18 12:48 | 05/21/18 14:03 | 1       |
| 13C4 PFOA                            | 90        |           | 50 - 150 |      |      |   | 05/15/18 12:48 | 05/21/18 14:03 | 1       |
| 13C5 PFNA                            | 92        |           | 50 - 150 |      |      |   | 05/15/18 12:48 | 05/21/18 14:03 | 1       |
| 18O2 PFHxS                           | 88        |           | 50 - 150 |      |      |   | 05/15/18 12:48 | 05/21/18 14:03 | 1       |

Client Sample ID: FB-01 Lab Sample ID: 320-39023-45

50 - 150

Date Received: 05/09/18 09:20

Date Collected: 05/01/18 15:50

| Analyte                             | Result | Qualifier | LOQ | DL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|-------------------------------------|--------|-----------|-----|------|------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)     | 1.2    | U         | 1.7 | 0.51 | ng/L |   | 05/15/18 12:48 | 05/19/18 06:46 | 1       |
| Perfluorooctanoic acid (PFOA)       | 1.2    | U         | 1.7 | 0.45 | ng/L |   | 05/15/18 12:48 | 05/19/18 06:46 | 1       |
| Perfluorononanoic acid (PFNA)       | 1.2    | U         | 1.7 | 0.43 | ng/L |   | 05/15/18 12:48 | 05/19/18 06:46 | 1       |
| Perfluorobutanesulfonic acid (PFBS) | 0.83   | U         | 1.7 | 0.38 | ng/L |   | 05/15/18 12:48 | 05/19/18 06:46 | 1       |
| Perfluorohexanesulfonic acid        | 0.61   | J         | 1.7 | 0.32 | ng/L |   | 05/15/18 12:48 | 05/19/18 06:46 | 1       |

TestAmerica Sacramento

**Matrix: Water** 

05/15/18 12:48 05/21/18 14:03

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: FB-01 Lab Sample ID: 320-39023-45

Date Collected: 05/01/18 15:50 Matrix: Water Date Received: 05/09/18 09:20

| Analyte                             | Result    | Qualifier | LOQ                 | DL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|-------------------------------------|-----------|-----------|---------------------|------|------|---|----------------|----------------|---------|
| Perfluorooctanesulfonic acid (PFOS) | 1.7       | J         | 3.3                 | 0.91 | ng/L |   | 05/15/18 12:48 | 05/19/18 06:46 | 1       |
| Isotope Dilution                    | %Recovery | Qualifier | Limits              |      |      |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                           | 91        |           | 50 - 150            |      |      |   | 05/15/18 12:48 | 05/19/18 06:46 | 1       |
| 13C4-PFHpA                          | 101       |           | 50 - 150            |      |      |   | 05/15/18 12:48 | 05/19/18 06:46 | 1       |
| 13C4 PFOA                           | 94        |           | 50 - 150            |      |      |   | 05/15/18 12:48 | 05/19/18 06:46 | 1       |
| 13C5 PFNA                           | 105       |           | 50 - 150            |      |      |   | 05/15/18 12:48 | 05/19/18 06:46 | 1       |
| 1802 PFHxS                          | 93        |           | 50 <sub>-</sub> 150 |      |      |   | 05/15/18 12:48 | 05/19/18 06:46 | 1       |
| 13C4 PFOS                           | 95        |           | 50 - 150            |      |      |   | 05/15/18 12:48 | 05/19/18 06:46 | 1       |

Client Sample ID: ER-02 Lab Sample ID: 320-39023-46

Date Collected: 05/02/18 09:40 Matrix: Water Date Received: 05/09/18 09:20

| Method: EPA 537 (Mod) - PFA          | S for QSM | 5.1, Table I | B-15     |      |      |   |                |                |         |
|--------------------------------------|-----------|--------------|----------|------|------|---|----------------|----------------|---------|
| Analyte                              | Result    | Qualifier    | LOQ      | DL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Perfluoroheptanoic acid (PFHpA)      | 1.3       | U            | 1.7      | 0.53 | ng/L |   | 05/16/18 14:51 | 05/28/18 09:29 | 1       |
| Perfluorooctanoic acid (PFOA)        | 0.52      | J M          | 1.7      | 0.47 | ng/L |   | 05/16/18 14:51 | 05/28/18 09:29 | 1       |
| Perfluorononanoic acid (PFNA)        | 1.3       | U            | 1.7      | 0.45 | ng/L |   | 05/16/18 14:51 | 05/28/18 09:29 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.87      | U            | 1.7      | 0.40 | ng/L |   | 05/16/18 14:51 | 05/28/18 09:29 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 1.0       | J            | 1.7      | 0.33 | ng/L |   | 05/16/18 14:51 | 05/28/18 09:29 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 4.4       | М            | 3.5      | 0.96 | ng/L |   | 05/16/18 14:51 | 05/28/18 09:29 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier    | Limits   |      |      |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 75        |              | 50 - 150 |      |      |   | 05/16/18 14:51 | 05/28/18 09:29 | 1       |
| 13C4-PFHpA                           | 71        |              | 50 - 150 |      |      |   | 05/16/18 14:51 | 05/28/18 09:29 | 1       |
| 13C4 PFOA                            | 80        |              | 50 - 150 |      |      |   | 05/16/18 14:51 | 05/28/18 09:29 | 1       |
| 13C5 PFNA                            | 84        |              | 50 - 150 |      |      |   | 05/16/18 14:51 | 05/28/18 09:29 | 1       |
| 1802 PFHxS                           | 75        |              | 50 - 150 |      |      |   | 05/16/18 14:51 | 05/28/18 09:29 | 1       |
| 13C4 PFOS                            | 77        |              | 50 - 150 |      |      |   | 05/16/18 14:51 | 05/28/18 09:29 | 1       |

Client Sample ID: ER-03

Date Collected: 05/03/18 10:30

Lab Sample ID: 320-39023-47

Matrix: Water

Date Received: 05/08/18 09:00

| Analyte                              | Result    | Qualifier | LOQ      | DL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|----------|------|------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 1.3       | U         | 1.8      | 0.55 | ng/L |   | 05/17/18 14:42 | 05/25/18 23:59 | 1       |
| Perfluorooctanoic acid (PFOA)        | 1.3       | U         | 1.8      | 0.49 | ng/L |   | 05/17/18 14:42 | 05/25/18 23:59 | 1       |
| Perfluorononanoic acid (PFNA)        | 1.3       | U         | 1.8      | 0.47 | ng/L |   | 05/17/18 14:42 | 05/25/18 23:59 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.90      | U         | 1.8      | 0.41 | ng/L |   | 05/17/18 14:42 | 05/25/18 23:59 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 0.90      | U         | 1.8      | 0.34 | ng/L |   | 05/17/18 14:42 | 05/25/18 23:59 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 2.7       | U         | 3.6      | 0.99 | ng/L |   | 05/17/18 14:42 | 05/25/18 23:59 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier | Limits   |      |      |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 65        | -         | 50 - 150 |      |      |   | 05/17/18 14:42 | 05/25/18 23:59 | 1       |
| 13C4-PFHpA                           | 66        |           | 50 - 150 |      |      |   | 05/17/18 14:42 | 05/25/18 23:59 | 1       |
| 13C4 PFOA                            | 69        |           | 50 - 150 |      |      |   | 05/17/18 14:42 | 05/25/18 23:59 | 1       |
| 13C5 PFNA                            | 71        |           | 50 - 150 |      |      |   | 05/17/18 14:42 | 05/25/18 23:59 | 1       |
| 1802 PFHxS                           | 63        |           | 50 - 150 |      |      |   | 05/17/18 14:42 | 05/25/18 23:59 | 1       |

TestAmerica Sacramento

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: ER-03 Lab Sample ID: 320-39023-47

Date Collected: 05/03/18 10:30 Date Received: 05/08/18 09:00

**Matrix: Water** 

Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 (Continued)

Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C4 PFOS 64 50 - 150 05/17/18 14:42 05/25/18 23:59

Client Sample ID: ER-04 Lab Sample ID: 320-39023-48 Date Collected: 05/04/18 11:00 **Matrix: Water** 

Date Received: 05/09/18 09:20

Perfluoroheptanoic acid (PFHpA)

Perfluorooctanoic acid (PFOA)

| Analyte                              | Result    | Qualifier | LOQ                 | DL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|---------------------|------|------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 1.4       | U         | 1.9                 | 0.57 | ng/L |   | 05/17/18 14:42 | 05/26/18 00:15 | 1       |
| Perfluorooctanoic acid (PFOA)        | 1.4       | UM        | 1.9                 | 0.50 | ng/L |   | 05/17/18 14:42 | 05/26/18 00:15 | 1       |
| Perfluorononanoic acid (PFNA)        | 1.4       | U         | 1.9                 | 0.48 | ng/L |   | 05/17/18 14:42 | 05/26/18 00:15 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.93      | U         | 1.9                 | 0.43 | ng/L |   | 05/17/18 14:42 | 05/26/18 00:15 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 0.46      | J         | 1.9                 | 0.35 | ng/L |   | 05/17/18 14:42 | 05/26/18 00:15 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 1.3       | J         | 3.7                 | 1.0  | ng/L |   | 05/17/18 14:42 | 05/26/18 00:15 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier | Limits              |      |      |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 70        |           | 50 - 150            |      |      |   | 05/17/18 14:42 | 05/26/18 00:15 | 1       |
| 13C4-PFHpA                           | 70        |           | 50 - 150            |      |      |   | 05/17/18 14:42 | 05/26/18 00:15 | 1       |
| 13C4 PFOA                            | 73        |           | 50 - 150            |      |      |   | 05/17/18 14:42 | 05/26/18 00:15 | 1       |
| 13C5 PFNA                            | 78        |           | 50 - 150            |      |      |   | 05/17/18 14:42 | 05/26/18 00:15 | 1       |
| 18O2 PFHxS                           | 69        |           | 50 - 150            |      |      |   | 05/17/18 14:42 | 05/26/18 00:15 | 1       |
| 13C4 PFOS                            | 69        |           | 50 <sub>-</sub> 150 |      |      |   | 05/17/18 14:42 | 05/26/18 00:15 | 1       |

Client Sample ID: MW-572-02-PRL05-01D Lab Sample ID: 320-39023-49

Date Collected: 05/06/18 10:30 Matrix: Water Date Received: 05/08/18 09:00

| Analyte                              | Result      | Qualifier    | LOQ       | DL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-------------|--------------|-----------|------|------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 24          |              | 1.9       | 0.58 | ng/L |   | 05/18/18 10:26 | 05/28/18 12:37 | 1       |
| Perfluorooctanoic acid (PFOA)        | 57          |              | 1.9       | 0.51 | ng/L |   | 05/18/18 10:26 | 05/28/18 12:37 | 1       |
| Perfluorononanoic acid (PFNA)        | 3.9         |              | 1.9       | 0.50 | ng/L |   | 05/18/18 10:26 | 05/28/18 12:37 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 28          |              | 1.9       | 0.44 | ng/L |   | 05/18/18 10:26 | 05/28/18 12:37 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 370         | E            | 1.9       | 0.36 | ng/L |   | 05/18/18 10:26 | 05/28/18 12:37 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 1200        | E            | 3.8       | 1.0  | ng/L |   | 05/18/18 10:26 | 05/28/18 12:37 | 1       |
| Isotope Dilution                     | %Recovery   | Qualifier    | Limits    |      |      |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 59          |              | 50 - 150  |      |      |   | 05/18/18 10:26 | 05/28/18 12:37 | 1       |
| 13C4-PFHpA                           | 60          |              | 50 - 150  |      |      |   | 05/18/18 10:26 | 05/28/18 12:37 | 1       |
| 13C4 PFOA                            | 65          |              | 50 - 150  |      |      |   | 05/18/18 10:26 | 05/28/18 12:37 | 1       |
| 13C5 PFNA                            | 61          |              | 50 - 150  |      |      |   | 05/18/18 10:26 | 05/28/18 12:37 | 1       |
| 1802 PFHxS                           | 58          |              | 50 - 150  |      |      |   | 05/18/18 10:26 | 05/28/18 12:37 | 1       |
| 13C4 PFOS                            | 55          |              | 50 - 150  |      |      |   | 05/18/18 10:26 | 05/28/18 12:37 | 1       |
| Method: EPA 537 (Mod) - PFA          | S for QSM 5 | 5.1. Table I | B-15 - DL |      |      |   |                |                |         |
| Analyte                              |             | Qualifier    | LOQ       | DI   | Unit | D | Prepared       | Analyzed       | Dil Fac |

TestAmerica Sacramento

05/18/18 10:26 05/29/18 20:54

05/18/18 10:26 05/29/18 20:54

10

19

19

5.8 ng/L

5.1 ng/L

24 D

62 D

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Date Collected: 05/06/18 10:30 Matrix: Water

Date Received: 05/08/18 09:00

| Analyte                              | Result    | Qualifier | LOQ      | DL  | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|----------|-----|------|---|----------------|----------------|---------|
| Perfluorononanoic acid (PFNA)        | 14        | UM        | 19       | 5.0 | ng/L |   | 05/18/18 10:26 | 05/29/18 20:54 | 10      |
| Perfluorobutanesulfonic acid (PFBS)  | 28        | D         | 19       | 4.4 | ng/L |   | 05/18/18 10:26 | 05/29/18 20:54 | 10      |
| Perfluorohexanesulfonic acid (PFHxS) | 390       | D         | 19       | 3.6 | ng/L |   | 05/18/18 10:26 | 05/29/18 20:54 | 10      |
| Perfluorooctanesulfonic acid (PFOS)  | 1200      | D         | 38       | 10  | ng/L |   | 05/18/18 10:26 | 05/29/18 20:54 | 10      |
| Isotope Dilution                     | %Recovery | Qualifier | Limits   |     |      |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 53        |           | 50 - 150 |     |      |   | 05/18/18 10:26 | 05/29/18 20:54 | 10      |
| 13C4-PFHpA                           | 56        |           | 50 - 150 |     |      |   | 05/18/18 10:26 | 05/29/18 20:54 | 10      |
| 13C4 PFOA                            | 63        |           | 50 - 150 |     |      |   | 05/18/18 10:26 | 05/29/18 20:54 | 10      |
| 13C5 PFNA                            | 60        |           | 50 - 150 |     |      |   | 05/18/18 10:26 | 05/29/18 20:54 | 10      |
| 1802 PFHxS                           | 52        |           | 50 - 150 |     |      |   | 05/18/18 10:26 | 05/29/18 20:54 | 10      |
|                                      |           |           |          |     |      |   |                |                |         |

Client Sample ID: KLA03-SB-2-01D Lab Sample ID: 320-39023-51

| Analyte                              | Result    | Qualifier | LOQ                 | DL    | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|---------------------|-------|-------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 0.26      | U         | 0.38                | 0.10  | ug/Kg | ₩ | 05/14/18 13:10 | 06/07/18 01:00 | 1       |
| Perfluorooctanoic acid (PFOA)        | 0.16      | J         | 0.38                | 0.13  | ug/Kg | ☼ | 05/14/18 13:10 | 06/07/18 01:00 | 1       |
| Perfluorononanoic acid (PFNA)        | 0.26      | U         | 0.38                | 0.10  | ug/Kg | ☼ | 05/14/18 13:10 | 06/07/18 01:00 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.098     | J         | 0.51                | 0.076 | ug/Kg | ₽ | 05/14/18 13:10 | 06/07/18 01:00 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 0.71      |           | 0.38                | 0.080 | ug/Kg | ₽ | 05/14/18 13:10 | 06/07/18 01:00 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 2.7       |           | 1.3                 | 0.31  | ug/Kg | ☼ | 05/14/18 13:10 | 06/07/18 01:00 | 1       |
| lsotope Dilution                     | %Recovery | Qualifier | Limits              |       |       |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 79        |           | 50 - 150            |       |       |   | 05/14/18 13:10 | 06/07/18 01:00 | 1       |
| 13C4-PFHpA                           | 90        |           | 50 - 150            |       |       |   | 05/14/18 13:10 | 06/07/18 01:00 | 1       |
| 13C4 PFOA                            | 89        |           | 50 - 150            |       |       |   | 05/14/18 13:10 | 06/07/18 01:00 | 1       |
| 13C5 PFNA                            | 93        |           | 50 - 150            |       |       |   | 05/14/18 13:10 | 06/07/18 01:00 | 1       |
| 18O2 PFHxS                           | 84        |           | 50 - 150            |       |       |   | 05/14/18 13:10 | 06/07/18 01:00 | 1       |
| 13C4 PFOS                            | 82        |           | 50 <sub>-</sub> 150 |       |       |   | 05/14/18 13:10 | 06/07/18 01:00 | 1       |

Client Sample ID: KLA06-SB-2-02D Lab Sample ID: 320-39023-52

Date Collected: 05/01/18 13:50 Matrix: Solid
Date Received: 05/09/18 09:20 Percent Solids: 67.8

| Analyte                              | Result Qualifier | LOQ  | DL    | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|------------------|------|-------|-------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 1.0              | 0.44 | 0.12  | ug/Kg | ₩ | 05/14/18 13:10 | 06/07/18 00:21 | 1       |
| Perfluorooctanoic acid (PFOA)        | 4.1              | 0.44 | 0.15  | ug/Kg | ₩ | 05/14/18 13:10 | 06/07/18 00:21 | 1       |
| Perfluorononanoic acid (PFNA)        | 1.8              | 0.44 | 0.12  | ug/Kg | ☼ | 05/14/18 13:10 | 06/07/18 00:21 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 1.4              | 0.59 | 0.087 | ug/Kg | ₽ | 05/14/18 13:10 | 06/07/18 00:21 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 41 E             | 0.44 | 0.091 | ug/Kg | ₩ | 05/14/18 13:10 | 06/07/18 00:21 | 1       |

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

| Client Sample ID: KLA06-SB-2-02D | Lab Sample I |
|----------------------------------|--------------|
|----------------------------------|--------------|

ID: 320-39023-52 Date Collected: 05/01/18 13:50 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 67.8

| Analyte                                                                                                                                                                                    | Result                                                | Qualifier         | LOQ                                                                        | DL         | Unit                    | D              | Prepared                                                                                                                                      | Analyzed                                                                                                                    | Dil Fa                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------|----------------------------------------------------------------------------|------------|-------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Perfluorooctanesulfonic acid (PFOS)                                                                                                                                                        | 690                                                   | E                 | 1.5                                                                        | 0.35       | ug/Kg                   | <del></del>    | 05/14/18 13:10                                                                                                                                | 06/07/18 00:21                                                                                                              |                                                               |
| Isotope Dilution                                                                                                                                                                           | %Recovery                                             | Qualifier         | Limits                                                                     |            |                         |                | Prepared                                                                                                                                      | Analyzed                                                                                                                    | Dil Fa                                                        |
| 13C3-PFBS                                                                                                                                                                                  | 76                                                    |                   | 50 - 150                                                                   |            |                         |                | 05/14/18 13:10                                                                                                                                | 06/07/18 00:21                                                                                                              |                                                               |
| 13C4-PFHpA                                                                                                                                                                                 | 86                                                    |                   | 50 - 150                                                                   |            |                         |                | 05/14/18 13:10                                                                                                                                | 06/07/18 00:21                                                                                                              |                                                               |
| 13C4 PFOA                                                                                                                                                                                  | 83                                                    |                   | 50 - 150                                                                   |            |                         |                | 05/14/18 13:10                                                                                                                                | 06/07/18 00:21                                                                                                              |                                                               |
| 13C5 PFNA                                                                                                                                                                                  | 47                                                    | Q                 | 50 - 150                                                                   |            |                         |                | 05/14/18 13:10                                                                                                                                | 06/07/18 00:21                                                                                                              |                                                               |
| 1802 PFHxS                                                                                                                                                                                 | 76                                                    |                   | 50 <sub>-</sub> 150                                                        |            |                         |                | 05/14/18 13:10                                                                                                                                | 06/07/18 00:21                                                                                                              |                                                               |
| 13C4 PFOS                                                                                                                                                                                  | 44                                                    | Q                 | 50 - 150                                                                   |            |                         |                | 05/14/18 13:10                                                                                                                                | 06/07/18 00:21                                                                                                              |                                                               |
| Method: EPA 537 (Mod) - PFA                                                                                                                                                                | S for QSM                                             | 5.1, Table I      | B-15 - DL                                                                  |            |                         |                |                                                                                                                                               |                                                                                                                             |                                                               |
| Analyte                                                                                                                                                                                    |                                                       | Qualifier         | LOQ                                                                        |            | Unit                    | D              | Prepared                                                                                                                                      | Analyzed                                                                                                                    | Dil Fa                                                        |
| Perfluoroheptanoic acid (PFHpA)                                                                                                                                                            | 1.4                                                   | J D               | 4.4                                                                        | 1.2        | ug/Kg                   | ☼              | 05/14/18 13:10                                                                                                                                | 05/29/18 13:36                                                                                                              | 1                                                             |
| Perfluorooctanoic acid (PFOA)                                                                                                                                                              | 4.4                                                   | D                 | 4.4                                                                        | 1.5        | ug/Kg                   | ₽              | 05/14/18 13:10                                                                                                                                | 05/29/18 13:36                                                                                                              | 1                                                             |
| Perfluorononanoic acid (PFNA)                                                                                                                                                              | 1.8                                                   | J D               | 4.4                                                                        | 1.2        | ug/Kg                   | ☼              | 05/14/18 13:10                                                                                                                                | 05/29/18 13:36                                                                                                              | 1                                                             |
| Perfluorobutanesulfonic acid (PFBS)                                                                                                                                                        | 1.3                                                   | JD                | 5.9                                                                        | 0.87       | ug/Kg                   | ₽              | 05/14/18 13:10                                                                                                                                | 05/29/18 13:36                                                                                                              | 1                                                             |
| Perfluorohexanesulfonic acid (PFHxS)                                                                                                                                                       | 45                                                    | D                 | 4.4                                                                        | 0.91       | ug/Kg                   | ₩              | 05/14/18 13:10                                                                                                                                | 05/29/18 13:36                                                                                                              | 1                                                             |
| Perfluorooctanesulfonic acid (PFOS)                                                                                                                                                        | 1000                                                  | ED                | 15                                                                         | 3.5        | ug/Kg                   | ₩              | 05/14/18 13:10                                                                                                                                | 05/29/18 13:36                                                                                                              | 1                                                             |
| Isotope Dilution                                                                                                                                                                           | %Recovery                                             | Qualifier         | Limits                                                                     |            |                         |                | Prepared                                                                                                                                      | Analyzed                                                                                                                    | Dil Fa                                                        |
| 13C3-PFBS                                                                                                                                                                                  | 66                                                    |                   | 50 - 150                                                                   |            |                         |                | 05/14/18 13:10                                                                                                                                | 05/29/18 13:36                                                                                                              | 1                                                             |
| 13C4-PFHpA                                                                                                                                                                                 | 75                                                    |                   | 50 - 150                                                                   |            |                         |                | 05/14/18 13:10                                                                                                                                | 05/29/18 13:36                                                                                                              | 1                                                             |
| 13C4 PFOA                                                                                                                                                                                  | 84                                                    |                   | 50 - 150                                                                   |            |                         |                | 05/14/18 13:10                                                                                                                                | 05/29/18 13:36                                                                                                              | 1                                                             |
| 13C5 PFNA                                                                                                                                                                                  | 79                                                    |                   | 50 <sub>-</sub> 150                                                        |            |                         |                | 05/14/18 13:10                                                                                                                                | 05/29/18 13:36                                                                                                              | 1                                                             |
| 1802 PFHxS                                                                                                                                                                                 | 71                                                    |                   | 50 <sub>-</sub> 150                                                        |            |                         |                | 05/14/18 13:10                                                                                                                                | 05/29/18 13:36                                                                                                              | 1                                                             |
| 13C4 PFOS                                                                                                                                                                                  | 62                                                    |                   | 50 - 150                                                                   |            |                         |                | 05/14/18 13:10                                                                                                                                | 05/29/18 13:36                                                                                                              | 1                                                             |
| Method: EPA 537 (Mod) - PFA                                                                                                                                                                | S for QSM                                             | 5.1, Table I      | B-15 - DL2                                                                 |            |                         |                |                                                                                                                                               |                                                                                                                             |                                                               |
| Analyte                                                                                                                                                                                    |                                                       | Qualifier         | LOQ                                                                        |            | Unit                    | D              | Prepared                                                                                                                                      | Analyzed                                                                                                                    | Dil Fa                                                        |
| Perfluoroheptanoic acid (PFHpA)                                                                                                                                                            | 29                                                    |                   | 44                                                                         |            | ug/Kg                   | ☼              | 05/14/18 13:10                                                                                                                                |                                                                                                                             | 10                                                            |
| D (1 : :1/DEOA)                                                                                                                                                                            | 20                                                    | U M               |                                                                            | 4 -        | ug/Kg                   | ≎              | 05/14/18 13:10                                                                                                                                |                                                                                                                             | 10                                                            |
| Perfluorooctanoic acid (PFOA)                                                                                                                                                              | 25                                                    | O IVI             | 44                                                                         | 15         | - 5 5                   |                |                                                                                                                                               |                                                                                                                             |                                                               |
| Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA)                                                                                                                                | 29                                                    |                   | 44<br>44                                                                   |            | ug/Kg                   | ₩              | 05/14/18 13:10                                                                                                                                | 05/29/18 12:33                                                                                                              | 10                                                            |
|                                                                                                                                                                                            |                                                       | U                 |                                                                            | 12         |                         |                | 05/14/18 13:10<br>05/14/18 13:10                                                                                                              |                                                                                                                             |                                                               |
| Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid                                                                                             | 29                                                    | U                 | 44                                                                         | 12<br>8.7  | ug/Kg                   | \$<br>\$       |                                                                                                                                               | 05/29/18 12:33                                                                                                              | 10                                                            |
| Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid                                                        | 29                                                    | U<br>U<br>D       | 44<br>59                                                                   | 8.7<br>9.1 | ug/Kg<br>ug/Kg          | \$<br>\$<br>\$ | 05/14/18 13:10                                                                                                                                | 05/29/18 12:33<br>05/29/18 12:33                                                                                            | 10                                                            |
| Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS)                                                 | 29<br>27<br>46<br>1100                                | U<br>U<br>D       | 44<br>59<br>44<br>150                                                      | 8.7<br>9.1 | ug/Kg<br>ug/Kg<br>ug/Kg | \$<br>\$<br>\$ | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10                                                                                            | 05/29/18 12:33<br>05/29/18 12:33<br>05/29/18 12:33                                                                          | 10<br>10                                                      |
| Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution                                | 29<br>27<br>46<br>1100<br>%Recovery                   | U U D C Qualifier | 44<br>59<br>44<br>150<br><b>Limits</b>                                     | 8.7<br>9.1 | ug/Kg<br>ug/Kg<br>ug/Kg | \$<br>\$<br>\$ | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br><i>Prepared</i>                                                                         | 05/29/18 12:33<br>05/29/18 12:33<br>05/29/18 12:33<br><i>Analyzed</i>                                                       | 10<br>10<br>10<br><b>Dil Fa</b>                               |
| Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS                      | 29<br>27<br>46<br>1100<br>%Recovery                   | U U D C Qualifier | 44 59 44 150  Limits 50 - 150                                              | 8.7<br>9.1 | ug/Kg<br>ug/Kg<br>ug/Kg | \$<br>\$       | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br><b>Prepared</b><br>05/14/18 13:10                                                       | 05/29/18 12:33<br>05/29/18 12:33<br>05/29/18 12:33<br><i>Analyzed</i><br>05/29/18 12:33                                     | 10<br>10<br>10<br><b>Dil Fa</b>                               |
| Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA           | 29<br>27<br>46<br>1100<br>%Recovery<br>51<br>64       | U U D C Qualifier | 44 59 44 150  Limits 50 - 150 50 - 150                                     | 8.7<br>9.1 | ug/Kg<br>ug/Kg<br>ug/Kg | \$<br>\$<br>\$ | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10                                                        | 05/29/18 12:33<br>05/29/18 12:33<br>05/29/18 12:33<br>05/29/18 12:33<br>05/29/18 12:33<br>05/29/18 12:33                    | 10<br>10<br>10<br><b>Dil Fa</b>                               |
| Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA 13C4 PFOA | 29<br>27<br>46<br>1100<br>%Recovery<br>51<br>64<br>84 | U U D C Qualifier | 44<br>59<br>44<br>150<br><b>Limits</b><br>50 - 150<br>50 - 150<br>50 - 150 | 8.7<br>9.1 | ug/Kg<br>ug/Kg<br>ug/Kg | * * *          | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>Prepared<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10                          | 05/29/18 12:33<br>05/29/18 12:33<br>05/29/18 12:33<br><b>Analyzed</b><br>05/29/18 12:33<br>05/29/18 12:33<br>05/29/18 12:33 | 10<br>10<br>10<br><b>Dil Fa</b>                               |
| Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA           | 29<br>27<br>46<br>1100<br>%Recovery<br>51<br>64       | U U D C Qualifier | 44 59 44 150  Limits 50 - 150 50 - 150                                     | 8.7<br>9.1 | ug/Kg<br>ug/Kg<br>ug/Kg | * *            | 05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br><b>Prepared</b><br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10<br>05/14/18 13:10 | 05/29/18 12:33<br>05/29/18 12:33<br>05/29/18 12:33<br><b>Analyzed</b><br>05/29/18 12:33<br>05/29/18 12:33                   | 10<br>10<br>10<br>10<br>10<br><b>Dil Fa</b><br>10<br>10<br>10 |

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: KLA02-SB2-02D Lab Sample ID: 320-39023-53

 Date Collected: 05/04/18 13:25
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 59.1

| Analyte                                                                                                                                                                                                                                                                                   |                                                               | Qualifier                               | LOQ                                                                                          |                                 | Unit                                      | D                                                        | Prepared                                                                                                                                                           | Analyzed                                                                                                                                           | Dil Fac                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                                           | 5.6                                                           |                                         | 0.50                                                                                         | 0.13                            | ug/Kg                                     | ₩                                                        | 05/14/18 14:03                                                                                                                                                     | 05/29/18 10:36                                                                                                                                     | 1                                                                               |
| Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                                             | 15                                                            |                                         | 0.50                                                                                         | 0.17                            | ug/Kg                                     | ☼                                                        | 05/14/18 14:03                                                                                                                                                     | 05/29/18 10:36                                                                                                                                     | 1                                                                               |
| Perfluorononanoic acid (PFNA)                                                                                                                                                                                                                                                             | 0.34                                                          | J M                                     | 0.50                                                                                         | 0.14                            | ug/Kg                                     | ☼                                                        | 05/14/18 14:03                                                                                                                                                     | 05/29/18 10:36                                                                                                                                     | 1                                                                               |
| Perfluorobutanesulfonic acid (PFBS)                                                                                                                                                                                                                                                       | 24                                                            |                                         | 0.67                                                                                         | 0.099                           | ug/Kg                                     | <b>\$</b>                                                | 05/14/18 14:03                                                                                                                                                     | 05/29/18 10:36                                                                                                                                     | 1                                                                               |
| Perfluorohexanesulfonic acid (PFHxS)                                                                                                                                                                                                                                                      | 95                                                            | E                                       | 0.50                                                                                         | 0.10                            | ug/Kg                                     | ☼                                                        | 05/14/18 14:03                                                                                                                                                     | 05/29/18 10:36                                                                                                                                     | 1                                                                               |
| Perfluorooctanesulfonic acid (PFOS)                                                                                                                                                                                                                                                       | 380                                                           | E                                       | 1.7                                                                                          | 0.40                            | ug/Kg                                     | ₽                                                        | 05/14/18 14:03                                                                                                                                                     | 05/29/18 10:36                                                                                                                                     | 1                                                                               |
| Isotope Dilution                                                                                                                                                                                                                                                                          | %Recovery                                                     | Qualifier                               | Limits                                                                                       |                                 |                                           |                                                          | Prepared                                                                                                                                                           | Analyzed                                                                                                                                           | Dil Fac                                                                         |
| 13C3-PFBS                                                                                                                                                                                                                                                                                 | 78                                                            | -                                       | 50 - 150                                                                                     |                                 |                                           |                                                          | 05/14/18 14:03                                                                                                                                                     | 05/29/18 10:36                                                                                                                                     | 1                                                                               |
| 13C4-PFHpA                                                                                                                                                                                                                                                                                | 78                                                            |                                         | 50 - 150                                                                                     |                                 |                                           |                                                          | 05/14/18 14:03                                                                                                                                                     | 05/29/18 10:36                                                                                                                                     | 1                                                                               |
| 13C4 PFOA                                                                                                                                                                                                                                                                                 | 84                                                            |                                         | 50 - 150                                                                                     |                                 |                                           |                                                          | 05/14/18 14:03                                                                                                                                                     | 05/29/18 10:36                                                                                                                                     | 1                                                                               |
| 13C5 PFNA                                                                                                                                                                                                                                                                                 | 71                                                            |                                         | 50 - 150                                                                                     |                                 |                                           |                                                          | 05/14/18 14:03                                                                                                                                                     | 05/29/18 10:36                                                                                                                                     | 1                                                                               |
| 18O2 PFHxS                                                                                                                                                                                                                                                                                | 73                                                            |                                         | 50 - 150                                                                                     |                                 |                                           |                                                          | 05/14/18 14:03                                                                                                                                                     | 05/29/18 10:36                                                                                                                                     | 1                                                                               |
| · · · · · · · · ·                                                                                                                                                                                                                                                                         |                                                               |                                         |                                                                                              |                                 |                                           |                                                          |                                                                                                                                                                    |                                                                                                                                                    |                                                                                 |
| 13C4 PFOS                                                                                                                                                                                                                                                                                 | 60<br>S for QSM !                                             | 5 1 Table I                             | 50 - 150<br>B-15 - DI                                                                        |                                 |                                           |                                                          | 05/14/18 14:03                                                                                                                                                     | 05/29/18 10:36                                                                                                                                     | 1                                                                               |
| 13C4 PFOS<br>Method: EPA 537 (Mod) - PFA<br>Analyte                                                                                                                                                                                                                                       | S for QSM !<br>Result                                         | Qualifier                               | B-15 - DL<br>LOQ                                                                             |                                 | Unit                                      | D                                                        | Prepared                                                                                                                                                           | Analyzed                                                                                                                                           | Dil Fac                                                                         |
| 13C4 PFOS<br>Method: EPA 537 (Mod) - PFA                                                                                                                                                                                                                                                  | S for QSM !<br>Result                                         | •                                       | B-15 - DL                                                                                    |                                 | Unit<br>ug/Kg                             | <b>D</b>                                                 | Prepared 05/14/18 14:03                                                                                                                                            | Analyzed 05/29/18 17:38                                                                                                                            | Dil Fac                                                                         |
| 13C4 PFOS<br>Method: EPA 537 (Mod) - PFA<br>Analyte                                                                                                                                                                                                                                       | S for QSM !<br>Result                                         | Qualifier J D                           | B-15 - DL<br>LOQ                                                                             | 2.6                             |                                           |                                                          | Prepared                                                                                                                                                           | Analyzed 05/29/18 17:38                                                                                                                            | <b>Dil Fac</b> 20 20                                                            |
| 13C4 PFOS  Method: EPA 537 (Mod) - PFA Analyte  Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                           | S for QSM !<br>Result<br>5.5                                  | Qualifier J D                           | B-15 - DL<br>LOQ<br>10                                                                       | 2.6<br>3.3                      | ug/Kg                                     | <del></del>                                              | Prepared 05/14/18 14:03                                                                                                                                            | Analyzed 05/29/18 17:38 05/29/18 17:38                                                                                                             | 20<br>20<br>20                                                                  |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA)                                                                                                                                                                                         | S for QSM !<br>Result<br>5.5                                  | Qualifier J D D U M                     | B-15 - DL<br>LOQ<br>10                                                                       | 2.6<br>3.3<br>2.7               | ug/Kg<br>ug/Kg                            | <del></del>                                              | Prepared 05/14/18 14:03 05/14/18 14:03                                                                                                                             | Analyzed 05/29/18 17:38 05/29/18 17:38 05/29/18 17:38                                                                                              | 20<br>20<br>20                                                                  |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid                                                                                                                              | S for QSM !  Result  5.5 14 6.7                               | Qualifier J D D U M                     | B-15 - DL<br>LOQ<br>10<br>10<br>10<br>13                                                     | 2.6<br>3.3<br>2.7<br>2.0        | ug/Kg<br>ug/Kg<br>ug/Kg                   | <del>\$</del>                                            | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                | Analyzed  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38                                                                           | 20<br>20<br>20<br>20<br>20                                                      |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid                                                                                          | S for QSM (<br>Result<br>5.5<br>14<br>6.7<br>23               | Qualifier J D D U M D                   | B-15 - DL<br>LOQ<br>10<br>10<br>10<br>10                                                     | 2.6<br>3.3<br>2.7<br>2.0<br>2.1 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg          | \$<br>\$<br>\$                                           | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                               | Analyzed  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38                                                                           | 20<br>20<br>20<br>20<br>20                                                      |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid                                                                                   | S for QSM 9  Result  5.5 14 6.7 23                            | Qualifier JDD DUM DD DD DD              | B-15 - DL<br>LOQ<br>10<br>10<br>10<br>13                                                     | 2.6<br>3.3<br>2.7<br>2.0<br>2.1 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                                | Analyzed  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38                                                                           | 20<br>20<br>20<br>20<br>20<br>20                                                |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFHxS)                                                                           | S for QSM ( Result 5.5 14 6.7 23 110 490 %Recovery            | Qualifier JDD DUM DD DD DD              | B-15 - DL<br>LOQ<br>10<br>10<br>10<br>13<br>10<br>33                                         | 2.6<br>3.3<br>2.7<br>2.0<br>2.1 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | Prepared 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                                                                 | Analyzed  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38                                                           | 20 20 20 20 20 20 20 20 20 20 20 20 20 2                                        |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution                                                           | S for QSM ( Result 5.5 14 6.7 23 110 490 %Recovery            | Qualifier  J D  D  U M  D  D  Qualifier | B-15 - DL<br>LOQ<br>10<br>10<br>10<br>13<br>10<br>33                                         | 2.6<br>3.3<br>2.7<br>2.0<br>2.1 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03                                                 | Analyzed  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38  Analyzed                                 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2                                        |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution                                                           | S for QSM 4 Result 5.5 14 6.7 23 110 490  **Recovery** 74     | Qualifier  J D  D  U M  D  D  Qualifier | B-15 - DL<br>LOQ<br>10<br>10<br>13<br>10<br>33<br>Limits<br>50 - 150                         | 2.6<br>3.3<br>2.7<br>2.0<br>2.1 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03  05/14/18 14:03                                 | Analyzed  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38  4nalyzed  05/29/18 17:38                                 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2                                        |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA | S for QSM 4 Result 5.5 14 6.7 23 110 490 %Recovery 74 72      | Qualifier  J D  D  U M  D  D  Qualifier | B-15 - DL<br>LOQ<br>10<br>10<br>13<br>10<br>33<br>Limits<br>50 - 150<br>50 - 150             | 2.6<br>3.3<br>2.7<br>2.0<br>2.1 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03 05/14/18 14:03  Prepared  05/14/18 14:03 05/14/18 14:03 05/14/18 14:03                       | Analyzed  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38  Analyzed  05/29/18 17:38  05/29/18 17:38                 | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2 |
| Method: EPA 537 (Mod) - PFA Analyte Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA 13C4 PFOA                            | S for QSM 4 Result 5.5 14 6.7 23 110 490  **Recovery 74 72 86 | Qualifier  J D  D  U M  D  D  Qualifier | B-15 - DL<br>LOQ<br>10<br>10<br>13<br>10<br>33<br>Limits<br>50 - 150<br>50 - 150<br>50 - 150 | 2.6<br>3.3<br>2.7<br>2.0<br>2.1 | ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg<br>ug/Kg | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  Prepared  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03  05/14/18 14:03 | Analyzed  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38  Analyzed  05/29/18 17:38  05/29/18 17:38  05/29/18 17:38 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2                                        |

Client Sample ID: KLA02-SB1-02D Lab Sample ID: 320-39023-54

 Date Collected: 05/04/18 13:45
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 75.9

| Analyte                                | Result | Qualifier | LOQ  | DL    | Unit  | D  | Prepared       | Analyzed       | Dil Fac |
|----------------------------------------|--------|-----------|------|-------|-------|----|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)        | 0.11   | J         | 0.39 | 0.10  | ug/Kg | ₩  | 05/14/18 14:03 | 05/29/18 10:43 | 1       |
| Perfluorooctanoic acid (PFOA)          | 0.25   | J M       | 0.39 | 0.13  | ug/Kg | ₩  | 05/14/18 14:03 | 05/29/18 10:43 | 1       |
| Perfluorononanoic acid (PFNA)          | 0.26   | U M       | 0.39 | 0.11  | ug/Kg | ₩  | 05/14/18 14:03 | 05/29/18 10:43 | 1       |
| Perfluorobutanesulfonic acid (PFBS)    | 0.21   | J         | 0.52 | 0.077 | ug/Kg | \$ | 05/14/18 14:03 | 05/29/18 10:43 | 1       |
| Perfluorohexanesulfonic acid (PFHxS)   | 1.7    |           | 0.39 | 0.081 | ug/Kg | ₽  | 05/14/18 14:03 | 05/29/18 10:43 | 1       |
| Perfluorooctanesulfonic acid<br>(PFOS) | 12     |           | 1.3  | 0.31  | ug/Kg | ₽  | 05/14/18 14:03 | 05/29/18 10:43 | 1       |

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: KLA02-SB1-02D Lab Sample ID: 320-39023-54

 Date Collected: 05/04/18 13:45
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 75.9

| Isotope Dilution | %Recovery Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------|---------------------|----------|----------------|----------------|---------|
| 13C3-PFBS        | 73                  | 50 - 150 | 05/14/18 14:03 | 05/29/18 10:43 | 1       |
| 13C4-PFHpA       | 83                  | 50 - 150 | 05/14/18 14:03 | 05/29/18 10:43 | 1       |
| 13C4 PFOA        | 91                  | 50 - 150 | 05/14/18 14:03 | 05/29/18 10:43 | 1       |
| 13C5 PFNA        | 96                  | 50 - 150 | 05/14/18 14:03 | 05/29/18 10:43 | 1       |
| 18O2 PFHxS       | 81                  | 50 - 150 | 05/14/18 14:03 | 05/29/18 10:43 | 1       |
| 13C4 PFOS        | 80                  | 50 - 150 | 05/14/18 14:03 | 05/29/18 10:43 | 1       |

Client Sample ID: KLA05-SB1-01D Lab Sample ID: 320-39023-55

| Date Received: 05/09/18 09:20                                                               |                             |                           |                                           |       |                |               |                                                                                          | Percent Solid                                                            | s: 82.2                      |
|---------------------------------------------------------------------------------------------|-----------------------------|---------------------------|-------------------------------------------|-------|----------------|---------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------|
| Method: EPA 537 (Mod) - PFA                                                                 |                             | 5.1, Table I<br>Qualifier | 3-15<br>LOQ                               | DI    | Unit           |               | Drawarad                                                                                 | Analysed                                                                 | Dil Fac                      |
| Analyte                                                                                     |                             | Qualifier                 | 0.37                                      |       | ug/Kg          | D<br><u>₩</u> | Prepared 05/14/18 13:10                                                                  | Analyzed                                                                 | Dii Fac                      |
| Perfluoroheptanoic acid (PFHpA)                                                             | 1.8                         |                           |                                           |       |                | ₩             |                                                                                          |                                                                          |                              |
| Perfluorooctanoic acid (PFOA)                                                               | 12                          |                           | 0.37                                      |       | ug/Kg          |               | 05/14/18 13:10                                                                           |                                                                          | 1                            |
| Perfluorononanoic acid (PFNA)                                                               | 2.8                         |                           | 0.37                                      |       | ug/Kg          |               | 05/14/18 13:10                                                                           |                                                                          | 1                            |
| Perfluorobutanesulfonic acid (PFBS)                                                         | 3.1                         |                           | 0.49                                      |       | ug/Kg          | ₽             | 05/14/18 13:10                                                                           |                                                                          | 1                            |
| Perfluorohexanesulfonic acid (PFHxS)                                                        | 170                         | E                         | 0.37                                      | 0.076 | ug/Kg          | ☼             | 05/14/18 13:10                                                                           | 06/07/18 00:29                                                           | 1                            |
| Perfluorooctanesulfonic acid (PFOS)                                                         | 390                         | E                         | 1.2                                       | 0.29  | ug/Kg          | ₩             | 05/14/18 13:10                                                                           | 06/07/18 00:29                                                           | 1                            |
| Isotope Dilution                                                                            | %Recovery                   | Qualifier                 | Limits                                    |       |                |               | Prepared                                                                                 | Analyzed                                                                 | Dil Fac                      |
| 13C3-PFBS                                                                                   | 77                          |                           | 50 - 150                                  |       |                |               | 05/14/18 13:10                                                                           | 06/07/18 00:29                                                           | 1                            |
| 13C4-PFHpA                                                                                  | 64                          |                           | 50 - 150                                  |       |                |               | 05/14/18 13:10                                                                           | 06/07/18 00:29                                                           | 1                            |
| 13C4 PFOA                                                                                   | 84                          |                           | 50 <sub>-</sub> 150                       |       |                |               | 05/14/18 13:10                                                                           | 06/07/18 00:29                                                           | 1                            |
| 13C5 PFNA                                                                                   | 56                          |                           | 50 - 150                                  |       |                |               | 05/14/18 13:10                                                                           | 06/07/18 00:29                                                           | 1                            |
| 1802 PFHxS                                                                                  | 64                          |                           | 50 <sub>-</sub> 150                       |       |                |               | 05/14/18 13:10                                                                           | 06/07/18 00:29                                                           | 1                            |
| 13C4 PFOS                                                                                   | 57                          |                           | 50 - 150                                  |       |                |               | 05/14/18 13:10                                                                           | 06/07/18 00:29                                                           | 1                            |
| Method: EPA 537 (Mod) - PFA<br>Analyte                                                      |                             | 5.1, Table I<br>Qualifier | 3-15 - DL<br>LOQ                          | DL    | Unit           | D             | Prepared                                                                                 | Analyzed                                                                 | Dil Fac                      |
| Perfluoroheptanoic acid (PFHpA)                                                             | 24                          | U                         | 37                                        | 9.5   | ug/Kg          | <del>-</del>  | 05/14/18 13:10                                                                           | 05/29/18 12:41                                                           | 100                          |
| Perfluorooctanoic acid (PFOA)                                                               | 13                          | J D                       | 37                                        | 12    | ug/Kg          | ☼             | 05/14/18 13:10                                                                           | 05/29/18 12:41                                                           | 100                          |
| Perfluorononanoic acid (PFNA)                                                               | 24                          | U                         | 37                                        | 9.9   | ug/Kg          | ☼             | 05/14/18 13:10                                                                           | 05/29/18 12:41                                                           | 100                          |
| Perfluorobutanesulfonic acid (PFBS)                                                         | 22                          | U                         | 49                                        | 7.2   | ug/Kg          |               | 05/14/18 13:10                                                                           | 05/29/18 12:41                                                           | 100                          |
| , ,                                                                                         |                             | _                         |                                           |       |                |               | 05/14/18 13:10                                                                           | 05/20/40 42:44                                                           |                              |
| Perfluorohexanesulfonic acid (PEHxS)                                                        | 300                         | D                         | 37                                        | 7.6   | ug/Kg          | ☼             | 03/14/10 13.10                                                                           | 05/29/16 12.41                                                           | 100                          |
| Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS)                    | 300<br>650                  |                           | 37<br>120                                 |       | ug/Kg<br>ug/Kg | \$            | 05/14/18 13:10                                                                           |                                                                          | 100                          |
| (PFHxS) Perfluorooctanesulfonic acid                                                        |                             | D                         |                                           |       |                |               |                                                                                          |                                                                          |                              |
| (PFHxS) Perfluorooctanesulfonic acid (PFOS)                                                 | 650                         | D<br>Qualifier            | 120                                       |       |                |               | 05/14/18 13:10  Prepared                                                                 | 05/29/18 12:41                                                           | 100                          |
| (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution                                | 650<br>%Recovery            | D<br>Qualifier            | 120                                       |       |                |               | 05/14/18 13:10  Prepared  05/14/18 13:10                                                 | 05/29/18 12:41  Analyzed                                                 | 100                          |
| (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS                      | %Recovery                   | D<br>Qualifier            | 120 <b>Limits</b> 50 - 150                |       |                |               | 05/14/18 13:10  Prepared  05/14/18 13:10  05/14/18 13:10                                 | 05/29/18 12:41  Analyzed  05/29/18 12:41                                 | 100<br>Dil Fac               |
| (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA           | <b>%Recovery</b> 82 69      | D<br>Qualifier            | 120  Limits  50 - 150 50 - 150            |       |                |               | 05/14/18 13:10  Prepared  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10                 | 05/29/18 12:41  Analyzed  05/29/18 12:41  05/29/18 12:41                 | 100<br>Dil Fac<br>100<br>100 |
| (PFHxS) Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C3-PFBS 13C4-PFHpA 13C4 PFOA | %Recovery<br>82<br>69<br>81 | D<br>Qualifier            | 120  Limits  50 - 150  50 - 150  50 - 150 |       |                |               | 05/14/18 13:10  Prepared  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10  05/14/18 13:10 | 05/29/18 12:41  Analyzed  05/29/18 12:41  05/29/18 12:41  05/29/18 12:41 | 100  Dil Fac  100  100  100  |

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: ER-05 Lab Sample ID: 320-39023-56

Date Collected: 05/06/18 16:00 Matrix: Water Date Received: 05/08/18 09:00

| Analyte                              | Result    | Qualifier | LOQ      | DL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|----------|------|------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 1.4       | U         | 1.9      | 0.58 | ng/L |   | 05/18/18 10:26 | 05/29/18 21:18 | 1       |
| Perfluorooctanoic acid (PFOA)        | 0.74      | J M       | 1.9      | 0.51 | ng/L |   | 05/18/18 10:26 | 05/29/18 21:18 | 1       |
| Perfluorononanoic acid (PFNA)        | 1.4       | U         | 1.9      | 0.49 | ng/L |   | 05/18/18 10:26 | 05/29/18 21:18 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.52      | J         | 1.9      | 0.44 | ng/L |   | 05/18/18 10:26 | 05/29/18 21:18 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 3.4       |           | 1.9      | 0.36 | ng/L |   | 05/18/18 10:26 | 05/29/18 21:18 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 13        |           | 3.8      | 1.0  | ng/L |   | 05/18/18 10:26 | 05/29/18 21:18 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier | Limits   |      |      |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 84        |           | 50 - 150 |      |      |   | 05/18/18 10:26 | 05/29/18 21:18 | 1       |
| 13C4-PFHpA                           | 93        |           | 50 - 150 |      |      |   | 05/18/18 10:26 | 05/29/18 21:18 | 1       |
| 13C4 PFOA                            | 98        |           | 50 - 150 |      |      |   | 05/18/18 10:26 | 05/29/18 21:18 | 1       |
| 13C5 PFNA                            | 104       |           | 50 - 150 |      |      |   | 05/18/18 10:26 | 05/29/18 21:18 | 1       |
| 1802 PFHxS                           | 87        |           | 50 - 150 |      |      |   | 05/18/18 10:26 | 05/29/18 21:18 | 1       |
| 13C4 PFOS                            | 91        |           | 50 - 150 |      |      |   | 05/18/18 10:26 | 05/29/18 21:18 | 1       |

Client Sample ID: IDW-KINGSLEY-SO-LDOS01 Lab Sample ID: 320-39023-57

Date Collected: 05/07/18 09:45

Matrix: Solid

Date Received: 05/08/18 09:00

| Analyte                      | Result    | Qualifier | LOQ      | DL     | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|--------|------|---|----------|----------------|---------|
| Benzene                      | 0.0040    | U         | 0.010    | 0.0016 | mg/L |   |          | 05/29/18 15:26 | 1       |
| 2-Butanone (MEK)             | 0.040     | U         | 0.10     | 0.018  | mg/L |   |          | 05/29/18 15:26 | 1       |
| Carbon tetrachloride         | 0.0040    | U         | 0.010    | 0.0019 | mg/L |   |          | 05/29/18 15:26 | 1       |
| Chlorobenzene                | 0.0040    | U         | 0.010    | 0.0017 | mg/L |   |          | 05/29/18 15:26 | 1       |
| Chloroform                   | 0.0040    | U         | 0.010    | 0.0016 | mg/L |   |          | 05/29/18 15:26 | 1       |
| 1,2-Dichloroethane           | 0.0040    | U         | 0.010    | 0.0013 | mg/L |   |          | 05/29/18 15:26 | 1       |
| 1,1-Dichloroethene           | 0.0080    | U         | 0.010    | 0.0023 | mg/L |   |          | 05/29/18 15:26 | 1       |
| Tetrachloroethene            | 0.0040    | U         | 0.010    | 0.0020 | mg/L |   |          | 05/29/18 15:26 | 1       |
| Trichloroethene              | 0.0040    | U         | 0.010    | 0.0016 | mg/L |   |          | 05/29/18 15:26 | 1       |
| Vinyl chloride               | 0.0020    | U         | 0.010    | 0.0010 | mg/L |   |          | 05/29/18 15:26 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |        |      |   | Prepared | Analyzed       | Dil Fac |
| Toluene-d8 (Surr)            | 101       |           | 78 - 120 |        |      | - |          | 05/29/18 15:26 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 98        |           | 64 - 129 |        |      |   |          | 05/29/18 15:26 | 1       |
| 4-Bromofluorobenzene (Surr)  | 90        |           | 78 - 121 |        |      |   |          | 05/29/18 15:26 | 1       |
| Dibromofluoromethane (Surr)  | 103       |           | 79 - 119 |        |      |   |          | 05/29/18 15:26 | 1       |

| Analyte             | Result | Qualifier | LOQ   | DL     | Unit | D | Prepared       | Analyzed       | Dil Fac |
|---------------------|--------|-----------|-------|--------|------|---|----------------|----------------|---------|
| 2-Methylphenol      | 0.010  | U         | 0.050 | 0.0049 | mg/L |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |
| 3 & 4 Methylphenol  | 0.0025 | U         | 0.050 | 0.0013 | mg/L |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |
| 1,4-Dichlorobenzene | 0.020  | U         | 0.020 | 0.0016 | mg/L |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |
| 2,4-Dinitrotoluene  | 0.022  | U         | 0.050 | 0.0083 | mg/L |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |
| Hexachlorobenzene   | 0.010  | U         | 0.050 | 0.0033 | mg/L |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |
| Hexachlorobutadiene | 0.050  | U         | 0.050 | 0.017  | mg/L |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |
| Hexachloroethane    | 0.022  | U         | 0.050 | 0.011  | mg/L |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |
| Nitrobenzene        | 0.010  | U         | 0.050 | 0.0041 | mg/L |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |
| Pentachlorophenol   | 0.20   | U         | 0.25  | 0.10   | mg/L |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |

TestAmerica Sacramento

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: IDW-KINGSLEY-SO-LDOS01

Date Collected: 05/07/18 09:45 Matrix: Solid

Date Received: 05/08/18 09:00

| Analyte                     | Result    | Qualifier | LOQ                 | DL     | Unit | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|---------------------|--------|------|---|----------------|----------------|---------|
| Pyridine                    | 0.022     | U         | 0.10                | 0.0057 | mg/L |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |
| 2,4,5-Trichlorophenol       | 0.0050    | U         | 0.050               | 0.0022 | mg/L |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |
| 2,4,6-Trichlorophenol       | 0.0050    | U         | 0.025               | 0.0014 | mg/L |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits              |        |      |   | Prepared       | Analyzed       | Dil Fac |
| 2-Fluorobiphenyl            | 100       |           | 49 - 120            |        |      |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |
| 2-Fluorophenol (Surr)       | 90        |           | 50 - 120            |        |      |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |
| 2,4,6-Tribromophenol (Surr) | 97        |           | 51 - 120            |        |      |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |
| Nitrobenzene-d5 (Surr)      | 88        |           | 51 - 120            |        |      |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |
| Phenol-d5 (Surr)            | 78        |           | 47 - 120            |        |      |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |
| Terphenyl-d14 (Surr)        | 94        |           | 56 <sub>-</sub> 120 |        |      |   | 05/21/18 08:55 | 05/25/18 21:36 | 1       |

Client Sample ID: IDW-KINGSLEY-WA-LDOS01 Lab Sample ID: 320-39023-58

Date Collected: 05/07/18 09:30 Matrix: Water

Date Received: 05/08/18 09:00

| Analyte                      | Result    | Qualifier | LOQ      | DL     | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|--------|------|---|----------|----------------|---------|
| Benzene                      | 0.0040    | U         | 0.010    | 0.0016 | mg/L |   |          | 05/21/18 17:50 | 1       |
| 2-Butanone (MEK)             | 0.040     | U         | 0.10     | 0.018  | mg/L |   |          | 05/21/18 17:50 | 1       |
| Carbon tetrachloride         | 0.0040    | U         | 0.010    | 0.0019 | mg/L |   |          | 05/21/18 17:50 | 1       |
| Chlorobenzene                | 0.0040    | U         | 0.010    | 0.0017 | mg/L |   |          | 05/21/18 17:50 | 1       |
| Chloroform                   | 0.0040    | U         | 0.010    | 0.0016 | mg/L |   |          | 05/21/18 17:50 | 1       |
| 1,2-Dichloroethane           | 0.0040    | U         | 0.010    | 0.0013 | mg/L |   |          | 05/21/18 17:50 | 1       |
| 1,1-Dichloroethene           | 0.0080    | U         | 0.010    | 0.0023 | mg/L |   |          | 05/21/18 17:50 | 1       |
| Tetrachloroethene            | 0.0040    | U         | 0.010    | 0.0020 | mg/L |   |          | 05/21/18 17:50 | 1       |
| Trichloroethene              | 0.0040    | U         | 0.010    | 0.0016 | mg/L |   |          | 05/21/18 17:50 | 1       |
| Vinyl chloride               | 0.0020    | U         | 0.010    | 0.0010 | mg/L |   |          | 05/21/18 17:50 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |        |      |   | Prepared | Analyzed       | Dil Fac |
| Toluene-d8 (Surr)            | 100       |           | 78 - 120 |        |      |   |          | 05/21/18 17:50 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 109       |           | 64 - 129 |        |      |   |          | 05/21/18 17:50 | 1       |
| 4-Bromofluorobenzene (Surr)  | 95        |           | 78 - 121 |        |      |   |          | 05/21/18 17:50 | 1       |
| Dibromofluoromethane (Surr)  | 103       |           | 79 - 119 |        |      |   |          | 05/21/18 17:50 | 1       |

| 4-Bioinionaoiobenzene (Gair)      | 90              |           | 10-121        |                  |              |   |                                  | 00/21/10 11.00                   | ,       |
|-----------------------------------|-----------------|-----------|---------------|------------------|--------------|---|----------------------------------|----------------------------------|---------|
| Dibromofluoromethane (Surr)       | 103             |           | 79 - 119      |                  |              |   |                                  | 05/21/18 17:50                   | 1       |
| Method: 8270D - Semivolatil       | e Organic Co    | mpounds   | (GC/MS) - T   | CLP              |              |   |                                  |                                  |         |
| Analyte                           | Result          | Qualifier | LÓQ           | DL               | Unit         | D | Prepared                         | Analyzed                         | Dil Fac |
| 2-Methylphenol                    | 0.010           | U         | 0.050         | 0.0049           | mg/L         |   | 05/21/18 08:46                   | 05/25/18 20:46                   | 1       |
| 3 & 4 Methylphenol                | 0.0025          | U         | 0.050         | 0.0013           | mg/L         |   | 05/21/18 08:46                   | 05/25/18 20:46                   | 1       |
| 1,4-Dichlorobenzene               | 0.020           | U         | 0.020         | 0.0016           | mg/L         |   | 05/21/18 08:46                   | 05/25/18 20:46                   | 1       |
| 2,4-Dinitrotoluene                | 0.022           | U         | 0.050         | 0.0083           | mg/L         |   | 05/21/18 08:46                   | 05/25/18 20:46                   | 1       |
| Hexachlorobenzene                 | 0.010           | U         | 0.050         | 0.0033           | mg/L         |   | 05/21/18 08:46                   | 05/25/18 20:46                   | 1       |
| Hexachlorobutadiene               | 0.050           | U         | 0.050         | 0.017            | mg/L         |   | 05/21/18 08:46                   | 05/25/18 20:46                   | 1       |
| Hexachloroethane                  | 0.022           | U         | 0.050         | 0.011            | mg/L         |   | 05/21/18 08:46                   | 05/25/18 20:46                   | 1       |
| Nitrobenzene                      | 0.010           | U         | 0.050         | 0.0041           | mg/L         |   | 05/21/18 08:46                   | 05/25/18 20:46                   | 1       |
| Pentachlorophenol                 | 0.20            | U         | 0.25          | 0.10             | mg/L         |   | 05/21/18 08:46                   | 05/25/18 20:46                   | 1       |
| Pyridine                          | 0.022           | U         | 0.10          | 0.0057           | mg/L         |   | 05/21/18 08:46                   | 05/25/18 20:46                   | 1       |
| 2,4,5-Trichlorophenol             | 0.0050          | UM        | 0.050         | 0.0022           | mg/L         |   | 05/21/18 08:46                   | 05/25/18 20:46                   | 1       |
| 2,4,6-Trichlorophenol             | 0.0050          | U M       | 0.025         | 0.0014           | mg/L         |   | 05/21/18 08:46                   | 05/25/18 20:46                   | 1       |
| Pyridine<br>2,4,5-Trichlorophenol | 0.022<br>0.0050 | U<br>U M  | 0.10<br>0.050 | 0.0057<br>0.0022 | mg/L<br>mg/L |   | 05/21/18 08:46<br>05/21/18 08:46 | 05/25/18 20:46<br>05/25/18 20:46 |         |

Lab Sample ID: 320-39023-57

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: IDW-KINGSLEY-WA-LDOS01

Lab Sample ID: 320-39023-58

Date Collected: 05/07/18 09:30 **Matrix: Water** Date Received: 05/08/18 09:00

| Surrogate                   | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |  |  |  |
|-----------------------------|-----------|-----------|----------|----------------|----------------|---------|--|--|--|
| 2-Fluorobiphenyl            | 68        |           | 49 - 120 | 05/21/18 08:46 | 05/25/18 20:46 | 1       |  |  |  |
| 2-Fluorophenol (Surr)       | 51        |           | 50 - 120 | 05/21/18 08:46 | 05/25/18 20:46 | 1       |  |  |  |
| 2,4,6-Tribromophenol (Surr) | 92        |           | 51 - 120 | 05/21/18 08:46 | 05/25/18 20:46 | 1       |  |  |  |
| Nitrobenzene-d5 (Surr)      | 56        |           | 51 - 120 | 05/21/18 08:46 | 05/25/18 20:46 | 1       |  |  |  |
| Phenol-d5 (Surr)            | 51        |           | 47 - 120 | 05/21/18 08:46 | 05/25/18 20:46 | 1       |  |  |  |
| Terphenyl-d14 (Surr)        | 90        |           | 56 - 120 | 05/21/18 08:46 | 05/25/18 20:46 | 1       |  |  |  |
| <u></u>                     |           |           |          |                |                |         |  |  |  |

Client Sample ID: KLA07-SD1-01D Lab Sample ID: 320-39023-59

Date Collected: 05/06/18 11:30 **Matrix: Solid** Date Received: 05/08/18 09:00 Percent Solids: 73.7

| Analyte                              | Result    | Qualifier | LOQ                 | DL    | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|---------------------|-------|-------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 0.12      | J         | 0.40                | 0.10  | ug/Kg | ₩ | 05/19/18 09:21 | 05/31/18 02:30 | 1       |
| Perfluorooctanoic acid (PFOA)        | 0.48      |           | 0.40                | 0.13  | ug/Kg | ₩ | 05/19/18 09:21 | 05/31/18 02:30 | 1       |
| Perfluorononanoic acid (PFNA)        | 0.27      | U         | 0.40                | 0.11  | ug/Kg | ☼ | 05/19/18 09:21 | 05/31/18 02:30 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.20      | J         | 0.54                | 0.079 | ug/Kg | ₽ | 05/19/18 09:21 | 05/31/18 02:30 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 2.1       |           | 0.40                | 0.083 | ug/Kg | ₽ | 05/19/18 09:21 | 05/31/18 02:30 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 15        | J1        | 1.3                 | 0.32  | ug/Kg | ☼ | 05/19/18 09:21 | 05/31/18 02:30 | 1       |
| Isotope Dilution                     | %Recovery | Qualifier | Limits              |       |       |   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS                            | 73        |           | 50 - 150            |       |       |   | 05/19/18 09:21 | 05/31/18 02:30 | 1       |
| 13C4-PFHpA                           | 81        |           | 50 - 150            |       |       |   | 05/19/18 09:21 | 05/31/18 02:30 | 1       |
| 13C4 PFOA                            | 88        |           | 50 - 150            |       |       |   | 05/19/18 09:21 | 05/31/18 02:30 | 1       |
| 13C5 PFNA                            | 94        |           | 50 - 150            |       |       |   | 05/19/18 09:21 | 05/31/18 02:30 | 1       |
| 18O2 PFHxS                           | 79        |           | 50 - 150            |       |       |   | 05/19/18 09:21 | 05/31/18 02:30 | 1       |
| 13C4 PFOS                            | 78        |           | 50 <sub>-</sub> 150 |       |       |   | 05/19/18 09:21 | 05/31/18 02:30 | 1       |

#### **Default Detection Limits**

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

## Method: 8260B - Volatile Organic Compounds (GC/MS) - TCLP

Leach: 1311

| Analyte              | LOQ   | DL     | Units | Method |
|----------------------|-------|--------|-------|--------|
| 1,1-Dichloroethene   | 0.010 | 0.0023 | mg/L  | 8260B  |
| 1,1-Dichloroethene   | 0.010 | 0.0023 | mg/L  | 8260B  |
| 1,2-Dichloroethane   | 0.010 | 0.0013 | mg/L  | 8260B  |
| 1,2-Dichloroethane   | 0.010 | 0.0013 | mg/L  | 8260B  |
| 2-Butanone (MEK)     | 0.10  | 0.018  | mg/L  | 8260B  |
| 2-Butanone (MEK)     | 0.10  | 0.018  | mg/L  | 8260B  |
| Benzene              | 0.010 | 0.0016 | mg/L  | 8260B  |
| Benzene              | 0.010 | 0.0016 | mg/L  | 8260B  |
| Carbon tetrachloride | 0.010 | 0.0019 | mg/L  | 8260B  |
| Carbon tetrachloride | 0.010 | 0.0019 | mg/L  | 8260B  |
| Chlorobenzene        | 0.010 | 0.0017 | mg/L  | 8260B  |
| Chlorobenzene        | 0.010 | 0.0017 | mg/L  | 8260B  |
| Chloroform           | 0.010 | 0.0016 | mg/L  | 8260B  |
| Chloroform           | 0.010 | 0.0016 | mg/L  | 8260B  |
| Tetrachloroethene    | 0.010 | 0.0020 | mg/L  | 8260B  |
| Tetrachloroethene    | 0.010 | 0.0020 | mg/L  | 8260B  |
| Trichloroethene      | 0.010 | 0.0016 | mg/L  | 8260B  |
| Trichloroethene      | 0.010 | 0.0016 | mg/L  | 8260B  |
| Vinyl chloride       | 0.010 | 0.0010 | mg/L  | 8260B  |
| Vinyl chloride       | 0.010 | 0.0010 | mg/L  | 8260B  |

### Method: 8270D - Semivolatile Organic Compounds (GC/MS) - TCLP

Prep: 3510C Leach: 1311

| Analyte               | LOQ   | DL     | Units | Method |
|-----------------------|-------|--------|-------|--------|
| 1,4-Dichlorobenzene   | 0.020 | 0.0016 | mg/L  | 8270D  |
| 1,4-Dichlorobenzene   | 0.020 | 0.0016 | mg/L  | 8270D  |
| 2,4,5-Trichlorophenol | 0.050 | 0.0022 | mg/L  | 8270D  |
| 2,4,5-Trichlorophenol | 0.050 | 0.0022 | mg/L  | 8270D  |
| 2,4,6-Trichlorophenol | 0.025 | 0.0014 | mg/L  | 8270D  |
| 2,4,6-Trichlorophenol | 0.025 | 0.0014 | mg/L  | 8270D  |
| 2,4-Dinitrotoluene    | 0.050 | 0.0083 | mg/L  | 8270D  |
| 2,4-Dinitrotoluene    | 0.050 | 0.0083 | mg/L  | 8270D  |
| 2-Methylphenol        | 0.050 | 0.0049 | mg/L  | 8270D  |
| 2-Methylphenol        | 0.050 | 0.0049 | mg/L  | 8270D  |
| 3 & 4 Methylphenol    | 0.050 | 0.0013 | mg/L  | 8270D  |
| 3 & 4 Methylphenol    | 0.050 | 0.0013 | mg/L  | 8270D  |
| Hexachlorobenzene     | 0.050 | 0.0033 | mg/L  | 8270D  |
| Hexachlorobenzene     | 0.050 | 0.0033 | mg/L  | 8270D  |
| Hexachlorobutadiene   | 0.050 | 0.017  | mg/L  | 8270D  |
| Hexachlorobutadiene   | 0.050 | 0.017  | mg/L  | 8270D  |
| Hexachloroethane      | 0.050 | 0.011  | mg/L  | 8270D  |
| Hexachloroethane      | 0.050 | 0.011  | mg/L  | 8270D  |
| Nitrobenzene          | 0.050 | 0.0041 | mg/L  | 8270D  |
| Nitrobenzene          | 0.050 | 0.0041 | mg/L  | 8270D  |
| Pentachlorophenol     | 0.25  | 0.10   | mg/L  | 8270D  |
| Pentachlorophenol     | 0.25  | 0.10   | mg/L  | 8270D  |
| Pyridine              | 0.10  | 0.0057 | mg/L  | 8270D  |
| Pyridine              | 0.10  | 0.0057 | mg/L  | 8270D  |

#### **Default Detection Limits**

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

## Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15

Prep: 3535

| Analyte                              | LOQ | DL   | Units | Method        |
|--------------------------------------|-----|------|-------|---------------|
| Perfluorobutanesulfonic acid (PFBS)  | 2.0 | 0.46 | ng/L  | EPA 537 (Mod) |
| Perfluoroheptanoic acid (PFHpA)      | 2.0 | 0.61 | ng/L  | EPA 537 (Mod) |
| Perfluorohexanesulfonic acid (PFHxS) | 2.0 | 0.38 | ng/L  | EPA 537 (Mod) |
| Perfluorononanoic acid (PFNA)        | 2.0 | 0.52 | ng/L  | EPA 537 (Mod) |
| Perfluorooctanesulfonic acid (PFOS)  | 4.0 | 1.1  | ng/L  | EPA 537 (Mod) |
| Perfluorooctanoic acid (PFOA)        | 2.0 | 0.54 | ng/L  | EPA 537 (Mod) |

#### Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15

Prep: SHAKE

| Analyte                              | LOQ  | DL    | Units | Method        |
|--------------------------------------|------|-------|-------|---------------|
| Perfluorobutanesulfonic acid (PFBS)  | 0.40 | 0.059 | ug/Kg | EPA 537 (Mod) |
| Perfluoroheptanoic acid (PFHpA)      | 0.30 | 0.078 | ug/Kg | EPA 537 (Mod) |
| Perfluorohexanesulfonic acid (PFHxS) | 0.30 | 0.062 | ug/Kg | EPA 537 (Mod) |
| Perfluorononanoic acid (PFNA)        | 0.30 | 0.081 | ug/Kg | EPA 537 (Mod) |
| Perfluorooctanesulfonic acid (PFOS)  | 1.0  | 0.24  | ug/Kg | EPA 537 (Mod) |
| Perfluorooctanoic acid (PFOA)        | 0.30 | 0.10  | ug/Kg | EPA 537 (Mod) |

### **Surrogate Summary**

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1 Project/Site: Phase III, ANG-Kingsley

#### Method: 8260B - Volatile Organic Compounds (GC/MS)

**Matrix: Solid Prep Type: TCLP** 

|                    |                        | Percent Surrogate Recov |          |          |          |  |  |
|--------------------|------------------------|-------------------------|----------|----------|----------|--|--|
|                    |                        | TOL                     | DCA      | BFB      | DBFM     |  |  |
| Lab Sample ID      | Client Sample ID       | (78-120)                | (64-129) | (78-121) | (79-119) |  |  |
| 320-39023-57       | IDW-KINGSLEY-SO-LDOS01 | 101                     | 98       | 90       | 103      |  |  |
| LB 280-415139/1-A  | Method Blank           | 92                      | 99       | 98       | 114      |  |  |
| LCS 280-415139/2-A | Lab Control Sample     | 105                     | 103      | 88       | 103      |  |  |
| Surrogate Legend   |                        |                         |          |          |          |  |  |

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

#### Method: 8260B - Volatile Organic Compounds (GC/MS)

**Matrix: Water Prep Type: TCLP** 

| _                  |                        |          | Pe       | rcent Surre | ogate Reco |
|--------------------|------------------------|----------|----------|-------------|------------|
|                    |                        | TOL      | DCA      | BFB         | DBFM       |
| Lab Sample ID      | Client Sample ID       | (78-120) | (64-129) | (78-121)    | (79-119)   |
| 320-39023-58       | IDW-KINGSLEY-WA-LDOS01 | 100      | 109      | 95          | 103        |
| LB3 280-415294/1-A | Method Blank           | 101      | 103      | 96          | 102        |
| LCS 280-415294/2-A | Lab Control Sample     | 96       | 104      | 92          | 100        |
| Surrogate Legend   |                        |          |          |             |            |

Surrogate Legend

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

#### Method: 8270D - Semivolatile Organic Compounds (GC/MS)

**Matrix: Solid Prep Type: TCLP** 

|                    |                        | Percent Surrogate Recovery (Acceptance Limits) |          |          |          |          |          |  |  |
|--------------------|------------------------|------------------------------------------------|----------|----------|----------|----------|----------|--|--|
|                    |                        | FBP                                            | 2FP      | TBP      | NBZ      | PHL      | TPHL     |  |  |
| Lab Sample ID      | Client Sample ID       | (49-120)                                       | (50-120) | (51-120) | (51-120) | (47-120) | (56-120) |  |  |
| 320-39023-57       | IDW-KINGSLEY-SO-LDOS01 | 100                                            | 90       | 97       | 88       | 78       | 94       |  |  |
| 320-39023-57 MS    | IDW-KINGSLEY-SO-LDOS01 | 90                                             | 81       | 91       | 79       | 70       | 88       |  |  |
| 320-39023-57 MSD   | IDW-KINGSLEY-SO-LDOS01 | 95                                             | 88       | 100      | 85       | 77       | 95       |  |  |
| B 280-415138/1-C   | Method Blank           | 79                                             | 67       | 87       | 66       | 55       | 92       |  |  |
| LCS 280-415138/2-C | Lab Control Sample     | 97                                             | 85       | 95       | 86       | 75       | 93       |  |  |

**Surrogate Legend** 

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPHL = Terphenyl-d14 (Surr)

### **Surrogate Summary**

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

#### Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

|                    |                    | Percent Surrogate Recovery (Acceptance Limits) |          |          |          |          |          |  |
|--------------------|--------------------|------------------------------------------------|----------|----------|----------|----------|----------|--|
|                    |                    | FBP                                            | 2FP      | TBP      | NBZ      | PHL      | TPHL     |  |
| Lab Sample ID      | Client Sample ID   | (49-120)                                       | (50-120) | (51-120) | (51-120) | (47-120) | (56-120) |  |
| LB3 280-416023/1-A | Method Blank       | 89                                             | 77       | 89       | 74       | 64       | 95       |  |
| LCS 280-416023/2-A | Lab Control Sample | 103                                            | 92       | 97       | 87       | 80       | 99       |  |

#### **Surrogate Legend**

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPHL = Terphenyl-d14 (Surr)

#### Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: TCLP

|               |                        | Percent Surrogate Recovery (Acceptance Limits) |          |          |          |          |          |  |  |
|---------------|------------------------|------------------------------------------------|----------|----------|----------|----------|----------|--|--|
|               |                        | FBP                                            | 2FP      | TBP      | NBZ      | PHL      | TPHL     |  |  |
| Lab Sample ID | Client Sample ID       | (49-120)                                       | (50-120) | (51-120) | (51-120) | (47-120) | (56-120) |  |  |
| 320-39023-58  | IDW-KINGSLEY-WA-LDOS01 | 68                                             | 51       | 92       | 56       | 51       | 90       |  |  |

#### Surrogate Legend

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPHL = Terphenyl-d14 (Surr)

# **Isotope Dilution Summary**

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15

Matrix: Solid Prep Type: Total/NA

|                                 |                              |            | Perce    |          |            |            | ceptance Lir | nits |
|---------------------------------|------------------------------|------------|----------|----------|------------|------------|--------------|------|
|                                 |                              | 3C3-PFB    | PFHpA    | PFOA     | PFNA       | PFHxS      | PFOS         |      |
| ab Sample ID                    | Client Sample ID             | (50-150)   | (50-150) | (50-150) | (50-150)   | (50-150)   | (50-150)     |      |
| 20-39023-9                      | KLA-01-SB1-01                | 74         | 82       | 86       | 60         | 78         | 48 Q         |      |
| 20-39023-9 - DL                 | KLA-01-SB1-01                | 79 M       | 89       | 90       | 90         | 82         | 74           |      |
| 20-39023-10                     | KLA-01-SB1-02                | 69         | 83       | 82       | 67         | 75         | 54           |      |
| 20-39023-10 - DL                | KLA-01-SB1-02                | 71 M       | 78       | 89       | 79         | 70         | 63           |      |
| 20-39023-11                     | KLA-01-SB2-01                | 68         | 84       | 88       | 92         | 71         | 72           |      |
| 20-39023-12                     | KLA-01-SB2-02                | 71         | 83       | 84       | 87         | 76         | 74           |      |
| 20-39023-13                     | KLA-01-SB3-01                | 67         | 82       | 84       | 84         | 73         | 68           |      |
| 20-39023-14                     | KLA-01-SB3-02                | 67         | 80       | 80       | 82         | 70         | 64           |      |
| 20-39023-15                     | KLA02-SB1-01                 | 81         | 93       | 93       | 100        | 88         | 86           |      |
| 20-39023-15 MS                  | KLA02-SB1-01                 | 77         | 83       | 87       | 91         | 82         | 80           |      |
| 20-39023-15 MSD                 | KLA02-SB1-01                 | 80         | 90       | 95       | 96         | 83         | 85           |      |
| 20-39023-16                     | KLA02-SB1-02                 | 71         | 81       | 84       | 85         | 77         | 76           |      |
| 20-39023-10                     | KLA02-SB2-01                 | 78         | 85       | 94       | 66         | 78         | 55           |      |
| 20-39023-17<br>20-39023-17 - DL | KLA02-SB2-01                 | 94 M       | 72       | 87       | 84         | 66         | 68           |      |
| 20-39023-17 - DL<br>20-39023-18 | KLA02-SB2-01<br>KLA02-SB2-02 | 82         | 72<br>78 | 89       | 71         | 72         | 60           |      |
| 20-39023-18<br>20-39023-18 - DL | KLA02-SB2-02                 | 71         | 78       | 91       | 86         | 82         | 71           |      |
| 20-39023-16 - DL<br>20-39023-19 | KLA02-SB2-02<br>KLA02-SB3-01 | 71         | 76<br>86 | 91       | 85         | 82         | 68           |      |
| 20-39023-19<br>20-39023-19 - DL | KLA02-SB3-01                 | 76<br>77 M | 84       | 92       | 100        | 75         | 74           |      |
|                                 | KLA02-SB3-01<br>KLA02-SB3-02 | 77 101     |          | 90       | 92         | 80         | 76           |      |
| 20-39023-20                     |                              |            | 80       |          |            |            |              |      |
| 20-39023-21                     | KLA03-SB1-01                 | 68         | 83       | 85       | 83         | 71         | 69           |      |
| 0-39023-22                      | KLA03-SB1-02                 | 70         | 83       | 87       | 91         | 74         | 71           |      |
| 0-39023-23                      | KLA03-SB2-01                 | 69         | 83       | 83       | 81         | 73         | 72           |      |
| 0-39023-24                      | KLA03-SB2-02                 | 68         | 83       | 82       | 78         | 75         | 70           |      |
| 0-39023-25                      | KLA03-SB3-01                 | 78         | 85       | 85       | 87         | 83         | 79           |      |
| 0-39023-26                      | KLA03-SB3-02                 | 77         | 85       | 84       | 83         | 79         | 76           |      |
| 0-39023-27                      | KLA04-SB1-01                 | 87         | 98       | 88       | 37 Q       | 87         | 30 Q         |      |
| 0-39023-27 - DL                 | KLA04-SB1-01                 | 99 M       | 77       | 93       | 79         | 67         | 70           |      |
| 0-39023-28                      | KLA04-SB1-02                 | 95         | 85       | 84       | 34 Q       | 78         | 26 Q         |      |
| 0-39023-28 - DL2                | KLA04-SB1-02                 | 96 M       | 80       | 95       | 73         | 76         | 63           |      |
| 20-39023-28 - DL                | KLA04-SB1-02                 | 70 M       | 84       | 84       | 76         | 71         | 59           |      |
| 20-39023-29                     | KLA04-SB2-01                 | 96         | 88       | 83       | 25 Q       | 86         | 18 Q         |      |
| 20-39023-29 - DL                | KLA04-SB2-01                 | 111 M      | 74       | 80       | 68         | 64         | 58           |      |
| 20-39023-30                     | KLA04-SB2-02                 | 125        | 69       | 82       | 55         | 65         | 39 Q         |      |
| 20-39023-30 - DL                | KLA04-SB2-02                 | 133 M      | 70       | 95       | 78         | 78         | 61           |      |
| 20-39023-31                     | KLA04-SB3-01                 | 86         | 88       | 84       | 28 Q       | 77         | 20 Q         |      |
| 20-39023-31 - DL2               | KLA04-SB3-01                 | 71 M       | 74       | 78       | 73         | 53         | 57           |      |
| 20-39023-31 - DL                | KLA04-SB3-01                 | 54         | 75       | 82       | 59         | 69         | 47 Q         |      |
| 20-39023-32                     | KLA04-SB3-02                 | 109        | 77       | 87       | 51         | 65         | 39 Q         |      |
| 20-39023-32 - DL2               | KLA04-SB3-02                 | 72 M       | 62       | 89       | 78         | 69         | 64           |      |
| 20-39023-32 - DL                | KLA04-SB3-02                 | 88         | 84       | 87       | 78         | 76         | 63           |      |
| 20-39023-33                     | KLA05-SB1-01                 | 72         | 81       | 90       | 74         | 68         | 68           |      |
| 20-39023-33 - DL                | KLA05-SB1-01                 | 54         | 83       | 97       | 90         | 75         | 69           |      |
| 20-39023-34                     | KLA05-SB1-02                 | 68         | 81       | 88       | 88         | 70         | 72           |      |
| 20-39023-35                     | KLA05-SB2-01                 | 69         | 85       | 92       | 89         | 71         | 73           |      |
| 20-39023-35 - DL                | KLA05-SB2-01                 | 59         | 82       | 86       | 89         | 70         | 69           |      |
| 20-39023-36                     | KLA05-SB2-02                 | 70         | 74       | 85       | 87         | 74         | 72           |      |
| 20-39023-36 - DL                | KLA05-SB2-02<br>KLA05-SB2-02 | 70<br>72   | 74<br>77 | 92       | 85         | 74<br>72   | 72<br>70     |      |
| 20-39023-30 - DL<br>20-39023-37 | KLA05-SB2-02<br>KLA05-SB3-01 | 122        | 66       | 92<br>87 |            |            |              |      |
| 20-39023-37<br>20-39023-37 - DL | KLA05-SB3-01                 | 60 M       | 80       | 82       | 19 Q<br>68 | 46 Q<br>75 | 13 Q<br>53   |      |

## **Isotope Dilution Summary**

Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

### Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 (Continued)

Matrix: Solid Prep Type: Total/NA

|                        |                    | Percent Isotope Dilution Recovery (Acceptance Limits) |          |          |          |          |          |  |  |
|------------------------|--------------------|-------------------------------------------------------|----------|----------|----------|----------|----------|--|--|
|                        |                    | 3C3-PFB                                               | PFHpA    | PFOA     | PFNA     | PFHxS    | PFOS     |  |  |
| Lab Sample ID          | Client Sample ID   | (50-150)                                              | (50-150) | (50-150) | (50-150) | (50-150) | (50-150) |  |  |
| 320-39023-38           | KLA05-SB3-02       | 73                                                    | 81       | 87       | 50       | 73       | 40 Q     |  |  |
| 320-39023-38 - DL      | KLA05-SB3-02       | 78 M                                                  | 81       | 99       | 98       | 79       | 70       |  |  |
| 320-39023-39 - DL      | KLA06-SB1-01       | 67                                                    | 76       | 82       | 79       | 71       | 68       |  |  |
| 320-39023-39           | KLA06-SB1-01       | 72                                                    | 77       | 79       | 62       | 73       | 62       |  |  |
| 320-39023-40 - DL      | KLA06-SB1-02       | 69                                                    | 76       | 81       | 78       | 69       | 68       |  |  |
| 320-39023-40           | KLA06-SB1-02       | 68                                                    | 81       | 76       | 70       | 72       | 68       |  |  |
| 320-39023-41 - DL      | KLA06-SB2-01       | 67                                                    | 80       | 85       | 77       | 74       | 64       |  |  |
| 320-39023-41 - DL2     | KLA06-SB2-01       | 68 M                                                  | 66       | 81       | 74       | 71       | 60       |  |  |
| 320-39023-41           | KLA06-SB2-01       | 82                                                    | 82       | 84       | 54       | 75       | 54       |  |  |
| 320-39023-41 MS - DL2  | KLA06-SB2-01       | 44 M Q                                                | 71       | 77       | 73       | 65       | 66       |  |  |
| 320-39023-41 MS - DL   | KLA06-SB2-01       | 71                                                    | 79       | 81       | 74       | 73       | 64       |  |  |
| 320-39023-41 MS        | KLA06-SB2-01       | 88                                                    | 82       | 85       | 48 Q     | 69       | 46 Q     |  |  |
| 320-39023-41 MSD - DL2 | KLA06-SB2-01       | 76 M                                                  | 76       | 81       | 75       | 66       | 71       |  |  |
| 320-39023-41 MSD - DL  | KLA06-SB2-01       | 62                                                    | 80       | 82       | 73       | 72       | 61       |  |  |
| 320-39023-41 MSD       | KLA06-SB2-01       | 86                                                    | 82       | 83       | 48 Q     | 63       | 45 Q     |  |  |
| 320-39023-42 - DL2     | KLA06-SB2-02       | 61 M                                                  | 72       | 78       | 78       | 64       | 59       |  |  |
| 320-39023-42 - DL      | KLA06-SB2-02       | 73                                                    | 78       | 90       | 75       | 72       | 61       |  |  |
| 320-39023-42           | KLA06-SB2-02       | 81                                                    | 83       | 83       | 44 Q     | 75       | 40 Q     |  |  |
| 320-39023-43           | KLA07-SD1-01       | 68                                                    | 80       | 84       | 82       | 73       | 75       |  |  |
| 320-39023-51           | KLA03-SB-2-01D     | 79                                                    | 90       | 89       | 93       | 84       | 82       |  |  |
| 320-39023-52 - DL2     | KLA06-SB-2-02D     | 51 M                                                  | 64       | 84       | 74       | 59       | 57       |  |  |
| 320-39023-52 - DL      | KLA06-SB-2-02D     | 66                                                    | 75       | 84       | 79       | 71       | 62       |  |  |
| 320-39023-52           | KLA06-SB-2-02D     | 76                                                    | 86       | 83       | 47 Q     | 76       | 44 Q     |  |  |
| 320-39023-53           | KLA02-SB2-02D      | 78                                                    | 78       | 84       | 71       | 73       | 60       |  |  |
| 320-39023-53 - DL      | KLA02-SB2-02D      | 74 M                                                  | 72       | 86       | 81       | 70       | 67       |  |  |
| 320-39023-54           | KLA02-SB1-02D      | 73                                                    | 83       | 91       | 96       | 81       | 80       |  |  |
| 320-39023-55 - DL      | KLA05-SB1-01D      | 82 M                                                  | 69       | 81       | 84       | 61       | 62       |  |  |
| 320-39023-55           | KLA05-SB1-01D      | 77                                                    | 64       | 84       | 56       | 64       | 57       |  |  |
| 320-39023-59           | KLA07-SD1-01D      | 73                                                    | 81       | 88       | 94       | 79       | 78       |  |  |
| 320-39023-59 MS        | KLA07-SD1-01D      | 71                                                    | 79       | 88       | 95       | 76       | 77       |  |  |
| 320-39023-59 MSD       | KLA07-SD1-01D      | 72                                                    | 81       | 91       | 94       | 77       | 78       |  |  |
| LCS 320-223091/2-A     | Lab Control Sample | 80                                                    | 89       | 91       | 94       | 86       | 80       |  |  |
| LCS 320-223092/2-A     | Lab Control Sample | 71                                                    | 73       | 79       | 81       | 73       | 71       |  |  |
| LCS 320-224254/2-A     | Lab Control Sample | 81                                                    | 88       | 91       | 91       | 85       | 83       |  |  |
| MB 320-223091/1-A      | Method Blank       | 81                                                    | 85       | 90       | 91       | 84       | 80       |  |  |
| MB 320-223092/1-A      | Method Blank       | 68                                                    | 71       | 78       | 75       | 71       | 70       |  |  |
| MB 320-224254/1-A      | Method Blank       | 77                                                    | 85       | 91       | 93       | 85       | 84       |  |  |

#### **Surrogate Legend**

13C3-PFBS = 13C3-PFBS

PFHpA = 13C4-PFHpA

PFOA = 13C4 PFOA

PFNA = 13C5 PFNA PFHxS = 18O2 PFHxS

PFOS = 13C4 PFOS

TestAmerica Job ID: 320-39023-1

## **Isotope Dilution Summary**

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

### Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15

Matrix: Water Prep Type: Total/NA

|                      |                        | Percent Isotope Dilution Recovery (Acceptance Limits) |          |          |          |          |          |  |  |
|----------------------|------------------------|-------------------------------------------------------|----------|----------|----------|----------|----------|--|--|
|                      |                        | 3C3-PFB                                               | PFHpA    | PFOA     | PFNA     | PFHxS    | PFOS     |  |  |
| Lab Sample ID        | Client Sample ID       | (50-150)                                              | (50-150) | (50-150) | (50-150) | (50-150) | (50-150) |  |  |
| 320-39023-1          | MW-KLA01-01-01         | 75                                                    | 79       | 87       | 81       | 80       | 74       |  |  |
| 320-39023-1 - DL     | MW-KLA01-01-01         | 72                                                    | 77       | 83       | 77       | 72       | 67       |  |  |
| 320-39023-2          | MW-KLA02-01-01         | 321 Q                                                 | 44 Q     | 65       | 40 Q     | 77       | 28 Q     |  |  |
| 320-39023-2 - DL     | MW-KLA02-01-01         | 176 Q                                                 | 54       | 68       | 53       | 96       | 44 Q     |  |  |
| 320-39023-3          | MW-KLA03-01-01         | 75                                                    | 69       | 85       | 62       | 66       | 54       |  |  |
| 320-39023-3 - DL     | MW-KLA03-01-01         | 68 M                                                  | 72       | 83       | 77       | 72       | 75       |  |  |
| 20-39023-4 - DL      | MW-KLA04-01-01         | 63                                                    | 65       | 75       | 67       | 62       | 62       |  |  |
| 320-39023-4          | MW-KLA04-01-01         | 71                                                    | 74       | 80       | 79       | 69       | 69       |  |  |
| 20-39023-5           | MW-573-03-PRL05-01     | 136                                                   | 46 Q     | 77       | 58       | 54       | 48 Q     |  |  |
| 20-39023-5 - DL      | MW-573-03-PRL05-01     | 99 M                                                  | 64       | 73       | 69       | 73       | 66       |  |  |
| 320-39023-5 MS       | MW-573-03-PRL05-01     | 146                                                   | 48 Q     | 80       | 62       | 55       | 48 Q     |  |  |
| 20-39023-5 MS - DL   | MW-573-03-PRL05-01     | 107 M                                                 | 64       | 86       | 71       | 82       | 61       |  |  |
| 20-39023-5 MSD       | MW-573-03-PRL05-01     | 134                                                   | 45 Q     | 76       | 58       | 54       | 45 Q     |  |  |
| 320-39023-5 MSD - DL | MW-573-03-PRL05-01     | 107 M                                                 | 65       | 76       | 72       | 76       | 64       |  |  |
| 320-39023-6          | MW-572-02-PRL05-01     | 85                                                    | 83       | 89       | 82       | 81       | 74       |  |  |
| 20-39023-6 - DL      | MW-572-02-PRL05-01     | 69 M                                                  | 79       | 92       | 84       | 77       | 75       |  |  |
| 20-39023-7           | MW-KLA06-01-01         | 233 Q                                                 | 37 Q     | 52       | 50       | 54       | 36 Q     |  |  |
| 20-39023-7 - DL2     | MW-KLA06-01-01         | 145 M                                                 | 53       | 58       | 51       | 76       | 46 Q     |  |  |
| 20-39023-8           | KLA08-SW1-01           | 76                                                    | 76       | 95       | 103      | 93       | 101      |  |  |
| 20-39023-44          | ER-01                  | 88                                                    | 88       | 90       | 92       | 88       | 82       |  |  |
| 20-39023-45          | FB-01                  | 91                                                    | 101      | 94       | 105      | 93       | 95       |  |  |
| 20-39023-46          | ER-02                  | 75                                                    | 71       | 80       | 84       | 75       | 77       |  |  |
| 20-39023-47          | ER-03                  | 65                                                    | 66       | 69       | 71       | 63       | 64       |  |  |
| 20-39023-48          | ER-04                  | 70                                                    | 70       | 73       | 78       | 69       | 69       |  |  |
| 20-39023-49          | MW-572-02-PRL05-01D    | 59                                                    | 60       | 65       | 61       | 58       | 55       |  |  |
| 20-39023-49 - DL     | MW-572-02-PRL05-01D    | 53                                                    | 56       | 63       | 60       | 52       | 53       |  |  |
| 20-39023-56          | ER-05                  | 84                                                    | 93       | 98       | 104      | 87       | 91       |  |  |
| CS 320-223346/2-A    | Lab Control Sample     | 82                                                    | 94       | 93       | 95       | 89       | 83       |  |  |
| .CS 320-223615/2-A   | Lab Control Sample     | 78                                                    | 85       | 90       | 90       | 80       | 86       |  |  |
| CS 320-223901/2-A    | Lab Control Sample     | 81                                                    | 83       | 84       | 84       | 79       | 79       |  |  |
| CS 320-224065/2-A    | Lab Control Sample     | 66                                                    | 70       | 74       | 72       | 70       | 66       |  |  |
| CS 320-224509/2-A    | Lab Control Sample     | 80                                                    | 85       | 88       | 91       | 82       | 83       |  |  |
| CSD 320-224509/3-A   | Lab Control Sample Dup | 72                                                    | 76       | 81       | 82       | 77       | 76       |  |  |
| 1B 320-223346/1-A    | Method Blank           | 84                                                    | 94       | 96       | 96       | 87       | 86       |  |  |
| MB 320-223615/1-A    | Method Blank           | 80                                                    | 84       | 93       | 94       | 85       | 81       |  |  |
| MB 320-223901/1-A    | Method Blank           | 85                                                    | 86       | 88       | 92       | 83       | 82       |  |  |
| MB 320-224065/1-A    | Method Blank           | 88                                                    | 93       | 103      | 106      | 94       | 92       |  |  |
| MB 320-224509/1-A    | Method Blank           | 75                                                    | 77       | 82       | 83       | 77       | 76       |  |  |

#### Surrogate Legend

13C3-PFBS = 13C3-PFBS

PFHpA = 13C4-PFHpA

PFOA = 13C4 PFOA

PFNA = 13C5 PFNA

PFHxS = 1802 PFHxS

PFOS = 13C4 PFOS

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

#### Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: LB3 280-415294/1-A

Matrix: Water

Analysis Batch: 415557

Client Sample ID: Method Blank Prep Type: TCLP

| -                    | LB3    | LB3       |       |        |      |   |          |                |         |
|----------------------|--------|-----------|-------|--------|------|---|----------|----------------|---------|
| Analyte              | Result | Qualifier | LOQ   | DL     | Unit | D | Prepared | Analyzed       | Dil Fac |
| Benzene              | 0.0040 | U         | 0.010 | 0.0016 | mg/L |   |          | 05/21/18 16:07 | 1       |
| 2-Butanone (MEK)     | 0.040  | U         | 0.10  | 0.018  | mg/L |   |          | 05/21/18 16:07 | 1       |
| Carbon tetrachloride | 0.0040 | U         | 0.010 | 0.0019 | mg/L |   |          | 05/21/18 16:07 | 1       |
| Chlorobenzene        | 0.0040 | U         | 0.010 | 0.0017 | mg/L |   |          | 05/21/18 16:07 | 1       |
| Chloroform           | 0.0040 | U         | 0.010 | 0.0016 | mg/L |   |          | 05/21/18 16:07 | 1       |
| 1,2-Dichloroethane   | 0.0040 | U         | 0.010 | 0.0013 | mg/L |   |          | 05/21/18 16:07 | 1       |
| 1,1-Dichloroethene   | 0.0080 | U         | 0.010 | 0.0023 | mg/L |   |          | 05/21/18 16:07 | 1       |
| Tetrachloroethene    | 0.0040 | U         | 0.010 | 0.0020 | mg/L |   |          | 05/21/18 16:07 | 1       |
| Trichloroethene      | 0.0040 | U         | 0.010 | 0.0016 | mg/L |   |          | 05/21/18 16:07 | 1       |
| Vinyl chloride       | 0.0020 | U         | 0.010 | 0.0010 | mg/L |   |          | 05/21/18 16:07 | 1       |
|                      |        |           |       |        |      |   |          |                |         |

LB3 LB3

| Surrogate                    | %Recovery Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|------------------------------|---------------------|----------|----------|----------------|---------|
| Toluene-d8 (Surr)            | 101                 | 78 - 120 |          | 05/21/18 16:07 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 103                 | 64 - 129 |          | 05/21/18 16:07 | 1       |
| 4-Bromofluorobenzene (Surr)  | 96                  | 78 - 121 |          | 05/21/18 16:07 | 1       |
| Dibromofluoromethane (Surr)  | 102                 | 79 - 119 |          | 05/21/18 16:07 | 1       |

Lab Sample ID: LCS 280-415294/2-A

**Matrix: Water** 

**Analysis Batch: 415557** 

Client Sample ID: Lab Control Sample

**Prep Type: TCLP** 

|                      | Spike  | LCS LCS     |             |        | %Rec.    |  |
|----------------------|--------|-------------|-------------|--------|----------|--|
| Analyte              | Added  | Result Qual | lifier Unit | D %Rec | Limits   |  |
| Benzene              | 0.0500 | 0.0498      | mg/L        | 100    | 74 - 135 |  |
| 2-Butanone (MEK)     | 0.200  | 0.226       | mg/L        | 113    | 44 - 150 |  |
| Carbon tetrachloride | 0.0500 | 0.0493      | mg/L        | 99     | 67 - 135 |  |
| Chlorobenzene        | 0.0500 | 0.0457      | mg/L        | 91     | 76 - 135 |  |
| Chloroform           | 0.0500 | 0.0518      | mg/L        | 104    | 76 - 120 |  |
| 1,2-Dichloroethane   | 0.0500 | 0.0549      | mg/L        | 110    | 70 - 135 |  |
| 1,1-Dichloroethene   | 0.0500 | 0.0481      | mg/L        | 96     | 71 - 136 |  |
| Tetrachloroethene    | 0.0500 | 0.0428      | mg/L        | 86     | 70 - 135 |  |
| Trichloroethene      | 0.0500 | 0.0471      | mg/L        | 94     | 73 - 135 |  |
| Vinyl chloride       | 0.0500 | 0.0436      | mg/L        | 87     | 40 - 144 |  |

LCS LCS

| Surrogate                    | %Recovery | Qualifier | Limits   |
|------------------------------|-----------|-----------|----------|
| Toluene-d8 (Surr)            | 96        |           | 78 - 120 |
| 1,2-Dichloroethane-d4 (Surr) | 104       |           | 64 - 129 |
| 4-Bromofluorobenzene (Surr)  | 92        |           | 78 - 121 |
| Dibromofluoromethane (Surr)  | 100       |           | 79 - 119 |

Lab Sample ID: LB 280-415139/1-A

Matrix: Solid

Analysis Batch: 416517

Client Sample ID: Method Blank

**Prep Type: TCLP** 

LB LB

|                      | LB     | LD        |       |        |      |   |          |                |         |
|----------------------|--------|-----------|-------|--------|------|---|----------|----------------|---------|
| Analyte              | Result | Qualifier | LOQ   | DL     | Unit | D | Prepared | Analyzed       | Dil Fac |
| Benzene              | 0.0040 | U         | 0.010 | 0.0016 | mg/L |   |          | 05/29/18 09:40 | 1       |
| 2-Butanone (MEK)     | 0.040  | U         | 0.10  | 0.018  | mg/L |   |          | 05/29/18 09:40 | 1       |
| Carbon tetrachloride | 0.0040 | U         | 0.010 | 0.0019 | mg/L |   |          | 05/29/18 09:40 | 1       |

Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

TestAmerica Job ID: 320-39023-1

#### Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LB 280-415139/1-A

**Matrix: Solid** 

**Analysis Batch: 416517** 

**Client Sample ID: Method Blank** 

**Prep Type: TCLP** 

|                    | LB     | LB        |       |        |      |   |          |                |         |
|--------------------|--------|-----------|-------|--------|------|---|----------|----------------|---------|
| Analyte            | Result | Qualifier | LOQ   | DL     | Unit | D | Prepared | Analyzed       | Dil Fac |
| Chlorobenzene      | 0.0040 | U         | 0.010 | 0.0017 | mg/L |   |          | 05/29/18 09:40 | 1       |
| Chloroform         | 0.0040 | U         | 0.010 | 0.0016 | mg/L |   |          | 05/29/18 09:40 | 1       |
| 1,2-Dichloroethane | 0.0040 | U         | 0.010 | 0.0013 | mg/L |   |          | 05/29/18 09:40 | 1       |
| 1,1-Dichloroethene | 0.0080 | U         | 0.010 | 0.0023 | mg/L |   |          | 05/29/18 09:40 | 1       |
| Tetrachloroethene  | 0.0040 | U         | 0.010 | 0.0020 | mg/L |   |          | 05/29/18 09:40 | 1       |
| Trichloroethene    | 0.0040 | U         | 0.010 | 0.0016 | mg/L |   |          | 05/29/18 09:40 | 1       |
| Vinyl chloride     | 0.0020 | U         | 0.010 | 0.0010 | mg/L |   |          | 05/29/18 09:40 | 1       |
|                    |        |           |       |        |      |   |          |                |         |

LB LB %Recovery Qualifier Surrogate Limits Dil Fac Prepared Analyzed Toluene-d8 (Surr) 92 78 - 120 05/29/18 09:40 99 64 - 129 05/29/18 09:40 1,2-Dichloroethane-d4 (Surr) 1 4-Bromofluorobenzene (Surr) 98 78 - 121 05/29/18 09:40 1 Dibromofluoromethane (Surr) 79 - 119 05/29/18 09:40 114

Lab Sample ID: LCS 280-415139/2-A

**Matrix: Solid** 

**Analysis Batch: 416517** 

**Client Sample ID: Lab Control Sample Prep Type: TCLP** 

|                      | Spike  | LCS L    | _CS            |     |      | %Rec.               |
|----------------------|--------|----------|----------------|-----|------|---------------------|
| Analyte              | Added  | Result C | Qualifier Unit | D % | %Rec | Limits              |
| Benzene              | 0.0500 | 0.0524   | mg/L           |     | 105  | 74 - 135            |
| 2-Butanone (MEK)     | 0.200  | 0.181    | mg/L           |     | 91   | 44 - 150            |
| Carbon tetrachloride | 0.0500 | 0.0500   | mg/L           |     | 100  | 67 <sub>-</sub> 135 |
| Chlorobenzene        | 0.0500 | 0.0476   | mg/L           |     | 95   | 76 - 135            |
| Chloroform           | 0.0500 | 0.0532   | mg/L           |     | 106  | 76 - 120            |
| 1,2-Dichloroethane   | 0.0500 | 0.0505   | mg/L           |     | 101  | 70 - 135            |
| 1,1-Dichloroethene   | 0.0500 | 0.0558   | mg/L           |     | 112  | 71 - 136            |
| Tetrachloroethene    | 0.0500 | 0.0479   | mg/L           |     | 96   | 70 - 135            |
| Trichloroethene      | 0.0500 | 0.0500   | mg/L           |     | 100  | 73 - 135            |
| Vinyl chloride       | 0.0500 | 0.0459   | mg/L           |     | 92   | 40 - 144            |

LCS LCS Surrogate %Recovery Qualifier Limits 78 - 120 Toluene-d8 (Surr) 105 103 1,2-Dichloroethane-d4 (Surr) 64 - 129 4-Bromofluorobenzene (Surr) 88 78 - 121 Dibromofluoromethane (Surr) 103 79 - 119

#### Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: LB3 280-416023/1-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

**Analysis Batch: 416357 Prep Batch: 416023** 

|                     | LB3    | LB3       |       |        |      |   |                |                |         |
|---------------------|--------|-----------|-------|--------|------|---|----------------|----------------|---------|
| Analyte             | Result | Qualifier | LOQ   | DL     | Unit | D | Prepared       | Analyzed       | Dil Fac |
| 2-Methylphenol      | 0.010  | U         | 0.050 | 0.0049 | mg/L |   | 05/21/18 08:46 | 05/25/18 17:01 | 1       |
| 3 & 4 Methylphenol  | 0.0025 | U         | 0.050 | 0.0013 | mg/L |   | 05/21/18 08:46 | 05/25/18 17:01 | 1       |
| 1,4-Dichlorobenzene | 0.020  | U         | 0.020 | 0.0016 | mg/L |   | 05/21/18 08:46 | 05/25/18 17:01 | 1       |
| 2,4-Dinitrotoluene  | 0.022  | U         | 0.050 | 0.0083 | mg/L |   | 05/21/18 08:46 | 05/25/18 17:01 | 1       |

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

#### Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LB3 280-416023/1-A

**Matrix: Water** 

**Analysis Batch: 416357** 

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 416023

| Allalysis Datell. + 10001 |        |           |       |        |      |   |                | i rep baten.   | T10020  |
|---------------------------|--------|-----------|-------|--------|------|---|----------------|----------------|---------|
|                           | LB3    | LB3       |       |        |      |   |                |                |         |
| Analyte                   | Result | Qualifier | LOQ   | DL     | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Hexachlorobenzene         | 0.010  | U         | 0.050 | 0.0033 | mg/L |   | 05/21/18 08:46 | 05/25/18 17:01 | 1       |
| Hexachlorobutadiene       | 0.050  | U         | 0.050 | 0.017  | mg/L |   | 05/21/18 08:46 | 05/25/18 17:01 | 1       |
| Hexachloroethane          | 0.022  | U         | 0.050 | 0.011  | mg/L |   | 05/21/18 08:46 | 05/25/18 17:01 | 1       |
| Nitrobenzene              | 0.010  | U         | 0.050 | 0.0041 | mg/L |   | 05/21/18 08:46 | 05/25/18 17:01 | 1       |
| Pentachlorophenol         | 0.20   | U         | 0.25  | 0.10   | mg/L |   | 05/21/18 08:46 | 05/25/18 17:01 | 1       |
| Pyridine                  | 0.022  | U         | 0.10  | 0.0057 | mg/L |   | 05/21/18 08:46 | 05/25/18 17:01 | 1       |
| 2,4,5-Trichlorophenol     | 0.0050 | U         | 0.050 | 0.0022 | mg/L |   | 05/21/18 08:46 | 05/25/18 17:01 | 1       |
| 2,4,6-Trichlorophenol     | 0.0050 | U         | 0.025 | 0.0014 | mg/L |   | 05/21/18 08:46 | 05/25/18 17:01 | 1       |
|                           |        |           |       |        |      |   |                |                |         |

LB3 LB3

| Surrogate                   | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|----------------|----------------|---------|
| 2-Fluorobiphenyl            | 89        |           | 49 - 120 | 05/21/18 08:46 | 05/25/18 17:01 | 1       |
| 2-Fluorophenol (Surr)       | 77        |           | 50 - 120 | 05/21/18 08:46 | 05/25/18 17:01 | 1       |
| 2,4,6-Tribromophenol (Surr) | 89        |           | 51 - 120 | 05/21/18 08:46 | 05/25/18 17:01 | 1       |
| Nitrobenzene-d5 (Surr)      | 74        |           | 51 - 120 | 05/21/18 08:46 | 05/25/18 17:01 | 1       |
| Phenol-d5 (Surr)            | 64        |           | 47 - 120 | 05/21/18 08:46 | 05/25/18 17:01 | 1       |
| Terphenyl-d14 (Surr)        | 95        |           | 56 - 120 | 05/21/18 08:46 | 05/25/18 17:01 | 1       |

Lab Sample ID: LCS 280-416023/2-A

**Matrix: Water** 

**Analysis Batch: 416357** 

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 416023

|                       | Spike | LCS    | LCS       |      |   |      | %Rec.    |  |
|-----------------------|-------|--------|-----------|------|---|------|----------|--|
| Analyte               | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| 2-Methylphenol        | 0.250 | 0.232  |           | mg/L |   | 93   | 45 - 120 |  |
| 3 & 4 Methylphenol    | 0.500 | 0.466  |           | mg/L |   | 93   | 44 - 120 |  |
| 1,4-Dichlorobenzene   | 0.250 | 0.237  |           | mg/L |   | 95   | 36 - 120 |  |
| 2,4-Dinitrotoluene    | 0.100 | 0.0686 |           | mg/L |   | 69   | 36 - 120 |  |
| Hexachlorobenzene     | 0.100 | 0.0917 |           | mg/L |   | 92   | 52 - 120 |  |
| Hexachlorobutadiene   | 0.250 | 0.235  |           | mg/L |   | 94   | 35 - 120 |  |
| Hexachloroethane      | 0.250 | 0.220  |           | mg/L |   | 88   | 35 - 120 |  |
| Nitrobenzene          | 0.250 | 0.231  |           | mg/L |   | 93   | 50 - 120 |  |
| Pentachlorophenol     | 0.500 | 0.409  |           | mg/L |   | 82   | 39 - 120 |  |
| Pyridine              | 0.250 | 0.0593 | J         | mg/L |   | 24   | 10 - 121 |  |
| 2,4,5-Trichlorophenol | 0.250 | 0.277  |           | mg/L |   | 111  | 46 - 120 |  |
| 2,4,6-Trichlorophenol | 0.250 | 0.278  |           | mg/L |   | 111  | 43 - 120 |  |

LCS LCS

| Surrogate                   | %Recovery | Qualifier | Limits              |
|-----------------------------|-----------|-----------|---------------------|
| 2-Fluorobiphenyl            | 103       |           | 49 - 120            |
| 2-Fluorophenol (Surr)       | 92        |           | 50 - 120            |
| 2,4,6-Tribromophenol (Surr) | 97        |           | 51 - 120            |
| Nitrobenzene-d5 (Surr)      | 87        |           | 51 - 120            |
| Phenol-d5 (Surr)            | 80        |           | 47 - 120            |
| Terphenyl-d14 (Surr)        | 99        |           | 56 <sub>-</sub> 120 |

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

#### Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LB 280-415138/1-C

**Matrix: Solid** 

Analysis Batch: 416357

**Client Sample ID: Method Blank Prep Type: TCLP** 

**Prep Batch: 415600** 

| -                     | LB     | LB        |       |        |      |   |                | •              |         |
|-----------------------|--------|-----------|-------|--------|------|---|----------------|----------------|---------|
| Analyte               | Result | Qualifier | LOQ   | DL     | Unit | D | Prepared       | Analyzed       | Dil Fac |
| 2-Methylphenol        | 0.010  | U         | 0.050 | 0.0049 | mg/L |   | 05/21/18 08:55 | 05/25/18 17:51 | 1       |
| 3 & 4 Methylphenol    | 0.0025 | U         | 0.050 | 0.0013 | mg/L |   | 05/21/18 08:55 | 05/25/18 17:51 | 1       |
| 1,4-Dichlorobenzene   | 0.020  | U         | 0.020 | 0.0016 | mg/L |   | 05/21/18 08:55 | 05/25/18 17:51 | 1       |
| 2,4-Dinitrotoluene    | 0.022  | U         | 0.050 | 0.0083 | mg/L |   | 05/21/18 08:55 | 05/25/18 17:51 | 1       |
| Hexachlorobenzene     | 0.010  | U         | 0.050 | 0.0033 | mg/L |   | 05/21/18 08:55 | 05/25/18 17:51 | 1       |
| Hexachlorobutadiene   | 0.050  | U         | 0.050 | 0.017  | mg/L |   | 05/21/18 08:55 | 05/25/18 17:51 | 1       |
| Hexachloroethane      | 0.022  | U         | 0.050 | 0.011  | mg/L |   | 05/21/18 08:55 | 05/25/18 17:51 | 1       |
| Nitrobenzene          | 0.010  | U         | 0.050 | 0.0041 | mg/L |   | 05/21/18 08:55 | 05/25/18 17:51 | 1       |
| Pentachlorophenol     | 0.20   | U         | 0.25  | 0.10   | mg/L |   | 05/21/18 08:55 | 05/25/18 17:51 | 1       |
| Pyridine              | 0.022  | U         | 0.10  | 0.0057 | mg/L |   | 05/21/18 08:55 | 05/25/18 17:51 | 1       |
| 2,4,5-Trichlorophenol | 0.0050 | U         | 0.050 | 0.0022 | mg/L |   | 05/21/18 08:55 | 05/25/18 17:51 | 1       |
| 2,4,6-Trichlorophenol | 0.0050 | U         | 0.025 | 0.0014 | mg/L |   | 05/21/18 08:55 | 05/25/18 17:51 | 1       |
|                       |        |           |       |        |      |   |                |                |         |

LB LB

| Surrogate                   | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|----------------|----------------|---------|
| 2-Fluorobiphenyl            | 79        |           | 49 - 120 | 05/21/18 08:55 | 05/25/18 17:51 | 1       |
| 2-Fluorophenol (Surr)       | 67        |           | 50 - 120 | 05/21/18 08:55 | 05/25/18 17:51 | 1       |
| 2,4,6-Tribromophenol (Surr) | 87        |           | 51 - 120 | 05/21/18 08:55 | 05/25/18 17:51 | 1       |
| Nitrobenzene-d5 (Surr)      | 66        |           | 51 - 120 | 05/21/18 08:55 | 05/25/18 17:51 | 1       |
| Phenol-d5 (Surr)            | 55        |           | 47 - 120 | 05/21/18 08:55 | 05/25/18 17:51 | 1       |
| Terphenyl-d14 (Surr)        | 92        |           | 56 - 120 | 05/21/18 08:55 | 05/25/18 17:51 | 1       |
|                             |           |           |          |                |                |         |

Lab Sample ID: LCS 280-415138/2-C

Matrix: Solid

**Analysis Batch: 416357** 

**Client Sample ID: Lab Control Sample Prep Type: TCLP** 

**Prep Batch: 415600** 

|                       | Spike | LCS    | LCS       |      |   |      | %Rec.    |  |
|-----------------------|-------|--------|-----------|------|---|------|----------|--|
| Analyte               | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| 2-Methylphenol        | 0.250 | 0.217  |           | mg/L |   | 87   | 45 - 120 |  |
| 3 & 4 Methylphenol    | 0.500 | 0.427  |           | mg/L |   | 85   | 44 - 120 |  |
| 1,4-Dichlorobenzene   | 0.250 | 0.212  |           | mg/L |   | 85   | 36 - 120 |  |
| 2,4-Dinitrotoluene    | 0.100 | 0.0672 |           | mg/L |   | 67   | 36 - 120 |  |
| Hexachlorobenzene     | 0.100 | 0.0902 |           | mg/L |   | 90   | 52 - 120 |  |
| Hexachlorobutadiene   | 0.250 | 0.216  |           | mg/L |   | 86   | 35 - 120 |  |
| Hexachloroethane      | 0.250 | 0.200  |           | mg/L |   | 80   | 35 - 120 |  |
| Nitrobenzene          | 0.250 | 0.224  |           | mg/L |   | 90   | 50 - 120 |  |
| Pentachlorophenol     | 0.500 | 0.361  |           | mg/L |   | 72   | 39 - 120 |  |
| Pyridine              | 0.250 | 0.118  |           | mg/L |   | 47   | 10 - 121 |  |
| 2,4,5-Trichlorophenol | 0.250 | 0.258  |           | mg/L |   | 103  | 46 - 120 |  |
| 2,4,6-Trichlorophenol | 0.250 | 0.263  |           | mg/L |   | 105  | 43 - 120 |  |

LCS LCS

| Surrogate                   | %Recovery | Qualifier | Limits   |
|-----------------------------|-----------|-----------|----------|
| 2-Fluorobiphenyl            | 97        |           | 49 - 120 |
| 2-Fluorophenol (Surr)       | 85        |           | 50 - 120 |
| 2,4,6-Tribromophenol (Surr) | 95        |           | 51 - 120 |
| Nitrobenzene-d5 (Surr)      | 86        |           | 51 - 120 |
| Phenol-d5 (Surr)            | 75        |           | 47 - 120 |
| Terphenyl-d14 (Surr)        | 93        |           | 56 - 120 |

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

## Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 320-39023-57 MS

**Matrix: Solid** 

Analysis Batch: 416357

Client Sample ID: IDW-KINGSLEY-SO-LDOS01 **Prep Type: TCLP** 

**Prep Batch: 415600** 

| -                     | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec.    |
|-----------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|
| Analyte               | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   |
| 2-Methylphenol        | 0.010  | U         | 0.250 | 0.217  |           | mg/L |   | 87   | 45 - 120 |
| 3 & 4 Methylphenol    | 0.0025 | U         | 0.500 | 0.422  |           | mg/L |   | 84   | 44 - 120 |
| 1,4-Dichlorobenzene   | 0.020  | U         | 0.250 | 0.213  |           | mg/L |   | 85   | 36 - 120 |
| 2,4-Dinitrotoluene    | 0.022  | U         | 0.100 | 0.0731 |           | mg/L |   | 73   | 36 - 120 |
| Hexachlorobenzene     | 0.010  | U         | 0.100 | 0.0841 |           | mg/L |   | 84   | 52 - 120 |
| Hexachlorobutadiene   | 0.050  | U         | 0.250 | 0.215  |           | mg/L |   | 86   | 35 - 120 |
| Hexachloroethane      | 0.022  | U         | 0.250 | 0.198  |           | mg/L |   | 79   | 35 - 120 |
| Nitrobenzene          | 0.010  | U         | 0.250 | 0.215  |           | mg/L |   | 86   | 50 - 120 |
| Pentachlorophenol     | 0.20   | U         | 0.500 | 0.368  |           | mg/L |   | 74   | 39 - 120 |
| Pyridine              | 0.022  | U         | 0.250 | 0.142  |           | mg/L |   | 57   | 10 - 121 |
| 2,4,5-Trichlorophenol | 0.0050 | U         | 0.250 | 0.244  |           | mg/L |   | 97   | 46 - 120 |
| 2,4,6-Trichlorophenol | 0.0050 | U         | 0.250 | 0.252  |           | mg/L |   | 101  | 43 - 120 |

MS MS

| Surrogate                   | %Recovery | Qualifier | Limits   |
|-----------------------------|-----------|-----------|----------|
| 2-Fluorobiphenyl            | 90        |           | 49 - 120 |
| 2-Fluorophenol (Surr)       | 81        |           | 50 - 120 |
| 2,4,6-Tribromophenol (Surr) | 91        |           | 51 - 120 |
| Nitrobenzene-d5 (Surr)      | 79        |           | 51 - 120 |
| Phenol-d5 (Surr)            | 70        |           | 47 - 120 |
| Terphenyl-d14 (Surr)        | 88        |           | 56 - 120 |

Lab Sample ID: 320-39023-57 MSD

**Matrix: Solid** 

**Analysis Batch: 416357** 

Client Sample ID: IDW-KINGSLEY-SO-LDOS01

**Prep Type: TCLP** 

**Prep Batch: 415600** 

| -                     | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec.    |     | RPD   |
|-----------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|-----|-------|
| Analyte               | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| 2-Methylphenol        | 0.010  | U         | 0.250 | 0.245  |           | mg/L |   | 98   | 45 - 120 | 12  | 30    |
| 3 & 4 Methylphenol    | 0.0025 | U         | 0.500 | 0.478  |           | mg/L |   | 96   | 44 - 120 | 12  | 30    |
| 1,4-Dichlorobenzene   | 0.020  | U         | 0.250 | 0.235  |           | mg/L |   | 94   | 36 - 120 | 10  | 30    |
| 2,4-Dinitrotoluene    | 0.022  | U         | 0.100 | 0.0818 |           | mg/L |   | 82   | 36 - 120 | 11  | 30    |
| Hexachlorobenzene     | 0.010  | U         | 0.100 | 0.0978 |           | mg/L |   | 98   | 52 - 120 | 15  | 30    |
| Hexachlorobutadiene   | 0.050  | U         | 0.250 | 0.226  |           | mg/L |   | 90   | 35 - 120 | 5   | 30    |
| Hexachloroethane      | 0.022  | U         | 0.250 | 0.218  |           | mg/L |   | 87   | 35 - 120 | 9   | 30    |
| Nitrobenzene          | 0.010  | U         | 0.250 | 0.230  |           | mg/L |   | 92   | 50 - 120 | 6   | 30    |
| Pentachlorophenol     | 0.20   | U         | 0.500 | 0.388  |           | mg/L |   | 78   | 39 - 120 | 5   | 30    |
| Pyridine              | 0.022  | U         | 0.250 | 0.136  |           | mg/L |   | 55   | 10 - 121 | 4   | 30    |
| 2,4,5-Trichlorophenol | 0.0050 | U         | 0.250 | 0.267  |           | mg/L |   | 107  | 46 - 120 | 9   | 30    |
| 2,4,6-Trichlorophenol | 0.0050 | U         | 0.250 | 0.274  |           | mg/L |   | 109  | 43 - 120 | 8   | 30    |
|                       |        |           |       |        |           |      |   |      |          |     |       |

MSD MSD

| Surrogate                   | %Recovery | Qualifier | Limits   |
|-----------------------------|-----------|-----------|----------|
| 2-Fluorobiphenyl            | 95        |           | 49 - 120 |
| 2-Fluorophenol (Surr)       | 88        |           | 50 - 120 |
| 2,4,6-Tribromophenol (Surr) | 100       |           | 51 - 120 |
| Nitrobenzene-d5 (Surr)      | 85        |           | 51 - 120 |
| Phenol-d5 (Surr)            | 77        |           | 47 - 120 |
| Terphenyl-d14 (Surr)        | 95        |           | 56 - 120 |

TestAmerica Job ID: 320-39023-1 Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

#### Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15

Lab Sample ID: MB 320-223091/1-A

**Matrix: Solid** 

Analysis Batch: 225894

**Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 223091** 

|                                      | MB     | MB        |      |       |       |   |                |                |         |
|--------------------------------------|--------|-----------|------|-------|-------|---|----------------|----------------|---------|
| Analyte                              | Result | Qualifier | LOQ  | DL    | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Perfluoroheptanoic acid (PFHpA)      | 0.20   | U         | 0.30 | 0.078 | ug/Kg |   | 05/14/18 13:10 | 05/29/18 03:17 | 1       |
| Perfluorooctanoic acid (PFOA)        | 0.20   | U         | 0.30 | 0.10  | ug/Kg |   | 05/14/18 13:10 | 05/29/18 03:17 | 1       |
| Perfluorononanoic acid (PFNA)        | 0.20   | U         | 0.30 | 0.081 | ug/Kg |   | 05/14/18 13:10 | 05/29/18 03:17 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.18   | U         | 0.40 | 0.059 | ug/Kg |   | 05/14/18 13:10 | 05/29/18 03:17 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 0.20   | U         | 0.30 | 0.062 | ug/Kg |   | 05/14/18 13:10 | 05/29/18 03:17 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 0.50   | U         | 1.0  | 0.24  | ug/Kg |   | 05/14/18 13:10 | 05/29/18 03:17 | 1       |
|                                      | MB     | MB        |      |       |       |   |                |                |         |

Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C3-PFBS 81 50 - 150 05/14/18 13:10 05/29/18 03:17 13C4-PFHpA 85 50 - 150 05/14/18 13:10 05/29/18 03:17 1 13C4 PFOA 90 50 - 150 05/14/18 13:10 05/29/18 03:17 1 13C5 PFNA 91 50 - 150 05/14/18 13:10 05/29/18 03:17 1802 PFHxS 50 - 150 1 84 05/14/18 13:10 05/29/18 03:17 13C4 PFOS 80 50 - 150 05/14/18 13:10 05/29/18 03:17

Lab Sample ID: LCS 320-223091/2-A

**Matrix: Solid** 

Analysis Batch: 225894

**Client Sample ID: Lab Control Sample** 

**Prep Type: Total/NA** Prep Batch: 223091

|                                      | Spike | LCS    | LCS       |       |   |      | %Rec.    |  |
|--------------------------------------|-------|--------|-----------|-------|---|------|----------|--|
| Analyte                              | Added | Result | Qualifier | Unit  | D | %Rec | Limits   |  |
| Perfluoroheptanoic acid (PFHpA)      | 2.00  | 2.17   |           | ug/Kg |   | 108  | 76 - 124 |  |
| Perfluorooctanoic acid (PFOA)        | 2.00  | 2.00   |           | ug/Kg |   | 100  | 76 - 121 |  |
| Perfluorononanoic acid (PFNA)        | 2.00  | 2.10   |           | ug/Kg |   | 105  | 74 - 126 |  |
| Perfluorobutanesulfonic acid (PFBS)  | 1.77  | 1.90   |           | ug/Kg |   | 108  | 73 - 142 |  |
| Perfluorohexanesulfonic acid (PFHxS) | 1.82  | 1.78   |           | ug/Kg |   | 98   | 75 - 121 |  |
| Perfluorooctanesulfonic acid (PFOS)  | 1.86  | 1.95   |           | ug/Kg |   | 105  | 69 - 131 |  |

100 100

0....

|   |                  | LCS       | LCS       |          |
|---|------------------|-----------|-----------|----------|
|   | Isotope Dilution | %Recovery | Qualifier | Limits   |
|   | 13C3-PFBS        | 80        |           | 50 - 150 |
|   | 13C4-PFHpA       | 89        |           | 50 - 150 |
|   | 13C4 PFOA        | 91        |           | 50 - 150 |
|   | 13C5 PFNA        | 94        |           | 50 - 150 |
|   | 18O2 PFHxS       | 86        |           | 50 - 150 |
|   | 13C4 PFOS        | 80        |           | 50 - 150 |
| Ц |                  |           |           |          |

Lab Sample ID: 320-39023-41 MS Client Sample ID: KLA06-SB2-01

**Analysis Batch: 227681** 

**Matrix: Solid** 

Prep Type: Total/NA Prep Batch: 223091

| 7 maryolo Batom 227 001              | Sample | Sample    | Spike | MS     | MS        |       |              |      | %Rec.    |
|--------------------------------------|--------|-----------|-------|--------|-----------|-------|--------------|------|----------|
| Analyte                              | Result | Qualifier | Added | Result | Qualifier | Unit  | D            | %Rec | Limits   |
| Perfluoroheptanoic acid (PFHpA)      | 1.2    | J1        | 3.15  | 5.16   | J1        | ug/Kg | <del>\</del> | 125  | 76 - 124 |
| Perfluorooctanoic acid (PFOA)        | 6.7    | J1        | 3.15  | 11.5   | J1        | ug/Kg | ₩            | 151  | 76 - 121 |
| Perfluorononanoic acid (PFNA)        | 1.6    |           | 3.15  | 5.14   |           | ug/Kg | ₩            | 113  | 74 - 126 |
| Perfluorobutanesulfonic acid (PFBS)  | 0.99   |           | 2.79  | 4.20   |           | ug/Kg | \$           | 115  | 73 - 142 |
| Perfluorohexanesulfonic acid (PFHxS) | 42     | E J1      | 2.87  | 56.3   | E 4       | ug/Kg | ₽            | 512  | 75 - 121 |

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

#### Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 (Continued)

85

69

48 Q

46 Q

Lab Sample ID: 320-39023-41 MS Client Sample ID: KLA06-SB2-01 **Matrix: Solid** Prep Type: Total/NA Prep Batch: 223091 **Analysis Batch: 227681** MS MS Sample Sample Spike %Rec. Result Qualifier Added Result Qualifier Unit D %Rec Limits Analyte 580 E J1 2 92 ug/Kg 69 - 131 Perfluorooctanesulfonic acid 813 E 4 7925 (PFOS) MS MS Isotope Dilution %Recovery Qualifier Limits 13C3-PFBS 88 50 - 150 13C4-PFHpA 82 50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

Lab Sample ID: 320-39023-41 MSD

**Matrix: Solid** 

13C4 PFOA

13C5 PFNA

1802 PFHxS

13C4 PFOS

**Analysis Batch: 227681** 

Client Sample ID: KLA06-SB2-01

Prep Type: Total/NA Prep Batch: 223091

|                                      | Sample | Sample    | Spike | MSD    | MSD       |       |              |      | %Rec.    |     | RPD   |  |
|--------------------------------------|--------|-----------|-------|--------|-----------|-------|--------------|------|----------|-----|-------|--|
| Analyte                              | Result | Qualifier | Added | Result | Qualifier | Unit  | D            | %Rec | Limits   | RPD | Limit |  |
| Perfluoroheptanoic acid (PFHpA)      | 1.2    | J1        | 3.16  | 5.65   | J1        | ug/Kg | <del>\</del> | 141  | 76 - 124 | 9   | 30    |  |
| Perfluorooctanoic acid (PFOA)        | 6.7    | J1        | 3.16  | 13.2   | J1        | ug/Kg | ☼            | 205  | 76 - 121 | 14  | 30    |  |
| Perfluorononanoic acid (PFNA)        | 1.6    |           | 3.16  | 5.14   |           | ug/Kg | ☼            | 113  | 74 - 126 | 0   | 30    |  |
| Perfluorobutanesulfonic acid (PFBS)  | 0.99   |           | 2.79  | 4.65   |           | ug/Kg | ₩            | 131  | 73 - 142 | 10  | 30    |  |
| Perfluorohexanesulfonic acid (PFHxS) | 42     | E J1      | 2.87  | 61.2   | E 4       | ug/Kg | ☼            | 680  | 75 - 121 | 8   | 30    |  |
| Perfluorooctanesulfonic acid         | 580    | E J1      | 2.93  | 827    | E 4       | ug/Kg | ₩            | 8409 | 69 - 131 | 2   | 30    |  |

(PFOS)

| (1.00)           | MSD       | MSD       |          |
|------------------|-----------|-----------|----------|
| Isotope Dilution | %Recovery | Qualifier | Limits   |
| 13C3-PFBS        | 86        |           | 50 - 150 |
| 13C4-PFHpA       | 82        |           | 50 - 150 |
| 13C4 PFOA        | 83        |           | 50 - 150 |
| 13C5 PFNA        | 48        | Q         | 50 - 150 |
| 1802 PFHxS       | 63        |           | 50 - 150 |
| 13C4 PFOS        | 45        | Q         | 50 - 150 |

MB MB

Lab Sample ID: MB 320-223092/1-A

**Matrix: Solid** 

**Analysis Batch: 225899** 

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 223092

Analyte Result Qualifier LOQ DL Unit **Prepared** Analyzed Dil Fac 0.078 ug/Kg Perfluoroheptanoic acid (PFHpA) 0.20 U 0.30 05/14/18 14:03 05/29/18 07:27 Perfluorooctanoic acid (PFOA) 0.20 U 0.30 05/14/18 14:03 05/29/18 07:27 0.10 ug/Kg Perfluorononanoic acid (PFNA) 0.30 0.081 ug/Kg 05/14/18 14:03 05/29/18 07:27 0.20 U 1 Perfluorobutanesulfonic acid (PFBS) 0.18 U 0.40 0.059 ug/Kg 05/14/18 14:03 05/29/18 07:27 Perfluorohexanesulfonic acid (PFHxS) 0.30 0.20 U 0.062 ug/Kg 05/14/18 14:03 05/29/18 07:27 1 Perfluorooctanesulfonic acid (PFOS) 0.50 U 1.0 0.24 ug/Kg 05/14/18 14:03 05/29/18 07:27 MP MP

| ı |                  | IVID      | IVID      |          |                |                |         |
|---|------------------|-----------|-----------|----------|----------------|----------------|---------|
| l | Isotope Dilution | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
| l | 13C3-PFBS        | 68        |           | 50 - 150 | 05/14/18 14:03 | 05/29/18 07:27 | 1       |
| l | 13C4-PFHpA       | 71        |           | 50 - 150 | 05/14/18 14:03 | 05/29/18 07:27 | 1       |
|   | 13C4 PFOA        | 78        |           | 50 - 150 | 05/14/18 14:03 | 05/29/18 07:27 | 1       |

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1 Project/Site: Phase III, ANG-Kingsley

### Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 (Continued)

Lab Sample ID: MB 320-223092/1-A

**Matrix: Solid** 

Analysis Batch: 225899

Client Sample ID: Method Blank

Prep Type: Total/NA

**Prep Batch: 223092** 

|                  | INID                    | INID                                                                                              |                               |                                                                                                                                                                      |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                    |
|------------------|-------------------------|---------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Isotope Dilution | %Recovery               | Qualifier                                                                                         | Limits                        | Prepared                                                                                                                                                             | Analyzed                                                                                                                                                                                                                            | Dil Fac                                                                                                                                                                                                                                                                                            |
| 13C5 PFNA        | 75                      |                                                                                                   | 50 - 150                      | 05/14/18 14:03                                                                                                                                                       | 05/29/18 07:27                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                  |
| 1802 PFHxS       | 71                      |                                                                                                   | 50 - 150                      | 05/14/18 14:03                                                                                                                                                       | 05/29/18 07:27                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                  |
| 13C4 PFOS        | 70                      |                                                                                                   | 50 - 150                      | 05/14/18 14:03                                                                                                                                                       | 05/29/18 07:27                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                  |
|                  | 13C5 PFNA<br>18O2 PFHxS | Isotope Dilution         %Recovery           13C5 PFNA         75           18O2 PFHxS         71 | 13C5 PFNA 75<br>18O2 PFHxS 71 | Isotope Dilution         %Recovery         Qualifier         Limits           13C5 PFNA         75         50 - 150           18O2 PFHxS         71         50 - 150 | Isotope Dilution         %Recovery         Qualifier         Limits         Prepared           13C5 PFNA         75         50 - 150         05/14/18 14:03           18O2 PFHxS         71         50 - 150         05/14/18 14:03 | Isotope Dilution         %Recovery         Qualifier         Limits         Prepared         Analyzed           13C5 PFNA         75         50 - 150         05/14/18 14:03         05/29/18 07:27           18O2 PFHxS         71         50 - 150         05/14/18 14:03         05/29/18 07:27 |

Lab Sample ID: LCS 320-223092/2-A

**Matrix: Solid** 

Analysis Batch: 225899

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 223092** 

|                                      | Spike | LCS LCS    |             |        | %Rec.    |
|--------------------------------------|-------|------------|-------------|--------|----------|
| Analyte                              | Added | Result Qua | lifier Unit | D %Rec | Limits   |
| Perfluoroheptanoic acid (PFHpA)      | 2.00  | 2.34       | ug/Kg       | 117    | 76 - 124 |
| Perfluorooctanoic acid (PFOA)        | 2.00  | 2.27       | ug/Kg       | 113    | 76 - 121 |
| Perfluorononanoic acid (PFNA)        | 2.00  | 2.23       | ug/Kg       | 111    | 74 - 126 |
| Perfluorobutanesulfonic acid (PFBS)  | 1.77  | 2.09       | ug/Kg       | 118    | 73 - 142 |
| Perfluorohexanesulfonic acid (PFHxS) | 1.82  | 1.95       | ug/Kg       | 107    | 75 - 121 |
| Perfluorooctanesulfonic acid (PFOS)  | 1.86  | 2.11       | ug/Kg       | 114    | 69 - 131 |
| 1.00                                 | 1.00  |            |             |        |          |

Limits

50 - 150

LCS LCS Isotope Dilution %Recovery Qualifier 13C3-PFBS 71

50 - 150 73 13C4-PFHpA 50 - 150 13C4 PFOA 79 50 - 150 13C5 PFNA 81 50 - 150 1802 PFHxS 73 50 - 150

71

Lab Sample ID: 320-39023-15 MS

**Matrix: Solid** 

13C4 PFOS

**Analysis Batch: 225899** 

Client Sample ID: KLA02-SB1-01

**Prep Type: Total/NA Prep Batch: 223092** 

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits ₩ Perfluoroheptanoic acid (PFHpA) 0.16 J 2.60 3.00 109 76 - 124 ug/Kg 0.46 M ₩ Perfluorooctanoic acid (PFOA) 2.60 3.13 ug/Kg 102 76 - 121 Perfluorononanoic acid (PFNA) 0.26 U 108 74 - 126 2.60 2.80 ug/Kg 0.25 J 2.30 2.61 103 73 - 142 ug/Kg Perfluorobutanesulfonic acid (PFBS) 2.6 2.37 4.85 ug/Kg 95 75 - 121 Perfluorohexanesulfonic acid (PFHxS) 7.6 J1 2.42 10.2 M ug/Kg 107 69 - 131 Perfluorooctanesulfonic acid (PFOS)

| MS | MS |
|----|----|
|    |    |

| Isotope Dilution | %Recovery | Qualifier | Limits   |
|------------------|-----------|-----------|----------|
| 13C3-PFBS        | 77        |           | 50 - 150 |
| 13C4-PFHpA       | 83        |           | 50 - 150 |
| 13C4 PFOA        | 87        |           | 50 - 150 |
| 13C5 PFNA        | 91        |           | 50 - 150 |
| 18O2 PFHxS       | 82        |           | 50 - 150 |
| 13C4 PFOS        | 80        |           | 50 - 150 |

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

#### Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 (Continued)

Lab Sample ID: 320-39023-15 MSD

**Matrix: Solid** 

**Analysis Batch: 225899** 

Client Sample ID: KLA02-SB1-01 **Prep Type: Total/NA** 

**Prep Batch: 223092** 

| _                                    | Sample | Sample    | Spike | MSD    | MSD       |       |   |      | %Rec.    |     | RPD   |
|--------------------------------------|--------|-----------|-------|--------|-----------|-------|---|------|----------|-----|-------|
| Analyte                              | Result | Qualifier | Added | Result | Qualifier | Unit  | D | %Rec | Limits   | RPD | Limit |
| Perfluoroheptanoic acid (PFHpA)      | 0.16   | J         | 2.59  | 2.91   | -         | ug/Kg | ☼ | 106  | 76 - 124 | 3   | 30    |
| Perfluorooctanoic acid (PFOA)        | 0.46   | M         | 2.59  | 2.99   |           | ug/Kg | ☼ | 98   | 76 - 121 | 4   | 30    |
| Perfluorononanoic acid (PFNA)        | 0.26   | U         | 2.59  | 2.76   |           | ug/Kg | ☼ | 106  | 74 - 126 | 2   | 30    |
| Perfluorobutanesulfonic acid (PFBS)  | 0.25   | J         | 2.29  | 2.75   |           | ug/Kg | ₽ | 109  | 73 - 142 | 5   | 30    |
| Perfluorohexanesulfonic acid (PFHxS) | 2.6    |           | 2.36  | 4.92   |           | ug/Kg | ☼ | 98   | 75 - 121 | 1   | 30    |
| Perfluorooctanesulfonic acid (PFOS)  | 7.6    | J1        | 2.41  | 8.73   | J1        | ug/Kg | ₽ | 48   | 69 - 131 | 15  | 30    |

MSD MSD

| Isotope Dilution | %Recovery | Qualifier | Limits   |
|------------------|-----------|-----------|----------|
| 13C3-PFBS        | 80        |           | 50 - 150 |
| 13C4-PFHpA       | 90        |           | 50 - 150 |
| 13C4 PFOA        | 95        |           | 50 - 150 |
| 13C5 PFNA        | 96        |           | 50 - 150 |
| 1802 PFHxS       | 83        |           | 50 - 150 |
| 13C4 PFOS        | 85        |           | 50 - 150 |

Lab Sample ID: MB 320-223346/1-A **Client Sample ID: Method Blank** 

**Matrix: Water** 

**Analysis Batch: 224205** 

Prep Type: Total/NA

Prep Batch: 223346

|                                      | MB     | MR        |     |      |      |   |                |                |         |
|--------------------------------------|--------|-----------|-----|------|------|---|----------------|----------------|---------|
| Analyte                              | Result | Qualifier | LOQ | DL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Perfluoroheptanoic acid (PFHpA)      | 1.5    | U         | 2.0 | 0.61 | ng/L |   | 05/15/18 12:48 | 05/19/18 04:33 | 1       |
| Perfluorooctanoic acid (PFOA)        | 1.5    | U M       | 2.0 | 0.54 | ng/L |   | 05/15/18 12:48 | 05/19/18 04:33 | 1       |
| Perfluorononanoic acid (PFNA)        | 1.5    | U         | 2.0 | 0.52 | ng/L |   | 05/15/18 12:48 | 05/19/18 04:33 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 1.0    | U         | 2.0 | 0.46 | ng/L |   | 05/15/18 12:48 | 05/19/18 04:33 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 1.0    | U         | 2.0 | 0.38 | ng/L |   | 05/15/18 12:48 | 05/19/18 04:33 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 3.0    | U         | 4.0 | 1.1  | ng/L |   | 05/15/18 12:48 | 05/19/18 04:33 | 1       |
|                                      | MB     | MB        |     |      |      |   |                |                |         |

| Isotope Dilution | %Recovery Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------|---------------------|----------|----------------|----------------|---------|
| 13C3-PFBS        | 84                  | 50 - 150 | 05/15/18 12:48 | 05/19/18 04:33 | 1       |
| 13C4-PFHpA       | 94                  | 50 - 150 | 05/15/18 12:48 | 05/19/18 04:33 | 1       |
| 13C4 PFOA        | 96                  | 50 - 150 | 05/15/18 12:48 | 05/19/18 04:33 | 1       |
| 13C5 PFNA        | 96                  | 50 - 150 | 05/15/18 12:48 | 05/19/18 04:33 | 1       |
| 1802 PFHxS       | 87                  | 50 - 150 | 05/15/18 12:48 | 05/19/18 04:33 | 1       |
| 13C4 PFOS        | 86                  | 50 - 150 | 05/15/18 12:48 | 05/19/18 04:33 | 1       |

Lab Sample ID: LCS 320-223346/2-A

**Matrix: Water** 

**Analysis Batch: 224205** 

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 223346

|                                      | Spike | LCS    | LCS       |      |   |      | %Rec.    |  |
|--------------------------------------|-------|--------|-----------|------|---|------|----------|--|
| Analyte                              | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Perfluoroheptanoic acid (PFHpA)      | 40.0  | 39.3   |           | ng/L |   | 98   | 80 - 113 |  |
| Perfluorooctanoic acid (PFOA)        | 40.0  | 38.0   |           | ng/L |   | 95   | 80 - 107 |  |
| Perfluorononanoic acid (PFNA)        | 40.0  | 40.6   |           | ng/L |   | 102  | 83 - 113 |  |
| Perfluorobutanesulfonic acid (PFBS)  | 35.4  | 36.7   |           | ng/L |   | 104  | 87 - 120 |  |
| Perfluorohexanesulfonic acid (PFHxS) | 36.4  | 34.1   |           | ng/L |   | 94   | 81 - 106 |  |

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

### Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 (Continued)

MD MD

Lab Sample ID: LCS 320-223346/2-A

Matrix: Water

**Analysis Batch: 224205** 

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA Prep Batch: 223346

 Analyte
 Added Perfluorooctanesulfonic acid
 Added Result 37.1
 Qualifier ng/L
 Unit ng/L
 D %Rec Limits ng/L
 Limits 22-112

(PFOS)

|                  | LCS       | LCS       |          |
|------------------|-----------|-----------|----------|
| Isotope Dilution | %Recovery | Qualifier | Limits   |
| 13C3-PFBS        | 82        |           | 50 - 150 |
| 13C4-PFHpA       | 94        |           | 50 - 150 |
| 13C4 PFOA        | 93        |           | 50 - 150 |
| 13C5 PFNA        | 95        |           | 50 - 150 |
| 18O2 PFHxS       | 89        |           | 50 - 150 |
| 13C4 PFOS        | 83        |           | 50 - 150 |
|                  |           |           |          |

Lab Sample ID: MB 320-223615/1-A Client Sample ID: Method Blank

**Matrix: Water** 

**Analysis Batch: 225818** 

Prep Type: Total/NA

Prep Batch: 223615

|                                      | IVID   | IVID      |     |      |      |   |                |                |         |
|--------------------------------------|--------|-----------|-----|------|------|---|----------------|----------------|---------|
| Analyte                              | Result | Qualifier | LOQ | DL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Perfluoroheptanoic acid (PFHpA)      | 1.5    | U         | 2.0 | 0.61 | ng/L |   | 05/16/18 14:51 | 05/28/18 07:23 | 1       |
| Perfluorooctanoic acid (PFOA)        | 1.5    | UM        | 2.0 | 0.54 | ng/L |   | 05/16/18 14:51 | 05/28/18 07:23 | 1       |
| Perfluorononanoic acid (PFNA)        | 1.5    | U         | 2.0 | 0.52 | ng/L |   | 05/16/18 14:51 | 05/28/18 07:23 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 1.0    | U         | 2.0 | 0.46 | ng/L |   | 05/16/18 14:51 | 05/28/18 07:23 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 1.0    | U         | 2.0 | 0.38 | ng/L |   | 05/16/18 14:51 | 05/28/18 07:23 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 3.0    | U         | 4.0 | 1.1  | ng/L |   | 05/16/18 14:51 | 05/28/18 07:23 | 1       |
|                                      | MB     | MB        |     |      |      |   |                |                |         |

|    |                | IVID      | IVID      |          |                |                |         |
|----|----------------|-----------|-----------|----------|----------------|----------------|---------|
| Is | otope Dilution | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
| 1. | 3C3-PFBS       | 80        |           | 50 - 150 | 05/16/18 14:51 | 05/28/18 07:23 | 1       |
| 1. | 3C4-PFHpA      | 84        |           | 50 - 150 | 05/16/18 14:51 | 05/28/18 07:23 | 1       |
| 1. | 3C4 PFOA       | 93        |           | 50 - 150 | 05/16/18 14:51 | 05/28/18 07:23 | 1       |
| 1. | 3C5 PFNA       | 94        |           | 50 - 150 | 05/16/18 14:51 | 05/28/18 07:23 | 1       |
| 1  | 8O2 PFHxS      | 85        |           | 50 - 150 | 05/16/18 14:51 | 05/28/18 07:23 | 1       |
| 1. | 3C4 PFOS       | 81        |           | 50 - 150 | 05/16/18 14:51 | 05/28/18 07:23 | 1       |
|    |                |           |           |          |                |                |         |

Lab Sample ID: LCS 320-223615/2-A

**Matrix: Water** 

Analysis Batch: 225818

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 223615

|                                         | Spike | LCS    | LCS       |      |   |      | %Rec.    |  |
|-----------------------------------------|-------|--------|-----------|------|---|------|----------|--|
| Analyte                                 | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Perfluoroheptanoic acid (PFHpA)         | 40.0  | 39.6   |           | ng/L |   | 99   | 80 - 113 |  |
| Perfluorooctanoic acid (PFOA)           | 40.0  | 35.7   |           | ng/L |   | 89   | 80 - 107 |  |
| Perfluorononanoic acid (PFNA)           | 40.0  | 37.6   |           | ng/L |   | 94   | 83 - 113 |  |
| Perfluorobutanesulfonic acid (PFBS)     | 35.4  | 36.3   |           | ng/L |   | 103  | 87 - 120 |  |
| Perfluorohexanesulfonic acid<br>(PFHxS) | 36.4  | 35.0   |           | ng/L |   | 96   | 81 - 106 |  |
| Perfluorooctanesulfonic acid (PFOS)     | 37.1  | 33.5   |           | ng/L |   | 90   | 82 - 112 |  |

LCS LCS

| Isotope Dilution | %Recovery Qualify | ier Limits |
|------------------|-------------------|------------|
| 13C3-PFBS        | 78                | 50 - 150   |
| 13C4-PFHpA       | 85                | 50 - 150   |
| 13C4 PFOA        | 90                | 50 - 150   |

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

#### Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 (Continued)

Lab Sample ID: LCS 320-223615/2-A

**Matrix: Water** 

**Analysis Batch: 225818** 

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

**Prep Batch: 223615** 

| ,                | LCS       |           |          |
|------------------|-----------|-----------|----------|
| Isotope Dilution | %Recovery | Qualifier | Limits   |
| 13C5 PFNA        | 90        |           | 50 - 150 |
| 1802 PFHxS       | 80        |           | 50 - 150 |
| 13C4 PFOS        | 86        |           | 50 - 150 |

Lab Sample ID: MB 320-223901/1-A

Matrix: Water

**Analysis Batch: 225690** 

**Client Sample ID: Method Blank** 

Prep Type: Total/NA

**Prep Batch: 223901** 

|                                      | IVID      | IVID      |         |      |      |   |                |                |         |
|--------------------------------------|-----------|-----------|---------|------|------|---|----------------|----------------|---------|
| Analyte                              | Result    | Qualifier | LOQ     | DL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Perfluoroheptanoic acid (PFHpA)      | 1.5       | U         | 2.0     | 0.61 | ng/L |   | 05/17/18 14:42 | 05/25/18 22:49 | 1       |
| Perfluorooctanoic acid (PFOA)        | 1.5       | U         | 2.0     | 0.54 | ng/L |   | 05/17/18 14:42 | 05/25/18 22:49 | 1       |
| Perfluorononanoic acid (PFNA)        | 1.5       | U         | 2.0     | 0.52 | ng/L |   | 05/17/18 14:42 | 05/25/18 22:49 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 1.0       | U         | 2.0     | 0.46 | ng/L |   | 05/17/18 14:42 | 05/25/18 22:49 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 1.0       | U         | 2.0     | 0.38 | ng/L |   | 05/17/18 14:42 | 05/25/18 22:49 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 3.0       | U         | 4.0     | 1.1  | ng/L |   | 05/17/18 14:42 | 05/25/18 22:49 | 1       |
|                                      | MB        | MB        |         |      |      |   |                |                |         |
| Isotone Dilution                     | %Recovery | Qualifier | l imits |      |      |   | Prepared       | Analyzed       | Dil Fac |

| Isotope Dilution | %Recovery ( | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------|-------------|-----------|----------|----------------|----------------|---------|
| 13C3-PFBS        | 85          |           | 50 - 150 | 05/17/18 14:42 | 05/25/18 22:49 | 1       |
| 13C4-PFHpA       | 86          |           | 50 - 150 | 05/17/18 14:42 | 05/25/18 22:49 | 1       |
| 13C4 PFOA        | 88          |           | 50 - 150 | 05/17/18 14:42 | 05/25/18 22:49 | 1       |
| 13C5 PFNA        | 92          |           | 50 - 150 | 05/17/18 14:42 | 05/25/18 22:49 | 1       |
| 1802 PFHxS       | 83          |           | 50 - 150 | 05/17/18 14:42 | 05/25/18 22:49 | 1       |
| 13C4 PFOS        | 82          |           | 50 - 150 | 05/17/18 14:42 | 05/25/18 22:49 | 1       |

Lab Sample ID: LCS 320-223901/2-A

**Matrix: Water** 

**Analysis Batch: 225690** 

Client Sample ID: Lab Control Sample Prep Type: Total/NA

|                                      | Spike | LCS    | LCS       |      |   |      | %Rec.    |  |
|--------------------------------------|-------|--------|-----------|------|---|------|----------|--|
| Analyte                              | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Perfluoroheptanoic acid (PFHpA)      | 40.0  | 40.1   |           | ng/L |   | 100  | 80 - 113 |  |
| Perfluorooctanoic acid (PFOA)        | 40.0  | 38.5   |           | ng/L |   | 96   | 80 - 107 |  |
| Perfluorononanoic acid (PFNA)        | 40.0  | 38.3   |           | ng/L |   | 96   | 83 - 113 |  |
| Perfluorobutanesulfonic acid (PFBS)  | 35.4  | 34.9   |           | ng/L |   | 99   | 87 - 120 |  |
| Perfluorohexanesulfonic acid (PFHxS) | 36.4  | 35.7   |           | ng/L |   | 98   | 81 - 106 |  |
| Perfluorooctanesulfonic acid (PFOS)  | 37.1  | 37.6   | М         | ng/L |   | 101  | 82 - 112 |  |

| LCS | LCS |
|-----|-----|
|-----|-----|

| Isotope Dilution | %Recovery | Qualifier | Limits   |
|------------------|-----------|-----------|----------|
| 13C3-PFBS        | 81        |           | 50 - 150 |
| 13C4-PFHpA       | 83        |           | 50 - 150 |
| 13C4 PFOA        | 84        |           | 50 - 150 |
| 13C5 PFNA        | 84        |           | 50 - 150 |
| 1802 PFHxS       | 79        |           | 50 - 150 |
| 13C4 PFOS        | 79        |           | 50 - 150 |

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

### Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 (Continued)

MB MB

Lab Sample ID: MB 320-224065/1-A

**Matrix: Water** 

**Analysis Batch: 225820** 

**Client Sample ID: Method Blank Prep Type: Total/NA** 

**Prep Batch: 224065** 

| Analyte                              | Result    | Qualifier | LOQ    | DL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|-----------|-----------|--------|------|------|---|----------------|----------------|---------|
| Perfluoroheptanoic acid (PFHpA)      | 1.5       | U         | 2.0    | 0.61 | ng/L |   | 05/18/18 10:26 | 05/28/18 11:03 | 1       |
| Perfluorooctanoic acid (PFOA)        | 1.5       | U         | 2.0    | 0.54 | ng/L |   | 05/18/18 10:26 | 05/28/18 11:03 | 1       |
| Perfluorononanoic acid (PFNA)        | 1.5       | U         | 2.0    | 0.52 | ng/L |   | 05/18/18 10:26 | 05/28/18 11:03 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 1.0       | U         | 2.0    | 0.46 | ng/L |   | 05/18/18 10:26 | 05/28/18 11:03 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 1.0       | U         | 2.0    | 0.38 | ng/L |   | 05/18/18 10:26 | 05/28/18 11:03 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 3.0       | U         | 4.0    | 1.1  | ng/L |   | 05/18/18 10:26 | 05/28/18 11:03 | 1       |
|                                      | MB        | MB        |        |      |      |   |                |                |         |
| Isotope Dilution                     | %Recovery | Qualifier | Limits |      |      |   | Prepared       | Analyzed       | Dil Fac |

| Isotope Dilution | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------|-----------|-----------|----------|----------------|----------------|---------|
| 13C3-PFBS        | 88        |           | 50 - 150 | 05/18/18 10:26 | 05/28/18 11:03 | 1       |
| 13C4-PFHpA       | 93        |           | 50 - 150 | 05/18/18 10:26 | 05/28/18 11:03 | 1       |
| 13C4 PFOA        | 103       |           | 50 - 150 | 05/18/18 10:26 | 05/28/18 11:03 | 1       |
| 13C5 PFNA        | 106       |           | 50 - 150 | 05/18/18 10:26 | 05/28/18 11:03 | 1       |
| 1802 PFHxS       | 94        |           | 50 - 150 | 05/18/18 10:26 | 05/28/18 11:03 | 1       |
| 13C4 PFOS        | 92        |           | 50 - 150 | 05/18/18 10:26 | 05/28/18 11:03 | 1       |

Lab Sample ID: LCS 320-224065/2-A

**Matrix: Water** 

Analysis Batch: 225820

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA **Prep Batch: 224065** 

|                                      | Spike | LCS    | LCS       |      |   |      | %Rec.    |
|--------------------------------------|-------|--------|-----------|------|---|------|----------|
| Analyte                              | Added | Result | Qualifier | Unit | D | %Rec | Limits   |
| Perfluoroheptanoic acid (PFHpA)      | 40.0  | 36.1   |           | ng/L |   | 90   | 80 - 113 |
| Perfluorooctanoic acid (PFOA)        | 40.0  | 35.0   |           | ng/L |   | 88   | 80 - 107 |
| Perfluorononanoic acid (PFNA)        | 40.0  | 36.9   |           | ng/L |   | 92   | 83 - 113 |
| Perfluorobutanesulfonic acid (PFBS)  | 35.4  | 33.5   |           | ng/L |   | 95   | 87 - 120 |
| Perfluorohexanesulfonic acid (PFHxS) | 36.4  | 31.2   |           | ng/L |   | 86   | 81 - 106 |
| Perfluorooctanesulfonic acid (PFOS)  | 37.1  | 33.8   |           | ng/L |   | 91   | 82 - 112 |

|                  | LCS       | LCS       |          |
|------------------|-----------|-----------|----------|
| Isotope Dilution | %Recovery | Qualifier | Limits   |
| 13C3-PFBS        | 66        |           | 50 - 150 |
| 13C4-PFHpA       | 70        |           | 50 - 150 |
| 13C4 PFOA        | 74        |           | 50 - 150 |
| 13C5 PFNA        | 72        |           | 50 - 150 |
| 1802 PFHxS       | 70        |           | 50 - 150 |
| 13C4 PFOS        | 66        |           | 50 - 150 |

Lab Sample ID: 320-39023-5 MS Client Sample ID: MW-573-03-PRL05-01

**Matrix: Water** 

**Analysis Batch: 225820** 

Prep Type: Total/NA Prep Batch: 224065

| 7 maryolo Datom 220020               | Sample | Sample    | Spike | MS     | MS        |      |   |       | %Rec.    |   |
|--------------------------------------|--------|-----------|-------|--------|-----------|------|---|-------|----------|---|
| Analyte                              | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec  | Limits   |   |
| Perfluoroheptanoic acid (PFHpA)      | 4400   | E J1      | 37.2  | 4240   | E 4       | ng/L |   | -309  | 80 - 113 | _ |
| Perfluorooctanoic acid (PFOA)        | 4700   | E J1      | 37.2  | 4660   | E 4       | ng/L |   | -135  | 80 - 107 |   |
| Perfluorononanoic acid (PFNA)        | 200    | J1        | 37.2  | 223    | 4 M       | ng/L |   | 66    | 83 - 113 |   |
| Perfluorobutanesulfonic acid (PFBS)  | 1900   | E J1 M    | 32.9  | 1670   | E 4 M     | ng/L |   | -546  | 87 - 120 |   |
| Perfluorohexanesulfonic acid (PFHxS) | 12000  | E J1      | 33.8  | 11800  | E 4       | ng/L |   | -1361 | 81 - 106 |   |

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

### Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 (Continued)

| l | Lab Sample ID: 320-39023-    | -5 MS  |           |       |        |           | Clier | nt Sam | ple ID: | MW-573-03-PRL05-01  |  |
|---|------------------------------|--------|-----------|-------|--------|-----------|-------|--------|---------|---------------------|--|
| l | Matrix: Water                |        |           |       |        |           |       |        |         | Prep Type: Total/NA |  |
|   | Analysis Batch: 225820       |        |           |       |        |           |       |        |         | Prep Batch: 224065  |  |
|   | •                            | Sample | Sample    | Spike | MS     | MS        |       |        |         | %Rec.               |  |
|   | Analyte                      | Result | Qualifier | Added | Result | Qualifier | Unit  | D      | %Rec    | Limits              |  |
|   | Perfluorooctanesulfonic acid | 32000  | J1 E M    | 34.5  | 32300  | E 4       | ng/L  |        | 1855    | 82 - 112            |  |
| l | (PFOS)                       |        |           |       |        |           |       |        |         |                     |  |
| 1 |                              | MC     | MC        |       |        |           |       |        |         |                     |  |

| ,                | MS        | MS        |          |
|------------------|-----------|-----------|----------|
| Isotope Dilution | %Recovery | Qualifier | Limits   |
| 13C3-PFBS        | 146       |           | 50 - 150 |
| 13C4-PFHpA       | 48        | Q         | 50 - 150 |
| 13C4 PFOA        | 80        |           | 50 - 150 |
| 13C5 PFNA        | 62        |           | 50 - 150 |
| 1802 PFHxS       | 55        |           | 50 - 150 |
| 13C4 PFOS        | 48        | Q         | 50 - 150 |

Lab Sample ID: 320-39023-5 MSD

**Matrix: Water** 

**Analysis Batch: 225820** 

Client Sample ID: MW-573-03-PRL05-01

Prep Type: Total/NA Prep Batch: 224065

|                                      | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec.    |     | RPD   |
|--------------------------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|-----|-------|
| Analyte                              | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| Perfluoroheptanoic acid (PFHpA)      | 4400   | E J1      | 38.7  | 4340   | E 4       | ng/L |   | -43  | 80 - 113 | 2   | 30    |
| Perfluorooctanoic acid (PFOA)        | 4700   | E J1      | 38.7  | 4690   | E 4       | ng/L |   | -45  | 80 - 107 | 1   | 30    |
| Perfluorononanoic acid (PFNA)        | 200    | J1        | 38.7  | 229    | 4 M       | ng/L |   | 78   | 83 - 113 | 2   | 30    |
| Perfluorobutanesulfonic acid (PFBS)  | 1900   | E J1 M    | 34.2  | 1790   | E 4 M     | ng/L |   | -187 | 87 - 120 | 7   | 30    |
| Perfluorohexanesulfonic acid (PFHxS) | 12000  | E J1      | 35.2  | 12000  | E 4       | ng/L |   | -912 | 81 - 106 | 1   | 30    |
| Perfluorooctanesulfonic acid (PFOS)  | 32000  | J1 E M    | 35.9  | 33600  | E 4       | ng/L |   | 5571 | 82 - 112 | 4   | 30    |
|                                      |        |           |       |        |           |      |   |      |          |     |       |

 MSD
 MSD

 Isotope Dilution
 %Recovery
 Qualifier
 Limits

 13C3-PFBS
 134
 50-150

 13C4-PFHpA
 45
 Q
 50-150

 13C4 PFOA
 76
 50-150

 13C5 PFNA
 58
 50-150

 13C5 PFNA
 58
 50 - 150

 18O2 PFHxS
 54
 50 - 150

 13C4 PFOS
 45 Q
 50 - 150

Lab Sample ID: MB 320-224254/1-A

Matrix: Solid

Analysis Batch: 226343

Client Sample ID: Method Blank Prep Type: Total/NA

**Prep Batch: 224254** 

| -                                    | MB     | MB        |      |       |       |   |                |                |         |
|--------------------------------------|--------|-----------|------|-------|-------|---|----------------|----------------|---------|
| Analyte                              | Result | Qualifier | LOQ  | DL    | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Perfluoroheptanoic acid (PFHpA)      | 0.20   | U         | 0.30 | 0.078 | ug/Kg |   | 05/19/18 09:21 | 05/31/18 02:14 | 1       |
| Perfluorooctanoic acid (PFOA)        | 0.20   | U M       | 0.30 | 0.10  | ug/Kg |   | 05/19/18 09:21 | 05/31/18 02:14 | 1       |
| Perfluorononanoic acid (PFNA)        | 0.20   | U         | 0.30 | 0.081 | ug/Kg |   | 05/19/18 09:21 | 05/31/18 02:14 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 0.18   | U         | 0.40 | 0.059 | ug/Kg |   | 05/19/18 09:21 | 05/31/18 02:14 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 0.20   | U         | 0.30 | 0.062 | ug/Kg |   | 05/19/18 09:21 | 05/31/18 02:14 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 0.50   | U         | 1.0  | 0.24  | ug/Kg |   | 05/19/18 09:21 | 05/31/18 02:14 | 1       |
|                                      | MB     | MB        |      |       |       |   |                |                |         |
|                                      |        |           |      |       |       |   |                |                |         |

|                  | IND       | INID      |          |                |                |         |
|------------------|-----------|-----------|----------|----------------|----------------|---------|
| Isotope Dilution | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS        | 77        |           | 50 - 150 | 05/19/18 09:21 | 05/31/18 02:14 | 1       |
| 13C4-PFHpA       | 85        |           | 50 - 150 | 05/19/18 09:21 | 05/31/18 02:14 | 1       |
| 13C4 PFOA        | 91        |           | 50 - 150 | 05/19/18 09:21 | 05/31/18 02:14 | 1       |

TestAmerica Job ID: 320-39023-1 Client: Leidos, Inc. Project/Site: Phase III, ANG-Kingsley

#### Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 (Continued)

MB MB

Lab Sample ID: MB 320-224254/1-A

**Matrix: Solid** 

Analysis Batch: 226343

**Client Sample ID: Method Blank** 

Prep Type: Total/NA

Prep Batch: 224254

| Isotope Dilution | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------|-----------|-----------|----------|----------------|----------------|---------|
| 13C5 PFNA        | 93        |           | 50 - 150 | 05/19/18 09:21 | 05/31/18 02:14 | 1       |
| 18O2 PFHxS       | 85        |           | 50 - 150 | 05/19/18 09:21 | 05/31/18 02:14 | 1       |
| 13C4 PFOS        | 84        |           | 50 - 150 | 05/19/18 09:21 | 05/31/18 02:14 | 1       |
|                  |           |           |          |                |                |         |

Lab Sample ID: LCS 320-224254/2-A

**Matrix: Solid** 

**Analysis Batch: 226343** 

Client Sample ID: Lab Control Sample

**Prep Type: Total/NA** Prep Batch: 224254

| _                                    | Spike   | LCS    | LCS          |      |      | %Rec.    |  |
|--------------------------------------|---------|--------|--------------|------|------|----------|--|
| Analyte                              | Added   | Result | Qualifier Un | it D | %Rec | Limits   |  |
| Perfluoroheptanoic acid (PFHpA)      | 2.00    | 1.94   | ug/          | Kg   | 97   | 76 - 124 |  |
| Perfluorooctanoic acid (PFOA)        | 2.00    | 1.91   | ug/          | Kg   | 96   | 76 - 121 |  |
| Perfluorononanoic acid (PFNA)        | 2.00    | 2.01   | ug/          | Kg   | 100  | 74 - 126 |  |
| Perfluorobutanesulfonic acid (PFBS)  | 1.77    | 1.76   | ug/          | Kg   | 100  | 73 - 142 |  |
| Perfluorohexanesulfonic acid (PFHxS) | 1.82    | 1.75   | ug/          | Kg   | 96   | 75 - 121 |  |
| Perfluorooctanesulfonic acid (PFOS)  | 1.86    | 1.83   | ug/          | Kg   | 99   | 69 - 131 |  |
|                                      | LCS LCS |        |              |      |      |          |  |

Isotope Dilution %Recovery Qualifier Limits 13C3-PFBS 81 50 - 150 88 50 - 150 13C4-PFHpA 13C4 PFOA 91 50 - 150 13C5 PFNA 91 50 - 150 1802 PFHxS 85 50 - 150 13C4 PFOS 83 50 - 150

Lab Sample ID: 320-39023-59 MS

Matrix: Solid

**Analysis Batch: 226343** 

Client Sample ID: KLA07-SD1-01D **Prep Type: Total/NA** 

|                                      | Sample | Sample    | Spike | MS     | MS        |       |              |      | %Rec.    |  |
|--------------------------------------|--------|-----------|-------|--------|-----------|-------|--------------|------|----------|--|
| Analyte                              | Result | Qualifier | Added | Result | Qualifier | Unit  | D            | %Rec | Limits   |  |
| Perfluoroheptanoic acid (PFHpA)      | 0.12   | J         | 2.65  | 2.83   |           | ug/Kg | <del>\</del> | 102  | 76 - 124 |  |
| Perfluorooctanoic acid (PFOA)        | 0.48   |           | 2.65  | 2.74   |           | ug/Kg | ≎            | 85   | 76 - 121 |  |
| Perfluorononanoic acid (PFNA)        | 0.27   | U         | 2.65  | 2.54   |           | ug/Kg | ≎            | 96   | 74 - 126 |  |
| Perfluorobutanesulfonic acid (PFBS)  | 0.20   | J         | 2.34  | 2.66   |           | ug/Kg | ₽            | 105  | 73 - 142 |  |
| Perfluorohexanesulfonic acid (PFHxS) | 2.1    |           | 2.41  | 4.31   |           | ug/Kg | ₩            | 91   | 75 - 121 |  |
| Perfluorooctanesulfonic acid (PFOS)  | 15     | J1        | 2.46  | 11.8   | 4         | ug/Kg | ☼            | -148 | 69 - 131 |  |
|                                      |        |           |       |        |           |       |              |      |          |  |

| , | MS | MS |
|---|----|----|
|   |    |    |

| Isotope Dilution | %Recovery | Qualifier | Limits   |
|------------------|-----------|-----------|----------|
| 13C3-PFBS        | 71        |           | 50 - 150 |
| 13C4-PFHpA       | 79        |           | 50 - 150 |
| 13C4 PFOA        | 88        |           | 50 - 150 |
| 13C5 PFNA        | 95        |           | 50 - 150 |
| 18O2 PFHxS       | 76        |           | 50 - 150 |
| 13C4 PFOS        | 77        |           | 50 - 150 |

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

### Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 (Continued)

Lab Sample ID: 320-39023-59 MSD

Matrix: Solid

**Analysis Batch: 226343** 

Client Sample ID: KLA07-SD1-01D Prep Type: Total/NA

Prep Batch: 224254

|                                      | Sample | Sample    | Spike | MSD    | MSD       |       |   |      | %Rec.    |     | RPD   |
|--------------------------------------|--------|-----------|-------|--------|-----------|-------|---|------|----------|-----|-------|
| Analyte                              | Result | Qualifier | Added | Result | Qualifier | Unit  | D | %Rec | Limits   | RPD | Limit |
| Perfluoroheptanoic acid (PFHpA)      | 0.12   | J         | 2.68  | 2.74   | ·         | ug/Kg | ☼ | 98   | 76 - 124 | 3   | 30    |
| Perfluorooctanoic acid (PFOA)        | 0.48   |           | 2.68  | 2.72   |           | ug/Kg | ₽ | 84   | 76 - 121 | 1   | 30    |
| Perfluorononanoic acid (PFNA)        | 0.27   | U         | 2.68  | 2.54   |           | ug/Kg | ₽ | 95   | 74 - 126 | 0   | 30    |
| Perfluorobutanesulfonic acid (PFBS)  | 0.20   | J         | 2.37  | 2.49   |           | ug/Kg | ₽ | 97   | 73 - 142 | 6   | 30    |
| Perfluorohexanesulfonic acid (PFHxS) | 2.1    |           | 2.44  | 4.14   |           | ug/Kg | ₽ | 84   | 75 - 121 | 4   | 30    |
| Perfluorooctanesulfonic acid (PFOS)  | 15     | J1        | 2.48  | 10.1   | 4         | ug/Kg | ₽ | -213 | 69 - 131 | 15  | 30    |

MSD MSD

MR MR

| Isotope Dilution | %Recovery | Qualifier | Limits   |
|------------------|-----------|-----------|----------|
| 13C3-PFBS        | 72        |           | 50 - 150 |
| 13C4-PFHpA       | 81        |           | 50 - 150 |
| 13C4 PFOA        | 91        |           | 50 - 150 |
| 13C5 PFNA        | 94        |           | 50 - 150 |
| 18O2 PFHxS       | 77        |           | 50 - 150 |
| 13C4 PFOS        | 78        |           | 50 - 150 |

Lab Sample ID: MB 320-224509/1-A Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA Analysis Batch: 226349 Prep Batch: 224509

|                                      | IVID   | IVID      |     |      |      |   |                |                |         |
|--------------------------------------|--------|-----------|-----|------|------|---|----------------|----------------|---------|
| Analyte                              | Result | Qualifier | LOQ | DL   | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Perfluoroheptanoic acid (PFHpA)      | 1.5    | U         | 2.0 | 0.61 | ng/L |   | 05/21/18 11:57 | 05/31/18 03:56 | 1       |
| Perfluorooctanoic acid (PFOA)        | 1.5    | U         | 2.0 | 0.54 | ng/L |   | 05/21/18 11:57 | 05/31/18 03:56 | 1       |
| Perfluorononanoic acid (PFNA)        | 1.5    | U         | 2.0 | 0.52 | ng/L |   | 05/21/18 11:57 | 05/31/18 03:56 | 1       |
| Perfluorobutanesulfonic acid (PFBS)  | 1.0    | U         | 2.0 | 0.46 | ng/L |   | 05/21/18 11:57 | 05/31/18 03:56 | 1       |
| Perfluorohexanesulfonic acid (PFHxS) | 1.0    | U         | 2.0 | 0.38 | ng/L |   | 05/21/18 11:57 | 05/31/18 03:56 | 1       |
| Perfluorooctanesulfonic acid (PFOS)  | 1.82   | J         | 4.0 | 1.1  | ng/L |   | 05/21/18 11:57 | 05/31/18 03:56 | 1       |

|                  | MB        | MB        |          |                |                |         |
|------------------|-----------|-----------|----------|----------------|----------------|---------|
| Isotope Dilution | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
| 13C3-PFBS        | 75        |           | 50 - 150 | 05/21/18 11:57 | 05/31/18 03:56 | 1       |
| 13C4-PFHpA       | 77        |           | 50 - 150 | 05/21/18 11:57 | 05/31/18 03:56 | 1       |
| 13C4 PFOA        | 82        |           | 50 - 150 | 05/21/18 11:57 | 05/31/18 03:56 | 1       |
| 13C5 PFNA        | 83        |           | 50 - 150 | 05/21/18 11:57 | 05/31/18 03:56 | 1       |
| 1802 PFHxS       | 77        |           | 50 - 150 | 05/21/18 11:57 | 05/31/18 03:56 | 1       |
| 13C4 PFOS        | 76        |           | 50 - 150 | 05/21/18 11:57 | 05/31/18 03:56 | 1       |
|                  |           |           |          |                |                |         |

Lab Sample ID: LCS 320-224509/2-A

**Matrix: Water** 

Analysis Batch: 226349

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 224509

| •                                       | Spike | LCS    | LCS       |      |   |      | %Rec.    |  |
|-----------------------------------------|-------|--------|-----------|------|---|------|----------|--|
| Analyte                                 | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Perfluoroheptanoic acid (PFHpA)         | 40.0  | 39.5   |           | ng/L |   | 99   | 80 - 113 |  |
| Perfluorooctanoic acid (PFOA)           | 40.0  | 37.7   |           | ng/L |   | 94   | 80 - 107 |  |
| Perfluorononanoic acid (PFNA)           | 40.0  | 38.6   |           | ng/L |   | 96   | 83 - 113 |  |
| Perfluorobutanesulfonic acid (PFBS)     | 35.4  | 34.3   |           | ng/L |   | 97   | 87 - 120 |  |
| Perfluorohexanesulfonic acid<br>(PFHxS) | 36.4  | 33.9   |           | ng/L |   | 93   | 81 - 106 |  |

TestAmerica Job ID: 320-39023-1 Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

### Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 (Continued)

Lab Sample ID: LCS 320-224509/2-A

Lab Sample ID: LCSD 320-224509/3-A

**Matrix: Water** 

Analysis Batch: 226349

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA **Prep Batch: 224509** 

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 34.2 37 1 ng/L 82 - 112 Perfluorooctanesulfonic acid 92

(PFOS)

LCS LCS %Recovery Qualifier Isotope Dilution Limits 13C3-PFBS 80 50 - 150 85 50 - 150 13C4-PFHpA 13C4 PFOA 88 50 - 150 13C5 PFNA 91 50 - 150 1802 PFHxS 82 50 - 150 13C4 PFOS 83 50 - 150

Client Sample ID: Lab Control Sample Dup

**Matrix: Water** 

**Analysis Batch: 226349** 

**Prep Type: Total/NA Prep Batch: 224509** 

|                                      | Spike | LCSD   | LCSD      |      |   |      | %Rec.    |     | RPD   |
|--------------------------------------|-------|--------|-----------|------|---|------|----------|-----|-------|
| Analyte                              | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| Perfluoroheptanoic acid (PFHpA)      | 40.0  | 38.4   |           | ng/L |   | 96   | 80 - 113 | 3   | 30    |
| Perfluorooctanoic acid (PFOA)        | 40.0  | 38.2   |           | ng/L |   | 96   | 80 - 107 | 1   | 30    |
| Perfluorononanoic acid (PFNA)        | 40.0  | 40.2   |           | ng/L |   | 101  | 83 - 113 | 4   | 30    |
| Perfluorobutanesulfonic acid (PFBS)  | 35.4  | 34.7   |           | ng/L |   | 98   | 87 - 120 | 1   | 30    |
| Perfluorohexanesulfonic acid (PFHxS) | 36.4  | 32.1   |           | ng/L |   | 88   | 81 - 106 | 5   | 30    |
| Perfluorooctanesulfonic acid         | 37.1  | 32.9   |           | ng/L |   | 89   | 82 - 112 | 4   | 30    |

(PFOS)

| (1.1.00)         | LCSD      | LCSD      |          |
|------------------|-----------|-----------|----------|
| Isotope Dilution | %Recovery | Qualifier | Limits   |
| 13C3-PFBS        | 72        |           | 50 - 150 |
| 13C4-PFHpA       | 76        |           | 50 - 150 |
| 13C4 PFOA        | 81        |           | 50 - 150 |
| 13C5 PFNA        | 82        |           | 50 - 150 |
| 1802 PFHxS       | 77        |           | 50 - 150 |
| 13C4 PFOS        | 76        |           | 50 - 150 |

#### Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 - DL

Lab Sample ID: 320-39023-41 MS

**Matrix: Solid** 

Client Sample ID: KLA06-SB2-01 Prep Type: Total/NA

| Analysis Batch: 226044                    |        |           |       |        |           |       |   |      | <b>Prep Batch: 223091</b> |
|-------------------------------------------|--------|-----------|-------|--------|-----------|-------|---|------|---------------------------|
|                                           | Sample | Sample    | Spike | MS     | MS        |       |   |      | %Rec.                     |
| Analyte                                   | Result | Qualifier | Added | Result | Qualifier | Unit  | D | %Rec | Limits                    |
| Perfluoroheptanoic acid (PFHpA) - DL      | 1.2    | D J1      | 3.15  | 5.72   | D J1      | ug/Kg | ☼ | 181  | 76 - 124                  |
| Perfluorooctanoic acid (PFOA) - DL        | 6.7    | D J1      | 3.15  | 12.3   | D J1      | ug/Kg | ≎ | 177  | 76 - 121                  |
| Perfluorononanoic acid (PFNA) - DL        | 1.6    | JD        | 3.15  | 5.30   | D         | ug/Kg | ☼ | 118  | 74 - 126                  |
| Perfluorobutanesulfonic acid (PFBS) - DL  | 1.0    | D J1      | 2.79  | 4.25   | JD        | ug/Kg | ₽ | 116  | 73 - 142                  |
| Perfluorohexanesulfonic acid (PFHxS) - DL | 44     | D J1      | 2.87  | 61.0   | D 4       | ug/Kg | ₽ | 611  | 75 - 121                  |

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

#### Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 - DL (Continued)

64

Lab Sample ID: 320-39023-41 MS Client Sample ID: KLA06-SB2-01 **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 226044 Prep Batch: 223091 MS MS Sample Sample Spike %Rec. Result Qualifier Added Result Qualifier Unit D %Rec Limits Analyte 860 E D M J1 2 92 Perfluorooctanesulfonic acid 1140 EDM4 ug/Kg 9468 69 - 131 (PFOS) - DL MS MS Isotope Dilution %Recovery Qualifier Limits 13C3-PFBS - DL 50 - 150 71 13C4-PFHpA - DL 79 50 - 150 13C4 PFOA - DL 81 50 - 150 13C5 PFNA - DL 74 50 - 150 1802 PFHxS - DL 73 50 - 150

50 - 150

Lab Sample ID: 320-39023-41 MSD

Matrix: Solid

13C4 PFOS - DL

Analysis Batch: 226044

Client Sample ID: KLA06-SB2-01

Prep Type: Total/NA Prep Batch: 223091

| _                                         | Sample | Sample    | Spike | MSD    | MSD       |       |          |       | %Rec.    |     | RPD   |
|-------------------------------------------|--------|-----------|-------|--------|-----------|-------|----------|-------|----------|-----|-------|
| Analyte                                   | Result | Qualifier | Added | Result | Qualifier | Unit  | D        | %Rec  | Limits   | RPD | Limit |
| Perfluoroheptanoic acid (PFHpA) - DL      | 1.2    | D J1      | 3.16  | 6.13   | D J1      | ug/Kg | <u> </u> | 194   | 76 - 124 | 7   | 30    |
| Perfluorooctanoic acid (PFOA) -<br>DL     | 6.7    | D J1      | 3.16  | 13.8   | D J1      | ug/Kg | ₽        | 226   | 76 - 121 | 12  | 30    |
| Perfluorononanoic acid (PFNA) -<br>DL     | 1.6    | JD        | 3.16  | 5.39   | D         | ug/Kg | ₩        | 121   | 74 - 126 | 2   | 30    |
| Perfluorobutanesulfonic acid (PFBS) - DL  | 1.0    | D J1      | 2.79  | 5.28   | J D J1    | ug/Kg | ☼        | 153   | 73 - 142 | 22  | 30    |
| Perfluorohexanesulfonic acid (PFHxS) - DL | 44     | D J1      | 2.87  | 64.1   | D 4       | ug/Kg | ☼        | 715   | 75 - 121 | 5   | 30    |
| Perfluorooctanesulfonic acid (PFOS) - DL  | 860    | E D M J1  | 2.93  | 1170   | ED4       | ug/Kg | ☼        | 10722 | 69 - 131 | 3   | 30    |
|                                           |        |           |       |        |           |       |          |       |          |     |       |

MSD MSD

Lab Sample ID: 320-39023-5 MS

**Analysis Batch: 226055** 

**Matrix: Water** 

| Isotope Dilution | %Recovery | Qualifier | Limits   |
|------------------|-----------|-----------|----------|
| 13C3-PFBS - DL   | 62        |           | 50 - 150 |
| 13C4-PFHpA - DL  | 80        |           | 50 - 150 |
| 13C4 PFOA - DL   | 82        |           | 50 - 150 |
| 13C5 PFNA - DL   | 73        |           | 50 - 150 |
| 1802 PFHxS - DL  | 72        |           | 50 - 150 |
| 13C4 PFOS - DL   | 61        |           | 50 - 150 |

Client Sample ID: MW-573-03-PRL05-01

Prep Type: Total/NA Prep Batch: 224065

Sample Sample **Spike** MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit Limits %Rec 37.2 5100 J1 D 5430 4 D 80 - 113 Perfluoroheptanoic acid (PFHpA) ng/L 920 6700 J1 D 37.2 6130 4 D -1548 80 - 107 Perfluorooctanoic acid (PFOA) ng/L 225 4 D Perfluorononanoic acid (PFNA) -190 J1 D M 37 2 ng/L 89 83 - 113 3900 J1 D 3890 4 D 329 -129 87 - 120 Perfluorobutanesulfonic acid ng/L (PFBS) - DL 39000 E J1 D 33.8 35400 E 4 D ng/L -9248 81 - 106 Perfluorohexanesulfonic acid (PFHxS) - DL

TestAmerica Job ID: 320-39023-1 Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

### Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 - DL (Continued)

Lab Sample ID: 320-39023-5 MS Client Sample ID: MW-573-03-PRL05-01 **Matrix: Water** Prep Type: Total/NA Analysis Batch: 226055 Prep Batch: 224065

Spike MS MS Sample Sample %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 34.5 63000 J1 E D 72300 E 4 D 82 - 112 Perfluorooctanesulfonic acid ng/L 25660

(PFOS) - DL

| ()               | MS        | MS        |          |
|------------------|-----------|-----------|----------|
| Isotope Dilution | %Recovery | Qualifier | Limits   |
| 13C3-PFBS - DL   | 107       | М         | 50 - 150 |
| 13C4-PFHpA - DL  | 64        |           | 50 - 150 |
| 13C4 PFOA - DL   | 86        |           | 50 - 150 |
| 13C5 PFNA - DL   | 71        |           | 50 - 150 |
| 1802 PFHxS - DL  | 82        |           | 50 - 150 |
| 13C4 PFOS - DL   | 61        |           | 50 - 150 |
|                  |           |           |          |

Lab Sample ID: 320-39023-5 MSD

**Matrix: Water** 

**Analysis Batch: 226055** 

Client Sample ID: MW-573-03-PRL05-01

Prep Type: Total/NA Prep Batch: 224065

|                                           | Sample | Sample    | Spike | MSD    | MSD       |      |   |       | %Rec.    |     | RPD   |
|-------------------------------------------|--------|-----------|-------|--------|-----------|------|---|-------|----------|-----|-------|
| Analyte                                   | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec  | Limits   | RPD | Limit |
| Perfluoroheptanoic acid (PFHpA) - DL      | 5100   | J1 D      | 38.7  | 4770   | 4 D       | ng/L |   | -833  | 80 - 113 | 13  | 30    |
| Perfluorooctanoic acid (PFOA) -<br>DL     | 6700   | J1 D      | 38.7  | 6400   | 4 D       | ng/L |   | -782  | 80 - 107 | 4   | 30    |
| Perfluorononanoic acid (PFNA) -<br>DL     | 190    | J1 D M    | 38.7  | 241    | 4 D M     | ng/L |   | 128   | 83 - 113 | 7   | 30    |
| Perfluorobutanesulfonic acid (PFBS) - DL  | 3900   | J1 D      | 34.2  | 3640   | 4 D       | ng/L |   | -862  | 87 - 120 | 7   | 30    |
| Perfluorohexanesulfonic acid (PFHxS) - DL | 39000  | E J1 D    | 35.2  | 36500  | E 4 D     | ng/L |   | -5657 | 81 - 106 | 3   | 30    |
| Perfluorooctanesulfonic acid (PFOS) - DL  | 63000  | J1 E D    | 35.9  | 68600  | E 4 D     | ng/L |   | 14331 | 82 - 112 | 5   | 30    |
|                                           |        |           |       |        |           |      |   |       |          |     |       |

Limits

MSD MSD Isotope Dilution %Recovery Qualifier 13C3-PFBS - DL 107 M

50 - 150 13C4-PFHpA - DL 65 50 - 150 13C4 PFOA - DL 76 50 - 150 72 13C5 PFNA - DL 50 - 150

1802 PFHxS - DL 76 50 - 150 13C4 PFOS - DL 64 50 - 150

#### Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 - DL2

Lab Sample ID: 320-39023-41 MS Client Sample ID: KLA06-SB2-01 **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 226044 Pren Batch: 223091

| Analysis Batch. 220044                 | Sample | Sample    | Spike | MS     | MS        |       |   |      | %Rec.    |
|----------------------------------------|--------|-----------|-------|--------|-----------|-------|---|------|----------|
| Analyte                                | Result | Qualifier | Added | Result | Qualifier | Unit  | D | %Rec | Limits   |
| Perfluoroheptanoic acid (PFHpA) - DL2  | 32     | U         | 3.15  | 32     | U         | ug/Kg | ₩ | NC   | 76 - 124 |
| Perfluorooctanoic acid (PFOA) - DL2    | 32     | U         | 3.15  | 32     | U M       | ug/Kg | ₽ | NC   | 76 - 121 |
| Perfluorononanoic acid (PFNA) -<br>DL2 | 32     | U         | 3.15  | 32     | UM        | ug/Kg | ₽ | NC   | 74 - 126 |

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

### Method: EPA 537 (Mod) - PFAS for QSM 5.1, Table B-15 - DL2 (Continued)

| Lab Sample ID: 320-39023<br>Matrix: Solid<br>Analysis Batch: 226044 |           |           |          |        |           |       | Clie         | nt Sam | ple ID: KLA06-SB2-01<br>Prep Type: Total/NA<br>Prep Batch: 223091 |
|---------------------------------------------------------------------|-----------|-----------|----------|--------|-----------|-------|--------------|--------|-------------------------------------------------------------------|
|                                                                     | Sample    | Sample    | Spike    | MS     | MS        |       |              |        | %Rec.                                                             |
| Analyte                                                             | Result    | Qualifier | Added    | Result | Qualifier | Unit  | D            | %Rec   | Limits                                                            |
| Perfluorobutanesulfonic acid (PFBS) - DL2                           | 29        | U         | 2.79     | 28     | U         | ug/Kg | <del>\</del> | NC     | 73 - 142                                                          |
| Perfluorohexanesulfonic acid (PFHxS) - DL2                          | 39        | D J1      | 2.87     | 58.6   | D 4       | ug/Kg | ₩            | 682    | 75 - 121                                                          |
| Perfluorooctanesulfonic acid (PFOS) - DL2                           | 960       | D M J1    | 2.92     | 1200   | D M 4     | ug/Kg | ₩            | 8375   | 69 - 131                                                          |
|                                                                     | MS        | MS        |          |        |           |       |              |        |                                                                   |
| Isotope Dilution                                                    | %Recovery | Qualifier | Limits   |        |           |       |              |        |                                                                   |
| 13C3-PFBS - DL2                                                     | 44        | M Q       | 50 - 150 |        |           |       |              |        |                                                                   |
| 13C4-PFHpA - DL2                                                    | 71        |           | 50 - 150 |        |           |       |              |        |                                                                   |
| 13C4 PFOA - DL2                                                     | 77        |           | 50 - 150 |        |           |       |              |        |                                                                   |
| 13C5 PFNA - DL2                                                     | 73        |           | 50 - 150 |        |           |       |              |        |                                                                   |
| 1802 PFHxS - DL2                                                    | 65        |           | 50 - 150 |        |           |       |              |        |                                                                   |
| 13C4 PFOS - DL2                                                     | 66        |           | 50 - 150 |        |           |       |              |        |                                                                   |

Lab Sample ID: 320-39023-41 MSD

**Matrix: Solid** 

| Analysis Batch: 226044                       |        |           |       |        |           |       |          |      | Prep Ba  | atch: 22 | 23091 |
|----------------------------------------------|--------|-----------|-------|--------|-----------|-------|----------|------|----------|----------|-------|
| , , , , , , , , , , , , , , , , , , , ,      | Sample | Sample    | Spike | MSD    | MSD       |       |          |      | %Rec.    |          | RPD   |
| Analyte                                      | Result | Qualifier | Added | Result | Qualifier | Unit  | D        | %Rec | Limits   | RPD      | Limit |
| Perfluoroheptanoic acid (PFHpA) - DL2        | 32     | U         | 3.16  | 32     | U         | ug/Kg | <u>∓</u> | NC   | 76 - 124 | NC       | 30    |
| Perfluorooctanoic acid (PFOA) -<br>DL2       | 32     | U         | 3.16  | 16.3   | JD        | ug/Kg | ☼        | NC   | 76 - 121 | NC       | 30    |
| Perfluorononanoic acid (PFNA) -<br>DL2       | 32     | U         | 3.16  | 32     | U         | ug/Kg | ☼        | NC   | 74 - 126 | NC       | 30    |
| Perfluorobutanesulfonic acid<br>(PFBS) - DL2 | 29     | U         | 2.79  | 28     | U         | ug/Kg | ⊅        | NC   | 73 - 142 | NC       | 30    |
| Perfluorohexanesulfonic acid (PFHxS) - DL2   | 39     | D J1      | 2.87  | 60.5   | D 4       | ug/Kg | ₽        | 747  | 75 - 121 | 3        | 30    |
| Perfluorooctanesulfonic acid (PFOS) - DL2    | 960    | D M J1    | 2.93  | 1230   | D M 4     | ug/Kg | ☼        | 9131 | 69 - 131 | 2        | 30    |
| ` '                                          | MSD    | MSD       |       |        |           |       |          |      |          |          |       |

|                  | MSD       | MSD       |          |
|------------------|-----------|-----------|----------|
| Isotope Dilution | %Recovery | Qualifier | Limits   |
| 13C3-PFBS - DL2  | 76        | M         | 50 - 150 |
| 13C4-PFHpA - DL2 | 76        |           | 50 - 150 |
| 13C4 PFOA - DL2  | 81        |           | 50 - 150 |
| 13C5 PFNA - DL2  | 75        |           | 50 - 150 |
| 18O2 PFHxS - DL2 | 66        |           | 50 - 150 |
| 13C4 PFOS - DL2  | 71        |           | 50 - 150 |
| _                |           |           |          |

Client Sample ID: KLA06-SB2-01

**Prep Type: Total/NA** 

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1 Project/Site: Phase III, ANG-Kingsley

#### GC/MS VOA

|   |     |    |     | _   |     |   |    |
|---|-----|----|-----|-----|-----|---|----|
| ш | eac | ᆸᇚ | -4- | h . | A A | - | 20 |
|   |     |    |     |     |     |   |    |
|   |     |    |     |     |     |   |    |

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 320-39023-57       | IDW-KINGSLEY-SO-LDOS01 | TCLP      | Solid  | 1311   |            |
| LB 280-415139/1-A  | Method Blank           | TCLP      | Solid  | 1311   |            |
| LCS 280-415139/2-A | Lab Control Sample     | TCLP      | Solid  | 1311   |            |

#### Leach Batch: 415294

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 320-39023-58       | IDW-KINGSLEY-WA-LDOS01 | TCLP      | Water  | 1311   |            |
| LB3 280-415294/1-A | Method Blank           | TCLP      | Water  | 1311   |            |
| LCS 280-415294/2-A | Lab Control Sample     | TCLP      | Water  | 1311   |            |

#### **Analysis Batch: 415557**

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 320-39023-58       | IDW-KINGSLEY-WA-LDOS01 | TCLP      | Water  | 8260B  | 415294     |
| LB3 280-415294/1-A | Method Blank           | TCLP      | Water  | 8260B  | 415294     |
| LCS 280-415294/2-A | Lab Control Sample     | TCLP      | Water  | 8260B  | 415294     |

#### **Analysis Batch: 416517**

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 320-39023-57       | IDW-KINGSLEY-SO-LDOS01 | TCLP      | Solid  | 8260B  | 415139     |
| LB 280-415139/1-A  | Method Blank           | TCLP      | Solid  | 8260B  | 415139     |
| LCS 280-415139/2-A | Lab Control Sample     | TCLP      | Solid  | 8260B  | 415139     |

#### **GC/MS Semi VOA**

#### Leach Batch: 415138

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 320-39023-57       | IDW-KINGSLEY-SO-LDOS01 | TCLP      | Solid  | 1311   |            |
| LB 280-415138/1-C  | Method Blank           | TCLP      | Solid  | 1311   |            |
| LCS 280-415138/2-C | Lab Control Sample     | TCLP      | Solid  | 1311   |            |
| 320-39023-57 MS    | IDW-KINGSLEY-SO-LDOS01 | TCLP      | Solid  | 1311   |            |
| 320-39023-57 MSD   | IDW-KINGSLEY-SO-LDOS01 | TCLP      | Solid  | 1311   |            |

#### Leach Batch: 415275

| Lab Sample ID | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------|------------------------|-----------|--------|--------|------------|
| 320-39023-58  | IDW-KINGSLEY-WA-LDOS01 | TCLP      | Water  | 1311   |            |

#### **Prep Batch: 415600**

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 320-39023-57       | IDW-KINGSLEY-SO-LDOS01 | TCLP      | Solid  | 3510C  | 415138     |
| LB 280-415138/1-C  | Method Blank           | TCLP      | Solid  | 3510C  | 415138     |
| LCS 280-415138/2-C | Lab Control Sample     | TCLP      | Solid  | 3510C  | 415138     |
| 320-39023-57 MS    | IDW-KINGSLEY-SO-LDOS01 | TCLP      | Solid  | 3510C  | 415138     |
| 320-39023-57 MSD   | IDW-KINGSLEY-SO-LDOS01 | TCLP      | Solid  | 3510C  | 415138     |

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 320-39023-58       | IDW-KINGSLEY-WA-LDOS01 | TCLP      | Water  | 3510C  | 415275     |
| LB3 280-416023/1-A | Method Blank           | Total/NA  | Water  | 3510C  |            |
| LCS 280-416023/2-A | Lab Control Sample     | Total/NA  | Water  | 3510C  |            |

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

### GC/MS Semi VOA (Continued)

### **Analysis Batch: 416357**

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 320-39023-57       | IDW-KINGSLEY-SO-LDOS01 | TCLP      | Solid  | 8270D  | 415600     |
| 320-39023-58       | IDW-KINGSLEY-WA-LDOS01 | TCLP      | Water  | 8270D  | 416023     |
| LB 280-415138/1-C  | Method Blank           | TCLP      | Solid  | 8270D  | 415600     |
| LB3 280-416023/1-A | Method Blank           | Total/NA  | Water  | 8270D  | 416023     |
| LCS 280-415138/2-C | Lab Control Sample     | TCLP      | Solid  | 8270D  | 415600     |
| LCS 280-416023/2-A | Lab Control Sample     | Total/NA  | Water  | 8270D  | 416023     |
| 320-39023-57 MS    | IDW-KINGSLEY-SO-LDOS01 | TCLP      | Solid  | 8270D  | 415600     |
| 320-39023-57 MSD   | IDW-KINGSLEY-SO-LDOS01 | TCLP      | Solid  | 8270D  | 415600     |

### LCMS

| Lab Sample ID          | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|------------------------|--------------------|-----------|--------|--------|------------|
| 320-39023-9 - DL       | KLA-01-SB1-01      | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-9            | KLA-01-SB1-01      | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-10           | KLA-01-SB1-02      | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-10 - DL      | KLA-01-SB1-02      | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-11           | KLA-01-SB2-01      | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-12           | KLA-01-SB2-02      | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-13           | KLA-01-SB3-01      | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-14           | KLA-01-SB3-02      | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-21           | KLA03-SB1-01       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-22           | KLA03-SB1-02       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-23           | KLA03-SB2-01       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-24           | KLA03-SB2-02       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-25           | KLA03-SB3-01       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-26           | KLA03-SB3-02       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-39           | KLA06-SB1-01       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-39 - DL      | KLA06-SB1-01       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-40 - DL      | KLA06-SB1-02       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-40           | KLA06-SB1-02       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-41           | KLA06-SB2-01       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-41 - DL      | KLA06-SB2-01       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-41 - DL2     | KLA06-SB2-01       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-42 - DL2     | KLA06-SB2-02       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-42 - DL      | KLA06-SB2-02       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-42           | KLA06-SB2-02       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-43           | KLA07-SD1-01       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-51           | KLA03-SB-2-01D     | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-52           | KLA06-SB-2-02D     | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-52 - DL      | KLA06-SB-2-02D     | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-52 - DL2     | KLA06-SB-2-02D     | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-55 - DL      | KLA05-SB1-01D      | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-55           | KLA05-SB1-01D      | Total/NA  | Solid  | SHAKE  |            |
| MB 320-223091/1-A      | Method Blank       | Total/NA  | Solid  | SHAKE  |            |
| LCS 320-223091/2-A     | Lab Control Sample | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-41 MS - DL2  | KLA06-SB2-01       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-41 MS - DL   | KLA06-SB2-01       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-41 MS        | KLA06-SB2-01       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-41 MSD - DL2 | KLA06-SB2-01       | Total/NA  | Solid  | SHAKE  |            |

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1 Project/Site: Phase III, ANG-Kingsley

## LCMS (Continued)

| Lab Sample ID         | Client Sample ID | Prep Type | Matrix | Method | Prep Batch |
|-----------------------|------------------|-----------|--------|--------|------------|
| 320-39023-41 MSD - DL | KLA06-SB2-01     | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-41 MSD      | KLA06-SB2-01     | Total/NA  | Solid  | SHAKE  |            |

#### **Prep Batch: 223092**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 320-39023-15       | KLA02-SB1-01       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-16       | KLA02-SB1-02       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-17 - DL  | KLA02-SB2-01       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-17       | KLA02-SB2-01       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-18       | KLA02-SB2-02       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-18 - DL  | KLA02-SB2-02       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-19 - DL  | KLA02-SB3-01       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-19       | KLA02-SB3-01       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-20       | KLA02-SB3-02       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-27 - DL  | KLA04-SB1-01       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-27       | KLA04-SB1-01       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-28 - DL  | KLA04-SB1-02       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-28 - DL2 | KLA04-SB1-02       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-28       | KLA04-SB1-02       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-29 - DL  | KLA04-SB2-01       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-29       | KLA04-SB2-01       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-30 - DL  | KLA04-SB2-02       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-30       | KLA04-SB2-02       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-31       | KLA04-SB3-01       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-31 - DL2 | KLA04-SB3-01       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-31 - DL  | KLA04-SB3-01       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-32 - DL  | KLA04-SB3-02       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-32       | KLA04-SB3-02       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-32 - DL2 | KLA04-SB3-02       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-33       | KLA05-SB1-01       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-33 - DL  | KLA05-SB1-01       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-34       | KLA05-SB1-02       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-35 - DL  | KLA05-SB2-01       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-35       | KLA05-SB2-01       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-36 - DL  | KLA05-SB2-02       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-36       | KLA05-SB2-02       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-37 - DL  | KLA05-SB3-01       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-37       | KLA05-SB3-01       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-38       | KLA05-SB3-02       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-38 - DL  | KLA05-SB3-02       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-53 - DL  | KLA02-SB2-02D      | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-53       | KLA02-SB2-02D      | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-54       | KLA02-SB1-02D      | Total/NA  | Solid  | SHAKE  |            |
| MB 320-223092/1-A  | Method Blank       | Total/NA  | Solid  | SHAKE  |            |
| LCS 320-223092/2-A | Lab Control Sample | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-15 MS    | KLA02-SB1-01       | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-15 MSD   | KLA02-SB1-01       | Total/NA  | Solid  | SHAKE  |            |

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch |
|---------------|------------------|-----------|--------|--------|------------|
| 320-39023-44  | ER-01            | Total/NA  | Water  | 3535   |            |

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1 Project/Site: Phase III, ANG-Kingsley

### LCMS (Continued)

| Prep E | Batch: | 223346 ( | (Continued) |
|--------|--------|----------|-------------|
|--------|--------|----------|-------------|

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 320-39023-45       | FB-01              | Total/NA  | Water  | 3535   |            |
| MB 320-223346/1-A  | Method Blank       | Total/NA  | Water  | 3535   |            |
| LCS 320-223346/2-A | Lab Control Sample | Total/NA  | Water  | 3535   |            |

#### **Prep Batch: 223615**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 320-39023-46       | ER-02              | Total/NA  | Water  | 3535   | <u> </u>   |
| MB 320-223615/1-A  | Method Blank       | Total/NA  | Water  | 3535   |            |
| LCS 320-223615/2-A | Lab Control Sample | Total/NA  | Water  | 3535   |            |

#### **Prep Batch: 223901**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 320-39023-47       | ER-03              | Total/NA  | Water  | 3535   |            |
| 320-39023-48       | ER-04              | Total/NA  | Water  | 3535   |            |
| MB 320-223901/1-A  | Method Blank       | Total/NA  | Water  | 3535   |            |
| LCS 320-223901/2-A | Lab Control Sample | Total/NA  | Water  | 3535   |            |

#### Prep Batch: 224065

| Lab Sample ID        | Client Sample ID    | Prep Type | Matrix | Method | Prep Batch |
|----------------------|---------------------|-----------|--------|--------|------------|
| 320-39023-1 - DL     | MW-KLA01-01-01      | Total/NA  | Water  | 3535   |            |
| 320-39023-1          | MW-KLA01-01-01      | Total/NA  | Water  | 3535   |            |
| 320-39023-2 - DL     | MW-KLA02-01-01      | Total/NA  | Water  | 3535   |            |
| 320-39023-2          | MW-KLA02-01-01      | Total/NA  | Water  | 3535   |            |
| 320-39023-3          | MW-KLA03-01-01      | Total/NA  | Water  | 3535   |            |
| 320-39023-3 - DL     | MW-KLA03-01-01      | Total/NA  | Water  | 3535   |            |
| 320-39023-4 - DL     | MW-KLA04-01-01      | Total/NA  | Water  | 3535   |            |
| 320-39023-4          | MW-KLA04-01-01      | Total/NA  | Water  | 3535   |            |
| 320-39023-5 - DL     | MW-573-03-PRL05-01  | Total/NA  | Water  | 3535   |            |
| 320-39023-5          | MW-573-03-PRL05-01  | Total/NA  | Water  | 3535   |            |
| 320-39023-6 - DL     | MW-572-02-PRL05-01  | Total/NA  | Water  | 3535   |            |
| 320-39023-6          | MW-572-02-PRL05-01  | Total/NA  | Water  | 3535   |            |
| 320-39023-7 - DL2    | MW-KLA06-01-01      | Total/NA  | Water  | 3535   |            |
| 320-39023-7          | MW-KLA06-01-01      | Total/NA  | Water  | 3535   |            |
| 320-39023-49         | MW-572-02-PRL05-01D | Total/NA  | Water  | 3535   |            |
| 320-39023-49 - DL    | MW-572-02-PRL05-01D | Total/NA  | Water  | 3535   |            |
| 320-39023-56         | ER-05               | Total/NA  | Water  | 3535   |            |
| MB 320-224065/1-A    | Method Blank        | Total/NA  | Water  | 3535   |            |
| LCS 320-224065/2-A   | Lab Control Sample  | Total/NA  | Water  | 3535   |            |
| 320-39023-5 MS       | MW-573-03-PRL05-01  | Total/NA  | Water  | 3535   |            |
| 320-39023-5 MS - DL  | MW-573-03-PRL05-01  | Total/NA  | Water  | 3535   |            |
| 320-39023-5 MSD - DL | MW-573-03-PRL05-01  | Total/NA  | Water  | 3535   |            |
| 320-39023-5 MSD      | MW-573-03-PRL05-01  | Total/NA  | Water  | 3535   |            |

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method        | Prep Batch |
|--------------------|--------------------|-----------|--------|---------------|------------|
| 320-39023-45       | FB-01              | Total/NA  | Water  | EPA 537 (Mod) | 223346     |
| MB 320-223346/1-A  | Method Blank       | Total/NA  | Water  | EPA 537 (Mod) | 223346     |
| LCS 320-223346/2-A | Lab Control Sample | Total/NA  | Water  | EPA 537 (Mod) | 223346     |

Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

TestAmerica Job ID: 320-39023-1

### LCMS (Continued)

| Prep | Batch: | 224254 |
|------|--------|--------|
|------|--------|--------|

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 320-39023-59       | KLA07-SD1-01D      | Total/NA  | Solid  | SHAKE  |            |
| MB 320-224254/1-A  | Method Blank       | Total/NA  | Solid  | SHAKE  |            |
| LCS 320-224254/2-A | Lab Control Sample | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-59 MS    | KLA07-SD1-01D      | Total/NA  | Solid  | SHAKE  |            |
| 320-39023-59 MSD   | KLA07-SD1-01D      | Total/NA  | Solid  | SHAKE  |            |

### **Prep Batch: 224509**

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| 320-39023-8         | KLA08-SW1-01           | Total/NA  | Water  | 3535   |            |
| MB 320-224509/1-A   | Method Blank           | Total/NA  | Water  | 3535   |            |
| LCS 320-224509/2-A  | Lab Control Sample     | Total/NA  | Water  | 3535   |            |
| LCSD 320-224509/3-A | Lab Control Sample Dup | Total/NA  | Water  | 3535   |            |

#### **Analysis Batch: 224542**

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method        | Prep Batch |
|---------------|------------------|-----------|--------|---------------|------------|
| 320-39023-44  | ER-01            | Total/NA  | Water  | EPA 537 (Mod) | 223346     |

#### **Analysis Batch: 225690**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method        | Prep Batch |
|--------------------|--------------------|-----------|--------|---------------|------------|
| 320-39023-47       | ER-03              | Total/NA  | Water  | EPA 537 (Mod) | 223901     |
| 320-39023-48       | ER-04              | Total/NA  | Water  | EPA 537 (Mod) | 223901     |
| MB 320-223901/1-A  | Method Blank       | Total/NA  | Water  | EPA 537 (Mod) | 223901     |
| LCS 320-223901/2-A | Lab Control Sample | Total/NA  | Water  | EPA 537 (Mod) | 223901     |

#### **Analysis Batch: 225818**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method        | Prep Batch |
|--------------------|--------------------|-----------|--------|---------------|------------|
| 320-39023-46       | ER-02              | Total/NA  | Water  | EPA 537 (Mod) | 223615     |
| MB 320-223615/1-A  | Method Blank       | Total/NA  | Water  | EPA 537 (Mod) | 223615     |
| LCS 320-223615/2-A | Lab Control Sample | Total/NA  | Water  | EPA 537 (Mod) | 223615     |

#### **Analysis Batch: 225820**

| Lab Sample ID      | Client Sample ID    | Prep Type | Matrix | Method        | Prep Batch |
|--------------------|---------------------|-----------|--------|---------------|------------|
| 320-39023-1        | MW-KLA01-01-01      | Total/NA  | Water  | EPA 537 (Mod) | 224065     |
| 320-39023-2        | MW-KLA02-01-01      | Total/NA  | Water  | EPA 537 (Mod) | 224065     |
| 320-39023-3        | MW-KLA03-01-01      | Total/NA  | Water  | EPA 537 (Mod) | 224065     |
| 320-39023-5        | MW-573-03-PRL05-01  | Total/NA  | Water  | EPA 537 (Mod) | 224065     |
| 320-39023-6        | MW-572-02-PRL05-01  | Total/NA  | Water  | EPA 537 (Mod) | 224065     |
| 320-39023-7        | MW-KLA06-01-01      | Total/NA  | Water  | EPA 537 (Mod) | 224065     |
| 320-39023-49       | MW-572-02-PRL05-01D | Total/NA  | Water  | EPA 537 (Mod) | 224065     |
| MB 320-224065/1-A  | Method Blank        | Total/NA  | Water  | EPA 537 (Mod) | 224065     |
| LCS 320-224065/2-A | Lab Control Sample  | Total/NA  | Water  | EPA 537 (Mod) | 224065     |
| 320-39023-5 MS     | MW-573-03-PRL05-01  | Total/NA  | Water  | EPA 537 (Mod) | 224065     |
| 320-39023-5 MSD    | MW-573-03-PRL05-01  | Total/NA  | Water  | EPA 537 (Mod) | 224065     |

### Analysis Batch: 225894

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method        | Prep Batch |
|---------------|------------------|-----------|--------|---------------|------------|
| 320-39023-9   | KLA-01-SB1-01    | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |
| 320-39023-10  | KLA-01-SB1-02    | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |
| 320-39023-11  | KLA-01-SB2-01    | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |
| 320-39023-12  | KLA-01-SB2-02    | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |
| 320-39023-13  | KLA-01-SB3-01    | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |

QC ASSOCIATION Summi

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

### LCMS (Continued)

#### **Analysis Batch: 225894 (Continued)**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method        | Prep Batch |
|--------------------|--------------------|-----------|--------|---------------|------------|
| 320-39023-14       | KLA-01-SB3-02      | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |
| 320-39023-21       | KLA03-SB1-01       | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |
| 320-39023-22       | KLA03-SB1-02       | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |
| MB 320-223091/1-A  | Method Blank       | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |
| LCS 320-223091/2-A | Lab Control Sample | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |

#### Analysis Batch: 225899

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method        | Prep Batch |
|--------------------|--------------------|-----------|--------|---------------|------------|
| 320-39023-15       | KLA02-SB1-01       | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-16       | KLA02-SB1-02       | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-17       | KLA02-SB2-01       | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-18       | KLA02-SB2-02       | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-19       | KLA02-SB3-01       | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-20       | KLA02-SB3-02       | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-27       | KLA04-SB1-01       | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-28       | KLA04-SB1-02       | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-29       | KLA04-SB2-01       | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-30       | KLA04-SB2-02       | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-31       | KLA04-SB3-01       | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-32       | KLA04-SB3-02       | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-33       | KLA05-SB1-01       | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-35       | KLA05-SB2-01       | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-36       | KLA05-SB2-02       | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-37       | KLA05-SB3-01       | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-38       | KLA05-SB3-02       | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-53       | KLA02-SB2-02D      | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-54       | KLA02-SB1-02D      | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| MB 320-223092/1-A  | Method Blank       | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| LCS 320-223092/2-A | Lab Control Sample | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-15 MS    | KLA02-SB1-01       | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-15 MSD   | KLA02-SB1-01       | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |

| Lab Sample ID          | Client Sample ID | Prep Type | Matrix | Method        | Prep Batch |
|------------------------|------------------|-----------|--------|---------------|------------|
| 320-39023-9 - DL       | KLA-01-SB1-01    | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |
| 320-39023-10 - DL      | KLA-01-SB1-02    | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |
| 320-39023-39 - DL      | KLA06-SB1-01     | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |
| 320-39023-40 - DL      | KLA06-SB1-02     | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |
| 320-39023-41 - DL2     | KLA06-SB2-01     | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |
| 320-39023-41 - DL      | KLA06-SB2-01     | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |
| 320-39023-42 - DL2     | KLA06-SB2-02     | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |
| 320-39023-42 - DL      | KLA06-SB2-02     | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |
| 320-39023-52 - DL2     | KLA06-SB-2-02D   | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |
| 320-39023-52 - DL      | KLA06-SB-2-02D   | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |
| 320-39023-55 - DL      | KLA05-SB1-01D    | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |
| 320-39023-41 MS - DL2  | KLA06-SB2-01     | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |
| 320-39023-41 MS - DL   | KLA06-SB2-01     | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |
| 320-39023-41 MSD - DL2 | KLA06-SB2-01     | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |
| 320-39023-41 MSD - DL  | KLA06-SB2-01     | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |

QC ASSOCIATION Summa

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

### LCMS (Continued)

#### **Analysis Batch: 226051**

| Lab Sample ID      | Client Sample ID | Prep Type | Matrix | Method        | Prep Batch |
|--------------------|------------------|-----------|--------|---------------|------------|
| 320-39023-17 - DL  | KLA02-SB2-01     | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-18 - DL  | KLA02-SB2-02     | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-19 - DL  | KLA02-SB3-01     | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-27 - DL  | KLA04-SB1-01     | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-28 - DL2 | KLA04-SB1-02     | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-28 - DL  | KLA04-SB1-02     | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-29 - DL  | KLA04-SB2-01     | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-30 - DL  | KLA04-SB2-02     | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-31 - DL2 | KLA04-SB3-01     | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-31 - DL  | KLA04-SB3-01     | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-32 - DL2 | KLA04-SB3-02     | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-32 - DL  | KLA04-SB3-02     | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-33 - DL  | KLA05-SB1-01     | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-34       | KLA05-SB1-02     | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-35 - DL  | KLA05-SB2-01     | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-36 - DL  | KLA05-SB2-02     | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-37 - DL  | KLA05-SB3-01     | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-38 - DL  | KLA05-SB3-02     | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |
| 320-39023-53 - DL  | KLA02-SB2-02D    | Total/NA  | Solid  | EPA 537 (Mod) | 223092     |

#### **Analysis Batch: 226055**

| Lab Sample ID        | Client Sample ID    | Prep Type | Matrix | Method        | Prep Batch |
|----------------------|---------------------|-----------|--------|---------------|------------|
| 320-39023-1 - DL     | MW-KLA01-01-01      | Total/NA  | Water  | EPA 537 (Mod) | 224065     |
| 320-39023-2 - DL     | MW-KLA02-01-01      | Total/NA  | Water  | EPA 537 (Mod) | 224065     |
| 320-39023-3 - DL     | MW-KLA03-01-01      | Total/NA  | Water  | EPA 537 (Mod) | 224065     |
| 320-39023-4 - DL     | MW-KLA04-01-01      | Total/NA  | Water  | EPA 537 (Mod) | 224065     |
| 320-39023-4          | MW-KLA04-01-01      | Total/NA  | Water  | EPA 537 (Mod) | 224065     |
| 320-39023-5 - DL     | MW-573-03-PRL05-01  | Total/NA  | Water  | EPA 537 (Mod) | 224065     |
| 320-39023-6 - DL     | MW-572-02-PRL05-01  | Total/NA  | Water  | EPA 537 (Mod) | 224065     |
| 320-39023-7 - DL2    | MW-KLA06-01-01      | Total/NA  | Water  | EPA 537 (Mod) | 224065     |
| 320-39023-49 - DL    | MW-572-02-PRL05-01D | Total/NA  | Water  | EPA 537 (Mod) | 224065     |
| 320-39023-56         | ER-05               | Total/NA  | Water  | EPA 537 (Mod) | 224065     |
| 320-39023-5 MS - DL  | MW-573-03-PRL05-01  | Total/NA  | Water  | EPA 537 (Mod) | 224065     |
| 320-39023-5 MSD - DL | MW-573-03-PRL05-01  | Total/NA  | Water  | EPA 537 (Mod) | 224065     |

#### **Analysis Batch: 226343**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method        | Prep Batch |
|--------------------|--------------------|-----------|--------|---------------|------------|
| 320-39023-59       | KLA07-SD1-01D      | Total/NA  | Solid  | EPA 537 (Mod) | 224254     |
| MB 320-224254/1-A  | Method Blank       | Total/NA  | Solid  | EPA 537 (Mod) | 224254     |
| LCS 320-224254/2-A | Lab Control Sample | Total/NA  | Solid  | EPA 537 (Mod) | 224254     |
| 320-39023-59 MS    | KLA07-SD1-01D      | Total/NA  | Solid  | EPA 537 (Mod) | 224254     |
| 320-39023-59 MSD   | KLA07-SD1-01D      | Total/NA  | Solid  | EPA 537 (Mod) | 224254     |

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method        | Prep Batch |
|---------------------|------------------------|-----------|--------|---------------|------------|
| 320-39023-8         | KLA08-SW1-01           | Total/NA  | Water  | EPA 537 (Mod) | 224509     |
| MB 320-224509/1-A   | Method Blank           | Total/NA  | Water  | EPA 537 (Mod) | 224509     |
| LCS 320-224509/2-A  | Lab Control Sample     | Total/NA  | Water  | EPA 537 (Mod) | 224509     |
| LCSD 320-224509/3-A | Lab Control Sample Dup | Total/NA  | Water  | EPA 537 (Mod) | 224509     |

QO ASSOCIATION SUMMA

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

### LCMS (Continued)

#### Analysis Batch: 227681

| Lab Sample ID    | Client Sample ID | Prep Type | Matrix | Method        | Prep Batch |
|------------------|------------------|-----------|--------|---------------|------------|
| 320-39023-23     | KLA03-SB2-01     | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |
| 320-39023-24     | KLA03-SB2-02     | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |
| 320-39023-25     | KLA03-SB3-01     | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |
| 320-39023-26     | KLA03-SB3-02     | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |
| 320-39023-39     | KLA06-SB1-01     | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |
| 320-39023-40     | KLA06-SB1-02     | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |
| 320-39023-41     | KLA06-SB2-01     | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |
| 320-39023-42     | KLA06-SB2-02     | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |
| 320-39023-43     | KLA07-SD1-01     | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |
| 320-39023-51     | KLA03-SB-2-01D   | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |
| 320-39023-52     | KLA06-SB-2-02D   | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |
| 320-39023-55     | KLA05-SB1-01D    | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |
| 320-39023-41 MS  | KLA06-SB2-01     | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |
| 320-39023-41 MSD | KLA06-SB2-01     | Total/NA  | Solid  | EPA 537 (Mod) | 223091     |

## **General Chemistry**

### Analysis Batch: 223303

| Lab Sample ID   | Client Sample ID | Prep Type | Matrix | Method | Prep Batch |
|-----------------|------------------|-----------|--------|--------|------------|
| 320-39023-21    | KLA03-SB1-01     | Total/NA  | Solid  | D 2216 |            |
| 320-39023-22    | KLA03-SB1-02     | Total/NA  | Solid  | D 2216 |            |
| 320-39023-25    | KLA03-SB3-01     | Total/NA  | Solid  | D 2216 |            |
| 320-39023-26    | KLA03-SB3-02     | Total/NA  | Solid  | D 2216 |            |
| 320-39023-39    | KLA06-SB1-01     | Total/NA  | Solid  | D 2216 |            |
| 320-39023-40    | KLA06-SB1-02     | Total/NA  | Solid  | D 2216 |            |
| 320-39023-41    | KLA06-SB2-01     | Total/NA  | Solid  | D 2216 |            |
| 320-39023-42    | KLA06-SB2-02     | Total/NA  | Solid  | D 2216 |            |
| 320-39023-52    | KLA06-SB-2-02D   | Total/NA  | Solid  | D 2216 |            |
| 320-39023-41 DU | KLA06-SB2-01     | Total/NA  | Solid  | D 2216 |            |

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch |
|---------------|------------------|-----------|--------|--------|------------|
| 320-39023-9   | KLA-01-SB1-01    | Total/NA  | Solid  | D 2216 |            |
| 320-39023-10  | KLA-01-SB1-02    | Total/NA  | Solid  | D 2216 |            |
| 320-39023-11  | KLA-01-SB2-01    | Total/NA  | Solid  | D 2216 |            |
| 320-39023-12  | KLA-01-SB2-02    | Total/NA  | Solid  | D 2216 |            |
| 320-39023-13  | KLA-01-SB3-01    | Total/NA  | Solid  | D 2216 |            |
| 320-39023-14  | KLA-01-SB3-02    | Total/NA  | Solid  | D 2216 |            |
| 320-39023-15  | KLA02-SB1-01     | Total/NA  | Solid  | D 2216 |            |
| 320-39023-16  | KLA02-SB1-02     | Total/NA  | Solid  | D 2216 |            |
| 320-39023-17  | KLA02-SB2-01     | Total/NA  | Solid  | D 2216 |            |
| 320-39023-18  | KLA02-SB2-02     | Total/NA  | Solid  | D 2216 |            |
| 320-39023-19  | KLA02-SB3-01     | Total/NA  | Solid  | D 2216 |            |
| 320-39023-20  | KLA02-SB3-02     | Total/NA  | Solid  | D 2216 |            |
| 320-39023-23  | KLA03-SB2-01     | Total/NA  | Solid  | D 2216 |            |
| 320-39023-24  | KLA03-SB2-02     | Total/NA  | Solid  | D 2216 |            |
| 320-39023-27  | KLA04-SB1-01     | Total/NA  | Solid  | D 2216 |            |
| 320-39023-28  | KLA04-SB1-02     | Total/NA  | Solid  | D 2216 |            |
| 320-39023-29  | KLA04-SB2-01     | Total/NA  | Solid  | D 2216 |            |
| 320-39023-30  | KLA04-SB2-02     | Total/NA  | Solid  | D 2216 |            |

QC Association Summa

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

## **General Chemistry (Continued)**

| Lab Sample ID  | Client Sample ID | Prep Type | Matrix | Method | Prep Batch |
|----------------|------------------|-----------|--------|--------|------------|
| 320-39023-31   | KLA04-SB3-01     | Total/NA  | Solid  | D 2216 |            |
| 320-39023-9 DU | KLA-01-SB1-01    | Total/NA  | Solid  | D 2216 |            |

#### **Analysis Batch: 223408**

| Lab Sample ID   | Client Sample ID | Prep Type | Matrix | Method | Prep Batch |
|-----------------|------------------|-----------|--------|--------|------------|
| 320-39023-32    | KLA04-SB3-02     | Total/NA  | Solid  | D 2216 |            |
| 320-39023-33    | KLA05-SB1-01     | Total/NA  | Solid  | D 2216 |            |
| 320-39023-34    | KLA05-SB1-02     | Total/NA  | Solid  | D 2216 |            |
| 320-39023-35    | KLA05-SB2-01     | Total/NA  | Solid  | D 2216 |            |
| 320-39023-36    | KLA05-SB2-02     | Total/NA  | Solid  | D 2216 |            |
| 320-39023-37    | KLA05-SB3-01     | Total/NA  | Solid  | D 2216 |            |
| 320-39023-38    | KLA05-SB3-02     | Total/NA  | Solid  | D 2216 |            |
| 320-39023-43    | KLA07-SD1-01     | Total/NA  | Solid  | D 2216 |            |
| 320-39023-51    | KLA03-SB-2-01D   | Total/NA  | Solid  | D 2216 |            |
| 320-39023-53    | KLA02-SB2-02D    | Total/NA  | Solid  | D 2216 |            |
| 320-39023-54    | KLA02-SB1-02D    | Total/NA  | Solid  | D 2216 |            |
| 320-39023-55    | KLA05-SB1-01D    | Total/NA  | Solid  | D 2216 |            |
| 320-39023-32 DU | KLA04-SB3-02     | Total/NA  | Solid  | D 2216 |            |

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch |
|---------------|------------------|-----------|--------|--------|------------|
| 320-39023-59  | KLA07-SD1-01D    | Total/NA  | Solid  | D 2216 |            |

Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

TestAmerica Job ID: 320-39023-1

Client Sample ID: MW-KLA01-01-01

Lab Sample ID: 320-39023-1 Date Collected: 05/06/18 14:50 **Matrix: Water** 

Date Received: 05/08/18 09:00

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 3535          |     |          | 224065 | 05/18/18 10:26 | SK      | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 225820 | 05/28/18 11:18 | S1M     | TAL SAC |
| Total/NA  | Prep     | 3535          | DL  |          | 224065 | 05/18/18 10:26 | SK      | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) | DL  | 5        | 226055 | 05/29/18 18:41 | S1M     | TAL SAC |

Client Sample ID: MW-KLA02-01-01

Lab Sample ID: 320-39023-2 Date Collected: 05/06/18 12:05

**Matrix: Water** 

Date Received: 05/09/18 09:20

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 3535          |     |          | 224065 | 05/18/18 10:26 | SK      | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 225820 | 05/28/18 11:26 | S1M     | TAL SAC |
| Total/NA  | Prep     | 3535          | DL  |          | 224065 | 05/18/18 10:26 | SK      | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) | DL  | 100      | 226055 | 05/29/18 18:49 | S1M     | TAL SAC |

Client Sample ID: MW-KLA03-01-01

Lab Sample ID: 320-39023-3 Date Collected: 05/06/18 15:55

**Matrix: Water** 

Date Received: 05/08/18 09:00

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 3535          |     |          | 224065 | 05/18/18 10:26 | SK      | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 225820 | 05/28/18 11:34 | S1M     | TAL SAC |
| Total/NA  | Prep     | 3535          | DL  |          | 224065 | 05/18/18 10:26 | SK      | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) | DL  | 50       | 226055 | 05/29/18 19:04 | S1M     | TAL SAC |

Client Sample ID: MW-KLA04-01-01

Lab Sample ID: 320-39023-4

Date Collected: 05/06/18 14:15 **Matrix: Water** Date Received: 05/08/18 09:00

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 3535          | DL  |          | 224065 | 05/18/18 10:26 | SK      | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) | DL  | 5        | 226055 | 05/29/18 19:12 | S1M     | TAL SAC |
| Total/NA  | Prep     | 3535          |     |          | 224065 | 05/18/18 10:26 | SK      | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 226055 | 05/29/18 19:20 | S1M     | TAL SAC |

Client Sample ID: MW-573-03-PRL05-01

Date Collected: 05/06/18 09:15 **Matrix: Water** 

Date Received: 05/08/18 09:00

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 3535          |     |          | 224065 | 05/18/18 10:26 | SK      | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 225820 | 05/28/18 11:50 | S1M     | TAL SAC |
| Total/NA  | Prep     | 3535          | DL  |          | 224065 | 05/18/18 10:26 | SK      | TAL SAC |

TestAmerica Sacramento

Lab Sample ID: 320-39023-5

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1 Project/Site: Phase III, ANG-Kingsley

Client Sample ID: MW-573-03-PRL05-01

Lab Sample ID: 320-39023-5 Date Collected: 05/06/18 09:15

**Matrix: Water** 

Date Received: 05/08/18 09:00

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | EPA 537 (Mod) | DL  | 100      | 226055 | 05/29/18 19:28 | S1M     | TAL SAC |

Client Sample ID: MW-572-02-PRL05-01

Lab Sample ID: 320-39023-6 Date Collected: 05/06/18 10:30

**Matrix: Water** 

Date Received: 05/08/18 09:00

| _         | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 3535          |     |          | 224065 | 05/18/18 10:26 | SK      | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 225820 | 05/28/18 12:13 | S1M     | TAL SAC |
| Total/NA  | Prep     | 3535          | DL  |          | 224065 | 05/18/18 10:26 | SK      | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) | DL  | 10       | 226055 | 05/29/18 20:07 | S1M     | TAL SAC |

Client Sample ID: MW-KLA06-01-01

Lab Sample ID: 320-39023-7 Date Collected: 05/06/18 13:15

**Matrix: Water** 

Date Received: 05/08/18 09:00

|   |           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|---|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| F | Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Ī | otal/NA   | Prep     | 3535          |     |          | 224065 | 05/18/18 10:26 | SK      | TAL SAC |
| 1 | otal/NA   | Analysis | EPA 537 (Mod) |     | 1        | 225820 | 05/28/18 12:29 | S1M     | TAL SAC |
| T | otal/NA   | Prep     | 3535          | DL2 |          | 224065 | 05/18/18 10:26 | SK      | TAL SAC |
| Т | otal/NA   | Analysis | EPA 537 (Mod) | DL2 | 100      | 226055 | 05/29/18 20:31 | S1M     | TAL SAC |

Client Sample ID: KLA08-SW1-01

Lab Sample ID: 320-39023-8 Date Collected: 05/07/18 08:30

**Matrix: Water** 

Date Received: 05/08/18 09:00

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 3535          |     |          | 224509 | 05/21/18 12:01 | SK      | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 226349 | 05/31/18 04:51 | JRB     | TAL SAC |

Client Sample ID: KLA-01-SB1-01 Lab Sample ID: 320-39023-9

Date Collected: 05/02/18 14:00 **Matrix: Solid** 

Date Received: 05/09/18 09:20

|           | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | D 2216 |     | 1        | 223400 | 05/15/18 16:20 | JCB     | TAL SAC |

Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: KLA-01-SB1-01

Date Collected: 05/02/18 14:00

Lab Sample ID: 320-39023-9 **Matrix: Solid** 

TestAmerica Job ID: 320-39023-1

Date Received: 05/09/18 09:20 Percent Solids: 79.0

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | SHAKE         |     |          | 223091 | 05/14/18 13:10 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 225894 | 05/29/18 03:32 | S1M     | TAL SAC |
| Total/NA  | Prep     | SHAKE         | DL  |          | 223091 | 05/14/18 13:10 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) | DL  | 20       | 226044 | 05/29/18 11:07 | S1M     | TAL SAC |

Client Sample ID: KLA-01-SB1-02

Date Collected: 05/02/18 14:10 Date Received: 05/09/18 09:20

**Matrix: Solid** 

Batch Batch Dilution Batch Prepared Method or Analyzed Analyst **Prep Type** Type Run **Factor** Number Total/NA Analysis D 2216 223400 05/15/18 16:20 JCB TAL SAC

Client Sample ID: KLA-01-SB1-02

Date Collected: 05/02/18 14:10 Date Received: 05/09/18 09:20

Lab Sample ID: 320-39023-10

Lab Sample ID: 320-39023-10

**Matrix: Solid** Percent Solids: 77.4

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | SHAKE         |     |          | 223091 | 05/14/18 13:10 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 225894 | 05/29/18 03:40 | S1M     | TAL SAC |
| Total/NA  | Prep     | SHAKE         | DL  |          | 223091 | 05/14/18 13:10 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) | DL  | 20       | 226044 | 05/29/18 11:15 | S1M     | TAL SAC |

Client Sample ID: KLA-01-SB2-01

Date Collected: 05/02/18 13:15

Date Received: 05/09/18 09:20

Lab Sample ID: 320-39023-11

**Matrix: Solid** 

| Γ         | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | D 2216 |     | 1        | 223400 | 05/15/18 16:20 | JCB     | TAL SAC |

Client Sample ID: KLA-01-SB2-01

Date Collected: 05/02/18 13:15

Lab Sample ID: 320-39023-11

**Matrix: Solid** 

Date Received: 05/09/18 09:20 Percent Solids: 87.9

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | SHAKE         |     |          | 223091 | 05/14/18 13:10 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 225894 | 05/29/18 03:48 | S1M     | TAL SAC |

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1 Project/Site: Phase III, ANG-Kingsley

Client Sample ID: KLA-01-SB2-02

Lab Sample ID: 320-39023-12 Date Collected: 05/02/18 13:20

**Matrix: Solid** 

Date Received: 05/09/18 09:20

|           | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | D 2216 |     |          | 223400 | 05/15/18 16:20 | JCB     | TAL SAC |

Client Sample ID: KLA-01-SB2-02

Lab Sample ID: 320-39023-12 Date Collected: 05/02/18 13:20 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 75.7

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | SHAKE         |     |          | 223091 | 05/14/18 13:10 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 225894 | 05/29/18 03:56 | S1M     | TAL SAC |

Client Sample ID: KLA-01-SB3-01

Lab Sample ID: 320-39023-13 Date Collected: 05/02/18 14:25 **Matrix: Solid** 

Date Received: 05/09/18 09:20

|           | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | D 2216 |     | 1        | 223400 | 05/15/18 16:20 | JCB     | TAL SAC |

Client Sample ID: KLA-01-SB3-01

Lab Sample ID: 320-39023-13 Date Collected: 05/02/18 14:25 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 77.4

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | SHAKE         |     |          | 223091 | 05/14/18 13:10 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 225894 | 05/29/18 04:04 | S1M     | TAL SAC |

Client Sample ID: KLA-01-SB3-02

Lab Sample ID: 320-39023-14 Date Collected: 05/02/18 14:30 **Matrix: Solid** 

Date Received: 05/09/18 09:20

|           | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | D 2216 |     | 1        | 223400 | 05/15/18 16:20 | JCB     | TAL SAC |

Client Sample ID: KLA-01-SB3-02

Date Collected: 05/02/18 14:30 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 78.1

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | SHAKE         |     |          | 223091 | 05/14/18 13:10 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 225894 | 05/29/18 04:12 | S1M     | TAL SAC |

Lab Sample ID: 320-39023-14

Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

Date Received: 05/09/18 09:20

TestAmerica Job ID: 320-39023-1

Client Sample ID: KLA02-SB1-01

Lab Sample ID: 320-39023-15 Date Collected: 05/04/18 13:40

**Matrix: Solid** 

Batch Batch Dilution Batch Prepared Method

Run **Factor** Number or Analyzed **Prep Type** Type Analyst Lab Total/NA D 2216 223400 05/15/18 16:20 **JCB** TAL SAC Analysis

Client Sample ID: KLA02-SB1-01

Lab Sample ID: 320-39023-15 Date Collected: 05/04/18 13:40 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 77.4

**Batch Batch** Dilution Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Prep SHAKE 223092 05/14/18 14:03 HJA TAL SAC Total/NA Analysis EPA 537 (Mod) 225899 05/29/18 07:43 S<sub>1</sub>M TAL SAC

Client Sample ID: KLA02-SB1-02

Lab Sample ID: 320-39023-16 Date Collected: 05/04/18 13:45 **Matrix: Solid** 

Date Received: 05/09/18 09:20

Batch Dilution Batch Ratch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab TAL SAC Total/NA Analysis D 2216 223400 05/15/18 16:20 JCB

Client Sample ID: KLA02-SB1-02

Date Collected: 05/04/18 13:45 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 80.8

**Batch** Dilution **Batch Batch Prepared** Type Method Number or Analyzed **Prep Type** Run Factor Analyst I ah Total/NA Prep SHAKE 223092 05/14/18 14:03 HJA TAL SAC Total/NA Analysis EPA 537 (Mod) 1 225899 05/29/18 08:07 S1M TAL SAC

Client Sample ID: KLA02-SB2-01

Lab Sample ID: 320-39023-17 Date Collected: 05/04/18 13:20 **Matrix: Solid** 

Date Received: 05/09/18 09:20

**Batch** Batch Dilution Batch **Prepared** Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA D 2216 223400 05/15/18 16:20 JCB TAL SAC Analysis

Client Sample ID: KLA02-SB2-01

Date Collected: 05/04/18 13:20 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 79.0

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | SHAKE         |     |          | 223092 | 05/14/18 14:03 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 225899 | 05/29/18 08:14 | S1M     | TAL SAC |
| Total/NA  | Prep     | SHAKE         | DL  |          | 223092 | 05/14/18 14:03 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) | DL  | 100      | 226051 | 05/29/18 15:02 | D1R     | TAL SAC |

Lab Sample ID: 320-39023-16

Lab Sample ID: 320-39023-17

Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: KLA02-SB2-02 Lab Sample ID: 320-39023-18

Date Collected: 05/04/18 13:25

**Matrix: Solid** 

TestAmerica Job ID: 320-39023-1

Date Received: 05/09/18 09:20

|           | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | D 2216 |     | 1        | 223400 | 05/15/18 16:20 | JCB     | TAL SAC |

Client Sample ID: KLA02-SB2-02

Lab Sample ID: 320-39023-18 Date Collected: 05/04/18 13:25 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 59.2

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | SHAKE         |     |          | 223092 | 05/14/18 14:03 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 225899 | 05/29/18 08:22 | S1M     | TAL SAC |
| Total/NA  | Prep     | SHAKE         | DL  |          | 223092 | 05/14/18 14:03 | HJA     | TAL SAC |
| Total/NA  | Analysis | FPA 537 (Mod) | DI  | 20       | 226051 | 05/29/18 17:07 | D1R     | TAL SAC |

Client Sample ID: KLA02-SB3-01

Lab Sample ID: 320-39023-19 Date Collected: 05/04/18 13:55 **Matrix: Solid** 

Date Received: 05/09/18 09:20

|           | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | D 2216 |     | 1        | 223400 | 05/15/18 16:20 | JCB     | TAL SAC |

Client Sample ID: KLA02-SB3-01

Lab Sample ID: 320-39023-19 Date Collected: 05/04/18 13:55 **Matrix: Solid** 

Date Received: 05/09/18 09:20 Percent Solids: 83.8

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | SHAKE         |     |          | 223092 | 05/14/18 14:03 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 225899 | 05/29/18 08:30 | S1M     | TAL SAC |
| Total/NA  | Prep     | SHAKE         | DL  |          | 223092 | 05/14/18 14:03 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) | DL  | 20       | 226051 | 05/29/18 14:30 | D1R     | TAL SAC |

Client Sample ID: KLA02-SB3-02

Lab Sample ID: 320-39023-20

Date Collected: 05/04/18 14:00 **Matrix: Solid** Date Received: 05/09/18 09:20

Batch Batch Dilution Batch **Prepared** Method Run Factor Number Lab

**Prep Type** Type or Analyzed Analyst Total/NA Analysis D 2216 223400 05/15/18 16:20 JCB TAL SAC

Client Sample ID: KLA02-SB3-02 Lab Sample ID: 320-39023-20

Date Collected: 05/04/18 14:00 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 72.4

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Prep SHAKE 223092 05/14/18 14:03 HJA TAL SAC

Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

TestAmerica Job ID: 320-39023-1

Client Sample ID: KLA02-SB3-02

Date Collected: 05/04/18 14:00

Lab Sample ID: 320-39023-20 Matrix: Solid

Date Received: 05/09/18 09:20 Percent Solids: 72.4

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 225899 | 05/29/18 08:38 | S1M     | TAL SAC |

Client Sample ID: KLA03-SB1-01

Date Collected: 05/01/18 09:00 Date Received: 05/09/18 09:20 Lab Sample ID: 320-39023-21

Matrix: Solid

Dilution Batch Batch **Batch Prepared** or Analyzed **Prep Type** Type Method Run **Factor** Number Analyst Lab Total/NA D 2216 223303 05/15/18 13:00 TCS TAL SAC Analysis

Client Sample ID: KLA03-SB1-01

Date Collected: 05/01/18 09:00 Date Received: 05/09/18 09:20 Lab Sample ID: 320-39023-21

Matrix: Solid Percent Solids: 77.7

Batch **Batch** Dilution **Batch Prepared** Method Factor Number or Analyzed **Prep Type** Type Run Analyst Lab 223091 TAL SAC Total/NA Prep SHAKE 05/14/18 13:10 HJA Total/NA Analysis EPA 537 (Mod) 225894 05/29/18 04:19 S1M TAL SAC 1

Client Sample ID: KLA03-SB1-02

Date Collected: 05/01/18 09:05

Date Received: 05/09/18 09:20

Lab Sample ID: 320-39023-22

Matrix: Solid

Dilution Batch **Batch Batch Prepared** Method Run Factor Number or Analyzed **Prep Type** Type Analyst Lah D 2216 223303 05/15/18 13:00 TCS TAL SAC Total/NA Analysis

Client Sample ID: KLA03-SB1-02

Date Collected: 05/01/18 09:05

Date Received: 05/09/18 09:20

Lab Sample ID: 320-39023-22

Matrix: Solid Percent Solids: 74.7

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Prep SHAKE 223091 05/14/18 13:10 HJA TAL SAC

1

225894

05/29/18 04:27

S<sub>1</sub>M

Client Sample ID: KLA03-SB2-01

Analysis

EPA 537 (Mod)

Date Collected: 05/02/18 12:15 Date Received: 05/09/18 09:20

Total/NA

Lab Sample ID: 320-39023-23

TAL SAC

**Matrix: Solid** 

**Batch** Batch Dilution **Batch Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab TAL SAC Total/NA Analysis D 2216 223400 05/15/18 16:20 JCB

Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

TestAmerica Job ID: 320-39023-1

Client Sample ID: KLA03-SB2-01

Date Collected: 05/02/18 12:15 Date Received: 05/09/18 09:20 Lab Sample ID: 320-39023-23

Matrix: Solid

Percent Solids: 81.0

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | SHAKE         |     |          | 223091 | 05/14/18 13:10 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 227681 | 06/06/18 22:47 | S1M     | TAL SAC |

Client Sample ID: KLA03-SB2-02

Date Collected: 05/02/18 12:20 Date Received: 05/09/18 09:20 Lab Sample ID: 320-39023-24

Matrix: Solid

|           | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | D 2216 |     | 1        | 223400 | 05/15/18 16:20 | JCB     | TAL SAC |

Client Sample ID: KLA03-SB2-02

Date Collected: 05/02/18 12:20 Date Received: 05/09/18 09:20 Lab Sample ID: 320-39023-24

Matrix: Solid Percent Solids: 77.2

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | SHAKE         |     |          | 223091 | 05/14/18 13:10 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 227681 | 06/06/18 22:55 | S1M     | TAL SAC |

Client Sample ID: KLA03-SB3-01

Date Collected: 05/01/18 08:45 Date Received: 05/09/18 09:20 Lab Sample ID: 320-39023-25

Matrix: Solid

Batch Batch Dilution Batch **Prepared** Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Total/NA Analysis D 2216 223303 05/15/18 13:00 TCS TAL SAC

Client Sample ID: KLA03-SB3-01

Date Collected: 05/01/18 08:45 Date Received: 05/09/18 09:20 Lab Sample ID: 320-39023-25

Lab Sample ID: 320-39023-26

Matrix: Solid

Percent Solids: 74.9

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | SHAKE         |     |          | 223091 | 05/14/18 13:10 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 227681 | 06/06/18 23:03 | S1M     | TAL SAC |

Client Sample ID: KLA03-SB3-02

Date Collected: 05/01/18 08:50

8:50 Matrix: Solid

Date Received: 05/09/18 09:20

| _         | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | D 2216 |     | 1        | 223303 | 05/15/18 13:00 | TCS     | TAL SAC |

Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

Date Collected: 05/01/18 08:50

Date Received: 05/09/18 09:20

Client Sample ID: KLA03-SB3-02

Lab Sample ID: 320-39023-26

**Matrix: Solid** 

TestAmerica Job ID: 320-39023-1

Percent Solids: 73.6

| _         | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | SHAKE         |     |          | 223091 | 05/14/18 13:10 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 227681 | 06/06/18 23:10 | S1M     | TAL SAC |

Client Sample ID: KLA04-SB1-01

Lab Sample ID: 320-39023-27 Date Collected: 05/04/18 08:35 **Matrix: Solid** 

Date Received: 05/09/18 09:20

|           | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | D 2216 |     | 1        | 223400 | 05/15/18 16:20 | JCB     | TAL SAC |

Client Sample ID: KLA04-SB1-01

Lab Sample ID: 320-39023-27 Date Collected: 05/04/18 08:35 **Matrix: Solid** 

Date Received: 05/09/18 09:20 Percent Solids: 72.6

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | SHAKE         |     |          | 223092 | 05/14/18 14:03 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 225899 | 05/29/18 08:54 | S1M     | TAL SAC |
| Total/NA  | Prep     | SHAKE         | DL  |          | 223092 | 05/14/18 14:03 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) | DL  | 100      | 226051 | 05/29/18 15:33 | D1R     | TAL SAC |

Client Sample ID: KLA04-SB1-02

Lab Sample ID: 320-39023-28 Date Collected: 05/04/18 08:40 **Matrix: Solid** 

Date Received: 05/09/18 09:20

|           | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | D 2216 |     | 1        | 223400 | 05/15/18 16:20 | JCB     | TAL SAC |

Client Sample ID: KLA04-SB1-02 Lab Sample ID: 320-39023-28

Date Collected: 05/04/18 08:40 **Matrix: Solid** 

Date Received: 05/09/18 09:20 Percent Solids: 77.2

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | SHAKE         |     |          | 223092 | 05/14/18 14:03 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 225899 | 05/29/18 09:02 | S1M     | TAL SAC |
| Total/NA  | Prep     | SHAKE         | DL2 |          | 223092 | 05/14/18 14:03 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) | DL2 | 100      | 226051 | 05/29/18 15:41 | D1R     | TAL SAC |
| Total/NA  | Prep     | SHAKE         | DL  |          | 223092 | 05/14/18 14:03 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) | DL  | 20       | 226051 | 05/29/18 17:15 | D1R     | TAL SAC |

Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

TestAmerica Job ID: 320-39023-1

Lab Sample ID: 320-39023-29

Client Sample ID: KLA04-SB2-01

Date Collected: 05/04/18 08:20

Date Received: 05/09/18 09:20

**Matrix: Solid** 

|           | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | D 2216 |     | 1        | 223400 | 05/15/18 16:20 | JCB     | TAL SAC |

Client Sample ID: KLA04-SB2-01

Lab Sample ID: 320-39023-29 Date Collected: 05/04/18 08:20 **Matrix: Solid** 

Date Received: 05/09/18 09:20 Percent Solids: 78.9

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | SHAKE         |     |          | 223092 | 05/14/18 14:03 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 225899 | 05/29/18 09:09 | S1M     | TAL SAC |
| Total/NA  | Prep     | SHAKE         | DL  |          | 223092 | 05/14/18 14:03 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) | DL  | 100      | 226051 | 05/29/18 15:49 | D1R     | TAL SAC |

Client Sample ID: KLA04-SB2-02

Lab Sample ID: 320-39023-30 Date Collected: 05/04/18 08:25 **Matrix: Solid** 

Date Received: 05/09/18 09:20

|           | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | D 2216 |     | 1        | 223400 | 05/15/18 16:20 | JCB     | TAL SAC |

Client Sample ID: KLA04-SB2-02

Lab Sample ID: 320-39023-30 Date Collected: 05/04/18 08:25 **Matrix: Solid** 

Date Received: 05/09/18 09:20 Percent Solids: 76.0

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | SHAKE         |     |          | 223092 | 05/14/18 14:03 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 225899 | 05/29/18 09:17 | S1M     | TAL SAC |
| Total/NA  | Prep     | SHAKE         | DL  |          | 223092 | 05/14/18 14:03 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) | DL  | 100      | 226051 | 05/29/18 15:57 | D1R     | TAL SAC |

Client Sample ID: KLA04-SB3-01

Lab Sample ID: 320-39023-31

Date Collected: 05/04/18 08:05 **Matrix: Solid** 

Date Received: 05/09/18 09:20

|           | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | D 2216 |     | 1        | 223400 | 05/15/18 16:20 | JCB     | TAL SAC |

Client Sample ID: KLA04-SB3-01

Lab Sample ID: 320-39023-31

Date Collected: 05/04/18 08:05 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 78.4

|           | Batch | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|-----------|-------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type  | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep  | SHAKE  |     |          | 223092 | 05/14/18 14:03 | HJA     | TAL SAC |

Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

TestAmerica Job ID: 320-39023-1

**Matrix: Solid** 

**Matrix: Solid** 

Client Sample ID: KLA04-SB3-01 Lab Sample ID: 320-39023-31

Date Collected: 05/04/18 08:05

Matrix: Solid

Date Received: 05/09/18 09:20 Percent Solids: 78.4

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 225899 | 05/29/18 09:25 | S1M     | TAL SAC |
| Total/NA  | Prep     | SHAKE         | DL2 |          | 223092 | 05/14/18 14:03 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) | DL2 | 100      | 226051 | 05/29/18 16:12 | D1R     | TAL SAC |
| Total/NA  | Prep     | SHAKE         | DL  |          | 223092 | 05/14/18 14:03 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) | DL  | 20       | 226051 | 05/29/18 17:23 | D1R     | TAL SAC |

Client Sample ID: KLA04-SB3-02 Lab Sample ID: 320-39023-32

Date Collected: 05/04/18 08:10 Date Received: 05/09/18 09:20

Batch Batch Dilution **Batch Prepared** Method **Factor** Number or Analyzed **Prep Type** Type Run Analyst Lab Total/NA D 2216 223408 05/15/18 16:20 JCB TAL SAC Analysis

Client Sample ID: KLA04-SB3-02 Lab Sample ID: 320-39023-32

 Date Collected: 05/04/18 08:10
 Matrix: Solid

 Date Received: 05/09/18 09:20
 Percent Solids: 65.2

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | SHAKE         |     |          | 223092 | 05/14/18 14:03 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 225899 | 05/29/18 09:33 | S1M     | TAL SAC |
| Total/NA  | Prep     | SHAKE         | DL2 |          | 223092 | 05/14/18 14:03 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) | DL2 | 100      | 226051 | 05/29/18 16:20 | D1R     | TAL SAC |
| Total/NA  | Prep     | SHAKE         | DL  |          | 223092 | 05/14/18 14:03 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) | DL  | 20       | 226051 | 05/29/18 17:31 | D1R     | TAL SAC |

Client Sample ID: KLA05-SB1-01 Lab Sample ID: 320-39023-33

Date Collected: 05/05/18 09:00 Date Received: 05/09/18 09:20

Batch Batch Dilution Batch Prepared

Prep Type Type Method Run Factor Number or Analyzed Analyst Lab

Total/NA Analysis D 2216

Total/NA T

Total/NA Analysis D 2216 1 223408 05/15/18 16:20 JCB TAL SAC

Client Sample ID: KLA05-SB1-01

Date Collected: 05/05/18 09:00

Matrix: Solid

Date Received: 05/09/18 09:20

Lab Sample ID: 320-39023-33

Matrix: Solid

Percent Solids: 79.9

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | SHAKE         |     |          | 223092 | 05/14/18 14:03 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 225899 | 05/29/18 09:41 | S1M     | TAL SAC |
| Total/NA  | Prep     | SHAKE         | DL  |          | 223092 | 05/14/18 14:03 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) | DL  | 20       | 226051 | 05/29/18 14:38 | D1R     | TAL SAC |

Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

TestAmerica Job ID: 320-39023-1

Client Sample ID: KLA05-SB1-02

Lab Sample ID: 320-39023-34 Date Collected: 05/05/18 09:10

**Matrix: Solid** 

Date Received: 05/09/18 09:20

|           | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | D 2216 |     | 1        | 223408 | 05/15/18 16:20 | JCB     | TAL SAC |

Client Sample ID: KLA05-SB1-02

Lab Sample ID: 320-39023-34 Date Collected: 05/05/18 09:10 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 78.5

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | SHAKE         |     |          | 223092 | 05/14/18 14:03 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 226051 | 05/29/18 14:15 | D1R     | TAL SAC |

Client Sample ID: KLA05-SB2-01

Lab Sample ID: 320-39023-35 Date Collected: 05/05/18 09:30 **Matrix: Solid** 

Date Received: 05/09/18 09:20

|           | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | D 2216 |     | 1        | 223408 | 05/15/18 16:20 | JCB     | TAL SAC |

Client Sample ID: KLA05-SB2-01

Lab Sample ID: 320-39023-35 Date Collected: 05/05/18 09:30 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 85.2

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | SHAKE         |     |          | 223092 | 05/14/18 14:03 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 225899 | 05/29/18 09:56 | S1M     | TAL SAC |
| Total/NA  | Prep     | SHAKE         | DL  |          | 223092 | 05/14/18 14:03 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) | DL  | 10       | 226051 | 05/29/18 14:46 | D1R     | TAL SAC |

Lab Sample ID: 320-39023-36 Client Sample ID: KLA05-SB2-02

Date Collected: 05/05/18 09:40 Date Received: 05/09/18 09:20

**Batch** Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab 223408 05/15/18 16:20 JCB TAL SAC Total/NA Analysis D 2216

Client Sample ID: KLA05-SB2-02

Lab Sample ID: 320-39023-36 Date Collected: 05/05/18 09:40 Matrix: Solid

Date Received: 05/09/18 09:20 Percent Solids: 75.4

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | SHAKE         |     |          | 223092 | 05/14/18 14:03 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 225899 | 05/29/18 10:04 | S1M     | TAL SAC |
| Total/NA  | Prep     | SHAKE         | DL  |          | 223092 | 05/14/18 14:03 | HJA     | TAL SAC |

**Matrix: Solid** 

Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

TestAmerica Job ID: 320-39023-1

Client Sample ID: KLA05-SB2-02

Date Collected: 05/05/18 09:40 Date Received: 05/09/18 09:20

Lab Sample ID: 320-39023-36

**Matrix: Solid** 

Percent Solids: 75.4

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | EPA 537 (Mod) | DL  | 10       | 226051 | 05/29/18 14:54 | D1R     | TAL SAC |

Client Sample ID: KLA05-SB3-01

Date Collected: 05/05/18 10:10 Date Received: 05/09/18 09:20

Lab Sample ID: 320-39023-37

**Matrix: Solid** 

**Matrix: Solid** 

Matriv Solid

Dilution **Batch** Batch Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Total/NA D 2216 223408 05/15/18 16:20 JCB TAL SAC Analysis

Client Sample ID: KLA05-SB3-01

Date Collected: 05/05/18 10:10 Date Received: 05/09/18 09:20

Lab Sample ID: 320-39023-37

Lab Sample ID: 320-39023-38

Lab Sample ID: 320-39023-38

Lab Sample ID: 320-39023-39

TAL SAC

Percent Solids: 83.8

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | SHAKE         |     |          | 223092 | 05/14/18 14:03 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 225899 | 05/29/18 10:20 | S1M     | TAL SAC |
| Total/NA  | Prep     | SHAKE         | DL  |          | 223092 | 05/14/18 14:03 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) | DL  | 100      | 226051 | 05/29/18 16:28 | D1R     | TAL SAC |

Client Sample ID: KLA05-SB3-02

Date Collected: 05/05/18 10:20

Da

| ate Collected. 03/03/10 10.20 | Matrix. Solid |
|-------------------------------|---------------|
| ate Received: 05/09/18 09:20  |               |
|                               |               |

|           | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | D 2216 |     | 1        | 223408 | 05/15/18 16:20 | JCB     | TAL SAC |

Client Sample ID: KLA05-SB3-02

Date Collected: 05/05/18 10:20

**Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 80.4

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | SHAKE         |     |          | 223092 | 05/14/18 14:03 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 225899 | 05/29/18 10:28 | S1M     | TAL SAC |
| Total/NA  | Prep     | SHAKE         | DL  |          | 223092 | 05/14/18 14:03 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) | DL  | 100      | 226051 | 05/29/18 16:44 | D1R     | TAL SAC |

Client Sample ID: KLA06-SB1-01

Analysis

D 2216

Date Collected: 05/01/18 14:15

D

Total/NA

| Date Received: ( | 05/09/18 09 | 9:20   |     |          |        |             |         |     |
|------------------|-------------|--------|-----|----------|--------|-------------|---------|-----|
|                  | Batch       | Batch  |     | Dilution | Batch  | Prepared    |         |     |
| Prep Type        | Туре        | Method | Run | Factor   | Number | or Analyzed | Analyst | Lab |

223303 05/15/18 13:00 TCS

Matrix: Solid

Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

TestAmerica Job ID: 320-39023-1

Client Sample ID: KLA06-SB1-01 Lab Sample ID: 320-39023-39 Date Collected: 05/01/18 14:15

**Matrix: Solid** 

Date Received: 05/09/18 09:20 Percent Solids: 73.2

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | SHAKE         | DL  |          | 223091 | 05/14/18 13:10 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) | DL  | 20       | 226044 | 05/29/18 11:30 | S1M     | TAL SAC |
| Total/NA  | Prep     | SHAKE         |     |          | 223091 | 05/14/18 13:10 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 227681 | 06/06/18 23:18 | S1M     | TAL SAC |

Client Sample ID: KLA06-SB1-02

Lab Sample ID: 320-39023-40 Date Collected: 05/01/18 14:20 **Matrix: Solid** 

Date Received: 05/09/18 09:20

Batch Batch Dilution Batch Prepared Method Number or Analyzed Analyst **Prep Type** Type Run **Factor** Total/NA Analysis D 2216 223303 05/15/18 13:00 TCS TAL SAC

Client Sample ID: KLA06-SB1-02 Lab Sample ID: 320-39023-40

Date Collected: 05/01/18 14:20 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 79.6

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | SHAKE         | DL  |          | 223091 | 05/14/18 13:10 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) | DL  | 20       | 226044 | 05/29/18 11:38 | S1M     | TAL SAC |
| Total/NA  | Prep     | SHAKE         |     |          | 223091 | 05/14/18 13:10 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 227681 | 06/06/18 23:26 | S1M     | TAL SAC |

Client Sample ID: KLA06-SB2-01 Lab Sample ID: 320-39023-41

Date Collected: 05/01/18 13:45 **Matrix: Solid** 

Date Received: 05/09/18 09:20

|           | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | D 2216 |     | 1        | 223303 | 05/15/18 13:00 | TCS     | TAL SAC |

Lab Sample ID: 320-39023-41 Client Sample ID: KLA06-SB2-01

Date Collected: 05/01/18 13:45 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 63.5

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | SHAKE         | DL2 |          | 223091 | 05/14/18 13:10 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) | DL2 | 100      | 226044 | 05/29/18 12:02 | S1M     | TAL SAC |
| Total/NA  | Prep     | SHAKE         | DL  |          | 223091 | 05/14/18 13:10 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) | DL  | 10       | 226044 | 05/29/18 12:49 | S1M     | TAL SAC |
| Total/NA  | Prep     | SHAKE         |     |          | 223091 | 05/14/18 13:10 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 227681 | 06/06/18 23:34 | S1M     | TAL SAC |

Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

Client Sample ID: KLA06-SB2-02 Lab Sample ID: 320-39023-42

Date Collected: 05/01/18 13:50

**Matrix: Solid** 

TestAmerica Job ID: 320-39023-1

Date Received: 05/09/18 09:20

|           | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | D 2216 |     | 1        | 223303 | 05/15/18 13:00 | TCS     | TAL SAC |

Client Sample ID: KLA06-SB2-02

Lab Sample ID: 320-39023-42

Date Collected: 05/01/18 13:50 Date Received: 05/09/18 09:20

**Matrix: Solid** Percent Solids: 70.3

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | SHAKE         | DL2 |          | 223091 | 05/14/18 13:10 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) | DL2 | 100      | 226044 | 05/29/18 12:25 | S1M     | TAL SAC |
| Total/NA  | Prep     | SHAKE         | DL  |          | 223091 | 05/14/18 13:10 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) | DL  | 10       | 226044 | 05/29/18 13:28 | S1M     | TAL SAC |
| Total/NA  | Prep     | SHAKE         |     |          | 223091 | 05/14/18 13:10 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 227681 | 06/07/18 00:13 | S1M     | TAL SAC |

Client Sample ID: KLA07-SD1-01

Lab Sample ID: 320-39023-43

**Matrix: Solid** 

Date Collected: 05/06/18 11:30 Date Received: 05/09/18 09:20

|           | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | D 2216 |     | 1        | 223408 | 05/15/18 16:20 | JCB     | TAL SAC |

Client Sample ID: KLA07-SD1-01

Lab Sample ID: 320-39023-43

Date Collected: 05/06/18 11:30 Date Received: 05/09/18 09:20

**Matrix: Solid** Percent Solids: 92.9

Batch Dilution Batch Batch Prepared Type Method Number or Analyzed Analyst **Prep Type** Run **Factor** Lab Total/NA Prep SHAKE 223091 05/14/18 13:10 HJA TAL SAC Total/NA Analysis 227681 06/07/18 00:52 S1M TAL SAC EPA 537 (Mod) 1

Client Sample ID: ER-01

Lab Sample ID: 320-39023-44

**Matrix: Water** 

Date Collected: 05/01/18 15:30 Date Received: 05/09/18 09:20

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 3535          |     |          | 223346 | 05/15/18 12:48 | TWL     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 224542 | 05/21/18 14:03 | JRB     | TAL SAC |

Client: Leidos, Inc.

Total/NA

Project/Site: Phase III, ANG-Kingsley

Prep

Analysis

Client Sample ID: FB-01 Lab Sample ID: 320-39023-45

Date Collected: 05/01/18 15:50 **Matrix: Water** Date Received: 05/09/18 09:20

Batch Batch Dilution Batch **Prepared** Type Method Run Factor or Analyzed Analyst **Prep Type** Number Lab Total/NA 3535 05/15/18 12:48 TWL TAL SAC

Client Sample ID: ER-02 Lab Sample ID: 320-39023-46

1

223346

224205 05/19/18 06:46 S1M

Date Collected: 05/02/18 09:40 **Matrix: Water** 

Date Received: 05/09/18 09:20

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 3535          |     |          | 223615 | 05/16/18 14:51 | AME     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 225818 | 05/28/18 09:29 | D1R     | TAL SAC |

Client Sample ID: ER-03 Lab Sample ID: 320-39023-47

Date Collected: 05/03/18 10:30 **Matrix: Water** 

Date Received: 05/08/18 09:00

EPA 537 (Mod)

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 3535          |     |          | 223901 | 05/17/18 14:42 | AME     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 225690 | 05/25/18 23:59 | JRB     | TAL SAC |

Client Sample ID: ER-04 Lab Sample ID: 320-39023-48

Date Collected: 05/04/18 11:00 Date Received: 05/09/18 09:20

**Batch Batch** Dilution **Batch Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Prep 3535 223901 05/17/18 14:42 AME TAL SAC Total/NA Analysis 225690 05/26/18 00:15 JRB TAL SAC EPA 537 (Mod) 1

Client Sample ID: MW-572-02-PRL05-01D Lab Sample ID: 320-39023-49

Date Collected: 05/06/18 10:30 **Matrix: Water** 

Date Received: 05/08/18 09:00

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 3535          |     |          | 224065 | 05/18/18 10:26 | SK      | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 225820 | 05/28/18 12:37 | S1M     | TAL SAC |
| Total/NA  | Prep     | 3535          | DL  |          | 224065 | 05/18/18 10:26 | SK      | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) | DL  | 10       | 226055 | 05/29/18 20:54 | S1M     | TAL SAC |

Client Sample ID: KLA03-SB-2-01D Lab Sample ID: 320-39023-51

Date Collected: 05/02/18 12:15 **Matrix: Solid** Date Received: 05/09/18 09:20

**Batch** Batch Dilution **Batch Prepared** Method **Prep Type** Run **Factor** Number or Analyzed Type Analyst Lab D 2216 223408 05/15/18 16:20 TAL SAC Total/NA Analysis JCB

TestAmerica Sacramento

**Matrix: Water** 

TestAmerica Job ID: 320-39023-1

TAL SAC

Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

TestAmerica Job ID: 320-39023-1

Client Sample ID: KLA03-SB-2-01D Lab Sample ID: 320-39023-51

Date Collected: 05/02/18 12:15 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 78.6

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | SHAKE         |     |          | 223091 | 05/14/18 13:10 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 227681 | 06/07/18 01:00 | S1M     | TAL SAC |

Client Sample ID: KLA06-SB-2-02D

Lab Sample ID: 320-39023-52 Date Collected: 05/01/18 13:50 **Matrix: Solid** 

Date Received: 05/09/18 09:20

| Γ |           | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|---|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| 1 | Prep Type | Type     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| = | Total/NA  | Analysis | D 2216 |     | 1        | 223303 | 05/15/18 13:00 | TCS     | TAL SAC |

Client Sample ID: KLA06-SB-2-02D Lab Sample ID: 320-39023-52

Date Collected: 05/01/18 13:50 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 67.8

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | SHAKE         | DL2 |          | 223091 | 05/14/18 13:10 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) | DL2 | 100      | 226044 | 05/29/18 12:33 | S1M     | TAL SAC |
| Total/NA  | Prep     | SHAKE         | DL  |          | 223091 | 05/14/18 13:10 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) | DL  | 10       | 226044 | 05/29/18 13:36 | S1M     | TAL SAC |
| Total/NA  | Prep     | SHAKE         |     |          | 223091 | 05/14/18 13:10 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 227681 | 06/07/18 00:21 | S1M     | TAL SAC |

Client Sample ID: KLA02-SB2-02D Lab Sample ID: 320-39023-53

Date Collected: 05/04/18 13:25 **Matrix: Solid** 

Date Received: 05/09/18 09:20

|           | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | D 2216 |     | 1        | 223408 | 05/15/18 16:20 | JCB     | TAL SAC |

Client Sample ID: KLA02-SB2-02D Lab Sample ID: 320-39023-53

Date Collected: 05/04/18 13:25 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 59.1

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | SHAKE         |     |          | 223092 | 05/14/18 14:03 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 225899 | 05/29/18 10:36 | S1M     | TAL SAC |
| Total/NA  | Prep     | SHAKE         | DL  |          | 223092 | 05/14/18 14:03 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) | DL  | 20       | 226051 | 05/29/18 17:38 | D1R     | TAL SAC |

Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

Lab Sample ID: 320-39023-55

TestAmerica Job ID: 320-39023-1

Client Sample ID: KLA02-SB1-02D

Lab Sample ID: 320-39023-54 Date Collected: 05/04/18 13:45

**Matrix: Solid** 

Date Received: 05/09/18 09:20 Batch Batch Dilution Batch

Prepared Method Run **Factor** Number or Analyzed **Prep Type** Type Analyst Lab Total/NA D 2216 223408 05/15/18 16:20 **JCB** TAL SAC Analysis

Lab Sample ID: 320-39023-54 Client Sample ID: KLA02-SB1-02D

Date Collected: 05/04/18 13:45 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 75.9

**Batch** Batch Dilution Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Prep SHAKE 223092 05/14/18 14:03 HJA TAL SAC Total/NA Analysis EPA 537 (Mod) 225899 05/29/18 10:43 S1M TAL SAC

Client Sample ID: KLA05-SB1-01D

Lab Sample ID: 320-39023-55 Date Collected: 05/05/18 09:00 **Matrix: Solid** 

Date Received: 05/09/18 09:20

Batch Dilution Batch Ratch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab TAL SAC Total/NA Analysis D 2216 223408 05/15/18 16:20 JCB

Client Sample ID: KLA05-SB1-01D

Date Collected: 05/05/18 09:00 **Matrix: Solid** Date Received: 05/09/18 09:20 Percent Solids: 82.2

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | SHAKE         | DL  |          | 223091 | 05/14/18 13:10 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) | DL  | 100      | 226044 | 05/29/18 12:41 | S1M     | TAL SAC |
| Total/NA  | Prep     | SHAKE         |     |          | 223091 | 05/14/18 13:10 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 227681 | 06/07/18 00:29 | S1M     | TAL SAC |

Client Sample ID: ER-05 Lab Sample ID: 320-39023-56

Date Collected: 05/06/18 16:00

Date Received: 05/08/18 09:00

| _         | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 3535          |     |          | 224065 | 05/18/18 10:26 | SK      | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 226055 | 05/29/18 21:18 | S1M     | TAL SAC |

Lab Sample ID: 320-39023-57 Client Sample ID: IDW-KINGSLEY-SO-LDOS01

Date Collected: 05/07/18 09:45 **Matrix: Solid** Date Received: 05/08/18 09:00

**Batch Batch** Dilution **Batch Prepared** Method Number **Prep Type** Type Run Factor or Analyzed Analyst Lab TCLP Leach 1311 415139 05/16/18 16:32 DFB1 TAL DEN **TCLP** Analysis 8260B 1 416517 05/29/18 15:26 TAW TAL DEN

**Matrix: Water** 

Client: Leidos, Inc. TestAmerica Job ID: 320-39023-1 Project/Site: Phase III, ANG-Kingsley

Client Sample ID: IDW-KINGSLEY-SO-LDOS01

Lab Sample ID: 320-39023-57

Date Collected: 05/07/18 09:45 **Matrix: Solid** Date Received: 05/08/18 09:00

|           | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| TCLP      | Leach    | 1311   |     |          | 415138 | 05/16/18 16:32 | DFB1    | TAL DEN |
| TCLP      | Prep     | 3510C  |     |          | 415600 | 05/21/18 08:55 |         | TAL DEN |
| TCLP      | Analysis | 8270D  |     | 1        | 416357 | 05/25/18 21:36 | AFH     | TAL DEN |

Client Sample ID: IDW-KINGSLEY-WA-LDOS01

Lab Sample ID: 320-39023-58 Date Collected: 05/07/18 09:30 **Matrix: Water** 

Date Received: 05/08/18 09:00

|           | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| TCLP      | Leach    | 1311   |     |          | 415294 | 05/17/18 17:42 | DFB1    | TAL DEN |
| TCLP      | Analysis | 8260B  |     | 1        | 415557 | 05/21/18 17:50 | TAW     | TAL DEN |
| TCLP      | Leach    | 1311   |     |          | 415275 | 05/17/18 12:00 | DFB1    | TAL DEN |
| TCLP      | Prep     | 3510C  |     |          | 416023 | 05/21/18 08:46 |         | TAL DEN |
| TCLP      | Analysis | 8270D  |     | 1        | 416357 | 05/25/18 20:46 | AFH     | TAL DEN |

Client Sample ID: KLA07-SD1-01D

Lab Sample ID: 320-39023-59 Date Collected: 05/06/18 11:30 **Matrix: Solid** 

Date Received: 05/08/18 09:00

|           | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | D 2216 |     | 1        | 224540 | 05/21/18 15:33 | JCB     | TAL SAC |

Client Sample ID: KLA07-SD1-01D

Lab Sample ID: 320-39023-59 Date Collected: 05/06/18 11:30 **Matrix: Solid** Date Received: 05/08/18 09:00 Percent Solids: 73.7

|           | Batch    | Batch         |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|---------------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method        | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | SHAKE         |     |          | 224254 | 05/19/18 09:21 | HJA     | TAL SAC |
| Total/NA  | Analysis | EPA 537 (Mod) |     | 1        | 226343 | 05/31/18 02:30 | JRB     | TAL SAC |

### **Laboratory References:**

TAL DEN = TestAmerica Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

### **Accreditation/Certification Summary**

Client: Leidos, Inc.

TestAmerica Job ID: 320-39023-1

Project/Site: Phase III, ANG-Kingsley

### Laboratory: TestAmerica Sacramento

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

| Authority       | Program     |        | EPA Region | Identification Number | Expiration Date |
|-----------------|-------------|--------|------------|-----------------------|-----------------|
| Oregon          | NELAP       |        | 10         | 4040                  | 01-29-19        |
|                 |             |        |            |                       |                 |
| Analysis Method | Prep Method | Matrix | Analyt     | te.                   |                 |

### **Laboratory: TestAmerica Denver**

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

| Authority              | Program       | EPA Region | Identification Number | Expiration Date |
|------------------------|---------------|------------|-----------------------|-----------------|
| A2LA                   | DoD ELAP      |            | 2907.01               | 10-31-19        |
| A2LA                   | ISO/IEC 17025 |            | 2907.01               | 10-31-19        |
| Alabama                | State Program | 4          | 40730                 | 09-30-12 *      |
| Alaska (UST)           | State Program | 10         | UST-30                | 01-08-19        |
| Arizona                | State Program | 9          | AZ0713                | 12-20-18        |
| Arkansas DEQ           | State Program | 6          | 88-0687               | 06-01-18 *      |
| California             | State Program | 9          | 2513                  | 01-18-19        |
| Connecticut            | State Program | 1          | PH-0686               | 09-30-18        |
| Florida                | NELAP         | 4          | E87667                | 06-30-18        |
| Georgia                | State Program | 4          | N/A                   | 01-08-19 *      |
| Illinois               | NELAP         | 5          | 200017                | 04-30-18 *      |
| Iowa                   | State Program | 7          | 370                   | 12-01-18        |
| Kansas                 | NELAP         | 7          | E-10166               | 05-31-18 *      |
| Louisiana              | NELAP         | 6          | 02096                 | 06-30-18        |
| Maine                  | State Program | 1          | CO0002                | 03-03-19        |
| Minnesota              | NELAP         | 5          | 8-999-405             | 12-31-18        |
| Nevada                 | State Program | 9          | CO0026                | 07-31-18        |
| New Hampshire          | NELAP         | 1          | 205310                | 04-28-19        |
| New Jersey             | NELAP         | 2          | CO004                 | 06-30-18        |
| New York               | NELAP         | 2          | 11964                 | 04-01-19        |
| North Carolina (WW/SW) | State Program | 4          | 358                   | 12-31-18        |
| North Dakota           | State Program | 8          | R-034                 | 01-08-19        |
| Oklahoma               | State Program | 6          | 8614                  | 08-31-18        |
| Oregon                 | NELAP         | 10         | 4025                  | 01-08-19        |
| Pennsylvania           | NELAP         | 3          | 68-00664              | 07-31-18        |
| South Carolina         | State Program | 4          | 72002001              | 01-08-19        |
| Texas                  | NELAP         | 6          | T104704183-17-14      | 09-30-18        |
| USDA                   | Federal       |            |                       | 03-26-21        |
| Utah                   | NELAP         | 8          | CO00026               | 07-31-18        |
| Virginia               | NELAP         | 3          | 460232                | 06-14-18        |
| Washington             | State Program | 10         | C583                  | 08-03-18        |
| West Virginia DEP      | State Program | 3          | 354                   | 12-31-18        |
| Wisconsin              | State Program | 5          | 999615430             | 08-31-18        |
| Wyoming (UST)          | A2LA          | 8          | 2907.01               | 10-31-19        |

<sup>\*</sup> Accreditation/Certification renewal pending - accreditation/certification considered valid.

### **Method Summary**

Client: Leidos, Inc.

Project/Site: Phase III, ANG-Kingsley

TestAmerica Job ID: 320-39023-1

| Method        | Method Description                               | Protocol | Laboratory |
|---------------|--------------------------------------------------|----------|------------|
| 8260B         | Volatile Organic Compounds (GC/MS)               | SW846    | TAL DEN    |
| 8270D         | Semivolatile Organic Compounds (GC/MS)           | SW846    | TAL DEN    |
| EPA 537 (Mod) | PFAS for QSM 5.1, Table B-15                     | DOD 5.1  | TAL SAC    |
| D 2216        | Percent Moisture                                 | ASTM     | TAL SAC    |
| 1311          | TCLP Extraction                                  | SW846    | TAL DEN    |
| 3510C         | Liquid-Liquid Extraction (Separatory Funnel)     | SW846    | TAL DEN    |
| 3535          | Solid-Phase Extraction (SPE)                     | SW846    | TAL SAC    |
| 5030B         | Purge and Trap                                   | SW846    | TAL DEN    |
| SHAKE         | Shake Extraction with Ultrasonic Bath Extraction | SW846    | TAL SAC    |

### **Protocol References:**

ASTM = ASTM International

DOD 5.1 = Department of Defense Quality Systems Manual V5.1

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

### **Laboratory References:**

TAL DEN = TestAmerica Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

### Sample Summary

Client: Leidos, Inc. Project/Site: Phase III, ANG-Kingsley

TestAmerica Job ID: 320-39023-1

| Lab Sample ID | Client Sample ID    | Matrix | Collected      | Received       |
|---------------|---------------------|--------|----------------|----------------|
| 320-39023-1   | MW-KLA01-01-01      | Water  | 05/06/18 14:50 | 05/08/18 09:00 |
| 320-39023-2   | MW-KLA02-01-01      | Water  | 05/06/18 12:05 | 05/09/18 09:20 |
| 320-39023-3   | MW-KLA03-01-01      | Water  | 05/06/18 15:55 | 05/08/18 09:00 |
| 320-39023-4   | MW-KLA04-01-01      | Water  | 05/06/18 14:15 | 05/08/18 09:00 |
| 320-39023-5   | MW-573-03-PRL05-01  | Water  | 05/06/18 09:15 | 05/08/18 09:00 |
| 320-39023-6   | MW-572-02-PRL05-01  | Water  | 05/06/18 10:30 | 05/08/18 09:00 |
| 320-39023-7   | MW-KLA06-01-01      | Water  | 05/06/18 13:15 | 05/08/18 09:00 |
| 320-39023-8   | KLA08-SW1-01        | Water  | 05/07/18 08:30 | 05/08/18 09:00 |
| 320-39023-9   | KLA-01-SB1-01       | Solid  | 05/02/18 14:00 | 05/09/18 09:20 |
| 320-39023-10  | KLA-01-SB1-02       | Solid  | 05/02/18 14:10 | 05/09/18 09:20 |
| 320-39023-11  | KLA-01-SB2-01       | Solid  | 05/02/18 13:15 | 05/09/18 09:20 |
| 320-39023-12  | KLA-01-SB2-02       | Solid  | 05/02/18 13:20 | 05/09/18 09:20 |
| 320-39023-13  | KLA-01-SB3-01       | Solid  | 05/02/18 14:25 | 05/09/18 09:20 |
| 320-39023-14  | KLA-01-SB3-02       | Solid  | 05/02/18 14:30 | 05/09/18 09:20 |
| 320-39023-15  | KLA02-SB1-01        | Solid  | 05/04/18 13:40 | 05/09/18 09:20 |
| 320-39023-16  | KLA02-SB1-02        | Solid  | 05/04/18 13:45 | 05/09/18 09:20 |
| 320-39023-17  | KLA02-SB2-01        | Solid  | 05/04/18 13:20 | 05/09/18 09:20 |
| 320-39023-18  | KLA02-SB2-02        | Solid  | 05/04/18 13:25 | 05/09/18 09:20 |
| 320-39023-19  | KLA02-SB3-01        | Solid  | 05/04/18 13:55 | 05/09/18 09:20 |
| 320-39023-20  | KLA02-SB3-02        | Solid  | 05/04/18 14:00 | 05/09/18 09:20 |
| 320-39023-21  | KLA03-SB1-01        | Solid  | 05/01/18 09:00 | 05/09/18 09:20 |
| 320-39023-22  | KLA03-SB1-02        | Solid  | 05/01/18 09:05 | 05/09/18 09:20 |
| 320-39023-23  | KLA03-SB2-01        | Solid  | 05/02/18 12:15 | 05/09/18 09:20 |
| 320-39023-24  | KLA03-SB2-02        | Solid  | 05/02/18 12:20 | 05/09/18 09:20 |
| 320-39023-25  | KLA03-SB3-01        | Solid  | 05/01/18 08:45 | 05/09/18 09:20 |
| 320-39023-26  | KLA03-SB3-02        | Solid  | 05/01/18 08:50 | 05/09/18 09:20 |
| 320-39023-27  | KLA04-SB1-01        | Solid  | 05/04/18 08:35 | 05/09/18 09:20 |
| 320-39023-28  | KLA04-SB1-02        | Solid  | 05/04/18 08:40 | 05/09/18 09:20 |
| 320-39023-29  | KLA04-SB2-01        | Solid  | 05/04/18 08:20 | 05/09/18 09:20 |
| 320-39023-30  | KLA04-SB2-02        | Solid  | 05/04/18 08:25 | 05/09/18 09:20 |
| 320-39023-31  | KLA04-SB3-01        | Solid  | 05/04/18 08:05 | 05/09/18 09:20 |
| 320-39023-32  | KLA04-SB3-02        | Solid  | 05/04/18 08:10 | 05/09/18 09:20 |
| 320-39023-33  | KLA05-SB1-01        | Solid  | 05/05/18 09:00 | 05/09/18 09:20 |
| 320-39023-34  | KLA05-SB1-02        | Solid  | 05/05/18 09:10 | 05/09/18 09:20 |
| 320-39023-35  | KLA05-SB2-01        | Solid  | 05/05/18 09:30 | 05/09/18 09:20 |
| 320-39023-36  | KLA05-SB2-02        | Solid  | 05/05/18 09:40 | 05/09/18 09:20 |
| 320-39023-37  | KLA05-SB3-01        | Solid  | 05/05/18 10:10 | 05/09/18 09:20 |
| 320-39023-38  | KLA05-SB3-02        | Solid  | 05/05/18 10:20 | 05/09/18 09:20 |
| 320-39023-39  | KLA06-SB1-01        | Solid  | 05/01/18 14:15 | 05/09/18 09:20 |
| 320-39023-40  | KLA06-SB1-02        | Solid  | 05/01/18 14:20 | 05/09/18 09:20 |
| 320-39023-41  | KLA06-SB2-01        | Solid  | 05/01/18 13:45 | 05/09/18 09:20 |
| 320-39023-42  | KLA06-SB2-02        | Solid  | 05/01/18 13:50 | 05/09/18 09:20 |
| 320-39023-43  | KLA07-SD1-01        | Solid  | 05/06/18 11:30 | 05/09/18 09:20 |
| 320-39023-44  | ER-01               | Water  | 05/01/18 15:30 | 05/09/18 09:20 |
| 320-39023-45  | FB-01               | Water  | 05/01/18 15:50 | 05/09/18 09:20 |
| 320-39023-46  | ER-02               | Water  | 05/02/18 09:40 | 05/09/18 09:20 |
| 320-39023-47  | ER-03               | Water  | 05/03/18 10:30 | 05/08/18 09:00 |
| 320-39023-48  | ER-04               | Water  | 05/04/18 11:00 | 05/09/18 09:20 |
| 320-39023-49  | MW-572-02-PRL05-01D | Water  | 05/06/18 10:30 | 05/08/18 09:00 |
| 320-39023-51  | KLA03-SB-2-01D      | Solid  |                | 05/09/18 09:20 |
| 320-39023-52  | KLA06-SB-2-02D      | Solid  |                | 05/09/18 09:20 |
| 320-39023-53  | KLA02-SB2-02D       | Solid  |                | 05/09/18 09:20 |
| 320-39023-54  | KLA02-SB1-02D       | Solid  | 05/04/18 13:45 |                |

### Sample Summary

Client: Leidos, Inc. Project/Site: Phase III, ANG-Kingsley

TestAmerica Job ID: 320-39023-1

| Lab Sample ID | Client Sample ID       | Matrix | Collected Received            |
|---------------|------------------------|--------|-------------------------------|
| 320-39023-55  | KLA05-SB1-01D          | Solid  | 05/05/18 09:00 05/09/18 09:20 |
| 320-39023-56  | ER-05                  | Water  | 05/06/18 16:00 05/08/18 09:00 |
| 320-39023-57  | IDW-KINGSLEY-SO-LDOS01 | Solid  | 05/07/18 09:45 05/08/18 09:00 |
| 320-39023-58  | IDW-KINGSLEY-WA-LDOS01 | Water  | 05/07/18 09:30 05/08/18 09:00 |
| 320-39023-59  | KLA07-SD1-01D          | Solid  | 05/06/18 11:30 05/08/18 09:00 |

05/16/18 08:05

hannigana

Invalid Compound ID

Perfluorononanoic acid (PFNA)

| Lab Name: TestAmerica Sacramento | Job No.: 32   | 320-39023-1                      | I               |                          |            |
|----------------------------------|---------------|----------------------------------|-----------------|--------------------------|------------|
| SDG No.:                         |               |                                  |                 |                          |            |
| Instrument ID: A8_N              | Analysis Ba   | Batch Number: 224205             |                 |                          |            |
| Lab Sample ID: CCB 320-224205/1  | Client Samp   | Sample ID:                       |                 |                          |            |
| Date Analyzed: 05/19/18 04:10    | Lab File II   | Lab File ID: 2018.05.18LLC_004.d | GC Colum        | GC Column: GeminiC18 3x1 | ID: 3 (mm) |
| COMPOUND NAME                    | RETENTION     | MANUAL INTEGRATION               | EGRATION        |                          |            |
|                                  | TIME          | REASON                           | ANALYST         | DATE                     |            |
| Perfluoroheptanoic acid (PFHpA)  | 2.33   Basel  | eline                            | mongkols        | 05/20/18 11:37           |            |
| Lab Sample ID: CCVL 320-224205/2 | Client Sample | ole ID:                          |                 |                          |            |
| Date Analyzed: 05/19/18 04:17    | Lab File II   | Lab File ID: 2018.05.18LLC_005.d | GC Colum        | GC Column: Geminic18 3x1 | ID: 3 (mm) |
| COMPOUND NAME                    | RETENTION     | MANUAL INTEGRATION               | EGRATION        |                          |            |
|                                  | TIME          | REASON                           | ANALYST         | DATE                     |            |
| Perfluorononanoic acid (PFNA)    | 3.06 Base     | eline                            | mongkols        | 05/20/18 11:39           |            |
| Lab Sample ID: MB 320-223346/1-A | Client Sample | ole ID:                          |                 |                          |            |
| Date Analyzed: 05/19/18 04:33    | Lab File ID   | Lab File ID: 2018.05.18LLC_026.d | GC Colum        | GC Column: GeminiC18 3x1 | ID: 3 (mm) |
| COMPOUND NAME                    | RETENTION     | MANUAL INTEGRATION               | EGRATION        |                          |            |
|                                  | TIME          | REASON                           | ANALYST         | DATE                     |            |
| Perfluorooctanoic acid (PFOA)    | Inve          | Invalid Compound ID              | westendor<br>fc | 05/19/18 12:07           |            |

| Lab Name: TestAmerica Sacramento | Job No    | Job No.: 320-39023-1               |           |                                     |            |
|----------------------------------|-----------|------------------------------------|-----------|-------------------------------------|------------|
| SDG No.:                         |           |                                    |           |                                     |            |
| Instrument ID: A8_N              | Analys    | Analysis Batch Number: 224461      |           |                                     |            |
| Lab Sample ID: CCB 320-224461/1  | Client    | Client Sample ID:                  |           |                                     |            |
| Date Analyzed: 05/21/18 09:54    | Lab Fi    | Lab File ID: 2018.05.21LLQCA_003.d | GC Colum  | GC Column: GeminiC18 3x1 ID: 3 (mm) | ID: 3 (mm) |
| COMPOUND NAME                    | RETENTION | MANUAL INTEGRATION                 | EGRATION  |                                     |            |
|                                  | TIME      | REASON                             | ANALYST   | DATE                                |            |
| Perfluorononanoic acid (PFNA)    |           | Invalid Compound ID                | barnettj  | 05/21/18 15:26                      |            |
| Lab Sample ID: CCVL 320-224461/2 | Client    | Client Sample ID:                  |           |                                     |            |
| Date Analyzed: 05/21/18 10:02    | Lab Fi    | Lab File ID: 2018.05.21LLQCA_004.d | GC Columi | GC Column: GeminiC18 3x1 ID: 3 (mm) | ID: 3 (mm) |
| COMPOUND NAME                    | RETENTION | MANUAL INTEGRATION                 | EGRATION  |                                     |            |
|                                  | TIME      | REASON                             | ANALYST   | DATE                                |            |

05/21/18 15:48

mongkols

3.06 Baseline

Perfluorononanoic acid (PFNA)

|                                  |                                 |                             | GC Column: Geminic18 3x1 ID: 3 (mm) |
|----------------------------------|---------------------------------|-----------------------------|-------------------------------------|
| Job No.: 320-39023-1             | Analysis Batch Number: 224542   | Client Sample ID: ER-01     | Lab File ID: 2018.05.21LLCX_005.d   |
| Lab Name: TestAmerica Sacramento | SDG No.:<br>Instrument ID: A8_N | Lab Sample ID: 320-39023-44 | Date Analyzed: 05/21/18 14:03       |

| COMPOUND NAME                | RETENTION | MANUAL INTEGRATION | EGRATION |                |
|------------------------------|-----------|--------------------|----------|----------------|
|                              | TIME      | REASON             | ANALYST  | DATE           |
| Perfluorobutanesulfonic acid | 1.77      | Baseline           | barnettj | 05/21/18 15:23 |
| PFBS)                        |           |                    | 1        |                |

| Lab Name: TestAmerica Sacramento    | Job No.:  | .: 320-39023-1                  | ı           |                   |            |
|-------------------------------------|-----------|---------------------------------|-------------|-------------------|------------|
| SDG No.:                            |           |                                 |             |                   |            |
| Instrument ID: A8_N                 | Analysis  | is Batch Number: 225690         | ı           |                   |            |
| Lab Sample ID: CCB 320-225690/1     | Client    | ient Sample ID:                 |             |                   |            |
| Date Analyzed: 05/25/18 22:25       | Lab Fi    | File ID: 2018.05.25LLAAXX_003.d | GC Column:  | n: GeminiC18 3x1  | ID: 3 (mm) |
| COMPOUND NAME                       | RETENTION | MANUAL INTE                     | INTEGRATION |                   |            |
|                                     | TIME      | REASON                          | ANALYST     | DATE              |            |
| Perfluorononanoic acid (PFNA)       |           | Invalid Compound ID             | barnettj    | 05/26/18 12:50    |            |
| Lab Sample ID: LCS 320-223901/2-A   | Client    | Sample ID:                      |             |                   |            |
| Date Analyzed: 05/25/18 22:56       | Lab Fi    | File ID: 2018.05.25LLAAXX_032.d | GC Column:  | n: GeminiC18 3x1  | ID: 3 (mm) |
| COMPOUND NAME                       | RETENTION | MANUAL INTE                     | INTEGRATION |                   |            |
|                                     | TIME      | REASON                          | ANALYST     | DATE              |            |
| Perfluorooctanesulfonic acid (PFOS) | 3.05      | Isomers                         | hannigana   | 05/26/18 11:50    |            |
| Lab Sample ID: 320-39023-48         | Client    | Sample ID: ER-04                |             |                   |            |
| Date Analyzed: 05/26/18 00:15       | Lab Fi    | File ID: 2018.05.25LLAAXX_042.d | GC Column:  | in: Geminic18 3x1 | ID: 3 (mm) |
| COMPOUND NAME                       | RETENTION | MANUAL INTE                     | INTEGRATION |                   |            |
|                                     | TIME      | REASON                          | ANALYST     | DATE              |            |
| Perfluorooctanoic acid (PFOA)       | 2.69      | Split Peak                      | barnettj    | 05/26/18 13:10    |            |
| Lab Sample ID: CCV 320-225690/24    | Client    | Sample ID:                      |             |                   |            |
| Date Analyzed: 05/26/18 01:25       | Lab Fi    | File ID: 2018.05.25LLAAXX_051.d | GC Column:  | n: GeminiC18 3x1  | ID: 3 (mm) |
| COMPOUND NAME                       | RETENTION | MANUAL INTE                     | INTEGRATION |                   |            |
|                                     | TIME      | REASON                          | ANALYST     | DATE              |            |
| Perfluorooctanesulfonic acid (PFOS) | 3.05      | Isomers                         | barnettj    | 05/31/18 10:25    |            |

| Lab Name: TestAmerica Sacramento    | Job No.:  | .: 320-39023-1                 | 1                  |                          |            |
|-------------------------------------|-----------|--------------------------------|--------------------|--------------------------|------------|
| SDG No.:                            |           |                                | ı                  |                          |            |
| Instrument ID: A8_N                 | Analysis  | is Batch Number: 225818        |                    |                          |            |
| Lab Sample ID: CCB 320-225818/1     | Client    | Sample ID:                     |                    |                          |            |
| Date Analyzed: 05/28/18 07:00       | Lab Fi    | File ID: 2018.05.27LLADX_001.d | GC Column:         | n: Geminic18 3x1         | ID: 3 (mm) |
| COMPOUND NAME                       | RETENTION | MANUAL INTE                    | INTEGRATION        |                          |            |
|                                     | TIME      | REASON                         | ANALYST            | DATE                     |            |
| Perfluorooctanoic acid (PFOA)       | 2.70      | Assign Peak                    | ruangyots          | 05/30/18 10:55           |            |
| Perfluorononanoic acid (PFNA)       |           | Invalid Compound ID            | barnettj           | 05/29/18 18:24           |            |
| Lab Sample ID: MB 320-223615/1-A    | Client    | Sample ID:                     |                    |                          |            |
| Date Analyzed: 05/28/18 07:23       | Lab File  | le ID: 2018.05.27LLADX_004.d   | GC Colum           | GC Column: GeminiC18 3x1 | ID: 3 (mm) |
| COMPOUND NAME                       | RETENTION | MANUAL INTE                    | INTEGRATION        |                          |            |
|                                     | TIME      | REASON                         | ANALYST            | DATE                     |            |
| Perfluorooctanoic acid (PFOA)       | 2.71      | Isomers                        | ruangyots<br>akuld | 05/30/18 10:59           |            |
| Lab Sample ID: 320-39023-46         | Client    | Sample ID: ER-02               |                    |                          |            |
| Date Analyzed: 05/28/18 09:29       | Lab Fi    | File ID: 2018.05.27LLADX_020.d | GC Column:         | n: Geminic18 3x1         | ID: 3 (mm) |
| COMPOUND NAME                       | RETENTION | MANUAL INTE                    | INTEGRATION        |                          |            |
|                                     | TIME      | REASON                         | ANALYST            | DATE                     |            |
| Perfluorooctanoic acid (PFOA)       | 2.71      | Isomers                        | ruangyots<br>akuld | 05/30/18 11:23           |            |
| Perfluorooctanesulfonic acid (PFOS) | 3.07      | Baseline                       | ruangyots<br>akuld | 05/30/18 11:23           |            |

Job No.: 320-39023-1 Lab Name: TestAmerica Sacramento

Analysis Batch Number: 225820 Instrument ID: A8 N

SDG No.:

Lab File ID: 2018.05.27LLADX\_043.d Client Sample ID: MW-KLA06-01-01 Date Analyzed: 05/28/18 12:29 320-39023-7 Lab Sample ID:

GC Column: GeminiC18 3x1 ID: 3 (mm)

05/30/18 14:34 05/30/18 14:34 05/30/18 14:34 DATE mongkols mongkols mongkols ANALYST MANUAL INTEGRATION REASON Split Peak Baseline Baseline 3.08 2.30 2.72 RETENTION TIME Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorohexanesulfonic acid COMPOUND NAME (PFHXS)

| SDG No.:                        |                                  |                                     |
|---------------------------------|----------------------------------|-------------------------------------|
| Instrument ID: A8 N             | Analysis Batch Number: 225873    |                                     |
| Lab Sample ID: CCB 320-225873/1 | Client Sample ID:                |                                     |
| Date Analyzed: 05/28/18 17:14   | Lab File ID: 2018.05.28LLA_003.d | GC Column: GeminiC18 3x1 ID: 3 (mm) |

| COMPOUND NAME                    | RETENTION | MANUAL INTEGRATION               | TEGRATION |                                     |           |
|----------------------------------|-----------|----------------------------------|-----------|-------------------------------------|-----------|
|                                  | TIME      | REASON                           | ANALYST   | DATE                                |           |
| Perfluorononanoic acid (PFNA)    |           | Invalid Compound ID              | mongkols  | mongkols   05/30/18 09:29           |           |
| Lab Sample ID: CCVL 320-225873/2 | Client    | Client Sample ID:                |           |                                     |           |
| Date Analyzed: 05/28/18 17:22    | Lab Fi    | Lab File ID: 2018.05.28LLA_004.d | GC Colun  | GC Column: GeminiC18 3x1 ID: 3 (mm) | D: 3 (mm) |

| COMPOUND NAME                    | RETENTION | MANUAL INTEGRATION | EGRATION |                |
|----------------------------------|-----------|--------------------|----------|----------------|
|                                  | TIME      | REASON             | ANALYST  | DATE           |
| Perfluorobutanoic acid (PFBA)    | 1.46      | Baseline           | mongkols | 05/30/18 09:30 |
| Perfluorohexanoic acid (PFHxA)   | 2.01      | Baseline           | mongkols | 05/30/18 09:30 |
| Perfluorooctanoic acid (PFOA)    | 2.70      | Baseline           | mongkols | 05/30/18 09:30 |
| Perfluorononanoic acid (PFNA)    | 3.06      | Split Peak         | mongkols | 05/30/18 09:31 |
| Perfluorooctanesulfonic acid     | 3.06      | Baseline           | mongkols | 05/30/18 09:30 |
| (PFOS)                           |           |                    |          |                |
| Perfluorododecanoic acid (PFDoA) | 4.04      | Baseline           | mongkols | 05/30/18 09:31 |

| Lab Name: TestAmerica Sacramento    | Job No.: 320-39023-1   |               | I           |                      |        |
|-------------------------------------|------------------------|---------------|-------------|----------------------|--------|
| SDG No.:                            |                        |               |             |                      |        |
| Instrument ID: A8_N                 | Analysis Batch Number: | r: 225894     |             |                      |        |
| Lab Sample ID: 320-39023-9          | Client Sample ID: KL   | KLA-01-SB1-01 |             |                      |        |
| Date Analyzed: 05/29/18 03:32       | Lab File ID: 2018.05   | .28LLB_008.d  | GC Column:  | n: GeminiC18 3x1 ID: | 3 (mm) |
| COMPOUND NAME                       | RETENTION              | MANUAL        | INTEGRATION |                      |        |
|                                     | TIME RI                | REASON        | ANALYST     | DATE                 |        |
| Perfluorononanoic acid (PFNA)       | Invalid Compound       | und ID        | mongkols    | 05/30/18 16:21       |        |
| Lab Sample ID: 320-39023-10         | Client Sample ID: KL   | KLA-01-SB1-02 |             |                      |        |
| Date Analyzed: 05/29/18 03:40       | Lab File ID: 2018.05   | .28LLB_009.d  | GC Column:  | n: GeminiC18 3x1 ID: | 3 (mm) |
| COMPOUND NAME                       | RETENTION              | MANUAL INTE   | INTEGRATION |                      |        |
|                                     | TIME RE                | REASON        | ANALYST     | DATE                 |        |
| Perfluorononanoic acid (PFNA)       | Invalid Compound       | und ID        | mongkols    | 05/30/18 16:22       |        |
| Lab Sample ID: 320-39023-12         | Client Sample ID: KL   | KLA-01-SB2-02 |             |                      |        |
| Date Analyzed: 05/29/18 03:56       | Lab File ID: 2018.05   | .28LLB_011.d  | GC Column   | n: GeminiC18 3x1 ID: | 3 (mm) |
| COMPOUND NAME                       | RETENTION              | MANUAL INTE   | INTEGRATION |                      |        |
|                                     | TIME RE                | REASON        | ANALYST     | DATE                 |        |
| Perfluorononanoic acid (PFNA)       | 3.08 Baseline          |               | mongkols    | 05/30/18 16:22       |        |
| Perfluorooctanesulfonic acid (PFOS) | 3.08 Isomers           |               | mongkols    | 05/30/18 16:22       |        |
| Lab Sample ID: 320-39023-13         | Client Sample ID: KL   | KLA-01-SB3-01 |             | ſ                    |        |
| Date Analyzed: 05/29/18 04:04       | Lab File ID: 2018.05   | .28LLB_012.d  | GC Column:  | GeminiC18 3x1 ID:    | 3 (mm) |
| COMPOUND NAME                       | RETENTION              | MANUAL INTE   | EGRATION    |                      |        |
|                                     | TIME RE                | REASON        | ANALYST     | DATE                 |        |
| Perfluorononanoic acid (PFNA)       | Invalid Compound       | und ID        | mongkols    | 05/30/18 16:23       |        |
| Lab Sample ID: 320-39023-21         | Client Sample ID: KL   | KLA03-SB1-01  |             |                      |        |
| Date Analyzed: 05/29/18 04:19       | Lab File ID: 2018.05   | .28LLB_014.d  | GC Column:  | n: GeminiC18 3x1 ID: | 3 (mm) |
| COMPOUND NAME                       | RETENTION              | MANUAL        | INTEGRATION |                      |        |
|                                     | TIME RI                | REASON        | ANALYST     | DATE                 |        |
| Perfluorooctanoic acid (PFOA)       | 2.71 Baseline          |               | mongkols    | 05/30/18 16:23       |        |

|                                  | ı        | ı                             |                                | GC Column: GeminiC18 3x1 ID: 3 (mm) |
|----------------------------------|----------|-------------------------------|--------------------------------|-------------------------------------|
| Job No.: 320-39023-1             |          | Analysis Batch Number: 225894 | Client Sample ID: KLA03-SB1-02 | Lab File ID: 2018.05.28LLB_015.d    |
| Lab Name: TestAmerica Sacramento | SDG No.: | Instrument ID: A8_N           | Lab Sample ID: 320-39023-22    | Date Analyzed: 05/29/18 04:27       |

| Lab Name: TestAmerica Sacramento | Job No    | Job No.: 320-39023-1             |                                     |
|----------------------------------|-----------|----------------------------------|-------------------------------------|
| SDG No.:                         |           |                                  |                                     |
| Instrument ID: A8_N              | Analysis  | is Batch Number: 225899          |                                     |
| Lab Sample ID: 320-39023-53      | Client    | Client Sample ID: KLA02-SB2-02D  |                                     |
| Date Analyzed: 05/29/18 10:36    | Lab Fi    | Lab File ID: 2018.05.28LLB_058.d | GC Column: GeminiC18 3x1 ID: 3 (mm) |
| COMPOUND NAME                    | RETENTION | MANUAL INTEG                     | INTEGRATION                         |
|                                  | TIME      | REASON                           | ANALYST DATE                        |
| Perfluorononanoic acid (PFNA)    | 3.08      | Split Peak                       | ruangyots 05/31/18 10:09 akuld      |
| Lab Sample ID: 320-39023-54      | Client    | Client Sample ID: KLA02-SB1-02D  |                                     |
| Date Analyzed: 05/29/18 10:43    | Lab Fi    | Lab File ID: 2018.05.28LLB_059.d | GC Column: GeminiC18 3x1 ID: 3 (mm) |
| COMPOUND NAME                    | RETENTION | MANUAL INTEG                     | INTEGRATION                         |
|                                  | TIME      | REASON                           | ANALYST DATE                        |
| Perfluorooctanoic acid (PFOA)    | 2.70      | Baseline                         | ruangyots 05/31/18 10:10 akuld      |
| Perfluorononanoic acid (PFNA)    | 3.07      | Split Peak                       | ruangyots 05/31/18 10:11 akuld      |

| Lab Name: TestAmerica Sacramento  | Job No    | No.: 320-39023-1                 | ı           |                   |            |
|-----------------------------------|-----------|----------------------------------|-------------|-------------------|------------|
| SDG No.:                          |           |                                  | ı           |                   |            |
| Instrument ID: A8_N               | Analysis  | is Batch Number: 226055          | ı           |                   |            |
| Lab Sample ID: 320-39023-5 MS DL  | Client    | sample ID: MW-573-03-PRL05-01    | MS DL       |                   |            |
| Date Analyzed: 05/29/18 19:36     | Lab Fi    | File ID: 2018.05.29LLB_012.d     | GC Column:  | nn: GeminiC18 3x1 | ID: 3 (mm) |
| COMPOUND NAME                     | RETENTION | MANUAL INTE                      | INTEGRATION |                   |            |
|                                   | TIME      | REASON                           | ANALYST     | DATE              |            |
| 13C3-PFBS                         | 1.76      | Assign Peak                      | mongkols    | 05/30/18 15:13    |            |
| Lab Sample ID: 320-39023-5 MSD DL | Client    | : Sample ID: MW-573-03-PRL05-01  | MSD DL      |                   |            |
| Date Analyzed: 05/29/18 19:44     | Lab Fi    | File ID: 2018.05.29LLB_013.d     | GC Column:  | nn: GeminiC18 3x1 | ID: 3 (mm) |
| COMPOUND NAME                     | RETENTION | MANUAL INTE                      | INTEGRATION |                   |            |
|                                   | TIME      | REASON                           | ANALYST     | DATE              |            |
| 13C3-PFBS                         | 1.77      | Assign Peak                      | mongkols    | 05/30/18 15:15    |            |
| Perfluorononanoic acid (PFNA)     | 3.09      | Baseline                         | mongkols    | 05/30/18 15:16    |            |
| Lab Sample ID: 320-39023-6 DL     | Client    | sample ID: MW-572-02-PRL05-01    | DL          |                   |            |
| Date Analyzed: 05/29/18 20:07     | Lab Fi    | File ID: 2018.05.29LLB_016.d     | GC Column:  | nn: Geminic18 3x1 | ID: 3 (mm) |
| COMPOUND NAME                     | RETENTION | MANUAL INTE                      | INTEGRATION |                   |            |
|                                   | TIME      | REASON                           | ANALYST     | DATE              |            |
| 13C3-PFBS                         | 1.77      | Baseline                         | mongkols    | 05/30/18 15:17    |            |
| Perfluorononanoic acid (PFNA)     | 3.09      | Baseline                         | mongkols    | 05/30/18 15:18    |            |
| Lab Sample ID: 320-39023-7 DL2    | Client    | : Sample ID: MW-KLA06-01-01 DL2  |             |                   |            |
| Date Analyzed: 05/29/18 20:31     | Lab Fi    | File ID: 2018.05.29LLB_019.d     | GC Column:  | nn: GeminiC18 3x1 | ID: 3 (mm) |
| COMPOUND NAME                     | RETENTION | MANUAL INTE                      | INTEGRATION |                   |            |
|                                   | TIME      | REASON                           | ANALYST     | DATE              |            |
| 13C3-PFBS                         | 1.76      | Baseline                         | mongkols    | 05/30/18 15:19    |            |
| Lab Sample ID: 320-39023-49 DL    | Client    | : Sample ID: MW-572-02-PRL05-01D | DL          |                   |            |
| Date Analyzed: 05/29/18 20:54     | Lab Fi    | File ID: 2018.05.29LLB_022.d     | GC Column:  | nn: GeminiC18 3x1 | ID: 3 (mm) |
| COMPOUND NAME                     | RETENTION | MANUAL INTE                      | INTEGRATION |                   |            |
|                                   | TIME      | REASON                           | ANALYST     | DATE              |            |
| Perfluorononanoic acid (PFNA)     | 3.08      | Baseline                         | mongkols    | 05/30/18 15:22    |            |
|                                   |           |                                  |             |                   |            |

| Lab Name: TestAmerica Sacramento | Job No.: 320-39023-1             |                                     |
|----------------------------------|----------------------------------|-------------------------------------|
| SDG No.:                         |                                  |                                     |
| Instrument ID: A8_N              | Analysis Batch Number: 226055    |                                     |
| Lab Sample ID: 320-39023-56      | Client Sample ID: ER-05          |                                     |
| Date Analyzed: 05/29/18 21:18    | Lab File ID: 2018.05.29LLB_025.d | GC Column: GeminiC18 3x1 ID: 3 (mm) |

| COMPOUND NAME                 | RETENTION | MANUAL INTEGRATION | EGRATION |                |
|-------------------------------|-----------|--------------------|----------|----------------|
|                               | TIME      | REASON             | ANALYST  | DATE           |
| Perfluorooctanoic acid (PFOA) | 2.71      | Baseline           | mongkols | 05/30/18 15:23 |

| 1                                | I        | ı                             |                                  | GC Column: GeminiC18 3x1 ID: 3 (mm) |
|----------------------------------|----------|-------------------------------|----------------------------------|-------------------------------------|
| Job No.: 320-39023-1             |          | Analysis Batch Number: 226338 | Client Sample ID:                | Lab File ID: 2018.05.30LLC_002.d    |
| Lab Name: TestAmerica Sacramento | SDG No.: | Instrument ID: A8_N           | Lab Sample ID: CCVL 320-226338/2 | Date Analyzed: 05/30/18 23:22       |

| COMPOUND NAME                  | RETENTION | MANUAL INTEGRATION | EGRATION  |                |
|--------------------------------|-----------|--------------------|-----------|----------------|
|                                | TIME      | REASON             | ANALYST   | DATE           |
| Perfluorohexanoic acid (PFHxA) | 2.01      | Baseline           | stendor   | 05/31/18 08:52 |
|                                |           |                    | fс        |                |
| Perfluorooctanoic acid (PFOA)  | 2.70      | Baseline           | westendor | 05/31/18 08:52 |
|                                |           |                    | fc        |                |

| Lab Name: TestAmerica Sacramento | Job No.: 320-39023-1             | ı                       |
|----------------------------------|----------------------------------|-------------------------|
| SDG No.:                         |                                  | ı                       |
| Instrument ID: A8_N              | Analysis Batch Number: 226343    | I                       |
| Lab Sample ID: MB 320-224254/1-A | Client Sample ID:                |                         |
| Date Analyzed: 05/31/18 02:14    | Lab File ID: 2018.05.30LLC 024.d | GC Column: GeminiC18 3x |

| Date Analyzed: 05/31/18 02:14 | Lab Fi    | File ID: 2018.05.30LLC_024.d | GC Column | GC Column: GeminiC18 3x1 ID: 3 (mm) | ID: 3 (mm) |
|-------------------------------|-----------|------------------------------|-----------|-------------------------------------|------------|
| COMPOUND NAME                 | RETENTION | MANUAL INTEGRATION           | GRATION   |                                     |            |
|                               | TIME      | REASON                       | ANALYST   | DATE                                |            |
| Perfluorooctanoic acid (PFOA) | 2.69      | 2.69 Split Peak              | barnettj  | 05/31/18 14:14                      |            |

| .: 320-39023-1 |
|----------------|
| Job No         |
| Sacramento     |
| TestAmerica    |
| Lab Name:      |

SDG No.:

Client Sample ID: KLA08-SW1-01 Analysis Batch Number: 226349 Lab Sample ID: 320-39023-8 Instrument ID: A8\_N

Date

| Date Analyzed: 05/31/18 04:51        | Lab Fi    | Lab File ID: 2018.05.30LLC_044.d | GC Colum | GC Column: GeminiC18 3x1 ID: 3 (mm) | ID: 3 (mm) |
|--------------------------------------|-----------|----------------------------------|----------|-------------------------------------|------------|
| COMPOUND NAME                        | RETENTION | MANUAL INTEGRATION               | GRATION  |                                     |            |
|                                      | TIME      | REASON                           | ANALYST  | DATE                                |            |
| Perfluorobutanesulfonic acid (PFBS)  | 1.76      | Baseline                         | barnettj | 05/31/18 16:23                      |            |
| Perfluoroheptanoic acid (PFHpA)      | 2.33      | Baseline                         | barnettj | 05/31/18 16:24                      |            |
| Perfluorohexanesulfonic acid (PFHxS) | 2.36      | Baseline                         | barnettj | 05/31/18 16:24                      |            |
| Perfluorooctanoic acid (PFOA)        | 2.70      | Baseline                         | barnettj | 05/31/18 16:24                      |            |
| Perfluorononanoic acid (PFNA)        | 3.07      | Baseline                         | barnettj | 05/31/18 16:26                      |            |
| Perfluorooctanesulfonic acid (PFOS)  | 3.07      | Baseline                         | barnettj | 05/31/18 16:25                      |            |
| ,                                    |           |                                  |          |                                     |            |

| Lab Name: TestAmerica Sacramento | Job No     | Job No.: 320-39023-1              | ı               |                                     |            |
|----------------------------------|------------|-----------------------------------|-----------------|-------------------------------------|------------|
| SDG No.:                         |            |                                   | ı               |                                     |            |
| Instrument ID: A8_N              | Analys     | Analysis Batch Number: 227354     | ı               |                                     |            |
| Lab Sample ID: IC 320-227354/2   | Client<br> | Client Sample ID:                 |                 |                                     |            |
| Date Analyzed: 06/05/18 14:28    | Lab Fi     | Lab File ID: 2018.06.05ICAL_002.d | GC Colum        | GC Column: GeminiC18 3x1 ID: 3 (mm) | ID: 3 (mm) |
| COMPOUND NAME                    | RETENTION  | MANUAL INTEGRATION                | GRATION         |                                     |            |
|                                  | TIME       | REASON                            | ANALYST         | DATE                                |            |
| Perfluorohexanoic acid (PFHxA)   | 2.03       | Assign Peak                       | westendor<br>fc | 06/05/18 17:02                      |            |
| Lab Sample ID: IC 320-227354/3   | Client     | Client Sample ID:                 |                 |                                     |            |
| Date Analyzed: 06/05/18 14:36    | Lab Fi     | Lab File ID: 2018.06.05ICAL_003.d | GC Colum        | GC Column: GeminiC18 3x1            | ID: 3 (mm) |
| COMPOUND NAME                    | RETENTION  | MANUAL INTEGRATION                | GRATION         |                                     |            |
|                                  | TIME       | REASON                            | ANALYST         | DATE                                |            |
| Perfluoropentanoic acid (PFPeA)  | 1.74       | Baseline                          | westendor       | 06/05/18 17:02                      |            |

| Job No.: 320-39023-1   |          |
|------------------------|----------|
| TestAmerica Sacramento |          |
| Lab Name:              | SDG No.: |

| Analysis Batch Number: 227634 | Client Sample ID:                |
|-------------------------------|----------------------------------|
| Instrument ID: A8_N           | Lab Sample ID: CCVL 320-227634/2 |

Lab File ID: 2018.06.06LLB\_004.d

Date Analyzed: 06/06/18 15:27

GC Column: Geminic18 3x1 ID: 3 (mm)

| COMPOUND NAME                     | RETENTION | MANUAL INTEGRATION | GGRATION |                |
|-----------------------------------|-----------|--------------------|----------|----------------|
|                                   | TIME      | REASON             | ANALYST  | DATE           |
| Perfluorooctanesulfonic acid      | 3.08      | 3.08   Baseline    | mongkols | 06/07/18 10:03 |
| PFOS)                             |           |                    | 1        |                |
| N-ethyl perfluorooctane           | 3.75      | Baseline           | mongkols | 06/07/18 10:03 |
| sulfonamidoacetic acid (NEtFOSAA) |           |                    |          |                |

| Lab Name: TestAmerica Sacramento    | oN dot    | .: 320-39023-1               | ı           |                   |            |
|-------------------------------------|-----------|------------------------------|-------------|-------------------|------------|
| SDG No.:                            |           |                              |             |                   |            |
| Instrument ID: A8_N                 | Analysis  | is Batch Number: 227681      |             |                   |            |
| Lab Sample ID: 320-39023-23         | Client    | ient Sample ID: KLA03-SB2-01 |             |                   |            |
| Date Analyzed: 06/06/18 22:47       | Lab Fi    | File ID: 2018.06.06LLC_059.d | GC Column:  | n: GeminiC18 3x1  | ID: 3 (mm) |
| COMPOUND NAME                       | RETENTION | MANUAL INTE                  | INTEGRATION |                   |            |
|                                     | TIME      | REASON                       | ANALYST     | DATE              |            |
| Perfluorononanoic acid (PFNA)       |           | Invalid Compound ID          | mongkols    | 06/07/18 14:42    |            |
| Lab Sample ID: 320-39023-24         | Client    | Sample ID: KLA03-SB2-02      |             |                   |            |
| Date Analyzed: 06/06/18 22:55       | Lab Fi    | File ID: 2018.06.06LLC_060.d | GC Column:  | ın: GeminiC18 3x1 | ID: 3 (mm) |
| COMPOUND NAME                       | RETENTION | MANUAL INTE                  | INTEGRATION |                   |            |
|                                     | TIME      | REASON                       | ANALYST     | DATE              |            |
| Perfluorooctanesulfonic acid (PFOS) | 3.07      | Isomers                      | mongkols    | 06/07/18 14:44    |            |
| Lab Sample ID: 320-39023-25         | Client    | Sample ID: KLA03-SB3-01      |             |                   |            |
| Date Analyzed: 06/06/18 23:03       | Lab Fi    | File ID: 2018.06.06LLC_061.d | GC Column:  | n: Geminic18 3x1  | ID: 3 (mm) |
| COMPOUND NAME                       | RETENTION | MANUAL INTE                  | INTEGRATION |                   |            |
|                                     | TIME      | REASON                       | ANALYST     | DATE              |            |
| Perfluorononanoic acid (PFNA)       |           | Invalid Compound ID          | mongkols    | 06/07/18 14:54    |            |
| Lab Sample ID: 320-39023-26         | Client    | Sample ID: KLA03-SB3-02      |             |                   |            |
| Date Analyzed: 06/06/18 23:10       | Lab Fi    | File ID: 2018.06.06LLC_062.d | GC Column:  | n: GeminiC18 3x1  | ID: 3 (mm) |
| COMPOUND NAME                       | RETENTION | MANUAL INTE                  | INTEGRATION |                   |            |
|                                     | TIME      | REASON                       | ANALYST     | DATE              |            |
| Perfluorooctanesulfonic acid (PFOS) | 3.08      | Isomers                      | mongkols    | 06/07/18 14:55    |            |

| Lab Name: TestAmerica Sacramento    | oN dot    | Job No.: 320-39023-1             | ı        |                                     |            |
|-------------------------------------|-----------|----------------------------------|----------|-------------------------------------|------------|
| SDG No.:                            |           |                                  | ı        |                                     |            |
| Instrument ID: A8_N                 | Analys    | nalysis Batch Number: 227681     | ı        |                                     |            |
| Lab Sample ID: 320-39023-39         | Client    | Client Sample ID: KLA06-SB1-01   |          |                                     |            |
| Date Analyzed: 06/06/18 23:18       | Lab Fi    | Lab File ID: 2018.06.06LLC_063.d | GC Colum | GC Column: GeminiC18 3x1 ID: 3 (mm) | ID: 3 (mm) |
| COMPOUND NAME                       | RETENTION | MANUAL INTEGRATION               | GRATION  |                                     |            |
|                                     | TIME      | REASON                           | ANALYST  | DATE                                |            |
| Perfluorooctanesulfonic acid (PFOS) | 3.08      | Isomers                          | mongkols | 06/07/18 14:55                      |            |
| Lab Sample ID: 320-39023-40         | Client    | Client Sample ID: KLA06-SB1-02   |          |                                     |            |
| Date Analyzed: 06/06/18 23:26       | Lab Fi    | Lab File ID: 2018.06.06LLC_064.d | GC Colum | GC Column: GeminiC18 3x1 ID: 3 (mm) | ID: 3 (mm) |
| COMPOUND NAME                       | RETENTION | MANUAL INTEGRATION               | GRATION  |                                     |            |
|                                     | TIME      | REASON                           | ANALYST  | DATE                                |            |
| Perfluorooctanesulfonic acid (PFOS) | 3.08      | Isomers                          | mongkols | 06/07/18 14:56                      |            |

# GC/MS VOA MANUAL INTEGRATION SUMMARY

| Lab Name: TestAmerica Denver    | oN dob    | 10.: 320-39023-1         |             |                |               |
|---------------------------------|-----------|--------------------------|-------------|----------------|---------------|
| SDG No.:                        |           |                          |             |                |               |
| Instrument ID: VMS_H            | Analys    | sis Batch Number: 415548 |             |                |               |
| Lab Sample ID: IC 280-415548/13 | Client    | Sample ID:               |             |                |               |
| Date Analyzed: 05/20/18 20:52   | Lab File  | le ID: H6493.D           | GC Column:  | DB-624 (75.53  | ID: 0.53 (mm) |
| COMPOUND NAME                   | RETENTION | MANUAL INTE              | INTEGRATION |                |               |
|                                 | TIME      | REASON                   | ANALYST     | DATE           |               |
| 2-Pentanone                     | 7.38      | Split Peak               | moanm       | 05/21/18 09:27 |               |
| 1,2-Dichloropropane             | 7.43      | Split Peak               | moanm       | 05/21/18 09:27 |               |
| Lab Sample ID: IC 280-415548/14 | Client    | Sample ID:               |             |                |               |
| Date Analyzed: 05/20/18 21:13   | Lab File  | le ID: H6494.D           | GC Column:  | DB-624 (75.53  | ID: 0.53 (mm) |
| COMPOUND NAME                   | RETENTION | MANUAL INTE              | INTEGRATION |                |               |
|                                 | TIME      | REASON                   | ANALYST     | DATE           |               |
| Acrolein                        | 3.33      | Split Peak               | moanm       | 05/21/18 09:45 |               |
| Acetone                         | 3.47      | Baseline                 | moanm       | 05/21/18 09:46 |               |
| Lab Sample ID: IC 280-415548/15 | Client    | Sample ID:               |             |                |               |
| Date Analyzed: 05/20/18 21:35   | Lab File  | le ID: H6495.D           | GC Column:  | DB-624 (75.53  | ID: 0.53 (mm) |
| COMPOUND NAME                   | RETENTION | HANUAL INTE              | INTEGRATION |                |               |
|                                 | TIME      | REASON                   | ANALYST     | DATE           |               |
| 1,2,4-Trichlorobenzene          | 16.02     | Split Peak               | moanm       | 05/21/18 09:31 |               |

| .: 320-39023-1     |
|--------------------|
| Job No.            |
| TestAmerica Denver |
| Lab Name:          |

|          | : 415628                   |
|----------|----------------------------|
|          | Number:                    |
|          | Batch                      |
|          | Analysis Batch Number: 415 |
|          | H                          |
|          | MS H                       |
|          | ID: VMS H                  |
| SDG No.: | Instrument                 |

|                                 | GC Column: DB-624 (75.53 ID: 0.53 (mm) |
|---------------------------------|----------------------------------------|
| Client Sample ID:               | Lab File ID: H6508.D                   |
| Lab Sample ID: IC 280-415628/10 | Date Analyzed: 05/21/18 08:40          |

| COMPOUND NAME                   | RETENTION | MANUAL INTEGRATION  | TEGRATION |                |
|---------------------------------|-----------|---------------------|-----------|----------------|
|                                 | TIME      | REASON              | ANALYST   | DATE           |
| Acetonitrile                    |           | Invalid Compound ID | moanm     | 05/21/18 11:23 |
| Ethanol                         |           | Invalid Compound ID | moanm     | 05/21/18 11:23 |
| Isopropyl alcohol               |           | Invalid Compound ID | moanm     | 05/21/18 11:23 |
| Lab Sample ID: IC 280-415628/11 | Client    | Client Sample ID:   |           |                |

| ID: 0.53 (mm)                 |  |
|-------------------------------|--|
| (75.53                        |  |
| mn: DB-624 (75.53 ID:         |  |
| GC Column:                    |  |
| File ID: H6509.D              |  |
| Lab Fil                       |  |
| Date Analyzed: 05/21/18 09:02 |  |
| Dat                           |  |

| COMPOUND NAME     | RETENTION | MANUAL INTEGRATION | EGRATION |                |
|-------------------|-----------|--------------------|----------|----------------|
|                   | TIME      | REASON             | ANALYST  | DATE           |
|                   |           |                    |          |                |
| Isopropyl alcohol | 3.62      | Assign Peak        | moanm    | 05/21/18 11:24 |

| Lab Name: TestAmerica Denver       | Job No.: 320-39023-1   |                    |                 |               |
|------------------------------------|------------------------|--------------------|-----------------|---------------|
| SDG No.:                           |                        |                    |                 |               |
| Instrument ID: SMS_Y               | Analysis Batch Number: | 412210             |                 |               |
| Lab Sample ID: ICIS 280-412210/3   | Client Sample ID:      |                    |                 |               |
| Date Analyzed: 04/21/18 12:10      | Lab File ID: Y19201.D  | GC Column:         | nn: Rxi-5Sil MS | ID: 0.25 (mm) |
| COMPOUND NAME                      | RETENTION REASON TIME  | MANUAL INTEGRATION | DATE            |               |
| Caprolactam                        | 6.28 Split Peak        | kiekeld            | 04/21/18 13:08  |               |
| Lab Sample ID: STD004 280-412210/4 | IC Client Sample ID:   |                    |                 |               |
| Date Analyzed: 04/21/18 12:38      | Lab File ID: Y19202.D  | GC Column:         | nn: Rxi-5Sil MS | ID: 0.25 (mm) |
| COMPOUND NAME                      | RETENTION              | MANUAL INTEGRATION |                 |               |
|                                    | TIME REASON            | ON ANALYST         | DATE            |               |
| Benzoic acid                       | 5.56 Wrong peak        | kiekeld            | 04/22/18 06:31  |               |
| Lab Sample ID: STD010 280-412210/5 | IC Client Sample ID:   |                    |                 |               |
| Date Analyzed: 04/21/18 13:07      | Lab File ID: Y19203.D  | GC Column:         | nn: Rxi-5Sil MS | ID: 0.25 (mm) |
| COMPOUND NAME                      | RETENTION              | MANUAL INTEGRATION |                 |               |
|                                    | TIME REASON            | ON ANALYST         | DATE            |               |
| Benzoic acid                       | 5.58 Wrong peak        | kiekeld            | 04/22/18 06:31  |               |
| Caprolactam                        | 6.25 Wrong peak        | kiekeld            | 04/22/18 06:31  |               |
| Lab Sample ID: STD020 280-412210/6 | IC Client Sample ID:   |                    |                 |               |
| Date Analyzed: 04/21/18 13:35      | Lab File ID: Y19204.D  | GC Column:         | nn: Rxi-5Sil MS | ID: 0.25 (mm) |
| COMPOUND NAME                      | RETENTION              | MANUAL INTEGRATION |                 |               |
|                                    | TIME REASON            | ON ANALYST         | DATE            |               |
| Benzoic acid                       | 5.60 Wrong peak        | kiekeld            | 04/22/18 06:31  |               |
| 4-Nitrophenol                      | 7.73 Wrong peak        | kiekeld            | 04/22/18 06:35  |               |

| Lab Name: TestAmerica Denver       | Job Nc      | No.: 320-39023-1              |             |                        |               |
|------------------------------------|-------------|-------------------------------|-------------|------------------------|---------------|
| SDG No.:                           |             |                               |             |                        |               |
| Instrument ID: SMS_Y               | Analysis    | is Batch Number: 412210       |             |                        |               |
| Lab Sample ID: STD050 280-412210/7 | IC          | Client Sample ID:             |             |                        |               |
| Date Analyzed: 04/21/18 14:04      | Lab Fi      | Lab File ID: <u>Y19205.</u> D | GC Colu     | GC Column: Rxi-5Sil MS | ID: 0.25 (mm) |
| COMPOUND NAME                      | RETENTION   | MANUAL INT                    | INTEGRATION |                        |               |
|                                    | TIME        | REASON                        | ANALYST     | DATE                   |               |
| Benzoic acid                       | 5.63        | Wrong peak                    | kiekeld     | 04/22/18 06:32         |               |
| Caprolactam                        | 6.27        | Split Peak                    | kiekeld     | 04/22/18 06:32         |               |
| 2,4-Dinitrophenol                  | 7.68        | Wrong peak                    | kiekeld     | 04/22/18 06:37         |               |
| 4-Nitrophenol                      | 7.74        | Wrong peak                    | kiekeld     | 04/22/18 06:36         |               |
| Lab Sample ID: STD120 280-412210/8 | 8 IC Client | : Sample ID:                  |             |                        |               |
| Date Analyzed: 04/21/18 14:33      | Lab File    | le ID: <u>Y19206.D</u>        | GC Column:  | nn: Rxi-5Sil MS        | ID: 0.25 (mm) |
| COMPOUND NAME                      | RETENTION   | MANUAL INT                    | INTEGRATION |                        |               |
|                                    | TIME        | REASON                        | ANALYST     | DATE                   |               |
| Benzoic acid                       | 5.68        | Split Peak                    | kiekeld     | 04/22/18 06:32         |               |
| Caprolactam                        | 6.29        | Split Peak                    | kiekeld     | 04/22/18 06:32         |               |
| Indeno[1,2,3-cd]pyrene             | 20.34       | Shouldering                   | kiekeld     | 04/22/18 06:37         |               |
| Lab Sample ID: STD160 280-412210/9 | 9 IC Client | : Sample ID:                  |             |                        |               |
| Date Analyzed: 04/21/18 15:01      | Lab File    | le ID: <u>Y19207.D</u>        | GC Column:  | nn: Rxi-5Sil MS        | ID: 0.25 (mm) |
| COMPOUND NAME                      | RETENTION   | MANUAL INT                    | INTEGRATION |                        |               |
|                                    |             |                               |             |                        |               |

Lab Name: TestAmerica Denver

Job No.: 320-39023-1

SDG No.:

Analysis Batch Number: 412210 Instrument ID: SMS Y

Client Sample ID: STD200 280-412210/10 IC Lab Sample ID:

Lab File ID: Y19208.D Date Analyzed: 04/21/18 15:30

| Date Analyzed: 04/21/18 15:30 | Lab Fi    | File ID: Y19208.D  | GC Colum | GC Column: Rxi-5Sil MS | ID: 0.25 (mm) |
|-------------------------------|-----------|--------------------|----------|------------------------|---------------|
| COMPOUND NAME                 | RETENTION | MANUAL INTEGRATION | GRATION  |                        |               |
|                               | TIME      | REASON             | ANALYST  | DATE                   |               |
| Benzoic acid                  | 5.71      | 71   Split Peak    | kiekeld  | 04/22/18 06:33         |               |
| Caprolactam                   | 6.32      | .32 Split Peak     | kiekeld  | 04/22/18 06:33         |               |
| Indeno[1,2,3-cd]pyrene        | 20.36     | 36 Shouldering     | kiekeld  | 04/22/18 06:39         |               |

Lab Name: TestAmerica Denver Job No.: 320-39023-1

SDG No.:

Instrument ID: SMS\_Y

Analysis Batch Number: 416357

Lab Sample ID: 320-39023-58

Client Sample ID: IDW-KINGSLEY-WA-LDOS01

Date Analyzed: 05/25/18 20:46

Lab File ID: Y19673.D GC Column: Rxi-5Sil MS

ID: 0.25 (mm)

| COMPOUND NAME         | RETENTION | MANUAL              | MANUAL INTEGRATION |                                          |
|-----------------------|-----------|---------------------|--------------------|------------------------------------------|
|                       | TIME      | REASON              | ANALYST            | DATE                                     |
| -<br>-<br>-<br>-      |           | ( i                 |                    | () () () () () () () () () () () () () ( |
| 2,4,5-Trichlorophenol |           | Invalid Compound ID | hoerlera           | noeilera   U5/26/18 13:21                |
| 2.4.6-Trichlorophenol |           | Tryalid Compound ID | hoeflera           | 13.21                                    |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

|                       |                                          |                       |                                          |                            | Parent Reagent      | ıt              |                  |                       |
|-----------------------|------------------------------------------|-----------------------|------------------------------------------|----------------------------|---------------------|-----------------|------------------|-----------------------|
| Reagent ID            | Exp<br>Date                              | Prep<br>Date          | Dilutant<br>Used                         | Reagent<br>Final<br>Volume | Reagent ID          | Volume<br>Added | Analyte          | Concentration         |
| LCMPFC_ALL_SU_00060   | 11/03/18                                 | 05/03/18              | Methanol, Lot Baker                      | 200 mL                     | LCd3-NMeFOSAA_00006 | 200 uL          | d3-NMeFOSAA      | 0.05 ug/mL            |
|                       |                                          | 1                     | ))))                                     | •                          | LCd5-NEtFOSAA 00006 | 200 uL          | d5-NEtFOSAA      | 0.05 ug/mL            |
|                       |                                          |                       |                                          |                            | LCM2-6:FTS_00006    | 200 uL          | _                | 0.0475 ug/mL          |
|                       |                                          |                       |                                          |                            | LCM2-8:2FTS 00008   | 200 uL          |                  | 0.0479 ug/mL          |
|                       |                                          |                       |                                          | •                          | LCM2PFHxDA 00013    | 200 uL          | _                | - 1                   |
|                       |                                          |                       |                                          | •                          | LCM2PFTeDA_00012    | 200 uL          | $\rightarrow$    | 0.05 ug/mL            |
|                       |                                          |                       |                                          | •                          | LCM3HFPO-DA 00002   |                 | -                |                       |
|                       |                                          |                       |                                          |                            | LCM4PFHPA_00012     |                 | -                |                       |
|                       |                                          |                       |                                          | •                          | LCMSPFPEA 00013     | 200 uL          | LACS-PFP6A       | Tm/&n c0.0            |
|                       |                                          |                       |                                          | •                          |                     |                 | 1304             | - 1                   |
|                       |                                          |                       |                                          | •                          |                     |                 | 1303-            |                       |
|                       |                                          |                       |                                          |                            | LCMPFDA 00018       |                 | +                |                       |
|                       |                                          |                       |                                          |                            |                     | 200 uL          | 13C2             |                       |
|                       |                                          |                       |                                          |                            |                     |                 | 1302             |                       |
|                       |                                          |                       |                                          | •                          | · O I               |                 | 1302<br>1302     |                       |
|                       |                                          |                       |                                          | •                          |                     |                 | 1302             |                       |
|                       |                                          |                       |                                          | ·                          | TOWNERS 0001        | Z00 uL          | 13C4             |                       |
|                       |                                          |                       |                                          |                            | TOMPETIAN 00017     |                 | 10C4             | Д,<br>О П             |
| TOOO KESCHOMIN-SPOT   | 10 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / | TUCH                  | MAT T TANCHOM T C+ A SMMC E OF A         | 1                          | OUOL4               | ZD 007          | 13CZ FFUIIA      | - 1                   |
| 1.C.05-NE+FOSAA 00006 | 11/08/22                                 | MELLI                 | WELLINGTON, TO ASNET FORBALL             | ,                          | (Furchased Readent) | ent)            | AS-INETEOSAS     | 50 ag/min             |
| TCM2-6:FTS 00006      |                                          | WET                   | I. Tot M262                              | -                          |                     | ent)            | M2-6:2FTS        |                       |
| .LCM2-8:2FTS 00008    | 07/05/22                                 | WEI                   | WELLINGTON, Lot M282FTS0717              |                            | 1                   | ent)            | M2-8:2FTS        | 0                     |
| . LCM2PFHxDA 00013    | 07/13/22                                 | Wellingtor            | Wellington Laboratories, Lot M2PFHxDA071 | xDA0717                    |                     | ent)            | 13C2-PFHxDA      | 50                    |
| .LCM2PFTeDA_00012     | 11/30/22                                 | _                     | Wellington Laboratories, Lot M2PFTeDA111 | eDA1117                    | 1                   | ent)            | 13C2-PFTeDA      |                       |
| .LCM3HFPO-DA_00002    | 08/11/20                                 |                       | WELLINGTON, Lot M3HFPODA0817             |                            | (Purchased Reagent) | ent)            | 13C3 HFPO-DA     | 50 ug/mL              |
| .LCM4PFHPA_00012      | 05/03/22                                 |                       | Wellington Laboratories, Lot M4PFHpA051  | [pA0517                    |                     | ent)            | 13C4-PFHpA       | 20 ug/mL              |
| .LCMSPFPEA_00013      | 07/20/22                                 |                       |                                          | eA0717                     |                     | ent)            | 13C5-PFPeA       | 50 ug/mL              |
| .LCM8FOSA_00016       | 10/11/22                                 | Wellingto             |                                          | A1017I                     | - 1                 | ent)            |                  | 50 ug/mL              |
| .LCMPFBA 00013        | 04/12/22                                 | Wellingt              |                                          | 3A0417                     | - 1                 | ent)            | 13C4 PFBA        | 20                    |
| .LCMPFBS_00006        | 05/24/22                                 | Wellingto             | Laboratories, L                          | BSURIS                     | - 1                 | ent)            |                  | - 1                   |
| LCMPFDA 00018         | 07/13/22                                 |                       | Laboratories,                            | AU'II'                     | - 1                 | ent)            |                  |                       |
| LCMPFDOA UUUIS        | 10/21/22                                 | 4                     | Laboratories, Lot                        | MPFDOAUS1/                 |                     | ent)            | 1302 PFDOA       | Jm/an 06              |
| LCMPFHXA 00019        | 10/21/22                                 | Wellington            | Laboratories, Lot                        | MPFHXAIU1/                 | (Furchased Readent) | ent)            | 13CZ FFHXA       | Jm / Bn 06 / A / m.T. |
| T.CMPFNA OOO13        | 7                                        | Weitington Mellington | Taboratories Tot                         | 140916                     | - 1                 | ent)            |                  |                       |
| TCMPFOR 00017         | 10/17/22                                 | Wellington            | Laboratories, I                          | A1017                      | - 1                 | ent.)           |                  | - 1                   |
| LCMPFOS 00025         |                                          | Wellington            | Laboratories, I                          | S1017                      |                     | ent)            |                  |                       |
| .LCMPFUda_00014       | 11/22/21                                 | Wellingto             | Jaboratories, I                          | dA1116                     |                     | ent)            |                  |                       |
| LCMPFC_ALL_SU_00063   | 11/15/18                                 | 05/15/18              | Methanol, Lot Baker                      | 200 mL                     | LCd3-NMeFOSAA_00006 | 200 uL          | d3-NMeFOSAA      | 0.05 ug/mL            |
|                       |                                          | 1                     | ))))                                     | •                          | LCd5-NEtFOSAA 00006 | 200 uL          | d5-NEtFOSAA      | 0.05 ug/mL            |
|                       |                                          |                       |                                          |                            |                     | 200 uL          | -                | 0.0475 ug/mL          |
|                       |                                          |                       |                                          | •                          | LCM2-8:2FTS 00008   |                 | M2-8:2FTS        | 0.0479 ug/mL          |
| _                     |                                          | _                     | _                                        |                            | LCM2PFHxDA_00013    | 200 uL          | uL   13C2-PFHxDA | 0.05 ug/mL            |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

SDG No.:

|                     |             |                    |                                          | 4 5          | Parent Reagent       |           |                          |               |
|---------------------|-------------|--------------------|------------------------------------------|--------------|----------------------|-----------|--------------------------|---------------|
| Reagent ID          | Exp<br>Date | Prep<br>Date       | Dilutant Final Volume                    | al<br>ame    | Reagent ID           | Volume    | Analyte                  | Concentration |
|                     |             |                    |                                          | LCM21        | LCM2PFTeDA 00012     | 200 uL    | 13C2-PFTeDA              | 0.05 ug/mL    |
|                     |             |                    |                                          | LCM3         | LCM3HFPO-DA_00002    | 200 uL    | 13C3 HFPO-DA             | 0.05 ug/mL    |
|                     |             |                    |                                          | LCM41        | LCM4PFHPA_00012      |           | 13C4-PFHpA               |               |
|                     |             |                    |                                          | LCM51        | <10 l                |           |                          | - 1           |
|                     |             |                    |                                          | LCM8FOSA     | FOSA 00016           | 200 uL    |                          | - 1           |
|                     |             |                    |                                          | LCMPFBA      |                      | 200 uL    | 13C4 PFBA                | 0.05 ug/mL    |
|                     |             |                    |                                          | LCMPFBS      |                      | 200 uL    |                          | 0.0465 ug/mL  |
|                     |             |                    |                                          | LCMPFDA      | 00018                | - 1       | - 1                      |               |
|                     |             |                    |                                          | LCMPFDOA     |                      | 200 uL    |                          |               |
|                     |             |                    |                                          | LCMPFHxA     |                      | 200 uL    |                          |               |
|                     |             |                    |                                          | LCMPFHxS     | FHxS_00013           | - 1       |                          |               |
|                     |             |                    |                                          | LCMPFNA      | FNA_00013            |           |                          |               |
|                     |             |                    |                                          | LCMPI        | LCMPFOA 00017        | 200 uL    |                          | 0.05 ug/mL    |
|                     |             |                    |                                          | LCMPI        | LCMPFOS 00025        | - 1       | 13C4 PFOS                |               |
| - 1                 | 7           |                    | -                                        | LCMPI        | - 1                  | 200 uL    | 13C2 PFUnA               | - 1           |
| LCG3-NMeFOSAA UUUU6 | 11/00/12    | WELLINGTON,        |                                          |              | - 1                  | nt)       | Q3-NMeFOSAA              | - 1           |
| TCM2-6:ETE 00006    | 11/08/22    | ALLLAW<br>TTGW     | WELLINGTON, LOC GONECEOSALLI/            |              |                      | nc)       | as-netrosaa<br>ms-6.sems | - 1           |
| TOWN OF THE COORD   | 02/1/22     | MELL               | INGION, LOC MZ6ZFISOZI/                  |              | - 1                  | 111.)     | MZ=0:ZFIS                |               |
| .LCMZ-8:ZFTS 00008  | 77/01/10    | MELL               | WELLINGTON, LOT MZ8ZFISU/I/              | [            | - 1                  | nt)       | MZ-8:ZFTS                |               |
| .LCM2PFHxDA 00013   | <u> </u>    | Wellington         | Lot                                      | 717          | - 1                  | nt)       | 13C2-PFHxDA              | - 1           |
| .LCM2PFTeDA 00012   | 11/30/22    | Wellington         | Wellington Laboratories, Lot M2PFTeDA1   | 117          | - 1                  | nt)       | 13C2-PFTeDA              | - 1           |
| .LCM3HFPO-DA 00002  | 08/17/20    | MELLI              | WELLINGTON, Lot M3HFPODA0817             |              | - 1                  | nt)       | 13C3 HFPO-DA             |               |
| .LCM4PFHPA 00012    | 05/03/22    | Wellington         | Wellington Laboratories, Lot M4PFHpA0517 | 517          | - 1                  | nt)       | 13C4-PFHpA               |               |
| .LCMSPFPEA_00013    | 07/20/22    | Wellington         | Wellington Laboratories, Lot M5PFPeAU71  | 717          | - 1                  | nt)       | 13C5-PFPeA               | - 1           |
| .LCM8FOSA 00016     | 10/11/22    | Wellington         | ЫĽ                                       | 17I          | - 1                  | nt)       |                          | - 1           |
| .LCMPFBA_00013      | 04/12/22    | Wellingtor         |                                          | 17           | - 1                  | nt)       | 13C4 PFBA                | 50 ug/mL      |
| .LCMPFBS 00006      | 05/24/22    | Wellington         | · ·                                      | 15           | - 1                  | nt)       |                          | 46.5 ug/mL    |
| .LCMPFDA_00018      | 07/13/22    | Wellingtor         | Laboratories, Lot                        | 17           | - 1                  | nt)       | - 1                      | - 1           |
| .LCMPFDOA 00013     | 05/23/22    | Wellington         | Laboratories, Lot                        | 17           | - 1                  | nt)       | - 1                      | - 1           |
| .LCMPFHxA_00019     | 10/27/22    | Wellington         | Laboratories, Lot                        | 17           | - 1                  | nt)       | - 1                      | 50 ug/mL      |
| .LCMPFHxS 00013     | 02/11/22    | Wellington         | Laboratories, I                          | 17           |                      | nt)       | 1802 PFHxS               | 47.3 ug/mL    |
| .LCMPFNA_00013      | 09/30/21    | Wellington         | Laboratories,                            | 16           | - 1                  | nt)       |                          | - 1           |
| .LCMPFOA 00017      | 10/17/22    | Wellington         | Laboratories, Lot                        | 17           | - 1                  | nt)       | - 1                      | 20            |
| .LCMPFOS 00025      | 10/17/22    | Wellington         | Lot                                      | 17           |                      | nt)       | - 1                      | - 1           |
| .LCMPFUdA 00014     | 11/22/21    | Wellington         | Wellington Laboratories, Lot MPFUdA1116  | 16           | (Purchased Reagent)  | nt)       | 13C2 PFUnA               | 50 ug/mL      |
| LCMPFC_ALL_SU_00065 | 11/15/18    | 05/15/18 Methanol, | Lot Baker                                | 200 mL LCd3- | LCd3-NMeFOSAA_00006  | 200 uL    | d3-NMeFOSAA              | 0.05 ug/mL    |
|                     |             | 1.4                | 1.4.1.O.3.9                              | 1,Cd5        | T.Cd5-NETFOSAA 00006 | 2.00 11T, | d5-NEtFOSAA              | 0.05 ng/mľ,   |
|                     |             |                    |                                          | LCM2-        | LCM2-6:FTS 00006     |           | M2-6:2FTS                |               |
|                     |             |                    |                                          | LCM2-        | LCM2-8:2FTS 00008    |           | M2-8:2FTS                |               |
|                     |             |                    |                                          | LCM2I        | LCM2PFHxDA 00013     |           | 13C2-PFHxDA              | - 1           |
|                     |             |                    |                                          | LCM2         |                      |           | 13C2-PFTeDA              |               |
|                     |             |                    |                                          | LCM3         | LCM3HFPO-DA 00002    | 200 uL    | 13C3 HFPO-DA             | 0.05 ug/mL    |
|                     |             |                    |                                          | LCM4         | LCM4PFHPA_00012      | 200 uL    | 13C4-PFHpA               |               |
|                     |             |                    |                                          | LCM5         |                      |           |                          | .05           |
|                     |             |                    |                                          | LCM8FOSA     | FOSA_00016           |           |                          |               |
|                     |             |                    |                                          | LCMPFBA      | FBA 00013            |           | 13C4 PFBA                | 0.05 ug/mL    |
|                     |             | _                  | _                                        | LCMF         | LCMPFBS_00006        | 200 uL    | 13C3-FFBS                | 0.0465 ug/mL  |

#### Page 167 of 3863

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

|                      |             |             |                                          |                 | Parent Reagent       | +               |              |               |
|----------------------|-------------|-------------|------------------------------------------|-----------------|----------------------|-----------------|--------------|---------------|
|                      | ſ           | ſ           |                                          | Reagent _       |                      |                 |              |               |
| Reagent ID           | EXP<br>Date | rep<br>Date | Used Vol                                 | Final<br>Volume | Reagent ID           | Volume<br>Added | Analyte      | Concentration |
|                      |             |             |                                          |                 | LCMPFDA 00018        | 200 uL          | 13C2 PFDA    | 0.05 ug/mL    |
|                      |             |             |                                          |                 | LCMPFDOA 00013       |                 |              |               |
|                      |             |             |                                          | IH.             |                      |                 |              |               |
|                      |             |             |                                          | <u>IH</u>       |                      |                 |              | 0.0473 ug/mL  |
|                      |             |             |                                          | <u> </u>        | LCMPFNA 00013        | 200 uL          | 13C5 PFNA    | 0.05 ug/mL    |
|                      |             |             |                                          | ļH.             | LCMPFOA_00017        | 200 uL          | 13C4 PFOA    | 0.05 ug/mL    |
|                      |             |             |                                          |                 | LCMPFOS_00025        | 200 uL          |              | 0.0478 ug/mL  |
|                      |             |             |                                          | П               |                      | 200 uL          | 13C2 PFUnA   | 0.05 ug/mL    |
| .LCd3-NMeFOSAA_00006 | 05/19/22    | WELI        |                                          |                 | (Purchased Reagent)  | ent)            | d3-NMeFOSAA  | 50 ug/mL      |
| .LCd5-NEtFOSAA_00006 | 11/08/22    | WELI        | WELLINGTON, Lot d5NEtFOSAA1117           |                 | (Purchased Reagent   | ent)            | d5-NEtFOSAA  | 20 ng/mL      |
| .LCM2-6:FTS_00006    | 02/11/22    | WE          | WELLINGTON, Lot M262FTS0217              |                 |                      | ent)            | M2-6:2FTS    | 47.5 ug/mL    |
| .LCM2-8:2FTS_00008   | 07/05/22    | WE          |                                          |                 |                      | ent)            | M2-8:2FTS    |               |
| .LCM2PFHxDA_00013    | 07/13/22    | Wellingto   | Lot                                      | 40717           |                      | ent)            | 13C2-PFHxDA  |               |
| .LCM2PFTeDA_00012    | 11/30/22    | Wellingto   | Wellington Laboratories, Lot M2PFTeDA111 | 41117           | (Purchased Reagent)  | ent)            | 13C2-PFTeDA  | 50 ug/mL      |
| .LCM3HFPO-DA_00002   | 08/11/20    | WEI         | WELLINGTON, Lot M3HFPODA0817             |                 | (Purchased Reagent)  | ent)            | 13C3 HFPO-DA | 50 ug/mL      |
| .LCM4PFHPA_00012     | 05/03/22    | Wellingto   | Wellington Laboratories, Lot M4PFHpA0517 | 0517            |                      | ent)            | 13C4-PFHpA   | 50 ug/mL      |
| .LCM5PFPEA_00013     | 07/20/22    | Wellingto   | Wellington Laboratories, Lot M5PFPeA0    | 0717            |                      | ent)            | 13C5-PFPeA   |               |
| .LCM8FOSA_00016      | 10/11/22    | Wellingto   | Wellington Laboratories, Lot M8FOSA101   | 017I            | (Purchased Reagent)  | ent)            | 13C8 FOSA    |               |
| .LCMPFBA_00013       | 04/12/22    | Wellingt    | Wellington Laboratories, Lot MPFBA041    | 417             | (Purchased Reagent   | ent)            | 13C4 PFBA    | 50 ug/mL      |
| .LCMPFBS_00006       | 05/24/22    | Wellingt    | Wellington Laboratories, Lot M3PFBS081   | 3815            | (Purchased Reagent)  | ent)            | 13C3-PFBS    | 46.5 ug/mL    |
| .LCMPFDA_00018       | 07/13/22    | Wellingt    | Lot                                      | 717             |                      | ent)            |              | 50 ug/mL      |
| .LCMPFDoA_00013      | 05/23/22    | Wellington  | Laboratories, Lo                         | 0517            | (Purchased Reagent)  | ent)            | 13C2 PFDoA   | 50 ug/mL      |
| .LCMPFHxA_00019      | 10/27/22    | Wellingt    |                                          | 1017            | (Purchased Reagent)  | ent)            | 13C2 PFHxA   | 50 ug/mL      |
| .LCMPFHxS_00013      | 02/11/22    | Wellington  | on Laboratories, Lot MPFHxS021           | 0217            | (Purchased Reagent   | ent)            | 1802 PFHxS   | 47.3 ug/mL    |
| .LCMPFNA_00013       | 09/30/21    | Wellingt    | Wellington Laboratories, Lot MPFNA0916   | 916             |                      | ent)            |              | 50 ug/mL      |
| .LCMPFOA_00017       | 10/17/22    | Wellingt    | on Laboratories, Lot MPFOAl(             | 017             |                      | ent)            |              | 50 ug/mL      |
| .LCMPFOS_00025       | 10/11/22    | Wellingt    | Wellington Laboratories, Lot MPFOS101    | 017             | (Purchased Reagent)  | ent)            | 13C4 PFOS    | 47.8 ug/mL    |
| .LCMPFUdA_00014      | 11/22/21    | Wellingt    | Wellington Laboratories, Lot MPFUdA1116  | 1116            | (Purchased Reagent)  | ent)            | 13C2 PFUnA   | 50 ug/mL      |
| LCMPFC_ALL_SU_00066  | 11/15/18    | 05/15/18    | 05/15/18   Methanol, Lot Baker   20      | 200 mL I        | LCd3-NMeFOSAA_00006  | 200 uL          | d3-NMeFOSAA  | 0.05 ug/mL    |
|                      |             |             | 14 1 C U U                               |                 | T.Cd5-NE+FOSAA 00006 | 200 11T.        | OS-NE+FOSAA  | 0.05 mg/mT.   |
|                      |             |             |                                          | ПН              | LCM2-6:FTS 00006     |                 | M2-6:2FTS    |               |
|                      |             |             |                                          |                 | LCM2-8:2FTS 00008    | 200 uL          | M2-8:2FTS    |               |
|                      |             |             |                                          |                 | LCM2PFHxDA_00013     | 200 uL          | 13C2-PFHxDA  |               |
|                      |             |             |                                          | Н               | LCM2PFTeDA 00012     | - 1             | 13C2-PFTeDA  |               |
|                      |             |             |                                          |                 | LCM3HFPO-DA 00002    |                 | 13C3 HFPO-DA |               |
|                      |             |             |                                          | -               | LCM4 FFHFA 00012     |                 | 13C4-FFHDA   | 1.05 ug/mL    |
|                      |             |             |                                          | - 11            |                      |                 | 13C3-FFF6A   |               |
|                      |             |             |                                          |                 |                      |                 | 13C8 FOSA    |               |
|                      |             |             |                                          | -1              |                      |                 | 13C4 PFBA    |               |
|                      |             |             |                                          |                 |                      |                 |              |               |
|                      |             |             |                                          | -1              | LCMPFDA_00018        |                 |              |               |
|                      |             |             |                                          | -               |                      |                 |              |               |
|                      |             |             |                                          | -1              |                      |                 |              |               |
|                      |             |             |                                          |                 |                      |                 |              |               |
|                      |             |             |                                          | -               |                      | 70 07           |              |               |
|                      |             |             |                                          | -    -          | LCMPFOA 0001/        |                 |              |               |
|                      | _           | _           | _                                        | _               | LCMPFOS_00025        | 200 uL          | 13C4 PFOS    | 0.0478 ug/mL  |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

|                      |               |                                       |                                          | ()<br>()<br>()<br>() | Parent Reagent      | t (     |              |               |
|----------------------|---------------|---------------------------------------|------------------------------------------|----------------------|---------------------|---------|--------------|---------------|
| Readent ID           | Exp<br>Date   | Prep<br>Date                          | Dilutant<br>Used                         | Final<br>Volume      | Readent ID          | Volume  | Analyte      | Concentration |
|                      |               |                                       |                                          |                      |                     | 200 uL  | 13C2 PFUnA   | 0.05 ug/mL    |
| .LCd3-NMeFOSAA 00006 | 05/19/22      | WE                                    | WELLINGTON, Lot d3NMeFOSAA0517           | 517                  | (Purchased Reagent) |         | d3-NM        | 50 ug/mL      |
| .LCd5-NEtFOSAA 00006 | 11/08/22      | ME                                    | WELLINGTON, Lot d5NEtFOSAA11             | 117                  | (Purchased Reagent) | ent)    | d5-NEtFOSAA  | 50 ug/mL      |
| .LCM2-6:FTS_00006    | 02/11/22      | ×                                     | Lot M262                                 | 7                    | (Purchased Reagent) | ent)    | M2-6:2FTS    | 47.5 ug/mL    |
| .LCM2-8:2FTS_00008   | 07/05/22      | M                                     | WELLINGTON, Lot M282FTS0717              | 7                    | (Purchased Reagent) | ent)    | M2-8:2FTS    | 47.9 ug/mL    |
| .LCM2PFHxDA_00013    | 07/13/22      | Wellingt                              | Wellington Laboratories, Lot M2PFHxDA07  | HxDA0717             | (Purchased Reagent  | ent)    | 13C2-PFHxDA  | 20 ng/mL      |
| .LCM2PFTeDA_00012    | 11/30/22      | Wellingt                              | Wellington Laboratories, Lot M2PFTeDA111 | TeDA1117             | (Purchased Reagent) | ent)    | 13C2-PFTeDA  | 50 ug/mL      |
| .LCM3HFPO-DA_00002   | 08/11/20      | [M                                    | WELLINGTON, Lot M3HFPODA081              | 17                   | (Purchased Reagent) | ent)    | 13C3 HFPO-DA | 50 ug/mL      |
| .LCM4PFHPA_00012     | 05/03/22      | Welling                               | Wellington Laboratories, Lot M4PFHpA051  | FHpA0517             | ı                   | ent)    | 13C4-PFHpA   | 50 ug/mL      |
| .LCM5PFPEA_00013     | 07/20/22      | Welling                               | Wellington Laboratories, Lot M5PFPeA07   | FPeA0717             | (Purchased Reagent  | ent)    | 13C5-PFPeA   | 50 ug/mL      |
| .LCM8FOSA_00016      | 10/11/22      | Welling                               | Wellington Laboratories, Lot M8FOSA101   | OSA1017I             | (Purchased Reagent) | ent)    | 13C8 FOSA    | 20 ng/mL      |
| .LCMPFBA_00013       | 04/12/22      | Welling                               | Wellington Laboratories, Lot MPFBA041    | FBA0417              |                     | ent)    | 13C4 PFBA    | 20 ng/mL      |
| .LCMPFBS_00006       | 05/24/22      | Welling                               | Wellington Laboratories, Lot M3PFBS081   | FBS0815              |                     | ent)    |              |               |
| .LCMPFDA_00018       | 07/13/22      | Welling                               |                                          | FDA0717              |                     | ent)    |              | 20 ng/mL      |
| .LCMPFDOA_00013      | 05/23/22      | Welling                               | Wellington Laboratories, Lot MPFDoA051   | DoA0517              |                     | ent)    |              | 20 ng/mL      |
| .LCMPFHxA_00019      | 10/27/22      | Welling                               | Wellington Laboratories, Lot MPF         | MPFHxA1017           | (Purchased Reagent) | ent)    | 13C2 PFHxA   | 50 ug/mL      |
| .LCMPFHxS_00013      |               | Welling                               |                                          | HxS0217              |                     | ent)    |              | 47.3 ug/mL    |
| .LCMPFNA_00013       | 09/30/21      | Welling                               |                                          | FNA0916              | (Purchased Reagent  | ent)    |              |               |
| .LCMPFOA_00017       | 10/11/22      | Welling                               |                                          | FOA1017              | (Purchased Reagent) | ent)    |              | 20 ng/mL      |
| .LCMPFOS 00025       | 10/11/22      | Welling                               | Wellington Laboratories, Lot MPFOS101    | FOS1017              | (Purchased Reagent) | ent)    | 13C4 PFOS    | 47.8 ug/mL    |
| .LCMPFUda 00014      | 11/22/21      | Welling                               | Lot                                      | MPFUdA1116           |                     | ent)    | 13C2 PFUnA   |               |
| I.CPFC-IS 00045      | 11/03/18      | 05/03/18                              | 12.85                                    | 200 mL               | 11                  | 200 ut  | 13C2-PFOA    | 0.05 ng/mL    |
| T,CM2PF0A 00008      | +             | Welling                               | to                                       | M2PF0A0216           | ~                   |         | +            |               |
|                      | 1 1           | , , , , , , , , , , , , , , , , , , , | con page and page                        | 0 4 7 0 7 7          |                     |         | 11000        | - 1 1         |
| LCPFC-IS 00047       | -             | 05/15/18                              | Methanol, Lot 090285                     | 200 mL               |                     | 200 uL  | 13C2-PFOA    | 0.05 ug/mL    |
| .LCM2PFOA_00008      | 02/12/21      | Welling                               | Wellington Laboratories, Lot M2P         | M2PFOA0216           | (Purchased Reagent) | ent)    | 13C2-PFOA    | 20 ng/mL      |
| LCPFC-IS 00048       | 11/15/18      | 05/15/18                              | 05/15/18  Methanol, Lot 090285           | 200 mL               | LCM2PFOA 00008      | 200 uL  | 13C2-PFOA    | 0.05 ug/mL    |
| .LCM2PFOA 00008      | 02/12/21      | Welling                               |                                          | M2PFOA0216           | (Purchased Reagent) | ent)    | 13C2-PFOA    | 50 ug/mL      |
| LCPFC-IS 00049       | 11/15/18      | 05/15/18                              | 05/15/18   Methanol, Lot 090285          | 200 mL               | LCM2PFOA 00008      | 200 uL  | 13C2-PFOA    | 0.05 ug/mL    |
| . LCM2PFOA 00008     | _             | Welling                               | cories, Lot                              |                      |                     |         | +            |               |
| I.CPFC-IS 00050      | 11/15/18      | 05/15/18                              | 05/15/18   Methanol. Lot 090285          | 200 mL               | LCM2PFOA 00008      | 200 uL  | 13C2-PFOA    | 0.05 ng/mL    |
| .LCM2PFOA 00008      | _             | Welling                               | ories, Lot                               | 9                    | (Purchased Reagent) |         | +            |               |
| T.CPFC-TS 00052      | 11/15/18      | 05/25/18                              | 05/25/18   Methanol. Tot 090285          | 200 mT.              | T.CM2PFOA 00008     | 200 uT. | 13C2-PFOA    | 0.05 ng/mT,   |
| .LCM2PFOA 00008      |               | Welling                               | ot                                       | M2PFOA0216           | (Purchased Reagent) |         | 13C2-PFOA    |               |
| LCPFC_LLO_00006      | 08/20/18      | 02/22/18                              | MeOH/H20, Lot Baker                      | 200 mL               | LCMPFC_ALL_SU_00041 | 10 mL   | 13C2-PFOA    | 2.5 ng/mL     |
| .LCMPFC_ALL_SU_00041 | 08/20/18      | 02/20/18                              | _                                        | 200 mL               | LCM2PFOA_00008      | 200 uL  | 13C2-PFOA    | 0.05 ug/mL    |
|                      |               | ,                                     |                                          |                      |                     |         |              |               |
| LCM2PFOA 00008       | $\rightarrow$ | Welling                               | ton Laboratories, Lot                    | M2PFOA0216           | (Purchased Reagent) | ,       | 13C2-PFOA    |               |
| LCPFC_LLO_00006      | 08/20/18      | 02/22/18                              | MeOH/H2O, Lot Baker<br>141039            | 200 mL               | LCMPFC_ALL_SU_00041 | 10 mL   | d3-NMeFOSAA  | 2.5 ng/mL     |
|                      |               |                                       |                                          |                      |                     |         | d5-NEtFOSAA  | 2.5 ng/mL     |
|                      |               |                                       |                                          |                      |                     |         | M2-6:2FTS    |               |
|                      |               |                                       |                                          |                      |                     |         | M2-8:2FTS    | 2.395 ng/mL   |
|                      |               |                                       |                                          |                      |                     |         | 13C2-PFHxDA  |               |
|                      |               |                                       |                                          |                      |                     |         | 13C2-PFTeDA  | 2.5 ng/mL     |
| _                    | _             |                                       | _                                        | _                    |                     |         | тас4-кғнра   | Tm/bu c·7     |

SDG No.:

Job No.: 320-39023-1 Lab Name: TestAmerica Sacramento

|                     |             |              | £                                        | 4               | Parent Reagent        | t                                       |                                           |               |
|---------------------|-------------|--------------|------------------------------------------|-----------------|-----------------------|-----------------------------------------|-------------------------------------------|---------------|
| Reagent ID          | Exp<br>Date | Prep<br>Date | Dilutant Final<br>Used Volume            | Final<br>Volume | Readent ID            | Volume                                  | Analvte                                   | Concentration |
| - 1                 | 5           | 5            |                                          |                 |                       | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | .                                         |               |
|                     |             |              |                                          |                 |                       |                                         | 13C5-FFF6A                                | Z.5 ng/mL     |
|                     |             |              |                                          |                 |                       |                                         | 13C8 FOSA                                 | 2.5 ng/mL     |
|                     |             |              |                                          |                 |                       |                                         | 13C4 PFBA                                 | 2.5 ng/mL     |
|                     |             |              |                                          |                 |                       |                                         |                                           | 2.325 ng/mL   |
|                     |             |              |                                          |                 |                       |                                         | 13C2 PFDA                                 | 2.5 ng/mL     |
|                     |             |              |                                          |                 |                       |                                         | 13C2 PFDoA                                | 2.5 ng/mL     |
|                     |             |              |                                          |                 |                       |                                         |                                           |               |
|                     |             |              |                                          |                 |                       |                                         | 1802 PFHxS                                | 2.365 ng/mL   |
|                     |             |              |                                          |                 |                       |                                         |                                           | 2.5 ng/mL     |
|                     |             |              |                                          |                 |                       |                                         | 13C4 PFOA                                 | 2.5 ng/mL     |
|                     |             |              |                                          |                 |                       |                                         |                                           | 2.39 ng/mL    |
|                     |             | -            |                                          |                 |                       |                                         | 13C2 PFUnA                                | 2.5 ng/mL     |
| LCMPFC_ALL_SU_00041 | 08/20/18    | 02/20/18     | Methanol, Lot Baker 200                  | mL              | LCd3-NMeFOSAA_00006   | 200 uL                                  | d3-NMeFOSAA                               | 0.05 ug/mL    |
|                     |             |              | H.4 H.C U.V.                             | ) i             | T.C.d.SNETFOSAA 00006 | 200 11T.                                | 45-75-75-75-75-75-75-75-75-75-75-75-75-75 | 0.05 mg/mT.   |
|                     |             |              |                                          | ΙÄ              |                       |                                         | M2-6:2FTS                                 |               |
|                     |             |              |                                          | Ä               | LCM2-8:2FTS 00008     |                                         | M2-8:2FTS                                 |               |
|                     |             |              |                                          | Ä               | LCM2PFHxDA 00013      | 200 uL                                  | 13C2-PFHxDA                               |               |
|                     |             |              |                                          | Ă               | LCM2PFTeDA 00012      | 200 uL                                  | 13C2-PFTeDA                               | 0.05 ug/mL    |
|                     |             |              |                                          | Ä               | LCM4PFHPA 00012       | 200 uL                                  | 13C4-PFHpA                                | 0.05 ug/mL    |
|                     |             |              |                                          | Ă               | LCM5PFPEA 00013       | 200 uL                                  | 13C5-PFPeA                                | 0.05 ug/mL    |
|                     |             |              |                                          | Ä               | LCM8FOSA 00016        |                                         | 13C8 FOSA                                 |               |
|                     |             |              |                                          | Ă               | LCMPFBA 00013         | 200 uL                                  | 13C4 PFBA                                 | 1             |
|                     |             |              |                                          | Ä               |                       |                                         |                                           |               |
|                     |             |              |                                          | Ă               | LCMPFDA 00018         |                                         | 13C2 PFDA                                 | 0.05 ug/mL    |
|                     |             |              |                                          | Ă               | LCMPFDOA 00013        | 200 uL                                  | 13C2 PFDoA                                | 0.05 ug/mL    |
|                     |             |              |                                          | Ă               | LCMPFHxA_00019        | 200 uL                                  | 13C2 PFHxA                                | 0.05 ug/mL    |
|                     |             |              |                                          | Ă               | LCMPFHxS_00013        | 200 uL                                  | 1802 PFHxS                                | 0.0473 ug/mL  |
|                     |             |              |                                          | Ä               | LCMPFNA_00013         | 200 uL                                  | 13C5 PFNA                                 | 0.05 ug/mL    |
|                     |             |              |                                          | Ä               | LCMPFOA_00017         | 200 uL                                  | 13C4 PFOA                                 | 0.05 ug/mL    |
|                     |             |              |                                          | Ă               | LCMPFOS_00025         | 700 nr                                  | 13C4 PFOS                                 | 0.0478 ug/mL  |
|                     |             |              |                                          | Ä               | LCMPFUdA_00014        | 200 uL                                  | 13C2 PFUnA                                | 0.05 ug/mL    |
| LCd3-NMeFOSAA_00006 | 05/19/22    | WE           |                                          |                 | (Purchased Reagent)   | ent)                                    | d3-NMeFOSAA                               | - 1           |
| LCd5-NEtFOSAA 00006 | 11/08/22    | WE           | WELLINGTON, Lot d5NEtFOSAA1117           |                 |                       | ent)                                    | d5-NEtFOSAA                               |               |
| LCM2-6:FTS 00006    | 02/11/22    | S            | WELLINGTON, Lot M262FTS0217              |                 | - 1                   | ent)                                    | M2-6:2FTS                                 | 47.5 ug/mL    |
| LCM2-8:2FTS 00008   | 07/05/22    |              |                                          | !               |                       | ent)                                    | M2-8:2FTS                                 |               |
| LCM2PFHxDA_00013    | 07/13/22    | $\dashv$     |                                          | 0717            | - 1                   | ent)                                    | 13C2-PFHxDA                               |               |
| LCM2PFTeDA_00012    | 11/30/22    | Wellingt     | Wellington Laboratories, Lot M2PFTeDA111 | 1117            |                       | ent)                                    | 13C2-PFTeDA                               |               |
| LCM4PFHPA_00012     | 05/03/22    | Welling.     | Wellington Laboratories, Lot M4PFHpA051  | 1517            | (Purchased Reagent)   | ent)                                    | 13C4-PFHpA                                | 50 ug/mL      |
| LCM5PFPEA_00013     | 07/20/22    | Welling.     | Wellington Laboratories, Lot M5PFPeA071  | 1717            | (Purchased Reagent)   | ent)                                    | 13C5-PFPeA                                | 50 ug/mL      |
| LCM8FOSA_00016      | 10/11/22    | Welling      | Wellington Laboratories, Lot M8FOSA1017I | 17I             | (Purchased Reagent)   | ent)                                    | 13C8 FOSA                                 | 50 ug/mL      |
| LCMPFBA_00013       | 04/12/22    | Wellin       | Wellington Laboratories, Lot MPFBA041    | 117             | (Purchased Reagent)   | ent)                                    | 13C4 PFBA                                 | 50 ug/mL      |
| LCMPFBS 00006       | 05/24/22    | Welling      | Wellington Laboratories, Lot M3PFBS0815  | 815             | (Purchased Reagent)   | ent)                                    | 13C3-PFBS                                 | 46.5 ug/mL    |
| LCMPFDA 00018       | 07/13/22    | Wellin       | Wellington Laboratories, Lot MPFDA071    | 17              | (Purchased Reagent)   | ent)                                    | 13C2 PFDA                                 | 50 ug/mL      |
| LCMPFDoA 00013      | 05/23/22    | Welling      | Wellington Laboratories, Lot MPFDoA051   | 517             | (Purchased Reagent)   | ent)                                    | 13C2 PFDoA                                | 50 ug/mL      |
| LCMPFHxA_00019      | 10/27/22    | Welling      | Wellington Laboratories, Lot MPFHxA1017  | 017             | (Purchased Reagent)   | ent)                                    | 13C2 PFHxA                                | 20 ng/mL      |
| LCMPFHxS_00013      | 02/11/22    | Welling      | Wellington Laboratories, Lot MPFHxS0217  | 217             |                       | ent)                                    | 1802 PFHxS                                |               |
| LCMPFNA_00013       | 09/30/21    | Wellin       | Wellington Laboratories, Lot MPFNA0916   | 916             | (Purchased Reagent)   | ent)                                    | 13C5 PFNA                                 | 20 ng/mL      |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

|                      |          |               |                                         |                  | Parent Reagent      |                          |         |                       |
|----------------------|----------|---------------|-----------------------------------------|------------------|---------------------|--------------------------|---------|-----------------------|
|                      | E X      | Prep          | Dilutant                                | Keagent<br>Final |                     | Volume                   |         |                       |
| Reagent ID           | Date     | Date          | Used                                    | Volume           | Reagent ID          | Added                    | Analyte | Concentration         |
| LCMPFOA_00017        | 10/17/22 | Wellingt      | Wellington Laboratories, Lot MPI        | MPFOA1017        | (Purchased Reagent) | nt) 13C4 PFOA            |         | 50 ug/mL              |
| LCMPFOS_00025        | 10/11/22 | Wellingt      | Wellington Laboratories, Lot MPI        | Lot MPFOS1017    | (Purchased Reagent) | 1304                     |         | 47.8 ug/mL            |
| LCMPFUdA 00014       | 11/22/21 | Wellingt      | Wellington Laboratories, Lot MPFUdA1116 | FUdA1116         | (Purchased Reagent) | nt)   13C2 PFUnA         | A       | 20 ng/mL              |
| LCPFC_LL0_00007      | 12/01/18 | 06/05/18      | MeOH/H2O, Lot Baker<br>141039           | 200 mL           | LCMPFC_ALL_SU_00075 | 10 mL 13C2-PFOA          |         | 2.5 ng/mL             |
| .LCMPFC_ALL_SU_00075 | 12/05/18 | 06/05/18      | Methanol, Lot Baker<br>141039           | 200 mL           | LCM2PFOA_00008      | 200 uL 13C2-PFOA         |         | 0.05 ug/mL            |
| LCM2PFOA 00008       | 02/12/21 | Wellingt      | oratories, Lot                          | M2PFOA0216       | (Purchased Readent) | nt) 13C2-PFOA            |         | 50 ug/mL              |
| LCPFC_LLO_00007      | 1        | 06/05/18      | ker                                     | 200 mL           | LCMPFC              | 10 mL                    | AA      | 1                     |
|                      |          |               |                                         |                  |                     | d5-NEtFOSAA              | AA      | 2.5 ng/mL             |
|                      |          |               |                                         |                  |                     | M2-6:2FTS                |         | 2.375 ng/mL           |
|                      |          |               |                                         |                  |                     | M2-8:2FTS                |         |                       |
|                      |          |               |                                         |                  |                     | 13C2-PFHxDA              | DA      | 2.5 ng/mL             |
|                      |          |               |                                         |                  |                     | 1304 PETE                | LA<br>k | 2.5 ng/mL             |
|                      |          |               |                                         |                  |                     | 13C4-FFHPA<br>13C5-PFPAA | 'A      | 2.5 ng/mL             |
|                      |          |               |                                         |                  |                     | 13C8 FOSA                | 7.7     | 2.5 ng/mL             |
|                      |          |               |                                         |                  |                     | 13C4 PFBA                |         | 2.5 ng/mL             |
|                      |          |               |                                         |                  |                     | 13C3-PFBS                |         | 2.325 ng/mL           |
|                      |          |               |                                         |                  |                     | 13C2 PFDA                |         | 2.5 ng/mL             |
|                      |          |               |                                         |                  |                     | 13C2 PFDOA               | A       | 2.5 ng/mL             |
|                      |          |               |                                         |                  |                     | 13C2 PFHxA               | A       | 2.5 ng/mL             |
|                      |          |               |                                         |                  |                     | 1802 PFHxS               | Ø       | 2.365 ng/mL           |
|                      |          |               |                                         |                  |                     |                          |         | 2.5 ng/mL             |
|                      |          |               |                                         |                  |                     |                          |         |                       |
|                      |          |               |                                         |                  |                     | 13C4 PFOS                |         | 2.39 ng/mL            |
|                      | $\dashv$ | $\rightarrow$ |                                         |                  | $\rightarrow$       |                          | А       | 2.5 ng/mL             |
| .LCMPFC_ALL_SU_00075 | 12/05/18 | 06/05/18      | Methanol, Lot Baker<br>141039           | 200 mL           | LCd3-NMeFOSAA_00008 | 200 uL d3-NMeFosaa       | AA      | 0.05 ug/mL            |
|                      |          |               |                                         |                  | LCd5-NEtFOSAA_00008 | 200 uL d5-NEtFOSAA       | AA      | 0.05 ug/mL            |
|                      |          |               |                                         |                  | LCM2-6:FTS_00008    | 200 uL M2-6:2FTS         |         | 0.0475 ug/mL          |
|                      |          |               |                                         |                  | LCM2-8:2FTS 00010   | ηĪ                       |         | 0.0479 ug/mL          |
|                      |          |               |                                         |                  | LCM2PFHxDA 00016    | 'n.                      | DA      |                       |
|                      |          |               |                                         |                  | LCMZPF"TeDA 00014   | 200 ul 13CZ-PFTeDA       | DA<br>K | 0.05 ug/mL            |
|                      |          |               |                                         |                  | LCMSPFPEA 00015     | 3 13                     |         |                       |
|                      |          |               |                                         |                  | LCM8FOSA 00019      | ηŢ                       |         |                       |
|                      |          |               |                                         |                  | LCMPFBA 00015       | ηŢ                       |         | 0.05 ug/mL            |
|                      |          |               |                                         |                  | LCMPFBS 00008       | 200 uL 13C3-PFBS         |         | 0.0465 ug/mL          |
|                      |          |               |                                         |                  | LCMPFDA_00020       | 200 uL 13C2 PFDA         |         | 0.05 ug/mL            |
|                      |          |               |                                         |                  |                     | ηT                       | A       | 0.05 ug/mL            |
|                      |          |               |                                         |                  |                     | 200 uL 13C2 PFHxA        | A       | 0.05 ug/mL            |
|                      |          |               |                                         |                  |                     | uL 1802                  | S       | 0.0473 ug/mL          |
|                      |          |               |                                         |                  |                     | uL 13C5                  |         | 0.05 ug/mL            |
|                      |          |               |                                         |                  | LCMPFOA UUUIS       | uL 1304                  |         |                       |
|                      |          |               |                                         |                  | LCMPETIAN 00017     | 200 ul 1304 PEUS         | K       | 0.04/8 ug/mL          |
|                      |          |               |                                         |                  | TOTAL CONTRACT      | 4001 HD                  | 4       | )<br>;<br>;<br>;<br>; |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

|                     |          |            |                                         |                 | Parent Reagent      | т      |                                    |               |
|---------------------|----------|------------|-----------------------------------------|-----------------|---------------------|--------|------------------------------------|---------------|
|                     | dхв      | Prep       | Dilutant                                | Final           | 1                   | Volume |                                    |               |
| Reagent ID          | Date     | Date       | Used                                    | Volume          | Reagent ID          | Added  | Analyte                            | Concentration |
| LCd3-NMeFOSAA_00008 | 11/08/22 | MEL        | WELLINGTON, Lot d3NMeFOSAA1             | 1117            | (Purchased Reagent) | ent)   | d3-NMeFOSAA                        | 50 ug/mL      |
| LCd5-NEtFOSAA_00008 | 11/08/22 | WI         | WELLINGTON, Lot d5NEtFOSAA1117          | 1117            |                     | ent)   | d5-NEtFOSAA                        | 50 ug/mL      |
| LCM2-6:FTS_00008    | 02/16/23 |            | WELLINGTON, Lot M262FTS0218             | 18              |                     | ent)   | M2-6:2FTS                          | 47.5 ug/mL    |
| LCM2-8:2FTS_00010   | 01/24/23 |            | WELLINGTON, Lot M282FTS0118             | 18              | (Purchased Reagent) | ent)   | M2-8:2FTS                          | 47.9 ug/mL    |
| LCM2PFHxDA_00016    | 07/13/22 |            | Wellington Laboratories, Lot M2PFHxDA0  | FHxDA0717       | (Purchased Reagent) | ent)   | 13C2-PFHxDA                        | 20 ng/mL      |
| LCM2PFTeDA 00014    | 11/30/22 | -          | Wellington Laboratories, Lot M2PFTeDA1  | FTeDA1117       | (Purchased Reagent  | ent)   | 13C2-PFTeDA                        | 50 ug/mL      |
| LCM4PFHPA 00014     | 05/03/22 |            | Wellington Laboratories, Lot M4PFHpA051 | PFHpA0517       | (Purchased Reagent) | ent)   | 13C4-PFHpA                         | 50 ug/mL      |
| LCM5PFPEA 00015     | 07/20/22 |            | Wellington Laboratories, Lot M5P        | Lot M5PFPeA0717 | (Purchased Reagent) | ent)   | 13C5-PFPeA                         | 50 ug/mL      |
| LCM8FOSA_00019      | 10/11/22 |            | Wellington Laboratories, Lot M8F        | Lot M8FOSA1017I | (Purchased Reagent) | ent)   | 13C8 FOSA                          | 50 ug/mL      |
| LCMPFBA_00015       | 02/16/23 |            | Wellington Laboratories, Lot MP         | Lot MPFBA0218   | (Purchased Reagent  | ent)   | 13C4 PFBA                          | 50 ug/mL      |
| LCMPFBS_00008       | 02/15/23 |            |                                         | Lot M3PFBS0218  |                     | ent)   | 13C3-PFBS                          | 46.5 ug/mL    |
| LCMPFDA_00020       | 02/16/23 |            | I J                                     | PEDA0218        |                     | ent)   |                                    | 20 ng/mL      |
| LCMPFDoA_00015      | 02/16/23 |            | Laboratories,                           | Lot MPFDoA0218  |                     | ent)   |                                    |               |
| LCMPFHxA_00022      | 10/27/22 | Wellington | Laboratories,                           | Lot MPFHxA1017  | (Purchased Reagent) | ent)   | 13C2 PFHxA                         | 50 ug/mL      |
| LCMPFHxS_00015      | 03/22/23 |            | Laboratories,                           | Lot MPFHxS0318  | (Purchased Reagent) | ent)   |                                    | 47.3 ug/mL    |
| LCMPFNA_00015       | 12/14/22 |            |                                         | Lot MPFNA1217   |                     | ent)   |                                    | 50 ug/mL      |
| LCMPFOA_00019       | 05/04/23 |            |                                         | Lot MPFOA0418   |                     | ent)   |                                    | 50 ug/mL      |
| LCMPFOS_00027       | 02/15/23 |            | Wellington Laboratories, Lot MP         | Lot MPFOS0218   | (Purchased Reagent) | ent)   | 13C4 PFOS                          | 47.8 ug/mL    |
| LCMPFUdA_00017      | 11/22/21 | Wellingt   | Wellington Laboratories, Lot MPI        | Lot MPFUdA1116  | (Purchased Reagent  | ent)   | 13C2 PFUnA                         | 50 ug/mL      |
| LCPFC LL1 00005     | 08/20/18 | ь          | 02/22/18 MeOH/H2O, Lot 90285            | 200 mL          | LCMPFC ALL SU 00041 | 10 mL  | d3-NMeFOSAA                        | 2.5 ng/mL     |
| 1                   |          |            |                                         |                 | <br>                |        | _                                  |               |
|                     |          |            |                                         |                 |                     |        | M2-6:2FTS                          |               |
|                     |          |            |                                         |                 |                     |        | M2-8:2FTS                          | 2.395 ng/mL   |
|                     |          |            |                                         |                 |                     |        | 13C2-PFHxDA                        | 1             |
|                     |          |            |                                         |                 |                     |        | 13C2-PFOA                          | 2.5 ng/mL     |
|                     |          |            |                                         |                 |                     |        | 13C2-PFTeDA                        | 2.5 ng/mL     |
|                     |          |            |                                         |                 |                     |        | 13C4-PFHpA                         | 2.5 ng/mL     |
|                     |          |            |                                         |                 |                     |        | 13C5-PFPeA                         |               |
|                     |          |            |                                         |                 |                     |        | 13C8 FOSA                          | 2.5 ng/mL     |
|                     |          |            |                                         |                 |                     |        | 13C4 PFBA                          |               |
|                     |          |            |                                         |                 |                     |        | 13C3-PFBS                          | 2.325 ng/mL   |
|                     |          |            |                                         |                 |                     |        | 13C2 PFDA                          | 2.5 ng/mL     |
|                     |          |            |                                         |                 |                     |        | 13C2 PFDoA                         | 2.5 ng/mL     |
|                     |          |            |                                         |                 |                     |        | 13C2 PFHxA                         | 2.5 ng/mL     |
|                     |          |            |                                         |                 |                     |        |                                    |               |
|                     |          |            |                                         |                 |                     |        |                                    |               |
|                     |          |            |                                         |                 |                     |        | 13C4 PFOA                          | 2.5 ng/mL     |
|                     |          |            |                                         |                 |                     |        | 13C4 PFOS                          | 2.39 ng/mL    |
|                     |          |            |                                         |                 |                     |        | 13C2 PFUnA                         | 2.5 ng/mL     |
|                     |          |            |                                         | H               | LCPFCSP_00136       | 50 uL  | _                                  | 0.02335 ng/mL |
|                     |          |            |                                         |                 |                     |        | 1H,1H,2H,2H-perfluorohexane        |               |
|                     |          |            |                                         |                 |                     |        | Sodium                             | T#/ 25 1.000  |
|                     |          |            |                                         |                 |                     |        | 1H,1H,2H,2H-perfluorooctane        | Jiii / 670.0  |
|                     |          |            |                                         |                 |                     |        | sulfonate (6:2)                    | 1             |
|                     |          |            |                                         |                 |                     |        | Sodium 1H,1H,2H,2H-perfluorodecane | 0.02395 ng/mL |
|                     | _        | _          |                                         | _               |                     |        | surronare (o:z)                    | _             |

Lab Name: TestAmerica Sacramento Job No.: 320-39023-1

|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reagent         | Farent Keagent      | nt              | ī                                                 |               |
|----------------------------------------|-------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|-----------------|---------------------------------------------------|---------------|
| Reagent ID                             | Exp<br>Date | Prep<br>Date | Dilutant<br>Used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Final<br>Volume | Reagent ID          | Volume<br>Added | Analyte                                           | Concentration |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |                 | N-ethyl perfluorooctane<br>sulfonamidoacetic acid | 0.025 ng/mL   |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |                 | N-methyl perfluorooctane                          | 0.025 ng/mL   |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |                 | Perfluorobutyric acid                             | 0.025 ng/mL   |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |                 | Perfluorobutanesulfonic acid                      |               |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |                 | (FFBS) Perfluorodecanoic acid                     | 0.025 ng/mL   |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |                 |                                                   |               |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |                 | Perfluorodecane Sulfonic acid                     | 0.0241 ng/mL  |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |                 | Perfluoroheptanoic acid                           | 0.025 ng/mL   |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |                 | (Fringe) Perfluoroheptanesulfonic acid            | 0.0238 ng/mL  |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |                 |                                                   |               |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |                 | Perfluorohexanesulfonic acid (PEHxS)              | 0.02275 ng/mL |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |                 | Perfluorononanoic acid (PFNA)                     | 0.025 ng/mL   |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |                 | fonic                                             |               |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |                 | $\sim$                                            |               |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |                 | Perfluorooctanesultonic acid (PFOS)               | 0.0232 ng/mL  |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |                 | Perfluorooctane Sulfonamide                       | 0.025 ng/mL   |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |                 | Perfluoropentanoic acid                           | 0.025 ng/mL   |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |                 | Perfluoropentanesulfonic acid                     | 0.02345 ng/mL |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |                 | Perfluorotetradecanoic acid                       | 0.025 ng/mL   |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |                 | Perfluorotridecanoic acid                         | 0.025 ng/mL   |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     | - 1             | $\rightarrow$                                     |               |
| .LCMPFC_ALL_SU_00041                   | 08/20/18    | 02/20/18     | Methanol, Lot Baker<br>141039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200 mL          | LCd3-NMeFOSAA_00006 | 200 uL          | d3-NMeFOSAA                                       | 0.05 ug/mL    |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | LCd5-NEtFOSAA_00006 | 200 uL          | _                                                 | 0.05 ug/mL    |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | LCM2-6:FTS_00006    | 200 uL          | $\overline{}$                                     | l I           |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | LCM2-8:2FTS 00008   |                 | $\rightarrow$                                     |               |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | LCM2PFHxDA 00013    |                 | $\rightarrow$                                     |               |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | LCM2PFOA 00008      | 200 uL          | 13C2-PFOA                                         | 0.05 ug/mL    |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | ICMAPEHPA 00012     | 200 an          |                                                   | 1.00 ug/ml    |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | LCMSPFPEA 00013     |                 | -                                                 |               |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | LCM8FOSA 00016      |                 | _                                                 |               |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | LCMPFBA 00013       | 200 uL          | _                                                 |               |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | LCMPFBS 00006       |                 | 13C3-                                             |               |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | LCMPFDA_00018       | 200 uL          | _                                                 | 0.05 ug/mL    |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |                 | 1302                                              |               |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |                 | 1302                                              |               |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | LCMPFHxS 00013      |                 | 1802                                              |               |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |                 | 1305                                              |               |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | LCMPFOA 0001/       | 200 uL          | _                                                 |               |
|                                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | TCMPFIIAN 00020     | 200 al          | 1 0 C T                                           | 0 05 mI       |
| ACCOUNTY AND A SOURCE SECOND           | 05/19/22    | MFT          | WETTINGTON TO TO ASMMERITATIONS AND TO THE MENTINGTON THE MENTINGTON THE MENTINGTON TO THE MENTINGTON THE MENTI | 1517            |                     |                 | 1001<br>731<br>NIV                                | 7 / mI        |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | )           | 1            | THE FOR COMMEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -               |                     | Citc,           |                                                   |               |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

| Reagent ID (Purchased  |     |                          | Readent         | Parent Reagent      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------|-----------------|---------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 00006 11/08/22 WELLINGTON, Lot ASSETSOATI (Purchased 05 02/17/22 WELLINGTON, Lot M28/ETSOATI (Purchased 13 07/05/22 WELLINGTON, Lot M28/ETSOATI (Purchased 17/05/22 Wellington Laboratories, Lot M28/ETSOATI (Purchased 17/07/22 Wellington Laboratories, Lot M28/ETSOATI (Purchased 17/07/22 Wellington Laboratories, Lot M28/ETSOATI (Purchased 17/07/22 Wellington Laboratories, Lot M28/ETSOATI (Purchased 17/17/22 Wellington Laboratories, Lot M28/ETSOATI (Purchased 10/17/22 Wellington Laboratories, Lot M28/ETSOATI (Purchased 11/17/22 Wellington Laboratories, Lot M28/ETSOATI (Purchased 11/17/22) (Purchased 11/17/2 |     |                          | Final<br>Volume |                     | Volume<br>Added | Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Concentration  |
| 17.722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00  | T > + AENTO+ T           |                 | (4)                 | -               | 1 K K C C C E + E E I K K C C C E + E E I K K C C C E + E E I K C C C E + E E I K C C C E + E E I K C C C E + E E I K C C C E + E E I K C C C E + E E I K C C C E + E E I K C C C E + E E I K C C C E + E E I K C C C E + E E I K C C C E + E E I K C C C E + E E I K C C C E + E E I K C C C E + E E I K C C C E + E E I K C C C E + E E I K C C C E + E E I K C C C E + E E I K C C C E + E E I K C C C E + E E I K C C C E + E E I K C C C E + E E I K C C C E + E E I K C C C E + E E I K C C C E + E E I K C C C E + E E I K C C C E + E E I K C C C E + E E I K C C C E + E E I K C C C E + E E I K C C C E + E E I K C C C E + E E I K C C C E + E E I K C C C E + E E I K C C C E + E E I K C C C E + E E I K C C C E E I K C C C E + E E I K C C C E E I K C C C E E I K C C C E E I K C C C E E I K C C C E E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C E I K C C C C E I K C C C C E I K C C C C E I K C C C C E I K C C C C C E I K C C C C C C E I K C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                            | T ( )          |
| 0.00   07/05/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M   | TOT MORELE               | \               |                     | ( )             | W2 6.2EES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| 13 07/13/22 Wellington Laboratories, Lot MZPENDOTI (Furchased OZ/12/22) Wellington Laboratories, Lot MZPENDOTI (Furchased OZ/12/22) Wellington Laboratories, Lot MZPENDOTI (Furchased OZ/12/22) Wellington Laboratories, Lot WZPENDOTI (Furchased OZ/17/22) WELLINGTOTI (Furchased OZ/17/22) WELLINGTOTI (Furchased OZ/17/22) WZPENDOTICES (Furchased  |     | LINGTON, LOC MZ8ZFISUZI/ |                 | - 1                 | ( )             | MZ-0:77.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 1            |
| 13   07/13/21   Wellington Laboratories, Lot M2PPE03016   Fourchased   11/30/22   Wellington Laboratories, Lot M2PPE03016   Fourchased   05/03/22   Wellington Laboratories, Lot M2PPE03017   Fourchased   07/20/22   Wellington Laboratories, Lot M3PPE03017   Fourchased   10/11/22   Wellington Laboratories, Lot M3PPE03017   Fourchased   04/12/22   Wellington Laboratories, Lot M3PPE03015   Fourchased   04/12/22   Wellington Laboratories, Lot M3PPE03015   Fourchased   05/23/22   Wellington Laboratories, Lot M3PPE03017   Fourchased   05/23/22   Wellington Laboratories, Lot M3PPE03017   Fourchased   07/13/22   Wellington Laboratories, Lot M3PPE03017   Fourchased   07/17/22   Wellington Laboratories, Lot M3PPE03017   Fourchased   10/17/22   Wellington Laboratories, Lot W3PPE03017   Fourchased   10/17/22   Wallington Laboratories, Lot W3PPE03017   Fourchased   10/17/22   W3PPE03017    | -   | .82F.1                   | 100             | - 1                 | t)              | MZ-8:ZF'I'S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| 05/12/21   Wellington Laboratories, Lot WAPFTEDA117   Purchased                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >   | Lot                      | xDA0/1/         | - 1                 | t)              | 13CZ-PFHXDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| 17   30/22   Wellington Laboratories, Lot MAPPFHEAD117   Purchased                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | Laboratories, Lot M2PF   | OA0216          | - 1                 | t)              | 13C2-PFOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| 2 05/03/22   Wellington Laboratories, Lot MRPFRA0117   (Purchased 10/11/22   Wellington Laboratories, Lot MRPFRA0117   (Purchased 10/11/22   Wellington Laboratories, Lot MRPRO340171   (Purchased 04/12/22   Wellington Laboratories, Lot MRPRO34017   (Purchased 05/24/22   Wellington Laboratories, Lot MRPRO317   (Purchased 07/13/22   Wellington Laboratories, Lot MRPRO3017   (Purchased 10/27/22   Wellington Laboratories, Lot MRPRO3017   (Purchased 10/27/22   Wellington Laboratories, Lot MRPRO3017   (Purchased 10/17/22   Wellington Laboratories, Lot MRPRO3017   (Purchased 11/22/21   Mellington Laboratories, Lot MRPRO3017   (Purchased 11/22/21   Mellington    | _   |                          | eDA1117         | (Purchased Reagent) | t)              | 13C2-PFTeDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20 ng/mL       |
| 3   07/20/22   Wellington Laboratories, Lot MBFDSA10171   (Purchased 04/12/22   Wellington Laboratories, Lot MBFDSA10171   (Purchased 04/12/22   Wellington Laboratories, Lot MBFDSA1017   (Purchased 07/13/22   Wellington Laboratories, Lot MBFDSA017   (Purchased 07/13/22   Wellington Laboratories, Lot MBFDSA017   (Purchased 07/13/22   Wellington Laboratories, Lot MBFMS017   (Purchased 02/17/22   Wellington Laboratories, Lot MBFMS017   (Purchased 02/17/22   Wellington Laboratories, Lot MBFMS017   (Purchased 10/17/22   Wellington Laboratories, Lot MBFMS017   (Purchased 10/17/22   Wellington Laboratories, Lot MBFMS0107   (Purchased 10/17/22   Wellington Laboratories, Lot MBFMS0107   (Purchased 10/17/22   Wellington Laboratories, Lot MBFMS0107   (Purchased 11/22/21   Wellington Laboratories, Lot MBFMS0107   (Purchased 10/17/22   (Purchased 10/17/22   (Purchased 10/17/22   (Purchased 10/17/22   (Purchase   |     |                          | HpA0517         | (Purchased Reagent) | t)              | 13C4-PFHpA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50 ug/mL       |
| 19/17/22 Wellington Laboratories, Lot MPPBA0417 (Purchased 05/24/22 Wellington Laboratories, Lot MPPBA0417 (Purchased 05/24/22 Wellington Laboratories, Lot MPPBA0717 (Purchased 05/23/22 Wellington Laboratories, Lot MPPBA0717 (Purchased 10/27/22 Wellington Laboratories, Lot MPPBA0017 (Purchased 05/37/22 Wellington Laboratories, Lot MPPBA0177 (Purchased 10/17/22 Wellington Laboratories, Lot MPPBA0177 (Purchased 10/17/22 Wellington Laboratories, Lot MPPBA0107 (Purchased 10/17/22 Wellington Laboratories, Lot MPPBA0107 (Purchased 10/17/22 Wellington Laboratories, Lot MPPBA0107 (Purchased 11/22/21 Wellington Laboratories, Lot MPPBA0107 (Purchased 11/22/21 Wellington Laboratories, Lot MPPBA0107 (Purchased 11/22/21 Wellington Laboratories, Lot MPPGA0107 (Purchased 10/17/22 Wellington Laboratories, Lot MPPGA0107 (Purchased 10/22/21) Wellington |     | L                        | PeA0717         | (Purchased Reagent) | t)              | 13C5-PFPeA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50 ug/mL       |
| 04/12/22 Wellington Laboratories, Lot MPPBA0417 (Purchased 05/24/22 Wellington Laboratories, Lot MPPBA0717 (Purchased 07/13/22 Wellington Laboratories, Lot MPPBA0717 (Purchased 10/27/22 Wellington Laboratories, Lot MPPBA0717 (Purchased 10/17/22 Wellington Laboratories, Lot MPPBA0717 (Purchased 05/30/21 Wellington Laboratories, Lot MPPRA0107 (Purchased 10/17/22 Wellington Laboratories, Lot MPPRA0107 (Purchased 10/17/22 Wellington Laboratories, Lot MPPRA0107 (Purchased 10/17/22 Wellington Laboratories, Lot MPPRA0107 (Purchased 11/22/21 Wellington Laboratories, Lot MPPGA1017 (Purchased 11/22/21 Wellington Laboratories, Lot 090285 (Lot MPPGA1017) (Purchased 11/22/21 Wellington Laboratories, Lot MPPGA1017 (Purchased 11/22/21 Wellington Laboratories, Lot 090285 (Lot MPPGA1017) (Purchased 11/22/21 Wellington Laboratories, Lot MPPGA1017) (Purchased 11/22/21 Wellington Laboratories, Lot 090285 (Lot MPPGA1017) (Purchased 11/22/21 Wellington Laboratories, Lot WPPGA1017) (Purchased 11/22/21/21 Wellington Laboratories, Lot WPPGA1017) (Purchased 11/22/21/21 Wellington Laboratories, Lot WPPGA1017) (Purchased 11/22/21/21 Wellington Laboratories, Lot WPPGA1 |     | Laboratories, Lot M8FOS  | SA1017I         | ı                   | t)              | 13C8 FOSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50 ug/mL       |
| 05/23/22   Wellington Laboratories, Lot MPFBA0717   (Purchased 05/23/22   Wellington Laboratories, Lot MPFBA0717   (Purchased 10/27/22   Wellington Laboratories, Lot MPFBA0107   (Purchased 05/23/22   Wellington Laboratories, Lot MPFBA0107   (Purchased 05/20/22   Wellington Laboratories, Lot MPFBA0107   (Purchased 10/17/22   Wellington Laboratories, Lot MPFBA0107   (Purchased 10/17/22   Wellington Laboratories, Lot MPFBA0107   (Purchased 10/17/22   Wellington Laboratories, Lot MPFBA0117   (Purchased 10/17/22   Wellington Laboratories, Lot MPFBA0117   (Purchased 10/17/22   Wellington Laboratories, Lot MPFBA0117   (Purchased 10/12/21   Wellington Laboratories, Lot MPFBA0117   (Purchased 10/12/21   Wellington Laboratories, Lot MPFBA01116   (Purchased 10/12/2   |     | n Laboratories, Lot MPFE | 3A0417          | (Purchased Reagent) | t)              | 13C4 PFBA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50 ug/mL       |
| 07/13/22 Wellington Laboratories, Lot MPEDA0717 (Purchased 10/27/22 Wellington Laboratories, Lot MPEDA0517 (Purchased 02/17/22 Wellington Laboratories, Lot MPEHAS017 (Purchased 02/17/22 Wellington Laboratories, Lot MPEHAS017 (Purchased 10/17/22 Wellington Laboratories, Lot MPERA01017 (Purchased 10/17/22 Wellington Laboratories, Lot MPEO31017 (Purchased 10/17/22 Wellington Laboratories, Lot MPEO31017 (Purchased 11/22/21 Wellington Laboratories, Lot MPEO31017 (Purchased 08/20/18 02/20/18 Methanol, Lot 090285 10000 uL LCPFCSP_00132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | 1 Laboratories, Lot M3PF |                 | ı                   | t)              | 13C3-PFBS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 46.5 ug/mL     |
| 05/23/22   Wellington Laboratories, Lot MPFDA&0517   (Purchased 02/17/22   Wellington Laboratories, Lot MPFHXA017   (Purchased 09/30/21   Wellington Laboratories, Lot MPFHXA017   (Purchased 10/17/22   Wellington Laboratories, Lot MPFDA,017   (Purchased 10/17/22   Wellington Laboratories, Lot MPFOA1017   (Purchased 10/17/22   Wellington Laboratories, Lot MPFOA1017   (Purchased 11/22/21   Wellington Laboratories, Lot MPFOA1017   (Purchased 08/20/18   02/20/18   Methanol, Lot 090285   10000 uL   LCPFCSP_00132   LCPFCSP_00   | /22 |                          | DA0717          | (Purchased Reagent) | t)              | 13C2 PFDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50 ug/mL       |
| 10/27/22   Wellington Laboratories, Lot MPEHXA1017   (Purchased 02/17/22   Wellington Laboratories, Lot MPEHX6017   (Purchased 10/17/22   Wellington Laboratories, Lot MPENA1017   (Purchased 10/17/22   Wellington Laboratories, Lot MPEOS1017   (Purchased 10/17/22   Wellington Laboratories, Lot MPEOS1017   (Purchased 11/22/21   Wellington Laboratories, Lot MPEOS1017   (Purchased 08/20/18   02/20/18   Methanol, Lot 090285   10000 uL LCPFCSP_00132   Lot MPEOS1018   Lot MPEOS1018   Lot Wellington Laboratories, Lot MPEOS1018   Lot Wellington Laboratories, Lot MPEOS1019   LCPFCSP_00132   Lot Wellington Laboratories, Lot MPEOS1019   Lot Wellington Laboratories, Lot MPEOS1019   Lot Wellington Laboratories, Lot MPEOS1019   Lot Wellington Laboratories, Lot Wellington Laborat   |     |                          | OA0517          | (Purchased Reagent) | t)              | 13C2 PFDoA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50 ug/mL       |
| 02/17/22   Wellington Laboratories, Lot MPERXS0217   (Purchased 10/17/22   Wellington Laboratories, Lot MPEOA1017   (Purchased 10/17/22   Wellington Laboratories, Lot MPEOA1017   (Purchased 11/22/21   Wellington Laboratories, Lot MPEOA1016   (Purchased 08/20/18   02/20/18   Methanol, Lot 090285   10000 ul LOPFGSP_00132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                          | xA1017          |                     | t)              | 13C2 PFHxA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50 ug/mL       |
| 10/17/22   Wellington Laboratories, Lot MFPRA0916   Purchased     10/17/22   Wellington Laboratories, Lot MFPCA1017   Purchased     11/22/21   Wellington Laboratories, Lot MFPCA1017   Purchased     11/22/21   Wellington Laboratories, Lot MFPCA1016   Purchased     10/20/18   02/20/18   Methanol, Lot 090285   10000 uL LCPFCSP_00132     10/20/21   Lot 090285   Lot 090285   LOFFCSP_00132     10/20/21   Lot 090285   LOFFCSP_00132     10/20/21   LOFFC   |     | 占                        | xS0217          | (Purchased Reagent) | t)              | 1802 PFHxS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 47.3 ug/mL     |
| 10/17/22   Wellington Laboratories, Lot MPF0Al017   (Purchased 11/22/12   Wellington Laboratories, Lot MPF0S0107   (Purchased 08/20/18   Wellington Laboratories, Lot MPF0Al116   (Purchased 08/20/18   Methanol, Lot 090285   10000 uL LCPFCSP_00132   (Purchased 08/20/18   Methanol, Lot 090285   Loop of LCPFCSP_00132   (Purchased 08/20/18   Methanol, LOOP of LCPFCSP_00132     |     | n Laboratories, Lot MPFN | NA0916          | 1                   | t)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              |
| 10/17/22 Wellington Laboratories, Lot MPFOSI017 (Purchased 11/22/21 Wellington Laboratories, Lot MPFUGAII16 (Purchased 08/20/18 02/20/18 Methanol, Lot 090285 10000 uL LCPFCSF_00132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /22 | n Laboratories, Lot MPFC | DA1017          | ı                   | t)              | 13C4 PFOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50 ug/mL       |
| 11/22/21 Wellington Laboratories, Lot MPFUGA1116 (Purchased 08/20/18 02/20/18 Methanol, Lot 090285 10000 uL LCPFCSP_00132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | n Laboratories, Lot MPFC | OS1017          |                     | t)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47.8 ug/mL     |
| 08/20/18 02/20/18 Methanol, Lot 090285 10000 uL LCPFCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ľ   |                          | dA1116          |                     | t)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +-  | 2                        | 년               | 3PFCSP 00132        | 1 mL            | Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                          |                 | 1                   |                 | 2H, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                          |                 |                     |                 | sulfonate (4:2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tex/ 2010      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                          |                 |                     |                 | SOULUMN SH_nerfluorooctene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 711176n 0460.0 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                          |                 |                     |                 | sulfonate (6:2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                          |                 |                     |                 | Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0958 ug/mL   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                          |                 |                     |                 | 1H, 1H, 2H, 2H-perfluorodecane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                          |                 |                     |                 | sulfonate (8:2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                          |                 |                     |                 | N-ethyl perfluorooctane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1 ug/mL      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                          |                 |                     |                 | N-methyl perfluoroottane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1 ng/mT,     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                          |                 |                     |                 | sulfonamidoacetic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                          | -               |                     |                 | Perfluorobutyric acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1 ug/mL      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                          |                 |                     |                 | Perfluorobutanesulfonic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0884 ug/mL   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                          |                 |                     |                 | (PFBS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                          |                 |                     |                 | Feriluorodecanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                          |                 |                     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                          |                 |                     |                 | Perfluorodecane Sulfonic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                          |                 |                     |                 | Perfluoroheptanoic acid<br>(סביהשט)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1 ug/mL      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                          |                 |                     |                 | Perfluorohentanesulfonio acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0952 mg/mT.  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                          |                 |                     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                          |                 |                     |                 | Perfluorohexanesulfonic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                          |                 |                     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                          |                 |                     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                          |                 |                     |                 | Porfluoronatanoi a ani d (PEON)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.096 ug/m⊥    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                          |                 |                     |                 | Post line of the state of the s |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                          |                 |                     |                 | (PEDS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | лш/gn 0260.0   |

Job No.: 320-39023-1 Lab Name: TestAmerica Sacramento

| Part    |             |              |                  | 000      | Parent Reagent    |                                       |                        |               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|------------------|----------|-------------------|---------------------------------------|------------------------|---------------|
| Perfilementic Sulformation   Perfilementic Sulformation   O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Exp<br>Date | Prep<br>Date | Dilutant<br>Used | Final    |                   |                                       |                        | Concentration |
| Perfluctorpartaneolic acid   0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |                  |          |                   | Perfluoroctane                        | Sulfonamide            |               |
| Perfluorotetradecanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |              |                  |          |                   | Perfluoropentan                       | noic acid              |               |
| Perfilosoptical acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |              |                  |          |                   | Perfluoropentan                       |                        |               |
| Perfluorential caid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |              |                  |          |                   | Perfluorotetrad                       | decanoic acid          | - 1           |
| Decision   Partition   Partition   Decision   Decisio |             |              |                  |          |                   | Perfluorotridec                       | canoic acid            |               |
| Methanol, Lot 090285   10000 ul LC4:2FTS_00003   200 ul Sodium   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   | _           |              |                  |          |                   | Perfluoroundeca                       | anoic acid             |               |
| 14   14   15   14   15   15   15   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _           |              | Lot 09028        | 10000 uL |                   | ηŢ                                    |                        |               |
| 1.05   2.00 ul   3.01 ul   1.01   1.01   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1.02   1 |             |              |                  |          |                   | IH, IH, ZH, ZH-per<br>Sulfonate (4:2) | rfluorohexane          |               |
| 18,114,124,24=perfluoroccane   10,058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |              |                  |          | I,C6:2FTS 00003   | I.                                    |                        |               |
| LCR:ZPTG_00003   200 ul Sedium coccane   0.958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |              |                  |          |                   |                                       | rfluorooctane          |               |
| HighEnder (8:2)   HighEnder (8:2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |                  |          | LC8:2FTS 00003    | uL                                    |                        |               |
| LCN-MerOSAA_00005   200 uL   N-methyl perfluoroctane   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |              |                  |          | l                 | 1H, 1H, 2H, 2H-per                    | rfluorodecane          |               |
| CNN-WeFOSAA_00005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |                  |          | LCN-EtFOSAA_00004 | uL                                    | prooctane              |               |
| TOPPER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |              |                  |          |                   | 1                                     | cic acid               |               |
| ICPPEA 00007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |              |                  |          | LCN-Merosaa 00005 | ηn                                    | lorooctane<br>:ic acid |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |              |                  |          |                   | ηŢ                                    |                        |               |
| LCPFDA 00008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |              |                  |          |                   | ηŢ                                    |                        |               |
| LCPFDAA 00008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |          |                   |                                       |                        | - 1           |
| LCFFDSA 00008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |          | LCPFDA 00008      | I L                                   | oic acid               |               |
| LOFFHPA_00008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |          | LCFFLOA UUUU8     | n i                                   | - 1                    |               |
| CPEFH9A 00008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |          | LCPFDSA 00002     | 'n,                                   | - 1                    |               |
| TCPFHASA 00003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |              |                  |          | LCPFHpA_00008     | ηΠ                                    | noic acid              |               |
| CPFHXS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |              |                  |          | LCPFHpsA 00003    | ηŢ                                    |                        | 952           |
| CPFHXS-br_00004   200 uL Perfluoroneanoic acid (PFNA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |              |                  |          | LCPFHxA 00007     | ηŢ                                    |                        | $\vdash$      |
| CCPFNA 00009   C0 uL Perfluoronanoic acid (PFNA)   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |              |                  |          | LCPFHxS-br_00004  | ηΓ                                    | esulfonic acid         |               |
| CPFFOA 00003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |              |                  |          |                   | T                                     | 7.5                    |               |
| LCPFOA 00009   200 uL   Perfluoroctanoic acid (PFOA)   1     LCPFOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |              |                  |          |                   | 3 1                                   | Fon-in-                | 1 9           |
| CCPFOSA 00004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |          |                   | uL                                    | acid                   |               |
| CCPFOSA 00010   200 uL Perfluoroctane Sulfonamide   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |              |                  |          | LCPFOS-br_00004   | ηŢη                                   | fonic.                 |               |
| LCPFPGA 00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |          |                   |                                       |                        | - 1           |
| LCFFPeA 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |              |                  |          |                   | ı u                                   | Sultonamide            | - 1           |
| LOFFPes 00003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |          | LCPFPeA 00007     | ηΓ                                    |                        | -             |
| LCFFTDA 00006   200 uL Perfluorotetradecanoic acid   LCFFTDA 00006   200 uL Perfluorotridecanoic acid   LCFFTDA 00007   200 uL Perfluoroundecanoic acid   LCFFUDA 00007   200 uL Perfluorondecanoic acid   LCFFUDA 00007   200 uL Perfluoropexane   LCFFUDA 00007   200 uL Perfluoropexane   LCFFUDA 00007   200 uL Perfluoropexane   LCFFUDA 00007   200 uL Perfluoroctane   200 uL Perfluoro |             |              |                  |          | LCPFPes 00003     | ηĪ                                    | nesulfonic acid        | 886           |
| LOFFTEDA 00006   200 uL Perfluorotridecanoic acid   LOFFTEDA 00007   200 uL Perfluoroundecanoic acid   LOFFUGA 00007   200 uL Perfluoroundecanoic acid   LOFFUGA 00007   200 uL Perfluoroundecanoic acid   LOFFUGA 00007   Sodium   LOFFUGA 00007   Sodium   LOFFUGA 00007   Sodium   LOFFUGA 00007   LOFFUG |             |              |                  |          | LCPFTeDA 00006    | μĪ                                    | decanoic acid          | - 1           |
| MELLINGTON, Lot 42FTS1216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |              |                  |          | LCPFTrDA_00006    | ηĪ                                    | canoic acid            | - 1           |
| WELLINGTON, Lot 42FTS1216 (Purchased Reagent)   Sodium   46.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |          | 00007             | :00 uL                                | anoic acid             |               |
| Sulfonate (4:2)   Sulfonate (4:2)   WELLINGTON, Lot 62FTS0616   CPurchased Reagent)   Sodium   47.4   Sodium   14.2H-perfluorooctane   Sodium   14.2H-perfluorooctane   Sodium   Sodium   14.2H-perfluorooctane   Sodium   Sodium  |             | ß            | Lot 42FTS121     | 9        |                   |                                       | rfluorohexane          | 6.7           |
| MELLINGTON, Lot 62FTSU616 (Purchased Reagent) Sodium 47.4  11,14,2H,2H-perfluorooctane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L           | ľ            |                  |          |                   |                                       |                        | - 1           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 06/25/21    | ×            | Lot 62F          | 0        |                   |                                       | fluorooctane           |               |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

|                   |             |              |                                          | 4               | Parent Reagent      |                                              |                                                          |                  |
|-------------------|-------------|--------------|------------------------------------------|-----------------|---------------------|----------------------------------------------|----------------------------------------------------------|------------------|
| Reagent ID        | Exp<br>Date | Prep<br>Date | Dilutant<br>Used                         | Final<br>Volume | No Reagent ID Ac    | Volume<br>Added                              | Analyte                                                  | Concentration    |
| LC8:2FTS_00003    | 08/22/21    | WEL          | WELLINGTON, LOT 82FTS0816                | - 9             | (Purchased Reagent) | Sodium<br>1H,1H,2H,2H-per<br>sulfonate (8:2) | Sodium<br>1H,1H,2H,2H-perfluorodecane<br>sulfonate (8:2) | 47.9 ug/mL       |
| LCN-EtFOSAA_00004 | 09/30/21    | WELLI        | WELLINGTON, Lot NEtFOSAA091              | 116             | (Purchased Reagent) | N-ethyl perfluorod                           | N-ethyl perfluorooctane                                  | 50 ug/mL         |
| LCN-MeFOSAA_00005 | 10/12/21    | WELLI        | WELLINGTON, Lot NMeFOSAA0916             | 116             | (Purchased Reagent) | N-methyl sulfonamic                          |                                                          | 50 ug/mL         |
| ICPFBA 00007      | 05/27/21    | Wellingto    | Wellington Laboratories, Lot PE          | Lot PFBA0516    | (Purchased Reagent) | Perfluoro]                                   | Perfluorobutyric acid                                    | 50 ug/mL         |
| LCPFBS_00008      | 03/15/21    | Wellingtor   | Lot                                      | LPFBS0316       | (Purchased Reagent) | Perfluoro<br>(PFBS)                          | Perfluorobutanesulfonic acid (PFBS)                      | 44.2 ug/mL       |
| LCPFDA_00008      | 05/29/22    | Wellington   | , Lot                                    | PFDA0517        | (Purchased Reagent) | Perfluorodecanoic                            | decanoic acid                                            | 50 ug/mL         |
|                   | 05/29/22    | Wellingtor   | Wellington Laboratories, Lot PF          | ot PFDoA0517    |                     | Perfluoro                                    | Perfluorododecanoic acid                                 | 20 ng/mL         |
| ICPFDSA 00002     | 05/24/21    | Wellington   | Lot                                      | LPFDS0516       | (Purchased Reagent) | Perfluoro                                    | Perfluorodecane Sulfonic acid                            |                  |
| ICPFHpA_00008     | 12/02/21    | Wellingtor   | Wellington Laboratories, Lot PF          | PFHpA1216       | (Purchased Reagent) | Perfluoro <br>  (PFHpA)                      | Perfluoroheptanoic acid<br>(PFHpA)                       | 50 ug/mL         |
| LCPFHpSA_00003    | 09/01/22    | Wellington   | Wellington Laboratories, Lot LPF         | Lot LPFHpS0817  | (Purchased Reagent) | Perfluoro                                    | Perfluoroheptanesulfonic acid                            | 47.6 ug/mL       |
| LCPFHxA_00007     | 12/22/20    | Wellingtor   | Wellington Laboratories, Lot PF          | Lot PFHxA1215   | (Purchased Reagent) | Perfluorohexanoic                            | acid                                                     | 50 ug/mL         |
| LCPFHxS-br_00004  | 07/03/20    | Wellington   | Wellington Laboratories, Lot brPFHxSK061 | FHXSK0615       | (Purchased Reagent) | Perfluorol (PFHxS)                           | Perfluorohexanesulfonic acid (PFHxS)                     | 45.5 ug/mL       |
| LCPFNA 00009      | 07/20/22    | Wellingto    | Wellington Laboratories, Lot PF          | PFNA0717        | (Purchased Reagent) | Perfluoro                                    | Perfluorononanoic acid (PFNA)                            | 50 ug/mL         |
| LCPFNS 00003      | 09/27/22    | Wellingtor   | 1                                        | Lot LPFNS0917   |                     | Perfluoro                                    | Perfluorononanesulfonic acid                             |                  |
| LCPFOA_00009      | 09/27/22    | Wellingto    | ١.                                       | Lot PFOA0917    | (Purchased Reagent) | Perfluorooctanoic                            | acid (                                                   | 20 ng/mL         |
| ICPFOS-br_00004   | 10/14/20    | Wellington   | Wellington Laboratories, Lot brPFOSK1015 | FOSK1015        | (Purchased Reagent) | Perfluoro                                    | Perfluorooctanesulfonic acid (PFOS)                      | 46.4 ug/mL       |
| LCPFOSA 00010     | 09/30/21    | Wellington   | Laboratories, I                          | Lot FOSA0916I   | (Purchased Reagent) | Perfluoro                                    | Perfluorooctane Sulfonamide                              | 20 ng/mL         |
| LCPFPeA 00007     | 05/31/21    | Wellington   | Laboratories,                            | Lot PFPeA0516   |                     | Perfluoro                                    | Perfluoropentanoic acid                                  | 20 ng/mL         |
| $^{\circ}$        | 01/11/22    | Wellington   | Laboratories, Lot                        | FPeS0117        |                     | Perfluoro                                    | Perfluoropentanesulfonic acid                            | 46.9 ug/mL       |
| LCPFTeDA 00006    | 12/09/20    | Wellington   | Laboratories, Lot PFT                    | PFTeDA1215      | (Purchased Reagent) | Perfluoro                                    | Perfluorotetradecanoic acid                              | 20 ng/mL         |
| LCPFTrDA_00006    | 02/12/21    | Wellington   | Laboratories, Lot                        | PFTrDA0216      | (Purchased Reagent) | Perfluoro                                    | Perfluorotridecanoic acid                                | 20 ng/mT         |
| LCPFUdA_00007     | 10/18/21    | Wellington   | Laboratories, Lot                        | PFUdA1016       | (Purchased Reagent) | Perfluoro                                    | Perfluoroundecanoic acid                                 | 50 ug/mL         |
| LCPFC LL1 00006   | 11/18/18    | 06/05/18 Med | MeOH/H20, Lot 90285                      | 200 mL          | LCMPFC ALL SU 00075 | 10 mL d3-NMeFosaa                            | AA                                                       | 2.5 ng/mL        |
| I<br>I            |             |              |                                          |                 | <br> <br>           | d5-NEtFOSAA                                  | AA                                                       |                  |
|                   |             |              |                                          |                 |                     | M2-6:2FTS                                    |                                                          | 2.375 ng/mL      |
|                   |             |              |                                          |                 |                     | M2-8:2FTS                                    |                                                          | 2.395 ng/mL      |
|                   |             |              |                                          |                 |                     | 13C2-PFHxDA                                  | DA                                                       |                  |
|                   |             |              |                                          |                 |                     | 13CZ-PFOA                                    |                                                          |                  |
|                   |             |              |                                          |                 |                     | 13C2-PFTeDA                                  | DA                                                       | 2.5 ng/mL        |
|                   |             |              |                                          |                 |                     | 13C4-PFHPA                                   | A                                                        | 2.5 ng/mL        |
|                   |             |              |                                          |                 |                     | 13C5-PFPeA                                   | A                                                        | 2.5 ng/mL        |
|                   |             |              |                                          |                 |                     |                                              |                                                          |                  |
|                   |             |              |                                          |                 |                     | 13C4 PFBA                                    |                                                          | 2.5              |
|                   |             |              |                                          |                 |                     |                                              |                                                          |                  |
|                   |             |              |                                          |                 |                     |                                              |                                                          |                  |
|                   |             |              |                                          |                 |                     | - 1                                          | A                                                        | 2.5 ng/mL        |
|                   |             |              |                                          |                 |                     | - 1                                          | A                                                        |                  |
|                   |             |              |                                          |                 |                     |                                              | Ω                                                        |                  |
|                   |             |              |                                          |                 |                     | 13C3 FFNA                                    |                                                          | Z.5 ng/mL        |
|                   | _           | _            |                                          | _               | _                   | LSC4 FFUA                                    |                                                          | TIII / BII C - Z |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

| Respect IF   Early   Early   Volume   |            |               |          |                                    | ()<br>()<br>()<br>() | Parent Reagent      |        |                                             |                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|----------|------------------------------------|----------------------|---------------------|--------|---------------------------------------------|-------------------------------|
| 127.05716   07.037   127.05716   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.05717   127.057 |            | Exp           | Prep     | Dilutant                           | Final                |                     | Volume | . ,                                         | -                             |
| 130 PROS   2.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Reagent ID | Date          | Date     | Used                               | Volume               |                     | Added  |                                             | Concentration                 |
| 12/05/18   06/05/18   13/22 PRIDA   19/25  |            |               |          |                                    |                      |                     |        | 13C4 PFOS                                   | 2.39 ng/mL                    |
| 18.14   24   24   24   24   24   24   24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |               |          |                                    |                      |                     |        | 13C2 PFUnA                                  |                               |
| 11/205/18   Methanol, Lot Baker   200 mL   10/205/18   Methanol, Lot Baker   200 mL   200 m |            |               |          |                                    |                      | LCPFCSP_00151       |        |                                             |                               |
| 11,11,21,21,21,21,21,21,21,21,21,21,21,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |               |          |                                    |                      |                     |        | sulfonate (4:2)                             |                               |
| 11/14/14   14   14   14   14   14   14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |               |          |                                    |                      |                     |        | Sodium 1H,1H,2H,2H-perfluorooctane          |                               |
| 11/05/18   Methanol, Lot Baker   200 mL Lod3-WWePOSA, 00008   Perfluorocetane   0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |               |          |                                    |                      |                     |        | Sodium                                      | 0.02395 ng/mL                 |
| Nethyle Petitoroccare   Neth |            |               |          |                                    |                      |                     |        | 1H,1H,2H,2H-perfluorodecane sulfonate (8:2) |                               |
| N=nethy/ performed catched   0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |               |          |                                    |                      |                     |        | N-ethyl perfluorooctane                     | 0.025 ng/mL                   |
| Perfilosobutyric acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |               |          |                                    |                      |                     |        | N-methyl perfluorooctane                    |                               |
| Perfluoroberanication   Perfluoroberanication   0.0221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |               |          |                                    |                      |                     |        | sultonamidoacetic acid                      |                               |
| Perfilosocdecanolc acid   0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |               |          |                                    |                      |                     |        | υ.<br>Ο                                     | 0.0221 ng/mL                  |
| Perfluorodecanolic acid   0.023   Perfluorodecanolic acid   0.023   Perfluorodecanolic acid   0.023   Perfluorodecano sulfonic acid   0.023   Perfluorodecano sulfonic acid   0.023   Perfluorodecanosulfonic acid   0.023   Decanosic acid   0.023   Decano |            |               |          |                                    |                      |                     |        |                                             | 0.025 ng/mL                   |
| Perfluorodecane Sulfonic acid 0.0241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |               |          |                                    |                      |                     |        | Perfluorododecanoic acid                    | 0.025 ng/mL                   |
| Perflucrobeptanoic acid   Perflucrobeptanoic acid   Perflucrobeptanoic acid   Perflucrobeptanosulfonic acid   Perflucrobexanoic acid   Perflucrobexanoic acid   Perflucrobexanoic acid   Perflucrobexanoic acid   Perflucrobexanoic acid   Perflucrocanonoic acid   Dicka-8:12FS 00000   200 ul M2-6:12FS 00000   141039   141039   1CAS-REPRAS 00010   200 ul M2-6:12FS 00000   1CAS-PERPAS   1CAS-PERPAS 00010   200 ul M2-6:12FS 00000   1CAS-PERPAS   1CAS-PERP |            |               |          |                                    |                      |                     |        |                                             | 0.0241 ng/mL                  |
| The part   Perfluction   Per |            |               |          |                                    |                      |                     |        | Perfluoroheptanoic acid                     | 0.025 ng/mL                   |
| Perfluctoriorancia caid   Perfluctoriorancia   Perf |            |               |          |                                    |                      |                     |        | (PFHpA)                                     | 0.0238 ng/mI.                 |
| Perfluctorexaments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |               |          |                                    |                      |                     |        | )<br>H<br>I<br>I<br>I<br>I<br>I<br>I        | 0.025 ng/mī                   |
| Colored   Colo |            |               |          |                                    |                      |                     |        | Lfonic                                      | 0.02275 ng/mL                 |
| Perfluoroctanica card (PPCA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |               |          |                                    |                      |                     |        | <br><br>                                    | 1m/22 700 0                   |
| Perfluoroccanol food                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |               |          |                                    |                      |                     |        | Porfluoronatanoi a ai d (BEON)              | U.020 IIIG/IIILL              |
| Perfluoronamesulfonic acid   Perfluoroctanesulfonic acid   DicM2FNEDA   DicM2FNEDA  |            |               |          |                                    |                      |                     |        | Periluorooctanoic acid (FFUA)               | 0.025025<br>0.025025<br>0.027 |
| 12/05/18   06/05/18   Methanol, Lot Baker   Cd3-NMeFoSAA_00008   LCA2-NEFFOSAA_00008   |            |               |          |                                    |                      |                     |        | Perfluorononanesulfonic acid                | 0.024 ng/mL                   |
| Perflucroctane Sulfonamide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |               |          |                                    |                      |                     |        | Perfluorooctanesulfonic acid (PFOS)         | 0.0232 ng/mL                  |
| Perfluctopentanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |               |          |                                    |                      |                     |        | Perfluorooctane Sulfonamide                 | 0.025 ng/mL                   |
| 12/05/18   Methanol, Lot Baker   Lcd3-NMeFOSAA_00008   200 uL   d3-NMeFOSAA   0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |               |          |                                    |                      |                     |        |                                             |                               |
| 12/05/18   Methanol, Lot Baker   200 mL   LCd3-NMeFOSAA   00008   200 uL   d3-NMeFOSAA   0.025     12/05/18   Methanol, Lot Baker   200 mL   LCd5-NEtFOSAA   0.008   200 uL   d5-NEtFOSAA   0.055     12/05/18   Methanol, Lot Baker   200 mL   LCd5-NEtFOSAA   0.008   200 uL   d5-NEtFOSAA   0.055     12/05/18   Methanol, Lot Baker   200 mL   LCd5-NEtFOSAA   0.005   LCM2-6:FTS   0.001   M2-6:2FTS   0.0475     12/05/18   Methanol, Lot Baker   200 mL   M2-6:2FTS   0.0475     12/05/18   M2-8:2FTS   0.016   200 uL   M2-8:2FTS   0.0475     12/05/18   M2-8:2FTS   0.0016   200 uL   M2-8:2FTS   0.0475     12/02/14   200 uL   M2-8:2FTS   0.005     13/02-PFDAA   0.055   LCM2PFPEA   0.0015   2.00 uL   M2-8:PFPEA   0.055     13/03-PFPEA   0.0015   2.00 uL   0.055     13/03-PFPEA   0.0015   2.00 uL   0.055     13/03-PFP |            |               |          |                                    |                      |                     |        | Perfluoropentanesulfonic acid               |                               |
| 12/05/18   06/05/18   Methanol, Lot Baker   200 mL   LCd3-NMeFOSAA_00008   200 uL   d3-NMeFOSAA_00008   200 uL   d3-NMeFOSAA_0005   0.055     141039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |               |          |                                    |                      |                     |        | Perfluorotetradecanoic acid                 | 0.025 ng/mL                   |
| 12/05/18   Methanol, Lot Baker   200 mL   LCd3-NMeFOSAA   00008   200 uL   d3-NMeFOSAA   0.05     12/05/18   Methanol, Lot Baker   200 mL   LCd5-NEtFOSAA   00008   200 uL   d5-NEtFOSAA   0.05     LCM2-6:FTS   00008   200 uL   M2-6:2FTS   0.0475     LCM2-6:FTS   00016   200 uL   M2-8:2FTS   0.0475     LCM2-FFHXDA   00016   200 uL   13C2-FFHXDA   0.05     LCM2PFDA   00014   200 uL   13C2-FFTA   0.05     LCM2PFPA   00014   200 uL   13C3-FFPA   0.05     LCM4PFHPA   00014   200 uL   13C3-FFPA   0.05     LCM5PFPEA   00015   200 uL   13C3-FFPA   0.05   0.05     LCM5PFPEA   00015   200 uL   0.05   0.05   0.05     LCM5PFPEA   00015   200 uL   0. |            |               |          |                                    |                      |                     |        | Perfluorotridecanoic acid                   | 0.025 ng/mL                   |
| 14/1039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | 0 / 0 E / 1 0 | 06/05/19 | M(+ + ) T () % ( + ) D ( ) L ( ) L | T                    | WW-SENT             |        | +                                           | 10.05 11g/mT                  |
| 08 200 uL d5-NEtFOSAA 0.05 200 uL M2-6:2FTS 0.0475 200 uL M2-8:2FTS 0.0479 200 uL 13C2-PFNADA 0.05 200 uL 13C2-PFTCA 0.05 200 uL 13C4-PFHAPA 0.05 200 uL 13C5-PFFPA 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 01/00/7       | 700/00   | 141039                             | 7007                 | LCGS-MMer OSAA      |        | _                                           | 1117 a dg/1111                |
| 200 uL M2-6:2FTS 0.0475 200 uL M2-8:2FTS 0.0479 200 uL 13C2-PFFADA 0.05 200 uL 13C2-PFTCDA 0.05 200 uL 13C4-PFFPADA 0.05 200 uL 13C5-PFFPADA 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |               |          |                                    |                      | LCd5-NEtFOSAA 00008 |        | $\rightarrow$                               |                               |
| 200 ul M2-8:2FTS 0. 200 ul 13C2-PFHxDA 200 ul 13C2-PFTeDA 200 ul 13C2-PFTEDA 200 ul 13C3-PFPEDA 200 ul 13C3-PFPEDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |               |          |                                    |                      | LCM2-6:FTS_00008    |        | $\rightarrow$                               |                               |
| 200 ul 13C2-PFH×DA<br>200 ul 13C2-PFOA<br>200 ul 13C2-PFHDA<br>200 ul 13C4-PFHDA<br>200 ul 13C5-PFPPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |               |          |                                    |                      | LCM2-8:2FTS 00010   |        | _                                           |                               |
| 4 200 uL 13C2-PFOA<br>4 200 uL 13C2-PFTeDA<br>200 uL 13C4-PFHPA<br>200 uL 13C5-PFPeA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |               |          |                                    |                      | LCM2PFHxDA 00016    |        | _                                           | 0.05 ug/mL                    |
| 4 200 ul 13CZ-PFTeDA<br>200 ul 13C4-PFHpA<br>200 ul 13C5-PFPeA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |               |          |                                    |                      | LCM2PFOA 00008      |        | _                                           | 0.05 ug/mL                    |
| 200 uL 13C4-F#HPA 0.05<br>200 uL 13C5-PFPeA 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |               |          |                                    |                      | LCM2PFTeDA 00014    |        | $\rightarrow$                               | 0.05 ug/mL                    |
| 100001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |               |          |                                    |                      | LCM4 FFHFA 00014    | 200 uL | _                                           | 0.05 ug/mL                    |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

|                     |             |              |                                          |            | Parent Reagent      |        |                                                          |                 |
|---------------------|-------------|--------------|------------------------------------------|------------|---------------------|--------|----------------------------------------------------------|-----------------|
|                     | Ę.          | Ç            | Reagent                                  | yent       | - 1                 |        |                                                          |                 |
| Reagent ID          | Exp<br>Date | rrep<br>Date | Used Volume                              | lal<br>ume | Reagent ID Ad       | Added  | Analyte                                                  | Concentration   |
|                     |             |              |                                          | LC         | LCM8FOSA 00019 2    | 200 uL | 13C8 FOSA                                                | 0.05 ug/mL      |
|                     |             |              |                                          | IC         | LCMPFBA_00015 2     | ηŢ     | 13C4 PFBA                                                | 0.05 ug/mL      |
|                     |             |              |                                          | LC         | LCMPFBS_00008 2     | 200 uL | 13C3-PFBS                                                | 0.0465 ug/mL    |
|                     |             |              |                                          | IC         |                     | ηΓ     |                                                          | 0.05 ug/mL      |
|                     |             |              |                                          | IG         | 00015               | ηľ     |                                                          | 0.05 ug/mL      |
|                     |             |              |                                          | IC         | 00022               | ηŢ     |                                                          |                 |
|                     |             |              |                                          | IG         | LCMPFHxS_00015 2    | ηŢ     | 1802 PFHxS                                               | 0.0473 ug/mL    |
|                     |             |              |                                          | IC         | 00015               | 200 uL |                                                          | 0.05 ug/mL      |
|                     |             |              |                                          | I          | 00019               | ηŢ     |                                                          |                 |
|                     |             |              |                                          | IC         |                     | ηŢ     |                                                          |                 |
|                     |             |              |                                          | ICC        |                     | 200 uL | 13C2 PFUnA                                               |                 |
| LCd3-NMeFOSAA 00008 | 11/08/22    | WEI          | WELLINGTON, Lot d3NMeFOSAA1117           |            | - 1                 |        | d3-NMeFOSAA                                              |                 |
| LCd5-NEtFOSAA 00008 | 11/08/22    | WEI          | WELLINGTON, Lot d5NEtFOSAA1117           |            | (Purchased Reagent) |        | d5-NEtFOSAA                                              | 20              |
| 1.1CM2_8:F1S_00008  |             | TAT          |                                          |            | (Purchased Reagent) |        | M2-8:2513                                                | Tm/pr. 0 7/     |
| STOOD ACCHEOLOGIC   |             |              | Mellington Tehometomies Iot Modenwhan    | 717        |                     |        | 13C0_DEH*DA                                              |                 |
| TCM2PF0A 00010      | 02/12/21    | WELLING      | Wellington Laboratories, Tot M2PF0A0216  | 716        | - 1                 |        | 13C2 - FINALS<br>13C2-PFCA                               | - 1             |
| LCM2PFTeDA 00014    | 11/30/22    | Wellingto    | Wellington Laboratories, Lot M2PFTeDA111 | 1117       |                     |        | 13C2-PFTeDA                                              |                 |
| LCM4PFHPA 00014     | 05/03/22    | Wellingt     | Wellington Laboratories, Lot M4PFHpA051  | 517        | 1                   |        | 13C4-PFHpA                                               |                 |
| LCM5PFPEA_00015     |             | Wellingt     | Wellington Laboratories, Lot M5PFPeA071  | 717        | 1                   |        | 13C5-PFPeA                                               |                 |
| LCM8FOSA 00019      | 10/11/22    | Wellingt     | Lot                                      | 17I        | 1                   |        | 13C8 FOSA                                                | 50 ug/mL        |
| LCMPFBA 00015       | 02/16/23    | Welling      |                                          | 18         |                     |        | 13C4 PFBA                                                | 50 ug/mL        |
| LCMPFBS 00008       | 02/15/23    | Welling      |                                          | 218        | (Purchased Reagent) |        | 13C3-PFBS                                                | 46.5 ug/mL      |
| LCMPFDA_00020       | 02/16/23    | Welling      | Wellington Laboratories, Lot MPFDA0218   | 18         | (Purchased Reagent) |        | 13C2 PFDA                                                | 50 ug/mL        |
| LCMPFDoA 00015      | 02/16/23    | Welling      | Wellington Laboratories, Lot MPFDoA0218  | 218        | (Purchased Reagent) |        | 13C2 PFDoA                                               | 50 ug/mL        |
| LCMPFHxA_00022      | 10/27/22    | Welling.     |                                          | 017        |                     |        |                                                          | 50 ug/mL        |
| LCMPFHxS_00015      | 03/22/23    | Welling      |                                          | 318        |                     |        |                                                          | 47.3 ug/mL      |
| LCMPFNA_00015       | 12/14/22    | Welling      |                                          | 17         | (Purchased Reagent) |        | 13C5 PFNA                                                | 50 ug/mL        |
| LCMPFOA 00019       | 05/04/23    | Welling      | - 1                                      | 18         | (Purchased Reagent) |        |                                                          | 50 ug/mL        |
| LCMPFOS 00027       | 02/15/23    | Welling      | - 1                                      | 18         |                     |        | 13C4 PFOS                                                | 47.8 ug/mL      |
| LCMPFUdA_00017      | 11/22/21    | Welling      | ot MPFUdAí                               |            | (Purchased Reagent) |        | 13C2 PFUnA                                               |                 |
| .LCPFCSP_00151      | 11/18/18    | 05/17/18     | 05/17/18 Methanol, Lot 090285 10         | 10 mL      | LCPFCSP_00148 2     | 200 uL | Sodium<br>1H,1H,2H,2H-perfluorohexane<br>sulfonate (4:2) | 0.00934 ug/mL   |
|                     |             |              |                                          |            |                     |        |                                                          | 0.00948 ug/mL   |
|                     |             |              |                                          |            |                     |        | 1H, 1H, 2H, 2H-perfluorooctane                           |                 |
|                     |             |              |                                          |            |                     | -1     |                                                          | 0 00958 110/mT. |
|                     |             |              |                                          |            |                     |        | 1H, 1H, 2H, 2H-perfluorodecane                           |                 |
|                     |             |              |                                          |            |                     |        | Sullouder (0:2)                                          |                 |
|                     |             |              |                                          |            |                     |        | N-etnyl periluorooctane<br>sulfonamidoacetic acid        | Tm/bn TO:0      |
|                     |             |              |                                          |            |                     |        | N-methyl perfluorooctane                                 | 0.01 ug/mL      |
|                     |             |              |                                          |            |                     | -1     | Perfluorobiitaric acid                                   | 0 01 11cr/mT.   |
|                     |             |              |                                          |            |                     |        | Perfluorobutanesulfonic acid                             |                 |
|                     |             |              |                                          |            |                     |        | (PFBS)                                                   | - 1             |
|                     |             |              |                                          |            |                     |        | Perfluorodecanoic acid                                   | - 1             |
|                     | _           |              |                                          |            |                     | _      | Perfluorododecanoic acid                                 | 0.01 ug/mL      |
|                     |             |              |                                          |            |                     |        |                                                          |                 |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

|               |             |              |                      |                 | Parent Reagent      | +-              |                                                            |                             |
|---------------|-------------|--------------|----------------------|-----------------|---------------------|-----------------|------------------------------------------------------------|-----------------------------|
|               |             | 1            |                      | Reagent         | - 1                 | - 1             |                                                            |                             |
| Reagent ID    | Exp<br>Date | Prep<br>Date | Dilutant<br>Used     | Final<br>Volume | Reagent ID          | Volume<br>Added | Analyte                                                    | Concentration               |
|               |             |              |                      |                 |                     |                 | Perfluorodecane Sulfonic acid                              | 0.00964 ug/mL<br>0.01 ug/mL |
|               |             |              |                      |                 |                     |                 | (FFHpA) Perfluoroheptanesulfonic acid                      | 0.00952 ug/mL               |
|               |             |              |                      |                 |                     |                 | Perfluorohexanoic acid                                     | 0.01 ug/mL                  |
|               |             |              |                      |                 |                     |                 | Perfluorohexanesulfonic acid (PFHxS)                       | 0.0091 ug/mL                |
|               |             |              |                      |                 |                     |                 | Perfluorononanoic acid (PFNA)                              | 0.01 ug/mL                  |
|               |             |              |                      |                 |                     |                 | Perfluorooctanoic acid (PFOA)                              |                             |
|               |             |              |                      |                 |                     |                 | Perfluorononanesulfonic acid                               |                             |
|               |             |              |                      |                 |                     |                 | Perfluorooctanesulfonic acid (PFOS)                        | 0.00928 ug/mL               |
|               |             |              |                      |                 |                     |                 | Perfluorooctane Sulfonamide                                | 0.01 ug/mL                  |
|               |             |              |                      |                 |                     |                 | Perfluoropentanoic acid                                    | 0.01 ug/mL                  |
|               |             |              |                      |                 |                     |                 | Perfluoropentanesulfonic acid                              | 0.00938 ug/mL               |
|               |             |              |                      |                 |                     |                 | Perfluorotetradecanoic acid                                |                             |
|               |             |              |                      |                 |                     |                 | Perfluorotridecanoic acid                                  |                             |
|               |             | $\dashv$     |                      |                 |                     |                 | Perfluoroundecanoic acid                                   |                             |
| LCPFCSP_00148 | 11/18/18    | 05/17/18     | Methanol, Lot 090285 | 10 mL           | LC4:2FTS_00005      | 100 uL          | Sodium                                                     | 0.467 ug/mL                 |
|               |             |              |                      |                 |                     |                 | <pre>1H,1H,2H,2H-perfluorohexane<br/>sulfonate (4:2)</pre> |                             |
|               |             |              |                      |                 | LC6:2FTS 00007      | 100 uL          | Sodium                                                     | 0.474 ug/mL                 |
|               |             |              |                      |                 | 1                   |                 | 1H,1H,2H,2H-perfluorooctane sulfonate (6:2)                |                             |
|               |             |              |                      |                 | T.C8:2FTS 00007     | 100 11T.        | Sodium                                                     | 0.479 mg/mT,                |
|               |             |              |                      |                 |                     |                 | 1H, 1H, 2H, 2H-perfluorodecane sulfonate (8:2)             | )                           |
|               |             |              |                      |                 | LCbr-NEtFOSAA_00001 | 100 uL          | N-ethyl perfluorooctane<br>sulfonamidoacetic acid          | 0.5 ug/mL                   |
|               |             |              |                      |                 | LCbr-NMeFOSAA_00001 | 100 uL          | N-methyl perfluorooctane<br>sulfonamidoacetic acid         | 0.5 ug/mL                   |
|               |             |              |                      |                 | LCPFBA_00008        | 100 uL          | Perfluorobutyric acid                                      | 0.5 ug/mL                   |
|               |             |              |                      |                 | LCPFBS_00009        | 100 uL          | Perfluorobutanesulfonic acid                               | 0.442 ug/mL                 |
|               |             |              |                      | 1               | LCPFDA 00008        | 100 uL          | (FEBS) Perfluorodecanoic acid                              | 0.5 ug/mL                   |
|               |             |              |                      |                 | LCPFDOA 00008       | 100 uL          | Perfluorododecanoic acid                                   | 0.5 ug/mL                   |
|               |             |              |                      |                 | LCPFDS_00008        | 100 uL          | Perfluorodecane Sulfonic acid                              | 0.482 ug/mL                 |
|               |             |              |                      |                 | LCPFHpA_00011       | 100 uL          | Perfluoroheptanoic acid (PFHpA)                            | 0.5 ug/mL                   |
|               |             |              |                      |                 | LCPFHpSA 00003      | 100 uL          | Perfluoroheptanesulfonic acid                              | 0.476 ug/mL                 |
|               |             |              |                      | •               | LCPFHxA 00010       | 100 uL          | Perfluorohexanoic acid                                     | 0.5 ug/mL                   |
|               |             |              |                      |                 | LCPFHxS-br_00006    | 100 uL          | Perfluorohexanesulfonic acid (PFHxS)                       | 0.455 ug/mL                 |
|               |             |              |                      |                 | LCPFNA_00010        | 100 uL          | acid                                                       |                             |
|               |             |              |                      |                 |                     |                 |                                                            |                             |
|               |             |              |                      |                 |                     | 100 uL          | Periluorononanesultonic acid                               |                             |
|               |             |              |                      |                 | LCFFOA UUUII        | 100 uL          | Feriluorooctanoic acid (FFUA)                              |                             |
|               |             |              |                      |                 | TCFF08-Br_0000 /    | T0.0 0F         | Feriluorooctanesulionic acid (PFOS)                        | 0.464 ug/mL                 |
|               |             |              |                      |                 |                     |                 |                                                            |                             |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

|                     |             |            |                                         | , C                                                   | Parent Reagent         |                                                             |                        |
|---------------------|-------------|------------|-----------------------------------------|-------------------------------------------------------|------------------------|-------------------------------------------------------------|------------------------|
|                     | о<br>х<br>Б | Prep       | Dilutant                                | Final                                                 | Volume                 | 3.6                                                         |                        |
| Reagent ID          | Date        | Date       | Used                                    | Volume                                                | Reagent ID Added       | d Analyte                                                   | Concentration          |
|                     |             |            |                                         |                                                       | LCPFOSA 00013 100      | ul Perfluorooctane Sulfonamide                              | 0.5 ug/mL              |
|                     |             |            |                                         |                                                       | LCPFPeA_00008 100      | ul Perfluoropentanoic acid                                  | 0.5 ug/mL              |
|                     |             |            |                                         |                                                       |                        | ηΓ                                                          | 0.469 ug/mL            |
|                     |             |            |                                         |                                                       | 80000                  | ηΓ                                                          |                        |
|                     |             |            |                                         |                                                       | M 00008                | ηΓ                                                          | N                      |
|                     |             |            |                                         |                                                       | LCPFUdA_00008 100      | uL Perfluoroundecanoic acid                                 | 0.5 ug/mL              |
| LC4:2FTS_00005      | 12/12/21    |            | WELLINGTON, Lot 42FTS1216               |                                                       | (Purchased Reagent)    | Sodium 1H, 1H, 2H, 2H-perfluorohexane sulfonate (4:2)       | 46.7 ug/mL             |
| LC6:2FTS_00007      | 04/20/22    |            | WELLINGTON, Lot 62FTS0417               |                                                       | (Purchased Reagent)    | Sodium<br>1H,1H,2H,2H-perfluorooctane<br>sulfonate (6:2)    | 47.4 ug/mL             |
| LC8:2FTS_00007      | 12/12/21    |            | WELLINGTON, Lot 82FTS1216               |                                                       | (Purchased Reagent)    | Sodium<br>1H,1H,2H,2H-perfluorodecane<br>sulfonate (8:2)    | 47.9 ug/mL             |
| ICbr-NEtFOSAA_00001 | 01/17/23    | ME         | WELLINGTON, Lot brNEtFOSAA011           | 18                                                    | (Purchased Reagent)    | N-ethyl perfluorooctane sulfonamidoacetic acid              | 50 ug/mL               |
| ICbr-NMeFOSAA_00001 | 01/17/23    | ME         | WELLINGTON, Lot brNMeFOSAA0118          | 18                                                    | (Purchased Reagent)    | N-methyl perfluorooctane sulfonamidoacetic acid             | Tm/bn 05               |
| LCPFBA 00008        | 05/29/22    | Welli      | Wellington Laboratories, Lot PFB        | PFBA0517                                              | (Purchased Reagent)    | Perfluorobutyric acid                                       | 50 ug/mL               |
| ICPFBS_00009        | 09/21/22    | Wellin     | Lot                                     | LPFBS0917                                             | 1                      | Perfluorobutanesulfonic acid (PFBS)                         | 44.2 ug/mL             |
| LCPFDA 00008        | 05/29/22    | Welli      | Wellington Laboratories, Lot PFD        | PFDA0517                                              | (Purchased Reagent)    | Perfluorodecanoic acid                                      | 50 ug/mL               |
| LCPFDOA 00008       | 05/29/22    | Wellir     | Lot                                     | PFDoA0517                                             | 1                      | Perfluorododecanoic acid                                    |                        |
| LCPFDS_00008        | 11/08/22    | Wellir     | Lot                                     | DS1117                                                |                        | Perfluorodecane Sulfonic acid                               | 48.2 ug/mL             |
| ICPFHpA_00011       | 09/27/22    | Wellin     | Wellington Laboratories, Lot PFHp       | PFHpA0917                                             | (Purchased Reagent)    | Perfluoroheptanoic acid<br> (PFHpA)                         | 1m/bn 05               |
|                     | 09/01/22    | Wellin     |                                         | pS0817                                                | - 1                    | Perfluoroheptanesulfonic acid                               | 47.6 ug/mL             |
| LCPFHxA_00010       | 09/27/22    | Wellir     | , Lo                                    | <a0917< td=""><td>- 1</td><td></td><td></td></a0917<> | - 1                    |                                                             |                        |
| ICPFHxS-br_00006    | 01/04/22    | Welling    | ot                                      | brPFHxSK0117                                          |                        | fonic                                                       |                        |
| LCPFNA_00010        | 07/20/22    | Welli      | Wellington Laboratories, Lot PFN        | PFNA0717                                              | (Purchased Reagent)    | Perfluorononanoic acid (PFNA) Perfluorooctanoic acid (PFOA) | 50 ug/mL<br>0.05 ug/mL |
| LCPFNS 00003        | 09/27/22    | Wellir     | Wellington Laboratories, Lot LPFNS091   | NS0917                                                | (Purchased Reagent)    | fonic                                                       | 48 ug/mL               |
| LCPFOA_00011        | 09/27/22    | Welli      | Ι.                                      | PFOA0917                                              | 1                      | $\sim$                                                      |                        |
| LCPFOS-br_00007     | 01/12/22    | Welling    | Wellington Laboratories, Lot brPFOSK011 | OSK0117                                               | (Purchased Reagent)    | Perfluorooctanesulfonic acid (PFOS)                         | 46.4 ug/mL             |
| LCPFOSA 00013       | 09/01/22    | Wellir     | Wellington Laboratories, Lot FOSA0817I  | 40817I                                                | (Purchased Reagent)    | Perfluorooctane Sulfonamide                                 | 50 ug/mL               |
| ICPFPeA 00008       | 06/14/22    | Wellir     | Wellington Laboratories, Lot PFPeA0617  | SA0617                                                | (Purchased Reagent)    | Perfluoropentanoic acid                                     | 50 ug/mL               |
| LCPFPes_00003       | 01/11/22    | Wellington | Lot                                     | eS0117                                                |                        | Perfluoropentanesulfonic acid                               | 46.9 ug/mL             |
| LCPFTeDA_00008      | 09/30/21    | Wellin     | Wellington Laboratories, Lot PFTe       | PFTeDA0916                                            | (Purchased Reagent)    | Perfluorotetradecanoic acid                                 | 20 ng/mF               |
| LCPFTrDA_00008      | 05/02/22    | Wellin     | Wellington Laboratories, Lot PFTr       | PFTrDA0517                                            | (Purchased Reagent)    | Perfluorotridecanoic acid                                   | 20 ng/mF               |
| ICPFUdA 00008       | 10/18/21    | Wellir     | Wellington Laboratories, Lot PFUc       | PFUdA1016                                             | (Purchased Reagent)    | Perfluoroundecanoic acid                                    | 20 ng/mL               |
| LCPFC_LL2_00004     | 08/20/18    | 02/22/18   | 02/22/18 MeOH/H2O, Lot 090285           | 200 mL                                                | LCMPFC_ALL_SU_00041 10 | 10 mL d3-NMeFOSAA                                           |                        |
|                     |             |            |                                         |                                                       |                        | d5-NEtFOSAA                                                 | 2.5                    |
|                     |             |            |                                         |                                                       |                        | M2-6:2FTS                                                   | 375                    |
|                     |             |            |                                         |                                                       |                        | M2-8:2FTS                                                   |                        |
|                     |             |            |                                         |                                                       |                        | 13CZ-FFHXDA                                                 | 7.5 ng/mL              |
| _                   | _           |            | _                                       |                                                       | _                      | TO(4-F.O.                                                   | Till / Sir C • 7       |

Lab Name: TestAmerica Sacramento

SDG No.:

Job No.: 320-39023-1

| Ē             |             |              |                  | 4     | Parent Reagent | ٔ ۲             |                                |                 |
|---------------|-------------|--------------|------------------|-------|----------------|-----------------|--------------------------------|-----------------|
| Reagent ID Da | Exp<br>Date | Prep<br>Date | Dilutant<br>Used | Final | Reagent ID     | Volume<br>Added | Analyte                        | Concentration   |
|               |             |              |                  |       |                |                 | 13C2-PFTeDA                    | 2.5 ng/mL       |
|               |             |              |                  |       |                |                 | 13C4-PFHpA                     |                 |
|               |             |              |                  |       |                |                 | 13C5-PFPeA                     | 2.5 ng/mL       |
|               |             |              |                  |       |                |                 | 13C8 FOSA                      | 2.5 ng/mL       |
|               |             |              |                  |       |                |                 | 13C4 PFBA                      | 2.5 ng/mL       |
|               |             |              |                  |       |                |                 |                                | 2.325 ng/mL     |
|               |             |              |                  |       |                |                 | 13C2 PFDA                      | 2.5 ng/mL       |
|               |             |              |                  |       |                |                 |                                | 2.5 ng/mL       |
|               |             |              |                  |       |                |                 |                                |                 |
|               |             |              |                  |       |                |                 |                                | 2.365 ng/mL     |
|               |             |              |                  |       |                |                 |                                |                 |
|               |             |              |                  |       |                |                 |                                |                 |
|               |             |              |                  |       |                |                 | 13C4 PFOS                      | 2.39 ng/mL      |
|               |             |              |                  |       |                |                 | 13C2 PFUnA                     | 2.5 ng/mL       |
|               |             |              |                  |       | LCPFCSP_00136  | 100 uL          | Sodium                         | 0.0467 ng/mL    |
|               |             |              |                  |       |                |                 | IH, IH, ZH, ZH-periluoronexane |                 |
|               |             |              |                  |       |                |                 |                                | 0.0474 ng/mL    |
|               |             |              |                  |       |                |                 | 1H,1H,2H,2H-perfluorooctane    |                 |
|               |             |              |                  |       |                |                 | sulfonate (6:2)                |                 |
|               |             |              |                  |       |                |                 | Sodium                         | 0.0479 ng/mL    |
|               |             |              |                  |       |                |                 | 1H, 1H, 2H, 2H-perfluorodecane |                 |
|               |             |              |                  |       |                |                 | sulfonate (8:2)                |                 |
|               |             |              |                  |       |                |                 | N-ethyl perfluorooctane        | 0.05 ng/mL      |
|               |             |              |                  |       |                |                 | sulfonamidoacetic acid         |                 |
|               |             |              |                  |       |                |                 | N-methyl perfluorooctane       | 0.05 ng/mL      |
|               |             |              |                  |       |                |                 |                                |                 |
|               |             |              |                  |       |                |                 |                                |                 |
|               |             |              |                  |       |                |                 | Perfluorobutanesulfonic acid   | 0.0442 ng/mL    |
|               |             |              |                  |       |                |                 | (FFBS)                         |                 |
|               |             |              |                  |       |                |                 | Periluorodecanoic acid         |                 |
|               |             |              |                  |       |                |                 |                                | 1.00 ng/mī      |
|               |             |              |                  |       |                |                 | Dorfliovohontanoi a acia       | 0.0482 IIG/IIII |
|               |             |              |                  |       |                |                 | (PFHDA)                        |                 |
|               |             |              |                  |       |                |                 | Perfluoroheptanesulfonic acid  | 0.0476 ng/mL    |
|               |             |              |                  |       |                |                 |                                |                 |
|               |             |              |                  |       |                |                 | Perfluorohexanesulfonic acid   |                 |
|               |             |              |                  |       |                |                 | (PFHxS)                        |                 |
|               |             |              |                  |       |                |                 | Perfluorononanoic acid (PFNA)  | 0.05 ng/mL      |
|               |             |              |                  |       |                |                 | Perfluorononanesulfonic acid   | 0.048 ng/mL     |
|               |             |              |                  |       |                |                 | Perfluorooctanoic acid (PFOA)  | 0.05 ng/mL      |
|               |             |              |                  |       |                |                 | Perfluorooctanesulfonic acid   | 0.0464 ng/mL    |
|               |             |              |                  |       |                |                 | (PFOS)                         |                 |
|               |             |              |                  |       |                |                 | Perfluorooctane Sulfonamide    | 0.05 ng/mL      |
|               |             |              |                  |       |                |                 | Perfluoropentanoic acid        | 0.05 ng/mL      |
|               |             |              |                  |       |                |                 | Perfluoropentanesulfonic acid  | 0.0469 ng/mL    |
|               |             |              |                  |       |                |                 | Perfluorotetradecanoic acid    | 0.05 ng/mL      |
|               |             |              |                  |       |                |                 | Perfluorotridecanoic acid      | 0.05 ng/mI.     |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

| Company   Comp |                      |             |              |                             | 4            | Parent Reagent      | 1.)             |                                                                 |               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------|--------------|-----------------------------|--------------|---------------------|-----------------|-----------------------------------------------------------------|---------------|
| 08/20/18   02/20/18   button   1.0t Baker   200 mL LCd3-WReF0SBA_00006   200 uL d3-NBR50SBA_00006   200 uL d3-NBR50SBA_0006   200 uL d3-NBR50SBA_0006   20 |                      | Exp<br>Date | Prep<br>Date |                             | inal<br>inal |                     | Volume<br>Added | Analyte                                                         | Concentration |
| 0.0   0.720/19   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   |                      |             |              |                             |              |                     |                 |                                                                 |               |
| Control   Cont | .LCMPFC_ALL_SU_00041 | 08/20/18    | 1            | Lot Baker                   | mL           | LCd3-NMeFOSAA_00006 | 1               | d3-NMeFOSAA                                                     |               |
| Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |             |              | かつ O H # H                  |              | LCd5-NEtFOSAA 00006 |                 | _                                                               |               |
| TOWARD   T |                      |             |              |                             |              | LCM2-6:FTS 00006    |                 | +-                                                              |               |
| CONTRIBUTION   CONT |                      |             |              |                             | 1            | LCM2-8:2FTS 00008   |                 | +-                                                              |               |
| Continue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |             |              |                             | 1            | LCM2PFHxDA 00013    |                 | +-                                                              |               |
| Continue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |             |              |                             | 1            | LCM2PFOA 00008      |                 | _                                                               |               |
| TOWN TRANSPERSON TOWN TOWN TRANSPERSON TOWN TOWN TRANSPERSON TOWN TOWN TRANSPERSON TRANSPERSON TOWN TRANSPERSON TRANSPERSON TOWN TRANSPERSON TRANSPE |                      |             |              |                             | 1            | LCM2PFTeDA 00012    |                 | +                                                               |               |
| CAMPAND   CAMP |                      |             |              |                             |              | LCM4PFHPA 00012     |                 | -                                                               |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |             |              |                             |              | LCM5PFPEA 00013     |                 | _                                                               |               |
| CACRPERA 00015   200 ul 363-FERA 0.0066   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.0045   0.00 |                      |             |              |                             |              | LCM8FOSA 00016      |                 | +                                                               |               |
| CAMPERS 000105   200 uL 13C2 PEPDA 0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.0073   0.000   0.0073   0.000   0.0073   0.000   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073   0.0073  |                      |             |              |                             |              | LCMPFBA 00013       |                 | _                                                               |               |
| CAMPENS   COURT   LICKPENS   LICKPENS   COURT   LICKPENS   COURT   LICKPENS   LICKPENS   COURT   LICKPENS   LICKPENS |                      |             |              |                             |              |                     |                 | -                                                               |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |             |              |                             |              | LCMPFDA_00018       |                 | 13C2                                                            |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |             |              |                             |              | LCMPFDoA 00013      |                 | 13C2                                                            |               |
| CORPTON   CONTINUE   |                      |             |              |                             |              | LCMPFHxA_00019      |                 | 13C2                                                            |               |
| 17.08122   WELLINGTON, Lot d3NMePOSAA0517   LOCHPERA 00013   200 uL 1364 PPOA 0.0077   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.0577   0.05 |                      |             |              |                             |              | LCMPFHxS_00013      |                 | 1802                                                            |               |
| 1/09/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |             |              |                             |              | LCMPFNA 00013       |                 | 13C5                                                            |               |
| 1006   05/19/22   WELLINGTON, Lot d3NN&FOSAAO517   TOMPEDA 00014   200 ul 13C4 PPCS   0.0478   0.05     1007   1007   1007   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   |                      |             |              |                             |              |                     |                 | 13C4                                                            |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |             |              |                             | 1            | LCMPFOS 00025       |                 | 13C4                                                            | 1             |
| 10.08/22   WELLINGTON, Lot d3NMeFCSAA117   (Purchased Reagent)   d3-NMeFCSAA     0.05/17/22   WELLINGTON, Lot d3NMeFCSAA117   (Purchased Reagent)   d2-NMeFCSAA     0.07/17/22   WELLINGTON, Lot M32ETSO3/17   (Purchased Reagent)   M2-612FTS     0.07/105/22   WELLINGTON, Lot M32ETSO3/17   (Purchased Reagent)   M2-612FTS     0.07/13/22   WELLINGTON Laboratories, Lot M2PFPADA7/17   (Purchased Reagent)   J3C2-PFDA     0.07/13/22   WELLINGTON Laboratories, Lot M2PFPADA7/17   (Purchased Reagent)   J3C2-PFDA     0.07/20/22   WELLINGTON Laboratories, Lot M3PFPADA7/17   (Purchased Reagent)   J3C3-PFPBA     0.07/20/22   WELLINGTON Laboratories, Lot M3PFPADA7/17   (Purchased Reagent)   J3C3-PFPBA     0.07/20/22   WELLINGTON Laboratories, Lot M3PFPADA7/17   (Purchased Reagent)   J3C3-PFPBA     0.07/20/22   WELLINGTON Laboratories, Lot M3PPBADA7/17   (Purchased Reagent)   J3C3-PFPBA     0.07/20/22   WELLINGTON Laboratories, Lot M3PPBADA7/17   (Purchased Reagent)   J3C3-PFBA     0.07/20/22   WELLINGTON Laboratories, Lot M3PPBADA7/116   (Purchased Reagent)   J3C3-PFBA     0.07/20/22   WELLINGTON Laboratories, Lot M3PPBADA7/116   (Purchased Reagent)   J3C3-PFBA     0.07/20/22   WELLINGTON LABORATORIES, LOT |                      |             |              |                             | 1            | LCMPFUdA 00014      |                 | +                                                               |               |
| 11/08/22   WELLINGTON, Lot d5NEFEOSAA117   (Purchased Reagent)   M2-6:2ETS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LCd3-NMeFOSAA 00006  | 05/19/22    | WELL         | ١.                          |              | ರ                   | nt)             | d3-NMeFOSAA                                                     | 50 ug/mL      |
| 02/17/22   WELLINGTON Lot M26FES017   (Purchased Reagent)   M2-6:2FTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LCd5-NEtFOSAA 00006  | _           | WELL         | Lot d5NEtF(                 |              |                     | nt)             | d5-NEtFOSAA                                                     | 50 ug/mL      |
| 1130/22   Wellington Laboratories, Lot M2PFRADA17   (Purchased Reagent)   M2-8:2FFRADA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LCM2-6:FTS 00006     | 02/11/22    | ME           | LLINGTON, Lot M262FTS0217   |              |                     | nt)             | M2-6:2FTS                                                       |               |
| 1302   Per   1302   Per   1302   Per   Per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LCM2-8:2FTS 00008    | 07/05/22    | ME           | LLINGTON, Lot M282FTS0717   |              | 1                   | nt)             | M2-8:2FTS                                                       |               |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LCM2PFHxDA_00013     | 07/13/22    | Wellingtor   | Lot                         | A0717        |                     | nt)             | 13C2-PFHxDA                                                     |               |
| 1/30/22   Wellington Laboratories, Lot M2PFFeDAll17   (Purchased Reagent)   13C4-PFFDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LCM2PFOA 00008       | 02/12/21    | Wellingto    | on Laboratories, Lot M2PFO? | 0216         |                     | nt)             | 13C2-PFOA                                                       | 50 ug/mL      |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LCM2PFTeDA 00012     | 11/30/22    | Wellingtor   | n Laboratories, Lot M2PFTeI | A1117        |                     | nt)             | 13C2-PFTeDA                                                     | 50 ug/mL      |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LCM4PFHPA 00012      | 05/03/22    | Wellingto    | ı                           | A0517        | 1                   | nt)             | 13C4-PFHpA                                                      |               |
| 10/11/22   Wellington Laboratories, Lot MPFBA0417   (Purchased Reagent)   13C8 FOSA     10/12/22   Wellington Laboratories, Lot MPFBA0417   (Purchased Reagent)   13C4 FPBA     13C4 PEPBA   13C2 PFBA     13C4 PEPBA   13C2 PFBA     13C5 4/22   Wellington Laboratories, Lot MPFBA017   (Purchased Reagent)   13C2 PFDA     10/27/22   Wellington Laboratories, Lot MPFHXA1017   (Purchased Reagent)   13C2 FFHXA     10/27/22   Wellington Laboratories, Lot MPFHXA1017   (Purchased Reagent)   13C2 FFHXA     10/17/22   Wellington Laboratories, Lot MPFHXA017   (Purchased Reagent)   13C4 PFDA     10/17/22   Wellington Laboratories, Lot MPFHXA1017   (Purchased Reagent)   13C5 FFNA     10/17/22   Wellington Laboratories, Lot MPFDA1017   (Purchased Reagent)   13C4 PFDA     10/17/22   Wellington Laboratories, Lot MPFDA1017   (Purchased Reagent)   13C2 FFUA     10/17/22   Wellington Laboratories, Lot MPFDA1017   (Purchased Reagent)   13C2 FFUA     11/22/21   Wellington Laboratories, Lot MPFUAN116   (Purchased Reagent)   13C2 FFUA     11/22/21   Wellington Laboratories, Lot MPFUAN116   (Purchased Reagent)   13C2 FFUA     11/22/21   Wellington Laboratories, Lot MPFUAN116   (Purchased Reagent)   14/14/2H-Pperfluorobexane     11/22/21   Wellington Laboratories, Lot MPFUAN14   (Purchased Reagent)   14/14/2H-Pperfluorobexane   14/14/2H-Pperfluorobexane   14/14/2H-Pperfluorobexane   14/14/2H-Pperfluorobexane   14/14/2H-Pperflu | LCM5PFPEA_00013      | 07/20/22    | Wellingto    | Lot                         | A0717        |                     | nt)             | 13C5-PFPeA                                                      |               |
| 04/12/22         Wellington Laboratories, Lot MPFBA0417         (Purchased Reagent)         13C4 PFBA           05/23/22         Wellington Laboratories, Lot MPFDA0717         (Purchased Reagent)         13C3-PFBS           07/13/22         Wellington Laboratories, Lot MPFDA0517         (Purchased Reagent)         13C2 PFDAA           05/23/22         Wellington Laboratories, Lot MPFHXS0217         (Purchased Reagent)         13C2 PFDAA           09/30/21         Wellington Laboratories, Lot MPFHXS0217         (Purchased Reagent)         13C5 PFNAA           09/30/21         Wellington Laboratories, Lot MPFA0106         (Purchased Reagent)         13C5 PFNAA           10/17/22         Wellington Laboratories, Lot MPFA01017         (Purchased Reagent)         13C4 PFOA           10/17/22         Wellington Laboratories, Lot MPFA01017         (Purchased Reagent)         13C4 PFOA           10/17/22         Wellington Laboratories, Lot MPFOA1017         (Purchased Reagent)         13C4 PFOA           11/22/21         Wellington Laboratories, Lot MPFUGA1116         (Purchased Reagent)         13C4 PFOA           11/22/21         Wellington Laboratories, Lot MPFUGA1116         (Purchased Reagent)         13C4 PFOA           08/20/18         Oz/20/18         Methanol, Lot 090285         1000 uL LCPFCSP_00132         1 mL Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LCM8FOSA_00016       | 10/11/22    | Wellingto    | on Laboratories, Lot M8FOSA | 1017I        |                     | nt)             | 13C8 FOSA                                                       |               |
| 05/24/22   Wellington Laboratories, Lot MPFDA0717   (Purchased Reagent)   13C3-PFBS     07/13/22   Wellington Laboratories, Lot MPFDA0717   (Purchased Reagent)   13C2 PFDA     05/23/22   Wellington Laboratories, Lot MPFHA1017   (Purchased Reagent)   13C2 PFHXA     05/23/22   Wellington Laboratories, Lot MPFHA3017   (Purchased Reagent)   13C2 PFHXA     05/21/7/22   Wellington Laboratories, Lot MPFNA0916   (Purchased Reagent)   13C3 PFNA     10/17/22   Wellington Laboratories, Lot MPFOA1017   (Purchased Reagent)   13C4 PFOA     10/17/22   Wellington Laboratories, Lot MPFOA1017   (Purchased Reagent)   13C4 PFOA     10/17/22   Wellington Laboratories, Lot MPFOA1017   (Purchased Reagent)   13C4 PFOA     11/22/21   Wellington Laboratories, Lot MPFOA1017   (Purchased Reagent)   13C4 PFOA     11/22/21   Wellington Laboratories, Lot MPFOA1017   (Purchased Reagent)   13C4 PFOA     11/22/21   Wellington Laboratories, Lot MPFOA1016   (Purchased Reagent)   13C4 PFOA     11/22/21   Wellington Laboratories, Lot MPFOA1016   (Purchased Reagent)   13C4 PFOA     11/22/21   Wellington Laboratories, Lot MPFOA1016   (Purchased Reagent)   13C4 PFOA     11/22/21   Wellington Laboratories, Lot MPFOA1016   (Purchased Reagent)   13C4 PFOA     11/22/21   Wellington Laboratories, Lot MPFOA1016   (Purchased Reagent)   13C4 PFOA     11/22/21   Wellington Laboratories, Lot MPFOA1016   (Purchased Reagent)   13C4 PFOA     11/22/21   Wellington Laboratories, Lot MPFOA1016   (Purchased Reagent)   13C4 PFOA     11/22/21   Wellington Laboratories, Lot MPFOA1016   (Purchased Reagent)   13C4 PFOA     11/22/21   Wellington Laboratories, Lot MPFOA1016   (Purchased Reagent)   13C4 PFOA     11/22/21   Wellington Laboratories, Lot MPFOA1016   (Purchased Reagent)   13C4 PFOA     11/22/21   Wellington Laboratories, Lot MPFOA1017   (Purchased Reagent)   13C4 PFOA     11/22/21   Wellington Laboratories, Lot MPFOA1017   (Purchased Reagent)   13C4 PFOA     11/22/21   Wellington Laboratories, Lot MPFOA1017   (Purchased Reagent)   13C4 PFOA     11/22/21   Welli | LCMPFBA_00013        | 04/12/22    | Wellingt     | on Laboratories, Lot MPFBA  | 0417         |                     | nt)             | 13C4 PFBA                                                       |               |
| 07/13/22   Wellington Laboratories, Lot MPFDA0717   (Purchased Reagent)   13C2 PFDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LCMPFBS 00006        | 05/24/22    | Wellingto    |                             | :0815        |                     | nt)             | 13C3-PFBS                                                       |               |
| 1322 PFD0A   1323 PFD0A   14,14,24,24-perfluoroctane   14,14, | LCMPFDA_00018        | 07/13/22    | Wellingt     |                             | 0717         | - 1                 | nt)             |                                                                 |               |
| 10/27/22   Wellington Laboratories, Lot MPFHxA1017   (Purchased Reagent)   13C2 PFHxA   1802 PFHxS   1802 P | LCMPFDoA_00013       | 05/23/22    | Wellingto    |                             | 0517         |                     | nt)             |                                                                 |               |
| 02/17/22   Wellington Laboratories, Lot MPFHxSO217   (Purchased Reagent)   1802 PFHxS     09/30/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LCMPFHxA_00019       | 10/27/22    | Wellingto    |                             | 1017         |                     | nt)             |                                                                 |               |
| 1302 PFNA   1305 PFNA   1305 PFNA   1305 PFNA   1305 PFNA   1305 PFNA   1307 | LCMPFHxS_00013       | 02/11/22    | Wellingto    |                             | :0217        |                     | nt)             | 1802 PFHxS                                                      |               |
| 10/17/22   Wellington Laboratories, Lot MPFOA1017   (Purchased Reagent)   13C4 PFOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LCMPFNA_00013        | 09/30/21    | Wellingt     |                             | 0916         |                     | nt)             | 13C5 PFNA                                                       |               |
| 10/17/22   Wellington Laboratories, Lot MPFOS1017   (Purchased Reagent)   13C4 PFOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LCMPFOA_00017        | 10/17/22    | Wellingt     |                             | 1017         |                     | nt)             | 13C4 PFOA                                                       |               |
| 11/22/21   Wellington Laboratories, Lot MPFUGA1116   (Purchased Reagent)   13C2 PFUnA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LCMPFOS_00025        | 10/17/22    | Wellingt     |                             | 1017         |                     | nt)             |                                                                 | ∞.            |
| 08/20/18   02/20/18   Methanol, Lot 090285   10000 uL   LCPFCSP_00132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LCMPFUda_00014       | 11/22/21    | Wellingto    | MPF                         |              | eq                  | nt)             |                                                                 |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .LCPFCSP_00136       | 08/20/18    | 02/20/18     |                             |              | LCPFCSP_00132       | 1 mL            |                                                                 |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |             |              |                             |              |                     |                 | <pre>LH, LH, ZH, ZH-pertluoronexane<br/>  sulfonate (4:2)</pre> |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |             |              |                             |              |                     |                 | Sodium                                                          | 0.0948 ug/mL  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |             |              |                             |              |                     |                 | 1H, 1H, 2H, 2H-perfluorooctane                                  | 1             |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

| 03 03 03 03 00 00 00 00 00 00 00 00 00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Readent ID                            | Volume<br>Added Analyte                                         |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------|---------------|
| 1D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Reagent ID                            |                                                                 |               |
| 08/20/18 02/20/18 Methanol, Lot 090285 10000 ul LC4:2FTS_00003  LC6:2FTS_00003  LC8:2FTS_00004  LCN-EEFOSAA_00005  LCN-PEFDA_00005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                     |                                                                 | Concentration |
| 08/20/16 02/20/18 Methanol, Lot 090285 10000 uL LC4:2FTS_00003 LC6:2FTS_00003 LC8:2FTS_00003 LCN-EFPOSAA_00005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | Sodium 1H,1H,2H,2H-perfluorodecane                              | 0.0958 ug/mL  |
| 08/20/18   02/20/18   Methanol, Lot 090285   10000 ul   LC4:2FTS_00003   LC6:2FTS_00003   LC8:2FTS_00003   LC8:2FTS_00003   LC8:2FTS_00004   LCN-EtFOSAA_00005   LCN-E |                                       | Sulformer (0.2) N-ethyl perfluorooctane sulfonamidoacetic acid  | 0.1 ug/mL     |
| 08/20/18 02/20/18 Methanol, Lot 090285 10000 uL LC4:2FTS_00003  LC6:2FTS_00003  LC8:2FTS_00003  LCN-EtFOSAA_00005  TOPERA 00007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | N-methyl perfluorooctane                                        | 0.1 ug/mL     |
| 08/20/18 02/20/18 Methanol, Lot 090285 10000 uL LC4:2FTS_00003 LC6:2FTS_00003 LC8:2FTS_00003 LC8:2FTS_00004 LCN-EtFOSAA_00005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | Perfluorobutyric acid                                           | 0.1 ug/mL     |
| 08/20/18 02/20/18 Methanol, Lot 090285 10000 uL LC4:2FTS_00003 LC6:2FTS_00003 LC8:2FTS_00003 LC8:2FTS_00004 LCN-EtFOSAA_00005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | Perfluorobutanesulfonic acid                                    | 0.0884 ug/mL  |
| 08/20/18 02/20/18 Methanol, Lot 090285 10000 uL LC4:2FTS_00003  LC6:2FTS_00003  LC8:2FTS_00003  LCN-EtFOSAA_00004  LCN-EtFOSAA_00005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | (FFBS) Perfluorodecanoic acid                                   | 0.1 ug/mL     |
| 08/20/18 02/20/18 Methanol, Lot 090285 10000 uL LC4:2FTS_00003  LC6:2FTS_00003  LC8:2FTS_00003  LCN-EFFOSAA_00005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | Perfluorododecanoic acid                                        |               |
| 08/20/18 02/20/18 Methanol, Lot 090285 10000 uL LC4:2FTS_00003 LC6:2FTS_00003 LC8:2FTS_00003 LCN-EtFOSAA_00005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | Perfluorodecane Sulfonic acid                                   |               |
| 08/20/18 02/20/18 Methanol, Lot 090285 10000 uL LC4:2FTS_00003  LC6:2FTS_00003  LC8:2FTS_00003  LCN-EtFOSAA_00004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | Perfluoroheptanoic acid<br>(PFHpA)                              | 0.1 ug/mL     |
| 08/20/18 02/20/18 Methanol, Lot 090285 10000 uL LC4:2FTS_00003  LC6:2FTS_00003  LC8:2FTS_00003  LCN-EFFOSAA_00005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | Perfluoroheptanesulfonic acid                                   |               |
| 08/20/18 02/20/18 Methanol, Lot 090285 10000 uL LC4:2FTS_00003  LC6:2FTS_00003  LC8:2FTS_00003  LCN-EtFOSAA_00004  LCN-MeFOSAA_00005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                                                                 |               |
| 08/20/18 02/20/18 Methanol, Lot 090285 10000 uL LC4:2FTS_00003  LC6:2FTS_00003  LC8:2FTS_00003  LCN-EtFOSAA_00005  LCN-MeFOSAA_00005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | Perfluorohexanesulfonic acid (PFH*S)                            | 0.091 ug/mL   |
| 08/20/18 02/20/18 Methanol, Lot 090285 10000 uL LC4:2FTS_00003  LC6:2FTS_00003  LC8:2FTS_00003  LCN-EtFOSAA_00005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | Perfluorononanoic acid (PFNA)  Derfluorononanesulfonic acid     | 0.1 ug/mL     |
| 08/20/18 02/20/18 Methanol, Lot 090285 10000 uL LC4:2FTS_00003 LC6:2FTS_00003 LC8:2FTS_00003 LCN-EtFOSAA_00004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                                                                 | 0.00 ug/mL    |
| 08/20/18 02/20/18 Methanol, Lot 090285 10000 uL LC4:2FTS_00003  LC6:2FTS_00003  LC8:2FTS_00003  LCN-EtFOSAA_00004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | Lfonic                                                          |               |
| 08/20/18 02/20/18 Methanol, Lot 090285 10000 uL LC4:2FTS_00003  LC6:2FTS_00003  LC8:2FTS_00003  LC8:2FTS_00003  LCN-EtFOSAA_00005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | (PFOS)                                                          |               |
| 08/20/18 02/20/18 Methanol, Lot 090285 10000 uL LC4:2FTS_00003  LC6:2FTS_00003  LC8:2FTS_00003  LCN-EtFOSAA_00005  LCN-MeFOSAA_00005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | Perfluorooctane Sulfonamide                                     |               |
| 08/20/18 02/20/18 Methanol, Lot 090285 10000 uL LC4:2FTS_00003  LC6:2FTS_00003  LC8:2FTS_00003  LCN-EtFOSAA_00005  LCN-MeFOSAA_00005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | Perfluoropentanoic acid                                         | - 1           |
| 08/20/18 Methanol, Lot 090285 10000 uL LC4:2FTS_00003  LC6:2FTS_00003  LC8:2FTS_00003  LC8:2FTS_00003  LCN-EtFOSAA_00005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | Perfluoropentanesulfonic acid                                   |               |
| 08/20/18 02/20/18 Methanol, Lot 090285 10000 uL LC4:2FTS_00003  LC6:2FTS_00003  LC8:2FTS_00003  LCN-EtFOSAA_00005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | Perfluorotetradecanoic acid                                     |               |
| 08/20/18 Methanol, Lot 090285 10000 uL LC4:2FTS_00003  LC6:2FTS_00003  LC8:2FTS_00003  LCN-EtFOSAA_00005  LCN-MeFOSAA_00005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | Perfluorotridecanoic acid                                       | 0.1 ug/mL     |
| US/20/18 Wethanol, Lot U90285 10000 ull LC4:ZFTS_00003  LC6:ZFTS_00003  LC8:ZFTS_00003  LCN-EtFOSAA_00005  LCN-MeFOSAA_00005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C C C C C C C C C C C C C C C C C C C | F                                                               | 1.0           |
| 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ur   LC4:2FTS_00003                   | 200 uL Sodium<br>1H,1H,2H,2H-perfluorohexane<br>sulfonate (4:2) | 0.934 ug/mL   |
| 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | 200 uL Sodium<br>1H,1H,2H,2H-perfluorooctane                    | 0.948 ug/mL   |
| 000004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                                                 |               |
| 000004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | 200 uL Sodium<br>1H,1H,2H,2H-perfluorodecane                    | 0.958 ug/mL   |
| 00004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | sulfonat                                                        |               |
| 00005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | ηŢ                                                              | 1 ug/mL       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 200 uL N-methyl perfluorooctane sulfonamidoacetic acid          | 1 ug/mL       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LCPFBA 00007 2                        |                                                                 | 1 ug/mL       |
| LCPFBS_00008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 200 uL Perfluorobutanesulfonic acid                             | 0.884 ug/mL   |
| TOPEDS OUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 200 iit. Derflingrodecandig acid                                | 1 11Cr/mT.    |
| α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | 3 5                                                             |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 2 5                                                             | 0 964 119/mI. |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

|                                         |             |            |                                          | Parent           | Readent             |                                                    |               |
|-----------------------------------------|-------------|------------|------------------------------------------|------------------|---------------------|----------------------------------------------------|---------------|
|                                         | C<br>X<br>E | ٦<br>٢     | Reagent Rinal                            |                  |                     | a                                                  |               |
| Reagent ID                              | Date        | Date       |                                          | Reagent I        | Д                   | Analyte                                            | Concentration |
|                                         |             |            |                                          | LCPFHpA_00008    | 200                 | uL Perfluoroheptanoic acid (PFHpA)                 | 1 ug/mL       |
|                                         |             |            |                                          | LCPFHpSA_00003   | 200                 | uL Perfluoroheptanesulfonic acid                   | 0.952 ug/mL   |
|                                         |             |            |                                          | LCPFHxA_00007    |                     | ul Perfluorohexanoic acid                          | 1 ug/mL       |
|                                         |             |            |                                          | LCPFHxS-br_00004 | 200                 | uL Perfluorohexanesulfonic acid (PFHxS)            | 0.91 ug/mL    |
|                                         |             |            |                                          | LCPFNA 00009     | 200 1               | ul Perfluorononanoic acid (PFNA)                   | 1 ug/mL       |
|                                         |             |            |                                          | LCPFNS_00003     | 1                   | uL Perfluorononanesulfonic acid                    | 0.96 ug/mL    |
|                                         |             |            |                                          | LCPFOA 00009     | 200                 | uL Perfluorooctanoic acid (PFOA)                   | 1 ug/mL       |
|                                         |             |            |                                          | LCPFOS-br_00004  | 200                 | uL Perfluorooctanesulfonic acid (PFOS)             | 0.928 ug/mL   |
|                                         |             |            |                                          | LCPFOSA 00010    | 200 1               | ul Perfluorooctane Sulfonamide                     | 1 ug/mL       |
|                                         |             |            |                                          | LCPFPeA 00007    |                     |                                                    | 1 ug/mL       |
|                                         |             |            |                                          | LCPFPes 00003    | 200                 |                                                    | 0.938 ug/mL   |
|                                         |             |            |                                          |                  | 200                 |                                                    | l ug/mL       |
|                                         |             |            |                                          | LCPFTTDA 00006   | 200                 | ul Pertluorotridecanoic acid                       | J ug/mL       |
| SUUUU SHAC. NJI                         | 10/10/01    | ME         | WEITTNEEDN ICT ACETS 1016                | 11.5             | 2007                | -                                                  | 4             |
|                                         | 77 / 77     |            |                                          | יונים (יונים)    |                     | 1H,1H,2H,2H-perfluorohexane sulfonate (4:2)        |               |
| LC6:2FTS_00003                          | 06/25/21    | WE         | WELLINGTON, Lot 62FTS0616                | (Purchased       | ed Reagent)         | 2H-                                                | 47.4 ug/mL    |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |             |            |                                          |                  |                     | sulfonate (6:2)                                    | -             |
| LC8:2FTS_00003                          | 08/22/21    | WE         | WELLINGTON, Lot 82FTS0816                | (Purchased       | ed Reagent)         | Sodium 1H,1H,2H,2H-perfluorodecane sulfonate (8:2) | 47.9 ug/mL    |
| LCN-EtFOSAA_00004                       | 09/30/21    | MEL        | WELLINGTON, Lot NEtFOSAA0916             | (Purchased       | ed Reagent)         | N-ethyl perfluorooctane                            | 50 ug/mL      |
| 10000 K K DOE - 3/4 T/40 H              | 0,00        | 1000       | F                                        |                  | - 1                 | Sulfoliamitadacetic acid                           | F/            |
| LCN-Merosaa_00005                       | 10/17/21    | THM<br>THM | OSAA                                     | (Purchased       |                     | N-methyl periluorooctane<br>sulfonamidoacetic acid |               |
| LCPFBA_00007                            | 05/27/21    | Wellingt   | Lot                                      |                  | - 1                 | Perfluorobutyric acid                              |               |
| LCPFBS_00008                            | 03/15/21    | Wellingt   | Wellington Laboratories, Lot LPFBS0316   |                  |                     | Perfluorobutanesulfonic acid (PFBS)                | 44.2 ug/mL    |
| LCPFDA_00008                            | _           | Wellingt   | Lot                                      | (Purchased       | ed Reagent)         | Perfluorodecanoic acid                             | 50 ug/mL      |
| LCPFDoA_00008                           | 05/29/22    | Wellingt   |                                          |                  |                     | Perfluorododecanoic acid                           |               |
| ICPFDSA 00002                           | 05/24/21    | Wellingt   |                                          |                  | ed Reagent)         | Perfluorodecane Sulfonic acid                      | 48.2 ug/mL    |
| LCPFHpA_00008                           | 12/02/21    | Wellingt   | Wellington Laboratories, Lot PFHpA1216   |                  |                     | Perfluoroheptanoic acid<br>(PFHpA)                 | 50 ug/mL      |
| LCPFHpSA_00003                          | 09/01/22    | Wellingto  | Lot :                                    | 7   (Purchased   |                     | Perfluoroheptanesulfonic acid                      | 47.6 ug/mL    |
| LCPFHxA_00007                           | 12/22/20    | Wellingt   | Wellington Laboratories, Lot PFHxA1215   | (Purchased       |                     | Perfluorohexanoic acid                             | 50 ug/mL      |
| LCPFHxS-br_00004                        | 07/03/20    | Wellingtor | Wellington Laboratories, Lot brPFHxSK061 | (Purchased       | ed Reagent)         | Perfluorohexanesulfonic acid (PFHxS)               | 45.5 ug/mL    |
| ICPFNA_00009                            | 07/20/22    | Wellingt   | Wellington Laboratories, Lot PFNA0717    | (Purchased       |                     | Perfluorononanoic acid (PFNA)                      | 50 ug/mL      |
| LCPFNS_00003                            | 09/27/22    | Wellingt   | Wellington Laboratories, Lot LPFNS0917   | (Purchased       |                     | Perfluorononanesulfonic acid                       | 48 ug/mL      |
| ICPFOA_00009                            | 09/27/22    | Wellingt   | Wellington Laboratories, Lot PFOA0917    | (Purchased       |                     | Perfluorooctanoic acid (PFOA)                      | 50 ug/mL      |
| ICPFOS-br_00004                         | 10/14/20    | Wellingto  | Wellington Laboratories, Lot brPFOSK101  | .5 (Purchased    | ed Reagent)         | Perfluorooctanesulfonic acid (PFOS)                | 46.4 ug/mL    |
| ICPFOSA 00010                           | 09/30/21    | Wellingt   |                                          |                  | ed Reagent)         | Perfluorooctane Sulfonamide                        | 50 ug/mL      |
| ICPFPeA_00007                           | 05/31/21    | Wellingt   | Wellington Laboratories, Lot PFPeA0516   |                  | (Purchased Reagent) | Perfluoropentanoic acid                            | 50 ug/mL      |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

SDG No.:

|                            | Concentration    | 46.9 ug/mL                    |                   | 50 ug/mL                                | 20 ng/mL                 | 2.5 ng/mL                       |             |           | 2.395 ng/mL | 2.5 ng/mL   | 2.5 ng/mL |             |            | 2.5 ng/mL  |           |           | 2.5 ng/mL |            | 2.5 ng/mL | 2.5 ng/mL | 2.39 ng/mL | 2.5 ng/mL  | 0.0467 ng/mL          |                                                            | 0.0474 ng/mL                                       | 0.0479 ng/mL |                                                | 0.05 ng/mL                                        | 0.05 ng/mL               | 0 05 ng/mī.           |                              | - 1 |                          | 0.0482 ng/mL                  | 0.05 ng/mL                         | 0.0476 ng/mL                  | 0.05 ng/mL | 0.0455 ng/mL                         |
|----------------------------|------------------|-------------------------------|-------------------|-----------------------------------------|--------------------------|---------------------------------|-------------|-----------|-------------|-------------|-----------|-------------|------------|------------|-----------|-----------|-----------|------------|-----------|-----------|------------|------------|-----------------------|------------------------------------------------------------|----------------------------------------------------|--------------|------------------------------------------------|---------------------------------------------------|--------------------------|-----------------------|------------------------------|-----|--------------------------|-------------------------------|------------------------------------|-------------------------------|------------|--------------------------------------|
|                            | Analyte          | Perfluoropentanesulfonic acid | ijd               | Perfluorotridecanoic acid               | Perfluoroundecanoic acid | d3-NMeFOSAA                     | d5-NEtFOSAA | M2-6:2FTS | M2-8:2FTS   | 13C2-PFHxDA | 13C2-PFOA | 13C2-PFTeDA | 13C4-PFHpA | 1300-FFFEE | 1300 FOSA | 13C2 PFDA |           | 1802 PFHxS | 13C5 PFNA | 13C4 PFOA | 13C4 PFOS  | 13C2 PFUnA | Sodium                | <pre>1H,1H,2H,2H-perfluorohexane<br/>sulfonate (4:2)</pre> | Sodium 1H,1H,2H,2H-perfluorooctane sulfonate (6.2) | Sodium       | 1H, 1H, 2H, 2H-perfluorodecane sulfonate (8:2) | N-ethyl perfluorooctane<br>sulfonamidoacetic acid | N-methyl perfluorooctane | Perfluorobuturic acid | Perfluorobutanesulfonic acid |     | Perfluorododecanoic acid | Perfluorodecane Sulfonic acid | Perfluoroheptanoic acid<br>(PFHpA) | Perfluoroheptanesulfonic acid |            | Periluoronexanesulionic acid (PFHxS) |
| Parent Reagent             | Reagent ID Added | (Purchased Reagent)           |                   | (Purchased Reagent)                     | (Purchased Reagent)      | LCMPFC ALL SU 00075   10 mL     | <br> <br>   |           |             |             |           |             |            |            |           |           |           |            |           |           |            |            | LCPFCSP_00151 1000 uL |                                                            |                                                    |              |                                                |                                                   |                          |                       |                              |     |                          |                               |                                    |                               |            |                                      |
| ()<br>()<br>()<br>()<br>() | Final<br>Volume  | LPFPeS0117                    | PFTeDA1215        | :DA0216                                 | PFUdA1016                | 200 mL I                        |             |           |             |             |           |             |            |            |           |           |           |            |           |           |            |            | H                     |                                                            |                                                    |              |                                                |                                                   |                          |                       |                              |     |                          |                               |                                    |                               |            |                                      |
|                            | Dilutant<br>Used | Laboratories, Lot             | Laboratories, Lot | Wellington Laboratories, Lot PFTrDA0216 | , Lot                    | 06/05/18   MeOH/H2O, Lot 090285 |             |           |             |             |           |             |            |            |           |           |           |            |           |           |            |            |                       |                                                            |                                                    |              |                                                |                                                   |                          |                       |                              |     |                          |                               |                                    |                               |            |                                      |
|                            | Prep<br>Date     | Wellington                    | Wellington        | Wellingt                                | Wellingt                 | 06/05/18                        |             |           |             |             |           |             |            |            |           |           |           |            |           |           |            |            |                       |                                                            |                                                    |              |                                                |                                                   |                          |                       |                              |     |                          |                               |                                    |                               |            |                                      |
|                            | Exp<br>Date      | 01/11/22                      | 12/09/20          | 02/12/21                                | 10/18/21                 | 11/18/18                        |             |           |             |             |           |             |            |            |           |           |           |            |           |           |            |            |                       |                                                            |                                                    |              |                                                |                                                   |                          |                       |                              |     |                          |                               |                                    |                               |            |                                      |
|                            | Reagent ID       | LCPFPeS 00003                 | LCPFTeDA 00006    | LCPFTrDA 00006                          | LCPFUda 00007            | LCPFC LL2 00005                 | I<br>I      |           |             |             |           |             |            |            |           |           |           |            |           |           |            |            |                       |                                                            |                                                    |              |                                                |                                                   |                          |                       |                              |     |                          |                               |                                    |                               |            |                                      |

#### Page 185 of 3863

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

|                      |             |              |                                          |                  | Parent Reagent      | ц.     |                               |               |
|----------------------|-------------|--------------|------------------------------------------|------------------|---------------------|--------|-------------------------------|---------------|
|                      | ŗ           | ſ            |                                          | Reagent          |                     | - 1    |                               |               |
| Reagent ID           | Exp<br>Date | Prep<br>Date | Dilutant<br>Used                         | Volume           | Reagent ID          | Volume | Analyte                       | Concentration |
|                      |             |              |                                          |                  |                     |        | Perfluorononanoic acid (PFNA) | 0.05 ng/mL    |
|                      |             |              |                                          |                  |                     |        | Perfluorooctanoic acid (PFOA) | 0.05005 ng/mL |
|                      |             |              |                                          |                  |                     |        | Perfluorononanesulfonic acid  |               |
|                      |             |              |                                          |                  |                     |        |                               |               |
|                      |             |              |                                          |                  |                     |        | (PFOS)                        |               |
|                      |             |              |                                          |                  |                     |        | Perfluorooctane Sulfonamide   | 0.05 ng/mL    |
|                      |             |              |                                          |                  |                     |        | Perfluoropentanoic acid       | 0.05 ng/mL    |
|                      |             |              |                                          |                  |                     |        | Perfluoropentanesulfonic acid | 0.0469 ng/mL  |
|                      |             |              |                                          |                  |                     |        | Perfluorotetradecanoic acid   | 0.05 ng/mL    |
|                      |             |              |                                          |                  |                     |        | Perfluorotridecanoic acid     | 0.05 ng/mL    |
|                      |             | -            |                                          |                  |                     |        | Perfluoroundecanoic acid      | 0.05 ng/mL    |
| .LCMPFC_ALL_SU_00075 | 12/05/18    | 06/05/18 Met | Methanol, Lot Baker                      | 200 mL           | LCd3-NMeFOSAA_00008 | 200 uL | d3-NMeFOSAA                   | 0.05 ug/mL    |
|                      |             | 1            | )))))                                    | -1               | LCd5-NEtFOSAA 00008 | 200 uL | d5-NEtFOSAA                   | 0.05 ug/mL    |
|                      |             |              |                                          |                  | LCM2-6:FTS 00008    |        | M2-6:2FTS                     |               |
|                      |             |              |                                          |                  | LCM2-8:2FTS 00010   |        | M2-8:2FTS                     |               |
|                      |             |              |                                          |                  | LCM2PFHxDA 00016    | 200 uL | 13C2-PFHxDA                   |               |
|                      |             |              |                                          |                  | LCM2PFOA_00008      | 200 uL | 13C2-PFOA                     | 0.05 ug/mL    |
|                      |             |              |                                          |                  | LCM2PFTeDA_00014    | 200 uL | 13C2-PFTeDA                   |               |
|                      |             |              |                                          |                  | LCM4PFHPA_00014     | 200 uL | 13C4-PFHpA                    | 0.05 ug/mL    |
|                      |             |              |                                          |                  | LCM5PFPEA_00015     | 200 uL | 13C5-PFPeA                    | 0.05 ug/mL    |
|                      |             |              |                                          |                  |                     | 200 uL | 13C8 FOSA                     | 0.05 ug/mL    |
|                      |             |              |                                          |                  |                     | - 1    | 13C4 PFBA                     | 0.05 ug/mL    |
|                      |             |              |                                          |                  |                     | - 1    |                               |               |
|                      |             |              |                                          |                  | LCMPFDA 00020       | 200 uL |                               | 0.05 ug/mL    |
|                      |             |              |                                          |                  | LCMPFDoA 00015      | 200 uL | 13C2 PFDoA                    | - 1           |
|                      |             |              |                                          |                  | LCMPFHxA 00022      |        |                               |               |
|                      |             |              |                                          |                  | LCMPFHxS 00015      | - 1    |                               |               |
|                      |             |              |                                          |                  | - 1                 |        |                               |               |
|                      |             |              |                                          |                  |                     | 200 uL |                               | 0.05 ug/mL    |
|                      |             |              |                                          |                  | LCMPFOS 00027       |        | 13C4 PFOS                     | - 1           |
|                      | 1           |              |                                          |                  | - 1                 | Z00 NT | 13C2 PFUnA                    |               |
| LCd3-NMeFOSAA 00008  | <u> </u>    | WELLINGTON,  |                                          |                  | - 1                 | int)   | d3-NMeFOSAA                   |               |
| LCGS-NETFOSAA UUUU8  | <u> </u>    | WELLINGTON,  | IGTON, LOT ASNETFUSABILI                 |                  |                     | int)   | α5-NETFOSAA<br>*** C. STEG    | 200           |
| LCMZ-6:FTS_00008     | <u> </u>    | METT         | WELLINGTON, LOT MZ6ZFTSUZ18              |                  | - 1                 | int)   | MZ-6:ZFT.S                    | 2.            |
| LCMZ-8:ZF"IS 00010   | 01/24/23    | METTT        | WELLINGTON, LOT MZ8ZFTSUIL8              | 7<br>7<br>0<br>1 |                     | int)   | MZ-8:ZF"I'S                   |               |
| LCMZPFHXDA 00016     | 07/13/22    | Wellington I | Wellington Laboratories, Lot M2PFHXDAU/1 | xDA0 / 1 /       |                     | int)   | 13C2-PFHXDA                   |               |
| LCM2PFOA 00008       | $\sim$      | Wellington   | Lot                                      | OA0216           | - 1                 | int)   | 13C2-PFOA                     |               |
| LCM2PFTeDA_00014     | 11/30/22    | Wellington 1 |                                          | eDA1117          | - 1                 | int)   | 13C2-PFTeDA                   | 50 ug/mL      |
| LCM4PFHPA_00014      | 05/03/22    | Wellington   | Lot                                      | 1pA0517          | (Purchased Reagent  | nt)    | 13C4-PFHpA                    | 50 ng/mL      |
| LCM5PFPEA_00015      | 07/20/22    | Wellington   | Wellington Laboratories, Lot M5PFPeA071  | PeA0717          | (Purchased Reagent) | int)   | 13C5-PFPeA                    | 50 ug/mL      |
| LCM8FOSA_00019       | 10/11/22    | Wellington   | Wellington Laboratories, Lot M8FOSA1017I | SA1017I          | - 1                 | nt)    | 13C8 FOSA                     | 50 ng/mL      |
| LCMPFBA_00015        | 02/16/23    | Wellington   | Lot                                      | 3A0218           |                     | int)   | 13C4 PFBA                     | 50 ug/mL      |
| LCMPFBS_00008        | 02/15/23    | Wellington   | Wellington Laboratories, Lot M3PFI       | M3PFBS0218       | (Purchased Reagent) | int)   | 13C3-PFBS                     | 46.5 ug/mL    |
| LCMPFDA_00020        | 02/16/23    | Wellington   | Wellington Laboratories, Lot MPFDA0218   | DA0218           | (Purchased Reagent) | int)   | 13C2 PFDA                     | 20 ng/mT      |
| LCMPFDoA_00015       | 02/16/23    | Wellington   | Wellington Laboratories, Lot MPFDo       | MPFDoA0218       | (Purchased Reagent) | int)   | 13C2 PFDoA                    | 20 ng/mL      |
| LCMPFHxA_00022       | 10/27/22    | Wellington   | Lot                                      | xA1017           |                     | int)   |                               | 50 ug/mL      |
|                      |             |              |                                          | 0 0 0 0          | 1 . 1.              |        |                               |               |

Lab Name: TestAmerica Sacramento

SDG No.:

| Reagent ID   Date   Date   Date                            |                                         | Final         | N N                 | Volume |                                                    |                   |
|------------------------------------------------------------|-----------------------------------------|---------------|---------------------|--------|----------------------------------------------------|-------------------|
| 12/14/22<br>05/04/23<br>02/15/23<br>7 11/22/21<br>11/18/18 |                                         | Volume        | Reagent ID A        | Added  | Analyte                                            | Concentration     |
| 05/04/23<br>02/15/23<br>7 11/22/21<br>11/18/18 0           |                                         | MPFNA1217     | (Purchased Reagent) |        | 13C5 PFNA                                          | 50 ug/mI          |
| 7 11/22/21<br>11/18/18 0                                   |                                         | Lot MPFOA0418 | 1                   |        | 13C4 PFOA                                          | 50 ug/mL          |
| 7 11/22/21 11/18/18 0 11/18/18 0                           | Wellington Laboratories, Lot MP         | Lot MPFOS0218 | (Purchased Reagent) |        | 13C4 PFOS                                          | 47.8 ug/mL        |
| 11/18/18 0                                                 | Wellington Laboratories, Lot MPFUdA1116 | FUdA1116      |                     |        | 13C2 PFUnA                                         | 50 ug/mL          |
|                                                            | 05/17/18 Methanol, Lot 090285           | 닌             | LCPFCSP_00148       | 200 ur | Sodium<br>1H,1H,2H,2H-perfluorohexane              | 0.00934 ug/mL     |
|                                                            |                                         |               |                     | 1      | I 01                                               | 0.00948 ug/mL     |
|                                                            |                                         |               |                     | 1      | 0.1                                                | 0.00958 ug/mL     |
|                                                            |                                         |               |                     | -      | N-ethyl perfluorooctane<br>sulfonamidoacetic acid  | 0.01 ug/mL        |
|                                                            |                                         |               |                     | 1      | N-methyl perfluorooctane<br>sulfonamidoacetic acid | 0.01 ug/mL        |
|                                                            |                                         |               |                     | 1      |                                                    | 1 1               |
|                                                            |                                         |               |                     |        | Perfluorobutanesulfonic acid (PFBS)                | 0.00884 ug/mL     |
|                                                            |                                         |               |                     |        | Perfluorodecanoic acid                             | 0.01 ug/mL        |
|                                                            |                                         |               |                     |        |                                                    |                   |
|                                                            |                                         |               |                     | 1      | Perfluorodecane Sulfonic acid                      | 0.00964 ug/mL     |
|                                                            |                                         |               |                     |        | Perfluoroheptanoic acid<br>(PFHpA)                 | 0.01 ug/mL        |
|                                                            |                                         |               |                     |        | Perfluoroheptanesulfonic acid                      | 0.00952 ug/mL     |
|                                                            |                                         |               |                     |        |                                                    |                   |
|                                                            |                                         |               |                     |        | Perfluorohexanesulfonic acid (PFHxS)               | 0.0091 ug/mL      |
|                                                            |                                         |               |                     |        | Perfluorononanoic acid (PFNA)                      | 0.01 ug/mL        |
|                                                            |                                         |               |                     |        | Perfluorooctanoic acid (PFOA)                      |                   |
|                                                            |                                         |               |                     |        |                                                    |                   |
|                                                            |                                         |               |                     |        | Perfluorooctanesulfonic acid (PFOS)                | 0.00928 ug/mL     |
|                                                            |                                         |               |                     |        | Perfluorooctane Sulfonamide                        | 0.01 ug/mL        |
|                                                            |                                         |               |                     |        | Perrindropentanoic acid                            | - 1               |
|                                                            |                                         |               |                     |        | Perfluorofetradecanoic acid                        | 0.01 10.01 mT/mT. |
|                                                            |                                         |               |                     |        | Perfluorotridecanoic acid                          |                   |
|                                                            |                                         |               |                     |        | Perfluoroundecanoic acid                           |                   |
| LCPFCSP_00148                                              | 05/17/18 Methanol, Lot 090285           | 10 mL LC      | LC4:2FTS_00005 1    | 100 uL | Sodium<br>1H,1H,2H,2H-perfluorohexane              | 1                 |
|                                                            |                                         |               |                     |        | sulfonate (4:2)                                    |                   |
|                                                            |                                         | O<br>1        | LC6:2FTS_00007 1    | 100 uL | Sodium<br>1H,1H,2H,2H-perfluorooctane              | 0.474 ug/mL       |
|                                                            |                                         | IC            | LC8:2FTS_00007 1    | 100 uL |                                                    | 0.479 ug/mL       |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

|                     |             |                                                                                             |                                        | T + no ne D         | +               |                                                          |               |
|---------------------|-------------|---------------------------------------------------------------------------------------------|----------------------------------------|---------------------|-----------------|----------------------------------------------------------|---------------|
|                     |             |                                                                                             | Reagent                                | raidiic             | ן נ             |                                                          |               |
| Reagent ID          | Exp<br>Date | Prep<br>Date                                                                                | Dilutant Final Used Volume             | Reagent ID          | Volume<br>Added | Analyte                                                  | Concentration |
|                     |             |                                                                                             |                                        | LCbr-NEtFOSAA_00001 | 100 uL          | N-ethyl perfluorooctane<br>sulfonamidoacetic acid        | 0.5 ug/mL     |
|                     |             |                                                                                             |                                        | LCbr-NMeFOSAA_00001 | 100 uL          | N-methyl perfluorc                                       | 0.5 ug/mL     |
|                     |             |                                                                                             |                                        | LCPFBA 00008        | 100 uL          | -                                                        | 0.5 ug/mL     |
|                     |             | -                                                                                           |                                        | LCPFBS_00009        | 100 uL          | Perfluorobutanesulfonic acid                             | 0.442 ug/mL   |
|                     |             |                                                                                             |                                        | LCPFDA 00008        | 100 uL          | 1-                                                       | 0.5 ug/mL     |
|                     |             |                                                                                             |                                        |                     |                 | Perfluorododecanoi                                       |               |
|                     |             |                                                                                             |                                        | LCPFDS 00008        |                 | $\perp$                                                  |               |
|                     |             |                                                                                             |                                        | LCPFHpA_00011       | 100 uL          | Perfluoroheptanoic acid                                  | 0.5 ug/mL     |
|                     |             |                                                                                             |                                        | LCPFHpsA_00003      | 100 uL          | 1                                                        | 0.476 ug/mL   |
|                     |             |                                                                                             |                                        | LCPFHxA_00010       | 100 uL          | Perfluorohexanoic acid                                   | 0.5 ug/mL     |
|                     |             |                                                                                             |                                        | LCPFHxS-br_00006    | 100 uL          | Perfluorohexanesulfonic acid (PFHxS)                     | 0.455 ug/mL   |
|                     |             |                                                                                             |                                        | LCPFNA_00010        | 100 uL          | acid                                                     | 1 1           |
|                     |             |                                                                                             |                                        |                     | - 1             | $\sim$                                                   |               |
|                     |             |                                                                                             |                                        | - 1                 |                 | Perfluorononanesulfonic                                  | - 1           |
|                     |             |                                                                                             |                                        | LCFFOA UUUII        |                 | Feriluorooctanoic acid (                                 |               |
|                     |             |                                                                                             |                                        | LCPFOS-br_0000/     | TO OOT          | Periluorooctanesulionic acid (PFOS)                      | 0.464 ug/mL   |
|                     |             |                                                                                             |                                        |                     | 100 uL          | -                                                        | 0.5 ug/mL     |
|                     |             |                                                                                             |                                        | LCPFPeA_00008       |                 |                                                          | 0.5 ug/mL     |
|                     |             |                                                                                             |                                        | LCPFPes 00003       |                 | $\rightarrow$                                            |               |
|                     |             |                                                                                             |                                        |                     | 100 uL          | $\rightarrow$                                            |               |
|                     |             |                                                                                             |                                        |                     |                 | $\rightarrow$                                            | ر<br>ا        |
|                     | ()          |                                                                                             | 1                                      | - 1                 | 100 uL          | $\rightarrow$                                            | ٠.<br>د ک     |
| LC4:2FTS_00005      | 12/12/21    | WEI                                                                                         | WELLINGTON, Lot 42FTS1216              | (Purchased Reagent) | ent)            | Sodium<br>1H,1H,2H,2H-perfluorohexane<br>sulfonate (4:2) | 46.7 ug/mL    |
| LC6:2FTS_00007      | 04/20/22    | WEI                                                                                         | WELLINGTON, Lot 62FTS0417              | (Purchased Reagent) | ent)            |                                                          | 47.4 ug/mL    |
| LOCOCO DE ELO.      | 7           | TOTAL                                                                                       |                                        |                     | 1               | sulfonate (6:2)                                          | c             |
|                     | 17/71/71    | H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H | WELLINGION, LOC 02F131210              | (Fuichased Reagent) | enc)            | sodium<br>1H,1H,2H,2H-perfluorodecane<br>sulfonate (8:2) | سار وم د./4   |
| LCbr-NEtFOSAA_00001 | 01/17/23    | WELLI                                                                                       | WELLINGTON, Lot brNEtFOSAA0118         | (Purchased Reagent) | ent)            | N-ethyl perfluorooctane sulfonamidoacetic acid           | 20 ng/mr      |
| LCbr-NMeFOSAA_00001 | 01/17/23    | WELLI                                                                                       | WELLINGTON, Lot brNMeFOSAA0118         | (Purchased Reagent) | ent)            | N-methyl perfluorooctane<br>sulfonamidoacetic acid       | 50 ug/mL      |
| LCPFBA_00008        | 05/29/22    | Wellingto                                                                                   | Wellington Laboratories, Lot PFBA0517  | (Purchased Reagent) | ent)            | Perfluorobutyric acid                                    | 50 ug/mL      |
| LCPFBS_00009        | 09/21/22    | Wellington                                                                                  | n Laboratories, Lot LPFBS0917          | (Purchased Reagent) | ent)            | Perfluorobutanesulfonic acid (PFBS)                      | 44.2 ug/mL    |
| LCPFDA 00008        | 05/29/22    | Wellingto                                                                                   | Wellington Laboratories, Lot PFDA0517  | (Purchased Reagent) | ent)            | Perfluorodecanoic acid                                   | 50 ug/mL      |
| LCPFDOA 00008       | 05/29/22    | Wellington                                                                                  | Laboratories, Lot                      |                     | ent)            |                                                          |               |
| ICPFDS 00008        | 11/08/22    | Wellington                                                                                  | Lot                                    | (Purchased Reagent) | ent)            | Perfluorodecane Sulfonic acid                            |               |
| LCPFHpA_00011       | 09/27/22    | Wellingto                                                                                   | Wellington Laboratories, Lot PFHpA0917 | (Purchased Reagent) | ent)            | Perfluoroheptanoic acid<br>(PFHpA)                       | 50 ug/mL      |
|                     |             |                                                                                             |                                        |                     |                 |                                                          |               |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

|                  |          |              |                                          | 0<br>0<br>0<br>0<br>0 | Parent Reagent      | ıt     |                                                            |               |
|------------------|----------|--------------|------------------------------------------|-----------------------|---------------------|--------|------------------------------------------------------------|---------------|
|                  | Ехр      | Prep         | Dilutant                                 | Final                 |                     | Volume |                                                            |               |
| Reagent ID       | Date     | Date         | Used                                     | Volume                | Reagent ID          | Added  | Analyte                                                    | Concentration |
| LCPFHpSA_00003   | 09/01/22 | Wellington   | Wellington Laboratories, Lot LI          | LPFHpS0817            | (Purchased Reagent) | ent)   | Perfluoroheptanesulfonic acid                              | 47.6 ug/mL    |
| LCPFHxA_00010    | 09/27/22 | Wellington   | Laboratories                             | Lot PFHxA0917         | (Purchased Reagent) | ent)   | Perfluorohexanoic acid                                     | 20 ng/mF      |
| ICPFHxS-br_00006 | 01/04/22 | Wellington I | Wellington Laboratories, Lot br          | Lot brPFHxSK0117      | (Purchased Reagent) | ent)   | Perfluorohexanesulfonic acid (PFHxS)                       | 45.5 ug/mL    |
| LCPFNA 00010     | 07/20/22 | Wellington   | Wellington Laboratories, Lot I           | PFNA0717              | (Purchased Reagent) | ent)   | Perfluorononanoic acid (PFNA)                              | 50 ug/mL      |
| I                |          |              |                                          |                       |                     |        | Perfluorooctanoic acid (PFOA)                              | 0.05 ug/mL    |
| LCPFNS_00003     | 09/27/22 | Wellington   | Wellington Laboratories, Lot L           | LPFNS0917             |                     | ent)   | Perfluorononanesulfonic acid                               | 48 ug/mL      |
| LCPFOA_00011     | 09/27/22 | Wellington   | Wellington Laboratories, Lot I           | PFOA0917              | (Purchased Reagent  | ent)   | Perfluorooctanoic acid (PFOA)                              | 50 ug/mL      |
| ICPFOS-br_00007  | 01/12/22 | Wellington   | Wellington Laboratories, Lot brPFOSK0117 | rPFOSK0117            | (Purchased Reagent) | ent)   | Perfluorooctanesulfonic acid (PFOS)                        | 46.4 ug/mL    |
| LCPFOSA 00013    | 09/01/22 | Wellington   | Laboratories, Lot                        | FOSA0817I             | (Purchased Reagent  | ent)   | Perfluorooctane Sulfonamide                                | 50 ug/mL      |
| LCPFPeA_00008    | 06/14/22 | Wellington   | Wellington Laboratories, Lot P           | Lot PFPeA0617         | (Purchased Reagent) | ent)   | Perfluoropentanoic acid                                    | 20 ng/mL      |
| LCPFPes_00003    | 01/11/22 | Wellington   | Lot                                      | LPFPeS0117            | (Purchased Reagent) | ent)   | Perfluoropentanesulfonic acid                              | 46.9 ug/mL    |
| LCPFTeDA 00008   | 09/30/21 | Wellington   | Wellington Laboratories, Lot PI          | PFTeDA0916            | (Purchased Reagent) | ent)   | Perfluorotetradecanoic acid                                | 20 ng/mL      |
| LCPFTrDA 00008   | 05/02/22 | Wellington   | Wellington Laboratories, Lot PFTrDA0517  | FTrDA0517             | (Purchased Reagent) | ent)   | Perfluorotridecanoic acid                                  | 20 ng/mL      |
| ICPFUda 00008    | 10/18/21 | Wellington   | Wellington Laboratories, Lot P           | Lot PFUdA1016         | (Purchased Reagent) | ent)   | Perfluoroundecanoic acid                                   | 20 ng/mL      |
| LCPFC_LL3_00004  | 08/20/18 | $\vdash$     | 02/22/18 MeOH/H2O, Lot 090285            | 200 mL I              | LCMPFC_ALL_SU_00041 | 10 mL  | d3-NMeFOSAA                                                | 2.5 ng/mL     |
| l                |          |              |                                          |                       |                     |        | d5-NEtFOSAA                                                |               |
|                  |          |              |                                          |                       |                     |        | M2-6:2FTS                                                  |               |
|                  |          |              |                                          |                       |                     |        | M2-8:2FTS                                                  |               |
|                  |          |              |                                          |                       |                     |        | 13C2-PFHxDA                                                | 2.5 ng/mL     |
|                  |          |              |                                          |                       |                     |        | 13C2-PFOA                                                  | 2.5 ng/mL     |
|                  |          |              |                                          |                       |                     |        | 13C2-PFTeDA                                                | 2.5 ng/mL     |
|                  |          |              |                                          |                       |                     |        | 13C4-PFHpA                                                 | 2.5 ng/mL     |
|                  |          |              |                                          |                       |                     |        | 13C5-PFPeA                                                 | 2.5 ng/mL     |
|                  |          |              |                                          |                       |                     |        | 13C8 FOSA                                                  | 2.5 ng/mL     |
|                  |          |              |                                          |                       |                     |        | 13C4 PFBA                                                  | 2.5 ng/mL     |
|                  |          |              |                                          |                       |                     |        | 13C3-PFBS                                                  | 2.325 ng/mL   |
|                  |          |              |                                          |                       |                     |        | 13C2 PFDA                                                  | 2.5 ng/mL     |
|                  |          |              |                                          |                       |                     |        | 13C2 PFDoA                                                 | 2.5 ng/mL     |
|                  |          |              |                                          |                       |                     |        |                                                            | 2.5 ng/mL     |
|                  |          |              |                                          |                       |                     |        | 1802 PFHxS                                                 | 2.365 ng/mL   |
|                  |          |              |                                          |                       |                     |        |                                                            | 2.5 ng/mL     |
|                  |          |              |                                          |                       |                     |        |                                                            | 2.5 ng/mL     |
|                  |          |              |                                          |                       |                     |        | 13C4 PFOS                                                  |               |
|                  |          |              |                                          |                       |                     |        | 13C2 PFUnA                                                 | 2.5 ng/mL     |
|                  |          |              |                                          |                       | LCPFCSP_00136       | 500 uL | Sodium                                                     | 0.2335 ng/mL  |
|                  |          |              |                                          |                       |                     |        | $\bigcirc$ 1                                               |               |
|                  |          |              |                                          |                       |                     |        | sulfonate (4:2)                                            | - 1           |
|                  |          |              |                                          |                       |                     |        | Sodium                                                     | 0.237 ng/mL   |
|                  |          |              |                                          |                       |                     |        | <pre>1H,1H,2H,ZH-Perriuorooctane<br/>sulfonate (6:2)</pre> |               |
|                  |          |              |                                          |                       |                     |        | Sodium                                                     | 0.2395 ng/mL  |
|                  |          |              |                                          |                       |                     |        | <pre>1H,1H,2H,2H-periluorodecane<br/>sulfonate (8:2)</pre> |               |
|                  |          |              |                                          |                       |                     |        | N-ethyl perfluorooctane                                    | 0.25 ng/mL    |
| _                | _        | _            |                                          | _                     |                     | _      | ממדוכיינייודעכענעניין ענידע                                | _             |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

| EMP   Prep   Dilutant   Final   Reagent ID   Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |             |              |                              | 0<br>0<br>0<br>0 | Parent Reagent      | ٠               |                                       |                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------|--------------|------------------------------|------------------|---------------------|-----------------|---------------------------------------|--------------------|
| 08/20/18   02/20/18   Methanol, Lot Baker   200 mL   LCd3-NWeFOSAA_00006   200 us   LCd5-NRIFCOSA 00006   200 us   LCM5-EFFS 00006   200 us   LCM5-EFFS 00006   200 us   LCM5-EFFS 00008   200 us   LCM5-EFFS 00008   200 us   LCM5-EFFS 00008   200 us   LCM5-EFFS 00008   200 us   LCM5-EFFS 00012   200 us   LCM5-EFFS 00012   200 us   LCM5-EFFS 00013   200 us   LCM5-EFFS 0001 |                     | Exp<br>Date | Prep<br>Date | Dilutant<br>Used             | Final<br>Volume  |                     | Volume<br>Added | Analyte                               | Concentration      |
| 08/20/18 02/20/18 Methanol, Lot Baker 200 mL LCd3-NMeF0SAA_00006 200 uL LCd3-NEFP0SAA_00006 200 uL LCd3-NEFP0SAA_00006 200 uL LCd2-NEFP0SAA_00006 200 uL LCd2-REFTS 00006 200 uL LCd2-REFTS 00006 200 uL LCd2-REFTS 00006 200 uL LCA2-REFTS 00006 200 uL LCA3-REFTS 00013 200  |                     |             |              |                              |                  |                     |                 | N-methyl perfluorooctane              | 0.25 ng/mL         |
| 08/20/18 02/20/18 Methanol, Lot Baker 200 mL LCd3-NMeFOSAA_00006 200 uL LCd3-NMEFOSAA_00006 200 uL LCM2-6:ETS 00069 200 uL LCM2-6:ETS 00069 200 uL LCM2-6:ETS 00069 200 uL LCM2-6:ETS 00069 200 uL LCM2-EPADA 00013 200 uL LCM |                     |             |              |                              |                  |                     |                 | sulfonamidoacetic acid                |                    |
| 08/20/18   02/20/18   Methanol, Lot Baker   200 mL LCd3-NMeFOSAA_00006   200 uL LCd5-NEFDSAA_00006   200 uL LCd5-NEFDSAA_00006   200 uL LCd5-NEFDSAA_00006   200 uL LCd5-NEFDSAA_0003   200 uL LCd5-NEFDSA_0003   200 uL LCd5 |                     |             |              |                              |                  |                     |                 | Perfluorobutyric acid                 | 0.25 ng/mL         |
| 08/20/18 02/20/18 Methanol, Lot Baker 200 mL LCd3-NMeFCSAA_00006 200 uL LCd3-NMeFCSAA_00006 200 uL LCM2-6:FFS 0006 200 uL LCM2-6:FFS 0006 200 uL LCM2-6:FFS 0006 200 uL LCM2-FFRAA_00013 200 uL LCM2-F |                     |             |              |                              |                  |                     |                 | Perfluorobutanesulfonic acid (PFRS)   | 0.221 ng/mL        |
| 08/20/18 02/20/18 Methanol, Lot Baker 200 mL LCd3-NNeFCSAA_00006 200 uL LCM2-6:FFS 00006 200 uL LCM2-6:FFS 00006 200 uL LCM2-6:FFS 00006 200 uL LCM2-6:FFS 00008 200 uL LCM2-6:FFS 00008 200 uL LCM2-6:FFS 00008 200 uL LCM2-6:FFS 00008 200 uL LCM2-FFS 00013 200 uL LC |                     |             |              |                              |                  |                     |                 | Perfluorodecanoic acid                | 0.25 ng/mL         |
| 08/20/18   02/20/18   Methanol, Lot Baker   200 mL   LCd3-NMeFOSAA_00006   200 uL   LCd5-NEFPOSAA_00006   200 uL   LCd2-NEFPOSAA_00006   200 uL   LCM2-EFSTS 00006   200 uL   LCM2-EFSTS 00008   200 uL   LCM2-EFSTA 00013   200 uL   LCM2-EFSTS 00013   200 u |                     |             |              |                              |                  |                     |                 |                                       | 0.25 ng/mL         |
| 08/20/18 02/20/18 Methanol, Lot Baker 200 mL Lcd3-NWeFOSAA_00006 200 uL Lcd2-NETS 00006 200 uL Lcd2-SETFS 00008 200 uL Lcd2-SETFS 00013 200 uL Lcd2-SETS 00013 200 uL Lcd2-SETS 00013 200 uL Lcd2-SETS 00013 200 uL Lcd2-SET-SET 00013 200 uL Lcd2-SET-SET 00013 200 uL Lcd2-SET-SET 00013 200 uL Lcd2-SET-SET 00013 200 uL Lcd2-SET-SET-SET 00013 200 uL Lcd2-SET-SET-SET-SET-SET-SET-SET-SET-SET-SET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |             |              |                              |                  |                     |                 | Perfluorodecane Sulfonic acid         | 0.241 ng/mL        |
| 08/20/18 02/20/18 Methanol, Lot Baker 200 mL LCd3-WMeFOSAA_00006 200 uL LCM2-6:ETS 00006 200 uL LCM2-6:ETS 00006 200 uL LCM2-6:ETS 00006 200 uL LCM2-6:ETS 00006 200 uL LCM2-FEPPA, 0013 200 uL LCM2-FEPA, 0013 200 uL LCM2-F |                     |             |              |                              |                  |                     |                 | Perfluoroheptanoic acid               | 0.25 ng/mL         |
| 08/20/18 02/20/18 Methanol, Lot Baker 200 mL LCd3-NMeF0SAA_00006 200 uL LCd5-NELFOSAA_00006 200 uL LCM2-6:FFFS 00008 200 uL LCM2-6:FFFS 00008 200 uL LCM2-6:FFFS 00008 200 uL LCM2-FFFAA 0012 200 uL LCM2-FFFAA 0012 200 uL LCM2-FFFAA 0012 200 uL LCM2-FFFAA 0012 200 uL LCM2-FFFAA 0013 200 uL LCM2-FFFAA 0013 200 uL LCMPFBA 0013 2 |                     |             |              |                              |                  |                     |                 | (PrhpA) Devflingshentanesilfonia acid | 0 238 ng/mT        |
| 08/20/18 Dethanol, Lot Baker 200 mL LCd3-NWeFCSAA_00006 200 uL LCd5-NEFFCSAA_00006 200 uL LCd5-NEFFCSAA_00006 200 uL LCAZ-8:EFFES 00006 200 uL LCAZ-8:EFFEA 00012 200 uL LCAZ-8:EFFEA 00013 200 uL LCAMPEPRA 00012 200 uL LCAMPEPRA 00013 200 uL LCAMPEPRA 00013 200 uL LCAMPERA 00013 200 uL LCAMPE |                     |             |              |                              |                  |                     |                 | اد                                    | 0.55 ng/mT         |
| 08/20/18 Methanol, Lot Baker 200 mL LCd3-NMeFOSAA_00006 200 uL LCM2-6:FPTS 00006 200 uL LCM2-6:FPTS 00006 200 uL LCM2-FHXDA 00013 200 uL LCM2-FPTSA 00 |                     |             |              |                              |                  |                     |                 |                                       | TIII / BII C Z · O |
| 08/20/18 Methanol, Lot Baker 200 mL LCd3-NMeFOSAA_00006 200 uL LCM2-6:FPTS 00006 200 uL LCM2-6:FPTS 00006 200 uL LCM2-FFRAA_00013 200 uL LCM2-FFRAA_00 |                     |             |              |                              |                  |                     |                 | Perfluorohexanesultonic acid (PFHxS)  | 0.2275 ng/mL       |
| 08/20/18 02/20/18 Methanol, Lot Baker 200 mL LCd3-NMeFOSAA_00006 200 uL LCAS-NEFFOSAA_00006 200 uL LCAZ-NEFFOSAA_00006 200 uL LCAZ-PEFFS 00008 200 uL LCAZ-PEFFS 00008 200 uL LCAZ-PEFFS 00008 200 uL LCAZ-PEFFS 00013 200 uL LCAZ-PEFSA 00012 200 uL LCAY-PEFFA 00012 200 uL LCAY-PEFFA 00013 200 uL  |                     |             |              |                              |                  |                     |                 | Perfluorononanoic acid (PFNA)         | 0.25 ng/mL         |
| 08/20/18 02/20/18 Methanol, Lot Baker 200 mL Lcd3-NMeFOSAA_00006 200 uL Lcd5-NEtFOSAA_00006 200 uL LcM2-6:FF3 0006 200 uL LcM2-FEHXDA 00013 200 uL LcM2-FFHXDA 00013 200 uL LcM2-FFHXDA 00013 200 uL LcM2-FFHXDA 00013 200 uL LcM2-FFHXDA 00013 200 uL LcM2-FFHZDA 00013 200 uL LcM2-FFZDA 00013 200 uL LcM2-FZDA 00013 200 uL LcM2 |                     |             |              |                              |                  |                     |                 | Perfluorononanesulfonic acid          | 0.24 ng/mL         |
| 08/20/18 02/20/18 Methanol, Lot Baker 200 mL LCd3-NMeFOSAA_00006 200 uL LCd5-NEFFSA_0006 200 uL LCM2-8:2FTS 00006 200 uL LCM2-8:2FTS 00006 200 uL LCM2-8:2FTS 00008 200 uL LCM2-PFDA_0013 200 uL LCMP-PBA_0013 200 uL |                     |             |              |                              |                  |                     |                 | Perfluorooctanoic acid (PFOA)         | 0.25 ng/mL         |
| 08/20/18 02/20/18 Methanol, Lot Baker 200 mL LCd3-NMeFOSAA_00006 200 uL LCd5-NBtFpSAA_00006 200 uL LCd5-NBtFpSAA_00006 200 uL LCM2-8:2FFS 00006 200 uL LCM2-PFFTSD 00013 200 uL LCM2-PFFTSD 00013 200 uL LCM2-PFTSD 00013 200 uL LCM4PPHA_00012 200 uL LCM4PPHA_00013 200 uL LCMPFBA_00013 |                     |             |              |                              |                  |                     |                 | Perfluorooctanesulfonic acid          | 0.232 ng/mL        |
| 08/20/18 02/20/18 Methanol, Lot Baker 200 mL LCd3-NMeFOSAA_00006 200 uL LCd5-NETFOSAA_00006 200 uL LCM5-RETFS 00006 200 uL LCM5-RETFS 00006 200 uL LCM5-RETFS 00006 200 uL LCM5-RETFS 00008 200 uL LCM2-RETFS 00008 200 uL LCM2-RETFS 00013 200 uL LCM3-RETFS 00013 200 uL LCM3-RETFS 00013 200 uL LCM3-RETFS 00016 200 uL LCM3-RETS 00016 200 uL LCM3-RETS 00016 200 uL LCM3-RETS 00013 200 uL LCM3-R |                     |             |              |                              |                  |                     |                 | Perfluoroctane Sulfonamide            | 0.25 ng/mT,        |
| 08/20/18 Nethanol, Lot Baker 200 mL LCd3-NMeFOSAA_00006 200 uL LCd5-NEtFOSAA_00006 200 uL LCM2-6:FTS 00006 200 uL LCM2-6:FTS 00006 200 uL LCM2-FFREAD 00013 200 uL LCM2PEFREAD 00013 200 uL LCM2PEFREAD 00013 200 uL LCM2PEFREAD 00013 200 uL LCM2PEFREAD 00013 200 uL LCM2PERAD 00 |                     |             |              |                              |                  |                     |                 | Perfluoropentanoic acid               | 0.25 ng/mL         |
| 08/20/18 02/20/18 Methanol, Lot Baker 200 mL LCd3-NMeFOSAA_00006 200 uL LCd5-NEtFOSAA_00006 200 uL LCd5-NEtFOSAA_00006 200 uL LCM2-E:FTS_00008 200 uL LCM2-EFT-EDA_00013 200 u |                     |             |              |                              |                  |                     |                 |                                       | 0.2345 ng/mL       |
| 08/20/18 02/20/18 Methanol, Lot Baker 200 mL LCd3-NMeFOSAA_00006 200 uL LCd5-NEtFOSAA_00006 200 uL LCM2-8:ETS_0006 200 uL LCM2-8:ETS_0006 200 uL LCM2PEHX.DA_00013 200 uL LCM2PEHX.DA_00013 200 uL LCM5PEPEA_00013 200 uL LCM5PEPEA_00013 200 uL LCM5PEPEA_00013 200 uL LCM5PEPEA_00013 200 uL LCMFPEA_00013 20 |                     |             |              |                              |                  |                     |                 | Perfluorotetradecanoic acid           | 0.25 ng/mL         |
| 08/20/18 02/20/18 Methanol, Lot Baker 200 mL LCd3-NMeFOSAA_00006 200 uL LCd5-NEtFOSAA_00006 200 uL LCM2-6:FTS_00006 200 uL LCM2-FRADA_00013 200 uL LCM2-FRADA_00013 200 uL LCM2-FRADA_00012 200 uL LCM2-FRADA_00012 200 uL LCM2-FRADA_00012 200 uL LCM5-FFBA_00012 200 uL LCM5-FFBA_00013 200 uL LCM5-FFBA_00013 200 uL LCMF-FBA_00013 200 |                     |             |              |                              |                  |                     |                 | Perfluorotridecanoic acid             |                    |
| 08/20/18 02/20/18 Methanol, Lot Baker 200 mL LCd3-NMeFOSAA_00006 200 uL LCM2-6:FTS 00006 200 uL LCM2-6:FTS 00006 200 uL LCM2-FFTS 00008 200 uL LCM2-FFTS 00012 200 uL LCM2-FFTS 00012 200 uL LCM2-FFTS 00013 200 uL LCM2-FTTS 00013 2 |                     |             |              |                              |                  |                     |                 | Perfluoroundecanoic acid              | 0.25 ng/mL         |
| LCd5-NEtF0SAA 00006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ALL_SU_             | 08/20/18    | 02/20/18     | Methanol, Lot<br>141039      |                  | LCd3-NMeFOSAA_      | l               | d3-NMeFOSAA                           | 0.05 ug/mL         |
| CM2-6:FTS 00006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |             |              |                              |                  | LCd5-NEtFOSAA 00006 |                 | d5-NEtFOSAA                           | 0.05 ug/mL         |
| LCM2-8:2FTS 00008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |             |              |                              |                  | LCM2-6:FTS 00006    |                 | M2-6:2FTS                             | 0.0475 ug/mL       |
| LCM2PFHXDA 00013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |             |              |                              |                  | LCM2-8:2FTS 00008   |                 | M2-8:2FTS                             | 0.0479 ug/mL       |
| LCM2PFTGA 00008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |             |              |                              |                  | LCM2PFHxDA_00013    |                 | 13C2-PFHxDA                           | 0.05 ug/mL         |
| LCM2PFTeDA 00012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |             |              |                              |                  | LCM2PFOA_00008      |                 | 13C2-PFOA                             | 0.05 ug/mL         |
| CMA4PEHPA 00012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |             |              |                              |                  | LCM2PFTeDA_00012    |                 | 13C2-PFTeDA                           | 0.05 ug/mL         |
| LCMSPEPEA 00013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |             |              |                              |                  | LCM4PFHPA_00012     |                 | 13C4-PFHpA                            | 0.05 ug/mL         |
| LCM8FGSA 00016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |             |              |                              |                  | LCM5PFPEA_00013     | - 1             | 13C5-PFPeA                            | 0.05 ug/mL         |
| Compress 00013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |             |              |                              |                  | LCM8FOSA 00016      | - 1             | 13C8 FOSA                             |                    |
| CMPFES 00006 200 uL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |             |              |                              |                  | LCMPFBA 00013       | - 1             | 13C4 PFBA                             | 0.05 ug/mL         |
| CMPFDA 00018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |             |              |                              |                  | LCMPFBS_00006       |                 | 13C3-PFBS                             | 0.0465 ug/mL       |
| CCMPFEDOA 00013   200 uL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |             |              |                              |                  | $^{\circ}$          |                 |                                       | 0.05 ug/mL         |
| CAMPEHXA 00019   200 uL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |             |              |                              |                  |                     |                 |                                       |                    |
| CAMPENS 00013   200 uL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |             |              |                              |                  |                     |                 | 13C2 PFHxA                            | 0.05 ug/mL         |
| CAMPENA 00013   200 uL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |             |              |                              |                  | LCMPFHxS_00013      |                 | 1802 PFHxS                            | 0.0473 ug/mL       |
| CLCMPFOA 00017   200 uL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |             |              |                              |                  | LCMPFNA_00013       |                 | 13C5 PFNA                             | 0.05 ug/mL         |
| LCMPFOS 00025 200 uL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |             |              |                              |                  |                     |                 | 13C4 PFOA                             | 0.05 ug/mL         |
| CAMPFUGA 00014   200 uL   1/08/22   WELLINGTON, Lot d3NMeFOSAA0517   (Purchased Reagent)   11/08/22   WELLINGTON, Lot d5NEtFOSAA1117   (Purchased Reagent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |             |              |                              |                  | LCMPFOS 00025       |                 | 13C4 PFOS                             | 0.0478 ug/mL       |
| 05/19/22   WELLINGTON, Lot d3NMeFOSAA0517 (Purchased Reagent)   11/08/22   WELLINGTON, Lot d5NEtFOSAA1117 (Purchased Reagent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |             |              |                              |                  | LCMPFUda 00014      |                 | 13C2 PFUnA                            | 0.05 ug/mL         |
| 11/08/22   WELLINGTON, Lot d5NEtFOSAA1117 (Furchased Readent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LCd3-NMeFOSAA_00006 | 19/2        | WE           |                              | 517              |                     | ent)            | d3-NMeFOSAA                           | 50 ug/mL           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LCd5-NEtFOSAA_00006 | 11/08/22    | ME           | WELLINGTON, Lot d5NEtFOSAA11 | .17              |                     | ent)            | d5-NEtFOSAA                           | 50 ug/mL           |
| Readent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LCM2-6:FTS 00006    | 17/         | Δ            | WELLINGTON, Lot M262FTS021   | 7                | (Purchased Reade    | ent)            | M2-6:2FTS                             | 47.5 ug/mL         |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

SDG No.:

0.1 ug/mL 0.1 ug/mL 0.0964 ug/mL 0.1 ug/mL ng/mL 0.0948 ug/mL ng/mL Concentration 0.0958 ug/mL 0.0884 ug/mL 50 ug/mL 50 ug/mI 46.5 ug/mI nd/mI 50 ug/mI 0.1 50 0.1 47.8 0.0952 0.091 acid Sulfonate (6:2)
Sodium
1H,2H,2H-perfluorodecane
sulfonate (8:2)
N-ethyl perfluoroctane Perfluoroheptanesulfonic acid Perfluorobutanesulfonic acid Perfluorohexanoic acid Perfluorohexanesulfonic acid Sodium 1H,1H,2H,2H-perfluorohexane Sodium 1H,1H,2H,2H-perfluorooctane Perfluorodecane Sulfonic Perfluoroheptanoic acid sulfonamidoacetic acid N-methyl perfluorooctane sulfonamidoacetic acid Perfluorodecanoic acid Perfluorododecanoic acid Perfluorobutyric acid Analyte sulfonate (4:2) 13C4-PFHPA 13C2 PFDOA 13C5-PFPe? M2-8:2FTS 13C4 PFBA PFDA PFNA 13C4 PFOA 13C4 PFOS (PFHpA) (PFBS) mL Volume Added (Purchased Reagent) (Purchased Reagent)
(Purchased Reagent)
(Purchased Reagent) (Purchased Reagent)
(Purchased Reagent)
(Purchased Reagent) (Purchased Reagent) (Purchased Reagent) (Purchased Reagent) (Purchased Reagent) (Purchased Reagent) (Purchased Reagent) (Purchased Reagent) (Purchased Reagent) Purchased Reagent Parent Reagent LCPFCSP\_00132 Reagent 10000 uL Reagent Volume Wellington Laboratories, Lot M4PFHpA0517 Lot M5PFPeA0717 Wellington Laboratories, Lot M8FOSA1017I Wellington Laboratories, Lot MPFBA0417 Wellington Laboratories, Lot M3PFBS0815 Lot M2PFTeDA111 Final Wellington Laboratories, Lot MPFDoA0517 MPFUdA1116 Wellington Laboratories, Lot MPFNA0916 Lot MPFOS1017 Wellington Laboratories, Lot MPFDA071 Lot MPFOA101 Lot MPFHxA10: Lot MPFHxS02: WELLINGTON, Lot M282FTS071 Wellington Laboratories, Lot 02/20/18 Methanol, Lot 090285 Wellington Laboratories, Dilutant Prep Date 10/11/22 04/12/22 05/24/22 05/03/22 07/20/22 07/13/22 05/23/22 Exp Date Reagent ID ..LCM2PFTeDA 00012 ..LCM4PFHPA 00012 00013 LCMPFDoA 00013 ..LCMPFBS\_00006 .LCMPFDA 00018 LCMPFOS 00025 .LCMPFNA 00013 CMPFUda 0001 ..LCM5PFPEA ..LCMPFHxS CMPFHXA ..LCMPFBA . LCMPFOA

ng/mI

ug/mL ng/mI ng/m<sub>L</sub>

ng/mI nd/mI nd/mI

ng/mL

0.0928

ng/mL

Perfluorooctanoic acid (PFOA) Perfluorooctanesulfonic acid Perfluorononanesulfonic acid

Perfluorooctane Sulfonamide

Perfluoropentanoic acid

ng/mL

0.096

(PFNA)

Perfluorononanoic acid

(PFHxS)

ng/mL

ng/mL

ng/mL

ng/mL

ng/mL

Tm/bn

0.1

Job No.: 320-39023-1 Lab Name: TestAmerica Sacramento

Lab Name: TestAmerica Sacramento

SDG No.:

|                                        |                 |                    |                                         | 4<br>0<br>0      | Parent Reagent          |        |                                                   |               |
|----------------------------------------|-----------------|--------------------|-----------------------------------------|------------------|-------------------------|--------|---------------------------------------------------|---------------|
|                                        | H<br>CX         | Dren               | לון יח                                  | T (C)            |                         | Volume |                                                   |               |
| Reagent ID                             | Date            | Date               | Used                                    | Volume           | Reagent ID              | Added  | Analyte                                           | Concentration |
| LCN-EtFOSAA_00004                      | 09/30/21        | WEJ                | WELLINGTON, LOT NETFOSAA091             | 916              | (Purchased Reagent)     | t)     | N-ethyl perfluorooctane<br>sulfonamidoacetic acid | 50 ug/mL      |
| LCN-MeFOSAA_00005                      | 10/12/21        | WEJ                | WELLINGTON, Lot NMeFOSAA0916            | 916              | (Purchased Reagent)     | t)     | N-methyl perfluorooctane sulfonamidoacetic acid   | 50 ug/mL      |
| LCPFBA 00007                           | 05/27/21        | Welling            | Wellington Laboratories, Lot Pi         | PFBA0516         | (Purchased Reagent      | t)     | Perfluorobutyric acid                             | 50 ug/mL      |
| LCPFBS_00008                           | 03/15/21        | Welling            |                                         | Lot LPFBS0316    | (Purchased Reagent)     | (t)    | Perfluorobutanesulfonic acid                      | 44.2 ug/mL    |
| LCPFDA 00008                           | 05/29/22        | Welling            | Wellington Laboratories, Lot Pi         | PFDA0517         | (Purchased Reagent      | t)     | Perfluorodecanoic acid                            | 50 ug/mL      |
| LCPFDoA 00008                          | 05/29/22        | Welling            | Ι                                       | Lot PFDoA0517    |                         | t)     | Perfluorododecanoic acid                          |               |
| ICPFDSA 00002                          | 05/24/21        | Welling1           |                                         | Lot LPFDS0516    |                         | t)     | Perfluorodecane Sulfonic acid                     |               |
| LCPFHpA_00008                          | 12/02/21        | Welling            | l                                       | Lot PFHpA1216    |                         | t)     | Perfluoroheptanoic acid                           | 50 ug/mL      |
| T.CPEHDSA 00003                        | 09/01/22        | +pailleM           | Wellington Laboratories Tot T.PI        | T.O+ T.PFHDS0817 | (Pirchased Readent)     | +      | (PFHpA)<br>Perfluorohentanesulfonio acid          | 47 6 11cz/mT. |
| TODON ANTICONT                         | 12/22/20        | Weiling<br>Melling |                                         | LOT DEHVA1215    |                         | (2)    |                                                   | 50 11g/mT.    |
| TOPPHYS COOL                           | 07/03/20        | MCITIFING MATCH    | - 1 >                                   | THYCKU615        |                         | ()     |                                                   | 45 5 mg/mT.   |
| ************************************** | 0 1 / 0 0 / / 0 |                    | m raboracories, boc piri                | 010000011        | (rurcijased neageii     | ( )    |                                                   |               |
| LCPFNA 00009                           | 07/20/22        | Welling            | Wellington Laboratories, Lot Pi         | Lot PFNA0717     | (Purchased Reagent      | t)     | Perfluorononanoic acid (PFNA)                     | 20 ng/mL      |
| LCPFNS 00003                           | 09/27/22        | Welling            | Wellington Laboratories, Lot LP         | Lot LPFNS0917    | (Purchased Reagent)     | t)     | Perfluorononanesulfonic acid                      | 48 ug/mL      |
| LCPFOA_00009                           | 09/27/22        | Welling            | Wellington Laboratories, Lot Pi         | Lot PFOA0917     | (Purchased Reagent)     | t)     | Perfluorooctanoic acid (PFOA)                     | 20 ng/mL      |
| LCPFOS-br_00004                        | 10/14/20        | Wellingto          | Wellington Laboratories, Lot brPFOSK101 | PEOSK1015        | (Purchased Reagent)     | t)     | Perfluorooctanesulfonic acid (PFOS)               | 46.4 ug/mL    |
| T.CPFOSA 00010                         | 09/30/21        | Welling            |                                         | Tiot FOSA0916T   | (Purchased Readent)     | (+     | Perfluorooctane Sulfonamide                       | 50 11g/mT.    |
| TCPFPPA 0007                           | 05/31/21        | Welling            | Wellington Laboratories. Lot PF         | Tot PFPeA0516    | (Purchased Readent)     | +)     | Perfluoropentanoic acid                           |               |
|                                        | 01/11/22        | Wellingt           | 1-                                      | Lot LPFPeS0117   | (Purchased Reagent)     | t)     | Perfluoropentanesulfonic acid                     | 46.9 ug/mL    |
| LCPFTeDA 00006                         | 12/09/20        | Wellingt           | Lot                                     | PFTeDA1215       |                         | (t)    |                                                   | 50 ug/mL      |
| ICPFTrDA 00006                         | 02/12/21        | Wellingt           |                                         | Lot PFTrDA0216   |                         | t)     | Perfluorotridecanoic acid                         |               |
| LCPFUdA 00007                          | 10/18/21        | Welling            |                                         | Lot PFUdA1016    |                         | (t)    | Perfluoroundecanoic acid                          | 50 ug/mL      |
| T.CDEC 1.1.3 00005                     | 11/18/18        | ı⊢                 | 06/05/18   MeOH/H20 T.o+ 090285         | 200 mT.          | T.CMPEC AT.T. SII 00075 | 10 mT. | A 3-NW-FORDS A                                    | 2 5 ncr/mT.   |
|                                        | 01/01/11        |                    | MCON/ NZO, LOC OSOZGO                   |                  |                         |        | d5-NEtFOSAA                                       |               |
|                                        |                 |                    |                                         |                  |                         |        | M2-6.2FTS                                         | 2.375 ng/mT.  |
|                                        |                 |                    |                                         |                  |                         |        | M2-8:2FTS                                         |               |
|                                        |                 |                    |                                         |                  |                         |        | 13C2-PFHxDA                                       | 2.5 ng/mL     |
|                                        |                 |                    |                                         |                  |                         |        | 13C2-PFOA                                         | 2.5 ng/mL     |
|                                        |                 |                    |                                         |                  |                         |        | 13C2-PFTeDA                                       | 2.5 ng/mL     |
|                                        |                 |                    |                                         |                  |                         |        | 13C4-PFHpA                                        | 2.5 ng/mL     |
|                                        |                 |                    |                                         |                  |                         |        | 13C5-PFPeA                                        | 2.5 ng/mL     |
|                                        |                 |                    |                                         |                  |                         |        | 13C8 FOSA                                         | 2.5 ng/mL     |
|                                        |                 |                    |                                         |                  |                         |        | 13C4 PFBA                                         | 2.5 ng/mL     |
|                                        |                 |                    |                                         |                  |                         |        | 13C3-PFBS                                         | 2.325 ng/mL   |
|                                        |                 |                    |                                         |                  |                         |        | 13C2 PFDA                                         | 2.5 ng/mL     |
|                                        |                 |                    |                                         |                  |                         | ·      |                                                   | 2.5 ng/mL     |
|                                        |                 |                    |                                         |                  |                         |        |                                                   | 2.5 ng/mL     |
|                                        |                 |                    |                                         |                  |                         |        |                                                   | 2.365 ng/mL   |
|                                        |                 |                    |                                         |                  |                         |        | - 1                                               | 2.5 ng/mL     |
|                                        |                 |                    |                                         |                  |                         |        |                                                   | тш/bu c.2     |
|                                        |                 |                    |                                         |                  |                         |        |                                                   | Z.39 ng/mL    |
|                                        | _               | _                  |                                         | _                | _                       | _      | 13CZ FFUNA                                        | 7.5 ng/mL     |

SDG No.:

Job No.: 320-39023-1 Lab Name: TestAmerica Sacramento

|                      |             |              |                  | ()<br>()<br>()<br>() | Parent Reagent                          |        |                                                          |               |
|----------------------|-------------|--------------|------------------|----------------------|-----------------------------------------|--------|----------------------------------------------------------|---------------|
| Reagent ID           | Exp<br>Date | Prep<br>Date | Dilutant<br>Used | Final<br>Volume      | Reagent ID                              | Volume | Analyte                                                  | Concentration |
| 1                    |             |              |                  |                      | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) | , C    |                                                          | L             |
|                      |             |              |                  |                      | LCPFCSP_00148                           | 100 UL | Sodium<br>1H,1H,2H,2H-perfluorohexane<br>sulfonate (4:2) | U.2335 ng/mL  |
|                      |             |              |                  |                      |                                         |        | Sodium 1H,1H,2H,2H-perfluorooctane sulfonate (6:2)       | 0.237 ng/mL   |
|                      |             |              |                  |                      |                                         |        | Sodium<br>1H.1H.2H.2H-perfluorodecane                    | 0.2395 ng/mL  |
|                      |             |              |                  |                      |                                         |        | sulfonate (8:2)                                          | - 1           |
|                      |             |              |                  |                      |                                         |        | N-ethyl perfluorooctane<br>sulfonamidoacetic acid        | 0.25 ng/mL    |
|                      |             |              |                  |                      |                                         |        | N-methyl perfluorooctane<br>sulfonamidoacetic acid       | 0.25 ng/mL    |
|                      |             |              |                  |                      |                                         |        | Perfluorobutyric acid                                    | 0.25 ng/mL    |
|                      |             |              |                  |                      |                                         |        | Perfluorobutanesulfonic acid (PFBS)                      | 0.221 ng/mL   |
|                      |             |              |                  |                      |                                         |        | Perfluorodecanoic acid                                   | 0.25 ng/mL    |
|                      |             |              |                  |                      |                                         |        |                                                          |               |
|                      |             |              |                  |                      |                                         |        | Perfluorodecane Sulfonic acid                            |               |
|                      |             |              |                  |                      |                                         |        | Periluoroheptanoic acid (PFHpA)                          | 0.25 ng/mL    |
|                      |             |              |                  |                      |                                         |        | ١                                                        |               |
|                      |             |              |                  |                      |                                         |        | Perfluorohexanoic acid                                   | 0.25 ng/mL    |
|                      |             |              |                  |                      |                                         |        | (PFHxS)                                                  |               |
|                      |             |              |                  |                      |                                         |        | acid                                                     | 0.25 ng/mL    |
|                      |             |              |                  |                      |                                         |        | Perfluorooctanoic acid (PFOA)                            | 0.25025 ng/mL |
|                      |             |              |                  |                      |                                         |        | Perfluorononanesulfonic acid                             |               |
|                      |             |              |                  |                      |                                         |        | Perfluorooctanesulfonic acid                             | 0.232 ng/mL   |
|                      |             |              |                  |                      |                                         |        | (FFUS) Perfluorooctane Sulfonamide                       | 0.25 ng/mL    |
|                      |             |              |                  |                      |                                         |        | Perfluoropentanoic acid                                  | 0.25 ng/mL    |
|                      |             |              |                  |                      |                                         |        | Perfluoropentanesulfonic acid                            | 0.2345 ng/mL  |
|                      |             |              |                  |                      |                                         |        | Perfluorotetradecanoic acid                              |               |
|                      |             |              |                  |                      |                                         |        | Perfluorotridecanoic acid                                | 0.25 ng/mL    |
| .LCMPFC ALL SU 00075 | 12/05/18    | 06/05/18     | 1                | 200 mL               | LCd3-NMeFOSAA 00008                     | 200 uL | d3-NMeFOSAA                                              | 0.05 ug/mL    |
| <br>                 |             |              | 141039           |                      |                                         |        | 2 4 7 7 T T T T T T T T T T T T T T T T T                |               |
|                      |             |              |                  |                      | TCM2-6:FTC 00008                        | 200 uL | M3-K:2ETS                                                | Jm/bn c0.00   |
|                      |             |              |                  |                      | T.CM2-8:2FTS 00010                      | - 1    | M2-8:2FTS                                                |               |
|                      |             |              |                  |                      | T,CM2PFH×DA 00016                       |        | 13C2-PFH×DA                                              |               |
|                      |             |              |                  |                      | LCM2PFOA 00008                          |        | 13C2-PFOA                                                |               |
|                      |             |              |                  |                      | LCM2PFTeDA 00014                        |        | 13C2-PFTeDA                                              |               |
|                      |             |              |                  |                      | LCM4PFHPA_00014                         | 200 uL | 13C4-PFHpA                                               | 0.05 ug/mL    |
|                      |             |              |                  |                      | LCM5PFPEA 00015                         |        | 13C5-PFPeA                                               |               |
|                      |             |              |                  |                      | LCM8FOSA 00019                          | 200 uL | 13C8 FOSA                                                |               |
|                      |             |              |                  |                      | LCMPFBA 00013                           | Z00 uL | ul 1304 FFBA                                             | 0.05 ug/mL    |
|                      | _           | _            | _                | _                    |                                         |        | H - C - C - C - C - C - C - C - C - C -                  |               |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

|                                         |              |              | £                                       | Parent Reagent      | ٦t       |                                                                          |               |
|-----------------------------------------|--------------|--------------|-----------------------------------------|---------------------|----------|--------------------------------------------------------------------------|---------------|
|                                         | ;<br>E       | ا<br>ا<br>ا  | Keagent rists                           | בר                  | (22)     |                                                                          |               |
| Reagent ID                              | bare<br>Date | rrep<br>Date | Used Volume                             | . Reagent ID        | Added    | Analyte                                                                  | Concentration |
|                                         |              |              |                                         | T.CMPFDA 00020      | 200 11T. | ない ひかり なんり なんり なんり なんり なんり なんり なんり かんり かんり かんり かんり かんり かんり かんり かんり かんり か | 0 05 11cm/mT. |
|                                         |              |              |                                         |                     |          | 1302                                                                     |               |
|                                         |              |              |                                         | T.CMDFH > 00000     |          | 1 200                                                                    |               |
|                                         |              |              |                                         | TOWNER OF TOWNER    |          | 1 5 6 6                                                                  |               |
|                                         |              |              |                                         | LCMFHXS COOLS       | Z00 uL   | 1 2 C L                                                                  |               |
|                                         |              |              |                                         |                     | - 1      | 1000                                                                     |               |
|                                         |              |              |                                         | LCMPFOA 00019       |          | 13C4                                                                     | - 1           |
|                                         |              |              |                                         | LCMPFOS 00027       | 200 uL   | $\rightarrow$                                                            | 0.0478 ug/mL  |
|                                         |              |              |                                         |                     | 200 uL   | _                                                                        | 0.05 ug/mL    |
| LCd3-NMeFOSAA_00008                     | 11/08/22     |              |                                         | (Purchased Reagent) | ent)     | d3-NMeFOSAA                                                              | 50 ug/mL      |
| LCd5-NEtFOSAA 00008                     | 11/08/22     | WELI         | WELLINGTON, Lot d5NEtFOSAA1117          | (Purchased Reagent) | ent)     | d5-NEtFOSAA                                                              | 50 ug/mL      |
| LCM2-6:FTS 00008                        | 02/16/23     | WE           | WELLINGTON, Lot M262FTS0218             | (Purchased Reagent) | ent)     | M2-6:2FTS                                                                | 47.5 ug/mL    |
| LCM2-8:2FTS 00010                       | 01/24/23     |              | WELLINGTON, Lot M282FTS0118             | ı                   | ent)     | M2-8:2FTS                                                                |               |
| LCM2PFHxDA 00016                        | 07/13/22     | -            |                                         | 7 (Purchased        | ent)     | 13C2-PFHxDA                                                              | 50 ug/mL      |
| $\cdot$ . LCM2PFOA 0 $\overline{0}$ 008 | 02/12/21     | +            | Wellington Laboratories, Lot M2PFOA0216 | (Purchased          | ent)     | 13C2-PFOA                                                                | 50 ug/mL      |
| LCM2PFTeDA 00014                        | 11/30/22     | +            |                                         | 7 (Purchased        | ent)     | 13C2-PFTeDA                                                              |               |
| LCM4PFHPA 00014                         | 05/03/22     | +            | Wellington Laboratories, Lot M4PFHpA051 | (Purchased          | ent)     | 13C4-PFHpA                                                               |               |
| LCMSPFPEA 00015                         | 07/20/22     | Wellingto    | Wellington Laboratories, Lot M5PFPeA071 | (Purchased          | ent)     | 13C5-PFPeA                                                               |               |
| LCM8FOSA 00019                          | 10/11/22     | -            |                                         | (Purchased          | ent)     | 13C8 FOSA                                                                | 50 ug/mL      |
| LCMPFBA 00015                           | 02/16/23     |              | Wellington Laboratories, Lot MPFBA0218  |                     | ent)     | 13C4 PFBA                                                                | 50 ug/mL      |
| LCMPFBS 00008                           | 02/15/23     |              | Wellington Laboratories, Lot M3PFBS0218 | (Purchased          | ent)     | 13C3-PFBS                                                                |               |
| LCMPFDA 00020                           | 02/16/23     |              | on Laboratories, Lot MPFDA0218          | (Purchased          | ent)     | 13C2 PFDA                                                                |               |
| LCMPFDoA 00015                          | 02/16/23     |              | Wellington Laboratories, Lot MPFDoA0218 | (Purchased          | ent)     | 13C2 PFDoA                                                               | 50 ug/mL      |
| LCMPFHxA 00022                          | 10/27/22     |              | Wellington Laboratories, Lot MPFHxA1017 | (Purchased          | ent)     | 13C2 PFHxA                                                               | 50 ug/mL      |
| LCMPFHxS 00015                          | 03/22/23     |              | Wellington Laboratories, Lot MPFHxS0318 | (Purchased          | ent)     | 1802 PFHxS                                                               | 47.3 ug/mL    |
| LCMPFNA 00015                           | 12/14/22     |              | Wellington Laboratories, Lot MPFNA1217  | (Purchased          | ent)     |                                                                          | 50            |
| LCMPFOA 00019                           | 05/04/23     |              | Wellington Laboratories, Lot MPFOA0418  | (Purchased          | ent)     | 13C4 PFOA                                                                | 50 ug/mL      |
| LCMPFOS 00027                           | 02/15/23     |              | Wellington Laboratories, Lot MPFOS0218  | (Purchased          | ent)     |                                                                          | 47.8 ug/mL    |
| LCMPFUda 00017                          | 11/22/21     |              | Wellington Laboratories, Lot MPFUdA1116 | (Purchased          | ent)     | 13C2 PFUnA                                                               | 50 ug/mL      |
| T.CPECSP 00148                          |              | +            | 285                                     | T.C4:2FTS 00005     | 100 11T. |                                                                          |               |
|                                         | O H          |              | 2                                       | r<br>)<br>          |          | Sourant<br>1H,1H,2H,2H-perfluorohexane<br>sulfonate (4:2)                |               |
|                                         |              |              |                                         | LC6:2FTS_00007      | 100 uL   | Sodium<br>1H,1H,2H,2H-perfluorooctane<br>sulfonate (6:2)                 | 0.474 ug/mL   |
|                                         |              |              |                                         | LC8:2FTS 00007      | 100 uL   |                                                                          | 0.479 ug/mL   |
|                                         |              |              |                                         | I                   |          | 1H,1H,2H,2H-perfluorodecane sulfonate (8:2)                              |               |
|                                         |              |              |                                         | LCbr-NEtFOSAA_00001 | 100 uL   | N-ethyl perfluorooctane                                                  | 0.5 ug/mL     |
|                                         |              |              |                                         |                     |          | sulfonamidoacetic acid                                                   |               |
|                                         |              |              |                                         | LCbr-NMeFOSAA_00001 | 100 uL   | N-methyl perfluorooctane sulfonamidoacetic acid                          | 0.5 ug/mL     |
|                                         |              |              |                                         | LCPFBA 00008        | 100 uL   | Perfluorobutyric acid                                                    | 0.5 ug/mL     |
|                                         |              |              |                                         | LCPFBS_00009        |          | Perfluorobutanesulfonic acid                                             |               |
|                                         |              |              |                                         |                     |          | (PFBS)                                                                   |               |
|                                         |              |              |                                         | LCPFDA_00008        | 100 uL   | Perfluorodecanoic acid                                                   | 0.5 ug/mL     |
|                                         |              |              |                                         | LCPFDOA_00008       | 100 uL   | Perfluorododecanoic acid                                                 | 0.5 ug/mL     |
|                                         |              |              |                                         | LCPFDS_00008        |          |                                                                          | 0.482 ug/mL   |
|                                         |              |              |                                         | LCPFHpA_00011       | 100 uL   | Perfluoroheptanoic acid                                                  | 0.5 ug/mL     |
|                                         | _            | _            | _                                       | _                   | _        |                                                                          | _             |

Lab Name: TestAmerica Sacramento

SDG No.:

|                     |             |                    |                                           | Parent           | t Reagent          |                                                       |               |
|---------------------|-------------|--------------------|-------------------------------------------|------------------|--------------------|-------------------------------------------------------|---------------|
| Reagent ID          | Exp<br>Date | Prep<br>Date       | Dilutant Final Used Volume                | 1<br>Reagent     | Volume<br>ID Added | me<br>ed Analyte                                      | Concentration |
|                     |             |                    |                                           | T.CPFHpsA 00003  | 100                | III. Perfluorobentanesulfonic acid                    | 0 476 mg/mT.  |
|                     |             |                    |                                           | LCPFHXA 00010    |                    | ul Perfluorohexanoic acid                             | 0.5 ug/mL     |
|                     |             |                    |                                           | LCPFHxS-br_00006 | 1006 100           | ul Perfluorohexanesulfonic acid                       | 0.455 ug/mL   |
|                     |             |                    |                                           | LCPFNA 00010     | 100                | uL                                                    | 0.5 ug/mL     |
|                     |             | -                  |                                           |                  |                    |                                                       |               |
|                     |             |                    |                                           |                  | 100                | uL   Perfluorononanesulfonic                          | 0.48 ug/mL    |
|                     |             |                    |                                           | LCPFOA_00011     | 100                | ηľ                                                    | 0.5005 ug/mL  |
|                     |             |                    |                                           | LCPFOS-br_00007  | 100                | ηŢ                                                    | 0.464 ug/mL   |
|                     |             |                    |                                           | 400 E            | -                  | :                                                     |               |
|                     |             |                    |                                           |                  |                    | ı,                                                    | лш/gn с.0     |
|                     |             |                    |                                           | LCPFFeA 00008    |                    | ı ı                                                   |               |
|                     |             |                    |                                           | TOPETION 00003   | 100                | un reiliuoropentamesullonic acid                      | Tm/mr         |
|                     |             |                    |                                           | TODETHOR         |                    | 3 5                                                   |               |
|                     |             |                    |                                           | LCPFUdA 00008    |                    | ul Perfluoroundecanoic a                              |               |
| LC4:2FTS 00005      | 12/12/21    | - M                | WELLINGTON, Lot 42FTS1216                 | (Purchased       | sed Reagent)       | _                                                     |               |
| I                   |             |                    |                                           |                  |                    | 1H, 1H, 2H, 2H-perfluorohexane sulfonate (4:2)        |               |
| LC6:2FTS_00007      | 04/20/22    | M                  | WELLINGTON, Lot 62FTS0417                 | (Purchased       | sed Reagent)       | Sodium 1H,1H,2H,2H-perfluorooctane sulfonate (6:2)    | 47.4 ug/mL    |
| LC8:2FTS_00007      | 12/12/21    | M                  | WELLINGTON, Lot 82FTS1216                 | (Purchased       | sed Reagent)       | Sodium 1H, 1H, 2H, 2H-perfluorodecane sulfonate (8:2) | 47.9 ug/mL    |
| LCbr-NEtFOSAA_00001 | 01/17/23    | WELI               | WELLINGTON, Lot brNEtFOSAA0118            | (Purchased       | sed Reagent)       | N-ethyl perfluorooctane<br>sulfonamidoacetic acid     | 20 ng/mL      |
| LCbr-NMeFOSAA_00001 | 01/17/23    | WELI               | WELLINGTON, Lot brNMeFOSAA0118            | (Purchased       | sed Reagent)       | N-methyl perfluorooctane sulfonamidoacetic acid       | 20 ng/mL      |
| LCPFBA_00008        | 05/29/22    | Wellington         | ton Laboratories, Lot PFBA0517            | (Purchased       | sed Reagent)       | Perfluorobutyric acid                                 | 50 ug/mL      |
| LCPFBS_00009        | 09/21/22    | Wellingt           | Wellington Laboratories, Lot LPFBS0917    | 7 (Purchased     |                    | Perfluorobutanesulfonic acid (PFBS)                   | 44.2 ug/mL    |
| LCPFDA 00008        | 05/29/22    | Wellington         | ton Laboratories, Lot PFDA0517            | (Purchased       | sed Reagent)       | Perfluorodecanoic acid                                | 50 ug/mL      |
| LCPFDoA 00008       | 05/29/22    | Wellingt           | Lot                                       | 7 (Purchased     |                    | Perfluorododecanoic acid                              | 50 ug/mL      |
| LCPFDS_00008        | 11/08/22    | Wellingt           | Lot                                       | 7 (Purchased     |                    | Perfluorodecane Sulfonic acid                         | 48.2 ug/mL    |
| LCPFHpA_00011       | 09/27/22    | Wellingt           | Wellington Laboratories, Lot PFHpA091     | 7 (Purchased     | sed Reagent)       | Perfluoroheptanoic acid (PFHpA)                       | 20 ng/mT      |
| LCPFHpSA_00003      | 09/01/22    | Wellingt           | Wellington Laboratories, Lot LPFHpS081    | 7 (Purchased     | sed Reagent)       | Perfluoroheptanesulfonic acid                         | 47.6 ug/mL    |
| LCPFHxA_00010       | 09/27/22    | Wellingt           |                                           |                  |                    | Perfluorohexanoic acid                                | 50 ug/mL      |
| LCPFHxS-br_00006    | 01/04/22    | Wellingto          | Wellington Laboratories, Lot brPFHxSK0117 | 17 (Purchased    |                    | Perfluorohexanesulfonic acid<br>  (PFHxS)             | 45.5 ug/mL    |
| LCPFNA_00010        | 07/20/22    | Welling            | Wellington Laboratories, Lot PFNA0717     | (Purchased       | sed Reagent)       | acid                                                  | 50 ug/mL      |
| TOPENS ODDO         | 00/10/00    | +אמיר רפועו        | Wellington Ishorstories Int I.DENSO 01'   | Cosedovid)       | Reaction Cont.)    | Perfluoropoctanoic acid (FFUA)                        | 0.05 ug/mL    |
| T.CPEOA 00011       | 09/27/22    | Wettige<br>Welling | Wellington Laboratories, Tot PFDA0917     | (Pirchased       |                    |                                                       |               |
| LCPFOS-br_00007     | 01/12/22    | Wellingto          | 1.4                                       |                  |                    | fonic                                                 |               |
| LCPFOSA_00013       | 09/01/22    | Wellingt           | Lot                                       | I (Purchased     | sed Reagent)       | Perfluoroctane Sulfonamide                            | 50 ug/mL      |
| LCPFPeA_00008       | 06/14/22    | Wellingt           | Wellington Laboratories, Lot PFPeA0617    | 7 (Purchased     | sed Reagent)       | Perfluoropentanoic acid                               | 20 ng/mT      |

Lab Name: TestAmerica Sacramento

SDG No.:

|                 |          |              |                                 | ()<br>()<br>()<br>()                      | Parent Reagent      | ıt       |                                                   |               |
|-----------------|----------|--------------|---------------------------------|-------------------------------------------|---------------------|----------|---------------------------------------------------|---------------|
| Reagent ID      | Exp      | Prep<br>Date | Dilutant<br>Used                | Final<br>Volume                           | Readent ID          | Volume   | Analvte                                           | Concentration |
| - 1             | 00/11/10 | MO : [ [ ]   | +0+0                            | 7 1 10000000                              | 10                  | + 4 4    |                                                   | 1 m/ 2 m 3 m  |
|                 | 01/11/00 | WCILLIIGCOII | 1 1                             | F. C. | (Farchased Neag     | ciic)    | Terracopenicanesarronro acra                      | T=/=: 03      |
| TOPFIEDA UUU8   | 09/30/21 | Wellington   | Lot                             | PFTeDA0916                                | (Furchased Reagent) | ent)     | Periluorotetradecanoic acid                       | Tm/bn 05      |
| LCFFTTFDA 00008 | 05/02/22 | Wellington   | LOT                             | PFTrdAusi/                                | (Furchased Reagent) | ent)     |                                                   |               |
| LCPFUdA 00008   | 10/18/21 | Wellingtor   | Wellington Laboratories, Lot PF | PFUdA1016                                 | (Purchased Reagent) | ent)     | Perfluoroundecanoic acid                          | 20 ng/mT      |
| LCPFC LL4 00004 | 08/20/18 | 02/22/18 Me  | 02/22/18 MeOH/H2O, Lot 090285   | 200 mL I                                  | LCMPFC ALL SU 00041 | 10 mL    | d3-NMeFOSAA                                       | 2.5 ng/mL     |
| 1               |          |              |                                 |                                           |                     |          | d5-NEtFOSAA                                       |               |
|                 |          |              |                                 |                                           |                     |          | M2-6:2FTS                                         | 2.375 ng/mL   |
|                 |          |              |                                 |                                           |                     |          | M2-8:2FTS                                         |               |
|                 |          |              |                                 |                                           |                     |          | 13C2-PFHxDA                                       |               |
|                 |          |              |                                 |                                           |                     |          | 13C2-PFOA                                         |               |
|                 |          |              |                                 |                                           |                     |          | 13C2-PFTeDA                                       |               |
|                 |          |              |                                 |                                           |                     |          | 13C4-PFHpA                                        |               |
|                 |          |              |                                 |                                           |                     |          | 13C5-PFPeA                                        |               |
|                 |          |              |                                 |                                           |                     |          | 13C8 FOSA                                         | 2.5 ng/mL     |
|                 |          |              |                                 |                                           |                     |          | 13C4 PFBA                                         | 2.5 ng/mL     |
|                 |          |              |                                 |                                           |                     |          |                                                   | 2.325 ng/mL   |
|                 |          |              |                                 |                                           |                     |          |                                                   | 2.5 ng/mL     |
|                 |          |              |                                 |                                           |                     |          |                                                   |               |
|                 |          |              |                                 |                                           |                     |          | 13C2 PFHxA                                        | 2.5 ng/mL     |
|                 |          |              |                                 |                                           |                     |          | 1802 PFHxS                                        | 2.365 ng/mL   |
|                 |          |              |                                 |                                           |                     |          | 13C5 PFNA                                         | 2.5 ng/mL     |
|                 |          |              |                                 |                                           |                     |          | 13C4 PFOA                                         | 2.5 ng/mL     |
|                 |          |              |                                 |                                           |                     |          |                                                   |               |
|                 |          |              |                                 |                                           |                     |          | 13C2 DEIInA                                       |               |
|                 |          |              |                                 |                                           | T.CPECSP 00132      | 200 11T. |                                                   | 0.934 ng/mT.  |
|                 |          |              |                                 | 4                                         |                     |          | 2H, 2H-                                           |               |
|                 |          |              |                                 |                                           |                     |          | sulfonate $(4:2)$                                 |               |
|                 |          |              |                                 |                                           |                     |          | Sodium                                            | 0.948 ng/mL   |
|                 |          |              |                                 |                                           |                     |          | 1H,1H,2H,2H-perfluorooctane sulfonate (6:2)       |               |
|                 |          |              |                                 |                                           |                     |          | Sodium                                            | 0.958 ng/mL   |
|                 |          |              |                                 |                                           |                     |          | in, in, zn, zn-perriuorouecane<br>sulfonate (8:2) |               |
|                 |          |              |                                 |                                           |                     |          | N-ethyl perfluorooctane                           | 1 ng/mL       |
|                 |          |              |                                 |                                           |                     |          | N-methyl perfluorooctane                          | 1 ng/mL       |
|                 |          |              |                                 |                                           |                     |          | Perfluorobuturic acid                             | 1 ng/mI.      |
|                 |          |              |                                 |                                           |                     |          | Porfluorobutanesulfonio acid                      | - 1           |
|                 |          |              |                                 |                                           |                     |          |                                                   |               |
|                 |          |              |                                 |                                           |                     |          | Perfluorodecanoic acid                            | 1 ng/mL       |
|                 |          |              |                                 |                                           |                     |          | Perfluorododecanoic acid                          | 1 ng/mL       |
|                 |          |              |                                 |                                           |                     |          | Perfluorodecane Sulfonic acid                     | 0.964 ng/mL   |
|                 |          |              |                                 |                                           |                     |          | Perfluoroheptanoic acid (PFHbA)                   | 1 ng/mL       |
|                 |          |              |                                 |                                           |                     |          | Perfluoroheptanesulfonic acid                     | 0.952 ng/mL   |
|                 |          |              |                                 |                                           |                     |          | Perfluorohexanoic acid                            | 1 ng/mL       |
|                 |          |              |                                 |                                           |                     |          | Perfluorohexanesulfonic acid                      | 0.91 ng/mL    |
|                 | _        | _            |                                 | _                                         |                     | _        | (Fruxo)                                           | _             |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

|                      |             |              |                                          |                 | + # # # # # # # # # # # # # # # # # # # | 1               |                               |               |
|----------------------|-------------|--------------|------------------------------------------|-----------------|-----------------------------------------|-----------------|-------------------------------|---------------|
|                      |             |              | R                                        | Reagent         |                                         |                 |                               |               |
| Reagent ID           | Exp<br>Date | Prep<br>Date | Dilutant B                               | Final<br>Volume | Reagent ID                              | Volume<br>Added | Analyte                       | Concentration |
|                      |             |              |                                          |                 |                                         |                 | Perfluorononanoic acid (PFNA) | 1 ng/mL       |
|                      |             |              |                                          |                 |                                         |                 | - Loui                        |               |
|                      |             |              |                                          |                 |                                         |                 |                               | - 1           |
|                      |             |              |                                          |                 |                                         |                 | fonic                         | 0.928 ng/mL   |
|                      |             |              |                                          |                 |                                         |                 |                               |               |
|                      |             |              |                                          |                 |                                         |                 | Perfluorooctane Sulfonamide   | 1 ng/mL       |
|                      |             |              |                                          |                 |                                         |                 | Perfluoropentanoic acid       | 1 ng/mL       |
|                      |             |              |                                          |                 |                                         |                 | Perfluoropentanesulfonic acid | 0.938 ng/mL   |
|                      |             |              |                                          |                 |                                         |                 | Perfluorotetradecanoic acid   | 1 ng/mL       |
|                      |             |              |                                          |                 |                                         |                 | Perfluorotridecanoic acid     | 1 ng/mL       |
|                      |             |              |                                          |                 |                                         |                 | Perfluoroundecanoic acid      | 1 ng/mL       |
| .LCMPFC_ALL_SU_00041 | 08/20/18    | 02/20/18     | Methanol, Lot Baker                      | 200 mL          | LCd3-NMeFOSAA_00006                     | 200 uL          | d3-NMeFOSAA                   | 0.05 ug/mL    |
|                      |             |              |                                          |                 | LCd5-NEtFOSAA 00006                     | 200 uL          | d5-NEtFOSAA                   | 0.05 ug/mL    |
|                      |             |              |                                          |                 | LCM2-6:FTS 00006                        | 200 uL          | M2-6:2FTS                     | 0.0475 ug/mL  |
|                      |             |              |                                          |                 | LCM2-8:2FTS 00008                       | 200 uL          | M2-8:2FTS                     | 0.0479 ug/mL  |
|                      |             |              |                                          |                 | LCM2PFHxDA 00013                        | 200 uL          | 13C2-PFHxDA                   | 0.05 ug/mL    |
|                      |             |              |                                          |                 | LCM2PFOA_00008                          | 200 uL          | 13C2-PFOA                     |               |
|                      |             |              |                                          |                 | LCM2PFTeDA_00012                        | 200 uL          | 13C2-PFTeDA                   |               |
|                      |             |              |                                          |                 | LCM4PFHPA_00012                         | 200 uL          | 13C4-PFHpA                    | 0.05 ug/mL    |
|                      |             |              |                                          |                 | LCM5PFPEA_00013                         | 200 uL          | 13C5-PFPeA                    | 0.05 ug/mL    |
|                      |             |              |                                          |                 |                                         | 200 uL          | 13C8 FOSA                     | 0.05 ug/mL    |
|                      |             |              |                                          |                 |                                         | - 1             | 13C4 PFBA                     |               |
|                      |             |              |                                          |                 | LCMPFBS_00006                           | 200 uL          |                               | 0.0465 ug/mL  |
|                      |             |              |                                          |                 | LCMPFDA_00018                           | 200 uL          | 13C2 PFDA                     | 0.05 ug/mL    |
|                      |             |              |                                          |                 |                                         |                 |                               |               |
|                      |             |              |                                          |                 | - 1                                     | 200 uL          | 13C2                          | 0.05 ug/mL    |
|                      |             |              |                                          |                 | LCMPFHxS 00013                          |                 |                               |               |
|                      |             |              |                                          |                 |                                         |                 |                               | - 1           |
|                      |             |              |                                          |                 | LCMPFOA_00017                           | 200 uL          | 13C4 PFOA                     | 0.05 ug/mL    |
|                      |             |              |                                          |                 | LCMPFOS 00025                           | - 1             | _                             |               |
|                      | 1           |              |                                          |                 |                                         | 200 uL          | _                             |               |
| LCd3-NMeFOSAA 00006  | 05/19/22    |              | WELLINGTON, Lot d3NMeFOSAA0517           |                 |                                         | ent)            | d3-NMeFOSAA                   | - 1           |
| LCd5-NEtFOSAA 00006  |             |              | WELLINGTON, Lot d5NEtFOSAA1117           |                 |                                         | ent)            | d5-NEtFOSAA                   |               |
| LCM2-6:FTS 00006     | 02/11/22    |              | WELLINGTON, Lot M262FTS0217              |                 | (Purchased Reagent                      | int)            | M2-6:2FTS                     | 47.5 ug/mL    |
| LCM2-8:2FTS 00008    | 07/05/22    | -            | WELLINGTON, Lot M282FTS0717              |                 | - 1                                     | ent)            | M2-8:2FTS                     |               |
| LCM2PFHxDA_00013     | 07/13/22    |              | Wellington Laboratories, Lot M2PFHxDA071 | DA0717          | - 1                                     | int)            | 13C2-PFHxDA                   | 50 ug/mL      |
| LCM2PFOA_00008       | 02/12/21    |              | +                                        | A0216           | (Purchased Reagent)                     | int)            | 13C2-PFOA                     |               |
| LCM2PFTeDA_00012     | 11/30/22    | _            | Wellington Laboratories, Lot M2PFTeDA11  | DA1117          | (Purchased Reagent)                     | ut)             | 13C2-PFTeDA                   | 20 ng/mL      |
| LCM4PFHPA 00012      | 05/03/22    |              | Wellington Laboratories, Lot M4PFHpA051  | A0517           | (Purchased Reagent)                     | int)            | 13C4-PFHpA                    | 50 ug/mL      |
| LCMSPFPEA 00013      | 07/20/22    |              | Wellington Laboratories, Lot M5PFPeA071  | A0717           | (Purchased Reagent                      | int)            | 13C5-PFPeA                    | 50 ug/mL      |
| LCM8FOSA 00016       | 10/11/22    |              | Wellington Laboratories, Lot M8FOSA1017I | 1017I           | (Purchased Reagent)                     | int)            | 13C8 FOSA                     | 50 ug/mL      |
| LCMPFBA 00013        | 04/12/22    |              | Wellington Laboratories, Lot MPFBA041    | 10417           | (Purchased Reagent)                     | int)            | 13C4 PFBA                     | 50 ug/mL      |
| LCMPFBS 00006        | 05/24/22    |              | Wellington Laboratories, Lot M3PFBS081   | S0815           | (Purchased Reagent)                     | int)            | 13C3-PFBS                     | 46.5 ug/mL    |
| LCMPFDA 00018        | 07/13/22    |              | Wellington Laboratories, Lot MPFDA071    | 10717           | (Purchased Reagent                      | int)            | 13C2 PFDA                     | 50 ug/mL      |
| LCMPFDOA 00013       | 05/23/22    |              | ton Laboratories, Lot MPFDoA051          | A0517           | (Purchased Reagent)                     | int)            | 13C2 PFDoA                    | 50 ug/mL      |
| LCMPFHxA_00019       | 10/27/22    |              | Laboratories, Lot                        | A1017           | 1                                       | int)            | 13C2 PFHxA                    | 20 ng/mL      |
| LCMPFHxS 00013       | 02/11/22    |              | Wellington Laboratories, Lot MPFHxS021   | S0217           | (Purchased Reagent)                     | int)            | 1802 PFHxS                    | 47.3 ug/mL    |
| •                    | -           |              |                                          |                 |                                         |                 |                               |               |

Lab Name: TestAmerica Sacramento

SDG No.:

|                                         |             |              |                                  | 0<br>0<br>0<br>0                             | Parent Reagent                                     | ען              |                                                          |               |
|-----------------------------------------|-------------|--------------|----------------------------------|----------------------------------------------|----------------------------------------------------|-----------------|----------------------------------------------------------|---------------|
| Reagent ID                              | Exp<br>Date | Prep<br>Date | Dilutant<br>Used                 | Final                                        | Reagent ID                                         | Volume<br>Added | Analyte                                                  | Concentration |
| T.CMPENA 00013                          | 09/30/21    | Wellington   | Taboratories Tot                 | MPFNA0916                                    | (Pirchased Readent)                                | n+)             | 1305 PENA                                                | 50 11cf/mT.   |
| . LCMPFOA 00017                         | 10/17/22    | Wellingt     | Laboratories, Lot                | MPFOA1017                                    |                                                    | int)            |                                                          | 50 ug/mL      |
| . LCMPFOS 00025                         | 10/17/22    | Wellingt     | Lot                              | FOS1017                                      | 1                                                  | int)            |                                                          |               |
| LCMPFUdA 00014                          | 11/22/21    | Wellingto    | Wellington Laboratories, Lot MPF | UdA1116                                      |                                                    | int)            |                                                          | 50 ug/mL      |
| . LCPFCSP 00132                         | 08/20/18    | 02/20/18 N   |                                  | 1285   10000 uL                              |                                                    | 200 uL          | Sodium                                                   | 0.934 ug/mL   |
| I                                       |             |              |                                  |                                              | I                                                  |                 | 1H,1H,2H,2H-perfluorohexane sulfonate (4:2)              |               |
|                                         |             |              |                                  | 1                                            | LC6:2FTS 00003                                     | 200 uL          | Sodium                                                   | 0.948 ug/mL   |
|                                         |             |              |                                  |                                              | I                                                  |                 | 1H,1H,2H,2H-perfluorooctane sulfonate (6:2)              |               |
|                                         |             |              |                                  | 1                                            | LC8:2FTS_00003                                     | 200 uL          | Sodium                                                   | 0.958 ug/mL   |
|                                         |             |              |                                  |                                              |                                                    |                 | 1H,1H,2H,2H-perfluorodecane sulfonate (8:2)              |               |
|                                         |             |              |                                  | <u>                                     </u> | LCN-EtFOSAA_00004                                  | 200 uL          | N-ethyl perfluorooctane                                  | l ug/mL       |
|                                         |             |              |                                  | 1                                            | LCN-MeFOSAA_00005                                  | 200 uL          | N-methyl perfluorooctane                                 | 1 ug/mL       |
|                                         |             |              |                                  | <u>I'</u>                                    | TOPERS OUT                                         | Tri UUC         | Derfluorobuturia                                         | 1 11cz /mT.   |
|                                         |             |              |                                  |                                              | LCPFBS_00008                                       |                 | reitinorobutanesulfonic acid                             | 0.884 ug/mL   |
|                                         |             |              |                                  | 1                                            | LCPFDA 00008                                       | 200 uL          | Perfluorodecanoic acid                                   | 1 ug/mL       |
|                                         |             |              |                                  | ı'                                           | T.CPFDOM 00008                                     |                 | Perfluorododecanoic acid                                 |               |
|                                         |             |              |                                  |                                              |                                                    |                 | Perfluorodecane Sulfonic acid                            |               |
|                                         |             |              |                                  | <u>                                     </u> | LCPFHpA_00008                                      | 200 uL          | Perfluoroheptanoic acid                                  | 1 ug/mL       |
|                                         |             |              |                                  |                                              | T.CPEHDSA 00003                                    | 200 11T.        | Perf lloroheptanesulfonic acid                           | 0.952 mg/mT.  |
|                                         |             |              |                                  |                                              | LCPFHXA 00007                                      | - 1             |                                                          |               |
|                                         |             |              |                                  |                                              |                                                    |                 | Perfluorohexanesulfonic acid                             | 0.91 ug/mL    |
|                                         |             |              |                                  | 1                                            | LCPFNA 00009                                       | 200 uL          | Perfluorononanoic acid (PFNA)                            | 1 ug/mL       |
|                                         |             |              |                                  | 1                                            | LCPFNS 00003                                       |                 | fonic.                                                   |               |
|                                         |             |              |                                  |                                              | LCPFOA_00009                                       | 200 uL          | Perfluorooctanoic acid (PFOA)                            |               |
|                                         |             |              |                                  |                                              | LCPFOS-br_00004                                    | 200 uL          | Perfluorooctanesulfonic acid (PFOS)                      | 0.928 ug/mL   |
|                                         |             |              |                                  | <u>                                     </u> | LCPFOSA_00010                                      | 200 uL          | Perfluorooctane Sulfonamide                              |               |
|                                         |             |              |                                  |                                              | LCPFPeA_00007                                      | 200 uL          | Perfluoropentanoic acid                                  | 1 ug/mL       |
|                                         |             |              |                                  | [                                            | LCPFPes 00003                                      | 200 uL          | Perfluoropentanesulfonic acid                            | 0.938 ug/mL   |
|                                         |             |              |                                  |                                              | LCPFTeDA 00006                                     |                 | Perfluorotetradecanoic acid                              | l ug/mL       |
|                                         |             |              |                                  | <u>.,1,</u>                                  |                                                    |                 | Periluorotridecanoic acid                                | l ug/mL       |
| 10100 SH4C. NOT                         | 10/10/01    | IM           | METITNCHON TOTAL                 |                                              | LCFFUCA UNUU/                                      | Z00 UL          | Sodium                                                   | -1 [-         |
|                                         | 12/12/21    | M            | LOC 42FISIZI                     |                                              |                                                    | :::L)           | soulum<br>1H,1H,2H,2H-perfluorohexane<br>sulfonate (4:2) | 40. / ug/mL   |
| LC6:2FTS_00003                          | 06/25/21    | WE           | WELLINGTON, Lot 62FTS0616        |                                              | (Purchased Reagent)                                | int)            | O.I                                                      | 47.4 ug/mL    |
| T.C.8.2 00003                           | 08/22/21    | IM.          | WEIT.TANGTON TOT 808TS           |                                              | (Pirchased Readent)                                | n+)             | Sulfonate (6:2)                                          | 47 9 11ct/mT. |
| 000000000000000000000000000000000000000 | 000         | Š            | 1 7 0                            |                                              | וימו (וימוס מיים מיים מיים מיים מיים מיים מיים מיי | (1110)          | 1H,1H,2H,2H-perfluorodecane<br>sulfonate (8:2)           |               |
|                                         | 1           |              |                                  | -                                            |                                                    |                 |                                                          |               |

Lab Name: TestAmerica Sacramento

SDG No.:

|                                               |             |                        |                                          | +<br>2<br>0<br>0 | Parent Reagent        |                 |                                                    |                 |
|-----------------------------------------------|-------------|------------------------|------------------------------------------|------------------|-----------------------|-----------------|----------------------------------------------------|-----------------|
| Reagent ID                                    | Exp<br>Date | Prep<br>Date           | Dilutant<br>Used                         | Final<br>Volume  | Reagent ID 7          | Volume<br>Added | Analyte                                            | Concentration   |
| LCN-EtFOSAA_00004                             | 09/30/21    | WE                     | WELLINGTON, LOT NETFOSAA091              | 10               | (Purchased Reagent)   |                 | N-ethyl perfluorooctane                            | 20 ng/mL        |
|                                               | ()          |                        |                                          | ,                |                       |                 | sulfonamidoacetic acid                             | i C             |
| LCN-MeFOSAA_00005                             | 10/12/21    | WE                     | WELLINGTON, LOT NMCFOSAAU916             | 9                | (Purchased Reagent)   |                 | N-methyl periluorooctane<br>sulfonamidoacetic acid | Jm/bn 0s        |
| LCPFBA_00007                                  | 05/27/21    | Wellin                 | Wellington Laboratories, Lot PF          | PFBA0516         | (Purchased Reagent)   |                 | Perfluorobutyric acid                              | 20 ng/mL        |
| LCPFBS_00008                                  | 03/15/21    | Welling                | Wellington Laboratories, Lot LP1         | Lot LPFBS0316    | (Purchased Reagent)   |                 | Perfluorobutanesulfonic acid (PFBS)                | 44.2 ug/mL      |
| LCPFDA 00008                                  | 05/29/22    | Wellington             | Laboratories, Lot                        | PFDA0517         | (Purchased Reagent    |                 | Perfluorodecanoic acid                             | 50 ug/mL        |
| LCPFDOA 00008                                 | 05/29/22    | Welling                | Wellington Laboratories, Lot PFDoA051    | DoA0517          | (Purchased Reagent)   |                 | Perfluorododecanoic acid                           | 50 ug/mL        |
| LCPFDSA 00002                                 | 05/24/21    | Welling                | Wellington Laboratories, Lot LPI         | Lot LPFDS0516    | (Purchased Reagent)   |                 | Perfluorodecane Sulfonic acid                      | 48.2 ug/mL      |
| LCPFHpA_00008                                 | 12/02/21    | Welling                | Wellington Laboratories, Lot PF          | Lot PFHpA1216    | (Purchased Reagent)   |                 | Perfluoroheptanoic acid                            | 1m/bn 05        |
| LCPFHpSA 00003                                | 09/01/22    | Welling                | Wellington Laboratories, Lot LPFHpS0817  | THpS0817         | (Purchased Reagent)   |                 | Perfluoroheptanesulfonic acid                      | 47.6 ug/mL      |
| LCPFHxA 00007                                 | 12/22/20    | Welling                |                                          | Lot PFHxA1215    | (Purchased Reagent)   |                 |                                                    | 50 ug/mL        |
| LCPFHxS-br_00004                              | 07/03/20    | Wellingt               | Wellington Laboratories, Lot brPF        | t brPFHxSK0615   | (Purchased Reagent)   |                 | Perfluorohexanesulfonic acid (PFHxS)               | 45.5 ug/mL      |
| LCPFNA 00009                                  | 07/20/22    | Wellin                 | Wellington Laboratories, Lot PF          | Lot PFNA0717     | (Purchased Reagent)   |                 | Perfluorononanoic acid (PFNA)                      | 50 ug/mL        |
| LCPFNS 00003                                  | 09/27/22    | Welling                | 1                                        | Lot LPFNS0917    |                       |                 | Lfonic                                             | 48 ug/mL        |
| LCPFOA 00009                                  | 09/27/22    | Wellin                 | Wellington Laboratories, Lot PF          | Lot PFOA0917     |                       |                 | Perfluorooctanoic acid (PFOA)                      | 50 ug/mL        |
| LCPFOS-br_00004                               | 10/14/20    | Wellingt               | Wellington Laboratories, Lot brPFOSK1015 | FOSK1015         | (Purchased Reagent)   |                 | Perfluorooctanesulfonic acid                       | 46.4 ug/mL      |
| T C D E O S S S S S S S S S S S S S S S S S S | 09/30/21    | Molling                | Mellington Tehovetovice Tot EO           | TO+ FOSA0016T    | (+noneod besedown)    |                 | Dorfluoroctano Sulfonamide                         | Tm/ ∞1: 0∃      |
| 10000 KORROT                                  | 05/30/21    | WELLLII                | 11⁻                                      | 25071G           |                       |                 | Dorfluoromontanoi a acid                           |                 |
| TOBERS 0000/                                  | 03/31/21    | WELLIII<br>Sa' ' [ [ M | <b>-</b> ' ⊦                             | OL FEFENOJIO     | (Fulcilased Reagelic, |                 | Porfluoropentanoic acia                            | JM /gn ug/mI    |
|                                               | 10/00/00/00 | WELLIIG<br>FILIC       | - 1                                      | F C 2 C L 7      |                       |                 | Ferranciopentamesantonic acta                      | Till / Bn 6.0 % |
| LCFFTeDA 00006                                | ν,<br>υ     | Welling                | Laboratories,                            | Lot PFTFEDAIZIS  | - 1                   |                 | Periluorotetradecanoic acid                        |                 |
| LCPFTrDA 00006                                | 02/12/21    | Wellington             | Laboratories,                            | Lot PFTrDAU216   |                       |                 | Pertluorotridecanoic acid                          | 20 ug/mL        |
| LCPFUdA 00007                                 | 10/18/21    | Welling                | Wellington Laboratories, Lot PF          | ot PFUdA1016     | (Purchased Reagent)   |                 | Perfluoroundecanoic acid                           | 20 ng/mL        |
| LCPFC LL4 00005                               | 11/18/18    | 06/05/18               | 06/05/18 MeOH/H2O, Lot 090285            | 200 mL           | LCMPFC ALL SU 00075   | 10 mL           | d3-NMeFOSAA                                        | 2.5 ng/mL       |
| 1                                             |             |                        |                                          |                  | <br> <br>             |                 | d5-NEtFOSAA                                        | 2.5 ng/mL       |
|                                               |             |                        |                                          |                  |                       |                 | M2-6:2FTS                                          | 2.375 ng/mL     |
|                                               |             |                        |                                          |                  |                       |                 | M2-8:2FTS                                          | 2.395 ng/mL     |
|                                               |             |                        |                                          |                  |                       |                 | 13C2-PFHxDA                                        | 2.5 ng/mL       |
|                                               |             |                        |                                          |                  |                       |                 | 13C2-PFOA                                          | 2.5 ng/mL       |
|                                               |             |                        |                                          |                  |                       |                 | 13C2-PFTeDA                                        | 2.5 ng/mL       |
|                                               |             |                        |                                          |                  |                       |                 | 13C4-PFHpA                                         | 2.5 ng/mL       |
|                                               |             |                        |                                          |                  |                       |                 | 13C5-PFPeA                                         | 2.5 ng/mL       |
|                                               |             |                        |                                          |                  |                       |                 | 13C8 FOSA                                          | 2.5 ng/mL       |
|                                               |             |                        |                                          |                  |                       |                 | 13C4 PFBA                                          | 2.5 ng/mL       |
|                                               |             |                        |                                          |                  |                       |                 |                                                    | 2.325 ng/mL     |
|                                               |             |                        |                                          |                  |                       |                 |                                                    | Z.5 ng/mL       |
|                                               |             |                        |                                          |                  |                       |                 |                                                    | 2.5 ng/mL       |
|                                               |             |                        |                                          |                  |                       |                 |                                                    | 2.5 ng/mL       |
|                                               |             |                        |                                          |                  |                       |                 |                                                    | 2.365 ng/mL     |
|                                               |             |                        |                                          |                  |                       |                 |                                                    | 2.5 ng/mL       |
|                                               |             |                        |                                          |                  |                       |                 |                                                    | 2.5 ng/mL       |
|                                               |             |                        |                                          |                  |                       |                 | - 1                                                | 2.39 ng/mL      |
|                                               | _           |                        | _                                        | _                | _                     |                 | 13C2 PFUnA                                         | 2.5 ng/mL       |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

|                      |          |          |                               | 1      | Parent Reagent      | ш      |                                                       |               |
|----------------------|----------|----------|-------------------------------|--------|---------------------|--------|-------------------------------------------------------|---------------|
|                      | EX<br>EX | Prep     | Dilutant                      | Final  |                     | Volume |                                                       |               |
| Reagent ID           | Date     | Date     | Used                          | Volume | Reagent ID          | Added  | Analyte                                               | Concentration |
|                      |          |          |                               |        | LCPFCSP_00148       | 400 uL | Sodium 1H, 1H, 2H, 2H-perfluorohexane sulfonate (4:2) | 0.934 ng/mL   |
|                      |          |          |                               |        |                     |        | Sodium 1H, 1H, 2H, 2H-perfluorooctane sulfonate (6:2) | 0.948 ng/mL   |
|                      |          |          |                               |        |                     |        | Sodium<br>1H,1H,2H,2H-perfluorodecane                 | 0.958 ng/mL   |
|                      |          |          |                               |        |                     |        | sulfonate (8:2)                                       | - 1           |
|                      |          |          |                               |        |                     |        | N-ethyl perfluorooctane<br>sulfonamidoacetic acid     | l ng/mL       |
|                      |          |          |                               |        |                     |        | N-methyl perfluorooctane<br>sulfonamidoacetic acid    | 1 ng/mL       |
|                      |          |          |                               |        |                     |        | Perfluorobutyric acid                                 | 1 1           |
|                      |          |          |                               |        |                     |        | Perfluorobutanesulfonic acid (PFBS)                   | 0.884 ng/mL   |
|                      |          |          |                               |        |                     |        | Perfluorodecanoic acid                                | 1 ng/mL       |
|                      |          |          |                               |        |                     |        | Perfluorododecanoic acid                              | 1 ng/mL       |
|                      |          |          |                               |        |                     |        |                                                       | 7 7           |
|                      |          |          |                               |        |                     |        | (PFHpA)                                               |               |
|                      |          |          |                               |        |                     |        | Perfluoroheptanesulfonic acid                         | 0.952 ng/mL   |
|                      |          |          |                               |        |                     |        | - 1                                                   | П,            |
|                      |          |          |                               |        |                     |        | Perfluorohexanesulfonic acid (PFHxS)                  | 0.91 ng/mL    |
|                      |          |          |                               |        |                     |        | rononanoic acid                                       | 1 ng/mL       |
|                      |          |          |                               |        |                     |        |                                                       | 1.001 ng/mL   |
|                      |          |          |                               |        |                     |        |                                                       |               |
|                      |          |          |                               |        |                     |        | Perfluorooctanesulfonic acid (PFOS)                   | 0.928 ng/mL   |
|                      |          |          |                               |        |                     |        | Perfluorooctane Sulfonamide                           | 1 ng/mL       |
|                      |          |          |                               |        |                     |        |                                                       |               |
|                      |          |          |                               |        |                     |        | Perilloropentanesulionic acid                         | 0.938 ng/mL   |
|                      |          |          |                               |        |                     |        | Perfluorotridecanoic acid                             | 1 ng/mL       |
|                      |          |          |                               |        |                     |        | Perfluoroundecanoic acid                              |               |
| .LCMPFC_ALL_SU_00075 | 12/05/18 | 06/05/18 | Methanol, Lot Baker<br>141039 | 200 mL | LCd3-NMeFOSAA_00008 | 200 uL | d3-NMeFOSAA                                           | 0.05 ug/mL    |
|                      |          |          |                               |        | LCd5-NEtFOSAA 00008 |        | d5-NEtFOSAA                                           |               |
|                      |          |          |                               |        | LCM2-6:FTS 00008    | 200 uL | M2-6:2FTS                                             | 0.0475 ug/mL  |
|                      |          |          |                               |        | ICM2-8:2FTS 00010   | 200 uL | M2-8:2FTS                                             | 0.0479 ug/mL  |
|                      |          |          |                               |        | TCM2 PEDA 00008     |        | 1302 FEIGHT                                           |               |
|                      |          |          |                               |        | LCM2PFTeDA 00014    |        | 13C2-PFTeDA                                           |               |
|                      |          |          |                               |        | LCM4PFHPA 00014     | 200 uL | 13C4-PFHpA                                            | 0.05 ug/mL    |
|                      |          |          |                               |        | LCMSPFPEA 00015     | 1 1    | 13C5-PFPeA                                            |               |
|                      |          |          |                               |        | LCM8FOSA 00019      |        | 13C8 FOSA                                             | 0.05 ug/mL    |
|                      |          |          |                               |        | TCMPEPS 00008       | 200 uL | 13C4 PFBA                                             | 0.05 ug/mL    |
| _                    | _        |          | _                             | _      |                     | 2000   |                                                       | TIII / Sp     |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

|                | Concentration    | 0.05 ug/mL    | 0.05 ug/mL |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |               |      | 0.0478 ug/mL  | 0.05 ug/mL     | 20 ng/mL            | 50 ug/mL                      | 47.5 ug/mL          |                             | 50 ug/mL                          | 50 ug/mL                                |                                   | 50 ug/mL        |                 | 50 ug/mL                         | 50 ug/mL                               | 46.5 ug/mL                       |                                 |                | 50 ug/mL                 | 47.3 ug/mL          |               | 50 ug/mL                        | 47.8 ug/mL                             | 50 ug/mL                         |                |   | 0 474 11cm/mT.  | 0 479 ind/mT     | 7 m/ mT.             |                     | 0.5 ug/mL           |                                         |                       | 0.442 ug/mL  | F      |   |                          | •            | Tm/bn c.0               |
|----------------|------------------|---------------|------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|------|---------------|----------------|---------------------|-------------------------------|---------------------|-----------------------------|-----------------------------------|-----------------------------------------|-----------------------------------|-----------------|-----------------|----------------------------------|----------------------------------------|----------------------------------|---------------------------------|----------------|--------------------------|---------------------|---------------|---------------------------------|----------------------------------------|----------------------------------|----------------|---|-----------------|------------------|----------------------|---------------------|---------------------|-----------------------------------------|-----------------------|--------------|--------|---|--------------------------|--------------|-------------------------|
|                | Analyte          | 13C2 PFDA     | 13C2       | 1 2001        | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 2 C L        | T 0 0         | 13C4 | 13C4          | 13C2 PFUnA     | d3-NMeFOSAA         | d5-NEtFOSAA                   | M2-6:2FTS           | M2-8:2FTS                   | 13C2-PFHxDA                       | 13C2-PFOA                               | 13C2-PFTeDA                       | 13C4-PFHpA      | 13C5-PFPeA      | 13C8 FOSA                        | 13C4 PFBA                              | 13C3-PFBS                        | 13C2 PFDA                       | 13C2 PFDoA     | 13C2 PFHxA               | 1802 PFHxS          |               | 13C4 PFOA                       | 13C4 PFOS                              | 13C2 PFUnA                       | Sodiu          |   | Sullonate (4:2) | SOLI LOID CA     | +                    |                     | N-methyl perfluorc  | $\rightarrow$                           | Perfluorobutyric acid |              | (FFBS) | _ | Porfluorodogano Sulfonia | +            | Pertluoroneptanoic acid |
| <b>ц</b>       | Volume<br>Added  | 200 uL        |            |               | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 1            |               |      | 200 uL        | 200 uL         | ent)                | ent)                          | ent)                | ent)                        | ent)                              | ent)                                    | ent)                              | ent)            | ent)            | ent)                             | ent)                                   | ent)                             | ent)                            | ent)           | ent)                     | ent)                | ent)          | ent)                            | ent)                                   | ent)                             | 100 uL         |   | Tri UUT         | 100 t            | 100 Tri              |                     | 100 uL              |                                         | - 1                   | 100 uL       | ;      |   |                          |              | 100 uL                  |
| Parent Reagent | Reagent ID       | LCMPFDA 00020 |            | TOMBEH N DOOS | TOWNER OF THE PROPERTY OF THE | LCMPFHXS 00013 | LCMFFNA OUOIS |      | LCMPFOS_00027 | LCMPFUdA_00017 | (Purchased Reagent) | (Purchased Reagent)           | (Purchased Reagent) |                             | (Purchased Reagent)               | (Purchased Reagent)                     |                                   |                 |                 | (Purchased Reagent)              | (Purchased Reagent)                    | 1                                |                                 |                | (Purchased Reagent       | (Purchased Reagent) |               |                                 |                                        | (Purchased Reagent)              |                | 1 | 1.06.2FTS 00007 | T.C.8.2FTS 00007 | T.Chr-ME+FOSAA 00001 | TOO BUT THE CE COOL | LCbr-NMeFOSAA_00001 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | LCPFBA_00008          | LCPFBS_00009 | 00000  |   | 10                       | 10 mm 000000 | LCPFHPA_00011           |
| Reagent        | Final<br>Volume  |               | -          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |               |      |               |                | 117                 | 117                           | 8.                  | 8.                          | M2PFHxDA0717                      | FOA0216                                 | M2PFTeDA1117                      | M4PFHpA0517     | M5PFPeA0717     | M8FOSA1017I                      | FBA0218                                | Lot M3PFBS0218                   | Lot MPFDA0218                   | MPFDoA0218     | MPFHxA1017               | MPFHxS0318          | FNA1217       | Lot MPFOA0418                   | FOS0218                                | MPFUdA1116                       | 10 mL          |   | -               |                  |                      |                     |                     |                                         |                       |              |        |   |                          |              |                         |
|                | Dilutant<br>Used |               |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |               |      |               |                |                     | WELLINGTON, Lot d5NEtFOSAA111 |                     | WELLINGTON, Lot M282FTS0118 | Wellington Laboratories, Lot M2PF | Wellington Laboratories, Lot M2PFOA0216 | Wellington Laboratories, Lot M2PF | Lot             |                 | Wellington Laboratories, Lot M8F | Wellington Laboratories, Lot MPFBA0218 | Wellington Laboratories, Lot M3F | Wellington Laboratories, Lot MP | Lot            | on Laboratories, Lot MPF | Lot                 |               | Wellington Laboratories, Lot MP | Wellington Laboratories, Lot MPFOS0218 | Wellington Laboratories, Lot MPF | 285            |   |                 |                  |                      |                     |                     |                                         |                       |              |        |   |                          |              |                         |
|                | Prep<br>Date     |               |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |               |      |               |                | WELL                | WELL                          | MEI                 | WEI                         | Wellingtor                        | Wellingto                               | Wellingtor                        | Wellingto       | Wellingto       | Wellingto                        | Wellingt                               | Wellingto                        | Wellingt                        | Wellingto      | Wellington               | Wellingto           | Wellingt      | Wellingt                        | Wellingt                               | Wellingto                        | 05/17/18 N     |   |                 |                  |                      |                     |                     |                                         |                       |              |        |   |                          |              |                         |
|                | Exp<br>Date      |               |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |               |      |               |                | 11/08/22            | 11/08/22                      | 02/16/23            | 01/24/23                    | 07/13/22                          | 02/12/21                                | -                                 | 05/03/22        | 07/20/22        | 10/11/22                         | 02/16/23                               | 02/15/23                         | 02/16/23                        | 02/16/23       | 10/27/22                 | 03/22/23            | 12/14/22      | 05/04/23                        | 02/15/23                               | 11/22/21                         | +              |   |                 |                  |                      |                     |                     |                                         |                       |              |        |   |                          |              |                         |
|                | Reagent ID       |               |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |               |      |               |                | LCd3-NMeFOSAA 00008 | LCd5-NEtFOSAA 00008           | LCM2-6:FTS 00008    | LCM2-8:2FTS 00010           | LCM2PFHxDA 00016                  | LCM2PFOA 00008                          | LCM2PFTeDA 00014                  | LCM4PFHPA 00014 | LCM5PFPEA 00015 | LCM8FOSA 00019                   | LCMPFBA 00015                          | LCMPFBS 00008                    | LCMPFDA 00020                   | LCMPFDoA 00015 | LCMPFHxA 00022           | LCMPFHxS 00015      | LCMPFNA 00015 | LCMPFOA 00019                   | LCMPFOS 00027                          | LCMPFUda 00017                   | .LCPFCSP 00148 |   |                 |                  |                      |                     |                     |                                         |                       |              |        |   |                          |              |                         |

Lab Name: TestAmerica Sacramento

SDG No.:

|                     |             |              |                                           | Farent Reagent        | - 1             |                                                          |               |
|---------------------|-------------|--------------|-------------------------------------------|-----------------------|-----------------|----------------------------------------------------------|---------------|
| Reagent ID          | Exp<br>Date | Prep<br>Date | Dilutant Final Used Volume                | Reagent ID            | Volume<br>Added | Analyte                                                  | Concentration |
|                     |             |              |                                           | LCPFHpSA 00003        | 100 uL          | Perfluoroheptanesulfonic acid                            | 0.476 ug/mL   |
|                     |             |              |                                           | LCPFHxA 00010         | 100 uL          |                                                          | 0.5 ug/mL     |
|                     |             |              |                                           | LCPFHxS-br_00006      | 100 uL          | Perfluorohexanesulfonic acid (PFHxS)                     | 1             |
|                     |             |              |                                           | LCPFNA 00010          | 100 uL          | Perfluorononanoic acid (PFNA)                            | 0.5 ug/mL     |
|                     |             |              |                                           | I                     |                 | Perfluorooctanoic acid (PFOA)                            |               |
|                     |             |              |                                           | LCPFNS_00003          | 100 uL          | Perfluorononanesulfonic acid                             | 0.48 ug/mL    |
|                     |             |              |                                           | LCPFOA_00011          | 100 uL          | Perfluorooctanoic acid (PFOA)                            | 0.5005 ug/mL  |
|                     |             |              |                                           | LCPFOS-br_00007       | 100 uL          | Perfluorooctanesulfonic acid                             | 0.464 ug/mL   |
|                     |             |              |                                           |                       |                 | (PFOS)                                                   |               |
|                     |             |              |                                           | LCPFOSA_00013         | 100 uL          | Perfluorooctane Sulfonamide                              | 0.5 ug/mL     |
|                     |             |              |                                           | LCPFPeA_00008         | 100 uL          | Perfluoropentanoic acid                                  | 0.5 ug/mL     |
|                     |             |              |                                           | LCPFPes_00003         | 100 uL          | Perfluoropentanesulfonic acid                            | 0.469 ug/mL   |
|                     |             |              |                                           |                       | 100 uL          | Perfluorotetradecanoic acid                              | 0.5 ug/mL     |
|                     |             |              |                                           | LCPFTrDA_00008        | 100 uL          | Perfluorotridecanoic acid                                |               |
|                     |             |              |                                           |                       | 100 uL          | Perfluoroundecanoic acid                                 | 0.5 ug/mL     |
| LC4:2FTS_00005      | 12/12/21    |              | WELLINGTON, Lot 42FTS1216                 | (Purchased Reagent)   | nt)             | Sodium<br>1H,1H,2H,2H-perfluorohexane                    | 46.7 ug/mL    |
|                     |             |              |                                           |                       |                 | sulfonate (4:2)                                          |               |
| LC6:2FTS_00007      | 04/20/22    |              | WELLINGTON, Lot 62FTS0417                 | (Purchased Reagent)   | nt)             | Sodium<br>1H,1H,2H,2H-perfluorooctane<br>sulfonate (6:2) | 47.4 ug/mL    |
| LC8:2FTS_00007      | 12/12/21    |              | WELLINGTON, Lot 82FTS1216                 | (Purchased Reagent)   | nt)             | Sodium<br>1H,1H,2H,2H-perfluorodecane<br>sulfonate (8:2) | 47.9 ug/mL    |
| LCbr-NEtFOSAA_00001 | 01/17/23    | WEJ          | WELLINGTON, Lot brNEtFOSAA0118            | (Purchased Reagent)   | nt)             | N-ethyl perfluorooctane sulfonamidoacetic acid           | 50 ug/mL      |
| LCbr-NMeFOSAA_00001 | 01/17/23    | WEJ          | WELLINGTON, Lot brNMeFOSAA0118            | (Purchased Reagent)   | nt)             | N-methyl perfluorooctane sulfonamidoacetic acid          | 50 ug/mL      |
| LCPFBA_00008        | 05/29/22    | Wellin       | Wellington Laboratories, Lot PFBA0517     | (Purchased Reagent)   | nt)             | Perfluorobutyric acid                                    | 20 ng/mL      |
| LCPFBS_00009        | 09/21/22    | Welling      | Wellington Laboratories, Lot LPFBS0917    | (Purchased Reagent)   | nt)             | Perfluorobutanesulfonic acid (PFBS)                      | 44.2 ug/mL    |
| LCPFDA_00008        | 05/29/22    | Wellin       | Wellington Laboratories, Lot PFDA0517     | (Purchased Reagent)   | nt)             | Perfluorodecanoic acid                                   | 20 ng/mL      |
| LCPFDoA_00008       | 05/29/22    | Welling      | Lot                                       |                       | nt)             | Perfluorododecanoic acid                                 |               |
| LCPFDS_00008        | 11/08/22    | Welling      | Lot                                       | (Purchased Reagent)   | nt)             | Perfluorodecane Sulfonic acid                            | 48.2 ug/mL    |
| LCPFHpA_00011       | 09/27/22    | Welling      | Wellington Laboratories, Lot PFHpA0917    | (Purchased Reagent)   | nt)             | Perfluoroheptanoic acid<br>(PFHpA)                       | 20 ng/mT      |
| LCPFHpSA_00003      | 09/01/22    | Wellington   | Laboratories, Lot                         | (Purchased Reagent)   | nt)             | Perfluoroheptanesulfonic acid                            | 47.6 ug/mL    |
| LCPFHxA_00010       | 09/27/22    | Welling      | Wellington Laboratories, Lot PFHxA0917    | (Purchased Reagent)   | nt)             | Perfluorohexanoic acid                                   | 7m/mr         |
| LCPFHxS-br_00006    | 01/04/22    | Wellingt     | Wellington Laboratories, Lot brPFHxSK0117 | 7 (Purchased Reagent) | nt)             | Perfluorohexanesulfonic acid (PFHxS)                     | 45.5 ug/mL    |
| LCPFNA_00010        | 07/20/22    | Wellin       | Wellington Laboratories, Lot PFNA0717     | (Purchased Reagent)   | nt)             |                                                          | 20 ng/mL      |
| COOO SEEDING A      | 11          |              |                                           |                       |                 | Perfluorooctanoic acid (PFOA)                            |               |
| LCPFNS 00003        | 09/27/22    | Welling      |                                           | (Purchased Reagent)   | nt)             | fonic                                                    |               |
| LCPFOA 00011        | 09/27/22    | Wellin       | Wellington Laboratories, Lot PFOA0917     | (Purchased            | nt)             |                                                          |               |
| LCPFOS-br_00007     | 01/12/22    | Welling      | Wellington Laboratories, Lot brPFOSK0117  |                       | nt)             | Perfluorooctanesulfonic acid (PFOS)                      | 46.4 ug/mL    |
| LCPFOSA 00013       | 09/01/22    | Welling      | Wellington Laboratories, Lot FOSA0817I    | (Purchased Reagent)   | nt)             | Perfluorooctane Sulfonamide                              | 20 ng/mL      |
| LCPFPeA_00008       | 06/14/22    | Welling      | Wellington Laboratories, Lot PFPeA0617    | (Purchased Reagent)   | nt)             | Perfluoropentanoic acid                                  | 20 ng/mr      |

Lab Name: TestAmerica Sacramento

SDG No.:

| Exp Date Date Used Used O1/11/22 Wellington Laboratories, Lot 09/30/21 Wellington Laboratories, Lot 05/02/22 Wellington Laboratories, Lot 10/18/21 Wellington Laboratories, Lot 08/20/18 02/22/18 MeOH/H2O, Lot 090285 |                    | Final<br>Volume |                     | Volume |                                                               |               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|---------------------|--------|---------------------------------------------------------------|---------------|
| 000                                                                                                                                                                                                                    | 1 1 1 1.511        |                 | Reagent ID          | Added  | Analyte                                                       | Concentration |
| 000                                                                                                                                                                                                                    | 1 1 1              | LPFPeS0117      | (Purchased Reagent) | ent)   | Perfluoropentanesulfonic acid                                 | 46.9 ug/mL    |
| 0                                                                                                                                                                                                                      | 1                  | PFTeDA0916      |                     | ent)   | Perfluorotetradecanoic acid                                   | 50 ug/mL      |
| 0                                                                                                                                                                                                                      | oratories, Lot PFU | PFTrDA0517      | (Purchased Reagent) | ent)   | Perfluorotridecanoic acid                                     | 50 ug/mL      |
|                                                                                                                                                                                                                        |                    | JdA1016         | (Purchased Reagent) | ent)   | Perfluoroundecanoic acid                                      | 50 ug/mL      |
|                                                                                                                                                                                                                        | 20, Lot 090285     | 200 mL LC       | LCMPFC ALL SU 00041 | 10 mL  | d3-NMeFOSAA                                                   | 2.5 ng/mL     |
|                                                                                                                                                                                                                        |                    |                 |                     |        | d5-NEtFOSAA                                                   |               |
|                                                                                                                                                                                                                        |                    |                 |                     |        | M2-6:2FTS                                                     |               |
|                                                                                                                                                                                                                        |                    |                 |                     |        | M2-8:2FTS                                                     | 2.395 ng/mL   |
|                                                                                                                                                                                                                        |                    |                 |                     |        | 13C2-PFHxDA                                                   | 2.5 ng/mL     |
|                                                                                                                                                                                                                        |                    |                 |                     |        | 13C2-PFOA                                                     | 2.5 ng/mL     |
|                                                                                                                                                                                                                        |                    |                 |                     |        | 13C2-PFTeDA                                                   | 2.5 ng/mL     |
|                                                                                                                                                                                                                        |                    |                 |                     |        | 13C4-PFHpA                                                    | 2.5 ng/mL     |
|                                                                                                                                                                                                                        |                    |                 |                     |        | 13C5-PFPeA                                                    |               |
|                                                                                                                                                                                                                        |                    |                 |                     |        |                                                               |               |
|                                                                                                                                                                                                                        |                    |                 |                     |        | 13C4 PFBA                                                     | 2.5 ng/mL     |
|                                                                                                                                                                                                                        |                    |                 |                     |        |                                                               | 2.325 ng/mL   |
|                                                                                                                                                                                                                        |                    |                 |                     |        | 13C2 PFDA                                                     | 2.5 ng/mL     |
|                                                                                                                                                                                                                        |                    |                 |                     |        | 13C2 PFDoA                                                    | 2.5 ng/mL     |
|                                                                                                                                                                                                                        |                    |                 |                     |        | 13C2 PFHxA                                                    | 2.5 ng/mL     |
|                                                                                                                                                                                                                        |                    |                 |                     |        | 1802 PFHxS                                                    |               |
|                                                                                                                                                                                                                        |                    |                 |                     |        | 13C5 PFNA                                                     |               |
|                                                                                                                                                                                                                        |                    |                 |                     |        | 13C4 PFOA                                                     |               |
|                                                                                                                                                                                                                        |                    |                 |                     |        |                                                               | 2.39 ng/mL    |
|                                                                                                                                                                                                                        |                    |                 |                     |        |                                                               |               |
|                                                                                                                                                                                                                        |                    | l<br>l          | LCPFCSP 00132       | 500 uL | Sodiu                                                         |               |
|                                                                                                                                                                                                                        |                    |                 | I                   |        | 2H-                                                           | 1             |
|                                                                                                                                                                                                                        |                    |                 |                     |        | sulfonate (4:2)                                               |               |
|                                                                                                                                                                                                                        |                    |                 |                     |        | Sodium                                                        | 2.37 ng/mL    |
|                                                                                                                                                                                                                        |                    |                 |                     |        | <pre>1H, 1H, 2H, 2H-perfluorooctane<br/>sulfonate (6:2)</pre> |               |
|                                                                                                                                                                                                                        |                    |                 |                     |        | Sodium<br>1H 1H 2H 2H-nerf]orodecane                          | 2.395 ng/mL   |
|                                                                                                                                                                                                                        |                    |                 |                     |        | sulfonate (8:2)                                               |               |
|                                                                                                                                                                                                                        |                    |                 |                     |        | N-ethyl perfluorooctane<br>sulfonamidoacetic acid             | 2.5 ng/mL     |
|                                                                                                                                                                                                                        |                    |                 |                     |        | N-methyl perfluorooctane                                      | 2.5 ng/mL     |
|                                                                                                                                                                                                                        |                    |                 |                     |        | sulfonamidoacetic acid                                        |               |
|                                                                                                                                                                                                                        |                    |                 |                     |        |                                                               | - 1           |
|                                                                                                                                                                                                                        |                    |                 |                     |        | Perfluorobutanesulfonic acid (PFBS)                           | 2.21 ng/mL    |
|                                                                                                                                                                                                                        |                    |                 |                     |        | Perfluorodecanoic acid                                        | 2.5 ng/mL     |
|                                                                                                                                                                                                                        |                    |                 |                     |        |                                                               |               |
|                                                                                                                                                                                                                        |                    |                 |                     |        | Perfluorodecane Sulfonic acid                                 | 2.41 ng/mL    |
|                                                                                                                                                                                                                        |                    |                 |                     |        | Perfluoroheptanoic acid                                       |               |
|                                                                                                                                                                                                                        |                    |                 |                     |        | Perfluoroheptanesulfonic acid                                 | 2.38 ng/mL    |
|                                                                                                                                                                                                                        |                    |                 |                     |        |                                                               | 2.5 ng/mL     |
|                                                                                                                                                                                                                        |                    |                 |                     |        | Perfluorohexanesulfonic acid                                  | 2.275 ng/mL   |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

| Part     |                  |             |              |                                | -          |                    |                 |                                        |               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|--------------|--------------------------------|------------|--------------------|-----------------|----------------------------------------|---------------|
| Exp   Exp   Date   Da  |                  |             |              | Reage                          | ent        | Parent Reagen      |                 |                                        |               |
| PREFINCE CONTINUES CONTI  |                  | Exp<br>Date | Prep<br>Date |                                | lal<br>ime |                    | Volume<br>Added | Analyte                                | Concentration |
| The control of the   | n                |             |              |                                | +          | 1                  |                 | 7                                      | F             |
| 10   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |             |              |                                |            |                    |                 |                                        | Z.5 ng/mL     |
| Perfilosorocentroide acid (1904)   Perfilosorocentroide acid (1904)   Perfilosorocentroide acid (1904)   2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |             |              |                                |            |                    |                 |                                        | 7.4 ng/mL     |
| Part     |                  |             |              |                                |            |                    |                 | acid                                   |               |
| Part     |                  |             |              |                                |            |                    |                 |                                        |               |
| 0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   |                  |             |              |                                |            |                    |                 | Dorfluorocatano Sulfonamido            |               |
| Continue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |             |              |                                |            |                    |                 | בייייייייייייייייייייייייייייייייייייי |               |
| 041   06/20/38   Methanol, Lot Baker   200 mL Lod3-MeePOSA_00006   200 LI BETILOCTOTTATAGENING acid   2.1 35     14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10/39   14/10   |                  |             |              |                                |            |                    |                 | acıa                                   |               |
| 08/20/18   02/20/18   Methanol, Lot Baker   200 ml Lod3-NWeFOSAA_00006   200 ul d3-NWeFOSAA_00006   20 ul d3-NWeFOSAA_0006   20 ul d3-NWEFOSAA_006   20 u  |                  |             |              |                                |            |                    |                 | Perfluoropentanesulfonic acid          |               |
| 08/20/18   OF/20/18   Methanol, Lot Baker   200 mL Loda-WherOSAA_00006   200 uL da-NuerOSAA_0000   0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |             |              |                                |            |                    |                 | Perfluorotetradecanoic acid            | 2.5 ng/mL     |
| 08/20/18   02/20/18   Dethanol, Lot Baker   200 mL Lod3-NNeFOSAA, 00006   200 mL D3-FREEDSAA   0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |             |              |                                |            |                    |                 | Perfluorotridecanoic acid              | 2.5 ng/mL     |
| 08/20/18   08/20/18   Methanol, Lot Baker   200 mL Jack-Werposh, 00006   200 LL Jack-Werposh   0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |             |              |                                |            |                    |                 | Perfluoroundecanoic acid               |               |
| LOGS-NEE-FOORAR 200 to Id-NEE-FOORAR 200 to Id-NE  |                  | 08/20/18    | 02/20/18     | Lot Baker                      | mL         | cd3-NMeFosaa_00006 |                 |                                        |               |
| T.CM2PERSTERN ONOGE   COU LIME - EFFECK ON LIME - EFFEC  |                  |             | 1            |                                | ij         | Cd5-NEtFOSAA 00006 |                 | _                                      |               |
| TAMES   TAME  |                  |             |              |                                | ŭ          | CM2-6:FTS 00006    |                 | -                                      | 1             |
| Transpersor     |                  |             |              |                                | ŭ          | CM2-8:2FTS 00008   |                 | -                                      | 1             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |             |              |                                | ĭ          | CM2PFHxDA 00013    | 1               | -                                      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |             |              |                                | ĭ          | CM2PFOA 00008      |                 | -                                      |               |
| TOWERPERA 00012   200 uL 13G2-FPRA   0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |             |              |                                | ĭ          | CM2PFTeDA 00012    | 1               | _                                      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |             |              |                                | ĭ          | CM4PFHPA 00012     |                 | -                                      |               |
| ICMBFDA 0016   200 uL 13C8 FPBA   0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |             |              |                                | ĭ          | CMSPFPEA 00013     |                 | -                                      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |             |              |                                | ĭ          | CM8FOSA_00016      |                 | -                                      |               |
| TOWNERS ONOGE   COULD   13C3_PEPS   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006   0.006     |                  |             |              |                                | ĭ          |                    | l               |                                        |               |
| ICMPEDA 00018   200 uL 1362 PEDA 0.005   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.05   10.  |                  |             |              |                                | ĭ          |                    |                 | -                                      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |             |              |                                | ĭ          | CMPFDA 00018       |                 | 13C2                                   |               |
| LCMPENA 00019   200 uL 1302 PFNA   0.00473   0.00473   0.00473   0.00473   0.00473   0.00473   0.00473   0.00473   0.00473   0.005 PFNA   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.  |                  |             |              |                                | ĭ          | CMPFDOA_00013      |                 | 13C2                                   |               |
| LOWING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |             |              |                                | ĭ          | CMPFHxA_00019      |                 | 13C2                                   |               |
| ICMPEND 00013   200 uL 13C5 PFNA   0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |             |              |                                | ĭ          | CMPFHxS 00013      |                 | 1802                                   |               |
| Company   Comp  |                  |             |              |                                | ĭ          |                    |                 | 13C5                                   |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |             |              |                                | ĭ          | CMPFOA_00017       |                 | 13C4                                   |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |             |              |                                | ĭ          | CMPFOS_00025       |                 | 13C4                                   |               |
| 0006         05/19/22         WELLINGTON, Lot d3NMeFCSAA0517         (Purchased Reagent)         d3-NMeFCSAA         50           0006         11/08/22         WELLINGTON, Lot d5NEtFCSAA1117         (Purchased Reagent)         d5-NEFCSAA         50           08         02/17/22         WELLINGTON, Lot M22FTS0217         (Purchased Reagent)         M2-8:2FTS         47.5           08         07/13/22         Wellington Laboratories, Lot M2PFHXDA0717         (Purchased Reagent)         13C2-PFHXDA         50           2         02/12/21         Wellington Laboratories, Lot M2PFPA0717         (Purchased Reagent)         13C2-PFHXDA         50           2         02/12/21         Wellington Laboratories, Lot M4PFPA0517         (Purchased Reagent)         13C2-PFPAA         50           2         01/20/22         Wellington Laboratories, Lot M5PFPA0517         (Purchased Reagent)         13C3-PFPAA         50           04/12/22         Wellington Laboratories, Lot M8PFBA0417         (Purchased Reagent)         13C3-PFPA         46.5           05/24/22         Wellington Laboratories, Lot M8PFBA0417         (Purchased Reagent)         13C3-PFDA         65           05/23/22         Wellington Laboratories, Lot M8PFBA0417         (Purchased Reagent)         13C3-PFDA         66           05/24/22         Wellington L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |             |              |                                | IC         | CMPFUda_00014      |                 |                                        |               |
| 11/08/22   WELLINGTON, Lot dSNELFOSAA1117   (Purchased Ragent)   d5-NEFFOSAA   47.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3-NMeFOSAA 00006 | 05/19/22    | WELL         | Lot d3NMeF(                    |            |                    | ent)            | d3-NMeFOSAA                            |               |
| 6         02/17/22         WELLINGTON, Lot M262FTS0217         (Purchased Reagent)         M2-6:2FTS         47.5           08         07/05/22         WELLINGTON, Lot M28EFTS0717         (Purchased Reagent)         13C2-PFHxDA         47.9           07/13/22         Wellington Laboratories, Lot M2PFTADA117         (Purchased Reagent)         13C2-PFPAA         50           11/30/22         Wellington Laboratories, Lot M2PFTADA117         (Purchased Reagent)         13C2-PFPAA         50           07/20/22         Wellington Laboratories, Lot M3FPRA0717         (Purchased Reagent)         13C3-PFPAA         50           10/11/22         Wellington Laboratories, Lot M8FOSA1017         (Purchased Reagent)         13C4-PFBA         50           04/12/22         Wellington Laboratories, Lot M8FDA017         (Purchased Reagent)         13C4 PFBA         50           04/12/22         Wellington Laboratories, Lot M8FDA017         (Purchased Reagent)         13C2 PFBA         50           05/24/22         Wellington Laboratories, Lot M8FDA017         (Purchased Reagent)         13C2 PFBA         50           05/23/22         Wellington Laboratories, Lot M8FDA017         (Purchased Reagent)         13C2 PFDA         50           05/23/22         Wellington Laboratories, Lot M8FDA017         (Purchased Reagent)         13C2 PFDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5-NEtFOSAA 00006 | 08          | WI           | Lot d5NEtF                     |            | - 1                | ent)            | d5-NEtFOSAA                            |               |
| 08         07/05/22         WELLINGTON, Lot M282FTS0717         (Purchased Reagent)         M2-8:2FTS         47.9           3         07/13/22         Wellington Laboratories, Lot M2PFDA0216         (Purchased Reagent)         13C2-PFTBA         50           2         11/20/21         Wellington Laboratories, Lot M2PFTBA1117         (Purchased Reagent)         13C4-PFTBA         50           0         05/03/22         Wellington Laboratories, Lot M3PFPBA0517         (Purchased Reagent)         13C5-PFPBA         50           07/20/22         Wellington Laboratories, Lot M8FOSA1017         (Purchased Reagent)         13C5-PFPBA         50           10/11/22         Wellington Laboratories, Lot M8FDSA0417         (Purchased Reagent)         13C3-PFBA         50           04/12/22         Wellington Laboratories, Lot M8FDSA0417         (Purchased Reagent)         13C3-PFBA         50           05/24/22         Wellington Laboratories, Lot MPFDA0717         (Purchased Reagent)         13C3-PFBA         50           07/13/22         Wellington Laboratories, Lot MPFDA0717         (Purchased Reagent)         13C2-PFDA         50           05/23/22         Wellington Laboratories, Lot MPFHAA1017         (Purchased Reagent)         13C2-PFDA         50           05/17/22         Wellington Laboratories, Lot MPFHAA1017         (Purchase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-6:FTS_00006    | 17          |              | LINGTON, Lot M262FTS0217       |            | - 1                | ent)            | M2-6:2FTS                              |               |
| 3     07/13/22 Wellington Laboratories, Lot M2PFNxDA0717     (Purchased Reagent)     13C2-PFNxDA     50       02/12/21     Wellington Laboratories, Lot M2PFDA0216     (Purchased Reagent)     13C2-PFTPDA     50       11/30/22     Wellington Laboratories, Lot M3PFPA0517     (Purchased Reagent)     13C4-PFPAA     50       07/20/22     Wellington Laboratories, Lot M8FDSA1017     (Purchased Reagent)     13C5-PFPAA     50       10/11/22     Wellington Laboratories, Lot M8FDSA1017     (Purchased Reagent)     13C5-PFPAA     50       04/12/22     Wellington Laboratories, Lot M8FDSA1017     (Purchased Reagent)     13C3-PFBA     50       05/24/22     Wellington Laboratories, Lot M8FDSA017     (Purchased Reagent)     13C3-PFBA     50       07/13/22     Wellington Laboratories, Lot M8FDA017     (Purchased Reagent)     13C3-PFBA     50       07/13/22     Wellington Laboratories, Lot MPFHAA1017     (Purchased Reagent)     13C2-PFDA     50       05/23/22     Wellington Laboratories, Lot MPFHAA1017     (Purchased Reagent)     13C2-PFDA     50       10/10/22     Wellington Laboratories, Lot MPFHAA1017     (Purchased Reagent)     13C2-PFDA     50       10/10/20/22     Wellington Laboratories, Lot MPFHAA1017     (Purchased Reagent)     13C2-PFHAA     50       10/10/20/22     Wellington Laboratories, Lot MPFHAA1017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-8:2FTS 00008   | 07/05/22    |              | ( V I                          |            | - 1                | ent)            | M2-8:2FTS                              | o.            |
| 2 (2/12/21 Wellington Laboratories, Lot M2PFOA0216 (Purchased Reagent) 13C2-PFOA 50  11/30/22 Wellington Laboratories, Lot M4PFHpA0517 (Purchased Reagent) 13C3-PFPAA 50  10/10/22 Wellington Laboratories, Lot M8PFBA0117 (Purchased Reagent) 13C5-PFPAA 50  10/11/22 Wellington Laboratories, Lot M8PBA0417 (Purchased Reagent) 13C3-PFBA 50  10/11/22 Wellington Laboratories, Lot M8PBA0417 (Purchased Reagent) 13C3-PFBA 50  10/13/22 Wellington Laboratories, Lot M8PBA0417 (Purchased Reagent) 13C3-PFBA 50  10/13/22 Wellington Laboratories, Lot M8PBA0417 (Purchased Reagent) 13C2 PFDA 50  10/23/22 Wellington Laboratories, Lot M8PBA0417 (Purchased Reagent) 13C2 PFDA 50  10/23/22 Wellington Laboratories, Lot M8PBA0417 (Purchased Reagent) 13C2 PFDA 50  10/23/22 Wellington Laboratories, Lot M8PBA0417 (Purchased Reagent) 13C2 PFDA 50  10/23/22 Wellington Laboratories, Lot M8PFAX1017 (Purchased Reagent) 13C2 PFDA 50  10/23/22 Wellington Laboratories, Lot M8PFAX1017 (Purchased Reagent) 18C2 PFDA 50  10/23/22 Wellington Laboratories, Lot M8PFAX1017 (Purchased Reagent) 18C2 PFDA 50  10/23/22 Wellington Laboratories, Lot M8PFAX1017 (Purchased Reagent) 18C2 PFDA 50  10/23/22 Wellington Laboratories, Lot M8PFAX1017 (Purchased Reagent) 18C2 PFDA 50  10/23/22 Wellington Laboratories, Lot M8PFAX1017 (Purchased Reagent) 18C2 PFDA 50  10/23/22 Wellington Laboratories, Lot W8PFAX1017 (Purchased Reagent) 18C2 PFDA 50  10/23/22 Wellington Laboratories, Lot W8PFAX1017 (Purchased Reagent) 18C2 PFDA 50  10/23/22 Wellington Laboratories, Lot W8PFAX1017 (Purchased Reagent) 18C2 PFDA 50  10/23/22 Wellington Laboratories, Lot W8PFAX1017 (Purchased Reagent) 18C2 PFDA 50  10/23/22 Wellington Laboratories, Lot W8PFAX1017 (Purchased Reagent) 18C2 PFDA 50  10/23/22 Wellington Laboratories, Lot W8PFAX1017 (Purchased Reagent) 18C2 PFDA 50  10/23/22 Wellington Laboratories, Lot W8PFAX1017 (Purchased Reagent) 18C2 PFDA 50  10/23/22 W8PFAX1011 (Purchased Reagent) 18C2 PFDA 50  10/23/22 W8PFAX1017 (Purchased Reagent) 18C2 PFDA 50  10/23/22 W8PFAX1017 (Purchased | 2PFHxDA_00013    | 07/13/22    | is .         | - 1                            | 1717       | - 1                | ent)            | 13C2-PFHxDA                            |               |
| 2 11/30/22 Wellington Laboratories, Lot M2PFTeDA1117 (Purchased Reagent) 13C2-PFTeDA 50  05/03/22 Wellington Laboratories, Lot M3PFBA0517 (Purchased Reagent) 13C4-PFHpA 50  10/11/22 Wellington Laboratories, Lot M8FOSA1017 (Purchased Reagent) 13C8-PFPEA 50  10/11/22 Wellington Laboratories, Lot M8FDSA1017 (Purchased Reagent) 13C3-PFBS 60  05/24/22 Wellington Laboratories, Lot M8PBS0815 (Purchased Reagent) 13C2 PFDA 60  05/24/22 Wellington Laboratories, Lot M8PBS0815 (Purchased Reagent) 13C2 PFDA 60  05/23/22 Wellington Laboratories, Lot M8PBA0717 (Purchased Reagent) 13C2 PFDA 50  05/23/22 Wellington Laboratories, Lot M8PFBA0817 (Purchased Reagent) 13C2 PFDA 50  05/23/22 Wellington Laboratories, Lot M8PFBA0817 (Purchased Reagent) 13C2 PFDA 50  05/23/22 Wellington Laboratories, Lot M8PFBA0817 (Purchased Reagent) 18C2 PFDA 50  05/217/22 Wellington Laboratories, Lot M8PFBA0817 (Purchased Reagent) 18C2 PFBA 50  05/217/22 Wellington Laboratories, Lot M8PFBA0817 (Purchased Reagent) 18C2 PFBA 50  05/217/22 Wellington Laboratories, Lot M8PFBA0817 (Purchased Reagent) 18C2 PFBAA 50  05/217/22 Wellington Laboratories, Lot M8PFBA0817 (Purchased Reagent) 18C2 PFBAA 50  05/217/22 Wellington Laboratories, Lot M8PFBA0817 (Purchased Reagent) 18C2 PFBAA 50  05/217/22 Wellington Laboratories, Lot W8FBA0817 (Purchased Reagent) 18C2 PFBAA 50  05/217/22 Wellington Laboratories, Lot W8FBA0817 (Purchased Reagent) 18C2 PFBAA 50  05/217/22 Wellington Laboratories, Lot W8FBA0817 (Purchased Reagent) 18C2 PFBAA 50  05/217/22 Wellington Laboratories, Lot W8FBA0817 (Purchased Reagent) 18C2 PFBA 50  05/217/22 Wellington Laboratories, Lot W8FBA0817 (Purchased Reagent) 18C2 PFBA 50  05/217/22 W8FBA0818                                                                                                                                                                                                                                                                                                                                                               | 2PFOA_00008      | 02/12/21    |              | on Laboratories, Lot M2PFOA021 | :16        |                    | ent)            | 13C2-PFOA                              |               |
| 05/03/22   Wellington Laboratories, Lot M4PFHpA0517   (Purchased Reagent)   13C4-PFHpA   50   10/12/22   Wellington Laboratories, Lot M5PEPeA0717   (Purchased Reagent)   13C5-PFPeA   50   50   10/11/22   Wellington Laboratories, Lot M8PEA0417   (Purchased Reagent)   13C4 PFBA   50   50   50   50   50   50   50   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2PFTeDA_00012    | 11/30/22    | _            | Lot                            | 117        |                    | ent)            | 13C2-PFTeDA                            |               |
| 07/20/22         Wellington Laboratories, Lot M8FOSA1071         (Purchased Reagent)         13C5-PFPeA         50           10/11/22         Wellington Laboratories, Lot M8FOSA1017I         (Purchased Reagent)         13C8 FOSA         50           04/12/22         Wellington Laboratories, Lot M8FBS0815         (Purchased Reagent)         13C3-PFBS         46.5           05/24/22         Wellington Laboratories, Lot M8FDA0717         (Purchased Reagent)         13C2 PFDA         46.5           07/13/22         Wellington Laboratories, Lot MPFDA0517         (Purchased Reagent)         13C2 PFDA         50           05/23/22         Wellington Laboratories, Lot MPFHAN3017         (Purchased Reagent)         13C2 PFDA         50           02/17/22         Wellington Laboratories, Lot MPFHAN3017         (Purchased Reagent)         13C2 PFDA         50           02/17/22         Wellington Laboratories, Lot MPFHAN3017         (Purchased Reagent)         13C2 PFHANS         50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4PFHPA 00012     | 05/03/22    |              | ı                              | 517        | ı                  | ent)            | 13C4-PFHpA                             |               |
| 10/11/22Wellington Laboratories, Lot MPFBA0417(Purchased Reagent)13C8 FOSA5004/12/22Wellington Laboratories, Lot MPFBA0417(Purchased Reagent)13C3-PFBS46.505/24/22Wellington Laboratories, Lot MPFDA0717(Purchased Reagent)13C2-PFDA5005/23/22Wellington Laboratories, Lot MPFDA0517(Purchased Reagent)13C2-PFDAA5010/27/22Wellington Laboratories, Lot MPFMA1017(Purchased Reagent)13C2-PFDAA5002/17/22Wellington Laboratories, Lot MPFMAS0217(Purchased Reagent)13C2-PFMAS50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5PFPEA 00013     | 07/20/22    |              | Lot                            | 717        |                    | ent)            | 13C5-PFPeA                             |               |
| 04/12/22         Wellington Laboratories, Lot MPFBA0417         (Purchased Reagent)         13C4 PFBA         50           05/24/22         Wellington Laboratories, Lot MPFDA0717         (Purchased Reagent)         13C2 PFDA         46.5           07/13/22         Wellington Laboratories, Lot MPFDA0517         (Purchased Reagent)         13C2 PFDA         50           05/23/22         Wellington Laboratories, Lot MPFMAA0117         (Purchased Reagent)         13C2 PFDAA         50           02/17/22         Wellington Laboratories, Lot MPFMAS0217         (Purchased Reagent)         13C2 PFMAA         50           02/17/22         Wellington Laboratories, Lot MPFMAS0217         (Purchased Reagent)         13C2 PFMAS         47.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8FOSA 00016      | 10/11/22    | Wellington   |                                | 17I        |                    | ent)            | 13C8 FOSA                              |               |
| 05/24/22Wellington Laboratories, Lot MPFDA0717(Purchased Reagent)13C3-PFBS46.507/13/22Wellington Laboratories, Lot MPFDA0717(Purchased Reagent)13C2 PFDA5005/23/22Wellington Laboratories, Lot MPFHXA1017(Purchased Reagent)13C2 PFDAA5010/27/22Wellington Laboratories, Lot MPFHXA1017(Purchased Reagent)13C2 PFHXA5002/17/22Wellington Laboratories, Lot MPFHXS0217(Purchased Reagent)1802 PFHXS47.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PFBA 00013       | 04/12/22    | Wellingto    | Ι.                             | 17         | 1                  | ent)            | 13C4 PFBA                              |               |
| 07/13/22 Wellington Laboratories, Lot MPFDA0717 (Purchased Reagent) 13C2 PFDA 50 05/23/22 Wellington Laboratories, Lot MPFHXA1017 (Purchased Reagent) 13C2 PFDAA 50 10/27/22 Wellington Laboratories, Lot MPFHXA1017 (Purchased Reagent) 13C2 PFHXA 50 02/17/22 Wellington Laboratories, Lot MPFHXS0217 (Purchased Reagent) 1802 PFHXS 47.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PFBS 00006       | 05/24/22    |              | on Laboratories, Lot M3PFBS081 | 115        |                    | ent)            | 13C3-PFBS                              |               |
| 05/23/22 Wellington Laboratories, Lot MPFDoA0517 (Purchased Reagent) 13C2 PFDoA 50 10/27/22 Wellington Laboratories, Lot MPFHxA1017 (Purchased Reagent) 1802 PFHxA 50 02/17/22 Wellington Laboratories, Lot MPFHxS0217 (Purchased Reagent) 1802 PFHxS 47.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PFDA 00018       | 07/13/22    | Wellingto    | on Laboratories, Lot MPFDA071  | 17         |                    | ent)            | 13C2 PFDA                              | 50 ug/mL      |
| 10/27/22 Wellington Laboratories, Lot MPFHxA1017 (Purchased Reagent) 13C2 PFHxA 50 02/17/22 Wellington Laboratories, Lot MPFHxS0217 (Purchased Reagent) 1802 PFHxS 47.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PFDoA 00013      | 05/23/22    |              | Lot                            | 117        |                    | ent)            |                                        |               |
| 02/17/22 Wellington Laboratories. Lot MPFHxS0217 (Purchased Reagent) 1802 PFHxS 47.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PFHxA_00019      | 10/27/22    |              | Lot                            | 117        |                    | ent)            |                                        |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PFH×S 00013      | 02/17/22    | Wellingto    | Ç                              | .17        |                    | ant.)           |                                        | C.            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |             |              |                                |            |                    |                 |                                        |               |

Lab Name: TestAmerica Sacramento Job No.: 320-39023-1

| Note    |                |             |              |                   | о<br>С<br>С<br>С<br>С<br>С<br>С | Parent Reagent    | ıt     |                                                        |               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|--------------|-------------------|---------------------------------|-------------------|--------|--------------------------------------------------------|---------------|
| 19/19/22   Well-Institute Laboratorials   19/19/22   Well-Institute La |                | Exp<br>Date | Prep<br>Date | Dilutant<br>Used  | Final Volume                    |                   | Volume | Analyte                                                | Concentration |
| 10.717/23   Wellington Indocratories, Low Mary Michigan Seagents   1304 Props.   100.717/23   Wellington Indocratories, Low Mary Michigan Seagents   1300 Laboratories, Low Mary Mary Mary Mark Michigan Seagents   1300 Laboratories, Low Mary Mary Mary Mark Michigan Seagents   1300 Laboratories   1 | LCMPFNA 00013  | 09/30/21    | Wellingt     | on Laboratories,  |                                 |                   | ent)   | 13C5 PFNA                                              | 50 ug/mL      |
| 10.77/22   Wellington Laboratories, Lot MRPGASLID   Giverbased Resgent)   1304 PRDA   1504 Mellington Laboratories, Lot MRPGASLID   Giverbased Resgent)   1304 PRDA   1504 Mellington Laboratories, Lot MRPGASLID   Giverbased Resgent)   1304 PRDA   1504 Mellington Laboratories, Lot MRPGASLID   Giverbased Resgent)   1304 PRDA   1504 Mellington Laboratories, Lot MRPGASLID   Lot 1275 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LCMPFOA 00017  | 10/17/22    | Wellingt     | on Laboratories,  | ı                               |                   | ent)   |                                                        |               |
| 11.227/21   Wellington laboraticales, let Migrabilit 6   (Succioses Reagant)   13.52   FFURS   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948   0.948 | LCMPFOS 00025  | 10/11/22    | Wellingt     | on Laboratories,  | Lot MPFOS1017                   | (Purchased Reag   | ent)   | 13C4 PFOS                                              | 47.8 ug/mL    |
| 08/20/18   02/20/18   Methanol, Lot 09/285   10000 bil LC4:2FFF 50003   200 ub 5004um   5.044 m   11.14.24.74.PeptrInococleane   0.948   11.14.24.74.74.74.74.74.74.74.74.74.74.74.74.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LCMPFUdA 00014 | 11/22/21    | Wellingto    | on Laboratories,  | Lot MPFUdA1116                  | ರ                 | ent)   | 13C2 PFUnA                                             | 50 ug/mL      |
| 11   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .LCPFCSP 00132 | 08/20/18    | 02/20/18 N   | Wethanol, Lot 090 | 2                               | LC4:2FTS 00003    | 200    | Sodium                                                 | 1             |
| 18,14,14,122 -perfluorocctane   0.396   18,14,14,14,124 -perfluorocctane   0.396   18,14,14,14,14,14,14,14,14,14,14,14,14,14,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I              |             |              |                   |                                 |                   |        | 1H,1H,2H,2H-perfluorohexane sulfonate (4:2)            |               |
| 10.812PTS_00003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |             |              |                   |                                 | LC6:2FTS_00003    |        | Sodium 1H,1H,2H,2H-perfluorooctane sulfonate (6.2)     | 0.948 ug/mL   |
| LGPERA 00005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |             |              |                   |                                 | LC8:2FTS_00003    | 1      | Sodium 1H,1H,2H,2H-perfluorodecane sulfonate (8:2)     | 0.958 ug/mL   |
| Toping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |             |              |                   |                                 | LCN-EtFOSAA_00004 | 1      | N-ethyl perfluorooctane sulfonamidoacetic acid         | 1 ug/mL       |
| ICPEPSA 00007   200 ul Perfiloscobutanesulfonic acid   0.884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |             |              |                   |                                 | LCN-MeFOSAA_00005 |        | N-methyl perfluorooctane<br>sulfonamidoacetic acid     | 1 ug/mL       |
| LOPENS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |             |              |                   |                                 | LCPFBA_00007      |        | Perfluorobutyric acid                                  | 1 ug/mL       |
| LOPPEDA 00008   200 uL Perfluorodecanoic acid   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |             |              |                   |                                 | LCPFBS_00008      |        |                                                        | 0.884 ug/mL   |
| LOFPEDSA 00008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |             |              |                   |                                 | LCPFDA_00008      |        | Perfluorodecanoic acid                                 | 1 ug/mL       |
| LOPPERA 00002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |              |                   |                                 |                   |        | Perfluorododecanoic acid                               |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |             |              |                   |                                 | LCPFDSA 00002     |        |                                                        |               |
| LCPFRHAR ORONG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |             |              |                   |                                 | LCPFHpA_00008     |        | Perfluoroheptanoic acid<br>(PFHpA)                     |               |
| International Contract   International Contr |                |             |              |                   |                                 | LCPFHpSA_00003    |        | D.                                                     | 0.952 ug/mL   |
| CPERA 00009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |             |              |                   |                                 | LCPFHxA_00007     |        | Perfluorohexanoic acid                                 | Н             |
| LCPFNA 00009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |             |              |                   |                                 | LCPFHxS-br_00004  |        |                                                        | 0.91 ug/mL    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |             |              |                   |                                 |                   |        | Perfluorononanoic acid                                 | 1 ug/mL       |
| 12/12/21   WELLINGTON, Lot 42FTS1216   CPFGARGE Reagent)   10/12/21   WELLINGTON, Lot 82FTS0816   CPFGARGE Reagent)   11/14, 24, 24-perfluorocctane   CPFGARGE Reagent)   CPFGARGE REAGENT   CPFGARGE REAGENT   CPFGARGE REAGENT   CPFGARGE REAGENT   CPFGARGE REAGENT   CPFGARGE RE |                |             |              |                   |                                 |                   |        | Perfluorononanesulfonic                                |               |
| ICPFOS-br_00004   200 uL   Perfluoroctanesulfonic acid   0.928   ICPFOSA 00010   200 uL   Perfluoroctane Sulfonamide   1   ICPFPOSA 00007   200 uL   Perfluorocpentanoic acid   1   ICPFPOSA 00007   200 uL   Perfluorocpentanoic acid   1   ICPFTPOSA 00008   200 uL   Perfluorocpentanoic acid   0.938   ICPFTPOSA 00006   200 uL   Perfluoroctanecanoic acid   1   ICPFTPOSA 00006   200 uL   Perfluoroctanecanoic acid   1   ICPFTPOSA 00006   200 uL   Perfluoroctanecanoic acid   1   ICPFTPOSA 00007   200 uL   Perfluoroctanecanoic acid   2   ICPFTPOSA 00007   2   ICP |                |             |              |                   |                                 | LCPFOA 00009      |        | Perfluorooctanoic acid                                 |               |
| CPFPGA 00010   200 uL Perfluoroctane Sulfonamide   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |             |              |                   |                                 | LCPFOS-br_00004   |        | Perfluorooctanesulfonic acid (PFOS)                    |               |
| 12/12/21   WELLINGTON, Lot 42FTS1216   CPurchased Reagent)   CPURCHASED   CPU |                |             |              |                   |                                 | LCPFOSA_00010     |        | Perfluorooctane Sulfonamide                            |               |
| 12/12/21   WELLINGTON, Lot 62FTS0816   CPurchased Reagent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |             |              |                   |                                 | LCPFPeA 00007     |        | -                                                      | - 1           |
| 12/12/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |             |              |                   |                                 | LCPFPes 00003     | 200 uL | _                                                      | 0.938 ug/mL   |
| 12/12/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |             |              |                   |                                 | LCPFTeDA_00006    | 200 uL | -                                                      | 1 ug/mL       |
| 12/12/21   WELLINGTON, Lot 42FTS1216   LCPFUdA 00007   200 uL Perfluoroundecanoic acid   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |             |              |                   |                                 | LCPFTrDA_00006    |        | _                                                      | 1 ug/mL       |
| 12/12/21   WELLINGTON, Lot 42FTS1216   (Purchased Reagent)   Sodium   46.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |             |              |                   |                                 | LCPFUdA_00007     | 00:    | Perfluoroundecanoic acid                               | 1 ug/mL       |
| 06/25/21   WELLINGTON, Lot 62FTS0616   (Purchased Reagent)   Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LC4:2FTS_00003 | 12/12/21    | M            | Lot               | 8121                            | (Purchased Reag   | ent)   | Sodium 1H,1H,2H,2H-perfluorohexane sulfonate (4:2)     | Q             |
| 1H,1H,2H,2H,2H-perfluorooctane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LC6:2FTS_00003 | 06/25/21    | M            | Lot               | 8061                            | (Purchased Reag   | ent)   | Sodium                                                 | 47.4 ug/mL    |
| 08/22/21 WELLINGTON, Lot 82FTS0816 (Purchased Reagent)   Sodium 47.9   14,2H,2H-perfluorodecane   47.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |             |              |                   |                                 |                   |        | <pre>1H,1H,2H,2H-perfluorooctane sulfonate (6:2)</pre> |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LC8:2FTS_00003 | 08/22/21    | WE           | Lot               | S081                            | (Purchased Reag   | ent)   | Sodium 1H,1H,2H,2H-perfluorodecane                     | 47.9 ug/mL    |

Lab Name: TestAmerica Sacramento

SDG No.:

|                    |          |             |                                          | Readent        | Farent Keagent      |         |                                                    |               |
|--------------------|----------|-------------|------------------------------------------|----------------|---------------------|---------|----------------------------------------------------|---------------|
|                    | EXD      | Prep        | Dilutant                                 | Final          | 9A                  | Volume  |                                                    |               |
| Reagent ID         | Date     | Date        | Used                                     | Volume         | Reagent ID A        | Added   | Analyte                                            | Concentration |
| .LCN-EtFOSAA_00004 | 09/30/21 | WELLI       | WELLINGTON, LOT NETFOSAA091              | 916            | (Purchased Reagent) |         | N-ethyl perfluorooctane                            | 50 ug/mL      |
| .LCN-MeFOSAA_00005 | 10/12/21 | MELLI       | WELLINGTON, Lot NMeFOSAA0916             | 916            | (Purchased Reagent) |         | N-methyl perfluorooctane<br>sulfonamidoacetic acid | 50 ug/mL      |
| LCPFBA_00007       | 05/27/21 | Wellington  | Laboratories, Lot                        | PFBA0516       | (Purchased Reagent) |         | Perfluorobutyric acid                              | 50 ug/mL      |
| LCPFBS_00008       | 03/15/21 | Wellingtor  | Wellington Laboratories, Lot L           | LPFBS0316      | (Purchased Reagent) |         | Perfluorobutanesulfonic acid (PFBS)                | 44.2 ug/mL    |
| PFDA 00008         | 05/29/22 |             | Wellington Laboratories, Lot E           | PFDA0517       | (Purchased Reagent) |         | Perfluorodecanoic acid                             | 50 ug/mL      |
| LCPFDOA 00008      | 05/29/22 |             |                                          | Lot PFDoA0517  |                     |         | Perfluorododecanoic acid                           | 50 ug/mL      |
| LCPFDSA_00002      | 05/24/21 | Wellingtor  |                                          | Lot LPFDS0516  | (Purchased Reagent) |         | Perfluorodecane Sulfonic acid                      | 48.2 ug/mL    |
| LCPFHpA_00008      | 12/02/21 | Wellingtor  |                                          | Lot PFHpA1216  | (Purchased Reagent) |         | Perfluoroheptanoic acid (PFHpA)                    | 1m/mr         |
| PFHpSA 00003       | 09/01/22 |             | Wellington Laboratories, Lot LPFHpS0817  | PFHpS0817      | (Purchased Reagent) |         | Perfluoroheptanesulfonic acid                      | 47.6 ug/mL    |
| LCPFHxA 00007      | 12/22/20 |             | Wellington Laboratories, Lot PFHxA1215   | FHxA1215       | (Purchased Reagent) |         | Perfluorohexanoic acid                             | 50 ug/mL      |
| LCPFHxS-br_00004   | 07/03/20 | Wellington  | Wellington Laboratories, Lot brPFHxSK061 | PFHxSK0615     | (Purchased Reagent) |         | Perfluorohexanesulfonic acid (PFHxS)               | 45.5 ug/mL    |
| LCPFNA_00009       | 07/20/22 | Wellingto   | Wellington Laboratories, Lot E           | Lot PFNA0717   | (Purchased Reagent) |         | Perfluorononanoic acid (PFNA)                      | 50 ug/mL      |
| LCPFNS_00003       | 09/27/22 | Wellingtor  | Wellington Laboratories, Lot L           | Lot LPFNS0917  | (Purchased Reagent) |         | Perfluorononanesulfonic acid                       | 48 ug/mL      |
| .LCPFOA_00009      | 09/27/22 | Wellingto   |                                          | Lot PFOA0917   | (Purchased Reagent) |         | Perfluorooctanoic acid (PFOA)                      | 50 ug/mL      |
| LCPFOS-br_00004    | 10/14/20 | Wellington  | Wellington Laboratories, Lot br          | t brPFOSK1015  | (Purchased Reagent) |         | Perfluorooctanesulfonic acid (PFOS)                | 46.4 ug/mL    |
| .LCPFOSA 00010     | 09/30/21 | Wellingtor  | Wellington Laboratories, Lot F           | Lot FOSA0916I  | (Purchased Reagent) |         | Perfluorooctane Sulfonamide                        | 50 ug/mL      |
| LCPFPeA 00007      | 05/31/21 | Wellingtor  |                                          | Lot PFPeA0516  | (Purchased Reagent) |         | Perfluoropentanoic acid                            | 50 ug/mL      |
| .LCPFPes 00003     | 01/11/22 | Wellington  |                                          | Lot LPFPeS0117 | (Purchased Reagent) |         | Perfluoropentanesulfonic acid                      | 46.9 ug/mL    |
| .LCPFTeDA 00006    |          | Wellington  | Lot                                      | Lot PFTeDA1215 |                     |         | Perfluorotetradecanoic acid                        | 20 ng/mT      |
| .LCPFTrdA_00006    | 02/12/21 | Wellington  | Wellington Laboratories, Lot PE          | PFTrDA0216     | (Purchased Reagent) |         | Perfluorotridecanoic acid                          | 20 ng/mL      |
| LCPFUda_00007      | 10/18/21 | Wellingtor  | Wellington Laboratories, Lot P           | Lot PFUdA1016  | (Purchased Reagent) |         | Perfluoroundecanoic acid                           | 50 ug/mL      |
| LCPFC LL5 00005    | 11/18/18 | 06/05/18 Me | MeOH/H20, Lot 090285                     | 200 mL L       | LCMPFC ALL SU 00075 | 10 mL ( | d3-NMeFOSAA                                        | 2.5 ng/mL     |
| 1                  |          |             |                                          |                | <br> <br>           | 10      | d5-NEtFOSAA                                        | 2.5 ng/mL     |
|                    |          |             |                                          |                |                     |         | M2-6:2FTS                                          | 2.375 ng/mL   |
|                    |          |             |                                          |                |                     |         | M2-8:2FTS                                          | 2.395 ng/mL   |
|                    |          |             |                                          |                |                     |         | 13C2-PFHxDA                                        | 2.5 ng/mL     |
|                    |          |             |                                          |                |                     |         | 13C2-PFOA                                          | 2.5 ng/mL     |
|                    |          |             |                                          |                |                     |         | 13C2-PFTeDA                                        | 2.5 ng/mL     |
|                    |          |             |                                          |                |                     |         | 13C4-PFHpA                                         | 2.5 ng/mL     |
|                    |          |             |                                          |                |                     |         | 13C5-PFPeA                                         | 2.5 ng/mL     |
|                    |          |             |                                          |                |                     |         | 13C8 FOSA                                          | 2.5 ng/mL     |
|                    |          |             |                                          |                |                     |         | 13C4 PFBA                                          | 2.5 ng/mL     |
|                    |          |             |                                          |                |                     |         | 13C3-PFBS                                          | 2.325 ng/mL   |
|                    |          |             |                                          |                |                     | 1       | 13C2 PFDA                                          | 2.5 ng/mL     |
|                    |          |             |                                          |                |                     |         | 13C2 PFDoA                                         | 2.5 ng/mL     |
|                    |          |             |                                          |                |                     |         | 13C2 PFHxA                                         | 2.5 ng/mL     |
|                    |          |             |                                          |                |                     | 1       | 1802 PFHxS                                         | 2.365 ng/mL   |
|                    |          |             |                                          |                |                     |         | 13C5 PFNA                                          | 2.5 ng/mL     |
|                    |          |             |                                          |                |                     |         | 13C4 PFOA                                          | 2.5 ng/mL     |
|                    |          |             |                                          |                |                     |         | 13C4 PFOS                                          | 2.39 ng/mL    |
|                    |          |             |                                          |                |                     |         |                                                    |               |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

|                      |          |              |                               |           | Parent Reagent      |                                                            |               |
|----------------------|----------|--------------|-------------------------------|-----------|---------------------|------------------------------------------------------------|---------------|
|                      | [±       | D<br>d<br>d  |                               | Reagent . |                     | emit [O]                                                   |               |
| Reagent ID           | Date     | rrep<br>Date | Used                          | Volume    | Reagent ID          | Added Analyte                                              | Concentration |
|                      |          |              |                               |           | LCPFCSP_00148       | 1000 uL Sodium 1H,2H,2H,2H-perfluorohexane sulfonate (4:2) | 2.335 ng/mL   |
|                      |          |              |                               |           |                     | Sodium 1H, 2H, 2H-perfluorooctane sulfonate (6:2)          | 2.37 ng/mL    |
|                      |          |              |                               |           |                     | Sodium 1H, 2H, 2H-perfluorodecane sulfonate (8:2)          | 2.395 ng/mL   |
|                      |          |              |                               |           |                     | N-ethyl perfluorooctane<br>sulfonamidoacetic acid          | 2.5 ng/mL     |
|                      |          |              |                               |           |                     |                                                            | 2.5 ng/mL     |
|                      |          |              |                               |           |                     | Perfluorobutyric acid                                      | 2.5 ng/mL     |
|                      |          |              |                               |           |                     | _                                                          |               |
|                      |          |              |                               |           |                     | Periluorodecanolo acid                                     | 2.5 ng/mL     |
|                      |          |              |                               |           |                     | Perfluorodecane Sulfonic acid                              | 2.41 ng/mL    |
|                      |          |              |                               |           |                     | Perfluoroheptanoic acid (PFHpA)                            | 2.5 ng/mL     |
|                      |          |              |                               |           |                     | Perfluoroheptanesulfonic acid                              | 2.38 ng/mL    |
|                      |          |              |                               |           |                     |                                                            | 2.5 ng/mL     |
|                      |          |              |                               |           |                     | Perfluorohexanesulfonic acid (PEHxS)                       | 2.275 ng/mL   |
|                      |          |              |                               |           |                     | rononanoic acid                                            | 2.5 ng/mL     |
|                      |          |              |                               |           |                     |                                                            |               |
|                      |          |              |                               |           |                     |                                                            | 2.4 ng/mL     |
|                      |          |              |                               |           |                     | Perfluorooctanesulfonic acid                               | 2.32 ng/mL    |
|                      |          |              |                               |           |                     | Perfluorooctane Sulfonamide                                | 2.5 ng/mL     |
|                      |          |              |                               |           |                     | Perfluoropentanoic acid                                    | 2.5 ng/mL     |
|                      |          |              |                               |           |                     |                                                            | 2.345 ng/mL   |
|                      |          |              |                               |           |                     | Periluorotetradecanoic acid                                | 2.5 ng/mL     |
|                      |          |              |                               |           |                     | Perfluoroundecanoic acid                                   | 2.5 ng/mL     |
| .LCMPFC_ALL_SU_00075 | 12/05/18 | 06/05/18     | Methanol, Lot Baker<br>141039 | 200 mL    | LCd3-NMeFOSAA_00008 | 200 uL d3-NMeFOSAA                                         |               |
|                      |          |              |                               |           | LCd5-NEtFOSAA 00008 | ηľ                                                         |               |
|                      |          |              |                               |           | LCM2-6:FTS 00008    | ηľ                                                         |               |
|                      |          |              |                               | •         | LCM2-8:2FTS 00010   | 200 uL M2-8:2FTS                                           | 0.0479 ug/mL  |
|                      |          |              |                               |           | TCM2PFOA 00008      | 3 12                                                       | 0.05 ug/mT    |
|                      |          |              |                               |           | LCM2PFTeDA 00014    | u.                                                         | 0.05 ug/mL    |
|                      |          |              |                               |           | LCM4PFHPA 00014     | uL                                                         |               |
|                      |          |              |                               |           |                     | ηŢ                                                         | 0.05 ug/mL    |
|                      |          |              |                               |           | LCM8FOSA 00019      | u.                                                         | 0.05 ug/mL    |
|                      |          |              |                               |           | LCMPFBA 00015       | 200 ul 13C4 PFBA                                           | Jm/bn c0.0    |
|                      | _        | _            |                               |           |                     | 3                                                          |               |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

|                     |             |             |                                          |                 | Parent Readent                          |                 |                                |               |
|---------------------|-------------|-------------|------------------------------------------|-----------------|-----------------------------------------|-----------------|--------------------------------|---------------|
|                     | ŗ           | ţ           |                                          | Reagent         |                                         | - 1             |                                |               |
| Reagent ID          | Exp<br>Date | rep<br>Date | Used Vo.                                 | Final<br>Volume | Reagent ID                              | Volume<br>Added | Analyte                        | Concentration |
|                     |             |             |                                          |                 | LCMPFDA 00020                           | 200 uL          | 13C2 PFDA                      | 0.05 ug/mL    |
|                     |             |             |                                          | ļΗ              | LCMPFDoA 00015                          | 200 uL          | 13C2 PFDoA                     |               |
|                     |             |             |                                          | ļH.             | LCMPFHxA 00022                          | 200 uL          | 13C2 PFHxA                     |               |
|                     |             |             |                                          | ļH              | LCMPFHxS 00015                          | 200 uL          | 1802 PFHxS                     | 0.0473 ug/mL  |
|                     |             |             |                                          | IH              | LCMPFNA 00015                           | 200 uL          | 13C5 PFNA                      | 0.05 ug/mL    |
|                     |             |             |                                          | Н               | LCMPFOA_00019                           | 200 uL          | 13C4 PFOA                      | 0.05 ug/mL    |
|                     |             |             |                                          | Н               | LCMPFOS_00027                           | 200 uL          |                                | 0.0478 ug/mL  |
|                     |             |             |                                          | Н               | LCMPFUda 00017                          | 200 uL          | 13C2 PFUnA                     | 0.05 ug/mL    |
| LCd3-NMeFOSAA_00008 | 11/08/22    | WELI        |                                          |                 | (Purchased Reagent)                     | nt)             | d3-NMeFOSAA                    | 50 ug/mL      |
| LCd5-NEtFOSAA_00008 | 11/08/22    | WELI        | WELLINGTON, Lot d5NEtFOSAA1117           |                 | (Purchased Reagent)                     | nt)             | d5-NetFOSAA                    | 20 ng/mF      |
| LCM2-6:FTS_00008    | 02/16/23    | WE          | WELLINGTON, Lot M262FTS0218              |                 |                                         | nt)             | M2-6:2FTS                      | 47.5 ug/mL    |
| LCM2-8:2FTS 00010   | /24/        | WE          | WELLINGTON, Lot M282FTS0118              |                 | - 1                                     | nt)             | M2-8:2FTS                      | - 1           |
| LCM2PFHxDA 00016    |             | Wellingto   |                                          | 40717           | - 1                                     | nt)             | 13C2-PFHxDA                    |               |
| LCM2PFOA_00008      | 02/12/21    | Wellingt    | Wellington Laboratories, Lot M2PFOA0216  | 0216            | - 1                                     | nt)             | 13C2-PFOA                      | 50 ug/mL      |
| LCM2PFTeDA_00014    | 11/30/22    | Wellingto   | Wellington Laboratories, Lot M2PFTeDA111 | A1117           | - 1                                     | nt)             | 13C2-PFTeDA                    | 50 ug/mL      |
| LCM4PFHPA_00014     | 05/03/22    | Wellingto   | Wellington Laboratories, Lot M4PFHpA051  | .0517           | - 1                                     | nt)             | 13C4-PFHpA                     | 50 ug/mL      |
| LCM5PFPEA_00015     | 07/20/22    | Wellingto   |                                          | .0717           |                                         | nt)             | 13C5-PFPeA                     | 20 ng/mF      |
| LCM8FOSA_00019      | 10/11/22    | Wellingto   | $\Box$                                   | 017I            |                                         | nt)             |                                | 50 ug/mL      |
| LCMPFBA_00015       | 02/16/23    | Wellingt    |                                          | 218             | (Purchased Reagent)                     | nt)             | 13C4 PFBA                      | 50 ug/mL      |
| LCMPFBS_00008       | 02/15/23    | Wellingt    | Wellington Laboratories, Lot M3PFBS0218  | 0218            | (Purchased Reagent)                     | nt)             | 13C3-PFBS                      | 46.5 ug/mL    |
| LCMPFDA_00020       | 02/16/23    | Wellingt    | Lot                                      | 218             |                                         | nt)             | 13C2 PFDA                      | 50 ug/mL      |
| LCMPFDOA 00015      | 02/16/23    | Wellington  | on Laboratories, Lot MPFDoA0218          | 0218            | (Purchased Reagent)                     | nt)             | 13C2 PFDoA                     | 50 ug/mL      |
| LCMPFHxA 00022      | 10/27/22    | Wellingt    | Wellington Laboratories, Lot MPFHxA1017  | 1017            | (Purchased Reagent)                     | nt)             | 13C2 PFHxA                     | 50 ug/mL      |
| LCMPFHxS 00015      | 03/22/23    | Wellingt    | Wellington Laboratories, Lot MPFHxS0318  | 0318            | (Purchased Reagent)                     | nt)             | 1802 PFHxS                     | 47.3 ug/mL    |
| LCMPFNA 00015       | 12/14/22    | Wellingt    |                                          | 217             | (Purchased Reagent)                     | nt)             |                                | 50 ug/mL      |
| LCMPFOA 00019       | 05/04/23    | Wellingt    | Wellington Laboratories, Lot MPFOA0418   | 418             | (Purchased Reagent)                     | nt)             | 13C4 PFOA                      | 50 ug/mL      |
| LCMPFOS 00027       | 02/15/23    | Wellingt    | Wellington Laboratories, Lot MPFOS0218   | 218             | (Purchased Reagent)                     | nt)             | 13C4 PFOS                      | 47.8 ug/mL    |
| LCMPFUda 00017      | 11/22/21    | Wellingt    | Wellington Laboratories, Lot MPFUdA111   | 1116            |                                         | nt)             | 13C2 PFUnA                     | 50 ug/mL      |
| .LCPFCSP 00148      | 11/18/18    | 05/17/18    | 0285                                     | 10 mL I         |                                         | 100 uL          | Sodium                         | 0.467 ug/mL   |
| I                   |             |             |                                          |                 | I                                       |                 | $\sim$                         | •             |
|                     |             |             |                                          |                 |                                         |                 | sulfonate (4:2)                |               |
|                     |             |             |                                          | Н               | LC6:2FTS_00007                          | 100 uL          | Sodium                         | 0.474 ug/mL   |
|                     |             |             |                                          |                 |                                         |                 | 1H, 1H, 2H, 2H-perfluorooctane |               |
|                     |             |             |                                          |                 | T.C8:2FTS 00007                         | 100 11T.        |                                | 0.479 11g/mT, |
|                     |             |             |                                          |                 |                                         |                 | 1H,1H,2H,2H-perfluorodecane    |               |
|                     |             |             |                                          |                 |                                         |                 | sulfonate (8:2)                |               |
|                     |             |             |                                          | Н               | LCbr-NEtFOSAA_00001                     | 100 uL          | N-ethyl perfluorooctane        | 0.5 ug/mL     |
|                     |             |             |                                          | JH              | LCbr-NMeFOSAA 00001                     | 100 uL          | 10                             | 0.5 ug/mL     |
|                     |             |             |                                          |                 | I                                       |                 | sulfonamidoacetic acid         |               |
|                     |             |             |                                          | Н               | LCPFBA_00008                            | 100 uL          | Perfluorobutyric acid          | 0.5 ug/mL     |
|                     |             |             |                                          | Н               | LCPFBS_00009                            | 100 uL          | Perfluorobutanesulfonic acid   | 0.442 ug/mL   |
|                     |             |             |                                          |                 | 0<br>0<br>0<br>0<br>0                   | T:: 001         |                                | - 1           |
|                     |             |             |                                          | -11-            | CFFUA UUUU8                             |                 | Periluorodecanoic acid         |               |
|                     |             |             |                                          | -11-            | TOPEDS 00008                            | 100 uL          | Periluorodecanoic acid         | 0.0 ug/mL     |
|                     |             |             |                                          | 11=             | LCPFHDA 00011                           |                 |                                |               |
|                     |             |             |                                          | 1               | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                 | (PFHpA)                        |               |
| -                   |             |             |                                          |                 |                                         |                 |                                | -             |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

|                     |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | Parent Readent      |                 |                                                          |               |
|---------------------|-------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|-----------------|----------------------------------------------------------|---------------|
|                     | ı           | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reagent _       |                     | 1 1             |                                                          |               |
| Reagent ID          | Exp<br>Date | Prep<br>Date | Dilutant<br>Used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Final<br>Volume | Reagent ID          | Volume<br>Added | Analyte                                                  | Concentration |
|                     |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | LCPFHpSA 00003      | 100 uL          | Perfluoroheptanesulfonic acid                            | 0.476 ug/mL   |
|                     |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | LCPFHxA_00010       | 100 uL          | Perfluorohexanoic acid                                   |               |
|                     |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1               | LCPFHxS-br_00006    | 100 uL          | Perfluorohexanesulfonic acid (PFHxS)                     | 0.455 ug/mL   |
|                     |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1               | LCPFNA_00010        | 100 uL          | prononanoic acid                                         | 0.5 ug/mL     |
|                     |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |                 |                                                          | 0.5005 ug/mL  |
|                     |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     | - 1             | Perfluorononanesulfonic acid                             |               |
|                     |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | LCPFOA 00011        |                 |                                                          |               |
|                     |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | LCPFOS-br_00007     | 100 uL          | Perfluorooctanesulfonic acid (PFOS)                      | 0.464 ug/mL   |
|                     |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -               | LCPFOSA 00013       | 100 uL          | Perfluorooctane Sulfonamide                              | 0.5 ug/mL     |
|                     |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | LCPFPeA 00008       | 100 uL          | Perfluoropentanoic acid                                  | 0.5 ug/mL     |
|                     |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1               | LCPFPes 00003       | 100 uL          | Perfluoropentanesulfonic acid                            | 0.469 ug/mL   |
|                     |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | LCPFTeDA 00008      | 100 uL          | Perfluorotetradecanoic acid                              | 0.5 ug/mL     |
|                     |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1               | LCPFUDA 00008       | 100 uL          | Perfluoroundecanoic acid                                 | 0.5 ug/mL     |
| LC4:2FTS_00005      | 12/12/21    | WE           | WELLINGTON, Lot 42FTS1216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | (Furchased Reagent) |                 | Sodium<br>1H,1H,2H,2H-perfluorohexane                    |               |
|                     | 0           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | - 1                 |                 | sulfonate (4:2)                                          |               |
| LC6:2FTS_00007      | 04/20/22    | WE           | Lot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | (Purchased Reagent) | nt)             | Sodium<br>1H,1H,2H,2H-perfluorooctane<br>sulfonate (6:2) | 47.4 ug/mī    |
| LC8:2FTS_00007      | 12/12/21    | WE           | WELLINGTON, LOt 82FTS1216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | (Furchased Reagent) | nt)             | Sodium<br>1H,1H,2H,2H-perfluorodecane<br>sulfonate (8:2) | 47.9 ug/mL    |
| LCbr-NEtFOSAA_00001 | 01/17/23    | WELLI        | WELLINGTON, Lot brNEtFOSAA0118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8               | (Purchased Reagent) | nt)             | N-ethyl perfluorooctane<br>sulfonamidoacetic acid        | 20 ng/mL      |
| LCbr-NMeFOSAA_00001 | 01/17/23    | WELLI        | WELLINGTON, Lot brNMeFOSAA0118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8               | (Purchased Reagent) | nt)             | N-methyl perfluorooctane sulfonamidoacetic acid          | 20 ng/mr      |
| LCPFBA_00008        | 05/29/22    | Wellingt     | Wellington Laboratories, Lot PFBA051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40517           | (Purchased Reagent) | nt)             | Perfluorobutyric acid                                    | 20 ng/mL      |
| LCPFBS_00009        | 09/21/22    | Wellingto    | Wellington Laboratories, Lot LPFBS091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180917          | (Purchased Reagent) | nt)             | Perfluorobutanesulfonic acid (PFBS)                      | 44.2 ug/mL    |
| LCPFDA_00008        | 05/29/22    | Wellingt     | Wellington Laboratories, Lot PFDA051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40517           | (Purchased Reagent) | nt)             | Perfluorodecanoic acid                                   | 20 ng/mL      |
| LCPFDOA_00008       | 05/29/22    |              | Laboratories, Lot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A0517           |                     | nt)             | Perfluorododecanoic acid                                 | 20 ng/mF      |
| LCPFDS 00008        | 11/08/22    |              | Laboratories, Lot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S1117           | - 1                 | nt)             | Perfluorodecane Sulfonic acid                            | - 1           |
| LCPFHpA_00011       | 09/27/22    | Wellington   | on Laboratories, Lot PFHpA091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A0917           | (Purchased Reagent) | ıt)             | Perfluoroheptanoic acid<br>(PFHpA)                       | 50 ug/mL      |
| LCPFHpSA 00003      | 09/01/22    | Wellingto    | Wellington Laboratories, Lot LPFHp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LPFHpS0817      | (Purchased Reagent) | nt)             | Perfluoroheptanesulfonic acid                            | 47.6 ug/mL    |
| LCPFHxA_00010       | 09/27/22    | Wellingto    | ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A0917           | (Purchased Reagent) | nt)             | Perfluorohexanoic acid                                   | 50 ug/mL      |
| LCPFHxS-br_00006    | 01/04/22    | Wellington   | Wellington Laboratories, Lot brPFHxSK011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | xSK0117         | (Purchased Reagent) | nt)             | Perfluorohexanesulfonic acid (PFHxS)                     | 45.5 ug/mL    |
| LCPFNA_00010        | 07/20/22    | Wellingt     | Wellington Laboratories, Lot PFNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PFNA0717        | (Purchased Reagent) | nt)             | acid                                                     |               |
| TOOOO               | 00/10/00    | T-M          | Mark Total T | 71000           | (+x)                | + 0             | Perfluorooctanoic acid (PFOA)                            | 0.05 ug/mL    |
| 1. L(FF NS 00003    | 09/21/22    | WELLLIIG LC  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150917          |                     | 11.)            |                                                          | 40 ug/mL      |
| LCPFOS-br_00007     | 01/12/22    | Wellingtor   | ot bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SK0117          |                     | nt)             | fonic                                                    |               |
| LCPFOSA 00013       | 09/01/22    | Wellington   | Laboratories, Lot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FOSA0817I       | (Purchased Reagent) | nt)             | Perfluorooctane Sulfonamide                              | 50 ug/mL      |
| LCPFPeA_00008       | 06/14/22    | Wellington   | Laboratories, Lot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PFPeA0617       | (Purchased Reagent) | ıt)             | Perfluoropentanoic acid                                  | 20 ng/mL      |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

| 10   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Date      |             |              |                  | д<br>6<br>7<br>6<br>6<br>7<br>6<br>7<br>6<br>7<br>7<br>8 | Parent Reagent      | ıt              |                             |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|------------------|----------------------------------------------------------|---------------------|-----------------|-----------------------------|---------------|
| Wellington Laboratories, LOT LEFPENDING   Perribased Reagent   Perribotrochargeanolic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Wellington Laboratories, lot EPPE-8017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Exp<br>Date | Prep<br>Date | Dilutant<br>Used | Final                                                    |                     | Volume<br>Added | Analyte                     | Concentration |
| Wellington laboratories, Lot PFTPADA016   CPurchased Reagent)   Perfluororuidecanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Wellington Laboratories, Lot PFTPAN015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 01/11/22    |              | Lot              | LPFPeS0117                                               | 1                   | ent)            |                             | 46.9 ug/mL    |
| Wellington laboratories, Lot PFUGAIDS   CPUTCHASSED Reagent)   Perfilocoundecanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Weilington is about of the PRTANDING Not Character Reagent)         (Purchased Reagent)         Perfluorcoundecanoic acid Conferenced Reagent)         Perfluorcoundecanoic acid Conference Realization acid Conference Real                                                                                                                                                               | 09/30/21    |              | Lot              | PFTeDA0916                                               |                     | ent)            | Perfluorotetradecanoic acid | 20 ng/mL      |
| Wellington Laboratories, lot FFUGA1016   CPurchased Reagent)   Perfluctoundecanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Wellington Laboratories, Lot FFUGAID16   Perflucroundecanoic coid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 05/02/22    |              | Lot              | PFTrDA0517                                               |                     | ent)            | Perfluorotridecanoic acid   | 50 ug/mL      |
| Definition   Def   | Description   Description   Description   Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10/18/21    | Wellington   | Laboratories,    | PFUdA1016                                                |                     | ent)            | Perfluoroundecanoic acid    | 20 ng/mI      |
| d5-NEFEOSAA     M2-6:2FTS   M2-8:2FTS      | M2-6.7ETS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -           |              | Lot              | 200 mL                                                   | LCMPFC ALL SU 00041 |                 | <b>⊢</b>                    | 2.5 ng/mL     |
| M2-6:2FTS  M2-8:2FTS  13C2-PFHXDA 13C2-PFPGA 13C3-PFPGA 13C3-PFPGA 13C3-PFPGA 13C3-PFBA 13C3-PFBA 13C3-PFBA 13C3-PFBA 13C2 PFDAA 13C3-PFBAA 13C4 PFOA 13C4 PFOA 13C5 PFNAA 13C6 PFNAA 13C7 PFDAA 13C7 PFDAA 13C8 PFDAA 13C8 PFDAA 13C9 PFDAA 13C9 PFDAA 13C1 PFDAA 13C2 PFHXAA 13C2 PFNAA 13C4 PFOA 13C4 PFOA 13C4 PFOA 13C6 PFNAA 13C7 PFNAA 13C7 PFNAA 13C8 PFNAA 13C8 PFNAA 13C9 PFNAA 13C9 PFNAA 13C1 PFNAA 13C1 PFNAA 13C1 PFNAA 13C2 PFNAA 13C4 PFOA 13C2 PFNAA 13C4 PFOA 13C6 PFNAA 13C6 PFNAA 13C6 PFNAA 13C7 PFNAA 13C7 PFNAA 14, 14, 24, 24-perfluorodeca 2016 N-methyl perfluoroctane 2016 N-methyl perfluoroctane 2016 Perfluorodecanoic acid 2016 Perfluorodecanoic acid 2016 Perfluoroheptanesulfonic 2016 Perfluoroheptanesulfonic 2016 Perfluorohexanoic acid 2017 PERFLUOROH | M2-6:2FTS M2-8:2FTS 13C2-PFHXDA 13C2-PFDAA 13C2-PFPDA 13C3-PFPBA 13C3-PFPBA 13C3-PFBA  |             |              |                  |                                                          | <br>                |                 | d5-NEtFOSAA                 | 2.5 ng/mL     |
| M2-8:2FTS 13C2-PFHXDA 13C2-PFDA 13C3-PFPBA 13C3-PFPBA 13C3-PFBA 13C3-PFBA 13C2 PFHXA 13C2 PFHXA 13C2 PFHXA 13C2 PFHXA 13C2 PFUAA 13C2 PFUAA 13C3 PFDA 13C2 PFUAA 13C4 PFOA 13C5 PFUAA 13C5 PFUAA 13C6 PFUAA 13C7 PFUAA 13C7 PFUAA 13C8 PFOA 13C8 PFOA 13C9 PFUAA 13C1 PFOA 13C1 PFOA 13C1 PFOA 13C2 PFUAA 13C2 PFUAA 13C2 PFUAA 13C2 PFUAA 13C4 PFOA 13C6 PFUAA 13C7 PFUAA 13C7 PFUAA 13C8 PFUAA 13C8 PFUAA 13C9 PFUAA 13C9 PFUAA 13C9 PFUA 13C1 PFUA 14, 2H, 2H, 2H-Perfluoroctane 201 Fondium 1H, 1H, 2H, 2H-Perfluoroctane 201 Fondium 1H, 1H, 2H, 2H-Perfluoroctane 201 Fondium 201 Forfluoroctane 201 Forfluoroctane 201 Forfluorodecanoic acid 201 Forfluoroheptanesulfonic 201 Forfluorohexanoic acid 201 Forfluorohexanoic  | M2-8:2FTS 13C2-PFHXDA 13C2-PFDA 13C3-PFPBA 13C3-PFPBA 13C3-PFBA 13C3-PFBA 13C2 PFHXA 13C2 PFUNA 13C4 PFOA 13C5 PFNA 13C4 PFOA 13C5 PFNA 13C6 PFNA 13C7 PFOA 13C7 PFOA 13C8 PFOA 13C8 PFOA 13C8 PFOA 13C9 PFNA 13C1 PFOA 13C1 PFOA 13C2 PFUNA 13C1 PFNA 13C2 PFUNA 13C2 PFUNA 13C4 PFOA 13C6 PFNA 13C6 PFNA 13C6 PFNA 13C6 PFNA 13C7 PFNA 13C7 PFNA 13C8 PFOA 13C8 PFNA 13C9 PFNA 13C9 PFNA 13C1 PFNA 13C1 PFNA 13C1 PFNA 13C1 PFNA 13C2 PFNA 13C2 PFNA 13C2 PFNA 13C2 PFNA 13C4 PFOA 13C4 PFOA 13C6 PFNA 13C6 PFILUOTODECACIO C C C PETILUOTODECANOIC C C C C C C C C C C C C C C C C C C           |             |              |                  |                                                          |                     |                 | M2-6:2FTS                   |               |
| 13C2-PFNAA 13C2-PFDA 13C2-PFDA 13C3-PFPEA 13C3-PFBA 13C3-PFBA 13C3-PFBA 13C2-PFNAA 13C3-PFNAA 13C4-PFNAA 13C4- | 13C2-PFNAA 13C2-PFDA 13C2-PFDA 13C3-PFPBA 13C3-PFBA 13C3-PFBA 13C3-PFBA 13C2-PFNAA 13C3-PFNAA 13C3-PFBA 13C2-PFNAA 13C3-PFBA 13C2-PFNAA 13C3-PFNAA 13C3-PFNAA 13C4-PFNAA 13C4-PFNAA 13C4-PFNAA 13C5-PFNAA 13C5-PFNAA 13C5-PFNAA 13C5-PFNAA 13C6-PFNAA 13C6-PF |             |              |                  |                                                          |                     |                 | M2-8:2FTS                   | 2.395 ng/mL   |
| 13C2-PFDA 13C4-PFHDA 13C4-PFHDA 13C4-PFHDA 13C4-PFBA 13C4-PFBA 13C4-PFBA 13C4-PFBA 13C4-PFBA 13C4-PFBA 13C2-PFDA 13C2-PFDA 13C2-PFDA 13C2-PFDA 13C2-PFDA 13C4-PFDA 13C4-PFDA 13C4-PFDA 13C4-PFDA 13C4-PFDA 13C4-PFDA 13C4-PFDA 13C4-PFDA 13C5-PFBA 13C5-PFBA 13C6-PFBA 13C | 13C2-PFDA 13C4-PFHDA 13C4-PFHDA 13C4-PFHDA 13C5-PFBA 13C4 PFBA 13C4 PFBA 13C4 PFBA 13C4 PFDA 13C5 PFDA 13C6 PFDA 13C7 PFDA 13C7 PFDA 13C8 PFDA 13C8 PFDA 13C8 PFDA 13C9 PFDA 13C9 PFDA 13C9 PFDA 13C1 PFDA 13C1 PFDA 13C2 PFDA 13C4 PFCO 13C6 PETILOCOCCTAN 14, 14, 24, 24-perfluorocctane 14, 16, 24, 24-perfluoroc |             |              |                  |                                                          |                     |                 | 13C2-PFHxDA                 |               |
| 13C2-PFTeDA 13C4-PFHpA 13C5-PFPeA 13C8 FOSA 13C8 FFDA 13C2 PFDA 13C2 PFDA 13C2 PFNA 13C2 PFNA 13C4 PFOA 13C6 PFNA 14, 14, 24, 24-perfluoroctane 14, 14, 24, 24-perfluoroctane 14, 14, 24, 24-perfluoroctane 14, 14, 24, 24-perfluoroctane 16, 15, 16, 16 16, 16, 16, 16 16, 16, 16 16, 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16, 16 16 | 13C2-PFTeDA 13C4-PFHpA 13C5-PFPeA 13C8 FOSA 13C4 PFBA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFNA 13C4 PFDA 13C2 PFNA 13C4 PFOS 13C6 PFINA 13C6 PFINO Nethyl perfluoroctane sulfonamidoacetic acid Nethyl perfluoroctane sulfonamidoacetic acid Nethyl perfluoroctane sulfonamidoacetic acid Perfluorobecanoic acid Perfluorobecanoic acid Perfluorobecanoic acid (PFHBA) Perfluorobecanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |              |                  |                                                          |                     |                 | 13C2-PFOA                   |               |
| 13C4-PFHpA 13C5-PFPEA 13C8 FOSA 13C3 PFBA 13C2 PFDA 13C2 PFDA 13C2 PFRAA 13C2 PFRAA 13C2 PFRAA 13C2 PFRAA 13C4 PFOA 13C6 PFUNA 14,14,24,24-perfluorooctane sulfonate (6:2) Sodium 14,14,24,24-perfluorooctane sulfonate (8:2) N-ethyl perfluorooctane sulfonamidoacetic acid N-methyl perfluorooctane sulfonamidoacetic acid Perfluorobutyric acid Perfluorobutopric acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluorodecane Sulfonic Perfluoroheptanesulfonic Perfluoroheptanesulfonic Perfluorohexanoic acid (PFHAA) Perfluoroheptanesulfonic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13C4-PFHpA 13C5-PFPEA 13C8 FOSA 13C3 PFBA 13C2 PFDA 13C2 PFRAA 13C2 PFRAA 13C2 PFRAA 13C2 PFRAA 13C2 PFRAA 13C4 PFOA 13C6 PFUNA 14,14,24,24-Perfluorooctane sulfonate (6:2) Sodium 14,14,24,24-Perfluorooctane sulfonate (8:2) N-ethyl perfluorooctane sulfonamidoacetic acid N-methyl perfluorooctane sulfonamidoacetic acid Perfluorobutyric acid Perfluorobutopric acid Perfluorobecanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |              |                  |                                                          |                     |                 | 13C2-PFTeDA                 | مال           |
| 13C5-PFPeA 13C8 FOSA 13C4 PEBA 13C2 PEDAA 13C2 PFDAA 13C2 PFDAA 13C2 PFRAA 13C2 PFRAA 13C4 PFOS 13C6 PFUNA 13C7 PFUNA 13C7 PFUNA 13C8 PFUNA 13C8 PFUNA 13C9 PFUNA 13C9 PFUNA 13C6 PFUNA 13C7 PFUNA 13C7 PFUNA 13C8 PFUNA 13C8 PFUNA 13C9 PFUNA 14, 1H, 2H, 2H-PErfluorodeca 201 FONDAUTAIC acid 16 PERFLUORODECANOIC acid 17 PERFLUORODECANOIC acid 17 PERFLUORODECANOIC acid 18 PERF | 13C5-PFPeA 13C8 FOSA 13C4 PEBA 13C2 PFDA 13C4 PFOS 13C6 PFUNA 13C7 PFUNA 13C7 PFUNA 13C8 PFUNA 13C8 PFUNA 13C9 PFUNA 13C9 PFUNA 13C6 PFUNA 13C7 PFUNA 13C7 PFUNA 13C8 PFUNA 13C8 PFUNA 13C9 PFUNOCOCTA 13C9 PCFUNOCOCTA 13C9 PCFUNOCOCCTA 13C9 PCFUNOCOCT |             |              |                  |                                                          |                     |                 | 13C4-PFHpA                  |               |
| 13C4 PFBA 13C3 - PFBA 13C3 - PFBA 13C2 PFDAA 13C2 PFDAA 13C2 PFWAA 13C4 PFOA 14, 14, 24, 24-perfluoroctane sulfonate (8:2) N-ethyl perfluoroctane sulfonamidoacetic acid N-methyl perfluoroctane sulfonamidoacetic acid Perfluorodecanoic acid Perfluorodecane Sulfonic Perfluoroheptanesulfonic Perfluoroheptanesulfonic Perfluorohexanoic acid (PFHAA) Perfluorohexanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13C4 PFBA 13C3-PFBS 13C3-PFBS 13C2 PFDA 13C2 PFDAA 13C2 PFWAA 13C2 PFWAA 13C4 PFOA 13C6 PFWAA 13C6 PFWAA 13C7 PFWAA 13C6 PFWAA 13C7 PFWAA 13C8 PFWAA 14, 1H, 2H, 2H-Perfluorodeca 20cd um 1H, 1H, 2H, 2H-Perfluorodeca 20cd um  |             |              |                  |                                                          |                     |                 | 13C5-PFPeA                  | 2.5 ng/mL     |
| 13C3 PFBA 13C3 PFDA 13C2 PFDA 13C2 PFDAA 13C2 PFNAA 13C4 PFOA 13C5 PFNAA 13C4 PFOA 13C4 PFOA 13C6 PFNAA 13C7 PFUAA 13C7 PFUAA 13C8 PFUAA 13C9 PFUAA 13C9 PFUAA 13C9 PFUAA 13C1 PFUAA 13C1 PFUAA 13C2 PFUAA 13C2 PFUAA 13C2 PFUAA 13C4 PFOS 13C2 PFUAA 13C4 PFOS 14C1 LH, 1H, 2H, 2H-perfluorobecas sulfonate (8:2) Nethyl perfluoroctane sulfonate (8:2) Nethyl perfluoroctane sulfonamidoacetic acid Nethyl perfluoroctane sulfonamidoacetic acid Perfluorobutanesulfonic acid Perfluorobecanoic acid Perfluorobeptanoic acid (PFBS) Perfluorobeptanosulfonic Perfluorobexanoic acid (PFHPA) Perfluorobexanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13C3 PFBA 13C3 PFDA 13C2 PFDA 13C2 PFWAA 13C2 PFWAA 13C4 PFOA 13C5 PFWA 13C4 PFOA 13C5 PFWAA 13C4 PFOA 13C6 PFWAA 13C7 PFWAA 13C7 PFWAA 13C8 PFWAA 13C8 PFWAA 13C9 PFWAA 13C9 PFWAA 13C4 PFOA 13C6 PFWAA 14, 14, 24, 24-perfluorooctan sulfonate (6:2) Sodium 14, 14, 24, 24-perfluorooctan sulfonate (8:2) Nethyl perfluorooctane sulfonamidoacetic acid Nethyl perfluorooctane sulfonamidoacetic acid Nethyl perfluorooctane sulfonamidoacetic acid Perfluorobutanesulfonic a (PFBS) Perfluorodecanoic acid Perfluorodecanoic acid Perfluoroheptanoic acid (PFBS) Perfluoroheptanosulfonic Perfluorohexanoic acid (PFHPA) Perfluorohexanoic acid (PFHPA) Perfluorohexanoic acid (PFHDA) Perfluorohexanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |              |                  |                                                          |                     |                 | 13C8 FOSA                   |               |
| 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFHXA 13C2 PFHXA 13C4 PFOA 13C4 PFOA 13C4 PFOA 13C5 PFUAA 13C6 PFUAA 13C6 PFUAA 13C7 PFUAA 13C7 PFUAA 13C8 PFUAA 14, 14, 24, 24-perfluorooctas sulfonate (6:2) Sodium 14, 14, 24, 24-perfluorooctane sulfonate (6:2) Sodium 14, 14, 24, 24-perfluorooctane sulfonate (8:2) Nethyl perfluorooctane sulfonamidoacetic acid Nethyl perfluorooctane sulfonamidoacetic acid Perfluorobutanesulfonic a (PFBS) Perfluorodecanoic acid Perfluorodecanoic acid Perfluorobetanoic acid (PFB) Perfluorobetanoic acid (PFB) Perfluorobetanoic acid (PFHAA) Perfluorobetanoic acid (PFHAA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13C2 PFDA 13C2 PFDA 13C2 PFNAA 13C2 PFNAA 13C4 PFOA 13C4 PFOA 13C4 PFOA 13C5 PFNAA 13C6 PFNAA 13C6 PFNAA 13C7 PFUAA 13C7 PFUAA 13C8 PFUAA 13C8 PFUAA 13C8 PFUAA 14, 14, 24, 24-perfluorooctas sulfonate (6:2) Sodium 14, 14, 24, 24-perfluorooctane sulfonate (6:2) Sodium 14, 14, 24, 24-perfluorooctane sulfonate (8:2) Nethyl perfluorooctane sulfonamidoacetic acid N-methyl perfluorooctane sulfonamidoacetic acid N-methyl perfluorooctane sulfonamidoacetic acid Perfluorobutanesulfonic acid Perfluorodecanoic acid Perfluorobecanoic acid (PFBS) Perfluorobeptanesulfonic Perfluorobexanoic acid (PFHPA) Perfluorobexanoic acid Perfluorobexanoic acid (PFHPA) Perfluorobexanoic acid (PFHPA) Perfluorobexanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |              |                  |                                                          |                     |                 |                             |               |
| 13C2 PFDA  13C2 PFDAA  13C2 PFHXAA  18O2 PFHXAS  13C4 PFOA  13C5 PFUNA  13C5 PFUNA  13C6 PFUNA  13C7 PFUNA  14 14, 24, 24-perfluorohexa  sulfonate (4:2) Sodium  14, 14, 24, 24-perfluoroctane sulfonate (6:2) Sodium  14, 14, 24, 24-perfluoroctane sulfonate (8:2) N-ethyl perfluoroctane sulfonamidoacetic acid N-methyl perfluoroctane sulfonamidoacetic acid Perfluorobutyric acid Perfluorobutanesulfonic a (PFBS) Perfluorodecanoic acid Perfluorodecanoic acid Perfluorodecane Sulfonic Perfluoroheptanoic acid (PFHBA) Perfluoroheptanesulfonic Perfluorohexanoic acid (PFHBA) Perfluoroheptanesulfonic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13C2 PFDA 13C2 PFDA 13C2 PFHXA 18O2 PFHXS 13C4 PFOA 13C5 PFUNA 13C4 PFOA 13C5 PFUNA 13C6 PFUNA 13C6 PFUNA 13C7 PFUNA 14, 2H, 2H-Perfluorohexa sulfonate (4:2) Sodium 1H, 1H, 2H, 2H-Perfluoroctane sulfonate (6:2) Sodium 1H, 1H, 2H, 2H-Perfluoroctane sulfonate (8:2) N-ethyl perfluoroctane sulfonamidoacetic acid N-methyl perfluoroctane sulfonamidoacetic acid Perfluorobutanesulfonic a (PFB) Perfluorodecanoic acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluorobetanesulfonic Perfluorohexanoic acid (PFHA) Perfluorohexanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |              |                  |                                                          |                     |                 | 13C3-PFBS                   | 2.325 ng/mL   |
| 13C2 PFDOA 13C2 PFHXA 18C2 PFHXS 18C3 PFHXA 13C4 PFOA 13C4 PFOA 13C4 PFOA 13C4 PFOA 13C4 PFOA 13C6 INA 11C1 LH, 2H, 2H-perfluorohexa sulfonate (4:2) Sodium 1H, 1H, 2H, 2H-perfluoroctan sulfonate (6:2) Sodium 1H, 1H, 2H, 2H-perfluoroctane sulfonate (8:2) N-ethyl perfluoroctane sulfonamidoacetic acid N-methyl perfluoroctane sulfonamidoacetic acid Perfluorobutanesulfonic a (PFBS) Perfluorodecanoic acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluorobetanoic acid Perfluoroheptanesulfonic Perfluoroheptanesulfonic Perfluorohexanoic acid (PFBA) Perfluorohexanoic acid (PFBA) Perfluorohexanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13C2 PFDOA  13C2 PFHXA 18C2 PFHXS 13C4 PFOA 13C4 PFOA 13C4 PFOA 13C4 PFOA 13C4 PFOA 13C6 PEUDA 13C6 PEUDA 14. 14, 24, 24-perfluoroctas sulfonate (4:2) Sodium 14. 14, 24, 24-perfluoroctane sulfonate (8:2) Sodium 14. 14, 24, 24-perfluoroctane sulfonate (8:2) N-ethyl perfluoroctane sulfonate (8:2) N-ethyl perfluoroctane sulfonamidoacetic acid N-methyl perfluoroctane sulfonamidoacetic acid Perfluorobutanesulfonic a (PFBS) Perfluorodecanoic acid Perfluorodecanoic acid Perfluoroceane Sulfonic Perfluoroceane Sulfonic Perfluorobexanoic acid (PFHAA) Perfluorobexanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |              |                  |                                                          |                     |                 | 13C2 PFDA                   |               |
| 13C2 PFHXA 18C2 PFNA 18C4 PFNA 13C4 PFNA 14, 14, 24, 24-perfluoroctane 14, 14, 24, 24-perfluoroctane 14, 14, 24, 24-perfluoroctane 14, 14, 24, 24-perfluoroctane 16, 17, 14, 24, 24-perfluoroctane 16, 17, 14, 24, 24-perfluoroctane 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13C2 PFHXA 18C2 PFNA 18C4 PFNA 13C4 PFNA 14, 2H-perfluoroctane 14, 1H, 2H, 2H-perfluoroctane 14, 1H, 2H, 2H-perfluoroctane 15 Sodium 14, 1H, 2H, 2H-perfluoroctane 16 Sodium 16 N-ethyl perfluoroctane 17 Sodium 17 N-ethyl perfluoroctane 18 Sulfonate 18 Sulfonate 18 Perfluorodecanoic acid 18 Perfluorodecanoic acid 18 Perfluorobetanoic acid 18 Perfluorobetanoic acid 18 Perfluorobetanesulfonic 18 Perfluorobexanoic acid                                                                                                                                                                                                                                                                                                                                                              |             |              |                  |                                                          |                     |                 |                             | 2.5 ng/mL     |
| 1802 PFHXS  13C5 PFNA  13C4 PFOA  13C4 PFOS  13C2 PFUNA  1 mL Sodium  1H,1H,2H,2H-perfluorohexa sulfonate (4:2) Sodium  1H,1H,2H,2H-perfluorocta sulfonate (6:2) Sodium  1H,1H,2H,2H-perfluoroctane sulfonate (8:2) N-ethyl perfluoroctane sulfonate (8:2) N-ethyl perfluoroctane sulfonamidoacetic acid N-methyl perfluoroctane sulfonamidoacetic acid Perfluorobutyric acid Perfluorobutyric acid Perfluorobetic acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluorobetanoic acid Perfluoroheptanoic acid (PFHPA) Perfluoroheptanesulfonic Perfluoroheptanesulfonic Perfluorohexanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1802 PFHXS  13C5 PFNA  13C4 PFOA  13C4 PFOS  13C2 PFUNA  1 mL Sodium  1H,1H,2H,2H-perfluorohexa sulfonate (4:2) Sodium  1H,1H,2H,2H-perfluorocta sulfonate (6:2) Sodium  1H,1H,2H,2H-perfluoroctane sulfonate (8:2) N-ethyl perfluoroctane sulfonamidoacetic acid N-methyl perfluoroctane sulfonamidoacetic acid Perfluorobutyric acid Perfluorobutyric acid Perfluorobutyric acid Perfluorobecanoic acid Perfluorodecanoic acid Perfluorobecanoic acid Perfluorobecanoic acid Perfluoroheptanesulfonic Perfluoroheptanesulfonic Perfluorohexanoic acid (PEHBA) Perfluorohexanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |              |                  |                                                          |                     |                 |                             |               |
| 13C4 PFOA  13C4 PFOA  13C4 PFOA  13C4 PFOS  13C2 PFUNA  1 mL Sodium  1 H, 1H, 2H, 2H-perfluorohexa sulfonate (4:2) Sodium  1 H, 1H, 2H, 2H-perfluoroocta sulfonate (6:2) Sodium  1 H, 1H, 2H, 2H-perfluorooctane sulfonate (8:2) N-ethyl perfluorooctane sulfonamidoacetic acid N-methyl perfluorooctane sulfonamidoacetic acid Perfluorobutanesulfonic a (PFBS) Perfluorobecanoic acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluoroheptanesulfonic Perfluoroheptanesulfonic Perfluoroheptanesulfonic Perfluoroheptanesulfonic Perfluoroheptanesulfonic Perfluoroheptanesulfonic Perfluorohexanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13C4 PFOA  13C4 PFOA  13C4 PFOA  13C4 PFOS  13C2 PFUNA  1 mL Sodium  1 H, 1H, 2H, 2H-perfluorohexa sulfonate (4:2) Sodium  1H, 1H, 2H, 2H-perfluorocta sulfonate (6:2) Sodium  1H, 1H, 2H, 2H-perfluoroctane sulfonate (8:2) N-ethyl perfluoroctane sulfonamidoacetic acid N-methyl perfluoroctane sulfonamidoacetic acid Perfluorobutyric acid Perfluorobutyric acid Perfluorobutyric acid Perfluorobetanesulfonic a (PFBS) Perfluorodecanoic acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluorobetanosulfonic Perfluorohexanoic acid (PFHPA) Perfluorohexanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |              |                  |                                                          |                     |                 |                             |               |
| 13C4 PFOA  13C2 PFUnA  1 mL Sodium  1 H,1H,2H,2H-perfluorooctasulfonate (4:2) Sodium  1 H,1H,2H,2H-perfluorooctane Sulfonate (6:2) Sodium  1 H,1H,2H,2H-perfluorooctane Sulfonate (8:2) N-ethyl perfluorooctane Sulfonamidoacetic acid N-methyl perfluorooctane Sulfonamidoacetic acid N-methyl perfluorooctane Sulfonamidoacetic acid Perfluorobutanesulfonic a(PFBS) Perfluorobecanoic acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluorobetanoic acid Perfluorobetanoic acid (PFBS) Perfluorobetanoic acid (PFBS) Perfluorobetanoic acid (PFHBA) Perfluorobetanoic acid (PFHBA) Perfluorobetanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13C4 PFOA  13C2 PFUnA  13C2 PFUnA  1 ML Sodium  1 H,1H,2H,2H-perfluoroocta  sulfonate (4:2) Sodium  1 H,1H,2H,2H-perfluoroocta sulfonate (6:2) Sodium  1 H,1H,2H,2H-perfluorooctane sulfonate (8:2) N-ethyl perfluorooctane sulfonamidoacetic acid N-methyl perfluorooctane sulfonamidoacetic acid Perfluorobutyric acid Perfluorobutanesulfonic a (PFBS) Perfluorodecanoic acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluorobetanesulfonic Perfluoroheptanesulfonic Perfluoroheptanesulfonic Perfluorohexanoic acid (PFHBA) Perfluorohexanoic acid Perfluorohexanoic acid Perfluorohexanoic acid Perfluorohexanoic acid Perfluorohexanoic acid Perfluorohexanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |              |                  |                                                          |                     |                 |                             |               |
| 13C2 PFUNA  1 mL Sodium  1H, 1H, 2H, 2H-perfluorohexa sulfonate (4:2) Sodium  1H, 1H, 2H, 2H-perfluorocta sulfonate (6:2) Sodium  1H, 1H, 2H, 2H-perfluoroctane sulfonate (8:2) N-ethyl perfluoroctane sulfonamidoacetic acid N-methyl perfluoroctane sulfonamidoacetic acid Perfluorobutyric acid Perfluorobutoric acid Perfluorobecanoic acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluorobetanoic acid Perfluoroheptanoic acid (PFBS) Perfluoroheptanesulfonic Perfluoroheptanoic acid (PFHPA) Perfluoroheptanoic acid (PFHPA) Perfluoroheptanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13C2 PFUNA  1 mL Sodium  1 H.1H, 2H, 2H-perfluorohexa sulfonate (4:2) Sodium  1H,1H,2H,2H-perfluorocta sulfonate (6:2) Sodium  1H,1H,2H,2H-perfluoroctane sulfonate (8:2) N-ethyl perfluoroctane sulfonamidoacetic acid N-methyl perfluoroctane sulfonamidoacetic acid Perfluorobutyric acid Perfluorobutanesulfonic a (PFBS) Perfluorodecanoic acid Perfluorobetanoic acid (PFBS) Perfluoroheptanesulfonic Perfluorohexanoic acid (PFHDA) Perfluorohexanoic acid (PFHDA) Perfluorohexanoic acid (PFHDA) Perfluorohexanoic acid (PFHDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |              |                  |                                                          |                     |                 | 13C4 PFOA                   |               |
| 1 mL Sodium  1 H,1H,2H,2H-perfluorohexa sulfonate (4:2) Sodium  1H,1H,2H,2H-perfluoroocta sulfonate (6:2) Sodium  1H,1H,2H,2H-perfluorooctane sulfonate (8:2) N-ethyl perfluorooctane sulfonamidoacetic acid N-methyl perfluorooctane sulfonamidoacetic acid Perfluorobutanesulfonic a (PENS) Perfluorodecanoic acid Perfluoroheptanoic acid (PENS) Perfluoroheptanosulfonic Perfluoroheptanoic acid (PENBA) Perfluoroheptanoic acid (PENBA) Perfluoroheptanosulfonic Perfluorohexanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 mL Sodium  1 H,1H,2H,2H-perfluorohexa sulfonate (4:2) Sodium  1H,1H,2H,2H-perfluoroocta sulfonate (6:2) Sodium  1H,1H,2H,2H-perfluorooctane sulfonate (8:2) N-ethyl perfluorooctane sulfonamidoacetic acid N-methyl perfluorooctane sulfonamidoacetic acid Perfluorobutanesulfonic acid Perfluorobutanesulfonic acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluorobecanoic acid Perfluorobecanoic acid (PEMS) Perfluoroheptanesulfonic Perfluorohexanoic acid (PEHDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |              |                  |                                                          |                     |                 |                             |               |
| 1 mL Sodium 1 H,1H,2H,2H-perfluorohexa sulfonate (4:2) Sodium 1 H,1H,2H,2H-perfluoroocta sulfonate (6:2) Sodium 1 H,1H,2H,2H-perfluorodeca sulfonate (8:2) N-ethyl perfluorooctane sulfonamidoacetic acid N-methyl perfluorooctane sulfonamidoacetic acid Perfluorobutyric acid Perfluorobutyric acid Perfluorobutyric acid Perfluorobutynic acid Perfluorobutynic acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluoroheptanoic acid Perfluoroheptanoic acid (PFHBA) Perfluoroheptanesulfonic Perfluoroheptanoic acid (PFHBA) Perfluoroheptanesulfonic Perfluorohexanoic acid (PFHBA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 mL Sodium 1 H,1H,2H,2H-perfluorohexa sulfonate (4:2) Sodium 1H,1H,2H,2H-perfluoroocta sulfonate (6:2) Sodium 1H,1H,2H,2H-perfluorodeca sulfonate (8:2) N-ethyl perfluorooctane sulfonamidoacetic acid N-methyl perfluorooctane sulfonamidoacetic acid Perfluorobutyric acid Perfluorobecanoic acid Perfluorobecanoic acid Perfluoroheptanoic acid Perfluoroheptanoic acid (PFHB) Perfluoroheptanesulfonic Perfluorohexanoic acid (PEHBO) Perfluorohexanoic acid (PFHDO) Perfluorohexanoic acid (PEHBO) Perfluorohexanoic acid (PFHDO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |              |                  |                                                          |                     |                 |                             | . 7.          |
| 1H. TH, 2H-perfluorohexa sulfonate (4:2) Sodium 1H. TH, 2H-perfluoroocta sulfonate (6:2) Sodium 1H. TH, 2H-perfluorodeca sulfonate (8:2) N-ethyl perfluorooctane sulfonamidoacetic acid N-methyl perfluorooctane sulfonamidoacetic acid Perfluorobutyric acid Perfluorobutyric acid Perfluorobutyric acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluoroheptanoic acid Perfluoroheptanoic acid Perfluoroheptanoic acid (PEHPA) Perfluoroheptanesulfonic Perfluoroheptanoic acid (PEHPA) Perfluoroheptanesulfonic Perfluoroheptanoic acid (PEHPA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1H. TH, 2H-perfluorohexa sulfonate (4:2) Sodium 1H. TH, 2H-perfluorocta sulfonate (6:2) Sodium 1H. TH, 2H-perfluoroctane sulfonate (8:2) N-ethyl perfluoroctane sulfonamidoacetic acid N-methyl perfluoroctane sulfonamidoacetic acid Perfluorobutyric acid Perfluorobutyric acid Perfluorobutyric acid Perfluorobutyric acid Perfluorobecanoic acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluorodecanoic acid Perfluoroheptanoic acid Perfluoroheptanoic acid (PEHBA) Perfluoroheptanoic acid (PEHBA) Perfluoroheptanoic acid (PEHBA) Perfluoroheptanoic acid (PEHBA) Perfluorohexanoic acid (PEHBA) Perfluorohexanoic acid (PEHBA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                                                          | T.CPECSP 00130      | - 1             | 1 - 7 0                     | - 1           |
| (4:2)  H-perfluoroocta (6:2)  H-perfluorodeca (8:2)  rfluorooctane oacetic acid erfluorooctane oacetic acid utyric acid utyric acid utyric acid utyric acid occetic acid occetic acid occetic acid canoic acid canoic acid ecanoic acid exanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H-perfluoroocta (6:2) H-perfluorodeca (8:2) rfluorooctane oacetic acid erfluorooctane oacetic acid utyric acid utyric acid utyric acid occetic acid occetic acid occetic acid occetic acid occetic acid optanesulfonic acid ecanoic acid exanoic acid exanoic acid exanoic acid exanoic acid exanoic acid exanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |              |                  |                                                          |                     |                 |                             |               |
| H-perfluoroocta (6:2) H-perfluorodeca (8:2) rfluorooctane cacetic acid erfluorooctane oacetic acid utyric acid utyric acid utyric acid utyric acid ocaceic acid canoic acid cenoic acid ecanoic acid eptanesulfonic exanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H-perfluoroocta (6:2) H-perfluorodeca (8:2) rfluorooctane cacetic acid erfluorooctane odcctic acid utyric acid utyric acid utyric acid utyric acid odccanoic acid canoic acid ecanoic acid exanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |              |                  |                                                          |                     |                 | sulfonate (4:2)             |               |
| H-perfluoroocta (6:2) H-perfluorodeca (8:2) rfluorooctane oacetic acid erfluorooctane utyric acid utyric acid utyric acid odecanoic acid ecanoic acid ecanoic acid ecanoic acid eptanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H-perfluoroocta (6:2) H-perfluorodeca (8:2) rfluorooctane oacetic acid erfluorootane oacetic acid utyric acid utyric acid utyric acid ocanoic acid canoic acid ecanoic acid exanoic acid eptanesulfonic exanoic acid exanoic acid exanoic acid exanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |                  |                                                          |                     |                 | Sodium                      | 4.74 ng/mL    |
| ctane acid octane acid fonic acid acid acid acid acid acid acid ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ctane acid coctane acid fonic acid acid acid acid acid acid acid ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |                  |                                                          |                     |                 | 1H,1H,2H,2H-perfluorooctane | 1             |
| octane acid octane acid cid cid cid acid acid c acid acid acid acid acid acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | octane acid coctane acid cold cold cold cold cold cold cold col                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                                                          |                     |                 | Sodium                      | 0             |
| octane acid folic a acid acid llfonic acid acid acid acid acid acid acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | acid<br>fonic a<br>acid<br>fonic a<br>acid<br>llfonic<br>fonic acid<br>fonic acid<br>fonic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                                                          |                     |                 | 1H,1H,2H,2H-perfluorodecane |               |
| acid acid acid fonic a acid llfonic acid acid acid acid acid acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | acid acid acid acid acid acid acid acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |              |                  |                                                          |                     |                 | sulfonate (8:2)             |               |
| octane acid cid fonic a acid c acid lfonic acid llfonic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | acid<br>cid<br>fonic a<br>acid<br>cacid<br>lfonic<br>acid<br>llfonic<br>acid<br>fonic a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |              |                  |                                                          |                     |                 | sulfonamidoacetic acid      | A 111 / P 11  |
| acid acid llfonic a c acid bic acid sulfonic c acid sulfonic c acid sulfonic s acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | acid acid lifonic a acid c acid sulfonic c acid sulfonic c acid sulfonic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |              |                  |                                                          |                     |                 | N-methyl perfluorooctane    | 5 ng/mL       |
| acid  lifonic a  c acid  sulfonic  c acid  c acid  c acid  sulfonic  acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | acid Ilfonic a c acid Sulfonic Ic acid Sulfonic C acid acid Ic acid Ilfonic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |              |                  |                                                          |                     |                 | 7.1                         |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                                                          |                     |                 | acid                        |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                                                          |                     |                 |                             | 4.42 ng/mL    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                                                          |                     |                 |                             | 5 ng/mL       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                                                          |                     |                 | Perfluorododecanoic acid    |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                                                          |                     |                 |                             | 4.82 ng/mL    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |              |                  |                                                          |                     |                 | Perfluoroheptanoic acid     | 5 ng/mL       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l lat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |              |                  |                                                          |                     |                 |                             | [             |
| FELTIMOTONEXAMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                                                          |                     |                 |                             |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                                                          |                     |                 |                             | JIII / GI C   |

Job No.: 320-39023-1 Lab Name: TestAmerica Sacramento

|                      |             |              | Reagent                                  | nt            | Parent Reagent      | L               |                              |               |
|----------------------|-------------|--------------|------------------------------------------|---------------|---------------------|-----------------|------------------------------|---------------|
| Reagent ID           | Exp<br>Date | Prep<br>Date | Dilutant Final Used Volume               |               | Reagent ID          | Volume<br>Added | Analyte                      | Concentration |
|                      |             |              |                                          |               |                     |                 | Derflucrononencia (DENA)     | Tm/ 2007      |
|                      |             |              |                                          |               |                     | •               | 40 T                         | 0             |
|                      |             |              |                                          |               |                     |                 | Pertruorononamesurronic acta | 4.0 IIG/IIII  |
|                      |             |              |                                          |               |                     | •               | ~                            | - 1           |
|                      |             |              |                                          |               |                     |                 | Feriluorooctanesultonic acid | 4.64 ng/mL    |
|                      |             |              |                                          |               |                     | •               | Perfluorooctane Sulfonamide  | 5 ng/mL       |
|                      |             |              |                                          |               |                     |                 | Perfluoropentanoic acid      | 5 ng/mL       |
|                      |             |              |                                          |               |                     | •               |                              |               |
|                      |             |              |                                          |               |                     | •               |                              |               |
|                      |             |              |                                          |               |                     | •               | Dorfluorottidocanoid         |               |
|                      |             |              |                                          |               |                     |                 | Perfluoroundecanoic acid     | 5 ng/mI.      |
| .LCMPFC ALL SU 00041 | 08/20/18    | 02/20/18 M   | ol, Lot Baker 200                        | mL LCd3-NM    | LCd3-NMeFOSAA 00006 | 200 uL          | d3-NMeFOSAA                  | - 1           |
|                      |             | 7            | 141039                                   |               | ı                   |                 |                              |               |
|                      |             |              |                                          | LCd5-NE       | LCd5-NEtFOSAA 00006 |                 | d5-NEtFOSAA                  |               |
|                      |             |              |                                          | ICM2-6:       | LCM2-6:FTS_00006    | 200 uL          | M2-6:2FTS                    | 0.0475 ug/mL  |
|                      |             |              |                                          | LCM2-8:2FTS   | 2FTS_00008          | 200 uL          | M2-8:2FTS                    | 0.0479 ug/mL  |
|                      |             |              |                                          | LCM2PFE       | LCM2PFHxDA_00013    | 200 uL          | 13C2-PFHxDA                  | 0.05 ug/mL    |
|                      |             |              |                                          | LCM2PFC       | LCM2PFOA_00008      | 200 uL          | 13C2-PFOA                    | 0.05 ug/mL    |
|                      |             |              |                                          | LCM2PFT       | LCM2PFTeDA_00012    | 200 uL          | 13C2-PFTeDA                  | 0.05 ug/mL    |
|                      |             |              |                                          | LCM4PFE       | LCM4PFHPA_00012     | 200 uL          | 13C4-PFHpA                   | 1m/bn 50.0    |
|                      |             |              |                                          | LCM5PFE       | LCM5PFPEA_00013     | 200 uL          | 13C5-PFPeA                   | 0.05 ug/mL    |
|                      |             |              |                                          | LCM8FOS       | LCM8FOSA 00016      | 200 uL          | 13C8 FOSA                    | 0.05 ug/mL    |
|                      |             |              |                                          | LCMPFBA       |                     | 200 uL          | 13C4 PFBA                    | 0.05 ug/mL    |
|                      |             |              |                                          | LCMPFBS       | 90000               | 200 uL          | 13C3-PFBS                    | 0.0465 ug/mL  |
|                      |             |              |                                          | LCMPFDA 00018 | 00018               | 200 uL          | 13C2 PFDA                    | 0.05 ug/mL    |
|                      |             |              |                                          | LCMPFDC       | LCMPFDoA 00013      | 200 uL          |                              | 0.05 ug/mL    |
|                      |             |              |                                          | LCMPFHX       | LCMPFHxA_00019      | 200 uL          | 13C2 PFHxA                   | 0.05 ug/mL    |
|                      |             |              |                                          | LCMPFHX       |                     | 200 uL          | 1802 PFHxS                   | 0.0473 ug/mL  |
|                      |             |              |                                          | LCMPFNA       | 00013               | 200 uL          | 13C5 PFNA                    | 0.05 ug/mL    |
|                      |             |              |                                          | LCMPFOA       | 00017               | 200 uL          | 13C4 PFOA                    | 0.05 ug/mL    |
|                      |             |              |                                          | LCMPFOS       | 00025               | 200 uL          | 13C4 PFOS                    | 0.0478 ug/mL  |
|                      |             |              |                                          | LCMPFUC       | LCMPFUdA_00014      | 200 uL          | 13C2 PFUnA                   | 0.05 ug/mL    |
| LCd3-NMeFOSAA 00006  | 05/19/22    | WELL         | Lot d3NMeF(                              |               | - 1                 | nt)             | d3-NMeFOSAA                  |               |
| LCd5-NEtFOSAA_00006  | 08          | WELL         | WELLINGTON, Lot d5NEtFOSAA1117           | (1            | - 1                 | nt)             | d5-NEtFOSAA                  | 50 ug/mL      |
| LCM2-6:FTS_00006     | 02/11/22    | WEL          | WELLINGTON, Lot M262FTS0217              | (1            | (Purchased Reagent) | nt)             | M2-6:2FTS                    | 47.5 ug/mL    |
| LCM2-8:2FTS_00008    | 07/05/22    | WEL          | ( V I                                    |               | - 1                 | nt)             | M2-8:2FTS                    |               |
| LCM2PFHxDA_00013     | 07/13/22    | Wellington   | Wellington Laboratories, Lot M2PFHxDA071 | 7             | (Purchased Reagent) | nt)             | 13C2-PFHxDA                  | 50 ug/mL      |
| LCM2PFOA_00008       | 02/12/21    | Wellingto    | , Lot                                    |               |                     | nt)             | 13C2-PFOA                    | 50 ug/mL      |
| .LCM2PFTeDA_00012    | 11/30/22    | Wellington   | Wellington Laboratories, Lot M2PFTeDA111 | 17            |                     | nt)             | 13C2-PFTeDA                  | Tw/6n 05      |
| LCM4PFHPA 00012      | 05/03/22    | Wellingtor   | Wellington Laboratories, Lot M4PFHpA051  | 7             | (Purchased Reagent  | nt)             | 13C4-PFHpA                   | 20 ng/mT      |
| LCMSPFPEA 00013      | 07/20/22    | Wellingtor   | Wellington Laboratories, Lot M5PFPeA071  | 7             | (Purchased Reagent) | nt)             | 13C5-PFPeA                   | 20 ng/mT      |
| LCM8FOSA 00016       | 10/11/22    | Wellingtor   | Wellington Laboratories, Lot M8FOSA1017I |               | (Purchased Reagent) | nt)             | 13C8 FOSA                    | 20 ng/mT      |
| LCMPFBA 00013        | 04/12/22    | Wellingto    | Wellington Laboratories, Lot MPFBA0417   | 7             | (Purchased Reagent) | nt)             | 13C4 PFBA                    | 50 ug/mL      |
| LCMPFBS 00006        | 05/24/22    | Wellingto    |                                          |               | (Purchased Reagent  | nt)             | 13C3-PFBS                    | 46.5 ug/mL    |
| LCMPFDA 00018        | 07/13/22    | Wellingto    | Wellington Laboratories, Lot MPFDA0717   | (I            | (Purchased Reagent  | nt)             | 13C2 PFDA                    | 50 ug/mL      |
| LCMPFDoA 00013       | 05/23/22    | Wellingto    | Wellington Laboratories, Lot MPFDoA051   | 7             |                     | nt)             | 13C2 PFDoA                   | 50 ug/mL      |
| LCMPFHxA_00019       | 10/27/22    | Wellingto    | Lot                                      | 7             |                     | nt)             |                              |               |
| TCMDEH+S 00013       | 00/11/00    | MOTE TAGE    | +                                        | . [           | - 1                 | n+)             |                              |               |
| 上 これなり こうじょう         | 11/1/10     | VOL14410V    | 2                                        |               |                     | 110,            |                              | 7             |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

|                |          |             |                                        | ф<br>ф     | Parent Reagent      | ıt       |                                                          |               |
|----------------|----------|-------------|----------------------------------------|------------|---------------------|----------|----------------------------------------------------------|---------------|
|                | Ежр      | Prep        | Dilutant                               | Final      |                     | Volume   |                                                          |               |
| Reagent ID     | Date     | Date        | Used                                   | Volume     | Reagent ID          | Added    | Analyte                                                  | Concentration |
| LCMPFNA_00013  | 09/30/21 | Wellington  | n Laboratories, Lot                    | MPFNA0916  | (Purchased Reagent) | ent)     | 13C5 PFNA                                                | 50 ug/mL      |
| LCMPFOA_00017  | 10/17/22 | Wellingto.  | Wellington Laboratories, Lot MPFOA1017 | MPFOA1017  |                     | ent)     | 13C4 PFOA                                                | 50 ug/mL      |
| LCMPFOS_00025  | 10/17/22 | Wellingto.  | Wellington Laboratories, Lot MPFOS101  | MPFOS1017  | (Purchased Reagent) | ent)     | 13C4 PFOS                                                | 47.8 ug/mL    |
| LCMPFUdA_00014 | 11/22/21 | Wellingtor  | کِ                                     | MPFUdA1116 | (Purchased Reagent) | ent)     | 13C2 PFUnA                                               | 50 ug/mL      |
| .LCPFCSP_00132 | 08/20/18 | 02/20/18 Me | 02/20/18   Methanol, Lot 090285        | 10000 nE   | LC4:2FTS_00003      | 200 uL   | Sodium                                                   | 0.934 ug/mL   |
|                |          |             |                                        |            |                     |          | 1H, 1H, 2H, 2H-perfluorohexane                           |               |
|                |          |             |                                        | 1          | T.C6:2FTS 00003     | 200 11T. | - 1                                                      | 0.948 110/mT, |
|                |          |             |                                        |            |                     |          | 1H,1H,2H,2H-perfluorooctane                              | )             |
|                |          |             |                                        |            | LC8:2FTS 00003      | 200 uL   | Sodium                                                   | 0.958 ug/mL   |
|                |          |             |                                        |            | I                   |          | 1H,1H,2H,2H-perfluorodecane sulfonate (8:2)              |               |
|                |          |             |                                        |            | LCN-EtFOSAA_00004   | 200 uL   | N-ethyl perfluorooctane                                  | 1 ug/mL       |
|                |          |             |                                        |            | LCN-MeFOSAA_00005   | 200 uL   |                                                          | 1 ug/mL       |
|                |          |             |                                        |            | LCPFBA 00007        | 200 uL   | Perfluorobutyric acid                                    | 1 ug/mL       |
|                |          |             |                                        |            |                     | 200 uL   | Perfluorobutanesulfonic acid (PFBS)                      |               |
|                |          |             |                                        |            | LCPFDA_00008        | 200 uL   | Perfluorodecanoic acid                                   | 1 ug/mL       |
|                |          |             |                                        | -          |                     | ηŢ       |                                                          | 1 ug/mL       |
|                |          |             |                                        |            | LCPFDSA_00002       | 200 uL   | Perfluorodecane Sulfonic acid                            | 0.964 ug/mL   |
|                |          |             |                                        |            | LCPFHpA_00008       | 200 uL   | Perfluoroheptanoic acid<br>(PFHpA)                       | 1 ug/mL       |
|                |          |             |                                        |            | LCPFHpSA 00003      | ηΓ       | Perfluoroheptanesulfonic acid                            | 0.952 ug/mL   |
|                |          |             |                                        |            | LCPFHxA_00007       | ηľ       |                                                          |               |
|                |          |             |                                        |            | LCPFHxS-br_00004    | 200 uL   | Perfluorohexanesulfonic acid (PFHxS)                     | 0.91 ug/mL    |
|                |          |             |                                        |            | LCPFNA_00009        | 200 uL   | Perfluorononanoic acid (PFNA)                            | 1 ug/mL       |
|                |          |             |                                        |            |                     |          | fonic                                                    | 0.96 ug/mL    |
|                |          |             |                                        |            | LCPFOA 00009        |          |                                                          | $\vdash$      |
|                |          |             |                                        |            | LCPFOS-br_00004     | 200 uL   | Perfluorooctanesulfonic acid (PFOS)                      | 0.928 ug/mL   |
|                |          |             |                                        |            |                     | 200 uL   | $\overline{}$                                            | 1 ug/mL       |
|                |          |             |                                        |            | LCPFPeA 00007       |          | Perfluoropentanoic acid                                  | $\vdash$      |
|                |          |             |                                        |            | ICPFPes 00003       | - 1      | _                                                        |               |
|                |          |             |                                        |            | ICFFIEDA UUUUS      |          | Perliuoroteriadecanore acra                              |               |
|                |          |             |                                        |            | ICFFILDA OUGUS      | 3 5      |                                                          | 1 ug/mL       |
| LC4:2FTS_00003 | 12/12/21 | WEI         | WELLINGTON, Lot 42FTS12                | 16         | 1                   |          | Sodium                                                   |               |
|                |          |             |                                        |            |                     |          | 1H,1H,2H,2H-perfluorohexane sulfonate (4:2)              |               |
| LC6:2FTS_00003 | 06/25/21 | WEI         | WELLINGTON, Lot 62FTS0                 | rs0616     | (Purchased Reagent) | ent)     | Sodium<br>1H,1H,2H,2H-perfluorooctane<br>sulfonate (6:2) | 47.4 ug/mL    |
| LC8:2FTS_00003 | 08/22/21 | WEI         | WELLINGTON, Lot 82FTS0                 | 180816     | (Purchased Reagent) | ent)     | Sodium<br>1H,1H,2H,2H-perfluorodecane                    | 47.9 ug/mL    |
|                |          |             |                                        |            |                     |          | sulfonate (8:2)                                          |               |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

|                    |          |             |                                          | Reagent        | Parent Reagent      |        |                                                 |               |
|--------------------|----------|-------------|------------------------------------------|----------------|---------------------|--------|-------------------------------------------------|---------------|
|                    | E XX     | Pren        | Dilutant                                 | ביית.          |                     | Volume |                                                 |               |
| Reagent ID         | Date     | Date        | Used                                     | Volume         | Reagent ID          | Added  | Analyte                                         | Concentration |
| LCN-EtFOSAA_00004  | 09/30/21 | MELLI       | WELLINGTON, LOT NETFOSAA091              | 916            | (Purchased Reagent) |        | N-ethyl perfluorooctane                         | 20 ng/mI      |
| .LCN-MeFOSAA_00005 | 10/12/21 | WELLI       | WELLINGTON, Lot NMeFOSAA0916             | 916            | (Purchased Reagent) |        | N-methyl perfluorooctane sulfonamidoacetic acid | 50 ug/mL      |
| LCPFBA 00007       | 05/27/21 | Wellington  | Laboratories, Lot                        | PFBA0516       | (Purchased Reagent) |        | Perfluorobutyric acid                           | 50 ug/mL      |
| LCPFBS_00008       | 03/15/21 | Wellingtor  | Laboratories, Lot                        | LPFBS0316      | (Purchased Reagent) |        | Perfluorobutanesulfonic acid (PEBS)             | 44.2 ug/mL    |
| CPFDA 00008        | 05/29/22 |             | Wellington Laboratories, Lot             | PFDA0517       | (Purchased Reagent) |        | Perfluorodecanoic acid                          | 50 ug/mL      |
| LCPFDOA 00008      | 05/29/22 |             |                                          | Lot PFDoA0517  |                     |        | Perfluorododecanoic acid                        | 50 ug/mL      |
| LCPFDSA 00002      | 05/24/21 | Wellingtor  | 1                                        | Lot LPFDS0516  | (Purchased Reagent) |        | Perfluorodecane Sulfonic acid                   | 48.2 ug/mL    |
| LCPFHpA_00008      | 12/02/21 | Wellingtor  | 1                                        | Lot PFHpA1216  |                     |        | Perfluoroheptanoic acid (PEHbA)                 | 50 ug/mL      |
| CPFHpSA 00003      | 09/01/22 |             | Wellington Laboratories, Lot LPFHpS0817  | PFHpS0817      | (Purchased Reagent) |        | Perfluoroheptanesulfonic acid                   | 47.6 ug/mL    |
| LCPFHXA 00007      | 12/22/20 |             | Wellington Laboratories, Lot PFHxA1215   | FHxA1215       | (Purchased Reagent) |        | Perfluorohexanoic acid                          | 50 ug/mL      |
| LCPFHxS-br_00004   | 07/03/20 | 1           | Wellington Laboratories, Lot brPFHxSK061 | PFHxSK0615     | (Purchased Reagent) |        | Perfluorohexanesulfonic acid (PFHxS)            | 45.5 ug/mL    |
| LCPFNA 00009       | 07/20/22 | Wellingto   | Wellington Laboratories, Lot             | Lot PFNA0717   | (Purchased Reagent) |        | Perfluorononanoic acid (PFNA)                   | 50 ug/mL      |
| LCPFNS_00003       | 09/27/22 | Wellingtor  | Wellington Laboratories, Lot L           | Lot LPFNS0917  | (Purchased Reagent) |        | Perfluorononanesulfonic acid                    | 48 ug/mL      |
| .LCPFOA_00009      | 09/27/22 | Wellingto   |                                          | Lot PFOA0917   | (Purchased Reagent) |        | Perfluorooctanoic acid (PFOA)                   | 50 ug/mL      |
| LCPFOS-br_00004    | 10/14/20 | Wellington  | Wellington Laboratories, Lot br          | t brPFOSK1015  | (Purchased Reagent) |        | Perfluorooctanesulfonic acid (PFOS)             | 46.4 ug/mL    |
| .LCPFOSA 00010     | 09/30/21 | Wellingtor  | Wellington Laboratories, Lot F           | Lot FOSA0916I  | (Purchased Reagent) |        | Perfluorooctane Sulfonamide                     | 50 ug/mL      |
| LCPFPeA 00007      | 05/31/21 | Wellingtor  |                                          | Lot PFPeA0516  | (Purchased Reagent) |        | Perfluoropentanoic acid                         | 50 ug/mL      |
| .LCPFPes_00003     | 01/11/22 | Wellington  |                                          | Lot LPFPeS0117 |                     |        | Perfluoropentanesulfonic acid                   | 46.9 ug/mL    |
| .LCPFTeDA_00006    |          | Wellington  | Lot                                      | Lot PFTeDA1215 |                     | _      | Perfluorotetradecanoic acid                     | 50 ug/mL      |
| .LCPFTrDA_00006    | 02/12/21 | Wellington  | Lot                                      | PFTrDA0216     |                     |        | Perfluorotridecanoic acid                       | 50 ug/mL      |
| LCPFUdA_00007      | 10/18/21 | Wellingtor  | Wellington Laboratories, Lot P           | Lot PFUdA1016  | (Purchased Reagent) |        | Perfluoroundecanoic acid                        | 50 ug/mL      |
| LCPFC LL6 00006    | 11/18/18 | 06/05/18 Me | MeOH/H2O, Lot 090285                     | 200 mL L       | LCMPFC ALL SU 00075 | 10 mL  | d3-NMeFOSAA                                     | 2.5 ng/mL     |
| I<br>I             |          |             |                                          |                |                     | 1      | d5-NEtFOSAA                                     | 2.5 ng/mL     |
|                    |          |             |                                          |                |                     |        | M2-6:2FTS                                       | 2.375 ng/mL   |
|                    |          |             |                                          |                |                     |        | M2-8:2FTS                                       | 2.395 ng/mL   |
|                    |          |             |                                          |                |                     |        | 13C2-PFHxDA                                     | 2.5 ng/mL     |
|                    |          |             |                                          |                |                     |        | 13C2-PFOA                                       | 2.5 ng/mL     |
|                    |          |             |                                          |                |                     |        | 13C2-PFTeDA                                     | 2.5 ng/mL     |
|                    |          |             |                                          |                |                     |        | 13C4-PFHpA                                      | 2.5 ng/mL     |
|                    |          |             |                                          |                |                     |        | 13C5-PFPeA                                      | 2.5 ng/mL     |
|                    |          |             |                                          |                |                     |        | 13C8 FOSA                                       | 2.5 ng/mL     |
|                    |          |             |                                          |                |                     |        | 13C4 PFBA                                       | 2.5 ng/mL     |
|                    |          |             |                                          |                |                     |        | 13C3-PFBS                                       | 2.325 ng/mL   |
|                    |          |             |                                          |                |                     |        | 13C2 PFDA                                       | 2.5 ng/mL     |
|                    |          |             |                                          |                |                     |        | 13C2 PFDoA                                      | 2.5 ng/mL     |
|                    |          |             |                                          |                |                     |        | 13C2 PFHxA                                      | 2.5 ng/mL     |
|                    |          |             |                                          |                |                     | 1      | 1802 PFHxS                                      | 2.365 ng/mL   |
|                    |          |             |                                          |                |                     |        | 13C5 PFNA                                       | 2.5 ng/mL     |
|                    |          |             |                                          |                |                     |        | 13C4 PFOA                                       | 2.5 ng/mL     |
|                    |          |             |                                          |                |                     |        | 13C4 PFOS                                       | 2.39 ng/mL    |
|                    |          |             |                                          |                |                     |        | 1 1 0 0 0 0 0                                   |               |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

| Sepagent D   Sarge   Discost   Total   Discost   Disco   |         |             |         |      |         | Parent Reagent      | 1)         |                                                    |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|---------|------|---------|---------------------|------------|----------------------------------------------------|---------------|
| Part 10   Date   |         | (<br>(<br>( | Ω<br>(λ |      | Keagent |                     | Omit [ 071 |                                                    |               |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | Date        | Date    | Used | Volume  |                     | Added      | Analyte                                            | Concentration |
| ### Software   18.34 # 24 perfluoroctaine   4.79     18.34 # 24 perfluoroctaine   5.30 # 24 perfluor |         |             |         |      |         | LCPFCSP_00148       |            | Sodium<br>1H,1H,2H,2H-perfluorohexane              | 4.67 ng/mL    |
| 11,14,14,14  per l'ordecane   4.79     3,041un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |             |         |      |         |                     |            | Sodium 1H,1H,2H,2H-perfluorooctane sulfonate (6:2) | 4.74 ng/mL    |
| Subtraction of the control of the    |         |             |         |      |         |                     |            | Sodium<br>1H,1H,2H,2H-perfluorodecane              | 4.79 ng/mL    |
| Sulf-One-octative   Sulf   |         |             |         |      |         |                     |            | sulfonate (8:2) N-ethyl perfluorooctane            | 5 ng/mL       |
| Perfluorobtamentation and a continuous perfluorobtament   |         |             |         |      |         |                     |            | N-methyl perfluorooctane<br>sulfonamidoacetic acid | 1m/gu 5       |
| Perfluorocodesanoic acid   4-42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |         |      |         |                     |            |                                                    | 5 ng/mL       |
| SU_00075   12/05/18   06/05/18   Methanol, Lot Baker   200 mL Locd3-NeeFoSAA_00008   200 mL L3C2-PEPFRAN   0.005 mL L3C2-PEP   |         |             |         |      |         |                     |            | fonic                                              |               |
| Perfilocodecane Sulfond acid 4 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |             |         |      |         |                     |            | Perfluorododecanoic acid                           |               |
| PerfluorObeptanol acid   200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |             |         |      |         |                     |            |                                                    |               |
| Perflucrohexanolic acid   4.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |             |         |      |         |                     |            | Perfluoroheptanoic acid<br>(PFHpA)                 | 5 ng/mL       |
| Perfluctobexanosur caid   4.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |             |         |      |         |                     |            |                                                    |               |
| Perfluorobekanesulfonic acid (PRNA)   Perfluorobekanesulfonic acid (PRNA)   Perfluorobeanolic acid (PRNA)   Perfluorobeanolic acid (PRNA)   5.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |             |         |      |         |                     |            | Perfluorohexanoic acid                             |               |
| Perfilosoconanoic acid (PPNA)   5.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |             |         |      |         |                     |            |                                                    |               |
| Perfluorocctanoic acid (PEOA) 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |             |         |      |         |                     |            |                                                    | 5 ng/mL       |
| Perflucrocotanesulfonic acid   4.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |             |         |      |         |                     |            | Perfluorooctanoic acid (PFOA)                      | 5.005 ng/mL   |
| Perflucroctanesulfonic acid   4.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |             |         |      |         |                     |            | Perfluorononanesulfonic acid                       | 4.8 ng/mL     |
| Perfluoroctane Sulfonamide   Suffunce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |             |         |      |         |                     |            | Perfluorooctanesulfonic acid (PFOS)                | 4.64 ng/mL    |
| Perfluoropentanoic acid   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |             |         |      |         |                     |            | Perfluorooctane Sulfonamide                        |               |
| Perfluoropentanesulfonic acid   4.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |             |         |      |         |                     |            | Perfluoropentanoic acid                            | 5 ng/mL       |
| Sulface   Sulf   |         |             |         |      |         |                     |            | Perfluoropentanesulfonic acid                      | 4.69 ng/mL    |
| Su_00075   12/05/18   Methanol, Lot Baker   200 mL   LCd3-NMeFOSAA   00008   200 uL   d3-NMeFOSAA   0.05     LCd5-NEtFOSAA   00008   200 uL   d5-NEtFOSAA   0.05     LCM2-6:FTS   00008   200 uL   M2-6:2FTS   0.0475     LCM2-8:2FTS   00010   200 uL   M2-6:2FTS   0.05     LCM2-B:2FTS   00010   200 uL   M2-6:2FTS   0.05     LCM2-FTADA   00016   200 uL   M2-6:2FTS   0.05     LCM2PFTADA   00014   200 uL   M2-6:2FTADA   0.05     LCM2PFTADA   00014   200 uL   M3C2-PFTADA   0.05     LCM3PFTADA   00014   200 uL   M3C2-PFTADA   0.05     LCM3PFTADA   00015   200 uL   M3C3-PFTADA   0.05     LCM3PFTADA   00015   00015   00015   00015   00015   00015   00015   00015   00015   00015   00015   00015   00015   00015   00015   0   |         |             |         |      |         |                     |            | Perfluorotridecanoic acid                          |               |
| 12/05/18   06/05/18   Methanol, Lot Baker   200 mL   LCd3-NMeFOSAA   000 0 LL   d3-NMeFOSAA   0.05     141039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |             |         |      |         |                     |            | Perfluoroundecanoic acid                           |               |
| 00008         200 uL         d5-NEtFOSAA         0.05           008         200 uL         M2-6:2FTS         0.0475           0010         200 uL         M2-8:2FTS         0.0479           016         200 uL         13C2-PFHXDA         0.05           014         200 uL         13C2-PFTEDA         0.05           14         200 uL         13C4-PFHPA         0.05           15         200 uL         13C5-PFPEA         0.05           9         200 uL         13C8-PFPEA         0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | su_0007 | 12/05/18    |         | Lot  | 200 mL  | LCd3-NMeFOSAA_00008 |            | d3-NMeFOSAA                                        | Ŋ             |
| 008         200 uL         M2-6:2FTS         0.0475           0010         200 uL         M2-8:2FTS         0.0479           016         200 uL         13C2-PFHXDA         0.05           014         200 uL         13C2-PFTGA         0.05           014         200 uL         13C2-PFTGA         0.05           015         200 uL         13C5-PFPGA         0.05           01         000 uL         0.05           02         000 uL         0.05           03         000 uL         0.05           04         0.05         0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |             |         |      |         | LCd5-NEtFOSAA_00008 |            | d5-NEtFOSAA                                        | 0.05 ug/mL    |
| 0010 200 uL M2-8:2FTS 0.0479 016 200 uL 13C2-PFHXDA 0.05 0.05 0.05 0.01 13C2-PFOA 0.05 0.05 0.01 13C2-PFPADA 0.05 0.05 0.01 13C3-PFPADA 0.05 0.05 0.01 13C3-PFPADA 0.05 0.05 0.00 uL 13C3-PFPADA 0.05 0.05 0.00 uL 13C3-PFPADA 0.05 0.05 0.07 0.08 0.09 0.09 0.09 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |             |         |      |         | LCM2-6:FTS_00008    |            | M2-6:2FTS                                          | 0.0475 ug/mL  |
| 116 200 ul 13C2-PFHXDA  3 200 ul 13C2-PFGA  114 200 ul 13C3-PFFGA  15 200 ul 13C4-PFPGA  16 200 ul 13C5-PFPGA  17 200 ul 13C5-PFPGA  18 200 ul 13C8 FOSA  19 200 ul 13C3-PFPGA  10 0055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |             |         |      |         | LCM2-8:2FTS 00010   |            | M2-8:2FTS                                          |               |
| 114 200 ul 13C2-PFPGA 0.05 114 200 ul 13C2-PFPGA 0.05 15 200 ul 13C5-PFPGA 0.05 9 200 ul 13C8 FOSA 0.05 200 ul 13C3 PFBA 0.05 200 ul 13C3 PFBA 0.05 200 ul 13C3 PFBA 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |             |         |      |         | LCM2PFHxDA 00016    |            | 13C2-PFHxDA                                        |               |
| 14     200 uL     13C4-PFHpA     0.05       15     200 uL     13C5-PFPeA     0.05       9     200 uL     13C8 FOSA     0.05       200 uL     13C4 PFBA     0.05       200 uL     13C4 PFBA     0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |             |         |      |         | T.CM2 PFTeDA 00014  |            | 1302-FF0A<br>1302-PFTeDA                           | 0.05 ug/mL    |
| 15 200 uL 13C5-PFPEA 0.05<br>200 uL 13C8 FOSA 0.05<br>200 uL 13C4 PFBA 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |             |         |      |         | LCM4PFHPA 00014     |            | 13C4-PFHpA                                         | 0.05 ug/mL    |
| 9 200 uL 13C8 FOSA 0.05<br>200 uL 13C4 PFBA 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |             |         |      |         | LCM5PFPEA_00015     |            | 13C5-PFPeA                                         | 0.05 ug/mL    |
| 200 ul 13C4 PFBA 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |             |         |      |         | LCM8FOSA 00019      | - 1        | 13C8 FOSA                                          | 0.05 ug/mL    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |         |      |         | LCMPFBA 00015       | 200 uL     | 13C4 PFBA                                          | 1m/bn c0.0    |

Lab Name: TestAmerica Sacramento

SDG No.:

|                     |          |             | + c 0 0 0 0                              | +         | Parent Reagent      |        |                                                          |               |
|---------------------|----------|-------------|------------------------------------------|-----------|---------------------|--------|----------------------------------------------------------|---------------|
|                     | Exp      | Prep        | nt                                       | al        |                     | Volume | r                                                        | -             |
| Reagent 1D          | Date     | Date        | Used                                     |           | αI                  | Added  | - 1                                                      | Concentration |
|                     |          |             |                                          | 김         | LCMPFDA_00020       | 200 uL | - 1                                                      | 0.05 ug/mL    |
|                     |          |             |                                          | IC        | LCMPFDoA_00015      | 200 uL | 13C2 PFDoA                                               | 0.05 ug/mL    |
|                     |          |             |                                          | IC        | LCMPFHxA 00022      | 200 uL | 13C2 PFHxA                                               | 0.05 ug/mL    |
|                     |          |             |                                          | IC        | LCMPFHxS 00015      | 200 uL | 1802 PFHxS                                               | 0.0473 ug/mL  |
|                     |          |             |                                          | LC        | LCMPFNA 00015       | 200 uL | 13C5 PFNA                                                | 0.05 ug/mL    |
|                     |          |             |                                          | LC        | LCMPFOA 00019       | 200 uL | 13C4 PFOA                                                | 0.05 ug/mL    |
|                     |          |             |                                          | LC        | LCMPFOS 00027       | 200 uL | 13C4 PFOS                                                | 0.0478 ug/mL  |
|                     |          |             |                                          | LC        | LCMPFUdA 00017      | 200 uL | 13C2 PFUnA                                               | 0.05 ug/mL    |
| LCd3-NMeFOSAA_00008 | 11/08/22 | WELLI       | WELLINGTON, Lot d3NMeFOSAA1117           |           | (Purchased Reagent) | nt)    | d3-NMeFOSAA                                              | 20 ng/mr      |
| LCd5-NEtFOSAA_00008 | 11/08/22 | WELLI       | WELLINGTON, Lot d5NEtFOSAA1117           |           | (Purchased Reagent) | nt)    | d5-NEtFOSAA                                              | 20 ng/mT      |
| LCM2-6:FTS 00008    | 02/16/23 | WEL         | WELLINGTON, Lot M262FTS0218              |           | (Purchased Reagent) | nt)    | M2-6:2FTS                                                | 47.5 ug/mL    |
| LCM2-8:2FTS 00010   | 01/24/23 | WET         | WELLINGTON, Lot M282FTS0118              |           |                     | nt)    | M2-8:2FTS                                                |               |
| LCM2PFHxDA 00016    | 07/13/22 | Wellington  | Wellington Laboratories, Lot M2PFHxDA071 | 1717      | 1                   | nt)    | 13C2-PFHxDA                                              |               |
| LCM2PFOA 00008      | 02/12/21 | Wellington  | Wellington Laboratories, Lot M2PFOA0216  | 116       |                     | nt)    | 13C2-PFOA                                                |               |
| LCM2PFTeDA 00014    | 11/30/22 | Wellington  | Wellington Laboratories, Lot M2PFTeDA111 | 117       |                     | nt)    | 13C2-PFTeDA                                              |               |
| LCM4PFHPA 00014     | 05/03/22 | Wellington  | Laboratories, Lot M4PFHpA0517            | 517       | (Purchased Reagent) | nt)    | 13C4-PFHpA                                               | 50 ug/mL      |
| LCM5PFPEA 00015     | 07/20/22 | Wellington  | Wellington Laboratories, Lot M5PFPeA071  | 717       | (Purchased Reagent) | nt)    | 13C5-PFPeA                                               | 20 ng/mr      |
| LCM8FOSA 00019      | 10/11/22 | Wellington  | Wellington Laboratories, Lot M8FOSA101   | 17I       | (Purchased Reagent) | nt)    | 13C8 FOSA                                                | 20 ng/mr      |
| LCMPFBA 00015       | 02/16/23 | Wellingto   | Wellington Laboratories, Lot MPFBA0218   | 18        | (Purchased Reagent) | nt)    | 13C4 PFBA                                                | 50 ug/mL      |
| LCMPFBS 00008       | 02/15/23 | Wellingto   | Wellington Laboratories, Lot M3PFBS0218  | 118       | (Purchased Reagent) | nt)    | 13C3-PFBS                                                | 46.5 ug/mL    |
| LCMPFDA 00020       | 02/16/23 | Wellingto   | Wellington Laboratories, Lot MPFDA0218   | 18        | (Purchased Reagent) | nt)    |                                                          | 50 ug/mL      |
| LCMPFDOA 00015      | 02/16/23 | Wellingto   | Wellington Laboratories, Lot MPFDoA02    | 118       |                     | nt)    | 13C2 PFDoA                                               | 50 ug/mL      |
| LCMPFHxA_00022      | 10/27/22 | Wellington  | Laboratories, Lot                        | 117       | (Purchased Reagent) | nt)    | 13C2 PFHxA                                               | 20 ng/mr      |
| LCMPFHxS 00015      | 03/22/23 | Wellingto   | Wellington Laboratories, Lot MPFHxS0318  | 118       | (Purchased Reagent) | nt)    | 1802 PFHxS                                               | 47.3 ug/mL    |
| LCMPFNA 00015       | 12/14/22 | Wellingto   | Wellington Laboratories, Lot MPFNA121    | 17        | (Purchased Reagent) | nt)    | 13C5 PFNA                                                | 50 ug/mL      |
| LCMPFOA_00019       | 05/04/23 | Wellingto   | Wellington Laboratories, Lot MPFOA041    | 18        | (Purchased Reagent) | nt)    | 13C4 PFOA                                                | 20 ng/mr      |
| LCMPFOS_00027       | 02/15/23 | Wellingto   | Wellington Laboratories, Lot MPFOS0218   | 18        |                     | nt)    | 13C4 PFOS                                                | 47.8 ug/mL    |
| LCMPFUdA 00017      | 11/22/21 | Wellingto   | Wellington Laboratories, Lot MPFUdA1116  | 16        | (Purchased Reagent) | nt)    | 13C2 PFUnA                                               | 50 ug/mL      |
| .LCPFCSP 00148      | 11/18/18 | 05/17/18 Me | 05/17/18   Methanol, Lot 090285   10     | 10 mL LC4 | :2FTS 00005         | 100 uL | Sodium                                                   | 0.467 ug/mL   |
| I                   |          |             |                                          |           | I                   |        | 1H,1H,2H,2H-perfluorohexane sulfonate (4:2)              |               |
|                     |          |             |                                          | D<br>I    | LC6:2FTS_00007      | 100 uL | Sodium<br>1H,1H,2H,2H-perfluorooctane<br>sulfonate (6:2) | 0.474 ug/mL   |
|                     |          |             |                                          | IC8       | 8:2FTS_00007        | 100 uL | Sodium                                                   | 0.479 ug/mL   |
|                     |          |             |                                          |           |                     |        | 1H,1H,2H,2H-perfluorodecane sulfonate (8:2)              |               |
|                     |          |             |                                          | J.        | LCbr-NEtFOSAA_00001 | 100 uL | N-ethyl perfluorooctane sulfonamidoacetic acid           | 0.5 ug/mL     |
|                     |          |             |                                          | LC        | LCbr-NMeFOSAA_00001 | 100 uL |                                                          | 0.5 ug/mL     |
|                     |          |             |                                          | IC        | LCPFBA 00008        | 100 uL | 1 173                                                    | 0.5 ug/mL     |
|                     |          |             |                                          | IC        | LCPFBS_00009        | 1      | Perfluorobutanesulfonic acid                             | 0.442 ug/mL   |
|                     |          |             |                                          | L C       | LCPFDA 00008        | 100 uL | (FFBS)<br>Perfluorodecanoic acid                         | 0.5 ug/mL     |
|                     |          |             |                                          |           |                     |        | Perfluorododecanoic acid                                 | 0.5 ug/mL     |
|                     |          |             |                                          | LC        | LCPFDS 00008        |        | Perfluorodecane Sulfonic acid                            | 0.482 ug/mL   |
|                     |          |             |                                          | IC        | LCPFHpA_00011       | 100 uL | Perfluoroheptanoic acid                                  | 0.5 ug/mL     |
|                     | _        | _           |                                          | _         |                     |        | (PrhpA)                                                  | _             |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

|                     |             |              |                                          | Reagent | Parent Reagent      |                 |                                                          |               |
|---------------------|-------------|--------------|------------------------------------------|---------|---------------------|-----------------|----------------------------------------------------------|---------------|
| Reagent ID          | Exp<br>Date | Prep<br>Date | Dilutant<br>Used V                       | Final   | Reagent ID          | Volume<br>Added | Analyte                                                  | Concentration |
|                     |             |              |                                          |         | LCPFHpSA 00003      | 100 uL          | Perfluoroheptanesulfonic acid                            | 0.476 ug/mL   |
|                     |             |              |                                          |         | LCPFHxA_00010       | 100 uL          | Perfluorohexanoic acid                                   | 0.5 ug/mL     |
|                     |             |              |                                          | 1       | LCPFHxS-br_00006    | 100 uL          | Perfluorohexanesulfonic acid (PFHxS)                     | 0.455 ug/mL   |
|                     |             |              |                                          | 1       | LCPFNA 00010        | 100 uL          | Perfluorononanoic acid (PFNA)                            | 0.5 ug/mL     |
|                     |             |              |                                          |         | I                   |                 | acid                                                     |               |
|                     |             |              |                                          |         | LCPFNS_00003        | 100 uL          | Perfluorononanesulfonic acid                             | 0.48 ug/mL    |
|                     |             |              |                                          |         | LCPF0A_00011        | 100 uL          | Perfluorooctanoic acid (PFOA)                            | 0.5005 ug/mL  |
|                     |             |              |                                          |         | LCPFOS-br_00007     | 100 uL          | Perfluorooctanesulfonic acid (PFOS)                      | 0.464 ug/mL   |
|                     |             |              |                                          | 1       | LCPFOSA 00013       | 100 uL          | Perfluorooctane Sulfonamide                              | 0.5 ug/mL     |
|                     |             |              |                                          |         | LCPFFeA_00008       |                 | Perfluoropentanoic acid                                  | 0.5 ug/mL     |
|                     |             |              |                                          |         | LCPFPes 00003       | 100 uL          | Perfluoropentanesulfonic acid                            | 0.469 ug/mL   |
|                     |             |              |                                          |         | LCPFTeDA 00008      | 100 uL          | Perfluorotetradecanoic acid                              | 0.5 ug/mL     |
|                     |             |              |                                          |         | LCPFTrDA 00008      |                 | Perfluorotridecanoic acid                                |               |
|                     | 1           |              |                                          |         |                     | 100 uL          | Perfluoroundecanoic acid                                 | 0.5           |
| LC4:2FTS_00005      | 12/12/21    | WE           | Lot                                      |         | (Purchased Reagent) | ( <del>,</del>  | Sodium<br>1H,1H,2H,2H-perfluorohexane<br>sulfonate (4:2) | 46.7 ug/mL    |
| LC6:2FTS_00007      | 04/20/22    | ME.          | Lot                                      |         | (Purchased Reagent) | t)              | Sodium<br>1H,1H,2H,2H-perfluorooctane<br>sulfonate (6:2) | 47.4 ug/mL    |
| LC8:2FTS_00007      | 12/12/21    | ME           | WELLINGTON, Lot 82FTS1216                |         | (Purchased Reagent) | t)              | Sodium<br>1H,1H,2H,2H-perfluorodecane<br>sulfonate (8:2) | 47.9 ug/mL    |
| LCbr-NEtFOSAA_00001 | 01/17/23    | WELLI        | Lot brNEtF                               | œ.      | (Purchased Reagent) | t)              | N-ethyl perfluorooctane<br>sulfonamidoacetic acid        | 50 ug/mL      |
| LCbr-NMeFOSAA_00001 | 01/17/23    | WELLI        | WELLINGTON, Lot brNMeFOSAA0118           | m.      | (Purchased Reagent) | t)              | N-methyl perfluorooctane<br>sulfonamidoacetic acid       | 50 ug/mL      |
| LCPFBA_00008        | 05/29/22    | Wellingto    | Wellington Laboratories, Lot PFBA051     | .0517   | (Purchased Reagent) | t)              | Perfluorobutyric acid                                    | 50 ug/mL      |
| LCPFBS_00009        | 09/21/22    |              | Wellington Laboratories, Lot LPFBS0917   | 30917   | (Purchased Reagent) | t)              | Perfluorobutanesulfonic acid (PFBS)                      | 44.2 ug/mL    |
| LCPFDA_00008        | 05/29/22    |              |                                          | 0517    | (Purchased Reagent) | t)              | Perfluorodecanoic acid                                   | 50 ug/mL      |
| LCPFDOA 00008       | 05/29/22    |              | Laboratories, Lot                        | 40517   | I                   | t)              | Perfluorododecanoic acid                                 | 20 ng/mT      |
| LCPFDS 00008        | 11/08/22    |              | Laboratories, Lot                        | 51117   | - 1                 | t)              | Perfluorodecane Sulfonic acid                            | - 1           |
| LCPFHpA_00011       | 09/27/22    | Wellington   | on Laboratories, Lot PFHpA0917           | 40917   | (Purchased Reagent) | t)              | Perfluoroheptanoic acid (PFHpA)                          | 20 ng/mr      |
| LCPFHpsA 00003      | 09/01/22    | Wellingtor   | Wellington Laboratories, Lot LPFHpS0817  | S0817   | (Purchased Reagent) | t)              | Perfluoroheptanesulfonic acid                            | 47.6 ug/mL    |
| LCPFHxA_00010       | 09/27/22    | Wellington   | Ι,                                       | 40917   | (Purchased Reagent) | t)              | Perfluorohexanoic acid                                   | 50 ug/mL      |
| LCPFHxS-br_00006    | 01/04/22    | Wellington   | Wellington Laboratories, Lot brPFHxSK011 | SK0117  | (Purchased Reagent) | t)              | Perfluorohexanesulfonic acid (PFHxS)                     | 45.5 ug/mL    |
| LCPFNA_00010        | 07/20/22    | Wellingto    | Wellington Laboratories, Lot PFNA071     | .0717   | (Purchased Reagent) | t)              | acid                                                     |               |
| TOPENS OCCUS        | 00/22/22    | Mo 1 1 : 1   | Wellington Laboratories Lot LDENS001     | 7 1001  | (Posed Respect)     | +               | Pertluorooctanoic acid (PFOA)                            | 0.05 ug/mL    |
| . T.CPFOA 00011     | 09/27/22    | Wellingto    | 101                                      | 0917    |                     | ± (-)           |                                                          |               |
| LCPFOS-br_00007     | 01/12/22    | Wellington   | Lot bi                                   | 3K0117  | 1                   | t)              | Lfonic                                                   |               |
| LCPFOSA 00013       | 09/01/22    | Wellington   | on Laboratories, Lot FOSA0817I           | )817I   | (Purchased Reagent) | t)              | Perfluorooctane Sulfonamide                              | 50 ug/mL      |
| LCPFPeA_00008       | 06/14/22    | Wellingto    | Laboratories,                            | 40617   | (Purchased Reagent) | t)              | Perfluoropentanoic acid                                  | 50 ug/mL      |
|                     |             |              |                                          |         |                     |                 |                                                          |               |

Lab Name: TestAmerica Sacramento

SDG No.:

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  | 4               | Parent Reagent        | ıt                                      |                                                |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------|-----------------------|-----------------------------------------|------------------------------------------------|---------------|
| Readent ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Exp<br>Date | Prep<br>Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dilutant<br>Used                 | Final<br>Volume | Readent ID            | Volume                                  | Analvte                                        | Concentration |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01/11/00    | Mo to the transfer of the tra | +01 00:x0+cx04c1                 | T DEDOC 0117    | 10                    | + + + + + + + + + + + + + + + + + + + + | Dowfluoronantanesulfonia                       | 16 9 11 mT    |
| - TOTE CO 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 01/11/20    | Wellington                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 1                              | TELECOLE.       | (Furchased neage      | ciic)                                   | Territopenicanesarionito acta                  | Tim / Su 0:01 |
| 1. TOPET 1 TOP | 09/30/21    | Wellington<br>Wollington                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Weilington Laboratories, Lot Fri | PFIEDAUSIS      | (Fulcilased Reagelic) | enc)                                    | Porfliorotridograpia agid                      | JM / gu 06    |
| 1. LCFF 11 LA 00008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10/10/21    | METTINGCOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 101                              | PETTAN 1016     | (Furchased head       | ent)                                    | Porfluoroundoganoi a acid                      | JM / gr. 05   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -11         | METTING COI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ا<br>  د                         | 1               | (Furchased Reagent,   | ~ I I                                   | Ferrinolouidecanoic actd                       | 3             |
| LCPFC_LL7_00004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 08/20/18    | 02/22/18 Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 02/22/18   MeOH/H2O, Lot 090285  | 200 mL L        | LCMPFC_ALL_SU_00041   | 10 mL                                   | d3-NMeFOSAA                                    | 2.5 ng/mL     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         | d5-NetFosaa                                    | 2.5 ng/mL     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         | M2-6:2FTS                                      | 2.375 ng/mL   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         | M2-8:2FTS                                      | 2.395 ng/mL   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         | 13C2-PFHxDA                                    | 2.5 ng/mL     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         | 13C2-PFOA                                      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         | 13C2-PFTeDA                                    |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         | 13C4-PFHpA                                     | 2.5 ng/mL     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         | 13C5-PFPeA                                     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         |                                                |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         | 13C4 PFBA                                      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         |                                                | 2.325 ng/mL   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         |                                                | 2.5 ng/mL     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         |                                                |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         | 13C2 PFHxA                                     | 2.5 ng/mL     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         | 1802 PFHxS                                     | 2.365 ng/mL   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         | 13C5 PFNA                                      | 2.5 ng/mL     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         | 13C4 PFOA                                      | 2.5 ng/mL     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         | 13C4 PFOS                                      | 2.39 ng/mL    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         | 13C2 PFUnA                                     | - 1           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 | LCPFCSP_00132         | 2 mL                                    | Sodium                                         | 9.34 ng/mL    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         | 1H,1H,2H,2H-perfluorohexane                    |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         | 7                                              | Tm/ 20 0 0    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         | 14,14,24,2H-perfluorooctane                    | 7.40 IIG/IIIL |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         | Sodium                                         | 9.58 ng/mL    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         | 1H,1H,2H,2H-perfluorodecane sulfonate (8:2)    |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         | N-ethyl perfluorooctane sulfonamidoacetic acid | 10 ng/mL      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         | N-methyl perfluorooctane                       | 10 ng/mL      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         | Perfluorobutyric acid                          | 10 ng/mL      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         | Perfluorobutanesulfonic acid                   | 8.84 ng/mL    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         | (PFBS)                                         |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         | Periluorodecanoic acid                         |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         |                                                | 2 5           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         | Perillorobecane Sullonic acid                  | 10 ng/mL      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         |                                                |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         | Perfluoroheptanesulfonic acid                  | 9.52 ng/mL    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         | Perfluorohexanolc acid                         | 10 ng/mL      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                       |                                         | Perfluorohexanesulfonic acid (PFHxS)           | 9.1 ng/mL     |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  | _               |                       | _                                       | () = = = = = = = = = = = = = = = = = = =       | _             |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

|                      |          |            |                                          |            | 4 + 3 × 0 D            | +        |                               |               |
|----------------------|----------|------------|------------------------------------------|------------|------------------------|----------|-------------------------------|---------------|
|                      |          |            | R                                        | Reagent    | ratenic Neagenic       | 1.       |                               |               |
| Reagent ID           | EXP      | Prep       | Dilutant I                               | Final      | Reagen+                | Volume   | ond<br>otto                   | Concentration |
|                      | במר      | ממ         |                                          | VOT CITIES | - 1                    | ממפת     | ָ<br>טָ                       | CONCENTRACTON |
|                      |          |            |                                          |            |                        |          |                               |               |
|                      |          |            |                                          |            |                        |          | Perfluorononanesulfonic acid  | 9.6 ng/mL     |
|                      |          |            |                                          |            |                        |          | Perfluorooctanoic acid (PFOA) | 10 ng/mL      |
|                      |          |            |                                          |            |                        |          | Perfluorooctanesulfonic acid  | 9.28 ng/mL    |
|                      |          |            |                                          |            |                        |          | (PFOS)                        | 10 ng/mT      |
|                      |          |            |                                          |            |                        |          | Ferrance sarronal             | - 1           |
|                      |          |            |                                          |            |                        |          | Feriluoropentanoic acid       |               |
|                      |          |            |                                          |            |                        |          | Perfluoropentanesulfonic acid |               |
|                      |          |            |                                          |            |                        |          | Perfluorotetradecanoic acid   | 10 ng/mL      |
|                      |          |            |                                          |            |                        |          | Perfluorotridecanoic acid     | 10 ng/mL      |
|                      |          |            |                                          |            |                        |          | Perfluoroundecanoic acid      | 10 ng/mL      |
| .LCMPFC_ALL_SU_00041 | 08/20/18 | 02/20/18   | Methanol, Lot Baker                      | 200 mL     | LCd3-NMeFOSAA_00006    | 200 uL   | d3-NMeFOSAA                   | Tm/bn 50.0    |
|                      |          |            | J                                        |            | T.C.G.S-NETFOSAA 00006 | 200 11T. | O.S.—NET FORBA                | 0.05 11g/mT,  |
|                      |          |            |                                          |            | LCM2-6:FTS 00006       |          | +                             |               |
|                      |          |            |                                          |            |                        |          | _                             |               |
|                      |          |            |                                          |            | LCM2PFHxDA 00013       |          | _                             |               |
|                      |          |            |                                          | •          | LCM2PFOA 00008         | 200 uL   | -                             |               |
|                      |          |            |                                          |            | LCM2PFTeDA 00012       | 200 uL   | 13C2-PFTeDA                   | 0.05 ug/mL    |
|                      |          |            |                                          |            | LCM4PFHPA 00012        | 200 uL   | 13C4-PFHpA                    | 0.05 ug/mL    |
|                      |          |            |                                          |            | LCM5PFPEA 00013        |          | -                             |               |
|                      |          |            |                                          |            | LCM8FOSA 00016         | 200 uL   | -                             |               |
|                      |          |            |                                          | •          | LCMPFBA 00013          |          | 13C4                          |               |
|                      |          |            |                                          |            | LCMPFBS 00006          | 200 uL   | 13C3-PFBS                     | 0.0465 ug/mL  |
|                      |          |            |                                          |            | LCMPFDA 00018          | 200 uL   | 13C2 PFDA                     |               |
|                      |          |            |                                          |            | LCMPFDoA 00013         | 200 uL   | 13C2                          | 0.05 ug/mL    |
|                      |          |            |                                          | •          | LCMPFHxA_00019         | 200 uL   | 13C2 PFHxA                    | 0.05 ug/mL    |
|                      |          |            |                                          | •          |                        | 200 uL   | 1802                          | 0.0473 ug/mL  |
|                      |          |            |                                          |            |                        | 200 uL   | 13C5                          | 0.05 ug/mL    |
|                      |          |            |                                          |            | LCMPFOA_00017          | 200 uL   | 13C4                          | 0.05 ug/mL    |
|                      |          |            |                                          |            | LCMPFOS_00025          | 200 uL   | 13C4                          | 0.0478 ug/mL  |
|                      |          |            |                                          |            |                        | 200 uL   | -                             | 0.05 ug/mL    |
| LCd3-NMeFOSAA 00006  | 05/19/22 | WE.        | WELLINGTON, Lot d3NMeFOSAA0517           | 7          | - 1                    | ent)     | d3-NMeFOSAA                   |               |
| LCd5-NEtFOSAA 00006  |          |            | WELLINGTON, Lot d5NEtFOSAA1117           | 7          | - 1                    | ent)     | d5-NEtFOSAA                   |               |
| LCM2-6:FTS_00006     | 02/11/22 |            | WELLINGTON, Lot M262FTS0217              |            | (Purchased Reagent)    | ent)     | M2-6:2FTS                     | 47.5 ug/mL    |
| LCM2-8:2FTS 00008    | 07/05/22 |            | F .                                      |            | - 1                    | ent)     | M2-8:2FTS                     | - 1           |
| LCM2PFHxDA_00013     | 07/13/22 | $\dashv$   | Wellington Laboratories, Lot M2PFHxDA071 | :DA0717    | (Purchased Reagent     | ent)     | 13C2-PFHxDA                   | 20 ng/mL      |
| LCM2PFOA_00008       | 02/12/21 |            | Loi                                      | A0216      | - 1                    | ent)     | 13C2-PFOA                     |               |
| LCM2PFTeDA_00012     | 11/30/22 | _          | Wellington Laboratories, Lot M2PFTeDA111 | DA1117     | (Purchased Reagent)    | ent)     | 13C2-PFTeDA                   | 50 ug/mL      |
| LCM4PFHPA_00012      | 05/03/22 |            | Wellington Laboratories, Lot M4PFHpA051  | pA0517     | (Purchased Reagent     | ent)     | 13C4-PFHpA                    | 50 ug/mL      |
| LCM5PFPEA_00013      | 07/20/22 |            | Wellington Laboratories, Lot M5PFPeA071  | SA0717     | (Purchased Reagent)    | ent)     | 13C5-PFPeA                    | 20 ng/mL      |
| LCM8FOSA_00016       | 10/11/22 |            | Wellington Laboratories, Lot M8FOSA1017I | A1017I     | (Purchased Reagent)    | ent)     | 13C8 FOSA                     | 20 ng/mL      |
| LCMPFBA_00013        | 04/12/22 |            | Wellington Laboratories, Lot MPFBA041    | 40417      | (Purchased Reagent)    | ent)     | 13C4 PFBA                     | 20 ng/mL      |
| LCMPFBS_00006        | 05/24/22 |            | Wellington Laboratories, Lot M3PFBS081   | 380815     | (Purchased Reagent)    | ent)     |                               | 46.5 ug/mL    |
| LCMPFDA_00018        | 07/13/22 |            | Wellington Laboratories, Lot MPFDA071    | 40717      | (Purchased Reagent)    | ent)     | 13C2 PFDA                     | 50 ug/mL      |
| LCMPFDoA 00013       | 05/23/22 |            | Wellington Laboratories, Lot MPFDoA051   | A0517      |                        | ent)     | 13C2 PFDoA                    | 50 ug/mL      |
| LCMPFHxA_00019       | 10/27/22 | Wellington | jton Laboratories, Lot MPFHxA101         | :A1017     | (Purchased Reagent)    | ent)     | 13C2 PFHxA                    | 20 ng/mF      |
| LCMPFHxS_00013       | 02/11/22 |            | Wellington Laboratories, Lot MPFHxS021   | :S0217     | (Purchased Reagent)    | ent)     | 1802 PFHxS                    | 47.3 ug/mL    |
|                      |          |            |                                          |            |                        |          |                               |               |

Lab Name: TestAmerica Sacramento

SDG No.:

|                |          |          |                                  | д<br>0<br>0    | Parent Reagent                          | <u>+</u> |                                                            |               |
|----------------|----------|----------|----------------------------------|----------------|-----------------------------------------|----------|------------------------------------------------------------|---------------|
|                | EXP      | Prep     | Dilutant                         | Final          | 1                                       | Volume   | (                                                          |               |
| Reagent ID     | Date     | Date     |                                  | Volume         | - 1                                     | Added    | - 1                                                        | Concentration |
| .LCMPFNA_00013 | 09/30/21 | Welling  | Lot                              | MPFNA0916      |                                         | ent)     |                                                            | 20 ng/mT      |
| LCMPFOA_00017  | 10/17/22 | Welling  |                                  | ot MPFOA1017   | (Purchased Reagent)                     | ent)     | 13C4 PFOA                                                  | 20 ng/mF      |
| LCMPFOS 00025  | 10/17/22 | Welling  | Wellington Laboratories, Lot MP  | Lot MPFOS1017  | (Purchased Reagent)                     | ent)     | 13C4 PFOS                                                  | 47.8 ug/mL    |
| LCMPFUdA 00014 | 11/22/21 | Wellingt | Wellington Laboratories, Lot MPF | Lot MPFUdA1116 | 7                                       | ent)     | 13C2 PFUnA                                                 | 20 ng/mT      |
| .LCPFCSP 00132 | 08/20/18 | 02/20/18 | 02/20/18   Methanol, Lot 090285  | 10000 uL       | LC4:2FTS 00003                          | 200 uL   | Sodium                                                     | 0.934 ug/mL   |
| I              |          |          |                                  |                | I                                       |          | $\sim$                                                     |               |
|                |          |          |                                  |                | 0                                       |          | Sullonare (4:2)                                            |               |
|                |          |          |                                  |                | TC0:77.T.Z 00003                        | 70 OOZ   | Sogium<br>1H,1H,2H,2H-perfluorooctane                      | 0.948 ug/mL   |
|                |          |          |                                  |                | _                                       |          | sulfonate (6:2)                                            |               |
|                |          |          |                                  |                | LC8:2FTS_00003                          | 200 uL   | Sodium                                                     | 0.958 ug/mL   |
|                |          |          |                                  |                |                                         |          | <pre>1H,1H,2H,2H-perfluorodecane<br/>sulfonate (8:2)</pre> |               |
|                |          |          |                                  |                | LCN-EtFOSAA_00004                       | 200 uL   | N-ethyl perfluorooctane                                    | 1 ug/mL       |
|                |          |          |                                  | •              | FOOOD KKSOFCM-NOF                       | - 1      | N_moth; nerf];;                                            |               |
|                |          |          |                                  |                | LCN-Merosaa_00003                       | 700 AT   | N-metnyi periluorooctane<br>sulfonamidoacetic acid         | TW/6n T       |
|                |          |          |                                  |                |                                         | 200 uL   | Perfluorobutyric acid                                      | 1 ug/mL       |
|                |          |          |                                  |                | TCPFBS_00008                            | 200 uL   | Perfluorobutanesulfonic acid (PFBS)                        | 0.884 ug/mL   |
|                |          |          |                                  |                | LCPFDA 00008                            | 200 uL   | Perfluorodecanoic acid                                     | 1 ug/mL       |
|                |          |          |                                  |                | LCPFDOA 00008                           | 200 uL   | Perfluorododecanoic acid                                   | 1 ug/mL       |
|                |          |          |                                  | •              | LCPFDSA 00002                           |          | Perfluorodecane Sulfonic acid                              | 0.964 ug/mL   |
|                |          |          |                                  |                | LCPFHpA_00008                           | 200 uL   | Perfluoroheptanoic acid                                    | 1 ug/mL       |
|                |          |          |                                  | •              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |          |                                                            |               |
|                |          |          |                                  |                |                                         |          | Periluoroneptanesulionic acid                              |               |
|                |          |          |                                  | ,              | LCPFHxA_00007                           |          |                                                            | -             |
|                |          |          |                                  |                | LCPFHxS-br_00004                        | 200 uL   | Perfluorohexanesulfonic acid (PFHxS)                       | 0.91 ug/mL    |
|                |          |          |                                  |                | LCPFNA_00009                            | 200 uL   | Perfluorononanoic acid (PFNA)                              | 1 ug/mL       |
|                |          |          |                                  |                | LCPFNS_00003                            | 200 uL   | Perfluorononanesulfonic acid                               | 0.96 ug/mL    |
|                |          |          |                                  |                | LCPFOA 00009                            | - 1      |                                                            | ᆈ             |
|                |          |          |                                  |                | LCPFOS-br_00004                         | 200 uL   | Perfluorooctanesulfonic acid (PFOS)                        | 0.928 ug/mL   |
|                |          |          |                                  |                | LCPFOSA_00010                           | 200 uL   | Perfluorooctane Sulfonamide                                | 1 ug/mL       |
|                |          |          |                                  |                | LCPFPeA_00007                           | 200 uL   | Perfluoropentanoic acid                                    | 1 ug/mL       |
|                |          |          |                                  |                | LCPFPes 00003                           |          | Perfluoropentanesulfonic acid                              | 0.938 ug/mL   |
|                |          |          |                                  |                |                                         |          | Perfluorotetradecanoic acid                                | 1 ug/mL       |
|                |          |          |                                  |                | LCPFTrDA 00006                          | - 1      | Perfluorotridecanoic acid                                  | 1 ug/mL       |
|                |          |          |                                  |                | LCPFUdA_00007                           | 200 uL   | Perfluoroundecanoic acid                                   | 1 ug/mL       |
| LC4:2FTS_00003 | 12/12/21 | _        | WELLINGTON, Lot 42FTS1216        | 9              | (Purchased Reagent)                     | ent)     | Sodium<br>1H,1H,2H,2H-perfluorohexane<br>sulfonate (4:2)   | 46.7 ug/mL    |
| LC6:2FTS_00003 | 06/25/21 | 12       | WELLINGTON, Lot 62FTS0616        | Q              | (Purchased Reagent)                     | ent)     | Sodium                                                     | 47.4 ug/mL    |
|                |          |          |                                  |                |                                         |          | <pre>1H,1H,2H,2H-periluorooctane<br/>sulfonate (6:2)</pre> |               |
| LC8:2FTS_00003 | 08/22/21 |          | WELLINGTON, Lot 82FTS0816        | 9              | (Purchased Reagent)                     | ent)     | Sodium<br>1H,1H,2H,2H-perfluorodecane                      | 47.9 ug/mL    |
|                |          |          |                                  |                |                                         |          | sarronace (0.2)                                            |               |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

|                   |             |              |                                         | 4<br>0<br>0     | Parent Reagent                   |                                                 |               |
|-------------------|-------------|--------------|-----------------------------------------|-----------------|----------------------------------|-------------------------------------------------|---------------|
| Reagent ID        | Exp<br>Date | Prep<br>Date | Dilutant<br>Used                        | Final<br>Volume | Volume<br>Reagent ID Added       | Analyte                                         | Concentration |
| LCN-EtFOSAA_00004 | 09/30/21    | WELI         | WELLINGTON, LOT NETFOSAA091             | 916             | (Purchased Reagent)              | N-ethyl perfluorooctane sulfonamidoacetic acid  | 7m/bn 05      |
| LCN-MeFOSAA_00005 | 10/12/21    | WELI         | WELLINGTON, Lot NMeFOSAA0916            | 916             | (Purchased Reagent)              | N-methyl perfluorooctane sulfonamidoacetic acid | 20 ug/mL      |
| LCPFBA_00007      | 05/27/21    | Wellingt     | Wellington Laboratories, Lot PF         | Lot PFBA0516    | (Purchased Reagent)              | Perfluorobutyric acid                           | 50 ug/mL      |
| LCPFBS_00008      | 03/15/21    | Wellingto    | Wellington Laboratories, Lot LP         | LPFBS0316       | (Purchased Reagent)              | Perfluorobutanesulfonic acid (PFBS)             | 44.2 ug/mL    |
| LCPFDA 00008      | 05/29/22    | Wellingt     | Wellington Laboratories, Lot PF         | Lot PFDA0517    | (Purchased Reagent)              | Perfluorodecanoic acid                          | 50 ug/mL      |
| LCPFDOA 00008     | 05/29/22    | Wellingto    | Wellington Laboratories, Lot PF         | Lot PFDoA0517   | (Purchased Reagent)              | Perfluorododecanoic acid                        | 50 ug/mL      |
| LCPFDSA 00002     | 05/24/21    | Wellingto    |                                         | LPFDS0516       | (Purchased Reagent)              | Perfluorodecane Sulfonic acid                   | 48.2 ug/mL    |
| LCPFHpA_00008     | 12/02/21    | Wellingto    | Wellington Laboratories, Lot PFI        | Lot PFHpA1216   | (Purchased Reagent)              | Perfluoroheptanoic acid (PFHbA)                 | 20 ng/mF      |
| LCPFHpSA_00003    | 09/01/22    | Wellingto    | Wellington Laboratories, Lot LPFHpS0817 | FHpS0817        | (Purchased Reagent)              | Perfluoroheptanesulfonic acid                   | 47.6 ug/mL    |
| LCPFHxA_00007     | 12/22/20    | Wellingtc    |                                         | FHxA1215        | (Purchased Reagent)              | Perfluorohexanoic acid                          |               |
| LCPFHxS-br_00004  | 07/03/20    | Wellington   | Wellington Laboratories, Lot brPF       | brPFHxSK0615    | (Purchased Reagent)              | Perfluorohexanesulfonic acid (PFHxS)            | 45.5 ug/mL    |
| LCPFNA_00009      | 07/20/22    |              | Wellington Laboratories, Lot PF         | Lot PFNA0717    | (Purchased Reagent)              | Perfluorononanoic acid (PFNA)                   | 50 ug/mL      |
| LCPFNS_00003      | 09/27/22    |              | 1                                       | Lot LPFNS0917   | (Purchased Reagent)              | fonic                                           | 48 ug/mL      |
| LCPFOA_00009      | 09/27/22    | Wellingt     | Wellington Laboratories, Lot PF         | Lot PFOA0917    | (Purchased Reagent)              | Perfluorooctanoic acid (PFOA)                   | 50 ug/mL      |
| LCPFOS-br_00004   | 10/14/20    | Wellingtor   | Wellington Laboratories, Lot brP:       | t brPFOSK1015   | (Purchased Reagent)              | Perfluorooctanesulfonic acid (PFOS)             | 46.4 ug/mL    |
| LCPFOSA 00010     | 09/30/21    | Wellingto    | Wellington Laboratories, Lot FO         | Lot FOSA0916I   | (Purchased Reagent)              | Perfluorooctane Sulfonamide                     | 50 ug/mL      |
| LCPFPeA 00007     | 05/31/21    | Wellingto    | Wellington Laboratories, Lot PFPeA0516  | PeA0516         | (Purchased Reagent)              | Perfluoropentanoic acid                         | 50 ug/mL      |
| LCPFPes_00003     | 01/11/22    | Wellingto    | Wellington Laboratories, Lot LPF        | LPFPeS0117      | (Purchased Reagent)              | Perfluoropentanesulfonic acid                   | 46.9 ug/mL    |
| LCPFTeDA_00006    | 12/09/20    | Wellingto.   | Lot                                     | PFTeDA1215      |                                  | Perfluorotetradecanoic acid                     |               |
| LCPFTrDA_00006    | 02/12/21    | Wellingto.   | Lot                                     | PFTrDA0216      | (Purchased Reagent)              | Perfluorotridecanoic acid                       | 20 ng/mF      |
| LCPFUdA_00007     | 10/18/21    | Wellingto    | Wellington Laboratories, Lot PF         | PFUdA1016       | (Purchased Reagent)              | Perfluoroundecanoic acid                        | 50 ug/mL      |
| LCPFC LL7 00005   | 11/18/18    |              | 06/05/18 MeOH/H2O, Lot 090285           | 200 mL L        | 200 mL LCMPFC ALL SU 00075 10 mL | L   d3-NMeFOSAA                                 | 2.5 ng/mL     |
| 1                 |             |              |                                         |                 | I<br>I                           | d5-NEtFOSAA                                     |               |
|                   |             |              |                                         |                 |                                  | M2-6:2FTS                                       | 2.375 ng/mL   |
|                   |             |              |                                         |                 |                                  | M2-8:2FTS                                       | 2.395 ng/mL   |
|                   |             |              |                                         |                 |                                  | 13C2-PFHxDA                                     | 2.5 ng/mL     |
|                   |             |              |                                         |                 |                                  | 13C2-PFOA                                       | 2.5 ng/mL     |
|                   |             |              |                                         |                 |                                  | 13C2-PFTeDA                                     |               |
|                   |             |              |                                         |                 |                                  | 13C4-PFHpA                                      | 2.5 ng/mL     |
|                   |             |              |                                         |                 |                                  | 13C5-PFPeA                                      | 7.5 ng/mL     |
|                   |             |              |                                         |                 |                                  | 13C8 FOSA                                       |               |
|                   |             |              |                                         |                 |                                  | 13C4 FFBA                                       | 2.5           |
|                   |             |              |                                         |                 |                                  | 1 1                                             |               |
|                   |             |              |                                         |                 |                                  |                                                 | 7.3 IIG/IIIL  |
|                   |             |              |                                         |                 |                                  |                                                 | Z.5 ng/mL     |
|                   |             |              |                                         |                 |                                  |                                                 | 2.5 ng/mL     |
|                   |             |              |                                         |                 |                                  |                                                 | 2.365 ng/mL   |
|                   |             |              |                                         |                 |                                  |                                                 |               |
|                   |             |              |                                         |                 |                                  |                                                 | 2.5 ng/mL     |
|                   |             |              |                                         |                 |                                  |                                                 | 2.39 ng/mL    |
| _                 | _           | _            |                                         | _               | _                                | 13CZ FrunA                                      | тш/bu с.2     |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

|                      |          |          |                                                                                             | ţ      | Parent Reagent      |        |                                                           |                        |
|----------------------|----------|----------|---------------------------------------------------------------------------------------------|--------|---------------------|--------|-----------------------------------------------------------|------------------------|
|                      | E X      | Д<br>С   | +<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+ | Final  |                     | Volume |                                                           |                        |
| Reagent ID           | Date     | Date     | Used                                                                                        | Volume | Reagent ID          | Added  | Analyte                                                   | Concentration          |
|                      |          |          |                                                                                             |        | LCPFCSP_00148       | 4 mL   | Sodium 1H, 1H, 2H, 2H-perfluorohexane sulfonate (4:2)     | 9.34 ng/mL             |
|                      |          |          |                                                                                             |        |                     |        | Sodium 1H,1H,2H,2H-perfluorooctane sulfonate (6:2)        | 9.48 ng/mL             |
|                      |          |          |                                                                                             |        |                     |        | Sodium 1H,1H,2H,2H-perfluorodecane sulfonate (8:2)        | 9.58 ng/mL             |
|                      |          |          |                                                                                             |        |                     |        | N-ethyl perfluorooctane<br>sulfonamidoacetic acid         | 10 ng/mL               |
|                      |          |          |                                                                                             |        |                     |        | N-methyl perfluorooctane<br>sulfonamidoacetic acid        | 10 ng/mL               |
|                      |          |          |                                                                                             |        |                     |        | Perfluorobutyric acid                                     | 10 ng/mL               |
|                      |          |          |                                                                                             |        |                     |        | Perfluorobutanesulfonic acid (PFBS)                       |                        |
|                      |          |          |                                                                                             |        |                     |        | Perfluorodecanoic acid                                    |                        |
|                      |          |          |                                                                                             |        |                     |        | Perfluorododecanoic acid<br>Perfluorodecane Sulfonic acid | 10 ng/mL<br>9.64 ng/mL |
|                      |          |          |                                                                                             |        |                     |        |                                                           |                        |
|                      |          |          |                                                                                             |        |                     |        |                                                           |                        |
|                      |          |          |                                                                                             |        |                     |        | Feriluoroneptanesulionic acid                             |                        |
|                      |          |          |                                                                                             |        |                     |        |                                                           |                        |
|                      |          |          |                                                                                             |        |                     |        | Perfluorohexanesultonic acid (PFHxS)                      | 9.1 ng/mL              |
|                      |          |          |                                                                                             |        |                     |        | acid                                                      |                        |
|                      |          |          |                                                                                             |        |                     |        |                                                           | 10.01 ng/mL            |
|                      |          |          |                                                                                             |        |                     |        |                                                           | 9.6                    |
|                      |          |          |                                                                                             |        |                     |        | Perfluorooctanesulfonic acid                              | 9.28 ng/mL             |
|                      |          |          |                                                                                             |        |                     |        | (FFUS) Perfluorooctane Sulfonamide                        | 10 ng/mL               |
|                      |          |          |                                                                                             |        |                     |        | Perfluoropentanoic acid                                   |                        |
|                      |          |          |                                                                                             |        |                     |        |                                                           | 9.38 ng/mL             |
|                      |          |          |                                                                                             |        |                     |        | Perfluorotetradecanoic acid                               | 10 ng/mL               |
|                      |          |          |                                                                                             |        |                     |        | Perfluoroundecanoic acid                                  | 10 ng/mL               |
| .LCMPFC_ALL_SU_00075 | 12/05/18 | 06/05/18 | Methanol, Lot Baker<br>141039                                                               | 200 mL | LCd3-NMeFOSAA_00008 | 200 uL | d3-NMeFOSAA                                               |                        |
|                      |          |          |                                                                                             |        | LCd5-NEtFOSAA_00008 | 200 uL | d5-NEtFOSAA                                               | 0.05 ug/mL             |
|                      |          |          |                                                                                             |        | LCM2-6:FTS_00008    | 200 uL | M2-6:2FTS                                                 |                        |
|                      |          |          |                                                                                             |        |                     |        | M2-8:2FTS                                                 | 0.0479 ug/mL           |
|                      |          |          |                                                                                             | •      | TOMS PERKUA UUUIB   | 200 ur | 13C2-FFHXDA                                               | 0.05 ug/mL             |
|                      |          |          |                                                                                             |        | TCM2DFF0DA 00014    |        | 1302 IFOR                                                 |                        |
|                      |          |          |                                                                                             | •      | LCM4PFHPA 00014     |        | 13C4-PFHpA                                                | 0.05 ug/mL             |
|                      |          |          |                                                                                             |        | LCM5PFPEA_00015     | 200 uL | 13C5-PFPeA                                                |                        |
|                      |          |          |                                                                                             |        | LCM8FOSA 00019      | 200 uL | 13C8 FOSA                                                 | 0.05 ug/mL             |
|                      |          |          |                                                                                             |        | LCMPFBA 00015       |        | 13C4 PFBA                                                 |                        |
| _                    | _        |          | _                                                                                           | _      | LCMPFBS_00008       | 7n nnz | LSCSIFFES                                                 | U.0465 ug/mL           |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

|                     |             |              |                                          | + 3 ( ) 5 ( ) D            |                                                             |                        |
|---------------------|-------------|--------------|------------------------------------------|----------------------------|-------------------------------------------------------------|------------------------|
|                     |             |              | Reagent                                  | rarent keagent             |                                                             |                        |
| Reagent ID          | Exp<br>Date | Prep<br>Date | Dilutant Final Used Volume               | Nolume<br>Reagent ID Added | e<br>l Analyte                                              | Concentration          |
|                     |             |              |                                          | LCPFHpSA 00003 100 uL      | ul Perfluoroheptanesulfonic acid                            | 0.476 ug/mL            |
|                     |             |              |                                          | LCPFHxA 00010 100 uL       | -                                                           | 0.5 ug/mL              |
|                     |             |              |                                          | LCPFHxS-br_00006 100       | ul Perfluorohexanesulfonic acid (PFHxS)                     | 0.455 ug/mL            |
|                     |             |              |                                          | LCPFNA 00010 100 1         | ul Perfluorononanoic acid (PFNA)                            | 0.5 ug/mL              |
|                     |             |              |                                          |                            | Perfluorooctanoic acid (PFOA)                               | 0.5005 ug/mL           |
|                     |             |              |                                          | 00003 100                  | 171                                                         | 0.48 ug/mL             |
|                     |             |              |                                          | 100                        | -+                                                          |                        |
|                     |             |              |                                          | LCPFOS-br_00007 100 uL     | uL Perfluorooctanesulfonic acid<br> (PFOS)                  | 0.464 ug/mL            |
|                     |             |              |                                          | LCPFOSA_00013 100          | uL Perfluorooctane Sulfonamide                              | 0.5 ug/mL              |
|                     |             |              |                                          | 00008 100                  | -                                                           |                        |
|                     |             |              |                                          | 100                        | $\overline{}$                                               |                        |
|                     |             |              |                                          | 100                        | $\rightarrow$                                               |                        |
|                     |             |              |                                          | 100                        | Perfluorotridecanoic                                        |                        |
|                     | 10/01/01    | 120          | 10 LOHUTC /                              | 00                         | ul Periluoroundecanoic acid                                 |                        |
|                     | 12/17/21    | 3            | LOT 42F                                  |                            | Sodium<br>1H,1H,2H,2H-perfluorohexane<br>sulfonate (4:2)    | 46./ ug/mL             |
| LC6:2FTS_00007      | 04/20/22    | W            | Lot 62FTS041                             |                            | Sodium<br>1H,1H,2H,2H-perfluorooctane<br>sulfonate (6:2)    | 47.4 ug/mL             |
| LC8:2FTS_00007      | 12/12/21    | M            | WELLINGTON, Lot 82FTS1216                | (Purchased Reagent)        | Sodium 1H,1H,2H,2H-perfluorodecane sulfonate (8:2)          | 47.9 ug/mL             |
| LCbr-NEtFOSAA_00001 | 01/17/23    | WELI         | Lot brNEt                                | l                          | N-ethyl perfluorooctane sulfonamidoacetic acid              | 20 ng/mL               |
| LCbr-NMeFOSAA_00001 | 01/17/23    |              | WELLINGTON, Lot brNMeFOSAA0118           | (Purchased Reagent)        | N-methyl perfluorooctane sulfonamidoacetic acid             | 1m/bn 05               |
| LCPFBA_00008        | 05/29/22    |              | Lot                                      |                            | Perfluorobutyric acid                                       | 50 ug/mL               |
| LCPFBS_00009        | 09/21/22    | 1            | Lot                                      | (Purchased Reagent)        | Perfluorobutanesulfonic acid (PFBS)                         | 44.2 ug/mL             |
| LCPFDA_00008        | 05/29/22    | Welling      | Wellington Laboratories, Lot PFDA0517    | (Purchased Reagent)        | Perfluorodecanoic acid                                      | 50 ug/mL               |
| LCPFDoA_00008       | 05/29/22    | Wellingt     | Laboratories, Lot                        |                            | Perfluorododecanoic acid                                    | 50 ug/mL               |
| LCPFDS 00008        | 11/08/22    | Wellington   | Lot                                      |                            | Perfluorodecane Sulfonic acid                               |                        |
| LCPFHpA_00011       | 09/27/22    | Wellingt     | Wellington Laboratories, Lot PFHpA0917   | (Purchased Reagent)        | Perfluoroheptanoic acid<br>(PFHpA)                          | 20 ng/mr               |
| LCPFHpSA_00003      | 09/01/22    | Wellingt     | Н                                        | (Purchased Reagent)        | Perfluoroheptanesulfonic acid                               | 47.6 ug/mL             |
| LCPFHxA_00010       | 09/27/22    | Wellingt     | 70                                       | (Purchased Reagent)        | Perfluorohexanoic acid                                      | 50 ug/mL               |
| LCPFHxS-br_00006    | 01/04/22    | Wellingto    | ot br                                    | (Purchased Reagent)        | Perfluorohexanesulfonic acid<br>  (PFHxS)                   | 45.5 ug/mL             |
| LCPFNA_00010        | 07/20/22    | Welling      | Wellington Laboratories, Lot PFNA0717    | (Purchased Reagent)        | Perfluorononanoic acid (PFNA) Perfluorooctanoic acid (PFOA) | 50 ug/mL<br>0.05 ug/mL |
| LCPFNS 00003        | 09/27/22    | Wellingt     | Wellington Laboratories, Lot LPFNS0917   | (Purchased Reagent)        | fonic                                                       |                        |
| LCPFOA_00011        | 09/27/22    | Welling      | Wellington Laboratories, Lot PFOA0917    | (Purchased Reagent)        | Perfluorooctanoic acid (PFOA)                               | 50 ug/mL               |
| LCPFOS-br_00007     | 01/12/22    | Wellingto    | Wellington Laboratories, Lot brPFOSK0117 | (Purchased Reagent)        | Perfluorooctanesulfonic acid (PFOS)                         | 46.4 ug/mL             |
| LCPFOSA 00013       | 09/01/22    | Wellingt     | Lot                                      | (Purchased Reagent)        | Perfluorooctane Sulfonamide                                 | 50 ug/mL               |
| LCPFPeA_00008       | 06/14/22    | Wellingt     | Wellington Laboratories, Lot PFPeA0617   | (Purchased Reagent)        | Perfluoropentanoic acid                                     | 20 ng/mL               |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

SDG No.:

|                      |              |            |                                 |               | Parent Reagent      |        |                                      |               |
|----------------------|--------------|------------|---------------------------------|---------------|---------------------|--------|--------------------------------------|---------------|
|                      | Ω<br>×<br>[± | Pren       | +מביון וָרַ                     | Reagent Final |                     | Volume |                                      |               |
| Reagent ID           | Date         | Date       | Used                            | Volume        | Reagent ID          | Added  | Analyte                              | Concentration |
| LCPFPes 00003        | 01/11/22     | Wellington | Laboratories, Lot               | LPFPeS0117    | (Purchased Reagent  | nt)    | Perfluoropentanesulfonic acid        | 46.9 ug/mL    |
| LCPFTeDA 00008       | 09/30/21     | Wellington | Laboratories, Lot               | PFTeDA0916    | (Purchased Reagent) | nt)    | Perfluorotetradecanoic acid          |               |
| LCPFTrDA 00008       | 05/02/22     | Wellingt   | Wellington Laboratories, Lot PF | PFTrDA0517    | (Purchased Reagent) | nt)    | Perfluorotridecanoic acid            | 50 ug/mL      |
| LCPFUdA_00008        | 10/18/21     | Wellingt   |                                 | PFUdA1016     |                     | nt)    | Perfluoroundecanoic acid             | 50 ug/mL      |
| LCPFCIC FULL 00011   | 07/02/18     | 02/22/18   | 02/22/18 MeOH/H2O, Lot 09285    | $\vdash$      | LCMPFC ALL SU 00041 | 10 mL  | 13C2-PFOA                            | 2.5 ng/mL     |
| .LCMPFC_ALL_SU_00041 | 08/20/18     | 02/20/18   | Methanol, Lot Baker<br>141039   | 200 mL L      | LCM2PFOA_00008      | 200 uL | 13C2-PFOA                            | 0.05 ug/mL    |
| LCM2PFOA 00008       | 02/12/21     | Wellingt   | on Laboratories, Lot M2         | M2PFOA0216    | (Purchased Reagent) | nt)    | 13C2-PFOA                            | 50 ug/mL      |
| LCPFCIC FULL 00011   | 07/02/18     | 02/22/18   | 02/22/18 MeOH/H20, Lot 09285    | H             | LCMPFC ALL SU 00041 | 10 mL  | -                                    |               |
| l<br>I               |              |            |                                 |               | <br> <br> <br>      |        | d5-NEtFOSAA                          | 2.5 ng/mL     |
|                      |              |            |                                 |               |                     |        | M2-6:2FTS                            | 2.375 ng/mL   |
|                      |              |            |                                 |               |                     |        | M2-8:2FTS                            | 2.395 ng/mL   |
|                      |              |            |                                 |               |                     |        | 13C2-PFHxDA                          | 2.5 ng/mL     |
|                      |              |            |                                 |               |                     |        | 13C2-PFTeDA                          | 2.5 ng/mL     |
|                      |              |            |                                 |               |                     |        | 13C4-PFHpA                           |               |
|                      |              |            |                                 |               |                     |        | 13C5-PFPeA                           | ا ي           |
|                      |              |            |                                 |               |                     |        | 13C8 FOSA                            |               |
|                      |              |            |                                 |               |                     |        | 13C4 PFBA                            |               |
|                      |              |            |                                 |               |                     |        |                                      | 2.325 ng/mL   |
|                      |              |            |                                 |               |                     |        |                                      | 2.5 ng/mL     |
|                      |              |            |                                 |               |                     |        |                                      |               |
|                      |              |            |                                 |               |                     |        |                                      | 2.5           |
|                      |              |            |                                 |               |                     |        |                                      | 2.365 ng/mL   |
|                      |              |            |                                 |               |                     |        |                                      | 2.5 ng/mL     |
|                      |              |            |                                 |               |                     |        | 13C4 PFOA                            | 2.5 ng/mL     |
|                      |              |            |                                 |               |                     |        | 13C4 PFOS                            | 2.39 ng/mL    |
|                      |              |            |                                 |               |                     |        | 13C2 PFUnA                           | - 1           |
|                      |              |            |                                 | H             | LCPFAC-24PAR_00001  | 250 uL | Perfluorobutanesulfonic acid (PFBS)  | 2.2125 ng/mL  |
|                      |              |            |                                 |               |                     |        | Perfluoroheptanoic acid              | 2.5 ng/mL     |
|                      |              |            |                                 |               |                     |        |                                      |               |
|                      |              |            |                                 |               |                     |        | Perfluorohexanesultonic acid (PFHxS) | 7.28 ng/mL    |
|                      |              |            |                                 |               |                     |        | Perfluorononanoic acid (PFNA)        | 2.5 ng/mL     |
|                      |              |            |                                 |               |                     |        | Perfluorooctanesulfonic acid (PFOS)  | 2.31375 ng/mL |
|                      |              |            |                                 |               |                     |        | Perfluorooctanoic acid (PFOA)        | 2.5 ng/mL     |
| .LCMPFC_ALL_SU_00041 | 08/20/18     | 02/20/18   | Methanol, Lot Baker             | 200 mL L      | LCd3-NMeFOSAA_00006 | 200 uL |                                      | L)            |
|                      |              |            | )<br>)<br>1<br>1<br>1           | À             | LCd5-NEtFOSAA 00006 | 200 uL | d5-NEtFOSAA                          | 0.05 ug/mL    |
|                      |              |            |                                 | Ā             | LCM2-6:FTS_00006    | 200 uL | _                                    |               |
|                      |              |            |                                 | À             | LCM2-8:2FTS 00008   | 200 uL | _                                    | 0.0479 ug/mL  |
|                      |              |            |                                 | Ā             | LCM2PFHxDA 00013    |        | $\rightarrow$                        |               |
|                      |              |            |                                 | À             |                     |        | _                                    |               |
|                      |              |            |                                 | i i           | LCM4PFHPA_00012     |        | _                                    |               |
|                      |              |            |                                 | À             | LCMSPFPEA 00013     |        | 1305-                                |               |
|                      |              |            |                                 | 7 1           | LCM8FOSA UUUL 6     |        | _                                    | Jm/sn c0.0    |
|                      | _            | _          |                                 | <u> </u>      | LCMFFBA_00013       | Z00 UL | L3C4                                 | Tw/bn cn·n    |

#### Page 225 of 3863

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

SDG No.:

|                     |          |            | Topoga                                                  | + 5          | Parent Reagent                        |        |                                                          |                     |
|---------------------|----------|------------|---------------------------------------------------------|--------------|---------------------------------------|--------|----------------------------------------------------------|---------------------|
|                     | дхЭ      | Prep       | Dilutant Final                                          |              |                                       | Volume |                                                          |                     |
| Reagent ID          | Date     | Date       | Used Volume                                             |              | Reagent ID                            | Added  | Analyte                                                  | Concentration       |
|                     |          |            |                                                         | LCMPFBS      |                                       | 200 uL | 13C3-PFBS                                                |                     |
|                     |          |            |                                                         | LCMPFDA      | NA_00018                              | 200 uL | 13C2 PFDA                                                | 0.05 ug/mL          |
|                     |          |            |                                                         | LCMPFI       | LCMPFDOA_00013                        | 200 uL |                                                          | 0.05 ug/mL          |
|                     |          |            |                                                         | LCMPFI       | 0001                                  |        |                                                          | 0.05 ug/mL          |
|                     |          |            |                                                         | LCMPFHxS     | 1xS_00013                             | 200 uL |                                                          |                     |
|                     |          |            |                                                         | LCMPFNA      |                                       | - 1    | - 1                                                      |                     |
|                     |          |            |                                                         | LCMPFOA      | 00017                                 |        | - 1                                                      | - 1                 |
|                     |          |            |                                                         | LCMPFC       | LCMPFOS 00025                         |        |                                                          |                     |
|                     | 1        |            |                                                         | LCMPFU       |                                       | 200 uL | 13C2 PFUnA                                               |                     |
| LCd3-NMeFOSAA_00006 | 05/19/22 | WEI        | WELLINGTON, Lot d3NMeFOSAA0517                          |              | - 1                                   | it)    | d3-NMeFOSAA                                              |                     |
| LCd5-NEtFOSAA 00006 | 11/08/22 | WEI        | WELLINGTON, LOT ASNETFOSAAIII/                          |              | - 1                                   | (±)    | ds-Netfosaa                                              | - 1                 |
| LCMZ-6:FTS_00006    | 02/I1/22 | M          | WELLINGTON, LOT M262FTS021/                             |              | - 1                                   | (±)    | M2-6:2F'I'S                                              |                     |
| TOWN THIS 00008     | 0//05/22 | W + ~ ~    | WELLINGTON, LOT MZ8ZFTSU/1/ Wellington; Cot MZ8ZFTSU/1/ | 177          | (Furchased Reagent)                   | IT)    | MZ-8:ZFTS                                                | 4/.9 ug/mL          |
| TCM2 PETENA 00013   | 11/30/22 | 16UTTTEM   | Wellington Laboratories, Lot M2FFHXDAU/                 | 117          | (Purchased Readent)                   | (-)    | 13C2-FF # # DA                                           | 30 ug/mT.           |
| TCM4PFHPA 00012     | 05/03/22 | Wellingt   | Wellington Laboratories, Tot M4PFHpA051                 | 17.          | - 1                                   | (-)    | 13C4-PFHDA                                               |                     |
| . LCMSPFPEA 00013   | 07/20/22 | Wellingt   | Wellington Laboratories, Lot M5PFPeA071                 | 717          |                                       | (t)    | 13C5-PFPeA                                               |                     |
| LCM8FOSA 00016      | 10/11/22 | Wellingt   | Wellington Laboratories, Lot M8FOSA101                  | 17I          |                                       | ıt)    | 13C8 FOSA                                                |                     |
| LCMPFBA 00013       | 04/12/22 | Welling    | Wellington Laboratories, Lot MPFBA041                   | 17           | (Purchased Reagent)                   | ıt)    | 13C4 PFBA                                                | 50 ug/mL            |
| LCMPFBS_00006       | 05/24/22 | Welling    | Wellington Laboratories, Lot M3PFBS081                  | 15           | ı                                     | ıt)    | 13C3-PFBS                                                | 46.5 ug/mL          |
| LCMPFDA_00018       | 07/13/22 | Welling    | Wellington Laboratories, Lot MPFDA071                   | 17           | (Purchased Reagent)                   | ıt)    | 13C2 PFDA                                                | 50 ug/mL            |
| LCMPFDOA_00013      | 05/23/22 | Melling    | Laboratories, Lot                                       | 17           |                                       | ıt)    | 13C2 PFDoA                                               | 50 ug/mL            |
| LCMPFHxA_00019      | 10/27/22 | Wellington | Laboratories, Lot                                       | 17           |                                       | ıt)    | 13C2 PFHxA                                               |                     |
| LCMPFHxS_00013      | 02/17/22 | Welling    | Wellington Laboratories, Lot MPFHxS021                  | 17           | (Purchased Reagent)                   | ıt)    | 1802 PFHxS                                               | 47.3 ug/mL          |
| LCMPFNA_00013       | 09/30/21 | Welling    |                                                         | 16           | (Purchased Reagent)                   | ıt)    | 13C5 PFNA                                                | 20 ng/mF            |
| LCMPFOA_00017       | 10/17/22 | Welling    |                                                         | 1.7          |                                       | ıt)    |                                                          | 20 ng/mF            |
| LCMPFOS 00025       | 10/17/22 | Welling    | - 1                                                     | 17           |                                       | ıt)    |                                                          | - 1                 |
| LCMPFUdA_00014      | 11/22/21 | Welling    | Wellington Laboratories, Lot MPFUdA1116                 | 16           | (Purchased Reagent)                   | (t)    | 13C2 PFUnA                                               | 50 ug/mL            |
| .LCPFAC-24PAR_00001 | 09/15/22 | Me         | Wellington Laboratories, Lot<br>PFAC24PAR0917           |              | (Purchased Reagent)                   | (t)    | Perfluorobutanesulfonic acid<br>(PFBS)                   | 1.77 ug/mL          |
|                     |          |            |                                                         |              |                                       |        | Perfluoroheptanoic acid                                  | 2 ug/mL             |
|                     |          |            |                                                         |              |                                       |        | Derflucrobexanesulfonic acid                             | 1 824 11cf/mT.      |
|                     |          |            |                                                         |              |                                       |        |                                                          | .                   |
|                     |          |            |                                                         |              |                                       |        | Perfluorononanoic acid (PFNA)                            | N                   |
|                     |          |            |                                                         |              |                                       |        | Perfluorooctanesulfonic acid                             | 1.851 ug/mL         |
|                     |          |            |                                                         |              |                                       |        | Perfluorooctanoic acid (PFOA)                            | 2 ug/mL             |
| LCPFCSP_00138       | 09/20/18 |            | 03/20/18  Methanol, Lot 090285   250                    | 250 mL LC11C | LC11CIPF30Uds_00001                   | 100 uL | 11-Chloroeicosafluoro-3-oxaund                           |                     |
|                     |          |            |                                                         |              | C C C C C C C C C C C C C C C C C C C | T::    | ecalle_1_sullollare                                      | Tw/ 2: 030100       |
|                     |          |            |                                                         | LC4: 71      | LC4:2712_00003                        | TD 00T | 2H, 21                                                   | TIII / Bn ogo TO: O |
|                     |          |            |                                                         | 9            |                                       |        | sulfonate (4:2)                                          |                     |
|                     |          |            |                                                         | LC6:21       | LC6:2FTS_00003                        | 100 uL | Sodium<br>1H,1H,2H,2H-perfluorooctane<br>sulfonate (6:2) | 0.01896 ug/mL       |
|                     |          |            |                                                         | LC8:21       | LC8:2FTS_00003                        | 100 uL | Sodium                                                   | 0.01916 ug/mL       |
|                     |          |            |                                                         |              |                                       |        | <pre>1H,1H,2H,2H-periluorodecane sulfonate (8:2)</pre>   |                     |
| -                   | -        |            |                                                         | -            |                                       |        |                                                          |                     |

#### Page 226 of 3863

Lab Name: TestAmerica Sacramento Job No.: 320-39023-1

|                      |             |              |                                      | 1                          | Parent Reagent      | ıt     |                                                               |                                |
|----------------------|-------------|--------------|--------------------------------------|----------------------------|---------------------|--------|---------------------------------------------------------------|--------------------------------|
| Reagent ID           | Exp<br>Date | Prep<br>Date | Dilutant<br>Used                     | reagent<br>Final<br>Volume | Reagent ID          | Volume | Analyte                                                       | Concentration                  |
|                      |             |              |                                      |                            | LC9CI-PF3ONS_00001  | 100 uL | 9-Chlorohexadecafluoro-3-oxano                                | 0.01864 ug/mL                  |
|                      |             |              |                                      |                            | LCDONA 00001        | 100 uL | Adona                                                         | 0.02 ug/mL                     |
|                      |             |              |                                      |                            | LCHFPO-DA_00001     | 1      | Perfluoro(2-propoxypropanoic)                                 | 1                              |
|                      |             |              |                                      |                            | LCN-EtFOSA-M_00005  | 100 uL | N-ethylperfluoro-1-octanesulfo namide                         | 0.02 ug/mL                     |
|                      |             |              |                                      |                            | LCN-EtFOSAA_00004   | 100 uL | N-ethyl perfluorooctane<br>sulfonamidoacetic acid             | 0.02 ug/mL                     |
|                      |             |              |                                      |                            | LCN-MeFOSA-M_00004  | 100 uL |                                                               |                                |
|                      |             |              |                                      |                            | LCN-MeFOSAA_00004   | 100 uL | N-methyl perfluorooctane<br>sulfonamidoacetic acid            | 0.02 ug/mL                     |
|                      |             |              |                                      |                            | LCPFBA_00007        | 100 uL | Perfluorobutyric acid                                         |                                |
|                      |             |              |                                      |                            | LCPFBS_00008        | 100 uL | Perfluorobutane Sulfonate Perfluorobutanesulfonic acid (PFRS) | 0.01768 ug/mL<br>0.01768 ug/mL |
|                      |             |              |                                      |                            | LCPFDA 00007        | 100 uL | Perfluorodecanoic acid                                        | 0.02 ug/mL                     |
|                      |             |              |                                      |                            | LCPFDoA 00007       | 100 uL |                                                               |                                |
|                      |             |              |                                      |                            | LCPFDSA_00002       | 100 uL | Perfluorodecane Sulfonic acid                                 | 0.01928 ug/mL                  |
|                      |             |              |                                      |                            | LCPFHpA_00008       | 100 uL | Perfluoroheptanoic acid (PFHpA)                               | 0.02 ug/mL                     |
|                      |             |              |                                      |                            | LCPFHpSA_00003      | 100 uL | Perfluoroheptanesulfonic acid                                 | 0.01904 ug/mL                  |
|                      |             |              |                                      |                            | LCPFHxA_00007       | 100 uL | Perfluorohexanoic acid                                        | 0.02 ug/mL                     |
|                      |             |              |                                      |                            | LCPFHxDA 00008      |        | Perfluorohexadecanoic acid                                    | 0.02 ug/mL                     |
|                      |             |              |                                      |                            | LCPFHxS-br_00004    | 100 uL |                                                               | - 1                            |
|                      |             |              |                                      |                            |                     |        | Perfluorohexanesulfonic acid (PFHxS)                          | 0.0182 ug/mL                   |
|                      |             |              |                                      |                            | LCPFNA 00009        | 100 uL | Perfluorononanoic acid (PFNA)                                 | 0.02 ug/mL                     |
|                      |             |              |                                      |                            |                     | 100 uL | Perfluorononanesulfonic acid                                  | 0.0192 ug/mL                   |
|                      |             |              |                                      |                            | LCPFOA 00008        | 100 uL | Perfluorooctanoic acid (PFOA)                                 | 0.02 ug/mL                     |
|                      |             |              |                                      |                            | LCPFODA 00008       | 100 uL | Perfluorooctadecanoic acid                                    | 0.02 ug/mL                     |
|                      |             |              |                                      |                            | LCPFOS-br_00004     | 100 uL | Perfluorooctanesulfonic acid (PFOS)                           | 0.01856 ug/mL                  |
|                      |             |              |                                      |                            | LCPFOSA 00010       | 100 uL | Perfluorooctane Sulfonamide                                   | 0.02 ug/mL                     |
|                      |             |              |                                      |                            | LCPFPeA_00007       | 100 uL | Perfluoropentanoic acid                                       | 0.02 ug/mL                     |
|                      |             |              |                                      |                            | LCPFPes_00003       | 100 uL | Perfluoropentanesulfonic acid                                 | 0.01876 ug/mL                  |
|                      |             |              |                                      |                            | LCPFTeDA_00007      | 100 uL | Perfluorotetradecanoic acid                                   | 0.02 ug/mL                     |
|                      |             |              |                                      |                            | LCPFTrDA_00007      | 100 uL | Perfluorotridecanoic acid                                     | 0.02 ug/mL                     |
|                      |             |              |                                      |                            |                     | 100 uL | Perfluoroundecanoic acid                                      | 0.02 ug/mL                     |
| .LC11CIPF3OUdS_00001 | 09/30/21    | Well         | Wellington Labs, Lot 11CIPF3OUdS0916 | 80916                      | (Purchased Reagent) | ent)   | 11-Chloroeicosafluoro-3-oxaund                                | 47.1 ug/mL                     |
| .LC4:2FTS 00003      | 12/12/21    |              | WELLINGTON, Lot 42FTS1216            |                            | (Purchased Reagent) | ent)   | Sodium                                                        | 46.7 ug/mL                     |
| I                    |             |              |                                      |                            |                     |        | 1H,1H,2H,2H-perfluorohexane sulfonate (4:2)                   |                                |
| .LC6:2FTS_00003      | 06/25/21    |              | WELLINGTON, Lot 62FTS0616            |                            | (Purchased Reagent) |        | Sodium<br>1H,1H,2H,2H-perfluorooctane                         | 47.4 ug/mL                     |
|                      |             |              |                                      |                            |                     |        | sulfonate (6:2)                                               |                                |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

| Purchased Reagent   Perflucrobexadecafluoro-3-oxano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |          |            |                         | 4<br>0<br>0<br>0 | Parent Reagent      |        |                                                        |                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|------------|-------------------------|------------------|---------------------|--------|--------------------------------------------------------|--------------------------|
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | дхд      | Prep       | Dilutant                | Final            |                     | Volume | ,                                                      |                          |
| 09/20/21   Wellington Labs, Lot SCIPSOSIÓ   Purchased Reagent   Stationocodecane   Stat   |                     | Date     |            | Jsed                    | Volume           | ID                  | Added  |                                                        | Concentration            |
| 09/30/21   Wellington Labs, 1ot SCFFF3ONSO916   Uprchased Reagent)   Section of Section 2   October 2   October 3   October    | .LC8:2FTS_00003     | 08/22/21 | WEI        | Lot 82FTS081            | (O               |                     | nt)    | Sodium 1H,1H,2H,2H-perfluorodecane sulfonate (8:2)     | 47.9 ug/mL               |
| 09/10/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .LC9CI-PF3ONS_00001 | 09/30/21 | Welling    | Lot 9CI                 | .80916           |                     | nt)    | 9-Chlorohexadecafluoro-3-oxano nane-1-sulfonate        | 46.6 ug/mL               |
| 07/34/21   07/34/21   WELLINGTON, Lot NEFOSA0316M   Purchased Reagent)   | .LCDONA 00001       |          | MEL        |                         | 7                | 1                   | nt)    | Adona                                                  | 50 ug/mL                 |
| 09/30/21   WELLINGTON, LOW INTECDSA0316M   Purchased Reagent   Perflorobutates Sulfonte   D5/37/22   Wellington Laboratories, Lot PEPROA316   Purchased Reagent   Perflorobutates Sulfonte   D5/37/22   Wellington Laboratories, Lot PEPROA316   Purchased Reagent   Perflorobutates Sulfonte   D5/37/22   Wellington Laboratories, Lot PEPROA316   Purchased Reagent   Perflorobutates Sulfonte   D5/37/22   Wellington Laboratories, Lot PEPROA316   Purchased Reagent   Perflorobutates Sulfonte   D5/37/22   Wellington Laboratories, Lot PEPROA316   Purchased Reagent   Perflorobetancia acid   D5/37/22   Wellington Laboratories, Lot PEPROA316   Purchased Reagent   Perflorobetancia acid   D5/37/22   Wellington Laboratories, Lot PEPROA316   Purchased Reagent   Perflorobetancia acid   D7/37/22   Wellington Laboratories, Lot PEPROA317   Purchased Reagent   Perflorobetancia acid   D7/37/22   Wellington Laboratories, Lot PEPROA317   Purchased Reagent   Perflorobetancia acid   D7/37/22   Wellington Laboratories, Lot PEPROA317   Purchased Reagent   Perflorobetancia acid   D7/37/22   Wellington Laboratories, Lot PEPROA317   Purchased Reagent   Perflorobetancia acid   D7/37/22   Wellington Laboratories, Lot PEPROA317   Purchased Reagent   Perflorobetancia acid   D7/37/22   Wellington Laboratories, Lot PEPROA316   Purchased Reagent   Perflorobetancia acid   D7/37/22   Wellington Laboratories, Lot PEPROA316   Purchased Reagent   Perflorobetancia acid   D7/37/22   Wellington Laboratories, Lot PEPROA317   Purchased Reagent   Perflo   | .LCHFPO-DA_00001    | 07/03/20 | WEL        | , Lot HFPO              | 7                |                     | nt)    | Perfluoro(2-propoxypropanoic) acid                     | 50 ug/mL                 |
| 10.004   09.730/21   WELLINGTON, Lot NREFOSANO916   Curchased Reagent)   Neglocal Coctange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .LCN-EtFOSA-M_00005 | 05/24/21 | WELL       | Lot NEtFO               | МЭ               | 1                   | nt)    | N-ethylperfluoro-1-octanesulfo namide                  | 50 ug/mL                 |
| 10/24/21   WELLINGTON, Lot NAME-DORAGOSIGN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .LCN-EtFOSAA_00004  | 09/30/21 | WELL       | Lot                     | 16               | 1                   | nt)    | N-ethyl perfluorooctane sulfonamidoacetic acid         | 50 ug/mL                 |
| 10.12/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .LCN-MeFOSA-M 00004 | 05/24/21 | WELL       | l                       | M9               |                     | nt)    | Mefosa                                                 | 50 ug/mL                 |
| 05/27/21   Wellington Laboratories, Lot PPRA0516 (Purchased Reagent)   Perfluorobutanes Sulfonder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .LCN-MeFOSAA_00004  | 10/12/21 | WELL       | Lot NMeFO               | 16               |                     | nt)    |                                                        | 20 ng/mL                 |
| 03/15/21   Wellington Laboratories, Lot LPFB30316   Purchased Reagent)   Perfluorobutenes Sulfonic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .LCPFBA_00007       | 05/27/21 | Wellingto  | l                       | FBA0516          |                     | nt)    | Perfluorobutyric acid                                  | 20 ng/mL                 |
| 05/31/21   Wellington Laboratories, Lot PFDA0516   (Purchased Reagent)   Perfluorodecanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .LCPFBS_00008       | 03/15/21 | Wellingto  | Lot                     | FBS0316          |                     | nt)    | Perfluorobutane Sulfonate Perfluorobutanesulfonic acid | 44.2 ug/mL<br>44.2 ug/mL |
| 05/24/21   Wellington Laboratories, Lot PFD0A0516 (Purchased Reagent)   Perfluorodeceans Olifonic acid (Purchased Reagent)   Perfluorodecans Olifonic acid (Purchased Reagent)   Perfluorodecansolic acid (PPRA) (Purchased Reagent)   Perfluoroctanolic acid (PPRA) (PURCHASED) (Purchased Reagent)   Perfluoroctanolic acid (PPRA) (PURCHASED) (PURCHASED) (PURCHASED REAGENT)   Perfluoroctanolic acid (PPRA) (PURCHASED) (PURCHASED REAGENT)   Perfluoroctanolic acid (PPRA) (PURCHASED REAGENT)   Perfluoroctanolic acid (PURCHASED REAGENT)   PERFLUOROSE   PURCHASE   | .LCPFDA 00007       | 05/31/21 | Wellingto  |                         | FDA0516          | (Purchased Reage    | nt)    | Perfluorodecanoic acid                                 | 50 ug/mL                 |
| 12/02/21   Wellington Laboratories, Lot PFPRAISI6 (Furchased Reagent)   Perfluorodecane Sulfonic acid (FPRA)   Perfluorodecane Sulfonic acid (FPRA)   Perfluorodecane Sulfonic acid (FPRA)   Perfluorodecane Sulfonic acid (PERA)   Perfluorodecane Sulfon   | .LCPFDoa 00007      | 05/31/21 | Wellingto  | Lot                     | DoA0516          | (Purchased Reade    | nt)    | Perfluorododecanoic acid                               | 50 ug/mL                 |
| 12/02/21   Wellington Laboratories, Lot PFHpA1216   (Purchased Reagent)   Perfluctocheptanesulfonic acid (PFHpA)   Perfluctocheptanesulfonic acid (PFHpA)   (Purchased Reagent)   Perfluctocheptanesulfonic acid (PPDA)   (Purchased Reagent)   Perfluctocheptanesulfonic acid (PDA)   (PD   | .LCPFDSA 00002      | 05/24/21 | Wellingto  | Lot                     | FDS0516          |                     | nt)    |                                                        | 48.2 ug/mL               |
| 19/01/22   Wellington Laboratories, Lot IPFH950817   Perfluoroheptanesulfonic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .LCPFHpA_00008      | 12/02/21 | Wellingto  | Lot                     | HpA1216          | (Purchased Reage    | nt)    | Perfluoroheptanoic acid (PFHpA)                        |                          |
| 12/22/20   Wellington Laboratories, Lot PFHxD1215 (Purchased Reagent)   Perfluorohexane acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .LCPFHpsA 00003     | 09/01/22 | Wellingtor | n Laboratories, Lot LPE | FHpS0817         |                     | nt)    |                                                        | 47.6 ug/mL               |
| 05/29/21 Wellington Laboratories, Lot PFFHxSK0615 (Purchased Reagent) Perfluorohexadecanoic acid (PNA) Perfluorohexane Sulfonate Perfluorohexane Sulfonate Perfluorohexane Sulfonate Perfluorohexane Sulfonate Perfluorohexane Sulfonate Perfluorohexane Sulfonate (PNA) (PNZ) Mellington Laboratories, Lot PFORM16 (Purchased Reagent) Perfluorocotanesulfonic acid (PFOA) (PNZ) Mellington Laboratories, Lot PFORM16 (Purchased Reagent) Perfluorocotanesulfonic acid (PFOB) (PNZ) Mellington Laboratories, Lot PFORM16 (Purchased Reagent) Perfluorocotane Sulfonamide (PNZ) (PNZ) Mellington Laboratories, Lot PFPERM16 (Purchased Reagent) Perfluoropentanesulfonic acid (PNZ) (PNZ) Mellington Laboratories, Lot PFPERM16 (Purchased Reagent) Perfluoropentanesulfonic acid (PNZ) (PNZ) Mellington Laboratories, Lot PFPERM16 (Purchased Reagent) Perfluoropentanesulfonic acid (PNZ) (PNZ) Mellington Laboratories, Lot PFPERM16 (Purchased Reagent) Perfluoropentanesulfonic acid (PNZ) (PNZ) Mellington Laboratories, Lot PFPERM16 (PNZ) (PNZ) Perfluoropentanesulfonic acid (PNZ) (P | .LCPFHxA 00007      | 12/22/20 | Wellingto  | n Laboratories, Lot PF  | HxA1215          |                     | nt)    | Perfluorohexanoic acid                                 | 50 ug/mL                 |
| Original Mellington Laboratories, Lot brPRASNO615 (Purchased Reagent)   Perfluorohexane Sulfonate   Perfluorohexane Sulfonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .LCPFHxDA_00008     | 05/25/21 | Wellingtor | n Laboratories, Lot PFF | 1xDA0516         | (Purchased Reage    | nt)    | Perfluorohexadecanoic acid                             | 50 ug/mL                 |
| Perflucrohexanesulfonic acid (PFNRA)   Perflucrohexanesulfonic acid (PFNRA)   O7/20/22   Wellington Laboratories, Lot LPFNS0917 (Purchased Reagent)   Perflucrononanesulfonic acid (PFNRA)   O8/22/12   Wellington Laboratories, Lot PFOA0716 (Purchased Reagent)   Perflucrocctanoic acid (PFOA)   O8/29/21   Wellington Laboratories, Lot PFOA0716 (Purchased Reagent)   Perflucrocctanoic acid (PFOA)   O8/29/21   Wellington Laboratories, Lot PFPER0515 (Purchased Reagent)   Perflucrocctanesulfonic acid (PFOA)   O5/31/21   Wellington Laboratories, Lot PFPER0516 (Purchased Reagent)   Perflucrocctanesulfonic acid (PFOA)   O5/31/22   Wellington Laboratories, Lot PFPER0516 (Purchased Reagent)   Perflucropentanoic acid (PFOA)   O6/31/22   Wellington Laboratories, Lot PFPER0516 (Purchased Reagent)   Perflucropentanesulfonic acid (PFOA)   O6/31/22   Wellington Laboratories, Lot PFPER0516 (Purchased Reagent)   Perflucropentanesulfonic acid (PFOA)   O6/31/22   Wellington Laboratories, Lot PFFDA0916 (Purchased Reagent)   Perflucropentanesulfonic acid (PFOA)   O6/31/22   Wellington Laboratories, Lot PFFDA0916 (Purchased Reagent)   Perflucroctetradecanoic acid (PFOA)   O6/31/22   Wellington Laboratories, Lot PFFDA0916 (Purchased Reagent)   Perflucroctetradecanoic acid (PFOA)   O6/31/22   Wellington Laboratories, Lot PFFDA0916 (Purchased Reagent)   Perflucroctetradecanoic acid (PFOA)   O6/31/22   Wellington Laboratories, Lot PFFDA0916 (Purchased Reagent)   Perflucroctetradecanoic acid (PFOA)   O6/31/22   Wellington Laboratories, Lot PFFDA0916 (Purchased Reagent)   O6/31/22   O6/31/   | .LCPFHxS-br_00004   | 07/03/20 | Wellington |                         | FHXSK0615        | (Purchased Reage    | nt)    | Perfluorohexane Sulfonate                              |                          |
| 07/20/22   Wellington Laboratories, Lot PFNA0717   (Purchased Reagent)   Perfluorononanoic acid (PFNA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ı                   |          |            |                         |                  |                     |        | Perfluorohexanesulfonic acid (PFHxS)                   | 45.5 ug/mL               |
| 09/27/22   Wellington Laboratories, Lot PFOA0716   (Purchased Reagent)   Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .LCPFNA_00009       | 07/20/22 | Wellingto  | Laboratories, Lot       | FNA0717          |                     | nt)    | Perfluorononanoic acid (PFNA)                          | 20 ng/mT                 |
| 08/02/21   Wellington Laboratories, Lot PFOA0416 (Purchased Reagent)   Perfluorocctanoic acid (PFOA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .LCPFNS_00003       | 09/27/22 | Wellingto  | Lot                     | FNS0917          |                     | nt)    | Perfluorononanesulfonic acid                           | 48 ug/mL                 |
| Moderation   Moderation   Moderatories   Moderato   | .LCPFOA 00008       | 08/02/21 | Wellingto  | - 1                     | F0A0716          | - 1                 | nt)    | _                                                      |                          |
| 10/14/20 Wellington Laboratories, Lot brPFOSK1015 (Purchased Reagent) (PFOS)  (PFOS)  (PFOS)  (PSA09161 (Purchased Reagent) (Perfluorocctane Sulfonamide acid not in the properties of the perfluorocctane Sulfonamide acid not in the perfluction Laboratories, Lot PFPEA0516 (Purchased Reagent) (Perfluoropentanesulfonic acid not not not not laboratories, Lot PFTEDA0216 (Purchased Reagent) (Perfluoropentanesulfonic acid not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .LCPFODA 00008      | 04/29/21 | Wellingto  | n Laboratories, Lot PF  | ODA0416          |                     | nt)    | Perfluorooctadecanoic acid                             | 20 ng/mT                 |
| 09/30/21 Wellington Laboratories, Lot FPEA0516 (Purchased Reagent) Perfluorocetane Sulfonamide 7 05/31/21 Wellington Laboratories, Lot LPFPeS0117 (Purchased Reagent) Perfluoropentanoic acid 8 01/11/22 Wellington Laboratories, Lot LPFPeS0117 (Purchased Reagent) Perfluoropentanesulfonic acid 9 09/30/21 Wellington Laboratories, Lot PFTDA0916 (Purchased Reagent) Perfluorotetradecanoic acid 9 02/12/21 Wellington Laboratories, Lot PFTDA0216 (Purchased Reagent) Perfluorotetradecanoic acid 9 02/12/21 Wellington Laboratories, Lot PFTDA0216 (Purchased Reagent) Perfluoroundecanoic acid 9 02/12/21 Wellington Laboratories, Lot PFTDA0216 (Purchased Reagent) Perfluoroundecanoic acid 9 02/12/21 Wellington Laboratories, Lot PFTDA0216 (Purchased Reagent) Perfluoroundecanoic acid 9 02/12/21 Wellington Laboratories, Lot PFTDA0216 (Purchased Reagent) Perfluoroundecanoic acid 9 02/12/21 Wellington Laboratories, Lot PFTDA0216 (Purchased Reagent) Perfluoroundecanoic acid 9 02/12/21 Wellington Laboratories, Lot PFTDA0216 (Purchased Reagent) Perfluoroundecanoic acid 9 02/12/21 Wellington Laboratories, Lot PFTDA0216 (Purchased Reagent) Perfluoroundecanoic acid 9 02/12/21 Wellington Laboratories, Lot PFTDA0216 (Purchased Reagent) Perfluoroundecanoic acid 9 02/12/21 Wellington Laboratories, Lot PFTDA0216 (Purchased Reagent) Perfluoroundecanoic acid 9 02/12/21 Wellington Laboratories, Lot PFTDA0216 (Purchased Reagent) Perfluoroundecanoic acid 9 02/12/21 Wellington Laboratories, Lot PFTDA0216 (Purchased Reagent) Perfluoroundecanoic acid 9 02/12/21 Wellington Laboratories, Lot PFTDA0216 (Purchased Reagent) Perfluoroperance acid 9 02/12/21 Wellington Laboratories, Lot PFTDA0216 (Purchased Reagent) Perfluoroperance acid 9 02/12/21 Wellington Laboratories, Lot PFTDA0216 (Purchased Reagent) Perfluoroperance acid 9 02/12/21 Wellington Laboratories, Lot PFTDA0216 (Purchased Reagent) Perfluoroperance acid                                                                                                                                                    | LCPFOS-br_00004     | 10/14/20 | Wellington | Laboratories, Lot brP   | FOSK1015         |                     | nt)    | Perfluorooctanesulfonic acid (PFOS)                    | 46.4 ug/mL               |
| 01/11/22 Wellington Laboratories, Lot PFPeRO516 (Purchased Reagent) Perfluoropentanoic acid 01/11/22 Wellington Laboratories, Lot LPFPeSO117 (Purchased Reagent) Perfluoropentanesulfonic acid 07 09/30/21 Wellington Laboratories, Lot PFTDA0916 (Purchased Reagent) Perfluorotetradecanoic acid 07 02/12/21 Wellington Laboratories, Lot PFTDA0216 (Purchased Reagent) Perfluorotetradecanoic acid 07 10/18/21 Wellington Laboratories, Lot PFTDA0216 (Purchased Reagent) Perfluoroundecanoic acid 07 10/18/21 Wellington Laboratories, Lot PFUGA1016 (Purchased Reagent) Perfluoroundecanoic acid 08 11/15/18 05/15/18 Methanol, Lot 090285 250 mL LC11CIPFF30UdS_00001 100 uL 11-Chloroeicosafluoro-3-oxaund ecane-1-sulfonate (11,11,11,11,11,11,11,11,11,11,11,11,11,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .LCPFOSA 00010      | 09/30/21 | Wellingto  |                         | SA0916I          |                     | nt)    | Perfluorooctane Sulfonamide                            | 50 ug/mL                 |
| 01/11/22 Wellington Laboratories, Lot LPFPeS0117 (Purchased Reagent) Perfluoropentanesulfonic acid 09/30/21 Wellington Laboratories, Lot PFTDA0916 (Purchased Reagent) Perfluorotetradecanoic acid 07 02/12/21 Wellington Laboratories, Lot PFTDA0216 (Purchased Reagent) Perfluorotridecanoic acid 07 10/18/21 Wellington Laboratories, Lot PFTDA016 (Purchased Reagent) Perfluoroundecanoic acid 07 10/18/21 Wellington Laboratories, Lot PFUGA1016 (Purchased Reagent) Perfluoroundecanoic acid 08 11/15/18 05/15/18 Methanol, Lot 090285 250 mL LC11CIPF30UdS_00001 100 uL 11-Chloroeicosafluoro-3-oxaund ecane-1-sulfonate 08 11/15/18 11/15/18 Lot 090285 Lot PFUGA1016 LC4:2FTS_0003 100 uL 11/14/2H.2H-Perfluorohexane lt, LC4:2FTS_0003 100 uL 11/14/2H.2H-Perfluorohexane lt, LC4:2Danage lt, LC4:2D | .LCPFPeA 00007      | 05/31/21 | Wellingto  | Lot                     | PeA0516          |                     | nt)    | Perfluoropentanoic acid                                | 50 ug/mL                 |
| 09/30/21   Wellington Laboratories, Lot PFTeDA0916   (Purchased Reagent)   Perfluorotetradecanoic acid     02/12/21   Wellington Laboratories, Lot PFTrDA0216   (Purchased Reagent)   Perfluorotridecanoic acid     10/18/21   Wellington Laboratories, Lot PFTdA1016   (Purchased Reagent)   Perfluorotridecanoic acid     11/15/18   05/15/18   Methanol, Lot 090285   250 mL   LC11CIPF30UdS_00001   100 uL   11-Chloroeicosafluoro-3-oxaund     11/15/18   C5/15/18   C5   | .LCPFPes 00003      |          | Wellingtor | Lot                     | FPeS0117         |                     | nt)    |                                                        | 46.9 ug/mL               |
| 07 (2/12/21 Wellington Laboratories, Lot PFTrDA0216 (Purchased Reagent) Perfluorotridecanoic acid  10/18/21 Wellington Laboratories, Lot PFUdA1016 (Purchased Reagent) Perfluoroundecanoic acid  11/15/18 05/15/18 Methanol, Lot 090285 250 mL LC11CIPF30UdS_00001 100 uL 11-Chloroeicosafluoro-3-oxaund ecane-1-sulfonate  11/15/18 05/15/18 Methanol, Lot 090285 LC4:2FTS_00003 100 uL 11,11,21,21,21-Perfluorohexane lt,11,11,21,21-Perfluorohexane lt,11,12,12,21-Perfluorohexane lt,11,12,12,12,12,12,12,12,12,12,12,12,12,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .LCPFTeDA_00007     | 09/30/21 | Wellingtor | Lot                     | reDA0916         |                     | nt)    | Ŋ                                                      | 50 ug/mL                 |
| 10/18/21   Wellington Laboratories, Lot PFUdAl016   (Purchased Reagent)   Perfluoroundecanoic acid     11/15/18   05/15/18   Methanol, Lot 090285   250 mL   LCIICIPF30UdS_00001   100 uL   11-Chloroeicosafluoro-3-oxaund                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .LCPFTrDA_00007     | 02/12/21 | Wellingtor | Lot                     | rrDA0216         |                     | nt)    |                                                        | 20 ug/mL                 |
| 11/15/18   05/15/18   Methanol, Lot 090285   250 mL   LC11CIPF3OUdS_00001   100 uL   11-Chloroeicosafluoro-3-oxaund   ecane-1-sulfonate   LC4:2FTS_00003   100 uL   Sodium   LC4:2FTS_00003   100 uL   Sodium   L1,1H,2H,2H-perfluorohexane   l1,1H,2H-perfluorohexane   sulfonate (4:2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .LCPFUdA 00007      | 10/18/21 | Wellingto  | Lot                     | UdA1016          |                     | nt)    |                                                        | 50 ug/mL                 |
| 100 uL Sodium 11,11,2H,2H-perfluorohexane sulfonate (4:2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LCPFCSP_00144       | 11/15/18 |            |                         |                  | LC11CIPF3OUdS_00001 |        | 11-Chloroeicosafluoro-3-oxaund<br>  ecane-1-sulfonate  | 0.01884 ug/mL            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |          |            |                         |                  | LC4:2FTS_00003      |        | Sodium 1H,1H,2H,2H-perfluorohexane sulfonate (4:2)     | 0.01868 ug/mL            |

Lab Name: TestAmerica Sacramento Job No.: 320-39023-1

|                      |             |              |                                      |                 |                     | +               |                                                                 |               |
|----------------------|-------------|--------------|--------------------------------------|-----------------|---------------------|-----------------|-----------------------------------------------------------------|---------------|
|                      |             |              |                                      | Reagent         | Farent Keagent      | בור<br>         |                                                                 |               |
| Reagent ID           | Exp<br>Date | Prep<br>Date | Dilutant Dilutant Vsed V             | Final<br>Volume | Reagent ID          | Volume<br>Added | Analyte                                                         | Concentration |
|                      |             |              |                                      |                 | LC6:2FTS_00003      | 100 uL          | Sodium 1H,1H,2H,2H-perfluorooctane sulfonate (6:2)              | 0.01896 ug/mL |
|                      |             |              |                                      | 1               | LC8:2FTS_00003      | 100 uL          |                                                                 | 0.01916 ug/mL |
|                      |             |              |                                      |                 | LC9CI-PF3ONS_00001  | 100 uL          | sulfonate (8:2) 9-Chlorohexadecafluoro-3-oxano nane-1-sulfonate | 0.01864 ug/mL |
|                      |             |              |                                      | -               | LCbr-NEtFOSAA_00001 | 100 uL          | N-ethyl perfluorooctane sulfonamidoacetic acid                  | 0.02 ug/mL    |
|                      |             |              |                                      |                 | LCbr-NMeFOSAA_00001 | 100 uL          | N-methyl perfluorooctane                                        | 0.02 ug/mL    |
|                      |             |              |                                      |                 | LCDONA_00001        | 100 uL          | Adona                                                           | 0.02 ug/mL    |
|                      |             |              |                                      |                 | LCHFPO-DA_00001     | 100 uL          | Perfluoro(2-propoxypropanoic)<br>acid                           | 0.02 ug/mL    |
|                      |             |              |                                      |                 | LCN-EtFOSA-M_00005  | 100 uL          | -                                                               | 0.02 ug/mL    |
|                      |             |              |                                      | -               | LCN-MeFOSA-M 00004  | 100 uL          | MeFOSA                                                          | 0.02 ug/mL    |
|                      |             |              |                                      |                 | LCPFBA_00007        | 100 uL          | $\rightarrow$                                                   | 0.02 ug/mL    |
|                      |             |              |                                      |                 | LCPFBS_00008        | 100 uL          |                                                                 |               |
|                      |             |              |                                      |                 |                     |                 | Perfluorobutanesulfonic acid (PFBS)                             | 0.01768 ug/mL |
|                      |             |              |                                      |                 | LCPFDA 00007        | 100 uL          | Perfluorodecanoic acid                                          | 0.02 ug/mL    |
|                      |             |              |                                      |                 | LCPFDoA 00007       | 100 uL          | Perfluorododecanoic acid                                        |               |
|                      |             |              |                                      |                 | LCPFDSA_00002       |                 | -                                                               |               |
|                      |             |              |                                      |                 | LCPFHpA_00008       | 100 uL          | Perfluoroheptanoic acid                                         | 0.02 ug/mL    |
|                      |             |              |                                      | <u> </u>        | LCPFHpSA 00003      | 100 uL          | (PrhpA) Perfluoroheptanesulfonic acid                           | 0.01904 ug/mL |
|                      |             |              |                                      | 1               | LCPFHXA 00007       | - 1             | Perfluorohexanoic acid                                          | 0.02 ug/mL    |
|                      |             |              |                                      | 1               | LCPFHxDA 00008      | 100 uL          | _                                                               | 0.02 ug/mL    |
|                      |             |              |                                      |                 | LCPFHxS-br_00004    | 100 uL          | $\vdash$                                                        | 0.0182 ug/mL  |
|                      |             |              |                                      |                 |                     |                 | Perfluorohexanesulfonic acid (PFHxS)                            | 0.0182 ug/mL  |
|                      |             |              |                                      |                 | LCPFNA_00009        | 100 uL          | Perfluorononanoic acid (PFNA)                                   | 0.02 ug/mL    |
|                      |             |              |                                      |                 |                     | 100 uL          | Perfluorononanesulfonic                                         | 0.0192 ug/mL  |
|                      |             |              |                                      |                 | LCPFOA 00008        | 100 uL          | Perfluorooctanoic acid (PFOA)                                   | 0.02 ug/mL    |
|                      |             |              |                                      |                 | LCPFODA 00008       |                 | Perfluorooctadecanoic ac                                        | - 1           |
|                      |             |              |                                      |                 | LCPFOS-br_00004     | 100 uL          | Perfluorooctanesultonic acid (PFOS)                             | 0.01856 ug/mL |
|                      |             |              |                                      |                 |                     | 100 uL          |                                                                 | 0.02 ug/mL    |
|                      |             |              |                                      |                 |                     |                 | Perfluoropentanoic acid                                         | 0.02          |
|                      |             |              |                                      |                 | ICPFPes 00003       | 100 uL          | _                                                               |               |
|                      |             |              |                                      |                 | ICPFTEDA 00007      | - 1             | _                                                               | - 1           |
|                      |             |              |                                      |                 | TCPFIICA 00007      | 100 uL          | Perfluorounderanoic acid                                        | 0.02 ug/mT.   |
| .LC11CIPF30UdS_00001 | 09/30/21    | Welling      | Wellington Labs, Lot 11CIPF3OUdS0916 |                 | 12                  |                 |                                                                 | 47.1          |
|                      |             |              |                                      | 1               |                     |                 | ecane-1-sullonare                                               |               |

Lab Name: TestAmerica Sacramento

Job No.: 320-39023-1

|                      |             |              |                                           | +<br>2<br>0     | Parent Reagent      |                 |                                                          |               |
|----------------------|-------------|--------------|-------------------------------------------|-----------------|---------------------|-----------------|----------------------------------------------------------|---------------|
| Reagent ID           | Exp<br>Date | Prep<br>Date | Dilutant<br>Used                          | Final<br>Volume | Reagent ID          | Volume<br>Added | Analyte                                                  | Concentration |
| .LC4:2FTS_00003      | 12/12/21    |              | WELLINGTON, Lot 42FTS1216                 | 10              | (Purchased Reagent) | 1t)             | Sodium 1H, 1H, 2H, 2H-perfluorohexane                    | 46.7 ug/mL    |
| .LC6:2FTS_00003      | 06/25/21    |              | WELLINGTON, Lot 62FTS0616                 | 10              | (Purchased Reagent) | 1t)             | ~                                                        | 47.4 ug/mL    |
| .LC8:2FTS_00003      | 08/22/21    |              | WELLINGTON, Lot 82FTS0816                 | 10              | (Purchased Reagent) | 1t)             | Sodium<br>1H,1H,2H,2H-perfluorodecane<br>sulfonate (8:2) | 47.9 ug/mL    |
| .LC9CI-PF3ONS_00001  | 09/30/21    | Welli        | Wellington Labs, Lot 9CIPF3ONS091         | 80916           | (Purchased Reagent) | ıt)             |                                                          | 46.6 ug/mL    |
| .LCbr-NEtFOSAA_00001 | 01/17/23    | WEI          | WELLINGTON, Lot brNEtFOSAA0118            | 118             | (Purchased Reagent) | ıt)             | N-ethyl perfluorooctane sulfonamidoacetic acid           | 50 ug/mL      |
| .LCbr-NMeFOSAA_00001 | 01/17/23    | WEI          | WELLINGTON, Lot brNMeFOSAA0118            | 118             | (Purchased Reagent) | 1t)             | N-methyl perfluorooctane sulfonamidoacetic acid          | 50 ug/mL      |
| .LCDONA 00001        | 04/10/22    | M            | WELLINGTON, Lot NADONA0417                | 7               | (Purchased Reagent  | 11)             | Adona                                                    | 20 ng/mL      |
| .LCHFPO-DA_00001     | 07/03/20    | M            | WELLINGTON, Lot HFPODA0717                | 7               | (Purchased Reagent) | ıt)             | Perfluoro(2-propoxypropanoic)<br>acid                    | 20 ng/mT      |
| .LCN-EtFOSA-M_00005  | 05/24/21    | ME           | WELLINGTON, Lot NEtFOSA0516M              | М9              | (Purchased Reagent) | ıt)             | N-ethylperfluoro-1-octanesulfo<br>namide                 | 20 ng/mT      |
| .LCN-MeFOSA-M_00004  | 05/24/21    | WE           | WELLINGTON, Lot NMeFOSA0516M              | 6M              | (Purchased Reagent) | 1t)             | MeFOSA                                                   | 20 ng/mL      |
| .LCPFBA_00007        | 05/27/21    | Wellin       |                                           | PFBA0516        |                     | ıt)             | Perfluorobutyric acid                                    | 20 ng/mL      |
| .LCPFBS_00008        | 03/15/21    | Welling      |                                           | Lot LPFBS0316   | (Purchased Reagent) | ıt)             | Perfluorobutane Sulfonate                                | 44.2 ug/mL    |
|                      |             |              |                                           |                 |                     |                 | Perfluorobutanesultonic acid (PFBS)                      | 44.2 ug/mL    |
| .LCPFDA_00007        | 05/31/21    | Wellin       | Wellington Laboratories, Lot PF           | PFDA0516        | (Purchased Reagent) | ıt)             | Perfluorodecanoic acid                                   | 20 ng/mL      |
| .LCPFDoA_00007       | 05/31/21    | Welling      |                                           | Lot PFDoA0516   |                     | ıt)             | Perfluorododecanoic acid                                 | 20 ng/mT      |
| .LCPFDSA_00002       | 05/24/21    | Welling      |                                           | Lot LPFDS0516   | (Purchased Reagent) | ıt)             | Perfluorodecane Sulfonic acid                            | 48.2 ug/mL    |
| .LCPFHpA_00008       | 12/02/21    | Welling      | Wellington Laboratories, Lot PF           | PFHpA1216       | (Purchased Reagent) | ıt)             | Perfluoroheptanoic acid<br>(PFHpA)                       | 50 ug/mL      |
| .LCPFHpSA_00003      | 09/01/22    | Welling.     | Wellington Laboratories, Lot LPFHpS0817   | 'HpS0817        | (Purchased Reagent) | ıt)             | Perfluoroheptanesulfonic acid                            | 47.6 ug/mL    |
| .LCPFHxA_00007       | 12/22/20    | Welling      |                                           | HxA1215         |                     | ıt)             | Perfluorohexanoic acid                                   | 50 ug/mL      |
| .LCPFHxDA_00008      | 05/25/21    | Welling      | Wellington Laboratories, Lot PFH          | Lot PFHxDA0516  |                     | ıt)             | Perfluorohexadecanoic acid                               | 50 ug/mL      |
| .LCPFHxS-br_00004    | 07/03/20    | Wellingt     | Wellington Laboratories, Lot brPFHxSK0615 | THXSK0615       | (Purchased Reagent) | ıt)             | Perfluorohexane Sulfonate                                |               |
|                      |             |              |                                           |                 | - 1                 |                 | tonı                                                     | 45.5 ug/mL    |
| .LCPFNA_00009        | 07/20/22    | Wellin       | Lot                                       | NA0717          | - 1                 | ıt)             | Perfluorononanoic acid (PFNA)                            | 50 ug/mL      |
| .LCPFNS_00003        | 09/27/22    | Welling      | Lot                                       | LPFNS0917       | (Purchased Reagent) | ıt)             | Perfluorononanesulfonic acid                             |               |
| .LCPFOA_00008        | 08/02/21    | Wellin       | Wellington Laboratories, Lot PF           | PFOA0716        | (Purchased Reagent) | ıt)             | Perfluorooctanoic acid (PFOA)                            | 50 ug/mL      |
| .LCPFODA_00008       | 04/29/21    | Welling      | Wellington Laboratories, Lot PF           | PFODA0416       | (Purchased Reagent  | ıt)             | Perfluorooctadecanoic acid                               | 20 ng/mL      |
| .LCPFOS-br_00004     | 10/14/20    | Wellingt     | Wellington Laboratories, Lot brPFOSK1015  | FOSK1015        | (Purchased Reagent) | ıt)             | Perfluorooctanesulfonic acid (PFOS)                      | 46.4 ug/mL    |
| .LCPFOSA_00010       | 30,         | Welling      | Lot                                       | Lot FOSA0916I   |                     | 1t)             | Perfluorooctane Sulfonamide                              | 50 ug/mL      |
| .LCPFPeA_00007       | 05/31/21    | Welling      | Wellington Laboratories, Lot PF           | PFPeA0516       | (Purchased Reagent) | 1t)             | Perfluoropentanoic acid                                  | 50 ug/mL      |
| .LCPFPes_00003       | 01/11/22    | Welling      | Wellington Laboratories, Lot LPF          | Lot LPFPeS0117  |                     | ıt)             | Perfluoropentanesulfonic acid                            | 46.9 ug/mL    |
| .LCPFTeDA_00007      | 09/30/21    | Welling      | Laboratories, Lot                         | PFTeDA0916      | - 1                 | ıt)             | Perfluorotetradecanoic acid                              | 20 ng/mT      |
| .LCPFTrDA 00007      | 02/12/21    | Wellington   | Laboratories, Lot                         | PFTrDA0216      |                     | ıt)             | Perfluorotridecanoic acid                                | 50 ug/mL      |
| .LCPFUdA_00007       | 10/18/21    | Welling      | Wellington Laboratories, Lot PF           | Lot PFUdA1016   | (Purchased Reagent) | ıt)             | Perfluoroundecanoic acid                                 | 20 ng/mF      |

Lab Name: TestAmerica Denver

SDG No.:

Job No.: 320-39023-1

100 ug/mL ng/mL 5000 ug/mL 5000 ug/mL ng/mL ng/mL ng/mL Concentration 100 ug/mL 100 ug/mL 100 ug/mL 100 ug/mL 100 ng/mL 100 ug/mL ng/mL ng/mL 100 ug/mL 100 ug/mL 100 ug/mL 100 ug/mL 100 ug/mL 5000 ug/mL 5000 ug/mL ng/mL ng/mL 5000 ug/mL 5000 ug/mL 2000 ug/mL 100 100 007 5000 2,4,6-Tribromophenol (Surr) (Surr) Surr Surr) Terphenyl-d14 (Surr)
2,4,6 - Tribromophenol
2,4,6-Tribromophenol (S
2-Fluorobiphenyl - Tribromopheno Nitrobenzene-d5 (Surr) Nitrobenzene-d5 (Surr)
Phenol-d5 (Surr) Nitrobenzene-d5 (Surr) (Surr) (Surr) 2,4,6 - Tribromopheno (Surr Tribromopheno 2,4,6 - Tribromopheno. Tribromopheno 2,4,6-Tribromophenol (Surr) (Surr) (Surr) 2,4,6 - Tribromophenc 2,4,6-Tribromophenol (Surr) (Surr) 2,4,6-Tribromophenol 2-Fluorobiphenyl 2,4,6-Tribromophenol Terphenyl-d14 (Surr) Terphenyl-d14 (Surr) Terphenyl-d14 (Surr) Terphenyl-d14 (Surr) Analyte Nitrobenzene-d5 2-Fluorophenol (Nitrobenzene-d5 2-Fluorobiphenyl Phenol-d5 (Surr) Phenol-d5 (Surr) Phenol-d6 Phenol-d5 (Surr) Nitrobenzene-d5 2-Fluorobipheny. Phenol-d5 (Surr) 2-Fluorobipheny (Surr 2-Fluorophenol 2-Fluorophenol 2-Fluorophenol 2-Fluorophenol 2-Fluorobiphen 2-Fluorophenol Phenol-d6 Phenol-d6 Phenol-d6 Phenol-d6 Phenol-d6 2,4,6 Phenol 5 mL 5 mL 5 mL 5 mL Volume Added (Purchased Reagent) (Purchased Reagent) Parent Reagent 8270SurStkHL\_00261 8270SurstkHL\_00263 8270SurstkHL 00258 8270SurstkHL\_00262 Reagent ID 1000 mL Reagent Volume Final Restek, Lot A0130500 Restek, Lot A0130500 Dilutant Used 03/16/19 04/26/18 ACETONE, Lot Acetone\_00211 Prep Date 09/30/22 09/30/22 Exp Date 8270Surrogate\_00118 .8270SurStkHL 00258 .8270SurStkHL 00261 Reagent ID

Lab Name: TestAmerica Denver Job No.: 320-39023-1

SDG No.:

|                      |             |              |                                        |                 | t 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4               |                             |               |
|----------------------|-------------|--------------|----------------------------------------|-----------------|-----------------------------------------|-----------------|-----------------------------|---------------|
|                      |             |              |                                        | Reagent         |                                         |                 |                             |               |
| Reagent ID           | Exp<br>Date | Prep<br>Date | Dilutant<br>Used                       | Final<br>Volume | Reagent ID                              | Volume<br>Added | Analyte                     | Concentration |
|                      |             |              |                                        |                 |                                         |                 | Terphenyl-d14 (Surr)        | 5000 ug/mL    |
| .8270SurStkHL 00262  | 09/30/22    |              | Restek, Lot A0130500                   |                 | (Purchased Reagent)                     | ent)            | 10                          |               |
|                      |             |              |                                        |                 |                                         |                 | T                           |               |
|                      |             |              |                                        |                 |                                         |                 | 71                          | 5000 ug/mL    |
|                      |             |              |                                        |                 |                                         |                 | 2-Fluorophenol (Surr)       | 5000 ug/mL    |
|                      |             |              |                                        |                 |                                         |                 | Nitrobenzene-d5 (Surr)      | 5000 ug/mL    |
|                      |             |              |                                        |                 |                                         |                 | Phenol-d5 (Surr)            |               |
|                      |             |              |                                        |                 |                                         |                 |                             | 5000 ug/mL    |
|                      |             |              |                                        |                 |                                         |                 | Terphenyl-d14 (Surr)        | 5000 ug/mL    |
| .8270SurStkHL_00263  | 09/30/22    |              | Restek, Lot A0130500                   |                 | (Purchased Reagent)                     | ent)            | 2,4,6 - Tribromophenol      |               |
|                      |             |              |                                        |                 |                                         |                 | 2,4,6-Tribromophenol (Surr) | 5000 ug/mL    |
|                      |             |              |                                        |                 |                                         |                 | 2-Fluorobiphenyl            | 5000 ug/mL    |
|                      |             |              |                                        |                 |                                         |                 | -                           |               |
|                      |             |              |                                        |                 |                                         |                 | Nitrobenzene-d5 (Surr)      |               |
|                      |             |              |                                        |                 |                                         |                 | Phenol-d5 (Surr)            |               |
|                      |             |              |                                        |                 |                                         |                 | Phenol-d6                   | 5000 ug/mL    |
|                      |             |              |                                        |                 |                                         |                 | Terphenyl-d14 (Surr)        | 2000 ng/mL    |
| 8270TCLPSpike_00058  | 12/22/18    | 03/27/18     | P&T Methanol, Lot<br>MethanolP&T 00196 | 100 mL          | 8270 TCLP Stk_00075                     | 4 mL            | 1,4-Dichlorobenzene         | 20 ug/mL      |
|                      |             |              | ı                                      |                 |                                         |                 | 2,4,5-Trichlorophenol       | 50 ug/mL      |
|                      |             |              |                                        |                 |                                         |                 | 2,4,6-Trichlorophenol       | 20 ng/mL      |
|                      |             |              |                                        |                 |                                         |                 | 2,4-Dinitrotoluene          | 20 ug/mL      |
|                      |             |              |                                        |                 |                                         |                 | 2-Methylphenol              | 20 ng/mF      |
|                      |             |              |                                        |                 |                                         |                 | 3 & 4 Methylphenol          | 100 ug/mL     |
|                      |             |              |                                        |                 |                                         |                 | 3-Methylphenol              |               |
|                      |             |              |                                        |                 |                                         |                 | 4-Methylphenol              |               |
|                      |             |              |                                        |                 |                                         |                 | Hexachlorobenzene           | 20 ug/mL      |
|                      |             |              |                                        |                 |                                         |                 | Hexachlorobutadiene         | 20 ng/mL      |
|                      |             |              |                                        |                 |                                         |                 | Hexachloroethane            | 50 ug/mL      |
|                      |             |              |                                        |                 |                                         |                 | Nitrobenzene                | 50 ug/mL      |
|                      |             |              |                                        |                 |                                         |                 | Pentachlorophenol           | 100 ug/mL     |
|                      |             |              |                                        |                 |                                         |                 | Pyridine                    | 50 ug/mL      |
|                      |             |              |                                        | -               | 8270 TCLP Stk_00077                     | 6 mL            | 1,4-Dichlorobenzene         | 20 ng/mL      |
|                      |             |              |                                        |                 |                                         |                 | 2,4,5-Trichlorophenol       | 20 ng/mL      |
|                      |             |              |                                        |                 |                                         |                 | 2,4,6-Trichlorophenol       | 20 ng/mL      |
|                      |             |              |                                        |                 |                                         |                 | 2,4-Dinitrotoluene          | 20 ug/mL      |
|                      |             |              |                                        |                 |                                         |                 | 2-Methylphenol              | 20 ng/mF      |
|                      |             |              |                                        |                 |                                         |                 | 3 & 4 Methylphenol          |               |
|                      |             |              |                                        |                 |                                         |                 | 3-Methylphenol              | 100 ug/mL     |
|                      |             |              |                                        |                 |                                         |                 | 4-Methylphenol              | 100 ug/mL     |
|                      |             |              |                                        |                 |                                         |                 | Hexachlorobenzene           | 20 ug/mL      |
|                      |             |              |                                        |                 |                                         |                 | Hexachlorobutadiene         | 20 ng/mL      |
|                      |             |              |                                        |                 |                                         |                 | Hexachloroethane            | 20 ng/mF      |
|                      |             |              |                                        |                 |                                         |                 | Nitrobenzene                | 20 ng/mF      |
|                      |             |              |                                        |                 |                                         |                 | Pentachlorophenol           | 100 ug/mL     |
|                      |             |              |                                        |                 |                                         |                 | Pyridine                    | 50 ug/mL      |
| .8270 TCLP Stk_00075 | 03/20/19    |              | Supelco, Lot LC26210V                  |                 | (Purchased Reagent)                     | ent)            | 1,4-Dichlorobenzene         | 200 ng/mL     |
|                      |             |              |                                        |                 |                                         |                 | 2,4,5-Trichlorophenol       | 200 ug/mL     |
|                      |             |              |                                        |                 |                                         |                 |                             |               |

#### Page 232 of 3863

Lab Name: TestAmerica Denver Job No.: 320-39023-1

|                      |             |              |                       |                 | Darrent Reagent         |                        |               |
|----------------------|-------------|--------------|-----------------------|-----------------|-------------------------|------------------------|---------------|
|                      | -           |              |                       | Reagent         |                         |                        |               |
| Reagent ID           | Exp<br>Date | Prep<br>Date | Dilutant<br>Used      | Final<br>Volume | Reagent ID Added        | Analyte                | Concentration |
|                      |             |              |                       |                 |                         | 2,4,6-Trichlorophenol  | 500 ug/mL     |
|                      |             |              |                       |                 |                         | 2,4-Dinitrotoluene     | 200 ug/mL     |
|                      |             |              |                       |                 |                         | 2-Methylphenol         | 200 ng/mL     |
|                      |             |              |                       |                 |                         | 3 & 4 Methylphenol     | 1000 ug/mL    |
|                      |             |              |                       |                 |                         | 3-Methylphenol         |               |
|                      |             |              |                       |                 |                         | 4-Methylphenol         |               |
|                      |             |              |                       |                 |                         | Hexachlorobenzene      | 200 ug/mL     |
|                      |             |              |                       |                 |                         | Hexachlorobutadiene    | 500 ug/mL     |
|                      |             |              |                       |                 |                         | Hexachloroethane       | 200 ng/mL     |
|                      |             |              |                       |                 |                         | Nitrobenzene           | 500 ug/mL     |
|                      |             |              |                       |                 |                         | Pentachlorophenol      | 1000 ug/mL    |
|                      |             |              |                       |                 |                         | Pyridine               | 500 ug/mL     |
| .8270 TCLP Stk_00077 | 12/22/18    |              | Supelco, Lot LC26210V |                 | (Purchased Reagent)     | 1,4-Dichlorobenzene    |               |
|                      |             |              |                       |                 |                         | 2,4,5-Trichlorophenol  | 500 ug/mL     |
|                      |             |              |                       |                 |                         | 2,4,6-Trichlorophenol  | 500 ug/mL     |
|                      |             |              |                       |                 |                         | 2,4-Dinitrotoluene     |               |
|                      |             |              |                       |                 |                         | 2-Methylphenol         | 500 ug/mL     |
|                      |             |              |                       |                 |                         | 3 & 4 Methylphenol     |               |
|                      |             |              |                       |                 |                         | 3-Methylphenol         | 1000 ug/mL    |
|                      |             |              |                       |                 |                         | 4-Methylphenol         | 1000 ug/mL    |
|                      |             |              |                       |                 |                         | Hexachlorobenzene      |               |
|                      |             |              |                       |                 |                         | Hexachlorobutadiene    | 500 ug/mL     |
|                      |             |              |                       |                 |                         | Hexachloroethane       | 500 ug/mL     |
|                      |             |              |                       |                 |                         | Nitrobenzene           | 200 ng/mL     |
|                      |             |              |                       |                 |                         | Pentachlorophenol      | 1000 ug/mL    |
|                      |             |              |                       |                 |                         | Pyridine               | 500 ug/mL     |
| MS-DFTPP 00046       |             |              |                       |                 |                         | Aramite, Total         |               |
| ı                    |             |              |                       |                 |                         |                        |               |
|                      |             |              |                       |                 |                         | Isosafrole             |               |
|                      |             |              |                       |                 |                         | Methyl Phenols, Total  |               |
|                      |             |              |                       |                 |                         |                        |               |
|                      |             |              |                       |                 |                         | Tentatively Identified |               |
|                      |             |              |                       |                 |                         | Compound               |               |
|                      |             |              |                       |                 |                         | Total Cresols          |               |
|                      |             |              |                       |                 | MS-47548-II 00015 1 mT. | _                      | 0 05 11g/mT.  |
|                      |             |              |                       | •               |                         |                        | 0.05 ug/mL    |
|                      |             |              |                       |                 |                         | 4,4'-DDT               | 50 ug/mL      |
|                      |             |              |                       |                 |                         | Benzidine T            | 50 ug/mL      |
|                      |             |              |                       |                 |                         |                        |               |
|                      |             |              |                       |                 |                         | Pentachlorophenol T    |               |
| .MS-47548-U 00015    | 03/31/19    |              | Supelco, Lot XA19099V |                 | (Purchased Reagent)     | 4,4'-DDD               | 1 ug/mL       |
| I                    |             |              |                       |                 |                         | 4,4'-DDE               | 1 ug/mL       |
|                      |             |              |                       |                 |                         | 4,4'-DDT               | 1000 ng/mL    |
|                      |             |              |                       |                 |                         | Benzidine T            | 1000 ug/mL    |
|                      |             |              |                       |                 |                         |                        |               |
|                      |             |              |                       |                 |                         | Fentachlorophenol T    | Tm/bn n00T    |
|                      |             |              |                       |                 |                         |                        |               |

Lab Name: TestAmerica Denver

Job No.: 320-39023-1

|                     |               |              |                                   |                 | + + + + + + + + + + + + + + + + + + + | 4                                               |                    |
|---------------------|---------------|--------------|-----------------------------------|-----------------|---------------------------------------|-------------------------------------------------|--------------------|
|                     |               |              |                                   | Reagent         | ratelle heagell                       | - 1                                             |                    |
| Reagent ID          | Exp<br>Date   | Prep<br>Date | Dilutant<br>Used                  | Final<br>Volume | Reagent ID                            | Volume<br>Added Analyte                         | Concentration      |
| MS-FAMSSV_100_00018 | 06/22/18      | 02/08/18     | Methylene Chloride, Lot<br>181545 | 0.5 mL          | MS-IS_00013                           | 50 uL 1,4-Dichlorobenzene-d4                    | 40 ug/mL           |
|                     |               |              |                                   |                 |                                       | Acenaphthene-d10                                | 40 ug/mL           |
|                     |               |              |                                   |                 |                                       | Chrysene-d12                                    |                    |
|                     |               |              |                                   |                 |                                       | Naphthalene-d8                                  |                    |
|                     |               |              |                                   |                 |                                       | Perylene-d12                                    | - 1                |
| ST-3M               | 0 1 / 00 / 30 | 71/00/90     |                                   | С<br>П<br>Т     | MS _ E 67 68 4 0001 9                 | Fuenanthrene-alo                                |                    |
| . MS_LS_COOLS       | 00/22/18      | 11/77/00     | Metnylene Chioride, bot 157164    | TW 007          | M2-36/684_00018                       |                                                 | 400 ug/mL          |
|                     |               |              |                                   |                 |                                       | Acenaphthene-d10                                | 400 ug/mL          |
|                     |               |              |                                   |                 |                                       | Chrysene-d12                                    | 400 ug/mL          |
|                     |               |              |                                   |                 |                                       | Naphthalene-d8                                  |                    |
|                     |               |              |                                   |                 |                                       | Perylene-d12                                    |                    |
| 0                   | 7             |              | F                                 |                 | - 1                                   |                                                 |                    |
| 61000 4884 CINE     | 07/37/70      |              | Kestek, Lot Autizoss              |                 | (rurcilasea Reageile,                 | ant) 1,4-Dichiologenzene-α4<br>Acenaphthene-d10 | 2000 ug/mL         |
|                     |               |              |                                   |                 |                                       | Chrysene-d12                                    |                    |
|                     |               |              |                                   |                 |                                       | Naphthalene-d8                                  |                    |
|                     |               |              |                                   |                 |                                       | Perylene-d12                                    | 2000 ug/mL         |
|                     |               |              |                                   |                 |                                       | Phenanthrene-d10                                | 2000 ug/mL         |
| MS-HSLA004_00035    | 06/22/18      | 04/03/18     | Methylene Chloride, Lot           | 0.5 mL          | MS-HSLA_STK_00040                     | 10 uL 2,4,6-Tribromophenol (Surr)               | 4 ug/mL            |
|                     |               |              | 181545                            |                 |                                       | E C                                             |                    |
|                     |               |              |                                   |                 |                                       | Sil.                                            |                    |
|                     |               |              |                                   |                 |                                       | Z-Fluorophenol (Surr)                           |                    |
|                     |               |              |                                   |                 |                                       | sne-ab                                          |                    |
|                     |               |              |                                   |                 |                                       | Frenol-dS (Surr) Terphenyl-d14 (Surr)           | 4 ug/mL<br>4 ug/mL |
|                     |               |              |                                   |                 |                                       |                                                 |                    |
|                     |               |              |                                   |                 |                                       | Alachlor                                        |                    |
|                     |               |              |                                   |                 |                                       | 3,3'-Dichlorobenzidine                          |                    |
|                     |               |              |                                   |                 |                                       | Benzoic acid                                    |                    |
|                     |               |              |                                   |                 |                                       | Atrazine                                        |                    |
|                     |               |              |                                   |                 |                                       | Caprolactam                                     | 4 ug/mL            |
|                     |               |              |                                   |                 |                                       | 1,1'-Biphenyl                                   |                    |
|                     |               |              |                                   |                 |                                       | 1,2,4,5-Tetrachlorobenzene                      | 4 ug/mL            |
|                     |               |              |                                   |                 |                                       | 1.2-Dichlorobenzene                             |                    |
|                     |               |              |                                   |                 |                                       | 1,2-Diphenylhydrazine                           |                    |
|                     |               |              |                                   |                 |                                       | 1,3-Dichlorobenzene                             | 4 ug/mL            |
|                     |               |              |                                   |                 |                                       | 1,3-Dinitrobenzene                              | 4 ug/mL            |
|                     |               |              |                                   |                 |                                       | 1,4-Dichlorobenzene                             | 4 ug/mL            |
|                     |               |              |                                   |                 |                                       | 1,4-Dioxane                                     | 4 ug/mL            |
|                     |               |              |                                   |                 |                                       | 1-Methylnaphthalene                             |                    |
|                     |               |              |                                   |                 |                                       | 2,2'-oxybis[l-chloropropane]                    | 4 ug/mL<br>4 ug/mL |
|                     |               |              |                                   |                 |                                       | 2.4.5-Trichlorophenol                           |                    |
|                     |               |              |                                   |                 |                                       | 2,4,6-Trichlorophenol                           |                    |
|                     |               |              |                                   |                 |                                       | 2,4-Dichlorophenol                              |                    |
|                     |               |              |                                   |                 |                                       |                                                 |                    |

Lab Name: TestAmerica Denver

SDG No.:

Lab Name: TestAmerica Denver

SDG No.:

|                    |             |              |                        |           | , C             | Parent Reagent                          | it.             |                              |               |
|--------------------|-------------|--------------|------------------------|-----------|-----------------|-----------------------------------------|-----------------|------------------------------|---------------|
| Reagent ID         | Exp<br>Date | Prep<br>Date | Dilutant<br>Used       | ıt        | Final<br>Volume | Reagent ID                              | Volume<br>Added | Analyte                      | Concentration |
|                    |             |              |                        |           |                 |                                         |                 | Hexachlorobutadiene          | 4 ug/mL       |
|                    |             |              |                        |           |                 |                                         |                 | Hexachlorocyclopentadiene    |               |
|                    |             |              |                        |           |                 |                                         |                 | Hexachloroethane             | 4 ug/mL       |
|                    |             |              |                        |           |                 |                                         |                 | Indeno[1,2,3-cd]pyrene       | 4 ug/mL       |
|                    |             |              |                        |           |                 |                                         |                 | Isophorone                   | 4 ug/mL       |
|                    |             |              |                        |           |                 |                                         |                 | N-Nitrosodi-n-propylamine    | 4 ug/mL       |
|                    |             |              |                        |           |                 |                                         |                 | N-Nitrosodimethylamine       | 4 ug/mL       |
|                    |             |              |                        |           |                 |                                         |                 | N-Nitrosodiphenylamine       | 4 ug/mL       |
|                    |             |              |                        |           |                 |                                         |                 | Naphthalene                  | 4 ug/mL       |
|                    |             |              |                        |           |                 |                                         |                 | Nitrobenzene                 | 4 ug/mL       |
|                    |             |              |                        |           |                 |                                         |                 | Pentachlorophenol            | 8 ug/mL       |
|                    |             |              |                        |           |                 |                                         |                 | Phenanthrene                 | - 1           |
|                    |             |              |                        |           |                 |                                         |                 | Phenol                       | - 1           |
|                    |             |              |                        |           |                 |                                         |                 | Pyrene                       |               |
|                    |             |              |                        |           |                 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                 | Pyridine                     |               |
|                    |             |              |                        |           |                 | MS-IS_00013                             | 20 uL           | 1,4-Dichlorobenzene-d4       |               |
|                    |             |              |                        |           |                 |                                         |                 | Acenaphthene-d10             |               |
|                    |             |              |                        |           |                 |                                         |                 | Chrysene-d12                 |               |
|                    |             |              |                        |           |                 |                                         |                 | Naphthalene-d8               |               |
|                    |             |              |                        |           |                 |                                         |                 | Perylene-d12                 | 40 ug/mL      |
|                    |             |              | -                      |           |                 |                                         | - 1             |                              |               |
| .MS-HSLA_STK_00040 | 06/30/18    | 01/30/18     | 8   Methylene Chloride | ride, Lot | 10 mL           | MS-567685_00004                         | 0.4 mL          | 2,4,6-Tribromophenol (Surr)  | 200 ug/mL     |
|                    |             |              | 10 T O T               |           |                 |                                         |                 | ריזה בלתי להיא הני [ ח – 2   | 200 mg/mT.    |
|                    |             |              |                        |           |                 |                                         |                 | 2-FIUOTODAPINAT              | 200 ug/IIII.  |
|                    |             |              |                        |           |                 |                                         |                 | Nitrobonzono_AR /Surr)       |               |
|                    |             |              |                        |           |                 |                                         |                 | ile and                      |               |
|                    |             |              |                        |           |                 |                                         |                 | G                            |               |
|                    |             |              |                        |           |                 |                                         | ,               | Terphenyl-d14 (Surr)         |               |
|                    |             |              |                        |           |                 |                                         | $\vdash$        | Famphur                      |               |
|                    |             |              |                        |           |                 |                                         | 0.5 mL          | Alachlor                     | 200 ug/mL     |
|                    |             |              |                        |           |                 | - 1                                     |                 | 3,3'-Dichlorobenzidine       |               |
|                    |             |              |                        |           |                 | MS-569731 00070                         |                 | Benzoic acid                 |               |
|                    |             |              |                        |           |                 | MS-569732 HSL_00005                     | 1 mL            | Atrazine                     | 200 ug/mL     |
|                    |             |              |                        |           |                 |                                         |                 | Caprolactam                  | 200 ug/mL     |
|                    |             |              |                        |           |                 | MS-571995_00001                         | 2 mL            | 1,1'-Biphenyl                | 200 ug/mL     |
|                    |             |              |                        |           |                 |                                         |                 | 1,2,4,5-Tetrachlorobenzene   |               |
|                    |             |              |                        |           |                 |                                         |                 | 1,2,4-Trichlorobenzene       | 200 ug/mL     |
|                    |             |              |                        |           |                 |                                         |                 | 1,2-Dichlorobenzene          | 200 ug/mL     |
|                    |             |              |                        |           |                 |                                         |                 | 1,2-Diphenylhydrazine        | 202.195 ug/mL |
|                    |             |              |                        |           |                 |                                         |                 | 1,3-Dichlorobenzene          | 200 ug/mL     |
|                    |             |              |                        |           |                 |                                         |                 | 1,3-Dinitrobenzene           | 200 ug/mL     |
|                    |             |              |                        |           |                 |                                         |                 | 1,4-Dichlorobenzene          | 200 ug/mL     |
|                    |             |              |                        |           |                 |                                         |                 | 1,4-Dioxane                  |               |
|                    |             |              |                        |           |                 |                                         |                 | 1-Methylnaphthalene          |               |
|                    |             |              |                        |           |                 |                                         |                 | 2,2'-oxybis[1-chloropropane] | 200 ug/mL     |
|                    |             |              |                        |           |                 |                                         |                 | 2,3,4,6-Tetrachlorophenol    |               |
|                    |             |              |                        |           |                 |                                         |                 | 2,4,5-Trichlorophenol        |               |
|                    |             |              |                        |           |                 |                                         |                 | 2,4,6-Trichlorophenol        | 200 ug/mL     |
| -                  | -           |              |                        |           |                 |                                         |                 |                              |               |

Lab Name: TestAmerica Denver

Job No.: 320-39023-1

| Exp Bate ID Date | Prep<br>Date | Dilutant | Final       | emii[oV]         |                                  |               |
|------------------|--------------|----------|-------------|------------------|----------------------------------|---------------|
|                  |              | Used     | ) H C H C H | Reagent ID Added | me<br>ed Analyte                 | Concentration |
|                  |              |          |             |                  | 2,4-Dichlorophenol               | 200 ug/mL     |
|                  |              |          |             |                  | 2,4-Dimethylphenol               |               |
|                  |              |          |             |                  | 2,4-Dinitrophenol                | 400 ug/mL     |
|                  |              |          |             |                  | 2,4-Dinitrotoluene               | 200 ug/mL     |
|                  |              |          |             |                  | 2,6-Dichlorophenol               | 200 ug/mL     |
|                  |              |          |             |                  | 2,6-Dinitrotoluene               | 200 ug/mL     |
|                  |              |          |             |                  | 2-Chloronaphthalene              | 200 ug/mL     |
|                  |              |          |             |                  | 2-Chlorophenol                   | 200 ug/mL     |
|                  |              |          |             |                  | 2-Methylnaphthalene              |               |
|                  |              |          |             |                  | 2-Methylphenol                   |               |
|                  |              |          |             |                  | 2-Nitroaniline                   |               |
|                  |              |          |             |                  | 2-Nitrophenol                    |               |
|                  |              |          |             |                  | 3 A Mother Charles               |               |
|                  |              |          |             |                  | 8 Z                              |               |
|                  |              |          |             |                  | 3-Nicrodilitine                  |               |
|                  |              |          |             |                  |                                  | - 1           |
|                  |              |          |             |                  | 4-bromophenyl phenyl ether       |               |
|                  |              |          |             |                  | 4-Chloro-3-methylphenol          | 700 nd/mT     |
|                  |              |          |             |                  |                                  | 200           |
|                  |              |          |             |                  | 4-CIITOLOPINENIAI PINENIAI ECHEL | 200           |
|                  |              |          |             |                  | 4-Nitronininie                   |               |
|                  |              |          |             |                  | 4-NICPHENOI                      |               |
|                  |              |          |             |                  | Acenaphthene                     |               |
|                  |              |          |             |                  | Acenaphthylene                   | - 1           |
|                  |              |          |             |                  | Acetophenone                     |               |
|                  |              |          |             |                  | Aniline                          | 200 ug/mL     |
|                  |              |          |             |                  | Anthracene                       | 200 ug/mL     |
|                  |              |          |             |                  | Azobenzene                       | 200 ug/mL     |
|                  |              |          |             |                  | Benzo[a]anthracene               | 200 ug/mL     |
|                  |              |          |             |                  | Benzo[a]pyrene                   | 200 ug/mL     |
|                  |              |          |             |                  | Benzo[b]fluoranthene             | 200 ug/mL     |
|                  |              |          |             |                  | Benzo[g,h,i]perylene             | 200 ug/mL     |
|                  |              |          |             |                  | Benzo[k]fluoranthene             | 200 ug/mL     |
|                  |              |          |             |                  | Benzyl alcohol                   | 200 ug/mL     |
|                  |              |          |             |                  | Bis (2-chloroethoxy) methane     | 200 ug/mL     |
|                  |              |          |             |                  | Bis (2-chloroethyl) ether        | 200 ug/mL     |
|                  |              |          |             |                  |                                  |               |
|                  |              |          |             |                  | Butyl benzyl phthalate           | 200 ug/mL     |
|                  |              |          |             |                  | Carbazole                        | 200 ug/mL     |
|                  |              |          |             |                  | Chrysene                         | 200 ug/mL     |
|                  |              |          |             |                  | Di-n-butyl phthalate             | 200 ug/mL     |
|                  |              |          |             |                  | Di-n-octvl phthalate             |               |
|                  |              |          |             |                  |                                  |               |
|                  |              |          |             |                  | Dibenzofuran                     |               |
|                  |              |          |             |                  | Diethyl phthalate                |               |
|                  |              |          |             |                  |                                  |               |
|                  |              |          |             |                  | Diphenylamine                    | 170 ug/mL     |
|                  |              |          |             |                  | Fluoranthene                     | 200 ug/mL     |
|                  |              |          |             |                  | Fluorene                         | 200 ug/mL     |

Lab Name: TestAmerica Denver

Job No.: 320-39023-1

| (Purchased Reagent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |                  |              |            | Reagent         | Parent Reagent |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------|--------------|------------|-----------------|----------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Restek, Lot A0130500 (Purchased Reagent) Restek, Lot A0127668 (Purchased Reagent) Restek, Lot A01273057 (Purchased Reagent) Restek, Lot A0127890 (Purchased Reagent) Restek, Lot A0127890 (Purchased Reagent) Restek, Lot A0127890 (Purchased Reagent) Restek, Lot A0125805 (Purchased Reagent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | Exp<br>Date      | Prep<br>Date |            | Final<br>Volume |                | Volume<br>Added | Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Concentration |
| Restek, Lot A0127668 Restek, Lot A0127668 Restek, Lot A0127677 Restek, Lot A0127472 Restek, Lot A0127819 Restek, Lot A0127800 Restek, Lot A012780 Restek, Lot A012780 Restek, Lot A012780 Restek, Lot A0127805 Restek, Lot A0127805 Restek, Lot A0127805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |                  |              |            |                 |                |                 | Hexachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200 ug/mL     |
| Restek, Lot A0127668  Restek, Lot A0127668  Restek, Lot A0123057  Restek, Lot A0123057  Restek, Lot A012389  Restek, Lot A0125805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                  |              |            |                 |                |                 | Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200 ug/mL     |
| Restek, Lot A0130500 (Purchased Reagent) Restek, Lot A0127668 (Purchased Reagent) Restek, Lot A0127472 (Purchased Reagent) Restek, Lot A012789 (Purchased Reagent) Restek, Lot A0125805 (Purchased Reagent) Restek, Lot A0125805 (Purchased Reagent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |                  |              |            |                 |                |                 | Hexachlorocyclopentadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200 ug/mL     |
| Restek, Lot A0130500  Restek, Lot A0127668  Restek, Lot A012787  Restek, Lot A0127819  Restek, Lot A012780  Restek, Lot A012805  Restek, Lot A012805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                  |              |            |                 |                |                 | Indeno[1,2,3-cd]pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 200 ug/mL     |
| Restek, Lot A0130500 (Purchased Reagent) Restek, Lot A0127668 (Purchased Reagent) Restek, Lot A0123819 (Purchased Reagent) Restek, Lot A0123819 (Purchased Reagent) Restek, Lot A0125805 (Purchased Reagent) Restek, Lot A0125805 (Purchased Reagent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |                  |              |            |                 |                |                 | Isophorone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |
| Restek, Lot A0130500 (Purchased Reagent)  Restek, Lot A0127668 (Purchased Reagent)  Restek, Lot A0123057 (Purchased Reagent)  Restek, Lot A0123819 (Purchased Reagent)  Restek, Lot A012580 (Purchased Reagent)  Restek, Lot A012580 (Purchased Reagent)  Restek, Lot A0125805 (Purchased Reagent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                  |              |            |                 |                |                 | N-Nitrosodi-n-propylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |
| Restek, Lot A0130500 (Purchased Reagent)  Restek, Lot A0127668 (Purchased Reagent)  Restek, Lot A0123472 (Purchased Reagent)  Restek, Lot A0123805 (Purchased Reagent)  Restek, Lot A0125805 (Purchased Reagent)  Restek, Lot A0125805 (Purchased Reagent)  Restek, Lot A0125805 (Purchased Reagent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |                  |              |            |                 |                |                 | N-Nitrosodimethylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 200 ug/mL     |
| Restek, Lot A0130500 (Purchased Reagent) Restek, Lot A0127668 (Purchased Reagent) Restek, Lot A0133057 (Purchased Reagent) Restek, Lot A0127580 (Purchased Reagent) Restek, Lot A0127580 (Purchased Reagent) Restek, Lot A0125805 (Purchased Reagent) Restek, Lot A0125805 (Purchased Reagent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |                  |              |            |                 |                |                 | N-Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |
| Restek, Lot A0130500 (Furchased Reagent) Restek, Lot A0127658 (Furchased Reagent) Restek, Lot A0127472 (Furchased Reagent) Restek, Lot A0123819 (Furchased Reagent) Restek, Lot A0125805 (Furchased Reagent) Restek, Lot A0125805 (Furchased Reagent) Restek, Lot A0125805 (Furchased Reagent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |                  |              |            |                 |                |                 | Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |
| Restek, Lot A0127668 (Purchased Reagent) Restek, Lot A0127668 (Purchased Reagent) Restek, Lot A0127819 (Purchased Reagent) Restek, Lot A0127819 (Purchased Reagent) Restek, Lot A012780 (Purchased Reagent) Restek, Lot A012780 (Purchased Reagent) Restek, Lot A012780 (Purchased Reagent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |                  |              |            |                 |                |                 | Nitrobenzene<br>Pentachloronhenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 400 ug/mL     |
| Restek, Lot A0130500 (Purchased Reagent) Restek, Lot A0127668 (Purchased Reagent) Restek, Lot A01233057 (Purchased Reagent) Restek, Lot A0123819 (Purchased Reagent) Restek, Lot A0127580 (Purchased Reagent) Restek, Lot A0125805 (Purchased Reagent) Restek, Lot A0125805 (Purchased Reagent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                  |              |            |                 |                |                 | Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200 ug/mL     |
| Restek, Lot A0127668 (Purchased Reagent) Restek, Lot A0127668 (Purchased Reagent) Restek, Lot A0123819 (Purchased Reagent) Restek, Lot A0123819 (Purchased Reagent) Restek, Lot A0127580 (Purchased Reagent) Restek, Lot A0125805 (Purchased Reagent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |                  |              |            |                 |                |                 | Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |
| Restek, Lot A0130500 (Purchased Reagent) Restek, Lot A0127668 (Purchased Reagent) Restek, Lot A012319 (Purchased Reagent) Restek, Lot A0123819 (Purchased Reagent) Restek, Lot A0123800 (Purchased Reagent) Restek, Lot A0125805 (Purchased Reagent) Restek, Lot A0125805 (Purchased Reagent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                  |              |            |                 |                |                 | Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |
| Restek, Lot A0127668 (Purchased Reagent) Restek, Lot A0127668 (Purchased Reagent) Restek, Lot A0123819 (Purchased Reagent) Restek, Lot A012780 (Purchased Reagent) Restek, Lot A0127580 (Purchased Reagent) Restek, Lot A0125805 (Purchased Reagent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |                  |              |            |                 |                |                 | Pyridine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |
| Restek, Lot A0127668 (Purchased Reagent) Restek, Lot A0133057 (Purchased Reagent) Restek, Lot A0127472 (Purchased Reagent) Restek, Lot A0127819 (Purchased Reagent) Restek, Lot A012780 (Purchased Reagent) Restek, Lot A0125805 (Purchased Reagent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ĕ   |                  |              | Lot A0130  |                 |                | nt)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| Restek, Lot A0127668 (Purchased Reagent) Restek, Lot A0123057 (Purchased Reagent) Restek, Lot A0123819 (Purchased Reagent) Restek, Lot A0127580 (Purchased Reagent) Restek, Lot A0125805 (Purchased Reagent) Restek, Lot A0125805 (Purchased Reagent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |                  |              |            |                 |                |                 | 2-Fluorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |
| Restek, Lot A0127668 (Purchased Reagent) Restek, Lot A0133057 (Purchased Reagent) Restek, Lot A0127819 (Purchased Reagent) Restek, Lot A0125805 (Purchased Reagent) Restek, Lot A0125805 (Purchased Reagent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |                  |              |            |                 |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| Restek, Lot A0127668 (Purchased Reagent) Restek, Lot A0133057 (Purchased Reagent) Restek, Lot A0127472 (Purchased Reagent) Restek, Lot A012780 (Purchased Reagent) Restek, Lot A012780 (Purchased Reagent) Restek, Lot A0125805 (Purchased Reagent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |                  |              |            |                 |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| Restek, Lot A0127668 (Purchased Reagent) Restek, Lot A0133057 (Purchased Reagent) Restek, Lot A0123819 (Purchased Reagent) Restek, Lot A012580 (Purchased Reagent) Restek, Lot A0125805 (Purchased Reagent) Restek, Lot A0125805 (Purchased Reagent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |                  |              |            |                 |                |                 | ы                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |
| Restek, Lot A012/000 (Furchased Reagent) Restek, Lot A0123819 (Furchased Reagent) Restek, Lot A0123819 (Furchased Reagent) Restek, Lot A0127580 (Furchased Reagent) Restek, Lot A0125805 (Furchased Reagent) Restek, Lot A0125805 (Furchased Reagent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | 7                |              | F +        |                 | - 1            | - 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2000 ug/mT    |
| Restek, Lot A0123819 (Purchased Reagent) Restek, Lot A012580 (Purchased Reagent) Restek, Lot A0125805 (Purchased Reagent) Restek, Lot A0125805 (Purchased Reagent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 03/31/19         |              | TO+ A013   |                 |                | 11.)            | Fampint 37 = Ch 2 - Ch |               |
| Restek, Lot A0123819 (Purchased Reagent) Restek, Lot A0125805 (Purchased Reagent) Restek, Lot A0125805 (Purchased Reagent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | 11/30/12         |              | 10+ 7012   | +               |                | 7+)             | 3 2 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2000 ug/mI    |
| Restek, Lot A0125805 (Furchased Reagent)  Restek, Lot A0125805 (Purchased Reagent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 100/90           |              | TO+ +01    |                 | - 1            | 11.7            | Desired of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
| Restek, Lot A0125805 (Purchased Reagent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 1 | 11/30/18         |              | Tot A0127  |                 | - 1            | 11.)            | Delizorc acra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2000 ug/mT    |
| Restek, Lot A0125805 (Purchased Reagent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •   | 0 1 100 11 11 11 |              | 200        |                 |                | ();             | Caprolactam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ť   | 91/30/30         |              | T.O+ A0125 |                 |                | 1+1             | 1 1 - Binhenss1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis[1-chloropane] 2,3,4,6-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dimitrophenol 2,4-Dim | -   | 01/00/60         |              | LOC AUIZO  |                 |                | 10)             | 1.2.4.5-Tetrachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 1           |
| 1,2-Dichlorobenzene 1,2-Diphenylhydrazine 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 2,2'-oxybis[1-chloropane] 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,4-Dimitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                  |              |            |                 |                |                 | 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |
| 1,2-Diphenylhydrazine 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichloropenzene 2,2'-oxybis[1-chlorophenol 2,3,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |                  |              |            |                 |                |                 | 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |
| 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dioxane 1,4 |     |                  |              |            |                 |                |                 | 1,2-Diphenylhydrazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1010.97 ug/mL |
| 1,3-Dinitrobenzene 1,4-Dichlorobenzene 1,4-Dioxane 1-Methylnaphthalene 2,2'-oxybis[1-chlorophenol 2,4,6-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,6-Dichlorophenol 2,6-Dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                  |              |            |                 |                |                 | 1,3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1000 ug/mL    |
| 1,4-Dichlorobenzene 1,4-Dioxane 1,4-Dioxane 1,4-Dioxane 1,2,1-cxybis[1-chloropane] 2,3,4,6-Tetrachlorophenol 2,4,6-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,6-Dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |                  |              |            |                 |                |                 | 1,3-Dinitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |
| 1,4-Dioxane  1-Methylnaphthalene 2,2'-oxybis[1-chloroprane] 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |                  |              |            |                 |                |                 | 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1000 ug/mL    |
| 1-Methylnaphthalene 2,2'-oxybis[1-chloroprane] 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4-6-Trichlorophenol 2,4-Dimethylphenol 2,4-Dimitrotoluene 2,4-Dimitrotoluene 2,4-Dimitrotoluene 2,6-Dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |                  |              |            |                 |                |                 | 1,4-Dioxane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1000 ug/mL    |
| 2,2'-oxybis[1-chloropropane] 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |                  |              |            |                 |                |                 | 1-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |
| 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimitrophenol 2,4-Dimitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,6-Dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |                  |              |            |                 |                |                 | 2,2'-oxybis[1-chloropropane]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1000 ug/mL    |
| 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dimitrophenol 2,4-Dinitrophenol 2,6-Dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |                  |              |            |                 |                |                 | 2,3,4,6-Tetrachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1000 ug/mL    |
| 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,6-Dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                  |              |            |                 |                |                 | 2,4,5-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1000 ug/mL    |
| 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                  |              |            |                 |                |                 | 2,4,6-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1000 ug/mL    |
| 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |                  |              |            |                 |                |                 | 2,4-Dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1000 ug/mL    |
| 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                  |              |            |                 |                |                 | 2,4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1000 ug/mL    |
| 2,4-Dinitrotoluene 2,6-Dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |                  |              |            |                 |                |                 | 2,4-Dinitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2000 ug/mL    |
| [2,6-Dichloropheno]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |                  |              |            |                 |                |                 | 2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1000 ug/mL    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                  |              |            |                 |                |                 | 2,6-Dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1000 ug/mL    |

Lab Name: TestAmerica Denver

Job No.: 320-39023-1

| 2-Chlorophenol 1000 ug/mL 2-Chlorophenol 1000 ug/mL 1000 ug/mL 2-Chlorophenol 1000 ug/mL |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inloronaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MILO DINCHOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2-Methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Z-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| & 4 Methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4,6-Dinitro-2-methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4-Bromophenyl phenyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4 CITACLO DINCCIIZADICIOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4-Chlorophenyl phenyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Acetopnenone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Antitille                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Azobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Benzo[a]anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Benzo[a]pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Benzo[b]fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Benzo[g,h,i]perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Benzo[k]fluoranthene<br>Renzvl alcohol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Bis (2-chloroethoxv) methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Bis (2-chloroethyl)ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Bis(2-ethylhexyl) phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Butyl benzyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Carbazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| U1-n-butyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Di-n-octyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Dibenzofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Diethyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Dimethyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Diphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Hexachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Hexachlorocyclopentadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Hexachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Indeno[1,2,3-cd]pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Isophorone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Lab Name: TestAmerica Denver Job No.: 320-39023-1

SDG No.:

|                | Concentration              | 1000 ug/mL                |                        |                        | 1000 ug/mL  | 1000 ug/mL   | 2000 ug/mL        |              |        | 1000 ug/mL |          | 400 ug/mL               | 400 mg/mT,       |              |                |              |                  | - 1                    | - 1              |              |                |                      |              | 7m/bn 0007       | 10 ug/mL                    | 10 ug/mL         | 10 ug/mL              | 10 ug/mL               |  | 10 ug/mL | 10 ug/mL               | 20 ug/mL     |          | 10 ug/mL    | 10 ug/mL      | 10 ug/mL                   | 10 ug/mL               | 10 ug/mL            |                       | 10                  |                    |                     |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 ug/mL                  |
|----------------|----------------------------|---------------------------|------------------------|------------------------|-------------|--------------|-------------------|--------------|--------|------------|----------|-------------------------|------------------|--------------|----------------|--------------|------------------|------------------------|------------------|--------------|----------------|----------------------|--------------|------------------|-----------------------------|------------------|-----------------------|------------------------|--|----------|------------------------|--------------|----------|-------------|---------------|----------------------------|------------------------|---------------------|-----------------------|---------------------|--------------------|---------------------|-------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|                | Analvte                    | N-Nitrosodi-n-propylamine | N-Nitrosodimethylamine | N-Nitrosodiphenylamine | Naphthalene | Nitrobenzene | Pentachlorophenol | Phenanthrene | Phenol | Pyrene     | Pyridine | 1,4-Dichlorobenzene-d4  | Acenaphthene-d10 | Chryspho-d12 | Naphthaleneld8 | Parvlana-d12 | Phenanthrene-d10 | 1.4-Dichlorobenzene-d4 | Acenaphthene-d10 | Chrysene-d12 | Namhthalonolds | Napilicia Telle - do | Perylene-diz | Fnenanthrene-dlU | 2,4,6-Tribromophenol (Surr) | 2-Fluorobiphenyl | 2-Fluorophenol (Surr) | Nitrobenzene-d5 (Surr) |  | Alachlor | 3,3'-Dichlorobenzidine | Benzoic acid | Atrazine | Caprolactam | 1,1'-Biphenyl | 1,2,4,5-Tetrachlorobenzene | 1,2,4-Trichlorobenzene | 1,2-Dichlorobenzene | 1,2-Diphenylhydrazine | 1,3-Dichlorobenzene | 1,3-Dinitrobenzene | 1 4-Dichlorobenzene | 1 A-Dioxana | 1-Methylnanhthalene | 2 21 - Company and process of a company of a | 2,3,4,6-Tetrachlorophenol |
|                | Volume                     |                           |                        |                        |             |              |                   |              |        |            |          | 20 mL                   |                  |              |                |              |                  | n+)                    |                  |              |                |                      |              |                  | 25 uL                       |                  |                       |                        |  |          |                        |              |          |             |               |                            |                        |                     |                       |                     |                    |                     |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| Parent Reagent | Reagent ID                 | - 1                       |                        |                        |             |              |                   |              |        |            |          | MS-567684_00019         |                  |              |                |              |                  | (Pirchased Reagent)    |                  |              |                |                      |              |                  | MS-HSLA_STK_00040           |                  |                       |                        |  |          |                        |              |          |             |               |                            |                        |                     |                       |                     |                    |                     |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 4              | Reagent<br>Final<br>Volume |                           |                        |                        |             |              |                   |              |        |            |          | 250 mL 1                |                  |              |                |              |                  |                        |                  |              |                |                      |              |                  | 0.5 mL                      |                  |                       |                        |  |          |                        |              |          |             |               |                            |                        |                     |                       |                     |                    |                     |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                | Dilutant<br>Used           |                           |                        |                        |             |              |                   |              |        |            |          | Methylene Chloride, Lot | 13/164           |              |                |              |                  | Restek Tot A0112833    |                  |              |                |                      |              |                  | Methylene Chloride, Lot     |                  |                       |                        |  |          |                        |              |          |             |               |                            |                        |                     |                       |                     |                    |                     |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                | Prep<br>Date               |                           |                        |                        |             |              |                   |              |        |            |          | 06/22/17 N              |                  |              |                |              |                  |                        |                  |              |                |                      |              |                  | 04/03/18 N                  | 1                |                       |                        |  |          |                        |              |          |             |               |                            |                        |                     |                       |                     |                    |                     |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                | Exp<br>Date                |                           |                        |                        |             |              |                   |              |        |            |          | 06/22/18 0              |                  |              |                |              |                  | 07/31/20               | )<br>H           |              |                |                      |              | -                | 06/22/18 0                  |                  |                       |                        |  |          |                        |              |          |             |               |                            |                        |                     |                       |                     |                    |                     |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                | Reagent ID                 |                           |                        |                        |             |              |                   |              |        |            |          | .MS-IS_00013            |                  |              |                |              |                  | MS-567684 00019        | 1                |              |                |                      |              |                  | MS-HSLA010_00035            |                  |                       |                        |  |          |                        |              |          |             |               |                            |                        |                     |                       |                     |                    |                     |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |

#### Page 240 of 3863

Lab Name: TestAmerica Denver

SDG No.:

| Reagent ID Date Date Date Reagent ID Date Reagent ID Date Date Reagent ID Date |             |              |                  | +<br>2<br>2<br>2<br>2 | Parent Reagent |                 |                                                                       |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|------------------|-----------------------|----------------|-----------------|-----------------------------------------------------------------------|---------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Exp<br>Date | Prep<br>Date | Dilutant<br>Used | Final                 | Reagent ID     | Volume<br>Added | Analyte                                                               | Concentration |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | 2,4,5-Trichlorophenol                                                 | 10 ug/mL      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | 2,4,6-Trichlorophenol                                                 | 10 ug/mL      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | 2,4-Dichlorophenol                                                    | 10 ug/mL      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | 2,4-Dimethylphenol                                                    | 10 ug/mL      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | 2,4-Dinitrophenol                                                     | 20 ug/mL      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | 2,4-Dinitrotoluene                                                    | 10 ug/mL      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | 2,6-Dichlorophenol                                                    | 10 ug/mL      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | 2,6-Dinitrotoluene                                                    | 10 ug/mL      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | 2-Chloronaphthalene                                                   | 10 ug/mL      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | 2-Chlorophenol                                                        | 10 ug/mL      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | 2-Methylnaphthalene                                                   | 10 ug/mL      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | 2-Methylphenol                                                        | 10 ug/mL      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | 2-Nitroaniline                                                        | - 1           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | 2-Nitrophenol                                                         | 10 ug/mL      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | 3 & 4 Methylphenol                                                    | 10 ug/mL      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | 3-Nitroaniline                                                        | 10 ug/mL      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | 4,6-Dinitro-2-methylphenol                                            | 20 ug/mL      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | 4-Bromophenyl phenyl ether                                            | 10 ug/mL      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | 4-Chloro-3-methylphenol                                               | 10 ug/mL      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 |                                                                       | 10 ug/mL      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | 4-Chlorophenyl phenyl ether                                           | - 1           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | 4-Nitroaniline                                                        | - 1           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | 4-Nitrophenol                                                         | - 1           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | Acenaphthene                                                          | 10 ug/mL      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | Acenaphthylene                                                        | 10 ug/mL      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | Acetophenone                                                          | 10 ug/mL      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | Aniline                                                               | - 1           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | Anthracene                                                            | - 1           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | Azobenzene                                                            |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | Benzo[a]anthracene                                                    | 10 ug/mL      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | Benzo[a]pyrene                                                        |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | benzo[b]iluorantnene                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | Benzolg, n, 1 jperylene                                               |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | benzo[k]ıluorantnene                                                  | - 1           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | Benzyl alconol<br>Bis(2-ch]oroethown) methane                         | 10 11g/mT.    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | Dis (2 ciror de ciros y ) ine cirane<br>Dis (2 ch ) exectival ) ether | 10 kg/mil     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | Bis(2-cmioecmy1) echel<br>Bis(2-ethv1hexv1) phthalate                 | - 1           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | 1 (0                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 |                                                                       |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | Chrysene                                                              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | Di-n-butyl phthalate                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | Di-n-octyl phthalate                                                  | 10 ug/mL      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 |                                                                       |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | Dibenzofuran                                                          | 10 ug/mL      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | Diethyl phthalate                                                     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                       |                |                 | Dimethyl phthalate                                                    |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  | _                     |                |                 | Diphenylamine                                                         | 8.5 ug/mL     |

Lab Name: TestAmerica Denver

Job No.: 320-39023-1

|                    |             |              |                         | ()<br>()<br>()<br>() | Parent Reagent      | The state of the s |                              |                  |
|--------------------|-------------|--------------|-------------------------|----------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------|
| Reagent ID         | Exp<br>Date | Prep<br>Date | Dilutant<br>Used        | Final<br>Volume      | Reagent ID          | Volume<br>Added                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analyte                      | Concentration    |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fluoranthene                 | 10 ug/mL         |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fluorene                     | 10 ug/mL         |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hexachlorobenzene            |                  |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hexachlorobutadiene          |                  |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hexachlorocyclopentadiene    | 10 ug/mL         |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hexachloroethane             | 10 ug/mL         |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Indeno[1,2,3-cd]pyrene       |                  |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Isophorone                   |                  |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N-Nitrosodi-n-propylamine    |                  |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N-Nitrosodimethylamine       | 10 ug/mL         |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N-Nitrosodiphenylamine       |                  |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Naphthalene                  | - 1              |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nitrobenzene                 | - 1              |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pentachlorophenol            |                  |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Phenanthrene                 | - 1              |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Phenol                       | - 1              |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pyrene                       | 10 ug/mL         |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pyridine                     |                  |
|                    |             |              |                         |                      | MS-IS_00013         | 50 uL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,4-Dichlorobenzene-d4       | 40 ug/mL         |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Acenaphthene-d10             | 40 ug/mL         |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chrysene-d12                 | 40 ug/mL         |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Naphthalene-d8               | 40 ug/mL         |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Perylene-d12                 | 40 ug/mL         |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Phenanthrene-d10             | 40 ug/mL         |
| .MS-HSLA_STK_00040 | 06/30/18    | 01/30/18     | Methylene Chloride, Lot | 10 mL                | MS-567685_00004     | 0.4 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,4,6-Tribromophenol (Surr)  | 200 ug/mL        |
|                    |             |              | 181343                  |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-Fluorobiphenvl             | 200 ug/mL        |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-Fluorophenol (Surr)        |                  |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LC.                          |                  |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                  |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Terphenyl-d14 (Surr)         |                  |
|                    |             |              |                         |                      | MS-568023 00042     | 1 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Famphur                      | 200 ug/mL        |
|                    |             |              |                         | '                    | MS-568033 00026     | 0.5 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Alachlor                     | 200 ug/mL        |
|                    |             |              |                         |                      | MS-569730 HSL 00007 | 1 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,3'-Dichlorobenzidine       | 200 ug/mL        |
|                    |             |              |                         |                      |                     | 2 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Benzoic acid                 | 400 ug/mL        |
|                    |             |              |                         |                      | MS-569732 HSL_00005 | 1 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Atrazine                     |                  |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Caprolactam                  |                  |
|                    |             |              |                         |                      | MS-571995_00001     | 2 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,1'-Biphenyl                | 200 ug/mL        |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,2,4,5-Tetrachlorobenzene   |                  |
|                    |             |              |                         |                      |                     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,2,4-Trichlorobenzene       |                  |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,2-Dichlorobenzene          | 200              |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,2-Diphenylhydrazine        |                  |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,3-Dichlorobenzene          |                  |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,3-Dinitrobenzene           | - 1              |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,4-Dichlorobenzene          |                  |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,4-Dloxane                  |                  |
|                    |             |              |                         |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-Metnyinaphthaiene          | 700 ng/mr        |
| _                  | _           | _            | _                       | _                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z -OXYDIS[I-CIIIOLOPIOPAIIE] | TIII / 6 n 0 0 7 |

Lab Name: TestAmerica Denver

Job No.: 320-39023-1

SDG No.:

ng/mL ng/mL ng/mL ng/mL ng/mL ng/mL 200 ug/mL ng/mL ng/mL ng/mL 200 ug/mL 200 ug/mL Concentration 200 ug/mL ng/mL ng/mL 200 ug/mL 200 ug/mL ng/mL 200 ug/mL 200 ug/mL 200 ug/mL 400 ug/mL 200 ug/mL :00 ug/mL 400 ug/mL 200 Benzo[g,h,i]perylene
Benzo[k]fluoranthene
Benzyl alcohol
Bis(2-chloroethoxy)methane
Bis(2-chloroethyl)ether Bis(2-ethylhexyl) phthalate Butyl benzyl phthalate Carbazole Chrysene ether 4-Bromophenyl phenyl ether 4,6-Dinitro-2-methylphenol 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 4-Chloro-3-methylphenol 4-Chlorophenyl phenyl Benzo[a]pyrene Benzo[b]fluoranthene 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dichlorophenol -Methylnaphthalene 2-Chloronaphthalene Analyte Azobenzene Benzo[a]anthracene 2,6-Dinitrotoluene 3 & 4 Methylphenol 4-Chloroaniline 2-Nitroaniline 3-Nitroaniline 4-Nitroaniline Acenaphthylene 2-Methylphenol 2-Chloropheno] 2-Nitrophenol 4-Nitrophenol Acenaphthene Acetophenone Anthracene Aniline Volume Added Parent Reagent Reagent ID Reagent Volume Final Dilutant Used Prep Date Exp Date Reagent ID

#### Page 243 of 3863

ng/mL

200 ug/mL ng/mL 200 ug/mL 200 ug/mL ng/mL 200 ug/mL

Di-n-octyl phthalate Dibenz (a,h) anthracene

Dibenzofuran Diethyl phthalate Dimethyl phthalate

Di-n-butyl phthalate

Lab Name: TestAmerica Denver

Job No.: 320-39023-1

| ID Added                                   |
|--------------------------------------------|
| 30,000                                     |
| Dipilenylamine                             |
| Fluoranthene                               |
| Hexachlorobenzene                          |
| Hexachlorobutadiene                        |
| Hexachlorocyclopentadiene                  |
| Hexachloroethane                           |
| Indeno[1,2,3-cd]pyrene                     |
| N-Nitrosodi-n-propylamine                  |
| N-Nitrosodimethylamine                     |
| N-Nitrosodiphenylamine                     |
| Naphthalene                                |
| Nitrobenzene                               |
| Pentachlorophenol                          |
| Frenanchrene                               |
| Phenol                                     |
| Pyrelle<br>Dividing                        |
| Pirchaeod Boacont)                         |
| sed reagent)                               |
| Z-FIGOLODIPINEII                           |
| Nitrobenzene-d5                            |
| 10 T C T C T C T C T C T C T C T C T C T   |
| Terphenyl-d14 (Surr)                       |
| (Purchased Reagent) Famphur                |
|                                            |
| (Purchased Reagent) 3,3'-Dichlorobenzidine |
| (Purchased Reagent) Benzoic acid           |
| (Purchased Reagent) Atrazine               |
|                                            |
| (Purchased Reagent) 1,1'-Biphenyl          |
| 1,2,4,5-Tetrachlorobenzene                 |
| 1,2-Dichlorobenzene                        |
| 1,2-Diphenylhydrazine                      |
| 1,3-Dichlorobenzene                        |
| 1,3-Dinitrobenzene                         |
| 1,4-Dichlorobenzene                        |
| 1,4-Dioxane                                |
| 1-Methylnaphthalene                        |
| 2,2'-oxybis[1-chloropropane                |
| 2,3,4,6-Tetrachlorophenol                  |
| 2,4,5-Trichlorophenol                      |
| 2,4,6-Trichlorophenol                      |
| 2,4-Dichlorophenol                         |
| 2,4-Dimethylphenol                         |
| 2,4-Dinitrophenol                          |

Lab Name: TestAmerica Denver Job No.: 320-39023-1

| Duce   Duce   Duce   Tollarant   Volume   Reagent 12   Added                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |              |                  | 4<br>0<br>0<br>0 | Parent Reagent |                             |               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|------------------|------------------|----------------|-----------------------------|---------------|
| 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Exp<br>Date | Prep<br>Date | Dilutant<br>Used | Final<br>Volume  | QH             | Analyte                     | Concentration |
| 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>er 1000<br>te 1000<br>te 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |              |                  |                  |                | 2,4-Dinitrotoluene          | 1000 ug/mL    |
| 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |              |                  |                  |                | 2,6-Dichlorophenol          |               |
| er 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100                                                                                                                                                                                                 |             |              |                  |                  |                | 2,6-Dinitrotoluene          | 1000 ug/mL    |
| 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000                                                                                                                                                                                                   |             |              |                  |                  |                | 2-Chloronaphthalene         | 1000 ug/mL    |
| 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000                                                                                                                                                                                                   |             |              |                  |                  |                | 2-Chlorophenol              | 1000 ug/mL    |
| 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>te 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100                                                                                                                                                                                                 |             |              |                  |                  |                | 2-Methylnaphthalene         |               |
| 1000<br>  1000<br> |             |              |                  |                  |                | 2-Methylphenol              | 1000 ug/mL    |
| er 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>te 1000<br>te 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100                                                                                                                                                                                                   |             |              |                  |                  |                | 2-Nitroaniline              | 1000 ug/mL    |
| er 1000<br>er 1000<br>er 1000<br>1000<br>1000<br>1000<br>te 1000<br>te 1000<br>te 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |              |                  |                  |                | 2-Nitrophenol               |               |
| er 1000<br>1000<br>er 1000<br>1000<br>1000<br>1000<br>1000<br>te 1000<br>te 1000<br>te 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100                                                                                                                                                                                                     |             |              |                  |                  |                | 3 & 4 Methylphenol          | 1000 ug/mL    |
| er 1000<br>er 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>te 1000<br>te 1000<br>te 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100                                                                                                                                                                                                     |             |              |                  |                  |                | 3-Nitroaniline              | 1000 ug/mL    |
| er 1000<br>1000<br>2000<br>2000<br>2000<br>1000<br>1000<br>1000<br>te 1000<br>te 1000<br>te 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000                                                                                                                                                                                                       |             |              |                  |                  |                | 4,6-Dinitro-2-methylphenol  | 2000 ug/mL    |
| er 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>te 1000<br>te 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100                                                                                                                                                                                                   |             |              |                  |                  |                | 4-Bromophenyl phenyl ether  | 1000 ug/mL    |
| er 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>te 1000<br>te 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100                                                                                                                                                                                                   |             |              |                  |                  |                | 4-Chloro-3-methylphenol     | 1000 ug/mL    |
| er 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>te 1000<br>te 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100                                                                                                                                                                                                   |             |              |                  |                  |                | 4-Chloroaniline             | 1000 ug/mL    |
| 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000                                                                                                                                                                                                   |             |              |                  |                  |                | phenyl                      |               |
| 2000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |              |                  |                  |                | 4-Nitroaniline              |               |
| 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000                                                                                                                                                                                                   |             |              |                  |                  |                | 4-Nitrophenol               | 2000 ug/mL    |
| 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000                                                                                                                                                                                                   |             |              |                  |                  |                | Acenaphthene                | 1000 ug/mL    |
| 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000                                                                                                                                                                                                   |             |              |                  |                  |                | Acenaphthylene              | 1000 ug/mL    |
| 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000                                                                                                                                                                                                   |             |              |                  |                  |                | Acetophenone                |               |
| te 1000<br>te 1000<br>te 1000<br>te 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000                                                                                                                                                                                                       |             |              |                  |                  |                | Aniline                     |               |
| 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>te 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100                                                                                                                                                                                                 |             |              |                  |                  |                | Anthracene                  | 1000 ug/mL    |
| te 1000<br>te 1000<br>te 1000<br>te 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000                                                                                                                                                                                                       |             |              |                  |                  |                | Azobenzene                  | 1000 ug/mL    |
| te 1000<br>te 1000<br>te 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100                                                                                                                                                                                                   |             |              |                  |                  |                | Benzo[a]anthracene          | 1000 ug/mL    |
| te 1000<br>te 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000                                                                                                                                                                                                     |             |              |                  |                  |                | Benzo[a]pyrene              |               |
| te 1000<br>te 1000<br>te 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100                                                                                                                                                                                                   |             |              |                  |                  |                | Benzo[b]fluoranthene        |               |
| te 1000<br>te 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000                                                                                                                                                                                                     |             |              |                  |                  |                | Benzo[g,h,i]perylene        |               |
| te 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100                                                                                                                                                                                                 |             |              |                  |                  |                | Benzo[k]fluoranthene        | 1000 ug/mL    |
| te 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100                                                                                                                                                                                                 |             |              |                  |                  |                | Benzyl alcohol              | 1000 ug/mL    |
| te 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |              |                  |                  |                | Bis(2-chloroethoxy)methane  | 1000 ug/mL    |
| te 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |              |                  |                  |                | Bis (2-chloroethyl)ether    |               |
| 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |                  |                  |                | Bis(2-ethylhexyl) phthalate | 1000 ug/mL    |
| 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |                  |                  |                | Butyl benzyl phthalate      | 1000 ug/mL    |
| 1000<br>1000<br>1000<br>1000<br>1000<br>850<br>850<br>1000<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |              |                  |                  |                | Carbazole                   |               |
| 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |                  |                  |                |                             |               |
| 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |              |                  |                  |                |                             |               |
| 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |              |                  |                  |                |                             | 1000 ug/mL    |
| 1000<br>1000<br>1000<br>850<br>1000<br>1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |              |                  |                  |                | Dibenz (a, h) anthracene    | 1000 ug/mL    |
| 1000<br>1000<br>850<br>1000<br>1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |                  |                  |                | Dibenzofuran                | 1000 ug/mL    |
| 1000<br>850<br>1000<br>1000<br>1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |                  |                  |                | Diethyl phthalate           |               |
| 1000<br>1000<br>1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |              |                  |                  |                | Dimethyl phthalate          |               |
| 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |              |                  |                  |                | Diphenylamine               |               |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |              |                  |                  |                | Fluoranthene                |               |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |              |                  |                  |                | Fluorene                    | 1000 ug/mL    |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |              |                  |                  |                | Hexachlorobenzene           | 1000 ug/mL    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |              |                  |                  |                | Hexachlorobutadiene         | 1000 ug/mL    |

Lab Name: TestAmerica Denver

SDG No.:

Job No.: 320-39023-1

|                  |             |              |                                   | Reagent         | Farent Keagent      |                                   |               |
|------------------|-------------|--------------|-----------------------------------|-----------------|---------------------|-----------------------------------|---------------|
| Reagent ID       | Exp<br>Date | Prep<br>Date | Dilutant<br>Used                  | Final<br>Volume | Reagent ID A        | Volume<br>Added Analyte           | Concentration |
|                  |             |              |                                   |                 |                     | Hexachloroethane                  | 1000 ug/mL    |
|                  |             | _            |                                   |                 |                     | Indeno[1,2,3-cd]pyrene            |               |
|                  |             | _            |                                   |                 |                     | Isophorone                        | 1000 ug/mL    |
|                  |             |              |                                   |                 |                     | N-Nitrosodi-n-propylamine         |               |
|                  |             | _            |                                   |                 |                     | N-Nitrosodimethylamine            | 1000 ug/mL    |
|                  |             |              |                                   |                 |                     | N-Nitrosodiphenylamine            | 1000 ug/mL    |
|                  |             | _            |                                   |                 |                     | Naphthalene                       | 1000 ug/mL    |
|                  |             |              |                                   |                 |                     | Nitrobenzene                      | 1000 ug/mL    |
|                  |             | _            |                                   |                 |                     | Pentachlorophenol                 | 2000 ug/mL    |
|                  |             |              |                                   |                 |                     | Phenanthrene                      | 1000 ug/mL    |
|                  |             |              |                                   |                 |                     | Phenol                            | 1000 ug/mL    |
|                  |             |              |                                   |                 |                     | Pyrene                            |               |
| .MS-IS_00013     | 06/22/18    | 06/22/17     | Methylene Chloride, Lot           | 250 mL          | MS-567684_00019     | 50 mL 1,4-Dichlorobenzene-d4      | 400 ug/mL     |
|                  |             |              | 157164                            |                 |                     | \range\tau\+\range\tau\d\1\       | 400 11g/mT.   |
|                  |             |              |                                   |                 |                     | Chrysene_412                      | 400 ug/mT.    |
|                  |             |              |                                   |                 |                     | Naphthalene-d8                    | 400 ug/mL     |
|                  |             |              |                                   |                 |                     | Perylene-d12                      |               |
|                  |             |              |                                   |                 |                     | Phenanthrene-d10                  |               |
| MS-567684 00019  | 07/31/20    |              | Restek, Lot A0112833              |                 | (Purchased Reagent) |                                   |               |
|                  |             |              |                                   |                 |                     | Acenaphthene-d10                  | 2000 ug/mL    |
|                  |             |              |                                   |                 |                     | Chrysene-d12                      | 2000 ug/mL    |
|                  |             | _            |                                   |                 |                     | Naphthalene-d8                    | 2000 ug/mL    |
|                  |             |              |                                   |                 |                     | Perylene-d12                      | 2000 ug/mL    |
|                  |             |              |                                   |                 |                     | Phenanthrene-d10                  | 2000 ug/mL    |
| MS-HSLA020_00035 | 06/22/18    | 04/03/18     | Methylene Chloride, Lot<br>181545 | 0.5 mL          | MS-HSLA_STK_00040   | 50 uL 2,4,6-Tribromophenol (Surr) | 20 ug/mL      |
|                  |             |              |                                   |                 |                     | 2-Fluorobiphenyl                  | 20 ug/mL      |
|                  |             |              |                                   |                 |                     | 2-Fluorophenol (Surr)             | 20 ug/mL      |
|                  |             |              |                                   |                 |                     | Nitrobenzene-d5 (Surr)            | 20 ug/mL      |
|                  |             |              |                                   |                 |                     | Ы                                 |               |
|                  |             |              |                                   |                 |                     | Terphenyl-d14 (Surr)              |               |
|                  |             |              |                                   |                 |                     | Famphur.                          | Z0 ug/mL      |
|                  |             |              |                                   |                 |                     | 3.3'-Dichlorobenzidine            |               |
|                  |             |              |                                   |                 |                     | Benzoic acid                      |               |
|                  |             |              |                                   |                 |                     | Atrazine                          |               |
|                  |             |              |                                   |                 |                     | Caprolactam                       | 20 ug/mL      |
|                  |             |              |                                   |                 |                     | 1,1'-Biphenyl                     |               |
|                  |             |              |                                   |                 |                     | 1,2,4,5-Tetrachlorobenzene        | 20 ug/mL      |
|                  |             |              |                                   |                 |                     | 1,2,4-Trichlorobenzene            | 20 ug/mL      |
|                  |             |              |                                   |                 |                     | 1,2-Dichlorobenzene               |               |
|                  |             |              |                                   |                 |                     | 1,2-Diphenylhydrazine             | 20.2195 ug/mL |
|                  |             |              |                                   |                 |                     | 1,3-Dichlorobenzene               | 20 ug/mL      |
|                  |             |              |                                   |                 |                     | 1,3-Dinitrobenzene                |               |
|                  |             |              |                                   |                 |                     | 1,4-Dichlorobenzene               |               |
| _                | _           |              |                                   | _               |                     | l,4-Dioxane                       | ZO ng/mr      |

#### Page 246 of 3863

Lab Name: TestAmerica Denver

SDG No.:

|             |              |                  | Reagent         | Parent Reagent |                 |                              |               |
|-------------|--------------|------------------|-----------------|----------------|-----------------|------------------------------|---------------|
| Exp<br>Date | Prep<br>Date | Dilutant<br>Used | Final<br>Volume | Reagent ID     | Volume<br>Added | Analyte                      | Concentration |
|             |              |                  |                 |                |                 | 1-Methylnaphthalene          | 20 ug/mL      |
|             |              |                  |                 |                |                 | 2,2'-oxybis[1-chloropropane] | 20 ug/mL      |
|             |              |                  |                 |                |                 | 2,3,4,6-Tetrachlorophenol    |               |
|             |              |                  |                 |                |                 | 2,4,5-Trichlorophenol        |               |
|             |              |                  |                 |                |                 | 2,4,6-Trichlorophenol        | 20 ug/mL      |
|             |              |                  |                 |                |                 | 2,4-Dichlorophenol           | 20 ug/mL      |
|             |              |                  |                 |                |                 | 2,4-Dimethylphenol           | 20 ug/mL      |
|             |              |                  |                 |                |                 | 2,4-Dinitrophenol            |               |
|             |              |                  |                 |                |                 | 2,4-Dinitrotoluene           |               |
|             |              |                  |                 |                |                 | 2,6-Dichlorophenol           | 20 ug/mL      |
|             |              |                  |                 |                |                 | 2,6-Dinitrotoluene           | 20 ug/mL      |
|             |              |                  |                 |                |                 | 2-Chloronaphthalene          | 20 ug/mL      |
|             |              |                  |                 |                |                 | 2-Chlorophenol               |               |
|             |              |                  |                 |                |                 | 2-Methylnaphthalene          | 20 ug/mL      |
|             |              |                  |                 |                |                 | 2-Methylphenol               | 20 ug/mL      |
|             |              |                  |                 |                |                 | 2-Nitroaniline               | 20 ug/mL      |
|             |              |                  |                 |                |                 | 2-Nitrophenol                |               |
|             |              |                  |                 |                |                 | 3 & 4 Methylphenol           | 20 ug/mL      |
|             |              |                  |                 |                |                 | 3-Nitroaniline               | 20 ug/mL      |
|             |              |                  |                 |                |                 | 4,6-Dinitro-2-methylphenol   | 40 ug/mL      |
|             |              |                  |                 |                |                 | 4-Bromophenyl phenyl ether   |               |
|             |              |                  |                 |                |                 | 4-Chloro-3-methylphenol      | 20 ug/mL      |
|             |              |                  |                 |                |                 | 4-Chloroaniline              | 20 ug/mL      |
|             |              |                  |                 |                |                 | 4-Chlorophenyl phenyl ether  | 20 ug/mL      |
|             |              |                  |                 |                |                 | 1                            |               |
|             |              |                  |                 |                |                 | 4-Nitrophenol                | 40 ug/mL      |
|             |              |                  |                 |                |                 | Acenaphthene                 |               |
|             |              |                  |                 |                |                 | Acenaphthylene               |               |
|             |              |                  |                 |                |                 | Acetophenone                 |               |
|             |              |                  |                 |                |                 | Aniline                      |               |
|             |              |                  |                 |                |                 | Anthracene                   |               |
|             |              |                  |                 |                |                 | Azobenzene                   | 20 ug/mL      |
|             |              |                  |                 |                |                 | Benzo[a]anthracene           | 20 ug/mL      |
|             |              |                  |                 |                |                 | Benzo[a]pyrene               | 20 ug/mL      |
|             |              |                  |                 |                |                 | Benzo[b]fluoranthene         | 20 ug/mL      |
|             |              |                  |                 |                |                 | Benzo[g,h,i]perylene         | 20 ug/mL      |
|             |              |                  |                 |                |                 | Benzo[k]fluoranthene         | 20 ug/mL      |
|             |              |                  |                 |                |                 | Benzyl alcohol               | 20 ug/mL      |
|             |              |                  |                 |                |                 | Bis (2-chloroethoxy) methane | 20 ug/mL      |
|             |              |                  |                 |                |                 | Bis (2-chloroethyl) ether    | 20 ug/mL      |
|             |              |                  |                 |                |                 | Bis (2-ethylhexyl) phthalate | 20 ug/mL      |
|             |              |                  |                 |                |                 | 10                           |               |
|             |              |                  |                 |                |                 | Carbazole                    | 20 ug/mL      |
|             |              |                  |                 |                |                 | Chrysene                     |               |
|             |              |                  |                 |                |                 | Di-n-butyl phthalate         | 20 ug/mL      |
|             |              |                  |                 |                |                 | Di-n-octyl phthalate         | 20 ug/mL      |
|             |              |                  |                 |                |                 | Dibenz (a,h) anthracene      |               |
|             |              |                  |                 |                |                 | Dibenzofuran                 | 20 ug/mL      |

Lab Name: TestAmerica Denver

SDG No.:

|                    |             |              |                                | ()<br>()<br>()<br>() | Parent Reagent      |                 |                             |               |
|--------------------|-------------|--------------|--------------------------------|----------------------|---------------------|-----------------|-----------------------------|---------------|
| Reagent ID         | Exp<br>Date | Prep<br>Date | Dilutant<br>Used               | Final<br>Volume      | Reagent ID          | Volume<br>Added | Analyte                     | Concentration |
|                    |             |              |                                |                      |                     |                 | Diethyl phthalate           | 20 ug/mL      |
|                    |             |              |                                |                      |                     |                 | Dimethyl phthalate          |               |
|                    |             |              |                                |                      |                     |                 | Diphenylamine               |               |
|                    |             |              |                                |                      |                     |                 | Fluoranthene                | 20 ug/mL      |
|                    |             |              |                                |                      |                     |                 | Fluorene                    | 20 ug/mL      |
|                    |             |              |                                |                      |                     |                 | Hexachlorobenzene           |               |
|                    |             |              |                                |                      |                     |                 | Hexachlorobutadiene         | 20 ug/mL      |
|                    |             |              |                                |                      |                     |                 | Hexachlorocyclopentadiene   |               |
|                    |             |              |                                |                      |                     |                 | Hexachloroethane            |               |
|                    |             |              |                                |                      |                     |                 | Indeno[1,2,3-cd]pyrene      |               |
|                    |             |              |                                |                      |                     |                 | Isophorone                  |               |
|                    |             |              |                                |                      |                     |                 | N-Nitrosodi-n-propylamine   |               |
|                    |             |              |                                |                      |                     |                 | N-Nitrosodimethylamine      |               |
|                    |             |              |                                |                      |                     |                 | N-Nitrosodiphenylamine      |               |
|                    |             |              |                                |                      |                     |                 | Naphthalene                 |               |
|                    |             |              |                                |                      |                     |                 | Nitrobenzene                |               |
|                    |             |              |                                |                      |                     |                 | Pentachlorophenol           |               |
|                    |             |              |                                |                      |                     |                 | Phenanthrene                |               |
|                    |             |              |                                |                      |                     |                 | Phenol                      |               |
|                    |             |              |                                |                      |                     |                 | Pyrene                      |               |
|                    |             |              |                                |                      |                     | - 1             | Pyridine                    |               |
|                    |             |              |                                |                      | MS-IS_00013         | 50 uL           | 1,4-Dichlorobenzene-d4      | - 1           |
|                    |             |              |                                |                      |                     |                 | Acenaphthene-d10            | - 1           |
|                    |             |              |                                |                      |                     |                 | Chrysene-d12                | - 1           |
|                    |             |              |                                |                      |                     |                 | Naphthalene-d8              | - 1           |
|                    |             |              |                                |                      |                     |                 | Perylene-d12                | - 1           |
|                    |             |              |                                |                      |                     | - 1             |                             | - 1           |
| .MS-HSLA_STK_00040 | 06/30/18    | 01/30/18     | Methylene Chloride, Lot 181545 | 10 mL                | MS-567685_00004     | 0.4 mL          | 2,4,6-Tribromophenol (Surr) | 200 ug/mL     |
|                    |             |              | )<br>1<br>1<br>1<br>1          |                      |                     |                 | 2-Fluorobiphenyl            | 200 ug/mL     |
|                    |             |              |                                |                      |                     |                 | 2-Fluorophenol (Surr)       | 200 ug/mL     |
|                    |             |              |                                |                      |                     |                 | Nitrobenzene-d5 (Surr)      | 200 ug/mL     |
|                    |             |              |                                |                      |                     |                 | Phenol-d5 (Surr)            |               |
|                    |             |              |                                |                      |                     |                 | Terphenyl-d14 (Surr)        | 200 ug/mL     |
|                    |             |              |                                |                      |                     | $\vdash$        |                             |               |
|                    |             |              |                                |                      | 0000                | 0.5 mL          | - 1                         |               |
|                    |             |              |                                |                      | MS-569730 HSL 00007 | 1 mL            | 3,3'-Dichlorobenzidine      | 200 ug/mL     |
|                    |             |              |                                |                      | MS-569731 00070     | - 1             | Benzoic acid                |               |
|                    |             |              |                                |                      | MS-569732 HSL_00005 | 1 mL            | Atrazine                    |               |
|                    |             |              |                                |                      |                     |                 | Caprolactam                 |               |
|                    |             |              |                                |                      | MS-571995_00001     | 2 mL            | 1,1'-Biphenyl               |               |
|                    |             |              |                                |                      |                     |                 | 1,2,4,5-Tetrachlorobenzene  |               |
|                    |             |              |                                |                      |                     |                 | 1,2,4-Trichiorobenzene      |               |
|                    |             |              |                                |                      |                     |                 | 1,2-Dichlorobenzene         |               |
|                    |             |              |                                |                      |                     |                 | 1,2-Diphenylhydrazine       |               |
|                    |             |              |                                |                      |                     |                 | 1,3-Dichlorobenzene         |               |
|                    |             |              |                                |                      |                     |                 | 1,3-Dinitrobenzene          |               |
| _                  | _           |              | _                              | _                    | _                   |                 | 1,4-Dichlorobenzene         | 7m/gn noz     |

Lab Name: TestAmerica Denver

SDG No.:

| Nolume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |              |                  | 7<br>0<br>0<br>1 | Parent Reagent |                              |               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|------------------|------------------|----------------|------------------------------|---------------|
| 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Exp<br>Date | Prep<br>Date | Dilutant<br>Used | Final            | ID             |                              | Concentration |
| E   200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |              |                  |                  |                | 1,4-Dioxane                  | 200 ug/mL     |
| E   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                  |                  |                | 1-Methylnaphthalene          | 200 ug/mL     |
| 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |              |                  |                  |                | 2,2'-oxybis[1-chloropropane] | 200 ug/mL     |
| 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |              |                  |                  |                | 2, 3, 4, 6-Tetrachlorophenol | 200 ug/mL     |
| 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |              |                  |                  |                | 2,4,5-Trichlorophenol        |               |
| 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |              |                  |                  |                | 2,4,6-Trichlorophenol        |               |
| 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |              |                  |                  |                | 2,4-Dichlorophenol           |               |
| 4 400<br>5 200<br>5 200<br>5 200<br>6 2 200<br>6 2 200<br>6 2 200<br>6 2 200<br>7 2 200<br>7 2 200<br>8 2 200<br>8 2 200<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |              |                  |                  |                | 2,4-Dimethvlphenol           |               |
| 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |                  |                  |                | 2.4-Dinitrophenol            | 400 ug/mL     |
| 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |                  |                  |                | 2.4-Dinitrotoluene           |               |
| 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |                  |                  |                | 2.6-Dichlorophenol           |               |
| 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |                  |                  |                | 2.6-Dinitrotoluene           |               |
| 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |                  |                  |                | 2-Chloronaphthalene          | 200 ag/m      |
| 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |              |                  |                  |                | 2-Chlorophenol               | 200 ug/mL     |
| T 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |              |                  |                  |                | 2-Methylnaphthalene          |               |
| T 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |              |                  |                  |                | 2-Methylphenol               | 200 ag/mT,    |
| E 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |              |                  |                  |                | 2-Nitroaniline               |               |
| 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |                  |                  |                | 2-Nitrophenol                |               |
| 200<br>400<br>400<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |              |                  |                  |                | 3 & 4 Methylphenol           |               |
| 400<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |              |                  |                  |                | 3-Nitroaniline               |               |
| 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |                  |                  |                | 4,6-Dinitro-2-methylphenol   |               |
| 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |              |                  |                  |                | 4-Bromophenvl phenvl ether   |               |
| 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |              |                  |                  |                | 4-Chloro-3-methylphenol      |               |
| 200<br>200<br>6 200<br>6 200<br>6 200<br>6 200<br>7 20 |             |              |                  |                  |                | 4-Chloroaniline              |               |
| 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |                  |                  |                | phenyl                       | 200 ug/mL     |
| 400<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |              |                  |                  |                | 4                            |               |
| 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |                  |                  |                | 4-Nitrophenol                |               |
| 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |                  |                  |                | Acenaphthene                 |               |
| 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |                  |                  |                | Acenaphthylene               | 200 ug/mL     |
| 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |                  |                  |                | Acetophenone                 |               |
| 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |                  |                  |                | Aniline                      |               |
| 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |                  |                  |                | Anthracene                   | 200 ug/mL     |
| 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |                  |                  |                | Azobenzene                   | 200 ug/mL     |
| 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |                  |                  |                | Benzo[a]anthracene           | 200 ug/mL     |
| 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |                  |                  |                | Benzo[a]pyrene               | 200 ug/mL     |
| 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |                  |                  |                | Benzo[b]fluoranthene         | 200 ug/mL     |
| 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |                  |                  |                | Benzo[g,h,i]perylene         | 200 ug/mL     |
| 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |                  |                  |                | Benzo[k]fluoranthene         |               |
| 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |                  |                  |                | Benzyl alcohol               | 200 ug/mL     |
| er 200<br>halate 200<br>e 200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |              |                  |                  |                | Bis (2-chloroethoxy) methane | 200 ug/mL     |
| e 200<br>e 200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |              |                  |                  |                | Bis (2-chloroethyl) ether    | 200 ug/mL     |
| 200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |              |                  |                  |                | Bis(2-ethylhexyl) phthalate  | 200 ug/mL     |
| 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |              |                  |                  |                |                              | 200 ug/mL     |
| 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |              |                  |                  |                | Carbazole                    | 200 ug/mL     |
| 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |              |                  |                  |                | Chrysene                     | 200 ug/mL     |
| 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |              |                  |                  |                | Di-n-butyl phthalate         |               |
| 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |              |                  |                  |                | Di-n-octyl phthalate         | 200 ug/mL     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |              |                  |                  |                | Dibenz (a, h) anthracene     | 200 ug/mL     |

Lab Name: TestAmerica Denver

Job No.: 320-39023-1

| Paragraph   Date   Da |                     |             |              |           | Δ    | Darent Readent  |                              |               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------|--------------|-----------|------|-----------------|------------------------------|---------------|
| Date    |                     |             | 1            |           |      | - 1             |                              |               |
| 11/30/19   Resteb, Lot A012169   Purchased Respent)   12/30/20   Resteb, Lot A012169   Purchased Respent)   Respent   Respent  |                     | Exp<br>Date | Prep<br>Date |           |      | QI              |                              | Concentration |
| District Light Light Light Continue   District Light Light Continue   District Light Light Continue   District Light Con |                     |             |              |           |      |                 | Dibenzofuran                 |               |
| Directly   Directly  |                     |             |              |           |      |                 | Diethyl phthalate            |               |
| Principle   Prin |                     |             |              |           |      |                 | Dimethyl phthalate           |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |             |              |           |      |                 | Diphenylamine                |               |
| Place   Plac |                     |             |              |           |      |                 | Fluoranthene                 |               |
| Hexachicrotoxicalized   Hexachicrotoxicalized   Hexachicrotoxicalized   Hexachicrotoxicalized   Hexachicrotoxicalized   200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |             |              |           |      |                 | Fluorene                     |               |
| Macachicacceconstantial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |             |              |           |      |                 | Hexachlorobenzene            |               |
| Hexachlocockippenicaliene   200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |             |              |           |      |                 | Hexachlorobutadiene          |               |
| Harden   H |                     |             |              |           |      |                 | Hexachlorocyclopentadiene    |               |
| Trichester   Tri |                     |             |              |           |      |                 | Hexachloroethane             | 200 ug/mL     |
| Supplement   Sup |                     |             |              |           |      |                 | Indeno[1,2,3-cd]pyrene       | 200 ug/mL     |
| N. Nitrosodinetpylamine 200   N. N |                     |             |              |           |      |                 | Isophorone                   |               |
| N. N. trosediphentlane   200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |             |              |           |      |                 | N-Nitrosodi-n-propylamine    |               |
| Naphthalene   200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |             |              |           |      |                 | N-Nitrosodimethylamine       |               |
| National Computation   National Computational  |                     |             |              |           |      |                 | N-Nitrosodiphenylamine       |               |
| Nutrobensence   200   Pentachlorophenol   200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |             |              |           |      |                 | Naphthalene                  | 200 ug/mL     |
| Percanthrene   200   Phenanthrene   200   Phenant |                     |             |              |           |      |                 | Nitrobenzene                 | 200 ug/mL     |
| Phenoalthrene   200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |             |              |           |      |                 | Pentachlorophenol            | 400 ug/mL     |
| Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |             |              |           |      |                 | Phenanthrene                 |               |
| Pyreidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |             |              |           |      |                 | Phenol                       |               |
| 1/30/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |             |              |           |      |                 | Pyrene                       |               |
| 01/30/19   Restek, Lot A0130500   Purchased Reagent)   24,6-Tribromophenol (Surr)   5000   2-Filosophenol (Surr)   5000   2000   2-Filosophenol (Surr)   5000   2000   2-Filosophenol (Surr)   5000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000    |                     |             |              |           |      |                 | Pyridine                     |               |
| C=Fluorobiphenyl   5000   Nitrobenzene-d5 (Surr)   Surrobenzene-d5 (Surr)   Surrobenzene-d5 (Surrobenzene-d5 (Surrobenzene- | MS-567685 00004     | 01/30/19    |              | Lot A0130 | (Pur | chased Reagent) |                              |               |
| Terphenol-dis (Surr)   5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ı                   |             |              |           | -    |                 |                              |               |
| NitrobenZene-d5 (Surr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |             |              |           |      |                 | 2-Fluorophenol (Surr)        |               |
| Phenol-d5 (Surr)   5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |             |              |           |      |                 |                              |               |
| 11/30/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |             |              |           |      |                 |                              |               |
| 11/30/19   Restek, Lot A0127668   (Purchased Reagent)   Alachlor   2000     10/30/19   Restek, Lot A0123819   (Purchased Reagent)   3,3-Dichlorobenzidine   2000     10/30/18   Restek, Lot A0123819   (Purchased Reagent)   Benzoic acid   2000     10/30/18   Restek, Lot A0127880   (Purchased Reagent)   Atazine   2000     11/30/18   Restek, Lot A0125805   (Purchased Reagent)   1,1-Biphenyl   2000     10/30/18   Restek, Lot A0125805   (Purchased Reagent)   1,2-4-Fretrachlorobenzene   1000     1,2-4-Fretrachlorobenzene   1000     1,2-bichlorobenzene   1000     1,3-Dichlorobenzene   1000     1,3-Dichlorobenzene   1000     1,3-Dichlorobenzene   1000     1,3-Dichlorobenzene   1000     1,3-Dichlorobenzene   1000     1,4-Dickloropenzene   1000 |                     |             |              |           |      |                 |                              |               |
| 11/30/18   Restek, Lot A0133057   (Purchased Reagent)   Alachlor   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   200 |                     | _           |              | Lot A0127 | (Pur |                 | Famphur                      |               |
| 11/30/18   Restek, Lot A0127472   Purchased Reagent)   3,3'-Dichlorobenzidine   2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | 06/30/19    |              | Lot A0133 | (Pur |                 | Alachlor                     |               |
| Matter   M |                     | /30/        |              | Lot A0127 | (Pur |                 | 3,3'-Dichlorobenzidine       |               |
| 11/30/18   Restek, Lot A0127580   Purchased Reagent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MS-569731_00070     | 06/30/18    |              | Lot A0123 | (Pur |                 | Benzoic acid                 |               |
| Caprolactam   Caprolactam   2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MS-569732 HSL_00005 | 11/30/18    |              | Lot A0127 | Ind) |                 | Atrazine                     |               |
| 1,1'-Biphenyl   1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |             |              |           |      |                 | Caprolactam                  |               |
| 1000<br>1010.97<br>1010.97<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MS-571995_00001     | 09/30/18    |              | Lot A0125 | (Pur |                 | 1,1'-Biphenyl                |               |
| 1000<br>1010.97<br>1010.97<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |             |              |           |      |                 | 1,2,4,5-Tetrachlorobenzene   |               |
| 1010.97<br>1010.97<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |             |              |           |      |                 | 1,2,4-Trichlorobenzene       |               |
| 1010.97<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |             |              |           |      |                 | 1,2-Dichlorobenzene          | - 1           |
| 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |             |              |           |      |                 | 1,2-Diphenylhydrazine        | - 1           |
| 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |             |              |           |      |                 | 1,3-Dichlorobenzene          | 1000 ug/mL    |
| 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |             |              |           |      |                 | 1,3-Dinitrobenzene           |               |
| 1000<br>1000<br>1000<br>1000<br>1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |             |              |           |      |                 | 1,4-Dichlorobenzene          |               |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |             |              |           |      |                 | 1,4-Dioxane                  |               |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |             |              |           |      |                 | 1-Methylnaphthalene          |               |
| enol 1000<br>1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |             |              |           |      |                 | 2,2'-oxybis[1-chloropropane] |               |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |             |              |           |      |                 | 2,3,4,6-Tetrachlorophenol    |               |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |             |              |           |      |                 | 2,4,5-Trichlorophenol        | 1000 ug/mL    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |             |              |           |      |                 | 2,4,6-Trichlorophenol        | 1000 ug/mL    |

Lab Name: TestAmerica Denver Job No.: 320-39023-1

|            |             |              |                  | 7<br>0<br>0<br>0<br>0 | Parent Reagent             |                              |               |
|------------|-------------|--------------|------------------|-----------------------|----------------------------|------------------------------|---------------|
| Reagent ID | Exp<br>Date | Prep<br>Date | Dilutant<br>Used | Final                 | Nolume<br>Reagent ID Added | me<br>ed Analyte             | Concentration |
|            |             |              |                  |                       |                            | 2,4-Dichlorophenol           | 1000 ug/mL    |
|            |             |              |                  |                       |                            | 2,4-Dimethylphenol           |               |
|            |             |              |                  |                       |                            | 2,4-Dinitrophenol            | 2000 ug/mL    |
|            |             |              |                  |                       |                            | 2,4-Dinitrotoluene           | 1000 ug/mL    |
|            |             |              |                  |                       |                            | 2,6-Dichlorophenol           | 1000 ug/mL    |
|            |             |              |                  |                       |                            | 2,6-Dinitrotoluene           |               |
|            |             |              |                  |                       |                            | 2-Chloronaphthalene          | 1000 ug/mL    |
|            |             |              |                  |                       |                            | 2-Chlorophenol               | 1000 ug/mL    |
|            |             |              |                  |                       |                            | 2-Methylnaphthalene          | 1000 ug/mL    |
|            |             |              |                  |                       |                            | 2-Methylphenol               | 1000 ug/mL    |
|            |             |              |                  |                       |                            | 2-Nitroaniline               | 1000 ug/mL    |
|            |             |              |                  |                       |                            | 2-Nitrophenol                | 1000 ug/mL    |
|            |             |              |                  |                       |                            | 3 & 4 Methylphenol           | 1000 ug/mL    |
|            |             |              |                  |                       |                            | 3-Nitroaniline               |               |
|            |             |              |                  |                       |                            | 4,6-Dinitro-2-methylphenol   |               |
|            |             |              |                  |                       |                            | 4-Bromophenyl phenyl ether   |               |
|            |             |              |                  |                       |                            | 4-Chioro-3-metnyiphenoi      | 1000 ug/mL    |
|            |             |              |                  |                       |                            | 4 Chlorophanyl phanyl athar  | 1000 ug/mI.   |
|            |             |              |                  |                       |                            | Piiciiy                      |               |
|            |             |              |                  |                       |                            | 4 N1 C1 CAILLILIG            |               |
|            |             |              |                  |                       |                            | A NITCLOPHICHOI              |               |
|            |             |              |                  |                       |                            | Acenaphthylene               |               |
|            |             |              |                  |                       |                            | Acetophenone                 |               |
|            |             |              |                  |                       |                            | Aniline                      |               |
|            |             |              |                  |                       |                            | Anthracene                   | 1000 ug/mL    |
|            |             |              |                  |                       |                            | Azobenzene                   | 1000 ug/mL    |
|            |             |              |                  |                       |                            | Benzo[a]anthracene           | 1000 ug/mL    |
|            |             |              |                  |                       |                            | Benzo[a]pyrene               |               |
|            |             |              |                  |                       |                            | Benzo[b]fluoranthene         |               |
|            |             |              |                  |                       |                            | Benzo[g,h,i]perylene         |               |
|            |             |              |                  |                       |                            | Benzo[k]fluoranthene         |               |
|            |             |              |                  |                       |                            | Benzyl alcohol               | 1000 ug/mL    |
|            |             |              |                  |                       |                            | Bis (2-chloroethoxy) methane | 1000 ug/mL    |
|            |             |              |                  |                       |                            | Bis (2-chloroethyl) ether    | - 1           |
|            |             |              |                  |                       |                            |                              |               |
|            |             |              |                  |                       |                            | Butyl benzyl phthalate       |               |
|            |             |              |                  |                       |                            | Carbazole                    |               |
|            |             |              |                  |                       |                            | Chrysene                     | 1000 ug/mL    |
|            |             |              |                  |                       |                            | Di-n-butyl phthalate         |               |
|            |             |              |                  |                       |                            | Di-n-octyl phthalate         |               |
|            |             |              |                  |                       |                            | Dibenz (a, h) anthracene     | - 1           |
|            |             |              |                  |                       |                            | Dibenzofuran                 | 1000 ug/mL    |
|            |             |              |                  |                       |                            | Diethyl phthalate            | 1000 ug/mL    |
|            |             |              |                  |                       |                            | Dimethyl phthalate           |               |
|            |             |              |                  |                       |                            | Diphenylamine                |               |
|            |             |              |                  |                       |                            | Fluoranthene                 | 1000 ug/mL    |
|            |             |              |                  |                       |                            | Fluorene                     | 1000 ug/mL    |
|            |             |              |                  |                       |                            |                              |               |

Lab Name: TestAmerica Denver

SDG No.:

Job No.: 320-39023-1

|                                       |          |                  |                                   |               | Darent Readent       |         |                             |               |
|---------------------------------------|----------|------------------|-----------------------------------|---------------|----------------------|---------|-----------------------------|---------------|
|                                       | E        | Д<br>4<br>7<br>7 | +:[.[.                            | Reagent Final |                      | omii[OV |                             |               |
| Reagent ID                            | Date     | Date             | Used                              | Volume        | Reagent ID           | Added   | Analyte                     | Concentration |
|                                       |          |                  |                                   |               |                      |         | Hexachlorobenzene           | 1000 ug/mL    |
|                                       |          |                  |                                   |               |                      |         | Hexachlorobutadiene         | 1000 ng/mL    |
|                                       |          |                  |                                   |               |                      |         | Hexachlorocyclopentadiene   |               |
|                                       |          |                  |                                   |               |                      |         | Hexachloroethane            | 1000 ng/mL    |
|                                       |          |                  |                                   |               |                      |         | Indeno[1,2,3-cd]pyrene      | 1000 ug/mL    |
|                                       |          |                  |                                   |               |                      |         | Isophorone                  | 1000 ug/mL    |
|                                       |          |                  |                                   |               |                      |         | N-Nitrosodi-n-propylamine   |               |
|                                       |          |                  |                                   |               |                      |         | N-Nitrosodimethylamine      | 1000 ug/mL    |
|                                       |          |                  |                                   |               |                      |         | N-Nitrosodiphenylamine      |               |
|                                       |          |                  |                                   |               |                      |         | Naphthalene                 |               |
|                                       |          |                  |                                   |               |                      |         | Nitrobenzene                |               |
|                                       |          |                  |                                   |               |                      |         | Pentachlorophenol           |               |
|                                       |          |                  |                                   |               |                      |         | Phenanthrene                |               |
|                                       |          |                  |                                   |               |                      |         | Phenol                      |               |
|                                       |          |                  |                                   |               |                      |         | Pyrene                      |               |
| C C C C C C C C C C C C C C C C C C C |          | 1                |                                   | 1             | 0777                 | F C L   | _                           |               |
| . Maria (1000 ta                      | 06/22/18 | 11/77/90         | Metnylene Chioride, Lot<br>157164 | TW 067        | MS-36/684 00019<br>- | 7W 0.0  | 1,4-Dichiorobenzene-04      | 400 ug/mr     |
|                                       |          |                  |                                   |               |                      |         | Acenaphthene-d10            | 400 ug/mL     |
|                                       |          |                  |                                   |               |                      |         | Chrysene-d12                | 400 ug/mL     |
|                                       |          |                  |                                   |               |                      |         | Naphthalene-d8              | 400 ug/mL     |
|                                       |          |                  |                                   |               |                      |         | Perylene-d12                | 400 ng/mL     |
|                                       |          |                  |                                   |               |                      |         | Phenanthrene-d10            | 400 ug/mL     |
| MS-567684_00019                       | 07/31/20 |                  | Restek, Lot A0112833              |               | (Purchased Reagent)  | nt)     | 1,4-Dichlorobenzene-d4      | 2000 ug/mL    |
|                                       |          |                  |                                   |               |                      |         | Acenaphthene-d10            |               |
|                                       |          |                  |                                   |               |                      |         | Chrysene-d12                | 2000 ug/mL    |
|                                       |          |                  |                                   |               |                      |         | Naphthalene-d8              | 2000 ug/mL    |
|                                       |          |                  |                                   |               |                      |         | Perylene-d12                | 2000 ug/mL    |
|                                       |          |                  |                                   |               |                      |         | Phenanthrene-d10            | 2000 ug/mL    |
| MS-HSLA050_00036                      | 06/22/18 | 04/03/18         | Methylene Chloride, Lot           | 0.5 mL        | MS-HSLA_STK_00040    | 125 uL  | 2,4,6-Tribromophenol (Surr) | 50 ug/mL      |
|                                       |          |                  | 181545                            |               |                      |         | 2-Fluorobiphenvl            | 50 ug/mL      |
|                                       |          |                  |                                   |               |                      |         | 2-Fluorophenol (Surr)       |               |
|                                       |          |                  |                                   |               |                      |         | Nitrobenzene-d5 (Surr)      |               |
|                                       |          |                  |                                   |               |                      |         | Phenol-d5 (Surr)            | 20 ng/mL      |
|                                       |          |                  |                                   |               |                      |         | Terphenyl-d14 (Surr)        | 50 ug/mL      |
|                                       |          |                  |                                   |               |                      |         | Famphur                     |               |
|                                       |          |                  |                                   |               |                      |         | Alachlor                    |               |
|                                       |          |                  |                                   |               |                      |         | 3,3'-Dichlorobenzidine      | 20 ng/mL      |
|                                       |          |                  |                                   |               |                      |         | Benzoic acid                |               |
|                                       |          |                  |                                   |               |                      |         | Atrazine                    |               |
|                                       |          |                  |                                   |               |                      |         | Caprolactam                 | 50 ug/mL      |
|                                       |          |                  |                                   |               |                      |         | 1 2 4 5-metrachlorobensene  | 30 ug/mL      |
|                                       |          |                  |                                   |               |                      |         | 1.2.4-Trichlorobenzene      |               |
|                                       |          |                  |                                   |               |                      |         | 1,2-Dichlorobenzene         |               |
|                                       |          |                  |                                   |               |                      |         | 1,2-Diphenylhydrazine       | 50.5487 ug/mL |
|                                       |          |                  |                                   |               |                      |         | 1,3-Dichlorobenzene         |               |
| _                                     | _        | _                |                                   | _             | -                    |         |                             | -             |

#### Page 252 of 3863

Lab Name: TestAmerica Denver

SDG No.:

|            |             |              |                  | 1<br>2<br>0<br>0 | Parent Reagent |                 |                                          |               |
|------------|-------------|--------------|------------------|------------------|----------------|-----------------|------------------------------------------|---------------|
| Reagent ID | Exp<br>Date | Prep<br>Date | Dilutant<br>Used | Final<br>Volume  | Reagent ID     | Volume<br>Added | Analyte                                  | Concentration |
|            |             |              |                  |                  |                |                 | 1,3-Dinitrobenzene                       | 50 ug/mL      |
|            |             |              |                  |                  |                |                 | 1,4-Dichlorobenzene                      | 50 ug/mL      |
|            |             |              |                  |                  |                |                 | 1,4-Dioxane                              |               |
|            |             |              |                  |                  |                |                 | 1-Methylnaphthalene                      |               |
|            |             |              |                  |                  |                |                 | 2,2'-oxybis[1-chloropropane]             | 50 ug/mL      |
|            |             |              |                  |                  |                |                 | 2, 3, 4, 6-Tetrachlorophenol             | 50 ug/mL      |
|            |             |              |                  |                  |                |                 | 2,4,5-Trichlorophenol                    |               |
|            |             |              |                  |                  |                |                 | 2,4,6-Trichlorophenol                    |               |
|            |             |              |                  |                  |                |                 | 2,4-Dichlorophenol                       |               |
|            |             |              |                  |                  |                |                 | 2,4-Dimethylphenol                       | 50 ug/mL      |
|            |             |              |                  |                  |                |                 | 2,4-Dinitrophenol                        |               |
|            |             |              |                  |                  |                |                 | 2,4-Dinitrotoluene                       |               |
|            |             |              |                  |                  |                |                 | 2,6-Dichlorophenol                       | - 1           |
|            |             |              |                  |                  |                |                 | 2, b-Dinitrotoluene                      |               |
|            |             |              |                  |                  |                |                 | Z-Chloronaphthalene                      | 7m/mT         |
|            |             |              |                  |                  |                |                 | 2-CIIIOIODIIEIIOI<br>2-Mathwlnanhthalana | Jm / ptr 03   |
|            |             |              |                  |                  |                |                 | 2 Methylphenol                           |               |
|            |             |              |                  |                  |                |                 | 2-Nitroaniline                           |               |
|            |             |              |                  |                  |                |                 | 2-Nitrophenol                            |               |
|            |             |              |                  |                  |                |                 | 3 & 4 Methylphenol                       |               |
|            |             |              |                  |                  |                |                 | 3-Nitroaniline                           | 50 ug/mL      |
|            |             |              |                  |                  |                |                 | 4,6-Dinitro-2-methylphenol               |               |
|            |             |              |                  |                  |                |                 | 4-Bromophenyl phenyl ether               | 50 ug/mL      |
|            |             |              |                  |                  |                |                 | 4-Chloro-3-methylphenol                  |               |
|            |             |              |                  |                  |                |                 | 4-Chloroaniline                          |               |
|            |             |              |                  |                  |                |                 | 4-Chlorophenyl phenyl ether              | 50 ug/mL      |
|            |             |              |                  |                  |                |                 | 4-Nitroaniline                           | 50 ug/mL      |
|            |             |              |                  |                  |                |                 | 4-Nitrophenol                            | 100 ug/mL     |
|            |             |              |                  |                  |                |                 | Acenaphthene                             | 50 ug/mL      |
|            |             |              |                  |                  |                |                 | Acenaphthylene                           |               |
|            |             |              |                  |                  |                |                 | Acetophenone                             | - 1           |
|            |             |              |                  |                  |                |                 | Aniline                                  |               |
|            |             |              |                  |                  |                |                 | Anthracene                               |               |
|            |             |              |                  |                  |                |                 | Azobenzene                               | 50 ug/mL      |
|            |             |              |                  |                  |                |                 | Benzo[a]anthracene                       |               |
|            |             |              |                  |                  |                |                 | Benzo[a]pyrene                           | - 1           |
|            |             |              |                  |                  |                |                 | Benzo[b]fluoranthene                     | - 1           |
|            |             |              |                  |                  |                |                 | Benzo[g,h,i]perylene                     |               |
|            |             |              |                  |                  |                |                 | Benzo[k]fluoranthene                     | 50 ug/mL      |
|            |             |              |                  |                  |                |                 | Benzyl alcohol                           |               |
|            |             |              |                  |                  |                |                 | Bis(2-chloroethoxy)methane               |               |
|            |             |              |                  |                  |                |                 | $\overline{}$                            | 50 ug/mL      |
|            |             |              |                  |                  |                |                 | Bis (2-ethylhexyl) phthalate             | 50 ug/mL      |
|            |             |              |                  |                  |                |                 | Butyl benzyl phthalate                   | 50 ug/mL      |
|            |             |              |                  |                  |                |                 | Carbazole                                |               |
|            |             |              |                  |                  |                |                 | - 1                                      | - 1           |
|            | _           |              | _                | _                |                |                 | Di-n-butyl phthalate                     | 20 ng/mL      |
|            |             |              |                  |                  |                |                 |                                          |               |

Lab Name: TestAmerica Denver

SDG No.:

| Note      |     |             |              |                               | Д<br>У<br>У     | Parent Reagent  |                 |                            |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------|--------------|-------------------------------|-----------------|-----------------|-----------------|----------------------------|---------------|
| Dispute to the price of the property of the    |     | Exp<br>Date | Prep<br>Date | Dilutant<br>Used              | Final<br>Volume |                 | Volume<br>Added | Analyte                    | Concentration |
| STREET   S   |     |             |              |                               |                 |                 |                 | Di-n-octyl phthalate       | 50 ug/mL      |
| Signature   Sign   |     |             |              |                               |                 |                 |                 | Dibenz (a, h) anthracene   | 50 ug/mL      |
| SizeWith Intelligence   Size   |     |             |              |                               |                 |                 |                 | Dibenzofuran               |               |
| District Partial are   Signature   District Partial are   Signature   Signat   |     |             |              |                               |                 |                 |                 | Diethyl phthalate          |               |
| ElighentyLearthene   92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |             |              |                               |                 |                 |                 | Dimethyl phthalate         |               |
| Pictores    |     |             |              |                               |                 |                 |                 | Diphenylamine              | 42.5 ug/mL    |
| ### STATE CONTINUES OF THE PRESENCE OF THE PRE |     |             |              |                               |                 |                 |                 | Fluoranthene               | 50 ug/mL      |
| State   Stat   |     |             |              |                               |                 |                 |                 | Fluorene                   |               |
| State   Stat   |     |             |              |                               |                 |                 |                 | Hexachlorobenzene          |               |
| STIKE_00040   STIKE_00014      |     |             |              |                               |                 |                 |                 | Hexachlorobutadiene        |               |
| Tiddeno[1,2,3-cdthate=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |             |              |                               |                 |                 |                 | Hexachlorocyclopentadiene  |               |
| Inspheron   Inspheron   Frequency   Expheron   Expheron   50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |             |              |                               |                 |                 |                 | Hexachloroethane           |               |
| New Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |             |              |                               |                 |                 |                 | Indeno[1,2,3-cd]pyrene     |               |
| Nature   Nation   N   |     |             |              |                               |                 |                 |                 | Isophorone                 |               |
| N=Nitrosodipherblylamine   So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |             |              |                               |                 |                 |                 | N-Nitrosodi-n-propylamine  |               |
| STR_00040   OF/30/18   Methylene Chloride, Lot   Nar-58023 00042   M. Choesene   50   Methylene Chloride, Lot   Nar-58023 00042   M. Choesene   50   M. Choesene      |     |             |              |                               |                 |                 |                 | N-Nitrosodimethylamine     |               |
| Nighthalene   So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |             |              |                               |                 |                 |                 | N-Nitrosodiphenylamine     |               |
| Nitrobenzence   So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |             |              |                               |                 |                 |                 | Naphthalene                |               |
| STK_00040   06/30/18   01/30/18   Wethylene Chloride, Lot   10 mL MS-567685_00004   1 mL MS-15.00013   1 mL Trobenzene-d4   40   1 mL MS-56788_030004   1 mL Trobenzene-d3   40   40   1 mL Trobenzene-d3   40   40   40   40   40   40   40   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |             |              |                               |                 |                 |                 | Nitrobenzene               |               |
| Phenol there                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |             |              |                               |                 |                 |                 | Pentachlorophenol          |               |
| Prench   P   |     |             |              |                               |                 |                 |                 | Phenanthrene               |               |
| Fytein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |             |              |                               |                 |                 |                 | Phenol                     |               |
| NS-IS_00013   STK_00040   O6/30/18   O1/30/18   Methylene Chloride, Lot   Lo mL   MS-567685_00004   O.4 mL   L/4-Dichlorobenzene-d4   40   Ochoration   Ochorat   |     |             |              |                               |                 |                 |                 | Pyrene                     |               |
| STK_00040   06/30/18   MS-IS_00013   SO UL   14-Dichlorobenzene-d4   40   40   Aceaphthene-d10   Achamathy   |     |             |              |                               | '               |                 |                 | Pyridine                   |               |
| STK_00040   06/30/18   01/30/18   Methylene Chloride, Lot   10 mL   MS-567685_00004   0.4 mL   2.4.6-Tribromophenol (Surr)   200   Phenol Chloride   200   200   Phenol Chloride   200   200   Phenol Chloride   200   200   Phenol Chloride   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200     |     |             |              |                               |                 | MS-IS_00013     |                 | 1,4-Dichlorobenzene-d4     |               |
| STR_00040   06/30/18   Methylene Chloride, Lot   10 mL   MS-567685_00004   0.4 mL   2.4.6-Tribromophenol (Surr)   200   Nitrobenzene-d5 (Surr)   200   Nitrobenzene   200   Nitrobenze   |     |             |              |                               |                 |                 |                 | Acenaphthene-d10           |               |
| STK_00040   06/30/18   01/30/18   Methylene Chloride, Lot   10 mL   MS-567685_00004   0.4 mL   2,4,6-Tribromophenol (Surr)   200   2-Fluorobiphenyl   2-Fluorobi   |     |             |              |                               |                 |                 |                 | Chrysene-d12               | - 1           |
| STK_00040   06/30/18   Methylene Chloride, Lot   10 mL   MS-567685_00004   0.4 mL   2,4,6-Tribromophenol (Surr)   200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |             |              |                               |                 |                 |                 | Naphthalene-d8             |               |
| STK_00040         06/30/18         Methylene Chloride, Lot         10 mL         MS-567685_00004         0.4 mL         2,4,6-Tribromophenol (Surr)         200           2-Fluorobjphenyl         2-Fluorophenol (Surr)         200           3-Fluorophenol (Surr)         200           Nitrobenezene-d5 (Surr)         200           Phenol-d5 (Surr)         200           NS-56803 00026         0.5 mL         Alachor           MS-56803 00026         0.5 mL         Alachor         200           MS-569730 HSL 00007         1 mL         Alachor         200           MS-569731 00070         2 mL         Alachor         200           MS-509731 00070         2 mL         Alachor         200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |             |              |                               |                 |                 |                 | Perylene-d12               |               |
| STK_00040   06/30/18   Methylene Chloride, Lot   10 mL   MS-567685_00004   0.4 mL   2,4,6-Tribromophenol (Surr)   200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |             |              |                               |                 |                 |                 |                            |               |
| Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STK | 06/30/18    | 01/30/18     | Methylene Chloride,<br>181545 | 10              | MS-567685_00004 |                 |                            |               |
| Nitrobenzene-d5 (Surr)   200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |             |              |                               |                 |                 |                 | 2-Fluorobiphenyl           |               |
| Nitrobenzene-d5 (Surr)   200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |             |              |                               |                 |                 |                 |                            |               |
| Phenol-d5 (Surr)   200   Terphenyl-d14 (Surr)   200   Terphenyl-d14 (Surr)   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200     |     |             |              |                               |                 |                 |                 |                            |               |
| Terphenyl-d14 (Surr)   200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |             |              |                               |                 |                 |                 | (Sur                       |               |
| mL Famphur 200   0.5 mL Alachlor   200   200   3.3'-Dichlorobenzidine   200   200   2 mL Benzoic acid   200   2 mL Atrazine   200   2 mL Atrazine   200   2 mL Atrazine   200   2 mL Atrazine   200   2 mL Atrachlorobenzene   200   1,2,4-Trichlorobenzene   200   1,2,4-Trichlorobenzene   200   1,2,4-Trichlorobenzene   200   1,2-Dichlorobenzene   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   20   |     |             |              |                               |                 |                 |                 | yl-d14                     |               |
| 0.5 mL Alachlor 0007 1 mL 3.3'-Dichlorobenzidine 200 0005 1 mL Benzoic acid 400 0005 1 mL Arazine 200 0 Caprolactam 200 2 mL 11'-Biphenyl 200 1,2,4,5-Tetrachlorobenzene 200 1,2,4-Trichlorobenzene 200 1,2,4-Trichlorobenzene 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |             |              |                               |                 |                 |                 | Famphur                    |               |
| ML   3,3'-Dichlorobenzidine   200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |             |              |                               |                 |                 |                 | _                          |               |
| 2 mL Benzoic acid 400 0005 1 mL Atrazine 200 Caprolactam 200 2 mL 1,1'-Biphenyl 200 1,2,4,5-Tetrachlorobenzene 200 1,2,4-Trichlorobenzene 200 1,2,4-Trichlorobenzene 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |             |              |                               |                 |                 |                 | 3,3'-Dichlorobenzidine     | 200 ug/mL     |
| 0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |             |              |                               |                 |                 |                 | Benzoic acid               | 400 ug/mL     |
| Caprolactam  2 mL 1,1'-Biphenyl 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |             |              |                               |                 |                 |                 | Atrazine                   |               |
| 2 mL 1,1'-Biphenyl<br>1,2,4,5-Tetrachlorobenzene<br>1,2,4-Trichlorobenzene<br>1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |             |              |                               |                 |                 |                 | Caprolactam                |               |
| nzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |             |              |                               |                 | MS-571995_00001 |                 | 1,1'-Biphenyl              |               |
| Φ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |             |              |                               |                 |                 |                 | 1,2,4,5-Tetrachlorobenzene | 200 ug/mL     |
| 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |             |              |                               |                 |                 |                 | 1,2,4-Trichlorobenzene     | 200 ug/mL     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |             |              |                               |                 |                 |                 | 1,2-Dichlorobenzene        | 200 ug/mL     |

Lab Name: TestAmerica Denver

SDG No.:

| Exp Bagent ID Date | ЩЦ | Prep<br>Date | Dilutant<br>Used | Final  |            | Volume |                              |               |
|--------------------|----|--------------|------------------|--------|------------|--------|------------------------------|---------------|
|                    |    | )            |                  | volume | Reagent ID | Added  | Analyte                      | Concentration |
|                    |    |              |                  |        |            |        | 1,3-Dichlorobenzene          | 200 ug/mL     |
|                    |    |              |                  |        |            |        | 1,3-Dinitrobenzene           | 200 ug/mL     |
|                    |    |              |                  |        |            |        | 1,4-Dichlorobenzene          | 200 ug/mL     |
|                    |    |              |                  |        |            |        | 1,4-Dioxane                  |               |
|                    |    |              |                  |        |            |        | 1-Methylnaphthalene          |               |
|                    |    |              |                  |        |            |        | 2,2'-oxybis[1-chloropropane] |               |
|                    |    |              |                  |        |            |        | 2,3,4,6-Tetrachlorophenol    |               |
|                    |    |              |                  |        |            |        | 2,4,5-Trichlorophenol        | 200 ug/mL     |
|                    |    |              |                  |        |            |        | 2,4,6-Trichlorophenol        |               |
|                    |    |              |                  |        |            |        | 2,4-Dichlorophenol           |               |
|                    |    |              |                  |        |            |        | 2,4-Dimethylphenol           | 200 ug/mL     |
|                    |    |              |                  |        |            |        | 2,4-Dinitrophenol            |               |
|                    |    |              |                  |        |            |        | 2,4-Dinitrotoluene           |               |
|                    |    |              |                  |        |            |        | 2,6-Dichlorophenol           |               |
|                    |    |              |                  |        |            |        | 2,6-Dinitrotoluene           | 200 ug/mL     |
|                    |    |              |                  |        |            |        | 2-Chloronaphthalene          | 200 ug/mL     |
|                    |    |              |                  |        |            |        | 2-Chlorophenol               | 200 ug/mL     |
|                    |    |              |                  |        |            |        | 2-Methylnaphthalene          |               |
|                    |    |              |                  |        |            |        | 2-Methylphenol               |               |
|                    |    |              |                  |        |            |        | 2-Nitroaniline               | 200 ug/mL     |
|                    |    |              |                  |        |            | •      | 2-Nitrophenol                |               |
|                    |    |              |                  |        |            |        | 3 & 4 Methylphenol           | 200 ug/mL     |
|                    |    |              |                  |        |            |        | 3-Nitroaniline               |               |
|                    |    |              |                  |        |            |        | 4,6-Dinitro-2-methylphenol   | 400 ug/mL     |
|                    |    |              |                  |        |            |        | 4-Bromophenyl phenyl ether   | 200 ug/mL     |
|                    |    |              |                  |        |            |        | 4-Chloro-3-methylphenol      | 200 ug/mL     |
|                    |    |              |                  |        |            |        | (I)                          | 200 ug/mL     |
|                    |    |              |                  |        |            |        | 4-Chlorophenyl phenyl ether  |               |
|                    |    |              |                  |        |            |        | 4-Nitroaniline               |               |
|                    |    |              |                  |        |            | •      | 4-Nitrophenol                | 400 ng/mI     |
|                    |    |              |                  |        |            | •      | Acenaphthene                 |               |
|                    |    |              |                  |        |            |        | Acenaphthylene               |               |
|                    |    |              |                  |        |            |        | Acetophenone                 |               |
|                    |    |              |                  |        |            |        | Aniline                      |               |
|                    |    |              |                  |        |            | •      | Anthracene                   | 200 ug/mL     |
|                    |    |              |                  |        |            | •      | Azobenzene                   | 200 ug/mL     |
|                    |    |              |                  |        |            | •      | Benzo[a]anthracene           |               |
|                    |    |              |                  |        |            | •      | Benzo[a]pyrene               |               |
|                    |    |              |                  |        |            |        | Benzo[b]fluoranthene         |               |
|                    |    |              |                  |        |            | •      | Benzo[g,h,i]perylene         | 200 ug/mL     |
|                    |    |              |                  |        |            |        | Benzo[k]fluoranthene         |               |
|                    |    |              |                  |        |            |        | Benzyl alcohol               |               |
|                    |    |              |                  |        |            |        | Bis (2-chloroethoxy) methane | 200 ug/mL     |
|                    |    |              |                  |        |            |        | Bis (2-chloroethyl)ether     | 200 ug/mL     |
|                    |    |              |                  |        |            | •      | Bis(2-ethylhexyl) phthalate  | 200 ug/mL     |
|                    |    |              |                  |        |            | •      | Butyl benzyl phthalate       |               |
|                    |    |              |                  |        |            | •      | Carbazole                    | - 1           |
|                    | _  |              | _                |        |            |        | Chrysene                     | 200 ug/mL     |

Lab Name: TestAmerica Denver

Job No.: 320-39023-1

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |            |      |             |         | - 1                |       |                              |                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|------|-------------|---------|--------------------|-------|------------------------------|----------------------------------|
| Date   Date   Date   Dillitate   Files   Notime   Modes   Discrete   Part   Modes   Discrete   Di |                 |            |      | <u> </u>    | Reagent | Parent Reagent     |       |                              |                                  |
| 10   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | EXD<br>+cC | Prep |             | Final   | Ę                  | olume | (                            | ()<br>()<br>()<br>()<br>()<br>() |
| District of pitchiales   200   District of pitchiales   200  |                 | חשרה       | חמרם |             | ^orume  | J T                | ragea | - 1                          | CONCENTRALION                    |
| The control put black of the control of the contr |                 |            |      |             |         |                    |       |                              |                                  |
| Diseasor filtration   Diseasor filtration  |                 |            |      |             |         |                    |       |                              |                                  |
| District plants   District p |                 |            |      |             |         |                    |       | Dibenz (a,h) anthracene      |                                  |
| Directly phths are 200   Directly phths are 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |            |      |             |         |                    |       | Dibenzofuran                 |                                  |
| Princetyle pithulate   200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |            |      |             |         |                    |       | Diethyl phthalate            |                                  |
| Pluotentheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |            |      |             |         |                    |       | Dimethyl phthalate           |                                  |
| Pluceachinese   200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |            |      |             |         |                    |       | Diphenylamine                |                                  |
| Exacellocrobergeneee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |            |      |             |         |                    |       | Fluoranthene                 |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |            |      |             |         |                    |       | Fluorene                     |                                  |
| Hearth   H |                 |            |      |             |         |                    |       | Hexachlorobenzene            |                                  |
| The continue contin |                 |            |      |             |         |                    |       | Heachtoropenice              |                                  |
| Headiniotocockane   Restek, Lot A0127669   Restek   Restek, Lot A0127669   Restek   Res |                 |            |      |             |         |                    |       | Hexachlorobucanene           |                                  |
| Induction   Paster   Paster  |                 |            |      |             |         |                    |       | Hexachlorocyclopentadiene    |                                  |
| Tabphorone   Tab |                 |            |      |             |         |                    |       | Hexachloroethane             |                                  |
| 11/30/19   Restek, Lot A0120500   Fluchased Reagent)   Fluctbonzene   200   Restek, Lot A0120500   Rester Reagent)   200   Rester Rester Reagent)   200   Rester  |                 |            |      |             |         |                    |       | Indeno[1,2,3-cd]pyrene       |                                  |
| National Continue   Nati |                 |            |      |             |         |                    |       | Isophorone                   |                                  |
| N. Nitrosodimethylanine 200   N |                 |            |      |             |         |                    |       | N-Nitrosodi-n-propylamine    |                                  |
| National Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |            |      |             |         |                    |       | N-Nitrosodimethylamine       |                                  |
| Nighthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |            |      |             |         |                    |       | N-Nitrosodiphenylamine       |                                  |
| Mittobensele 200   Phenantheme 200   Pyrese 200   P |                 |            |      |             |         |                    |       | Naphthalene                  |                                  |
| Pertachlocophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |            |      |             |         |                    |       | Nitrobenzene                 |                                  |
| Pienathtene   200   Pienathtene   200   Pienathtene   200   Pyene   Pyriam   200   Pyriam   200   Pyriam   200   Pyriam   200   Pyriam   200   200   Pyriam   200   200   Pyriam   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   |                 |            |      |             |         |                    |       | Pentachlorophenol            |                                  |
| Picture   Pytene   Pytene   Pytene   Pytene   Pytene   Pytene   200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |            |      |             |         |                    |       | Dhenan+hrene                 | 200 11g/mT.                      |
| 1/30/19   Restek, Lot A0130500   Purchased Reagent   Pyridine   200   2 - Fluorobiphenol (Surr)   5000   2 - Fluorobiphenol (Surr)   5 - Fluorobiphenol (S |                 |            |      |             |         |                    |       | Phanol                       | 200 dg/mT.                       |
| 1,30/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |            |      |             |         |                    |       | Direct                       |                                  |
| 01/30/19   Restek, Lot A0130500   (Purchased Reagent)   2,4,6 Tribromophenol (Surr)   5000   2-Fluorobhishenol (Surr)   5000   12/30/19   Restek, Lot A0127668   (Purchased Reagent)   Famphur   Famphur   5000   Restek, Lot A0123057   (Purchased Reagent)   Famphur   5000   11/30/18   Restek, Lot A012780   (Purchased Reagent)   Alachlor   5000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000  |                 |            |      |             |         |                    |       | ryrene                       |                                  |
| 1/30/19   Restek, Lot AU130300   (Furchased Reagent)   2-Fluorobjathenyl   5000   2-Fluorobjathenyl   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   |                 | 7          |      | 7<br>7<br>6 |         |                    | ,     |                              |                                  |
| Carlotrophenol (Surr)   5000   Nitrobenzene-d5 (Surr)   5000   Nitrobenzene   5000   Nitrobenzene   5000   Nitrobenzene   5000   Nitrobenzene   5000   Nitrobenzene   5000   Nitrobenzene   1000   N | MS-56/685_00004 | 01/30/13   |      | Lot AU130   |         | (Purchased Reagent | _     | Toue                         |                                  |
| Comparison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |            |      |             |         |                    |       | 2-Fluorobiphenyl             |                                  |
| Nitrobenzene-d5 (Surr)   5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |      |             |         |                    |       |                              |                                  |
| Depon-1-d5 (Burr)   Phenol-d5 (Burr)   Formation   Phenol-d5 (Burr)   5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |            |      |             |         |                    |       |                              |                                  |
| Deciding Restek, Lot A0127668                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |      |             |         |                    |       | Phenol-d5 (Surr)             |                                  |
| 11/30/19   Restek, Lot A0127668   (Purchased Reagent)   Alachlor   14000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |            |      |             |         |                    |       |                              |                                  |
| 11/30/19   Restek, Lot A0133057   Purchased Reagent)   Alachhor   Alachhor  | - 1             | $\vdash$   |      |             |         |                    | )     | Famphur                      |                                  |
| 0007         11/30/18         Restek, Lot A0127472         (Purchased Reagent)         3,3'-Dichlorobenzidine         2000           0005         11/30/18         Restek, Lot A0127580         (Purchased Reagent)         Latzaine         2000           0005         11/30/18         Restek, Lot A0127580         (Purchased Reagent)         1,1'-Biphenyl         1000           09/30/18         Restek, Lot A0125805         (Purchased Reagent)         1,1'-Biphenyl         1000           1,2,4,5-Tetrachlorobenzene         1000         1,2'-4'-Trichlorobenzene         1000           1,3-Diphenylhydrazine         1000         1,3-Diphenylhydrazine         1000           1,3-Diphenylhydrazine         1000         1,4-Diphenylhydrazine         1000           1,4-Diphenylhydrazine         1000         1,4-Diphenylhydrazine         1000           1,4-Diphenylhydrazine         1000         1,4-Diphenylhydrazine         1000           1,4-Diphenylhydrazine         1000         1,4-Diphenylhydrazine         1000           1,4-Diphenylhalene         1000         1,4-Dioxane         1000           1,4-Dioxane         1000         1,4-Dioxane         1000           1,4-Dioxane         1000         1,4-Dioxane         1000           1,4-Dioxane         1000 <td></td> <td>06/30/19</td> <td></td> <td>Lot A0133</td> <td></td> <td></td> <td>(</td> <td>Alachlor</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | 06/30/19   |      | Lot A0133   |         |                    | (     | Alachlor                     |                                  |
| 06/30/18         Restek, Lot A0123819         (Purchased Reagent)         Benzoic acid         2000           0005         11/30/18         Restek, Lot A0127580         (Purchased Reagent)         Atrazine         2000           09/30/18         Restek, Lot A0125805         (Purchased Reagent)         1/2.4/5-Tetrachlorobenzene         1000           1/2.4/-Trichlorobenzene         1000           1/2.4/-Trichlorobenzene         1000           1/2-Diphenylhydrazine         1000           1/3-Dichlorobenzene         1000           1/4-Dichlorobenzene         1000           1/4-Dischlorobenzene         1000           1/4-Dischlorobenzene         1000           1/4-Dischlorobenzene         1000           1/4-Dischlorobenzene         1000           1/4-Dischlorobenzene         1000           1/4-Dischlorobenzene         1000           1/4-Dischloropenzene         1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | 11/30/18   |      | Lot A0127   |         |                    | )     | 3,3'-Dichlorobenzidine       |                                  |
| 11/30/18   Restek, Lot A0127580   Caprolactam   Caprolac |                 | 06/30/18   |      | Lot         |         |                    | )     |                              |                                  |
| Caprolactam    |                 | 11/30/18   |      | Lot         |         |                    | (     | Atrazine                     |                                  |
| 1,1'-Biphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |            |      |             |         |                    |       | Caprolactam                  |                                  |
| 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MS-571995_00001 | 09/30/18   |      | Lot A0125   |         |                    | )     | 1,1'-Biphenyl                |                                  |
| 1000<br>1010.97<br>1010.97<br>1000<br>1000<br>1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1               |            |      |             |         |                    |       | 1,2,4,5-Tetrachlorobenzene   |                                  |
| 1000<br>1010.97<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |            |      |             |         |                    |       | 1,2,4-Trichlorobenzene       |                                  |
| 1010.97<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |            |      |             |         |                    |       | 1,2-Dichlorobenzene          |                                  |
| 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |            |      |             |         |                    |       | 1,2-Diphenylhydrazine        |                                  |
| 10000 1 10000 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |            |      |             |         |                    |       | 1,3-Dichlorobenzene          | 1                                |
| 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |            |      |             |         |                    |       | 1,3-Dinitrobenzene           |                                  |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |            |      |             |         |                    |       | 1,4-Dichlorobenzene          | 1000 ug/mL                       |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |            |      |             |         |                    |       | 1,4-Dioxane                  | 1000 ug/mL                       |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |            |      |             |         |                    |       | 1-Methylnaphthalene          |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |            |      |             |         |                    |       | 2,2'-oxybis[1-chloropropane] |                                  |

Lab Name: TestAmerica Denver Job No.: 320-39023-1

| Reagent ID | E C  |              |                  | Neageiit        |                            |                             | _             |
|------------|------|--------------|------------------|-----------------|----------------------------|-----------------------------|---------------|
|            | Date | Prep<br>Date | Dilutant<br>Used | Final<br>Volume | Volume<br>Reagent ID Added | Analyte                     | Concentration |
|            |      |              |                  |                 | _                          | 2,3,4,6-Tetrachlorophenol   |               |
|            |      |              |                  |                 |                            | 2,4,5-Trichlorophenol       | 1000 ug/mL    |
|            |      |              |                  |                 |                            | 2,4,6-Trichlorophenol       |               |
|            |      |              |                  |                 |                            | 2,4-Dichlorophenol          |               |
|            |      |              |                  |                 |                            | 2,4-Dimethylphenol          | - 1           |
|            |      |              |                  |                 |                            | 2,4-Dinitrophenol           | 2000 ug/mL    |
|            |      |              |                  |                 |                            | 2,4-Dinitrotoluene          | 1000 ug/mL    |
|            |      |              |                  |                 |                            | 2,6-Dichlorophenol          | 1000 ug/mL    |
|            |      |              |                  |                 |                            | 2,6-Dinitrotoluene          | 1000 ug/mL    |
|            |      |              |                  |                 |                            | 2-Chloronaphthalene         | 1000 ug/mL    |
|            |      |              |                  |                 |                            | 2-Chlorophenol              | 1000 ug/mL    |
|            |      |              |                  |                 |                            | 2-Methylnaphthalene         | 1000 ug/mL    |
|            |      |              |                  |                 |                            | 2-Methylphenol              |               |
|            |      |              |                  |                 |                            | 2-Nitroaniline              | 1000 ug/mL    |
|            |      |              |                  |                 |                            | 2-Nitrophenol               |               |
|            |      |              |                  |                 |                            | 3 & 4 Methylphenol          | 1000 ug/mL    |
|            |      |              |                  |                 |                            | 3-Nitroaniline              |               |
|            |      |              |                  |                 |                            | 4,6-Dinitro-2-methylphenol  | 2000 ug/mL    |
|            |      |              |                  |                 |                            | 4-Bromophenyl phenyl ether  | 1000 ug/mL    |
|            |      |              |                  |                 |                            | 4-Chloro-3-methylphenol     | 1000 ug/mL    |
|            |      |              |                  |                 |                            | 4-Chloroaniline             | 1000 ug/mL    |
|            |      |              |                  |                 |                            | 4-Chlorophenyl phenyl ether |               |
|            |      |              |                  |                 |                            | 4-Nitroaniline              | 1000 ug/mL    |
|            |      |              |                  |                 |                            | 4-Nitrophenol               | 2000 ug/mL    |
|            |      |              |                  |                 |                            | Acenaphthene                | 1000 ug/mL    |
|            |      |              |                  |                 |                            | Acenaphthylene              |               |
|            |      |              |                  |                 |                            | Acetophenone                | 1000 ug/mL    |
|            |      |              |                  |                 |                            | Aniline                     | 1000 ug/mL    |
|            |      |              |                  |                 |                            | Anthracene                  |               |
|            |      |              |                  |                 |                            | Azobenzene                  | 1000 ug/mL    |
|            |      |              |                  |                 |                            | Benzo[a]anthracene          | 1000 ug/mL    |
|            |      |              |                  |                 |                            | Benzo[a]pyrene              | 1000 ug/mL    |
|            |      |              |                  |                 |                            | Benzo[b]fluoranthene        | 1000 ug/mL    |
|            |      |              |                  |                 |                            | Benzo[g,h,i]perylene        | 1000 ug/mL    |
|            |      |              |                  |                 |                            | Benzo[k]fluoranthene        |               |
|            |      |              |                  |                 |                            | Benzyl alcohol              | 1000 ug/mL    |
|            |      |              |                  |                 |                            | Bis(2-chloroethoxy)methane  | 1000 ug/mL    |
|            |      |              |                  |                 |                            | Bis (2-chloroethyl) ether   |               |
|            |      |              |                  |                 |                            | -ethylhe                    | 1000 ug/mL    |
|            |      |              |                  |                 |                            | Butyl benzyl phthalate      |               |
|            |      |              |                  |                 |                            | Carbazole                   | 1000 ug/mL    |
|            |      |              |                  |                 |                            | Chrysene                    | 1000 ug/mL    |
|            |      |              |                  |                 |                            | Di-n-butyl phthalate        | 1000 ug/mL    |
|            |      |              |                  |                 |                            | Di-n-octyl phthalate        | 1000 ug/mL    |
|            |      |              |                  |                 |                            | Dibenz (a,h) anthracene     | 1000 ug/mL    |
|            |      |              |                  |                 |                            | Dibenzofuran                | 1000 ug/mL    |
|            |      |              |                  |                 |                            | Diethyl phthalate           | 1000 ug/mL    |
|            |      |              |                  |                 |                            | Dimethyl phthalate          | 1000 ug/mL    |

Lab Name: TestAmerica Denver

Job No.: 320-39023-1

SDG No.:

1000 ug/mL 1000 ug/mL 1000 ug/mL 400 ug/mL 400 ug/mL 400 ug/mL 2000 ug/mL 2000 ug/mL ng/mL 1000 ug/mL 1000 ug/mL ng/mL ng/mL 80 ug/mL 80 ug/mL 80 ug/mL ng/mL Tm/bn 0001 .000 ug/mL .000 ug/mL Jm/bn 000 2000 ug/mL 2000 ug/mL Concentration ng/mL .000 ug/mL .000 ug/mL .000 ug/mL ng/mL 400 ug/mL 2000 ug/mL 2000 ug/mL 2000 ug/mL 2000 ug/mL 80 ug/mL 80 ug/mL ng/mL 80 80 200 uL 2,4,6-Tribromophenol (Surr) Isophorone N-Nitrosodi-n-propylamine Hexachlorocyclopentadiene N-Nitrosodimethylamine Hexachloroethane Indeno[1,2,3-cd]pyrene N-Nitrosodiphenylamine 1,4-Dichlorobenzene-d4 1,4-Dichlorobenzene-d4 Nitrobenzene-d5 (Surr) (Surr) (Surr) Hexachlorobutadiene Analyte Hexachlorobenzene Pentachlorophenol Phenanthrene-d10 Acenaphthene-d10 Phenanthrene-d10 Acenaphthene-d10 2-Fluorobiphenyl 2-Fluorophenol ( Phenol-d5 (Surr) Chrysene-d12 Naphthalene-d8 Naphthalene-d8 Terphenyl-d14 Diphenylamine Fluoranthene Nitrobenzene Phenanthrene Perylene-d12 Perylene-d12 Chrysene-d12 Naphthalene Fluorene Pyridine Famphur Pyrene Phenol 50 mL Volume Added (Purchased Reagent) Parent Reagent 0.5 mL MS-HSLA STK 00040 Reagent ID 250 mL MS-567684 00019 Reagent Volume Final 06/22/17 | Methylene Chloride, Lot | 157164 06/22/18 04/03/18 Methylene Chloride, Lot 181545 Restek, Lot A0112833 Dilutant Used Prep Date 06/22/18 07/31/20 Exp Date Reagent ID ..MS-567684 00019 MS-HSLA080\_00035 .MS-IS 0001

#### Page 258 of 3863

80 ug/mL 80 ug/mL

1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene

Caprolactam 1,1'-Bipheny

80

ng/mL 80 ug/mL 160 ug/mL 80 ug/mL ng/mL

Alachlor 3,3'-Dichlorobenzidine

Benzoic acid

Atrazine

Lab Name: TestAmerica Denver

Job No.: 320-39023-1

|            |             |              |                  | 4<br>0<br>0<br>0<br>0 | Parent Reagent |                 |                                      |                 |
|------------|-------------|--------------|------------------|-----------------------|----------------|-----------------|--------------------------------------|-----------------|
| Reagent ID | Exp<br>Date | Prep<br>Date | Dilutant<br>Used | Final<br>Volume       | Reagent ID     | Volume<br>Added | Analyte                              | Concentration   |
|            |             |              |                  |                       |                |                 | 1,2-Dichlorobenzene                  | 80 ug/mL        |
|            |             |              |                  |                       |                |                 | 1,2-Diphenylhydrazine                |                 |
|            |             |              |                  |                       |                |                 | 1,3-Dichlorobenzene                  |                 |
|            |             |              |                  |                       |                |                 | 1,3-Dinitrobenzene                   |                 |
|            |             |              |                  |                       |                |                 | 1,4-Dichlorobenzene                  |                 |
|            |             |              |                  |                       |                |                 | 1,4-Dioxane                          |                 |
|            |             |              |                  |                       |                |                 | 1-Methylnaphthalene                  |                 |
|            |             |              |                  |                       |                |                 | 2,2'-oxybis[1-chloropropane]         |                 |
|            |             |              |                  |                       |                |                 | 2,3,4,6-Tetrachlorophenol            | 30 ng/mL        |
|            |             |              |                  |                       |                |                 | 2,4,5-Trichlorophenol                |                 |
|            |             |              |                  |                       |                |                 | 2,4,6-Trichlorophenol                |                 |
|            |             |              |                  |                       |                |                 | 2,4-Dichlorophenol                   |                 |
|            |             |              |                  |                       |                |                 | 2,4-Dimethylphenol                   | 160 ug/mL       |
|            |             |              |                  |                       |                |                 | 2 / = Dinitropinenoi                 | Tm/m1           |
|            |             |              |                  |                       |                |                 | 2,4-Dintelocateme 2.6-Dichlorophenol | 80 ug/mT.       |
|            |             |              |                  |                       |                |                 | 2,6-Dinitrotoluene                   |                 |
|            |             |              |                  |                       |                |                 | 2-Chloronaphthalene                  |                 |
|            |             |              |                  |                       |                |                 | 2-Chlorophenol                       | 80 ug/mL        |
|            |             |              |                  |                       |                |                 | 2-Methylnaphthalene                  |                 |
|            |             |              |                  |                       |                |                 | 2-Methylphenol                       | 80 ug/mL        |
|            |             |              |                  |                       |                |                 | 2-Nitroaniline                       | 80 ug/mL        |
|            |             |              |                  |                       |                |                 | -Z<br>i                              |                 |
|            |             |              |                  |                       |                |                 | 3 & 4 Methylphenol                   | 1m/mn 88        |
|            |             |              |                  |                       |                |                 | 3-Nitroaniline                       | 1m/mn 88        |
|            |             |              |                  |                       |                |                 | 4,6-Dinitro-2-methylphenol           | 160 ug/mL       |
|            |             |              |                  |                       |                |                 | 4-Bromophenyl phenyl ether           | 30 ng/mL        |
|            |             |              |                  |                       |                |                 | 4-Chloro-3-methylphenol              |                 |
|            |             |              |                  |                       |                |                 | 0)                                   |                 |
|            |             |              |                  |                       |                |                 | 4-Chlorophenyl phenyl ether          |                 |
|            |             |              |                  |                       |                |                 | 4-Nitroaniline                       | 80 ug/mL        |
|            |             |              |                  |                       |                |                 | 4-NICIODIIIOI                        |                 |
|            |             |              |                  |                       |                |                 | Acenaphrhene                         |                 |
|            |             |              |                  |                       |                |                 | Acenaphonone                         | 7m/m/<br>11m/m1 |
|            |             |              |                  |                       |                |                 | Aniline                              |                 |
|            |             |              |                  |                       |                |                 | Anthracene                           |                 |
|            |             |              |                  |                       |                |                 | Azobenzene                           | 80 ug/mL        |
|            |             |              |                  |                       |                |                 | Benzo[a]anthracene                   | 80 ug/mL        |
|            |             |              |                  |                       |                |                 | Benzo[a]pyrene                       | 80 ug/mL        |
|            |             |              |                  |                       |                |                 | Benzo[b]fluoranthene                 |                 |
|            |             |              |                  |                       |                |                 | Benzo[g,h,i]perylene                 | - 1             |
|            |             |              |                  |                       |                |                 | Benzo[k]fluoranthene                 | 30 ng/mL        |
|            |             |              |                  |                       |                |                 | Benzyl alcohol                       |                 |
|            |             |              |                  |                       |                |                 | Bis (2-chloroethoxy) methane         | 80 ug/mL        |
|            |             |              |                  |                       |                |                 | Bis(2-chloroethy1)ether              |                 |
|            |             |              |                  |                       |                |                 | Bis(2-ethylnexyl) phthalate          | Tm/bn 08        |
|            | _           |              |                  |                       | _              |                 | Butyl benzyl phthalate               | Tm/bn 08        |
|            |             |              |                  |                       |                |                 |                                      |                 |

Lab Name: TestAmerica Denver

SDG No.:

| Reagent ID Date Date U  U  WS-HSLA_STK_00040 06/30/18 01/30/18 Methylene 181545 | Dilutant            | Final<br>Volume | Reagent ID Ac                           | Volume Added Carbazole Chrysene    | Concentration<br>80 ug/mL |
|---------------------------------------------------------------------------------|---------------------|-----------------|-----------------------------------------|------------------------------------|---------------------------|
| STK_00040 06/30/18 01/30/18                                                     |                     |                 |                                         | Carbazole<br>Chrysene              | 80 ug/mL                  |
| STK_00040 06/30/18 01/30/18                                                     |                     |                 |                                         | Chrysene                           | 1111                      |
| STK_00040 06/30/18 01/30/18                                                     |                     |                 |                                         |                                    | 80 ug/mL                  |
| STK_00040 06/30/18 01/30/18                                                     |                     |                 |                                         | Di-n-butyl phthalate               |                           |
| STK_00040 06/30/18 01/30/18                                                     |                     |                 |                                         | Di-n-octyl phthalate               |                           |
| STK_00040 06/30/18 01/30/18                                                     |                     |                 |                                         | Dibenz (a,h) anthracene            | 80 ug/mL                  |
| STK_00040 06/30/18 01/30/18                                                     |                     |                 |                                         | Dibenzofuran                       |                           |
| STK_00040 06/30/18 01/30/18                                                     |                     |                 |                                         | Diethyl phthalate                  | 1m/mn 80                  |
| STK_00040 06/30/18 01/30/18                                                     |                     |                 |                                         | Dimethyl phthalate                 |                           |
| STK_00040 06/30/18 01/30/18                                                     |                     |                 |                                         | Diphenylamine                      |                           |
| STK_00040 06/30/18 01/30/18                                                     |                     |                 | _                                       | Fluoranthene                       | 80 ug/mL                  |
| STK_00040 06/30/18 01/30/18                                                     |                     |                 |                                         | Fluorene                           |                           |
| STK_00040 06/30/18 01/30/18                                                     |                     |                 |                                         | Hexachlorobenzene                  | Jm/gn 08                  |
| STK_00040 06/30/18 01/30/18                                                     |                     |                 |                                         | Hexachlorocyclopentadiene          |                           |
| STK_00040 06/30/18 01/30/18                                                     |                     |                 |                                         | Hexachloroethane                   |                           |
| STK_00040 06/30/18 01/30/18                                                     |                     |                 |                                         | Indeno[1,2,3-cd]pyrene             |                           |
| STK_00040 06/30/18 01/30/18                                                     |                     |                 |                                         | Isophorone                         | 80 ug/mL                  |
| STK_00040 06/30/18 01/30/18                                                     |                     |                 |                                         | N-Nitrosodi-n-propylamine          |                           |
| _STK_00040 06/30/18 01/30/18                                                    |                     |                 |                                         | N-Nitrosodimethylamine             |                           |
| _STK_00040 06/30/18 01/30/18                                                    |                     |                 |                                         | N-Nitrosodiphenylamine             |                           |
| _STK_00040 06/30/18 01/30/18                                                    |                     |                 |                                         | Naphthalene                        |                           |
| _stk_00040 06/30/18 01/30/18                                                    |                     |                 |                                         | Nitrobenzene                       |                           |
| STK_00040 06/30/18 01/30/18                                                     |                     |                 |                                         | Pentachlorophenol                  |                           |
| STK_00040 06/30/18 01/30/18                                                     |                     |                 |                                         | Phenanthrene                       |                           |
| STK_00040 06/30/18 01/30/18                                                     |                     |                 |                                         | Phenol                             |                           |
| STK_00040 06/30/18 01/30/18                                                     |                     |                 |                                         | Pyrene                             | 80 ug/mL                  |
| STK_00040 06/30/18 01/30/18                                                     |                     |                 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                                    |                           |
| _STK_00040 06/30/18 01/30/18                                                    |                     | MS              | MS-IS_00013                             | 50 uL 1,4-Dichlorobenzene-d4       |                           |
| _STK_00040 06/30/18 01/30/18                                                    |                     |                 |                                         | Acenaphthene-d10                   |                           |
| _STK_00040 06/30/18 01/30/18                                                    |                     |                 |                                         | Chrysene-d12                       |                           |
| _STK_00040 06/30/18 01/30/18                                                    |                     |                 |                                         | Naphthalene-d8                     | 40 ug/mL                  |
| STK_00040 06/30/18 01/30/18                                                     |                     |                 |                                         | Dhonanthrone_A10                   |                           |
| 0.04.0                                                                          | ylene Chloride, Lot | 10 mL MS-       | 567685_00004                            | 0.4 mL 2,4,6-Tribromophenol (Surr) |                           |
|                                                                                 | O                   |                 |                                         | 2-Fluorobiphenvl                   | 200 ug/mL                 |
|                                                                                 |                     |                 |                                         | 2-Fluorophenol (Surr)              | 200 ug/mL                 |
|                                                                                 |                     |                 |                                         | lı0                                |                           |
|                                                                                 |                     |                 |                                         | Phenol-d5 (Surr)                   | 200 ug/mL                 |
|                                                                                 |                     |                 |                                         | Terphenyl-d14 (Surr)               | 200 ug/mL                 |
|                                                                                 |                     | MS              | MS-568023_00042                         | 1 mL Famphur                       | 200 ug/mL                 |
|                                                                                 |                     | MS              | MS-568033_00026 0                       | 0.5 mL Alachlor                    | 200 ug/mL                 |
|                                                                                 |                     | MS              |                                         | 1 mL 3,3'-Dichlorobenzidine        | 200 ug/mL                 |
|                                                                                 |                     | MS              | MS-569731_00070                         | 2 mL Benzoic acid                  | 400 ug/mL                 |
|                                                                                 |                     | MS              | MS-569732 HSL_00005                     | 1 mL Atrazine                      | 200 ug/mL                 |
|                                                                                 |                     |                 |                                         |                                    |                           |
|                                                                                 |                     | MS              | MS-571995_00001                         | 2 mL 1,1'-Biphenyl                 |                           |
|                                                                                 |                     |                 |                                         | 1,2,4,5-Tetrachlorobenzene         | Z00 ng/mT                 |

Lab Name: TestAmerica Denver

SDG No.:

Job No.: 320-39023-1

200 ug/mL 200 ug/mL ng/mL ng/mL ng/mL 200 ug/mL 200 ug/mL ng/mL ng/mL ng/mL ng/mL ng/mL ng/mL Tm/bn ng/mL 100 ug/mL 200 ug/mL ng/mL Concentration 200 ug/mL 200 ug/mL 200 ug/mL 200 ug/mL 200 ug/mL ng/mL 200 ug/mL 400 ug/mL 200 ug/mL 400 ug/mL 200 ug/mL 200 ug/mL 200 ug/mL 200 ug/mL 200 ug/mL nd/mr 200 ug/mL 200 ug/mL 200 ug/mL 202.195 Benzo[a]anthracene
Benzo[a]pyrene
Benzo[b]fluoranthene
Benzo[g,h,i]perylene
Benzo[k]fluoranthene
Benzyl alcohol
Bis(2-chloroethoxy)methane
Bis(2-chloroethyl)ether
Bis(2-chloroethyl)phthalate 2,2'-oxybis[1-chloropropane] 4-Chlorophenyl phenyl ether 2,3,4,6-Tetrachlorophenol
2,4,5-Trichlorophenol
2,4,6-Trichlorophenol
2,4-Dichlorophenol
2,4-Dimethylphenol 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 1,2,4-Trichlorobenzene 1,2-Diphenylhydrazine 2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 1-Methylnaphthalene 2-Methylnaphthalene 2-Chloronaphthalene Analyte 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 1,3-Dinitrobenzene 2,6-Dichlorophenol & 4 Methylphenol 4-Chloroaniline 2-Nitroaniline 4-Nitroaniline Acenaphthylene 3-Nitroaniline 2-Chlorophenol 2-Methylphenol 4-Nitrophenol 2-Nitrophenol Acenaphthene Acetophenone Anthracene Azobenzene Volume Added Parent Reagent Reagent ID Volume Reagent Final Dilutant Used Prep Date Exp Date Reagent ID

Lab Name: TestAmerica Denver

SDG No.:

Job No.: 320-39023-1

(Surr) Caprolactam 1,1'-Biphenyl 1,2,4,5-Tetrachlorobenzene Isophorone N-Nitrosodi-n-propylamine Hexachlorocyclopentadiene Dibenz (a,h) anthracene Dibenzofuran Diethyl phthalate Dimethyl phthalate N-Nitrosodimethylamine Alachlor 3,3'-Dichlorobenzidine Benzoic acid 1,2,4-Trichlorobenzene Butyl benzyl phthalate Indeno[1,2,3-cd]pyrene N-Nitrosodiphenylamine (Surr 1,2-Diphenylhydrazine 2,4,6-Tribromophenol 2-Fluorobiphenyl Di-n-octyl phthalate (Surr) Di-n-butyl phthalate Terphenyl-d14 (Surr) 1,3-Dinitrobenzene 1,4-Dichlorobenzene **Hexachlorobutadiene** 1,2-Dichlorobenzene 3-Dichlorobenzene Analyte Fluorene Hexachlorobenzene Pentachlorophenol Hexachloroethane Nitrobenzene-d5 (Surr 2-Fluorophenol Diphenylamine Fluoranthene Nitrobenzene Phenanthrene Naphthalene Carbazole Phenol-d5 Chrysene Atrazine Pyridine Famphur Pyrene Phenol Volume Added (Purchased Reagent) Parent Reagent Reagent ID Reagent Volume Final Restek, Lot A0133057 Restek, Lot A0127472 Restek, Lot A0123819 Restek, Lot A0125805 Restek, Lot A0130500 Restek, Lot A0127668 Lot A0127580 Dilutant Used Restek, Prep Date 06/30/19 11/30/18 06/30/18 05/31/19 01/30/19 11/30/18 09/30/18 Exp Date ..MS-568033 00026 ..MS-569730 HSL 00007 ..MS-569731 00070 ..MS-569732 HSL 00005 Reagent ID ..MS-568023 00042 ..MS-567685 00004 ..MS-571995 00001

ng/mL

ng/mL 200 ug/mL ng/mL

Concentration

ng/mL

170 ug/mL 200 ug/mL

200 ug/mL

ng/mL

ng/mL 200 ug/mL 200 ug/mL 200 ug/mL

ng/mL

200 ug/mL

200 ug/mL 200 ug/mL 200 ug/mL

200 ug/mL 200 ug/mL

400 ug/mL 200 ug/mL

200 ug/mL ng/mL ng/mL

5000 ug/mL

5000 ug/mL 000 ng/mF

5000 ug/mL 5000 ug/mL

400 ug/mL 5000 ug/mL ng/mL

:000 ug/mL 2000 ug/mL 2000 ug/mL

ng/mL

Tw/bn

1000 ng/mL 1010.97 ug/mL

.000 ug/mL

#### Page 262 of 3863

1000 ug/mL 1000 ug/mL

Lab Name: TestAmerica Denver

SDG No.:

| Reagent ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |              | 100000       | rarelle veagelle | ٠               |                              |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|--------------|------------------|-----------------|------------------------------|---------------|
| 1.4-CHO CONTROL   2.27-CONTROL   2.2 | Exp<br>Date | Prer<br>Date | Final Volume |                  | Volume<br>Added | Analyte                      | Concentration |
| 1.98et/2014/04/19/19/19/19/19/19/19/19/19/19/19/19/19/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |              |              |                  |                 | - 1                          | 1000 ug/mL    |
| 2.2 4-68/1018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |              |              |                  |                 | 1-Methylnaphthalene          | 1000 ug/mL    |
| 2.3.4/6-72140HIX   2.4.4-72140HIX   2.   |             |              |              |                  |                 | 2,2'-oxybis[1-chloropropane] |               |
| 2 4 6 - Extraction of the control of |             |              |              |                  |                 | 2,3,4,6-Tetrachlorophenol    | 1000 ug/mL    |
| 2 4-010thorput 2 2-4-010thorput 2 2-4-01 |             |              |              |                  |                 | 2,4,5-Trichlorophenol        | 1000 ug/mL    |
| 2 4 Distriction 2 5 4 Distriction 2 5 4 Distriction 2 5 4 Distriction 2 6 Distriction 3 6 Distriction 3 6 Distriction 3 7 1 Computed 3 7 |             |              |              |                  |                 | 2,4,6-Trichlorophenol        |               |
| 2.4 Enhantency 2.5 (4 Dinit troopt 2.5 (4 Dini |             |              |              |                  |                 | 2,4-Dichlorophenol           |               |
| 2.4 - DIDITIONS 2.5 - Childron 3.5 - |             |              |              |                  |                 | 2,4-Dimethvlphenol           |               |
| 2.4 G-Dirittoria  3.4 G-Dirittoria  3.4 G-Dirittoria  4.4 G-Dirittoria  5.4 G-Dirittoria  6.4 G-Dirittoria  7.4 G-Dirittoria  8.4 G-Dirittoria  8.4 G-Dirittoria  8.4 G-Dirittoria  8.4 G-Dirittoria  8.4 G-Dirittoria  8.4 G-Dirittoria  9.4 G-Diritt |             |              |              |                  |                 | 2,4-Dinitrophenol            | 2000 ug/mL    |
| 2.6-Diditions 2.7-Chiconaghi 3.7-Chiconaghi 3.7-Chi |             |              |              |                  |                 | 2,4-Dinitrotoluene           |               |
| 2-Chloropping 2-Chloropping 2-Chloropping 2-Nettorphent 2-Nettorphent 2-Nettorphent 3-1-Nettorphent 3-1-Nettorphent 3-1-Nettorphent 4-Decomplian 4-Decomplian 4-Decomplian 4-Decomplian 6-Nettorphent 6-Chloropping 6-Nettorphent 6-Chloropping 6-Nettorphent  |             |              |              |                  |                 | 2,6-Dichlorophenol           |               |
| 2-Chloronghing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |              |              |                  |                 | 2.6-Dinitrotoluene           |               |
| 2-Nettylphan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |              |              |                  |                 | 2-Chloronaphthalene          |               |
| 2 - Methylphent   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |              |              |                  |                 | 2-Chlorophenol               | 1000 ug/mL    |
| Z-Nitronilii Z-Nitroniliii Z-Nitroniliiii Z-Nitroniliii Z-Nitroniliii Z-Nitroniliiii Z-Nitroniliiii Z-Nitroniliiii Z-Nitroniliiiii Z-N |             |              |              |                  |                 | 2-Methvlnaphthalene          |               |
| 2-Nitropanilii 3 * 4 Methyll 3 * 4 Methyll 3 * 4 Methyll 3 * 4 Achitucanilii 4 * Chiotocanilii 4 * Chiotocanilii 4 * Chiotocanilii 4 * Nitrophenor Achitucanilii 4 * Nitrophenor Achitucanilii 4 * Nitrophenor Achitucanilii 5 * 4 Chiotocanilii 6 * Achitucaniliii 7 * Achitucaniliii 8 * Achitucaniliii 9 * Achitucaniliii 1 * Achitucaniliiii 1 * Achitucaniliiii 1 * Achitucaniliiii 1 * Achitucaniliiii 1 * Achitucaniliiiii 1 * Achitucaniliiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |              |                  |                 | 2-Methylphenol               |               |
| 2-Nitrophenon   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |              |              |                  |                 | 2-Nitroaniline               |               |
| 3 & 4 Nethyll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |              |              |                  |                 | 2-Nitrophenol                |               |
| 3-Nitroanilii 4-Chiotoo-3-m 4-Chlocophany 6-Chiotoophany 7-Chiotoophany 8-Chiotoophany 8-Ch |             |              |              |                  |                 | 3 & 4 Methylphenol           |               |
| 4,6-Dinitro-7 4-Bromponiii 4-Chloropheni 4-Chloropheni 4-Chloropheni 4-Chloropheni 4-Chloropheni 4-Chloropheni 4-Chloropheni 4-Chloropheni Acenaphthylene Ac |             |              |              |                  |                 | 3-Nitroaniline               |               |
| 4-Eromophany 4-Eromophany 4-Chlorophany 6-Chlorophany 6-Ch |             |              |              |                  |                 | 4,6-Dinitro-2-methylphenol   |               |
| 4-Chloro-3-mg 4-Chloropheno, 4-Chloropheno, 4-Chloropheno, 4-Chloropheno, 4-Chloropheno, 4-Chloropheno, 4-Chloropheno, 4-Chloropheno, Acenaphthyle; Acenapht |             |              |              |                  |                 | 4-Bromophenyl phenyl ether   |               |
| 4-Chloroanili 4-Chloroanili 4-Chloroanili 4-Nitroanilii 4-Nitroanilii 4-Nitroanilii 4-Nitroanilii 4-Nitroaniliii Acenaphthylen Acenaphthylen Acenaphthylen Acetophenon Anthracen Acetophenon Anthracen Benzolalathi Benzolalathi Benzolalpty Benzolalp |             |              |              |                  |                 | 4-Chloro-3-methylphenol      | - 1           |
| 4-Chiorophena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |              |              |                  |                 | 4-Chloroaniline              |               |
| 4-Nitroanilii  4-Nitropinal Acenaphthyler Acetophenone Aniline Anthracene Arobenzene Benzo(a) pren Benzo(b) filoo Benzo(b) fil |             |              |              |                  |                 | 4-Chlorophenyl phenyl ether  |               |
| 4-Nitrophenon Acenaphthale Acenaphthale Acetophenon Aniline Aniline Aniline Aniline Aniline Aniline Aniline Aniline Benzolalanth Benzolalanth Benzolalpuor Benzolkliuor Benzol |             |              |              |                  |                 | 1                            |               |
| Acetophenone Acetophenone Aniline Aniline Anthracene Ancheroer Ancheroer Anthracene Anthracene Benzolalpyrer Carbazole Chrysene Di-n-butyl pi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |              |                  |                 | 4-Nitrophenol                |               |
| Acetophenone Anthriane Anthracene Anthracene Arbacene Arbacene Arbacene Benzo[a]auth Benzo[a]auth Benzo[b]tluon Be |             |              |              |                  |                 | Acenaphthene                 |               |
| Actophenone   Aniline   Benzo[a]anthn   Benzo[a]apter   Benzo[a]pter   Benzo[a]pter   Benzo[b]tluo   Benzo[b]tluo   Benzo[b]tluo   Benzo[b]tluo   Bis (2-chloro   Bis (2   |             |              |              |                  |                 | Acenaphthylene               |               |
| Antiline Anthracene Arobenzene Benzo[a]anthi Benzo[a]apthi Benzo[a]pyrer Benzo[b]fluo Benzo[k,h,i] Benzo[k,h, |             |              |              |                  |                 | Acetophenone                 |               |
| Anthracene Azobenzene Benzo[a]anthi Benzo[b]fluo Benzo[k]fluo Benzo[k]fluo Benzo[k]fluo Benzo[k]fluo Bis(2-chlorof |             |              |              |                  |                 | Aniline                      |               |
| Azobenzene Benzo[a]anthi Benzo[b]fluor Benzo[b]fluor Benzo[b]fluor Benzo[b]fluor Benzyl alcoh Bis(2-chlorof Bis(2- |             |              |              |                  |                 | Anthracene                   |               |
| Benzo[a]anthn Benzo[a]pyrer Benzo[b]fluoz Benzo[b]fluoz Benzo[b]fluoz Benzo[k]fluoz Benzo[k]fluoz Benzo[k]fluoz Benzo[k]fluoz Benzo[k]fluoz Benzo[k]fluoz Benzo[k]fluoz Bis (2-chloros Bis |             |              |              |                  |                 | Azobenzene                   |               |
| Benzo[a]pyrer Benzo[g,h,i]r Benzo[g,h,i]r Benzo[g,h,i]r Benzo[g,h,i]r Benzo[g,h,i]r Benzo[k]fluor Benzo[k]fluor Benzyl alcoh Cachoroc Bis(2-chloroc Bis(2-chloroc Bis(2-chloroc Bis(2-chloroc Bis(2-chloroc Bis(2-chloroc Bis(2-chloroc Bis(2-chloroc Bis(2-chloroc)  |             |              |              |                  |                 | Benzo[a]anthracene           | 1000 ug/mL    |
| Benzo[g/h/i]F Benzo[g/h/i]F Benzo[g/h/i]F Benzo[g/h/i]F Benzo[k]filuoi Benzyl alcohr Benzyl alcohr Bis (2-chloroe Bis (2-chloroe) Bis |             |              |              |                  |                 | Benzo[a]pyrene               | 1000 ug/mL    |
| Benzo[g,h,i]F Benzo[k]filuo Benzyl alcoho Bis (2-chloroe Bis (2-chloroe Bis (2-chloroe Bis (2-chlylh)e Butyl benzyl Carbazole Chrysene Di-n-butyl pl Di-n-octyl pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |              |              |                  |                 | Benzo[b]fluoranthene         | 1000 ug/mL    |
| Benzo[k]fluoz Benzyl alcoho Benzyl alcoho Bis (2-chloroe Bis (2-chloroe Bis (2-chloroe Bis (2-chloroe Bis (2-chloroe Carbazole Chrysene Di-n-butyl pl Di-n-octyl pl Di-n-octyl pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |              |              |                  |                 | Benzo[g,h,i]perylene         | 1000 ug/mL    |
| Benzyl alcoho Bis (2-chloroe Bis (2-chloroe Bis (2-chloroe Bis (2-chlylne Bis (2- |             |              |              |                  |                 | Benzo[k]fluoranthene         |               |
| Bis (2-chloroe Bis (2 |             |              |              |                  |                 | Benzyl alcohol               | 1000 ug/mL    |
| Bis(2-chloroe Bis(2-chloroe Bis(2-chloroe Bis(2-chlylhe Butyl benzyl Butyl benzyl Carbazole Chrysene Di-n-butyl pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |              |              |                  |                 | Bis (2-chloroethoxy) methane | 1000 ug/mL    |
| Bis(2-ethylhe   Butyl benzyl   Butyl benzyl   Butyl benzyl   Carbazole   Carbazole   Chrysene   Di-n-butyl pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |              |              |                  |                 | Bis (2-chloroethyl) ether    | 1000 ug/mL    |
| Butyl benzyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |              |              |                  |                 | Bis (2-ethylhexyl) phthalate | 1000 ug/mL    |
| Carbazole Chrysene Di-n-butyl pi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |              |              |                  |                 | Butyl benzyl phthalate       | 1000 ug/mL    |
| Chrysene Di-n-butyl pi Di-n-octyl pi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |              |              |                  |                 | Carbazole                    | 1000 ug/mL    |
| Di-n-butyl pł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |              |              |                  |                 | Chrysene                     | 1000 ug/mL    |
| Di-n-octyl pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |              |              |                  |                 | Di-n-butyl phthalate         | 1000 ug/mL    |
| : (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |              |                  |                 | Di-n-octyl phthalate         | 1000 ug/mL    |
| ן הדאבוול (פי זוו) פי                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |              |              |                  |                 | Dibenz (a,h) anthracene      | 1000 ug/mL    |

Lab Name: TestAmerica Denver

SDG No.:

Job No.: 320-39023-1

|                  |             |              |                            |         | Darrent Readment      |                                    |               |
|------------------|-------------|--------------|----------------------------|---------|-----------------------|------------------------------------|---------------|
|                  | E           | 9            | £                          | Reagent |                       |                                    |               |
| Reagent ID       | Exp<br>Date | rrep<br>Date | Dilutant<br>Used           | Volume  | Reagent ID Added      | d Analyte                          | Concentration |
|                  |             |              |                            |         |                       | Dibenzofuran                       | 1000 ug/mL    |
|                  |             |              |                            |         |                       | Diethyl phthalate                  |               |
|                  |             |              |                            |         |                       | Dimethyl phthalate                 |               |
|                  |             |              |                            |         |                       | Diphenylamine                      |               |
|                  |             |              |                            |         |                       | Fluoranthene                       | 1000 ug/mL    |
|                  |             |              |                            |         |                       | Fluorene                           | 1000 ug/mL    |
|                  |             |              |                            |         |                       | Hexachlorobenzene                  |               |
|                  |             |              |                            |         |                       | Hexachlorobutadiene                |               |
|                  |             |              |                            |         |                       | Hexachlorocyclopentadiene          | 1000 ug/mL    |
|                  |             |              |                            |         |                       | Hexachloroethane                   | 1000 ug/mL    |
|                  |             |              |                            |         |                       | Indeno[1,2,3-cd]pyrene             | 1000 ug/mL    |
|                  |             |              |                            |         |                       | Isophorone                         |               |
|                  |             |              |                            |         |                       | N-Nitrosodi-n-propylamine          |               |
|                  |             |              |                            |         |                       | N-Nitrosodimethylamine             |               |
|                  |             |              |                            |         |                       | N-NICIOSOGIPHENYIGH<br>Naphthalene | 1000 ug/mL    |
|                  |             |              |                            |         |                       | Nitrobenzene                       | 1000 ug/mL    |
|                  |             |              |                            |         |                       | Pentachlorophenol                  |               |
|                  |             |              |                            |         |                       | Phenanthrene                       | 1000 ug/mL    |
|                  |             |              |                            |         |                       | Phenol                             |               |
|                  |             |              |                            |         |                       | Pyrene                             | 1000 ug/mL    |
|                  |             |              |                            |         |                       | Pyridine                           | 2000 ug/mL    |
| .MS-IS_00013     | 06/22/18    | 06/22/17     | Methylene Chloride, Lot    | 250 mL  | MS-567684_00019 50    | mL   1,4-Dichlorobenzene-d4        | 400 ug/mL     |
|                  |             |              | # O H - O H                |         |                       | Acenaphthene-d10                   | 400 ug/mL     |
|                  |             |              |                            |         |                       | Chrysene-d12                       | 400 ug/mL     |
|                  |             |              |                            |         |                       | Naphthalene-d8                     | 400 ng/mL     |
|                  |             |              |                            |         |                       | Perylene-d12                       | 400 ng/mL     |
|                  |             |              |                            |         |                       | Phenanthrene-d10                   | 400 ng/mL     |
| MS-567684_00019  | 07/31/20    |              | Restek, Lot A0112833       |         | (Purchased Reagent)   | 1,4-Dichlorobenzene-d4             |               |
|                  |             |              |                            |         |                       | Acenaphthene-d10                   |               |
|                  |             |              |                            |         |                       | Unrysene-diz                       | Tm/gn 0007    |
|                  |             |              |                            |         |                       | Pervlene-d12                       | 2000 ug/mL    |
|                  |             |              |                            |         |                       | Phenanthrene-d10                   | 2000 ug/mL    |
| MS-HSLA120_00035 | 06/22/18    | 04/03/18     | Methylene Chloride, Lot    | 0.5 mL  | MS-HSLA_STK_00040 300 | uL 2,4,6-Tribromophenol (Surr)     | 120 ug/mL     |
|                  |             |              | )<br>1<br>1<br>1<br>1<br>1 |         |                       | 2-Fluorobiphenyl                   | 120 ug/mL     |
|                  |             |              |                            |         |                       | 2-Fluorophenol (Surr)              | 120 ug/mL     |
|                  |             |              |                            |         |                       | Nitrobenzene-d5 (Surr)             | 120 ug/mL     |
|                  |             |              |                            |         |                       | Phenol-d5 (Surr)                   | 120 ug/mL     |
|                  |             |              |                            |         |                       | Terphenyl-d14 (Surr)               |               |
|                  |             |              |                            |         |                       | Famphur                            | 120 ug/mL     |
|                  |             |              |                            |         |                       | Alacinot<br>3.3'-Dichlorobenzidine | 120 ug/mL.    |
|                  |             |              |                            |         |                       | Benzoic acid                       |               |
|                  |             |              |                            |         |                       | Atrazine                           |               |
|                  |             |              |                            |         | _                     | Caprolactam                        | 120 ug/mL     |

#### Page 264 of 3863

Lab Name: TestAmerica Denver

SDG No.:

|            |             |              |                  | 00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 | Parent Reagent | ע      |                              |               |
|------------|-------------|--------------|------------------|----------------------------------------------------------------------------|----------------|--------|------------------------------|---------------|
| Reagent ID | Exp<br>Date | Prep<br>Date | Dilutant<br>Used | Final                                                                      | Reagent ID     | Volume | Analyte                      | Concentration |
|            |             |              |                  |                                                                            | ,              |        | 1,1'-Biphenyl                | 120 ug/mL     |
|            |             |              |                  |                                                                            |                |        | 1,2,4,5-Tetrachlorobenzene   |               |
|            |             |              |                  |                                                                            |                |        | 1,2,4-Trichlorobenzene       |               |
|            |             |              |                  |                                                                            |                |        | 1,2-Dichlorobenzene          |               |
|            |             |              |                  |                                                                            |                |        | 1,2-Diphenylhydrazine        | 121.317 ug/mL |
|            |             |              |                  |                                                                            |                |        | 1,3-Dichlorobenzene          | 120 ug/mL     |
|            |             |              |                  |                                                                            |                |        | 1,3-Dinitrobenzene           | 120 ug/mL     |
|            |             |              |                  |                                                                            |                |        | 1,4-Dichlorobenzene          | 120 ug/mL     |
|            |             |              |                  |                                                                            |                |        | 1,4-Dioxane                  | 120 ug/mL     |
|            |             |              |                  |                                                                            |                |        | 1-Methylnaphthalene          | 120 ug/mL     |
|            |             |              |                  |                                                                            |                |        | 2,2'-oxybis[1-chloropropane] | 120 ug/mL     |
|            |             |              |                  |                                                                            |                |        | 2,3,4,6-Tetrachlorophenol    | 120 ug/mL     |
|            |             |              |                  |                                                                            |                |        | 2,4,5-Trichlorophenol        | 120 ug/mL     |
|            |             |              |                  |                                                                            |                |        | 2,4,6-Trichlorophenol        |               |
|            |             |              |                  |                                                                            |                |        | 2,4-Dichlorophenol           |               |
|            |             |              |                  |                                                                            |                |        | 2,4-Dimethylphenol           |               |
|            |             |              |                  |                                                                            |                |        | 2,4-Dinitrophenol            |               |
|            |             |              |                  |                                                                            |                |        | 2,4-Dinitrotoluene           |               |
|            |             |              |                  |                                                                            |                |        | 2,6-Dichlorophenol           |               |
|            |             |              |                  |                                                                            |                |        | 2,6-Dinitrotoluene           |               |
|            |             |              |                  |                                                                            |                |        | 2-Chloronaphthalene          | 120 ug/mL     |
|            |             |              |                  |                                                                            |                |        | 2-Chlorophenol               | 120 ug/mL     |
|            |             |              |                  |                                                                            |                |        | 2-Methylnaphthalene          | 120 ug/mL     |
|            |             |              |                  |                                                                            |                |        | 2-Methylphenol               | 120 ug/mL     |
|            |             |              |                  |                                                                            |                |        | 2-Nitroaniline               | 120 ug/mL     |
|            |             |              |                  |                                                                            |                |        | 2-Nitrophenol                | 120 ug/mL     |
|            |             |              |                  |                                                                            |                |        | 3 & 4 Methylphenol           | 120 ug/mL     |
|            |             |              |                  |                                                                            |                |        | 3-Nitroaniline               | 120 ug/mL     |
|            |             |              |                  |                                                                            |                |        | 4,6-Dinitro-2-methylphenol   | 240 ug/mL     |
|            |             |              |                  |                                                                            |                |        | 4-Bromophenyl phenyl ether   |               |
|            |             |              |                  |                                                                            |                |        | 4-Chloro-3-methylphenol      | 120 ug/mL     |
|            |             |              |                  |                                                                            |                |        | 4-Chloroaniline              | 120 ug/mL     |
|            |             |              |                  |                                                                            |                |        | 4-Chlorophenyl phenyl ether  | 120 ug/mL     |
|            |             |              |                  |                                                                            |                |        | 4-Nitroaniline               |               |
|            |             |              |                  |                                                                            |                |        | 4-Nitrophenol                |               |
|            |             |              |                  |                                                                            |                |        | Acenaphthene                 | 120 ug/mL     |
|            |             |              |                  |                                                                            |                |        | Acenaphthylene               | 120 ug/mL     |
|            |             |              |                  |                                                                            |                |        | Acetophenone                 | 120 ug/mL     |
|            |             |              |                  |                                                                            |                |        | Aniline                      |               |
|            |             |              |                  |                                                                            |                |        | Anthracene                   | 120 ug/mL     |
|            |             |              |                  |                                                                            |                |        | Azobenzene                   | 120 ug/mL     |
|            |             |              |                  |                                                                            |                |        | Benzo[a]anthracene           | 120 ug/mL     |
|            |             |              |                  |                                                                            |                |        | Benzo[a]pyrene               | 120 ug/mL     |
|            |             |              |                  |                                                                            |                |        | Benzo[b]fluoranthene         | 120 ug/mL     |
|            |             |              |                  |                                                                            |                |        | Benzo[g,h,i]perylene         |               |
|            |             |              |                  |                                                                            |                |        | Benzo[k]fluoranthene         | 120 ug/mL     |
|            |             |              |                  |                                                                            |                |        | Benzyl alcohol               | 120 ug/mL     |
| _          | <br>        |              |                  | _                                                                          |                |        | Bis(2-chloroethoxy)methane   | 120 ug/mL     |
|            |             |              |                  |                                                                            |                |        |                              |               |

Lab Name: TestAmerica Denver

SDG No.:

Job No.: 320-39023-1

|                    |             |              |                           | Reagent         | rarent Reagent      |                                    |               |
|--------------------|-------------|--------------|---------------------------|-----------------|---------------------|------------------------------------|---------------|
| Reagent ID         | Exp<br>Date | Prep<br>Date | Dilutant<br>Used          | Final<br>Volume | Reagent ID          | Volume<br>Added Analyte            | Concentration |
|                    |             |              |                           |                 |                     | Bis(2-ch]oroethw])ether            | 120 mg/mT.    |
|                    |             |              |                           |                 |                     | Bis(2-ethylhexyl) phthalate        |               |
|                    |             |              |                           |                 |                     | 10                                 | 120 ug/mL     |
|                    |             |              |                           |                 |                     | Carbazole                          | 120 ug/mL     |
|                    |             |              |                           |                 |                     | Chrysene                           |               |
|                    |             |              |                           |                 |                     | Di-n-butyl phthalate               | 120 ug/mL     |
|                    |             |              |                           |                 |                     |                                    |               |
|                    |             |              |                           |                 |                     |                                    |               |
|                    |             |              |                           |                 |                     | Dibenzofuran                       |               |
|                    |             |              |                           |                 |                     | Diethyl phthalate                  | 120 ug/mL     |
|                    |             |              |                           |                 |                     | Dimethyl phthalate                 | 120 ug/mL     |
|                    |             |              |                           |                 |                     | Diphenylamine                      |               |
|                    |             |              |                           |                 |                     | Fluoranthene<br>Fluoranthene       | 120 ug/mL     |
|                    |             |              |                           |                 |                     | Hexachlorobenzene                  |               |
|                    |             |              |                           |                 |                     | Hexachlorobutadiene                |               |
|                    |             |              |                           |                 |                     | Hexachlorocyclopentadiene          |               |
|                    |             |              |                           |                 |                     | Hexachloroethane                   |               |
|                    |             |              |                           |                 |                     | Indeno[1,2,3-cd]pyrene             | 120 ug/mL     |
|                    |             |              |                           |                 |                     | Isophorone                         |               |
|                    |             |              |                           |                 |                     | N-Nitrosodi-n-propylamine          | 120 ug/mL     |
|                    |             |              |                           |                 |                     | N-Nitrosodimethylamine             | 120 ug/mL     |
|                    |             |              |                           |                 |                     | N-Nitrosodiphenylamine             |               |
|                    |             |              |                           |                 |                     | Naphthalene                        |               |
|                    |             |              |                           |                 |                     | Nitrobenzene                       |               |
|                    |             |              |                           |                 |                     | Pentachlorophenol                  |               |
|                    |             |              |                           |                 |                     | Phenanthrene                       |               |
|                    |             |              |                           |                 |                     | Phenol                             | - 1           |
|                    |             |              |                           |                 |                     | Pyrene                             | 120 ug/mL     |
|                    |             |              |                           |                 | 1 1 1               |                                    |               |
|                    |             |              |                           |                 | MS-IS_00013         | 50 uL 1,4-Dichlorobenzene-d4       |               |
|                    |             |              |                           |                 |                     | Acenaph chene-alo                  |               |
|                    |             |              |                           |                 |                     | Unrysene-diz                       | 40 ug/mL      |
|                    |             |              |                           |                 |                     | Doxx10n0_410                       | Tm/pr: UV     |
|                    |             |              |                           |                 |                     | Phenanthrene-d10                   |               |
| .MS-HSLA_STK_00040 | 06/30/18    | 01/30/18     | 8 Methylene Chloride, Lot | 10 mL           | MS-567685_00004     | 0.4 mL 2,4,6-Tribromophenol (Surr) | 200 ug/mL     |
|                    |             |              | 181545                    |                 |                     | 2-Fluorohinhanvl                   | 200 mg/mT.    |
|                    |             |              |                           |                 |                     | 2-Fluorophenol (Surr)              | 200 ug/mT,    |
|                    |             |              |                           |                 |                     | LO                                 |               |
|                    |             |              |                           |                 |                     |                                    |               |
|                    |             |              |                           |                 |                     |                                    | 200 ug/mL     |
|                    |             |              |                           |                 | MS-568023 00042     | 1 mL Famphur                       |               |
|                    |             |              |                           |                 |                     | 0.5 mL Alachlor                    | 200 ug/mL     |
|                    |             |              |                           |                 | - 1                 | mL 3,3'-Dic                        | 200 ug/mL     |
|                    |             |              |                           |                 | - 1                 |                                    | 400 ug/mL     |
| _                  |             | _            |                           |                 | MS-569/32 HSL_00005 | 1 mm/Atrazine                      | Tm/bn 007     |
|                    |             |              |                           |                 |                     |                                    |               |

#### Page 266 of 3863

Lab Name: TestAmerica Denver

SDG No.:

Lab Name: TestAmerica Denver

SDG No.:

|                     |             |              | · ·                  |                 | Parent Reagent                 |                              |               |
|---------------------|-------------|--------------|----------------------|-----------------|--------------------------------|------------------------------|---------------|
| Reagent ID          | Exp<br>Date | Prep<br>Date | Dilutant Used V      | Final<br>Volume | Volume<br>  Reagent ID   Added | ume<br>led Analyte           | Concentration |
|                     |             |              |                      |                 |                                | Bis (2-chlorosthown) methans | 200 11g/mT    |
|                     |             |              |                      |                 |                                | Dis (2 cirror circos) others |               |
|                     |             |              |                      |                 |                                | <b>∽</b> I                   | TIII / BN 002 |
|                     |             |              |                      |                 |                                | DIS (2-echylhexyl) phohare   |               |
|                     |             |              |                      |                 |                                | Butyl benzyl phthalate       |               |
|                     |             |              |                      |                 |                                | Carbazole                    |               |
|                     |             |              |                      |                 |                                | Chrysene                     | 200 ug/mL     |
|                     |             |              |                      |                 |                                | Di-n-butyl phthalate         | 200 ug/mL     |
|                     |             |              |                      |                 |                                | Di-n-octyl phthalate         | 200 ug/mL     |
|                     |             |              |                      |                 |                                | Dibenz (a, h) anthracene     | 200 ug/mL     |
|                     |             |              |                      |                 |                                | Dibenzofuran                 | 200 ug/mL     |
|                     |             |              |                      |                 |                                | Diethyl phthalate            | 200 ug/mL     |
|                     |             |              |                      |                 |                                | Dimethyl phthalate           | 200 ug/mL     |
|                     |             |              |                      |                 |                                | Diphenylamine                | 170 ug/mL     |
|                     |             |              |                      |                 |                                | Fluoranthene                 | 200 ug/mL     |
|                     |             |              |                      |                 |                                | Fluorene                     |               |
|                     |             |              |                      |                 |                                | Hexachlorobenzene            | 200 ug/mL     |
|                     |             |              |                      |                 |                                | Hexachlorobutadiene          | 200 ug/mL     |
|                     |             |              |                      |                 |                                | Hexachlorocyclopentadiene    | 200 ug/mL     |
|                     |             |              |                      |                 |                                | Hexachloroethane             | 200 ug/mL     |
|                     |             |              |                      |                 |                                | Indeno[1,2,3-cd]pyrene       |               |
|                     |             |              |                      |                 |                                | Isophorone                   | 200 ug/mL     |
|                     |             |              |                      |                 |                                | N-Nitrosodi-n-propylamine    | 200 ug/mL     |
|                     |             |              |                      |                 |                                | N-Nitrosodimethylamine       |               |
|                     |             |              |                      |                 |                                | N-Nitrosodiphenylamine       | 200 ug/mL     |
|                     |             |              |                      |                 |                                | Naphthalene                  |               |
|                     |             |              |                      |                 |                                | Nitrobenzene                 |               |
|                     |             |              |                      |                 |                                | Pentachlorophenol            | 400 ug/mL     |
|                     |             |              |                      |                 |                                | Phenanthrene                 | 200 ug/mL     |
|                     |             |              |                      |                 |                                | Phenol                       | 200 ug/mL     |
|                     |             |              |                      |                 |                                | Pyrene                       | 200 ug/mL     |
|                     |             |              |                      |                 |                                | Pyridine                     | 400 ug/mL     |
| MS-567685_00004     | 01/30/19    |              | Restek, Lot A0130500 |                 | (Purchased Reagent)            | 2,4,6-Tribromophenol (Surr)  | 2000 ng/mL    |
|                     |             |              |                      |                 |                                | 2-Fluorobiphenyl             | 5000 ug/mL    |
|                     |             |              |                      |                 |                                | 2-Fluorophenol (Surr)        | 5000 ug/mL    |
|                     |             |              |                      |                 |                                | Nitrobenzene-d5 (Surr)       | 5000 ug/mL    |
|                     |             |              |                      |                 |                                | Phenol-d5 (Surr)             |               |
|                     |             |              |                      |                 |                                | Terphenyl-d14 (Surr)         | 5000 ug/mL    |
|                     | 05/31/19    |              | Lot A0127            |                 |                                | Famphur                      | 2000 ug/mL    |
| MS-568033_00026     | 06/30/19    |              | Restek, Lot A0133057 |                 | (Purchased Reagent)            | Alachlor                     | 4000 ug/mL    |
| MS-569730 HSL 00007 | 11/30/18    |              | Restek, Lot A0127472 |                 | (Purchased Reagent)            | 3,3'-Dichlorobenzidine       | 2000 ug/mL    |
|                     | 06/30/18    |              | Restek, Lot A0123819 |                 |                                | Benzoic acid                 | 2000 ug/mL    |
| MS-569732 HSL 00005 | 11/30/18    |              | Restek, Lot A0127580 |                 | (Purchased Reagent)            | Atrazine                     | 2000 ug/mL    |
| I                   |             |              |                      |                 |                                | Caprolactam                  | 2000 ug/mL    |
| MS-571995_00001     | 09/30/18    |              | Restek, Lot A0125805 |                 | (Purchased Reagent)            | 1,1'-Biphenyl                | 1000 ug/mL    |
|                     |             |              |                      |                 |                                | 1,2,4,5-Tetrachlorobenzene   | 1000 ug/mL    |
|                     |             |              |                      |                 |                                | 1,2,4-Trichlorobenzene       | 1000 ug/mL    |
|                     |             |              |                      |                 |                                | 1,2-Dichlorobenzene          | 1000 ug/mL    |
|                     |             |              |                      |                 |                                | 1,2-Diphenylhydrazine        | 1010.97 ug/mL |
| =                   | -           | _            |                      |                 |                                | -                            |               |

Lab Name: TestAmerica Denver

Job No.: 320-39023-1

| Reagent ID Date | ш п | Prep<br>Date | Dilutant<br>Used | Final | Reagent ID Added | le<br>Analyte                | Concentration |
|-----------------|-----|--------------|------------------|-------|------------------|------------------------------|---------------|
|                 |     |              |                  |       |                  |                              |               |
|                 | _   |              |                  |       |                  | 1,3-Dichlorobenzene          | 1000 ug/mL    |
|                 |     |              |                  | _     |                  | 1,3-Dinitrobenzene           | 1000 ug/mL    |
|                 |     |              |                  |       |                  | 1,4-Dichlorobenzene          | 1000 ug/mL    |
|                 |     |              |                  |       |                  | 1,4-Dioxane                  | 1000 ug/mL    |
|                 |     |              |                  |       |                  | 1-Methylnaphthalene          | 1000 ug/mL    |
|                 |     |              |                  |       |                  | 2,2'-oxybis[1-chloropropane] | 1000 ug/mL    |
|                 |     |              |                  |       |                  | 2,3,4,6-Tetrachlorophenol    | 1000 ug/mL    |
|                 |     |              |                  |       |                  | 2,4,5-Trichlorophenol        | 1000 ug/mL    |
|                 |     |              |                  |       |                  | 2,4,6-Trichlorophenol        |               |
|                 |     |              |                  |       |                  | 2,4-Dichlorophenol           | 1000 ug/mL    |
|                 |     |              |                  |       |                  | 2,4-Dimethylphenol           |               |
|                 |     |              |                  |       |                  | 2,4-Dinitrophenol            | 2000 ug/mL    |
|                 |     |              |                  |       |                  | 2,4-Dinitrotoluene           |               |
|                 |     |              |                  |       |                  | 2,6-Dichlorophenol           | 1000 ug/mL    |
|                 |     |              |                  |       |                  | 2,6-Dinitrotoluene           | 1000 ug/mL    |
|                 |     |              |                  |       |                  | 2-Chloronaphthalene          | 1000 ug/mL    |
|                 |     |              |                  |       |                  | 2-Chlorophenol               | 1000 ug/mL    |
|                 |     |              |                  |       |                  | 2-Methylnaphthalene          |               |
|                 |     |              |                  |       |                  | 2-Methylphenol               | - 1           |
|                 |     |              |                  |       |                  | 2-Nitroaniline               | 1000 ug/mL    |
|                 |     |              |                  |       |                  | 2-Nitrophenol                | 1000 ug/mL    |
|                 |     |              |                  |       |                  | 3 & 4 Methylphenol           | 1000 ug/mL    |
|                 |     |              |                  |       |                  | 3-Nitroaniline               |               |
|                 |     |              |                  |       |                  | 4,6-Dinitro-2-methylphenol   | 2000 ug/mL    |
|                 |     |              |                  |       |                  | 4-Bromophenyl phenyl ether   | 1000 ug/mL    |
|                 |     |              |                  |       |                  | 4-Chloro-3-methylphenol      | 1000 ug/mL    |
|                 |     |              |                  |       |                  | (1)                          | 1000 ug/mL    |
|                 |     |              |                  |       |                  | 4-Chlorophenyl phenyl ether  | - 1           |
|                 |     |              |                  |       |                  | 4-Nitroaniline               |               |
|                 |     |              |                  |       |                  | 4-Nitrophenol                | - 1           |
|                 |     |              |                  |       |                  | Acenaphthene                 | 1000 ug/mL    |
|                 |     |              |                  |       |                  | Acetapheny rene              |               |
|                 |     |              |                  |       |                  | Acerophenone                 |               |
|                 |     |              |                  |       |                  | AHLLING                      |               |
|                 |     |              |                  |       |                  | Aroborrono                   |               |
|                 |     |              |                  |       |                  | Renzolalanthracene           | 1000 ug/mT.   |
|                 |     |              |                  |       |                  | Benzola Dayrene              |               |
|                 |     |              |                  |       |                  | Benzo[b]fluoranthene         |               |
|                 |     |              |                  |       |                  | Benzola hilberylene          |               |
|                 |     |              |                  |       |                  | Benzo[k]fluoranthene         |               |
|                 |     |              |                  |       |                  | Benzyl alcohol               |               |
|                 |     |              |                  |       |                  | Bis (2-chloroethoxy) methane |               |
|                 |     |              |                  |       |                  | Bis (2-chloroethyl) ether    |               |
|                 |     |              |                  |       |                  | Bis (2-ethylhexyl) phthalate |               |
|                 |     |              |                  |       |                  | Butyl benzyl phthalate       | 1000 ug/mL    |
|                 |     |              |                  |       |                  | Carbazole                    | 1000 ug/mL    |
|                 |     |              |                  |       |                  | Chrysene                     | 1000 ug/mL    |

Lab Name: TestAmerica Denver

Job No.: 320-39023-1

|                                         |          |               |                                   | Reagent | Farent Keagent      |        |                                |               |
|-----------------------------------------|----------|---------------|-----------------------------------|---------|---------------------|--------|--------------------------------|---------------|
|                                         | Exp      | Prep          | Dilutant                          | Final   |                     | Volume |                                |               |
| Reagent ID                              | Date     | Date          | Used                              | Volume  | Reagent ID          | Added  | Analyte                        | Concentration |
|                                         |          |               |                                   |         |                     |        | Di-n-butyl phthalate           | 1000 ug/mL    |
|                                         |          |               |                                   |         |                     |        | Di-n-octyl phthalate           |               |
|                                         |          |               |                                   |         |                     |        | Dibenz (a,h) anthracene        | 1000 ug/mL    |
|                                         |          |               |                                   |         |                     |        | Dibenzofuran                   | 1000 ug/mL    |
|                                         |          |               |                                   |         |                     |        | Diethyl phthalate              | 1000 ug/mL    |
|                                         |          |               |                                   |         |                     |        | Dimethyl phthalate             | 1000 ug/mL    |
|                                         |          |               |                                   |         |                     |        | Diphenvlamine                  |               |
|                                         |          |               |                                   |         |                     |        | Fluoranthene                   |               |
|                                         |          |               |                                   |         |                     |        | Fluorene                       | 1000 ug/mL    |
|                                         |          |               |                                   |         |                     |        | Hexachlorobenzene              |               |
|                                         |          |               |                                   |         |                     |        | Hexachlorobutadiene            |               |
|                                         |          |               |                                   |         |                     |        | Hexachlorocyclopentadiene      |               |
|                                         |          |               |                                   |         |                     |        | Hexachloroethane               | 1000 ug/mL    |
|                                         |          |               |                                   |         |                     |        | Indeno[1,2,3-cd]pyrene         |               |
|                                         |          |               |                                   |         |                     |        | Isophorone                     |               |
|                                         |          |               |                                   |         |                     |        | N-Nitrosodi-n-propylamine      | 1000 ug/mL    |
|                                         |          |               |                                   |         |                     |        | N-Nitrosodimethylamine         |               |
|                                         |          |               |                                   |         |                     |        | N-Nitrosodiphenylamine         | 1000 ug/mL    |
|                                         |          |               |                                   |         |                     |        | Naphthalene                    | 1000 ug/mL    |
|                                         |          |               |                                   |         |                     |        | Nitrobenzene                   | 1000 ug/mL    |
|                                         |          |               |                                   |         |                     |        | Pentachlorophenol              | 2000 ug/mL    |
|                                         |          |               |                                   |         |                     |        | Phenanthrene                   | 1000 ug/mL    |
|                                         |          |               |                                   |         |                     |        | Phenol                         | 1000 ug/mL    |
|                                         |          |               |                                   |         |                     |        | Pyrene                         | 1000 ug/mL    |
|                                         |          |               |                                   |         |                     |        | Pyridine                       | 2000 ug/mL    |
| .MS-IS_00013                            | 06/22/18 | 06/22/17      | Methylene Chloride, Lot           | 250 mL  | MS-567684_00019     | 20 mL  | 1,4-Dichlorobenzene-d4         | 400 ng/mT     |
|                                         |          |               | 157164                            |         |                     |        | A cananhthana_10               | 400 mT/mT.    |
|                                         |          |               |                                   |         |                     |        | Aceniaphicinene-aro            |               |
|                                         |          |               |                                   |         |                     |        | Chrysene-dl2                   | 400 ug/mL     |
|                                         |          |               |                                   |         |                     |        | Naphthalene-d8                 |               |
|                                         |          |               |                                   |         |                     |        | Ferylene-d12                   |               |
| ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) | 7        |               | 77                                |         |                     |        | rnenanthrene-alv               |               |
| MS-56/684_00019                         | 07/37/20 |               | Restek, Lot AU112833              |         | (Furchased Keagent) | ent)   | 1,4-Dichlorobenzene-d4         |               |
|                                         |          |               |                                   |         |                     |        | Acenaphthene-dl0               | 2000 ug/mL    |
|                                         |          |               |                                   |         |                     |        | Unrysene-alz<br>Namhthalono-d8 | 2000 ug/mL    |
|                                         |          |               |                                   |         |                     |        | Dervi ene - d1 2               |               |
|                                         |          |               |                                   |         |                     |        | Phenanthrene-d10               | - 1           |
|                                         | 0        | <b>-</b>    - |                                   |         |                     |        | Ш                              | 11            |
| MS-HSLA160_00035                        | 06/22/18 | 04/03/18      | Methylene Chloride, Lot<br>181545 | 0.5 mL  | MS-HSLA_STK_00040   | 400 uL | 2,4,6-Tribromophenol (Surr)    |               |
|                                         |          |               |                                   |         |                     |        | ×Ι                             | Tw/bn noT     |
|                                         |          |               |                                   |         |                     |        |                                | 160 ug/mL     |
|                                         |          |               |                                   |         |                     |        | a                              |               |
|                                         |          |               |                                   |         |                     |        | (Sur                           | 160 ug/mL     |
|                                         |          |               |                                   |         |                     |        | Terphenyl-d14 (Surr)           |               |
|                                         |          |               |                                   |         |                     |        | Famphur                        |               |
|                                         |          |               |                                   |         |                     |        | Alachlor                       |               |
|                                         |          |               |                                   | _       |                     |        | 3,3'-Dichlorobenzidine         | 160 ug/mL     |
|                                         |          |               |                                   |         |                     |        |                                |               |

Lab Name: TestAmerica Denver

SDG No.:

|            |             |              |                  | 1<br>0<br>0<br>0<br>0 | Parent Reagent |                 |                              |               |
|------------|-------------|--------------|------------------|-----------------------|----------------|-----------------|------------------------------|---------------|
| Reagent ID | Exp<br>Date | Prep<br>Date | Dilutant<br>Used | Final<br>Volume       | Reagent ID     | Volume<br>Added | Analyte                      | Concentration |
|            |             |              |                  |                       |                |                 | Benzoic acid                 | 320 ug/mL     |
|            |             |              |                  |                       |                |                 |                              | 160 ug/mL     |
|            |             |              |                  |                       |                |                 | Caprolactam                  | 160 ug/mL     |
|            |             |              |                  |                       |                |                 | 1,1'-Biphenyl                |               |
|            |             |              |                  |                       |                |                 | 1,2,4,5-Tetrachlorobenzene   |               |
|            |             |              |                  |                       |                |                 | 1,2,4-Trichlorobenzene       |               |
|            |             |              |                  |                       |                |                 | 1,2-Dichlorobenzene          |               |
|            |             |              |                  |                       |                |                 | 1,2-Diphenylhydrazine        | 161.756 ug/mL |
|            |             |              |                  |                       |                |                 | 1,3-Dichlorobenzene          | 160           |
|            |             |              |                  |                       |                |                 | 1,3-Dinitrobenzene           | 160 ug/mL     |
|            |             |              |                  |                       |                |                 | 1,4-Dichlorobenzene          | 160 ug/mL     |
|            |             |              |                  |                       |                |                 | 1,4-Dioxane                  |               |
|            |             |              |                  |                       |                |                 | 1-Methylnaphthalene          |               |
|            |             |              |                  |                       |                |                 | 2,2'-oxybis[l-chloropropane] |               |
|            |             |              |                  |                       |                |                 | 2, 3, 4, 6-Tetrachlorophenol |               |
|            |             |              |                  |                       |                |                 | 2,4,3-Trichlorophenol        | 160 ug/mL     |
|            |             |              |                  |                       |                |                 | 2,4,6-IfICHIOFOPHENOL        | 160 ug/mL     |
|            |             |              |                  |                       |                |                 | 2,4-Dimethylphenol           |               |
|            |             |              |                  |                       |                |                 | 2,4-Dinitrophenol            |               |
|            |             |              |                  |                       |                |                 | 2,4-Dinitrotoluene           |               |
|            |             |              |                  |                       |                |                 | 2,6-Dichlorophenol           | 160 ug/mL     |
|            |             |              |                  |                       |                |                 | 2,6-Dinitrotoluene           | 160 ug/mL     |
|            |             |              |                  |                       |                |                 | 2-Chloronaphthalene          | 160 ug/mL     |
|            |             |              |                  |                       |                |                 | 2-Chlorophenol               | 160 ug/mL     |
|            |             |              |                  |                       |                |                 | 2-Methylnaphthalene          |               |
|            |             |              |                  |                       |                |                 | 2-Methylphenol               | - 1           |
|            |             |              |                  |                       |                |                 | 2-Nitroaniline               | - 1           |
|            |             |              |                  |                       |                |                 |                              |               |
|            |             |              |                  |                       |                |                 | 3 & 4 Methylphenol           | 160 ug/mL     |
|            |             |              |                  |                       |                |                 | 3-Nitroaniline               | 160 ug/mL     |
|            |             |              |                  |                       |                |                 |                              |               |
|            |             |              |                  |                       |                |                 | 4-Bromophenyl phenyl ether   | 160 ug/mL     |
|            |             |              |                  |                       |                |                 | 4-CIIIOIO-3-IIIECIIYIPIIOI   | 160 ug/mT     |
|            |             |              |                  |                       |                |                 | 4-Chlorophenyl phenyl ether  |               |
|            |             |              |                  |                       |                |                 |                              |               |
|            |             |              |                  |                       |                |                 | 4-Nitrophenol                | 320 ug/mL     |
|            |             |              |                  |                       |                |                 | Acenaphthene                 | 160 ug/mL     |
|            |             |              |                  |                       |                |                 | Acenaphthylene               | 160 ug/mL     |
|            |             |              |                  |                       |                |                 | Acetophenone                 |               |
|            |             |              |                  |                       |                |                 | Aniline                      |               |
|            |             |              |                  |                       |                |                 | Anthracene                   | - 1           |
|            |             |              |                  |                       |                |                 | Azobenzene                   | - 1           |
|            |             |              |                  |                       |                |                 | Benzo[a]anthracene           | 160 ug/mL     |
|            |             |              |                  |                       |                |                 | Benzo[a]pyrene               |               |
|            |             |              |                  |                       |                |                 | Benzo[b]fluoranthene         | - 1           |
|            | _           |              |                  | _                     | _              |                 | Benzo[g,h,1]perylene         | Tw/bn 09T     |
|            |             |              |                  |                       |                |                 |                              |               |

Lab Name: TestAmerica Denver

Job No.: 320-39023-1

|                    |             |              |                         | Reagent         | Parent Reagent  |                                    |               |
|--------------------|-------------|--------------|-------------------------|-----------------|-----------------|------------------------------------|---------------|
| Readent ID         | Exp<br>Date | Prep<br>Date | Dilutant<br>Used        | Final<br>Volume | Readent ID      | Volume<br>Added Analvte            | Concentration |
|                    |             |              |                         |                 |                 | 1                                  | 1             |
|                    |             |              |                         |                 |                 | Benzo[k]tluoranthene               |               |
|                    |             |              |                         |                 |                 | Benzyl alcohol                     | 160 ug/mL     |
|                    |             |              |                         |                 |                 | Bis (2-chloroethoxy) methane       | 160 ug/mL     |
|                    |             |              |                         |                 |                 | Bis(2-chloroethy1)ether            | 160 ug/mL     |
|                    |             |              |                         |                 |                 | Bis(2-ethylhexyl) phthalate        | - 1           |
|                    |             |              |                         |                 |                 | Butyl benzyl phthalate             | 160 ug/mL     |
|                    |             |              |                         |                 |                 | Carbazole                          | 160 ug/mL     |
|                    |             |              |                         |                 |                 | Chrysene                           |               |
|                    |             |              |                         |                 |                 | Di-n-butyl phthalate               |               |
|                    |             |              |                         |                 |                 | Di-n-octyl phthalate               | 160 ug/mL     |
|                    |             |              |                         |                 |                 | Dibenz (a, h) anthracene           | 160 ug/mL     |
|                    |             |              |                         |                 |                 | Dibenzofuran                       | 160 ug/mL     |
|                    |             |              |                         |                 |                 | Diethyl phthalate                  |               |
|                    |             |              |                         |                 |                 | Dimethyl phthalate                 |               |
|                    |             |              |                         |                 |                 | Diphenylamine                      | 136 ug/mL     |
|                    |             |              |                         |                 |                 | Fluoranthene                       | 160 ug/mL     |
|                    |             |              |                         |                 |                 | Fluorene                           |               |
|                    |             |              |                         |                 |                 | Hexachlorobenzene                  |               |
|                    |             |              |                         |                 |                 | Hexachlorobutadiene                |               |
|                    |             |              |                         |                 |                 | Hexachlorocyclopentadiene          |               |
|                    |             |              |                         |                 |                 | Hexachloroethane                   | 160 ug/mL     |
|                    |             |              |                         |                 |                 | Indeno[1,2,3-cd]pyrene             | 160 ug/mL     |
|                    |             |              |                         |                 |                 | Isophorone                         |               |
|                    |             |              |                         |                 |                 | N-Nitrosodi-n-propylamine          | 160 ug/mL     |
|                    |             |              |                         |                 |                 | N-Nitrosodimethylamine             | 160 ug/mL     |
|                    |             |              |                         |                 |                 | N-Nitrosodiphenylamine             | 160 ug/mL     |
|                    |             |              |                         |                 |                 | Naphthalene                        | 160 ug/mL     |
|                    |             |              |                         |                 |                 | Nitrobenzene                       |               |
|                    |             |              |                         |                 |                 | Pentachlorophenol                  | 320 ug/mL     |
|                    |             |              |                         |                 |                 | Phenanthrene                       | 160 ug/mL     |
|                    |             |              |                         |                 |                 | Phenol                             | 160 ug/mL     |
|                    |             |              |                         |                 |                 | Pyrene                             |               |
|                    |             |              |                         |                 |                 |                                    | 320 ug/mL     |
|                    |             |              |                         |                 | MS-IS_00013     | 50 uL 1,4-Dichlorobenzene-d4       | 40 ug/mL      |
|                    |             |              |                         |                 |                 | Acenaphthene-d10                   | 40 ug/mL      |
|                    |             |              |                         |                 |                 | Chrysene-d12                       |               |
|                    |             |              |                         |                 |                 | Naphthalene-d8                     |               |
|                    |             |              |                         |                 |                 | Perylene-d12                       | - 1           |
|                    |             | $\dashv$     |                         |                 |                 | Phenanthrene-d10                   | 40 ug/mL      |
| .MS-HSLA_STK_00040 | 06/30/18    | 01/30/18     | Methylene Chloride, Lot | 10 mL           | MS-567685_00004 | 0.4 mL 2,4,6-Tribromophenol (Surr) | 200 ug/mL     |
|                    |             |              | 7<br>17<br>10<br>1      |                 |                 | 2-Fluorobiphenvl                   | 200 11g/mT.   |
|                    |             |              |                         |                 |                 | 2-Fluorophenol (Surr)              |               |
|                    |             |              |                         |                 |                 | li0                                |               |
|                    |             |              |                         |                 |                 |                                    | 200 mg/mT.    |
|                    |             |              |                         |                 |                 | Terphenyl-d14 (Surr)               |               |
|                    |             |              |                         |                 | MS_568023 00042 |                                    | 100 cg/ mil   |
|                    |             |              |                         | .   -           | MS-568033 00026 | m<br>F                             | 200 dg/mT.    |
| _                  | _           | _            | _                       | _               |                 |                                    |               |

Lab Name: TestAmerica Denver

SDG No.:

|            |             |      |          | 0<br>0<br>0<br>0 | Parent Reagent      |                                |               |
|------------|-------------|------|----------|------------------|---------------------|--------------------------------|---------------|
|            | о<br>х<br>Е | Prep | Dilutant | Final            |                     | Volume                         |               |
| Reagent ID | Date        | Date | Used     | Volume           | Reagent ID          | Added Analyte                  | Concentration |
|            |             |      |          |                  | MS-569730 HSL 00007 | 1 mL 3,3'-Dichlorobenzidine    | 200 ug/mL     |
|            |             |      |          |                  |                     | 2 mL Benzoic acid              |               |
|            |             |      |          |                  | MS-569732 HSL 00005 | 1 mL Atrazine                  |               |
|            |             |      |          |                  | I                   | Caprolactam                    |               |
|            |             |      |          |                  | MS-571995 00001     | 2 mL 1,1'-Biphenyl             | 200 ug/mL     |
|            |             |      |          |                  |                     |                                |               |
|            |             |      |          |                  |                     | 1,2,4-Trichlorobenzene         | 200 ug/mL     |
|            |             |      |          |                  |                     | 1,2-Dichlorobenzene            |               |
|            |             |      |          |                  |                     | 1,2-Diphenylhydrazine          | 202.195 ug/mL |
|            |             |      |          |                  |                     | 1,3-Dichlorobenzene            |               |
|            |             |      |          |                  |                     | 1,3-Dinitrobenzene             |               |
|            |             |      |          |                  |                     | 1,4-Dichlorobenzene            | 200 ug/mL     |
|            |             |      |          |                  |                     | 1,4-Dioxane                    | 200 ug/mL     |
|            |             |      |          |                  |                     | 1-Methylnaphthalene            |               |
|            |             |      |          |                  |                     | 2,2'-oxybis[1-chloropropane]   | 200 ug/mL     |
|            |             |      |          |                  |                     | 2, 3, 4, 6-Tetrachlorophenol   | 200 ug/mL     |
|            |             |      |          |                  |                     | 2,4,5-Trichlorophenol          |               |
|            |             |      |          |                  |                     | Z, 4, 6-Trichlorophenol        |               |
|            |             |      |          |                  |                     | 2,4-Dichlorophenol             |               |
|            |             |      |          |                  |                     | 2,4-Dimethylphenol             | 200 ug/mL     |
|            |             |      |          |                  |                     | Z,4-Dinitrophenol              |               |
|            |             |      |          |                  |                     | 2,4-Dinitrotoluene             |               |
|            |             |      |          |                  |                     | 2,6-Dichlorophenol             | Z00 ug/mL     |
|            |             |      |          |                  |                     | 2.6-Dinitrotoluene             | Z00 ug/mL     |
|            |             |      |          |                  |                     | 2-Chlorophenol                 | 200 ug/mI,    |
|            |             |      |          |                  |                     | 2-Methvlnaphthalene            |               |
|            |             |      |          |                  |                     | 2-Methylphenol                 |               |
|            |             |      |          |                  |                     | 2-Nitroaniline                 |               |
|            |             |      |          |                  |                     | 2-Nitrophenol                  | 200 ug/mL     |
|            |             |      |          |                  |                     | 3 & 4 Methylphenol             |               |
|            |             |      |          |                  |                     | 3-Nitroaniline                 | 200 ug/mL     |
|            |             |      |          |                  |                     | 4,6-Dinitro-2-methylphenol     | 400 ug/mL     |
|            |             |      |          |                  |                     | 4-Bromopnenyl pnenyl etner     | 700 nd/mT     |
|            |             |      |          |                  |                     | 4-CiiiOIO-3-iiieCiiy ipiiGiiOI | 200 ug/mL.    |
|            |             |      |          |                  |                     | 4-Chlorophenyl phenyl ether    |               |
|            |             |      |          |                  |                     | 7                              |               |
|            |             |      |          |                  |                     | 4-Nitrophenol                  |               |
|            |             |      |          |                  |                     | Acenaphthene                   | 200 ug/mL     |
|            |             |      |          |                  |                     | Acenaphthylene                 | 200 ug/mL     |
|            |             |      |          |                  |                     | Acetophenone                   | 200 ug/mL     |
|            |             |      |          |                  |                     | Aniline                        | 200 ug/mL     |
|            |             |      |          |                  |                     | Anthracene                     | 200 ug/mL     |
|            |             |      |          |                  |                     | Azobenzene                     |               |
|            |             |      |          |                  |                     | Benzo[a]anthracene             | 200 ug/mL     |
|            |             |      |          |                  |                     | Benzo[a]pyrene                 | 200 ug/mL     |
|            |             | _    |          |                  |                     | Benzo[b]tluoranthene           | Tm/bn 002     |

Lab Name: TestAmerica Denver

Job No.: 320-39023-1

|                     |             |              |                      |                 | - 1                 |                                                                |               |
|---------------------|-------------|--------------|----------------------|-----------------|---------------------|----------------------------------------------------------------|---------------|
|                     |             |              | Read                 | Reagent         | rarent neagent      | T                                                              |               |
| Reagent ID          | Exp<br>Date | Prep<br>Date | Dilutant Fi          | Final<br>Volume | Reagent ID Added    | e<br>A Analyte                                                 | Concentration |
|                     |             |              |                      |                 |                     | ם סמים (יי ל א יי) רי מים מים (יי ל א יי) היים מים (יי ל א יי) | 7m/ 2000      |
|                     |             |              |                      |                 |                     | Benzo[k]f]noranthene                                           |               |
|                     |             |              |                      |                 |                     | Benzyl alcohol                                                 |               |
|                     |             |              |                      |                 |                     | Bis (2-chloroethoxy) methane                                   |               |
|                     |             |              |                      |                 |                     | Bis (2-chloroethyl) ether                                      | 200 ug/mL     |
|                     |             |              |                      |                 |                     | Bis(2-ethylhexyl) phthalate                                    |               |
|                     |             |              |                      |                 |                     | ן ת                                                            |               |
|                     |             |              |                      |                 |                     |                                                                |               |
|                     |             |              |                      |                 |                     | Chrysene                                                       |               |
|                     |             |              |                      |                 |                     |                                                                | 200 ug/mL     |
|                     |             |              |                      |                 |                     | Di-n-octyl phthalate                                           |               |
|                     |             |              |                      |                 |                     | Dibenz (a,h) anthracene                                        | 200 ug/mL     |
|                     |             |              |                      |                 |                     | Dibenzofuran                                                   | 200 ug/mL     |
|                     |             |              |                      |                 |                     | Diecnyl phonalace                                              | 700 ng/mr     |
|                     |             |              |                      |                 |                     | Dimechyl phrhade                                               |               |
|                     |             |              |                      |                 |                     | Fluoranthene                                                   | - 1           |
|                     |             |              |                      |                 |                     | Fluctanicnonic                                                 |               |
|                     |             |              |                      |                 |                     | Hexachlorobenzene                                              |               |
|                     |             |              |                      |                 |                     | Hexachlorobutadiene                                            |               |
|                     |             |              |                      |                 |                     | Hexachlorocyclopentadiene                                      |               |
|                     |             |              |                      |                 |                     | Hexachloroethane                                               |               |
|                     |             |              |                      |                 |                     | Indeno[1,2,3-cd]pyrene                                         |               |
|                     |             |              |                      |                 |                     | Isophorone                                                     | 200 ug/mL     |
|                     |             |              |                      |                 |                     | N-Nitrosodi-n-propylamine                                      |               |
|                     |             |              |                      |                 |                     | N-Nitrosodimethylamine                                         |               |
|                     |             |              |                      |                 |                     | N-Nitrosodiphenylamine                                         | 200 ug/mL     |
|                     |             |              |                      |                 |                     | Naphthalene                                                    |               |
|                     |             |              |                      |                 |                     | Nitrobenzene                                                   |               |
|                     |             |              |                      |                 |                     | Pentachlorophenol                                              |               |
|                     |             |              |                      |                 |                     | Phenanthrene                                                   | 200 ug/mI     |
|                     |             |              |                      |                 |                     | Pixono                                                         | 200 ug/mi     |
|                     |             |              |                      |                 |                     | Pyridine                                                       |               |
| MS-567685 00004     | 01/30/19    |              | Restek, Lot A0130500 |                 | (Purchased Reagent) | 2,4,6-Tribromophenol (Surr)                                    |               |
|                     |             |              |                      |                 |                     |                                                                |               |
|                     |             |              |                      |                 |                     | 2-Fluorophenol (Surr)                                          |               |
|                     |             |              |                      |                 |                     | Nitrobenzene-d5 (Surr)                                         | 5000 ug/mL    |
|                     |             |              |                      |                 |                     | Phenol-d5 (Surr)                                               | 5000 ug/mL    |
|                     |             |              |                      |                 |                     | Terphenyl-d14 (Surr)                                           | 5000 ug/mL    |
| MS-568023 00042     | 05/31/19    |              | Restek, Lot A0127668 |                 | (Purchased Reagent) | Famphur                                                        | 2000 ug/mL    |
| MS-568033 00026     | 06/30/19    |              | Restek, Lot A0133057 |                 | (Purchased Reagent) | Alachlor                                                       | 4000 ug/mL    |
| MS-569730 HSL 00007 | 11/30/18    |              | Restek, Lot A0127472 |                 |                     | 3,3'-Dichlorobenzidine                                         | 2000 ug/mL    |
|                     | 06/30/18    |              | Lot A0123            |                 | 1                   | Benzoic acid                                                   |               |
| MS-569732 HSL 00005 | 11/30/18    |              | Lot A0127            |                 |                     | Atrazine                                                       | 2000 ug/mL    |
|                     |             |              |                      |                 |                     | Caprolactam                                                    | 2000 ug/mL    |
| MS-571995_00001     | 09/30/18    |              | Restek, Lot A0125805 |                 | (Purchased Reagent) | 1,1'-Biphenyl                                                  |               |
|                     |             |              |                      |                 |                     | 1,2,4,5-Tetrachlorobenzene                                     | 1000 ng/mL    |
|                     |             |              |                      |                 |                     |                                                                |               |

Lab Name: TestAmerica Denver Job No.: 320-39023-1

|            |             |              |                  | 4<br>0<br>0<br>0 | Parent Reagent |                 |                              |               |
|------------|-------------|--------------|------------------|------------------|----------------|-----------------|------------------------------|---------------|
| Reagent ID | Exp<br>Date | Prep<br>Date | Dilutant<br>Used | Final<br>Volume  | Reagent ID     | Volume<br>Added | Analyte                      | Concentration |
|            |             |              |                  |                  | -              |                 | 1,2,4-Trichlorobenzene       | 1000 ug/mL    |
|            |             |              |                  |                  |                |                 | 1,2-Dichlorobenzene          |               |
|            |             | _            |                  |                  |                |                 | 1,2-Diphenylhydrazine        | 1010.97 ug/mL |
|            |             |              |                  |                  |                |                 | 1,3-Dichlorobenzene          | 1000 ug/mL    |
|            |             | _            |                  |                  |                |                 | 1,3-Dinitrobenzene           | 1000 ug/mL    |
|            |             | _            |                  |                  |                |                 | 1,4-Dichlorobenzene          | 1000 ug/mL    |
|            |             | _            |                  |                  |                |                 | 1,4-Dioxane                  |               |
|            |             |              |                  |                  |                |                 | 1-Methylnaphthalene          |               |
|            |             | _            |                  |                  |                |                 | 2,2'-oxybis[1-chloropropane] | 1000 ug/mL    |
|            |             |              |                  |                  |                |                 | 2,3,4,6-Tetrachlorophenol    | 1000 ug/mL    |
|            |             |              |                  |                  |                |                 | 2,4,5-Trichlorophenol        |               |
|            |             |              |                  |                  |                |                 | 2,4,6-Trichlorophenol        |               |
|            |             |              |                  |                  |                |                 | 2,4-Dichlorophenol           |               |
|            |             |              |                  |                  |                |                 | 2,4-Dimethylphenol           |               |
|            |             |              |                  |                  |                |                 | 2/4-Dinitrophenol            | 7000 ug/mL    |
|            |             |              |                  |                  |                |                 | 2 4 Dinit Clocolucine        | - 1           |
|            |             |              |                  |                  |                |                 | 2.6-Dinitrotoluene           | 1000 ug/mL    |
|            |             |              |                  |                  |                |                 | 2-Chloronaphthalene          |               |
|            |             |              |                  |                  |                |                 | 2-Chlorophenol               |               |
|            |             | _            |                  |                  |                |                 | 2-Methylnaphthalene          |               |
|            |             |              |                  |                  |                |                 | 2-Methylphenol               |               |
|            |             |              |                  |                  |                |                 | 2-Nitroaniline               | 1000 ug/mL    |
|            |             |              |                  |                  |                |                 | 2-Nitrophenol                |               |
|            |             | _            |                  |                  |                |                 | 3 & 4 Methylphenol           |               |
|            |             |              |                  |                  |                |                 | 3-Nitroaniline               |               |
|            |             | _            |                  |                  |                |                 | 4,6-Dinitro-2-methylphenol   | 2000 ug/mL    |
|            |             | _            |                  |                  |                |                 | 4-Bromophenyl phenyl ether   |               |
|            |             |              |                  |                  |                |                 |                              | 1000 ug/mL    |
|            |             | _            |                  |                  |                |                 | 4-Chloroaniline              |               |
|            |             |              |                  |                  |                |                 | 4-Chlorophenyl phenyl ether  |               |
|            |             |              |                  |                  |                |                 | 4-Nitroaniline               | 1000 ug/mL    |
|            |             |              |                  |                  |                |                 | 4-Nitrophenol                |               |
|            |             |              |                  |                  |                |                 | Acenaphthene                 | 1000 ug/mL    |
|            |             |              |                  |                  |                |                 | Acenaphthylene               |               |
|            |             |              |                  |                  |                |                 | Acetophenone                 |               |
|            |             |              |                  |                  |                |                 | Aniline                      | - 1           |
|            |             | _            |                  |                  |                |                 | Anthracene                   | 1000 ug/mL    |
|            |             |              |                  |                  |                |                 | Azobenzene                   | 1000 ug/mL    |
|            |             | _            |                  |                  |                |                 | Benzo[a]anthracene           |               |
|            |             |              |                  |                  |                |                 | Benzo[a]pyrene               |               |
|            |             | _            |                  |                  |                |                 | Benzo[b]fluoranthene         | - 1           |
|            |             |              |                  |                  |                |                 | Benzo[g,h,i]perylene         | 1000 ug/mL    |
|            |             |              |                  |                  |                |                 |                              | 1000 ug/mL    |
|            |             | _            |                  |                  |                |                 | Benzyl alcohol               |               |
|            |             | _            |                  |                  |                |                 | Bis(2-chloroethoxy)methane   |               |
|            |             |              |                  |                  |                |                 | Bis(2-chloroethyl)ether      |               |
| _          |             |              |                  | _                |                |                 | Bis(2-ethylhexyl) phthalate  | 1000 ug/mL    |

Lab Name: TestAmerica Denver

Job No.: 320-39023-1

|                  |              |          |                         | Reagent | Farent Reagent                          |        |                                         |               |
|------------------|--------------|----------|-------------------------|---------|-----------------------------------------|--------|-----------------------------------------|---------------|
|                  | дхэ          | Prep     | Dilutant                | Final   |                                         | Volume |                                         |               |
| Reagent ID       | Date         | Date     | Used                    | Volume  | Reagent ID                              | Added  | A                                       | Concentration |
|                  |              |          |                         |         |                                         |        | Butyl benzyl phthalate                  | 1000 ug/mL    |
|                  |              |          |                         |         |                                         |        | Carbazole                               | 1000 ug/mL    |
|                  |              |          |                         |         |                                         |        |                                         | 1000 ug/mL    |
|                  |              |          |                         |         |                                         |        |                                         |               |
|                  |              |          |                         |         |                                         |        | Di-n-octyl phthalate                    |               |
|                  |              |          |                         |         |                                         |        | Dibenz (a,h) anthracene                 | 1000 ug/mL    |
|                  |              |          |                         |         |                                         |        | Dibenzofuran                            | 1000 ug/mL    |
|                  |              |          |                         |         |                                         |        | Diethyl phthalate                       | 1000 ug/mL    |
|                  |              |          |                         |         |                                         |        | Dimethyl phthalate                      |               |
|                  |              |          |                         |         |                                         |        | Diphenylamine                           | 850 ug/mL     |
|                  |              |          |                         |         |                                         |        | Fluoranthene                            |               |
|                  |              |          |                         |         |                                         |        | Fluorene                                | 1000 ug/mL    |
|                  |              |          |                         |         |                                         |        | Hexachlorobenzene                       | 1000 ug/mL    |
|                  |              |          |                         |         |                                         |        | Hexachlorobutadiene                     | 1000 ug/mL    |
|                  |              |          |                         |         |                                         |        | Hexachlorocyclopentadiene               | 1000 ug/mL    |
|                  |              |          |                         |         |                                         |        | Hexachloroethane                        | 1000 ug/mL    |
|                  |              |          |                         |         |                                         |        | Indeno[1,2,3-cd]pyrene                  |               |
|                  |              |          |                         |         |                                         |        | Isophorone                              | 1000 ug/mL    |
|                  |              |          |                         |         |                                         |        | N-Nitrosodi-n-propylamine               | 1000 ug/mL    |
|                  |              |          |                         |         |                                         |        | N-Nitrosodimethylamine                  | 1000 ug/mL    |
|                  |              |          |                         |         |                                         |        | N-Nitrosodiphenylamine                  |               |
|                  |              |          |                         |         |                                         |        | Naphthalene                             | 1000 ug/mL    |
|                  |              |          |                         |         |                                         |        | Nitrobenzene                            |               |
|                  |              |          |                         |         |                                         |        | Pentachlorophenol                       | 2000 ug/mL    |
|                  |              |          |                         |         |                                         |        | Phenanthrene                            |               |
|                  |              |          |                         |         |                                         |        | Phenol                                  |               |
|                  |              |          |                         |         |                                         |        | Pyrene                                  | 1000 ug/mL    |
|                  |              |          |                         |         |                                         |        | Pyridine                                | 2000 ug/mL    |
| .MS-IS_00013     | 06/22/18     | 06/22/17 | Methylene Chloride, Lot | 250 mL  | MS-567684_00019                         | 50 mL  | 1,4-Dichlorobenzene-d4                  | 400 ng/mL     |
|                  |              |          | 157164                  |         |                                         |        |                                         |               |
|                  |              |          |                         |         |                                         |        | Acenaphthene-dl0                        | 400 ug/mL     |
|                  |              |          |                         |         |                                         |        | CIII y selle-uiz                        |               |
|                  |              |          |                         |         |                                         |        | Naphthalene-d8                          |               |
|                  |              |          |                         |         |                                         |        | Perytene-diz                            | 400 ug/mr     |
| WS_E67684 00010  | 00/10/10     |          | DOC+10 TO+ 20110000     |         | (B:: 20 )                               | +      | FIIEIIAIICIII EIIE - AIO                |               |
|                  | 04 / 10 / 10 |          | 10C DOI                 |         | tarciiasea Maaga                        | 110)   | A Consubthone A10                       | 2000 ug/mT.   |
|                  |              |          |                         |         |                                         |        | Acemaphicmene ato                       |               |
|                  |              |          |                         |         |                                         |        | Namhthalono-18                          |               |
|                  |              |          |                         |         |                                         |        | Dory one A12                            | 2000 ug/mT    |
|                  |              |          |                         |         |                                         |        | Dhenanthrene-d10                        |               |
|                  |              | ⊣⊦       |                         |         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | - 1 1  | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |               |
| MS-HSLA200_00035 | 06/22/18     | 04/03/18 | Methylene Chloride, Lot | 0.5 mL  | MS-HSLA_STK_00040                       | 500 uL | 2,4,6-Tribromophenol (Surr)             | 200 ug/mL     |
|                  |              |          | 0 r 0 H 0 H 0 H         |         |                                         |        | 2-Fluorobiphenvl                        | 200 ug/mL     |
|                  |              |          |                         |         |                                         |        | 2-Fluorophenol (Surr)                   |               |
|                  |              |          |                         |         |                                         |        | . LO                                    | 200 ug/mL     |
|                  |              |          |                         |         |                                         |        | 1_                                      | 200 11g/mT.   |
|                  |              |          |                         |         |                                         |        | Terrhenvl-d14 (Surr)                    | 200 ag/mT.    |
| _                | _            | _        | _                       | _       |                                         |        |                                         |               |

Lab Name: TestAmerica Denver

SDG No.:

Job No.: 320-39023-1

200 ug/mL ng/mL 200 ug/mL 200 ug/mL ng/mL ng/mL ng/mL ng/mL ng/mL ng/mL ng/mL ng/mL 202.195 ug/mL 200 ug/mL 200 ug/mL Concentration 200 ug/mL 200 ug/mL ng/mL 200 ug/mL 200 ug/mL 200 ug/mL 200 ug/mL 400 ug/mL 200 ug/mL 200 ug/mL 200 ug/mL 200 ug/mL 200 ug/mL 200 ug/mL 400 ug/mL 200 ug/mL 200 ug/mL 200 ug/mL ng/mL 200 ug/mL 200 ug/mL nd/mr 200 1-Methylnaphthalene
2,2'-oxybis[1-chloropropane]
2,3,4,6-Tetrachlorophenol
2,4,5-Trichlorophenol
2,4,6-Trichlorophenol
2,4-Chichlorophenol 4-Chlorophenyl phenyl ether Caprolactam
1,1'-Biphenyl
1,2,4,5-Tetrachlorobenzene 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 1,2-Diphenylhydrazine 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dichlorophenol 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Methylnaphthalene Analyte Azobenzene Benzo[a]anthracene & 4 Methylphenol 2,4-Dimethylpheno 4-Chloroaniline 2-Nitroaniline 3-Nitroaniline 4-Nitroaniline Acenaphthylene 2-Methylphenol 2-Chloropheno 2-Nitrophenol Benzoic acid 4-Nitropheno Acetophenone Acenaphthene 1,4-Dioxane Anthracene Atrazine Aniline Volume Added Parent Reagent Reagent ID Volume Reagent Final Dilutant Used Prep Date Exp Date Reagent ID

Lab Name: TestAmerica Denver

Job No.: 320-39023-1

|                    |             |              |                         |         | +000000         |                                    |               |
|--------------------|-------------|--------------|-------------------------|---------|-----------------|------------------------------------|---------------|
|                    |             |              |                         | Reagent | heageil L       |                                    |               |
| Reagent ID         | Exp<br>Date | Prep<br>Date | Dilutant<br>Used        | Final   | Neagent ID      | Volume<br>Added Analyte            | Concentration |
|                    |             |              |                         |         |                 | Benzo[a]pyrene                     | 200 ug/mL     |
|                    |             |              |                         |         |                 | Benzo[b]fluoranthene               |               |
|                    |             |              |                         |         |                 | Benzo[g,h,i]perylene               | 200 ug/mL     |
|                    |             |              |                         |         |                 | Benzo[k]fluoranthene               | 200 ug/mL     |
|                    |             |              |                         |         |                 | Benzyl alcohol                     | 200 ug/mL     |
|                    |             |              |                         |         |                 | Bis (2-chloroethoxy) methane       | 200 ug/mL     |
|                    |             |              |                         |         |                 | Bis (2-chloroethyl) ether          | 200 ug/mL     |
|                    |             |              |                         |         |                 | Bis (2-ethylhexyl) phthalate       | 200 ug/mL     |
|                    |             |              |                         |         |                 |                                    |               |
|                    |             |              |                         |         |                 | Carbazole                          |               |
|                    |             |              |                         |         |                 |                                    |               |
|                    |             |              |                         |         |                 | Di-n-butyl phthalate               | 200 ug/mL     |
|                    |             |              |                         |         |                 | Di-n-octyl phthalate               | 200 ug/mL     |
|                    |             |              |                         |         |                 | Dibenz (a,h) anthracene            |               |
|                    |             |              |                         |         |                 | Dibenzofuran                       | 200 ug/mL     |
|                    |             |              |                         |         |                 | Diethyl phthalate                  | 200 ug/mL     |
|                    |             |              |                         |         |                 | Dimethyl phthalate                 | 200 ug/mL     |
|                    |             |              |                         |         |                 | Diphenylamine                      | 170 ug/mL     |
|                    |             |              |                         |         |                 | Fluoranthene                       | 200 ug/mL     |
|                    |             |              |                         |         |                 | Fluorene                           | 200 ug/mL     |
|                    |             |              |                         |         |                 | Hexachlorobenzene                  | 200 ug/mL     |
|                    |             |              |                         |         |                 | Hexachlorobutadiene                | 200 ug/mL     |
|                    |             |              |                         |         |                 | Hexachlorocyclopentadiene          | 200 ug/mL     |
|                    |             |              |                         |         |                 | Hexachloroethane                   | 200 ug/mL     |
|                    |             |              |                         |         |                 | Indeno[1,2,3-cd]pyrene             | 200 ug/mL     |
|                    |             |              |                         |         |                 | Isophorone                         | 200 ug/mL     |
|                    |             |              |                         |         |                 | N-Nitrosodi-n-propylamine          | 200 ug/mL     |
|                    |             |              |                         |         |                 | N-Nitrosodimethylamine             | 200 ug/mL     |
|                    |             |              |                         |         |                 | N-Nitrosodiphenylamine             |               |
|                    |             |              |                         |         |                 | Naphthalene                        |               |
|                    |             |              |                         |         |                 | Nitrobenzene                       | 200 ug/mL     |
|                    |             |              |                         |         |                 | Pentachlorophenol                  | 400 ug/mL     |
|                    |             |              |                         |         |                 | Phenanthrene                       | 200 ug/mL     |
|                    |             |              |                         |         |                 | Phenol                             |               |
|                    |             |              |                         |         |                 | Pyrene                             | 200 ug/mL     |
|                    |             |              |                         |         |                 |                                    | 400 ug/mL     |
|                    |             |              |                         |         | MS-IS_00013     | 50 uL 1,4-Dichlorobenzene-d4       |               |
|                    |             |              |                         |         |                 | Acenaphthene-d10                   | 40 ug/mL      |
|                    |             |              |                         |         |                 | Chrysene-d12                       | 40 ug/mL      |
|                    |             |              |                         |         |                 | Naphthalene-d8                     | 40 ug/mL      |
|                    |             |              |                         |         |                 | Perylene-d12                       | 40 ng/mL      |
|                    |             |              |                         |         |                 | Phenanthrene-d10                   | 40 ug/mL      |
| .MS-HSLA_STK_00040 | 06/30/18    | 01/30/18     | Methylene Chloride, Lot | 10 mL   | MS-567685_00004 | 0.4 mL 2,4,6-Tribromophenol (Surr) | 200 ug/mL     |
|                    |             |              | L0101                   |         |                 |                                    | Tm/ 2011      |
|                    |             |              |                         |         |                 | Z-Fluorobiphenyl                   | 200 ug/mL     |
|                    |             |              |                         |         |                 |                                    |               |
|                    |             |              |                         |         |                 | Dhonol-da (surr)                   | 200 ug/mL     |
| _                  | _           | _            |                         | _       | _               |                                    | TIII / 60 007 |

Lab Name: TestAmerica Denver

Job No.: 320-39023-1

| Reagent ID Date Date Date Date Date Date Date Date Date | ate | Dilutant | Final Volume        | Reagent ID MS-568023 00042 MS-568033 00026 MS-569730 HSL 00007 MS-569731 00070 MS-569732 HSL 00005 MS-571995 00001 | Volume Added Terphenyl-d14 (Surr)  1 mL Famphur 0.5 mL Alachlor 1 mL Strazine 1 mL Atrazine 2 mL Atrazine 2 mL L'1'-Biphenyl 1,2'4-5-Tetrachlorobenzene 1,2'4-Trichlorobenzene 1,2'4-Trichlorobenzene 1,2'4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dinitrobenzene 1,3-Dinitrobenzene 1,3-Dinitrobenzene 1,3-Dinitrobenzene 1,3-Dinitrobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene | Concentration 200 ug/mL                                  |
|---------------------------------------------------------|-----|----------|---------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date Date                                               | ate | Used     |                     | Reage<br>568023<br>56873<br>569731<br>569731<br>571995                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Concentration  200 ug/mL                                 |
|                                                         |     |          | [6] [6] [6] [6] [6] | 568023<br>568033<br>569730<br>569731<br>571995                                                                     | L L L L L L L L L L L L L L L L L L L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200 ug/mL<br>200 ug/mL<br>200 ug/mL<br>400 ug/mL<br>400 ug/mL<br>200 ug/mL |
|                                                         |     |          |                     | 568023<br>568033<br>569730<br>569731<br>571995                                                                     | HI WILL WILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200 ug/mL<br>200 ug/mL                                                     |
|                                                         |     |          |                     |                                                                                                                    | HI H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 200 ug/mL<br>200 ug/mL<br>400 ug/mL<br>200 ug/mL                                                     |
|                                                         |     |          | 4 4 H               |                                                                                                                    | THE HE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 200 ug/mL<br>400 ug/mL<br>200 ug/mL                                        |
|                                                         |     |          | ed   ed     ped     | MS-569731 00070<br>MS-569732 HSL_00005<br>MS-571995_00001                                                          | THE THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 400 ug/mL<br>200 ug/mL                                                                                                                                                                                       |
|                                                         |     |          | e   h               | MS-569732 HSL_00005<br>MS-571995_00001                                                                             | TE E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 200 ug/mL<br>200 ug/mL                                                                                                                                                                                                                 |
|                                                         |     |          | [Fed                | MS-571995_00001                                                                                                    | 뒽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 200 ug/mL<br>200 ug/mL                                                                                                                                                                                                                                                        |
|                                                         |     |          | A                   | MS-571995_00001                                                                                                    | I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 200 ug/mL<br>200 ug/mL<br>200 ug/mL<br>200 ug/mL<br>202.195 ug/mL<br>200 ug/mL<br>200 ug/mL<br>200 ug/mL<br>200 ug/mL<br>200 ug/mL<br>200 ug/mL                                                                                                                                                                                                                                                    |
|                                                         |     |          |                     |                                                                                                                    | 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,2-Diphenylhydrazine 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                         | 200 ug/mL<br>200 ug/mL<br>200 ug/mL<br>202.195 ug/mL<br>200 ug/mL<br>200 ug/mL<br>200 ug/mL<br>200 ug/mL<br>200 ug/mL<br>200 ug/mL                                                                                                                                                                                                                                                                 |
|                                                         |     |          |                     |                                                                                                                    | 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,2-Diphenylhydrazine 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                        | 200 ug/mL<br>202.195 ug/mL<br>200 ug/mL<br>200 ug/mL<br>200 ug/mL<br>200 ug/mL<br>200 ug/mL<br>200 ug/mL<br>200 ug/mL                                                                                                                                                                                                                                                                              |
|                                                         |     |          |                     |                                                                                                                    | 1,2-Dichlorobenzene 1,2-Diphenylhydrazine 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                               | 202.195 ug/mL<br>202.195 ug/mL<br>200 ug/mL<br>200 ug/mL<br>200 ug/mL<br>200 ug/mL<br>200 ug/mL                                                                                                                                                                                                                                                                                                    |
|                                                         |     |          |                     |                                                                                                                    | 1,2-Diphenylhydrazine 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 202.195 ug/mL<br>200 ug/mL<br>200 ug/mL<br>200 ug/mL<br>200 ug/mL<br>200 ug/mL                                                                                                                                                                                                                                                                                                                     |
|                                                         |     |          |                     |                                                                                                                    | 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 1.4-Dioxane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 200 ug/mL<br>200 ug/mL<br>200 ug/mL<br>200 ug/mL<br>200 ug/mL                                                                                                                                                                                                                                                                                                                                      |
|                                                         |     |          |                     |                                                                                                                    | 1,3-Dinitrobenzene 1,4-Dichlorobenzene 1.4-Dioxane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200 ug/mL<br>200 ug/mL<br>200 ug/mL<br>200 ug/mL                                                                                                                                                                                                                                                                                                                                                   |
|                                                         |     |          |                     |                                                                                                                    | 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 200 ug/mL<br>200 ug/mL<br>200 ug/mL                                                                                                                                                                                                                                                                                                                                                                |
|                                                         |     |          |                     |                                                                                                                    | 1.4-Dioxane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200 ug/mL<br>200 ug/mL                                                                                                                                                                                                                                                                                                                                                                             |
|                                                         |     |          |                     |                                                                                                                    | );;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200 ug/mI                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                         |     |          | _                   |                                                                                                                    | 1-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                         |     |          |                     | _                                                                                                                  | 2,2'-oxybis[1-chloropropane]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200 ug/mL                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                         |     |          |                     |                                                                                                                    | 2,3,4,6-Tetrachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200 ug/mL                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                         |     | _        |                     |                                                                                                                    | 2,4,5-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                         |     |          |                     |                                                                                                                    | 2,4,6-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200 ug/mL                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                         |     |          |                     |                                                                                                                    | 2,4-Dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200 ug/mL                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                         |     |          |                     |                                                                                                                    | 2,4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200 ug/mL                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                         |     |          |                     |                                                                                                                    | 2,4-Dinitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                         |     |          |                     |                                                                                                                    | 2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200 ug/mL                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                         |     |          |                     |                                                                                                                    | 2,6-Dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200 ug/mL                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                         |     |          |                     |                                                                                                                    | 2,6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200 ug/mL                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                         |     |          |                     |                                                                                                                    | 2-Chloronaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                         |     |          |                     |                                                                                                                    | 2-Chlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                         |     |          |                     |                                                                                                                    | 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 200 ug/mL                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                         |     |          |                     |                                                                                                                    | 2-Methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200 ug/mL                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                         |     |          |                     |                                                                                                                    | 2-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200 ug/mL                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                         |     |          |                     |                                                                                                                    | 2-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                         |     |          |                     |                                                                                                                    | 3 & 4 Methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                         |     |          |                     |                                                                                                                    | 3-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7m/bn 007                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                         |     |          |                     |                                                                                                                    | -mernyrp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                         |     |          |                     |                                                                                                                    | 4-Bromophenyl pnenyl etner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                         |     |          |                     |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Z00 ug/                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                         |     |          |                     |                                                                                                                    | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 200 ug/mL                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                         |     |          |                     |                                                                                                                    | 4-Chlorophenyl phenyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                         |     |          |                     |                                                                                                                    | 4-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                         |     |          |                     |                                                                                                                    | 4-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 400 ng/mL                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                         |     |          |                     |                                                                                                                    | Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200 ug/mL                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                         |     |          |                     |                                                                                                                    | Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200 ug/mL                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                         |     |          |                     |                                                                                                                    | Acetophenone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                         |     |          |                     |                                                                                                                    | Aniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200 ug/mL                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                         |     |          |                     |                                                                                                                    | Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200 ug/mL                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                         | _   |          | _                   | _                                                                                                                  | Azobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200 ug/mL                                                                                                                                                                                                                                                                                                                                                                                          |

Lab Name: TestAmerica Denver

Job No.: 320-39023-1

SDG No.:

| Regigno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |          |      |                      |        | Parent Reagent      |                              |               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|------|----------------------|--------|---------------------|------------------------------|---------------|
| December   Decembe    |            | EXD      | Prep |                      | eagent |                     |                              |               |
| Return of a light receive   200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | Date     | Date |                      | olume  | ID                  | Analyte                      | Concentration |
| Beautool   Education     |            |          |      |                      |        |                     | Benzo[a]anthracene           |               |
| Secret   Continuo number   Secret   Secret   Continuo number   Substituti   Subst  |            |          |      |                      |        |                     | Benzo[a]pyrene               |               |
| Bentoo(R) 2.00   Bent  |            |          |      |                      |        |                     | Benzo[b]fluoranthene         |               |
| Bearrol   Albohol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |          |      |                      |        |                     | Benzo[g,h,i]perylene         |               |
| Bis (2-ch) Corocteboxy) sections 200   Bis (2-ch) Corocteby) section 200   Carbacalo Bis (2-ch) Carbacalo Bis (  |            |          |      |                      |        |                     | Benzo[k]fluoranthene         |               |
| Ris (2-chicrocethus), pitchase   200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |          |      |                      |        |                     | Benzyl alcohol               |               |
| Bit S_c=chirch[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |          |      |                      |        |                     | Bis (2-chloroethoxy) methane |               |
| House, Denogy, Day, Day, Day, Day, Day, Day, Day, Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |          |      |                      |        |                     | Bis(2-chloroethyl)ether      |               |
| Carboacola pitthalate   200   Carb  |            |          |      |                      |        |                     | Bis(2-ethylhexyl) phthalate  |               |
| Chrysene   Chrysene   200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |          |      |                      |        |                     | Butyl benzyl phthalate       | 200 ug/mL     |
| Charles   Char  |            |          |      |                      |        |                     | Carbazole                    |               |
| Di-m-octyl pithalate   200   Di-m-octyl pit  |            |          |      |                      |        |                     |                              |               |
| Disparcy (A) pitthalate   200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |          |      |                      |        |                     | Di-n-butyl phthalate         | 200 ug/mL     |
| Disease (a particular (a particular)   Disease (a particular)   Disea  |            |          |      |                      |        |                     | Di-n-octyl phthalate         |               |
| Disetty  pittalate   200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |          |      |                      |        |                     | Dibenz (a, h) anthracene     |               |
| Dimethy1 pitchalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |          |      |                      |        |                     | Dibenzofuran                 |               |
| Diplemylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |          |      |                      |        |                     | Dietnyl phthalate            |               |
| Elucrathtene   Elucrathtene   Elucrathtene   Elucrathtene   Elucrathtene   Elucrathtene   Elucrathtene   Elucrathtene   Elucrathtene   Elecachlorobtadiene   Elecachlorobtadiene   Elecachloropentadiene   Elucropentadiene   Elucrope  |            |          |      |                      |        |                     | Dimetnyl phthalate           |               |
| Public Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |          |      |                      |        |                     | Ulphenylamine                |               |
| Hexachloroberache   Hexachloroberache   Hexachloroberache   Hexachloroberache   Hexachloroberache   Hexachlorocyclogentadiene   Hexachlorocyclogentadiene   Hexachlorocyclogentadiene   Hexachlorocyclogentadiene   Hexachlorocyclogentadiene   Hexachlorocyclogentadiene   Inchesion     |            |          |      |                      |        |                     | Fluoranthene                 |               |
| Hexachlocoberaces   Hexachlocoberaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |          |      |                      |        |                     | Fluorene                     |               |
| Hexachlocockradiene   Hexachlocockradiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |          |      |                      |        |                     | Hexachlorobenzene            |               |
| Hexachlorocethane   Hexachlorocethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |          |      |                      |        |                     | Hexachlorobutadiene          | 200 ug/mL     |
| Hexacollorcetrane   Hexacollorcetrane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |          |      |                      |        |                     | Hexachlorocyclopentadiene    | 200 ug/mL     |
| Indemo[1,2,3-cd]pyrene   Indemo[1,2,3-cd]pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |          |      |                      |        |                     | Hexachloroethane             | 200 ug/mL     |
| Inspire the continue of the   |            |          |      |                      |        |                     | Indeno[1,2,3-cd]pyrene       |               |
| N-Nitroscoll-n-propylamine   N-Nitroscoll-n-propylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |          |      |                      |        |                     | Isophorone                   |               |
| Nation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |          |      |                      |        |                     | N-Nitrosodi-n-propylamine    | 200 ug/mL     |
| N-Witcosodiphenylamine   N-Witcosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |          |      |                      |        |                     | N-Nitrosodimethylamine       | 200 ug/mL     |
| Nitroberose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |          |      |                      |        |                     | N-Nitrosodiphenylamine       |               |
| Nutrobenzene   Nutrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |          |      |                      |        |                     | Naphthalene                  |               |
| Pendanthrene   Pend  |            |          |      |                      |        |                     | Nitrobenzene                 |               |
| Pyridine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |          |      |                      |        |                     | Pentachlorophenol            |               |
| 01/30/19 Restek, Lot A0130500 (Purchased Reagent) 2,4,6-Tribromophenol (Surr) 2-Fluorobiphenyl 2-Fluorophenol (Surr) 2-Fluorophenol (Surr) 2-Fluorophenol (Surr) 2-Fluorophenol (Surr) 2-Fluorophenol (Surr) 2-Fluorophenol (Surr) 3-Fluorophenol |            |          |      |                      |        |                     | Dhanol                       |               |
| 01/30/19   Restek, Lot A0130500   Purchased Reagent)   2,4,6-Tribromophenol (Surr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |          |      |                      |        |                     | Divene                       |               |
| 01/30/19   Restek, Lot A0130500   Purchased Reagent)   2,4,6-Tribromophenol (Surr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |          |      |                      |        |                     | Pyridine                     |               |
| C-Fluorobiphenyl   C-Fluorophenol (Surr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7685 00004 | 01/30/19 |      | Restek, Lot A0130500 |        | (Purchased Reagent) | 1                            |               |
| 2-Fluorophenol (Surr)   Nitrobenzene-d5 (Surr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I          |          |      |                      |        |                     |                              |               |
| Nitrobenzene-d5 (Surr)   Phenol-d5 (Surr)   Perphenyl-d14 (Surr)   Pramphur   Pamphur   Pamphur   Pramphur   P  |            |          |      |                      |        |                     | 2-Fluorophenol (Surr)        | 5000 ug/mL    |
| 00042         05/31/19         Restek, Lot A0127668         (Purchased Reagent)         Famphur         Perphenyl-d14 (Surr)           60026         06/30/19         Restek, Lot A0133057         (Purchased Reagent)         Alachlor         Alachlor           HSL 0007         11/30/18         Restek, Lot A0123819         (Purchased Reagent)         3'-Dichlorobenzidine           00070         06/30/18         Restek, Lot A0123819         (Purchased Reagent)         Atrazine           HSL_00005         11/30/18         Restek, Lot A0127580         (Purchased Reagent)         Atrazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |          |      |                      |        |                     |                              |               |
| 00042         05/31/19         Restek, Lot A0127668         (Purchased Reagent)         Famphur         Alachlor           00026         06/30/19         Restek, Lot A0133057         (Purchased Reagent)         Alachlor         Alachlor           HSL 00007         11/30/18         Restek, Lot A0123819         (Purchased Reagent)         3,3'-Dichlorobenzidine           00070         06/30/18         Restek, Lot A0123819         (Purchased Reagent)         Atrazine           HSL 00005         11/30/18         Restek, Lot A0127580         (Purchased Reagent)         Atrazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |          |      |                      |        |                     | Phenol-d5 (Surr)             |               |
| 00042         05/31/19         Restek, Lot A0127668         (Purchased Reagent)         Famphur           00026         06/30/19         Restek, Lot A0133057         (Purchased Reagent)         Alachlor           HSL 00007         11/30/18         Restek, Lot A0127472         (Purchased Reagent)         3,3'-Dichlorobenzidine           00070         06/30/18         Restek, Lot A0123819         (Purchased Reagent)         Atrazine           HSL_00005         11/30/18         Restek, Lot A0127580         (Purchased Reagent)         Atrazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |          |      |                      |        |                     |                              |               |
| 00026         06/30/19         Restek, Lot A0133057         (Purchased Reagent)         Alachlor           HSL 00007         11/30/18         Restek, Lot A0127472         (Purchased Reagent)         3,3'-Dichlorobenzidine           00070         06/30/18         Restek, Lot A0123819         (Purchased Reagent)         Benzoic acid           HSL_00005         11/30/18         Restek, Lot A0127580         (Purchased Reagent)         Atrazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 05/31/19 |      | Lot A012             |        |                     | Famphur                      | 2000 ug/mL    |
| HSL 00007         11/30/18         Restek, Lot A0127472         (Purchased Reagent)         3,3'-Dichlorobenzidine           00070         06/30/18         Restek, Lot A0123819         (Purchased Reagent)         Benzoic acid           HSL_00005         11/30/18         Restek, Lot A0127580         (Purchased Reagent)         Atrazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 06/30/19 |      | Lot A013             |        |                     | Alachlor                     | 4000 ng/mL    |
| 00070         06/30/18         Restek, Lot A0123819         (Purchased Reagent)         Benzoic acid         Atrazine           HSL_00005         11/30/18         Restek, Lot A0127580         (Purchased Reagent)         Atrazine         Atrazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 30/      |      | Lot A012             |        |                     | 3,3'-Dichlorobenzidine       | 2000 ug/mL    |
| HSL_00005   11/30/18   Restek, Lot A0127580   (Purchased Reagent) Atrazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 06/30/18 |      | Lot A012             |        | (Purchased Reagent) | Benzoic acid                 | 2000 ug/mL    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 11/30/18 |      | Lot A012             |        | (Purchased Reagent) | Atrazine                     | 2000 ug/mL    |

#### Page 280 of 3863

Lab Name: TestAmerica Denver

Job No.: 320-39023-1

|             |              |                      | ()<br>()<br>()<br>() | Parent Reagent      |                              |               |
|-------------|--------------|----------------------|----------------------|---------------------|------------------------------|---------------|
| Exp<br>Date | Prep<br>Date | Dilutant<br>Used     | Final<br>Volume      | Reagent ID Ad       | Volume<br>Added Analyte      | Concentration |
|             |              |                      |                      |                     | Caprolactam                  | 2000 ug/mL    |
| 09/30/1     | 8            | Restek, Lot A0125805 |                      | (Purchased Reagent) | 1,1'-Biphenyl                |               |
|             |              |                      |                      |                     | 1,2,4,5-Tetrachlorobenzene   |               |
|             |              |                      |                      |                     | 1,2,4-Trichlorobenzene       | - 1           |
|             |              |                      |                      |                     | 1,2-Dichlorobenzene          | - 1           |
|             |              |                      |                      |                     | 1,2-Diphenylhydrazine        | - 1           |
|             |              |                      |                      |                     | 1,3-Dichlorobenzene          |               |
|             |              |                      |                      |                     | 1,3-Ulnitrobenzene           |               |
|             |              |                      |                      |                     | 1,4-Dichlorobenzene          | - 1           |
|             |              |                      |                      |                     | 1,4-Dioxane                  |               |
|             |              |                      |                      |                     | 1-Methylnaphthalene          | - 1           |
|             |              |                      |                      |                     | 2,2'-oxybis[1-chloropropane  |               |
|             |              |                      |                      |                     | 2, 3, 4, 6-Tetrachlorophenol | - 1           |
|             |              |                      |                      |                     | 2,4,5-Trichlorophenol        | - 1           |
|             |              |                      |                      |                     | 2,4,6-Trichlorophenol        | 1000 ug/mL    |
|             |              |                      |                      |                     | 2,4-Dichlorophenol           | 1000 ug/mL    |
|             |              |                      |                      |                     | 2,4-Dimethylphenol           | 1000 ug/mL    |
|             |              |                      |                      |                     | 2,4-Dinitrophenol            |               |
|             |              |                      |                      |                     | 2,4-Dinitrotoluene           |               |
|             |              |                      |                      |                     | 2,6-Dichlorophenol           |               |
|             |              |                      |                      |                     | 2,6-Dinitrotoluene           |               |
|             |              |                      |                      |                     | 2-Chloronaphthalene          |               |
|             |              |                      |                      |                     | 2-Chlorophenol               |               |
|             |              |                      |                      |                     | 2-Methylnaphthalene          |               |
|             |              |                      |                      |                     | 2-Methylphenol               |               |
|             |              |                      |                      |                     | 2-Nitroaniline               | 1000 ug/mL    |
|             |              |                      |                      |                     | 2-Nitrophenol                | 1000 ug/mL    |
|             |              |                      |                      |                     | 3 & 4 Methylphenol           | 1000 ug/mL    |
|             |              |                      |                      |                     | 3-Nitroaniline               | 1000 ug/mL    |
|             |              |                      |                      |                     | 4,6-Dinitro-2-methylphenol   | 2000 ug/mL    |
|             |              |                      |                      |                     | 4-Bromophenyl phenyl ether   | 1000 ug/mL    |
|             |              |                      |                      |                     | 4-Chloro-3-methylphenol      | 1000 ug/mL    |
|             |              |                      |                      |                     | 4-Chloroaniline              | 1000 ug/mL    |
|             |              |                      |                      |                     | 4-Chlorophenyl phenyl ether  |               |
|             |              |                      |                      |                     | 4-Nitroaniline               |               |
|             |              |                      |                      |                     | 4-Nitrophenol                | - 1           |
|             |              |                      |                      |                     | Acenaphthene                 | 1000 ug/mL    |
|             |              |                      |                      |                     | Acenaphthylene               | 1000 ug/mL    |
|             |              |                      |                      |                     | Acetophenone                 | 1000 ug/mL    |
|             |              |                      |                      |                     | Aniline                      | 1000 ug/mL    |
|             |              |                      |                      |                     | Anthracene                   | 1000 ug/mL    |
|             |              |                      |                      |                     | Azobenzene                   | 1000 ug/mL    |
|             |              |                      |                      |                     | Benzo[a]anthracene           | 1000 ug/mL    |
|             |              |                      |                      |                     | Benzo[a]pyrene               | 1000 ug/mL    |
|             |              |                      |                      |                     | Benzo[b]fluoranthene         | 1000 ug/mL    |
|             |              |                      |                      |                     | Benzo[g,h,i]perylene         | 1000 ug/mL    |
|             |              |                      |                      |                     | Benzo[k]fluoranthene         | 1000 ug/mL    |
|             |              |                      |                      |                     | Benzyl alcohol               | 1000 11g/mT,  |

Lab Name: TestAmerica Denver

SDG No.:

|                     |             |              |                         | +<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>20 | Parent Reagent      | ٠,              |                               |               |
|---------------------|-------------|--------------|-------------------------|-----------------------------------------------------------------|---------------------|-----------------|-------------------------------|---------------|
| Reagent ID          | Exp<br>Date | Prep<br>Date | Dilutant<br>Used        | Final<br>Volume                                                 | Reagent ID          | Volume<br>Added | Analyte                       | Concentration |
|                     |             |              |                         |                                                                 |                     |                 | Bis(2-chloropthoxu)methane    | 1000 11g/mT.  |
|                     |             |              |                         |                                                                 |                     |                 | Bis (2-chlorothm) other       |               |
|                     |             |              |                         |                                                                 |                     |                 | Bis (2 CHIOCCHY) CHICL        |               |
|                     |             |              |                         |                                                                 |                     |                 | BIS(2-ecniginesgi) phicharace |               |
|                     |             |              |                         |                                                                 |                     |                 | Ducyi Delizyi pilcilarace     | 1000 ug/mT    |
|                     |             |              |                         |                                                                 |                     |                 | Calbazole                     | 1000 ag/iiii  |
|                     |             |              |                         |                                                                 |                     |                 | Chrysene                      | IUUU ug/mL    |
|                     |             |              |                         |                                                                 |                     |                 |                               |               |
|                     |             |              |                         |                                                                 |                     |                 | Di-n-octyl phthalate          |               |
|                     |             |              |                         |                                                                 |                     |                 | Dibenz (a,h) anthracene       | 1000 ug/mL    |
|                     |             |              |                         |                                                                 |                     |                 | Dibenzofuran                  | 1000 ug/mL    |
|                     |             |              |                         |                                                                 |                     |                 | Diethyl phthalate             | 1000 ug/mL    |
|                     |             |              |                         |                                                                 |                     |                 | Dimethyl phthalate            | 1000 ug/mL    |
|                     |             |              |                         |                                                                 |                     |                 | Diphenylamine                 | 850 ug/mL     |
|                     |             |              |                         |                                                                 |                     |                 | Fluoranthene                  | 1000 ug/mL    |
|                     |             |              |                         |                                                                 |                     |                 | Fluorene                      |               |
|                     |             |              |                         |                                                                 |                     |                 | Hexachlorobenzene             | 1000 ug/mL    |
|                     |             |              |                         |                                                                 |                     |                 | Hexachlorobutadiene           | 1000 ug/mL    |
|                     |             |              |                         |                                                                 |                     |                 | Hexachlorocyclopentadiene     | 1000 ug/mL    |
|                     |             |              |                         |                                                                 |                     |                 | Hexachloroethane              | 1000 ug/mL    |
|                     |             |              |                         |                                                                 |                     |                 | Indeno[1,2,3-cd]pyrene        |               |
|                     |             |              |                         |                                                                 |                     |                 | Isophorone                    | 1000 ug/mL    |
|                     |             |              |                         |                                                                 |                     |                 | N-Nitrosodi-n-propylamine     | 1000 ug/mL    |
|                     |             |              |                         |                                                                 |                     |                 | N-Nitrosodimethylamine        | 1000 ug/mL    |
|                     |             |              |                         |                                                                 |                     |                 | N-Nitrosodiphenylamine        | 1000 ug/mL    |
|                     |             |              |                         |                                                                 |                     |                 | Naphthalene                   | 1000 ug/mL    |
|                     |             |              |                         |                                                                 |                     |                 | Nitrobenzene                  | 1000 ug/mL    |
|                     |             |              |                         |                                                                 |                     |                 | Pentachlorophenol             | 2000 ug/mL    |
|                     |             |              |                         |                                                                 |                     |                 | Phenanthrene                  | 1000 ug/mL    |
|                     |             |              |                         |                                                                 |                     |                 | Phenol                        | 1000 ug/mL    |
|                     |             |              |                         |                                                                 |                     |                 | Pyrene                        | 1000 ug/mL    |
|                     |             |              |                         |                                                                 |                     |                 | Pyridine                      | 2000 ug/mL    |
| .MS-IS_00013        | 06/22/18    | 06/22/17     | Methylene Chloride, Lot | 250 mL                                                          | MS-567684_00019     | 20 mL           | 1,4-Dichlorobenzene-d4        | 400 ug/mL     |
|                     |             | 1            |                         |                                                                 |                     |                 | Acenaphthene-d10              | 400 ug/mL     |
|                     |             |              |                         |                                                                 |                     |                 | Chrysene-d12                  | 400 ug/mL     |
|                     |             |              |                         |                                                                 |                     |                 | Naphthalene-d8                | 400 ug/mL     |
|                     |             |              |                         |                                                                 |                     |                 | Perylene-d12                  | 400 ug/mL     |
|                     |             |              |                         |                                                                 |                     |                 | Phenanthrene-d10              | 400 ug/mL     |
| MS-567684_00019     | 07/31/20    |              | Restek, Lot A0112833    |                                                                 | (Purchased Reagent) | nt)             | 1,4-Dichlorobenzene-d4        | 2000 ug/mL    |
| I                   | -           |              |                         |                                                                 |                     |                 | Acenaphthene-d10              | 2000 ug/mL    |
|                     |             |              |                         |                                                                 |                     |                 | Chrysene-d12                  | 2000 ug/mL    |
|                     |             |              |                         |                                                                 |                     |                 | Naphthalene-d8                | 2000 ug/mL    |
|                     |             |              |                         |                                                                 |                     |                 | Perylene-d12                  | 2000 ug/mL    |
|                     |             |              |                         |                                                                 |                     |                 | Phenanthrene-d10              | 2000 ug/mL    |
| MS-HSLACCV080_00154 | 06/22/18    | 04/03/18     | Methylene Chloride, Lot | 0.5 mL                                                          | MS-IS_00013         | 50 uL           | 1,4-Dichlorobenzene-d4        | 40 ug/mL      |
|                     |             | 1            | 01040                   |                                                                 |                     |                 | Acenaphthene-d10              | 40 ug/mL      |
|                     |             |              |                         |                                                                 |                     |                 | Thrusana - A12                | 40 17 /mT.    |
| _                   | _           | _            | _                       | _                                                               | _                   |                 |                               |               |

Lab Name: TestAmerica Denver

Job No.: 320-39023-1

| Added Added Added Added A Reagent)  200 uL  200 uL  2 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |             |              |                                         |         | Parent Readent    |                        |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------|--------------|-----------------------------------------|---------|-------------------|------------------------|---------------|
| Date Date Date Date Date Date Date Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | <u>}</u>    | ,<br>,       | ÷ ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; | Reagent |                   | ( (                    |               |
| 06/22/18 06/22/17 Methylene Chloride, Lot 250 mL MS-567684_00019 50 mL 157164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | Exp<br>Date | Frep<br>Date | Dilucanic<br>Used                       | Volume  | DI                | Added Analyte          | Concentration |
| 06/22/18 06/22/17 Wethylene Chloride, Lot 250 mL MS-567684_00019 50 mL 157164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |             |              |                                         |         |                   | Naphthalene-d8         | 40 ug/mL      |
| 07/31/20 Restek, Lot A0112833 (Furchased Reagent) 07/31/20 Restek, Lot A0112833 (Furchased Reagent) 06/22/18 04/03/18 Methylene Chloride, Lot 10 mL MS-567685_00004 0.4 mL 06/30/18 01/30/18 Methylene Chloride, Lot 10 mL MS-567685_00004 0.4 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |             |              |                                         |         |                   | Perylene-d12           |               |
| 06/22/18   06/22/17   Methylene Chloride, Lot A0112833 (Purchased Reagent)  07/31/20   Restek, Lot A0112833 (Purchased Reagent)  06/22/18   04/03/18   Wethylene Chloride, Lot   0.5 mL MS-HSLA_STK_00040   200 uL    181545   181545   181545   181545   181545   10 mL MS-567685_00004   0.4 mL    MS-571995_00001   2 mL    MS-571995_0 |                    |             |              |                                         |         |                   |                        | 40 ug/mL      |
| 06/22/18 04/03/18 Methylene Chloride, Lot 0.5 mL MS-HSLA_STK_00040 200 uL 181545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0001               | 06/22/18    |              | Chloride,                               | mL      | MS-567684_00019   |                        | 400 ug/mL     |
| 06/32/18 04/03/18 Methylene Chicride, Lot 10 mL MS-567685_00004 0.4 mL MS-571995_00001 2 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |             |              | 7<br>O H<br>O H                         |         |                   | Acenaphthene-d10       | 400 ug/mL     |
| 07/31/20 Restek, Lot A0112833 (Purchased Reagent) 06/22/18 04/03/18 Methylene Chloride, Lot 0.5 ml MS-HSIA_STK_00040 200 ul 181545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |             |              |                                         |         |                   | Chrysene-d12           | 400 ug/mL     |
| 06/22/18 04/03/18 Methylene Chloride, Lot 0.5 mL MS-HSLA_STK_00040 200 uL 101/30/18 Methylene Chloride, Lot 10 mL MS-571995_00004 0.4 mL MS-571995_00001 2 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |             |              |                                         |         |                   | Naphthalene-d8         |               |
| 06/22/18 04/03/18 Methylene Chloride, Lot 0.5 mL MS-HSIA_STK_00040 200 uL 181545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |             |              |                                         |         |                   | Perylene-d12           | 400 ug/mL     |
| 07/31/20 Restek, Lot A0112833 (Furchased Reagent) 06/22/18 04/03/18 Wethylene Chloride, Lot 0.5 mL MS-HSLA_STK_00040 200 uL 181545 06/30/18 01/30/18 Methylene Chloride, Lot 10 mL MS-567685_00004 0.4 mL MS-571995_00001 2 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |             |              |                                         |         |                   |                        |               |
| 06/32/18 04/03/18 Methylene Chloride, Lot 0.5 mL MS-HSLA_STK_00040 200 uL 181545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .MS-567684_00019   | 07/31/20    |              | Lot A0112                               |         |                   |                        |               |
| 06/32/18 04/03/18 Methylene Chloride, Lot 0.5 mL MS-HSLA_STK_00040 200 uL 181545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |             |              |                                         |         |                   | Acenaphthene-d10       |               |
| 06/30/18 04/03/18 Methylene Chloride, Lot 0.5 mL MS-HSLA_STK_00040 200 uL 181545 06/30/18 01/30/18 Methylene Chloride, Lot 10 mL MS-567685_00004 0.4 mL MS-571995_00001 2 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |             |              |                                         |         |                   | Chrysene-d12           | 2000 ug/mL    |
| 06/22/18 04/03/18 Methylene Chloride, Lot 0.5 mL MS-HSLA_STK_00040 200 uL 181545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |             |              |                                         |         |                   | Naphthalene-d8         | 2000 ug/mL    |
| 06/30/18 04/03/18 Methylene Chloride, Lot 0.5 mL MS-HSLA_STK_00040 200 uL 181545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |             |              |                                         |         |                   | Perylene-a12           |               |
| 06/30/18 04/03/18 Methylene Chloride, Lot 10 mL MS-567685_00004 0.4 mL MS-571995_00001 2 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | 0           | 0            |                                         |         |                   | Phenanthrene-dl0       |               |
| 06/30/18   01/30/18   Methylene Chloride, Lot   10 mL   MS-567685_00004   0.4 mL   181545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S-HSLACCV080_00154 | 06/22/18    | 04/03/18     |                                         | 립       | MS-HSLA_STK_00040 |                        | Tm/6n 08      |
| 06/30/18 01/30/18 Methylene Chloride, Lot 10 mL MS-567685_00004 0.4 mL 181545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |             |              | )                                       |         |                   | 2-Fluorobiphenyl       | 80 ug/mL      |
| 06/30/18 01/30/18 Methylene Chloride, Lot 10 mL MS-567685_00004 0.4 mL MS-571995_00001 2 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |             |              |                                         |         |                   | 2-Fluorophenol (Surr)  | 1m/mr         |
| 06/30/18 01/30/18 Methylene Chloride, Lot 10 mL MS-567685_00004 0.4 mL 181545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |             |              |                                         |         |                   | Nitrobenzene-d5 (Surr) | 80 ng/mF      |
| 06/30/18 01/30/18 Methylene Chloride, Lot 10 mL MS-567685_00004 0.4 mL 181545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |             |              |                                         |         |                   | ы                      |               |
| 06/30/18 01/30/18 Methylene Chloride, Lot 10 mL MS-567685_00004 0.4 mL 181545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |             |              |                                         |         |                   | Terphenyl-d14 (Surr)   |               |
| 06/30/18 01/30/18 Methylene Chloride, Lot 10 mL MS-567685_00004 0.4 mL MS-571995_00001 2 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |             |              |                                         |         |                   | 1,4-Dichlorobenzene    | - 1           |
| 06/30/18 01/30/18 Methylene Chloride, Lot 10 mL MS-567685_00004 0.4 mL MS-571995_00001 2 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |             |              |                                         |         |                   | 2,4,5-Trichlorophenol  |               |
| 06/30/18 01/30/18 Methylene Chloride, Lot 10 mL MS-567685_00004 0.4 mL 181545 MS-571995_00001 Z mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |             |              |                                         |         |                   | 2,4,6-Trichlorophenol  |               |
| 06/30/18 01/30/18 Methylene Chloride, Lot 10 mL MS-567685_00004 0.4 mL 181545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |             |              |                                         |         |                   | 2,4-Dinitrotoluene     |               |
| 06/30/18 01/30/18 Methylene Chloride, Lot 10 mL MS-567685_00004 0.4 mL 181545 MS-571995_00001 2 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |             |              |                                         |         |                   | 2-Methylphenol         |               |
| 06/30/18 01/30/18 Methylene Chloride, Lot 10 mL MS-567685_00004 0.4 mL 181545 MS-571995_00001 Z mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |             |              |                                         |         |                   | 3 & 4 Methylphenol     |               |
| 06/30/18 01/30/18 Methylene Chloride, Lot 10 mL MS-567685_00004 0.4 mL 181545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |             |              |                                         |         |                   | Hexachlorobenzene      |               |
| 06/30/18 Methylene Chloride, Lot 10 mL MS-567685_00004 0.4 mL 181545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |             |              |                                         |         |                   | Hexachlorobutadiene    | Jm/gu 08      |
| 06/30/18 Methylene Chloride, Lot 10 mL MS-567685_00004 0.4 mL 181545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |             |              |                                         |         |                   | Ni + robenzene         |               |
| 06/30/18 01/30/18 Methylene Chloride, Lot 10 mL MS-567685_00004 0.4 mL 181545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |             |              |                                         |         |                   | Pentachlorophenol      |               |
| 06/30/18 01/30/18 Methylene Chloride, Lot 10 mL MS-567685_00004 0.4 mL 181545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |             |              |                                         |         |                   | Pyridine               |               |
| MS-571995_00001 2 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MS-HSLA_STK_00040  | 06/30/18    | 01/30/18     |                                         | 10 mL   | MS-567685_00004   | mL                     | 200 ug/mL     |
| 2 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |             |              | )<br>†<br>†<br>1<br>1<br>1<br>1<br>1    |         |                   | 2-Fluorobiphenyl       | 200 ug/mL     |
| 2 m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |             |              |                                         |         |                   | 2-Fluorophenol (Surr)  |               |
| 2 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |             |              |                                         |         |                   | Nitrobenzene-d5 (Surr) | 200 ug/mL     |
| 22<br>BT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |             |              |                                         |         |                   | Phenol-d5 (Surr)       | 200 ug/mL     |
| 7 m 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |             |              |                                         |         |                   |                        | 200 ug/mL     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             |              |                                         |         | MS-571995_00001   |                        | 200 ug/mL     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             |              |                                         |         |                   | 2,4,5-Trichlorophenol  | 200 ug/mL     |
| N   Q   (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |             |              |                                         |         |                   | 2,4,6-Trichlorophenol  | 200 ug/mL     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             |              |                                         |         |                   | 2,4-Dinitrotoluene     | - 1           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             |              |                                         |         |                   | 2-Methylphenol         |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | _           |              |                                         | _       |                   | 3 & 4 Methylphenol     | Tm/bn noz     |

Lab Name: TestAmerica Denver

Job No.: 320-39023-1 SDG No.:

|                     |          |          |                                    |         | Parent Reagent      |        |                             |              |
|---------------------|----------|----------|------------------------------------|---------|---------------------|--------|-----------------------------|--------------|
|                     |          |          |                                    | Reagent | - 1                 |        |                             |              |
|                     | d x x    | Prep     | Dilutant                           | Final   |                     | Volume | F                           | -            |
| Reagent ID          | Date     | Date     | Used                               | Volume  | Reagent ID          | Added  | Analyte                     |              |
|                     |          |          |                                    |         |                     |        | Hexachlorobenzene           |              |
|                     |          |          |                                    |         |                     |        | Hexachlorobutadiene         | 200 ug/mL    |
|                     |          |          |                                    |         |                     |        | Hexachloroethane            |              |
|                     |          |          |                                    |         |                     |        | Nitrobenzene                |              |
|                     |          |          |                                    |         |                     |        | Fentachlorophenol           | - 1          |
|                     | 1        |          | 1                                  |         |                     |        |                             | - 1          |
| MS-567685_00004     | 01/30/19 |          | Restek, Lot A0130500               |         | (Purchased Reagent) | nt)    | 2,4,6-Tribromophenol (Surr) | - 1          |
|                     |          |          |                                    |         |                     |        | :>\                         | 5000 ug/mL   |
|                     |          |          |                                    |         |                     |        | ات                          | - 1          |
|                     |          |          |                                    |         |                     |        | Nitrobenzene-d5 (Surr)      | - 1          |
|                     |          |          |                                    |         |                     |        | Phenol-d5 (Surr)            | 5000 ug/mL   |
|                     |          |          |                                    |         |                     |        | Terphenyl-d14 (Surr)        | 5000 ug/mL   |
| MS-571995_00001     | 09/30/18 |          | Restek, Lot A0125805               |         | (Purchased Reagent) | nt)    | 1,4-Dichlorobenzene         |              |
|                     |          |          |                                    |         |                     |        | 2,4,5-Trichlorophenol       |              |
|                     |          |          |                                    |         |                     |        | 2,4,6-Trichlorophenol       | - 1          |
|                     |          |          |                                    |         |                     |        | 2,4-Dinitrotoluene          | 1000 ug/mL   |
|                     |          |          |                                    |         |                     |        | 2-Methylphenol              | 1000 ug/mL   |
|                     |          |          |                                    |         |                     |        | 3 & 4 Methylphenol          | 1000 ug/mL   |
|                     |          |          |                                    |         |                     |        | Hexachlorobenzene           | 1000 ug/mL   |
|                     |          |          |                                    |         |                     |        | Hexachlorobutadiene         | 1000 ug/mL   |
|                     |          |          |                                    |         |                     |        | Hexachloroethane            | 1000 ug/mL   |
|                     |          |          |                                    |         |                     |        | Nitrohensene                | 1000 11g/mT. |
|                     |          |          |                                    |         |                     |        | Pentachlorophenol           |              |
|                     |          |          |                                    |         |                     |        | Pvridine                    |              |
|                     |          |          |                                    |         |                     | - 11   | )                           | - 11         |
| MS-HSLB1B3SSV_00046 | 06/22/18 | 04/03/18 | Methylene Chloride, Lot<br> 181545 | 0.5 mL  | MS-IS_00013         | 50 uL  | 1,4-Dichlorobenzene-d4      | 40 ug/mL     |
|                     |          |          |                                    |         |                     |        | Acenaphthene-d10            | 40 ug/mL     |
|                     |          |          |                                    |         |                     |        | Chrysene-d12                | 40 ug/mL     |
|                     |          |          |                                    |         |                     |        | Naphthalene-d8              | 1            |
|                     |          |          |                                    |         |                     |        | Perylene-d12                |              |
|                     |          |          |                                    |         |                     |        | Phenanthrene-d10            | 40 ug/mL     |
| .MS-IS_00013        | 06/22/18 | 06/22/17 | 7 Methylene Chloride, Lot          | 250 mL  | MS-567684_00019     | 20 mL  | 1,4-Dichlorobenzene-d4      | 400 ug/mL    |
|                     |          |          | T2/T04                             |         |                     |        | Arenaphthene-d10            | 400 11cm/mT. |
|                     |          |          |                                    |         |                     |        | Chrysene-d12                |              |
|                     |          |          |                                    |         |                     |        | Naphthalene-d8              |              |
|                     |          |          |                                    |         |                     |        | Pervlene-d12                | 1            |
|                     |          |          |                                    |         |                     |        | Phenanthrene-d10            | 400 ug/mL    |
| MS-567684 00019     | 07/31/20 |          | Restek, Lot A0112833               |         | (Purchased Reagent) | nt)    | 1,4-Dichlorobenzene-d4      | 2000 ug/mL   |
| 1                   |          |          |                                    |         |                     |        | Acenaphthene-d10            | 1            |
|                     |          |          |                                    |         |                     |        | Chrysene-d12                | 2000 ug/mL   |
|                     |          |          |                                    |         |                     |        | Naphthalene-d8              | 2000 ug/mL   |
|                     |          |          |                                    |         |                     |        | Perylene-d12                | 2000 ug/mL   |
|                     |          |          | -                                  |         |                     |        | Phenanthrene-d10            |              |
| MS-HSLB1B3SSV_00046 | 06/22/18 | 04/03/18 | Methylene Chloride, Lot            | 0.5 mL  | MS-HSLB1_STK_00010  | 250 uL | 1,4-Dichlorobenzene         | 100 ug/mL    |
|                     |          |          | H D H                              |         |                     |        | 2,4,5-Trichlorophenol       | 100 ug/mL    |
|                     |          |          |                                    |         |                     |        | 2,4,6-Trichlorophenol       | 100 ug/mL    |
| _                   | -        | _        | -                                  | =       | -                   |        |                             | -            |

#### Page 284 of 3863

Lab Name: TestAmerica Denver

Job No.: 320-39023-1

| Readent<br>T        |             |              |                                         |                 | Daront Daagont      | +               |                        |               |
|---------------------|-------------|--------------|-----------------------------------------|-----------------|---------------------|-----------------|------------------------|---------------|
|                     |             |              | !                                       | Reagent         | - 1                 | - 1             |                        |               |
|                     | Exp<br>Date | Prep<br>Date | Dilutant<br>Used                        | Final<br>Volume | Reagent ID          | Volume<br>Added | Analyte                | Concentration |
|                     |             |              |                                         |                 |                     |                 | 2,4-Dinitrotoluene     | 100 ug/mL     |
|                     |             |              |                                         |                 |                     |                 | 2-Methylphenol         | 100 ug/mL     |
|                     |             |              |                                         |                 |                     |                 | 3 & 4 Methylphenol     | 100 ug/mL     |
|                     |             |              |                                         |                 |                     |                 | Hexachlorobenzene      | 100 ug/mL     |
|                     |             |              |                                         |                 |                     |                 | Hexachlorobutadiene    | 100 ug/mL     |
|                     |             |              |                                         |                 |                     |                 | Hexachloroethane       | 100 ug/mL     |
|                     |             |              |                                         |                 |                     |                 | Nitrobenzene           | 100 ug/mL     |
|                     |             |              |                                         |                 |                     |                 | Pentachlorophenol      |               |
|                     |             |              |                                         |                 |                     |                 | Pyridine               |               |
| .MS-HSLB1_STK_00010 | 06/30/18    | 81/90/80     | Methylene Chloride, Lot                 | 10 mL           | MS-571995.SEC_00001 | 2 mL            | 1,4-Dichlorobenzene    | 200 ug/mL     |
|                     |             |              | )<br>1<br>1<br>1<br>1<br>1              |                 |                     |                 | 2,4,5-Trichlorophenol  | 200 ug/mL     |
|                     |             |              |                                         |                 |                     |                 | 2,4,6-Trichlorophenol  | 200 ug/mL     |
|                     |             |              |                                         |                 |                     |                 | 2,4-Dinitrotoluene     | 200 ug/mL     |
|                     |             |              |                                         |                 |                     |                 | 2-Methylphenol         |               |
|                     |             |              |                                         |                 |                     |                 | 3 & 4 Methylphenol     |               |
|                     |             |              |                                         |                 |                     |                 | Hexachlorobenzene      |               |
|                     |             |              |                                         |                 |                     |                 | Hexachlorobutadiene    |               |
|                     |             |              |                                         |                 |                     |                 | Hexachloroethane       | 200 ug/mL     |
|                     |             |              |                                         |                 |                     |                 | Nitrobenzene           | 200 ug/mL     |
|                     |             |              |                                         |                 |                     |                 | Pentachlorophenol      | 400 ug/mL     |
|                     |             |              |                                         |                 |                     |                 | Pyridine               | - 1           |
| MS-571995.SEC_00001 | 07/31/18    |              | Restek, Lot A0124300                    |                 | (Purchased Reagent) | ent)            | 1,4-Dichlorobenzene    |               |
|                     |             |              |                                         |                 |                     |                 | 2,4,5-Trichlorophenol  | 1000 ug/mL    |
|                     |             |              |                                         |                 |                     |                 | 2,4,6-Trichlorophenol  |               |
|                     |             |              |                                         |                 |                     |                 | 2,4-Dinitrotoluene     |               |
|                     |             |              |                                         |                 |                     |                 | W<br>W                 |               |
|                     |             |              |                                         |                 |                     |                 | 3 & 4 Methylphenol     | - 1           |
|                     |             |              |                                         |                 |                     |                 | Hexachlorobenzene      | 1000 ug/mL    |
|                     |             |              |                                         |                 |                     |                 | Hexachlorobutadiene    |               |
|                     |             |              |                                         |                 |                     |                 | Hexachloroethane       |               |
|                     |             |              |                                         |                 |                     |                 | Nıtrobenzene           |               |
|                     |             |              |                                         |                 |                     |                 | Pentachlorophenol      |               |
|                     |             |              |                                         |                 |                     |                 | Pyridine               | 2000 ug/mL    |
| MS-HSLB2SSV_00043   | 06/02/18    | 04/03/18     | Methylene Chloride, Lot<br>157164       | 0.5 mL          | MS-IS_00013         | 50 uL           | 1,4-Dichlorobenzene-d4 | 40 ug/mL      |
|                     |             |              | 1 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                 |                     |                 | Acenaphthene-d10       | 40 ug/mL      |
|                     |             |              |                                         |                 |                     |                 | Chrysene-d12           |               |
|                     |             |              |                                         |                 |                     |                 | Naphthalene-d8         | 40 ug/mL      |
|                     |             |              |                                         |                 |                     |                 | Perylene-d12           | 40 ug/mL      |
|                     |             |              |                                         |                 |                     |                 | Phenanthrene-d10       | 40 ug/mL      |
| .MS-IS_00013        | 06/22/18    | 06/22/17     | Methylene Chloride, Lot                 | 250 mL          | MS-567684_00019     | 20 mL           | 1,4-Dichlorobenzene-d4 | 400 ng/mI     |
|                     |             |              | 13/164                                  |                 |                     |                 | Acenaphthene-d10       | 400 ua/mL     |
|                     |             |              |                                         |                 |                     |                 | Chrysene-d12           | 400 11g/mT,   |
|                     |             |              |                                         |                 |                     |                 | Naphthalene-d8         |               |
|                     |             |              |                                         |                 |                     |                 | Pervlene-d12           | 400 ug/mL     |
|                     |             |              |                                         |                 |                     |                 | Phenanthrene-d10       | 400 11g/mT.   |

Lab Name: TestAmerica Denver

Job No.: 320-39023-1

|                     |             |              |                             | Reagent         | Farent Reagent             |                                  |               |
|---------------------|-------------|--------------|-----------------------------|-----------------|----------------------------|----------------------------------|---------------|
| Reagent ID          | Exp<br>Date | Prep<br>Date | Dilutant<br>Used            | Final<br>Volume | Volume<br>Reagent ID Added | Analyte                          | Concentration |
| MS-567684 00019     | 07/31/20    |              | Restek, Lot A0112833        |                 | (Purchased Reagent)        | 1,4-Dichlorobenzene-d4           | 2000 ug/mL    |
| I                   |             | _            |                             |                 |                            | Acenaphthene-d10                 | 2000 ug/mL    |
|                     |             | _            |                             |                 |                            | Chrysene-d12                     | 2000 ug/mL    |
|                     |             | _            |                             |                 |                            | Naphthalene-d8                   | 2000 ug/mL    |
|                     |             | _            |                             |                 |                            | Perylene-d12                     | 2000 ug/mL    |
|                     |             |              |                             |                 |                            | Phenanthrene-d10                 | 2000 ug/mL    |
| MS-IS_00014         | 04/04/19    | 04/04/18     | Methylene Chloride, Lot     | 250 mL          | MS-567684_00019 5 mL       | 1,4-Dichlorobenzene-d4           | 400 ug/mL     |
|                     |             |              | 181343                      |                 |                            | Acenaphthene-d10                 | 400 ug/mL     |
|                     |             |              |                             |                 |                            | Chrysene-d12                     |               |
|                     |             |              |                             |                 |                            | Naphthalene-d8                   | 400 ug/mL     |
|                     |             |              |                             |                 |                            | Perylene-d12                     | 400 ug/mL     |
|                     |             |              |                             |                 |                            | $\rightarrow$                    |               |
|                     |             |              |                             |                 | MS-567684_00020 45 mL      |                                  |               |
|                     |             |              |                             |                 |                            | Acenaphthene-dl0                 |               |
|                     |             |              |                             |                 |                            | Chrysene-alz                     |               |
|                     |             |              |                             |                 |                            | Napilulatelle-do<br>Pervlene-d12 | 400 ug/mL     |
|                     |             |              |                             |                 |                            | Phenanthrene-d10                 |               |
| .MS-567684 00019    | 07/31/20    |              | Restek, Lot A0112833        |                 | (Purchased Reagent)        | 1,4-Dichlorobenzene-d4           |               |
| I                   |             |              |                             |                 |                            | Acenaphthene-d10                 | 2000 ug/mL    |
|                     |             | _            |                             |                 |                            | Chrysene-d12                     | 2000 ug/mL    |
|                     |             |              |                             |                 |                            | Naphthalene-d8                   |               |
|                     |             | _            |                             |                 |                            | Perylene-d12                     | 2000 ug/mL    |
|                     |             |              |                             |                 |                            | Phenanthrene-d10                 |               |
| .MS-567684_00020    | 08/31/22    |              | Restek, Lot A0129635        |                 | (Purchased Reagent)        | 1,4-Dichlorobenzene-d4           |               |
|                     |             | _            |                             |                 |                            | Acenaphthene-d10                 |               |
|                     |             | _            |                             |                 |                            | Chrysene-d12                     |               |
|                     |             | _            |                             |                 |                            | Naphthalene-d8                   |               |
|                     |             |              |                             |                 |                            | Perylene-d12                     | 2000 ug/mL    |
|                     |             | - 11         |                             |                 |                            | בוופוומוו רווד פוופ – מדס        |               |
| MV-2cleve+AVA_00034 | 05/31/18    | 03/25/18     | P&T Methanol, Lot<br>177891 | 10 mL           | MV-568720_00020 202.5 uL   | Acrolein                         | 399.938 ug/mL |
|                     |             |              |                             |                 | MV-569723 00003 160 uL     | 2-Chloroethyl vinyl ether        | 40 ug/mL      |
|                     |             |              |                             |                 | MV-569724_00014 160 uL     | Vinyl acetate                    | 1m/gn 08      |
| .MV-568720 00020    | 05/31/18    |              | Lot A013                    |                 |                            | Acrolein                         | 19750 ug/mL   |
| .MV-569723 00003    | /31/        |              | Lot A012                    |                 | - 1                        | 2-Chloroethyl vinyl ether        |               |
| .MV-569724_00014    | 07/31/18    |              | RESTEK, Lot A0134268        |                 | (Purchased Reagent)        | Vinyl acetate                    | 2000 ng/mL    |
| MV-2cleve+AVA_00035 | 05/31/18    | 05/07/18     | P&T Methanol, Lot<br>177891 | 10 mL           | MV-568720_00020   202.5 uL | Acrolein                         | 399.938 ug/mL |
|                     |             |              |                             |                 | MV-569724_00014 160 uL     | Vinyl acetate                    |               |
| .MV-568720_00020    | 05/31/18    |              | Lot A013                    |                 | (Purchased Reagent)        | Acrolein                         | 19750 ug/mL   |
| .MV-569724_00014    | 07/31/18    |              | RESTEK, Lot A0134268        |                 | (Purchased Reagent)        | Vinyl acetate                    | 5000 ug/mL    |
| MV-568718-D_00008   | 03/31/21    |              | RESTEK, Lot A0118105        |                 | (Purchased Reagent)        | 1,4-Dichlorobenzene-d4           | 250 ug/mL     |
|                     |             | _            |                             |                 |                            | Chlorobenzene-d5                 | 250 ug/mL     |
|                     |             |              |                             |                 |                            | Fluorobenzene                    |               |
|                     |             |              |                             |                 |                            | TBA-d9 (IS)                      | 2000 ng/mF    |

Lab Name: TestAmerica Denver

Job No.: 320-39023-1

|                    |             |              |                                         |                            | Parent Reagent      | L .             |                                               |                          |
|--------------------|-------------|--------------|-----------------------------------------|----------------------------|---------------------|-----------------|-----------------------------------------------|--------------------------|
| Reagent ID         | Exp<br>Date | Prep<br>Date | Dilutant<br>Used                        | Reagent<br>Final<br>Volume |                     | Volume<br>Added | Analyte                                       | Concentration            |
|                    |             |              |                                         |                            |                     |                 |                                               |                          |
| MV-568718-D_00014  | 05/31/22    |              | RESTEK, Lot A0127975                    |                            | (Purchased Reagent) | ent)            | 1,4-Dichlorobenzene-d4                        | 250 ug/mL                |
|                    |             |              |                                         |                            |                     |                 | Chlorobenzene-d5                              | 250 ug/mL                |
|                    |             |              |                                         |                            |                     |                 | Fluorobenzene<br>TBA-d9 (IS)                  | 250 ug/mL<br>5000 ug/mL  |
| MV-ARCH SS A 00090 | 06/21/18    | 12/21/17     | P&T Methanol, Lot                       | 100 mL                     | MV-567650 00027     | 10 mL           | (7)                                           | 250 ug/mL                |
|                    |             |              | 177891                                  |                            | I                   |                 | -                                             |                          |
|                    |             |              |                                         |                            |                     |                 | 4-Bromofluorobenzene (Surr)                   | 250 ug/mL<br>250 ug/mL   |
|                    |             |              |                                         |                            |                     |                 |                                               |                          |
| .MV-567650_00027   | 01/31/22    |              | Restek, Lot A0124069                    |                            | (Purchased Reagent) | ent)            | 1,2-Dichloroethane-d4 (Surr)                  |                          |
| I                  |             |              |                                         |                            |                     |                 |                                               |                          |
|                    |             |              |                                         |                            |                     |                 | Dibromofluoromethane (Surr) Toluene-d8 (Surr) | 2500 ug/mL<br>2500 ug/mL |
| MV-ARCH SS A_00096 | 11/12/18    | 05/12/18     | P&T Methanol, Lot                       | 20 mL                      | MV-567650_00027     | 2 mT            | 1,2-Dichloroethane-d4 (Surr)                  | 250 ug/mL                |
|                    |             |              | H - C C / H                             |                            |                     |                 | 4-Bromofluorobenzene (Surr)                   | 250 ug/mL                |
|                    |             |              |                                         |                            |                     |                 |                                               |                          |
|                    |             |              |                                         |                            |                     |                 |                                               | 250 ug/mL                |
| .MV-567650_00027   | 01/31/22    |              | Restek, Lot A0124069                    |                            | (Purchased Reagent) | ent)            | <del></del>                                   |                          |
|                    |             |              |                                         |                            |                     |                 |                                               |                          |
|                    |             |              |                                         |                            |                     |                 | Dibromofluoromethane (Surr)                   | 2500 ug/mL               |
|                    |             |              |                                         |                            |                     |                 | (DULL)                                        | 2000 ag/ illi            |
| MV-BFB_00025       |             |              |                                         |                            |                     |                 |                                               |                          |
|                    |             |              |                                         |                            |                     |                 | <pre>1,2-Dichloroethene, Total (URS)</pre>    |                          |
|                    |             |              |                                         |                            |                     |                 | 1,3-Dichloropropene, Total                    |                          |
|                    |             |              |                                         |                            |                     |                 |                                               |                          |
|                    |             |              |                                         |                            |                     |                 | Tentatively Identified                        |                          |
|                    |             |              |                                         |                            |                     |                 | Compound<br>Total RTEX                        |                          |
|                    |             |              |                                         |                            |                     |                 | Trihalomethanes, Total                        |                          |
|                    |             |              |                                         |                            |                     |                 | Xylenes, Total                                |                          |
|                    |             |              |                                         |                            |                     |                 | Xylenes, Total (URS)                          |                          |
| - 1                |             |              |                                         |                            | MV-STS110N1 00066   | 1.25 mL         | BFB                                           |                          |
| .MV-STS110N1 00066 | 10/31/19    | UIt          | Ultra Scientific, Lot CH-3248Z          | 48Z                        | (Purchased Reagent) | ent)            | BFB                                           | 2000 ug/mL               |
| MV-Gas/Ket A_00071 | 09/04/18    | 03/04/18     | P&T Methanol, Lot                       | 10 mL                      | MV-569721_00004     | 128 uL          | 2-Butanone (MEK)                              | 160 ug/mL                |
|                    |             |              | H \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |                            |                     |                 | 2-Hexanone                                    | 160 ug/mL                |
|                    |             |              |                                         |                            |                     |                 | 4-Methyl-2-pentanone (MIBK)                   | 160 ug/mL                |
|                    |             |              |                                         |                            |                     |                 | Acetone                                       |                          |
|                    |             |              |                                         |                            | MV-569722_00006     | 160 uL          | Bromomethane                                  |                          |
|                    |             |              |                                         |                            |                     |                 | Chloroethane                                  |                          |
|                    |             |              |                                         |                            |                     |                 | Chloromethane                                 | 40 ug/mL                 |
|                    |             |              |                                         |                            |                     |                 | Dichlorodiliuoromethane                       | 40 ug/mL                 |
|                    |             |              |                                         |                            |                     |                 | Trichlorofluoromethane                        |                          |
|                    |             |              |                                         |                            |                     |                 | Vinyl chloride                                | 40 ug/mL                 |
|                    |             |              |                                         |                            |                     |                 |                                               |                          |

Lab Name: TestAmerica Denver

SDG No.:

|                      |              |          |                                         |         | - 1                       |                                                     |                                       |
|----------------------|--------------|----------|-----------------------------------------|---------|---------------------------|-----------------------------------------------------|---------------------------------------|
|                      |              |          |                                         | Reagent | Parent Reagent            |                                                     |                                       |
|                      |              | Prep     | Dilutant<br>Heed                        | Final   |                           |                                                     | , , , , , , , , , , , , , , , , , , , |
| Keagent ID           | Date         | Date     | Used                                    | volume  | Keagent ID                |                                                     | Concentration                         |
|                      |              |          |                                         |         | 540                       | uL Cyclohexanone                                    |                                       |
| .MV-569721_00004     | 01/31/20     |          | RESTEK, Lot A0123890                    |         | (Purchased Reagent)       | 2-Butanone (MEK)                                    | 12500 ug/mL                           |
|                      |              |          |                                         |         |                           | 2-Hexanone                                          | 12500 ug/mL                           |
|                      |              |          |                                         |         |                           | 4-Methyl-2-pentanone (MIBK)                         | 12500 ug/mL                           |
|                      |              |          |                                         |         |                           | Acetone                                             | 12500 ug/mL                           |
| .MV-569722_00006     | 01/31/20     |          | RESTEK, Lot A0124278                    |         | (Purchased Reagent)       | Bromomethane                                        | 2500 ug/mL                            |
|                      |              |          |                                         |         |                           | Chloroethane                                        | 2500 ug/mL                            |
|                      |              |          |                                         |         |                           | Chloromethane                                       |                                       |
|                      |              |          |                                         |         |                           | Dichlorodifluoromethane                             | 2500 ug/mL                            |
|                      |              |          |                                         |         |                           | Dichlorofluoromethane                               | 2500 ug/mL                            |
|                      |              |          |                                         |         |                           | Trichlorofluoromethane                              | 2500 ug/mL                            |
|                      |              |          |                                         |         |                           | Vinyl chloride                                      | 2500 ug/mL                            |
| .MV-569727 00006     | 03/31/19     |          | RESTEK, Lot A0118487                    |         | (Purchased Reagent)       | Cyclohexanone                                       | 25000 ug/mL                           |
| MV-Gas/Ket A_00073   | 11/07/18 05, | 05/07/18 | P&T Methanol, Lot                       | 10 mL   | MV-569721_00004 128 v     | uL 2-Butanone (MEK)                                 | 160 ug/mL                             |
|                      |              |          | H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |         |                           | 2-Hexanone                                          | 160 ug/mL                             |
|                      |              |          |                                         |         |                           | 4-Methyl-2-pentanone (MIBK)                         | 160 ug/mL                             |
|                      |              |          |                                         |         |                           | Acetone                                             |                                       |
|                      |              |          |                                         |         | MV-569722 00006 160 u     | ul Bromomethane                                     | 40 ug/mL                              |
|                      |              |          |                                         |         | 1                         | Chloroethane                                        | 40 ug/mL                              |
|                      |              |          |                                         |         |                           | Chloromethane                                       | 40 11g/mT.                            |
|                      |              |          |                                         |         |                           | Dichlorodif Inoromethane                            |                                       |
|                      |              |          |                                         |         |                           | ひょうしょう ない とう こう |                                       |
|                      |              |          |                                         |         |                           | サエCiitOtOt TaOt Oille Ciidiic                       |                                       |
|                      |              |          |                                         |         |                           | 1/1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2             |                                       |
|                      |              |          |                                         |         | MV-569727 00006 640 r     | uI. Cvclohexanone                                   |                                       |
| .MV-569721 00004     | 01/31/20     |          | RESTEK, Lot A0123890                    |         | chased Reagent)           | -                                                   |                                       |
| I                    |              |          |                                         |         |                           | 2-Hexanone                                          |                                       |
|                      |              |          |                                         |         |                           | 4-Methyl-2-pentanone (MIBK)                         |                                       |
|                      |              |          |                                         |         |                           |                                                     |                                       |
| .MV-569722_00006     | 01/31/20     |          | RESTEK, Lot A0124278                    |         | (Purchased Reagent)       | Bromomethane                                        | 2500 ug/mL                            |
|                      |              |          |                                         |         |                           | Chloroethane                                        | 2500 ug/mL                            |
|                      |              |          |                                         |         |                           | Chloromethane                                       | 2500 ug/mL                            |
|                      |              |          |                                         |         |                           | Dichlorodifluoromethane                             | 2500 ug/mL                            |
|                      |              |          |                                         |         |                           | Dichlorofluoromethane                               |                                       |
|                      |              |          |                                         |         |                           | Trichlorofluoromethane                              | - 1                                   |
|                      |              |          |                                         |         |                           | Vinyl chloride                                      | 2500 ug/mL                            |
| .MV-569727_00006     | 03/31/19     |          | RESTEK, Lot A0118487                    |         | (Purchased Reagent)       | Cyclohexanone                                       | 25000 ug/mL                           |
| MV-Gas/Ket B_00041   | 08/25/18 02, | 02/25/18 | P&T Methanol, Lot                       | 10 mL   | MV-569721.sec_00005 128 u | uL 2-Butanone (MEK)                                 | 160 ug/mL                             |
|                      |              |          | 177891                                  |         |                           |                                                     |                                       |
|                      | 1            |          |                                         |         | 097                       | ы                                                   |                                       |
| .MV-569721.sec_00005 | 01/31/20     |          | Lot A0113                               |         | (Purchased Reagent)       | 2-Butanone (MEK)                                    | 12500 ug/mL                           |
| .MV-569722.sec_00004 | 01/31/20     |          | RESTEK, Lot A0124116                    |         | (Purchased Reagent)       | Vinyl chloride                                      | 2500 ug/mL                            |
| MV-Gas/Ket B_00042   | 10/21/18 04, | 04/21/18 | P&T Methanol, Lot                       | 10 mL   | MV-569721.sec_00005 128 u | uL 2-Butanone (MEK)                                 | 160 ug/mL                             |
|                      |              |          |                                         |         | MV-569722.sec_00004 160 u | uL Vinyl chloride                                   | 40 ug/mL                              |
| .MV-569721.sec 00005 | 01/31/20     |          | RESTEK, Lot A0113880                    |         | (Purchased Reagent)       | 2-Butanone (MEK)                                    | 12500 ug/mL                           |
|                      |              |          |                                         |         |                           | -                                                   |                                       |

Lab Name: TestAmerica Denver

SDG No.:

|                      |             |              |                      | Д<br>Ф<br>Ф<br>Ф<br>Ф<br>Ф<br>Ф<br>Ф | Parent Reagent      | ıt              |                                        |               |
|----------------------|-------------|--------------|----------------------|--------------------------------------|---------------------|-----------------|----------------------------------------|---------------|
| Reagent ID           | Exp<br>Date | Prep<br>Date | Dilutant<br>Used     | Final                                | Reagent ID          | Volume<br>Added | Analyte                                | Concentration |
| .MV-569722.sec_00004 | 01/31/20    |              | RESTEK, Lot A0124116 |                                      | (Purchased Reagent) | ent)            | Vinyl chloride                         | 2500 ug/mL    |
| MV-Main A_00036      | 06/30/18    | 04/27/18     | P&T Methanol, Lot    | 20 mL                                | MV-571992_00001     | 320 uL          | 1,1,1,2-Tetrachloroethane              | 40 ug/mL      |
|                      |             |              | †<br>)<br>)          |                                      |                     |                 | 1,1,1-Trichloroethane                  |               |
|                      |             |              |                      |                                      |                     |                 | 1,1,2,2-Tetrachloroethane              | 40            |
|                      |             |              |                      |                                      |                     |                 | 1,1,2-Trichloro-1,2,2-trifluor oethane | 40 ug/mL      |
|                      |             |              |                      |                                      |                     |                 | 1,1,2-Trichloroethane                  | 40 ug/mL      |
|                      |             |              |                      |                                      |                     |                 | 1,1-Dichloroethane                     |               |
|                      |             |              |                      |                                      |                     |                 | 1,1-Dichloroethene                     | - 1           |
|                      |             |              |                      |                                      |                     |                 | 1,1-Dichloropropene                    | 40 ug/mL      |
|                      |             |              |                      |                                      |                     |                 | 1,2,3-Trichloropropane                 | 40 ug/mL      |
|                      |             |              |                      |                                      |                     |                 | 1,2,4-Trichlorobenzene                 |               |
|                      |             |              |                      |                                      |                     |                 | 1,2,4-Trimethylbenzene                 | 40 ug/mL      |
|                      |             |              |                      |                                      |                     |                 | 1,2-Dibromo-3-Chloropropane            |               |
|                      |             |              |                      |                                      |                     |                 | 1,2-Dichlorobenzene                    |               |
|                      |             |              |                      |                                      |                     |                 | 1,2-Dichloroethane                     | - 1           |
|                      |             |              |                      |                                      |                     |                 | 1,2-Dichloropropane                    |               |
|                      |             |              |                      |                                      |                     |                 | 1,3,5-Trimethylbenzene                 | 40 ug/mL      |
|                      |             |              |                      |                                      |                     |                 | 1 3-Dichloropropane                    |               |
|                      |             |              |                      |                                      |                     |                 | 1,4-Dichlorobenzene                    |               |
|                      |             |              |                      |                                      |                     |                 | 1,4-Dioxane                            |               |
|                      |             |              |                      |                                      |                     |                 | 2,2-Dichloropropane                    |               |
|                      |             |              |                      |                                      |                     |                 | 2-Chlorotoluene                        | 40 ug/mL      |
|                      |             |              |                      |                                      |                     |                 | 2-Methyl-2-propanol                    |               |
|                      |             |              |                      |                                      |                     |                 | 3-Chloro-1-propene                     | - 1           |
|                      |             |              |                      |                                      |                     |                 | 4-Chlorotoluene                        | - 1           |
|                      |             |              |                      |                                      |                     |                 | 4-Isopropyltoluene                     |               |
|                      |             |              |                      |                                      |                     |                 | Acrylonitrile                          | 400 ug/mL     |
|                      |             |              |                      |                                      |                     |                 | Bromobensene                           |               |
|                      |             |              |                      |                                      |                     |                 | Bromoform                              |               |
|                      |             |              |                      |                                      |                     |                 | Carbon disulfide                       |               |
|                      |             |              |                      |                                      |                     |                 | Carbon tetrachloride                   |               |
|                      |             |              |                      |                                      |                     |                 | Chlorobenzene                          | 40 ug/mL      |
|                      |             |              |                      |                                      |                     |                 | Chlorobromomethane                     |               |
|                      |             |              |                      |                                      |                     |                 | Chlorodibromomethane                   | - 1           |
|                      |             |              |                      |                                      |                     |                 | Chloroform                             |               |
|                      |             |              |                      |                                      |                     |                 | cis-1,2-Dichloroethene                 | 40 ug/mL      |
|                      |             |              |                      |                                      |                     |                 | cis-1,3-Dichloropropene                |               |
|                      |             |              |                      |                                      |                     |                 | Cyclohexane                            |               |
|                      |             |              |                      |                                      |                     |                 | Dibromomethane                         |               |
|                      |             |              |                      |                                      |                     |                 | Dichlorobromomethane                   |               |
|                      |             |              |                      |                                      |                     |                 | Ethyl ether                            |               |
|                      |             |              |                      |                                      |                     |                 | Ethyl methacrylate                     | 40 ug/mL      |
|                      |             |              | _                    | _                                    |                     |                 | Ethylbenzene                           | 40 ug/mr      |

Lab Name: TestAmerica Denver

Job No.: 320-39023-1

| Exp Date Dilutant Used Used  12/31/18  Prep Date Used  12/31/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |             |              |                  | D0000           | Parent Reagent |                                  |               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------|--------------|------------------|-----------------|----------------|----------------------------------|---------------|
| Explored and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ID | Exp<br>Date | Prep<br>Date | Dilutant<br>Used | Final<br>Volume | QH             |                                  | Concentration |
| Research   Research   40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |             |              |                  |                 |                | Ethylene Dibromide               |               |
| Todometrane    |    |             |              |                  |                 |                | Hexachlorobutadiene              |               |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |             |              |                  |                 |                | Hexane                           |               |
| Taggroupy  Engineer   1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |             |              |                  |                 |                | Iodomethane                      |               |
| Methyl activeness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |             |              |                  |                 |                | Isobutyl alcohol                 |               |
| Methyl acease   Methyl acease   40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |             |              |                  |                 |                | Isopropylbenzene                 |               |
| Methyl tetr butyl tetr   40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |             |              |                  |                 |                | m-Xylene & p-Xylene              |               |
| Methylogylohexane   40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |             |              |                  |                 |                |                                  |               |
| Methylencene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |             |              |                  |                 |                |                                  |               |
| Methylbenzene 40   Naphthalenene 40   Naththalenene 40   Naththalenenene 40   Naththalenenenenenenenenenenenenenenenenenenen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |             |              |                  |                 |                | Methylcyclohexane                |               |
| N=Propylebracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |             |              |                  |                 |                | Methylene Chloride               |               |
| Na Propried Reader   Na Propried Reader                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |             |              |                  |                 |                | n-Butylbenzene                   |               |
| National Continue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |             |              |                  |                 |                | N-Propylbenzene                  |               |
| SESTEK, Lot A0123711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |             |              |                  |                 |                | Naphthalene                      |               |
| Sec-Buttlbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |             |              |                  |                 |                | o-Xylene                         |               |
| Stytene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |             |              |                  |                 |                | sec-Butylbenzene                 |               |
| Tetrachloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |             |              |                  |                 |                | Styrene                          |               |
| Tetrachydroforethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |             |              |                  |                 |                | tert-Butylbenzene                |               |
| Toluene   Toluene   40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |             |              |                  |                 |                | Tetrachloroethene                |               |
| Toluene   Toluene   40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |             |              |                  |                 |                | Tetrahydrofuran                  |               |
| Trans-1/2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |             |              |                  |                 |                | Toluene                          |               |
| Trians_1,3-Dichloroptopene   40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |             |              |                  |                 |                | trans-1,2-Dichloroethene         |               |
| Trans-1,4-Dichloro-2-butene   40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |             |              |                  |                 |                | trans-1,3-Dichloropropene        |               |
| Trichloroethene   40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |             |              |                  |                 |                | trans-1,4-Dichloro-2-butene      |               |
| NW-CUS17739_00002   NW-CUS17739_00002   NW-CUS17739_00002   NW-CUS17731   NW-CUS17739_00002   NW-CUS17731   NW-CUS17731   NW-CUSI7731   NW-C |    |             |              |                  |                 |                | _                                |               |
| RESTEK, Lot A0123711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |             |              |                  |                 | 00002 800      |                                  |               |
| RESTEK, Lot A0123711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |             |              |                  |                 |                | 2-Pentanone                      |               |
| New Tebrity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |             |              |                  |                 |                | sec-Butyl Alcohol                |               |
| 1,1,1-Trichloroethane 2500 1,1,2,2-Tetrachloroethane 2500 1,1,2-Trichloro-1,2,2-trifluor 2500 ochane 1,1,2-Trichloroethane 2500 1,1-Dichloroethane 2500 1,1-Dichloropropene 2500 1,2,3-Trichlorobenzene 2500 1,2,3-Trichlorobenzene 2500 1,2,4-Trichlorobenzene 2500 1,2,4-Trimethylbenzene 2500 1,2-Dichlorobenzene 2500 1,2-Dichlorobenzene 2500 1,2-Dichlorobenzene 2500 1,2-Dichlorobenzene 2500 1,2-Dichloropropane 2500 1,2-Dichloropropane 2500 1,2-Dichlorobenzene 2500 1,2-Dichlorobenzene 2500 1,2-Dichlorobenzene 2500 1,3-Dichloropenane 2500 1,3-Dichloropenane 2500 1,3-Dichloropenane 2500 1,3-Dichloropenane 2500 1,3-Dichlorobenzene 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | 12/31/18    |              | Lot A0123        |                 |                | 1,1,1,2-Tetrachloroethane        |               |
| -Tetrachloroethane         2500           richloroethane         2500           hloroethane         2500           hloroethane         2500           hloroethane         2500           hloropropene         2500           richlorobenzene         2500           richloropane         2500           richloropane         2500           rimethylbenzene         2500           hlorobenzene         2500           hloroethane         2500           hloroethane         2500           rimethylbenzene         2500           rimethylbenzene         2500           rimethylbenzene         2500           rimethylbenzene         2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |             |              |                  |                 |                | 1,1,1-Trichloroethane            |               |
| richloro-1,2,2-trifluor 2500 richloroethane 2500 hloroethane 2500 hloroethene 2500 hloroptopene 2500 richlorobenzene 2500 richlorobenzene 2500 richlorobenzene 2500 richlorobenzene 2500 rimethylbenzene 2500 hloroethane 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |             |              |                  |                 |                | 1,1,2,2-Tetrachloroethane        |               |
| richloroethane 2500 hloroethane 2500 hloroethane 2500 hloroptropene 2500 richlorobenzene 2500 richlorobenzene 2500 rimethylbenzene 2500 hlorobenzene 2500 hlorobenzene 2500 hloroethane 2500 hloroethane 2500 hloroethane 2500 hloroethane 2500 hloroptropane 2500 hloroethane 2500 hloroethane 2500 hloroptropane 2500 hloroptropane 2500 hloroptropane 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |             |              |                  |                 |                | 1,1,2-Trichloro-1,2,2-trifluor   | 2500          |
| 2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |             |              |                  |                 |                | Oetnane<br>1 1 2-mrichloroethana | 7500 mT/mT    |
| 2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |             |              |                  |                 |                | 1.1-Dichloroethane               | 2500 ug/mT.   |
| 2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |             |              |                  |                 |                | 1.1-Dichloroethene               |               |
| 2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |             |              |                  |                 |                | 1,1-Dichloropropene              |               |
| 2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |             |              |                  |                 |                | 1,2,3-Trichlorobenzene           | 2500 ug/mL    |
| 2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |             |              |                  |                 |                | 1,2,3-Trichloropropane           |               |
| 2500<br>opane 2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |             |              |                  |                 |                | 1,2,4-Trichlorobenzene           |               |
| opane 2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |             |              |                  |                 |                | 1,2,4-Trimethylbenzene           | 2500 ug/mL    |
| 2500<br>2500<br>2500<br>ene 2500<br>2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |             |              |                  |                 |                | 1,2-Dibromo-3-Chloropropane      | 2500 ug/mL    |
| 2500<br>ene 2500<br>2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |             |              |                  |                 |                | 1,2-Dichlorobenzene              |               |
| ene 2500<br>2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |             |              |                  |                 |                | 1,2-Dichloroethane               |               |
| ene 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |             |              |                  |                 |                | 1,2-Dichloropropane              |               |
| 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |             |              |                  |                 |                | 1,3,5-Trimethylbenzene           | 2500 ug/mL    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |             |              |                  |                 |                | 1,3-Dichlorobenzene              | 2500 ug/mL    |

Lab Name: TestAmerica Denver

SDG No.:

62500 ug/mL 2500 ug/mL ng/mL ng/mL ug/mL ng/mL ng/mL 2500 ug/mL 2500 ug/mL 2500 ug/mL :500 ug/mL :500 ug/mL 2500 ug/mL 2500 ug/mL 2500 ug/mL 2500 ug/mL Concentration 25000 ug/mL 25000 ug/mL 2500 ug/mL 2500 ug/mL 2500 ug/mL 2500 ug/mL 2500 ug/mL 2500 ug/mL :500 ug/mL :500 ug/mL 2500 ug/mL 2500 ug/mL 2500 ug/mL 2000 ug/mL 2500 ug/mL cis-1,2-Dichloroethene cis-1,3-Dichloropropene Methyl tert-butyl ether Dibromomethane
Dichlorobromomethane
Ethyl ether
Ethyl methacrylate
Ethylbenzene
Ethylbenzene Chlorodibromomethane Chloroform Carbon tetrachloride 1,4-Dichlorobenzene 2,2-Dichloropropane Hexachlorobutadiene m-Xylene & p-Xylene Analyte 2-Methyl-2-propanol 4-Isopropyltoluene Chlorobromomethane 3-Chloro-1-propene Methylcyclohexane Methylene Chloride Carbon disulfide Isopropylbenzene Isobutyl alcohol 2-Chlorotoluene 4-Chlorotoluene N-Propylbenzene n-Butylbenzene Methyl acetate Acrylonitrile Chlorobenzene Bromobenzene Cyclohexane Iodomethane Naphthalene Bromoform Benzene Hexane Volume Added Parent Reagent Reagent ID Reagent Volume Final Dilutant Used Prep Date Exp Date Reagent ID

#### Page 291 of 3863

ng/mL

2500 ug/mL 2500 ug/mL 2500 ug/mL ng/mL

2500 ug/mL

trans-1,2-Dichloroethene

tert-Butylbenzene Tetrachloroethene

Tetrahydrofuran

Toluene

sec-Butylbenzene

Styrene

ylene

2500 ug/mL

Lab Name: TestAmerica Denver

SDG No.:

|                      |             |              |                           | Reagent         | rarent reagent             |                 |                                       |               |
|----------------------|-------------|--------------|---------------------------|-----------------|----------------------------|-----------------|---------------------------------------|---------------|
| Reagent ID           | Exp<br>Date | Prep<br>Date | Dilutant<br>Used          | Final<br>Volume | Reagent ID                 | Volume<br>Added | Analyte                               | Concentration |
|                      |             |              |                           |                 |                            |                 | trans-1,3-Dichloropropene             | 2500 ug/mL    |
|                      |             |              |                           |                 |                            |                 | trans-1,4-Dichloro-2-butene           |               |
|                      |             |              |                           |                 |                            |                 | Trichloroethene                       | 2500 ug/mL    |
| .MV-CUS17739_00002   | 07/31/19    |              | Ultra, Lot CR-2819        |                 | (Purchased Reagent)        | t)              | 1-Chlorohexane                        | 1000 ng/mL    |
|                      |             |              |                           |                 |                            |                 | 2-Pentanone                           | 4000 ug/mL    |
|                      |             |              |                           |                 |                            |                 | sec-Butyl Alcohol                     | 30000 ng/mL   |
| MV-Main B 00020      | 07/25/18    | 01/25/18     | ╙                         | 20 mL           | MV-569720.sec 00002        | 320 uL          | 11,1-Dichloroethene                   | 40 ug/mL      |
| 1                    |             |              | 127999                    |                 | I                          |                 |                                       |               |
|                      |             |              |                           |                 |                            |                 | 1,2-Dichloroethane                    | 40 ug/mL      |
|                      |             |              |                           |                 |                            |                 | Benzene                               | 40 ug/mL      |
|                      |             |              |                           |                 |                            |                 | Carbon tetrachloride                  |               |
|                      |             |              |                           |                 |                            |                 | Chlorobenzene                         | 40 ug/mL      |
|                      |             |              |                           |                 |                            |                 | Chloroform                            | 40 ug/mL      |
|                      |             |              |                           |                 |                            |                 | Tetrachloroethene                     | 40 ug/mL      |
| - 1                  |             |              |                           |                 | - 1                        | 4               | Trichloroethene                       |               |
| .MV-569720.sec_00002 | 07/31/18    |              | RESTEK, Lot A0120604      |                 | (Purchased Reagent)        | t)              | 1,1-Dichloroethene                    | 2500 ug/mL    |
|                      |             |              |                           |                 |                            |                 | L, Z-DICIIIOLOGCIIAIIG                | - 1           |
|                      |             |              |                           |                 |                            |                 |                                       | - 1           |
|                      |             |              |                           |                 |                            |                 | Carbon tetrachloride                  |               |
|                      |             |              |                           |                 |                            |                 | Chlorobenzene                         |               |
|                      |             |              |                           |                 |                            |                 | Chloroform                            | 2500 ug/mL    |
|                      |             |              |                           |                 |                            |                 | Tetrachloroethene                     | 2500 ug/mL    |
|                      |             |              |                           |                 |                            |                 | Trichloroethene                       | 2500 ug/mL    |
| MV-Main B_00021      | 07/31/18    | 05/14/18     | Pr. Methanol, Lot         | 20 mL           | MV-569720.sec_00002        | 320 uL          | 1,1-Dichloroethene                    | 40 ug/mL      |
|                      |             |              | 127999                    |                 |                            |                 | C C C C C C C C C C C C C C C C C C C |               |
|                      |             |              |                           |                 |                            |                 | I, Z-Dichloroethane                   |               |
|                      |             |              |                           |                 |                            |                 | Benzene                               |               |
|                      |             |              |                           |                 |                            |                 | Carbon tetrachloride                  |               |
|                      |             |              |                           |                 |                            |                 | Chlorobenzene                         |               |
|                      |             |              |                           |                 |                            |                 | Chloroform                            | 40 ug/mL      |
|                      |             |              |                           |                 |                            |                 | Tetrachloroethene                     | 40 ug/mL      |
|                      |             |              |                           |                 |                            |                 | Trichloroethene                       | - 1           |
| .MV-569720.sec_00002 | 07/31/18    |              | RESTEK, Lot A0120604      |                 | (Purchased Reagent)        | t)              | 1,1-Dichloroethene                    | 2500 ug/mL    |
|                      |             |              |                           |                 |                            |                 | 1,2-Dichloroethane                    |               |
|                      |             |              |                           |                 |                            |                 |                                       |               |
|                      |             |              |                           |                 |                            |                 | Carbon tetrachloride                  | 2500 ug/mL    |
|                      |             |              |                           |                 |                            |                 | Chlorobenzene                         |               |
|                      |             |              |                           |                 |                            |                 | Chloroform                            | - 1           |
|                      |             |              |                           |                 |                            |                 | Tetrachloroethene                     | 2500 ug/mL    |
|                      |             |              |                           |                 |                            |                 | Trichloroethene                       | 2500 ug/mL    |
| MV-Supp A 00029      | 06/30/18    | 03/04/18     | 3 P&T Methanol, Lot 12799 | 10 mL           | mv-570808 00003            | 160 uL          | 1,2,3-Trimethylbenzene                | 40 ug/mL      |
|                      |             |              |                           |                 | I                          |                 | 2-Chloro-1,3-butadiene                | 40 ug/mL      |
|                      |             |              |                           |                 |                            |                 | 2-Nitropropane                        | 1m/bn 08      |
|                      |             |              |                           |                 |                            |                 | Isopropyl alcohol                     |               |
|                      |             |              |                           |                 |                            |                 | Methacrylonitrile                     |               |
|                      |             |              |                           |                 |                            |                 | -                                     |               |
|                      |             | _            | _                         | _               | 111/23/0803<br>111/23/0803 | TO OUT          | ⊾tnyı acetate                         | mu/bn os      |

Job No.: 320-39023-1 Lab Name: TestAmerica Denver

|                     |             |              |                       | Reagent         | Parent Reagent      | t               |                           |               |
|---------------------|-------------|--------------|-----------------------|-----------------|---------------------|-----------------|---------------------------|---------------|
| Reagent ID          | Exp<br>Date | Prep<br>Date | Dilutant<br>Used      | Final<br>Volume | Reagent ID          | Volume<br>Added | Analyte                   | Concentration |
|                     |             |              |                       |                 |                     |                 | Methyl methacrylate       | 1m/mr         |
|                     |             |              |                       |                 | mv-571993 00001     | 160 uL          |                           | 400 ug/mL     |
|                     |             |              |                       |                 | l                   |                 | Isopropyl ether           | 40 ug/mL      |
|                     |             |              |                       |                 |                     |                 | Propionitrile             | 400 ug/mL     |
|                     |             |              |                       |                 |                     |                 | Tert-amyl methyl ether    | 40 ug/mL      |
|                     |             |              |                       |                 |                     |                 | Tert-butyl ethyl ether    | 40 ug/mL      |
|                     |             |              |                       |                 | mv-571994 00001     | 240 uL          |                           | 2400 ug/mL    |
|                     |             |              |                       |                 | mv-VO-TAOH-5 00004  | 800 uL          | cis-1,4-Dichloro-2-butene | 1m/bn 08      |
| .mv-570808 00003    | 06/30/18    |              | Restek, Lot A0123685  |                 | (Purchased Reagent) | ent)            | 1,2,3-Trimethylbenzene    | 2500 ug/mL    |
| I                   |             |              |                       |                 |                     |                 | 2-Chloro-1,3-butadiene    | 2500 ug/mL    |
|                     |             |              |                       |                 |                     |                 | 2-Nitropropane            | 2000 ng/mL    |
|                     |             |              |                       |                 |                     |                 | Isopropyl alcohol         | 25000 ug/mL   |
|                     |             |              |                       |                 |                     |                 | Methacrylonitrile         | 25000 ug/mL   |
|                     |             |              |                       |                 |                     |                 | n-Butanol                 | 62500 ug/mL   |
| .mv-570809_00003    | 06/30/18    |              | Restek, Lot A0123728  |                 | (Purchased Reagent) | ent)            | Ethyl acetate             | 2000 ng/mL    |
|                     |             |              |                       |                 |                     |                 | Methyl methacrylate       | 2000 ng/mL    |
| .mv-571993 00001    | 12/31/18    |              | RESTEK, Lot A0123796  |                 | (Purchased Reagent) | ent)            | Acetonitrile              | 25000 ug/mL   |
| l                   |             |              |                       |                 |                     |                 | Isopropyl ether           | 2500 ug/mL    |
|                     |             |              |                       |                 |                     |                 | Propionitrile             | 25000 ug/mL   |
|                     |             |              |                       |                 |                     |                 | Tert-amyl methyl ether    | 2500 ug/mL    |
|                     |             |              |                       |                 |                     |                 | Tert-butyl ethyl ether    | 2500 ug/mL    |
| .mv-571994_00001    | 06/30/20    |              | RESTEK, Lot A0128797  |                 | (Purchased Reagent  | ent)            | Ethanol                   | 100000 ng/mL  |
| .mv-VO-TAOH-5 00004 | 08/19/18    |              | SPEX, Lot TS180220004 |                 | (Purchased Reagent) | ent)            | cis-1,4-Dichloro-2-butene | 1000 ug/mL    |

#### Reagent

LC11CIPF3OUds\_00001



#### CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE:

11CI-PF3OUdS

LOT NUMBER:

11CIPF3OUdS0916

COMPOUND:

Potassium 11-chloroeicosafluoro-3-oxaundecane-1-sulfonate

STRUCTURE:

CAS #:

83329-89-9

CI C C C C C C C C C SO<sub>3</sub>K<sup>+</sup>

MOLECULAR FORMULA:

C,F,CISOK

MOLECULAR WEIGHT:

670.69

CONCENTRATION:

50.0 ± 2.5 µg/ml (K Salt)

SOLVENT(S):

Methanol

47.1 ± 2.4 µg/ml (11CI-PF3OUdS anion)

CHEMICAL PURITY:

.

LAST TESTED: (mm/dd/yyyy)

09/30/2016

EXPIRY DATE: (mm/dd/yyyy)

09/30/2021

>98%

**RECOMMENDED STORAGE:** 

Store ampoule in a cool, dark place

#### **DOCUMENTATION/ DATA ATTACHED:**

Figure 1: LC/MS Data (TIC and Mass Spectrum)

Figure 2: LC/MS/MS Data (Selected MRM Transitions)

#### **ADDITIONAL INFORMATION:**

See page 2 for further details.

This compound is a minor component of the commercial formulation known as F-53B.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B G Chittim

Date: 10/1

10/19/2016

#### INTENDED USE:

The products prepared by Wellington Laboratories inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

#### **HAZARDS:**

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

#### SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

#### **HOMOGENEITY**;

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

#### **UNCERTAINTY:**

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty,  $u_{x}(y)$ , of a value y and the uncertainty of the independent parameters

x, x, ...x on which it depends is:

$$u_c(y(x_1, x_2, ... x_n)) = \sqrt{\sum_{i=1}^n u(y_i, x_i)^2}$$

where x is expressed as a relative standard uncertainty of the individual parameter.

The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

#### TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

#### **EXPIRY DATE / PERIOD OF VALIDITY:**

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

#### LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

#### QUALITY MANAGEMENT

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).





\*\*For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at <a href="www.well-labs.com">www.well-labs.com</a> or contact us directly at <a href="mailto:info@well-labs.com">info@well-labs.com</a>\*\*

Figure 1: 11CI-PF3OUdS; LC/MS Data (TIC and Mass Spectrum)







Figure 2: 11CI-PF3OUdS; LC/MS/MS Data (Selected MRM Transitions)





#### Reagent

LC4:2FTS\_00003