If the sequence $\{a_n\}_{n=1}^{\infty}$ tends to limit L as $n \to \infty$, then for any fixed number M > 0, the sequence $\{Ma_n\}_{n=1}^{\infty}$ tends to the limit ML.

$$(\forall \epsilon > 0)(\exists n \in N)(\forall m \ge n)[|a_m - L| < \epsilon] \tag{1}$$

$$(\forall \epsilon > 0)(\exists n \in N)(\forall m \ge n)[|Ma_m - ML| < \epsilon]$$
(2)

Proof: By contradiction.

Suppose:

$$(\forall m \geq n)[|Ma_m - ML| \geq \epsilon]$$

$$M|a_m - L| \geq \epsilon$$
 (By algebra)

By (1) we could find such a_m-L that equal to $\frac{\epsilon}{2M}$.

$$M*\frac{\epsilon}{2M} \geq \epsilon$$

$$\frac{\epsilon}{2} \geq \epsilon$$

But this is contradiction. Hence we could find n for (2). QED.