

Kraków 29 marca 2018

Zadanie I Domeny

Serwery DNS (Domain Name System) umożliwiają konwersję internetowych adresów symbolicznych na numeryczne adresy protokołu IP. Serwery te zorganizowane są w rozproszony geograficznie, hierarchiczny system.

Skupimy się na funkcjonalności pojedynczego serwera, zarządzającego olbrzymią liczbą domen. Domeny pamiętane są w postaci rekordów (wpisów) składających się z: nazwy symbolicznej oraz odpowiadającego jej adresu IP. Serwer obsługuje następujące operacje:

- INSERT nazwa adres dodaje nowy rekord lub uaktualnia istniejący,
- FIND nazwa odnajduje adres skojarzony z podaną nazwą i wypisują ją na wyjście.
 Jeśli szukanego wpisu nie ma w bazie, operacja wypisuje ERROR,
- DELETE nazwa usuwa wpis odpowiadający podanej nazwie z rejestru. Jeśli nazwy
 nie ma w bazie, operacja wypisuje ERROR, jeśli jest, wypisuje na wyjście skojarzony
 z nią adres.

Twoim zadaniem jest zaimplementowanie powyższej funkcjonalności w oparciu o tablicę haszującą. Zużycie pamięci Twojego programu powinno być liniowe względem liczby istniejących wpisów. Oczekiwany, zamortyzowany czas obsługi pojedynczej operacji powinien być stały.

Wejście

Pierwsza linia wejścia zawiera liczbę całkowitą z ($1 \le z \le 2 \cdot 10^9$) – liczbę zestawów danych, których opisy występują kolejno po sobie. Opis jednego zestawu jest następujący:

Opis jednego zestawu jest następujący: Pierwsza linia zawiera liczbę naturalną n ($1 \le n \le 2000000$) oznaczającą liczbę operacji do wykonania. Kolejne n linii zawiera: kod operacji oraz odpowiednie dla operacji argumenty oddzielone spacją. Argumentami są (w zależności od operacji): nazwa (maksymalnie 20-znakowy napis składający się z małych liter alfabetu angielskiego i kropek), adres (cztery liczby całkowite z zakresu $0 \dots 255$ oddzielone kropkami). Możesz założyć, ze liczba istniejących wpisów w bazie w żadnym momencie czasowym nie przekracza pół miliona. Program powinien wykorzystywać obszar pamięci, którego wielkość jest proporcjonalna do liczby przechowywanych rekordów.

Wyjście

Dla każdej kolejnej operacji FIND należy wypisać linie zawierającą poszukiwany adres (albo ERROR, jeżeli wpisu nie ma w bazie). Dla każdej kolejnej operacji DELETE należy wypisać dotychczasowy adres skojarzony z podaną nazwą (albo ERROR, jeżeli wpisu nie było w bazie).

Dostępna pamięć: w zależności od testu 2-164MB

Zadanie I: Domeny Strona 1/??

Kraków 29 marca 2018

Przykład

```
Dla danych wejściowych:
```

```
1
10
INSERT tcs.uj.edu.pl 149.156.75.211
INSERT localhost 127.0.0.1
INSERT example.com 1.2.3.4
FIND tcs.uj.edu.pl
FIND example.com
FIND exemple.com
INSERT example.com
INSERT example.com
DELETE localhost
DELETE localhost
```

Poprawną odpowiedzią jest:

```
149.156.75.211
1.2.3.4
ERROR
1.2.3.5
127.0.0.1
ERROR
```

Zadanie I: Domeny Strona 2/??