THE UNIVERSITY OF SYDNEY MATH1901 DIFFERENTIAL CALCULUS (ADVANCED)

Semester 1 Tutorial Week 7 2012

1. (This question is a preparatory question and should be attempted before the tutorial. Answers are provided at the end of the sheet – please check your work.)

Differentiate the following (don't worry about the domain of the function or its derivative).

(a)
$$f(x) = e^{x+5}$$

(b)
$$f(x) = (\ln 4)e^x$$

(c)
$$f(x) = xe^x$$

(d)
$$f(x) = \frac{x^2 + 5x + 2}{x + 3}$$

(e)
$$f(x) = (x+1)^{99}$$

(f)
$$f(x) = xe^{-x^2}$$

(g)
$$f(t) = \tan t$$

(h)
$$f(t) = e^{\cos t}$$

(i)
$$f(t) = e^{t\cos 3t}$$

(j)
$$f(t) = \ln(\cos(1-t^2))$$

(k)
$$f(x) = (x + \sin^5 x)^6$$

(1)
$$f(x) = \sin(\sin(\sin x))$$

$$(m) f(x) = \sin(6\cos(6\sin x))$$

Questions for the tutorial

2. For each of the following functions f, find f(f'(x)) and f'(f(x)).

(a)
$$f(x) = \frac{1}{x}$$
,

(b)
$$f(x) = x^2$$
,

(c)
$$f(x) = 2$$
,

(d)
$$f(x) = 2x$$
.

3. For the functions given by the following formulas, find the maximum and minimum values on the indicated intervals.

(a)
$$f(x) = \frac{e^x}{x+1}$$
 on [2, 3]

(b)
$$f(x) = \frac{x}{x^2 + 1}$$
 on $[-2, 0]$

(c)
$$f(x) = e^{x^2 - 1}$$
 on $[-1, 1]$

4. Consider the function defined by

$$f(x) = \begin{cases} x^2 & \text{for } x \le 1\\ e^{ax+b} & \text{for } x > 1. \end{cases}$$

- (a) Determine for which values of a and b the function f is continuous at x = 1.
- (b) Determine for which values of a and b the function f is differentiable at x = 1.

5. Use Rolle's Theorem and the IVT to show that the equation $x^2 - x \sin x - \cos x = 0$ has exactly 2 solutions.

6. Define a function f by

$$f(x) = \begin{cases} x^2 & \text{if } x \text{ is rational,} \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$$

Show that f is differentiable at 0.

7. Prove that if f is differentiable at a and $f(a) \neq 0$, then |f| is also differentiable at a. Give an example to show why the assumption $f(a) \neq 0$ is necessary.

Extra Questions

8. Define a function f by

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Show that f is differentiable everywhere and that f' is not continuous at 0.

9. Using Rolle's Theorem, prove that a polynomial of degree n > 0 has at most n real roots.

Solution to Question 1

(a)
$$f'(x) = e^{x+5}$$

(b)
$$f'(x) = (\ln 4)e^x$$

(c)
$$f'(x) = e^x + xe^x = (1+x)e^x$$

(c)
$$f'(x) = e^x + xe^x = (1+x)e^x$$

(d) $f'(x) = \frac{(x+3)(2x+5) - (x^2+5x+2)}{(x+3)^2} = \frac{x^2+6x+13}{(x+3)^2}$
(e) $f'(x) = 99(x+1)^{98}$

(e)
$$f'(x) = 99(x+1)^{98}$$

(f)
$$f'(x) = e^{-x^2} - 2x^2e^{-x^2} = (1 - 2x^2)e^{-x^2}$$

(f)
$$f'(x) = e^{-x^2} - 2x^2e^{-x^2} = (1 - 2x^2)e^{-x^2}$$

(g) $f'(t) = \frac{d}{dt} \left(\frac{\sin t}{\cos t}\right) = \frac{-\sin t \cdot (-\sin t) + \cos t \cdot \cos t}{\cos t \cdot \cos t} = \frac{1}{\cos^2 t} = \sec^2 t$
(h) $f'(t) = (-\sin t)e^{\cos t}$

(h)
$$f'(t) = (-\sin t)e^{\cos t}$$

(i)
$$f'(t) = (\cos 3t - 3t \sin 3t)e^{t\cos 3t}$$

(i)
$$f'(t) = (\cos 3t - 3t \sin 3t)e^{t\cos 3t}$$

(j) $f'(t) = \frac{2t\sin(1-t^2)}{\cos(1-t^2)}$

(k)
$$f'(x) = 6(x + \sin^5 x)^5 (1 + 5\sin^4 x \cos x)$$

(1)
$$f'(x) = \cos(\sin(\sin x))\cos(\sin x)\cos x$$

(m)
$$f'(x) = -36\cos(6\cos(6\sin x))\sin(6\sin x)\cos x$$