Univerza v Ljubljani

Fakulteta za elektrotehniko

Timotej Gašpar

Vodenje robota v stiku s podajnim objektom

Magistrsko delo

Mentor: prof. dr. Matjaž Mihelj

Somentor: dr. Leon Žlajpah

Zahvala

Vsebina

1	Uvo	od	5
2	Rol	ootski manipulator PA-10	7
	2.1	Kinematični model robota PA-10	7
	2.2	Dinamičen model robota	12
	2.3	Inverzna kinematika	14
3	$\mathbf{A}\mathbf{R}$	CNET - UDP strežnik za komunikacijo s krmilnikom robota	L
	\mathbf{ter}	senzorjem sile	17
	3.1	Krmilnik servo motorjev robota	18
	3.2	ARCNET vmesnik	19
	3.3	Senzor sile in navorov - JR3	20
	3.4	Strežnik	22
		3.4.1 Delovanje programa	23
		3.4.2 Varnostni ukrepi	25
4	Voc	lenje robota PA-10	27
	4.1	Kompenzacija mase prijemala ter merilnega odmika na senzorju	
		sile JR3	27
	4.2	Vodenje preko inverzne kinematike	30

vi Vsebina

		4.2.1	Vodenje v notranjih koordinatah	31
		4.2.2	Vodenje v zunanjih koordinatah	32
	4.3	Admit	ančno vodenje	33
	4.4	Krmilj	jenje z inverzno dinamiko	35
		4.4.1	Vodenje v notranjih koordinatah	35
		4.4.2	Vodenje v zunanjih koordinatah	37
	4.5	Intera	kcija z okoljem	38
5	Imp	olemen	tacija	41
	5.1	Hitros	tno krmiljenje	42
		5.1.1	Vodenje po trajektoriji	42
		5.1.2	Admitančno vodenje	42
	5.2	Navor	no krmiljenje	42
		5.2.1	Kompenzacija trenja	42
		5.2.2	Vodenje po trajektoriji	42
		5.2.3	Vodenje v kontaktu z okolico	42
6	Zak	ljuček		43
\mathbf{A}	Dod	latek 1		49
В	Dod	latek 2	2	51
\mathbf{C}	Dod	latek 3	}	53

Seznam slik

2.1	Skica robotskega mehanizma PA 10	8
2.2	Dva zaporedna člena kinematične verige, povzeto po [1]	9
2.3	Tehnična risba robota PA-10. Iz nje se definira D-H parametre. Povzeto po [2]	10
3.1	Tehnična risba ohišja krmilnika servo motorjev. Povzeto po [2]	18
3.2	Način za krmiljenje robota	21
3.3	Strežnik kot posrednik med ARCNET ter Ethernet omrežjem	23
4.1	Koordinatni sistem senzorja sile ter koordinatni sistem težišča prijemala	29
4.2	Povratna zanka za krmiljenje kota v sklepu	31
4.3	Bločna shema krmiljenja referenčne lege vrha robota	33
4.4	Bločna shema vodenja po notranjih koordinatah preko inverzne dinamike	37
4.5	Bločna shema vodenja po zunanjih koordinatah preko inverzne di-	
	namike	38
4.6	Vrh robota v kontaktu z okoljem	39
4.7		40

viii Seznam slik

Seznam tabel

1	Veličine in simboli	X
2.1	D-H parametri	10
3.1	Opis prejetega UDP paketa	24
3.2	Opis ARCNET paketa	24
3.3	Opis poslanega UDP paketa	25

x Seznam tabel

Seznam uporabljenih simbolov

V pričujočem zaključnem delu so uporabljeni naslednje veličine in simboli:

Veličina / ozn	ıaka	Enota	
Ime	Simbol	Ime	Simbol
čas	t	sekunda	S
frekvenca	f	Hertz	Hz
sila	F	Newton	N
masa telesa	$m_{ m t}$	kilogram	kg
kot v sklepu	q	radijan na sekundo	rad/s
lega vrha robota	\mathbf{x}	metri	m
Jacobijeva matrika	J	-	-

Tabela 1: Veličine in simboli

Pri čemer so vektorji in matrike napisani s poudarjeno pisavo. Natančnejši pomen simbolov in njihovih indeksov je razviden iz ustreznih slik ali pa je pojasnjen v spremljajočem besedilu, kjer je simbol uporabljen.

Povzetek

Ključne beseda: beseda1, beseda2, beseda3

Povzetek 2

Abstract

The thesis addresses ...

Key words: word1, word2, word3

4 Abstract

1 Uvod

Uvod

2 Robotski manipulator PA-10

Podjetje Mitsubishi Heavy Industries je leta 1992 izdelalo prvega katalogiranega industrijskega redundatnega robota [3]. Podjetje je robota poimenovalo Portable General-purpose Intelligent Arm PA-10, krajše PA-10. Gre za serijskega robota s sedmimi stopnjami prostosti (slika 2.1). Prvi trije sklepi so označeni kot ramenski sklepi (shoulder), S1, S2, S3. Naslednja dva sta označena kot komolčni sklepi (elbow), E1, E2. Zadnja dva sklepa pa sta označena kot zapestna (wrist), W1, W2. Glede na zgradbo se ga lahko uvrsti v tako imenovane antropomorfne robote [4]. Značilnost takih robotov je spretnost saj so vsi sklepi rotacijski [1].

Masa robotske roke PA-10 je 36 kg in ima nosilnost 10 kg. Servo motorji v sklepih se napajajo preko izmenične napetosti. Prenosi med v sklepih so realizirani z harmoničnimi gonili. Baza robota da se lahko pritrdi v katerokoli lego. To pomeni, da se ga lahko fiksira bodisi na tla, na steno ali na strop. Robota PA-10 odlikuje relativno lahka konstrukcija, enostavno rokovanje ter odprtost njegovega krmilnika. Prav ti razlogi so povod, da je mnogo instituciji vzelo tega robota kot eksperimentalni sistem za razvijanje raznih algoritmov vodenja ([5], [6], [7], [8]).

2.1 Kinematični model robota PA-10

Robotski mehanizem obravnavamo kot kinematično verigo n med seboj povezanih togih teles, rečemo jim tudi kinematični pari. Ker je en konec kinematične verige, t.j. baza robota, togo povezan v bazo se premika le vrh kinematične verige. Z opisom kinematične relacije med dvema zaporednima segmentoma je

Slika 2.1: Skica robotskega mehanizma PA 10.

mogoče definirati kinematično relacijo med bazo in vrhom robota. Homogena transformacijska matrika je operator, ki opisuje translacijo in rotacijo med dvema koordinatnima sistemoma. Definiramo jo kot [1]

$$\mathbf{T}_{i+1}^{i} = \begin{bmatrix} \cos(\Theta_i) & -\sin(\Theta_i) & 0 & a_i \\ \sin(\Theta_i)\cos(\alpha_i) & \cos(\Theta_i)\cos(\alpha_i) & -\sin(a_i) & -\sin(a_i)d_i \\ \sin(\Theta_i)\sin(\alpha_i) & \cos(\Theta_i)\sin(\alpha_i) & \cos(a_i) & \cos(a_i)d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}, (2.1)$$

kjer so a_i , α_i , d_i in Θ D-H parametri in opisujejo relacijo med dvema različnima koordinatnima sistemoma.

Z množenjem homogenih transformacijskih matrik posameznih sklepov med seboj dobimo homogeno transformacijo med vrhom robota in njegovo bazo:

$$\mathbf{T}_7^0 = \mathbf{T}_1^0 \mathbf{T}_2^1 ... \mathbf{T}_7^6. \tag{2.2}$$

Sklicujoč na sliko 2.2 se D-H parametre parametre opiše kot:

• a_i razdalja med O_i in O_{i+1} v smeri x_i ,

Slika 2.2: Dva zaporedna člena kinematične verige, povzeto po [1]

- α_i kot med O_i in O_{i+1} glede na os x_i ,
- d_i razdalja med O_{i-1} in O_i glede na os z_i ,
- Θ razdalja med O_{i-1} in O_i glede na os z_i ,

Te parametre se za primer robota PA-10 definira s pomočjo dokumentacije [2] oziroma iz slike 2.3. V tabeli 2.1 so zapisani D-H parametri za vsak kinematični par. Koti v sklepih robota so zapisani kot q_n in jih imenujemo tudi notranje koordinate. Glede na D-H sistem bodo v našem primeru ustrezali parametru θ_i . Z upoštevanjem tega postane matrika \mathbf{T}_{i+1}^i funkcija kotov v sklepih $\mathbf{q} = \begin{bmatrix} q_1 & q_2 & \dots & q_7 \end{bmatrix}^T$.

Opis lege vrha robota se da skrajšati in zapisati z minimalnim številom koordinat. Iz matrike homogene transformacije je mogoče izpisati tri koordinate, ki opisujejo pozicijo vrha robota in tri koordinate, ki opisujejo njegovo orientacijo. Pozicija se enostavno izpiše iz prvih treh vrstic zadnjega stolpca. Za zapis orientacije pa se je potrebno sklicati na Eulerjeve kote. Prvi trije stolpci in prve tri

Slika 2.3: Tehnična risba robota PA-10. Iz nje se definira D-H parametre. Povzeto po $\left[2\right].$

i	α_{i-1}	a_{i-1}	d_i	θ_i
1	0	0	0.315	q1
2	$-\frac{\pi}{2}$	0	0	q2
3	$\frac{\pi}{2}$	0	0.45	$q\beta$
4	$-\frac{\pi}{2}$	0	0	q4
5	$\frac{\pi}{2}$	0	0.5	q5
6	$-\frac{\pi}{2}$	0	0	q6
7	$\frac{\pi}{2}$	0	0.08	q7

Tabela 2.1: D-H parametri

vrstice v matriki homogene transformacije opisujejo spremembo orientacije. Če omenjeno podmatriko zapišemo kot

$$\mathbf{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}, \tag{2.3}$$

lahko definiramo tri Eulerjeve kote na sledeč način

$$\varphi = \arctan_2(r_{21}, r_{11}), \vartheta = \arctan_2(-r_{31}, \sqrt{r_{32}^2 + r_{33}^2}), \psi = \arctan_2(-r_{32}, -r_{33}).$$
(2.4)

Z združitvijo treh koordinat za opis pozicije in treh koordinat za opis orientacije se lahko definira vektor, ki opisuje neko točko v prostoru baze robota:

$$\mathbf{x} = \begin{bmatrix} x & y & z & \varphi & \vartheta & \psi \end{bmatrix}^T. \tag{2.5}$$

Vektor x se imenuje tudi vektor zunanjih koordinat. Sedaj je mogoče opisati enačbo direktne kinematike kot funkcijo \mathbf{q} :

$$\mathbf{x} = \mathbf{k}(\mathbf{q}). \tag{2.6}$$

Funkcija $\mathbf{k}(\mathbf{q})$ je vektorska funkcija notranjih koordinat, v katerih so zajete kinematične enačbe pozicije in orientacije mehanizma. Problem direktne kinematike je pri serijskih mehanizmih enostavno rešljiv in ima eno rešitev [9].

Potrebno je še opisati kakšna je hitrost vrha robota v odvisnosti od hitrosti v sklepov. Z odvajanjem enačbe 2.6 po q dobimo

$$\dot{\mathbf{x}} = \frac{\partial \mathbf{K}(q)}{\partial \mathbf{q}} \mathbf{q} = \mathbf{J}\dot{\mathbf{q}},\tag{2.7}$$

kjer je J Jacobijeva matrika in predstavlja parcialne odvode zunanjih koordinat.

Z odvajanjem enačbe ?? je mogoče zapisati še relacijo med pospeški vrha robota ter pospeški sklepov

$$\ddot{\mathbf{x}} = \mathbf{J}\ddot{\mathbf{q}} + \dot{\mathbf{J}}\dot{\mathbf{q}},\tag{2.8}$$

kjer je $\dot{\mathbf{J}}$ odvod Jacobijeve matrike.

2.2 Dinamičen model robota

Vodenje robota z referenčnimi navori veleva poznavanje njegovega dinamičnega modela. S poznavanjem dinamičnega modela je mogoče opisati silo s katero bo vrh robota deloval v kontaktu z okolico. Z razliko od kinematičnega modela je pri dinamičnem modelu je število parametrov, ki vplivajo na vodenje večje. V nadaljevanju bo predstavljen splošen dinamičen model in relacija med silami, ki delujejo na vrhu robota in navori v sklepih.

Enačbe gibanja kot posledica delovanja sil in navorov se lahko zapišejo z uporabo Lagrangevih formulacij

$$\mathcal{L}(q,\dot{q}) = \mathcal{T}(q,\dot{q}) - \mathcal{U}(q),$$

$$\boldsymbol{\tau} = \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i}\right) - \frac{\partial \mathcal{L}}{q_i}$$
(2.9)

kjer \mathcal{T} in \mathcal{U} opisujeta kinetično in potencialno energijo.

Lagrangeve formulacije so orodje za sistematičen opis dinamike posameznih segmentov [1]. Z uporabo te formulacije se lahko zapiše enačbo navorov v sklepih v odvisnosti od kotov, hitrosti in pospeškov v sklepih na sledeč način:

$$\boldsymbol{\tau}(\ddot{\mathbf{q}}, \dot{\mathbf{q}}, \mathbf{q}) = \mathbf{B}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}})\dot{\mathbf{q}} + \mathbf{F}_f(\dot{\mathbf{q}}, \mathbf{q}) + \mathbf{g}(\mathbf{q}) + \mathbf{J}^T(\mathbf{q})\mathbf{h}_o.$$
(2.10)

Posamezni členi zgornje enačbe bodo opisani v nadaljevanju.

Matrika $\mathbf{B}(\mathbf{q})$ predstavlja zapis vztrajnosti posameznih segmentov. Odvisna je od trenutne konfiguracije robota. Posamezni členi pa so izračunani kot

$$h_{i,j} = \sum_{i=\max(j,k)}^{n} Tr[(\frac{\partial}{\partial q_k} \mathbf{T}_i^0)(\frac{\partial}{\partial q_j} \mathbf{T}_i^0)]. \tag{2.11}$$

Operator Tr je sled matrike, to je vsota diagonalnih členov matrike.

Matrika $\mathbf{C}(\mathbf{q}, \dot{\mathbf{q}})$ vključuje podatke o Coriolisovih in centripetalnih silah. Njeni členi izraženi s pomočjo kot

$$c_{i,j} = \sum_{k=1}^{n} c_{i,j,k} \dot{q}_k, \tag{2.12}$$

kjer so

$$c_{i,j,k} = \frac{1}{2} \left(\frac{\partial b_{ij}}{\partial q_k} + \frac{\partial b_{ik}}{\partial q_i} - \frac{\partial b_{jk}}{\partial q_i} \right), \tag{2.13}$$

Christoffelovi simboli in dodatno velja še $i, j, k = 1, \ldots, n$.

Vektor $\mathbf{g}(\mathbf{q})$ predstavlja navor proizveden v sklepu manipulatorja i zaradi vpliva gravitacije v trenutni konfiguraciji [1]. Posamezen člen vektorja $\mathbf{g}(\mathbf{q})$ je podan kot

$$g_i = \sum_{i=j}^n (-m_i \mathbf{g}_0 (\frac{\partial}{\partial q_j} \mathbf{T_i^0})^T \mathbf{r}_i), \qquad (2.14)$$

kjer je \mathbf{g}_0 vektor gravitacijskega pospeška $\mathbf{g}_0 = \begin{bmatrix} 0 & 0 & -g \end{bmatrix}^T$. Vektor \mathbf{r}_i opisuje mesto težišča v segmentu, m_i pa opisuje maso segmenta.

Vektor \mathbf{F}_f opisuje vpliv trenja. Vektor zajema tako Coulombovo trenje kot tudi viskozno trenje. Posamezni členi vektorja, f_i so prispevki trenja v *i*-tem sklepu. Podrobneje se bo ta prispevek obravnaval v poglavju 4.4.

Vektor \mathbf{h}_o vsebuje sile in navore, ki delujejo na vrh robota, $\mathbf{h}_o = \begin{bmatrix} f_x & f_y & f_x & m_x & m_y & m_z \end{bmatrix}$, kjer prvi trije členi vektorja opisujejo sile, drugi trije pa navore.

2.3 Inverzna kinematika

Nalogo, ki jo opravlja robot tipično opišemo s časovnim potekom vektorja x, kot je podan v enačbi 2.6. Da bi lahko izvedli želeno gibanje, je potrebno poiskati ustrezne vrednosti notranjih koordinat \mathbf{q} , kar predstavimo z enačbo

$$\mathbf{q} = \mathbf{K}^{-1}(\mathbf{x}),\tag{2.15}$$

kjer je \mathbf{K}^{-1} inverz funkcije \mathbf{K} Ta funkcija predstavlja inverzno kinematiko. Čeprav je bila rešitev enačbe 2.6 enolična, pa enačba 2.15 nima vedno enolične rešitve. Še več, rešitev obstaja le, če \mathbf{x} leži v delovnem prostoru robota.

Pri vodenju robotov večinoma ne rešujemo inverzne dinamike direktno iz enačbe 2.15 ampak preko hitrosti, torej iz enačbe 2.7. Če predpostavimo, da je dimenzionalnost prostora naloge m in če velja, da je m=n, potem lahko določimo hitrost v sklepih iz relacije

$$\dot{\mathbf{q}} = \mathbf{J}^{-1}\dot{\mathbf{x}},\tag{2.16}$$

kje je \mathbf{J}^{-1} inverz Jacobijeve matrike.

V primeru, da pa ima robot več stopenj prostosti , kot jih je pšotrebno za izvedbo naloge, torej če je n > m, potem inverz \mathbf{J}^{-1} ne obstaja in je potrebno poiskati rešitev inverzne kinematike drugače. Enačbo 2.7 lahko invertiramo z uporabo naslednje zveze

$$\dot{\mathbf{q}} = \mathbf{J}^* \dot{\mathbf{p}} + \mathbf{N} \dot{\mathbf{q}},\tag{2.17}$$

kjer je \mathbf{J}^* generaliziran inverz matrike \mathbf{J} , matrika \mathbf{N} pa predstavlja projekcijo v ničelni prostor matrike \mathbf{J} ,

$$\mathbf{N} = (\mathbf{I} - \mathbf{J}^{\#} \mathbf{J})$$

.

Prvi člen enačbe 2.17 predstavlja partikularno rešitev iz zadosti osnovni nalogi., to je zagotovi, da je vrh robota v \mathbf{x} . Drugi člen enačbe 2.17 pa predstavlja homogeno rešitev in omogoča rekonfiguracijo robotskega mehanizma brez, da se

spremeni pozicija vrha robota \mathbf{x} . Zaradi tega se hitrost \dot{q}_n lahko uporabi za realizacijo dodatnih nalog nižje prioritete.

Kot generaliziran inverz matrike \mathbf{J}^* se pogosto uporablja Moore-Penroseov pseudoinvez

$$\mathbf{J}^+ = \mathbf{J}^T (\mathbf{J} \mathbf{J}^T)^{-1}. \tag{2.18}$$

ali uteženi Moore-Penroseov pseudoinverz

$$\mathbf{J}^* = \mathbf{J}^{\#} = \mathbf{W}^{-1} \mathbf{J}^T (\mathbf{J} \mathbf{W}^{-1} \mathbf{J}^T)^{-1}, \tag{2.19}$$

kjer je \mathbf{W} utežnostna matrika.

 ${\bf Z}$ odvajanjem enačbe 2.17 dobimo relacijo med pospeški v sklepih in pospeških na vrhu robota.

3 ARCNET - UDP strežnik za komunikacijo s krmilnikom robota ter senzorjem sile

V prejšnjem poglavju je bil opisan kinematični in dinamičen model robotskega mehanizma. V sklepih robota PA-10 so servo motorji na izmenični tok. Krmiljenje motorjev se izvaja v krmilniku, ki ga proizvajalec priloži ob nakupu robota. Krmilnik omogoča vodenje servo motorjev bodisi preko referenčne hitrosti ali referenčnega navora. V krmilniku je vgrajen ARCNET vmesnik, ki omogoča priklop krmilnika v ARCNET omrežje. Na ta način lahko uporabnikiški program komunicira s krmilnikom [2].

Z uspešnim vodenjem robota brez taktilne povratne zanke je mogoče izvesti mnogo različnih nalog. V zgornjem poglavju je bil opisan dinamičen model robota. S poznavanjem vseh parametrov je v teoriji mogoče izračunati sile, ki delujejo na vrh robota. V praksi se izkaže, da te parametre ni vedno mogoče dovolj natančno definirati. Iz teh razlogov se vgradi senzor sil in navorov med vrhom robota ter prijemalom ([10], [11], [12]). Senzor sil in navorov JR3 je bil uporabljen pri izvedbi tega dela.

Želja po združitvi vodenja robota in merjenja sil je privedla do tega, da smo naredili strežnik ki to omogoča. Dodaten razlog je bil to, da prejšnja programska oprema za komunikacijo s servo krmilnikom, ni zadoščala časovnemu kriteriju delovanja s frekvenco 500 Hz.

Slika 3.1: Tehnična risba ohišja krmilnika servo motorjev. Povzeto po [2].

3.1 Krmilnik servo motorjev robota

V prvem poglavju je bilo zapisano, da robota PA-10 med drugim odlikuje prenosnost. To se velja tako za samo robotsko roko kot tudi za krmilnik servo motorjev. Krmilnik z ohišjem ima dimenzije $262 \times 331 \times 396$ mm in maso 22 Kg. Za sprednji strani krmilnika sta dva zračnika, na zadnji pa so priključki in stikala (slika 3.1).

V ohišju servo krmilnika so vgrajeni štirje krmilniki servo motorjev. Trije krmilijo po dva motorja, eden pa le enega. Krmilniki omogočajo vodenje motorjev na dva načina, navorno in hitrostno. Različna vodenja sta v krmilnikih drugače realizirana. Navorno vodenje je realizirano z analognim P regulatorjem toka, hitrostna regulacija pa je realizirana z digitalnim PI regulatorjem s frekvenco približno 1500 Hz.

Krmilnik vsebuje dva pomnilnika. Delovni pomnilnik (RAM) in nastavitveni pomnilnik (EEPROM). V EEPROM tabeli so zapisani parametri za nastavitve in vodenje servo krmilnikov. Ob zagonu krmilnika se parametri naložijo iz EEPROM tabele v RAM. Med naloženimi parametri so tudi ojačanje proporcionalnega ter

integracijskega dela regulatorja, omejitve posameznih stopenj, razmerje prenosa zobnikov, itd.

3.2 ARCNET vmesnik

Referenčne navore in hitrosti se na krmilniku nastavlja na preko zunanjega vmesnika, ki je povezan na enako ARCNET omrežje kot servo krmilnik. Priključitev na ARCNET omrežje servo krmilniku omogoča v ohišje vgrajen ARCNET modul. ARCNET je omrežje, ki vključuje podatkovni in fizični nivo po OSI modelu. Njegova prednost pred Ethernet omrežjem je velika stopnja determinističnosti [13]. Krmilnik robota ima dva priključka za optična vodila, vhod (Rx) ter izhod (Tx). Zgornja meja hitrosti komunikacije z krmilnikom robota je 5 Mb/s [2].

ARCNET komunikacija je serijska in paketno zastavljena. Za komunikacijo z modulom je potrebno vsak paket primerno sestaviti. Po [2] je paket potrebno začeti z naslovom modula, sledi bajt, ki označuje veliko črko po ASCII formatu, v nadaljevanju. ARCNET modul dodatno vsebuje logiko za preklapljanje med različnimi stanji. Med stanji preklapljamo s pošiljanjem ustrezne črke v paketu. Različna stanja pa so:

- Izpis EEPROM tabele,
- Vpis v EEPROM tabelo,
- Vpis v RAM tabelo,
- Kopiranje iz RAM v EEPROM tabelo,
- Postavitev kotov na ničelno vrednost,
- Sporstitev zavor,
- Vodenje sklepov,
- Čakanje

Ko višje nivojski vmesnik ne pošilja nobenih ukazov je ARCNET vmesnik v čakanju. V tem stanju čaka na primerno sestavljen paket.

V tem delu se je v večini uporabljalo način za vodenje sklepov. Ta način se izbere tako, da se ARCNET vmesniku najprej pošlje ukaz, ki se začne z velikim tiskanim S (ASCII DEC 65), nadaljuje se s pošiljanjem paketov, ki se začnejo s veliko tiskano črko C (ASCII DEC 67) ter zaključi s tem, da se pošlje paket, ki se začne z velikim tiskanim E (ASCII 69) (slika 3.2). Pri tem načinu delovanja je potrebno posvetiti nekaj pozornosti frekvenci pošiljanja. V kolikor paketi ne prispejo do ARCNET vmesnika v intervalu specificiranem v EEPROM tabeli na krmilniku, bo vmesnik preklopil nazaj na način čakanja.

Paket, ki se začne s C in nosi podatke o krmiljenju sklepov robota je velik 35 bajtov, 5 za vsak sklep. Prvi bajt je kontrolni in samo prvi trije biti nosijo podatke o vodenju:

- 1. vklop ali izklop mehanske zavore (1 vklop, 0 izklop)
- 2. vklop ali izklop servo motorja (1 vklop, 0 izklop)
- 3. izbira navornega ali hitrostnega načina (1 navorni, 0 hitrostni)

Drugi in tretji bajt nosijo podatek o referenčnem navoru na sklepu. Ta podatek bo uporabljen le, če je servo motor nastavljen na navorni način delovanja. Dvobajtni podatek pa je v formatu 0.001 Nm/digit. Četrti in peti bajt nosijo podatek o referenčni hitrosti na sklepu. Podatek je tako kot pri navornem delovanju v uporabi le, ko vodimo servo motor na hitrostnem načinu. Dvobajtni podatek je v formatu 0.0002 rad/s/digit.

3.3 Senzor sile in navorov - JR3

Za namene vodenja opisanega v poglavju ?? smo med vrhom robota ter prijemalom pritrdilo senzor sil JR3. Senzor nam omogoča merjenje sil in navorov v x,

Slika 3.2: Način za krmiljenje robota

y in z oseh. Senzor je narejen iz uporovnih lističev porazdeljenih po notranjosti senzorja, ki je v obliki križa. Iz specifikacij senzorja [14] je razvidno, da uporablja 6 uporovnih lističev. S tem, ko na senzor deluje zunanja sila ali navor, pride do deformacije materjala na katerem so nameščeni uporovni lističi in se upornost na uporovnih lističih spremeni proporcionalno s silo in togostjo senzorja. Sprememba upornosti se izmeri posredno preko spremembe napetosti na AD-pretvorniku, ki je vgrajen v sam senzor. Napetost se pretvori v silo preko množenja s kalibracijsko matriko \mathbf{K} . Naj bo \mathbf{h}_{JR3} vektor sil, ki delujejo na senzor in naj bo ω_u vektor napetosti na AD-pretvorniku. Enačba za izračun sil je

$$\mathbf{h}_{JR3} = \mathbf{K}\omega_u \tag{3.1}$$

Senzor se priključi preko 6 ali 8 žičnega kabla na računalniško kartico, ki je bodisi na ISA ali PCI vodilu. Elektronika v samem senzorju serijsko pošilja podatke o izmerjenih silah na kartico. Kartica vsebuje vezje za digitalno obdelavo signalov. V dokumentaciji kartice [15] so opisani trije nizkoprepustni filtri z različnimi mejnimi frekvencami. Uporabili smo filter z mejno frekvenco 500 Hz.

Na računalniku, ki smo ga uporabljali, je nameščena kartica na vodilu ISA. Ker je standard starejši, je podjetje prenehalo s podporo tega standarda. Kot posledica tega smo razvili svojo programsko opremo za komunikacijo z notranjimi registri kartice. Osnovne informacije o podatkih do katerih se lahko dostopa po registrih se nahajajo v dokumentaciji [15]. Dokumentacija navaja, da v kolikor želi uporabnik odčitati vrednost sile ali navora F mora tako prebrati osnovno vrednost F_s na registru imenovanem (full scale), jo pomnožiti z vrednostjo F_f , ki je na registru izbranega filtra (current force). Na zadnje more to vrednost delit s konstanto K_p , da pretvori v primerne enote(N ali Nm).

$$F = \frac{F_s F_f}{K_n} \tag{3.2}$$

Ker senzor meri silo in navor v treh smereh je potrebno opraviti izračun za vsako od izmerjenih veličin potrebno opravit omenjeno operacijo.

3.4 Strežnik

Proizvajalec Mitsubishi Heavy Industries je za upravljanje in programiranje robota pripravil posebno programsko opremo. Iz dokumentacije je razvidno kaj je njihova programska oprema omogočala. Težava je, da omenjena programska oprema ni več dostopna. Proizvajalec je s prodajo robotov PA-10 prenehal v letu 2009, s podporo pa v marcu 2014 (vir: osebno dopisovanje s proizvajalcem). Iz tega razloga je nastala potreba, po lastnem programu, ki bi lahko komuniciral s servo krmilnikom.

Pred začetkom izdelave lastnega programskega orodja se je definiralo dve zahtevi. Prva je bila, da program deluje kar se le da hitro in kar se le da v realnem času. To izhaja iz vidika stabilnosti vodenja. Avtor v [16] namreč navaja, da vzorčni čas močno vpliva na stabilnost vodenja robota v kontaktu z okolico. Večja kot je vzorčna frekvenca večja je lahko togost okolice s katero je robot v kontaktu.

Druga zahteva pa je bila enostavna uporaba. Zeleli smo, da uporaba pro-

3.4 Strežnik

Slika 3.3: Strežnik kot posrednik med ARCNET ter Ethernet omrežjem.

gramske opreme, ki jo naredimo, zahteva čim manj predznanja o komunikacijskih protokolih po ARCNET mreži. Hkrati pa mora program omogočati neko mero svobode pri realizaciji visoko nivojskega vodenja.

Dodatno se je kasneje pojavila še želja, da bi programska oprema omogočala tudi posredovanje meritev izvedenih na senzorju sile JR3. Tako bi nastal nek program, ki bi komuniciral tako s servo kontrolerjem kot s ISA kartico za senzor sile JR3.

Naštete zahteve so privedle do izbire primernega operacijskega sistema in programskega jezika. Tako je bil razvit strežnik v programskem jeziku C na operacijskem sistemu Linux. Strežnik deluje kot posrednik med dvema različnima omrežjema (slika 3.3), ARCNET in UDP. V nadaljevanju bo opisana zgradba tega strežnika, delovanje ter uporaba.

3.4.1 Delovanje programa

Nastali program deluje kot strežnik, kar pomeni, da se odzove na klientovo zahtevo. V tem primeru je klient kakršen koli program, ki lahko pošilja UDP pakete po Ethernet omrežju. Klient mora tako formirati ustrezen UDP paket za začetek komunikacije. Paket je velik 99 bajtov. Vsebina paketa pa je opisana v tabeli 3.1.

Kontrolni bajt, referenčni navori ter hitrosti za posamezen motor se posredujejo naprej na krmilnik robota. Ostali bajti pa so namenjeni zagotavljanju

Zaporedna Številka bajta	Opis podatka	Tip podatka	Količina
0	Kontrolni bajt za posamezen motor	char	×7
6	Referenčni navor za posamezen motor	signed short int	$\times 7$
20	Referenčna hitrost za posamezen motor	signed short int	$\times 7$
34	Rezervirani / neuporabljeni bajti	char	$\times 62$
96	Štartna sekvenca	char	×1
97	Trenuten čas na klientu	float	×1

Tabela 3.1: Opis prejetega UDP paketa.

varnosti med komunikacijo. Referenčni navori so v Nm, hitrosti pa v rad/s.

S prispelim UDP paketom strežnik pretvori dane navore in hitrosti v format, ki je naveden v dokumentaciji in opisan v 3.2. Kontrolni bajti za posamezne motorje ostanejo nespremenjeni in se posredujejo enaki kot so prispeli. Strežnik prispele podatke zapakira v ARCNET paket naveden v tabeli 3.2. Paket pošlje po ARCNET omrežju

Zaporedna Številka bajta	Opis podatka	Količina
0	ID pošiljatelja	×1
1	ID prejemnika	$\times 1$
2	Prazen / neuporabljen bajt	$\times 1$
3	Mesto sekvencijskega števila	$\times 1$
4	Sekvencijsko število	$\times 1$
5	Tip podatka	$\times 1$
6	Statusni bajt za prvi servo	$\times 1$
7	Referenčni navor za prvi servo	$\times 2$
9	Referenčna hitrost za prvi servo	$\times 2$
	:	
36	Statusni bajt za sedmi servo	×1
37	Referenčni navor za sedmi servo	$\times 2$
39	Referenčna hitrost za sedmi servo	$\times 2$

Tabela 3.2: Opis ARCNET paketa.

Strežnik nato počaka na odgovor servo krmilnika. V kolikor odgovor ne prispe

3.4 Strežnik

v vnaprej predpisanem času, se program zaustavi. Strežnik odgovor servo krmilnika najprej pretvori v želeno obliko. Hitrosti in navori v sklepih so ponovno zapisani v formatu navedenem v 3.2. Te podatke pa nato zapakira v UDP paket. Zraven doda še kontrolne bajte. UDP paket poslan klientu je opisan v tabeli 3.3.

Zaporedna Številka bajta	Opis podatka	Tip podatka	Količina
0	Kontrolni bajt za posamezen motor	char	×7
7	Trenuten kot v sklepu	float	$\times 7$
35	Trenutni proizveden navor v sklepu	signed short int	$\times 7$
63	Izmerjene sile in navori na JR3	float	$\times 6$
73	Rezerviran prostor	float	$\times 1$
112	Čas, ki je bil porabljen za programski cikel	float	$\times 1$
116	$\check{\mathrm{C}}\mathrm{as},$ ki ga je poslal klient na bajtu 60	float	$\times 1$

Tabela 3.3: Opis poslanega UDP paketa.

Po tistem, ko strežnik prejme in pošlje vse podatke, gre v stanje čakanja, da mine od začetka programskega cikla do konca točno 2 ms. Ohranjanje frekvence časovnega cikla je kritičnega pomena. Zato strežnik prekine komunikacijo s servo krmilnikom, v kolikor nov UDP paket ne prispe pravočasno.

3.4.2 Varnostni ukrepi

V tabelah, ki opisujejo poslane in prejete UDP pakete je mogoče razbrat, da so nekateri bajti namenjeni ohranjanju komunikacije oz. preverjanju ali sploh še poteka. Eden od takih ukrepov je, da v kolikor nov UDP ali ARCNET paket ne prispe v nekem vnaprej definiranem času, program robota zaustavi nato pa gre v čakanje novega paketa. Ko je program v čakanju preverja prispele UDP pakete, v kolikor imajo štartno sekvenco. Ta skrbi za to, da se program začne izvajat s prvim prispelim UDP paketom. Na ta način se poskrbi, da strežnik nebi šele petega UDP paketa prebral in na to začel z delovanjem.

Naslednji varnostni ukrep preverja stanje varnostnega gumba (*Emegerncy stop*). V kolikor se ta pritisne, se na servo krmilniku že sam po sebi sproži

ukaz za ustavitev motorjev ter vklop zavor. Na strežniku pa se to pozna tako, da se program zaustavi. V kolikor želimo nadaljevati z vodenjem, je potrebno program ponovno zagnat.

Zaganjanje ter uporaba strežnika je podrobneje opisana v dodatku A.

4 Vodenje robota PA-10

V prejšnjih poglavjih je bilo govora o pošiljanju referenčnih hitrosti in navorov na krmilnik servo motorjev robota PA-10. V poglavju, ki sledi pa bo govora o določanju teh krmilnih veličin v namene vodenja robota po prostoru. V tem poglavju bo natančneje opisano vodenje robota v zunanjih koordinatah. Opisan bo postopek kompenzacije vpliva težnosti prijemala na senzor sile JR3. Na koncu pa bosta opisana dva načina za krmiljenje robota v stiku z okolico, admitančno vodenje ter vodenje preko inverzne dinamike.

4.1 Kompenzacija mase prijemala ter merilnega odmika na senzorju sile JR3

Delovanje senzorja sile JR3 je bilo opisano v prejšnjih poglavjih. Senzor je pritrjen na vrh robota in meri navore ter sile, ki delujejo nanj v svojem koordinatnem sistemu. Homogeno transformacijsko matriko smo definirali v poglavju 2. Sile in navore na vrhu robota lahko preslikamo v koordinatni sistem baze preko matrike homogene transformacije

$$\mathbf{h}_b = \mathbf{T}_7^0 \mathbf{h}_e \tag{4.1}$$

Robot brez prijemala v praksi ni pretirano uporaben saj lahko opravlja le malo količino nalog. Recimo premikanje objektov s porivanjem. V kolikor pa želimo, da bo robot lahko izvajal tudi druge naloge, je potrebno nanj pritrditi primerno prijemalo. Ker pa imamo na vrhu robota najprej senzor, pomeni, da omenjeno prijemalo pritrdimo na senzor. Ker ima prijemalo svoje maso in težišče, bo na senzor delovala neka sila in navor kot posledica delovanja gravitacije. Kar pomeni, da bomo kljub temu, da senzor ni v kontaktu z okolico, merili sile. To pa ni dobrodošlo, saj želimo meriti le sile, ki se so posledica kontakta prijemala z okolico. Dodatno je potrebno še upoštevati merilni odmik, ki se pojavi kot posledica lezenja uporovnih mostičkov.

Zapišemo izmerjeno silo (\mathbf{F}_s) ter izmerjen navor (\mathbf{M}_s) kot posledico teh prispevkov

$$\mathbf{f}_{s} = \mathbf{f}_{env} + \mathbf{f}_{grav} + \mathbf{f}_{off}$$

$$\boldsymbol{\tau}_{s} = \boldsymbol{\tau}_{env} + \boldsymbol{\tau}_{grav} + \boldsymbol{\tau}_{off}.$$
(4.2)

Indeks env označuje silo in navor kot posledico okolice, indeks grav označuje silo in navor kot posledica vpliva gravitacije, indeks off pa označuje merilni odmik. Želja je, izračunati grav in off tako, da ju lahko kompenziramo (odštejemo) in izpostavimo le env. Ko vrh robota ni v kontaktu z okolico mora veljati $\mathbf{f}_{env} = 0$ in $\boldsymbol{\tau}_{env} = 0$ in sledi:

$$\mathbf{f}_{s} = \mathbf{f}_{grav} + \mathbf{f}_{off}$$

$$\boldsymbol{\tau}_{s} = \boldsymbol{\tau}_{grav} + \boldsymbol{\tau}_{off}.$$
(4.3)

 \mathbf{f}_{grav} je odvisen od mase (m) prijemala ter orientacije vrha robota. Koordinatni sistem, ki ga postavimo v težišče je zaradi poenostavitve enako orientiran kot tisti, ki je v bazi robota. Orientacijo je mogoče zapisati s poznavanjem kinematičnega modela in bo v nadaljevanju označena z \mathbf{R} . Tako je mogoče določiti prispevek

$$\mathbf{f}_{grav} = \mathbf{R} \begin{bmatrix} 0 \\ 0 \\ mg \end{bmatrix} = \mathbf{R} \mathbf{f}_{gz}. \tag{4.4}$$

Slika 4.1: Koordinatni sistem senzorja sile ter koordinatni sistem težišča prijemala

Avtorji v [17] pokažejo, da je mogoče izračunati \mathbf{f}_{grav} in \mathbf{f}_{off} na podlagi dveh meritev ($\mathbf{f}_{meas}^{(1)}$ in $\mathbf{f}_{meas}^{(2)}$). Zapišemo sistem enačb v matrični obliki

$$\begin{bmatrix} \mathbf{f}_{mes}^{(1)} \\ \mathbf{f}_{mes}^{(2)} \end{bmatrix} = \begin{bmatrix} \mathbf{R}^{(1)} & \mathbf{I} \\ \mathbf{R}^{(2)} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{f}_{gz} \\ \mathbf{f}_{off} \end{bmatrix}$$
(4.5)

in izpostavimo \mathbf{f}_{grav} in \mathbf{f}_{off}

$$\begin{bmatrix} \mathbf{f}_{gz} \\ \mathbf{f}_{off} \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} \mathbf{R}^{(1)} & \mathbf{I} \\ \mathbf{R}^{(2)} & \mathbf{I} \end{bmatrix}^T \begin{bmatrix} \mathbf{R}^{(1)} & \mathbf{I} \\ \mathbf{R}^{(2)} & \mathbf{I} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{R}^{(1)} & \mathbf{I} \\ \mathbf{R}^{(2)} & \mathbf{I} \end{bmatrix}^T \begin{bmatrix} \mathbf{f}_{meas}^{(1)} \\ \mathbf{f}_{meas}^{(2)} \end{bmatrix}. \tag{4.6}$$

Za navor pa je potrebno poznati tudi translacijski vektor od težišča do koordinatnega sistema senzorja, v nadaljevanju označen z r. Prispevek navora zaradi vpliva gravitacije je tako

$$\boldsymbol{\tau}_{qrav} = \mathbf{r} \times \mathbf{f}_{qrav}.\tag{4.7}$$

Dodatno bomo tukaj definirali še $\hat{\mathbf{f}}_{grav}$, ki je matričen zapis vektorja \mathbf{f}_{grav} . Iz treh različnih meritev navorov $(\boldsymbol{ au}_{meas}^{(1)},\, \boldsymbol{ au}_{meas}^{(2)}$ in $\boldsymbol{ au}_{meas}^{(3)})$ in s tremi različnimi orientacijami ($\mathbf{R}^{(1)},\,\mathbf{R}^{(2)}_{meas}$ in $\mathbf{R}^{(3)}_{meas}$) se zapiše sistem enačb

$$\begin{bmatrix} \boldsymbol{\tau}_{meas}^{(1)} \\ \boldsymbol{\tau}_{meas}^{(2)} \\ \boldsymbol{\tau}_{meas}^{(3)} \end{bmatrix} = \begin{bmatrix} \widehat{\mathbf{f}}_{grav}^{(1)} & \mathbf{I} \\ \widehat{\mathbf{f}}_{grav}^{(2)} & \mathbf{I} \\ \widehat{\mathbf{f}}_{grav}^{(3)} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{r} \\ \boldsymbol{\tau}_{off} \end{bmatrix}. \tag{4.8}$$

Enačbo obrnemo in izpostavimo ${\bf r}$ in ${m au}_{grav}$

$$\begin{bmatrix} \mathbf{r} \\ \boldsymbol{\tau}_{off} \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} \widehat{\mathbf{f}}_{grav}^{(1)} & \mathbf{I} \\ \widehat{\mathbf{f}}_{grav}^{(2)} & \mathbf{I} \\ \widehat{\mathbf{f}}_{grav}^{(3)} & \mathbf{I} \end{bmatrix}^T \begin{bmatrix} \widehat{\mathbf{f}}_{grav}^{(1)} & \mathbf{I} \\ \widehat{\mathbf{f}}_{grav}^{(2)} & \mathbf{I} \\ \widehat{\mathbf{f}}_{grav}^{(3)} & \mathbf{I} \end{bmatrix}^{-1} \begin{bmatrix} \widehat{\mathbf{f}}_{grav}^{(1)} & \mathbf{I} \\ \widehat{\mathbf{f}}_{grav}^{(2)} & \mathbf{I} \\ \widehat{\mathbf{f}}_{grav}^{(3)} & \mathbf{I} \end{bmatrix}^T \begin{bmatrix} \boldsymbol{\tau}_{meas}^{(1)} \\ \boldsymbol{\tau}_{meas}^{(2)} \\ \boldsymbol{\tau}_{meas}^{(3)} \end{bmatrix}. \tag{4.9}$$

Bistveni trije podatki, ki smo jih s temi izračuni izpostavili so merilni odmik, masa prijemala ter njegovo težišče. Prednost tega postopka je, da imamo orientacijo senzorja v vseh merilnih pozicijah natančno določeno zaradi poznavanja kinematičnega modela robota. Hkrati pa lahko ta postopek popolnoma avtomatiziramo, kar smo avtorji tega dela tudi naredili. Postopek je opisan v dodatku ??. Masa ter težišče prijemala sta parametra, ki se jih identificira in sta časovno neodvisna. Zaradi efekta lezenja uporovnih lističev pa je merilni odmik časovno odvisen in ga je potrebno pogosteje izmeriti.

V nadaljevanju bo sila ter navor kot posledica interakcije z okolico zapisana v vektorju \mathbf{h}_e kot

$$\mathbf{h}_e = \begin{bmatrix} \mathbf{f}_{env} \\ \boldsymbol{\tau}_{env} \end{bmatrix} . \tag{4.10}$$

4.2 Vodenje preko inverzne kinematike

Vodenje robota preko vhodnih hitrostih v sklepih uporablja PI regulator v krmilniku, ki poskrbi, da se vsak sklep vrti s hitrostjo čimbolj podobno referenčni. Iz tega vidika je prednost ta, da ne glede na konfiguracijo ter obremenitev robota, bo regulator vedno poskrbel čim boljše sledenje referenci. Vplivi gravitacije se kompenzirajo z integrirnim členov v regulatorju. V nadaljevanju bo opisano vodenje

Slika 4.2: Povratna zanka za krmiljenje kota v sklepu

motorjev robota v želeno lego oziroma vodenje robota v notranjih koordinatah. Nato pa se bo iz tega še izpeljalo vodenje v zunanjih koordinatah.

4.2.1 Vodenje v notranjih koordinatah

Krmilnik servo motorjev nam v vsakem danem trenutku vrača trenuten kot v sklepu. Ker ima PI regulator visoka ojačanja ter visoko frekvenco, bomo za namene poenostavitve aproksimirali motor kot integrator $\frac{1}{s}$. Naj bo referenčni kot v sklepih označen kot \mathbf{q}_{ref} in naj bo dejanski kot označen kot \mathbf{q} . Razlika med njima je napaka v kotu

$$\tilde{\mathbf{q}} = \mathbf{q}_{ref} - \mathbf{q}.\tag{4.11}$$

S preprostim P regulatorjem lahko kote v sklepu robota vodimo s povratno zanko tako, kot je prikazano na shemi 4.2. Ojačanje regulatorja bo označeno s \mathbf{K}_p in je diagonalna saj ima vsak sklep svoje ojačanje neodvisno od ostalih. S povečevanjem ojačanja regulatorja \mathbf{K} vplivamo na dinamiko odziva [18].

$$\mathbf{u} = \mathbf{K}_p \tilde{\mathbf{q}}.\tag{4.12}$$

Iz blokovnega diagrama lahko zapišemo prenosno funkcijo sistema P(s) in analiziramo stabilnost:

$$P(s) = \frac{K\frac{1}{s}}{1 + K\frac{1}{s}} = \frac{K}{s + K} \tag{4.13}$$

Pogoj stabilnosti je, da vsi poli sistema ležijo na desni strani s ravnine. V tem primeru je tako pogoj le, da je K > 0. Iz tega bi sledilo, da lahko ojačanje K povečujemo v neskončnost. Vendar pa je potrebno tukaj poudariti, da pri previsokih ojačanjih lahko pride do nestabilnosti, ki pa jih z obravnavanjem robota kot integratorja, ne moremo predvideti. Zato je smiselno, da se z ojačanji ne pretirava. Lahko pa v namene stabilnosti vnesemo še signal dušenja $\mathbf{K}_d\dot{\mathbf{q}}$. Matrika \mathbf{K}_d je tako kot \mathbf{K}_p diagonalna. Regulirni signal sedaj zapišemo kot

$$\mathbf{u} = \mathbf{K}_{p}\tilde{\mathbf{q}} - \mathbf{K}_{d}\dot{\mathbf{q}}.\tag{4.14}$$

4.2.2 Vodenje v zunanjih koordinatah

Kinematični model robota in problem inverzne kinematike je bil opisan v 2.1. Predstavljen je bil problem inverzne kinematike za redundantni sistem ter pseudo-inverz Jacobijeve matrike. V nadaljevanju bo opisano vodenje robotov v zunanjih koordinatah v splošnem primeru, ko velja n = m.

Naj bo \mathbf{x}_{ref} vektor referenčne lege vrha robota in naj bo \mathbf{x} trenutna lega vrha robota. Napaka je tako

$$\tilde{\mathbf{x}} = \mathbf{x}_{ref} - \mathbf{x} \tag{4.15}$$

Enačba direktne kinematike nam govori o odnosu med hitrostjo vrha robota ter hitrostjo v sklepih robota

$$\dot{\mathbf{x}} = \mathbf{J}(\mathbf{q})\dot{\mathbf{q}}.\tag{4.16}$$

To enačbo je mogoče razumeti tudi kot zvezo med spremembo položaja vrha ter sklepov robota [11]. Zato je mogoče to enačbo uporabiti za zapis relacije med napako vrha ter potrebnim odmikov v sklepih preko preko enačbe za inverzno kinematiko

Slika 4.3: Bločna shema krmiljenja referenčne lege vrha robota

$$\tilde{\mathbf{q}} = \mathbf{J}^*(\mathbf{q})\tilde{\mathbf{x}} \tag{4.17}$$

Z vstavitvijo enačbe 4.16 v 4.12 dobimo P regulator lege vrha robota Sedaj je mogoče regulirni signal, ki krmili hitrost v sklepih robota tako, da bo vrh sledil referenčni legi

$$\mathbf{u} = \mathbf{K}_p \mathbf{J}^*(\mathbf{q})(\mathbf{x}_{ref} - \mathbf{x}). \tag{4.18}$$

Avtor v [11] navaja, da se mehanski sistem, ki je voden na ta način obnaša kot mehanski sistem z n - dimenzionalno vzmetjo v notranjih koordinatah. Togost omenjene vzmeti pa določa ojačanje \mathbf{K}_{p} .

4.3 Admitančno vodenje

Robotski mehanizem PA-10 je industrijski robot s segmenti iz pretežno litega železa. Segmenti imajo relativno veliko maso, sklepi pa relativno visoko trenje. Lahko predpostavimo, da ima manipulator veliko lastno impedanco. Pojem mehanske impedance izvira iz analogije električne impedance. Predstavlja pa razmerje med silo (F) in hitrostjo (v)

$$Z(s) = \frac{F}{v} = ms + b + \frac{k}{s} \tag{4.19}$$

oziroma razmerje med silo in pozicijo (x)

$$Z(s) = \frac{F}{r} = ms^2 + bs + k, (4.20)$$

kjer je m masa, b viskozno dušenje, k togost [16].

Za admitančno vodenje je potrebno še upoštevati podatek o silah in navorih, ki delujejo na vrhu robota. Kot omenjeno v poglavju ?? je bil na vrh robota pritrjen senzor sil in navorov JR3. Izmerjene sile in navori bodo označene s \mathbf{h}_e , referenčne sile in navori pa z \mathbf{h}_{ref} . Napaka sile je tako definirana kot:

$$\tilde{\mathbf{h}} = \mathbf{h}_{ref} - \mathbf{h}_e. \tag{4.21}$$

Sila kot rezultat delovanja robota na okolico je odvisna od hitrosti oz. pozicije vrha robota. Premikal se bo v smeri želene sile. Zato lahko napako sile dodamo v regulator lege 4.18. Definiramo referenčno pozicijo v odvisnosti od hitrosti

$$\mathbf{x}_{ref} = \mathbf{K}_{hP}\tilde{\mathbf{h}} + \mathbf{K}_{hI} \int_0^t \tilde{\mathbf{h}}.$$
 (4.22)

Dobili smo PI regulator sile interakcije. Čeprav je bilo pri definiciji mehanske impedance definirano, da je to razmerje med silo ter hitrostjo, se raje uporablja razmerje med silo ter pozicijo. Meritve sile so podvržene šumu, integrator pa deluje kot nizkopasovni filter. Z vpeljavo integratorja, dosežemo to, da se bo robot premikal v smeri želene sile s hitrostjo $\mathbf{K}_{hI} \int_0^t \tilde{\mathbf{h}}$.

Z vstavitvijo enačbe 4.22 v 4.18 je mogoče zapisati celotno regulacijsko enačbo za vodenje robota v zunanjih koordinatah z upoštevanjem delovanja zunanjih sil na vrh robota.

$$\mathbf{u} = \mathbf{K}_p \mathbf{J}^{-1} (\mathbf{K}_{hP} \tilde{\mathbf{h}} + \mathbf{K}_{hI} \int_0^t \tilde{\mathbf{h}} d\xi - \mathbf{x})$$
 (4.23)

4.4 Krmiljenje z inverzno dinamiko

Navor proizveden v motorjih robota je linearno odvisen od toka, ki gre v motor. Krmilnik servo motorjev robota PA-10 uporablja P regulator toka za krmiljenje motorjev v navornem načinu. Problem vodenja robota v zunanjih koordinatah se tako prevede v problem določevanja primernega navora za opravljanje naloge. Navore lahko izračunamo s pomočjo inverznega dinamičnega modela, kar zahteva dobro poznavanje dinamičnih parametrov. Dinamičen model je bil opisan v 2.2. V nadaljevanju bomo opisali vodenje po zunanjih in po notranjih koordinatah. Enačbo 2.10 zapisali drugače in sicer brez upoštevanja zunanjih sil na vrh manipulatorja, $\mathbf{h}_o = 0$. Dodatno bomo vpeljali še novo veličino

$$\mathbf{n}(q, \dot{q}) = \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}})\dot{\mathbf{q}} + \mathbf{F}_f(\dot{\mathbf{q}}, \mathbf{q}) + \mathbf{g}(\mathbf{q}), \tag{4.24}$$

ki združuje vse dinamične parametre razen vztrajnosti. Sedaj zapišemo dinamičen model robota v skrajšani obliki

$$\tau(\ddot{\mathbf{q}}, \dot{\mathbf{q}}, \mathbf{q}) = \mathbf{B}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{n}(\mathbf{q}, \dot{\mathbf{q}}) \tag{4.25}$$

4.4.1 Vodenje v notranjih koordinatah

Preden se lotimo vodenja v zunanjih koordinatah je najprej potrebno definirati vodenje robota po notranjih koordinatah. Vhodna veličina je navor zato bomo zapisali

$$\tau(q, \dot{q}, \ddot{q}) = \mathbf{u}.\tag{4.26}$$

Sedaj definiramo še približke dinamičnih parametrov robota $\hat{\bf B}$ in $\hat{\bf n}$. Navor za sledenje referenčnemu pospešku $\ddot{\bf q}_{ref}$ sedaj izračunamo z

$$\mathbf{u} = \hat{\mathbf{B}}(\mathbf{q})\ddot{\mathbf{q}}_{ref} + \hat{\mathbf{n}}(q, \dot{q}). \tag{4.27}$$

Vstavimo 4.27 v 4.25

$$\hat{\mathbf{B}}(\mathbf{q})\ddot{\mathbf{q}}_{ref} + \hat{\mathbf{n}}(q, \dot{q}) = \mathbf{B}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{n}(\mathbf{q}, \dot{\mathbf{q}})$$
(4.28)

in s predpostavko, da velja $\hat{\mathbf{B}} = \mathbf{B}$ in $\hat{\mathbf{n}} = \mathbf{n}$ lahko zapišemo

$$\ddot{\mathbf{q}}_{ref} = \ddot{\mathbf{q}}.\tag{4.29}$$

Enačba nam pravi, da v kolikor dobro poznamo dinamičen model, se bodo sklepi vrteli z referenčno hitrostjo [11]. Ker pa dinamičnih parametrov robota v praksi nikoli dovolj natančno ne poznamo se med referenčnim in dejanskim pospeškom pojavi napaka kar privede do napake v končni poziciji sklepov. Zato je smiselno referenčnemu pospešku dodati še regulacijo hitrosti ter pozicije

$$\boldsymbol{\alpha} = \ddot{\mathbf{q}}_{ref} + \mathbf{K}_p(q_{ref} - q) + \mathbf{K}_d(\dot{\mathbf{q}} - \dot{\mathbf{q}}). \tag{4.30}$$

 $\boldsymbol{\alpha}$, ki predstavlja izračunane pospeške, sedaj vstavimo v enačbo 4.27 namesto $\boldsymbol{\ddot{q}}_{ref}$ in dobimo končno enačbo za vodenje preko inverzne kinematike

$$\mathbf{u} = \hat{\mathbf{B}}(\mathbf{q})(\ddot{\mathbf{q}}_{ref} + \mathbf{K}_p(q_{ref} - q) + \mathbf{K}_d(\dot{\mathbf{q}} - \mathbf{q})) + \hat{\mathbf{n}}(q, \dot{q}). \tag{4.31}$$

Če sedaj primerjamo α z dejanskim pospeškom v sklepih lahko zapišemo dinamiko signala napake, ki določa kako signal napake s časom limitira poroti nič

$$\ddot{\tilde{\mathbf{q}}} + \mathbf{K}_d \dot{\tilde{\mathbf{q}}} + \mathbf{K}_p \tilde{\mathbf{q}} = 0. \tag{4.32}$$

Enačbo lahko prevedemo v Laplace-ov prostor

$$s^2 + \mathbf{K}_d s + \mathbf{K}_p \tag{4.33}$$

in opazimo, da je to prenosna funkcija drugega reda. Sistem bo asimptotično stabilen, če sta \mathbf{K}_p in \mathbf{K}_d pozitivno definitni. Nesklopljenost sistema dobimo tako, da sta matriki diagonalni in diagonalne člene zapišemo v obliki $\mathbf{K}_{p_{ii}} = \omega^2 n_{ii}$ in $\mathbf{K}_{d_{ii}} = 2\xi_i \omega_{n_{ii}}$ [11], kjer je ω lastna frekvenca in ξ dušenje sistema drugega reda.

Shema takega vodenja je prikazana na sliki 4.4.

Slika 4.4: Bločna shema vodenja po notranjih koordinatah preko inverzne dinamike.

4.4.2 Vodenje v zunanjih koordinatah

V 4.2.2 smo robota vodili po hitrostih v sklepih in je bilo zato potrebno definirati tudi hitrost vrha robota. Pri vodenju preko inverzne dinamike pa smo pokazali, da je potrebno definirati ustrezne pospeške. Tako je sedaj potrebno izpeljali takšen α , da bo robot sledil referenčnim pospeškom v zunanjih koordinatah. Spomnimo sedaj na relacijo med hitrosti v sklepih in hitrostih na vrhu robota

$$\dot{\mathbf{x}} = \mathbf{J}(\mathbf{q})\dot{\mathbf{q}}.\tag{4.34}$$

in njen odvod

$$\ddot{\mathbf{x}} = \mathbf{J}(\mathbf{q})\ddot{\mathbf{q}} + \dot{\mathbf{J}}(\mathbf{q})\dot{\mathbf{q}}.\tag{4.35}$$

V enačbi zamenjamo $\ddot{\mathbf{x}}$ z \mathbf{a} in $\ddot{\mathbf{q}}$ z $\pmb{\alpha}$. Izpostavimo $\pmb{\alpha}$

$$\alpha = \mathbf{J}^*(\mathbf{q})(\mathbf{a} - \dot{\mathbf{J}}(\mathbf{q}, \dot{\mathbf{q}})\dot{\mathbf{q}}) \tag{4.36}$$

Sedaj lahko definiramo regulator, ki bo dajal take pospeške v sklepih, da bo vrh robota sledil referenčni legi. Avtor v [1] predlaga sledeč regulator pospeškov

$$\mathbf{a} = \ddot{\mathbf{x}}_{ref} + \mathbf{K}_d \dot{\tilde{\mathbf{x}}} + \mathbf{K}_p \tilde{\mathbf{x}} \tag{4.37}$$

Z vstavitvijo 4.37 v 4.36 dobimo končno enačbo pospeškov v sklepih

$$\boldsymbol{\alpha} = \mathbf{J}^*(\mathbf{q})(\ddot{\mathbf{x}}_{ref} + \mathbf{K}_d \dot{\tilde{\mathbf{x}}} + \mathbf{K}_p \tilde{\mathbf{x}} - \dot{\mathbf{J}}(\mathbf{q}, \dot{\mathbf{q}}) \dot{\mathbf{q}})$$
(4.38)

Shema takega vodenja je prikazana na sliki 4.5.

Slika 4.5: Bločna shema vodenja po zunanjih koordinatah preko inverzne dinamike.

4.5 Interakcija z okoljem

Pri izpeljavi vodenja lege robota z inverzno dinamiko smo predpostavili, da so sile interakcije \mathbf{h}_o enake nič. Ker pa to v primeru, da je robot v kontaktu z okoljem ni res, je potrebno pogledati kaj se zgodi takrat, ko te sile delujejo na robota. Vzemimo spet dinamičen model robota, ki ga vodimo preko reguliranega pospeška $\boldsymbol{\alpha}$ in dodamo silo interakcije

$$\mathbf{u} = \hat{\mathbf{B}}(\mathbf{q})\boldsymbol{\alpha} + \hat{\mathbf{n}}(q, \dot{q}) + \mathbf{J}^T \mathbf{h}_o. \tag{4.39}$$

Vidimo, da bodo sedaj navori v sklepi različni od izračunanih preko inverznega dinamičnega modela in posledično bo med želenim vrhom robota in dejanskim vrhom robota nastala napaka. Vrh robota bo z neko silo deloval na okolje, ki pa jo lahko s senzorjem na vrhu robota oz. med prijemalom in vrhom, izmerimo. Vprašanje je sedaj robota vodimo tako, da bo na okolje deloval z želeno silo.

V literaturi najdemo izraz impedančno vodenje. Ta način vodenja je analogen admitančnemu opisanem v 4.3. V tem primeru gre za posredno vodenje sile preko pozicije. Ker pa je uspešnost vodenja odvisna od togosti okolja je bolje izbrati metodo za direktno vodenje po sili [1].

Želja po vodenju sile bi načeloma predvidevala uporabo PD regulatorja za sil. Ker pa je izmerjen signal sile podvržen merilnemu šumu, predstavlja odvajanje tega signala ojačanje šuma, kar pa vodi v nestabilnost. Zato se v praksi raje

Slika 4.6: Vrh robota v kontaktu z okoljem.

implementira vodenje sile in hkrati vodenje pozicije vrha robota.

Sila, ki nastane ob kontaktu z okoljem, bo modelirana z modelom vzmeti in sicer

$$\mathbf{h}_e = \mathbf{K}(\mathbf{x} - \mathbf{x}_e),\tag{4.40}$$

kjer je \mathbf{x} lega vrha robota, \mathbf{x}_e lega normale na površino okolice in \mathbf{K}_e togost okolice. Situacijo prikazuje slike 4.6.

Za vodenje lege vrha robota bomo vzeli enačbo 4.38. Ker gre za vodenje po poziciji bomo $\ddot{\mathbf{x}}_{ref}$ postavili na nič in vpeljali referenčno poziciji vrha \mathbf{x}_{ref} . Enačba ima sedaj obliko

$$\mathbf{a} = \mathbf{K}_P(\mathbf{x} - \mathbf{x}_f) - \mathbf{K}_d \dot{\mathbf{x}},\tag{4.41}$$

kjer je \mathbf{x} lega vrha robota, \mathbf{x}_f pa pozicija odvisna od napake med silo želeno in dejansko silo interakcije. Za \mathbf{x}_f izberemo proporcionalni regulator in zapišemo

$$\mathbf{x}_f = \mathbf{C}(\mathbf{h}_{ref} - \mathbf{h}_e) = \mathbf{C}\tilde{\mathbf{h}},\tag{4.42}$$

kjer je matrika C diagonalna matrika in ima pomen podajnosti.

Opazimo lahko, da tako krmiljen robot nikoli ne bo dosegel referenčne sile, saj P regulator v statičnih razmerah napake ne izniči. Zato v matriko C dodamo tudi integratorski del in tako zapišemo matriko C kot

$$\mathbf{C} = \mathbf{C}_P + \mathbf{C}_I \int_0^t (.)d\xi \tag{4.43}$$

Slika 4.7:

Zapišimo sedaj končno enačbo za regulacijo navorov v motorjih za sledenje referenčni sili na vrhu robot z vstavitvijo 4.41 v 4.27 in upoštevaje 4.42 ([1]):

$$\mathbf{u} = \hat{\mathbf{B}}(\mathbf{q})\mathbf{J}^*(\mathbf{K}_P(\mathbf{x} - (\mathbf{C}_P\tilde{\mathbf{h}} + \mathbf{C}_I \int_0^t \tilde{\mathbf{h}} d\xi) - \mathbf{K}_d\dot{\mathbf{x}}) + \hat{\mathbf{n}}(q, \dot{q}). \tag{4.44}$$

Shema takega vodenja je na sliki 4.7

5 Implementacija

Poznavanje teoretičnih osnov za vodenje robotov nam omogoča realizacijo krmiljenja na način, ki je najbolj primeren zadani nalogi. V zgornjem poglavju so bile te osnove opisane in prikazane so bile blokovne sheme vodenja. Iz tistih shem, je videti, da je za implementacijo različnih vodenj potrebno poznati različno količino parametrov. Pri hitrostnem vodenju je enostavneje, saj je potrebno določiti le parametre ojačanj regulatorja. Pri navornem vodenju robota pa določitev parametrov še zdaleč ni enostaven problem saj je potrebno poznati dinamične parametre samega robota.

V nadaljevanju tega poglavja, bo opisana implementacija algoritmov vodenja, ki so bili opisani v 4. Implementacija vodenj je hkrati tudi preizkus s katerim se bo ovrednotilo namensko narejen strežnik. Preverilo se do katere frekvence in s kakšnimi ojačanji je lahko vodenje v kontaktu z okolice še stabilno.

Vodenje bo je bilo realizirano z uporabo strežnika opisanega v poglavju 3. Za komunikacijo s strežnikom je bilo narejeno visoko nivojsko vodenje v programskem paketu MATLAB® SIMULINK®. Razlogi za izbiro omenjenega programskega paketa so bile dobre predhodne izkušnje ter dobro poznavanje delovanja programa s strani avtorjev. SIMULINK® bloki, ki se so se uporabljali in bodo v nadaljevanju prikazani na slikah, so podrobneje opisani v dodatku B.

42 Implementacija

5.1 Hitrostno krmiljenje

Implementacija hitrostnega krmiljenja robota je potekala postopoma. Najprej je bilo realizirano pozicijsko vodenje sklepov nato pa vodenje v zunanjih trajektorijah. Ovrednotilo se je, kakšna je dinamika odziva na signal referenčni signal stopnice in kakšna je napaka ob sledenju signalu sinusne oblike s spreminjajočo se frekvenco.

- 5.1.1 Vodenje po trajektoriji
- 5.1.2 Admitančno vodenje
- 5.2 Navorno krmiljenje
- 5.2.1 Kompenzacija trenja
- 5.2.2 Vodenje po trajektoriji
- 5.2.3 Vodenje v kontaktu z okolico

6 Zaključek

Zaključek Zaključek

Literatura

- [1] B. Siciliano, L. Sciavicco, L. Villani in G. Oriolo, *Robotics, Modelling, Plan*ning and Control. London: Springer, 2009.
- [2] Mitsubishi Heavy Industries, Portable General Purpose Intelligent Arm Operating Manual, rev. 1 izd.
- [3] M. H. I. Ltd., "Mitsubishi clean room robot," Seminarska naloga, 2003.
- [4] J. J. Craig, *Introduction to Robotics*. Z.D.A.: Pearson Education International, 2005.
- [5] N. D. Vuong in M. H. J. Ang, "Dynamic model identification for industrial robots," *Acta Polytechnica Hungarica*, 2009.
- [6] R. van der Aalst, M. H. J. Ang in H. Nijmeijer, "Dynamic identification of a mitsubishi pa-10 robotic manipulator," ICAR, 1999.
- [7] R. Jamisola, M. J. Ang, T. M. Lim, O. Khatib in S. Y. Lim, "Dynamics identification and control of an industrial robot," *ICAR*, 1999.
- [8] T. Petrič in M. Munih, "Kompenzacija trenja in gravitacije na robotu mitsubishi pa-10," *Seminarska naloga*, 2010.
- [9] J. Lenarčič in T. Bajd, Robotski mehanizmi. Ljubljana: Univerza v Ljubljani, Založba FE in FRI, 2003.
- [10] A. M. Almassri, W. Z. W. Hasan, S. A. Ahmad, A. J. Ishak, A. M. Ghazali, D. N. Talib in C. Wada, "Pressure sensor: State of the art, design, and

46 Literatura

- application for robotic hand," *Hindawi Publishing Corporation*, *Jurnal of Sensors*, 2014.
- [11] M. Mihelj, T. Bajd in M. Munih, *Vodenje robotov*. Ljubljana: Univerza v Ljubljani, Založba FE in FRI, 2011.
- [12] S. D. Eppinger in W. P. Seering, "Three dynamic problems in robot force control," *IEEE Transactions on Robotics and Automation*, str. 751 – 758, 1992.
- [13] Contemporary Controls, ARCNET Tutorial.
- [14] I. JR3, "JR3, Installation manual for force torque sensors with internal electronics." Dosegljivo: http://www.jr3.com/product-manuals.html. [Dostopano: 6. 17. 2015].
- [15] I. JR3, "JR3, DPS-based force sensor receivers, software and installation manual." Dosegljivo: http://www.jr3.com/product-manuals.html. [Dostopano: 6. 17. 2015].
- [16] M. Mihelj, Vodenje robotov. Ljubljana: Univerza v Ljubljani, Založba FE in FRI, 2011.
- [17] D. Omr?en in B. Nemec, "Meritev gibanja kolena z industrijskim robotom avtomatska kompenzacija gravitacije prijemala," Strojni?ki vestnik, str. 87 97, 2002.
- [18] B. Zupančič, *Teorija regulacij*. Ljubljana: Univerza v Ljubljani, Založba FE in FRI.

Dodatek

48 Dodatek

A Dodatek 1

50 Dodatek 1

B Dodatek 2

52 Dodatek 2

C Dodatek 3

There is no spoon.