第九章 醛酮醌 (3)

主要内容

醛酮的化学性质(III)

- 羰基 α 位 H 的弱酸性及烯醇负离子
- 醛酮的羟醛缩合 (Aldol缩合反应)
- ■Perkin反应

-. 醛酮羰基 α 位 H 的弱酸性和烯醇负离子

•一些典型的C—H的酸性比较

化合物	p <i>Ka</i>	化合物	p <i>Ka</i>
H-CH ₂ CH ₃	~50	H-CH ₂ ·COC ₂ H ₅	~24
H-CH ₂ CH ^C H ₂	35	H-CH ₂ CCH ₃	20
H-CH ₂ -	34	H-CH ₂ ·C-	16
H-CH ₂ C≣N	~25	п-сп2с-	
H-CH ₂ SCH ₃	29	H-CH ₂ N O	10.2

一些羰基α位H酸性的比较

化合物	p <i>Ka</i>
H ₂ C-C-OC ₂ H ₅	~24
H ₂ C—C—CH ₃	20
$C_2H_5O-\overset{O}{C}-CH-\overset{O}{C}-OC_2H_5$	12.7
H ₃ C-CH-C-OC ₂ H ₅	10.7
Н ₃ С— <mark>С</mark> —СН—С—СН ₃	9.0

β-双羰基化 合物(双活 化),α-氢 酸性相对较 强。

二. 羟醛缩合反应 (Aldol缩合, 醇醛缩合)

烯醇负离子性质分析

羟醛缩合、醇醛缩合

2.1 醛酮的自身羟醛缩合(同种醛酮之间的缩合)

- ✓ 反应可逆
- ✓ 强碱有利于脱水成不饱和醛酮
- ✓ 一些酮的反应不易脱水,需用辅助方法脱水。
- ✓ 与Cannizzaro反应区别: Aldol缩合所用碱浓度相对较稀,而 Cannizzaro反应则在浓碱下进行。

例: 醛酮的自身羟醛缩合

2
$$CH_3CH_2CH_2CH=0$$
 $CH_3CH_2CH_2CH_2CHCHCH=0$
 C_2H_5

2 $C_7H_{15}CH=0$
 $C_7H_{15}CH=0$
 C_6H_{13}
 CH_3
 CH_3

例: 丙酮的缩合(反应较难进行)

不能直接脱水

丙酮

二丙酮醇

bp: 56°C

bp: 164°C

$$\begin{array}{c|c}
 & CH_3 \\
\hline
 & \Delta \\
\hline
 & C=CH-C-CH_3 \\
\hline
 & H_3C
\end{array}$$

异丙叉丙酮

Soxhlet 提取器

• 羟醛缩合机理

• 羟醛缩合产物的分解机理(羟醛缩合的逆反应)

2.2 交叉羟醛缩合 (两种不同醛酮之间的羟醛缩合)

无选择性的交叉羟醛缩合一般意义不大!

• 一些有意义的交叉羟醛缩合反应

醛 (无α氢) + 醛酮 (有α氢)

> 分子内羟醛缩合

不易消除H₂O

羟醛缩合在合成上的应用

- 合成 β-羟基醛(酮)
- 合成 α, β-不饱和醛(酮)
- 转换成其它相关化合物

β-羟基醛(酮)

α, β-不饱和醛(酮)

例: 由简单化合物合成

CH₃

• 反合成分析:

$$CH_3$$
 CH_3 CH_3

• 合成路线

$$CH_3 \xrightarrow{\text{CH}_3} \frac{\text{(1) } CH_3MgX}{\text{(2) } H_2O} \xrightarrow{\text{CH}_3} \frac{\text{OH}}{\text{CH}_3} \xrightarrow{\text{CH}_3} \frac{\text{H}^+}{\Delta}$$

$$\begin{array}{c|c}
\hline
(1) O_3 \\
\hline
(2) H_2O
\end{array} \longrightarrow \begin{array}{c}
CH_3 \\
CH_3
\end{array} \longrightarrow \begin{array}{c}
CH_3 \\
CH_3
\end{array}$$

三. Perkin反应:

芳醛与含有 α -H的脂肪族酸酐,在相应酸的碱金属盐的存在下共热发生缩合生成 α , β - 不饱和羧酸的反应。

CHO +
$$(CH_3CH_2CO)_2O$$
 $\frac{CH_3CH_2COONa}{130\sim135^0C, 30h, 60\sim75\%}$ — CH — CH_3CH_2COOH — CH_3CH_2COOH — CH_3CH_2COOH — CH_3CH_2COOH — CH_3CH_2COOH — CH_3CH_2COOH

Perkin 反应的一般形式:

Ar-CHO +
$$(RCH_2CO)_2O$$
 $\xrightarrow{RCH_2COONa}$ \xrightarrow{R} \xrightarrow{R} \xrightarrow{COOH}

Perkin

反应机理

本次课小结:

- 醛酮的烯醇负离子化
- 醛酮的羟醛缩合反应(重点), 羟醛缩合反应机理
- ●Perkin反应