전산통계 과제#4

컴퓨터소프트웨어 학부 2018008559 신상윤

코드

결과

(가) 먼저 모분산을 모르므로 모분산 동일성에 대하여 검정해야 한다.

검정통계량 F =
$$\frac{0.792038^2}{0.6286566^2}$$
 =1.587322156

Equality of Variances					
Method	Num DF	Den DF	F Value	Pr > F	
Folded F	11	11	1,59	0,4558	

유의수준 5%에서 기각역에 포함되지 않으므로 H0를 채택한다. 따라서 모분산이 동일하다 할 수 있다(pooled)

이때 검정통계량은
$$s_p^2 = \frac{11*0.792038^2 + 11*0.6286566^2}{22}$$

$$\mathsf{T} = \frac{2.4717 - 0.875 - 0 (\textit{H0}: \mu_1 = \mu_2)}{\sqrt{s_p^2 * (\frac{1}{12} + \frac{1}{12})}} \ = \ 5.469847461$$

Method	Variances	DF	t Value	Pr > [t]
Pooled	Equal	22	5.47	<,0001
Satterthwaite	Unequal	20,922	5.47	<.0001
Cochran	Unequal	11	5,47	0,0002

기각역에 포함되므로 유의수준 5%에서 H0를 기각한다. 따라서 모평균이 같다 할 수 없다. 즉, 모평균에 차이가 있다.

(나)

신뢰구간은 위에서 구한 합동 추정량을 이용해 구할 수 있다.

$$\overline{x_1} - \overline{x_2} = 2.4717 - 0.875 = 1.5967$$

$$t_{0.025} * 0.71502913 \sqrt{\frac{1}{12} + \frac{1}{12}} = 0.605420137$$

95% 신뢰구간: (0.991279863, 2.202120137)

rank	Method	Mean	95% CI	_ Mean	Std Dev	95% CL	Std Dev
good		2,4717	1,9684	2,9749	0,7920	0,5611	1,3448
bad		0,8750	0,4756	1,2744	0,6287	0,4453	1,0674
Diff (1-2)	Pooled	1,5967	0,9913	2,2020	0,7150	0,5530	1,0120
Diff (1-2)	Satterthwaite	1,5967	0,9895	2,2039			

코드

결과

H0 :
$$\sigma_1^2=\sigma_2^2$$
 H1 : $\sigma_1^2\neq\sigma_2^2$ 검정통계량 F = $\frac{0.1042^2}{0.0186^2}$ = 31.384

Equality of Variances				
Method	Num DF	Den DF	F Value	Pr > F
Folded F	6	5	31,32	0,0016

기각역에 포함되므로 HO를 기각한다. 유의수준 5% 하에서 두 모집단의 분산이 동일하다고 할 수 없다.

코드

결과

H0 :
$$\mu_1-\mu_2=0$$
 H1 : $\mu_1-\mu_2\neq 0$ 검정통계량 T = $\frac{3.9-0(\because H0)}{8.7743/\sqrt{10}}$ = 1.405568863

DF	t Value	Pr > [t]
9	1,41	0,1934

기각역에 포함되지 않으므로 H0를 채택한다. 유의수준 5% 하에서 단백질 함량의 평균에 차이가 없다.

코드

결과

(가) H0 :
$$\sigma_A^2 \leq \sigma_B^2$$
 H1 : $\sigma_A^2 > \sigma_B^2$ 검정통계량 F = $\frac{1.895^2}{0.2014^2}$ = 88.5318

Equality of Variances				
Method	Num DF	Den DF	F Value	Pr > F
Folded F	9	10	88,57	<.0001

기각역에 포함되므로 HO를 기각한다. 유의수준 5% 하에서 A방법의 분산이 B방법의 분산보다 크다 할 수 있다.

(나) 위에 결과를 이용하여 두 분산의 비에 대한 95% 신뢰구간을 구하면

$$(\frac{1}{F_{0.025}(9,10)}\frac{s_1^2}{s_2^2},F_{0.025}(10,9)\frac{s_1^2}{s_2^2}) \ = \ (23.43,\ 350.93) \ \text{oleh}.$$

코드

결과

H0 :
$$\mu_1 - \mu_2 = 0$$
 H1 : $\mu_1 - \mu_2 \neq 0$ 검정통계량 T = $\frac{3.3}{3.0569/\sqrt{10}}$ = 3.41375

DF	t Value	Pr > [t]
9	3,41	0,0077

기각역에 포함되므로 H0를 기각한다. 따라서 유의수준 5% 하에서 평균에 차이가 있다고 할 수 있다. 이는 4-2 결과와 같다.

(사)

	위치	모수 검정:	Mu0=0	
검정 통계		통계량	p ZJ	
스튜던트의 t	t	3,413793	Pr > Itl	0,0077
부호	М	3	Pr >= M	0,1094
부호 순위	S	23,5	Pr >= S	0,0117

검정통계량 : 3.413793, 유의수준 5%에서 <u>기각역</u> : T >= $T_{\alpha}(9)$ = 1.83311 $\alpha=0.05$ 하에서 HO를 기각한다. 따라서 평균적으로 사슴의 뒷다리가 앞다리보다 길다고 할 수 있다.

결과

철사 종류 A : σ_1 = 3, 여기서 표본 20개 추출 x_1 = 32.5 —

전기 처리한 철사 종류 A : σ_2 = 4, 여기서 표본 25개 추출 x_2 = 36.4

(가)

$$32.5 - 1.96* \frac{3}{\sqrt{20}} \le \mu_1 \le 32.5 + 1.96* \frac{3}{\sqrt{20}}$$

 $31.19 \le \mu_1 \le 33.81$

마찬가지로 34.83 $\leq \mu_2 \leq$ 37.97

(나)

$$32.5 - 36.4 - 1.96\sqrt{\frac{3^2}{20} + \frac{4^2}{25}} \leq \mu_1 - \mu_2 \leq 32.5 - 36.4 + 1.96\sqrt{\frac{3^2}{20} + \frac{4^2}{25}}$$

$$-5.95 \leq \mu_1 - \mu_2 \leq -1.85$$

(다)

검정통계량 Z =
$$\frac{32.5 - 36.4}{\sqrt{\frac{9}{20} + \frac{16}{25}}}$$
 = -3.74

기각역에 포함되므로 H0를 기각한다.

따라서 유의수준 5% 하에서 $\mu_1 < \mu_2$ 라 할 수 있다.

이때 p_value는 0.00009이다.

코드

결과

(가) 먼저 모분산을 모르므로 모분산 동일성에 대하여 검정해야 한다.

검정통계량 F =
$$\frac{3.1945^2}{2.4618^2}$$
 = 1.6838

Equality of Variances					
Method	Num DF	Den DF	F Value	Pr > F	
Folded F	11	11	1,68	0,4009	

기각역에 포함되지 않으므로 H0를 채택한다. 따라서 유의수준 5% 하에서 $\sigma_1^2=\sigma_2^2$ 라 할 수 있다(pooled)

이때 검정통계량은

$$s_p^2 = \frac{11*3.1945^2 + 11*2.4618^2}{22} = 8.132644$$

$$T = \frac{31.75 - 28.6667}{\sqrt{s_p^2 * (\frac{1}{12} + \frac{1}{12})}} = 2.64835$$

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	22	2,65	0.0147
Satterthwaite	Unequal	20,659	2,65	0,0152

 $\mathrm{H0}: \mu_1 \leq \mu_2 \quad \mathrm{H1}: \mu_1 > \mu_2$

기각역에 포함되므로 H0를 기각한다.

따라서 유의수준 5% 하에서 A품종이 B품종보다 수확량이 많다고 할 수 있다.

(나) 수확량의 차에 대한 95% 신뢰구간은 위에서 구한 값들을 이용해 구할 수 있다.

$$\overline{x_1} - \overline{x_2} = 31.75 - 28.6667 = 3.0833$$

$$2.074*2.8518\sqrt{\frac{1}{12} + \frac{1}{12}} = 2.415$$

95% 신뢰구간: (0.6687, 5.4979)

type	Method	Mean	95% CI	_ Mean	Std Dev	95% CL	Std Dev
Α		31,7500	29,7203	33,7797	3,1945	2,2629	5,4238
В		28,6667	27,1025	30,2308	2,4618	1,7439	4,1799
Diff (1-2)	Pooled	3,0833	0,6689	5,4978	2,8518	2,2055	4,0363
Diff (1-2)	Satterthwaite	3,0833	0,6598	5,5069	-		

코드

결과

H0 :
$$\mu_1 - \mu_2 \leq 0$$
 H1 : $\mu_1 - \mu_2 > 0$ 검정통계량 T = $\frac{0.5833}{1.3114/\sqrt{12}}$ = 1.5408

DF	t Value	Pr > [t]
11	1,54	0,1516

기각역에 포함되지 않으므로 HO를 채택한다. 따라서 유의수준 5% 하에서 전문회사에 맡기는 것이 빠르다고 할 수 없다.

코드

결과

(가) H0 :
$$\sigma_1^2 \leq \sigma_2^2$$
 H1 : $\sigma_1^2 > \sigma_2^2$ 검정통계량 F = $\frac{2.2778^2}{1.1784^2}$ = 3.7363

Equality of Variances				
Method	Num DF	Den DF	F Value	Pr > F
Folded F	14	10	3,74	0,0420

기각역에 포함되므로 H0를 기각한다.

따라서 유의수준 5% 하에서 7시간 이상 수면을 취하는 집단이 7시간 미만 수면을 취하는 집단보다 에너지 소비량의 분산이 크다고 할 수 있다. (나) 먼저 두 집단의 분산의 비에 대한 95% 신뢰구간을 구해보면

$$(\frac{1}{F_{0.025}(14,10)}*3.7363,F_{0.025}(10,14)*3.7363)$$

=(1.0523, 11.7577) 이고, 루트를 씌워주면 표준편차 비의 신뢰구간이 된다.

따라서 표준편차의 비에 대한 95% 신뢰구간은

$$1.02585 \leq rac{\sigma_1}{\sigma_2} \leq 3.42895$$
 이다.