1. Seja $C = A \cup B$, onde $A \in B$ são dados por

$$A = \{x \in \mathbb{R} : 2 < |x - 1| \le 3\}$$
 e $B = \{x \in \mathbb{R} : |3x + 6| = 9\}$.

- (a) Verifique que $C=\{-5,1\}$ \cup [-2,-1[\cup]3,4] .
 - Para A, partir de $2 < |x-1| \le 3 \iff 2 < x-1 \le 3 \lor -3 \le x-1 < -2$, e obter $A = [-2, -1[\ \cup \]3, 4].$
 - Para B, partir de $|3x+6| = 9 \iff 3x+6 = 9 \lor 3x+6 = -9$, e obter $B = \{-5, 1\}$.
- (b) Determine o conjunto dos majorantes, o conjunto dos minorantes, o supremo e o ínfimo do conjunto C.

Majorantes: $[4, +\infty[$; sup C=4; Minorantes: $]-\infty, -5]$; inf C=-5.

(c) Diga, justificando, se C é aberto ou fechado.

Cnão é aberto porque int $C=]-2,-1[\,\cup\,]3,4[\,,\,\log$ o int $C\neq C.$ Cnão é fechado porque $\overline{C}=\{-5,1\}\,\cup\,[-2,-1]\cup[3,4]\,,\,\log$ $\overline{C}\neq C.$

(d) Determine a fronteira, o derivado e o conjunto dos pontos isolados de C.

fr $C = \{-5, -2, -1, 1, 3, 4\}; \ C' = [-2, -1] \cup [3, 4]; \ \text{Pontos isolados:} \ \{-5, 1\}.$

2. Diga, justificando, se a seguinte afirmação é verdadeira ou falsa: se D é um subconjunto de \mathbb{R} e $f \colon D \longrightarrow \mathbb{R}$ é uma função contínua que assume os valores 1 e 3, então f também assume o valor 2.

Falsa. Considere-se $D = [0, 1] \cup [2, 3], f(x) = 1$ se $x \in [0, 1]$ e $f(x) = 3, x \in [2, 3]$.

3. Determine $\lim_{x\to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right)$.

 $\lim_{x\to 0} \left(\frac{1}{\sin x} - \frac{1}{x}\right) = \lim_{x\to 0} \frac{x - \sin x}{x \sin x} \text{ , indeterminação do tipo } \frac{0}{0} \text{ .}$

 $\lim_{x\to 0}\frac{(x-\sin x)'}{(x\sin x)'}=\lim_{x\to 0}\;\frac{1-\cos x}{\sin x+x\cos x}\;,\;\text{novamente indeterminação do tipo}\;\frac{0}{0}\;.$

$$\lim_{x \to 0} \frac{(1 - \cos x)'}{(\sin x + x \cos x)'} = \lim_{x \to 0} \frac{\sin x}{\cos x + \cos x - x \sin x} = 0.$$

Logo, o limite proposto vale 0.

- 1. Seja $D=\{x\!\in\!\mathbb{R}\!\setminus\!\mathbb{Q}:\,|x|<1\}\,\,\cup\,\,\{x\!\in\!\mathbb{Q}:\,0\leq x<\pi\}.$
 - (a) Determine o conjunto dos majorantes, o conjunto dos minorantes, o supremo e o ínfimo do conjunto D.
 - (b) Diga, justificando, se D é fechado ou aberto.
 - (c) Apresente, quando possível, pontos $a \in b$ tais que

$$a \in D \text{ mas } a \notin \text{fr} D \text{ e } b \in D' \text{ mas } b \notin D.$$

- 2. Dê exemplo ou justifique porque não existe uma função contínua $f:[0,2] \longrightarrow \mathbb{R}$ tal que $f([0,2]) = \{1,2\}$.
- 3. Determine $\lim_{x \to 0} \frac{x \cos x \sin x}{x^2} .$

1. Considere os conjuntos

$$A = \{x \in \mathbb{R} : |x+3| = |2x|\}$$
 e $B = \{x \in \mathbb{R} : x > 0 \land |2x+1| \le 5\}$.

- (a) Mostre que $A \cup B =]0,2] \cup \{-1,3\}$.
- (b) Determine o conjunto dos majorantes, o conjunto dos minorantes, o supremo e o ínfimo de $A \cup B$.
- (c) Determine int $(A \cup B)$, $\overline{A \cup B}$, $\operatorname{fr}(A \cup B)$, $(A \cup B)'$ e o conjunto dos pontos isolados de $A \cup B$.
- 2. Dê exemplo ou justifique porque não existe uma função contínua $f:[0,2] \longrightarrow \mathbb{R}$ que assume os valores 1 e π mas não assume o valor 2.
- 3. Determine $\lim_{x \to 0} \frac{\sin x x}{x \sin x} .$

1. Seja $R = P \cup Q$, onde

$$P = \{x \in \mathbb{R} : |2x+1| = 5\}$$
 e $Q = \{x \in \mathbb{R} : x \ge 0 \land |x+4| \ge 6\}.$

- (a) Verifique que $R = \{-3\} \cup [2, +\infty[$.
- (b) Determine o conjunto dos majorantes, o conjunto dos minorantes e, se existirem, o supremo e o ínfimo do conjunto R.
- (c) Apresente, quando possível, pontos a, b e c tais que

$$a \in R \text{ mas } a \notin \text{int} R, b \in \overline{R} \text{ mas } b \notin \text{fr} R \text{ e } c \in R \text{ mas } c \notin R'.$$

- 2. Dê exemplo ou justifique porque não existem funções contínuas $f,g\colon\mathbb{R}\longrightarrow\mathbb{R}$ tais que $g\circ f(x)=\left\{ egin{array}{ll} 1 & \mbox{se }x\in\mathbb{Q}\,, \\ 2 & \mbox{se }x\in\mathbb{R}\backslash\mathbb{Q}\,. \end{array} \right.$
- 3. Determine $\lim_{x\to 0} \frac{\sin x + \cos x e^x}{x^2}$.