Date :	

N SINFERING MECHANICS

Mechanics:

The science that describes and predicts the conditions of rait or motion of bodies under the action of forces is called mechanics.

It consists of:

- ·> Rigid body Mechanics
 ·> Deformable body mechanics
 ·> Fluid mechanics

Rigid Body:

The body in which deformation is zero or so small that it can be neglected is called rigid budy. The distance between any two given points on a rigid body remains constant in time regardless of external forces / moments exerted on it.

Date :	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Page:	*************************

(iii) Kinematia:

The study of motion of budies without ony reference to the forces causing motion or forces produced as a result of the motion is called

(iv) Kinetiu!

The study of the relationship between the forces and the resulting motion is called kinetics.

(v) Mechanics of deformable budies

It is known as strength of materials. The study dealing with internal force distribution and the deformation developed in actual engineering structures or muchine components is called mechanics of deformable budies.

(vi) Fluid mechanics:

The study of the liquids and gases (fluid) ort

fire!

Any action that changes or tends to change the state of rest or of uniform motion of hudy is called

It is vector quantity.

(i): Newton's law of Motion: a) first law: in its state of rest or of uniform motion, unless it is compelled to change that state by an external impressed force. Newton's second law a states that, " the rate of change of momentum of a body is directly proportional to the force acting on it and takes place in the direction of force applied." c) Third law: Newton's third law states that, "Every action has equal and opposite reaction. The force and reaction have the same magnitude and line of action but opposite in cliraction." ii) Newton's law of Gravitation: "The force of attraction between two buclies is directly proportional to the product of the masses distance between them"

F & MiH2

Date :	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Page:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Parallelogram law states,

"when two forces acting on the particle represented by two adjacent sides of parallelogram, the diagonal connecting the two sides represents the resultant force 'R' in magnitude and direction"

(IV) Prenuiple of transmissibility:

Principle of transmissibility states that, "the wordstions of equilibrium or the motion of a rigid body remains unchanged if a force acting at a given point of the rigid body is replaced by a force of same magnitude and direction, but acting at a different point provided that the forces have the same line of action."

 $R = \sqrt{F_1^2 + 2F_1 E_2 \cos \theta + F_2^2}$ $tand = \frac{F_2 \sin \theta}{F_1 + F_2 \cos \theta}$ $If \theta = 90^\circ, \quad R = \sqrt{F_1^2 + F_2^2} \quad tand = \frac{F_2}{F_1}$ $If \theta = 0^\circ \quad R = F_1 + E_2 \quad tand = 0 \quad A = 0$

If 0=180° R=F1-F2 tand=0, x=0.

 $\phi = Fy$ $Fx = F\cos\theta$ $Fy = -F\sin\theta$

Resolution of forces

The process of replacing a single force 'F' acting on a particle by two or more forces with together have the same effect as that the of a single fone is called resolution of force into component.

fx = -fcos &	1
Fy Frind	Fce
- a	Ø Fain
-Foat	10

Fy = - Feo sin 8

If there are 'i' number of forces in system,

$$R_{x} = \sum F_{x_{i}} = \sum (F_{i}^{*}\cos\theta_{i})$$
 $R_{y} = \sum F_{y_{i}} = \sum (F_{i}^{*}\sin\theta_{i})$

Magnitude of resultant R = V(EFA;)2+(EFY;)2

Indination with H-axis: tand = Efv;

Date :	************
Dage:	*************************

60 EN

1 105 KN

35*

(Q.1)! If	five	forces act	on	the	hartide	· as	shown,
determine	the	resultant	and	its	angle	to the	e horizontal.

FEEN

45 km

 801° For $F_1 = 15 \, \text{KN}$, $F_{X_1} = F_1 \cos \theta$ $= 15 \times \cos 15^{\circ}$

:: Fal = 14.489 KN

Fy = F, 8in 0 = \$ 15x8in15° . Fy = 3.882 kN

for $F_2 = 105 \text{ kN}$ $f_{12} = 0$ $F_{12} = 105 \text{ kN}$

For F3 = 75 kN

Fry

For Fy = 45 KN

Fx84 = -45 x 81035°

! Fx84 - 25 -811 LON

fyy = -45xcos35° .: Fyy = -36.862 KN

For F5 = 60 kN Fx5 = 46 60 x cos 40° 1: Fx5 = 45.693 kN

Fys = -60 x 8in 40°. -! Fys = -38. 567.

EFx = -40.359

E Fy: = 33.453.

	Date:
1	(R.27' Three forces act on particle '0' as figure.
1	Determine the value of F such that the resultant of this force is horizontal. Find the magnitude and direction of the fourth force which when acting along the given three fines will keep a 0 in
-	this torce is nonzontal. And the magnitude and
-	direction of the journ force which when acting
	along The given three fires will keep a 0 in
	equilibrium.
-	5010.
	Here, angle here F and $D = 40+10^{\circ}$ $= 50^{\circ}$
	angle here F and D = 40+10°
	30 kN fine acts hwards particle. 30
	Since the resultant force is horizontal, $\alpha = 0$.
-	Sol
1	$tan \alpha = \sum Fy = 0$
1	ie, (7+) & Fy = D
-	
	on -30 x sin 30° + 18 x sin 180° + F sin 50° = 0
	on F = 3081730° - 188in 10°
	sin 5v°
	! F=15.5 KN
	Since R (resultant) is horizontal,
	2 = 30 cm 30° + 18 x cm 10° + P15.5 x 855 cm 50°
	! R = 53.67 lcM.
	Let & be the equilibriant Efr=0.
N	

	# Types of Supp	ort or Cor	nection	- mandent	
	A	A Secretary	Laborate A		
Name	Example Repr	sentation	Reaction	Unknowns	Remarks
					Displacement
Smooth!	M	1		one	in vertical
Roller	1 6	99999	599999	(Ry)	direction is
Support	Ac		TRY		provented.
			\wedge	Two (RId) or	Diffacement in
Hinge /	17 /	1	minin humin	(RM, Ry)	both veetical
Lough) hin	min >	X Ry 1Ry		nd honzonbul
sujace.	mm		Survey.	di	rection is prevente
		- Agridays	jest ande	marks in	
Fixed	7 3 7	1		Three (Rid, H)	Displacementin
Suppost	1 4 8	RIA		or (Rx, R4, H) h	oth vertical 4 prizontal direction
11		2		and notat	ion is prevented.
			in I ment	and the	to have the
	# Beam			tion on	
	A member	which	bends when	subjected to	load
	applied transverse	to the lo	ing dimensions	Caxis of me	mber)
	is called beam		U	0	
	*) Types of Beam!				
	U				1-11-
(D! Simple Supporte	d Beam:	Beam supports	ed by hinge	roller on
	D! Simple Supporte	sface at t	ne ends ha	iving one s	han.
	A	B			
	hum	base	7		
	THA TVA	TVB			

Date : Load Example. Definitions Types Concentrated Acting at midpoint, loud Load is constant. Uniformly DISTributed loud Valying linearly over considerable Uniformly volying load.

Date : # Equivalent Road Remarks Equivalent Load W=WL dA = 1/2 71B= L/2 W=WL/2 MA = 2L13 MB = L13W= WL/2 W= Wa/2 dA = 29 F 710-1

Date:

(B.1): Find the reaction A		
system is in equilibrium.		
801		
BOEN COEN , 401	CN N	
200 / 300		
2006	3	
PAPPP	44	
819:		
For force acting at C,	For force acting at G.	
30cos 25 = 027.189	400030° = 34.641	
30 sin 25° = 12-679	uvsingu° = 20	
The free body diagram is,		
12.679 20	20	
A 27-189	34.641 B	
Hat tug c D	e Voy	
AL 11'1 . Co		
At equilibrium, EFn=0, Efy	=0, ZMa=0	
Su,		
$\Sigma F_{N} = O \left(\overrightarrow{+} \right)$		
01 27.189 + HA + 34.641 2.1	2	
1: HA = -61.84 -	-(1)	
This shows HA acts towards	eft.	
11.		
Also,		
ZF4 = 0 (+)		
a VA - 12.679 - 20+20+VB =	0	
on VA+VB = 12.679 - (Tii)		

Date:
Again
(4) SMa = 0
-12-679x2 - 20x5+20x8+VBx10=0
: VB = -3.464 KN - (111)
Hele, VB acts downward.
Putting value y ear (ii), VA = 16.143 ICN
VA = 16.143 ICN
801
HA = 61-83 KM (+)
VA = 16.143 KN (1)
VB = 3464 KN (1)
Hena, final equilibrium.
30 W 20 WN 40 KN
250
S1.83 hr
7 16-143 P39999999 L 3:464 EN
Comput to the first to the firs
(0.2): Find the reaction at A and B so that ayslumis
at equilibrium, 20 kN/n
10 KN/M JJJJJJ
DEPRENT CONUS / NO BELLE
11111 sm x + 3m - 1999
Sp.M.

Date :	**************
Page:	**************

The equivalent loads acting au. $W_1 = 10 \text{ kN} \times 8 = 80 \text{ kN}$ at 4m from A $W_2 = 20 \text{ kN} \times 3 = 60 \text{ kN}$ at 1.5m from B. [: uniform force acts at hay dishure) The free budy diagram. HA JE CIM JE 2.20 - 1.5 - 1/1 1/13 At equilibrium, & Fx=0, & Fy=0, & MA=0. 801 F) Sfr=0 ! HA = 0 &!! No H-force is acting 3 A180, (+1) \(\xi \text{Fy} = 0 a VA - 80 - 60 + VB = 0 : VA+VB = 140 - (i) Now P) EMA=0 ~ -80×4 -60×6-5 +Vox8=0 ! VB = 88-75 KN (T)

Putting Up in eqn(i)

VA = 140-88-75

... VA = 51-25 kN (1)

Hence, the final equilibrium power 106N/m 1 W. 75 EN. (0.37: Find the reaction at A and B so that system is in equilibrium. NOW. 25 64 m I formanny III /130 (2n) 2m | 4m 1 3 8,10. The equivalent loads acting are 20 0030° = 17.32 kN 20 xsin30 = 10 kM The equivalent loads are w= +51. 30/2 = 15kN at 2m from E w2 = 5×4 = 20 kN at 2m mark from B. The free hely diagram is.

10 low solution solution

HA I was a solution of som I so At equilibrium, &Fn=0, &Fy=0, &Ma=0.

So, Sfx = 0 (7) HA - 17.32 = 0 1: HA = 17.32 KM. (-+)

A1801

EFY = 0.

~ VA - 10 - 20 + VB - 15 - 10 = 0 1- VA + VB = 55 kN - (i)

Now

F 5 Ha = 0

 $\frac{1}{2} - 10x^{2} + 25 - 20x^{6} + V_{B}x^{8} - 15x^{9} - 10x^{1} = 0$ $\frac{1}{2} - 10x^{2} + 25 - 20x^{6} + V_{B}x^{8} - 15x^{9} - 10x^{1} = 0$ $\frac{1}{2} - 10x^{2} + 25 - 20x^{6} + V_{B}x^{8} - 15x^{9} - 10x^{1} = 0$ $\frac{1}{2} - 10x^{2} + 25 - 20x^{6} + V_{B}x^{8} - 15x^{9} - 10x^{1} = 0$ $\frac{1}{2} - 10x^{2} + 25 - 20x^{6} + V_{B}x^{8} - 15x^{9} - 10x^{1} = 0$ $\frac{1}{2} - 10x^{2} + 25 - 20x^{6} + V_{B}x^{8} - 15x^{9} - 10x^{1} = 0$ $\frac{1}{2} - 10x^{2} + 25 - 20x^{6} + V_{B}x^{8} - 15x^{9} - 10x^{1} = 0$ $\frac{1}{2} - 10x^{2} + 25 - 45x^{2} + 10x^{2} + 10x^{$

Hence, the final equilibrium.

Grann JJJ 135°

TVA=10hr