Flip-Flops Sincronizados e J-K

Yuri Kaszubowski Lopes

UDESC

Sincronizando com um Clock

- Os latches S-R (Set-Reset) estudados são assíncronos
 - ► Podem mudar de estado a qualquer momento
- Podemos introduzir um sinal de clock para sincronizar as mudanças

 - Agora mudanças ocorrem somente na "borda" do sinal
 Quando o sinal do clock muda (depende da configuração do circuito)

 - De baixo para altoDe alto para baixo

Anotações

Anotações

S-R com clock

- Ao adicionar um clock no flip-flop S-R
 As entradas s e R dizem o que fazer
 O sinal de clock (CLK) diz quando fazer

 - S e R só são lidos apenas quando o clock permitir

(Tocci, Widmer; 2016)

Obs.: Um flip-flop ativado pela descida do clock possui um círculo antes da entrada do clock

otações		

S-R com clock

 Considerando que Q está inicialmente em 0, qual o sinal de onda em Q de acordo com as entradas a seguir?

YKL (UDESC)	Flip-Flops Sincronizados e J-K	4/2

Anotações			

S-R com clock

 Considerando que Q está inicialmente em 0, qual o sinal de onda em Q de acordo com as entradas a seguir?

YKL (UDESC)

Flip-Flops Sincronizados e J-K

5/23

Anotações

S-R com clock

(Tocci, Widmer; 2016)

Anotações			

S-R com clock

(Tocci, Widmer; 2016)

\sim	_				
S-1	н	com	\sim	-	V.
∪ −		COIII			IN.

- ullet Se, por exemplo, mantermos S=1 e R=0
 - Quando o sinal de clock for gerado, o NAND-1 vai receber 1.1 = 0
 Como vimos no latch NAND, isso envia um sinal de set
- Os NANDS 1 e 2 enviam alto (1) para o latch sempre que ao menos uma de suas entradas é baixa (0)
 - Logo, o sinal do clock e S/R devem estar em 1 para o sinal baixo (0) ser
 - O latch se mantém estável quando enviamos 0 para S/R

Anotações

Anotações

Detector de Borda

- O circuito a seguir pode ser utilizado como detector de borda
 - ► Como isso gera um sinal "estreito" somente quando o clock sobe?

Anotações

Detector de Borda

- O circuito a seguir pode ser utilizado como detector de borda
 - Devido aos atrasos de propagação, o inversor demora um tempo t_{PHL} para inverter sua saída
 O sinal CLK demora um pouco a mais para ser propagado do que CLK

YKL (UDESC)	Flip-Flops Sincronizados e J-K	10/23

Anotações

Anotações

Exercício

- Como fica o sinal CLK* gerado pelo circuito abaixo?
- Qual a diferença do sinal gerado por esse circuito para o anterior?

YKL (UDESC)	Flip-Flops Sincronizados e J-K	11/2

Set e reset

- O que ocorre se enviarmos um set e um reset ao mesmo tempo nos latches NAND ou NOR (flip-flops S-R)?
 - O resultado é indeterminado!

Anotações			

KL (UDESC)	Flip-Flops Sincronizados e J

Flip-Flop J-K

- Um flip-flop J-K opera da mesma maneira que os flip-flops S-R feitos com portas NAND/NOR
- No entanto, pulsos de set e reset simultâneos são válidos

 - Modo toggle
 Um set e reset simultâneo faz com o que o estado do flip-flop seja trocado
 ★ Se Q era 0, se torna 1
 ★ Se Q era 1, se torna 0

Anotações			

Flip-Flop J-K

J	K	CLK	Q
0	0	↓	Q ₀ (no change)
1	0	\downarrow	1
0	1	\downarrow	0
1	1	\downarrow	Q ₀ (toggles)

Anotações

Anotações

Flip-Flop J-K

Flip-Flop J-K

Prós e Contras

Vantagens

- Sets e resets simultâneos não são problema
- Podem ser utilizados em mais aplicações, como divisores de frequência (veremos adiante)

Desvantagens

- São mais complexos
- Ocupam mais espaço e podem ter atrasos de propagação maiores

YKL (UDESC)	Flip-Flops Sincronizados e J-K	16/:

Uso em divisor de frequência

- Muitos relógios (de pulso, de parede, ...) utilizam internamente um cristal de quartzo que geral um clock de exatamente 32.768 Hz
- Se mantivermos um flip-flop J-K com suas entradas J e K em 1 sempre, agora ele vai trocar de estado sempre que o clock permitir
- Vamos assumir um flip-flop J-K sincronizado por subida de clock
- Se alimentarmos o J-K com o clock original, ele vai dividir o clock por 2

YKL (UDESC) Filp-Flops Sincrenizados e J-K 17/			
YKL (UDESC) Filp-Flops Sincronizados e J-K 17/			
YKL (UDESC) Flip-Flops Sincronizados e J-K 17/			
	YKL (UDESC)	Flip-Flops Sincronizados e J-K	17/

Anotações

Uso em divisor de frequência

Anotações		

YKL (UDESC

Flip-Flops Sincronizados e J-F

18/23

Uso em divisor de frequência

- Quandos flip-flops J-K precisamos encadear em série para que o sinal de 32.768Hz seja transformado em um sinal que oscila com frequência de precisamente 1Hz?
 - ► *lg* 32768 = 15

•		

....

Flin-Flone Sincronizados e d

40.100

Uso em divisor de frequência

• Sinal de 32.768Hz para 1Hz

YKL (UDESC)

Flip-Flops Sincronizados e J-K

20/23

Anotações

Anotações

Exercícios

Considerando um Flip-Flop J-K com sincronia por transição positiva, e que Q inicialmente está em 1, qual o sinal de onda em Q de acordo com os sinais em J,K e CLK a seguir?

 Faça o mesmo que no exercício anterior, mas considere que o Flip-Flop é sincronizado por transição negativa.

Anotações			

YKL (UDES

Flip-Flops Sincronizados e J-K

21/23

Referências

- TOCCI, R.J.; WIDMER, N.S. Sistemas digitais: princípios e aplicações. 11a ed, Prentice-Hall, 2011.
- Ronald Tocci, Neal Widmer, Greg Moss. Digital Systems. 12 ed. Pearson Education. 2016.
- TANENBAUM, Andrew S. Organização estruturada de computadores.
 5. ed. São Paulo: Pearson, 2007.
- James Bignell, Robert Donovan. Eletrônica digital. Cengage Do Brasil, 2010.
- MELO, M. Eletrônica Digital. Makron Books. 2003.

Anotações		
	tacões	
Anotações	•	
Anotações		
Anotaçoes		
	açoes	

Anotações