Graph Neural Networks

From Images to Graphs

Aggregate feature information from neighbors 1

What is a graph?

- A set of nodes connected by edges
- Simple representation of a relationship between objects
- Zoo of graphs!

Give a small boy a hammer and he will find that everything he encounters needs pounding.

— Abraham Kaplan —

AZ QUOTES

Neural Networks ~ Our hammer!

From Images to Graphs

- Image = 2D grid of pixels
- Through a convolution, a pixel value is influenced by its neighbors
- We can represent this neighborhood structure using a graph and define convolutions on graphs!

Let's represent a graph mathematically

- Adjacency matrix A
- ullet $A_{ij}=1$ if there is an edge between node i and node j, otherwise $A_{ij}=0$

$$\begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{pmatrix}
\qquad
\begin{pmatrix}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{pmatrix}
\qquad
\begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

Convolution on images ~ Fourier Transform

Convolution on graph ~?

Convolution on images ~ Fourier Transform

Convolution on graph ~ Eigenvalues of Laplacian

Key idea

1D signal

- Suppose a 1D signal x(t) as a function of time t.
- The frequency of the signal is essentially the speed of variation.
- High frequency signal ~ rapid variations
- Low frequency signal ~ slow variations

2D signal ~ Same as 1D signal

1D signal

- Suppose a 1D signal x(t) as a function of time t.
- The frequency of the signal is essentially the speed of variation.
- High frequency signal ~ rapid variations
- Low frequency signal ~ slow variations

2D signal ~ Same as 1D signal

What about graph?

- Graph is non-trivial since it does not have an inherent order of nodes! (like time dimension in 1D signal and spatial dimension in 2D signal)
- But we can still define the variation as the sum of differences between neighboring nodes.

Total variation

- Suppose we have a graph of N nodes, each node has a feature x_i .
- The total variation measures the smoothness of the node features:

$$J = rac{1}{2} \sum_{i=1}^N \sum_{j=1}^N A_{ij} (x_i - x_j)^2 = \mathbf{x}^ op \mathbf{L} \mathbf{x}^ op$$

where ${f L}$: Graph Laplacian, x_i : Node features, A_{ij} : Adjacency matrix.

Q: What x makes the total variation smallest (most smooth) and largest (most varying), provided that the norm of x is fixed?

The eigendecomposition of the Laplacian:

$$\mathbf{L}\mathbf{x} = \lambda \mathbf{x}$$

By multiplying both sides by \mathbf{x}^{\top} , we get

$$\mathbf{x}^{ op}\mathbf{L}\mathbf{x} = \lambda$$

This tells us that:

- 1. The eigenvectors with small eigenvalues represent low-frequency signals.
- 2. The eigenvectors with large eigenvalues represent high-frequency signals.

Decomposing the Total Variation

The total variation can be decomposed as follows (\mathbf{u}_i is the eigenvector of the Laplacian):

$$egin{align*} J = \mathbf{x}^ op \mathbf{L} \mathbf{x} = \mathbf{x}^ op \left(\sum_{i=1}^N \lambda_i \mathbf{u}_i \mathbf{u}_i^ op
ight) \mathbf{x} = \sum_{i=1}^N \lambda_i (\mathbf{x}^ op \mathbf{u}_i) (\mathbf{u}_i^ op \mathbf{x}) \ &= \sum_{i=1}^N \lambda_i \underbrace{||\mathbf{x}^ op \mathbf{u}_i||^2}_{ ext{alignment between } \mathbf{x} ext{ and } \mathbf{u}_i \end{aligned}$$

Key Insight:

- The total variation is now decomposed into the sum of different frequency components $\lambda_i \cdot ||\mathbf{x}^\top \mathbf{u}_i||^2$.
- λ_i acts as a filter (kernel) that reinforces or passes the signal $\mathbf{x}^{\top}\mathbf{u}_i$.

