CONNECTIONS

Building an Open Source Dashboard for Structural Design

Structural Engineering in 1 (!) Slide

- Focus on buildings and bridge design
- Responsible for the "skeleton" of structures (what makes things stand up)
- Provide sizes of structural members
- Work with other built environment disciplines
 - Architecture, Mechanical, Electrical, Plumbing (MEP), Construction

Software in Structural Engineering

code_aster

MASTAN2 v3.5

Bentley[®]

Software in Structural Engineering

Gravity Loads

Lateral Loads

Gravity Loads

Lateral Loads

Connections: Gusset Plates

Fig. 3-1. Concentric (corner gusset) bracing connection.

Gusset Plates - I-35 Bridge

Gusset Plates - I-35 Bridge

Gusset Plates - Design

Parameters:

- → Beam Interface Length
- → Column Interface Length
- → Thickness
- → Force Demand
- → Connection Length

Workflow

Previous:

- → Microsoft Excel (Tabulation) \$
- → Rhino/Grasshopper (Visualization) \$\$
- → Autodesk Revit (Shared 3D model representation) \$\$\$

Current:

- → Numpy/Shapely/COMPAS
- → Plotly
- → Dash
- → PyLaTeX
- → Code Aster/FEniCS

Workflow

Previous:

Rhino/Grasshopper

Current:

- → Numpy/Shapely/COMPAS
- → Plotly
- → Dash
- → PyLaTeX
- → Code Aster/FEniCS