

SF1681 Linjär algebra, fk HT20

SF1681 LINJÄR ALGEBRA, FORTSÄTTNINGSKURS FÖRELÄSNING 6

DAVID RYDH

6. INRE PRODUKTRUM

Målet för idag.

- Inre produktrum över \mathbb{R} och \mathbb{C}
- Ortogonala baser och Gram-Schmidts metod
- Projektion och ortogonalt komplement

Inre produkt över \mathbb{R} . I många tillämpningar har vi en *metrik* som kommer från en *inre produkt*. Det gör att vi har ett sätt att mäta *längd* av vektorer och *vinklar* mellan vekorer. Det ser lite olika ut för reella och för komplexa vektorrum.

Definition 6.1. En *bilinjär* avbildning är en avbildning $\varphi(\cdot,\cdot): U \times V \longrightarrow W$ som uppfyller

- $\varphi(\mathbf{x},\cdot):V\longrightarrow W$ är linjär för alla $\mathbf{x}\in U$.
- $\varphi(\cdot, \mathbf{v}) : U \longrightarrow W$ är linjär för alla $\mathbf{v} \in V$.

En *bilinjär form* på V är en bilinjär avbildning $B: V \times V \longrightarrow k$ och den är *symmetrisk* om $\varphi(\mathbf{x}, \mathbf{y}) = \varphi(\mathbf{y}, \mathbf{x})$, $\forall \mathbf{x}, \mathbf{y} \in V$.

Definition 6.2. En *inre produkt* på ett vektorrum V över \mathbb{R} är en symmetrisk bilinjär form $\langle \cdot | \cdot \rangle : V \times V \longrightarrow \mathbb{R}$ som uppfyller $\langle \mathbf{x} | \mathbf{x} \rangle > 0$ för alla $\mathbf{x} \neq 0$.

Definition 6.3. Ett *inre produktrum* är ett vektorrum V som är utrustat med en inre produkt.

Reella inre produkter som positivt definita symmetriska matriser.

Exempel 6.4. En bilinjär form på V är kan alltid representeras av en matris om dim $V < \infty$. Med en bas $\mathscr{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ så är en bilinjär form $\varphi(\cdot, \cdot)$ bestämd av

$$\varphi(\mathbf{b}_i, \mathbf{b}_j) = g_{ij}, \quad 1 \leq i, j \leq n.$$

vilket ger en matris $G = (g_{ij})$. Formen är symmetrisk om G är symmetrisk. Om $\mathbf{x}, \mathbf{y} \in V$ så är

$$\varphi(\mathbf{x}, \mathbf{y}) = ([\mathbf{x}]_{\mathscr{B}})^T G[\mathbf{y}]_{\mathscr{B}}$$

Definition 6.5. Matrisen G kallas för en *metrik*. Vill vi betona basen \mathcal{B} kan vi skriva $G_{\mathcal{B}}$.

Sats 6.6. En symmetrisk $n \times n$ -matris G definierar en inre produkt om och endast om G är positivt definit.

Date: 2020-11-11.

Bevis. Med $\mathbf{x} = \sum y_i \mathbf{b}_i$ är $\langle \mathbf{x} | \mathbf{x} \rangle = \mathbf{y}^T G \mathbf{y}$, där $\mathbf{y} = [\mathbf{x}]_{\mathscr{B}} = (y_1, y_2, \dots, y_n)^T \in \mathbb{R}^n$. Alltså är $\langle \mathbf{x} | \mathbf{x} \rangle > 0$ för alla $\mathbf{x} \neq \mathbf{0}$ samma sak som att G är positivt definit.

Inre produkter över \mathbb{C} .

Definition 6.7. En avbildning $\varphi(\cdot,\cdot): U \times V \longrightarrow W$ för komplexa vektorrum är *seskvilinjär* om

- $\varphi(\mathbf{x}, \cdot)$ är linjär för alla $\mathbf{x} \in U$
- $\varphi(\cdot, \mathbf{y})$ är antilinjär för alla $\mathbf{y} \in V$, dvs $\varphi(c_1\mathbf{x}_1 + c_2\mathbf{x}_2, \mathbf{y}) = \overline{c_1}\varphi(\mathbf{x}_1, \mathbf{y}) + \overline{c_2}\varphi(\mathbf{x}_2, \mathbf{y})$.

En seskvilinjär form på V är *konjugatsymmetrisk* om $\varphi(\mathbf{x}, \mathbf{y}) = \overline{\varphi(\mathbf{y}, \mathbf{x})}, \forall \mathbf{x}, \mathbf{y} \in V$.

Definition 6.8. En *inre produkt* på ett komplext vektorrum är en konjugatsymmetrisk seskvilinjär form $\langle \cdot | \cdot \rangle : V \times V \longrightarrow \mathbb{C}$ som uppfyller att $\langle \mathbf{x} | \mathbf{x} \rangle > 0$ för alla $\mathbf{x} \neq 0$.

Anmärkning 6.9. Det spelar egentligen ingen roll vilken av de två argumenten vi konjugerar så länge vi är konsekventa. I kursen SF1683 används (kanske) konventionen att det är det andra argumentet som konjugeras och notationen är (kanske) $\langle \mathbf{x}, \mathbf{y} \rangle$ i stället för $\langle \mathbf{x} | \mathbf{y} \rangle$.

Exempel 6.10.

- För \mathbb{C}^n ger $\langle \mathbf{x} | \mathbf{y} \rangle = \sum_{i=1}^n \overline{x_i} y_i$ en inre produkt.
- För $C^0([0,1])$ ger $\langle f|g\rangle = \int_0^1 \overline{f(t)}g(t) dt$ en inre produkt.

Komplexa inre produkter som positivt definita från konjugatsymmetriska matriser.

Exempel 6.11. En seskvilinjär form på V kan alltid representeras av en matris om dim $V < \infty$. Med en bas $\mathscr{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ definieras (\cdot, \cdot) av

$$(\mathbf{b}_i, \mathbf{b}_j) = g_{ij}, \quad 1 \le i, j \le n.$$

Formen är konjugatsymmetrisk om $g_{ij} = \overline{g_{ji}}, \forall i, j.$

Definition 6.12. Om A är en matris betecknar $A^{\dagger} = \overline{A^T}$ konjugatet av den transponerade matrisen¹. Vi säger att A är konjugatsymmetrisk eller *Hermitesk* om $A^{\dagger} = A$.

Matrisen för en konjugatsymmetrisk seskvilinjär form är alltså konjugatsymmetrisk (Hermitesk).

Sats 6.13. En konjugatsymmetrisk $n \times n$ -matris G definierar en inre produkt om och endast om G är positivt definit.

Norm och vinklar.

Definition 6.14 (norm). *Normen* av en vektor ges av $|\mathbf{x}| = \sqrt{\langle \mathbf{x} | \mathbf{x} \rangle}$.

Sats 6.15 (Cauchy–Schwarz olikhet). $|\langle \mathbf{x}|\mathbf{y}\rangle| \leq |\mathbf{x}| \cdot |\mathbf{y}|$ med likhet om och endast om $\mathbf{x}||\mathbf{y}|$.

Sats 6.16 (Triangelolikheten). $|x + y| \le |x| + |y|$.

Definition 6.17 (vinkel). *Vinkeln* θ mellan \mathbf{x} och \mathbf{y} definieras av $\cos \theta = \frac{\langle \mathbf{x} | \mathbf{y} \rangle}{|\mathbf{x}| \cdot |\mathbf{y}|}$, för reella inre-produktrum.

Bevis för Cauchy-Schwarz olikhet. Om $\mathbf{x} \| \mathbf{y}$ har vi likhet. Antag att $\mathbf{x} \| \mathbf{y}$. Då är $W = \operatorname{Span}\{\mathbf{x}, \mathbf{y}\}$ tvådimensionellt. Matrisen för inre produkten på W ges av

$$G = egin{bmatrix} \langle \mathbf{x} | \mathbf{x}
angle & \langle \mathbf{x} | \mathbf{y}
angle \ \langle \mathbf{y} | \mathbf{x}
angle & \langle \mathbf{y} | \mathbf{y}
angle \end{bmatrix}$$

Spåret är $\operatorname{tr}(G) = |\mathbf{x}|^2 + |\mathbf{y}|^2 > 0$ och determinanten är $\det(G) = |\mathbf{x}|^2 |\mathbf{y}|^2 - |\langle \mathbf{x}|\mathbf{y}\rangle|^2$, så vi vill visa att determinanten är positiv. Egenvärdena är reella eftersom

$$\left(\frac{1}{2}\operatorname{tr}(G)\right)^2 - \det(G) = \left(\frac{|\mathbf{x}|^2 + |\mathbf{y}|^2}{2}\right)^2 - |\mathbf{x}|^2|\mathbf{y}|^2 + |\langle \mathbf{x}|\mathbf{y}\rangle|^2 = \left(\frac{|\mathbf{x}|^2 - |\mathbf{y}|^2}{2}\right)^2 + |\langle \mathbf{x}|\mathbf{y}\rangle|^2 \ge 0$$

¹Det är också vanligt med A^* eller A^H istället för A^{\dagger} . Ibland betyder dock A^* bara det komplexa konjugatet \overline{A} .

Om det finns ett egenvärde $\lambda \le 0$ finns en egenvektor som ger $\overline{\xi}G\xi = \lambda |\xi|^2 \le 0$, vilket ger motsägelse. Alltså måste $\det(G) > 0$.

(Mer allmänt så har varje Hermitesk, dvs konjugatsymmetrisk, matris reella egenvärden vilket vi kommer se senare. En Hermitesk matris är positivt definit precis när alla egenvärden är positiva.) □

Bevis för triangelolikheten. Med Cauchy-Schwarz olikhet får vi

$$|\mathbf{x} + \mathbf{y}|^2 = |\mathbf{x}|^2 + \langle \mathbf{x} | \mathbf{y} \rangle + \langle \mathbf{y} | \mathbf{x} \rangle + |\mathbf{y}|^2 \le |\mathbf{x}|^2 + 2|\mathbf{x}||\mathbf{y}| + |\mathbf{y}|^2 = (|\mathbf{x}| + |\mathbf{y}|)^2.$$

Ortogonala baser.

Definition 6.18. En bas \mathscr{B} för ett inre produktrum är *ortogonal* om $\langle \mathbf{x} | \mathbf{y} \rangle = 0$ för alla $\mathbf{x} \neq \mathbf{y}$ i \mathscr{B} . Basen \mathscr{B} är en *ortonormal* bas om dessutom $|\mathbf{x}| = 1$ för alla $\mathbf{x} \in \mathscr{B}$.

Anmärkning 6.19. Om $\mathscr{B} = \{\mathbf{b}_i\}_{i \in I}$ är en ortogonal bas är

$$\mathbf{x} = \sum_{i \in I} a_i \mathbf{b}_i \quad \Longleftrightarrow \quad a_i = \frac{\langle \mathbf{b}_i | \mathbf{x} \rangle}{\langle \mathbf{b}_i | \mathbf{b}_i \rangle}, \, \forall i \in I$$

eftersom $\langle \mathbf{b}_i | \mathbf{x} \rangle = a_i \langle \mathbf{b}_i | \mathbf{b}_i \rangle$ och om $\mathscr{E} = \{ \mathbf{e}_i \}_{i \in I}$ är ortonormal är därmed

$$\mathbf{x} = \sum_{i \in I} a_i \mathbf{e}_i \quad \Longleftrightarrow \quad a_i = \langle \mathbf{e}_i | \mathbf{x} \rangle \, \forall i \in I.$$

Gram-Schmidts metod.

Sats 6.20. Ett ändligdimensionellt inre produktrum har en ortogonal bas.

Bevisidé. En maximal ortogonal mängd måste vara en ortogonal bas.

Vi kan också göra det algoritmiskt genom

Sats 6.21 (Gram–Schmidts metod). *Om* $\mathcal{B} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ är en bas för V får vi en ortogonal bas för V genom

$$\mathbf{y}_i = \mathbf{x}_i - \sum_{i=1}^{i-1} \frac{\langle \mathbf{y}_j | \mathbf{x}_i \rangle}{\langle \mathbf{y}_j | \mathbf{y}_j \rangle} \mathbf{y}_j, \qquad i = 1, 2, \dots, n.$$

Anmärkning 6.22. Vi kan också göra detta om vi har en uppräknelig bas för V.

Exempel 6.23. Om $V = P = \mathbb{R}[x] \mod \langle p|q \rangle = \int_{-1}^{1} p(x)q(x) dx$ kan vi börja med $\mathcal{B} = \{1, x, x^2, \dots\}$ och få en ortogonal bas av polynom. Denna ortogonala bas (normerade så att p(1) = 1) kallas för Legendrepolynom.

Ortogonalt komplement.

Definition 6.24. Om $W \subseteq V$ i ett inre produktrum är det *ortogonala komplementet*

$$W^{\perp} = \{ \mathbf{x} \in V : \langle \mathbf{x} | \mathbf{y} \rangle = 0, \forall \mathbf{y} \in W \}$$

Sats 6.25. Om $W \subseteq V$ i ett inre produktrum och dim $W < \infty$ kan vi skriva

$$V = W \oplus W^{\perp}$$

Bevis. Vi kan bilda en ortonormal bas $\{\mathbf{e}_i\}_{i\in I}$ för W och får att

$$\mathbf{y} = \mathbf{x} - \sum_{i \in I} \langle \mathbf{e}_i | \mathbf{x} \rangle \mathbf{e}_i \in W^{\perp}$$

Anmärkning 6.26. Om W är oändligdimensionellt kan vi inte göra så. Tag till exempel

$$V = \{ f \in C(\mathbb{R}) : \int_{-\infty}^{\infty} (f(t))^2 dt < \infty \}$$

och

$$W = \{ f \in V : f \text{ har kompakt st\"od} \}.$$

Då är $W^{\perp} = \{0\}$ men $W \neq V$.