Rye van reëele getalle / Sequences of real numbers §11.1

Definisie 11

'n Ry $\{a_n\}$ is *begrens na bo* as daar 'n getal M bestaan sodat $a_n \leq M$ vir alle $n \in \mathbb{N}$, en begrens na onder as daar 'n getal m bestaan sodat $m \leq a_n$ vir alle $n \in \mathbb{N}$.

As $\{a_n\}$ beide na bo en na onder begrens is, dan word $\{a_n\}$ 'n begrensde ry genoem.

Dus is 'n ry begrens as en slegs as daar 'n getal K bestaan sodat $|a_n| \leq K$ vir alle $n \in \mathbb{N}$.

Stelling 3

As $\lim_{x\to\infty} f(x) = L$ en $f(n) = a_n$ vir alle natuurlike getalle n, dan is $\lim_{n\to\infty} a_n = L$.

Stelling 3.4.4, p.234

As r > 0, dan is

$$\lim_{x \to \infty} \frac{1}{r^r} = 0.$$

Vergelyking 4, p.737

As r > 0, dan is

$$\lim_{n\to\infty}\frac{1}{n^r}=0.$$

Limietstellings vir rye

As $\{a_n\}$ en $\{b_n\}$ konvergente rye is en c 'n konstante, dan is

$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$$

$$\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n$$

$$\lim_{n \to \infty} ca_n = c \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} (a_n b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} \text{ as } \lim_{n \to \infty} b_n \neq 0$$

$$\lim_{n \to \infty} c = c$$

Stelling 6

As $\lim_{n\to\infty} |a_n| = 0$, dan is $\lim_{n\to\infty} a_n = 0$.

• Gestel $c_n \in \mathcal{D}_f$, $\lim_{n \to \infty} c_n = c$ en f is kontinu by c. Dan is $\lim_{n \to \infty} f(c_n) = f(c)$.

Die Knyptangstelling

As $a_n \leq b_n \leq c_n$ vir alle $n \geq n_0$ en

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L,$$

dan is $\lim_{n\to\infty} b_n = L$.

L'Hospital se Reëls, p.492

Huiswerk

Ex. 11.1 nr. 25, 35, 37, 42, 43, 47

Stelling 9

Die ry $\{r^n\}$ is konvergent as $-1 < r \le 1$ en divergent vir alle ander waardes van r. Verder is

$$\lim_{n \to \infty} r^n = \left\{ \begin{array}{ll} 0 & \text{as} & -1 < r < 1 \\ 1 & \text{as} & r = 1. \end{array} \right.$$

Definisie 10

'n Ry $\{a_n\}$ word *stygend* genoem as $a_n \leq a_{n+1}$ vir alle $n \geq 1$, en

dalend as $a_n \ge a_{n+1}$ vir alle $n \ge 1$.

Die ry $\{a_n\}$ word *monotoon* genoem as hy òf stygend òf dalend is.

Definisie 11

'n Ry $\{a_n\}$ is begrens na bo as daar 'n getal M bestaan sodat $a_n \leq M$ vir alle $n \geq 1$, en begrens na onder as daar 'n getal m bestaan sodat $m \leq a_n$ vir alle $n \geq 1$.

As $\{a_n\}$ beide na bo en na onder begrens is, dan word $\{a_n\}$ 'n *begrensde ry* genoem.

Stelling 12 (Monotone Ry-Stelling)

1. Gestel $\{a_n\}$ is 'n stygende ry. Dan is $\{a_n\}$ na bo begrens as en slegs as $\{a_n\}$ konvergeer, in welke geval

$$\lim_{n\to\infty} a_n = \sup\{a_n : n\in\mathbb{N}\}.$$

2. Gestel $\{a_n\}$ is 'n dalende ry. Dan is $\{a_n\}$ na onder begrens as en slegs as $\{a_n\}$ konvergeer, in welke geval

$$\lim_{n\to\infty} a_n = \inf\{a_n : n\in\mathbb{N}\}.$$

Stelling 12 (Monotone Ry-Stelling)

1. Gestel $\{a_n\}$ is 'n stygende ry. Dan is $\{a_n\}$ na bo begrens as en slegs as $\{a_n\}$ konvergeer, in welke geval

$$\lim_{n\to\infty} a_n = \sup\{a_n : n\in\mathbb{N}\}.$$

Die Volledigheidseienskap van $\mathbb R$

Elke nie-leë versameling reële getalle wat na bo begrens is, het 'n kleinste bogrens.

Stelling 10 (notas: oneintlike integrale)

Laat $A \subset \mathbb{R}$ wees. Dan is $\sup A = S$ as en slegs as die volgende twee voorwaardes geld:

- 1. S is 'n bogrens vir A.
- 2. Vir elke $\epsilon > 0$ bestaan daar 'n $x \in A$ sodat $x > S \epsilon$.

Voorbeeld

Beskou die ry $\{a_n\}$, waar $a_1=2$ en $a_{n+1}=\frac{1}{3-a_n}$ vir $n\in\mathbb{N}$.

- 1. Toon aan dat $0 < a_n \le 2$ vir alle n, en
- 2. bepaal $\lim_{n\to\infty} a_n$.

Huiswerk

Ex. 11.1 nr. 69, 73, 77, 79, 81