Free Resolutions

Contents

1	Introduction 3						
	1.1	Focus of this class	3				
		1.1.1 Part I	3				
		1.1.2 Part II	3				
		1.1.3 Part III	4				
2	Prel	iminary Material and Notation	4				
	2.1	Linear Algebra	4				
		2.1.1 Free Modules	4				
		2.1.2 Universal Mapping Property of Free R-Modules	5				
		2.1.3 Representing <i>R</i> -module Homomorphisms By Matrices	5				
	2.2	Noetherian Rings and Modules	5				
	2.3	Exact Sequences	6				
		2.3.1 Free Resolutions	6				
		2.3.2 Hilbert Syzygy Theorem	7				
	_						
3		ded Resolutions	7				
	3.1	Examples of Graded Resolutions	8				
	3.2	Relation on the β_i	8				
4	Graded Rings and Modules						
4		Graded Rings	9				
	4.1	Graded Rings					
	4.2	Graded R-Modules					
	4.3						
	4.4	4.3.2 Homomorphisms of Graded <i>R</i> -Modules					
	4.4	<u> </u>					
		4.4.1 Tensor					
		4.4.2 Graded Hom					
	4.5	Noetherian Graded Rings and Modules					
		4.5.1 The Irrelevant Ideal					
		4.5.2 Noetherian Graded Rings	13				
5	Homological Algebra						
,	5.1	Chain Complexes over R	_				
		5.1.1 Chain Maps	_				
		5.1.2 Simplifying Notation	_				
		5.1.3 Chain Maps Revisited					
	5.2	Homology Considered as a Functor					
		5.2.1 Viewing Homology as an Additive Functor					
		5.2.2 Quasiisomorphisms					
		5.2.3 Homotopy Equivalence					
	5.3	Exact Sequences of <i>R</i> -Complexes					
	<i>J</i> - <i>J</i>		-,				
6	Ope	erations on R-Complexes	20				
	6.1	Direct Sum of <i>R</i> -Complexes	20				
	6.2	Shifting an <i>R</i> -complex					
	6.3	The Mapping Cone					
		6.3.1 Resolutions by Mapping Cones					
	6.4	Koszul Complex					

	6.5	Tensor Products				
		6.5.1	Commutativity of Tensor Products	24		
		6.5.2	Associativity of Tensor Products	24		
		6.5.3	Koszul Complex as Tensor Product	25		
		6.5.4	Mapping Cone of Homothety Map as Tensor Product	25		
	6.6	Hom		26		
		6.6.1	The Dual Koszul Complex	26		
7	Ext	and To	t and the second se	27		
		7.0.1	Projective Resolutions	27		

1 Introduction

We want to "understand" mathematical objects using limited technology. For example, given a group G, we obtain a lot of information about G by just knowing its order |G|. For instance, if p is a prime such that p divides |G|, then the Sylow theorems tells us that there exists a p-Sylow subgroup of G. Another thing we get from knowing the order of a group is whether or not it is isomorphic to another group: if G and G are two groups such that $|G| \neq |H|$, then $G \ncong H$ (or in contrapositive form: if $G \cong H$ then |G| = |H|). This means that the order of a group is an invariant. Even though the order of a group is a nice invariant to have, it is not strong enough to determine the group completely: if |G| = |H|, then usually it's very difficult to determine whether $G \cong H$ or not.

There are similar tools for understanding rings and modules. -SSW

1.1 Focus of this class

1.1.1 Part I

In part I one of the class, we will focus on understanding the contents of the Hilbert Syzygy Theorem as well as giving a (partial) proof of it. Let us state the Hilbert Syzygy Theorem.

Theorem 1.1. (The Hilbert Syzygy Theorem) Let $R = k[X_1, ..., X_d]$ be the polynomial ring in d indeterminates over a field k and let I be the ideal in R generated by $f_1, ..., f_{\beta_1}$. Then there exists an exact sequence of the form

$$0 \longrightarrow R^{\beta_d} \longrightarrow \cdots \longrightarrow R^{\beta_i} \xrightarrow{\partial_i} R^{\beta_{i-1}} \longrightarrow \cdots \longrightarrow R^{\beta_1} \xrightarrow{\partial_1} R \longrightarrow R/I \longrightarrow 0$$
 (1)

1.1.2 Part II

In part II, we will go over a bunch of examples. Here are two to consider now:

Example 1.1. Consider the case where R = k[X,Y] and $I = \langle X^2, XY \rangle$. Then we have the following short exact sequence of R-complexes

$$0 \longrightarrow R \xrightarrow{\begin{pmatrix} -Y \\ X \end{pmatrix}} R^2 \xrightarrow{\begin{pmatrix} X^2 & XY \end{pmatrix}} R \longrightarrow R/I$$

Example 1.2. (Twisted Cubic) Consider the case where R = k[X, Y, Z, W] and $I = \langle XZ - Y^2, YW - Z^2, XW - YZ \rangle$. A free resolution of R/I is given by

$$0 \longrightarrow R^2 \xrightarrow{\begin{pmatrix} W & Z \\ Y & X \\ -Z & -Y \end{pmatrix}} R^3 \xrightarrow{\begin{pmatrix} XZ-Y^2 & YW-Z^2 & WX-YZ \end{pmatrix}} R \longrightarrow R/I$$

Another very important example that we will consider is when $R = k[X_1, ..., X_d]$ and $I = \langle X_{i_1}, ..., X_{i_{\beta_1}} \rangle$. In this case, we can build a resolution explicitly, called the **Koszul complex of** R/I **over** R, named after Jean Louis Koszul. For example, consider $I = \langle X_1, X_2, X_3 \rangle$. Then the Koszul complex of R/I over R looks like

$$R \xrightarrow{\begin{pmatrix} X_1 \\ -X_2 \\ X_3 \end{pmatrix}} \xrightarrow{R^3} \xrightarrow{\begin{pmatrix} 0 & -X_3 & -X_2 \\ -X_3 & 0 & X_1 \\ X_2 & X_1 & 0 \end{pmatrix}} R^3 \xrightarrow{\begin{pmatrix} X_1 & X_2 & X_3 \end{pmatrix}} R$$

$$e_{1,2,3} \xrightarrow{} X_1e_{2,3} - X_2e_{1,3} + X_3e_{1,2}$$

$$e_{2,3} \xrightarrow{} X_2e_3 - X_3e_2$$

$$e_{1,3} \xrightarrow{} X_1e_3 - X_3e_1$$

$$e_{1,2} \xrightarrow{} X_1e_2 - X_2e_1$$

$$e_1 \xrightarrow{} X_1$$

$$e_2 \xrightarrow{} X_2$$

$$e_3 \xrightarrow{} X_3$$

1.1.3 Part III

If all f_j 's in Theorem (1.1) are homogeneous, then the resolution (8) can be built minimally and the β_i 's are independent of the choice of minimal free resolution. In this case, we call the $\beta_i = \beta_i^R(R/I)$ the ith **Betti number of** R/I **over** R, named after the Italian mathematician Enrico Betti. If J is another homogeneous ideal of R, and $\beta_i^R(R/I) \neq \beta_i^R(R/J)$ for some i, then $R/I \ncong R/J$. Thus the Betti numbers give us an invariant of R/I. However, just like in the case of orders in group theory, this invariant is not sufficiently strong enough to determine R/I: if $\beta_i^R(R/I) = \beta_i^R(R/J)$ for all i, then R/I may not be isomorphic to R/J.

In part III of the class, we will try to find finer technology. For instance, it turns out that the Koszul complex is a graded commutative *R*-algebra with the multiplication rule given by

$$e_A e_B = \begin{cases} 0 & \text{if } A \cap B = \emptyset \\ e_{A \cup B} & \text{else} \end{cases}$$

subject to the rule

$$e_A e_B = (-1)^{|A||B|} e_B e_A$$

where $A, B \subseteq \{1, ..., m\}$. Moreover, we have the Leibniz rule

$$\partial(e_A e_B) = \partial(e_A)e_B + (-1)^{|A|}e_A\partial(e_B).$$

This shows that the Koszul complex is a differential graded algebra (DGA) resolution.

2 Preliminary Material and Notation

Throughout these notes, let R be a commutative ring with identity. We also let $\mathbb{N} = \{0, 1, 2, \dots\}$ be the set of a natural numbers together with 0 (SSW: "My class, my rules").

2.1 Linear Algebra

2.1.1 Free Modules

Definition 2.1. Let *M* be an *R*-module.

- 1. A sequence $e_1, \ldots, e_n \in M$ is a **(finite) basis** for M if it generates M as an R-module and it is linearly independent over R, i.e. for every $m \in M$ there exists $r_1, \ldots, r_n \in R$ such that $m = \sum_{i=1}^n r_i e_i$, and if $a_1, \ldots, a_n \in R$ such that $\sum_{i=1}^n a_i e_i = 0$, then $a_i = 0$ for all i.
- 2. We say *M* is a **finite rank free** *R***-module** if it has a basis.

Example 2.1. R^n is the **standard free** R**-module of rank** n. It has as basis the **standard basis elements** e_i where e_i is the vector with 1 in the ith entry and 0 everywhere else.

Example 2.2. If I is a nonzero ideal in R, then R/I is not a free R-module. Indeed, if r is a nonzero element in I, then for all $s \in R$, we have $r\overline{s} = \overline{rs} = 0$ in R/I. In other words, "**torsion**" makes linear independence fail for elements of R/I when taking coefficients from R.

2.1.2 Universal Mapping Property of Free R-Modules

The universal mapping property of free R-modules can be stated as follows: Let F be a free R-module with basis $e_1, \ldots, e_n \in F$. For all R-modules M and for all $m_1, \ldots, m_n \in M$ there exists a unique R-module homomorphism $\varphi \colon F \to M$ such that $\varphi(e_i) = m_i$ for all $i = 1, \ldots, n$. In terms of diagrams, this is pictured as follows:

$$\{e_1,\ldots,e_n\} \hookrightarrow F$$

$$\downarrow_{\exists!\varphi}$$

$$M$$

Using the universal mapping property of free *R*-modules, let us prove the following theorem:

Theorem 2.1. If F and G are finite rank free R-modules with basis e_1, \ldots, e_n and f_1, \ldots, f_n respectively, then $F \cong G$.

Proof. By the universal mapping property of free *R*-modules there exists a unique *R*-module homomorphism $\varphi \colon F \to G$ such that $\varphi(e_i) = f_i$ for all $i = 1, \ldots, n$. Similarly, there exists a unique *R*-module homomorphism $\psi \colon G \to F$ such that $\psi(f_i) = e_i$ for all $i = 1, \ldots, n$. In particular, we see that $\psi \circ \varphi \colon F \to F$ satisfies $(\psi \circ \varphi)(e_i) = e_i$. But we also have $1(e_i) = e_i$ for all $i = 1, \ldots, n$, where $1 \colon F \to F$ is the identity map. Therefore by uniqueness of the map in the universal mapping property of free *R*-modules, we must have $\psi \circ \varphi = 1$. A similar argument shows that $\varphi \circ \psi = 1$.

Corollary. Let F be a free R-module with basis $e_1, \ldots, e_n \in F$. Then $F \cong R^n$.

Remark. Note that you can prove Theorem (2.1) without the universal mapping property of free *R*-modules, but the point is that you'd have to show well-definedness, linearity, etc... of the maps constructed. The point is that all of this is built into the universal mapping property of free *R*-modules.

2.1.3 Representing *R*-module Homomorphisms By Matrices

Let $\varphi: R^n \to R^m$ be an R-module homomorphism and let e_1, \ldots, e_n denote the **canonical basis** of R^n , i.e. $e_i = (0 \dots, 1, \dots 0)^\top$ where 1 is at the ith entry and 0 is in all other entries. Any $x \in R^n$ has a unique linear combination as $x = x_1 e_1 + \dots + x_n e_n$ where $x_i \in R$. In particular, $\varphi(e_i)$ has a unique representation as

$$\varphi(e_j) = \sum_{i=1}^n a_{ij} e_i.$$

Writing x as a column vector [x] and using linearity of φ , we see that

$$\varphi(x) = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = [\varphi][x],$$

where $[\varphi] = (a_{ij})$ is an $m \times n$ matrix with entries in R. We call $[\varphi]$ the **matrix representation of** φ . Addition, scalar multiplication, and composition of R-module homomorphisms correspond to addition, scalar multiplication, and multiplication of matrices.

2.2 Noetherian Rings and Modules

Definition 2.2. An R-module M is said to be **finitely generated** if there exists a surjective R-module homomorphism from R^n to M for some $n \in \mathbb{N}$.

Theorem 2.2. The following conditions are equivalent:

- 1. Every ideal of R is finitely generated.
- 2. Ascending chain condition (acc) of ideals in R: given a chain of ideals

$$I_1 \subseteq I_2 \subseteq \cdots$$

of ideals in R, there exists $N \in \mathbb{N} = \{0, 1, 2, ...\}$ such that

$$I_N = I_{N+1} = I_{N+2} = \cdots$$

- 3. Maximum condition for ideals in R: every non-empty set of ideals of R contains an element maximal with respect to containment.
- 4. For every $n \in \mathbb{N}$ every submodule of \mathbb{R}^n is finitely generated.
- 5. For every $n \in \mathbb{N}$, R^n satisfies maximum condition on submodules.
- 6. Acc of on submodules of \mathbb{R}^n for every $n \in \mathbb{N}$.

Definition 2.3. *R* is said to be **Noetherian** if it satisfies any of the equivalent conditions of Theorem (2.2).

Theorem 2.3. (Hilbert Basis Theorem) If R is Noetherian then R[X] is also Noetherian.

Remark. More generally, if I is an ideal of $R[X_1, ..., X_n]$, then $R[X_1, ..., X_n]/I$ is Noetherian. In particular, $k[X_1, ..., X_n]/I$ is Noetherian since k is Noetherian.

2.3 Exact Sequences

Definition 2.4. A sequence of *R*-module homomorpisms

$$A \xrightarrow{\varphi} B \xrightarrow{\psi} C$$

is said to be **exact at** *B* if $Ker(\psi) = Im(\varphi)$. A sequence of *R*-module homomorphisms

$$\cdots \longrightarrow A_{i+1} \xrightarrow{\varphi_{i+1}} A_i \xrightarrow{\varphi_i} A_{i-1} \longrightarrow \cdots$$

is said to be **exact** if it is exact at every A_i . A **short exact sequence** is an exact sequence of the form

$$0 \longrightarrow A \stackrel{\varphi}{\longrightarrow} B \stackrel{\psi}{\longrightarrow} C \longrightarrow 0$$

2.3.1 Free Resolutions

Theorem 2.4. Assume that R is Noetherian and let M be a finitely generated R-module. Then there exists an exact sequence of the form

$$\cdots \longrightarrow R^{\beta_i} \xrightarrow{\partial_i} R^{\beta_{i-1}} \longrightarrow \cdots \longrightarrow R^{\beta_1} \xrightarrow{\partial_1} R^{\beta_0} \longrightarrow M \longrightarrow 0$$
 (2)

Proof. First note that since M is finitely generated, there exists a surjective R-module homomorphism $\tau_0 \colon R^{\beta_0} \to M$. Denote $M_1 := \operatorname{Ker}(\tau_0)$ the kernel of τ_0 and denote $\iota_1 \colon M_1 \hookrightarrow R^{\beta_0}$ the inclusion map. Since R is Noetherian and M_1 is a submodule of R^{β_0} , we see that M_1 is finitely generated (by Theorem (2.2)). Therefore there exists a surjective homomorphism $\tau_1 \colon R^{\beta_1} \to M_1$. Let $\iota_1 \colon \operatorname{Ker}(\tau_0) \to R^{\beta_0}$ denote the inclusion map and let $\phi_1 := \iota_0 \circ \tau_1$. Continuing in this way, for each $i \in \mathbb{N}$, we construct short exact sequences of the form

$$0 \longrightarrow M_{i+1} \xrightarrow{\iota_{i+1}} R^{\beta_i} \xrightarrow{\tau_i} M_i \longrightarrow 0$$

where we denote $M_0 := M$. A standard argument in homological algebra says that we can connect these short exact sequences together to form the long exact sequence (2) where $\partial_{i+1} := \iota_i \circ \tau_{i+1}$.

Definition 2.5. The exact sequence (2) is called an **augmented free resolution of** *M*.

In general, free resolutions are hard to compute. However here are two examples to consider.

Example 2.3. Recall that the fundamental theorem of finitely generated abelian groups says that if G is an abelian group, then there exists $r \in \mathbb{Z}_{\geq 0}$ and $d_1, \ldots, d_n \in \mathbb{Z}_{> 1}$ such that

$$G \cong \mathbb{Z}^r \oplus \mathbb{Z}/d_1 \oplus \cdots \oplus \mathbb{Z}/d_n$$
.

This boils down to the fact that there exists a free resolution of the form

$$0 \longrightarrow \mathbb{Z}^n \stackrel{\varphi}{\longrightarrow} \mathbb{Z}^{r+n} \longrightarrow G \longrightarrow 0$$

where the $(n + r) \times n$ matrix representation of φ has the form

$$[arphi] = egin{pmatrix} d_1 & 0 & \cdots & 0 \ 0 & d_2 & \cdots & 0 \ 0 & 0 & \ddots & 0 \ 0 & 0 & \cdots & d_n \ 0 & 0 & \cdots & 0 \ dots & dots & dots & dots \ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Example 2.4. If *R* is an integral domain and *r* is a nonzero unit in *R*. Then we have the short exact sequence

$$0 \longrightarrow R \stackrel{\cdot r}{\longrightarrow} R \longrightarrow R/r \longrightarrow 0$$

If *R* is a PID, then these are all the resolutions.

Example 2.5. Let $R = k[X,Y]/\langle XY \rangle$ and let $M = R/\langle \overline{X} \rangle$. Then we have

$$\cdots \longrightarrow R \xrightarrow{\cdot \overline{X}} R \xrightarrow{\cdot \overline{Y}} R \xrightarrow{\cdot \overline{X}} R \longrightarrow R/r \longrightarrow 0$$

In fact, we can prove that this resolution does not stop. The idea is that straying away from polynomial rings makes this construction go bad.

2.3.2 Hilbert Syzygy Theorem

Theorem 2.5. (Hilbert Syzygy Theorem) Let $R = k[X_1, ..., X_d]$ with k a field and let M be a finitely generated R-module. Then there exists a free resolution

$$0 \longrightarrow R^{\beta_d} \longrightarrow \cdots \longrightarrow R^{\beta_i} \xrightarrow{\partial_i} R^{\beta_{i-1}} \longrightarrow \cdots \longrightarrow R^{\beta_1} \xrightarrow{\partial_1} R^{\beta_0} \longrightarrow M \longrightarrow 0$$
 (3) with $\beta_i \geq 0$ for all i .

Remark. If d = 0, then R is just the field k and M is a k-vector space. If d = 1, then R is a PID. Since every submodule of a free R-module is free (when R is a PID), we see that the free resolution terminates at R^{β_1} . More variables require more work.

3 Graded Resolutions

Tracking finer information about certain resolutions. In this section, we assume that k is a field, R is a polynomial ring $R = k[X_1, \ldots, X_d]$.

Definition 3.1. Let *I* be an ideal in *R*. We say *I* is a **homogeneous** (or **graded**) ideal in *R* if it can be generated by homogeneous polynomials (not necessarily of the same degree).

Example 3.1. Consider the ring R = k[X,Y] and $I = \langle X^2 - XY^2, XY^2 \rangle$. Even though $X^2 - XY^2$ is not a homogeneous polynomial, the ideal I is still a homogeneous ideal. This is because $I = \langle X^2, XY^2 \rangle$.

Theorem 3.1. (Graded Hilbert Basis Theorem) If $I = \langle f_1, \dots, f_{\beta_1} \rangle$ where each f_i is homogeneous. Then there exists a free resolution

$$0 \longrightarrow R^{\beta_d} \longrightarrow \cdots \longrightarrow R^{\beta_i} \xrightarrow{\partial_i} R^{\beta_{i-1}} \longrightarrow \cdots \longrightarrow R^{\beta_1} \xrightarrow{\partial_1} R \longrightarrow R/I \longrightarrow 0$$
 (4)

such that each differential ∂_i is represented by a matrix of homogeneous polynomials.

3.1 Examples of Graded Resolutions

Example 3.2. Consider the case where R = k[X, Y] and $I = \langle X^a, Y^b \rangle$ where $a, b \ge 1$. Then we have the following short exact sequence of R-complexes

$$0 \longrightarrow R \xrightarrow{\begin{pmatrix} -Y^a \\ X^b \end{pmatrix}} R^2 \xrightarrow{\begin{pmatrix} X^a & Y^b \end{pmatrix}} R \longrightarrow R/I$$

This uses unique factorization of the indeterminates.

Example 3.3. Consider the case where R = k[X, Y] and $I = \langle X^a, XY, Y^b \rangle$ where $a, b \geq 2$. We claim that

$$0 \longrightarrow R^{2} \xrightarrow{\begin{pmatrix} -Y & 0 \\ X^{a-1} & Y^{b-1} \\ 0 & X \end{pmatrix}} R^{3} \xrightarrow{\begin{pmatrix} X^{a} & XY & Y^{b} \end{pmatrix}} R \longrightarrow R/I$$

is a free resolution of R/I. To see this, we first show $Ker(\partial_1) = Im(\partial_2)$. Let $(f, g, h)^{\top} \in Ker(\partial_1)$, so we have

$$X^a f + XYg + Y^b h = 0. (5)$$

Then (5) implies $Y|X^af$ which implies Y|f, and so $f=Yf_1$ for some $f_1 \in R$. Similarly, (5) implies $X|Y^bh$ which implies X|h, and so $h=Xh_1$ for some $h_1 \in R$. Thus we have

$$0 = X^a f + XYg + Y^b h$$

= $X^a Y f_1 + XYg + Y^b X h$
= $XY(X^{a-1} f_1 + g + Y^{b-1} h_1),$

and this further implies $X^{a-1}f_1 + g + Y^{b-1}h_1 = 0$. Solving for g, we find that $g = -X^{a-1}f_1 - Y^{b-1}h_1$. Therefore we see that

$$\begin{pmatrix} f \\ g \\ h \end{pmatrix} = \begin{pmatrix} Yf_1 \\ -X^{a-1}f_1 - Y^{b-1}h_1 \\ Xh_1 \end{pmatrix}$$
$$= f_1 \begin{pmatrix} Y \\ -X^{a-1} \\ 0 \end{pmatrix} + h_1 \begin{pmatrix} 0 \\ Y^{b-1} \\ X \end{pmatrix}$$
$$\in \operatorname{Im}(\partial_2).$$

In particular, we have $\operatorname{Im}(\partial_2) \supseteq \operatorname{Ker}(\partial_1)$ (and hence $\operatorname{Im}(\partial_2) = \operatorname{Ker}(\partial_1)$ since the reverse inclusion is already known). Finally, since R is an integral domain and since $(-Y, X^{a-1}, 0)^{\top}$ and $(0, Y^{b-1}, X)$ are linearly independent, we see that ∂_2 is injective.

3.2 Relation on the β_i

Note that the β_i in each of the previous examples satisfy the relations

$$\beta_0 - \beta_1 + \beta_2 = 0.$$

This actually happens in general:

Lemma 3.2. Let

$$0 \longrightarrow V_1 \stackrel{\varphi_1}{\longrightarrow} V_2 \stackrel{\varphi_2}{\longrightarrow} V_3 \longrightarrow 0.$$

be a short exact sequence of k-vector spaces.

Lemma 3.3. Let

$$0 \longrightarrow k^{\beta_d} \longrightarrow \cdots \longrightarrow k^{\beta_i} \xrightarrow{\partial_i} k^{\beta_{i-1}} \longrightarrow \cdots \longrightarrow k^{\beta_1} \xrightarrow{\partial_1} k^{\beta_0} \longrightarrow 0$$
 (6)

be an exact sequence of k-vector spaces. Then

$$\sum_{i=0}^{d} (-1)^{i} \beta_{i} = 0.$$

Proof. Let $K_i := \text{Ker}(\partial_i)$ for all $0 \le i \le d$ and let $K_{-1} = 0$. Then for each $0 \le i \le d$, exactness at k^{β_i} in (6) implies exactness of

$$0 \longrightarrow K_i \longleftrightarrow k^{\beta_i} \xrightarrow{\partial_i} K_{i-1} \longrightarrow 0.$$

Since the dimension function is additive on short exact sequences, we have $\beta_i = \dim(K_i) + \dim(K_{i-1})$. Therefore we have a telescoping series

$$\sum_{i=0}^{d} (-1)^{i} \beta_{i} = \sum_{i=0}^{d} (-1)^{i} (\dim(K_{i}) + \dim(K_{i-1}))$$
$$= (-1)^{d} \dim(K_{d}) + \dim(K_{-1})$$
$$= 0.$$

Theorem 3.4. Let I be a nonzero ideal in R and let

$$0 \longrightarrow R^{\beta_d} \longrightarrow \cdots \longrightarrow R^{\beta_i} \xrightarrow{\partial_i} R^{\beta_{i-1}} \longrightarrow \cdots \longrightarrow R^{\beta_1} \xrightarrow{\partial_1} R^{\beta_0} \xrightarrow{\partial_0} R/I \longrightarrow 0$$
 (7)

be a free resolutions of R/I over R. Then

$$\sum_{i=0}^{d} (-1)^i \beta_i = 0.$$

Proof. Localizing R at $\langle 0 \rangle$ gives us a field $R_{\langle 0 \rangle} = k(X_1, \dots, X_d)$ since R is an integral domain. Since $I \neq 0$, there exists $s \in I \setminus \{0\}$ that is nonzero. We claim then that $(R/I)_{\langle 0 \rangle} = 0$. Indeed an element in $(R/I)_{\langle 0 \rangle}$ looks like \bar{r}/t where $r \in R$ and $t \in R \setminus 0$. Then

$$\frac{\overline{r}}{t} = \frac{\overline{sr}}{st} = \frac{\overline{0}}{st} = 0.$$

Therefore localizing our resolution at $\langle 0 \rangle$ (which is exact) gives us an exact sequence of vector spaces over the field $R_{\langle 0 \rangle}$:

$$0 \longrightarrow R_{\mathfrak{p}}^{\beta_d} \longrightarrow \cdots \longrightarrow R_{\mathfrak{p}}^{\beta_i} \xrightarrow{\partial_i} R_{\mathfrak{p}}^{\beta_{i-1}} \longrightarrow \cdots \longrightarrow R_{\mathfrak{p}}^{\beta_1} \xrightarrow{\partial_1} R_{\mathfrak{p}}^{\beta_0} \longrightarrow 0 \tag{8}$$

Now we apply Lemma (3.3) to obtain our desired result.

4 Graded Rings and Modules

Unless otherwise specified, all rings discussed below are rings with unity.

4.1 Graded Rings

A graded ring R is a ring together with a direct sum decomposition

$$R=\bigoplus_{i\in\mathbb{N}}R_i,$$

where the R_i are abelian groups which satisfies the condition that if $r_i \in R_i$ and $r_j \in R_j$, then $r_i r_j \in R_{i+j}$ for all $i, j \in \mathbb{N}$. The R_i are called **homogeneous components** of R and the elements of R_i are called **homogeneous elements** of **degree** i. If r is a homogeneous element in R, then we denote the degree of r as deg(r). When we say "let R be a graded ring", then it is understood that the homogeneous components of R are denoted R_i . Note that if R is a graded ring, then R_0 must be a ring.

Remark. We sometimes list elements in a graded ring R as r_{i_1}, \ldots, r_{i_n} . The idea behind this notation is that for $1 \le \lambda \le n$ the subscript i_λ tells us that $\deg(r_{i_\lambda}) = i_\lambda$. Whenever we list elements like this, then unless otherwise stated, we will assume that for $1 \le \lambda < \mu \le n$ we have $r_{i_\lambda} \ne r_{i_\mu}$ and $i_\lambda \le i_\mu$.

Example 4.1. An important example of a graded ring is a ring R endowed with the **trivial grading**: The homogoneous components of R being $R_0 := R$ and $R_i := 0$ for all i > 0. If we introduce a ring without specfiying a grading, then it is assumed that this ring is endowed with the trivial grading.

4.2 Graded R-Algebras

Let R be a ring and let A be an R-algebra. We say A is a **graded** R-algebra if A is graded as a ring.

Example 4.2. Let R be a ring and let $w := (w_1, ..., w_n)$ be an n-tuple of positive integers. The **weighted polynomial ring with respect to the weight** w, denoted $R[u_1, ..., u_n]_w$, is the polynomial ring $R[u_1, ..., u_n]$ endowed with the unique grading such that $\deg(u_\lambda) = w_\lambda$ for all $\lambda = 1, ..., n$. We define the **weighted degree** of a monomial $m = u_1^{\alpha_1} \cdots u_n^{\alpha_n}$, denoted $\deg_w(m)$, by the formula

$$\deg_w(m) := \sum_{\lambda=1}^n w_\lambda \alpha_\lambda.$$

This grading gives $R[u_1, ..., u_n]_w$ the structure of a graded R-algebra, where the homogeneous components are given by

$$(R[u_1,\ldots,u_n]_w)_i := \operatorname{Span}_R \langle m \in R[u_1,\ldots,u_n]_w \mid \deg_w(m) = i \rangle.$$

For instance, consider the case where $R = k[X, Y, Z]_{(1,2,3)}$. The homogeneous components of R start out as

$$R_0 = k$$

$$R_1 = kX$$

$$R_2 = kX^2 + kY$$

$$R_3 = kX^3 + kXY + kZ$$
:

Example 4.3. Let R be a ring and let Q be an ideal in R. The **blowup algebra of** Q **in** R is defined by

$$B_Q(R) := R + tQ + t^2Q^2 + t^3Q^3 + \cdots \cong \bigoplus_{i=0}^{\infty} Q^i.$$

Elements in $B_O(R)$ have the form

$$t^{i_1}x_{i_1}+\cdots+t^{i_m}x_{i_m}$$

where $0 \le i_1 < \cdots < i_m$ and $x_{i_\lambda} \in Q^{i_\lambda}$ for all $1 \le \lambda \le m$. The t^{i_λ} part keeps track of what degree we are in. We define multiplaction on elements of the form $t^i x$ and $t^j y$ by

$$(t^i x)(t^j y) = t^{i+j} x y,$$

and we extend this to all of $B_Q(R)$ in the obvious way. This gives $B_Q(R)$ the structure of a graded R-algebra. If Q is finitely generated, say $Q = \langle a_1, \dots, a_n \rangle$, then there is a unique R-algebra homomorphism

$$\varphi \colon R[u_1,\ldots,u_n] \to B_O(R),$$

such that $\varphi(u_{\lambda}) = ta_{\lambda}$ for all $1 \le \lambda \le n$.

4.3 Graded R-Modules

Let R be a graded ring. A graded R-module M is an R-module together with a direct sum decomposition

$$M = \bigoplus_{i \in \mathbb{Z}} M_i$$

into abelian groups M_i which satisfies the condition that if $r_i \in R_i$ and $m_j \in M_j$, then $r_i m_j \in M_{i+j}$ for all $i, j \in \mathbb{Z}$. The M_i are called **homogeneous components** of M and the elements of M_i are called **homogeneous elements** of **degree** i. If m is a homogeneous element in M, then we denote the degree of m as deg(m). When we say "let M be a graded R-module", then it is understood that the homogeneous components of M are denoted M_i .

Example 4.4. Let M be a graded R-module. Then for each $j \in \mathbb{Z}$, we define the j-th twist (or j-twist) of M, denoted M(-j), to be the graded R-module whose i-th homogeneous component is given by $M(j)_i := M_{i+j}$ for all $i \in \mathbb{Z}$. Thus, we have

$$M(j) := \bigoplus_{i \in \mathbb{Z}} M_{i+j}.$$

4.3.1 Graded R-Submodules

Lemma 4.1. Let M be a graded R-module and $N \subset M$ be a submodule. The following conditions are equivalent:

- 1. N is graded R-module whose homogeneous components are $M_i \cap N$.
- 2. N can be generated by homogeneous elements.
- 3. Let $y \in M$ and suppose that $y = y_{i_1} + \cdots + y_{i_n}$ where $i_1 < \cdots < i_n$ and $y_{i_{\lambda}} \in M_{i_{\lambda}}$ for all $1 \le \lambda \le n$. Then $y \in N$ if and only if $y_{i_{\lambda}} \in N$ for all $1 \le \lambda \le n$.

Proof.

(1 implies 2): Let $\{x_{\lambda}\}_{{\lambda}\in\Lambda}$ be a set of generators for N. For each ${\lambda}\in\Lambda$, write

$$x_{\lambda} = x_{\lambda,i_1} + \cdots + x_{\lambda,i_{n(\lambda)}}$$

where $i_1 < \cdots < i_{n(\lambda)}$ and $x_{\lambda,i_{\mu}} \in M_{i_{\mu}} \cap N$ for all $1 \le \mu \le n(\lambda)$. Then $\{x_{\lambda,i_{\mu}}\}_{\lambda \in \Lambda, 1 \le \mu \le n(\lambda)}$ is a set of homogeneous elements which generated N.

(2 implies 3) Let $\{x_{\lambda}\}_{{\lambda}\in\Lambda}$ be a set of homogeneous generators for N and let $y\in N$. Write

$$y =$$

If each $y_{i_{\lambda}} \in N$ for all $1 \leq \lambda \leq n$, then it is clear that $y \in N$. Conversely if $y \in N$, then there is a unique decomposition

Let $y \in N$. Since $y \in M$, we can decompose y into its homogeneous parts in M, say

$$y = y_{i_1} + \dots + y_{i_n}$$

where $i_1 < \cdots < i_n$ and $y_{i_{\lambda}} \in M_{i_{\lambda}}$ for all $1 \le \lambda \le n$. Since $y \in N$, we can decompose y into its homogeneous parts in N, say

$$y = y'_{i'_1} + \cdots + y'_{i'_{n'}}$$

where $i'_1 < \cdots < i'_{n'}$ and $y'_{i'_{\lambda}} \in N_{i'_{\lambda'}}$ for all $1 \le \lambda \le n'$. Since the grading on N is just the induced graded of N as a subset of M, we must have n' = n and $y'_{i'_{\lambda}} = y_{i_{\lambda}}$ for all $1 \le \lambda \le n$.

A submodule $N \subset M$ satisfying the equivalent conditions of Lemma (4.1) is called a **graded** (or **homogeneous**) submodule. A graded submodule of a graded ring is called a **graded** (or **homogeneous**) ideal.

Example 4.5. Consider the graded ring $R = k[X,Y,Z]_{(5,6,15)}$. Then the ideal $I = \langle y^5 - z^2, x^3 - z, x^6 - y^5 \rangle$ is a homogeneous ideal in R.

Remark. Let R be a graded ring and let I be a homogeneous ideal in R. Then the quotient ring R/I has an induced structure as a graded ring, where the ith homogeneous component of R/I is

$$(R/I)_i := (R_i + I)/I \cong R_i/(I \cap R_i)$$

4.3.2 Homomorphisms of Graded R-Modules

Let M and N be graded R-modules. A homomorphism $\varphi \colon M \to N$ is called **homogeneous** (or **graded**) of degree j if $\varphi(M_i) \subset N_{i+j}$ for all $i \in \mathbb{Z}$. If φ is homogeneous of degree zero then we will simply say φ is **homogeneous**.

Example 4.6. Consider the graded ring R = k[X, Y, Z, W]. Then the matrix

$$U := \begin{pmatrix} X + Y + Z & W^2 - X^2 & X^3 \\ 1 & X & XY + Z^2 \end{pmatrix}$$

defines a homomorphism $U: R(-1) \oplus R(-2) \oplus R(-3) \to R \oplus R(-1)$ which is graded of degree zero.

4.4 Operations on Graded R-Modules

4.4.1 Tensor

Let M and N be graded R-modules. As R-modules, their tensor product is given by

$$M \otimes_R N = \left(\bigoplus_{i \in \mathbb{Z}} M_i \right) \otimes \left(\bigoplus_{j \in \mathbb{Z}} N_j \right)$$

$$\cong \bigoplus_{i \in \mathbb{Z}} \bigoplus_{j \in \mathbb{Z}} (M_i \otimes N_j)$$

$$= \bigoplus_{i \in \mathbb{Z}} \left(\bigoplus_{j \in \mathbb{Z}} M_j \otimes N_{i-j} \right).$$

This suggests that we can view $M \otimes_R N$ as a graded R-module where the homogeneous component in degree i is

$$(M \otimes_R N)_i = \bigoplus_{j \in \mathbb{Z}} M_j \otimes N_{i-j}.$$

This turns out to be right notion. Indeed, if $x \in M_i$, $y \in N_i$, and $a \in R_k$, then

$$a(x \otimes y) = ax \otimes y = x \otimes ay \in (M \otimes_R N)_{i+i+k}$$
.

So the grading is preserved upon *R*-scaling.

4.4.2 Graded Hom

Unlike the tensor product of two *R*-modules, hom does not have a natural interpretation as a graded *R*-module. Instead we consider the graded version. Let *M* and *N* be graded *R*-modules. Then we define

$$\operatorname{Hom}_R^{\star}(M,N) := \bigoplus_{i \in \mathbb{Z}} \prod_{j \in \mathbb{Z}} \operatorname{Hom}_R(M_j,N_{i+j}).$$

Observe that if *N* is just an *R*-module with the trivial grading, then we get

$$\operatorname{Hom}_R^{\star}(M,N) = \bigoplus_{i \in \mathbb{Z}} \prod_{j \in \mathbb{Z}} \operatorname{Hom}_R(M_j,N_{i+j})$$

$$\cong \bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_R(M_{-i},N),$$

and if M is just an R-module with the trivial grading, then we get

$$\operatorname{Hom}_R^{\star}(M,N) = \bigoplus_{i \in \mathbb{Z}} \prod_{j \in \mathbb{Z}} \operatorname{Hom}_R(M_j,N_{i+j})$$

 $\cong \bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_R(M,N_i),$

4.5 Noetherian Graded Rings and Modules

4.5.1 The Irrelevant Ideal

Let *R* be a graded ring. The **irrelevant ideal of** *R* is defined to be

$$R_+ := \bigoplus_{i>0} R_i$$
.

It is straightforward to check that R_+ is in fact an ideal of R and that $R/R_+ \cong R_0$. If R_+ is finitely generated, say by $x_{i_1}, \ldots, x_{i_n} \in R_+$, then there is a surjective R_0 -algebra map

$$R_0[X_{i_1},\ldots,X_{i_n}]\to R$$

sending $X_{i_{\lambda}} \mapsto x_{i_{\lambda}}$ for all $1 \le \lambda \le n$. Thus if R_+ is finitely generated as an ideal in R, then R is a finitely generated as an R_0 -algebra.

4.5.2 Noetherian Graded Rings

The following lemma will be used many times without mention.

Lemma 4.2. Let R be a ring and let $S \subseteq R$. Suppose the ideal $\langle S \rangle$ generated by S is finitely generated. Then we can choose the generators to be in S.

Proof. Since $\langle S \rangle$ is finitely generated, there are $x_1, \ldots, x_n \in \langle S \rangle$ such that $\langle S \rangle = \langle x_1, \ldots, x_n \rangle$. In particular we have

$$x_{\lambda} = \sum_{\mu=1}^{n_{\lambda}} r_{\mu\lambda} s_{\mu\lambda}$$

where for each $1 \le \lambda \le n$ we have $n_{\lambda} \in \mathbb{N}$, and for each $1 \le \mu \le n_{\lambda}$ we have $r_{\mu\lambda} \in R$ and $s_{\mu\lambda} \in S$. In particular, this mean

$$\langle S \rangle = \langle s_{u\lambda} \mid 1 \leq \lambda \leq n \text{ and } 1 \leq \mu \leq n_{\lambda} \rangle.$$

A Noetherian graded ring is a graded ring whose underlying ring is Noetherian.

Proposition 4.1. Let R be a graded ring. Then R is Noetherian if and only if R_0 is Noetherian and R is finitely generated as an R_0 -algebra.

Proof. Suppose R_0 is Noetherian and R is finitely generated as an R_0 -algebra. Then there exists an $n \ge 0$ and a surjection

$$R_0[X_1,\ldots,X_n]\to R.$$

where $R_0[X_1,...,X_n]$ is a polynomial algebra over Noetherian ring, and hence Noetherian, which implies that R is Noetherian, as it is a quotient of a Noetherian ring.

Now suppose R is Noetherian. Then the irrelevant ideal R_+ is finitely generated and we have $R_0 \cong R/R_+$. Thus R_0 is Noetherian since it is a quotient of a Noetherian ring and R is finitely generated as an R_0 -algebra since R_+ is finitely generated as an ideal in R.

Corollary. Let R be a Noetherian graded ring and let M be a finitely generated graded R-module. Then M_i is a finitely generated R_0 -module.

Proof. Let m_{i_1}, \ldots, m_{i_n} be the generators of M as an R-module where $\deg(m_{i_{\lambda}}) = i_{\lambda}$ for all $1 \leq \lambda \leq n$. Then

$$M_i = R_{i-i_1}m_{i_1} + \cdots + R_{i-i_n}m_{i_n}.$$

This implies that M_i is a finitely generated R_0 -module because the R_i 's are finitely generated R_0 -modules.

5 Homological Algebra

Throughout this subsection, let *R* be a ring (trivially graded).

5.1 Chain Complexes over *R*

A **chain complex** (A, d) **over** R, or more simply an R-**complex**, is a sequence of R-modules A_i and morphisms $d_i \colon A_i \to A_{i-1}$

$$(A,d) := \cdots \longrightarrow A_{i+1} \xrightarrow{d_{i+1}} A_i \xrightarrow{d_i} A_{i-1} \longrightarrow \cdots$$

such that $d_i \circ d_{i+1} = 0$ for all $i \in \mathbb{Z}$. The condition $d_i \circ d_{i+1} = 0$ is equivalent to the condition $Ker(d_i) \supset Im(d_{i+1})$. With this in mind, we define the *i*th homology of *R*-complex (A, d) to be

$$H_i(A,d) := \operatorname{Ker}(d_i)/\operatorname{Im}(d_{i+1}).$$

5.1.1 Chain Maps

Let (A,d) and (A',d') be two R-complexes. A **chain map** $\varphi:(A,d)\to (A',d')$ is a sequence of R-module homomorphisms $\varphi_i\colon A_i\to A_i'$ such that $d_i'\varphi_i=\varphi_{i-1}d_i'$ for all $i\in\mathbb{Z}$.

$$(A,d) := \cdots \longrightarrow A_{i+1} \xrightarrow{d_{i+1}} A_i \xrightarrow{d_i} A_{i-1} \longrightarrow \cdots$$

$$\downarrow^{\varphi_{i+1}} \qquad \downarrow^{\varphi_i} \qquad \downarrow^{\varphi_{i-1}}$$

$$(A',d') := \cdots \longrightarrow A'_{i+1} \xrightarrow{d'_{i+1}} A'_i \xrightarrow{d'_i} A'_{i-1} \longrightarrow \cdots$$

5.1.2 Simplifying Notation

There is another description of R-complexes and chains maps which turns out to be useful. Namely, an R-complex (A,d) is a graded R-module A equipped with a graded endomorphism $d: A \to A$ of degree -1 such that $d^2 = 0$. The morphisms d_i introduced above are given by $d_i := d|_{A_i}$. We often refer to d as the **differential**. An element in Ker(d) is called a **cycle** of (A,d) and an element in Im(d) is called a **boundary** of (A,d). We define the **homology** of (A,d) to be

$$H(A,d) := \text{Ker}(d)/\text{Im}(d)$$

Since the kernel and image of a graded homomorphism (of any degree) are homogeneous, we have

$$H(A,d) = \bigoplus_{i \in \mathbb{Z}} H_i(A,d).$$

Thus H(A, d) can be thought of as a graded R-module.

Remark. We sometimes write A and H(A) instead of (A,d) and H(A,d) if the differential is understood from context.

5.1.3 Chain Maps Revisited

Let us reinterpet what a chain map is in terms of this new notation. Let (A, d) and (A', d') be two R-complexes. A chain map $\varphi \colon (A, d) \to (A', d')$ between them is a graded homomorphism of graded R-modules such that $\varphi d = d' \varphi$.

Example 5.1. Let (A, d) and (A', d') be two R-complexes and let $r \in R$. The **homothety map** $\mu_r \colon (A, d) \to (A', d')$ is defined by

$$\mu_r(a) = ra$$

for all $a \in A$. The homothety map is clearly a graded homomorphism since r is sitting in degree 0. It also commutes with the differential since the differential is R-linear.

5.2 Homology Considered as a Functor

The set of all R-complexes together with the set of all chain maps forms a category, which we denote \mathbf{Comp}_R . Similarly, the set of all graded R-modules together with the set of all graded homomorphisms (of degree 0) forms a category, which we denote \mathbf{Grad}_R . We've already seen that if (A,d) is an R-complex, then H(A,d) is a graded R-module. We would like to extend this observation to get a functor $H: \mathbf{Comp}_R \to \mathbf{Grad}_R$. This will follow from the following three propositions:

Proposition 5.1. Let $\varphi: (A,d) \to (A',d')$ be a chain map between R-complex (A,d) and (A',d'). Then φ induces a graded homomorphism $H(\varphi): H(A,d) \to H(A',d')$, where

$$H(\varphi)(\overline{a}) := \overline{\varphi(a)} \tag{9}$$

for all $\overline{a} \in H(A, d)$.

Proof. First let us check that the target of each element in H(A,d) under $H(\varphi)$ lands in H(A',d'). Let $\overline{a} \in H(A,d)$, so d(a) = 0. Then $\overline{\varphi(a)} \in H(A,d)$ since

$$d(\varphi(a)) = \varphi(d(a))$$
$$= 0.$$

Next let us check that that $H(\varphi)$ is well-defined. Let a+d(b) and a be two representatives of the coset class \overline{a} . Then we have

$$H(\varphi)(\overline{a+d(b)}) = \overline{\varphi(a+d(b))}$$

$$= \overline{\varphi(a) + \varphi(d(b))}$$

$$= \overline{\varphi(a)} + \overline{\varphi(d(b))}$$

$$= \overline{\varphi(a)} + \overline{d(\varphi(b))}$$

$$= \overline{\varphi(a)}.$$

So far we have shown that $H(\varphi)$ is a function. To see that $H(\varphi)$ is an R-module homomorphism, let $r,s \in R$ and $a,b \in A$. Then

$$H(\varphi)(ra+sb) = \overline{\varphi(ra+sb)}$$

$$= \overline{r\varphi(a) + s\varphi(b)}$$

$$= r\overline{\varphi(a)} + s\overline{\varphi(b)}$$

$$= rH(\varphi)(a) + sH(\varphi)(b).$$

Finally, to see that $H(\varphi)$ is graded, let $\overline{a}_i \in H_i(A, d)$, so $a_i \in A_i$. Then

$$H(\varphi)(\overline{a}_i) = \overline{\varphi(a_i)} \in H_i(A', d')$$

since φ is graded.

Proposition 5.2. Let $\varphi: (A, d) \to (A', d')$ and $\varphi': (A', d') \to (A'', d'')$ be two chain maps between R-complex (A, d) to (A', d') and (A', d') to (A'', d'') respectively. Then

$$H(\varphi' \circ \varphi) = H(\varphi') \circ H(\varphi).$$

Proof. Let $\overline{a} \in H(A, d)$. Then we have

$$H(\varphi' \circ \varphi)(\overline{a}) = \overline{(\varphi' \circ \varphi)(a)}$$

$$= \overline{\varphi'(\varphi(a))}$$

$$= H(\varphi')(\overline{\varphi(a)})$$

$$= H(\varphi')(H(\varphi)(a))$$

$$= (H(\varphi') \circ H(\varphi))(a).$$

Proposition 5.3. Let (A,d) be an R-complex. Then we have $H(id_{(A,d)}) = id_{H(A,d)}$, where $id_{(A,d)}$ is the identity map from (A,d) to (A,d) and $id_{H(A,d)}$ is the identity map from H(A) to H(A). In particular, if $\varphi \colon (A,d) \to (A',d')$ is an isomorphism between R-complexes (A,d) and (A',d'), then $H(\varphi) \colon H(A) \to H(A')$ is an isomorphism between graded R-modules H(A) and H(A').

Proof. Let $\overline{a} \in H(A, d)$. Then

$$H(\mathrm{id}_{(A,d)})(\overline{a}) = \overline{\mathrm{id}_{(A,d)}(a)}$$
$$= \overline{a}$$
$$= \mathrm{id}_{H(A,d)}(\overline{a}).$$

For the latter statement, let $\varphi: (A,d) \to (A',d')$ is an isomorphism between R-complexes (A,d) and (A',d'), and let $\psi: (A',d') \to (A,d)$ be its inverse. Then

$$id_{H(A,d)} = H(id_{(A,d)})$$

$$= H(\psi \circ \varphi)$$

$$= H(\psi) \circ H(\varphi).$$

A similar computation gives $H(\varphi) \circ H(\psi) = \mathrm{id}_{H(A')}$.

5.2.1 Viewing Homology as an Additive Functor

There is more structure on the categories $Comp_R$ and $Grad_R$ which we haven't discussed so far. Let us fix that now: Let (A, d) and (A', d') be two R-complexes. We define

$$\mathcal{C}(A,A') := \operatorname{Hom}((A,d),(A',d')) = \{ \varphi \colon (A,d) \to (A',d') \mid \varphi \text{ is a chain map} \}.$$

Then C(A, A') has the structure of an R-module. Indeed, if $\varphi, \psi \in C(A, A')$ and $r \in R$, then we define addition and scalar multiplication by

$$(\varphi + \psi)(a) := \varphi(a) + \psi(a)$$
 and $(r\varphi)(a) = \varphi(ra)$

for all $a \in A$. Since d is an R-linear map, it is clear that $\varphi + \psi$ and $r\varphi$ are chain maps.

Proposition 5.4. *Let* φ , ψ : $(A, d) \rightarrow (A', d')$ *be two chain maps and let* $r, s \in R$. *Then*

$$H(r\varphi + s\psi) = rH(\varphi) + sH(\psi)$$

Proof. Let $\overline{a} \in H(A, d)$. Then

$$\begin{split} H(r\varphi+s\psi)(\overline{a}) &= \overline{(r\varphi+s\psi)(a)} \\ &= \overline{r\varphi(a)+s\psi(a)} \\ &= r\overline{\varphi(a)}+s\overline{\psi(a)} \\ &= rH(\varphi)(a)+sH(\psi)(a). \end{split}$$

We can give $Comp_R$ even more structure as follows:

Proposition 5.5. *Composition* \circ : $C(A, A') \times C(A', A'') \rightarrow C(A, A'')$ *is an R-bilinear map.*

Proof. Let $\varphi, \varphi' \in \mathcal{C}(A, A')$ and $\psi \in \mathcal{C}(A', A'')$. Then

$$((\varphi + \varphi') \circ \psi)(a) = (\varphi + \varphi')(\psi(a))$$
$$= \varphi(\psi(a)) + \varphi'(\psi(a))$$
$$= (\varphi \circ \psi)(a) + (\varphi' \circ \psi)(a)$$

for all $a \in A$. Similarly, let $\varphi \in \mathcal{C}(A, A')$ and $\psi, \psi' \in \mathcal{C}(A', A'')$. Then

$$(\varphi \circ (\psi + \psi'))(a) = \varphi((\psi + \psi')(a))$$

$$= \varphi(\psi(a) + \psi'(a))$$

$$= \varphi(\psi(a)) + \varphi(\psi'(a))$$

$$= (\varphi \circ \psi)(a) + (\varphi \circ \psi')(a).$$

A similar proof works for R-linearity in the first and second argument too.

5.2.2 Quasiisomorphisms

Definition 5.1. Let $\varphi: (A,d) \to (A',d')$ be a chain map. We say φ is a **quasiisomorphism** if $H(\varphi): H(A,d) \to H(A',d')$ is an isomorphism.

Every isomorphism $\varphi: (A, d) \to (A', d')$ between *R*-complexes is a quasiisomorphism since *H* is a functor.

Example 5.2. Let (A,d) and (A',d') be two R-complexes. The homothety map $\mu^{A,x} \colon A \to A$ induces the homothety map in homology $\mu^{H_i(A),x} \colon H_i(A) \to H_i(A)$, given by $\overline{a} \mapsto x\overline{a}$. In particular, if x is a unit, then multiplication by x is always an isomorphism, and this implies $H_i(\mu^{A,x})$ is an isomorphism for all i, and so $\mu^{A,x}$ is a quasiisomorphism.

Proposition 5.6. Let (A,d) be an R-complex. Then we have $H(id_{(A,d)}) = id_{H(A,d)}$, where $id_{(A,d)}$ is the identity map from (A,d) to (A,d) and $id_{H(A,d)}$ is the identity map from H(A,d) to H(A,d). In particular, if $\varphi \colon (A,d) \to (A',d')$ is an isomorphism between R-complexes (A,d) and (A',d'), then $H(\varphi) \colon H(A,d) \to H(A',d')$ is an isomorphism.

Proof. Let $\overline{a} \in H(A,d)$. Then

$$H(\mathrm{id}_{(A,d)})(\overline{a}) = \overline{\mathrm{id}_{(A,d)}(a)}$$
$$= \overline{a}$$
$$= \mathrm{id}_{H(A,d)}.$$

For the latter statement, let $\varphi: (A,d) \to (A',d')$ is an isomorphism between R-complexes (A,d) and (A',d'), and let $\psi: (A',d') \to (A,d)$ be its inverse. Then

$$id_{H(A,d)} = H(id_{(A,d)})$$

$$= H(\psi \circ \varphi)$$

$$= H(\psi) \circ H(\varphi).$$

A similar computation gives $H(\varphi) \circ H(\psi) = \mathrm{id}_{H(A',d')}$

Example 5.3. Let (A, d) and (A', d') be two R-complexes and let $r \in R$. The homothety map $\mu_r \colon (A, d) \to (A', d')$ induces the homothety map in homology $H(\mu_r) \colon H(A, d) \to H(A', d')$. In particular, if r is a unit, then multiplication by r is always an isomorphism, and this implies $H_i(\mu^{A,x})$ is an isomorphism for all i, and so $\mu^{A,x}$ is a quasiisomorphism.

5.2.3 Homotopy Equivalence

Definition 5.2. Let φ and ψ be two chain maps between R-complexes (A, d) and (A', d'). We say φ is **homotopic** to ψ if there is a chain map $h: (A, d) \to (A', d')$ such that $\varphi - \psi = d'h + hd$.

Proposition 5.7. Let φ and ψ be chain maps of chain complexes (A,d) and (A',d'). If φ is homotopic to ψ , then $H(\varphi) = H(\psi)$.

Proof. Showing $H(\varphi) = H(\psi)$ is equivalent to showing $H(\varphi - \psi) = 0$. Thus, we may assume that φ is homotopic to the 0 map and that we are trying to show that $H(\varphi) = 0$. Let $\overline{a} \in H(A, d)$. Then d(a) = 0, and so

$$H(\varphi)(\overline{a}) = \overline{\varphi(a)}$$

$$= \overline{(d'h + hd)(a)}$$

$$= \overline{d'(h(a)) + h(d(a))}$$

$$= \overline{d'(h(a))}$$

$$= \overline{0}.$$

5.3 Exact Sequences of *R*-Complexes

Let (A,d), (A',d'), and (A'',d'') be R-complexes and let $\varphi:(A',d')\to(A,d)$ and $\psi:(A,d)\to(A'',d'')$ be chain maps. Then we say that

$$0 \longrightarrow (A',d') \stackrel{\varphi}{\longrightarrow} (A,d) \stackrel{\psi}{\longrightarrow} (A'',d'') \longrightarrow 0$$

is a **short exact sequence** of *R*-complexes if it is a short exact sequence when considered as graded *R*-modules. More specifically, this means that following diagram is commutative with exact rows:

Theorem 5.1. Let

$$0 \longrightarrow (A', d') \stackrel{\varphi}{\longrightarrow} (A, d) \stackrel{\psi}{\longrightarrow} (A'', d'') \longrightarrow 0$$
 (10)

be a short exact sequence of R-complexes. Then there exists a graded homomorphism $\eth\colon H(A'')\to H(A')$ of degree -1 such that

is a long exact sequence of R-modules.

Proof. The proof will consists of three steps. The first step is to construct a graded function $\eth: H(A'') \to H(A')$ of degree -1 (graded here just means $\eth(H_i(A'')) \subseteq H_{i-1}(A')$ for all $i \in \mathbb{Z}$). The next step will be to show that \eth is R-linear. The final step will be to show exactness of (11).

Step 1: Let $i \in \mathbb{Z}$ and let $\overline{a''} \in H_i(A'')$. Choose a representative of the coset $\overline{a''}$, say $a'' \in A_i''$ (so d''(a'') = 0), and choose a lift of a'' in A_i under ψ (This means choose $a \in A_i$ such that $\psi(a) = a''$. We can make such a choice since ψ is surjective). Since

$$\psi(d(a)) = d''(\psi(a))$$

$$= d''(a'')$$

$$= 0,$$

there exists a unique $a' \in A'_{i-1}$ such that $\varphi(a') = d(a)$ (by exactness of (10)). Observe that d'(a') = 0 since φ is injective and since

$$\varphi(d'(a')) = d(\varphi(a'))$$

$$= d(d(a))$$

$$= 0.$$

Thus a' represents an element in $H_{i-1}(A')$. We define $\eth: H(A'') \to H(A')$ by $\eth(\overline{a''}) = \overline{a'}$.

We need to verify that \eth is well-defined. There were two choices that we made in constructing \eth . The first choice was the choice of a representative of the coset $\overline{a''}$. So let a'' + d''(b'') be another choice of this coset where $b'' \in A''_{i+1}$ (every representative of the coset $\overline{a''}$ has this form for some $b'' \in A''_{i+1}$). The second choice that we made was the choice of a lift of a'' in A under ψ . This time we have another coset representative of $\overline{a''}$, so let $a + \varphi(b') + d(b)$ be a lift of a'' + d''(b'') in A_i where $b' \in A'_i$ and $b \in A_{i+1}$ (every such choice has this form for some $b' \in A'_i$ and $b \in A_{i+1}$). We first observe that

$$d(a + \varphi(b') + d(b)) = d(a) + d(\varphi(b')) + d(d(b))$$

= $d(a) + d(\varphi(b'))$
= $d(a) + \varphi(d'(b'))$.

Therefore

$$\psi(d(a + \varphi(b') + d(b))) = \psi(d_i(a) + \varphi(d'(b')))
= \psi(d(a)) + \psi(\varphi(d'(b')))
= \psi(d(a))
= d''(\psi(a))
= d''(a'')
= 0.$$

Hence there exists a unique element in A'_{i-1} which maps to $d(a + \varphi(b') + d(b))$ under φ , and since

$$\varphi(a' + d'(b')) = \varphi(a') + \varphi(d'(b'))
= d(a) + \varphi(d'(b'))
= d(a + \varphi(b') + d(b)),$$

this unique element must be a' + d'(b'). Therefore

$$\eth(\overline{a'' + d''(b'')}) = \overline{a' + d'(b')}
= \overline{a'}
= \eth(\overline{a''}),$$

which implies \eth is well-defined. Moreover, we see that $\eth(A_i) \subseteq A_{i-1}$, and is hence graded of degree -1. As usualy, we denote $\eth_i := \eth|_{A_i}$.

Step 2: Let $i \in \mathbb{Z}$, let $\overline{a''}$, $\overline{b''} \in H(A'')$, and let $r, s \in R$. Choose a coset representative $\overline{a''}$ and $\overline{b''}$, say $a'' \in A''_i$ and $b'' \in A''_i$. Then ra'' + sb'' is a coset representative of $\overline{ra'' + sb''}$ (by linearity of taking quotients). Next, choose lifts of a'' and b'' in A_i under φ , say $a \in A_i$ and $b \in A_i$ respectively. Then ra + sb is a lift of ra'' + sb'' in A_i under φ (by linearity of ψ). Finally, let a' and b' be the unique elements in A'_{i-1} such that $\varphi(a') = d(a)$ and $\varphi(b') = d(b)$. Then ra' + sb' is the unique element in A'_{i-1} such that $\varphi(ra' + sb') = d(ra + sb)$ (by linearity of φ). Thus, we have

$$\widetilde{\eth}(\overline{ra'' + sb''}) = \overline{ra' + sb'}
= r\overline{a'} + s\overline{b'}
= r\widetilde{\eth}(\overline{a''}) + s\widetilde{\eth}(\overline{b''}).$$

Step 3: To prove exactness of (11), it suffices to show exactness at $H_i(A'')$, $H_i(A)$, and $H_i(A')$. First we prove exactness at $H_i(A)$. Let $\overline{a} \in \operatorname{Ker}(H_i(\psi))$ (so $a \in A_i$, d(a) = 0, and $\overline{\psi(a)} = \overline{0}$). Lift $\psi(a) \in A_i''$ to an element $a'' \in A_{i+1}'$ under d'' (we can do this since $\overline{\psi(a)} = \overline{0}$). Lift $a'' \in A_{i+1}''$ to an element $b \in A_{i+1}$ under ψ (we can do this since ψ is surjective). Then

$$\psi(d(b) - a) = \psi(d(b)) - \psi(a)$$

$$= d''(a'') - \psi(a)$$

$$= \psi(a) - \psi(a)$$

$$= 0$$

implies $d(b) - a \in \text{Ker}(\psi)$. Lift d(b) - a to the unique element $a' \in A'_i$ under φ (we can do this exactness of (10)). Since φ is injective,

$$\varphi(d'(a')) = d(\varphi(a'))$$

$$= d(d(b) - a)$$

$$= d(d(b)) - d(a))$$

$$= 0$$

implies d'(a') = 0. Hence a' represents an element in H(A'). Therefore

$$H_i(\varphi)(a') = \overline{\varphi(a')}$$

$$= \overline{d(b) - a}$$

$$= \overline{a}$$

implies $\bar{a} \in \text{Im}(H_i(\varphi))$. Thus we have exactness at $H_i(A)$.

Next we show exactness at $H_i(A')$. Let $\overline{a'} \in \operatorname{Ker}(H_i(\varphi))$ (so $a' \in A'_i$, d(a') = 0, and $\overline{\varphi(a')} = \overline{0}$). Lift $\varphi(a') \in A_i$ to an element $a \in A'_{i+1}$ under d (we can do this since $\overline{\varphi(a)} = \overline{0}$). Then

$$d(\psi(a)) = \psi(d(a))$$

= $\psi(\varphi(a'))$
= 0.

Hence $\psi(a)$ represents an element in $H_{i+1}(A'')$. By construction, we have $\eth(\overline{\psi(a)}) = \overline{a'}$, which implies $\overline{a'} \in \operatorname{Im}(\eth_{i+1})$. Thus we have exactness at $H_i(A')$.

Finally we show exactness at $H_i(A'')$. Let $\overline{a''} \in \text{Ker}(\eth_i)$ (so $a'' \in A''_i$ and d(a'') = 0). Lift a'' to an element $a \in A_i$ under ψ . Lift d(a) to the unique element a' in A'_{i-1} under φ . Lift a' to an element $b' \in A'_{i+1}$ under d (we can do this since $0 = \eth(\overline{a''}) = \overline{a'}$). Then

$$d(a - \varphi(b')) = d(a) - d(\varphi(b'))$$

$$= d(a) - \varphi(d(b'))$$

$$= d(a) - \varphi(a')$$

$$= 0,$$

and hence $a - \varphi(b')$ represents an element in $H_i(A)$. Moreover, we have

$$H_{i}(\psi)(\overline{a-\varphi(b'))} = \overline{\psi(a-\varphi(b'))}$$

$$= \overline{\psi(a) - \psi(\varphi(b'))}$$

$$= \overline{\psi(a)}$$

$$= \overline{a''},$$

which implies $\overline{a'} \in \text{Im}(H_i(\psi))$. Thus we have exactness at $H_i(A'')$.

Definition 5.3. Given a short exact sequence of *R*-complexes as in (10), we refer to the graded homomorphism $\eth \colon H(A'') \to H(A')$ of degree -1 as the **induced connecting map**.

6 Operations on R-Complexes

6.1 Direct Sum of *R*-Complexes

Definition 6.1. Let (A, d) and (A', d') be *R*-complexes. We define their **direct sum** to be the *R*-complex

$$(A,d) \oplus (A',d') := (A \oplus A',d \oplus d')$$

whose graded *R*-module $A \oplus A'$ has

$$(A \oplus A')_i = A_i \oplus A'_i$$

as its *i*th homogeneous component and whose differential $d \oplus d'$ is defined by

$$(d \oplus d')(a,a') = (d(a),d'(a'))$$

for all $(a, a') \in A \oplus A'$.

6.2 Shifting an *R*-complex

Definition 6.2. Let (A, d) be an R-complex. We define the **shift** of (A, d) to be the R-complex

$$\Sigma(A,d) := (A(-1), -d).$$

More generally, let $k \in \mathbb{Z}$. We define the kth **shift** of (A, d) to be the R-complex

$$\Sigma^k(A,d) = (\Sigma^k A, d^{\Sigma^k A}).$$

whose graded *R*-module $\Sigma^k A$ has

$$(\Sigma^k A)_i = A_{i-k}$$

as its *i*th homogeneous component and whose differential $d^{\sum^k A}$ is simply

$$d^{\sum^k A} = (-1)^k d$$

6.3 The Mapping Cone

Definition 6.3. Let $\varphi: (A, d) \to (A', d')$ be a chain map. The **mapping cone of** φ , denoted $(C(\varphi), d^{C(\varphi)})$, is the R-complex whose graded R-module $C(\varphi)$ has

$$C_i(\varphi) := A'_i \oplus A_{i-1}$$

as its *i*th homogeneous component and whose differential $d^{C(\phi)}$ is defined b

$$d^{C(\varphi)}(a,a') := (d'(a') + \varphi(a), -d(a))$$

for all $a' \in A'_i$ and $a \in A_{i-1}$.

Remark. To see that we are justified in calling $(C(\varphi), d^{C(\varphi)})$ an R-complex, let us check that $d^{C(\varphi)}d^{C(\varphi)} = 0$. Let $(a', a) \in C(\varphi)$. Then

$$\begin{split} d^{C(\varphi)}d^{C(\varphi)}(a',a) &= d^{C(\varphi)}(d^{C(\varphi)}(a',a)) \\ &= d^{C(\varphi)}(d'(a') + \varphi(a), -d(a)) \\ &= (d'(d'(a')) + d'(\varphi(a)) - \varphi(d(a)), d(d(a))) \\ &= (\varphi(d(a)) - \varphi(d(a)), 0) \\ &= (0,0). \end{split}$$

Theorem 6.1. Let $\varphi: (A, d) \to (A', d')$ be a chain map. Then we have a short exact sequence of R-complexes

$$0 \longrightarrow (A', d') \stackrel{\iota}{\longrightarrow} (C(\varphi), d^{C(\varphi)}) \stackrel{\pi}{\longrightarrow} (A(-1), -d) \longrightarrow 0$$
 (12)

where $\iota: (A',d') \to (C(\varphi),d^{C(\varphi)})$ is given by $\iota(a')=(a',0)$ for all $a \in A'$ and where $\pi: (C(\varphi),d^{C(\varphi)}) \to (A(-1),-d)$ is given by $\pi(a',a)=a$ for all $(a',a) \in C(\varphi)$. Moreover the connecting map $\eth: H(A(-1)) \to H(A')$ induced by (12) agrees with $H(\varphi): H(A) \to H(A')$.

Proof. It is straightforward to check that (12) is a short exact sequence of R-complexes. Let us show that the connecting map agrees with $H(\varphi)$. Let $i \in \mathbb{Z}$ and let $\overline{a} \in H_i(A(-1))$. Lift \overline{a} to a representative $a \in A(-1)_i = A_{i-1}$ and lift a to the element $(0, a) \in C(\varphi)_i = A'_i \oplus A_{i-1}$. Then $\varphi(a)$ is the unique element in A'_{i-1} such that

$$\iota(\varphi(a)) = (\varphi(a), d(a)) = d^{\varphi}(0, a).$$

Therefore $\eth(\overline{a}) = \overline{\varphi(a)} = H(\varphi)(\overline{a})$.

Remark. In the context of graded *R*-modules, it would be incorrect to say $\eth = H(\varphi)$. This is because \eth is graded of degree -1 and $H(\varphi)$ is graded of degree 0. On the other hand, it would be correct to say $\eth_i = H_{i-1}(\varphi)$ for all $i \in \mathbb{Z}$

Corollary. Let $\varphi: (A,d) \to (A',d')$ be a chain map between R-complexes (A,d) and (A',d'). Then φ is a quasiisomorphism if and only if $H(C(\varphi)) \cong 0$.

Proof. Suppose $H(C(\varphi)) \cong 0$. Then for each $i \in \mathbb{Z}$, the long exact sequence induced by (12) gives us

$$0 \cong H_{i+1}(C(\varphi)) \xrightarrow{H(\pi)} H_i(A) \xrightarrow{H(\varphi)} H_i(A') \xrightarrow{H(\iota)} H_i(C(\varphi)) \cong 0$$

which implies $H_i(A) \cong H_i(A')$ for all $i \in \mathbb{Z}$.

Conversely, suppose φ is a quaisiisomorphism. Then for each $i \in \mathbb{Z}$, the long exact sequence induced by (12) gives us

$$H_i(A) \cong H_i(A') \xrightarrow{H(\iota)} H_i(C(\varphi)) \xrightarrow{H(\pi)} H_{i-1}(A) \cong H_{i-1}(A')$$

which implies $H_i(C(\varphi)) \cong 0$ for all $i \in \mathbb{Z}$.

6.3.1 Resolutions by Mapping Cones

Lemma 6.2. (Lifting Lemma) Let $\varphi_{-1} \colon M \to M'$ be an R-module homomorphism, let (P,d) be a projective resolution of M, and let (P', d') be a projective resolution of M'. Then there exists a chain map $\varphi: (P, d) \to (P', d')$ such that

$$H_0(P) \xrightarrow{H_0(\varphi)} H_0(P')$$

$$\downarrow \cong \qquad \qquad \downarrow \cong$$

$$M \xrightarrow{\varphi} M'$$

Proof. For each i > 0, let $M'_i := \operatorname{Im}(d'_i)$ and let $M_i := \operatorname{Im}(d_i)$. We build a chain map $\varphi : (P, d) \to (P', d')$ by constructing R-module homomorphism $\varphi_i \colon P_i \to P'_i$ which commute with the differentials using induction on

First consider the base case i = 0. Let $\psi_0 : P_0 \to P_0'/M_0'$ be the composition

$$P_0 \rightarrow P_0/M_1 \cong M \rightarrow M' \cong P_0'/M_1'$$

Since P_0 is projective and since $d_0'\colon P_0'\to P_0'/M_1$ is a surjective homomorphism, we can lift $\psi_0\colon P_0\to P_0'/M_0'$ along $d_0'\colon P_0'\to P_0'/M_1$ to a homomorphism $\varphi_0\colon P_0\to P_0'$ such that $d_0'\varphi_0=\psi_0$. Now suppose for some i>0 we have constructed an R-module homomorphism $\varphi_i\colon P_i\to P_i'$ such that

$$d_i' \varphi_i = \varphi_{i-1} d_i$$
.

We need to construct an *R*-module homomorphism $\varphi_{i+1}: P_{i+1} \to P'_{i+1}$ such that

$$d'_{i+1}\varphi_{i+1}=\varphi_id_{i+1}.$$

First, observe that $\operatorname{Im}(\varphi_i d_{i+1}) \subseteq M'_{i+1}$. Indeed, we have

$$d_i'\varphi_i d_{i+1} = \varphi_{i-1} d_i d_{i+1}$$
$$= 0.$$

Thus, since (P', d') is exact for all i > 0, we have

$$\operatorname{Im}(\varphi_i d_{i+1}) \subseteq \operatorname{Ker}(d_i')$$

= $\operatorname{Im}(d_{i+1}')$
= M_{i+1}' .

Now since P_{i+1} is projective and $d'_{i+1} \colon P_{i+1} \to M_{i+1}$ is surjective, we can lift $\varphi_i d_{i+1} \colon P_{i+1} \to M'_{i+1}$ along $d'_{i+1} \colon P'_{i+1} \to M'_{i+1}$ to a homomorphism $\varphi_{i+1} \colon P_{i+1} \to P'_{i+1}$ such that

$$d'_{i+1}\varphi_{i+1} = \varphi_i d_{i+1}.$$

The last part of the lemma, follows from the way φ_0 was constructed.

Theorem 6.3. With the notation as above, if φ_{-1} is injective, then $(C(\varphi), d^{C(\varphi)})$ is a projective resolution of $M'/Im(\varphi_{-1})$. *Proof.* First note that $C(\varphi) \cong P' \oplus P(-1)$ is projective since P' and P(1) are projective. Next, from the short exact

$$0 \longrightarrow (P', d') \stackrel{\iota}{\longrightarrow} (C(\varphi), d^{C(\varphi)}) \stackrel{\pi}{\longrightarrow} (P(-1), -d) \longrightarrow 0$$

$$(13)$$

we obtain

$$0 \cong H_i(P') \longrightarrow H_i(C(\varphi)) \longrightarrow H_{i-1}(P) \cong 0$$

for all i > 1. This implies $H_i(C(\varphi)) \cong 0$ for all i > 1. For i = 1, we use (13) and Lemma (6.2) to obtain

$$0 \longrightarrow H_1(C(\varphi)) \longrightarrow H_0(P) \xrightarrow{H_0(\varphi)} H_0(P')$$

$$\downarrow \cong \qquad \qquad \downarrow \cong$$

$$M \xrightarrow{\varphi_{-1}} M'$$

$$(14)$$

Since φ_{-1} is injective, $H_0(\varphi)$ must be injective too, which implies $H_1(C(\varphi)) \cong 0$ by exactness of the top row in (14). Finally, for i = 0, (13) and Lemma (6.2) gives us

$$H_{0}(P) \xrightarrow{H_{0}(\varphi)} H_{0}(P') \longrightarrow H_{0}(C(\varphi)) \longrightarrow 0$$

$$\downarrow^{\cong} \qquad \downarrow^{\cong} \qquad \downarrow^{\cong}$$

$$M \xrightarrow{\varphi_{-1}} M' \longrightarrow M'/\operatorname{Im}(\varphi) \longrightarrow 0$$

$$(15)$$

with exact rows. In particular, this implies $H_0(C(\varphi)) \cong M'/\text{Im}(\varphi_{-1})$.

6.4 Koszul Complex

Definition 6.4. Let $\underline{r} = r_1, \dots, r_n \in R$. The **Koszul complex** of \underline{r} , denoted $(\mathcal{K}(\underline{r}), d^{\mathcal{K}(\underline{r})})$ is the R-complex whose graded R-module $\mathcal{K}(\underline{r})$ has

$$\mathcal{K}_{i}(\underline{r}) := \begin{cases} R & \text{if } i \leq 0 \\ \bigoplus_{1 \leq \lambda_{1} < \dots < \lambda_{i} \leq n} Re_{\lambda_{1} \dots \lambda_{i}} & \text{if } 1 \leq i \leq n \\ 0 & \text{if } i > n. \end{cases}$$

as its *i*th homogeneous component, and whose differential $d^{\mathcal{K}(\underline{r})}$ is the unique graded endomorphism of degree -1 such that

$$d^{\mathcal{K}(\underline{r})}(e_{\lambda_1\cdots\lambda_i}) = \sum_{\mu=1}^i (-1)^{\mu-1} r_{\lambda_\mu} e_{\lambda_1\cdots\widehat{\lambda}_\mu\cdots\lambda_i}$$

for all $1 \le \lambda_1 < \cdots < \lambda_i \le n$, where the hat symbol means omit that subscript.

Remark. We need to justify that $d^{\mathcal{K}(\underline{r})}d^{\mathcal{K}(\underline{r})}=0$ (so that $(\mathcal{K}(\underline{r}),d^{\mathcal{K}(\underline{r})})$ really is an R-complex). It suffices to show that $d^{\mathcal{K}(\underline{r})}d^{\mathcal{K}(\underline{r})}$ maps all of the basis elements to 0: for all $1 \leq \lambda_1 < \cdots < \lambda_i \leq n$, we have

$$\begin{split} d^{\mathcal{K}(\underline{r})}d^{\mathcal{K}(\underline{r})}(e_{\lambda_{1}\cdots\lambda_{i}}) &= d^{\mathcal{K}(\underline{r})}\sum_{\mu=1}^{i}(-1)^{\mu-1}r_{\lambda_{\mu}}e_{\lambda_{1}\cdots\widehat{\lambda}_{\mu}\cdots\lambda_{i}} \\ &= \sum_{\mu=1}^{i}(-1)^{\mu-1}r_{\lambda_{\mu}}d^{\mathcal{K}(\underline{r})}(e_{\lambda_{1}\cdots\widehat{\lambda}_{\mu}\cdots\lambda_{i}}) \\ &= \sum_{\mu=1}^{i}(-1)^{\mu-1}r_{\lambda_{\mu}}\left(\sum_{1\leq\kappa<\mu}(-1)^{\kappa-1}r_{\lambda_{\kappa}}e_{\lambda_{1}\cdots\widehat{\lambda}_{\kappa}\cdots\widehat{\lambda}_{\mu}\cdots\lambda_{i}} + \sum_{\mu<\kappa\leq i}(-1)^{\kappa}r_{\lambda_{\kappa}}e_{\lambda_{1}\cdots\widehat{\lambda}_{\mu}\cdots\widehat{\lambda}_{\kappa}\cdots\lambda_{i}}\right) \\ &= \sum_{1\leq\kappa<\mu\leq i}(-1)^{\mu+\kappa-1}r_{\lambda_{\mu}}r_{\lambda_{\kappa}}e_{\lambda_{1}\cdots\widehat{\lambda}_{\kappa}\cdots\widehat{\lambda}_{\mu}\cdots\lambda_{i}} + \sum_{1\leq\mu<\kappa\leq i}(-1)^{\mu+\kappa}r_{\lambda_{\mu}}r_{\lambda_{\kappa}}e_{\lambda_{1}\cdots\widehat{\lambda}_{\kappa}\cdots\lambda_{i}} \\ &= 0. \end{split}$$

by symmetry in μ and κ .

6.5 Tensor Products

Definition 6.5. Let (A, d) and (A', d') be two *R*-complexes. Their **tensor product** is the *R*-complex

$$(A,d)\otimes_R(A',d'):=(A\otimes_RA',d^{A\otimes_RA'}),$$

where the graded *R*-module $A \otimes_R A'$ has

$$(A \otimes_R A')_i = \bigoplus_{j \in \mathbb{Z}} A_j \otimes A'_{j-i}$$

as its ith component and whose differential is defined on elementary tensors by

$$d^{A\otimes_R A'}(a\otimes a')=d(a)\otimes a'+(-1)^ia\otimes d'(a')$$

for all $i, j \in \mathbb{Z}$, $a \in A_i$ and $a' \in A_j$.

6.5.1 Commutativity of Tensor Products

Proposition 6.1. Let (A, d) and (A', d') be R-complexes. Then

$$(A,d) \otimes_R (A',d') \cong (A',d') \otimes_R (A,d).$$

Proof. Let $\varphi: A \otimes_R A' \to A' \otimes_R A$ be the unique graded isomorphism¹ such that

$$\varphi(a \otimes a') = (-1)^{ij}a' \otimes a$$

for all $i, j \in \mathbb{Z}$, $a \in A_i$ and $a' \in A'_i$.

For the rest of the proof, denote $d^{\otimes} := d^{A \otimes_R A'}$. To see that φ is an isomorphism of R-complexes, we need to show that

$$\varphi d^{\otimes} = d^{\otimes} \varphi \tag{16}$$

It suffices to check (16) on elementary tensors. We have

$$d^{\otimes} \varphi(a \otimes a') = d^{\otimes}((-1)^{ij}a' \otimes a)$$

$$= (-1)^{ij}d'(a') \otimes a + (-1)^{j+ij}a' \otimes d(a))$$

$$= (-1)^{ij}d'(a') \otimes a + (-1)^{j+ij-2j}a' \otimes d(a))$$

$$= (-1)^{ij}d'(a') \otimes a + (-1)^{ij-j}a' \otimes d(a)$$

$$= (-1)^{(i-1)j}a' \otimes d(a) + (-1)^{i+i(j-1)}d'(a') \otimes a$$

$$= \varphi(d(a) \otimes a' + (-1)^{i}a \otimes d'(a'))$$

$$= \varphi d^{\otimes}(a \otimes a')$$

for all $i, j \in \mathbb{Z}$, $a \in A_i$ and $a' \in A_j$.

6.5.2 Associativity of Tensor Products

Given that the proof of tensor products of *R*-complexes was nontrivial, we need to be sure that we have associativity of tensor products of *R*-complexes. The proof in this case turns out to be trivial.

Proposition 6.2. Let (A, d), (A', d'), and (A'', d'') be R-complexes. Then

$$((A,d)\otimes_R(A',d')\otimes_R(A'',d'')\cong (A,d)\otimes_R((A',d')\otimes_R(A',d')).$$

Proof. Let $\varphi: (A \otimes_R A') \otimes_R A'' \to A \otimes_R (A' \otimes_R A'')$ be the unique graded isomorphism such that

$$\varphi((a \otimes a') \otimes a'') = a \otimes (a' \otimes a''))$$

for all $i, j, k \in \mathbb{Z}$, $a \in A_i$, $a' \in A'_j$, and $a'' \in A'_k$. To see that φ is an isomorphism of R-complexes, we need to show that

$$\varphi d^{A \otimes (A' \otimes A'')} = d^{(A \otimes A') \otimes A''} \varphi \tag{17}$$

It suffices to check (17) on elementary tensors. We have

$$d^{A\otimes(A'\otimes A'')}\varphi((a\otimes a')\otimes a'') = d^{A\otimes(A'\otimes A'')}(a\otimes(a'\otimes a''))$$

$$= d(a)\otimes(a'\otimes a'') + (-1)^{i}a\otimes d^{A'\otimes A''}(a'\otimes a'')$$

$$= d(a)\otimes(a'\otimes a'') + (-1)^{i}a\otimes(d'(a')\otimes a'' + (-1)^{j}a'\otimes d(a''))$$

$$= d(a)\otimes(a'\otimes a'') + (-1)^{i}a\otimes(d'(a')\otimes a'') + (-1)^{i+j}a\otimes(a'\otimes d(a''))$$

$$= \varphi(d(a)\otimes a')\otimes a'' + (-1)^{i}(a\otimes d'(a'))\otimes a'' + (-1)^{i+j}(a\otimes a')\otimes d''(a''))$$

$$= \varphi(d(a)\otimes a' + (-1)^{i}a\otimes d'(a'))\otimes a'' + (-1)^{i+j}(a\otimes a')\otimes d''(a''))$$

$$= \varphi(d^{A\otimes A'}(a\otimes a')\otimes a'' + (-1)^{i+j}(a\otimes a')\otimes d''(a''))$$

$$= \varphi(d^{A\otimes A'}(a\otimes a')\otimes a'' + (-1)^{i+j}(a\otimes a')\otimes d''(a''))$$

$$= \varphi(d^{A\otimes A'}(a\otimes a')\otimes a'' + (-1)^{i+j}(a\otimes a')\otimes d''(a''))$$

$$= \varphi(d^{A\otimes A'}(a\otimes a')\otimes a'' + (-1)^{i+j}(a\otimes a')\otimes d''(a''))$$

for all $i, j, k \in \mathbb{Z}$, $a \in A_i$, $a' \in A'_i$, and $a'' \in A'_k$.

¹The map φ is linear since the map $(a,a') \mapsto a' \otimes a$ is bilinear in a and a'. Also φ is an isomorphism since the map ψ : $A' \otimes_R A \to A \otimes_R A'$, defined on elementary tensors by $\psi(a' \otimes a) = (-1)^{ij}a \otimes a'$ is its inverse.

6.5.3 Koszul Complex as Tensor Product

Proposition 6.3. Let $\underline{r} = r_1, \dots, r_n \in R$. There there exists an isomorphism

$$(\mathcal{K}(r_1), d^{\mathcal{K}(r_1)}) \otimes_R \cdots \otimes_R (\mathcal{K}(r_n), d^{\mathcal{K}(r_n)}) \cong (\mathcal{K}(\underline{r}), d^{\mathcal{K}(\underline{r})})$$

of R-complexes.

Remark. Note that Proposition (6.2) gives an unambiguous interpretation for $(\mathcal{K}(r_1), d^{\mathcal{K}(r_1)}) \otimes_R \cdots \otimes_R (\mathcal{K}(r_n), d^{\mathcal{K}(r_n)})$.

Proof. For each $1 \le \lambda \le n$, write $\mathcal{K}(r_{\lambda}) = R \oplus Re_{\lambda}$ (so $\{1\}$ is a basis for $\mathcal{K}(r_{\lambda})_0$ and $\{e_{\lambda}\}$ is a basis for $\mathcal{K}(r_{\lambda})_1$). Le

$$\varphi \colon \mathcal{K}(r_1) \otimes_R \cdots \otimes_R \mathcal{K}(r_n) \to \mathcal{K}(r_1, \ldots, r_n)$$

be the unique graded linear map 2 such that

$$\varphi(1 \otimes \cdots \otimes 1) = 1$$
 and $\varphi(1 \otimes \cdots \otimes e_{\lambda_1} \otimes \cdots \otimes e_{\lambda_i} \cdots \otimes 1) = e_{\lambda_1 \cdots \lambda_i}$

for all $1 \le \lambda_1 < \cdots < \lambda_i \le n$. Then φ is an isomorphism since it restricts to a bijection on basis sets.

For the rest of the proof, denote $d^{\mathcal{K}} := d^{\mathcal{K}(\underline{r})}$ and $d^{\otimes} := d^{\mathcal{K}(r_1) \otimes \cdots \otimes \mathcal{K}(r_n)}$. To see that φ is an isomorphism of R-complexes, we need to show that

$$\varphi d^{\otimes} = d^{\mathcal{K}} \varphi. \tag{18}$$

It suffices to check (??) on the basis elements. We have

$$d^{\mathcal{K}}\varphi(1\otimes\cdots\otimes 1) = d^{\mathcal{K}}(1)$$

$$= 0$$

$$= \varphi(0)$$

$$= \varphi d^{\otimes}(1\otimes\cdots\otimes 1),$$

and

$$d^{\mathcal{K}}\varphi(1\otimes\cdots\otimes e_{\lambda_{1}}\otimes\cdots\otimes e_{\lambda_{i}}\cdots\otimes 1) = d^{\mathcal{K}}(e_{\lambda_{1}\cdots\lambda_{i}})$$

$$= \sum_{\mu=1}^{i} (-1)^{\mu-1} r_{\lambda_{\mu}} e_{\lambda_{1}\cdots\hat{\lambda}_{\mu}\cdots\lambda_{i}}$$

$$= \sum_{\mu=1}^{i} (-1)^{\mu-1} r_{\lambda_{\mu}} \varphi(1\otimes\cdots\otimes e_{\lambda_{1}}\otimes\cdots\otimes \widehat{e}_{\lambda_{\mu}}\otimes\cdots\otimes e_{\lambda_{i}}\otimes\cdots\otimes 1)$$

$$= \varphi \sum_{\mu=1}^{i} (-1)^{\mu-1} r_{\lambda_{\mu}} 1\otimes\cdots\otimes e_{\lambda_{1}}\otimes\cdots\otimes \widehat{e}_{\lambda_{\mu}}\otimes\cdots\otimes e_{\lambda_{i}}\otimes\cdots\otimes 1)$$

$$= \varphi d^{\otimes}(1\otimes\cdots\otimes e_{\lambda_{1}}\otimes\cdots\otimes e_{\lambda_{i}}\cdots\otimes 1).$$

for all $1 \le \lambda_1 < \cdots < \lambda_i \le n$.

6.5.4 Mapping Cone of Homothety Map as Tensor Product

Proposition 6.4. Let (A, d) be an R-complex, let $x \in R$, and let $\mu_x : (A, d) \to (A, d)$ be the multiplication by x homothety map. Then

$$(C(\mu_x), d^{C(\mu_x)}) \cong (\mathcal{K}(x), d^{\mathcal{K}(x)}) \otimes_R (A, d).$$

Proof. Let $\mathcal{K}(x) = R \oplus Re$ (so $\{1\}$ is a basis for $\mathcal{K}(x)_0$ and $\{e\}$ is a basis for $\mathcal{K}(x)_1$). Let $\varphi \colon \mathcal{K}(x) \otimes_R A \to C(\mu_x)$ be defined by

$$\varphi(1 \otimes a + e \otimes b) = (a, b)$$

for all $i \in \mathbb{Z}$, $a \in A_i$, and $b \in A_{i-1}$. Clearly φ is an isomorphism of graded R-modules. To see that φ is an isomorphism of R-complexes, we need to check that

$$d^{C(\mu_x)}\varphi = \varphi d^{K(x)\otimes_R A} \tag{19}$$

²We say unique graded linear map here because $\mathcal{K}(r_1) \otimes_R \cdots \otimes_R \mathcal{K}(r_n)$ is free with basis elements of the form $1 \otimes \cdots \otimes 1$ and $1 \otimes \cdots \otimes e_{\lambda_1} \otimes \cdots \otimes e_{\lambda_i} \cdots \otimes 1$ for $1 \leq \lambda_1 < \cdots < \lambda_i \leq n$ and φ respects the grading.

Let $i \in \mathbb{Z}$, $a \in A_i$, and $b \in A_{i-1}$. Then

$$d^{C(\mu_x)}\varphi(1\otimes a + e\otimes b) = d^{C(\mu_x)}(a,b)$$

$$= (d(a) + xb, -d(b))$$

$$= \varphi(1\otimes (d(a) + xb) + e\otimes (-d(b)))$$

$$= \varphi(1\otimes d(a) + x\otimes b - e\otimes d(b))$$

$$= \varphi(d^{\mathcal{K}(x)\otimes A}(1\otimes a) + d^{\mathcal{K}(x)\otimes A}(e\otimes b))$$

$$= \varphi d^{\mathcal{K}(x)\otimes A}(1\otimes a + e\otimes b).$$

6.6 Hom

Definition 6.6. Let (A, d) and (A', d') be two R-complexes. We define

$$\operatorname{Hom}_{R}((A, d), (A', d')) := (\operatorname{Hom}_{R}^{\star}(A, A'), d^{\operatorname{Hom}_{R}^{\star}(A, A')})$$

to be the *R*-complex whose graded *R*-module $\operatorname{Hom}_R^{\star}(A, A')$ has

$$\operatorname{Hom}_R^{\star}(A,A')_i = \prod_{j \in \mathbb{Z}} \operatorname{Hom}_R(A_j,A'_{i+j})$$

as its *i*th homogeneous component and whose differential $d^{\text{Hom}_R^*(A,A')}$ is defined by

$$d^{\operatorname{Hom}_{R}^{\star}(A,A')}(\varphi_{j,i})_{j\in\mathbb{Z}} = (d'\varphi_{j,i} - (-1)^{i}\varphi_{j-1,i}d)_{j\in\mathbb{Z}}$$

for all $i, j \in \mathbb{Z}$ and $\varphi_{j,i} \in \operatorname{Hom}_R(A_j, A'_{i+j})$.

6.6.1 The Dual Koszul Complex

Definition 6.7. Let $\underline{r} = r_1, \dots, r_n \in R$. The **dual Koszul complex** on \underline{r} , denoted $(\mathcal{K}^{\star}(\underline{r}), d^{\mathcal{K}^{\star}(\underline{r})})$, is the R-complex

$$(\mathcal{K}^{\star}(\underline{r}), d^{\mathcal{K}^{\star}(\underline{r})}) := \operatorname{Hom}_{R}((\mathcal{K}(\underline{r}), d^{\mathcal{K}(\underline{r})}), (R, 0)).$$

The graded *R*-module $\mathcal{K}^{\star}(\underline{r})$ has

$$\mathcal{K}_{i}^{\star}(\underline{r}) := \begin{cases} R & \text{if } i \geq 0 \\ \bigoplus_{1 \leq \lambda_{1} < \dots < \lambda_{i} \leq n} Re_{\lambda_{1} \dots \lambda_{i}}^{\star} & \text{if } -1 \leq i \leq -n \\ 0 & \text{if } i < -n. \end{cases}$$

as its ith homogeneous component, where

$$e_{\lambda_1 \dots \lambda_i}^{\star}(e_{\mu_1 \dots \mu_j}) = \begin{cases} 1 & \text{if } i = j \text{ and } \lambda_{\kappa} = \mu_{\kappa} \text{ for all } 1 \leq \kappa \leq i \\ 0 & \text{else.} \end{cases}$$

To describe how the differential $d^{\mathcal{K}^{\star}(\underline{r})}$ works, we introduce the following notation: Let $\lambda = \{\lambda_1, \ldots, \lambda_i \mid 1 \leq \lambda_1 < \cdots < \lambda_i \leq n\}$ be a subset of $n = \{1, 2, \ldots, n\}$. Then the complement of λ in n is denoted by

$$\lambda' = \{\lambda'_1, \dots, \lambda'_{n-i} \mid 1 \le \lambda'_1 < \dots < \lambda'_{n-i} \le n\} = \mathbf{n} \setminus \lambda.$$

With this notation understood, the differential is defined on the dual basis elements by

$$d^{\mathcal{K}^{\star}(\underline{r})}(e^{\star}_{\lambda_{1}\cdots\lambda_{i}}) = \sum_{\mu=1}^{n-i} (-1)^{\mu-1} r_{\lambda_{\mu}} e^{\star}_{\lambda_{1}\cdots\lambda'_{\mu}\cdots\lambda_{i}}.$$

for al $1 \le \lambda_1 < \cdots < \lambda_i \le n$.

Definition 6.8. Let $\underline{r} = r_1, \dots, r_n \in R$. The **dual Koszul complex** on \underline{r} , denoted $(\mathcal{K}(\underline{r}), d^{\mathcal{K}(\underline{r})})$ is the R-complex whose graded R-module $\mathcal{K}(r)$ has

$$\mathcal{K}_{i}(\underline{r}) := \begin{cases}
R & \text{if } i \leq 0 \\
\bigoplus_{1 \leq \lambda_{1} < \dots < \lambda_{i} \leq n} Re_{\lambda_{1} \dots \lambda_{i}} & \text{if } 1 \leq i \leq n \\
0 & \text{if } i > n.
\end{cases}$$

as its *i*th homogeneous component, and whose differential $d^{\mathcal{K}(\underline{r})}$ is the unique graded endomorphism of degree -1 such that

$$d^{\mathcal{K}(\underline{r})}(e_{\lambda_1\cdots\lambda_i}) = \sum_{\mu=1}^i (-1)^{\mu-1} r_{\lambda_\mu} e_{\lambda_1\cdots\widehat{\lambda}_\mu\cdots\lambda_i}$$

for all $1 \le \lambda_1 < \cdots < \lambda_i \le n$, where the hat symbol means omit that subscript.

7 Ext and Tor

7.0.1 Projective Resolutions

Definition 7.1. Let M be an R-module. A **projective resolution of** M **over** R is an R-complex (P,d) such that

- 1. *P* is a graded projective *R*-module. Equivalently, P_i is a projective *R*-module for all $i \in \mathbb{Z}$;
- 2. $P_i = 0$ for all i < 0;
- 3. $H_0(P) \cong M$ and $H_i(P) = 0$ for all i > 0.

Theorem 7.1. Let (P, d) and (P', d') be two projective resolutions of M over R. Then (P, d) and (P', d') are homotopically equivalent.

Proof. For each $i \geq 0$, let $M'_i := \operatorname{Im}(d'_i)$ and let $M_i := \operatorname{Im}(d_i)$. We build a chain map $\varphi \colon (P, d) \to (P', d')$ by constructing R-module homomorphism $\varphi_i \colon P_i \to P'_i$ which commute with the differentials using induction on $i \geq 0$.

First consider the base case i=0. Since $P_0/M_1\cong P_0'/M_1'$, there exists a homomorphism $\psi_0\colon P_0\to P_0'/M_0'$. Then since P_0 is projective and since $d_0'\colon P_0'\to P_0'/M_1$ is a surjective homomorphism, we can lift $\psi_0\colon P_0\to P_0'/M_0'$ along $d_0'\colon P_0'\to P_0'/M_1$ to a homomorphism $\varphi_0\colon P_0\to P_0'$ such that $d_0'\varphi_0=\psi_0$.

Now suppose for some i > 0 we have constructed R-module homomorphisms $\varphi_0, \varphi_1, \ldots, \varphi_i$ which commute with the differentials. We need to construct an R-module homomorphism $\varphi_{i+1} \colon P_{i+1} \to P'_{i+1}$ which commutes with the differentials. First, we claim that $\operatorname{Im}(\varphi_i d_{i+1}) \subseteq M'_{i+1}$. To see this, note that

$$d'_i \varphi_i d_{i+1} = \varphi_{i-1} d_i d_{i+1}$$

= 0.

Thus, since i > 0, we have

$$\operatorname{Im}(\varphi_i d_{i+1}) \subseteq \operatorname{Ker}(d_i')$$

$$= \operatorname{Im}(d_{i+1}')$$

$$= M_{i+1}'.$$

Now since P_{i+1} is projective and $d'_{i+1}\colon P_{i+1}\to M_{i+1}$ is surjective, we can lift $\varphi_id_{i+1}\colon P_{i+1}\to M'_{i+1}$ along $d'_{i+1}\colon P'_{i+1}\to M'_{i+1}$ to a homomorphism $\varphi_{i+1}\colon P_{i+1}\to P'_{i+1}$ such that $d'_{i+1}\varphi_{i+1}=\varphi_id_{i+1}$. By a similar construction as above, we get a chain map $\varphi'\colon (P',d')\to (P,d)$. Now we claim that $\varphi'\varphi$ is

By a similar construction as above, we get a chain map $\varphi': (P',d') \to (P,d)$. Now we claim that $\varphi'\varphi$ is homotopic to id_P and similarly $\varphi\varphi'$ is homotopic to $\mathrm{id}_{P'}$. It suffices to show that $\varphi'\varphi \sim \mathrm{id}_P$ (a similar argument will give $\varphi \circ \varphi' \sim \mathrm{id}_{P'}$). The idea is to build the homotopy $h: (P,d) \to (P,d)$ using induction on $i \ge 0$. The homotopy equation that we need is

$$\varphi'\varphi \sim \mathrm{id}_P - 1 = dh + hd \tag{20}$$

Since P_0 is projective and $d_1: P_1 \to P_0$ is a surjective morphism, there exists an $h_0: P_0 \to P_1$ such that

$$\varphi_0'\varphi_0 - 1 = d_1h_0. \tag{21}$$

In degree i = 0, the equation (20) becomes (21). Thus, we are on the right track.

Now we use induction. Suppose for i > 0 we have constructed an R-module homomorphism $h_i \colon P_i \to P_{i+1}$ such that

$$\varphi_i'\varphi_i - 1 = d_{i+1}h_i + h_{i-1}d_i. \tag{22}$$

Observe that $\operatorname{Im}(\varphi_i'\varphi_i-1-h_{i-1}d_i)\subseteq M_{i+1}$. Indeed, note that

$$\begin{split} d_i(\varphi_i'\varphi_i-1-h_{i-1}d_i) &= d_i\varphi_i'\varphi_i-d_i-d_ih_{i-1}d_i\\ &= \varphi_{i-1}'d_i'\varphi_i-d_i-d_ih_{i-1}d_i\\ &= \varphi_{i-1}'\varphi_{i-1}d_i-d_i-d_ih_{i-1}d_i\\ &= (\varphi_{i-1}'\varphi_{i-1}-1)d_i-d_ih_{i-1}d_i\\ &= (d_ih_{i-1}+h_{i-2}d_{i-1})d_i-d_ih_{i-1}d_i\\ &= d_ih_{i-1}d_i+h_{i-2}d_{i-1}d_i-d_ih_{i-1}d_i\\ &= d_ih_{i-1}d_i-d_ih_{i-1}d_i\\ &= d_ih_{i-1}d_i-d_ih_{i-1}d_i\\ &= 0. \end{split}$$

Therefore since P_{i+1} is projective and since $d_{i+2} \colon P_{i+2} \to M_{i+2}$ is a surjective homomorphism, there exists $h_{i+1} \colon P_{i+1} \to P_{i+2}$ such that

$$\varphi_i'\varphi_i - 1 - h_{i-1}d_i = d_{i+2}h_{i+1},$$

which is the homotopy equation in degree i + 1.

Ext-Tor Duality