11.3 Regents: Similar triangles in circles

1. As shown, circle O has chords \overline{AD} and \overline{BE} intersecting at C, and $\widehat{mAB} = 70^{\circ}$, $\widehat{mBD} = 80^{\circ}$, $\widehat{mAE} = 100^{\circ}$, and $\widehat{mDE} = 110^{\circ}$. BC = 3, AC = 4, and CE = 6.

- (a) Write down the measure of angles $\angle B$ and $\angle D$.
- (b) Write down the measure of angles $\angle A$ and $\angle E$. $\mu \sigma$
- (c) Find the measures of the two angles at C.
- (d) Find the scale factor and CD. $4 \rightarrow 6$, $K = 4 = \frac{3}{2}$ $C0 = 3 \times \frac{3}{2} = \frac{9}{2}$
- 2. Given circle O with chords \overline{AD} and \overline{BE} intersecting at C, as shown in the diagram. Given $\widehat{mAB} = 45^{\circ}$, $\widehat{mBD} = 108^{\circ}$, and $\widehat{mDE} = 65^{\circ}$.

- (a) Write down the measure of angles $\angle B$ and $\angle D$.
- (b) Write down the measure of angles $\angle A$ and $\angle E$.
- (c) Find the measures of the two angles at C. = 180 (71+54) = 55°

 mc/CB

 M L BCN = 180 55 = 125°
- (d) Find the scale factor and BC.

Given \widehat{ABC} and \widehat{ADE} intersect the circle O, as shown in the diagram. Given $\widehat{mBD} = 28^{\circ}$ and $\widehat{mCE} = 136^{\circ}$.

- (a) Find the $m\angle CDE$. $\frac{136}{2} = 69$
- (b) Find the $m \angle C$.
- (c) Find the $m \angle A$.

- 4. The secants \overline{ABC} and \overline{ADE} intersect the circle O, as shown in the diagram. AB = 10, AD = 8, AC = 24. (note: similar triangles)
 - (a) $\overline{AD} \rightarrow ? / B$

(c) $\overline{AC} \rightarrow ? \quad \widetilde{AE}$

(b) $k = \frac{10}{8} > \frac{5}{4}$

(d) $AE = 24 \cdot \frac{5}{4} = 30$

