Компьютерная математика. Задания для самостоятельного выполнения.

1. Множества. Операции над множествами.

<u>Часть 1.</u>

Указания.

Выполнение заданий части 1 предполагает организацию хранения множеств с помощью массивов.

Последовательная обработка всех элементов массива (множества) может быть организована с использованием оператора *foreach*:

https://msdn.microsoft.com/ru-ru/library/2h3zzhdw.aspx

https://msdn.microsoft.com/ru-ru/library/ttw7t8t6.aspx

Операции объединения, пересечения и разности множеств могут быть реализованы с помощью методов *Union*, *Intersect* и *Except* соответственно:

https://msdn.microsoft.com/ru-ru/library/bb341731(v=vs.110).aspx

https://msdn.microsoft.com/ru-ru/library/bb460136(v=vs.110).aspx

https://msdn.microsoft.com/ru-ru/library/bb300779(v=vs.110).aspx

Проверка принадлежности элемента данному множеству может быть реализована с помощью метода *Contains*:

https://msdn.microsoft.com/ru-ru/library/bb352880(v=vs.110).aspx

Задание 1 (2 балла).

Написать программу, которая формирует числовое множество X с помощью указанного характеристического предиката или порождающей процедуры и выводит на экран элементы сформированного множества, а также мощность этого множества.

№ варианта	Условие принадлежности множеству
1	x — четные натуральные числа в промежутке от 11 до 23.
2	x — нечетные натуральные числа, не превосходящие 11.
3	x — целые числа, кратные 3, в промежутке от -11 до 7.
4	x — целые числа, не кратные 3, удовлетворяющие $ x < 5$.
5	$x = n^3 - 1$, n — натуральное число, $n < 7$.
6	$\cos x = 0, x/ < 9.$
7	x — число Фиббоначчи, не превосходящее 20.
8	x – число Фиббоначчи, не меньшее 10 и не большее 100.
9	$x = n^2 + 1$, n — натуральное число, $n < 7$.
10	x = 3n, n — натуральное число, $n < 7$.

<u>Внимание</u>: в результате работы программы элементы множества X должны быть не только выведены на экран, но и сохранены (т. е. реализована операция добавления элемента в множество).

Задание 2 (4 балла).

Написать программу, которая выводит все собственные подмножества заданного множества (предусмотреть возможность ввода элементов исходного множества пользователем). Вывести все собственные подмножества множества X, сформированного в задании 1.

Задание 3 (2 балла).

Написать программу, которая выводит все элементы множества, составленного из букв заданного слова. Учесть, что множество не должно содержать повторяющихся элементов.

Задание 4 (3 балла).

1. Используя свойства операций над множествами и определение разности множеств, упростить выражения, выбранные в соответствии с номером своего варианта. Все преобразования должны быть выполнены на бумаге, оформлены в виде отчета и защищены в процессе собеседования с преподавателем (обоснован каждый шаг преобразования с указанием применения того или иного свойства).

№ варианта	Выражение
	$(A \cup B \cup \overline{C}) \setminus (B \cup C)$
1	$\overline{B \cap \overline{C} \cup \overline{B} \cap \overline{C} \cup B \cap C}$
	$A \cap B \cup A \cap \overline{B} \cup \overline{A} \cap B$
	$\overline{A \cap \overline{B} \cup \overline{A} \cap \overline{B} \cup A \cap B}$
2	$ig(\overline{A} \cup B \cup Cig) \setminus ig(A \cup Big)$
	$B \cap C \cup B \cap \overline{C} \cup \overline{B} \cap C$
	$(A \cup \overline{B} \cup C) \setminus (B \cup C)$
3	$\overline{\overline{B} \cap C \cup \overline{B} \cap \overline{C} \cup B \cap C}$
	$A\cap C\cup A\cap \overline{C}\cup \overline{A}\cap C$
	$\overline{B \cap \overline{C} \cup \overline{B} \cap \overline{C} \cup B \cap C}$
4	$(A \cup B \cup \overline{C}) \setminus (B \cup C)$
	$A \cap B \cup A \cap \overline{B} \cup \overline{A} \cap B$
	$B \cap C \cup B \cap \overline{C} \cup \overline{B} \cap C$
5	$\overline{A \cap \overline{B} \cup \overline{A} \cap \overline{B}} \cup A \cap \overline{B}$
	$ig(\overline{A} \cup B \cup Cig) \setminus ig(A \cup Big)$
6	$A\cap C\cup A\cap \overline{C}\cup \overline{A}\cap C$

	$\big(A\cup\overline{B}\cup C\big)\backslash \big(B\cup C\big)$
	$\overline{B} \cap C \cup \overline{B} \cap \overline{C} \cup B \cap C$
	$A \cap B \cup A \cap \overline{B} \cup \overline{A} \cap B$
7	$\overline{B \cap \overline{C} \cup \overline{B} \cap \overline{C} \cup B \cap C}$
	$\big(A \cup B \cup \overline{C}\big) \backslash \big(B \cup C\big)$
	$\overline{A \cap \overline{B} \cup \overline{A} \cap \overline{B} \cup A \cap B}$
8	$(A \cup \overline{B} \cup C) \setminus (B \cup C)$
	$B \cap C \cup B \cap \overline{C} \cup \overline{B} \cap C$
	$(\overline{A} \cup B \cup C) \setminus (A \cup B)$
9	$\overline{\overline{B}} \cap C \cup \overline{B} \cap \overline{C} \cup B \cap C$
	$A\cap C\cup A\cap \overline{C}\cup \overline{A}\cap C$
	$A \cap B \cup A \cap \overline{B} \cup \overline{A} \cap B$
10	$(A \cup B \cup \overline{C}) \setminus (B \cup C)$
	$\overline{B \cap \overline{C} \cup \overline{B} \cap \overline{C} \cup B \cap C}$

2. Выполнить вручную все операции над множествами, заданными в таблице (выбрать в соответствии с номером своего варианта), для исходного и преобразованного выражений. Сравнить результаты. Все вычисления представить в отчете.

№ варианта	Множества
	$U = \{0,1,2,3,4,5,6,7,8,9\},\$
	$A = \{0, 2, 3, 4, 6, 7\}, B = \{1, 3, 5, 7, 9\}, C = \{1, 2, 4, 5, 7, 8\}$
1	$U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\},\$
1	$B = \{1, 3, 5, 7, 9\}, C = \{4, 8\}$
	$U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\},\$
	$A = \{1, 3, 6, 7, 9\}, B = \{2, 4, 8\}$
	$U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\},\$
	$A = \{1, 3, 5, 7, 9\}, B = \{4, 8\}$
2.	$U = \{0,1,2,3,4,5,6,7,8,9\},$
2	$A = \{1, 2, 4, 5, 7, 8\}, B = \{0, 2, 3, 4, 6, 7\}, C = \{1, 3, 5, 7, 9\}$
	$U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\},\$
	$B = \{1, 3, 6, 7, 9\}, C = \{2, 4, 8\}$
3	$U = \{0,1,2,3,4,5,6,7,8,9\},\$
	$A = \{0, 2, 3, 4, 6, 7\}, B = \{1, 2, 4, 5, 7, 8\}, C = \{1, 3, 5, 7, 9\}$
3	$U = \{0,1,2,3,4,5,6,7,8,9\},$
	$B = \{4,8\}, C = \{1,3,5,7,9\}$

	$U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\},\$
	$A = \{1, 3, 6, 7, 9\}, C = \{2, 4, 8\}$
	$U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\},\$
4	$B = \{1, 3, 5, 7, 9\}, C = \{4, 8\}$
	$U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\},\$
	$A = \{0, 2, 3, 4, 6, 7\}, B = \{1, 3, 5, 7, 9\}, C = \{1, 2, 4, 5, 7, 8\}$
	$U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\},\$
	$A = \{1, 3, 6, 7, 9\}, B = \{2, 4, 8\}$
	$U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\},\$
	$B = \{1, 3, 6, 7, 9\}, C = \{2, 4, 8\}$
5	$U = \{0,1,2,3,4,5,6,7,8,9\},\$
5	$A = \{1, 3, 5, 7, 9\}, B = \{4, 8\}$
	$U = \{0,1,2,3,4,5,6,7,8,9\},$
	$A = \{1, 2, 4, 5, 7, 8\}, B = \{0, 2, 3, 4, 6, 7\}, C = \{1, 3, 5, 7, 9\}$
	$U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\},$
	$A = \{1, 3, 6, 7, 9\}, C = \{2, 4, 8\}$
	$U = \{0,1,2,3,4,5,6,7,8,9\},$
6	$A = \{0, 2, 3, 4, 6, 7\}, B = \{1, 2, 4, 5, 7, 8\}, C = \{1, 3, 5, 7, 9\}$
	$U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\},$
	$B = \{4,8\}, C = \{1,3,5,7,9\}$
	$U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\},\$
	$A = \{1, 3, 6, 7, 9\}, B = \{2, 4, 8\}$
_	$U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\},$
7	$B = \{1, 3, 5, 7, 9\}, C = \{4, 8\}$
	$U = \{0,1,2,3,4,5,6,7,8,9\},$
	$A = \{0, 2, 3, 4, 6, 7\}, B = \{1, 3, 5, 7, 9\}, C = \{1, 2, 4, 5, 7, 8\}$
	$U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\},\$
	$A = \{1, 3, 5, 7, 9\}, B = \{4, 8\}$
8	$U = \{0,1,2,3,4,5,6,7,8,9\},$
	$A = \{0, 2, 3, 4, 6, 7\}, B = \{1, 2, 4, 5, 7, 8\}, C = \{1, 3, 5, 7, 9\}$
	$U = \{0,1,2,3,4,5,6,7,8,9\},\$
	$B = \{1, 3, 6, 7, 9\}, C = \{2, 4, 8\}$
	$U = \{0,1,2,3,4,5,6,7,8,9\},\$
	$A = \{1, 2, 4, 5, 7, 8\}, B = \{0, 2, 3, 4, 6, 7\}, C = \{1, 3, 5, 7, 9\}$
9	$U = \{0,1,2,3,4,5,6,7,8,9\},\$
	$B = \{4, 8\}, C = \{1, 3, 5, 7, 9\}$
	D = (1,0), C = (1,0,0,1,1)

	$U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\},\$
	$A = \{1, 3, 6, 7, 9\}, C = \{2, 4, 8\}$
10	$U = \{0,1,2,3,4,5,6,7,8,9\},\$
	$A = \{1, 3, 6, 7, 9\}, B = \{2, 4, 8\}$
	$U = \{0,1,2,3,4,5,6,7,8,9\},$
	$A = \{0, 2, 3, 4, 6, 7\}, B = \{1, 3, 5, 7, 9\}, C = \{1, 2, 4, 5, 7, 8\}$
	$U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\},\$
	$B = \{1, 3, 5, 7, 9\}, C = \{4, 8\}$

Задание 5 (3 балла).

- 1. Написать программу, которая позволяет выполнить основные операции (объединение, пересечение, разность, дополнение до заданного универсума) над множествами, введенными пользователем, и вывести полученные результаты.
- 2. Используя программу, созданную при выполнении п. 1, получить результат применения всех операций к выражениям, данным в задании 4 (для исходных и преобразованных выражений) для указанных множеств.
- 3. Сравнить результаты работы программы с результатами, полученными вручную.

Задание 6 (2 балла).

Выполнить графическое представление операций над множествами из задания 4 с помощью диаграмм Эйлера-Венна.

Задание 7 (2 балла).

Установить, какие из приведенных ниже совокупностей образуют разбиение множества $A = \{1, 2, 3, 4, 5, 6, 7\}$. Если некоторая совокупность не является разбиением, объяснить, почему. Рассуждения представить в отчете.

- 1) $\{\{1,2\},\{3,4,5\},\varnothing,\{6,7\}\}$
- 2) {{1,7},{3,4,6}}
- 3) $\{\{1,2\},\{3,4,5\},\{6,7\}\}$
- 4) $\{\{1,5\},\{3,4,5\},\{2,6,7\}\}$
- 5) {{1,7},{3,5},{2,4},{6}}
- 6) {{1,4},{3,5,8},{2,6,7}}
- 7) {{1}, {2}, {3}, {4}, {5}, {6}, {7}}
- 8) {{1, 2, 3, 4, 5, 6, 7}}

Часть 2.

Указания.

Выполнение заданий части 2 предполагает организацию хранения множеств с помошью битовых шкал.

Задание 8 (4 балла).

- 1. Написать программу, которая позволяет выполнить основные операции (объединение, пересечение, разность, дополнение до заданного универсума) над множествами, введенными пользователем, и вывести полученные результаты. Хранение множеств организовать с помощью битовых шкал, реализацию операций над множествами с помощью логических операций над кодами исходных множеств.
- 2. Используя программу, созданную при выполнении п. 1, получить результат применения всех операций к выражениям, данным в задании 4 части 1, для указанных множеств.

Задание 9 (3 балла).

Написать программу, которая выводит все собственные подмножества заданного множества с помощью алгоритма построения бинарного кода Грея. Выполнить тестирование программы.

2. Отношения на множествах.

Задание 1 (2 балла).

- 1. Написать программу, которая для заданных множеств A и B (множества вводит пользователь) реализует получение декартова произведения этих множеств. Продумать соответствующую процедуру для случая, когда природа объектов, составляющих множества A и B, различна (используются разные типы данных).
- 2. Выполнить тестирование программы.

Задание 2 (2 балла).

- 1. Написать программу, которая для заданного множества пар элементов (множество пар вводит пользователь), представляющего собой декартово произведение множеств A и B, реализует построение исходных множеств. Предусмотреть проверку корректности введенного множества пар (достаточно ли их для решения поставленной задачи).
- 2. Выполнить тестирование программы.

Задание 3 (2 балла).

Установить, является ли каждое из перечисленных ниже отношений R,

заданных на множестве X, отношением эквивалентности (выбрать набор отношений в соответствии с номером своего варианта). В процессе анализа выполнить проверку <u>всех</u> свойств, которыми должно обладать отношение эквивалентности. Для каждого отношения эквивалентности построить классы эквивалентности. Все рассуждения представить в отчете.

№ варианта	Множества и заданные на них отношения
1	X — множество целых чисел, отношение R задано условием: $(x_1, x_2) \in R \iff x_1 + x_2 = 0$.
	X – множество всех подмножеств множества $A = \{1, 2, 3, 4\},$
	отношение R задано условием: $(x_1, x_2) \in R$, если x_1 и x_2
	содержат одинаковое число элементов.
	X – множество целых чисел, отношение R задано условием: $(x_1, x_2) \in R \iff x_1 + x_2 = 2$.
2	X – множество всех подмножеств множества $A = \{a,b,c,d\},$
	отношение R задано условием: $(x_1, x_2) \in R$, если x_1 и x_2
	содержат одинаковое число элементов.
	X – множество целых чисел, отношение R задано условием: $(x_1, x_2) \in R \iff x_1 - x_2 = 2$.
3	`
	X – множество всех подмножеств множества $A = \{5, 6, 7, 8\}$, отношение R задано условием: $(x_1, x_2) \in R$, если x_1 и x_2
	отношение \mathbf{x} задано условием. $(x_1, x_2) \in \mathbf{x}$, если x_1 и x_2 содержат одинаковое число элементов.
	X — множество целых чисел, отношение R задано условием:
	$(x_1, x_2) \in R \Leftrightarrow x_1 + x_2 = 5.$
4	X – множество всех подмножеств множества $A = \{y, z, t, w\}$,
	отношение R задано условием: $(x_1, x_2) \in R$, если x_1 и x_2
	содержат одинаковое число элементов.
	X – множество целых чисел, отношение R задано условием: $(x_1, x_2) \in R \iff x_1 - x_2 = 5$.
5	X – множество всех подмножеств множества $A = \{-1, 0, 2, 3\}$,
3	отношение R задано условием: $(x_1, x_2) \in R$, если x_1 и x_2
	содержат одинаковое число элементов.
6	X — множество целых чисел, отношение R задано условием:
	$(x_1, x_2) \in R \Leftrightarrow x_1 + x_2 = 1.$
	X – множество всех подмножеств множества $A = \{\alpha, \beta, \gamma, \delta\},$
	отношение R задано условием: $(x_1, x_2) \in R$, если x_1 и x_2
	содержат одинаковое число элементов.
7	X – множество целых чисел, отношение R задано условием:
,	$(x_1, x_2) \in R \Leftrightarrow x_1 - x_2 = 1.$

	, , , , , , , , , , , , , , , , , , , ,
	X – множество всех подмножеств множества $A = \{-2, 0, 1, 7\},$
	отношение R задано условием: $(x_1, x_2) \in \mathbf{R}$, если x_1 и x_2
	содержат одинаковое число элементов.
	X – множество целых чисел, отношение R задано условием:
	$(x_1, x_2) \in R \Leftrightarrow x_1 + x_2 = 7.$
8	X – множество всех подмножеств множества $A = \{\lambda, \mu, \nu, \eta\},$
	отношение R задано условием: $(x_1, x_2) \in R$, если x_1 и x_2
	содержат одинаковое число элементов.
	X – множество целых чисел, отношение R задано условием:
	$(x_1, x_2) \in R \Leftrightarrow x_1 - x_2 = 7.$
9	X – множество всех подмножеств множества $A = \{1, 4, 9, 16\},$
	отношение R задано условием: $(x_1, x_2) \in \mathbf{R}$, если x_1 и x_2
	содержат одинаковое число элементов.
	X — множество целых чисел, отношение R задано условием:
	$(x_1, x_2) \in R \Leftrightarrow x_1 + x_2 = 0.$
10	X — множество всех подмножеств множества
	$A = \{ \circlearrowleft, \odot, \Box, \diamond \}$, отношение R задано условием: $(x_1, x_2) \in R$,
	если x_1 и x_2 содержат одинаковое число элементов.

Задание 4 (4 балла).

Заданные ниже отношения (в соответствии с номером своего варианта) представить двумя способами:

- ullet множеством пар элементов множества X (в тех случаях, где это не сделано);
- булевой матрицей.

<u>Для обоих способов представления</u> выполнить проверку на наличие свойств (рефлексивность, антирефлексивность, симметричность, антисимметричность, транзитивность, полнота). Для отношений эквивалентности построить классы эквивалентности. Сделать выводы. Все рассуждения представить в отчете.

№ варианта	Множества и заданные на них отношения
	$X = \{-3, -2, -1, 0, 1, 2, 3\}$, отношение R задано условием:
	$(x_1, x_2) \in R \iff x_1^2 = x_2^2.$
	$X = \{1, 2, 3\},\$
1	$R = \{(1,1), (2,2), (3,3), (1,2), (2,1), (3,2)\}.$
	$X = \{ "aba", "aa", "a", "b" \},$ отношение R задано
	условием:
	$(x, y) \in R \iff$ строка x содержится в строке y .

	$X = \{-3, -2, -1, 0, 1, 2, 3\}$, отношение R задано условием:
	$(x_1, x_2) \in R \iff x_1^3 = x_2^3.$
	$X = \{1, 2, 3\},$
2	$R = \{(1,1), (2,2), (3,3), (1,2), (2,1), (3,2)\}.$
	$X = \{"ab", "ac", "ca", "bb"\},$ отношение R задано
	условием:
	$(x, y) \in R \iff$ строки x и y начинаются с одного символа.
	$X = \{-3, -2, -1, 0, 1, 2, 3\}$, отношение R задано условием:
	$(x_1,x_2)\in R \Leftrightarrow x_1 = x_2 .$
	$X = \{1, 2, 3\},$
3	$R = \{(1,1), (2,2), (3,3), (1,2), (2,1), (2,3), (3,2)\}.$
	$X = \{ "aba", "aa", "a", "b" \},$ отношение R задано
	условием:
	$(x, y) \in R \iff$ строки x и y разной длины.
	$X = \{-5, -3, -1, 0, 1, 3, 5\}$, отношение R задано условием:
	$(x_1, x_2) \in R \iff x_1^2 = x_2^2.$
	$X = \{0, 1, 2\},$
4	$R = \{(0,0), (1,1), (2,2), (0,1), (1,0), (2,1)\}.$
	$X = \{"baa", "aa", "a", "ba"\},$ отношение R задано
	условием:
	$(x, y) \in R \iff$ конец строки x совпадает со строкой y .
	$X = \{-5, -3, -1, 0, 1, 3, 5\}$, отношение R задано условием:
	$(x_1, x_2) \in R \iff x_1^3 = x_2^3.$
	$X = \{0, 1, 2\},\$
5	$R = \{(0,0), (1,1), (2,2), (0,1), (1,0), (0,2), (2,0), (1,2), (2,1)\}.$
	$X = \{ "aba", "ab", "a", "b" \},$ отношение R задано
	условием:
	$(x, y) \in R \iff$ строка x совпадает с началом строки y .
	$X = \{-5, -3, -1, 0, 1, 3, 5\}$, отношение R задано условием:
	$(x_1, x_2) \in R \Leftrightarrow x_1 = x_2 .$
6	$X = \{0, 1, 2\},\$
	$R = \{(0,0), (1,1), (2,2), (0,1)\}.$
	$X = \{ "abc", "bb", "ca", "ab" \},$ отношение R задано
	условием:
	$(x, y) \in R \Leftrightarrow$ первый символ строки x не встречается в y .
7	$X = \{-7, -5, -1, 0, 1, 5, 7\}$, отношение R задано условием:
,	$(x_1, x_2) \in R \Leftrightarrow x_1^2 = x_2^2 .$

	T
	$X = \{a, b, c\},$
	$R = \{(a,a),(b,b),(c,c),(a,b),(b,a),(c,b)\}.$
	$X = \{ "abc", "aa", "a", "ab" \},$ отношение R задано
	условием:
	$(x, y) \in \mathbb{R} \iff$ строка x меньше в y лексикографически (идет
	раньше в алфавитном порядке).
	$X = \{-7, -5, -1, 0, 1, 5, 7\}$, отношение R задано условием:
	$(x_1, x_2) \in R \iff x_1^3 = x_2^3.$
	$X = \{a, b, c\},\$
8	$R = \{(a,a),(b,b),(c,c),(a,b),(b,a),(a,c),(c,a),(b,c),(c,b)\}.$
	$X = \{"b", "a", "c", "bba", "bbc"\},$ отношение R задано
	условием:
	$(x, y) \in \mathbb{R} \iff$ если удалить первые 2 символа в строке x , то
	получится строка у.
	$X = \{-7, -5, -2, 0, 2, 5, 7\}$, отношение R задано условием:
	$(x_1,x_2)\in R \Leftrightarrow x_1 = x_2 .$
	$X = \{a, b, c\},$
9	$R = \{(a,a),(b,b),(c,c),(a,b),(b,a),(c,b)\}.$
	$X = \{ "aaa", "", "a", "ab", "abab", "aa" \},$ отношение R
	задано условием:
	$(x, y) \in \mathbb{R} \iff$ строка x состоит из двух сцепленных строк y .
	$X = \{-8-2, -1, 0, 1, 2, 8\}$, отношение R задано условием:
	$(x_1, x_2) \in R \Leftrightarrow x_1^2 = x_2^2$.
10	$X = \{1, 2, 3\},$
	$R = \{(1,1),(2,2),(1,2),(2,1),(1,3),(3,1)\}.$
	$X = \{ "abab", "a", "ab", "b" \},$ отношение R задано
	условием:
	$(x, y) \in \mathbb{R}$ \Leftrightarrow сцепление строк x и y равно сцеплению y и x .

Задание 5 (3 балла).

- 1. Написать программу, которая для заданного множества и отношения на этом множестве, определенного множеством пар элементов, реализует представление данного отношения булевой матрицей. Предусмотреть как возможность ввода пар элементов пользователем, так и его автоматическое формирование согласно условиям, соответствующим своему варианту.
- 2. Используя программу, созданную при выполнении п. 1, получить представление булевыми матрицами для всех отношений, рассмотренных в задании 4.

3. Сравнить результаты работы программы с результатами, полученными вручную.

Указание. Работа со строками может быть организована с помощью стандартных операций:

https://msdn.microsoft.com/ru-ru/library/system.string(v=vs.110).aspx

Задание 6 (2 балла).

- 1. Написать программу, которая для заданного множества и отношения на этом множестве, заданного булевой матрицей, реализует представление данного отношения в виде множества пар элементов.
- 2. Используя программу, созданную при выполнении п. 1, получить представление в виде множества пар элементов для всех отношений, рассмотренных в задании 4, заданных булевыми матрицами.
- 3. Сравнить результаты работы программы с результатами, полученными вручную (или данными в задании 4).

Задание 7 (4 балла).

- 1. Написать программу, которая позволяет выполнить проверку наличия свойств (рефлексивность, антирефлексивность, основных отношений симметричность, антисимметричность, транзитивность, полнота). такой обработки обоих Предусмотреть возможность ДЛЯ представления отношений, рассмотренных в задании 4 (множеством пар и булевой матрицей). Реализовать получение вывода о том, относится ли отношение к одному из известных классов: отношения эквивалентности, отношения полного порядка, отношения частичного порядка.
- 2. Используя программу, созданную при выполнении п. 1, осуществить проверку наличия основных свойств для всех отношений, рассмотренных в задании 4.
- 3. Сравнить результаты работы программы с результатами, полученными вручную.

Задание 8 (3 балла).

- 1. Написать программу, которая для заданного множества и отношения на этом множестве, определенного набором пар элементов, реализует построение транзитивного замыкания этого отношения (использовать алгоритм Уоршалла). Предусмотреть вывод полученного замыкания как в виде множества пар элементов, так и в виде булевой матрицы.
- 2. Выполнить тестирование программы.

Задание 9 (3 балла).

- 1. Написать программу, которая реализует разбиение заданного конечного множества на классы эквивалентности (исходное множество и отношение эквивалентности вводит пользователь). Полученные классы эквивалентности выводить списком элементов.
- 2. Используя программу, созданную при выполнении п. 1, получить разбиение множества натуральных чисел, не превосходящих 20, по отношению «иметь одинаковый остаток от деления на 4».

Задание 10 (4 балла).

- 1. Написать программу, которая реализует дополнение заданного отношения частичного порядка до полного порядка (использовать алгоритм топологической сортировки). Предусмотреть вывод отношения линейного порядка как в виде последовательности элементов, так и в виде булевой матрицы.
- 2. Используя программу, созданную при выполнении п. 1, дополнить до полного порядка отношение частичного порядка, представленное графически (выбрать в соответствии с номером варианта).

№ варианта	Отношения частичного порядка
1	$3 \rightarrow 1 \rightarrow 5 \leftarrow 6$
1	$7 \longrightarrow 2 \longrightarrow 4 \longleftarrow 8$
2	$3 \longrightarrow 2 \longrightarrow 6$
2	$8 \longrightarrow 1 \longrightarrow 4 \longleftarrow 7$
3	3 -4 -5 -7
	$8 \longrightarrow 2 \longrightarrow 1 \longleftarrow 6$
	$4 \longrightarrow 5 \longrightarrow 1 \longrightarrow 3$
4	$6 \longrightarrow 2 \longrightarrow 8 \longleftarrow 7$
5	5 - 2 - 3 - 6
	$7 \longrightarrow 1 \longrightarrow 4 \longleftarrow 8$

3. Элементы комбинаторики.

Задание 1 (по 0,5 балла за 1 задачу, кроме № 17).

Решить следующие задачи. Решения (с подробным обоснованием всех шагов) оформить в отчете.

1. Известно, что арифметические операции сложения и умножения коммутативны для конечного числа операндов. Например, выражение

$$(a+b+c+d)\cdot (e+f)$$

можно записать иначе: $(f+e)\cdot(b+a+c+d)$. Сколько всего существует способов записи этого выражения?

- 2. Для формирования регистрационного знака автомобиля (кроме дипломатических), согласно ГОСТу, могут использоваться 12 букв русского алфавита (A, B, E, K, M, H, O, P, C, T, X, У), три десятичных цифры и номер региона РФ. Сколько различных регистрационных знаков можно сформировать для одного региона?
- 3. Получена шифровка вида:

- о которой известно только, что двухразрядные десятичные числа представляют собой номера букв русского алфавита. Некто использует следующий алгоритм расшифровки: нумерует буквы алфавита в некотором порядке, подставляет буквы согласно этой нумерации и пытается прочитать сообщение; если получилась бессмыслица, нумерует буквы в другом порядке, и т. д. Сколько операций перекодирования потребуется выполнить в самом неблагоприятном случае? Ответ можно записать формулой.
- 4. Сколько различных слов, состоящих не менее, чем из 9 букв, можно образовать, используя буквы слова «территория»? Сколько из них начинаются с буквы «т»? Под словом в данном случае следует понимать любую последовательность букв.
- 5. Три студента на экзамене выбирают по одному билету из 11, предложенных преподавателем. Сколькими способами может быть осуществлен выбор?
- 6. Для обработки символов формируется кодовая таблица на основе двоичного кода. Для хранения одного символа используется 1 байт. Предположим, что таблица должна включать десятичные цифры, символы английского и русского алфавита (в верхнем и нижнем регистре) и прочие символы. Какое максимальное количество позиций можно будет задействовать для хранения прочих символов? Получить ответ на этот же вопрос, если для хранения одного символа используется 2 байта.
- 7. Участники лотереи «Спортлото 5 из 36» должны были в лотерейном билете вычеркнуть 5 номеров из таблицы, содержащей номера 1, 2, 3, ..., 36. После розыгрыша комбинация сравнивалась с выигрышной комбинацией, состоящей из 5 номеров. Размер выигрыша определялся количеством угаданных номеров. Сколько всего существует способов формирования таких комбинаций? Сколько комбинаций могут содержать 4 правильных номера из 5? Сколько комбинаций могут содержать 3 правильных номера из 5?
- 8. Делегация из 10 человек (одного пола) размещается в гостинице в два трехместных и один четырехместный номер. Сколько существует способов их размещения? Сколько существует способов размещения, при котором два определенных человека окажутся в одном номере?
- 9. Город A связан с городом B n дорогами. Путешественник из города A решил посетить город B и вернуться обратно, не проезжая дважды по одной и той же дороге. Сколькими способами он может это сделать (получить формулу)? Найдите числовой ответ при n = 5. Предполагается, что движение по всем

дорогам двустороннее.

- 10. Город A связан с городом B n дорогами, по которым допускается только одностороннее движение из A в B, m дорогами с односторонним движением из B в A и k дорогами с двусторонним движением. Путешественник из города A решил посетить город B и вернуться обратно, не проезжая дважды по одной и той же дороге. Сколькими способами он может это сделать (получить формулу)? Найдите числовой ответ при n = 2, m = 2 и k = 3.
- 11.Из города A в город B ведут 5 дорог, а из города B в город C ведут 3 дороги. Сколько путей, проходящих через B, ведут из A в C?
- 12. Решите уравнение относительно x: $C_x^3 = 364$.
- 13.В профком избрано 9 человек. Из них необходимо выбрать председателя, его заместителя, секретаря и кассира. Сколькими способами это можно сделать?
- 14.В группе 17 человек знают английский язык, 14 человек знают немецкий язык, 20 человек знают французский язык и 19 человек знают испанский язык. При этом 34 человека в группе знают ровно один язык из перечисленных, а остальные ровно два языка из перечисленных. Сколько человек в группе?
- 15.В группе 15 человек знают английский язык, 16 человек знают немецкий язык, 20 человек знают французский язык и 21 человек знает испанский язык. В группе нет людей, знающих три языка, и 23 человека в группе знают ровно два языка из перечисленных. Сколько человек в группе знают ровно один язык из перечисленных?
- 16.В выражении $(a+b)^{15}$ раскрыли скобки и привели подобные слагаемые. Какие числовые коэффициенты будут у выражений $a^3 \cdot b^{12}$, $a^9 \cdot b^6$?
- 17.(Дополнительно 2 балла) В рамках некоторого проекта требуется выполнить 6 заданий. Предполагается, что задания могут выполняться независимо одно от другого. В отделе имеется 3 сотрудника, способных выполнить любое из этих заданий. Начальнику отдела необходимо распределить задания по сотрудникам так, чтобы за каждое задание отвечал только один сотрудник, и чтобы каждый сотрудник получил хотя бы одно задание. Сколькими способами можно это сделать?

Задание 2 (2 балла).

- 1. Написать программу, реализующую вычисление факториала (для целого неотрицательного числа) двумя способами:
 - накоплением произведения в цикле;

- с помощью рекурсивной функции.
- 2. Выполнить тестирование программы.

Задание 3 (3 балла).

- 1. Написать программу, реализующую вычисление числа основных комбинаторных конфигураций (перестановок, размещений, сочетаний с повторениями и без повторений). Продумать наиболее эффективные способы организации вычислений.
- 2. Выполнить тестирование программы.

Задание 4 (3 балла).

- 1. Написать программу, реализующую вычисление числа сочетаний без повторений на основе рекуррентной формулы (использовать свойство 2 биномиальных коэффициентов).
- 2. Выполнить тестирование программы.

Задание 5 (3 балла).

- 1. Написать программу, реализующую сортировку методом пузырька.
- 2. Выполнить тестирование программы.

4. Основы теории графов.

Задание 1 (2 балла).

- 1. Доказать, что следующие отношения являются отношениями эквивалентности:
 - изоморфизм на множестве графов;
 - связанность на множестве вершин графа.
- 2. Найти максимально возможное число ребер графа, имеющего n вершин (использовать сведения из комбинаторики).

Все рассуждения представить в отчете.

Задание 2 (без п. 5 – 4 балла, п. 5 – дополнительно 3 балла).

- 1. Представить графы G_1 и G_2 четырьмя способами (матрицами смежности и инциденций, списками смежности и массивами дуг), предварительно обозначив их вершины и ребра произвольным образом. Графы выбрать в соответствии с номером своего варианта.
- 2. Найти диаметр, радиус, центры графа G_2 .
- 3. Выяснить, изоморфны ли графы G_2 и G_3 .
- 4. Записать бинарное отношение, определяемое графом G_1 . Перечислить свойства, которыми оно обладает.
- 5. Выяснить, является ли граф G_3 планарным. В случае положительного ответа

изобразить изоморфный ему плоский граф. Все рассуждения представить в отчете.

№ варианта	Графы
1	G_1 G_2 G_3
2	G_1 G_2 G_3
3	G_1 G_2 G_3 G_3
4	G_1 G_2 G_3 G_3
5	G_1 G_2 G_3
6	G_1 G_2 G_3

Задание 3 (3 балла).

Получить (вручную) протоколы работы алгоритмов поиска в глубину и поиска в ширину для данного графа (граф выбрать в соответствии с номером своего варианта). Описание основных шагов и полученные последовательности обхода вершин графа представить в отчете. Сопоставить результаты, полученные с помощью этих двух алгоритмов.

№ варианта	Граф
1	v_1 v_2 v_3 v_4
2	v_1 v_2 v_3 v_4 v_7

Задание 4 (4 балла).

- 1. Написать программу, реализующую алгоритм поиска в глубину с помощью рекурсивной процедуры.
- 2. Используя программу, созданную при выполнении п. 1, выполнить обход графа, рассмотренного в задании 3. Сравнить результаты работы программы с результатами, полученными вручную при выполнении задания 3.

Задание 5 (п. 1 – 3 балла; п.2 + п. 3 – 4 балла).

- 1. Для данного графа G (выбрать в соответствии с номером своего варианта)
 - пронумеровать вершины произвольным образом;
 - получить (вручную) протокол работы алгоритма Флойда (результаты матрица длин кратчайших путей и матрица самих кратчайших путей);
 - по полученной матрице кратчайших путей восстановить кратчайший путь, соединяющий вершины, выделенные красным цветом.

Описание основных шагов и полученные результаты представить в отчете.

- 2. Написать программу, реализующую алгоритм Флойда (результаты матрица длин кратчайших путей и матрица самих кратчайших путей), а также восстановление кратчайшего пути, соединяющего две заданные вершины.
- 3. Используя программу, созданную при выполнении п. 2, построить матрицу длин кратчайших путей и матрицу кратчайших путей для графа G; восстановить кратчайший путь, соединяющий вершины, выделенные красным цветом. Сравнить результаты работы программы с результатами, полученными вручную.

№ варианта	Γ раф G
1	$\begin{array}{c c} 5 & 5 & 2 \\ \hline 2 & 2 & 2 \\ \hline 2 & 2 & 2 \end{array}$
2	2 2 2 2 2 2 3 5 5 5 2 1 2 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 2 1 2 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2

3	$\begin{array}{c c} 5 & 5 & 3 \\ \hline 3 & 2 & 2 \\ \hline \end{array}$
4	5 11 2 5 3 1
5	$\begin{array}{c} 5 \\ \hline \\ 5 \\ \hline \\ 1 \\ \hline \\ 2 \\ \hline \\ 3 \\ \hline \end{array}$
6	5 10 2 5 3 2
7	$\begin{array}{c} 7 \\ 7 \\ \hline \\ 2 \\ 2$
8	7 12 2 3
9	5 4 3 1 2 2 4 2 2

Задание 6 (п. 1 – 3 балла; п.2 + п. 3 – 4 балла).

- 1. Для графа G, рассмотренного в задании 5,
 - пронумеровать вершины произвольным образом;
 - получить (вручную) протокол работы алгоритма Дейкстры нахождения кратчайшего пути, соединяющего вершины, выделенные красным цветом (результаты вектор длин кратчайших путей и вектор самих кратчайших путей).

Описание основных шагов, полученные результаты и их интерпретацию представить в отчете.

- 2. Написать программу, реализующую алгоритм Дейкстры (результаты вектор длин кратчайших путей и вектор самих кратчайших путей; пара вершин, которые должны быть соединены кратчайшим путем, вводится пользователем).
- 3. Используя программу, созданную при выполнении п. 2, найти кратчайший путь, соединяющий вершины, выделенные красным цветом в графе G. Сравнить результаты работы программы с результатами, полученными вручную.

Задание 7 (п. 1 – 2 балла; п.2 + п. 3 – 3 балла).

- 1. Для графа G, рассмотренного в задании 5,
 - убедиться, что граф не содержит контуров;
 - пронумеровать вершины таким образом, чтобы каждая дуга вела из узла с меньшим номером в узел с большим номером;
 - получить (вручную) протокол работы алгоритма построения вектора кратчайших путей от узла с номером 1 до всех достижимых из него узлов.

Описание основных шагов, полученные результаты и их интерпретацию представить в отчете.

- 2. Написать программу, реализующую алгоритм построения вектора кратчайших путей от узла с номером 1 до всех достижимых из него узлов заданного графа.
- 3. Используя программу, созданную при выполнении п. 2, и нумерацию вершин графа G, построенную в п. 1, найти вектор кратчайших путей в графе G. Сравнить результаты работы программы с результатами,

Задание 8 (п. 1 – 3 балла; п.2 + п. 3 – 4 балла).

- 1. Для данного графа G (выбрать в соответствии с номером своего варианта)
 - пронумеровать вершины произвольным образом;
 - убедиться, что граф связен;
 - получить (вручную) протокол работы алгоритма Прима нахождения кратчайшего остова графа G (результат множество ребер кратчайшего остова).

Описание основных шагов, полученные результаты и их интерпретацию представить в отчете.

- 2. Написать программу, реализующую алгоритм Прима (результат множество ребер кратчайшего остова).
- 3. Используя программу, созданную при выполнении п. 2, найти кратчайший остов в графе G. Сравнить результаты работы программы с результатами, полученными вручную.

№ варианта	Граф <i>G</i>
1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
2	v_{2} v_{3} v_{1} v_{4} v_{5} v_{5} v_{5}
3	v_{2} v_{3} v_{6} v_{1} v_{6} v_{1} v_{2} v_{6} v_{4} v_{5}

4	v_1 v_2 v_3 v_4 v_6 v_5 v_5
5	v_1 v_2 v_4 v_3 v_6 v_6 v_7 v_7 v_8
6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
7	v_1 v_2 v_4 v_6 v_5 v_5
8	v_{2} v_{3} v_{1} v_{4} v_{5} v_{6} v_{5} v_{6} v_{5} v_{5}
9	v_1 v_2 v_3 v_4 v_6 v_5 v_5
10	v_1 v_2 v_3 v_4 v_5 v_5

Задание 9 (3 балла).

Рассмотреть (как самостоятельный объект) остов графа G, полученный при выполнении задания 8.

- 1. Для полученного остовного дерева показать наличие всех основных свойств свободных деревьев.
- 2. Найти центр дерева.
- 3. Из остовного дерева получить ордерево: «назначить» одну из вершин корнем и задать соответствующую ориентацию ребер.
- 4. Для полученного ордерева показать наличие всех основных свойств ориентированных деревьев.
- 5. В ордереве
 - отметить корень, листья, ветви; определить высоту ордерева, обозначить ярусы;
- для выбранного произвольно узла, не являющегося ни корнем, ни листом, определить его родителя, предков, сыновей, потомков и братьев. Все рассуждения представить в отчете.

Задание 10 (п. 1 – 4 балла; п.2 + п. 3 – 6 баллов).

- 1. Для данной сети G (выбрать в соответствии с номером своего варианта)
 - получить (вручную) протокол работы алгоритма нахождения максимального потока (результат матрица максимального потока);
 - показать, что полученный максимальный поток является полным, обозначить насыщенные дуги;
 - найти минимальный (s, t)-разрез сети.

Описание основных шагов, полученные результаты и их интерпретацию представить в отчете.

- 2. Написать программу, реализующую алгоритм нахождения максимального потока (результат матрица максимального потока).
- 3. Используя программу, созданную при выполнении п. 2, найти максимальный поток в сети G. Сравнить результаты работы программы с результатами, полученными вручную.

№ варианта	Сеть <i>G</i>
1	v_1 v_2 v_4 v_5 v_7 v_7 v_8 v_8 v_6

