

Aprendizaje Supervisado Redes Neuronales, Métodos de Consenso y Potenciación

Redes Neuronales

X ₁	X_2	X_3	Υ
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	0
0	1	0	0
0	1	1	1
0	0	0	0

La salida Y es 1 si al menos 2 de las 3 entradas son iguales a 1.

Redes Neuronales

X ₁	X ₂	X ₃	Υ
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	0
0	1	0	0
0	1	1	1
0	0	0	0

$$Y = I(0.3X_1 + 0.3X_2 + 0.3X_3 > 0.4)$$

donde
$$I(z) = \begin{cases} 1 & \text{Si } z \text{ es verdadero} \\ 0 & \text{En otro caso} \end{cases}$$

Redes Neuronales

- Modelo es un conjunto de nodos interconectados y enlaces ponderados
- Nodo de salida suma cada uno de su valor de entrada de acuerdo a los pesos de sus vínculos
- Comparar nodo de salida contra un umbral t

Modelo Perceptron

$$Y = I(\sum_{i} w_{i}X_{i} - t) \quad o$$

$$Y = sign(\sum_{i} w_{i}X_{i} - t)$$

Estructura General de una Red Neuronal

Algoritmo de Aprendizaje

- Inicializar los pesos (w₀, w₁, ..., w_k)
- Ajustar los pesos de tal manera que la salida de la red Neuronal sea consistente con etiquetas de clase de ejemplos de entrenamiento: $E = \sum [Y_i f(w_i, X_i)]^2$
- Función Objetivo:
 - Encuentra el peso w_i's de que minimizan la función objetivo anterior (Error Cuadrático)
 - Ej. Algoritmo "backpropagation"

Métodos de Consenso (Bagging)

- La idea es tomar m muestras aleatorias con reemplazo (Boostrap) de los datos originales y luego aplicar en cada una de ellas un método predictivo para luego con algún criterio establecer un consenso de todos los resultados
- El consenso podría ser un promedio, un promedio ponderado basado en cuál método obtuvo los mejores resultados
- El que obtenga la "mayor cantidad de votos"

Bosques Aleatorios (Random Forest)

 El caso en el que todos los clasificadores del Método de Consenso son Árboles dicho método se denomina Bosques Aleatorios (Random Forest)

Bosques Aleatorios (Random Forest)

Métodos de Potenciación

- La idea es tomar una muestra aleatoria de los datos originales y aplicar sobre esta un método clasificatorio luego aumentar el peso (potenciar) a los individuos mal clasificados para que en la siguiente aplicación del método clasificatorio mejore su clasificación, y así sucesivamente...
- Además le asigna un peso al modelo construido en cada paso.
- Observación: Solo funciona para problemas de clasificación binarios (de 2 clases).

Métodos de Potenciación

Métodos de Potenciación Algoritmo: AdaBoost. M1

- 1. Initialize the observation weights $w_i = 1/N, i = 1, 2, ..., N$.
- 2. For m=1 to M:
 - (a) Fit a classifier $G_m(x)$ to the training data using weights w_i .
 - (b) Compute

$$err_m = \frac{\sum_{i=1}^{N} w_i I(y_i \neq G_m(x_i))}{\sum_{i=1}^{N} w_i}.$$

- (c) Compute $\alpha_m = \log((1 \text{err}_m)/\text{err}_m)$.
- (d) Set $w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(x_i))], i = 1, 2, ..., N$.
- 3. Output $G(x) = \operatorname{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$.

Métodos de Potenciación Algoritmo: AdaBoost. M1

oldemar rodríguez

CONSULTOR en MINER14 DE D4T0S