methods and tools in medical imaging

the art* of ct

* the algebraic reconstruction technique for computed tomography

25 may 2004

darko zikic

supervisor: jörg traub seminar: methods and tools in medical imaging chair for computer aided medical procedures [prof. navab] technical university of munich

agenda

- CT basics
- overview of the current ct systems[the ct zoo]
- algebraic reconstruction technique[ART]

ct :: algebraic reconstruction technique

ct basics

computed tomography basics

- what is ct?
- how does ct function?
- what is measured?
- how is it measured?
- what happens with the measured data?
- how do the results look like?

computed tomography scan process

- scaning the object with x-rays => projections
- reconstructing the object: making an image out of projections

what is actually measured?

- attenuation: describing how much x-ray intensity is reduced by the material
- only morphological properties [anatomy]can be measured=> no functional imaging

reconstruction: from projections...

... to images

reconstruction methods

- direct methods:
 - fourier reconstruction
 - filtered back-projection [FBP]
- iterative methods:
 - algebraic reconstruction technique [ART]

how do reconstructed images look like?

objectives

- small dose
 - as few projections as possible
 - low intensity
- fast data acquirement
 - scans of moving body parts: heart, lungs, angiography ...
 - 4D tomography
- fast image reconstruction
 - intra-operative use

ct :: algebraic reconstruction technique

overview of current ct systems

modern ct systems

history

- 1971 Dr. Godfrey Newbold Hounsfield
- EMI Laboratories, England
- 1979 Nobel Prize in Medicine with Allan McLeod Cormack
- British Knighthood

history

- **1967**:
 - first prototypes
 - data acquisition: several hours
 - reconstruction: several days
- 1971
 - brain images only
 - data acquisition: 5 min.
 - reconstruction: 20 min.
- 1974/1975
 - first clinical installations
- **1976**
 - whole body scanners

clinical head scanner 1974

data acquisition :: one slice per projection

data acquisition :: several slices per projection

cone beam

scan methods

slice based ct

helical ct [1989]

image source: Mueller

ct systems :: past

- 1th generation:
 - parallel-beam geometry
 - single highly collimated x-ray pencil beam and detector
 - scan time: 5 min.
- 2nd generation:
 - narrow fan beam
 - linear detector array
 - scan time: 30 sec.

ct systems :: today

- 3rd generation:
 - since 1976
 - rotating fan/cone beam
 - rotating detectors
 - scan time: 1 sec.
- 4th generation:
 - rotating fan/cone beam
 - fixed detector
 - scan time: 1 sec.

ct systems :: today

- cine CT [5th generation]
 - stationary X-ray source and detector
 - no mechanical scaning motion
 - X-ray source: large semicircular anode
 - scan time: 50 ms

- slip ring technology [1985]
 - replacing cables for power and data transfer

ct systems :: today

- mobile C-arm / C-arc:
 - operating room, emergency dept., ...
 - scan time: 60° per second
 - drawbacks:
 - smaller field of view [30 cm]
 - focus on iso-center
 - less stability

image source: Siemens Press, GE Medical Systems

Sensation

current systems

- example: SOMATOM Sensation 64, SIEMENS
- 4th generation cone beam scanner
- gentry rotation: 0.37 sec
- 64 slices per rotation
- down to 0.3mm slice distance
- resolution: 0.4 mm
- field of view: 82 cm
- reconstruction time: ~ 5 frames per second*
 *valid for another comparable system

image source: Siemens press picture

ct :: algebraic reconstruction technique

algebraic reconstruction technique

art :: the problem

- given:set of projections of the image
- goal: reconstruct the original image

art :: the idea

- make initial guess
- check how well it corresponds to the measured data[back-projection]
- calculate the difference between the result and real measurement
- correct the values
- repeat until results satisfying

art :: simple example

3	12	3
3	12	3
3	12	12

- make initial guess
- while convergence not reached // iterations
 - for each projection
 - for each ray
 - compute back-projection
 - compute difference to measured projection
 - distribute difference
 - end for
 - end for
- end while

the equation system

$$W \cdot f = p$$

M = #projections x #rays

W - the weight matrix

what pixels are influenced by one ray

 $N = image_size^2 = \#pixels$

pixels - the unknown

projection vlaues

details :: weight matrix structure

one iteration step :: the kaczmarz method

- update for one single ray projection k:
 - for a pixel j=1:N do:

a different view at the method

 one iterative step can be seen as a projection of the current solution on a corresponding hyperplane

image source: http://imaginis.com/faq/history.asp

solution :: existence and uniqueness

- the equation system can be :
 - underdetermined [M < N]
 - overdetermined [M > N]
 - inconsistent through noise
- it can be shown that:
 - if unique solution given,
 the kaczmarz method converges towards it
 - if solution not unique,
 the kaczmarz method yields the result colsest to the initial guess

tuning options

- reducing noise:
 - relaxation parameter [lambda]
 - simultaneous steps
 - heuristics [hamming window]
- improving convergence:
 - order of equations: orthogonality
 - heuristics using a priori information
 [hamming window, initial guess, using borders for values]

alternatives

SIRT

- no ray-by-ray iterations, simoultanous steps instead
- result: better quality & slower convergence

SART

- reducing errors in ray integral approximation by replacing pixels by bilinear elements
- simoultaneous iteration steps [as in SIRT]
- heuristic use: Hamming window
- result: better quality & faster convergence
- gives reasonable images in one iteration

a little demo

- parallel beam scan
- almost perfect weight matrix [sart-like results for art]
 - => nalmost no errors in back-projections
 - => this art-version corresponds to real sart
- art and sirt simuation
- tests for source size [truncation], number of projections, number of iterations, lambda variation, run times
- tests for use of hamming window, initial guess, a priori information
- comparison with matlab in-build FBP reconstruction

the experiment

test images [resolution:128², greyscale 8bit [0:255]]

some experimental results

brain 256x256

original image

art without "smart"
initial guess
1 iteration, 100 projections,
256*1.5 rays per projection

guess
1 iteration, 100 projections,
256*1.5 rays per projection

some experimental results

brain 256x256

original image

sirt
3 iterations, 100 projections,
256*1.5 rays per projection

some experimental results

lena 256x256

original image

art3 iterations, 100 projections,256*1.5 rays per projection

fbp matlab in-built fbp [iradon], 90 projections

comparison of ART and FBP

ART

- + better noise tolerance
- + needs less projections
- better handling of non-uniformly distributed projection datasets
- aliasing effects for large fan-beam angles [>20°]

FBP [filtered back projection]

+ more computationaly efficient

readings

- Kak, Slaney "Principles of Computerized Tomographic Imaging"
- Albert Macovski "Medical Imaging Systems"
- Klaus Mueller "Fast and Accurate Three-Dimensional Reconstruction from Cone-Beam Projection Data Using Algebraic Methods"
- G. T. Herman "Topics in Applied Physics"
- Henrik Turbell "Cone-Beam Reconstruction Using Filtered Backprojection"
- online resources:
 - Hiroki Yoshikawa, "X-Ray Computed Tomography", http://ctlab.bk.tsukuba.ac.jp/~ hiroki/blind/x-rayCT.html
 - Siemens Medical Solutions Website: http://www.medical.siemens.com
 - General Electric Medical Systems Website: http://www.gemedicalsystemseurope.com
 - http://www.amershamhealth.com/medcyclopaedia
 - http://en.wikipedia.org
 - http://www.impactscan.org
 - http://imaginis.com/