Lab2: 乘除法器、浮点加法器

3220106039 李瀚轩 2024.3.27

一、操作方法与实验步骤

1.1 乘法器

1. 乘法器的原理。

如上图所示,我们首先将乘数置于 Product 寄存器的低 32 位中,高 32 位清零。随后执行 32 轮循环,每次循环判断 Product 的最低位是否为 1, 若为 1, 则将 Product 的高 32 位与被乘数相加, 再将 Product 右移; 若为 0,则仅作右移操作。

2. 通过有限状态机将乘法器算法原理转化为 verilog 代码。

这里展示了基本有限状态机的状态图。

- 对于 ready 状态, 我们检测 start 的值, 为 1 时进入 busy 状态(即开始运算)。
- 对于 busy 状态,不断执行运算操作,并用 n 记录迭代次数,每执行一次操作将 n 减 1, 当检测到 n 为 0 时进入 finish 状态。
- 对于 finish 状态, 输出模块工作完成的信息使外部电路接收后,回到 ready 状态。

```
reg ready_reg;
reg finish_reg;
reg [1:0] state;
reg [3:0] n;
initial begin
   ready_reg ≤ 1;
   finish_reg ≤ 0;
    n \leq 0;
    state ≤ 0;
end
always@(posedge clk or posedge rst) begin
    if(rst) begin
       state ≤ 2'b00;
    end
    else if ((state = 2'b00) && start) begin
        state ≤ 2'b01;
       ready_reg ≤ 1'b0;
    end
    else if((state = 2'b01) && (n = 0)) begin
        state ≤ 2'b10;
       finish_reg ≤ 1'b1;
    end
    else if(state = 2'b10) begin
       state ≤ 2'b00;
       ready_reg ≤ 1'b1;
       finish_reg ≤ 1'b0;
    end
end
```

在 verilog 代码中,我们需要声明 state 寄存器来存储状态的编号, 并在 always 时序块中实现状态的 转化。由于 always 块中左值不允许 wire 类型的变量,因此额外声明两个寄存器存放 ready 和 finish 信号。

3. 根据 1 中乘法器的原理可以实现乘法器的 verilog 代码。 需要注意的是我们实现的是有符号乘法器, 因此需要通过乘数被乘数最高位异或判断乘积的符号,而在运算中我们只考虑无符号数(对操作数取绝对值),对最后的结果进行处理即可。

该模块完整的 verilog 代码如下:

```
module Mul(
   input clk,
   input rst,
   input [15:0] multiplicand,
   input [15:0] multiplier,
   input start,
   output [31:0] product,
   output ready,
   output finish
```

```
wire neg;
reg [31:0] result;
assign neg = multiplier[15] ^ multiplicand[15];
wire [15:0] num1;
wire [15:0] num2;
assign num1 = (multiplicand[15] = 1) ? ~multiplicand + 1 : multiplicand;
assign num2 = (multiplier[15] = 1)? ~multiplier + 1 : multiplier;
//assign result = {16'b0, multiplier};
reg ready_reg;
reg finish_reg;
reg [1:0] state;
reg [3:0] n;
initial begin
   ready_reg ≤ 1;
   finish_reg ≤ 0;
    n \leq 0;
    state ≤ 0;
end
always@(posedge clk or posedge rst) begin
    if(rst) begin
        state ≤ 2'b00;
    end
    else if ((state = 2'b00) && start) begin
        state ≤ 2'b01;
        ready_reg ≤ 1'b0;
    end
    else if((state = 2'b01) && (n = 0)) begin
        state ≤ 2'b10;
        finish_reg ≤ 1'b1;
    end
    else if(state = 2'b10) begin
       state ≤ 2'b00;
       ready_reg ≤ 1'b1;
       finish_reg ≤ 1'b0;
    end
end
always@(posedge clk or posedge rst) begin
    if(rst) result ≤ 32'b0;
    else if((state = 2'b00) && start) begin
        n \leq 4'd15;
        result ≤ {16'b0, num2};
    end
    else if(state = 2'b01) begin
        if(result[0] = 1'b1) begin
            result = {result[31:16] + num1, result[15:0]};
        end
       result = result >> 1;
        n = n - 1'b1;
    end
end
```

```
assign product = (neg) ? ~result + 1 : result;
assign ready = ready_reg;
assign finish = finish_reg;

endmodule

// 我的这个markdown主题,在代码块中会把非阻塞赋值的字符自动转化成小于等于号/(ToT)/~
// (=)看不到两个等号之间的空隙, (=) , (=)
```

如上述代码所示, 当处于 state=2'b00 状态时, 如果检测到 start 信号, 则将 n 赋值为 15, 并将 result (暂存乘积值的寄存器)高 16 位赋值为 0, 低 16 位赋值成乘数, 并进入 2'b01 状态, 开始计算。当检测到 n 为 0 时, 将 finish 置为 1, 进入 2'b10 状态。而状态 2'b10 则完成对外部电路的信号输出, 即将 finish 置为 0, ready 置为 1, 回到初始状态。

1.2 除法器

1. 除法器的原理。

- 首先将被除数放在 Remainder 的低 32 位, 高 32 位清零,并将整体左移一位。
- 开始循环,不断判断 Remainder 的高 32 位是否大于除数,若大于则减去,反之不操作,随后整体左 移一位。若发生减法,则在左移后将最低位置为 1。
- 循环结束后, Remainder 低 32 位即为商, 高 32 位右移一位后的结果为余数。
- 对于有符号数,我们仍然采用类似乘法的规则,即首先判断符号,在运算过程中用无符号数参与运算,最后处理结果。但是需要注意的是,余数的符号与被除数的符号一致。
- 2. 通过有限状态机将除法器算法原理转化为 verilog 代码。

具体思路与步骤与乘法器类似,这里不再赘述。

3. 根据 1 中的原理可以实现除法器的 verilog 代码。如下所示:

```
module Div(
    input clk,
    input rst,
    input start,
    input [15:0] dividend,
    input [15:0] divisor,
```

```
output finish,
    output ready,
    output [15:0] quotient,
    output [15:0] remainder,
    output div_by_0
);
wire neg;
assign neg = dividend[15] ^ divisor[15];
wire [15:0] num1;
wire [15:0] num2;
assign num1 = (dividend[15] = 1)? ~dividend + 1 : dividend;
assign num2 = (divisor[15] = 1)? ~divisor + 1 : divisor;
reg [1:0] state;
reg [3:0] n;
reg ready_reg;
reg finish_reg;
reg [31:0] remainder_reg;
reg div_by_0_reg;
initial begin
    ready_reg ≤ 1;
   finish_reg ≤ 0;
   n \leq 0;
    state ≤ 0;
end
always@(posedge clk or posedge rst) begin
    if(rst) begin
        state ≤ 2'b00;
    end
    else if ((state = 2'b00) && start) begin
       if(divisor = 0) begin
            state ≤ 2'b10;
            finish_reg ≤ 1'b0;
        end
        else begin
           state ≤ 2'b01;
           ready_reg ≤ 1'b0;
        end
    end
    else if((state = 2'b01) && (n = 0)) begin
        state ≤ 2'b10;
        finish_reg ≤ 1'b1;
    end
    else if(state = 2'b10) begin
       state ≤ 2'b00;
       ready_reg ≤ 1'b1;
       finish_reg ≤ 1'b0;
    end
end
```

```
always@(posedge clk or posedge rst) begin
        if(rst) begin
            remainder_reg ≤ 32'b0;
        end
        else if(state = 2'b00 && start) begin
            if(divisor = 0) begin
                remainder_reg ≤ 32'b0;
                div_by_0_reg \leq 1;
            end
            else begin
                n \leq 4'd15;
                div_by_0_reg \leq 0;
                remainder_reg ≤ {15'b0, num1, 1'b0};
            end
        end
        else if(state = 2'b01) begin
            n = n - 1'b1;
            if(remainder_reg[31:16] ≥ num2) begin
                remainder_reg = {remainder_reg[31:16] - num2,
remainder_reg[15:0]} << 1;
                remainder_reg = remainder_reg + 1'b1;
            end
            else begin
                remainder_reg = remainder_reg << 1;</pre>
            end
        end
    end
   assign quotient = (neg) ? ~remainder_reg[15:0] + 1 : remainder_reg[15:0];
   wire [15:0] abs_remainder;
   assign abs_remainder = remainder_reg[31:16] >> 1;
   assign remainder = (dividend[15] = 1) ? ~abs_remainder + 1:
abs_remainder;
   assign div_by_0 = div_by_0_reg;
   assign ready = ready_reg;
    assign finish = finish_reg;
endmodule
```

与乘法器不同的是,除法器需要判断除数为 0 的非法情况。因此在代码中进行 divisor = 0 的特判,若成立,则输出一个 div_by_0 的信号。

1.3 浮点加法器

1. 浮点数在计算机中的表示。

Single precision

31	30		23	22		0
S		exponent			fraction	
1 hit		8 hits			23 hits	

类似科学计数法。最高位是符号位, [30:23] 为指数部分,并加上了偏移量 [127]。 [22:0] 为尾数部分(significand),舍去了规范的 leading 1。

$$(-1)^{sign} \cdot (1 + significand) \cdot 2^{exponent-bias}$$

2. 浮点数的加法原理。

- 首先比较两个浮点数的指数,取较大的指数作为结果指数,较小的对尾数进行移位使得指数对齐。
- 对两个尾数进行加法。
- 检测得到的结果是否满足规范化要求,若不满足则进行移位操作。
- 将结果写入,完成运算。
- 3. 实现浮点加法器的 verilog 代码。代码如下:

```
module AddFloat(
   input clk,
    input rst,
    input start,
    input [31:0] a,
    input [31:0] b,
    output finish,
    output [31:0] result
    );
    reg [2:0] state;
    reg [7:0] a_exp, b_exp, result_exp;
    reg [24:0] a_mant, b_mant, result_mant;
    reg sign;
    reg [31:0] result_reg;
    reg finish_reg;
    reg running;
   wire neg;
    assign neg = a[31] ^ b[31];
   localparam
```

```
state0 = 3'b000,
    state1 = 3'b001,
    state2 = 3'b010,
    state3 = 3'b011,
    state4 = 3'b100,
    state5 = 3'b101;
always@(posedge clk or posedge rst) begin
    if(rst) begin
        result_reg ≤ 0;
        finish_reg ≤ 0;
        running ≤ 0;
    end
    else if(start) begin
        a_{exp} \leq a[30:23];
        b_{exp} \leq b[30:23];
        a_mant \leq \{2'b01, a[22:0]\};
        b_{mant} \leq \{2'b01, b[22:0]\};
        state ≤ state0;
        finish_reg ≤ 0;
        running ≤ 1;
    end
    else if(running && !finish_reg) begin
        case(state)
            state0: begin
                if(a_exp = b_exp \&\& a_mant = b_mant \&\& neg) begin
                    sign ≤ 0;
                    result_exp ≤ 0;
                    result_mant ≤ 0;
                    state ≤ state4;
                end
                else if(a_exp = 0 || a_exp = 8'hFF) begin
                    sign \leq a[31];
                    result_exp ≤ a_exp;
                    result_mant ≤ a_mant;
                    state ≤ state4;
                else if(b_{exp} = 0 \mid | b_{exp} = 8'hFF) begin
                    sign \leq b[31];
                    result_exp ≤ b_exp;
                    result_mant ≤ b_mant;
                    state ≤ state4;
                end
                else begin
                    state ≤ state1;
                end
            end
            state1: begin
                if(a_exp = b_exp) begin
                    state ≤ state2;
                else if(a_exp > b_exp) begin
                    b_{exp} \leq b_{exp} + 1;
```

```
b_{mant[24:0]} \leq \{1'b0, b_{mant[24:1]}\};
    end
    else begin
        a_{exp} \leq a_{exp} + 1;
        a_{mant}[24:0] \leq \{1'b0, a_{mant}[24:1]\};
    end
end
state2: begin
    if(!neg) begin
        sign \leq a[31];
        result_mant \left\ a_mant + b_mant;
    end
    else begin
        if(a[31]) begin
            if(a_mant > b_mant) begin
                sign \leq 1;
                result_mant ≤ a_mant - b_mant;
            end
            else begin
               sign ≤ 0;
                result_mant ≤ b_mant - a_mant;
            end
        end
        else begin
            if(a_mant > b_mant) begin
                sign ≤ 0;
                result_mant ≤ a_mant - b_mant;
            end
            else begin
                sign \leq 1;
                result_mant ≤ b_mant - a_mant;
            end
        end
    end
    result_exp ≤ a_exp;
    state ≤ state3;
end
state3: begin
    if(result_mant[24]) begin
        result_exp ≤ result_exp + 1;
        result_mant ≤ result_mant >> 1;
        state ≤ state3;
    else if(result_mant[23] = 0) begin
        result_exp ≤ result_exp - 1;
        result_mant ≤ result_mant << 1;
        state ≤ state3;
    end
    else state ≤ state4;
end
```

感觉伪代码里的实现不太能清晰展现浮点加法器状态变化的过程,我还是采用有限状态机的方法来实现,具体分为 5 个状态:

- state0:初始状态,首先判断是否存在相反数相加或者非规范数的存在,如果有则进行处理,处理完毕后直接进入 state4。若没有则进入 state1。
- state1: 对齐指数。完成后进入状态 state2。
- state2: 根据符号判断对尾数进行相加或相减。完成后进入状态 state3。
- state3: 判断结果是否符合规范化要求,若不符合则进行移位,符合要求后进入 state4。
- state4: 输出结果后回到初始状态。

二、实验结果与分析

1. 通过仿真验证乘法器的正确性。

在仿真代码中, 我设置四组情况: 正数乘正数、正数乘负数、负数乘正数、负数乘负数。代码如下:

```
module Mul_sim(
    );
    reg clk;
    reg rst;
    reg [15:0] multiplicand;
    reg [15:0] multiplier;
    reg start;
    wire [31:0] product;
    wire ready;
    wire finish;
    Mul m0 (
        .clk(clk),
        .rst(rst),
        .multiplicand(multiplicand),
        .multiplier(multiplier),
        .start(start),
```

```
.product(product),
        .ready(ready),
        .finish(finish)
   );
    always begin
       clk ≤ 1'b1; #2;
       clk ≤ 1'b0; #2;
    end
   initial begin
       start = 0;
       #10;
       multiplicand = 15'd1;
       multiplier = 15'd0;
        #10 start = 1;
        #10 start = 0;
        #200;
        multiplicand = 15'd10;
       multiplier = 15'd30;
        #10 start = 1;
        #10 start = 0;
        #200;
        multiplicand = 15'd15;
        multiplier = 15'd23;
        #10 start = 1;
        #10 start = 0;
        #200;
       multiplicand = -15'd5;
       multiplier = 15'd10;
        #10 start = 1;
        #10 start = 0;
        #200;
        multiplicand = 15'd10;
       multiplier = -15'd23;
        #10 start = 1;
        #10 start = 0;
        #200;
        multiplicand = -15'd15;
        multiplier = -15'd23;
        #10 start = 1;
        #10 start = 0;
        #200;
   end
endmodule
```


可以看到运算结果全部正确,并且可以看到在 start 信号为高电平后, ready 信号变为低电平,此时模块进行计算。计算完成后 finish 信号变为高电平,该周期中模块即可输出正确结果,一周期后 finish 变回低电平, ready 重新变回高电平,可以说明交互信号正确。仿真波形中 product 有段 很绿的片段,代表正在进行运算。

2. 通过仿真验证除法器的正确性。

在仿真代码中, 我设置 5 种情况:正数除以正数,正数除以负数,负数除以正数,负数除以负数,除以零。仿真代码如下:

```
module Div_sim(
   );
    reg clk;
    reg rst;
   reg start;
   reg [15:0] dividend;
   reg [15:0] divisor;
   wire finish;
   wire ready;
   wire [15:0] quotient;
   wire [15:0] remainder;
   wire div_by_0;
    Div d0 (
        .clk(clk),
        .rst(rst),
        .start(start),
        .dividend(dividend),
        .divisor(divisor),
        .finish(finish),
        .ready(ready),
        .quotient(quotient),
        .remainder(remainder),
        .div_by_0(div_by_0)
   );
```

```
always begin
       clk ≤ 1'b1; #2;
       clk ≤ 1'b0; #2;
    end
    initial begin
       start = 0;
       #10;
       dividend = 15'd1;
       divisor = 15'd0;
       #10 start = 1;
       #10 start = 0;
       #200;
        dividend = 15'd74;
        divisor = 15'd21;
       #10 start = 1;
       #10 start = 0;
        #200;
        dividend = 15'd15;
        divisor = 15'd3;
        #10 start = 1;
        #10 start = 0;
        #200;
        dividend = -15'd15;
        divisor = 15'd2;
        #10 start = 1;
        #10 start = 0;
        #200;
        dividend = 15'd100;
        divisor = -15'd3;
       #10 start = 1;
        #10 start = 0;
        #200;
        dividend = -15'd200;
        divisor = -15'd13;
        #10 start = 1;
       #10 start = 0;
       #200;
   end
endmodule
```

仿真波形如下:

可以看到,运算结果全部正确,交互信号波形也正确。可以看到当除数为 0 时 div_by_0 信号为 1,并且 所有结果中余数的符号与被除数相同。

3. 通过仿真验证浮点加法器的正确性。

在仿真代码中,我设置了如下内容:正浮点数加正浮点数、正浮点数加负浮点数、负浮点数加近浮点数、负浮点数加负浮点数、正负无穷分别和一个非无穷的数做加法,结果仍为无穷、两个互为相反数的浮点数加和为 0 、两个相同的数相加,测试进位、两个数相加会产生退位。仿真代码如下:

```
module AddFloat_sim(
    );
    reg clk;
    reg rst;
    reg start;
    reg [31:0] a;
    reg [31:0] b;
    wire finish;
    wire [31:0] result;
    AddFloat a0 (
        .clk(clk),
        .rst(rst),
        .start(start),
        .a(a),
        .b(b),
        .finish(finish),
        .result(result)
    );
    always begin
        clk ≤ 1'b1; #5;
        clk ≤ 1'b0; #5;
    end
    initial begin
        start = 0;
        #10;
        a = 32'h3E800000; //0.25
        b = 32'h3FE00000; //1.75
```

```
start = 1; #10;
        start = 0; #100;
        a = 32'hBF400000; // -0.75
        b = 32'hBF800000; // -1.0
        start = 1; #10;
        start = 0; #100;
        a = 32'h3FC00000; //1.50
        b = 32'hBF400000; // -0.75
        start = 1; #10;
        start = 0; #100;
        a = 32'hBF400000; // -3.7
        b = 32'h3FC00000; // 1.25
        start = 1; #10;
        start = 0; #100;
        a = 32'h7F800000;
        b = 32'h3fa00000;
        start = 1; #10;
        start = 0; #100;
        a = 32'hFF800000;
        b = 32'h3fa00000;
        start = 1; #10;
        start = 0; #100;
        a = 32'h40000000; //1
        b = 32'hC0000000; //-1
        start = 1; #10;
        start = 0; #100;
        a = 32'h3F800000;
       b = 32'h3F800000;
        start = 1; #10;
        start = 0; #100;
        a = 32'h40580000;
        b = 32'hC0500000;
        start = 1; #10;
        start = 0; #100;
   end
endmodule
```

仿真波形如下图所示:

可以看到,所有运算结果全部正确。其中正负无穷与规范数相加仍为正负无穷,相反数相加结果为 0, 进位退位的正确性也得到验证。

4. 上板验证

上板结果的正确性已经在验收时得到验证,这里不一一展示所有截图,仅选取部分结果展示。

```
x01=0x00000612
x02=0x00000003
x03=0x0000000B
x04=0x00000000
x05=0x00000000
x06=0x00000000
x07=0x00000000
x08=0x00000000
x09=0x00000000
x10=0x00000000
x11=0x00000000
x12=0x00000000
x13=0x00000000
x14=0x00000000
x15=0x00000000
x16=0x00000000
x17=0x00000000
x18=0x00000000
x19=0x00000000
x20=0x000000000
x21=0x00000000
x22=0x000000000
x23=0x000000000
x24=0x000000000
x25=0x00000000
x26=0x00000000
x27=0x00000000
x28=0x00000000
x29=0x00000000
x30=0x00000000
x31=0x00000000
       =0x0000004A
      =0x00000015
MEMADDR=0x00000000
MEMDATA=0x00000000
```

对于操作数 A,B 我们可以将其十六进制表示转化为十进制,方便计算: A = 74, B = 21。因此 A*B = $1554 = 0 \times 00000612$, A / B 的商为 3, 余数为 $11 = 0 \times 00000000$ B. 上板结果如下图所示:

当 SW[2:1] 为 00,01,10,11时,七段数码管上的结果分别对应乘法、除法的商、除法的余数、除数是否为0。 可以看到结果全部正确。

对于这种情况,我们也可以采取类似上述的方法得到正确结果。上板结果如下图所示:

可以看到上板结果正确。

```
x01=0x00000000
x02=0x00000000
x03=0x000000000
x04=0x00000001
x05=0x00000000
x06=0x00000000
x07=0x000000000
x08=0x000000000
x09=0x00000000
x10=0x00000000
x11=0x00000000
x12=0x00000000
x13=0x00000000
x14=0x00000000
x15=0x00000000
x16=0x00000000
x17=0x00000000
x18=0x00000000
x19=0x00000000
x20=0x00000000
x21=0x00000000
x22=0x00000000
x23=0x00000000
x24=0x00000000
x25=0x00000000
x26=0x00000000
x27=0x00000000
x28=0x00000000
x29=0x00000000
x30=0x00000000
x31=0x00000000
       =0x00000001
        =0x00000000
MEMADDR=0x00000000
MEMDATA=0x00000000
```

在这种情况下,除数为0, 因此我们应该得到 div_by_0 为 1 的输出, 并当 SW[2:1]=2'b11 时, 在 七段数码管上看到 00000001 。上板结果如下图所示:

可以看到结果正确。

三、思考题与心得

3.1 思考题

在设计乘除法器和外部交互的接口时,为何需要单独设置一个 finish 状态,而不是合并到 ready 状态中,在恢复到 ready 状态时表示上次计算完成?

- 首先理一下正确的交互接口: 当计算完成时 finish 信号为 1, 保持一个周期后 finish 恢复为 0, ready 置为 1。此时如果 start 信号为 1,则将 ready 置为 0, 电路开始计算。
- 我觉得原因可能是倘若没有 finish 信号,那么计算完成后 ready 就从 0 变为 1。 倘若在计算完成的 这个周期内 start 信号变为 1,那么在下一个周期电路将直接开始新一轮的计算。但是外部电路本来应该 在下一个周期读取计算的结果,这种情况下,外部电路读取到的是新一轮计算经过一轮操作后的结果,造成 读取错误。

3.2 心得

在本次实验中,我巩固了理论课上乘除法器、浮点加法器的硬件实现原理,并且学习了通过有限状态机设计算法的 verilog 代码的方法, 收获颇丰!

但是在实验过程中, 我还是遇到了不少困难, 感觉主要还是对 verilog 特性不那么熟悉:

• 阻塞赋值与非阻塞赋值:简单来说,非阻塞方法是在整个块结束时完成赋值操作,即左值不是马上改变;而 阻塞方法时在赋值语句执行完后立刻完成赋值操作。在写乘法器时,刚开始如下代码块我使用的是非阻塞赋值,这样的话高位加被乘数的操作就不会执行,只会执行移位操作。

```
else if(state = 2'b01) begin
    if(result[0] = 1'b1) begin
        result = {result[31:16] + num1, result[15:0]};
    end
    result = result >> 1;
    n = n - 1'b1;
end
```

verilog 中不支持一条语句两个操作。在写除法器时,如下的代码块所示,我刚开始写成 remainder_reg = {remainder_reg[31:16] - num2, remainder_reg[15:0]} << 1 + 1'b1 。但是仿真结果全部为 0 。之后才知道得写成两个语句!

• 在 verilog 中一个寄存器的赋值不能出现在两个 always 块里面。我在上板的时候发现一个诡异的现象,就是仿真结果正确但是板上除法显示全为 0。刚开始我一头雾水,还在查看除法器的逻辑是否出现问题,但是之后分析觉得既然仿真没问题,那应该是交互信号出问题。但是我自己还是没找出来,询问助教学长才知道是因为我在两个 always 块中对同一个寄存器赋值。

三面三个问题分别耗费了我巨大的时间,找 bug 的过程中也吐槽为什么 verilog 没有个类似 gdb 的 debug 工具/(ToT)/~。但是在正确实现之后,还是蛮有成就感的,也感觉正在慢慢熟悉和适应 verilog 硬件代码的独特特性。

总而言之,本次实验我学到了很多,收获满满!