pr2-temp-gs

November 2, 2024

[1]: pip install pandas

```
Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages
    (2.2.2)
    Requirement already satisfied: numpy>=1.22.4 in /usr/local/lib/python3.10/dist-
    packages (from pandas) (1.26.4)
    Requirement already satisfied: python-dateutil>=2.8.2 in
    /usr/local/lib/python3.10/dist-packages (from pandas) (2.8.2)
    Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-
    packages (from pandas) (2024.2)
    Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-
    packages (from pandas) (2024.2)
    Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-
    packages (from python-dateutil>=2.8.2->pandas) (1.16.0)
[2]: import pandas as pd
    import numpy as np
    from sklearn.linear_model import LinearRegression
    from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
     import matplotlib.pyplot as plt
     import seaborn as sns
[3]: df = pd.read_csv("temperatures.csv")
[4]: df
[4]:
         YEAR
                 JAN
                        FEB
                               MAR
                                      APR
                                             MAY
                                                    JUN
                                                           JUL
                                                                 AUG
                                                                        SEP
                            29.07
         1901 22.40
                      24.14
                                    31.91
                                          33.41
                                                 33.18
                                                        31.21
                                                               30.39
                                                                      30.47
    1
         1902 24.93
                      26.58
                            29.77
                                    31.78
                                           33.73
                                                  32.91
                                                        30.92
                                                               30.73
                                                                      29.80
    2
         1903 23.44
                      25.03 27.83
                                   31.39
                                           32.91
                                                  33.00
                                                        31.34
                                                               29.98
                                                                      29.85
    3
         1904 22.50
                            28.21
                      24.73
                                    32.02
                                           32.64
                                                  32.07
                                                        30.36
                                                               30.09
                                                                      30.04
    4
         1905 22.00
                      22.83
                            26.68 30.01
                                           33.32 33.25
                                                        31.44
                                                               30.68
                                                                      30.12
    112 2013 24.56
                                                  32.44
                      26.59
                             30.62
                                    32.66
                                           34.46
                                                        31.07
                                                               30.76
                                                                      31.04
    113 2014 23.83
                      25.97
                             28.95
                                    32.74
                                           33.77
                                                  34.15
                                                        31.85
                                                               31.32
                                                                      30.68
                                           34.09
                                                               31.52
    114 2015 24.58
                      26.89 29.07
                                    31.87
                                                  32.48
                                                        31.88
                                                                      31.55
    115 2016 26.94
                      29.72 32.62
                                    35.38 35.72 34.03
                                                        31.64
                                                               31.79 31.66
    116 2017 26.45
                      29.46 31.60 34.95
                                          35.84 33.82 31.88
                                                               31.72 32.22
```

	OCT	NOV	DEC	ANNUAL	JAN-FEB	MAR-MAY	JUN-SEP	OCT-DEC
0	29.97	27.31	24.49	28.96	23.27	31.46	31.27	27.25
1	29.12	26.31	24.04	29.22	25.75	31.76	31.09	26.49
2	29.04	26.08	23.65	28.47	24.24	30.71	30.92	26.26
3	29.20	26.36	23.63	28.49	23.62	30.95	30.66	26.40
4	30.67	27.52	23.82	28.30	22.25	30.00	31.33	26.57
	•••		•••		•••	•••		
112	30.27	27.83	25.37	29.81	25.58	32.58	31.33	27.83
113	30.29	28.05	25.08	29.72	24.90	31.82	32.00	27.81
114	31.04	28.10	25.67	29.90	25.74	31.68	31.87	28.27
115	31.98	30.11	28.01	31.63	28.33	34.57	32.28	30.03
116	32.29	29.60	27.18	31.42	27.95	34.13	32.41	29.69

[117 rows x 18 columns]

[5]: df.describe()

[5]:		YEAR	JAN	FEB	MAR	APR	\	
	count	117.000000	117.000000	117.000000	117.000000	117.000000		
	mean	1959.000000	23.687436	25.597863	29.085983	31.975812		
	std	33.919021	0.834588	1.150757	1.068451	0.889478		
	min	1901.000000	22.000000	22.830000	26.680000	30.010000		
	25%	1930.000000	23.100000	24.780000	28.370000	31.460000		
	50%	1959.000000	23.680000	25.480000	29.040000	31.950000		
	75%	1988.000000	24.180000	26.310000	29.610000	32.420000		
	max	2017.000000	26.940000	29.720000	32.620000	35.380000		
		MAY	JUN	JUL	AUG	SEP	OCT	\
	count	117.000000	117.000000	117.000000	117.000000	117.000000	117.000000	
	mean	33.565299	32.774274	31.035897	30.507692	30.486752	29.766581	
	std	0.724905	0.633132	0.468818	0.476312	0.544295	0.705492	
	min	31.930000	31.100000	29.760000	29.310000	29.070000	27.900000	
	25%	33.110000	32.340000	30.740000	30.180000	30.120000	29.380000	
	50%	33.510000	32.730000	31.000000	30.540000	30.520000	29.780000	
	75%	34.030000	33.180000	31.330000	30.760000	30.810000	30.170000	
	max	35.840000	34.480000	32.760000	31.840000	32.220000	32.290000	
		NOV	DEC	ANNUAL	JAN-FEB	MAR-MAY	JUN-SEP	\
	count	117.000000	117.000000	117.000000	117.000000	117.000000	117.000000	
	mean	27.285470	24.608291	29.181368	24.629573	31.517607	31.198205	
	std	0.714518	0.782644	0.555555	0.911239	0.740585	0.420508	
	min	25.700000	23.020000	28.110000	22.250000	29.920000	30.240000	
	25%	26.790000	24.040000	28.760000	24.110000	31.040000	30.920000	
	50%	27.300000	24.660000	29.090000	24.530000	31.470000	31.190000	
	75%	27.720000	25.110000	29.470000	25.150000	31.890000	31.400000	
	max	30.110000	28.010000	31.630000	28.330000	34.570000	32.410000	

```
OCT-DEC
     count 117.000000
             27.208120
    mean
     std
             0.672003
    min
             25.740000
    25%
             26.700000
    50%
             27.210000
     75%
             27.610000
    max
             30.030000
[6]: #input data
     x = df['YEAR']
     #output data
     y = df['ANNUAL']
[7]: plt.title("Temerature plot Of India")
    plt.xlabel("Year")
    plt.ylabel("Avg Annual Temp")
    plt.scatter(x,y, color="green")
```

[7]: <matplotlib.collections.PathCollection at 0x7bf62aa88ac0>


```
[8]:
     x.shape
 [8]:
      (117,)
      x=x.values
[10]: x
[10]: array([1901, 1902, 1903, 1904, 1905, 1906, 1907, 1908, 1909, 1910, 1911,
             1912, 1913, 1914, 1915, 1916, 1917, 1918, 1919, 1920, 1921, 1922,
             1923, 1924, 1925, 1926, 1927, 1928, 1929, 1930, 1931, 1932, 1933,
             1934, 1935, 1936, 1937, 1938, 1939, 1940, 1941, 1942, 1943, 1944,
             1945, 1946, 1947, 1948, 1949, 1950, 1951, 1952, 1953, 1954, 1955,
             1956, 1957, 1958, 1959, 1960, 1961, 1962, 1963, 1964, 1965, 1966,
             1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977,
             1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988,
             1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
             2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
             2011, 2012, 2013, 2014, 2015, 2016, 2017])
```

```
[11]: x=x.reshape(117,1)
[12]: x.shape
[12]: (117, 1)
[13]: x
[13]: array([[1901],
              [1902],
              [1903],
              [1904],
              [1905],
              [1906],
              [1907],
              [1908],
              [1909],
              [1910],
              [1911],
              [1912],
              [1913],
              [1914],
              [1915],
              [1916],
              [1917],
              [1918],
              [1919],
              [1920],
              [1921],
              [1922],
              [1923],
              [1924],
              [1925],
              [1926],
              [1927],
              [1928],
              [1929],
              [1930],
              [1931],
              [1932],
              [1933],
              [1934],
              [1935],
              [1936],
              [1937],
              [1938],
              [1939],
```

[1940],

[1941],

[1942],

[1943],

[1944],

[1945],

[1946],

[1947],

[1948],

[1949],

[1950],

[1951],

[1952],

[1953],

[1954],

[1955],

[1956],

[1957],

[1958],

[1959],

[1960],

[1961],

[1962],

[1963],

[1964],

[1965],

[1966],

[1967],

[1968],

[1969],

[1970],

[1971],

[1972],

[1973], [1974],

[1975],

[1976],

[1977],

[1978],

[1979],

[1980], [1981],

[1982],

[1983],

[1984],

[1985],

[1986],

```
[1988],
             [1989],
             [1990],
             [1991],
             [1992],
             [1993],
             [1994],
             [1995],
             [1996],
             [1997],
             [1998],
             [1999],
             [2000],
             [2001],
             [2002],
             [2003],
             [2004],
             [2005],
             [2006],
             [2007],
             [2008],
             [2009],
             [2010],
             [2011],
             [2012],
             [2013],
             [2014],
             [2015],
             [2016],
             [2017]])
[33]: y.shape
[33]: (117,)
[18]: y=y.values
[31]: y=y.reshape(117,)
[34]: y
[34]: array([28.96, 29.22, 28.47, 28.49, 28.3, 28.73, 28.65, 28.83, 28.38,
             28.53, 28.62, 28.95, 28.67, 28.66, 28.94, 28.82, 28.11, 28.66,
             28.66, 28.76, 28.86, 28.8, 28.74, 28.8, 28.67, 28.7, 28.59,
             28.98, 28.76, 28.65, 29.15, 29.09, 28.49, 29.03, 28.76, 28.71,
             28.7, 28.7, 28.85, 28.88, 29.46, 28.98, 28.8, 28.89, 28.97,
```

[1987],

```
29.37, 28.84, 28.73, 28.89, 28.47, 29.09, 29.16, 29.43, 28.92,
             28.76, 28.63, 28.64, 29.34, 29.02, 29.31, 28.72, 28.89, 29.04,
             29.09, 29.16, 29.41, 29.14, 29.07, 29.61, 29.47, 29.15, 29.31,
             29.44, 29.26, 28.89, 29.27, 29.41, 29.23, 29.63, 29.58, 29.32,
             29.12, 29.11, 29.28, 29.61, 29.33, 29.72, 29.55, 29.18, 29.14,
             29.32, 29.23, 29.55, 29.46, 30.18, 29.58, 29.05, 29.7, 29.81,
             29.75, 29.99, 30.23, 29.75, 29.79, 29.6, 30.06, 29.84, 29.64,
             30.3, 30.13, 29.82, 29.81, 29.81, 29.72, 29.9, 31.63, 31.42])
[16]: regressor = LinearRegression()
[35]: regressor.fit(x,y)
[35]: LinearRegression()
     y = m.x + c
     m = slope
     c = y -intercep
     where m is the gradient of the line (how steep the line is) and c is the y-intercept (the point in
     which the line crosses the y-axis)
[22]: regressor.coef #m
[22]: array([[0.01312158]])
[36]: regressor.intercept_ #c
[36]: 3.4761897126187016
[25]: regressor.predict([[2035]])
[25]: array([[30.1786077]])
[37]: predicted = regressor.predict(x)
[38]:
     predicted
[38]: array([28.4203158, 28.43343739, 28.44655897, 28.45968055, 28.47280213,
             28.48592371, 28.49904529, 28.51216687, 28.52528846, 28.53841004,
             28.55153162, 28.5646532, 28.57777478, 28.59089636, 28.60401794,
             28.61713952, 28.63026111, 28.64338269, 28.65650427, 28.66962585,
             28.68274743, 28.69586901, 28.70899059, 28.72211218, 28.73523376,
             28.74835534, 28.76147692, 28.7745985, 28.78772008, 28.80084166,
             28.81396324, 28.82708483, 28.84020641, 28.85332799, 28.86644957,
             28.87957115, 28.89269273, 28.90581431, 28.91893589, 28.93205748,
             28.94517906, 28.95830064, 28.97142222, 28.9845438, 28.99766538,
```

```
29.07639487, 29.08951645, 29.10263803, 29.11575961, 29.1288812,
             29.14200278, 29.15512436, 29.16824594, 29.18136752, 29.1944891,
             29.20761068, 29.22073227, 29.23385385, 29.24697543, 29.26009701,
             29.27321859, 29.28634017, 29.29946175, 29.31258333, 29.32570492,
             29.3388265 , 29.35194808 , 29.36506966 , 29.37819124 , 29.39131282 ,
             29.4044344 , 29.41755599, 29.43067757, 29.44379915, 29.45692073,
             29.47004231, 29.48316389, 29.49628547, 29.50940705, 29.52252864,
             29.53565022, 29.5487718, 29.56189338, 29.57501496, 29.58813654,
             29.60125812, 29.6143797, 29.62750129, 29.64062287, 29.65374445,
             29.66686603, 29.67998761, 29.69310919, 29.70623077, 29.71935236,
             29.73247394, 29.74559552, 29.7587171 , 29.77183868, 29.78496026,
             29.79808184, 29.81120342, 29.82432501, 29.83744659, 29.85056817,
             29.86368975, 29.87681133, 29.88993291, 29.90305449, 29.91617608,
             29.92929766, 29.94241924])
[39]: y
[39]: array([28.96, 29.22, 28.47, 28.49, 28.3, 28.73, 28.65, 28.83, 28.38,
             28.53, 28.62, 28.95, 28.67, 28.66, 28.94, 28.82, 28.11, 28.66,
             28.66, 28.76, 28.86, 28.8, 28.74, 28.8, 28.67, 28.7, 28.59,
             28.98, 28.76, 28.65, 29.15, 29.09, 28.49, 29.03, 28.76, 28.71,
             28.7, 28.7, 28.85, 28.88, 29.46, 28.98, 28.8, 28.89, 28.97,
             29.37, 28.84, 28.73, 28.89, 28.47, 29.09, 29.16, 29.43, 28.92,
             28.76, 28.63, 28.64, 29.34, 29.02, 29.31, 28.72, 28.89, 29.04,
             29.09, 29.16, 29.41, 29.14, 29.07, 29.61, 29.47, 29.15, 29.31,
             29.44, 29.26, 28.89, 29.27, 29.41, 29.23, 29.63, 29.58, 29.32,
             29.12, 29.11, 29.28, 29.61, 29.33, 29.72, 29.55, 29.18, 29.14,
             29.32, 29.23, 29.55, 29.46, 30.18, 29.58, 29.05, 29.7, 29.81,
             29.75, 29.99, 30.23, 29.75, 29.79, 29.6, 30.06, 29.84, 29.64,
             30.3, 30.13, 29.82, 29.81, 29.81, 29.72, 29.9, 31.63, 31.42])
[41]: #Mean absolute Error
      abs(y-predicted)
[41]: array([0.5396842, 0.78656261, 0.02344103, 0.03031945, 0.17280213,
             0.24407629, 0.15095471, 0.31783313, 0.14528846, 0.00841004,
             0.06846838, 0.3853468, 0.09222522, 0.06910364, 0.33598206,
             0.20286048, 0.52026111, 0.01661731, 0.00349573, 0.09037415,
             0.17725257, 0.10413099, 0.03100941, 0.07788782, 0.06523376,
             0.04835534, 0.17147692, 0.2054015, 0.02772008, 0.15084166,
             0.33603676, 0.26291517, 0.35020641, 0.17667201, 0.10644957,
             0.16957115, 0.19269273, 0.20581431, 0.06893589, 0.05205748,
             0.51482094, 0.02169936, 0.17142222, 0.0945438, 0.02766538,
            0.35921304, 0.18390855, 0.30703013, 0.16015171, 0.59327329,
             0.01360513, 0.07048355, 0.32736197, 0.19575961, 0.3688812 ,
             0.51200278, 0.51512436, 0.17175406, 0.16136752, 0.1155109 ,
```

29.01078696, 29.02390855, 29.03703013, 29.05015171, 29.06327329,

```
0.48761068, 0.33073227, 0.19385385, 0.15697543, 0.10009701,
             0.13678141, 0.14634017, 0.22946175, 0.29741667, 0.14429508,
             0.1888265 , 0.04194808, 0.07493034, 0.11819124, 0.50131282,
             0.1344344 , 0.00755599, 0.20067757, 0.18620085, 0.12307927,
             0.15004231, 0.36316389, 0.38628547, 0.22940705, 0.08747136,
             0.20565022, 0.1712282, 0.01189338, 0.39501496, 0.44813654,
             0.28125812, 0.3843797, 0.07750129, 0.18062287, 0.52625555,
             0.08686603, 0.62998761, 0.00689081, 0.10376923, 0.03064764,
             0.25752606, 0.48440448, 0.0087171, 0.01816132, 0.18496026,
             0.26191816, 0.02879658, 0.18432501, 0.46255341, 0.27943183,
             0.04368975, 0.06681133, 0.07993291, 0.18305449, 0.01617608,
             1.70070234, 1.47758076])
[42]: np.mean(abs(y-predicted))
[42]: 0.22535284978630413
[43]: mean_absolute_error(y,predicted)
[43]: 0.22535284978630413
[45]: np.mean((y-predicted)**2)
[45]: 0.10960795229110352
[46]: mean_squared_error(y,predicted)
[46]: 0.10960795229110352
[47]: r2_score(y,predicted)
[47]: 0.6418078912783682
[48]: regressor.score(x,y)
[48]: 0.6418078912783682
[50]: print(f"MSE: {mean_squared_error(y,predicted)}")
      print(f"MAE: {mean_absolute_error(y,predicted)}")
      print(f"R-Sqaure : {r2_score(y,predicted)}")
     MSE: 0.10960795229110352
     MAE: 0.22535284978630413
     R-Sqaure: 0.6418078912783682
[55]: plt.scatter(x, y, label='actual',color='red',marker='.')
      plt.plot(x, predicted, label='predicted', color='green', linewidth=3)
```

```
plt.title("Temperature vs Year")
plt.xlabel("Year")
plt.ylabel("Temperature")
plt.legend()
plt.show()
```

Temperature vs Year


```
[56]: sns.regplot(x='YEAR',y='ANNUAL',data=df)
```

[56]: <Axes: xlabel='YEAR', ylabel='ANNUAL'>

