DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING **EXAMINATIONS 2006**

MSc and EEE PART IV: MEng and ACGI

Corrected Copy

PROBABILITY AND STOCHASTIC PROCESSES

Friday, 12 May 10:00 am

Time allowed: 3:00 hours

There are SIX questions on this paper.

Answer FOUR questions.

All questions carry equal marks

Any special instructions for invigilators and information for candidates are on page 1.

Examiners responsible

First Marker(s):

K.K. Leung

Second Marker(s): R.B. Vinter

Special Instructions for Invigilator: None

Information for Students:

Complementary Normal Distribution

$$Q(x) = 1 - \Phi(x) = 1 - \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dx$$

X	Q(x)	x	Q(x)
0	5.00e-01	2.7	3.47e-03
0.1	4.60e-01	2.8	2.56e-03
0.2	4.21e-01	2.9	1.87e-03
0.3	3.82e-01	3.0	1.35e-03
0.4	3.45e-01	3.1	9.68e-04
0.5	3.09e-01	3.2	6.87e-04
0.6	2.74e-01	3.3	4.83e-04
0.7	2.42e-01	3.4	3.37e-04
0.8	2.12e-01	3.5	2.33e-04
0.9	1.84e-01	3.6	1.59e-04
1.0	1.59e-01	3.7	1.08e-04
1.1	1.36e-01	3.8	7.24e-05
1.2	1.15e-01	3.9	4.81e-05
1.3	9.68e-02	4.0	3.17e-05
1.3	8.08e-02	4.5	3.40e-06
1.5	6.68e-02	5.0	2.87e-07
1.6	5.48e-02	5.5	1.90e-08
1.7	4.46e-02	6.0	9.87e-10
1.8	3.59e-02	6.5	4.02e-11
1.9	2.87e-02	7.0	1.28e-12
2.0	2.28e-02	7.5	3.19e-14
2.1	1.79e-02	8.0	6.22e-16
2.2	1.39e-02	8.5	9.48e-19
2.3	1.07e-02	9.0	1.13e-19
2.4	8.20e-03	9.5	1.05e-21
2.5	6.21e-03	10.0	7.62e-24
2.6	4.66e-03		

a. At a party, N men throw their hats in the center of a room. The hats are mixed up, and each
man takes turn to randomly select one and then returns it to the center. Assume that all hats
are different. Find the expected number of men that select their own hats.

[5]

b. Consider K independent, scalar random variables $X_1, X_2, ..., X_K$, each of which is exponentially distributed with parameter λ . That is, $f_X(x) = \lambda e^{-\lambda x}$ if $x \ge 0$, and 0 otherwise. Let Y be the minimum of $X_1, X_2, ...,$ and X_K . Find the probability density function (pdf) $f_Y(y)$ for Y.

[8]

c. Given two independent nonnegative random variables X and Y, we define a new variable $Z \equiv X + Y$. Let the Laplace transforms of the probability density functions (pdf's) for X, Y and Z be denoted by $X^*(s)$, $Y^*(s)$ and $Z^*(s)$, respectively. Show that $Z^*(s) = X^*(s)Y^*(s)$. [12]

2. a. A positive integer valued random variable X has a geometric distribution. That is, for n=1, 2, 3, ...

$$p_n = P[X = n] = p(1-p)^{n-1}$$

where 0 . Determine the probability generation function (i.e., the z-transform) for <math>X. Hence, or otherwise, obtain the mean and variance of X.

[10]

- b. Show that the geometric distribution given in part a is equivalent to the conditional-probability property defined below, using the following approach:
 - i. Prove that if the random variable *X* has the geometric distribution, then *X* has the following conditional probability property:

$$P[X > m + n | X > m] = P[X > n]$$

for any two positive integers m and n.

[5]

ii. Prove that if a positive integer valued random value X satisfies

$$P[X > m + n | X > m] = P[X > n]$$

for any two positive integers m and n, then X must have the geometric distribution. [10]

(Hint: Express the conditional probability in terms of $a_k = P[X > k]$.)

3. a. If random variables X and Y are identically distributed, not necessarily independent, show that

$$cov(X+Y,X-Y)=0.$$
 [6]

b. Now consider random variables X, Y and Z. The conditional covariance of X and Y, given Z, is defined by

$$cov(X, Y | Z) = E[(X - E[X | Z])(Y - E[Y | Z]) | Z].$$

i. Show that

$$cov(X, Y | Z) = E[XY | Z] - E[X | Z]E[Y | Z].$$
 [5]

ii. Show that

$$cov(X,Y)=E[cov(X,Y\mid Z)]+cov(E[X\mid Z],E[Y\mid Z]).$$
[9]

(Hint: Take the expectation of both sides of the result in part i.)

iii. Set X=Y in part ii and obtain a formula for var(X) in terms of conditional expectations. [5]

- 4. a. Suppose that orders X_1 , X_2 , ..., X_n at a restaurant are independent, identically distributed (iid) random variables with mean $\mu = \$8$ and standard deviation $\sigma = \$2$. Let $S_n \equiv \sum_{i=1}^n X_i \text{ and } Z_n \equiv \frac{S_n n\mu}{\sigma\sqrt{n}} \text{. Using the Central Limit Theorem for } Z_n \text{ and the complementary normal distribution given at the beginning of this examination paper,}$
 - i. Estimate the probability that the first 100 customers (orders) spend a total of more than \$840.
 - ii. Estimate the probability that the first 100 customers spend a total between \$780 and \$820.[6]
 - b. Two random variables X and Y are said to have a bivariate normal distribution if their joint probability density function (pdf) is given by

$$f(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_X}{\sigma_X}\right)^2 + \left(\frac{y-\mu_Y}{\sigma_Y}\right)^2 - 2\rho \frac{(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y} \right] \right\}$$

- i. Show that the marginal pdf's for both X and Y are normal density functions with respective parameters μ_X , σ_X , μ_Y and σ_Y . [6]
- ii. Show that the conditional pdf for X, given that Y=y, is the normal pdf with parameters

$$\mu_X + \rho \frac{\sigma_X}{\sigma_Y} (y - \mu_Y) \text{ and } \sigma_X^2 (1 - \rho^2).$$
 [6]

iii. Show that X and Y are independent when $\rho = 0$. [2]

5. **Speech Predictor:** Let X_1 , X_2 , X_3 , ... be a sequence of samples of a speech voltage waveform. Suppose that $\{X_k\}$ represents a stationary, second order, stochastic process where $E[X_k] = 0$ and $E[X_k^2] = \sigma^2 > 0$ for all $k = 1, 2, 3, \ldots$ The samples X_{k-2} and X_{k-1} are used to predict X_k with the least mean square error. That is, for $k = 3, 4, 5, \ldots$

$$\hat{X}_k = aX_{k-1} + bX_{k-2} \tag{*}$$

is the least squares predictor of X_k where a and b are constants.

- a. Find a and b in terms of the variance σ^2 and covariances of $\{X_k\}$. [11]
- b. Given the stationary property of the process, the covariances of $\{X_k\}$ depend on the "distance" between the time indices, but not on the specific index values. Assume that for all i and j

$$COV(X_i, X_j) = \rho_{|i-j|} \sigma^2$$

where $\rho_k > 0$ and $\rho_0 = 1$. (For example, $COV(X_i, X_{i+2}) = \rho_2 \sigma_X^2$.) Find a and b in terms of ρ_1 and ρ_2 .

c. In a practical implementation, it turns out that due to insufficient processing time, only an inaccurate, noisy measurement \widetilde{X}_{k-1} can be obtained for predicting X_k according to (*). For each $k=2, 3, ..., \widetilde{X}_{k-1}$ is given by

$$\widetilde{X}_{k-1} = X_{k-1} + N_{k-1}$$

where $\{N_k\}$ is an independent sequence of zero mean, uncorrelated random variables with variance σ_N^2 . On the other hand, sufficient processing time is available to obtain an accurate value of X_{k-2} for purposes of prediction in (*). Find the optimal a and b in terms of ρ_1 , ρ_2 , σ^2 and σ_N^2 in the presence of the measurement noise.

(Hint: Include the effects of the measurement noise in the results in part a.) [10]

- 6. a. Consider a two-state continuous-time Markov chain that spends an exponential time with rate λ in state 0 before going to state 1, where it spends an exponential time with rate μ before returning to state 0. Let $\pi_0(t)$ and $\pi_1(t)$ be the state probability at time t for state 0 and 1, respectively.
 - i. Give the differential-difference equations for $\pi_0(t)$ and $\pi_1(t)$. [5]

(Hint: $\frac{d\pi_j(t)}{dt} = q_{jj}\pi_j(t) + \sum_{k \neq j} q_{kj}\pi_k(t) \text{ where } q_{kj} \text{ is the state transition rate from state } k$ to j for $k \neq j$, and $-q_{jj}$ is the state transition rate at which the process departs from state j when it is in that state.)

- ii. Let $\pi_0(0) = 1$. Solve these equations for $\pi_0(t)$ and $\pi_1(t)$. [7]
- b. Let X_1, X_2, \ldots be independent, identical distributed random variables such that $P[X_i = j] = \alpha_j \ , \ j \geq 0 \ .$ We say that a record occurs at time n if $X_n > \max(X_1, \ldots, X_{n-1})$, where $X_0 = -\infty$, and if a record does occur at time n, let X_n be called the record value. Let X_n denote the ith record value.
 - i. Argue that $\{R_i, i \ge 1\}$ is a Markov chain. [3]
 - ii. Compute its transition probabilities. [10]

Model Answers Brobability & Stochastic Process 2006 E4.10/ #1 Xi = { i if it man selects his own hat a. Let $X = \sum_{i=1}^{N} X_{i} \Rightarrow E[X] = \sum_{i=1}^{N} E[X_{i}]$ Foreach i, $E[X_i] = \frac{1}{N} \cdot 1 + \frac{N-1}{N} \cdot 0 = \frac{1}{N}$ $= \sum_{i=1}^{N} E[X_i] = X_i \cdot \frac{1}{N} = 1$ (The expected number of men selectif their own hats.) Y = min (X, , X2, ..., XK) P[X>y]=P[min(X, X2, ..., XK) >y] = P[X,>y, X2>y, -.., XK>y] = P[X, >y] P(X2>y] -- P(Xx>y] *** => P[x>y] = e-24.e-27...e-27 => P[Y=y] = 1 - e - Kay => fyly) = KA e - KAY Let $f_X(x)$, $f_Y(y)$ and $f_Z(z)$ be the pdf for X, Y and z, respectively. Similarly, let $F_X(x)$, $F_Y(y)$ and $F_Z(z)$ be the PDF for X, Y, and z, respectively.

be the PDF to X, 4, and \pm , respectively.

By definition, $F_{\pm}(3) = P(2 \le 3) = P(x+1 \le 3)$

$$F_{2}(3) = \int_{y=0}^{\infty} P(x+y) dy = \int_{y=0}^{\infty} P(x+y) dy = \int_{y=0}^{\infty} P(x) dy$$

 $= \int_{z=0}^{z} f_{z}(z) = \int_{z=0}^{z} f_{x}(z-y) f_{y}(y) dy$

$$\frac{dF_{2}(3)}{d3} = \int_{y=0}^{\infty} \frac{dF_{x}(3-y)}{d3} f_{y}(y) dy$$

$$\Rightarrow f_{2}(3) = \int_{z=0}^{\infty} f_{x}(3-y) f_{y}(y) dy - 0$$

$$\text{To Show } 2^{*}(s) = \chi^{*}(s) \int_{z=0}^{\infty} f_{x}(3-y) f_{y}(y) dy - 0$$

$$\text{How form an both sides of } 0:$$

$$\int_{z=0}^{\infty} f_{2}(3) e^{-58} d3 = \int_{z=0}^{\infty} \int_{z=0}^{\infty} f_{x}(3-y) f_{y}(y) dy$$

$$\frac{1}{3} = 0$$

$$e^{-58} d3$$

$$\Rightarrow 2^{*}(s) = \int_{z=0}^{\infty} \int_{z=y}^{\infty} f_{x}(3-y) e^{-58} dy d3$$

$$\Rightarrow 2^{*}(s) = \int_{z=0}^{\infty} \int_{z=y}^{\infty} f_{x}(3-y) e^{-58} dy d3$$

$$\Rightarrow 2^{*}(s) = \int_{z=0}^{\infty} \int_{z=y}^{\infty} f_{x}(3-y) e^{-58} dy d3$$

$$\Rightarrow 2^{*}(s) = \int_{z=0}^{\infty} \int_{z=y}^{\infty} f_{x}(s) f_{y}(s) e^{-58} ds$$

$$\Rightarrow 2^{*}(s) = \int_{z=0}^{\infty} \int_{z=y}^{\infty} f_{x}(s) f_{y}(s) e^{-58} ds$$

$$\Rightarrow 2^{*}(s) = \int_{z=0}^{\infty} \int_{z=0}^{\infty} f_{x}(s) f_{y}(s) e^{-58} ds$$

$$\Rightarrow 2^{*}(s) = \int_{z=0}^{\infty} f_{x}(s) f_{y}(s) e^{-58} ds$$

$$\Rightarrow 2^{*}(s) = \int_{z=0}^{\infty} f_{x}(s) f_{y}(s) e^{-58} ds$$

$$\Rightarrow 2^{*}(s) = \int_{z=0}^{\infty} f_{x}(s) f_{y}(s) e^{-58} ds$$

a. Let the 2- transform be P(2) $P(z) = \sum_{n=1}^{\infty} p_n z^n = \sum_{n=1}^{\infty} p(1-p)^{n-1} z^n$ $\Rightarrow p(z) = pz \sum_{n=1}^{\infty} \left[(1-p)z \right]^{n-1} = pz$ Let g = 1 - p. Then $p(z) = \frac{pz}{1 - gz}$. $\frac{dp(z)}{dz} = \frac{d}{dz} \left[pz \left(1-qz \right)^{-1} \right]$ $\Rightarrow \frac{dP(2)}{dz} = P(1-gz)^{-1} + Pz(-1)(1-gz)^{-2}(-g)$ $\frac{dP(2)}{d2} = p(1-g_2)^{-1} + p_g^2 + (1-g_2)^{-2}$ $\Rightarrow \frac{d^2 p(z)}{dz^2} = p(-1)(1-gz)^{-2}(-g) + pg(1-gz)^{-2}$ + pgz(-2) (1-gz)-3(-g) d'p(2) = pg(1-gz)-2 + pg(1-gz)-2 + 2 pg 2 2 (1- g2) -3 Since E[X] = dP(Z) / , from O we have $E(X) = p(1-q)^{-1} + pq(1-q)^{-2}$ $\Rightarrow E(X) = p \cdot p^{-1} + pgp^{-2}$ $F(X) = 1 + \frac{9}{10} = 1 + \frac{1-p}{10} = \frac{1}{10}$ P.3

$$\frac{d^2P(z)}{dz^2} = E\left[X(X-1)\right]$$

From D, we have

$$E[X(X-1)] = 2pq(1-q)^{-2} + 2pq^{2}(1-q)^{-3}$$

=>
$$E[X(x-1)] = 2pqp^{-2} + 2pq^2p^{-3}$$

$$\Rightarrow E[X(X-1)] = 28/p + 28/p^2 = 23(1+9)$$

$$\Rightarrow E\left[X(X-1)\right] = 2 \cdot \frac{1-p}{p} \cdot \left(1 + \frac{1-p}{p}\right) = 2\left(\frac{1-p}{p^2}\right)$$

Since E(X) = p, subs. this into the above yields

$$E(X^2) = 2 \cdot \frac{1-p}{p^2} + \frac{1}{p} = \frac{2}{p^2} - \frac{1}{p}$$

Variance of X:

$$G_{X}^{2} = E(X^{2}) - \left[E(X)\right]^{2}$$

$$= \frac{2}{p^{2}} - \frac{1}{p} - \frac{1}{p^{2}}$$

$$\Rightarrow O_X^2 = \frac{1-p}{p^2}$$

b. i) (Majden M, n > 0)
$$P(X > m+n \mid X > m) = \underbrace{P(X > m+n \text{ and } X > m)}_{P(X > m)}$$

$$= \underbrace{P(X > m+n)}_{P(X > m)} \qquad \text{?? n > 0}$$

$$Psfine \quad a_k \triangleq P(X > k).$$
Given that X has a geometric distribution,
$$a_k = P(X > k) = \underbrace{\sum_{n=k+1}^{\infty} p(1-p)^{n-1}}_{n=k+1} = \underbrace{p(\frac{1-p}{k})^k}_{1-(1-p)}$$

$$\Rightarrow \quad a_k = (1-p)^k$$
Subs. a_k into $a_k = a_k$ into $a_k = a_k$ and $a_k = a_k$

$$P(X > m+n \mid X > m) = \underbrace{P(X > m+n)}_{P(X > m)} = \underbrace{a_{m+n}}_{A_m} = \underbrace{a_{m+n}}$$

$$\Rightarrow P(x>m+n|x>m) = P(x>a)$$

$$R \in \mathcal{P}_{n}$$

(i) Since the derivation for 4) does not involve the distribution for X, the equation remains valid in general.

If P(X>m+n|X>m) = P(X>n), then we now have $P(X>m+n|X>m) = \frac{a_{m+n}}{a_m} = P(X>n) = a_n$

P.S

That is, am+n = aman for m, n positive integers Let n=1, $Q_{m+1}=Q_mQ_1$ Consider M=1,2,3,... We then have $Q_{m+1} = Q_1^{m+1}$ by definition, $\alpha_1 = P(x>1) = 1 - p(x=1) \stackrel{d}{=} 1 - p$ Therefore, from (5), am = a, = (1-p) m for m=1,2,3,... Since P(X=n) = P(X>n) - P(X>n)= an-1 - an $= (1-p)^{n-1} - (1-p)^n$ $\Rightarrow P(X=n) = p(1-p)^{n-1}$ for n=1,2,3,...A gelometric distribution! Q.E.D.

#3

Q.
$$Cov(x+Y, X-Y) = cov(x,x) + cov(x,-Y) + Cov(Y,x) + Cov(Y,-Y)$$

= $Var(x) - cov(x,Y) + cov(Y,x) - Var(Y)$

= $Var(x) - Var(Y)$

b. i)
$$Cov(x, Y|z)$$

= $E\{xY - E[x|z]Y - xE[Y|z] + E[x|z]E[Y|z]|z\}$
= $E[xY|z] - E[x|z]E[Y|z] - E[x|z]E[Y|z]$
+ $E[x|z] \cdot E[Y|z]$:: $E[\cdot]$ is a constant
= $E[xY|z] - E[x|z]E[Y|z]$

ii) Take the expedation of the sides of result in particle $E[Cov(X,Y|Z)] = E\{E[XY|Z] - E[X|Z] E[Y|Z]\}$ $\Rightarrow E[Cov(X,Y|Z)] = E[XY] - E[X|Z] E[Y|Z]\}$ Consider Cov(E[X|Z], E[Y|Z]). $Cov(E[X|Z], E[Y|Z]) = E\{E[X|Z] E[Y|Z]\}$ $Cov(E[X|Z], E[Y|Z]) = E\{E[X|Z] E[Y|Z]\}$ $Cov(E[X|Z], E[Y|Z]) = E\{E[X|Z] E[Y|Z]\}$

Combine 1 and 2:

$$E[cov(x,Y|z)] + cov(E[x|z], E[Y|z])$$

$$= E[XY] - E(x)E(Y)$$

$$= cov(x,Y)$$

$$= cov(x,Y)$$

$$0.E.D.$$

(ii) Cov(x, Y | Z) = Var(x | Z) when Y = X.

The 6Hs of result in part ii: cov(x, y) = var(x)

The RHS:
$$E[CN(X,X|z)] + CN(E(X|z),E(|z))$$

 $= E[Var(X|z)] + Var(E[X|z])$
 $\Rightarrow Vor(X) = E[Var(X|z)] + Var(E[X|z])$

a.
$$N = 100$$
 $S_{100} = X_1 + X_2 + \cdots + X_{100}$

$$E[S_{100}] = n\mu = 800 \qquad O_{S_{100}}^2 = n\sigma^2 = 400.$$

The normalised form of
$$S_{100}$$
 is
$$\frac{2}{5100} = \frac{S_{100} - 800}{5100}$$

$$\frac{2}{100} = \frac{S_{100} - 800}{20}$$

i)
$$P(S_{100} > 840) = P(2_{100} > \frac{840-800}{20})$$

= $P(2_{100} > 2)$
= $Q(2) = 2.28 \times 10^{-2}$ (from the CDT

(i)
$$P(780 \le 5100 \le 820)$$

= $P(-1 \le 2100 \le 1)$
= $1-20(1)$

$$= 1 - 2 \times 1.59 \times 10^{-1}$$
$$= 0.682$$

$$b. i) \quad f_{x}(x) = \int_{y=-loc}^{loc} f(x,y) \, dy$$

$$= \frac{1}{2\pi O_{x}O_{y}\sqrt{1-p^{2}}} \int_{-\infty}^{\infty} \exp\left\{\frac{-1}{2(1-p^{2})} \left[\frac{(x-h_{x})}{O_{x}}\right]^{2} + \left(\frac{y-M_{y}}{O_{y}}\right)^{2} - 2p \frac{(x-M_{x})(y-M_{y})}{O_{x}O_{y}}\right]^{2} dy$$

$$\Rightarrow f_{x}(x) = \frac{1}{2\pi O_{x}O_{y}\sqrt{1-p^{2}}} \exp\left\{\frac{-1}{2(1-p^{2})} \left[\frac{(y-h_{x})}{O_{y}}\right]^{2} - 2p \frac{(x-h_{x})(y-h_{y})}{O_{x}O_{y}}\right]^{2}$$

$$\Rightarrow f_{x}(x) = \frac{1}{2\pi O_{x}O_{y}\sqrt{1-p^{2}}} \exp\left\{\frac{(x-h_{x})}{O_{x}}\right]^{2} - 2p \frac{(x-h_{x})(y-h_{y})}{O_{x}O_{y}}$$

$$\Rightarrow f_{x}(x) = \frac{1}{2\pi O_{x}O_{y}\sqrt{1-p^{2}}} \exp\left\{\frac{(x-h_{x})}{O_{x}}\right]^{2} - 2p \frac{(x-h_{x})}{O_{x}}\right\}^{2} dy$$

$$\Rightarrow f_{x}(x) = \frac{1}{2\pi O_{x}O_{y}\sqrt{1-p^{2}}} \exp\left\{\frac{-1}{2(1-p^{2})} \left[\frac{y-h_{y}}{O_{y}} - p \frac{x-h_{x}}{O_{x}}\right]^{2}\right\} dy$$

$$\Rightarrow f_{x}(x) = \frac{1}{\sqrt{2\pi} O_{x}} \exp\left\{\frac{-1}{2} \left(\frac{x-h_{x}}{O_{x}}\right)^{2}\right\}$$

$$\Rightarrow f_{x}(x) = \frac{1}{\sqrt{2\pi} O_{x}} \exp\left\{\frac{-1}{2} \left(\frac{x-h_{x}}{O_{x}}\right)^{2}\right\}$$

$$= \frac{1}{\sqrt{2\pi} O_{x}} \exp\left\{\frac{-1}{2} \left(\frac{x-h_{x}}{O_{x}}\right)^{2}\right\}$$

$$\begin{aligned} & \text{Sim'larly}, \\ & \text{fy}(y) = \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{y}} \cdot \exp\left\{\frac{-1}{2} \left(\frac{y-\mu_{y}}{\sqrt{y}}\right)^{2}\right\}, \\ & \text{iii)} \quad \text{fx}|_{Y}(x|_{y}) = \frac{f(x,y)}{f_{Y}|_{y}} \\ & = \frac{1}{2\pi G_{y}G_{Y}NI-\rho^{2}} \exp\left\{\frac{-1}{2(I-\rho^{2})} \left[\left(\frac{x-\mu_{x}}{G_{x}}\right)^{2} + \left(\frac{2-\mu_{y}}{G_{Y}}\right)^{2} + \left(\frac{2-\mu_{y}}{G_{Y}}\right)^{2}\right] \\ & - 2\rho \frac{(x-\mu_{x})(y-\mu_{y})}{G_{x}G_{y}} \left[\frac{x-\mu_{x}}{G_{x}}\right]^{2} \cdot \sqrt{2\pi}G_{y} \exp\left\{\frac{1}{2} \left(\frac{y-\mu_{y}}{G_{y}}\right)^{2}\right\} \\ & = \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}G_{x}NI-\rho^{2}} \exp\left\{\frac{-1}{2(I-\rho^{2})} \left[\left(\frac{x-\mu_{x}}{G_{x}}\right)^{2} + \left(\frac{y-\mu_{y}}{G_{y}}\right)^{2}\right] \\ & + \left(\frac{y-\mu_{y}}{G_{y}}\right)^{2} \left[\frac{x}{G_{y}}\right] + \rho^{2} \left(\frac{y-\mu_{y}}{G_{y}}\right)^{2} - \rho^{2} \left(\frac{y-\mu_{y}}{G_{y}}\right)^{2} \right] \\ & = \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}G_{x}NI-\rho^{2}} \cdot \exp\left\{\frac{-1}{2(I-\rho^{2})} \left[\left(\frac{x-\mu_{x}}{G_{x}}\right)^{2} + \left(\frac{y-\mu_{y}}{G_{y}}\right)^{2}\right] \\ & - \rho \cdot \frac{y-\mu_{y}}{G_{y}}\right)^{2} + \left(\rho^{2} + I - \left(I-\rho^{2}\right) \left(\frac{y-\mu_{y}}{G_{y}}\right)^{2}\right] \end{aligned}$$

=)
$$f_{X}|_{Y}(x|_{Y}) = \frac{1}{\sqrt{2\pi} \sigma_{X} \sqrt{1-p^{2}}} \exp \left\{ \frac{1}{2} \left(\frac{x-\mu_{X}-p^{\alpha_{X}}}{\sigma_{X}} \frac{y+\mu_{Y}}{1-p^{2}} \right) \right\}$$

a normal density with

man = $M_X + P \frac{\sigma_X}{\sigma_Y} (y - M_Y)$ variance = $\int_{-\infty}^{\infty} (1 - P^2)$

$$f(x,y) = \frac{1}{2\pi \sigma_{x} \sigma_{y}} \cdot \exp\left\{-\frac{1}{2} \left[\left(\frac{x-\mu_{x}}{\sigma_{x}}\right)^{2} + \left(\frac{y-\mu_{y}}{\sigma_{y}}\right)^{2}\right]\right\}$$

$$= \frac{1}{\sqrt{2\pi \sigma_{x}}} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu_{x}}{\sigma_{x}}\right)^{2} \cdot \frac{1}{\sqrt{2\pi \sigma_{y}}} \exp\left\{\frac{1}{2} \left(\frac{y-\mu_{y}}{\sigma_{y}}\right)^{2}\right\}$$

$$f_{x}(x)$$

$$f_{y}(y)$$

=> f(x,y)= fx(x) fx(y)
Thresefore, X and Y are independent.

Minimise E[(X4-aX4-1-bX4-2)] Take the derivative of the mean square error w.r.t. a and set the result to zev. We get E[(X4- aX4-1-6Xb-2)Xd-1]=0 E[Xa Xa-1] - RE[Xa-1 Xa-1] - BE[Xa-2 Xa-1]=0 Similarly, differentiation W.r.t. 6 yields E[(Xh-QXh, - 6Xh-z) Xh-z] =0 E[X474-2] - QE[X6-1×6-2] - bE[X6-2] =0 Solving D and @ yields $\alpha = \frac{\text{Var}(X_{k-2}) \text{Cov}(X_{k}, X_{k-1}) - \text{Cov}(X_{k}, X_{k-2}) \text{cov}(X_{k-2}, X_{k-1})}{\text{Var}(X_{k-1}) + \text{Var}(X_{k-2}) - \text{Cov}(X_{k-1}, + X_{k-2})^{2}}$ b = Var (Xk-1) Cor (Xk, Xh-2) - Cor (Xk, Xk-1) Cov (Xk-1, Xk-2) Var (Xk-2) · Var (Xk-1) - Cor (Xk-2, Xk-1)² As $var(X_h) = \sigma^2$ for $\forall h$, a = O Cov (Xk, Xk-1) - Cov (Xk, Xk-2) Cov (Xk-1, Xk-2) 04 - cor(Xh-1, Xh-2)2 6 = 0 cov (Xk, Xk-2)-Cov (Xk, Xk-1) cov (Xk-1, Xk-2)

04 - cov (Xk-1, Xk-2)

P.13

6. Subs.
$$c_{N}(X_{1}, X_{2}) = P_{1}i - j_{1} \sigma^{2}$$
 into the expressions for a and b in part b:

$$a = \frac{\sigma^{2}P_{1}\sigma^{2} - P_{2}\sigma^{2}P_{1}\sigma^{2}}{\sigma^{4} - P_{1}^{2}\sigma^{4}} = \frac{P_{1}(1 - P_{2})}{1 - P_{1}^{2}}$$

$$b = \frac{\sigma^{2}P_{2}\sigma^{2} - P_{1}\sigma^{2}P_{1}\sigma^{2}}{\sigma^{4} - P_{1}^{2}\sigma^{4}} = \frac{P_{2} - P_{1}^{2}}{1 - P_{1}^{2}}$$

Minimize $E\left[\left(X_{k} - aX_{k-1} - bX_{k-2}\right)^{2}\right]$

Whing the results in part a:

$$a = \frac{var\left(X_{k-2}\right)cov\left(X_{k}, X_{k-1}\right) - cov\left(X_{k}, X_{k-2}\right)\left(v(X_{k}, X_{k-2})\right)}{var\left(X_{k+1}\right)var\left(X_{k-2}\right) - cov\left(X_{k}, X_{k-2}\right)\left(v(X_{k}, X_{k-2})\right)}$$

Let us consider $var\left(\tilde{x}_{k-1}\right) + var\left(X_{k-1}\right) - var\left(X_{k-1}\right) + var\left(X_{k-1}\right)$

$$= var\left(X_{k-1}\right) + var\left(X_{k-1}\right) + var\left(X_{k-1}\right)$$

$$= var\left(X_{k-1}\right) + var\left(X_{k-1}\right) + var\left(X_{k-1}\right)$$

$$= var\left(X_{k}\right) = \sigma^{2} + \sigma^{2} \qquad independent$$

Consider $var\left(X_{k-1}\right) = var\left(X_{k}, X_{k-1} + N_{k-1}\right) = cov\left(X_{k}, X_{k-1}\right) + cov\left(X_{k}, X_{k-1}\right) = cov\left(X_{k}, X_{k-1}\right) + cov\left(X_{k}, X_{k-1}\right)$

$$= cov\left(X_{k}, X_{k-1}\right) + cov\left(X_{k}, X_{k-1}\right)$$

$$= cov\left(X_{k}, X_{k-1}\right) + cov\left(X_{k}, X_{k-1}\right)$$

0.14

Similarly,
$$CN(X_{k-2}, X_{k-1}) = Cov(X_{k-2}, X_{k-1})$$

Stubs. Here into the expressions for a and 6:

$$a = \frac{\sigma^2 \rho, \sigma^2 - \rho_2 \sigma^2 \rho, \sigma^2}{(\sigma^2 + \sigma_N^2)\sigma^2 - \rho_1^2 \sigma^4}$$

$$\Rightarrow a = \frac{\sigma^2 \rho, (1 - \rho_2)}{\sigma^2 + \sigma_N^2 - \rho_1^2 \sigma^2}$$

$$b = \frac{(\sigma^2 + \sigma_N^2) \rho_2 \sigma^2 - \rho_1^2 \sigma^2}{\sigma^2 (\sigma^2 + \sigma_N^2) - \rho_1^2 \sigma^4}$$

$$\Rightarrow b = \frac{(\sigma^2 + \sigma_N^2) \rho_2 - \rho_1^2 \sigma^2}{\sigma^2 + \sigma_N^2 - \rho_1^2 \sigma^2}$$

#6

a.i) The differential-difference equations for the Markov chain one:

$$\frac{dT_0(t)}{dt} = -\lambda T_0(t) + \mu T_1(t) - D$$

$$\frac{dT_1(t)}{dt} = A T_0(t) - \mu T_1(t) - D$$

ii) Since
$$T_0(t) + T_1(t) = 1$$
 for $t + t$, subs. His into D yilds

$$\frac{dT_0(t)}{dt} = -\lambda T_0(t) + \mu (1 - T_0(t))$$

$$\Rightarrow \frac{dT_0(t)}{dt} + (\lambda + \mu) T_0(t) = \mu$$

$$\Rightarrow e^{(\lambda + \mu)t} \left[\frac{dT_0(t)}{dt} + (\lambda + \mu) T_0(t) \right] = \mu e^{(\lambda + \mu)t}$$

$$\Rightarrow \frac{d}{dt} \left[e^{(\lambda + \mu)t} T_0(t) \right] = \mu e^{(\lambda + \mu)t}$$

$$\Rightarrow e^{(\lambda + \mu)t} T_0(t) = \frac{\mu}{\lambda + \mu} e^{(\lambda + \mu)t} + c$$

$$\Rightarrow T_0(t) = \frac{\mu}{\lambda + \mu} + c e^{-(\lambda + \mu)t}$$

Where c is a constant.

Given
$$T_0(0)=1$$
, $T_0(0)=\frac{\mu}{\lambda+\mu}+c=1$

$$\Rightarrow c=\frac{\lambda}{\lambda+\mu}.$$
 $T_0(t)=\frac{\mu}{\lambda+\mu}+\frac{\lambda}{\lambda+\mu}e^{-(\lambda+\mu)t}$
 $T_1(t)=1-T_0(t)=\frac{\lambda}{\lambda+\mu}\int_{-\infty}^{\infty}1-e^{-(\lambda+\mu)t}\int_{-\infty}^{\infty}1$

P.16

b. i) Consider that the current record value is Ri
for some is 1. The value of the next
record value Rix must be larger than Ri.
So given Ri, the value of Rix, is completely
Characterized by the Xi's, which are i.i.d.
Therefore, I Ri, i 7 1 \(\) is a Markor chain.

ii) Without loss of generality, let Xin be the
element in the sequence \(\) \(\text{Xij}, \frac{1}{9} \text{7 1} \) that
corresponds to Rix. We have

$$P(R_{i+1} = n/R_i = m) = P(X_k = n/X_k > m)$$

$$= \frac{\alpha_n}{\sum_{j=m+1}^{\infty} \alpha_j}$$

Where n>m. So, considering the cases with n sm leads us to

P(
$$R_{iH} = n | R_i = m$$
) = $\begin{cases} 0 & \text{for } n \leq m \\ \frac{\alpha_n}{\omega} & \text{for } n > m \end{cases}$

all

for $m = 0, 1, 2, ...$
 $\begin{cases} 1, 2, ... \end{cases}$