8/10/2015 Coursera

Feedback — Quiz 4: Data Science Technology **Please Note: No Grace Period**

Help Center

Authentication is not required for this guiz.

You submitted this quiz on Wed 5 Aug 2015 9:11 PM PDT. You got a score of 8.00 out of 10.00.

Question 1

Which of the following are required for sharing a data set?

Your Answer		Score	Explanation
A tidy data set			
All of these options	~	1.00	
The raw data			
An explicit and exact recipe to go from the raw to the tidy data			
Total		1.00 /	
		1.00	

Question 2

Which of the following should be included in data tidying recipes?

Your Answer	Score	Explanation
Sample size formulae		

Preprocessed data

8/10/2015 Coursera

O Power calculations		
 Version numbers for software 	~	1.00
Total		1.00 / 1.00

Question 3 What is the central dogma of statistics? Your Answer Score Explanation Using Bayes rule to calculate probabilities we care about That increased power comes with increased sample sizes • Using measurements on a probabilistically selected sample to infer knowledge about a population ✓ 1.00 Estimating parameters using frequencies of observed events Total 1.00 / 1.00

Which of the following are types of variability in all genomic data? Your Answer Score Explanation Phenotypic variability Variability due to dropout Missing data variability Genetic drift × 0.00 Total 0.00 / 1.00

Question 5

Which of the following will increase power in a statistical analysis?

Your Answer		Score	Explanation
Adjusting for confounders			
Using a new technology			
 Increasing measurement variation 			
Increasing sample size	~	1.00	
Total		1.00 / 1.00	

Question 6

If 100 p-values are calculated on a data set with no signal, how many p-values would we expect to be less than 0.05 on average?

Your Answer		Score	Explanation
O 0			
5	✓	1.00	
O 50			
<u>20</u>			
Total		1.00 / 1.00	

Question 7

8/10/2015 Coursera

If we report 500 results as significant out of 10,000 tests while controlling the family-wise error rate at 5%, about how many false positives do we expect?

Your Answer		Score	Explanation
20	×	0.00	
200			
O 0			
10			
Total		0.00 / 1.00	

Question 8 What is the most common confounder in genomics?			
our Answer	Score	Explanation	
Age			
Batch effects	✓ 1.00		
Sex			
Genetic background			
- otal	1.00 / 1.00		

Question 9

Which of the following can be used to address potential confounders at the experimental design stage?

Your Answer	Score	Explanation

Measuring DNA instead of RNA

8/10/2015 Coursera

 Randomization 	~	1.00
O Increasing sample size		
Using linear models		
Total		1.00 / 1.00

Question 10

Which of the following are benefits of making big data as small as possible as soon as possible?

Your Answer		Score	Explanation
Interactive analysis can improve our ability to make discoveries	~	1.00	
Reduced data will increase the power of statistical tests			
Reducing the data will reduce the number of hypothesis tests			
Smaller data sets will decrease false discovery rates			
Total		1.00 /	
		1.00	