Optimal Collision Security in Double Block Length Hashing with Single Length Key

Bart Mennink KU Leuven

ASIACRYPT 2012 — December 5, 2012

- Classical block cipher based hashing
 - $F: \{0,1\}^{2n} \to \{0,1\}^n$ using n-bit cipher
 - Davies-Meyer ('84), PGV ('93), MD5 ('92), SHA-1 ('95), ...

- Classical block cipher based hashing
 - $F: \{0,1\}^{2n} \rightarrow \{0,1\}^n$ using *n*-bit cipher
 - Davies-Meyer ('84), PGV ('93), MD5 ('92), SHA-1 ('95), ...
- Same underlying primitive but larger compression function?

- Classical block cipher based hashing
 - $F: \{0,1\}^{2n} \to \{0,1\}^n$ using n-bit cipher
 - Davies-Meyer ('84), PGV ('93), MD5 ('92), SHA-1 ('95), ...
- Same underlying primitive but larger compression function?
- Double block length hashing
 - $F: \{0,1\}^{3n} \to \{0,1\}^{2n}$ still using n-bit cipher
 - Security proofs typically harder

- Classical block cipher based hashing
 - $F: \{0,1\}^{2n} \to \{0,1\}^n$ using *n*-bit cipher
 - Davies-Meyer ('84), PGV ('93), MD5 ('92), SHA-1 ('95), ...
- Same underlying primitive but larger compression function?
- Double block length hashing
 - $F: \{0,1\}^{3n} \to \{0,1\}^{2n}$ still using *n*-bit cipher
 - Security proofs typically harder

$$F: \{0,1\}^{3n} \to \{0,1\}^{2n} \text{ from } E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$$

compression function	$\it E$ -calls	collision security	preimage security	underlying cipher
Stam's ('08 - '10)	1	2^n	2^n	
Tandem-DM ('92)	2	2^n	2^{2n}	1.1
Abreast-DM ('92)	2	2^n	2^{2n}	$\rightarrow E \rightarrow$
Hirose's ('06)	2	2^n	2^{2n}	
Hirose-class ('04)	2	2^n	2^n	2n-bit key
Özen-Stam-class ('09)	2	2^n	2^n	

compression function	$\it E$ -calls	collision security	preimage security	underlying cipher
Stam's ('08 - '10)	1	2^n	2^n	
Tandem-DM ('92)	2	2^n	2^{2n}	1.1
Abreast-DM ('92)	2	2^n	2^{2n}	
Hirose's ('06)	2	2^n	2^{2n}	$\rightarrow E \rightarrow$
Hirose-class ('04)	2	2^n	2^n	2n-bit key
Özen-Stam-class ('09)	2	2^n	2^n	
MDC-2 ('88)	2	$2^{n/2}$	2^n	
MJH ('11)	2	$2^{n/2}$	2^n	
Jetchev-Özen-Stam's ('12)	2	$2^{2n/3}$	2^n	$\rightarrow E$
MDC-4 ('88)	4	$2^{5n/8}$	$2^{5n/4}$	n-bit key

compression function	$\it E$ -calls	collision security	preimage security	underlying cipher
Stam's ('08 - '10)	1	2^n	2^n	
Tandem-DM ('92)	2	2^n	2^{2n}	1.1
Abreast-DM ('92)	2	2^n	2^{2n}	
Hirose's ('06)	2	2^n	2^{2n}	$\rightarrow E \rightarrow$
Hirose-class ('04)	2	2^n	2^n	2n-bit key
Özen-Stam-class ('09)	2	2^n	2^n	
MDC-2 ('88)	2	$2^{n/2}$	2^n	
MJH ('11)	2	$2^{n/2}$	2^n	
Jetchev-Özen-Stam's ('12)	2	$2^{2n/3}$	2^n	\rightarrow E
MDC-4 ('88)	4	$2^{5n/8}$	$2^{5n/4}$	$\frac{-}{n}$ -bit key
???	?	2^n	2^{2n}	•

Our Goal

$$F^r:\{0,1\}^{3n}\to\{0,1\}^{2n} \text{ from } r$$
 calls to $E:\{0,1\}^n\times\{0,1\}^n\to\{0,1\}^n$

Security Model

- ullet Ideal cipher model: E randomly generated
- ullet Adversary query access to E

Security Model

- ullet Ideal cipher model: E randomly generated
- ullet Adversary query access to E

$$\mathbf{adv}^{\mathrm{coll}}_{Fr}(q) = \max_{\mathcal{A}} ext{ success probability } \mathcal{A}$$

Security Model

- ullet Ideal cipher model: E randomly generated
- ullet Adversary query access to E

Pigeonhole-Birthday Attack

• [Rogaway-Steinberger-EC08]: generic collision/preimage attack for permutation based compression functions

Pigeonhole-Birthday Attack

- [Rogaway-Steinberger-EC08]: generic collision/preimage attack for permutation based compression functions
- ullet Straightforward to generalize to F^r

Pigeonhole-Birthday Attack

- [Rogaway-Steinberger-EC08]: generic collision/preimage attack for permutation based compression functions
- ullet Straightforward to generalize to F^r

F^2 : 2-Call Double Length Hashing

F^2 : 2-Call Double Length Hashing

Theorem

Suppose \exists bijective L such that $\forall u, v, w, c_1, c_2$:

$$\mathsf{left}_n \circ L \circ f_3(u, v, w; c_1, c_2) = \mathsf{left}_n \circ L \circ f_3(u, v, w; c_1, 0)$$

Then, one expects collisions for F^2 in $2^{n/2}$ queries

F^2 : Examples

- Attack covers wide class of functions
 - ullet Designs with linear finalization function f_3

put
$$L(y,z)=(y^l\|z^r,z^l\|y^r)$$

F^2 : Examples

- Attack covers wide class of functions
 - Designs with linear finalization function f_3
 - Some functions with non-linear f_3 ...
 - ... but Jetchev-Özen-Stam's construction unaffected

put
$$L(y,z)=(y^l\|z^r,z^l\|y^r)$$

F^3 : 3-Call Double Length Hashing

- Next step: 3 calls
- ullet We propose the $F_{
 m A}^3$ double length hashing family

F^3 : 3-Call Double Length Hashing

- Next step: 3 calls
- We propose the F_{A}^3 double length hashing family
- Basic idea:
 - For 2n-bit keyed hashing: one E-call compresses entire input
 - For *n*-bit keyed hashing: impossible to achieve!
 - Any E-call gets only 2n bits of info
 - ullet Now: any two E evaluations define (inputs to) third one

F^3 : 3-Call Double Length Hashing

- Next step: 3 calls
- We propose the F_{A}^3 double length hashing family
- Basic idea:
 - For 2n-bit keyed hashing: one E-call compresses entire input
 - For *n*-bit keyed hashing: impossible to achieve!
 - Any E-call gets only 2n bits of info
 - Now: any two E evaluations define (inputs to) third one
- Consider finite field $GF(2^n)$

F_{A}^3 : Our 3-Call Double Length Hashing Proposal

F_A³ indexed by matrix A:

$$A = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & 0 \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

F_{A}^3 : Our 3-Call Double Length Hashing Proposal

F_A³ indexed by matrix A:

$$A = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & 0 \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

• If A invertible and a_{24} , $a_{44} \neq 0$, any two E evaluations define (inputs to) third one

F^3_{Λ} : Collision Resistance

$$\mathsf{A} = \left(\begin{array}{ccccc} \mathsf{a}_{11} & \mathsf{a}_{12} & \mathsf{a}_{13} & 0 \\ \mathsf{a}_{21} & \mathsf{a}_{22} & \mathsf{a}_{23} & \mathsf{a}_{24} \\ \mathsf{a}_{31} & \mathsf{a}_{32} & \mathsf{a}_{33} & 0 \\ \mathsf{a}_{41} & \mathsf{a}_{42} & \mathsf{a}_{43} & \mathsf{a}_{44} \end{array} \right) \quad \bullet \quad \mathsf{A} \text{ invertible}$$

$$\bullet \quad \mathsf{a}_{12}, \mathsf{a}_{13}, \mathsf{a}_{24}, \mathsf{a}_{32}, \mathsf{a}_{33}, \mathsf{a}_{44} \neq 0$$

$$\bullet \quad \mathsf{a}_{12} \neq \mathsf{a}_{32} \text{ and } \mathsf{a}_{13} \neq \mathsf{a}_{33}$$
Then, for any $\varepsilon > 0$:

Theorem

If A satisfies "colreq":

- A invertible

Then, for any $\varepsilon > 0$:

$$\mathbf{adv}^{\mathrm{coll}}_{F_{\mathbf{A}}^3}(2^{n(1-\varepsilon)}) \to 0 \text{ for } n \to \infty$$

colreq easily satisfied

F^3_{Δ} : Collision Resistance

$$\mathsf{A} = \left(\begin{array}{ccccc} \mathsf{a}_{11} & \mathsf{a}_{12} & \mathsf{a}_{13} & 0 \\ \mathsf{a}_{21} & \mathsf{a}_{22} & \mathsf{a}_{23} & \mathsf{a}_{24} \\ \mathsf{a}_{31} & \mathsf{a}_{32} & \mathsf{a}_{33} & 0 \\ \mathsf{a}_{41} & \mathsf{a}_{42} & \mathsf{a}_{43} & \mathsf{a}_{44} \end{array} \right) \quad \bullet \quad \mathsf{A} \text{ invertible} \\ \bullet \quad \mathsf{a}_{12}, \mathsf{a}_{13}, \mathsf{a}_{24}, \mathsf{a}_{32}, \mathsf{a}_{33}, \mathsf{a}_{44} \neq 0 \\ \bullet \quad \mathsf{a}_{12} \neq \mathsf{a}_{32} \text{ and } \mathsf{a}_{13} \neq \mathsf{a}_{33} \\ \mathsf{Then, for any } \varepsilon > 0 \text{:}$$

Theorem

If A satisfies "colreq":

- A invertible

$$\mathbf{adv}^{\mathrm{coll}}_{F_{\mathbf{A}}^3}(2^{n(1-\varepsilon)}) \to 0 \text{ for } n \to \infty$$

- colreq easily satisfied
- Basic proof idea similar to existing proofs
- New proof approach: apply idea of wish lists to collision resistance

F_{A}^3 : Preimage Resistance

Theorem

If A satisfies "prereq":

$$\bullet \ \ \mathsf{A} - \begin{pmatrix} \mathsf{B_1}_{00}^{00} \\ \mathsf{B_2}_{00}^{00} \end{pmatrix} \text{ invertible } \forall \ \mathsf{B_1}, \mathsf{B_2} \in \big\{ \big(\begin{smallmatrix} 00 \\ 00 \big), \big(\begin{smallmatrix} 10 \\ 00 \big), \big(\begin{smallmatrix} 10 \\ 00 \big), \big(\begin{smallmatrix} 10 \\ 01 \big) \big\} \\ \end{pmatrix}$$

- $a_{12}, a_{13}, a_{24}, a_{32}, a_{33}, a_{44} \neq 0$
- ullet $\mathsf{a}_{12}
 eq \mathsf{a}_{32}$, $\mathsf{a}_{13}
 eq \mathsf{a}_{33}$, and $\mathsf{a}_{24}
 eq \mathsf{a}_{44}$

Then, for any $\varepsilon > 0$:

$$\mathbf{adv}^{\mathrm{pre}}_{F^3_{\mathbf{A}}}(2^{3n(1-\varepsilon)/2}) \to 0 \text{ for } n \to \infty$$

prereq ⇒ colreq, easily satisfied

F_{A}^3 : Preimage Resistance

Theorem

If A satisfies "prereq":

$$\bullet \ \mathsf{A} - \begin{pmatrix} \mathsf{B_1}_{00}^{00} \\ \mathsf{B_2}_{00}^{00} \end{pmatrix} \text{ invertible } \forall \ \mathsf{B_1}, \mathsf{B_2} \in \big\{ \big(\begin{smallmatrix} 00 \\ 00 \big), \big(\begin{smallmatrix} 10 \\ 00 \big), \big(\begin{smallmatrix} 10 \\ 00 \big), \big(\begin{smallmatrix} 10 \\ 01 \big) \big\} \\ \end{pmatrix}$$

- $a_{12}, a_{13}, a_{24}, a_{32}, a_{33}, a_{44} \neq 0$
- ullet $\mathsf{a}_{12}
 eq \mathsf{a}_{32}$, $\mathsf{a}_{13}
 eq \mathsf{a}_{33}$, and $\mathsf{a}_{24}
 eq \mathsf{a}_{44}$

Then, for any $\varepsilon > 0$:

$$\mathbf{adv}^{\mathrm{pre}}_{F^3_{\mathbf{A}}}(2^{3n(1-\varepsilon)/2}) \to 0 \text{ for } n \to \infty$$

- prereq ⇒ colreq, easily satisfied
- Bound non-optimal, but close to generic bound
- Bound is tight: attack in $O(2^{3n/2})$ queries

F^3_{Δ} : Example Functions

$$A = \left(\begin{array}{cccc} 0 & 1 & 2 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{array}\right)$$

$$A = \left(\begin{array}{cccc} 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 2 & 3 & 0 \\ 1 & 0 & 2 & 2 \end{array}\right)$$

Conclusions

compression function	$\it E$ -calls	collision security	preimage security	underlying cipher
Stam's ('08 - '10)	1	2^n	2^n	
Tandem-DM ('92)	2	2^n	2^{2n}	1 1
Abreast-DM ('92)	2	2^n	2^{2n}	
Hirose's ('06)	2	2^n	2^{2n}	
Hirose-class ('04)	2	2^n	2^n	2n-bit key
Özen-Stam-class ('09)	2	2^n	2^n	
MDC-2 ('88)	2	$2^{n/2}$	2^n	
MJH ('11)	2	$2^{n/2}$	2^n	
Jetchev-Özen-Stam's ('12)	2	$2^{2n/3}$	2^n	\rightarrow E
MDC-4 ('88)	4	$2^{5n/8}$	$2^{5n/4}$	n-bit key
Our proposal	3	2^n	$2^{3n/2}$	•

Conclusions

$\overline{F_{\mathsf{A}}^3}$: new family of double length hash functions

- ullet Optimal collision security using $n ext{-bit}$ keyed cipher
- Yet, 3 calls and non-parallelizable

Conclusions

$F_{\rm A}^3$: new family of double length hash functions

- ullet Optimal collision security using n-bit keyed cipher
- Yet, 3 calls and non-parallelizable

- Open Problems
 - Optimally collision and preimage secure F^3 beyond F_A^3 ?
 - More efficient constructions?
 - F^3 with $f_1, f_2, f_3, f_4 \oplus$ -only [M-Preneel-C12]?

Thank you for your attention!

Supporting Slides

SUPPORTING SLIDES

Introduction: Hirose's Compression Function

 $\hbox{Hirose's } F(u,v,w)=(y,z)$

Introduction: Hirose's Compression Function

Hirose's F(u,v,w)=(y,z)

• First consider L=id, so suppose $\forall~u,v,w,c_1,c_2$: $\mathsf{left}_n\circ f_3(u,v,w;c_1,c_2) = \mathsf{left}_n\circ f_3(u,v,w;c_1,0)$

- First consider L=id, so suppose $\forall~u,v,w,c_1,c_2$: $\mathsf{left}_n\circ f_3(u,v,w;c_1,c_2)=\mathsf{left}_n\circ f_3(u,v,w;c_1,0)$

- First consider L=id, so suppose $\forall~u,v,w,c_1,c_2$: $\mathsf{left}_n\circ f_3(u,v,w;c_1,c_2)=\mathsf{left}_n\circ f_3(u,v,w;c_1,0)$

• First consider L=id, so suppose $\forall~u,v,w,c_1,c_2$: $\mathsf{left}_n\circ f_3(u,v,w;c_1,c_2)=\mathsf{left}_n\circ f_3(u,v,w;c_1,0)$

- ullet Greedy adversary: find $2^{n/2}$ (k_1,m_1) that cover $\geq 2^{3n/2}$ (u,v,w)

• First consider L = id, so suppose $\forall u, v, w, c_1, c_2$:

$$\mathsf{left}_n \circ f_3(u,v,w;c_1,c_2) = \mathsf{left}_n \circ f_3(u,v,w;c_1,0)$$

- Write $f_3(u, v, w; c_1, c_2) = g_1(u, v, w; c_1) ||g_2(u, v, w; c_1, c_2)|$
- ullet Greedy adversary: find $2^{n/2}$ (k_1,m_1) that cover $\geq 2^{3n/2}$ (u,v,w)
- Query these to find $\geq 2^{3n/2}$ tuples $(u, v, w; c_1)$

• First consider L = id, so suppose $\forall u, v, w, c_1, c_2$:

$$\mathsf{left}_n \circ f_3(u,v,w;c_1,c_2) = \mathsf{left}_n \circ f_3(u,v,w;c_1,0)$$

- Write $f_3(u, v, w; c_1, c_2) = g_1(u, v, w; c_1) \|g_2(u, v, w; c_1, c_2)\|$
- ullet Greedy adversary: find $2^{n/2}$ (k_1,m_1) that cover $\geq 2^{3n/2}$ (u,v,w)
- Query these to find $\geq 2^{3n/2}$ tuples $(u,v,w;c_1)$
- ullet For some $y: \geq 2^{n/2}$ tuples $(u,v,w;c_1)$ satisfy $g_1(u,v,w;c_1)=y$

• First consider L = id, so suppose $\forall u, v, w, c_1, c_2$:

$$\mathsf{left}_n \circ f_3(u,v,w;c_1,c_2) = \mathsf{left}_n \circ f_3(u,v,w;c_1,0)$$

- Write $f_3(u, v, w; c_1, c_2) = g_1(u, v, w; c_1) ||g_2(u, v, w; c_1, c_2)|$
- ullet Greedy adversary: find $2^{n/2}$ (k_1,m_1) that cover $\geq 2^{3n/2}$ (u,v,w)
- Query these to find $\geq 2^{3n/2}$ tuples $(u,v,w;c_1)$
- ullet For some $y: \geq 2^{n/2}$ tuples $(u,v,w;c_1)$ satisfy $g_1(u,v,w;c_1)=y$
- ullet Vary over these to find a collision in g_2

• First consider L = id, so suppose $\forall u, v, w, c_1, c_2$:

$$\mathsf{left}_n \circ f_3(u,v,w;c_1,c_2) = \mathsf{left}_n \circ f_3(u,v,w;c_1,0)$$

- ullet Greedy adversary: find $2^{n/2}$ (k_1,m_1) that cover $\geq 2^{3n/2}$ (u,v,w)
- Query these to find $\geq 2^{3n/2}$ tuples $(u,v,w;c_1)$
- ullet For some $y: \geq 2^{n/2}$ tuples $(u,v,w;c_1)$ satisfy $g_1(u,v,w;c_1)=y$
- ullet Vary over these to find a collision in g_2

Arbitrary bijective L: use idea of equivalence classes [M-Preneel-C12]