

Communications Numériques

TP 2:

Chaines de transmission numériques

2024/2025

1) Introduction

La transmission en bande de base consiste à émettre sur la ligne (médium), des courants qui reflètent les bits du caractère à transmettre. Dans le cadre de telle transmission, le **MODEM** (*MOdulateur DEModulateur*) est réduit à un codeur dont le rôle est de substituer, au signal initial, un autre signal similaire mais dont le spectre est mieux adapté à la ligne. Il s'agit donc de faire correspondre un signal numérique pour le '0' et un autre pour le '1'. Il y a donc plusieurs types de codages utilisés tels que : le NRZ, RZ, Manchester, Miller...

2) Objectif

Ce TP a pour but d'étudier la performance de la transmission des différents signaux codés NRZ, RZ et Manchester via une chaine de transmission AWGN.

3) Codage NRZ

Les niveaux '0' sont codés par une tension '- V' et les niveaux '1' sont codés par une tension '+ V';

4) Codage RZ

Le niveau logique '0' laisse le signal électrique constant à '0 V' pendant le moment élémentaire, le niveau logique '1' fait passer la tension de '+ V' vers '0 V' pendant un moment élémentaire ;

5) Codage Manchester

Le niveau logique '0' provoque le passage de +V à -V au milieu du moment élémentaire, le niveau logique '1' provoque le passage de -V à +V au milieu du moment élémentaire ;

6) Travail demandé

Les principales fonctions MATLAB, à utiliser pour réaliser le travail demandé, sont indiquées en italique et en caractères gras (tapez help pour l'aide en ligne de MATLAB).

6.1) Génération des signaux NRZ, RZ et Manchester Binaire

- Ecrire un programme qui permet de générer les signaux NRZ, RZ et Manchester pour (Débit D = 0.05, Nombre de sysmboles $N_s = 5000$).
- Visualiser ces signaux ; (tmin=0, tmax=Ns.Ts)

(ones, zeros, randint, filter, linspace, subplot)

6.2) Transmission numérique des différents signaux

- Ecrire un programme qui génère la transmission en bande de base des différents signaux étudiés dans la question précédente (considérer un récepteur AWGN fondé sur un filtre adapté).
- Le filtre de réception **h(t)=g(T-t)** est le filtre adapté au filtre d'émission g(t) à l'instant T
- Figure 3. Senérer un programme permettant d'estimer les symboles émis en considérant le critère suivant : ci = min ((raj Eg / 2 .Amj)²), i = 1..Ns; j = 1..2; Amj = -1, -1 (Amplitudes du signal NRZ par exemple) (min, kron)

On note Avec : $Eg = g_i^2$ (énergie du signal); dans ce cas : g est une porte de largeur T

➤ Illustrer la différence entre les symboles émis et les symboles estimés.

6. 3) Evaluation des performances de la transmission des signaux numériques étudiés

- \triangleright Générer un programme permettant de tracer le BER (Bit Error Rate) en fonction du SNR \in [-10, 10]. (awgn)
- > Superposer les trois courbes sur une même figure ; commentez.