Herbrand定理

张文生 研究员 中国科学院自动化研究所

内容

- Skolem范式
- Herbrand域
- ■语义树
- Herbrand定理
- Davis的工作

复习

- 定义(定理)
 - 如果G是公式 F_1 , F_2 ,... F_n 的逻辑结论,则公式 $(F_1 \land F_2 \land ... \land F_n) \rightarrow G$ 称为定理.
- ■定理
 - 给定公式 F_1 , F_2 ,... F_n 和G, G是公式 F_1 , F_2 ,... F_n 的逻辑结论, 当且仅当公式

F₁ △ F₂ △ … △ F_n △ ~ G □ 宓 【 县 永 偲 录 】

不相容 (是永假式)。

- Skolem范式
- Herbrand域
- ■语义树
- Herbrand定理
- Davis的工作

化公式为Skolem范式的步骤

- 公式化为前束范式。
- 母式化为合取范式。
- 在不影响公式的不相容性的前提下,使用 Skolem函数,将前束中的存在量词消 去。

Skolem函数

- 消去存在量词;
- 令公式H是一个前束范式,并且母式M是合取范式 (Q₁x₁)...(Q_nx_n)(M)

对前缀从左到右遇到的第一个存在量词 $Q_r(1 \le r \le n)$,存在两种情况:

- (1) 如果Q_r的左边(前边)没有全称量词,则M中的x_r用常数a代替;
- (2) 如果Q_r的左边(前边)有全称量词 x_{s1} ,..., x_{sk} , 且 $1 \le s_1 < ... < s_k < r$, 则M中的 x_r 用函数 $f(x_{s1},...,x_{sk})$ 代替;

从前缀中删除($\mathbf{Q}_{r} \mathbf{x}_{r}$);

例子(Skolem函数)

(∃x)(∀y)(∀z)(∃u)(∀v)(∃w)P(x,y,z,u,v,w)

```
\Rightarrow (\forall y)(\forall z)(\exists u)(\forall v)(\exists w)P(a,y,z,u,v,w)\Rightarrow (\forall y)(\forall z)(\forall v)(\exists w)P(a,y,z,f(y,z),v,w)
```

 \Rightarrow (\forall y)(\forall z)(\forall v)P(a,y,z,f(y,z),v,g(y,z,v))

注意

- 要求a必须是新的常量符号,它未曾在公 式其他地方使用过;
- 要求f()不同于已出现在M中的任一函数,而对f的具体形式没有要求。

Skolem函数的意义

• 化公式为Skolem范式与原来公式在不相容意义下保持等价(=).

定理: 令G是一个前束合取范式,
 G=(Q₁x₁)...(Q_nx_n)M[x₁,...,x_n],
 Q_r为G中从左向右遇到的第一个存在量词。令
 G₁=(Q₁x₁)...(Q_{r-1}x_{r-1})(Q_{r+1}x_{r+1})(Q_nx_n)
 M[x₁,...,x_{r-1}, f(x₁,...,x_{r-1}),x_{r+1},...,x_n]
 其中: f(x₁,...,x_{r-1})是x_r的Skolem函数。

则有: G不相容⇔ G₁不相容

证明: (对存在量词 x_r 使用归纳法)

设论域为D.

由于G=(Q₁x₁)...(Q_nx_n)M[x₁,...,x_n],
G₁=(Q₁x₁)...(Q_{r-1}x_{r-1})(Q_{r+1}x_{r+1})...(Q_nx_n)
M[x₁,...,x_{r-1},
$$f(x_1,...,x_{r-1}),x_{r+1},...,x_n$$
]

 一方面:如果G不相容 假设G₁相容:存在一个解释I,使得 G₁=T. 对任一组(x₁,...,x_{r-1}),都有f(x₁,...,x_{r-1}),使得 (Q_{r+1}x_{r+1})...(Q_nx_n)M[x₁,...,x_{r-1}, f(x₁,...,x_{r-1}),x_{r+1},...,x_n]为真 f(x₁,...,x_{r-1})是D中一个元素。因此,对任一组(x₁,...,x_{r-1}),

 $(\exists x_r)(Q_{r+1}x_{r+1})...(Q_nx_n)M[x_1,...,x_r,...,x_n]=T$ $(\forall x_1)...(\forall x_{r-1})(\exists x_r)(Q_{r+1}x_{r+1})...(Q_nx_n)M[x_1,...,x_r,...,x_n]=T$ 即:**G**相容。

■ 另一方面:如果G₁不相容 假设G相容:解释I:G=T. 对任一组 $(x_1,...,x_{r-1})$,存在一个元素 $x_r \in D$,使得 $(Q_{r+1}X_{r+1})...(Q_{n}X_{n})M[X_{1},...,X_{r},...,X_{n}]$ 为真。 扩充I为I', 使其包含对函数符号f(x1,...,xr-1)的指定: $f(x_1,...,x_{r-1})=x_r$,对任一组 $(x_1,...,x_{r-1})$ 对任一组(x₁,...,x_{r-1}), $(Q_{r+1}X_{r+1})...(Q_nX_n)M[x_1,...,f(x_1,...,x_{r-1}),...,x_n]$ 为真。 I'满足G₁。

显然,如果公式前缀中有多个存在量词,则用归纳法证明。

注意

- Skolem范式和原式在不相容意义下保持等价, 而非等价(=)。
 - 如果G不相容,那么按照定理 $G=G_1$ 。
 - 如果G是相容的,一般情况下,G不等价于 G_1 ,即: $G \neq G_1$ 。

■ 例子:

- $\bullet G = (\exists x)P(x)$
- $G_1=P(a)$
- 在解释I下不相等:
 - D={1,2}
 - a=1, P(1)=F, P(2)=T.
- G在I下为真 $, G_1$ 在I下为假.

■ 将一个公式化为Skolem范式后,公式的到了简化,进一步我们还可以简化,那就是将公式化为子句集的形式。

下面引入子句集的概念。

子句集

- Skolem化以后,将公式表示为子句集合.
 - $(\forall x)(\forall y)((P(x)\lor Q(y)) \land (Q(x)\lor \sim S(f(y))))$
 - {P(x)∨Q(y), Q(x)∨~S(f(y))}
- 定义(子句, clause):
 - 一个包含若干文字的析取式称为子句。例如:
 - P ∨ ~S ∨ R
 - $P(x) \vee Q(y, z) \vee \sim R(y, y)$

说明: 一个子句中没有文字则称空子句(, nil, 永假); 一个子句中有n个文字则称n文字子句。

- 定义(子句集合):
 - 子句内部的关系是析取;
 - 子句间的关系是合取;
 - 所有子句受全程量词约束;

化子句集的方法(9个步骤)

例: $(\exists z) (\forall x)(\exists y)\{[(P(x) \lor Q(x)) \rightarrow R(y)] \lor U(z)\}$

1. 消蕴涵符

```
理论根据: a \rightarrow b = \sim a \lor b (\exists z)(\forall x)(\exists y){[\sim(P(x) \lorQ(x)) \lor R(y)] \lorU(z)}
```

2. 移动否定符

```
理论根据: ~(a ∨b) = ~a ∧~b
    ~(a ∧b) = ~a ∨~b
    ~(∃x)P(x)= (∀x)~P(x)
    ~(∀x)P(x)= (∃x)~P(x)
    (∃z) (∀x)(∃y){[(~P(x) ∧~Q(x)) ∨ R(y)] ∨U(z)}
```

3. 变量标准化

即:对于不同的约束,对应于不同的变量 $(\exists x)A(x) \land (\exists x)B(x) = (\exists x)A(x) \land (\exists y)B(y)$

4. 量词左移

$$(\exists x)A(x) \land (\exists y)B(y) = (\exists x)(\exists y)\{A(x) \land B(y)\}$$

5. 消存在量词 (skolem化)

$$(\exists z)(\forall x)(\exists y)\{[(\sim P(x) \land \sim Q(x)) \lor R(y)] \lor U(z)\}$$

=>
$$(\forall x)\{[(\sim P(x) \land \sim Q(x)) \lor R(f(x))] \lor U(a)\}$$

6. 化为合取范式

7. 隐去全程量词

 $\{(\sim P(x) \lor R(f(x)) \lor U(a)) \land (\sim Q(x) \lor R(f(x)) \lor U(a))\}$

8. 表示为子句集 {~P(x)~R(f(x))~U(a), ~Q(x)~R(f(x))~U(a)}

9. 变量标准化(变量换名) {~P(x₁)_{\'}R(f(x₁))_{\'}U(a), ~Q(x₂)_{\'}R(f(x₂))_{\'}U(a)]

结论:

- 定理(公式不相容基本定理)
 - 设S是公式G的子句集, G不相容 ⇔ S不相容

■ 说明:

S不相容:对任一个解释, S中至少有一个子句为假;

S相容: 存在一个解释, 使S中所有子句为真;

■ 推论:

■ 如果 $G=G_1 \land ... \land G_n$, $S_i \not= G_i$ 的子句集, i=1,...,n. $\diamondsuit S'=S_1 \cup ... \cup S_n$. G不相容 $\Leftrightarrow S'$ 不相容

公式不相容基本定理的应用

——定理证明思路

- 证明定理G;
- 证明~G不相容;
- 证明~G的Skolem范式G₁不相容;
- ■证明G₁的子句集不相容。

例1

- 若群F中任一元素x都有x·x=e(单位元),则F是交换群。
 - 设论域为F, 谓词P(x,y,z)表示x·y=z, 依群的定义有
 - A₁: 若x, y∈F, 则x·y∈F
 可形式描述为: (∀x)(∀y)(∃z)P(x,y,z)
 - A₂: 若x, y, z∈F, 则(x·y)·z=x·(y·z)
 可形式描述为:

 $(\forall x)(\forall y)(\forall z)(\forall u)(\forall v)(\forall w)$ $[(P(x,y,u)\land P(y,z,v)\land P(u,z,w)\rightarrow P(x,v,w))$ $\land (P(x,y,u)\land P(y,z,v)\land P(x,v,w)\rightarrow P(u,z,w))]$

- A₃: 若e为单位元,则对任一x∈F, x·e=e·x=x.
 可形式描述为: (∀x)(P(x,e,x) ∧ P(e,x,x))
- A₄: 若x∈F, 必有x⁻¹∈F, 使 x·x⁻¹=e.
 令i(x): x的逆元x⁻¹.
 可形式描述为: (∀x)(P(x,i(x),e)∧P(i(x),x,e))
- 所要证明的是B: 对x, y∈F, 如果x·x=e必有x·y=y·x
 可形式描述为:

 $(\forall x)P(x,x,e)\rightarrow (\forall u)(\forall v)(\forall w)(P(u,v,w)\rightarrow P(v,u,w))$

- 要证明定理: (A₁∧A₂∧A₃∧A₄)→B
- 证明: (A₁∧A₂∧A₃∧A₄∧~B)是永假式;
- 证明: (A₁∧A₂∧A₃∧A₄∧~B)的子句集不相容;
- 根据推论, 只要分别求出A₁, A₂, A₃, A₄, ~B的 子句集。

```
■ A_1: (\forall x)(\forall y)(\exists z)P(x,y,z)
    • S_{A1}: {P(x,y,f(x,y))}
■ A_2: (\forall x)(\forall y)(\forall z)(\forall u)(\forall v)(\forall w)
           [(P(x,y,u)\land P(y,z,v)\land P(u,z,w)\rightarrow P(x,v,w))
            \land (P(x,y,u) \land P(y,z,v) \land P(x,v,w) \rightarrow P(u,z,w))]
    ■ S_{A2}: {\simP(x,y,u)\vee\simP(y,z,v)\vee\simP(u,z,w)\veeP(z,v,w),
           \sim P(x,y,u) \vee \sim P(y,z,v) \vee \sim P(x,v,w) \vee P(u,z,w)
■ A_3: (\forall x)(P(x,e,x) \land P(e,x,x))
    S<sub>A3</sub>: {P(x,e,x), P(e,x,x)}
■ A_4: (\forall x)(P(x,i(x),e)\land P(i(x),x,e))
    • S_{\Delta 4}: {P(x,i(x),e), P(i(x),x,e)}
```

- B: $(\forall x)P(x,x,e)\rightarrow(\forall u)(\forall v)(\forall w)(P(u,v,w)\rightarrow P(v,u,w))$ ■ S_{>B}: {P(x,x,e), P(a,b,c), ~P(b,a,c)}
- S_{A1}∪S_{A2}∪S_{A3}∪S_{A4}∪S_{~B}共含有10个子句:

- Skolem范式
- Herbrand域
- ■语义树
- Herbrand定理
- Davis的工作

动机

命题逻辑下验证定理是直观的,但是在谓词逻辑下验证定理是困难的。

- 公式G含有n个原子, 有2n个解释;
- $\bullet G_1 = P \vee (Q \wedge R)$
- $G_2 = ((P \rightarrow Q) \land P) \rightarrow Q$

Р	Q	R	G_1
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Р	Q	G_2
0	0	1
0	1	1
1	0	1
1	1	1

- 一阶逻辑下验证定理是困难的原因:
 - 个体变量论域D的任意性.
 - D中元素的任意性.
 - 解释的个数的无限性 ■
- 我们试图找到: 一个比较简单的、特殊的论域,使得只要在这个论域上该公式是不可满足的,便能保证该公式在任一论域上也是不可满足的?

——Herbrand域(简称H域)就具有这样的性质。

Herbrand域

■ 令H₀是子句集S中出现的常量的集合。若S中没有常量出现,则H₀由单个常量a组成(即H₀={a});

对于i=1,2,...
 H_i=H_{i-1}∪{所有形如f(t₁,...,t_n)的项的集合}

其中: $f(t_1,...,t_n)$ 是出现于S中的任一函数符号 $t_1,...,t_n \in H_{i-1}$ 1°

■ 规定H。为S的Herbrand域(Herbrand universe of S,简 称H域)。

例1 $S=\{P(z), P(x) \lor Q(y)\}$

•
$$H_0 = \{a\}$$

 $H_1 = H_0$
 $H_2 = H_1$
...
 $H_{\infty} = \{a\}$

例2 $S=\{P(a), P(x) \lor P(f(x))\}$

```
■ H_0 = \{a\}

H_1 = \{a\} \cup \{f(a)\} = \{a, f(a)\}

H_2 = H_1 \cup \{f(a), f(f(a))\} = \{a, f(a), f(f(a))\}

...

H_\infty = \{a, f(a), f(f(a)),...\}
```

例3 $S=\{P(f(x), a, g(y), b)\}$

```
    H<sub>0</sub>={a, b}
    H<sub>1</sub>={a, b, f(a), g(a), f(b), g(b)}
    H<sub>2</sub>={a, b, f(a), g(a), f(b), g(b), f(f(a)), f(g(a)), f(f(b)), f(g(b)), g(f(a)), g(g(a)), g(f(b)), g(g(b))}
```

基本概念

- 定义 (基础, ground):
 - 没有变量的项, 称为基础项(ground term).f(a,b)
 - 没有变量的原子,称为基础原子(ground atom).P(a,f(b))
 - 没有变量的文字,称为基础文字(ground literal).P(a,f(b)), ~P(a,f(b))
 - 没有变量的子句, 称为基础子句(ground clause).
 P(b,f(b)) > ~Q(f(f(b)))

原子集

■ 定义: 令S是一个子句集合,形如P(t₁,...,t_n)的基础原子 集合,称为S的原子集,或Herbrand基,记为A。

其中: $P(t_1,...,t_n)$ 是出现在S中的任一谓词符号, 而 $t_1,...,t_n$ 是S的H域的任意元素。

例子

- $= S = \{P(z), P(x) \vee Q(y)\}$
 - \bullet $H_{\infty} = \{a\}$
 - A={P(a), Q(a)}
- $S=\{P(a), P(x) \lor P(f(x))\}$
 - $H_{\infty} = \{a, f(a), f(f(a)),...\}$
 - A={P(a), P(f(a)), P(f(f(a))),..., P(a) ∨ P(f(a)), ...}
- S={P(f(x), a, g(y), b)}
 - $H_{\infty} = \{a, b, f(a), g(a), f(b), g(b), ...\}$
 - A={P(a,a,a,a), P(a,a,a,b), P(a,a,b,b),...}

基础实例

- 定义: 当S中的某子句C中所有变量符号均以S的H域的元素代入时,所得的基子句C'称作C的一个基础实例(基例, a ground instance of a clause C)。
- 例 S={P(x), Q(f(y))∨R(y), Z(f(y))}
 - H={a,f(a),f(f(a)),...}
 - P(a), P(f(a))都称作子句C=P(x)的基例。
 - 同样, Q(f(a)) ∨ R(a), Q(f(f(a))) ∨ R(f(a))都是 Q(f(y)) ∨ R(y)的基例。
 - 对于任一b∈D,子句P(b), Q(f(b)) ∨ R(b)都叫基子句。
 - 但是, Q(a) ∨ R(a) 不是Q(f(y)) ∨ R(y) 的基础实例。

注意

- 原子集和基础实例不同:
 - 原子集考虑单个原子,基础实例考虑子句。
 - Q(f(a)) ∨ R(a) 是基例,但不属于S的原子集。
 - 原子集是将某个谓词中的项改为**H**域中的元素,而基例 是改变量。
 - H={a,f(a),f(f(a)),...}.
 - Q(a)不是Q(f(y))的基例, 但是属于S的原子集。
 - Q(f(a))既是Q(f(y))的基例, 又属于S的原子集。
 - 一个基础实例是由原子集中的原子或原子的非析取而成。
 - A={P(a), Q(a), R(a), Z(a), P(f(a)), Q(f(a)),...}
 - 基础实例: Q(f(a)) ∨ R(a)

H解释

■ 起因

- 由子句集S建立H域,进而容易得到原子集A;
- 一般论域D上对S的解释I ⇒ H域上的解释I*;
- S在D上为真 ⇒ S在H上为真;
- S在D上不可满足 ⇒ S在H上不可满足。

H解释

■ 定义(*H-interpretation* of S)

给定子句集*S,H*是*S*上的Herbrand全域,*I*是*H*上*S*的一个解释,如果满足:

- *I* 映射所有S中的常数到自身;
- 令 f 是一个f 元函词, $h_{\nu}...h_{n}$ 是 H中的元, 在 I_{n} 上 f 被指派一个 $(h_{\nu}...h_{n})$ 到 $f(h_{\nu}...h_{n})$ 的映射,其中 $(h_{\nu}...h_{n})$ 属于 H^{n} ;

则I称为一个S的H-解释。

例: $S=\{P(x), Q(f(y)) \lor R(a), Z(f(y))\}$

■ I:

- H={a, f(a), f(f(a))...}
- I={a, a; a, f(a); a, f(f(a)); ...}

H解释的表示

令A={A₁,...,A_n,....}是S的原子集,一个H解释可被表示为:

$$I = \{m_1, ..., m_n, ...\}$$

其中: m_j 或者是 A_j , 或者是 A_j 。 如果 m_j 是 A_j , 则 A_j 为真, 否则, A_j 为 假。

例1 $S=\{P(x) \lor Q(x), R(f(y))\}$

- H={a, f(a), f(f(a)), ...}
- A={P(a),Q(a),R(a),P(f(a)),Q(f(a)),R(f(a)),...}
- 凡对A中各元素真假值的一个具体设定,都是S的一个H解 释。

$$I_1^* = \{P(a), Q(a), R(a), P(f(a)), Q(f(a)), R(f(a)), \dots\}$$

$$I_2^* = \{\sim P(a), \sim Q(a), \sim R(a), \sim P(f(a)), Q(f(a)), R(f(a)), \dots\}$$

$$I_3^* = \{P(a), \sim Q(a), \sim R(a), \sim P(f(a)), Q(f(a)), \sim R(f(a)), \dots\}$$

$$S|I_1*=T, S|I_2*=F, S|I_3*=F$$

注意:对S的任一个解释 | 均可找到一个H解释 | *与其对应.

- 例子: S={P(x), Q(y, f(y, a))}
 - 设D={1,2},解释I作如下设定

■ 对x=1, y=1: $P(1) \land Q(1,f(1,2))=T$ 对x=1, y=2: $P(1) \land Q(2,f(2,2))=T$ 对x=2, y=1: $P(2) \land Q(1,f(1,2))=T$ 对x=2, y=2: $P(2) \land Q(2,f(2,2))=T$

■ 在解释I下, S为真;

找**I***;

H={a, f(a,a), f(a,f(a,a)), f(f(a,a),a), f(f(a,a), f(a,a)),...}

• $A = \{P(a), Q(a,a), P(f(a,a)), Q(a,f(a,a)), Q(f(a,a),a), Q(f(a,a),f(a,a)), ...\}$

a→2
f(a,a) →f(2,2)→1
f(a,f(a,a)) →f(2,1)→2
f(f(a,a),a) →f(1,2)→2
f(f(a,a),f(a,a)) →f(2,2)→1
.....

• P(a) →P(2) →T Q(a,a) →Q(2,2) →F P(f(a,a)) →P(1) →T Q(a,f(a,a)) →Q(2,1) →T Q(f(a,a),a) →Q(1,2) →T Q(f(a,a),f(a,a)) →Q(1,1) →F

•
$$I^* = \{P(a), \sim Q(a,a), P(f(a,a)), Q(a,f(a,a)), Q(f(a,a),a), \sim Q(f(a,a),f(a,a)), \ldots\}$$

•
$$S=\{P(x), Q(y, f(y, a))\}$$

• $H=\{a, f(a,a), f(a,f(a,a)), f(f(a,a),a), f(f(a,a), f(a,a)),...\}$

■ 在I*下的S的真值

```
■ S|I*=P(a) ∧Q(a,f(a,a)) ∧ P(a) ∧Q(f(a,a),f(f(a,a),a))
(x=a,y=a对应于x=2,y=2) (x=a,y=f(a,a) 对应于x=2,y=1)
```

```
\land P(f(a,a)) \land Q(a,f(a,a)) \land P(f(a,a)) \land Q(f(a,a),f(f(a,a),a)) (x=f(a,a),y=a 对应于x=1,y=2) (x=f(a,a),y=f(a,a) 对应于x=1,y=1)
```

$$\land$$
 P(a) \land Q(f(a,f(a,a)),f(f(a,f(a,a)),a)) \land =T (x=a,y=f(a,f(a,a)) 对应于x=2,y=2)

例2

- $\blacksquare S=\{P(x)\vee Q(x), R(f(y))\}$
 - 设D={1,2},解释I作如下设定
 - <u>f(1)</u> <u>f(2)</u> <u>P(1)</u> <u>P(2)</u> <u>Q(1)</u> <u>Q(2)</u> <u>R(1)</u> <u>R(2)</u> --2 ---- T --- F --- F - - T ---- F --- T 于是有 S|I=T

- 由于I对常量符号a没有设定,这时a设定1或2(D中元素),便有相应于I的 $H解释I_1*和I_2*$:
- I₁*={P(a),~Q(a),~R(a),~P(f(a)),Q(f(a)),R(f(a)),~P(f(f(a))),Q(f(f(a))),R(f(a))),...}
- I₂*={~P(a),Q(a),R(a),~P(f(a)),Q(f(a)),R(f(a)),~P(f(f(a))),Q(f(f(a))),R(f(f(a))),...}
- 有S|I₁*=T, S|I₂*=T。

对应于I的H-解释I*

■ 定义:

假定在域D上的一个解释I,一个对应于I的H解释*I** 是指满足下列条件的H解释:

令 $h_{\nu}...,h_{n}$ 是H的元素,每一个 h_{i} 被映射到D域中的一些 d_{m} ,如果 $P(h_{\nu}...h_{n})$ 被解释I指派为T(F),则 $P(h_{\nu}...h_{n})$ 也被I*指派为T(F)。

H解释的性质

■引理

■ 如果在论域D上的一个解释I满足S,则任一个对应于I的H解释I*,也满足S。

■定理

■ 子句集S是不可满足的,当且仅当S的所有的H解释使S为假。

■ 证明:

- (⇒)设S是不可满足的.
 - 则在任一个论域上的任一解释使\$为假;
 - H是一个论域,则H上的所有解释使S为假;
 - 从而,S的所有的H解释使S为假。
- (⇐)设S的所有的H解释使S为假.
 - 假设子句集S可满足.
 - 在一个论域D中存在某个解释I使S为真;
 - 令**I***是对应于**I**的一个解释,根据引理,**S**在**I*** 上也为真,这与假设矛盾;
 - 所以,子句集S不可满足 ■

结论:

■ 如果S为不满足的,则存在一个特殊域, 当S被证明在这个域上的所有解释为F。

■ 即证明了对所有域上的所有解释为F,也就证明了S为不相容的。

几个性质

■ (性质1)一个子句C的基础实例C'被解释I满足, iff存在一个C'的基础文字L'在I中, 即C' \cap I \neq Ø。

- C: ~P(x) ∨ Q(f(x))
- H: {a, f(a), f(f(a)),...}
- C':~P(a) ∨ Q(f(a))
- I₁: {~P(a), ~Q(a), ~P(f(a)), ~Q(f(a)), ...}
- (性质2)一个子句C在解释I下为真,iff这个子句C的每个基础实例被I所满足。
 - I₂: {P(a), Q(a), P(f(a)), Q(f(a)), ...}

■ (性质3)一个子句C在解释I下为假,iff至少存在一个C的基础实例C',使得C'不被I所满足。

- C: ~P(x) ∨ Q(f(x))
- H: {a, f(a), f(f(a)),...}
- C':~P(a) ∨ Q(f(a))
- I₃: {P(a), ~Q(a), P(f(a)), ~Q(f(a)), ...}

■ (性质4)子句集S是不可满足的, iff对每个解释I下, 至少有S的某个子句的某个基例不被I所满足。

- Skolem范式
- Herbrand域
- ■语义树
- Herbrand定理
- Davis的工作

语义树(Semantic tree)

- 例1
 - $G = P \wedge Q \wedge R$
 - $S = \{P, Q, R\}$
 - $A = \{P, Q, R\}$

■ 例2

- $S={\sim P(x) \lor Q(x), P(f(y)), \sim Q(f(y))}$
- H={a, f(a), f(f(a)), ...}
- A={P(a), Q(a), P(f(a)), Q(f(a)), ...}

注意

- 颠倒原子的顺序是可以的 . 例如Q(a)为 第一个顶点 .
- 如果原子集是无限的,则对应的语义树必定是无限的。
- 从任一个叶节点向根节点看,代表S的一个解释.
- 从任一个中间节点向根节点看,代表S的 一个部分解释。

some concepts

- 定义(complementary pair, 互补对)
 - 如果A是一个原子,则两个文字A和 $\sim A$ 被称为彼此互对,且 { $A, \sim A$ }称为互补对。

- 如果一个字句包含一个互补对,则称该子句是冗余/重言。
 - $\mathbf{P} \vee \mathbf{Q} \vee \sim \mathbf{Q}$

定义(semantic tree, 语义树)

- 给定一个子句集合*S*,A是一个S的原子集合,一个对 S来说的语义树是一个向下的树结构,在它的每一条 联线上均附加了一个有限的在A中的原子或原子非的 集合,如此:
 - 对每一个节点N,仅有有限个直接联线 L_1 , …, L_n , 令 Q_i 是附加在 L_i (i=1,...,n) 上的所有文字的合取,则 $Q_1 \lor ... \lor Q_n$ 是一个永真的命题公式(基础).
 - 对每个节点N,令I(N)是从根节点到节点N的一个 分支上所有附加在各个联线上文字集合的并集(包含N),则I(N)不包含任何互补节对。

完备语义树(complete semantic tree)

- 定义(complete semantic tree, 完备语义树):
 - 令A={A₁, A₂, ..., A_k,...} 是原子集合,一个对于S来说的语义树是完备的,iff 对于这个语义树的每一个端节点N(没有从这节点出发联线的节点) *I(N)*包括 A_i或 ~A_i, 对于i=1,2,..... 成立。

■ 例

- $G = P \wedge Q \wedge R$
- $S = \{P, Q, R\}$
- $A = \{P, Q, R\}$

反例

完备语义树的性质:

- A complete semantic tree for S corresponds to an exhaustive survey of all possible interpretations for S. (全部)
- When the atom set A is infinite, any complete semantic tree for S will be infinite. (无限)
- If S is unsatisfiable, then S fails to be true in each of these interpretations. Thus, we may stop expanding nodes from a node N if I(N) falsifies S. (终止)

封闭语义树(Closed semantic tree)

■ 定义(failure node, 失败节点, 假节点)

A node N is a failure node if I(N) falsifies some ground instance of a clause in S, but I(N') does not falsify any ground instance of a clause in S for every ancestor node N' of N. ■ 例

S={P, Q\range R, \range P\range Q, \range P\range R}

- 定义(Closed semantic tree, 封闭语义树):
 - A semantic tree T is said to be closed if and only if every branch of T terminates at a failure node.

- 例
 - $S=\{P(x), \sim P(x) \lor Q(f(x)), \sim Q(f(a))\}$
 - A={P(a), Q(a), P(f(a)), Q(f(a)),...}

推理节点

- 定义(inference node, 推理节点)
 - A node N of a closed semantic tree is called an inference node if all the immediate descendant nodes of N are failure nodes.

- 证明一个定理就是寻找一棵封闭语义树。
- S不可满足→S在所有解释下为假→ S在 所有H解释下为假;
- 完备语义树包含所有H解释;每一枝是一个H解释;
- S在I下为假,则使某个基础实例为假;
- 这个节点称为假节点, 不用再扩展;
- 所有枝上都有假节点, 则为封闭语义树;

- Skolem范式
- Herbrand域
- ■语义树
- Herbrand定理
- Davis的工作

■ Herbrand定理(Version 1)

子句集S是不可满足的,当且仅当对应于S的任一棵完备语义树,都存在一棵有限的封闭语义树。

证明

■ 设子句集S不可满足.

要证:对应于**S**的任一棵完备语义树,都存在一棵有限的 封闭语义树。

设T是S的完备语义树.

任选T的一个分支B, I(B)是B上所有连线上的文字的集合的并. I(B)是S的一个解释.

S不可满足,则I(B)一定使S中的一个子句C为假;

I(B)一定使C的某个基础实例C'为假(性质3); C'的每个原子一定都在原子集A中;

因为C'的文字数目是有限的, 所以在B上一定存在一个假节点.

因为B的任意性,T的每个分支都有假节点.T是封闭的.

- T是有限的。
- T是有限的封闭语义树。
- 设对应于S的任一棵完备语义树,都存在一棵有限的封闭语义树.
 - 要证: 子句集S不可满足。 完备语义树包含S的所有解释,每一枝对应一个解释; 封闭语义树: 每一枝都终止在假节点上: 每一枝都使 S的某个子句的某个基例为假.

(性质4)子句集S是不可满足的, iff对每个解释I下, 至少有S的某个子句的某个基例为假。

■ Herbrand定理(Version 2)

■ 子句集S是不可满足的,当且仅当存在一个有限不可满足的S的基础实例集合S'。

■ 例子:

- $S=\{P(x), \sim P(a) \lor \sim P(b), Q(f(x))\}$
- H={a, b, f(a), f(b), f(f(a)), f(f(b))...}
- A={P(a), P(b), Q(a), Q(b),...}
- S'={P(a), P(b), ~P(a) \(\simes P(b) \)}

- ■证明
 - 设子句集**S**是不可满足的;
 - 要证: 存在一个有限不可满足的S的基础实例集合 S'.

根据Version 1, 有一棵有限的封闭语义树;

每一枝都终止在假节点上:每一枝都使**S**的某个子句的某些基例为假:构成**S**'.

S'不可满足.

有限的封闭语义树: 节点有限:假节点有限: S'有限.

- 设存在一个有限不可满足的S的基础实例集合S'。
 - S的任一个解释I都是一个对所有基础实例的解释; 它包含一个对S'的解释I'.
 - 因为S'不可满足, 所以I'使S'为假;
 - I'⊆I, 所以I使S'为假; (I使某个子句的某个基础实例为假)
 - 由于解释I的任意性, S不可满足.

Gilmore的方法(1960)

- 子句集S是有限的;
- 基础实例的数目是可数的;
- 枚举;

- Skolem范式
- Herbrand域
- ■语义树
- Herbrand定理
- Davis的工作

Davis-Putnam的工作

- Gilmore的方法是指数复杂性的;
- Davis-Putnam: 提高效率(启发式方法);

- 四条规则:
 - 其应用不改变子句集的不相容性;

规则一

- 重言式规则(tautology rule)
 - **S**中的重言式子句,不会为**S**的不可满足提供任何信息, 应该删除。
 - S={P\/~P, Q, R\/P}
 S的逻辑含义是(P\/~P) \(\Q \) (R\/P)=
 Q\(R\/P), 从而删去重言式P\/~P, 不影响S的真值。
 S'={Q, R\/P}
 - Delete all the ground clauses from S that are tautologies. The remaining set S' is unsatisfiable if and only if S is.

规则二

- 单文字规则(one-literal rule)
 - 单文字: 在S中存在只有一个文字的基础子句L.
 - 例子: S={L, L∨P, ~L∨Q, S∨~R}
 - 如果在S中存在只有一个文字的基础子句L, 消去在S中带有这个文字L的所有子句得到S', 如果S'为空, 则S是相容的; 否则, 从S'中删去~L, 得到S''. S''不可满足当且仅当S不可满足.
 - $S' = \{ \sim L \lor Q, S \lor \sim R \}$
 - S''= $\{Q, S \lor \sim R\}$
 - S不可满足,则在所有解释下S都为假;
 - L=0;
 - L=1;
 - **-** ∼L=0.

规则三

- 纯文字规则(pure-literal rule)
 - 纯文字: 如果文字L出现于S中,而~L不出现于S中,L称为S的纯文字.
 - 例子: S={A∨B, A∨~B, ~B, B}
 - L是S的纯文字. 从S中删除含L的子句得S',如果S'为空集,那么S是可满足的。否则, S'不可满足当且仅当S不可满足。
 - S'= {~B, B};
 - S不可满足, 在A为真下不可满足;
 - A=1: A∨B=1, A∨~B=1;
 - S'不可满足, 当然S不可满足;

规则四

- 分裂规则(splitting rule)
 - S=(L \vee A₁) \wedge ... \wedge (L \vee A_m) \wedge (\sim L \vee B₁) \wedge ... \wedge (\sim L \vee B_n) \wedge R A_i, B_i, R中不含L和 \sim L。 \Diamond S' ={A₁ \wedge ... \wedge A_m \wedge R}, S''={B₁ \wedge ... \wedge B_n \wedge R} 则S不可满足当且仅当S'和S''同时是不可满足的。
 - L=1(S'')
 - L=0(S')

例1

- S={P\Q\\~R, P\~Q, ~P, R, U}
 - 对U使用纯文字: {P∨Q∨~R, P∨~Q, ~P, R}
 - 对~P使用单文字: {Q∨~R, ~Q, R}
 - 对~Q使用单文字: {~R, R}
 - 对R使用单文字: {□}
 - S不可满足;

例2

- S={P\Q, \(\pi \)Q, \(\pi \)P\\Q\\\\ R}
 - 对~Q使用单文字: {P, ~P∨~R}
 - 对P使用单文字: {~R}
 - 对~R使用纯文字: {}
 - **S**可满足;

作业

- 写出下式的H域和原子集.
 - S={P(f(x,a))}
 - $S = \{P(x) \lor Q(y), R(f(y))\}$
- 前提:每个储蓄钱的人都获得利息。

结论:如果没有利息,那么就没有人去储蓄钱。

令: S(x,y)表示x储蓄y

M(x) 表示x是钱

I(x) 表示x是利息

E(x,y) 表示x获得y

用逻辑公式表示前提和结论并化为子句形式;

- 下述子句集是可满足的还是不可满足的(给出过程)?
 - S={ $P \lor \sim Q$, $\sim P \lor Q$, $Q \lor \sim R$, $\sim Q \lor \sim R$ }
 - \blacksquare S={P \lor Q, P \lor ~Q, R \lor Q, R \lor ~Q}
 - $\blacksquare S=\{P\lor Q, P\lor \sim Q, \sim P\lor Q, \sim P\lor \sim Q\}$