CSE 220: Signals and Linear Systems

Introduction to Python: 00P, Numpy and Matplotlib

01

Classes

Object Oriented Programming in Python

Object Orientated Programming

Object-oriented programming is a <u>programming paradigm</u> that provides a means of structuring programs so that properties and behaviors are bundled into individual **objects**.

Polymorphism

Allows objects of different classes to be treated as objects of a common class

Inheritance

Capability of one class to derive or inherit the properties from another class

Encapsulation

Restrictions on accessing variables and methods directly

Abstraction

Complex implementation details while exposing only essential information

OOP: Data Classes

We want to track employees of an organization by storing some of their information in a list. One way to do this is to represent each employee as a list:

```
kirk = ["James Kirk", 34, "Captain", 2265]
spock = ["Spock", 35, "Science Officer", 2254]
mccoy = ["Leonard McCoy", "Chief Medical Officer", 2266]
```

As our codebase get bigger and bigger, it gets more and more complicated to maintain each employee as a list.

OOP: Data Classes

An alternate way is to represent each employee as a python object.

```
class Employee:
   def __init__(self, name, age, position, start_year):
       self.name = name
       self.age = age
       self.position = position
       self.start_year = start_year
   def get_details(self):
       return f"Name: {self.name}, Age: {self.age},
Position: {self.position}, Start Year: {self.start_year}"
```

OOP: Data Classes

Attributes created in .__init__() are called *instance attributes*. An instance attribute's value is specific to a particular instance of the class.

On the other hand, *class attributes* are attributes that have the same value for all class instances. You can define a class attribute by assigning a value to a variable name outside of .__init__().

```
class Dog:
    species = "Canis familiaris"

def __init__(self, name, age):
    self.name = name
    self.age = age
```

OOP: Instance Methods

Instance methods are functions that you define inside a class and can only call on an instance of that class. Just like .__init__(), an instance method always takes self as its first parameter.

```
class Dog:
    species = "Canis familiaris"
   def __init__(self, name, age):
       self.name = name
       self.age = age
   def description(self):
       return f"{self.name} is {self.age} years old"
   def speak(self, sound):
       return f"{self.name} says {sound}"
tommy = Dog("Tommy", 3)
print(tommy.description())
```

OOP: Dunder Methods

Methods like .__init__() and .__str__() are called dunder methods because they begin and end with double underscores

```
class Dog:
    # ...

def __str__(self):
    return f"{self.name} is {self.age} years old"

tommy = Dog("Tommy", 3)
print(tommy)
```

02

NumPy

Numerical Python Library

NumPy (Numerical Python) is a powerful open-source library in Python used for numerical and scientific computing. It provides support for arrays, matrices, and a large collection of mathematical functions to operate on these data structures efficiently.

Why use numpy?

- * Faster
- * Easier
- * Rich Library Support

Installation:

pip install numpy

Import:

import numpy as np

Numpy Array Fundamentals

Numpy arrays behave very similar to python arrays. One way to initialize an array is using a Python sequence, such as a list. For example:

```
a = np.array([1, 2, 3, 4, 5, 6])
a
```

Numpy Array Fundamentals

Like the original list, the array is *mutable*. Also like the original list, Python *slice* notation can be used for indexing.

```
a[0] = 10
a
>> array([10, 2, 3, 4, 5, 6])
a[:3]
>> array([10, 2, 3])
```

Slicing

One major difference is that slice indexing of a list copies the elements into a new list, but slicing an array returns a *view*

```
b = a[3:]
b
>> array([4, 5, 6])
b[0] = 40
a
>>array([10, 2, 3, 40, 5, 6])
```

NumPy: Higher Dimensional Arrays

Two- and higher-dimensional arrays can be initialized from nested Python sequences.

NumPy: Array Attributes

ndim, shape, size, and dtype

- The number of dimensions of an array is contained in the <u>ndim</u> attribute.
- The *shape* of an array is a tuple of non-negative integers that specify the number of elements along each dimension.
- The fixed, total number of elements in array is contained in the size attribute.
- Arrays are typically "homogeneous", meaning that they contain elements of only one "data type". The data type is recorded in the dtype attribute

NumPy: Array Initialization

- np.zeros() : create an array filled with 0's
- np.ones() : create an array filled with 1's
- np.empty() : creates an array whose initial content is random and depends on the state of the memory
- np.arrange(): create an array with a range of elements
- np.linspace(): create an array with values that are spaced linearly in a specified interval

We can also specify the datatype using the optional dtype=np.int64 parameter

NumPy: Random Arrays

We can also use *ones()*, *zeros()*, and *random()* to create a 2D array if we give them a tuple describing the dimensions of the matrix:

NumPy: Sorting and Concat

```
arr = np.array([2, 1, 5, 3, 7, 4, 6, 8])
np.sort(arr) # returns a sorted copy of the array
>> array([1, 2, 3, 4, 5, 6, 7, 8])
```


NumPy: Sorting and Concat

```
a = np.array([1, 2, 3, 4])
b = np.array([5, 6, 7, 8])
np.concatenate((a, b))
>> array([1, 2, 3, 4, 5, 6, 7, 8])
```


NumPy: Reshape

NumPy: Transpose

We can also use arr.T instead of arr.transpose()

NumPy: Selection

```
a = np.array([[1 , 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
a[a < 5]
>> array([1, 2, 3, 4])

divisible_by_2 = a[a%2==0]
>> array([ 2, 4, 6, 8, 10, 12])

c = a[(a > 2) & (a < 11)]
>> array([ 3 4 5 6 7 8 9 10])
```


NumPy: Stacking

```
• • •
a1 = np.array([[1, 1],
               [2, 2]])
a2 = np.array([[3, 3],
               [4, 4]])
np.vstack((a1, a2))
>> array([[1, 1],
         [2, 2],
         [3, 3],
         [4, 4]])
np.hstack((a1, a2))
>> array([[1, 1, 3, 3],
         [2, 2, 4, 4]])
```


NumPy: Splitting

NumPy: Array Operations

NumPy supports arithmetic operations between two arrays of the same shape. The operations are carried out element wise.

NumPy: Broadcasting

Sometimes we want to carry out operations between a *vector* and a *scalar* or between arrays of *different sizes*. For example, our arrays might contain information about distances travelled in miles, which we want to convert into kilometers.

NumPy: Aggregation Operations

NumPy also performs aggregation functions. In addition to *min*, *max*, and *sum*, you can easily run *mean* to get the average, *prod* to get the result of multiplying the elements together, *std* to get the standard deviation.

NumPy: Aggregation Operations

Aggregation can also be done across various axes. For example: we can apply the max aggregation to a 2D array in different axes to get different results.

NumPy: Broadcasting

You can do these arithmetic operations on matrices of different sizes, but only if one matrix has only *one column* or *one row*. In this case, NumPy will use its broadcast rules for the operation.

NumPy: Unique

```
a = np.array([11, 11, 12, 13, 14, 15, 16, 17, 12, 13, 11, 14, 18, 19, 20])
unique_values, occurrence_count = np.unique(a, return_counts=True)

unique_values
>> [11 12 13 14 15 16 17 18 19 20]

occurrence_count
>> [3 2 2 2 1 1 1 1 1 1]
```


The ease of implementing mathematical formulas that work on arrays is one of the things that make NumPy so widely used in the scientific Python community.

$$MeanSquareError = \frac{1}{n} \sum_{i=1}^{n} (y_{Pred} - y_i)^2$$

The ease of implementing mathematical formulas that work on arrays is one of the things that make NumPy so widely used in the scientific Python community.

$$MeanSquareError = \frac{1}{n} \sum_{i=1}^{n} (y_{Pred} - y_i)^2$$

```
error = (1/n) * np.sum(np.square(predictions - label))
```


There are a lot of mathematical operations available in numpy. A few of them are as follows:

np.log() : Computes the natural logarithm of each element.

np.sqrt() : Computes the square root of each element in an array.

np.power() : Raises each element of an array to a specified power.

np.sin() : Computes the sine of each element (in radians).

$$-\frac{1}{m}\sum_{i=1}^{m}y_{actual}\cdot\log(y_{pred})$$

Cross-entropy loss

NumPy: Mathematical Formulas

$$s(x_i) = \frac{e^{x_i}}{\sum_{j=i}^n e^{x_j}}$$

Softmax Function

03

Matplotlib

Mathematical Visualization

Matplotlib

Matplotlib is a comprehensive library for creating *static*, *animated*, and *interactive* visualizations. It is a library for making 2D plots in Python

```
pip install matplotlib
```


Matplotlib: Import

It is a general convention that we alias the import of *matplotlib.pyplot* as *plt*.

```
import matplotlib.pyplot as plt
import numpy as np
```


Matplotlib: A Simple Plot

```
x = np.linspace(0, 2, 100) # Sample data.

plt.figure(figsize=(4, 4), layout='constrained')
plt.plot(x, x, label='linear')
plt.plot(x, x**2, label='quadratic') # etc.
plt.plot(x, x**3, label='cubic')
plt.xlabel('x label')
plt.ylabel('y label')
plt.title("Simple Plot")
plt.legend()
```


Matplotlib: Sine Wave

```
X = np.linspace(0, 10 * np.pi, 1000)
Y = np.sin(X)

plt.figure(figsize=(6, 3), layout='constrained')
plt.plot(X, Y)
plt.show()
```


Matplotlib: Types of plots

Matplotlib offers several kind of plots.

Here we demonstrate a scatterplot, bar plot and image.

```
X = np.random.uniform(0, 1, 100)
Y = np.random.uniform(0, 1, 100)
ax.scatter(X, Y)
```


ax.imshow(Z)

Matplotlib: Subplots

```
Z = np.random.uniform(0, 1, (10, 10))
Y = np.random.normal(0, 1, (100, 3))
fig, axs = plt.subplots(2, 2, figsize=(8, 8),
layout='constrained')
axs[0, 0].imshow(Z, cmap='Blues')
axs[0, 1].contourf(Z, cmap='Blues')
axs[1, 0].boxplot(Y )
axs[1, 1].violinplot(Y, showmedians=True)
fig.show()
```


Matplotlib: Subplots

References

- RealPython
- Numpy Documentation
- Matplotlib Documentation

Thank You