Algorithms Lab

September 26, 2012

Outline

1 C++ STL

Exercise hints

We assume that you ...

- know how to code
- know the basic algorithms
- are able to turn a reasonably detailed idea into a working code! (otherwise the hints we give will not be very useful)
- are familiar with the O notation and the idea of estimating the runtime of your program based on the input size

Outline

1 C++ STL

Exercise hints

STL

- Coding data structure from scratch painful and error prone
- STL map, set, queue, priority queue
 - map $\mathcal{O}(\log n)$ lookups
 - set $\mathcal{O}(\log n)$ set membership tracking
 - queue FIFO
 - priority queue $\mathcal{O}(\log n)$ retrieval of an element with the highest priority, insertion
- look at the documentation

Sorting

```
#include <algorithm>
...
vector<int> a;
...
sort(a.begin(), a.end());
```

Sorting

```
#include <algorithm>
2
   struct Data {
     int key;
5
     bool operator<(const Data &a) const {</pre>
6
        return key < a.key;</pre>
8
   };
10
   vector<Data> a;
11
12
   . . .
   sort(a.begin(), a.end());
13
```

Same applies for set, map and priority queue

```
#include <set>
   struct Data {
     int key;
5
     bool operator<(const Data &a) const {
       return key < a.key;</pre>
8
   };
10
   set < Data > a;
11
12
   . . .
   set<Data>::iterator itr = a.find(data);
13
```

Outline

1 C++ STL

2 Exercise hints

- (slower) Guess a solution
 - assume a coin is heavier (or lighter)
 - check consistency with the input
 - exactly one such coin we found a solution
- (faster) Keep the track of possibly false coins

- (slower) Guess a solution
 - assume a coin is heavier (or lighter)
 - check consistency with the input
 - exactly one such coin we found a solution
- (faster) Keep the track of possibly false coins

- (slower) Guess a solution
 - assume a coin is heavier (or lighter)
 - check consistency with the input
 - exactly one such coin we found a solution
- (faster) Keep the track of possibly false coins

- (slower) Guess a solution
 - assume a coin is heavier (or lighter)
 - check consistency with the input
 - exactly one such coin we found a solution
- (faster) Keep the track of possibly false coins

- (slower) Guess a solution
 - assume a coin is heavier (or lighter)
 - check consistency with the input
 - exactly one such coin we found a solution
- (faster) Keep the track of possibly false coins

- (slower) Guess a solution
 - assume a coin is heavier (or lighter)
 - check consistency with the input
 - exactly one such coin we found a solution
- (faster) Keep the track of possibly false coins

Exercise 1 - False coin - Summary

Trick learned

- guess a solution
- guess an interval in which solution lies, properties of a solution, etc.

- Smallest number of hops
- Recall BFS finds the smallest number of steps from vertex v₁ to v₂
- Model the input as a graph

Naive model

- vertices points in the grid
- edge between two vertices hop from one point to the other
- hop depends on our current velocity
- different velocities give different hops from the same vertex
- graph with edges which dynamically change? doesn't sound good ...

Naive model

- vertices points in the grid
- edge between two vertices hop from one point to the other
- hop depends on our current velocity
- different velocities give different hops from the same vertex
- graph with edges which dynamically change? doesn't sound good ...

Better model

- vertex is a pair (p, v) p is a point in the grid, v is the velocity which we had upon arriving to that point
 - Start vertex (s, (0, 0))
 - End vertices (t, (i, j)), for all $-3 \le i, j \le 3$
- Number of vertices at most $(30 \times 30) \times (7 \times 7) \approx 45000$
- Degree of each vertex at most 9 at most 405000 edges
- Edges can be deduced from the "label" of a vertex no need to store the whole graph explicitly

Better model

- vertex is a pair (p, v) p is a point in the grid, v is the velocity which we had upon arriving to that point
 - Start vertex (s, (0, 0))
 - End vertices (t, (i, j)), for all $-3 \le i, j \le 3$
- Number of vertices at most $(30 \times 30) \times (7 \times 7) \approx 45000$
- Degree of each vertex at most 9 at most 405000 edges
- Edges can be deduced from the "label" of a vertex no need to store the whole graph explicitly

Better model

- vertex is a pair (p, v) p is a point in the grid, v is the velocity which we had upon arriving to that point
 - Start vertex (s, (0, 0))
 - End vertices (t, (i, j)), for all $-3 \le i, j \le 3$
- Number of vertices at most $(30 \times 30) \times (7 \times 7) \approx 45000$
- Degree of each vertex at most 9 at most 405000 edges
- Edges can be deduced from the "label" of a vertex no need to store the whole graph explicitly

Exercise 2 - Race Tracks - Summary

Prerequisites

BFS!

Trick learned

- Vertices of a graph can be represented with more complex objects than just numbers from 1 to n
- No need to store the graph explicitly in order to perform a BFS or similar algorithm

Observations

- Equivalent given an $h \times w$ matrix with 0/1 elements, find an $r \times s$ submatrix with all 0 elements
 - up to a "constant" we need a $(r-1) \times (s-1)$ submatrix, etc.
- r and s are fixed top-left corner completely describes the rectangle

Observations

- Equivalent given an $h \times w$ matrix with 0/1 elements, find an $r \times s$ submatrix with all 0 elements
 - up to a "constant" we need a $(r-1) \times (s-1)$ submatrix, etc.
- r and s are fixed top-left corner completely describes the rectangle

Observations

- Equivalent given an $h \times w$ matrix with 0/1 elements, find an $r \times s$ submatrix with all 0 elements
 - up to a "constant" we need a $(r-1) \times (s-1)$ submatrix, etc.
- r and s are fixed top-left corner completely describes the rectangle

Easy solution

- try all possible places for the top-left corner
- check whether the induced rectangle is empty (has all 0 elements)
- complexity
 - $\mathcal{O}(h \cdot w)$ possible rectangles
 - checking whether it is empty by simply iterating through all its elements $\mathcal{O}(r \cdot s)$
 - in total $\mathcal{O}(hwrs)$ too slow

Easy solution

- try all possible places for the top-left corner
- check whether the induced rectangle is empty (has all 0 elements)
- complexity
 - $\mathcal{O}(h \cdot w)$ possible rectangles
 - checking whether it is empty by simply iterating through all its elements $\mathcal{O}(r \cdot s)$
 - in total $\mathcal{O}(hwrs)$ too slow

- try to solve a simpler problem first suppose that h = r = 1
- an array instead of a matrix

Prefix sums

Given an array A, set $s[i] := \sum_{j=1}^{i} A[i]$. Additionally, set A[0] := 0.

- subarray $A[i], \ldots, A[i+s-1]$ is empty \leftrightarrow A[i+s-1] A[i-1] = 0
- apply similar trick to a matrix
 - reduces the complexity of checking whether a rectangle is empty from $\mathcal{O}(rs)$ to $\mathcal{O}(1)$!
 - in total $\mathcal{O}(hw)$ works well for small and medium testset

Idea – move two vertical lines at distance *s* from left to right (*scanlines*)

Observation ¹

- Suppose that the left scanline is at some position x_{ℓ}
- let X_{ℓ} denote the set of all trees with x coordinate in the interval $[x_{\ell}, x_{\ell} + s]$
- if there exist two trees in X_{ℓ} whose y coordinate differ by at least r, and no other tree in X_{ℓ} has y coordinate between these two possible landing rectangle!

Idea – move two vertical lines at distance *s* from left to right (*scanlines*)

Observation 1

- Suppose that the left scanline is at some position x_{ℓ}
- let X_{ℓ} denote the set of all trees with x coordinate in the interval $[x_{\ell}, x_{\ell} + s]$
- if there exist two trees in X_{ℓ} whose y coordinate differ by at least r, and no other tree in X_{ℓ} has y coordinate between these two possible landing rectangle!

Observation 2

- we cannot move scanlines continuosly ...
- what are the points of interest of either left or the right scanline?
 - hint trees

Observation 2

- we cannot move scanlines continuosly ...
- what are the points of interest of either left or the right scanline?
 - hint trees

Observation 2

- we cannot move scanlines continuosly ...
- what are the points of interest of either left or the right scanline?
 - hint trees

Observation 2

- we cannot move scanlines continuosly ...
- what are the points of interest of either left or the right scanline?
 - hint trees

Note

Filling out the missing details, and especially implementing it correctly, is very difficult! However, solving it is very rewarding!

Exercise 3 - Forced Landing - Summary

Tricks learned

- Prefix sums
- Scanline

- If a problem is modeled in k dimension, and it seems difficult, try first solving it if it has one less dimension and then extend the idea.
- *Note*: this is a hint, not a rule! (so it might not always work)

Exercise 3 - Forced Landing - Summary

Tricks learned

- Prefix sums
- Scanline

- If a problem is modeled in k dimension, and it seems difficult, try first solving it if it has one less dimension and then extend the idea.
- Note: this is a hint, not a rule! (so it might not always work)

Easy solution – blow up floors $1, \ldots, \ell$

- blow up ℓ-th floor and simulate what happens after that
- complexity $-\mathcal{O}(n)$
- iterate over all floors $\mathcal{O}(n^2)$ in total

Easy solution – blow up floors $1, \ldots, \ell$

- ullet blow up ℓ -th floor and simulate what happens after that
- complexity $-\mathcal{O}(n)$
- iterate over all floors $\mathcal{O}(n^2)$ in total

Easy solution – blow up floors $1, \ldots, \ell$

- ullet blow up ℓ -th floor and simulate what happens after that
- complexity $-\mathcal{O}(n)$
- iterate over all floors $\mathcal{O}(n^2)$ in total

- S_ℓ set of floors which you need to blow up additionally if the highest blown up floor is ℓ
- Relation of S_{ℓ} and $S_{\ell+1}$?
- Speed-up the simulation
 - using prefix sums check in $\mathcal{O}(1)$ whether a floor i collapses if floors $i+1,\ldots,j$ collapse
 - for each floor in S_ℓ check whether it survives the additional weight of the floor $\ell+1$
 - however still $\mathcal{O}(n^2)$... but enough for 50 points!

- S_{ℓ} set of floors which you need to blow up additionally if the highest blown up floor is ℓ
- Relation of S_{ℓ} and $S_{\ell+1}$?
- Speed-up the simulation
 - using prefix sums check in $\mathcal{O}(1)$ whether a floor i collapses if floors $i + 1, \dots, j$ collapse
 - for each floor in S_ℓ check whether it survives the additional weight of the floor $\ell+1$
 - however still $\mathcal{O}(n^2)$... but enough for 50 points!

- S_{ℓ} set of floors which you need to blow up additionally if the highest blown up floor is ℓ
- Relation of S_{ℓ} and $S_{\ell+1}$?
- Speed-up the simulation
 - using prefix sums check in $\mathcal{O}(1)$ whether a floor i collapses if floors $i + 1, \dots, j$ collapse
 - for each floor in S_ℓ check whether it survives the additional weight of the floor $\ell+1$
 - however still $\mathcal{O}(n^2)$... but enough for 50 points!

Getting to $\mathcal{O}(n \log n)$

- consider some $f_1, f_2 \in S_\ell$
- define $A(f,\ell) := cap[f] \sum_{i=1}^{\ell} w[i]$
- $A(f_1, \ell) > A(f_2, \ell)$
 - if f₂ doesn't collapse, neither will f₁
- simulation for the level $\ell + 1$ (hint)
 - get the element $f \in S_{\ell}$ with the smallest $A(f, \ell)$
 - check whether it collapses ...
- $A(f_1, \ell) > A(f_2, \ell) \to A(f_1, \ell') > A(f_2, \ell')$ for every $\ell' > \ell$

Getting to $\mathcal{O}(n \log n)$

- consider some $f_1, f_2 \in S_\ell$
- define $A(f,\ell) := cap[f] \sum_{i=1}^{\ell} w[i]$
- $A(f_1, \ell) > A(f_2, \ell)$
 - if f₂ doesn't collapse, neither will f₁
- simulation for the level $\ell + 1$ (hint)
 - get the element $f \in S_{\ell}$ with the smallest $A(f, \ell)$
 - check whether it collapses ...
- $A(f_1,\ell) > A(f_2,\ell) \rightarrow A(f_1,\ell') > A(f_2,\ell')$ for every $\ell' > \ell$

- Don't rush to find the fastest solution
- Don't expect to come up with the brilliant idea just by looking at the problem – work towards it!
- Not everyone can solve every problem for 100 points; however, we will usually give a non-negligible number of points for slower solutions
 - if the problem requires $\mathcal{O}(n \log n)$ solution or faster, coding a $\mathcal{O}(n^2)$ one will very likely give you a certain number of points which might save you on the exam!
 - not every slower solution will earn you some points $-\mathcal{O}(2^n)$ solution, for example, might be too slow if the optimal solution is $\mathcal{O}(n)$

- Don't rush to find the fastest solution
- Don't expect to come up with the brilliant idea just by looking at the problem – work towards it!
- Not everyone can solve every problem for 100 points; however, we will usually give a non-negligible number of points for slower solutions
 - if the problem requires $\mathcal{O}(n \log n)$ solution or faster, coding a $\mathcal{O}(n^2)$ one will very likely give you a certain number of points which might save you on the exam!
 - not every slower solution will earn you some points $-\mathcal{O}(2^n)$ solution, for example, might be too slow if the optimal solution is $\mathcal{O}(n)$

- Don't rush to find the fastest solution
- Don't expect to come up with the brilliant idea just by looking at the problem – work towards it!
- Not everyone can solve every problem for 100 points; however, we will usually give a non-negligible number of points for slower solutions
 - if the problem requires $\mathcal{O}(n \log n)$ solution or faster, coding a $\mathcal{O}(n^2)$ one will very likely give you a certain number of points which might save you on the exam!
 - not every slower solution will earn you some points $-\mathcal{O}(2^n)$ solution, for example, might be too slow if the optimal solution is $\mathcal{O}(n)$

- Don't rush to find the fastest solution
- Don't expect to come up with the brilliant idea just by looking at the problem – work towards it!
- Not everyone can solve every problem for 100 points; however, we will usually give a non-negligible number of points for slower solutions
 - if the problem requires $\mathcal{O}(n \log n)$ solution or faster, coding a $\mathcal{O}(n^2)$ one will very likely give you a certain number of points which might save you on the exam!
 - not every slower solution will earn you some points $\mathcal{O}(2^n)$ solution, for example, might be too slow if the optimal solution is $\mathcal{O}(n)$

Submitting

More fun interactively.

Remember

- Test locally!
- Times are deterministic. Submitting several times is a waste of resources

```
correct you win!
    wrong-answer fix it, make testsets
          timelimit taking too long
    compiler-error fix it, compile locally
segmentation-fault SIGSEGV: memory screwup
  assertion-failure SIGABRT: memory screwup or assert ()
                   or uncaught exception
         run-error nonzero exit status
        forbidden bad syscall or other safety limit
```

```
correct you win!
    wrong-answer fix it, make testsets
          timelimit taking too long
    compiler-error fix it, compile locally
segmentation-fault SIGSEGV: memory screwup
  assertion-failure SIGABRT: memory screwup or assert ()
                   or uncaught exception
         run-error nonzero exit status
        forbidden bad syscall or other safety limit
```

```
correct you win!
    wrong-answer fix it, make testsets
         timelimit rethink approach
    compiler-error fix it, compile locally
segmentation-fault SIGSEGV: memory screwup
  assertion-failure SIGABRT: memory screwup or assert ()
                   or uncaught exception
         run-error nonzero exit status
        forbidden bad syscall or other safety limit
```

```
correct you win!
    wrong-answer fix it, make testsets
         timelimit rethink approach
    compiler-error fix it, compile locally
segmentation-fault SIGSEGV: memory screwup
  assertion-failure SIGABRT: memory screwup or assert ()
                   or uncaught exception
         run-error nonzero exit status
        forbidden bad syscall or other safety limit
```

```
correct you win!
    wrong-answer fix it, make testsets
          timelimit rethink approach
    compiler-error fix it, compile locally
segmentation-fault use valgrind
  assertion-failure SIGABRT: memory screwup or assert ()
                   or uncaught exception
         run-error nonzero exit status
         forbidden bad syscall or other safety limit
```

correct you win!

wrong-answer fix it, make testsets
timelimit rethink approach
compiler-error fix it, compile locally
segmentation-fault use valgrind
assertion-failure use gdb or valgrind
run-error nonzero exit status
forbidden bad syscall or other safety limit

presentation-error whitespace differences

correct you win!
wrong-answer fix it, make testsets
timelimit rethink approach
compiler-error fix it, compile locally
segmentation-fault use valgrind
assertion-failure use gdb or valgrind
run-error nonzero exit status
forbidden bad syscall or other safety limit

4□ > 4同 > 4 = > 4 = > ■ 900

correct you win!

wrong-answer fix it, make testsets
timelimit rethink approach
compiler-error fix it, compile locally
segmentation-fault use valgrind
assertion-failure use gdb or valgrind
run-error nonzero exit status
forbidden stop it

presentation-error whitespace differences

Distribution of results

Distribution of results

Debugging utilities discussed

valgrind

- + easy to use
- + verbose
- occasionally hard to interpret
- no interactive investigation
- issues with rounding in CGAL

gdb

- + interactive
- + many possibilities
- harder to use
- post-segfault is often too late

debugging prints

GDB cheatsheet

gdb <i>prog</i>	start gdb on the prog
run <i>args</i>	run program with <i>args</i> as in shell
bt	print stack trace (backtrace)
bt $-N$	— of outermost N frames
up	up one frame (towards main)
down	down one frame
print expr	print the value of <i>expr</i>
break func	add breakpoint when entering func
break <i>line</i>	add breakpoint before <i>line</i>
continue	continue execution
next	 until next line in this function
step	 until next line anywhere
quit	quit

Take-aways of interactive session

- 01 Use assertions to catch input formatting mistakes (useful with your own testsets!)
- 02 Use -Wall at all times
- 03 switch() is finicky
- 04 Use valgrind Beware of uninitialized values
- 05 Beware of array overruns; try .at(i)
- 06 Pointers invalidated across vector resizing
- 07 Be clear on static/heap/automatic data model
- 08 Stack overflow is also a segfault
- 09 Violating contracts can break STL algos

