UE13 TRAVAUX DIRIGÉS

UE Atomes et Molécules Atome et Liaison chimique

Licence $1^{\grave{e}me}$ année – Physique et Chimie

2015-2016

Table des matières

Tableau périodique
Modèle de Slater
Modèle de Bohr – Notions de spectroscopies
Les structures de Lewis
Recouvrements entre Orbitales Atomiques
Orbitales Moléculaire, combinaison d'Orbitales Atomiques
Modèle ondulatoire

Tableau périodique

Exercice 1 - Utilisation du tableau périodique

- 1) Quel est le symbole de l'atome ayant 45 protons?
- 2) Combien de protons possède le noyau de l'élément argent?
- 3) Combien de protons et de neutrons possède le noyau d'hélium? Quelle est sa masse atomique?
- 4) L'élément arsenic a un noyau ayant 33 protons. Combien l'élément immédiatement à sa droite dans le tableau périodique possède-t-il de protons? Et celui immédiatement à sa gauche? Et celui qui se trouve 4 colonnes avant?
- 5) Combien de proton possède le noyau du barium? Qu'en est-il de l'élément immédiatement à sa droite? Et celui d'après? Combien y a-t-il d'éléments dans la période qui débute par le Césium? Qu'en concluez-vous? Confirmez en refaisant la même travail pour l'élément dont le noyau possède 88 protons.
- 6) L'oxygène, le soufre et le sélénium appartiennent au même groupe. Quelle caractéristique ont-il en commun?
- 7) Quelle est la configuration électronique du carbone, du silicium, du germanium (Z=32), de l'étain (Z=50) et du plomb (Z=82)? Qu'en concluez-vous? Confirmez votre hypothèse dans le groupe du Fluor.
- 8) Donnez la configuration électronique de l'atome d'oxygène neutre. Combien a-t-il d'électrons de cœur et de valence? Le sélénium se trouve deux périodes sous l'atome d'oxygène. Donnez sa configuration électronique de valence sans regarder le tableau.
- 9) Les questions suivantes doivent se faire sans regarder le tableau périodique.
 - (a) Faites apparaître les blocs s, p et d sur le tableau périodique. Attribuez à chacun d'eux une configuration électronique générique en appelant n le numéro de la période.
 - (b) De la même manière que dans la question précédente, donnez la configuration électronique générique des familles suivantes : alcalins, alcalino-terreux, halogènes, gaz rares.
 - (c) Le chlore est un halogène de la troisième période du tableau, quelle est sa configuration électronique de valence? Même question pour le brome qui se trouve juste sous le chlore.
 - (d) Le phosphore a la configuration électronique suivante $[Ne]3s^23p^3$. Quelle est la configuration électronique de l'azote qui se trouve directement au-dessus du phosphore?
- 10) Quel est le rayon atomique du béryllium (Z=4)? Et celui de l'élément à sa gauche? Et à sa droite? Comment ce rayon varie-t-il le long de la période à laquelle appartient le béryllium? Faites le même travail pour la période de l'élément dont le noyau possède 22 protons. La tendance observée est-elle générale?
- 11) On recherche les éléments ayant les caractéristiques suivantes
 - (a) forte électronégativité/forme un sel avec un alcalin/pas le plus petit de son groupe/pas d'électrons d;
 - (b) perd facilement 2 électrons/pas d'électrons d/plus gros que le magnésium;
 - (c) configuration électronique de valence $3s^23p^1/\text{métal}$;
 - (d) plus petit alcalin;
 - (e) alcalino-terreux de taille moyenne/des électrons 3d mais pas d'électron 4d.
- 12) Pointez cinq éléments sur le tableau périodique et donnez leurs configurations électroniques sans les lire.

Exercice 2 - Configuration électronique

- 1) Écrire la configuration électronique atomique du zinc, dont le numéro atomique est Z=30.
- 2) Donner la configuration électronique et le nombre d'électrons non appariés, dans l'état fondamental, des atomes suivants (en respectant le Principe de Pauli et en appliquant la règle de Hund): N (Z=7), S (Z=16), Ca (Z=20), Fe (Z=26), Br (Z=35).
- 3) Dans les configurations électroniques suivantes d'un atome ou d'un ion, indiquer celles qui sont non-physiques (fausses), celles qui correspondent à un état fondamental, et celles qui correspondent à un état excité.

$$\begin{array}{lll} 1s^12s^22p^1 & 1s^22s^22p^3 & 1s^22s^22p^63s^12d^{10} \\ 1s^22s^22p^2 & 1s^32s^22p^4 & 1s^22s^22p^63s^23p^64s^23d^1 \end{array}$$

- 4) Dans la classification périodique, les éléments allant du sodium (Z=11) au chlore (Z=17) ont une part de leur configuration électronique qui se retrouve pour chacun d'eux. Quel est l'élément possédant cette configuration? Écrire, en se servant de cette observation, la structure électronique des deux éléments.
- 5) Établir la configuration électronique de l'état fondamental des atomes ou ions suivants :

Z	charge
11	+1
17	-1
18	0
19	+1

Pour chacun d'eux donner le nombre d'électrons de valence.

6) Définir halogène, alcalin, métal de transition, terres rares, gaz rare. Les situer dans le tableau périodique.

Exercice 3 - Configuration électronique et classification périodique

- 1) Soit l'élément ⁶⁹₃₁Ga. Écrire sa configuration électronique atomique. Dans quel bloc de la classification périodique se trouve cet élément? Sur quelle période? Dans quelle colonne? Est-ce un métal?
- 2) Mêmes questions pour les éléments ${}^{12}_{6}$ C, ${}^{31}_{15}$ P, ${}^{40}_{20}$ Ca, ${}^{48}_{22}$ Ti, ${}^{71}_{32}$ Ge et ${}^{88}_{38}$ Sr.
- 3) Discutez l'évolution des propriétés métalliques des sept éléments étudiés. Comparez les rayons atomiques des éléments appartenant à une même période/à une même colonne.

Exercice 4 - Orbitales et Cases Quantiques

Le tableau périodique est rempli ligne après ligne (appelées "périodes") en partant de l'atome d'hydrogène (Z=1). On peut définir des zones de remplissage correspondant à des "orbitales". Pour cet exercice, on ne regarde qu'un raccourci du tableau.

1	Η							Не	Couche K
2	Li	Be	В	\mathbf{C}	N	Ο	F	Ne	Couche L
3	Na	Mg	Al	Si	Р	\mathbf{S}	Cl	Ar	Couche M

1) Lien avec les couches K, L, M : La couche L correspond à la 2^{ième} période. Elle contient des sous-couches et des orbitales. Nommez et dessinez les cases quantiques associées aux orbitales de cette couche.

2) Les premières Orbitales Atomiques (OA) sont nommées 1s 2s $2p_x$ $2p_y$ $2p_z$. Les dessiner qualitativement ci-dessous dans la convention du cours (où un signe positif est une zone hachurée et est conforme au repère). A titre d'exemple, l'orbitale $2p_x$ est dessinée.

Exercice 5 - Étude des éléments des 1^{er} et 2^e groupes

- 1) Nommez les éléments alcalins.
- 2) On donne la série des valeurs d'énergies d'ionisation en kJ.mol⁻¹ : 375,6 ; 402,9 ; 418,7 ; 495,7 et 520,1 pour ces éléments. Attribuez chaque valeur à un élément, sachant qu'aucune valeur n'est donnée pour le Francium. Expliquez la variation des énergies d'ionisation dans la colonne.
- 3) Écrire la structure électronique de valence des éléments du 2^e groupe.
- 4) Dites comment évoluent les grandeurs suivantes par rapport aux éléments alcalins :
 - (a) degré d'oxydation le plus souvent rencontré,
 - (b) dimension,
 - (c) énergie de première ionisation.

Exercice 6 - Propriétés des éléments et classification périodique

- 1) Écrire la structure électronique des ions suivants : I⁻, Fe²⁺, Cr³⁺.
- 2) Classez les éléments suivants par ordre croissant de leur rayon atomique :
 - (a) Rb, Li, Na, K
 - (b) Cl, Na, P, S, Mg, Si, Al
- 3) Commentez la variation de l'électronégativité dans le tableau périodique. Classez les éléments suivants par ordre décroissant d'électronégativité : K, F, Na, Cl, I.

Exercice 7 - Détermination d'un rayon métallique

Le sodium cristallise dans le réseau cubique à faces centrées, les atomes étant positionnés à chacun des sommets d'un cube et au centre de chaque face de ce même cube.

1) Déterminez le nombre d'atome de sodium par maille élementaire, en sachant que si un atome est partagé par N mailles adjacentes, la maille élémentaire ne contient que 1/N atome.

2) Sachant que la masse volumique du sodium est de 968 kg/m³, déterminez le rayon métallique r_{Na} . On donne la constante d'Avogadro, $\mathcal{N}_a = 6,022.10^{23} \text{mol}^{-1}$ et la masse atomique du sodium (22,990 g.mol⁻¹).

Exercice 8 - Détermination d'un rayon ionique

NaCl cristallise dans le réseau cubique faces centrées représenté ci-dessous.

Examinez la structure et déterminez le nombre d'ions Na⁺ et Cl⁻ dans la maille représentée ci-dessous.

Dans cet édifice, les anions et les cations sont en contact. La masse volumique d'un cristal de chlorure de sodium est de $2,163 \text{ g/cm}^3$. Le rayon ionique $r(\text{Cl}^-)$ est de 1,81 Å (voir Annexe). Calculez, à l'aide de ces données le rayon de l'ion Na⁺. Comparez au rayon métallique déterminé dans l'exercice précédent.

On donne la constante d'Avogadro, $\mathcal{N}_a = 6,022.10^{23} \text{ mol}^{-1}$ et les masses atomiques du chlore $(35,453 \text{ g.mol}^{-1})$, et du sodium $(22,990 \text{ g.mol}^{-1})$.

Exercice 9 - Détermination d'un rayon ionique

Calculez le rayon de l'ion Cs⁺ en vous servant des données suivantes : CsCl cristallise dans le réseau cubique centré, représenté ci-dessous.

Dans cet édifice les anions et les cations sont en contact.

Déterminez le rayon ionique du cation Cs⁺ sachant que la masse volumique du cristal de chlorure de césium est de 3,990 g/cm³ et le rayon ionique $r(Cl^-)$ est de 1,81 Å (voir Annexe).

On donne: $\mathcal{N}_a = 6,022.10^{23} \text{mol}^{-1}$; $M(\text{Cl}) = 35,453 \text{ g.mol}^{-1}$; $M(\text{Cs}) = 132,905 \text{ g.mol}^{-1}$.

Modèle de Slater

Exercice 10 - Application du modèle de Slater à l'hélium

On se propose dans ce problème de déterminer l'énergie de première ionisation de l'hélium à partir du modèle de Slater.

- 1) Quelle est la valeur du numéro atomique Z de l'atome d'hélium?
- 2) Quelle est la structure électronique de cet élément dans son état fondamental?
- 3) Donnez la valeur des nombres quantiques de chaque électron.
- 4) Sachant que l'effet d'écran d'un électron 1s sur un électron 1s est décrit par la constante de Slater $\sigma_{1s} = 0.30$, calculez la charge nucléaire effective ressentie par un tel électron.
- 5) En déduire l'énergie d'un électron de l'atome d'hélium.
- 6) En déduire l'énergie E(He) de l'atome d'hélium dans son état fondamental.
- 7) Comment appelle-t-on un cation du type de He^+ ? En déduire l'énergie $E(He^+)$.
- 8) Montrez que l'énergie de première ionisation de l'hélium vaut $E_{\text{ionis.}}(\text{He}) = 24.2 \text{ eV}.$
- 9) Quelle est la valeur minimale de la fréquence de la radiation que l'on doit utiliser pour ioniser une fois l'hélium?

Exercice 11 - Application du modèle de Slater au magnésium

- 1) Quelle est la configuration électronique du magnésium dans l'état fondamental?
- 2) Déterminez la charge nucléaire effective puis l'énergie de chaque électron.
- 3) Evaluez l'énergie totale d'un atome de magnésium et d'un ion Mg⁺.
- 4) En déduire la valeur de l'énergie de première ionisation du magnésium.

Exercice 12 - Rayon atomique

- 1) Donnez la configuration électronique des atomes de la deuxième période du tableau périodique.
- 2) Complétez le tableau ci-dessous. Les valeurs de n, Z_{eff} et r ne sont à calculer que pour la dernière orbitale occupée.

$oxed{ ilde{E}l\'ement}$	Li (3)	Be (4)	B(5)	C(6)	N(7)	O(8)	F(9)	Ne (10)
\overline{n}								
Z_{eff}	1.3	1.95						
r			$1.54 \ a_0$	$1.23 \ a_0$	$1.03 \ a_0$	$0.88 \ a_0$	$0.77 \ a_0$	

3) Tracez les courbes donnant la variation de r et de Z_{eff} (de la dernière orbitale occupée) en fonction de Z.

Exercice 13 - Potentiel d'ionisation

- 1) Calculer les énergies des atomes suivants : C, He, Li, Ne, Al.
- 2) Calculer les énergies de leurs monocations : C⁺, He⁺, Li⁺, Ne⁺, Al⁺.
- 3) Pour chaque espèce, retouver les suivantes valeurs pour les potentiels de première ionisation (en eV): 11,5 (C); 24,2 (He); 5,7 (Li); 16,0 (Ne); 10,8 (Al).

Modèle de Bohr – Notions de spectroscopies

Exercice 14 - L'atome d'hydrogène

Le modèle de l'atome d'hydrogène proposé par Rutherford et Perrin est le suivant : un électron de charge e tourne autour d'un proton en parcourant, d'un mouvement uniforme, une orbite circulaire de rayon r.

- 1) On se propose de trouver l'expression de l'énergie totale de l'interaction électron/proton en employant les lois de la mécanique classique et la loi de Coulomb.
 - (a) Exprimer les forces en présence au niveau de l'électron, puis en faisant le bilan de ces forces à l'équilibre montrer que :

$$mv^2 = \frac{e^2}{4\pi\varepsilon_0 r} \tag{1}$$

(b) En considérant l'énergie comme la somme des énergies cinétique et potentielle, puis en se servant de l'équation 1, montrer que :

$$E = \frac{-e^2}{8\pi\varepsilon_0 r} \tag{2}$$

2) En posant l'hypothèse de Bohr:

$$mvr = n\frac{h}{2\pi} \tag{3}$$

établir l'expression de r dans l'atome d'hydrogène, puis la nouvelle expression de l'énergie.

3) Calculer le rayon de la première orbite de Bohr (n=1) pour l'atome d'hydrogène, en vérifiant l'équation aux dimensions.

Exercice 15 - Notions de spectroscopies

- 1) On considère l'atome d'hydrogène (Z=1) et d'hélium (Z=2).
 - (a) Expliquer pourquoi He⁺ est un hydrogénoïde.
 - (b) Calculer en eV les potentiels d'ionisations pour H et He⁺.
 - (c) Calculer les énergies des différents niveaux quantiques (n = 2 à 6) pour l'hydrogène et He⁺ en eV et en Joules. Tracer ces niveaux sous formes de diagrammes en eV.
- 2) Lorsque l'électron se désexcite (de n_i à $n_f < n_i$) il émet de la lumière avec une énergie correspondant exactement à la différence d'énergie entre les niveaux n_f et n_i . On rappelle que $E = hc/\lambda$. Le spectre d'émission de la série de Balmer pour l'hydrogène a été le premier observé car il est dans le domaine spectral visible (400 à 800 nm).
 - (a) Montrer que la série de Lyman $(n_f = 1)$ n'est pas dans le domaine visible.
 - (b) A quelle énergie correspond la longueur d'onde 400 nm?
 - (c) A quelle énergie correspond la longueur d'onde 800 nm?
 - (d) Sur la base de l'exercice 1c), donner pour He^+ des valeurs de n_i et de n_f pour que la transition se produise dans le visible, commenter.
- 3) Bien avant la théorie de Bohr, Balmer et Rydberg ont établi la relation empirique permettant de calculer les longueurs d'onde des raies d'émission du spectre de l'atome d'hydrogène :

$$\frac{1}{\lambda} = R_H \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right) \tag{4}$$

dans laquelle n_f et n_i sont des entiers et R_H une constante, appelée constante de Rydberg. Trouver que $R_H = 1,097.10^7 m^{-1}$.

Les structures de Lewis

Pour	ce TD	et le	suivant.	on se	basera	sur	les	ensembles	ci-dessous.	:

	ENSEM	BLE I		ENSEMBLE II	
$\mathrm{H_{2}O}$	HCN	PCl_3	$HC(CH_3)_3$	$\mathrm{CH_2CHC}(\mathrm{O})\mathrm{CH_3}$	$CH_3CH_2NH_2$
CH_4	$\mathrm{CH_{3}OH}$	$C_2H_6: CH_3CH_3$	H_2CO	$\mathrm{CH_{3}COOH}$	$\mathrm{CH_3C}(\mathrm{O})\mathrm{NH_2}$
NH_3	HBr	H_2S	$\mathrm{CH_{3}CHO}$	HCOOH	$CH_2CHNHCH_3$
NH_2OH	SiH_4	HCl	CH ₃ CH ₂ CHO	CF_3COOH	C_2H_2
NF_3	PH_3	BH_3			
CH_3^+	CH_3^-				

Exercice 16 - L'algorithme de Lewis

Rappeler les étapes pour construire une structure de Lewis, exemple du CO₂ (C central).

Exercice 17 - Structure de Lewis de molécules simples

Pour chaque atome des composés de l'ensemble I (différents de H), indiquer sa position dans le tableau périodique (période et groupe). Compter les électrons de valence, envisager un squelette et donner la structure de Lewis de chaque composé. Établir la charge et le degré d'oxydation de chaque atome.

Exercice 18 - Structure de Lewis de molécules organiques simples

Pour les molécules de l'ensemble II, établir la structure de Lewis en suivant l'exemple ci-dessous :

Exercice 19 - Degré d'oxydation

Pour les atomes de carbone en gras des structures suivantes, établir le degré d'oxydation:

$\mathrm{CH_{3}CH_{2}OH}$	$\mathrm{CH_{3}CH_{2}CH_{2}OH}$	$\mathrm{CH_{3}CH_{2}OCH_{3}}$
$\mathrm{CH_{3}COOH}$	$\mathrm{CH_3}\mathbf{C}(\mathrm{O})\mathrm{OCH_3}$	$\mathrm{CH_{3}CHO}$
$\mathrm{CH_3CH_2}\mathbf{CH_3}$	$\mathrm{CH_{3}CH_{2}CH_{3}}$	$\mathrm{CH_3}\mathbf{C}(\mathrm{O})\mathrm{NH_2}$
HCCH	$HC\mathbf{C}CH_3$	$\mathrm{CH}_2\mathbf{C}\mathrm{H}\mathrm{CH}_3$

Exercice 20 - Structures de Lewis et période 3

Pour les systèmes suivants, établir les structures de Lewis, la charge et le degré d'oxydation de chaque atome. Quel est la particularité des éléments P, Cl et S dans ces composés?

Pour construire le squelette de la molécule : l'atome central est en gras et les atomes d'hydrogène sont connectés aux atomes d'oxygène.

Exercice 21 - Structures de Lewis équivalentes

Plusieurs structures de Lewis sont envisageables pour les molécules suivantes. Les établir pour chaque molécule.

$$NO_2^-, HNO_3, SO_4^{2-}, SO_3, HCO_3^-, CO_3^{2-}, ClO_4^-, O_3.$$

Recouvrements entre Orbitales Atomiques

Pour se préparer à ces exercices, on pourra rappeler les schémas des orbitales s, p_x, p_y, p_z selon un repère imposé.

Exercice 22 - Recouvrement d'orbitales atomiques

Dans une molécule A-B, on étudie le recouvrement entre 2 orbitales atomiques, l'une centrée sur un atome A, l'autre sur B. Pour l'ensemble de cet exercice, les axes sont définis selon la figure du repère ci-dessous (l'axe internucléaire définit l'axe Oz, et x est dans le plan de la feuille, vers le haut).

Pour chaque cas proposé,

- (i) dessinez les orbitales en présence
- (ii) indiquez la nature du recouvrement : $\sigma,\,\pi$ ou nul
- (iii) précisez s'il s'agit d'un recouvrement positif, négatif ou nul

Exemple : $+2s_A \mid -2s_B$

(i) Dessin:

- 1) $+2p_{xA}$ | $+2p_{xB}$
- 2) $+2p_{zA} \mid -2p_{zB}$
- 3) $+2s_{A} \mid +2s_{B}$
- 4) $+2s_A \mid +2p_{z_B}$
- **5)** $+2p_{xA}$ | $+2s_B$

- (ii) Recouvrement axial, donc σ
- (iii) Recouvrement <0 car de phase \neq

Exercice 23 - Définition

- 1) Rappelez l'expression du recouvrement S_{ab} , entre une orbitale $\Psi_a(r,\theta,\phi)$, et $\Psi_b(r,\theta,\phi)$.
- 2) Que vaut exactement cette intégrale si $\Psi_a(r,\theta,\phi) = \Psi_b(r,\theta,\phi) = \Psi(r,\theta,\phi)$.

Exercice 24 - Sur un même atome, les orbitales ne se recouvrent pas

- 1) Montrez graphiquement que les orbitales $2s_A$ et $2p_{z_A}$ (centrée sur le même atome A), ont un recouvrement nul. Expliquez.
- 2) A quoi correspond la combinaison $2s_A + 2p_{z_A}$?

Orbitales Moléculaire, combinaison d'Orbitales Atomiques

Dans une molécule A-B, l'axe internucléaire définit l'axe Oz, selon la figure du repère :

Exercice 25 - Principe de construction des diagrammes d'OM

On considère l'interaction entre orbitales atomiques de deux atomes (A) et (B) formant une molécule A-B.

- I. $(1s_A)$ et $(1s_B)$
- II. $(2p_{x_A}, 2p_{z_A})$ et $(2p_{x_B}, 2p_{z_B})$
- III. $(2s_A, 2p_{x_A}, 2p_{y_A})$ et $(2s_B, 2p_{x_B}, 2p_{y_B})$

Pour chacun de ces systèmes (I, II et III), représentez sur un diagramme d'énergie le résultat de l'interaction entre paires d'OA. Le cas échéant, justifiez la dégénérescence de certaines OM. Précisez pour chaque orbitale si elle est de type σ ou π et, si elle est antiliante, indiquez le par une * (exemple σ_1^*).

On supposera que les OA non dégénérées sont suffisamment éloignées énergétiquement pour pouvoir négliger leurs interactions mutuelles : on se limite donc à des interactions à 2 orbitales.

Exercice 26 - Diagrammes d'OM à deux orbitales

Pour H₂⁺, H₂, He₂⁺ et He₂, les énergies de liaison sont respectivement de 255, 429, 243 et 0 kJ.mol⁻¹. Comment peut-on rendre compte qualitativement de ces valeurs dans le cadre de la théorie des orbitales moléculaires?

Exercice 27 - Diagramme d'une diatomique importante : O_2

Soit l'atome d'oxygène O (Z=8). Ses orbitales atomiques de valence ont pour énergies $E_{2s} = -32.4$ eV et $E_{2p} = -15.9$ eV.

- 1) Écrire sa configuration électronique atomique dans son état fondamental.
- 2) Quelles sont les couples d'orbitales atomiques qui vont participer à la formation de liaisons de type σ , de type π ?
- 3) Donnez une représentation schématique des orbitales moléculaires σ et π en insistant sur leurs différences et leurs caractéristiques.
- 4) Tracez le diagramme d'interaction des orbitales atomiques et y placer les 12 électrons de valence de la molécule.
- 5) Écrivez la configuration électronique moléculaire (de valence) de O_2 .

Exercice 28 - Utilisation des diagrammes d'interaction

La distance entre les atomes d'une molécule peut varier sensiblement avec la charge de l'espèce. Quelques distances internucléaires sont indiquées ci-dessous pour O_2 et ses ions.

$$O_2^+: 1{,}123 \text{ Å}; O_2: 1{,}207 \text{ Å}; O_2^-: 1{,}300 \text{ Å}; O_2^{2-}: 1{,}490 \text{ Å}$$

On cherche à expliquer la variation des distances internucléaires dans la série en utilisant les diagrammes d'interaction. Pour chaque cas vous préciserez le nombre d'électrons de valence, remplirez le diagramme, écrirez la configuration électronique et calculerez l'indice (ou ordre) de liaison. Si des espèces sont paramagnétiques le préciser (en justifiant).

Les trames des diagrammes sont données ci-après.

Exercice 29 - Cas des molécules hétéronucléaires : H-F

Pour la molécule HF $(E_{1s}(H) = -13.6 \text{ eV}; E_{2s}(F) = -40.1 \text{ eV et } E_{2p}(F) = -18.6 \text{ eV})$:

- 1) déterminez le nombre d'électrons de valence de la molécule.
- 2) Dessinez le diagramme des orbitales moléculaires.
- 3) Calculez l'indice de liaison.
- 4) Discutez de l'existence de paramagnétisme ou de moment dipolaire.

Modèle ondulatoire

Exercice 30 - Fonctions de type ns

Les tracés de la partie radiale des orbitales 1s, 2s et 3s de l'atome d'hydrogène sont représentés ci-après. Tracez de manière qualitative la densité de probabilité radiale pour les orbitales 1s, 2s et 3s. Commentez.

Exercice 31 - Normation d'une fonction d'onde - Représentation graphique

L'état fondamental de l'atome d'hydrogène est décrit par la fonction d'onde :

$$\begin{split} \Psi_{1s}(r,\theta,\varphi) &= R(r)Y(\theta,\varphi) \qquad \text{où} \\ R(r) &= N_r e^{-r/a_0} \\ Y(\theta,\varphi) &= N_{\theta,\varphi}f(\theta,\varphi) \qquad f(\theta,\varphi) = 1 \end{split}$$

avec N_r et $N_{\theta,\varphi}$ scalaires.

1) Sachant qu'en coordonnées sphériques l'élément différentiel de volume s'écrit

$$dV = d\tau = r^2 \sin \theta dr d\theta d\varphi$$

et que l'ensemble de l'espace est décrit lorsque r varie de 0 à $+\infty$, θ de 0 à π et φ de 0 à 2π , écrire l'expression de l'intégrale de normalisation.

2) Écrire cette intégrale sous la forme d'un produit d'une intégrale angulaire :

$$N_{\theta,\varphi}^2 \int_0^\infty \int_0^{2\pi} f(\theta,\varphi) \sin\theta d\theta d\varphi$$

et d'une intégrale radiale que vous detérminerez. Normer-les séparemment.

On donne:
$$\int_0^{+\infty} r^n e^{-Ar} dr = \frac{n!}{A^{n+1}}$$
 avec n , entier et A , réel > 0 .

- 3) Écrire la $\Psi_{1s}(r,\theta,\varphi)$ totale.
- 4) Rappeler les définitions de la probabilité de présence et de la densité de probabilité radiale. Donner l'expression de la densité de probabilité radiale en fonction de la partie radiale $R_{n,l}$ d'une fonction d'onde.
- 5) Pour la fonction d'onde Ψ_{1s} , représenter graphiquement la courbe donnant, en fonction de r/a_0 dans l'intervalle $0 \le r/a_0 \le 5$, la densité de probabilité radiale.

Exercice 32 - Représentation d'orbitale

L'expression de l'orbitale 1s en un point M de coordonnées (r,θ,φ) dans le cas de l'atome d'hydrogène est donnée par :

$$\Psi_{1s}(M) = N_s e^{-r/a_0}$$

et l'expression de l'orbitale $2p_z$:

$$\Psi_{2p_z}(M) = N_{p_z} \left(\frac{r}{a_0}\right) e^{-r/2a_0} \cos \theta .$$

La densité électronique est donnée par :

$$D(M) = \Psi^{\star}(M)\Psi(M) = |\Psi(M)|^2 \ .$$

- 1. Pour l'orbitale $2p_z$, donnez en fonction de r/a_0 l'expression de la densité électronique pour l'ensemble des points M situés sur les axes Ox, Oy et Oz.
- 2. Pour l'orbitale $2p_z$, donnez en fonction de r/a_0 l'expression de la densité électronique pour l'ensemble des points M situés que sur l'axe Oz. Montrez que cette fonction D(M) est maximale pour $r/a_0 = 2$ (tant vers les z positifs, $\theta = 0$, que vers les z négatifs, $\theta = 180 \deg$).

- 3. Pour quelle valeur de θ l'orbitale $2p_z$ vaut-elle zéro? Quel est donc le plan nodal? Quelle est la densité sur ce plan nodal?
- 4. Pour l'orbitale 1s, donnez en fonction de r/a_0 l'expression de la densité électronique pour l'ensemble des points M situés sur les axes Ox, Oy et Oz. Commentez.

Exercice 33 - Récapitulatif sur les orbitales atomiques

Soit un tableau relatif aux fonctions d'onde de l'atome d'hydrogène.

orbitales	R(r)	$Y(\theta,\varphi)$	E (eV)	n	l	m_l
1s						
2s	e					
$2p_x$		f				
$2p_y$						
$2p_z$						

On donne dans le désordre les expressions des parties radiales et des parties angulaires normées séparément :

$$\mathbf{a} = 2\left(a_0^{-3/2}\right)e^{-r/a_0} \qquad \mathbf{b} = \frac{\sqrt{3}}{2\sqrt{\pi}}\sin\theta\sin\varphi \qquad \mathbf{c} = \frac{1}{2\sqrt{6}}\left(a_0^{-5/2}\right)r.e^{-r/2a_0}$$

$$\mathbf{d} = \frac{1}{2\sqrt{\pi}} \qquad \mathbf{e} = \frac{1}{\sqrt{2}}\left(a_0^{-3/2}\right)\left(1 - \frac{r}{2a_0}\right)e^{-r/2a_0} \qquad \mathbf{f} = \frac{\sqrt{3}}{2\sqrt{\pi}}\sin\theta\cos\varphi \qquad \mathbf{g} = \frac{\sqrt{3}}{2\sqrt{\pi}}\cos\theta$$

1) Complétez le tableau ci-dessus en plaçant dans la case correspondant à chaque fonction d'onde, $(1s, 2s, 2p_x, 2p_y, 2p_z)$ les lettres attribuées aux fonctions radiales et angulaires convenables $(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f})$ ou \mathbf{g} , ci-dessus.

Remarque: une même fonction peut intervenir dans différentes cases: justifiez.

- 2) On donne les valeurs des énergies de ces fonctions d'onde : -3.4 eV et -13.6 eV. Placez ces valeurs dans les cases convenables du tableau. Pourquoi n'y a-t-il que deux valeurs?
- 3) Complétez le tableau en indiquant les valeurs des trois nombres quantiques orbitaux (ou nombres quantiques d'espace) pour chaque fonction d'onde.

Remarque : pour les fonctions $2p_x$, $2p_y$, $2p_z$, justifiez la ou les valeurs de m_l retenue(s) dans chaque cas.

- 4) Indiquez schématiquement les volumes de plus grande probabilité de présence pour un électron 1s, 2s, $2p_x$, $2p_y$ ou $2p_z$, gravitant autour d'un noyau situé au centre d'un repère orthonormé.
- 5) Précisez pour chaque orbitale :
 - (a) le signe que prend la fonction d'onde dans les différentes régions de l'espace;
 - (b) les surfaces nodales, le cas échéant;
 - (c) les propriétés directionnelles et éventuellement les axes de révolution.

Constantes de Slater

	1s	2s2p	3s3p	3d	4s4p
1s	0,30				
2s2p	0,85	$0,\!35$			
3s3p	1	0,85	0,35		
3d	1	1	1	$0,\!35$	
4s4p	1	1	0,85	0,85	0,35