Tarefa 5

Gabriel Belém Barbosa RA: 234672

13 de Setembro de 2021

Conteúdo

1	Exe	Exercício 1															3								
	1.1	Item (a)																							3
	1.2	Item (b)																							3

1 Exercício 1

1.1 Item (a)

O sistema em questão é

$$\underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{R} \underbrace{\begin{pmatrix} \mathbf{x_3} \\ \mathbf{x_4} \\ \mathbf{x_5} \end{pmatrix}}_{\hat{\mathbf{x}_8}} = \underbrace{\begin{pmatrix} 0 \\ 4 \\ 15 \end{pmatrix}}_{h}$$

Cuja solução é $\hat{x}_B = (0,4,15)^T$. Essa solução é factível, uma vez que respeita a não negatividade das variáveis da base (as variáveis fora da base são obviamente nulas, e portanto não negativas também). Para testar a optimalidadade da solução, como c_B^T , vetor com os coeficientes das variáveis básicas na função objetivo, é nulo, tem-se que o vetor multiplicador simplex $\lambda^T = c_B^T B^{-1} = \vec{0}$. Dos slides da aula e dessa nulidade

$$f(x) = f(\hat{x}) + (c_{N_1} - \lambda^T a_{N_1})x_1 + (c_{N_2} - \lambda^T a_{N_2})x_2 = c_{N_1}x_1 + c_{N_2}x_2$$

Onde foi usado que $f(\hat{x})=-\mathbf{x_1}-3\mathbf{x_2}=-0-3\cdot 0=0$. Agora, sendo da função minimizadora $c_{N_1}=-1$ e $c_{N_2}=-3$

$$f(x) = -x_1 - 3x_2$$

Logo, visto que o objetivo é encontrar o minimizador, qualquer uma das variáveis fora da base poderia entrar nela para tal, pois os seus respectivos coeficientes são negativos, e a solução não é ótima ($\exists \hat{c}_{N_j} = c_{N_j} - \lambda^T a_{N_j} < 0$, sendo \hat{c}_{N_j} o custo relativo da variável j fora da base).

1.2 Item (b)

Colocando o PL na forma padrão, tem-se $min z = -3x_1 - 2x_2 - x_3$

Sujeito a:
$$\begin{cases} 3x_1 - 3x_2 + x_3 = 12 \\ x_1 - x_2 + x_4 = 4 \\ x_1 + x_2 + x_5 = 4 \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0 \end{cases}$$

O sistema em questão é

$$\underbrace{\begin{pmatrix} 3 & -3 \\ -1 & 2 \end{pmatrix}}_{B} \underbrace{\begin{pmatrix} \mathbf{x_1} \\ \mathbf{x_2} \end{pmatrix}}_{\hat{x}_B} = \underbrace{\begin{pmatrix} 3 \\ 4 \end{pmatrix}}_{b}$$

Cuja solução é obviamente $\hat{x}_B = (6,5)^T$. Essa solução é factível, uma vez que respeita a não negatividade das variáveis da base (as variáveis fora da base são obviamente nulas, e portanto não negativas também). Para testar a optimalidadade da solução, com $c_B^T = (-3, -2)$ da função objetivo e a inversa de B (usando a regra de invertibilidade para matrizes 2×2)

$$B^{-1} = \frac{1}{3} \begin{pmatrix} 2 & 3 \\ 1 & 3 \end{pmatrix}$$

Tem-se que o vetor multiplicador simplex $\lambda^T=c_B^TB^{-1}=(-\frac{8}{3},-5)$. Dos slides da aula

$$f(x) = f(\hat{x}) + (c_{N_1} - \lambda^T a_{N_1})x_3 + f(\hat{x}) + (c_{N_2} - \lambda^T a_{N_2})x_4 + f(\hat{x}) + (c_{N_3} - \lambda^T a_{N_3})x_5$$

Sendo $a_{N_1} = (2,1)^T$, $a_{N_2} = (1,0)^T$ e $a_{N_3} = (0,1)^T$, dos coeficientes de x_3 , x_4 e x_5 nas equações de restrição, respectivamente, e $c_{N_1} = -1$ e $c_{N_2} = c_{N_3} = 0$ da função objetivo. Substituindo

$$f(x) = (-1 + (\frac{8}{3}, 5)(2, 1)^{T})x_{3} + (\frac{8}{3}, 5)(1, 0)^{T}x_{4} + (\frac{8}{3}, 5)(0, 1)^{T}x_{5} - 28$$
$$= \frac{28}{3}x_{3} + \frac{8}{3}x_{4} + 5x_{5} - 28$$

Onde foi usado que $f(\hat{x}) = -3\mathbf{x_1} - 2\mathbf{x_2} - \mathbf{x_3} = -3 \cdot 6 - 2 \cdot 5 - 0 = -28$. Logo, visto que o objetivo é encontrar o minimizador, a solução é ótima $(\hat{c}_{N_j} = c_{N_j} - \lambda^T a_{N_j} \ge 0$, j = 1, 2, 3) e nenhuma variável deve entrar na base.