Tornadoes cost - R notebook

January 29, 2017

```
In [6]: library("AzureML")
    ws <- workspace()
    dat <- download.datasets(ws, "All_tornadoes.csv")</pre>
```

In [7]: head(dat)

NA.	Year	Month	Day	Date	Time	Timezone	State	State_FIPS	State_Number	 Ler
1	1950	1	3	3/1/1950	11:00	3	MO	29	1	 9.5
1	1950	1	3	3/1/1950	11:00	3	MO	29	1	 6.2
1	1950	1	3	3/1/1950	11:10	3	IL	17	1	 3.3
2	1950	1	3	3/1/1950	11:55	3	IL	17	2	 3.6
3	1950	1	3	3/1/1950	16:00	3	OH	39	1	 0.1
4	1950	1	13	13/1/1950	5:25	3	AR	5	1	 0.6
										,

0.1 Replace month values with names

```
In [8]: dat$Month[dat$Month == 1] <- "January"
    dat$Month[dat$Month == 2] <- "February"
    dat$Month[dat$Month == 3] <- "March"
    dat$Month[dat$Month == 4] <- "April"
    dat$Month[dat$Month == 5] <- "May"
    dat$Month[dat$Month == 6] <- "June"
    dat$Month[dat$Month == 7] <- "July"
    dat$Month[dat$Month == 8] <- "August"
    dat$Month[dat$Month == 9] <- "September"
    dat$Month[dat$Month == 10] <- "Octomber"
    dat$Month[dat$Month == 12] <- "December"</pre>
```

In [9]: head(dat)

NA.	Year	Month	Day	Date	Time	Timezone	State	State_FIPS	State_Number	 Le
1	1950	January	3	3/1/1950	11:00	3	MO	29	1	 9.5
1	1950	January	3	3/1/1950	11:00	3	MO	29	1	 6.2
1	1950	January	3	3/1/1950	11:10	3	IL	17	1	 3.3
2	1950	January	3	3/1/1950	11:55	3	IL	17	2	 3.6
3	1950	January	3	3/1/1950	16:00	3	OH	39	1	 0.1
4	1950	January	13	13/1/1950	5:25	3	AR	5	1	 0.6

0.2 Estimated property loss information

Prior to 1996 this is a categoration of tornado damage by dollar amount: - 0 or blank-unknown - 1 < \$50 - 2=\$50-\$500 - 3=\$500-\$5,000 - 4=\$5,000-\$50,000 - 5=\$50,000-\$500,000 - 6=\$500,000-\$5,000,000 - 7=\$5,000,000-\$50,000,000 - 8=\$50,000,000 - \$500,000,000 - \$9>\$500,000,000

When summing for state total use sn=1, not sg-1.

From 1996, this tornado property damage is in million of dollars. Entry of 0 does not mean \$0.

```
In [10]: # Before 1996
    dat$Losses[dat$Losses == 0 ] <- NA
    dat$Losses[dat$Losses == 1 & dat$Year < 1996] <- "<$50"
    dat$Losses[dat$Losses == 2 & dat$Year < 1996] <- "$50-$500"
    dat$Losses[dat$Losses == 3 & dat$Year < 1996] <- "$500-$5,000"
    dat$Losses[dat$Losses == 4 & dat$Year < 1996] <- "$5,000-$50,000"
    dat$Losses[dat$Losses == 5 & dat$Year < 1996] <- "$50,000-$50,000"
    dat$Losses[dat$Losses == 6 & dat$Year < 1996] <- "$500,000-$500,000"
    dat$Losses[dat$Losses == 7 & dat$Year < 1996] <- "$5,000,000-$500,000,000"
    dat$Losses[dat$Losses == 7 & dat$Year < 1996] <- "$500,000,000-$500,000,000"
    dat$Losses[dat$Losses == 8 & dat$Year < 1996] <- "$500,000,000-$500,000,000]
    dat$Losses[dat$Losses == 9 & dat$Year < 1996] <- "$500,000,000,000"
    dat$Losses[dat$Losses >= 0 & dat$Year < 1996] <- "$500,000,000,000"</pre>
```

dat\$Losses[dat\$Losses >= 0.00005 & dat\$Losses < 0.0005 & dat\$Year >= 1996]
dat\$Losses[dat\$Losses >= 0.0005 & dat\$Losses < 0.005 & dat\$Year >= 1996] <
dat\$Losses[dat\$Losses >= 0.005 & dat\$Losses < 0.05 & dat\$Year >= 1996] <dat\$Losses[dat\$Losses >= 0.05 & dat\$Losses < 0.5 & dat\$Year >= 1996] <- "\$
dat\$Losses[dat\$Losses >= 0.5 & dat\$Losses < 5 & dat\$Year >= 1996] <- "\$500
dat\$Losses[dat\$Losses >= 5 & dat\$Losses < 50 & dat\$Year >= 1996] <- "\$5,00
dat\$Losses[dat\$Losses >= 50 & dat\$Losses < 500 & dat\$Year >= 1996] <- "\$5,00
dat\$Losses[dat\$Losses >= 50 & dat\$Year >= 1996] <- "\$500,000,000"</pre>

Date	State	Losses
3/1/1950	MO	\$500,000-\$5,000,000
3/1/1950	MO	\$500,000-\$5,000,000
3/1/1950	IL	\$50,000-\$500,000
3/1/1950	IL	\$50,000-\$500,000
3/1/1950	ОН	\$5,000-\$50,000
13/1/1950	AR	\$500-\$5,000

0.3 Set Crop-loss NA

```
In [12]: dat$'Crop.loss'[dat$'Crop.loss' == 0] <- NA</pre>
```

0.4 Set Length(miles) NA

```
In [14]: dat$'Length.miles.'[dat$'Length.miles.' == 0] <- NA</pre>
```

0.5 Set Width(yards) NA

```
In [15]: dat$'Width.yards.'[dat$'Width.yards.' == 0] <- NA</pre>
In [16]: newdata <- subset(dat, select=c(Date, State, Crop.loss, Length.miles. , Widt</pre>
         head (newdata)
        Date
              State Crop.loss
                             Length.miles.
                                          Width.yards.
    3/1/1950 MO
                    NA
                             9.5
                                          150
    3/1/1950 | MO
                    NA
                             6.2
                                          150
                                          100
    3/1/1950 | IL
                    NA
                             3.3
    3/1/1950 | IL
                    NA
                             3.6
                                          130
    3/1/1950 OH
                    NA
                             0.1
                                          10
   13/1/1950 | AR
                    NA
                             0.6
                                          17
In [17]: library(ggplot2)
In [47]: ## Use ggplot2 to create conditioned scatter plots
         numCols <- c( 'Length.miles.','Width.yards.' )</pre>
         fscale.scatter <- function(df, cols) {</pre>
           require (ggplot2)
           for(col in cols) {
              p1 <- ggplot(df, aes_string(x = col, y = "F.Scale")) +
                      geom_point(aes( color = 'Injuries')) +
                      geom_smooth(method = "loess") +
                      ggtitle(paste('F.Scale vs. ', col)) +
                      theme(text = element_text(size=16))
             print (p1)
           }
         }
In [48]: fscale.scatter(dat[1:4000,], numCols)
Warning message:
In loop_apply(n, do.ply): Removed 25 rows containing missing values (stat_smooth).
```

In loop_apply(n, do.ply): Removed 25 rows containing missing values (geom_point).Wa In loop_apply(n, do.ply): Removed 25 rows containing missing values (stat_smooth).Wa In loop_apply(n, do.ply): Removed 25 rows containing missing values (geom_point).

F.Scale vs. Length.miles.

F.Scale vs. Width.yards.


```
print (p1)
}
```

In [59]: tornadoes.box(dat, catCols)

