CACHE REPLACEMENT USING REINFORCEMENT LEARNING

Team Members: Rohit Kumar (ZR66734)

Arti Singh (LN22810)

Aishwarya Sapkale (DP73694)

Cache Replacement

- A program/utility to manage stored information on cache
- Replacement Policies:
 - Random Replacement
 - LRU (Least Recently Used) / TLRU (Time aware LRU)
 - First In First Out
 - MRU (Most Recently Used)
 - Least-frequently Used
 - Bélády's Algorithm

Bélády's Algorithm

- Discards the information not to be used in near future.
 - Information with low probability of being used.
- Practically possible with use of Machine Learning
- Deep learning has been applied recently for hardware predictors.
- E.g. RNN, Multi-layer Perceptron, CNN

Motivation

- Are earlier algorithms optimal for replacement?
 - Past is not always reliable
- Is predicting future feasible for optimizing the replacement policies?
 - Yes, using predictive modeling
 - However, it takes enormous resources to train
 - Training can take up to hours, days, or even months.
 - Also, the models have fixed learnt parameters, so not adaptable
 - State of cache is never constant and is changing over time.

Proposed Idea

 Applying Reinforcement Learning for Cache Replacement using Q-learning algorithm

Methodology

- Goal Reduce the cache miss rate.
- For k initial time-steps
 - select random cache entries to be replaced
 - keep a record of each time-step
- Calculate the overall cache miss rate.
 - If it is below the threshold -> Add reward
 - Otherwise -> Reduce reward
 - If same value as threshold -> No change in reward
- Update the Q-table based on the reward.
- Iterate over above steps, based on Q-table entries instead now for selection of entry to be replaced

References

- Deep Reinforcement Learning for Adaptive Caching in Hierarchical Content Delivery Networks [July 2019, Alireza Sadeghi, Gang Wang, and Georgios B. Giannakis https://arxiv.org/pdf/1902.10301.pdf
- A Q-learning-based network content caching method [Dec 2018: Haijun Chen and Guanzheng Tan]
 https://www.researchgate.net/publication/329219973 A Q-learning-based network content caching method
- Applying Deep Learning to the Cache Replacement Problem [Oct 2019: Zhan Shi, Xiangru Huang, Akanksha Jain, and Calvin Lin] https://www.cs.utexas.edu/~lin/papers/micro19c.pdf
- https://wiki.ubc.ca/Better caching using reinforcement learning

Thank You