CHAROTAR UNIVERSITY OF SCIENCE AND TECHNOLOGY CHANDUBHAI S PATEL INSTITUTE OF TECHNOLOGY

K. D. PATEL DEPARTMENT OF INFORMATION TECHNOLOGY

Practical List

June-December 2022 (A.Y. 2022-23)

Semester: 5th IT

IT374 Artificial Intelligence

Sr No	Aim	СО	Week
		Mapping	No
1.	Presentation on AI Domains, Applications, Problems and its	1,2,3	1
	Explanation		
2.	Implement Solution using BFS of 8 puzzle problem, Water Jug	1,2	2
	problem and one problem of your own choice using any		
	programming language. Before implementing solution, analyse it		
	with respect to problem characteristics [AI perspective] and		
	solution space.		
3.	Implement Solution using DFS of 8 puzzle problem, Water Jug	1,2	3
	problem and one problem of your own choice using any		
	programming language. Before implementing solution, analyse it		
	with respect to problem characteristics [AI perspective] and		
	solution space		
4.	Analyse, Design and implement Travelling Salesman Problem using	1,2	4,5
	Hill climbing, Steepest Ascent Hill climbing and Simulated Annealing		
	Algorithm in Python. Differentiate all three approaches with		
	conclusion		
5.	Analyse, Design and implement above problem using A* and AO*	1,2,3	6,7,8
	approaches in Python	4.5	
6.	Apply MINIMAX Algorithm to solve Tic-Tac-Toe game in python.	4,5	9
	Design your solution using alpha-beta pruning.		10.11
7.	Perform classification on Iris dataset using neural network tools	4,5	10,11
	such as WEKA, ORANGE, SKLearn	4.5	40.40
8.	Design a controller to determine wash time of a domestic washing	4,5	12,13
	machine. Assume the input is dirt and grease on cloths. Use three		
	descriptors for input variables and five descriptors for output		
	variables. Derive the set of rules for controller action and		
	defuzzification. The design should be supported by the figure		
	wherever possible. Show that if the cloths are solid to a larger		
	degree the wash time will be more and vice versa	ГС	1415
9.	Study Tools for Neural Network Techniques such as Tensorflow	5,6	14,15

	and Pytorch. Install and implement feed forward neural network		
	on any data of your choice.		
10.	Perform Natural Language Processing Tasks [Text Reading, Text	2,4	16,17
	Analysis, Text Pre-processing, EDA, Stemming, Lemmatization] using		
	NLTK using Python Programming		
11.	Mini Project	1,6	