from IPython.display import Image
Image(url= "Uber_image.jpg")

import pandas as pd

Use the 'quoting=3' argument to tell pandas to ignore quotes
uber_dataset = pd.read_csv("/content/rideshare_kaggle.csv", on_bad_lines='skip', quoting=3)

<ipython-input-121-724bcbb6f001>:4: DtypeWarning: Columns (18) have mixed types. Specify dtype option on import or set low_memory=Fa
uber_dataset = pd.read_csv("/content/rideshare_kaggle.csv", on_bad_lines='skip', quoting=3)

uber_dataset.head()

,	id	timestamp	hour	day	month	datetime	timezone	source	destination	cab_type	 precipIntensityMax
0	424553bb- 7174-41ea- aeb4- fe06d4f4b9d7	1.544953e+09	9	16	12	2018-12- 16 09:30:07	America/New_York	Haymarket Square	North Station	Lyft	 0.127€
1	4bd23055- 6827-41c6- b23b- 3c491f24e74d	1.543284e+09	2	27	11	2018-11- 27 02:00:23	America/New_York	Haymarket Square	North Station	Lyft	 0.130(
2	981a3613- 77af-4620- a42a- 0c0866077d1e	1.543367e+09	1	28	11	2018-11- 28 01:00:22	America/New_York	Haymarket Square	North Station	Lyft	 0.1064
3	c2d88af2- d278-4bfd- a8d0- 29ca77cc5512	1.543554e+09	4	30	11	2018-11- 30 04:53:02	America/New_York	Haymarket Square	North Station	Lyft	 0.0000
4	e0126e1f- 8ca9-4f2e- 82b3- 50505a09db9a	1.543463e+09	3	29	11	2018-11- 29 03:49:20	America/New_York	Haymarket Square	North Station	Lyft	 0.0001
5 r	ows × 57 columns										
4											>

uber_dataset.shape

→ (45471, 57)

uber_dataset.info()

₹		<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 45471 entries, 0 to 45470</class></pre>									
	Data	Data columns (total 57 columns): # Column Non-Null Cour									
	#	Column	Non-N	Dtype							
	0	id	45471	non-null	object						
	1	timestamp	45471	non-null	float64						
	2	hour	45471	non-null	int64						
	3	day	45471	non-null	int64						
	4	month	45471	non-null	int64						
	5	datetime	45470	non-null	object						
	6	timezone	45470	non-null	object						
	7	source	45470	non-null	object						
	8	destination	45470	non-null	object						
	9	cab_type	45470	non-null	object						
	10	product_id	45470	non-null	object						
	11	name	45470	non-null	object						
	12	price	41911	non-null	float64						
	13	distance	45470	non-null	float64						
	14	surge_multiplier	45470	non-null	float64						
	15	latitude	45470	non-null	float64						
	16	longitude	45470	non-null	float64						
	17	temperature	45470	non-null	float64						
	18	apparentTemperature	45470	non-null	float64						
	19	short_summary	45470	non-null	object						
	20	long_summary	45470	non-null	object						
	21	precipIntensity	45470	non-null	float64						
	22	precipProbability	45470	non-null	float64						
	23	humidity	45470	non-null	float64						
	24	windSpeed	45470	non-null	float64						
	25	windGust	45470	non-null	float64						
	26	windGustTime	45470	non-null	float64						

-				
27	visibility	45470	non-null	float64
28	temperatureHigh	45470	non-null	float64
29	temperatureHighTime	45469	non-null	float64
30	temperatureLow	45469	non-null	float64
31	temperatureLowTime	45469	non-null	float64
32	apparentTemperatureHigh	45469	non-null	float64
33	apparentTemperatureHighTime	45469	non-null	float64
34	apparentTemperatureLow	45469	non-null	float64
35	apparentTemperatureLowTime	45469	non-null	float64
36	icon	45469	non-null	object
37	dewPoint	45469	non-null	float64
38	pressure	45469	non-null	float64
39	windBearing	45469	non-null	float64
40	cloudCover	45469	non-null	float64
41	uvIndex	45469	non-null	float64
42	visibility.1	45469	non-null	float64
43	ozone	45469	non-null	float64
44	sunriseTime	45469	non-null	float64
45	sunsetTime	45469	non-null	float64
46	moonPhase	45469	non-null	float64
47	precipIntensityMax	45469	non-null	float64
48	uvIndexTime	45469	non-null	float64
49	temperatureMin	45469	non-null	float64
50	temperatureMinTime	45469	non-null	float64
51	temperatureMax	45469	non-null	float64
52	temperatureMaxTime	45469	non-null	float64

uber_dataset.describe()

	timestamp	hour	day	month	price	distance	surge_multiplier	latitude	longitude	
count	4.547100e+04	45471.000000	45471.000000	45471.000000	41911.000000	45470.000000	45470.000000	45470.000000	4.547000e+04	
mean	1.544028e+09	11.578457	18.028986	11.572101	16.532328	2.181718	1.015441	42.343671	3.390275e+04	
std	6.869970e+05	6.989026	9.987613	0.494780	9.312955	1.139033	0.104217	1.157732	7.244473e+06	
min	1.543204e+09	0.000000	1.000000	11.000000	0.390000	0.000000	1.000000	42.214800	-7.110540e+0	
25%	1.543439e+09	5.000000	13.000000	11.000000	9.000000	1.270000	1.000000	42.350300	-7.108100e+0	
50%	1.543720e+09	12.000000	17.000000	12.000000	13.500000	2.140000	1.000000	42.351900	-7.106310e+0	
75%	1.544814e+09	18.000000	28.000000	12.000000	22.500000	2.920000	1.000000	42.364700	-7.105420e+0	
max	1.545161e+09	23.000000	30.000000	12.000000	92.000000	7.460000	9.874000	289.000000	1.544789e+09	
8 rows >	46 columns									
4									>	

uber_dataset.isnull().sum()

	0
id	0
timestamp	0
hour	0
day	0
month	0
datetime	1
timezone	1
source	1
destination	1
cab_type	1
product_id	1
name	1
price	3560
distance	1
surge_multiplier	1
latitude	1
longitude	1
temperature	1
apparentTemperature	1
short_summary	1
long_summary	1
precipIntensity	1
precipProbability	1
humidity	1
windSpeed	1
windGust	1
windGustTime	1
visibility	1
temperatureHigh	
temperatureHighTime	2
temperatureLow	2
temperatureLowTime	2
apparentTemperatureHigh	2
apparentTemperatureHighTime	2
apparentTemperatureLow	2
apparentTemperatureLowTime	2
icon	2
dewPoint	2
pressure	2
windBearing	2
cloudCover	2
uvIndex	2
visibility.1	2
ozone	2
sunriseTime	2
sunsetTime	2
moonPhase	2
precipIntensityMax	2
uvIndexTime	2

```
2
             temperatureMin
           temperatureMinTime
                                         2
             temperatureMax
                                         2
                                         2
           temperature {\bf MaxTime}
         apparent Temperature Min\\
                                         2
                                         2
       apparent Temperature Min Time\\
        apparentTemperatureMax
                                         2
      apparent Temperature Max Time\\
     dtype: int64
uber_dataset = uber_dataset.dropna()
```

uber_dataset.isnull().sum()

	О
id	0
timestamp	0
hour	0
day	0
month	0
datetime	0
timezone	0
source	0
destination	0
cab_type	0
product_id	0
name	0
price	0
distance	0
surge_multiplier	0
latitude	0
longitude	0
temperature	0
apparentTemperature	0
short_summary	0
long_summary	0
precipIntensity	0
precipProbability	0
humidity	0
windSpeed	0
windGust	0
windGustTime	0
visibility	0
temperatureHigh	0
temperatureHighTime	0
temperatureLow	0
temperatureLowTime	0
apparentTemperatureHigh	0
pparentTemperatureHighTime	0
apparentTemperatureLow	0
apparentTemperatureLowTime	0
icon	0
dewPoint	0
pressure	0
windBearing	0
cloudCover	0
uvIndex	0
visibility.1	0
ozone	0
sunriseTime	0
sunsetTime	0
moonPhase	0
precipIntensityMax	0
uvIndexTime	0

temperatureMin 0
temperatureMinTime 0
temperatureMax 0
temperatureMaxTime 0
apparentTemperatureMinTime 0
apparentTemperatureMax 0
apparentTemperatureMax 0

dtype: int64

import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
import seaborn as sns

import seaborn as sns
import pandas as pd

sns.stripplot(data=uber_dataset, x='price', y='name', hue='name')

sns.stripplot(data=uber_dataset, x='price', y='icon', hue='icon')

sns.stripplot(data=uber_dataset, x='surge_multiplier', y='source', hue='source')

<a >> <Axes: xlabel='surge_multiplier', ylabel='source'>

sns.stripplot(data=uber_dataset, x='surge_multiplier', y='hour', hue='hour')

uber_dataset['timestamp'].head()

```
\overline{\Rightarrow}
                   timestamp
         0 1.544953e+09
```

- 1 1.543284e+09
- 2 1.543367e+09
- 3 1.543554e+09
- 4 1.543463e+09

dtype: float64

```
from datetime import datetime
timestamp1 = 1544952608
timestamp2 = 1543284024
timestamp3 = 1543818483
timestamp4 = 1543594384
timestamp5 = 1544728504
dt_object1 = datetime.fromtimestamp(timestamp1)
dt_object2 = datetime.fromtimestamp(timestamp2)
dt_object3 = datetime.fromtimestamp(timestamp3)
dt_object4 = datetime.fromtimestamp(timestamp4)
dt_object5 = datetime.fromtimestamp(timestamp5)
print("dt_object =", dt_object1)
print("dt_object =", dt_object2)
```

```
print("dt_object =", dt_object3)
print("dt_object =", dt_object4)
print("dt_object =", dt_object5)

dt_object = 2018-12-16 09:30:08
    dt_object = 2018-11-27 02:00:24
    dt_object = 2018-12-03 06:28:03
    dt_object = 2018-11-30 16:13:04
    dt_object = 2018-12-13 19:15:04
```

uber_dataset['month'].value_counts().plot(kind='bar', figsize=(10,5), color='blue')

uber_dataset['source'].value_counts().plot(kind='bar', figsize=(10,5), color='green')

uber_dataset['name'].value_counts().plot(kind='bar', figsize=(10,5), color='orange')

uber_dataset['icon'].value_counts().plot(kind='bar', figsize=(10,5), color='red')

uber_dataset['uvIndex'].value_counts().plot(kind='bar', figsize=(10,5), color='brown')

uber_dataset['moonPhase'].value_counts().plot(kind='bar', figsize=(10,5), color='grey')

uber_dataset['precipProbability'].value_counts().plot(kind='bar', figsize=(10,5), color='blue')

<Axes: xlabel='precipProbability'>

Import label encoder
from sklearn import preprocessing

label_encoder object knows how to understand word labels. label_encoder = preprocessing.LabelEncoder()

uber_dataset.dtypes

	0
id	object
timestamp	float64
hour	int64
day	int64
month	int64
datetime	object
timezone	object
source	object
destination	object
cab_type	object
product_id	object
name	object
price	float64
distance	float64
surge_multiplier	float64
latitude	float64
longitude	float64
temperature	float64
apparentTemperature	float64
short_summary	object
long_summary	object
precipIntensity	float64
precipProbability	float64
humidity	float64
windSpeed	float64
windGust	float64
windGustTime	float64
visibility	float64
temperatureHigh	float64
temperatureHighTime	float64
temperatureLow	float64
temperatureLowTime	float64
apparentTemperatureHigh	float64
apparentTemperatureHighTime	float64
apparentTemperatureLow	float64
apparentTemperatureLowTime	float64
icon	object
dewPoint	float64
pressure	float64
windBearing	float64
cloudCover	float64
uvIndex	float64
visibility.1	float64
ozone	float64
sunriseTime	float64
sunsetTime	float64
moonPhase	float64
precipIntensityMax	float64
uvIndexTime	float64

```
temperatureMin
                              float64
    temperatureMinTime
                              float64
      temperatureMax
                              float64
    temperatureMaxTime
                              float64
  apparentTemperatureMin
                              float64
apparentTemperatureMinTime
                              float64
  apparentTemperatureMax
                              float64
apparentTemperatureMaxTime
                              float64
```

```
uber dataset['id']= label encoder.fit transform(uber dataset['id'])
uber_dataset['datetime']= label_encoder.fit_transform(uber_dataset['datetime'])
uber_dataset['timezone']= label_encoder.fit_transform(uber_dataset['timezone'])
uber_dataset['destination']= label_encoder.fit_transform(uber_dataset['destination'])
uber_dataset['product_id']= label_encoder.fit_transform(uber_dataset['product_id'])
uber_dataset['short_summary']= label_encoder.fit_transform(uber_dataset['short_summary'])
uber_dataset['long_summary']= label_encoder.fit_transform(uber_dataset['long_summary'])
uber_dataset['name']= label_encoder.fit_transform(uber_dataset['name'])
print("Class mapping of Name: ")
for i, item in enumerate(label_encoder.classes_):
   print(item, "-->", i)

→ Class mapping of Name:
     Black --> 0
     Black SUV --> 1
     Lux --> 2
     Lux Black --> 3
     Lux Black XL --> 4
     Lyft --> 5
     Lyft XL --> 6
     Shared --> 7
     UberPool --> 8
     UberX --> 9
     UberXL --> 10
     WAV --> 11
uber_dataset['source']= label_encoder.fit_transform(uber_dataset['source'])
print("Class mapping of Source: ")
for i, item in enumerate(label_encoder.classes_):
    print(item, "-->", i)
→ Class mapping of Source:
     Back Bay --> 0
Beacon Hill --> 1
     Boston University --> 2
     Fenway --> 3
     Financial District --> 4
     Haymarket Square --> 5
     North End --> 6
     North Station --> 7
     Northeastern University --> 8
     South Station --> 9
     Theatre District --> 10
     West End --> 11
uber_dataset['icon']= label_encoder.fit_transform(uber_dataset['icon'])
print("Class mapping of Icon: ")
for i, item in enumerate(label_encoder.classes_):
   print(item, "-->", i)

→ Class mapping of Icon:
      clear-day --> 0
      clear-night --> 1
      cloudy --> 2
      fog --> 3
      partly-cloudy-day --> 4
      partly-cloudy-night --> 5
      rain --> 6
uber_dataset.dtypes
```


	0
id	int64
timestamp	float64
hour	int64
day	int64
month	int64
datetime	int64
timezone	int64
source	int64
destination	int64
cab_type	object
product_id	int64
name	int64
price	float64
distance	float64
surge_multiplier	float64
latitude	float64
longitude	float64
temperature	float64
apparentTemperature	float64
short_summary	int64
long_summary	int64
preciplntensity	float64
precipProbability	float64
humidity	float64
windSpeed	float64
windGust	float64
windGustTime	float64
visibility	float64
temperatureHigh	float64
temperatureHighTime	float64
temperatureLow	float64

uber_dataset.head()

 $\overline{\Rightarrow}$ id $\text{timestamp hour day month datetime timezone source destination } \text{cab_type} \text{ ... precipIntensityMax} \text{ uvIndexTime } \text{terms} \\ \text{timestamp hour day month datetime} \\ \text{timestamp hour day month datetime} \\ \text{timezone} \\ \text{timestamp hour day month datetime} \\ \text{timezone} \\ \text{timestamp hour day month datetime} \\ \text{timestamp hour day month day month$ **0** 10381 1.544953e+09 16 12 16884 Lyft 0.1276 1.544980e+09 **1** 11813 1.543284e+09 2 27 11 772 0 5 7 Lyft 0.1300 1.543252e+09 Lyft **2** 23784 1.543367e+09 2122 0 5 7 0.1064 1.543338e+09 1 28 11 **3** 30447 1.543554e+09 0 5 7 Lyft 0.0000 1.543507e+09 4 30 11 5364 **4** 35036 1.543463e+09 3704 0 5 7 Lyft 0.0001 1.543421e+09 3 29 11 5 rows × 57 columns

uber_dataset.isnull().sum()

	•
id	0
timestamp	0
hour	0
day	0
month	0
datetime	0
timezone	0
source	0
destination	0
cab_type	0
product_id	0
name	0
price	0
distance	0
surge_multiplier	0
latitude	0
longitude	0
temperature	0
apparentTemperature	0
short_summary	0
long_summary	0
precipIntensity	0
precipProbability	0
humidity	0
windSpeed	0
windGust	0
windGustTime	0
visibility	0
temperatureHigh	0
temperatureHighTime	0
temperatureLow	0
temperatureLowTime	0
apparentTemperatureHigh	0
pparentTemperatureHighTime	0
apparentTemperatureLow	0
apparentTemperatureLowTime	0
icon	0
dewPoint	0
pressure	0
windBearing	0
cloudCover	0
uvIndex	0
visibility.1	0
ozone	0
sunriseTime	0
sunsetTime	0
moonPhase	0
precipIntensityMax	0
uvIndexTime	0

```
temperatureMin
                                   0
          temperatureMinTime
                                   0
            temperatureMax
                                    0
          temperatureMaxTime
                                   0
         apparentTemperatureMin
                                    0
       apparentTemperatureMinTime
                                   0
        apparentTemperatureMax
                                    0
      apparentTemperatureMaxTime 0
uber_dataset['price'].median()
→ 13.5
uber_dataset["price"].fillna(10.5, inplace = True)
uber_dataset.isnull().sum()
<del>_</del>_
                                    0
                   id
                                    0
                                   0
               timestamp
                  hour
                                   0
                                   0
                  day
                 month
                                   0
                datetime
                                    0
                timezone
                                    0
                 source
                                    0
                                   0
               destination
                                   0
                cab_type
               product_id
                                    0
                                   0
                 name
                  price
                                    0
                                   0
                distance
            surge_multiplier
                                   0
                latitude
                                    0
                longitude
                                    0
                                    0
              temperature
          apparentTemperature
                                   0
             short_summary
                                    0
             long_summary
                                    0
                                   0
             precipIntensity
            precipProbability
                                    0
                humidity
                                   0
               windSpeed
                                    0
                windGust
                                   0
              windGustTime
                                   0
                visibility
                                    0
            temperatureHigh
                                   0
          temperatureHighTime
                                    0
            temperatureLow
                                    0
uber_dataset['price'].dtype
```

 $https://colab.research.google.com/drive/1dfdsfxfYwmzZw7js_oCYfGSVIFZD_PRh\#scrollTo=pQZSNQx_89Df\&printMode=true$

```
dtype('float64')
        apparentTemperatureLow
uber_dataset['price'] = uber_dataset['price'].astype(int)
uber_dataset['price'].head()
\overline{\mathbf{x}}
         price
             5
      1
            11
      2
             7
      3
            26
      4
             9
               sunsetTime
import numpy as np
from \ sklearn.feature\_selection \ import \ SelectKBest
from sklearn.feature_selection import chi2
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
           temperaturewin i ime
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeRegressor
from \ sklearn.ensemble \ import \ Random ForestRegressor
from sklearn.feature_selection import RFE
        apparem remperaturemax
X = uber_dataset.drop('price', axis = 1)
y = uber_dataset['price']
    X.head()
\overline{\Rightarrow}
            id
                   timestamp hour
                                   day month datetime timezone source destination cab_type ... precipIntensityMax uvIndexTime to
      0 10381 1.544953e+09
                                     16
                                             12
                                                    16884
                                                                  0
                                                                          5
                                                                                        7
                                                                                                                       0.1276 1.544980e+09
                                 9
                                                                                                Lyft
      1 11813 1.543284e+09
                                             11
                                                     772
                                                                          5
                                                                                        7
                                                                                                                       0.1300 1.543252e+09
                                     27
                                                                  0
                                                                                                Lyft
      2 23784 1.543367e+09
                                     28
                                             11
                                                    2122
                                                                  0
                                                                          5
                                                                                        7
                                                                                                Lyft
                                                                                                                       0.1064 1.543338e+09
                                                                                        7
      3 30447 1.543554e+09
                                     30
                                             11
                                                    5364
                                                                  0
                                                                          5
                                                                                                Lyft
                                                                                                                       0.0000 1.543507e+09
      4 35036 1.543463e+09
                                     29
                                             11
                                                     3704
                                                                  0
                                                                           5
                                                                                        7
                                                                                                Lyft
                                                                                                                       0.0001 1.543421e+09
     5 rows × 56 columns
y.head()
\overline{\Rightarrow}
         price
      0
             5
      1
            11
      2
             7
            26
      4
             9
X.shape
→ (41910, 56)
y.shape
→ (41910,)
```

→ <Axes: xlabel='price'>

y.value_counts().plot(kind='bar',figsize=(30,8),color='red')

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42)
# Convert y_train to a numeric type, coercing errors to NaN
y_train = pd.to_numeric(y_train, errors='coerce')
# Drop rows with NaN values in y_train
X_train = X_train[y_train.notna()]
y_train = y_train[y_train.notna()]
X_train.shape
→ (33528, 56)
X test.shape
→ (8382, 56)
y_train.shape
→ (33528,)
y_test.shape
→ (8382,)
from sklearn.linear_model import LinearRegression
model = LinearRegression()
# Check for columns with 'Lyft' in X_train
lyft_columns = [col for col in X_train.columns if X_train[col].astype(str).str.contains('Lyft').any()]
# Print the columns containing 'Lyft'
print(f"Columns containing 'Lyft': {lyft_columns}")
# Import LabelEncoder
from sklearn.preprocessing import LabelEncoder
# Apply label encoding to the identified columns
for col in lyft columns:
   le = LabelEncoder()
   X_train[col] = le.fit_transform(X_train[col])
# Now you can try fitting the model again
model.fit(X_train, y_train)
Columns containing 'Lyft': ['cab_type']
      ▼ LinearRegression
     LinearRegression()
```

https://colab.research.google.com/drive/1dfdsfxfYwmzZw7js_oCYfGSVIFZD_PRh#scrollTo=pQZSNQx_89Df&printMode=true

 $model.score(X_train, y_train)$ # Use 'model' instead of 'reg' to call the score function.

→ 0.544811801511188

18/22

```
\# Check for columns with 'Lyft' in X
lyft columns = [col for col in X.columns if X[col].astype(str).str.contains('Lyft').any()]
# Print the columns containing 'Lyft'
print(f"Columns containing 'Lyft': {lyft_columns}")
\# Apply label encoding to the identified columns in X
for col in lyft_columns:
   le = LabelEncoder()
   X[col] = le.fit_transform(X[col])
# Now you can try fitting the model again
rfe = RFE(model, n_features_to_select=40, verbose=1) # Use 'model' instead of 'reg'
rfe = rfe.fit(X, y)
Columns containing 'Lyft': ['cab_type']
     Fitting estimator with 56 features.
     Fitting estimator with 55 features.
     Fitting estimator with 54 features.
     Fitting estimator with 53 features.
     Fitting estimator with 52 features.
     Fitting estimator with 51 features.
     Fitting estimator with 50 features.
     Fitting estimator with 49 features.
     Fitting estimator with 48 features.
     Fitting estimator with 47 features.
     Fitting estimator with 46 features.
     Fitting estimator with 45 features.
     Fitting estimator with 44 features.
     Fitting estimator with 43 features.
     Fitting estimator with 42 features.
     Fitting estimator with 41 features.
rfe.support_
→ array([False, False, True, True,
                                         True, False, False, True,
                                         True, True, True,
                   True,
                           True,
                                  True,
                                                               True,
             True,
                           True,
                                                        True, False.
             True.
                    True.
                                  True,
                                         True,
                                                True.
                                                                      True,
                                         True, False,
             True, False,
                           True, False,
                                                        True, False,
                                                                      True,
             True,
                                                                      True,
                   True, False,
                                  True,
                                         True,
                                                True,
                                                        True, False,
             True,
                   True, False,
                                 True, False, True, False, True, False,
             True, False])
XX = X[X.columns[rfe.support_]]
XX.head()
\rightarrow
                                 destination cab_type product_id name distance surge_multiplier ... uvIndex visibility.1 ozone
        hour day
                   month
                          source
      0
           9
                                             7
                                                       0
                                                                   7
                                                                                                                                     303.8
               16
                       12
                                5
                                                                                0.44
                                                                                                    1.0
                                                                                                                  0.0
                                                                                                                             10.000
      1
           2
               27
                       11
                                5
                                            7
                                                       0
                                                                  11
                                                                         2
                                                                                0.44
                                                                                                    1.0
                                                                                                                  0.0
                                                                                                                              4.786
                                                                                                                                     291.1
      2
               28
                                             7
                                                       0
                                                                   6
                                                                         5
                                                                                0.44
                                                                                                    1.0
                                                                                                                  0.0
                                                                                                                             10.000
                                                                                                                                     315.7
           1
                       11
                                5
      3
           4
               30
                       11
                                5
                                             7
                                                       0
                                                                   9
                                                                         4
                                                                                0.44
                                                                                                    1.0
                                                                                                                  0.0
                                                                                                                             10.000
                                                                                                                                     291.1
      4
           3
               29
                       11
                                5
                                             7
                                                       0
                                                                  10
                                                                         6
                                                                                0.44
                                                                                                    1.0
                                                                                                                  0.0
                                                                                                                             10.000
                                                                                                                                     347.7
     5 rows × 40 columns
X_train, X_test, y_train, y_test = train_test_split(XX, y, test_size = 0.3, random_state = 10)
X train.shape
→ (29337, 40)
#Creating model
reg1 = LinearRegression()
#Fitting training data
```

```
https://colab.research.google.com/drive/1dfdsfxfYwmzZw7js oCYfGSVIFZD PRh#scrollTo=pQZSNQx 89Df&printMode=true
```

reg1 = reg1.fit(X_train, y_train)

from sklearn.feature_selection import RFE from sklearn.linear_model import LinearRegression

Create a LinearRegression object

reg1.score(X_train, y_train) → 0.5427936128993119

```
reg = LinearRegression()
# Create the RFE object, specifying n_features_to_select as a keyword argument
rfe = RFE(reg, n_features_to_select = 15, verbose=1)
# Fit the RFE object to the data
rfe = rfe.fit(X, y)
→ Fitting estimator with 56 features.
     Fitting estimator with 55 features.
     Fitting estimator with 54 features.
     Fitting estimator with 53 features.
     Fitting estimator with 52 features.
     Fitting estimator with 51 features.
     Fitting estimator with 50 features.
     Fitting estimator with 49 features.
     Fitting estimator with 48 features.
     Fitting estimator with 47 features.
     Fitting estimator with 46 features.
     Fitting estimator with 45 features.
     Fitting estimator with 44 features.
     Fitting estimator with 43 features.
     Fitting estimator with 42 features.
     Fitting estimator with 41 features.
     Fitting estimator with 40 features.
     Fitting estimator with 39 features.
     Fitting estimator with 38 features.
     Fitting estimator with 37 features.
     Fitting estimator with 36 features.
     Fitting estimator with 35 features.
     Fitting estimator with 34 features.
     Fitting estimator with 33 features.
     Fitting estimator with 32 features.
     Fitting estimator with 31 features.
     Fitting estimator with 30 features.
     Fitting estimator with 29 features.
     Fitting estimator with 28 features.
     Fitting estimator with 27 features.
     Fitting estimator with 26 features.
     Fitting estimator with 25 features.
     Fitting estimator with 24 features.
     Fitting estimator with 23 features.
     Fitting estimator with 22 features.
     Fitting estimator with 21 features.
     Fitting estimator with 20 features.
     Fitting estimator with 19 features.
     Fitting estimator with 18 features.
     Fitting estimator with 17 features.
     Fitting estimator with 16 features.
```

XX = X[X.columns[rfe.support_]]

XX.head()

₹		cab_type	product_id	name	distance	surge_multiplier	latitude	longitude	precipIntensity	humidity	temperatureHigh	apparent1
	0	0	7	7	0.44	1.0	42.2148	-71.033	0.0000	0.68	43.68	
	1	0	11	2	0.44	1.0	42.2148	-71.033	0.1299	0.94	47.30	
	2	0	6	5	0.44	1.0	42.2148	-71.033	0.0000	0.75	47.55	
	3	0	9	4	0.44	1.0	42.2148	-71.033	0.0000	0.73	45.03	
	4	0	10	6	0.44	1.0	42.2148	-71.033	0.0000	0.70	42.18	
	4											>

X_train, X_test, y_train, y_test = train_test_split(XX, y, test_size = 0.3, random_state = 10,)

```
X_train.shape
```

→ (29337, 15)

#Creating model
reg1 = LinearRegression()
#Fitting training data
reg1 = reg1.fit(X_train, y_train)

reg1.score(X_train, y_train)

→ 0.542392692716986

```
rfe = RFE(reg1, n_features_to_select=25, verbose=1)
rfe = rfe.fit(X, y)
Fitting estimator with 56 features.
     Fitting estimator with 55 features.
     Fitting estimator with 54 features.
     Fitting estimator with 53 features.
     Fitting estimator with 52 features.
     Fitting estimator with 51 features.
     Fitting estimator with 50 features.
     Fitting estimator with 49 features.
     Fitting estimator with 48 features.
     Fitting estimator with 47 features.
     Fitting estimator with 46 features.
     Fitting estimator with 45 features.
     Fitting estimator with 44 features.
     Fitting estimator with 43 features.
     Fitting estimator with 42 features.
     Fitting estimator with 41 features.
     Fitting estimator with 40 features.
     Fitting estimator with 39 features.
     Fitting estimator with 38 features.
     Fitting estimator with 37 features.
     Fitting estimator with 36 features.
     Fitting estimator with 35 features.
     Fitting estimator with 34 features.
     Fitting estimator with 33 features.
     Fitting estimator with 32 features.
     Fitting estimator with 31 features.
     Fitting estimator with 30 features.
     Fitting estimator with 29 features.
     Fitting estimator with 28 features.
     Fitting estimator with 27 features.
     Fitting estimator with 26 features.
XX = X[X.columns[rfe.support ]]
XX.head()
```

```
month
          source cab_type product_id name distance surge_multiplier latitude longitude temperature ... temperatureHigh app
 0
       12
                5
                           0
                                       7
                                              7
                                                     0.44
                                                                          1.0
                                                                                42.2148
                                                                                            -71.033
                                                                                                           42.34
                                                                                                                                  43.68
                                             2
                                                                                            -71.033
 1
                5
                           0
                                                     0 44
                                                                                42 2148
                                                                                                                                  47 30
       11
                                       11
                                                                          10
                                                                                                           43 58
 2
                                              5
                                                                                42.2148
                                                                                            -71.033
                                                                                                                                  47.55
                5
                                                     0.44
                                                                                                            38.33
                                             4
                                                                                42.2148
 3
       11
                5
                          0
                                       9
                                                     0.44
                                                                          1.0
                                                                                            -71.033
                                                                                                           34.38
                                                                                                                                  45.03
       11
                           0
                                       10
                                              6
                                                     0.44
                                                                          1.0
                                                                                42.2148
                                                                                            -71.033
                                                                                                           37.44
                                                                                                                                  42.18
5 rows × 25 columns
```

X_train, X_test, y_train, y_test = train_test_split(XX, y, test_size = 0.3, random_state = 20,)

X_train.shape

→ (29337, 25)

#Creating model reg1 = LinearRegression() #Fitting training data reg1 = reg1.fit(X_train, y_train) #Y prediction Y_pred = reg1.predict(X_test)

reg1.score(X_train, y_train)

→ 0.5424603939185252

XX.columns

```
'apparentTemperature', 'precipIntensity', 'precipProbability', 'humidity', 'windSpeed', 'temperatureHigh', 'apparentTemperatureHigh', 'dewPoint', 'uvIndex', 'moonPhase', 'precipIntensityMax', 'temperatureMin', 'temperatureMax', 'apparentTemperatureMin',
                   'apparentTemperatureMax'],
                dtype='object')
```

XX.shape

→ (41910, 25)

XX.head()

```
₹
        month source cab_type product_id name distance surge_multiplier latitude longitude temperature ... temperatureHigh app
                                                                                    42.2148
      0
            12
                     5
                               0
                                            7
                                                  7
                                                          0.44
                                                                              1.0
                                                                                                -71.033
                                                                                                               42.34
                                                                                                                                      43.68
                     5
                                                  2
                                                                                    42 2148
                                                                                                -71.033
                                                                                                                                      47.30
      1
            11
                               0
                                           11
                                                          0 44
                                                                              1.0
                                                                                                               43.58
      2
            11
                     5
                               0
                                            6
                                                  5
                                                          0.44
                                                                              1.0
                                                                                    42.2148
                                                                                                -71.033
                                                                                                               38.33
                                                                                                                                      47.55
      3
            11
                     5
                               0
                                            9
                                                  4
                                                          0.44
                                                                              1.0
                                                                                    42.2148
                                                                                                -71.033
                                                                                                               34.38
                                                                                                                                      45.03
      4
            11
                     5
                               0
                                           10
                                                  6
                                                          0.44
                                                                              1.0
                                                                                    42.2148
                                                                                                -71.033
                                                                                                               37.44
                                                                                                                                      42.18
    5 rows × 25 columns
```

```
# Filtering only existing columns to drop
```

columns_to_drop = [col for col in columns_to_drop if col in uber_dataset.columns]

Dropping the columns

uber_dataset = uber_dataset.drop(columns=columns_to_drop)

uber_dataset= uber_dataset.drop(columns=columns_to_drop, errors='ignore')

uber_dataset.head()

₹		id	timestamp	hour	day	month	datetime	timezone	source	destination	cab_type	 ozone	sunriseTime	sunsetTime	ı
	0	10381	1.544953e+09	9	16	12	16884	0	5	7	Lyft	 303.8	1.544962e+09	1.544995e+09	1
	1	11813	1.543284e+09	2	27	11	772	0	5	7	Lyft	 291.1	1.543233e+09	1.543267e+09	1
	2	23784	1.543367e+09	1	28	11	2122	0	5	7	Lvft	 315.7	1.543319e+09	1.543353e+09	1