First Name:	Last Name:	Student ID:
1 1136 11411161		

An introduction to vectors

1. Given the magnitude of two vectors $|\vec{a}| = 4$ and $|\vec{b}| = 7$, and the angle between them when placed tail to tail as being $\theta = 60^{\circ}$, find the magnitude of the vector sum $\vec{s} = \vec{a} + \vec{b}$ and the direction (the angles between the vector sum and each vector). Draw a diagram.

2. Given the magnitude of two vectors $|\vec{a}| = 10$ and $|\vec{b}| = 14$, and the angle between them when placed tail to tail as being $\theta = 120^\circ$, find the magnitude of the vector difference $\vec{d} = \vec{a} \cdot \vec{b}$ and the direction (the angles between the vector difference and each vector). Draw a diagram.

3. Given $|\vec{a}| = 10$, $|\vec{b}| = 15$, and $|\vec{a} + \vec{b}| = 20$, find $|\vec{a} - \vec{b}|$.

4. If point *P* is the midpoint of the segment *AB* , then for any point *O*, we have

$$\overrightarrow{OP} = \frac{1}{2}(\overrightarrow{OA} + \overrightarrow{OB})$$

5. In $\triangle ABC$, AM, BN, and CP are medians. Prove that $\overrightarrow{AM} + \overrightarrow{BN} + \overrightarrow{CP} = 0^{-}$.

6. The drawing below shows a unit cube. Let $\hat{\imath} = \overrightarrow{OA}$, $\hat{\jmath} = \overrightarrow{OB}$, $\hat{k} = \overrightarrow{OC}$. Write each of the following vectors in terms of $\hat{\imath}$, $\hat{\jmath}$, and \hat{k} .

a. \overrightarrow{OF}

b. \overrightarrow{ED}

c. \overrightarrow{AG}

7. Find the magnitude of the sum $\vec{a} + \vec{b}$ and the difference $\vec{a} - \vec{b}$ between the vectors $\vec{a} = \vec{i} - \vec{j}$ and $\vec{b} = (1,2,-1)$.

8. Prove that the vectors $\vec{a} = (2,4,-6)$ r and $\vec{b} = (-1,-2,3)$ are parallel.

9. Prove that the points A(2,-1,0), B(-1,0,2), and C(0,1,2) are not collinear.

- **10.** For points $R(-1, 2, -4\sqrt{5})$ and Q(-1, -2, 0) given, find
- a. The position vector and the magnitude of the position vector \overrightarrow{OR}
- b. The displacement vector \overrightarrow{RQ} and its magnitude.

11. Find a unit vector parallel to each of the given vectors.

a.
$$\vec{v} = (2,-5)$$

b.
$$\overrightarrow{OZ}$$
= $\hat{\imath}$ -2 $\hat{\jmath}$ +4 \hat{k}