

## Atoms, Molecules and Ions

Chapter 2



# Dalton's Atomic Theory (1808)

- 1. Elements are composed of extremely small particles called *atoms*.
- 2. All **atoms** of a given element are identical, having the same size, mass and chemical properties. The atoms of one element are different from the atoms of all other elements.
- 3. **Compounds** are composed of atoms of more than one element. In any compound, the ratio of the numbers of atoms of any two of the elements present is either an integer or a simple fraction.
- 4. A *chemical reaction* involves only the separation, combination, or rearrangement of atoms; it does not result in their creation or destruction.

## Dalton's Atomic Theory

#### Carbon monoxide



#### Carbon dioxide

$$\frac{O}{C} = \frac{2}{1}$$

Law of Multiple Proportions



Law of Conservation of Mass

#### **TABLE 2.1** Mass and Charge of Subatomic Particles

|           |                           | Char                      | ge          |
|-----------|---------------------------|---------------------------|-------------|
| Particle  | Mass (g)                  | Coulomb                   | Charge Unit |
| Electron* | $9.10938 \times 10^{-28}$ | $-1.6022 \times 10^{-19}$ | -1          |
| Proton    | $1.67262 \times 10^{-24}$ | $+1.6022 \times 10^{-19}$ | +1          |
| Neutron   | $1.67493 \times 10^{-24}$ | 0                         | 0           |

<sup>\*</sup>More refined measurements have given us a more accurate value of an electron's mass than Millikan's.

## mass p ≈ mass n ≈ 1840 x mass e

## Atomic number, Mass number and Isotopes

**Atomic number** (Z) = number of protons in nucleus

*Mass number* (A) = number of protons + number of neutrons

= atomic number (Z) + number of neutrons

**Isotopes** are atoms of the same element (X) with different numbers of neutrons in their nuclei

Mass Number 
$$\longrightarrow$$
 A X  $\longleftarrow$  Element Symbol

$${}_{1}^{1}H$$
  ${}_{1}^{2}H$  (D)  ${}_{1}^{3}H$  (T)

## The Isotopes of Hydrogen



How many protons, neutrons, and electrons are in  $^{14}_{6}$ C?

6 protons, 8 (14 - 6) neutrons, 6 electrons

How many protons, neutrons, and electrons are in  $^{11}_{6}$ C?

6 protons, 5 (11 - 6) neutrons, 6 electrons

Ex: O Atom

| Ex: | CI | atom |
|-----|----|------|
|     |    |      |

| <sup>16</sup> <sub>8</sub> 0 |    |  |  |  |  |
|------------------------------|----|--|--|--|--|
| X                            | 0  |  |  |  |  |
| Α                            | 16 |  |  |  |  |
| Z                            | 8  |  |  |  |  |
| #p+                          | 8  |  |  |  |  |
| #e⁻                          | 8  |  |  |  |  |
| #n <sup>0</sup>              | 8  |  |  |  |  |

| <sup>35</sup> <sub>17</sub> Cl |    |  |  |  |  |
|--------------------------------|----|--|--|--|--|
| X                              | Cl |  |  |  |  |
| Α                              | 35 |  |  |  |  |
| Z                              | 17 |  |  |  |  |
| #p+                            | 17 |  |  |  |  |
| #e⁻                            | 17 |  |  |  |  |
| #n <sup>0</sup>                | 18 |  |  |  |  |

#### The Modern Periodic Table

| 1<br>1A          |                  |                 |                  |                  |                  |                  | J.               |                  |                  | . • •            |                 |                 |                  |                 |                 |                     | 18<br>8A         |
|------------------|------------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-----------------|-----------------|------------------|-----------------|-----------------|---------------------|------------------|
| 1<br><b>H</b>    | Alka             |                 |                  |                  |                  |                  |                  |                  |                  |                  |                 | 13<br>3A        | 14<br>4A         | 15<br>5A        | 16<br>6A        | 17<br>7A            | 2<br><b>H</b> :  |
| 3                | m                |                 |                  |                  |                  |                  |                  |                  |                  |                  |                 | 5<br><b>B</b>   | · C              | 7<br><b>N</b>   | 8<br><b>O</b>   | 9<br>]              | 1(<br>N          |
| lkal             | arth             | 3<br>3B         | 4<br>4B          | 5<br>5B          | 6<br>6B          | 7<br>7B          | 8                | 9<br>—8B—        | 10               | 11<br>1B         | 12<br>2B        | 13<br><b>Al</b> | 14:              | 15<br><b>P</b>  | 16<br><b>S</b>  | 1 7<br><b>( )</b> 1 | Nobl             |
| Alkali Metal     | $\leq$           | 21<br><b>Sc</b> | 22<br><b>Ti</b>  | 23<br><b>V</b>   | 24               | 25               | 26<br><b>Fe</b>  | 27<br><b>Co</b>  | 28<br><b>Ni</b>  | 29<br><b>Cu</b>  | 30<br><b>Zn</b> | 31<br><b>Ga</b> | Groc             | 33<br><b>As</b> | 34<br><b>Se</b> | Halo                | le G             |
| etal             | letal            | 39<br><b>Y</b>  | 40<br><b>Zr</b>  | 41<br><b>Nb</b>  | Peri             | Tc               | 44<br><b>Ru</b>  | 45<br><b>Rh</b>  | 46<br><b>Pd</b>  | 47<br><b>Ag</b>  | 48<br><b>Cd</b> | 49<br><b>In</b> | Sn               | 51<br><b>Sb</b> | 52<br><b>Te</b> | ge                  | ias              |
| 55<br>C <b>s</b> | : 6<br><b>Ha</b> | 57<br><b>La</b> | 72<br><b>Hf</b>  | 73<br><b>Ta</b>  | 74<br><b>W</b>   | 75<br><b>Re</b>  | 76<br><b>Os</b>  | 77<br><b>Ir</b>  | 78<br><b>Pt</b>  | 79<br><b>Au</b>  | 80<br><b>Hg</b> | 81<br><b>Tl</b> | 82<br><b>F b</b> | 83<br><b>Bi</b> | 84<br><b>Po</b> | At                  | 86<br><b>R</b> i |
| 87<br><b>Fr</b>  | Ra               | 89<br><b>Ac</b> | 104<br><b>Rf</b> | 105<br><b>Db</b> | 106<br><b>Sg</b> | 107<br><b>Bh</b> | 108<br><b>Hs</b> | 109<br><b>Mt</b> | 110<br><b>Ds</b> | 111<br><b>Rg</b> | 112             | 113             | 114              | 115             | 116             | (1 7)               | 118              |
|                  |                  |                 |                  |                  |                  |                  |                  |                  |                  |                  |                 |                 |                  |                 |                 |                     |                  |
|                  | Metals           |                 |                  | 58               | 59<br>D          | 60               | 61               | 62               | 63<br>F          | 64               | 65              | 66<br>D         | 67<br>H          | 68              | 69              | 70                  | 71               |

|  | Metals     |
|--|------------|
|  | Metalloids |
|  | Nonmetals  |

Ce

90

Th

Pr

91

Pa

Nd

92

U

Pm

93

Np

Sm

94

Pu

Eu

95

Am

Gd

96

Cm

Tb

97

 $\mathbf{B}\mathbf{k}$ 

Dy

98

Cf

Ho

99

Es

Er

100

Fm

Tm

101

Md

Yb

102

No

Lu

103

Lr

A *molecule* is an aggregate of two or more atoms in a definite arrangement held together by chemical forces



A diatomic molecule contains only two atoms

H<sub>2</sub>, N<sub>2</sub>, O<sub>2</sub>, Br<sub>2</sub>, HCI, CO



A polyatomic molecule contains more than two atoms

O<sub>3</sub>, H<sub>2</sub>O, NH<sub>3</sub>, CH<sub>4</sub>

An *ion* is an atom, or group of atoms, that has a net positive or negative charge.

cation – ion with a positive charge
If a neutral atom loses one or more electrons it becomes a cation.



anion – ion with a negative charge
If a neutral atom gains one or more electrons it becomes an anion.



# A *monatomic ion* contains only one atom Na<sup>+</sup>, Cl<sup>-</sup>, Ca<sup>2+</sup>, O<sup>2-</sup>, Al<sup>3+</sup>, N<sup>3-</sup>

A *polyatomic ion* contains more than one atom  $OH^-$ ,  $CN^-$ ,  $NH_4^+$ ,  $NO_3^-$ 

#### Common Ions Shown on the Periodic Table

| 1<br>1 A |    |                  |         |         |         |                                      |                                      |                                      |                                      |                                      |                                     |                                                   |                  |                                      |                 |                  |                | 18<br>8A |
|----------|----|------------------|---------|---------|---------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|---------------------------------------------------|------------------|--------------------------------------|-----------------|------------------|----------------|----------|
|          |    | 2<br>2A          |         |         |         |                                      |                                      |                                      |                                      |                                      |                                     |                                                   | 13<br>3A         | 14<br>4A                             | 15<br>5A        | 16<br>6A         | 17<br>7A       |          |
| Li       | +  |                  |         |         |         |                                      |                                      |                                      |                                      |                                      |                                     |                                                   |                  | C4-                                  | N <sup>3-</sup> | O <sup>2-</sup>  | F <sup>-</sup> |          |
| Na       | ı+ | Mg <sup>2+</sup> | 3<br>3B | 4<br>4B | 5<br>5B | 6<br>6B                              | 7<br>7B                              | 8                                    | 9<br>—8B—                            | 10                                   | 11<br>1B                            | 12<br>2B                                          | Al <sup>3+</sup> |                                      | P <sup>3-</sup> | S <sup>2-</sup>  | Cl-            |          |
| K        | +  | Ca <sup>2+</sup> |         |         |         | Cr <sup>2+</sup><br>Cr <sup>3+</sup> | Mn <sup>2+</sup><br>Mn <sup>3+</sup> | Fe <sup>2+</sup><br>Fe <sup>3+</sup> | Co <sup>2+</sup><br>Co <sup>3+</sup> | Ni <sup>2+</sup><br>Ni <sup>3+</sup> | Cu <sup>+</sup><br>Cu <sup>2+</sup> | Zn <sup>2+</sup>                                  |                  |                                      |                 | Se <sup>2-</sup> | Br-            |          |
| Rb       | ,+ | Sr <sup>2+</sup> |         |         |         |                                      |                                      |                                      |                                      |                                      | Ag <sup>+</sup>                     | Cd <sup>2+</sup>                                  |                  | Sn <sup>2+</sup><br>Sn <sup>4+</sup> |                 | Te <sup>2-</sup> | I-             |          |
| Cs       | ;+ | Ba <sup>2+</sup> |         |         |         |                                      |                                      |                                      |                                      |                                      | Au <sup>+</sup><br>Au <sup>3+</sup> | Hg <sub>2</sub> <sup>2+</sup><br>Hg <sup>2+</sup> |                  | Pb <sup>2+</sup><br>Pb <sup>4+</sup> |                 |                  |                |          |
|          |    |                  |         |         |         |                                      |                                      |                                      |                                      |                                      |                                     |                                                   |                  |                                      |                 |                  |                |          |

Note: The mass number, no. of protons, and no. of neutrons will not change for the ions. The only thing that will change for the ion is the *number of electrons*.

#### For lons:

- Atomic number (Z) = no. of protons (p+)
- Mass number (A) = no. of protons (p+) + no. of neutrons (n0)
- No. of neutrons  $(n^0)$  = Mass number (A) no. of protons  $(p^+)$
- No. of protons  $(p^+)$  = Mass number (A) no. of neutrons  $(n^0)$

How many protons and electrons are in <sup>27</sup><sub>13</sub>AI<sup>3+</sup> ?

13 protons, 10(13-3) electrons

How many protons and electrons are in  ${}^{78}_{34}$ Se<sup>2-</sup>?

34 protons, 36 (34 + 2) electrons

#### Number of electrons for ions

no. of electrons 
$$(e^{-})$$
 = atomic number  $(Z)$  – charge

or

$$e^- = no. of protons (p^+) - charge$$

- $Na^{+1}(Z = 11; \#p^+ = 11)$ :  $\#electrons = 11 (+1) = 10 \ electrons$
- $Mg^{+2}(Z = 12; \#p^+ = 12)$ :  $\#electrons = 12 (+2) = 10 \ electrons$
- $Sr^{+2}(Z = 38; \#p^+ = 38)$ :  $\#electrons = 38 (+2) = 36 \ electrons$
- $S^{-2}(Z = 16; \#p^+ = 16)$ :  $\#electrons = 16 (-2) = 18 \ electrons$
- $I^{-1}(Z = 53; \#p^+ = 53)$ :  $\#electrons = 53 (-1) = 54 \ electrons$
- $N^{-3}(Z = 7; \#p^+ = 7)$ :  $\#electrons = 7 (-3) = 10 \ electrons$

Ex: O<sup>-2</sup> ion

| $^{16}_{8}O^{-2}$ |       |  |  |
|-------------------|-------|--|--|
| X                 | 0     |  |  |
| Α                 | 16    |  |  |
| Z                 | 8     |  |  |
| #p <sup>+</sup>   | 8     |  |  |
| #e⁻               | 10    |  |  |
| #n <sup>0</sup>   | 8     |  |  |
| Charge            | -2    |  |  |
| Cation/Anion/Ato  | Anion |  |  |
| m                 | AHIOH |  |  |

Ex: Na<sup>+1</sup> ion

| $^{23}_{11}Na^{+1}$ | 1      |
|---------------------|--------|
| X                   | Na     |
| Α                   | 23     |
| Z                   | 11     |
| #p <sup>+</sup>     | 11     |
| #e⁻                 | 10     |
| #n <sup>0</sup>     | 23     |
| Charge              | +1     |
| Cation/Anion/Ato    | Cation |
| m                   | Cation |

Ex: Ba<sup>+2</sup> ion

| $^{137}_{56}Ba^{+2}$  |        |
|-----------------------|--------|
| X                     | Ba     |
| Α                     | 137    |
| Z                     | 56     |
| #p+                   | 56     |
| #e <sup>-</sup>       | 54     |
| #n <sup>o</sup>       | 81     |
| Charge                | +2     |
| Cation/Anion/Ato<br>m | Cation |

Ex: Cl<sup>-1</sup> ion

| $^{35}_{17}Cl^{-1}$ |       |  |  |
|---------------------|-------|--|--|
| X                   | С     |  |  |
| Α                   | 35    |  |  |
| Z                   | 17    |  |  |
| #p <sup>+</sup>     | 17    |  |  |
| #e⁻                 | 18    |  |  |
| #n <sup>o</sup>     | 18    |  |  |
| Charge              | -1    |  |  |
| Cation/Anion/Ato    | Anion |  |  |
| m                   | AHIOH |  |  |