Bitte die Blätter nicht trennen!

Matrikelnummer:					
_4		Fakultät	Technik		
	DH BW	Studiengang:	Informatik		
	Duale Hochschule Baden-Württemberg	Jahrgang / Kurs :	TINF19B/E		
KLAUSUR Stuttgart		Studienhalbjahr:	3. Semester		
Datum:	27. November 2020	Bearbeitungszeit:	120 Minuten		
Modul:	T3INF2002	Dozent:	Jan Hladik		
Unit:	Formale Sprachen 1/2				
Hilfsmittel: Open-Book-Klausur, beliebige nicht-elektronische Dokumente					

Aufgabe	Thema	erreichbar	erreicht
1	RE und NEA	10	
2	Chomsky-Hierarchie	9	
3	Produktautomat	9	
4	Kontextfreie Sprachen	10	
5	NEA und DEA	10	
6	RA und DEA	11	
7	Chomsky-NF	9	
8	Kellerautomat	9	
9	CYK-Algorithmus	9	
10	Turing-Maschine	12	
11	WHILE-Programm	8	
Summe		106	

- 1. Sind Sie gesund und prüfungsfähig?
- 2. Sind Ihre Taschen und sämtliche Unterlagen, insbesondere alle nicht erlaubten Hilfsmittel, seitlich an der Wand zum Gang hin abgestellt und nicht in Reichweite des Arbeitsplatzes?
- 3. Haben Sie auch außerhalb des Klausurraumes im Gebäude keine unerlaubten Hilfsmittel oder ähnliche Unterlagen liegen lassen?
- 4. Haben Sie Ihr Handy ausgeschaltet und abgegeben?

(Falls Ziff. 2 oder 3 nicht erfüllt sind, liegt ein Täuschungsversuch vor, der die Note "nicht ausreichend" zur Folge hat.)

Aufgabe 1 (7+3P)

Gegeben seien der reguläre Ausdruck $r=(\varepsilon+b)(ba)^*$ und die Sprache L=L(r) über dem Alphabet $\Sigma=\{a,b\}.$

- a) Verwenden Sie exakt das in der Vorlesung gezeigte Verfahren, um aus dem regulären Ausdruck r einen nichtdeterministischen endlichen Automaten, der L erkennt, zu konstruieren. Berücksichtigen Sie insbesondere alle ε -Übergänge. Es reicht die Darstellung des Ergebnisses in graphischer Form.
- b) Zeigen Sie (mit Hilfe der algebraischen Äquivalenzen aus der Vorlesung) oder widerlegen Sie (durch Angabe eines geeigneten Wortes): $L((\varepsilon+b)a(ba+a)^*)=L((ba+a)^*(\varepsilon+b)a)$

Aufgabe 2 (2+3+2+2P)

Gegeben seien die Grammatiken G_1 und G_2 :

$$\begin{array}{rclcrcl} G_1 & = & (\{S,A\},\{a,b,c\},P_1,S_1) & G_2 & = & (\{T,B\},\{a,b\},P_2,T) \\ P_1 & = & \{S\to bSc|bS|Sc|ASA|A, & BB\to BBBB|\varepsilon, \\ & & A\to a|\varepsilon\} & & B\to b\} \end{array}$$

Beantworten Sie die folgenden Fragen jeweils für G_1 und G_2 .

- a) Welcher ist der maximale Typ der *Grammatik* (in der Chomsky-Hierarchie)? Begründen Sie Ihre Antwort.
- b) Geben Sie die von der Grammatik erzeugte Sprache formal als Menge an.
- c) Welcher ist der maximale Typ dieser Sprache (in der Chomsky-Hierarchie)?
- d) Falls die Sprache vom Typ 3 ist, geben Sie einen regulären Ausdruck für die Sprache an.

Aufgabe 3 (2+6+1P)

Betrachten Sie die deterministischen endlichen Automaten A_1 und A_2 .

- a) Geben Sie beide Automaten in Tabellenschreibweise an.
- b) Erzeugen Sie einen Produktautomaten A_p mit dem in der Vorlesung vorgestellten Verfahren und stellen Sie das Ergebnis in graphischer Form dar.
- c) Geben Sie einen regulären Ausdruck an, der die von ${\cal A}_p$ akzeptierte Sprache beschreibt.

Abbildung 1: Automat A_1 und A_2

Aufgabe 4 (3+3+4P)

Sei
$$\Sigma = \{a, b, c\}$$
. Sei $L_4 = \{a^n w \mid n \in \mathbb{N}, w \in \Sigma^*, |w| = n\}$.

- a) Geben Sie eine kontextfreie Grammatik G mit $\mathcal{L}(G)=L_4$ an. Verwenden Sie hierzu möglichst wenige Nichtterminalsymbole.
- b) Bestimmen Sie, welche der folgenden Wörter in L_4 sind. Geben Sie im positiven Fall eine Ableitung in G an.
 - b1) aacb
 - b2) aacca
 - b3) abab
 - b4) aaaaaaaa
- c) Zeigen Sie (durch Angabe eines geeigneten endlichen Automaten oder regulären Ausdrucks) oder widerlegen Sie (mittels Pumping-Lemma): L_4 ist regulär.

Aufgabe 5 (2+2+6P)

Betrachten Sie den nichtdeterministischen endlichen Automaten A_5 über $\Sigma=\{a,b\}$ in Abbildung 2.

- a) Geben Sie zwei Läufe des Automaten A_5 auf der Eingabe aabbaa an, von denen einer akzeptierend und einer nicht akzeptierend ist.
- b) Geben Sie einen regulären Ausdruck für ${\cal L}({\cal A}_5)$ an.
- c) Konvertieren Sie A_5 mit dem in der Vorlesung angegebenen Verfahren in einen deterministischen endlichen Automaten. Geben Sie das Ergebnis als Tabelle an.

Abbildung 2: Automat A_5

Aufgabe 6 (2+4+5P)

Sei $\Sigma = \{a,b\}$. Betrachten Sie den DEA A_6 in Abbildung 3.

Abbildung 3: Automat A_6

- a) Geben Sie je einen Lauf von A_6 auf den folgenden Worten an:
 - a1) $w_1 = aaaabb$
 - a2) $w_2 = aaabbb$

Gilt jeweils $w_1 \in L(A_6)$ und $w_2 \in L(A_6)$?

- b) Stellen Sie ein Gleichungssystem auf, das die an den verschiedenen Zuständen akzeptierten Sprachen beschreibt.
- c) Lösen Sie dieses Gleichungssystem und geben Sie so einen regulären Ausdruck an, der die von ${\cal A}_6$ akzeptierte Sprache beschreibt.

Aufgabe 7 (9 Punkte)

Betrachten Sie die folgende Grammatik $G_7=(N,\Sigma,P,S)$ mit $\Sigma=\{a,b\},\,N=\{S,R,T\},$ und P mit den folgenden Produktionen:

- 1. $S \rightarrow bSb$
- $2. \ S \to T$
- 3. $T \rightarrow aTa$
- 4. $T \rightarrow bR$
- 5. $R \rightarrow \varepsilon$

Konvertieren Sie G_7 mit dem Verfahren aus der Vorlesung in Chomsky-Normalform. Geben Sie nach jedem wesentlichen Zwischenschritt den Zustand der Regelmengen an, am Ende die gesamte entstandene Grammatik in CNF.

Aufgabe 8 (1+2+2+4P)

Betrachten sie das Alphabet $\Sigma=\{a,b\}$, die Sprache $L_8=\{a^nba^n\mid n\in\mathbb{N}\}$ und den Kellerautomaten A_8 .

 $A_8=(Q,\Sigma,\Gamma,\Delta,0,Z)$ mit $Q=\{0,1\},$ $\Sigma=\{a,b\},$ $\Gamma=\{A,Z\}$ und Δ gemäß folgender Tabelle:

Q	\sum	Γ	Γ^*	Q
(Ausgangs-	(Alphabet-	(gelesenes	(geschriebene	(Ziel-
zustand)	symbol)	Stacksymbol)	Stacksymbole)	zustand)
0	a	Z	AZ	0
0	a	A	AA	0
0	ε	Z	ε	0
0	b	A	A	1
1	a	A	ε	1
1	ε	Z	ε	1

- a) Ist A_8 deterministisch? Begründen Sie Ihre Antwort.
- b) Geben Sie jeweils ein Wort mit Länge 7 und 8 aus L_8 an oder begründen Sie, warum es kein solches Wort gibt.
- c) Geben Sie einen akzeptierenden Lauf von A_8 auf dem Wort aabaa ab.
- d) Akzeptiert der Automat A_8 genau die Sprache L_8 ? Falls ja, begründen Sie dieses.

Falls nein, zeigen Sie ein Gegenbeispiel als Lauf, und geben Sie an, wie man A_8 verändern muss, damit er genau die Sprache L_8 akzeptiert.

Aufgabe 9 (5+4P)

Betrachten Sie die Grammatik $G_9 = (\{S,A,B,C,M,N,O\},\{m,n,o\},P,S)$ mit

P =
$$\begin{cases} S & \rightarrow AB \\ A & \rightarrow OM \\ B & \rightarrow NA \\ B & \rightarrow NC \\ C & \rightarrow AB \\ M & \rightarrow m \\ N & \rightarrow n \\ O & \rightarrow o \end{cases}$$
Bestimmen Sie mit Hilfe

Bestimmen Sie mit Hilfe des CYK-Algorithmus, ob die folgenden Wörter in $L(G_9)$ enthalten sind:

- a) $w_1 = nomnom$
- b) $w_2 = omnom$

Aufgabe 10 (1+6+4+1P)

Gegeben sei die Turing-Maschine $\mathcal{M}=(\{0,1,2,3,4,5\},\{a,b\},\{a,b,\Box\},\Delta,0,\{5\}),$ wobei Δ in der folgenden Tabelle gegeben ist:

Q	Γ	Γ	$\{\ell,r,n\}$	Q
(Ausgangs-	(gelesenes	(geschriebenes	(Kopf-	(Folge-
zustand)	Bandsymbol)	Bandsymbol)	bewegung)	zustand)
0	a		r	2
0	b		r	1
1	a	a	r	2
1	b	b	r	2
1			n	5
2	a	a	r	2
2	b	b	r	2
2			ℓ	3
3	a		ℓ	4
3	b		ℓ	4
4	a	a	ℓ	4
4	b	b	ℓ	4
4			r	0

- 1. Ist \mathcal{M} deterministisch? Begründen Sie Ihre Antwort.
- 2. Geben Sie jeweils eine Berechnung von \mathcal{M} auf den Wörtern bba, bab, und aa an, die in einer Stop-Konfiguration endet. Welche(s) der Wörter werden (wird) akzeptiert?
- 3. Beschreiben Sie $\mathcal{L}(\mathcal{M})$ formal als Menge.
- 4. Wie viele Schritte führt \mathcal{M} für eine Eingabe der Länge n aus (\mathcal{O} -Notation)?

Aufgabe 11 (4+4P)

Betrachten Sie das folgende WHILE-Programm mit den Eingabevariablen x_1, x_2 und der Ausgabevariable x_0 .

```
1: while x_1 do

2: x_3 := x_2 + 0;

3: while x_3 do

4: x_2 := x_2 + 1;

5: x_3 := x_3 \div 1

6: end while;

7: x_1 := x_1 \div 1

8: end while;

9: x_0 := x_2 + 0
```

- a) Welche Ausgabe erzeugt das Programm für die Eingabe $x_1=2$ und $x_2=3$?
- b) Was berechnet das Programm? Geben Sie die Antwort als Funktion $f(x_1,x_2)$.