Отчет о выполнении индивидуального задания по теме «Введение в искусственные нейронные сети»

Студента(-ки) группы <u>09-813</u> Махмутов Ринат

Задание

Для отобранной смеси признаков из задания «Отбор признаков в машинном обучении» провести процедуру классификации с помощью нейронной сети. Выбрать наилучшую структуру сети.

Привести оценки качества классификации.

При выполнении задания «**Отбор признаков в машинном обучении**» была получена матрица признаков, записанная в файл

```
'Mahmutov all 3taskxlsx' (pa3mep 142 15).
```

Из этой матрицы формируем матрицу признаков и матрицу откликов Mahmutov response Y

Исследование проведем с использованием программы classify_net.m. Текст программы.

```
X = Mahmutovallnew; % матрица отобранных признаков
t = MahmutovresponseY'; % вектор откликов
X = normalize(X);
x = X';
MIN N = 1; %минимальное число нейронов из исследуемого диапазона
MAX N =10; %максимальное число нейронов из исследуемого диапазона
for i = MIN N:MAX N
net = patternnet(i); %определяем сеть прямого распространения
% net.layers{1}.transferFcn = 'tansig'; можно задавать вид сигмоиды в
% каждом слое
% net.layers{2}.transferFcn = 'logsig';
[net, tr] = train(net, x, t); %передача сети в обучение
testX = x(:,tr.testInd);
testT = t(:,tr.testInd);
testY = net(testX);
[c,cm] = confusion(testT, testY);
Net(i) = 100*(1-c);
end
%расчет для сети с лучшим числом нейронов в скрытом слое
net = patternnet(3); %определяем сеть прямого распространения для выбранного
числа нейронов
% net.layers{1}.transferFcn = 'tansig'; можно задавать вид сигмоиды в
% каждом слое
% net.layers{2}.transferFcn = 'logsig';
[net,tr] = train(net,x,t); %передача сети в обучение
plotperform(tr) % отображение качества процесса обучения
nntraintool % вызов окна процесса обучения сети в котором отображаются
результаты обучения
testY = net(x);
[c1,cm1] = confusion(t,testY);
```

Результаты работы программы: качество классификации.

Выводится также окно процесса обучения сети, в котором отображаются результаты обучения.

Пункт *Confusion* дает возможность посмотреть матрицы рассеяния обучающей, валидационной и тестовой выборки.

Для сравнения с предыдущими методами классификации надо использовать All Confusion Matrix.

Последняя строчка программы Net выводит значения правильного определения класса для тестовой выборки для каждого значения числа нейронов в скрытом слое.

Ниже приводятся результаты пяти прогонов программы

>> classify_net

Net =							
76.1905	66.6667	90.4762	100.0000	90.4762	85.7143	80.9524	85.7143
95.2381	80.9524						
Net =							
90.4762	80.9524	90.4762	95.2381	85.7143	80.9524	90.4762	100.0000
85.7143	80.9524						
Net =							
80.9524	76.1905	85.7143	71.4286	85.7143	85.7143	76.1905	85.7143
95.2381	95.2381						
Net =							
100.0000	95.2381	57.1429	85.7143	85.7143	90.4762	90.4762	66.6667
80.9524	90.4762						
Net =							
80.9524	85.7143	90.4762	80.9524	95.2381	85.7143	90.4762	90.4762
90.4762	85.7143						

Средний результат:

Первая строчка – число нейронов в скрытом слое.

	1	2	3	4	5	6	7	8	9	10
1	76,19	66,67	90,48	100,0	90,48	85,71	80,95	85,71	95,23	80,95
2	90,48	80,95	90,48	95,23	85,71	80,95	90,48	100,0	85,71	80,95
3	80,95	76,19	85,71	71,43	85,71	85,71	76,19	85,71	95,24	95,24
4	100,0	95,24	57,14	85,71	85,71	90,48	90,48	66,67	80,95	90,48
5	80,95	85,71	90,47	80,95	95,24	85,71	90,48	90,48	90,48	85,71
\hat{x}	85,714	80,952	82,856	86,664	88,57	85,712	85,716	85,714	89,522	86,666
D	90,72	113,3	210,92	129,23	18,16	11,352	45,386	147,36	38,552	38,579
СКО	9,5250	10,647	14,523	11,367	4,262	3,3693	6,7369	12,139	6,2089	6,2112

Лучший средний результат для сети из трех нейронов в скрытом слое. Производим 5 прогонов для сети patternnet(3)

	All Confusion Matrix								
1	67	4	94.4%						
	47.2%	2.8%	5.6%						
Output Class	9	62	87.3%						
	6.3%	43.7%	12.7%						
	88.2%	93.9%	90.8%						
	11.8%	6.1%	9.2%						
,	۸.	r							
		Target Class							

	All Confusion Matrix									
1	69	4	94.5%							
	48.6%	2.8%	5.5%							
Output Class	7	62	89.9%							
	4.9%	43.7%	10.1%							
	90.8%	93.9%	92.3%							
	9.2%	6.1%	7.7%							
	^	∿ Target Class								

N	Accuracy	Specificity, TNR	Sensitivity, TPR
1	90,8	93,9	88,2
2	92,3	93,9	90,8
3	92,3	92,4	92,1
4	90,8	93,9	88,2
5	89,4	93,9	85,5
Среднее	91,12	93,6	88,96

Таблица из первого задания

					Модель				
	11				22 27				
	Accura cy	Specificit y, TNR	Sensitivit y, TPR	Accurac y	specificit y	sensitivit y	Accurac y	specificit y	sensitivit y
K=3	88,7	93,9	84	88,7	90,9	86,7	87,2	87,9	86,7
K=4	93,0	90,9	88,0	88,7	87,9	89,5	89,4	87,9	90,8
K=5	91,5	97,0	86,8	93,9	88,2	87	90,1	89,4	90,8
Среднее	91,1	93,9	86,3	89,4	89	87,7	88,9	88,4	89,4

Применение нейронных сетей позволило незначительно повысить точность классификации данных.