

September 1986 Revised February 2000

DM74ALS174 • DM74ALS175 Hex/Quad D-Type Flip-Flops with Clear

General Description

These positive-edge-triggered flip-flops utilize TTL circuitry to implement D-type flip-flop logic. Both have an asynchronous clear input, and the quad (DM74ALS175) version features complementary outputs from each flip-flop.

Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the HIGH or LOW level, the D input signal has no effect at the output.

Features

- Advanced oxide-isolated ion-implanted Schottky TTL process
- Pin and functional compatible with LS family counterpart
- Typical clock frequency maximum is 80 MHz
- Switching performance guaranteed over full temperature and V_{CC} supply range

Ordering Code:

Ordering Code	Package Number	Package Description
DM74ALS174M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
DM74ALS174SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
DM74ALS174N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
DM74ALS175M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
DM74ALS175SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
DM74ALS175N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagrams

Function Table

	Inputs	Outputs		
Clear Clock		D	Q	Q (Note 1)
L	Х	Х	L	Н
Н	\uparrow	Н	Н	L
Н	\uparrow	L	L	Н
Н	L	X	Q_0	\overline{Q}_0

- H = HIGH Level (steady state)
 L = LOW Level (steady state)
 X = Don't Care

 ↑ = Transition from LOW-to-HIGH Level
 Q₀ = the level of Q before the indicated steady-state input conditions were established

Note 1: applies to DM74ALS175 only

Logic Diagrams

Absolute Maximum Ratings(Note 2)

Supply Voltage 7V 7V Input Voltage

Operating Free Air Temperature Range 0°C to $+70^{\circ}\text{C}$

Storage Temperature Range -65°C to +150°C

Typical θ_{JA}

N Package 77.9°C/W

M Package 107.3°C/W

Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units	
V _{CC}	Supply Voltage	Supply Voltage		5	5.5	V
V _{IH}	HIGH Level Input Voltage		2			V
V _{IL}	LOW Level Input Voltage	LOW Level Input Voltage			0.8	V
I _{OH}	HIGH Level Output Currer	nt			-0.4	mA
I _{OL}	LOW Level Output Curren	t			8	mA
t _W	Pulse Width	Clock HIGH or LOW	10			ns
		Clear LOW	10			
t _{SETUP}	Setup Time (Note 3)	Data Input	10↑			
		Clear Inactive State	6↑			ns
t _{HOLD}	Data Hold Time (Note 3)	Data Hold Time (Note 3)				ns
f _{CLOCK}	Clock Frequency		0		50	MHz
T _A	Free Air Operating Temperature		0		70	°C

Note 3: The symbol ↑ indicates that the rising edge of the clock is used as reference.

Electrical Characteristics

over recommended operating free air temperature range. All typical values are measured at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Symbol	Parameter	Conditions	s	Min	Тур	Max	Units
V _{IK}	Input Clamp Voltage	$V_{CC} = 4.5V$, $I_{IN} = -18$ mA				-1.5	V
V _{OH}	HIGH Level Output Voltage	$I_{OH} = -400 \ \mu\text{A}$ $V_{CC} = 4.5 \text{V to } 5.5 \text{V}$		V _{CC} - 2	V _{CC} - 1.6		V
V _{OL}	LOW Level Output Voltage	V _{CC} = 4.5V	I _{OL} = 8 mA		0.35	0.5	V
Iı	Input Current at Max Input Voltage	V _{CC} = 5.5V, V _{IN} = 7V				0.1	mA
I _{IH}	HIGH Level Input Current	$V_{CC} = 5.5V, V_{IH} = 2.7V$				20	μΑ
I _{IL}	LOW Level Input Current	$V_{CC} = 5.5V, V_{IN} = 0.4V$				-0.1	mA
I _O	Output Drive Current	$V_{CC} = 5.5V, V_{O} = 2.25V$		-30		-112	mA
I _{CC}	Supply Current	V _{CC} = 5.5V Clock = 4.5V	DM74ALS174		11	19	mA
		Clear = GND D Input = GND	DM74ALS175		8	14	

Switching Characteristics

over recommended operating free air temperature range

Symbol	Parameter	Conditions	Min	Max	Units
f _{MAX}	Maximum Clock Frequency	$R_L = 500\Omega$	50		MHz
t _{PLH}	Propagation Delay Time	C _L = 50 pF			
	LOW-to-HIGH Level	V _{CC} = 4.5V to 5.5V	5	18	ns
	Output From Clear (175 Only)				
t _{PHL}	Propagation Delay Time	7			
	HIGH-to-LOW Level		8	23	ns
	Output From Clear				
t _{PLH}	Propagation Delay Time				
	LOW-to-HIGH Level		3	15	ns
	Output From Clock				
t _{PHL}	Propagation Delay Time				
	HIGH-to-LOW Level		5	17	ns
	Output From Clock				

$\begin{picture}(200,0)\put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){100$

16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow Package Number M16A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com