- **2.** Préciser les valeurs de a pour lesquelles le filtre est stable. Pour la suite d l'exercice, on prendra a=0,5.
- **3.1** Pour $0 \le n \le 5$, représenter la réponse indicielle unitaire du filtre à un séquence d'entrée $\{x_n\}$ telle que $x_n = 1$ pour tout $n \ge 0$ et $x_n = 0$ pour n < 0.
- **3.2** À quel type de réponse analogique peut-on rapprocher cette répons indicielle ? En déduire la nature (passe-bas, passe-haut, passe-bande) d filtre réalisé et préciser la valeur de son amplification statique H_0 .
- 4. La séquence d'entrée est désormais constituée des échantillons x_n prélevés la fréquence $f_E = 2$ kHz et à partir de la date t = 0 s, sur le signal $x(t) = \sin(2\pi t)$ avec $f_1 = 0,1f_E$.
 - **4.1** Déterminer l'expression de $x_n = x(nT_E)$.
 - **4.2** À l'aide d'un tableur, calculer, pour $0 \le n \le 19$, les échantillons y_n disponible en sortie du filtre.
 - **4.3** Représenter, pour $0 \le n \le 19$, les échantillons x_n et y_n .
 - **4.4** En déduire l'amplification H_1 introduite par le filtre à la fréquence f_1 lorsque le régime permanent est établi.
- **5.1** Établir l'expression de la fonction de transfert complexe $\underline{H}(jf)$ et montrer que son module peut s'écrire : $|\underline{H}(jf)| = \frac{1}{\sqrt{1,25-\cos\left(2\pi\frac{f}{f}\right)}}$
- **5.2** $|\underline{H}(jf)|$ varie en fonction de la fréquence réduite $\frac{f}{f_E}$ comme suit :

Déterminer la fréquence de coupure à -3 dB du filtre.

CORRECTION

1. On a $H(z) = \frac{Y(z)}{X(z)} = \frac{1}{z-a} = \frac{z^{-1}}{1-az^{-1}}$ donc $Y(z) - az^{-1}Y(z) = z^{-1}X(z)$. L'opérateur représentant un retard d'un échantillon, on en déduit l'équation de récurren du filtre : $y_n = x_{n-1} + ay_{n-1}$. Il s'agit d'un filtre récursif car y_n dépend de y_{n-1} .

- **2.** H(z) ne présente qu'un seul pôle réel : $z_1 = a$. Par conséquent, le filtre est stable si |a| < 1.
- **3.1** L'équation de récurrence permet de déterminer la réponse indicielle suivante du filtre:

- **3.2** On retrouve une réponse analogue à celle d'un système analogique de type passe-bas (courbe en pointillés) d'amplification statique $H_0 = 2$.
- **4.1** On a : $x_n = x(nT_E) = \sin(2\pi f_1 T_E n) = \sin(2\pi . 0, 1f_E . T_E n) = \sin(0, 2\pi n)$.
- **4.2** L'équation de récurrence du filtre permet de déterminer les valeurs de y_n suivantes :

n	0	1	2	3	4	5	6	7	8	9
y _n	0	0	0,59	1,24	1,57	1,37	0,69	-0,24	-1,07	-1,49
n	10	11	12	13	14	15	16	17	18	19
y _n	-1,33	-0,67	0,25	1,08	1,49	1,33	0,67	-0,25	-1,08	-1,49

4.3

- **4.4** À la fréquence f_1 , l'amplification introduite en régime établi par le filtre est $H_1 = \frac{Y_{\text{max}}}{X_{\text{max}}} = \frac{1,5}{1} = 1,5$.
- **5.1** En effectuant le changement de variable $z=e^{i\omega T_{\rm E}}$, avec $\omega=2\pi f$ la pulsation du signal d'entrée et $T_{\rm e}$ la période d'échantillonnage, on a :

$$\underline{H}(j\omega) = \frac{1}{e^{j\omega T_E} - 0.5} = \frac{1}{\cos(\omega T_E) - 0.5 + j\sin(\omega T_E)}$$