3 Corbes esfèriques i hèlixs

Exercici 23: (Volta de Viviani) Sigui C la corba intersecció de l'esfera $x^2 + y^2 + z^2 = 1$ amb el cilindre $x^2 + y^2 - y = 0$. Calculeu la curvatura i la torsió de C.

Exercici 24: Es diu que una corba és esfèrica si el seu recorregut està sobre una esfera.

- 1. Demostreu que una corba $\alpha(s)$ és esfèrica si, i només si, existeix un punt fix c_0 (el centre de l'esfera que la conté) tal que el vector $\alpha(s) c_0$ és perpendicular a $\alpha'(s)$ per a tot s.
- 2. Comproveu que si $\alpha(s)$ és esfèrica llavors k(s) > 0 per a tot s.
- 3. Comproveu que el centre c_0 de l'esfera que conté una certa corba $\alpha(s)$ (parametritzada per l'arc) es pot obtenir com

$$c_0 = \alpha(s) + \frac{1}{k(s)} N(s) + \frac{k'(s)}{(k(s))^2 \tau(s)} B(s)$$

per a qualsevol s on $\tau(s) \neq 0$, i per tant, el radi d'aquesta esfera és

$$r = \sqrt{\left(\frac{1}{k(s)}\right)^2 + \left(\frac{k'(s)}{(k(s))^2 \tau(s)}\right)^2}$$

4. Tenint en compte els càlculs de l'apartat anterior, demostreu el recíproc. És a dir, si $\alpha(s)$ és una corba parametritzada per l'arc amb $k(s) \neq 0$ i $\tau(s) \neq 0$ tal que

$$\left(\frac{1}{k(s)}\right)^2 + \left(\frac{k'(s)}{(k(s))^2 \tau(s)}\right)^2 = c$$

amb c constant, llavors $\alpha(s)$ està sobre una esfera de radi \sqrt{c} .

¹Un clic sobre l'esquema us permetrà accedir (https://www.geogebra.org/m/hqVuj92y) a una construcció dinàmica de la situació per tal de poder observar la corba des del punt de vista que vulgueu.

 $^{^2}$ Si $\tau(s)=0$ per tot s la corba és plana (un paral·lel o meridià) i no es pot determinar el radi de l'esfera que la conté. Un paral·lel pot ser comú a esferes de diferent radi. Fora dels intervals on $\tau(s)=0$ aquestes fórmules són certes encara que $\tau(s)=0$ en un punt (a la demostració es veurà que si $\tau(s_0)=0$ també $k'(s_0)=0$) ja que per ser $\alpha(s)$ diferenciable ho és la component de $\alpha(s)-c$ respecte B(s), la qual és una funció que val $\frac{k'(s)}{(k(s))^2\tau(s)}$ fora dels zeros de $\tau(s)$ i $\lim_{s\to s_0}\frac{k'(s)}{(k(s))^2\tau(s)}$ quan $\tau(s_0)=0$.

Exercici 25: Es designa per $h \`{e} lix$ una corba tal que les seves tangents formen un angle constant amb una direcció fixada (que és diu que és l'eix de l'h $\`{e}$ lix).

- 1. Proveu que una corba és una hèlix si, i només si, les seves normals principals són paral·leles a un pla fixat (de fet, el pla perpendicular a l'eix).
- 2. Demostreu que si la torsió no s'anul·la, llavors $\alpha(s)$ és una hèlix si i només si $\frac{k(s)}{\tau(s)} =$ ct.
- 3. Quin invariant permet distingir una hèlix dextrògira d'una hèlix levògira?
- 4. Proveu que tota hèlix $\gamma(s)$ es pot escriure com $\gamma(s) = \beta(s) + s \vec{v}$ on $\beta(s)$ és una corba plana continguda en un pla perpendicular a l'eix de $\gamma(s)$ i \vec{v} un vector fix. Relacioneu les curvatures de $\beta(s)$ i $\gamma(s)$.
- 5. Comproveu que la corba $\gamma(t) = (a \cos(t), a \sin(t), bt)$ és una hèlix (s'anomena hèlix circular). Determineu l'eix i la corba plana associada.
- 6. Vegeu que el lloc geomètric dels centres dels cercles osculadors d'una hèlix circular és una altra hèlix circular coaxial i del mateix pas.
- 7. Localitzeu, entre les corbes que han sortit en exercicis anteriors, altres hèlix i mireu d'obtenir el seu eix i la corba plana associada.

Exercici 26: Considerem l'hèlix circular donada per $\alpha(s) = (a \cos(s/c), a \sin(s/c), b s/c)$, amb $s \in \mathbb{R}$ i $c^2 = a^2 + b^2$.

- 1. Demostreu que $\alpha(s)$ està parametritzada per l'arc.
- 2. Determineu la curvatura i la torsió de $\alpha(s)$.
- 3. Determineu el pla osculador.
- 4. Demostreu que les rectes que tenen direcció N(s) i passen per $\alpha(s)$ tallen l'eix Oz amb angle constant igual a $\pi/2$.

Exercici 27: Sigui $\alpha(s)$ una corba que té curvatura constant k=3, torsió constant $\tau=4$ i quan s=0 passa per (0,0,0) amb triedre de Frenet $T(0)=(1,0,0),\ N(0)=(0,1,0),\ B(0)=(0,0,1)$. Determineu la parametrització per l'arc de α .

Exercici 28: Trobeu les hèlixs esfèriques.

Exercici 29: Considerem la corba parametritzada $\alpha(t) = (\cosh(t), \sinh(t), t), t \in \mathbb{R}$.

- 1. Trobeu-ne la curvatura i la torsió. Demostreu que $\alpha(t)$ és una hèlix.
- 2. Trobeu el paràmetre arc de $\alpha(t)$.

 $^{^3}$ Amb aquesta definició tota corba plana és una hèlix ja que les seves tangents formen un angle de $\pi/2$ amb el vector director del pla. Per això assumirem que les hèlixs son corbes no planes.