BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI SECOND SEMESTER 2019-20

Course Handout (Part II)

Date: 12/12/2019

In addition to Part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : **BITS F417 / ME F423**

Course Title : Microfluidics and its Applications

Instructor-in-charge : Dr. Satish Kumar Dubey

Instructor : Dr. Satish Kumar Dubey and Dr. Sanket Goel

1. Scope and Objective of the Course:

Introduction to microfluidics, scaling in microfluidics, theoretical microfluidics, Philosophy of Computational Fluid Dynamics, Concepts of discretization, fabrication techniques for microfluidic devices, microvalves, micropumps, microflow sensors, microfluidics for life sciences: micromixers, microneedles, microfilters, microseparators, microreactors, modeling and simulation on CAD tool.

2. Text Book:

Fundamentals and applications of microfluidics by Nam-Trung Nguyen and Steven T. Wereley, Artech House, 2002.

Reference Books:

- 1. Introduction to Microfluidics, by Patrick Tabeling, Oxford University Press, 2005.
- 2. Theoretical Microfluides, by Henrik Bruus, Oxford Master Series in Condensed Matter Physics, 2008.
- 3. Microfluidics Fundamentals, Devices and Applications, Edited by Yujun Song, Daojian Cheng, and Liang Zhao, Wiley 2018.

3. Course Plan:

#	Learning Objectives	ives Topic		Chap. Sec.
1	Introduction to Microfluidics	Physics at the microscale, role of various intermolecular forces.	2	T Ch 1
2	Dimensional analysis and scaling laws to understand fluid flow	To understand fluid flow in Microfluidic domain. Navier-Stokes equation and application to obtain certain exact solutions.	4	T Ch 2
3	Diffusion, mixing and separation of fluids in Microsystems	Analysis of dispersion phenomena, Passive and active mixing, Chaotic mixing, Hydrodynamics of microfluidic systems, bubbles, droplets	3	R1 Ch 4 R2 Ch 5
4	Electrohydrodynamics of microsystems	Electro-osmosis, Electrophoresis, Dielectrophoresis, Magnetophoresis	3	R1 Ch 5 R2 Ch 8-11
5	Introduction to flow simulation	Meshing, discretization and simulation using relevant software	3	R3 Ch 4
6	Introduction to microfabrication techniques	Photolithography- etching – embossing, Soft-lithographic patterning, mask design, surface modification.	3	T Ch 3 R1 Ch 7
7	Various detection mechanisms in Microfluidics	Electrical, Amperometric, Electrochemical, High-Speed, Colorometric, Fluorescence,	4	Notes

		Chemiluminiscence, Bioluminiscence		
8	Characterization of Microfluidic Devices	Optical & Electronic Microscope, Profilometers, Scanning Probe Microscopy, Raman Spectroscopy, UV VIS Spectroscopy, Confocal Microscopy	3	Notes
9	Microfluidic Experimental flow characterization and External Flow Control	MicroPIV, Fluorescent microscopy Velocity and Laminar flow measurement and its control	2	T Ch 5
10	Microfluidics for Internal Flow Control	Microvalves, Micropumps, Micromixers, Microflow Sensors	2	T Ch 6, 7, & 8
11	Ancillary areas of Microfluidics	Digital Microfluidics, Thermofluidics, Optofluidics, Nanofluidics, Acoustofluidics	3	R2, Ch 12, 15, 16, 17 R3, Ch 5
12	Application of Microfluidics I Biomedical	Biomedical applications	4	Notes
13	Application of Microfluidics II	Biochemical applications	4	Notes
		Total	40	

4. Evaluation Scheme:

		Weightage			
Component	Duration	%	Marks	Date &Time	Remarks
Midterm	1Hr30m	20	60		Closed Book
Comprehensive	3 Hr.	30	90	12 May 2020, AN	Closed Book
Exam					
Quizzes ¹		10	30	During Lecture	Closed Book
Lab ²		20	60		Open Book
Project ³		20	60	To be announced	Open Book
Total		100	300		

5. Lab Experiments

- i. Introduction to the software COMSOL and its application in MEMS/Microfluidics.
- ii. Simulation of MEMS Sensors/Actuators using COMSOL
- iii. Microfluidic simulations using COMSOL: Laminar Flow; Convection diffusion; Conjugate heat transfer.
- iv. Development of Micro-device using FDM based 3D printing.
- v. Development of electrically conductive polymers using CO2 Laser.
- vi. Development of PCB/µ-devices using dry film resist based photolithography.
- vii. Development of Micro-device using poly-di-methyl-siloxane (PDMS) based Soft-lithography.
- viii. Development of micro-devices using liquid photoresist based Direct Laser Writing (DLW).
- ix. Fundamentals of Clean room and demonstration of Electron Beam Vapour Deposition.
- x. Study of Scanning Electron Microscopy

6. Chamber Consultation Hour: To be announced in the class.

- 7. **Make-up Policy:** There will no make-ups unless for genuine reasons. Prior Permission of the Instructor-in-Charge is required to take a make-up for any component.
- 8. Notices: CMS

Instructor-In-Charge

¹ Total 8 quizzes will be taken and the best 6 will be considered for the final evaluation

² The marks will be based on the lab reports and lab performance

³ Evaluation: Project Outline - 20%, Project Report - 30%, Presentation and Demo - 50%