Sistemi - Modulo di Sistemi a Eventi Discreti Discrete Event and Hybrid Systems

Laurea Magistrale in Ingegneria e Scienze Informatiche Tiziano Villa

12 Febbraio 2021

Nome e Cognome:

Matricola:

Posta elettronica:

problema	punti massimi	i tuoi punti
problema 1	10	
problema 2	10	
problema 3	10	
totale	30	

•	(a)	Si definisca la nozione di macchina a stati finiti nondeterministica. [English: Define the notion of non-deterministic finite state machine]
	(b)	Si definisca la nozione di equivalenza tra due macchine a stati finiti non- deterministiche. [English: Define the notion of equivalence between two non-deterministic finite state machines]
	(c)	Si definisca la nozione di raffinamento tra due macchine a stati finiti non-deterministiche. [English: Define the notion of refinement between two non-deterministic finite state machines] Traccia di soluzione. M_1 raffina M_2 se e solo se hanno i medesimi ingressi e uscite e le successioni d'ingressi/uscite prodotte da M_1 sono un sottoinsieme (proprio o no) di quelle di M_2 .

(d) Si considerino le due macchine a stati finiti seguenti: [English: Consider the following two finite state machines:]

Macchina M':

- stati: s'_1, s'_2 con s'_1 stato iniziale;
- transizione da s_1' a s_1' : •/ \bot , transizione da s_1' a s_2' : •/0, transizione da s_2' a s_2' : •/ \bot , •/0, •/1.

[English: Machine M':

- states: s'_1, s'_2 with s'_1 initial state;
- transition from s_1' to s_1' : •/ \bot , transition from s_1' to s_2' : •/0, transition from s_2' to s_2' : •/ \bot , •/0, •/1.

]

Macchina M'':

- stati: $s_1'', s_2'' \cos s_1''$ stato iniziale;
- transizione da $s_1^{''}$ a $s_1^{''}$: •/0, •/ \bot , transizione da $s_1^{''}$ a $s_2^{''}$: •/0, transizione da $s_2^{''}$ a $s_2^{''}$: •/ \bot , •/0, •/1.

[English: Machine M'':

- states: $s_1^{"}, s_2^{"}$ with $s_1^{"}$ initial state;
- transition from s_1'' to s_1'' : •/0, •/ \bot , transition from s_1'' to s_2'' : •/0, transition from s_2'' to s_2'' : •/ \bot , •/0, •/1.

]

Si risponda in ordine alle seguenti domande (si indichi sempre il numerale romano in ogni risposta): [English: Answer the following questions according to their order (prefix each answer with its roman number)]

- i. Si disegnino i diagrammi di transizione delle due macchine. [English: Draw the state transition graphs of the two machines]
- ii. Si classifichino le macchine rispetto al determinismo. [English: Classify the machines with respect to determinism]Traccia di risposta.

M' e' pseudo-nondeterministica.

 $M^{''}$ e' nondeterministica, ma non pseudo-nondeterministica.

iii. Si trovi una simulazione di M' da parte di M'', se esiste. [English: Find a simulation of M' by M'', if it exists] Traccia di risposta.

 $M^{''}$ simula $M^{'}$ come mostrato dalla relazione $R_{M^{'}-M^{''}}=\{(s_1^{'},s_1^{''}),(s_2^{'},s_2^{''})\}.$

iv. Si trovi una simulazione di M'' da parte di M', se esiste. [English: Find a simulation of M'' by M', if it exists] Traccia di risposta.

M' simula M'' come mostrato dalla relazione

 $R_{M^{''}-M^{'}}=\{(s_{1}^{''},s_{1}^{'}),(s_{1}^{''},s_{2}^{'}),(s_{2}^{''},s_{2}^{'})\}.$

v. Si trovi una bisimulazione tra le due macchine, se esiste. [English: Find a bisimulation between the two machines, if it exists]
Traccia di risposta.

Non c'e' una bisimulazione perche' l'unione delle due precedenti relazioni non e' simmetrica, dato che non e' presente la coppia (s_2', s_1'') .

vi. Si determinizzi la macchina $M^{''}$ e si mostri il diagramma di transizione della macchina determinizzata così trovata $det(M^{''})$. [English: Determinize the machine $M^{''}$ and draw the transition diagram of the determinized machine $det(M^{''})$ so computed] Traccia di risposta.

Macchina det(M''):

- stati: $\{s_1''\}, \{s_1'', s_2''\}, \{s_2''\} \text{ con } \{s_1''\} \text{ stato iniziale;}$
- transizione da $\{s_1^{"}\}$ a $\{s_1^{"}\}$: •/ \bot , transizione da $\{s_1^{"}\}$ a $\{s_1^{"},s_2^{"}\}$: •/0, transizione da $\{s_1^{"},s_2^{"}\}$ a $\{s_1^{"},s_2^{"}\}$: •/0, •/ \bot , transizione da $\{s_1^{"},s_2^{"}\}$ a $\{s_2^{"}\}$: •/1, transizione da $\{s_2^{"}\}$ a $\{s_2^{"}\}$: •/ \bot , •/0, •/1.
- vii. Si trovi una simulazione di M' da parte di det(M''), se esiste. [English: Find a simulation of M' by det(M''), if it exists] Traccia di risposta.

 $det(M^{''}) \text{ simula } M^{'} \text{ come mostrato dalla relazione } \\ R_{M^{'}-det(M^{''})} = \{(s_{1}^{'}, \{s_{1}^{''}\}), (s_{2}^{'}, \{s_{1}^{''}, s_{2}^{''}\}), (s_{2}^{'}, \{s_{2}^{''}\})\}.$

viii. Si trovi una simulazione di $det(M^{''})$ da parte di $M^{'}$, se esiste. [English: Find a simulation of $det(M^{''})$ by $M^{'}$, if it exists] Traccia di risposta.

$$\begin{array}{l} M^{'} \text{ simula } det(M^{''}) \text{ come mostrato dalla relazione} \\ R_{det(M^{''})-M^{'}} = \{(\{s_{1}^{''}\},s_{1}^{'}),(\{s_{1}^{''},s_{2}^{''}\},s_{2}^{'}),(\{s_{2}^{''}\},s_{2}^{'})\}. \end{array}$$

ix. Si trovi una bisimulazione tra le due macchine M' e det(M''), se esiste. [English: Find a bisimulation between the two machines M' and det(M''), if it exists]

Traccia di risposta.

L'unione delle precedenti relazioni $R_{M'-det(M'')} \cup R_{det(M'')-M'} = \{(s_1^{'}, \{s_1^{''}\}), (s_2^{'}, \{s_1^{''}, s_2^{''}\}), (s_2^{'}, \{s_2^{''}\}), (\{s_1^{''}\}, s_1^{'}), (\{s_1^{''}, s_2^{''}\}, s_2^{'}), (\{s_2^{''}\}, s_2^{'})\}$ e' simmetrica, quindi costituisce una bisimulazione tra M' e det(M'').

x. Si commentino i risultati precedenti. [English: Draw conclusions from the previous results]

Traccia di risposta.

 $M^{'}$ e $M^{''}$ sono esempi di macchine a stati finiti minimizzate equivalenti ($M^{'}$ raffina $M^{''}$ e $M^{''}$ raffina $M^{'}$), ma non bisimili e tanto meno isomorfe.

Dato che $M^{'}$ e' pseudo-nondeterministica e $M^{''}$ e' nondeterministica, ma non pseudo-nondeterministica, il fatto che $M^{''}$ simula $M^{'}$ implica che: a) $M^{''}$ astrae $M^{'}$ cioe' $M^{'}$ raffina $M^{''}$ ($M^{'}$ esibisce un sottoinsieme dei comportamenti di $M^{''}$); b) $M^{'}$ simula $M^{''}$ se e solo se $M^{''}$ raffina $M^{'}$.

Determinizzando gli stati di $M^{''}$ si ottiene una macchina $det(M^{''})$ pseudo-nondeterministica equivalente a $M^{''}$. Ne consegue che $M^{'}$ e $det(M^{''})$ sono bisimili, poiche' macchine pseudo-nondeterministiche sono equivalenti se e solo se sono bisimili.

Minimizzando gli stati di $det(M^{''})$ si ottiene una macchina a stati finiti isomorfa a $M^{'}$ (si noti che $\{s_{1}^{''},s_{2}^{''}\}$ e $\{s_{2}^{''}\}$ sono stati equivalenti).

2. Si consideri il sistema G con $\mathcal{L}(G) = a^*b^*$ e linguaggio ammissibile chiuso rispetto al prefisso $L_a = \{a^nb^m : n \geq m \geq 0\}$. L'insieme degli eventi incontrollabili sia $E_{uc} = \{a\}$.

Si scriva con precisione la definizione di controllabilita'.

Applicando la definizione di controllabilità si verifichi se L_a e' controllabile.

 L_a e' regolare ? Si motivi la risposta.

Traccia di soluzione.

 L_a e' controllabile ma non regolare.

Si consideri una stringa $s \in \overline{L_a}E_{uc} \cap \mathcal{L}(G)$. Deve essere $s = a^n$ per un n finito, il che implica $s \in \overline{L_a}$, e quindi $\overline{L_a}E_{uc} \cap \mathcal{L}(G) \subseteq \overline{L_a}$, dimostrando la controllabilita'.

La non-regolarita' deriva dal fatto che bisogna contare quante a per decidere quante b permettere dopo la sequenza di a.

[English: Consider the plant G such that $\mathcal{L}(G) = a^*b^*$, the admissible prefixclosed language $L_a = \overline{\{a^nb^m : n \geq m \geq 0\}}$, and the set of uncontrollable events $E_{uc} = \{a\}$.

Write precisely the definition of controllability.

Apply the definition of controllability to verify whether L_a is controllable.

Is L_a regular? Justify your answer.]

3. Una rete di Petri marcata e' specificata da una quintupla: $\{P, T, A, w, x\}$, dove P sono i posti, T le transizioni, A gli archi, w la funzione di peso sugli archi, e x il vettore di marcamento (numero di gettoni per posto). $I(t_i)$ indica l'insieme dei posti in ingresso alla transizione t_i , $O(t_j)$ indica l'insieme dei posti in uscita dalla transizione t_j .

Si consideri la rete di Petri P_{vvf16} definita da:

- $P = \{p_1, p_2, p_3\}$
- $T = \{t_0, t_1, t_2, t_3\}$
- $A = \{(p_1, t_0), (p_1, t_1), (p_1, t_3), (p_2, t_2), (p_3, t_0), (p_3, t_2), (t_1, p_3), (t_2, p_3), (t_3, p_1), (t_3, p_2)\}$
- $\forall i, j \ w(p_i, t_j) = 1$
- $\forall i, j \ w(t_i, p_j) = 1$

Sia $x_0 = [1, 0, 0]$ la marcatura iniziale.

- (a) Si disegni il grafo della rete di Petri P_{vvf16} .
- (b) Si definiscano le nozioni di transizione L0-viva, L1-viva, L2-viva, L3-viva, L4-viva.
- (c) Si classifichino rispetto a tale definizione le transizioni t_0, t_1, t_2, t_3 della rete.

Traccia di soluzione.

 t_0 e' L0-viva (morta), t_1 e' L1-viva, t_2 e' L2-viva, t_3 e' L3-viva.

(d) Si studi il grafo delle marcature raggiungibili della rete.

[English: A marked Petri net is specified by a quintuple: $\{P, T, A, w, x\}$, where P are the places, T the transitions, A the arcs, w the weight function on the arcs, and x the marking vector (number of tokens in each place). $I(t_i)$ indicates the set of places entering into the transition t_i , $O(t_j)$ indicates the set of places exiting from the transition t_j .

Consider the Petri net P_{vvf16} defined by:

- $P = \{p_1, p_2, p_3\}$
- $T = \{t_0, t_1, t_2, t_3\}$
- $A = \{(p_1, t_0), (p_1, t_1), (p_1, t_3), (p_2, t_2), (p_3, t_0), (p_3, t_2), (t_1, p_3), (t_2, p_3), (t_3, p_1), (t_3, p_2)\}$
- $\forall i, j \ w(p_i, t_j) = 1$
- $\forall i, j \ w(t_i, p_j) = 1$

Let $x_0 = [1, 0, 0]$ be the initial marking.

- i. Draw the graph of the Petri net P_{vvf16} .
- ii. Define the notions of L0-live, L1-live, L2-live, L3-live, L4-live transition.
- iii. Classify with respect to such definitions the transitions t_0, t_1, t_2, t_3 of the net.
- iv. Study the graph of the reachable markings of the net.

]