Internet Video Streaming

Manuel Cadeddu 2023-02-28

Indice

1	Segnali Audio e Voce			3
	1.1	Introd	luzione	3
	1.2	Conve	erione A/D	4
		1.2.1	Campionamento	4
		1.2.2	Quantizzazione	4
		1.2.3	PCM (Pulse Code Modulation)	5

1 Segnali Audio e Voce

1.1 Introduzione

Un'onda acustica (suono) è una variazione della pressione dell'aria nel tempo. La sua ampiezza è misurata come differenza tra la pressione locale e quella dell'onda sonora. Solo una parte delle onde sonore sono udibili dall'uomo (es. non percepiamo infra/ultra-suoni) e solo una parte di queste è riproducibile tramite le corde vocali (umane).

Come possiamo notare dal seguente grafico, gli umani riescono a sentire suoni con frequenze fino a **20 KHz** e fino a **130 dB**. I suoni riproducibili sono di frequenze comprese tra i **100** e i **5 KHz** e tra i **25** e i **70 dB**. Notare che per musica si intende quella prodotta ad esempio da strumenti.

I suoni che superano la soglia superiore del Sound Pressure Level (volume del suono, dato dalla variazione di pressione) causano dolore/danni all'orecchio umano, quelli inferiori alla soglia di udibilità invece non sono udibili.

Dal precedente grafico possiamo fare diverse osservazioni:

- le due scale sono logaritmiche (ogni punto equivale ad un "x val" rispetto al precedente): sono udibili suoni con frequenza maggiore fino a 20k volte rispetto alla frequenza minima e suoni con un valore fino a 10¹³ volte maggiore del minimo udibile;
- $SPL = 10 \log_{10}(P/P_0)$
 - $-P_0$ è il valore minimo percettibile a 1 KHz
- il suono udibile è di circa 10 ottave (raddoppiamento di frequenza);
- quando si lavora in dB si hanno sempre misure relative (non assolute).

1.2 Converione A/D

La conversione analogico/digitale consiste nella trasformazione di un segnale continuo in uno discreto. La conversione avviene attraverso diverse fasi:

- 1. cattura del segnale analogico (es. con microfono);
- 2. campionamento;
- 3. quantizzazione.

1.2.1 Campionamento

Il campionamento consiste nella cattura del segnale in precisi istanti di tempo (solitamente ad intervalli regolari). In questo modo si passsa da segnale a tempo continuo a segnale a tempo discreto.

Nota:

• per poter ricostruire il segnale analogico da quello campionato è necessario che la frequenza di campionamento $f_c = 1/T_c$ sia almeno $2 * f_{max}$ del segnale che deve essere campionato (**Teorema di Nyquist**).

1.2.2 Quantizzazione

La quantizzazione consiste nella mappatura dei valori continui del segnale analogico in valori discreti.

La tecnica più semplice è la **quantizzazione uniforme** (o **lineare**): l'intervallo dei possibili valori viene diviso in intervalli della stessa dimensione.

Notare che spesso viene persa informazione perché si arrotonda il valore del segnale e che, ovunque cada il valore quantizzato, l'accuratezza dell'operazione è sempre la stessa.

Quando si progetta un quantizzatore bisogna fare in modo che il range operativo sia massimo (per catturare "valori estremi") e che la distanza dei livelli di quantizzazione sia minima (per ridurre l'errore di quantizzazione).

In caso di **overload** (il valore del segnale è maggiore del massimo o minore del minimo dell'operational range) il segnale viene associato al valore max o min. Per scegliere la dimensione dell'operational range si usa la seguente regola:

operational range =
$$4\sigma$$

1.2.3 PCM (Pulse Code Modulation)

Un Modulatore a Impulsi Codificati (PCM) è un dispositivo in grado di campionare il segnale e di quantizzarlo su N bit per campione. Per esempio 12 bit per la telefonia e 16 bit per i CD audio. Maggiore è il numero di bit, maggiore è il Rapporto Segnale/Rumore (SNR = Signal-to-Noise Ratio) e, di conseguenza, il ruomore è meno fastidioso.

Vediamo degli esempi sulla frequenza di campionamento di un PCM lineare:

- CD Audio: 44100 * 16 * 2 = 1,411,200 bit/s
 - $-44100 = 2 * f_{max};$
 - -16 = bit quantizzazione;
 - -2 = numero di canali (cassa dx e sx);
- Telefono: 8000 * 12 = 96,000 bit/s;
 - 8000 = 2 * f_{max} (voce udibile, in oltre la frequenza massima è stata leggermente tagliata);
- Video: 720 * 576 * 8 * 30 = 100 Mbit/s;
 - -720 * 576 = risoluzione (pixel);
 - -8 = per colore;
 - -30 = fps;