Adversarial Robustness-toolbox Generate Counter Examples

Fast Gradient Method, Basic Iterative Method, Deep Fool November 9, 2023

1. Label Counts

```
Basic Information:
Total number of images: 70000
Size of each image: (28, 28)
Number of unique labels: 10
Distribution of Labels:
Label 0: 6903
Label 1: 7877
Label 2: 6990
Label 3: 7141
Label 4: 6824
Label 5: 6313
Label 6: 6876
Label 7: 7293
Label 8: 6825
Label 9: 6958
Pixel Intensity Statistics:
Minimum pixel value: 0
Maximum pixel value: 255
Mean pixel value: 33.39
Standard deviation of pixel values: 78.65
Balance Check:
The dataset is not balanced across different labels.
```

Figure 1: Basic Information of Dataset

Algorithm 1 Evaluation of a Pre-trained Model on MNIST Dataset

```
Require: Pre-trained model path \mathcal{P}_{model}, MNIST dataset
Ensure: Test accuracy, Correct examples and labels saved
  1: function LOADMODEL(\mathcal{P}_{model})
               \mathcal{M} \leftarrow \mathsf{load} \; \mathsf{model} \; \mathsf{from} \; \mathcal{P}_{\mathsf{model}}
  2:
              return \mathcal{M}
  4: function LOADMNISTDATA
               (\mathcal{X}_{train}, \mathcal{Y}_{train}), (\mathcal{X}_{test}, \mathcal{Y}_{test}) \leftarrow MNIST data
  5:
              return (\mathcal{X}_{train}, \mathcal{Y}_{train}), (\mathcal{X}_{test}, \mathcal{Y}_{test})
  7: function PREPROCESSDATA(\mathcal{X})
              \mathcal{X} \leftarrow \text{reshape} and normalize \mathcal{X}
  8:
              return \mathcal{X}
10: function ONEHOTENCODE(\mathcal{Y})
              \mathcal{Y}_{	ext{encoded}} \leftarrow 	ext{one-hot encode } \mathcal{Y}
11:
              return \mathcal{Y}_{encoded}
12:
13: function EVALUATEMODEL(\mathcal{M}, \mathcal{X}_{test}, \mathcal{Y}_{test})
              \mathcal{P} \leftarrow \mathsf{model} predictions for \mathcal{X}_{\mathsf{test}}
              \mathcal{L}, \mathcal{A} \leftarrow \text{evaluate } \mathcal{M} \text{ on } \mathcal{X}_{\text{test}} \text{ and } \mathcal{Y}_{\text{test}}
15:
              return \mathcal{P}, \mathcal{L}, \mathcal{A}
16:
17: function SAVECORRECT(\mathcal{X}_{test}, \mathcal{Y}_{test}, \mathcal{P})
              \mathcal{I}_{correct} \leftarrow indices where \mathcal{P} equals \mathcal{Y}_{test}
              \mathcal{X}_{correct} \leftarrow examples from \mathcal{X}_{test} at \mathcal{I}_{correct}
19:
              \mathcal{Y}_{correct} \leftarrow labels from \mathcal{Y}_{test} at \mathcal{I}_{correct}
20:
21:
              Save \mathcal{X}_{correct} and \mathcal{Y}_{correct} to disk
22: \mathcal{M} \leftarrow \mathsf{LOADMODEL}(\mathcal{P}_{\mathsf{model}})
23: (\mathcal{X}_{train}, \mathcal{Y}_{train}), (\mathcal{X}_{test}, \mathcal{Y}_{test}) \leftarrow \mathsf{LOADMNISTDATA}
24: \mathcal{X}_{train} \leftarrow \mathsf{PREPROCESSDATA}(\mathcal{X}_{train})
25: \mathcal{X}_{test} \leftarrow \mathsf{PREPROCESSDATA}(\mathcal{X}_{test})
26: \mathcal{Y}_{train} \leftarrow \mathsf{ONEHOTENCODE}(\mathcal{Y}_{train})
27: \mathcal{Y}_{\text{test}} \leftarrow \mathsf{ONEHOTENCODE}(\mathcal{Y}_{\text{test}})
28: \mathcal{P}, \mathcal{L}, \mathcal{A} \leftarrow \mathsf{EVALUATEMODEL}(\mathcal{M}, \mathcal{X}_{\mathsf{test}}, \mathcal{Y}_{\mathsf{test}})
29: Print A as test accuracy
30: SAVECORRECT(\mathcal{X}_{test}, \mathcal{Y}_{test}, \mathcal{P})
```


Figure 2: CM FSGM

Table 1: Label counts

	Total	Training	Test	Predict	Correct
	MNIST	Set	Set	Labels	Labels
0	6903	5923	980	992	973
1	7877	6742	1135	1157	1130
2	6990	5958	1032	1037	1015
3	7141	6131	1010	999	993
4	6824	5842	982	983	968
5	6313	5421	892	904	882
6	6876	5918	958	943	942
7	7293	6265	1028	1024	1007
8	6825	5851	974	954	965
9	6958	5949	1009	1007	990
Total	70000	60000	10000	10000	9865

2. FSGM without corrected variables

Algorithm 2 Adversarial Example Generation and Analysis

- 1: Input: classifier, correct_examples, correct_labels
- 2: Output: results_df, confusion matrices
- 3: $eps_range \leftarrow [0.01, 0.02, \dots, 0.6]$
- 4: results_df ← DataFrame with columns ['eps', 'total_correct', 'total_adv', 'correct_adv_counts']
- 5: **for** eps ∈ eps_range **do**
- 6: attack ← FastGradientMethod(classifier, eps)
- 7: $x_adv \leftarrow attack.generate(x=correct_examples)$
- 8: $y_adv \leftarrow argmax(classifier.predict(x_adv), axis = 1)$
- 9: adv_counts ← count_unique(y_adv)
- 10: $cm \leftarrow confusion_matrix(correct_labels, y_adv)$
- 11: Save heatmap of cm to file with filename based on eps
- results_df.append({'eps': eps, 'total_correct': length(correct_labels), 'total_adv': length(y_adv), 'correct_adv_counts': adv_counts})
- 13: results_df.to_csv('/content/drive/MyDrive/ColabNotebooks/adv_results_labels.csv')

(a) confusion matrix 0.01

(b) confusion matrix 0.02

(a) confusion matrix 0.4

(b) confusion matrix 0.5

(a) confusion matrix 0.6

3. FSGM with corrected variables

Algorithm 3 Adversarial Example Generation and Analysis

- 1: Input: classifier, correct_examples, correct_labels
- 2: Output: results_df, confusion matrices
- 3: $eps_range \leftarrow [0.01, 0.02, \dots, 0.6]$
- 4: results_df ← DataFrame with columns ['eps', 'total_correct', 'total_adv', 'correct_adv_counts']
- 5: for eps ∈ eps_range do
- 6: attack ← FastGradientMethod(classifier, eps)
- 7: $x_adv \leftarrow attack.generate(x=correct_examples, y=correct_labels)$
- 8: $y_adv \leftarrow argmax(classifier.predict(x_adv), axis = 1)$
- 9: adv_counts ← count_unique(y_adv)
- 10: $cm \leftarrow confusion_matrix(correct_labels, y_adv)$
- 11: Save heatmap of cm to file with filename based on eps
- results_df.append({'eps': eps, 'total_correct': length(correct_labels), 'total_adv': length(y_adv), 'correct_adv_counts': adv_counts})
- 13: results_df.to_csv('/content/drive/MyDrive/ColabNotebooks/adv_results_labels.csv')

- (a) confusion matrix 0.01 (output variable)
- (b) confusion matrix 0.02 (output variable)

(a) confusion matrix 0.03 (output variable)

(b) confusion matrix 0.04 (output variable)

(a) confusion matrix 0.05 (output variable)

(b) confusion matrix 0.1 (output variable)

(a) confusion matrix 0.2(output variable)

(b) confusion matrix 0.3 (output variable)

			(Confusi	on Matı	rix for e	eps=0.4	4		
0	- 0	470	0	0	0	503	0	0	0	0
,	- 0	0	0	0	0		0	0	0	0
2	- 0	50	0	0	0		0	0	0	0
m	- 0	398	2	0	0		0	0	0	0
abels	- 0	56	0	0	0		0	0	0	0
True Labels	- 0	707	10	10	0	155	0	0	0	0
9	- 0	497	0	0	0	445	0	0	0	0
7	- 0	512	176	0	0	319	0	0	0	0
60	- 0	497	2	0	0	462	0	4	0	0
6	- 0	514	2	0	0	474	0	0	0	0
	ò	i	2	3	4 Predicte	s d Labels	6	7	8	9

(a) confusion matrix 0.5 (output variable)

(a) confusion matrix 0.6 (output variable)

	eps	num	with_correct_Labels	without_correct_Labels
0	0.01	1	{1: 9865}	{1: 9865}
1	0.01	2	{1: 9865}	{1: 9865}
2	0.01	3	{1: 9865}	{1: 9865}
3	0.01	4	{1: 9865}	{1: 9865}
4	0.01	5	{1: 9865}	{1: 9865}
5	0.02	1	{1: 9144, 5: 721}	{1: 4068, 5: 5797}
6	0.02	2	{1: 9144, 5: 721}	{1: 4068, 5: 5797}
7	0.02	3	{1: 9144, 5: 721}	{1: 4068, 5: 5797}
8	0.02	4	{1: 9144, 5: 721}	{1: 4068, 5: 5797}
9	0.02	5	{1: 9144, 5: 721}	{1: 4068, 5: 5797}
10	0.03	1	{1: 8756, 5: 1109}	{1: 355, 5: 9510}
11	0.03	2	{1: 8756, 5: 1109}	{1: 355, 5: 9510}
12	0.03	3	{1: 8756, 5: 1109}	{1: 355, 5: 9510}
13	0.03	4	{1: 8756, 5: 1109}	{1: 355, 5: 9510}
14	0.03	5	{1: 8756, 5: 1109}	{1: 355, 5: 9510}
15	0.04	1	{1: 8739, 5: 1126}	{1: 51, 5: 9813, 7: 1}
16	0.04	2	{1: 8739, 5: 1126}	{1: 51, 5: 9813, 7: 1}
17	0.04	3	{1: 8739, 5: 1126}	{1: 51, 5: 9813, 7: 1}
18	0.04	4	{1: 8739, 5: 1126}	{1: 51, 5: 9813, 7: 1}
19 20	0.04	5	{1: 8739, 5: 1126}	{1: 51, 5: 9813, 7: 1}
21	0.05	2	{1: 8735, 5: 1130} {1: 8735, 5: 1130}	{1: 12, 5: 9853} {1: 12, 5: 9853}
22	0.05	3	{1: 8735, 5: 1130} {1: 8735, 5: 1130}	{1: 12, 5: 9853} {1: 12, 5: 9853}
23	0.05	4	{1: 8735, 5: 1130}	{1: 12, 5: 9853}
24	0.05	5	{1: 8735, 5: 1130}	{1: 12, 5: 9853}
25	0.03	1	{1: 8512, 5: 1353}	{1: 1, 5: 9863, 7: 1}
26	0.10	2	{1: 8512, 5: 1353}	{1: 1, 5: 9863, 7: 1}
27	0.10	3	{1: 8512, 5: 1353}	{1: 1, 5: 9863, 7: 1}
28	0.10	4	{1: 8512, 5: 1353}	{1: 1, 5: 9863, 7: 1}
29	0.10	5	{1: 8512, 5: 1353}	{1: 1, 5: 9863, 7: 1}
30	0.20	1	{1: 6911, 5: 2954}	{5: 9865}
31	0.20	2	{1: 6911, 5: 2954}	{5: 9865}
32	0.20	3	{1: 6911, 5: 2954}	{5: 9865}
33	0.20	4	{1: 6911, 5: 2954}	{5: 9865}
34	0.20	5	{1: 6911, 5: 2954}	{5: 9865}
35	0.30	1	{1: 5219, 2: 45, 3: 6, 5: 4593, 7: 2}	{5: 9865}
36	0.30	2	{1: 5219, 2: 45, 3: 6, 5: 4593, 7: 2}	{5: 9865}
37	0.30	3	{1: 5219, 2: 45, 3: 6, 5: 4593, 7: 2}	{5: 9865}
38	0.30	4	{1: 5219, 2: 45, 3: 6, 5: 4593, 7: 2}	{5: 9865}
39	0.30	5	{1: 5219, 2: 45, 3: 6, 5: 4593, 7: 2}	{5: 9865}
40	0.40	1	{1: 3701, 2: 192, 3: 10, 5: 5958, 7: 4}	{5: 9865}
41	0.40	2	{1: 3701, 2: 192, 3: 10, 5: 5958, 7: 4}	{5: 9865}
42	0.40	3	{1: 3701, 2: 192, 3: 10, 5: 5958, 7: 4}	{5: 9865}
43	0.40	4	{1: 3701, 2: 192, 3: 10, 5: 5958, 7: 4}	{5: 9865}
44	0.40	5	{1: 3701, 2: 192, 3: 10, 5: 5958, 7: 4}	{5: 9865}
45	0.50	1	{1: 2522, 2: 342, 3: 20, 5: 6977, 7: 4}	{5: 9865}
46	0.50	2	{1: 2522, 2: 342, 3: 20, 5: 6977, 7: 4}	{5: 9865}
47 48	0.50	3	{1: 2522, 2: 342, 3: 20, 5: 6977, 7: 4} {1: 2522, 2: 342, 3: 20, 5: 6977, 7: 4}	{5: 9865}
48	0.50	5	{1: 2522, 2: 342, 3: 20, 5: 6977, 7: 4} {1: 2522, 2: 342, 3: 20, 5: 6977, 7: 4}	{5: 9865}
50	0.60	1	{1: 1675, 2: 472, 3: 45, 5: 7670, 7: 3}	{5: 9865} {5: 9865}
51	0.60	2	{1: 1675, 2: 472, 3: 45, 5: 7670, 7: 3} {1: 1675, 2: 472, 3: 45, 5: 7670, 7: 3}	{5: 9865}
52	0.60	3	{1: 1675, 2: 472, 3: 45, 5: 7670, 7: 3} {1: 1675, 2: 472, 3: 45, 5: 7670, 7: 3}	{5: 9865}
53	0.60	4	{1: 1675, 2: 472, 3: 45, 5: 7670, 7: 3}	{5: 9865}
54	0.60	5	{1: 1675, 2: 472, 3: 45, 5: 7670, 7: 3}	{5: 9865}
J-T	0.00	J	[1. 1010, 2. 712, 0. 70, 0. 1010, 1. 0]	[J. JUUJ]

4. Multiple Attacks without corrected labels

Algorithm 4 Adversarial Attack Evaluation

```
1: eps\_range \leftarrow [0.01, 0.02, 0.03, \dots, 0.6]
 2: results_df ← DataFrame()
 3: for eps ∈ eps_range do
 4:
       for attack_num \leftarrow 1 to 5 do
           attack ← FastGradientMethod(classifier, eps)
 5:
           x_adv \leftarrow attack.generate(x=correct_examples)
 6:
           y_adv \leftarrow classifier.predict(x_adv)
 7:
           cm ← confusion_matrix(correct_labels, y_adv)
 8:
 9:
           Save heatmap of cm to file
           results_df.append({'eps' : eps, 'attack_num' : attack_num, . . .})
10:
11: results_df.to_csv('/content/drive/MyDrive/ColabNotebooks/adv_results.csv')
12: Print(results_df)
```


(a) confusion matrix 0.01 attack1

(b) confusion matrix 0.02 attack1

(a) confusion matrix 0.4 attack1

(b) confusion matrix 0.5 attack1

(a) confusion matrix 0.6 attack1

Multiple Attacks with corrected labels 5.

Algorithm 5 Adversarial Attack Evaluation

```
1: eps\_range \leftarrow [0.01, 0.02, 0.03, \dots, 0.6]
 2: results_df ← DataFrame()
 3: for eps ∈ eps_range do
 4:
       for attack_num \leftarrow 1 to 5 do
           attack ← FastGradientMethod(classifier, eps)
 5:
           x\_adv \leftarrow attack.generate(x=correct\_examples,y=correct\_labels)
 6:
           y_adv \leftarrow classifier.predict(x_adv)
 7:
           cm ← confusion_matrix(correct_labels, y_adv)
 8:
 9:
           Save heatmap of cm to file
           results_df.append({'eps' : eps, 'attack_num' : attack_num, . . . })
10:
11: results_df.to_csv('/content/drive/MyDrive/ColabNotebooks/adv_results.csv')
12: Print(results_df)
```


able)

(a) confusion matrix 0.01 attack1 (output vari- (b) confusion matrix 0.02 attack1 (output vari-

able)

(a) confusion matrix 0.03 attack1 (output vari- (b) confusion matrix 0.04 attack1 (output variable)

(a) confusion matrix 0.05 attack1 (output vari- (b) confusion matrix 0.1 attack1 (output variable) able)

able)

(a) confusion matrix 0.2 attack1 (output vari- (b) confusion matrix 0.3 attack1 (output variable)

(a) confusion matrix 0.4 attack1 (output vari- (b) confusion matrix 0.5 attack1 (output variable)

able)

(a) confusion matrix 0.6 attack1 (output variable)