UNIVERSITYOF/ork

Green Chemistry

Centre of Excellence

CO₂ related chemistry

Professor Michael North

August 2014

Pressures on chemicals across the lifecycle

We need alternative, sustainable starting materials for the chemicals industry and CO₂ is one such sustainable resource.

Sustainable catalysts

http://www.chemistryinnovation.co.uk/

Use of CO₂ as a starting material

 $\Delta H = -101 \text{ kJ mol}^{-1}$ commercial process since 1922

OH
$$+ CO_2$$
 \longrightarrow CO_2H (g) (s)

 $\Delta H = -31 \text{ kJ mol}^{-1}$ commercial process since 1890

$$H_2C=CH_2 + CO_2 \longrightarrow H_2C=CHCO_2H \quad \Delta H = -43 \text{ kJ mol}^{-1}$$
(g) (g) (l)

Synthesis of cyclic carbonates

Applications: Electrolyte for lithium ion battery
Polar aprotic solvent
Chemical intermediate (e.g. for dimethyl carbonate)
Polymer synthesis

Reviews: Ind. Eng. Chem. Res. 2003, 42, 663-674; Green Chem. 2010, 12, 1514-1539.

A bimetallic aluminium(salen) catalyst

1 bimetallic catalyst

M. North *et al.*, *Eur. J. Inorg. Chem.* **2007**, 3323–3326; *Chem. Eur. J.* **2010**, *16*, 6828–6843; Patent WO/2008/132474.

Batch results with terminal epoxides

R	Yield	R	Yield	R	Yield
Ph	62%	Me	77%	CH ₂ OCOMe	34%
PhCH ₂	44%	Н	76%	CH ₂ OCOPh	58%
Bu	87%	CH ₂ OH	36%	4-MeC ₆ H ₄	77%
C ₈ H ₁₇	64%	CH ₂ CI	60%	3-MeOC ₆ H ₄	48%
CH ₂ O ^t Bu	50%	CH ₂ OPh	55%	4-CIC ₆ H ₄	42%

M. North et al., Eur. J. Inorg. Chem. 2007, 3323-3326; Chem. Eur. J. 2010, 16, 6828-6843.

Disubstituted epoxides and stereochemistry

Supported catalyst structures

Reuse of silica-supported catalyst with propylene oxide

Gas phase flow reactor

Continuous flow results at 100 °C

M. North, et al. Chem. Eur. J. 2009, 11454–11457; Dalton Trans. 2011, 40, 3885–3902.

Sources of waste CO₂

Source	Global CO ₂ emissions (10 ⁶ t CO ₂ / year)	CO ₂ purity (volume %)
Coal	14,200	12-15
Natural gas	6,320	3-5
Refineries	850	3-13
Cement production	2000	14-33
Ethylene production	260	12
Iron and steel production	1000	15
Natural gas production	50	5-70
Ammonia production	150	100

Testing with real flue gas

Five catalyst samples (all from same batch) used:

- 1. Never exposed to flue gas (control)
- 2. Exposed to flue gas from gas burn for 4 hours
- 3. Exposed to flue gas from coal burn for 4 hours
- 4. Exposed to flue gas from coal burn for 8 hours
- 5. Exposed to flue gas from coal burn for 16 hours

Catalysts then used in flow reactor

Doosan Power systems test facility

Flue gas composition Flow rate 20 mL/min

Т	52 °C
CO ₂	15%
O_2	3%
SO ₂	291ppm
CO	40ppm
NO _x	443ppm

Used El Cerrejon coal (typical hard coal): 74%C; 0.5%S; 1.5%N; 5%H; 7% H₂O

Real flue gas flow reactor results with ethylene oxide

M. North, et al. Energy Environ. Sci., 2011, 4, 4163-4170.

Use of compressed air

R	Conversion (%)	R	Conversion (%)
Ph	79	CH ₂ CI	31
Et	60	CH ₂ OPh	53
Bu	57	4-CIC ₆ H ₄	54
Oct	73	4-BrC ₆ H ₄	28
Dec	39		

M. North et al., J. Org. Chem. 2013, 78, 419-426.

Variable temperature and pressure kinetics

Varying [1] or [Bu₄NBr]

Reactions without Bu₄NBr

R	1 (mol%)	T (°C)	P (bar)	Yield (%)
Me	0.5	50	50	50
nBu	0.5	50	10	82
nOct	2.5	50	10	89
Ph	0.5	50	50	78
4-CIC ₆ H ₄	0.5	50	50	73
4-BrC ₆ H ₄	1.0	100	50	70
CH ₂ OH	0.5	50	50	77
PhOCH ₂	2.5	50	10	85

J. Fuel. Chem. Technol. 2007	Me	Me	ОН	ОН	OAc
catalyst	cocatalyst	T (°C)	P (bar)	Time (h)	Yield (%)
7.(01.) 0.510/		470	400	40	0.4

J. Fuel. Chem. Technol. 2007	Me	OH OH	OAc	OAc	
catalyst	cocatalyst	T (°C)	P (bar)	Time (h)	Yield (%)
Zn(OAc) ₂ 2.5 mol%	-	170	100	12	24

4-MeC₆H₄SO₃H

4-MeC₆H₄SO₃H

4-CIC₆H₄SO₃H

Zn(OAc)₂ 2.5 mol%

Zn(OAc)₂ 2.5 mol%

Zn(OAc)₂ 5 mol%

Zn(OAc)₂ 5 mol%

Zn(OTf)₂ 5 mol%

Zn(OTf)₂ 10 mol%

Carbonates as aprotic solvents

Solvent	Bp (Mp)	Dielectric	
		constant	
MeCN	82 °C	38	
DMF	153 °C	38	
DMSO	189 °C	47	
NMP	204 °C	32	
HMPA	235 °C	30	
Water	100 °C	80	
Ethylene carbonate	248 °C (36 °C)	90	
Propylene carbonate	242 °C (-49 °C)	64	
Dimethyl carbonate	90 °C (2 °C)	3.2	
Diethyl carbonate	128 °C (-43 °C)	2.9	

R = Me, Et

Propylene carbonate: non-toxic, used in cosmetics

Amino acid catalysed reactions

Results with 4-nitrobenzaldehyde

solvent	yield	dr	ee (anti)	ee (syn)
propylene carbonate	83%	8:1	98%	88%
ethylene carbonate	92%	9:1	98%	91%

M. North et al. Tetrahedron: Asymmetry **2010**, 21, 1262–1271; Synthesis **2011**, 1918–1925.

Use of enantiomerically pure propylene carbonate

proline	solvent	yield	dr	ee (anti)	ee (syn)
S	RS-propylene carbonate	49%	5:1	93 (S,R)	68 (<i>S,S</i>)
S	R-propylene carbonate	26%	3:1	95 (<i>S,R</i>)	35 (<i>S</i> , <i>S</i>)
R	R-propylene carbonate	63%	6:1	96 (<i>R</i> , <i>S</i>)	98 (<i>R</i> , <i>R</i>)
RS	R-propylene carbonate	43%	6:1	6 (S,R)	9 (<i>S</i> , <i>S</i>)
S	ethylene carbonate	86%	9:1	98 (<i>S</i> , <i>R</i>)	89 (<i>S,S</i>)

M. North et al. Org. Lett. 2010, 12, 2378–2381.

York, the University and Green Chemistry at York

One of Europe's most beautiful and historic cities

University of York and its Chemistry department

- ▶ Top 100 World- and Top10 UK-ranked University. Times 'Top Young University'
- Top 5 UK-ranked Chemistry Department
- World-leading Green Chemistry Centre dedicated to creating genuinely sustainable supply chains for chemical and related products

ca. €40M grants/investment in 2012-14 → new research and development buildings + new academic, research, technical, business development and admin staff.

Acknowledgements

Dr. Riccardo Pasquale

Dr. Jaisiel Melendez

Dr. Pedro Villuendas

Dr. Carl Young

Dr. Jose Castro-Osma

Dr. Xiao Wu

Dr. James Comerford

EPSRC, TSB, SSE, DoosanBabcock, EU, Sintef, CarbonConnections,