DATA130026.01 Optimization Assignment 7

Due Time: at the beginning of the class, Apr. 20, 2023

- 1. Questions 5.6 and 5.11 in CVX book (https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf).
- 2. Strong duality in linear programming. We prove that strong duality holds for the LP

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$$

and its dual

maximize
$$-b^T z$$

subject to $A^T z + c = 0$, $z \succeq 0$,

provided at least one of the problems is feasible. In other words, the only possible exception to strong duality occurs when $p^* = \infty$ and $d^* = -\infty$.

- (a) Suppose $p^* = \infty$ and the dual problem is feasible. Show that $d^* = \infty$. Hint. Show that there exists a nonzero $v \in \mathbf{R}^m$ such that $A^T v = 0, v \succeq 0, b^T v < 0$. If the dual is feasible, it is unbounded in the direction v.
- (b) Consider the example

minimize
$$x$$
 subject to $\begin{bmatrix} 0 \\ 1 \end{bmatrix} x \preceq \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

Formulate the dual LP, and solve the primal and dual problems. Show that $p^* = \infty$ and $d^* = -\infty$.

3. [Only required for DATA130026h.01.] Question 5.10 in CVX book (https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf).