Øving 1 - Laplacetransform I

Obligatoriske oppgaver

1 Skriv opp betingelser slik at integralet

$$\mathcal{L}(f) = \int_0^\infty f(t)e^{-st} dt$$

konvergerer, og vis at det konvergerer.

- 2 Lag et script som plotter funksjonen $f(t) = \cos 3t \cos 2t$ på intervallet $(-\pi, \pi)$.
- 3 Beregn laplacetransformen til
 - a) sinh t cos t
 - b) $\cos^2 2t$
- 4 Beregn den inverse laplacetransformen til
 - a) $\frac{4}{s^2 2s 3}$
 - b) $\frac{1}{s^4 s^2}$
- 5 Løs initialverdiproblemene ved laplacetransform:

a)
$$y'' - 3y' + 2y = 0$$
 $y(0) = 1$ $y'(0) = 0$

b)
$$y'' - 3y' + 2y = e^t$$
 $y(0) = 0$ $y'(0) = 0$

Anbefalte oppgaver

 $\boxed{1}$ La g(t)=f(ct), og la $\mathcal{L}(f)=F$ og $\mathcal{L}(g)=G$. Vis at dersom c>0, er

$$G(s) = \frac{1}{c}F\left(\frac{s}{c}\right)$$

2 Vis at

$$\mathcal{L}(f') = s\mathcal{L}(f) - f(0).$$

 $\fbox{3}$ En funksjon f har periode p dersom f(t+p)=f(t) for alle t. Vis at laplacetransformen til en slik funksjon er gitt ved

$$\mathcal{L}(f) = \frac{1}{1 - e^{-sp}} \int_0^p e^{-st} f(t) dt.$$

4
$$y'' - 2y' + 2y = 6e^{-t}$$
 $y(0) = 0$, $y'(0) = 1$

- 5 Finn laplacetransformene
 - a) $f(t) = \sinh(At)$
 - b) $f(t) = \cosh(At)$
 - c) $f(t) = \begin{cases} 0 & 0 < t < \pi \\ 1 & \text{ellers} \end{cases}$
 - c) $f(t) = \begin{cases} 0 & 0 < t < \pi \\ \cos t & \text{ellers} \end{cases}$
 - e) $f(t) = t^2 e^t$
 - f) $f(t) = e^t \cos t$
 - g) $f(t) = e^t \sin t$