Transition metal:

Organometallic compounds & Catalysis

Transition metal organometallic compounds & Catalysis

Which one is organometallic?

Ni(CO)₄ or NaCN?

Metal-carbon bond should be present.

Stabilizing Low Oxidation State: CO Can Do the Job

 $Ni(CO)_4$], $[Fe(CO)_5]$, $[Cr(CO)_6]$, $[Mn_2(CO)_{10}]$, $[Co_2(CO)_8]$, $Na_2[Fe(CO)_4]$, $Na[Mn(CO)_5]$

Organometallic Compound: Looking closer

Ligand Name	Bonding Type
Molecular Hydrogen: H ₂	H M ← H
Hydride H ⁻	M-H
Phosphine: PR ₃	M-PR ₃
Carbonyl: C≡O	M-C=0
Alkyl, Aryl	M-CR M-Ph
Alkene	M
	$H_2C \stackrel{1}{=} CH_2$

18 electron rule

- Stable low oxidation state complexes are found to have a total of 18 bonding electrons
 - metal electrons plus lone pairs from ligands
- Ni(CO)₄ 4s²3d⁸ and 4 lone pairs
- Fe(CO)₅ 4s²3d⁶ and 5 lone pairs
- Cr(CO)₆ 4s²3d⁴ and 6 lone pairs
- The stability of these 18 electron species can be explained using MO theory
 - Corresponds to filling all the molecular bonding orbitals and none of the antibonding orbitals
- However, the 18 electron rule only works for species with metals in a low oxidation state NOT FOR MOST COMPLEXES

Counting the number of electrons

To determine the electron count for a metal complex: Determine the <u>oxidation state of the transition metal</u> center(s) and the metal centers resulting d-electron count.

To do this one must:

- a) note any <u>overall charge</u> on the metal complex
- b) know the <u>charges of the ligands</u> bound to the metal center
- c) know the number of <u>electrons being donated</u> to the metal center from each ligand
- 2) Add up the electron counts for the metal center and ligands

Counting the number of electrons

Ligand Name	Bonding Type	Formal Charge	Electrons donated
Molecular Hydrogen: H ₂	H M ← H	0	2
Hydride H ⁻	M-H	-1	2
Halide X ⁻	M-X	-1	2
Amine, phosphine, arsine: NR ₃ , PR ₃ , AsR ₃	M-NR3 M-PR3	0	2
Carbonyl: C≡O	M-C≡ <mark>O</mark>	0	2
Alkyl, Aryl	M-CR M-Ph	-1	2
Alkene	$H_2C \stackrel{M}{=} CH_2$	0	2

coordinately saturated

therefore coordinately unsaturated

21	22	23	24	25	26	27	28	29
Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu
Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper
39	40	41	42	43	44	45	46	47
Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag
Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenum	Rhodium	Palladium	Silver
57	72	73	74	75	76	77	78	79
La	Hf	Та	W	Re	Os	Ir	Pt	Au
Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold

Early Transition Metals

16e and sub-16e configurations are common

Coordination geometries higher than 6

Middle Transition
Metals

18e configurations are common

Coordination geometries of 6 are common

Late Transition Metals

16e and sub-16e configurations are common

Coordination geometries of 5 or lower

Catalysis

$$A + B \stackrel{Catalyst}{\longrightarrow} C$$

A catalyst lowers the activation barrier for a transformation, by introducing a new reaction pathway.

Reaction Coordinate

It does not change the thermodynamics!!

Heterogeneous

Homogeneous

Catalysis: Why?

Synthesis of chemicals... pharmaceutical, agricultural

Catalytic converter ... environmental

Biology: Enzymes

Biological system – efficient catalyst

Organometallic compounds, metals etc.

Catalytic Converter

How to select an efficient catalyst?

Activity: related to rate of reaction (also called turnover)

efficient catalyst: good activity

Turnover frequency (N)

Large turnover frequency – efficient catalyst

Selectivity: Byproducts should be minimized

Lifetime: It is costly to replace the catalyst frequently

Cost: The acceptable cost depends upon the catalyst lifetime, product value lifetime and product value

Poisoning: decomposition of catalyst, adsorption of reactant/product

Coordination compounds in catalysis Nobel Prizes

2005	Yves Chauvin,Robert H. Grubbs
	and Richard R. Schrock.
2001	KNOWLES, NOYORI, SHARPLESS
1973	WILKINSON
1963	ZIEGLER, NATTA
1918	HABER
1909	OSTWALD

Hydrogenation of Unsaturated Hydrocarbons

-CH=CH- +
$$H_2 \rightarrow$$
 -CH-CH-

NOBEL: 1973

The most common catalyst

Wilkinson's Catalyst, [RhCl(PPh₃)₃]

Wilkinson's Catalyst (WC)

Chlorotris(triphenylphosphine)rhodium(I)

square planar d⁸ configuration

Geoffrey Wilkinson

- Born July 14, 1921, Yorkshire, England
- Ph.D from Cal Berkeley studying with Glenn Seaborg
- First published compound in 1965 in Journal of the Chemical Society *Chemical Communications*
- •Nobel Prize in Chemistry 1973 (shared with Ernst Otto Fischer) for their pioneering work, performed independently, on the chemistry of the organometallic, so called sandwich compounds.

Organometallic compounds prepared by Wilkinson in display at Harvard Univ.

Synthesis of WC

Commercially available

Catalytic steps

(a) Ligand coordination and dissociation

Facile coordination of the reactant and facile loss of products.

Coordinatively unsaturated - 16-electron complexes

(b) Oxidative addition

-occurs when a complex behaves simultaneously as a Lewis base and a Lewis acid

Metal must possess a non-bonding electron pair

Coordinatively unsaturated

Oxidation of metal by two units – M^n to M^{n+2}

Oxidative addition...

$$L_{n} \stackrel{\bigcirc}{\longrightarrow} + X-Y \longrightarrow L_{n} \stackrel{X-Y}{\longrightarrow} L_{n} \stackrel{X}{\longrightarrow} Y$$

(c) Insertion or migration Migration of alkyl and hydride ligands

(d) Reductive elimination

Involves decrease in the oxidation and coordination number

Hydrogenation of Unsaturated Hydrocarbons

-CH=CH- +
$$H_2 \rightarrow$$
 -CH-CH-

$$\Delta G^0 = -101 \text{ kJ/mol}$$

(1) Oxidative addition

(2) Ligand Dissociation

(3) Ligand Association

(4) Migration/Insertion

(5) Ligand association

(6) Reductive elimination

(note: regeneration of the catalyst)

Homogeneous Hydrogenation

WC in alkene Hydrogenation: Additional Notes

Rate of the reaction decreases as the alkyl substitution increases Highly sensitive to the nature of the phosphine ligand Analogous complexes with alkylphosphine ligands are inactive Highly selective for C=C over C=O

Applications

- * Laboratory scale organic synthesis
- * Production of fine chemicals

Alkene Hydrogenation & Chirality & Nobel

Chiral phosphine ligands have been developed to synthesize optically active products.

Synthesis of L-DOPA (Used in the treatment of Parkinson's diseases)
Synthetic route was developed by Knowles & co-workers at Monsanto

Dr. William S. Knowles received Nobel prize in chemistry 2001 along with other two scientists.

