Rasgos funcionales: clasificando plantas herbáceas y leñosas.

Aprendizaje Automático de Maquina I

Noviembre 2022

Paola A. Matheus Arbeláez

Contenido

01 Contexto

02 Base de Datos

03 Análisis Exploratorio de Datos

04 Modelos de Clasificación y Métricas

05 Intervalo de Confianza Exactitud

06 Segmentación

07 Conclusiones

Contexto

Los rasgos funcionales son características morfológicas, fisiológicas, fenológicas o comportamentales que se expresan en el fenotipo de individuos y son considerados relevantes en la respuesta de dichos organismos al ambiente. (Violle et al. 2007)

https://www.quora.com/What-are-functional-trait-based-approaches-to-plant-ecology-and-why-are-they-important

http://www.alithographica.com/

Problema de Investigación

> Aprendizaje Supervisado (Datos Etiquetados) Output > Clasificación binaria Input Herbáceas (0) Modelo

Leñosas (1)

Base de Datos

Carmona et al. (2021) en Nature.

Fine-root traits in the global spectrum of plant form and function | https://doi.org/10.1038/s41586-021-03871-y | Carlos P. Carmona | Section Bueno | Section

Disponible en: Figshare

https://figshare.com/articles/dataset/Data_from_Fine-root_traits_in_the_global_spectrum_of_plant_form_and_function_Carmona_et_al_2021_Nature_/13140146

5 archivos .txt

- Taxonomía: especie, género, familia, orden.
- Rasgos aéreos: área foliar, nitrógeno foliar, altura planta, área especifica foliar, densidad específica de tallo y masa de semilla.
- Rasgos raíces: micorrizas, nitrógeno, longitud específica, diámetro, densidad de tejido.
- Leñosidad: especie leñosa o herbácea
- **Biomas**: 9 biomas

Análisis Exploratorio de Datos

Dimensiones

df.shape
(296,13)

Balanceo de clases

df['woodiness'].value_counts()
woody 162
non-woody 134
Name: woodiness, dtype: int64

Distribuciones univariadas

Distribuciones bivariadas

Matriz de Correlaciones

VIF >5 In, sla, ssd

Visualización PCA (PC1 vs. PC2)

Varianza Explicada 46.70%

Modelos de Clasificación

Regresión Logística usando statsmodels

Modelo	Modelo 1 – sm.logit()					
Variables Significativas	Altura de la planta					
Mátricas do		Precission	Recall	F1-score	Ассигасу	
Métricas de Evaluación	0	0.72	1.00	0.84	Train: 0.8563 Test: 0.8	
	1	1.00	0.67	0.80	Validation: 0.8541	

Los odds de ser leñosa aumentan por un factor de 29.95 por cada aumento de un metro en la altura de la planta

Variable	Odds Ratio	Efectos Marginales	
Longitud raíz (SRL)	1.7121	0.0455	
Diámetro (D)	1.5754	0.0385	
Densidad tejido (RTD)	1.3294	0.0241	
Nitrógeno	1.0351	0.0029	
Área Foliar (la)	0.9526	-0.0041	
Altura planta (ph)	29.9585	0.2880 ←	
Masa semilla (sm)	0.3680	-0.0847	

Cuando la altura de la planta aumenta en un metro, aumenta la probabilidad de ser leñoso en 28.80%

Regresión logística, KNN y Decision Tree usando sklearn

Modelo	Modelo 2 – LogisticRegression()					
Hiperparámetros	C: 1.0 Penalty: l1 Solver: liblinear					
Métricas de Evaluación		Precission	Recall	F1-score	Accuracy	
	0	0.89	1.00	0.94	Train: 0.9680 Test: 0.95	
	1	1.00	0.91	0.96	Validation: 0.9583	
Modelo	Modelo 3 – KNeighborsClassifier()					
Hiperparámetros	Algorithm: auto N_neighbors: 4 Weights: distance					
		Precission	Recall	F1-score	Ассигасу	
Métricas de Evaluación	0	0.72	0.88	0.80	Train: 1.00 Test: 0.8958	
	1	0.90	0.77	0.83	Validation: 0.8166	
Modelo	Modelo 4 – DecisionTreeClassifier()					
Hiperparámetros	ccp_alpha=0 max_depth=3 min_samples_leaf=0.1					
		Precission	Recall	F1-score	Ассигасу	
Métricas de Evaluación	0	0.78	1.00	0.88	Train: 0.9202	
	1	1.00	0.80	0.89	Test: 0.9166 Validation: 0.8833	

12

Gráficos de los modelos y curvas ROC

Varianza Explicada 46.70%

Bootstraping

Mejor Modelo

Regresión Logística

- Hiperparámetros → C: 1.0, Penalty: l1, Solver: liblinear
- Accuracy → Train: 0.9680, Test: 0.95, Validation: 0.9583
- AUC: 0.998

Intervalo de Confianza Regresión Logística:

Accuracy → 90.8% - 97.8%

Segmentación de Grupos

	SRL	D	RTD	N	la	ph	sm
0	-0.342524	0.157713	-0.031214	-0.381452	0.973922	1.050966	8.758590
1	0.889856	-0.785612	0.022788	0.099472	-0.276900	-0.591491	-0.209704
2	-0.867518	0.834902	-0.010330	0.156441	0.059796	-0.567144	-0.191367
3	-0.156497	0.073120	-0.015291	-0.262474	0.232852	1.233397	0.154016

Conclusiones

El modelo de regresión logística de statsmodel ofrece la posibilidad de calcular estadísticos de interés para evaluar el modelo y tomar decisiones sobre la significancia de las variables.

El análisis de componentes principales permite visualizar la distribución de las clases en un plano bidimensional, sería interesante correr los modelos sobre los datos luego del PCA.

Sería posible trabajar con la base de datos completa si se utiliza un método de interpolación para lidiar con los N/A.

Referencias

Carmona, C. P., Bueno, C. G., Toussaint, A., Träger, S., Díaz, S., Moora, M., ... & Tamme, R. (2021). Fine-root traits in the global spectrum of plant form and function. Nature, 597(7878), 683-687.

Código disponible en Github