МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по практической работе №1 по дисциплине «Алгоритмы и структуры данных» Тема: Рекурсия

Студент гр. 9382	Бочаров Г.С.
Преподаватель	Фирсов М. А.

Санкт-Петербург 2020

Цель работы.

Понять основные принципы работы рекурсии. Освоить написание алгоритмов с использованием рекурсивных функций на языке C++.

Задание.

Вариант 2.

Задано конечное множество имен жителей некоторого города, причем для каждого из жителей перечислены имена его детей. Жители X и Y называются podcmeehhukamu, если (а) либо X – ребенок Y, (б) либо Y – ребенок X, (в) либо существует некоторый Z, такой, что X является родственником X, а X является родственником X. Перечислить все пары жителей города, которые являются родственниками.

Алгоритм.

1) На основе множества имен создается матрица родства 1-го порядка (матрица А).

Иными словами, если элементты множества имен с номерами і и ј состовляют пару родитель \rightarrow ребенок или ребенок \rightarrow родитель, ячейкам матрицы с координатами A[i][j] и A[j][i], присваиваются единицы, остальные элементы матрицы равны нулю.

- 2) Далее элементы множества попарно проверяюстя на родство, следующим образом :
 - 1. Берем номера данных двух элементов множества имен (і и ј).
- 2. Проверяем равняется ли A[i][j] единице, если да, то элементы состоят в родстве и алгоритм завершается. Если нет, то проверяем по очереди на родство с элементом под номером ј всех родственников элемента с номером і (при этом их родство с элементом і не учитывается чтобы избежать цикла).
- 3) Если входе работы алгоритма общий родственник не найден, то элементы множества не состоят в родстве.

Выполнение работы.

1. template<typename StreamT>

std::vector<std::string> getNames(StreamT &in) - функция считывает имена из файла или из консоли и возвращает массив этих имен. На вход подается поток ввода.

2. template<typename StreamT>

void getRelationsMatrix(StreamT &in, std::vector<std::vector
bool>> &relationTable) — функция считывает из входного потока данные о родстве и на их основе заполняет матрицу смежности.

- 3. bool isFamily(int a, int b, std::vector<std::vector<bool>> &arr) функция принимает номера двух элементов из массива имен и матрицу смежности. Далее проверяет их на родство по алгоритму описанному выше.
- 4. isFamilyWithDetails работает как функция bool isFamily с той лишь разницей, что выводит параметры вхождения в функцию.
- 5. printNames(std::vector<std::string> names) функция выводит имена с их номерами в массиве.
- 6. printRelationsMatrix(std::vector<std::vector<bool>> &arr) функция выводит матрицу смежности.
- 7. printPairs(std::vector<std::string> names, std::vector<std::vector<bool>> &arr) функция принимает на вход массив имен и таблицу смежности. Далее попарно проверяет элементы массива имен на родство. В случае родства 2-я элементов выводит их.

Тестирование.

Таблица 1

Номер	Ввод данных	Вывод данных
a		
тестов		
1.	0	
	1	(подробный вывод)
		вывод матрицы смежности
	2	0110000
	3	1000000
		1001000
	4	0010100
	5	0001000
	6	0 0 0 0 0 0 1
	O	0000010
	0 1 2	вывод пар
		isFamily(0 and 1) (Родственники)
	2 3	0 <> 1
	4 3	isFamily(0 and 2) (Родственники)
	5 6	0 <> 2
		isFamily(0 and 3) -
		isFamily(1 and 3) -
		isFamily(2 and 3) (Родственники)
		0 <> 3
		isFamily(0 and 4) -
		isFamily(1 and 4) -

	isFamily(2 and 4) -
	isFamily(3 and 4) (Родственники)
	0 <> 4
	isFamily(0 and 5) -
	isFamily(1 and 5) -
	isFamily(2 and 5) -
	isFamily(3 and 5) -
	isFamily(4 and 5) -
	(Не родственники)
	isFamily(0 and 6) -
	isFamily(1 and 6) -
	isFamily(2 and 6) -
	isFamily(3 and 6) -
	isFamily(4 and 6) -
	(Не родственники)
	isFamily(1 and 2) -
	isFamily(0 and 2) (Родственники)
	1 <> 2
	isFamily(1 and 3) -
	isFamily(0 and 3) -
	isFamily(2 and 3) (Родственники)
	1 <> 3
	isFamily(1 and 4) -
	isFamily(0 and 4) -
	isFamily(2 and 4) -
	isFamily(3 and 4) (Родственники)
	1 <> 4
	isFamily(1 and 5) -
	isFamily(0 and 5) -
	isFamily(2 and 5) -
	isFamily(3 and 5) -
	isFamily(4 and 5) -
	(Не родственники)
	isFamily(1 and 6) -
	isFamily(0 and 6) -
	isFamily(2 and 6) -
	isFamily(3 and 6) -
	isFamily(4 and 6) -
	(Не родственники)
	isFamily(2 and 3) (Родственники)
	2 <> 3
	isFamily(2 and 4) -
	isFamily(0 and 4) -
	isFamily(1 and 4) -
	isFamily(3 and 4) (Родственники)
	2 <> 4
	isFamily(2 and 5) -
	isFamily(0 and 5) -
	isFamily(1 and 5) -
	isFamily(3 and 5) -
	isFamily(4 and 5) -
	(Не родственники)
	isFamily(2 and 6) -
	isFamily(0 and 6) -
	102 mining (0 min 0)

		inFamily(1 and 6)
		isFamily(1 and 6) -
		isFamily(3 and 6) -
		isFamily(4 and 6) -
		(Не родственники)
		isFamily(3 and 4) (Родственники)
		3 <> 4
		isFamily(3 and 5) -
		isFamily(2 and 5) -
		isFamily(0 and 5) -
		isFamily(1 and 5) -
		isFamily(4 and 5) -
		(Не родственники)
		isFamily(3 and 6) -
		isFamily(2 and 6) -
		isFamily(0 and 6) -
		isFamily(1 and 6) -
		isFamily(4 and 6) -
		- · · · · · · · · · · · · · · · · · · ·
		(Не родственники)
		isFamily(4 and 5) -
		isFamily(3 and 5) -
		isFamily(2 and 5) -
		isFamily(0 and 5) -
		isFamily(1 and 5) -
		(Не родственники)
		isFamily(4 and 6) -
		isFamily(3 and 6) -
		isFamily(2 and 6) -
		isFamily(0 and 6) -
		isFamily(1 and 6) -
		(Не родственники)
		isFamily(5 and 6) (Родственники)
		5 <> 6
2.	Anna	вывод пар
2.	Pit	Anna <> Pit
	Vova	Anna <> Vova
	Nik	Anna <> Nik
	Ted	Anna <> Ted
	Pudge	Anna <> Pudge
		Anna <> Jerry
	Jerry	
	N1	Anna <> N1
	N2	Anna <> N2
	N3	Anna <> N3
	N4	Pit <> Vova
	N6	Pit <> Nik
	N666	Pit <> Ted
		Pit <> Pudge
	0 3 2 1	Pit <> Jerry
	5 4 6	Pit <> N1
	697	Pit <> N2
		Pit <> N3
	7 1 8	Vova <> Nik
	10 11	Vova <> Ted
	12 11	Vova <> Pudge
		Vova <> Jerry
		vova \/ jeny

		\/
		Vova <> N1
		Vova <> N2
		Vova <> N3
		Nik <> Ted
		Nik <> Pudge
		Nik <> Jerry
		Nik <> N1
		Nik <> N2
		Nik <> N3
		Ted <> Pudge
		Ted <> Jerry
		Ted <> N1
		Ted <> N2
		Ted <> N3
		Pudge <> Jerry
		Pudge <> N1
		Pudge <> N2
		Pudge <> N3
		Jerry <> N1
		Jerry <> N2
		Jerry <> N3
		N1 <> N2
		N1 <> N3
		N2 <> N3
		N4 <> N6
		N4 <> N666 N6 <> N666
		NO <> NOOO
2	1	рырол пар
3.	1	вывод пар 1 <> 111
3.	1 11	1 <> 111
3.	11	1 <> 111 1 <> 11111
3.	11 111	1 <> 111 1 <> 11111 1 <> 2
3.	11	1 <> 111 1 <> 11111 1 <> 2 1 <> 2222
3.	11 111	1 <> 111 1 <> 11111 1 <> 2
3.	11 111 1111 11111	1 <> 111 1 <> 11111 1 <> 2 1 <> 2222 1 <> 22222
3.	11 111 1111 11111 2	1 <> 111 1 <> 11111 1 <> 2 1 <> 2222 1 <> 22222 1 <> 222
3.	11 111 1111 11111	1 <> 111 1 <> 11111 1 <> 2 1 <> 2222 1 <> 22222 1 <> 222 111 <> 11111
3.	11 111 1111 11111 2	1 <> 111 1 <> 11111 1 <> 2 1 <> 2222 1 <> 2222 1 <> 222 111 <> 11111 111 <> 2
3.	11 111 1111 11111 2 2222 2222	1 <> 111 1 <> 11111 1 <> 2 1 <> 2222 1 <> 22222 1 <> 222 111 <> 11111 111 <> 2 111 <> 2222
3.	11 111 1111 11111 2 2222 2222 2222	1 <> 111 1 <> 11111 1 <> 2 1 <> 2222 1 <> 22222 1 <> 222 111 <> 11111 111 <> 2 111 <> 2222 111 <> 2222
3.	11 111 1111 11111 2 2222 2222	1 <> 111 1 <> 11111 1 <> 2 1 <> 2222 1 <> 22222 1 <> 222 111 <> 11111 111 <> 2 111 <> 2222 111 <> 2222 111 <> 2222
3.	11 111 1111 11111 2 2222 2222 2222	1 <> 111 1 <> 11111 1 <> 2 1 <> 2222 1 <> 2222 11 <> 11111 111 <> 2 111 <> 2222 111 <> 2222 111 <> 2222 111 <> 2222 111 <> 2222
3.	11 111 1111 11111 2 2222 2222 2222 22 22	1 <> 111 1 <> 11111 1 <> 2 1 <> 2 1 <> 2222 1 <> 2222 1 <> 2222 111 <> 11111 111 <> 2 111 <> 2222 111 <> 2222 111 <> 2222 111 <> 2222 1111 <> 2222 11111 <> 2222 11111 <> 2222 11111 <> 2222 11111 <> 2222
3.	11 111 1111 11111 2 2222 2222 2222 22	1 <> 111 1 <> 11111 1 <> 2 1 <> 2 1 <> 2222 1 <> 22222 1 <> 22222 111 <> 11111 111 <> 2 111 <> 2222 111 <> 2222 111 <> 2222 1111 <> 2222 11111 <> 2222 11111 <> 2222 11111 <> 2222 11111 <> 22222 2 <> 2222
3.	11 111 1111 11111 2 2222 2222 2222 22 22	1 <> 111 1 <> 11111 1 <> 2 1 <> 2 1 <> 2222 1 <> 22222 1 <> 22222 111 <> 11111 111 <> 2 111 <> 2222 111 <> 2222 111 <> 2222 1111 <> 2222 1111 <> 2222 11111 <> 2222 11111 <> 2222 2 <> 2222 2 <> 2222 2 <> 2222
3.	11 111 1111 11111 2 2222 2222 22 22 3 3	1 <> 111 1 <> 11111 1 <> 2 1 <> 2 1 <> 2222 1 <> 22222 1 <> 22222 111 <> 11111 111 <> 2 111 <> 2 111 <> 2222 1111 <> 2222 11111 <> 2222 11111 <> 2222 11111 <> 2222 11111 <> 2222 2 <> 2222 2 <> 2222 2 <> 2222 2 <> 2222
3.	11 111 1111 11111 2 2222 2222 22	1 <> 111 1 <> 11111 1 <> 2 1 <> 2222 1 <> 2222 1 <> 2222 111 <> 11111 111 <> 2 111 <> 2 222 111 <> 2222 111 <> 2222 1111 <> 222 11111 <> 2 11111 <> 2 222 2 <> 2222 2 <> 2222 2 <> 2222 2 <> 2222 2 <222 <> 2222 2 <222 <> 2222
3.	11 111 1111 11111 2 2222 2222 22	1 <> 111 1 <> 11111 1 <> 2 1 <> 2 1 <> 2222 1 <> 2222 1 <> 2222 111 <> 11111 111 <> 2 111 <> 2222 111 <> 2222 111 <> 2222 111 <> 2222 1111 <> 2222 1111 <> 2222 11111 <> 2222 11111 <> 2222 2 <> 2222 2 <> 2222 2 <> 2222 2 <> 2222 2 222 <> 2222 2 222 <> 2222 2 222 <> 2222
3.	11 111 1111 11111 2 2222 2222 22	1 <> 111 1 <> 11111 1 <> 2 1 <> 2222 1 <> 2222 1 <> 2222 111 <> 11111 111 <> 2 111 <> 2 222 111 <> 2222 111 <> 2222 1111 <> 222 11111 <> 2 11111 <> 2 222 2 <> 2222 2 <> 2222 2 <> 2222 2 <> 2222 2 <222 <> 2222 2 <222 <> 2222
 3. 4. 	11 111 1111 11111 2 2222 2222 22	1 <> 111 1 <> 11111 1 <> 2 1 <> 2 1 <> 2222 1 <> 2222 1 <> 2222 111 <> 11111 111 <> 2 111 <> 2222 111 <> 2222 111 <> 2222 111 <> 2222 1111 <> 222 11111 <> 2 11111 <> 2 222 11111 <> 2222 2 <> 2222 2 <> 2222 2 <> 2222 2 <> 2222 2 222 <> 2222 2 222 <> 2222 2 222 <> 2222
	11 111 1111 11111 2 2222 2222 22	1 <> 111 1 <> 11111 1 <> 2 1 <> 2 1 <> 2222 1 <> 22222 1 <> 22222 111 <> 11111 111 <> 2 111 <> 2 111 <> 2222 111 <> 2222 11111 <> 2 1111 <> 2 11111 <> 2 11111 <> 2 222 11111 <> 2222 11111 <> 2222 2 <> 2222 2 <> 2222 2 <> 2222 2 <> 2222 2 222 <> 2222 2 2222 <> 2222 2 2222 <> 2222 2 2222 <> 2222

	1	родителя!
	2	
	3	
	6 7	
6.	0	ошибка: неверные номер
	1	ребенка!
	2	
	3	
	0 10	
7.	0	(подробный вывод)
		вывод пар
	2	isFamily(0 and 1)
	$\frac{3}{4}$	(Родственники)
	4	0 <> 1
	0.12	isFamily(0 and 2)
	012	(Родственники)
	2 4	0 <> 2
		isFamily(0 and 3) -
		isFamily(1 and 3) -
		isFamily(2 and 3) -
		isFamily(4 and 3) -
		(He родственники) isFamily(0 and 4) -
		isFamily(1 and 4) -
		isFamily(2 and 4)
		(Родственники)
		0 <> 4
		isFamily(1 and 2) -
		isFamily(0 and 2)
		(Родственники)
		1 <> 2
		isFamily(1 and 3) -
		isFamily(0 and 3) -
		isFamily(2 and 3) -
		isFamily(4 and 3) -
		(Не родственники)
		isFamily(1 and 4) -
		isFamily(0 and 4) -
		isFamily(2 and 4)
		(Родственники)
		1 <> 4
		isFamily(2 and 3) -
		isFamily(0 and 3) -

		isFamily(1 and 3) -
		isFamily(4 and 3) -
		(Не родственники)
		isFamily(2 and 4)
		(Родственники)
		2 <> 4
		isFamily(3 and 4) -
		(Не родственники)
8.	Ввод из файла	Файл не найден!
	Введите имя файла: Pffff	

Выводы.

В ходе выполнения данной лабораторной работы был написан рекурсивный алгоритм проверки элементов множества на родство.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММЫ

```
#include <iostream>
#include <fstream>
#include <string>
#include <vector>
#include <sstream>
int spaceCount = 0; // Счетчик количества пробелов, для вывода
порядка рекурсивных вызовов
//функция считывания списка имен из файла
template<typename StreamT>
std::vector<std::string> getNames(StreamT &in) {
    std::vector<std::string> names;
    std::string line;
    while (std::getline(in, line) && !line.empty()) {
        names.push back(line);
    }
    if (names.empty()) {
        throw std::runtime error("Список имен пуст!");
    return names;
}
//функция формирует матрицу смежности используя данные из файла
template<typename StreamT>
void getRelationsMatrix(StreamT &in,
std::vector<std::vector<bool>> &relationTable) {
    std::string line;
    int temp;
    int parent;
    while (std::getline(in, line) && !line.empty()) {
        std::istringstream str(line);
        if (!(str >> parent))
            throw std::runtime error("ошибка: неверный номер
родителя!");
        else {
            if (parent >= relationTable.size() || parent < 0)</pre>
                throw std::runtime error("ошибка: неверный номер
родителя!");
            else {
                while (str >> temp) {
```

```
if (temp >= relationTable.size() || temp < 0)</pre>
{
                         throw std::runtime error("ошибка: неверные
номер ребенка!");
                     }
                    relationTable[parent][temp] = true;
                    relationTable[temp][parent] = true;
                }
            }
        }
    }
}
//функция рекурсивно проверяет, являеются ли 2 элемента
родственниками
bool isFamily(int a, int b, std::vector<std::vector<bool>> &arr) {
    if (a == b)
        return false;
    if (arr[a][b]) {
        return true;
    } else {
        for (int i = 0; i < arr.size(); i++) {
            if (arr[a][i]) {
                arr[a][i] = false;
                arr[i][a] = false;
                if (isFamily(i, b, arr)) {
                    arr[a][i] = true;
                    arr[i][a] = true;
                    return true;
                arr[a][i] = true;
                arr[i][a] = true;
            }
    return false;
}
//функция рекурсивно проверяет, являеются ли 2 элемента
родственниками и выводит порядок вызовов
bool isFamilyWithDetails(int a, int b,
std::vector<std::vector<bool>> &arr) {
    std::string sp(spaceCount, ' '); // строка с табами
    std::cout << sp << "isFamily(" << a << " and " << b << ") ";
    if (a == b)
        return false;
```

```
if (arr[a][b]) {
        std::cout << "(Родственники)" << std::endl;
        return true;
    } else {
        spaceCount++;
        std::cout << "-" << std::endl;
        for (int i = 0; i < arr.size(); i++) {
            if (arr[a][i]) {
                arr[a][i] = false;
                arr[i][a] = false;
                if (isFamilyWithDetails(i, b, arr)) {
                    arr[a][i] = true;
                    arr[i][a] = true;
                    spaceCount--;
                    return true;
                arr[a][i] = true;
                arr[i][a] = true;
            }
        }
    spaceCount--;
    if (spaceCount == 0)
        std::cout << "(Не родственники)" << std::endl;
    return false;
}
//функция выводит имена и их номера в списке
void printNames(std::vector<std::string> names) {
    std::cout << "Вывод имен" << std::endl;
    for (int i = 0; i < names.size(); i++)
        std::cout << i << " : " << names[i] << std::endl;
}
std::vector<std::vector<bool>> createArray(int size) {
    std::vector<std::vector<bool>> res;
    res.resize(size);
    for (auto &v : res) {
        v.resize(size);
    return res;
}
//функция выводит матрицу смежности
void printRelationsMatrix(std::vector<std::vector<bool>> &arr) {
    std::cout << "вывод матрицы смежности" << std::endl;
```

```
for (int i = 0; i < arr.size(); i++) {
        for (int j = 0; j < arr.size(); j++) {
            std::cout << arr[i][j] << " ";
        std::cout << std::endl;</pre>
    }
}
//функция выводит пары родственников
void printPairs(std::vector<std::string> names,
std::vector<std::vector<bool>> &arr) {
    std::cout << "вывод пар" << std::endl;
    for (int i = 0; i < arr.size() - 1; i++)
        for (int j = i + 1; j < arr.size(); j++)
            if (isFamily(i, j, arr))
                std::cout << names[i] << " <--> " << names[j] <<</pre>
std::endl;
}
void printPairsWithDetails(std::vector<std::string> names,
std::vector<std::vector<bool>> &arr) {
    std::cout << "вывод пар" << std::endl;
    for (int i = 0; i < arr.size() - 1; i++)
        for (int j = i + 1; j < arr.size(); j++)
            if (isFamilyWithDetails(i, j, arr))
                std::cout << names[i] << " <--> " << names[j] <<
std::endl;
}
int main() {
    try {
        std::cout << "1 - read from file 2 - read from console"</pre>
<< std::endl;
        int readFormat = 0;
        std::cin >> readFormat;
        std::cin.iqnore();
        std::ifstream in;
        std::vector<std::string> names;// массив имен жителей
        if (readFormat == 1) {
            std::cout << "Введите имя файла: ";
            std::string fileName;
            std::cin >> fileName;
```

```
in.open(fileName);
            if (in) {
                names = getNames(in);
            } else {
                throw std::runtime error("Файл не найден!");
        } else if (readFormat == 2) {
            std::cout << "введите сиписок имен через enter" <<
std::endl;
            std::cout << "Конец ввода - пустая строка" <<
std::endl;
            names = getNames(std::cin);
        } else
            throw std::runtime error("Неправильный формат ввода");
        std::cout << "Количество жителей :" << names.size() <<
std::endl;
        std::vector<std::vector<bool>> relationsMatrix =
createArray(names.size());
        if (readFormat == 1) {
            getRelationsMatrix(in, relationsMatrix);
        } else {
            std::cout
                    << "Введитете номер родителя и номера его
детей через пробел: <№ родителя> <№ ребенка 1> <№ ребенка 2> ..."
                    << std::endl;
            std::cout << "Конец ввода - пустая строка" <<
std::endl;
            getRelationsMatrix(std::cin, relationsMatrix);
        }
        std::cout << "Введите код выбраного действия" <<
std::endl;
        int printValue = 0;
        std::cout
                << " 1 - вывести пары\n"
                   " 2 - вывести пары с деталями поиска\n"
                   " 3 - вывести список имен\n"
                   " 4 - вывести матрицу смежности\n"
                   " 0 - выход из программы"
                << std::endl;
```

```
while (std::cin >> printValue) {
            switch (printValue) {
                case 1: {
                    printPairs(names, relationsMatrix);
                    break;
                }
                case 2: {
                    printPairsWithDetails(names, relationsMatrix);
                    break;
                case 3: {
                    printNames(names);
                    break;
                }
                case 4: {
                    printRelationsMatrix(relationsMatrix);
                    break;
                }
                case 0: {
                    return 0;
                }
                default: {
                    throw std::runtime error("Ошибка: выбрано
неправильное действие");
        }
    } catch (std::exception &e) {
        std::cerr << e.what() << std::endl;</pre>
    return 0;
}
```