Statistics for Linguists with R – a SIGIL course

Unit 2: Corpus Frequency Data & Statistical Inference

Marco Baroni¹ & Stefan Evert² http://SIGIL.R-Forge.R-Project.org/

¹Center for Mind/Brain Sciences, University of Trento ²Institute of Cognitive Science, University of Osnabrück

3

A simple toy problem

How many passives are there in English?

- ◆ American English style guide claims that
 - "In an average English text, no more than 15% of the sentences are in passive voice. So use the passive sparingly, prefer sentences in active voice."
 - http://www.ego4u.com/en/business-english/grammar/passive actually states that only 10% of English sentences are passives (as of June 2006)!
- ◆ We have doubts and want to verify this claim

Frequency estimates & comparison

- ◆ How often is *kick the bucket* really used?
- ◆ What are the characteristics of "translationese"?
- ◆ Do Americans use more split infinitives than Britons? What about British teenagers?
- ◆ What are the typical collocates of *cat*?
- ◆ Can the next word in a sentence be predicted?
- ◆ Do native speakers prefer constructions that are grammatical according to some linguistic theory?
- → evidence from frequency comparisons / estimates

From research question to statistical analysis

corpus data How many passives are there in English?

linguistic question

From research question to statistical analysis

corpus data

5

How do you count passives?

- ◆ Types vs. tokens
 - type count: How many *different* passives are there?
 - token count: How many *instances* are there?
- ◆ How many passive tokens are there in English?
 - ∞ infinitely many, of course!
- ◆ Only **relative frequency** can be meaningful

What is English?

- ◆ Sensible definition: group of speakers
 - e.g. American English as language spoken by native speakers raised and living in the U.S.
 - may be restricted to certain communicative situation
- ◆ Also applies to definition of sublanguage
 - dialect (Bostonian, Cockney), social group (teenagers), genre (advertising), domain (statistics), ...
- ◆ Here: professional writing by AmE native speakers (➪ target group of style guide)

6

How do you count passives?

- ♦ How many passives are there ...
 - ... per million words?
 - ... per thousand sentences?
 - ... per hour of recorded speech?
 - ... per book?
- ◆ Are these measurements meaningful?

7

How do you count passives?

- ♦ How many passives could there be at most?
 - every VP can be in active or passive voice
 - frequency of passives is only interpretable by comparison with frequency of potential passives
- ◆ What proportion of VPs are in passive voice?
 - easier: proportion of sentences that contain a passive
 - in general with respect to some unit of measurement
- Relative frequency = proportion π

From research question to statistical analysis

corpus data

From research question to statistical analysis

corpus data

The library metaphor

- ◆ Extensional definition of a language:

 "All utterances made by speakers of the language under appropriate conditions, plus all utterances they *could* have made
- ◆ Imagine a huge library with all the books written in a language, as well as all the hypothetical books that were never written
 - → library metaphor (Evert 2006)

10

From research question to statistical analysis

From research question to statistical analysis

13

15

How do you count tokens in an infinite library?

- ◆ Statistics deals with similar problems:
 - goal: determine properties of **large population** (human populace, objects produced in factory, ...)
 - method: take (completely) **random sample** of objects, then extrapolate from sample to population
 - this works only because of **random** sampling!
- ◆ Many statistical methods are readily available

Statistics & language

- ◆ Apply statistical procedure to linguistic problem

 ⇒ need random sample from population
- ◆ What are the objects in our population?
 - words? sentences? texts? ...
- ◆ Objects = whatever **unit of measurement** the proportions of interest are based on
 - we need to take a random sample of these units

14

The library metaphor • Random sampling in the library metaphor • take sample of VPs (to be correct) or sentences (for convenience) • walk to a random shelf pick a random book open a random page and choose a random VP from the page • this gives us 1 item for our sample • repeat n times for sample size n

Types, tokens and proportions

- ◆ Example: word frequencies
 - word type = dictionary entry (distinct word)
 - word token = instance of a word in library texts
- ◆ Example: passives
 - relevant VP types = active or passive (→ abstraction)
 - VP token = instance of VP in library texts
- ◆ Example: verb sucategorisation
 - relevant types = itr., tr., ditr., PP-comp., X-comp, ...
 - verb token = occurrence of selected verb in text

Types, tokens and proportions

- ◆ Proportions and relative sample frequencies are measured in terms of types & tokens
- ◆ Relative frequency of type v
 = proportion of tokens t_i that belong to this type

$$p = \frac{f(v)}{n}$$
 frequency of type sample size

• Compare relative sample frequency p against (hypothesised) population proportion π

Inference from a sample

- ◆ Principle of inferential statistics
 - if a sample is picked at random, proportions should be roughly the same in sample and population
- ◆ Take a sample of, say, 100 VPs
 - observe 19 passives $\rightarrow p = 19\% = .19$
 - style guide \rightarrow population proportion $\pi = 15\%$
 - $p > \pi$ \rightarrow reject claim of style guide?
- ◆ Take another sample, just to be sure
 - observe 13 passives $\rightarrow p = 13\% = .13$
 - $p < \pi \rightarrow$ claim of style guide confirmed?

18

Sampling variation

- ◆ Random choice of sample ensures proportions are the same on average in sample & population
- ◆ But it also means that for every sample we will get a different value because of chance effects
 → sampling variation
- ◆ The main purpose of statistical methods is to estimate & correct for sampling variation
 - that's all there is to inferential statistics, really

21

Reminder: The role of statistics

22

24

Estimating sampling variation

- ◆ Assume that the style guide's claim is correct
 - the **null hypothesis** H_0 , which we aim to refute

$$H_0: \pi = .15$$

- we also refer to π_0 = .15 as the **null proportion**
- lacktriangle Many corpus linguists set out to test H_o
 - each one draws a random sample of size n = 100
 - how many of the samples have the expected k = 15 passives, how many have k = 19, etc.?

Estimating sampling variation

- ◆ We don't need an infinite number of monkeys (or corpus linguists) to answer these questions
 - randomly picking VPs from our metaphorical library is like drawing balls from an infinite urn
 - red ball = passive VP / white ball = active VP
 - H_0 : assume proportion of red balls in urn is 15%
- ◆ This leads to a binomial distribution

$$\Pr(k) = \binom{n}{k} (\pi_0)^k (1 - \pi_0)^{n-k}$$

Binomial sampling distribution

→ risk of false rejection = **p-value** = 26.2%

Hypothesis tests in practice

SIGIL: Corpus Frequency Test Wizard

.

This site provides some online utilities for the project **Statistical Inference: A Gentle Introduction for Linguists (SIGIL)** by Marco Baroni & and Stefan Evert &. The main SIGIL homepage can be found at purl.org/stefan.evert/SIGIL &.

Statistical hypothesis testing

- ◆ Statistical **hypothesis tests**
 - define a **rejection criterion** for refuting H_o
 - control the risk of false rejection (**type I error**) to a "socially acceptable level" (**significance level**)
 - **p-value** = risk of false rejection for observation
 - p-value interpreted as amount of evidence against H_0
- ◆ Two-sided vs. one-sided tests
 - in general, two-sided tests should be preferred
 - one-sided test is plausible in our example

Binomial hypothesis test in R

- ◆ Relevant R function: binom.test()
- ◆ We need to specify
 - **observed data: 19** passives out of **100** sentences
 - null hypothesis: H_0 : $\pi = 15\%$
- ◆ Using the binom.test() function:
 - > binom.test(19, 100, p=.15) # two-sided
 - > binom.test(19, 100, p=.15, # one-sided alternative="greater")

Binomial hypothesis test in R

Binomial hypothesis test in R

```
> binom.test(19, 100, p=.15)$p.value
[1] 0.2622728

> binom.test(23, 100, p=.15)$p.value
[1] 0.03430725

> binom.test(190, 1000, p=.15)$p.value
[1] 0.0006356804
```

30

Power

- Type II error = failure to reject incorrect H_0
 - the larger the discrepancy between H_0 and the true situation, the more likely it will be rejected
 - e.g. if the true proportion of passives is π = .25, then most samples provide enough evidence to reject; but true π = .16 makes rejection very difficult
 - a **powerful** test has a low type II error
- ◆ Basic insight: larger sample = more power
 - relative sampling variation becomes smaller
 - might become powerful enough to reject for $\pi = 15.1\%$

Parametric vs. non-parametric

- ◆ People often speak about parametric and nonparametric tests without precise definition
- ◆ Parametric tests make stronger assumptions
 - not just those assuming a normal distribution
 - binomial test: strong random sampling assumption
 → might be considered a parametric test in this sense!
- ◆ Parametric tests are usually more powerful
 - strong assumptions allow less conservative estimate of sampling variation \rightarrow less evidence needed against H_0

Trade-offs in statistics

- ◆ Inferential statistics is a trade-off between type I errors and type II errors
 - i.e. between **significance** and **power**
- ◆ Significance level
 - determines trade-off point
 - low significance level (p-value) → low power
- ◆ Conservative tests
 - put more weight on avoiding type I errors → weaker
 - most non-parametric methods are conservative

33

Confidence interval

$$\pi = 24\% \rightarrow H_0$$
 is rejected

Confidence interval

- We now know how to test a null hypothesis H_0 , rejecting it only if there is sufficient evidence
- ◆ But what if we do not have an obvious null hypothesis to start with?
 - this is typically the case in (computational) linguistics
- ◆ We can estimate the true population proportion from the sample data (relative frequency)
 - sampling variation → range of plausible values
 - such a **confidence interval** can be constructed by inverting hypothesis tests (e.g. binomial test)

Confidence intervals

I'm cheating here a tiny little bit (not always an interval)

34

- ◆ Confidence interval = range of plausible values for true population proportion
- ◆ Size of confidence interval depends on sample size and the significance level of the test

	n = 100 $k = 19$	n = 1,000 k = 190	n = 10,000 k = 1,900
$\alpha = .05$ $\alpha = .01$ $\alpha = .001$	$10.1\% \dots 31.0\%$	16.6% 21.6% 15.9% 22.4% 15.1% 23.4%	18.0% 20.0%

Confidence intervals in R

- Most hypothesis tests in R also compute a confidence interval (including binom.test())
 - omit H_0 if only interested in confidence interval
- ◆ Significance level of underlying hypothesis test is controlled by conf. level parameter
 - expressed as confidence, e.g. conf.level=.95 for significance level $\alpha = .05$, i.e. 95% confidence
- ◆ Can also compute one-sided confidence interval
 - controlled by alternative parameter
 - two-sided confidence intervals strongly recommended

37

39

Confidence intervals in R

```
> binom.test(190, 1000, conf.level=.99)
   Exact binomial test
data: 190 and 1000
number of successes = 190, number of
trials = 1000, p-value < 2.2e-16
alternative hypothesis: true probability of
success is not equal to 0.5
99 percent confidence interval:
 0.1590920 0.2239133
sample estimates:
probability of success
                  0.19
```

38

Choosing sample size

Choosing the sample size

Choosing sample size

Choosing the sample size

Using R to choose sample size

- ◆ Call binom. test() with hypothetical values
- ◆ Plots on previous slides also created with R
 - requires calculation of large number of hypothetical confidence intervals
 - binom.test() is both inconvenient and inefficient
- ◆ The corpora package has a vectorised function
 - > library(corpora)
 - > prop.cint(190, 1000, conf.level=.99)
 - > ?prop.cint # "conf. intervals for proportions"

Frequency comparison

- ◆ Many linguistic research questions can be operationalised as a frequency comparison
 - Are split infinitives more frequent in AmE than BrE?
 - Are there more definite articles in texts written by Chinese learners of English than native speakers?
 - Does *meow* occur more often in the vicinity of *cat* than elsewhere in the text?
 - Do speakers prefer *I couldn't agree more* over alternative compositional realisations?
- ◆ Compare observed frequencies in two samples

Frequency comparison

k_1	k ₂
n_1-k_1	n ₂ –k ₂

19	25
81	175

- ◆ Contingency table for frequency comparison
 - e.g. samples of sizes $n_1 = 100$ and $n_2 = 200$, containing 19 and 25 passives
 - H_o : same proportion in both underlying populations
- Chi-squared X^2 , likelihood ratio G^2 , Fisher's test
 - based on same principles as binomial test

Frequency comparison

- ◆ Chi-squared, log-likelihood and Fisher are appropriate for different (numerical) situations
 - Fisher: computationally expensive, small samples; *X*²: small balanced samples; *G*²: highly skewed data
- ◆ Estimates of effect size (confidence intervals)
 - e.g. difference or ratio of true proportions
 - exact confidence intervals are difficult to obtain
- ◆ Frequency comparison in practice
 - all relevant tests can be performed in

42

43

Frequency comparison in R

- ◆ Frequency comparison with prop. test()
 - easy to use: specify counts k_i and sample sizes n_i
 - uses chi-squared test "behind the scenes"
 - also computes confidence interval for difference of population proportions
- ◆ E.g. for 19 passives out of 100 vs. 25 out of 200

```
> prop.test(c(19,25), c(100,200))
```

• parameters conf.level and alternative can be used in the familiar way

Frequency comparison in R

- ◆ Can also carry out chi-squared (chisq.test) and Fisher's exact test (fisher.test)
 - requires full contingency table as 2×2 matrix
 - NB: likelihood ratio test not in standard library
- ◆ Table for 19 out of 100 vs. 25 out of 200

19 25

175

47

45

Frequency comparison in R

```
> prop.test(c(19,25), c(100,200))
    2-sample test for equality of proportions with continuity correction
data: c(19, 25) out of c(100, 200)
X-squared = 1.7611, df = 1, p-value = 0.1845
alternative hypothesis: two.sided
95 percent confidence interval:
    -0.03201426    0.16201426
sample estimates:
prop 1 prop 2
    0.190    0.125
```

Trade-offs in statistics: Significance vs. relevance

- ◆ Much focus on significant p-value, but ...
 - large differences may be non-significant if sample size is too small (e.g. 10/80 = 12.5% vs. 20/80 = 25%)
 - increase sample size for more powerful/sensitive test
 - very large samples lead to highly significant p-values for minimal and irrelevant differences (e.g. 1M tokens with 100,000 = 10% vs. 101,000 = 10.1% occurrences)
- ◆ It is important to assess both significance and relevance of frequency data!
 - confidence intervals combine both aspects

46

Some fine print

◆ Convenient cont.table function for building continency tables in corpora package

```
> library(corpora)
> ct <- cont.table(19, 100, 25, 200)</pre>
```

- ◆ Difference of proportions no always suitable as **measure of effect size**
 - especially if proportions can have different magnitudes (e.g. for lexical frequency data)
 - more intuitive: ratio of proportions (relative risk)
 - Conf. int. for similar **odds ratio** from Fisher's test

49

Preparing the data

```
> Brown <- read.csv("passives.brown.csv")
> LOB <- read.csv("passives.lob.csv")

> Brown  # take a first look at the data tables
> LOB

# pooled data for entire corpus = column sums (col. 2 ... 4)
> Brown.all <- colSums(Brown[, 2:4])
> LOB.all <- colSums(LOB[, 2:4])</pre>
```

A case study: passives

- ◆ As a case study, we will compare the frequency of passives in Brown (AmE) and LOB (BrE)
 - pooled data
 - separately for each genre category
- ◆ Data files provided in CSV format
 - passives.brown.csv & passives.lob.csv
 - cat = genre category, passive = number of passives,
 n_w = number of word,
 n_s = number of sentences,
 name = description of genre category

Frequency tests for pooled data

50

Automation: user functions

```
# user function do.test() executes proportions test for samples
# k<sub>1</sub>/n<sub>1</sub> and k<sub>2</sub>/n<sub>2</sub>, and summarizes relevant results in compact form
> do.test <- function (k1, n1, k2, n2) {
    # res contains results of proportions test (list = data structure)
    res <- prop.test(c(k1, k2), c(n1, n2))

    # data frames are a nice way to display summary tables
    fmt <- data.frame(p=res$p.value,
        lower=res$conf.int[1], upper=res$conf.int[2])

    fmt # return value of function = last expression
}
> do.test(10123, 49576, 10934, 49742) # pooled data
> do.test(146, 975, 134, 947) # humour genre
```

53

Automation: the for loop

A nicer user function

Collecting rows

54

It's your turn now ...

- ◆ Questions:
 - Which differences are significant?
 - Are the effect sizes linguistically relevant?
- ◆ A different approach:
 - You can construct a list of contingency tables with the cont.table() function from the corpora package
 - Apply fisher.test() or chisq.test() directly to each table in the list using the lapply() function
 - Try to extract relevant information with sapply()