Cone Theorem

阿巴阿巴阿巴阿巴!

Cone Theorem

1 Preliminary

Theorem 1 (Iitaka fibration). Let X be a projective variety and \mathcal{L} a line bundle on X. Let $\varphi_n: X \dashrightarrow Y_n$ be the dominant rational map associated to \mathcal{L}^n . Then for $n \gg 0$, the rational maps φ_n stable to a fibration $\varphi_\infty: X \dashrightarrow Y_\infty$ up to birational equivalence.

Proof. Here we test cref for the step environment. Test Step 2 for a step label.

2 Non-vanishing Theorem

Theorem 2 (Non-vanishing Theorem). Let (X, B) be a projective klt pair and D a Cartier divisor on X. Suppose that D is nef and $aD - K_{(X,B)}$ is nef and big for some a > 0. Then for $m \gg 0$, we have

$$H^0(X, mD) \neq 0.$$

3 Base Point Free Theorem

Theorem 3 (Base Point Free Theorem). Let (X, B) be a projective klt pair and D a Cartier divisor on X. Suppose that D is nef and $aD - K_{(X,B)}$ is nef and big for some a > 0. Then D is semiample.

4 Rationality Theorem

Theorem 4 (Rationality Theorem). Let (X, B) be a projective klt pair, $a = a(X) \in \mathbb{Z}$ with $aK_{(X,B)}$ Cartier and H an ample divisor on X. Let

$$t\coloneqq\inf\{s\geq 0:K_{(X,B)}+sH\text{ is nef}\}$$

be the nef threshold of (X, B) with respect to H. Then $t = u/v \in \mathbb{Q}$ and

$$0 \le u \le a(X) \cdot (\dim X + 1).$$

Date: July 18, 2025, Author: Tianle Yang, My Website

5 Cone Theorem and Contraction Theorem

Theorem 5 (Cone Theorem). Let (X, B) be a projective klt pair. Then there exist countably many rational curves $C_i \subset X$ with

$$0 < -K_{(X,B)} \cdot C_i \le 2 \dim X$$

such that

(a) we have a decomposition of cones

$$\operatorname{Psef}_1(X) = \operatorname{Psef}_1(X)_{K_{(X,B)} \ge 0} + \sum \mathbb{R}_{\ge 0}[C_i];$$

(b) and for any $\varepsilon > 0$ and an ample divisor H on X, we have

$$\operatorname{Psef}_{1}(X) = \operatorname{Psef}_{1}(X)_{K_{(X,B)} + \varepsilon H \ge 0} + \sum_{\text{finite}} \mathbb{R}_{\ge 0}[C_{i}].$$

Proof. We only need to prove (b) and (a) follows from (b) by taking $\varepsilon = 1/n$.

Step 1. We show that

$$\operatorname{Psef}_1(X) = \operatorname{Psef}_1(X)_{K_{(X,B)} \ge 0} + \sum \mathbb{R}_{\ge 0}[C_i]$$

why it is so long?

Step 2 (Test Name). This is a test.

Yang: To be completed.

Proof. The follows are test steps for the step environment.

Step 1. test again. In this step, we refer to 2 for a test.

Step 2. This is a test. Test cref Theorem 3.

Theorem 6 (Contraction Theorem). Let (X, B) be a projective klt pair and $F \subset \operatorname{Psef}_1(X)$ a $K_{(X,B)}$ negative extremal face of $\operatorname{Psef}_1(X)$. Then there exists a fibration $\varphi_F : X \to Y$ of projective varieties such that

- (a) an irreducible curve $C \subset X$ is contracted by φ_F if and only if $[C] \in F$;
- (b) any line bundle \mathcal{L} with $F \subset \mathcal{L}^{\perp} = \{ \alpha \in N_1(X) : \alpha \cdot \mathcal{L} = 0 \}$ comes from a line bundle on Y, i.e., there exists a line bundle \mathcal{L}_Y on Y such that $\mathcal{L} \cong \varphi_F^* \mathcal{L}_Y$.

2