Introducción a los Modelos Lineales

Adrián Rey, Valentina Cardona & Juan Diego Baez GitHub https://github.com/vcardonas/intro-modelos-lineales Rpubs https://rpubs.com/vcardonas/intro-modelos-lineales

Contents

1	Intr	roducción	1
	1.1	Asociación vs Causalidad	1
	1.2	¿Qué es un Modelo Lineal?	2
2	Cor	relación	3
	2.1	Visualización entre variables cuantitativas	Ç
	2.2	Cuantificar la intensidad de la relación	4
	2.3	Otras medidas de asociación	4
	2.4	Correlación de Pearson	Ę
3	Reg	gresión lineal	Ę
	3.1	Regresión Lineal Simple	6
	3.2	Regresión Lineal Múltiple	(
	3.3	Ejemplo en R	7
4	Bib	liografía	ç

1 Introducción

Los modelos lineales son ampliamente utilizados en estadística y aprendizaje automático debido a su simplicidad y facilidad de interpretación.

1.1 Asociación vs Causalidad

Asociación	Causalidad
* Cuantifica la fuerza de relación entre dos variables.	* Relación en la que un cambio en una variable (la causa) produce un cambio en otra variable (el efecto).

Asociación	Causalidad
* El análisis de correlación mide la asociación, no	* El análisis de regresión puede ayudar a
significa causalidad.	confirmar una relación de causa y efecto, pero no
	puede ser la única base de tal afirmación.
* El coeficiente de correlación indica el grado de	* En la regresión me interesa construir una función
relación simultáneo entre dos variables.	que arroje una predicción .
$\hat{ ho}_{x,y}=\hat{ ho}_{y,x}$	Y = f(X) + e

Por lo que en la regresión, se pueden hacer dos diferentes análisis:

- Análisis explicativos: Desentrañar la estructura y la forma de función.
- Análisis predictivos: Aprender la función para meterle valores de X y obtener predictores de Y.

Advertencias:

- La causalidad implica una correlación necesaria.
- Se puede predecir si la relación NO es causal.
- La causalidad puede ser bidireccional.
- La dependencia (escogencia de variable independiente) puede ser **pragmática**.
- Puede existir causalidad así hayan datos atípicos, esto debido a errores de medición.

1.2 ¿Qué es un Modelo Lineal?

Un modelo proporciona un marco teórico para comprender mejor un fenómeno de interés, brindando aproximaciones útiles sobre las relaciones entre las variables.

1.2.1 Una Ecuación Lineal

En un modelo, se asume que la relación entre X y Y se puede capturar por medio de una función matemática.

Le llamamos modelos **lineales** porque esta función es una **ecuación lineal**, la cual describe una línea recta en un plano cartesiano (espacio bidimensional).

1.2.2 Ejemplo gráfico

Una ecuación lineal tiene la forma:

$$y = a + bx$$

donde

- a: Es el valor inicial o **intercepto**.
- b: Es la **pendiente**, que determina cómo cambia y por cada unidad de cambio en x.

Una ecuación lineal expresa que la combinación lineal de las variables es igual a un valor constante b.

```
knitr::include_url("https://www.desmos.com/calculator/tohv4xqb0k")
```

 $Explorar:\ https://www.desmos.com/calculator/tohv4xqb0k$

```
# Vectores
x1 <- c(1, 1)
x2 <- c(0, 2)

# Combinaciones lineales
(2 * x1) - (3 * x2)

(-10 * x1) + (2000 * x2)

((2/3) * x1) + (sqrt(35) * x2)

## [1] 2 -4
## [1] -10 3990
## [1] 0.6666667 12.4988262</pre>
```

2 Correlación

2.1 Visualización entre variables cuantitativas

2.2 Cuantificar la intensidad de la relación

Covarianza

Sujetos	X	Y	Z	V	W	х	у	z	v	w	xy	xz	xv	xw
1	1	1	6	3	3	-4	-4	1	-2	-2	16	-4	8	8
2	2	2	9	1	8	-3	-3	4	-4	3	9	-12	12	-9
3	3	3	7	7	6	-2	-2	2	2	1	4	-4	-4	-2
4	4	4	8	4	1	-1	-1	3	-1	-4	1	-3	1	4
5	6	6	4	8	7	1	1	-1	3	2	1	-1	3	2
6	7	7	2	2	4	2	2	-3	-3	- 1	4	-6	-6	-2
7	8	8	1	9	9	3	3	-4	4	4	9	-12	12	12
8	9	9	3	6	2	 4	4	-2	1	-3	16	-8	4	-12
Sumas											60	-50	30	1

Media <u>5</u>

2.3 Otras medidas de asociación

Covarianza

$$Cov_{XY} = S_{XY} = \frac{\sum_{i} x_{i} y_{i}}{n-1}$$

Covarianza

$$S_{XY} = \frac{60}{7} = 8,57, \quad S_{XZ} = \frac{-50}{7} = -7,14, \quad S_{XV} = \frac{30}{7} = 4,29, \quad S_{XW} = \frac{1}{7} = 0,14$$

2.4 Correlación de Pearson

$$R_{XY} = S_{XY}/(S_X S_Y)$$

3 Regresión lineal

La ecuación de una línea recta que relaciona dos variables es

$$\mathbf{y} = \beta_0 + \beta_1 \mathbf{x}$$

¡Pero el mundo NO es estrictamente lineal!

Aunque los datos pueden seguir un patrón aproximado lineal, la línea generalmente no pasará por encima de todos los puntos.

Esto se debe a los errores, que representan la distancia entre los datos observados y la línea recta.

Tomado de: Regresión Lineal Simple. Conceptos básicos

El objetivo de la regresión lineal es encontrar los coeficientes β que minimicen estos errores.

Esto se hace generalmente utilizando el método de mínimos cuadrados.

Jugar a minimizar el error: https://huggingface.co/spaces/FreddyHernandez/linear_regression_game

3.1 Regresión Lineal Simple

La regresión lineal simple tiene la siguiente forma:

$$\mathbf{y} = \beta_0 + \beta_1 \mathbf{x} + \epsilon$$

donde

- y es la variable dependiente o respuesta.
- \bullet **x** es la variable independiente o predictora.
- β_0 es el intercepto (el valor de y cuando x=0).
- β_1 es la pendiente de la línea o el coeficiente que indica el cambio en y por cada unidad de cambio en x
- ϵ es el término de error, que captura la variabilidad en y no explicada por x.

Aclaración: El modelo es lineal en los parámetros (β) no en las variables independientes (\mathbf{X}).

3.2 Regresión Lineal Múltiple

Cuando la respuesta y está influenciada por más de una variable predictora, se extiende a la forma:

$$\mathbf{y} = \beta_0 + \beta_1 \mathbf{x_1} + \beta_2 \mathbf{x_2} + \dots + \beta_{p-1} \mathbf{x_{p-1}} + \epsilon$$

o de forma matricial:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon} \tag{1}$$

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}_{n \times 1} = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1,p-1} \\ 1 & x_{21} & x_{22} & \cdots & x_{2,p-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{n,p-1} \end{bmatrix}_{n \times p} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{bmatrix}_{p \times 1} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}_{n \times 1}$$
(2)

3.2.1 Representación geométrica

Se puede observar que $\mathbf{X}\beta$ es una combinación lineal de los vectores \mathbf{X} .

En regresión lineal, buscamos modelar la relación entre las variables predictoras X y la respuesta y usando un vector de coeficientes β .

El espacio columna de X son todas las combinaciones lineales posibles.

Pero la variable respuesta y no hace parte de ese espacio columna.

¿Qué se debe hacer?

Proyectar a y sobre el espacio columna de X y encontrar la que más minimice el error.

De forma que las predicciones serán:

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\beta}$$

Tomado de: Abraham & Ledolter (2004)

3.3 Ejemplo en R

Los datos a analizar corresponden a una serie de variables sociales, educativas, deportivas y de seguridad en las zonas rurales de Antioquia en Colombia para el año 2016.

Los datos son tomados de:

- Shiny App URL
- RStudio Cloud Project

que a su vez, se encuentran disponibles públicamente en la página del Anuario Estadístico de Antioquia del Departamento Administrativo de Planeación.

```
datos <- read.csv("./data/safety_data.csv", dec = ",")</pre>
str(datos)
                                10 variables:
  'data.frame':
                    118 obs. of
##
   $ Subregion
                                 "Valle de Aburra" "Valle de Aburra" "Valle de Aburra" "Valle de Aburra"
##
   $ Municipality
                                "Barbosa" "Caldas" "Copacabana" "Girardota" ...
   $ ProjectedPopulation: num
                                50.8 78.8 71 55.5 63.3 ...
   $ Thefts
                                115 141 385 174 264 506 17 212 17 5 ...
##
                         : int
##
   $ TrafAccid
                                19 12 18 15 6 12 10 22 4 1 ...
##
   $ Homicides
                         : int 7 12 19 8 9 7 22 33 40 1 ...
##
   $ SchoolDes
                                105 276 254 129 172 225 228 761 515 332 ...
                         : int
   $ SportsScenari
                                63 66 81 53 76 54 38 93 79 42 ...
##
                          : int
   $ Extortions
                                4 1 5 4 6 4 1 9 2 1 ...
                         : int
   $ LesionesPer
                         : int 74 85 143 76 68 132 16 132 44 9 ...
```

```
# Diagrama de dispersión
plot(datos[c("LesionesPer", "SchoolDes", "Extortions", "SportsScenari")])
```



```
# Pearson
cor(datos[c("LesionesPer", "SchoolDes", "Extortions", "SportsScenari")])
##
                 LesionesPer SchoolDes Extortions SportsScenari
## LesionesPer
                  1.0000000 0.5664804 0.6961702
                                                      0.5075335
## SchoolDes
                   0.5664804 1.0000000 0.6619255
                                                      0.4072873
## Extortions
                  0.6961702 0.6619255 1.0000000
                                                      0.4922734
## SportsScenari 0.5075335 0.4072873 0.4922734
                                                      1.0000000
# Regresión Lineal Simple
mls <- lm(LesionesPer ~ Extortions, data = datos)</pre>
# Resumen del modelo
summary(mls)
##
## Call:
## lm(formula = LesionesPer ~ Extortions, data = datos)
##
## Residuals:
     Min
##
              1Q Median
                            ЗQ
                                  Max
## -71.52 -14.68 -4.73 10.02 83.55
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
```

```
## (Intercept) 8.372 3.229 2.593 0.0108 *
## Extortions 12.358 1.183 10.445 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 23.99 on 116 degrees of freedom
## Multiple R-squared: 0.4847, Adjusted R-squared: 0.4802
## F-statistic: 109.1 on 1 and 116 DF, p-value: < 2.2e-16</pre>
```

Interpretación:

- Intercepto (8.372): Cuando no hay extorsiones (Extortions = 0), el modelo predice un promedio de 8.372 lesiones personales.
- Pendiente (12.358): Por cada aumento de una unidad en extorsiones, se predice un incremento promedio de 12.358 en las lesiones personales. Este coeficiente es estadísticamente significativo (p < 0.001).
- Coeficiente de determinación (R-squared): expresa el porcentaje de varianza explicado por el modelo, en este caso, es del 40.5%
- Coeficiente de determinación (Adjusted R-squared): penaliza a R^2 dependiendo el número de parámetros. No se puede interpretar como porcentaje de varianza explicado. Tiene valores entre 0 y 1, y cuánto más cercano a 1, mejor.

4 Bibliografía

- Abraham, B. & Ledolter J. (2004). Introduction to Regression Modeling.
- Rencher, A. C. & Schaalje, G. B. (2008). Linear models in statistics. John Wiley & Sons.