SBML Model Report

Model name: "Cooling2007_IP3transients-_CardiacMyocyte"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 3 format. This model was created by Mike Cooling¹ at April 28th 2009 at 11:55 a.m. and last time modified at April eighth 2016 at 5:21 p.m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity	
compartment types	0	compartments	1	
species types	0	species	13	
events	0	constraints	0	
reactions	0	function definitions	0	
global parameters	55	unit definitions	0	
rules	37	initial assignments	0	

Model Notes

This a model from the article:

Modeling hypertrophic IP3 transients in the cardiac myocyte.

Cooling M, Hunter P, Crampin EJ. <u>Biophys J</u>2007 Nov 15;93(10):3421-33 17693463,

Abstract:

Cardiac hypertrophy is a known risk factor for heart disease, and at thecellular level is caused

¹The Bioengineering Institute, The University of Auckland., m.cooling@aukland.ac.nz

by a complex interaction of signal transductionpathways. The IP3-calcineurin pathway plays an important role in stimulating thetranscription factor NFAT which binds to DNA cooperatively with otherhypertrophic transcription factors. Using available kinetic data, we construct amathematical model of the IP3 signal production system after stimulation by ahypertrophic alpha-adrenergic agonist (endothelin-1) in the mouse atrial cardiacmyocyte. We use a global sensitivity analysis to identify key controllingparameters with respect to the resultant IP3 transient, including thephosphorylation of cell-membrane receptors, the ligand strength and bindingkinetics to precoupled (with G(alpha)GDP) receptor, and the kinetics associated with precoupling the receptors. We show that the kinetics associated with thereceptor system contribute to the behavior of the system to a great extent, withprecoupled receptors driving the response to extracellular ligand. Finally, byreparameterizing for a second hypertrophic alpha-adrenergic agonist, angiotensin-II, we show that differences in key receptor kinetic and membranedensity parameters are sufficient to explain different observed IP3 transientsin essentially the same pathway.

This model was taken from the CellML repository and automatically converted to SBML.

The original model was: Cooling M, Hunter P, Crampin EJ. (2007) - version02

The original CellML model was created by:

Cooling, Mike,

m.cooling@aukland.ac.nz The University of Auckland The Bioengineering Institute

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2012 The BioModels.net Team. For more information see the terms of use.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of five unit definitions which are all predefined by SBML and not mentioned in the model.

2.1 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
Compartment		0000290	3	1	litre	Ø	

3.1 Compartment Compartment

This is a three dimensional compartment with a constant size of one litre.

SBO:0000290 physical compartment

4 Species

This model contains 13 species. Section 7 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi-
					tion
Gd	Gd	Compartment	$\operatorname{mol} \cdot 1^{-1}$		
Gt	Gt	${\tt Compartment}$	$\operatorname{mol} \cdot 1^{-1}$		
R	R	Compartment	$\text{mol} \cdot l^{-1}$		
Rl	R1	Compartment	$\text{mol} \cdot l^{-1}$		
Rg	Rg	Compartment	$\text{mol} \cdot l^{-1}$	\Box	
Rlg	Rlg	Compartment	$\operatorname{mol} \cdot \mathbf{l}^{-1}$	\Box	
Rlgp	Rlgp	Compartment	$\mathrm{mol}\cdot\mathrm{l}^{-1}$	\Box	
IP3	IP3	Compartment	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		
Pc	Pc	Compartment	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		
Pcg	Pcg	Compartment	$\operatorname{mol} \cdot 1^{-1}$		
Р	P	Compartment	$\operatorname{mol} \cdot 1^{-1}$		
Pg	Pg	Compartment	$\text{mol} \cdot l^{-1}$		
Ca	Ca	Compartment	$\text{mol} \cdot l^{-1}$		

5 Parameters

This model contains 55 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
	L		0.000		
Ls	Ls	0000515	0.100		\mathbf{Z}
ts	ts	0000009	30.000		\mathbf{Z}
PIP2	PIP2	0000196	4000.000		$\overline{\mathbf{Z}}$
J1	J1		0.000		
kf1	kf1	0000153	$3 \cdot 10^{-4}$		
kr1	kr1	0000156	0.000		
Kd1	Kd1	0000356	$3 \cdot 10^{-5}$		7
J2	J2		0.000		
kf2	kf2	0000153	$2.75 \cdot 10^{-4}$		
kr2	kr2	0000156	0.000		
Kd2	Kd2	0000356	27500.000		
J3	J3		0.000		
kf3	kf3	0000153	1.000		
kr3	kr3	0000156	0.001		
J4	J4		0.000		⊉ ⊟
kf4	kf4	0000153	0.300		
kr4	kr4	0000156	0.000		
Kd4	Kd4	0000356	$3 \cdot 10^{-5}$		☑ ⊟
J5	J5		0.000		
kf5	kf5	0000153	$4 \cdot 10^{-4}$		\square
J6	J6		0.000		\Box
kf6	kf6	0000153	1.000		☑ ⊟
J7	J7		0.000		\Box
kf7	kf7	0000153	0.150		\square
J8	J8		0.000		\Box
kf8	kf8	0000153	0.017		
kr8	kr8	0000156	0.017		
J9	J9		0.000		\Box
kf9	kf9	0000153	0.004		
kr9	kr9	0000156	1.000		
J10	J10		0.000		\Box
kf10	kf10	0000153	0.042		
kr10	kr10	0000156	1.000		⊉ ⊟
J11	J11		0.000		
kf11	kf11	0000153	0.033		\square
kr11	kr11	0000156	0.000		

Id	Name	SBO	Value	Unit	Constant
Kd11	Kd11	0000356	0.100		✓
J12	J12		0.000		
kf12	kf12	0000153	6.000		
J13	J13		0.000		
kf13	kf13	0000153	6.000		
J14	J14		0.000		
kf14	kf14	0000153	0.444		
Km14	Km14	0000027	19.800		$\overline{\mathbf{Z}}$
J15	J15		0.000		
kf15	kf15	0000153	3.800		
Km15	Km15	0000027	5.000		$\overline{\mathbf{Z}}$
J16	J16		0.000		
kf16	kf16	0000153	1.250		
Срс	Cpc		0.000		
Cc	Cc		0.000		
Ср	Ср		0.000		
Vc	Vc	0000468	2550.000		
Rpc	Rpc	0000468	4.610		$\overline{\mathbf{Z}}$

6 Rules

This is an overview of 37 rules.

6.1 Rule P

Rule P is a rate rule for species P:

$$\frac{d}{dt}P = J13 - (J9 + J8) \tag{1}$$

6.2 Rule Pg

Rule Pg is a rate rule for species Pg:

$$\frac{d}{dt}Pg = J9 - (J11 + J13) \tag{2}$$

6.3 Rule Pc

Rule Pc is a rate rule for species Pc:

$$\frac{d}{dt}Pc = J8 + J12 - J10 (3)$$

6.4 Rule Pcg

Rule Pcg is a rate rule for species Pcg:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Pcg} = \mathrm{J}10 + \mathrm{J}11 - \mathrm{J}12 \tag{4}$$

6.5 Rule IP3

Rule IP3 is a rate rule for species IP3:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{IP3} = \mathrm{Cpc} \cdot (\mathrm{J}14 + \mathrm{J}15) - \mathrm{J}16 \tag{5}$$

6.6 Rule Gd

Rule Gd is a rate rule for species Gd:

$$\frac{d}{dt}Gd = J7 + J13 + J12 - (J2 + J3)$$
(6)

6.7 Rule Gt

Rule Gt is a rate rule for species Gt:

$$\frac{d}{dt}Gt = J6 - (J7 + J9 + J10) \tag{7}$$

6.8 Rule Ca

Rule Ca is a rate rule for species Ca:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Ca} = \mathrm{Cpc} \cdot (1) \cdot (\mathrm{J8} + \mathrm{J11}) \tag{8}$$

6.9 Rule R

Rule R is a rate rule for species R:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{R} = 1 \cdot (\mathbf{J}\mathbf{1} + \mathbf{J}\mathbf{2})\tag{9}$$

6.10 Rule R1

Rule R1 is a rate rule for species R1:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Rl} = \mathrm{J}1 + \mathrm{J}6 - \mathrm{J}3\tag{10}$$

6.11 Rule Rg

Rule Rg is a rate rule for species Rg:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Rg} = \mathrm{J}2 - \mathrm{J}4\tag{11}$$

6.12 Rule Rlgp

Rule Rlgp is a rate rule for species Rlgp:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Rlgp} = \mathrm{J5} \tag{12}$$

6.13 Rule Rlg

Rule Rlg is a rate rule for species Rlg:

$$\frac{d}{dt}Rlg = J3 - J5 + J4 - J6 \tag{13}$$

6.14 Rule Cc

Rule Cc is an assignment rule for parameter Cc:

$$Cc = \frac{1}{Vc \cdot 602.2} \tag{14}$$

6.15 Rule Cp

Rule Cp is an assignment rule for parameter Cp:

$$Cp = \frac{1}{Vc \cdot Rpc} \tag{15}$$

6.16 Rule Cpc

Rule Cpc is an assignment rule for parameter Cpc:

$$Cpc = \frac{Cc}{Cp} \tag{16}$$

6.17 Rule J13

Rule J13 is an assignment rule for parameter J13:

$$J13 = kf13 \cdot [Pg] \tag{17}$$

6.18 Rule J12

Rule J12 is an assignment rule for parameter J12:

$$J12 = kf12 \cdot [Pcg] \tag{18}$$

6.19 Rule kr11

Rule kr11 is an assignment rule for parameter kr11:

$$kr11 = kf11 \cdot Kd11 \tag{19}$$

6.20 Rule J11

Rule J11 is an assignment rule for parameter J11:

$$J11 = kf11 \cdot [Pg] \cdot [Ca] - kr11 \cdot [Pcg]$$
(20)

6.21 Rule J10

Rule J10 is an assignment rule for parameter J10:

$$J10 = kf10 \cdot [Pc] \cdot [Gt] - kr10 \cdot [Pcg]$$
(21)

6.22 Rule J8

Rule J8 is an assignment rule for parameter J8:

$$J8 = kf8 \cdot [P] \cdot [Ca] - kr8 \cdot [Pc]$$
(22)

6.23 Rule J9

Rule J9 is an assignment rule for parameter J9:

$$J9 = kf9 \cdot [P] \cdot [Gt] - kr9 \cdot [Pg] \tag{23}$$

6.24 Rule J16

Rule J16 is an assignment rule for parameter J16:

$$J16 = kf16 \cdot [IP3] \tag{24}$$

6.25 Rule J14

Rule J14 is an assignment rule for parameter J14:

$$J14 = \frac{kf14 \cdot [Pc] \cdot PIP2}{\frac{Km14}{Cpc} + PIP2}$$
 (25)

6.26 Rule J15

Rule J15 is an assignment rule for parameter J15:

$$J15 = \frac{kf15 \cdot [Pcg] \cdot PIP2}{\frac{Km15}{Cpc} + PIP2}$$
 (26)

6.27 Rule J7

Rule J7 is an assignment rule for parameter J7:

$$J7 = kf7 \cdot [Gt] \tag{27}$$

6.28 Rule L

Rule L is an assignment rule for parameter L:

$$L = \begin{cases} \frac{Ls}{1 + exp(80 \cdot (time - ts - 0.05))} & \text{if } (time < ts + 0.15) \land (time \ge ts) \\ Ls & \text{if } time \ge ts + 0.15 \\ 0 & \text{otherwise} \end{cases} \tag{28}$$

6.29 Rule kr1

Rule kr1 is an assignment rule for parameter kr1:

$$kr1 = kf1 \cdot Kd1 \tag{29}$$

6.30 Rule J1

Rule J1 is an assignment rule for parameter J1:

$$J1 = kf1 \cdot [R] \cdot L - kr1 \cdot [R1] \tag{30}$$

6.31 Rule kr2

Rule kr2 is an assignment rule for parameter kr2:

$$kr2 = kf2 \cdot Kd2 \tag{31}$$

6.32 Rule J2

Rule J2 is an assignment rule for parameter J2:

$$J2 = kf2 \cdot [R] \cdot [Gd] - kr2 \cdot [Rg]$$
(32)

6.33 Rule J3

Rule J3 is an assignment rule for parameter J3:

$$J3 = kf3 \cdot [Rl] \cdot [Gd] - kr3 \cdot [Rlg]$$
(33)

6.34 Rule kr4

Rule kr4 is an assignment rule for parameter kr4:

$$kr4 = kf4 \cdot Kd4 \tag{34}$$

6.35 Rule J4

Rule J4 is an assignment rule for parameter J4:

$$J4 = kf4 \cdot L \cdot [Rg] - kr4 \cdot [Rlg]$$
(35)

6.36 Rule J5

Rule J5 is an assignment rule for parameter J5:

$$J5 = kf5 \cdot [Rlg] \tag{36}$$

6.37 Rule J6

Rule J6 is an assignment rule for parameter J6:

$$J6 = kf6 \cdot [Rlg] \tag{37}$$

7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

7.1 Species Gd

Name Gd

SBO:0000296 macromolecular complex

Initial concentration $10000 \text{ mol} \cdot 1^{-1}$

Involved in rule Gd

7.2 Species Gt

Name Gt

SBO:0000296 macromolecular complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

Involved in rule Gt

One rule which determines this species' quantity.

7.3 Species R

Name R

SBO:0000244 receptor

Initial concentration $13.9 \text{ mol} \cdot l^{-1}$

Involved in rule R.

One rule which determines this species' quantity.

7.4 Species R1

Name R1

SBO:0000297 protein complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

Involved in rule R1

One rule which determines this species' quantity.

7.5 Species Rg

Name Rg

SBO:0000296 macromolecular complex

Initial concentration $5.06 \text{ mol} \cdot l^{-1}$

Involved in rule Rg

7.6 Species Rlg

Name Rlg

SBO:0000296 macromolecular complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

Involved in rule Rlg

One rule which determines this species' quantity.

7.7 Species Rlgp

Name Rlgp

SBO:0000296 macromolecular complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

Involved in rule Rlgp

One rule which determines this species' quantity.

7.8 Species IP3

Name IP3

SBO:0000252 polypeptide chain

Initial concentration $0.015 \text{ mol} \cdot 1^{-1}$

Involved in rule IP3

One rule which determines this species' quantity.

7.9 Species Pc

Name Pc

SBO:0000296 macromolecular complex

Initial concentration $9.09 \text{ mol} \cdot l^{-1}$

Involved in rule Pc

7.10 Species Pcg

Name Pcg

SBO:0000296 macromolecular complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

Involved in rule Pcg

One rule which determines this species' quantity.

7.11 Species P

Name P

SBO:0000252 polypeptide chain

Initial concentration $90.9 \text{ mol} \cdot l^{-1}$

Involved in rule P

One rule which determines this species' quantity.

7.12 Species Pg

Name Pg

SBO:0000296 macromolecular complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

Involved in rule Pg

One rule which determines this species' quantity.

7.13 Species Ca

Name Ca

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ mol} \cdot l^{-1}$

Involved in rule Ca

A Glossary of Systems Biology Ontology Terms

- **SBO:000009 kinetic constant:** Numerical parameter that quantifies the velocity of a chemical reaction
- **SBO:0000027** Michaelis constant: Substrate concentration at which the velocity of reaction is half its maximum. Michaelis constant is an experimental parameter. According to the underlying molecular mechanism it can be interpreted differently in terms of microscopic constants
- **SBO:0000153 forward rate constant:** Numerical parameter that quantifies the forward velocity of a chemical reaction. This parameter encompasses all the contributions to the velocity except the quantity of the reactants
- **SBO:0000156 reverse rate constant:** Numerical parameter that quantifies the forward velocity of a chemical reaction. This parameter encompasses all the contributions to the velocity except the quantity of the reactants.
- **SBO:0000196** concentration of an entity pool: The amount of an entity per unit of volume.
- **SBO:0000244 receptor:** Participating entity that binds to a specific physical entity and initiates the response to that physical entity. The original concept of the receptor was introduced independently at the end of the 19th century by John Newport Langley (1852-1925) and Paul Ehrlich (1854-1915). Langley JN.On the reaction of cells and of nerve-endings to certain poisons, chiefly as regards the reaction of striated muscle to nicotine and to curari. J Physiol. 1905 Dec 30;33(4-5):374-413
- SBO:0000247 simple chemical: Simple, non-repetitive chemical entity
- **SBO:0000252 polypeptide chain:** Naturally occurring macromolecule formed by the repetition of amino-acid residues linked by peptidic bonds. A polypeptide chain is synthesized by the ribosome. CHEBI:1654
- **SBO:0000290** physical compartment: Specific location of space, that can be bounded or not. A physical compartment can have 1, 2 or 3 dimensions
- **SBO:0000296** macromolecular complex: Non-covalent complex of one or more macromolecules and zero or more simple chemicals
- **SBO:0000297 protein complex:** Macromolecular complex containing one or more polypeptide chains possibly associated with simple chemicals. CHEBI:3608
- **SBO:0000356 decay constant:** Kinetic constant characterising a mono-exponential decay. It is the inverse of the mean lifetime of the continuant being decayed. Its unit is "per tim".
- **SBO:0000468 volume:** A quantity representing the three-dimensional space occupied by all or part of an object

SBO:0000515 concentration of substrate: The amount of a specific entity pool substrate present per unit of volume. The participant role 'substrate' is defined in SBO:0000015

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

 $[^]b$ California Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany