26/01/2019 problems

Swansea University

College of Engineering

EGLM03 Modern Control Systems

Homework 1: Revision

Problems

1. Find the closed-loop characteristic equation of the system illustrated in Figure 1 when:

A. $G(s)=\frac{1}{s+1}$ when $H(s)=1, \ \frac{1}{s+2} \ \text{and} \ s.$ B. $G(s)=\frac{K(s+2)}{s\left(s^2+s+1\right)}$ when

 $H(s) = \frac{s+1}{s+10}.$

Figure 1: A Closed Loop System

1. A feedback control system has an open-loop transfer function

$$G(s) = \frac{K(s+2)}{(s+1)(s-5)}$$

and unity gain feedback. Find the values of *K* for which the system is closed-loop stable.

26/01/2019 problems

1. A control system has the root-locus shown in Figure 2. Find the closed-loop poles, natural frequency ω_n and gain K when the damping ratio $\zeta = 0.0, \ 0.1, \ 0.5$ and 1.0.

What values of gain and damping ratio satisfy the constraints $2 < \omega_n \le 10 \text{ rads}^{-1}$.

Is it possible to satisfy the following constraints: rise-time $T_r \le 0, 4$ seconds and peak overshoot $M_p \le 0.2$ (20%) by adjusting the forward loop gain only?

Figure 2: Root Locus Diagram for Question 3

- 1. Sketch the root-locus diagram for the system of Question 2. Find the value of the open-loop gain that yields closed-loop poles having ideal damping $(\zeta = 1/\sqrt{2})$.
- 1. For the system shown in Figure 1

$$G(s) = \frac{1}{sT+1}$$

and

$$H(s) = h$$
.

Find the steady-state step error of the closed-loop system and determine its system type number. What is the system type number when h = 1?

26/01/2019 problems

1. A general second-order closed-loop control system has the transfer function

$$G_c(s) = \frac{b_1 s + b_0}{s^2 + a_1 s + a_0}$$

Find suitable values of the parameters b_1 , b_0 , a_1 , and a_0 that provide rise-time $Tr \le 0.1$ s, settling-time $T_s \le 0.5$ s, peak-overshoot $\% \text{OS} \le 20\%$, zero steady-state step error and a ramp error of 0.01.