- 1. Dwie naładowane nieskończenie rozległe powierzchnie umieszczono równolegle do siebie w odległości d. Dolna powierzchnia posiada jednorodną dodatnią gęstość powierzchniową ładunku σ , natomiast górna gęstość ujemną $-\sigma$ (ta sama wartość bezwzględna). Znajdź natężenie pola elektrycznego pomiędzy obiema powierzchniami, poniżej dolnej powierzchni oraz powyżej powierzchni górnej.
- 2. Jaka jest całkowita wartość łądunku (w coulombach) wszystkich elektronów znajdujących się w 3 molach atomów wodoru?
- 3. Cząsteczka amoniaku NH₃ posiada moment dipolowy równy 5.0×10^{-30} Cm. Cząsteczki amoniaku w fazie gazowej umieszczono w jednorodnym polu elektrycznym o wartości natężenia $E = 2.0 \times 10^5$ N/C.
 - (a) Jak zmieni się energia potencjalna cząsteczki, gdy jej moment dipolowy zmieni swoją orientację z równoległej na prostopadłą do lini pola?
 - (b) W jakiej temperaturze T średnia energia kinetyczna cząsteczki $\frac{3}{2}kT$ równa jest zmianie energii potencjalnej obliczonej w punkcie (a)?
- 4. Jaki musi być ładunek (jego wartość i znak) cząsteczki o masie m=3.8g, aby pozostała ona w bezruchu w polu elektrycznym o wartości natężenia 4500N/C skierowanym pionowo w dół?
- 5. Dodatni ładunek elektryczny Q jest równomiernie rozłożony na pręcie od długości 2a. Znajdź natężenie pola elektrycznego w punkcie P.

