

Sara Maria Cano Investigar alternativas de solución

Samuel Areiza Investigar tipos de algoritmos

Andrea Serna Revisión de la literatura

Mauricio Toro
Preparación
de los datos

Planteamiento del problema

Calles de Medellín, Origen y Destino

Tres caminos que reducen tanto el riesgo de acoso como la distancia

Algoritmo de solución

Explicación del algoritmo

Vértice	Paso 1	Paso 2	Paso 3	Paso 4
Α	(0,A)	*	*	*
В	∞	(d_1*r_1,A)	*	*
С	8	(d_2*r_2,A)	$((d_1*r_1)+(d_3*r_3),B)$	*
D	∞	∞	$((d_1*r_1)+(d_4*r_4),B)$	$((d_1*r_1)+(d_4*r_4),B)$
Е	∞	∞	∞	$((d_1*r_1)+(d_3*r_3)+(d_5*r_5),C)$

Retorna: $[A,B,C,E, (d_1*r_1)+(d_3*r_2)+(d_5*r_5)]$

El algoritmo de Dijkstra compara todos los posibles destinos que se han almacenado en una cola de prioridades y permite fácilmente hallar cuál es el siguiente trayecto con menor peso asociado, repitiendo este proceso iterativamente hasta que el vértice actual sea el vértice destino

Complejidad del algoritmo

	Complejidad temporal	Complejidad de la memoria
Algoritmo de Dijkstra	O((V+E) log V))	O(V ²)

Complejidad en tiempo y memoria del Algoritmo de Dijkstra. V es el numero de intersecciones y E es el número de calles.

Primer camino que minimiza v = r*d

Origen	Destino	Distancia (metros)	Riesgo de acoso (entre 0 y 1)
Universidad EAFIT	Universidad Nacional	16642 m	0.35

Distancia y riesgo de acoso para el camino que minimiza $v = r^*d$. Tiempo de ejecución de 1.01033 segundos.

Segundo camino que minimiza v = r + d

Origen	Destino	Distancia (metros)	Riesgo de acoso (entre 0 y 1)
Universidad EAFIT	Universidad Nacional	8574m	0.69

Distancia y riesgo de acoso para el camino que minimiza v = r + d. Tiempo de ejecución de 1.01030 segundos.

Tercer camino que minimiza $v = d^r$

Origen	Destino	Distancia (metros)	Riesgo de acoso (entre 0 y 1)
Universidad EAFIT	Universidad Nacional	9061.75m	0.58

Distancia y riesgo de acoso para el camino que minimiza $v = d^r$. Tiempo de ejecución de 1.00640 segundos.

Comparación visual de los tres caminos

Direcciones de trabajo futuras

Probabilidad

Ajustar el algoritmo a variables aleatorias y mediante estas calcular el camino optimo.

Optimización 1

Plantear un modelo matemático adecuado y preciso

Estadística 2

Calcular la hora del día donde es menos probable que las mujeres sean víctimas de acoso.

M & S 4

Adaptar este modelo para que se actualice continuamente de acuerdo a datos en tiempo real.

Informe aceptado en OSF.IO

Cano, S., & Tabares, S. A. A. ALGORITMO PARA CALCULAR LA RUTA MÁS SEGURA Y ÓPTIMA. Informe técnico, Universidad EAFIT, 2022. Recuperado de:

https://doi.org/10.31219/osf.io/wd73v

