Naval Ocean Research and Development Activity

NSTL, Mississippi 39529

Expendable Bathythermograph (XBT) Measurements in the Western Alboran Sea, October 1982

Approved for Public Release Distribution Unlimited Mark T. Bergin Thomas H. Kinder

Ocean Science and Technology Laboratory Oceanography Division

August 1983

ABSTRACT

Alboran Sea during 6-18 October 1982 as part of an international oceanographic research project entitled ¿Donde Va?. The XBT data were taken to obtain synoptic temperature sections across the inflowing Atlantic Jet and the Alboran Gyre, and in the Strait of Gibraltar. XBT data were also used to increase the resolution of standard hydrographic (CTD: conductivity-temperature-depth profiler) sections. A plot of temperature versus depth for each XBT drop to 200 dbar (temperatures below 200 dbar were nearly constant) is shown.

ACKNOWLEDGMENTS

The officers and crew of USNS BARTLETT (T-AGOR-13), A. Rashkin, Master, enthusiastically supported our work. In addition to Bergin and Kinder, members of the scientific party who contributed to these measurements were bonald Burns, Louis Banchero, Stephen Sova, Richard Myrick, Henry Perkins, Kim Saunders and Ruth Preller. Code 422 CS of the Office of Naval Research, under Dr. Dennis Conlon, funded this work under Program Element 61153N.

CONTENTS

LIST OF ILLUSTRATIONS	iv
LIST OF TABLES	iv
INTRODUCTION	1
CRUISE PLAN	1
MEASUREMENTS	2
NAVIGATION	4
DISCUSSION	4
REFERENCES	6

ILLUSTRATIONS

Figure 1. Location of XBT drops	17
Figure 2. Hydrographic lines, including CTD, XBT, and velocity profiler measurements	18
Figure 3. XBT section south from Malaga	19
Figure 4. XBT section south from Estepona	20
Figure 5. XBT section through the Strait of Gibraltar	21
Figures 6-152. Temperature vs. depth for XBT Stations 101-342	22-96
TABLES	
Table 1. Station positións	7
Table 2. Data problems	16

EXPENDABLE BATHYTHERMOGRAPH (XBT) MEASUREMENTS IN THE WESTERN ALBORAN SEA, OCTOBER 1982

1. <u>Introduction</u>. The XBT data reported here comprise a portion of an international scientific investigation of the interactions of mesoscale flow in the Alboran Sea with inflow through the Strait of Gibraltar. The title adopted for the multinational program is ¿Donde Va?; NORDA's portion, sponsored by the Office of Naval Research, is entitled, "Mesoscale Flow Dynamics in the Strait of Gibraltar and Alboran Sea."

The second of two ¿Donde Va? field periods occurred during October 1982 when four ships, four aircraft, shore-based radar, and shore-based meteorological stations cooperated in an intense measurement effort. As one part of this effort USNS BARTLETT dropped 152 expendable bathythermographs (XBT). This note presents the XBT data.

- 2. Cruise Plan. The cruise plan had six objectives:
 - Recovery of five current meter moorings that were deployed in June;
 - CTD (conductivity-termperature-depth profiler) and XBT sections across the jet and gyre;
 - Velocity profiling sections across the jet and gyre;
 - Time-series CTD and velocity profiles to investigate tidal phenomena;
 - Obtain meteorological data (especially airsondes); and
 - Obtain aerosol concentration data.

The XBT data (Fig. 1) were obtained to increase the spatial resolution of the thermal field between CTD stations, and to obtain rapid measurements (nearly-synoptic) of the thermal field. Additionally, XBT's were occasionally dropped individually for a variety of purposes. The XBT's were used to increase resolution along hydrographic lines near Gibraltar, between Cape Akaili and

Marbella, between Point Jagerschmidt and Malaga, and west of Alboran Island (Fig. 2). Rapid XBT (only) sections were obtained south of Malaga (133-157, Fig. 3), south of Estepona (276-290, Fig. 4), and in the Strait of Gibraltar (302-342, Fig. 5). The CTD sections were designed to cross the historical position of the jet and anticyclonic gyre (Cano and Castillejo, 1972; Lanoix, 1974; Cheney and Doblar, 1982; and Philipe and Harang, 1982). We also monitored satellite imagery provided by M. Philipe of the Centre de Meteorologie Spatiale, Lannion, France, and processed at NORDA by P. La Violette, and used a numerical model of the circulation (Preller and Hurlburt, 1982) to aid in the selection of locations. Preliminary results from a June cruise (Kinder et al., 1983) also influenced track planning. The final XBT section through the Strait of Gibraltar was designed to sample the rapid fluctuations that are tidally excited within the Strait (Lacombe and Richez, 1982).

3. Measurements. The XBT data acquisition system used during ¿Donde Va? was developed by the Ocean Technology Division of NORDA. It is designed to collect, condition, record, and graphically present a digital temperature time series obtained from the probe-measured analog signal.

The system hardware consists of:

- the XBT launch apparatus,
- 2) electronic circuitry to amplify and condition the temperature sensor signal,
- an analog-to-digital converter,
- 4) a small computer (controller) used to control data collection, apply temperature calibrations, record the digital data, and plot the results.

 A more complete description of the hardware system is given by Holland et al. (1980).

Controller software used during Donde Va? was written by the Physical Oceanography Branch of NORDA. It provided for the collection of discrete temperature data from SIPPICAN T-7 XBT's at a sampling frequency of 20 samples/sec (50 msec/sample), over a period of 2.5 minutes (corresponding to approximately 950 meters of depth). The system was adjusted to deliver temperature resolution over the range of 4°C to 30°C. Immediately following each XBT drop a digital data file consisting of select cruise information, time and date of the drop, position of the drop, and the calibrated temperatures was recorded on tape. Plots of temperature vs. depth were generated for both logging of the raw data and monitoring of system performance.

The full temperature range of 4°C to 30°C is represented digitally by 2000 discrete values; hence a system least significant bit resolution of 0.013°C (0.005%). Tests conducted on the system, excluding the temperature probes, indicated an accuracy within 0.003°C , i.e. within resolution limits. SIPPICAN T-7 probes are reported to have a temperature accuracy on the order of $\pm 0.1^{\circ}\text{C}$. Another potential source of temperature error is due to the thermistor equilibration response time, SIPPICAN Corp. reports a time constant of 100 msec for T-7 probes.

An empirical formula relating XBT depth to elapsed descent time (Perkins, 1980) has been used for some time by the Physical Oceanography Branch; it appears to yield reasonable probe depths when compared to coincident CTD casts. The operational implementation of the XBT depth-time relationship is as follows:

$$Z(t) = 6.427t - 0.00025t^2$$

with: Z(t) = depth of probe in meters at time t

t = elapsed time in seconds since probe release.

No estimation is currently available regarding the accuracy of the depth-time formula.

- 4. Navigation. Station positions were determined by a combination of radar and visual lines of position near land, and by satellite and Omega farther than 20 km or so from land. Omega fixes had large biases, and were corrected to the closest (in time) satellite fix. Visual and radar fixes are estimated accurate to better than 0.5 km; satellite fixes to 0.5 km; and Omega fixes to 2.0 km. The estimate for Omega is conservative, and Omega was often stable for long periods and thus more accurate. The relative spacing accuracy of stations fixed by Omega is probably better than 1.0 km.
- 5. <u>Discussion</u>. Each XBT profile is plotted as temperature vs. depth (Figures 6-152), except for three XBT failures and two data logging errors (Table 2). Some of the plots show questionable aspects of the data (e.g. the high wavemaker jiggle in the station 101 profile, Fig. 6), but all seem to have some useful information.

The plots range from 0-200 m and $12-23^{\circ}\text{C}$. Below 200 m the temperature changes are small, approaching the accuracy of the temperature probe (0.1°C) . Although the T-7 XBT's used have a depth range greater than 700 m, the important and clearly measurable temperature differences occur within the upper 200 m of the Alboran Sea. In this regard, the deepest temperature provides a crude test of XBT performance. At 200 m the temperature should always lie between 13°C and 14°C : in June 1982 hydrographic data from the northern half of our study region the 200 m temperature had a range of 13.11°C to 13.68°C .

Many stations in the southern half of the area had a thick (up to 50 m) and warm (>21°C) surface mixed layer overlaying a strong thermocline (e.g. Station 109, Fig. 10). In the northern half of the area, the mixed layer was typically much thinner and cooler (e.g. Station 133, Fig. 21), or non-existent (e.g. Station 289, Fig. 110). The vertical temperature differences were smaller and the thermocline typically much weaker. These features are a direct consequence of

the near-geostrophic balance of the inflowing Atlantic Jet and the Alboran Gyre, which requires that the isopycnals (and thus isotherms) slope upward from the center part of the Sea (center of the Gyre) toward the Spanish Coast (crossing the eastward flowing Jet and Gyre). Flow is weaker toward the Moroccan Coast, thus the isotherm slopes are less from the center southward. Gallagher et al. (1981) have aptly called the shallow thermal structure a warm bowl, with the center coincident with the gyre center.

Some of the profiles also show thermal finestructure, either discrete layers of constant temperature water (e.g. Station 149, Fig. 37) or temperature inversions (e.g. Station 119, Fig. 14). Similar finestructure is visible in the CTD profiles from June (Kinder et al., 1983) when the temperature inversions were density-compensated or nearly so.

REFERENCES

- Cano, C. and F.F. de Castillejo (1972). Contribucion al Conocimiento del mar de Alboran: III. Variaciones del Remolino Anticiclonico. Boletin del Instituto Espanol de Oceanografia, Madrd, 157:3-7 plus 18 figs.
- Cheney, R.E. and R.A. Doblar (1982). Structure and Variability of the Alboran Sea Frontal System. J. Geophys. Res. 87 (C1):585-594.
- Gallagher, J.J., M. Fecher and J. Gorman (1981). Projet HUELVA Oceanographic/ Acoustic Investigation of the Western Alboran Sea. Naval Underwater Systems Center Technical Report 6023. 106 p.
- Holland, C.R., B.E. Eckstein, R.C. Jackson and D.A. Johnson (1980). Operation and Maintenance Manual for the XBT Data Acquisition System. NORDA Technical Note 60, 59 p.
- Kinder, T.H., D.A. Burns, Z.R. Hallock and M.J. Stirgus (1983). Hydrographic measurements in the western Alboran Sea, June 1982. Naval Ocean Research and Development Activity Technical Note 202, 131 p.
- Lacombe, H. and C. Richez (1982). The regime of the Strait of Gibraltar. In:

 Hydrodynamics of Semi-Enclosed Seas, J.C.J. Nihoul (ed.), Elsevier, p. 13-73.
- Lanoix, F. (1974). Projet Alboran: etude hydrologique et dynamique de la mer Alboran. NATO Technical Report 66, 39 p. plus 18 figs.
- Perkins, H.T. (1980). Oceanic Environmental Background Observations in the Sargasso Sea During September 1979. NORDA Technical Note 58, 75 p.
- Philippe, M. and L. Harang (1982). Surface Temperature Fronts in the Mediterranean Sea from Infrared Satellite Imagery. In: Hydrodynamics of Semi-Enclosed Seas, J.C.J. Nihoul (ed.), Elsevier, p. 91-128.
- Preller, R. and H. Hurlburt (1982). A Reduced Gravity Numerical Model of Circulation in the Alboran Sea. In: Hydrodynamics of Semi-Enclosed Seas, J.C.J. Nihoul (ed.), Elsevier, p. 75-90.

Table 1. Station positions

Cast numbers appear in the form SSSCCC where SSS is a three digit number that corresponds to a geographic location (station number) and CCC is intended to be a three digit number that is consecutive throughout the cruise ("cast number"). At a time series station, only one number is assigned to the entire suite of data which may consist of many profiles (yo-yos). Anomalies:

010010 refers to both a velocity profile and XBT

SSS 227 - SSS 266 were skipped by mistake

Many cast numbers were assigned to sensors other than XBTs.

DR - dead reckoning (no fix within 15 minutes)

S - satellite fix

0 - Omega fix

R - radar fix

V - visual fix

LATITUDE (N) LONGITUDE (W) SOURCE 36 37.4 4 18.4 0 36 35.1 4 17.2 0 36 32.6 4 16.4 0	LONGITUDE (W) 4 18.4 4 17.2 4 16.4
32.6 4 30.0 4	4 4
36 25.4 4 17.0 36 25.4 4 17.3	4 4
36 23.6 4 17.0	4
36 22.1 4 16.9	
36 20.5 4 17.1	
36 17.8 4 16.7	
36 15.2 4 16.4	4
36 13.0 4 17.1	4
36 10.4 4 17.3	4
36 08.1 4 17.2	4
36 05.7 4 16.4	4
36 03.3 4 15.5	4
36 01.7 4 15.3	4
36 00.1 4 15.3	4
35 58.4 4 14.6	4
35 56.9 4 14.1	

COMMENTS				Data lost																
DEPTH (m)	1360	1396	1405	1286	250	250	250	250	250	399	754	825	631	520	464	475		300	1453	1422
SOURCE	0	S	0	0	DR	DR	DR	DR	DR	0	0	S	0	0	0	DR	S	0	0	0
LONGITUDE (W)	4 13.9	4 13.7	4 13.4	4 12.8	5 15.5	5 14.4	5 15.3	5 13.3	5 15.1	5 14.5	5 12.6	5 11.8	5 07.8	5 06.3	5 05.6	9.60 9	5 12.4	5 19.0	4 28.7	4 27.1
LATITUDE (N)	35 55.3	35 53.5	35 52.5	35 50.3	36 14.2	36 13.3	36 13.0	36 12.9	36 12.2	36 10.2	36 07.6	36 05.0	36 01.5	35 57.9	35 54.7	35 53.6	35 53.1	35 52.7	35 41.0	35 41.7
JULIAN DAY	9 OCT 282	9 OCT 282	9 OCT 282	9 OCT 282	10 OCT 283	11 OCT 284	11 OCT 284													
TIME	0420	0430	0440	0450	0933	0944	0946	0952	1005	1049	1222	1331	1457	1651	1815	1945	2050	2156	1403	1413
CAST	154082	155083	156084	157085	165093	165094	165095	165096	165097	167099	169101	171103	173105	175108	177110	179112	181114	183116	193127	194128

COMMENTS									Data lost											
DEPTH (m)	1471	1480	1432	1425	1380	1365	1190	1280	1280	1327	1281	1224	1116	1360	1066	1130	1210	1318	1418	1418
SOURCE	0	0	DR	0	S	0	0	0	0	0	0	0	0	0	0	0	S	0	S	S
LONGITUDE (W)	4 24.7	4 20.4	4 18.6	4 17.2	4 14.8	4 17.5	4 17.5	4 16.7	4 16.9	4 17.1	4 17.6	4 17.9	4 17.1	4 04.8	3 59.2	3 53.2	3 49.6	3 48.1	3 45.1	3 40.9
LATITUDE (N)	35 44.5	35 46.4	35 48.0	35 49.2	35 52.9	35 55.6	35 57.1	35 59.9	36 01.2	36 02.7	35 06.3	36 08.4	36 12.0	35 52.1	35 50.7	35 50.4	35 50.7	35 51.1	35 51.5	35 51.4
JULIAN DAY	11 OCT 284	12 OCT 285																		
TIME	1432	1549	1607	1621	1831	1900	1914	2002	2018	2031	2204	2303	0017	1611	1715	1855	1906	1916	2026	2044
CAST	195129	197131	198132	199132	201135	202136	203137	205139	206140	207141	209143	211145	213147	223157	225159	227161	228162	229163	231165	232166

COMMENTS									Mooring 12	Mooring 13	Mooring 13	Mooring 13	Bad XBT	Bad XBT	Mooring 14	Mooring 15				
DEPTH (m)	1420	1500	1600	1600	1515	1373	1308	1286	728	858	844	807	911	911	911	1010	1058	812	806	806
SOURCE	S	S	DR	0	0	0	S	0	S	S	0	0	0	0	0	0	0	0	0	0
LONGITUDE (W)	3 40.3	3 38.7	3 34.4	3 32.3	3 28.4	3 27.0	3 25.5	3 21.2	4 49.0	4 48.1	4 48.7	4 49.8	4 46.4	4 46.2	4 46.1	4 43.1	4 40.1	4 53.0	4 53.7	4 54.4
LATITUDE (N)	35 51.5	35 52.8	35 53.4	35 53.2	35 52.5	35 53.6	35 54.8	35 56.9	36 17.3	36 12.3	36 13.5	36 13.0	36 08.1	36 08.1	36 08.3	36 01.8	35 55.9	35 53.3	35 55.7	35 58.2
JULIAN DAY	12 OCT 285	12 OCT 285	12 OCT 285	12 OCT 285	13 OCT 286	13 OCT 286	13 OCT 286	13 OCT 286	15 OCT 288	16 OCT 289	16 OCT 289	16 OCT 289	16 OCT 289							
TIME	2050	2210	2226	2236	0019	0034	0053	0201	0507	0880	0916	0939	1149	1204	1215	1513	0636	1145	1200	1215
CAST	233167	235169	236170	237171	239174	240175	241176	243178	263199	264200	265201	266202	267203	268204	269205	270206	275211	276212	277213	278214

0 0.		9.	.3 S 871	.1 0 871	.6 0 853	.9 0 829	.6 0 792	.8 536	.1 0 435	.7 0 326	.7 0 245	08 0 0.		.1 RV	.4 RV	12.9 RV	1 RV	.,7 RV	14.4 RV	14.8 RV 844
	4 55.0	4 55.6	4 55.3	4 55.1	4 55.6	4 55.9	4 56.6	4 57.8	5 00.1	5 00.7	5 00.7	5 01.0		5 12.1	5 12.4	5 12	5 13.1	5 13.7	5 14	5 14
	35 59.6	36 02.8	36 05.1	36 07.3	36 09.8	36 11.5	36 13.4	36 15.2	36 17.0	36 18.5	36 20.9	36 23.8		36 07.9	36 07.5	36 07.2	36 06.6	36 06.2	36 05.7	36 05.2
	16 OCT 289	Cast Numbers 227-266 not used	18 OCT 291																	
	1230	1245	1300	1315	1330	1345	1400	1415	1430	1445	1500	1518	mbers 22	1606	1611	1616	1621	1625	1630	1635
	279215	280216	281217	282218	283219	284220	285221	286222	287223	288224	289225	290226	Cast Nu	302278	303279	304280	305281	306282	307283	308284

CAST	TIME	JULIAN DAY	LATITUDE (N)	LONGITUDE (W)	SOURCE	DEPTH (m)	COMMENTS
309285	1640	18 OCT 291	36 04.8	5 15.2	RV	848	
310286	1645	18 OCT 291	36 04.4	5 16.6	RV	850	
311287	1650	18 OCT 291	36 04.0	5 16.0	RV	844	
312288	1655	18 OCT 291	36 03.4	5 16.5	RV	844	
313289	1700	18 OCT 291	36 02.8	5 17.0	RV	850	
314290	1705	18 OCT 291	36 02.3	5 17.2	RV	854	
315291	1710	18 OCT 291	36 01.8	5 17.5	RV	849	
316292	1715	18 OCT 291	36 01.8	5 18.2	RV	844	
317293	1720	18 OCT 291	36 01.8	5 19.0	RV	846	
318294	1725	18 OCT 291	36 01.2	5 19.4	RV	848	
319295	1730	18 OCT 291	36 00.7	5 19.8	RV	844	
320296	1735	18 OCT 291	36 00.6	5 20.3	RV	837	
321297	1740	18 OCT 291	36 00.6	5 20.7	RV	846	
322298	1746	18 OCT 291	36 00.4	5 21.3	RV	858	
323299	1750	18 OCT 291	36 00.2	5 21.6	RV	886	
324300	1755	18 OCT 291	35 59.9	5 22.3	RV	915	
325301	1810	18 OCT 291	35 59.3	5 23.6	RV		
326302	1820	18 OCT 291	35 59.1	5 24.3	RV	921	
327303	1830	18 OCT 291	35 58.5	5 25.3	RV		
328304	1840	18 OCT 291	35 58.1	5 25.8	RV		

	92	RV	5 40.8	35 52.4	18 OCT 291	2100	342318
	360	RV	5 39.4	35 52.7	18 OCT 291	2050	341317
	353	RV	5 37.9	35 53.0	18 OCT 291	2040	340316
	158	RV	5 36.3	35 53.4	18 OCT 291	2030	339315
	26	RV	5 34.8	35 54.1	18 OCT 291	2020	338314
	395	RV	5 33.7	35 54.8	18 OCT 291	2010	337313
	434	RV	5 32.7	35 55.3	18 OCT 291	2000	336312
	461	RV	5 31.6	35 55.5	18 OCT 291	1950	335311
	514	RV	5 30.6	35 55.9	18 OCT 291	1940	334310
	646	RV	5 29.5	35 56.4	18 OCT 291	1930	333309
	823	RV	5 28.7	35 57.1	18 OCT 291	1920	332308
	893	RV	5 28.0	35 57.2	18 OCT 291	1910	331307
	965	RV	5 27.4	35 57.5	18 OCT 291	1900	330306
		RV	5 26.5	35 57.7	18 OCT 291	1850	329305
COMMENTS	DEPTH (m)	SOURCE	LONGITUDE (W)	LATITUDE (N)	JULIAN DAY	TIME	CAST

Table 2. Data problems

STATION	PROBLEM
111037	XBT Failure
111038	XBT Failure
121048	XBT Failure
157085	Data tape overwritten (Operator error)
206140	Data tape overwritten (Operator error)

Figure 2. Hydrographic lines, including CTD, XBT, and velocity profiler measurements

Figure 4. XBT Section South from Estepona

Figure 3. XBT Section South from Malaga

Figure 5. XBT Section through the Strait of Gibraltar

Figures 6-152. Temperature vs. depth for XBT Stations 101-342

STATION # 144072

52

STATION # 203137

STATION # 202136

53

STATION # 282218

STATION # 281217

71

STATION # 327303

STATION # 326302

STATION # 337313

STATION # 342318

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
NORDA Technical Note 224		
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
Expendable Bathythermograph (XBT) Measurements in the Western Alboran Sea, October 1982		
		6. PERFORMING ORG, REPORT NUMBER
7. AUTHOR(s)		Final
		8. CONTRACT OR GRANT NUMBER(s)
Mark T. Bergin Thomas H. Kinder		
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Naval Ocean Research and Development Activity		
NSTL, Mississippi 39529		61153N
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Naval Ocean Research and Development Activity NSTL, Mississippi 39529 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)		August 1983
		13. NUMBER OF PAGES
		100 15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING
		SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
Approved for Public Release		
Distribution Unlimited		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
16. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)		
temperature time series expendable bathythermograph (XBT)		
Strait of Gibraltar Alboran Sea		
Western Mediterranean Sea		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)		
USNS BARTLETT dropped 152 expendable bathythermographs (XBTs) in the		
western Alboran Sea during 6-18 October 1982 as part of an internation oceano- graphic research project entitled ¿Donde Va?. The XBT data were taken to obtain		
synoptic temperature sections across the inflowing Atlantic Jet and the Alboran		
Gyre, and in the Strait of Gibraltar. XBT data were also used to increase the		

resolution of standard hydrographic (CTD: conductivity-temperature-depth profiler) sections. A plot of temperature versus depth for each XBT drop to 200 dbar

DD 1 JAN 73 1473

(temperatures below 200 dbar were nearly constant) is shown.