296	
	Solving Intimization Peroblems
35-1	Solving Optimization Peroblems Differentiation
15176	The state of the s
rinds no	We have seen optimization
	publems leke:
Giraga.	-> Logistic Reasonsian
	→ Logestic Regression → Linear —
	a breat profit traste transfe als not all
	Concepts used to solve these problems
	→ Differentiation → maxima & minima
	→ maxima & Minima
	Single Variable differentiation
	y = f(x)
	y=f(2)
	19-1(2) 10 92-91
	$(\chi_2 - \chi_1)$
	21 - 31
	$\chi_1 \chi_2 \rightarrow \chi$
	$\frac{dy}{dx} = \frac{df}{dx} = y' = f$
	= differentiation of y w.s.t. x
	0 1 : +: 0 1 ==================================
	Intuitively it means
	-> How much does y change as a changes.
	The of conge of

........

.

.

.

....

.

.

1

Jeon the graph, how much does y'changes as 'x' changes.

=
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x}$$
 2 Rate of change of y
= $\frac{\Delta x}{x_1} = \frac{\Delta x}{x_2}$ 3 in vicinity of x.

Mathematically,

As $x_2 \rightarrow x_1$; $\Delta x \rightarrow 0$ As $x_2 \rightarrow x_1$, the secont becomes tangent

Tangent is the hypotenuse that we obtain as DZ TO

Tano =
$$\frac{dy}{dx}$$
; as $\Delta x \rightarrow 0$; $\Delta y = \frac{dy}{dx}$

dy - Stope of tangent to fox)

 $\frac{dy}{dx} = \text{slope of the tangent } f(x)$

Slope le +ve; 0 < 0 < 90° Slope le -ve; 90 < 0 < 180°

Sum it up:

Basic Rules of differentiation

 $\frac{d}{dx}(x^n) = m \cdot x^{n-1}$

d (c) = 0

 $\frac{d(\log x) = 1}{dx}$

Chain Rule:

 $\frac{d \left[f(g(x))\right]}{dx} = \frac{df}{dg} \cdot \frac{dg}{dx}$

$$f(g(x)) = (a-bx)^{2}$$
where $g(x) = (a-bx)$

$$f(x) = x^{2}$$

$$\frac{d}{dx} f(g(x)) = \frac{df}{dg} \frac{dg}{dx}$$

Now
$$dg = d(a-bx) = -b$$
.

Now
$$df$$
; Now take $g(\alpha) = Z$

$$dg$$

$$f(g(\alpha)) = Z^2$$

$$\frac{df}{dg} = \frac{dz^2}{dz^2} = 2z = 2(a-bx)$$

$$\frac{1}{dx} \cdot \frac{df(g(x))}{dx} = -2b(\alpha - bx)$$

35.2 Online differentiation tool

Visit derivative - calculator - net

symbolab.com

wolframalpha.com - plots the derivative

Vector differentiation 35.4

Till now, we had assumed

to operate in high demensional space.

df = \forall f \text{ grad/del}. what if a: vector -> thats only way

		200
Vector V	$xf = \int \frac{df}{dx}$	differentian
es notines	$\frac{df}{dz_2}$	of a vector is also a
df = 2f		vector
day 3xy	dF	M. L.
since its	L dxd_	

partial differentiation

$\sqrt{x} = $	axi	941860
3245024	∂f ∂x2	ERd
	322	183 B
	: P	Mark Land
The Principle	axa]	- 2 - 21A

$$f(x) = y = a^{T}x = \sum_{i=1}^{d} a_{i} x_{i}$$
$$= a_{1}x_{1} + a_{2}x_{2} + \cdots + a_{n}x_{n}$$

$$\partial f = \alpha_1$$
; $\partial f = \alpha_2$; $\partial \alpha_1$

E Consider our logistic loss

$$\mathcal{L} = \sum_{i=1}^{m} \log(1 + \exp(-y_i w^T x_i)) + \lambda w^T w$$

We know that <xi, yi> -> Constants because they are obtained from Drain

Variable here is wo Rule

$$\nabla_{w}^{2} = \frac{(-y_{i} \chi_{i})(\exp(-y_{i} w^{T} \chi_{i}))}{1 + \exp(-y_{i} w^{T} \chi_{i})} + 2\lambda w$$

for simplicity we considered wTw = w^2 $a(w^2) = 2w \rightarrow Remembers w$ is a vector

We will solve it using Gradient Descent

35.5

Gradient descent algo

when solving there df = 0; \f = 0
equans are not easy di them we prefer gradient descent algo

Its an iterative algo

1 We randomly select 20 → first guess 2*
2 Thats iteration 1 -7 select 24

3 Thats iteration 2 -> select 22 Minima/

1 Then Meration K 7 select 2K

we want to move closer towards x*

Understanding Geometrically

To find Minima;

oneside :- slope :- +ve

otherside :- slope :- - ve

At Minima: slope: - 0

O Slope changes its sign from positive to Negative at Minima

slope (SI) 7 slope (S2)
slope reduces as
we move towards
minima

So, to summarize:

D'Ack an initial point = 20 at random

2) Let $\alpha_1 = 20 - 2 \left[\frac{df}{dx} \right]_{\chi_0}$

step sige = 1 (Typically)

Consider the stope at SI: -> +ve

21 = 20 - 1 (+ve value)

So 21 is reducing and moving closer to 0.

If my 20 was on other side

:. 21 = 20 - 91 df da

21 = 20 - 21 (-ve value) | slope will

Hence of will move close to 0.

slope will have -ve value

(3) Let 22 = 21 - 2 [df] dx]

I will get 22 closes to x*

This is a simple iterative algo. Going on forward, we reach 2k such that

(2k+1-2k) is very small then terminate algo and finalize $2k=x^*$

If x is a vector then we can replace [df] with ∇x

Ple Please Note:

$$\left(\frac{df}{d\alpha}\right)_{\chi_0} > \left(\frac{df}{d\alpha}\right)_{\chi_1} > \left(\frac{df}{d\alpha}\right)_{\chi_2}$$

In first iteration, we would make a big jump from 20 721. Ine difference would slowly reduce

différence reduces gradually

This is because 're'has been kept constant. Due to this, I would never converge towards x*

Remedy for this problem:

⇒ change [r] with each iteration ⇒ one technique: reduce re with each iteration

So, el becomes a function of our iteration. Something like $ext{se} = h(i)$

such that as ** i1; rv

Then, we will eventually converge
to right solution.

when we leaven Deep Learning, we would know how to modefy er more effectively.

If (WK+1-WK) = very small value then we stop there

There is one peroblem with this:

 $Wi = W_0 - 4 \sum_{i=1}^{m} (-2x_i)(y_i - w_i^T x_i)$

Every time I go from Wj-1 to Wj, I have to compute summation over all m; In M.L. problems, m may traverse in Millions.
Computing the summation requires us to go through whole dataset. It takes a lot of time if m is large (which is not uncommon in ML)

Hack around it: Gradient descent is converted to Stochiastic Gradient descent

85.8 Stochiastic Gradient Descent (SGD)

It says instead of using all 'n'
points, use only k points (K < n)
we can pick a random set of k points

If we do eteral with k points, the solution we get with Gradient descent is same as that with Stochiastic G.D.

W* G.D. = W* S.G.D

```
Stochiastic = Pseobabelustic = Randomuza<sup>m</sup>.

(Randomly select K)
```

One observation

Gradient Descent: = 1M; require 100 Iteration to converge to x*

Stochlastic G.D; K = 1000; require 500 Iteration

K = 10; require 1000 -

Iterations increase as KV

K=Random points we pick at each iteration

Remember: k should be diff for every iteration.

K is often called as Batch Size since we pick batch of random points

often times $K=1 \Rightarrow called SGD$ When $1' < K << m \Rightarrow -v - Batch SGD$ with Batch Size K How to solve this peroblem?

We will modify the problem using Lagrangian multiplier

So, Max f(a) such that g(x) = c and $h(a) \ge d$

 $d(\alpha, \lambda, \mu) = f(\alpha) - \lambda [g(\alpha) - c] - \mu [d - h(\alpha)]$

neu:-Lagrangian Multipliers and n≥0; U≥0

To optimize this; we have a method

$$\frac{\partial \mathcal{L}}{\partial x} = 0$$
; $\frac{\partial \mathcal{L}}{\partial x} = 0$; $\frac{\partial \mathcal{L}}{\partial y} = 0$

By solving these three equations, we get value of $x = \tilde{x}$, this value is same as $\max_{x} x = x^*$

Powoof of this is begond scope of syllabus

max UTSU such that UTU=1 such that UTU = 1 Covariance PCA prob Matrix of X . PCA perob: Max UTSU such that UTU=1 Please mote that S is constant because S = f(xi) = Corborance mateix of X $2(U, \lambda) = U^{T}SU - \lambda(U^{T}U - I)$ $\frac{\partial \mathcal{L}}{\partial v} = 0 \Rightarrow \frac{\partial}{\partial v} \left[v^{\mathsf{T}} S v - \lambda v^{\mathsf{T}} v - \lambda \right]$: SU-AU = 0 : SU = NU We have seen this equan SU = 70 -> definition of 1 Evector Even Value and Covariance Eigen Vector Variance U = Eigen Vector of S N = Eigen Value of S

N

When we leavent PCA, we wrote the optimization problem, we had said the solution to this would be to take top Eigen Values and Eigen Vectors of Ovariance Matrix S

The best v we get is the one with highest value of n (Bigen Value)

Logistic Regression Revisited

W* = augMin (logistic Loss) + 7WTW

We would trey to give an interpretant that NWTW is similar to lagrange multiplier.

We have to find w* which minimizes our logistic loss such that with

So, we rewrete the optimizan problem:

w* = argmin (logistic - Loss)

L > objective function

such that w = 11 -> equality constraint

This is constrained optimize peoblem

We solve this through Lagrange Multiplier

 $\mathcal{L} = (logistic Loss) - \lambda (1-w^Tw)$ can be also wretten

as $+ \lambda (w^Tw^{-1})$

= (logistic loss) - A + NWTW

If we see, these two terms are same as our optimization problem

Regularizan can be thought of as an equality constraint as a solution through Lagrangian Multipliers.

35.11 Why does 11 Regularization create

We know that

Logistic Rogression -> LI regularization executes sparsely in was compared to L2 Regularization

Spareity: W = < W1, W2 --- Wd>
More of the Wi = 0

L,(w) = |w| = (w, if w, >0) $\mathcal{L}_2(\omega_1) = \dot{\omega_1}^2$ -w, if w, < 0 OL2 = 2 + W1 DW1 Deserative function will look like WI Her As a part of Gradient descent $(W_1)_{j+1} = (W_1)_{j} - \mathcal{R} \left[\frac{\partial L_2}{\partial W_1} \right] \left(\frac{(W_1)}{\partial W_1} \right) = (W_1)_{j} - \mathcal{R} \left[\frac{\partial L_1}{\partial W_1} \right] \left(\frac{\partial W_1}{\partial W_2} \right) = (W_1)_{j} - \mathcal{R} \left[\frac{\partial L_1}{\partial W_1} \right] \left(\frac{\partial W_1}{\partial W_2} \right) = (W_1)_{j} - \mathcal{R} \left[\frac{\partial L_1}{\partial W_1} \right] \left(\frac{\partial W_1}{\partial W_2} \right) = (W_1)_{j} - \mathcal{R} \left[\frac{\partial L_1}{\partial W_1} \right] \left(\frac{\partial W_1}{\partial W_2} \right) = (W_1)_{j} - \mathcal{R} \left[\frac{\partial L_1}{\partial W_1} \right] \left(\frac{\partial W_1}{\partial W_2} \right) = (W_1)_{j} - (W_1)_{j$ Let (wi) j be a +ve posit

(WI)j+1 = (WI)j-9 (2*Wj) (WI)j+1 = (WI)j-92 (1 > only difference <

In both the scenarios, with 18 same, i.e. o

319 Assume that at it iterations (W1)j = 0.05 (vory) Lets say or is a small value (say or -1) (2* W;) -> 3 mall If it is very small r * 2 * Wy -> overy small Lets say & = 0.01 & wij = 0.5.
The substraction term roped be 8(2* Wj) = 0.01 x 2x 0.5 9 = 0.01 = 0.001 Wi(j+1) = 0.05 - 0.001 | Wi(j+1) = 0.05 - 0.01 WIT Here as the iteration increases the desirative changes The desirative is and wight comes constant closes to w* descivative becomes smaller Speed of convergence speed of convergence decreases with , is same everytime every Heram

Since the douration since the derivative is becomes smaller is constant, with every iteration. Li Regularizer L2 Regularizer doesn't continues to change the value of constantly reduce wi much, from the value of wi one iteration to towards o other Hence Li creates sparsity due to gradient Hence, the chance chance is Less (that w, = 0 at end of Kuteran are MORE Li will remove more of useless feature, by making their weight to 0