

Les Plus Beaux Logis de Paris

Analyse de l'évolution des prix de l'immobilier via Python

Présenté par Gaspard-Fauvelle Angel

Analyse exploratoire des Données

Datasets:

- echantillon_a_classer.xlsx
- portefeuille_actifs.xlsx
- historique_immobilier_paris_2017_2021_vdef2.xlsx

Caractéristiques :

- Historique:
 - 9 colonnes, 26196 lignes
- Portefeuille:
 - 12 colonnes, 275 lignes
- Echantillon:
 - 4 colonnes, 40 lignes

Traitement réalisés :

- Nettoyages des données par la vérification, puis l'éventuelle suppression des :
 - lignes/valeurs dupliquées ou nulles ;
 - Conversions des types de données (réduire le poids du jeu de données)
- Analyse multivariée :
 - Création des sous-tableaux, contenant que les critères demandés;
 - Préparation des graphiques se servant des sous-tableaux ;
 - Evaluation des corrélations ;

Processus et résultat de la conversion des jeux de données

Avant conversion (total de 1,9Mega octets):

```
Voici les informations du tableau Historique:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 26196 entries, 0 to 26195
Data columns (total 9 columns):
# Column
                     Non-Null Count Dtype
 0 date_mutation 26196 non-null datetime64[ns]
   valeur fonciere 26196 non-null float64
    adresse numero 26196 non-null int64
    adresse nom voie 26196 non-null object
    code postal
                     26196 non-null int64
    nom commune
                     26196 non-null object
   code type local 26196 non-null int64
                     26196 non-null object
   type local
 8 surface reelle 26196 non-null int64
dtypes: datetime64[ns](1), float64(1), int64(4), object(3)
memory usage: 1.8+ MB
```

```
Voici les informations du tableau Échantillon:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 40 entries, 0 to 39
Data columns (total 4 columns):
# Column
                    Non-Null Count Dtype
    valeur fonciere 40 non-null
1 code postal
                     40 non-null
    nom commune
                     40 non-null
                                    object
                                    int64
3 surface_reelle 40 non-null
dtypes: float64(1), int64(2), object(1)
memory usage: 1.4+ KB
```

Après conversion (total de 0,776 Mega octets) :

```
Voici les informations du tableau Historique:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 26196 entries, 0 to 26195
Data columns (total 9 columns):
# Column
                   Non-Null Count Dtype
   date mutation 26196 non-null datetime64[ns]
    valeur fonciere 26196 non-null float32
    adresse_numero 26196 non-null int32
    adresse nom voie 26196 non-null category
    code_postal 26196 non-null category
                     26196 non-null category
    code type local 26196 non-null category
    type_local 26196 non-null category
    surface reelle 26196 non-null uint32
itypes: category(5), datetime64[ns](1), float32(1), int32(1), uint32(1)
 emory usage: 753.9 KB
```

```
Voici les informations du tableau Portefeuille type de données convertis:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 275 entries, 0 to 274
Data columns (total 13 columns):
                             Non-Null Count Dtype
0 adresse numero
                             275 non-null int32
1 adresse nom voie
                             275 non-null category
                             275 non-null category
2 code postal
 3 code commune
                             275 non-null
                                           category
                             275 non-null
                                            category
                             275 non-null
 6 code_type_local
                             275 non-null
 7 type_local
                             275 non-null
 8 surface reelle
                             275 non-nu11
   nombre pieces principales 275 non-null
                                            int32
 10 longitude
                             275 non-null
dtypes: category(6), float64(3), int32(2), int64(1), uint32(1)
memory usage: 21.7 KB
```

```
Voici les informations du tableau Échantillon:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 40 entries, 0 to 39
Data columns (total 4 columns):
# Column
                    Non-Null Count Dtype
0 valeur fonciere 40 non-null
 1 code postal
                    40 non-null
                                   category
2 nom commune
                    40 non-null
                                   category
3 surface_reelle 40 non-null
dtypes: category(2), float32(1), uint32(1)
memory usage: 764.0 bytes
```

Nettoyage et préparation des données

```
Dans la table Historique, il se trouve 16 lignes dupliquées, aucune cellule n'est vide.

Dans la table Portefeuille, il se trouve 2 lignes dupliquées, aucune cellule n'est vide.
```

La liste des sous-tableaux créés :

- filtrée ou non, des types de biens, du code postal;
- Sélection des colonnes :
 - Valeur foncière, prix au m², code postal, surface réelle

```
Appel de la fonction request analyze graph avec les arguments suivants :
   nom_csv: historique prix au m2
Les types de biens inclus dans ce jeu de données sont de types : Appartement et Local industriel. commercial ou assimilé
Appel de la fonction request_analyze_graph avec les arguments suivants :
   nom csv: historique prix au m2
   filters: {'type_local': 'Appartement'}
Les types de biens inclus dans ce jeu de données sont de types : Appartement.
Appel de la fonction request analyze graph avec les arguments suivants :
   nom csv: historique appartements
   group_by_date: True
   Les colonnes extraites sont : {'valeur_fonciere'}
Appel de la fonction request_analyze_graph avec les arguments suivants :
   nom_csv: historique appartements
   filters: {'code_postal': 75001}
   Les colonnes extraites sont : ['prix m2']
Appel de la fonction request_analyze_graph avec les arguments suivants :
   nom csv: historique prix au m2
   Les colonnes extraites sont : {'code postal'}
Appel de la fonction request_analyze_graph avec les arguments suivants :
   nom_csv: historique appartements
    filters: {'code_postal': 75001}
    Les colonnes extraites sont : ['valeur_fonciere', 'surface_reelle']
```

```
Appel de la fonction request_analyze_graph avec les arguments suivants :
   nom csv: historique prix au m2
   Les colonnes extraites sont : {'code postal'}
Appel de la fonction request_analyze_graph avec les arguments suivants :
   nom csv: historique appartements
   filters: {'code_postal': 75001}
   Les colonnes extraites sont : ['valeur fonciere', 'surface reelle']
Appel de la fonction request_analyze_graph avec les arguments suivants :
   nom csv: historique appartements
   group by date: True
   Les colonnes extraites sont : ['prix_m2']
Appel de la fonction request analyze graph avec les arguments suivants :
   nom csv: historique appartements
   filters: {'code_postal': 75006}
   Les colonnes extraites sont : {'year_mutation'}
Appel de la fonction request_analyze_graph avec les arguments suivants :
   nom_csv: historique appartements
   filters: {'code_postal': 75006}
   Les colonnes extraites sont : ['year mutation', 'prix m2']
Appel de la fonction request analyze graph avec les arguments suivants :
   nom csv: historique des biens
   filters: {'code postal': 75006}
   Les colonnes extraites sont : ['type_local', 'prix_m2']
```

Compilation des graphiques retirés

2020

2021

Années de vente des biens

2017

2018

Appartement valeur_fonciere
 Local industriel. commercial ou assimilé valeur_fonciere
 Appartement prix_m2
 Local industriel. commercial ou assimilé prix_m2
 Appartement surface_reelle
 Local industriel. commercial ou assimilé surface_reelle

Vérification des corrélations

Vérification des corrélations

Pré processus des données

Méthode employés :

- dummies afin de créer les features code postal et type de bien ;
- Attribution des features sous x ;
- Atribution de la cible sous y (par conséquent retiré du jeu de données);

Mise à l'échelle des features et cibles ;

Séparation en sous-ensemble des datasets en données d'entraînements et de tests, de respectivement 33% et 67% :

```
X_train, X_test, y_train, y_test = tts(X_scaled, y, test_size=0.33, random_state=2)
```

Résultats

	Modèle	n_neighbors	alpha	Temps d'exécution (secondes)	MAPE
6	RandomForestRegressor	NaN	NaN	0.46	2.22
7	KNeighborsRegressor	1.00	NaN	0.61	3.31
8	KNeighborsRegressor	3.00	NaN	0.50	3.33
9	KNeighborsRegressor	5.00	NaN	0.52	3.63
5	SGDRegressor	NaN	NaN	0.02	7.01
0	Linear Regression	NaN	NaN	0.01	8.72
1	Lasso	NaN	1.00	2.84	8.72
2	Lasso	NaN	10.00	0.28	8.72
3	Ridge	NaN	1.00	0.00	8.72
4	Ridge	NaN	10.00	0.01	8.72

Graphique en boite de la valeur foncière pour chaque modèles (en dernier se trouve les valeurs issu du jeu de données)

Applications des prédiction sur le portefeuille

Résultat du clustering sur le jeu de données des échantillons

Distribution des catégories selon le type de bien

Graphique en boite du prix au m² des types de biens

Merci d'avoir suivi cette présentation