Prime Number Generation

Prime Numbers

- ★ Prime Numbers: Has exactly two divisors.
- \star If 'N' is prime, then the divisors are 1 and N.
- ★ All numbers have prime factors.

Numbers	10	11	100	37	308	14688
Prime Factorization	2 ¹ x 5 ¹	1 ¹ x 11 ¹	2 ² x 5 ²	1 ¹ x 37 ¹	2 ² x 7 ¹ x 11 ¹	2 ⁵ x 3 ³ x 17 ¹
Prime Numbers	2, 5	1, 11	2, 5	1, 37	2, 7, 11	2, 3, 17

Prime Numbers

- ★ Prime Numbers: Has exactly two divisors.
- \star If 'N' is prime, then the divisors are 1 and N.
- \star All numbers have prime factors.

Numbers	10	11	100	37	308	14688
Prime Factorization	2 ¹ x 5 ¹	1 ¹ x 11 ¹	2 ² x 5 ²	1 ¹ x 37 ¹	2 ² x 7 ¹ x 11 ¹	2 ⁵ x 3 ³ x 17 ¹
Prime Numbers	2, 5	1, 11	2, 5	1, 37	2, 7, 11	2, 3, 17

Prime Numbers - Example

- ★ 2 is a prime number.
- ★ 3 is a prime number.
- 5 is a prime number.
- ★ 7 is a prime number.
- ★ 9 is not a prime number.
- ★ 9 is a composite number.

Follow @nesoacademy

View key concept

Prime Numbers - Example

- ★ 2 is a prime number.
- ★ 3 is a prime number.
- ★ 5 is a prime number.
- ★ 7 is a prime number.
- ★ 9 is not a prime number.
- ★ 9 is a composite number.
- ★ 33 is a composite number.

Prime Numbers - Example

- ★ 2 is a prime number.
- ★ 3 is a prime number.
- ★ 5 is a prime number.
- ★ 7 is a prime number.
- ★ 9 is not a prime number.
- ★ 9 is a composite number.
- ★ 33 is a composite number.

Divisors of 33: 1, 3, 11 and 33

Facts about primes

- ★ Only even prime: 2
- ★ Smallest prime number : 2
- ★ Is 1 a prime number? No.
- \star Except for 2 and 5, all prime numbers end in the digit 1, 3, 7 or 9.

Why prime numbers in cryptography?

- * Many encryption algorithms are based on prime numbers.
- ★ Very fast to multiply two large prime numbers.
- * Extremely computer-intensive to do the reverse.
- ★ Factoring very large prime numbers is very hard i.e. take computers a long time.

Random Number Generation

Pseudorandom Number Generator **Key Stream** Key **Key Stream** Generator 00011010

nesoacademy.org

- ★ Stream cipher.
- ★ Key stream generator.
- ★ Truly random sequence.

-

Alice

nesoacademy.org

Bob

★ Plaintext : X_i

★ Key Stream: Ki

★ Ciphertext : Yi

Encryption $(Y_i) : X_i \oplus K_i$

Decryption $(X_i) : Y_i \oplus K_i$

K_i is a truly randon bit.

This stream cipher is referred to as One Time Pad (Perfect Secrecy).

 \bigoplus

- ★ Stream cipher.
- ★ Key stream generator.
- ★ Truly random sequence.
- \star P(0) = P(1).
- ★ Shannon notion of perfect secrecy.
- ★ Generating truly random sequence is impractical.

- ★ Pseudorandom sequence.
- ★ A good stream cipher close to truly random sequence.
- **★** Randomness.
- ★ How to measure the randomness?
- ★ Randomness is inevitable.