9 Nov 2017

LECTURER: PROF. McDonald Scribe: Lei Ding

23.1 Kernel density estimators

Suppose we have data $X_1, \dots, X_n \stackrel{ind}{\sim} F$ with support on \mathbb{R} . Assume $\exists p$ such that $F(x) = \int_{-\infty}^x p(x) dx$. We want to estimate p, but that is hard. Instead we can estimate F using empirical cdf.

$$F_n(x_0) = \frac{1}{n} \sum_{i=1}^n I(X_i \le x_0)$$
(23.1)

By DKW we know

$$\mathbb{P}(\sup_{x_0} |F_n(x_0) - F(x_0)| > \epsilon) \le 2e^{-2n\epsilon^2}$$
(23.2)

For sufficiently small h > 0 we can write an approximation

$$p(x_0) \approx \frac{F(x_0 + h) - F(x_0 - h)}{2h}$$
 (23.3)

$$\approx \frac{F_n(x_0+h) - F_n(x_0-h)}{2h}$$
 (23.4)

$$= \frac{1}{2nh} \sum_{i=1}^{n} I(x_0 - h < x_i \le x_0 + h)$$
 (23.5)

$$=: \frac{1}{nh} \sum_{i=1}^{n} K_0(\frac{x_i - x_0}{h}) \tag{23.6}$$

where $K_0(u) = \frac{1}{2}I(-1 < u \le 1)$.

A generalization of this estimation is

$$\widehat{p}_n(x_0) =: \frac{1}{nh} \sum_{i=1}^n K(\frac{X_i - x_0}{h})$$
(23.7)

where $K : \mathbb{R} \to \mathbb{R}$ is an integrable function satisfying $\int K(u) du = 1$. Such a function K is called a kernel and the parameter h is called a bandwidth of the estimator. $\widehat{p}_n(x_0)$ is called the kernel density estimator (KDE) or the Parzen-Rosenblatt estimator.

Some classical examples of kernels are the following:

- 1. the Gaussian kernel: $K(u) = \frac{1}{\sqrt{2\pi}} exp(-\frac{u^2}{2})$
- 2. the Silverman kernel: $K(u) = \frac{1}{2} exp(-\frac{|u|}{2}) \sin(\frac{|u|}{\sqrt{2}} + \frac{\pi}{4})$
- 3. the Epanechnikov kernel: $K(u) = \frac{3}{4}(1-u)^2I(|u| \le 1)$

A few note on the KDE:

- 1. Truncation is common.
- 2. If the kernel K takes only nonnegative values, then \widehat{p}_n is a density function.
- 3. We won't require K takes only nonnegative values.
- 4. KDE can be generalized to higher dimension.

23.2 Mean squared error of kernel estimators at fixed x_0

Mean squared error of kernel estimators at fixed x_0 is

$$MSE(x_0) = \mathbb{E}[(p(x_0) - \hat{p}_n(x_0))^2]$$
 (23.8)

$$= b^2(x_0) + \sigma^2(x_0) \tag{23.9}$$

where $b(x_0)$ is the bias and $\sigma^2(x_0)$ is the variance.

Variance part

Proposition 23.1. Let $p(x) \leq p_{max} < \infty$ for and x. Suppose $\int K^2(u) du < \infty$. Then for $n \leq 1$,

$$\sigma^2(x_0) \le \frac{p_{max} \int K^2(u) \, \mathrm{d}u}{nh} \tag{23.10}$$

Proof Let

$$\eta_i(x_0) = K(\frac{X_i - x_0}{h}) - \mathbb{E}\left[K(\frac{X_i - x_0}{h})\right]$$
(23.11)

$$\mathbb{E}\left[\eta_i^2(x_0)\right] \le \mathbb{E}\left[K^2\left(\frac{X_i - x_0}{h}\right)\right] \tag{23.12}$$

$$= \int K^2(\frac{z - x_0}{h})p(z) dz$$
 (23.13)

$$\leq p_{max} h \int K^2(u) \, \mathrm{d}u \tag{23.14}$$

Thus

$$\sigma^{2}(x_{0}) = \mathbb{E}\left[\left(\frac{1}{nh}\sum_{i=1}^{n}\eta_{i}(x_{0})\right)^{2}\right]$$
(23.15)

$$= \frac{1}{nh^2} \mathbb{E}\left[\eta_i^2(x_0)\right] \tag{23.16}$$

$$\leq \frac{C_1}{nh} \tag{23.17}$$

23.2.1 Bias part

The bias of the kernel density estimator has the form

$$b(x_0) = \mathbb{E}[\hat{p}_n(x_0)] - p(x_0) \tag{23.18}$$

$$= \frac{1}{h} \int K(\frac{z - x_0}{h}) p(z) dz - p(x_0)$$
 (23.19)

Definition 23.2. Let T be an interval in \mathbb{R} and let β and L be two positive numbers. The **Hölder class** $\Sigma(\beta, L)$ on T is defined as the set of $l = \lfloor \beta \rfloor$ times differentiable functions $f: T \to R$ whose derivative $f^{(l)}$ satisfies

$$|f^{(l)}(x) - f^{(l)}(x')| \le L|x - x'|^{\beta - l}$$
(23.20)

for $\forall x, x' \in T$.

Definition 23.3. Let $l \ge 1$ be an integer. We say that $K : \mathbb{R} \to \mathbb{R}$ is a kernel of order l if the functions satisfy $\int K(u) du = 0$ and $\int u^j K(u) du = 0$. for $j = 1, \dots, l$

Proposition 23.4. Assume that 1) $p \in \mathbb{P}(\beta, L) = \{p : p \geq 0, \int p = 1, p \in \Sigma(\beta, L)\}, 2)$ K is a kernel of order $l = |\beta|$ and $\int |u|^{\beta} |K(u)| du < \infty$. Then $\forall x_0, h > 0, n \geq 1$

$$|b(x_0)| \le \frac{Lh^{\beta}}{l!} \int |u|^{\beta} |K(u)| \, \mathrm{d}u = C_2 h^{\beta}$$
 (23.21)

Proof Let

$$u = \frac{z - x_0}{h} \tag{23.22}$$

, then dz = h du and

$$b(x_0) = \int K(u)[p(x_0 + uh) - p(x_0)] du$$
 (23.23)

Since

$$p(x_0 + uh) = p(x_0) + p'(x_0)uh + \dots + \frac{(uh)^l}{l!}p^{(l)}(x_0 + \tau uh)$$
(23.24)

for some $\tau \in [0,1]$. Then

$$b(x_0) = \int K(u) \frac{(uh)^l}{l!} p^{(l)}(x_0 + \tau uh) du$$
 (23.25)

$$= \int K(u) \frac{(uh)^l}{l!} [p^{(l)}(x_0 + \tau uh) - p^{(l)}(x_0)] du$$
 (23.26)

Thus

$$|b(x_0)| \le \int |K(u)| \frac{|uh|^l}{l!} |p^{(l)}(x_0 + \tau uh) - p^{(l)}(x_0)| \, \mathrm{d}u$$
 (23.27)

$$\leq \int |K(u)| \frac{|uh|^l}{l!} L|\tau uh|^{\beta-l} du$$
(23.28)

$$\leq C_2 h^{\beta}
\tag{23.29}$$

Theorem 23.5. Under conditions 1) and 2) from Proposition 23.4, let $h = \alpha n^{\frac{1}{2\beta+1}}$, then for $n \ge 1$

$$\sup_{x_0} \sup_{p \in \mathbb{P}(\beta, L)} \mathbb{E}\left[(\widehat{p}_n(x_0) - p(x_0))^2 \right] \le C n^{-\frac{2\beta}{2\beta + 1}}$$
 (23.30)

Proof Firstly, we can show from $p \in \mathbb{P}(\beta, L)$ that $p(x_0) \leq p_{max}$ for $\forall x_0 \in \mathbb{R}$.

Since

$$MSE \le \frac{C_1}{nh} + C_2 h^{\beta} \tag{23.31}$$

Let

$$h_* = \left(\frac{C_1}{2\beta C_2^2}\right)^{\frac{1}{2\beta+1}} n^{-\frac{1}{2\beta+1}} \tag{23.32}$$

Then

$$MSE \le C_2^2 h_*^{2\beta} + C_1 n^{-1} h_*^{-1} = C n^{-\frac{2\beta}{2\beta+1}}$$
(23.33)