Estimación del índice de abundancia relativa como regresión lineal generalizada tipo Poisson

SMandujanoR

23/7/2020

Modelo clásico del IAR

$$IAR_{ij} = \frac{n_j}{dias_i} \times 100$$

donde: n_{tot} es el número total de registros fotográficos independientes de la i-especie en la j-cámara, $dias_{tot}$ es el esfuerzo de muestreo o número total de días, y 100 es el factor de corrección estándar.

GLM regresión Poisson

Otra manera completamente distinta de analizar los datos del foto-trampeo y calcular el IAR, es visualizarlo como un modelo lineal generalizado (GLM por sus siglas en inglés).

$$n_i \sim Poisson(\lambda_i)$$
 $log(\lambda_i) = \alpha_i + \beta * x$

donde: n_i es el número de conteos en la i-cámara, λ (Lambda) es número promedio esperado de conteos; α y β son los coeficientes de la regresión, específicamente la ordenada al origen y la pendiente respectivamente; mientras que x son la o las covariables o variables predictivas. El símbolo " \sim " se lee "distribuido como".

Incluyendo los "offsets"

Una situación común es que los conteos obtenidos en las unidades de muestreo (cuadrantes, transectos, redes, cámaras, u otro), no siempre provienen de unidades espacial o temporalmente homogéneas; es decir, del mismo tamaño. Por ejemplo:

- si se tuviera un conteo de 10 y 5 animales en cuadrantes de 500 y 100 m², respectivamente, entonces no se puede concluir que la abundancia es mayor en el primer cuadrante.
- ► En estos casos se puede obtener la densidad de individuos como 10/500= 0.02 ind/m² y 5/100 = 0.05 ind/m²; es decir, la conclusión cambia radicalmente.
- ▶ De similar forma, si se obtiene un conteo 20 y 8 individuos de la misma especie de ave en parcelas de similar tamaño, pero en una el conteo se hizo en 10 minutos y en la segunda en 5 minutos, no se puede concluir que en la primera parcela hay más aves.
- Se tiene que calcular la tasa de observación como 20/10 = 2 ind/min, y 8/5 = 1.6 ind/min.

Caso cámaras-trampa

- ► En el caso del IAR la tasa de observación se expresa como número de fotos "promedio" por cámara por 100 días.
- Sin embargo, cuando se tiene distinto número de días, se pueden incluir direcatmente en el análisis.
- Una manera apropiada para incorporar en los GLMs conteos provenientes de unidades de muestreo con diferente tamaño o esfuerzo de muestreo (días), es considerar lo que se conoce como "offsets" que pudiera ser traducido como "calibración".

GLM Poisson con offsets

Se incorpora esta heterogeneidad en los días de muestreo en la *i*-cámara puede escribirse como:

$$extit{n}_{ij} \sim extit{Poisson}(extit{Dias}_i * \lambda_i) \ extit{log}(extit{Dias}_i * \lambda_i) = lpha_j + 1 * extit{log}(extit{Dias}_i) + eta * x \ ext{}$$

donde j respresenta cada especie animal. Además, x podría ser cualquier característica o covariable que se considere afecta o se relaciona con el IAR de cada especie.

- ▶ Un aspecto a destacar del modelo es que el coeficiente α es el IAR cuando $\beta * x = 0$, es decir cuando no se incluyen covariables.
- Esto permite calcular el IAR de una manera alternativa y sencilla especificado como GLM.

Paquete RAI

► Modelo GLM tipo Poisson:

RAIglm()

- Además, cuando se consideran covariables el IAR se calcula para cada factor (por ejemplo tipo de hábitat) y/o su relación con variables continuas (por ejemplo pensiente, distancia a fuentes de agua, etc.).
- Modelo GLM tipo Poisson con covariables:

RAIglmCov()

Procedimiento

Cargar el paquete y los datos

```
source("pkgRAI_1.R")
wildlife.data <- read.csv("mamiferos.csv", header = T)
habitat.data <- read.csv("habitat.csv", header = T)</pre>
```

IAR clásico

El cálculo del IAR clásico se obtiene con la función RAIgral() como:

```
Tot_cameras <- with(new.mat, length(unique(Camera)))
  cameras <- with(new.mat, tapply(Camera, Species, length))
  days <- with(new.mat, tapply(Effort, Species, sum))
  n <- with(new.mat, tapply(Events, Species, sum))
  RAIgral <- round(n/days*100, 2)
  table.1 <- cbind(cameras, days, n, RAIgral)
  table.1 <- table.1[order(RAIgral),]</pre>
```

IAR clásico

##		${\tt cameras}$	days	n	RAIgral
##	Leo_wie	9	2409	1	0.04
##	${\tt Mep_mac}$	9	2409	1	0.04
##	Pro_lot	9	2409	1	0.04
##	Pec_taj	9	2409	5	0.21
##	Nas_nar	9	2409	6	0.25
##	Syl_flo	9	2409	8	0.33
##	Bas_ast	9	2409	9	0.37
##	Lyn_ruf	9	2409	12	0.50
##	${\tt Did_vir}$	9	2409	15	0.62
##	Con_leu	9	2409	22	0.91
##	Can_lat	9	2409	87	3.61
##	Odo_vir	9	2409	158	6.56
##	Uro_cin	9	2409	191	7.93

Regresión Poisson

##

Call:

```
## glm(formula = Events ~ Species - 1, family = quasipoiss
      offset = log(Effort))
##
##
  Deviance Residuals:
                    Median
##
      Min
                10
                                 30
                                         Max
## -4.5052 -1.6732 -1.0800 -0.4556
                                     13.0509
##
  Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
## SpeciesBas_ast
                  -5.5897
                             1.0950
                                     -5.105 1.50e-06 ***
                             0.3522 -9.430 1.26e-15 ***
## SpeciesCan_lat -3.3211
## SpeciesCon_leu
                 -4.6959
                             0.7004 -6.705 1.07e-09 ***
## SpeciesDid_vir
                 -5.0789
                             0.8482 -5.988 3.07e-08 ***
## SpeciesLeo_wie
                 -7.7870
                             3.2849 -2.371
                                              0.0196 *
## SpeciesLyn_ruf -5.3021
                             0.9483 -5.591 1.83e-07 ***
## SpeciesMep_mac
                  -7.7870
                             3.2849
                                     -2.371
                                              0.0196 *
```

Los coeficientes de la regresión se "linealizan" y son el IAR...!

```
##
                  RAIpoisson
                         0.37
   SpeciesBas ast
                         3.61
   SpeciesCan lat
   SpeciesCon leu
                         0.91
## SpeciesDid_vir
                         0.62
## SpeciesLeo wie
                         0.04
## SpeciesLyn_ruf
                         0.50
## SpeciesMep_mac
                         0.04
## SpeciesNas_nar
                         0.25
## SpeciesOdo_vir
                         6.56
## SpeciesPec taj
                         0.21
## SpeciesPro lot
                         0.04
                         0.33
## SpeciesSyl flo
## SpeciesUro cin
                         7.93
```

Es decir, empleando un GLM Poisson se puede calcular de manera muy sencilla y más rápida los IAR.

Regresión Poisson con covariables

C8 Uro_cin

C9 Uro_cin

scrub grass RAIalt

29

0

419

24.20

17 3.20

289 15 30

8.00

5.91

971

999

580

982

93

106

##

2

15

28

41

54

Por ejemplo, en el siguiente GLM se analizan los datos específicos

##		Camera	Species	${\tt Events}$	${\tt Effort}$	Х	Y	Loc_dist
##	2	C1	${\tt Uro_cin}$	68	281	758937	2167945	4718
##	15	C2	Uro_cin	20	250	758648	2168425	465
##	28	C3	Uro_cin	9	281	759275	2168699	4187
##	41	C4	Uro_cin	13	220	758766	2167304	4233
##	54	C5	Uro_cin	43	281	757761	2162127	3838
##	67	C6	Uro_cin	9	281	758282	2162556	3991
##	80	C7	Uro_cin	10	281	757714	2163266	3133

15

253 756970 2163804

281 755365 2160480

2223

4302

de la especie *U. cinereoargentus*:

```
Pruebo la covariable vegetación con GLM tipo prueba de
ANOVA de una vía pero tipo Poisson...!
   ##
   ## Call:
```

```
## glm(formula = Events ~ Veg_type - 1, family = quasipois:
      offset = log(Effort))
##
##
## Deviance Residuals:
##
      Min
               1Q Median
                             3Q
                                       Max
## -4.9235 -1.7943 0.0000 0.7061 5.3735
```

##

Coefficients: Estimate Std. Error t value Pr(>|t|) ## ## Veg_typeAgricultura -2.9303 0.8791 -3.333 0.015739

Veg typePastizal -3.5677 0.7099 -5.026 0.00239

Veg_typeSelva -2.1496 0.2752 -7.810 0.000239

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.3

##

Gráficamente

 $5.3380783,\ 2.8220859,\ 11.6527037$

Otra hipótesis podría ser:

si el IAR de la especie está relacionada con la superficie del tipo de hábitat dominado por arbustivas o el de pastos:

'RAIglm3 <- glm(Events ~ scrub + grass, data = especie_sel, offset = log(Effort), family = quasipoisson)

Conclusiones

- ► El IAR se puede estimar empleando como marco conceptual y metodológico a los modelos lineales generalizados (GLMs).
- Esta aproximación resulta en estimaciones similares a la forma clásica de estimar el IAR, pero con la ventaja de hacerlo como un modelo GLM tipo regresión Poisson al tratarse de datos de conteos.
- En este caso, se debe especificar el número de días, los cuales habitualmente difieren entre las cámaras, como un offset lo cual es muy sencillo de especificar en el GLM.