

Figure 1: prior predictive distribution of $\tilde{\mu}^a$ for several values of μ^a_{pop}

- 1. Changed model slightly. Now, model the inverse of the rate parameter, because it is more interpretable.
- 2. We are using generalized linear models for each of the 3 parameters. For each parameter, the dispersion parameter is shared across patients.
- 3. Concerned about our prior knowledge on $\tilde{\mu}^a$, because this is our belief about the expected value of \tilde{a} .
- 4. Key quantity of interest is $\tilde{\sigma}^a = c^a \sum_{j=1}^k \tilde{x}_j^2$
- 5. For a test datapoint \tilde{x} , prior predictive distribution of $\tilde{\mu}^a$ is unimodal if $\tilde{\sigma}^a < 1$. So would like $\tilde{\sigma}^a$ to be less than 1 most of the time. See Figure 1.
- 6. Likewise, want prior predictive distribution of $\tilde{\mu}^a$ to be unimodal. See Figure 2. This is always the case. So might only worry about how the mode changes as $\tilde{\mu}^a$ changes. See Figure 3. Looks like if we keep $\tilde{\sigma}^c$ below 1, that would be fine.
- 7. Now, interested in \tilde{a} the result of the random effect deviation from the conditional mean $\tilde{\mu}^a$. See Figure 4. If λ^a is too big, the distribution of \tilde{a} is no longer unimodal. Seems like if λ^a is greater than 10, we are fine.
- 8. Likewise, interested in \tilde{c} the result of the random effect deviation from the conditional mean $\tilde{\mu}^c$. See Figure 5. $\lambda^c = 1$ seems fine.
- 9. Finally, drew prior over curves, for different values of $\tilde{\sigma}^a = \tilde{\sigma}^b = \tilde{\sigma}^c$. (they're not necessarily equal). See Figure 6.

Figure 2: prior predictive distribution of $\tilde{\mu}^c$ for several values of μ^c_{pop}

Figure 3: Dependence of mode of $\tilde{\mu}^c$ on $\tilde{\sigma}^c$ for several values of μ^c_{pop}

Figure 4: prior predictive distribution of \tilde{a} for several values of $\tilde{\sigma}^a$ and λ^a

Figure 5: prior predictive distribution of \tilde{c} for several values of $\tilde{\sigma}^c$ and λ^c

Figure 6: Curve prior for several different values of $\tilde{\sigma}^a=\tilde{\sigma}^b=\tilde{\sigma}^c$