

Prüfungsklausur Lineare Algebra I – Aufgaben

1. (a) Man zeige: Eine Teilmenge U eines Vektorraumes V über einem Körper $\mathbb K$ ist genau [10] dann ein Unterraum von V, wenn für beliebige $u,v\in U$ und $\lambda,\mu\in\mathbb K$ gilt

 $\lambda u + \mu v \in U$.

- (b) Sei V ein Vektorraum über einem Körper \mathbb{K} , sei $\operatorname{Aut}(V)$ die Menge der Isomorphismen $f:V\to V$ und \circ bezeichne die Hintereinanderausführung von Abbildungen. Zeigen Sie: $(\operatorname{Aut}(V),\circ)$ ist eine Gruppe. [7]
- 2. Untersuchen Sie mit Hilfe der Rangkriterien, für welche $c \in \mathbb{R}$ das folgende lineare [8] Gleichungssystem lösbar, universell lösbar bzw. eindeutig lösbar ist:

$$x_1 - 3x_2 + 4x_3 = 3$$

 $2x_1 + x_3 = 5$
 $6x_2 + 2x_3 = 1$
 $2x_1 + 10x_3 = c$.

3. Gegeben sei das folgende lineare Gleichungssystem:

$$x_1 - x_2 = b_1$$

 $2x_1 - x_3 = b_2$
 $3x_1 - x_2 - x_3 = b_3$
 $5x_1 - x_2 - 2x_3 = b_4$.

- (a) Bestimmen Sie die Lösungsmenge $\mathcal{L}_0(A^\top)$ des transponierten homogenen Systems. [5]
- (b) Bestimmen Sie die Dimension und eine Basis von $\mathcal{L}_0(A^{\top})$. [2]
- (c) Bestimmen Sie den Unterraum \mathcal{B} aller $b = (b_1, b_2, b_3, b_4) \in \mathbb{R}^4$, für die das obige [10] Gleichungssystem lösbar ist. Geben Sie eine Basis von \mathcal{B} an.

4. Sei $\pi \in S_4$ eine Permutation mit

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}.$$

- (a) Berechnen Sie π^n für $n \in \mathbb{N}$ sowie π^{-1} . [5]
- (b) Sei $\tau \in S_6$, $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 4 & 1 & 2 & 5 & 3 \end{pmatrix}$. Schreiben Sie τ in Zyklenschreibweise. [2]
- (c) Schreiben Sie τ als Produkt von Transpositionen. [2]
- (d) Bestimmen Sie alle Inversionen von τ sowie inv (τ) und sgn (τ) . [6]
- 5. Bestimmen Sie die Lösung des folgenden Gleichungssystem mit Hilfe der Cramerschen [10] Regel.

$$(2+i)x_1 + ix_2 = 3$$
$$(-1+2i)x_1 + (-1+i)x_2 = 2+3i.$$

- 6. Zeigen Sie, dass es für jedes $\lambda \in \mathbb{R}$ und alle $m, n \in \mathbb{N}$ mit $1 \leq m \leq n$ eine Matrix [11] $A \in \mathbb{R}^{n \times n}$ gibt, so dass λ ein Eigenwert von A mit der Vielfachheit m ist und der von den zu λ gehörenden Eigenvektoren aufgespannte Eigenraum die Dimension 1 hat.
- 7. Sei $F: \mathbb{R}^n \to \mathbb{R}^n$ eine diagonalisierbare lineare Abbildung für die gilt: Sind v, w Eigenvektoren von F, so ist v+w entweder auch ein Eigenvektor von F oder Null. Zeigen Sie: Dann gibt es ein $\lambda \in \mathbb{R}$ mit $F = \lambda$ id. [19]