SVM Soft Margin Classification

Nipun Batra

IIT Gandhinagar

August 30, 2025

"SLIGHTLY" NON - SEPARABLE DATE

Answer this!

Why might we need a "soft margin" SVM?

- A) Data is perfectly linearly separable
- B) Data has some noise and outliers
- C) We want smaller margins
- D) To avoid using kernels

Answer this!

Why might we need a "soft margin" SVM?

- A) Data is perfectly linearly separable
- B) Data has some noise and outliers
- C) We want smaller margins
- D) To avoid using kernels

Answer: B) Data has some noise and outliers - soft margin allows controlled violations.

Soft-Margin SVM

• Can we learn SVM for "slightly" non-separable data without projecting to a higher space?

Soft-Margin SVM

- Can we learn SVM for "slightly" non-separable data without projecting to a higher space?
- Introduce some "slack" (ξ_i) or loss or penalty for samples allow some samples to be misclassified

" CONTIN" NON- SCHARABLE DATE

$$\frac{Z \circ NE 2}{Y_i^* \left(\overrightarrow{\omega}, \overrightarrow{z_i} + b \right) = 1}$$

$$Loss_i = 0$$

$$(Ay_i = 0)$$

y; (13. 71 + b) < 1 Loss; ≠0 (0<41;<1 POINT CORRECTLY (BUT WRONG SIDE OF MARGIN

ZONE 4 y: (w. xi+b) <1 INCORRECTLY CLASSI FIED Loss; × 0

ZONE 4 y: (w. xi+b) <1 INCORRECTLY CLASSI FIED みで、また= 1-41 L035; > 0

Soft-Margin SVM

Change Objective

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$$

s.t. $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 - \xi_i$

Soft-Margin SVM

Change Objective

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$$

s.t. $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 - \xi_i$

In Dual:

$$\text{minimize} \sum_{i=1}^{n} \alpha_{i} - \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}$$

s.t.

$$0 \le \alpha_i \le C \& \sum_{i=1}^n \alpha_i y_i = 0$$

BIAS - VARIANCE TRADE-OFT

BIAS - VARIANCE TRADE - OFF

LOW PENALTY FOR VIOLATION
HIGH TRAIN ERROR
HIGH GIAS

BIAS- VARIANCE TRADE-OFF

HIGH TRAIN ERROR
HIGH GIAS
BIG MARGIN

HIGH PENALTY HIGH VARIANCE SMALL MARGI

Answer this!

What happens when the regularization parameter \mathcal{C} is very large?

- A) The model becomes more tolerant to misclassifications
- B) The model tries to classify all training points correctly
- C) The margin becomes larger
- D) Regularization increases

Answer this!

What happens when the regularization parameter \mathcal{C} is very large?

- A) The model becomes more tolerant to misclassifications
- B) The model tries to classify all training points correctly
- C) The margin becomes larger
- D) Regularization increases

Answer: B) The model tries to classify all training points correctly - high variance!

Bias Variance Trade-off for Soft-Margin SVM

Low C ⇒ Higher train error (higher bias)

High C ⇒ Very sensitive to datasete (high variance)

Soft-Margin SVM

```
If C \rightarrow 0
Objective \rightarrow minimize \frac{1}{2} \|\mathbf{w}\|^2
\Longrightarrow Choose large margin (without worrying for \xi_is)

Recall: Margin =\frac{2}{\|\mathbf{w}\|}

If C \rightarrow \infty (or very large) Objective \rightarrow minimize C \sum \xi_i or choose \mathbf{w}, b, s.t. \xi_i is small!
```

Answer this!

What is the equivalent of hard margin?

- A) $C \rightarrow 0$
- B) $C \to \infty$

Answer this!

What is the equivalent of hard margin?

A)
$$C \rightarrow 0$$

B)
$$C \to \infty$$

Answer: B) $C \to \infty$ - No violations allowed!

Answer this!

For a support vector with slack variable $\xi_i=1.5$, this point is:

- A) On the margin boundary
- B) Correctly classified but within margin
- C) Misclassified
- D) Outside both margins

Answer this!

For a support vector with slack variable $\xi_i = 1.5$, this point is:

- A) On the margin boundary
- B) Correctly classified but within margin
- C) Misclassified
- D) Outside both margins

Answer: C) Misclassified - since $\xi_i > 1!$

Soft-Margin SVM

Types of support vectors:

- Zone 2: $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = 1$
- Zone 3: $0 < \xi_i < 1$ (correctly classified)
- Zone 4: $\xi_i > 1$ (Misclassified)

∴ As C increases, # support vectors decreases

Notebook: SVM-soft-margin

SVM Formulation in the Loss + Penalty Form

Objective:

$$\text{minimize } \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{N} \xi_i$$

Now:

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 - \xi_i$$

 $\xi_i > 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b)$

But $\xi_i \geq 0$

$$\therefore \xi_i = \max \left[0, 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \right]$$

Answer this!

The hinge loss function $\max[0, 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b)]$ is:

- A) Convex and differentiable everywhere
- B) Convex but not differentiable at one point
- C) Non-convex but differentiable
- D) Neither convex nor differentiable

Answer this!

The hinge loss function $\max[0, 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b)]$ is:

- A) Convex and differentiable everywhere
- B) Convex but not differentiable at one point
- C) Non-convex but differentiable
- D) Neither convex nor differentiable

Answer: B) Convex but not differentiable at one point - at $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = 1!$

SVM Formulation in the Loss + Penalty Form

.: Objective is:

HINGE LOSS

Loss Function for Sum (Hinge Loss)

Loss function is $\sum_{i=1}^{N} \max [0, 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b)]$

• Case I $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = 1$ Lies on Margin: $Loss_i = 0$

Loss Function for Sum (Hinge Loss)

Loss function is
$$\sum_{i=1}^{N} \max [0, 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b)]$$

- Case I $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = 1$ Lies on Margin: $Loss_i = 0$
- Case II $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) > 1$ $Loss_i = 0$

Loss Function for Sum (Hinge Loss)

Loss function is
$$\sum_{i=1}^{N} \max [0, 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b)]$$

- Case I $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = 1$ Lies on Margin: $Loss_i = 0$
- Case II $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) > 1$ $Loss_i = 0$
- Case III $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) < 1$ $Loss_i \neq 0$

Hinge Loss Continued

Q) Is hinge loss convex and differentiable?

Convex: ✓

Differentiable: X

Subgradient: <

SVM Loss is Convex

Hinge Loss
$$\sum (\max[0, (1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b))]$$
 is convex

Penalty $\frac{1}{2} \|\mathbf{w}\|^2$ is convex

... SVM loss is convex