L'épreuve est composée de deux problèmes indépendants

Problème 1

On désigne par N un entier naturel non nul et on note E_N l'espace vectoriel des fonctions polynomiales réelles de degré inférieur ou égal à N.

On note $\mathcal{B} = (e_0, e_1, \dots, e_N)$ la base canonique de E_N , où, pour tout k de [0, N], on a : $e_k(x) = x^k$.

Le but du problème est de construire une famille de polynômes (L_0, L_1, \ldots, L_N) , vecteurs propres d'un endomorphisme Φ , et d'étudier les racines de ces polynômes.

Partie 1 - Étude d'un endomorphisme

On considère l'endomorphisme Φ de E_N défini par :

$$\forall x \in \mathbb{R}, \quad \Phi(P)(x) = (x - x^2)P''(x) + (1 - 2x)P'(x)$$

- 1. Déterminer la matrice A de Φ dans la base \mathcal{B} .
- 2. (a) Donner les valeurs propres de Φ .
 - (b) L'endomorphisme Φ est-il diagonalisable?

Partie 2 - Construction d'une famille de polynômes

On considère les suites de fonctions $(U_n)_{n\in\mathbb{N}}$ et $(L_n)_{n\in\mathbb{N}}$ définies, pour tout réel x, par $U_0(x)=1, L_0(x)=1$, ainsi que par les relations suivantes, valables pour tout entier naturel n:

$$U_n(x) = (x - x^2)^n, L_n(x) = \frac{1}{n!}U_n^{(n)}(x)$$

- 3. Montrer que, pour tout entier naturel n, L_n est une fonction dont on précisera le degré.
- 4. On pose $L_n(x) = \sum_{k=0}^n \ell_{n,k} x^k$. Déterminer, pour tout k de [0, n], $\ell_{n,k}$ en fonction de k et de n.
- 5. (a) Établir, pour tout réel x et tout entier naturel n, la relation suivante : $(x-x^2)U_n'(x) = n(1-2x)U_n(x)$.
 - (b) En dérivant (n+1) fois la relation précédente, montrer que, pour tout entier n de [0, N], L_n est vecteur propre de Φ et donner la valeur propre associée.

Partie 3 - Étude des racines de L_n

On suppose dans cette partie que n est un entier naturel non nul

- 6. (a) En écrivant $U_n(x) = x^n(1-x)^n$, donner, pour tout k de [0,n], l'expression de $U_n^{(k)}(x)$.
 - (b) En déduire, pour tout k de $[\![0,n]\!]$, les valeurs de $U_n^{(k)}(0)$ et de $U_n^{(k)}(1)$.
 - (c) Calculer $\int_0^1 L_n(t)dt$.
 - (d) Donner les valeurs de $L_n(0)$ et de $L_n(1)$.
- 7. Montrer que L_n admet au moins un zéro d'ordre de multiplicité impair sur]0,1[.
- 8. On note p le nombre de zéros d'ordre impair de L_n sur]0,1[et x_1,x_2,\ldots,x_p ces zéros. On pose :

$$Q(x) = \prod_{j=1}^{p} (x - x_j) \text{ et } J = \int_{0}^{1} Q(t)L_n(t)dt$$

On suppose p < n.

(a) Établir, pour tout entier k de [1, n], la formule suivante :

$$n!J = (-1)^k \int_0^1 Q^{(k)}(t) U_n^{(n-k)}(t) dt$$

- (b) Montrer que la fonction $x \mapsto Q(x)L_n(x)$ est de signe constant sur [0,1].
- (c) En déduire que L_n possède n racines distinctes appartenant toutes à]0,1[.

Problème 2

On considère une suite de variables aléatoires $(X_i)_{i\in\mathbb{N}}$, définies sur un même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, indépendantes et identiquement distribuées.

Le but du problème est d'étudier différents temps de dépassement et d'atteinte.

Dans les deux premières parties, on suppose que les variables sont discrètes et à valeurs dans \mathbb{N} . On note F leur fonction de répartition commune.

Dans les parties suivantes, on suppose que les variables X_i sont à densité et note f et F respectivement une densité et la fonction de répartition des X_i .

Les parties, bien que traitant toutes des même thèmes, sont dans une très large mesure indépendantes et les préliminaires sont utilies pour les parties 3 et 4.

Préliminaires

- 1. Soit x un réel de [0,1[.
 - (a) Établir la relation suivante :

$$\forall n \in \mathbb{N}^*, \quad \sum_{k=1}^n \frac{x^k}{k} = \int_0^x \frac{1}{1-t} dt - \int_0^x \frac{t^n}{1-t} dt$$

(b) En déduire l'égalité suivante :

$$\forall x \in [0, 1[, \ln(1-x)] = -\sum_{k=1}^{+\infty} \frac{x^k}{k}$$

(c) Établir, pour tout réel x de [0,1], la formule suivante :

$$\forall x \in [0, 1[, \quad x + (1 - x) \ln (1 - x)] = \sum_{k=1}^{+\infty} \frac{x^{k+1}}{k(k+1)}$$

2. Soit X et Y deux variables à densité indépendantes, définies sur le même espace $(\Omega, \mathcal{A}, \mathbb{P})$, dont les densités, notées respectivement f_X et f_Y sont nulles sur \mathbb{R}_- et continues par morceaux sur \mathbb{R}_+ . On note F_X et F_Y leur fonction de répartition.

Montrer que l'intégrale $\int_0^{+\infty} F_Y(t) f_X(t) dt$ est convergente

On admettra dans la suite que
$$P(Y \leqslant X) = \int_0^{+\infty} F_Y(t) f_X(t) dt$$

Partie 1 - Un temps de dépassement discret

On rappelle que l'on suppose que les variables X_k sont identiquement distribuées et que l'on note F leur fonction de répartition commune.

Pour tout entier naturel k, on pose $p_k = \mathbb{P}([X_0 = k])$ et on suppose que p_k est strictement positif.

On définit la variable aléatoire T égale au premier indice n, s'il existe, tel que $X_n > X_0$, et on pose T = 0 si un tel indice n'existe pas.

Autrement dit, $T = \inf\{n \ge 1/X_n > X_0\}$ si cet ensemble est non vide et T = 0 si cet ensemble est vide. On admet que T est bien une variable aléatoire définie sur $(\Omega, \mathcal{A}, \mathbb{P})$.

3. (a) Soit n un entier naturel non nul. Établir, pour tout entier naturel M, l'inégalité suivante :

$$\mathbb{P}\left(\left[X_{1} \leqslant X_{0}\right] \cap \left[X_{2} \leqslant X_{0}\right] \cap \ldots \cap \left[X_{n} \leqslant X_{0}\right]\right) \leqslant F^{n}(M) + \sum_{k=M+1}^{+\infty} p_{k}$$

(b) Montrer que:

$$\forall \varepsilon > 0, \exists N_0 \in \mathbb{N}, \forall n \in \mathbb{N}, \quad (n \geqslant N_0 \Longrightarrow \mathbb{P}([X_1 \leqslant X_0] \cap [X_2 \leqslant X_0] \cap \ldots \cap [X_n \leqslant X_0]) \leqslant \varepsilon)$$

- (c) En déduire que $\mathbb{P}([T=0]) = 0$.
- 4. Montrer que, pour tout entier naturel n, on a : $\mathbb{P}([T > n]) = \sum_{k=0}^{+\infty} (F(k))^n p_k$
- 5. Soit Z une variable aléatoire définie sur $(\Omega, \mathcal{A}, \mathbb{P})$, à valeurs dans \mathbb{N} , et admettant une espérance.
 - (a) Montrer, pour tout entier naturel n non nul, la relation suivante :

$$\sum_{k=1}^{n} k \mathbb{P}([Z=k]) = \sum_{k=0}^{n-1} \mathbb{P}([Z>k]) - n \mathbb{P}([Z>n])$$

- (b) Établir la formule suivante : $\mathbb{E}(Z) = \sum_{k=0}^{+\infty} \mathbb{P}([Z > k])$.
- 6. (a) Justifier, sans calcul, l'égalité suivante :

$$\mathbb{P}([\sup(X_0, X_1, \dots, X_n) = X_0]) = \frac{1}{n+1}$$

- (b) Montrer que : $\sum_{k=0}^{+\infty} (F(k))^n p_k \geqslant \mathbb{P}([X_1 < X_0] \cap [X_2 < X_0] \cap \ldots \cap [X_n < X_0]).$
- (c) En déduire que, pour tout entier naturel n, on a : $\mathbb{P}([T > n]) \geqslant \frac{1}{n+1}$.
- (d) La variable T admet-elle une espérance?

Partie 2 - Un temps d'atteinte discret

Dans cette partie, on désigne par p un réel élément de]0,1[et on suppose que les variables X_k suivent toutes la loi géométrique de paramètre p, ou loi du temps d'atteinte du premier succès. Pour tout entier naturel k non nul et tout entier naturel n, on a donc : $\mathbb{P}([X_n = k]) = pq^{k-1}$, avec q = 1 - p.

On pose, pour tout entier naturel n, $S_n = \sum_{k=0}^{n-1} X_k$.

7. Montrer que la loi de S_n est donnée par :

$$\forall k\geqslant n,\quad \mathbb{P}([S_n=k])=\binom{k-1}{n-1}p^nq^{k-n}\text{ , où }\binom{m}{p}\text{ désigne le coefficient du binôme }:\frac{m!}{p!(m-p)!}$$

- 8. On considère un entier naturel N non nul et on note T_N la valeur du plus petit entier naturel n tel que $S_n > N$. On admet que T_N est une varaible aléatoire définie sur $(\Omega, \mathcal{A}, \mathbb{P})$.
 - (a) Donner la loi de T_N .
 - (b) Reconnaître la loi de $Y_N = T_N 1$.
 - (c) En déduire l'espérance et la variance de T_N .
- 9. On garde les mêmes notations mais on suppose que N est une variable aléatoire définie sur $(\Omega, \mathcal{A}, \mathbb{P})$, indépendante des X_k , et qui suit la loi de Poisson de paramètre λ .

La loi de N est donc donnée par : $\forall k \in \mathbb{N}, \quad \mathbb{P}([N=k]) = \frac{\lambda^k e^{-\lambda}}{k!}$.

On note T la variable aléatoire égale au plus petit entier n tel que $S_n > N$.

Donner la loi de la variable Y = T - 1.

Partie 3 - Un temps de dépassement continu

On suppose que les variables X_i sont à densité et note f et F respectivement une densité et la fonction de répartition des X_i . On suppose de plus que f est nulle sur \mathbb{R}_- , continue par morceaux sur $[0, +\infty[$.

On définit la variable aléatoire N égale au premier indice n, s'il existe tel que $X_n > X_0$, et on pose N = 0 si un tel indice n'existe pas.

On admet que N est bien une variable aléatoire définie sur $(\Omega, \mathcal{A}, \mathbb{P})$.

On pose également, pour tout entier naturel n non nul, $Z_n = \sup(X_1, X_2, \dots, X_n)$.

10. (a) Justifier l'encadrement :

$$\mathbb{P}([N > n]) \leqslant \mathbb{P}([Z_n \leqslant X_0]) \leqslant \mathbb{P}([N > n]) + \mathbb{P}([N = 0])$$

- (b) Vérifier que $[N=0] = \bigcap_{n=1}^{+\infty} [Z_n \leqslant X_0]$
- (c) i. Déterminer, en fonction de F, la fonction de répartition de Z_n .
 - ii. En déduire, en utilisant la question 2 du préliminaire, la valeur de $\mathbb{P}([N=0])$.
- 11. (a) Calculer, pour tout entier naturel n, la valeur de $\mathbb{P}([N > n])$.
 - (b) Donner la loi de N.
 - (c) La variable N admet-elle une espérance?

Partie 4 - Un temps de dépassement aléatoire

On considère dans cette partie X_N , où N est la variable aléatoire de la partie précédente et on admet que X_N est une variable aléatoire à densité, définie elle aussi sur $(\Omega, \mathcal{A}, \mathbb{P})$.

On désigne par x un réel positif et par n un entier naturel non nul.

- 12. On suppose dans cette question seulement que la variable X_0 est la variable certaine égale à t, où t est un réel strictement positif, et que, pour tout i de \mathbb{N}^* , la variable X_i suit la loi exponentielle de paramètre λ . Pour tout réel x positif et tout entier naturel n non nul, La probabilité de l'événement $[X_N \leq x] \cap [N=n]$ dépend donc de t. On note $\mathbb{P}_t([X_N \leq x] \cap [N=n])$ cette probabilité.
 - (a) Comparer les événements $[X_N \leqslant x] \cap [N=n]$ et $[X_n \leqslant x] \cap [N=n]$.
 - (b) Que vaut, pour $t \ge x$, $\mathbb{P}_t([X_N \le x] \cap [N=n])$?
 - (c) Exprimer, pour tout réel x plus grand que t, l'événement $[X_n \leq x] \cap [N=n]$ en fonction des événements $[X_i \leq t]$ et $[t \leq X_n \leq x]$.
 - (d) En déduire, pour tout réel x vérifiant t < x, la valeur de $\mathbb{P}_t([X_N \leqslant x] \cap [N=n])$.
- 13. On revient au cas où toutes les variables aléatoires X_i $(i \in \mathbb{N})$, suivent la même loi et on suppose que cette loi commune est la loi exponentielle de paramètre λ . On rappelle que l'on note f la densité des X_i qui est donc définie par : $\forall t \in \mathbb{R}$ $f(t) = \lambda e^{-\lambda t} \mathbf{1}_{[0,+\infty]}(t)$.

On admet la formule suivante, valable pour tout réel x strictement positif et tout entier naturel n non nul :

$$\mathbb{P}([X_N \leqslant x] \cap [N=n]) = \int_0^x \mathbb{P}_t([X_N \leqslant x] \cap [N=n]) f(t) dt$$

(a) Montrer, pour tout entier naturel n non nul, l'égalité suivante :

$$\mathbb{P}([X_N \le x] \cap [N = n]) = \frac{(1 - e^{-\lambda x})^{n+1}}{n(n+1)}$$

Pour calculer l'intégrale, on pourra remarquer que $\left(e^{-\lambda t}-e^{-\lambda x}\right)=\left(e^{-\lambda t}-1\right)+\left(1-e^{-\lambda x}\right)$

- (b) En utilisant le système complet d'événements $\{[N=n]/n \in \mathbb{N}^*\}$ et la deuxième question du préliminaire, déterminer la fonction de répartition de X_N .
- (c) Vérifier que X_N est bien une variable à densité, donner une densité de X_N .