Esse trabalho tem como objetivo explicar o percentual de crescimento do PIB real de um país i relativamente ao PIB real dos EUA, bem como realizar análises subjacentes que nos permitam justificar a escolha do melhor estimador. O modelo para explicar tal relação pode ser descrito por:

$$\begin{split} & rgdppc_{it} = \alpha \, rgdppc_{it\text{-}1} + \beta_0 + \beta_1 \, ropen_{it} + \beta_2 \, ropen_{it\text{-}1} + \beta_3 \, inv_{it} + \beta_4 \, inv_{it\text{-}1} + \beta_5 \, consu_{it} + \beta_6 \, consu_{it\text{-}1} + v_{it} \\ & v_{it} = c_i + \lambda_t + u_{it} \end{split}$$

Definimos os dados em painel (ver anexo 3) para melhor mensuração dos regressores e seus efeitos na variável dependente. Começamos analisando o modelo por meio dos estimadores clássicos: POLS; Efeitos Fixos (FE); Primeiras Diferenças (FD).

Seguindo as premissas habituais necessárias para o uso dos estimadores clássicos, chegamos às seguintes constatações, amparados pela literatura:

- POOLED OLS Com a introdução de variáveis com lags, o POLS deixa de ser um estimador centrado e passa a sobrestimar os coeficientes. Ademais, na literatura verifica-se que mesmo assintoticamente (n-> ∞), o viés positivo dos coeficientes estimados persiste.
- FE Por outro lado, esse estimador subestima os coeficientes. Essa subestimação se mantém mesmo quando n ->∞. No entanto, ela desaparece quando nosso painel tende ao infinito temporalmente (T ->∞). Dessa forma, um estimador consistente se situaria entre os dois estimadores (POLS e FE).
- FD Assim como o estimador FE, esse também subestima os verdadeiros valores dos parâmetros. No entanto, diferentemente desse último, o viés negativo persiste independente das condições assintóticas ($T \rightarrow \infty$ ou $n \rightarrow \infty$).

As estimativas feitas pelos diferentes métodos podem ser vistas em pormenores nos anexos 4, 5 e 6. Utilizamos a matriz de variância-covariância robusta por *clusters* junto com os estimadores clássicos, tentando corrigir eventuais problemas de heterocedasticidade e autocorrelação. Essa matriz é semelhante à matriz robusta conhecida como "sandwich" ou de Eicker-Huber-White, em homenagem aos seus formuladores. Ela tem o seguinte formato para o POLS: (ΣΧ΄Χ)-¹(ΣΧ΄νν΄Χ)(ΣΧ΄Χ)-¹.

Por isso é conhecida como "sandwich" e foi utilizada, pois ela permite que o OLS estime consistentemente e de maneira centrada, mesmo na presença de heterocedasticidade. A diferença vem do termo *cluster* que impacta entre os *clusters* de observações.

De acordo com as estimações observadas na figura abaixo 1, há discrepâncias grandes entre os estimadores POLS e FE, FD, como já fora assinalado de acordo com a literatura. O verdadeiro valor dos parâmetros deve se situar entre as estimativas feitas pelo primeiro

estimador e os dois últimos. Podemos verificar que a variável dependente desfasada é significativa nos três níveis de confiança para todos os estimadores, o que nos leva a concluir que sua presença no modelo faz sentido. Com relação à abertura e ao investimento, os três estimadores são significativos com diferentes graus de confiança para as variáveis e suas desfasagens. Mais especificamente em relação ao consumo, nenhum dos estimadores sinalizou significância em t, somente nessa variável desfasada. Com relação aos anos em nível, obtemos significância somente nos anos de 2003 e 2004, seguindo POLS e FE. O FD, por utilizar diferenças, não consegue estimar essas variáveis em nível, no entanto, sinaliza significância nas diferenças de 2004 a 2007. O intercepto só se constatou significante no POLS.

Variable	POLS1	FE1	FD1	Variable	POLS1	FE1	FD1
rgdppc							
L1.	1.0327047***	.89487458***		y2002	(omitted)	(omitted)	
LD.			.52535987***	y2003	54742513***	82327214***	
				y2004	34196685	59547929***	
ropen				y2005	.20465283	01850436	
	03250546***	02096072*		y2006	05012187	12826057	
L1.	.03605121***	.03863045***		y2007	(omitted)	(omitted)	
D1.			0185283*				
LD.			.02638173*	y2002			
			.020001.0	D1.			(omitted)
inv							
	.13226666***	.07320069**		y2003			
L1.	16479388***			D1.			(omitted)
D1.	.10475500	.00070040	.0976534**				
LD.			06485674	y2004			
LD.			00405074	D1.			.39708575**
consu				y2005			
	.05052631	.04327528		D1.			1.226685***
L1.	08218552**	06857935**		21.			1.220003
D1.			.05670208	y2006			
LD.			06090204**	y2006 D1.			1.5777788***
	I			DI.			1.3////00
				y2007			
				D1.			2.0841063***
				_cons	2.5159588***	4.4463563	

Figura 1 - Comparativo dos estimadores modelos clássicos

É importante ressaltar que $|\alpha|$ < 1, isto é, condição de estabilidade é necessária.

As duas metodologias abordadas de GMM a 1 e a 2 passos apresentam formas de resolver o problema de estimação das variáveis desfasadas endógenas. Enquanto pelo método Arellano-Bond pode apresentar problemas de fracos instrumentos quando α ≈ 1. Isto significa que o instrumento utilizado para correr a regressão tem uma fraca correlação com a variável que se quer instrumentar (endógena), o que pode levar a enviesamentos ou distorções nos testes de hipóteses que impactam em sua precisão. Blundel-Bond procura resolver esse problema adicionando outras condições de momentos, que recaiam em estacionariedade. Métodos computacionais (simulação de Monte Carlo) evidenciam melhores propriedades desse último método em termos de enviesamento e erro quadrático médio. No entanto, esse método pode implicar na proliferação de instrumentos utilizados, que deverão ser validados

com os testes de Sargan ou Hansen e os de correlação serial de segunda ordem para permanecer nas regressões.

Para testar a validade dos instrumentos na primeira metodologia mencionada pode-se utilizar o teste de Hansen. Caso esse instrumento não seja válido deve-se remover da regressão. Já na segunda metodologia, pode-se utilizar os testes de Sargan ou Hansen.

O modelo analisado possui variáveis desfasadas, tanto dependentes, quanto independentes. Esse processo visa trazer uma melhor explicação e melhorar o poder preditivo do modelo. No entanto, ao induzir endogeneidade, isto é, variáveis que estejam correlacionadas com os termos de erro, deixam de estimar de maneira consistente os coeficientes por intermédio dos estimadores clássicos. A utilização das variáveis instrumentais procura corrigir esse problema, tomando como variáveis instrumentais aquelas que sejam correlacionadas com as variáveis endógenas, mas que não sejam correlacionadas com os termos de erro. Estes erros podem ser correlacionados para o mesmo i.

As premissas para utilização dos instrumentos são que tantos as variáveis, como os instrumentos devem ser conjuntamente estacionários e ergódicos. Reforça-se a necessidade de haver ortogonalidade entre instrumentos e erros E ($Z_{it}E_{it}$)= 0. Logo, os instrumentos são variáveis predeterminadas. Condição dos momentos. E ($Z_{it}X'_{it}$) é **Full rank (L ≥ k \forallm =1,2, ..., M)**, que significa que não há multicolinearidade perfeita, o que torna possível a solução para o sistema de equações e consequentemente a estimação. Além disso, o número de instrumentos utilizados deve ser maior ou igual ao número de variáveis a serem instrumentadas. No caso de não se cumprir essa condição (isto é, número de instrumentos inferior ao número de variáveis a instrumentar), não é possível obter uma solução para o sistema de equações e então realizar a estimação.

Correu-se uma série de modelos usando o estimador Arellano e Bond. O primeiro modelo a ser corrido foi o GMM a 1 passo, com desvios-padrão robustos, com variáveis estritamente exógenas. Usou-se a matriz de variâncias e covariâncias robustas para eventual correção da heterocedasticidade e autocorrelação caso necessário, possibilitando maior confiança na inferência estatística. De acordo com o output no anexo 8, o módulo de alfa é maior que 1, portanto, há evidencias de uma possível violação na condição de estabilidade do modelo. Também se nota que não há indícios de não haver correleção de ordem 1 nas primeiras diferenças nos erros, considerando o nível de significância a 5%. Adicionalmente não é possível concluir se os instrumentos são válidos ou não, pois os resultados dos testes de Sargan e Hansen são conflitantes. Em suma, o modelo corrido teve problemas tanto na estimação do

alfa como nos testes de validação. A literatura corrobora que nesses casos, pode ter havido um enviesamento positivo, e que acabou se refletindo na não validação dos instrumentos. Dito isso, não temos evidências significativas de que é um modelo confiável.

O próximo modelo a ser corrido foi o GMM a 1 passo, com desvios padrão robustos, com variáveis pré-determinadas, o output pode ser visualizado no anexo 9. O α é igual 1,06, e há indícios de que a condição de estabilidade foi violada. No entanto, de acordo com o teste houve evidências de que há correlação de primeira ordem nas primeiras diferenças nos erros, e a correlação é negativa, e não houve evidências de que há correlação de segunda ordem nos erros nas primeiras diferenças. Com isso, os testes corroboram com os pressupostos teóricos de correlação nos erros nas primeiras diferenças. Em relação a validade dos instrumentos, os resultados dos testes são conflitantes. De acordo com os problemas apresentados, não temos evidencias significativas que o modelo é confiável.

O modelo seguinte a ser corrido foi o GMM a 1 passo, com desvios padrão robustos, com variáveis endógenas, o output pode ser visualizado no anexo 10. A diferença desse modelo é a inclusão da variável dependente desfasada em três *lags* como uma das variáveis instrumentais. O alfa obtido foi 0.95, isto é, como o alfa é aproximadamente igual 1 pode haver a estimativa persistente da variável dependente, resultando em possíveis problemas de instrumentos fracos e que são poucos correlacionados com as variáveis que estão a instrumentar. E a principal consequência disso é um possível enviesamento negativo na estimação. Os testes de correlação confirmam os pressupostos teóricos. Em relação aos testes de validades dos instrumentos, houve a validação dos instrumentos, apesar do teste de Sargan declinar a validação dos mesmos. No entanto, isso não gera uma grande preocupação, pois o teste de Sargan não utiliza a matriz de variâncias e covariâncias robustas, não leva em consideração a possível presença de heterocedasticidade e autocorrelação, resultando possíveis problemas na inferência. Em suma, o modelo em questão apresentou evidencias significativas que é confiável.

A grande vantagem da estimação GMM a 1 passo é que os erros padrão não são enviesados, como é o caso do GMM a 2 passos que necessita da existência de correção para não haver a subestimação. Essa correção é conhecida como Correção de Windmeijer, na qual permite inflacionar os erros padrão para corrigir o enviesamento negativo. A grande vantagem do GMM a 2 passos é que o mesmo é assintoticamente mais eficiente, e a diferença em termos de precisão não é muito grande.

O próximo modelo a ser estimado é o GMM a 2 passos, com variáveis endógenas e com a correção de Windmeijer. O output do modelo pode ser visualizado no anexo 11. De acordo com o output, o alfa é maior que 1, e há indícios de violação na condição de estabilidade. Os testes de correlação nas primeiras diferenças dos erros confirmam os pressupostos. Já em relação ao teste de validades dos instrumentos, houve a validação de todos os testes, exceto o Sargan por possíveis motivos já mencionados anteriormente. Há evidencias de que o modelo possa ser considerado confiável, apesar do alfa ser maior do que 1, no qual se suspeita de que possa ter ocorrido enviesamento na estimação.

Posteriormente, correu-se alguns modelos usando o estimador Blundell e Bond. O primeiro modelo foi GMM a 1 passo, com desvios-padrão robustos, variáveis prédeterminadas. O output pode ser visualizado no anexo 12. De acordo com o output, o alfa é igual a 1,12 e seu intervalo de confiança está entre 1.02 a 1,21. Com isso, há fortes indícios que que há a violação na condição de estabilidade. Em relação aos testes de autocorrelação nos erros e os testes de validação dos instrumentos, não houve grandes problemas e os pressupostos teóricos foram confirmados. No entanto, devido ao alfa ser maior que 1 e por causa do intervalo de confiança, há evidencias de que o modelo não é muito confiável.

O próximo modelo a ser estimado é o GMM a 1 passo, com desvios-padrão robustos, variáveis endógenas, o output do modelo pode ser visualizado no anexo 13. O alfa é aproximadamente igual a 1, que pode resultar no problema de persistência na estimação na variável dependente. Em relação aos testes de autocorrelação e aos testes referentes a validação dos instrumentos, ambos confirmam os pressupostos teóricos. Em suma, há evidencias que o modelo possa ser confiável para estimação.

O último modelo a ser estimado é o GMM a 2 passos, variáveis endógenas, com correção de Windmeijer, o output pode ser visualizado no anexo 14. De acordo com o output, o alfa é igual a 0.87, e é significativo. Em relação aos testes de autocorrelação e aos testes de validação dos instrumentos, houve a correlação de primeira ordem nas primeiras diferenças nos erros, e houve a validação dos instrumentos nos testes apropriados. Portanto, há evidencias de que é um modelo confiável para estimação.

Depois de correr-se uma série de modelos, agora é necessário propor um estimador mais adequado para estimar a equação proposta no presente trabalho. A comparação das estimativas dos modelos dinâmicos encontra-se na figura abaixo.

Variable	AB1_EE	AB1_PD	AB1_End2	AB2_End2	BB1_End1	BB2_End2	BB1_PD
rgdppc L1.	1.1925758***	1.069223***	.94757663***	1.0348254***	.9786921***	.86677097***	1.1202638***
ropen							
	02095962	00509532	00033064	.00113132	03928372	03787644	03440327**
L1.	.07309281	.03956486***	.03861598***	.03843719***	.04276915	.04177646	.02591964*
consu							
	.10505251	18200834	20552116	12746788	1483471	.09662345	.08089915*
L1.	51792221	05476967	05343523	03491963	.14215313	182802	03649495
inv							
	.04313725	11259783	10832359	15692707	.11189572	03592999	.15124324***
L1.	-1.1688522	13220587**	10335977*	10238431	01405997	.04178616	12312895**
y2005	1.2367098	.75140244***	.78691467**	.3411193	.55237081*	.49886315	.54481263**
y2006	1.5523484	.51887511*	.67639857**	.39356891	.17357908	.57690367	.15292836
y2007	2.1198546	.58383973	.8404589**	.58751336*	.25411256	.7578544	.09522521
_cons					7744752	9.1024442	-5.3477496

legend: * p<.1; ** p<.05; *** p<.01

Figura 2 - Comparativo dos estimadores modelos dinâmicos

Os modelos mais competitivos são os estimadores: Arellano e Bond GMM a 1 passo, com desvios padrão robustos, com variáveis endógenas; Blundell e Bond GMM a 2 passos, variáveis endógenas, com correção de Windmeijer. O principal critério para a escolha dos estimadores é a validação da condição de estabilidade, isto é, $|\alpha| < 1$.

Entre os modelos competitivos, propomos o estimador Arellano e Bond GMM a 1 passo, com desvios padrão robustos, com variáveis endógenas para estimar a equação. O primeiro motivo é que o alfa (0.94) está entre os estimadores FE (0.89) e Pooled OLS (1.03), confirmando os pressupostos teóricos. E o segundo motivo, é que o estimador proposto apresenta mais regressores significativos do que o outro estimador em questão. É importante salientar que devido o alfa ser aproximadamente 1, pode haver o problema de persistência na estimação da variável dependente.

Anexos

Anexo 1 – Referência das variáveis da base de dados

rgdppc	PIB real per capita do País, relativamente ao PIB dos Estados Unidos da América (EUA=100) em percentagem.
Ropen	Grau de abertura real do País (Importação + Export Real / GDP) em percentagem.
Inv	Peso do investimento no PIB real per capita do País em percentagem.
Consu	Peso do consumo no PIB real per capita do País.

Anexo 2 – Descrição das variáveis

Contains	data		
obs:		1,116	
vars:		12	
size:		18,972	
		storage	display
variable	name	type	format
year		int	%8.0g
rgdppc		int	%8.0g
ropen		int	%8.0g
consu		int	% B.Og
inv		byte	% B.Og
country		int	%8.0g
y2002		byte	%8.0g
y2003		byte	%8.0g
y2004		byte	%8.0g
y2005		byte	%8.0g
y2006		byte	%8.0g
y2007		byte	%8.0g

Anexo 3 – Resumo das variáveis em painel

Variable	₽	Mean	Std. Dev.	Min	Max	0b	ser	vations
rgdppc	overall	29.10753	31.62498	1	230	N	=	1116
	between		31.34656	1	172.1667	n	=	186
	within		4.683878	-33.05914	97.94086	T	=	6
ropen	overall	95.99014	52.56541	2	457	N	=	1116
-	between		51.58913	2	421.5	n	=	186
	within		10.65916	31.49014	182.3235	Т	=	6
consu	overall	63.38082	19.81839	11	126	N	=	1116
	between		19.36011	13.83333	109.5	n	=	186
	within		4.431222	39.04749	91.54749	T	=	6
inv	overall	22.84498	13.86554	-7	94	N	=	1116
	between		13.49249	3	81.5	n	=	186
	within		3.319981	3.844982	49.34498	Т	=	6

Anexo 4 – Estimação por POLS com erros padrão robustos por cluster

(Std. Err. adjusted for 186 clusters in country)

rgdppc	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
rgdppc						
L1.	1.032705	.0156913	65.81	0.000	1.001748	1.063662
ropen						
	0325055	.010653	-3.05	0.003	0535224	0114885
L1.	.0360512	.0102918	3.50	0.001	.0157469	.0563556
inv						
	.1322667	.0483754	2.73	0.007	.0368283	.227705
L1.	1647939	.0527477	-3.12	0.002	2688583	0607295
consu						
	.0505263	.0350296	1.44	0.151	0185825	.1196351
L1.	0821855	.0358589	-2.29	0.023	1529304	0114407
y2002	0	(omitted)				
y2003	5474251	.2099503	-2.61	0.010	9616298	1332205
y2004	3419669	.2364359	-1.45	0.150	8084241	.1244904
y2005	.2046528	.320442	0.64	0.524	4275376	.8368433
y2006	0501219	.2569837	-0.20	0.846	5571173	.4568736
y2007	0	(omitted)				
_cons	2.515959	.5519813	4.56	0.000	1.426971	3.604946

Anexo 5 – Estimação por FE com erros padrão robustos por cluster

Fixed-effects (within) regression Group variable: country	Number of obs = Number of groups =	930 186
R-sq: within = 0.7807 between = 0.9955 overall = 0.9918	Obs per group: min = avg = max =	5 5.0 5
corr(u_i, Xb) = 0.8761	F(11,185) = Prob > F =	78.55 0.0000

(Std. Err. adjusted for 186 clusters in country)

			-			_
rgdppc	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
rgdppc						
L1.	.8948746	.0950099	9.42	0.000	.7074323	1.082317
ropen						
	0209607	.0122351	-1.71	0.088	0450989	.0031775
L1.	.0386304	.0122907	3.14	0.002	.0143826	.0628783
inv						
	.0732007	.0331498	2.21	0.028	.0078005	.1386008
L1.	0859555	.0412108	-2.09	0.038	1672589	004652
consu						
	.0432753	.0346251	1.25	0.213	0250355	.1115861
L1.	0685793	.0290442	-2.36	0.019	1258797	011279
y2002	0	(omitted)				
y2003	8232721	.2842192	-2.90	0.004	-1.384	2625447
y2004	5954793	.1916135	-3.11	0.002	9735079	2174507
y2005	0185044	.2918936	-0.06	0.950	5943725	.5573638
y2006	1282606	.2281741	-0.56	0.575	5784184	.3218972
y2007	0	(omitted)				
_cons	4.446356	3.182342	1.40	0.164	-1.83199	10.7247
sigma_u	4.5597474					
sigma_e	2.1735359					
rho	.81484791	(fraction	of varia:	nce due t	oui)	

Anexo 6 – Estimação por FD com erros padrão robustos por cluster

Linear regression

Number of obs = 744 F(11, 185) = 20.38 Prob > F = 0.0000 R-squared = 0.3237 Root MSE = 2.8279

(Std. Err. adjusted for 186 clusters in country)

D.rgdppc	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
rgdppc LD.	. 5253599	.1819166	2.89	0.004	.1664622	.8842576
ropen D1.	0185283	.0109249	-1.70	0.092	0400817	.0030251
LD.	.0263817	.013787	1.91	0.057	0008182	.0535817
inv D1. LD.	.097653 4 06 4 8567	.0420229	2.32 -1.29	0.021 0.199	.0147477 164069	.1805591 .03 4 3555
consu D1. LD.	.0567021 060902	.0429524 .0277403	1.32	0.188 0.029	0280374 11563	.1414416
y2002 D1.	0	(omitted)				
y2003 D1.	0	(omitted)				
y2004 D1.	.3970858	.1873577	2.12	0.035	.0274533	.7667182
у2005 D1.	1.226685	.3262281	3.76	0.000	.5830793	1.870291
У2006 D1.	1.577779	.4056014	3.89	0.000	.7775799	2.377978
y2007 D1.	2.084106	. 4870968	4.28	0.000	1.123128	3.045085

Anexo 7 – Comparativo dos estimadores

Variable	POLS1	FE1	FD1	Variable	POLS1	FE1	FD1
rgdppc							
L1.	1.0327047***	.89487458***		y2002	(omitted)	(omitted)	
LD.			.52535987***	y2003	54742513***	82327214***	
				y2004	34196685	59547929***	
ropen				y2005	.20465283	01850436	
	03250546***	02096072*		y2006	05012187	12826057	
L1.	.03605121***	.03863045***		y2007	(omitted)	(omitted)	
D1.			0185283*				
LD.			.02638173*	y2002			
				D1.			(omitted)
inv							
	.13226666***	.07320069**		y2003			1144-41
L1.	16479388***	08595545**		D1.			(omitted)
D1.			.0976534**	y2004			
LD.			06485674	D1.			.39708575**
consu				y2005			
	.05052631	.04327528		D1.			1.226685***
L1.	08218552**	06857935**					
D1.			.05670208	y2006			
LD.			06090204**	D1.			1.5777788***
l	I						1.0777700
				y2007			
				D1.			2.0841063***
				_cons	2.5159588***	4.4463563	

legend: * p<.1; ** p<.05; *** p<.01

Anexo 8 – Arellano e Bond, GMM a 1 passo, com desvios-padrão robustos, com variáveis estritamente exógenas

. xtabond2 rgdppc l.rgdppc ropen l.ropen consu l.consu inv l.inv y2005- y2007, iv(ropen consu inv y2005- y2007) gmm(l.rgdppc) noleveleg robust Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.

Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate robust weighting matrix for Hansen test.

Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, one-step difference GMM

Group variable: country	Number of obs =	744
Time variable : year	Number of groups =	186
Number of instruments = 16	Obs per group: min =	4
Wald chi2(10) = 265.11	avg =	4.00
Prob > chi2 = 0.000	max =	4

rgdppc	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
rgdppc	1.192576	.1696095	7.03	0.000	.8601473	1.525004
ropen						
	0209596	.04202	-0.50	0.618	1033173	.0613981
L1.	.0730928	.1802904	0.41	0.685	2802699	.4264555
consu						
	.1050525	.1199526	0.88	0.381	1300503	.3401553
L1.	5179222	.8811822	-0.59	0.557	-2.245008	1.209163
inv						
,	.0431372	.3863547	0.11	0.911	7141041	.8003786
L1.	-1.168852	1.650755	-0.71	0.479	-4.404273	2.066569
y2005	1.23671	2.09313	0.59	0.555	-2.865749	5.339169
y2006	1.552348	3.189871	0.49	0.627	-4.699685	7.804382
y2007	2.119855	4.580981	0.46	0.644	-6.858702	11.09841

Instruments for first differences equation

Standard

D.(ropen consu inv y2005 y2006 y2007)

GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/5).L.rgdppc

```
Arellano-Bond test for AR(1) in first differences: z = -1.82 Pr > z = 0.069 Arellano-Bond test for AR(2) in first differences: z = -1.63 Pr > z = 0.102
```

 ${\tt Difference-in-Hansen\ tests\ of\ exogeneity\ of\ instrument\ subsets:}$

iv(ropen consu inv y2005 y2006 y2007) Hansen test excluding group: chi2(0) = 0.00 Prob > chi2 = 0.00Difference (null H = exogenous): chi2(6) = 4.84 Prob > chi2 = 0.564

Sargan test of overid. restrictions: chi2(6) = 14.33 Prob > chi2 = 0.026 (Not robust, but not weakened by many instruments.)

Hansen test of overid. restrictions: chi2(6) = 4.84 Prob > chi2 = 0.564 (Robust, but weakened by many instruments.)

Anexo 9 – Arellano e Bond, GMM a 1 passo, com desvios padrão robustos, com variáveis prédeterminadas

. xtabond2 rgdppc 1.rgdppc ropen 1.ropen consu 1.consu inv 1.inv y2005- y2007, iv(y2005- y2007) gmm(1.rgdppc) gmm(ropen consu inv) noleveleq rob

Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.

Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate robust weighting matrix for Hansen test.

 ${\tt Difference-in-Sargan/Hansen\ statistics\ may\ be\ negative.}$

Dynamic panel-data estimation, one-step difference GMM

Group variable: country	Number of obs	=	744
Time variable : year	Number of groups	=	186
Number of instruments = 55	Obs per group: min	=	4
Wald chi2(10) = 672.07	avg	=	4.00
Prob > chi2 = 0.000	max	=	4

rgdppc	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	. Interval]
rgdppc L1.	1.069223	.0731751	14.61	0.000	.9258025	1.212644
ropen						
	0050953	.0586027	-0.09	0.931	1199544	.1097638
L1.	.0395649	.0110339	3.59	0.000	.0179388	.0611909
consu L1.	1820083 0547697	.2187277 .0455054	-0.83 -1.20	0.405 0.229	6107067 1439586	.24669 .0344193
inv						
	1125978	.2056279	-0.55	0.584	5156212	.2904255
L1.	1322059	.0599356	-2.21	0.027	2496775	0147342
y2005	.7514024	.2876111	2.61	0.009	.1876951	1.31511
у2006	.5188751	.3087781	1.68	0.093	0863188	1.124069
y2007	.5838397	.3664584	1.59	0.111	1344055	1.302085

Instruments for first differences equation

D.(y2005 y2006 y2007)

GMM-type (missing=0, separate instruments for each period unless collapsed)

L(1/5).(ropen consu inv)

L(1/5).L.rgdppc

Arellano-Bond test for AR(1) in first differences: z = -2.21 Pr > z = 0.027Arellano-Bond test for AR(2) in first differences: z = -0.73 Pr > z = 0.467

Sargan test of overid. restrictions: chi2(45) = 112.05 Prob > chi2 = 0.000

(Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(45) = 68= 68.64 Prob > chi2 = 0.013 (Robust, but weakened by many instruments.)

Difference-in-Hansen tests of exogeneity of instrument subsets:

gmm(L.rgdppc, lag(1 .))

Hansen test excluding group: chi2(35) = 43.50 Prob > chi2 = 0.153
Difference (null H = exogenous): chi2(10) = 25.15 Prob > chi2 = 0.005 gmm(ropen consu inv, lag(1 .))

Hansen test excluding group: chi2(3) = 4.10 Prob > chi2 = 0.251
Difference (null H = exogenous): chi2(42) = 64.54 Prob > chi2 = 0.014 Hansen test excluding group: iv(y2005 y2006 y2007)

Hansen test excluding group: chi2(42) = 66.72 Prob > chi2 = 0.009
Difference (null H = exogenous): chi2(3) = 1.92 Prob > chi2 = 0.589

Anexo 10 - Arellano e Bond, GMM a 1 passo, com desvios padrão robustos, com variáveis endógenas

. xtabond2 rgdppc 1.rgdppc ropen 1.ropen consu 1.consu inv 1.inv y2005- y2007, iv(y2005- y2007) gmm(1.rgdppc, lag(3 .)) gmm(ropen consu inv) nol > eveleq robust

Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.

Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate robust weighting matrix for Hansen test. Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, one-step difference GMM

Group variable	: cou	ntry	Number of obs	=	744
Time variable	: yea	r	Number of groups	=	186
Number of inst	rumen	ts = 48	Obs per group: min	=	4
Wald chi2(10)	=	341.34	avg	=	4.00
Prob > chi2	=	0.000	max	=	4

rgdppc	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
rgdppc						
L1.	.9475766	.1199183	7.90	0.000	.7125411	1.182612
ropen						
	0003306	.0404556	-0.01	0.993	0796222	.0789609
L1.	.038616	.0103988	3.71	0.000	.0182348	.0589972
consu						
	2055212	.164828	-1.25	0.212	5285781	.1175357
L1.	0534352	.0371575	-1.44	0.150	1262626	.0193921
inv						
	1083236	.1288596	-0.84	0.401	3608837	.1442366
L1.	1033598	.0602468	-1.72	0.086	2214414	.0147218
y2005	.7869147	.3287742	2.39	0.017	.1425291	1.4313
y2006	.6763986	.338226	2.00	0.046	.0134878	1.339309
y2007	.8404589	.3941571	2.13	0.033	.0679252	1.612993

Instruments for first differences equation

Standard

D.(y2005 y2006 y2007)

GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/5).(ropen consu inv)

L(3/5).L.rgdppc

Arellano-Bond test for AR(1) in first differences: z=-2.23 Pr > z=0.025 Arellano-Bond test for AR(2) in first differences: z=-0.73 Pr > z=0.467

Sargan test of overid. restrictions: chi2(38) = 83.60 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.)

Hansen test of overid. restrictions: chi2(38) = 51.18 Prob > chi2 = 0.075

(Robust, but weakened by many instruments.)

Difference-in-Hansen tests of exogeneity of instrument subsets:

V(y2009 y2009 y2007)

Hansen test excluding group: chi2(35) = 47.95 Prob > chi2 = 0.071

Difference (null H = exogenous): chi2(3) = 3.23 Prob > chi2 = 0.357

Anexo 11 – Arellano e Bond, GMM a 2 passos, com variáveis endógenas e com a correção de Windmeijer

. xtabond2 rgdppc 1.rgdppc ropen 1.ropen consu 1.consu inv 1.inv y2005- y2007, iv(y2005- y2007) gmm(1.rgdppc, lag(3 .)) gmm(ropen consu inv) nol

Favoring space over speed. To switch, type or click on <u>mata: mata set matafavor speed, perm.</u>
Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate optimal weighting matrix for two-step estimation. ${\tt Difference-in-Sargan/Hansen\ statistics\ may\ be\ negative.}$

Dynamic panel-data estimation, two-step difference GMM

Group variable: country	Number of obs = 74
Time variable : year	Number of groups = 180
Number of instruments = 48	Obs per group: min =
Wald chi2(10) = 190.33	avg = 4.00
Prob > chi2 = 0.000	max =

rgdppc	Coef.	Corrected Std. Err.	z	P> Z	[95% Conf.	Interval]
rgdppc						
L1.	1.034825	.1150717	8.99	0.000	.809289	1.260362
ropen						
	.0011313	.0383801	0.03	0.976	0740922	.0763549
L1.	.0384372	.0115064	3.34	0.001	.015885	.0609894
consu						
	1274679	.1278338	-1.00	0.319	3780176	.1230818
L1.	0349196	.0282366	-1.24	0.216	0902624	.0204232
inv						
	1569271	.145056	-1.08	0.279	4412317	.1273775
L1.	1023843	.0636108	-1.61	0.107	2270591	.0222905
y2005	.3411193	.2142274	1.59	0.111	0787587	.7609973
y2006	.3935689	.242726	1.62	0.105	0821653	.8693031
y2007	.5875134	.3101262	1.89	0.058	0203229	1.19535

Instruments for first differences equation

Standard

D.(y2005 y2006 y2007)

GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/5).(ropen consu inv)

L(3/5).L.rgdppc

Arellano-Bond test for AR(1) in first differences: z=-2.26 Pr > z=0.024 Arellano-Bond test for AR(2) in first differences: z=-0.72 Pr > z=0.470

Sargan test of overid. restrictions: chi2(38) = 83.60 Prob > chi2 = 0.000

(Not robust, but not weakened by many instruments.)

Hansen test of overid. restrictions: chi2(38) = 51.18 Prob > chi2 = 0.075 (Robust, but weakened by many instruments.)

Difference-in-Hansen tests of exogeneity of instrument subsets: gmm(L.rgdppc, lag(3 .))

v(y2005 y2006 y2007) Hansen test excluding group: chi2(35) = 47.95 Prob > chi2 = 0.071 Difference (null H = exogenous): chi2(3) = 3.23 Prob > chi2 = 0.357

Anexo 12 – Blundell e Bond, GMM a 1 passo, com desvios-padrão robustos, variáveis prédeterminadas

. xtabond2 rgdppc 1.rgdppc ropen 1.ropen consu 1.consu inv 1.inv y2005- y2007, iv(y2005- y2007) gmm(1.rgdppc) gmm(ropen consu inv) robust Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.

Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate robust weighting matrix for Hansen test. Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, one-step system GMM

Group variable: country	Number of obs	=	930
Time variable : year	Number of groups	=	186
Number of instruments = 75	Obs per group: min	=	5
Wald chi2(10) = 3626.32	avg	=	5.00
Prob > chi2 = 0.000	max	=	5

rgdppc	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	. Interval]
rgdppc L1.	1.120264	.0467215	23.98	0.000	1.028691	1.211836
ropen						
	0344033	.0148004	-2.32	0.020	0634116	005395
L1.	.0259196	.0151756	1.71	0.088	0038239	.0556632
consu						
	.0808991	.0478894	1.69	0.091	0129624	.1747607
L1.	036495	.0329908	-1.11	0.269	1011557	.0281658
inv						
	.1512432	.0556194	2.72	0.007	.0422312	.2602552
L1.	1231289	.0565977	-2.18	0.030	2340584	0121995
	5440106	0101545	0.50	0.012	1170270	0702075
y2005	.5448126	.2181545	2.50	0.013	.1172378	.9723875
y2006	.1529284	.2108567	0.73	0.468	2603432	.5661999
y2007	.0952252	.2436766	0.39	0.696	3823722	.5728226
_cons	-5.34775	3.385301	-1.58	0.114	-11.98282	1.287318

Instruments for first differences equation

Standard

D. (y2005 y2006 y2007)

GMM-type (missing=0, separate instruments for each period unless collapsed)

L(1/5).(ropen consu inv)

L(1/5).L.rgdppc

Instruments for levels equation

Standard

y2005 y2006 y2007

cons

GMM-type (missing=0, separate instruments for each period unless collapsed) D. (ropen consu inv)

D.L.rgdppc

Arellano-Bond test for AR(1) in first differences: z=-2.34 Pr > z=0.019 Arellano-Bond test for AR(2) in first differences: z=-0.95 Pr > z=0.343

Sargan test of overid. restrictions: chi2(64) = 332.98 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.)

Hansen test of overid. restrictions: chi2(64) = 78.44 Prob > chi2 = 0.106 (Robust, but weakened by many instruments.)

Difference-in-Hansen tests of exogeneity of instrument subsets:

GMM instruments for levels

Hansen test excluding group: chi2(45) = 51.10 Prob > chi2 = 0.246 Difference (null H = exogenous): chi2(19) = 27.34 Prob > chi2 = 0.097 gmm(L.rgdppc, lag(1 .))

Hansen test excluding group: chi2(50) = 53.67 Prob > chi2 = 0.336 Difference (null H = exogenous): chi2(14) = 24.77 Prob > chi2 = 0.037 gmm(ropen consu inv, lag(1 .))

Hansen test excluding group: chi2(7) = 17.18 Prob > chi2 = 0.016
Difference (null H = exogenous): chi2(57) = 61.26 Prob > chi2 = 0.326

iv(y2005 y2006 y2007)

Hansen test excluding group: chi2(61) = 75.41 Prob > chi2 = 0.101
Difference (null H = exogenous): chi2(3) = 3.02 Prob > chi2 = 0.308

Anexo 13 – Blundell e Bond, GMM a 1 passo, com desvios-padrão robustos, variáveis endógenas

. xtabond2 rgdppc 1.rgdppc ropen 1.ropen consu 1.consu inv 1.inv y2005- y2007, iv(y2005- y2007) gmm(1.rgdppc, lag(5.)) gmm(ropen consu inv, lag > (3.)) robust

Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.

Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate robust weighting matrix for Hansen test.

 ${\tt Difference-in-Sargan/Hansen\ statistics\ may\ be\ negative.}$

Dynamic panel-data estimation, one-step system GMM

Group variable: country	Number of obs	=	930
Time variable : year	Number of groups	=	186
Number of instruments = 31	Obs per group: min	=	5
Wald chi2(10) = 1595.36	avg	=	5.00
Prob > chi2 = 0.000	max	=	5

rgdppc	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
rgdppc	.9786921	.0944808	10.36	0.000	.7935132	1.163871
ropen						
	0392837	.0749336	-0.52	0.600	1861509	.1075835
L1.	.0427692	.0747969	0.57	0.567	10383	.1893683
consu						
	1483471	.1545571	-0.96	0.337	4512735	.1545793
L1.	.1421531	.209496	0.68	0.497	2684514	.5527577
inv						
	.1118957	.2856491	0.39	0.695	4479662	.6717577
L1.	01406	.3087885	-0.05	0.964	6192743	.5911544
y2005	.5523708	.3243912	1.70	0.089	0834243	1.188166
y2006	.1735791	.3590741	0.48	0.629	5301933	.8773515
y2007	.2541126	.434098	0.59	0.558	5967038	1.104929
_cons	7744752	8.461625	-0.09	0.927	-17.35895	15.81
_						

Instruments for first differences equation

Standard

D.(y2005 y2006 y2007)

GMM-type (missing=0, separate instruments for each period unless collapsed)

L(3/5).(ropen consu inv)

L5.L.rgdppc

 ${\tt Instruments} \ {\tt for} \ {\tt levels} \ {\tt equation}$

Standard

y2005 y2006 y2007

_cons

GMM-type (missing=0, separate instruments for each period unless collapsed)

DL2.(ropen consu inv)

DL4.L.rgdppc

Arellano-Bond test for AR(1) in first differences: z = -2.08 Pr > z = 0.038 Arellano-Bond test for AR(2) in first differences: z = -0.55 Pr > z = 0.580

Sargan test of overid. restrictions: chi2(20) = 65.68 Prob > chi2 = 0.000

(Not robust, but not weakened by many instruments.)

Hansen test of overid. restrictions: chi2(20) = 20.46 Prob > chi2 = 0.430 (Robust, but weakened by many instruments.)

Difference-in-Hansen tests of exogeneity of instrument subsets:

GMM instruments for levels

Hansen test excluding group: chi2(11) = 8.77 Prob > chi2 = 0.643 Difference (null H = exogenous): chi2(9) = 11.69 Prob > chi2 = 0.232

iv(y2005 y2006 y2007)

Hansen test excluding group: chi2(17) = 16.59 Prob > chi2 = 0.482
Difference (null H = exogenous): chi2(3) = 3.86 Prob > chi2 = 0.276

Anexo 14 - Blundell e Bond, GMM a 2 passos, variáveis endógenas, com correção de Windmeijer

. xtabond2 rgdppc 1.rgdppc ropen 1.ropen consu 1.consu inv 1.inv y2005- y2007, iv(y2005- y2007) gmm(1.rgdppc, lag(5 .)) gmm(ropen consu inv, lag > (4 .)) twostep robust

Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.

Warning: Two-step estimated covariance matrix of moments is singular.

Using a generalized inverse to calculate optimal weighting matrix for two-step estimation. Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, two-step system GMM

Group variable: country	Number of obs = 930
Time variable : year	Number of groups = 186
Number of instruments = 19	Obs per group: min = 5
Wald chi2(10) = 422.02	avg = 5.00
Prob > chi2 = 0.000	max = 5

rgdppc	Coef.	Corrected Std. Err.	z	P> z	[95% Conf.	. Interval]
rgdppc	.866771	.2271064	3.82	0.000	.4216505	1.311891
ropen						
	0378764	.1703577	-0.22	0.824	3717714	.2960185
L1.	.0417765	.1801295	0.23	0.817	311271	.3948239
consu						
	.0966234	.2579396	0.37	0.708	408929	.6021758
L1.	182802	.2742528	-0.67	0.505	7203277	.3547237
inv						
	03593	.3275882	-0.11	0.913	6779912	.6061312
L1.	.0417862	.3361583	0.12	0.901	6170719	.7006442
y2005	.4988631	.3563529	1.40	0.162	1995756	1.197302
y2006	.5769037	.5196345	1.11	0.267	4415613	1.595369
y2007	.7578544	.6176191	1.23	0.220	4526567	1.968366
_cons	9.102444	11.29121	0.81	0.420	-13.02792	31.2328

Instruments for first differences equation

Standard

D.(y2005 y2006 y2007)

GMM-type (missing=0, separate instruments for each period unless collapsed)

L(4/5).(ropen consu inv)

L5.L.rgdppc
Instruments for levels equation Standard

y2005 y2006 y2007 cons

GMM-type (missing=0, separate instruments for each period unless collapsed)

DL3.(ropen consu inv)

DL4.L.rgdppc

Arellano-Bond test for AR(1) in first differences: z = -2.25 Pr > z = 0.024Arellano-Bond test for AR(2) in first differences: z = -0.60 Pr > z = 0.549

Sargan test of overid. restrictions: chi2(8) = 39.26 Prob > chi2 = 0.000

(Not robust, but not weakened by many instruments.)

Hansen test of overid. restrictions: chi2(8) = 9.

= 9.21 Prob > chi2 = 0.325 (Robust, but weakened by many instruments.)

Difference-in-Hansen tests of exogeneity of instrument subsets:

GMM instruments for levels

Hansen test excluding group: chi2(2) = 1.35 Prob > chi2 = 0.510
Difference (null H = exogenous): chi2(6) = 7.86 Prob > chi2 = 0.249

iv(y2005 y2006 y2007)

chi2(5) = 2.55 Prob > chi2 = 0.769 : chi2(3) = 6.66 Prob > chi2 = 0.084 Hansen test excluding group: Difference (null H = exogenous): chi2(3)

Anexo 15 – Comparativo das estimativas dos modelos dinâmicos

^{. **} Comparação de estimativas . estimates table AB* BB*, star(.1 .05 .01)

Variable	AB1_EE	AB1_PD	AB1_End2	AB2_End2	BB1_End1	BB2_End2	BB1_PD
rgdppc L1.	1.1925758***	1.069223***	.94757663***	1.0348254***	.9786921***	.86677097***	1.1202638***
ropen							
	02095962	00509532	00033064	.00113132	03928372	03787644	03440327**
L1.	.07309281	.03956486***	.03861598***	.03843719***	.04276915	.04177646	.02591964*
consu							
	.10505251	18200834	20552116	12746788	1483471	.09662345	.08089915*
L1.	51792221	05476967	05343523	03491963	.14215313	182802	03649495
inv							
	.04313725	11259783	10832359	15692707	.11189572	03592999	.15124324***
L1.	-1.1688522	13220587**	10335977*	10238431	01405997	.04178616	12312895**
y2005	1.2367098	.75140244***	.78691467**	.3411193	.55237081*	.49886315	.54481263**
y2006	1.5523484	.51887511*	.67639857**	.39356891	.17357908	.57690367	.15292836
y2007	2.1198546	.58383973	.8404589**	.58751336*	.25411256	.7578544	.09522521
_cons					7744752	9.1024442	-5.3477496

legend: * p<.1; ** p<.05; *** p<.01