```
In [2]:
```

```
import numpy as np
import pandas as pd
```

In [3]:

```
df = pd.DataFrame([[1.4, np.nan], [7.1, -4.5],
....: [np.nan, np.nan], [0.75, -1.3]],
....: index=['a', 'b', 'c', 'd'],
....: columns=['one', 'two'])
df
```

Out[3]:

```
        one
        two

        a
        1.40
        NaN

        b
        7.10
        -4.5

        c
        NaN
        NaN
```

d 0.75 -1.3

In [4]:

```
df.sum() # df.sum(axis=0) # df.sum(axis='rows')
```

Out[4]:

one 9.25 two -5.80 dtype: float64

In [10]:

```
df.sum(axis=1) #df.sum(axis='columns')
```

Out[10]:

```
a 1.40
b 2.60
c 0.00
d -0.55
dtype: float64
```

```
In [13]:
df
Out[13]:
    one two
 a 1.40 NaN
 b 7.10 -4.5
 c NaN NaN
 d 0.75 -1.3
In [11]:
df.mean() # NaN values are excluded
Out[11]:
one
       3.083333
two
      -2.900000
dtype: float64
In [12]:
df.mean(axis=1)# NaN values are excluded
Out[12]:
     1.400
а
     1.300
b
c
       NaN
    -0.275
dtype: float64
In [14]:
df.mean(axis=1, skipna=False)#
Out[14]:
       NaN
а
b
     1.300
       NaN
C
```

d -0.275
dtype: float64

```
In [15]:
```

df

Out[15]:

	one	two	
а	1.40	NaN	

- **b** 7.10 -4.5
- c NaN NaN
- **d** 0.75 -1.3
- In [16]:

```
df.idxmin()
```

Out[16]:

one d two b

dtype: object

In [18]:

df

Out[18]:

one	LVV	U

- **a** 1.40 NaN
- **b** 7.10 -4.5
- c NaN NaN
- **d** 0.75 -1.3

In [20]:

```
df.cumsum(axis=0) #
```

Out[20]:

one	two
1.40	NaN
8.50	-4.5
	1.40

d 9.25 -5.8

c NaN NaN

In [21]:

```
df.cumsum(axis=0, skipna=False) #
```

Out[21]:

	one	two
а	1.4	NaN
b	8.5	NaN

- c NaN NaN
- d NaN NaN

In [22]:

```
df.cumsum(axis=1) #
```

Out[22]:

	one	two
а	1.40	NaN
b	7.10	2.60
С	NaN	NaN
d	0.75	-0.55

In [23]:

df.describe()

Out[23]:

	one	two
count	3.000000	2.000000
mean	3.083333	-2.900000
std	3.493685	2.262742
min	0.750000	-4.500000
25%	1.075000	-3.700000
50%	1.400000	-2.900000
75%	4.250000	-2.100000
max	7.100000	-1.300000

```
In [24]:
obj = pd.Series(['a', 'a', 'b', 'c'] * 4)
obj
Out[24]:
0
      а
1
      а
2
      b
3
      c
4
      а
5
      а
6
      b
7
      C
8
9
      а
10
      b
11
      c
12
      а
13
      а
14
15
      C
dtype: object
In [25]:
obj.describe() #unique,freq
Out[25]:
count
          16
unique
           3
top
           а
freq
dtype: object
In [ ]:
```

```
In [26]:
```

pip install pandas-datareader

```
Collecting pandas-datareaderNote: you may need to restart the kernel to u
se updated packages.
[notice] A new release of pip is available: 23.0.1 -> 23.1.2
 Downloading pandas_datareader-0.10.0-py3-none-any.whl (109 kB)
    ----- 109.5/109.5 kB 3.1 MB/s eta
0:00:00
Collecting lxml
 Downloading lxml-4.9.2-cp39-cp39-win amd64.whl (3.9 MB)
    ----- 3.9/3.9 MB 13.8 MB/s eta 0:
00:00
Collecting requests>=2.19.0
 Downloading requests-2.31.0-py3-none-any.whl (62 kB)
    ----- 62.6/62.6 kB ? eta 0:00:00
Requirement already satisfied: pandas>=0.23 in c:\users\mona adlakha\appd
ata\local\programs\python\python39\lib\site-packages (from pandas-datarea
der) (1.4.1)
Requirement already satisfied: python-dateutil>=2.8.1 in c:\users\mona ad
lakha\appdata\local\programs\python\python39\lib\site-packages (from pand
as>=0.23->pandas-datareader) (2.8.2)
Requirement already satisfied: numpy>=1.18.5 in c:\users\mona adlakha\app
data\local\programs\python\python39\lib\site-packages (from pandas>=0.23-
>pandas-datareader) (1.22.2)
Requirement already satisfied: pytz>=2020.1 in c:\users\mona adlakha\appd
ata\local\programs\python\python39\lib\site-packages (from pandas>=0.23->
pandas-datareader) (2021.3)
Collecting urllib3<3,>=1.21.1
 Downloading urllib3-2.0.2-py3-none-any.whl (123 kB)
    ----- 123.2/123.2 kB ? eta 0:00:0
0
Collecting charset-normalizer<4,>=2
 Downloading charset normalizer-3.1.0-cp39-cp39-win amd64.whl (97 kB)
    ----- 97.1/97.1 kB 5.8 MB/s eta
0:00:00
Collecting idna<4,>=2.5
 Downloading idna-3.4-py3-none-any.whl (61 kB)
    ----- 61.5/61.5 kB ? eta 0:00:00
Collecting certifi>=2017.4.17
 Downloading certifi-2023.5.7-py3-none-any.whl (156 kB)
    ----- 157.0/157.0 kB 9.2 MB/s eta
0:00:00
Requirement already satisfied: six>=1.5 in c:\users\mona adlakha\appdata
\local\programs\python\python39\lib\site-packages (from python-dateutil>=
2.8.1->pandas>=0.23->pandas-datareader) (1.16.0)
Installing collected packages: urllib3, lxml, idna, charset-normalizer, c
ertifi, requests, pandas-datareader
Successfully installed certifi-2023.5.7 charset-normalizer-3.1.0 idna-3.4
lxml-4.9.2 pandas-datareader-0.10.0 requests-2.31.0 urllib3-2.0.2
[notice] To update, run: python.exe -m pip install --upgrade pip
```

Pandas - used to organize and format complex data in table structures called DataFrames.

Pandas-datareader - used to access public financial data from the Internet and import it into Python as a DataFrame.

```
In [27]:
```

```
import pandas_datareader.data as web
```

```
In [32]:
```

```
''' all_data = {ticker: web.get_data_yahoo(ticker)
for ticker in ['AAPL', 'IBM', 'MSFT', 'GOOG']} '''
```

Out[32]:

```
" all_data = {ticker: web.get_data_yahoo(ticker)\nfor ticker in ['AAPL',
'IBM', 'MSFT', 'GOOG']} "
```

It's possible by the time you are reading this that Yahoo! Finance no longer exists since Yahoo! was acquired by Verizon in 2017.

Refer to the pandas-datareader documentation online for the latest functionality.

Unique Values, Value Counts, and Membership

```
In [53]:
```

```
obj = pd.Series(['c', 'a', 'd', 'a', 'a', 'b', 'b', 'c', 'c'])
obj
```

Out[53]:

```
0 c
```

4 a

5 b

6 b 7 c

7 с 8 с

dtype: object

In [54]:

```
uniques = obj.unique() # values returned are not in sorted order
uniques
```

Out[54]:

```
array(['c', 'a', 'd', 'b'], dtype=object)
```

¹ a

² d

```
In [55]:
# these values can be sortedusing sort()
uniques.sort()
In [56]:
uniques
Out[56]:
array(['a', 'b', 'c', 'd'], dtype=object)
value_counts() computes a Series containing value frequencies
In [ ]:
In [39]:
obj.value_counts()
Out[39]:
c
     3
     3
а
     2
     1
dtype: int64
The Series is sorted by value in descending order (of value count) as a convenience.
value_counts is also available as a top-level pandas method that can be used with any
array or
sequence
In [57]:
obj.values
Out[57]:
array(['c', 'a', 'd', 'a', 'b', 'b', 'c', 'c'], dtype=object)
In [65]:
pd.value_counts(obj.values, sort=False) # defalut is sort=True
Out[65]:
     3
C
а
     3
     1
d
     2
dtype: int64
```

```
isin()
```

- performs a vectorized set membership check and can be useful in filtering a dataset down to a subset of values in a Series or column in a DataFrame

```
In [45]:
```

```
obj
Out[45]:
0
     c
1
     а
2
     d
3
     а
4
     а
5
     b
6
     b
7
     c
8
dtype: object
In [66]:
mask = obj.isin(['b', 'c'])
mask
Out[66]:
0
      True
1
     False
2
     False
3
     False
4
     False
5
      True
6
      True
7
      True
8
      True
dtype: bool
In [47]:
obj[mask]
Out[47]:
     C
5
     b
6
     b
7
     C
     C
dtype: object
Index.get_indexer method
- gives you an index array from an array of possibly non-distinct values
```

into another array of distinct values

```
In [48]:
to_match = pd.Series(['c', 'a', 'b', 'b', 'c', 'a'])
In [49]:
to_match
Out[49]:
0
     C
1
     а
2
     b
3
     b
4
     C
5
     а
dtype: object
In [50]:
unique_vals = pd.Series(['c', 'b', 'a'])
In [ ]:
In [51]:
pd.Index(unique_vals).get_indexer(to_match)
Out[51]:
array([0, 2, 1, 1, 0, 2], dtype=int64)
In [68]:
pd.Index(to match).get indexer(unique vals) # incorrect usage
InvalidIndexError
                                           Traceback (most recent call las
t)
C:\Users\MONAAD~1\AppData\Local\Temp/ipykernel_18556/2415082616.py in <mo</pre>
dule>
----> 1 pd.Index(to_match).get_indexer(unique_vals) # incorrect usage
~\AppData\Local\Programs\Python\Python39\lib\site-packages\pandas\core\in
dexes\base.py in get_indexer(self, target, method, limit, tolerance)
   3719
   3720
                if not self._index_as_unique:
-> 3721
                     raise InvalidIndexError(self._requires_unique_msg)
   3722
   3723
                if len(target) == 0:
InvalidIndexError: Reindexing only valid with uniquely valued Index objec
ts
```

Table 5-9. Unique, value counts, and set membership methods

Method	Description
isin	Compute boolean array indicating whether each Series value is contained in the passed sequence of values
match	Compute integer indices for each value in an array into another array of distinct values; helpful for data alignment and join-type operations
unique	Compute array of unique values in a Series, returned in the order observed
value_counts	Return a Series containing unique values as its index and frequencies as its values, ordered count in descending order

to compute a histogram on multiple related columns in a DataFrame

In [52]:

```
data = pd.DataFrame({'Qu1': [1, 3, 4, 3, 4],
....: 'Qu2': [2, 3, 1, 2, 3],
....: 'Qu3': [1, 5, 2, 4, 4]})
data
```

Out[52]:

	Qu1	Qu2	Qu3
0	1	2	1
1	3	3	5
2	4	1	2
3	3	2	4
4	4	3	4

In [70]:

```
#Passing pandas.value_counts to this DataFrame's apply function gives:
result = data.apply(pd.value_counts).fillna(0)
result
```

Out[70]:

	Qu1	Qu2	Qu3
1	1.0	1.0	1.0
2	0.0	2.0	1.0
3	2.0	2.0	0.0
4	2.0	0.0	2.0
5	0.0	0.0	1.0