SM-4331 Exercise 3

1. Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathrm{N}(\mu, \sigma^2)$. Prove that the sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$ is distributed according to $\bar{X} \sim \mathrm{N}(\mu, \sigma^2/n)$. Hint: Find the expectation and variance of \bar{X} , and use the linearity property of normal distributions.

Solution:

$$E(\bar{X}) = E\left(\frac{1}{n}\sum_{i=1}^{n} X_i\right) = \frac{1}{n}\sum_{i=1}^{n} E(X_i)$$
$$= \frac{1}{n}\sum_{i=1}^{n} \mu = \mu$$

$$\operatorname{Var}(\bar{X}) = \operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{Var}(X_{i})$$
$$= \frac{1}{n^{2}}\sum_{i=1}^{n}\sigma^{2} = \sigma^{2}/n$$

By the linearity property of normal distributions, \bar{X} is normal.

- 2. Suppose that we plan to take a random sample of size n from a normal distribution with mean μ and standard deviation $\sigma = 2$.
 - (a) Suppose $\mu = 4$ and n = 20.
 - i. What is the probability that the mean \bar{X} of the sample is greater than 5?

Solution:
$$\bar{X} \sim N(4, 2^2/20)$$
. Then
$$P(\bar{X} > 5) = P\left(\frac{\bar{X} - 4}{2/\sqrt{20}} > \frac{5 - 4}{2/\sqrt{20}}\right)$$
$$= P(Z > 2.236)$$
$$= 1 - 0.98732$$
$$= 0.01268$$

ii. What is the probability that \bar{X} is smaller than 3?

Solution: $\bar{X} \sim N(4, 2^2/20)$. Then

$$P(\bar{X} < 3) = P\left(\frac{\bar{X} - 4}{2/\sqrt{20}} < \frac{3 - 4}{2/\sqrt{20}}\right)$$
$$= P(Z < -2.236)$$
$$= P(Z > 2.236)$$
$$= 0.01268$$

iii. What $P(|\bar{X} - \mu| \le 1)$ in this case?

Solution: $\bar{X} - \mu \sim N(0, 2^2/20)$. Then

$$\begin{split} \mathrm{P}(|\bar{X} - \mu| < 1) &= \mathrm{P}(-1 < \bar{X} - \mu < 1) \\ &= \mathrm{P}\left(\frac{-1}{2/\sqrt{20}} < \frac{\bar{X} - \mu}{2/\sqrt{20}} < \frac{1}{2/\sqrt{20}}\right) \\ &= \mathrm{P}(-2.236 < Z < 2.236) \\ &= 1 - 2\,\mathrm{P}(Z < -2.236) \\ &= 0.97464 \end{split}$$

(b) How large should n be in order that $P(|\bar{X} - \mu| \le 0.5) \ge 0.95$ for every possibly value of μ ?

Solution: $\bar{X} - \mu \sim N(0, 2^2/n)$. Then

$$P(|\bar{X} - \mu| < 0.5) = P\left(|Z| < \frac{0.5}{2/\sqrt{n}}\right) \ge 0.95$$

$$\Rightarrow 2\Phi\left(\frac{0.5}{2/\sqrt{n}}\right) - 1 \ge 0.95$$

$$\frac{0.5}{2/\sqrt{n}} \ge \Phi^{-1}(0.975) = 1.96$$

$$n \ge (4 \times 1.96)^2 = 61.46$$

So n should be 62 or more.

(c) It is claimed that the true value of μ is 5 in a population. A random sample of size n=100 is collected from this population, and the mean for this sample is $\bar{X}=5.8$. Based on the result in (b), what would you conclude from this value of \bar{X} ?

Solution: Here, $\bar{X} - \mu \sim N(0, 2^2/100)$, and a 95% confidence interval based

on the observed $\bar{X} = 5.8$ is

$$5.8 \pm 1.96 \cdot 2/10 = (5.408, 6.192),$$

which does not include $\mu = 5$. However from (b), we know that $P(|\bar{X} - \mu| \le 0.5)$ is 95% or more if $n \ge 62$. Since we collected a sample of n = 100, then it stands to reason that this particular sample is an anomaly (one of the 5% of the times that it is not within an error range of 0.5).

3. (a) If Z is a random variable with a standard normal distribution, what is $P(Z^2 < 3.841)$?

Solution: Using standard normal distribution,

$$P(Z^2 < 3.841) = P(|Z| < \sqrt{3.841} = 1.9598)$$

= $2\Phi(1.9598) - 1 = 0.95$.

Alternatively, we know that $Z^2 \equiv \chi_1^2$, so

$$P(Z^2 < 3.841) = P(\chi_1^2 < 3.841) = 0.95.$$

(b) Suppose that X_1 and X_2 are independent N(0,4) random variables. Compute $\mathrm{P}(X_1^2 < 36.84 - X_2^2).$

Solution: Since $X_i \stackrel{\text{iid}}{\sim} N(0,4)$, then $X_i^2/4 \stackrel{\text{iid}}{\sim} \chi_1^2$.

$$P(X_1^2 < 36.84 - X_2^2) = P\left(\frac{X_1^2}{4} + \frac{X_2^2}{4} < 36.84/4 = 9.21\right)$$

= $P\left(\chi_2^2 < 9.21\right) = 0.99.$

(c) Suppose that $X_1, X_2, X_3 \stackrel{\text{iid}}{\sim} \text{N}(0,1)$, while Y independently follows a χ_5^2 distribution. Compute $P(X_1^2 + X_2^2 < 7.236Y - X_3^2)$.

Solution: Since $X_i \stackrel{\text{iid}}{\sim} N(0,1)$, then $X_i^2 \stackrel{\text{iid}}{\sim} \chi_1^2$.

$$P(X_1^2 + X_2^2 < 7.236Y - X_3^2) = P\left(\frac{X_1^2 + X_2^2 + X_3^2}{Y} < 7.236\right)$$
$$= P\left(\frac{\chi_3^2/3}{\chi_5^2/5} < 7.236 \times 5/3 = 12.060\right)$$
$$= P(F_{3,5} < 12.060) = 0.99.$$

- 4. Let X_i , i = 1, 2, 3 be independent with $N(i, i^2)$ distributions. For each of the following situations, use the X_i s to construct a statistic with the indicated distribution:
 - (a) χ^2 -distribution with 3 degrees of freedom;

Solution:
$$(X_i - i)/i \stackrel{\text{iid}}{\sim} N(0, 1)$$
, thus $Y = \sum_{i=1}^{3} (X_i - i)^2/i^2 \sim \chi_3^2$.

(b) t-distribution with 2 degrees of freedom; and

Solution: Let
$$Z = (X_1 - 1) \sim N(0, 1)$$
, and $Y = \sum_{i=2}^{3} (X_i - i)^2 / i^2 \sim \chi_2^2$. Then $Z/\sqrt{Y/2} \sim t_2$.

(c) F-distribution with 1 and 2 degrees of freedom.

Solution: Let
$$W = (X_1 - 1)^2 \sim \chi_1^2$$
, and $Y = \sum_{i=2}^3 (X_i - i)^2 / i^2 \sim \chi_2^2$. Then $W/(Y/2) \sim F_{1,2}$.

5. Imagine rolling an r-sided die n number of times independently. Define the indicator function

$$\mathbb{1}_{[k=i]}(k) = \begin{cases} 1 & \text{if roll } k \text{ is equal to } i \\ 0 & \text{otherwise} \end{cases}$$

Suppose further that $P(\mathbb{1}_{[k=i]}(k)=1)=p_i$.

(a) What is $\mathbb{E}\left[\mathbb{1}_{[k=i]}(k)\right]$ and $\operatorname{Var}\left[\mathbb{1}_{[k=i]}(k)\right]$?

Solution: Since this is a Bernoulli random variable, $\mathrm{E}\left[\mathbb{1}_{[k=i]}(k)\right] = p_i$ and $\mathrm{Var}\left[\mathbb{1}_{[k=i]}(k)\right] = p_i(1-p_i)$.

(b) Calculate E $\left[\mathbbm{1}_{[k=i]}(k)\mathbbm{1}_{[l=j]}(l)\right]$ when $k \neq l$.

Solution: We note that $\mathbb{1}_{[k=i]}(k) \mathbb{1}_{[l=j]}(l)$ takes value 1 if and only if roll k is equal to i and roll l is equal to j. This happens with probability $p_i p_j$ due to independence of the rolls. Otherwise, $\mathbb{1}_{[k=i]}(k) \mathbb{1}_{[l=j]}(l) = 0$ with probability $1 - p_i p_j$. Thus,

$$\mathrm{E}\left[\mathbb{1}_{[k=i]}(k)\,\mathbb{1}_{[l=j]}(l)\right] = p_i p_j.$$

(c) Argue that $\mathbb{E}\left[\mathbb{1}_{[k=i]}(k)\mathbb{1}_{[l=j]}(l)\right] = 0$ when k = l.

Solution: It is impossible that for the same roll that the r-sided die to show faces i and j at the same time. Since this is an impossible event, its expectation is zero.

(d) Let X_i be the number of rolls that result in side i facing up. Write down the equation relating X_i and the indicator functions above. What possible values can X_i take?

Solution: As we are counting the number of occurrences that the rolls result in side i (in other words, $\mathbb{1}_{[k=i]}(k)=1$),

$$X_i = \sum_{k=1}^n \mathbb{1}_{[k=i]}(k).$$

 X_i can take values from 0 to n. As a remark, the vector $(X_1, \ldots, X_r)^{\top}$ for which $\sum_{i=1}^r X_i = n$ follows a multinomial distribution. Thus, we should expect X_i and X_j to be correlated (not independent).

(e) Determine $E(X_i)$.

Solution: A sum of Bernoulli random variables is binomial, so $X_i \sim \text{Bin}(n, p_i)$. Thus, $E(X_i) = np_i$.

(f) Consider two random variables X_i and X_j defined as per (d). From your answers to (a), (b) and (c), calculate $E(X_iX_j)$.

Solution: Let

$$\begin{split} X_{i}X_{j} &= \left(\sum_{k=1}^{n} \mathbb{1}_{[k=i]}(k)\right) \left(\sum_{l=1}^{n} \mathbb{1}_{[l=j]}(l)\right) \\ &= \sum_{k=1}^{n} \sum_{l=1}^{n} \mathbb{1}_{[k=i]}(k) \, \mathbb{1}_{[l=j]}(l) + \sum_{k=1}^{n} \sum_{l=1}^{n} \mathbb{1}_{[k=i]}(k) \, \mathbb{1}_{[l=j]}(l) \\ \Rightarrow \mathrm{E}(X_{i}X_{j}) &= \sum_{k=1}^{n} \sum_{l=1}^{n} \mathrm{E}\left[\mathbb{1}_{[k=i]}(k) \, \mathbb{1}_{[l=j]}(l)\right] + \sum_{k=1}^{n} \sum_{l=1}^{n} \mathrm{E}\left[\mathbb{1}_{[k=i]}(k) \, \mathbb{1}_{[l=j]}(l)\right] \\ &= \sum_{k=1}^{n} \sum_{l=1}^{n} p_{i}p_{j} \\ &= (n^{2} - n)p_{i}p_{j} \end{split}$$

Since there are n sums each in X_i and X_j , multiplying out there are n^2 terms in X_iX_j . Think of a square $n \times n$ matrix. The diagonal entries are when k = l, and the off-diagonals are $k \neq l$. There are exactly n diagonal entries, so therefore there are $n^2 - n$ off-diagonal entries.

(g) Now calculate the covariance between X_i and X_j .

Solution:

$$Cov(X_i, X_j) = E(X_i X_j) - E(X_i) E(X_j)$$
$$= (n^2 - n)p_i p_j - np_i \cdot np_j$$
$$= -np_i p_j$$

- 6. Let $\{X_1,\ldots,X_n\}$ be a random sample from a $N(\mu,\sigma^2)$ population.
 - (a) Let $M = \sum_{i=1}^{n} (X_i \bar{X})^2$, where \bar{X} is the sample mean. Work out the distribution of M/σ^2 .

Solution: We know that $\bar{X} \sim N(\mu, \sigma^2/n)$, and $\sqrt{n}(\bar{X} - \mu)/\sigma \sim N(0, 1)$, and therefore

$$\frac{n(\bar{X}-\mu)^2}{\sigma^2} \sim \chi_1^2.$$

Also, $(X_i - \mu)/\sigma \sim N(0, 1)$, and thus

$$\sum_{i=1}^{n} \frac{(X_i - \mu)^2}{\sigma^2} \sim \chi_n^2$$

Furthermore,

$$\underbrace{\frac{\chi_n^2}{1}}_{m} \underbrace{\frac{\chi_n^2}{1}}_{m} (X_i - \mu)^2 = \underbrace{\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \bar{X})^2}_{m} + \underbrace{\frac{\chi_1^2}{n}}_{m} (\bar{X} - \mu)^2$$

so we have that $M/\sigma^2 \sim \chi^2_{n-1}$.

(b) Let $\alpha = 0.05$. Using the χ^2 probability tables, determine the values of $\chi^2_{14}(\alpha/2)$ and $\chi^2_{14}(1-\alpha/2)$, i.e. the top and bottom $\alpha/2$ point of the χ^2_{14} distribution where $P(Y > \chi^2_k(a)) = a$ when $Y \sim \chi^2_k$.

Solution: $\chi_{14}^2(0.025) = 26.12$ and $\chi_{14}^2(0.975) = 5.63$.

(c) Suppose n = 15 and the sample variance is $s^2 = 24.5$. What is a 95% confidence interval for σ^2 ?

Solution: Note that $s^2 = M/(n-1) = 24.5$, so $M = 24.5 \times 14 = 343$. We also know that $P(5.63 < M/\sigma^2 < 26.12) = 0.95$, therefore

$$\{5.63 < M/\sigma^2 < 26.12\} = \{M/26.12 < \sigma^2 < M/5.63\}$$
$$= \{13.13 < \sigma^2 < 60.92\}$$

is a 95% confidence interval for σ^2 .

- 7. Let $\{Y_{ij}\}$ be sample from $N(\mu_j, \sigma^2)$, $i = 1, ..., n_j$ and j = 1, ..., m. In total there are $n = \sum_{j=1}^m n_j$ samples. Further, let $S = \sum_{i=1}^{n_j} \sum_{j=1}^m (Y_{ij} \bar{Y})^2$, where $\bar{Y} = \frac{1}{n} \sum_{i=1}^m \sum_{j=1}^m Y_{ij}$.
 - (a) Define the sample group means to be $\bar{Y}_j = \frac{1}{n_j} \sum_{i=1}^{n_j} Y_{ij}$. Add and subtract the sample group mean \bar{Y}_j into the squared sum in S to show that

$$\sum_{i=1}^{n_j} \sum_{j=1}^m (Y_{ij} - \bar{Y})^2 = \sum_{i=1}^{n_j} \sum_{j=1}^m (Y_{ij} - \bar{Y}_j)^2 + \sum_{j=1}^m n_j (\bar{Y}_j - \bar{Y})^2$$

Solution:

$$\sum_{i,j} (Y_{ij} - \bar{Y})^2 = \sum_{i,j} (Y_{ij} - \bar{Y}_j + \bar{Y}_j - \bar{Y})^2$$

$$= \sum_{i,j} (Y_{ij} - \bar{Y}_j)^2 + \sum_{i,j} (\bar{Y}_j - \bar{Y})^2$$

$$+ 2 \sum_{i,j} (Y_{ij} - \bar{Y}_j)(\bar{Y}_j - \bar{Y})$$

The third component of the RHS is

$$2\sum_{i=1}^{n_j} \sum_{j=1}^m (Y_{ij} - \bar{Y}_j)(\bar{Y}_j - \bar{Y}) = 2\sum_{j=1}^m (\bar{Y}_j - \bar{Y})\sum_{i=1}^{n_j} (Y_{ij} - \bar{Y}_j)$$

but $\sum_{i=1}^{n_j} (Y_{ij} - \bar{Y}_j) = \frac{n_j}{n_j} \sum_{i=1}^{n_j} Y_{ij} - n_j \bar{Y}_j = 0$, so the entire ssum is zero. Also, the second component of the RHS is

$$\sum_{i=1}^{n_j} \sum_{j=1}^m (\bar{Y}_j - \bar{Y})^2 = \sum_{j=1}^m \sum_{i=1}^{n_j} (\bar{Y}_j - \bar{Y})^2 = \sum_{j=1}^m n_j (\bar{Y}_j - \bar{Y})^2$$

(b) What is the distribution of \bar{Y} and \bar{Y}_j ?

Solution: $\bar{Y} \sim N(\mu, \sigma^2/n)$ and $\bar{Y}_j \sim N(\mu_j, \sigma^2/n_j)$.

- (c) Assuming that $\mu_j = \mu$, for all j = 1, ..., m and using your answer to (b), determine then the following distributions
 - i. $\frac{1}{\sigma^2} \sum_{i=1}^{n_j} \sum_{j=1}^m (Y_{ij} \mu)^2$

Solution: Since $Y_{ij} \sim N(\mu, \sigma^2)$, $(Y_{ij} - \mu)/\sigma \sim N(0, 1)$, so

$$\frac{1}{\sigma^2} \sum_{i=1}^{n_j} \sum_{i=1}^m (Y_{ij} - \mu)^2 \sim \chi_n^2$$

.

ii.
$$\frac{n}{\sigma^2}(\bar{Y}-\mu)^2$$

Solution: Since
$$\bar{Y} \sim N(\mu, \sigma^2/n)$$
, $\sqrt{n}(\bar{Y} - \mu)/\sigma \sim N(0, 1)$, so

$$\frac{n}{\sigma^2}(\bar{Y}-\mu)^2 \sim \chi_1^2$$

iii.
$$\frac{1}{\sigma^2} \sum_{i=1}^{n_j} \sum_{j=1}^m (Y_{ij} - \bar{Y})^2$$

Solution: We can show that

$$\frac{1}{\sigma^2} \sum_{i=1}^{n_j} \sum_{j=1}^m (Y_{ij} - \mu)^2 = \frac{1}{\sigma^2} \sum_{i=1}^{n_j} \sum_{j=1}^m (Y_{ij} - \bar{Y})^2 + \frac{n}{\sigma^2} (\bar{Y} - \mu)^2$$

and therefore $\frac{1}{\sigma^2} \sum_{i=1}^{n_j} \sum_{j=1}^m (Y_{ij} - \bar{Y})^2 \sim \chi_{n-1}^2$.

iv.
$$\frac{1}{\sigma^2} \sum_{j=1}^m n_j (\bar{Y}_j - \mu)^2$$

Solution: Since
$$\bar{Y}_j \sim N(\mu, \sigma^2/n_j)$$
, $\sqrt{n_j}(\bar{Y}_j - \mu)/\sigma \sim N(0, 1)$, so

$$\frac{n_j}{\sigma^2}(\bar{Y}_j - \mu)^2 \sim \chi_1^2,$$

and thus
$$\frac{1}{\sigma^2} \sum_{j=1}^m n_j (\bar{Y}_j - \mu)^2 \sim \chi_m^2$$
.

v.
$$\frac{1}{\sigma^2} \sum_{i=1}^{n_j} \sum_{j=1}^m (Y_{ij} - \bar{Y}_j)^2$$

Solution: From part (a),

$$\frac{1}{\sigma^2} \sum_{i=1}^{n_j} \sum_{j=1}^m (Y_{ij} - \mu)^2 = \frac{1}{\sigma^2} \sum_{i=1}^{n_j} \sum_{j=1}^m (Y_{ij} - \bar{Y}_j)^2 + \frac{1}{\sigma^2} \sum_{j=1}^m n_j (\bar{Y}_j - \mu)^2$$

and therefore
$$\frac{1}{\sigma^2} \sum_{i=1}^{n_j} \sum_{j=1}^m (Y_{ij} - \bar{Y}_j)^2 \sim \chi_{n-m}^2$$
.

Hint: Use the sum of squares decomposition with \bar{Y} and \bar{Y}_j , and then use the properties of χ^2 -distributions.