APUNTES TEMA 1

Novma

E espacio vectorial real E(IR)

Norma: aplicación IIII: E - IR tq:

- 2 11x+511 ≤ 11x11 + 11511 + x,5 € E
- 3 IIXXII = IX/IIXII YXEE YXEIR

Si E admite norma =) E = expacio vectorial normado.

$$||x||_{p} = \left(\sum_{j=1}^{N} |x_{j}|^{p}\right)^{1/p}$$
 En particular cuando
$$p = 2 \Rightarrow Norma \text{ firlídea.}$$

Norma del máximo:
$$||x||_{\infty} = m\alpha x |x_j|$$

¿Norma?

$$||x||_{\alpha} \ge 0$$

$$||x||_{\alpha} = 0 \iff x = 0$$

$$||x||_{\alpha} \ge 0 \text{ obvio}$$

$$||x||_{\alpha} = 0 \iff max |x| = 0 \iff x = 0$$

$$||x||_{\alpha} = 0 \iff max |x| = 0 \iff x = 0$$

$$= \|\mathbf{1} \times \|_{\alpha} + \|\mathbf{1} \|_{\alpha}$$

$$|| \lambda \times ||_{\infty} = \max_{j=1,\dots,N} |\lambda \times_{j}| = \max_{j=1,\dots,N} |\lambda| || \times_{j}| =$$

$$= |\lambda| \max_{j=1,\dots,N} || \times_{j}| = |\lambda| || \times || \times || =$$

Luego, la norma del máximo en norma.

Norma de Frederius:
$$\|A\|_{F} = \sqrt{\sum_{i=1}^{M} \sum_{j=1}^{N} \alpha_{i}^{2}} \quad \forall A \in \mathbb{R}^{M \times N}$$

Errore

Distancia entre vectoren

$$\forall x, y \in E$$
, dist(x,y) = $\|x-y\|$

(la norma permite hablar de conceptor topológicon)

Convergencia ruchión de vectores

Sea {Xn} ma sucerión de vectorer de E.

Se dice que {Xn}_{n≥n} converge a xo ∈ E si y

jelo si :

3 > || on×-1× || pt on≤ n, M∋ on F , 0<3 ∀

 $\lim_{n\to\infty} \{X_n\} = x_0 \iff \lim_{n\to\infty} \|x_n - x_0\| = 0$

Continuidad de una aplicación en espación vectoriale

Sean $X \in Y$ sender expactor vectorialer normoder

Sea $J: X \to Y$. J es continua en $X \in X$ si

Y solo si: $X \in X$ $X \in X$

Equivalencia entre norman

||.||, ||.||' re dice que ren equivalentan si existen c1, c2 > c
talen que:

C1 11.11 5 11.11 5 C211.11

Teorema

Todos la norman en un aspecio finito dimensional son equivalentes.

Proposición

M, N & IN g considerenn norman en 1R > 5 R M. (II. II)

$$|| X \triangle I| \qquad || \Delta I| := \sup_{x \in \mathbb{R}^{N}} || \Delta X ||$$

=) Norma inducida en 1R MXN (par la norma en 1R 91RN)

$$||\Delta|| := \sup_{x \in \mathbb{R}^n} \frac{||\Delta x||}{||x||}, \text{ on particular } ||\Delta x|| \leq ||\Delta|| \cdot ||x||$$

Norma!

$$||\Delta I||_{j=1,\dots,N} = \max_{i=1}^{M} ||\Delta i||_{j=1,\dots,N} \quad \forall \quad \Delta \in \mathbb{R}^{M \times N}$$

Norma del máximo

$$\|\Delta\|_{\infty} = \max_{i=1,\dots,M} \sum_{j=1}^{N} |\alpha_{ij}| \quad \forall \Delta \in \mathbb{R}^{M \times N}$$

 $\forall \ \forall \in \mathbb{IS}_{\mu \times \mu} =) \|\nabla \|^{1} = \|\nabla_{\xi}\|^{\infty}$

Radio espectual di una maturi

Sea A = IR NXN. El radio espectual de A redefine como:

 $P(A) := \max\{|\lambda| : \lambda \in \mathbb{C} \land \det(A - \lambda I_n)\}$

Norma matricial

Una norma en IRNXN en matureial si:

Y A, B ∈ IR , MABN ≤ MANI-MBN (Conácter submultiplication)

En general, no toda novna en IRNXN en maturcial.

Toda norma en IR inducida por una norma en IR en matricial.

Tealema

Para toda matriz A & IR NEN se veri l'ea que:

$$\langle = \rangle$$
 $(im D^{n} = 0 \iff \rho(A) < 1$

D= matrit diagonal de valore propier de A.

Colavio

Sean N≥1, II: II una norma matuicial en 1RNXN y A €1R.

Se verifica que si IIIII<1 => P(A) < 1

au IIAII < 1 en condición recenaria para que p(A) < 1

Predema bien planteads

Un problema P re dice que está bien planteado cuando en unisduente y entable:

Uniselvente = fiere una vinica solución, en decir, existe un vinico $x_0 + x_0 + x_0 = y_0$

Entable = Xa depende continuamente de 50

Si un problema P, para coda $y \in Y$ en uninduente \implies f en biyectiva (=) $\exists f'' = g = revolvente$ $f(x_0) = y_0 \iff g(y_0) = x_0$

Idea intuitiva de entabilidad

Pequina perturbaciones de la datar 30 correspondes pequeñas perturbaciones de la odución Xo.

Concepto de entabilidad

Condición que fuerce un control de la valoren de las soluciones en función de los datos, de forma que pequeñas pertubaciones pequeñas y controladas de Xo.

Estabilidad de la resolvante

Sean X, Y subconjuntan de espación normadan, $g: Y \to X$ e $y \in Y$. Se dice que g en estable en $y \circ cuando$

$$\exists H, S > 0; sup \frac{\|g(\S) - g(\S_0)\|}{\|\S - \S_0\|} < M$$

g sorá estable »: lo on ∀ y € }

Estabilidad de en problema

P en entable en $y \in Y$ si su renolvente $g: Y \to X$ lo en

en diche punto. Será entable si le en Y y E Y.

Si g en entable en $y_0 \in Y$, en electiv, $x \in A$, $d \ge 0$ talengu $y \in Y$ $|y-y_0| < |y-y_0| < |y-y_0|$

⇒ g en continua en jo, en decir,

 $\forall \varepsilon > 0$, $\exists \omega > 0$: $|y-y_0| < \beta$ $|z-y_0| < \beta$

#

Medida de entabilidad

· Condicionamiento relativo

Sea g∈ C'(IR) e go∈IR.

Cond. relativo de g en go:

$$C(9,50) := \frac{g'(90)-90}{g(90)}$$

Siempre que

Jo. 9(50) # 0

· Condicionamiento absoluto

$$Si go.g(g_o) = o \Rightarrow c(g,g_o) := |g'(g_o)|$$

Si en un problema P, la renolvente E C' e go E y el condicionamiento relativo o absoluto de P son los de su renolvente en dicho punto.

o Predlema bien condicionado (=> Condicionamiento pequeño.

O Preblema mal condicionado (Condicionamiento grande.

Si IIII = norma maturcial en IRNXN inducida por IRNX

-> condicionamiento c(A) con A = IRNXN;

Mal condicionamiento del sistema = condicionamiento de la maturi de coel grande.

Sistema posicional y números maquina

Númera máquina = subconjunto finito de númera reala con la que trabaja el ordenador.

$$X = (-1)^5$$
. $\sum_{N=-M}^{N} X_N \cdot b^N$

$$X = (-y)_{2} \cdot (x^{N} \cdot x^{N-1} \cdot - - \cdot x^{1} \cdot x^{0} \cdot x^{-1} \cdot x^{-5} \cdot - - \cdot x^{-M})^{p}$$

Representación con junto flotante

$$t = n^{\circ}$$
 cifran rignification. ($0 \le a_n \le b-1$)

$$m = mantina = (a_{1} - at)$$
 $c \leq m \leq b^{t} - 1$

Sistema normalizado de punto flotante

Normalización 3 ax + o (ax = cipra significativa principal)

$$F(b, \ell, d, 0) := \{0\} \cup \{(-1)^5 b^e \sum_{n=1}^{\ell} a_n b^{-n} : s = 0, 1 \ a_n \neq 0\}$$

Proposición

Sean $\xi \in \mathbb{N}$, $\mathcal{L}, \mathcal{U} \in \mathcal{H}$ can $\mathcal{L} \leq \mathcal{U}$ $\mathcal{L} \times \mathcal{E} = \mathcal{H}(\mathcal{L}, \mathcal{L}, \mathcal{U})$. Entonom:

- · x & F(b, t, 2, U)
- 0 Pr. ≤ |x| ≤ Pr(1-P-+)
- · card (F(b, E, 2, U)) = 2(b-1)6+1(U-2+1)+1

Époilon máquina

Para F(b,t,d,U), el épilon maquina, En, en la dintancia entre el menor número de F(b,t,d,U) moujor que 1 y la propia unidad:

* El resultado de operar da númera de en sistema de junto flotonte no tiene por qui guedor destro del sistema.

Truncatura

Sea
$$x = (-1)^{5}b^{e}$$
. $\sum_{n=1}^{\infty} a_{n}b^{-n}$. Su truncatura en:

$$\forall v(x) := (-1)^{s} (0, \alpha_{1}, \ldots, \alpha_{t}) \int_{t}^{t} (v(x) \in F(b, t, d, U))$$

Redondeo

Sea
$$x = (-1)^s$$
, $b^e \sum_{n=1}^{\infty} a_n b^{-n}$. Su rodondeo en:

$$\text{rd} (x) := t_{V} \left(x + (-1)^{s} \cdot \frac{2}{b} \cdot \frac{b^{s}}{b^{s+1}} \right)$$

$$V_{+} := \begin{cases} a_{1} & (\Rightarrow) & a_{1} < b_{2} \\ a_{1} + 1 & (\Rightarrow) & a_{1} \geq b_{2} \end{cases}$$

$$0 |X - h(x)| \leq h^{e-t}$$

$$|x-t_{V}(x)| = b^{e} \sum_{n=t+1}^{\infty} a_{n}b^{-n} \leq b^{e}.(b-n). \sum_{n=t+1}^{\infty} b^{-n}$$

$$= b^{e}.(b-1). \frac{11b}{a-11b} = b^{e-t}$$

$$0 \frac{\int x - tr(x) \int}{\int x \int} \leq \varepsilon_{M}$$

$$\frac{|x-t_{V}(x)|}{|x|} \leq \frac{\int_{e^{-t}}^{e^{-t}} \int_{e^{-t}}^{e^{-t}} dx}{\int_{e^{-t}}^{e^{-t}} \int_{e^{-t}}^{e^{-t}} dx} \leq \frac{\int_{e^{-t}}^{e^{-t}} \int_{e^{-t}}^{e^{-t}} dx}{\int_{e^{-t}}^{e^{-t}} \int_{e^{-t}}^{e^{-t}} dx}$$

$$= \int_{e^{-t}}^{e^{-t}} \int_{e^{-t}}^{e^{-t}} dx$$

$$0 \mid X - Yd(X) \mid \leq \frac{1}{2} b^{e-1}$$

$$|X-Vd(X)| = b^{2} \cdot (0.a_{1}...a_{1}a_{1}h_{1}...) - (0.a_{1}...v_{1})$$

$$Si a_{1}h_{1} < b/2, a_{1} = V_{1}$$

$$= |0.a_{1}.a_{2}...a_{1}a_{1}h_{1}...) - (0.a_{1}...v_{1})| = (0.0...0a_{1}h_{1}...)$$

$$\leq (0.0...a_{1}...a_{1}a_{1}h_{1}...) - (0.a_{1}...v_{1})| = \frac{1}{b^{2}} - \frac{a_{1}h_{1}}{b_{1}h_{1}} + ...$$

$$Si a_{1}h_{1} \geq b/2, v_{1} = a_{1} + 1$$

$$= |0.a_{1}...a_{1}a_{1}h_{1}| - |0.a_{1}...v_{1}|| = \frac{1}{b^{2}} - \frac{a_{1}h_{1}}{b_{1}h_{1}} + ...$$

$$= \frac{1}{b^{2}} - \frac{1}{b^{2}} + \frac{1}{b^{2}} +$$

Precisión máquina

Precisión maquina a unidad de redordes = cota que apares en el error relativo del redordes.

$$M := \frac{1}{2} b^{1+\frac{1}{2}} = \frac{1}{2} \varepsilon_M$$

$$\int_{\Gamma_{-1}}^{\Gamma_{-1}} |x| \leq \int_{\Gamma_{-1}}^{\Gamma_{-1}} (1 - \beta^{-1}) \implies \begin{cases} \frac{|x - tv(x)|}{|x|} \leq \varepsilon \mu \\ \frac{|x - va(x)|}{|x|} \leq \mu \end{cases}$$

Grdaus

Dadon F(b,t,d,0) y $x \in \mathbb{R}$ con $b^{l-1} \leq |x| \leq b^{l}(1-b^{-\epsilon})$

para cierto pre IR ta In I su

Operación máquina

- : $\mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ operación.
- $\bullet_{\mathsf{H}}: F(\mathsf{b},\mathsf{t},\mathsf{d},\mathsf{U}) \times F(\mathsf{b},\mathsf{t},\mathsf{d},\mathsf{U}) \longrightarrow F(\mathsf{b},\mathsf{t},\mathsf{d},\mathsf{U})$
- •x(x,y):= vd(x.y) ∀ x,y ∈ F(b,1,2,0)

Cordano

 $\forall x, y \in F(b, t, \lambda, 0) \Rightarrow \bullet_{\mu}(x, y) = (1+\mu) x \bullet y$ $\forall \mu \in \mathbb{R} \text{ con } |\mu| \leq \mu.$