Определение систематических и случайных погрешнойстей при измерении удельного сопротивления нихромовой проволоки (1.1.1)

Манро Эйден

Введение

Цель работы: измерить удельное сопротивление проволоки и вычислить систематические и случайные погрешности при использовании таких измерительных приборов, как линейка, штангенциркуль, микрометр, амперметр, вольтметр и мост постоянного тока.

Оборудование: линейка, штангенциркуль, микрометр, отрезок проволоки из нихрома, амперметр, вольтметр, источник ЭДС, мост постоянного тока, реостат, ключ.

Теоритические сведения

В данной работе измерять сопротивление $R_{\rm np}$ предлагается с помощью схемы, представленной на рис. 1.

Рис. 1: Схема для измерения сопротивления

Пусть V и I – показания вольтметра и амперметра, при расчете сопротивление $R_{\rm np1} = V/I$. Най-денное сопротивление будет отличаться от искомого $R_{\rm np}$ из-за внутренних сопротивлений приборов.

Учитывая сопротивления приборов получаем:

$$R_{\text{пр1}} = \frac{V}{I} = R_{\text{пр}} \frac{R_V}{R_{\text{пр}} + R_V}$$
 (1)

Формулу (1) можно преобразовать:

$$R_{\rm np} = \frac{R_{\rm np1}}{1 - \left(\frac{R_{\rm np1}}{R_V}\right)} \approx R_{\rm np1} \left(1 + \frac{R_{\rm np1}}{R_V}\right)$$

Более точным методом измерения сопротивлений является метод моста постоянного тока (мост Уитстона).

Задание

Знакомство со штангенциркулем и микрометром

Штангенциркуль: $\sigma_{\rm m} = 0.1 \; {\rm мм}$

Микрометр: $\sigma_{\text{м}} = 0.01 \text{ мм}$

Измерение диаметра проволоки

N⁰	1	2	3	4	5	6	7	8	9	10	cp.
$d_{\rm m}$, mm	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4
$d_{\scriptscriptstyle \mathrm{M}}$, mm	0,37	0,36	0,36	0,36	0,37	0,36	0,36	0,36	0,36	0,36	0,36

Таблица 1: Результаты измерения диаметра проволоки

При измерении штангенциркулем случайная погрешность отсутствует, а значит можно учитывать только системную погрешность: $d_{\rm m}=(0.4\pm0.1)\,$ мм.

При измерении же микрометром нужно учитывать и системную и случайную погрешость:

$$\sigma_{\text{cmct}} = 0.01 \text{ mm}$$
 $\sigma_{\text{cj}} = \frac{1}{N} \sqrt{\sum_{i=1}^{n} (d_i - \overline{d})^2} = \frac{1}{10} \sqrt{3 \cdot 10^{-4}} \approx 1.7 \cdot 10^{-3} \text{ mm}$ $\sigma_{d_{\text{m}}} = \sqrt{\sigma_{\text{cmct}}^2 + \sigma_{\text{cj}}^2} \approx 0.01 \text{ mm}$

тогда $d_{\rm M} = (0.36 \pm 0.01)$ мм.

Площадь поперечного сечения проволоки можно вычислить зная диаметр, используя диаметр найденный с помощью микрометра мы уменьшим погрешность площади. Вычислим площадь и ее погрешность:

$$S_{\mathrm{np}} = \frac{\pi d_{\mathrm{m}}^2}{4} = \frac{3.1415 \cdot (0.36)^2}{4} \approx 0.1 \text{ mm}^2$$

$$\sigma_S = 2 \frac{\sigma_{d_{\rm m}}}{d_{\rm m}} \cdot S = 2 \frac{0.01}{0.36} \cdot 0.1 \approx 5.6 \cdot 10^{-3} \ {\rm mm}^2$$

С учетом погрешности получаем, что $S_{\rm np}=(0.1\pm5.6\cdot10^{-3})\,$ мм 2 т.е. площадь поперченого сечения определена с точностью 5.6%

Характеристики измерительных приборов

	Вольтметр	Миллиамперметр
Система	Магнитоэлектрическая	Цифровая
Класс точности	0,2	_
Шкала	линейная, 150 делений	_
Предел измерений	0,6 B	2 A
Цена делений	4 мВ/дел	_
Чувствительность	250 дел/В	_
Внутреннее сопротивление прибора	4000 Ом	1,4 Ом
Погрешность со шкалы (0,5 ц.д.)	2 мВ	_
Макс. погрешность	1,2 MB (0,2 %)	_
Разрядность дисплея	_	5 ед.
Погрешность	_	$0.002 \cdot x + 2 \cdot 0.01 \text{ мA}$

Снятие показаний вольтметра и амперметра, обработка данных

Собираем схему и снимаем данные для разных длин проволоки: $l_1=(20,0\pm0,2)$ см; $l_2=(30,0\pm0,2)$, см; $l_3=(50,0\pm0,2)$ см. Получаем:

l=2	0 см	l=3	0 см	l = 50 cm		
V, мВ	І, мА	V, мВ	І, мА	V, мВ	І, мА	
232	106,8	372	113,1	472	87,3	
220	98,9	348	105,2	448	83,5	
200	90,7	320	96,8	420	77,5	
184	83,1	280	85,2	384	71,3	
164	74,8	264	79,6	372	68,7	
152	70,0	240	73,3	344	63,8	
124	56,9	232	70,2	296	54,5	
112	51,1	180	55,0	244	45,5	
100	45,3	120	36,2	201	37,5	
68	31,3	92	27,9	140	26,1	

Таблица 3: Снятая зависимость V(I) для различных длин проволоки

Для каждой длины проволоки l найдем сопротивление и погрешности методом наименьших квадратов по формулам:

$$R_{\rm cp} = \frac{\langle V \rangle}{\langle I \rangle}$$

$$\sigma_{R_{\rm cp}}^{\rm c, nyq} = \frac{1}{\sqrt{n-1}} \sqrt{\frac{\langle V^2 \rangle}{\langle I^2 \rangle} - R_{\rm cp}^2}$$

$$\sigma_{R_{\rm cp}}^{\rm cmct} = R_{\rm cp} \sqrt{\left(\frac{\sigma_V}{V}\right)^2 + \left(\frac{\sigma_I}{I}\right)^2}$$

$$\sigma_{R_{
m cp}} = \sqrt{\sigma_{{\scriptscriptstyle {
m CMCT}}}^2 + \sigma_{{\scriptscriptstyle {
m CJY^q}}}^2}$$

где V и I – максимальные значения тока и напряжений, $\sigma_V=2$ мВ, а $\sigma_I=0.6$ мА, n=10. Рассчитываем сопротивление с учетом поправки для схемы и погрешности:

l=20 cm	l = 30 cm	l = 50 cm
$R_{\rm cp} = 2{,}194~{ m Om}$	$R_{\rm cp} = 3{,}296~{ m Om}$	$R_{\rm cp} = 5{,}393~{ m Om}$
$\sigma_R^{\text{случ}} = 0.033 \text{ Om}$	$\sigma_R^{\text{случ}} = 0.031 \text{ Om}$	$\sigma_R^{\text{случ}} = 0.057 \text{ Om}$
$\sigma_R^{\text{сист}} = 0.022 \text{ Om}$	$\sigma_R^{\text{сист}} = 0.040 \text{ Om}$	$\sigma_R^{\text{сист}} = 0.043 \text{ Om}$
$\sigma_{R_{\mathrm{cp}}} = 0.039 \; \mathrm{Om}$	$\sigma_{R_{\rm cp}} = 0.050 \mathrm{Om}$	$\sigma_{R_{\mathrm{cp}}} = 0.071 \; \mathrm{Om}$

Таблица 4: Экспериментально полученные сопротивления и погрешности

Нахождение сопротивления с помощью моста

l, см	20	30	50	
$R_{\rm np}$, Om	2,208	3,390	5,375	

Таблица 5: Сопротивления, полученные с помощью моста

Сравниваем полученные экспериментальным путем результаты с полученными на мосте. Результаты измерений всех трех длин попадают в предел $\pm 2\sigma_R$ из таб.4.

Вычисление удельного сопроивления проволоки

Удельное сопротивление проволоки изготовленной из однородного материала и погрешность могут быть определены по формулам:

$$\rho = R_{\text{np}} \cdot \frac{S_{\text{np}}}{l} = \frac{R_{\text{np}}}{l} \cdot \frac{\pi d^2}{4} \qquad \qquad \sigma_{\rho} = \rho \sqrt{\left(\frac{\sigma_R}{R}\right)^2 + \left(2\frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_l}{l}\right)^2}$$

где $R_{\rm np}$ – сопротивление измеряемого отрезка проволоки, $S_{\rm np}$ – площадь поперечного сечения проволоки, l – его длина, а d – диаметр проволоки.

Занесем полученные результаты в таблицу:

l, cm	$\rho, 10^{-6} \text{ Om} \cdot \text{mm}^2/\text{m}$	$\sigma_{\rho}, 10^{-6} \text{ Om} \cdot \text{mm}^2/\text{m}$
20	1,104	0,065
30	1,130	0,066
50	1,075	0,065

Таблица 6: Удельные сопротивления участков проволоки различной длины

Усредним резлультаты и получим: $\rho_{\rm cp} = (1.103 \pm 0.065) \cdot 10^{-6} \ {\rm Om \cdot mm^2/m}$.

Вывод

В работе получено значение удельного сопротивления образца проволоки из нихромового сплава с точностью 5,6~%. Допустимые значения удельного сопротивления нихрома:

 $\rho_{\text{таб}} = (0.97 - 1.14) \cdot 10^{-6} \text{ Ом} \cdot \text{мм}^2/\text{м}$. Измеренные значения попадают в этот диапазон в пределах одного стандартного отклонения, однако погрешность результата не позволяет определить марку сплава.

Использованный в работе метод измерения сопротивлений позволил получить значения образцов с довольно высокой точностью, которая ограничивалась в основном погрешностью аналогового вольтметра.

При измерении диаметра проволоки точность микрометра оказалась слишком низкой для исследования проволоки на однородность по длине.

Рис. 2: ВАХ

