CS4211: Formal Methods for Software Engineering Lecture Notes

Kevin Toh

Introduction to Formal Methods

- Requirements are difficult to define because its written in **Natural Language** which can be imprecise and ambiguous at times.
- As we cannot anticipate the ways a system may be used, written test cases only covers a small subset of use cases.
- We want to verify if a system always satisify a certain property, in possible all cases.
- In Formal Methods, we use Mathematics to define the structure and behaviour of our software because it is precise and unambiguous
- Eventually, we can use a model checker to automatically verify the software by checking if a certain property holds in all cases.

The Z Specification Language

- Based on set theory and mathematical logic
 - We will be doing a recap on predicates, set theory, functions and relations next.
- Uses schemas to declare object properties
 - Schemas are similar to defining the structure of a class and its properties in an Object-Oriented Programming Language.
- Uses operations to describe state transitions
 - Each object has a state representing the values it's properties hold at a certain moment in time.
 - Operations are similar to methods of a class.
 - Operations modify the state of an object.
 - We use predicates to describe state transitions in an operation.
- We can then proof that a certain property holds manually

Latex Setup

- The Latex package that we will be using is zed-csp
- Setup Code:

```
1 % For latex document
2 \documentstyle[12pt,zed]{article}
3
4 % For beamer slides
5 \usepackage{zed-csp}
6
7 \begin{document}
8 \end{document}
```

• Reference: https://sg.mirrors.cicku.me/ctan/macros/latex/contrib/zed-csp/zed2e.pdf

Recap on Predicates and Logic

Predicate

A statement that is either true or false.

- There are 365 days in 2024. (false)
- **2** Let P(x, y) be x + y = 9
 - P(4,5) is **true**.
 - P(3,7) is **false**.

Logic Operators

- **1** Not (¬) Eg:
- ② And (∧)
- Or (∨)
- Implies (\Rightarrow)
- Equivalence (⇔)

Recap on Quantifiers

- Universal Quantifier (\forall)
 - Example: All natural numbers are greater than -1.
 - ullet Mathematically, we would write $\forall \, n \in \mathbb{N}, n > -1$
 - In Z Specification, we would write $\forall n : \mathbb{N} \bullet n > -1$
 - $\forall n : \mathbb{N} \bullet n > 0$
 - In general, $\exists x : X \bullet P(x)$ abbreviates $P(a) \land P(b) \land P(c) \land \dots$
- ② Existential Quantifier (∃)
 - Example: There exists a natural number more than 0.
 - In Z Specification, we would write $\exists n : \mathbb{N} \bullet n > 0$
 - In general, $\exists x : X \bullet P(x)$ abbreviates $P(a) \lor P(b) \lor P(c) \lor \dots$

Differences between Mathematical Notations and Z Specification

- In Mathemical Notation, : or | means "such that" when used in Set Expressions.
- In Z Specification, : means "belongs to".
 - The difference between : and \in will be explained later.
- In Z Specification, means "such as" when writing predicates.

- A set is a collection of elements (or members)
 - Elements are not ordered: $\{a, b, c\} = \{b, a, c\}$
 - Elements are not repeated" $\{a, a, b\} = \{a, b\}$
 - Given Sets
 - $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ (The set of all natural numbers)
 - $\mathbb{N}_1 = \{1, 2, 3, \ldots\}$
 - $\mathbb{Z} = \{0, 1, -1, 2, -2, \ldots\}$ (The set of all integers)
 - \bullet \mathbb{R} (The set of all real numbers)
 - Ø (Empty Set: The set with no elements)
- Membership: $x \in \mathbb{X}$ is a predicate which is
 - true if x is in the set \mathbb{X} . Eg: $a \in \{a, b, c\}$
 - false if x is not in the set \mathbb{X} . Eg: $d \in \{a, b, c\}$

Difference between ':' and ' \in '

Example: $\forall x : \mathbb{Z} \bullet x > 5 \Rightarrow x \in \mathbb{N}$

- ullet $x:\mathbb{Z}$ declares a new variable x of type \mathbb{Z}
- $x \in \mathbb{N}$ is a predicate which is either true or false depending on the value of the declared x.

- Set Expressions
 - We can express a set by listing its elements if the set is finite and small.
 - $\{a, b, c, d\}$ is a finite set.
 - If a set is large or infinite, we can definite a set by giving a predicate which specifies precisely those elements in a set.
 - N is an infinite set.
 - The set of natural numbers less than 99 is $\{n : \mathbb{N} \mid n < 99\}$
 - In general the set $\{x : \mathbb{X} \mid P(x)\}$ is the set of elements of \mathbb{X} for which predicate P is true.
- Set Examples
 - The set of even integers is $\{z : \mathbb{Z} \mid \exists k : \mathbb{Z} \bullet z = 2k\}$
 - The set of natural numbers which when divided by 7 leave a remaineder of 4 is $\{n: \mathbb{N} \mid \exists m: \mathbb{N} \bullet n = 7m + 4\}$
 - \mathbb{N} is the set $\{z : \mathbb{Z} \mid z \geq 0\}$
 - \mathbb{N}_1 is the set $\{n : \mathbb{N} \mid n \geq 1\}$
 - If a, b are any natural numbers, then a.. b is defined as the set of all natural numbers between a and b inclusive.
 - a ... b is the set $\{n : \mathbb{N} \mid a \le n \le b\}$

- Subset (\subseteq): If S and T are sets, $S \subset T$ is a predicate equivalent to $\forall s : S \bullet s \in T$.
 - The following predicates are true:
 - $\{0,1,2\}\subseteq\mathbb{N}$
 - 2..3 ⊆ 1..5
 - $\{a, b\} \subseteq \{a, b, c\}$
 - $\emptyset \subseteq X$ for any set X
 - $\{x\} \subseteq X \Leftrightarrow x \in X$
- Proper Subset (\subset): If S and T are sets, $S \subset T$ is a predicate equivalent to $S \subset T \land S \neq T$.
- Power Set (\mathbb{P}): If X is a set, $\mathbb{P} X$ (the power set of X) is the set of all subsets of X.
 - $A \in \mathbb{P} \ B = A \subseteq B$
 - The following predicates are true:
 - $\mathbb{P}{a,b} = {\emptyset, {a}, {b}, {a,b}}$
 - $\mathbb{P} \emptyset = \{\emptyset\} \neq \emptyset$
 - $1..5 \in \mathbb{P} \mathbb{N}$
 - $2..5 \in \mathbb{P}(1..5)$
 - If X has k elements, then $\mathbb{P} X$ has 2^k elements.

- Set Operations
 - Set Union: Suppose $S, T : \mathbb{P}X$ or $S \subseteq X, T \subseteq X$, then $S \cup T = \{x : X \mid x \in S \lor x \in T\}$
 - $\{a, b, c\} \cup \{b, g, h\} = \{a, b, c, g, h\}$
 - $A \cup \emptyset = A$ (for any set A)
 - Set Intersection: Suppose $S, T : \mathbb{P}X$, then $S \cap T = \{x : X \mid x \in S \land x \in T\}$
 - $\{a,b\} \cap \{b,c\} = \{b\}$
 - $\{a,b,c\} \cap \{d,g\} = \emptyset$ (disjoint sets)
 - $A \cap \emptyset = \emptyset$ (for any set A)
 - Set Difference: Suppose $S, T : \mathbb{P} X$, then $S T = \{x : X \mid x \in S \land x \notin T\}$
 - $\{a, b, c\} \{b, g, h\} = \{a, c\}$
 - $\bullet \mathbb{N}_1 = \mathbb{N} = \{0\}$
 - Cartesian Product: If A and B are sets, then $A \times B$ is the set of all ordered pairs (a, b) with $a \in A$ and $b \in B$.
 - $\{a,b\} \times \{a,c\} = \{(a,a),(a,c),(b,a),(b,c)\}$
 - Cardinality: #X is a natural number denoting the cardinality of (number of elements in) a finite set X.
 - $\#\{a,b,c\}=3$

Recap on Relations

- A relation R from sets A to B, is declared as $R: A \leftrightarrow B$ is a subset of $A \times B$
- Example: $R = \{(c, x), (c, z), (d, x), (d, y), (d, z)\}$
 - The following predicates are equivalent

 - $c \rightarrow z \in R$
 - 3 cRz
- **Domain:** dom R is the set $\{a: A \mid \exists b: B \bullet aRb\}$
- Range: ran R is the set $\{b: B \mid \exists a: A \bullet aRb\}$

Types in Z Specification

- Z specification language is strongly typed.
- Every expression is given a type.
- Any set can be used as a type.
- The following are equivalent declarations of variables x and y of types A and B respectively.
 - \bullet $(x, y) : A \times B$
 - x : A, y : B
 - x, y : A (only when B = A)

Modelling using Z Specification

- When we write a program, we can write code procedurally, functionally or in an object oriented manner.
- Z Specification can help us model our code using two distinct sections.
 - Declaration: To define variables.
 - 2 Predicate: Often used to define behaviours or invariants.
- Example #1: We can define the relation divides between two natural numbers.

• **Example #2:** We can define the relation ≤ between two natural numbers.

The relation <= is the infinite subset of ordered pairs in $\mathbb{N} \times \mathbb{N}$.

 $\{(0,0),(0,1),(1,1),(0,2)(1,2),(2,2),\ldots\}$

<□ > <□ > <□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Domain and Range Restriction

- Let *A*, *B*, *R*, *S*, *T* be sets.
- A is the domain set, B is the range set and R is the relation set.
- Note that S is a subset of the domain set and T is the subset of the range set.
- Suppose $R: A \leftrightarrow B, S \subseteq A$ and $T \subseteq B$.
 - **Domain Restriction:** $S \triangleleft R$ is the set $\{(a,b) : R \mid a \in S\}$
 - Range Restriction: $R \rhd T$ is the set $\{(a,b): R \mid b \in T\}$
- Notice that both $S \lhd R \in A \leftrightarrow B$ and $R \rhd T \in A \leftrightarrow B$, meaning that both domain restriction and range restrictions are relations from sets A to B.
- If has_sibling: People ↔ People then
 - \bullet female \lhd has_sibling is the relationship is_sister_of.
 - has_sibling
 Female is the relationship has_sister.

Domain and Range Subtraction

- Let *A*, *B*, *R*, *S*, *T* be sets.
- A is the domain set, B is the range set and R is the relation set.
- Note that S is a subset of the domain set and T is the subset of the range set.
- Suppose $R: A \leftrightarrow B, S \subseteq A$ and $T \subseteq B$.
 - **Domain Subtraction:** $S \triangleleft R$ is the set $\{(a,b) : R \mid a \notin S\}$
 - Range Subtraction: $R \triangleright T$ is the set $\{(a,b) : R \mid b \notin T\}$
- The following predicates are true.
 - $S \triangleleft R = (A S) \triangleleft R$
 - $R \triangleright T = R \triangleright (B T)$
 - $S \triangleleft R \in A \leftrightarrow B$
 - $R \Rightarrow T \in A \leftrightarrow B$
- If has_sibling: People ↔ People then

 - has_sibling
 female is the relationship has_brother.

Relational Image

- Suppose the relation $R: A \leftrightarrow B$ and $S \leftrightarrow A$
- $R(|S|) = \{b : B \mid \exists a : S \bullet aRb\}$
- R(| S |) ↔ B
- Example
 - $divides(\{8,9\}) = \{x : \mathbb{N} \mid \exists k : \mathbb{N} \bullet x = 8 \cdot k \lor 9 \cdot k\} = \{0,8,9,16,18,\ldots\}$
 - $<= (|3,7,21|) = \{x : \mathbb{N} \mid x >= 3\}$
- In summary, the relational image returns the set of all elements $b \in B$ such that there exists an $a \in S$ with $(a, b) \in R$.
- The difference between relational image and range restriction is that range restriction returns the subset of R which are ordered pairs of (a, b) where $a \in A$ and $b \in B$ and the first element a of the ordered pair is in S. The relational image simply just returns the set of all second elements b.

Inverse and Relational Composition

- Inverse: R^{-1} is the set $\{(b,a): B \times A \mid aRb\}$ or $R^{-1} \in B \leftrightarrow A$
 - has_sibling⁻¹ = has_sibling
 - $divisor^{-1} = has_divisor$
- Example: $succ^{-1} = pred$

| succ:
$$\mathbb{N} \leftrightarrow \mathbb{N}$$

|-----

$$| \forall x, y : \mathbb{N} \bullet x \underline{\text{succ}} y \leftrightarrow x + 1 = y$$

- Relational Composition (§)
 - Suppose $R: A \leftrightarrow B$ and $S: B \leftrightarrow C$ are two relations.
 - $R_{\S} S = \{(a,c) : A \times C \mid \exists b : B \mid aRb \wedge bSc\}$
 - $R \circ S \in A \leftrightarrow C$
- Examples
 - is_parent_of g is_parent_of = is_grandparent_of
 - $R^0 = id[A]$
 - $R^1 = R$
 - $R^2 = R \circ R$
 - $R^3 = R_{\S} R_{\S} R$

Recap on Functions

- A (partial) function from a set A to a set B, denoted by $f:A \rightarrow B$ is a subset f of $A \times B$ with the property that for each $a \in A$, there is **at most one** $b \in B$ with $(a, b) \in f$.
- dom f is the set $\{a: A \mid \exists b: B \bullet (a, b) \in f\}$
- ran f is the set $\{b: B \mid \exists a: A \bullet (a, b) \in f\}$
- Suppose $f: A \to B$ and $a \in \text{dom } f$, then f(a) denotes the unique image $b \in B$ that a is mapped to by f.
- $(a, b) \in f$ is equivalent to f(a) = b
- **Total Function:** If the function $f: A \rightarrow B$ is a total function, then $f: A \rightarrow B$ if and only if dom f = A

Function Overriding

- Suppose $f, g : A \rightarrow B$, then $f \oplus g$ is the function $(\operatorname{dom} g \triangleleft f) \cup g$.
- The following predicates are true:
- Examples

 - odouble \oplus root = $\{(0,0),(1,1),(2,4),(3,6),(4,2),\ldots\}$ (Note: (4,8) was replaced with (4,2) as the domain 4 is both in f and g, so the range was replaced with 2 that was in g)

Specifying Functions

- Using a look-up table
 - If a function $f: A \rightarrow B$ is finite (and not too large), we can specify the function explicitly by listing all pairs (a, b) in the subset $A \times B$.
 - Example: PassportNo \rightarrow Address PassportNo Address A001017 77 Sunset Strip ...
 - G707165 19 Mail Street
- ② Declaring Axioms: A function can be specified by giving a **predicate** determining which pairs (a, b) are in the function.
 - Example: The root function that calculates the square root of a natural number

Specifying Functions

Using Recursion: For functions defined recursively in terms of itself.

```
\begin{array}{l} | \text{ fact } \mathbb{N}_1 \rightarrow \mathbb{N} \\ |-----| \\ | \text{ fact(1) = 1} \\ | \forall \, n : \mathbb{N}_1 - \{1\} \bullet \textit{fact}(n) = \textit{n} * \textit{fact}(\textit{n} - 1) \end{array}
```

3 Giving an Algorithm: A function $f: A \rightarrow B$ is specified by an algorithm such that given any element a in the domain of f, the element f(a) can be computed using the algorithm.

```
input n : N
var x, y: integer;
begin
    x := n; y:= 0;
while x != 0 do
begin
    x := x - 1; y:= y + 2
end;
write(y)
end
```

Sequences

• A sequence s of elements of a set A, denoted s : seq A, is a function $s : \mathbb{N} \to A$ where $\text{dom } s = 1 \dots n$ for some natural number n.

Example

- < b, c, a, b > denotes the sequence (function) $\{1 \rightarrow b, 2 \rightarrow c, 3 \rightarrow a, 4 \rightarrow b\}$
- The empty sequence is denoted by <>
- The set of all sequences of elements from A is denoted as $\operatorname{seq} A$ and is defined to be $\operatorname{seq} A = \{s : \mathbb{N} \to A \mid \exists n : \mathbb{N} \bullet \operatorname{dom} s = 1 \dots n\}$
- $seq_1 A = seq A \{ < > \}$ is defined as the set of non-empty sequences.
- Since sequences are ordered mapping, $\langle a, b, a \rangle \neq \langle a, a, b \rangle \neq \langle a, b \rangle$

Special Functions for Sequence

- Concatenation
 - $< a, b > ^ < b, a, c > = < a, b, b, a, c >$
- 4 Head

 - head < c, b, b >= c
- Tail

 - tail < c, b, b > = < b, b >
- Filter
 - $\langle a, b, c, d, e, d, c, b, a \rangle | \{a, d\} = \langle a, d, d, a \rangle$
 - Filter only keeps the element in the specified set, preserves order in the original sequence and outputs a new sequence.

Z Specification

- As explained in an earlier slide, we can write Z Specification to formally specify requirements in two distinct sections
 - Declaration: To define variables.
 - Predicate: Often used to define behaviours or invariants.
- When we were specifying functions earlier, we were formally specifying them in the form of **axioms** in the **axiom environment**.
- Later we will introduce how to formally specify **schemas** which are used to specify relationships between variable values.
- There are two main type of schemas in the schema environment
 - State Schema
 - Operation Schema
- The axiom environment and schema environment are both available on the zed-csp package that was used to make these slides.
- This package allows us to render axioms and schemas using Z Specification in LATEX.

The zed-csp Package

We can use the zed-csp package to formally specify requirements in Z Specification.

Axiom Environment

```
\begin{array}{|c|c|c|c|} \textit{limit} : \mathbb{N} \\ \hline \textit{limit} \le 65535 \end{array}
```

- 1 limit: \nat
- \where
- 3 limit \leq 65535

The zed-csp Package

Schema Environment

```
PhoneDB known : \mathbb{P} NAME phone : NAME \rightarrow PHONE known = dom phone
```

```
known: \power NAME \\ phone: NAME \pfun PHONE \\ where \\ known = \dom phone
```