

Problem Statement

- To determine and forecast **risk factors** for driver identification based on a variety of variables, including events, and average speed.
- Analyze the dataset using different criteria, such as location, events, and risk factors, to determine who are the risky drivers.
- By using the risk factor threshold, the project aims to generate a report highlighting the drivers with a risk factor greater than or equal to 7.0, allowing the fleet manager to take necessary actions to reduce the risk of accidents and ensure compliance with regulations.

Workflow

Risk Factor by Truck Model

Analysis and Insights

- Models from Oshkosh, Crane, Hino, Peterbilt and Freightliner have the avg risk factor.
- The average risk factor for the first 5 models is >7 with Oshkosh being the highest at 10.08.
- Depending on the state of the vehicle, these models can be replaced with new ones or cross-checked for maintenance and repairs.

Top Risky Drivers by Events

Analysis and Insights

Observation:

• Driver ID A97, A73 and A50 are the top 3 risky drivers with 14,10 and 9 risky events respectively which include over speeding, lane departure etc.

Suggestion:

- In order to reduce the frequency of incidents, the company might wish to follow driving habits of the top risky drivers.
- Additional training or strict rules can be imposed on such drivers to reduce risky events.

City Wise Events

Analysis and Insights

Observation:

• Santa Rosa, Willits, Apple valley, Antelope, Arbuckle are the 5 cities with major risky events.

Suggestion:

• It might be the case that these cities have lenient implementation on regulations so the hiring of drivers in such cities should be done more cautiously.

Top Risky Models by Events

Analysis and Insights

 Ford, Peterbilt and Caterpillar model trucks have the highest risky events.
Crane, Western Star and Kenworth have the lowest risky events.

Suggestion:

 Implement additional monitoring systems in Ford, Peterbilt and Caterpillar trucks to reduce the no of risky events caused by these trucks and the drivers using them.

Model =	
Ford	89
Peterbilt	81
Caterpillar	74
Volvo	39
Hino	36
Navistar	33
Oshkosh	26
Freightliner	25
Kenworth	25
Western Star	12
Crane	11

Conclusion

- Each unsafe driver should be paired with an experienced driver (drivers who have driven the greatest number of miles) during the training phase as a proactive measure to mitigate risks and enhance overall safety.
- The company should allow only a certain no of miles to be driven by a driver in a certain period of time.
- Develop an incentive program for the driver, where the company can incentivize if a driver commits less risky events in a given quarter.
- Truck drivers in high-accident regions should be watched over by a specialized team assigned by ANT. Drivers with a history of serious accidents shouldn't be given longer trips or should be penalized.

