FCC RF Test Report

FCC ID : 2AD9M-003A EQUIPMENT : Smartphone

BRAND NAME : LEOMO : LEM-TS1

MARKETING NAME : LEOMO TYPE-S

APPLICANT : LEOMO, Inc.

7-22-17 Nishi Gotanda TOC Bldg. 7F

Shinagawa-ku, Tokyo, 1410031, Japan

MANUFACTURER : LEOMO, Inc.

2000 Central Avenue, Suite 150, Boulder CO 80301,

Report No.: FR942441E

USA

STANDARD : FCC Part 15 Subpart E §15.407

CLASSIFICATION: (NII) Unlicensed National Information Infrastructure

The product was received on Apr. 24, 2019 and testing was completed on Jun. 05, 2019. We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

This report contains data that were produced under subcontract by SPORTON INTERNATIONAL INC.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

Report Issued Date : Jul. 15, 2019
Report Version : Rev. 02

Page Number

Report Template No.: BU5-FR15EWL AC MA Version 2.0

: 1 of 31

JasonJia

Reviewed by: Jason Jia / Supervisor

Approved by: James Huang / Manager

Report No.: FR942441E

Sporton International (Kunshan) Inc.

No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AD9M-003A Page Number : 2 of 31
Report Issued Date : Jul. 15, 2019
Report Version : Rev. 02

TABLE OF CONTENTS

RE	VISIO	N HISTORY	4
SU	MMAF	RY OF TEST RESULT	5
1	GEN	ERAL DESCRIPTION	6
	1.1	Applicant	
	1.2	Manufacturer	
	1.3	Product Feature of Equipment Under Test	
	1.4	Product Specification of Equipment Under Test	
	1.5	Modification of EUT	
	1.6	Testing Location	8
	1.7	Applicable Standards	9
2	TES1	CONFIGURATION OF EQUIPMENT UNDER TEST	10
	2.1	Carrier Frequency and Channel	10
	2.2	Test Mode	11
	2.3	Connection Diagram of Test System	12
	2.4	Support Unit used in test configuration and system	12
	2.5	EUT Operation Test Setup	13
	2.6	Measurement Results Explanation Example	13
3	TES1	「RESULT	14
	3.1	26dB & 99% Occupied Bandwidth Measurement	14
	3.2	Maximum Conducted Output Power Measurement	16
	3.3	Power Spectral Density Measurement	18
	3.4	Unwanted Emissions Measurement	
	3.5	AC Conducted Emission Measurement	
	3.6	Automatically Discontinue Transmission	
	3.7	Antenna Requirements	
4	LIST	OF MEASURING EQUIPMENT	30
5	UNC	ERTAINTY OF EVALUATION	31
ΑP	PEND	IX A. CONDUCTED TEST RESULTS	
ΑP	PEND	IX B. AC CONDUCTED EMISSION TEST RESULT	
ΑP	PEND	IX C. RADIATED SPURIOUS EMISSION	
ΑP	PEND	OIX D. DUTY CYCLE PLOTS	
ΑP	PEND	IX E. SETUP PHOTOGRAPHS	

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AD9M-003A Report No. : FR942441E

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR942441E	Rev. 01	Initial issue of report	Jun. 21, 2019
FR942441E	Rev. 02	Update the address of Appilicant.	Jul. 15, 2019

 Sporton International (Kunshan) Inc.
 Pa

 TEL: +86-512-57900158
 R

FAX: +86-512-57900958 FCC ID: 2AD9M-003A Page Number : 4 of 31
Report Issued Date : Jul. 15, 2019
Report Version : Rev. 02

Report No. : FR942441E

SUMMARY OF TEST RESULT

Report Section	FCC Rule Description		Limit	Result	Remark
3.1	2.1049 & 15.403(i)	26dB & 99% Bandwidth	-	Pass	-
3.2	15.407(a)	Maximum Conducted Output Power	≤ 24 dBm	Pass	-
3.3	15.407(a)	Power Spectral Density	≤ 11 dBm	Pass	-
3.4	15.407(b)	Unwanted Emissions	15.407(b) & 15.209(a)	Pass	Under limit 3.89 dB at 5350.000 MHz
3.5	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 7.20 dB at 0.7755 MHz
3.6	15.407(c)	Automatically Discontinue Transmission	Discontinue Transmission	Pass	-
3.7	15.203 & 15.407(a)	Antenna Requirement	N/A	Pass	-

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AD9M-003A Page Number : 5 of 31
Report Issued Date : Jul. 15, 2019
Report Version : Rev. 02

Report No. : FR942441E

1 General Description

1.1 Applicant

LEOMO, Inc.

7-22-17 Nishi Gotanda TOC Bldg. 7F Shinagawa-ku, Tokyo, 1410031, Japan

1.2 Manufacturer

LEOMO, Inc.

2000 Central Avenue, Suite 150, Boulder CO 80301, USA

1.3 Product Feature of Equipment Under Test

Product Feature				
Equipment	Smartphone			
Brand Name	LEOMO			
Model Name	LEM-TS1			
FCC ID	2AD9M-003A			
EUT supports Radios application	GSM/WCDMA/LTE WLAN 2.4GHz 802.11b/g/n HT20/HT40 WLAN 5GHz 802.11a/n HT20/HT40 Bluetooth BR/EDR/LE/ANT+ NFC and GNSS			
IMEI Code	Conducted: N/A Radiation: 355681100008745/355681100008700 Conduction: 355681100008836			
HW Version	DVT			
SW Version	000T_1_020			
EUT Stage	Identical Prototype			

Report No.: FR942441E

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

 Sporton International (Kunshan) Inc.
 Page Number
 : 6 of 31

 TEL: +86-512-57900158
 Report Issued Date
 : Jul. 15, 2019

 FAX: +86-512-57900958
 Report Version
 : Rev. 02

FCC ID: 2AD9M-003A Report Template No.: BU5-FR15EWLAC MA Version 2.0

1.4 Product Specification of Equipment Under Test

Oten les le selete I Pre les t Ou e d'Centre		
Standards-rel	ated Product Specification	
	5180 MHz ~ 5240 MHz	
Tx/Rx Frequency Range	5260 MHz ~ 5320 MHz	
	5500 MHz ~ 5700 MHz	
	<5180 MHz ~ 5240 MHz>	
	802.11a: 12.90 dBm / 0.0195 W	
	802.11n HT20 : 10.90 dBm / 0.0123 W	
	802.11n HT40 : 10.90 dBm / 0.0123 W	
	<5260 MHz ~ 5320 MHz>	
Maximum Output Power to Antenna	802.11a: 12.80 dBm / 0.0191 W	
Maximum Output I Ower to Antenna	802.11n HT20 : 10.90 dBm / 0.0123 W	
	802.11n HT40 : 10.90 dBm / 0.0123 W	
	<5500 MHz ~ 5700 MHz >	
	802.11a: 12.90 dBm / 0.0195 W	
	802.11n HT20 : 10.90 dBm / 0.0123 W	
	802.11n HT40 : 10.90 dBm / 0.0123 W	
	<5180 MHz ~ 5240 MHz>	
	802.11a : 17.25 MHz	
	802.11n HT20 : 18.15 MHz	
	802.11n HT40 : 36.50 MHz	
	<5260 MHz ~ 5320 MHz>	
99% Occupied Bandwidth	802.11a : 17.40 MHz	
3370 Occupied Ballawidili	802.11n HT20 : 18.10 MHz	
	802.11n HT40 : 36.60 MHz	
	<5500 MHz ~ 5700 MHz >	
	802.11a : 17.30 MHz	
	802.11n HT20 : 18.10 MHz	
	802.11n HT40 : 36.60 MHz	
	<5150 MHz ~ 5250 MHz>	
	Loop Antenna with gain -0.73 dBi	
Antonno Timo / Osin	<5250 MHz ~ 5350 MHz>	
Antenna Type / Gain	Loop Antenna with gain -0.54 dBi	
	<5470 MHz ~ 5700 MHz>	
	Loop Antenna with gain 1.82 dBi	
Type of Modulation	802.11a/n : OFDM (BPSK / QPSK / 16QAM / 64QAM)	

Report No.: FR942441E

Note: WLAN operation in 5600 MHz ~ 5650 MHz is notched.

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

 Sporton International (Kunshan) Inc.
 Page Number
 : 7 of 31

 TEL: +86-512-57900158
 Report Issued Date
 : Jul. 15, 2019

 FAX: +86-512-57900958
 Report Version
 : Rev. 02

FCC ID: 2AD9M-003A Report Template No.: BU5-FR15EWL AC MA Version 2.0

1.6 Testing Location

Sporton International (Kunshan) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Report No.: FR942441E

Test Firm	Sporton International (Kunshan) Inc.		
	No. 1098, Pengxi North Road, Kunshan Economic Development Zone		
Test Site Location	Jiangsu Province 215300 People's Republic of China		
lest Site Location	TEL: +86-512-57900158		
	FAX: +86-512-579009	58	
Toot Site No	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.
Test Site No.	03CH05-KS	CN1257	314309

SPORTON INTERNATIONAL INC. is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190) and under the FCC-recognized accredited testing laboratories by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.				
	No.52, Huaya 1st Rd., Guisha	n Dist. Taoyuan City Taiwa	an		
Test Site Location	Tel: 886-3-327-3456				
	FAX: +886-3-327-0978				
	Sporton Site No.	FCC designation No.	FCC Test Firm		
Test Site No.		. co accignation its	Registration No.		
lest site No.	TH05-HY	TW1190	553509		
	CO05-HY	1001190	333309		

Test data subcontracted: All test item of this report except Radiated Spurious Emission.

 Sporton International (Kunshan) Inc.
 Page Number
 : 8 of 31

 TEL: +86-512-57900158
 Report Issued Date
 : Jul. 15, 2019

 FAX: +86-512-57900958
 Report Version
 : Rev. 02

FCC ID: 2AD9M-003A Report Template No.: BU5-FR15EWLAC MA Version 2.0

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Report No.: FR942441E

- 47 CFR Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
- ANSI C63.10-2013

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AD9M-003A Page Number : 9 of 31
Report Issued Date : Jul. 15, 2019
Report Version : Rev. 02

2 Test Configuration of Equipment Under Test

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Y plane) were recorded in this report.

Report No.: FR942441E

b. AC power line Conducted Emission was tested under maximum output power.

2.1 Carrier Frequency and Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	36	5180	44	5220
5150-5250 MHz	38*	5190	46*	5230
Band 1 (U-NII-1)	40	5200	48	5240
(0 1411 1)	42#	5210		

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	52	5260	60	5300
5250-5350 MHz Band 2	54*	5270	62*	5310
(U-NII-2A)	56	5280	64	5320
(3 :::: 27)	58#	5290		

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	100	5500	112	5560
	102*	5510	116	5580
5470-5725 MHz	104	5520	132	5660
Band 3 (U-NII-2C)	106#	5530	134*	5670
(3 : 111 23)	108	5540	136	5680
	110*	5550	140	5700

Note:

- 1. The above Frequency and Channel in "*" were 802.11n HT40 and 802.11ac VHT40.
- 2. The above Frequency and Channel in "#" were 802.11ac VHT80.

 Sporton International (Kunshan) Inc.
 Page Number
 : 10 of 31

 TEL: +86-512-57900158
 Report Issued Date
 : Jul. 15, 2019

 FAX: +86-512-57900958
 Report Version
 : Rev. 02

FCC ID: 2AD9M-003A Report Template No.: BU5-FR15EWL AC MA Version 2.0

2.2 Test Mode

Final test modes are considering the modulation and worse data rates as below table.

Modulation	Data Rate
802.11a	6 Mbps
802.11n HT20	MCS0
802.11n HT40	MCS0

	Test Cases			
AC	Mode 1: LTE Band 17 Idle + Bluetooth Link + WLAN (5G)Link + ANT+Link + Power			
Conducted	Bank + USB Cable + Adapter			
Emission				

Ch. #		Band I: 5150-5250 MHz Band II: 5250-5350 MHz		Band III: 5470-5725MHz
		802.11a	802.11a	802.11a
L	Low	36	52	100
М	Middle	44	60	116
Н	High	48	64	140

Ch. #		Band I: 5150-5250 MHz	Band II: 5250-5350 MHz	Band III: 5470-5725MHz
		802.11n HT20	802.11n HT20	802.11n HT20
L	Low	36	52	100
M	Middle	44	60	116
Н	High	48	64	140

Ch. #		Band I: 5150-5250 MHz	Band II: 5250-5350 MHz	Band III:5470-5725MHz
	CII. #	802.11n HT40	802.11n HT40	802.11n HT40
L	Low	38	54	102
М	Middle	-	-	110
Н	High	46	62	134

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AD9M-003A Page Number : 11 of 31
Report Issued Date : Jul. 15, 2019
Report Version : Rev. 02

Report No. : FR942441E

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Base Station	Anritsu	MT8820C	N/A	N/A	Unshielded,1.8m
2.	GPS Station	Pendulum	GSG-54	N/A	N/A	Unshielded,1.8m
3.	Bluetooth Earphone	SonyErricsson	MW600	PY700A2029	N/A	N/A
4.	WLAN AP	ASUS	RT-AC1750	MSQ-RTAC66U B1	N/A	Unshielded,1.8m
5.	Notebook	DELL	Latitude E6320	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
6.	iPod	Apple	A1285	DoC	Shielded, 1.0m	N/A
7.	Adapter	Nokia	AS-10WU	N/A	N/A	N/A
8.	USB Cable	Nokia	N/A	N/A	Shielded, 1m	N/A
9.	ANT Plus	FIH	N/A	N/A	N/A	N/A
10.	Power Bank	LEOMO	LEM-PM1	N/A	N/A	N/A

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AD9M-003A Page Number : 12 of 31
Report Issued Date : Jul. 15, 2019
Report Version : Rev. 02

Report No.: FR942441E

2.5 EUT Operation Test Setup

For WLAN RF test items, an engineering test program was provided and enabled to make EUT continuously transmit/receive.

Report No.: FR942441E

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 3.5 dB and 10dB attenuator.

$$Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$$

= 3.5 + 10 = 13.5 (dB)

3 Test Result

3.1 26dB & 99% Occupied Bandwidth Measurement

3.1.1 Description of 26dB & 99% Occupied Bandwidth

This section is for reporting purpose only.

There is no restriction limits for bandwidth.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
 Section C) Emission bandwidth

Report No.: FR942441E

- 2. Set RBW = approximately 1% of the emission bandwidth.
- 3. Set the VBW > RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold
- 6. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
- 7. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1MHz and set the Video bandwidth (VBW) ≥ 3 * RBW.
- 8. Measure and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of 26dB & 99% Occupied Bandwidth

Please refer to Appendix A.

 Sporton International (Kunshan) Inc.
 Page Number
 : 14 of 31

 TEL: +86-512-57900158
 Report Issued Date
 : Jul. 15, 2019

 FAX: +86-512-57900958
 Report Version
 : Rev. 02

FCC ID: 2AD9M-003A Report Template No.: BU5-FR15EWL AC MA Version 2.0

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AD9M-003A

Report No.: FR942441E

3.2 Maximum Conducted Output Power Measurement

3.2.1 Limit of Maximum Conducted Output Power

<FCC 14-30 CFR 15.407>

For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output

power over the frequency band of operation shall not exceed 250 mW.

For the 5.25-5.700 GHz bands, the maximum conducted output power over the frequency bands of

operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission

bandwidth in megahertz.

For the 5.47-5.6 GHz and 5.65-5.700 GHz band, the maximum conducted output power shall not

exceed 250 mW or 11 + 10 log10 B, dBm, whichever power is less. The maximum e.i.r.p. shall not

exceed 1.0 W or 17 + 10 log10B, dBm, whichever is less. B is the 99% emission bandwidth in

megahertz.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall

be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Note that U-NII-2 band, devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in

order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

Page Number : 16 of 31
Report Issued Date : Jul. 15, 2019
Report Version : Rev. 02

Report No.: FR942441E

3.2.3 Test Procedures

The testing follows Method PM of FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

Method PM (Measurement using an RF average power meter):

- 1. Measurement is performed using a wideband RF power meter.
- 2. The EUT is configured to transmit continuously with a consistent duty cycle at its maximum power control level.
- 3. Measure the average power of the transmitter, and the average power is corrected with duty factor, $10 \log(1/x)$, where x is the duty cycle.

3.2.4 Test Setup

3.2.5 Test Result of Maximum Conducted Output Power

Please refer to Appendix A.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AD9M-003A Page Number : 17 of 31
Report Issued Date : Jul. 15, 2019
Report Version : Rev. 02

Report No.: FR942441E

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

<FCC 14-30 CFR 15.407>

For mobile and portable client devices in the 5.15–5.25 GHz band, the maximum power spectral density shall not exceed 11dBm in any 1 megahertz band.

Report No.: FR942441E

For the 5.25–5.700 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AD9M-003A Report Issued Date : Jul. 15, 2019
Report Version : Rev. 02

Page Number

Report Template No.: BU5-FR15EWL AC MA Version 2.0

: 18 of 31

3.3.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01. Section F) Maximum power spectral density.

Method SA-2

(trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).

- Measure the duty cycle.
- Set span to encompass the entire emission bandwidth (EBW) of the signal.
- Set RBW = 1 MHz.
- Set VBW ≥ 3 MHz.
- Number of points in sweep ≥ 2 Span / RBW.
- Sweep time = auto.
- Detector = RMS
- Trace average at least 100 traces in power averaging mode.
- Add 10 log(1/x), where x is the duty cycle, to the measured power in order to compute the
 average power during the actual transmission times. For example, add 10 log(1/0.25) = 6
 dB if the duty cycle is 25 percent.
- 1. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- 2. Each plot has already offset with cable loss, and attenuator loss. Measure the PPSD and record it.

3.3.4 Test Setup

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

Sporton International (Kunshan) Inc.
TEL: +86-512-57900158

FAX: +86-512-57900958 FCC ID: 2AD9M-003A Page Number : 19 of 31
Report Issued Date : Jul. 15, 2019
Report Version : Rev. 02

Report No.: FR942441E

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AD9M-003A

Page Number : 20 of 31 Report Issued Date: Jul. 15, 2019 Report Version : Rev. 02

Report No. : FR942441E

3.4 Unwanted Emissions Measurement

This section is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement.

Report No.: FR942441E

3.4.1 Limit of Unwanted Emissions

(1) For transmitters operating in the 5150-5250 MHz band: all emissions outside of the 5150-5350 MHz band shall not exceed an EIRP of –27dBm/MHz.

For transmitters operating in the 5250-5350 MHz band: all emissions outside of the 5150-5350 MHz band shall not exceed an EIRP of -27 dBm/MHz. Devices operating in the 5250-5350 MHz band that generate emissions in the 5150-5250 MHz band must meet all applicable technical requirements for operation in the 5150-5250 MHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5150-5250 MHz band.

For transmitters operating in the 5470-5600 MHz and 5650-5725MHz band: all emissions outside of the 5470-5600 MHz and 5650-5725MHz band shall not exceed an EIRP of -27 dBm/MHz.

(2) Unwanted spurious emissions fallen in restricted bands shall comply with the general field strength limits as below table,

Frequency	Field Strength	Measurement Distance	
(MHz)	(microvolts/meter)	(meters)	
0.009 - 0.490	2400/F(kHz)	300	
0.490 – 1.705	24000/F(kHz)	30	
1.705 – 30.0	30	30	
30 – 88	100	3	
88 – 216	150	3	
216 - 960	200	3	
Above 960	500	3	

FCC ID: 2AD9M-003A Report Template No.: BU5-FR15EWL AC MA Version 2.0

EIRP (dBm)	Field Strength at 3m (dBµV/m)	
- 27	68.2	

Report No.: FR942441E

Note: The following formula is used to convert the EIRP to field strength.

$$EIRP = E_{Meas} + 20log (d_{Meas}) - 104.7$$

where

EIRP is the equivalent isotropically radiated power, in dBm

 E_{Meas} is the field strength of the emission at the measurement distance, in $dB\mu V/m$

 d_{Meas} is the measurement distance, in \boldsymbol{m}

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AD9M-003A Report Issued Date: Jul. 15, 2019
Report Version: Rev. 02

Page Number

Report Template No.: BU5-FR15EWL AC MA Version 2.0

: 22 of 31

3.4.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01. Section G) Unwanted emissions measurement.

Report No.: FR942441E

- (1) Procedure for Unwanted Emissions Measurements Below 1000MHz
 - RBW = 120 kHz
 - VBW = 300 kHz
 - Detector = Peak
 - Trace mode = max hold
- (2) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz
 - RBW = 1 MHz
 - VBW ≥ 3 MHz
 - Detector = Peak
 - Sweep time = auto
 - Trace mode = max hold
- (3) Procedures for Average Unwanted Emissions Measurements Above 1000MHz
 - RBW = 1 MHz
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
- The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AD9M-003A

Page Number Report Issued Date: Jul. 15, 2019 Report Version : Rev. 02

Report Template No.: BU5-FR15EWL AC MA Version 2.0

: 23 of 31

3.4.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AD9M-003A Page Number : 24 of 31
Report Issued Date : Jul. 15, 2019
Report Version : Rev. 02

Report No.: FR942441E

For radiated emissions above 1GHz

3.4.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.4.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.4.7 Duty Cycle

Please refer to Appendix D.

3.4.8 Test Result of Radiated Spurious Emissions (30MHz ~ 10th Harmonic)

Please refer to Appendix C.

Report No.: FR942441E

Report Version : Rev. 02

3.5 AC Conducted Emission Measurement

3.5.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No.: FR942441E

Eroquency of emission (MUz)	Conducted limit (dBµV)			
Frequency of emission (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

^{*}Decreases with the logarithm of the frequency.

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

 Sporton International (Kunshan) Inc.
 Page Number
 : 26 of 31

 TEL: +86-512-57900158
 Report Issued Date
 : Jul. 15, 2019

 FAX: +86-512-57900958
 Report Version
 : Rev. 02

FAX: +86-512-57900958 Report Version : Rev. 02
FCC ID: 2AD9M-003A Report Template No.: BU5-FR15EWL AC MA Version 2.0

3.5.4 Test Setup

3.5.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AD9M-003A Page Number : 27 of 31
Report Issued Date : Jul. 15, 2019
Report Version : Rev. 02

Report No.: FR942441E

3.6 Automatically Discontinue Transmission

3.6.1 Limit of Automatically Discontinue Transmission

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization to describe how this requirement is met.

Report No.: FR942441E

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Result of Automatically Discontinue Transmission

While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AD9M-003A Report Issued Date: Jul. 15, 2019
Report Version: Rev. 02

Page Number

Report Template No.: BU5-FR15EWL AC MA Version 2.0

: 28 of 31

3.7 Antenna Requirements

3.7.1 Standard Applicable

If transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Report No.: FR942441E

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AD9M-003A Report Issued Date : Jul. 15, 2019
Report Version : Rev. 02

Page Number

Report Template No.: BU5-FR15EWL AC MA Version 2.0

: 29 of 31

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Hygrometer	Testo	DTM-303A	TP157075	N/A	Nov. 05, 2018	May 17, 2019~ May 21, 2019	Nov. 04, 2019	Conducted (TH05-HY)
Power Sensor	DARE	RPR3006W	13I00030S NO32	9kHz~6GHz	Dec. 03, 2018	May 17, 2019~ May 21, 2019	Dec. 02, 2019	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP40	100057	9kHz-40GHz	Nov. 21, 2018	May 17, 2019~ May 21, 2019	Nov. 20, 2019	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSV 30	100895	9kHz~30GHz	Apr. 20, 2018	May 17, 2019~ May 21, 2019	Apr. 19, 2019	Conducted (TH05-HY)
Switch Box & RF Cable	Burgeon	ETF-058	EC120838 2	N/A	Mar. 27, 2019	May 17, 2019~ May 21, 2019	Mar. 26, 2020	Conducted (TH05-HY)
Programmable Power Supply	GW Instek	PSS-2005	EL890094	1V~20V 0.5A~5A	Oct. 02, 2018	May 17, 2019~ May 21, 2019	Oct. 01, 2019	Conducted (TH05-HY)
EMI Test Receiver	Keysight	N9038A	MY572901 51	3Hz~8.5GHz;M ax 30dBm	Jun. 25, 2018	Jun. 05, 2019	Jun. 24, 2019	Radiation (03CH05-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY553705 28	10Hz-44GHz	Oct. 09, 2018	Jun. 05, 2019	Oct. 08, 2019	Radiation (03CH05-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Oct. 19, 2018	Jun. 05, 2019	Oct. 18, 2019	Radiation (03CH05-KS)
Bilog Antenna	TeseQ	CBL6111D	44483	30MHz-1GHz	Dec. 28, 2018	Jun. 05, 2019	Dec. 27, 2019	Radiation (03CH05-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	75959	1GHz~18GHz	Jan. 27, 2019	Jun. 05, 2019	Jan. 26, 2020	Radiation (03CH05-KS)
SHF-EHF Horn	Com-power	AH-840	101070	18GHz~40GHz	Jan. 05, 2019	Jun. 05, 2019	Jan. 04, 2020	Radiation (03CH05-KS)
Amplifier	SONOMA	310N	187289	9KHz-1GHz	Aug. 06.2018	Jun. 05, 2019	Aug. 05, 2019	Radiation (03CH05-KS)
Amplifier	MITEQ	TTA1840-35- HG	2014749	18~40GHz	Jan. 14, 2019	Jun. 05, 2019	Jan. 13, 2020	Radiation (03CH05-KS)
high gain Amplifier	MITEQ	AMF-7D-0010 1800-30-10P	2025788	1Ghz-18Ghz	Aug. 17, 2018	Jun. 05, 2019	Aug. 16, 2019	Radiation (03CH05-KS)
Amplifier	Keysight	83017A	MY532703 16	500MHz~26.5G Hz	Dec. 22, 2018	Jun. 05, 2019	Dec. 21, 2019	Radiation (03CH05-KS)
AC Power Source	Chroma	61601	F1040900 04	N/A	NCR	Jun. 05, 2019	NCR	Radiation (03CH05-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Jun. 05, 2019	NCR	Radiation (03CH05-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Jun. 05, 2019	NCR	Radiation (03CH05-KS)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	May. 28, 2019	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9KHz~3.6GHz	Nov. 12, 2018	May. 28, 2019	Nov. 11, 2019	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	Mar. 19, 2019	May. 28, 2019	Mar. 18, 2020	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Nov. 14, 2018	May. 28, 2019	Nov. 13, 2019	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 09, 2018	May. 28, 2019	Nov. 08, 2019	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	May. 28, 2019	N/A	Conduction (CO05-HY)
LF Cable	HUBER + SUHNER	RG-214/U	LF01	N/A	Dec. 31, 2018	May. 28, 2019	Dec. 30, 2019	Conduction (CO05-HY)
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100851	N/A	Dec. 31, 2018	May. 28, 2019	Dec. 30, 2019	Conduction (CO05-HY)

NCR: No Calibration Required

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AD9M-003A Page Number : 30 of 31
Report Issued Date : Jul. 15, 2019
Report Version : Rev. 02

Report No.: FR942441E

5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

<u>Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)</u>

Measuring Uncertainty	for a Level of Confidence	2.7 dB
of 95% (U = 2Uc(y))	2.7 UB

<u>Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	5.0 dB
of 95% (U = 2Uc(y))	5.0 dB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0 dB
of 95% (U = 2Uc(y))	3.0 dB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	E 0.4D
of 95% (U = 2Uc(y))	5.0 dB

Sporton International (Kunshan) Inc. TEL: +86-512-57900158

FAX: +86-512-57900958 FCC ID: 2AD9M-003A Page Number : 31 of 31
Report Issued Date : Jul. 15, 2019
Report Version : Rev. 02

Report No.: FR942441E

Appendix A. Conducted Test Results

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AD9M-003A Page Number : A1 of A1
Report Issued Date : Jul. 15, 2019
Report Version : Rev. 02

Report Template No.: BU5-FR15EWL AC MA Version 2.0

Report No. : FR942441E

Test Engineer:	Howard Lin	Temperature:	21~25	°C
Test Date:	2019/5/17~2019/05/21	Relative Humidity:	51~54	%

TEST RESULTS DATA 26dB and 99% OBW

	Band I													
Mod.	Mod. Data Rate		CH.	Freq. (MHz)	99 Band (MI	width	Band	dB lwidth Hz)	Band Powe	99% width r Limit Bm)	Band EIRP	99% lwidth Limit Bm)		Note
					Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2		
11a	6Mbps	1	36	5180	17.25	-	35.79	-	-		22.37	-		
11a	6Mbps	1	44	5220	17.15	-	33.92	-	-		22.34	-		
11a	6Mbps	1	48	5240	17.15	-	35.67	-		-		-		
HT20	MCS0	1	36	5180	18.10	-	28.08	-		-		-		
HT20	MCS0	1	44	5220	18.15	-	28.32	-	-		22.59	-		
HT20	MCS0	1	48	5240	18.10	-	27.26	-		-	22.58	-		
HT40	MCS0	1	38	5190	36.50	-	49.14	-	-		23.01	-		
HT40	MCS0	1	46	5230	36.50	-	48.17	-		-	23.01	-		

TEST RESULTS DATA Average Power Table

	FCC Band I													
Mod. Data		N⊤x	CH.	Freq. (MHz)		Average conducte Power (dBm)		Cond Powe	CC ucted r Limit Bm)		G Bi)		Pass/Fail	
					Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2			
11a	6Mbps	1	36	5180	12.90	-		24.00	-	-0.73	-		Pass	
11a	6Mbps	1	44	5220	12.90	-		24.00	-	-0.73	-		Pass	
11a	6Mbps	1	48	5240	12.90	-		24.00	-	-0.73	-		Pass	
HT20	MCS0	1	36	5180	10.80	-		24.00	-	-0.73	-		Pass	
HT20	MCS0	1	44	5220	10.60	-		24.00	-	-0.73	-		Pass	
HT20	MCS0	1	48	5240	10.90	-		24.00	-	-0.73	-		Pass	
HT40	MCS0	1	38	5190	10.90	-		24.00	-	-0.73	-		Pass	
HT40	MCS0	1	46	5230	10.60	-		24.00	-	-0.73	-		Pass	

TEST RESULTS DATA Power Spectral Density

	FCC Band I														
Mod.	Mod. Data Rate		CH.	Freq. (MHz)	Du Fad (d	ctor		Average Power Density IBm/MH		PS Lir	rage SD mit /MHz)		G Bi)		Pass /Fail
					Ant 1	Ant 2	Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2		
11a	6Mbps	1	36	5180	0.61	-	0.69	-		11.00	-	-0.73	-		Pass
11a	6Mbps	1	44	5220	0.61	-	1.91	-		11.00	-	-0.73	-	*	Pass
11a	6Mbps	1	48	5240	0.61	-	1.45	-		11.00	-	-0.73	-	*	Pass
HT20	MCS0	1	36	5180	0.63	-	-1.20	-		11.00	-	-0.73	-	•	Pass
HT20	MCS0	1	44	5220	0.63	-	-1.12	-		11.00	-	-0.73	-		Pass
HT20	MCS0	1	48	5240	0.63	-	-0.51	-		11.00	-	-0.73	-	•	Pass
HT40	MCS0	1	38	5190	0.65	-	-3.58	-		11.00	-	-0.73	-	*	Pass
HT40	MCS0	1	46	5230	0.65	-	-3.91	-		11.00	-	-0.73	-		Pass

TEST RESULTS DATA 26dB and 99% OBW

								Band	II						
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99 Band (MI	width	26 dB Bandwidth (MHz)		Band Powe	99% width r Limit Bm)	Band EIRP		Band Powe	26dB lwidth r Limit Bm)	Note
					Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	
11a	6Mbps	1	52	5260	17.40	-	36.07	-	23.41	-	29.41	-	23.98	-	
11a	6Mbps	1	60	5300	17.25	-	38.88	-	23.37	-	29.37	-	23.98	-	
11a	6Mbps	1	64	5320	17.20	-	30.75	-	23.36	-	29.36	-	23.98	-	
HT20	MCS0	1	52	5260	17.05	-	26.40	-	23.32	-	29.32	-	23.98	-	
HT20	MCS0	1	60	5300	18.10	-	33.25	-	23.58	-	29.58	-	23.98	-	
HT20	MCS0	1	64	5320	18.10	-	25.48	-	23.58	-	29.58	-	23.98	-	
HT40	MCS0	1	54	5270	36.60	-	48.93	-	23.98	-	30.00	-	23.98	-	
HT40	MCS0	1	62	5310	36.50	-	47.63	-	23.98	-	30.00	-	23.98	-	

TEST RESULTS DATA Average Power Table

							FCC Ba	ınd II					
Mod.	Data Rate	NTX	CH.	Freq. (MHz)		Average conducte Power (dBm)		Cond Powe	CC ucted r Limit Bm)	D (dl	G Bi)	EIRP Power Limit (dBm)	Pass/Fail
	1a 6Mbps 1				Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2	(42)	
11a	6Mbps	1	52	5260	12.80	-		23.98	-	-0.54	-	26.99	Pass
11a	6Mbps	1	60	5300	12.80	-		23.98	-	-0.54	-	26.99	Pass
11a	6Mbps	1	64	5320	12.70	-		23.98	-	-0.54	-	26.99	Pass
HT20	MCS0	1	52	5260	10.70	-		23.98	-	-0.54	-	26.99	Pass
HT20	MCS0	1	60	5300	10.90	-		23.98	-	-0.54	-	26.99	Pass
HT20	MCS0	1	64	5320	10.90	-		23.98	-	-0.54	-	26.99	Pass
HT40	MCS0	1	54	5270	10.90	-		23.98	-	-0.54	-	26.99	Pass
HT40	MCS0	1	62	5310	10.90	-		23.98	-	-0.54	-	26.99	Pass

TEST RESULTS DATA Power Spectral Density

								Band	II						
Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	Du Fad (d	ctor		Average Power Density Bm/MH		PS Lir	rage SD mit /MHz)		G Bi)		Pass /Fail
					Ant 1	Ant 2	Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2		
11a	6Mbps	1	52	5260	0.61	-	1.29	-		11.00	-	-0.54	-		Pass
11a	6Mbps	1	60	5300	0.61	-	0.82	-		11.00	-	-0.54	-	*	Pass
11a	6Mbps	1	64	5320	0.61	-	0.94	-		11.00	-	-0.54	-	*	Pass
HT20	MCS0	1	52	5260	0.63	-	-0.81	-		11.00	-	-0.54	-		Pass
HT20	MCS0	1	60	5300	0.63	-	-1.34	-		11.00	-	-0.54	-		Pass
HT20	MCS0	1	64	5320	0.63	-	-0.56	-		11.00	-	-0.54	-	*	Pass
HT40	MCS0	1	54	5270	0.65	-	-4.11	-		11.00	-	-0.54	-		Pass
HT40	MCS0	1	62	5310	0.65	-	-4.29	-		11.00	-	-0.54	-		Pass

TEST RESULTS DATA 26dB and 99% OBW

								Band	III							
Mod.	Rate		CH.	Freq. (MHz)	In U-N	9% width NII 2C Hz)	Band In U-N	dB width NII 2C Hz)	Band Powe	99% width r Limit Bm)	Band EIRP		Band Powe	26dB lwidth r Limit Bm)		idth for ddle nnel
					Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2
11a	6Mbps	1	100	5500	17.25	-	36.31	-	23.37	-	29.37	-	23.98	-		
11a	6Mbps	1	116	5580	17.30	-	36.88	-	23.38	-	29.38	-	23.98	-		
11a	6Mbps	1	140	5700	17.15	-	34.55	-	23.34	-	29.34	-	23.98	-		
HT20	MCS0	1	100	5500	18.10	-	35.08	-	23.58	-	29.58	-	23.98	-		
HT20	MCS0	1	116	5580	18.10	-	29.73	-	23.58	-	29.58	-	23.98	-		
HT20	MCS0	1	140	5700	18.05	-	24.16	-	23.56	-	29.56	-	23.98	-		
HT40	MCS0	1	102	5510	36.60	-	50.37	-	23.98	-	30.00	-	23.98	-		
HT40	MCS0	1	110	5550	36.50	-	45.72	-	23.98	-	30.00	-	23.98	-		
HT40	MCS0	1	134	5670	36.50	-	48.52	-	23.98	-	30.00	-	23.98	-		

TEST RESULTS DATA Average Power Table

						ı	FCC Baı	nd III					
Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)		Average conducte Power (dBm)		Cond Powe	CC ucted r Limit Bm)	D (di	G Bi)	EIRP Power Limit (dBm)	Pass/Fail
					Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2	(42)	
11a	6Mbps	1	100	5500	12.60	-		23.98	-	1.82	-	26.99	Pass
11a	6Mbps	1	116	5580	12.90	-		23.98	-	1.82	-	26.99	Pass
11a	6Mbps	1	140	5700	12.90	-		23.98	-	1.82	-	26.99	Pass
HT20	MCS0	1	100	5500	10.90	-		23.98	-	1.82	-	26.99	Pass
HT20	MCS0	1	116	5580	10.90	-		23.98	-	1.82	-	26.99	Pass
HT20	MCS0	1	140	5700	10.90	-		23.98	-	1.82	-	26.99	Pass
HT40	MCS0	1	102	5510	10.90	-		23.98	-	1.82	-	26.99	Pass
HT40	MCS0	1	110	5550	10.60	-		23.98	-	1.82	-	26.99	Pass
HT40	MCS0	1	134	5670	10.90	-		23.98	-	1.82	-	26.99	Pass

TEST RESULTS DATA Power Spectral Density

								Band	III						
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Fac	uty ctor B)		Average Power Density IBm/MH		PS Lir	rage SD mit /MHz)	D (dl	_		Pass /Fail
					Ant 1	Ant 2	Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2		
11a	6Mbps	1	100	5500	0.61	-	1.65	-		11.00	-	1.82	-		Pass
11a	6Mbps	1	116	5580	0.61	-	1.83	-		11.00	-	1.82	-	*	Pass
11a	6Mbps	1	140	5700	0.61	-	1.57	-		11.00	-	1.82	-	,	Pass
HT20	MCS0	1	100	5500	0.63	-	-0.15	-		11.00	-	1.82	-	*	Pass
HT20	MCS0	1	116	5580	0.63	-	-0.34	-		11.00	-	1.82	-	*	Pass
HT20	MCS0	1	140	5700	0.63	-	-0.98	-		11.00	-	1.82	-		Pass
HT40	MCS0	1	102	5510	0.65	-	-3.43	-		11.00	-	1.82	-		Pass
HT40	MCS0	1	110	5550	0.65	-	-3.82	-		11.00	-	1.82	-		Pass
HT40	MCS0	1	134	5670	0.65	-	-3.74	-		11.00	-	1.82	-		Pass

Appendix B. AC Conducted Emission Test Results

Frequency in Hz

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
0.152250		33.03	55.88	22.85	L1	OFF	19.5
0.152250	43.53		65.88	22.35	L1	OFF	19.5
0.197250		29.44	53.73	24.29	L1	OFF	19.5
0.197250	41.03		63.73	22.70	L1	OFF	19.5
0.332250		28.00	49.40	21.40	L1	OFF	19.5
0.332250	34.86		59.40	24.54	L1	OFF	19.5
0.620250		26.63	46.00	19.37	L1	OFF	19.6
0.620250	34.05		56.00	21.95	L1	OFF	19.6
0.775500		38.80	46.00	7.20	L1	OFF	19.6
0.775500	46.39		56.00	9.61	L1	OFF	19.6
0.784500		33.85	46.00	12.15	L1	OFF	19.6
0.784500	40.78		56.00	15.22	L1	OFF	19.6
0.903750		32.03	46.00	13.97	L1	OFF	19.6
0.903750	40.48		56.00	15.52	L1	OFF	19.6
1.398750		27.65	46.00	18.35	L1	OFF	19.6
1.398750	35.70		56.00	20.30	L1	OFF	19.6
2.334750		28.69	46.00	17.31	L1	OFF	19.5
2.334750	36.27		56.00	19.73	L1	OFF	19.5
5.741250		27.21	50.00	22.79	L1	OFF	19.8
5.741250	34.00		60.00	26.00	L1	OFF	19.8
14.023500		25.39	50.00	24.61	L1	OFF	20.1
14.023500	30.31		60.00	29.69	L1	OFF	20.1

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AD9M-003A Page Number : B1 of B2
Report Issued Date : Jul. 15, 2019
Report Version : Rev. 02

Report No.: FR942441E

Test Engineer :	Jimmy Chang	Temperature :	24~26 ℃
rest Engineer.		Relative Humidity :	54~56%
Test Voltage :	120Vac / 60Hz	Phase :	Neutral
	AU		" " "

Remark: All emissions not reported here are more than 10 dB below the prescribed limit.

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
0.152250		32.74	55.88	23.14	N	OFF	19.5
0.152250	42.32		65.88	23.56	N	OFF	19.5
0.199500		28.55	53.63	25.08	N	OFF	19.5
0.199500	39.48		63.63	24.15	N	OFF	19.5
0.467250		24.31	46.56	22.25	N	OFF	19.5
0.467250	30.26		56.56	26.30	N	OFF	19.5
0.710250		26.94	46.00	19.06	N	OFF	19.6
0.710250	35.94		56.00	20.06	N	OFF	19.6
0.777750		34.61	46.00	11.39	N	OFF	19.6
0.777750	41.19		56.00	14.81	N	OFF	19.6
1.493250		27.08	46.00	18.92	N	OFF	19.6
1.493250	37.86		56.00	18.14	N	OFF	19.6
1.869000		28.49	46.00	17.51	N	OFF	19.6
1.869000	36.69		56.00	19.31	N	OFF	19.6
4.110000		26.50	46.00	19.50	N	OFF	19.7
4.110000	32.29		56.00	23.71	N	OFF	19.7
14.743500		24.74	50.00	25.26	N	OFF	20.1
14.743500	26.14		60.00	33.86	N	OFF	20.1

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AD9M-003A

Page Number : B2 of B2 Report Issued Date: Jul. 15, 2019 Report Version : Rev. 02

Report No. : FR942441E

Appendix C. Radiated Spurious Emission

Band 1 - 5150~5250MHz

WIFI 802.11a (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5127.68	52.19	-21.81	74	45.49	35.06	8.14	36.5	100	225	Р	Н
		5127.84	41.63	-12.37	54	34.93	35.06	8.14	36.5	100	225	Α	Н
000.44	*	5186	97.29	-	-	90.53	35.08	8.17	36.49	100	225	Р	Н
802.11a		5186	89.37	-	-	82.61	35.08	8.17	36.49	100	225	Α	Н
CH 36 5180MHz		5149.98	52.29	-21.71	74	45.59	35.06	8.14	36.5	281	150	Р	V
3 TOUWINZ		5127.84	43.5	-10.5	54	36.8	35.06	8.14	36.5	281	150	Α	٧
	*	5186	102.5	-	-	95.74	35.08	8.17	36.49	281	150	Р	٧
		5186	94.65	-	-	87.89	35.08	8.17	36.49	281	150	Α	V
	1. No	o other spurio	us found.										
Remark	2. Al	l results are P	ASS agains	st Peak	and Average	e limit line	Э.						

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AD9M-003A Page Number : C1 of C21
Report Issued Date : Jul. 15, 2019
Report Version : Rev. 01

Report No.: FR942441E

Band 1 5150~5250MHz

WIFI 802.11a (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)		
802.11a CH 36		10360	46.67	-21.63	68.3	60.39	37.47	11.87	63.06	100	0	Р	Н
5180MHz		10360	44.72	-23.58	68.3	58.44	37.47	11.87	63.06	100	360	Р	٧
802.11a CH 44		10440	45.63	-22.67	68.3	59.24	37.5	11.93	63.04	100	0	Р	Н
5220MHz		10440	44.71	-23.59	68.3	58.32	37.5	11.93	63.04	100	0	Р	V
802.11a		10480	47.21	-21.09	68.3	60.74	37.53	11.97	63.03	100	0	Р	Н
CH 48 5240MHz		10480	44.68	-23.62	68.3	58.21	37.53	11.97	63.03	100	0	Р	V
Remark		o other spurio I results are F		st Peak	and Average	e limit line).						

Sporton International (Kunshan) Inc.

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AD9M-003A Page Number : C2 of C21
Report Issued Date : Jul. 15, 2019
Report Version : Rev. 01

Report No. : FR942441E

Band 1 5150~5250MHz WIFI 802.11n HT20 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	_	
		5125.92	51.99	-22.01	74	45.29	35.06	8.14	36.5	115	216	Р	Н
		5128.32	41.59	-12.41	54	34.89	35.06	8.14	36.5	115	216	Α	Н
802.11n	*	5184	96.96	-	-	90.2	35.08	8.17	36.49	115	216	Р	Н
HT20		5184	88.34	-	-	81.58	35.08	8.17	36.49	115	216	Α	Н
CH 36		5124.48	51.75	-22.25	74	45.05	35.06	8.14	36.5	324	148	Р	٧
5180MHz		5128.16	42.46	-11.54	54	35.76	35.06	8.14	36.5	324	148	Α	7
	*	5174	99.63	-	-	92.87	35.08	8.17	36.49	324	148	Р	٧
		5174	92.15	-	-	85.39	35.08	8.17	36.49	324	148	Α	٧
Damada	1. N	o other spurio	us found.										

Remark

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AD9M-003A

: C3 of C21 Page Number Report Issued Date: Jul. 15, 2019 Report Version : Rev. 01

Report No. : FR942441E

All results are PASS against Peak and Average limit line.

Band 1 5150~5250MHz

WIFI 802.11n HT20 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos	Avg.	
802.11n HT20		10360	45.16	-23.14	68.3	58.88	37.47	11.87	63.06	100	0	Р	Н
CH 36 5180MHz		10360	44.12	-24.18	68.3	57.84	37.47	11.87	63.06	100	360	Р	V
802.11n HT20		10440	46.64	-21.66	68.3	60.25	37.5	11.93	63.04	100	0	Р	Н
CH 44 5220MHz		10440	44.31	-23.99	68.3	57.92	37.5	11.93	63.04	100	0	Р	V
802.11n HT20		10480	46.39	-21.91	68.3	59.92	37.53	11.97	63.03	100	0	Р	Н
CH 48 5240MHz		10480	44.11	-24.19	68.3	57.64	37.53	11.97	63.03	100	0	Р	V
Remark		o other spurio I results are P		st Peak	and Average	e limit line).					,	

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AD9M-003A Page Number : C4 of C21
Report Issued Date : Jul. 15, 2019
Report Version : Rev. 01

Report No. : FR942441E

Band 1 5150~5250MHz WIFI 802.11n HT40 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	
		5147.2	56.82	-17.18	74	50.12	35.06	8.14	36.5	116	211	Р	Н
		5149.98	44.49	-9.51	54	37.79	35.06	8.14	36.5	116	211	Α	Н
	*	5204	93.9	-	-	87.1	35.09	8.2	36.49	116	211	Р	Н
		5204	86.62	-	-	79.82	35.09	8.2	36.49	116	211	Α	Н
802.11n		5355.36	48.65	-25.35	74	41.64	35.16	8.3	36.45	116	211	Р	Н
HT40		5352.66	39.42	-14.58	54	32.41	35.16	8.3	36.45	116	211	Α	Н
CH 38		5148.8	59.76	-14.24	74	53.06	35.06	8.14	36.5	339	151	Р	V
5190MHz		5149.98	46.77	-7.23	54	40.07	35.06	8.14	36.5	339	151	Α	V
	*	5200	98.17	-	-	91.37	35.09	8.2	36.49	339	151	Р	V
		5200	90.56	-	-	83.76	35.09	8.2	36.49	339	151	Α	V
		5383.26	49.3	-24.7	74	42.27	35.18	8.3	36.45	339	151	Р	V
		5351.76	39.6	-14.4	54	32.59	35.16	8.3	36.45	339	151	Α	V

Remark

Sporton International (Kunshan) Inc.

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AD9M-003A Page Number : C5 of C21
Report Issued Date : Jul. 15, 2019
Report Version : Rev. 01

Report No. : FR942441E

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 1 5150~5250MHz

WIFI 802.11n HT40 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna		Preamp		Table		
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)		
802.11n HT40		10380	46.21	-22.09	68.3	59.88	37.48	11.9	63.05	100	0	Р	Н
CH 38 5190MHz		10380	43.79	-24.51	68.3	57.46	37.48	11.9	63.05	100	360	Р	V
802.11n HT40		10460	45.53	-22.77	68.3	59.09	37.51	11.97	63.04	100	0	Р	Н
CH 46 5230MHz		10460	44.97	-23.33	68.3	58.53	37.51	11.97	63.04	100	0	Р	V
Remark		o other spurio I results are F		st Peak	and Average	e limit line							

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AD9M-003A Page Number : C6 of C21
Report Issued Date : Jul. 15, 2019
Report Version : Rev. 01

Report No. : FR942441E

Band 2 - 5250~5350MHz

WIFI 802.11a (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	*	5322	99.13	-	-	92.17	35.15	8.27	36.46	108	212	Р	Н
		5322	92.41	-	-	85.45	35.15	8.27	36.46	108	212	Α	Н
000.44		5350.7	51.26	-22.74	74	44.25	35.16	8.3	36.45	108	212	Р	Н
802.11a		5372.7	41.6	-12.4	54	34.58	35.17	8.3	36.45	108	212	Α	Н
CH 64 5320MHz	*	5326	104.52	-	-	97.56	35.15	8.27	36.46	306	143	Р	V
3320WITI2		5326	97.02	-	-	90.06	35.15	8.27	36.46	306	143	Α	V
		5353.8	54.91	-19.09	74	47.9	35.16	8.3	36.45	306	143	Р	V
		5362.1	46.2	-7.8	54	39.18	35.17	8.3	36.45	306	143	Α	V
Remark	1. N	o other spurio	us found.										
	2. Al	l results are P	ASS agains	t Peak	and Average	e limit line) .						

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AD9M-003A Page Number : C7 of C21
Report Issued Date : Jul. 15, 2019
Report Version : Rev. 01

Report No. : FR942441E

Band 2 5250~5350MHz

WIFI 802.11a (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	
802.11a		10520	46.45	-21.85	68.3	59.94	37.54	12	63.03	100	0	Р	Н
CH 52 5260MHz		10520	43.69	-24.61	68.3	57.18	37.54	12	63.03	100	0	Р	V
802.11a		10600	45.41	-28.59	74	58.78	37.58	12.06	63.01	100	0	Р	Н
CH 60 5300MHz		10600	44.77	-29.23	74	58.14	37.58	12.06	63.01	100	0	Р	V
802.11a		10640	46.3	-27.7	74	59.61	37.6	12.09	63	100	0	Р	Н
CH 64 5320MHz		10640	43.99	-30.01	74	57.3	37.6	12.09	63	150	0	Р	V
Remark		o other spurio I results are P		t Peak	and Average	e limit line) .						

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AD9M-003A Page Number : C8 of C21
Report Issued Date : Jul. 15, 2019
Report Version : Rev. 01

Report No. : FR942441E

Band 2 5250~5350MHz WIFI 802.11n HT20 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	*	5326	98.11	-	-	91.15	35.15	8.27	36.46	108	211	Р	Н
		5326	90.68	-	-	83.72	35.15	8.27	36.46	108	211	Α	Н
802.11n		5371.2	50.11	-23.89	74	43.09	35.17	8.3	36.45	108	211	Р	Н
HT20		5352.9	41.82	-12.18	54	34.81	35.16	8.3	36.45	108	211	Α	Н
CH 64	*	5316	102.43	-	-	95.47	35.15	8.27	36.46	343	143	Р	V
5320MHz		5316	95.06	-	-	88.1	35.15	8.27	36.46	343	143	Α	٧
		5374.1	51.44	-22.56	74	44.42	35.17	8.3	36.45	343	143	Р	V
		5371.7	44.2	-9.8	54	37.18	35.17	8.3	36.45	343	143	Α	V

Remark

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AD9M-003A Page Number : C9 of C21
Report Issued Date : Jul. 15, 2019
Report Version : Rev. 01

Report No.: FR942441E

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 2 5250~5350MHz

WIFI 802.11n HT20 (Harmonic @ 3m)

WIFI	Noto	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Dook	Dal
Ant.	NOLE	riequeilcy	Levei	Limit	Line	Level	Factor	Loss	Factor	Pos	Pos		
1		(MHz)	(dBµV/m)		(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)			
802.11n		10520	46.72	-21.58	68.3	60.21	37.54	12	63.03	100	0	Р	Н
HT20		10320	40.72	-21.50	00.3	00.21	37.54	12	03.03	100	U	Г	- 11
CH 52		10520	44.15	-24.15	68.3	57.64	37.54	12	63.03	100	0	Р	V
5260MHz		10320	44.15	-24.13	00.3	37.04	37.54	12	03.03	100	U	Г	V
802.11n		10600	46.36	-27.64	74	59.73	37.58	12.06	63.01	100	0	Р	Н
HT20		10000	40.00	27.04		33.73	37.30	12.00	00.01	100	0	'	""
CH 60		10600	44.82	-29.18	74	58.19	37.58	12.06	63.01	100	0	Р	V
5300MHz		10000	11.02	20.10		00.10	07.00	12.00	00.01	100	•	•	•
802.11n		10640	46.01	-27.99	74	59.32	37.6	12.09	63	100	0	Р	Н
HT20											-		
CH 64		10640	45.03	-28.97	74	58.34	37.6	12.09	63	100	360	Р	V
5320MHz													
Remark		o other spurio I results are F		st Peak	and Average	e limit line	1						
1	Z. AI	i iesuits ale F	ASS agains	or Feak	and Average	5 III III III II	7 .						

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AD9M-003A Page Number : C10 of C21
Report Issued Date : Jul. 15, 2019
Report Version : Rev. 01

Report No. : FR942441E

Band 2 5250~5350MHz WIFI 802.11n HT40 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)		
		5130.08	50.61	-23.39	74	43.91	35.06	8.14	36.5	100	34	Р	Н
		5117.28	40.74	-13.26	54	34.06	35.05	8.14	36.51	100	34	Α	H
	*	5296	93.52	-	-	86.6	35.14	8.25	36.47	100	34	Р	Н
		5296	86.28	-	-	79.36	35.14	8.25	36.47	100	34	Α	Н
802.11n		5354.3	58.17	-15.83	74	51.16	35.16	8.3	36.45	100	34	Р	Н
HT40		5350.2	45.99	-8.01	54	38.98	35.16	8.3	36.45	100	34	Α	Н
CH 62		5112.48	50.49	-23.51	74	43.85	35.05	8.1	36.51	397	329	Р	٧
5310MHz		5103.04	40.62	-13.38	54	33.99	35.04	8.1	36.51	397	329	Α	٧
	*	5322	98.9	-	-	91.94	35.15	8.27	36.46	397	329	Р	٧
		5322	91.31	-	-	84.35	35.15	8.27	36.46	397	329	Α	٧
		5351.6	62.39	-11.61	74	55.38	35.16	8.3	36.45	397	329	Р	V
		5350	50.11	-3.89	54	43.1	35.16	8.3	36.45	397	329	Α	V

Remark

Sporton International (Kunshan) Inc.

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AD9M-003A Page Number : C11 of C21
Report Issued Date : Jul. 15, 2019
Report Version : Rev. 01

Report No.: FR942441E

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 2 5250~5350MHz

WIFI 802.11n HT40 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table		
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)		
802.11n HT40		10540	46.35	-21.95	68.3	59.79	37.55	12.03	63.02	100	0	Р	н
CH 54 5270MHz		10540	44.56	-23.74	68.3	58	37.55	12.03	63.02	100	0	Р	V
802.11n HT40		10620	46.57	-27.43	74	59.9	37.59	12.09	63.01	100	0	Р	Н
CH 62 5310MHz		10620	45	-29	74	58.33	37.59	12.09	63.01	100	360	Р	V
Remark		o other spurio I results are F		st Peak	and Average	e limit line	e.						

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AD9M-003A Page Number : C12 of C21
Report Issued Date : Jul. 15, 2019
Report Version : Rev. 01

Report No. : FR942441E

Band 3 - 5470~5725MHz

WIFI 802.11a (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
		5408.88	49.16	-24.84	74	42.09	35.19	8.32	36.44	105	213	Р	Н
		5468.56	49.15	-19.15	68.3	41.96	35.22	8.4	36.43	105	213	Р	Н
		5447.44	40.81	-13.19	54	33.67	35.21	8.36	36.43	105	213	Α	Н
000.44	*	5508	96.56	-	-	89.3	35.24	8.44	36.42	105	213	Р	Н
802.11a		5508	88.81	-	-	81.55	35.24	8.44	36.42	105	213	Α	Н
CH 100 5500MHz		5447.92	51.42	-22.58	74	44.28	35.21	8.36	36.43	354	167	Р	٧
SSUUIVITZ		5469.68	52.3	-16	68.3	45.11	35.22	8.4	36.43	354	167	Р	V
		5447.92	43.24	-10.76	54	36.1	35.21	8.36	36.43	354	167	Α	٧
	*	5496	102.55	-	-	95.34	35.23	8.4	36.42	354	167	Р	٧
		5496	94.9	-	-	87.69	35.23	8.4	36.42	354	167	Α	٧
		5725.8	54.46	-13.84	68.3	47.06	35.22	8.61	36.43	400	200	Р	Н
000.44	*	5706	95.92	-	-	88.49	35.24	8.61	36.42	400	200	Р	Н
802.11a		5706	87.81	-	-	80.38	35.24	8.61	36.42	400	200	Α	Н
CH 140 5700MHz		5728.52	56.16	-12.14	68.3	48.76	35.22	8.61	36.43	330	169	Р	V
37 UUIVIMZ	*	5698	100	-	-	92.59	35.25	8.58	36.42	330	169	Р	V
		5698	92.28	-	-	84.87	35.25	8.58	36.42	330	169	Α	V

Remark

- No other spurious found.
- 2. All results are PASS against Peak and Average limit line.

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AD9M-003A Page Number : C13 of C21
Report Issued Date : Jul. 15, 2019
Report Version : Rev. 01

Report No. : FR942441E

Band 3 - 5470~5725MHz

WIFI 802.11a (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
802.11a CH 100		11000	45.34	-28.66	74	58.14	37.76	12.37	62.93	100	0	Р	Н
5500MHz		11000	45.12	-28.88	74	57.92	37.76	12.37	62.93	100	360	Р	V
802.11a CH 116		11160	44.25	-29.75	74	56.8	37.84	12.51	62.9	100	0	Р	Н
5580MHz		11160	44.26	-29.74	74	56.81	37.84	12.51	62.9	100	0	Р	V
802.11a CH 140		11400	43.93	-30.07	74	56.15	37.95	12.68	62.85	100	0	Р	Н
5700MHz		11400	43.99	-30.01	74	56.21	37.95	12.68	62.85	100	0	Р	٧
Remark		o other spurio I results are P		t Peak	and Average	e limit line).						

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AD9M-003A Page Number : C14 of C21
Report Issued Date : Jul. 15, 2019
Report Version : Rev. 01

Report No. : FR942441E

Band 3 - 5470~5725MHz WIFI 802.11n HT20 (Band Edge @ 3m)

(MHz) 5353.2 5466 5448.4	(dBµV/m) 49.65 48.52	Limit (dB) -24.35	Line (dBµV/m) 74	Level (dBµV) 42.64	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos	Pos		
5466	48.52		74	12.61			(45)	(cm)	(aeg)	(P/A)	(H/V
		10.70		42.04	35.16	8.3	36.45	106	213	Р	Н
5448.4		-19.70	68.3	41.33	35.22	8.4	36.43	106	213	Р	Н
	40.91	-13.09	54	33.77	35.21	8.36	36.43	106	213	Α	Н
5506	94.56	-	-	87.3	35.24	8.44	36.42	106	213	Р	Н
5506	86.96	-	-	79.7	35.24	8.44	36.42	106	213	Α	Н
5449.2	50.84	-23.16	74	43.7	35.21	8.36	36.43	337	165	Р	V
5467.28	51.87	-16.43	68.3	44.68	35.22	8.4	36.43	337	165	Р	V
5448.4	43.64	-10.36	54	36.5	35.21	8.36	36.43	337	165	Α	V
5496	101.18	-	-	93.97	35.23	8.4	36.42	337	165	Р	V
5496	93.64	-	-	86.43	35.23	8.4	36.42	337	165	Α	V
5694	92.79	-	-	85.38	35.25	8.58	36.42	400	199	Р	Н
5694	85.51	-	-	78.1	35.25	8.58	36.42	400	199	Α	Н
5725.32	51.82	-16.48	68.3	44.42	35.22	8.61	36.43	400	199	Р	Н
5696	97.7	-	-	90.29	35.25	8.58	36.42	316	165	Р	V
5696	90.35	-	-	82.94	35.25	8.58	36.42	316	165	Α	V
5727.8	55.6	-12.7	68.3	48.2	35.22	8.61	36.43	316	165	Р	V
	5449.2 5467.28 5448.4 5496 5496 5694 5694 5725.32 5696 5696 5727.8	5449.2 50.84 5467.28 51.87 5448.4 43.64 5496 101.18 5496 93.64 5694 92.79 5694 85.51 5725.32 51.82 5696 97.7 5696 90.35	5449.2 50.84 -23.16 5467.28 51.87 -16.43 5448.4 43.64 -10.36 5496 101.18 - 5496 93.64 - 5694 92.79 - 5725.32 51.82 -16.48 5696 97.7 - 5696 90.35 - 5727.8 55.6 -12.7	5449.2 50.84 -23.16 74 5467.28 51.87 -16.43 68.3 5448.4 43.64 -10.36 54 5496 101.18 - - 5496 93.64 - - 5694 92.79 - - 5725.32 51.82 -16.48 68.3 5696 97.7 - - 5727.8 55.6 -12.7 68.3	5449.2 50.84 -23.16 74 43.7 5467.28 51.87 -16.43 68.3 44.68 5448.4 43.64 -10.36 54 36.5 5496 101.18 - - 93.97 5496 93.64 - - 86.43 5694 92.79 - - 85.38 5694 85.51 - - 78.1 5725.32 51.82 -16.48 68.3 44.42 5696 97.7 - - 90.29 5696 90.35 - - 82.94 5727.8 55.6 -12.7 68.3 48.2	5449.2 50.84 -23.16 74 43.7 35.21 5467.28 51.87 -16.43 68.3 44.68 35.22 5448.4 43.64 -10.36 54 36.5 35.21 5496 101.18 - - 93.97 35.23 5496 93.64 - - 86.43 35.23 5694 92.79 - - 85.38 35.25 5694 85.51 - - 78.1 35.25 5725.32 51.82 -16.48 68.3 44.42 35.22 5696 97.7 - - 90.29 35.25 5696 90.35 - - 82.94 35.25 5727.8 55.6 -12.7 68.3 48.2 35.22	5449.2 50.84 -23.16 74 43.7 35.21 8.36 5467.28 51.87 -16.43 68.3 44.68 35.22 8.4 5448.4 43.64 -10.36 54 36.5 35.21 8.36 5496 101.18 - - 93.97 35.23 8.4 5496 93.64 - - 86.43 35.23 8.4 5694 92.79 - - 85.38 35.25 8.58 5694 85.51 - - 78.1 35.25 8.58 5725.32 51.82 -16.48 68.3 44.42 35.22 8.61 5696 97.7 - - 90.29 35.25 8.58 5696 90.35 - - 82.94 35.25 8.58 5727.8 55.6 -12.7 68.3 48.2 35.22 8.61	5449.2 50.84 -23.16 74 43.7 35.21 8.36 36.43 5467.28 51.87 -16.43 68.3 44.68 35.22 8.4 36.43 5448.4 43.64 -10.36 54 36.5 35.21 8.36 36.43 5496 101.18 - - 93.97 35.23 8.4 36.42 5496 93.64 - - 86.43 35.23 8.4 36.42 5694 92.79 - - 85.38 35.25 8.58 36.42 5694 85.51 - - 78.1 35.25 8.58 36.42 5725.32 51.82 -16.48 68.3 44.42 35.22 8.61 36.43 5696 97.7 - - 90.29 35.25 8.58 36.42 5727.8 55.6 -12.7 68.3 48.2 35.22 8.61 36.43	5449.2 50.84 -23.16 74 43.7 35.21 8.36 36.43 337 5467.28 51.87 -16.43 68.3 44.68 35.22 8.4 36.43 337 5448.4 43.64 -10.36 54 36.5 35.21 8.36 36.43 337 5496 101.18 - - 93.97 35.23 8.4 36.42 337 5496 93.64 - - 86.43 35.23 8.4 36.42 337 5694 92.79 - - 85.38 35.25 8.58 36.42 400 5694 85.51 - - 78.1 35.25 8.58 36.42 400 5725.32 51.82 -16.48 68.3 44.42 35.22 8.61 36.43 400 5696 97.7 - - 90.29 35.25 8.58 36.42 316 5696 90.35 - -	5449.2 50.84 -23.16 74 43.7 35.21 8.36 36.43 337 165 5467.28 51.87 -16.43 68.3 44.68 35.22 8.4 36.43 337 165 5448.4 43.64 -10.36 54 36.5 35.21 8.36 36.43 337 165 5496 101.18 - - 93.97 35.23 8.4 36.42 337 165 5496 93.64 - - 86.43 35.23 8.4 36.42 337 165 5694 92.79 - - 85.38 35.25 8.58 36.42 400 199 5694 85.51 - - 78.1 35.25 8.58 36.42 400 199 5725.32 51.82 -16.48 68.3 44.42 35.22 8.61 36.43 400 199 5696 97.7 - - 90.29 35.25 8.58 36.42 316 165 5727.8 55.6 -12.7<	5449.2 50.84 -23.16 74 43.7 35.21 8.36 36.43 337 165 P 5467.28 51.87 -16.43 68.3 44.68 35.22 8.4 36.43 337 165 P 5448.4 43.64 -10.36 54 36.5 35.21 8.36 36.43 337 165 A 5496 101.18 - - 93.97 35.23 8.4 36.42 337 165 P 5496 93.64 - - 86.43 35.23 8.4 36.42 337 165 A 5694 92.79 - - 85.38 35.25 8.58 36.42 400 199 P 5694 85.51 - - 78.1 35.25 8.58 36.42 400 199 A 5725.32 51.82 -16.48 68.3 44.42 35.22 8.61 36.43 400 199

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AD9M-003A

Page Number : C15 of C21 Report Issued Date: Jul. 15, 2019 Report Version : Rev. 01

Report No. : FR942441E

Band 3 - 5470~5725MHz

WIFI 802.11n HT20 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.	11010	(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg.	
802.11n HT20		11000	44.39	-29.61	74	57.19	37.76	12.37	62.93	100	0	Р	Н
CH 100 5500MHz		11000	44.53	-29.47	74	57.33	37.76	12.37	62.93	100	360	Р	V
802.11n HT20		11160	43.64	-30.36	74	56.19	37.84	12.51	62.9	100	0	Р	Н
CH 116 5580MHz		11160	44.97	-29.03	74	57.52	37.84	12.51	62.9	100	0	Р	٧
802.11n HT20		11400	44.02	-29.98	74	56.24	37.95	12.68	62.85	100	0	Р	Ι
CH 140 5700MHz		11400	44.69	-29.31	74	56.91	37.95	12.68	62.85	100	360	Р	<
Remark		o other spurio I results are P		st Peak	and Average	e limit line).						

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AD9M-003A Page Number : C16 of C21
Report Issued Date : Jul. 15, 2019
Report Version : Rev. 01

Report No. : FR942441E

Band 3 - 5470~5725MHz WIFI 802.11n HT40 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos		
1		(MHz)	(dBµV/m)		(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)	(deg)		
		5450.48	54.33	-19.67	74	47.19	35.21	8.36	36.43	100	217	Р	Н
		5467.44	57.12	-11.18	68.3	49.93	35.22	8.4	36.43	100	217	Р	Н
		5459.98	41.37	-12.63	54	34.23	35.21	8.36	36.43	100	217	Α	Н
	*	5494	91.76	-	-	84.55	35.23	8.4	36.42	100	217	Р	Н
802.11n		5494	84.2	-	-	76.99	35.23	8.4	36.42	100	217	Α	Н
HT40		5759.56	50.57	-17.73	68.3	43.19	35.19	8.64	36.45	100	217	Р	Н
CH 102		5450.64	60.09	-13.91	74	52.95	35.21	8.36	36.43	294	175	Р	V
5510MHz		5464.88	61.46	-6.84	68.3	54.31	35.22	8.36	36.43	294	175	Р	V
		5459.98	44.37	-9.63	54	37.23	35.21	8.36	36.43	294	175	Α	V
	*	5506	98.68	-	-	91.42	35.24	8.44	36.42	294	175	Р	٧
		5506	91.31	-	-	84.05	35.24	8.44	36.42	294	175	Α	V
		5736.04	50.96	-17.34	68.3	43.58	35.21	8.61	36.44	294	175	Р	V
		5359.76	50.14	-23.86	74	43.13	35.16	8.3	36.45	328	35	Р	Н
		5464.08	48.54	-19.76	68.3	41.39	35.22	8.36	36.43	328	35	Р	Н
		5452.24	39.64	-14.36	54	32.5	35.21	8.36	36.43	328	35	Α	Н
	*	5660	89.99	-	-	82.56	35.28	8.55	36.4	328	35	Р	Н
802.11n		5660	82.38	-	-	74.95	35.28	8.55	36.4	328	35	Α	Н
HT40		5730.2	52.17	-16.13	68.3	44.77	35.22	8.61	36.43	328	35	Р	Н
CH 134		5361.2	50.64	-23.36	74	43.62	35.17	8.3	36.45	268	178	Р	V
5670MHz		5466.96	49.1	-19.2	68.3	41.91	35.22	8.4	36.43	268	178	Р	V
		5440	39.9	-14.1	54	32.78	35.2	8.36	36.44	268	178	Α	V
	*	5672	96.34	-	-	88.9	35.27	8.58	36.41	268	178	Р	V
		5672	88.87	-	-	81.43	35.27	8.58	36.41	268	178	Α	V
		5731.96	51.59	-16.71	68.3	44.19	35.22	8.61	36.43	268	178	Р	٧

Sporton International (Kunshan) Inc.

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AD9M-003A Page Number : C17 of C21
Report Issued Date : Jul. 15, 2019
Report Version : Rev. 01

Report No. : FR942441E

Band 3 - 5470~5725MHz

WIFI 802.11n HT40 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)		
802.11n HT40		11015	44.27	-29.73	74	57.03	37.77	12.4	62.93	100	0	Р	Н
CH 102 5510MHz		11020	44.75	-29.25	74	57.51	37.77	12.4	62.93	100	360	Р	٧
802.11n HT40		11100	45.49	-28.51	74	58.14	37.81	12.45	62.91	100	0	Р	Н
CH 110 5550MHz		11100	44.93	-29.07	74	57.58	37.81	12.45	62.91	100	0	Р	V
802.11n HT40		11340	43.67	-30.33	74	55.99	37.92	12.62	62.86	100	0	Р	Н
CH 134 5670MHz		11340	44.26	-29.74	74	56.58	37.92	12.62	62.86	100	360	Р	V
Remark		o other spurio I results are P		st Peak	and Average	e limit line	.						

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AD9M-003A Page Number : C18 of C21
Report Issued Date : Jul. 15, 2019
Report Version : Rev. 01

Report No. : FR942441E

Emission below 1GHz

WIFI 802.11n HT40 (LF @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		52.31	22.32	-17.68	40	40.36	13.06	0.84	31.94	-	-	Р	Н
		97.9	22.25	-21.25	43.5	36.64	16.4	1.14	31.93	-	-	Р	Н
		186.17	25.39	-18.11	43.5	40.13	15.6	1.57	31.91	-	-	Р	Н
		200.72	26.08	-17.42	43.5	40.98	15.36	1.64	31.9	100	0	Р	Н
000 44		743.92	24.05	-21.95	46	27.39	25.79	3.13	32.26	-	-	Р	Н
802.11n HT40		850.62	25.03	-20.97	46	26.95	26.51	3.35	31.78	-	-	Р	Н
LF		52.31	23.16	-16.84	40	41.2	13.06	0.84	31.94	-	-	Р	V
		98.87	21.93	-21.57	43.5	36.11	16.6	1.15	31.93	-	-	Р	V
		187.14	26.25	-17.25	43.5	41.01	15.58	1.57	31.91	-	-	Р	V
		198.78	26.99	-16.51	43.5	41.94	15.32	1.63	31.9	100	0	Р	V
		894.27	25.32	-20.68	46	26.61	26.77	3.44	31.5	-	-	Р	V
		912.7	25.19	-20.81	46	26.16	26.9	3.48	31.35	-	-	Р	V
Remark		o other spurio I results are F		st limit li	ne.								

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AD9M-003A Page Number : C19 of C21
Report Issued Date : Jul. 15, 2019
Report Version : Rev. 01

Report No. : FR942441E

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions
	shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

TEL: 86-512-57900158 FAX:86-512-57900958 FCC ID: 2AD9M-003A Page Number : C20 of C21
Report Issued Date : Jul. 15, 2019
Report Version : Rev. 01

Report Template No.: BU5-FR15EWL AC MA Version 2.0

Report No. : FR942441E

A calculation example for radiated spurious emission is shown as below:

Report No.: FR942441E

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

1. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

 Sporton International (Kunshan) Inc.
 Page Number
 : C21 of C21

 TEL: 86-512-57900158
 Report Issued Date
 : Jul. 15, 2019

 FAX: 86-512-57900958
 Report Version
 : Rev. 01

FCC ID: 2AD9M-003A Report Template No.: BU5-FR15EWL AC MA Version 2.0

Appendix D. Duty Cycle Plots

Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
802.11a	86.94	1.365	0.733	0.75KHz
802.11n HT20	86.45	1.276	0.784	0.82KHz
802.11n HT20	86.06	1.229	0.814	0.82KHz

802.11a

Page Number : D1 of D2
Report Issued Date : Jul. 15, 2019
Report Version : Rev. 01

Report No.: FR942441E

802.11n HT20

802.11n HT40

Report No.: FR942441E