HERS: Modeling Influential Contexts with Heterogeneous Relations for Sparse and Cold-Start Recommendation 构建具有异构关系的影响上下文

Liang Hu,^{1,2} Songlei Jian,^{1,3} Longbing Cao,¹ Zhiping Gu,⁴ Qingkui Chen,² Artak Amirbekyan⁵

¹Advanced Analytics Institute, University of Technology Sydney, Australia

²University of Shanghai for Science and Technology, China, ³National University of Defense Technology, China

⁴Shanghai Technical Institute of Electronics Information, China, ⁵Commonwealth Bank of Australia

rainmilk@gmail.com, jiansonglei@163.com, longbing.cao@uts.edu.au

guzhiping@stiei.edu.cn, chenqingkui@usst.edu.cn, artak.amirbekyan@cba.com.au

2019 AAAI

王润生 September 8, 2019

HERS

 Heterogeneous relations-Embedded Recommender System(HERS)

The architecture of HERS

Influential-Context Aggregation Unit (ICAU)

Influential Users' Embeddings

$$\{\alpha_1, \dots \alpha_K\} = a(\mathbf{e}_1, \dots \mathbf{e}_K) \qquad g = f(\mathbf{c}_t, \mathbf{e}_t)$$

$$\mathbf{c}_t = h(\mathbf{e}_1, \dots \mathbf{e}_K | \alpha_1, \dots \alpha_K) \qquad \mathbf{r}_t = g\mathbf{c}_t + (1 - g)\mathbf{e}_t \quad 4/11$$

The architecture of HERS

User-item Interaction Score

$$S_{\langle u_t, i_t \rangle} = \mathbf{r}_t^{U \top} \mathbf{r}_t^I$$

$$\mathcal{L} = \frac{1}{|\mathcal{B}|} \sum_{\langle u_t, i_p, i_n \rangle \in \mathcal{B}} L_{\langle u_t, i_p \rangle \succeq \langle u_t, i_n \rangle}$$

Data Preparation

Table 1: Statistics of the datasets: Delicious and Lastfm

	Property	User-user	Item-item	User-Item
Delicous	#Entity	1,892	17,632	1,892+17,632
	#Link	25,434	199,827	104,799
	#Link/#Entity	13.44	22.66	5.37
	Sparsity	0.0071	0.0006	0.0031
Lastfm	#Entity	1,867	69,226	1,867+69,226
	#Link	15,328	682,314	92,834
	#Link/#Entity	8.24	15.75	3.03
	Sparsity	0.0044	0.0001	0.0007

- The item-item relationships are built on the common tags between items.
- The friendships between users are used as the user-user relation.

user relationships from the social domain. (The Neural Factorization Machine (NFM) extends FM with neural networks by adding multiple hidden layers to learn non-linear interactions. CoupledCF (Zhang et al. 2018) learns explicit and implicit user-item couplings in recommendation for deep collaborative filtering. (However, all these methods only model pairwise interactions instead of all influences in the influential contexts. Moreover, they cannot tell the strengths of influence from each user or item.

The Neural Factorization Machine (NFM) extends FM with neural networks by adding multiple hidden layers to learn non-linear interactions. However, all these methods only model pairwise interactions instead of all influences in the influential contexts. Moreover, they cannot tell the strengths of influence from each user or item.

The End

Thank You