ЛАБОРАТОРНАЯ РАБОТА 2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Теоретический материал к данной теме содержится в [1, глава 4].

Отчет по лабораторной работе должен содержать следующие материалы по каждой задаче: 1) постановка задачи; 2) необходимый теоретический материал; 3) результаты вычислительного эксперимента; 4) анализ полученных результатов; 5) графический материал (если необходимо); 6) тексты программ.

Варианты заданий к задачам 2.1-2.10 даны в ПРИЛОЖЕНИИ 2.А.

Фрагмент решения задачи 2.1 дан в ПРИЛОЖЕНИИ 2.В.

Задача 2.1. Даны два уравнения f(x)=0 и g(x)=0. Найти с точностью $\varepsilon=10^{-10}$ все корни уравнений, содержащиеся на отрезке [a,b]. Для решения задачи использовать метод бисекции. Найти корни с помощью встроенной функции **root** пакета MATHCAD.

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

- 1. Найти аналитическое решение уравнения f(x)=0.
- 2. Используя пакет MATHCAD, локализовать корни f(x) = 0 графически.
- 3. Используя программу **bisec** (см. *ПРИЛОЖЕНИЕ 2.В*), найти корни уравнения f(x)=0 с точностью \mathcal{E} с помощью метода бисекции.
- 4. Используя встроенную функции **root** пакета MATHCAD, найти корни уравнения f(x)=0 с точностью \mathcal{E} .
- 5. Аналогично п. 1-4 попытаться найти корни уравнения g(x)=0. Объяснить полученные результаты.

Задача 2.2. Найти указанный в варианте корень уравнения f(x)=0 с точностью $\varepsilon=10^{-6}$, двумя способами.

- а) Использовать метод бисекции. Предварительно определить отрезок локализации [a, b].
- b) Использовать метод Ньютона. В качестве начального приближения для метода Ньютона взять середину отрезка локализации из п. a).

Сравнить число итераций в п. а), b).

- **Задача 2.3.** Локализовать корни уравнения f(x)=0 и найти их с точностью $\varepsilon=10^{-5}$, используя метод простой итерации. К виду $x=\varphi(x)$, удобному для итераций, уравнение f(x)=0 привести двумя способами.
- а) Преобразовать уравнение к виду $x=x-\alpha f(x)$, где $\alpha=2/(M+m)$, $0 < m \le f'(x) \le M$, а x принадлежит отрезку локализации [a, b].
 - b) Любым другим преобразованием уравнения. Проверить достаточное условие сходимости метода.

Использовать критерий окончания итерационного процесса вида $|x^{(n)}-x^{(n-1)}| < \frac{1-q}{q} \mathcal{E}$, где в п. а) q=(M-1)

$$_{m)/(M+m), \ в \ п. \ b)} \ q = \max_{x \in [a,b]} |\phi'(x)|_{.}$$

Сравнить число итераций и значения величины q в пп. a), b).

- **Задача 2.4.** Локализовать корни уравнения f(x)=0. Найти их с точностью $\varepsilon=10^{-8}$, используя методы простой итерации и Ньютона. Сравнить скорость сходимости методов (по числу итераций).
- **Задача 2.5.** Найти приближенно корень уравнения f(x)=0, принадлежащий отрезку [a,b], с точностью $\varepsilon=10^{-5}$, используя модификацию* метода Ньютона для случая кратного корня при значениях m=1,2,3,4,5. По числу итераций определить кратность корня.
- **Задача 2.6.** Локализовать корни уравнения f(x)=0. Найти их с точностью $\varepsilon=10^{-5}$ и $\varepsilon=10^{-12}$, спользуя метод Ньютона и метод, указанный в индивидуальном варианте. Сравнить скорость сходимости методов (по числу итераций) для каждого значения ε .

^{*} Расчетная формула модификации метода Ньютона для поиска кратных корней дана в ПРИЛОЖЕНИИ 2.С.

Задача 2.7. Локализовать корни уравнения f(x)=0. Найти их с точностью $\varepsilon=10^{-5}\,$ и $\varepsilon=10^{-12}\,$, используя метод Ньютона, упрощенный метод Ньютона и метод секущих**. Сравнить скорость сходимости методов (по числу итераций) для каждого значения ε .

Задача 2.8. Найти приближенно все (в том числе комплексные) корни уравнения f(x)=0 с точностью $\varepsilon=10^{-5}$, используя метод Ньютона.

УКАЗАНИЕ. Для поиска комплексных корней следует использовать комплексные начальные приближения.

Задача 2.9. а) Локализовать корни уравнения f(x)=0. Уточнить их с точностью $\varepsilon=10^{-7}$, используя метод Ньютона. Для поиска кратного корня и определения его кратности следует использовать модификацию метода Ньютона для случая кратного корня с m=1,2,3. При любых ли начальных приближениях такой метод сходится? b) Рассмотреть уравнение $f(x)+\delta=0$, где $\delta=10^{-8}$. Найти корень кратности 1, используя метод Ньютона. Применить для нахождения кратного корня соответствующую модификацию* метода Ньютона. Удается ли найти кратный корень? Если нет, то использовать метод Ньютона с комплексными начальными приближениями. Сохранился ли кратный корень? Объяснить результаты.

Задача 2.10. Функция y=f(x) задана неявно уравнением F(x,y)=0. На отрезке [1, 5] построить таблицу значений функции y=f(x) с шагом h=0.5, применяя один из методов численного решения нелинейного уравнения (с точностью $\varepsilon=10^{-7}$). Построить график функции y=f(x) на заданном отрезке.

ПРИЛОЖЕНИЕ 2.А.Схема вариантов к лабораторной работе 2

	Chemic Bujinemios R sicooparo sinon pacore 2				
N	Выполняемые задачи	N	Выполняемые задачи	N	Выполняемые задачи
1	2.1.1, 2.2.1, 2.10.1	11	2.1.11, 2.6.2, 2.9.4	21	2.1.21, 2.4.4, 2.8.2
2	2.1.2, 2.3.1, 2.9.1	12	2.1.12, 2.7.2, 2.8.4	22	2.1.22, 2.5.4, 2.10.3
3	2.1.3, 2.4.1, 2.8.1	13	2.1.13, 2.2.3, 2.10.5	23	2.1.23, 2.6.4, 2.9.3
4	2.1.4, 2.5.1, 2.10.2	14	2.1.14, 2.3.3, 2.9.5	24	2.1.24, 2.7.4, 2.8.3
5	2.1.5, 2.6.1, 2.9.2	15	2.1.15, 2.4.3, 2.8.5	25	2.1.25, 2.2.5, 2.10.4
6	2.1.6, 2.7.1, 2.8.2	16	2.1.16, 2.5.3, 2.10.1	26	2.1.26, 2.3.5, 2.9.4
7	2.1.7, 2.2.2, 2.10.3	17	2.1.17, 2.6.3, 2.9.1	27	2.1.27, 2.4.5, 2.8.4
8	2.1.8, 2.3.2, 2.9.3	18	2.1.18, 2.7.3, 2.8.1	28	2.1.28, 2.5.5, 2.10.5
9	2.1.9, 2.4.2, 2.8.3	19	2.1.19, 2.2.4, 2.10.2	29	2.1.29, 2.6.5, 2.9.5
10	2.1.10, 2.5.2, 2.10.4	20	2.1.20, 2.3.4, 2.9.2	30	2.1.30, 2.7.5, 2.8.5

ВАРИАНТЫ ЗАДАНИЙ К ЛАБОРАТОРНОЙ РАБОТЕ 2

Таблица к задаче 2.1

N	f(x)	g(x)	[<i>a</i> , <i>b</i>]
2.1.1	$\left(\sin x\right)^2 - \frac{5}{6}\sin x + \frac{1}{6}$	$\left(\sin x\right)^2 - \sin x + \frac{1}{4}$	[0,1]
2.1.2	$(\sin x)^2 + \frac{7}{12}\sin x + \frac{1}{12}$	$\left(\sin x\right)^2 + \frac{2}{3}\sin x + \frac{1}{9}$	[-1,0]
2.1.3	$(\sin x)^2 - \frac{1}{30}\sin x - \frac{1}{30}$	$\left(\sin x\right)^2 - \frac{2}{5}\sin x + \frac{1}{25}$	[-0.5,0.5]

^{**} Расчетные формулы упрощенного метода Ньютона и метода секущих даны в ПРИЛОЖЕНИИ 2.С.

	T		T
2.1.4	$\left(\cos x\right)^2 + \frac{2}{35}\cos x - \frac{1}{35}$	$\left \left(\cos x\right)^2 - \frac{2}{7}\cos x + \frac{1}{49}\right $	$\left[\left[0,2\right] \right]$
2.1.5	$\left(\cos x\right)^2 - \left(\frac{1}{\sqrt{2}} + \frac{1}{4}\right)\cos x + \frac{1}{4\sqrt{2}}$	$\left(\cos x\right)^2 - \frac{2}{\sqrt{2}}\cos x + \frac{1}{2}$	[0,1.5]
2.1.6	$\left[\left(\cos x\right)^2 + \frac{1}{2}\cos x + \frac{1}{18}\right]$	$\left[\left(\cos x\right)^2 + \frac{1}{3}\cos x + \frac{1}{36}\right]$	[0,2]
2.1.7.	$\left(\ln x\right)^2 - 5\ln x + 6$	$\left(\ln x \right)^2 - 4 \ln x + 4$	[5,25]
2.1.8	$\left(\ln x\right)^2 - \ln x - 2$	$\left(\ln x\right)^2 + 2\ln x + 1$	[0.1,10]
2.1.9	$(\ln x)^2 - \frac{3}{4} \ln x + \frac{1}{8}$	$\left(\ln x\right)^2 - \ln x + \frac{1}{4}$	[0.1,2]
2.1.10	$\left(tgx\right)^2 + (\sqrt{3} - 1)tgx - \sqrt{3}$	$\left(tgx\right)^2 - 2tgx + 1$	[-1.2,1]
2.1.11	$\left(tgx\right)^2 - \frac{28}{9}tgx + \frac{1}{3}$	$\left(tgx\right)^2 - 6tgx + 9$	[0,1.5]
2.1.12	$\left(tgx\right)^2 - \frac{53}{6}tgx - \frac{3}{2}$	$\left(tgx\right)^2 - \frac{1}{3}tgx + \frac{1}{36}$	[-0.5,1.5]
2.1.13	$x^4 - 7x^2 + 10$	$x^4 - 4x^2 + 4$	[0,3]
2.1.14	$x^4 - \frac{10}{3}x^2 + 1$	$x^4 - 6x^2 + 9$	[0,2]
2.1.15	$x^4 - \frac{13}{2}x^2 + 3$	$x^4 - x^2 + \frac{1}{4}$	[0,3]
2.1.16	$\left(\sin x\right)^2 + \frac{5}{6}\sin x + \frac{1}{6}$	$\left(\sin x\right)^2 + \frac{2}{3}\sin x + \frac{1}{9}$	[-1,0]
2.1.17	$(\sin x)^2 - \frac{7}{12}\sin x + \frac{1}{12}$	$(\sin x)^2 - \frac{1}{2}\sin x + \frac{1}{16}$	[0,1]
2.1.18	$(\sin x)^2 + \frac{1}{30}\sin x - \frac{1}{30}$	$\left(\sin x\right)^2 + \frac{1}{3}\sin x + \frac{1}{36}$	[-0.5,0.5]
2.1.19	$(\cos x)^2 - \frac{2}{35}\cos x - \frac{1}{35}$	$\left(\cos x\right)^2 - \frac{2}{5}\cos x + \frac{1}{25}$	[0,3]
2.1.20	$(\cos x)^2 + \left(\frac{1}{\sqrt{2}} - \frac{1}{4}\right)\cos x - \frac{1}{4\sqrt{2}}$	$\left(\cos x\right)^2 - \frac{1}{2}\cos x + \frac{1}{16}$	[0,2]
2.1.21	$\left(\cos x\right)^2 - \frac{1}{2}\cos x + \frac{1}{18}$	$(\cos x)^2 - \frac{2}{3}\cos x + \frac{1}{9}$	[0,2]
2.1.22	$(\lg x)^2 + \frac{5}{3}\lg x - \frac{2}{3}$	$\left(\lg x\right)^2 - \frac{2}{3}\lg x + \frac{1}{9}$	[0.001,3]

2.1.23	$\left \left(\lg x \right)^2 - \lg x - \frac{3}{4} \right $	$\left(\lg x\right)^2 - 3\lg x + \frac{9}{4}$	[0.1,35]
2.1.24	$(\lg x)^2 + \frac{3}{4}\lg x - \frac{1}{4}$	$(\lg x)^2 + 2\lg x + 1$	[0.01,3]
2.1.25	$\left(tgx\right)^2 - \left(1 + \frac{1}{\sqrt{3}}\right)tgx + \frac{1}{\sqrt{3}}$	$\left(tgx\right)^2 - 2tgx + 1$	[0,1]
2.1.26	$\left[\left(tgx\right)^{2}-\frac{7}{4}tgx-\frac{1}{2}\right]$	$\left[\left(tgx\right)^2 + \frac{1}{2}tgx + \frac{1}{16}\right]$	[-0.5,1.5]
2.1.27	$\left(tgx\right)^2 + \frac{37}{6}tgx + 1$	$\left(tgx\right)^2 + 12tgx + 36$	[-1.5,0]
2.1.28	$x^4 - 11x^2 + 24$	$x^4 - 6x^2 + 9$	[1,3]
2.1.29	$x^4 - \frac{26}{5}x^2 + 1$	$x^4 - 10x^2 + 25$	[0,3]
2.1.30	$x^4 - \frac{21}{2}x^2 + 5$	$x^4 - x^2 + \frac{1}{4}$	[0,5]

Таблица к задаче 2.2 Таблица к задаче 2.3

				
N	f(x)	Найти корень	N	f(x)
2.2.1	$e^{-x} - 2 + x^2$	отрицательный	2.3.1	$\sin x + 2x^2 + 4x$
2.2.2	$xe^x - x - 1$	положительный	2.3.2	$e^{-x} - \lg(1-x^2) - 2$
2.2.3	$e^x + 1 - \sqrt{9 - x^2}$	положительный	2.3.3	$\sin(x+2) - x^2 + 2x - 1$
2.2.4	$(x+1)\cdot e^{x+1}-x-2$	наибольший по модулю	2.3.4	(x-1)sh(x+1)-x
2.2.5	$\sqrt{x} - \cos x$	все корни	2.3.5	$x-e^{-x^2}$

Таблица к задаче 2.4

	$f(x) \equiv P_5(x) = x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$				
N	a_4	a_3	a_2	a_1	a_0
2.4.1	4.545004	-3.055105	-18.06895	4.002429	4.722482
2.4.2	-2.656764	-3.406111	10.89372	-1.752935	-3.423612
2.4.3	-4.556062	2.93309	9.274868	-10.32081	0.422098
2.4.4	7.809249	16.28542	-2.771356	-27.95304	-11.33921
2.4.5	-13.0072	60.24546	-122.0716	105.6798	-30.19201

Таблица к задаче 2.5

N	f(x)	[a, b]
2.5.1	$36\cos x + 18\sqrt{3}x + 9x^2 + \pi^2 - 18 - 6\sqrt{3}\pi - 6\pi x$	[0.8,1.2]
2.5.2	$144\sin x + 12\sqrt{3}\pi + 36x^2 + \pi^2 - 72 - 12\pi x - 72\sqrt{3}x$	[0.3,0.7]

2.5.3	$32\sqrt{2}\sin x + 8\pi + 16x^2 + \pi^2 - 32 - 8\pi x - 32x$	[0.5,1]
2.5.4	$ctgx + 2x + \pi x - 1 - \pi/2 - 2x^2 - \pi^2/8$	[0,1]
2.5.5	$\sqrt{3}ctgx + 4\sqrt{3}x + 4\pi x - 3 - 2\pi/\sqrt{3} - 12x^2 - \pi^2/3$	[0,0.7]

Таблица к задаче 2.6 Таблица к задаче 2.7

N	f(x)	Метод*	N	f(x)
2.6.1	$e^x - 3\sqrt{x}$	упрощенный метод Ньютона	2.7.1	$x \ln x - x^2 + 3x - 1$
2.6.2	$\sqrt{2-x^2}-e^x$	метод ложного положения	2.7.2	$x^3 - 0.9x^2 - x - 0.1$
2.6.3	$\ln x - 2\cos x$	метод простой итерации	2.7.3	$e^{-x} - 5x^2 + 10x$
2.6.4	$\sqrt{x}e^{\cos x}-1$	метод секущих	2.7.4	$\ln(2x-x^2)+2-\sqrt{x}$
2.6.5	$e^{-(x+1)} + x^2 + 2x - 1$	метод Стеффенсена	2.7.5	$\sqrt{x^2 + x^2 - 10}$

Таблица к задаче 2.8 Таблица к задаче 2.9

N	f(x)	N	f(x)
II	x^3-2x-5	2.9.1	$3x^3 - 77x^2 + 605x - 1331$
2.8.2	$x^4 - 2.7x^3 + 3$	2.9.2	$3x^3 - 35x^2 + 125x - 125$
2.8.3	$x^4 - 2.7x^3 + x - 1$	2.9.3	$x^3 - 7x^2 + 15x - 9$
2.8.4	$x^5 + 3x^4 + 2x^3 - 1$	2.9.4	$x^3 - 5.5x^2 + 9.5625x - 5.0625$
2.8.5	$x^5 + 2x^4 + 4x^3 - 5x + 2.7$	2.9.5	$3x^3 - 28x^2 + 80x - 64$

Таблица к задаче 2.10

	Таолица к задаче 2.10
N	F(x,y)
2.10.1	$sh(ye^y - \frac{x}{20}) + arctg(20ye^y - x) - 0.5, 1 \le x \le 5, 0.1 \le y \le 1.2$
2.10.2	$ch\left(ye^{y} + \frac{x}{20}\right) + \frac{1}{arctg(20ye^{y} + x)} - 13, 1 \le x \le 5, \qquad 1 \le y \le 1.5$
2.10.3	$e^{xy} - \cos(xy^3)$, $0.5 \le x \le 1.5$, $-1.3 \le y \le -0.3$
2.10.4	$e^{xy} - \cos\left(x\sqrt[3]{y}\right),$ $4.5 \le x \le 7.2, -1.2 \le y \le -0.2$
2.10.5	$\ln(xy) - \sin(yx^2)$, $1 \le x \le 2.5$, $0.5 \le y \le 2.5$

ПРИЛОЖЕНИЕ 2. В

Фрагмент решения задачи 2.1.0

$$f(x) = (\cos x)^2 - \frac{1}{12}\cos x - \frac{1}{24} = 0$$
, [a,b]=[0, π]

Аналитическое решение задачи:

$$f(x) = \left(\cos x - \frac{1}{4}\right) \cdot \left(\cos x + \frac{1}{6}\right), \quad x_1 = \arccos\left(\frac{1}{4}\right) = 1.31811607652818, \quad x_2 = \pi - \arccos\left(\frac{1}{6}\right)$$

$$= 1.738244406014586$$

Численное решение задачи: Локализация корней для численного решения задачи:

$$f(x) := (\cos(x))^2 - \frac{\cos(x)}{12} - \frac{1}{24}$$

$$x := 0, 0 + 0.1..3$$

Отрезки покализации [1,1.5], [1.5,2].

Метод бисекции

bisec(f a b) bise

ПЕРВЫЙ КОРЕНЬ

bisec
$$(f,1,1.5,10^{-10}) = \begin{bmatrix} 1.318116071692202 \\ 32 \end{bmatrix}$$

Встроенная функция пакета МАТНСАD

x0 := 1 - задание начального приближения

$$root(f(x0),x0) = 1.317959944516193$$

Значение корня отличается от найденного с помощью функции bisec, так как по умолчанию величина погрешности при работе встроенных функций равна 0.001.

Переопределим параметр для задания погрешности $TOL := 10^{-10}$

$$root(f(x0),x0) = 1.318116071652817$$

Значение корня с заданной точностью 1.3181160717.

ВТОРОЙ КОРЕНЬ

bisec
$$(f, 1.5, 2, 10^{-10}) = \begin{bmatrix} 1.738244406005833 \\ 32 \end{bmatrix}$$

Значение корня с заданной точностью 1.7382444060, число итераций 32.

x0 := 1.8 - задание начального приближения

$$root(f(x0), x0) = 1.738244406014586$$

Значения корней в пределах заданной точности совпадают.

ПРИЛОЖЕНИЕ 2.С

Расчетные формулы методов решения нелинейного уравнения f(x) = 0.

Упрощенный метод Ньютона:
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_0)}$$
, $n=0,1,...$

Метод ложного положения:
$$x_{n+1} = x_n - \frac{c - x_n}{f(c) - f(x_n)} f(x_n)$$
, $n = 0, 1, ...$;

с-фиксированная точка из окрестности корня

Метод секущих:
$$x_{n+1} = x_n - \frac{x_{n-1} - x_n}{f(x_{n-1}) - f(x_n)} f(x_n), n = 0, 1, \dots$$

Метод Стеффенсена:
$$x_{n+1} = x_n - \frac{f(x_n)}{f(x_n + f(x_n)) - f(x_n)} f(x_n), \, n = 0, 1, \dots$$

Модифицированный метод Ньютона для поиска кратных корней:

$$x_{n+1} = x_n - m \frac{f(x_n)}{f'(x_n)}, n=0,1,...,m=1,2,...$$

ЛИТЕРАТУРА

1. Амосов А.А., Дубинский Ю.А., Копченова Н.В. Вычислительные методы для инженеров. М.: Высшая школа, 1994.