

ROS-I Academy Training

ROS2 outlook

Source: http://design.ros2.org

MASCOR Institute

Mobile Autonomous Systems and Cognitive Robotics Institute (MASCOR)

ROS development guidelines

- Development based on Willow Garage PR2 robot
 - Workstation-class computational resources
 - No real-time requirements
 - Virtually no lossy links
 - Applications in research, mostly academia

ROS Used on other systems

H2020 funded

Different from PR2

- UAVs (MAVROS)
- Custom Service Robots (TUe)
- Industry (Universal Robots)
- Humanoid (Softbank NAO / Pepper)
- Differential driven (Turtlebot)
- Autonomous cars (Autoware)

ROS New use cases

- ► Teams of multiple robots
- Small embedded platforms (bare metal)
- ► Real-time systems
- Non-ideal networks
- ► Production environments
- Prescribed patterns

ROS2 Features

- DDS-based communication
 - Target platform based on DDS (Windows, Linux, Mac)
 - ► Quality of Service
 - Abstract ROS2-classes for communication, implemented in the particular DDS driver
 - DDS proprietary / open source
 - Well established (resp. accepted) in industry

- RTPS (Real-Time Publish-Subscribe) Protocol
 - Implementation up to the DDS vendor
 - Cross-DDS communication possible via OMG (Object management group) RTPS Protocol Standard

ROS2 Summary

General benefits / improvements

- Platform independent
 - ► Windows (!)
 - Linux
 - ► Mac
 - ▶ ..
- Quality of Service
- Support for embedded devices
- Distributed networking (no single ROS Master required)
 - Automated Discovery

- Transparent shared memory
 - ► No nodelets required
- Development style very similar to ROS
 - e.g. creating subsciber / publisher in C++ / Python etc.

ROS2 Demo

Demo

