Musterlösung zum Übungsblatt 9 der Vorlesung "Grundbegriffe der Informatik"

Aufgabe 9.1

- a) Die Anzahl der Schleifendurchläufe liegt in $\Theta(n^3)$, also wäre n^3 so eine Funktion.
- b) Der Wert von p nach Ablauf des Programms liegt in $\Theta(n)$.

Die innere Schleife addiert zu pimmer den Wert $\sum_{j=1}^{i^2} 2j - 1 = i^4.$

Man kann daher durch Induktion zeigen, dass nach Ablauf jedes äußeren Schleifendurchlaufs p=i gilt: Nach Verlassen der inneren Schleife ist der Wert von p immer $i-1+i^4$. Folglich ist stets $i^4 \leq p=i-1+i^4 < i^3+i^4$, also $i\cdot i^3 \leq p < (i+1)\cdot i^3$.

Beim ganzzahligen Teilen durch i^3 erhält man somit immer den Wert i.

Aufgabe 9.2

a) Nach Voraussetzung gilt $\exists c \in \mathbb{R}^+ : \exists n_0 \in \mathbb{N}_0 : \forall n \geq n_0 : f(n) \leq c \cdot n$.

Sei $n > n_0$. Dann gilt:

$$\sum_{k=0}^{n} f(k) = \sum_{k=0}^{n_0} f(k) + \sum_{k=n_0+1}^{n} f(k) \le \sum_{k=0}^{n_0} f(k) + \sum_{k=n_0+1}^{n} c \cdot k \le \sum_{k=0}^{n_0} f(k) + \sum_{k=n_0+1}^{n} c \cdot n \le \sum_{k=0}^{n_0} f(k) + c \cdot (n-n_0) \cdot n \le \sum_{k=0}^{n_0} f(k) + c \cdot n^2.$$

Sei $n_1 \in \mathbb{N}_0$ eine Zahl, die größer als $\sqrt{\sum_{k=0}^{n_0} f(k)}$ ist.

Dann gilt für alle
$$n \ge n_1$$
: $\sum_{k=0}^n f(k) \le \sum_{k=0}^{n_0} f(k) + c \cdot n^2 < n^2 + c \cdot n^2 = (c+1)n^2$.

Somit liegt $\sum_{k=0}^{n} f(k)$ in $O(n^2)$.

b) Für $n \in \mathbb{N}^+$ sei z(n) die größte Zweierpotenz, die kleiner oder gleich n ist.

Wir zeigen: $\forall n \in \mathbb{N}_0 : \sum_{k=0}^n g(k) = z(n)^2$:

Offensichtlich gilt $\sum_{k=0}^n g(k) = \sum_{k=0}^{z(n)} g(k)$, da für z(n) < k < n der Wert von g(k) stets 0 ist.

Beweisen wir die Behauptung also für alle $n \in \{2^i \mid i \in \mathbb{N}_0\}$:

Induktionsanfang:
$$i = 0$$
: $\sum_{k=0}^{1} g(k) = 0 + 1 = 1 = 1^2$

Induktionsvoraussetzung: Für ein festes $i \in \mathbb{N}_0$ gilt $\sum_{k=0}^{2^i} g(k) = (2^i)^2$.

Induktionsschluss: Dann gilt auch $\sum_{k=0}^{2^{i+1}} g(k) = (2^{i+1})^2$:

Für $2^i < k < 2^{i+1}$ gilt g(k) = 0, und es folgt

$$\sum_{k=0}^{2^{i+1}} g(k) = \sum_{k=0}^{2^{i}} g(k) + g(2^{i+1})$$

Nach Induktionsvoraussetzung ist dies gerade

$$(2^{i})^{2} + g(2^{i+1}) = 2^{2i} + \frac{3}{4}(2^{i+1})^{2} = 2^{2i} + 3 \cdot 2^{2(i+1)-2} = 2^{2i} + 3 \cdot 2^{2i} = 4 \cdot 2^{2i} = 2^{2i+2} = (2^{i+1})^{2}.$$

Damit ist die Behauptung gezeigt.

Da
$$\sum_{k=0}^{n} g(k) = z(n)^{2} \le n^{2}$$
 gilt, folgt $\sum_{k=0}^{n} g(k) \in O(n^{2})$.

Angenommen, $g \in O(n)$. Dann müsste es ein $c \in \mathbb{R}^+$ und ein $n_0 \in \mathbb{N}_0$ geben, so dass $\forall n \geq n_0 : g(n) \leq c \cdot n$.

Sei n eine Zweierpotenz, die größer als n_0 und größer als $\frac{4}{3}c$ ist. Dann gilt:

$$g(n) = \frac{3}{4}n \cdot n > \frac{3}{4}\frac{4}{3}c \cdot n = c \cdot n.$$

Dies ist ein Widerspruch zur Annahme, und somit gilt $g \notin O(n)$.

Aufgabe 9.3

a) Wir wählen folgende Funktionen:

$$f: \mathbb{N}_0 \to \mathbb{R}_0^+,$$

$$n \mapsto \begin{cases} n! & \text{falls } n \text{ gerade} \\ (n-1)! & \text{falls } n \text{ ungerade} \end{cases}$$

und

$$g: \mathbb{N}_0 \to \mathbb{R}_0^+,$$

$$n \mapsto \begin{cases} n! & \text{falls } n \text{ ungerade oder } n = 0\\ (n-1)! & \text{falls } n \text{ gerade} \end{cases}$$

b) Angenommen, $f \in O(g)$. Dann gibt es ein $c \in \mathbb{R}^+$ und ein $n_0 \in \mathbb{N}_0$, so dass für alle $n \geq n_0$ gilt: $f(n) \leq cg(n)$.

Sei n eine gerade Zahl größer als n_0 und größer als c.

Dann gilt:
$$f(n) = n! = n \cdot (n-1)! > c \cdot (n-1)! = c \cdot g(n)$$
.

Dies widerspricht der Annahme, so dass $f \notin O(g)$ gelten muss.

Angenommen, $g \in O(f)$. Dann gibt es ein $c \in \mathbb{R}^+$ und ein $n_0 \in \mathbb{N}_0$, so dass für alle $n \geq n_0$ gilt: $g(n) \leq cf(n)$.

Sei n eine ungerade Zahl größer als n_0 und größer als c.

Dann gilt:
$$g(n) = n! = n \cdot (n-1)! > c \cdot (n-1)! = c \cdot f(n)$$
.

Dies widerspricht der Annahme, so dass $g \notin O(f)$ gelten muss.

Aufgabe 9.4

- a) T(2) = T(1) + 2 = 0 + 2 = 2. T(4) = T(2) + 4 = 2 + 4 = 6. T(8) = T(4) + 8 = 6 + 8 = 14. T(16) = T(8) + 16 = 14 + 16 = 30.
- b) $T(2^k) = 2^{k+1} 2$
- c) Induktionsanfang: $k=0: T(2^0)=T(1)=0=2^1-2$. Induktionsvoraussetzung: Für ein festes $k\in\mathbb{N}_0$ gilt: $T(2^k)=2^{k+1}-2$. Induktionsschluss: Dann gilt auch $T(2^{k+1})=2^{k+2}-2$: $T(2^{k+1})=T(2^k)+2^{k+1}.$

Nach Induktionsvoraussetzung gilt:

$$T(2^k) + 2^{k+1} = 2^{k+1} - 2 + 2^{k+1} = 2 \cdot 2^{k+1} - 2 = 2^{k+2} - 2.$$

d)
$$T(n) = 2n - 2$$