In [1]:

```
#1)Load the Libraries
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
```

In [2]:

#2) Download the data set from kaggle/ other sources

In [3]:

#3) Read the file -select appropriate file read function according to data type of file
df = pd.read_csv("heart.csv")

In [4]:

```
#4) Display attributes in the data set-10 samples.
df.head(10)
```

Out[4]:

	Age	Sex	ChestPain	RestBP	Chol	Fbs	RestECG	MaxHR	ExAng	Oldpeak	Slope
0	63	1	typical	145	233	1	2	150	0	2.3	3
1	67	1	asymptomatic	160	286	0	2	108	1	1.5	2
2	67	1	asymptomatic	120	229	0	2	129	1	2.6	2
3	37	1	nonanginal	130	250	0	0	187	0	3.5	3
4	41	0	nontypical	130	204	0	2	172	0	1.4	1
5	56	1	nontypical	120	236	0	0	178	0	0.8	1
6	62	0	asymptomatic	140	268	0	2	160	0	3.6	3
7	57	0	asymptomatic	120	354	0	0	163	1	0.6	1
8	63	1	asymptomatic	130	254	0	2	147	0	1.4	2
9	53	1	asymptomatic	140	203	1	2	155	1	3.1	3
4)

In [5]:

```
#5) Describe the attributes find range, quartile,
#percentile, box plot and outliers.
df.describe()
```

Out[5]:

	Age	Sex	RestBP	Chol	Fbs	RestECG	MaxHR
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000
mean	54.438944	0.679868	131.689769	246.693069	0.148515	0.990099	149.607261
std	9.038662	0.467299	17.599748	51.776918	0.356198	0.994971	22.875003
min	29.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.000000
25%	48.000000	0.000000	120.000000	211.000000	0.000000	0.000000	133.500000
50%	56.000000	1.000000	130.000000	241.000000	0.000000	1.000000	153.000000
75%	61.000000	1.000000	140.000000	275.000000	0.000000	2.000000	166.000000
max	77.000000	1.000000	200.000000	564.000000	1.000000	2.000000	202.000000
4							•

In [12]:

```
#5) Describe the attributes name, data type df.dtypes
```

Out[12]:

int64 Age Sex int64 ChestPain object RestBP int64 int64 Chol Fbs int64 RestECG int64 MaxHR int64 ExAng int64 01dpeak float64 Slope int64 float64 Ca Thal object AHD object dtype: object

In [8]:

```
print('Q1 : 25th percentile of arr :', np.percentile(df['RestBP'], 25))
print('Q2 : 50th percentile of arr :', np.percentile(df['RestBP'], 50))
print('Q3 : 75th percentile of arr :', np.percentile(df['RestBP'], 75))
```

Q1 : 25th percentile of arr : 120.0 Q2 : 50th percentile of arr : 130.0 Q3 : 75th percentile of arr : 140.0

In [9]:

```
np.quantile(df['RestBP'], [0,0.25,0.5,0.75,1])
```

Out[9]:

array([94., 120., 130., 140., 200.])

In [11]:

```
sns.boxplot(df)
sns.despine()
# all dots lying above or below box plots are outliers
```


In [13]:

```
## HISTOGRAM ##
fig=plt.figure()
ax = fig.add_subplot(1,1,1)

#Variable
ax.hist(df['Age'],bins = 10)
#Labels and Tit
plt.title('Age Distribution')
plt.xlabel('Age')
plt.ylabel('Patients')
```

Out[13]:

Text(0, 0.5, 'Patients')

In [14]:

```
## SCATTER PLOT ##
fig=plt.figure()
ax = fig.add_subplot(1,1,1)

#Variable
ax.scatter(df['Age'],df['MaxHR'])
#Labels and Tit
plt.title('MaxHR and Age distribution')
plt.xlabel('Age')
plt.ylabel('Age')
plt.ylabel('MaxHR')
plt.show()
```

MaxHR and Age distribution

In [19]:

```
## FREQUENCY TABLE ##
test= df.groupby(['Sex','ChestPain'])
test.size()
```

Out[19]:

```
Sex ChestPain
     asymptomatic
                       40
     nonanginal
                       35
     nontypical
                       18
     typical
                        4
                      104
1
     asymptomatic
     nonanginal
                       51
     nontypical
                       32
     typical
                       19
dtype: int64
```

```
In [20]:
#7) Give correlation matrix
matrix = np.corrcoef(df['Age'], df['RestBP'])
print(matrix)
[[1.
             0.28494592]
[0.28494592 1.
                        ]]
In [21]:
#8) Identify missing values and outlier and fill them with average.
# to check all missing values
df.isna().sum()
Out[21]:
             0
Age
```

Sex 0 ChestPain 0 RestBP 0 Chol 0 Fbs 0 RestECG MaxHR 0 ExAng 01dpeak 0 Slope 0 Ca 4 Thal 2 AHD dtype: int64

In [22]:

```
# replacing missing values in the DataFrame
meanCa = np.mean(df.Ca)
df.Ca = df.Ca.fillna(meanCa)
```

In [24]:

```
# to remove missing values
df = df.dropna()
```

In [25]:

```
df.isna().sum()
```

Out[25]:

0 Age 0 Sex ChestPain 0 RestBP 0 Chol 0 Fbs 0 RestECG 0 MaxHR 0 ExAng 0 01dpeak 0 Slope 0 Ca 0 Thal 0 AHD dtype: int64