Capítulo 15

Problema 02

Exemplo 15.2: $\hat{\mu} = 3.16$; $\hat{\alpha}_1 = 0.22$; $\hat{\alpha}_2 = -0.93$; $\hat{\alpha}_3 = 0.50$.

Exemplo 15.3: $\hat{\mu} = 10,70$; $\hat{\alpha}_1 = 1,63$; $\hat{\alpha}_2 = -2,67$; $\hat{\alpha}_3 = 1,03$.

Problema 03

$$IC(\mu;95\%) = 83.81 \pm 2.086 \sqrt{\frac{170.962}{21}} = [77.86;89.76]$$

$$IC(\sigma^2;95\%) = \left[\frac{20 \times 170,962}{34,170}; \frac{20 \times 170,962}{9,591}\right] = [100,07;356,51]$$

Problema 04

Oficial (nível 1):
$$n_1 = 7$$
; $\overline{y}_1 = 78,00$; $\sum_{i=1}^{7} (y_{1j} - \overline{y}_1)^2 = 490,000$; $S_1^2 = 81,667$.

Particular (nível 2):
$$n_2 = 14$$
; $\overline{y}_2 = 86,71$; $\sum_{j=1}^{14} (y_{2j} - \overline{y}_2)^2 = 2574,857$; $S_2^2 = 198,066$.

$$S_e^2 = \frac{490,000 + 2574,857}{6 + 13} = 161,308$$

População única: $\bar{y} = 83,81$; $S^2 = 170,96$.

 S_e^2 e S^2 são próximos. Logo, o tipo de escola parece não influir nos resultados da primeira prova.

Grupo (i)	n_{i}	\overline{y}_i	S_i^2
Dia	13	2,85	0,679
Noite	8	3,66	0,257

Fonte da variação	SQ	gl	QM	F	p-value	F crítico (5%)
Entre grupos	3,238	1	3,238	6,183	0,022	4,381
Dentro dos grupos	9,951	19	0,524			
Total	13,190	20				

Rejeitamos H_0 : $\mu_1 = \mu_2$, ou seja, o desempenho dos alunos é afetado pelo fato de estudar de dia (manhã ou tarde) ou à noite.

Problema 06

Grupo (i)	n_{i}	\overline{y}_i	S_i^2
1o grau	50	2,23	0,230
20 grau	20	3,55	0,360

Fonte da variação	SQ	gl	QM	F	p-value	F crítico (5%)
Entre grupos	24,891	1	24,891	93,386	0,000	3,982
Dentro dos grupos	18,125	68	0,267			
Total	43,016	69	0,623			

Rejeitamos H_0 : $\mu_1 = \mu_2$, ou seja, existe diferença significativa entre os rendimentos das duas categorias.

Problema 07

Grupo (i)	n_{i}	\overline{y}_i	S_i^2
1	6	12,33	2,915
2	6	8,03	1,019

Fonte da variação	SQ	gl	QM	F	p-value	F crítico (5%)
Entre grupos	55,470	1	55,470	28,205	0,000	4,965
Dentro dos grupos	19,667	10	1,967			
Total	75,137	11				

Rejeitamos H_0 : $\mu_1 = \mu_2$, ou seja, existe diferença significativa entre as perdas médias de peso dos regimes 1 e 2.

Grupo (i)	n_{i}	\overline{y}_i	S_i^2
M	9	82,89	186,611
T	7	89,00	115,333
N	5	78,20	220,200

Fonte da variação	SQ	gl	QM	F	p-value	F crítico (5%)
Entre grupos	353,549	2	176,775	1,038	0,374	3,555
Dentro dos grupos	3065,689	18	170,316			
Total	3419,238	20				

Não rejeitamos H_0 : $\mu_1 = \mu_2 = \mu_3$, ou seja, o período não influencia o desempenho na primeira prova.

Problema 09

(a)

Grupo (i)	n_i	\overline{y}_i	S_i^2
1o grau	50	2,23	0,230
20 grau	20	3,55	0,360
Superior	10	8,43	0,810

Fonte da variação	SQ	gl	QM	F	p-value	F crítico (5%)
Entre grupos	321,566	2	160,783	487,106	0,000	3,982
Dentro dos grupos	25,416	77	0,330			
Total	346,982	79	4,392			

Rejeitamos H_0 : $\mu_1 = \mu_2 = \mu_3$, ou seja, o grau de escolaridade influencia os rendimentos.

(b)
$$\overline{y}_3 = 8,43$$
; $IC(\mu_3;95\%) = \overline{y}_3 \pm t_{77;0,95} \sqrt{\frac{QMD}{n_3}} = [8,068;8,792]$

(c)
$$IC(\mu_3 - \mu_1;95\%) = 8,43 - 2,23 \pm 1,991 \sqrt{0,330 \left(\frac{1}{10} + \frac{1}{50}\right)} = [5,804;6,596].$$

 $IC(\mu_3 - \mu_2;95\%) = 8,43 - 3,55 \pm 1,991 \sqrt{0,330 \left(\frac{1}{10} + \frac{1}{20}\right)} = [4,437;5,323].$

Ambos intervalos não contêm o zero. Logo, o rendimento médio dos assalariados com instrução universitária é maior que os rendimentos daqueles com primeiro grau e com segundo grau.

Grupo (i)	n_{i}	$\overline{\mathcal{Y}}_i$	S_i^2
Marca A	5	85,6	19,30
MarcaB	5	90,0	5,50

Fonte da variação	SQ	gl	QM	F	p-value	F crítico (5%)
Entre grupos	48,4	1	48,4	3,903	0,084	5,318
Dentro dos grupos	99,2	8	12,4			
Total	147,6	9				

Não há evidências para rejeitar H_0 : $\mu_1 = \mu_2$. Concluímos que as durabilidades médias das duas marcas de tinta são iguais.

Problema 11

Grupo (i)	n_{i}	\overline{y}_i	S_i^2
I	5	58,4	8,3
II	5	57,2	29,7
III	5	43,6	7,8
IV	5	42,0	5,0

Fonte da variação	SQ	gl	QM	F	p-value	F crítico (5%)
Entre grupos	1135,000	3	378,333	29,790	0,000	3,239
Dentro dos grupos	203,200	16	12,700			
Total	1338,200	19				

Rejeitamos H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$, ou seja, as quantidades médias de água que passam pela laje não são as mesmas para os 4 tipos de impermeabilização.

Intervalos de Bonferroni (coeficiente de confiança global = 95%):

Diferença (i,j)	\overline{y}_i	\overline{y}_j	$t_{16;(1-0,05/6)}$	$QMD\left(\frac{1}{n_i} + \frac{1}{n_j}\right)$	Limite	Limite superior
I e II	58,4	57,2	3,008	5,08	-5,580	7,980
I e III	58,4	43,6	3,008	5,08	8,020	21,580
I e IV	58,4	42,0	3,008	5,08	9,620	23,180
II e III	57,2	43,6	3,008	5,08	6,820	20,380
II e IV	57,2	42,0	3,008	5,08	8,420	21,980

III e IV 43,6 42,0 3,008 5,08 -5,180 8,380

Conclusão: $\mu_1 = \mu_2 > \mu_3 = \mu_4$.

Problema 12

Grupo (i)	n_{i}	$\overline{\mathcal{Y}}_i$	S_i^2
A	5	6,8	1,7
В	5	0,6	7,8
C	5	-0,2	3,7
D	5	4,8	0,7
E	5	7,6	5,3

Fonte da variação	SQ	gl	QM	F	p-value	F crítico (5%)
Entre grupos	253,040	4	63,260	16,474	0,000	2,866
Dentro dos grupos	76,800	20	3,840			
Total	329,840	24				

Rejeitamos $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$, ou seja, os processos de estocagem não produzem todos o mesmo resultado.

Intervalos de Bonferroni (coeficiente de confiança global = 95%):

Diferença (i,j)	\overline{v} \overline{v}		t	$QMD\left(\frac{1}{-} + \frac{1}{-}\right)$	Limite	Limite
Diferença (<i>i,j)</i>	\overline{y}_i	\overline{y}_{j}	$t_{20(1-0,05/10)}$	$QMD\left(\frac{-}{n_i} + \frac{-}{n_j}\right)$	inferior	superior
1 e 2	6,800	0,600	3,153	1,536	2,292	10,108
1 e 3	6,800	-0,200	3,153	1,536	3,092	10,908
1 e 4	6,800	4,800	3,153	1,536	-1,908	5,908
1 e 5	6,800	7,600	3,153	1,536	-4,708	3,108
2 e 3	0,600	-0,200	3,153	1,536	-3,108	4,708
2 e 4	0,600	4,800	3,153	1,536	-8,108	-0,292
2 e 5	0,600	7,600	3,153	1,536	-10,908	-3,092
3 e 4	-0,200	4,800	3,153	1,536	-8,908	-1,092
3 e 5	-0,200	7,600	3,153	1,536	-11,708	-3,892
4 e 5	4,800	7,600	3,153	1,536	-6,708	1,108

Grupo (i)	n_{i}	\overline{y}_i	S_i^2
Método 1	8	4,750	6,214
Método 2	8	4,625	3,982
Método 3	8	7,750	2,214

Fonte da variação	SQ	gl	QM	F	p-value	F crítico (5%)
Entre grupos	50,083	2	25,042	6,053	0,008	3,467
Dentro dos grupos	86,875	21	4,137			
Total	136,958	23				

Rejeitamos H_0 : $\mu_1 = \mu_2 = \mu_3$, ou seja, os resultados médios dos testes não são todos iguais.

Intervalos de Bonferroni (coeficiente de confiança global = 95%):

Diferença (i,j)	$\overline{\mathcal{Y}}_i$	\overline{y}_{j}	t _{21; (1-0,05/3)}	$QMD\left(\frac{1}{n_i} + \frac{1}{n_j}\right)$	Limite inferior	Limite superior
1 e 2	4,750	4,625	2,601	1,034	-2,520	2,770
1 e 3	4,750	7,750	2,601	1,034	-5,645	-0,355
2 e 3	4,625	7,750	2,601	1,034	-5,770	-0,480

Conclusão: $\mu_1 = \mu_2 < \mu_3$.

Problema 14

Grupo (i)	n_{i}	$\overline{\mathcal{Y}}_i$	S_i^2
A	4	14,0	22,000
В	4	22,0	6,667
C	4	15,0	24,667

Fonte da variação	SQ	gl	QM	F	p-value	F crítico (5%)
Entre grupos	152,000	2	76,000	4,275	0,0495	4,256
Dentro dos grupos	160,000	9	17,778			
Total	312	11				

Rejeitamos H_0 : $\mu_1 = \mu_2 = \mu_3$, ou seja, as vendas médias das 3 embalagens não são todas iguais.

Intervalos de Bonferroni (coeficiente de confiança global = 90%):

Diferença (i,j)	\overline{y}_i	$\overline{\mathcal{y}}_{j}$	$t_{9;(1-0,1/3)}$	$QMD\left(\frac{1}{n_i} + \frac{1}{n_j}\right)$	Limite inferior	Limite superior
A e B	14,0	22,0	2,510	8,889	-15,482	-0,518
A e C	14,0	15,0	2,510	8,889	-8,482	6,482
ВеС	22,0	15,0	2,510	8,889	-0,482	14,482

Problema 15

Grupo (i)	n_{i}	\overline{y}_i	S_i^2
A	6	3,833	6,167
В	6	5,833	6,167
C	6	5,333	9,067
D	6	4,000	6,800

Fonte da variação	SQ	gl	QM	F	p-value	F crítico (5%)
Entre grupos	17,500	3	5,833	0,827	0,494	3,098
Dentro dos grupos	141,000	20	7,050			
Total	158,500	23				

Não há evidências para rejeitar H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$. Assim, concluímos que as notas médias dos 4 tipos de pratos são iguais.

Problema 16

Grupo (i)	n_i	$\overline{\mathcal{Y}}_i$	S_{i}
Humanas	65	28,75	3,54
Exatas	12	35,21	5,46
Biológicas	8	43,90	4,93

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	1872,375	2	936,188	59,048	0,000	3,108
Dentro dos grupos	1300,084	82	15,855			
Total	1872,375	84	22,290			

Rejeitamos H_0 : $\mu_1 = \mu_2 = \mu_3$, ou seja, os salários médias das 3 áreas não são todos iguais.

Intervalos de Bonferroni (coeficiente de confiança global = 95%):

Diferença (i,j)	77		t	$OMD \begin{pmatrix} 1 & 1 \end{pmatrix}$	Limite	Limite
Diferença (1,1)	y_i	$\overline{\mathcal{Y}}_{j}$	¹ 82;(1–0,05/3)	$QMD\left(\frac{1}{n_i} + \frac{1}{n_j}\right)$	inferior	superior
НеЕ	28,750	35,210	2,444	1,565	-9,518	-3,402
НеВ	28,750	43,900	2,444	2,226	-18,796	-11,504
E e B	35,210	43,900	2,444	3,303	-13,132	-4,248

Conclusão: $\mu_1 < \mu_2 < \mu_3$.

Problema 17

Grupo (i)	n_{i}	\overline{y}_i	S_i^2
1	7	24,71	19,905
2	5	29,80	18,700
3	8	24,75	13,071
4	7	32,86	17,143

Fonte da variação	SQ	gl	QM	F	p-value	F crítico (5%)
Entre grupos	340,081	3	113,360	6,710	0,002	3,028
Dentro dos grupos	388,586	23	16,895			
Total	728,667	26				

Rejeitamos H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$, ou seja, a quantidade média de uso da construção sintática por página não é a mesma para todos os livros.

Intervalos de Bonferroni (coeficiente de confiança global = 95%):

Diferença (i,j)	$\overline{\mathcal{Y}}_i$	$\overline{\mathcal{Y}}_{j}$	t _{23;(1-0,05/6)}	$QMD\left(\frac{1}{n_i} + \frac{1}{n_j}\right)$	Limite inferior	Limite superior
1 e 2	24,714	29,800	2,886	5,793	-12,032	1,861
1 e 3	24,714	24,750	2,886	4,525	-6,176	6,104
1 e 4	24,714	32,857	2,886	4,827	-14,484	-1,802
2 e 3	29,800	24,750	2,886	5,491	-1,713	11,813
2 e 4	29,800	32,857	2,886	5,793	-10,004	3,889
3 e 4	24,750	32,857	2,886	4,525	-14,247	-1,967

Exemplo 15.2

Grupo (i)	n_{i}	\overline{y}_i	S_i^2
Manhã	7	3,386	0,548
Tarde	6	2,233	0,115
Noite	8	3,663	0,257

Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	7,529	2	3,764	11,970	0,000	3,555
Dentro dos grupos	5,661	18	0,314			
Total	13,190	20				

Rejeitamos H_0 : $\mu_1 = \mu_2 = \mu_3$, ou seja, as notas médias não são iguais para os 3 períodos.

Intervalos de Bonferroni (coeficiente de confiança global = 95%):

Diferença (i,j)	\overline{y}_i	\overline{y}_{j}	$t_{18;(1-0,05/3)}$	$QMD\left(\frac{1}{n_i} + \frac{1}{n_j}\right)$	Limite	Limite superior
M e T	3,386	2,233	2,639	0,097	0,329	1,976
M e N	3,386	3,663	2,639	0,084	-1,043	0,489
T e N	2,233	3,663	2,639	0,092	-2,228	-0,630

Conclusão: $\mu_1 = \mu_3 > \mu_2$.

Exemplo 15.3

Grupo (i)	n_{i}	\overline{y}_i	S_i^2
1	6	12,333	2,915
2	6	8,033	1,019
3	6	11,733	2,511

Fonte da variação	SQ	gl	QM	F	p-valor	F crítico (5%)
Entre grupos	65,080	2	32,540	15,149	0,000	3,682
Dentro dos grupos	32,220	15	2,148			
Total	97,300	17				

Rejeitamos H_0 : $\mu_1 = \mu_2 = \mu_3$, ou seja, a perda média de peso dos 3 regimes não é igual.

Intervalos de Bonferroni (coeficiente de confiança global = 95%):

Diferença (i,j)	$\overline{\mathcal{Y}}_i$	\overline{y}_{j}	$t_{15;(1-0,05/3)}$	$QMD\left(\frac{1}{n_i} + \frac{1}{n_j}\right)$	Limite inferior	Limite superior
1 e 2	12,333	8,033	2,694	0,716	2,021	6,579
1 e 3	12,333	11,733	2,694	0,716	-1,679	2,879
2 e 3	8,033	11,733	2,694	0,716	-5,979	-1,421

Conclusão: $\mu_1 = \mu_3 > \mu_2$.

Problema 21

Os intervalos de confiança de Bonferroni construídos no problema 20 para os dados do exemplo 15.3 nos levam a rejeitar $H_0: \mu_1 = \mu_2 = \mu_3$ com um nível de significância de 5%.

Problema 22

$$M = (18-3) \ln(2,148) - [5 \ln(2,915) + 5 \ln(1,019) + 5 \ln(2,511)] = 1,424$$

$$C = 1 + \frac{1}{3 \times 2} \left(\frac{1}{5} + \frac{1}{5} + \frac{1}{5} - \frac{1}{18 - 3} \right) = 1,089$$

$$M / C = 1,308$$

p-value=0,520. Logo, não há evidências para rejeitar a hipótese de homocedasticidade.

Problema 23

(a) $100\pm1.96\times20=[60.8;139.2]$

(b)
$$100 \pm 1,96 \times \left(\frac{20}{3}\right) = [86,9;113,1]$$

- (c) O intervalo para as médias de amostras com 9 observações tem amplitude menor que o intervalo para as vendas diárias.
- (d) $\bar{x} = 150.8$
- (e) s = 20.38
- (f) $IC(\mu;95\%) = [135,1;166,4]$
- (g) $IC(\sigma;95\%) = [13,76;39,04]$
- (h) Os intervalos construídos têm uma probabilidade de 95% de conterem os verdadeiros valores da média e desvio padrão populacionais (μ e σ).
- (i) $150.8 \pm 1.96 \times 20.38 = [110.84;190.72]$

(j)
$$IP(Y;95\%) = 150.8 \pm 2.306 \times 20.38 \sqrt{1 + \frac{1}{9}} = [101.2;200.3]$$

Problema 25

$$IP(Y(40);95\%) = [92,88;141,62]$$

 $IC(\mu(40);95\%) = [106,35;128,15]$

$$IP(Y;95\%) = [16,41;49,17]$$