

CSCE 771: Computer Processing of Natural Language

Lecture 6: Shallow Parsing, Dependency Parsing, Project Review

PROF. BIPLAV SRIVASTAVA, AI INSTITUTE 5TH SEPTEMBER, 2024

Carolinian Creed: "I will practice personal and academic integrity."

Acknowledgement: Used materials by Profs. Mausam, Jurafsky & Martin, Stanford NLP

Organization of Lecture 6

- Opening Segment
 - Review of Last Lecture
- Main Lecture

- Concluding Segment
 - About Next Lecture Lecture 7

Main Section

- Project: complete reviewing of topics
- Shallow Parsing
- Dependency Parsing

Recap of Lecture 5

- We discussed the paper "Contextual Word Representations: Putting Words into Computers", by Noah Smith, CACM June 2020"
- We looked at parsing
 - · Roles it plays: verifying, generating, recognizing
 - Many types of parsing: shallow parsing for quick NLP tasks, phrase structure parsing, dependency parsing
- Started reviewing projects and states

Announcements

- Quiz 1 next class, in-person and using paper and pen
 - No makeup (best of 3 from 4 quizzes)
 - Will cover concepts discussed in class

Main Lecture

Review: Parsing

Parsing

Levels of Linguistic Studies

Why Parsing

- Recognizing legal inputs from illegal
- Usage of parse representation parse tree
 - Grammar checking
 - Semantic analysis
 - Machine translation
 - Question answering
 - Information extraction
 - Speech recognition
 - •

Adapted from material by Robert C. Berwick

Background: Context Free Grammar (CFG)

```
N a set of non-terminal symbols (or variables)
```

- Σ a set of **terminal symbols** (disjoint from N)
- R a set of **rules** or productions, each of the form $A \rightarrow \beta$, where A is a non-terminal,
 - β is a string of symbols from the infinite set of strings $(\Sigma \cup N)$ *
- S a designated **start symbol** and a member of N

Review: Parsing - CFG

```
N a set of non-terminal symbols (or variables)

\Sigma a set of terminal symbols (disjoint from N)

R a set of rules or productions, each of the form A \to \beta, where A is a non-terminal,

\beta is a string of symbols from the infinite set of strings (\Sigma \cup N)*

S a designated start symbol and a member of N
```

```
    Example CFG:
    N = {S, NP, VP, }
    Σ = {he, she, walks, sleeps}
    R = {

            S -> NP, VP
            NP -> he
            NP -> she
            VP -> walks
            VP -> sleeps
            S = S
```

Questions: which strings are in the language of example CFG

(a) she sleeps (b) walks sheeps (c) sleeps he (d) she walks (e) he and she walks

Simple Example Using CFGs

N a set of **non-terminal symbols** (or **variables**)

- Σ a set of **terminal symbols** (disjoint from N)
- R a set of **rules** or productions, each of the form $A \to \beta$, where A is a non-terminal,
 - β is a string of symbols from the infinite set of strings $(\Sigma \cup N)$ *
- S a designated **start symbol** and a member of N

Grammar	Rules	Examples		
$S \rightarrow$	NP VP	I + want a morning flight		
$Nominal \rightarrow$	Pronoun Proper-Noun Det Nominal Nominal Noun	I Los Angeles a + flight morning + flight		
VP o	Noun Verb Verb NP Verb NP PP Verb PP	do want + a flight leave + Boston + in the morning leaving + on Thursday		
$PP \rightarrow$	Preposition NP	from + Los Angeles		

```
Noun 
ightarrow flights \mid breeze \mid trip \mid morning
Verb 
ightarrow is \mid prefer \mid like \mid need \mid want \mid fly
Adjective 
ightarrow cheapest \mid non\text{-}stop \mid first \mid latest}
\mid other \mid direct
Pronoun 
ightarrow me \mid I \mid you \mid it
Proper\text{-}Noun 
ightarrow Alaska \mid Baltimore \mid Los Angeles
\mid Chicago \mid United \mid American
Determiner 
ightarrow the \mid a \mid an \mid this \mid these \mid that
Preposition 
ightarrow from \mid to \mid on \mid near
Conjunction 
ightarrow and \mid or \mid but
```

An Example Using CFGs

Grammar	Rules	Examples
$S \rightarrow$	NP VP	I + want a morning flight
ND v	Duanau	ī
	Pronoun	I Las Arrestas
	Proper-Noun	Los Angeles
	Det Nominal	a + flight
$Nominal \rightarrow$	Nominal Noun	morning + flight
	Noun	flights
$VP \rightarrow$	Verb	do
	Verb NP	want + a flight
	<i>Verb NP PP</i>	leave + Boston + in the morning
	Verb PP	leaving + on Thursday
$PP \rightarrow$	Preposition NP	from + Los Angeles

From Jurafsky & Martin

[S[NP[Pro]]][NP[V] prefer] [NP[Det] a] [Nom[N] morning] [Nom[N] flight]]]]]]

Bracketed Notation

Example: Larger English CFG

Grammar
$S \rightarrow NP VP$.
$S \rightarrow NP VP$
$S \rightarrow$ "S", $NP VP$
$S \rightarrow -NONE$ -
$NP \rightarrow DT NN$
$NP \rightarrow DT NNS$
$NP \rightarrow NN CC NN$
$NP \rightarrow CD RB$
NP ightarrow DT JJ , $JJ N$
$NP \rightarrow PRP$
NP o -NONE-
$VP \rightarrow MD VP$
$VP \rightarrow VBD ADJP$
$VP \rightarrow VBD S$
$VP \rightarrow VBN PP$
$VP \rightarrow VB S$
$VP \rightarrow VB SBAR$
$VP \rightarrow VBP \ VP$
$VP \rightarrow VBN PP$
$VP \rightarrow TO VP$
$SBAR \rightarrow IN S$
$ADJP \rightarrow JJ PP$
$PP \rightarrow IN NP$

Grammar

Number	Ton	Description	
vumber 1.	Tag CC	Description Coordinating conjugation	
2.	CD	Coordinating conjunction Cardinal number	
z. 3.	DT	Determiner	
5. 4.	EX		
+. 5.	FW	Existential there Foreign word	
5.	IN	•	
7.	JJ	Preposition or subordinating conjunction Adjective	
7. 3.	JJR	•	
		Adjective, comparative	
9.	JJS LS	Adjective, superlative	
10.		List item marker	
11.	MD	Modal	
12.	NN	Noun, singular or mass	
13.	NNS	Noun, plural	
14.	NNP	Proper noun, singular	
15.	NNPS	Proper noun, plural	
16.	PDT	Predeterminer	
17.	POS	Possessive ending	
18.	PRP	Personal pronoun	
19.	PRP\$	Possessive pronoun	
20.	RB	Adverb	
21.	RBR	Adverb, comparative	
22.	RBS	Adverb, superlative	
23.	RP	Particle	
24.	SYM	Symbol	
25.	ТО	to	
26.	UH	Interjection	
27.	VB	Verb, base form	
28.	VBD	Verb, past tense	
29.	VBG	Verb, gerund or present participle	
30.	VBN	Verb, past participle	
31.	VBP	Verb, non-3rd person singular present	
32.	VBZ	Verb, 3rd person singular present	
33.	WDT	Wh-determiner	
34.	WP	Wh-pronoun	
35.	WP\$	Possessive wh-pronoun	
36.	WRB	Wh-adverb	

Interpretation of Parsing Rules

- generation (production): S → NP VP
- parsing (comprehension): S ← NP VP
- verification (checking):S = NP VP
- CFGs are <u>declarative</u> tell us <u>what</u> the well-formed structures & strings are
- Parsers are <u>procedural</u> tell us *how* to compute the structure(s) for a given string

From Robert C. Berwick

Types of Parsing

- Phrase structure / Constituency Parsing: find phrases and their recursive structure. Constituency groups of words behaving as single units, or constituents.
 - **Shallow Parsing/ Chunking**: identify the flat, non-overlapping segments of a sentence: noun phrases, verb phrases, adjective phrases, and prepositional phrases.
- Dependency Parsing: find relations in sentences
- Probabilistic Parsing: given a sentence X, predict the most probable parse tree Y

Chunking

- Chunking process of identifying and classifying the flat, non-overlapping segments of a sentence that constitute the basic **non-recursive phrases** corresponding to the major contentword parts-of-speech:
 - noun phrases
 - verb phrases
 - adjective phrases, and
 - prepositional phrases

Example

[NP] The morning flight] [NP] from [NP] Denver [NP] has arrived.]

- Two operations in this type of parsing:
 - · segmenting finding the non-overlapping extents of the chunks and
 - labeling assigning the correct tag to the discovered chunks
- Some words may not be part of any chunk

Shallow Parsing/Chunking

```
data = "I prefer a morning flight."

# Prepare data
tokens = nltk.word_tokenize(data)
tag = nltk.pos_tag(tokens)

# Grammar to use
grammar = "NP: {<DT>?<JJ>*<NN>}"
cp =nltk.RegexpParser(grammar)

# Parse based on regex
result = cp.parse(tag)
print(result)
```

(S I/PRP prefer/VBP (NP a/DT morning/NN) (NP flight/NN) ./.)

Code and Examples

 Sample code –
 https://github.com/biplav-s/course-nl-f22/blob/main/sample-code/l6-l7-parsing/Chunking%20-%20syntax%20exploration.ipynb

Advanced examples –
 https://www.nltk.org/book/ch07.html

IOB notation

- Chunking IOB tagging
 - B beginning of each chunk type
 - I inside of each chunk type
 - O one for tokens outside (O) any chunk
- Total: (2N + 1) tags for N chunk types

Example

The morning flight from Denver has arrived.
B_NP LNP LNP O B_NP O O

Code and Examples

Sample 1 (nltk): https://www.geeksforgeeks.org/nlp-iob-tags/

Sample 2 (nltk): https://github.com/japerk/nltk3-cookbook/blob/master/chapter3.py

Sample 3(Spacy): https://github.com/biplav-s/course-nl-f24/blob/main/sample-code/l6-parsing/parsing%20spacy-iob.ipynb

Dependency Parsing

- Meaning depends on
 - Words (lemmas) in a sentence
 - Their directed binary grammatical relations with other words (and not on CFGs)
- Notation: Labeled arcs are from heads to dependents

No node corresponding to phrasal constituents or lexical categories in the dependency parse

Dependency Conditions

- 1. There is a single designated root node that has no incoming arcs.
- 2. With the exception of the root node, each vertex has exactly one incoming arc.
- 3. There is a unique path from the root node to each vertex in V.

Dependency Parsing

Edge: role that the dependent plays with respect to its head. Examples: subject, direct object and indirect object.

Clausal Argument Relations	Description	
NSUBJ	Nominal subject	
DOBJ	Direct object	
IOBJ	Indirect object	
CCOMP	Clausal complement	
XCOMP	Open clausal complement	
Nominal Modifier Relations	Description	
NMOD	Nominal modifier	
AMOD	Adjectival modifier	
NUMMOD	Numeric modifier	
APPOS	Appositional modifier	
DET	Determiner	
CASE	Prepositions, postpositions and other case markers	
Other Notable Relations	Description	
CONJ	Conjunct	
CC	Coordinating conjunction	

Comparison: Dependency and Phrase Structure

Example Dependency Relationships

Clausal Argument Relations	Description
NSUBJ	Nominal subject
DOBJ	Direct object
IOBJ	Indirect object
CCOMP	Clausal complement
XCOMP	Open clausal complement
Nominal Modifier Relations	Description
NMOD	Nominal modifier
AMOD	Adjectival modifier
NUMMOD	Numeric modifier
APPOS	Appositional modifier
DET	Determiner
CASE	Prepositions, postpositions and other case markers
Other Notable Relations	Description
CONJ	Conjunct
CC	Coordinating conjunction

Examples of Parsing with Spacy

• Sample code –

https://github.com/biplav-s/course-nl-f22/blob/main/sample-code/l6-l7-parsing/parsing%20spacy.ipynb

See GitHub

About Grammar Forms

- Strong equivalent grammars: Two grammars are strongly equivalent if they generate the same set of strings and if they assign the same phrase structure to each sentence
- Weakly equivalent grammars: Two grammars are weakly equivalent if they generate the same set of strings but do not assign the same phrase structure to each sentence.
- Chomsky Normal Form: a grammar which is
 - ∘ ε-free and
 - each production is either of the form A -> B C or A -> a.
- Any context-free grammar can be converted into a weakly equivalent Chomsky normal form grammar
 - A -> B C D becomes
 - A -> B X and X -> C D

Review: Parsing - CFG

```
N a set of non-terminal symbols (or variables)

\Sigma a set of terminal symbols (disjoint from N)

R a set of rules or productions, each of the form A \to \beta, where A is a non-terminal,

\beta is a string of symbols from the infinite set of strings (\Sigma \cup N)*

S a designated start symbol and a member of N
```

```
    Example CFG:
    N = {S, NP, VP, }
    Σ = {he, she, walks, sleeps}
    R = {

            S -> NP, VP
            NP -> he
            NP -> she
            VP -> walks
            VP -> sleeps
            S = S
```

Questions: which strings are in the language of example CFG

(a) she sleeps (b) walks sheeps (c) sleeps he (d) she walks (e) he and she walks

Parsing Perspective

Question: Is parsing of a sentence unique?

Example 1: "Book the dinner flight"

- · Book the flight which has dinner
- Book the flight for dinner

Example 2: "I made her duck"

- I cooked duck (sense: animal) for her
- I cooked duck (sense: animal) belonging to her.
- I turned her into duck (sense: animal)
- I created duck (sense: object) for her
- I made her to lower her head or body (sense: posture).

Parsing Perspective

• Question: Is parsing of a sentence unique?

• Answer: Not necessarily

Issue: Then, which one to return?

Solution: Given a sentence X, predict its parse tree Y

Lecture 6: Concluding Comments

- We reviewed projects
- We reviewed parsers
 - Shallow parsers
 - Dependency parsers

Concluding Segment

Discussion: Course Project

Theme: Analyze quality of official information available for elections in 2024 [in a state]

- Take information available from
 - Official site: State Election Commissions
 - Respected non-profits: League of Women Voters
- Analyze information
 - State-level: Analyze quality of questions, answers, answers-toquestions
 - Comparatively: above along all states (being done by students)
- Benchmark and report
 - Compare analysis with LLM
 - Prepare report

- Process and analyze using NLP
 - Extract entities
 - Assess quality metrics
 - Content *Englishness*
 - Content Domain -- election
 - ... other NLP tasks
 - Analyze and communicate overall

Major dates for project check

- Sep 10: written project outline
- Oct 8: in class
- Oct 31: in class // LLM
- Dec 5: in class // Comparative

Review current states chosen by others

Project Discussion

- 1. Go to Google spreadsheet against your name
- Enter the <u>state</u> you will focus on for course project
- 1. Create a private Github repository called "CSCE771-Fall2024-<studentname>-Repo". Share with Instructor (biplay-s) and TA (vr25)
- Create Google folder called "CSCE771-Fall2024-<studentname>-SharedInfo". Share with Instructor (prof.biplav@gmail.com) and TA (rawtevipula25@gmail.com)
- 3. Create a Google doc in your Google repo called "Project Plan" and have the following by Friday (Aug 30, 2024)

Timeline

- Title: Analyze quality of official information available for elections in 2024 in <state>
- 2. Data need:
 - 1. Official: state's election commission
 - 2. LWV:

https://www.vote411.org/

- 3. Methods:
- 4. Evaluation:
- 5. Milestones
 - Sep 10: written and feedback
 - Oct 8: in class
 - Oct 31: in class
 - Dec 5: in class

CSCE 771 - FALL 2024 34

Obtaining Election Data

Here are a few things to do:

- A) **Official data** backed by laws: state election commission
- a) Find the state's election commission
- b) Find the Q/As they provide. They may be as FAQs or on different web pages.
- c) Collect the Q/A programmatically
- B) Secondary data sources: non-profit
- a) Find Q/As from Vote 411 which is supported by the non-profit: LWV.

For reference, for SC,

- A) Official https://scvotes.gov/voters/voter-faq/
- B) Secondary https://www.vote411.org/south-carolina

For extraction, one or more approaches:

- Manually annotating
- BeautifulSoup,
- Tika
- or other open source libraries.

Discussion: Course Project

Expectations

- Apply methods learned in class or of interest to a problem of interest
- Be goal oriented: aim to finish, be proactive, be innovative
- Do top-class work: code, writeup, presentation

Typical pitfalls

- · Not detailing out the project, assuming data
- Not spending enough time

What will be awarded

- Results and efforts (balance)
- · Challenge level of problem

Review current states chosen by others

Course Project – Deadlines and Penalty Rubric

- Penalty
 - Missing milestones: [-10%]
 - Maximum: [-40%]
- Bonus possible
 - · if two or more states considered

•

Timeline

- 1. Title: Analyze quality of official information available for elections in 2024 in <state>
- 2. Data need:
 - 1. Official: state's election commission
 - 2. LWV:

https://www.vote411.org/

- 3. Methods:
- 4. Evaluation:
- 5. Milestones
 - Sep 10: written and feedback
 - Oct 8: in class
 - Oct 31: in class
 - Dec 5: in class

About Next Lecture – Lecture 7

Lecture 7

- Statistical parsing
- QUIZ

4	Aug 29 (Th)	NLP Tasks, Case Study – Business Application	
5	Sep 3 (Tu)	Parsing, Paper 1 discussion; project topics review	Practice exercise
6	Sep 5 (Th)	Project topics review, statistic Parsing	
7	Sep 10 (Tu)	Statistical parsing, QUIZ	Quiz 1, Project Check
8	Sep 12 (Th)	Evaluation, Semantics	Coding running example
9	Sep 17 (Tu)	Semantics Machine Learning for NLP, Evaluation - Metrics	Code: scikit fl score package, Code: ConceptIO
10	Sep 19 (Th)	Towards Language Model: Vector embeddings, Embeddings, CNN/ RNN	Code: embedding, genism word vector, tf-idf