uitleg.md 2023-12-19

This C code is an example of using OpenCL to perform matrix multiplication on the GPU. Let's go through the main steps of the program:

1. OpenCL Initialization:

• The code begins by initializing OpenCL, including selecting a platform, device, creating a context, and a command queue for the device.

2. Reading OpenCL Source Code:

• The program reads the OpenCL kernel source code from a file named "kernel.cl". It allocates memory to store the source code, reads the content of the file, and prints the kernel source code.

3. Building Program and Creating Kernel:

• The OpenCL program is created, and a kernel named "matrix_avarages" is created from the program.

4. Setting up Matrices:

• A square matrix of size MATRIX_SIZE x MATRIX_SIZE is created (both matrices A and B). The matrices are filled with random values between 0 and 9.

5. Creating OpenCL Buffers:

• OpenCL buffers are created for matrices A, B, and C. These buffers will be used to transfer data between the host (CPU) and the device (GPU).

6. Writing Matrices to OpenCL Buffers:

• The content of matrices A and B is written to their respective OpenCL buffers.

7. Executing the OpenCL Kernel:

 The OpenCL kernel parameters are set using clSetKernelArg, specifying the input and output buffers, and the size of the matrices. The kernel is then enqueued for execution using clEnqueueNDRangeKernel.

8. Reading Result from Device:

 The result matrix C is read back from the device into the host memory using clenqueueReadBuffer.

9. Printing Matrices:

• The original matrices A and B are printed, as well as the result matrix C.

10. Cleanup:

• Memory allocated for matrices A, B, and C is released, along with OpenCL resources like the kernel, program, command queue, and context.

11. Kernel Definition (in "kernel.cl"):

uitleg.md 2023-12-19

• The OpenCL kernel, named matrixMultiplication, performs matrix multiplication. It calculates each element of the result matrix C by summing the products of corresponding elements from matrices A and B.

Note: There seems to be a discrepancy in the kernel name used in the C code (matrix_avarages) and the actual kernel name in the OpenCL source code (matrixMultiplication). Ensure that the names match for proper execution.