Ans01:	Net :	Deviat	ion	:
	Alpha	a Helix	x - 3	800K

4th residue phi psi RMSD	Vaccuum I -63.9129 -36.9095	EM N -53.3147 -48.0476 15.37463	1D -52.8268 -48.0484 15.71549	8th residue phi psi RMSD	Vaccuum -61.1334 -39.8801	-61.4148	MD -61.4868 -38.5847 2.94826
Alph	a Helix – 363K	-					
4th residue phi psi RMSD	Vaccuum I -63.9129 -36.9095	EM N -53.3147 -48.0476 15.37463	1D -52.8268 -48.0484 15.71549	8th residue phi psi RMSD	Vaccuum -61.1334 -39.8801	-61.4148	MD -61.4868 -38.5847 1.34274
Beta	Sheet – 300K						
4th residue phi psi RMSD	Vaccuum F -117.08 150.139	EM N -120.265 154.456 5.36477	1D -120.554 154.38 5.48222	8th residue phi psi RMSD	Vaccuum -131.054 56.9586	-123.124	MD -123.567 71.9429 16.75065
Beta	Sheet – 363K						
4th residue phi psi RMSD	Vaccuum I -117.08 150.139	EM N -120.265 154.456 5.36477	ID -120.554 154.38 5.48222	8th residue phi psi RMSD	Vaccuum -131.054 56.9586	-123.124	MD -123.567 71.9429 16.75065
Trp (Cage – 300K						
4th residue phi psi RMSD	Vaccuum F -62.0196 -52.7863 Cage – 363K	EM -54.322 -61.3736 11.53234	MD -54.5711 -61.4498 11.42525	8th residue phi psi RMSD	Vaccuum -58.3622 -29.9879	-56.9538	MD -56.6273 -29.7111 1.75684
4th residue phi psi RMSD	Vaccuum I -62.0196 -52.7863	EM N -54.322 -61.3736 11.53234	ID -54.5711 -61.4498 11.42525	8th residue phi psi RMSD	Vaccuum -58.3622 -29.9879	-56.9538	MD -56.6273 -29.7111 1.75684

1PGB

Total Energy – 300K

Coul-SR -- 300K

Coul-SR --363K

LJ-SR --300K

Total Energy – 300K

Total Energy – 363K

Coul-SR -- 363K

LJ-SR --300K

LJ-SR--363K

Total Energy – 300K

Total Energy – 363K

Coul-SR -- 300K

Coul-SR --363K

Total Energy -- 300K

Total Energy -- 363K

Total Energy 363K

Coul-SR -- 300K

Coul – SR --363K

LJ – SR --300K

LJ – SR --363K

Total Energy -- 300K

Total Energy -- 363K

Coul SR -- 300K

Coul SR -- 363K

<u>Alpha Helix</u>

Radius of gyration (total and around axes)

Radius of gyration (total and around axes)

Radius of gyration (total and around axes)

Beta Sheet

Radius of gyration (total and around axes)

Beta-Sheet-300K Rg 1.05 0.95 Rg (nm) 0.9 0.85 0.8 1000 200 400 600 800

Radius of gyration (total and around axes)

Radius of gyration (total and around axes)

Time (ps)

Radius of gyration (total and around axes)

TRP Cage

Radius of gyration (total and around axes)

Radius of gyration (total and around axes)

Radius of gyration (total and around axes)

As we know, natural proteins (1PGB and TRP Cage) have a more complex 3-dimensional structure compared to that of designed peptides. Also, as out designed peptides are selective thus they are more specific and particular in terms of shape and size. For e.g. - Alpha Helix has a defined spiral shape. Thus, we can observe that their Radius of Gyration values are low compared to those of natural proteins. Also, since natural proteins have more random shape and structure, their Rg values are also higher.

04.

1PGB: 300K: Found 4 clusters

363K: Found 85 clusters

Alpha-Helix: 300K: Found 2 clusters

363K: Found 58 clusters

Beta-Sheet: 300K: Found 3 clusters

363K: Found 272 clusters

1L2Y: 300K: Found 3 clusters

363K: Found 101 clusters

TRP-Cage: 300K: Found 3 clsuters

363K: Found 150 clusters

Average structure of 1PGB.pdb at 363K (cluster.pdb)

Average structure aligned with 1PGB.pdb original structure along with RMSD value :

Inference:

The analysis allows deduction of the key conformational states of 1PGB and their inerconversion. The free energy landscapes exhibits the energy barriers and pathways between these different states. The average structures of each cluster can give an idea about the changes in protein conformation and how it associates with it's function. This explains the relation of the molecule's structure with it's function.