Universidad de Costa Rica

Facultad de Ingeniería Escuela de Ingeniería Eléctrica IE-0624: Laboratorio de Microcontroladores

II ciclo 2024

${\bf Laboratorio} \ \# \ 1$ Introducción a microcontroladores y manejo de GPIOS

Christabel Alvarado Anchía B80286

Profesor: MSc. Marco Villalta Fallas

Índice

1.	Intr	roducción	1
2.	Not	a teórica	1
	2.1.	PIC12F683	1
		2.1.1. Características generales	1
		2.1.2. Diagrama de bloques	2
		2.1.3. Diagrama de pines	2
		2.1.4. Características eléctricas	2
		2.1.5. Periféricos	2
	2.2.	Diseño de circuito	3
		Lista de componentes y precios	3
3.	Aná	álisis	4
	3.1.	Análisis programa	4
		Análisis electrónico	4
4.	Con	nclusiones y recomendaciones	4
5 .	Ane	exos	5
Ír	ıdio	ce de figuras	
	1. 2.	Diagrama de bloques de PIC12F683 [1]	
Ír	ıdio	ce de tablas	
	1.	Especificaciones eléctricas [1]	3
	2.	Componentes utilizados	3

1. Introducción

En esta practica se busca conocer el manejo de GPIOS por medio del uso del microcontrolador PIC12f683. Se busca simular una tómbola de bingo utilizando dos displays de 7 segmentos, un botón y el microcontrolador. Para el manejo del display de 7 segmentos se utilizó un ejemplo encontrado en la web [2] como referencia de cómo administrar estos componentes; sin embargo no fue posible lograr un funcionamiento satisfactorio.

 $Repositorio\ de\ GitHub\ \texttt{https://github.com/christabel-alvarado/IE-0624-Laboratorio-de-tree/main/Labo_1$

2. Nota teórica

2.1. PIC12F683

2.1.1. Características generales

PIC12F683 es un microcontrolador de 8 bits diseñada para aplicaciones de bajo costo y baja potencia. Según la hoja del fabricante utiliza un sistema RISC con tan solo 35 instrucciones posibles, de las cuales la mayor parte son de un solo ciclo. Incluye 6 pines GPIO; además tiene memoria flash, RAM y EEPROM. A continuación se detallan algunos aspectos de este microcontrolador.

2.1.2. Diagrama de bloques

Figura 1: Diagrama de bloques de PIC12F683 [1]

2.1.3. Diagrama de pines

Figura 2: Diagrama de pines de PIC12F683 [1]

2.1.4. Características eléctricas

2.1.5. Periféricos

Entre los periféricos de este microcontrolador se encuentran:

• GPIOs: tiene 6 pines de entrada/salida con control de dirección individual

Especificación	Valor	
Temperatura ambiente bajo polarización	-40° a +125°C	
Temperatura de almacenamiento	-65°C a +150°C	
Voltaje en VDD con respecto a VSS	-0.3V a +6.5V	
Voltaje en MCLR con respecto a VSS	-0.3V a +13.5V	
Voltaje en todos los demás pines con	-0.3V a (VDD + 0.3V)	
respecto a VSS		
Disipación total de potencia	800 mW	
Corriente máxima saliente del pin VSS	95 mA	
Corriente máxima entrante en el pin VDD	95 mA	
Corriente de sujeción de entrada, IIK	$\pm~20~\mathrm{mA}$	
(VI < 0 o VI > VDD)		
Corriente de sujeción de salida, IOK	$\pm~20~\mathrm{mA}$	
(Vo < 0 o Vo > VDD)	± 20 mA	
Corriente máxima de salida sumergida por	25 mA	
cualquier pin I/O	25 IIIA	
Corriente máxima de salida suministrada	25 mA	
por cualquier pin I/O		
Corriente máxima sumergida por GPIO	90 mA	
Corriente máxima suministrada por GPIO	90 mA	

Tabla 1: Especificaciones eléctricas [1]

- Comparador análogo: permite comparar 2 voltajes analógicos y cuenta con un módulo de referencia de voltaje programable.
- Convertidor A/D: este ADC es de 10 bits e incluye 4 canales
- Temporizadores: cuenta con 3 temporizadores, 1 de 16 bits y 2 de 8 bits.
- Módulo de Captura: captura de 16 bits con una resolución máxima de 12.5ns.
- Módulo de Comparación: resolución máxima de 200 ns.
- Módulo PWM: de 10 bits, con frecuencia máxima de 20kHz
- ICSP: programación serial en Circuito a través de dos pines.

2.2. Diseño de circuito

2.3. Lista de componentes y precios

Los componentes utilizados en este laboratorio se encuentran en la siguiente tabla. Los precios fueron obtenidos de sitios de venta de componentes electronicos dentro de Costa Rica, como MicroJPM y Mouser.

Componente	Cantidad	Precio por unidad
PIC12F683	1	C1321
74HC595	2	C789
Display de 7 segmentos	2	C1227
Botón	1	C105

Tabla 2: Componentes utilizados

- 3. Análisis
- 3.1. Análisis programa
- 3.2. Análisis electrónico
- 4. Conclusiones y recomendaciones

Referencias

- [1] M. T. Inc., *PIC12F683 Data Sheet*, 2007. [Online]. Available: https://ww1.microchip.com/downloads/en/devicedoc/41211d_.pdf
- [2] A. Technical, "Pic12f685 reading lm35 analog sensor example," 2020. [Online]. Available: https://aki-technical.blogspot.com/2020/05/pic12f685-reading-lm35-analog.html

5. Anexos