

Curso:

- 01. En un triedro cada diedro mide 150. ¿Cuánto mide una de las caras?
 - A) $\arcsin(\sqrt{3}-3)$
- B) $\arcsin(2-\sqrt{3})$
- C) $arc cos(3-2\sqrt{3})$
- D) $arcsen(2+\sqrt{3})$
- E) $\arcsin(3+2\sqrt{2})$

Respuesta:

- C) $arc cos(3-2\sqrt{3})$
- **02.** Los ángulos diedros de un ángulo triedro isósceles miden $90 + \alpha$, $90 + \alpha$ y 120. Si la cara desigual mide 2α entonces el valor de α es
 - A) 15
- B) 18
- C) 30
- D) 45
- E) 60

Respuesta:

- **D)** 45
- 03. Dos diedros de un triedro miden 45 y 135 y la cara opuesta al tercer diedro mide 90. ¿Cuánto mide el tercer diedro?
 - A) 45
- B) 60
- C) 75
- D) 90
- E) 120

Respuesta:

- **D)** 60
- **04.** Indicar el valor de verdad de las siguientes proposiciones:
 - La unión de un poliedro, con todos los puntos interiores al poliedro, constituye un sólido.
 - Dos caras de un poliedro pueden ser coplanares.
 - III. El teorema de Euler se cumple para todos los poliedros.
 - A) VVF
- B) VVV C) VFF
- D) FVV E)
- FVF

Respuesta:

- A) VVF
- 05. En la figura mostrada los volúmenes de los sólidos determinados por los hexaedros regulares son V_1 , V y V_2 donde $V_1 < V < V_2$. Calcule el valor de V en términos de V₁ y V₂.

 - A) $\frac{V_1 + V_2}{2}$ B) $\frac{V_1 V_2}{V_1 + V_2}$ C) $\sqrt{V_1 V_2}$ D) $\sqrt{V_1^2 + V_2^2}$ E) $2\sqrt{V_1 V_2}$ **C** C) $\sqrt{V_1 V_2}$

