NOI2025 广东省队集训

GDOI

时间: 2025年5月1日

题目名称	硬币	原神	compress
题目类型	交互题	传统题	传统题
目录	coin	gen	compress
可执行文件名	coin	gen	compress
输入文件名	coin.in	gen.in	compress.in
输出文件名	coin.out	gen.out	compress.out
每个测试点时限	3 秒	2 秒	4 秒
内存限制	2048 MB	512 MB	512 MB
子任务数目	4	9	20
测试点是否等分	否	否	是

提交源程序文件名

对于 C++ 语言	coin.cpp	gen.cpp	compress.cpp
-----------	----------	---------	--------------

编译选项

对于 C++ 语言	-02 -std=c++14
-----------	----------------

注意事项 (请仔细阅读)

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3. 提交的程序代码文件的放置位置请参考各省的具体要求。
- 4. 因违反以上三点而出现的错误或问题,申诉时一律不予受理。
- 5. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 6. 选手提交的程序源文件必须不大于 100KB。
- 7. 程序可使用的栈空间内存限制与题目的内存限制一致。
- 8. 只提供 Linux 格式附加样例文件。
- 9. 评测在当前最新公布的 NOI Linux 下进行,各语言的编译器版本以此为准。

NOI2025 广东省队集训 1 硬币(硬币)

硬币 (硬币)

【题目描述】

这是一道交互题。

有 n 堆硬币,第 i ($0 \le i < n$) 堆硬币有 a_i 枚。每一枚硬币的质量是 5 克,但有一堆当中的所有硬币都是假币,假币的质量是每一枚 6 克。除了这一堆外的所有硬币都是真币。

你有一个精确的称重仪器,在它上面放置任意枚硬币之后,它会返回这些硬币的质量之和。

你需要找到假币是哪一堆, 且称重的次数尽可能少。

实现要求

你的程序应当包含如下的头文件:

#include "coins.h"

你的程序不应包含 main 函数,而应当实现以下函数:

int solve(std::vector<int> a);

该函数接受大小为 n 的数组 a,含义与题面中相同。该函数应当返回一个 0 到 n-1 中的整数,表示假币堆的编号。

你的程序可以调用以下函数:

long long weigh(std::vector<int> p);

该函数接受大小为 n 的数组 p,其中 $0 \le p_i \le a_i$,表示将第 i 堆中的 p_i 枚硬币放到 称重仪器上。该函数返回所有放到仪器上的硬币的质量之和。称重完成后,所有硬币将 会回到它本来所在的堆。

你的程序不应进行任何输入和输出操作。但是,作为特例,你可以向标准错误流 (stderr) 输出信息,但是注意这也会计算进你的运行时间。

【输入格式】

从文件 硬币.in 中读入数据。

假设 a = [1, 2],假币堆的编号为 0。评分程序将会调用 solve([1, 2])。

示例解决方案将会调用 weigh([1, 0]),得到返回值 6。

示例解决方案找到了假币堆,于是返回其编号 0。

NOI2025 广东省队集训 1 硬币 (硬币)

【数据范围】

在每个测试点中, solve 函数将会被调用恰好一次。如果你的程序没有正确运行,或是没有返回正确的答案,则得分为 0。

如果你的程序正确运行,且返回了正确的答案,令W是如果使用最优策略,在最坏情况下确定假币堆需要的称重次数的最小值。令C为你的程序调用 weigh 函数的次数。则你在该测试点的得分为:

C	得分
$\leq W$	100%
= W + 1	50%
=W+2	25%
$\geq W+3$	0%

你在一个子任务的得分是该子任务中每个测试点得分的最小值。

在正式的评分程序中,如果你调用 weigh 函数的次数不超过 W+2,则保证评分程序占用的时间不超过 1 秒,占用的空间不超过 256MiB。

数据约束

 $1 \le n \le 10^6$

 $1 \le a_i \le 10^9 \ (0 \le i < n)$

子任务的列表如下:

子任务编号	额外约束	分数
1	$a_i = 1 \ (0 \le i < n)$	8
2	至多一次称重就能确定假币堆,即 $W \le 1$	8
3	$n \leq 1000$,且至多两次称重就能确定假币堆,即 $W \leq 2$	28
4	所有 a_i 相等	12
5	$n \le 10^3$	32
6	无	12

下发文件中包含了如下内容:

- coins.h: 你的程序需要包含的头文件。
- coins.cpp: 本题解决方案的示例代码。
- grader.cpp: 示例评分程序。
- coins1 3.in: 样例输入。

你可以使用以下的命令编译示例评分程序(其中 coins.cpp 是你的解决方案):

g++ -std=c++14 -O2 -o grader coins.cpp grader.cpp

NOI2025 广东省队集训 1 硬币 (硬币)

编译好的评分程序将会从标准输入以如下的格式读入数据:

- 第一行两个整数 n, k,表示硬币的堆数和假币堆的编号。
- 第二行 n 个整数 $a_0, a_1, \ldots, a_{n-1}$,表示每一堆硬币的枚数。

如果你的程序执行了不合法的操作,或是得到了错误的答案,评分程序会返回如下的错误:

- Wrong answer [1]: p 的大小不为 n。
- Wrong answer [2]: p_i 的范围不在 0 到 a_i 中。
- Wrong answer [3]: solve 的返回值不在 0 到 n-1 中。
- Wrong answer [4]: solve 返回了错误的硬币堆。

如果你的程序正确运行并返回了正确答案,则评分程序会告知你调用 weigh 函数的次数。

- 注意! 示例评分程序和正式评分使用的评分程序不同:
- 正式评分程序是适应性的,即假币堆并不是事先确定的,而是可以在交互过程中随时改变,只要与之前的所有称重结果一致。

时间限制:3s 空间限制: 2048MB

厵神 (gen)

【题目描述】

有一个无穷大的网格,记 (i,j) 处厵的个数为 $a_{i,j}$ 。初始 $\forall i \in [1,n], j \in [1,m], a_{i,j} = 1$ 。接下来的每一天里,这个网格里的厵都会扩张。具体来说,当天结束时,有 $a'_{i,j} = a_{i,j-1} + a_{i-1,j} + a_{i,j+1} + a_{i+1,j}$ 。

厵神十分不满厵无限扩张的样子。于是祂决定消灭一些厵。每天结束后,对于所有 $i \in \{0, n+1\}, j \in \{0, m+1\}$,厵神会消灭位于(i, j)的厵,即令 $a_{i,j} = 0$ 。

厵神想考考你,如果祂在第t天结束后额外消灭了位于(x,y)的所有厵,则第t'天结束后,(x',y')处有多少厵。

【输入格式】

从文件 gen.in 中读入数据。 一行八个正整数 n, m, x, x', y, y', t, t'。

【输出格式】

输出到文件 gen.out 中。

输出一行一个正整数,表示答案对 1004535809 取模后的结果。

【样例 1 输入】

2 3 2 2 3 2 1 4

【样例 1 输出】

31

【样例 2 输入】

30 1200 6 6 123 121 209 231

【样例 2 输出】

374074590

样例 3-8 见选手目录下的 gen/gen*.in 与 gen/gen.ans。 样例 3,4,5,6,7,8 满足子任务 2,4,5,7,8,9 的限制。

【数据范围】

数据约束和子任务对于所有数据, $2 \le n \le 10^9$, $1 \le m \le 10^9$, $1 \le x, x' \le n$, $1 \le y, y' \le m$, $1 \le t' \le 10^5$, $1 \le t \le 2 \times 10^9$ 。

子任务编号	得分	n	m	$t' \leq$
1	2	≤ 300	≤ 300	300
2	9	≤ 2000	≤ 2000	2000
3	7	≤ 300	≤ 300	10^{5}
4	8	$=10^6$	= 1	10^{5}
5	9	$\geq 10^{6}$	$\geq 10^{6}$	10^{5}
6	15	$\geq 3 \times 10^4$	= 1	5×10^4
7	12	$\geq 3 \times 10^4$	$\geq 3 \times 10^4$	10^{5}
8	20	$\leq 2 \times 10^5$	= 1	8×10^{4}
9	18	$\leq 10^9$	$\leq 10^9$	10^{5}

表格中的空白表示无额外限制。

时间限制: 2s

空间限制: 512MB

compress (compress)

【题目描述】

对于一个由区间构成的序列 $a = ([l_1, r_1], ..., [l_n, r_n])$,定义 a 的**宽度**为最小的非负整数 k,使得:

- 存在一个由区间构成的序列 $b = ([s_1, t_1], ..., [s_n, t_n])$, 满足:
 - 1. 对于所有 $1 \le i \le n$,有 $1 \le s_i \le t_i \le k$ 。对于所有 $1 \le i < j \le n$,有 $[l_i, r_i] \cap [l_i, r_i] \neq \iff [s_i, t_i] \cap [s_i, t_i] \neq ,$ 即
 - 2. $[l_i, r_i]$ 与 $[l_i, r_i]$ 相交 $[s_i, t_i]$ 与 $[s_i, t_i]$ 相交要么同时成立,要么同时不成立。

特别地,空序列的宽度为 0。

给定长度为 n 的序列 c,你需要处理 q 次询问。每次询问给定参数 x,y $(x \le y)$,然后按照以下方式计算出序列 a:

- 初始序列 a 为空。
- 对于 c 中的每个元素 $[l_i, r_i]$,依次执行:
 - 1. 若 $r_i < x$ 或 $l_i > y$,什么都不做;
 - 2. 否则,在序列 a 的末尾添加一个元素 $[\max\{l_i,x\},\min\{r_i,y\}]$ 。

你需要对序列 a, 求出以下问题的答案:

对于 a 的所有 $2^{|a|}$ 个子序列,计算它们的**宽度**,求这 $2^{|a|}$ 个**宽度**的和。

注意序列 a 中相同的元素在选取子序列时被视作本质不同的。

例如,若 a = ([1,1],[2,3],[2,3]),则 a 的 8 个子序列为:, ([1,1]),([2,3]),([1,1,2,3]),([2,3]),([1,1],[2,3]) 答案对 998244353 取模。

【输入格式】

从文件 compress.in 中读入数据。

第一行包含两个正整数 n,q。

接下来 n 行,每行包含两个正整数 l_i, r_i ,表示序列 c 的第 i 个元素 $c_i = [l_i, r_i]$ 。

接下来q行,每行包含两个正整数 x_i, y_i ,表示一次询问。

【输出格式】

输出到文件 compress.out 中。

输出q行,每行一个非负整数,表示询问的答案对998244353取模的结果。

【样例 1 输入】

```
      1
      5
      2

      2
      1
      1

      3
      1
      2

      4
      2
      2

      5
      2
      3

      6
      1
      2

      7
      2
      3

      8
      1
      3
```

【样例 1 输出】

```
1 15
2 43
```

【样例1解释】

一些子序列的宽度:

- ([1,1],[1,2]): **宽度**为 1,可以选取 b = ([1,1],[1,1])。
- ([1,1],[2,2]): **宽度**为 2,可以选取 b = ([1,1],[2,2])。
- ([1,1],[1,2],[2,3]): **宽度**为 2,可以选取 b=([1,1],[1,2],[2,2])。

【样例 2 输入】

```
1 20 5

2 4 5 3 8 1 3 3 9 1 6 2 9 1 1 1 9 1 2 3

3 6 2 2 3 3 5 8 1 2 2 7 4 5 2 5 3 6 6 9 3 7

4 5 5

5 4 6

6 3 7

7 2 8

8 1 9
```

【样例 2 输出】

```
1 8191
2 23551
3 138751
4 1564847
5 3629339
```

【样例 2 解释】

为了压缩题面长度,部分换行被替换为了空格。下发文件中有格式正确的样例。

【样例3输入】

见下发文件中的 $ex_compress3.in$ 和 $ex_compress3.ans$,该样例满足 $n \leq 400$,q = 1。

【样例 4 输入】

见下发文件中的 $ex_compress 4.in$ 和 $ex_compress 4.ans$,该样例满足 $n \leq 2 \times 10^5$,q = 1 和特殊性质 A。

【样例 5 输入】

见下发文件中的 $ex_compress 5.in$ 和 $ex_compress 5.ans$,该样例满足 $n \leq 3000$,q = 1 和特殊性质 B。

【样例 6 输入】

见下发文件中的 $ex_compress 6.in$ 和 $ex_compress 6.ans$,该样例满足 $n \leq 2 \times 10^5$, $q \leq 2 \times 10^4$, $y_i - x_i + 1 \leq 4$ 。

【样例7输入】

见下发文件中的 ex_compress7.in 和 ex_compress7.ans。 [大样例下载](file://compress.zip)

【数据范围】

数据约束和子任务 对于所有数据,保证 $1 \le n, q \le 5 \times 10^5$, $1 \le l_i \le r_i \le 10^6$, $1 \le x_i \le y_i \le 10^6$ 。

若 q=1,保证 $x_1 \leq l_i \leq r_i \leq y_1$,即计算出的 a 等于 c

测试点编号	$n \leq$	$q \leq$	$r_i \leq$	$y_i - x_i + 1 \le$	特殊性质
1	15	1	4	4	
2	20	1	100	100	
3	400	1	10^{6}	10^{6}	
4	3000	1	10^{6}	10^{6}	В
5,6	3000	1	10^{6}	10^{6}	
7,8	3000	2×10^4	10^{6}	10^{6}	
9	2×10^5	1	4	4	
10	2×10^5	2×10^4	10^{6}	4	
11, 12	2×10^5	1	10^{6}	10^{6}	А
13	2×10^5	1	10^{6}	10^{6}	В
14, 15	2×10^5	1	10^{6}	10^{6}	
16, 17	2×10^5	2×10^5	10^{6}	10^{6}	
$18 \sim 20$	5×10^5	5×10^5	10^{6}	10^{6}	

特殊性质 A: 保证不存在 $1 \le i, j \le n, i \ne j$, 使得 $l_i \le l_j \le r_i \le r_j$ 。

特殊性质 B: 保证不存在 $1 \le i, j \le n, i \ne j$, 使得 $l_i \le l_j \le r_j \le r_i$ 。

时间限制: 4s

空间限制: 512MB