Однопроходные алгоритмы

Определение простоты числа

Число N называется простым, если оно делится ТОЛЬКО на 1 и на себя.

Если

X1 – делитель числа N, то X2 = N / X1 тоже делитель числа N.

ЕСЛИ X1 $< N^{1/2}$, то X2 $> N^{1/2}$.

Доказательство:

 $X1 < N^{1/2}$ $N / X2 < N^{1/2}$ $N^{1/2} * N^{1/2} / X2 < N^{1/2}$ $N^{1/2} / X2 < 1$ $N^{1/2} < X2$

Если квадратный корень числа N является целым числом, то число N не простое.

Определение простоты числа

Псевдокод

```
Ввести число N
k = 0
ЕСЛИ N нечётное
TO:
       root = N^{\frac{1}{2}}
       ECЛИ root не целое число
       TO:
               bord = целая часть от root
               ДЛЯ x от:3 до: bord шаг:2
               ДЕЛАЙ:
                      ЕСЛИ N / х целое число
                      TO:
                              прервать цикл
               КОНЕЦ
               ЕСЛИ x = bord
               TO:
                      k = 1
ECЛИ \kappa = 1
TO:
       Вывести: N простое число
ИНАЧЕ: Вывести: N не простое число
```

Разложение числа на простые множители

Псевдокод

```
Ввести число N d = 2 ПОКА N > 1 ДЕЛАЙ: ECЛИ \ OCTATOK \ X \ / \ d = 0 ТО: B \ B \ B \ ECTИ \ d N = целая часть X \ / \ d ИНАЧЕ: d = d + 1
```

Разложение числа на простые множители

Законы теории чисел

Главная теорема арифметики:

$$\mathbf{x} = \mathbf{p_1} \cdot \mathbf{p_2} \cdot \cdot \cdot \mathbf{p_n}$$

$$p_1, p_2, \dots p_n$$
 — простые числа

$$x=p_1^{d_1}\cdot p_2^{d_2}\cdots p_n^{d_n}$$
 d_1,d_2,\ldots,d_n — натуральные числа

Количество делителей натурального числа n:

$$\tau(n) = (d_1 + 1) \cdot (d_2 + 1) \cdots (d_n + 1)$$

Вычисление квадрата дисперсии

Псевдокод

$$D^2 = \frac{\sum_i (x_i - \bar{x})^2}{n}$$

$$D^{2} = \frac{\sum_{i} (x_{i}^{2} - 2x_{i}\bar{x} + \bar{x}^{2})}{n} = \frac{\sum_{i} x_{i}^{2}}{n} - 2\bar{x}\frac{\sum_{i} x_{i}}{n} + \bar{x}^{2}\frac{\sum_{i} 1}{n}$$

$$D^2 = \overline{x^2} - \overline{x}^2$$

Развитие алгоритма поиска максимума

В файле записаны N чисел, каждое из которых не превышает 10⁹. Напишите эффективную программу, которая должна вывести на экран максимальное произведение двух различных элементов последовательности, которое кратно 6. Под «различными» нужно понимать не различные значения, а различные номера в последовательности. То есть, результат может быть квадратом некоторого числа, если оно в последовательности встречается не менее двух раз.

Решение

Произведение кратно 6, если:

- один сомножитель кратен 3 и не кратен 6; а другой кратен 2 и не кратен 6;
- один из сомножителей кратен 6, другой не кратен 6;
- оба сомножителя кратны 6.

Для каждого числа из файла вычисляем одну из четырёх характеристик:

- максимум среди чисел кратных 3-м и не кратных 6-и (m1);
- максимум среди чисел кратных 2-м не кратных 6-и (m2);
- первый и второй максимум среди чисел кратных 6-и (m3, m4);
- максимум среди чисел не кратных 6-и (тб).

Вычисляем: m1*m2; m3*m4; m5*m3, выбираем максимальное произведение.

Скользящее окно

В файле записаны N чисел, каждое из которых не превышает 10⁹. Напишите эффективную, в том числе и по используемой памяти, программу, которая выводит на экран максимальную сумму двух элементов этой последовательности, номера которых различаются не меньше чем на 5.

Сумма будет максимальной, если слагаемые — максимальные числа.

Циклический сдвиг

```
a = [1, 2, 3, 4, 5]
for i in range(5):
  a[i\%5] = 6 + i
  print(a)
Цикл. сдвиг
                 Нециклический сдвиг
[6, 2, 3, 4, 5] [2, 3, 4, 5, 6]
[6, 7, 3, 4, 5] [3, 4, 5, 6, 7]
[6, 7, 8, 4, 5] [4, 5, 6, 7, 8]
[6, 7, 8, 9, 5] [5, 6, 7, 8, 9]
[6, 7, 8, 9, 10] [6, 7, 8, 9, 10]
O(n)
                  O(1)
```

В общем случае, для последовательности длиной m, номер элемента равен (i+idx)%m, где i — номер циклического сдвига; idx — индекс элемента в нециклическом массиве.

Префиксные суммы

Дана последовательность из N натуральных чисел. Рассматриваются все её непрерывные подпоследовательности, такие что сумма элементов каждой из них кратна k=43. Найдите среди них подпоследовательность с максимальной суммой, определите её длину. Если таких подпоследовательностей найдено несколько, в ответе укажите количество элементов самой короткой из них.

A[0]	A[1]	•••	A[n]	•••	A[m]	
sum[0]	sum[1]	•••	sum[n]	•••	sum[m]	

$$S_{nm} = sum[m] - sum[n - 1]$$

Индекс: Остаток от деления sum на к	Значение
0	0
1	-1
•••	•••
42	-1