SA405 – AMP Rader §14.1, 14.2

Branch-and-bound Example (L16)

1 Today...

• This example is part of Lesson 16, Branch-and-bound.

2 Branch-and-bound Example

Solve the following IP using branch-and-bound.

$$\begin{aligned} \text{(P1)} \quad z_{IP}^* &= \max \, 8x + 7y \\ \text{s.t.} \quad &- 18x + 38y \leq 133 \\ &13x + 11y \leq 125 \\ &10x - 8y \leq 55 \\ &x, y \in \mathbb{Z}^{\geq 0} \end{aligned}$$

- Use Python to solve LP relaxations of subproblems
- Branching Rules
 - Always select the active node with the largest upperbound for branching.
 - \circ Branch on x if it is fractional. Otherwise branch on y.
- Book-keeping
 - Keep track of the:
 - \diamond incumbent solution \underline{x} , global lower bound \underline{z} , global upper bound, and MIP gap.
 - Draw the branch-and-bound tree:
 - \diamond Record local upper bound (z) and optimal solution (x) for each LP subproblem.
 - ♦ Label each edge with the constraint that is added to form the child subproblem.
 - ♦ Label the status of each node: active, branched, fathomed
 - Use the provided diagram to illustrate the (relaxed) feasible region of each subproblem.

incumbent solution (\underline{x}) global lower bound (\underline{z}) global upper bound MIP gap

B & B Tree

