Notes

20 avril, 2015

quiz

- 1. $D: \pi \to \pi \text{ with } D(e^{2\pi i t}) = e^{2\pi i (2t)}$
- 2. $T: [0,1] \to [0,1]$ $T(x) = \begin{cases} 2x & 0 \le x \le \frac{1}{2} \\ 2 2x & \frac{1}{2} \le x \le 1 \end{cases}$ dense

last time

$$\begin{split} T_{\alpha}: [0,1] &\to [0,1] \\ T_{\alpha}(x) &= x \oplus \alpha \\ \alpha \text{ irrational} \\ x,y &\in [0,1] \text{ and } \epsilon > 0 \text{ find } M \text{ such that } |T^m(x) - y| < \epsilon \end{split}$$

1. given any $\epsilon > 0$ there is N such that $|T^n(0)| < \epsilon$

proof

choose
$$N'$$
 such that $\frac{1}{N'} < \epsilon$
now $[0,1] = [0,\frac{1}{N'}] \cup [\frac{1}{N'},\frac{2}{N'}] \cup \cdots \cup [\frac{N'-1}{N'},1]$
 $T_{\alpha}^{0}(0),\ldots,T_{\alpha}^{N'}(0)$ find j,k such that $|T_{\alpha}^{j}(0)-T_{\alpha}^{k}(0)| < \epsilon$
if $m=k-j\ |T_{\alpha}^{m}(0)|=|T^{k-j}-T^{0}|=|T^{j}(T^{k-j})-T^{j}(T^{0})|=|T^{k}-T^{j}|$

2. given any point in [0,1] there is M' such that $T_0^{M'}(0)$ is arbitrarily close to the point we care about

$$\begin{aligned} 0 &< |T_{\alpha}^m(0)| < \epsilon \\ \epsilon &< |T_0^{2m}| = |T^m(0)| + |T^m(0)| < 2\epsilon \\ 2\epsilon &< |T^{3m}| < 3\epsilon \\ &\vdots \\ 1 - \epsilon &< |T^{nm}(0)| < 1 \end{aligned}$$

given $x,y\in [0,1]$ consider $x\ominus y$ then there is k such that $|(x\ominus y)-T^{km}(0)|<\epsilon$

note

because alpha is irrational you will always get an irrational back out, not 0

3. finish let $\epsilon > 0$ and $x, y \in [0, 1]$

$$\begin{aligned} |y - T_{\alpha}^{km}(x)| &= |y \ominus x \oplus km\alpha| \\ &= |y \ominus x \ominus 0 \oplus km\alpha| \\ &= |y \ominus x - T_{\alpha}^{km}(0)| < \epsilon \end{aligned}$$

lemma

 $T:[a,b]\to [a,b]$ is continuous then T has a fixed point

proof

let
$$f(x) = Tx - x$$
 is continuous then $f(a)$ epsilon and $f(b) \le 0$. there is $c \in [a,b]$ such that $f(c) = 0$ and $0 = T(c) - c \Rightarrow T(c) = c$

lemma

 $T:[a,b]\to\mathbb{R}$ is continuous such that $T([a,b])\supseteq[a,b]$ then T has a fixed point

proof

$$f(x) = T(x) - x$$

$$c, d \in [a, b] \text{ where } T(c) = a, T(d) = b$$

$$f(c) = T(c) - c = a - c \le 0$$

$$f(d) = T(d) - d = b - d \ge 0$$

there is e such that $f(e) = 0 \Rightarrow T(e) = e$

fact

if $T:[a,b]\to\mathbb{R}$ and is continuous then image is compact and connected so T([a,b])=[x,y] for some x,y.

lemma

if $[c,d] \subseteq [x,y]$ there $a',b' \in [a,b]$ such that T([a',b'] = [c,d] and T(a',b') = c,d note that we don't know whether $a' \to c$ or $a' \to d$ and same for b'

proof

1. notice $T^{-1}(c)$ is closed and $T^{-1}(\{d\})$ is closed and both are nonempty.

let
$$a_0 \in T^{-1}(c)$$
 and $b_0 \in T^{-1}(d)$. Say $T(a_0) = c$ and $T(b_0) = d$

recall that [x, y] is range. now for any closed interval in the range we want to find a region in our domain that hits closed interval but never leaves it

choose $a_0 < b_0$ for first case

$$a' = \sup\{x \in [a, b_0] : Tx = c\}$$
 which is nonempty and $a_0 \le a'$ let $b' = \inf\{x \in [a', b_0] : T(x) = d\}$ nonempty and notice $a' < b'$