Übungen zur Vorlesung Formale Spezifikation und Verifikation

Blatt 9

Aufgabe 9-1 Geben Sie eine Herleitung des folgenden Urteils

(recfun
$$f x \rightarrow \text{if } x = 0 \text{ then } 1 \text{ else } x * (f (x - 1))) 1 \Downarrow v$$

in der operationellen Semantik für einen geeigneten Wert v an.

Aufgabe 9-2 Geben Sie einen Term e vom Typ int \rightarrow bool in der funktionalen Sprache an, der einen Primzahltest implementiert. Es soll also zum Beispiel e 13 \Downarrow true und e 6 \Downarrow false gelten.

Hinweis: Nehmen Sie an, dass die arithmetischen Operationen auf int wie in Java realisiert sind. Dann können Sie mit dem Gleichheitstest $e_1=e_2*(e_1/e_2)$ überprüfen, ob e_2 ein Teiler von e_1 ist.

Aufgabe 9-3 In Java gibt es zwei binäre Operatoren & und && für die Konjunktion Boolescher Ausdrücke. Sie unterscheiden sich darin, dass bei der Auswertung von e1 & e2 stets beide Ausdrücke e1 und e2 ausgewertet werden, während bei der Auswertung von e1 && e2 der Ausdruck e2 nur dann ausgewertet wird, wenn e1 nicht bereits zu false auswertet.

Für die funktionale Sprache wurde in der Vorlesung nur der Operator & eingeführt. In dieser Aufgabe soll diese Sprache um den Operator & erweitert werden. Es soll also auch e_1 && e_2 ein zulässiger Term sein.

- a) Erweitern Sie die operationelle Semantik der funktionalen Sprache um geeignete Regeln für &&.
- b) Geben Sie konkrete Terme e_1 und e_2 an, für die $e_1 \&\& e_2 \Downarrow false$ mit Ihren Regeln herleitbar ist, nicht aber $e_1 \& e_2 \Downarrow false$.

Aufgabe 9-4

- a) Geben Sie eine Herleitung von \vdash recfun f x -> x (fun y -> f x y) : τ für einen geeigneten Typen τ an.
- b) Berechnen Sie $\mathcal{W}(\emptyset, \text{recfun } f \ x \rightarrow x \ (\text{fun } y \rightarrow f \ x \ y)).$

Abgabe: Sie können Ihre Lösungen bis Mittwoch, den 29.6., um 16:00 Uhr über UniWorX abgeben.