

GEOMETRÍA

Capítulo 9

4st SECONDARY

Segmentos proporcionales

MOTIVATING | STRATEGY

1. PROPORCIÓN ÁUREA

También llamada
sección áurea, se
halla presente en la
naturaleza, el arte y
la arquitectura.

Los griegos la
conocieron en el
estudio del cuerpo
humano y la
utilizaron, en la
escultura y la
arquitectura y la
definieron como una
característica
fundamental en su
estética.

Razón geométrica de dos segmentos

Es el cociente que se obtiene al dividir las longitudes de dos segmentos que tienen la misma unidad de medida.

Ejemplo:

 $\frac{2}{3}$: razón geométrica de \overline{AB} y \overline{CD}

Segmentos proporcionales

Si la razón geométrica de 2 segmentos es igual a la de otros dos, dichos pares de segmentos son proporcionales.

Teorema de Tales

$$\frac{a}{b} = \frac{m}{n}$$

Corolario de Tales

Teorema de la Bisectriz

Teorema del Incentro

Teorema de Menelao

Teorema de Ceva

$$(a)(b)(c)=(m)(n)(p)$$

1. En la figura , $\overrightarrow{L_1} /\!\!/ \overrightarrow{L_2} /\!\!/ \overrightarrow{L_3}$. Halle el valor de x.

Resolución

Piden x

$$\frac{x+4}{4}=\frac{5}{x-4}$$

$$(x+4)(x-4) = 20$$

$$x^2-4^2 = 20$$

$$x^2 = 36$$

$$x = 6$$

2. En la figura, halle el valor de x.

Resolución

Piden x

$$\frac{\mathsf{m}}{6} = \frac{5}{10} \longrightarrow \mathsf{m} = 3$$

• Es notable de 37° y 53°

$$x = 37^{\circ}$$

3. En un triángulo ABC, AB = 8, BC = 12 y AC = 10. Luego se traza la

• Piden AD = x

$$\frac{2}{3} = \frac{X}{10 - X}$$

$$20 - 2x = 3x$$
$$20 = 5x$$

4. En un triángulo ABC, AB = 6, BC = 4 y AC = 3. Luego se traza la bisectriz exterior del ángulo exterior en B, la cual interseca a la

prolongación de AC en E. Calcule CE.

Resolución

Piden x

$$\frac{3}{2} \underbrace{6}_{2} = \underbrace{x+3}_{X}$$

$$3x = 2x + 6$$

5. En un triángulo rectángulo ABC, recto en B, se trazan las cevianas interiores \overline{AD} , \overline{BE} y \overline{CF} , las cuales se intersecan en un punto. Si AF = 4, FB = 2, BD = 3 y AE = 2(EC), calcule m<BAC.

Teorema de Tales

Si: L1 // L2 // L3

6. En la figura se observa una torre de alta tension de manera que los borras metálicas \overline{AD} , \overline{BE} y \overline{CF} son paralelas, BC=AB + 1;

DE = 6 y EF = 8. Calcule AB.

Resolución

$$\frac{X}{X+1} = \frac{8}{8} \frac{3}{4}$$

$$4x = 3x + 3$$

$$x = 3$$

7. En la figura se muestra el piso de una piscina donde en el punto I se encuentra el punto de succión del agua, el cual equidista de las paredes de la piscina. Halle la distancia de I a B si BD = 10 m.

I es el incentro △ABC

Por teorema del Incentro

$$\frac{x}{10-x} = \frac{15+12}{18}$$
 $\frac{x}{48} = \frac{27}{48}$

