นายภากรณ์ ธนประชานนท์ 62010694

Homework #3

สถิติความล่าช้าของเที่ยวบินภายในประเทศสหรัฐอเมริกาเดือนสิงหาคม

2018 August 2018 Nationwide Airplane Delay Statistic

Column : DEP_DELAY (Departure Delay (HHMM)) และ ARR_DELAY (Arrival Delay (HHMM))

Probability Density Function & Cumulative Probability Function

ARR_DELAY (Arrival Delay (HHMM))

DEP_DELAY (Departure Delay (HHMM)

บทวิเคราะห์ข้อมูลจากกราฟ : จากชุดข้อมูลที่ได้นำมาจะสามารถเห็นได้ว่า ทั้งกราฟ Probability Density Function และ Cumulative Probability Function ของทั้งสองค่าที่ได้เลือกมา (เวลาล่าช้ำขาออก (Departure Delay (HHMM)) และเวลาล่าช้ำขาเข้า (Arrival Delay (HHMM) ตามลำดับ) มีรูปร่างคล้ำยคลึงกันเป็นอย่างมาก เนื่องจากกราฟที่ได้ทำการวาดไปใน HW ก่อนหน้า ได้ให้ข้อสรุปว่า ค่าเวลาล่าช้าขาออก (Departure Delay (HHMM)) ส่งผลโดยตรงกับ ค่าเวลาล่าช้าขาเข้า (Arrival Delay (HHMM)) อย่างชัดเจนในรูปแบบแปรผันตรง หากเที่ยวบินออกช้ำ เวลาถึงจะซ้ำตามไปด้วย จากกราฟยังสามารถเห็นได้อีกว่า ในเดือนสิงหาคม 2018 เวลาที่เครื่องบินส่วนใหญ่จะเกิดการล่าช้ำ ไม่ว่าจะเป็นขาเข้าหรือขาออกก็ตาม จะมีค่าอยู่ที่ไม่เกิน 200 หรือ สองชั่วโมง ซึ่งส่วนนี้มีความเป็นไปได้ที่สูงมากซึ่งมีค่าตั้งแต่ประมาณ 0.9-0.1 เลยในทีเดียว ทำให้ชุดข้อมูลส่วนมากจะกระจุกอยู่บริเวณผังช้ายของทั้งสองกราฟ ส่วนเวลาล่าช้าที่มากกว่า 200 นั้นส่วนใหญ่จะไม่ค่อยเกิดขึ้นจนถึงขั้นแทบไม่มีโอกาสเกิดขึ้นเลย เช่นการล่าช้าไป 1000 หรือ 10 ชั่วโมง ถือว่าโอกาสเกิดเหตุการณ์นี้มีเป็นจำนวนน้อยมากหากเทียบกับจำนวนข้อมูลที่เกาะกลุ่มอยู่ทางด้านช้าย

เราจึงวิเคราะห์ได้ว่า เวลาล่าช้าทั้งขาออกกับเวลาล่าช้าขาเข้าในเกือบจะทุกกรณีจะมีค่าอยู่ไม่มากกว่า 200 หรือ 2 ชั่วโมง ส่วนโอกาสที่เที่ยวบินจะมีเวลาล่าช้าทั้งขากับเวลาล่าช้าขาเข้า มากกว่า 200 หรือ 2 ชั่วโมง จะมีโอกาสได้น้อยแล้วค่อยๆลดลงไปเรื่อยๆจนถึงขั้นไม่แทบมีโอกาสเกิดขึ้นเลย

Source Code

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
sample_data = pd.read_csv("August_2018_Nationwide_Airplane_Delay_Statistic.csv")
x = sample_data["DEP_DELAY (HHMM)"]
y = sample data["ARR DELAY (HHMM)"]
DEP DELAY COUNT, DEP DELAY BIN = np.histogram(x,bins=10)
ARR_DELAY_COUNT, ARR_DELAY_BIN = np.histogram(y,bins=10)
DEP_DELAY_PDF = DEP_DELAY_COUNT / sum(DEP_DELAY_COUNT)
DEP DELAY CDF = np.cumsum(DEP DELAY PDF)
ARR DELAY PDF = ARR DELAY COUNT / sum(ARR DELAY COUNT)
ARR_DELAY_CDF = np.cumsum(ARR_DELAY_PDF)
figure, DEP_DELAY = plt.subplots(1,2,figsize=(18,9),sharey=True)
DEP_DELAY[0].set_title("Departure Delay Time (Probability Density Function (PDF))")
DEP_DELAY[0].set_xlabel("Departure Delay Time (HHMM)")
DEP_DELAY[0].set_ylabel("The Probability of the plane will gain departure delay")
DEP DELAY[0].plot(DEP DELAY BIN[1:],DEP DELAY PDF,color="red")
DEP_DELAY[0].legend()
DEP_DELAY[1].set_title("Departure Delay Time (Cumulative Probability Function (CDF))")
DEP_DELAY[1].set_xlabel("Departure Delay Time (HHMM)")
DEP_DELAY[1].set_ylabel("The Probability of the plane will gain departure delay")
DEP_DELAY[1].plot(DEP_DELAY_BIN[1:],DEP_DELAY_CDF,color="red")
DEP_DELAY[1].legend()
figure, ARR DELAY = plt.subplots(1,2,figsize=(18,9),sharey=True)
ARR_DELAY[0].set_title("Arrival Delay Time (Probability Density Function (PDF))")
ARR_DELAY[0].set_xlabel("Arrival Delay Time (HHMM)")
ARR DELAY[0].set ylabel("The Probability of the plane will gain arrival delay")
ARR_DELAY[0].plot(ARR_DELAY_BIN[1:],ARR_DELAY_PDF,color="red")
ARR_DELAY[0].legend()
ARR DELAY[1].set title("Arrival Delay Time (Cumulative Probability Function (CDF))")
ARR DELAY[1].set xlabel("Arrival Delay Time (HHMM)")
ARR_DELAY[1].set_ylabel("The Probability of the plane will gain arrival delay")
ARR_DELAY[1].plot(ARR_DELAY_BIN[1:],ARR_DELAY_CDF,color="red")
ARR_DELAY[1].legend()
plt.show()
```