EDA CASE STUDY

Report

METHODOLOGY

EDA ASSIGNMENT

The interquartile range of data for amount credited has many outliers. The credit amount of above 16 million and above are the outliers. The data is positively skewed.

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	AMT_INCOME_TOTAL	AMT_CREDIT	AMT_ANNUITY	AMT_GOODS_PRICE	NAME_INCO
12840	114967	1	Cash loans	F	117000000.0	562491.0	26194.5	454500.0	
4									

sns.boxplot(inp0['AMT_ANNUITY'])
plt.show()

The interquartile range of data for amount credited has many outliers. The annuity amount of above 60000 and above are the outliers. The data is positively skewed.

sns.boxplot(inp0['AMT_GOODS_PRICE'])
plt.show()

The interquartile range of data for amount credited has many outliers. The goods price amount of above 14.5 million and above are the outliers. The data is positively skewed.

sns.boxplot(inp0['DAYS_EMPLOYED'])
plt.show()

The interquartile range of data for amount credited has many outliers. The clients who are employed 7300 days and above are the outliers. The data is positively skewed.

IMBALANCE PERCENTAGE

inp0['CODE_GENDER'].value_counts(normalize=True)*100 ## Percentage of Female clients(61%) are more than male(38%) clients.

F 61.670388 M 38.328510 XNA 0.001103

Name: CODE_GENDER, dtype: float64

IMBALANCE PERCENTAGE

```
inp0['NAME_FAMILY_STATUS'].value_counts(normalize=True).plot.bar()
plt.legend()
plt.show()
```


inp0['NAME FAMILY_STATUS'].value counts(normalize=True)*100

Married 66.317153
Single / not married 14.613964
Civil marriage 10.060366
Separated 6.385512
Widow 2.623005
Name: NAME_FAMILY_STATUS, dtype: float64

Clients Family status : Married (66%) are the highest followed by Single/ not married(14%) & Civil marriage(3.61%) respectively.


```
df_1['NAME_HOUSING_TYPE'].value_counts(normalize=True)*100
```

House / apartment 85.208919
With parents 7.480547
Municipal apartment 3.714118
Rented apartment 2.510953
Office apartment 0.699667
Co-op apartment 0.385797
Name: NAME_HOUSING_TYPE, dtype: float64

```
## Percentage of defaulters - Housing type:
#1. House / apartment (85%)
#2. With parents (7%) &
#3. Municipal apartment(3.7%)
```

