Week2Lecture02 Relational Algebra

What is relational algebra

English <-> Relational Algebra <->SQL gueries

Relations: mathematical definition

A relation R of degree n, where values come from domains A1, ..., An:

$$R \subseteq A1 \times A2 \times \ldots \times An$$

subset of the Cartesian product of domains

Unary Operators

example

University					
<u>uName</u>	County	Enrollment			
NOTT	Nott/shire	18000			
CAM	Cam/shire	22000			
UCL	Great/Lon	20000			

Student					
SID	sName	GPA	HS		
0135	John	18.5	100		
0025	Mary	19.3	1000		
0423	Mary	17.5	300		

Apply				
SID	<u>uName</u>	<u>Subj</u>	Dec	
0135	CAM	CS	'A'	
0135	NOTT	CS	'A'	
0423	NOTT	ENG	'R'	

Selection

- σ : selection operator
- α : properties
- R: target relation

$$\sigma_{-}\alpha(R) = \{(a1, \ldots, an) \mid (a1, \ldots, an) \in R, \alpha(a1, \ldots, an)\}$$

example

1. Find out all students with GPA more than 19.

$$\sigma_{GPT} > 19$$
(Student)

• 2. Find out all students with GPA more than 19 and high school size less than 1000.

$$\sigma_{GPT}$$
 > 19 and HS < 1000 (Student)

 3. Find out all applications to University of Nottingham with subject CS

$$\sigma_{uName} = Nott_{s'} \text{ and } Subj = St'(Apply)$$
 $\sigma_{Subj} = St'(\sigma_{uName} = Nott_{s'}(Apply))$

select * from Student where GPA>19 and HS<1000

```
select * from Apply where uName='Notts' and Subj='CS'
```

```
select * from (select * from Apply where uName='Notts') where Subj='CS'
```

Projection

Projection works as slicing

• Projection of R on X is represented as:

$$\pi_X(R)$$

- π : projection operator
- X: a set of attributes
- R: target relation
- $\pi X R$ is a new relation only contain attributes from X

example

1. Get IDs and decisions from all applications.

$$\pi_{SID,Dec}(Apply)$$

2. Get IDs and names of students with GPA greater than
 19.

$$\pi_{SID_SName}(\sigma_{GPA} > 19(Student))$$

select SID, Dec from Apply

```
select SID, sName from (select * from Student where GPA>19)
```

Set Operators

Union

Standard set-theoretic definition:

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$

• E.g., $\{a, b, c\} \cup \{a, d, e\} = \{a, b, c, d, e\}$

Set difference

Standard set-theoretic definition:

$$A - B = \{x \mid x \in A \text{ or } x \notin B\}$$

- E.g., $\{a, b, c\} \{a, d, e\} = \{b, c\}$
- Partial Operation: requires union-compatible

Intersection

Standard set-theoretic definition:

$$A \cap B = \{x \mid x \in A \text{ and } x \in B\}$$

- E.g., $\{a, b, c\} \cap \{a, d, e\} = \{a\}$
- Partial Operation: requires union-compatible

Cartesian product

Standard set-theoretic definition:

$$A \times B = \{(x, y) \mid x \in A, y \in B\}$$

- E.g., $\{a,b\} \times \{d,e\} = \{(a,d),(a,e),(b,d),(b,e)\}$
- Total Operation
- Extended Cartesian product:

$$A \times B = \{(c_1, ..., cn, d_1, ..., dm) \mid (c_1, ..., cn) \in A, (d_1, ..., dm) \in B\}$$

Joint Operators

Natural Join Operator

Same as Cartesian Product but enforces equality on all attributes with the same name (S.SID and A.SID in our case)

Student ⋈ Apply (bowtie)

- Same as Cartesian Product but enforces equality on all attributes with the same name (S.SID and A.SID in our case)
- O Automatically sets values equal when attribute names are the same
- Gets rid of multiple copies of the attributes with the same name (there will be only one common SID attribute in the result)

Student M Apply						
SID	sName	GPA	HS	uName	Subj	Dec
0135	John	18.5	100	CAM	CS	'A'
0135	John	18.5	100	NOTT	CS	'A'
0423	Mary	17.5	300	NOTT	ENG	'R'

example

- E.g. 1 "Names and GPAs of students with HS>1000 who applied to CS and were rejected"
 - $\pi_{GPA,sName}(^{O}_{HS}>1000 \text{ and subj='CS' and dec='Rej'} \text{(Student } \bowtie \text{Apply)})$
- E.g. 2 "Names and GPAs of students with HS>1000 who applied to CS at Universities with enrolment > 20000 and were rejected"
 - □ π_{GPA,sName}(σ_{HS> 1000} and subj='CS' and Enrollment>20000 and dec='Rej' (Student ⋈ (Apply ⋈ Uni))

if two graph do not have the common attribute, Natural joint will have the same as the Cartesian joint

Theta Join Operator

- Cartesian Product satisfy certain properties
- Can be implemented via Cartesian Product and Select.
- The Theta Join operator is defined as
 - \circ R \bowtie_A S = σ_A (R \times S)
- The result of this operation consists of all combinations of tuples in R and S that satisfy property θ

Rename Operation

- The rename operator has 3 forms. The first one is the most general
 - ρR(A1, A2, ...An)(E).
 - This should be read as: "Evaluate E, and get a relation as a result. Then call the result relation R with attributes A1,...,An."

 From now on, we can use this schema to describe the result of E.
 - \circ $\rho R(E)$.
 - "Use the same attribute names but change the relation name to
 - \circ $\rho(A1, A2, ...An)(E)$.
 - "Use the same relation name but change the attribute names to A1,...,An."