Sindhedo Vernamolla promotofold P 2 2 0 2000 3-tropropose2A Edition for earlies was happing of Controls being selected as test later. This decreeses the vertance in Booships : Each record is assigned with an equal Name- Sindhuja Yerramalla email = syrrmlla@memphis.edu a 2001 to bloom of -1 SSSJORG MOST SURFERED (d Baggin 7 slep 1: The detacket will be devided into me containing samples by using samphing and replacement method. Regardet and does not berguest and mes interprete A Estimates priviled alle auto della della esta 2019mas

har the test poolshap pools on the each one

estymos priniust col banggab rathizants prope

```
Problemi
 Symmetric: Relation R on A is symmetric if for
              every (x,y) ER we have (y,x) ER.
  Transitive; if to Renever x Ry and y R 3 then x R 3.
   Gaven A= d1, 2, 4, 73
   let R be relation on A, where
      R={(1,1),(1,2),(1,4),(2,7),(2,4),(4,7)}
  caseli) (1,2) ER & (2,4) ER => (1,4) ER
    Similarly (2,4) ER & (4,7) ER 3 (2,7) ER.
        4.. R 15 transitive
  Case (:i) (1,2) ER. but (2,1) & R.
      .. R is not symmetric.
        0 1 1 1 0 0 (1) 0 9
Problem 2:
 Grever 4: R -> (-22) & f(x) = sin(x) + Cos(x)
* If fis injective +(a)=+(b) => a>b
  let us consider 0,2x ER.
   e(0) = sin(0) + cos(0) = 0 + 1 = 1
```

= 0+1=1

も(6)=も(なな)

but 0 + 27.

: The given function f(x) is not injective — (1)

* fi A -> B is a susjective if for every b EB there 15 some a EA such that f(a) 2b

Consider 2, 2 € [-2, 2]

Assume x EAR. >> + CX)=2

2) Sin(x) + cos(x) = 2 = 1+1

WKT. Range of Sim(x), cos(x) is -1 = Sin(x), cos(x) \(\leq 1 \text{ \text{XER}}

:. The maximum value for sin(x), (os(x) should be I each

>> sin(a) 21, cos(n) 21

=> Sin2 (x)*(OS(x) = 12x12 = 1+1=2

But sin'(x) + cos'(x) = 1 + x EIR.

7 27

This is a contradiction, There is no XER such that

£(x) = 2.

no incomming arrow

. &(n) is not surjective - (2)

both	injecti	ve and	Surject	rot	injectiv	e n	e:the r	
Surj s	ective P(n) 15 given		jective b	,y the	defi	nition	T C C C C C C C C C C C C C C C C C C C	Surje
roblem :	3 6	T. S.	de la companya de la	Signature of the state of the s	6) 6)		8	
4: R1	ry -> R	\d2'Y &	2 f (a) =	2/-1	2 46			
£ (~)	$= \frac{2x-7}{4-1}$	2 - 5			2			
C C		$\frac{2}{1} \cdot \frac{-6}{x-1}$	1 0 1		6 5500		\$	
1 TEN 1		1-17-5 1-5-17-1			e y		enterent engine) menten berake b	
t xerl	fig the	re exist nere exist	sts x E	2\{2} R\d1}	[In	jectiv vzect	re) (ve)	

let
$$f(x) = y$$
 => $x = f^{-1}(y)$
 $f(x) = f(x) = \frac{2x - 7}{x - 1}$
 $f(x) = \frac{2x - 7}{x - 2}$
 $f(x) = \frac{7 - 9}{2 - 9}$
 $f(x) = \frac{7 - 9}{2 - 9}$

Problem 4

 $f: A \rightarrow B$ and $g: B \rightarrow C$

i) suppose got is injective.

let a, b EA.

Suppose e(a) = e(b) then gof (a) = 9(f(a)) = 3(4(6))

=gof(5)

But since gof in injective =) a=b

 $: f(a) = f(b) \implies a > b$

:. & is injective.

let ZEC (1)

Since got is subjective, there exist XEA,

such that gof(x) = g(f(x)) = 2

:. if we let y=f(x) EB, then.

[9(4) = 2.

.. 9 is surjective.//.