

Figura 2.4.1 La aplicación ${\bf c}$ es la trayectoria; su imagen C es la curva que "vemos".

Ejemplo 1

La recta L en \mathbb{R}^3 que pasa por el punto (x_0,y_0,z_0) con la dirección del vector ${\bf v}$ es la imagen de la trayectoria

$$\mathbf{c}(t) = (x_0, y_0, z_0) + t\mathbf{v}$$

con $t \in \mathbb{R}$ (véase la Figura 2.4.2). Por tanto, nuestro concepto de curva incluye las rectas como casos especiales.

Figura 2.4.3 $c(t) = (\cos t, \sin t)$ es una trayectoria cuya imagen C es la circunferencia unidad.

Figura 2.4.2 L es la recta en el espacio que pasa por (x_0, y_0, z_0) con dirección \mathbf{v} ; su ecuación es $\mathbf{c}(t) = (x_0, y_0, z_0) + t\mathbf{v}$.

Ejemplo 2

La circunferencia unidad $\ C\colon x^2+y^2=1$ en el plano es la imagen de la trayectoria

$$\mathbf{c} : \mathbb{R} \to \mathbb{R}^2, \quad \mathbf{c}(t) = (\cos t, \sin t), \quad 0 \le t \le 2\pi$$

(véase la Figura 2.4.3). La circunferencia unidad también es la imagen de la trayectoria $\tilde{\mathbf{c}}(t) = (\cos 2t, \sin 2t), 0 \le t \le \pi$. Por tanto, trayectorias diferentes pueden parametrizar la misma curva.