Polygenic Risk Score (PRS) Introduction 101 GWAS, h^2 and prediction as the foundation

Drs. Lei Sun, Wei Deng, Yanyan Zhao

Department of Statistical Sciences, FAS

Division of Biostatistics, DLSPH

University of Toronto

07 October, 2021

At the end of this lecture, a deeper understanding of

- the multiple hypothesis testing issue inherent in GWAS
- the (high) variability inherent in $\hat{\beta}$, the β estimates
- heritability h^2 as a function of both β and MAF
- lacksquare the 'genetic effect size' of a SNP $=eta^2\cdot \mathsf{MAF}\cdot (1-\mathsf{MAF})$
- a conceptual PRS construction based on the ground truth, PRS.oracle
- DIY ROC plotting and AUC calculation for a PRS-based prediction

GWAS is the foundation of PRS, providing J and $\hat{\beta}_j$ in $PRS_i = \sum_{j=1}^J \hat{\beta}_j G_{ij}$

Y (phenotype) =
$$\beta_0 + \beta_j G_j$$
 (genotype) + $\beta_E E$ (envir.) + e (error),
 $H_0: \beta_j = 0$,

where $e \sim N(0, \sigma^2)$, $j=1...>10^6$ for all SNPs across the genome. (Could be more complex: multiple E's and G's, GxE, and GxG interactions)

G_j : Genotype of a (bi-allelic, autosomal) SNP j

- coded 0, 1 and 2 for aa, Aa and AA
- ightharpoonup a =the reference allele
- ightharpoonup A = the alternative allele (often the minor allele with MAF of p)
- ▶ freq. of aa, Aa and AA: $(1-p)^2$, 2p(1-p) and p^2 under HWE

GWAS Paper '0'

WTCCC (2007). *Nature*. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls.

- Phenotypes: Seven major diseases, e.g. Bipolar, Hypertension
- ightharpoonup Samples: pprox 2000 cases and (shared) 3000 controls for each disease
- SNPs: Affymetrix 500K
- Analyses: much effort on quality control (QC), simple association tests, novel imputation method.
- Results: 24 independent association signals at p-value $< 5 \cdot 10^{-7}$ almost all true positives based on previous or replication studies Some of the loci confer risk for multiple diseases 58 additional loci at $10^{-5} <$ p-value $< 5 \cdot 10^{-7}$

If interested: QQ-plot, Figure 3 of WTCCC 2007

Black: post-QC SNPs, MAF >1% and missing data rate <1%. SNPs at which the test statistic exceeds 30 are represented by triangles. (Most current GWASs: on the -log10(p-value) scale with no confidence band but with a main diagonal line.)

Blue: excluding SNPs located in the regions of association listed in Table 3 ($< 5 \cdot 10^{-7}$) (for BD: no visible effect on the plot, and for HT: no such SNPs).

If interested: Manhattan plot, Figure 4 of WTCCC 2007

If interested: A refresher *Y*-on-*G* association test via simulation

set.seed(101)

```
nsample=1000; maf=0.2; beta=0.3; beta.0=0; sigma=1 # no E for simplicity
nG=rmultinom(1,size=nsample,prob=c((1-maf)^2,2*maf*(1-maf), maf^2)) # assume HWE
G=c(rep(0,nG[1]),rep(1,nG[2]),rep(2,nG[3]))
e=rnorm(nsample,mean=0,sd=sigma)
Y=beta.0+beta*G+e

boxplot(Y-G,main=paste("Y = ",beta.0, "+ ",beta,"*G + e",sep=""), ylab="Phenotype (Y)", xlab="Genotype (G stripchart(Y-G,vertical=T,method="jitter",add=T,pch=20,col="gray")
title(line=0.5,paste("n=",nsample,", MAF=",maf,", sigma=",sigma, sep=""),cex.main=0.9)
```


In interested: The true (solid) and fitted (dotted) regression lines

```
plot(G,Y,main=paste("Y = ",beta.0, "+ ",beta,"*G + e",sep=""), ylab="Phenotype (Y)", xlab="Genotype (G)",
title(line=0.5,paste("n=",nsample,", MAF=",maf,", sigma=",sigma, sep=""),cex.main=0.9)
fit=lm(Y-G)
abline(a=fit$coef[1],b=fit$coef[2],lty=2) # fitted regression (dotted) line
abline(a=beta.0,b=beta) # true regression (solid) line
```


fit\$coef

```
## (Intercept) G
## -0.05350324 0.34152970
```

Quiz: difference between the same Y=0+0.3*G+e regression?

If interested: What if Y is binary for a case-control study?

A continuous trait: $E(Y) = \beta_0 + \beta_j G_j$ (no E for notation simplicty)

A binary trait: $E(Y) = 1 \cdot \mathsf{Prob}(Y = 1) + 0 \cdot \mathsf{Prob}(Y = 0) = \mathsf{Prob}(Y = 1)$

Instead of studying E(Y) = Prob(Y = 1) directly, use a 'smart' transformation, g(E(Y)),

$$logit(E(Y)) = logit(\mathsf{Prob}(Y=1)) = log(\frac{\mathsf{Prob}(Y=1)}{1 - \mathsf{Prob}(Y=1)}) \in (-\infty, \infty)$$

Logistic regression, a generalized linear model (GLM),

$$g(E(Y)) = logit(E(Y)) = log(\frac{\mathsf{Prob}(Y=1)}{1 - \mathsf{Prob}(Y=1)}) = \beta_0 + \beta_j G_j$$

Interpretation: $\{\beta \text{ is the logOR}\}\$ and

$$\mathbf{Prob}(Y=1) = \frac{exp(\beta_0 + \beta_j G_j)}{1 + exp(\beta_0 + \beta_j G_j)}$$

Binary trait simulation study (not discussed here)

NOT easy!

We can use a liability/threshold model to create cases and controls from a continuous outcome, similar to a population-based case-control study using e.g. the UK Biobank data.

Can we talk about $PRS_i = \sum_{j=1}^{J} \hat{\beta}_j G_{ij}$ now? NOT yet: A deeper understanding of GWAS is needed!

Even determining J, the 'top' associated/ranked SNPs, is not that simple! Several complications:

- multiple hypothesis testing (mht; here)
- weak-moderate genetic effect size (low power; next)
- correlated tests (LD; more complicated: consider LD prior or post GWAS?)

mht: from $\alpha = 0.05$ to $\alpha = 5 \times 10^{-8}$, the genome-wide (GW) significance level

Dudbridge and Gusnanto (2008). *Genetic Epidemiology*. Estimation of significance thresholds for genomewide association scans.

$$g(E(Y)) = \beta_0 + \beta_j G_j$$
; $H_0: \beta_j = 0$ for $j = 1, ... \approx 10^6$ SNPs.

- ho $\alpha=0.05$: many 'significant' SNPs per GWAS/family of tests.
- ▶ If all SNPs are not associated, p-values are Unif(0,1) distributed.
- $\sim \alpha = 5 \times 10^{-8}$: family/GWAS-wise error rate (FWER) of 0.05,

Prob(at least one false positive SNP per GWAS) \leq 0.05.

An illustrative simulation study: no SNPs associated

Using $\alpha=0.05$ leads to 256 significant SNPs (all false positives) in this one single 'GWAS.null'! No significant findings at $\alpha=0.05/5000$

```
set.seed(101)
nsample=1000; nsnp=5000 # less than 10 6 and no LD for now
G=matrix(-9,nrow = nsample,ncol = nsnp) # the genotype matrix
maf=runif(nsnp,min=0.05,max=0.5) # MAF randomly drawn from Unif(0,05,0.5) for simplicity
maf.hat=rep(-9,nsnp)
nsnp.true=0 # number of truly associated SNPs
beta.true=0 # no effect to study type 1 error
beta=c(rep(beta.true,nsnp.true),rep(0,(nsnp-nsnp.true))) # beta vector
betaG=rep(0.nsample) # the initial beta*G vector
for(j in 1:nsnp){ # using the loop function slows down the computation but adds clarity for teaching.
 nG=rmultinom(1,size=nsample,prob=c((1-maf[j])^2,2*maf[j]*(1-maf[j]), maf[j]^2))
 maf.hat[j]=(2*nG[3]+nG[2])/(2*nsample) # MAF estimated from the sample
 G[,j]=sample(c(rep(0,nG[1]),rep(1,nG[2]),rep(2,nG[3]))) # shuffle the G; no LD
 betaG=betaG+beta[j]*G[,j]
beta.0=0; sigma=1; e=rnorm(nsample, mean=0, sd=sigma)
Y=beta.0+betaG+e # the phenotype vector
sum.stat=matrix(-9,nrow=nsnp,ncol=7)
colnames(sum.stat)=c("MAF", "MAF,hat", "beta", "beta,hat", "se", "Z,value", "p,value")
for(i in 1:nsnp){
 fit=lm(Y~G[,j]); sum.stat[j,]=c(maf[j],maf.hat[j], beta[j], summary(fit)$coefficients[2,])
sum(sum.stat[,"p.value"] <= 0.05) # many "significant" SNPs in this one single "GWAS"
## [1] 256
sum(sum.stat[."p.value"]<=0.05/nsnp) # using the Bonferroni correction for FWER of 0.05
```

Pay attention to the spread of $\hat{\beta}_j$ histogram (top-left plot) No association here, true $\beta_i = 0$ for all SNPs.

If interested: Also pay attention to the uncertainty in MAF estimates

An illustrative 'polygenic' model simulation study

10 out 5000 indep. SNPs with varying 'moderate-large' effects are truly associated with Y (all $\beta=0.3$ but MAF vary).

$$Y_i = \sum_{j=1}^{10} \beta_j G_{ij} + e$$
, where $\beta_j = 0.3$

 $\mathsf{MAF} \sim \ \mathsf{Unif}(0.05, 0.5), \ e \sim \textit{N}(0, 1).$

 $nsnp.true=10 \ \textit{\# number of truly associated SNPs} \\ beta.true=0.3 \ \textit{\# "large" effect (also MAF, the error term, and the sample size)} \\$

N.B. Histogram and QQ-plot carry different types of information!

A closer look at the histograms of $\hat{\beta}$ and $Z = \hat{\beta}/SE$

Trouble ahead: similar between the GWAS.PRS (top) and GWAS.null (bottom)

If interested: GWAS-type of summary statistics (with true MAF and beta shown)

```
##
               MAF MAF.hat beta
                                  beta.hat
                                                         Z.value
                                                                      p.value
                                                  se
   [1,] 0.21748927 0.2215 0.3
                                0.29257288 0.06536792 4.47578705 8.489445e-06
   [2,] 0.06972117 0.0610
                           0.3 0.33145758 0.10935747 3.03095507 2.500692e-03
   [3,] 0.36935781
                    0.3780
                           0.3 0.23908858 0.05323916 4.49084039 7.922031e-06
   [4.] 0.34596068
                    0.3480
                           0.3 0.38889542 0.05565755 6.98728935 5.116550e-12
  [5.] 0.16243508
                    0.1695
                           0.3
                                0.30892955 0.07052329 4.38053229 1.308960e-05
## [6,] 0.18502467
                    0.1995
                           0.3 0.37606430 0.06503910 5.78212649 9.859505e-09
  [7.] 0.31318998
                    0.3375
                           0.3
                                0.33166110 0.05410586 6.12985587 1.264930e-09
## [8,] 0.20006021 0.2020
                           0.3 0.28159164 0.06670313 4.22156565 2.647447e-05
## [9,] 0.32990538 0.3360
                           0.3 0.23025579 0.05661344 4.06715744 5.134017e-05
## [10.] 0.29562285 0.2905
                           0.3 0.28906539 0.05841261 4.94868102 8.766086e-07
## [11.] 0.44590808 0.4445
                           0.0 0.09584075 0.05424572 1.76678916 7.756916e-02
## [12,] 0.36809363 0.3745 0.0 -0.02245388 0.05302784 -0.42343559 6.720687e-01
## [13.] 0.37938767 0.3750 0.0 -0.06366768 0.05424574 -1.17368994 2.407993e-01
## [14.] 0.46923549
                    0.4740
                           0.0 0.03095466 0.05222091 0.59276375 5.534736e-01
## [15,] 0.25480427
                    0.2485
                           0.0 0.05966600 0.06226877 0.95820104 3.381935e-01
## [16,] 0.31564388
                    0.3205
                           0.0 -0.03353920 0.05695716 -0.58884957 5.560954e-01
## [17.] 0.41919624
                    0.4345
                           0.0 -0.08589125 0.05307934 -1.61816710 1.059426e-01
## [18.] 0.15085332
                    0.1410
                           0.0 0.03167344 0.07632138 0.41500089 6.782304e-01
## [19,] 0.23525007
                    0.2515
                           0.0 -0.05445552 0.05876396 -0.92668222 3.543156e-01
## [20.] 0.06737475
                    0.0740
                           0.0 -0.10570983 0.10173334 -1.03908733 2.990158e-01
## [21,] 0.36532020 0.3595
                           0.0 0.06726877 0.05527611 1.21695922 2.239074e-01
## [22.] 0.48057686
                    0.4785
                           0.0 0.00804454 0.05286361 0.15217538 8.790794e-01
## [23,] 0.14600840 0.1400
                           0.0 -0.06318882 0.07458090 -0.84725206 3.970578e-01
## [24.] 0.34747768 0.3405
                           0.0 -0.00162502 0.05702567 -0.02849630 9.772720e-01
## [25.] 0.46549350
                    0.4590
                           0.0 0.07744989 0.05301480 1.46091065 1.443547e-01
## [26,] 0.40807389
                    0.4185
                           0.0 0.02135427 0.05247701 0.40692616 6.841495e-01
## [27.] 0.08204565
                    0.0820
                           0.0 -0.00372138 0.09588876 -0.03880935 9.690502e-01
## [28,] 0.22523350
                    0.2240
                           0.0 -0.09720419 0.06372866 -1.52528210 1.275056e-01
## [29,] 0.23290305
                    0.2455
                           0.0 -0.03611566 0.05999003 -0.60202767 5.472925e-01
## [30.] 0.34670979
                    0.3425 0.0 0.04700733 0.05368057 0.87568618 3.814114e-01
```

If interested: SNP1 output

```
##
## Call:
## lm(formula = Y \sim G[, 1])
##
## Residuals:
## Min 10 Median 30 Max
## -3.3958 -0.8050 0.0109 0.7912 3.8070
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.43764 0.04691 30.647 < 2e-16 ***
## G[, 1] 0.29257 0.06537 4.476 8.49e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.167 on 998 degrees of freedom
## Multiple R-squared: 0.01968, Adjusted R-squared: 0.0187
## F-statistic: 20.03 on 1 and 998 DF, p-value: 8.489e-06
```

If interested: SNP2 output

```
##
## Call:
## lm(formula = Y \sim G[, 2])
##
## Residuals:
## Min 10 Median 30 Max
## -3.2024 -0.8023 -0.0395 0.8466 3.7030
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.52681 0.03943 38.723 <2e-16 ***
## G[, 2] 0.33146 0.10936 3.031 0.0025 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.173 on 998 degrees of freedom
## Multiple R-squared: 0.009121, Adjusted R-squared: 0.008128
## F-statistic: 9.187 on 1 and 998 DF, p-value: 0.002501
```

IF we knew which set of SNPs to include (getting into the PRS direction but not yet)

```
# not realistic: no GWAS needed if we already know which SNPs are associated!
summary(lm(Y-G[,1]+G[,2]+G[,3]+G[,4]+G[,5]+G[,6]+G[,7]+G[,8]+G[,9]+G[,10]))
##
## Call:
## lm(formula = Y \sim G[, 1] + G[, 2] + G[, 3] + G[, 4] + G[, 5] +
      G[, 6] + G[, 7] + G[, 8] + G[, 9] + G[, 10])
##
##
## Residuals:
##
      Min
               1Q Median
                              3Q
                                    Max
## -3.2616 -0.7070 -0.0004 0.6983 3.3557
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.03884
                        0.09679 -0.401 0.68830
## G[, 1]
              0.30033 0.05783
                                  5.193 2.51e-07 ***
## G[, 2]
               0.29903 0.09607
                                  3.112 0.00191 **
## GF. 31
              0.31183
                       0.04731
                                  6.592 7.06e-11 ***
## G[, 4]
              0.35997 0.05006 7.190 1.27e-12 ***
## G[, 5]
              0.32629 0.06260
                                  5.212 2.27e-07 ***
## G[, 6]
              0.38079 0.05782 6.586 7.33e-11 ***
## G[, 7]
              0.31377
                      0.04840 6.482 1.42e-10 ***
## G[, 8]
              0.32870 0.05901
                                  5.570 3.28e-08 ***
## G[, 9]
               0.27331 0.05002
                                  5.464 5.90e-08 ***
## G[, 10]
               0.27448
                        0.05183
                                  5.296 1.46e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 1.027 on 989 degrees of freedom ## Multiple R-squared: 0.2471, Adjusted R-squared: 0.2395 ## F-statistic: 32.46 on 10 and 989 DF. p-value: < 2.2e-16

##

What kind of model (heritability, h^2) did we simulate?

$$Y = \sum_{j=1}^{10} \beta_j G_j + e$$
, where $\beta_j = 0.3$, $e \sim N(0, \sigma^2 = 1)$,

The MAF of the 10 truly associated SNPs, ranging from 0.07 to 0.37:

```
round(maf[1:nsnp.true],2)
```

```
## [1] 0.22 0.07 0.37 0.35 0.16 0.19 0.31 0.20 0.33 0.30
```

```
V.G=sum(beta[1:nsnp.true]^2*maf[1:nsnp.true])
V.e=sigma^2
h2=V.G/(V.G+V.e)
round(c(V.G,V.e,h2),3)
```

```
## [1] 0.224 1.000 0.183
```

True (not estimated) heritability:

$$h^2 = \frac{V_G}{V_G + V_e} = \frac{0.224}{0.224 + 1} = 18.3\%$$

Analytical details of h^2 of this **simple** model

(linear, fixed-effect, additive, no LD, no interaction)

$$Y=\sum_{j=1}eta_j G_j+e, ext{ where } e\sim extstyle N(0,\sigma^2).$$
 $V_Y=Var(Y)=\sum_ieta_j^2 Var(G_j)+\sigma^2=V_G+V_e,$

- ► G_i: p_i as MAF for A
- \triangleright coded additively: 0 = aa, 1 = Aa and 2 = AA
- **p** genotype frequency under HWE: $(1 p_j)^2$, $2p_i(1 p_i)$ and p_i^2
- $ightharpoonup E(G_j) = 2p_j; Var(G_j) = 2p_j(1-p_j)$

(narrow)
$$h^2 = \frac{V_G}{V_G + V_e} = \frac{\sum_j \beta_j^2 Var(G_j)}{Var(Y)} = \frac{\sum_j \beta_j^2 2p_j (1 - p_j)}{\sum_i \beta_i^2 2p_j (1 - p_i) + \sigma^2}.$$

Heritability of GWAS 'loci', h_j^2 contributed by each individual, independent SNP j in our case

(narrow)
$$h_j^2 = \frac{\beta_j^2 2p_j (1 - p_j)}{\sum_j \beta_j^2 2p_j (1 - p_j) + \sigma^2}.$$

 $\beta_i = 0.3$ for all 10 causal SNPs but MAFs differ:

[1] 0.217 0.070 0.369 0.346 0.162 0.185 0.313 0.200 0.330 0.296

Thus, (true not estimated) h_j^2 's differ:

[1] 0.016 0.005 0.027 0.025 0.012 0.014 0.023 0.015 0.024 0.022

Worth repeating: What is the effect size of a SNP?

All 10 SNPs have $\beta=0.3$, but their (true not estimated) h^2 contributions vary

$$\sum_{j} \beta_{j}^{2} 2p_{j} (1-p_{j})$$

Effect interpretation also depends on MAF and σ^2 .

n comes in later when we try to find these SNPs using data.

In practice, β_i must be estimated and

Large n is then critical!

MAF p_i and σ^2 also need to be estimated.

If interested: Connection with Explained Variatation (EV) and ${\it R}^2$ from regression

(linear, fixed-effect, additive, no LD, no interaction)

$$Y = \sum_{i=1} \beta_j G_j + e$$
, where $e \sim N(0, \sigma^2)$.

$$EV = \frac{\text{variation of Y explained by G}}{\text{total variation of Y}} = \frac{Var(E(Y|G))}{Var(Y)}$$
$$= \frac{\sum_{j} \beta_{j}^{2} 2p_{j} (1 - p_{j})}{\sum_{j} \beta_{j}^{2} 2p_{j} (1 - p_{j}) + \sigma^{2}} = h^{2}.$$

$$R^{2} = \frac{SS_{explained}}{SS_{total}} = 1 - \frac{SS_{residual}}{SS_{total}}$$
$$= 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}} \approx h^{2}$$

Recall: multi-SNP regression IF we knew the true model

```
##
## Call:
## lm(formula = Y \sim G[, 1] + G[, 2] + G[, 3] + G[, 4] + G[, 5] +
      G[.6] + G[.7] + G[.8] + G[.9] + G[.10]
##
## Residuals:
##
      Min
               10 Median
                              30
                                    Max
## -3.2616 -0.7070 -0.0004 0.6983 3.3557
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.03884 0.09679 -0.401 0.68830
## G[, 1]
              0.30033 0.05783 5.193 2.51e-07 ***
## G[, 2]
              0.29903 0.09607
                                  3.112 0.00191 **
## G[, 3]
              0.31183 0.04731
                                  6.592 7.06e-11 ***
## G[, 4]
              0.35997
                      0.05006 7.190 1.27e-12 ***
## G[, 5]
              0.32629
                      0.06260
                                  5.212.2.27e-07 ***
## G[, 6]
              0.38079
                      0.05782
                                  6.586 7.33e-11 ***
## G[, 7]
              0.31377
                       0.04840
                                  6.482 1.42e-10 ***
## G[, 8]
              0.32870
                       0.05901
                                   5.570 3.28e-08 ***
## G[, 9]
              0.27331
                       0.05002
                                  5.464 5.90e-08 ***
## G[, 10]
              0.27448
                         0.05183
                                   5.296 1.46e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.027 on 989 degrees of freedom
## Multiple R-squared: 0.2471, Adjusted R-squared: 0.2395
## F-statistic: 32.46 on 10 and 989 DF, p-value: < 2.2e-16
```

From multi-SNP to one-super-SNP (PRS) association!

IF we knew the true model: *PRS*_{oracle}

Not realistic: only to demonstrate the value of PRS **conceptually**.

$$PRS_{i,oracle} = \sum_{j=1}^{J=10} \beta_j G_{ij} + e$$
, where $\beta_j = 0.3$

```
PRS.oracle=rep(0,nsample) # PRS vector
for (i in 1:nsample) # for each individual i
  for (j in 1:nsnp.true) # sum over the J selected SNPs
    PRS.oracle[i] = PRS.oracle[i]+beta[j]*G[i,j]
    par(mfrow=c(1,2))
    hist(PRS.oracle) # not quite normal as J=10 here
plot(PRS.oracle,Y) # much more predictive than individual SNPs
```


(Good) PRS is more significantly associated with the trait than one single $\ensuremath{\mathsf{SNP}}$


```
summary(lm(Y~PRS.oracle))
```

```
##
## Call:
## lm(formula = Y ~ PRS.oracle)
##
## Residuals:
      Min 1Q Median 3Q
                                    Max
## -3.1940 -0.7168 -0.0158 0.7102 3.3731
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.04598 0.09549 -0.482
                                            0.63
## PRS.oracle 1.05710 0.05886 17.959 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.025 on 998 degrees of freedom
## Multiple R-squared: 0.2442, Adjusted R-squared: 0.2435
## F-statistic: 322.5 on 1 and 998 DF, p-value: < 2.2e-16
```

From PRS-based association to PRS-based prediction!

Standardization (STD) and a liability/threashold model

```
Y.STD=(Y-mean(Y))/sqrt(var(Y))
PRS.oracle.STD=(PRS.oracle-mean(PRS.oracle))/sqrt(var(PRS.oracle))
case.index=which(Y.STD>1);control.index=which(Y.STD<=1) # 1 is a subjective choice
c(length(Y[case.index]),length(Y[control.index])) # numbers of cases and controls
```

[1] 149 851

higher $PRS_{oracle} \Longrightarrow higher risk/case$

Quiz

Standardization (STD) is often done in practice and should not change interpretation.

BUT, what are the potential pitfalls of STD?

Different perspective but the same idea: PRS_{oracle} 's of cases tend to be higher than PRS_{orcale} 's of controls

```
Y.cc=rep("0=Control", nsample); Y.cc[case.index]="1=Case"
boxplot(PRS.oracle.STD-Y.cc, main="", xlab="", col=c(rgb(0,0,0,0.1), rgb(1,0,0,0.1)))
```


Recall and mimic the illustrative plots (2 in 1)

Quiz:

The standardized PRS.oracle value of an individual is 2.5. What is the **probability** of this individual having the disease/condition? (Hint in the two histrograms below and **relative risk** \neq **absolute risk!**)

Another related quiz:

- cases: individuals with the disease/condition
- controls: individuals without the disease/condition
- ▶ a test or a decision rule, say Covid-19 testing or PRS-based prediction (e.g. standardized PRS >3 predicting case)
- Sensitivity = e.g. 90%Sensitivity = Pr(positive test result|case)
- Specificity = e.g. 90% Specificity = Pr(negative test result|control)

Is it possible that Pr(case|PRS>3) < 50%? (hint: which information is missing from the above?)

Towards ROC (receiver operating characteristic) curve and AUC (area under the curve), using our simulated data and PRS.oracle

[1] "AUC of ROC.oracle=" "0.763"

Undertanding each point on the ROC curve

```
plot(PRS.oracle.STD,Y.STD,col=color.index)
ncase=sum(Y.cc=="1=Case") # total number of cases
ncontrol=sum(Y.cc=="0=Control") # total number of controls
c(ncase,ncontrol)
```

[1] 149 851

PRS.threshold=1; abline (v=PRS.threshold, col="blue") # threshold used to call a sample positive/case


```
P=sum(PRS.oracle.STD>PRS.threshold) # number of Positives at this threshold
TP=sum(Y.cc[PRS.oracle.STD>PRS.threshold]=="1=Case") # True Positives
FP=sum(Y.cc[PRS.oracle.STD>PRS.threshold]=="0=Control") # False Positives
c(P,TP,FP)
```

```
## [1] 207 70 137
sensitivity=TP/ncase # sensitivity
specificity.1=FP/ncontrol # 1-specificity
c(sensitivity, specificity.1) # ONE point on the ROC curve: (y=sensitivity=0.47,x=1-specificity=0.16)
```

[1] 0.4697987 0.1609871

A few more (sensitivity vs. 1-specificity) points for ROC

```
# increase the threshold: both sensitivity and 1-specificity decrease
PRS.threshold= -1.5
## [1] 940 147 793
## [1] 0.9865772 0.9318449
PRS_threshold=0
## [1] 379 104 275
## [1] 0.6979866 0.3231492
PRS_threshold=1.5
## [1] 108 53 55
## [1] 0.35570470 0.06462985
PRS.threshold=2
## [1] 48 31 17
## [1] 0.2080537 0.0199765
PRS.threshold=2.5 # estimates are no longer stable as counts are small
## [1] 10 9 1
## [1] 0.060402685 0.001175088
```

Real-life ROC curves, e.g.

Figure 3 of Badre et al. (2021). *Journal of Human Genetics*. Deep neural network improves the estimation of polygenic risk scores for breast cancer.

N.B. The classical logistic regression is competitive!

Because,

$$PRS_{i,oracle} = \sum_{j=1}^{J=10} \beta_j (= 0.3) G_{ij} \text{ is NOT PRS}_{i,parctice}!$$

- ▶ *J* is unknown, to be determined
- $\triangleright \beta_j$ is unknown, to be estimated
- ▶ G_{ij} cannot be directly from the same data used to infer J and β_j .
 - Otherwise: over-fitting/double-dipping/data-dredging/p-hacking/selection-bias!
- Not to mention LD and other considerations in real data settings.

What's next: HOW to construct PRS_{practice} and do it CORRECTLY!

Recap the goal of this lecture: a deeper understanding of

- the multiple hypothesis testing issue inherent in GWAS
- the (high) variability inherent in $\hat{\beta}$, the β estimates
- heritability h^2 as a function of both β and MAF
- lacktriangle the 'genetic effect size' of a SNP $=eta^2\cdot \mathsf{MAF}\cdot (1-\mathsf{MAF})$
- a conceptual PRS construction based on the ground truth, PRS.oracle
- ▶ DIY ROC plotting and AUC calculation for a PRS-based prediction

What's next: How to construct $PRS_{practice}$ and do it correctly and compare results using different α level.