Presence of Deleterious Variants in the gnomAD Population Data Set

Matt Croken

2022 September 02

Allele Frequency in Populations

- ➤ The compilation and harmonization of genomic sequencing data is an ongoing and critical effort impacting multiple scientific domains
- In the clinical sequencing context, understanding the frequency of alleles in populations is vital to variant interpretation

The Clinical Context

- ▶ Generally, variants occurring more frequently in a population are less likely to be linked to a disease state
- ➤ When attempting to detect somatic variants without a 'Normal' control, population-level allele frequencies are used to identify and exclude suspected germline variants

The Clinical Context, but More Complicated

- There are no established best practices or guidelines for setting an allele frequency threshold
 - Too low risks overwhelming the variant curator
 - Too high risks excluding relevant variants
- As NGS panels trend larger, the risk of error increases with the volume of variants
- Tumor Mutational Burden, an important therapeutic indicator, is usually calculated in a fully automated way

gnomAD

- ▶ The gnomAD database succeeds and builds on many past aggregation efforts
- gnomAD is a carefully curated and nuanced data set
 - It is most frequently used in decidedly un-nuanced ways

Preliminary Objectives

- ▶ Identify the extent to which predicted deleterious variants exist in gnomAD and at what frequencies
- ▶ Identify gnomAD variants in OncoKB (cancer domain specific)

Methodology - Tools

- github.com/mcroken/pathpop
- bcftools
 - Query and reformat VCF files
- SnpEff
 - Predict effects of genomic variants on transcripts
- ► GNU Make
 - ► Workflow orchestration & reproducibility

Methodology - Tools

- OncoKB REST API
 - ldentify relevant genes to target
 - Query for oncogenic variants
- Quarto
- Tidyverse
 - Data analysis and visualization

Analysis Strategy

Impacts of gnomAD Variants in OncoKB Curated Genes

Impacts of gnomAD Variants in OncoKB Curated Genes

Impact	AF greater than 1%	AF less than 1%
HIGH	70	6114
LOW	2099	93261
MODERATE	1411	125346
MODIFIER	4446	147191

"Germline" (AF > 1%) Variants in OncoKB

n	Oncogenic Status
11	Inconclusive
16	Likely Neutral
156	Likely Oncogenic
3	Oncogenic
7761	Unknown

"Germline" (AF > 1%) Variants in OncoKB

n	Hotspot
6847	false
1092	null
8	true

Conclusions

- ▶ Limited (but non-zero) number of variants strongly associated with cancer or predicted to be deleterious
- Significant number of variants which are likely oncogenic or deleterious
- As these variants have relatively high allele frequencies, the problem is not easily controlled by raising the AF threshold
- Flag or remove gnomAD variants which are actually reportable in advance

Future Directions

- ► Flag or remove gnomAD variants which are actually reportable
 - Production workflow to continually update
- Redo analysis without sub-setting the gnomAD data set
- Query additional databases for cancer-relevant variants
- Periodically query variants excluded as "germline" for novel disease associations.