Production planning with contract decisions

Tom Holt

July 28, 2022

1 Contract decisions (first stage decisions)

2 Production planning model (second stage decisions)

Sets

```
M set of paper mills PM set of paper machines P set of paper products R set of raw materials E set of energy requirements (essentially just variable cost components) E_i set of energy requirements needed by product i (E_i \subset E) C set of customers E_i set of time periods
```

Parameters

P_{rt}	$t \in T, r \in R$	price of raw material r purchased at time t .
α_{ir}	$i \in P, r \in R$	conversion factor to convert 1 ton of product i
		into required raw material r .
D_{itc}	$i \in P, t \in T, c \in C$	demand in time period t for product i from customer c
F_p	$p \in PM$	fixed cost operating paper machine p .
S_p	$p \in PM$	shutdown fixed costs for shutting down paper machine p .
PC_p	$p \in PM$	monthly production capacity of paper machine p .
L_{cp}	$c \in C, m \in M$	logistics costs for transporting products from pm p
		to customer c
SC_m	$m \in M$	storage costs per ton of paper stored at mill m
PR_{it}	$i \in P, t \in T$	price per ton of product i at time t
EC_{iept}	$i \in P, e \in E, m \in M$	cost of energy type e at pm p per one ton of product i .

Decision variables

Integer decision variables

```
y_p \quad p \in PM paper machine p is running
```

Cont. decision variables

 $\begin{aligned} x_{iptc} & i \in P, p \in PM, t \in T & \text{tons of paper product } i \text{ produced by paper machine } p \\ & \text{in time } t \text{ for customer } c. \\ I_{imtc} & i \in P, m \in M, t \in T & \text{tons of paper product } i \text{ in storage at mill} \\ & m \text{ at time } t \text{ for customer } c. \\ R_{tr} & t \in T, r \in R & \text{tons of raw material } r \text{ purchased at time } t. \\ RI_{trm} & t \in T, r \in R, m \in M, & \text{raw material inventory of material } r \text{ at time } t \text{ at mill } m. \end{aligned}$

Objective function

PROFIT = SALES – ICOSTS – RCOST – LCOST – ECOST
$$-\sum_{p \in PM} \sum_{t \in T} F_{pt} y_p - \sum_{p \in PM} S_p (1 - y_p)$$

where

$$SALES = \sum_{i \in P} \sum_{t \in T} \sum_{p \in PM} PR_{it}x_{ipt}$$

$$RCOST = \sum_{r \in R} \sum_{t \in T} P_{rt}R_{rt}$$

$$ICOST = \sum_{m \in M} \sum_{t \in T} SC_m (\sum_{i \in P} \sum_{c \in C} I_{imtc} + \sum_{r \in R} RI_{trm})$$

$$LCOST = \sum_{t \in T} \sum_{p \in PM} \sum_{c \in C} \sum_{i \in P} L_{cp}x_{iptc}$$

$$ECOST = \sum_{c \in C} \sum_{i \in P} \sum_{t \in T} \sum_{p \in PM} (\sum_{e \in E_i} EC_{iept})x_{iptc}$$

and the last two terms account for fixed monthly operating costs of running machines as well as the single fixed shutdown cost.

Constraints

(i) Demand satisfaction:

$$\sum_{p \in PM} x_{iptc} + \sum_{m \in M} I_{im(t-1)c} = D_{itc} + \sum_{m \in M} I_{imtc} \quad (\forall t \in T, \forall i \in P, \forall c \in C)$$

(ii) Raw material balance:

$$R_{tr} + \sum_{m \in M} RI_{(t-1)rm} = \sum_{c \in C} \sum_{p \in PM} \alpha_{ir} x_{iptc} + \sum_{m \in M} RI_{trm} \quad (\forall t \in T, \forall i \in P, \forall r \in R)$$

(iii) Bounded inventory

$$\sum_{i \in P} \sum_{c \in C} I_{imtc} + \sum_{r \in R} RI_{trm} \le I_m^U \quad (\forall m \in M, \forall t \in T)$$

(iv) Bounded capacity

$$\sum_{i \in P} x_{ipt} \le PC_p y_p \quad (\forall t \in T, p \in PM)$$

(v) Non-negativity: all continuous decision variables are non-negative.