

Christian Werner

(Quantitative geneticist and biostatistician) EiB, CIMMYT, Texcoco (Mexico)

Filippo Biscarini

(Biostatistician, bioinformatician and quantitative geneticist) CNR-IBBA, Milan (Italy)

Oscar González-Recio

(Computational biologist and quantitative geneticist) INIA-UPM, Madrid (Spain)

Physalia Courses

simple testing

- inference → is there a difference between groups?
 - e.g. AA vs AB vs BB
- significance is related to the size and variance of this difference
- **p-value**: prob of obtaining such an extreme t statistics under H₀ given we repeat the experiment an infinite number of times
 - P-value $< \alpha \rightarrow$ small likelihood of the data under $H_0 \rightarrow$ significant difference
 - P-value $> \alpha \rightarrow$ there is a high chance of observing these data if there is no difference between groups
- $\alpha = 0.05 \rightarrow$ threshold: 5% of rejecting H₀ when it is true (Type I error).
 - false positive: significant result when there is no difference (H_o is true)

multiple testing

- many tests → many false positives
 - e.g. 2000 (independent) tests, α=0.05 → How many expected false positives?
 100 false positives by chance alone
- multiple testing problem
- A typical GWAS conducts hundreds of thousands to millions of tests independently, each for a single marker and with its own false-positive probability.
 - many SNPs, many statistical tests, many p-values (large p, small n problem)

How to cope with the problem

- 1. Increase the sample size (e.g. Bio Banks)
- 2. Reduce the number of tests
 - Based on LD
 - Choose relevant regions (functional analysis)
- 3. Decrease the significance threshold
- Arbitrary significance level (e.g. 5x10⁻⁸)
- Bonferroni correction
- False discovery rate
- **⋓ q values** (important pitfalls)
 - Permutation analysis
 - Go Bayesian...

Bonferroni correction

- Bonferroni, mathematician (1892 1960)
- adjust the significance threshold:
 - New significance threshold $\leq \alpha/m$

[m: number of tests (markers)]

- Bonferroni correction tends to be too conservative
 - few false positives
 - many false negatives

False discovery rate (FDR)

Decrease the significance threshold

- 1) If I apply a threshold alpha to decide on significance, how much can I trust the results?
- 2) Where should I draw a line (threshold) of significance so that at most e.g. 10% of results are false positives?

False discovery rate (FDR)

- FDR: how many of the positive results are false positives?
- Benjamini & Hochberg (1995), Storey (2002), Storey & Tibshirani (2003)
- Significance level = 0.05 → 5% of all tests on average will be false positives (assuming independency)
- FDR = 0.05 → 5% of significant tests will on average be false positives

fewer false positives!

Permutation tests

- Determine the significance of a result by randomly reshuffling the data and recalculating the test statistic.
 - This allows to test the null hypothesis that the observed difference between two groups is due to chance, rather than a real difference between the groups.
- Permutation tests are often used when the assumptions of traditional parametric tests are not met, or when the sample size is small.
- They are also useful when the data is not normally distributed, or when the groups being compared are not independent.

Permutation tests

x large number of times (e.g. x1000)

Non-significant, within 95%HPD

Significant, out of 95%HPD

Bayesian inference

In Bayesian inference, the probability of a hypothesis is
 updated using Bayes' theorem as follows

$$p(\mathbf{\theta}|\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{\theta})p(\mathbf{\theta})}{p(\mathbf{y})} \propto p(\mathbf{y}|\mathbf{\theta})p(\mathbf{\theta})$$

- where $P(\theta | y)$ is the updated probability of the effect given the new evidence, $P(y|\theta)$ is the likelihood of the evidence given the effect, $P(\theta)$ is the prior probability of the effect, and P(y) is the probability of the evidence.
- Make inferences of the posterior distribution using McMC algorithms (Gibbs sampling, acceptance rejection, Metropolis-Hasting)

Bayesian inference

- What is the mean of the posterior distribution and its standard deviation?
- Does it contain zero?

Bayesian inference

- What is the probability of the effect being larger than a relevant magnitude (e.g. +1).
- Is it a sufficient probability (e.g. 80%)

Possible to combine Bayesian inference and permutation test

REMEMBER

Correlation does not imply causation

https://xkcd.com/552/

Make your rationale choice

NEXT LECTURE

Power of GWAS experiments

 q-values: proxies for FDR based on the distribution of p-values

 q-values: proxies for FDR based on the distribution of p-values

- the q-value approach tries to find the proportion of significant results which are likely to be false positives
- intuitively, it finds the height (density) at which the distribution of p-values flattens out

- the q-value approach tries to find the proportion of significant results which are likely to be false positives
- intuitively, it finds the height (density) at which the distribution of p-values flattens out

here the distribution is similar to the case where there is no actual difference

 this proportion of false positives is then incorporated in the calculation of adjusted p-values (q-values)

interpretation of q-values

- Significance level = 0.01 → probability of the p-value under H₀
- q-value = 0.02 → probability of the SNP being a false positive
- Significance level = 0.01 → 1% chance of false positives (e.g. 7900 SNPs → 79 false positives expected)
- q-value = 0.02 → 2% of positive results may be false positives (e.g. 800 SNPs with q-value ≤ 0.02 → 16 false positives expected)

interpretation of the single SNP

interpretation of the distribution of SNPs

- What's wrong with q-values?
 - They assume p-value is the probability of rejecting the null hypothesis when it is true
 - They do not consider that p-values are drawn from a probability distribution, and assume an infinite repetition of the experiment (obtaining different p-values for each experiment).

