- I. Soit (E,d) un espace métrique et $x \in E$.
 - 1. Montrer que diam $(B_f(x,r)) \le 2r$.
 - 2. Donner un exemple où diam $(B_f(x,r)) < 2r$.
- II. 1. Montrer que les applications $\| \|_{\infty}$, $\| \|_{1}$ et $\| \|_{2}$ définies sur \mathbb{R}^{2} par :

$$\forall x = (x_1, x_2) \in \mathbb{R}^2, \quad \|x\|_{\infty} = M \, ax \, (\mid x_1 \mid, \mid x_2 \mid), \\ \|x\|_1 = |x_1| + |x_2|)$$
 et $\|x\|_2 = \sqrt{x_1^2 + x_2^2}$ sont des normes sur \mathbb{R}^2 .

- 2. Représenter $\mathbf{B}_{f}(0,1)$ dans \mathbb{R}^{2} relativement à chacune de ces trois normes.
- III.1. Montrer que les applications $\| \|_{\infty}$, $\| \|_{1}$ et $\| \|_{2}$ définies sur $E = \mathcal{C}([0,1]; \mathbb{R})$ par $\forall f \in E$, $\| f \|_{\infty} = \sup_{t \in [0,1]} \| f(t) \|_{1} = \int_{0}^{1} \| f(t) \| dt$ et $\| f \|_{2} = \sqrt{\int_{0}^{1} (f(t))^{2} dt}$ sont des normes sur E.
 - 2. Montrer que $\forall f \in E$, $\|f\|_1 \le \|f\|_2 \le \|f\|_{\infty}$
 - 3. Montrer qu'il n'existe pas $k \in \mathbb{R}$ tel que $\forall f \in E$, $\|f\|_{\infty} \le k \|f\|_2$ ou $\|f\|_2 \le k \|f\|_1$ (on pourra utiliser la fonction f_n définie sur [0,1] par $f_n(t) = t^n$).

IV. Soit
$$E = \mathcal{C}([0,1]; \mathbb{R})$$

- 1. Définir bien proprement ces fonctions f_n .
- 2. Montrer que la suite $\{f_n\}_{n\in\mathbb{N}}$ est convergente dans E muni de $\|\cdot\|_1$

- V. Soit $E = \mathcal{C}([0,1]; \mathbb{R})$
 - Définir proprement f_n.
 - Montrer que la suite {f_n}_{n∈N} est de Cauchy dans E muni de | | |₁
 - Montrer que cette suite n'est pas convergente dans E muni de | | | | | |
 - 4. Que se passe-t-il avec | | 2 ?

- I. Montrer que toute partie d'un espace mètrique discret est un ouvert et un fermé de cet espace.
 - 2. Montrer que dans $\mathbb R$ muni du mètrique usuel, $\overset{\circ}{Q} = \varnothing$ et $\overline{Q} = \mathbb R$
- II. Soient (E,d) un espace mètrique et A, B deux parties de E. Montrer que:
 - (i) si $A \subset B$ alors $\overset{\circ}{A} \subset \overset{\circ}{B}$ et $\overset{-}{A} \subset \overset{-}{B}$
 - (ii) $\overset{\circ}{A} \cap \overset{\circ}{B} = \overbrace{A \cap B} \overset{\circ}{\text{et } A \cup B} = \overline{A \cup B}$
 - (iii) $\mathring{A} \cup \mathring{B} \subset \overset{\circ}{A \cup B}$ et $\overline{A \cap B} \subset \overline{A \cap B}$

et donner un exemple dans IR usuel où

$$\stackrel{\circ}{A} \cup \stackrel{\circ}{B} \neq \stackrel{\circ}{A} \cup \stackrel{\circ}{B} \text{ et } \overline{A \cap B} \neq \overline{A} \cap \overline{B}$$

- III. Soient (E,d) un espace mètrique, $a \in E$ et r>0.
 - 1. Montrer que $\overline{B_o(a,r)} \subset B_f(a,r)$

Peut-on affirmer dans le cas général que $\overline{B_o(a,r)} = B_f(a,r)$?

- 2. Si (E, || ||) est un e.v.n, montrer que $\overline{B_0(0,1)} = B_f(0,1)$
- IV. Soient (E,d) un espace mètrique, A, B deux parties de E, A ouvert.
 - 1. Montrer que $A \cap \overline{B} \subset \overline{A \cap B}$ Ce résultat reste-t-il vrai si A n'est pas ouvert ?
 - 2. Enoncer la propriété complémentaire.
- V. Soit A une partie bornée d'un espace métrique (E,d).

Montrer que \overline{A} est bornée et que $\operatorname{diam}(\overline{A}) = \operatorname{diam}(A)$.

L. Montrer que tout ouvert U de IR usuel est réunion dénombrable d'intervalles ouverts.

$$\label{eq:indication} \begin{split} \textit{Indication:} \ \text{On pose } I = \big\{ (x,n) \in Q \times \mathbb{N}^* \ \ \text{tel que } \ \big| \ x - \frac{1}{n} \ , x + \frac{1}{n} \ \big[\ \subset \ \mathsf{U} \ \big] \, . \end{split}$$

$$\ \ \text{Montrer que si } y \in \mathsf{U} \ \ \text{alors il existe } \ p \in \mathbb{N}^* \ \text{et } \ z \in \mathsf{Q} \ \ \text{tq} \ \ \big] \ y - \frac{1}{p} \ , y + \frac{1}{p} \ \big[\ \subset \ \mathsf{U} \ \big] \, . \end{split}$$

$$\ \ \text{et } y \in \big] \ z - \frac{1}{2p} \ , z + \frac{1}{2p} \ \big[\ \ \text{et en déduire que } \ \mathsf{U} \ = \ \underbrace{\mathsf{U}}_{(x,n) \in I} \ x - \frac{1}{n} \ , x + \frac{1}{n} \ \big[\ . \end{split}$$

II. Soient A,B deux fermés disjoints d'un espace mètrique (E,d). Montrer qu'il existe deux ouverts disjoints de (E,d) dont l'un contient A et l'autre contient B.

$$\label{eq:location} \begin{split} \textit{Indication:} \ &\text{Pour} \ x \in A \ (\text{resp.} \ y \in B) \ \text{on pose} \ \epsilon_x = d(x,B) \ \text{ et } \ U = \bigcup_{x \in A} B_o(x,\frac{1}{2}\epsilon_x) \\ &(\text{resp.} \ \epsilon_y = d(y,A) \ \text{ et } \ V = \bigcup_{y \in B} B_o(y,\frac{1}{2}\epsilon_y) \). \end{split}$$

- III. Soient (E, d) un espace mètrique, (B, d) un sous-espace avec la mètrique induite.
 - Montrer que les fermés de (B,d) sont les traces de fermés de (E,d) sur B. En déduire que si B est un fermé de (E,d) alors les fermés de (B,d) sont les fermés de (E,d) qui sont inclus dans B.
 - 2. Montrer que si $A \subset B$ alors $\overline{A}^B = \overline{A}^E \cap B$.
- IV. Soit G un sous-groupe non vide de $(\mathbb{R}, +)$.
 - 1. Montrer que $G \cap \mathbb{R}_+^*$ possède une borne inférieure.
 - 2. On pose $a = Inf(G \cap \mathbb{R}_+^*)$.
 - a) Montrer que si a > 0 alors $G = a \mathbb{Z}$.
 - b) Montrer que si a=0 alors G est dense dans R (usuel).
 - 3. Montrer que \mathbb{Z} et $\sqrt{2}$ \mathbb{Z} sont deux fermés de \mathbb{R} (usuel) et que $\mathbb{Z} + \sqrt{2}$ \mathbb{Z} est dense dans \mathbb{R} . En déduire que la somme de deux fermés d'un espace métrique n'est pas nécessairement un fermé.
- V. 1. Montrer que $A = \{(x, \frac{1}{x}); x \in \mathbb{R}^* \}$ et $B = \{(0, y); y \in \mathbb{R} \}$ sont deux férmés de $(\mathbb{R}^2, \|\cdot\|_{\infty})$.
 - Déterminer d_m(A,B).
 - 3. $A_{\pm}B$ est-il un fermé dans $(\mathbb{R}^2, \|\cdot\|_{\infty})$?

- I. Soient (E, d) et (F, δ) deux espaces mètriques et f: E → F une application.
 Montrer l'équivalence des propriétés suivantes:
 - (i) f est continue
 - (ii) pour tout $A \subset E$, $f(\overline{A}) \subset \overline{f(A)}$
 - (iii) pour tout $B \subset F$, $f^{-l}(\overset{\circ}{B}) \subset \overbrace{f^{-l}(B)}^{\circ}$
- II. Soient (E,d) et (F,δ) deux espaces mètriques, A et B deux fermés de (E,d) tels que $E=A\cup B$ et $f:E\longrightarrow F$ une application dont la restriction $g=f_A$ et la restriction $h=f_B$ sont continues. Montrer que f est continue.
- III. Soit $T = \{ (x,y) \in \mathbb{R}^2 \text{ tq } x^2 + y^2 = 1 \}.$

L'application f de $[0, 2\pi[$ (munie du mètrique usuel) dans T (muni du mètrique induit par d_{∞}) définie par f(t) = (Cost, Sint) est-elle un homéomorphisme?

- IV. On considère l'application $\delta: \mathbb{R}^2 \longrightarrow \mathbb{R}_+$ $(x,y) \longrightarrow |\operatorname{Arc} \tan x \operatorname{Arc} \tan y|$
 - 1. Vérifier que δ est une distance sur \mathbb{R} , topologiquement équivalente à la distance usuelle d.
 - 2. Soit $\{x_n\}_{n\in\mathbb{N}}$ la suite définie par $x_n = n$.
 - a) Montrer que la suite $\{x_n\}_{n\in\mathbb{N}}$ est de Cauchy dans (\mathbb{R}, δ).
 - b) Cette suite converge-t-elle dans (ℝ, δ)?
- V. Soient (E,d) un espace mètrique, A et B deux parties de E tq $\overline{A} \cap B = \emptyset$ et $A \cap \overline{B} = \emptyset$. Soient $U = \{ x \in E \text{ tq } d(x,A) < d(x,B) \}$ et $V = \{ x \in E \text{ tq } d(x,B) < d(x,A) \}$. Montrer que ce sont deux ouverts disjoints de (E,d) contenant A et B respectivement.

Lagrange 3/488 - 95/96

- I. Soient $a,b \in \mathbb{R}$ avec a < b et $\{x_n\}_{n \in \mathbb{N}}$ une suite d'éléments de [a,b]. On pose $\alpha = \lim_{n \to +\infty} \sup x_n$. Montrer que $\forall \epsilon > 0$ $]\alpha \epsilon, \alpha + \epsilon[$ contient une infinité de termes de la suite $\{x_n\}_{n \in \mathbb{N}}$ et en déduire que [a,b] est compact.
- II. Soient (E,d) un espace métrique et A,B deux parties non vides de E. Montrer que : si A compacte, B fermée et $A \cap B = \emptyset$, alors d(A,B) > 0.

III. Soit
$$E = \mathcal{C}([0,1]; \mathbb{R})$$
.

Montrer que $B_f(0,1)$ n'est pas compact dans (E,d_{∞}) .

Indication: on pourra utiliser les fonctions fn

- IV. Soient (E,d) un espace métrique compact et $f:E \longrightarrow E$ une application telle que, pour tout $x,y\in E,\ d(f(x),f(y))< d(x,y).$
 - 1. Montrer que s'il existe un élément a de E vérifiant f(a) = a alors cet élément a est unique.
 - 2. On considère l'application ϕ de E dans \mathbb{R}_+ définie par $\phi(x) = d(x, f(x))$. Montrer que $\{\phi(x); x \in E\}$ admet un minimum dans \mathbb{R}_+ .
 - 3. Montrer que f possède un point fixe a unique.
 - On considère la suite de E définie par son premier terme x₀, et pour n∈ N, par x_{n+1} = f(x_m). Montrer que cette suite tend vers a.
- V. Théorème de Dini. Soient (E,d) un espace métrique compact et $\{f_n\}_{n\in\mathbb{N}}$ une suite d'applications continues sur E à valeurs dans \mathbb{R} tq:
 - (i) la suite $\{f_n\}_{n\in\mathbb{N}}$ converge ponctuellement vers une fonction f continue sur E,
 - (ii) pour tout $x \in E$, $\{f_n(x)\}_{n \in \mathbb{N}}$ est une suite croissante.

 $\text{Pour } n \in \mathbb{N} \ \text{ et } \ \epsilon > 0 \ \text{ on pose } \ F_{n,\epsilon} = \{ \, x \in E \ \text{tq } \ f_n(x) \leq f(x) - \epsilon \, \}.$

- 1. Montrer que $F_{n,S}$ est une partie fermée de E.
- 2. Montrer que $\bigcap_{n\in\mathbb{N}} F_{n,S} = \emptyset$ puis qu'il existe $n_{\circ} \in \mathbb{N}$ tel que $F_{n_{\circ},S} = \emptyset$.
- 3. En déduire que la suite $\{f_n\}_{n\in\mathbb{N}}$ converge uniformément sur E.

- L Soit (E, d) un espace métrique. Montrer que:
 - 1. s'il existe r > 0 tel que toute boule fermée Bf(x,r) soit complète, alors (E,d) est complet.
 - 2. si toute boule fermée est compacte alors (E,d) est complet, et les compacts de E sont les fermés bornés.
- II. Soit f une application bijective d'un espace métrique (E,d) dans un autre (F,δ) . Montrer que si (E,d) est complet, f continue et f^{-1} uniformément continue, alors (F,δ) est complet.
- $\text{III. Pour } m,n\in \mathbb{N}, \text{ on pose } d(m,n)=\left\{ \begin{array}{ll} 0 & \text{si } m=n,\\ \frac{1}{2}+e^{-|m-n|} & \text{si } m\neq n. \end{array} \right.$
 - 1. Montrer que (N,d) est un espace métrique complet.
 - 2. Pour $n \in \mathbb{N}^*$, on pose $F_n = B_f(n, \frac{1}{2} + e^{-2n})$. Montrer que $\forall n \in \mathbb{N}$, $F_{3n} \subset F_n$ et que $\bigcap_{k \in \mathbb{N}} F_{3k} = \varnothing$.
 - Que peut-on conclure?
- IV. Soient X un ensemble non vide, $E = B(X, \mathbb{R})$ le \mathbb{R} -espace vectoriel des fonctions bornées de X dans \mathbb{R} .
 - 1. Montrer que l'application $\| \|_{\infty} : E \longrightarrow \mathbb{R}_+$ est une norme sur E. $f \longrightarrow \sup_{x \in X} |f(x)|$
 - 2. Montrer que $(E, \| \|_{\infty})$ est complet.
- V. Soit f une application d'un espace métrique (E,d) dans lui-même. f^p désigne la composée de f par elle-même p fois $(p \in \mathbb{N}^*)$.
 - 1. Montrer que si fadmet un point fixe c et un seul alors fadmet c pour unique point fixe.
 - 2. On suppose que f^p est k^p -Lipschitzienne (k>0) sur (E,d).
 - a) Montrer que la fonction δ définie sur $E \times E$ par : $\delta(x,y) = d(x,y) + \frac{1}{k} d(f(x),f(y)) + \dots + \frac{1}{k^{p-1}} d(f^{p-1}(x),f^{p-1}(y)) \text{ est une distance}$ sur E et que f est Lipschitzienne de rapport k sur (E,δ) .
 - b) Montrer que d et δ sont régulièrement équivalentes si et seulement si f est Lipschitzienne sur (E, d).
 - c) On suppose que (E,d) est complet, que f est Lipschitzienne sur (E,d) et que f^P est contractante. Montrer que la suite $\{x_n\}_{n\in\mathbb{N}}$ définie par $x_0\in E$ et $x_{n+1}=f(x_n)$ pour $n\in\mathbb{N}$, converge vers l'unique point fixe c de f.
 - Donner une majoration de $d(x_n,c)$ en fonction de $d(x_0,c)$ et de n.

- I. Si A et B sont des sous-ensembles d'un espace vectoriel normé $(E, \| \ \|)$, on note : $A+B=\{a+b;\ a\in A\ \text{et}\ b\in B\}$. Montrer que :
 - 1. Si A est ouvert alors A + B est ouvert.
 - 2. Si A et B sont compacts alors A+B est compact.
 - 3. Si A est compact et B fermé alors A+B est fermé.
 - Ce résultat subsiste-t-il si A est seulement fermé ?
- II. Montrer que l'application N définie sur $E = \mathcal{C}([0,1];\mathbb{R})$ par $N(f) = \int_0^1 e^t |f(t)| dt$ est une norme sur E. N est-elle équivalente à $\|\cdot\|_{\infty}$?
- III. Soit (E, | |) un R-espace vectoriel normé.
 - 1. Soit F un sous-espace vectoriel de dimension finie de E.
 - a) Montrer que $\forall x \in E$ il existe $\hat{x} \in F$ tel que $d(x,F) = ||x \hat{x}||$.
 - b) En déduire que si $F \neq E$ alors il existe un vecteur unitaire u de E tel que d(u,F) = 1.
 - 2. Montrer alors que si E est de dimension infinie, il existe une suite $\{u_n\}_{n\in\mathbb{N}}$ d'éléments de la sphère unité S(0,1) telle que $\|u_m u_n\| \ge 1$ pour $m \ne n$.
 - Conclure que E est de dimension finie si et seulement si B_f(0,1) est compact. (théorème de Riesz)
- IV. Soit $E = \mathcal{C}^1([0,1];\mathbb{R})$. On définit $N: E \longrightarrow \mathbb{R}_+$ par $N(f) = |f(0)| + \sup_{t \in [0,1]} |f'(t)|$. Montrer que N est une norme et que (E,N) est un espuce de Banach. N est-elle équivalente $a \models_{\mathbb{R}_+} ?$ (on pourra utiliser les fonctions f_n définies par $f_n(x) = \frac{1}{n} \operatorname{Sin}(nx)$ si $x \in [0, \frac{\pi}{2n}]$ et $f_n(x) = \frac{1}{n}$ si $x \in [\frac{\pi}{2n}, 1]$)
- V. Montrer qu'un espace vectoriel normé (E, || ||) est de Banach si et seulement si toute série \(\sum_{n} \) normalement convergente est convergente.
 - Indication: Montrer que si $\{S_n\}_{n\in\mathbb{N}}$ est une suite de Cauchy dans $(E,\|\cdot\|)$ alors on peut en extraire une sous-suite $\{S_{\phi(n)}\}_{n\in\mathbb{N}}$ tq $\forall\,k\in\mathbb{N},\,\|S_{\phi(k+1)}-S_{\phi(k)}\|\leq 2^{-k}$

- I. On munit \mathbb{R}^2 de la norme $\| \|_{\infty}$. Soit T la transformation de \mathbb{R}^2 associée à la matrice $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Déterminer $\| \| T \| \|$.
- II. On munit $\mathbb{R}[x]$ de la norme $\| \|_{\infty}$ définie par $\| \sum_{k=0}^{n} a_k x^k \| = \max_{0 \le k \le n} |a_k|$.
 - Vérifier que | | est une norme sur R[x].
 - 2. Montrer que l'application L définie sur $\mathbb{R}[x]$ par L(p) = p' n'est pas continue.
 - 3. Soit $c \in \mathbb{R}$. Montrer que l'application φ définie sur $\mathbb{R}[x]$ par $\varphi(p) = p(c)$ est continue si et seulement si |c| < 1. Déterminer dans ce cas $|||\varphi|||$.
- III. 1. Soient $E = \mathcal{C}([0,1]; \mathbb{R})$ muni de la norme $\| \|_{\infty}$, et $T: E \xrightarrow{f \longrightarrow T(f)} E$ définie par $\forall f \in E, \forall x \in [0,1]: (T(f))(x) = \int_0^x f(t) dt$.
 - a) Montrer que T est linéaire continue et calculer ||| T |||.
 - b) Même exercice en changeant $\| \|_{\infty}$ par $\| \|_{1}$.
 - Trouver deux normes respectivement sur les espaces vectoriels C¹([0,1]; R) et C([0,1]; R) tq l'application linéaire f → f' de C¹([0,1]; R) dans C([0,1]; R) soit continue.
- IV. En utilisant le théorème du point fixe dans l'espace $E = \mathcal{C}([0,1]; \mathbb{R})$ muni d'une norme adéquate, montrer que l'équation $u(t) = t e^{1+\Im i n^2 t} + \int_0^1 \min(s,t) \operatorname{Cos}(u(s)) \, ds \ (0 \le t \le 1)$ admet une et une seule solution u_0 dans E.

 Indication: on pourra calculer $m(t) = \int_0^1 \min(s,t) \, ds$.
- V. Soient $A \in \mu_n(\mathbb{R})$ et T l'application de \mathbb{R}^n dans lui-même définie par T(X) = A X. On munit \mathbb{R}^n des normes $\| \cdot \|_1$, $\| \cdot \|_2$ et $\| \cdot \|_{\infty}$ successivement.
 - 1. Montrer que T est continue et déterminer |||T|||.
 - 2. a) Donner alors (dans chacun des cas) une condition nécessaire et suffisante pour que l'application f de \mathbb{R}^n dans lui-même définie par f(X) = A X + b (où $b \in \mathbb{R}^n$) soit contractante.
 - b) Que peut-on conclure?

- I. A. Soit E un espace vectoriel réel. On appelle hyperplan "vectoriel" de E, tout sous-espace vectoriel H de E tel que si F est un sous-espace vectoriel de E qui contient H alors F=H ou F=E.
 - 1. Montrer que si H est un hyperplan de E et $x \in E \setminus H$ alors $E = H \oplus [x]$ où [x] est le sous-espace vectoriel de E engendré par x.
 - 2. Montrer que pour qu'une partie H d'un espace vectoriel E soit un hyperplan de E, il faut et il suffit qu'elle soit le noyau d'une forme linéaire.
 - B. Soit (E, | |) un espace vectoriel normé.

Licence hand

- 1. Montrer qu'un hyperplan H de E est soit fermé, soit dense dans E.
- 2. Soit T une forme linéaire non nulle sur E telle que T-1(0) soit un fermé de E.
 - a) Montrer que T⁻¹(1) est un fermé non vide de E.
 - b) En déduire qu'il existe r > 0 tel que $T^{-1}(1) \cap B_f(0,r) = \emptyset$.
 - c) Montrer alors que $\forall x \in B_f(0,r), |T(x)| \le 1$.
 - d) Conclure que T est continue.
- a) Montrer que pour qu'un hyperplan H de E soit fermé, il faut et il suffit qu'il soit le noyau d'une forme linéaire continue.
 - b) Montrer que pour qu'une forme linéaire soit continue, il faut et il suffit que f⁻¹(0) soit fermé.
- II. A. Soient (E,d) un espace métrique complet et $\{O_n\}_{n\in\mathbb{N}}$ une suite d'ouverts de (E,d) dense.
 - 1. a) Soient $x \in E$ et r > 0. Construire une suite $\{(x_n, r_n)\}_{n \in \mathbb{N}}$ d'éléments de $E \times \mathbb{R}_+^*$ telle que $B_f(x_0, r_0) \subset B_0(x, r) \cap O_0$ et pour $n \in \mathbb{N}$, $r_n < 2^{-n}$ et $B_f(x_{n+1}, r_{n+1}) \subset B_0(x_n, r_n) \cap O_{n+1}$
 - b) Conclure que ∩ O_n est dense dans E. (théorème de Baire)
 - 2. Soit $\{F_n\}_{n\in\mathbb{N}}$ une suite de fermés de (E,d) tq $E=\bigcup_{n\in\mathbb{N}}F_n$. Montrer qu'il existe $n_o\in\mathbb{N}$ tel que F_{n_o} est d'intérieur non vide.
 - B. Soit T une application linéaire continue et surjective d'un espace de Banach (E, | |) dans un autre (F,N).
 - 1. Montrer qu'il existe $n \in \mathbb{N}$ tel que $\overline{T(B_0^E(0,n))}$ est d'intérieur non vide.
 - 2. En déduire qu'il existe R > 0 et s > 0 tels que $\overline{T(B(0,R))} \supset B(0,s)$
 - 3. Montrer alors que $\forall y \in B(0,s)$ et $n \in \mathbb{N}^*$, il existe $x_1,x_2,\dots,x_n \in B$ tel que $\forall i \in \{1,2,\dots\}, \|x_i\| < \frac{R}{2^{i-1}}$ et $N(y-T(x_1)-T(x_2)-\dots-T(x_n)) \leq \frac{s}{2^n}$.
 - 4. En déduire que $T(B_f^g(0,2k)) \supset B_0^g(0,s)$
 - 5. Conclure que l'application T est ouverte.