ISE 5103 Intelligent Data Analytics

Homework 5 - Modeling

Daniel Carpenter & Sonaxy Mohanty

October 2022

Contents

	Packages	2
	General Data Prep	2
	Read Data	2
	Clean Numeric Data	2
	Factor level collapse data over 5 categories	5
1	(d)	6
	PCR	6
	Perform PCA analysis to see how Principal components explain variance	6
	Now, Apply predictions with PCR	6
	SVR	7
	MARS	8

Packages

```
# Data Wrangling
library(tidyverse)

# Modeling

# Aesthetics
library(knitr)
library(cowplot) # multiple ggplots on one plot with plot_grid()
library(scales)
library(kableExtra)
```

General Data Prep

Read Data

```
housingData <- read.csv('housingData.csv')
```

Clean Numeric Data

Make dataset of numeric variables

```
housingNumeric <- housingData %>%

#selecting all the numeric data
dplyr::select_if(is.numeric) %>%

#converting the dataframe to tibble
as_tibble()
```

Make dataset of character variables

```
housingFactor <- housingData %>%

#selecting all the numeric data
dplyr::select_if(is.character) %>%

#converting the dataframe to tibble
as_tibble()
```

For each column with missing data, impute missing values with PMM

- Done with function imputeWithPMM() function
- Applys function via dplyr logic
- Note seeImputation() function to visualize the imputation from prior homework 4, not shown for simplicity in viewing

Create function to impute via PMM

Apply PMM function to numeric data containing null values

```
# Data to store imputed values with PMM method
housingDataImputed <- housingData

# Which columns has NA's?
colNamesWithNulls <- colnames(housingNumeric[ , colSums(is.na(housingNumeric)) != 0])
colNamesWithNulls</pre>
```

[1] "LotFrontage" "MasVnrArea" "GarageYrBlt"

```
numberOfColsWithNulls = length(colNamesWithNulls)

# For each of the numeric columns with null values
for (colWithNullsNum in 1:numberOfColsWithNulls) {

# The name of the column with null values
    nameOfThisColumn <- colNamesWithNulls[colWithNullsNum]

# Get the actual data of the column with nulls
    colWithNulls <- housingData[, nameOfThisColumn]

# Impute the missing values with PMM
    imputedValues <- imputeWithPMM(colWithNulls)

# Now store the data in the original new frame
    housingDataImputed[, nameOfThisColumn] <- imputedValues

# Save a visualization of the imputation</pre>
```

- ## [1] "For imputation results of LotFrontage, see OutputPMM/Imputation_With_PMM_LotFrontage.pdf"
- ## [1] "For imputation results of MasVnrArea, see OutputPMM/Imputation_With_PMM_MasVnrArea.pdf"
- ## [1] "For imputation results of GarageYrBlt, see OutputPMM/Imputation_With_PMM_GarageYrBlt.pdf"

Factor level collapse data over 5 categories

```
housingDataCleaned <- housingDataImputed # For final cleaned data

# Get list of factors and the number of unique values
factorCols <- as.data.frame(t(housingFactor %>% summarise_all(n_distinct)))

# We are going to factor collapse factor columns with more than 4 columns
# So there will be 4 of the original, and 1 containing 'other'

# This is the threshold
factorThreshold = 4

# Get a list of the factors we are going to collapse
colsWithManyFactors <- rownames(factorCols %>% filter(V1 > factorThreshold))

# Show a summary of how many factors will be collapsed
numberOfColsWithManyFactors = length(colsWithManyFactors)
paste('Before cleaning, there are', numberOfColsWithManyFactors, 'factor columns with more
factorThreshold, 'unique values')
```

[1] "Before cleaning, there are 14 factor columns with more than 4 unique values"

```
# Collapse the affected factors in the original data (the one that already has imputation)
## for each factor column that we are about to collapse
for (collapsedColNum in 1:numberOfColsWithManyFactors) {
  # The name of the column with null values
  nameOfThisColumn <- colsWithManyFactors[collapsedColNum]</pre>
  # Get the actual data of the column with nulls
  colWithManyFactors <- housingData[, nameOfThisColumn]</pre>
  # lumps all levels except for the n most frequent
  housingDataCleaned[, nameOfThisColumn] <- fct_lump_n(colWithManyFactors,
                                                        n=factorThreshold)
}
# Check to see if the factor lumping worked
factorColsCleaned <- t(housingDataCleaned %>%
                       select if(is.character) %>%
                       summarise all(n distinct))
paste('After cleaning, there are', sum(factorColsCleaned > factorThreshold, na.rm = TRUE),
      "columns with more than", factorThreshold, "unique values (omitting NA's)")
```

[1] "After cleaning, there are O columns with more than 4 unique values (omitting NA's)"

1 (d)

PCR

Perform PCA analysis to see how Principal components explain variance

Now, Apply predictions with PCR

SVR

MARS