\$14.4 trillion

An Open Framework to Deploy Heterogeneous Wireless Testbeds for Cyber-Physical Systems

Marcin Szczodrak¹ Yong Yang² Dave Cavalcanti² Luca Carloni¹ Columbia University¹ Philips Research North America²

Motivation: Remote Testbeds

Remote Testbeds

Existing Tools

- Simulators (TOSSIM, COOJA) are good for early stage development
- Remote Testbeds are good for the system performance analysis

Remote Testbed Limitations

No support for the interaction with the surrounding environment.

The Rise of Local Testbeds

Benefits of Using Local Testbeds

- Better understanding of the application environment
- Quick prototyping
- Build custom, high-performance and high-quality applications
- Improve products' time-to-market
 - 1. Local testbed framework blueprint
 - 2. Two case studies
 - 3. Experimental evaluation

Contribution: Open Testbed Framework

Server Back-End

- Monitors testbeds status
- Provides User Interface

Backbone Network

 Connects the Server Back-End with the sensor motes

Management Unit

 Provide mechanisms to reprogram firmware of the sensor motes

Open Testbed Framework: Server Back-End

Firmware Upload Interface

Upload Firmware Z1: available nodes: 5,6,7,8,9,10,11,12,13,14, node ids: firmware image: Choose File No file chosen **Upload Firmware TelosB:** available nodes: 1,2,3,4, node ids: Choose File No file chosen firmware image: Support 'printf' Submit

Online Sensors' Logs Monitoring

Clear Logs	Dow	nload Lo	gs Refresh Logs
Timestamp (ms)	Printf	Motelo	l Data
1351039234351	1	2	Motion Sensor: 2654
1351039234331	1	2	Light Sensors: 460
1351039234321	1	2	Temperature: 25
1351039231151	1	3	Motion Sensor: 501
1351039230930	1	3	Light Sensors: 390
1351039230921	1	3	Temperature: 25
1351039230911	1	4	Motion Sensor: 489
1351039227741	1	4	Light Sensors: 462
1351039227561	1	. 4	Temperature: 25
1351039424172	0	4	0b 03 00 65 00 03 00 bc
1351039424152	0	4	0b 03 00 65 00 03 00 bc
1351039424142	0	4	01 00 00 2e 00 00 00 00
1351039424132	0	4	01 00 00 2f 00 00 00 00
1351039424132	0	4	0b 11 00 65 00 03 00 bc

Open Testbed Framework: Backbone Network

Hardware

- WiFi Routers
 - OpenWRT Linux
 - Ad-hoc mesh network
- TelosB and Zolertia Z1
 - Powered through USB on the router

Support Multiple Sensor Data Collection Methods:

- WiFi ad-hoc network
- Low-Power Wireless Network (LPWN)
- 3. Two Tier network of LPWN and WiFi
- 4. Ethernet

Open Testbed Framework: Testbed Management Unit

1. Server Back-End Tools

- Firmware verification
- Firmware copies
- Nodes status monitoring
- Logs collection

2. Backbone Network

- Secured Encryption
- Routing Monitoring

3. Router Tools

- Firmware Installation
- Mote monitoring

Indoor Office Space Deployment

Columbia University

- Office Area
- Cost \$169 per node
- Applications: Occupancy Estimation, and Smart Building

Fennec Fox Framework

configuration Monitoring { collection(1024, NODE, 107) ctp(107) lpl (100, 10) cc2420(1)} configuration Emergency {firecam(28), pnp(), csma(0,0) cc2420(0)} event fire {smoke = ON } event check {timer = 30 sec} from Monitoring goto Emergency when fire from Emergency goto Monitoring when check

Programming Language
Swift Fox

start Monitoring

Reconfigurable Protocol Stack

Application Context-Switch
Across the Network

Outdoor Parking Lot Deployment

Philips Research North America

- Outdoor Parking Lot
- Cost \$282 per node (\$113 for boxes)
- Applications: Intelligent Outdoor Lighting

Testbed Usage Flow

Philips Parking Lot Motion Detection

Motion Detection Triggered by a Car

Motion Detection Triggered by a Person

Sensor Data Processing for Traffic Estimation

Detections counter every 15 minutes

Testbed Evaluation: Hardware Limitation

WiFi-based Backbone is Sufficient to Collect Sensor Measurements

The wireless communication bandwidth across the ad-hoc network is orders of magnitude larger than the maximum rates at which motes collect sensors' samples

Testbed Evaluation: Data Collection Through LPWN

Collecting Data From 17-Node Testbed

Collection Tree Protocol can successfully collect data when every mote samples one sensor measurements at 50Hz (every 20 ms) or lower frequency.

Testbed Evaluation: Event Detection

Experimental Setup

- Motion and distance sensors mounted on top of the door frame, facing downward
- A person walks through the doorway and next passes by the door

Experimental Results

- Motion sensor detects both events
- Distance sensor only detects walks through the door
- 2.5Hz (every 400ms) is the minimum sampling frequency sufficient to detect and to distinguish the two events

Testbed Evaluation: Event Classification

- Outdoor, distinguish people from cars based on event length
- The length of an event reveals the distance to a person
- Deployment context helps in classifying events

Conclusion

Open Testbed Framework enables development of Wireless Sensor Networks, Cyber-Physical Systems and Internet of Things

- Framework Building Blocks
- Indoor and Outdoor Case Studies
- Experimental Evaluation

Open Source Code:

GitHub: https://github.com/mszczodrak/otf

Thank You,

Marcin Szczodrak - msz@cs.columbia.edu