PySyncDyn: Python Package for Synchronous Dynamics maps from CPMG Relaxation Dispersion Data

Manu Veliparambil Subrahmanian (mvelipar@umn.edu)

February 11, 2025

Quick Notes

• User Input:

- Edit UserInput.ini to set your protein name, experimental list file paths,
 CPMG parameters, and other analysis options.
- Ensure all required fields (e.g., ProteinName, list_folder, list_files, vcpmg, and tcpmg_ms) are correctly configured.

• Running the Workflow:

- Open a terminal in the PySyncDyn directory.
- Run the main workflow using:

python GenSyncDyn.py -i UserInput.ini

- This will sequentially execute:
 - 1. GenR2Eff.py (calculates R_2^{eff} values from list files)
 - 2. PairFit.py (performs pairwise fitting using the Carver-Richards model)
 - 3. PlotSyncDyn.py (generates dynamic correlation maps)

• SyncDyn Score Calculation:

- The score for each residue is computed as:

$$SyncDyn Score_i = \frac{N_i - 1}{N_{total}},$$

where N_i is the number of correlations (above a set threshold) in the i^{th} row of the correlation matrix, and N_{total} is the total number of residues.

- The score is saved as a CSV file (e.g., Score_R_squared_min_Caxis0.85-1.0_kex0-5000_full

• Visualizing in PyMOL:

- Configure PymolParams.ini with the correct Score file location, PDB ID, and visualization settings.
- Run:

```
python Score2Pymol.py -i PymolParams.ini
```

 This will launch PyMOL, apply the score-based color mapping, and save both a PyMOL session file and a PNG image.

• Dependencies:

- Ensure Python 3.6+ is installed.
- Install required packages with:

pip install pandas numpy scipy matplotlib seaborn openpyxl tqdm numba

Contents

1	Intr	roduction	4
2	Wo	rkflow Overview	4
3	Use	r Input File (UserInput.ini)	5
	3.1	General Configuration	5
	3.2	Experimental Configurations	5
	3.3	PairFit Configuration	5
	3.4	PlotSyncDyn Configuration	6
	3.5	RunOptions Configuration	6
4	Detailed Script Descriptions		
	4.1	GenR2Eff.py	6
	4.2	PairFit.py	6
	4.3	PlotSyncDyn.py	7
	4.4	SyncDyn Score Calculation	7
	4.5	Score2Pymol.py	7
	4.6	GenSyncDyn.py	7
5	How to Run PySyncDyn		
	5.1	Prerequisites	7
	5.2	Visualizing Scores in PyMOL	9
6	Cor	nclusion	a

1 Introduction

Carr-Purcell-Meiboom-Gill Relaxation Dispersion (CPMG-RD) experiments are highly effective for probing micro- to millisecond conformational exchange processes in proteins. By performing experiments at multiple magnetic field strengths (B_0) , one can extract dynamic parameters such as exchange rates, population fractions, and chemical shift differences.

PySyncDyn is a comprehensive Python-based toolkit that automates the entire workflow from raw data processing to the generation of Dynamic Correlation (Sync-Dyn) maps. The workflow includes the calculation of effective transverse relaxation rates (R_2^{eff}) , pairwise fitting using the Carver-Richards model, generation of correlation maps, and computation of a SyncDyn Score that quantifies the extent of correlated dynamics across the protein. In addition, the Score2Pymol.py script allows visualization of these scores on the three-dimensional structure of the protein in PyMOL.

Figure 1 provides an overview of the workflow.

2 Workflow Overview

The PySyncDyn workflow comprises the following steps:

- 1. **CPMG-RD Data Acquisition:** List files generated by resonance assignment software contain intensity and signal-to-noise data at various CPMG frequencies.
- 2. Calculation of R_2^{eff} : The script GenR2Eff.py processes the list files to compute R_2^{eff} values and their uncertainties using the formula:

$$R_2^{\text{eff}} = -\frac{\ln\left(\frac{I}{I_0}\right)}{t_{\text{cpmg}}},\tag{1}$$

where I is the intensity at a given CPMG frequency, I_0 is the reference intensity (at $\nu_{\text{cpmg}} = 0$), and t_{cpmg} is the total CPMG evolution time.

- 3. Pairwise Fitting: PairFit.py applies the Carver-Richards model to perform pairwise fitting of the R_2^{eff} data, yielding kinetic parameters such as rate constants and population fractions.
- 4. Dynamic Correlation Mapping: PlotSyncDyn.py (using the PlotPairParameterNew function) generates a symmetric heatmap of a chosen correlation parameter (e.g., R_{\min}^2) for all residue pairs.
- 5. **SyncDyn Score Calculation:** For each residue, the SyncDyn Score is computed as:

$$\text{SyncDyn Score}_i = \frac{N_i - 1}{N_{\text{total}}},$$

where N_i is the number of correlation values in the i^{th} row that meet or exceed a threshold T (with the self-correlation subtracted), and N_{total} is the total number of residues. The scores are saved in a CSV file.

6. Visualization in PyMOL: Score2Pymol.py loads the score CSV file and applies a custom colormap to the protein structure in PyMOL, saving both a session file and a high-quality image.

3 User Input File (UserInput.ini)

The analysis is configured via the UserInput.ini file, which includes the following sections:

3.1 General Configuration

```
[General]
ProteinName = RNaseA
```

• ProteinName is used to name output directories and files.

3.2 Experimental Configurations

Each magnetic field strength (e.g., [600], [800]) specifies:

```
[600]

list_folder = /path/to/list/files/600

list_files =

RNaseA-T17A_15N-CPMG_5D20_25C_600_00.000ms_Final.sp.list,

RNaseA-T17A_15N-CPMG_5D20_25C_600_00.625ms_Final.sp.list,

...

vcpmg = 0,1600,1400,1400,1000,800,600,500,400,400,300,200,100

tcpmg_ms = 40
```

- list_folder: Directory containing the list files.
- list_files: Comma-separated names of the list files.
- vcpmg: CPMG frequencies (Hz) corresponding to each list file.
- tcpmg_ms: Total CPMG evolution time (ms).

3.3 PairFit Configuration

```
[PairFit]
save_plot = False
save_plot_type = pdf
Chi2Plot = False
Chi2_PlotVar = kab
ComputeCores = 4
```

- save_plot: If True, saves the fitting plots.
- save_plot_type: File format for saving plots (e.g., pdf, png).
- Chi2Plot: If True, generates a chi-squared plot for the specified parameter.
- Chi2_PlotVar: Parameter name for generating the chi-squared plot.
- ComputeCores: Number of CPU cores for parallel processing.

3.4 PlotSyncDyn Configuration

This section controls the generation of SyncDyn maps using PlotPairParameterNew.

```
[PlotSyncDyn]

PlotPairParameterNew_Parameter2Plot = R_squared_min

PlotPairParameterNew_Colors_Order = white, red

PlotPairParameterNew_Colors_Value = 0,1

PlotPairParameterNew_Caxis = 0,1

PlotPairParameterNew_PlotXRegionFromTo = 1,50

PlotPairParameterNew_PlotYRegionFromTo = 1,50

save_plot_type = pdf
```

3.5 RunOptions Configuration

This section specifies which scripts are executed. The details for each option are as follows:

```
[RunOptions]

run_GenR2Eff = True ; When True, executes GenR2Eff.py to calculate R2Eff
from list files.

run_PairFit = True ; When True, executes PairFit.py to perform pairwise
fitting using the Carver-Richards model.

run_PlotSyncDyn = True ; When True, executes PlotSyncDyn.py to generate
dynamic correlation maps.
```

4 Detailed Script Descriptions

4.1 GenR2Eff.py

This script processes list files from CPMG-RD experiments, calculates R_2^{eff} (using the formula below) and its uncertainty, and saves the results in Excel workbooks.

$$R_2^{\text{eff}} = -\frac{\ln\left(\frac{I}{I_0}\right)}{t_{\text{cpmg}}}$$

where I is the measured intensity and I_0 is the reference intensity.

4.2 PairFit.py

This script performs pairwise fitting using the Carver-Richards model. It:

- Loads assignment data from Excel workbooks.
- Uses a Numba-accelerated function to simulate R_2^{eff} values.
- Applies least squares optimization to extract kinetic parameters.
- Saves the fitting results to Excel workbooks.

4.3 PlotSyncDyn.py

This script generates dynamic correlation maps. The PlotPairParameterNew function creates a symmetric heatmap of the selected parameter (e.g., R_{\min}^2) with user-defined filtering and color mapping. It can also export the correlation matrix as a CSV file.

4.4 SyncDyn Score Calculation

The SyncDyn Score is computed for each residue as:

SyncDyn Score_i =
$$\frac{N_i - 1}{N_{\text{total}}}$$
,

where N_i is the number of correlation values in the i^{th} row that are greater than or equal to a threshold T (excluding the self-correlation) and N_{total} is the total number of residues. The scores are saved in a CSV file for further analysis.

4.5 Score2Pymol.py

This script visualizes the SyncDyn Score in PyMOL by:

- Reading the score CSV file and PyMOL parameters from PymolParams.ini.
- Loading the specified PDB file (or fetching it if not available locally).
- Mapping each residues score to an RGB color using a custom colormap.
- Coloring the protein structure and optionally adding labels.
- Saving a PyMOL session file (.pse) and a high-quality PNG image.

4.6 GenSyncDyn.py

This is the main orchestrating script. It reads UserInput.ini and sequentially executes:

- GenR2Eff.py (to calculate R_2^{eff}),
- PairFit.py (to perform pairwise fitting), and
- PlotSyncDyn.py (to generate SyncDyn maps).

The output files are organized in a directory named after the protein (e.g., RNaseA/).

5 How to Run PySyncDyn

5.1 Prerequisites

Ensure that Python (version 3.6 or higher) and the following packages are installed:

- numpy: For numerical computations
- pandas: For data manipulation and Excel file handling

- matplotlib: For plotting and visualization
- seaborn: For statistical data visualization
- scipy: For scientific computations and optimization
- numba: For performance optimization
- tqdm: For progress bars
- configuration Fython library for reading configuration files
- openpyxl: For reading/writing Excel files (.xlsx)
- xlsxwriter: For creating Excel files with advanced formatting
- scikit-learn: For Gaussian Mixture Model fitting in distribution analysis

Install dependencies via:

```
pip install numpy pandas matplotlib seaborn scipy numba tqdm openpyxl xlsxwriter scikit-learn
```

For PyMOL installation (required for structure visualization):

• macOS:

```
conda install -c conda-forge pymol-open-source

# or
brew install pymol
```

• Linux (Ubuntu/Debian):

```
sudo apt-get install pymol

# or
conda install -c conda-forge pymol-open-source

4
```

• Windows:

```
conda install -c conda-forge pymol-open-source
```

Note: The recommended approach is to use conda with the conda-forge channel. First install Miniconda or Anaconda, then install PyMOL using conda.

5.2 Visualizing Scores in PyMOL

- 1. **Important:** Before running Score2Pymol.py, ensure PyMOL is properly installed and accessible from your system's command line. You can verify this by running pymol --version in your terminal. If this command fails, PyMOL is either not installed or not properly added to your system's PATH.
- 2. **Configure** PymolParams.ini: Specify the Score CSV file location, PDB identifier, and visualization options.
- 3. Run Score2Pymol.py: Execute:

```
python Score2Pymol.py -i PymolParams.ini
```

This script will launch PyMOL in quiet mode, load the structure, apply the scorebased color mapping, and save both a PyMOL session file and a PNG image.

- 4. If you encounter any PyMOL-related errors, verify that:
 - PyMOL is installed correctly using one of the methods above
 - PyMOL is accessible from your command line
 - You have appropriate permissions to execute PyMOL
 - Your system meets PyMOL's graphics requirements

6 Conclusion

PySyncDyn streamlines the analysis of CPMG-RD data by automating the calculation of $R_2^{\rm eff}$, pairwise fitting of residues, generation of dynamic correlation maps, and computation of a SyncDyn Score. The integrated Score2Pymol.py script further enables direct visualization of these scores on the three-dimensional protein structure using PyMOL. By following the quick cheat codes and detailed instructions provided in this manual, users can efficiently obtain comprehensive reports and high-quality visualizations to enhance the understanding of protein dynamics.

