

AD ASTRA PER ASPERA (Team ASPA)

ASPA
AD ASTRA PER ASPERA

To The Stars Through Difficulties

Rotating Space Station Design

Our Project AIM

Mitigating the physiological effects of longterm space habitation through the design of a rotating space station to simulate artificial gravity.

Existing Designs for a rotating space station

Sorensen (2015)

► Van Braun Wheel

Standford Torus

Bishop Ring

Attitude and Orbital Control System

Image reference: M. Queijo, A. Butterfield, W. Cuddihy, C. King, R. Stone, and P. Garn, "Analysis of a rotating advanced-technology space station for the year 2025," Tech. Rep., 1988.

Attitude and Orbital Control System

- Gravity...
- ► AOCS requires structural parameters to be defined.
- Elements of further Research:
- 1. What is AOCS + Coriolis force from image:
- 2. The best Attitude control strategies are?
- 3. Using the spin to our advantage.
- Investigating existing sensors, actuators and Control systems.
- 5. Human factors and redundancies.

Image reference: M. Queijo, A. Butterfield, W. Cuddihy, C. King, R. Stone, and P. Garn, "Analysis of a rotating advanced-technology space station for the year 2025," Tech. Rep., 1988.

Attitude and Orbital Control System

- Preliminary design: Rotating outer wheel(s) with the station central hub remaining stationary.
- Key Challenge: Deciding between having 1 or 2 wheels. Where the 2 wheels are rotating in opposite directions.
- Further research:
- 1. Equations of motion.
- 2. Physical constraints.

Movie: The Martian

The Structural Design

- Must Haves:
- Large enough radius to generate the desired Artificial gravity.
- Have enough structural integrity to withstand the stress that rotating In space causes.
- Light but strong Materials have to be selected.
- Reduce vibrations to a minimum for maximum comfort.

The Structural Design

Initial Design drawings:

The Structural Design

- Questions and key challenges:
- What loads are usually on the station?
- What materials are currently being used?
- How large does the station have to be for it to create the desired AG?
- How can we keep the central microgravity part of the station from rotating too?

Shielding and Protection

- This subsection of the overall project is to create solutions to the following problems and to ensure that the station can provide a habitable and safe environment for the crew on board.
- Key challenges:
- Protection (structural shielding) from both debris and solar radiation
- Thermal regulation

IMPACT OF SPACE DEBRIS ON SOLID ALUMINIUM

- Space debris, even as small as 14 grams, can cause severe damage to spacecraft and satellites.
- Understanding the potential impact helps us appreciate the dangers posed by debris in orbit.
- They can reach up to speeds of up to 17,500 mph (28,000 km/h) in low Earth orbit. At these speeds, a tiny piece of debris carries immense kinetic energy.

Even something as small as around 14 grams can have a devastating effect due to this energy.

Shielding and Protection: Materials

Materials Currently For Both Radiation And Impact Protection:

- Kevlar
- Aluminium Alloy (Ni-Ti-Al)
- Polyethylene (Plastic)
- Water

Possible Materials For Both Radiation And Impact Protection:

- Non-Newtonian Fluids
- Nextel (especially if combined with Kevlar)
- Beta Cloth (External layer for the space station)

Space debri impact on a sheet of Kevlar

Shielding and Protection

Debris Sensor on the ISS

Irradiance sensor on the ISS

Power Systems

- Solar Panels
- Key Questions:
 - How much energy will the Space Station use in regular operation?
 - How much energy do the essential systems require?
 - How will the Space Station handle varying power usage?

Power Systems

- Things to research:
 - How efficient is energy generation projected to be at time of launch?
 - Thorium nuclear reactors safer than uranium or plutonium?
 - Most compact design for transporting solar panels
 - Amount of waste heat generated by power sources

Life Support Systems

- Environmental Control And Life Support System (ECLSS):
- 1. Atmosphere Management.
- 2. Water Supply and Recycling.
- 3. Temperature and Humidity Control.
- 4. Human Waste Disposal.
- 5. Management of non-recyclable waste.
- 6. Fire detection and suppression.

Other life support systems include food production, health and medical facilities.

Life Support Systems

- Using the
 International Space
 Station's (ISS)
 Environmental
 Control and Life
 Support System
 (ECLSS) as a proof
 of concept...
- **Key challenge:** The gravity gradient.

PROJECT ALLOCATION

<u>Name:</u>	Subsystem:
Emmanuel	Attitude and Orbital Control System, AOCS
Wania	Structural Design
Yam	Power Systems
Abaas	Thermal, Radiation and Shielding
llan	Health & Safety (Life systems and etc,)

