

Não-idealidades, Diodos zenner e diodos especiais

Prof. Alceu André Badin

Objetivos

- Estudar as não idealidades dos diodos
- Analisar o funcionamento do diodo zener
- Apresentar principais diodos para especiais

Capacitância do diodo

- •Reversamente polarizada, a camada de depleção fica grande. As fortes polaridades negativa e positiva do diodo criam capacitância (C_T) .
- Polarizada diretamente, a capacidade de armazenamento ou a capacidade de difusão passa a ser maior com a tensão.

Capacitância do diodo

Para frequências baixas os efeitos são desprezíveis (frequências de rede)

Tempo de recuperação reversa (t_{rr})

Tempo de transição entre condução e bloqueio

Para frequências baixas os efeitos são desprezíveis (frequências de rede)

Transição em diferentes tecnologias de diodos

Diodos standard: transição > 0,5μs (baixa frequência)

Fast recovery: transição < 250 ns

Soft-recovery – transição amortecida sem pico de tensão

(principalmente tecnologia Schottky)

ultrafast-recovery transição < 100 ns

Zero recovery (Carbeto de silicio, (SiC) – Silicon Carbide)

transição em poucos ns.

Prof. Alceu A. Badin UTFPR/DAELT

Datasheets - t_{rr}

ultrafast recovery - MUR8XX

		MUR/SUR8						
Characteristic	Symbol	805	810	815	820	840	860	Unit
Maximum Instantaneous Forward Voltage (Note 1) ($i_F = 8.0 \text{ A}, T_C = 150^{\circ}\text{C}$) ($i_F = 8.0 \text{ A}, T_C = 25^{\circ}\text{C}$)	VF			395 975		1.00 1.30	1.20 1.50	V
Maximum Instantaneous Reverse Current (Note 1) (Rated DC Voltage, T _J = 150°C) (Rated DC Voltage, T _J = 25°C)	i _R	250 5.0			00	μΑ		
Maximum Reverse Recovery Time (I_F = 1.0 A, di/dt = 50 A/ μ s) (I_F = 0.5 A, I_R = 1.0 A, I_{REC} = 0.25 A)	t _{rr}		_	15 15			60 60	ns

SiC Schottky Diode - IDV06S60C

Table 6 AC characteristics

Parameter	Symbol	Values			Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
Total capacitive charge	$Q_{\rm c}$	-	15	-	nC	V _R = 400 V, F ≤I F _{max}	
Switching time ¹⁾	$t_{\rm c}$	-	-	<10	ns	di_F /dt =200 A/ μ s, T_j =150 °C	
	C	-	280	-	pF	V _R = 1 V, <i>f</i> = 1 MHz	
		-	35	-		V _R = 300 V, f= 1 MHz	
		-	35	-		V _R = 600 V, f= 1 MHz	

UTFPR/DAELT

Aplicação típica

Circuito equivalente

Curva característica com LTspice

Diodo emissor de luz (LED)

Emite luz visível quando polarizado diretamente

- Diferença de energia na recombinação de elétrons e lacunas produz fótons. (arseneto de gálio, fosfeto de gálio.. Etc)
- No silício e no germânio essa energia é transformada em calor

Cor	Construção	Tensão direta comum (V)
Âmbar	AlInGaP	2,1
Azul	GaN	5,0
Verde	GaP	2,2
Laranja	GaAsP	2,0
Vermelho	GaAsP	1,8
Branco	GaN	4,1
Amarelo	AlInGaP	2,1

Description	Spectrum	System power consumption, measured (W)	Lamp or module luminous flux, measured (lm)	System luminous efficacy (Im/AV)	Energy conversion efficiency	Theoretical maximum luminous efficacy (Im/W)
High voltage halogen, 120W	0.5 0.7 0.7 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	127,4	2.249	17,7	11,9	148,7
Low voltage halogen, 60 W	0,0 0,4 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5	59,9	1.535	25,6	15,4	166,3
Fluorescent lamp T 5, 54 W, 830	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	51,3	4.184	81,6	23,7	344,4
Metal halide lamp, 70 W, 830	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	79,8	7.912	99,2	31,5	314,5
LED, 35 W, 830	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	34,2	4,739	138,6	42,3	327,6

Diodo emissor de luz (LED)

Diodo emissor de luz (LED)

Comparativo entre tecnologias

	Incandescent Lamp	Compact Fluorescent Lamp	Standard LED	Ultra- efficient LED	
Price (USD)	1	2	3	10	
Efficacy (lm/W)	13	50	110	210	
Power (W)	60	16	7.3	3.8	
Lifetime (hours)	1,000	5,000	15,000	50,000	
Time on per year (hours)	1,000	1,000	1,000	1,000	

^{*} Dados de 2022

Diodo de barreira Schottky (Schottky Barrier Diode)

Varactor

Diodo com variação da capacitância em função da tensão reversa

 Modulação e recepção de sinais modulados em frequência

Diodo supressor de transiente de tensão (TVS diode)

Funcionamento similar ao zener, porem para proteção contra sobretensões ou picos de tensão provocadas por eletrostática.

- Sintonizadores de frequência
- Modulação e recepção de sinais modulados em frequência

Referências

- https://www.dial.de/en-GB/projects/efficiency-of-leds-the-highest-luminous-efficacy-of-a-white-led
- BOYLESTAD, Robert L.; NASHELSKY, Louis. Dispositivos eletrônicos e teoria de
- circuitos. 11. ed. São Paulo, SP: Pearson Education do Brasil, c2013. xii, 766 p. ISBN 9788564574212
- SEDRA, Adel S.; SMITH, Kenneth C.. Microeletrônica. [Microeletronic circuits, 5th ed. (Inglês)]. Tradução e revisão técnica de vários tradutores. 5 ed
- Christian Miesner et al. "thinQ!™ Silicon Carbide Schottky Diodes: An SMPS Circuit Designer's Dream Comes True!" (www.infineon.com)
- Basic Knowledge of Discrete Semiconductor Devices Toshiba Electronic Devices https://toshiba.semicon-storage.com/us/semiconductor/knowledge/e-learning/discrete.html