Iteration of Iterated Belief Revision (Remaining Proofs)

Nicolas Schwind¹, Sébastien Konieczny², Ramón Pino Pérez²

¹National Institute of Advanced Industrial Science and Technology, Tokyo, Japan ²CRIL, CNRS – Université d'Artois, France nicolas-schwind@aist.go.jp, konieczny@cril.fr, pinoperez@cril.fr

This supplementary material contains the full proofs of Propositions 3 and 10.

Proposition 3.

- 1. \circ_L satisfies (CE1-CE5)
- 2. \circ_N satisfies (CE3-CE5), but not (CE1-CE2)
- 3. \circ_R satisfies (CE1) and (CE3-CE5), but not (CE2).

The proof uses the following lemmata:

Lemma 3. Let $\Psi \mapsto \preceq_{\Psi}$ be a DP assignment, α , μ be two formulae and ω be a world.

- 1. $(\omega \models \mu \text{ and } \omega \in \min([\alpha], \preceq_{\Psi})) \Rightarrow \omega \in \min([\alpha], \preceq_{\Psi \circ \mu})$
- 2. $(\omega \not\models \mu \text{ and } \omega \in \min([\alpha], \preceq_{\Psi \circ \mu}) \Rightarrow \omega \in \min([\alpha], \preceq_{\Psi})$

Proof of Lemma 3. 1. Since $\omega \in \min([\alpha], \preceq_{\Psi})$), we have for each world $\omega' \models \alpha$ that $\omega \preceq_{\Psi} \omega'$. Let $\omega' \models \alpha$. If $\omega' \models \mu$, by (*CR1-CR2*) we get that $\omega \preceq_{\Psi \circ \mu} \omega'$. And if $\omega' \not\models \mu$, then by (*CR4*) we also get that $\omega \preceq_{\Psi \circ \mu} \omega'$. Hence, $\omega \in \min([\alpha], \preceq_{\Psi \circ \mu})$.

2. Since $\omega \in \min([\alpha], \preceq_{\Psi \circ \mu})$, we have for each world $\omega' \models \alpha$ that $\omega \preceq_{\Psi} \omega'$. Let $\omega' \models \alpha$. If $\omega' \not\models \mu$, by (C1-C2) we get that $\omega \preceq_{\Psi} \omega'$. And if $\omega' \models \mu$, then by (C3) we also get that $\omega \preceq_{\Psi} \omega'$. Hence, $\omega \in \min([\alpha], \preceq_{\Psi})$.

Lemma 4. Let $\omega \mapsto \preceq_{\Psi}$ be a DP assignment, α , μ be two formulae, ω , ω' be two worlds, and assume that $\omega \models \alpha \Leftrightarrow \omega' \models \alpha$. Then:

- 1. $(\omega \models \mu \Leftrightarrow \omega' \models \mu) \Rightarrow (\omega \leq_{\Psi \circ \alpha} \omega' \Leftrightarrow \omega \leq_{\Psi \circ \mu \circ \alpha} \omega')$
- 2. $(\omega \models \mu \text{ and } \omega' \not\models \mu) \Rightarrow (\omega \prec_{\Psi \circ \alpha} \omega' \Rightarrow \omega \prec_{\Psi \circ \mu \circ \alpha} \omega')$
- 3. $(\omega \models \mu \text{ and } \omega' \not\models \mu) \Rightarrow (\omega \preceq_{\Psi \circ \alpha} \omega' \Rightarrow \omega \preceq_{\Psi \circ \mu \circ \alpha} \omega')$

Proof of Lemma 4. 1. By (*CR1-CR2*), $\omega \preceq_{\Psi \circ \alpha} \omega'$ iff $\omega \preceq_{\Psi} \omega'$ iff $\omega \preceq_{\Psi \circ \mu \circ \alpha} \omega'$.

- 2. If $\omega \prec_{\Psi \circ \alpha} \omega'$, then $\omega \prec_{\Psi} \omega'$ (by (*CR1-CR2*)), thus $\omega \prec_{\Psi \circ \mu} \omega'$ (by (*CR3*)), so $\omega \prec_{\Psi \circ \mu \circ \alpha} \omega'$ (by (*CR1-CR2*)).
- 3. If $\omega \preceq_{\Psi \circ \alpha} \omega'$, then $\omega \preceq_{\Psi} \omega'$ (by (*CR1-CR2*)), thus $\omega \preceq_{\Psi \circ \mu} \omega'$ (by (*CR4*)), so $\omega \preceq_{\Psi \circ \mu \circ \alpha} \omega'$ (by (*CR1-CR2*)).

We now prove Proposition 3.

Proof of Proposition 3. Using Proposition 2 it is enough to prove that $\Psi \mapsto \preceq^L_{\Psi}$ satisfies (CRE1-CRE5), that $\Psi \mapsto \preceq^N_{\Psi}$ satisfies (CRE3) and (CRE4), and that $\Psi \mapsto \preceq^R_{\Psi}$ satisfies (CRE1), (CRE3) and (CRE4), where each assignment $\Psi \mapsto \preceq^N_{\Psi}$, $\Psi \mapsto \preceq^L_{\Psi}$ and $\Psi \mapsto \preceq^R_{\Psi}$ denotes the DP assignment corresponding to \circ_N , \circ_L and \circ_R , respectively. Let Ψ be any epistemic state, μ , α be two formulae, and ω, ω' be two worlds.

• Proof that $\Psi \mapsto \preceq_{\Psi}^{L}$ satisfies (*CRE1-CRE5*):

(CRE1): let $\omega, \omega' \models \mu$. The case when $\omega \models \alpha \Leftrightarrow \omega' \models \alpha$ is direct using Lemma 4.1. If $\omega \models \alpha$ and $\omega' \not\models \alpha$, then by (Lex) we have that $\omega \prec^L_{\Psi \circ_L \mu \circ_L \alpha}$ and $\omega \prec^L_{\Psi \circ_L \alpha}$, and (CRE1) directly follows. The proof for the case when $\omega \not\models \alpha$ and $\omega' \models \alpha$ is identical.

(CRE2): the proof is identical to the case for (CRE1), assuming instead that $\omega, \omega' \not\models \mu$.

(CRE3): the proof is identical to the two previous cases, assuming instead that $\omega \models \mu$ and $\omega' \not\models \mu$, and using Lemma 4.2 instead of Lemma 4.1.

(CRE4): the proof is identical to the case for (CRE3), using Lemma 4.3 instead of Lemma 4.2.

(CRE5): follows directly from (Lex) by setting $\alpha_1 = \alpha_2$.

ullet Proof that $\Psi \mapsto \preceq^N_\Psi$ satisfies (*CRE3-CRE5*):

(CRE3): let $\omega \models \mu$ and $\omega' \not\models \mu$, and assume that $\omega \prec_{\Psi \circ_N \alpha}^N$ ω' . We need to prove that $\omega \prec^N_{\Psi \circ_N \mu \circ_N \alpha} \omega'$. The case when $\omega \models \alpha \Leftrightarrow \omega' \models \alpha$ is direct using Lemma 4.2. Assume that $\omega \models \alpha, \omega' \not\models \alpha$. If $\omega \notin \min([\alpha], \preceq_{\Psi}^{N})$, since $\omega \prec_{\Psi \circ_{N} \alpha}^{N} \omega'$, by (Nat) and since $\omega, \omega' \notin \min([\alpha], \preceq_{\Psi \circ \mu}^N)$ we get that $\omega \prec_{\Psi}^{N} \omega'$, by (CR3) we get that $\omega \prec_{\Psi \circ_{N} \mu}^{N} \omega'$, and by (CR3) again we get that $\omega \prec^N_{\Psi \circ_N \mu \circ_N \alpha} \omega'$. If $\omega \in \min([\alpha], \preceq^N_{\Psi})$, by Lemma 3.1 we get that $\omega \in \min([\alpha], \preceq_{\Psi \circ_N \mu}^N)$, and since $\omega' \not\models \alpha$, we get that $\omega \prec_{\Psi \circ_N \mu \circ_N \alpha}^N \omega'$ by Theorem 1. Assume now that $\omega \not\models \alpha, \omega' \models \alpha$. Then $\omega' \notin \min([\alpha], \preceq_{\Psi}^{N})$ by Theorem 1. By Lemma 3.2, we get that $\omega' \notin \min([\alpha], \preceq_{\Psi \circ \mu}^N$). Since $\omega \prec_{\Psi \circ_N \alpha}^N \omega'$, by (CR4) we get that $\omega \prec_{\Psi}^N \omega'$, by (CR3) we get that $\omega \prec_{\Psi \circ_N \mu}^N \omega'$, and by (Nat) and since $\omega, \omega' \notin \min([\alpha], \preceq_{\Psi \circ \mu}^N)$, we get that $\omega \prec_{\Psi \circ_N \mu \circ_N \alpha}^N \omega'$. (CRE4): let $\omega \models \mu$ and $\omega' \not\models \mu$, and assume that $\omega \preceq_{\Psi \circ_N \alpha}^N$ ω' . We need to prove that $\omega \preceq_{\Psi \circ_N \mu \circ_N \alpha}^N \omega'$. The case when $\omega \models \alpha \Leftrightarrow \omega' \models \alpha$ is direct using Lemma 4.3. Assume that

 $\omega \models \alpha, \, \omega' \not\models \alpha. \text{ If } \omega \notin \min([\alpha], \preceq^N_\Psi), \text{ since } \omega \preceq^N_{\Psi \circ_N \alpha} \omega', \text{ by } (Nat) \text{ and since } \omega, \omega' \notin \min([\alpha], \preceq^N_{\Psi \circ_N \mu}) \text{ we get that } \omega \preceq^N_\Psi \omega', \text{ by } (CR4) \text{ we get that } \omega \preceq^N_{\Psi \circ_N \mu} \omega', \text{ and by } (CR4) \text{ again we get that } \omega \preceq^N_{\Psi \circ_N \mu \circ_N \alpha} \omega'. \text{ If } \omega \in \min([\alpha], \preceq^N_\Psi), \text{ and since } \omega' \not\models \alpha, \text{ we get that } \omega \in \min([\alpha], \preceq^N_{\Psi \circ_N \mu}), \text{ and since } \omega' \not\models \alpha, \text{ we get that } \omega \preceq^N_{\Psi \circ_N \mu \circ_N \alpha} \omega' \text{ by Theorem 1.} \text{ Assume now that } \omega \not\models \alpha, \omega' \models \alpha. \text{ Since } \omega \preceq^N_{\Psi \circ_N \alpha} \omega', \text{ we know that } \omega' \notin \min([\alpha], \preceq^N_\Psi) \text{ by Theorem 1 and since } \omega \not\models \alpha. \text{ So by Lemma 3.2, we get that } \omega' \notin \min([\alpha], \preceq^N_{\Psi \circ_N \mu}). \text{ Since } \omega \preceq^N_{\Psi \circ_N \alpha} \omega', \text{ by } (CR3) \text{ we get that } \omega \preceq^N_\Psi \omega', \text{ by } (CR4) \text{ we get that } \omega \preceq^N_{\Psi \circ_N \mu} \omega', \text{ and by } (Nat) \text{ and since } \omega, \omega' \notin \min([\alpha], \preceq^N_{\Psi \circ_N \mu}), \text{ we get that } \omega \preceq^N_{\Psi \circ_N \mu} \omega'. \text{ (CRE5): follows directly from } (Nat) \text{ by setting } \alpha_1 = \alpha_2.$

• Proof that $\Psi \mapsto \preceq_{\Psi}^{R}$ satisfies (CRE1) and (CRE3-CRE5): (CRE1): Let $\omega, \omega' \models \mu$. We need to prove that $\omega \leq_{\Psi \circ_R \alpha}^R$ $\omega' \Leftrightarrow \omega \preceq_{\Psi \circ_R \mu \circ_R \alpha}^R \omega'$. The case when $\omega \models \alpha \Leftrightarrow \omega' \models \alpha$ is direct using Lemma 4.1. Assume that $\omega \models \alpha, \omega' \not\models \alpha$. If $\omega \in \min([\alpha], \preceq_{\Psi}^R)$, by Lemma 3.1 we get that $\omega \in$ $\min([\alpha], \preceq_{\Psi \circ_R \mu}^R)$. Since $\omega' \not\models \alpha$, we get that $\omega \prec_{\Psi \circ_R \alpha}^R \omega'$ and $\omega \prec_{\Psi \circ_R \mu \circ_R \alpha}^R \omega'$. Thus $\omega \preceq_{\Psi \circ_R \alpha}^R \omega' \Leftrightarrow \omega \preceq_{\Psi \circ_R \mu \circ_R \alpha}^R \omega'$. If $\omega \notin \min([\alpha], \preceq_{\Psi}^R)$, we fall into one of the following three cases: (i) $\omega \simeq_{\Psi \circ_R \alpha}^R \omega'$, (ii) $\omega \prec_{\Psi \circ_R \alpha}^R \omega'$, or (iii) $\omega' \prec_{\Psi \circ_R \alpha}^R \omega$. But case (i) leads to contradiction: indeed, $\omega \simeq_{\Psi \circ_R \alpha}^R \omega'$ implies from (PR) that $\omega \prec_{\Psi}^R \omega'$, and by (DR)we get that $\omega \prec_{\Psi \circ_R \alpha}^R \omega'$. In case (ii), since $\omega \prec_{\Psi \circ_R \alpha}^R \omega'$, by (DR) we get that $\omega \preceq_{\Psi}^{R} \omega'$, by (C1) we get that $\omega \preceq_{\Psi \circ_{R} \mu}^{R} \omega'$, and by (PR) we get that $\omega \prec_{\Psi \circ_R \mu \circ_R \alpha}^R \omega'$. And in case (iii), since $\omega' \prec_{\Psi \circ_R \alpha}^R \omega$, by (C4) we get that $\omega' \prec_{\Psi}^R \omega$, by (C1) we get that $\omega' \prec_{\Psi \circ_R \mu}^R \omega$, and by (DR) we get that $\omega' \prec_{\Psi \circ_R \mu \circ_R \alpha}^R \omega$. In all three cases (i-iii), we got that $\omega \preceq_{\Psi \circ_R \alpha}^R \omega' \Leftrightarrow \omega \preceq_{\Psi \circ_R \mu \circ_R \alpha}^R \omega'$. The proof when $\omega \not\models \alpha$, $\omega' \models \alpha$ is identical since ω and ω' play symmetrical roles. (CRE3): let $\omega \models \mu$ and $\omega' \not\models \mu$, and assume that $\omega \prec_{\Psi_{\Theta}, R}^{R}$ ω' . We need to prove that $\omega \prec_{\Psi \circ_R \mu \circ_R \alpha}^R \omega'$. The case when $\omega \models \alpha \Leftrightarrow \omega' \models \alpha$ is direct using Lemma 4.2. Assume that $\omega \models \alpha$, $\omega' \not\models \alpha$. If $\omega \notin \min([\alpha], \preceq_{\Psi}^{R})$, since $\omega \prec_{\Psi \circ_R \alpha}^R \omega'$, by (DR) and since $\omega, \omega' \notin \min([\alpha], \preceq_{\Psi \circ_{\mu}}^R)$ we get that $\omega \preceq_{\Psi}^R \omega'$, by (PR) we get that $\omega \prec_{\Psi \circ_R \mu}^R \omega'$, and by (CR3) we get that $\omega \prec_{\Psi \circ_R \mu \circ_R \alpha}^R \omega'$. If $\omega \in \min([\alpha], \preceq_{\Psi}^R)$, by Lemma 3.1 we get that $\omega \in \min([\alpha], \preceq^R_{\Psi \circ_R \mu})$, and since $\omega' \not\models \alpha$, we get that $\omega \prec_{\Psi \circ_R \mu \circ_R \alpha}^R \omega'$ by Theorem 1. Assume now that $\omega \not\models \alpha, \omega' \models \alpha$. Then $\omega' \notin \min([\alpha], \preceq_{\Psi}^R)$ by Theorem 1. By Lemma 3.2, we get that $\omega' \notin \min([\alpha], \preceq_{\Psi \circ \mu}^R)$. Since $\omega \prec_{\Psi \circ_R \alpha}^R \omega'$, by (CR4) we get that $\omega \prec_{\Psi}^R \omega'$, by (CR3) we get that $\omega \prec_{\Psi \circ_R \mu}^R \omega'$, and by (DR) and since $\omega, \omega' \notin \min([\alpha], \preceq_{\Psi \circ \mu}^R)$, we get that $\omega \prec_{\Psi \circ_R \mu \circ_R \alpha}^R \omega'$. (CRE4): let $\omega \models \mu$ and $\omega' \not\models \mu$, and assume that $\omega \preceq^R_{\Psi \circ_R \alpha}$ ω' . We need to prove that $\omega \leq_{\Psi \circ_R \mu \circ_R \alpha}^R \omega'$. The case when $\omega \models \alpha \Leftrightarrow \omega' \models \alpha$ is direct using Lemma 4.3. Assume that

 $\omega \models \alpha, \ \omega' \not\models \alpha. \ \text{If} \ \omega \notin \min([\alpha], \preceq^R_\Psi), \ \text{since} \ \omega \preceq^R_{\Psi \circ_R \alpha} \omega', \ \text{by} \ (DR) \ \text{and} \ \text{since} \ \omega, \omega' \notin \min([\alpha], \preceq^R_{\Psi \circ_R \mu}) \ \text{we get that} \ \omega \preceq^R_{\Psi \circ_R \mu} \omega', \ \text{and} \ \text{by} \ (CR4) \ \text{we get that} \ \omega \preceq^R_{\Psi \circ_R \mu \circ_R \alpha} \omega'. \ \text{If} \ \omega \in \min([\alpha], \preceq^R_\Psi), \ \text{and} \ \text{by} \ (CR4) \ \text{again} \ \text{we get that} \ \omega \preceq^R_{\Psi \circ_R \mu \circ_R \alpha} \omega'. \ \text{If} \ \omega \in \min([\alpha], \preceq^R_{\Psi \circ_R \mu}), \ \text{and} \ \text{since} \ \omega' \not\models \alpha, \ \text{we get that} \ \omega \in \min([\alpha], \preceq^R_{\Psi \circ_R \mu}), \ \text{and} \ \text{since} \ \omega' \not\models \alpha, \ \text{we get that} \ \omega \preceq^R_{\Psi \circ_R \mu \circ_R \alpha} \omega' \ \text{by} \ \text{Theorem 1.} \ \text{Assume now that} \ \omega' \not\in \min([\alpha], \preceq^R_\Psi) \ \text{by Theorem 1 and since} \ \omega \not\models \alpha. \ \text{So by Lemma 3.2, we get that} \ \omega' \not\in \min([\alpha], \preceq^R_{\Psi \circ_R \mu} \omega', \ \text{by} \ (CR3) \ \text{we get that} \ \omega \preceq^R_\Psi \omega', \ \text{by} \ (CR4) \ \text{we get that} \ \omega \preceq^R_\Psi \omega', \ \text{and by} \ (DR) \ \text{and since} \ \omega, \omega' \not\in \min([\alpha], \preceq^R_{\Psi \circ_R \mu}), \ \text{we get that} \ \omega \preceq^R_{\Psi \circ_R \mu \circ_R \alpha} \omega', \ \text{so} \ \omega \preceq^R_{\Psi \circ_R \mu \circ_R \alpha} \omega'. \ \text{so} \ \omega \preceq^R_{\Psi \circ_R \mu \circ_R \alpha} \omega'. \ \text{so} \ \omega \preceq^R_{\Psi \circ_R \mu \circ_R \alpha} \omega'. \ \text{so} \ \omega \preceq^R_{\Psi \circ_R \mu \circ_R \alpha} \omega'. \ \text{so} \ \omega \preceq^R_{\Psi \circ_R \mu \circ_R \alpha} \omega'. \ \text{so} \ \omega \preceq^R_{\Psi \circ_R \mu \circ_R \alpha} \omega'. \ \text{so} \ \omega \preceq^R_{\Psi \circ_R \mu \circ_R \alpha} \omega'. \ \text{so} \ \omega \preceq^R_{\Psi \circ_R \mu \circ_R \alpha} \omega'. \ \text{so} \ \omega \preceq^R_{\Psi \circ_R \mu \circ_R \alpha} \omega'. \ \text{so} \ \omega \preceq^R_{\Psi \circ_R \mu \circ_R \alpha} \omega'. \ \text{so} \ \omega \preceq^R_{\Psi \circ_R \mu \circ_R \alpha} \omega'. \ \text{so} \ \omega \preceq^R_{\Psi \circ_R \mu \circ_R \alpha} \omega'. \ \text{so} \ \omega \preceq^R_{\Psi \circ_R \mu \circ_R \alpha} \omega'. \ \text{so} \ \omega \preceq^R_{\Psi \circ_R \mu \circ_R \alpha} \omega'. \ \text{so} \ \omega \preceq^R_{\Psi \circ_R \mu \circ_R \alpha} \omega'. \ \text{so} \ \omega \preceq^R_{\Psi \circ_R \mu \circ_R \alpha} \omega'. \ \text{so} \ \omega \preceq^R_{\Psi \circ_R \mu \circ_R \alpha} \omega'. \ \text{so} \ \omega \preceq^R_{\Psi \circ_R \mu \circ_R \alpha} \omega'. \ \text{so} \ \omega \preceq^R_{\Psi \circ_R \mu \circ_R \alpha} \omega'. \ \text{so} \ \omega \preceq^R_{\Psi \circ_R \mu \circ_R \alpha} \omega'. \ \text{so} \ \omega \preceq^R_{\Psi \circ_R \mu \circ_R \alpha} \omega'. \ \text{so} \ \omega \preceq^R_{\Psi \circ_R \mu \circ_R \alpha} \omega'. \ \text{so} \ \omega \preceq^R_{\Psi \circ_R \mu \circ_R \alpha} \omega'. \ \text{so} \ \omega \preceq^R_{\Psi \circ_R \mu \circ_R \alpha} \omega'. \ \text{so} \ \omega \preceq^R_{\Psi \circ_R \mu \circ_R \alpha} \omega'. \ \text{so} \ \omega \preceq^R_{\Psi \circ_R \mu \circ_R \alpha} \omega'. \ \text{so} \ \omega \preceq^R_{\Psi \circ_R \mu \circ_R \alpha} \omega'. \ \text{so} \ \omega \preceq^R_{\Psi \circ_R \mu \circ_R \alpha} \omega'. \ \text{so} \ \omega \preceq^R_{\Psi \circ_R \mu \circ_R \alpha} \omega'. \ \text{so} \ \omega \preceq^R_{\Psi \circ_R \mu \circ_R \alpha} \omega'. \ \text{so} \ \omega \preceq^R_{\Psi \circ_R \mu \circ_R \alpha$

(CRE5): follows directly from (PR) and (DR) by setting $\alpha_1 = \alpha_2$.

To show that \circ_N and \circ_R do not satisfy (CE2) and that \circ_N does not satisfy (CE1), it is enough from Proposition 2 to show that their corresponding assignments do not satisfy the semantic counterparts of (CE1) and (CE2). We do so by proving a counter-example in each case.

- Proof that $\Psi \mapsto \preceq_{\Psi}^{N}$ and $\Psi \mapsto \preceq_{\Psi}^{R}$ do not satisfy (CRE2): Let $\star \in \{N, R\}$. Let $\omega_{1}, \omega_{2}, \omega_{3}$ be three worlds, μ , α be two formulae such that $[\mu] = \{\omega_{3}\}$ and $[\alpha] = \{\omega_{2}, \omega_{3}\}$, and Ψ be any TPO where $\omega_{1} \prec_{\Psi}^{\star} \omega_{2} \prec_{\Psi}^{\star} \omega_{3}$. Note that $\omega_{1}, \omega_{2} \not\models \mu$. On the one hand, we get that $\omega_{2} \prec_{\Psi \circ_{\star} \alpha}^{\star} \omega_{1}$. On the other hand, we get that $\omega_{3} \prec_{\Psi \circ_{\star} \mu}^{\star} \omega_{1} \prec_{\Psi \circ_{\star} \mu}^{\star} \omega_{2}$, and thus $\omega_{1} \prec_{\Psi \circ_{\star} \mu \circ_{\star} \alpha}^{\star} \omega_{2}$. So both assignments $\Psi \mapsto \preceq_{\Psi}^{N}$ and $\Psi \mapsto \preceq_{\Psi}^{N}$ do not satisfy (CRE2).
- Proof that $\Psi \mapsto \preceq_{\Psi}^N$ does not satisfy (CRE1): Let $\omega_1, \, \omega_2, \, \omega_3$ be three worlds, $\mu, \, \alpha$ be two formulae such that $[\mu] = \{\omega_1, \omega_2\}$ and $[\alpha] = \{\omega_2, \omega_3\}$, and Ψ be any TPO where $\omega_3 \prec_{\Psi}^N \omega_1 \simeq_{\Psi} \omega_2$. Note that $\omega_1, \omega_2 \models \mu$. On the one hand, we get that $\omega_1 \simeq_{\Psi \circ_N \mu}^N \omega_2$. On the other hand, we get that $\omega_1 \simeq_{\Psi \circ_N \mu}^N \omega_2 \prec_{\Psi \circ_N \mu}^N \omega_3$, and thus $\omega_2 \prec_{\Psi \circ_N \mu \circ_N \alpha}^N \omega_1$. So the assignment $\Psi \mapsto \preceq_{\Psi}^N$ does not satisfy (CRE1).

Proposition 6. For each $i \in \{1, 2\}$, a DP revision operator \circ satisfies (CEiw) if and only if its corresponding DP assignment satisfies (CREiw).

Proof. The proof is similar to the part of the proof of Proposition 2 showing the correspondence between (**CEi**) and (*CREi*), for each $i \in \{1,2\}$. Let \circ be a DP revision operator, $\Psi \mapsto \preceq_{\Psi}$ be its corresponding DP assignment. Let Ψ be an epistemic state and μ , α be two formulae. (*Only if part*) Let ω , ω' be two worlds. Assume that \circ satisfies (**CE1w**), and assume that ω , $\omega' \models \mu$ and $\omega, \omega' \notin \min([\alpha], \preceq_{\Psi}) \cup \min([\alpha], \preceq_{\Psi \circ \mu})$. So by Theorem 1 we know that $Bel(\Psi \circ \alpha) \models \neg \gamma_{\{\omega,\omega'\}}$ and $Bel(\Psi \circ (\mu,\alpha)) \models \neg \gamma_{\{\omega,\omega'\}}$. Then $\omega \preceq_{\Psi \circ \mu \circ \alpha} \omega'$ iff $\omega \models Bel(\Psi \circ \mu \circ \alpha \circ \gamma_{\{\omega,\omega'\}})$ (by Theorem 1) iff $\omega \models Bel(\Psi \circ \alpha \circ \gamma_{\{\omega,\omega'\}})$ (by (**CE1w**)) iff $\omega \preceq_{\Psi \circ \alpha} \omega'$ (by Theorem 1). So $\omega \preceq_{\Psi \circ \mu \circ \alpha} \omega' \Leftrightarrow \omega \preceq_{\Psi \circ \mu} \omega'$, thus $\Psi \mapsto \preceq_{\Psi}$ satisfies (*CRE1w*).

Assume that \circ satisfies (**CE2w**), and assume that ω , $\omega' \not\models \mu$ and $\omega, \omega' \not\in \min([\alpha], \preceq_{\Psi}) \cup \min([\alpha], \preceq_{\Psi \circ \mu})$. So by Theorem 1 we know that $Bel(\Psi \circ \alpha) \models \neg \gamma_{\{\omega,\omega'\}}$ and $Bel(\Psi \circ (\mu, \alpha)) \models \neg \gamma_{\{\omega,\omega'\}}$. Then $\omega \preceq_{\Psi \circ \mu \circ \alpha} \omega'$ iff $\omega \models Bel(\Psi \circ \mu \circ \alpha \circ \gamma_{\{\omega,\omega'\}})$ (by Theorem 1) iff $\omega \models Bel(\Psi \circ \alpha \circ \gamma_{\{\omega,\omega'\}})$ (by (**CE2w**)) iff $\omega \preceq_{\Psi \circ \alpha} \omega'$ (by Theorem 1). So $\omega \preceq_{\Psi \circ \mu \circ \alpha} \omega' \Leftrightarrow \omega \preceq_{\Psi \circ \alpha} \omega'$, thus $\Psi \mapsto \preceq_{\Psi}$ satisfies (*CRE2w*).

(If part) Let β be a formula. Assume that $\Psi \mapsto \preceq_{\Psi}$ satisfies (CREIw), and that $\beta \models \mu$, $Bel(\Psi \circ \alpha) \models \neg \beta$ and $Bel(\Psi \circ (\mu, \alpha)) \models \neg \beta$. By Theorem 1, for all worlds $\omega, \omega' \in \beta$, we know that $\omega, \omega' \notin \min([\alpha], \preceq_{\Psi}) \cup \min([\alpha], \preceq_{\Psi \circ \mu})$. By (CREIw), since those worlds ω, ω' are models of μ , we get that $\omega \preceq_{\Psi \circ \mu \circ \alpha} \omega' \Leftrightarrow \omega \preceq_{\Psi \circ \alpha} \omega'$. This means that $\min([\beta], \preceq_{\Psi \circ \alpha}) = \min([\beta], \preceq_{\Psi \circ \mu \circ \alpha})$, so $Bel(\Psi \circ \alpha \circ \beta) \equiv Bel(\Psi \circ \alpha \circ \beta)$. Hence, \circ satisfies (CE1w).

Assume that $\Psi \mapsto \preceq_{\Psi}$ satisfies (CRE2w), and that $\beta \models \neg \mu$, $Bel(\Psi \circ \alpha) \models \neg \beta$ and $Bel(\Psi \circ (\mu, \alpha)) \models \neg \beta$. By Theorem 1, for all worlds $\omega, \omega' \in \beta$, we know that $\omega, \omega' \notin \min([\alpha], \preceq_{\Psi}) \cup \min([\alpha], \preceq_{\Psi \circ \mu})$ By (CRE2w), since those worlds ω, ω' are not models of μ , we get that $\omega \preceq_{\Psi \circ \mu \circ \alpha} \omega' \Leftrightarrow \omega \preceq_{\Psi \circ \alpha} \omega'$. This means that $\min([\beta], \preceq_{\Psi \circ \alpha}) = \min([\beta], \preceq_{\Psi \circ \mu \circ \alpha})$, so $Bel(\Psi \circ \alpha \circ \beta) \equiv Bel(\Psi \circ \alpha \circ \beta)$. Hence, \circ satisfies (CE2w).

Proposition 10. A DP assignment satisfies (FunWA) and (CRE5) if and only if it satisfies (FunWPred).

Proof. The (if) part of the proof is direct by setting $\alpha = \beta$ to prove (*FunWA*), and by setting $\omega = \omega^2$, $\omega' = \omega^3$ and $\Psi_1 = \Psi_2$ to prove (*CRE5*). Let us show the (only if) part.

Let $\Psi \mapsto \preceq_{\Psi}$ be a DP assignment satisfying (FunWA) and (CRE5). Let Ψ_1 , Ψ_2 be two epistemic states, α , β be two formulas, and ω , ω' , ω^2 , ω^3 be four worlds such that $\omega \models \alpha \Leftrightarrow \omega^2 \models \beta$, $\omega' \models \alpha \Leftrightarrow \omega^3 \models \beta$, ω , $\omega' \notin \min([\alpha], \preceq_{\Psi_1})$, ω^2 , $\omega^3 \notin \min([\beta], \preceq_{\Psi_2})$, and $\omega \preceq_{\Psi_1} \omega' \Leftrightarrow \omega^2 \preceq_{\Psi_2} \omega^3$. We must prove that $\omega \preceq_{\Psi_1 \circ \alpha} \omega' \Leftrightarrow \omega^2 \preceq_{\Psi_2 \circ \beta} \omega^3$.

We first provide the proof in the case when all four worlds ω , ω' , ω^2 , ω^3 are pairwise distinct. Assume first that $\omega, \omega' \models \alpha$. Then, $\omega^2, \omega^3 \models \beta$. From (CRI) we get that $\omega \preceq_{\Psi_1} \omega' \Leftrightarrow \omega \preceq_{\Psi_1 \circ \alpha} \omega'$ and $\omega^2 \preceq_{\Psi_2} \omega^3 \Leftrightarrow \omega^2 \preceq_{\Psi_2 \circ \beta} \omega^3$. Yet $\omega \preceq_{\Psi_1} \omega' \Leftrightarrow \omega^2 \preceq_{\Psi_2} \omega^3$, so $\omega \preceq_{\Psi_1 \circ \alpha} \omega' \Leftrightarrow \omega^2 \preceq_{\Psi_2 \circ \beta} \omega^3$. The case when $\omega, \omega' \not\models \alpha$ is proved similarly by using (CR2) instead of (CRI). So, assume now that $\omega \models \alpha$ and $\omega' \not\models \alpha$. Then, $\omega^2 \models \beta$ and $\omega^3 \not\models \beta$. Since all worlds ω , ω' , ω^2 , ω^3 are pairwise distinct, there exists a formula γ such that $[\gamma] = \{\omega, \omega^2\} \cup \min([\alpha], \preceq_{\Psi_1}) \cup \min([\beta], \preceq_{\Psi_2})$. Clearly, we have that $\omega \models \alpha \wedge \gamma$, $\omega' \models \neg \alpha \wedge \neg \gamma$, and $\omega \not\in \min([\alpha], \preceq_{\Psi_1}) \cup \min([\gamma], \preceq_{\Psi_1})$. So by (CRE5), we get that (i) $\omega \preceq_{\Psi_1 \circ \alpha} \omega' \Leftrightarrow \omega \preceq_{\Psi_1 \circ \gamma} \omega'$. Likewise, since $\omega^2 \models \beta \wedge \gamma$, $\omega^3 \models \neg \beta \wedge \neg \gamma$, and and $\omega^2 \not\in \min([\beta], \preceq_{\Psi_2}) \cup \min([\gamma], \preceq_{\Psi_2})$, by (CRE5) again we get that (ii) $\omega^2 \preceq_{\Psi_2 \circ \beta} \omega^3 \Leftrightarrow \omega^2 \preceq_{\Psi_2 \circ \gamma} \omega^3$. Lastly, since $\omega, \omega^2 \models \gamma, \omega', \omega^3 \not\models \gamma, \omega, \omega' \not\in \min([\gamma], \preceq_{\Psi_1}), \omega^2, \omega^3 \not\in \min([\gamma], \preceq_{\Psi_2})$ and $\omega \preceq_{\Psi_1 \circ \gamma} \omega' \Leftrightarrow \omega^2 \preceq_{\Psi_2 \circ \gamma} \omega^3$. Hence, from (i-iii) we get that $\omega \preceq_{\Psi_1 \circ \alpha} \omega' \Leftrightarrow \omega^2 \preceq_{\Psi_2 \circ \beta} \omega^3$,

At this point, we have shown that the postcondition of (FunWPred) is true in the case when all four worlds ω , ω' ,

 ω^2 , ω^3 are pairwise distinct. So, let us now consider the general case when this assumption does not necessarily holds.

Let us consider two epistemic states Ψ_1' , Ψ_2' , two formulae α' , β' and four distinct, fresh worlds e, e', e^2 , e^3 (i.e., the worlds e, e', e^2 , e^3 are pairwise distinct and are distinct from the worlds ω , ω' , ω^2 , ω^3), such that the following sets of conditions are satisfied:

$$\begin{array}{ll} \text{Set (i):} & e \simeq_{\Psi_1'} \omega, e' \simeq_{\Psi_1'} \omega', \\ & e^2 \simeq_{\Psi_2'} \omega^2, e^3 \simeq_{\Psi_2'} \omega^3 \\ \text{Set (ii):} & \omega \models \alpha \Leftrightarrow \omega \models \alpha' \Leftrightarrow e \models \alpha', \\ & \omega' \models \alpha \Leftrightarrow \omega' \models \alpha' \Leftrightarrow e' \models \alpha', \\ & \omega^2 \models \beta \Leftrightarrow \omega^2 \models \beta' \Leftrightarrow e^2 \models \beta', \\ & \omega^3 \models \beta \Leftrightarrow \omega^3 \models \beta' \Leftrightarrow e^3 \models \beta' \\ \text{Set (iii):} & \omega \preceq_{\Psi_1} \omega' \Leftrightarrow \omega \preceq_{\Psi_1'} \omega', \\ & \omega^2 \preceq_{\Psi_2} \omega^3 \Leftrightarrow \omega^2 \preceq_{\Psi_2'} \omega^3 \\ \text{Set (iv):} & e, e' \notin \min([\alpha'], \preceq_{\Psi_1'}), \\ & e^2, e^3 \notin \min([\beta'], \preceq_{\Psi_1'}), \\ & \omega, \omega' \notin \min([\alpha'], \preceq_{\Psi_1}), \\ & \omega^2, \omega^3 \notin \min([\alpha'], \preceq_{\Psi_2}) \end{array}$$

Roughly speaking, we created an instance $(\Psi_1', \Psi_2', \alpha', \beta', e, e', e^2, e^3)$ which is a "copy" of the instance $(\Psi_1, \Psi_2, \alpha, \beta, \omega, \omega', \omega^2, \omega^3)$, i.e., satisfying the preconditions of (FunWPred), yet ensuring that the four worlds e, e', e^2, e^3 are pairwise distinct. Let us see how the preconditions of (FunWPred) are satisfied for this new instance.

First, we have that $e \models \alpha' \Leftrightarrow e^2 \models \beta'$. This is because $e \models \alpha' \Leftrightarrow \omega \models \alpha$ (from set (ii)), $\omega \models \alpha \Leftrightarrow \omega^2 \models \beta$ (from our initial assumption, i.e., one of the preconditions of (*FunWPred*)), and $\omega^2 \models \beta \Leftrightarrow e^2 \models \beta'$ (from set (ii)). Similarly, we have that $e' \models \alpha' \Leftrightarrow e^3 \models \beta'$.

Second, we have that $e, e' \notin \min([\alpha'], \preceq_{\Psi'_1})$ and $e^2, e^3 \notin \min([\beta'], \preceq_{\Psi'_2})$, which is directly expressed in set (iv).

Lastly, we have that $e \preceq_{\Psi'_1} e' \Leftrightarrow e^2 \preceq_{\Psi'_2} e^3$. This is because $e \preceq_{\Psi'_1} e' \Leftrightarrow \omega \preceq_{\Psi'_1} \omega'$ (from set (i)), $\omega \preceq_{\Psi'_1} \omega' \Leftrightarrow \omega \preceq_{\Psi_1} \omega'$ (from set (iii)), $\omega \preceq_{\Psi_1} \omega' \Leftrightarrow \omega^2 \preceq_{\Psi_2} \omega^3$ (from our initial assumption, i.e., one of the preconditions of (*FunWPred*)), $\omega^2 \preceq_{\Psi_2} \omega^3 \Leftrightarrow \omega^2 \preceq_{\Psi'_2} \omega^3$ (from set (iii)), and $\omega^2 \preceq_{\Psi'_2} \omega^3 \Leftrightarrow e^2 \preceq_{\Psi'_2} e^3$ (from set (i)).

Since all preconditions of (FunWPred) are satisfied for the instance $(\Psi_1', \Psi_2', \alpha', \beta', e, e', e^2, e^3)$ and e, e', e^2, e^3 are pairwise distinct, we can conclude that:

$$e \preceq_{\Psi_1' \circ \alpha'} e' \Leftrightarrow e^2 \preceq_{\Psi_2' \circ \beta'} e^3$$
 (1)

Recall that we need to prove that the postcondition of (FunWPred) is true for our initial instance $(\Psi_1, \Psi_2, \alpha, \beta, \omega, \omega', \omega^2, \omega^3)$, that is, we need to prove that $\omega \preceq_{\Psi_1 \circ \alpha} \omega' \Leftrightarrow \omega^2 \preceq_{\Psi_2 \circ \beta} \omega^3$. We do so by proving the following chain of seven equivalences: $\omega \preceq_{\Psi_1 \circ \alpha} \omega' \Leftrightarrow \omega \preceq_{\Psi_1 \circ \alpha'} \omega' \Leftrightarrow \omega \preceq_{\Psi_1 \circ \alpha'} \omega' \Leftrightarrow \omega \preceq_{\Psi_1 \circ \alpha'} \omega' \Leftrightarrow \omega \preceq_{\Psi_2 \circ \beta'} e^3 \Leftrightarrow \omega^2 \preceq_{\Psi_2 \circ \beta'} \omega^3 \Leftrightarrow \omega^2 \preceq_{\Psi_2 \circ \beta} \omega^3$.

(Equivalence 1) $\omega \preceq_{\Psi_1 \circ \alpha} \omega' \Leftrightarrow \omega \preceq_{\Psi_1 \circ \alpha'} \omega'$. Case a: $\omega, \omega' \models \alpha$. Then by set (ii), we have that $\omega, \omega' \models \alpha'$. So, $\omega \preceq_{\Psi_1 \circ \alpha} \omega'$ iff $\omega \preceq_{\Psi_1} \omega'$ (by (*CR1*)) iff $\omega \preceq_{\Psi_1 \circ \alpha'} \omega'$ (by (*CR1*) again). Case b: $\omega, \omega' \not\models \alpha$. Then by set (ii), we have

that $\omega, \omega' \not\models \alpha'$. So, $\omega \leq_{\Psi_1 \circ \alpha} \omega'$ iff $\omega \leq_{\Psi_1} \omega'$ (by (CR2)) iff $\omega \preceq_{\Psi_1 \circ \alpha'} \omega'$ (by (CR2) again). Case c: $\omega \models \alpha$ and $\omega' \not\models \alpha$. Then by set (ii), we have that $\omega \models \alpha'$ and $\omega' \not\models \alpha'$. So, $\omega \models \alpha \wedge \alpha'$ and $\omega' \models \neg \alpha \wedge \neg \alpha'$. Then by (*CRE5*) and since $\omega \notin \min([\alpha \wedge \alpha'], \preceq_{\Psi_1})$ (from our initial assumption), we get that $\omega \preceq_{\Psi_1 \circ \alpha} \omega' \Leftrightarrow \omega \preceq_{\Psi_1 \circ \alpha'} \omega'$. Case d: $\omega \not\models \alpha$ and $\omega' \models \alpha$ is proved similarly as case c since ω and ω' play symmetrical roles.

(Equivalence 2) $\omega \leq_{\Psi_1 \circ \alpha'} \omega' \Leftrightarrow \omega \leq_{\Psi'_1 \circ \alpha'} \omega'$. We know that $\omega,\omega'\notin\min([\alpha'],\preceq_{\Psi_1})$ (set (iv)), $\omega,\omega'\notin$ $\min([\alpha'], \preceq_{\Psi'_1})$ (from sets (i) and (iv)), and $\omega \preceq_{\Psi_1} \omega' \Leftrightarrow$ $\omega \leq_{\Psi'_1} \omega'$ (set (iii)). Then, from (FunW) we get that $\omega \preceq_{\Psi_1 \circ \alpha'} \omega' \Leftrightarrow \omega \preceq_{\Psi'_1 \circ \alpha'} \omega'.$

(Equivalence 3) $\omega \preceq_{\Psi'_1 \circ \alpha'} \omega' \Leftrightarrow e \preceq_{\Psi'_1 \circ \alpha'} e'$. We know that $\omega \models \alpha' \Leftrightarrow e \models \alpha'$ (set (ii)), $\omega' \models \alpha' \Leftrightarrow e' \models \alpha'$ (set (ii)), $\omega, \omega' \notin \min([\alpha'], \preceq_{\Psi'_1})$ (since $e, e' \notin \min([\alpha'], \preceq_{\Psi'_1})$ from set (iv) and $e \simeq_{\Psi'_1} \omega$ and $e' \simeq_{\Psi'_1} \omega'$ from set (i), $e,e' \notin \min([\alpha'], \preceq_{\Psi_1'})$ (set (iv)), and $\omega \preceq_{\Psi_1'} \omega' \Leftrightarrow e \preceq_{\Psi_1'} e'$ (from set (i)). Then, from (FunWA) we get that $\omega \preceq_{\Psi_1' \circ \alpha'}$ $\omega' \Leftrightarrow e \preceq_{\Psi'_1 \circ \alpha'} e'$.

(Equivalence 4) $e \preceq_{\Psi'_1 \circ \alpha'} e' \Leftrightarrow e^2 \preceq_{\Psi'_2 \circ \beta'} e^3$. This results from Equation 1.

(Equivalence 5) $e^2 \leq_{\Psi'_2 \circ \beta'} e^3 \Leftrightarrow \omega^2 \leq_{\Psi'_2 \circ \beta'} \omega^3$. This is

proved similarly to Equivalence 3. (Equivalence 6) $\omega^2 \preceq_{\Psi_2 \circ \beta'} \omega^3 \Leftrightarrow \omega^2 \preceq_{\Psi_2 \circ \beta'} \omega^3$. This is proved similarly to Equivalence 2. (Equivalence 7) $\omega^2 \preceq_{\Psi_2 \circ \beta'} \omega^3 \Leftrightarrow \omega^2 \preceq_{\Psi_2 \circ \beta'} \omega^3$. This is

proved similarly to Equivalence 1.

We have proved that the seven equivalences above hold, which means that $\omega \leq_{\Psi_1 \circ \alpha} \omega' \Leftrightarrow \omega^2 \leq_{\Psi_2 \circ \beta} \omega^3$. This shows that the postcondition of (FunWPred) is satisfied in

We have shown that $\Psi \mapsto \preceq_{\Psi}$ satisfies (FunWPred), which concludes the proof.