APLICAȚIE TIP PORT SCANNER

Îndrumător: Slt. Adina VAMAN Realizat de: Sd. Sg. Sorin-Ionuț MIHALI Sd. Sg. Maria-Emilia GRIGORE Grupa C113C

Cuprins

Capitol 1 - Introducere	Error! Bookmark not defined.
1.1. Scopul proiectului	Error! Bookmark not defined.
1.2. Lista definițiilor	Error! Bookmark not defined.
1.3. Structura documentului	4
Capitolul 2 – Arhitectură și componente SW	5
2.1. Descrierea produsului SW	5
2.2. Detalierea platformei SW/HW	Error! Bookmark not defined.
2.3. Actori	5
2.4. Arhitectura internă	6
Capitolul 3 – Interfața grafică	7
3.1.Arbore funcționalități	
3.2. Descriere funcționalități	
Capitolul 4 – Testare funcționalități	9

Capitolul 1 – Introducere

1.1 Scopul proiectului

Crearea unui produs software care să permită utilizatorului scanarea porturilor de rețea, pentru vizualizarea traficului(transmisie-recepție), dar și a stadiului în care acestea se află(open/not open).

1.2 Lista definițiilor

Scanarea porturilor dintr-o rețea este o metodă prin care putem să determinăm care porturi sunt deschise și ar putea permite primirea/trimiterea de pachete în rețeaua respectivă. Această metodă presupune, de asemenea, și trimiterea de pachete pe anumite porturi pentru a vedea răspunsurile primite și a identifica, astfel, vulnerabilitățile existente (exemplu: acces neautorizat). Protocoalele folosite pentru scanarea de porturi sunt TCP si UDP.

Porturi hardware: mufe pentru periferice

Porturi software: un segment/parte/bucată de cod software căreia i-a fost asignat un alt sistem de operare sau componentă hardware pe care să lucreze față de cel/cea original/ă.

Porturi de rețea: valoare numerică asociată cu un protocol care facilitează comunicarea pentru un serviciu/funcție

3

1.3 Structura documentului

Documentul este împărțit în trei capitole. Capitolul 1 reprezintă introducerea. Capitolul 2 prezintă actorii (tipurile de utilizatori ai aplicației) și arborele de fișiere al aplicației. Capitolul 3 prezintă interfața grafică și funcționalitățile pe care aceasta le-o oferă utilizatorului. Capitolul 4 cuprinde exemple de testare a funcționalităților aplicației.

Capitolul 2 – Arhitectură și componente SW

2.1. Descrierea produsului software

Aplicația va fi dezvoltată în limbajul de programare C/C++, iar interfața grafică va fi realizată cu ajutorul framework-ului Qt.

2.2. Detalierea platformei SW/HW

Produsul software este dezvoltat pentru dispozitivele pe care rulează sistemul de operare Linux/Windows. Vom utiliza platforma Qt Creator pentru crearea interfeței prietenoase cu utilizatorul și mediul de dezvoltare Microsoft Visual Studio Code.

2.3. Actori

Utilizator neprivilegiat- nu poate accesa opțiunea "File".

Utilizator privilegiat- poate accesa toate opțiunile oferite de aplicație.

Utilizator malițios- poate citi trafic de pe porturile de pe hosturile cu adresa IP pivată.

2.4. Arhitectura internă

Dacă utilizatorul introduce un hostname, acesta va fi translatat într-o adresă IP, utilizând header-ul *netdb.h*, structura *hostent* și funcționalitățile definite.

De asemenea, adresele IP vor putea fi citite dintr-un fișier dat ca argument al programului.

Din câmpul "Ports" se va citi un port sau un interval de porturi pentru care se va verifica conectivitatea, folosind header-ul arpa/inet.h, structura sockaddrr_in și funcționalitățile sale.

Dacă opțiunea "Transport" (UDP/TCP) nu este selectată, scanarea implicită se va face pe ambele tipuri de porturi.

Capitolul 3 – Interfața grafică

3.1. Arbore funcționalități aplicație

3.2. Descriere funcționalități

După rularea programului, se va deschide o interfață grafică, prietenoasă cu utilizatorul. Prima fereastră deschisă este "Start Window", oferind două funcționalități: trecerea în fereastra de scanare și un meniu help.

Buton "Scan"- pornește aplicația care oferă utilizatorului toate funcționalitățile. Buton "Help"- oferă detaliile de utilizare ale aplicației.

Fereastra "Scan Window":

Implicit, aplicația va scana toate porturile de la 1 la 1024.

Opțiunea "Ports": scanarea se va efectua pe un port/listă de porturi.

Opțiunea "IP": permite utilizatorului să scaneze o adresă IP individuală.

Opțiunea "File": se dă ca argument un nume de fișier care conține pe fiecare linie câte o adresă IP, pe care se va face scanarea.

*nota: în cazul în care nu e specificată opțiunea "IP" și opțiunea "File" sau dacă fișierul dat ca argument la opțiunea "File" este gol, va apărea o eroare și utilizatorul va avea posibilitatea de a completa parametrii din nou.

Opțiunea "Transport": implicit, se scanează atât porturile UDP, cât și TCP. Utilizând această opțiune, putem alege să facem scanarea doar pe unul dintre aceste tipuri.

Opțiunea "Help": oferă utilizatorului un man-page.

Fereastra "Output Window":

După scanare, în această fereastră va apărea rezultatul sau un mesaj de eroare, în cazul în care nu s-a putut realiza sau au intervenit alte erori pe parcursul execuției.

Capitolul 4 – Testare funcționalități

Test 1- Verificare conexiune https

Pentru input:

Hostname: google.com

Start port: 75 End port: 85

Output:

Translating hostname...Done

Scanning... 80 open