f(cafe) 25 July 2018 Freud House, Kyiv, Ukraine

Namdak Tonpa

HoTT: The Language of Space

Intetics

Abstract

Cubical Base Library

Homotopy Type Theory (HoTT) is the most advanced programming language in the domain of intersection of several theories: algebraic topology, homological algebra, higher category theory, mathematical logic, and theoretical computer science. That is why it can be considered as a language of space, as it can encode any existent mathematics.

During this lecture on HoTT, we are trying to encode as much mathematics in the programming language as possible.

Talk Structure

Slightly based on HoTT Chapters

I. Foundations

- MLTT
- Inductive Types
- IPL and Elements of Set Theory
- Recursive Schemes, Induction
- Equiv, Iso, Univalence
- Higher Inductive Types
- Modalities

II. Mathematics

- Category Theory
- Topos Theory
- Basic Algebra
- Ordinals
- Differential Topology
- FIber Bundles and Hopf Fibtations
- K-Theory

I. Foundations

Programs as Proofs

in Extended Lambda Cube

MLTT 1972

Type Theory as new Foundations of Mathematics

U: U — Single Universe Model — MLTT 1972, CoC 1988.

x : A - x is a point (Star) in space A (Box)

y = [x : A] - x and y are definitionally equal objects of type A

- 1. Formation Rules
- 2. Introduction Rules
- 3. Elimination Rules
- 4. Computational Rules

$$x:A \to B(x)$$
 $x:A * B(x)$
 $(x:A) \to B(x)$ $(x,B(x))$

$$fa = B(a)$$
 pr1, pr2
two three

Beta and Eta

Duality of Intro and Elim and its Uniqueness Non-Dep Case (CCC). Homework: Proof LCCC case.

MLTT 1975, 1984

Grothendieck Universe (containing all sets), Countable Universes

```
U_0: U_1: U_2: U_3: ... \infty — infinte hierarchy of universes S(n: nat) = Un S(n: nat) = Un S(n: nat) = Un: Um where <math>[m>n] — cumulative, [n+1=m] — non-cumulative S(m: nat) = Um — S(m: nat) =
```

1. Formation	data Nat	data List	x:A = y:A	data W
2. Introduction	Zero, Succ	Nil, Cons	refl Ax	sup
3. Elimination	natInd	listInd	J	wInd
4. Computational	Beta, Eta	Beta, Eta	Beta, Eta	Beta, Eta

Intuitionistics Propositional Logic

According to Brouwer–Heyting–Kolmogorov interpretation

\forall , \prod	∃,∑	Path	0	1	+
x:A -> B(x) \ (x: A) -> B(x) f a = B(a) Beta, Eta	x:A * B(x) (x,B(x)) pr1, pr2 Beta, Eta	refl A x J	data empty elim0 Beta, Eta	tt	inl, inr elimEither

Pi Type: Definition

Family of Functions

```
      Syntax
      Model

      <> ::= #option
      data pts = star (n: nat)

      T ::= #identifier
      | var (x: name) (l: nat)

      U ::= * < #number >
      | pi (x: name) (l: nat) (d c: lang)

      O1 ::= U | T | ( O ) | O O | O -> O
      | lambda (x: name) (l: nat) (d c: lang)

      | \ (!: O) -> O | (!: O) -> O
      | app (f a: lang)
```

Pure Type System (PTS), Single Axiom System, Calculus of Constructions (CoC) Henk, Morte, Om and many many others.

Pi Type: Inference Rules

Formal Definition

```
Pi (A: U) (P: A -> U) : U = (x:A) -> P(x) lambda (A : U) (B: A -> U) (a : A) (b: B a): A -> B a = ? app (A : U) (B: A -> U) (a : A) (f: A -> B a): B a = ? Beta (A:U) (B:A->U) (a:A) (f: A->B a) : Path (B a) (app A B a (lam A B a (f a))) (f a) Eta (A: U) (B: A -> U) (a: A) (f: A -> B a) : Path (A -> B a) f (\(\chi(x:A) -> f x\)
```

One beta rule and one eta rule for Pi types.

Sigma Type : Definition

Fiber Space

```
Syntax O_2 := (x: O) * O | (O,O) | O.1 | O.2
```

```
Model data exists = sigma (n: name) (a b: lang)
| pair (a b: lang)
| fst (p: lang)
| snd (p: lang)
```

Sigma is a part of the MLTT earliest core. It models Type Refinement and Proofs by Existance (Construction). Sigma is a chain link of telescopes (contexts), the carried notion of records.

Sigma Type: Inference Rules

Existential Quantifier

```
Sigma (A : U) (B : A -> U) : U = (x : A) * B x
pair (A : U) (B: A -> U) (a : A) (b: B a): Sigma A B = ?
pr1 (A: U) (B: A -> U) (x: Sigma A B): A = ?
pr2 (A: U) (B: A -> U) (x: Sigma A B): B (pr1 A B x) = ?
Beta1 (B: A -> U) (a: A) (b: B a) -> Path A a (pr1 A B (pair A B a b)))
Beta2 (B: A -> U) (a: A) (b: B a) -> Path (B a) b (pr2 A B (a,b)))
Eta (B: A -> U) (p: Sigma A B) -> Path (Sigma A B) p (pr1 A B p,pr2 A B p))
sigRec (A:U)(B:A->U)(C: U) (g:(x:A)->B(x)->C) (p: Sigma A B): C = g p.1 p.2
sigInd (A:U)(B:A->U)(C:Sigma A B->U)
      (p: Sigma A B)(g:(a:A)(b:B(a))->C(a,b)):C p=g p.1 p.2
```

Sigma Type in Pi

Typing and Introduction Rules in Church-Bohm-Berarducci Encoding

```
-- Sigma/@ -- Sigma/Intro
\(A: *) \(A: *)
-> \(P: A -> *) \-> \(P: A -> *)
-> \(n: A) \-> \(x: A)
-> \(Exists: *) \-> \(Exists: *)
-> \(Intro: A -> P n -> Exists)
-> \(Intro: \forall (x: A) -> P x -> Exists)
-> \(Intro x y)
```

Sigma Type in Pi

Eliminators in Church-Bohm-Berarducci Encoding

```
-- Sigma/fst -- Sigma/snd
\(A: *) \(A: *)
-> \(B: A -> *) \\
-> \(n: A) \\
-> \(S: #Sigma/@ A B n) \\
-> S A (\(x: A) -> \(y: B n) -> x) \\
-> S (B n) (\(x: A) -> \(y: B n) -> y \()
```

Proto (Prelude)

For run-time and I/O applications

Maybe	Either	Stream	Bool	Vector	Fin
U -> U	U -> U -> U inl, inr eitherInd Beta, Eta	U -> U	U	Nat -> U	Nat -> U
nothing, just		cons	true, false	VZ, VS	FZ, FS
maybeInd		streamInd	boolInd	vecInd	finInd
Beta, Eta		Beta, Eta	Beta, Eta	Beta, Eta	Beta, Eta

Control (Haskell)

Port of Haskell-style erased 2-categorical structures for flow modeling

```
(F:U->U):U= (A: U) -> A -> F A
pure_sig
appl_sig (F:U->U):U=(A B: U) -> F(A -> B) -> FA -> FB
fmap_sig (F:U->U):U=(A B: U) -> (A -> B) -> F A -> F B
bind_sig (F:U->U):U=(A B: U) -> FA ->(A -> FB)-> FB
functor: U = (F: U \rightarrow U) * fmap sig F
applicative: U = (F: U \rightarrow U) * (\_: pure\_sig F) * (\_: fmap\_sig F) * appl\_sig F
monad: U = (F:U->U)*(\underline{\quad}sig F)*(\underline{\quad}sig F)*(\underline{\quad}sig F)*(\underline{\quad}sig F)*(\underline{\quad}sig F)
FUNCTOR: U = (f: functor) * isFunctor f
APPLICATIVE: U = (f: applicative) * (_: isFunctor (f.1,f.2.2.1)) * isApplicative f
MONAD: U = (f: monad) * (_: isFunctor (f.1,f.2.2.1))
             * (_: isApplicative (f.1,f.2.1,f.2.2.1,f.2.2.2.1)) * isMonad f
```

F-Algebras

Inductive Type Modeling with Varmo Vene style Recursion Schemes

```
data fix (F:U->U) = Fix (point: F (fix F))
data nu (F:U->U) (A B:U) = CoBind (a: A) (f: F B)
data cofree (F:U->U) (A:U) = CoFree (_: fix (nu F A))
ind (F: U -> U) (A: U): U = (in_: F (fix F) -> fix F) * (in_rev: fix F -> F (fix F))
* ((F A -> A) -> fix F -> A) * (cofree_: (F (cofree F A) -> A) -> fix F -> A)
inductive (F: functor) (A: U): ind F.1 A = (in_ F.1,out_ F.1,cata A F,histo A F,tt)
```

Backported to cubicaltt.

Induction Principle

Natural Numbers Example

Induction Principle could be ultimate programming tool.

Bishop's Constructive Analysis

Reflexivity, Transitivity, Symmetry

```
Setoid (A: U): U
```

- = (Carrier: A)
- * (Equ: (a b: A) -> Path A a b)
- * (Refl: $(x: A) \rightarrow Equ \times x$)
- * (Trans: $(x_1,x_2,x_3: A) -> Equ x_1 x_2 -> Equ x_2 x_3 -> Equ x_1 x_3)$
- * (Sym: $(x_1,x_2: A) \rightarrow Equ x_1 x_2 \rightarrow Equ x_2 x_1)$

$$a = A b$$

$$a \longrightarrow b$$

$$Refl$$

Globular Theory

Multidimentional Equality

$$a = Ab$$

$$((a = A b) = (= A) (a = A b))$$

$$a = Ab$$

$$a = A b$$

Equ Type a la Martin-Löf

```
Path (A: U) (a b: A): U = axiom — PathP (<i>A) a b
HeteroEqu (A B: U) (a: A) (b: B) (P: Path U A B) : U = axiom — PathP P a b

Equ (A: U) (x y: A): U = HeteroEqu A A x y (<i>A)

refl (A: U) (a: A): Equ A a a = <i>a

J (A: U) (a: A) (C: (x : A) -> Path A a x -> U)

(d: C a (refl A a)) (x: A) (p: Path A a x): C x p
```

(A: U) (a:A)(C: D A) (d: C a a (refl A a)) ->

Path (Caa (refl Aa)) d (J Aa Cda (refl Aa)))

Eta:

Path Types as Cubes

Syntax and Model

Syntax

x : [PathP p a b, p = (i: I) -> A]

de Morgan: 1-i | i | i /\ j | i \/ j

Model

```
data hts = path (a b: lang)
| path_lam (n: name) (a b: lang)
| path_app (f: name) (a b: lang)
| comp_ (a b: lang)
| fill_ (a b c: lang)
| glue_ (a b c: lang)
| glue_elem (a b: lang)
| unglue_elem (a b: lang)
```

n-Types

```
Path
          (A:U):U=(a b:A) -> PathP (<i>A) a b
         (A : U): U = (x: A) * ((y: A) -> Path A x y)
isContr
      (A:U):U = (a b:A) -> Path A a b
isProp
       (A:U):U = (a b:A) -> isProp (Path A a b)
isSet
isGroupoid (A:U):U=(ab:A) -> isSet (Path A a b)
isGr_2 (A:U): U = (a b:A) -> isGroupoid (Path A a b)
isGr_3 (A:U): U = (a b:A) -> isGr_2 (Path A a b)
PROP : U = (X:U) * isProp X
SET : U = (X:U) * isSet X
GROUPOID : U = (X:U) * isGroupoid X
INF_GROUPOID : U = (X:U) * isInfinityGroupoid X
```

Subtyping in MLTT

Subsets and Subtypes

```
hsubtypes (X: U): U = X \rightarrow PROP
subset (A: U) (\underline{\phantom{a}}: isSet A): U = A -> PROP
sethsubtypes (X : U) : isSet (hsubtypes X)
hsubtypespair (A B: U) (H0: hsubtypes A) (H1: hsubtypes B) (x: prod A B): PROP
subtypeEquality (A: U) (B: A -> U)
                  (pB: (x : A) -> isProp (B x))
                   (s t: Sigma A B): Path A s.1 t.1 -> Path (Sigma A B) s t
iseqclass (X : U) (R : hrel X) (A : hsubtypes X) : U
propiseqclass (X : U) (R : hrel X) (A : hsubtypes X) : isProp (iseqclass X R A)
```

Elements of Set Theory

Set Theory Theorems

```
ac (A B: U) (R: A -> B -> U): (p: (x:A)->(y:B)*(R x y)) -> (f:A->B)*((x:A)->R(x)(f x))
= \((g: (x:A)->(y:B)*(R x y)) -> (\((i:A)->(g i).1,\((j:A)->(g j).2)\)
total (A:U) (B C: A->U) (f: (x:A) -> B x -> C x) (w:Sigma A B): Sigma A C
= (w.1,f (w.1) (w.2))
```

Prop Logic

Set Theory Theorems

```
efq (A: U): empty -> A = emptyRec A neg (A: U): U = A -> empty
```

dneg (A:U) (a:A): neg (neg A) = $\(h: neg A) -> h a$

neg $(A: U): U = A \rightarrow empty$

dec (A: U): U = either A (neg A)

stable $(A: U): U = neg (neg A) \rightarrow A$

discrete (A: U): U = (a b: A) -> dec (Path A a b)

```
propDec (A:U) (h:isProp A):isProp (dec A)
propAnd (AB:U) (pA:isProp A) (pB:isProp B):isProp (prod AB)
propNeg (A:U):isProp (neg A)
propNO:isProp empty
```

Homotopy

Syntax and Model

```
data I = i0
        | seg <i> [(i=0) -> i0, (i=1) -> i1]
pathToHtpy (A: U) (x y: A) (p: Path A x y): I \rightarrow A
  = split { i0 -> x; i1 -> y; seg @ i -> p @ i }
homotopy (X Y: U) (f g: X -> Y)
             (p: (x: X) -> Path Y (f x) (g x))
             (x: X): I \rightarrow Y = pathToHtpy Y (f x) (g x) (p x)
```

piExt (A: U) (B: A -> U) (f g: (x:A) -> B x)
(p: (x:A) -> Path (B x) (f x) (g x))
: Path ((y:A) -> B y) f g
=
$$\langle i \rangle \setminus (a: A) -> (p a) @ i$$

FunExt

Syntax and Model

f: (x:A) -> B(x)

(x:A)
$$\Rightarrow$$
 B(x)

g: (x:A) -> B(x)

Weak Equivalence

Fibrational

```
fiber (A B: U) (f: A -> B) (y: B): U = (x: A) * Path B y (f x) isEquiv (A B: U) (f: A -> B): U = (y: B) -> isContr (fiber A B f y) equiv (A B: U): U = (f: A -> B) * isEquiv A B f
```


Fiber Bundle: F -> E -> B

Moebius $E = S^1$ 'twisted *' [0,1]

Trivial: E = B * F

p:total -> B

 $F = fiber : B \rightarrow total$

total = (y: B) * fiber(y)

Fiber=Pi (B: U) (F: B -> U) (y: B)

: Path U (fiber (total B F) B (trivial B F) y) (F y)

```
islso (A B: U): U
 = (f: A -> B)
 * (g: B -> A)
 * (s: section A B f g)
 * (t: retract A B f g)
 * unit
iso: U
 = (A: U)
 * (B: U)
 * islso A B
```

Isomorphism

```
section (A B: U) (f: A -> B) (g: B -> A): U = (b: B) -> Path B (f (g b)) b retract (A B: U) (f: A -> B) (g: B -> A): U = (a: A) -> Path A (g (f a)) a
```

Univalence Axiom

All Equalities Should Be Equal


```
lem2 (B: U) (F: B -> U) (y: B) (x: F y)
 : Path (F y) (comp (\langle i \rangleF (refl B y @ i)) x []) x
  = <j > comp (<i > F ((refl B y) @ j/\i)) x [(j=1) -> <k>x]
lem3 (B: U) (F: B -> U) (y: B) (x: fiber (total B F) B (trivial B F) y)
 : Path (fiber (total B F) B (trivial B F) y) ((y,encode B F y x),refl B y) x
  = <i> ((x.2 @ -i,comp (<j> F (x.2 @ -i /\ j)) x.1.2 [(i=1) -> <_> x.1.2 ]), <j> x.2 @ -i \/ j)
FiberPi (B: U) (F: B -> U) (y: B) : Path U (fiber (total B F) B (trivial B F) y) (F y)
= isoPath T A f g s t where
  T: U = fiber (total B F) B (trivial B F) y
  A: U = F y
  f: T \rightarrow A = encode B F y
  g: A \rightarrow T = decode B F y
  s(x: A): Path A(f(gx))x = lem2 B F y x
  t(x: T): Path T(g(fx)) x = lem3 B F y x
```

Trivial Fiber = Pi

I. Mathematics

```
cat: U = (A: U) * (A -> A -> U)
```

Category Theory

Categories

```
isPrecategory (C: cat): U
 = (id: (x: C.1) \rightarrow C.2 \times x)
 * (c: (x y z:C.1) -> C.2 x y -> C.2 y z -> C.2 x z)
 * (homSet: (x y: C.1) -> isSet (C.2 x y))
 * (left: (x y: C.1) \rightarrow (f: C.2 \times y) \rightarrow Path (C.2 \times y) (c \times x y) (id x) f) f)
 * (right: (x y: C.1) \rightarrow (f: C.2 \times y) \rightarrow Path (C.2 \times y) (c \times y y f (id y)) f)
 * ((x y z w: C.1) -> (f: C.2 x y) -> (g: C.2 y z) -> (h: C.2 z w) ->
   Path (C.2 \times w) (c \times z \times w) (c \times y \times z \times f + g) (c \times y \times w \times f + g)
precategory: U = (C: cat) * isPrecategory C
```

Instances:

Set, Functions, Category, Functors, Commutative Monoids, Abelian Groups

Category Theory

Functors

```
catfunctor (A B: precategory): U
= (ob: carrier A -> carrier B)
* (mor: (x y: carrier A) -> hom A x y -> hom B (ob x) (ob y))
* (id: (x: carrier A) -> Path (hom B (ob x) (ob x)) (mor x x (path A x)) (path B (ob x)))
* ((x y z: carrier A) -> (f: hom A x y) -> (g: hom A y z) ->
Path (hom B (ob x) (ob z)) (mor x z (compose A x y z f g))
(compose B (ob x) (ob y) (ob z) (mor x y f) (mor y z g)))
```

Category Equivalence, Id and Composition Functors, Slice and Coslice

Category of Sets

Formal Model of Set Theory

```
Set: precategory = ((Ob,Hom),id,c,HomSet,L,R,Q) where
  Ob: U = SET
  Hom (A B: Ob): U = A.1 -> B.1
  id (A: Ob): Hom A A = idfun A.1
  c (A B C: Ob) (f: Hom A B) (g: Hom B C): Hom A C = o A.1 B.1 C.1 g f
  HomSet (A B: Ob): isSet (Hom A B) = setFun A.1 B.1 B.2
  L (A B: Ob) (f: Hom A B): Path (Hom A B) (c A A B (id A) f) f = refl (Hom A B) f
  R (A B: Ob) (f: Hom A B): Path (Hom A B) (c A B B f (id B)) f = refl (Hom A B) f
  Q (A B C D: Ob) (f: Hom A B) (g: Hom B C) (h: Hom C D)
  : Path (Hom AD) (cACD (cABCfg) h) (cABDf (cBCDgh))
  = refl (Hom A D) (c A B D f (c B C D g h))
```

Pullback Completeness

Pullbacks and Fibers as edge case

Examples: Products, Fibers

Dual Examples (Pushout): Coproducts, Cofibers

```
subobjectClassifier (C: precategory): U
 = (omega: carrier C)
 * (end: terminal C)
 * (trueHom: hom C end.1 omega)
 * (xi: (V X: carrier C) (j: hom C V X) -> hom C X omega)
 * (square: (V X: carrier C) (j: hom C V X) -> mono C V X j
     -> hasPullback C (omega,(end.1,trueHom),(X,xi V X j)))
 * ((V X: carrier C) (j: hom C V X) (k: hom C X omega)
     -> mono C V X i
     -> hasPullback C (omega,(end.1,trueHom),(X,k))
     -> Path (hom C X omega) (xi V X j) k)
Topos (cat: precategory): U
 = (rezk: isCategory cat)
 * (cartesianClosed: isCCC cat)
 * subobjectClassifier cat
```

Topos Theory

Categories

Basic Abstract Algebra

Structures

```
isMonoid (M: SET): U
 = (op: M.1 -> M.1 -> M.1)
 * (_: isAssociative M.1 op)
 * (id: M.1)
 * (hasIdentity M.1 op id)
isCMonoid (M: SET): U
 = (m: isMonoid M)
 * (isCommutative M.1 m.1)
isGroup (G: SET): U
 = (m: isMonoid G)
 * (inv: G.1 -> G.1)
 * (hasInverse G.1 m.1 m.2.2.1 inv)
```

```
isAbGroup (G: SET): U
 = (g: isGroup G)
 * (isCommutative G.1 g.1.1)
isRing (R: SET): U
 = (mul: isMonoid R)
 * (add: isAbGroup R)
* (isDistributive R.1 add.1.1.1 mul.1)
isAbRing (R: SET): U
 = (mul: isCMonoid R)
 * (add: isAbGroup R)
* (isDistributive R.1 add.1.1.1 mul.1.1)
```

Basic Abstract Algebra

Objects and Morphisms for Categorical Setup

```
monoidhom (a b: monoid): U
= (f: a.1.1 -> b.1.1)
* (ismonoidhom a b f)
```

```
monoid: U = (X: SET) * isMonoid X cmonoid: U = (X: SET) * isCMonoid X group: U = (X: SET) * isGroup X abgroup: U = (X: SET) * isAbGroup X ring: U = (X: SET) * isRing X abring: U = (X: SET) * isAbRing X
```

cmonoidhom (a b: cmonoid): U = monoidhom (a.1, a.2.1) (b.1, b.2.1) grouphom (a b: group): U = monoidhom (a.1, a.2.1) (b.1, b.2.1) abgrouphom (a b: abgroup): U = monoidhom (a.1, a.2.1.1) (b.1, b.2.1.1) cmonabgrouphom (a: cmonoid) (b: abgroup): U = monoidhom (a.1, a.2.1) (b.1, b.2.1.1)

Ordinals

Structures

```
data V
  = pi_{x} (x: V) (y: Elv x -> V)
  | uni_ (f: (x: V) -> (Elv x -> V) -> V)
       (g: (x: V) -> (y: Elv \times -> V) -> (Elv (f \times y) -> V) -> V)
Elv: V -> U = split
  pi_ a b -> (x: Elv a) -> Elv (b x)
  uni_ f g -> Universe f g
```

http://www.cs.swan.ac.uk/

~csetzer/articles/uppermahlo.ps

Mahlo Universe

Structures

data Universe (f: (x: V) -> (Elv x -> V) -> V) $(g: (x: V) \rightarrow (y: Elv \times -> V) \rightarrow (Elv (f \times y) \rightarrow V) \rightarrow V)$ = fun_ (x: Universe f g) (_: Elt f g x -> Universe f g) | f_ (x: Universe f g) (_: Elt f g x -> Universe f g) g_ (x: Universe f g) (y: Elt f g x -> Universe f g) (z: Elv (f (Elt f g x) (\(a: Elt f g x) -> y a))) Elt: (f: (x: V) -> (Elv x -> V) -> (g: $(x: V) \rightarrow (y: Elv \times -> V) \rightarrow (Elv (f \times y) \rightarrow V) \rightarrow V) \rightarrow$ Universe f $g \rightarrow V = undefined$

```
EtaleMap (A B: U): U
= (f: A -> B)
* isÉtaleMap A B f
```

Differential Topology

Etale Maps

```
isÉtaleMap (A B: U) (f: A -> B): U
 = isPullbackSq A iA B (Im B) x y w f h where
 iA: U = Im A
 iB: U = Im B
 x: iA \rightarrow iB = ImApp A B f
 y: B -> iB = ImUnit B
 w: A \rightarrow iA = ImUnit A
 c1: A \rightarrow iB = o A iA iB \times w
 c2: A \rightarrow iB = oAB iByf
 T2: U = (a:A) -> Path iB (c1 a) (c2 a)
 h: T2 = (a : A) \rightarrow (i > ImNaturality A B f a @ -i
```


Differential Topology

Manifolds

```
HomogeneousStructure (V: U): U
et (A B: U): EtaleMap A B -> (A -> B)
isSurjective (A B: U) (f: A -> B): U
manifold (V': U) (V: HomogeneousStructure V'): U
 = (M: U)
 * (W: U)
 * (w: EtaleMap W M)
 * (covers: isSurjective W M (et W M w))
 * ( EtaleMap W V')
```

https://ncatlab.org/schreiber/show/thesis+Wellen

Infinitesimal Modality

```
Im: U -> U = undefined
                                                                       in Cohesive Topos
ImUnit (A: U) : A \rightarrow Im A = undefined
isCoreduced (A:U): U = isEquiv A (Im A) (ImUnit A)
ImCoreduced (A:U): isCoreduced (Im A)
ImApp (A B: U) (f: A -> B): Im A -> Im B
 = ImRecursion A (Im B) (ImCoreduced B) (o A B (Im B) (ImUnit B) f)
ImNaturality (A B:U) (f:A->B): (a:A)->Path (Im B)((ImUnit B)(f a))((ImApp A B f)(ImUnit A a))
ImInduction (A:U)(B:Im A->U)(x: (a: Im A)->isCoreduced(B a))
            (y:(a: A)->B(ImUnit A a)):(a:Im A)->B a
ImComputeInduction (A:U)(B:Im A \rightarrow U) (c:(a:Im A)->isCoreduced(B a))
```

: Path (B (ImUnit A a)) (f a) ((ImInduction A B c f) (ImUnit A a))

(f:(a:A)->B(ImUnit A a))(a:A)

data S1 = base loop <i> [(i=0) -> base, (i=1) -> base] data susp (A : U) = northsouth | merid (a : A) <i> [(i=0) -> north, , (i=1) -> south] S2: U = susp S1S3: U = susp S2S4: U = susp S3S: nat -> U = split zero -> susp bool

succ x -> susp x

Higher Spheres

Fiber Bundler of Spheres

Hopf Fibrations

Fiber Bundler of Spheres

```
ua (A B : U) (e : equiv A B) : Path U A B = <i> Glue B [ (i = 0) -> (A,e), (i = 1) -> (B,idEquiv B) ] rot: (x : S1) -> Path S1 x x = split { base -> loop1 ; loop @ i -> constSquare S1 base loop1 @ i } mu : S1 -> equiv S1 S1 = split base -> idEquiv S1 loop @ i -> equivPath S1 S1 (idEquiv S1) (idEquiv S1) (<j> \(x : S1) -> rot x @ j) @ i H : S2 -> U = split { north -> S1 ; south -> S1 ; merid x @ i -> ua S1 S1 (mu x) @ i } TH : U = (c : S2) * H c
```

data Seq (A: U) (B: A -> A -> U) (X Y: A) = seqNil (_: A) | seqCons (X Y Z: A) (_: B X Y) (_: Seq A B Y Z)

```
Sequences
```

```
pmSeq: pointed -> pointed -> U = Seq pointed pmap
pmNil (X: pointed): pmSeq X X = seqNil X
pmCons (X Y Z: pointed) (h: pmap X Y) (t: pmSeq Y Z): pmSeq X Z = seqCons X Y Z h t
```

```
homSeq: group -> group -> U = Seq group grouphom
homNil (X: group): homSeq X X = seqNil X
homCons (X Y Z: group) (h: grouphom X Y) (t: homSeq Y Z): homSeq X Z = seqCons X Y Z h t
```

```
abSeq: abgroup -> abgroup -> U = Seq abgroup abgrouphom abNil (X: abgroup): abSeq X X = seqNil X abCons (X Y Z: abgroup) (h: abgrouphom X Y) (t: abSeq Y Z): abSeq X Z = seqCons X Y Z h t
```

Chain Complexes

```
ChainComplex: U
 = (head: abgroup)
 * (chain: nat -> abgroup)
 * (augment: abgrouphom (chain zero) head)
 * ((n: nat) -> abgrouphom (chain (succ n)) (chain n))
CochainComplex: U
 = (head: abgroup)
 * (cochain: nat -> abgroup)
 * (augment: abgrouphom head (cochain zero))
 * ((n: nat) -> abgrouphom (cochain n) (cochain (succ n)))
```

Thank You!

https://groupoid.space