Introducción a la programación con MatLAB

Módulo 02 Variables, números y operadores. Manejo de Vectores y Matrices

Fernando E. Pose

Marzo 2019

Números

Tipos de números:

- Números enteros
- Números racionales
- Números reales
- Números complejos

Operaciones permitidas con números

х+у	Suma	
х-у	Diferencia	
x*y	Producto	
x/y	División	
x^y	Potencia	

Números

Números irracionales y reales especiales

pi	Número $\pi = 3,1415926$
exp(1)	Número e = 2,7182818
Inf	Infinito (por ejemplo 1/0)
NaN	Indeterminación (por ejemplo 0/0)
realmin	Menor número real positivo utilizable
realmax	Mayor número real positivo utilizable

Números

Números complejos

Función	Significado
abs(Z)	Módulo del complejo Z
angle(Z)	Argumento del complejo Z
conj(Z)	Conjugado del complejo Z
real(Z)	Parte real del complejo Z
imag(Z)	Parte imaginaria del complejo Z

Variables

Matlab no requiere ningún tipo de comando para declarar variables.

Ej. Ejecutar las siguiente líneas. Obtener conclusiones.

$$A = 5$$

A*A

$$B = 2$$

Variables

Matlab no requiere ningún tipo de comando para declarar variables.

Ej. Ejecutar las siguiente líneas. Obtener conclusiones.

$$A = 5$$

 $A*A$

Importante

Los nombres de las variables comienzan con una letra.

Variables

Matlab no requiere ningún tipo de comando para declarar variables.

Ej. Ejecutar las siguiente líneas. Obtener conclusiones.

A = 5A*A

B = 2

Importante

Los nombres de las variables comienzan con una letra.

Importante

Matlab es sensible a mayúsculas y minúsculas.

Representación de un vector de "n" elementos :

$$V = [V_1, V_2, V_3, ..., V_N]$$

 $V = [V_1 V_2 V_3 ... V_N]$

Workspace

Ej. Ejecutar las siguiente líneas. Obtener conclusiones.

$$V = [4,9,81]$$

resultado = $sqrt(V)$

IEEE Sección Argentina

Formas de definir variables vectoriales

variable = [a :b]	Vector cuyos primero y último elementos son a y b, respectivamente. Los elementos intermedios se diferencian en una unidad
variable = [a :s :b]	Vector cuyos primero y último elementos son a y b, y los elementos intermedios se diferencian en la cantidad s especificada por el incremento
variable = linspace(a :b :n)	Vector cuyos primero y último elementos son a y b, y que tiene en total n elementos uniformemente espaciados entre sí
variable = logspace(a :b :n)	Vector cuyos primero y último elementos son los especificados y que tiene en total n elementos en escala logarítmica uniformemente espaciados entre sí

IEEE Sección Argentina

Selección de elementos de un vector

x(n)	Devuelve el enésimo elemento del vector x	
x(a :b)	Devuelve los elementos del vector x situados entre el	
X(a .b)	a-ésimo y el bésimo, ambos inclusive	
	Devuelve los elementos del vector x situados entre el	
x(a :p :b)	a-ésimo y el bésimo, ambos inclusive, pero	
	separados de p en p unidades (b>a)	
	Devuelve los elementos del vector x situados entre el	
x(b:-p:a)	b-ésimo y el a-ésimo, ambos inclusive, pero separados de	
	p en p unidades y empezando por el bésimo (b>a)	

Electrocardiograma

a={a1,a2,,an}, b={b1,b2,,bn} c=escalar			
a+c=[a1+c a2+c,an+c] Suma de un escalar y un vector			
a*c=[a1*c a2*c an*c]	Producto de un escalar por un vector		
a + b = [a1+b1 a2+b2 an+bn]	Suma de dos vectores		

a={a1,a2,,an}, b={b1,b2,,bn} c=escalar			
a. * b = [a1*b1 a2*b2 an*bn] Producto de dos vectores			
a. / b = [a1/b1 a2/b2 an/bn] Cociente a la derecha de dos vectore			
a.^c = [a1^c a2^c an^c]	Vector elevado a escalar		
c.^a = [c^a1 c^a2 c^an]	Escalar elevado a vector		
a.^b = [a1^b1 a2^b2 an^bn]	Vector elevado a vector		

a={a1,a2,,an}, b={b1,b2,,bn} c=escalar		
a. * b = [a1*b1 a2*b2 an*bn] Producto de dos vectores		
a. / b = [a1/b1 a2/b2 an/bn] Cociente a la derecha de dos vectore		
a.^c = [a1^c a2^c an^c]	Vector elevado a escalar	
c.^a = [c^a1 c^a2 c^an]	Escalar elevado a vector	
a.^b = [a1^b1 a2^b2 an^bn]	Vector elevado a vector	

Tener en cuenta

Los vectores deben ser de igual longitud.

Ejemplo de aplicación de a./c

Representación de una matriz de NxM:

$$V = [V_{11}, V_{12}, V_{13}; V_{21}, V_{22}, V_{23}; V_{31}, V_{32}, V_{33}]$$
$$V = [V_{11} V_{12} V_{13}; V_{21} V_{22} V_{23}; V_{31} V_{32} V_{33}]$$

Workspace

Formas de definir variables vectoriales

A(m,n)	Define el elemento (m,n) de la matriz A (fila m y columna n)		
	efine la submatriz de A formada por las filas que hay entre		
A(a :b,c :d)	la a-ésima y la b-ésima y por las columnas que hay		
	entre la c-ésima y la d-ésima		
	Define la submatriz de A formada por las filas que		
A(a :p :b,c :q :d)	hay entre la a- ésima y la b-ésima tomándolas de p en p, y		
	por las columnas que hayentre la c-ésima y		
	la d-ésima tomándolas de q en q		
A(a :b, :)	Define la submatriz de A formada por todas las columnas de A		
A(a .b, .)	y por las filas que hay entre la a-ésima y la b-ésima		
A(a, :)	Define la fila a-ésima de la matriz A		

Ejemplo: Imagen monocromática

IEEE Sección Argentina

Representación

$$f(1,3) = 80$$

Ejemplo: Imagen color

Representación

R G B

$$f(i,j,k)$$
 3D ó $f(i,j) = (r_{i,j,'}g_{i,j'}b_{i,j})$

Funciones sobre matrices

flipud(A)	Devuelve la matriz cuyas filas están colocadas en orden inverso
fliplr(A)	Devuelve la matriz cuyas columnas están colocadas en orden inverso
rot90(A)	Rota 90 grados la matriz A
size(A)	Devuelve el orden (tamaño) de la matriz A
tril(A)	Devuelve la parte triangular inferior de la matriz A
triu(A)	Devuelve la parte triangular superior de la matriz A
inv(A)	Devuelve la matriz inversa de A

Operación: Transpuesta

Operador transpuesta:

Comando

Traspuesta: variable'

 $Transpuesta_A = A'$

Cambia las filas de una matriz en culumnas y las columnas en fila

Operación: Producto punto

Producto escalar:

Vector_resultante = **sum**(A.*B)

$$A = [1 \ 2 \ 3 \ 4 \ 5];$$

 $B = [2 \ 3 \ 4 \ 5 \ 6];$
 $sum(A.*B)$

Operación: Producto punto

Comando

Ver comando: dot()

$$A = [1 \ 2 \ 3 \ 4 \ 5];$$

 $B = [2 \ 3 \ 4 \ 5 \ 6];$
 $dot(A,B)$

Operación : Multiplicación matricial

Producto matricial:

Vector resultante = A*B

Operación: Potencias de matrices

Elevar a la potencia N cada elemento de la matriz .\^

Vector_resultante = A.\^N

Operación : Inversión de matriz

Comando

Ver comando: inv()

$$A = [1 \ 2 \ 3 \ ; \ 4 \ 5 \ 6 \ ; \ 7 \ 8 \ 9];$$

 $Res = inv(A)$

Operación: Inversión de matriz

$$A = [1 \ 2 \ 3 \ ; \ 0 \ 0 \ 5 \ ; \ 0 \ 0 \ 6];$$

 $Res = inv(A)$

Cálcuo de Determinantes

Comando

Ver comando: det()

$$A = [1 \ 2 \ 3 \ ; \ 4 \ 5 \ 6 \ ; \ 7 \ 8 \ 9];$$

 $Res = det(A)$

Inversión de matriz

det(A)

Cuando te dicen que si quedo todo claro y dices que si, pero tu mente sabe que no.

Inversión de matriz

det(A)

Cuando te dicen que si quedo todo claro y dices que si, pero tu mente sabe que no.

Algebra!

det(A) = 0 entonces matriz singular. No existe la inversa!

IEEE Sección Argentina

Matriciales especiales

Matrices especiales

ones(m,n)	Crea una matriz de m x n de unos
zeros(m,n)	Crea una matriz de m x n de ceros
rand(m,n)	Crea una matriz de m x n aleatoria
magic(m)	Crea una matriz aleatoria especial
eye(m,n)	Crea la matriz de m x n con unos en la diagonal principal y ceros en el resto

$$V = magic(4)$$

Matrices especiales : unos y ceros

Comando

Ver comando: ones()

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

MatrizUnos = ones(2)

1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1

Matrices especiales : unos y ceros

Comando

Ver comando: ones()

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

MatrizUnos = ones(2)

0	0	0
0	0	0
0	0	0
0	0	0
	0	0 0

Comando

Ver comando : zeros()

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

MatrizCeros = zeros(2,2)

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

IEEE Sección Argentina

Matrices especiales : Matriz identidad

Comando

Ver comando: eye()

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

MatrizIdentidad = eye(3)

1	0	0	0
0	1	0	0
0	0	1	0
a	ρ	ο	1

Variables carácter

Arreglo de caracteres incluidos entre comillas simples.

c = 'cadenadecaracteres'

Workspace

Variables carácter

Funciones sobre caracteres

lower('cadena')	Convierte la cadena a minúsculas		
upper('cadena')	Convierte la cadena a mayúsculas		
strcmp(c1,c2)	Compara las cadenas s1 y s2 y devuelve 1 si son		
	iguales y 0 en caso contrario		
strcmp(c1,c2,n)	Compara las cadenas s1 y s2 y devuelve 1 si son iguales sus n		
	primeros caracteres y 0 en caso contrario		
disp('cadena')	Muestra la cadena y continúa el proceso de MATLAB		

- Cree los siguientes números complejos :
 - A = 1 + i
 - B = 2 3i
 - C = 8 + 2i
- Cree un vector D de números complejos cuyos componentes reales son 2,4 y 6 y cuyos componentes imaginarios son -3, 8 y -16
- Encuentre la magnitud (valor absoluto) de cada uno de los vectores que creo en el problema 1
- Encuentre el ángulo desde la horizontal de cada uno de los números que creó en el problema 1
- Encuentre la conjugada compleja del vector D
- Use el operador transpuesto para encontrar la conjugada compleja del vector D
- Multiplique A por su conjugada compleja y luego saque la raíz cuadrada de su respuesta.

- Defina la matriz a = [2.3 5.8 9] como una variable
- 2 Sume 3 a cada elemento en a
- Defina la matriz b = [5.2 3.14 2] como una variable matlab
- Sume cada elemento de la matriz a y la matriz b
- Multiplique cada elemento en a por el correspondiente elemento en b
- Eleve al cuadrado cada elemento en la matriz a
- Cree una matriz llamada c de valores igualmente espaciados, desde 0 hasta 10, con un incremento de 1
- Cree una matriz llamada d de valores igualmente espaciados, desde 0 hasta 10, con un incremento de 2.
- Use la función linspace para crear una matriz de seis valores igualmente espaciados, desde 10 hasta 20.
- Use la función logspace para crear una matriz de cinco valores logarítmicamente espaciados entre 10 y 100

- Use la función dot para encontrar el producto punto de los siguientes vectores :
 - A = [1 2 3 4]
 - B = [12 20 15 7]
- Encuentre el producto punto de A y B al sumar los productos arreglo de A y B (sum(A.*B))

- Encuentre el inverso de las siguientes matrices mágicas, tanto con la función inv como al elevar la matriz a la potencia -1:
 - magic(3)
 - magic(4)
 - magic(5)
- Encuentre el determinante de cada una de las matrices de la parte 1

