Claims:

1. A compound of formula (I):

$$Ar^{1} - CHCH_{2}NHCR^{4}R^{5}(CH_{2})_{k}$$

$$OH$$

$$(CH_{2})_{n}O(CH_{2})_{m}Z-(CH_{2})_{p}(CR^{8}R^{b})_{i}$$

$$R^{3}$$

$$(I)$$

or a salt, solvate, or physiologically functional derivative thereof, wherein:

10

5

 R^1 is selected from hydrogen, C_{1-6} alkyl, hydroxy, cyano, nitro, halo, C_{1-6} haloalkyl, XCO_2R^8 , $-XC(O)NR^7R^8$, $-XNR^6C(O)R^7$, $-XNR^6C(O)NR^7R^8$, $-XNR^6C(O)NC(O)NR^7R^8$, $-XNR^6SO_2R^7$, $-XSO_2NR^9R^{10}$, XSR^6 , XSO_2R^6 , XSO_2R^6 , $-XNR^7R^8$, $-XNR^6C(O)OR^7$,

or R¹ is selected from -X-aryl, -X-hetaryl, or -X-(aryloxy), each optionally substituted by 1 or 2 groups independently selected from hydroxy, C₁₋₆alkoxy, halo, C₁₋₆alkyl, C₁₋₆haloalkyl, -NR⁶C(O)R⁷, SR⁶, SOR⁶, -SO₂R⁶, -SO₂NR⁹R¹⁰, -CO₂R⁸, -NR⁷R⁸, or hetaryl optionally substituted by 1 or 2 groups independently selected from hydroxy, C₁₋₆alkoxy, halo, C₁₋₆alkyl, or C₁₋₆haloalkyl;

20

X is $-(CH_2)_q$ - or C_{2-6} alkenylene;

q is an integer from 0 to 6, preferably 0 to 4;

R⁶ and R⁷ are independently selected from hydrogen, C₁₋₈alkyl, C₃₋₇cycloalkyl, aryl, hetaryl, hetaryl(C₁₋₆alkyl)- and aryl(C₁₋₆alkyl)- and R⁶ and R⁷ are each independently optionally substituted by 1 or 2 groups independently selected from halo, C₁₋₆alkyl, C₃₋₇ cycloalkyl, C₁₋₈ alkoxy, C₁₋₈haloalkyl, -NHC(O)(C₁₋₈alkyl), -SO₂(C₁₋₈alkyl), -SO₂(aryl), -CO₂H, and -CO₂(C₁₋₄alkyl), -NH₂, -NH(C₁₋₈alkyl), aryl(C₁₋₆alkyl)-, aryl(C₂₋₆alkenyl)-,

aryl(C₂-alkynyl)-, hetaryl(C₁-alkyl)-, -NHSO₂aryl, -NH(hetarylC₁-alkyl), -NHSO₂hetaryl, -NHSO₂(C₁₋₈alkyl), -NHC(O)aryl, or -NHC(O)hetaryl:

R⁸ is selected from hydrogen, C₁₋₆alkyl and C₃₋₇ cycloalkyl;

5

or R⁷ and R⁸, together with the nitrogen atom to which they are bonded, form a 5-, 6- or 7membered nitrogen - containing ring;

10

R9 and R10 are independently selected from hydrogen, C1-6alkyl, C3-7cycloalkyl, aryl, hetaryl, hetaryl(C₁₋₆alkyl)- and aryl(C₁₋₆alkyl)-, or R⁹ and R¹⁰, together with the nitrogen to

which they are bonded, form a 5-, 6-, or 7- membered nitrogen containing ring; and R9 and R10 are each optionally substituted by one or two groups independently

selected from halo, C₁₋₆alkyl, and C₃₋₇cycloalkyl, C₁₋₆haloalkyl;

R² is selected from hydrogen, hydroxy, C₁₋₆alkyl, C₁₋₆alkoxy, halo, aryl, aryl(C₁₋₆alkyl)-, C₁₋₆haloalkoxy, and C₁₋₆haloalkyl;

 R^3 is selected from hydrogen, hydroxy, C_{1-6} alkyl, C_{1-6} alkoxy, halo, aryl, aryl(C_{1-6} alkyl)-, C₁₋₆haloalkoxy, and C₁₋₆haloalkyl; and

20

R⁴ and R⁵ are independently selected from hydrogen and C₁₋₄ alkyl with the proviso that the total number of carbon atoms in R⁴ and R⁵ is not more than 4;

R^a and R^b each independently represent hydrogen or C₁₋₄alkyl;

25

Ar¹ is a group selected from

$$R^{11}$$
 R^{12}
 R^{13}
 R^{14}
 R^{14}
 R^{14}
 R^{14}
 R^{14}
 R^{14}
 R^{15}
 R^{14}
 R^{15}
 R^{14}
 R^{15}
 R

10

wherein R¹¹ represents hydrogen, halogen, -(CH₂)_rOR¹⁵, -NR¹⁵C(O)R¹⁶, -NR¹⁵SO₂R¹⁶, -SO₂NR¹⁵R¹⁶, -NR¹⁵R¹⁶, -OC(O)R¹⁷ or OC(O)NR¹⁵R¹⁶, and R¹² represents hydrogen, halogen or C₁₋₄ alkyl;

or R¹¹ represents –NHR¹⁸ and R¹² and –NHR¹⁸ together form a 5- or 6- membered heterocyclic ring;

R¹³ represents hydrogen, halogen, –OR¹⁵ or –NR¹⁵R¹⁶;

 R^{14} represents hydrogen, halogen, halo C_{1-4} alkyl, $-OR^{15}$, $-NR^{15}$ R^{16} , $-OC(O)R^{17}$ or $OC(O)NR^{15}R^{16}$;

R¹⁵ and R¹⁶ each independently represents hydrogen or C₁₋₄ alkyl, or in the groups

-NR¹⁵R¹⁶, -SO₂NR¹⁵R¹⁶ and -OC(O)NR¹⁵R¹⁶, R¹⁵ and R¹⁶ independently represent hydrogen or C₁₋₄ alkyl or together with the nitrogen atom to which they are attached form a 5-, 6- or 7- membered nitrogen-containing ring,

 R^{17} represents an aryl group which may be unsubstituted or substituted by one or more substituents selected from halogen, C_{1-4} alkyl, hydroxy, C_{1-4} alkoxy or halo C_{1-4} alkyl; and

5 r is zero or an integer from 1 to 4;

Z is O, CH₂- or a single bond;

n is an integer of from 1 to 4;

m is zero or an integer of from 1 to 4; p is zero or an integer of from 1 to 3;

k is an integer from 1 to 3; and t is zero or 1.

15

2. A compound of formula (la):

$$Ar^{1} - CHCH_{2}NHCR^{4}R^{5}(CH_{2})_{k} - (CH_{2})_{n}O(CH_{2})_{m}Z-(CH_{2})_{p}$$

$$OH$$
(la)

or a salt, solvate, or physiologically functional derivative thereof, wherein:

20

k is an integer from 1 to 3;

n is an integer of from 1 to 4;

m is an integer of from 2 to 4;

p is an integer of from 1 to 4;

25 Z is O or CH_{2-} ;

 R^1 is selected from hydrogen, C_{1-8} alkyl, hydroxy, cyano, nitro, halo, C_{1-8} haloalkyl, XCO_2R^8 , $-XC(O)NR^7R^8$, $-XNR^6C(O)R^7$, $-XNR^6C(O)NR^7R^8$, $-XNR^6C(O)NR^7R^8$, $-XNR^6SO_2R^7$, $-XSO_2NR^9R^{10}$, XSR^6 , $XSOR^6$, XSO_2R^6 ,

 $-XNR^7R^8$, $-XNR^6C(O)OR^7$,

or R^1 is selected from -X-aryl, -X-hetaryl, or -X-(aryloxy), each optionally substituted by 1 or 2 groups independently selected from hydroxy, C_{1-6} alkoxy, halo, C_{1-6} alkyl, -NR 6 C(O)R 7 , SR 6 , SOR 6 , -SO $_2$ R 6 , -SO $_2$ NR 9 R 10 , -CO $_2$ R 8 , -NR 7 R 8 , or hetaryl optionally substituted by 1 or 2 groups independently selected from hydroxy, C_{1-6} alkoxy, halo, C_{1-6} alkyl, or C_{1-6} haloalkyl;

X is $-(CH_2)_q$ - or C_{2-6} alkenylene;

q is an integer from 0 to 6;

5

10

20

R⁶ and R⁷ are independently selected from hydrogen, C₁₋₆alkyl, C₃₋₇cycloalkyl, aryl, hetaryl, hetaryl(C₁₋₆alkyl)- and aryl(C₁₋₆alkyl)- and R⁶ and R⁷ are each independently optionally substituted by 1 or 2 groups independently selected from halo, C₁₋₆alkyl, C₃₋₇ cycloalkyl, C₁₋₈ alkoxy, C₁₋₈haloalkyl, -NHC(O)(C₁₋₆alkyl), -SO₂(C₁₋₆alkyl), -SO₂(aryl), -CO₂H, and -CO₂(C₁₋₄alkyl), -NH₂, -NH(C₁₋₆alkyl), aryl(C₁₋₆alkyl)-, aryl(C₂₋₆alkenyl)-, aryl(C₂₋₆alkynyl)-, hetaryl(C₁₋₆alkyl)-, -NHSO₂aryl, -NH(hetarylC₁₋₆alkyl), -NHSO₂hetaryl, -NHSO₂(C₁₋₆alkyl), -NHC(O)aryl, or -NHC(O)hetaryl:

R⁸ is selected from hydrogen, C₁₋₆alkyl and C₃₋₇ cycloalkyl;

or R⁷ and R⁸, together with the nitrogen atom to which they are bonded, form a 5-, 6- or 7-membered nitrogen – containing ring;

R⁹ and R¹⁰ are independently selected from hydrogen, C₁₋₆alkyl, C₃₋₇cycloalkyl, aryl, hetaryl, hetaryl(C₁₋₆alkyl)- and aryl(C₁₋₆alkyl)-, or R⁹ and R¹⁰, together with the nitrogen to which they are bonded, form a 5-, 6-, or 7- membered nitrogen containing ring; and R⁹ and R¹⁰ are each optionally substituted by one or two groups independently selected from halo, C₁₋₆alkyl, and C₃₋₇cycloalkyl, C₁₋₆haloalkyl;

30 R^2 is selected from hydrogen, hydroxy, C_{1-8} alkyl, C_{1-8} alkoxy, halo, aryl, aryl(C_{1-6} alkyl)-, C_{1-6} haloalkoxy, and C_{1-6} haloalkyl;

 R^3 is selected from hydrogen, hydroxy, C_{1-6} alkyl, C_{1-8} alkoxy, halo, aryl, aryl(C_{1-8} alkyl)-, C_{1-6} haloalkoxy, and C_{1-6} haloalkyl; and

 R^4 and R^5 are independently selected from hydrogen and C_{1-4} alkyl with the proviso that the total number of carbon atoms in R^4 and R^5 is not more than 4;

Ar¹ is a group selected from

$$R^{11}$$
 R^{12}
 R^{13}
 R^{14}
 R^{14}
 R^{14}
 R^{14}
 R^{14}
 R^{15}
 R^{14}
 R^{15}
 R^{15}
 R^{16}
 R^{16}
 R^{17}
 R^{18}
 R^{19}
 R^{19}

5

wherein R¹¹ represents halogen, -(CH₂)_rOR¹⁵, -NR¹⁵C(O)R¹⁶, -NR¹⁵SO₂R¹⁶, -SO₂NR¹⁵R¹⁶, -NR¹⁵R¹⁶, -OC(O)R¹⁷ or OC(O)NR¹⁵R¹⁶, alkyl;

or R¹¹ represents –NHR¹⁸ and R¹² and –NHR¹⁸ together form a 5- or 6- membered heterocyclic ring;

R¹³ represents hydrogen, halogen, –OR¹⁵ or –NR¹⁵R¹⁶;

15 R^{14} represents hydrogen, halogen, haloC₁₋₄ alkyl, -OR¹⁵, -NR¹⁵ R^{16} , -OC(O)R¹⁷ or OC(O)NR¹⁵R¹⁶

R¹⁵ and R¹⁶ each independently represents hydrogen or C₁₋₄ alkyl, or in the groups

–NR¹⁵R¹⁶, -SO₂NR¹⁵R¹⁶ and –OC(O)NR¹⁵R¹⁶, R¹⁵ and R¹⁶ independently represent hydrogen or C₁₋₄ alkyl or together with the nitrogen atom to which they are attached form a 5-, 6- or 7- membered nitrogen-containing ring,

 R^{17} represents an aryl group which may be unsubstituted or substituted by one or more substituents selected from halogen, C_{1-4} alkyl, hydroxy, C_{1-4} alkoxy or halo C_{1-4} alkyl; and

r is zero or an integer from 1 to 4.

10

- 3. A compound according to claim 1 or claim 2 wherein the group R^1 is selected from hydrogen, C_{1-4} alkyl, hydroxy, halo, -NR 6 C(O)NR 7 R 8 , -NR 6 C(O)R 7 , -SO $_2$ NR 9 R 10 , -SOR 6 , -SO $_2$ R 6 , and -NR 6 SO $_2$ R 7 wherein R 6 and R 7 are as defined in claim 1 or claim 2.
- 4. A compound according to any of claims 1 to 3 wherein R^2 and R^3 are independently selected from hydrogen, hydroxyl, halogen, halo C_{1-6} alkyl, C_{1-6} alkoxy and halo C_{1-6} alkoxy.
- 5. A compound according to any of claims 1 to 4 wherein R⁴ and R⁵ each represent hydrogen.
 - 6. A compound according to any of claims 1 to 5 wherein R^a and R^b each represent hydrogen.
- 7. A compound according to any of claims 1 to 6 wherein the group Ar¹ is selected from groups (a) and (b) as defined in claim 1.
 - 8. A compound according to claim 7 wherein the group (a) is a group of formula (i):

30

9. A compound according to claim 1 selected from:

35

4-((1R)-2-{[2-(3-{[2-(Benzyloxy)ethoxy]methyl}phenyl)ethyl]amino}-1-hydroxyethyl)-2-(hydroxymethyl)phenol;

- 4-{(1R)-2-[(2-{3-[(Benzyloxy)methyl]phenyl}ethyl)amino]-1-hydroxyethyl}-2-(hydroxymethyl)phenol;
- 5 2-(Hydroxymethyl)-4-{(1R)-1-hydroxy-2-[(2-{3-[(3-phenylpropoxy)methyl]phenyl}ethyl)amino]ethyl}phenol;
 2-(Hydroxymethyl)-4-{(1R)-1-hydroxy-2-[(2-{3-[(4-phenylbutoxy)methyl]phenyl}ethyl)amino]ethyl}phenol;
 4-((1R)-2-{[2-(3-{[3-(Benzyloxy)propoxy]methyl}phenyl)ethyl]amino}-1-hydroxyethyl)-2-
- (hydroxymethyl)phenol; 4-((1R)-2-{[2-(4-{[2-(Benzyloxy)ethoxy]methyl}phenyl)ethyl]amino}-1-hydroxyethyl)-2-
 - (hydroxymethyl)phenol; 2-(Hydroxymethyl)-4-{(1R)-1-hydroxy-2-[(2-{3-[(2phenylethoxy)methyl]phenyl}ethyl)amino]ethyl}phenol;
- 4-((1R)-2-{[2-(3-{[(2,6-Dichlorobenzyl)oxy]methyl}phenyl)ethyl]amino}-1-hydroxyethyl)-2-(hydroxymethyl)phenol;
 - 4-((1R)-1-Hydroxy-2-{[2-(3-{[2-(2-methoxyphenyl)ethoxy]methyl}phenyl)ethyl]amino}ethyl)-2-(hydroxymethyl)phenol;
 - 4-((1R)-1-Hydroxy-2-{[2-(3-{[2-(3-methoxyphenyl)ethoxy]methyl}phenyl)ethyl]amino}ethyl)-
- 20 2-(hydroxymethyl)phenol;
 - 4-((1R)-1-Hydroxy-2-{[2-(3-{[2-(4-methoxyphenyl)ethoxy]methyl}phenyl)ethyl] amino}ethyl)-2-(hydroxymethyl)phenol;
 - 3-[4-({3-[2-({(2R)-2-Hydroxy-2-[4-hydroxy-3-
 - (hydroxymethyl)phenyl]ethyl}amino)ethyl]benzyl}oxy)butyl]benzenesulfonamide;
- 3-{[2-({3-[2-({(2R)-2-hydroxy-2-[4-hydroxy-3-(hydroxymethyl)phenyl]ethyl}amino)ethyl]benzyl}oxy)ethoxy]methyl}benzonitrile; 4-[(1R)-2-({2-[3-({2-[(2,6-dichlorobenzyl)oxy]ethoxy}methyl)phenyl]ethyl}amino)-1hydroxyethyl]-2-(hydroxymethyl)phenol;
 - 4-[(1R)-2-({2-[3-({2-[(3-fluorobenzyl)oxy]ethoxy}methyl)phenyl]ethyl}amino)-1-
- 30 hydroxyethyl]-2-(hydroxymethyl)phenol;
 - 4-[(1R)-2-({2-[3-({2-[(3,5-dimethylbenzyl)oxy]ethoxy}methyl)phenyl]ethyl}amino)-1-hydroxyethyl]-2-(hydroxymethyl)phenol;
 - 4-[(1R)-1-hydroxy-2-({2-[3-({2-[(3-
 - methoxybenzyl)oxy]ethoxy}methyl)phenyl]ethyl}amino)ethyl]-2-(hydroxymethyl)phenol;
- 35 2-(hydroxymethyl)-4-{(1R)-1-hydroxy-2-[(2-{3-[(2-{[3-(trifluoromethoxy)benzyl]oxy}ethoxy)methyl]phenyl}ethyl)amino]ethyl}phenol;

4-((1R)-1-hydroxy-2-{[2-(3-{[4-(3-hydroxyphenyl)butoxy]methyl}phenyl)ethyl]amino}ethyl)-2-(hydroxymethyl)phenol;

- 4-[3-({3-[2-({(2R)-2-hydroxy-2-[4-hydroxy-3-
- (hydroxymethyl)phenyl]ethyl}amino)ethyl]benzyl}oxy)propyl]benzonitrile;
- 5 4-[4-({3-[2-({(2R)-2-hydroxy-2-[4-hydroxy-3-
 - (hydroxymethyl)phenyl]ethyl}amino)ethyl]benzyl}oxy)butyl]benzonitrile;
 - 3-[3-({3-[2-({(2R)-2-hydroxy-2-[4-hydroxy-3-
 - (hydroxymethyl)phenyl]ethyl}amino)ethyl]benzyl}oxy)propyl]benzonitrile;
 - 2-(hydroxymethyl)-4-[(1R)-1-hydroxy-2-({2-[3-({3-[4-
- 10 (methylsulfonyl)phenyl]propoxy}methyl)phenyl]ethyl}amino)ethyl]phenol;
 - 2-(hydroxymethyl)-4-[(1R)-1-hydroxy-2-({2-[3-({[4-
 - (methylsulfonyl)benzyl]oxy}methyl)phenyl]ethyl}amino)ethyl]phenol;
 - 4-((1R)-1-hydroxy-2-{[2-(3-{[2-(2-hydroxyphenyl)ethoxy]methyl}phenyl)ethyl]amino}ethyl)-2-(hydroxymethyl)phenol;
- 4-((1R)-1-hydroxy-2-{[2-(3-{[(4-hydroxybenzyl)oxy]methyl}phenyl)ethyl]amino}ethyl)-2- (hydroxymethyl)phenol;
 - 4-((1R)-1-hydroxy-2-{[2-(3-{[3-(3-
 - hydroxyphenyl)propoxy]methyl}phenyl)ethyl]amino}ethyl)-2-(hydroxymethyl)phenol;
 - 4-[(1R)-2-({2-[3-({4-[4-(cyclopentylsulfonyl)phenyl]butoxy}methyl)phenyl]ethyl}amino)-1-
- 20 hydroxyethyl]-2-(hydroxymethyl)phenol;
 - 4-[(1R)-2-({2-[3-({3-[4-(cyclopentylsulfonyl)phenyl]propoxy}methyl)phenyl]ethyl}amino)-1-hydroxyethyl]-2-(hydroxymethyl)phenol;
 - 4-[(1R)-2-({2-[3-({3-[3-(cyclopentylsulfonyl)phenyl]propoxy}methyl)phenyl]ethyl}amino)-1-hydroxyethyl]-2-(hydroxymethyl)phenol;
- 25 4-[(1R)-1-hydroxy-2-({2-[3-({2-[(3
 - hydroxybenzyl)oxy]ethoxy}methyl)phenyl]ethyl}amino)ethyl]-2-(hydroxymethyl)phenol;
 - 4-{(1R)-2-[(2-{3-[(2-{[3-(cyclopentylsulfonyl)benzyl]oxy}ethoxy)methyl]phenyl}ethyl)amino]-1-hydroxyethyl}-2-(hydroxymethyl)phenol;
- 4-{(1R)-2-[(2-{3-[(2-{[3-(cyclopentylsulfinyl)benzyl]oxy}ethoxy)methyl]phenyl}ethyl)amino]-
- 30 1-hydroxyethyl}-2-(hydroxymethyl)phenol;
 - 4-[(1R)-2-({2-[3-({[3-(cyclopentylsulfonyl)benzyl]oxy}methyl)phenyl]ethyl}amino)-1-hydroxyethyl]-2-(hydroxymethyl)phenol;
 - 4-[(1R)-2-({2-[3-({4-[3-(cyclopentylsulfinyl)phenyl]butoxy}methyl)phenyl]ethyl}amino)-1-hydroxyethyl]-2-(hydroxymethyl)phenol;
- 35 3-[4-({3-[2-({(2R)-2-hydroxy-2-[4-hydroxy-3-(hydroxymethyl)phenyl]ethyl}amino)ethyl]benzyl}oxy)butyl]benzonitrile;

- 2-(hydroxymethyl)-4-{(1R)-1-hydroxy-2-[(2-{3-[(2-
- phenoxyethoxy)methyl]phenyl}ethyl)amino]ethyl}phenol;
- 4-((1R)-2-{[2-(3-{[2-(3-fluorophenyl)ethoxy]methyl}phenyl)ethyl]amino}-1-hydroxyethyl)-2-(hydroxymethyl)phenol;
- 4-((1R)-2-{[2-(3-{[2-(4-fluorophenyl)ethoxy]methyl}phenyl)ethyl]amino}-1-hydroxyethyl)-2-(hydroxymethyl)phenol;
 - 4-((1R)-2-{[2-(3-{[2-(2-fluorophenyl)ethoxy]methyl}phenyl)ethyl]amino}-1-hydroxyethyl)-2-(hydroxymethyl)phenol;
 - 3-[({3-[2-({(2R)-2-hydroxy-2-[4-hydroxy-3-
- 10 (hydroxymethyl)phenyl]ethyl}amino)ethyl]benzyl}oxy)methyl]benzonitrile;
 - 4-[({3-[2-({(2R)-2-hydroxy-2-[4-hydroxy-3-
 - (hydroxymethyl)phenyl]ethyl}amino)ethyl]benzyl}oxy)methyl]benzonitrile;
 - 2-(hydroxymethyl)-4-[(1R)-1-hydroxy-2-({2-[3-({[(1R)-1-
 - phenylethyl]oxy}methyl)phenyl]ethyl}amino)ethyl]phenol;
- 15 2-(hydroxymethyl)-4-[(1R)-1-hydroxy-2-({2-[3-({[(1S)-1
 - phenylethyl]oxy}methyl)phenyl]ethyl}amino)ethyl]phenol;
 - 4-((1R)-2-{[2-(3-{[(3,5-dimethylbenzyl)oxy]methyl}phenyl)ethyl]amino}-1-hydroxyethyl)-2-(hydroxymethyl)phenol;
 - 4-((1R)-2-{[2-(3-{[(2,6-dichlorobenzyl)oxy]methyl}phenyl)ethyl]amino}-1-hydroxyethyl)-2-
- 20 (hydroxymethyl)phenol;
 - 4-((1R)-2-{[2-(3-{[(2-fluorobenzyl)oxy]methyl}phenyl)ethyl]amino}-1-hydroxyethyl)-2-(hydroxymethyl)phenol;
 - 4-((1R)-2-{[2-(3-{[(3-fluorobenzyl)oxy]methyl}phenyl)ethyl]amino}-1-hydroxyethyl)-2-(hydroxymethyl)phenol;
- 4-((1R)-2-{[2-(3-{[(4-fluorobenzyl)oxy]methyl}phenyl)ethyl]amino}-1-hydroxyethyl)-2- (hydroxymethyl)phenol;
 - 3-[4-({3-[2-({(2R)-2-Hydroxy-2-[4-hydroxy-3-
 - (hydroxymethyl)phenyl]ethyl}amino)ethyl]benzyl}oxy)butyl]benzamide;
 - 3-{[2-({3-[2-({(2R)-2-hydroxy-2-[4-hydroxy-3-
- 30 (hydroxymethyl)phenyl]ethyl}amino)ethyl]benzyl}oxy)ethoxy]methyl}benzamide;
 - 3-[({3-[2-({(2R)-2-hydroxy-2-[4-hydroxy-3-
 - (hydroxymethyl)phenyl]ethyl}amino)ethyl]benzyl}oxy)methyl]benzamide;
 - 4-[({3-[2-({(2R)-2-hydroxy-2-[4-hydroxy-3-
 - (hydroxymethyl)phenyl]ethyl}amino)ethyl]benzyl}oxy)methyl]benzamide;
- 35 3-[2-({3-[2-({(2R)-2-hydroxy-2-[4-hydroxy-3-(hydroxymethyl)phenyl]ethyl}amino)ethyl]benzyl}oxy)ethyl]benzenesulfonamide;

3-[3-({3-[2-({(2R)-2-hydroxy-2-[4-hydroxy-3-

(hydroxymethyl)phenyl]ethyl}amino)ethyl]benzyl}oxy)propyl]benzenesulfonamide;

4-((1R)-2-{[2-(3-{[4-(2,6-dichlorophenyl)butoxy]methyl}phenyl)ethyl]amino}-1-

hydroxyethyl)-2-(hydroxymethyl)phenol;

5 $N-\{3-[4-(\{3-[2-(\{(2R)-2-hydroxy-2-[4-hydroxy-3-$

(hydroxymethyl)phenyl]ethyl}amino)ethyl]benzyl}oxy)butyl]phenyl}urea;

2-(hydroxymethyl)-4-((1R)-1-hydroxy-2-{[2-(3-{[2-(1-

phenylethoxy)ethoxy]methyl}phenyl)ethyl]amino}ethyl)phenol;

4-[(1R)-2-({2-[3-({2-[3-

(cyclopentylsulfonyl)phenyl]ethoxy}methyl)phenyl]ethyl}amino)-1-hydroxyethyl]-2-(hydroxymethyl)phenol;

4-[(1R)-2-({2-[3-({4-[3-(cyclopentylsulfonyl)phenyl]butoxy}methyl)phenyl]ethyl}amino)-1-hydroxyethyl]-2-(hydroxymethyl)phenol;

2-(hydroxymethyl)-4-[(1R)-1-hydroxy-2-({2-[3-({4-[3-

15 (methylsulfonyl)phenyl]butoxy}methyl)phenyl]ethyl}amino)ethyl]phenol;

4-((1R)-2-{[2-(3-{[3-(2,6-dichlorophenyl)

propoxy]methyl}phenyl)ethyl]amino}-1-hydroxyethyl)-2-(hydroxymethyl)phenol;

3-[({3-[2-({(2R)-2-Hydroxy-2-[4-hydroxy-3-

(hydroxymethyl)phenyl]ethyl}amino)ethyl]benzyl}oxy)methyl]benzenes ulfonamide.

20

25

or a salt, solvate or physiologically functional derivative thereof.

- 10. A method for the prophylaxis or treatment of a clinical condition in a mammal, such as a human, for which a selective β_2 -adrenoreceptor agonist is indicated, which comprises administration of a therapeutically effective amount of a compound of formula (I) according to any of claims 1 to 9, or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof.
- 11. A compound of formula (I), according to any of claims 1 to 9, or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof for use in medical therapy.
- 12. A compound of formula (I), according to any of claims 1 to 9, or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof for use in the

prophylaxis or treatment of a clinical condition for which a selective β_2 -adrenoreceptor agonist is indicated.

13.. A pharmaceutical formulation comprising a compound of formula (I), according to any of claims 1 to 9, or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof, and a pharmaceutically acceptable carrier or excipient, and optionally one or more other therapeutic ingredients.

5

- 14. The use of a compound of formula (I), according to any of claims 1 to 9, or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof in the manufacture of a medicament for the prophylaxis or treatment of a clinical condition for which a selective β₂-adrenoreceptor agonist is indicated.
- 15. A process for the preparation of a compound of formula (I), according to any of claims 1 to 9, or a salt, solvate, or physiologically functional derivative thereof, which comprises:
 - (a) deprotection of a protected intermediate, for example of formula (II):

$$Ar^{1} - CHCH_{2}NP^{2}CR^{4}R^{5}(CH_{2})_{k}$$

$$O(CH_{2})_{m}Z-(CH_{2})_{p}$$

$$R^{3}$$

$$(II)$$

or a salt or solvate thereof, wherein R¹, R², R³, R⁴, R⁵, Z, k, m, n and p are as defined for the compound of formula (I), Ar^{1a} is Ar¹ or a protected form thereof and P¹ and P² each independently represents hydrogen or a protecting group provided that the compound of formula (II) contains at least one protecting group; or

(b) alkylation of an amine of formula (X)

$$Ar^{1a}$$
 — $CHCH_2NP^2H$ (X)
$$OP^1$$

10

wherein Ar^{1a} is as hereinbefore defined P² and P¹ are each independently either hydrogen or a protecting group, with a compound of formula (XI):

$$L^{1}CR^{4}R^{5}(CH_{2})_{k}$$

$$Q(CH_{2})_{m}Z - (CH_{2})_{p}$$

$$R^{3}$$
(XI)

15

wherein R¹, R², R³, R⁴, R⁵, Z, k, m, n and p are as defined for the compound of formula (I) and L¹ is a leaving group;

(c) reacting a compound of formula (XII):

wherein Ar¹ and P¹ are as hereinbefore defined and L¹ is a leaving group, with an amine of formula (XIII):

5

$$P^{2}HNCR^{4}R^{5}(CH_{2})_{k} \longrightarrow O(CH_{2})_{m}Z \longrightarrow (CH_{2})_{p} \longrightarrow R^{3}$$

$$(XIII)$$

or

d) reacting a compound of formula (X):

10

as hereinbefore defined,

with a compound of formula (XIV):

$$\begin{array}{c|c}
O\\
R^4-C(-CH_2)_k
\end{array}$$

$$O(CH_2)_mZ-(CH_2)_p$$

$$R^3$$
(XIV)

under conditions suitable to effect reductive amination;

followed by the following steps in any order:

- (i) optional removal of any protecting groups;
- (ii) optional separation of an enantiomer from a mixture of enantiomers;
- (iii) optional conversion of the product to a corresponding salt, solvate,
- 20 or physiologically functional derivative thereof.