COSC76/276 Artificial Intelligence Fall 2022 Review of syllabus, Intro – What is Al

Prof. Soroush Vosoughi
Computer Science
Dartmouth College
Soroush@dartmouth.edu

FIRST:
WELCOME BACK
TO CLASS!

Today's learning objectives

- Learn about each other
- Learn about the class
- Know about expectations for the class
- Define artificial intelligence

Outline

- You, me, and this course
- What is AI?

Outline

- You, me, and this course
- What is Al?

My Background

Joined Dartmouth in March 2019

Research interests:

Natural Language Processing, Machine Learning, Network Science

Before then:

PhD from MIT, 2015
Postdoctoral Associate at MIT, 2015-2018
Fellow at Harvard, 2017-2018
Research scientist at a startup in Berlin 2018-2019

My Background

Joined Dartmouth in March 2019

Research interests:

Natural Language Processing, Machine Learning, Network Science

Before then:

PhD from MIT, 2015
Postdoctoral Associate at MIT, 2015-2018
Fellow at Harvard, 2017-2018
Research scientist at a startup in Berlin 2018-2019

Voted Most Likely to Commit Insurance Fraud in High School

TAs

- Lili Wang
- Xiaobo Guo
- Kang Gu
- Jason Chen
- Nicholas Irwin
- Kieran F. O'Day
- Jose A. Hernandez Barbosa

Your background

- CS majors? Minors?
- Math?
- Cognitive science?
- Economics?
- •
- Any related background in AI?
- Prior experience with Python?

Primary objective for the course

Gain the foundations, perspective, and skills needed to solve real-world problems and do cutting-edge **research** in artificial intelligence

Explorer builds the map

A lot of cool research in CS with "AI"!

Emergency site

And many more...
https://web.cs.dartmouth
.edu/people

About the course/learning outcomes

Theory and practice of modeling real-world problems in Al

<u>Hands-on</u>: Implementing algorithms of AI in Python

```
69 class Agent(Thing):
70
71 def __init__(self, program=None):
72 self.alive = True
73 self.bump = False
74 self.holding = []
75 self.performance = 0
```

Discussion of AI and societal implications

Tentative schedule

- Week 01: Syllabus presentation, Intro, Uninformed Search
- Week 02: Informed search, Adversarial search
- Week 03: Games
- Week 04: Constraint Satisfaction problems
- Week 05: Logic and inference
- Week 06: Probabilistic reasoning
- Week 07: Markov Decision Processes
- Week 08: Reinforcement learning
- Week 09: Ethics and future of Al

Your learning is our focus!

You do the learning by actively participating!

You do the learning by actively participating!

Canvas

(https://canvas.dartmouth.edu/courses/54478)

- Syllabus
- General announcements (please enable receiving email from Canvas)
- Slides
- Calendar
- Link to Ed Discussion (https://edstem.org/us/courses/28972/ discussion/)
- Link to Videos

Textbook: third edition of <u>Artificial Intelligence: A Modern</u> <u>Approach</u> by Russell and Norvig.

We'll cover chapters 1-9, 13-15, 18, and 20.

You do the learning by actively participating!

Class meetings:

- Room: Cummings 100
- 3A time slot
 - MW 3:30pm-5:25 pm ET
 - X-hour (might be used as needed, check the calendar) Tu
 4:30-5:20pm ET
- Recording should be posted automatically in Panopto by the end of the day
- Taking notes can help in actively learning
- Feel free to raise your hand to ask questions and comment
 - You can also write the question down and ask on Ed Discussions

You do the learning by actively participating!

To assess your learning outcomes, you will:

- Solve programming assignments on realworld problems applying AI models and techniques
- Solve short quizzes and exercises to assess your conceptual understanding of the AI models and techniques.
- Discuss AI and its implications.

Programming assignments are allowed five free late-day passes , total (see syllabus)

Please don't hesitate to reach out if you're falling behind – your learning is important

Submissions via Canvas to ensure consistent grading

Disclaimer: The grade breakdown is subject to adjustments.

How to get help

You do the learning by actively participating!

- Ed Discussions:
 - Help by your classmates
 - Teaching staff will typically respond within 24 hours
 - Let's build a great community!

Office hours (~2-3 hours/week each member of the teaching team)

You do the learning by actively participating!

Successful learning in the class is typically associated with

- Participating in the class
- Starting all assignments early
- Reaching out for help immediately when stuck
- Please talk to me if you are running behind or if you have any questions/comments

Your learning is our focus!

Lecture Attendance

- -Not mandatory, but highly recommended (I will add up to 2% to your final grade based on regular attendance).
- -You can use your laptops to take notes.
- -There will be a break an hour into the lectures.
- -Food!

Class Size

 I have admitted a few students from the waitlist. If you are still on the waitlist, see me after class.

Accommodations

Python

- The homework will require implementation of algorithms in Python.
- You should already have Python and Jupyter
 Notebook installed on your machines.
- We will be using Python 3.
- Instructions on installing Jupyter Notebook:
 https://jupyter.readthedocs.io/en/latest/install.html

Outline

- You, me, and this course
- What is AI?

Discussion: What is Al?

- Some examples that come up to your mind?
 - Take a minute to write them down

What is AI?

Current examples: Self-driving car

Source: Waymo

Current examples: drone

Source: Skydio

Current examples: many more

Comparison computer vs. brain

	Supercomputer	Personal Computer	Human Brain
Computational units	10^6 GPUs + CPUs	8 CPU cores	10 ⁶ columns
	10 ¹⁵ transistors	10 ¹⁰ transistors	10 ¹¹ neurons
Storage units	10 ¹⁶ bytes RAM	10 ¹⁰ bytes RAM	10 ¹¹ neurons
	10 ¹⁷ bytes disk	10 ¹² bytes disk	10 ¹⁴ synapses
Cycle time	$10^{-9} \sec$	$10^{-9} { m sec}$	$10^{-3} { m sec}$
Operations/sec	10^{18}	10^{10}	10^{17}

What is AI?

The science of making machines that:

Think like people Think rationally