Math 555

Homework

Problems 1–7 are to be written up and handed in. The rest will be presented in class by whoever I call on.

Definition 1. Let f be defined on an open set U containing x_0 . Then f has a **local maximum** (respectively a **local minimum**) at x_0 iff there is a $\delta > 0$ such that

$$f(x) \le f(x_0)$$
 (respectively $f(x) \ge f(x_0)$) for x with $|x - x_0| < \delta$

In this case x_0 is a **local maximizer** (respectively a **local minimizer**) of f. The point x_0 is a **local extrema** if it is either a local maximizer or a local minimizer.

Theorem 2 (First Derivative Test). If f is defined on an open U set containing the point x_0 and

- f is differentiable at x_0
- f has a local extrema at x_0 .

then

$$f'(x_0) = 0.$$

Lemma 3. Let f be differentiable at x_0 and let $\langle x_n \rangle_{n=1}^{\infty}$ be a sequence with

$$\lim_{n \to \infty} x_n = x_0 \quad and for all \ n \quad x_n \neq x_0.$$

Then

$$\lim_{n \to \infty} \frac{f(x_n) - f(x_0)}{x_n - x_0} = f'(x_0)$$

Problem 1. Prove this.

Problem 2. Prove Theorem 2. *Hint:* You do not have to follow this hint, but here is one way to start. Without loss of generality we can assume f has a local maximum at x_0 . (If it has a local minimum, then replace f by -f.) Let

$$x_n = x_0 - \frac{1}{n}$$
 and $y_n = x_0 + \frac{1}{n}$.

Then show

$$\lim_{n \to \infty} \frac{f(x_n) - f(x_0)}{x_n - x_0} \ge 0 \quad \text{and} \quad \lim_{n \to \infty} \frac{f(x_n) - f(x_0)}{x_n - x_0} \le 0$$

and use the lemma.

Theorem 4 (Rôlle's Theorem). Let f be a function that is continuous on [a,b] and differentiable at all points of (a,b). Assume

$$f(a) = f(b).$$

Then there exists a point $\xi \in (a,b)$ such that

$$f'(\xi) = 0.$$

Problem 3. Prove this. *Hint:* Start by showing that either (or both) of the maximum or minimum of f occur in the open interval (a, b).

Theorem 5 (Mean Value Theorem). Let f be a function that is continuous on [a,b] and differentable at all points of (a,b). There there exists a point $\xi \in (a,b)$ such that

$$f(b) - f(a) = f'(\xi)(b - a)$$

Problem 4. Prove this. *Hint*: One way to start is to show

$$g(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a)$$

satisfies the hypothesis of Rôlle's Theorem.

Definition 6. Let x_1 , x_2 and ξ be three real numbers. Then ξ is **between** x_1 and x_2 iff one of the following three cases holds:

$$x_1 < \xi < x_2$$

$$x_2 < \xi < x_1$$

$$x_1 = \xi = x_2.$$

Often we will use the Mean Value Theorem in the following slightly less general form:

Theorem 7 (Mean Value Theorem). Let f be differentiable on the open interval (a,b) and let $x_1,x_2 \in (a,b)$. There there is ξ between x_1 and x_2 such that

$$f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1).$$

Proof. If $x_1 = x_2$, then let $\xi = x_1$ and we have $f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1) = 0$. If $x_1 \neq x_2$, then by possibly changing the names of x_1 and x_2 we can assume that $x_1 < x_2$. Then f is continuous on $[x_1, x_2]$ and differentiable on $I(x_1, x_2)$. Therefore we can use our first form of the Mean Value Theorem to conclude there is a $\xi \in (x_1, x_2)$ with $f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1)$. \square

Before using the Mean Value Theorem to prove theorems let us note that it can be use to prove interesting results about concrete functions. Here are a couple of examples.

Example 8. Assume that we know that the derivative of $\sin(x)$ is $\cos(x)$. Then for all $a, b \in \mathbf{R}$ we have

$$|\sin(b) - \sin(a)| \le |b - a|.$$

To see this let $f(x) = \sin(x)$. Then the Mean Value Theorem tells us there is a ξ between b and a such that

$$|\sin(b) - \sin(a)| = |f(b) - f(a)| = |f'(\xi)(b - a)| = |\cos(\xi)(b - a)| \le |b - a|$$
 where at the last step we used that $|\cos(\xi)| \le 1$.

Example 9. If $a, b \geq 2$, then

$$\left|\frac{a-1}{a+1} - \frac{b-1}{b+1}\right| \le \frac29 |b-a|.$$

To see this let

$$f(x) = \frac{x-1}{x+1}.$$

Then if $\xi \geq 2$ we have

$$f'(\xi) = \frac{2}{(\xi+1)^2} \le \frac{2}{(2+1)^2} = \frac{2}{9}.$$

Thus if $a, b \ge 2$ the Mean Value Theorem gives us a ξ between a and b (and therefore $\xi \geq 2$ such that

$$\left| \frac{a-1}{a+1} - \frac{b-1}{b+1} \right| = |f(b) - f(a)| = |f'(\xi)(b-a)| = \frac{2}{(\xi+1)^2} |b-a| \le \frac{2}{9} |b-a|.$$

Problem 5. Use the ideas above to show the following

(a) For all $x, y \in \mathbf{R}$ the inequality

$$|\cos(4y) - \cos(4x)| \le 4|y - x|.$$

(b) If a, b > 1 then

$$|\sqrt{b^2 - 1} - \sqrt{a^2 - 1}| \ge |b - a|$$

(c) If x > 0 then

$$e^{x} - 1 > x$$

If
$$x > 0$$
 then
$$e^x - 1 > x.$$
Hint: $e^x - 1 = e^x - e^0$.

Theorem 10. Let f be differentable on the open interval (a,b) and assume

$$f'(x) = 0$$
 for all $x \in (a, b)$.

Then f is constant.

Problem 6. Use the Mean Value Theorem to prove this.

Definition 11. If f is a function defined on an interval I, then f is in**creasing** iff for all $x_1, x_2 \in I$

$$x_1 < x_2 \implies f(x_1) < f(x_2).$$

Theorem 12. Let f be a function on the open interval and assume that f' exists on all of (a,b) and that f'(x) > 0 for all $x \in (a,b)$. Then f is increasing on (a,b).

Problem 7. Use the Mean Value Theorem to prove this.

Problem 8. Show that $f'(x_0)$ exists if and only if the limit

$$\lim_{h \to 0} \frac{f(x_0) - f(x_0 - h)}{h}$$

exsits. When this limit exists what is its value?

Problem 9. Show that if $f'(x_0)$ exists, then so does the limit

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0 - h)}{2h}$$

and its value is $f'(x_0)$.

Problem 10. Let α be a positive real number and set

$$f(x) = \begin{cases} |x|^{\alpha} \cos(1/x), & x \neq 0; \\ 0, & x = 0. \end{cases}$$

For what values of α does f'(0) exist. When it doses exist what is its value?

Proposition 13. The function $f(x) = \sqrt{x}$ is differentiable on $(0, \infty)$ and

$$f'(x) = \frac{1}{2\sqrt{x}}.$$

Problem 11. Prove this. *Hint:* The calculation

$$f(x+h) - f(x) = \sqrt{x+h} - \sqrt{x}$$

$$= \frac{(\sqrt{x+h} - \sqrt{x})(\sqrt{x+h} + \sqrt{x})}{\sqrt{x+h} + \sqrt{x}}$$

$$= \frac{(x+h) - x}{\sqrt{x+h} + \sqrt{x}}$$

$$= \frac{h}{\sqrt{x+h} + \sqrt{x}}$$

might be useful.

Theorem 14 (Cauchy Mean Value Theorem). Let f and g be functions that are differentable on the open interval (a,b) and continuous on the closed interval [a,b]. Then there is a $\xi \in (a,b)$ such that

$$g'(\xi)(f(b) - f(a)) = f'(\xi)(g(b) - g(a)).$$

(Note when g is the function g(x) = x this reduces to the usual mean value theorem.

Problem 12. Prove this. *Hint:* Let

$$h(x) = (g(b) - g(a))(f(x) - f(a)) - (f(b) - f(a))(g(x) - g(a))$$
 and show $h(a) = h(b) = 0$. \Box