Notación Asintótica

Contexto

- Matemáticamente: "crecimiento" de func.
 - Con su correspondiente def. formal
- Cantidades de operaciones
 - Para los problemas computables
- Función de tamaño de la entrada
 - "Monótonamente" crecientes
- Asintótica
 - Variable (entrada) "crece" arbitrariamente

Una función t(n) está en el orden de f(n) si existe una constante real positiva c y un umbral u_0 tal que $t(n) \le c.f(n) \ \forall \ n > u_0$

Notación: Conjuntos

N (incluye el 0)

 $R^{\geq 0}$: $x \in R$, $x \geq 0$

 $R^+: x \in R, x > 0$

Notación: Cuantificadores

 \exists

 \exists_{∞}

 A_{∞}

 \forall

Notación: Cuantificadores

Ξ

 $\exists \infty$

 A_{∞}

 \forall

 $O(f(n)) = \{t: N \to \mathbb{R}^{\geq 0} / (\exists c \in \mathbb{R}^+) (\forall^{\infty} n \in \mathbb{N}) [t(n) \leq c f(n)] \}$

Notación: Cuantificadores

 \exists

 $\exists \infty$

A

 \forall

O(f(n)) = {t:N → R $^{\geq 0}$ / (∃ c ∈ R+) (\forall^{∞} n ∈ N) [t(n) ≤ c f(n)] } ¿Podría ser t:N → R+?

 $O(f(n)) = \{t: N \to \mathbb{R}^{\geq 0} \mid (\exists c \in \mathbb{R}^+) \ (\forall^{\infty} n \in \mathbb{N}) \ [t(n) \leq c \ f(n)] \}$

Otra definición:

 $O(f(n)) = \{t: N \rightarrow R^+ / \exists c \in R^+, n_0 \in N \text{ tq } t(n) \le c \text{ } f(n), n \ge n_0 \}$

 $O(f(n)) = \{t: N \to \mathbb{R}^{\geq 0} \mid (\exists c \in \mathbb{R}^+) \ (\forall^{\infty} n \in \mathbb{N}) \ [t(n) \leq c \ f(n)] \}$

Otra definición:

 $O(f(n)) = \{t: N \to R^+ / \exists c \in R^+, n_0 \in N \text{ tq } t(n) \le c \text{ } f(n), n \ge n_0 \}$

Es más "precisa":

- R⁺ (cantidades de operaciones)
- "Reemplazando" ∀[∞] por el "umbral", es decir con las excepciones (a la cota del ≤) para los valores de n anteriores a n₀

Terminología

- Conjuntos ==> ∈
- "está en el orden de" (conjuntos)
- "es"
- n² = O(n³) (one-way equality, podría relacionarse con el "es")
- $f(n) = 2n^2 + O(n)$
- $2n^2 + O(n) = O(n^2)$ (cont.)...

Terminología

(cont.)...

Se acepta que t(n) ∈ O(f(n)) sii ∃ c ∈ R⁺,
 n₀ ∈ N tq 0 ≤ t(n) ≤ c f(n); n ≥ n₀

Sin poner restricciones para $n < n_0$, donde t(n) y f(n) podrían dar valores negativos o no estar definidas, por ejemplo:

O(n / log n), n = 0 y n = 1 no están definidos $t(n) = n^3 - 3n^2 - n - 8 \in O(n^3)$, aunque $n \le 3 ==> t(n) < 0$

Definiciones

 $O(f(n)) = \{t: N \rightarrow R^+ / \exists c \in R^+, n_0 \in N \text{ tq } t(n) \le c \text{ } f(n), \text{ } n \ge n_0 \}$

 $\Omega(f(n)) = \{t: N \rightarrow R^+ \mid \exists c \in R^+, n_0 \in N \text{ tq } t(n) \geq c \text{ } f(n), n \geq n_0 \}$

Se suele mencionar que tanto O(f(n)) como $\Omega(f(n))$ son "ambiguas" o "excesivas" en cuanto a que se puede usar cualquier función como cota. Más precisión: $\Theta(f(n))$

Definiciones

$$O(f(n)) = \{t: N \rightarrow R^+ \mid \exists c \in R^+, n_0 \in N \text{ tq } t(n) \leq c \text{ } f(n), \text{ } n \geq n_0 \}$$

$$\Omega(f(n)) = \{t: N \rightarrow R^+ \mid \exists c \in R^+, n_0 \in N \text{ tq } t(n) \geq c \text{ } f(n), n \geq n_0 \}$$

Se suele mencionar que tanto O(f(n)) como $\Omega(f(n))$ son "ambiguas" o "excesivas" en cuanto a que se puede usar cualquier función como cota. Más precisión: $\Theta(f(n))$

$$\Theta(f(n)) = \{t: N \to R^+ / \exists c_1, c_2 \in R^+, n_0 \in N \text{ tq} c_1 f(n) \le t(n) \le c_2 f(n), n \ge n_0 \}$$

Propiedades

- g(n) ∈ Ω(f(n)) sii f(n) ∈ O(g(n))
 (Regla de Dualidad)
- $g(n) \in \Theta(f(n))$ sii $g(n) \in O(f(n))$ y $g(n) \in \Omega(f(n))$
- $\Theta(f(n)) = O(f(n)) \cap \Omega(f(n))$

Propiedades

- g(n) ∈ Ω(f(n)) sii f(n) ∈ O(g(n))
 (Regla de Dualidad)
- $g(n) \in \Theta(f(n))$ sii $g(n) \in O(f(n))$ y $g(n) \in \Omega(f(n))$
- $\Theta(f(n)) = O(f(n)) \cap \Omega(f(n))$
 - ¿Cómo se demuestran? (definiciones de referencia)

Propiedades

- Reflexividad y Transitividad de la pertenencia a O(), Ω () y Θ()
- $f(n) \in O(f(n))$
- Si f(n) ∈ O(g(n)) y g(n) ∈ O(h(n)) ==>
 f(n) ∈ O(h(n))
 - ¿Por qué "serían" ciertas? ¿Cómo demostrarlas?

- El umbral n₀ de las definiciones de O(),
 Ω() y Θ() puede puede resultar útil pero nunca es necesario cuando se consideran funciones estrictamente positivas, es decir t, f: N → R⁺
- Regla del Umbral: f, t: N → R⁺,
 t(n) ∈ O(f(n)) <==> existe c ∈ R⁺ tal que
 t(n) ≤ c f(n) para todo natural n

- El umbral n₀ de las definiciones de O(),
 Ω() y Θ() puede puede resultar útil pero nunca es necesario cuando se consideran funciones estrictamente positivas, es decir t, f: N → R⁺
- Regla del Umbral: f, t: N → R⁺,
 t(n) ∈ O(f(n)) <==> existe c ∈ R⁺ tal que
 t(n) ≤ c f(n) para todo natural n

 $O(f(n)) = \{t: N \rightarrow R^+ \mid \exists c1 \in R^+, n_0 \in N \text{ tq } t(n) \leq c1 \text{ } f(n), n \geq n_0 \}$

1) f, t: N
$$\rightarrow$$
 R⁺, t(n) \in O(f(n)) ==> existe $c \in R^+$ tal que t(n) $\leq c \in R^+$ tal que tal que t(n) $\leq c \in R^+$ tal que t(n) $\leq c \in R^+$ tal que t(n) $\leq c \in R^+$ tal que tal que t(n) $\leq c \in R^+$ tal que tal que t(n) $\leq c \in R^+$ tal que tal

 $c \in R^+$ tal que $t(n) \le c f(n) \forall n \in N$

Faltaría probar la recíproca, <==

- $t(n) \in O(f(n)) \le existe c \in R^+ tal que$ $t(n) \le c f(n) para todo natural n$
- 2) Existe $c \in R^+$ tal que $t(n) \le c f(n) \ \forall \ n \in N$ ==> $t(n) \in O(f(n))$

Esta demostración puede considerarse trivial por definición de O(f(n)) $O(f(n)) = \{t: N \to R^+ \ / \ \exists \ c1 \in R^+, \ n_0 \in N \ tq \ t(n) \le c1 \ f(n), \ n \ge n_0\}$

De 1) y 2) se tiene demostrada la Regla del Umbral

```
f, g: N \to R<sup>+</sup>, O(f(n) + g(n)) = O(max(f(n), g(n)))
Idea de la demostración: se usará que
    f(n) + g(n) = min(f(n), g(n)) + max(f(n), g(n))
0 \le \min(f(n), g(n)) \le \max(f(n), g(n))
sumando max(f(n), g(n)) a todos los términos
max(f(n), g(n)) \le min(f(n), g(n)) \le max(f(n), g(n))
   \max(f(n), g(n)) \le f(n) + g(n) \le 2 \max(f(n), g(n))
Cont.
```

```
    f, g: N → R<sup>+</sup>, O(f(n) + g(n)) = O(max(f(n), g(n)))
    Cont.
        max(f(n), g(n)) ≤ f(n) + g(n) ≤ 2 max(f(n), g(n))
    t(n) ∈ O(f(n) + g(n)) ==> t(n) ∈ O(max(f(n), g(n))
    t(n) ∈ O(max(f(n), g(n)) ==> t(n) ∈ O(f(n) + g(n))
```

```
    f, g: N → R+, O(f(n) + g(n)) = O(max(f(n), g(n)))
    Cont.
        max(f(n), g(n)) ≤ f(n) + g(n) ≤ 2 max(f(n), g(n))
    t(n) ∈ O(f(n) + g(n)) ==> t(n) ∈ O(max(f(n), g(n)))
    t(n) ∈ O(max(f(n), g(n))) ==> t(n) ∈ O(f(n) + g(n))
```

```
    f, g: N → R<sup>+</sup>, O(f(n) + g(n)) = O(max(f(n), g(n)))
    Cont.
        max(f(n), g(n)) ≤ f(n) + g(n) ≤ 2 max(f(n), g(n))
    t(n) ∈ O(f(n) + g(n)) ==> t(n) ∈ O(max(f(n), g(n)))
    t(n) ∈ O(max(f(n), g(n))) ==> t(n) ∈ O(f(n) + g(n))
```

- Vale para Θ
- Vale para suma de cualquier cantidad de func.
- Tener en cuenta que vale solo para funciones
 f: N → R⁺, porque sino

$$\Theta(n) = \Theta(n + n^2 - n^2) = \Theta(\max(n, n^2, -n^2)) =$$
$$= \Theta(n^2) \text{ Erróneo...}$$

- Vale para Θ
- Vale para suma de cualquier cantidad de func.
- Tener en cuenta que vale solo para funciones
 f: N → R⁺, porque sino

$$\Theta(n) = \Theta(n + n^2 - n^2) = \Theta(max(n, n^2, -n^2)) =$$

$$= \Theta(n^2)$$
Error

- Vale para Θ
- Vale para suma de cualquier cantidad de func.
- Tener en cuenta que vale solo para funciones
 f: N → R⁺, porque sino

$$\Theta(n) = \Theta(n + n^2 - n^2) = \Theta(\max(n, n^2, -n^2)) =$$

$$= \Theta(n^2)$$
Error

Error, $-n^2$ no es $N \rightarrow R^+$

Regla del Límite

 La idea de la notación asintótica tiene relación con la idea de crecimiento arbitrario de la E/ y del comportamiento de las funciones en el límite, de allí que se puede relacionar la notación asintótica con los límites

- 1) $\lim_{n \to \infty} f(n) / g(n) \in \mathbb{R}^+ ==> f(n) \in O(g(n))$ y $g(n) \in O(f(n))$
- 2) $\lim_{n \to \infty} f(n) / g(n) = 0 ==> f(n) \in O(g(n)) \text{ y } g(n) \notin O(f(n))$ $n \to \inf$.
- 3) $\lim_{n \to \infty} f(n) / g(n) \to \infty ==> f(n) \notin O(g(n)) \text{ y } g(n) \in O(f(n))$ $n \to \inf$.

Regla del Límite

 Considerando los tres conjuntos definidos para la notación asintótica

- 1) $\lim f(n) / g(n) \in \mathbb{R}^+ ==> f(n) \in \Theta(g(n))$ $n \to \inf$.
- 2) $\lim_{n \to \infty} f(n) / g(n) = 0 ==> f(n) \in O(g(n)) \text{ y } f(n) \notin \Theta(g(n))$
- 3) $\lim_{n \to \infty} f(n) / g(n) \to \infty ==> f(n) \notin \Omega(g(n))$ y $f(n) \notin \Theta(g(n))$ n $\to \inf$.