Tarea 3

Metrología Científica

Ever Ortega Calderón 2018165355

Los datos empleados para el análisis estadístico de esta tarea fueron extraídos del trabajo de Hae-Young Kim titulado "Statistical notes for clinical researchers: Two-way análisis of variance (ANOVA)-exploring posible interaction between factors " [1].

#### Los datos usados fueron:

| Curing_lights | Resin_types | Bonding_strength |
|---------------|-------------|------------------|
| Halogen       | А           | 14.5             |
| Halogen       | Α           | 15.2             |
| Halogen       | А           | 17.4             |
| Halogen       | Α           | 17.5             |
| Halogen       | Α           | 19.2             |
| Halogen       | В           | 11.8             |
| Halogen       | В           | 13.3             |
| Halogen       | В           | 19.2             |
| Halogen       | В           | 21.3             |
| Halogen       | В           | 22.2             |
| Halogen       | С           | 14.5             |
| Halogen       | С           | 15               |
| Halogen       | С           | 18.6             |
| Halogen       | С           | 19.6             |
| Halogen       | С           | 21               |
| Led           | Α           | 27.1             |
| Led           | Α           | 11.6             |
| Led           | Α           | 12.2             |
| Led           | Α           | 15.9             |
| Led           | Α           | 17               |
| Led           | В           | 27.8             |
| Led           | В           | 12.8             |

| Led | В | 16.2 |
|-----|---|------|
| Led | В | 19.8 |
| Led | В | 22.4 |
| Led | С | 16.5 |
| Led | С | 22.7 |
| Led | С | 24.2 |
| Led | С | 26.2 |
| Led | С | 28.4 |

En este trabajo se analizan dos factores llamados "Curing lights" y "Resin types"

Además, el ANOVA se realizó en minitab y en R por el siguiente código:

```
ensamble = read.table("0:/Tarea 3 datos.txt", header = TRUE)
str(ensamble)
egita linea nos da las estructura de la tabla
attach(ensamble)
egita linea nos da las estructura de la tabla

*estas trea lineas siempre van estar*

Curing_lights
egita linea es como le puse a la columna de Ensbl y va a tirar los valores de la misma
mesin.types
es como le puse a la columna de variabla de respuesta y va a tirar los valores de la misma
modifique ses como le puse a la columna de variabla de respuesta y va a tirar los valores de la misma
modifique ses como le puse a la columna de el tipo operador y va a tirar los valores de la misma

curing_lights <= fattor(curing_lights)

# hago que la columna se vea como una variable , no un número

Resin.types <- fattor(Resin.types)
# hago que la columna se vea como una variable , no un número

ensamble.lm = lm(Bonding_strength ~ ( Curing_lights))
# hago un modelo lineal -al cual le llamo ensamble.lm-

# hago un modelo lineal -al cual le llamo ensamble.lm-
# anova(ensamble.lm)

# la sabla que necesito , donde la primera columna serán los GL. , la segunda Sumatorias cuadradas, la tercera Cuadrados Medios del Error, la cuarta el F, y la quinta el valor p, respectivo

pairwise.t.test(Bonding_strength, Curing_lights, p. adj = "none")

# sace el analisis LSD- que servia para diferenciar medias.

1-pf(9.3223/(2.174+0.3^22),3,9)
```

#### **DCBA**

#### Análisis en R:



#### Análisis de minitab:

# Modelo lineal general: Bonding Strength vs. Curing Lights; Resin Types

#### Método

Codificación de factores (-1; 0; +1)

# Información del factor

| Factor        | Tipo | Niveles Valores |
|---------------|------|-----------------|
| Curing Lights | Fijo | 2 1; 2          |
| Resin Types   | Fijo | 3 1; 2; 3       |

# Análisis de Varianza

| Fuente          | GL | SC Ajust. | MC Ajust. | Valor F | Valor p |
|-----------------|----|-----------|-----------|---------|---------|
| Curing Lights   | 1  | 54,67     | 54,67     | 2,59    | 0,120   |
| Resin Types     | 2  | 76,45     | 38,22     | 1,81    | 0,184   |
| Error           | 26 | 549,77    | 21,14     |         |         |
| Falta de ajuste | 2  | 43,72     | 21,86     | 1,04    | 0,370   |
| Error puro      | 24 | 506,05    | 21,09     |         |         |
| Total           | 29 | 680,89    |           |         |         |

# Resumen del modelo

|         |         | R-cuad.    | R-cuad. |
|---------|---------|------------|---------|
| S       | R-cuad. | (ajustado) | (pred)  |
| 4,59835 | 19,26%  | 9,94%      | 0,00%   |

# Coeficientes

|                                        |                           | EE del                 |                         |                         |      |
|----------------------------------------|---------------------------|------------------------|-------------------------|-------------------------|------|
| rmino                                  | Coef                      | coef.                  | Valor T                 | Valor p                 | FIV  |
| onstante                               | 18,703                    | 0,840                  | 22,28                   | 0,000                   |      |
| ıring Lights                           |                           |                        |                         |                         |      |
|                                        | -1,350                    | 0,840                  | -1,61                   | 0,120                   | 1,00 |
| sin Types                              |                           |                        |                         |                         |      |
|                                        | -1,94                     | 1,19                   | -1,64                   | 0,114                   | 1,33 |
|                                        | -0,02                     | 1,19                   | -0,02                   | 0,984                   | 1,33 |
| onstante<br>Iring Lights<br>esin Types | 18,703<br>-1,350<br>-1,94 | 0,840<br>0,840<br>1,19 | 22,28<br>-1,61<br>-1,64 | 0,000<br>0,120<br>0,114 | 1    |

# Ecuación de regresión

Bonding Strength = 18,703 - 1,350 Curing Lights\_1 + 1,350 Curing Lights\_2 - 1,94 Resin Types\_1 - 0,02 Resin Types\_2 + 1,97 Resin Types\_3

# Ajustes y diagnósticos para observaciones poco comunes

|   | Bonding |          |        |       | Resid  |
|---|---------|----------|--------|-------|--------|
|   | Obs     | Strength | Ajuste | Resid | est.   |
| Ī | 16      | 27.10    | 18.11  | 8.99  | 2.10 R |

Residuo grande R



Para el DCBA se observa que tanto minitab como en R se obtuvieron los mismo valores, por ejemplo se obtuvo el mismo valor de F para Curing Lights de 2,59.

# **DCA: Curing lights**



# Análisis de minitab:

# ANOVA de un solo factor: Bonding Strength vs. Curing Lights

# Método

Hipótesis nula Todas las medias son iguales
Hipótesis alterna No todas las medias son iguales

Nivel de significancia  $\alpha = 0.05$ 

Se presupuso igualdad de varianzas para el análisis.

# Información del factor

| Factor        | Niveles Valores |
|---------------|-----------------|
| Curing Lights | 2 1; 2          |

# Análisis de Varianza

| Fuente        | GL | SC Ajust. | MC Ajust. | Valor F | Valor p |
|---------------|----|-----------|-----------|---------|---------|
| Curing Lights | 1  | 54,67     | 54,67     | 2,44    | 0,129   |
| Error         | 28 | 626,21    | 22,36     |         |         |
| Total         | 29 | 680,89    |           |         |         |

# Resumen del modelo

|         |         | R-cuad.    | R-cuad. |
|---------|---------|------------|---------|
| S       | R-cuad. | (ajustado) | (pred)  |
| 4,72914 | 8,03%   | 4,75%      | 0,00%   |

# Medias

# Curing

| Lights | Ν  | Media  | Desv.Est. | IC de 95%        |
|--------|----|--------|-----------|------------------|
| 1      | 15 | 17,353 | 3,157     | (14,852; 19,855) |
| 2      | 15 | 20,05  | 5,90      | (17,55; 22,55)   |

Desv.Est. agrupada = 4,72914





Para el DCA se observa que tanto minitab como en R se obtuvieron los mismos valores, por ejemplo se obtuvo el mismo valor de F para Curing Lights de 2,44.

#### **DCA: Resin types**



#### Análisis de minitab:

# ANOVA de un solo factor: Bondig Strength vs. Resin Types

V

#### Método

Hipótesis nula Todas las medias son iguales Hipótesis alterna No todas las medias son iguales

Nivel de significancia  $\alpha = 0.05$ 

Se presupuso igualdad de varianzas para el análisis.

# Información del factor

| Factor      | Niveles Valores |
|-------------|-----------------|
| Resin Types | 3 1, 2, 3       |

# Análisis de Varianza

| Fuente        | GL | SC Ajust. | MC Ajust. | Valor F | Valor p |
|---------------|----|-----------|-----------|---------|---------|
| Resin Types   | 2  | 76.45     | 38.22     | 1.71    | 0.200   |
| Error         | 27 | 604.44    | 22.39     |         |         |
| Tota <b>l</b> | 29 | 680.89    |           |         |         |

# Resumen del modelo

| R-cuadrado |                      |            |         |
|------------|----------------------|------------|---------|
| (pred)     | R-cuadrado(ajustado) | R-cuadrado | S       |
| 0.00%      | 4.65%                | 11.23%     | 4.73146 |

#### Medias

| Resin Types | N  | Media | Desv.Est. | IC de 95%      |
|-------------|----|-------|-----------|----------------|
| 1           | 10 | 16.76 | 4.34      | (13.69, 19.83) |
| 2           | 10 | 18.68 | 5.11      | (15.61, 21.75) |
| 3           | 10 | 20.67 | 4.71      | (17.60, 23.74) |

Desv.Est. agrupada = 4.73146





Para el DCA se observa que tanto minitab como en R se obtuvieron los mismos valores, por ejemplo se obtuvo el mismo valor de F para Resin Types de 1,71.

# Referencias

[1] H.-Y. Kim, "Statistical notes for clinical researchers: Two-way analysis of variance (ANOVA)-exploring possible interaction between factors," *Restorative Dentistry & Endodontics*, vol. 39, no. 2, p. 143, 2014.