Harmonic Analysis

Ikhan Choi

October 16, 2022

Contents

Ι	Fourier analysis	3
1	Fourier series1.1 Fourier series in L^p spaces	4 4 4 6
2	Fourier transform2.1 Fourier transform in L^p space	7 7 7
3	Hilbert transform3.1 Harmonic conjugate3.2 Kernel representation3.3 Fourier series in L^p space	8 8 8
II	Singular integral operators	9
4	Calderón-Zygmund theory 4.1 Convolution type operators 4.2 Truncated integrals 4.3 A_p weights 4.4 Bounded mean oscillation	10 11 12 12
5 6	Littlewood-Paley theory 5.1 Littlewood-Paley decomposition 5.2 Multiplier theorems	13 13 13 14 14
II	I Oscillatory integral operators	15
7		16
8	Restriction	17
9		18

IV	Pseudo-differential operators	19
10	Symbols	20
	10.1 Kohn-Nirenberg calculus	20
11	Semiclassical analysis	21
	11.1 Weyl calculus	21
	11.2 Heisenberg group	21
12	Microlocal analysis	22

Part I Fourier analysis

Fourier series

1.1 Fourier series in L^p spaces

1.1.

$$\|\widehat{f}\|_{\ell^1(\mathbb{Z})} \lesssim \|f\|_{W^{1,1+\varepsilon}(\mathbb{T})}.$$

Inversion theorem is an approximation problem given by $\mathcal{F}^*\mathcal{F}=\lim_{n\to\infty}\mathcal{F}_n^*\mathcal{F}$. The condition $\widehat{f}\in \ell^1(\mathbb{Z})$ is a condition just for defining $\mathcal{F}^*\widehat{f}$ without using distribution theory, and it does not affect the inversion phenomena. The approximation, in other words, can be seen as an extension method for $\mathcal{F}^*:\ell^1(\mathbb{Z})\to C(\mathbb{T})$ on $c_0(\mathbb{Z})$. Note that \mathcal{F}_n^* on $c_0(\mathbb{Z})$ cannot be bounded directly without distribution theory, but $\mathcal{F}_n^*\mathcal{F}$ on $L^p(\mathbb{T})$ can be bounded well.

1.2 Summability methods

- If \mathcal{F}_n^* is the standard partial sum, then $\mathcal{F}_n^*\mathcal{F}$ is the Dirichlet kernel.
- If \mathcal{F}_n^* is the Cesàro mean, then $\mathcal{F}_n^*\mathcal{F}$ is the Fejér kernel.
- If \mathcal{F}_r^* is the Abel sum, then $\mathcal{F}_r^*\mathcal{F}$ is the Poisson kernel.
- In Fourier transform, we often use the Gauss-Weierstrass kernel.

The injectivity of \mathcal{F} is not an easy problem, which comes from the inversion theorem.

1.2 (Dirichlet kernel). The *Dirichlet kernel* is a function $D_n: \mathbf{T} \to \mathbb{R}$ defined by

$$D_n = \widehat{\mathbf{1}_{|k| \le n}}$$
, or equivalently, $\widehat{D_n} = \mathbf{1}_{|k| \le n}$.

This is because they are invariant under inverse, in other words, they are even.

 $D_n(x) = \frac{\sin\frac{2n+1}{2}x}{\sin\frac{1}{2}x}.$

(b) If $f \in \text{Lip}(\mathbf{T})$, then $D_n * f \to f$ pointwisely as $n \to \infty$.

(c) $||D_n||_{L^1(\mathbf{T})} \gtrsim \log n.$

Proof.

$$D_n(x) = \sum_{k=-n}^{n} e^{ikx}$$

$$= \frac{e^{i\frac{2n+1}{2}x} - e^{-i\frac{2n+1}{2}x}}{e^{i\frac{1}{2}x} - e^{-i\frac{1}{2}x}}$$

$$= \frac{\sin\frac{2n+1}{2}x}{\sin\frac{1}{2}x}.$$

(c) By (2) $\sin x \le x$ for $x \in [0, \pi/2]$, (3) change of variable,

$$||D_n||_{L^1(\mathbf{T})} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |\frac{\sin\frac{2n+1}{2}x}{\sin\frac{1}{2}x}| dx$$

$$\geq \frac{2}{\pi} \int_{0}^{\pi} \frac{|\sin\frac{2n+1}{2}x|}{x} dx$$

$$= \frac{2}{\pi} \int_{0}^{\frac{2n+1}{2}\pi} \frac{|\sin x|}{x} dx$$

$$= \frac{2}{\pi} \sum_{k=0}^{2n} \int_{\frac{k}{2}\pi}^{\frac{k+1}{2}\pi} \frac{|\sin x|}{x} dx$$

$$\geq \frac{2}{\pi} \sum_{k=0}^{2n} \int_{0}^{\frac{1}{2}\pi} \frac{\sin x}{\frac{k+1}{2}\pi} dx$$

$$\geq \frac{4}{\pi^2} \sum_{k=0}^{2n} \frac{1}{1+k}$$

$$\geq \frac{4}{\pi^2} \log(2n+2).$$

..?

1.3 (Fejér kernel). The Fejér kernel is

(a)

$$K_n(x) = \frac{1}{n+1} \frac{\sin^2 \frac{n+1}{2} x}{\sin^2 \frac{1}{2} x}.$$

Proof. Since

$$\begin{split} D_n(x) &= \frac{e^{i\frac{2n+1}{2}x} - e^{-i\frac{2n+1}{2}x}}{e^{i\frac{1}{2}x} - e^{-i\frac{1}{2}x}} \\ &= \frac{\left[e^{i\frac{2n+1}{2}x} - e^{-i\frac{2n+1}{2}x}\right] \left[e^{i\frac{1}{2}x} - e^{-i\frac{1}{2}x}\right]}{\left[e^{i\frac{1}{2}x} - e^{-i\frac{1}{2}x}\right]^2} \\ &= \frac{\left[e^{i(n+1)x} + e^{-i(n+1)x}\right] - \left[e^{inx} + e^{-inx}\right]}{\left[e^{i\frac{1}{2}x} - e^{-i\frac{1}{2}x}\right]^2}, \end{split}$$

by telescoping, we get

$$\begin{split} \sum_{k=0}^{n} D_k(x) &= \frac{\left[e^{i(n+1)x} + e^{-i(n+1)x}\right] - \left[e^{i0x} + e^{-i0x}\right]}{\left[e^{i\frac{1}{2}x} - e^{-i\frac{1}{2}x}\right]^2} \\ &= \frac{\left[e^{i\frac{n+1}{2}x} - e^{-i\frac{n+1}{2}x}\right]^2}{\left[e^{i\frac{1}{2}x} - e^{-i\frac{1}{2}x}\right]^2} \\ &= \frac{\sin^2\frac{n+1}{2}x}{\sin^2\frac{1}{2}x}. \end{split}$$

Two important results from Fejér kernel:

- 1. If f(x-), f(x+) exist and $S_n f(x)$ converges, then $S_n f(x) \to \frac{1}{2} (f(x-) + f(x+))$.
- 2. (If $f \in L^1(\mathbf{T})$, then $\sigma_n f \to f$ a.e.)
- 3. If $f \in L^1(\mathbf{T})$, then $S_n f \to f$ in L^1 and L^2 .
- 4. If f is continuous and $\hat{f} \in L^1(\mathbb{Z})$, then $S_n f \to f$ uniformly.
- 5. Since $\sigma_n f$ is a trigonometric polynomial, the set of trigonometric polynomials are dense in $L^1(\mathbf{T})$ and $L^2(\mathbf{T})$.

1.3 Pointwise convergence of Fourier series

BV function: Dini, Jordan's criterion

1.4 (Riemann localization principle).

Exercises

1.5 (Gibbs phenomenon).

1.6 (Du Bois-Reymond function).

Fourier transform

2.1 Fourier transform in L^p space

2.1 (Riemann-Lebesgue lemma).

Lp extension

Gaussian function computation: differential equation method, contour integral method inversion theorem

2.2 (Plancherel theorem).

2.2 Tempered distributions

2.3 (Cauchy principal value). indented contour, imaginary shift, Feynman's trick

Exercises

2.4 (Sampling theorem).

$$\mathcal{F}\mathbf{1}_{[-\frac{1}{2},\frac{1}{2}]}(\xi) = \operatorname{sinc}(\xi/2)$$

 $\operatorname{sinc} \in L^{1+\varepsilon}(\mathbb{R}).$

2.5 (Poisson summation formula).

2.6 (Uncertainty principle).

Problems

1. Find all $\alpha > 0$ such that

$$\lim_{x \to \infty} x^{-\alpha} \int_0^x f(y) \, dy = 0$$

for all $f \in L^3([0, \infty))$.

Hilbert transform

- 3.1 Harmonic conjugate
- 3.2 Kernel representation
- **3.3** Fourier series in L^p space

Part II Singular integral operators

Calderón-Zygmund theory

4.1 Convolution type operators

4.1 (Calderón-Zygmund decomposition of sets). Let $f \in L^1(\mathbb{R}^d)$. Let $E_n f$ be the conditional expectation with repect to the σ -algebra generated by dyadic cubes with side length 2^{-n} . Let $Mf := \sup_n E_n |f|$ be the maximal function, and let $\Omega := \{x : Mf(x) > \lambda\}$ for fixed $\lambda > 0$. For $x \in \Omega$ let Q_x be the maximal dyadic cube such that $x \in Q_x$ and

$$\frac{1}{|Q_x|} \int_{Q_x} |f| > \lambda.$$

- (a) $\{Q_x : x \in \Omega\}$ is a countable partition of Ω .
- (b) We have an weak type estimate $|\Omega| \leq \frac{1}{\lambda} ||f||_{L^1}$.
- (c) $||f||_{L^{\infty}(\mathbb{R}^d\setminus\Omega)} \leq \lambda$.
- (d) For $x \in \Omega$

$$\frac{1}{|Q_x|} \int_{Q_x} |f| \le 2^d \lambda.$$

4.2 (Calderón-Zygmund decomposition of functions). Let

$$g(x) := \begin{cases} |f(x)| & , x \notin \Omega \\ \frac{1}{|Q_x|} \int_{Q_x} |f| & , x \in \Omega \end{cases}$$

and $b_i := (|f| - g)\chi_{Q_i}$ so that |f| = g + b where $b = \sum_i b_i$.

- (a) $||g||_{L^1} = ||f||_{L^1}$ and $||g||_{L^\infty} \lesssim_d \lambda$.
- (b) $||b||_{L^1} \le 2||f||_{L^1}$ and $\int b_i = 0$.

Proof. □

- **4.3** (L^p boundedness of Calderón-Zygmund operators). Let $T: C_c^{\infty}(\mathbb{R}^d) \to \mathcal{D}'(\mathbb{R}^d)$ be a *singular integral operator of convolution type* in the sense that there is a function $K \in L^1_{loc}(\mathbb{R}^d \setminus \{0\}) \cap \mathcal{D}'(\mathbb{R}^d)$ such that Tf(x) = K * f(x) for all $f \in \mathcal{D}(\mathbb{R}^d)$, whenever $x \notin \text{supp } f$. We say T is called a *Calderón-Zygmund* operator if
 - (i) T is L^2 -bounded: we have

$$||Tf||_{L^2} \lesssim ||f||_{L^2},$$

(ii) T satisfies the Hörmander condition: we have

$$\int_{|x|>2|y|} |K(x-y)-K(x)| \, dx \lesssim 1$$

for every y > 0.

Let $f=g+b=g+\sum_i b_i$ be the Calderón-Zygmund decomposition, and let $\Omega^*:=\bigcup_i Q_i^*$ where Q_i^* is the cube with the same center as Q_i and whose sides are $2\sqrt{d}$ times longer.

(a) The L^2 -boundedness implies

$$|\{x: |Tg(x)| > \frac{\lambda}{2}\}| \lesssim_d \frac{1}{\lambda} ||f||_{L^1}.$$

(b) The Hörmander condition implies

$$|\{x: |Tb(x)| > \frac{\lambda}{2}\} \setminus \Omega^*| \lesssim_d \frac{1}{\lambda} ||f||_{L^1}.$$

(c)

Proof. (a) Using the Chebyshev inequality and the Hölder inequality,

$$|\{x: |Tg(x)| > \frac{\lambda}{2}\}| \le \frac{4}{\lambda^2} ||Tg||_{L^2(\Omega)}^2 \le \frac{4C}{\lambda^2} ||g||_{L^2(\Omega)}^2 \le \frac{4C}{\lambda^2} ||g||_{L^1(\Omega)} ||g||_{L^\infty(\Omega)}.$$

(b) Write

$$|\{x: |Tb(x)| > \frac{\lambda}{2}\} \setminus \Omega^*| \le \frac{2}{\lambda} \int_{\mathbb{R}^d \setminus \Omega^*} |Tb(x)| \, dx \le \frac{2}{\lambda} \sum_i \int_{\mathbb{R}^d \setminus \Omega^*} |Tb_i(x)| \, dx.$$

Since $x \in \mathbb{R}^d \setminus Q_i^*$ does not belong to supp $b_i \subset Q_i$ and $\int b_i = 0$, we have

$$Tb_{i}(x) = \int_{Q_{i}} K(x - y)b_{i}(y) dy = \int_{Q_{i}} [K(x - y) - K(x)]b_{i}(y) dy,$$

and

$$\int_{\mathbb{R}^d \setminus Q_i^*} |T b_i(x)| \, dx = \int_{Q_i} |b_i(y)| \int_{\mathbb{R}^d \setminus Q_i^*} |K(x-y) - K(x)| \, dx \, dy \lesssim ||b_i||_{L^1}.$$

(We need to show it is valid even though b_i is not smooth)

(c)

4.4 (Hölder boundedness of Calderón-Zygmund operators).

4.2 Truncated integrals

Homogeneous kernels

4.3 A_p weights

4.4 Bounded mean oscillation

Exercises

4.5 (Size and cancellation condition). Let $K \in L^1_{loc}(\mathbb{R}^d \setminus \{0\}) \cap \mathcal{D}'(\mathbb{R}^d)$. We say the condition $|K(x)| \lesssim |x|^{-d}$ for $x \neq 0$ as the *size condition*, and say the condition $\int_{r < |x| < R} K(x) \, dx = 0$ for all $0 < r < R < \infty$ as the *cancellation condition*. If K satisfies the size, cancellation, and Hörmander condition, then it is L^2 bounded, hence Calderón-Zygmund.

4.6 (Gradient size condition). Let $|\nabla K(x)| \lesssim |x|^{-d-1}$ for $x \neq 0$. Then, convolution with K is a Calderón-Zygmund operator.

4.7 (Riesz potential).

Littlewood-Paley theory

- 5.1 Littlewood-Paley decomposition
- 5.2 Multiplier theorems

Almost orthogonality

Carleson measures, paraproducts

- 6.1 Coltar lemma
- **6.2** T(1) theorem

Part III Oscillatory integral operators

Restriction

Part IV Pseudo-differential operators

Symbols

10.1 Kohn-Nirenberg calculus

 $S_{\rho,\delta}^m$

$$|D_x^\alpha D_\xi^\beta a(x,\xi)| \lesssim \langle \xi \rangle^{m-\rho|\beta|+\delta|\alpha|}.$$

Let a be a symbol on $M = \mathbb{R}^d_x \times \mathbb{R}^d_\xi$. Then, the associated ΨDO is

$$T_a\psi(x) := \frac{1}{(2\pi)^d} \int \int e^{i\langle x-y,\xi\rangle} a(x,\xi)\psi(y) \, dy \, d\xi.$$

For parameters $0 \le \lambda \le 1$ and h > 0, let

$$\widehat{a}\psi(x) := \frac{1}{(2\pi h)^d} \iint e^{\frac{i}{h}\langle x-y,\xi\rangle} a((1-\lambda)x + \lambda y,\xi)\psi(y) \, dy \, d\xi.$$

For example, regardless of h and λ ,

$$\hat{\xi}\psi(x) = \frac{h}{i}\psi'(x)$$

and

$$\hat{H}\psi(x) = -h^2 \Delta \psi(x) + V(x)\psi(x),$$

where $V: \mathbb{R}^d_x \times \mathbb{R}^d_\xi \to \mathbb{R}$ and $H: \mathbb{R}^d_x \times \mathbb{R}^d_\xi \to \mathbb{R}$ such that

$$H(x, \xi) := |\xi|^2 + V(x).$$

$$\frac{d}{dt}a(t) = \{a(t), H\} = X_H a(t)$$

$$\frac{d}{dt}\hat{a}(t) = \frac{d}{dt}e^{\frac{i}{\hbar}t\hat{H}}\hat{a}e^{-\frac{i}{\hbar}t\hat{H}} = -\frac{i}{\hbar}[\hat{a}(t),\hat{H}]$$

Semiclassical analysis

11.1 Weyl calculus

11.1 (Composition of Weyl quantization).

11.2 Heisenberg group

Microlocal analysis