Sum of Integendent Normal Random Variables

If X is a normal random variable with expected value μ_X and standard deviation σ_X then r X to is also a normal random variable (think: we essentially just scale and shift the units of X).

 $E(rX+s) = rE(X)+s = r\mu_X + s$ $Var(rX+s) = r^2 Var(X) = r^2 \sigma_X^2$ So the standard deviation of rX+s is $r \propto r$.

Nice fact: If X₁, X₂,..., X_n are independent Normal random variables with means μ_1 , μ_2 ,..., μ_n respectively and standard deviations σ_1 , σ_2 ,..., σ_n respectively, then $X_1 + X_2 + ... + X_n$ is a normal random variable as well. The mean of $X_1 + X_2 + ... + X_n$ is $\mu_1 + \mu_2 + ... + \mu_n$ Because the X_1 's are independent, the variance of $X_1 + X_2 + ... + X_n$ is $\sigma_1 + \sigma_2^2 + ... + \sigma_n^2$ and the standard beviation is $\sqrt{\sigma_1^2 + \sigma_2^2 + + \sigma_n^2}$.

If the Xi's are independent Normal random variables with the same mean μ and the same variance σ^2 then $X_1 + + X_n$ has mean $n\mu$ and variance $n\sigma^2$ so the stendard deviation is $\sqrt{n\sigma^2}$.