Nucleophilic Substitution

Reactions

Ionic reactions:

Bond breaking and bond making take place in a heterolytic fashion

$$R \xrightarrow{X} \longrightarrow R^+ + X^-$$

Radical reactions:

Bond breaking and bond making take place in a homolytic fashion

Topics

General Reactions

Representing mechanisms through curly arrows

S_N1 & S_N2: Mecahanisms, Reaction profiles

Various Effects on S_N1 and S_N2 reactions Substrate, Solvent, Nucleophile, Leaving groups

Stereo chemical implications

S_N1: Hydrolysis of t-butyl chloride by base proceeds according to Rate = $k_1[t$ -BuCl] or independent of [OH-]

- Halide undergoes slow ionization to yield the ion pair R⁺ and Cl⁻ followed by first attack by OH or solvent or nuleophile.
- The energy necessary to effect the initial ionization is largely recovered from the energy evolved through solvation of the resultant ion-pair.

For $S_N 1$: R_1 R_2 R_3 Racemization is expected Extent of inversion = extent of retention However, due to ion pair formation, more inversion then retention. Ion pair mechanism: R_1 R_2 R_3 R_4 R_4 R_4 R_5 R_4 R_5 R_5

More inversion than retention.

Factors Affecting the Rates of $S_N 1$ and $S_N 2$ reactions :

- 1) The structure of the substrate
- 2) Concentration and Reactivity of Nucleophile

 (for bimolecular reactions only)
 - •

3) The effect of solvent.

- 4) The nature of leaving group (nucleofuge)
- 5) Stereochemical implications of mechanism

	Relative Rates of Reaction of Alkyl Bromides with Lithium Iodide in Acetone		
Alkyl group	Relative Rate		
Isopropyl	1.0		
Cyclopropyl	no reaction detected		
Cyclobutyl	0.008		
Cyclopentyl	1.6		
Cyclohexyl	0.01		
Cycloheptyl	1.0		

For $S_N 2$: Increasing dielectric constant has much less effect. Results in slight decrease in rate

$$Nu^{-} + R - Hal \longrightarrow \left[Nu^{\delta_{-}} - R - Hal^{\delta_{-}} \right] \longrightarrow R - Nu$$

- New charge is not developed.
- Existing charge is dispersed in the T.S. compared with the starting material

Marked effect on the rate of $S_N 2$ reaction, when that transferred from polar protic solvent to polar aprotic solvent.

- In MeOH both Na⁺ and N₃⁻ are solvated.
- In DMF only Na⁺ is solvated, but not N₂⁻.
- So, unsolvated N₃ is a much more powerful nucleophile

Q. Which reaction will take place more rapidly?

Hard nucleophiles and Soft nucleophiles			
Small with closely held electrons with high charge density		Large & Flabby with diffuse hig energy electrons	
(Only charged	Can be neutral	
E	Basic (HX weak acid)	Not basic (HY strong acid)	
I	Low energy HOMO	High energy HOMO	
Like	e to attack at C=O	Like to attack at saturated carbon	
RO ⁻ , ⁻ NH ₂ , R ⁻ , F ⁻ , Cl ⁻		RS⁻, I⁻,R₃P, RSH	
Reactions are controlled by Electrostatic interactions		Reactions are controlled by HOMO-LUMO interactions	
	Broder line: N ₃	, CN, Br, RNH₂	

Soft nucleophiles are rather large and flabby with diffuse high-energy electrons

Hard nucleophiles are small with closely held electrons and high charge density

For soft nucleophiles→ reactions are dominated by HOMO-LUMO interactions

Q. But
$$\frac{1. \text{Ph}_{3}\text{P}, \text{X}_{2}}{\text{CH}_{2}\text{Cl}_{2}}$$
 $\frac{1. \text{Ph}_{3}\text{P}, \text{X}_{2}}{\text{CH}_{2}\text{Cl}_{2}}$
 $\frac{1. \text{Ph}_{3}\text{P}, \text{X}_{2}}{\text{Cl}_{2}}$
 $\frac{1. \text{Ph}_{3}\text{P}, \text{X}_{2}}{\text{CH}_{2}\text{Cl}_{2}}$
 $\frac{1. \text{Ph}_{3}\text{P}, \text{X}_{2}}{\text{CH}_{2}\text{Cl}_{2}}$
 $\frac{1. \text{Ph}_{3}\text{P}, \text{X}_{2}}{\text{CH}_{2}\text{Cl}_{2}}$
 $\frac{1. \text{Ph}_{3}\text{P}, \text{X}_{2}}{\text{Cl}_{2}}$
 $\frac{1. \text{Ph}_{3}\text{P}, \text{X}_{2}}$

Elimination Reactions H₃C CH_2 H_3C CH_2 H_3C CH_2 H_3C CH_2 H_3C CH_3 CH_3

Substitution vs Elimination

3° Alkyl Halides

With strong bases: E2 elimination occurs

With weak nucleophiles or bases: A mixture of products from S_N1 and E1 reactions

1° Alkyl Halides

With strong nucleophiles: Substitution occurs by an S_N2 mechanism

With strong sterically hindered bases: Elimination occurs by an E2 mechanism

2° Alkyl Halides

With strong bases and nucleophiles: A mixture of $S_{N}2$ and E2 reaction products are

formed

With strong sterically hindered bases: Elimination occurs by an E2 mechanism

With weak nucleophiles or bases: A mixture of S_N1 and E1 products results

$$C_{6}H_{5} \xrightarrow{CO_{2}H} C_{3}H_{5}N \xrightarrow{C_{6}H_{5}} CO_{2}H \xrightarrow{C_{6}H_{5}} CO_{2}H \xrightarrow{C_{6}H_{5}} CO_{2}H \xrightarrow{COC_{6}H_{5}} COC_{6}H_{5}$$

$$Whereas \xrightarrow{HO_{2}C} \xrightarrow{C_{6}H_{5}} \xrightarrow{C_{5}H_{5}N} \xrightarrow{C_{6}H_{5}} H \xrightarrow{COC_{6}H_{5}} H \xrightarrow{COC_{6}H_{5$$

Only one proton for removal
$$C_6H_5$$
 C_6H_5 C_6H_5

Predict the product of following reaction

$$\begin{array}{c}
OMe \\
HO_2C \\
HO
\end{array}$$

$$\begin{array}{c}
HNO_2 \\
NH_2
\end{array}$$

Examples of
$$S_Ni'$$
 reaction

$$H_3CCH = CHCH_2OH \xrightarrow{SOCl_2} H_3C \xrightarrow{CH} CH = CH_2$$

$$H_3C \xrightarrow{H} CH = CHCH_2 \xrightarrow{SOCl_2} H_3C \xrightarrow{H} CH = CH_2CH$$

$$H_3CCH = CHCH_2 \xrightarrow{H} CH = CH_2$$

$$H_3C \xrightarrow{CH} CH = CH_2 \xrightarrow{CH} CH_2$$