

Course > Unit 10... > Proble... > 3. Chec...

3. Checking the Markov property

Problem Set due May 29, 2020 05:29 IST

Problem 3. Checking the Markov property

7 points possible (ungraded)

For each one of the following definitions of the state X_k at time k (for $k=1,2,\ldots$), determine whether the Markov property is satisfied by the sequence X_1,X_2,\ldots

- 1. A fair six-sided die (with sides labelled $1,2,\ldots,6$) is rolled repeatedly and independently.
 - (a) Let X_k denote the largest number obtained in the first k rolls. Does the sequence X_1, X_2, \ldots satisfy the Markov property?

Select an option > Answer: Yes

(b) Let X_k denote the number of 6's obtained in the first k rolls, up to a maximum of ten. (That is, if ten or more 6's are obtained in the first k rolls, then $X_k=10$.) Does the sequence X_1,X_2,\ldots satisfy the Markov property?

Select an option > Answer: Yes

(c) Let Y_k denote the result of the $k^{ ext{th}}$ roll. Let $X_1=Y_1$, and for $k\geq 2$, let $X_k=Y_k+Y_{k-1}$. Does the sequence X_1,X_2,\ldots satisfy the Markov property?

Select an option ➤ Answer: No

(d) Let $Y_k=1$ if the $k^{ ext{th}}$ roll results in an odd number; and $Y_k=0$ otherwise. Let $X_1=Y_1$, and for $k\geq 2$, let $X_k=Y_k\cdot X_{k-1}$. Does the sequence X_1,X_2,\ldots satisfy the Markov property?

Select an option ➤ Answer: Yes

- 2. Let Y_k be the state of some Markov chain at time k (i.e., it is known that the sequence Y_1, Y_2, \ldots satisfies the Markov property).
 - (a) For a fixed integer r>0, let $X_k=Y_{r+k}$. Does the sequence X_1,X_2,\ldots satisfy the Markov property?

Select an option ➤ **Answer:** Yes

(b) Let $X_k = Y_{2k}$. Does the sequence X_1, X_2, \ldots satisfy the Markov property?

Select an option **Answer:** Yes

(c) Let $X_k = (Y_k, Y_{k+1}).$ Does the sequence X_1, X_2, \ldots satisfy the Markov property?

Select an option ➤ **Answer:** Yes

Solution:

1. (a) Since the state X_k is the largest number obtained in k rolls, the set of states is $S=\{1,2,3,4,5,6\}$. Given the largest number obtained in the first k rolls, the probability distribution of the largest number obtained in the first k+1 rolls no longer depends on what the largest number obtained was in the first k-1 rolls (or in the first k-2 rolls, etc.). Therefore the Markov property is satisfied.

For $i,j \in \{1,2,3,4,5,6\}$, the transition probabilities are

$$p_{ij} = \left\{ egin{aligned} 0, & ext{if } j < i, \ rac{i}{6}, & ext{if } j = i, \ rac{1}{6}, & ext{if } j > i. \end{aligned}
ight.$$

(b) Since the state X_k is the number of 6's in the first k rolls, the set of states is $S=\{0,1,2,\dots 10\}$. The probability of getting a 6 in a given trial is 1/6. Given the number of 6's in the first k rolls, the probability distribution of the number of 6's in the first k+1 rolls no longer depends on the number of 6's in the first k-1 rolls (or in the first k-2 rolls, etc.). Therefore the Markov property is satisfied.

Thus, $p_{10,10}=1$, and for $i\leq 9$, the transition probabilities are

$$p_{ij} = \left\{ egin{array}{ll} rac{1}{6}, & ext{if } j=i+1, \ rac{5}{6}, & ext{if } j=i, \ 0, & ext{otherwise}. \end{array}
ight.$$

(c) We have

$$egin{aligned} \mathbf{P}\left(X_{3}=2\mid X_{2}=3, X_{1}=1
ight) &=& \mathbf{P}\left(Y_{2}+Y_{3}=2\mid Y_{1}=1, Y_{2}=2
ight) \ &=& \mathbf{P}\left(Y_{3}=0\mid Y_{1}=1, Y_{2}=2
ight) \ &=& 0, \end{aligned}$$

but

$$egin{aligned} \mathbf{P}\left(X_{3}=2\mid X_{2}=3, X_{1}=2
ight) &=& \mathbf{P}\left(Y_{2}+Y_{3}=2\mid Y_{1}=2, Y_{2}=1
ight) \ &=& \mathbf{P}\left(Y_{3}=1\mid Y_{1}=2, Y_{2}=1
ight) \ &=& \mathbf{P}\left(Y_{3}=1
ight) \ &=& 1/6, \end{aligned}$$

and therefore the Markov property is violated.

(d) At each stage, Y_k has equal probability of being 0 or 1. Since $X_k=Y_k\cdot X_{k-1}$, and we assume independent rolls, clearly X_k depends only on the $k^{\rm th}$ roll and the value of X_{k-1} . Therefore the Markov property is satisfied.

The transition probabilities are $p_{00}=1$, $p_{01}=0$, $p_{10}=1/2$, and $p_{11}=1/2$.

2. (a) For $X_k = Y_{r+k}$, and because the sequence $\{Y_k\}$ satisfies the Markov property,

$$egin{aligned} \mathbf{P}\left(X_{k+1} = j \mid X_k = i, X_{k-1} = i_{k-1}, \dots, X_1 = i_1
ight) \ &= \ \mathbf{P}\left(Y_{r+k+1} = j \mid Y_{r+k} = i, Y_{r+k-1} = i_{k-1}, \dots, Y_{r+1} = i_1
ight) \ &= \ \mathbf{P}\left(Y_{r+k+1} = j \mid Y_{r+k} = i
ight) \ &= \ \mathbf{P}\left(X_{k+1} = j \mid X_k = i
ight) \end{aligned}$$

Thus, the sequence $\{X_k\}$ satisfies the Markov property.

(b) For $X_k = Y_{2k}$, and because the sequence $\{Y_k\}$ satisfies the Markov property,

$$egin{aligned} \mathbf{P}\left(X_{k+1} = j \mid X_k = i, X_{k-1} = i_{k-1}, \ldots, X_1 = i_1
ight) \ &= \ \mathbf{P}\left(Y_{2k+2} = j \mid Y_{2k} = i, Y_{2k-2} = i_{k-1}, \ldots, Y_2 = i_1
ight) \ &= \ \mathbf{P}\left(Y_{2k+2} = j \mid Y_{2k} = i
ight) \ &= \ \mathbf{P}\left(X_{k+1} = j \mid X_k = i
ight) \end{aligned}$$

Thus, X_k satisfies the Markov property. The transition probabilities p_{ij} are given by

$$egin{array}{ll} p_{ij} &=& \mathbf{P}\left(X_{k+1} = j \mid X_k = i
ight) \ &=& \mathbf{P}\left(Y_{2k+2} = j \mid Y_{2k} = i
ight) \ &=& r_{ij}^y\left(2
ight), \end{array}$$

where $r_{ij}^y\left(n
ight)$ are the n-step transition probabilities of the Markov chain $\{Y_k\}$.

(c) Note that

$$egin{aligned} \mathbf{P}\left(X_{k+1} = (n,\ell) \mid X_1 = (i_1,i_2)\,, X_2 = (i_2,i_3)\,, \ldots, X_k = (i_k,n)
ight) \ &= \ \mathbf{P}\left(Y_{k+1} = n, Y_{k+2=\ell} \mid Y_1 = i_1, Y_2 = i_2, Y_3 = i_3, \ldots, Y_k = i_k, Y_{k+1} = n
ight) \ &= \ \mathbf{P}\left(Y_{k+2} = \ell \mid Y_1 = i_1, Y_2 = i_2, \ldots, Y_k = i_k, Y_{k+1} = n
ight) \ &= \ \mathbf{P}\left(Y_{k+2} = \ell \mid Y_k = i_k, Y_{k+1} = n
ight) \ &= \ \mathbf{P}\left(Y_{k+1} = n, Y_{k+2} = \ell \mid Y_k = i_k, Y_{k+1} = n
ight) \ &= \ \mathbf{P}\left(X_{k+1} = (n,\ell) \mid X_k = (i_k,n)
ight). \end{aligned}$$

Therefore the Markov property is satisfied.

Letting $i=(i_k,i_{k+1})$ and $j=(n,\ell)$, the transition probabilities p_{ij} are given by

$$p_{ij} = \mathbf{P}\left(X_{k+1} = (n,\ell) \mid X_k = (i_k,i_{k+1})
ight) = egin{cases} q_{n\ell}, & ext{if } i_{k+1} = n, \ 0, & ext{if } i_{k+1}
eq n, \end{cases}$$

where $q_{n\ell}$ are the transition probabilities associated with the Markov chain $\{Y_k\}.$

Submit

You have used 0 of 3 attempts

1 Answers are displayed within the problem

Discussion Topic: Unit 10: Markov chains:Problem Set 10 / 3. Checking the Markov property Show all posts 2b solution question Community TA Any explanation for 1 (c)? Hide Discussion by recent activity 2b solution question 1

© All Rights Reserved

