Distributed Deep Learning with Apache Spark and TensorFlow

Jim Dowling, Logical Clocks AB

The Cargobike Riddle

Dynamic Executors (release CRUs who

(release GPUs when training finishes)

Spark & —— TensorFlow

Spark (Data Prep)

Spark Streaming (Monitoring Models)

Container (GPUs)

ML Pipeline HopsML

Potential Bottlenecks

HopsML Spark/TensorFlow Arch

Why Distributed Deep Learning?

All Roads Lead to Distribution

(Because DL Theory Sucks!)

Hyperparameter Optimization

Faster Experimentation

Declarative or API Approach?

- Declarative Hyperparameters in external files
 - Vizier/CloudML (yaml)
 - Sagemaker (json)*
- API-Driven
 - Databrick's MLFlow
 - HopsML

^{*}https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html

Google CloudML Hyperparameters

scaleTier: CUSTOM
workerCount: 9
parameterServerCount: 3
hyperparameters:
maxParallelTrials: 1
params:
- parameterName: hidden1
type: INTEGER
minValue: 40

scaleType: UNIT LINEAR SCALE

maxValue: 400

 parameterName: numRnnCells type: DISCRETE discreteValues:

- 1

- 2

- parameterName: rnnCellType type: CATEGORICAL categoricalValues:
 - BasicRNNCell
 - GRUCell
 - LSTMCell

https://cloud.google.com/ml-engine/docs/tensorflow/using-hyperparameter-tuning

GridSearch for Hyperparameters on HopsML

```
def train(learning_rate, dropout):
 [TensorFlow Code here]
args_dict = {'learning_rate': [0.001, 0.005, 0.01],
              'dropout': [0.5, 0.6]}
experiment.launch(train, args_dict)
                           Launch 6 Spark Executors
```


Distributed Training

Model Parallelism

Data Parallelism

(Synchronous Stochastic Gradient Descent (SGD))

Data Parallel Distributed Training

Frameworks for Distributed Training

Distributed TensorFlow / TfOnSpark

TF_CONFIG

Bring your own Distribution!

- 1. Start all processes for P1,P2, G1-G4 yourself
- 2. Collect all IP addresses in TF_CONFIG along with GPU device IDs.

RingAllReduce (Horovod)

- Bandwidth optimal
- Automatically builds the ring (MPI)
- Supported by HopsML and Databricks' HorovodEstimator

Tf CollectiveAllReduceStrategy

TF CONFIG

Bring your own Distribution!

- Start all processes for G1-G4 yourself
- 2. Collect all IP addresses in TF_CONFIG along with GPU device IDs.

Available from TensorFlow 1.11

HopsML CollectiveAllReduceStrategy

- Uses Spark/YARN to add distribution to TensorFlow's CollectiveAllReduceStrategy
 - Automatically builds the ring (Spark/YARN)

https://github.com/logicalclocks/hops-util-py

CollectiveAllReduce vs Horovod Benchmark

TensorFlow: 1.11

Model: Inception v1

Dataset: imagenet (synthetic)

Batch size: 256 global, 32.0 per device

Num batches: 100

Optimizer Momemtum

Num GPUs: 8

AllReduce: **collective**

 Step
 Img/sec
 total_loss

 1
 images/sec: 2972.4 +/- 0.0

 10
 images/sec: 3008.9 +/- 8.9

 100
 images/sec: 2998.6 +/- 4.3

TensorFlow: 1.7

Model: Inception v1

Dataset: imagenet (synthetic)

Batch size: 256 global, 32.0 per device

Num batches 100

Optimizer Momemtum

Num GPUs: 8

AllReduce: horovod

Step Img/sec total_loss

images/sec: 2816.6 +/- 0.0

10 images/sec: 2808.0 +/- 10.8

100 images/sec: 2806.9 +/- 3.9

total images/sec: 2993.52

total images/sec: 2803.69

https://groups.google.com/a/tensorflow.org/forum/#!topic/discuss/7T05tNV08Us

Small Model

CollectiveAllReduce vs Horovod Benchmark

TensorFlow: 1.11

Model: VGG19

Dataset: imagenet (synthetic)

Batch size: 256 global, 32.0 per device

Num batches: 100

Optimizer Momemtum

Num GPUs: 8

AllReduce: **collective**

StepImg/sectotal_loss1images/sec: 634.4 +/- 0.010images/sec: 635.2 +/- 0.8100images/sec: 635.0 +/- 0.5

TensorFlow: 1.7

Model: VGG19

Dataset: imagenet (synthetic)

Batch size: 256 global, 32.0 per device

Big Model

Num batches 100

Optimizer Momemtum

Num GPUs: 8

AllReduce: horovod

 Step
 Img/sec
 total_loss

 1
 images/sec: 583.01 +/- 0.0

 10
 images/sec: 582.22 +/- 0.1

100 images/sec: 583.61 +/- 0.2

total images/sec: **634.80**

total images/sec: 583.61

https://groups.google.com/a/tensorflow.org/forum/#!topic/discuss/7T05tNV08Us

Reduction in LoC for Dist Training

Released	Framework	Lines of Code in Hops
March 2016	DistributedTensorFlow	~1000
Feb 2017	TensorFlowOnSpark*	~900
Jan 2018	Horovod (Keras)*	~130
June 2018	Databricks' HorovodEstimator	~100
Sep 2018	HopsML (Keras/CollectiveAllReduce)*	~100

*https://github.com/logicalclocks/hops-examples

**https://docs.azuredatabricks.net/_static/notebooks/horovod-estimator.html

HopsML CollectiveAllReduceStrategy with Keras

```
def distributed_training():
    def input_fn(): # return dataset
    model = ...
    optimizer = ...
    model.compile(...)
    rc = tf.estimator.RunConfig('CollectiveAllReduceStrategy')
    keras_estimator = tf.keras.estimator.model_to_estimator(....)
    tf.estimator.train_and_evaluate(keras_estimator, input_fn)
```

experiment.allreduce(distributed_training)

HopsML CollectiveAllReduceStrategy

- Scale to 10s or 100s of GPUs on Hops
- Generate Tensorboard Logs in HopsFS
- Checkpoint to HopsFS
- Save a trained model to HopsFS
- Experiment History
 - Reproducible training

Add Tensorboard Support

```
def distributed training():
  from hops import tensorboard
  model_dir = tensorboard.logdir()
  def input_fn(): # return dataset
  model = ...
  optimizer = ...
  model.compile(...)
  rc = tf.estimator.RunConfig('CollectiveAllReduceStrategy')
  keras_estimator = keras->model_to_estimator(model_dir)
  tf.estimator.train_and_evaluate(keras_estimator, input_fn)
```

experiment.allreduce(distributed_training)

GPU Device Awareness

```
def distributed_training():
  from hops import devices
  def input_fn(): # return dataset
  model = ...
  optimizer = ...
  model.compile(...)
  est->RunConfig(num_gpus_per_worker=devices.get_num_gpus())
  keras_estimator = keras->model_to_estimator(...)
  tf.estimator.train_and_evaluate(keras_estimator, input_fn)
```

experiment.allreduce(distributed_training)

Experiment Versioning (.ipynb, conda, results)

```
def distributed_training():
    def input_fn(): # return dataset
    model = ...
    optimizer = ...
    model.compile(...)
    rc = tf.estimator.RunConfig('CollectiveAllReduceStrategy')
    keras_estimator = keras->model_to_estimator(...)
    tf.estimator.train_and_evaluate(keras_estimator, input_fn)
```

```
notebook = hdfs.project_path()+'/Jupyter/Experiment/inc.ipynb'
experiment.allreduce(distributed_training, name='inception',
    description='A inception example with hidden layers',
    versioned_resources=[notebook])
```


Experiment Versioning/History/Reproduce

The Data Layer

The Data Layer

FEED_DICT is single threaded (Python GIL)
TensorFlow Dataset API does not support DFs

- Petastorm (Uber) for Parquet->TensorFlow training
- What about Datafiles (.csv, images, txt)?

HopsFS

- HDFS derivative with Distributed Metadata
 - 16X HDFS throughput.
 - Winner IEEE Scale Prize 2017
- Integrates NVMe disks transparently*
 - Store small files (replicated) on NVMe hardware

a. File Write Performance

^{*}Size Matters: Improving the Performance of Small Files in Hadoop, Middleware 2018. Niazi et al

Model Serving on Kubernetes

Kubernetes Model Serving

Elastic scaling for model serving

- Supports:
 - Fault tolerance
 - Rolling release new models
 - Autoscaling

Model Monitoring with Spark Streaming

- Log model inference requests/results to Kafka
- Spark monitors model performance and input data
- When to retrain?
 - If you look at the input data and use covariant shift to see when it deviates significantly from the data that was used to train the model on.

Orchestrating HopsML Workflows

Summary

The future of Deep Learning is Distributed
 https://www.oreilly.com/ideas/distributed-tensorflow

 Hops is a new Data Platform with first-class support for Python / Deep Learning / ML / Data Governance / GPUs

