

Document And Report Documentation Page Submitted as edoc_1075733324

Report I	Form Approved OMB No. 0704-0188				
reviewing instructions, searching the collection of information, including suggest Operations and Reports, 1215	ormation. Send comments regarding this burden, to V	g and mantain ng this burden Vashington Ho 204, Arlington be subject to	ge 1 hour per response, including the time for ning the data needed, and completing and n estimate or any other aspect of this collection of leadquarters Services, Directorate for Information n VA 22202-4302. Respondents should be aware a penalty for failing to comply with a collection		
1. REPORT DATE 13 MAR 2003	2. REPORT TYPE N/A	3.	ATES COVERED		
4. TITLE AND SUBTITLE Array Shape Tracking Using Active Sonar Reverberation			5a. CONTRACT NUMBER		
			5b. GRANT NUMBER		
			5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)			5d. PROJECT NUMBER		
			5e. TASK NUMBER		
		5f. WORK UNIT NUMBER			
Duke University, Dep	ATION NAME(S) AND ADDRES partment of Electrical and ig, Durham, NC 27708	8. PERFORMING ORGANIZATION REPORT NUMBER			
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)		
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAILA Approved for public	ABILITY STATEMENT release, distribution unli	imited			
13. SUPPLEMENTARY NO Also see: ADM00152	TES 0 , The original documen	nt contain	s color images.		
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFICA	ATION OF:	18. 19a. NAME OF RESPONSIBLE			

a. REPORT unclassified	b. ABSTRACT unclassified		LIMITATION OF ABSTRACT	OF PAGES	PERSON Patricia Mawby, EM 1438 PHONE:(703) 767-9038 EMAIL:pmawby@dtic.mil
---------------------------	-----------------------------	--	------------------------------	-------------	---

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18

pwd: cannot determine current directory!

Lincoln Laboratory ASAP-2003 Workshop

A Tay Shabe Tacking Using Active

Vijay Varadarajan and Jeffrey Krolik

Duke University

Department of Electrical and Computer Engineering Durham, NC 27708

Supported by the ONR 321US 6.1 Program

20040317 131

Array Shape Tracking from Active Sonar Clutter

OBJECTIVE: To estimate and track the shape of a towed distorted-linear array using reverberation from active sonar pings as a distributed squrce of opportunity.

BACKGROUND:

- al. (1993), by applying Kalman filtering with a state equation derived from spatio-temporal discretization Array shape estimation using heading and depth sensors has been previously developed, e.g. Gray et of the simplified Paidoussis equation (water-pulley model) for array motion.
- Acoustic sources of opportunity have been employed for array shape estimation by fitting transverse element displacements to measuring inter-element phase differences e.g. Owsley (1980).
- For mid-frequency active sonar arrays the above methods may be precluded since it may be infeasible to instrument the array with a sufficient number of heading sensors and strong point sources of opportunity may not always be available in the presence of strong reverberation.
- Clutter has previously been used for element gain and phase calibration of a uniform linear airborne radar array (Robey, Fuhrmann, and Krisch, 1994) but not for array shape estimation.
- We propose constrained maximum likelihood array shape estimation from clutter (ASEC) which uses an array shape-dependent model of spatially-distributed, Doppler-spread reverberation.
- Array shape parameters are tracked within and across pings by using ML ASEC heading estimates as input to a Kalman filter whose state equation incorporates a dynamical model for array motion.

Motivation for Array Shape Estimation

ing targets with Doppler-sensitive waveforms is limited by

- Uncompensated array distortion causes increased clutter rank and target masking.
- Simulation example angle-Doppler spectrum from *perfectly compensated* array (left) vs. uncompensated *distorted* array (right). Note target masked by reverberation due to beamformer sidelobes of uncompensated array

Array Shape Estimation from Clutter Concept

Reverberation Received at a Distorted Array

for a distorted array moving with velocity v_a along the x direction is modeled as: The clutter data from the n^{th} sensor located at (x_n, y_n) at time $t_m = \tau + mT_r$

where $\alpha(\theta_k, \phi_l)$ is the complex Gaussian scatter amplitude from clutter at azimuth, θ_k , and multipath elevation, ϕ_1 . Sensor coordinates can be expressed in terms of heading μ and inter-element spacing das $x_n = d \sum_{i=1} \cos(\mu_i)$, $y_n = d \sum_{i=1} \sin(\mu_i)$, $0 \le n \le N - 1$, $(x_0, y_0) = (0, 0)$.

Space-Time Reverberation Model

 $\theta_i \in [-\pi, \pi)$, $1 \le i \le N_\theta$ and elevation angles $|\phi_j| \le \phi_{\max}$, $1 \le j \le N_\phi$, can be written as The space-time data snapshot at time t_k consisting of clutter from all azimuths

where $\mathbf{\mu}_k = \begin{bmatrix} \mu_k^1 & \cdots & \mu_k^{N-1} \end{bmatrix}^T$, $\mathbf{V}(\mathbf{\mu}_k) = \begin{bmatrix} \mathbf{v}(\boldsymbol{\theta}_1, \boldsymbol{\phi}_1, \mathbf{\mu}_k) & \cdots & \mathbf{v}(\boldsymbol{\theta}_{N_\theta}, \boldsymbol{\phi}_{N_\theta}, \mathbf{\mu}_k) \end{bmatrix}$ is the clutter

steering matrix, η_k represents unknown scattering, and noise $\epsilon_k \in M^{N\times 1}$ has covariance $\sigma_\epsilon^2 I_{MN}$.

The $((i-1)N_{\theta}+j)^{th}$ column of $\mathbf{V}(\mathbf{\mu}_{k})$ is $\mathbf{v}(\theta_{i},\phi_{j},\mathbf{\mu}_{k})=\mathbf{b}(\varpi_{ij})\otimes\mathbf{a}(\theta_{i},\phi_{j},\mathbf{\mu}_{k})$ which represents the return from a single clutter patch at location (θ_i, ϕ_j) .

Array shape parameters μ_k are assumed constant over the sub-CPI.

clutter subspace of $V(\mu_k)$ to the observed received space-time snapshot, \mathbf{r}_k . Array shape parameters μ_k estimated by fitting the low rank (< MN)

Meel wesk Goold Pareers

Clutter Eigenvalues for a Distorted Linear Array

Maximum Likelihood Array Shape Estimation

The N-1 array shape headings can be parameterized by a low dimensional subspace using $(N-1)\times(L-N)$ arbitrary but known shape basis as $\mu_k = \Psi \gamma_k$.

The likelihood function for γ_k for the model reduces to minimizing the projection:

$$\hat{\mathbf{\gamma}}_k = \operatorname*{arg\,min}_{\mathbf{\gamma}_k} f(\mathbf{\gamma}_k) = \left\| \mathbf{F}(\mathbf{\gamma}_k) \mathbf{r}_k \right\|^2$$

where $\mathbf{P}(\gamma_k) = \mathbf{I} - \mathbf{V}(\gamma_k) (\mathbf{V}(\gamma_k))^H \mathbf{V}(\gamma_k))^{-1} \mathbf{V}^H(\gamma_k)$ is the projection matrix onto the orthogonal complement of the clutter subspace.

Evaluation of $\log(f(\gamma))$ (right) for L=2 demonstrates left-right ambiguity in shape estimate corresponding to mirrored solutions about the array axis.

Constrained ML ASEC Algorithm

single off-axis sensor which can be expressed as a linear constraint on the shape basis coefficients as The left-right shape ambiguity can be resolved with knowledge of the position or heading of a

$$\Sigma^{\mathrm{T}} \gamma_{k} = g$$
.

The ML ASEC estimate can be obtained iteratively using a gradient projection approach (e.g. Frost (1972)):

$$\hat{\mathbf{\gamma}}_{t}^{J+1} = \mathbf{\gamma}_{c} + \mathbf{P}_{c}^{+} (\hat{\mathbf{\gamma}}_{t}^{J} - \boldsymbol{\xi} \mathbf{I}^{U})$$

where $\gamma_c = \mathbf{P}_c \hat{\gamma}_k^{\ \prime} = \mathbf{c}(\mathbf{c}^T \mathbf{c})^{-1} g$ is the projection of the current solution (\mathbf{j}^{th} iteration) onto the constraint subspace, $\mathbf{P}_c^{\ \prime} = \mathbf{I} - \mathbf{P}_c$, $\left[\mathbf{f}^{\prime} \right]_i = \left[\frac{\partial f(\gamma)}{\partial [\gamma_k]_i} \right]_{\gamma = \hat{\gamma}'} = -2\Re \left\{ \mathbf{r}_k^{\ \prime} \mathbf{P}(\gamma_k) \mathbf{V}_i(\gamma_k) \left(\mathbf{V}(\gamma_k)^H \mathbf{V}(\gamma_k) \right)^{-1} \mathbf{V}(\gamma_k)^H \mathbf{r}_k \right\}$, $0 < \xi < 1$.

The matrix $\mathbf{V}_i(\gamma_k) = \frac{\partial \mathbf{V}(\gamma_k)}{\partial [\gamma_k]_i}$ can be computed analytically by assuming the temporal component of the

steering matrix is independent of array shape distortion over a sub-CPI, and an analytic form for $V(\gamma_k)$ obtained by judicious sampling of the clutter wavenumber spectrum.

The rank of $V(\gamma_k)$ is assumed constant and can be chosen so that it does not change over the set of possible array distortions. possible array distortions.

Incorporating Array Dynamics into ASEC

- A Kalman filter can be used to track the array shape coefficients across multiple sub-CPI intervals during a ping.
- The state vector $\mathbf{\mu}_{k+1}$ can be related to $\mathbf{\mu}_k$ using the water-pulley model:

$$\boldsymbol{\mu}_{k+1} = \boldsymbol{F} \boldsymbol{\mu}_k + \boldsymbol{u}_k + \boldsymbol{v}_{1k}$$

tow-cable driving term, \mathbf{v}_{1k} and represents white state noise with $\sigma_{\mathbf{v}_1}^{-2}\mathbf{I}$. It can be shown that the displacement velocity along the array is determined by $\rho = \tilde{\rho} \beta/2$. where $\mathbf{F} = (1 - \rho)\mathbf{I} + \rho \mathbf{L}$ is the state transition matrix, $\mathbf{u}_k = \begin{bmatrix} \mu_k & \mathbf{0}_{1 \times N - 2} \end{bmatrix}^H$ is the

An observation equation can be defined using the MLE $\mathbf{z}_k = \hat{\boldsymbol{\mu}}_k$ from each sub-CPI:

$$\mathbf{Z}_k = \mathbf{\mu}_k + \mathbf{v}_{2k}$$

where v_{2k} is the measurement noise with covariance $\sigma_{v_2}^{-1}I$.

The predicted MMSE array shape is used to initialize the next ASEC MLE search.

Array Dynamical Model Validation Using TB-29 Data

- Real heading sensor data from a TB-29 array (left) vs. time (sec), courtesy of Bruce Newhall at APL/JHU, indicates water pulley model valid for mild maneuvers.
- · Transverse distortion over CPI (right) validates assumption of rigid short-time motion.

TB-29 Heading Sensor Eigenbasis

- Empirical orthogonal basis vectors (left) for headings derived from 6 heading sensor TB-29 data (interpolated to 11 sensors) demonstrate characteristic behavior.
- TB-29 heading sensor eigen-spectrum (right) indicates most of the variation captured by less than 4 modes.

ASEC versus Heading Only Shape Estimation

- Illustrative simulation comparison of ASEC versus headings only tracking of a mild maneuver as seen in the middle of the array based on TB-29 heading data (left).
- Simulation assumes ASEC with 1.2 s. moving window sub-CPI, 4 EOF basis, spacetime snapshot dimension 144 and clutter rank of 55.
- Heading (left) and error (right) for ASEC and 2 heading-sensor tracking as in MFTA.

RMS Heading Error along the Array verus Time

- Simulated RMSE for 2-sensor headings-only tracking error (left) and ASEC (right) over 40 second ping along the array, ensemble averaged over initial condition perturbations and clutter realizations.
- (left). Error largest in the middle of the array since headings known at the end and Observe propagation of error down the array with time using water-pulley model at tow-point offset from first sensor.

Angle-Doppler Spectrum for Distorted Array

- beamforming-Doppler spectra outputs simulated for continuous array motion. Impact of ASEC tracking on sonar performance illustrated by conventional
- Time-evolving simulated array shapes based on scaled TB-29 motion model (left). Angle-Doppler spectrum with 10 dB target for perfect array compensation (right).

16

Luke Linversity
Shool of Ingineering

ASEC vs. Headings-only Tracking Angle-Doppler Spectra

- Spectrum for conventional array tracking for WP model with 2 heading sensors (left).
- Spectrum for ASEC tracking with 4 basis functions, 1.2 s. sub-CPI sliding window, and CNR = 30 dB (right). Target visible at zero-Doppler and 45 degree bearing.

ASEC Summary and Future Work

- Distortion of nominally linear arrays will often result in a substantial increase in spatial sidelobe levels which can mask slowly-moving targets.
- to a sliding window of sub-CPI space-time snapshots over the extent of each sonar return. ML estimation of array shape is facilitated by fitting a reduced-rank reverberation model
- Shape ambiguities can be resolved by efficiently maximizing likelihood subject to a constraint which incorporates measurements from at least a single heading sensor.
- incorporating an array dynamical model and driven by a tow-cable heading sensor output. Constrained ML ASEC heading estimates are used as inputs to a Kalman tracker
- tracking can facilitate improved array compensation compared to headings-only tracking. Simulations using array motion scaled from real TB-29 heading data suggests that ASEC
- Future work will include ASEC performance evaluation with real 53C/MFTA data.

