Data Mining Project

Members Names:

Name	ID
1- زياد محمد الخطيب	22010100
2- قمر مسلم برازي	22011438
3- عبد الرحمن احمد محمد	22011620
4- تبيان أشرف عبدالله	22011497
5- احمد عماد عبد الفتاح	22010027
6- محمد محمود نعيم	22010231

1) Dataset

Link: https://www.kaggle.com/datasets/prishasawhney/imdb-dataset-top-2000-movies

Description: This dataset contains a list of the top 2000 movies as rated by users on IMDb (Internet Movie Database). Each entry in the dataset represents a movie and includes key information such as the title, year of release, genre, runtime, IMDb rating, and number of votes.

The dataset contains 10 columns:

- 1. The name of the movie
- 2. The Year of release
- 3. The running time of the movie (in minutes)
- 4. It's IMDB Rating
- 5. It's metascore
- 6. The number of votes it got
- 7. The Genre of the movie
- 8. The director of the movie
- 9. The cast of the movie
- 10. Gross value
- b objectives: perform some clustering algorithms (K-medoid, hierarchical) and find relations between columns and each other based on gross value.

2) Code:

• Import libraries & dataset.

- pandas: for dataframes
- numbpy: for numerical problems (arrays, multidim array)
- matplot: visualizationseaborn: visualization
- plotly.express: interactive visualization
- plotly.graph_objects: interactive visualization
- * datetime: deal with time and date
- ❖ wordcloud: visualization of text data e.g. (frequency of each word)
- sklearn: clustering algorithms (K-medoid , hierarchical)

Exploration

❖ Display dataframe

i] \square	# display the first 5 rows in our data df.head() # if we want to diplay all rows in the data set we can use to_string() function # but this is not recommended in large data sets 1 ✓ 0.00s														
	Movie Name	Release Year	Duration	IMDB Rating	Metascore	Votes	Genre	Director	Cast	Gross					
0	The Godfather	1972	175	9.2	100.0	2,002,655	Crime, Drama	Francis Ford Coppola	Marlon Brando	\$134.97M					
1	The Godfather Part II	1974	202	9.0	90.0	1,358,608	Crime, Drama	Francis Ford Coppola	Al Pacino	\$57.30M					
2	Ordinary People	1980	124	7.7	86.0	56,476	Drama	Robert Redford	Donald Sutherland	\$54.80M					
3	Lawrence of Arabia	1962	218	8.3	100.0	313,044	Adventure, Biography, Drama	David Lean	Peter O'Toole	\$44.82M					
4	Straw Dogs	1971	113	7.4	73.0	64,331	Crime, Drama, Thriller	Sam Peckinpah	Dustin Hoffman	NaN					

Theoretical info.

```
df.info()
... <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 2000 entries, 0 to 1999
     Data columns (total 10 columns):
                          Non-Null Count Dtype
      # Column
      0 Movie Name 2000 non-null object
          Release Year 2000 non-null object
Duration 2000 non-null int64
           IMDB Rating 2000 non-null float64
          Metascore 1919 non-null float64
Votes 2000 non-null object
Genre 2000 non-null object
Director 2000 non-null object
Cast 2000 non-null object
       4
       6 Genre
       8 Cast
                           1903 non-null object
      9 Gross
      dtypes: float64(2), int64(1), object(7)
      memory usage: 156.4+ KB
```

Statistical info. (just for numeric columns)

> ~	#-display-Descriptive-statistics-of-the-data-set-using-describe-function #-like-5-number-summary,-mean-and-std- df.describe()													
6]														
		Duration	IMDB Rating	Metascore										
	count	2000.000000	2000.000000	1919.000000										
	mean	113.939000	6.922600	61.044294										
	std	22.946035	0.955618	17.937722										
	min	50.000000	1.500000	9.000000										
	25%	98.000000	6.400000	48.000000										
	50%	110.000000	7.000000	61.000000										
	75%	125.000000	7.600000	74.000000										
	max	271.000000	9.300000	100.000000										

Exploration

❖ Check for null values.

Before

```
df.isnull().sum()
✓ 0.0s
Movie Name
Release Year
               0
Duration
IMDB Rating
               0
Metascore
               81
Votes
Genre
Director
               0
Cast
Gross
               97
dtype: int64
```

After drop

Check for duplicated values.

```
# Now let us check the existance of duplicated rows

df.duplicated().sum()

# There is no duplicated rows because the sum of them is 0

70 

0005
```

No Duplicate values

* Remove non-digits from 'Release Year' Column and convert to numeric

* Change ['Gross' & 'votes'] data types from object to numeric.

* Clean outliers (unnormal values) in 'Gross' column by IQR method

1

Before

plt.boxplot(df["Gross"]) plt.show() 700 600 500 400 300 200 100 0 1

After

Visualizations

Finding top 10 movies for all time according to the Gross

```
# This function show the top 10 movies according to a parameter named column

# If we don't send a data frame as a second parameter the default is df

def top_10_movies(column, df = df):
    data = df.sort_values(by = column, ascending = False, ignore_index = True)
    data = data["Movie Name", column]].head(10)
    plt.figure(figsize=(9, 5))
    sns.barplot(data = data, x = column, y = "Movie Name", palette = "viridis")
    plt.tight_layout()
    plt.tight_layout()
    plt.show()

# This function show the top 10 categories according to a parameter named column

# like the method above if we don't send a data frame as a second parameter the default is df

def top_10_by_category(column, df = df):
    data = df.groupby(column)["Gross"].sum()
    data = data.nlargest(10)
    plt.figure(figsize=(9, 5))
    sns.barplot(x = data.values, y = data.index, palette="viridis")
    plt.title(f'Top 10 {column} By Gross")
    plt.title(f'Top 10 {column})
    plt.tight_layout()
    plt.show()
```


Finding top 10 movies for all time according to the Rate

* Finding top 10 movies for all time according to the Metascore

Finding top 10 movies for all time according to the Votes

Finding top 10 longest movies

Finding top 10 genre for all time according to the gross

 \rightarrow we notice from this figure that genres [animation - adv - comedy] are the most grossable.

Finding top 10 director for all time according to the gross

Finding top 10 cast for all time according to the gross

Calculate number of movies released each year. (interactive)

The number of movies has increased recently, especially in the year 2003 to 2009

Back to a combination of industry growth, technological advancements, changing consumer preferences...

Calculate gross earnings statistics per year. (interactive)

Gross Earnings Over Time

- # As we can see in the graph below: -
- # 1937, the average (mean) earnings from movies were higher compared to other years
- # Movies were making more and more money each year

 How movies with different durations can still achieve critical and audience praise. (3d-interactive scatterplot)

Distribution of IMBD Ratings by Genre. (interactive)

IMDb Ratings Summary by Genre


```
# Genre with the lowest mean rating: Horror
# Genre with the highest mean rating: Film-Noir
```

Gross Earnings of Movies Categorized under Film-Noir. (interactive)

Films categorized under Film-Noir may have higher average ratings, their gross earnings might not necessarily reflect this

Gross Earnings of Movies Categorized under Horror. (interactive)

Films under the Horror genre seem to generate higher profits despite potentially lower average ratings

→ We Notice that the Horror genre have higher Gross & Profits than Film-noir despite of Horror is the lowest mean rating and Film-noir is the highest mean rating.

Word Count Plot (frequency of each word)

Larger and bolder
words indicate higher
frequency or prominence.

Hierarchical Clustering

Gross Feature Dendrogram

```
# Financial Performance
x1 = df[['Gross']]

Z = linkage(x1, method='ward', metric='euclidean')

labelList = List(df['Gross'])
plt.figure(figsize=(13, 12))
dendrogram(
Z,
orientation='top',
LabeLs=labelList,
distance_sort='descending',
Leaf_font_size=16)
plt.show()

# From the following dendrogram we can conclude that :-
# The clusters at the bottom represent movies with distinct low levels of financial success
# The separation between major clusters shows a clear distinction between movies with high and low gross performance
# The blue line indicates an outlier movie with significantly higher gross performance compared to the rest
```


The dense clustering at the bottom indicates a wide range of audience engagement levels, The blue lines represent movies that have won the appealing of the audience

* IMBD Rating Dendrogram

```
# High and Low IMDB Rating movies

x2 = df[['IMDB Rating']]

Z = linkage(x2, method='ward', metric='euclidean')

labelList = List(df['IMDB Rating'])
plt.figure(figsize=(13, 12))
dendrogram(
Z,
orientation='top',
LabeLs=labelList,
distance_sort='descending',
Leaf_font_size=16)
plt.show()

# The tall lines in the graph represent movies with exceptionally high IMDB ratings
```


The tall lines in the graph represent movies with exceptionally high IMDB ratings

* Metascore Dendrogram

```
# High and Low metascore movies
x3 = df[['Metascore']]

Z = linkage(x3, method='ward', metric='euclidean')

labelList = List(df['Metascore'])
plt.figure(figsize=(13, 12))
dendrogram(
Z,
orientation='top',
LabeLs=labelList,
distance_sort='descending',
Leaf font_size=16)
plt.show()

# The uniformity of the orange lines in the dendrogram below shows a consistent range of Metascore values across the dataset
# The lone blue line represents a movie with an outstanding Metascore, potentially a critically acclaimed masterpiece
[43]
```


The uniformity of the orange lines in the dendrogram below shows a consistent range of Metascore values across the dataset

The lone blue line represents a movie with an outstanding Metascore, potentially a critically acclaimed masterpiece

Votes Dendrogram

4. Votes Dendrogram

```
# High and low rating movies
x4 = df[['Votes']]

Z = linkage(x4, method='ward', metric='euclidean')

labelList = list(df['Votes'])
plt.figure(figsize=(13, 12))
dendrogram(
Z,
orientation='top',
labels=labelList,
distance_sort='descending',
leaf_font_size=16)
plt.show()

# The dense clustering at the bottom indicates a wide range of audience engagement levels
# The blue lines represent movies that have won the appealing of the audience
```


- # The dense clustering at the bottom indicates a wide range of audience engagement levels
- # The blue lines represent movies that have won the appealing of the audience

* IMDB Rating, Votes, Metascore Dendrogram

```
# Rating and PopuLarity
x5 = df[['IMDB Rating','Votes','Metascore']]

Z = linkage(x5, method='ward', metric='euclidean')

labelList = list(zip(df['IMDB Rating'], df['Votes'], df['Metascore']))
plt.figure(figsize=(13, 12))
dendrogram(
Z,
orientation='top',
labels=labelList,
distance_sort='descending',
leaf_font_size=16)
plt.show()

# Clusters formed at higher levels group movies based on their overall reception, considering ratings, votes, and Metascore

[45]
```


Clusters formed at higher levels group movies based on their overall reception, considering ratings, votes, and Metascore

Gross, IMDB Rating Dendrogram

```
#Financial success and IMDB Rating
x6 = df[['Gross', 'IMDB Rating']]
Z = linkage(x6, method='ward', metric='euclidean')

labelList = List(zip(df['Gross'], df['IMDB Rating']))
plt.figure(figsize=(13, 12))
dendrogram(
Z,
orientation='top',
Labels=labelList,
distance_sort='descending',
Leaf_fort_size=16)
plt.show()

# Clusters formed based on a movie's financial success and critical acclaim (IMDB Rating) show the intersection of commerce and art in the movie industry.
[46]
```


Clusters formed based on a movie's financial success and critical acclaim (IMDB Rating) show the intersection of commerce and art in the movie industry.

Gross, Votes Dendrogram

```
#financial success and audience reception
x7 = df[['Gross','Votes']]

Z = linkage(x7, method='ward', metric='euclidean')

labelList = List(zip(df['Gross'], df['Votes']))
plt.figure(figsize=(13, 12))
dendrogram(
Z,
orientation='top',
labels=labelList,
distance_sort='descending',
leaf_font_size=16)
plt.show()

# Clusters based on audience reception and financial success shows the balance between pleasing crowds and making money
# The blue line shows where financial success and audience popularity intersect
```


- # Clusters based on audience reception and financial success shows the balance between pleasing crowds and making money
- # The blue line shows where financial success and audience popularity intersect

IMDB Rating, Votes Dendrogram

```
# Critical acclaim and Popular appeal
x8 = df[['IMDB Rating','Votes']]

Z = linkage(x8, method='ward', metric='euclidean')

labelList = List(zip(df['IMDB Rating'], df['Votes'],))
plt.figure(figsize=(13, 12))
dendrogram(
Z,
orientation='top',
labels=labelList,
distance_sort='descending',
Leaf_font_size=16)
plt.show()

# Clusters formed based on ratings and audience shows the dynamics between critical acclaim and public reception and appeal
```


Clusters formed based on ratings and audience shows the dynamics between critical acclaim and public reception and appeal

* Add the cluster labels for each row in the dataframe

	Movie Name	Release Year	Duration	IMDB Rating	Metascore	Votes	Genre	Director	Cast	Gross	Cluste
(The Godfather	1972	175	9.2	100.0	2002655.0	Crime, Drama	Francis Ford Coppola	Marlon Brando	134.97	
	1 The Godfather Part II	1974	202	9.0	90.0	1358608.0	Crime, Drama	Francis Ford Coppola	Al Pacino	57.30	
	2 Ordinary People	1980	124	7.7	86.0	56476.0	Drama	Robert Redford	Donald Sutherland	54.80	
	3 Lawrence of Arabia	1962	218	8.3	100.0	313044.0	Adventure, Biography, Drama	David Lean	Peter O'Toole	44.82	
	Close Encounters of the Third Kind	1977	138	7.6	90.0	216050.0	Drama, Sci-Fi	Steven Spielberg	Richard Dreyfuss	132.09	
199	The Young Victoria	2009	105	7.2	64.0	66235.0	Biography, Drama, History	Jean-Marc Vallée	Emily Blunt	11.00	
199	5 Tooth Fairy	2010	101	5.0	36.0	49527.0	Comedy, Family, Fantasy	Michael Lembeck	Dwayne Johnson	60.02	
1997	7 The Informant!	2009	108	6.5	66.0	67318.0	Biography, Comedy, Crime	Steven Soderbergh	Matt Damon	33.31	
199	Youth in Revolt	2009	90	6.4	63.0	75956.0	Comedy, Drama, Romance	Miguel Arteta	Michael Cera	15.28	
199	9 Quarantine	2008	89	6.0	53.0	77075.0	Horror, Sci-Fi, Thriller	John Erick Dowdle	Jennifer Carpenter	31.69	

K-medoid Clustering

```
# List all movie names in a variable called labels
labels = list(df['Movie Name'])

[50]

# StandardScaler function to standarize data to make them consistent
scale = StandardScaler()
```

1. Clustering based on IMDB Rating & Gross

This method determines what is the optimal number of clusters in our data set.

The best number of clusters located at the Elbow point (which in our case is 3)

```
# Perform k_Medoids on our scaled data ['IMDB Rating', 'Gross'] columns
# n_clusters parameter is 3 as we choose above
imdbr_gorss_km = KMedoids(n_clusters=3).fit(scaled_imdbr_gross)

# Create an array with clusters labels (the cluster that the data point belong to)
imdbr_gorss_km_labels = imdbr_gorss_km.labels_
print("The cluster labels are:\n", imdbr_gorss_km_labels, '\n')

# Determine the medoids
imdbr_gorss_medoids = imdbr_gorss_km.cluster_centers_
print("The medoids are:\n", imdbr_gorss_medoids)

**The cluster labels are:
[2 0 0 ... 1 1 1]

The medoids are:
[[ 0.63971664 -0.50646888]
[-0.78846882 -0.314231 ]
[ 0.20027496    1.06372469]]
```

K-Medoids Silhouette Score of IMDB Rating & gross (Accuracy)

```
kmedoids_silhouette_score = silhouette_score(scaled_imdbr_gross, imdbr_gorss_km_labels)
print("K-Medoids Silhouette Score:", kmedoids_silhouette_score)

v 0.0s

K-Medoids Silhouette Score: 0.4009900122179122
```

Here we add a new column named 'imdbr_gorss_clusters' which indicate the cluster of each row in our data set

	Movie Name	Release Year	Duration	IMDB Rating	Metascore	Votes	Genre	Director	Cast	Gross	Clusters	imdbr_gross_clusters
	The Godfather	1972	175	9.2	100.0	2002655.0	Crime, Drama	Francis Ford Coppola	Marlon Brando	134.97		2
	The Godfather Part II	1974	202	9.0	90.0	1358608.0	Crime, Drama	Francis Ford Coppola	Al Pacino	57.30		/ c
	Ordinary People	1980	124	7.7	86.0	56476.0	Drama	Robert Redford	Donald Sutherland	54.80		c
	Lawrence of Arabia	1962	218	8.3	100.0	313044.0	Adventure, Biography, Drama	David Lean	Peter O'Toole	44.82		
5 Clo	ose Encounters of the Third Kind	1977	138	7.6	90.0	216050.0	Drama, Sci-Fi	Steven Spielberg	Richard Dreyfuss	132.09		2
1995	The Young Victoria	2009	105	7.2	64.0	66235.0	Biography, Drama, History	Jean-Marc Vallée	Emily Blunt	11.00		C
1996	Tooth Fairy	2010	101	5.0	36.0	49527.0	Comedy, Family, Fantasy	Michael Lembeck	Dwayne Johnson	60.02		1
1997	The Informant!	2009	108	6.5	66.0	67318.0	Biography, Comedy, Crime	Steven Soderbergh	Matt Damon	33.31		1
1998	Youth in Revolt	2009	90	6.4	63.0	75956.0	Comedy, Drama, Romance	Miguel Arteta	Michael Cera	15.28		1
1999	Quarantine	2008	89	6.0	53.0	77075.0	Horror, Sci-Fi, Thriller	John Erick Dowdle	Jennifer Carpenter	31.69		1
1070	× 12 columns											

Cluster 0 (low gross high rating)

This bar plot represent cluster 0 sorted by IMDB Rating first then gross (Priority to IMDB Rating)

From the graph we can conclude that films with a high rating not necessarily have a high gross

Cluster 1 (low gross low rating)

```
# Cluster 1 plot
# These films have low rating and low gross (not attractive to audiences)
fig = px.bar(df_sorted_gross.loc[df['imdbr_gross_clusters'] == 1].head(60), x = 'Movie Name', y = 'Gross', color = 'Movie Name', hover_data={'IMDB Rating': True})
fig.update_layout(xaxis_title=None, yaxis_title='Gross Earnings', width=1100, height=850)
fig.show()

[59]
```


These films have low rating and low gross (not attractive to audiences)

Cluster 2 (high gross high rating)

```
fig = px.bar(df_sorted_gross.loc[df['imdbr_gross_clusters'] == 2].head(60), x = 'Movie Name', y = 'Gross', color = 'Movie Name', hover_data={'IMDB Rating': True})
fig.update_layout(xaxis_title=None, yaxis_title='Gross Earnings', width=1100, height=850)
fig.show()
```


These films have high rating and high gross (masterpiece movies)

```
plt.figure(figsize = (8, 6))

# Ne will use scatter plot to visualize our scaled_indbr_gross_data frame

# Plot Cluster 0
plt.scatter(x = scaled_indbr_gross[df['indbr_gross_clusters'] == 0, 0], y = scaled_indbr_gross[df['indbr_gross_clusters'] == 0, 1], c='skyblue', label='Cluster 0')

# Plot Cluster 1
plt.scatter(x = scaled_indbr_gross[df['indbr_gross_clusters'] == 1,0], y = scaled_indbr_gross[df['indbr_gross_clusters'] == 1, 1], c='salmon', label='Cluster 1')

# Plot Cluster 2
plt.scatter(x = scaled_indbr_gross[df['indbr_gross_clusters'] == 2,0], y = scaled_indbr_gross[df['indbr_gross_clusters'] == 2,1], c='lightgreen', label='Cluster 2')

# Place our medalds in the graph with a different color than the clusters to distinguish them
plt.scatter(indbr_gross_medalds[:, 0], indbr_gross_medalds[:, 1], marker='o', c='indigo', s=100, label='Nedolds')

plt.title('Wedolds Clustering Based On INDB Rating & Gross')
plt.xlabel('INDB Rating')
plt.ylabel('INDB Rating')
plt.gend()
plt.gend()
plt.gend()
plt.show()
```


- # The cluster in the upper right corner could represent high-grossing, high-rated movies. These might be blockbuster films that are both critically acclaimed and popular with audiences.
- # The cluster in the lower left corner could represent low-grossing, low-rated movies. These might be independent films or art house films that have not found a wide audience.
- # The other clusters could represent movies that fall somewhere in between, in terms of both gross and rating.

Conclusion

```
# Low 'Gross' High 'Rating' (Cluster 0)
print('Number of movies cluster 0: ', df.loc[df['imdbr_gross_clusters'] == 0].shape[0])
      print('cluster 0 mean gross : ', df.loc[df['imdbr_gross_clusters'] == 0]['Gross'].mean())
print('cluster 0 mean rating : ', df.loc[df['imdbr_gross_clusters'] == 0]['IMDB Rating'].mean())
       print('#----\n')
      print('Number of movies cluster 1: ', df.loc[df['imdbr_gross_clusters'] == 1].shape[0])
print('cluster 1 mean gross : ', df.loc[df['imdbr_gross_clusters'] == 1]['Gross'].mean())
print('cluster 1 mean rating : ', df.loc[df['imdbr_gross_clusters'] == 1]['IMDB Rating'].mean())
      print('#----\n')
      print('Number of movies cluster 2: ', df.loc[df['imdbr_gross_clusters'] == 2].shape[0])
      print('cluster 2 mean gross : ', df.loc[df['imdbr_gross_clusters'] == 2]['Gross'].mean())
print('cluster 2 mean rating : ', df.loc[df['imdbr_gross_clusters'] == 2]['IMDB Rating'].mean())
Number of movies cluster 0: 794
  cluster 0 mean gross : 31.199319899244337
  cluster 0 mean rating : 7.547229219143577
  Number of movies cluster 1: 686
  cluster 1 mean gross : 46.89472303206997
  cluster 1 mean rating : 6.057434402332361
  Number of movies cluster 2: 390
  cluster 2 mean gross : 175.51994871794872
  cluster 2 mean rating : 7.149230769230769
```

2. Clustering based on IMDB Rating & Duration

```
D ~
           imdbr_duration = df.loc[:, ['IMDB Rating', 'Duration']]
          imdbr duration.head()
           IMDB Rating Duration
               9.2
       0
                     9.0
                                 202
                            124
                     8.3
                                 218
                     7.6
                                 138
          scaled_imdbr_duration = scale.fit_transform(imdbr_duration)
          scaled_imdbr_duration
     array([[ 2.50734377, 2.75843486],
        [ 2.28762293, 3.97982044],
        [ 0.85943748, 0.45137321],
               [-0.45888756, -0.27241083],
               [-0.56874798, -1.08666789],
[-1.00818966, -1.13190439]])
```

```
wcss = []
for i in range(1, 11):
    kmedoids = KMedoids(n_clusters=i, random_state=0)
    kmedoids.fit(scaled_imdbr_duration)
    wcss.append(kmedoids.inertia_)
# Plot the elbow curve

plt.plot(range(1, 11), wcss, marker='o', linestyle='-', color='b')
plt.title('Elbow Method for Optimal K')
plt.xlabel('Number of Clusters (k)')
plt.ylabel('Within-Cluster Sum of Squares (WCSS)')
plt.xticks(np.arange(1, 11, 1))
plt.grid(True)
plt.show()

# As we can see there is no Elbow point because the duration, gross relation can not clustring the data well
# So we will choose 3 as a random number of clusters
```


- # As we can see there is no Elbow point because the duration, gross relation cannot clustering the data well
- # So, we will choose 3 as a random number of clusters
- # K-Medoids Silhouette Score of IMDB Rating & Duration (Accuracy)

From the following graph we can conclude that:-

```
plt.statter(x = scaled_imbtr_duration[df['imbtr_duration_clusters'] == 0, 0], y = scaled_imbtr_duration[df['imbtr_duration_clusters'] == 0, 1], c='skyblue', label='Cluster 0')

# Plot Cluster 1

plt.scatter(x = scaled_imbtr_duration[df['imbtr_duration_clusters'] == 1,0], y = scaled_imbtr_duration[df['imbtr_duration_clusters'] == 0, 1], c='salmon', label='Cluster 0')

# Plot Cluster 2

plt.scatter(x = scaled_imbtr_duration[df['imbtr_duration_clusters'] == 2,0], y = scaled_imbtr_duration[df['imbtr_duration_clusters'] == 2,1], c='lightgreen', label='Cluster 1')

# Place our medoids in the graph with a different color than the clusters to distinguish them

plt.scatter(imbtr_duration_encloids[; 0], imbtr_duration_encloids[; 1], marker='o', c='indigo', s=100, label='Medoids')

plt.title('Wedoids Clustering Based On DOB Rating & Duration')

plt.legend()

# Legend function to more information about the graph

plt.legend()

plt.grid()

plt.show()
```


- # The movies in the upper right cluster tend to have high IMDB ratings and long durations. These movies might be epics, dramas, or documentaries.
- # The movies in the lower left cluster tend to have low IMDB ratings and short durations. These movies might be comedies, horror films, or action films.
- # There are a few movies that are outliers, meaning that they do not fit neatly into any of the clusters. These movies might be cult classics or films that defy genre classification.

Conclusion

3. Check popularity and Gross

Plot the elbow curve

The Elbow point is 3 as we see in the graph below

K-Medoids Silhouette Score of popularity & gross (Accuracy)

```
kmedoids_silhouette_score3 = silhouette_score(scaled_gross_votes, gross_votes_km_labels)
print("K-Medoids Silhouette Score:", kmedoids_silhouette_score3)

K-Medoids Silhouette Score: 0.3787232189550813
```

```
# Perform k_Medoids on our scaled data ['Gross', 'Votes'] columns

gross_votes_km = KMedoids(n_clusters=3).fit(scaled_gross_votes)

gross_votes_km_labels = gross_votes_km.labels_
print("The cluster labels are:\n", gross_votes_km_labels, '\n')

gross_votes_medoids = gross_votes_km.cluster_centers_
print("The medoids are:\n", gross_votes_medoids)

**The cluster labels are:
[0 0 1 ... 1 1 1]

The medoids are:
[[ 1.63209207 1.08276649]
[-0.63426261 -0.46581238]
[ 0.16013822 -0.17155637]]
```

[74]	df[ˈ															Python
		Movie Name	Release Year	Duration	IMDB Rating	Metascore	Votes	Genre	Director	Cast	Gross	Clusters	imdbr_gross_clusters	imdbr_duration_clusters	gross_votes_cl	
		The Godfather	1972	175	9.2	100.0	2002655.0	Crime, Drama	Francis Ford Coppola	Marlon Brando	134.97					0
		The Godfather Part II	1974	202	9.0	90.0	1358608.0	Crime, Drama	Francis Ford Coppola	Al Pacino	57.30					
		Ordinary People	1980	124	7.7	86.0	56476.0	Drama	Robert Redford	Donald Sutherland	54.80					
		Lawrence of Arabia	1962	218	8.3	100.0	313044.0	Adventure, Biography, Drama	David Lean	Peter O'Toole	44.82					
		Close Encounters of the Third Kind	1977	138	7.6	90.0	216050.0	Drama, Sci-Fi	Steven Spielberg	Richard Dreyfuss	132.09					
1	1995	The Young Victoria	2009	105	7.2	64.0	66235.0	Biography, Drama, History	Jean-Marc Vallée	Emily Blunt	11.00					
1	1996	Tooth Fairy	2010	101	5.0	36.0	49527.0	Comedy, Family, Fantasy	Michael Lembeck	Dwayne Johnson	60.02					
1	1997	The Informant!	2009	108	6.5	66.0	67318.0	Biography, Comedy, Crime	Steven Soderbergh	Matt Damon	33.31					
1	1998	Youth in Revolt	2009	90	6.4	63.0	75956.0	Comedy, Drama, Romance	Miguel Arteta	Michael Cera	15.28					
	1999 370 row	Quarantine vs × 14 columns	2008	89	6.0	53.0	77075.0	Horror, Sci-Fi, Thriller	John Erick Dowdle	Jennifer Carpenter	31.69					

From the following graph we can conclude that: -

```
plt.figure(figsize=(8, 6))

# Plot Cluster 0
plt.scatter(x = scaled_gross_votes[df['gross_votes_clusters'] == 0, 0], y = scaled_gross_votes[df['gross_votes_clusters'] == 0, 1], c='skyblue', label='Cluster 0')

# Plot Cluster 1
plt.scatter(x = scaled_gross_votes[df['gross_votes_clusters'] == 1,0], y = scaled_gross_votes[df['gross_votes_clusters'] == 1, 1], c='salmon', label='Cluster 1')

# Plot Cluster 2
plt.scatter(x = scaled_gross_votes[df['gross_votes_clusters'] == 2,0], y = scaled_gross_votes[df['gross_votes_clusters'] == 2, 1], c='lightgreen', label='Cluster 2')

# Place our medoids in the graph with a different color than the clusters to distinguish them
plt.scatter(gross_votes_medoids[:, 0], gross_votes_medoids[:, 1], marker='o', c='indigo', s=100, label='Medoids')

plt.title('Medoids Clustering Based On Gross & Votes')
plt.xlabel('Medoids Clustering Based On Gross & Votes')
plt.ylabel('Votes')

# Legend function to more information about the graph
plt.legend()
plt.grid()
plt.show()
```


- # high 'Votes' high 'Gross' (cluster 0)
 # low 'Votes' low 'Gross' (cluster 1)
 # (Cluster 2) perpendent permal movies that
- # (Cluster 2) represent normal movies that
 does not have high votes not high gross

From the information below we can conclude that the 'Gross' is highly related with 'Votes'

***** Conclusion

```
# high 'Votes' high 'Gross' (cluster 0)
print('Number of sovies cluster 0: ', df.loc[df['gross_votes_clusters'] == 0].shape[0])
print('cluster 0 secilan votes: ', df.loc[df['gross_votes_clusters'] == 0]['Gross'].secilan())

print('lesser 0 secilan votes: ', df.loc[df['gross_votes_clusters'] == 0]['Gross'].secilan())

# Low 'Votes' Low 'Gross' (cluster 1)
print('Number of sovies cluster 1: ', df.loc[df['gross_votes_clusters'] == 1].shape[0])
print('cluster 1 secilan votes: ', df.loc[df['gross_votes_clusters'] == 1]['Gross'].secilan())

print('cluster 1 secilan gross: ', df.loc[df['gross_votes_clusters'] == 1]['Gross'].secilan())

# Cluster 2 represent normal movies that does not have high votes nor high gross
print('Number of sovies cluster 2: ', df.loc[df['gross_votes_clusters'] == 2].shape[0])
print('cluster 1 secilan votes: ', df.loc[df['gross_votes_clusters'] == 2].shape[0])
print('cluster 1 secilan votes: ', df.loc[df['gross_votes_clusters'] == 2]['Gross'].secilan())

# From the information below we can conclude that the 'Gross' is highly related with 'Votes'

| Number of sovies cluster 0: 250
| cluster 0 secilan votes: 571804.0
| cluster 0 secilan votes: 571804.0
| cluster 1 secilan votes: 95068.0
| cluster 1 secilan votes: 95068.0
| cluster 1 secilan votes: 95068.0
| cluster 1 secilan votes: 181408.0
| cluster 1 secilan votes: 181408.
```

Hierarchical & KMedoids Comparison

IMDB Rating & Gross

```
imdbr_gross_dendo = linkage(scaled_imdbr_gross, method='complete', metric='euclidean')

plt.figure(figsize=(20, 13))
   dendrogram(
   imdbr_gross_dendo,
        orientation='top',
        labels=labels,
        distance_sort='descending',
        leaf_font_size=16)
        plt.show()
```


* IMDB Rating & Duration

```
imdbr_duration_dendo = linkage(scaled_imdbr_duration, method='complete', metric='euclidean')

plt.figure(figsize=(20, 13))
    dendrogram(
    imdbr_duration_dendo,
        orientation='top',
        Labels=labels,
        distance_sort='descending',
        Leaf_font_size=16)
        plt.show()
```


