Лабораторная работа №4.2

Открытые модели ТЗ и усложнения в ее постановке

Цель работы: Решить открытые транспортные задачи и найти оптимальный план.

Задача 1

Постановка задачи

4	4	3	2	7	46
	1	1	6	4	34
-	3	5	9	4	40
-	40	35	30	45	

- 1. Полностью удовлетворить В2.
- 2. Заблокировать клетку А₁В₄.

Решения

∑a = 120

∑b = 150

 $\Sigma a < \Sigma b =>$ добавим фиктивную строку.

Построим таблицу с ограничениями:

- 1. Следуя принципу минимальной стоимости, вносим в клетку A_2B_2 груз 34 и недостающий груз из A_1 . Исключаем столбец B_2 и строку A_2 , при этом уменьшим a_1 на 1.
- 2. Блокируем клетку A_1B_4 .

A_i		B ₁		B ₃		B 4	ai
\mathbf{A}_1	15	4	30	2		M	45
A 3	25	3	-	9	15	4	40
A 4	-	0	-	0	30	0	30
bj		40		30		45	115

В результате получен первый опорный план, который является допустимым, так как все грузы из баз вывезены, потребность потребителей удовлетворена, а план соответствует системе ограничений транспортной задачи.

Подсчитаем число занятых клеток таблицы, их 5, а должно быть m+n-1=5. Следовательно, опорный план является невырожденным.

Пусть $u_1 = 0$

$$u_1 + v_1 = 4$$
 $v_1 = 4$

$$u_1 + v_3 = 2$$
 $v_3 = 2$

$$u_3 + v_1 = 3$$
 $u_3 = -1$

$$u_3 + v_4 = 4$$
 $v_4 = 5$

$$u_4 + v_4 = 0$$
 $u_4 = -5$

A _i B _j		B ₁		B ₃			B 4		ai	u
A 1	15	4	30		2		M		45	0
A ₃	25	3	8 -		9	15		4	40	-1
A 4	1 -	0	3 -		0	30		0	30	-5
bj		40		30			45		115	
v		4		2			5			

Так как $\Delta_{ij} \ge 0 =>$ план является оптимальным.

Значение целевой функции для этого опорного плана равно:

$$X_{\text{OHT}} = \begin{pmatrix} 15 & 1 & 30 & 0 \\ 0 & 34 & 0 & 0 \\ 25 & 0 & 0 & 15 \\ 0 & 0 & 0 & 30 \end{pmatrix}$$

 $Z_{min} = 15*4 + 1*3 + 30*2 + 34*1 + 25*3 + 15*4 + 30*0 = 292$

Задача 2

Постановка задачи

2	4	5	1	60
2	3	9	4	70
8	4	2	5	50
40	30	20	50	•

- 1. Из A_3 в B_4 доставить 20 ед. груза.
- 2. Вывезти полностью груз из А3.

Решения

$$5a = 180$$

$$\sum b = 140$$

∑а > ∑b => добавим фиктивный столбец

Построим таблицу с ограничениями:

После вывоза груза из A_3 убираем эту строку и столбец B_3 так как после развоза груза, у нас получилось, что из B_3 он полностью был вывезен.

Используем метод минимальной стоимости.

A _i B _j	B ₁	B ₂	B4	B 5	ai
$\mathbf{A_1}$	30	4	30	- 0	60
\mathbf{A}_2	10	20	4	40	70
bj	40	20	30	40	130

В результате получен первый опорный план, который является допустимым, так как все грузы из баз вывезены, потребность потребителей удовлетворена, а план соответствует системе ограничений транспортной задачи.

Подсчитаем число занятых клеток таблицы, их 5, а должно быть m+n-1=5. Следовательно, опорный план является невырожденным.

Пусть $u_1 = 0$

$$u_1 + v_1 = 2$$
 $v_1 = 2$

$$u_1 + v_4 = 1$$
 $v_4 = 1$

$$u_2 + v_1 = 2$$
 $u_2 = 0$

$$u_2 + v_2 = 3$$
 $v_2 = 3$

$$u_2 + v_5 = 0$$
 $v_5 = 0$

A _i B _j	B ₁	B ₂	B 4	B 5	ai	u
A 1	30	1 4	30	0 -	60	0
A ₂	10	20	3 4	40	70	0
bj	40	20	30	40	130	
v	2	3	1	0		•

Так как $\Delta_{ij} \ge 0 = >$ план является оптимальным.

Значение целевой функции для этого опорного плана равно:

$$\mathbf{X}_{\text{OIIT}} = \begin{pmatrix} 30 & 0 & 0 & 30 & 0 \\ 10 & 20 & 0 & 0 & 40 \\ 0 & 10 & 20 & 20 & 0 \end{pmatrix}$$

$$Z_{min} = 30*2 + 30*1 + 10*2 + 20*3 + 40*0 + 10*4 + 20*2 + 20*5 = 350$$

Задача 3

Постановка задачи

2	3	9	7	720
3	4	6	1	1 6
5	1	2	2	14
4	5	8	1	722
16	18	12	15	_

1. Из A_2 в B_4 доставить не более 10 ед. груза.

Решения

 $\sum a > \sum b =>$ добавим фиктивную столбец.

Построим таблицу с ограничениями:

A _i B _j		\mathbf{B}_1		B ₂		B ₃			B ₄		B 5	ai
A ₁	4	2	16	3	-		9	-	7	-	0	20
A 2	12	3	-	4	-		6	4	1	-	0	16
A 3	-	5	2	1	12		2	-	2	-	0	14
A 4	-	4	-	5	-		8	11	1	11	0	22
bj		16		18		12			15		11	72

Пусть $u_1 = 0$

$$u_1 + v_1 = 2$$
 $v_1 = 2$

$$u_1 + v_2 = 3$$
 $v_2 = 3$

$$u_2 + v_1 = 3$$
 $v_3 = 4$

$$u_2 + v_4 = 1$$
 $v_4 = 0$

$$u_3 + v_2 = 1$$
 $v_5 = -1$

$$u_3 + v_3 = 2$$
 $u_2 = 1$

$$u_4 + v_5 = 0$$
 $u_3 = -2$

$$u_4 + v_4 = 1$$
 $u_4 = 1$

A _i B _j	B ₁	B ₂	В3	B ₄	B 5	a _i	u
A 1	4	16	5 9	7 7	- 0	20	0
A 2	12	0 4	1 6	4	0 0	16	1
A 3	5 - 5	2	12	0 2	3 0	14	-2
A 4	3 4	3 5	3 8	1 11	0	22	1
bj	16	18	12	15	11	72	
v	2	3	4	0	-1		

Так как $\Delta_{ij} \ge 0 = >$ план является оптимальным.

Значение целевой функции для этого опорного плана равно:

$$X_{\text{OHT}} = \begin{pmatrix} 4 & 16 & 0 & 0 & 0 \\ 12 & 0 & 0 & 4 & 0 \\ 0 & 2 & 12 & 0 & 0 \\ 0 & 0 & 0 & 11 & 11 \end{pmatrix}$$

$$Z_{min} = 4*2+16*3+12*3+4*1+2*1+12*2+11*1+11*0 = 133$$

Задача 4

Постановка задачи

3	7	5	1	4	9	30
7	5	8	6	3	4	35
6	4	8	3	2	5	45
3	1	7	4	2	3	40
10	35	15	25	55	10	•

1. Из A_2 в B_5 доставить не менее 30 ед.

Решения

 $\Sigma a = \Sigma b =>$ условие баланса соблюдается.

Построим таблицу с ограничениями:

A _i B _j	B ₁	\mathbf{B}_2	В3	B ₄	B ₅	B ₆	ai
A 1	5	7	5	25	- 4	9	30
A 2	7	5	- 8	6	30	5	35
A 3	-	- 4	15	- 3	25	5	45
A 4	5	35	7	4	- 2	3	40
bj	10	35	15	25	55	10	150

Пусть $u_1 = 0$

$$u_1 + v_1 = 3$$
 $v_1 = 3$

$$u_1 + v_4 = 1$$
 $u_4 = 0$

$$u_2 + v_5 = 3$$
 $v_2 = 1$

$$u_3 + v_3 = 8$$
 $v_4 = 1$

$$u_3 + v_5 = 2$$
 $u_3 = 2$

$$u_3 + v_6 = 5$$
 $v_5 = 0$

$$u_4 + v_1 = 3$$
 $u_2 = 3$

$$u_4 + v_2 = 1$$
 $v_3 = 5$

$$u_2 + v_6 = 4$$
 $v_6 = 1$

A_i B_j		B ₁		\mathbf{B}_2		B 3		B 4		B 5		B 6	ai	u
A ₁	5	3	6	7	0	5	25	1	4	4	8 -	9	30	0
\mathbf{A}_2	1 -	7	1 -	5	0	8	2	6	30	3	5	4	35	3
A ₃	1 -	6	1 -	4	15	8	0	3	25	2	5	5	45	2
A 4	5	3	35	1	2	7	3	4	2	2	2	3	40	0

bj	10	35	15	25	55	10	150
v	3	1	5	1	0	1	

Так как $\Delta_{ij} \ge 0 =>$ план является оптимальным.

Значение целевой функции для этого опорного плана равно:

$$X_{\text{OIIT}} = \begin{pmatrix} 5 & 0 & 0 & 25 & 0 & 0 \\ 0 & 0 & 0 & 0 & 30 & 5 \\ 0 & 0 & 15 & 0 & 25 & 5 \\ 5 & 35 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$Z_{min} = 5*3+25*1+30*3+5*4+15*8+25*2+5*5+5*3+35*1 = 395$$

Вывод: В ходе лабораторной работы были решены открытые транспортные задачи с дополнительными ограничениями.