Caja de Herramientas: Espacios Métricos e Inequidades

Resumen

Espacio métrico	Un par (X, d) donde $d: X \times X \to \mathbb{R}_{\geq 0}$ cumple: (i) $d(x, y) = 0 \iff x = y$, (ii) $d(x, y) = d(y, x)$, (iii) designaldad triangular $d(x, z) \leq d(x, y) + d(y, z)$.
Bolas y topología	Bola abierta: $B(x,r) = \{y: d(x,y) < r\}$. Bola cerrada: $\overline{B}(x,r) = \{y: d(x,y) \le r\}$. Los abiertos son uniones de bolas abiertas.
Cierre / interior / frontera	$x \in \overline{A} \iff \forall r > 0, \ B(x,r) \cap A \neq \emptyset.$ $\operatorname{int}(A) = \{x : \ \exists r > 0, \ B(x,r) \subset A\}. \partial A = \overline{A} \setminus \operatorname{int}(A).$
Convergencia	$x_n \to x \iff \forall \varepsilon > 0 \ \exists N \ \forall n \geq N : \ d(x_n, x) < \varepsilon.$ Caracterización de cierre: $\overline{A} = \{x : \ \exists (a_n) \subset A, \ a_n \to x\}.$
Continuidad	$f: (X, d_X) \to (Y, d_Y)$ es continua en x_0 si $\forall \varepsilon > 0 \; \exists \delta > 0 : \; d_X(x, x_0) < \delta \Rightarrow d_Y(f(x), f(x_0)) < \varepsilon$. Equivalente: $x_n \to x \Rightarrow f(x_n) \to f(x)$.
Ineq. triangular (básica)	$d(x,z) \le d(x,y) + d(y,z)$ (toda métrica). Iterada : $d(x_0,x_n) \le \sum_{k=1}^n d(x_{k-1},x_k)$.
Ineq. triangular inversa	$ d(x,z)-d(y,z) \le d(x,y)$ (toda métrica). Consecuencia: $ d(x,A)-d(y,A) \le d(x,y)$.
Distancia a un conjunto	$d(x,A) := \inf\{d(x,a) : a \in A\}$ (convención $d(x,\varnothing) = +\infty$). Propiedades clave:
	• $0 \le d(x, A) \le d(x, a)$ para todo $a \in A$.
	• $d(x,A) = 0 \iff x \in \overline{A}$.
	• 1-Lipschitz: $ d(x, A) - d(y, A) \le d(x, y)$.
	• Si A es cerrado y $d(x, A) > 0$, entonces $B(x, d(x, A)) \cap A = \emptyset$.
Diámetro	$\operatorname{diam}(A) := \sup\{d(x,y) : x,y \in A\}.$ Si $A \subset B$, entonces $\operatorname{diam}(A) \leq \operatorname{diam}(B).$ Si f es L -Lipschitz, $\operatorname{diam}(f(A)) \leq L \operatorname{diam}(A).$
Aplicaciones Lipschitz	f es L -Lipschitz si $d_Y(f(x), f(y)) \le L d_X(x, y)$. Si $L < 1$ (contracción) \Rightarrow punto fijo de Banach (en completos).
Secuencias de Cauchy	(x_n) es Cauchy si $\forall \varepsilon > 0 \ \exists N : m, n \geq N \Rightarrow d(x_m, x_n) < \varepsilon$. Toda convergente es Cauchy; en espacios completos , toda Cauchy converge.
Compacidad (métricos)	En métricos: $compacto \Leftrightarrow secuencialmente \ compacto \Leftrightarrow totalmente \ acotado + completo.$ Totalmente acotado: para todo $\varepsilon > 0$ existe recubrimiento finito por bolas de radio ε .
Métricas producto	Si d_i son métricas en X_i , en $X_1 \times X_2$: $d_{\max}((x_1, x_2), (y_1, y_2)) = \max\{d_1(x_1, y_1), d_2(x_2, y_2)\},$ $d_1((x_1, x_2), (y_1, y_2)) = d_1(x_1, y_1) + d_2(x_2, y_2).$ Ambas inducen la topología producto.

Caja de Herramientas Topológicas

Definiciones clave

- Vecindario: V es vecindario de x si existe un abierto U con $x \in U \subseteq V$.
- Punto límite: x es punto límite de A si

 $\forall U \text{ abierto con } x \in U, \quad (U \setminus \{x\}) \cap A \neq \varnothing.$

- Clausura: $\overline{A} = A \cup A'$ (conjunto más todos sus puntos límite).
- Interior:

 $int(A) = \{x \in A : \exists U \text{ abierto}, x \in U \subseteq A\}.$

• Frontera:

$$\partial A = \overline{A} \cap \overline{X \setminus A}.$$

Propiedades de la clausura

- Extensividad: $A \subseteq \overline{A}$.
- Idempotencia: $\overline{\overline{A}} = \overline{A}$.
- Monotonía: $A \subseteq B \implies \overline{A} \subseteq \overline{B}$.
- Cerrado mínimo: \overline{A} es el menor cerrado que contiene a A.
- Intersección: $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$.
- Diferencia: $\overline{A \setminus B} \subseteq \overline{A} \setminus \operatorname{int}(B)$.

Propiedades del interior

- Contractividad: $int(A) \subseteq A$.
- Idempotencia: int(int(A)) = int(A).
- Monotonía: $A \subseteq B \implies \operatorname{int}(A) \subseteq \operatorname{int}(B)$.
- Abierto máximo: $\operatorname{int}(A)$ es el mayor abierto contenido en A.
- Unión: $int(A \cup B) = int(A) \cup int(B)$.

Relaciones importantes

- $\bullet \ \partial A = \overline{A} \cap \overline{X \setminus A}.$
- $\overline{A} = \operatorname{int}(A) \cup \partial A$.
- $int(A) = A \setminus \partial A$.
- $\partial A = \overline{A} \setminus \operatorname{int}(A)$.

Checklist para demostraciones

Probar que un conjunto es cerrado

- 1. Usar la definición: A es cerrado si contiene todos sus puntos límite o si $\overline{A}=A.$
- 2. Tomar un punto límite x de A.
- 3. Mostrar que $x \in A$.
- 4. Concluir: A es cerrado.

Probar que un conjunto es abierto

- 1. Definición: U es abierto si $\forall x \in U, \exists V$ abierto con $x \in V \subseteq U$.
- 2. Tomar $x \in U$.
- 3. Construir un vecindario abierto dentro de U.
- 4. Concluir: U es abierto.

Trabajar con clausura

- 1. Recordar: \overline{A} es el menor cerrado que contiene a A.
- 2. Para inclusiones: tomar $x \in \overline{A \cap B}$ y usar vecindarios.
- 3. Deducir que $x \in \overline{A} \cap \overline{B}$.

Trabajar con interior

- 1. Tomar $x \in int(A)$.
- 2. Usar que $\exists U$ abierto con $x \in U \subseteq A$.
- 3. Encadenar inclusiones según el objetivo.

Trabajar con frontera

- 1. Tomar $x \in \partial A$.
- 2. Usar: todo abierto $U\ni x$ toca Ay $X\setminus A.$
- 3. Concluir: $x \in \overline{A} \cap \overline{X \setminus A}$.