#### Attendance code 16th January 2020 is

# Intelligent Data Analysis 2020

Prof. Martin Russell

#### **Course structure 2020**

- 11 x 2 hour lectures Thursday, 10am 12pm
  - Maths revision 1: Vectors and linear algebra
  - Dimension reduction
    - Principal Components Analysis (PCA)
  - Visualization of high-dimensional data
    - PCA, Topographic maps, t-SNE
  - Clustering and vector quantization
  - Text retrieval
    - TF-IDF similarity, vectorization of documents
    - Synonym relationships
    - Latent Semantic Analysis (LSA)
    - Page Rank

#### **Assessment**

- Assessment
  - 1.5 hour exam in May/June answer 3 questions from 3
- Assignment for extended 10 credit module

# Course Canvas page & C code

- All materials will go on Canvas
- Canvas site for 2020 will contain:
  - Copies of all slides and C code and data for labs
  - Weekly exercise sheets and solutions
  - Pointers to relevant websites
- C code
  - Simple ANSII C implementations of basic techniques from the course. Compile using the MS Visual Studio .NET command line C compiler.
  - For use in labs (or at home), to get practical, hands-on experience of how the different techniques work

# Moore's Law and disk capacity

- Moore's Law
  - Technology performance doubles and prices halve every
    18 months
- Implications for data storage
  - Applies to disk capacity
  - We have the potential to record and store online a big proportion of what we do.
  - For example, in many cases the cost of making a phone call is an order of magnitude more expensive than the cost of storing it online

# How much speech fits on 1TB?

How much speech data can be stored on a 1TB disk?

#### Assume:

- 16kHz sampling rate (16,000) samples per second
- 16 bits per sample

#### Then:

- 1 second of speech requires 32,000 bytes
- $-1TB = 3.125 \times 10^7 \text{s} = 520,833 \text{ mins} = 8,681 \text{hrs} = 362 \text{ days}$

## **Petabytes**

- 1 petabyte of disk space costs
  - \$2,000,000 in 2003
  - \$25,000 in 2019 (based on Amazon, \$100 for 4TB!)
- 1 petabyte = 10<sup>15</sup> bytes
  - $-10^6 (1MB), 10^9 (1GB), 10^{12} (1TB)$
  - $-10^{15}$  zillion
  - 1 zillion used to be synonymous with infinity an unimaginably large number!

# A Petabyte is a lot of data...

- 1PB =
  - 20 million 4-drawer filing cabinets filled with text
  - 13.3 years of HD-TV video
- 1.5PB =
  - Combined size of the 10B photos on Facebook
- 20PB =
  - The amount of data processed by Google per day

(Google will find many similar examples)

# Accessing data – "aboutness"

- Why store these huge corpora?
- Because information in them is potentially useful
- But, how can we find the relevant items?
  - AV recording of a meeting contains more information than conventional minutes, but only useful with good search functions
- Need to know:
  - What each item in a corpus is about
  - Relationships between different corpus items
  - Relationships between 'queries' and corpus items
- Manual indexing impossible deal with 'raw' data.
- Need to determine automatically what a text is about

# The problem of "Aboutness"

- What is a text, audio signal, or image about?
- This is a problem in semantics
- This is exactly the type of problem which:
  - Humans are good at, but
  - Computer programmes are particularly bad at!
- For example "is this image about dogs?"

#### "Aboutness"

- Richard K Belew
- Finding Out About: A
   Cognitive Perspective on
   Search Engine Technology
   and the WWW
- Cambridge University Press, 2001
- Includes CD-ROM & website



# When is an image "about" dogs



# The problem of "aboutness"

- Intuitively, if we focus on text things should be more straightforward
- But even human interpretation of texts may be ambiguous...
- Simple example:

# **Text Understanding**

- How can a machine understand what this sentence is about?
- Traditionally this involves:
  - Finding the grammatical role and meaning of each word
  - Parsing the word sequence applying a set of rules to identify the structure of the word sequence relative to a grammar
  - A grammar is a model that encodes all of the valid word sequences (sentences) in a language

# **Text Understanding**

- Words have different meanings and grammatical roles (e.g. "lead" (verb or noun))
- A word sequence may have multiple interpretations relative to the grammar
- A grammatical word sequence may not occur in the given grammar (under generation)
- Conversely, an ungrammatical sentence may be in the grammar (over-generation)









# **Analysis**

- Example illustrates two different problems
  - Different grammatical parses of same word sequence

I saw the man on the hill with the telescope vs

I saw the man on the hill with the telescope

Identical parses but different interpretations of words

I saw the man on the hill with the telescope





Move towards Machine Learning

# What is Data Mining?

#### Mining

 Digging deep into the earth, to find hidden, valuable materials

#### Data Mining

- Analysis of large data corpora: biomedical, acoustic, video, text,... to discover structure, patterns and relationships
- Corpora too large for human inspection
- Patterns and structure may be hidden

# Related "hot" topics

- "Big Data"
- Pattern recognition/processing
  - As a prerequisite for Data Mining (e.g. ASR for spoken data retrieval)
  - As a consequence of Data Mining
- Machine learning
  - (Deep) Neural Networks, "Deep Learning"
- Data Visualization
  - Dimension reduction

# Some example data



Fig 1: Single, spherical cluster centred at origin.



Fig 2: Single, arbitrary elliptical cluster



Fig 3: Multiple, arbitrary elliptical clusters

# What is Information Retrieval (IR)?

- Underlying principles of Search Engine technology
- Finding out About... [Belew]
- Retrieving Information from text sources
- Retrieving Information from other sources
  - Spoken Data Retrieval
  - Bio-informatics
- In IDA we will focus on text retrieval

#### IR vs Database Retrieval

- IR is not 'database retrieval'
- Databases are characterised by:
  - Strong prior assumptions about
    - Salient properties of data
    - Format
    - Logical relations between data items
    - Likely user queries
  - Formal, restrictive query syntax
  - Need for dedicated maintenance to keep it up-to-date
  - Gives specific replies to specific queries



#### IR vs Database Retrieval

- IR (Finding Out About)
  - No prior assumptions about:
    - Salient properties of data
    - Format of data
    - Logical relations between data items
  - Less specific 'natural language' queries
  - Source information remains up-to-date
  - Much less focussed replies

# Relevant topics in mathematics

- Vectors and matrices
  - Data that we analyse is generally vector data
  - A single data point may comprise multiple measurements
  - Words or documents typically represented as vectors
  - A basic understanding of the mathematics of vectors (linear algebra) is crucial for intelligent data analysis and text retrieval
- Probability
- Next lecture linear algebra revision

# Summary

- Introduction to course components
  - Background mathematics
  - Data visualization and data mining
  - Information retrieval
- Motivation
  - Availability of huge corpora of raw data
- Problems
  - Aboutness