

MODBUS RTU 通信协议

本通信协议采用标准 ModBus 协议,采用 RTU(十六进制数)传输模式。ModBus 协议是一种主---从式协议。任何时刻只有一个设备能够在线路上进行发送。由主站管理信息交换,且只有主站能发起。主站会依次对从站进行轮流查询。只有当从站地址与轮询地址相匹配,从站才能回复消息。从站之间不能进行直接通信。协议帧中不包含任何消息报头及消息结束符,消息的开始和结束依靠间隔时间来识别,当间隔时间长于或等于 3.5 个字符时,即作为检测到帧结束。如果网络内没有与查询地址相一致的从站或从站接收时 CRC 校验出错,主站将不会接收到返回帧,这时主站根据超时设定判断是否超时,如超时,作出重发或弹出异常错误窗口动作。

协议桢定义如下:

从站地址 功能代码 数据区 CRC16

从站地址: 地址必须在 1---253 (01H~FDH)之间。

在同个主站网络中每个从站地址必须唯一。

00 地址为广播应答地址, 255(FFH)为广播不应答地址

功能代码:包含读、写多个寄存器。

数据: 以二进制代码传输。

CRC16: 循环冗余校验,校验从从站地址到数据区最后一个字节,计算多项式码为

A001(hex).

通讯口设置

通讯方式 异步串行通讯接口,如 RS-485, RS-232, M-bus 等

波特率 $300\sim38400$ bps(可由设定仪表二级参数自由更改,设定仪表二级参数 BT,默认 9600)见 表*2

字节数据格式 HEX

- . 一位起始位
- . 八位数据位
- . 一位停止位
- . 偶校验

消息桢格式 (读、写功能是从主站角度定义的)

读寄存器桢

从站地址	功能代码	首寄存器地址	寄存器数 N	CRC16
1字节	1字节	2 字节	2 字节	2 字节
1253	03H	AddrH, AddrL	NH, NL (1120)	CrcL, CrcH

读寄存器返回桢

从站地址	功能代码	字节数	寄存器数据	CRC16
1字节	1 字节	1 字节	N*2 字节	2 字节
1253	03H	N*2	DataH, DataL	CrcL, CrcH

写寄存器桢

I	从站地址	功能代码	首寄存器地址	寄存器数 N	字节数	寄存器数据	CRC16
	1 字节	1 字节	2 字节	2 字节	1 字节	N*2 字节	2 字节
	1253	06H	AddrH, AddrL	NH, NL 1120	N*2	DataH, DataL	CrcL, CrcH

写寄存器返回桢

从站地址	功能代码	首寄存器地址	寄存器地址 寄存器数 N	
1字节	1 字节	2 字节	2 字节	2 字节
1253	06H	AddrH, AddrL	NH, NL 1120	CrcL, CrcH

错误返回桢

从站地址	功能代码	错误代码	CRC16
1 字节	1 字节	1 字节	2 字节
1253	功能代码+80H	见表 2	CrcL, CrcH

功能代码表: 1

功能代码	ModBus 名	功能名	广播	一次连续的N的最大值
03H	Read Holding Registers	读N个寄存器值	yes	120
06H	Write Multiple Registers	写N个寄存器值	yes	120

错误代码表: 2

03 命令错误	代码	06 命令错误代码		
代码	说明	代码	说明	
1	功能码错误	01	功能码错误	
2	寄存器起始地址+寄存器数量错误	02	寄存器地址错误	
3	寄存器数量错误	03	寄存器值错误	
4	读寄存器失败	04	写单个寄存器失败	

单路显示仪表的保持寄存器

03,06命令对应的保持寄存器地址表

		7万070000000000000000000000000000000000	-11.70				
序号	寄存器 地址 (DEC)	参数名称	数排	居格式	孝	き型 ニュー	备注
1	00		С	har		读写	※1 HEX 码
2	01~07	设备序列号	С	har		只读	HEX 码
3	08	软件版本号	С	har		只读	HEX 码
4	09	硬件版本号	С	har		只读	HEX 码
5	OA	通信速率	С	har		读写	※2 HEX 码
6	19	工作模式	С	har		读写	※3 HEX 码
7	74	阀门开度	С	har		读写	00H-64H (即开度 0%-100%) HEX 码
8	90	状态寄存器	С	har		只读	※4 HEX 码
		以下	为带 P	ID 算法的	り寄存	器地址	表内容
9	91	状态寄存器		Cha	r	只	读 <mark>※5 HEX</mark> 码
10	92	状态寄存器		Cha	r	只-	读 <mark>※6 HEX</mark> 码
11	93	状态寄存器		Cha	r	只	读 <mark>※7 HEX</mark> 码
12	A2, A3	第1路实时测	量值	Flo	at	只	读 A2 高字节、A3 低字节,压缩 BCD 码
13	A4, A5	第2路实时测	量值	Flo	at	只-	读 A4 高字节、A5 低字节,压缩 BCD 码
14	B2, B3	设置目标值		Flo	at	读	写 B2 整数、B3 小数,压缩 BCD 码
15	BC, BD	第1路满量程	值	Flo	at	读	写 BC 整数、BD 小数,压缩 BCD 码
16	BE, BF	第2路满量程	值	Flo	at	读	写 BE 整数、BF 小数,压缩 BCD 码
17	CO, C1	第1路高报警	值	Flo	at	读	写 CO 整数、C1 小数,压缩 BCD 码
18	C2、C3	第2路高报警	值	Flo	at	读	写 C2 整数、C3 小数,压缩 BCD 码
19	C4、C5	第1路低报警	值	Flo	at	读	写 C4 整数、C5 小数,压缩 BCD 码
20	C6、C7	第2路低报警	值	Flo	at	读	写 C6 整数、C7 小数,压缩 BCD 码
21	DO	第1路高报警	开度	Cha	r	读	写 HEX 码
22	D1	第2路高报警	开度	Cha	r	读	写 FFH 无效
23	D2	第1路低报警	开度	Cha	r	读	写
24	D3	第2路低报警	开度	Cha	r	读	写
25	D4、D5	第1路高报警	比例	Flo	at	读	写 前者整数位,后者小数位
26	D6、D7	第二路高报警	比例	Flo	at	读	写 BCD 码
27	D8、D9	第1路低报警	比例	Flo	at	读	
28	DA、 DB	第二路低报警	比例 Float		读		
29	DC, DD	正常调节比例		Flo	at	读	
30	E0、E1、E2	2 采样调整周期		Cha	r	读	
31	E3、E4、E5	积分时间		Cha	r	读	
32	E6、E7、E8	微分时间		Cha	r	读	写 00分00秒或27时81分62秒无效

※1

修改阀门地址 请求 PDU

地址	功能码	寄存器地址 寄存器值		寄存器地址 寄存器值 校验 CRC		寄存器值		CRC
1字节	1字节	高位	低位	高位	低位	低位 CRCL	高位 CRCH	
00Н	06H	00Н	01H	00Н	01H~F7H	1字节	1字节	

修改阀门地址 应答 PDU

地址	功能码	寄存器地址		寄存器值		校验	CRC
1字节	1字节	高位	低位	高位	低位	低位 CRCL	高位 CRCH
01H~F7H	06	00Н	01H	00Н	01H~F7H	1字节	1字节

※2

修改阀门通信速率 请求 PDU

地址	功能码	寄存器地址		寄存器值		校验	CRC
1字节	1字节	高位	低位	高位	低位	低位 CRCL	高位 CRCH
00Н	06H	00Н	OAH	00H	01H~08H	1字节	1字节

不应答

修改波特率后,应使用新的波特率通信

波特率 寄存器值对应表

波特率	寄存器值	波特率	寄存器值
300	1	4800	5
600	2	9600	6 或其他值
1200	3	19200	7
2400	4	38400	8

出厂默认波特率为 9600

※3

19H	Bit7~bit1	Bit0	
	保留	=0 命令控制	=1 自动控制

※4

- Bit 0 关到位开关失效 =0 有效 =1 失效 Bit 1 开到位开关失效 =0 有效 =1 失效
- Bit 2
- Bit 3 =00 电机未运行 01 正在开阀, 10 正在关阀
- Bit 4 开到位开关状态 =0 开到 100 =1 未开到 100
- Bit 5 关到位开关状态 =0 关到 0 =1 未关到 0
- Bit 6 阀门开关方向 =0 开放向 =1 关方向
- =0 正常 =1 卡死 Bit 7 阀门卡死

※5

- Bit 0 采样时间 =0 有效 =1 无效
- Bit 1 积分时间 =0 有效 =1 无效
- Bit 2 微分时间 =0 有效 =1 无效
- Bit 3 调节比例 =0 有效 =1 无效
- Bit 4 目标压差 =0 有效 =1 无效
- Bit 5 间隙 =0 有效 =1 无效
- Bit 6 死区 =0 有效 =1 无效

%6

- Bit 0 第 1 路量程值 =0 有效 =1 无效
- Bit 2 第 2 路量程值 =0 有效 =1 无效
- Bit 3 第 1 路 满量程值 AD 值 =0 有效 =1 无效
- Bit 4 第 1 路 0 刻度值 AD 值 =0 有效 =1 无效
- Bit 5 第 2 路 满量程值 AD 值 =0 有效 =1 无效
- Bit 6 第 2 路 0 刻度值 AD 值 =0 有效 =1 无效

※7

- Bit0 第1路高报警对应压差值 =0 有效 =1 无效
- Bit1 第 2 路高报警对应压差值 =0 有效 =1 无效
- Bit2 第1路低报警对应压差值 =0 有效 =1 无效
- Bit3 第 2 路低报警对应压差值 =0 有效 =1 无效
- Bit4 第 1 路高报警对应比例 =0 有效 =1 无效
- Bit5 第 2 路高报警对应比例 =0 有效 =1 无效
- Bit6 第1路低报警对应比例 =0 有效 =1 无效
- Bit7 第2路低报警对应比例 =0 有效 =1 无效

CRC 校验说明

CRC 校验 2字节

循环冗余校验 (CRC) 域为两个字节,包含一个二进制 16 位值。附加在报文后面的 CRC 的值由发送设备计算。接收设备在接收报文时重新计算 CRC 的值,并将计算结果于实际接收到的 CRC 值相比较。如果两个值不相等,则为错误。

CRC 的计算, 开始对一个 16 位寄存器预装全 1. 然后将报文中的连续的 8 位子节对其进行后续的计算。只有字符中的 8 个数据位参与生成 CRC 的运算, 起始位, 停止位和校验位不参与 CRC 计算。

CRC 的生成过程中,每个 8-位字符与寄存器中的值异或。然后结果向最低有效位 (LSB)方向移动(Shift) 1位,而最高有效位 (MSB)位置充零。然后提取并检查 LSB:如果 LSB 为 1,则寄存器中的值与一个固定的预置值异或;如果 LSB 为 0,则不进行异或操作。

生成 CRC 的过程为:

- 1. 将一个 16 位寄存器装入十六进制 FFFF (全 1). 将之称作 CRC 寄存器.
- 2. 将报文的第一个 8 位字节与 16 位 CRC 寄存器的低字节异或,结果置于 CRC 寄存器.
- 3. 将 CRC 寄存器右移 1 位 (向 LSB 方向), MSB 充零. 提取并检测 LSB.
- 4. (如果 LSB 为 0): 重复步骤 3 (另一次移位).
- (如果 LSB 为 1): 对 CRC 寄存器异或多项式值 0xA001 (1010 0000 0000 0001).
- 5. 重复步骤 3 和 4, 直到完成 8 次移位。当做完此操作后, 将完成对 8 位 字节的完整操作。
- 6. 对报文中的下一个字节重复步骤 2 到 5,继续此操作直至所有报文被处理完毕。
- 7. CRC 寄存器中的最终内容为 CRC 值.
- 8. 当放置 CRC 值于报文时,如下面描述的那样,高低字节必须交换。

将 CRC 放置于报文

当 16 位 CRC (2 个 8 位字节) 在报文中传送时,低位字节首先发送,然后是高位字节。

例如, 如果 CRC 值为十六进制 1241 (0001 0010 0100 0001):

北京五洲创业科技有限公司 www.whzki.com 010-56955169

