Problem 1 (6.2). Let f be a bounded measurable function on [0,1]. Then $\lim_{p\to\infty} ||f||_p = ||f||_{\infty}$.

Proof.

Problem 2 (6.8). Young's Inequality

(a) Let $a, b \ge 0, 1 . Establish Young's inequality$

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

Proof. Not assigned.

(b) Use Young's inequality to give a proof of the Hölder inequality.

Proof.

Problem 3 (6.10). Let $\{f_n\}$ be a sequence of functions in L^{∞} . Prove that $\{f_n\}$ converges to f in L^{∞} if and only if there is a set E of measure zero such that f_n converges to f uniformly on E.

Proof. We will need to complete two directions and so let $\{f_n\}$ be a sequence of functions in L^{∞} .

- (\Rightarrow) First, suppose that $\{f_n\} \to f$.
- (\Leftarrow) Conversely, suppose there exists a set E with m(E) = 0 such that $f_n \to f$ uniformly on E.