Functional Joint Model for Longitudinal and Time-to-Event Data: An Application to Alzheimer's Disease

Kan Li Dept. of Biostat, Univ of Texas at Houston

Aug. 2, 2016

Outline

- Introduction
 - Functional Data Analysis
 - Joint Models for Longitudinal and Time-to-Event data
- Alzheimer's Disease as Motivation Example
 - ADNI Study
- Functional Joint Model
 - Joint Modeling Framework
 - Functional Regression
 - Estimation and Inference
 - Dynamic Prediction
- Application to the ADNI Study
 - Baseline Characteristics
 - Model Building
 - Analysis Results
- Simulation Study
 - Simulation Setting
 - Simulation Results

Functional Data

- Functional Data: data for which units of observation are functions defined on certain continuous domains and recorded on discrete grids.
 - ► These functions can be curves (1D), images (2D or 3D), or higher dimension object data (e.g. functional MRI).

Examples of Functional Data

• Physical activity information

Examples of Functional Data

Brain imaging

A slice of Magnetic Resonance Imaging (MRI)

Voxel-based whole-brain image

 The analysis of functional data is termed "Functional Data Analysis" (FDA)

Functional Regression

- Functional Regression: regression analysis involving functional data.
 - Functional predictor regression (scalar-on-function) $y_i = \beta_0 + \int x_i(s)\beta(s)ds + \varepsilon_i$
 - Functional response regression (function-on-scalar) $y_i(s) = \beta_0(s) + x_i\beta(s) + \varepsilon_i(s)$
 - Function-on-function regression (function-on-function) $y_i(s) = \beta_0(s) + \int x_i(s)\beta(s)ds + \varepsilon_i(s)$

Functional Regression

- Functional predictor regression: $y_i = \beta_0 + \int x_i(s)\beta(s)ds + \varepsilon_i$
 - Most existing work deal only with cross-sectional functional data;
 - ► Goldsmith *et al.*(2012), longitudinal functional regression;
 - ► Gellar et al.(2015), Cox model with cross-sectional functional covariate;
 - ► No previous functional regression modeling attempted under joint models framework for longituindal and time-to-event data.

Joint Models for Longitudinal and Time-to-Event data

- Why use Joint Models?
 The evolution of a biomarker is directly informative about the time to the event.
- Intuitive idea behind Joint Models:
 - mixed effects submodel to describe the evolution of the biomarker;
 - Cox proportional hazard submodel for survival outcome;
 - ▶ link the two submodels using a common latent structure.
- Current joint models in the literature only include scalar variables as responses and do not account for functional covaraites.

Objectives

 Develop a joint model for data where outcomes are longitudinal scalar measures and time to event, and the exposure involve both functional/image and scalar covariates.

Alzheimer's Disease as Motivation Example

- Neurodegenerative disorder and is the most common form of dementia.
- 5.4 million American have AD and the number will reach 7.7 million by 2030.
- \$172 billion for the total cost of care for Americans with AD in 2010, and will increase to \$1.08 trillion by 2050 each year.
- Thus, many resources are invested to accelerate the search for cures while improving diagnosis of Alzheimer's Disease.

- Ongoing multisite longitudinal study.
- Collects serial clinical, imaging (MRI, PET, fMRI), genetic, biospecimen, neuropsychological assessments data.
- Phase I of ADNI study (ADNI1)
 - 229 normal cognition (NC) patients
 - 397 mild cognitive impairment (MCI) patients
 - ▶ 193 Alzheimer's disease (AD) patients
 - ▶ Patients were reassessed at 6, 12, 18, 24 and 36 months, and followed annually as part of ADNI GO and ADNI2

- ADNI GO Study
 Enrolled 128 new patients, all of which were MCI patients.
- ADNI2 Study
 Enrolled 925 new patients, 311 NC patients, 451 MCI patients, and 163 AD patients.
- All data can be downloaded from http://www.adni-info.org.

- Mild cognitive impairment (MCI)
 - An intermediate stage between NC and AD;
 - ▶ Target population for evaluating prognosis and early treatment.
- Predict the conversion from MCI to AD
- In literature:
 - ► Cox regression models: predicting time to AD conversion.
 - Linear mixed model: exploiting association between longitudinal markers and cognitive decline

- Alzheimer Disease Assessment ScaleCognitive (ADAS-Cog)
 - ► Assesses written and verbal responses of subjects that are related to fundamental cognitive functions.

- Hippocampus surface morphology data
 - Surface-based subcortical structure analysis.
 - ► Hippocampal radial distance, the distance from the medial core to each surface point and measures hippocampal thickness.

Hippocampus Image Processing

Joint modeling framework

- Integrate time-independent functional covariates in both longitudinal part and survival part of joint model.
- Model Specification

$$y_i(t) = m_i(t) + \varepsilon_{ij},$$

$$m_i(t) = \beta_0 + \mathbf{x}_{ij}\boldsymbol{\beta} + \int_{S} g_i^{(x)}(s)\beta(s)ds + \mathbf{z}_{ij}\mathbf{b}_i$$

$$h(t) = h_0(t) \exp\{\mathbf{w}_i\boldsymbol{\gamma} + \int_{S} g_i^{(w)}(s)\gamma(s)ds + \alpha m_i(t)\}.$$

- \triangleright $y_i(t)$, observed longitudinal outcome;
- $ightharpoonup m_i(t)$, true unobserved patient specific longitudinal trajectory;
- ▶ x_{ij}, w_i, scalar covariates; z_{ij}, random effects;
- ▶ $g_i^{(x)}(s)$, $g_i^{(w)}(s)$, time-independent functional covariates defined over the domain $S \in [0, S_{max}]$.

Functional Principal Component

- Let $\mu_X(s)$ be the mean of the functional predictor $g_i^{(x)}(s)$ taken over all subjects.
- Let $\Sigma^{(x)}(s,s') = cov\{g_i^{(x)}(s),g_i^{(x)}(s')\}$ be the covariance functions providing the covariance between two locations of $g_i^{(x)}(s)$.
- Let $\sum_{l=1}^{\infty} \lambda_l^{(x)} \phi_l^{(x)}(s) \phi_l^{(x)}(s')$ be the spectral decomposition of $\Sigma^{(x)}(s,s')$.
 - $\lambda_1^{(x)} \geq \lambda_2^{(x)} \geq \cdots \geq 0$ are the non-increasing eigenvalues;
 - $\phi^{(x)}(s) = [\phi_1^{(x)}(s), \cdots, \phi_{K_x}^{(x)}(s)]^T$ are the corresponding orthonormal eigenfunctions.

Functional Principal Component

• Truncated version of Karhunen-Loève approximation for $g_i^{(x)}(s)$

$$g_i^{(x)}(s) \approx \mu^{(x)}(s) + \sum_{l=1}^{K_x} \xi_{il}^{(x)} \phi_l^{(x)}(s) = \mu^{(x)}(s) + \xi_i^{(x)} \phi^{(x)}(s).$$

- $\xi_{il}^{(x)} = \int_{S} \{g_{i}^{(x)}(s) \mu^{(x)}(s)\}\phi_{l}(s)ds$, functional principal component (FPC) score;
- $\xi_{il}^{(x)} \sim N(0, \lambda_l)$
- $ightharpoonup K_x$ is truncation number, can be determined by the proportion of variance explained.

Functional Principal Component

• Expand $\beta(s)$ in the truncated principal component basis

$$\beta(s) = \sum_{l=1}^{K_x} \phi_l^{(x)}(s) \beta_l^{(x)} = [\phi^{(x)}(s)]^T \beta^{(x)}.$$

Functional term is converted to a scalar term,

$$\int_{S} g_{i}^{(x)}(s)\beta(s)ds = \int_{S} \mu^{(x)}(s)\beta(s)ds + \int_{S} \boldsymbol{\xi}_{i}^{(x)}J_{\phi,\phi}\beta^{(x)}ds,$$
 where $J_{\phi,\phi} = \int \phi^{(x)}(s)[\phi^{(x)}(s)]^{T}ds = I$ because of the orthonormal of basis functions.

• Similar notation holds for the functional predictor $\int_S g_i^{(w)}(s)\gamma(s)ds$ in survival submodel.

Functional Regression

• Joint model using FPC scores as scalar covariates

$$y_i(t) = m_i(t) + \varepsilon_{ij}$$
, where $m_i(t) \approx \beta'_0 + \mathbf{x}_{ij}\boldsymbol{\beta} + \boldsymbol{\xi}_i^{(x)}\boldsymbol{\beta}^{(x)} + \mathbf{z}_{ij}\mathbf{b}_i$, and $h(t) \approx h_0^*(t) \exp\{\mathbf{w}_i\boldsymbol{\gamma} + \boldsymbol{\xi}_i^{(w)}\boldsymbol{\gamma}^{(w)} + \alpha m_i(t)\}$.

- $h_0^*(t) = h_0(t) \exp\{\int_S \mu^{(w)}(s) \gamma(s) ds\};$
- $\beta'_0 = \beta_0 + \int_S \mu^{(x)}(s) \beta(s) ds$.

Estimation and inference

- Estimated FPC scores $\boldsymbol{\xi}_i^{(x)}$ and $\boldsymbol{\xi}_i^{(w)}$ of all subjects.
- Full likelihood of joint model

$$L(\boldsymbol{\theta}) = \prod_{i=1}^{n} p(T_{i}, \delta_{i}, \boldsymbol{y}_{i} | \boldsymbol{\theta})$$

$$= \prod_{i=1}^{n} \int p(T_{i}, \delta_{i}, | \boldsymbol{\theta}, \boldsymbol{b}_{i}) \prod_{j=1}^{n_{i}} p(y_{ij}, \boldsymbol{\theta}, \boldsymbol{b}_{i}) p(\boldsymbol{b}_{i} | \boldsymbol{\theta}) d\boldsymbol{b}_{i}$$

- Maximization of the log-likelihood function $\ell(\boldsymbol{\theta}) = \sum_i \log p(T_i, \delta_i, \boldsymbol{y}_i | \boldsymbol{\theta})$ using Expectation Maximization (EM) algorithm.
- Estimated coefficient function is given by $\hat{\beta}(s) = [\hat{\phi}^{(x)}(s)]^T \hat{\beta}^{(x)}$.

Dynamic risk prediction

• The probability of survival at time u conditional on survival up to time t (e.g. $u=t+\Delta t>t$),

$$\begin{aligned}
u &= t + \Delta t > t, \\
\pi_i(u|t) &= P(T_i^* \geq u|T_i^* > t, Y_i(t); \theta) \\
&= \int P(T_i^* \geq u|T_i^* > t, Y_i(t), \boldsymbol{b}_i; \theta) p(\boldsymbol{b}_i|T_i^* > t, Y_i(t); \theta) d\boldsymbol{b}_i \\
&= \int \frac{S_i\{u|M_i(u,\boldsymbol{b}_i,\theta); \theta\}}{S_i\{t|M_i(t,\boldsymbol{b}_i,\theta); \theta\}} p(\boldsymbol{b}_i|T_i^* > t, Y_i(t); \theta) d\boldsymbol{b}_i,
\end{aligned}$$

- A first-order estimate for $\pi_i(u|t)$ is $\pi_i(u|t) = \frac{S_i\{u|M_i(u,\hat{\mathbf{b}}_i,\hat{\theta});\hat{\theta}\}}{S_i\{t|M_i(t,\hat{\mathbf{b}}_i,\hat{\theta});\hat{\theta}\}} + O(n_i^{-1}).$
- A Monte Carlo estimate of $\pi_i(u|t)$ can be obtain by following sample scheme. For $l=1,\cdots,L$ repetitions:
 - ▶ Draw $\theta^{(l)} \sim N(\hat{\theta}, v\hat{a}r(\hat{\theta}))$
 - ▶ Draw $m{b}_{i}^{(I)} \sim \{ m{b} | T_{i}^{*} > t, Y_{i}(t); m{\theta}^{(I)} \}$
 - ► Calculate $\pi_i^{(l)}(u|t) = \frac{S_i\{u|M_i(u, b_i^{(l)}, \theta^{(l)}); \theta^{(l)}\}}{S_i\{t|M_i(t, b_i^{(l)}, \theta^{(l)}); \theta^{(l)}\}}$

Application to the ADNI Study

 Baseline characteristics of ADNI-1 participants with mild cognitive impairment (MCI)

	Progressed to AD during the study (n = 200)	Did not progress to AD during the study (n = 184)	Combined (n = 384)			
Women	75 (37.50%)	62 (33.50%)	137 (35.7%)			
Age (years)	74.44 (7.09)	75.03 (7.55)	74.71 (7.31)			
APOE4 present	127 (63.50%)	81 (44.00%)	208 (54.16%)			
Education (years)	15.82 (2.86)	15.33 (3.19)	15.58 (3.03)			
Time in study (years)	2.25 (1.74)	4.24 (2.91)	3.20 (2.57)			
Data are meam (SD) or n (%)						

Joint model without functional covariate

- JM
 - ADAS-Cog 11 as longitudinal outcome;
 - ► Time from first visit to AD conversion as survival outcome;
 - Age, gender, years of education and presence of the apolipoprotein E (APOE) ε4 allele as scalar covariates.
 - Including baseline Hippocampal volume as a covariate in both longitudinal and survival submodel provides the best model fitting.
- Specifically, JM is

$$ADAS-Cog_{i}(t_{ij}) = m_{i}(t_{ij}) + \varepsilon_{ij}$$

$$m_{i}(t_{ij}) = \beta_{0} + \beta_{1}t_{ij} + \beta_{2}bage_{i} + \beta_{3}bHV_{i} + b_{0i}$$

$$h(t) = h_{0}(t)\exp\{\gamma_{1}gender_{i} + \gamma_{2}bage_{i} + \gamma_{3}Edu_{i} + \gamma_{4}APOE-\varepsilon_{4} + \gamma_{5}bHV_{i} + \alpha m_{i}(t)\}.$$

Joint model with functional covariate

- Baseline hippocampal surface data based on radial distance as functional covariate.
 - ▶ Perform FPCA to the hippocampal radial distance (HRD) and choose the first 20 FPC which explain 82.6% of the total variance in the hippocampus surface data.
- *FJM*1: only include HRD as a functional covariate in the longitudinal submodel.
- FJM2: only include HRD as a functional covariate in the survival submodel.
- *FJM*3: include HRD as functional covariates in both the longitudinal and the survival submodel.

Joint model with functional covariate

 The corresponding models with functional covariate are specified accordingly as

$$ADAS-Cog_{i}(t_{ij}) = m_{i}(t_{ij}) + \varepsilon_{ij}$$

$$m_{i}(t_{ij}) = \beta_{0} + \beta_{1}t_{ij} + \beta_{2}bage_{i} + \beta_{3}bHV_{i} + \int_{S}HRD_{i}(s)\beta(s)ds + b_{0i}$$

$$h(t) = h_{0}(t)\exp\{\gamma_{1}gender_{i} + \gamma_{2}bage_{i} + \gamma_{3}Edu_{i} + \gamma_{4}APOE-\varepsilon 4 + \gamma_{5}bHV_{i} + \int_{S}HRD_{i}(s)\gamma(s)ds + \alpha m_{i}(t)\}.$$

Models comparison

 Including hippocampal surface data as a functional covariate improve the model fitting.

	JM	FJM1	FJM2	FJM3
AIC	10454	10440	10452	10446

Table: ADNI-1 data analysis results under the four models: AICs

Parameter Estimation

 Parameter estimates based on FJM1 with HRD as functional covariates in longitudinal submodel.

	Parameters	Estimated	SE	p value
For longitudinal outcome				
ADAS-Cog 11	Time (Years)	0.425	0.047	< 0.001
	Baseline Age	-0.389	0.254	0.125
	Hippocampal Volume	-1.878	0.221	< 0.001
For survival process				
MCI to AD	Gender (Female)	-0.161	0.167	0.331
	Baseline Age	-0.181	0.0867	0.037
	Education Years	-0.004	0.026	0.866
	$APOE$ - ε	0.397	0.167	0.018
	Hippocampal Volume	-3.559	0.928	< 0.001
	α	0.108	0.019	< 0.001

Table: ADNI-1 data analysis results for proposed functional joint model FJM1

Parameter Estimation

• Estimated coefficient function associated with hippocampal surfaces.

Figure: ADNI-1 data analysis (from *FJM*1) of estimated coefficient function associated with hippocampal surfaces. Each side of the left and right hippocampal surfaces.

Dynamic risk prediction

Predictive performance was evaluated via a 10-fold cross validation.
 AUC: time-dependent areas under the ROC curves.
 DDI: dynamic discrimination index, which summarizes the discrimination power of the measure over the whole follow-up period.

Δt	t	Ji	M	FJM1			
	L	AUC	DDI	AUC	DDI		
	1	0.830		0.834			
0.5	1.5 0.705 0.	0.758	0.762	0.772			
2	2	0.861		0.910			
	1	0.781		0.820			
	1.5	0.769	0.774	0.837	0.795		
	2	0.789		0.817			

Table: Areas under the ROC curve and estimated dynamic discrimination index for joint model with/without functional covariate.

Dynamic prediction for new patients using FJM1

• Predict future health outcome ADAS11 trajectories.

MCI patient with low risk of the disease.

MCI patient with high risk of the disease.

Dynamic prediction for new patients using FJM1

Predict future risk of AD conversion.

MCI patient with low risk of the disease.

MCI patient with high risk of the disease.

Simulation Setting

Longitudinal Model:

$$y_{i}(t_{ij}) = m_{i}(t_{ij}) + \varepsilon_{ij},$$

$$m_{i}(t_{ij}) = \beta_{0} + \beta_{1} \times t_{ij} + \int_{0}^{10} g_{i}^{(x)}(s)\beta(s)ds + b_{i},$$

$$g_{i}^{(x)}(s) = u_{i1} + u_{i2} \times s + \sum_{k=1}^{10} \{\nu_{is1} \times \sin(\frac{\pi k}{5}s) + \nu_{is2} \times \cos(\frac{\pi k}{5}s)\}.$$

• Survival Model: $h(t) = h_0(t) \exp{\{\gamma_1 \times w_1 + \int_0^{10} g_i^{(w)}(s)\gamma(s)ds + \alpha m_i(t)\}}.$

• Coefficient functions:

$$\beta(s) = 2\sin(\pi s/5)$$
 and $\gamma(s) = 1.2\sin(\pi s/4)$.

Simulation results

• Simulation results based on different sample size and censoring rate.

n=200, c=0.3				n=500, c=0.3						
Bias	AMSE	SE	SD	CP	Bias	AMSE	SE	SD	CP	
For longitudinal outcomes										
< 0.001	< 0.001	0.002	0.002	0.945	< 0.001	< 0.001	0.002	0.002	0.970	
	0.008					0.003				
< 0.001	0.001	0.035	0.038	0.93	< 0.001	< 0.001	0.022	0.024	0.920	
0.036	0.017	0.141	0.127	0.985	0.023	0.007	0.088	0.085	0.955	
0.119	0.077	0.222	0.251	0.910	0.012	0.027	0.152	0.163	0.940	
0.014	0.001	0.022	0.020	0.895	0.003	< 0.001	0.013	0.015	0.910	
	0.023					0.012				
	n=20	00, c=0.	5			n=500, c=0.5				
Bias	AMSE	$_{ m SE}$	$^{\mathrm{SD}}$	CP	Bias	AMSE	SE	$^{\mathrm{SD}}$	CP	
omes										
< 0.001	< 0.001	0.002	0.002	0.954	< 0.001	< 0.001	0.001	0.001	0.950	
	0.009					0.003				
0.004	0.002	0.038	0.040	0.965	0.004	< 0.001	0.024	0.025	0.955	
0.047	0.021	0.146	0.138	0.960	0.025	0.009	0.091	0.097	0.930	
0.091	0.073	0.254	0.255	0.940	0.042	0.021	0.134	0.139	0.925	
0.013	0.001	0.023	0.024	0.91	0.004	< 0.001	0.012	0.015	0.905	
	0.025					0.023				
	omes <0.001 0.036 0.119 0.014 Bias omes <0.001 0.004 0.047	Bias AMSE omes <0.001	Bias AMSE SE omes <0.001	Bias AMSE SE SD omes <0.001	Bias AMSE SE SD CP	Bias	Bias AMSE SE SD CP Bias AMSE correstorms <0.001	Bias	Bias	

Simulation results

Estimation of coefficient functions

Future work

- Include multiple brain regions as functional covariances in our application.
- Compare the performance of other basis functions, e.g., splines,
 Fourier, wavelet, or some combination, to represent the predictor function and/or coefficient function.
- Incorporate both repeated observations of outcome and functional covariate in longitudinal submodel.
- Use longitudinal function-on-scalar model for longitudinal submodel.
- Software development.

Acknowledgement

Supported by grants from:

- NINDS-R01NS091307.
- NCATS-5KL2TR000370.
- Parkinsons Disease Foundation.