一类搜索的优化思想 ——数据有序化

南京市金陵中学 刘一鸣

数据有序化

数据有序化的思想,就是将杂乱的数据,通过简单的分类和排序,变成有序的数据,从而加快搜索的速度

- ◆ 为什么要进行数据有序化
- ◆ 数据有序化的实现
- ◆ 两种实现方法的比较

为什么要进行数据有序化

杂乱的数据

有序的数据

例1装箱问题

题目大意:

现有一个体积为 V 的集装箱和 N 种货物, 每一种货物都有固定的体积,数量无限。你的任 务是:写一个程序,求出最少用多少个货物,就 能放满集装箱。

数据规模: V ₆≤ V≤10⁹

运行时间的对比

测试方法:随机生成20个数据,测试运行时间并求平均值。

N	不排序,直接搜索	先按体积从大到小 排序,再搜索		
10	>160 秒	9.8545 秒		
30	>200 秒	0.1356 秒		
60	>200 秒	>200 秒 0.1595 秒		
100	>200 秒	0.2285 秒		

程序效率不同的原因

数据有序化的益处

- ▶对于大多数的数据,都有良好的优化效果;
- ▶简便易行;
- ▶和其他类型的优化方法一般都不冲突。

数据有序化的实现

- ◆ 预处理阶段的数据有序化
- ◆ 实时处理阶段的数据有序化

预处理阶段的数据有序化

例 2 积木搭建

◆ 题目大意: 给定 12 种积木和一个体积小于 50 的构型 , 求最少使用多少个积木可以将这个构型搭建起来

第1步数据有序化

第2步数据有序化

从构型中挖去一个积木

[1,10]- $\{3,6,7,9\}$ = $\{1,2,4,5,8,10\}$

试图再放一块积木

积木不能放入构型

积木的冲突

$$\{3,6,7,9 \ \cap \ | \ \{4,5,7,8\} = \{7\} \neq \varphi$$

数据有序化前后数学模型的对比

数据有序化前	数据有序化后
目标构型 (3维)	目标集合(1维)
积木(3维)	小集合(1维)
积木拼接成为目标构型	小集合的合并成为目标集合
积木在3维空间里没有冲	小集合的交集为空集

数据有序化后,数学模型得到了精简

实时处理阶段的数据有序化

传统表示方法

最小表示法

例 3 N 皇后问题 -2

◆ 题目大意: 假定通过翻转、旋转得到的 状态与原状态属于同构状态, 求所有不 同构的 n 皇后状态总数。

状态表示方法

◆由于一行中只能有一个皇后,所以用一个 n元组(a₁,a₂,a₃,...,a_n)表示当前的状态,其 中 a_i表示第 i 列的皇后所在的行。

	Q			
			Q	
Q				
		Q		
				Q

> (3,1,4,2,5)

翻转、旋转的具体过程(1)

以铅垂线为轴的翻转:

	Q_1									Q_1	
			\mathbf{Q}_2					Q_2			
Q_3											Q_3
		Q_4							Q_4		
	2	2 2	a	\mathbf{Q}_{5}			\mathbf{Q}_{5}	9 9	2	2 2	
\	$\mathbf{u}_1,\mathbf{a}_2$,a ₃ ,a	a_{4}, a_{5}	<i>)</i>	_	→	(\mathbf{a}_5,\mathbf{c}	\mathbf{L}_4 , \mathbf{d}_3	,a ₂ ,a	1 /

翻转、旋转的具体过程(2)

$$(a_{2},a_{2},a_{3},a_{4},a_{5}) \Rightarrow (b_{1}b_{2},b_{5}b_{5},b_{5}b_{5},b_{5}b_{5})$$

$$\rightarrow (b_{5}, b_{4}, b_{5}, b_{2}, b_{1}a_{4}, 6-a_{3}, 6-a_{2}, 6-a_{1})$$

$$\rightarrow$$
 (6-b₅,6-b₄,6-b₃,6-b₂,6-b₁)

应用数据有序化

新的剪枝条件

```
\begin{array}{cccc} a_1 \leq a_5 & & & \\ a_1 \leq 6 - a_1 & & & \\ a_1 \leq b_1 & & & \\ a_1 \leq b_5 & & & \\ a_1 \leq 6 - b_1 & & \\ a_1 \leq 6 - a_5 & & \\ a_1 \leq 6 - b_5 & & \\ \end{array}
```

空间复杂度的降低

应用最小表示法的算法 与常规算法的比较

	状态的 生成	判断同构的费用 (或判断最小表示 的费用)	时间复杂 度	空间复杂度
常规算法	O(a*N!) (a<1)	O(N* S)	O(a*N! *N* S)	O(N* S)
应用最小表 示的算法	O(b*N!) (b< <a)< td=""><td>O(N)</td><td>O(b*N! *N)</td><td>O(N)</td></a)<>	O(N)	O(b*N! *N)	O(N)

两种实现方法的比较

阶段	预处理	实时处理
优点	精简了数学模型	对空间的要求较低,形式多样,应用广泛
缺点	对空间的要求较高	可能重复处理

总结

- ◆努力创造符合科学美的数据。
- ◆ 追求好的性价比。

谢谢!

请大家多多指教!