Symmetry elements in 3D

All four symmetry elements in 2D

Rotation

Reflection

Translation

Glide reflection

In addition to these there are

Inversion centers

Rotation and Inversion = Rotoinversion

Screw

Glide in 3D

Additional Symmetry elements in 3D

- Mirror lines in 2D become mirror planes in 3D
- Inversion center or Symmetry center
- Combination of rotation and inversion
- Rotoinversion axis is improper rotation axis
- Rotoinversion axis = Inversion axis
- Screw axes
- Glide in 3D

Inversion center

- ightharpoonupr to \bar{r} that is \vec{r} goes to $-\vec{r}$
- \rightarrow (x, y, z) to (-x, -y, -z)

More on mirrors

- Mirror perpendicular to rotation axis is 2/m
- > 4/m and 6/m exist
- > m out of plane possible, simply m
- > 3/m is not there

Note the rotation symmetry symbols and inversion symbol

Inversion center

- Most inorganic crystals have center of inversion
- Centre of inversion is chosen as origin
- Balancing of forces about the center
- Point groups with center of symmetry are called Laue groups

Inversion axis or rotoinversion

- Rotation + center of inversion = Inversion axis
- $\overline{1} \rightarrow \bullet$

 $> \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{6}$

 $\overline{2} \rightarrow m$

 $\geq \overline{2}$ is equivalent to m

 $\overline{3} \rightarrow \triangle$

 \rightarrow 6 is equivalent to 3/m

 $\overline{4} \rightarrow \Phi$

Improper rotation axes

- > Two objects related by axis of inversion are enantimorphs
- Enantiomorphs have different handedness

Rotoinversion axes stereographic projection

Screw axes

- Rotation + translation in axial direction
- > n_m screw axis
- > n fold rotation m/n translation
- > m < n

- \triangleright Screw axes 3_1 and 3_2
- ➤ Rotation by 120 degree and translation by 1/3 and 2/3 along the axis
- \triangleright Left one is 3_1 and right one is 3_2

Glide reflection

- Glide reflection in 3D
- Glide is on a plane so different ways of representing it
- > a glide or b glide or c glide: a/2. b/2, c/2

- > n glide is (a + b)/2 or (a-b)/2 Diagonal glide
- ➤ Diamond glide is (a + b)/4 or (a + b + c)/4 denoted by d in centered lattice

3D point groups

- Combination of symmetry elements in 3D
- Rotation, reflection, inversion and rotoinversion
- Easiest is combination of rotation

Rotoinversion $\overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{6}$

With mirror in plane of rotation axis mm2, 4mm, 6mm
 3m, 3m1, 31m
 m3m

With mirror perpendicular to rotation axis
 2/m, 4/m, 6/m

- With combination of mirrors and rotation axis mmm or 2/m 2/m 2/m
 4/m 2/m 2/m or 4/mmm
 6/m 2/m 2/m or 6/mmm
- With combination of mirrors and rotoinversion axis $\overline{4}2m$, $\overline{4}3m$, $m\overline{3}m$, $\overline{6}2m$ $\overline{3}m1$ or $\overline{3}2/m1$ and $\overline{3}1m$ or $\overline{3}12/m$
- With rotoinversion and perpendicular mirror $4/m \overline{3} 2/m$

Crystal System	32 Crystallographic Point Groups							
Triclinic	1	-1						
Monoclinic	2	m	2/m					
Orthorhombic	222	mm2	mmm					
Tetragonal	4	-4	4/m	422	4mm	-42m	4/ <i>mmm</i>	
Trigonal	3	-3	32	3 <i>m</i>	-3 <i>m</i>			
Hexagonal	6	-6	6/m	622	6 <i>mm</i>	-62m	6/mmm	
Cubic	23	m-3	432	-43 <i>m</i>	m-3m			

Please refer to the attachment for more details in terms of classification of the Point groups.

http://pd.chem.ucl.ac.uk/pdnn/symm2/group32.htm

Crystal System	Laue Group	Point Group	
Triclinic	-1	1, -1	
Monoclinic	2/m	2, m, 2/m	
Orthorhombic	mmm	222, mm2, mmm	
	4/m	4, -4, 4/m	
Tetragonal	4/mmm	422, 4mm, -42m, 4/mmm	
T:	-3	3, -3	
Trigonal/ Rhombohedral	-3/m	32, 3m, -3m	
I I was a second of	6/m	6, -6, 6/m	
Hexagonal	6/mmm	32, 3m, -3m 6, -6, 6/m 622, 6mm, -6m2, 6/mmr	
0.1.	m3	23, m3	
Cubic	m3m	432, -43m, m3m	

- Point groups with center of inversion are called Laue groups
- > Non centrosymmetric point groups are piezoelectric

- > 32 Point groups in 3D while 10 point groups in 2D
- 7 Crystal systems and 14 Bravais lattice in 3D and 2 crystals and 5 lattices in 2D
- > 230 space groups while 17 plane groups in 2D
- 2D plane groups from glide
- 3D planes groups from glide, screw axes, inversion axes and inversion center

Representing space group

P, I, F, A, B, C
I also called R
Highest symmetry first
mirror over 2 fold: Cmm2
Mirror perpendicular to rotation axis use"/"
P2/mmm
n, (a, b, c) for diagonal glide and (glide along, a, b, c)

- Triclinic no symmetry or inversion symmetry P1 or P-1
- Monoclinic P2, P2/m, C2/m
- Orthorhombic
 Pmm2, Pnma, Pnc2
- Tetragonal
 P4/mmm, I4₁cd
- Cubic Fm-3m, P23, F432

Crystal System	Symmetry Direction						
	Primary	Secondary	Tertiary				
Triclinic	None						
Monoclinic	[010]≡ b						
Orthorhombic	[100]≡ a	[010] = b	[001]≡ c				
Tetragonal	[001] ≡ c	$[100]/[010] \equiv a/b$	[110]				
Hexagonal/Trigonal	[001] ≡ c	[100]/[010]≡ a/b	[120]				
Cubic	$[100]/[010]/[001] \equiv a/b/c$	[111]	[110]				

Common metals Iron Im-3m, Nickel Fm-3m, Polonium Pm-3m Magnesium and titanium P6₃/mmc

Ceramic BaTiO3

 Cubic Pm-3m
 Tetragonal P4mm
 Orthorhombic Amm2
 Rhombohedral R3m

- Table salt NaCl is also Fm-3m
- Diamond Fd-3m
- High density polyethylene Pnam

We will revisit this when we will study bonding