Data Modeling

- Data modeling is a process used to define and analyze data requirements needed to support the business processes within the scope of corresponding information systems in organizations.
 - Needs business experts
 - Professional Data Analysts
 - Other stakeholder

Data Models

- Data Stores in a DFD display "data at rest"
 - Does not show the "natural structure of data"
 - Does not show the definition, structure, and relationships within the data
- Data Models are used to develop these descriptions

Type of Models

- During Early Analysis Stage:
 - Conceptual Data Model
 - A set of technology independent specifications about data
 - Used to discuss initial data requirements with the business stakeholders
- During Early Design Stage:
 - Logical Data Model
 - Translation of the conceptual data model to logical model
 - Documents the structure of the data that can be implemented in database
- During Late Design Stage
 - Physical Data Model
 - Translation of logical model to database table

What is a Conceptual Data Model?

- It is an abstract graphical presentation of data entities within a system, serving as tool.
 - to diagram the major concepts and relationships.
 - to analysis the systems database and data management requirements
 - It may assist the database designers, but :
 - may not include all physical table
 - may refer to some entities to facilitate the communication with customers and other stakeholders
 - my refer to some relationships that not necessarily needs to be implemented.
 - Should be independent of any particular commercial database product.

Conceptual Data Modeling Approaches

- Typically constructed based on DFD diagrams.
- Other Approaches
 - Top-Down Approach
 - derive business rules for a data model from an intimate understanding of the nature of the business
 - Bottom-Up Approach
 - gather information for data modeling by reviewing specific business documents
 - i.e. reports, business forms, etc.

What Is ERD During The Analysis?

Why ERD During Analysis Phase?

- 1. Give the analyst a clear, high-level static view of data.
- 2. In conjunction with data flow diagrams, gives the analyst an alternative logical perspective of the system.
- 3. It can be even a good starting point for modeling the system, when some of the stakeholder have better understanding of the data rather than system's processes.

What is ERD?

- Data Models use two main constructs:
 - Data Entities
 - Relationships
- These models know as Entity Relationship Diagrams (ERD) are uses as a means of quickly obtaining, with minimum effort, a good sense of the structure of system's database.

What is an Entity

- Entities are abstract concepts within the data model.
 Each representing one or more instances.
- Each entity is represented by a box within the ERD.
- Can be visualized as an equivalent to tables in a relational database:
 - each row of the table representing an instance of that entity.

Student

Course

Characteristics of Data Entities

- Names of entities are singular, since the name represents a class or set
- A simple noun is used to name an entity, since an entity is an object
- Names of entities are capitalized
- A rectangle represents an entity on an ERD

Customer

Payment

Relationships

- Each instance of an entity may have a relationship with one or more instances of another entity, and vice versa.
- If necessary, a relationship line may be labeled.

Recursive Relationships

an entity can have relationships with itself...

Optionality and Cardinality

- Symbols at the ends of the relationship lines indicate the optionality and the cardinality of each relationship.
 - "Optionality" expresses whether the relationship is optional or mandatory.
 "Cardinality" expresses the maximum number of relationships.
 - A circle () indicates optionality of zero.
 - A stroke (|) indicate mandatory—the minimum of one.
- A "crows-foot", indicates a many relationship.

Optionality Example (using Martin notation)

R relates each A to zero or more B's S relates each B to one A

Cardinality – UML Notation

 Relationship Cardinality Notations Using UML Notation:

Optionality Example (UML)

- Optional:
 - R relates each A to zero or more B

- Mandatory:
 - S relates each A to 1 or more B

Context Diagram

DFD - LEVEL 1

ERD

Data Dictionary

The Data Dictionary

- A data dictionary is a collection of definitions for data flows and data stores, in text format.
- A data repository is the same as a data dictionary, with the addition of descriptions for terminators and process specifications.

Data Dictionary

- A listing of all of the data elements, organized alphabetically.
- Defines each data element in a precise, rigorous manner.
- Describes the:
 - Meaning of all data flows and data stores.
 - Composition of data flows.
 - Composition of stored data.

Data Dictionary (continued)

- · Specifies the values and units of data
- Helps define the relationship between data stores (in conjunction with the ERD).
- Understandable to both client and systems analyst.

Building a Data Dictionary

Name: the primary name of the composite data item

Aliases: other names for the data item

Where used: data transforms (processes) that use the

composite data item

How used: the role of the data item (input, output,

temporary storage, etc.

Description: a notation for representing content (presented

on next slide)

Format: specific information about data types, pre-set

values (if known)

Data Dictionary Notation

<u>Notation</u>	<u>Meaning</u>			
=	is composed of			
+	and			
[]	either-or			
{ } ⁿ	n repetitions of			
()	optional data			
* text*	delimits a comment			

Template to Use for ENSF 613

Data Dictionary for Staff

Field	Туре	Length	РК	FK	Description
Name	string	30	No	No	Name of staff
Staff_id	string	12	Yes	No	Staff identification number
password	string	14	No	No	Must be combination character and number