Universidad Nacional de Río Negro Física III B - 2020

Unidad 04

Clase U04 C02 / 23

Fecha 09 Jun 2020

Cont Transferencia de calor

Cátedra Asorey

Web http://gitlab.com/asoreyh/unrn-f3b

Contenidos: Termodinámica alias Física IIIB, alias Física IVA

Unidad 2 Unidad 1 Unidad 4 Unidad 3 Primer principio **El Calor** Segundo Principio **Aplicaciones** Es lo que hay Todo se transforma Nada es gratis Hace calor

Bloque 2 - Unidad 4: Aplicaciones Del de 02/Jun al 25/Jun (8 encuentros)

Transferencia de calor: radiación, conducción y convección. Ley de Newton. Conductores y aislantes del calor. Ley de Fourier. Aplicaciones hogareñas. Termodinámica de la vida. Energía y humanidad. Calentamiento global.

Observaciones empíricas

 El cuerpo caliente (emisor) entrega calor y se enfría. El cuerpo frío (receptor), recibe calor y se calienta

$$T_c \equiv T_c(t), \frac{dT_c}{dt} < O$$
 $T_f \equiv T_f(t), \frac{dT_f}{dt} > O$

 Mientras exista diferencia de temperatura entre objetos vecinos, la transferencia de calor no puede detenerse.

Sí
$$\Delta T(t) \stackrel{\text{def}}{=} T_c(t) - T_f(t) > O \rightarrow dQ > O$$

 La velocidad de transferencia tiende a cero a medida que las temperaturas de ambos cuerpos se igualan:

$$\lim_{\Delta T(t) \to 0} \frac{dQ}{dt} = C$$

Ley de enfriamiento

$$\frac{\text{dQ}}{\text{dt}} \! \propto \! A \! \left(T_{\text{c}} \! - \! T_{\text{f}} \right)$$

$$\frac{dQ}{dt} = -hA(T_c - T_f)$$

- Imaginemos una región caliente y una fría
- ¿Qué variables determinan el flujo de calor?
 - ¿Área de contacto? A dt
 - ¿Diferencia de temperatura?
 - ¿Materiales?
 - h es el coeficiente de transferencia de calor: [h] = W / (m² K)

El signo - aparece porque miramos el enfriamiento!

Ley de enfriamiento de Newton

$$\frac{dT(t)}{dt} = -r(T(t) - T_{amb}) = -r\Delta T(t)$$

$$r = \left(\frac{hA}{mC_{V}}\right) > O \quad \tau \stackrel{\text{def}}{=} r^{-1} = \left(\frac{mC_{V}}{hA}\right)$$

$$[r] = s^{-1} \quad [\tau] = s$$

$$\tau \text{ es un tiempo caracteristico}$$

$$(\text{depende del sistema})$$

$$\frac{dT(t)}{dt} = -r\Delta T(t)$$

$$\Delta T(t) = \Delta T(0)e^{-\frac{t}{\tau}}$$

$$T(t) = T_{amb} + (T(0) - T_{amb})e^{-\frac{t}{\tau}}$$

Conducción, convección y radiación

Conducción

Aislante

Conductor

Conducción de calor

- La distancia entre las moléculas o átomos es mayor que en otros medios →
 - menor tasa de colisiones → menor conducción.
- Aumenta con la temperatura.
- Aumenta con la presión, hasta un punto crítico:
 - Cuando la densidad del gas es muy alta las moléculas están inhibidas de transferir calor.
 - Más allá de ese punto la conductividad aumenta sólo ligeramente al aumentar la presión y la densidad.

Conductividad térmica

- Imaginemos una región caliente y una fría, separadas por una región de transición
- ¿Qué variables determinan el flujo de calor?
 - ¿Área de contacto? A
 - ¿Diferencia de temperatura? (T_c T_f)
 - ¿Materiales? (k)
 - ¿Espesor de la transición? (d)

Conductividad térmica

$$\frac{dQ}{dt} \propto \frac{A}{d} (T_c - T_f)$$

$$\frac{dQ}{dt} = \kappa \frac{A}{d} (T_c - T_f)$$

Jun

 Imaginemos una región caliente y una fría...

...separadas por una región de transición

- ¿Qué variables determinan el flujo de calor?
 - ¿Área de contacto? A
 - ¿Diferencia de temperatura? (T_c T_f)
 - ¿Materiales? (κ)
 - ¿Espesor de la región de transición? (d)

 El flujo de calor por conducción entre una región caliente (T_c) y una fría (T_f) está dado por:

$$I_{Q} \stackrel{\text{def}}{=} \frac{dQ}{dt} = \kappa \frac{A}{d} (T_{c} - T_{f}) \rightarrow I_{Q} = \kappa \frac{A}{d} (T_{c} - T_{f})$$

κ es el coeficiente de conductividad térmica

$$[\kappa] = \frac{Jm}{m^2 s K} = \frac{W}{mK}$$

 cantidad de calor transferida por unidad de área, unidad de tiempo por un material de espesor unitario cuando la diferencia de temperatura entre sus caras es de 1 K.

κ → sólo depende del material

$k>10 \rightarrow conductores, k<1 \rightarrow aislantes$

Material	k	Material	k	Material	k
Acero	47-58	Corcho	0,03-0,04	Mercurio	83,7
Agua	0,58	Estaño	64,0	Mica	0,35
Aire	0,02	Lana de vidrio	0,03-0,07	Níquel	52,3
Alcohol	0,16	Glicerina	0,29	Oro	308,2
Alpaca	29,1	Hierro	80,2	Parafina	0,21
Aluminio	209,3	Ladrillo	0,80	Plata	406,1-418,7
Amianto	0,04	Ladrillo refractario	0,47-1,05	Plomo	35,0
Bronce	116-186	Latón	81-116	Vidrio	0,6-1,0
Zinc	106-140	Litio	301,2	Cobre	372,1-385,2
Madera	0,13	Tierra húmeda	0,8	Diamante	2300

Jun ,

Aplicación: resistencia térmica

 Barra de longitud L, sección A y de conductividad k, aislada en su superficie salvo en los extremos

El flujo de calor está dado por la Ley de Fourier

$$I_{Q} \stackrel{\text{def}}{=} \frac{dQ}{dt} = \underbrace{\left(\kappa \frac{A}{L}\right)}_{\text{def}} \Delta T \rightarrow I_{Q} = \Delta T \frac{1}{R}$$

$$\Delta T = I_Q R$$
H. Asorey - F3B 2020

Ley de Ohm V=iR

Aplicación: aislación en paredes

Pared de área A compuesta por dos placas de espesores
 L₁ y L₂ y materiales k₁ y k₂., a temperaturas T_c y T_f.

- Las T_c y T_f se mantienen constantes (fuentes de calor)
- ¿Cuál es la temperatura T en la región de transición una vez se alcanzó el estado estacionario?

H. Asorey - F3B 2020

Resistencia en serie

Aplicación: aislación en paredes

• Pared de área A compuesta por dos placas de espesores L_1 y L_2 y materiales k_1 y k_2 ., a temperaturas T_c y T_f .

Jun

$$R_{i} = \frac{L_{i}}{\kappa_{i} A} \rightarrow T = \frac{T_{c}R_{1} + T_{f}R_{2}}{R_{1} + R_{2}}$$

$$I_{Q} = \frac{\Delta T}{R_{1} + R_{2}} \rightarrow \Delta T = I_{Q}R_{eq}$$

Resistencias térmicas en serie

$$R_{eq} = \sum_{i=1}^{N} R$$

H. Asorey - F3B 2020

Aplicación: conductos de calor

 Conector térmico entre T_c y T_f compuesto por dos barras de longitud L, áreas A₁ y A₂ y materiales k₁ y k₂

$$R_i = \frac{L_i}{\kappa_i A}$$
, $I_{Qi} = \frac{\Delta T}{R_i}$, $I_{Q} = \sum_{i=1}^{N} I_{Qi}$

Resistencias térmicas en paralelo

$$\frac{1}{R_{eq}} = \sum_{i=1}^{N} \frac{1}{R_i}$$

Convección

Transferencia de calor mediante el movimiento de un fluido en contacto con zonas a diferentes temperaturas calor → cambio de densidad → empuje → flotación

Celdas convectivas

20/32

H. Asorey - F3B 2020

Flujo laminar y turbulento

Transición a flujo turbulento

Aplicación: radiadores de calefacción

- ¿Son radiadores?
- En realidad son
 "conductores+radiadores+convectores"
- ¿Cuánto radian? Acordarse de T4.

Convección

Transferencia por convección: ¿de qué depende?

- Tasa de transferencia: $\frac{dQ}{dt}$
- ¿Qué pasa si aumento el área de contacto?
- ¿Qué pasa si aumento la diferencia de temperatura?
- ¿de qué más dependerá? Ignorancia → Lew de Newton

$$\frac{dQ}{dt} = hA(T_c - T_b)$$

 h depende del fluído, de las superficies de contacto, de las diferencias de temperura, del flujo...

H. Asorey - F3B 2020

Aplicación -> Termopaneles

Termopaneles

- Es una armadura de vidrios dobles usada en los climas fríos.
- El calor se transfiere de un ambiente hacia el exterior por:
 - Conducción en el vidrio interior
 - Conducción y convección en el aire intermedio
 - Conducción en el vidrio exterior

Triple vidrio

Double Glazed Aluminum Spacer

Triple Glazed Aluminum Spacer

Double Glazed warm edged spacer (Silicone Foam)

Triple Glazed warm edged spacer (Silicone Foam)

Radiación

Transferencia por radiación: ¿de qué depende?

- Todos los objetos emiten y absorben radiación EM
- ¿Qué pasa si aumento el área de emisión A?
- ¿Qué pasa si aumento la temperatura?
- ¿Qué pasa si cambio el material?

$$\frac{dQ}{dt} = \sigma \varepsilon A T^4$$

$$\sigma = 5.67 \times 10^{-8} \,\mathrm{W m^{-2} K^{-4}}$$

- Radiación tipo cuerpo negro:
 - A es el área, T la temperatura
 O<ε<1 es la emisividad (si ε=1 → cuerpo negro ideal)

Tasa de emisión $\frac{dQ}{dt}$

- El objeto T_c emite radiación, el objeto a temperatura T_f la absorbe, se calienta y también emite.
- Suponemos $A_c \sim A_f \sim A$, y $\varepsilon = 1$
- La tasa de intercambio será

$$\begin{split} \frac{dQ_c}{dt} = & -\sigma A_c T_c^4 \quad y \quad \frac{dQ_f}{dt} = & \sigma A_f T_f^4 \\ \frac{dQ_c}{dt} = & \sigma A (T_f^4 - T_c^4) \quad y \quad \frac{dQ_f}{dt} = & \sigma A (T_c^4 - T_f^4) \end{split}$$

Radiación al ambiente T, → Ley de Newton

Supongamos T_f es temperatura ambiente (cte) y T_c~T_f →

$$\begin{split} \frac{dQ_{c}}{dt} = & -\sigma A_{c} (T_{c}^{4} - T_{f}^{4}) = -\sigma A_{c} (T_{c}^{2} + T_{f}^{2}) (T_{c}^{2} - T_{f}^{2}) \\ \frac{dQ_{c}}{dt} = & -\sigma A_{c} (T_{c}^{2} + T_{f}^{2}) (T_{c} + T_{f}) (T_{c} - T_{f}) \end{split}$$

$$\frac{dQ_{c}}{dt} \simeq -\sigma A_{c} (T_{f}^{2} + T_{f}^{2}) (T_{f} + T_{f}) (T_{c} - T_{f}) \simeq -\sigma A_{c} (2T_{f}^{2}) (2T_{f}) \Delta T$$

$$\frac{dQ_{c}}{dt} \simeq -\sigma 4 T_{f}^{3} A_{c} \Delta T \rightarrow \frac{dQ_{c}}{dt} \simeq -h A_{c} \Delta T$$
Ley de Newton