

Synthesis, characterization, redox and photocatalytic properties of $\text{Ce}_{1-x}\text{Pd}_x\text{VO}_4$ ($0 \leq x \leq 0.1$)

Manjunath B. Bellakki ^a, Tinku Baidya ^a, C. Shivakumara ^a, N.Y. Vasanthacharya ^a, M.S. Hegde ^a, Giridhar Madras ^{b,*}

^a Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India

^b Chemical Engineering Department, Indian Institute of Science, Bangalore 560012, India

ARTICLE INFO

Article history:

Received 27 February 2008

Received in revised form 25 April 2008

Accepted 7 May 2008

Available online 14 May 2008

Keywords:

Combustion synthesis

$\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$

H_2/TPR

NO reduction

CO oxidation

Photocatalysis

ABSTRACT

Zircon-type CeVO_4 and $\text{Ce}_{1-x}\text{Pd}_x\text{VO}_4$ ($0.02 \leq x \leq 0.1$) were synthesized by a single step solution combustion method. The materials were characterized by powder X-ray diffraction, magnetic measurement and temperature-programmed reduction (TPR) with H_2 . The redox properties of CeVO_4 and $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$ have been investigated by temperature-programmed reduction. The gas-phase and liquid-phase catalytic properties of CeVO_4 and $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$ were investigated. $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$ shows better catalytic activity than CeVO_4 towards CO oxidation by O_2 , NO reduction by CO and the photocatalytic degradation of various dyes. This higher catalytic activity of $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$ can be attributed to the lattice labile oxygen and high surface area compared to that of CeVO_4 .

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Noble metal promoted perovskites have been studied for potential use as automobile exhaust catalysts [1–3]. Incorporation of these metals into a perovskite structure can prevent their sintering, reduce losses due to volatilization at high operating temperatures, and avoid reactions with the support that lead to catalyst deactivation. The need for global and regional environmental protection has strengthened regulations for automobile emission worldwide. Particularly, with the focus on cold emission regulation, the demand for Pd, which shows good low-temperature activity, has increased to 10-fold from 1992. A new automotive catalyst technology that reduces precious metal consumption, especially Pd, is much sought after.

In recent years, vanadia/ceria combination catalysts have been the subject of numerous investigations because of its wide ranging applications in catalysis and material science [4,5]. The naturally occurring CeVO_4 mineral wakefieldite crystallizes in a zircon-type (I41/amd) structure that consists of VO_4 tetrahedra sharing corners and edges with CeO_8 dodecahedra [6]. This tetragonal zircon-type

structure stabilizes Ce^{3+} ion even in oxidizing conditions [7]. CeVO_4 is a highly active catalyst in oxidative dehydrogenation of propane at low temperatures [8]. CeVO_4 -based materials are used as counter electrodes in electrochromic devices [9]. Moreover, CeVO_4 -based phases are of great interest for high-temperature electrochemical applications because of the significant ionic and electronic conductivity [10]. The conventional methods for the preparation of rare earth orthovanadates include solid-state reaction [7,11], coprecipitation [12], nitrate method [8], hydro-thermal method [13], sonochemical method [14] and using microwave radiation [15].

Ionic substitution of noble metals in CeO_2 in the form of $\text{Ce}_{1-x}\text{M}_x\text{O}_{2-\delta}$ ($\text{M} = \text{Pd}^{2+}$) results in high catalytic activity of these materials towards three-way catalysis [16]. $\text{Ce}_{1-x}\text{Ti}_x\text{O}_2$ can be prepared retaining fluorite structure and $\text{Ce}^{4+}/\text{Ce}^{3+}$ and $\text{Ti}^{4+}/\text{Ti}^{3+}$ redox couples can be accessed [17]. Vanadium ion substitution with stable $\text{V}^{5+}/\text{V}^{4+}/\text{V}^{3+}$ in CeO_2 is not possible because the stable phase of CeVO_4 is formed instead. However, $\text{Ce}^{3+}/\text{Ce}^{4+}$ and $\text{V}^{5+}/\text{V}^{4+}$ redox states can be accessed in CeVO_4 and noble metal ion substitution in CeVO_4 can result in beneficial effects for redox catalysis. This idea motivated us to synthesize Pd ion-substituted CeVO_4 and test its catalytic activity for both gas-phase and liquid-phase reactions.

The present catalysts were synthesized by solution combustion method. Solution combustion method offers an advantage over the

* Corresponding author. Tel.: +91 80 2293 2321; fax: +91 80 2360 0683.

E-mail addresses: giridhar@chemeng.iisc.ernet.in, giridharmadras@gmail.com (G. Madras).

other conventional methods. It is a low-temperature initiated exothermic and self-propagating process. Patil et al. [18] have reviewed synthesis of various oxide materials by the combustion reactions of redox mixtures containing stoichiometric amounts of respective metal nitrates (oxidisers) and various fuels. A wide range of technologically useful oxides can be prepared using this technique.

The exhaust gases from vehicle engines and industrial boilers contain mainly carbon oxides, nitrogen oxide and hydrocarbons that are major contributors to environmental problems like smog and acid rain [19,20]. Extensive research has been carried out on NO reduction to N₂ with CO, as summarized in a review [21]. The widespread presence of organic dyes in industrial wastewater results in a potentially serious environmental problem. Photocatalysis is a promising technology to treat wastewater and extensive studies have been reported on the degradation of dyes, as summarized in review [22].

Thus the objectives of this study are to synthesize and characterize Ce_{1-x}Pd_xVO₄ (0 ≤ x ≤ 0.1), determine its catalytic activity for both gas phase (CO oxidation and NO reduction) and liquid phase reactions (photocatalysis of dyes). Further, this study provides a rationale for the higher activity of Ce_{1-x}Pd_xVO₄ compared to that of CeVO₄.

2. Experimental

2.1. Preparation of catalysts

CeVO₄ was prepared by taking stoichiometric amounts of (NH₄)₂Ce(NO₃)₆·6H₂O (E. Merck, India Ltd.), NH₄VO₃ ('Reanal' Finom vegyszergyar Budapest-Hungary) and oxalyl dihydrazide fuel (ODH, prepared by the reaction of 1 mol of diethyl oxalate and 2 mol of hydrazine hydrate). In a typical preparation of CeVO₄, 9.12 mmol of (NH₄)₂Ce(NO₃)₆·6H₂O, 9.12 mmol of NH₄VO₃ and 24.63 mmol of ODH, were taken in a borosilicate dish of 130 cm³ capacity. The reactants were dissolved in 20 ml water and introduced into a preheated muffle furnace at 500 °C. The solution boiled with frothing, foaming and ignited to burn with a flame (~1000 °C) yielding a voluminous solid product. The chemical reaction occurring in the combustion process can be written as

Ce_{0.98}Pd_{0.02}VO₄ was synthesized by taking (NH₄)₂Ce(NO₃)₆·6H₂O, PdCl₂, NH₄VO₃ and ODH in the mole ratio of 0.98:0.02:1.0:2.65. In typical reaction, 9.12 mmol of (NH₄)₂Ce(NO₃)₆·6H₂O, 9.31 mmol of NH₄VO₃, 0.31 mmol of palladium chloride and 49.36 mmol of ODH were used.

2.2. Impregnation method

A known amount of combustion synthesized CeVO₄ was wetted with water and calculated quantity of PdCl₂ was added dropwise with gentle stirring. The mixture was then dried at 100 °C and finally calcined in air at 500 °C for 6 h.

2.3. Characterization of catalysts

Powder X-ray diffraction (XRD) patterns of the synthesized oxides were recorded on a Philips X'Pert X-ray diffractometer with Cu K α source ($\lambda = 1.5418 \text{ \AA}$) at a scan rate of 0.5°/min with 0.02 step size in the 2 θ range 10–80°. Rietveld refinement of the structures was carried out using Fullprof program.

X-ray photoelectron spectra (XPS) of Ce_{1-x}Pd_xVO₄ was recorded in ESCA-3 II spectrometer (VG Scientific Ltd., England) using Al K α

radiation (1486.6 eV). Binding energies were calibrated with respect to C(1s) at 285 eV with a precision of ± 0.1 eV. For XPS analysis, the powder samples were made into 0.5-mm thick, 8 mm diameter pallets and placed into an ultra high vacuum (UHV) chamber at 10^{-9} Torr housing the analyzer.

Hydrogen uptake studies were carried out in a temperature-programmed reduction (TPR) system with 5% H₂/Ar. About 100 mg of sample in a granular form (40–80 mesh powder) was placed in a fixed bed tubular reactor, over which 5% H₂ in Ar was continuously passed. The samples were subjected to a heating rate of 10 °C min⁻¹. The volume of hydrogen uptake, calibrated against a known amount of CuO, was measured using a TCD detector.

The surface area of the catalyst was determined with standard BET apparatus (NOVA-1000, Quantachrome) using nitrogen for adsorption at 77 K. Experiments were carried out in multipoint BET mode.

UV-vis absorption spectra and the diffuse reflectance spectra of CeVO₄ and Ce_{0.98}Pd_{0.02}VO₄ were determined using a spectrophotometer (Lambda 32, PerkinElmer).

2.4. Catalytic tests

The catalytic reaction was carried out in a TPR system in a packed bed tubular quartz reactor (25 cm × 0.4 cm) at atmospheric pressure. The system was equipped with a quadrupole mass spectrometer SX200 (VG Scientific Ltd., England) for product analysis. Typically, 250 mg of the catalyst (40/80 mesh size) diluted with SiO₂ (30/60 mesh size) was loaded in the reactor to obtain a column length of 2.2 cm and the ends were plugged with ceramic wool. For all the reactions, the total flow was maintained at 100 sccm to achieve a gas hourly space velocity (GHSV) of 15,000 h⁻¹. Before the catalytic experiments, the as-prepared catalyst was heated in O₂ flow at 200 °C for 1 h followed by degassing in He flow to the experimental temperature. The reactions were carried out as a function of temperature with a linear heating rate of 10 °C/min. In order to check for mass transfer effects, experiments were also conducted with lower heating rates of 2–5 °C/min but similar reaction rates were obtained. Experiments were also conducted using the once used catalyst and no deactivation of the catalyst was observed.

2.5. Photochemical reactor

The details of the photochemical reactor employed in this study have been reported elsewhere [23]. A high-pressure mercury vapor lamp (HPML) (125 W, Philips, India) that radiated predominantly at 365 nm corresponding to the energy of 3.4 eV was used for the degradation reactions.

2.6. Degradation and sample analysis

The photocatalytic degradation of four dyes having chemical structures such as azoic (Orange G, OG), sulfonated (Remazol brilliant blue, RBBR), heteropolyaromatic (Methylene blue, MB) and anthraquinonic (Alizarin red, AR) was investigated in the presence of CeVO₄ and Ce_{0.98}Pd_{0.02}VO₄. The degradation reactions were performed in a photochemical reactor with a constant catalyst concentration of 1 g/l. The reactions were carried out at natural pH conditions with the initial concentrations of 50 ppm. Samples were collected at regular intervals for subsequent analysis. Experiments were also conducted in the presence of commercial catalyst, TiO₂ (Degussa P-25).

The degraded samples were centrifuged and filtered through Millipore membrane filters to remove the catalyst particles prior to analysis. The samples were analyzed using a UV-visible spectro-

photometer (Lambda 32, PerkinElmer). The calibrations for OG, RBBR, AR and MB were based on Beer Lambert's Law at their maximum absorption wavelengths λ_{max} of 480, 590, 428 and 664 nm, respectively.

3. Results and discussion

3.1. Structural studies

The powder XRD pattern of CeVO_4 and $\text{Ce}_{1-x}\text{Pd}_x\text{VO}_4$ ($0.02 \leq x \leq 0.1$) solid solutions are shown in Fig. 1. The XRD patterns can be indexed to zircon-type structure (ZrSiO_4). The diffraction patterns agree well with the reported pattern in the literature (JCPDS No. 12-0757). The compounds crystallize in the same CeVO_4 structure up to 2% Pd. To see if any impurity line of PdO is present in 2 at.% Pd-substituted CeVO_4 compounds, we have given the enlarged powder XRD pattern of (a) $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$ by combustion method, (b) 2 at.% Pd-impregnated CeVO_4 and (c) 2 at.% PdO mixed CeVO_4 in Fig. 2. As can be seen from Fig. 2(a), combustion synthesized $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$ giving almost no $\text{PdO}(101)$ peak. Also Pd metal peaks are absent. The impurity line of $\text{PdO}(101)$ was observed in both 2 at.% Pd-impregnated CeVO_4 and 2 at.% PdO mixed CeVO_4 as can be seen in Fig. 2(b) and (c), respectively. In the XRD pattern of $\text{Ce}_{0.95}\text{Pd}_{0.05}\text{VO}_4$ and $\text{Ce}_{0.90}\text{Pd}_{0.10}\text{VO}_4$ compounds, weak reflections due to PdO are observed (see Fig. 1). To see whether PdO is present in the combustion synthesized 3 at.% Pd/CeVO_4 , the X and Y scale expanded XRD pattern was examined along with 3 at.% $\text{PdO} + \text{CeVO}_4$. A small amount of impurity line $\text{PdO}(101)$ was observed (Fig. S1(a)). The intensity of $\text{PdO}(101)$ in the combustion synthesized 3 at.% Pd/CeVO_4 is very less compared to 3 at.% PdO mixed with CeVO_4 (see Fig. S1(b)). Thus we have chosen only 2% Pd/ CeVO_4 for catalytic studies even though we have prepared 3% Pd/ CeVO_4 , 5% Pd/ CeVO_4 and 10% Pd/ CeVO_4 . Our interest is to show how much Pd can be substituted as Pd^{2+} ion in CeVO_4 . In the

Fig. 2. Enlarged powder XRD patterns of (a) $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$, (b) 2 at.% Pd/ CeVO_4 (impreg.) and (c) 2 at.% PdO/CeVO_4 .

present study we have focused on the catalytic activity of CeVO_4 and 2% Pd-substituted CeVO_4 by combustion method, where Pd exists as a Pd^{2+} . The XRD pattern of CeVO_4 is Rietveld refined and the profile fits well to tetragonal zircon-type structure (space group $I4_1/\text{amd}$), as shown in Fig. S2. The XRD pattern of all the Pd-substituted compounds are Rietveld refined and profile fits well to tetragonal zircon-type structure as shown in Fig. S3 (a-d). The refined parameters are given in Table S1 (see supporting information). Based on Rietveld refined data (accurate to two decimals), cell volume of 2 at.% Pd/ CeVO_4 (combustion) is $356.66(\text{\AA}^3)$, 2 at.% Pd-impregnated CeVO_4 is $356.85(\text{\AA}^3)$ and 2 at.% $\text{PdO} + \text{CeVO}_4$ is $356.18(\text{\AA}^3)$. Thus, by XRD, it is clear that Pd ion is in the lattice.

Powder XRD patterns of (a) as synthesized CeVO_4 , (b) reduced CeVO_4 to CeVO_3 under H_2 atmosphere at 800°C and (c) reoxidised CeVO_3 to CeVO_4 are shown in Fig. 3. Fig. 3(b) shows the XRD pattern of CeVO_3 recorded after H_2 was passed over CeVO_4 from 30°C to 900°C . CeVO_3 crystallized in the orthorhombic structure (JCPDS No. 78-2306). Fig. 3(c) shows the XRD pattern of CeVO_4 obtained on reoxidation of CeVO_3 in air. The Rietveld refined XRD pattern of CeVO_3 fits well to orthorhombic structure with $Pbnm$

Fig. 1. Powder XRD patterns of CeVO_4 , $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$, $\text{Ce}_{0.97}\text{Pd}_{0.03}\text{VO}_4$, $\text{Ce}_{0.95}\text{Pd}_{0.05}\text{VO}_4$ and $\text{Ce}_{0.90}\text{Pd}_{0.10}\text{VO}_4$.

Fig. 3. Powder XRD patterns of (a) as-synthesized CeVO_4 , (b) reduced CeVO_4 to CeVO_3 under H_2 atmosphere at 800°C and (c) reoxidised CeVO_3 to CeVO_4 .

space group shown in Fig. S4. The black CeVO_3 compound turns to pinkish brown colour and the structure is restored to CeVO_4 (Fig. 3(c)). The overall redox behavior can be represented as follows:

X-ray photoelectron spectra of Pd ion-substituted CeVO_4 have been recorded to determine the electronic structure. Fig. 4(a) shows the core level spectra of $\text{Pd}(3d_{5/2})$ in $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$. Binding energy of $\text{Pd}(3d_{5/2})$ is 337.7 eV which is higher than that in PdO at 336.4 eV [24]. Therefore, Pd cannot be present in the PdO form. Hence, Pd^{2+} ion must be present in $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$ lattice giving higher binding energy of $\text{Pd}(3d)$ core level.

Fig. 4(b) shows that the characteristic satellite peak of $\text{Ce}(3d)$ spectrum is similar to Ce_2O_3 [25]. Therefore, Ce ion in CeVO_4 is in +3 state (*) in $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$ and a very small amount in +4 state (+). $\text{V}(2p_{3/2})$ peak is observed at 517.2 eV, while $\text{O}(1s)$ is observed at 529.6 eV indicating that vanadium is in +5 state as seen from Fig. 4(c).

UV-vis absorption (and diffuse reflectance) spectra of CeVO_4 and Pd/CeVO_4 shows optical threshold at 586 and 595 nm, respectively (Fig. 5), corresponding to band gaps of 2.12 and 2.08 eV, respectively.

The magnetic susceptibility measurement was performed in the temperature range of 10–300 K under 20 kOe. Fig. 6 shows the variation χ_m^{-1} with temperature for CeVO_4 and $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$. The susceptibility of CeVO_4 and $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$ follows the Curie–Weiss (C–W) law quite well from 300 K down to nearly 75 K. At low temperatures, both CeVO_4 and $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$ exhibit a strong deviation from the Curie–Weiss law and the curve bends downward. This anomalous behavior has also been observed for other cerium compounds [26–28]. The magnetic moment measured for CeVO_4 is $2.51\mu_B$, which agrees well with Ce in +3 state ($4f^1$) of

Fig. 4. XPS of (a) $\text{Pd}(3d)$ core level in $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$, (b) XPS of $\text{Ce}(3d)$ core level in $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$. (*) Sign indicates Ce^{3+} satellite peak and (+) sign for Ce^{4+} satellite peak (c) XPS of $\text{V}(3d)$ core level in $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$.

Fig. 5. UV-vis diffuse reflectance spectra of CeVO_4 and $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$.

Fig. 6. Magnetic Susceptibility of CeVO_4 and $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$.

$2.54\mu_B$ [29]. In case of $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$, the susceptibility value is $2.65\mu_B$, which is higher than CeVO_4 . This is attributed to isolated Pd^{2+} ion substitution for Ce^{3+} sites.

3.2. Hydrogen uptake studies

Hydrogen uptake of the pure oxide and its corresponding Pd-substituted compounds were carried out to investigate the influence of Pd ion substitution. Fig. 7 shows the TPR profiles of CeVO_4 and $\text{Ce}_{1-x}\text{Pd}_x\text{VO}_4$ ($x = 0.02$ and 0.03). The H_2/TPR profile of CeVO_4 shows two peaks with a weak shoulder at 560°C , which has been attributed to surface V^{5+} reduction followed by bulk vanadium ion (V^{5+}) reduction peak at 760°C . The area under the peak up to 900°C corresponds to 98 cm^3 of H_2 per gram of CeVO_4 . The H_2 reduction temperature of CeVO_4 to CeVO_3 agrees well with that reported by Varma et al. [11].

H_2 uptake starts at $\sim 50^\circ\text{C}$ in $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$ with a small hydrogen adsorption peak at $\sim 110^\circ\text{C}$ and a main peak at 760°C due to vanadium reduction is observed. The peak corresponding to surface V^{5+} to V^{3+} ion reduction in CeVO_4 is absent in $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$. The H_2 uptake peak can be attributed to Pd^{2+} ion reduction. Taking

Fig. 7. H_2 TPR profile of CeVO_4 , $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$ and $\text{Ce}_{0.97}\text{Pd}_{0.03}\text{VO}_4$.

only the area under the low temperature H_2 peak at 110°C , the ratio of H/Pd is 12 in $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$. H/Pd ratio should have been 2 if we consider only $\text{PdO} + \text{H}_2 \rightarrow \text{Pd} + \text{H}_2\text{O}$ reaction. Therefore, higher H/Pd at lower temperature is due to reduction of Pd^{2+} to Pd° as well as the reduction of V^{5+} to V^{3+} . Thus Pd^{2+} ion substitution in CeVO_4 induces significant amount of V^{5+} ion reduction at a lower temperature. Further, we have varied the Pd ion concentration in CeVO_4 to see its effect on reduction of V^{5+} to V^{3+} at lower temperature. Taking the area under the low temperature H_2 peak at 110°C , the ratio of H/Pd is 3.5 in $\text{Ce}_{0.97}\text{Pd}_{0.03}\text{VO}_4$ which is attributed to some extent of surface reduction of V^{5+} to V^{3+} ion along with PdO reduction. The main V^{5+} ion reduction peak shifts to lower temperature as compared to pure CeVO_4 .

3.3. CO oxidation by O_2

CO oxidation has been studied in the presence of Pd-supported oxides [30–32]. CO oxidation was carried out with $\text{CO}:\text{O}_2$ ratio of 1:0.5 vol%. Fig. 8(a) shows the CO oxidation profile over 250 mg of CeVO_4 , 2 at.% Pd-impregnated CeVO_4 and $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$ with T_{50} at 540, 290 and 235°C , respectively. The rates and activation energies of $\text{CO} + \text{O}_2$ reaction over CeVO_4 and $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$ have been calculated. Rate is defined as, $F_{\text{CO}}x/W$ where F_{CO} is the molar flow rate (mol/s), W is the weight of the catalyst (g) and x is the fractional conversion. Experiments were also conducted by varying the weight of the catalyst ($W = 50, 100, 150$ and 250 mg) and the rates were taken from the linear region (less than 20% conversion) of the W/F versus conversion plot. Fig. 8(b) shows the Arrhenius plot for the $\text{CO} + \text{O}_2$ reaction in the presence of CeVO_4 and $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$. The plot represents experimental data up to 15% CO conversion. The activation energy of CO oxidation over $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$ is 54.4 kJ/mol, which is lower than that observed over CeVO_4 (125.5 kJ/mol). Thus, $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$ shows better catalytic activity compared to CeVO_4 . Further, this activation energy is also considerably lower than other Pd-substituted catalysts like 0.5 wt% Pd/ $\text{CeO}_2\text{-ZrO}_2$ catalyst (175 kJ/mol) [33], 5 wt% Pd/ SiO_2 (103 kJ/mol) [34], Pd/ $\text{CeO}_2\text{/Al}_2\text{O}_3$ (84 kJ/mol) [35].

To confirm whether 2 at.% Pd/ CeVO_4 prepared by impregnation method has a different catalytic activity compared to 2% Pd-substituted CeVO_4 by combustion method. We carried out CO oxidation on this material with $\text{CO}:\text{O}_2$ ratio of 1:0.5 vol%. Fig. 8(a) shows the CO oxidation profile over 250 mg of 2 at.% Pd/ CeVO_4 (impreg.) and $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$. The T_{50} for Pd-impregnated CeVO_4

Fig. 8. (a) %CO conversion as a function of temperature over CeVO_4 , 2 at.% Pd/ CeVO_4 (impreg.) and $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$ under the reaction condition: $\text{CO} = 1$ vol%, $\text{O}_2 = 0.5$ vol%, $F_t = 100$ sccm, $\text{GHSV} = 15,000 \text{ h}^{-1}$, $W = 250$ mg. (b) Rate vs. temperature from W/F_{CO} plot for CeVO_4 and $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$.

and Pd-substituted CeVO_4 are 290 and 235°C respectively, indicating that combustion synthesized Pd/ CeVO_4 has higher activity than CeVO_4 and Pd-impregnated CeVO_4 .

To check the availability of lattice oxygen, we also carried out CO oxidation without a stream of oxygen (O_2). The reaction was carried out by passing 0.5 vol% CO in He with total flow of $100 \text{ cm}^3/\text{min}$. In this experiment, we have used lower concentration of CO and higher amount of catalyst to observe the conversion significantly up to sufficiently high temperature. There is no possibility of CO_2 formation from CO decomposition because that process is highly endothermic in nature. Therefore, CO_2 is formed only utilizing oxygen from the lattice. Fig. 9 shows the CO oxidation profile in the presence of CeVO_4 and $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$. About 70% CO conversion occurs with both CeVO_4 and $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$. 50% CO conversion is observed at ~ 230 and $\sim 530^\circ\text{C}$ for $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$ and CeVO_4 , respectively. Pd acts as an adsorption active site for CO oxidation therefore, conversion occurs at lower temperature in $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$ compared to that of CeVO_4 . Clearly, lattice oxygen is more labile in $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$ than CeVO_4 . Further the temperature at which CO oxidation occurs over

Fig. 9. %CO conversion as a function of temperature over CeVO₄ and Ce_{0.98}Pd_{0.02}VO₄, without oxygen.

Ce_{0.98}Pd_{0.02}VO₄ agrees well with H₂ uptake peak. Thus, lattice oxygen from Pd ion-substituted CeVO₄ is labile for CO oxidation.

In CeVO₄, Ce is in reduced state and V⁵⁺/V³⁺ or V⁵⁺/V⁴⁺ redox couple is observed instead of Ce⁴⁺/Ce³⁺ couple, as observed from CeVO₄ to CeVO₃ conversion (Fig. 3). In this compound, V⁵⁺/V³⁺ redox reaction occurs at high temperature ~750 °C, as seen from H₂/TPR profile. Pd²⁺ ion substitution induces reduction of V⁵⁺ to V⁴⁺/V³⁺ to a lower temperature only partially as seen from H/Pd ratio of 12 and thus CO oxidation either with lattice oxygen or with stream oxygen occurs at a lower temperature over Ce_{0.98}Pd_{0.02}VO_{2-δ} than CeVO₄.

3.4. NO reduction by CO

NO reduction by CO has been studied in the presence of Pd-supported oxides [36–38]. NO reduction by CO was carried out with NO:CO (0.5:0.5) with 100 sccm total flow over 250 mg of CeVO₄ and Ce_{0.98}Pd_{0.02}VO₄ catalysts is shown. In Fig. 10(a), TPR profile of NO + CO over CeVO₄ and Ce_{0.98}Pd_{0.02}VO₄ catalysts is given. In unsubstituted CeVO₄, 50% NO conversion was observed at 650 °C, while in the case of Ce_{0.98}Pd_{0.02}VO₄, 50% conversion occurs at 280 °C and 100% conversion at 350 °C. Thus it indicates that Pd ion-substituted CeVO₄ is more active than CeVO₄. This is due to ionically dispersed Pd in CeVO₄ lattice, which gives rise to oxygen vacancy. The oxide ion vacancies in the catalyst are created due to Pd²⁺ ionic substitution, as confirmed by the XPS studies. Fig. 10(b) shows the Arrhenius plot for the NO reduction by CO in the presence of CeVO₄ and Ce_{0.98}Pd_{0.02}VO₄. The experimental data in the plot is restricted to 15% NO conversion. The activation energies are 90 and 148 kJ mol⁻¹ for Ce_{0.98}Pd_{0.02}VO₄ and CeVO₄, respectively indicating that Ce_{0.98}Pd_{0.02}VO₄ is a better catalyst than CeVO₄. Further, this activation energy is very similar to other Pd-substituted catalysts like, 1 at.% Pd/Al₂O₃ (86.6 kJ/mol) [38], 4.12 wt% Pd/CeO₂/Al₂O₃ (77 kJ/mol) [39], Pd/Mo/Al₂O₃ (84 kJ/mol) [40].

3.5. Photocatalysis

Photocatalytic reactions have been studied in the presence of Pd-supported oxides [41–44]. The photocatalytic degradation of azoic, sulfonated, heteropolyaromatic and anthraquinonic dyes was investigated. Fig. 11(a-d) shows normalized degradation

Fig. 10. (a) %NO conversion vs. temperature for the reaction NO + CO under the condition: NO = 0.5 vol%, CO = 0.5 vol%, F_t = 100 sccm, GHSV = 15,000 h⁻¹, W = 250 mg. (b) Rate vs. temperature from W/F_{NO} plot for CeVO₄ and Ce_{0.98}Pd_{0.02}VO₄.

profiles of all the four dyes in the presence of both CeVO₄ and Ce_{0.98}Pd_{0.02}VO₄. The degradation profiles are comparable to the degradation rate in the presence of commercial TiO₂ (Degussa P-25). Similar results were obtained for the degradation of methylene blue in the presence of CeVO₄ synthesized by the conventional solution technique [45]. The concentration of the dye levels off at long times and no further degradation occurs. In order to verify whether this is due to the deactivation of the catalyst, experiments were conducted with the catalyst and then the once used catalyst was used again for the degradation experiment. It was found that the catalyst had similar activity in subsequent experiments indicating that catalyst deactivation has not occurred.

The degradation rate of all the dyes in the presence of Ce_{0.98}Pd_{0.02}VO₄ was found to be faster than in the presence of CeVO₄. This indicates Pd-substituted CeVO₄ is more active than CeVO₄. The difference in degradation rates of the dyes in the presence of CeVO₄ and Ce_{0.98}Pd_{0.02}VO₄ cannot be attributed to band gaps because these materials have similar band gaps (2.12 eV for CeVO₄ and 2.08 eV for Ce_{0.98}Pd_{0.02}VO₄). However, surface area of CeVO₄ and Ce_{0.98}Pd_{0.02}VO₄ are 3 and 19 m²/g, respectively. Further, the lattice oxygen from Pd ion-substituted CeVO₄ is more

Fig. 11. Photocatalytic degradation profiles of the dyes, (a) Methylene blue, MB (b) Remazol brilliant blue, RBBR (c) Orange (G) and (d) Alizarin red (S) in the presence of CeVO_4 , TiO_2 (Degussa P-25) and $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$.

labile for oxidation of dyes. Thus, $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$ has higher photocatalytic activity than CeVO_4 .

4. Summary and conclusions

CeVO_4 and $\text{Ce}_{1-x}\text{Pd}_x\text{VO}_4$ ($0.02 \leq x \leq 0.1$) were synthesized by a single step solution combustion method for the first time. The materials were characterized by a wide variety of techniques. The gas-phase and liquid-phase catalytic properties of CeVO_4 and $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$ were investigated. $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$ shows higher catalytic activity than CeVO_4 for CO oxidation by O_2 as well as NO reduction by CO and photodegradation of dyes. This high catalytic activity of $\text{Ce}_{0.98}\text{Pd}_{0.02}\text{VO}_4$ was attributed to the lattice oxygen and high surface area compared to that of CeVO_4 .

The NO reduction by CO is a site specific reaction wherein conversions would be significant if CO is molecularly adsorbed and NO is dissociatively chemisorbed. The substitution of noble metals in their ionic form in the reducible support leads to higher metal dispersion in ionic form and creation of oxide ion vacancies. In case of Pt-substituted CeO_2 and Pt-substituted TiO_2 , the noble metal ion is an adsorbent for CO while the dissociation of NO occurs on the

oxide ion vacancy. This leads to higher activity and N_2 selectivity on the noble metal substituted material prepared by combustion synthesis technique compared to noble metal-impregnated material [46]. Similarly, in this study, Pd-substituted CeVO_4 shows higher catalytic activity than Pd-impregnated CeVO_4 .

Acknowledgement

The authors gratefully acknowledge financial support from the Department of Science and Technology, Government of India.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.apcatb.2008.05.001.

References

- [1] W.F. Libby, Science 171 (1971) 499–500.
- [2] D.B. Meadowcroft, Nature 226 (1970) 847–848.

- [3] R.J.H. Voorhoeve, D.W. Johnson Jr., *Science* 195 (1977) 827–833.
- [4] T. Radhika, S. Sugunan, *J. Mol. Catal. A: Chem.* 250 (2006) 169–176.
- [5] J.M. Vohs, T. Feng, G.S. Wong, *Catal. Today* 85 (2003) 303–309.
- [6] B.C. Chakoumakos, M.M. Abraham, L.A. Boatner, *J. Solid State Chem.* 109 (1994) 197–202.
- [7] A. Watanabe, *J. Solid State Chem.* 153 (2000) 174–179.
- [8] Z.M. Fang, Q. Hong, Z.H. Zhou, S.J. Dai, W.Z. Weng, H.L. Wan, *Catal. Lett.* 61 (1999) 39–44.
- [9] G. Picardi, F. Varsano, F. Decker, U. Opara-Krasovec, A. Surca, B. Orel, *Electrochim. Acta* 44 (1999) 3157–3164.
- [10] E.V. Tsipis, M.V. Patrakeev, V.V. Kharton, N.P. Vyshatko, J.R. Frade, *J. Mater. Chem.* 12 (2002) 3738–3745.
- [11] S. Varma, B.N. Wani, N.M. Gupta, *Mater. Res. Bull.* 37 (2002) 2117–2127.
- [12] A. Huignard, V. Buissette, G. Laurent, T. Gacoin, J.P. Boilot, *Chem. Mater.* 14 (2002) 2264–2269.
- [13] F. Luo, C.-J. Jia, W. Song, L.-P. You, C.-H. Yan, *Crys. Growth Des.* 5 (2005) 137–142.
- [14] Z. Ling, L. Qin, L. Jiayan, L. Xiangdong, M. Jian, C. Xueqiang, *J. Nanoparticle Res.* 9 (2007) 261–268.
- [15] H. Wang, Y. Meng, H. Yan, *Inorg. Chem. Commun.* 7 (2004) 553–555.
- [16] S. Roy, A. Marimuthu, M.S. Hegde, G. Madras, *Appl. Catal. B: Environ.* 71 (2007) 23–31.
- [17] G. Dutta, U.V. Waghmare, T. Baidya, M.S. Hegde, K.R. Priolkar, P.R. Sarode, *Chem. Mater.* 18 (2006) 3249–3256.
- [18] K.C. Patil, S.T. Aruna, S. Ekambaram, *Curr. Opin. Solid State Mater. Sci.* 2 (1997) 158–165.
- [19] K. Saito, S. Ichihara, *Catal. Today* 10 (1991) 45–46.
- [20] M. Iwamoto, H. Hamada, *Catal. Today* 10 (1991) 57–71.
- [21] A. Fritz, V. Pitchon, *Appl. Catal. B: Environ.* 13 (1997) 1–25.
- [22] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, *Chem. Rev.* 95 (1995) 69–96.
- [23] G. Sivalingam, K. Nagaveni, M.S. Hegde, G. Madras, *Appl. Catal. B: Environ.* 45 (2003) 23–28.
- [24] D. Briggs, M.P. Seah, *Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy*, John Wiley and Sons Ltd., London 1984.
- [25] A. Fujimori, *J. Magn. Magn. Mater.* 47 (1985) 243–247.
- [26] C. Kern, P.M. Raccah, *J. Phys. Chem. Solids* 26 (1965) 1625–1628.
- [27] T. Sakai, G. Adachi, J. Shiokawa, *Solid State Commun.* 40 (1981) 445–449.
- [28] J.C. Nickerson, R.M. White, *J. Appl. Phys.* 40 (1969) 1011–1012.
- [29] C. Kittel, *Introduction to Solid State Physics*, 5th ed., John Wiley International Ltd., London, 1985.
- [30] M. Faticanti, N. Ciolfi, S. De Rossi, N. Ditaranto, P. Porta, L. Sabbatini, T.B. Zacheo, *Appl. Catal. B: Environ.* 60 (2005) 73–82.
- [31] A.J. Dyakonov, C.A. Little, *Appl. Catal. B: Environ.* 67 (2006) 52–59.
- [32] M. F-García, A. M-Arias, A. I-Juez, A.B. Hungría, J.A. Anderson, J.C. Conesa, J. Soria, *Appl. Catal. B: Environ.* 31 (2001) 39–50.
- [33] E. Belyarova, P. Fornasiero, J. Kaspar, M. Graziani, *Catal. Today* 45 (1998) 179–182.
- [34] N.W. Cant, P.C. Hicks, B.S. Lenon, *J. Catal.* 54 (1978) 372–383.
- [35] Y.Y. Y-Fang, *J. Catal.* 87 (1984) 152–162.
- [36] J.M.D. Cónsul, I. Costilla, C.E. Gigola, I.M. Baibich, *Appl. Catal. B: Environ.* 339 (2008) 151–158.
- [37] R.D. Monte, P. Fornasiero, J. Kaspar, P. Rumori, G. Gubitosa, M. Graziani, *Appl. Catal. B: Environ.* 24 (2000) 157–167.
- [38] A.M. Pisano, C.E. Gigola, *Appl. Catal. B: Environ.* 20 (1999) 179–189.
- [39] J.H. Holles, M.A. Switzer, R.J. Davis, *J. Catal.* 190 (2000) 247–260.
- [40] M. Schmal, M.A.S. Baldanza, M.A. Vannice, *J. Catal.* 185 (1999) 138–151.
- [41] K. Nagaveni, G. Sivalingam, M.S. Hegde, G. Madras, *Appl. Catal. B: Environ.* 48 (2004) 83–93.
- [42] M.A. Aramendía, V. Borau, J.C. Colmenares, A. Marinas, J.M. Marinas, J.A. Navío, F.J. Urbano, *Appl. Catal. B: Environ.* 80 (2008) 88–97.
- [43] Ekaterina A. Kozlova, Alexander V. Vorontsov, *Appl. Catal. B: Environ.* 77 (2007) 35–45.
- [44] J.C. Colmenares, M.A. Aramendía, A. Marinas, J.M. Marinas, F.J. Urbano, *Appl. Catal. A: Gen.* 306 (2006) 120–127.
- [45] S. Mahapatra, G. Madras, T.N. Guru Row, *Ind. Eng. Chem. Res.* 46 (2007) 1013–1017.
- [46] S. Roy, M.S. Hegde, *Catal. Commun.* 9 (2008) 811–815.