One-out-of-many signatures for Belenios

Maxime Lalisse

October 6, 2024

1 Introduction

Belenios [1][3] is a secure and verifiable online voting system that provide elibigity verifiability. We aim to describe a one-out-of-many signature scheme for Belenios. A one-out-of-many signature [4] is a signature-of-knowledge, a special type of proof-of-knowledge in which data is authenticated by including it as part of the public information used by the Fiat-Shamir heuristic. This type of signature is similar to a ring signature in that it remains unlinkable. However, we also require disclosing a value serial, which is bound to one's identity using a Pedersen commitment. This scheme allows re-voting, but only with the same serial, preventing a voter's votes from being counted multiple times.

2 Protocol

Public context: Group $G = \langle g \rangle$, with #G = q. h is an independent generator of G.

Setting: Prover \mathcal{P} has a pedersen commitment of a public key $c = g^x \times h^{\mathtt{serial}}$, where x is his secret key and serial open the commitment. The set of credentials C is made public. \mathcal{P} wants to convince \mathcal{V} that he knows x such that $\exists i: C_i = g^x h^{\mathtt{serial}}$.

Commitment $\mathcal{P} \to \mathcal{V}$.

Let $i \in [0, k]$ be such that $c = C_i$. For all $j \neq i$, the prover \mathcal{P} picks random (σ_j, ρ_j) in \mathbb{Z}_q and computes $A_j = g^{\rho_j} \times (c_j \times h^{-\text{serial}})^{-\sigma_j}$.

He also picks a random element w in \mathbb{Z}_q and computes $A_i = g^w$.

The prover \mathcal{P} sends all the A_j for $j \in [0, k]$. The prover \mathcal{P} also sends serial.

Challenge $\mathcal{V} \to \mathcal{P}$. Verifier \mathcal{V} picks e at random in \mathbb{Z}_q and sends e.

Response $\mathcal{P} \to \mathcal{V}$: Prover \mathcal{P} computes $\sigma_i = e - \sum_{j \neq i} \sigma_j \mod q$ and $\rho_i = w + r\sigma_i \mod q$. He sends all the pairs (σ_i, ρ_i) for $j \in [0, k]$.

Result. \mathcal{V} checks the following equalities and accepts if and only if all of them hold. First, she checks that $\sum \sigma_j = e$, and then for each $j \in [0,k]$ that $A_j = g^{\rho_j} \times (c_i \times h^{-\text{serial}})^{-\sigma_j}$.

3 Implementation

$$ext{msignature} = \left\{ egin{array}{ll} ext{hash} & : & ext{string} \ ext{serial} & : & ext{string} \ ext{proof} & : & ext{proof}^* \end{array}
ight\}$$

Credentials are now pedersen commitments with public $g^s \times h^{\text{serial}}$. and secret (s, serial). One can reveal a serial and prove that he knows a s such that there exist a credential $c_n \in C$

in the form $g^s \times h^{\tt serial}$, by proving that he knows **s** such that there is $c_n' = c_n \times h^{-\tt serial}$ in the form g^s , by creating a sequence of proofs π_0, \ldots, π_k with the following procedure, parameterised by a string S:

- 1. for $j \neq i$:
 - (a) create π_i with a random challenge and a random response
 - (b) compute $c_j' = c_j \times h^{-\text{serial}}$
 - (c) compute $A_i = g^{\text{response}} \times c_j^{\prime \text{challenge}}$
- 2. π_i is created as follows:
 - (a) pick a random $w \in \mathbb{Z}_q$
 - (b) compute $A_i = g^w$
 - (c) challenge $(\pi_i) = \mathcal{H}_{\mathsf{mproof}}(S, \mathsf{serial}, \mathsf{hash}, A_0, \dots, A_k) \sum_{j \neq i} \mathsf{challenge}(\pi_j) \mod q$
 - (d) $\operatorname{response}(\pi_i) = w s \times \operatorname{challenge}(\pi_i) \mod q$

In the above, \mathcal{H}_{mproof} is computed as follows:

$$\mathcal{H}_{mproof}(S, \texttt{serial}, \texttt{hash}, A_0, \dots, A_k) = \mathsf{SHA256}(\texttt{msig}|S|\texttt{serial}|\texttt{hash}|A_0, \dots, A_k) \mod q$$

where msig, vertical bars and commas are verbatim. The result is interpreted as a 256-bit big-endian number.

The signature is verified as follows:

1. for $j \in [0 \dots k]$, compute

$$c_i' = c_i \times h^{-\text{serial}}$$

2. for $j \in [0 \dots k]$, compute

$$A_i = g^{\mathsf{response}(\pi_j)} \times c_i{'\mathsf{challenge}(\pi_j)}$$

3. check that

$$\mathcal{H}_{\mathsf{mproof}}(S, \mathsf{serial}, \mathsf{hash}, A_0, \dots, A_k) = \sum_{j \in [0 \dots k]} \mathsf{challenge}(\pi_j) \mod q$$

4 Security proof

Similarly to other ZK security proofs for Belenios detailed in [2], we need to prove three properties: completeness, zero-knowledge and soundness.

Completeness. By construction.

Zero-knowlege. By simulation. For any challenge e, \mathcal{P} can first generate σ_j , ρ_j and then valid commitments $A_j = g^{\rho_j} (c_j h^{-\text{serial}})^{-\sigma_j}$ without knowing x.

Special-soudness. TODO. If there is two different valid transcripts, there exists j such that there is two different (σ_j, ρ_j) from which the secret x can be extracted.

References

- [1] V. Cortier, P. Gaudry, and S. Glondu. Belenios: a simple private and verifiable electronic voting system. Foundations of Security, Protocols, and Equational Reasoning: Essays Dedicated to Catherine A. Meadows, pages 214–238, 2019.
- [2] P. Gaudry. Some ZK security proofs for Belenios. working paper or preprint, 2017.
- [3] S. Glondu. Belenios specification. Version 0.1. http://www.belenios.org/specification.pdf, 2013.
- [4] J. Groth and M. Kohlweiss. One-out-of-many proofs: Or how to leak a secret and spend a coin. In *Annual International Conference on the Theory and Applications of Cryptographic Techniques*, pages 253–280. Springer, 2015.