Assignment 2

• Graded

Student

Sujith Potineni

Total Points

17.5 / 21 pts

Question 1

Read me first 0 / 0 pts

→ + 0 pts Correct

+ 0 pts Incorrect

Question 2

Projectors and reflections

3.5 / 5 pts

✓ - 1 pt (a) Incorrect

- 0.5 pts (a) One of the computation is wrong
- 1 pt (b) Incorrect
- 0.5 pts (b) only did a computation for ket plus.
- 1 pt (d) Incorrect
- ✓ 0.5 pts (d) Stated the transformation is a reflection without specifying the hyperplane (or the description of the hyperplane is wrong).
 - **0.5 pts** (d) To show that I 2P is unitary, argued that $(I 2P)^2 = I$ because I 2P is a reflection, but did not state that the dagger of I 2P is itself.
 - 0.5 pts (d) Failed to show that I-2P is unitary.
 - 1 pt (e) Incorrect
 - 0.5 pts (e) Only verified that the sum of out products maps the psi basis to the phi basis, but did not explain why U can then be written as such a sum.

- - **+ 2 pts** Described the measurements with rotating basis. But fell short of explaining why these measurements work.
 - + 2 pts Described the measurements in +/- basis followed by 0/1 basis. But fell short of explaining why these measurements work.
 - + 1.5 pts Had the idea of rotating basis. But fell short of describing the correct measurements.
 - + 0 pts Incorrect

Question 4

Perfect Powers 4 / 4 pts

- - + 0 pts Incorrect

Question 5

Tensor Product Practice 4 / 4 pts

- - + 1 pt (a)
 - + 1 pt (b)
 - + 1 pt (d)
 - + 0 pts Incorrect

Question 6

1 ebit + 1 qubit ≥ 2 bits

2 / 4 pts

+ 4 pts Correct

- + 1 pt (a) Computed the correct four possibilities.
- + 1.5 pts (b) Applied CNOT and H, but also applied SWAP gate, which is not allowed.
- + 1 pt (b) Described the process without sufficient justification. This includes the situations where the final measurement give (v, u) instead of (u, v).
- + 0 pts Incorrect
- + 0 pts Click here to replace this description.

Q1 Read me first

0 Points

- Tests show that the people who get the most out of this assignment are those who read the "read me first" like this one.
- Collaboration and use of external sources are permitted, but must be fully acknowledged and cited. For your own learning, you are advised to work individually. Collaboration may involve only discussion; all the writing must be done individually.
- Acknowledgment Requirements:
- 1. Acknowledge, individually for every problem at the beginning of each solution, a list of all collaborators and sources consulted other than the course notes. Examples include: names of people you discussed homework with, books, other notes, Wikipedia, and other websites.
- 2. If you consulted any online sources, please specify the exact webpages by including their links. Omission of links or any other required citations will result in a loss of grades and be considered a failure to acknowledge appropriately.
- 3. If no additional sources are consulted, you must write "sources consulted: none" or equivalent.
- 4. Failure to acknowledge sources will lead to an automatic 1pt penalty.
- Late policy: In general **no late homework** will be accepted unless there is a genuine emergency backed up by official documents.
- All steps should be justified.
- Formatting and Submission Requirements:
- 1. Separate Solutions: Ensure that solutions for each problem are separated clearly.
- 2. PDF Submissions: If you are submitting a LaTeX PDF, use the "fullpage" package to set the margins to 1 inch. Do not include additional information such as the title, date, your name, the problem statement, or any rough work—only include your final solution.
- 3. Typed Solutions: If typing directly in the provided textbox, please use LaTeX formatting for formulas.
 - Images: Rotated images will not be graded. Ensure all images are properly oriented.
- 4. Scanning Quality: Use proper scanning software to scan your handwritten solutions. Avoid casual photos of your work.
- 5. Failure to meet these formatting and submission requirements may result in up to a 2-point penalty for each problem.
- You are encouraged to be type in LaTeX. To learn how to use LaTeX, I recommend the tutorials on Overleaf. It is ok to draw diagrams by hand and insert them as pictures in your TeX files.
- For each question below, upload a PDF file and/or type in the box (see <u>Gradescope x LaTeX tutorial</u>). Each submission should contain (1) the acknowledgement of all collaborators and sources consulted and (2) your solution.

Q2 Projectors and reflections

5 Points

Let $|\psi\rangle$ and $|\phi\rangle$ be two unit vectors in \mathbb{C}^d . We will be interested in $Q=|\phi\rangle\langle\psi|$, which is a $d\times d$ matrix, and can therefore be thought of as a transformation on d-dimensional vectors.

- (a) Explicitly work out the matrix Q in the case $|\psi\rangle=|0\rangle$ and $|\phi\rangle=|+\rangle$, and also in the opposite case $|\psi\rangle=|+\rangle$ and $|\phi\rangle=|0\rangle$.
- (b) What does the transformation Q map the vector $|\psi\rangle$ to, and what does it map every vector orthogonal to $|\psi\rangle$ to?
- (c) Suppose now that $|\psi\rangle=|\phi\rangle$. Let $P=|\psi\rangle\langle\psi|$. Describe in (geometric) words the transformation P.
- (d) Let I denote the identity matrix in \mathbb{R}^d . Describe in (geometric) words the transformation I-2P. Your description should include the words "hyperplane perpendicular to". Prove that this transformation is unitary.
- (e) Suppose we are interested in the change-of-(orthonormal-)basis operation U that takes the orthonormal basis $|\psi_1\rangle,\ldots,|\psi_d\rangle$ to the orthonormal basis $|\phi_1\rangle,\ldots,|\phi_d\rangle$. Show that U can be written as

$$U = |\phi_1\rangle\langle\psi_1| + \cdots + |\phi_d\rangle\langle\psi_d|.$$

\sim	Ircoc	consu	けつる	
2(1)	11 (12 >	$(\cup \cup$	11 (-1)	

Lecture Notes

▼ HW2_Q2.pdf	≛ Download		
Your browser does not support PDF previews. You can <u>download the file instead.</u>			
 [
1 			

Q3 Quantum Anti-Zeno Effect 4 Points

Assume you have a single qubit that you know is in the state $|0\rangle$. You wish to change its state to $|1\rangle$. You have the ability to build any measurement device, and use it as many times as you want. How can you almost surely get the qbit's state changed to $|1\rangle$?

Remark: More specifically, given $\varepsilon>0$, build a quantum circuit that outputs a qbit $|1\rangle$ with probability at least $1-\varepsilon$. You are not allowed to apply gates (or rotations) to your qubit.

Sources consulted:

Lecture Notes;

https://en.wikipedia.org/wiki/Quantum_Zeno_effect

▼ HW2_Q3.pdf	≛ Download
Your browser does not support PDF previews. You can	download the file instead.
<u> </u>	
1 	

Q4 Perfect Powers

4 Points

- (a) Give pseudocode for an algorithm that takes as input a positive integer A and determines whether or not A is a perfect square. If it is, your algorithm should also determine the number B such that $B^2 = A$. If A is n binary digits long, your algorithm should take O(nM(n)) steps, where M(n) is the number of steps required to multiply two numbers of at most n binary digits. Thus, your algorithm should take $O(n^3)$ with the usual grade school multiplication algorithm; or, it would be $O(n^2 \log n \log \log n)$ steps with the sophisticated Schönhage–Strassen multiplication algorithm. (Hint: binary search.)
- (b) Give pseudocode for an algorithm that takes as input a positive integer A and determines whether or not A is a perfect power (i.e., a perfect square, cube, fourth power, etc.). If it is, your algorithm should also determine numbers B and C>1 such that $B^C=A$. When A is an n-bit number, justify that your algorithm takes at most $O(n^d)$ steps for some constant d (such as d=5).

Sources consulted:

Lecture Notes; https://www.geeksforgeeks.org/checkif-a-given-number-is-a-perfectsquare-using-binary-search/

→ HW2_Q4.pdf	≛ Download
Your browser does not support PDF previews. You	can <u>download the file instead.</u>

L-----

Q5 Tensor Product Practice

4 Points

- (a) Given an $m \times n$ matrix A, for every $1 \leq i \leq m, 1 \leq j \leq n$, show that the entry on the ith row and jth column of A equals $\langle i|A|j\rangle$. Here $|i\rangle$ represents the i-th vector in the standard basis.
- (b) Show that if A and B are invertible matrices, then so is $A\otimes B$, and in fact $(A\otimes B)^{-1}=A^{-1}\otimes B^{-1}.$
- (c) Verify that $(A\otimes B)^\dagger=A^\dagger\otimes B^\dagger.$
- (d) Suppose $|u_1\rangle,\ldots,|u_d\rangle$ is an orthonormal basis for \mathbb{C}^d , and $|v_1\rangle,\ldots,|v_e\rangle$ is an orthonormal basis for \mathbb{C}^e . Show that the collection $|u_i\rangle\otimes|v_j\rangle$ (for all $1\leq i\leq d, 1\leq j\leq e$) is an orthonormal basis for \mathbb{C}^{de} .

Sources consulted:

Lecture Notes

▼ HW2_Q5.pdf	≛ Download		
Your browser does not support PDF previews. You can <u>download the file instead.</u>			
	2		

Q6 1 ebit + 1 qubit ≥ 2 bits 4 Points

(a) Alice and Bob prepare an EPR pair (that is, two qubits in the state $\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle$).

They each take one qubit home. Suddenly, Alice decides she wishes to convey one of 4 messages to Bob; in other words, she wants to convey a classical string $uv \in \{0,1\}^2$ to Bob.

Alice does the following in the privacy of her own home: First, if u=1, she applies a NOT gate to her qubit (else if u=0 she does nothing here). Next, if v=1, she applies a "Z" gate,

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

to her qubit (else if v=0, she does nothing here). Finally, she walks to Bob's house and silently hands him her qubit.

Show that by measuring in an appropriate basis, Bob can exactly determine Alice's message $uv \in \{0,1\}^2$.

(b) Work out a circuit using only CNOT gates, 1-qubit gates, and "standard" measurement gates, which actually outputs Alice's message with 100% probability.

Sources consulted:

Lecture Notes;

https://en.wikipedia.org/wiki/Bell_state

https://www.cs.cmu.edu/~odonnell/quantum15/lecture03.pdf

→ HW2_Q6.pdf	≛ Download
Your browser does not support PDF previews. You can	download the file instead.

L-----