Tutorial Sheet - 13 B

Autumn 2023

Advanced Calculus (MA11003)

- 1. Find the gradient and the unit normal vector to the following surfaces
 - (a) $x^2 + y z = 4$ at the point (2, 0, 0).
 - (b) $x^2 + 2y^2 + 3z^2 = 0$ at the point $(\sqrt{10}, 0, 0)$.
 - (c) $x^2y + 2xz = 4$ at the point (2, -2, 3).
- 2. Find the directional derivatives of the following scalar valued functions
 - (a) $f(x,y) = e^x \cos y$ at the point $(0,\frac{\pi}{4})$ in the direction of $(\hat{i}+3\hat{j})/\sqrt{10}$.
 - (b) $f(x, y, z) = e^x + yz$ at the point (1, 1, 1) in the direction of $\hat{i} \hat{j} + \hat{k}$.
 - (c) $f(x,y,z) = \frac{1}{x^2+y^2+z^2}$ at the point (2,3,1) in the direction of $\hat{i}+\hat{j}-2\hat{k}$.
- 3. Find the directional derivative of the scalar valued function $f(x,y) = \frac{y}{x^2 + y^2}$ at the point
- (0,1) in the direction of a vector which makes an angle of 30° with the positive x-axis.
- 4. (a) In what direction from the point (1,3,2) the directional derivatives of $\phi = 2xz y^2$ is maximum? What is the magnitude of this maximum?
 - (b) Find the values of the constant a, b and c so that the directional derivative of $\phi = axy^2 + byz + cz^2x^3$ at the point (1, 2, -1) has maximum of magnitude 64 in the direction of the z-axis.
- 5. If $r = |\vec{r}|$, where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, then prove that
 - (a) $\nabla(\frac{1}{r}) = -\frac{\vec{r}}{r^3}$.
 - (b) $\nabla(\log(|\vec{r}|)) = \frac{\vec{r}}{r^2}$.
 - (c) $\nabla(r^n) = nr^{n-2}\vec{r}$.
- 6. Let $\vec{F} = 2xz^2\hat{i} + \hat{j} + xy^3z\hat{k}$ and $f = x^2y$. Then compute the following
 - (a) $curl(\vec{F})$
 - (b) $\vec{F} \times \nabla f$
 - (c) $\vec{f} \cdot (\nabla f)$
- 7. For any two vector fields \vec{F} and \vec{G} show that
 - (a) $\nabla \cdot (\nabla \times \vec{F}) = 0$
 - (b) $div(\vec{F} \times \vec{G}) = curl(\vec{F}) \cdot \vec{G} curl(\vec{G}) \cdot \vec{F}$
 - (c) $\nabla \times (\nabla \vec{F}) = \vec{0}$