

مسئلههایی مرتبط با فصلهای اول، هشتم و نهم

كلاس تدريسيار رياضيات گسسته

Fundamental
Principles of
Counting

The Principle of Inclusion and Exclusion

Generating Functions

ارائه دهنده: مرتضى دامن افشان

ا عادتر کیای زیر را ایت کسد: $\sum_{i=1}^{n} \binom{i}{i} = \binom{r}{r} + \binom{r+1}{r} + \cdots + \binom{n}{r} = \binom{n+1}{r+1}$ (=ul is so Hockey-Stick , is I b Chu Shi k- Chieh (ایک فول بر ایک (راه مل: فرن کن (اجمه سر ۱۳۲۱ می میر ۱۳۲۱ می کار X = { مربی میر ۱ میری ا ا شد حال ی خواهدم تعدور تحرید کا ۱۲ عنو عائد A را از مجرد X بنی را . مال سے زیر لر بروسی مرکبی 二切りりを ← nois - while X-fail ilvier ← aieA A Elian. € ms - Give X - {anaz} ; Minist € an&A
azeA $\binom{(n+1)-(n-r)}{r}=\binom{r+1}{r} \leftarrow X-\{a_1,a_2,...,a_{n-r}\}$ a,, ~ a RA an-rEA € {an-r+1, ..., an+1}>choploist+1.04€ a,,...a,-r

∉A [(()) wing and ()) [[()] $\binom{r}{r} + \binom{r+1}{r} + \dots + \binom{n-1}{r} + \binom{n}{r} = \binom{n+1}{r+1}$

(nt) = (nt) = don't (1) = don't ONFA areA (az#A (a3 4A (0) (6) (2) (0) $\binom{2}{1}$ 3) (3 $\begin{pmatrix} 3 \\ 0 \end{pmatrix}$ $\binom{1}{1} + \binom{2}{1} + \binom{3}{1} = \binom{4}{2}$

فرن کسد ۱۲۲۸ ما شد، حال کوطبوش عفر هرزی محبود که از معنوی از (۱٫۷٫۰۰۰) وادر تعلی بلیرید مین کمین این کونکیون عور کی ا برست آورید،

1 < k < n-r+1 b_{n-r}^{k} $\binom{n-k}{r-1}$ $i = -i / 2^{k}$

 $S = \sum_{k=1}^{n-r+1} k \binom{n-k}{r-1} : L = 1/r \delta_{i} \delta_$

 $= 1 \binom{n-1}{r-1} + 2 \binom{n-2}{r-1} + \cdots + (n-r+1) \binom{r-1}{r-1}$

 $= \binom{n-1}{r-1} + \binom{n-2}{r-1} + \cdots + \binom{r-1}{r-1}$

 $+\binom{n-2}{r-1}$ $+\cdots$ $+\binom{r-1}{r-1}$

+ (1-1) 1/2

: (1) June, Hockey stick & chu shih-chieh > [5]; with

 $S = \binom{n}{r} + \binom{n-1}{r} + \cdots + \binom{r}{r} = \binom{n+1}{r+1}$

1岁也. 下户也. 江夕也.

 $\frac{(n+1)}{(n+1)} = \frac{(n+1)}{(n+1)} = \frac{n+1}{(n+1)}$ $\frac{(n+1)}{(n+1)} = \frac{n+1}{(n+1)}$

على سند سَل لائور ب افراز محمولة (21,5,7,13) ب رو محمولا علورس ما ملفرب العنالاس از محمولا بران ه وط ملفر العدار في داري المرا ط با ي سرز

(20,1) (20,2) (20,2)

نگات تعملی درونوی اعداد استرانند نوع دوم - برای سک ترزیع سسی میکارد - برای سک دروی این از طروف کازیارد، سی ۱۱ نوات کسی دروری میلی برای دون دون دار طروف کازیارد،

S(m+19n) = S(m,n-1)+ nS(m,n) 1(1) 1(n , m,nEZ+ 0) -

S(n,1) = S(n,n) = 1

S(n,k)= 0 if k>n>1

S(n,0) = S(0,k) = 0 if $n,k \ge 1$

 $S(n_12) = 2^{n-1} - 1$ if $n \ge 1$

 $S(n,n-1) = \binom{n}{2} \quad \text{if} \quad n \ge 1$

S(0,0) = 1 : piso in

 $\begin{cases} f_{n} = f_{n-1} + f_{n-2} & n \ge 2 \\ f_{0} = 0, f_{1} = 1 \end{cases}$ تابع مولا توليد كنده سري اعدار فيوني را برست ا وريد راه مل: الدادهنون و الرتوان لفرت لدرونونت: $f_0 = 0$ $f_1 = 1$ f2 = f,+fo f3 = f2+f1 fuz f3 + f2 F(n)=fo+fix+fix2+f3x3+fax4+.... Jin Jun J $\langle o, 1 \rangle$, $f_1 + f_0$, $f_2 + f_1$, $f_3 + f_2$, \rangle (*) دناله (*) رائعًا) نبر عبوع سم دنادر سکست : (تابه مولد هر دنا درا مردانم) $\langle 0, 1, 0 \rangle \rangle \langle 0, \infty \rangle \longleftrightarrow \chi$ $\langle 0, f_0, f_1, f_2, f_3, \dots \rangle \longleftrightarrow nF(n)$ + (0, 0, fo, fi, f2, ...) ← n2F(n) <0, 1+fo, f1+fo, f2+fi, f3+f21...) ←> $n + nF(n) + n^2F(n)$

س - این نتیج رسیدی ک

 $n + n F(n) + n^2 F(n) = 0 + (1+f_0)n + (f_1+f_0)n^2 + (f_2+f_1)n^3 + \cdots$

) h $= f_0 + f_1 n + f_2 n^2 + f_3 n^3 + \cdots$

Fanj=n+n Fan+ nº Fanj

$$\Rightarrow F(n) = \frac{n}{1 - n - x^2}$$

$$(1+\binom{n}{0})^{2}(1+\binom{n}{1})^{2}(1+\binom{n}{2})^{3}$$
.... $(1+\binom{n}{n})^{2})^{n+1}$

$$\frac{d}{dn} \left[\binom{n}{0} n + \binom{n}{1} n^2 + \binom{n}{2} n^3 + \dots + \binom{n}{n} n^{n+1} \right]_{n=1}^{n}$$

$$= \frac{d}{dx} \left[\chi(1+\chi)^{n} \right]_{\chi=1}$$

$$= \left[\left[1 \times (1+n)^{N} + n (n)(1+n)^{N-1} \right] \right]_{N=1}$$

$$= \left[2^{N} + N 2^{N-1} \right]$$

$$=(n+2)2^{n-1}$$