Morphological analysis

Words and Transducers

Instructor: Dr. Hanaa Bayomi Ali

Mail : h.mobarz @ fci-cu.edu.eg

Stages of language processing

1- Phonetics and phonology

Speech sound

2- Lexical Analysis

Dividing the whole chunk of txt into paragraphs, sentences, and words

3- Morphology & Lexicon

Words & their forms

4- Syntactic Analysis

Structure of sentences

5- Semantic Analysis

Meaning of words & sentences

6- Pragmatics

Meaning in context & for a purpose

7- Discourse

Connected sentence processing in a larger body of text

Words

- In formal languages, words are arbitrary strings
- In natural languages, words are made up of meaningful subunits called morphemes
- morpheme = "minimal meaning-bearing unit in a language"
- Morphemes may be

Stems: the main morpheme of the word.

Affixes: convey the word's role, number, gender, etc.

"Unhappiness" Contains 3 morphemes 1- "un" means "not" 2- "ness" means "being in a state or condition" 3- "Happy" is a free morpheme (as a "word" in its own right)

Morphemes definitions

• Affix

- -A bound morpheme that is joined before, after, or within a root or stem
- **Suffixes:** follow the root/stem "eat, eats"
- Prefixes: precede the root/stem "happy, unhappy"
- Infixes: inserted into the root/stem "s(plural), mothers-in-low"
- -Affixes maybe derivational affixes, inflectional affixes or both

Root

- The portion of the word that:
 - is common to a set of <u>derived</u> or <u>inflected</u> forms, if any, when all <u>affixes</u> are removed
 - is not further analyzable into meaningful elements
 - carries the principle portion of meaning of the words

Stem

- The root of a word, together with any derivational affixes
- the morpheme that forms the central meaning unit in a word

Morphemes definitions

Free and Bound Morpheme

Analysis at a morphological level is concerned with structural elements of meaning called **morphemes**. Morphemes are classified into two types:

- 1- Free Morphemes: girl, boy, mother, etc.
 - These are words with a complete meaning, so they can stand alone as an *independent word* in a sentence.
- **2- Bound Morphemes**: These are lexical items incorporated into a word as a <u>dependent part</u>. They cannot stand alone, but must be connected to another morpheme.
 - Bound morphemes operates in the connection processes by means of derivation, inflection, and compounding.

EX. Bound morpheme: books

- Books = +morpheme +morpheme
- Books= +book +s

Morphological Analysis

Why do we need to do Morphological Analysis?

- determine meanings of individual word.
- ■To break word down into component morphemes and build a structured representation.
- Important for many tasks:
 - machine translation
 - information retrieval
 - Parsing
 - text simplification
 - Spelling correction

Morphological Analysis

- How words are constructed out of basic meaning unit
 - Inflection (number, person, tense, Gender ...): same
 core meaning (don't change syntactic category) (Stemmer)
 - love + past tense → loved
 - Derivation (adjective-adverb, noun-verb): change meaning
 - un + friend + ly →unfriendly
 - Compounding (separate words or single word)
 - black + bird → blackbird
 - Foot + ball → football
- Arabic words is highly inflected

Morphological Analysis

 Inflection is the form variation of a word under certain grammatical conditions, these conditions consist notably of the number, gender, conjugation, or tense

```
stem + gram. morpheme → same class
Ex: help + ed → helped
```

 Derivation combines affixes to an existing root or stem to form a new word. Derivation is more irregular and complex than inflection. It often results in a change in the part of speech for the derived word.

```
stem + gram. morpheme → different class Ex: civilization
```

Can you divide these words?

- teaches
- Happiness
- Unbelievable
- Teacher
- Monster
- Rattlesnake

Can you divide these words?

Teaches

teach-s

Inflection

Happiness

happi-ness

Derivation

Unbelievable

un-believ-able

Derivation

Teacher

teach-er

Derivation

Monster

monster

Inflection

Rattlesnake

rattle-snake

Compound

Distinguishing inflection from derivation

main criteria:

1- Category change: Inflection does not change grammatical category; derivation sometimes does (thereby creating new words).

Form 1	Form 2	Category change	Der/Inf
car	cars	No	(s) Inflection
Play	plays	no	(s) Inflection
Formal(adj)	Formalize (V)	yes	(ize) Derivation
Read (V)	Readable(adj)	yes	(able) Derivation

Distinguishing inflection from derivation

Three main criteria:

- **2- Order:** Derivational affixes must combine with the base before an inflectional affix does (root aff_{der} aff_{inf} " teach_{root}-er_{der}-s_{inf}).
- ■Inflectional affixes always have a <u>regular meaning</u>.
 - ■the plural 's in word-forms like bicycles, dogs, shoes, tins, trees, and so on

'more than one'

Derivational affixes may have <u>irregular meaning</u>.

```
write:: writer (one who writes)
paint:: painter (one who paints)
cut:: cutter? (an instrument used to cut)
Mix:: Mixer (an instrument used to mix)
```

More on Inflection

Noun inflectional suffixes	•Plural marker -s •Possessive marker 's
Verb inflectional suffixes	 Third person present singular marker -s Past tense marker -ed Progressive marker -ing Past participle markers -en or -ed
Adjective inflectional suffixes	•Comparative marker -er •Superlative marker -est

Inflectional Suffixes in English

Morphological Parsing

- Parsing means taking an input and producing some sort of structure for it.
- Morphological parsing means breaking down a word form into its constituent morphemes.
 - e.g. Colourful \Rightarrow colour+ ful
- Mapping of a word form to its baseform is called stemming.
 - e.g. Teacher \Rightarrow Teach

Finite-State Morphological Parsing

In order to build a parser we need the following:

a lexicon containing the stems and affixes,

morphotactics, i.e. the model of morpheme ordering,
 e.g. un + friend + ly instead of ly+ friend + un

– a set of **rules** (orthographic, etc.), i.e. the model of changes that occur in a word, usually when two morphemes combine, e.g. $city + s \Rightarrow cities$.

Verbal Inflection

Morphological Form Classes	Regula	arly Infl	ected \	Irregularly Inflected Verbs			
Stem	Jump	Parse	Fry	Eat	Bring	Cut	
-s form	Jumps	Parses	Fries	Sobs	Eats	Brings	Cuts
-ing participle	Jumping	Parsing	Frying	Sobbing	Eating	Bringing	Cutting
Past form	Jumped	Parsed	Fried	Sobbed	Ate	Brought	Cut
-ed participle	Jumped	Parsed	Fried	Sobbed	Eaten	Brought	Cut

Verbal Inflection

Morphological Form Classes	Regula	arly Infl	ected \	Irregularly Inflected Verbs			
Stem	Jump	Parse	Fry	Eat	Bring	Cut	
-s form	Jumps	Parses	Fries	Sobs	Eats	Brings	Cuts
-ing participle	Jumping	Parsing	Frying	Sobbing	Eating	Bringing	Cutting
Past form	Jumped	Parsed	Fried	Sobbed	Ate	Brought	Cut
-ed participle	Jumped	Parsed	Fried	Sobbed	Eaten	past –verb Brought	Cut

Verbal Inflection

Morphological Form Classes	Regularly Inflected Verbs				Irregularly Inflected Verbs		
Stem	Jump	Parse	Fry	Eat	Bring	Cut	
-s form	Jumps	Parses	Fries	Sobs	Eats Irreg-v	Brings erb –progr	Cuts essive-
-ing participle	Jumping	Parsing	Frying	Sobbing	Eating	3 singular Bringing	Cutting
Past form	Jumped	Parsed	Fried	Sobbed	Ate	Brought	Cut
-ed participle	Jumped	Parsed	Fried	Sobbed	Eaten	Brought	Cut

Verbal Inflection

Morphological Form Classes	Regularly Inflected Verbs				Irregu	llarly Inflo	ected
Stem	Jump	Parse	Fry	Eat	Bring	Cut	
-s form	Jumps reg	Parses verb –pr	Fries ogressiv	Eats	Brings	Cuts	
-ing participle	Jumping	3 sing Parsing	u lar Frying	Sobbing	Eating	Bringing	Cutting
Past form	Jumped	Parsed	Fried	Sobbed	Ate	Brought	Cut
-ed participle	Jumped	Parsed	Fried	Sobbed	Eaten	Brought	Cut

Verbal Inflection

Morphological Form Classes	Regula	arly Infl	ected \	Irregularly Inflected Verbs			
Stem	Jump	Parse	Fry	Eat	Bring	Cut	
-s form	Jumps	Parses	Fries	Sobs	Eats	Brings	Cuts
-ing participle	Jumping	Parsing	Frying	Sobbing	Eating	Bringing	Cutting
Past form	Jumped	Parsed	Fried	Sobbed	Ate	Brought	Cut
-ed participle	Jumped	reg- pas Parsed	Fried	Sobbed	Eaten	Brought	Cut

Finite-State Automaton for Inflection of the Verbs 'talk', 'test' and 'sing'

Finite State Transducer (FST)

- Transduce: to convert from a form to another
- The input symbol is transduced into the output symbol as a transition occurs on the arc
- FST accepts and generates string (to define internal structure of the word <Analysis>)

Finite State Transducer (Cont.)

- Finite-state transducers have a formal definition, which is similar to that of finite state automata. A FST consists of five components $(Q, \Sigma, q_0, F, \delta)$ where:
 - Q is a finite set of states
 - Σ is a finite set of symbol or character pairs i: 0, where i is a symbol of the input alphabet and 0 of the output alphabet
 - $-q_0$ is the start state, $q_0 \in Q$
 - -F is the set of final states, $F \subseteq Q$
 - $-\delta$ is a relation from states and symbols to states.

$$\delta: Q \times \Sigma \times Q$$

Finite-State Transducer

- A transducer maps between one set of symbols and another; a finite state transducer does this via a finite automaton.
- Where an FSA accepts a language stated over a finite alphabet of single symbols, e.g. $\Sigma = \{a, b, c, ...\}$, an FST accepts a language stated over **pairs of symbols**, e.g. $\Sigma = \{a:a, b:b, a:c, a:\varepsilon, \varepsilon:\varepsilon, ...\}$
- In two-level morphology, we call pairs like a:a default pairs, and refer to them by a single symbol a:a a:
- An FST can be seen as a recognizer, generator, translator or a set relator.

Two-Level Morphology

- Two-level morphology represents a word as a correspondence between :-
 - 1- a **lexical level**, which represents a simple **concatenation of morphemes** making up a word
 - 2- the **surface level**, which represents the **actual spelling** of the final word.

Examples

Lexical form	Surface form
sing +V +3SG	sings
test +V +PROG	testing
talk +V +PRET	talked
sing +V +PRET	sang
talk +V +PSTPCP	talked
sing +V +PSTPCP	sung

-ε epsilon ⇒ Do Nothing

Finite-State Transducer for Inflection of the Verbs 'talk', 'test' and 'sing'

Finite-State Transducer for Inflection of the Verbs 'talk', 'test' and 'sing'

Trace

Useful FST Operations

- Inversion: Switch input and output labels.
- e.g. $\Sigma(T)=\{a:b, c:d\} \Rightarrow \Sigma(inv(T))=\{b:a, d:c\}$
- This can be used to switch from generating words to parsing words.
- Intersection: Only sequences of pairs accepted by both transducerT1 and transducerT2 are accepted by transducer T1^T2.
- Composition: The output of transducer T1 serves as input to T2. This is marked as T1 T2 or T2(T1).

Finite-State Transducer for Inflection of the Verbs 'talk', 'test' and 'sing'

Finite-state transducers

```
A FST T = L_{in} \times L_{out} defines a relation between two
regular languages Lin and Lout:
 L_{in} = \{ cat, cats, fox, foxes, ... \}
L_{out} = \{cat+N+sg, cat+N+pl, fox+N+sg, fox+N+PL ...\}
T = \{ \langle cat, cat+N+sg \rangle, \}
     <cats, cat+N+pl>,
     <fox, fox+N+sq>,
     <foxes, fox+N+pl> }
```

English spelling rules

English spelling (orthography) is funny: The underlying morphemes (*plural-s, etc.*) can have different orthographic surface realizations (-s, -es)

Spelling changes at morpheme boundaries:

- E-insertion: fox +s = foxes
- E-deletion: make +ing = making

Intermediate representations

```
English plural -s: cat \Rightarrow cats dog \Rightarrow dogs
but: fox \Rightarrow foxes, bus \Rightarrow buses, buzz \Rightarrow buzzes
We define an intermediate representation which captures
- morpheme boundaries (^) and word boundaries (#).
```

```
Lexicon: cat+N+PL fox+N+PL Intermediate representation: cat^s# fox^s# Surface string: cats foxes
```

Intermediate-to-Surface Spelling Rule:
If plural 's' follows a morpheme ending in 'x','z' or 's', insert 'e'.

Spelling Rules and FSTs

Name	Description of Rule	Example
Consonant doubling	1-letter consonant doubled before <i>-ing/-ed</i>	beg/begging
E deletion	Silent e dropped before -ing and –ed	make/making
E insertion	e added after -s, -z, -x, -ch, -sh before -s	watch/watches
Y replacement	-y changes to -ie before -s, and to -i before -ed	try/tries
K insertion	verbs ending with <i>vowel + -c</i> add <i>-k</i>	panic/panicked

Three levels

 Add an intermediate level between the lexical and surface levels

FST for the E-insertion Rule

The state-transition table for E-insertion rule

State\Input	s:s	x:x	Z : Z	3:^	ε : e	#	other
q_0 :	1	1	1	0	-	0	0
$\mid q_1$:	1	1	1	2	_	0	0
$ q_2$:	5	1	1	0	3	0	0
$ q_3 $	4	-	-	_	_	_	-
$\mid q_4 \mid$	_	-	-	_	_	0	-
q_5	1	1	1	2	_	-	0

The state-transition table for E-insertion rule

f	0	X	^	s	#
f	o	X	e	s	#

Intermediate Tape

Surface Tape

Trace:

- generating foxes# from fox^s#:

$$q0-f->q0-o->q0-x->q1-^:\epsilon->q2-\epsilon:e->q3-s->q4-\#->q0$$

- generating foxs# from fox^s#:

$$q0-f->q0-o->q0-x->q1-^{E}->q2-s->q5-#->FAIL$$

- generating salt# from salt#:

$$q0-s->q1-a->q0-1->q0-t>q0-\#->q0$$

- parsing assess#:

$$q0-a->q0-s->q1-s->q1-^:e->q2-e:e->q3-s->q4-s->FAIL$$

$$q0-a->q0-s->q1-s->q1-e->q0-s->q1-s->q1-#->q0$$

State\Input	s:s	x:x	Z : Z	3:^	€:e	#	othe
<i>q</i> ₀ :	1	1	1	0	-	0	0
q_1 :	1	1	1	2	-	0	0
q_2 :	5	1	1	0	3	0	0
q_3	4	-	-	-	-	-	-
q_4	-	-	-	-	-	0	-
<i>q</i> ₅	1	1	1	2	-	-	0