~	1/1 points
1.	
Select	correct statements
	One can obtain sample from gaussian distribution using one sample from uniform
Un-	selected is correct
	One can obtain n multivariate gaussian samples $x \in \mathbb{R}^n$ from n standard 1d gaussian samples.
Un-	selected is correct
	One can obtain multivariate gaussian sample $x \in \mathbb{R}^n$ from n standard 1d gaussian samples
Corr $\epsilon \sim$	rect rect: any multivariate gaussian $X\sim \mathcal{N}(\mu,\Sigma)$ can be represented as $\mu+\Sigma^{1/2}\epsilon$, where $\mathcal{N}(0,\mathrm{I}).$
	One can obtain sample from exponential distribution using one sample from uniform $ \begin{array}{l} \text{\bf rect} \\ \text{\bf rect} \end{array} $ rect: If $X \sim \mathcal{F}$ is a random variable with CDF $F(x)$ that can be inverted analytically then $F(u) \sim \mathcal{F}$ where $u \sim \mathrm{U}[0,1]$. Correspondingly $-\frac{\log u}{\lambda} \sim Exp(\lambda)$.
~	$\frac{1}{1}$ points

https://www.coursera.org/learn/bayesian-methods-in-machine-learning/exam/rXMkE/markov-chain-monte-carlo

2.

What is a time complexity of an algorithm for sampling a random number from an arbitrary discrete distribution with support $\{1,\dots,N\}$		
0	O(N)	
Correct Correct: prior to sampling we need to compute cumulative sums which is O(N) operations.		
	O(log N)	
	$O(N \log N)$	
	O(1)	
~	1/1 points	
3.		
What v	we can use Monte-Carlo method for?	
	Compute an integral of an arbitrary function over a simple area (e.g. a multidimensonal cube)	
Cor	rect rect: just sample random points uniformly in the area and average the function values in those ats. Note that usually this is not the best approach, although very scalable.	
	Estimate the expected values of arbitrary random variables	
	rect rect: this is what Monte-Carlo method is for.	

	Do full bayesian inference to estimate the uncertainty of you model.
Cor	rect
Corr	rect: see example in the lecture.
	Compute the exact mode of a posterior distribution (MAP-estimation)
Un	selected is correct
UII-	selected is correct
	1/1
V	points
4.	
Which	of the statements below are correct?
Willeli	of the statements below the correct.
	Any sequence of random variables $X_n:n\in\mathbb{N}$ can be considered as a Markov chain.
Un-	selected is correct
	Ann Manhan abain ann ann an atation ann diataibh ation
	Any Markov chain converges to a stationary distribution
Un-	selected is correct
	Any Markov chain is a sequence of discrete random variables, for example: $\{0,1,0,0,1,0,0,\dots\}$.
Un-	selected is correct
	Markov chain does not "remember" states other than current
_	
	rect
Corr	eul.

	All elements X_n of a Markov chain $X_n:n\in\mathbb{N}$ are independent random variables.
Un-se	elected is correct
~	1/1 points
5.	
Which o	of the statements below are correct?
	MCMC techniques are used when ones cannot perform bayesian inference analytically
Corre	
	MCMC provides i.i.d. samples from desired distribution
Un-se	elected is correct
Corre	
~	1/1 points

6.
Which of the statements below are correct?
Gibbs sampling is a special case of a Metropolis-Hastings algorithm.
Correct Correct. Gibbs sampling is a special case of MH with acceptance rate equal to 1.
Gibbs sampling reduces multidimensional sampling to one-dimensional sampling.
Correct Correct.
Each iteration of Gibbs sampling changes only one coordinate of a latent vector
Correct Correct.
Gibbs sampling converges really fast because it provides very uncorrelated samples compared to Metropolis- Hastings algorithm
Un-selected is correct
✓ 1/1 points
7.
Which of the following is random in Bayesian Neural Networks?
lacksquare Weights of the network w

Correct Correct
lacksquare Prediction of the network y given fixed input x
$ {\color{red} \textbf{Correct}} \\ \textbf{Correct. Prediction of the network } y \text{ depends on the weights which are random variables.} $
Number of units on each layer of the network
Un-selected is correct
Number of active layers of the network
Un-selected is correct
✓ 1/1 points
8.
What is a good way to train (find the posterior distribution $p(w D)$) Bayesian Neural Network?
Iteratively sample each weight from the conditional distribution given all other weights and the data.
Compute the posterior distribution $p(w D)$ analytically.
Run the stochastic gradient descent perturbing all network weights with independent Gaussian noise after each iteration.

Correct Correct. This algorithm is called Langevin Monte Carlo and is proved to converge to the true posterior.		
~	1/1 points	
9.		
What	does the word "Collapsed" means in the Collapsed Gibbs Sampling algorithm?	
0	It means that posterior distribution over some of the variables is computed analytically, while other variables are sampled using Gibbs Sampling.	
	rect	
Cor	rect	
	It means that the posterior approximation $collapses$ to the are posterior distribution.	
	It means that we train the model on the subsample of the original data.	
~	1/1 points	
10.		
Which	of the variables are randomly sampled in Collapsed Gibbs Sampling for LDA?	
0	Z	

Correct

Correct. Everything else can be computed analytically.

- Φ, Θ
- $\bigcirc \quad \Phi,\Theta,Z$

r r