Published in: Potential Analysis 20 (2004), 285–302.

Non-differentiable Skew Convolution Semigroups and Related Ornstein-Uhlenbeck Processes

DONALD A. DAWSON¹

School of Mathematics and Statistics, Carleton University, 1125 Colonel By Drive, Ottawa, Canada K1S 5B6 (e-mail: ddawson@math.carleton.ca)

ZENGHU LI²

Department of Mathematics, Beijing Normal University, Beijing 100875, P.R. China (e-mail: lizh@email.bnu.edu.cn)

Abstract: It is proved that a general non-differentiable skew convolution semigroup associated with a strongly continuous semigroup of linear operators on a real separable Hilbert space can be extended to a differentiable one on the entrance space of the linear semigroup. A càdlàg strong Markov process on an enlargement of the entrance space is constructed from which we obtain a realization of the corresponding Ornstein-Uhlenbeck process. Some explicit characterizations of the entrance spaces for special linear semigroups are given.

Mathematics Subject Classifications (2000): Primary 60J35; Secondary 60H15

Key words and phrases: skew convolution semigroup, differentiable extension, generalized Ornstein-Uhlenbeck process, right continuous realization.

1 Introduction

Suppose that (S, +) is a Hausdorff topological semigroup and $(Q_t)_{t\geq 0}$ is a transition semigroup on S satisfying

$$Q_t(x_1 + x_2, \cdot) = Q_t(x_1, \cdot) * Q_t(x_2, \cdot), \quad t \ge 0, x_1, x_2 \in S,$$
(1.1)

where "*" denotes the convolution operation. A family of probability measures $(\mu_t)_{t\geq 0}$ on S is called a *skew convolution semigroup* (SC-semigroup) associated with $(Q_t)_{t\geq 0}$ if it satisfies

$$\mu_{r+t} = (\mu_r Q_t) * \mu_t, \quad r, t > 0.$$
 (1.2)

This equation is of interest since it is satisfied if and only if

$$Q_t^{\mu}(x,\cdot) := Q_t(x,\cdot) * \mu_t(\cdot), \quad t \ge 0, x \in S, \tag{1.3}$$

¹Supported by an NSERC Research Grant and a Max Planck Award.

²Supported by the NSFC (No. 10131040 and No. 10121101).

defines another transition semigroup $(Q_t^{\mu})_{t\geq 0}$ on S. (Note that (1.1) implies $(\mu*\nu)Q_t=(\mu Q_t)*(\nu Q_t)$ for probability measures μ and ν on S.) This fact was first observed in [5, 6] when S=M(E) is the space of all finite Borel measures on a metrizable space E; see also [8, Theorem 2.1]. In that case, $(Q_t)_{t\geq 0}$ corresponds to a measure-valued branching process and $(Q_t^{\mu})_{t\geq 0}$ corresponds to an immigration process.

In this work, we shall consider the formulation in another special situation, where S = H is a real separable Hilbert space and $Q_t(x,\cdot) \equiv \delta_{T_tx}$ for a strongly continuous semigroup of bounded linear operators $(T_t)_{t\geq 0}$ on H. In this case, we can rewrite (1.2) as

$$\mu_{r+t} = (T_t \mu_r) * \mu_t, \quad r, t \ge 0,$$
(1.4)

and the transition semigroup $(Q_t^{\mu})_{t\geq 0}$ is given by

$$Q_t^{\mu} f(x) := \int_H f(T_t x + y) \mu_t(dy), \quad x \in H, f \in B(H),$$
 (1.5)

where B(H) denotes the totality of bounded Borel measurable functions on H. The semigroup $(Q_t^{\mu})_{t\geq 0}$ defined by (1.5) is called a generalized Mehler semigroup associated with $(T_t)_{t\geq 0}$, which corresponds to a generalized Ornstein-Uhlenbeck process (OU-process). This definition of the generalized Mehler semigroup was given by Bogachev et al [1]. They also gave a characterization for the SC-semigroup $(\mu_t)_{t\geq 0}$ under the assumption that the function $t\mapsto \hat{\mu}_t(a)$ is differentiable at t=0, where $\hat{\mu}_t(a)$ denotes the characteristic functional of μ_t . It is known that for a general SC-semigroup $(\mu_t)_{t>0}$ defined by (1.4) the function $t \mapsto \hat{\mu}_t(a)$ is not necessarily differentiable at t=0; see e.g. [?, 11, 12]. A simple and nice necessary and sufficient condition for an SCsemigroup to be differentiable was given in [11] in the setting of cylindrical probability measures. In [1] it was shown that a differentiable cylindrical Gaussian SC-semigroup can be extended into a real Gaussian SC-semigroup in an enlargement of H and the corresponding OU-process was constructed as the strong solution to a stochastic differential equation. Those results were extended to the general non-Gaussian case in [4]. A characterization for general SC-semigroups $(\mu_t)_{t\geq 0}$ was given in [?], where it was also observed that the OU-processes corresponding to a non-differentiable SC-semigroup usually have no right continuous realizations. This property is similar to that of the immigration processes studied in [6, 7, 8] and represents a departure from the theory of well-studied classes of OU-processes in [1, 4].

The main purpose of this paper is to study the construction of OU-processes corresponding to non-differentiable SC-semigroups. We shall see that, under a moment assumption, a general SC-semigroup can be decomposed as the convolution of a centered SC-semigroup and a degenerate one. For this reason, we shall only consider centered SC-semigroups. In section 2, we derive from the results of Dawson et al [?] that each centered SC-semigroup is uniquely determined by an infinitely divisible probability measure on the entrance space \tilde{H} for the semigroup $(T_t)_{t\geq 0}$, which is an enlargement of H. In section 3, it is shown that a general non-differentiable centered SC-semigroup can always be extended to a differentiable one on the entrance space \tilde{H} . In section 4, we use a modification of the argument of Fuhrman and Röckner [4] to construct a càdlàg and strong Markov OU-process $\{\bar{X}_t: t\geq 0\}$ on a further extension \bar{H} of \tilde{H} . We also show that, if $\bar{X}_0 \in H$, then $\bar{X}_t \in H$ almost surely for every $t\geq 0$ and $\{1_H(\bar{X}_t)\bar{X}_t: t\geq 0\}$ is an OU-process with transition semigroup $(Q_t^{\mu})_{t\geq 0}$ defined by (1.5). Those results provide an approach to the study of non-differentiable generalized Mehler semigroups with which one can reduce some of their analysis to the existing framework of [1] and [4]. However, this approach

should not convince the reader that non-differentiable generalized Mehler semigroups do not bear particular consideration on their own. In fact, there are some cases where the natural state space of the OU-process is H and the introduction of \tilde{H} and \bar{H} seems unnatural and artificial. For example, an OU-process on $L^2(0,\infty)$ with non-differentiable SC-semigroup represents the fluctuation density of a catalytic branching processes with immigration; see [?]. In this case, it is rather unnatural to take $\bar{L}^2(0,\infty)$ as the state space. We provide some explicit characterization for the non-negative elements of $\tilde{L}^2(I\!\!R^d)$ and $\tilde{L}^2(0,\infty)$ in section 5. The explicit characterization for all elements of $\bar{L}^2(I\!\!R^d)$ and $\bar{L}^2(0,\infty)$ seems much more sophisticated.

2 Non-differentiable semigroups

Suppose that H is a real separable Hilbert space with dual space H^* and $(T_t)_{t\geq 0}$ is a strongly continuous semigroup of linear operators on H with dual $(T_t^*)_{t\geq 0}$. Let $(\mu_t)_{t\geq 0}$ be an SC-semigroup defined by (1.4) satisfying the moment condition

$$\int_{H^{\circ}} ||x||^2 \mu_t(dx) < \infty, \quad t \ge 0, \tag{2.1}$$

where $H^{\circ} = H \setminus \{0\}$. Then we may define an H-valued path $(b_t)_{t \geq 0}$ by Bochner integrals

$$b_t := \int_{H^{\circ}} x \mu_t(dx), \quad t \ge 0,$$

and define $\mu_t^c = \delta_{-b_t} * \mu_t$. It is easy to check that both $(\delta_{b_t})_{t\geq 0}$ and $(\mu_t^c)_{t\geq 0}$ are SC-semigroups associated with $(T_t)_{t\geq 0}$ and $\mu_t = \mu_t^c * \delta_{b_t}$. That is, under the moment assumption, a general SC-semigroup can be decomposed as the convolution of a centered SC-semigroup and a degenerate one. For this reason, we shall only discuss centered SC-semigroups in the sequel.

Since $(T_t)_{t\geq 0}$ is strongly continuous, there are constants $c_0 \geq 0$ and $b_0 \geq 0$ such that $||T_t|| \leq c_0 e^{b_0 t}$. Let $(U_\alpha)_{\alpha>b_0}$ denote the resolvent of $(T_t)_{t\geq 0}$ and let A denote its generator with domain $D(A) = U_\alpha H \subset H$. An H-valued path $\tilde{x} = \{\tilde{x}(s) : s > 0\}$ is called an *entrance path* for the semigroup $(T_t)_{t\geq 0}$ if it satisfies $\tilde{x}(r+t) = T_t \tilde{x}(r)$ for all r, t > 0. Let E denote the set of all entrance paths for $(T_t)_{t\geq 0}$. We say $\tilde{x} \in E$ is closable if there is an element $\tilde{x}(0) \in H$ such that $\tilde{x}(s) = T_s \tilde{x}(0)$ for all s > 0; and we say it is locally square integrable if

$$\int_0^l \|\tilde{x}(s)\|^2 ds < \infty \tag{2.2}$$

for some l > 0.

Lemma 2.1 For any $\tilde{x} \in E$, (2.2) holds for some l > 0 if and only if it holds for all l > 0; and if and only if

$$\int_0^\infty e^{-2bs} \|\tilde{x}(s)\|^2 ds < \infty \tag{2.3}$$

for all $b > b_0$.

Proof. Suppose that (2.2) holds for some $l_0 > 0$. Let l > 0 and let $n \ge 1$ be an integer such that $nl_0 \ge l$. Then

$$\int_{0}^{l} \|\tilde{x}(s)\|^{2} ds \leq \int_{0}^{nl_{0}} \|\tilde{x}(s)\|^{2} ds$$

$$= \sum_{k=0}^{n-1} \int_{0}^{l_{0}} \|T_{kl_{0}}\tilde{x}(s)\|^{2} ds$$

$$\leq \sum_{k=0}^{n-1} c_{0}^{2} e^{2kb_{0}l_{0}} \int_{0}^{l_{0}} \|\tilde{x}(s)\|^{2} ds$$

$$< \infty.$$

Thus (2.2) holds for all l > 0. On the other hand, for any $b > b_0$,

$$\int_{0}^{\infty} e^{-2bs} \|\tilde{x}(s)\|^{2} ds = \sum_{k=0}^{\infty} e^{-2kbl_{0}} \int_{0}^{l_{0}} e^{-2bs} \|T_{kl_{0}}\tilde{x}(s)\|^{2} ds$$

$$\leq \sum_{k=0}^{\infty} c_{0}^{2} e^{-2k(b-b_{0})l_{0}} \int_{0}^{l_{0}} e^{-2bs} \|\tilde{x}(s)\|^{2} ds$$

$$\leq \infty.$$

That is, (2.3) holds for all $b > b_0$. The remaining assertions are obvious. \Box

Let \tilde{H} denote the set of all locally square integrable entrance paths for $(T_t)_{t\geq 0}$. We shall call \tilde{H} the *entrance space* for $(T_t)_{t\geq 0}$. For any fixed $b>b_0$, we may define an inner product on \tilde{H} by

$$\langle \tilde{x}, \tilde{y} \rangle_{\sim} := \int_{0}^{\infty} e^{-2bs} \langle \tilde{x}(s), \tilde{y}(s) \rangle ds, \quad \tilde{x}, \tilde{y} \in \tilde{H}.$$
 (2.4)

Let $\|\cdot\|_{\sim}$ denote the norm induced by this inner product. The proof of the following result was suggested to us by W. Sun.

Lemma 2.2 The normed space $(\tilde{H}, \|\cdot\|_{\sim})$ is complete, so $(\tilde{H}, \langle\cdot,\cdot\rangle_{\sim})$ is a Hilbert space.

Proof. Suppose $\{\tilde{x}_n\}\subset \tilde{H}$ is a Cauchy sequence under the norm $\|\cdot\|_{\sim}$, that is,

$$\|\tilde{x}_n - \tilde{x}_m\|_{\sim} = \int_0^\infty e^{-2bs} \|\tilde{x}_n(s) - \tilde{x}_m(s)\|^2 ds \to 0$$

as $m, n \to \infty$. For each t > 0,

$$\|\tilde{x}_{n}(t) - \tilde{x}_{m}(t)\|^{2} = t^{-1} \int_{0}^{t} \|\tilde{x}_{n}(t) - \tilde{x}_{m}(t)\|^{2} ds$$

$$= t^{-1} \int_{0}^{t} \|T_{t-s}(\tilde{x}_{n}(s) - \tilde{x}_{m}(s))\|^{2} ds$$

$$\leq c_{0}^{2} t^{-1} e^{2bt} \int_{0}^{t} e^{-2bs} \|\tilde{x}_{n}(s) - \tilde{x}_{m}(s)\|^{2} ds.$$

Then the limit $\tilde{x}(t) = \lim_{n \to \infty} \tilde{x}_n(t)$ exists in H. Since T_s is a continuous operator on H, for s > 0,

$$T_s \tilde{x}(t) = \lim_{n \to \infty} T_s \tilde{x}_n(t) = \lim_{n \to \infty} \tilde{x}_n(t+s) = \tilde{x}(t+s),$$

that is, $\tilde{x} = {\tilde{x}(t) : t > 0}$ is an entrance path for $(T_t)_{t \ge 0}$. For $\varepsilon > 0$, choose large enough $N \ge 1$ such that

$$\|\tilde{x}_n - \tilde{x}_m\|_{\sim}^2 = \int_0^\infty e^{-2bs} \|\tilde{x}_n(s) - \tilde{x}_m(s)\|^2 ds < \varepsilon$$

for $m, n \geq N$. By Fatou's lemma we get

$$\int_{0}^{\infty} e^{-2bs} \|\tilde{x}_{n}(s) - \tilde{x}(s)\|^{2} ds \le \liminf_{m \to \infty} \int_{0}^{\infty} e^{-2bs} \|\tilde{x}_{n}(s) - \tilde{x}_{m}(s)\|^{2} ds \le \varepsilon.$$

It follows that

$$\int_0^\infty e^{-2bs} \|\tilde{x}(s)\|^2 ds \le \int_0^\infty e^{-2bs} \|\tilde{x}_n(s)\|^2 ds + \int_0^\infty e^{-2bs} \|\tilde{x}_n(s) - \tilde{x}(s)\|^2 ds < \infty.$$

Then $\tilde{x} \in \tilde{H}$ and $\lim_{n \to \infty} ||x_n - x||_{\sim}^2 = 0$.

Lemma 2.3 The map $J: x \mapsto \{T_s x : s > 0\}$ from $(H, \|\cdot\|)$ to $(\tilde{H}, \|\cdot\|_{\sim})$ is a continuous dense embedding and hence $(\tilde{H}, \|\cdot\|_{\sim})$ is separable.

Proof. Since $x = \lim_{t\to 0^+} T_t x$, the map $J: x \mapsto \{T_s x : s > 0\}$ is injective. If $\lim_{n\to\infty} x_n = x \in H$, then

$$\int_0^\infty e^{-2bs} ||T_s x_n - T_s x||^2 ds \le c_0^2 ||x_n - x||^2 \cdot \int_0^\infty e^{-2(b-b_0)s} ds \to 0$$

as $n \to \infty$. Thus J is a continuous embedding. For an arbitrary $\tilde{x} \in \tilde{H}$ we have

$$||J\tilde{x}(t) - \tilde{x}||_{\sim}^{2} = \int_{0}^{\infty} e^{-2bs} ||T_{t}\tilde{x}(s) - \tilde{x}(s)||^{2} ds$$

$$= \int_{0}^{r} e^{-2bs} ||T_{t}\tilde{x}(s) - \tilde{x}(s)||^{2} ds + \int_{r}^{\infty} e^{-2bs} ||T_{s-r}[T_{t}\tilde{x}(r) - \tilde{x}(r)]||^{2} ds$$

$$\leq 2(c_{0}^{2}e^{2b_{0}t} + 1) \int_{0}^{r} e^{-2bs} ||\tilde{x}(s)||^{2} ds$$

$$+ c_{0}^{2}e^{-2b_{0}r} ||T_{t}\tilde{x}(r) - \tilde{x}(r)||^{2} \int_{r}^{\infty} e^{-2(b-b_{0})s} ds.$$

Observe that the first integral on the right hand side goes to zero as $r \to 0^+$ and for fixed r > 0 the second term goes to zero as $t \to 0^+$. Then we have $||J\tilde{x}(t) - \tilde{x}||_{\sim} \to 0$ as $t \to 0$, and JH is dense in \tilde{H} . Since H is separable, so is \tilde{H} . \square

Theorem 2.1 A family $(\mu_t)_{t\geq 0}$ of centered probability measures on H satisfying (2.1) is an SC-semigroup associated with $(T_t)_{t\geq 0}$ if and only if its characteristic functionals are given by

$$\hat{\mu}_t(a) = \exp\left\{\int_0^t \log \hat{\nu}_s(a) ds\right\}, \quad t \ge 0, a \in H^*, \tag{2.5}$$

where $(\nu_s)_{s>0}$ is a family of centered infinitely divisible probability measures on H satisfying $\nu_{r+t} = T_t \nu_r$ for all r, t > 0 and

$$\int_0^t ds \int_{H^{\circ}} ||x||^2 \nu_s(dx) < \infty, \quad t \ge 0, \tag{2.6}$$

and $\log \hat{\nu}_s(\cdot)$ denotes the unique continuous function on H^* with $\log \hat{\nu}_s(0) = 0$ and $\hat{\nu}_s(a) = \exp\{\log \hat{\nu}_s(a)\}$ for all $a \in H^*$.

Proof. It is well-known that the second moment of a centered infinitely divisible probability measure only involves the Gaussian covariance operator and the Lévy measure. If the centered probability measures $(\mu_t)_{t\geq 0}$ and $(\nu_s)_{s>0}$ are related by (2.5), the Gaussian covariance operators and Lévy measures of $(\mu_t)_{t\geq 0}$ can be represented as integrals of those of $(\nu_s)_{s>0}$. This observation yields that

$$\int_{H^{\circ}} \langle x, a \rangle^2 \mu_t(dx) = \int_0^t ds \int_{H^{\circ}} \langle x, a \rangle^2 \nu_s(dx), \quad t \ge 0, a \in H^*.$$

Let $\{e_n : n = 1, 2, ...\}$ be an orthonormal basis of $H = H^*$. Applying the above equation to each e_n and taking the summation we see

$$\int_{H^{\circ}} \|x\|^2 \mu_t(dx) = \int_0^t ds \int_{H^{\circ}} \|x\|^2 \nu_s(dx), \quad t \ge 0.$$
 (2.7)

Thus conditions (2.1) and (2.6) are equivalent for the probability measures $(\mu_t)_{t\geq 0}$ and $(\nu_s)_{s>0}$ related by (2.5). Suppose $(\mu_t)_{t\geq 0}$ is given by (2.5) with the centered infinitely divisible probabilities $(\nu_s)_{s>0}$ satisfying $\nu_{r+t} = T_t\nu_r$ for all r, t>0. Then $(\mu_t)_{t\geq 0}$ is a centered SC-semigroup by [?, Theorem 2.3]. Conversely, by [?, Theorems 2.1 and 2.2] any SC-semigroup $(\mu_t)_{t\geq 0}$ has the expression (2.5) up to the convolution of a family of degenerate probability measures $(\delta_{b_t})_{t\geq 0}$. If $(\mu_t)_{t\geq 0}$ is a centered SC-semigroup, we must have $b_t=0$ for all $t\geq 0$. \square

Theorem 2.2 A family $(\mu_t)_{t\geq 0}$ of centered probability measures on H satisfying (2.1) is an SC-semigroup associated with $(T_t)_{t\geq 0}$ if and only if its characteristic functionals are given by

$$\hat{\mu}_t(a) = \exp\left\{-\int_0^t \psi_s(a)ds\right\}, \quad t \ge 0, a \in H^*,$$
(2.8)

where $\psi_s(\cdot)$ denotes the unique continuous function on H^* with $\psi_s(0) = 0$ and

$$\exp\{-\psi_s(a)\} = \int_{\tilde{H}} e^{i\langle \tilde{x}(s), a\rangle} \lambda_0(d\tilde{x}), \quad s > 0, a \in H^*, \tag{2.9}$$

where λ_0 is a centered infinitely divisible probability measure on H satisfying

$$\int_{\tilde{H}} \|\tilde{x}\|_{\sim}^2 \lambda_0(d\tilde{x}) < \infty. \tag{2.10}$$

Proof. Let $(\nu_s)_{s>0}$ be given as in Theorem 2.1. In the terminology of Markov processes, $(\nu_s)_{s>0}$ is a probability entrance law for the Markov process $\{T_tx:t\geq 0\}$ with deterministic motion. Let $E_0=H^{(0,\infty)}$ be the totality of paths $\{w(t):t>0\}$ from $(0,\infty)$ to H. We endow E_0 with the σ -algebra \mathcal{E}_0 generated by the maps $w\mapsto w(s)$, s>0. By Kolmogorov's existence theorem, there is a unique probability measure λ_0 on E_0 so that $\{w(t):t>0\}$ under λ_0 is a Markov process with the same transition semigroup as the process $\{T_tx:t\geq 0\}$ and ν_s is the image of λ_0 under $w\mapsto w(s)$; see e.g. Sharpe [13, p.6]. Because of the special deterministic motion mechanism of $\{T_tx:t\geq 0\}$ we may assume that λ_0 is supported by the entrance paths E. Let $\mathcal{E}_0(E)$ and $\mathcal{E}_0(\tilde{H})$ denote respectively the traces of \mathcal{E}_0 on E and \tilde{H} . Since $w\mapsto \|w(s)\|^2$ is clearly a non-negative $\mathcal{E}_0(E)$ -measurable function on E,

$$w \mapsto ||w||_{\sim} := \int_0^\infty e^{-2bs} ||w(s)||^2 ds$$

is an $\mathcal{E}_0(E)$ -measurable function on E taking values in $[0, \infty]$. It is also easy to check that $\mathcal{E}_0(\tilde{H})$ coincides with the Borel σ -algebra $\mathcal{B}(\tilde{H})$ induced by the norm $\|\cdot\|_{\sim}$. Since $(\nu_s)_{s>0}$ satisfies (2.6), we have

$$\int_{E} \|w\|_{\sim}^{2} \lambda_{0}(dw) = \int_{E} \lambda_{0}(dw) \int_{0}^{\infty} e^{-2bs} \|w(s)\|^{2} ds$$

$$= \int_{0}^{\infty} ds \int_{H} e^{-2bs} \|x\|^{2} \nu_{s}(dx)$$

$$= \sum_{n=0}^{\infty} \int_{0}^{1} ds \int_{H} e^{-2b(n+s)} \|T_{n}x\|^{2} \nu_{s}(dx)$$

$$\leq c_{0}^{2} \sum_{n=0}^{\infty} e^{-2(b-b_{0})n} \int_{0}^{1} ds \int_{H} e^{-2bs} \|x\|^{2} \nu_{s}(dx)$$

$$< \infty,$$

so λ_0 is supported by \tilde{H} and (2.10) holds. The infinite divisibility of λ_0 follows immediately from that of ν_s . \square

3 Differentiable extensions

For a general SC-semigroup given by Theorem 2.2, the function $t \mapsto \hat{\mu}_t(a)$ is not necessarily differentiable at t = 0. However, if ν_0 is a centered infinitely divisible probability measure on H satisfying

$$\int_{H^{\circ}} ||x||^2 \nu_0(dx) < \infty, \tag{3.1}$$

then

$$\hat{\mu}_t(a) = \exp\left\{ \int_0^t \log \hat{\nu}_0(T_s^* a) ds \right\}, \quad t \ge 0, a \in H^*,$$
(3.2)

defines a centered SC-semigroup $(\mu_t)_{t\geq 0}$ such that $t\mapsto \hat{\mu}_t(a)$ is differentiable at t=0 for all $a\in H^*$. In the sequel, we shall call $(\mu_t)_{t\geq 0}$ a differentiable SC-semigroup if it is given by (3.2). We shall discuss how to extend a general SC-semigroup on H to a differentiable one on the entrance space \tilde{H} . For any strongly continuous linear semigroup $(T_t)_{t\geq 0}$ on H,

$$(\tilde{T}_t \tilde{x})(s) = \tilde{x}(t+s), \quad s, t > 0, \tag{3.3}$$

defines a semigroup of linear operators $(\tilde{T}_t)_{t\geq 0}$ on \tilde{H} . Since

$$\|\tilde{T}_t \tilde{x}\|_{\sim}^2 = \int_0^\infty e^{-2bs} \|\tilde{x}(t+s)\|^2 ds \le \|T_t\|^2 \int_0^\infty e^{-2bs} \|\tilde{x}(s)\|^2 ds,$$

we have $\|\tilde{T}_t\|_{\sim} \leq \|T_t\|$. Let $(\tilde{U}_{\alpha})_{\alpha>b_0}$ denote the resolvent of $(\tilde{T}_t)_{t\geq 0}$ and let \tilde{A} denote its generator with domain $D(\tilde{A}) = \tilde{U}_{\alpha}\tilde{H} \subset \tilde{H}$.

Lemma 3.1 Let J be defined as in Lemma 2.3. Then $JT_tx = \tilde{T}_tJx$ for all $t \geq 0$ and $x \in H$ and $(\tilde{T}_t)_{t\geq 0}$ is a strongly continuous semigroup of linear operators on \tilde{H} .

Proof. For $t \geq 0$ and $x \in H$ we have

$$JT_t x = \{T_s T_t x : s > 0\} = \{T_t T_s x : s > 0\} = \tilde{T}_t J x,$$

giving the first assertion. By the proof of Lemma 2.3, $\|\tilde{T}_t\tilde{x} - \tilde{x}\|_{\sim} = \|J\tilde{x}(t) - \tilde{x}\|_{\sim} \to 0$ as $t \to 0$, that is, $(\tilde{T}_t)_{t>0}$ is strongly continuous. \square

Lemma 3.2 We have $\tilde{U}_{\alpha}\tilde{x} = \{U_{\alpha}\tilde{x}(s) : s > 0\}$ and $\tilde{A}\tilde{U}_{\alpha}\tilde{x} = \{AU_{\alpha}x(s) : s > 0\}$ for all $\tilde{x} \in \tilde{H}$.

Proof. The first assertion follows as we observe that

$$\tilde{U}_{\alpha}\tilde{x}(s) = \int_{0}^{\infty} e^{-\alpha s} \tilde{T}_{t}\tilde{x}(s)dt = \int_{0}^{\infty} e^{-\alpha s} T_{t}\tilde{x}(s)dt = U_{\alpha}\tilde{x}(s),$$

and the second follows from the equality $\tilde{A}\tilde{U}_{\alpha}\tilde{x} = \alpha \tilde{U}_{\alpha}\tilde{x} - \tilde{x}$.

Theorem 3.1 All centered SC-semigroups associated with $(T_t)_{t\geq 0}$ satisfying (2.1) are differentiable if and only if all its locally square integrable entrance paths are closable.

Proof. Suppose that all entrance paths $\tilde{x} \in \tilde{H}$ are closable and $(\mu_t)_{t\geq 0}$ is an SC-semigroup given by (2.8). To each $\tilde{x} \in \tilde{H}$ there corresponds some $\tilde{x}(0) \in H$ such that $\tilde{x}(s) = T_s \tilde{x}(0)$ for all s > 0. This element is apparently determined by \tilde{x} uniquely. Letting ν_0 be the image of λ_0 under the map $\tilde{x} \mapsto \tilde{x}(0)$ we get (3.2). Conversely, if $\tilde{x} = \{\tilde{x}(s) : s > 0\} \in \tilde{H}$ is not closable, then

$$\hat{\mu}_t(a) = \exp\left\{-\frac{1}{2} \int_0^t \langle \tilde{x}(s), a \rangle^2 ds\right\}, \quad t \ge 0, a \in H^*,$$

defines a non-differentiable SC-semigroup.

Theorem 3.2 All entrance paths for $(\tilde{T}_t)_{t>0}$ are closable.

Proof. Suppose that $\bar{x} = \{\bar{x}(u) : u > 0\}$ is an entrance path for $(\tilde{T}_t)_{t \geq 0}$, where each $\bar{x}(u) = \{\bar{x}(u,s) : s > 0\} \in \tilde{H}$ is an entrance path for $(T_t)_{t \geq 0}$. Then we get

$$\{\bar{x}(u,r+s):s>0\} = (\tilde{T}_r\bar{x})(u) = \bar{x}(r+u) = \{\bar{x}(r+u,s):s>0\},$$
 (3.4)

where the first equality follows from (3.3) and the second one holds since \bar{x} is an entrance path for $(\tilde{T}_t)_{t\geq 0}$. Setting $\bar{x}(0) = \{\bar{x}(s/2, s/2) : s > 0\}$ we have

$$\tilde{T}_u \bar{x}(0)(s) = \bar{x}(s/2, u + s/2) = \bar{x}(u, s),$$
(3.5)

where the first equality follows from (3.3) and the second one holds by (3.4). Thus $T_u\bar{x}(0) = \bar{x}(u)$, that is, $\bar{x} = \{\bar{x}(u) : u > 0\}$ is closed by $\bar{x}(0)$.

For the infinitely divisible probability measure λ_0 on \tilde{H} given by Theorem 2.2 we have

$$\hat{\lambda}_0(\tilde{a}) = e^{-\tilde{\psi}_0(\tilde{a})}, \quad \tilde{a} \in \tilde{H}^*, \tag{3.6}$$

for a functional $\tilde{\psi}_0$ on \tilde{H}^* with representation

$$\tilde{\psi}_0(\tilde{a}) = \frac{1}{2} \langle \tilde{R}a, a \rangle_{\sim} - \int_{\tilde{H}^{\circ}} \left(e^{i\langle \tilde{x}, \tilde{a} \rangle_{\sim}} - 1 - i\langle \tilde{x}, \tilde{a} \rangle_{\sim} \right) \tilde{M}(d\tilde{x}), \quad \tilde{a} \in \tilde{H}^*, \tag{3.7}$$

where R is a nuclear operator on \tilde{H} and $\|\tilde{x}\|_{\sim}^2 \tilde{M}(d\tilde{x})$ is a finite measure on $\tilde{H}^{\circ} := \tilde{H} \setminus \{0\}$; see e.g. [10].

Theorem 3.3 Let $(\mu_t)_{t\geq 0}$ be a centered SC-semigroup given by (2.8) and let $\tilde{\mu}_t = J\mu_t$. Then $(\tilde{\mu}_t)_{t\geq 0}$ is a differentiable centered SC-semigroup associated with $(\tilde{T}_t)_{t\geq 0}$ and

$$\int_{\tilde{H}} e^{i\langle \tilde{x}, \tilde{a} \rangle \sim} \tilde{\mu}_t(d\tilde{x}) = \exp\left\{-\int_0^t \tilde{\psi}_0(\tilde{T}_s^* \tilde{a}) ds\right\}, \quad t \ge 0, \tilde{a} \in \tilde{H}^*.$$
(3.8)

Proof. By Lemma 2.3, $J: H \mapsto \tilde{H}$ is an embedding. Thus $(\tilde{\mu}_t)_{t\geq 0}$ is an SC-semigroup associated with $(\tilde{T}_t)_{t\geq 0}$. Since $(T_t)_{t\geq 0}$ is a strongly continuous semigroup, for any $\tilde{a} = \{\tilde{a}(s): s>0\} \in \tilde{H}$ we have by dominated convergence

$$\int_{H} \exp\left\{i \int_{0}^{\infty} e^{-2bs} \langle T_{s}x, \tilde{a}(s) \rangle ds\right\} \mu_{t}(dx)$$

$$= \lim_{n \to \infty} \int_{H} \exp\left\{i \sum_{k=1}^{\infty} n^{-1} e^{-2bk/n} \langle T_{k/n}x, \tilde{a}(k/n) \rangle\right\} \mu_{t}(dx)$$

$$= \lim_{n \to \infty} \int_{H} \exp\left\{i \left\langle x, \sum_{k=1}^{\infty} n^{-1} e^{-2bk/n} T_{k/n}^{*} \tilde{a}(k/n) \right\rangle\right\} \mu_{t}(dx)$$

$$= \lim_{n \to \infty} \exp\left\{\int_{0}^{t} \left[\log \int_{H} \exp\left\{i \left\langle x, \sum_{k=1}^{\infty} n^{-1} e^{-2bk/n} T_{k/n}^{*} \tilde{a}(k/n) \right\rangle\right\} \nu_{s}(dx)\right] ds\right\}$$

$$= \lim_{n \to \infty} \exp\left\{\int_{0}^{t} \left[\log \int_{H} \exp\left\{i \sum_{k=1}^{\infty} n^{-1} e^{-2bk/n} \langle T_{k/n}x, \tilde{a}(k/n) \rangle\right\} \nu_{s}(dx)\right] ds\right\}$$

$$= \exp\left\{\int_{0}^{t} \left[\log \int_{H} \exp\left\{i \int_{0}^{\infty} e^{-2bu} \langle T_{u}x, \tilde{a}(u) \rangle du\right\} \nu_{s}(dx)\right] ds\right\}.$$

It follows that

$$\int_{\tilde{H}} e^{i\langle \tilde{x}, \tilde{a} \rangle \sim} J\mu_t(d\tilde{x}) = \exp\left\{ \int_0^t \left[\log \int_{\tilde{H}} e^{i\langle \tilde{x}, \tilde{a} \rangle \sim} J\nu_s(d\tilde{x}) \right] ds \right\}, \quad t \ge 0, \tilde{a} \in \tilde{H}.$$
 (3.9)

Recall from the proof of Theorem 2.2 that ν_s is the image of λ_0 under $\tilde{x} \mapsto \tilde{x}(s)$. Then $\tilde{T}_s \lambda_0 = J \nu_s$ and (3.8) follows from (3.9) and (3.6). \square

Theorem 3.4 Let $(\tilde{\mu}_t)_{t\geq 0}$ be a centered SC-semigroup associated with $(\tilde{T}_t)_{t\geq 0}$ satisfying

$$\int_{\tilde{H}^{\circ}} \|\tilde{x}\|^2 \tilde{\mu}_t(d\tilde{x}) < \infty, \quad t \ge 0. \tag{3.10}$$

Then there is a centered SC-semigroup $(\mu_t)_{t\geq 0}$ associated with $(T_t)_{t\geq 0}$ satisfying (2.1) and $\tilde{\mu}_t = J\mu_t$ for each $t\geq 0$.

Proof. By Theorems 3.1 and 3.2, $(\tilde{\mu}_t)_{t\geq 0}$ is differentiable, so it has the expression (3.8) for an infinitely divisible probability λ_0 on \tilde{H} defined by (3.6). Then we get $(\mu_t)_{t\geq 0}$ by Theorem 2.2, which clearly satisfies the requirements. \square

By Theorems 3.3 and 3.4, centered SC-semigroups associated with $(T_t)_{t\geq 0}$ and those associated with $(\tilde{T}_t)_{t\geq 0}$ are in 1-1 correspondence. Therefore we may reduce some analysis of non-differentiable centered SC-semigroups to those of differentiable ones studied in [1, 4].

4 Ornstein-Uhlenbeck processes

In this section, we discuss constructions of the OU-processes. By the results of the last section, a general centered SC-semigroup on H can be extended to a differentiable one on the entrance space \tilde{H} . Then by Fuhrman and Röckner [4, Theorem 5.3], there is an extension E of \tilde{H} on which a càdlàg realization of the corresponding OU-process can be constructed. In the sequel, we shall give a modification of the arguments of Fuhrman and Röckner [4] which provides a smaller extension but still contains a càdlàg realization of the OU-process. Fix $\alpha > b_0$ and define an inner product on \tilde{H} by

$$\langle \tilde{x}, \tilde{y} \rangle_{-} = \int_{0}^{\infty} e^{-2bs} \langle U_{\alpha} \tilde{x}(s), U_{\alpha} \tilde{y}(s) \rangle ds, \quad \tilde{x}, \tilde{y} \in \tilde{H}.$$

$$(4.1)$$

Let $\|\cdot\|_{-}$ be the corresponding norm and let \bar{H} be the completion of \tilde{H} with respect to $\|\cdot\|_{-}$.

Lemma 4.1 For $\tilde{x} \in \tilde{H}$ we have $\|\tilde{x}\|_{-} \leq \|U_{\alpha}\| \|\tilde{x}\|_{\sim}$, so the identity mapping I from $(\tilde{H}, \|\cdot\|_{\sim})$ to $(\bar{H}, \|\cdot\|_{-})$ is a continuous embedding.

Proof. By (2.4) and (4.1),

$$\|\tilde{x}\|_{-}^{2} = \int_{0}^{\infty} e^{-2bs} \|U_{\alpha}\tilde{x}(s)\|^{2} ds \leq \|U_{\alpha}\|^{2} \int_{0}^{\infty} e^{-2bs} \|\tilde{x}(s)\|^{2} ds = \|U_{\alpha}\|^{2} \|\tilde{x}\|_{\sim}^{2},$$

giving the desired estimate. \Box

Note that the embedding of $(\tilde{H}, \|\cdot\|_{\sim})$ into $(\bar{H}, \|\cdot\|_{-})$ is not necessarily Hilbert-Schmidt, so our extension is different from the one used in [4]. For $\tilde{x} \in \tilde{H}$ we have, by (4.1),

$$\|\tilde{T}_t \tilde{x}\|_{-}^2 = \int_0^\infty e^{-2bs} \|U_\alpha T_t \tilde{x}(s)\|^2 ds = \int_0^\infty e^{-2bs} \|U_\alpha \tilde{x}(t+s)\|^2 ds \le e^{2bt} \|\tilde{x}\|_{-}^2.$$

Then each \tilde{T}_t has a unique extension to a bounded linear operator \bar{T}_t on \bar{H} . Since the semigroup property and strong continuity of $(\bar{T}_t)_{t\geq 0}$ hold on the dense subspace \tilde{H} of \bar{H} , they also hold on \bar{H} , that is, the semigroup of linear operators $(\bar{T}_t)_{t\geq 0}$ extends $(\tilde{T}_t)_{t\geq 0}$. Let $(\bar{U}_{\alpha})_{\alpha>b_0}$ denote the resolvent of $(\bar{T}_t)_{t\geq 0}$ and let \bar{A} denote its generator with domain $D(\bar{A}) = \bar{U}_{\alpha}\bar{H} \subset \bar{H}$. Then $D(\bar{A})$ is a Hilbert space with inner product norm $\|\cdot\|_{\bar{A}}$ defined by

$$\|\bar{x}\|_{\bar{A}} = \|\bar{x}\|_{-} + \|\bar{A}\bar{x}\|_{-}, \quad \bar{x} \in D(\bar{A}).$$
 (4.2)

Lemma 4.2 We have $\tilde{H} \subset D(\bar{A})$ and

$$\|\bar{A}\tilde{y}\|_{-} \le 2(\alpha^{2}\|U_{\alpha}\|^{2} + 1)^{1/2}\|\tilde{y}\|_{\sim}, \quad \tilde{y} \in \tilde{H}.$$
 (4.3)

Consequently, the identity mapping I from $(\tilde{H}, \|\cdot\|_{\sim})$ to $(D(\bar{A}), \|\cdot\|_{\bar{A}})$ is a continuous embedding.

Proof. Suppose that $\tilde{y} \in D(\tilde{A}) \subset D(\bar{A})$. Then $\tilde{y} = \tilde{U}_{\alpha}\tilde{x}$ for some $\tilde{x} \in \tilde{H}$. By (4.1) and Lemma 3.2,

$$\begin{split} \|\bar{A}\tilde{y}\|_{-}^{2} &= \|\tilde{A}\tilde{U}_{\alpha}\tilde{x}\|_{-}^{2} \\ &= \int_{0}^{\infty} e^{-2bs} \|AU_{\alpha}^{2}\tilde{x}(s)\|^{2} ds \\ &= \int_{0}^{\infty} e^{-2bs} \|\alpha U_{\alpha}^{2}\tilde{x}(s) - U_{\alpha}\tilde{x}(s)\|^{2} ds \\ &\leq 2(\alpha^{2} \|U_{\alpha}\|^{2} + 1) \int_{0}^{\infty} e^{-2bs} \|U_{\alpha}\tilde{x}(s)\|^{2} ds \\ &= 2(\alpha^{2} \|U_{\alpha}\|^{2} + 1) \|\tilde{y}\|_{\sim}^{2}. \end{split}$$

Since $D(\tilde{A})$ is a dense subset of $(\tilde{H}, \|\cdot\|_{\sim})$, we have $\tilde{H} \subset D(\bar{A})$ by (4.2) and the above inequality remains true for all $\tilde{y} \in \tilde{H}$. \square

Now suppose that $(\mu_t)_{t\geq 0}$ and $(\tilde{\mu}_t)_{t\geq 0}$ are the SC-semigroups described in Theorem 3.3. Let $\bar{\mu}_t$ be the unique probability measure on \bar{H} whose restriction to \tilde{H} is $\tilde{\mu}_t$. Then $(\bar{\mu}_t)_{t\geq 0}$ is an SC-semigroup associated with $(\bar{T}_t)_{t\geq 0}$. By (3.8),

$$\int_{\bar{H}} e^{i\langle \bar{x}, \bar{a} \rangle - \bar{\mu}_t(d\bar{x})} = \exp\left\{-\int_0^t \tilde{\psi}_0(\bar{T}_s^* \bar{a}) ds\right\}, \quad t \ge 0, \bar{a} \in \bar{H}^* \subset \tilde{H}^*, \tag{4.4}$$

where $\tilde{\psi}_0(\cdot)$ is defined by (3.6). Let $(Q_t^{\bar{\mu}})_{t\geq 0}$ be the generalized Mehler semigroup defined by (1.5) from $(\bar{T}_t)_{t\geq 0}$ and $(\bar{\mu}_t)_{t\geq 0}$. By [4, Theorem 5.1], there is a càdlàg \tilde{H} -valued process $\{\tilde{Y}_t: t\geq 0\}$ with $\tilde{Y}_0=0$ and with independent increments such that $\tilde{Y}_t-\tilde{Y}_r$ has distribution γ_{t-r} with

$$\hat{\gamma}_{t-r}(\tilde{a}) = \exp\{-(t-r)\tilde{\psi}_0(\tilde{a})\}, \quad t \ge r \ge 0, \tilde{a} \in \tilde{H}^*. \tag{4.5}$$

By the strong continuity of $(\bar{T}_t)_{t\geq 0}$ and Lemma 4.2, $s\mapsto \bar{T}_{t-s}\bar{A}\tilde{Y}_s$ is a right continuous \bar{H} -valued function of $s\in[0,t]$. Then for any given $\bar{x}\in\bar{H}$ we may define the càdlàg \bar{H} -valued process $\{\bar{X}_t:t\geq 0\}$ by

$$\bar{X}_t = \bar{T}_t \bar{x} + \tilde{Y}_t + \int_0^t \bar{T}_{t-s} \bar{A} \tilde{Y}_s ds, \quad t \ge 0.$$

$$(4.6)$$

Lemma 4.3 The \bar{H} -valued random variable \bar{X}_t has distribution $Q_t^{\bar{\mu}}(\bar{x},\cdot)$ for every $t \geq 0$. In particular, if $\bar{x} \in JH$, then $\bar{X}_t \in JH$ a.s. for every $t \geq 0$.

Proof. We first prove that $\bar{X}_t^{(0)} := \bar{X}_t - \bar{T}_t \bar{x}$ has distribution $\bar{\mu}_t(\cdot) = Q_t^{\bar{\mu}}(0,\cdot)$. By the right continuity of $s \mapsto \bar{T}_{t-s}\bar{A}\tilde{Y}_s$, we have

$$\bar{X}_{t}^{(n)} := \tilde{Y}_{t} + \frac{t}{n} \sum_{k=1}^{n} \bar{T}_{(1-k/n)t} \bar{A} \tilde{Y}_{kt/n} \to \tilde{Y}_{t} + \int_{0}^{t} \bar{T}_{t-s} \bar{A} \tilde{Y}_{s} ds = \bar{X}_{t}^{(0)}$$

as $n \to \infty$. Let $D_0 = 0$ and $D_k = \bar{T}_{(1-n/n)t}\bar{A} + \cdots + \bar{T}_{(1-k/n)t}\bar{A}$. Then we have

$$\begin{split} \bar{X}_{t}^{(n)} &= \tilde{Y}_{t} + n^{-1}t[(D_{1} - D_{2})\tilde{Y}_{t/n} + \dots + (D_{n-1} - D_{n})\tilde{Y}_{(n-1)t/n} + D_{n}\tilde{Y}_{nt/n}] \\ &= (\tilde{Y}_{nt/n} - \tilde{Y}_{(n-1)t/n}) + \dots + (\tilde{Y}_{2t/n} - \tilde{Y}_{t/n}) + (\tilde{Y}_{t/n} - \tilde{Y}_{0}) \\ &+ n^{-1}t[D_{1}(\tilde{Y}_{t/n} - \tilde{Y}_{0}) + D_{2}(\tilde{Y}_{2t/n} - \tilde{Y}_{t/n}) + \dots \\ &+ D_{n}(\tilde{Y}_{nt/n} - \tilde{Y}_{(n-1)t/n})] \\ &= (I + n^{-1}tD_{1})(\tilde{Y}_{t/n} - \tilde{Y}_{0}) + (I + n^{-1}tD_{2})(\tilde{Y}_{2t/n} - \tilde{Y}_{t/n}) + \dots \\ &+ (I + n^{-1}tD_{n})(\tilde{Y}_{nt/n} - \tilde{Y}_{(n-1)t/n})]. \end{split}$$

It follows that

$$\begin{aligned} \boldsymbol{E} \exp \left\{ i \langle \bar{X}_{t}^{(n)}, \bar{a} \rangle_{-} \right\} &= \boldsymbol{E} \exp \left\{ i \sum_{k=1}^{n} \langle (I + n^{-1}tD_{k})(\tilde{Y}_{kt/n} - \tilde{Y}_{(k-1)t/n}), \bar{a} \rangle_{-} \right\} \\ &= \boldsymbol{E} \exp \left\{ i \sum_{k=1}^{n} \langle (\tilde{Y}_{kt/n} - \tilde{Y}_{(k-1)t/n}), (I + n^{-1}tD_{k})^{*} \bar{a} \rangle_{-} \right\} \\ &= \exp \left\{ -\frac{t}{n} \sum_{k=1}^{n} \tilde{\psi}_{0} ((I + n^{-1}tD_{k})^{*} \bar{a}) \right\}. \end{aligned}$$

In view of (3.7), $\tilde{\psi}_0(\cdot)$ is uniformly continuous on any bounded subset of \bar{H}^* . Observe also that

$$\begin{split} & \|\bar{T}_{(1-k/n)t}^* \bar{a} - (I + n^{-1}tD_k)^* \bar{a}\|_{-} \\ & = \left\| \left| \bar{T}_{(1-k/n)t}^* \bar{a} - \bar{a} - \frac{t}{n} \sum_{j=k}^n \bar{T}_{(1-j/n)t}^* \bar{A}^* \bar{a} \right| \right|_{\bar{H}} \\ & \leq \sum_{j=k}^n \int_{(1-j/n)t}^{(1-(j-1)/n)t} \|\bar{T}_s^* \bar{A}^* \bar{a} - \bar{T}_{(1-j/n)t}^* \bar{A}^* \bar{a}\|_{-} ds \\ & \leq t \cdot \sup \left\{ \|\bar{T}_{t_2}^* \bar{A}^* \bar{a} - \bar{T}_{t_1}^* \bar{A}^* \bar{a} \right\|_{-} : 0 \leq t_1, t_2 \leq t \text{ and } |t_2 - t_1| < t/n \right\}, \end{split}$$

which goes to zero as $n \to \infty$. Thus we have

$$\begin{split} \boldsymbol{E} \exp \left\{ i \langle \bar{X}_t^{(0)}, \bar{a} \rangle_- \right\} &= \lim_{n \to \infty} \boldsymbol{E} \exp \left\{ i \langle \bar{X}_t^{(n)}, \bar{a} \rangle_- \right\} \\ &= \lim_{n \to \infty} \exp \left\{ -\frac{t}{n} \sum_{k=1}^n \tilde{\psi}_0(\bar{T}_{(1-k/n)t}^* \bar{a}) \right\} \\ &= \exp \left\{ -\int_0^t \tilde{\psi}_0(\bar{T}_{t-s}^* \bar{a}) ds \right\}, \end{split}$$

so that $\bar{X}_t^{(0)}$ has distribution $Q_t^{\bar{\mu}}(0,\cdot)$. Therefore, \bar{X}_t has distribution $Q_t^{\bar{\mu}}(\bar{x},\cdot)$. If $\bar{x}=Jx$ for some $x\in H$, then $\bar{T}_t\bar{x}=\tilde{T}_tJx=JT_tx\in JH$ by Lemma 3.1. Since $\bar{\mu}_t(\cdot)$ is supported by JH, so is $Q_t^{\bar{\mu}}(\bar{x},\cdot)$ and hence a.s. $\bar{X}_t\in JH$. \square

Theorem 4.1 The process $\{\bar{X}_t: t \geq 0\}$ defined by (4.6) is a càdlàg strong Markov process with transition semigroup $(Q_t^{\bar{\mu}})_{t\geq 0}$.

Proof. By the construction (4.6), $\{\bar{X}_t: t \geq 0\}$ is adapted to the filtration $\mathcal{F}_t := \sigma(\{\tilde{Y}_s: 0 \leq s \leq t\})$. For $r, t \geq 0$,

$$\bar{X}_{r+t} - \bar{T}_t \bar{X}_r = \tilde{Y}_{r+t} - \bar{T}_t \tilde{Y}_r + \int_r^{r+t} \bar{T}_{r+t-s} \bar{A} \tilde{Y}_s ds$$
$$= (\tilde{Y}_{r+t} - \tilde{Y}_r) + \int_r^{r+t} \bar{T}_{r+t-s} \bar{A} (\tilde{Y}_s - \tilde{Y}_r) ds.$$

Since $\{\tilde{Y}_{r+t} - \tilde{Y}_r : t \geq 0\}$ given \mathcal{F}_r is a process with independent increments and has the same law as $\{\tilde{Y}_t : t \geq 0\}$, Lemma 4.3 implies that

$$\boldsymbol{E}\bigg[\exp\big\{i\langle\bar{X}_{r+t},\bar{a}\rangle_{-}\big\}\,\bigg|\mathcal{F}_{r}\bigg] = \exp\bigg\{i\langle\bar{X}_{r},\bar{T}_{t}^{*}\bar{a}\rangle_{-} - \int_{0}^{t}\tilde{\psi}_{0}(\bar{T}_{s}^{*}\bar{a})ds\bigg\}.$$

Thus $\{\bar{X}_t: t \geq 0\}$ is a Markov process with transition semigroup $(Q_t^{\bar{\mu}})_{t \geq 0}$. The strong Markov property holds since $(Q_t^{\bar{\mu}})_{t \geq 0}$ is Feller. \Box

Now let $\bar{x} = Jx$ for some $x \in H$. In this case, $\bar{X}_t \in JH$ a.s. by Lemma 4.3. Recall that $J: H \to JH \subset \tilde{H} \subset \bar{H}$ and let $X_t = 1_{JH}(\bar{X}_t)J^{-1}(\bar{X}_t)$, where $J^{-1}: JH \to H$ denotes the inverse map of J. Then $\{X_t: t \geq 0\}$ is an OU-process with transition semigroup $(Q_t^\mu)_{t \geq 0}$ and $X_0 = x$. This gives a construction of the OU-process $\{X_t: t \geq 0\}$ from the càdlàg strong Markov process $\{\bar{X}_t: t \geq 0\}$. In general, $\{X_t: t \geq 0\}$ does not have right continuous modification in H. A similar construction in the measure-valued setting has been used in [6] to prove the non-existence of right continuous realization of a general immigration process.

5 Brownian transition semigroups

We have seen that a general SC-semigroup on H can always be extended to a differentiable one in the entrance space \tilde{H} and a càdlàg realization of the corresponding OU-process can always be constructed in an extension \bar{H} of \tilde{H} . In this section, we provided some explicit characterization for the non-negative elements of $\tilde{L}^2(\mathbb{R}^d)$ and $\tilde{L}^2(0,\infty)$ constructed respectively from $L^2(\mathbb{R}^d)$ and $L^2(0,\infty)$. It seems that the explicit characterization for all elements of $\bar{L}^2(\mathbb{R}^d)$ and $\bar{L}^2(0,\infty)$ is much more sophisticated.

We first consider the case where $(T_t)_{t\geq 0}$ is the transition semigroup of the standard Brownian motion on \mathbb{R}^d . Let $\tilde{H}:=\tilde{L}^2(\mathbb{R}^d)$ be defined from $H:=L^2(\mathbb{R}^d)$ and $(T_t)_{t\geq 0}$. Let

$$g_d(s,x) = \frac{1}{(2\pi s)^{d/2}} \exp\{-|x|^2/2s\}, \quad s > 0, x \in \mathbb{R}^d,$$
(5.1)

where $|\cdot|$ denote the Euclidean norm on \mathbb{R}^d , and let $S(\mathbb{R}^d)$ be the set of signed-measures μ on \mathbb{R}^d with total variation measures $\|\mu\|$ satisfying

$$\int_{0}^{l} ds \int_{\mathbb{R}^{d}} \|\mu\|(dx) \int_{\mathbb{R}^{d}} g_{d}(2s, y - x) \|\mu\|(dy) < \infty$$
(5.2)

for some l > 0. Let $S_{+}(\mathbb{R}^{d})$ and $\tilde{L}_{+}^{2}(\mathbb{R}^{d})$ denote respectively the subsets of non-negative elements of $S(\mathbb{R}^{d})$ and $\tilde{L}^{2}(\mathbb{R}^{d})$.

Theorem 5.1 There is a 1-1 correspondence between $\tilde{x} \in \tilde{L}^2_+(\mathbb{R}^d)$ and $\mu \in S_+(\mathbb{R}^d)$ which is given by

$$\tilde{x}(s,\cdot) = \int_{\mathbb{R}^d} g_d(s,\cdot - z)\mu(dz), \quad s > 0.$$
(5.3)

Proof. If $\mu \in S_+(\mathbb{R}^d)$, then (5.3) defines a non-negative entrance path \tilde{x} for $(T_t)_{t\geq 0}$. Since

$$\int_{0}^{l} \|\tilde{x}(s,\cdot)\|^{2} ds = \int_{0}^{l} ds \int_{\mathbb{R}^{d}} \left(\int_{\mathbb{R}^{d}} g_{d}(s,y-z)\mu(dz) \right)^{2} dy$$

$$= \int_{0}^{l} ds \int_{\mathbb{R}^{d}} dy \int_{\mathbb{R}^{d}} g_{d}(s,y-x)\mu(dx) \int_{\mathbb{R}^{d}} g_{s}(y-z)\mu(dz)$$

$$= \int_{0}^{l} ds \int_{\mathbb{R}^{d}} \mu(dx) \int_{\mathbb{R}^{d}} g_{d}(2s,z-x)\mu(dz)$$

$$< \infty,$$

we have $\tilde{x} \in \tilde{L}^2_+(\mathbb{R}^d)$. Conversely, suppose that $\tilde{x} \in \tilde{L}^2_+(\mathbb{R}^d)$ and let $\kappa_s(dy) = \tilde{x}(s,y)dy$. Then $(\kappa_s)_{s>0}$ is a measure-valued entrance law for $(T_t)_{t\geq 0}$. By the property of the Brownian semigroup, there is a measure μ on \mathbb{R}^d such that $\kappa_s = \mu T_s$; see e.g. Dynkin [3, p.80]. Thus $\tilde{x}(s,\cdot)$ has the representation (5.3), and (5.2) follows from (2.2) and the calculations above. \square

When d = 1, we can give a necessary and sufficient condition for (5.2). Observe that for $0 < l \le 1$ we have

$$\int_0^l g_1(2s, y - x) ds < \int_0^1 \frac{1}{2\sqrt{\pi s}} \exp\{-(y - x)^2/4\} ds = \frac{1}{\sqrt{\pi}} \exp\{-(y - x)^2/4\},$$

and for l > 1 we have

$$\int_0^l g_1(2s, y - x) ds > \int_1^l \frac{1}{2\sqrt{\pi l}} \exp\{-(y - x)^2/4\} ds = \frac{l - 1}{2\sqrt{\pi l}} \exp\{-(y - x)^2/4\}.$$

By Lemma 2.1 and the proof of Theorem 5.1, (5.2) holds if and only if

$$\int_{\mathbb{R}} \|\mu\|(dx) \int_{\mathbb{R}} \exp\{-(y-x)^2/4\} \|\mu\|(dy) < \infty.$$
 (5.4)

Theorem 5.1 gives a complete characterization of non-negative elements of $\tilde{L}^2(\mathbb{R}^d)$. By this result, (5.3) also defines an element of $\tilde{L}^2(\mathbb{R}^d)$ for $\mu \in S(\mathbb{R}^d)$. Unfortunately, this representation does not give all elements of $\tilde{L}^2(\mathbb{R}^d)$. To see this, take any sequence $\{a_k\} \subset \mathbb{R}$ and observe that

$$\int_0^\infty e^{-2bs} ds \int_{\mathbb{R}} [g_1(s, y - x) - g_1(s, y)]^2 dy \to 0$$

as $x \to 0$. Then for each $k \ge 1$ there exists $\varepsilon_k \in (0, k^{-2})$ such that

$$a_k^2 \int_0^\infty e^{-2bs} ds \int_{\mathbb{R}} [g_1(s, y - \varepsilon_k) - g_1(s, y)]^2 dy \le 2^{-k}.$$
 (5.5)

Let $x_k = k^{-1}$ and $z_k = k^{-1} + \varepsilon_k$. Then $z_k > x_k > z_{k+1} > x_{k+1} > \dots$ decrease to zero. By (5.5) and the shift invariance of the Lebesgue measure it is easy to see that

$$\tilde{x}_n(s,\cdot) = \sum_{k=1}^n a_k [g_1(s,\cdot - z_k) - g_1(s,\cdot - x_k)], \quad s > 0,$$

defines a Cauchy sequence $\{\tilde{x}_n\}\subset \tilde{L}^2(I\!\! R)$ with limit $\tilde{x}\in \tilde{L}^2(I\!\! R)$ given by

$$\tilde{x}(s,\cdot) = \sum_{k=1}^{\infty} a_k [g_1(s,\cdot - z_k) - g_1(s,\cdot - x_k)], \quad s > 0.$$
(5.6)

To represent this element in the form of (5.3) we need to let

$$\mu = \sum_{k=1}^{\infty} a_k \delta_{z_k} - \sum_{k=1}^{\infty} a_k \delta_{x_k},$$

which is clearly not belonging to $S(\mathbb{R})$ in general.

Now we consider the case where $(T_t)_{t\geq 0}$ is the transition semigroup of the absorbing barrier Brownian motion in $D=(0,\infty)$. Let $\gamma(dy)=(1-e^{-y^2})dy$ and let $\tilde{L}^2(D,\gamma)$ be defined from $L^2(D,\gamma)$ and $(T_t)_{t\geq 0}$. Let

$$p_s(x,y) = g_1(s,y-x) - g_1(s,y+x), \quad s, x, y > 0,$$
(5.7)

and let

$$k_s(y) = 2^{-1} (d/dx) p_s(x,y)|_{x=0^+} = y g_1(s,y)/s, \quad s,y > 0.$$
 (5.8)

Let $S(D,\gamma)$ be the set of signed-measures μ on D with total variation measures $|\mu|$ satisfying

$$\int_0^l ds \int_D \left(\int_D p_s(x, y) |\mu|(dx) \right)^2 \gamma(dy) < \infty \tag{5.9}$$

for some l > 0. Let $S_+(D, \gamma)$ and $\tilde{L}_+^2(D, \gamma)$ denote respectively the subsets of non-negative elements of $S(D, \gamma)$ and $\tilde{L}^2(D, \gamma)$.

Theorem 5.2 There is a 1-1 correspondence between $\tilde{x} \in \tilde{L}^2_+(D,\gamma)$ and $(a,\mu) \in [0,\infty) \times S_+(D,\gamma)$ which is given by

$$\tilde{x}(s,\cdot) = ak_s(\cdot) + \int_D p_s(z,\cdot)\mu(dz), \quad s > 0.$$
(5.10)

Proof. If $(a, \mu) \in [0, \infty) \times S_+(D, \gamma)$, then (5.10) defines an entrance path \tilde{x} for $(T_t)_{t>0}$. Since

$$\int_0^l k_s(y)^2 ds \le \int_0^\infty \frac{y^2}{2\pi s^3} e^{-y^2/s} ds = \frac{1}{2\pi y^2},$$

we have

$$\int_{0}^{l} \|\tilde{x}(s,\cdot)\|^{2} ds = \int_{0}^{l} ds \int_{D} \left(ak_{s}(y) + \int_{D} p_{s}(z,y)\mu(dz)\right)^{2} \gamma(dy)
\leq 2a^{2} \int_{0}^{l} ds \int_{D} k_{s}(y)^{2} \gamma(dy)
+2 \int_{0}^{l} ds \int_{D} \left(\int_{D} p_{s}(z,y)\mu(dz)\right)^{2} \gamma(dy)
< \infty,$$

that is, $\tilde{x} \in \tilde{L}^2_+(D,\gamma)$. Conversely, suppose that $\tilde{x} \in \tilde{L}^2_+(I\!\!R)$ and let $\kappa_s(dy) = \tilde{x}(s,y)dy$. Then $(\kappa_s)_{s>0}$ is a measure-valued entrance law for $(T_t)_{t\geq 0}$. By the property of the absorbing barrier Brownian motion, there is a constant $a\geq 0$ and a measure μ on D such that (5.10) holds; see e.g. [9, Lemma 1.1]. Since

$$\int_0^l ds \int_D \left(\int_D p_s(z, y) \mu(dz) \right)^2 \gamma(dy) \le \int_0^l \|\tilde{x}(s, \cdot)\|^2 ds, <\infty.$$

we have $\mu \in S(D, \gamma)$. \square

By the general results of section 4, an OU-process associated with the absorbing barrier Brownian motion in $D=(0,\infty)$ always has càdlàg realization in $\bar{L}^2(D,\gamma)\supset \tilde{L}^2(D,\gamma)$ defined from $L^2(D,\gamma)$. It was observed in [?] that in a special case the process also has càdlàg realization in $S(D,\gamma)$.

Acknowledgement We thank Klaus Fleischmann and a referee for their careful reading of the manuscript and helpful comments.

References

- [1] Bogachev, V.I., Röckner, M. and Schmuland, B., Generalized Mehler semigroups and applications, Probab. Th. Rel. Fields **105** (1996), 193-225.
- [2] Dawson, D.A., Li, Z.H., Schmuland, B. and Sun, W., Generalized Mehler semigroups and catalytic branching processes with immigration, Potential Anal. 21, 75-97.
- [3] Dynkin, E.B.: Three classes of infinite dimensional diffusion processes, J. Funct. Anal. 86 (1989), 75-110.

- [4] Fuhrman, M. and Röckner, M., Generalized Mehler semigroups: The non-Gaussian case, Potential Anal. 12 (2000), 1-47.
- [5] Li, Z.H., Convolution semigroups associated with measure-valued branching processes, Chinese Science Bulletin (Chinese Edition) 40 (1995), 2018-2021 / (English Edition) 41 (1996), 276-280.
- [6] Li, Z.H., Immigration structures associated with Dawson-Watanabe superprocesses, Stochastic Process. Appl. **62** (1996), 73-86.
- [7] Li, Z.H., Immigration processes associated with branching particle systems, Adv. Appl. Probab. **30** (1998), 657-675.
- [8] Li, Z.H., Skew convolution semigroups and related immigration processes, Theory Probab. Appl. 46 (2002), 274-296.
- [9] Li, Z.H. and Shiga T., Measure-valued branching diffusions: immigrations, excursions and limit theorems, J. Math. Kyoto Univ. **35** (1995), 233-274.
- [10] Linde, W., Probability in Banach Spaces Stable and Infinitely Divisible Distributions, Wiley, New York (1986).
- [11] van Neerven, J. M. A. M., Continuity and representation of Gaussian Mehler semigroups, Potential Anal. 13 (2000), 199-211.
- [12] Schmuland, B. and Sun W., On the equation $\mu_{t+s} = \mu_s * T_s \mu_t$, Statist. Probab. Letters, **52** (2001), 183-188.
- [13] Sharpe, M.J., General Theory of Markov Processes, Academic Press, New York (1988).