AMENDMENTS TO THE SPECIFICATION

· Please amend the specification as follows:

Please replace the paragraph appearing at page 3, line 15 to page 4, line 8, with the following amended paragraph:

The present invention thus provides a phospholipid derivative represented by the following formula (I):

$$R^{1}$$
-CO-CH₂

$$R^{2}$$
-CO-CH
$$Q$$

$$Q$$

$$CH_{2}OPOCH_{2}CH_{2}NHC(CH_{2})_{a}C_{b}O(A^{1}O)_{m}(A^{2}O)_{n}(A^{3}O)_{q}R^{3}$$

$$OX$$

wherein R¹CO and R²CO independently represent an acyl group having 8 to 22 carbon atoms; R³ represents hydrogen atom, or a hydrocarbon group having 1 to 4 carbon atoms; symbol "a" represents an integer of 0 to 4; symbol "b" represents 0 or 1, provided that when a is 0, b is 0; X represents hydrogen atom, an alkali metal atom, an ammonium, or an organic ammonium; A¹O and A³O independently represent an oxyalkylene group containing oxyethylene group and having 2 to 4 carbon atoms, wherein the ratio of the oxyethylene group to the oxyalkylene group having 2 to 4 carbon atoms in A¹O and A³O is 0.5 or larger in terms of a weight ratio; A²O represents an oxyalkylene group having 3

{P28519 00316306.DOC}

or 4 carbon atoms; symbols "m" and "q" independently represent an average molar number of added oxyalkylene groups having 2 to 4 carbon atoms; and symbol "n" represent an average molar number of added oxyalkylene groups having 3 or 4 carbon atoms; provided that m, n, and q satisfy the following conditions: $5 \le m \le 600$, $1 \le n \le 45$, $0 \le q \le 200$, $10 \le m+n+q \le 600$, $0.04 \le n/(m+n+q)$, and $q/(m+n+q) \le 0.8$.

Please replace the paragraph appearing at page 4, line 9 to page 4, line 23, with the following amended paragraph:

From the second aspect, the present invention provides a phospholipid derivative represented by the following formula (II):

$$R^{1}$$
-CO·CH₂

$$R^{2}$$
-CO-CH
$$Q Q Q$$

$$CH_{2}OPOCH_{2}CH_{2}NHC(CH_{2})_{a}C_{b}O\{(EO)_{s}I(AO)_{t}\}R^{3}$$

$$OX$$

$$R^{1}$$
-CO-CH₂
 R^{2} -CO-CH
 R^{2} -CO-CH
 $CH_{2}OPOCH_{2}CH_{2}NHC(CH_{2})_{a}$
 $CH_{2}OPOCH_{2}CH_{2}NHC(CH_{2})_{a}$
 $CH_{2}OPOCH_{2}CH_{2}NHC(CH_{2})_{a}$

wherein R¹CO and R²CO independently represent an acyl group having 8 to 22 carbon atoms; R³ represents hydrogen atom, or a hydrocarbon group having 1 to 4 carbon atoms; symbol "a" represents an integer of 0 to 4; symbol "b" represents 0 or 1, provided that when a is 0, b is 0; X represents hydrogen atom, an alkali metal atom, an ammonium, or

an organic ammonium; EO represents oxyethylene group; AO represents an oxyalkylene group having 3 or 4 carbon atoms; $\{(EO)s/(AO)t\}$ represents a group consisting of randomly bonded oxyethylene groups and oxyalkylene groups having 3 or 4 carbon atoms, wherein the ratio of the oxyethylene groups to the oxyalkylene groups having 2 to 4 carbon atoms in $\{(EO)s/(AO)t\}$ is 0.5 to 0.95 in terms of a weight ratio; symbol "s" represents an average molar number of added oxyethylene groups; and symbol "t" represent an average molar number of added oxyalkylene groups having 3 or 4 carbon atoms; provided that s and t satisfy the following conditions: $5 \le s \le 500$, $0 < t \le 100$, and $6 \le (s+t) \le 500$.