Recipes for multilevel imputation

Stef van Buuren (Utrecht University)

April 9, 2019

Main question

Can we use MICE-algorithm for multilevel data, and if so, how?

Stochastic regression imputation

Missing data patterns, multivariate

Three general strategies

- Monotone data imputation
- Joint modeling
- ► Fully conditional specification (FCS)

Imputation by joint modelling - next iteration

Imputation by joint modelling - next iteration

Imputation by fully conditional specification - next iteration

Imputation by fully conditional specification - next iteration

Which predictors?

- 1. Include all variables that appear in the complete-data model
- 2. Include variables related to the nonresponse
- 3. Include variables that explain a considerable amount of variance
- 4. Remove from variables selected in steps 2 and 3 those variables that have too many missing values within the subgroup of incomplete cases

Does this recipe also apply to multilevel data?

brandsma data

- Brandsma and Knuver, Int J Ed Res, 1989.
- Extensively discussed in Snijders and Bosker (2012), 2nd ed.
- ▶ 4106 pupils, 216 schools, about 4% missing values

brandsma data subset

```
library(mice)
d <- brandsma[, c("sch", "lpo", "sex", "den")]
head(d, 2)</pre>
```

```
## sch lpo sex den
## 1 1 NA 1 1
## 2 1 50 1 1
```

- \triangleright sch: School number, cluster variable, C=216;
- ▶ lpo: Language test post, outcome at pupil level;
- sex: Sex of pupil, predictor at pupil level (0-1);
- den: School denomination, predictor at school level (1-4).

Model of scientific interest

Predict 1po from the

- ▶ level-1 predictor sex
- ▶ level-2 predictor den

Level notation - Bryk and Raudenbush (1992)

$$1po_{ic} = \beta_{0c} + \beta_{1c}sex_{ic} + \epsilon_{ic}$$
 (1)

$$\beta_{0c} = \gamma_{00} + \gamma_{01} \text{den}_c + u_{0c} \tag{2}$$

$$\beta_{1c} = \gamma_{10} \tag{3}$$

- Ipo_{ic} is the test score of pupil i in school c
- sex_{ic} is the sex of pupil i in school c
- ightharpoonup den_c is the religious denomination of school c
- $ightharpoonup eta_{0c}$ is a random intercept that varies by cluster
- \triangleright β_{1c} is a sex effect, assumed to be the same across schools.
- ho $\epsilon_{ic} \sim N(0, \sigma_{\epsilon}^2)$ is the within-cluster random residual at the pupil level

Where are the missings?

In single level data, missingness may be in the outcome and/or in the predictors $% \left(1\right) =\left(1\right) \left(1\right)$

With multilevel data, missingness may be in:

- 1. the outcome variable;
- 2. the level-1 predictors;
- 3. the level-2 predictors;
- 4. the class variable.

Univariate missing, level-1 outcome

Univariate missing, level-1 predictor, sporadically missing

Univariate missing, level-1 predictor, systematically missing

Univariate missing, level-2 predictor

Multivariate missing

Nine challenges in multilevel imputation (1 of 3)

- 1. For small clusters the within-cluster mean and variance are unreliable estimates, so the choice of the prior distribution becomes critical.
- 2. For a small number of clusters, it is difficult to estimate the between-cluster variance of the random effects.
- In applications with systematically missing data, there are no observed values in the cluster, so the cluster location cannot be estimated.

Nine challenges in multilevel imputation (2 of 3)

- 4. The variation of the random slopes can be large, and some methods have difficulty handling this.
- 5. The error variance σ_{ϵ}^2 may differ across clusters (heteroscedasticity), whereas the standard model assumes equal error variances.
- 6. The residual error distributions can be far from normal, e.g., for categorical data.

Nine challenges in multilevel imputation (3 of 3)

- 7. The model may contain aggregates of the level-1 variables, such as cluster means, which need to be taken in account during imputation.
- 8. The model may contain interactions, or other nonlinear terms.
- 9. It may not be possible to fit the multilevel model, or there are convergence problems.

See Van Buuren (2018)

Fully conditional specification

$$1\dot{p}o_{ic} \sim N(\beta_0 + \beta_1 den_c + \beta_2 sex_{ic} + u_{0c}, \sigma_{\epsilon}^2)$$
 (4)

$$\dot{\text{sex}}_{ic} \sim N(\beta_0 + \beta_1 \text{den}_c + \beta_2 \text{lpo}_{ic} + u_{0c}, \sigma_{\epsilon}^2)$$
 (5)

Theoretical problem with FCS

Conditional expectation of sex_{ic} in a random effects model depends on

- ▶ lpo_{ic},
- ightharpoonup $\overline{1po}_i$, the mean of cluster i, and
- \triangleright n_i , the size of cluster i.

Resche-Rigon & White (2018) suggest the imputation model

- ▶ should incorporate the cluster means of level-1 predictors
- be heteroscedastic if cluster sizes vary

Univariate continuous multilevel imputation in mice

Table 7.2: Overview of methods to perform univariate multilevel imputation of continuous data. Each of the methods is available as a function called <code>mice.impute.[method]</code> in the specified R package.

Package	Method	Description
Continuous		
mice	2l.lmer	normal, lmer
mice	2l.pan	normal, pan
miceadds	21.continuous	normal, lmer , blme
micemd	21.jomo	normal, jomo
micemd	2l.glm.norm	normal, lmer
mice	21.norm	normal, heteroscedastic
micemd	21.2stage.norm	normal, heteroscedastic
Generic		
miceadds	21.pmm	pmm, homoscedastic, lmer
micemd	2l.2stage.pmm	pmm, heteroscedastic, mvmeta

Univariate binary and count multilevel imputation in mice

Table 7.3: Methods to perform univariate multilevel imputation of missing discrete outcomes. Each of the methods is available as a function called <code>mice.impute.[method]</code> in the specified R package.

Package	Method	Description
Binary		
mice	2l.bin	logistic, glmer
miceadds	21.binary	logistic, glmer
micemd	21.2stage.bin	logistic, mvmeta
micemd	2l.glm.bin	logistic, glmer
Count		
micemd	21.2stage.pois	Poisson, mvmeta
micemd	21.glm.pois	Poisson, glmer
countimp	2l.poisson	Poisson, glmmPQL
countimp	21.nb2	negative binomial, glmmadmb
countimp	2l.zihnb	zero-infl neg bin, glmmadmb

Univariate level-2 imputation in mice

Table 7.4: Overview of mice.impute.[method] functions to perform univariate multilevel imputation.

Package	Method	Description
Level-2		
mice	2lonly.mean	level-2 manifest class mean
miceadds	21.groupmean	level-2 manifest class mean
miceadds	2l.latentgroupmean	level-2 latent class mean
mice	2lonly.norm	level-2 class normal
mice	2lonly.pmm	level-2 class pmm
miceadds	2lonly.function	level-2 class, generic
miceadds	ml.lmer	≥ 2 levels, generic

Figure 3

General imputation/modeling sequence - START SIMPLE

- 1. Pick a simple complete-data model
- 2. Create imputations using an imputation template
- 3. Check the imputes (convergence/plausibility)
- 4. Estimate parameters
- 5. Make complete-data model more realistic, go to 1.

See https://stefvanbuuren.name/fimd/sec-mlguidelines.html

Seven imputation templates, increasing complexity

- 1. Intercept-only model, missing outcomes
- 2. Random intercepts, missing level-1 predictor
- 3. Random intercepts, contextual model
- 4. Random intercepts, missing level-2 predictor
- 5. Random intercepts, interactions
- 6. Random slopes, missing outcomes and predictors
- 7. Random slopes, interactions

1 Intercept-only model, missing outcomes (model)

$$lpo_{ic} = \beta_{0c} + \epsilon_{ic} \tag{6}$$

$$\beta_{0c} = \gamma_{00} + u_{0c} \tag{7}$$

1 Intercept-only model, missing outcomes (imputation)

1 Intercept-only model, missing outcomes (analysis)

```
library(lme4)
## Loading required package: Matrix
fit <- with(imp, lmer(lpo ~ (1 | sch), REML = FALSE))</pre>
summary(pool(fit))
##
              estimate std.error statistic df p.value
## (Intercept) 40.9 0.322 127 3368
```

1 Intercept-only model, missing outcomes (variances)

```
library(mitml)
testEstimates(as.mitml.result(fit), var.comp = TRUE)$var.com
```

```
## Estimate
## Intercept~~Intercept|sch 18.021
## Residual~~Residual 63.306
## ICC|sch 0.222
```

2 Random intercepts, missing level-1 (model)

$$1po_{ic} = \beta_{0c} + \beta_{1c}iqv_{ic} + \epsilon_{ic}$$
 (8)

$$\beta_{0c} = \gamma_{00} + u_{0c} \tag{9}$$

$$\beta_{1c} = \gamma_{10} \tag{10}$$

Missing values in both 1po and iqv

2 Random intercepts, missing level-1 (imputation)

- ▶ Impute 1po from iqv and the cluster means of iqv
- ▶ Impute iqv from lpo and the cluster means of lpo
- Alternative: Use mitml::panImpute() or mitml::jomoImpute()

2 Random intercepts, missing level-1 (predictorMatrix)

pred

```
## sch lpo iqv
## sch 0 1 1
## lpo -2 0 3
## iqv -2 3 0
```

2 Random intercepts, missing level-1 (analysis)

```
fit <- with(imp, lmer(lpo ~ iqv + (1 | sch), REML = FALSE;
summary(pool(fit))

## estimate std.error statistic df p.value
## (Intercept) 40.96 0.2378 172 3337 0</pre>
```

```
testEstimates(as.mitml.result(fit), var.comp = TRUE)$var.com
```

2.52 0.0525

```
## Estimate
## Intercept~~Intercept|sch 9.479
## Residual~~Residual 40.862
## ICC|sch 0.188
```

iqv

48 2127

4 Random intercepts, missing level-2 predictor (model)

$$lpo_{ic} = \beta_{0c} + \beta_{1c}iqv_{ic} + \epsilon_{ic}$$
 (11)

$$\beta_{0c} = \gamma_{00} + \gamma_{01} \text{den}_c + u_{0c} \tag{12}$$

$$\beta_{1c} = \gamma_{10} \tag{13}$$

- Missing values in lpo, iqv and den
- For den the imputation model uses school level aggregates

4 Random intercepts, missing level-2 (imputation)

```
d <- brandsma[, c("sch", "lpo", "iqv", "den")]</pre>
meth <- make.method(d)
meth[c("lpo", "iqv", "den")] <- c("21.pmm", "21.pmm",
                                      "2lonly.pmm")
pred <- make.predictorMatrix(d)</pre>
pred["lpo", ] \leftarrow c(-2, 0, 3, 1)
pred["iqv", ] \leftarrow c(-2, 3, 0, 1)
pred["den", ] \leftarrow c(-2, 1, 1, 0)
imp <- mice(d, pred = pred, meth = meth, seed = 418,
             m = 10, print = FALSE)
```

4 Random intercepts, missing level-2 (predictorMatrix)

pred

```
## sch lpo iqv den

## sch 0 1 1 1

## lpo -2 0 3 1

## iqv -2 3 0 1

## den -2 1 1 0
```

4 Random intercepts, missing level-2 (density)

4 Random intercepts, missing level-2 (analysis)

```
estimate std.error statistic
##
                                                      p.va
   (Intercept)
                     40.071
                               0.4549
                                          88.09
                                                 187 0.0000
## iqv
                      2.516
                               0.0532
                                          47.34 1242 0.000
## as.factor(den)2
                      2.041
                               0.5925
                                           3.45
                                                 430 0.0000
## as.factor(den)3
                               0.6519
                      0.234
                                           0.36
                                                 285 0.7194
## as.factor(den)4
                      1.843
                               1.1642
                                           1.58 1041 0.113
```

##		Estimate
##	<pre>Intercept~~Intercept sch</pre>	8.621
##	Residual~~Residual	40.761
##	ICC sch	0.175

Recipe: Missing level-1

Recipe for a level-1 target

- 1. Define the most general analytic model
- 2. Select a 21 method that imputes close to the data
- 3. Include all level-1 variables
- 4. Include the disaggregated cluster means of level-1 variables
- 5. Include all level-1 interactions implied by analytic model
- 6. Include all level-2 predictors
- 7. Include all level-2 interactions implied by analytic model
- 8. Include all cross-level interactions implied by analytic model
- 9. Include predictors related to the missingness and the target
- 10. Exclude any terms involving the target

Recipe: Missing level-2

Recipe for a level-2 target

- 1. Define the most general analytic model
- 2. Select a 21only method that imputes close to the data
- 3. Include the cluster means of all level-1 variables
- 4. Include the cluster means of all level-1 interactions
- 5. Include all level-2 predictors
- 6. Include all interactions of level-2 variables
- 7. Include predictors related to the missingness and target
- 8. Exclude any terms involving the target

Conclusion

Can we use MICE-algorithm for multilevel data, and if so, how?

- ► Hot spot of current research
- Multilevel imputation: more complex, but doable
- Start simple, take small steps
- Build upon templates and modeling recipes
- ► Study https://stefvanbuuren.name/fimd/sec-mlguidelines.html
- Gain confidence at each step
- Start playing around...