最优化第一次上机作业

黄晃数院 1701210098

2017年11月13日

1 选题

分别选择了三个函数:Extend Rosenbrock,Discrete boundary value,Wood.

2 算法

2.1 带步长Newton方法

直接使用 $d_k = -G_k g_k$ 作为下降方向

2.2 稳定Newton方法

 G_k **充分正定** 先使用修正的cholesky分解得 $\bar{G}_k = G_k + E_k = L_k D_k L_k^T$,由于G充分正定时,有 $\bar{G}_k = G_k$,所以当 $E_k = 0$ 时,使用 $d_k = -G_k g_k$ 作为下降方向.利用LTL分解,只需解上三角,下三角方程.

负曲率方向 否则,计算 $x_j = d_j - e_j$,记 $x_t = max(x_j)$.若有 $x_t \ge 0$,则依旧认为 G_k 是正定的.否则解方程 $L_k^T = e_t$ 得负曲率方向. 有了负曲率方向后,根据 $d^T g_k$ 判断下降方向

下降方向

- $d^T g_k = 0$ 时,d是下降方向.
- $d^T g_k < 0$ 时,d是下降方向.
- $d^T g_k > 0$ 时,-d是下降方向.

3 数值结果 2

2.3 二阶armijo准则More-Sorensen搜索方法

$$x_{k+1} = x_k + \nu^{2i} s_k + \nu^i d_k$$

$$f_{k+1} \le f_k + \rho \nu^{2i} (g_k^T s_k + \frac{1}{2} d_k^T G_k d_k)$$

下降对的选取

- x是不定点时,s = -g, d = e, $e \not\in G$ 的负特征
- x不是不定点时,s = -g, d = 0

3 数值结果

使用0.618方法作为精确搜索方法,以armijo准则作为非精确搜索.对于n, m可变的两个问题,我们选择n = m = 2, 4, 8, 16, 32.对于Wood问题,n = 4, m = 6.

3.1 Newton方法的比较

表1,3,5分别是带步长Newton方法对三个问题的计算结果,表2,4,6是稳定Newton方法的计算结果.此时搜索方法均选择为精确搜索.

- 对于同一问题,Newton方法的收敛结果不随n的变化而产生较大变化.即 迭代次数,函数调用次数不随n变化.而函数值基本只是随着问题规模m的 倍增而倍增.这一数值表现可能是因为选取的两个函数都属于较特殊的 函数,即 r_i 与 r_j 相关性不大,尤其是ExtendRosenbrock函数,可以视作 $\frac{n}{2}$ 个Rosenbrock函数的简单和.
- n=2时,稳定Newton方法和Newton方法表现一致,说明n=2时两个问题 在迭代过程中的Hessen矩阵都充分正定.
- 对于同一问题,可见稳定Newton方法的表现不如带步长Newton方法,具体体现在迭代次数和函数调用次数的巨大差别,以及更低的精度.

3 数值结果 3

n	f	X	ite	Feva	epi
2	5.124e-13	[0.999; 0.999]	12	1079	-5.12e-13
$\parallel 4$	1.024 e-12	[0.999; 0.999; 0.999; 0.999]	12	1079	-1.024e-12
8	2.049e-12	[1.000;1.000;;1.000;1.000]	12	1079	-2.049e-12
16	4.099e-12	[0.999;1.000;;0.999;0.999]	12	1079	-4.099e-12
31	8.199e-12	[1.000;1.000;;0.999;0.999]	12	1079	-8.199e-12

表 1: ExRosenbrock Newton

n	f	X	ite	Feva	epi
2	5.124e-13	[1.000; 1.000]	12	1079	-5.12e-13
4	8.738e-06	[1.000; 0.999; 0.997; 0.994]	7725	615745	-9.99e-09
8	1.0792e-05	[1.000;1.000;;0.999;0.998]	9987	796051	-9.99e-09
16	1.054e-05	[1.000;1.000;;0.999;0.999]	11158	888617	-9.99e-09
32	1.095e-05	[1.000;1.000;;0.999;0.999]	12031	957265	-9.99e-09

表 2: ExRosenbrock table Newton

n	f	X	ite	Feva	epi
2	1.059e-12	[-0.006;-0.011]	2	245	-1.059e-12
4	2.032e-12	[-0.004;-0.008;-0.011;-0.001]	2	245	-2.032e-12
8	9.838e-13	[-0.003;-0.001;;-0.016;-0.008]	2	245	-9.831e-13
16	2.663e-13	[-0.001;-0.003;;-0.008;-0.005]	2	245	-2.663e-13
32	5.024e-14	[-0.001;-0.001;;-0.005;-0.002]	2	245	-5.024e-14

表 3: Discrete boundary Newton

n	f	X	ite	Feva	epi
2	1.06e-12	[-0.006; -0.011]	2	245	-1.059e-12
4	3.433e-09	[-0.004; -0.008; -0.011; -0.001]	11	1009	-2.622e-09
8	7.827e-08	[-0.003;-0.005;;-0.012;-0.008]	83	7057	-9.525e-09
16	6.103e-06	[-0.006;-0.011;;-0.017;-0.009]	2857	228651	-9.984e-09
32	8.359e-05	[-0.023;-0.047;;-0.051;-0.026]	358	28731	-9.972e-09

表 4: Discrete boundary Stable Newton

3 数值结果 4

n	f	X	ite	Feva	epi
4	7.01e-10	[1.0, 1.0, 1.0, 1.0]	26	1985	-6.98e-10

表 5: Wood Newton

n	f	X	ite	Feva	epi
4	3.031e-6	$[\ 0.999,\ 0.998,\ 1.0,\ 1.0]$	43612	2881157	-3.833e-9

表 6: Wood StableNewton

3.2 More-Sorensen方法结果

应用二阶 armijo准则的曲线搜索方法受参数 ρ , ν 影响较大,仅在某些合适的参数下才有收敛的结果,下面表7,8,9列出了三个问题在 $\rho=0.01,\nu=0.9$ 时的计算结果.

- More-Sorensen方法计算结果在计算精度方面不如之前的两种Newton方法.
- More-Sorensen方法的迭代次数以及函数调用介于带步长Newton方法和稳定Newton方法之间。
- 值得注意的是,不同于稳定Newton方法中迭代步数随着n的增大而增大,More-Sorensen方法的迭代次数与n的增大没有明显关系.同样的,解的精度方面也看不出与n有明显关系.所以可以认为More-sorensen方法是一个对n的改变有较好适应性的方法,结果不会因为n的增大而被破坏.

n	f	X	ite	Feva	epi
2	5.99e-5	[1.01, 1.02]	3357	99933	-9.241e-9
$\parallel 4$	6.076e-5	$[\ 1.0,\ 1.01,\ 1.01,\ 1.01]$	4153	123810	-9.126e-9
8	5.419e-5	$[\ 1.0,\ 1.01,\ 1.0,\ 1.01]$	6197	186242	-9.883e-9
16	4.886e-5	$[\ 1.0,\ 1.01,\ 1.0,\ 1.0]$	7421	224057	-7.761e-9
31	5.922e-5	$[\ 1.0,\ 1.0,\ 1.0,\ 1.0]$	8837	267689	-9.769e-9

表 7: ExRosenbrock More-Sorensen

4 结论 5

n	f	x	ite	Feva	epi
2	2.966e-8	[-0.00656, -0.0111]	37	398	-9.507e-9
$\parallel 4$	8.852e-7	[-0.0052, -0.0101, -0.013, -0.0116]	212	2604	-8.201e-9
8	2.916e-5	[-0.00962, -0.0183, -0.0245, -0.0147]	1203	15488	-8.496e-9
16	7.958e-5	[-0.0175, -0.0345, -0.039, -0.0205]	6670	87183	-9.696e-9
31	9.436e-5	$[\ \text{-}0.0275,\ \text{-}0.0545,\ \text{-}0.055,\ \text{-}0.0279]$	99	1301	-8.827e-9

表 8: Discrete boundary More-Sorensen

n	f	X	ite	Feva	epi
4	6.24 e-5	[1.0, 1.01, 0.996, 0.992]	6752	204587	-9.779e-9

表 9: Discrete boundary More-Sorensen

4 结论

通过上面的数值结果以及对结果的比较,我们可以看到,对于所选择的三个问题,表现最优秀的是基本的带步长的Newton方法.造成这一结果的原因可能有以下几个:

- 所选择的问题都是具有良好性质的问题,迭代中每个迭代步的hessen矩阵都正定或者说接近正定的.这一点可以从n=2时,修正Newton方法和基本Newton方法的一致表现得到印证.
- 修正Newton方法以及More-Sorensen方法中有可选择的参数,所以具体的数值表现和参数的选择相关.其中Newton的参数delta太小时修正矩阵不够正定,delta太大时又和原Hessen矩阵距离太远.
- 而More-Sorensen方法中除了二阶armijo准则的参数影响结果外,下降对的选择也会产生巨大影响,即使是对确定的一对下降对的方向(s,d),若放大s,则在搜索准则中第一项起更多作用,相反的,若放大d,则第二项起更多作用.鉴于这点,尝试调整系数以使得两方面影响较为均衡,比如使 $g_k^T s_k = \frac{1}{2} d_k^T G_k d_k$,但是均没有得到可观改善.
- 修正Newton以及More-Sorensen方法若要表现的更加优秀,不可避免的需要对各个参数进行更多的尝试.