Automatic identification of landmarks by shape recognition

November 27, 2015

Introduction

- The implementation based on "Automatic identification of landmarks in digital images", Palaniswamy, Sasirekha, Neil A. Thacker, and Christian Peter Klingenberg
- It includes four steps:

Method - Edge segmentation

Purpose:

- Extract the features (edge) from images
- Get the approximate segment lines

Method:

- Indicate the threshold value by analysis histogram of image
- Canny algorithm
- Break edge algorithm¹

- Threshold value: indicated by histogram analysis
- Canny ratio: 1:3 (lower:upper)
- Minimum distance to stop break edge: 3 pixels

¹Thacker, Neil A., P. A. Riocreux, and R. B. Yates. "Assessing the completeness properties of pairwise geometric histograms." Image and Vision Computing 13.5 (1995): 423-429.

Method - Edge segmentation

Method - Pairwise geometric histogram

Purpose: detecting the present of scene image in model image

- Method²: Construct the **local PGH** for each line
 - Construct the shape PGH, it is a set of local PGH
 - Matching shape's PGH by Bhattacharyya metric

PGH information: angle between two lines and perpendicular distance from two endpoints of scene line to reference line.

Parameters: to build the PGH matrix (used to compute the metric)

- Rows: 90, 180, 360, 720 presented for angle accuracy
- Columns: 250, 500, 1000 presented for distance accuracy

²Thacker, Neil A., P. A. Riocreux, and R. B. Yates. "Assessing the completeness properties of pairwise geometric histograms." Image and Vision Computing 13.5 (1995): 423-429. 4 D > 4 A > 4 B > 4 B > B

Method - Probabilistic Hough Transform

- Purpose:
- Determine the presence and location of model image in scene image
- Estimate the landmarks in the scene image
- Method:
- Build the reference table
- Find the pair of scene lines have the best "vote" with pair of model lines
- Estimate the "reference point" in scene image
- Estimate the landmarks

Method - PHT parameters (Building the reference table)

For each closet pair of model lines, compute the perpendicular distance and angle from the line to reference point and save into table

Reference point: an arbitrary point in model image (in program, reference point is center point of model image)

Example:

Pair lines	space 1	space 2
(<mark>I1,I2</mark>)	(30;110.33)	(23.5; 855)
(I1,I3)	(15; 121.5)	(5.5; 200)

- Minimum length of each line: 60 pixels
- Minimum angle between two lines: 15 degrees
- Distance from an endpoint of a line to another line: 5 pixels

Method - PHT Parameters (Find the best vote of scene)

The process to find the best vote are followed:

- Create an accumulator
- For each **closet** pair of scene lines, find the pair of model line reasonable agreement about the **position**, **orientation** and **scale**. Get the information about angle and distance
- Increase the value in accumulator at relative position
- Keep the position where has the maximum value.
- Keep the pair of scene line and the entry in reference table

- Maximum difference angle: 1 degree
- Maximum difference scale: 1 pixel
- Maximum difference position: 2 pixels

Method - Probabilistic Hough Transform

Method - Template matching

Purpose: Refine the estimated landmarks on the scene image

Method:

- On model image: For each landmark, create a bounding box with size "templSize" and landmark is center point of box
- Rotate scene image to match with model
- On scene image: For each estimated landmark, create a bounding box with size "imageSize" and landmark is center point of box
- Sliding t1 on t2 and find the the best match (cross-correlation)

- Template box size: 400px (templSize)
- Image box size: 1400px (imageSize)

Method - Template matching

Result Examination:

Dataset includes 291 images.

Intel(R) Core(TM) 2 Duo CPU T8100 2.1GHz, 2 GB of RAM

No Of images	Segmentation(second)	Estimation(second)
1	0.844	31.4245
291	571.576	13000.9131

Intel(R) Core(TM) i7-4790 CPU 3.6GHz, 16 GB of RAM.

No Of images	Segmentation(second)	Estimation(second)
1	0.27782	10.4392
291	171.589	4665.79

Result

- Dataset: Mandibule droite and mandibule gauche
- Method includes 4 steps. The result of each step can effect to next step.
- This method can be used to identify the landmarks. But, in some cases, the estimated landmarks are not close with manual landmarks.

Thank you!