Question Number	Answer		Mark
17(a)	In the fusion process mass decreases	(1)	
	So energy is released according to $\Delta E = c^2 \Delta m$ Or energy is released to conserve mass-energy	(1)	2
	Or binding energy per nucleon increases		-
17(b)	Max 4		
	Very high temperature so that the nuclei have sufficient kinetic energy	(1)	
	Nuclei must overcome electrostatic repulsion/forces [Allow a reference to overcome repulsion/forces due to positively charged nuclei]	(1)	
	So that the nuclei come close enough to fuse	(1)	
	Sufficient density so that the collision rate (between nuclei) is high (enough)	(1)	4
	Sufficient collision rate to maintain the (very high) temperature	(1)	
17(c)	Values of B.E./nucleon read from graph [min 2 values]	(1)	
	Calculation of binding energies	(1)	
	Energy released = 17.4 (MeV) [Allow 17.3 MeV – 17.5 MeV]	(1)	3
	Example of calculation		
	B.E./nucleon of ${}^{2}H = 1.1 \text{ MeV}$		
	B.E./nucleon of ${}^{3}H = 2.8 \text{ MeV}$		
	B.E./nucleon of $4He = 7.0 \text{ MeV}$		
	So energy released = $4 \times 7.0 \text{ MeV} - (2 \times 1.1 \text{ MeV} + 3 \times 2.8 \text{ MeV}) = 17.4 \text{ MeV}$		
	Total for question 17		9