1 La méthode de Levenberg-Marquardt

FIGURE 1 - Courbes isovaleurs de la fonction de Rosenbrock

Cette méthode permet de déterminer le minimum d'une fonction $f:\mathbb{R}^n \to \mathbb{R}$ s'écrivant sous la forme

$$f(x) = ||g(x)||^2$$

où $f: \mathbb{R}^n \to \mathbb{R}^m$. Elle est définie comme la méthode itérative

$$x_{k+1} = x_k - (g'(x_k)^{\top} g'(x_k) + \lambda I)^{-1} \nabla f(x_k),$$

où $\nabla f(x_k) = g'(x_k)^{\top} g(x_k)$ et $\lambda > 0$. Lorsque λ est grand, la méthode est robuste car elle se comporte comme la méthode du gradient

$$x_{k+1} = x_k - \frac{1}{4} \nabla f(x_k),$$

avec de surcroit un pas $\frac{1}{\lambda}$ très petit, par contre elle en hérite du principal défaut, sa lenteur! Lorsque λ est trop petit voire nul (méthode de Gauss-Newton), la méthode de Levenberg-Marquardt est potentiellement très instable car le rang maximal de la matrice $g'(x_k)^{\top}g'(x_k)$ n'est pas garanti.

Afin d'illustrer l'influence de λ , nous allons considérer la fonction de Rosenbrock, définie par

$$f(x) = (1 - x_1)^2 + 100(x_2 - x_1^2)^2$$

qui présente un minimum global en (1,1).

- 1. Tracer les courbes iso-valeurs de f dans le domaine $[-1,1] \times [-0.5,1.5]$.
- 2. On considère la méthode du gradient

$$x_{k+1} = x_k - \frac{1}{\lambda} \nabla f(x_k)$$

pour $\lambda=100$. Représentez les itérations de la méthode pour $x_0=(0.5,1.5)$ en reliant par un segment les points successifs x_k et x_{k+1} .

3. On considère maintenant la méthode de Levenberg-Marquardt, c'est à dire

$$x_{k+1} = x_k - \left(g'(x_k)^\top g'(x_k) + \lambda I\right)^{-1} \nabla f(x_k).$$

On prend $x_0 = (0.5, 1.5)$. Essayez d'ajuster au mieux le paramètre λ et représentez les itérations en reliant par un segment les points x_k et x_{k+1} .

2 Problème de régression non-linéaire

On considère m couples $(t_i,y_i)_{i=1...m}$. Les vecteurs t et y sont dans le fichier dataExp.sci que vous avez reçu par mail. On cherche à approcher au mieux ces données à l'aide de la fonction

$$f(t) = \exp(a + bt + ct^2),$$

de manière à ce que la quantité

$$E(a, b, c, d) = \sum_{i=1}^{m} (f(t_i) - y_i)^2,$$

soit minimale.

- 1. Résolvez ce problème de moindres carrés en utilisant le « log trick »vu en cours.
- 2. Résolvez directement le problème grâce à lsqrsolve (ou à l'aide de votre implémentation de la méthode de Levenberg-Marquardt).
- 3. Comparez les résultats obtenus en représentant à l'écran les points $(t_i, y_i)_{i=1...m}$ et les graphes des fonction obtenues puis conclure.

3 Problème de cinématique inverse

On considère un bras robot articulé dans le plan (x_1,x_2) , d'origine O, avec un premier segment de longueur l_1 et faisant un angle θ_1 avec $(0,x_1)$, un deuxième segment de longueur l_2 faisant un angle $\theta_2 - \theta_1$ avec le premier segment et un troisième segment de longueur l_3 faisant un angle $\theta_3 - \theta_2$ avec le deuxième segment. L'extrémité du bras a donc pour coordonnées

$$M(\theta) = \begin{pmatrix} l_1 \cos \theta_1 + l_2 \cos \theta_2 + l_3 \cos \theta_3 \\ l_1 \sin \theta_1 + l_2 \sin \theta_2 + l_3 \sin \theta_3 \end{pmatrix}.$$

Soit $A = (x_A, y_A)^{\top}$, on cherche à déterminer le vecteur $\theta = (\theta_1, \theta_2, \theta_3)^{\top}$ tel que que

$$M(\theta) = A$$
,

tout en essayant de minimiser la déformation du bras. Pour cela on va considérer le problème d'optimisation

$$\theta = \arg\min_{\theta} f(\theta),$$

où

$$f(\theta) = ||M(\theta) - A||^2 + \lambda^2 (\theta_2^2 + \theta_3^2),$$

avec λ petit.

1. On définit la fonction $g: \mathbb{R}^3 \to \mathbb{R}^4$ par

$$g(\theta) = \begin{pmatrix} l_1 \cos \theta_1 + l_2 \cos \theta_2 + l_3 \cos \theta_3 - x_A \\ l_1 \sin \theta_1 + l_2 \sin \theta_2 + l_3 \sin \theta_3 - y_A \\ \lambda(\theta_2 - \theta_1) \\ \lambda(\theta_3 - \theta_2) \end{pmatrix}.$$

Après avoir vérifié que $f(\theta) = \|g(\theta)\|^2$, écrire une fonction Scilab calculant $g(\theta)$. function out=g(theta)

. . .

endfunction

- 2. On prend $l_1 = l_2 = l_3 = 1$, $A = (1,1)^{\top}$, $\lambda = 10^{-1}$. Ecrire un programme Scilab calculant le vecteur θ minimisant $f(\theta) = \|g(\theta)\|^2$ en utilisant la fonction lsqrsolve.
- 3. Ecrire un programme Scilab représentant sur un graphique les positions successives du bras lorsque le point A est défini par une courbe paramétrique, par exemple

$$A(t) = \begin{cases} x_1(t) = 1 + \frac{1}{2}\cos t, \\ x_2(t) = 1 + \frac{1}{2}\sin t. \end{cases}$$

4. Généraliser l'approche précédente pour un nombre quelconque d'articulations.