<u>Help</u>

sandipan_dey >

Next >

<u>Calendar</u> **Discussion** <u>Course</u> <u>Progress</u> <u>Dates</u> <u>Notes</u>

☆ Course / Unit 3: Optimization / Lecture 8: Critical points

You are taking "Exam (Timed, No Correctness Feedback)" as a timed exam. Show more

End My Exam

Previous

26:20:28

☐ Bookmark this page

Lecture due Sep 13, 2021 20:30 IST Completed

Explore

We have thought mostly about the gradient from the perspective that we are given level curves and want to understand the gradient. Now we want to go in the other direction. Suppose we are given the information about the gradient of a function, and now we want to understand something about the shape of that function. In other words, we want to understand the level curves from the gradient so that we can identify maxima and minima.

Gradient and function height 1

1/1 point (graded)

Consider the gradient field for a function f(x,y) shown below. The (x,y) coordinates (1,0) and (1,1) are indicated by orange markers in the figure below.

Which of the following is true?

 $f\left(1,0\right)>f\left(1,1\right)$

 $f\left(1,0\right)=f\left(1,1\right)$

Not enough information to determine

Submit

You have used 1 of 2 attempts

Gradient and function height 2

1/1 point (graded)

Consider the gradient field for the same function f(x,y). This time, the (x,y) coordinates (0,-1) and (0,1)are indicated by orange markers in the figure below.

Which of the following is true?

$$\bigcirc f(0,-1)=f(0,1)$$

Not enough information to determine

Solution:

From the gradient field, we can conclude that f(0,-1) < f(0,1). We know that the gradient points in the direction of steepest increase of a function. Although the arrows at (0,-1) do not point straight towards (0,1), the vertical componenents of the gradient vectors are still in the upward direction. So the function is still increasing when we move from (0,-1) to (0,1), it is just not increasing as fast as possible.

Submit

You have used 2 of 2 attempts

1 Answers are displayed within the problem

In the figure below, we include the level curves of the function $f\left(x,y
ight)$ whose gradient field we were looking at in the previous questions.

Observations and summary

- The direction of the gradient abla f is perpendicular to the level curves.

- The magnitude of the gradient |
 abla f| is larger where the level curves are closer together.
- The slope of the 3D graph of the surface $z=f\left(x,y\right)$ is steeper in locations where the gradient is large and the level curves are close together.

In the figure below, we plot some level curves on top of the 3D function. The level curves are also shown on a plane below the 3D surface.

► Hills with contours

9. Gradient connection to function height

Topic: Unit 3: Optimization / 9. Gradient connection to function height

Hide Discussion

Add a Post

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

<u>Privacy Policy</u>

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>