TU Berlin Fakultät IV Institut für Telekommunikationssysteme Fachgebiet Nachrichtenübertragung Praktikum Nachrichtenübertragung

Praktikum 06 Digitale bertragungstechnik: Digitale Empfnger

Özgü Dogan (326 048) Boris Henckell (325 779)

3. Juli 2012

Gruppe: D03

Inhaltsverzeichnis

1	Einleitung	1
2	Motivation	1
3	Theorie	1
4	Vorbereitungsaufgabe	1
5	Labordurchführung	1
6	Auswertung6.1 Vorbereitungsaufgabe6.2 Aufgabe 2.1 - Aufbau des Versuches6.3 Aufgabe 2.2 - Bitfehlermessung	1 1 1 2
7	Zusammenfassung	2

i

1 Einleitung

TODO:

Einleitung schreiben

- 2 Motivation
- 3 Theorie
- 4 Vorbereitungsaufgabe
- 5 Labordurchführung
- 6 Auswertung
 - 6.1 Vorbereitungsaufgabe

6.2 Aufgabe 2.1 - Aufbau des Versuches

Die erste Aufgabe des Praktikums beschäftigt sich fast ausschließlich mit dem Aufbar des Versuches, um den Signalverlauf mit der Matlab Funktion

ParallelOUT([0101010], 100) zu untersuchen. Dazu wird die D/A-Box, welcher an den Computer angeschlossen und somit über die Matlab Dateien steuerbar ist, als Quelle für jegliche verwendete Signale verwendet. Die D/A-Box besitzt vier Ausgänge, die mit unterschiedlichen Farben gekennzeichnet sind. Der rote Ausgang gibt das DataSignal aus. Dieser kann eine Amplitude von 0V oder 5V besitzen. Um ihn auf den von uns erwünschte Spannungsbereich von $\pm 1V$ zu bringen, wird dieses Signal zunächst mit einer Gleichspannung von -2.5V aus der variablen Spannungsquelle des Steckbretts addiert und danach mit einem Faktor von gedämpft. Damit erreichen wir den nötigen Spannungsbereich, welcher auf dem A Kanal des PicoScopes kontrolliert wird.

Der blaue Ausgang der D/A-Box gibt das Clock-Signal wieder. Dieser wird auf den B Kanal des PicoScope geführt und ebenfalls kontrolliert.

Als nächstes wird der PCM Decoder mit der D/A-Box verbunden, indem das Clock-Signal auch auf den Clock-Eingang des Decoder geführt wird. Weiterhin wird das Signal aus dem grünen Ausgang der Box, welcher das Frame-Signal (FS) wiedergibt, mit dem FS-Eingang des Decoders und die PCM-codierten Datenworte, die aus dem gelben Ausgang der Box entnommen werden können, mit dem PCM Data-Eingang des Decoders kontaktiert. Wichtig ist auch, dass der Schalter auf dem Decoder Modul auf PCM geschaltet ist und nicht auf TDM.

Somit ist der PCM Decoder mit allen Signalen beliefert, die er zum decodieren braucht. Daher kann man nun das Output Signal verwenden, welcher eine Spannung des Faktors wiedergibt, die für die Verstärkung oder Dämpfung des Rauschens dient. Diese Spannung wird an einem Multiplikator mit dem -6dB Rauschen multipliziert und an dem Addierer mit Multiplikatoren mit dem DataSignal, welcher bereits auf den korrekten Spannungsbereich eingestellt wurde, addiert. Das Ergebniss dieser Addition wird weiterhin auf den A Kanal des PicosScopes geführt und ausgewertet.

Zuletzt wird das verrauschte Signal überprüft, indem mit der Funktion PCM_Decod(192) ein Verstärkungsfaktor für das Rauschen gesetzt wird. Das verrauschte Signal wird mithilfe der PicoScope-Software und der Matlab-Funktion ParallelOUT([0101010], 100) dargestellt und auch mit den Werten $0,\,128$ und 255 untersucht.

TODO:

Foto vom Aufbau einfügen

6.3 Aufgabe 2.2 - Bitfehlermessung

TODO:

Aufgabe 2.2

7 Zusammenfassung

TODO:

Zusammenfassug schreiben

Literatur