

W6100

Hardwired Dual TCP/IP Stack Controller

V1.0.3

W6100

W6100 은 WIZnet 의 Hardware TCP/IP 기술 기반 위에 새롭게 IPv6 를 추가하여 IPv4/IPv6 Dual Stack 을 지원하는 Hardwired Internet Controller 로, TCP, UDP, IPv6, IPv4, ICMPv6, ICMPv4, IGMP, ARP, PPPoE 등의 TCP/IP 뿐만 아니라 10 Base-T / 10 Base-Te / 100 Base-TX Ethernet PHY 와 Ethernet MAC Controller 를 모두 내장하여 IPv6 IoT Device 시장에 적합한 Embedded Internet One chip Controller 이다.

W6100 은 8 개의 독립적인 Hardware SOCKET 뿐만 아니라 다양한 SOCKET-less Command 를 지원하여 IPv6 Auto-configuration 을 손쉽게 구현할 수 있으며, ARP, PINGv4, PINGv6 을 통해 Network 상황을 관리할 수 있다.

W6100 은 Target HOST Interface 로 SPI 또는 Parallel System BUS 를 제공하고 송수신 Data 용으로 32KB 메모리를 가지고 있으며, 저전력/저발열로 설계되어 WOL(Wake On LAN)과 Ethernet PHY Power Down Mode 등을 제공한다.

또한 W6100 은 48 LQFP 와 48 QFN Lead-Free Package 를 제공하고 W5100S 와 완벽한 PIN-to-PIN 호환성을 제공한다.

Features

- Support Hardwired TCP/IP Protocols
 - : TCP, UDP, IPv6, IPv4, ICMPv6, ICMPv4, IGMP, MLDv1, ARP, PPPoE
- Support IPv4/IPv6 Dual Stack
- Support 8 independent SOCKETs simultaneously with 32KB Memory
- Support SOCKET-less Command
 - : ARP, ICMPv6 (ARP, DAD, NA, RS) Command for IPv6 Auto-configuration & Network Monitoring (PING, PING6)
- Support Ethernet PHY Power Down Mode & System Clock Switching for power save
- Support Wake on LAN over UDP
- Support Serial & Parallel Host Interface
 - : High Speed SPI (MODE 0/3), System Bus with 2 Address signal & 8bit Data
- Internal 32Kbytes Memory for TX/ RX Buffers
- 10BaseT/ 10BaseTe / 100BaseTX Ethernet PHY Integrated
- Support Auto Negotiation (Full and Half duplex, 10 and 100-based)
- Support Auto-MDIX only on Auto-Negotiation Mode
- Not support IP Fragmentation & Jumbo packet
- 3V operation with 5V I/O signal tolerance
- Network Indicator LEDs (Full/Half Duplex, Link, 10/100 Speed, Active)
- 48 Pin LQFP & QFN Lead-Free Package (7x7mm, 0.5mm pitch)
- W5100S PIN-to-PIN Compatible

Target Applications

W6100 은 다음과 같은 Embedded application 에 적합하다.

- Home Network Devices: Set-Top Boxes, PVRs, Digital Media Adapters
- Serial-to-Ethernet: Access Controls, LED displays, Wireless AP relays, etc.
- Parallel-to-Ethernet: POS / Mini Printers, Copiers
- USB-to-Ethernet: Storage Devices, Network Printers
- GPIO-to-Ethernet: Home Network Sensors
- Security Systems: DVRs, Network Cameras, Kiosks
- Factory, Building, Home Automations
- Medical Monitoring Equipment
- Embedded Servers
- Internet of Thing (IoT) Devices
- IoT Cloud Devices

Block Diagram

Figure 1 Block Diagram

Contents

1	PIN Description						
	1.1 PIN Description						
2	Memory Map						
3	W6100 Registers						
	3.1 Cor	mmon Register19					
	3.2 SOC	CKET Register26					
4	Register Des	criptions					
	4.1 Cor	mmon Registers29					
	4.1.1	CIDR (Chip Identification Register)29					
	4.1.2	VER (Version Register)29					
	4.1.3	SYSR (System Status Register)29					
	4.1.4	SYCR0 (System Config Register 0)30					
	4.1.5	SYCR1 (System Config Register 1)30					
	4.1.6	TCNTR (Tick Counter Register)31					
	4.1.7	TCNTRCLR (TCNTR Clear Register)					
	4.1.8	IR (Interrupt Register)					
	4.1.9	SIR (SOCKET Interrupt Register)32					
	4.1.10	SLIR (SOCKET-less Interrupt Register)32					
	4.1.11	IMR (Interrupt Mask Register)					
	4.1.12	IRCLR (IR Clear Register)					
	4.1.13	SIMR (SOCKET Interrupt Mask Register)					
	4.1.14	SLIMR (SOCKET-less Interrupt Mask Register)35					
	4.1.15	SLIRCLR (SLIR Clear Register)35					
	4.1.16	SLPSR (SOCKET-less Prefer Source IPv6 Address Register)36					
	4.1.17	SLCR (SOCKET-less Command Register)					
	4.1.18	PHYSR (PHY Status Register)					
	4.1.19	PHYRAR (PHY Register Address Register)					
	4.1.20	PHYDIR (PHY Data Input Register)					
	4.1.21	PHYDOR (PHY Data Output Register)					
	4.1.22	PHYACR (PHY Access Control Register)					
	4.1.23	PHYDIVR (PHY Division Register)					
	4.1.24	PHYCR0 (PHY Control Register 0)					
	4.1.25	PHYCR1 (PHY Control Register 1)					
	4.1.26	NET4MR (Network IPv4 Mode Register)40					
	4.1.27	NET6MR (Network IPv6 Mode Register)41					
	4.1.28	NETMR (Network Mode Register)42					
	4.1.29	NETMR2 (Network Mode Register 2)43					
	4.1.30	PTMR (PPP Link Control Protocol Request Timer Register)					
	4.1.31	PMNR (PPP Link Control Protocol Magic number Register)43					

	4.1.32	PHAR (PPPoE Server Hardware Address Register on PPPoE)44
	4.1.33	PSIDR (PPPoE Session ID Register on PPPoE)44
	4.1.34	PMRUR (PPPoE Maximum Receive Unit Register)44
	4.1.35	SHAR (Source Hardware Address Register)44
	4.1.36	GAR (Gateway IP Address Register)45
	4.1.37	SUBR (Subnet Mask Register)45
	4.1.38	SIPR (IPv4 Source Address Register)45
	4.1.39	LLAR (Link Local Address Register)45
	4.1.40	GUAR (Global Unicast Address Register)46
	4.1.41	SUB6R (IPv6 Subnet Prefix Register)46
	4.1.42	GA6R (IPv6 Gateway Address Register)47
	4.1.43	SLDIP6R (SOCKET-less Destination IPv6 Address Register)47
	4.1.44	SLDIPR (SOCKET-less Destination IPv4 Address Register)47
	4.1.45	SLDHAR (SOCKET-less Destination Hardware Address Register)48
	4.1.46	PINGIDR (PING ID Register)48
	4.1.47	PINGSEQR (PING Sequence-number Register)48
	4.1.48	UIPR (Unreachable IP Address Register)48
	4.1.49	UPORTR (Unreachable Port Register)48
	4.1.50	UIP6R (Unreachable IPv6 Address Register)49
	4.1.51	UPORT6R (Unreachable IPv6 Port Register)49
	4.1.52	INTPTMR (Interrupt Pending Time Register)49
	4.1.53	PLR (Prefix Length Register)50
	4.1.54	PFR (Prefix Flag Register)50
	4.1.55	VLTR (Valid Life Time Register)50
	4.1.56	PLTR (Preferred Life Time Register)50
	4.1.57	PAR (Prefix Address Register)51
	4.1.58	ICMP6BLKR (ICMPv6 Block Register)51
	4.1.59	CHPLCKR (Chip Lock Register)52
	4.1.60	NETLCKR (Network Lock Register)
	4.1.61	PHYLCKR (PHY Lock Register)52
	4.1.62	RTR (Retransmission Time Register)52
	4.1.63	RCR (Retransmission Count Register)52
	4.1.64	SLRTR (SOCKET-less Retransmission Time Register)53
	4.1.65	SLRCR (SOCKET-less Retransmission Count Register)53
	4.1.66	SLHOPR (Hop limit Register)53
4.2	SOC	KET Register54
	4.2.1	Sn_MR (SOCKET n Mode Register)
	4.2.2	Sn_PSR (SOCKET n Prefer Source IPv6 Address Register)56
	4.2.3	Sn_CR (SOCKET n Command Register)56
	4.2.4	Sn_IR (SOCKET n Interrupt Register)
	4.2.5	Sn_IMR (SOCKET n Interrupt Mask Register)59

		4.2.6	Sn_IRCLR (Sn_IR Clear Register)59
		4.2.7	Sn_SR (SOCKET n Status Register)60
		4.2.8	Sn_ESR (SOCKET n Extension Status Register)61
		4.2.9	Sn_PNR (SOCKET n IP Protocol Number Register)62
		4.2.10	Sn_TOSR (SOCKET n IP Type of Service Register)62
		4.2.11	Sn_TTLR (SOCKET n IP Time To Live Register)62
		4.2.12	Sn_FRGR (SOCKET n Fragment Offset in IP Header Register)62
		4.2.13	Sn_MSSR (SOCKET n Maximum Segment Size Register)62
		4.2.14	Sn_PORTR (SOCKET n Source Port Register)63
		4.2.15	Sn_DHAR (SOCKET n Destination Hardware Address Register)63
		4.2.16	Sn_DIPR (SOCKET n Destination IPv4 Address Register)63
		4.2.17	Sn_DIP6R (SOCKET n Destination IPv6 Address Register)64
		4.2.18	Sn_DPORTR (SOCKET n Destination Port Register)64
		4.2.19	Sn_MR2 (SOCKET n Mode register 2)65
		4.2.20	Sn_RTR (SOCKET n Retransmission Time Register)66
		4.2.21	Sn_RCR (SOCKET n Retransmission Count Register)66
		4.2.22	Sn_KPALVTR (SOCKET n Keep Alive Time Register)66
		4.2.23	Sn_TX_BSR (SOCKET n TX Buffer Size Register)67
		4.2.24	Sn_TX_FSR (SOCKET n TX Free Buffer Size Register)67
		4.2.25	Sn_TX_RD (SOCKET n TX Read Pointer Register)67
		4.2.26	Sn_TX_WR (SOCKET n TX Write Pointer Register)68
		4.2.27	Sn_RX_BSR (SOCKET n RX Buffer Size Register)68
		4.2.28	Sn_RX_RSR (SOCKET n RX Received Size Register)69
		4.2.29	Sn_RX_RD (SOCKET n RX Read Pointer Register)69
		4.2.30	Sn_RX_WR (SOCKET n RX Write Pointer Register)69
5	HOS	T Interfa	ce Mode
	5.1	SPI	Mode70
		5.1.1	SPI Frame71
		5.1.2	Variable Length Data Mode (VDM)74
		5.1.3	Fixed Length Data Mode (FDM)75
	5.2	Para	allel BUS Mode77
		5.2.1	Parallel BUS Mode Data Write79
		5.2.2	Parallel Bus Mode Data Read79
6	Fun	ctional De	escription
	6.1	Initi	ialization80
		6.1.1	Network Information Setting80
		6.1.2	SOCKET TX/RX Buffer Size Setting81
	6.2	TCP	82
		6.2.1	TCP SERVER83
		6.2.2	TCP CLIENT
		6.2.3	TCP DUAL

		6.2.4	Other Functions91
	6.3	UD	P93
		6.3.1	UDP Unicast93
		6.3.2	UDP Broadcast96
		6.3.3	UDP Multicast98
		6.3.4	UDP DUAL
		6.3.5	Other Functions
	6.4	IPR	RAW
		6.4.1	Other Functions
	6.5	MA	CRAW
	6.6	SO	CKET-less Command (SLCR)
		6.6.1	ARP
		6.6.2	PING
		6.6.3	ARP6 (ND, Neighbor Discovery)
		6.6.4	PING6 (ICMPv6 Echo)
		6.6.5	DAD (Duplicate Address Detection)
		6.6.6	RS (Router Solicitation)
		6.6.7	Unsolicited NA(Neighbor Advertisement)
	6.7	Re	transmission
		6.7.1	ARP & PING & ND Retransmission
		6.7.2	TCP Retransmission
	6.8	Otl	hers Functions
		6.8.1	System Clock(SYS_CLK) Switching
		6.8.2	Ethernet PHY Operation Mode Configuration
		6.8.3	Ethernet PHY Parallel Detection
		6.8.4	Ethernet PHY Auto MDIX
		6.8.5	Ethernet PHY Power Down Mode
		6.8.6	Ethernet PHY's Registers Control
		6.8.7	Ethernet PHY 10BASE-Te Mode
7	Cloc	k & Trai	nsformer Requirements
	7.1	Qu	artz Crystal Requirements
	7.2	Ose	cillator requirements
	7.3	Tra	ansformer Characteristics
8	Elec	trical Sp	pecification131
	8.1	Ab	solute Maximum ratings
	8.2	Ab	solute Maximum ratings (Electrical Sensitivity)131
	8.3	DC	Characteristics
	8.4	AC	Characteristics
		8.4.1	Reset Timing
		8.4.2	BUS ACCESS TIMING
		8.4.3	SPI ACCESS TIMING

	8.4.	4 Transformer Characteristics	135
	8.4.	5 MDIX	136
	8.5	POWER DISSIPATION	136
9	Package	Information	137
	9.1	LQFP48	137
	9.2	QFN48	139
10) Docume	nt Revision History	140

List of Figures

Figure 1 Block Diagram4
Figure 2 W6100 Pin Layout
Figure 3 W6100 Memory Map
Figure 4 State Diagram
Figure 5 Variable Length Data Mode (CSn controlled by Host) 70
Figure 6 Fixed Length Data Mode (CSn is always connected by Groud) 70
Figure 7 SPI Mode 0 & Mode 3
Figure 8 SPI Frame Format
Figure 9 Write SPI Frame in VDM
Figure 10 Read SPI Frame in VDM
Figure 11 1 byte Data Write Access SPI Frame in FDM
Figure 12 2 bytes Data Write Access SPI Frame in FDM
Figure 13 4 bytes Data Write Access SPI Frame in FDM
Figure 14 1 byte Data Read Access SPI Frame in FDM
Figure 15 2 bytes Data Read Access SPI Frame in FDM
Figure 16 4 bytes Data Read Access SPI Frame in FDM
Figure 17 Host Interface in Parallel BUS Mode
Figure 18 Parallel Bus N-Bytes Data Write Access
Figure 19 Parallel Bus Mode Continuous Read Access
Figure 20 TCP SERVER and TCP CLIENT 82
Figure 21 TCP SERVER Operation Flow
Figure 22 TCP CLIENT Operation Flow
Figure 23 UDP Operation Flow
Figure 24 Received DATA in UDP Mode SOCKET RX Buffer Block
Figure 25 IPv6 Multicast-Group Address Format
Figure 26 IPRAW Operation Flow
Figure 27 Received DATA in IPRAW4 Mode SOCKET RX Buffer Block
Figure 28 Received DATA in IPRAW6 Mode SOCKET RX Buffer Block
Figure 29 MACRAW Operation Flow
Figure 30 Received DATA Format in MACRAW
Figure 31 SOCKET-less Command Operation Flow
Figure 32 DAD Operation Flow116
Figure 33 RS Operation Flow
Figure 34 Unsolicited NA Operation Flow120
Figure 35 MDC/MDIO Write Control Flow
Figure 36 MDC/MDIO Read Control Flow
Figure 37 Quartz Crystal Model
Figure 38 Transformer Type130
Figure 39 Reset Timing

	Figure 40 Bus Read Timing1	34
	Figure 41 BUS Write Timing	34
	Figure 42 SPI Access Timing	35
	Figure 43 Transformer Type1	36
_ist	of Tables	
	Table 1 Pin Type Notation	12
	Table 2 PIN Description	13
	Table 3 Registers in Parallel BUS Mode	77
	Table 4 Parameter Description in PACKET INFO	94
	Table 5 Parameters of Flags in IPv6 Multicast Address	98
	Table 6 Definition of Scope in IPv6 Multicast Address	98
	Table 7 Internet Protocol Supported In IPRAW Mode	03
	Table 8 parameters of 'PACKET INFO' in IPRAW4 Mode1	05
	Table 9 parameters of 'PACKET INFO' in IPRAW6 Mode	05
	Table 10 Quartz Crystal	29
	Table 11 Crystal Recommendation Characteristics	29
	Table 12 Oscillator Characteristics	30
	Table 13 Transformer Characteristics	30
	Table 14 Absolute Maximum ratings	31
	Table 15 Electro Static Discharge (ESD)	31
	Table 16 Latch up Test	31
	Table 17 DC Characteristics	32
	Table 18 Reset Table1	33
	Table 19 BUS Read Timing	34
	Table 20 BUS Write timing	35
	Table 21 SPI Access Timing	35
	Table 22 Transformer Characteristics	35
	Table 23 Power Dissipation	36
	Table 24 LQFP48 VARIATIONS (ALL DEMINSIONS SHOWN IN MM)	37
	Table 25 QFN48 VARIATIONS (ALL DEMINSIONS SHOWN IN MM)	39

1 PIN Description

Figure 2 W6100 Pin Layout

Table 1 Pin Type Notation

Туре	Description			
I	Input			
0	Output			
М	M Alternate (Multi-function) Signal			
U Internal pulled-up 75KΩ resistor				
D Internal pulled-down 75KΩ resistor				
A Analog				
P Power & Ground				

1.1 PIN Description

Table 2 PIN Description

Table 2 PIN Description			
Symbol	Туре	Description	
GNDA	AP	Analog Ground	
TXON	AO	Differential Transmitted Signal Pair	
TY∩P	۸٥	Data 를 MDI Mode 에서 TXOP/TXON 차동 신호 쌍을 통해	
1701	AO	미디어로 전송한다.	
1V2A	AP	Analog 1.2V Power	
5.41.1		1V2O 전압 소스로부터 공급받는다. Differential Received Signal Pair	
RXIN	Al	Data 를 MDI 모드에서 RXIP/RXON 차동 신호 쌍을 통해	
RXIP	Al	미디어로부터 수신한다.	
GNDA	AP	Analog Ground	
3V3A	AP	Analog 3.3V Power	
		Off-chip Bias Resistor	
RSET_BG	AO	외부 12.3KΩ, 오차 1% 저항을 통해 Analog Ground 로 반드시	
		연결해야 한다.	
GND	AP	Digital Ground	
XSCO	AO	25MHz Clock	
XSCI	Al	25MHz Crystal Oscillator(XTAL)나 Oscillator(OSC)로 연결한다. W6100 은 외부 25MHz 의 Clock을 25MHz(Low Frequency mode)나 그 4 배수인 100MHz(Normal mode)로 변환하고 이를 내부 Operation Clock(SYS_CLK) 으로 사용한다. * CAUTION OSC 를 사용할 경우 25MHz@1.2V 를 사용하며 XSCI 만 연결하고 XSCO 는 반드시 Floating 시켜야한다. 참조) Clock Selection Guide, same as W5100S	
1V2D	P	Digital 1.2V Power	
. 120	•	1V2O 전압 소스로부터 공급받는다.	
1V2O	PO	Internal Regulator 1.2V Power Output W6100 을 위한 내부 Regulator 의 1.2V Power Output 으로 Max 150mA 를 지원하며, 반드시 외부 안정화 Capacitor 3.3uF 를 통해 W6100 의 1V2D 와 1V2A로 공급한다. 1V2O 는 Ferrite Bead 를 사용하여, 1V2D 와 1V2A 분리 하여 공급한다.	
	GNDA TXON TXOP 1V2A RXIN RXIP GNDA 3V3A RSET_BG GND XSCO XSCI	GNDA AP TXON AO TXOP AO 1V2A AP RXIN AI RXIP AI GNDA AP 3V3A AP RSET_BG AO GND AP XSCO AO XSCI AI	

			* CAUTION 이 Power 는 W6100 을 위한 것으로 다른 Device 의
			Power 로 사용될 수 없다.
15	3V3A	AP	Analog 3.3V Power
16	GNDA	AP	Analog Ground
17	LNKn	OU	Link Status LED SPI, Parallel Bus Mode 인 경우, 유효하다. Low: Link up High: Link down
18	SPDn	OU	Link Speed LED SPI, Parallel Bus Mode 인 경우, 유효하다. Low: 100Mbps High: 10Mbps
19	DPXn	OU	Link Duplex LED SPI, Parallel Bus Mode 인 경우, 유효하다. Low: Full-Duplex High: Half-Duplex
20	ACTn	OU	Link Activity LED SPI, Parallel Bus Mode 인 경우, 유효하다. No Flash: Link up state without TX/RX Flash: Link up state with TX/RX data High: Link-down state
21	COLn	OU	Link Collision Detect LED SPI, Parallel Bus Mode 인 경우, 유효하다. DATA 송신 시 충돌을 감지한 경우 알려준다. Low: Collision Detected High: No Collision
22	1V2D	Р	Digital 1.2V Power 1V2O 로부터 공급 받는다.
23	GND	Р	Digital Ground
24	3V3D	Р	Digital 3.3V power
25	MOD[0]	ID	W6100 Mode Selection
26	MOD[1]	ID	MOD[3:0]에 따라 아래와 같이 선택한다.
27	MOD[2]	ID	"000X": SPI Mode

42	DAT5	IOU	
41	DAT4	IOU	SPI Mode 인 경우, Floating 한다.
40	DAT3	IOU	W6100 으로부터 Data 를 입력 받는다.
39	DAT2	IOU	Parallel Bus Mode 일 경우, HOST 의 Data 를 입력하거나,
38	DAT1	IOU	Devailed Due Made 이 경우 LICCT 이 Data 로 이러됩니다
37	DAT0	IOU	8 Bits Data Bus
36	3V3D	Р	Digital 3.3V Power
35	WRn	IU	Write Strobe Parallel Mode 일 경우, Write Operation 을 알린다.
34	RDn	IU	Read Strobe Parallel Bus Mode 일 경우, Read Operation 을 알린다. SPI Mode 일 경우 3V3D 와 연결하거나 Floating 한다.
33	MISO /ADDR1	IOPM	SPI Master Input Slave Output / Address 1 MISO : SPI mode 인 경우, SPI Data 를 HOST 로 송신 ADDR1 : Parallel Bus Mode 인 경우, Address 1 을 입력
32	MOSI /ADDR0	IDM	SPI Master Output Slave Input / Address 0 MOSI : SPI mode 인 경우, SPI Data 를 HOST 로부터 수신 ADDRO : Parallel Bus Mode 인 경우, Address 0 을 입력
31	1V2D	Р	Digital 1.2V Power 1V2O 로부터 공급받는다.
30	SCLK	ID	SPI Clock SPI Mode 인 경우, SPI Clock 을 입력한다. Parallel Bus Mode 인 경우, GND 와 연결하거나 Floating 한다.
29	CSn	IU	W6100 Chip Select Low: Select High: No Select
28	MOD[3]	ID	"010X": Parallel Bus Mode Others: Reserved

			Interrupt W6100 의 Ethernet 통신 처리시 Event 가 발생할 경우, HOST 에게
			·
			알린다.
47	INTn	OP	Low: Interrupt Occurred High: No Interrupt 참조) SYCR1 의 IEN(Interrupt Enable), INTPTMR(Interrupt Pending Time Register), IR(Interrupt Register), SIR(SOCKET Interrupt Register),
			SLIR(SOCKET-less Interrupt Register)
			Reset
			W6100 을 초기화 한다. RSTn 신호는 반드시 1.0us 이상 Low 를
			유지해야 한다. W6100 는 RSTn 신호가 인가된 후 60.3ms 이후에
48	RSTn	RSTn IP	완전히 초기화가 된다.
40			참조) 8.4.1 Reset Timing
			Low : W6100 를 초기화 시킨다.
			High: W6100 를 정상 동작 시킨다.

2 Memory Map

Figure 3 W6100 Memory Map

Figure 3 에서, W6100 은 다음과 같은 Block 으로 구성된다.

- 1 x Common Register Block, 7 x Reserved Block
- 8 x SOCKET n Register Block
- 8 x SOCKET n TX Buffer Block
- 8 x SOCKET n RX Buffer Block

이들 Block 은 5 bits 의 Block Select Bits 로 구분되며, 각 Block 내의 영역들은 Byte 단위의 16bits Offset Address 로 Access 된다.

8개의 SOCKET n TX buffer Block 은 16KB TX Memory 영역 내에서 초기 2KB 씩 각각 할당되며, Sn_TX_BSR(4.2.23)을 통해 0, 1, 2, 4, 8 또는 16KB 크기로 재설정될 수 있다. 할당된 SOCKET n TX Buffer Block 의 총합이 16KB 를 초과하지 않도록 주의한다.

8개의 SOCKET n RX buffer Block 은 16KB RX Memory 영역 내에서 초기 2KB 씩 각각 할당되며, $Sn_RX_BSR(4.2.27)$ 을 통해 0, 1, 2, 4, 8, 또는 16KB 크기로 재설정될 수 있다. 할당된 SOCKET n RX Buffer Block 의 총합이 16KB 를 초과하지 않도록 주의한다.

3 W6100 Registers

3.1 Common Register

Offset	Register	Type ¹	Reset
0x0000	CIDR0 (Chip Identification Register)	RO	0x61
0x0001	CIDR1	RO	0x00
0x0002	VER0 (Chip Version Register)	RO	0x46
0x0003	VER1	RO	0x61
0x2000	SYSR (System Status Register)	RO	0xEU
0x2004	SYCR0 (System Config Register 0)	WO	0x80
0x2005	SYCR1	R=W	0x80
0x2016	TCNTR0 (Tick Counter Register)	RO	0x00
0x2017	TCNTR1	RO	0x00
0x2020	TCNTCLR (TCNTR Clear Register)	WO	0x00
0x2100	IR (Interrupt Register)	RO	0x00
0x2101	SIR (SOCKET Interrupt Register)	RO	0x00
0x2102	SLIR (SOCKET-less Interrupt Register)	RO	0x00
0x2104	IMR (Interrupt Mask Register)	R=W	0x00
0x2108	IRCLR (IR Clear Register)	WO	0x00
0x2114	SIMR (SOCKET Interrupt Mask Register)	R=W	0x00
0x2124	SLIMR (SOCKET-less Interrupt Mask Register)		0x00
0x2128	SLIRCLR (SLIR Clear Register)	WO	0x00
0x212C	SLPSR (SOCKET-less Prefer Source IPv6 Address Register)	R=W	0x00
0x2130	SLCR (SOCKET-less Command Register)	RW,AC	0x00
0x3000	PHYSR (PHY Status Register)	RO	0x00
0x3008	PHYRAR (PHY Register Address Register)	R=W	0x00
0x300C	PHYDIRO (PHY Data Input Register)		0x00
0x300D	PHYDIR1		0x00
0x3010	PHYDOR0 (PHY Data Output Register)		0x00
0x3011	PHYDOR1		0x00
0x3014	PHYACR (PHY Access Control Register)		0x00
0x3018	PHYDIVR (PHY Division Register)	R=W	0x01
0x301C	PHYCR0 (PHY Control Register 0)	WO	0x00

¹ 참조) 4 Register Descriptions

0x301D	PHYCR1	R=W	0x40
0x4000	NET4MR (Network IPv4 Mode Register)	R=W	0x00
0x4004	NET6MR (Network IPv6 Mode Register)	R=W	0x00
0x4008	NETMR (Network Mode Register)	R=W	0x00
0x4009	NETMR2 (Network Mode Register 2)	R=W	0x00
0x4100	PTMR (PPP Link Control Protocol Request Timer Register)	R=W	0x28
0x4104	PMNR (PPP Link Control Protocol Magic number Register)	R=W	0x00
0x4108	PHARO (PPPoE Hardware Address Register on PPPoE)	R=W	0x00
0x4109	PHAR1	R=W	0x00
0x410A	PHAR2	R=W	0x00
0x410B	PHAR3	R=W	0x00
0x410C	PHAR4	R=W	0x00
0x410D	PHAR5	R=W	0x00
0x4110	PSIDRO (PPPoE Session ID Register)	R=W	0x00
0x4111	PSIDR1	R=W	0x00
0x4114	PMRURO (PPPoE Maximum Receive Unit Register)	R=W	0xFF
0x4115	PMRUR1	R=W	0xFF
0x4120	SHAR0 (Source Hardware Address Register)		0x00
0x4121	SHAR1	R=W	0x00
0x4122	SHAR2	R=W	0x00
0x4123	SHAR3	R=W	0x00
0x4124	SHAR4	R=W	0x00
0x4125	SHAR5	R=W	0x00
0x4130	GARO (Gateway IP Address Register)	R=W	0x00
0x4131	GAR1	R=W	0x00
0x4132	GAR2	R=W	0x00
0x4133	GAR3	R=W	0x00
0x4134	SUBRO (Subnet Mask Register)	R=W	0x00
0x4135	SUBR1	R=W	0x00
0x4136	SUBR2		0x00
0x4137	SUBR3	R=W	0x00
0x4138	SIPRO (IPv4 Source Address Register)	R=W	0x00
0x4139	SIPR1	R=W	0x00
0x413A	SIPR2	R=W	0x00
0x413B	SIPR3	R=W	0x00
	<u> </u>		<u> </u>

0x4140	LLARO (Link Local Address Register)	R=W	0x00
0x4141	LLAR1	R=W	0x00
0x4142	LLAR2	R=W	0x00
0x4143	LLAR3	R=W	0x00
0x4144	LLAR4	R=W	0x00
0x4145	LLAR5	R=W	0x00
0x4146	LLAR6	R=W	0x00
0x4147	LLAR7	R=W	0x00
0x4148	LLAR8	R=W	0x00
0x4149	LLAR9	R=W	0x00
0x414A	LLAR10	R=W	0x00
0x414B	LLAR11	R=W	0x00
0x414C	LLAR12	R=W	0x00
0x414D	LLAR13	R=W	0x00
0x414E	LLAR14	R=W	0x00
0x414F	LLAR15	R=W	0x00
0x4150	GUARO (Global Unicast Address Register)	R=W	0x00
0x4151	GUAR1	R=W	0x00
0x4152	GUAR2	R=W	0x00
0x4153	GUAR3	R=W	0x00
0x4154	GUAR4	R=W	0x00
0x4155	GUAR5	R=W	0x00
0x4156	GUAR6	R=W	0x00
0x4157	GUAR7	R=W	0x00
0x4158	GUAR8	R=W	0x00
0x4159	GUAR9	R=W	0x00
0x415A	GUAR10	R=W	0x00
0x415B	GUAR11	R=W	0x00
0x415C	GUAR12	R=W	0x00
0x415D	GUAR13	R=W	0x00
0x415E	GUAR14	R=W	0x00
0x415F	GUAR15	R=W	0x00
0x4160	SUB6R0 (IPv6 Subnet Prefix Register)	R=W	0x00
0x4161	SUB6R1	R=W	0x00
0x4162	SUB6R2	R=W	0x00

0x4163	SUB6R3	R=W	0x00
0x4164	SUB6R4	R=W	0x00
0x4165	SUB6R5	R=W	0x00
0x4166	SUB6R6	R=W	0x00
0x4167	SUB6R7	R=W	0x00
0x4168	SUB6R8	R=W	0x00
0x4169	SUB6R9	R=W	0x00
0x416A	SUB6R10	R=W	0x00
0x416B	SUB6R11	R=W	0x00
0x416C	SUB6R12	R=W	0x00
0x416D	SUB6R13	R=W	0x00
0x416E	SUB6R14	R=W	0x00
0x416F	SUB6R15	R=W	0x00
0x4170	GA6R0 (IPv6 Gateway Address Register)	R=W	0x00
0x4171	GA6R1	R=W	0x00
0x4172	GA6R2	R=W	0x00
0x4173	GA6R3	R=W	0x00
0x4174	GA6R4	R=W	0x00
0x4175	GA6R5	R=W	0x00
0x4176	GA6R6	R=W	0x00
0x4177	GA6R7	R=W	0x00
0x4178	GA6R8	R=W	0x00
0x4179	GA6R9	R=W	0x00
0x417A	GA6R10	R=W	0x00
0x417B	GA6R11	R=W	0x00
0x417C	GA6R12	R=W	0x00
0x417D	GA6R13	R=W	0x00
0x417E	GA6R14	R=W	0x00
0x417F	GA6R15	R=W	0x00
0x4180	SLDIP6R0 (SOCKET-less Destination IPv6 Address Register)	R=W	0x00
0x4181	SLDIP6R1	R=W	0x00
0x4182	SLDIP6R2	R=W	0x00
0x4183	SLDIP6R3	R=W	0x00
0x4184	SLDIP6R4	R=W	0x00
0x4185	SLDIP6R5	R=W	0x00
-	I		<u> </u>

0x4186	SLDIP6R6	R=W	0x00
0x4187	SLDIP6R7	R=W	0x00
0x4188	SLDIP6R8	R=W	0x00
0x4189	SLDIP6R9	R=W	0x00
0x418A	SLDIP6R10	R=W	0x00
0x418B	SLDIP6R11	R=W	0x00
0x418C	SLDIP6R12 / SLDIR0 (SOCKET-less Destination IPv4 Address Register)	R=W	0x00
0x418D	SLDIP6R13 / SLDIR1	R=W	0x00
0x418E	SLDIP6R14 / SLDIR2	R=W	0x00
0x418F	SLDIP6R15 / SLDIR3	R=W	0x00
0x4190	SLDHARO (SOCKET-less Destination Hardware Address Register)	RO	0x00
0x4191	SLDHAR1	RO	0x00
0x4192	SLDHAR2	RO	0x00
0x4193	SLDHAR3	RO	0x00
0x4194	SLDHAR4	RO	0x00
0x4195	SLDHAR5	RO	0x00
0x4198	PINGIDRO (PING ID Register)	R=W	0x00
0x4199	PINGIDR1	R=W	0x00
0x419C	PINGSEQR0 (PING Sequence-number Register)	R=W	0x00
0x419D	PINGSEQR1	R=W	0x00
0x41A0	UIPRO (Unreachable IP Address Register)	RO	0x00
0x41A1	UIPR1	RO	0x00
0x41A2	UIPR2	RO	0x00
0x41A3	UIPR3	RO	0x00
0x41A4	UPORTRO (Unreachable Port Register)	RO	0x00
0x41A5	UPORTR1	RO	0x00
0x41B0	UIP6R0 (Unreachable IPv6 Address Register)	RO	0x00
0x41B1	UIP6R1	RO	0x00
0x41B2	UIP6R2	RO	0x00
0x41B3	UIP6R3	RO	0x00
0x41B4	UIP6R4	RO	0x00
0x41B5	UIP6R5	RO	0x00
0x41B6	UIP6R6	RO	0x00
0x41B7	UIP6R7	RO	0x00
0x41B8	UIP6R8	RO	0x00

0x41B9	UIP6R9	RO	0x00
0x41BA	UIP6R10	RO	0x00
0x41BB	UIP6R11	RO	0x00
0x41BC	UIP6R12	RO	0x00
0x41BD	UIP6R13	RO	0x00
0x41BE	UIP6R14	RO	0x00
0x41BF	UIP6R15	RO	0x00
0x41C0	UPORT6R0 (Unreachable IPv6 Port Register)	RO	0x00
0x41C1	UPORT6R1	RO	0x00
0x41C5	INTPTMR0 (Interrupt Pending Time Register)	R=W	0x00
0x41C6	INTPTMR1	R=W	0x00
0x41D0	PLR (Prefix Length Register)	RO	0x00
0x41D4	PFR (Prefix Flag Register)	RO	0x00
0x41D8	VLTR0 (Valid Life Time Register)	RO	0x00
0x41D9	VLTR1	RO	0x00
0x41DA	VLTR2	RO	0x00
0x41DB	VLTR3	RO	0x00
0x41DC	PLTR0 (Preferred Life Time Register)	RO	0x00
0x41DD	PLTR1	RO	0x00
0x41DE	PLTR2	RO	0x00
0x41DF	PLTR3	RO	0x00
0x41E0	PARO (Prefix Address Register)	RO	0x00
0x41E1	PAR1	RO	0x00
0x41E2	PAR2	RO	0x00
0x41E3	PAR3	RO	0x00
0x41E4	PAR4	RO	0x00
0x41E5	PAR5	RO	0x00
0x41E6	PAR6	RO	0x00
0x41E7	PAR7	RO	0x00
0x41E8	PAR8	RO	0x00
0x41E9	PAR9	RO	0x00
0x41EA	PAR10	RO	0x00
0x41EB	PAR11	RO	0x00
0x41EC	PAR12	RO	0x00
0x41ED	PAR13	RO	0x00

0x41EE	PAR14	RO	0x00
0x41EF	PAR15	RO	0x00
0x41F0	ICMP6BLKR (ICMPv6 Block Register)	R=W	0x00
0x41F4	CHPLCKR (Chip Lock Register)	WO	0x00
0x41F5	NETLCKR (Network Lock Register)	WO	0x00
0x41F6	PHYLCKR (PHY Lock Register)	WO	0x00
0x4200	RTR0 (Retransmission Time Register)	R=W	0x07
0x4201	RTR1	R=W	0xD0
0x4204	RCR (Retransmission Count Register)	R=W	0x08
0x4208	SLRTR0 (SOCKET-less Retransmission Time Register)	R=W	0x07
0x4209	SLRTR1	R=W	0xD0
0x420C	SLRCR (SOCKET-less Retransmission Count Register)	R=W	0x00
0x420F	SLHOPR (Hop limit Register)	R=W	0x80

3.2 **SOCKET Register**

Offset	Register	Туре	Reset
0x0000	Sn_MR (SOCKET n Mode Register)	R=W	0x00
0x0004	Sn_PSR (SOCKET n Prefer Source IPv6 Address Register)	R=W	0x00
0x0010	Sn_CR (SOCKET n Command Register)	RW,AC	0x00
0x0020	Sn_IR (SOCKET n Interrupt Register)	wo	0x00
0x0024	Sn_IMR (SOCKET n Interrupt Mask Register)	R=W	0xFF
0x0028	Sn_IRCLR (Sn_IR Clear Register)	wo	0x00
0x0030	Sn_SR (SOCKET n Status Register)	RO	0x00
0x0031	Sn_ESR (SOCKET n Extension Status Register)	RO	0x00
0x0100	Sn_PNR (SOCKET n IP Protocol Number Register)	R=W	0x00
0x0104	Sn_TOSR (SOCKET n IP Type Of Service Register)	R=W	0x00
0x0108	Sn_TTLR (SOCKET n IP Time To Live Register)	R=W	0x80
0x010C	Sn_FRGR0 (SOCKET n Fragment Offset in IP Header Register)	R=W	0x40
0x010D	Sn_FRGR1	R=W	0x00
0x0110	Sn_MSSR0 (SOCKET n Maximum Segment Size Register)	RW	0x00
0x0111	Sn_MSSR1	RW	0x00
0x0114	Sn_PORTR0 (SOCKET n Source Port Register)	R=W	0x00
0x0115	Sn_PORTR1	R=W	0x00
0x0118	Sn_DHAR0 (SOCKET n Destination Hardware Address Register)	RW	0x00
0x0119	Sn_DHAR1	RW	0x00
0x011A	Sn_DHAR2	RW	0x00
0x011B	Sn_DHAR3	RW	0x00
0x011C	Sn_DHAR4	RW	0x00
0x011D	Sn_DHAR5	RW	0x00
0x0120	Sn_DIPR0 (SOCKET n Destination IPv4 Address Register)	RW	0x00
0x0121	Sn_DIPR1	RW	0x00
0x0122	Sn_DIPR2		0x00
0x0123	Sn_DIPR3		0x00
0x0130	Sn_DIP6R0 (SOCKET n Destination IPv6 Address Register)		0x00
0x0131	Sn_DIP6R1		0x00
0x0132	Sn_DIP6R2	RW	0x00
0x0133	Sn_DIP6R3	RW	0x00
0x0134	Sn_DIP6R4	RW	0x00

0x0135	Sn_DIP6R5	RW	0x00
0x0136	Sn_DIP6R6	RW	0x00
0x0137	Sn_DIP6R7	RW	0x00
0x0138	Sn_DIP6R8	RW	0x00
0x0139	Sn_DIP6R9	RW	0x00
0x013A	Sn_DIP6R10	RW	0x00
0x013B	Sn_DIP6R11	RW	0x00
0x013C	Sn_DIP6R12	RW	0x00
0x013D	Sn_DIP6R13	RW	0x00
0x013E	Sn_DIP6R14	RW	0x00
0x013F	Sn_DIP6R15	RW	0x00
0x0140	Sn_DPORTRO (SOCKET n Destination Port Register)	RW	0x00
0x0141	Sn_DPORTR1	RW	0x00
0x0144	Sn_MR2 (SOCKET n Mode Register 2)	R=W	0x00
0x0180	Sn_RTR0 (SOCKET n Retransmission Time Register)	RW	0x00
0x0181	Sn_RTR1		0x00
0x0184	Sn_RCR (SOCKET n Retransmission Count Register)	RW	0x00
0x0188	Sn_KPALVTR (SOCKET n Keep Alive Time Register)	R=W	0x00
0x0200	Sn_TX_BSR (SOCKET n TX Buffer Size Register)	R=W	0x02
0x0204	Sn_TX_FSR0 (SOCKET n TX Free Size Register)	RO	0x08
0x0205	Sn_TX_FSR1	RO	0x00
0x0208	Sn_TX_RD0 (SOCKET n TX Read Pointer Register)	RO	0x00
0x0209	Sn_TX_RD1	RO	0x00
0x020C	Sn_TX_WR0 (SOCKET n TX Write Pointer Register)	RW	0x00
0x020D	Sn_TX_WR1	RW	0x00
0x0220	Sn_RX_BSR (SOCKET n RX Buffer Size Register)		0x02
0x0224	Sn_RX_RSR0 (SOCKET n RX Received Size Register)		0x00
0x0225	Sn_RX_RSR1		0x00
0x0228	Sn_RX_RD0 (SOCKET n RX Read Pointer Register)		0x00
0x0229	Sn_RX_RD1	RW	0x00
0x022C	Sn_RX_WR0 (SOCKET n RX Write Pointer Register)	RO	0x00
0x022D	Sn_RX_WR1	RO	0x00

4 Register Descriptions

Register Notation

- * Register Symbol (Register full Name)
 - [Register Type, Register Type, ...][Address Offset][Reset Value] Register Description....

7	6	5	4	3	2	1	0
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Bit Type							

Sn_IR[3:0]은 Register Symbol[Upper bit : Lower bit]를 나타낸다.

Sn_IR[3:0] = "0001"은 Sn_IR[3]='0', Sn_IR[2]='0', Sn_IR[1]='0', Sn_IR[0]='1'을 나타낸다.

[Register/bit Type]: Register 의 Type 을 나타낸다.

- [RW] : Read 와 Write 모두 가능한 Register/bit

- [R=W]: Write 한 값과 Read 한 값이 같은 Register/bit

[RO] : Read Only Register/bit
[WO] : Write Only Register/bit
[W] : Write Only Register/bit

- [WC] : Write '1'을 해야 Clear 되는 Register/Bit - [W0] : Register/bit Should be written to only '0'

[W1] : Register/bit Should be written to only '1'

- [AC] : Auto Clear Register/bit

[1] : Always read '1'
 [0] : Always read '0'
 [-] : Not available

[Address Offset]: 레지스터의 Address Offset 을 나타낸다.

[Reset Value]: Default Value.

Ex1) 4.1.28 NETMR (Network Mode Register)

[R=W][0x4008][0x00]

NETMR 은 각 종 Block Mode 와 WOL 을 설정한다.

7	6	5	4	3	2	1	0
-	-	ANB	M6B		WOL	IP6B	IP4B
		R=W	R=W		R=W	R=W	R=W

Ex2) NETMR[ANB]

NETMR 의 ANB bit

Ex3) NETMR[7:0]

NETMR 의 7th bit 부터 0th bit

4.1 Common Registers

4.1.1 CIDR (Chip Identification Register) [R0][0x0000-0x0001] [0x6100]

CHIP ID 는 0x6100 이다.

CIDR0(0x0000)	CIDR1(0x0001)
0x61	0x00

4.1.2 VER (Version Register) [R0][0x0002~0x0003] [0x4661]

Version 은 0x4661 이다.

VER0(0x0002)	VER1(0x0003)
0x46	0x61

4.1.3 SYSR (System Status Register) [R0][0x2000] [0xEU]

CHIP/NET/PHY Configuration Lock 정보와 HOST Interface Mode 를 보여준다.

7	6	5	4	3	2	1	0
CHPL	NETL	PHYL	-	-	-	IND	SPI
RO	RO	RO				RO	RO

Bit	Symbol	Descrip	Description						
7	CHPL	CHPLC	CHIP Lock Status CHPLCKR(Chip Configuration Lock Register)에 의해 설정된다. 0: Unlock - SYCR0 & SYCR1 설정 가능 1: Lock - SYCR0 & SYCR1 (System Configuration Register) 설정 불가						
6	NETL	NET Lock Status NETLCKR(Network Configuration Lock Register)에 의해 설정된 0: Unlock - Network Configuration Registers 설정 가능 1: Lock - Network Configuration Registers 설정 불가 NETL 참조) Network Configuration Registers to be locked by NETL							
	NETE		IPv4	SHAR GAR SUBR SIPR	Source Hardware Address Register Gateway IP Address Register Subnet Mask Register Source IP Address Register				
	Link Local Address Register								

			GUAR	Global Unicast Address Register			
			SUB6R	IPv6 Subnet Prefix Register			
			GA6R	IPv6 Gateway IP Address It is excluded from lock mechanism			
		* CAUTION : GA6R 은 NETL 에 무관하게 설정가능하다.					
		PHY Lock Status PHYLCKR(PHY Configuration Lock Register)에 의해 설정된다.					
5	PHYL	0: Unlock - PHYCRO, PHYCR1 설정 가능					
			gister (PHYCR0, PHYCR1) 설정 불가				
[4:2]	-	Reserved					
1	IND	Parallel Bus Interface Mode 0: others 1: PIN MODE[3:0] = "010X"					
0	SPI	SPI Interface Mode 0: others 1: PIN MODE[3:0] = "000X"					

4.1.4 SYCR0 (System Config Register 0) [w0][0x2004] [0x80]

SYCRO 은 Software reset 을 수행한다.

SYCRO은 SYSR[CHPL] = '0' 일 경우 제어가 가능하다.

_	7	6	5	4	3	2	1	0
	RST	-	-	-	-	-	-	-
	WO							

Bit	Symbol	Description
		Software Reset
		W6100 S/W Reset. 모든 Register 가 초기화된다.
7	RST	
		0 : W6100 Reset
		1 : Normal operation
[6:0]	-	Reserved

4.1.5 SYCR1 (System Config Register 1) [R=W][0x2005] [0x80]

SYCR1 을 통해 Interrupt Enable 과 System Operation Clock(SYS_CLK)을 설정할 수 있다.

7	6	5	4	3	2	1	0
IEN	-	-	-	-	-	-	CLKSEL
R=W							R=W

Bit	Symbol	Description
		Interrupt Enable
		INTn Enable bit 이다.
7	IEN	
		0 : Disable - INTn 은 항상 High 이다.
		1 : Enable - 해당 Event 발생시 INTn 은 Low 가 된다.
[6:1]	-	Reserved
		System Operation Clock Select
		SYSR[CHPL] = '0' 인 경우, SYS_CLK 를 선택한다.
0	CLKSEL	
		0:100MHz
		1:25MHz

4.1.6 TCNTR (Tick Counter Register) [R0][0x2016-0x2017][0x0000]

100us TICK 을 Count 한 값이 설정된다.

4.1.7 TCNTRCLR (TCNTR Clear Register)

[WO][0x2020][0x00]

TCNTRCLR 에 임의의 값을 Write 할 경우 TCNTR 을 Clear 한다.

4.1.8 IR (Interrupt Register) [RO] [0x2100] [0x00]

IR 은 WOL(Wake On LAN), Destination Unreachable 과 같은 Event 발생했을 경우 해당 bit 가 1 로 설정된다.

7	6	5	4	3	2	1	0
WOL			UNR6		IPCONF	UNR4	PTERM
RO			RO		RO	RO	RO

Bit	Symbol	Description
7	WOL	WOL(Wake On LAN) Magic Packet 0 : Others 1 : WOL MAGIC Packet 수신
[6:5]	-	Reserved
4	UNR6	Destination IPv6 Port Unreachable 0 : Others 1 : ICMPv6 Destination Port Unreachable Packet 수신

		참조) 수신한 Unreachable Packet 의 Unreachable IPv6 Address 와 Port
		Number 는 각각 UIP6R (Unreachable IPv6 Address Register) 과 UPORT6R
		(Unreachable IPv6 Port Register)에 저장된다.
3	-	Reserved
2	IPCONF	IP Conflict 0: Others
		1: IPv4 Address Conflict 발생
	UNR4	Destination IPv6 Port Unreachable 0 : Others 1: ICMPv4 Destination Port Unreachable Packet 수신
1		참조) 수신한 Unreachable Packet 의 Unreachable IP Address 와 Port Number 는 각각 UIPR (Unreachable IP Address Register)과 UPORTR (Unreachable Port Register)에 저장된다.
0	PTERM	PPPoE Terminated 0: Others 1: PPPoE 에서 PPPT 또는 LCPT Packet 수신하여 PPPoE 연결이 종료 된 경우

4.1.9 SIR (SOCKET Interrupt Register) [RO] [0x2101] [0x00]

SOCKET n Event 가 발생할 경우 '1'로 설정된다.

 7	6	5	4	3	2	1	0
S7_INT	S6_INT	S5_INT	S4_INT	S3_INT	S2_INT	S1_INT	S0_INT
RO							

Bit	Symbol	Description		
	3.1	Socket n Interrupt		
[7:0]		0 : Sn_IR 이 '0'인 경우		
		1 : Sn_IR 이 '0'이 아닌 경우		

4.1.10 SLIR (SOCKET-less Interrupt Register) [R0] [0x2102] [0x00]

SLCR(SOCKET-less Command Register)의 해당 Command 가 성공적으로 수행되거나, 수행된 Command 에 대한 Timeout 이 발생하거나, IPv6 Gateway(Router)로부터 ICMPv6 RA Packet 을 수신한 경우 해당 bit 가 설정된다.

7	6	5	4	3	2	1	0
TOUT	ARP4	PING4	ARP6	PING6	NS	RS	RA
RO	RO	RO	RO	RO	RO	RO	RO

Bit	Symbol	Description				
7	TOUT	Timeout Interrupt 0 : Others 1 : 임의의 SLCR Command 후 TIMEOUT 발생				
6	ARP4	ARP Interrupt 0 : Others 1 : SLCR 의 ARP Command 수행 후 ARP Reply 수신				
5	PING4	PING Interrupt 0 : Others 1 : SLCR 의 PING Command 수행 후 PING Reply 수신				
4	ARP6	IPv6 ARP Interrupt 0 : Others 1 : SLCR 의 ARP6 Command 수행 후 ARP6 Reply 수신				
3	PING6	IPv6 PING Interrupt 0 : Others 1 : SLCR 의 PING6 Command 수행 후 PING6 Reply 수신				
2	NS	DAD NS Interrupt 0: Others 1: SLCR 의 DAD(Duplicated Address Detection) NS Command 를 수행후 NA 수신 참조) NS bit 는 IPv6 Address Confliction Detection 에 활용된다.				
1	RS	Auto configuration RS Interrupt 0 : Others 1 : SLCR 의 RS Command 수행 후 RA 수신				
0	RA	RA Receive Interrupt 0: Others 1: IPv6 Gateway 로부터 All-node RA 수신				

SLIR[RS] = '1' 또는 SLIR[RA] = '1' 인 경우, RA Packet 에 대한 정보는 다음과 같이 Register 에 저장되며, IPv6 Auto-configuration 에 활용될 수 있다.

- PLR (Prefix Length Register)
- PFR (Prefix Flag Register)
- VLTR (RA Valid Life Time Register)
- PLTR (RA Preferred Life Time Register)
- PAR (Prefix Address Register)

* CAUTION: 수신된 RA message 의 첫 번째 Option 이 Source link-layer address(0x01) 두번째 Option 이 Prefix information Option(0x03) 인 경우만 상기 Register 이 제대로 설정된다. 그렇지 않은 경우는 IPRAW6 Mode SOCKET 을 이용하여 RA message 를 수신하여 해당 정보를 처리한다.

4.1.11 IMR (Interrupt Mask Register) [R=W] [0x2104] [0x00]

IMR 은 IR 에 1:1 대응되는 bit 를 Mask 한다.

7	6	5	4	3	2	1	0
WOL			UNR6		IPCONF	UNR4	PTERM
R=W			R=W		R=W	R=W	R=W

Bit	Symbol	Description
		WOL(Wake On LAN) Magic Packet Interrupt Mask
7	WOL	0 : Disable WOL Interrupt
		1 : Enable WOL Interrupt
[6:5]	-	Reserved
		Destination Port Unreachable IPv6 Interrupt Mask
4	UNR6	0 : Disable UNREACH6 Interrupt
		1 : Enable UNREACH6 Interrupt
3	-	Reserved
		IPv4 Conflict Interrupt Mask
2	IPCONF	1 : Enable CONFLICT Interrupt
		0 : Disable CONFLICT Interrupt
		Destination Port Unreachable Interrupt Mask
1	UNR4	1 : Enable UNREACH Interrupt
		0 : Disable UNREACH Interrupt
		PPPoE Terminated Interrupt Mask
0	PTERM	1 : Enable PPPTERM Interrupt
		0 : Disable PPPTERM Interrupt

4.1.12 IRCLR (IR Clear Register) [W1] [0x2108] [0x00]

IR의 특정 bit에 1:1 대응되는 IRCLR Bit를 '1'로 Write할 경우 해당 IR Bit가 Clear 된다.

7	6	5	4	3	2	1	0
WOL			UNR6		IPCONF	UNR4	PTERM
W1			W1		W1	W1	W1

4.1.13 SIMR (SOCKET Interrupt Mask Register) [R=W] [0x2114] [0x00]

SIMR 은 SIR 에 1:1로 대응되는 bit 를 Mask 한다.

7	6	5	4	3	2	1	0
S7_INT	S6_INT	S5_INT	S4_INT	S3_INT	S2_INT	S1_INT	SO_INT
R=W							

Bit	Symbol	Description			
[7:0]	Sn_INT	Socket n Interrupt Mask 1 : Enable Socket n Interrupt 0 : Disable Socket n Interrupt			

4.1.14 SLIMR (SOCKET-less Interrupt Mask Register) [R=W] [0x2124] [0x00]

SLIMR 은 SLIR 에 1:1 로 대응되는 bit 를 Mask 한다.

7	6	5	4	3	2	1	0
TOUT	ARP4	PING4	ARP6	PING6	NS	RS	RA
R=W	R=W	R=W	R=W	R=W	R=W	R=W	R=W

Bit	Symbol	Description			
7	TIMEOUT Interrupt Mask TOUT 1: Enable TIMEOUT Interrupt 0: Disable TIMEOUT Interrupt				
6	ARP4	ARP Interrupt Mask 1 : Enable ARP4 Interrupt 0 : Disable ARP4 Interrupt			
5	PING4	PING Interrupt Mask 1 : Enable PING4 Interrupt 0 : Disable PING4 Interrupt			
4	ARP6	IPv6 ARP Interrupt Mask 1 : Enable ARPv6 Interrupt 0 : Disable ARPv6 Interrupt			
3	PING6	IPv6 PING Interrupt Mask 1 : Enable PINGv6 Interrupt 0 : Disable PINGv6 Interrupt			
2	NS	DAD NS Interrupt Mask 1 : Enable DAD NS Interrupt 0 : Disable DAD NS Interrupt			
1	RS	Auto configuration RS Interrupt Mask 1 : Enable AUTO RS Interrupt 0 : Disable AUTO RS Interrupt			
0	RA	RA Receive Interrupt Mask 1 : Enable RA RECV Interrupt 0 : Disable RA RECV Interrupt			

4.1.15 SLIRCLR (SLIR Clear Register)

[W1] [0x2128] [0x00]

SLIRCLR 내의 특정 Bit 를 '1'로 Write 할 경우 1:1 로 매칭되는 SLIR bit 를 Clear 한다.

7	6	5	4	3	2	1	0
TOUT	ARP4	PING4	ARP6	PING6	NS	RS	RA
W1	W1	W1	W1	W1	W1	W1	W1

4.1.16 SLPSR (SOCKET-less Prefer Source IPv6 Address Register) [R=W] [0x212C] [0x00]

SLPSR 은 SLCR(SOCKET-less Command Register)을 통해 전송되는 IPv6 Packet 의 Source Address 를 설정한다.

Value	Symbol	Description
		Destination IPv6 Address(Sn_DIP6R (SOCKET n Destination IPv6
		Address Register))에 따라 Source IPv6 Address(SIP6)를 선택한다.
0x00	AUTO	
		SLDIP6R 이 LLA 이면 SIP6 은 LLAR 로 설정
		SLDIP6R 이 GUA 이면 SIP6 은 GUAR 로 설정
0x02	LLA	SIP6 은 LLAR 로 고정된다.
0x03	GUA	SIP6 은 GUAR 로 고정된다.

4.1.17 SLCR (SOCKET-less Command Register) [RW, AC] [0x2130] [0x00]

SLCR 은 SOCKET 없이 특정 Packet 을 전송하는 Command 를 수행한다. Command 는 수행 완료 후 Auto Clear 되며, Auto Clear 전에 다른 Command 를 수행할 수 없다. Command 수행 결과는 SLIR(SOCKET-less Interrupt Register)로 확인한다.

7	6	5	4	3	2	1	0
-	ARP4	PING4	ARP6	PING6	NS	RS	UNA
	RW	RW	RW	RW	RW	RW	RW

Bit	Symbol	Description		
7	-	Reserved		
6	ARP4	ARP Request Transmission Command		
		1 : ARP Request 를 전송한다.		
		0 : Ready		
5	PING4	IPv4 PING Request Transmission Command		
		1 : PING Request 를 전송한다.		
		0 : Ready		
4	ARP6	NS ARP Transmission Command		
		1 : NS ARP 전송한다.		
		0: Ready		
3	PING6	IPv6 PING Request Transmission Command		
		1 : IPv6 PING Request 를 전송한다.		
		0: Ready		
2	NS	NS Transmission Command for DAD		
		1 : DAD 용 NS packet 을 전송한다.		
		0 : Ready		

		Auto configuration RS Transmission Command
1	RS	1 : RS packet 을 전송한다.
		0: Ready
		Unsolicited NA Transmission Command
0	UNA	1 : Unsolicited NA packet 을 전송한다.
		0 : Ready

4.1.18 PHYSR (PHY Status Register) [RO] [0x3000] [0x00]

PHYSR 은 PHYCRO(PHY Control Register 0)을 통해 설정된 PHY Operation Mode 와 LINK 상태를 확인한다.

7	6	5	4	3	2	1	0
САВ	-	MODE2	MODE1	MODE0	DPX	SPD	LNK
RO		RO	RO	RO	RO	RO	RO

Bit	Symbol	Descr	Description								
7	САВ	1 : Ca	Cable OFF bit 1 : Cable Unplugged 0 : Cable Plugged								
6	-	Reser	ved								
		PHY (PHY OPMODE								
			MODE2	MODE1	MODE0	Description					
			0	Х	Х	Auto Negotiation					
[5:3]	MODE [2:0]		1	0	0	100BASE-TX FDX					
			1	0	1	100BASE-TX HDX					
			1	1	0	10BASE-T FDX					
				1	1	10BASE-T HDX					
2	DPX	Flag Duplex bit (When Link Up) 1: Half Duplex									
			0 : Full Duplex Flag Speed bit (When Link Up)								
1 SPD 1:10Mbps											
0	LNK	Flag L 1 : Lir	0: 100Mbps Flag Link bit 1: Link Up 0: Link Down								

4.1.19 PHYRAR (PHY Register Address Register) [R=W] [0x3008] [0x00]

PHYRAR 은 내장된 Ethernet PHY 의 Register Address 를 설정한다.

7	6	5	4	3	2	1	0
-	-	-	A4	A3	A2	A1	Α0
			R=W	R=W	R=W	R=W	R=W

Bit	Symbol	Description
[7:5]	-	Reserved
[4:0]	ADDR [4:0]	PHY Register Address PHY Register Address 를 설정

4.1.20 PHYDIR (PHY Data Input Register)

[R=W] [0x300C-0x300D] [0x0000]

PHYDIR은 PHYRAR로 지정된 PHY Register 값을 설정한다.

Ex) PHYDIR = 0x1234

PHYDIR0(0x300C)	PHYDIR1(0x300D)			
0x34	0x12			

4.1.21 PHYDOR (PHY Data Output Register) [R0] [0x3010-0x3011] [0x0000]

PHYDOR 은 PHYRAR 로 지정된 PHY Register 값을 Read 한다.

Ex) PHYDOR = 0x1234

PHYDOR0(0x0042)	PHYDPR1(0x0043)				
0x34	0x12				

4.1.22 PHYACR (PHY Access Control Register) [RW, AC] [0x3014] [0x00]

PHYACR 은 PHYRAR 로 지정된 PHY Register 를 PHYDIR 이나 PHYDOR 를 통해 Access 한다. Access 완료 후 PHYACR 은 자동으로 Clear 된다.

Access Type	Value	related Register		
Write	0x01	PHYDIR		
Read	0x02	PHYDOR		

4.1.23 PHYDIVR (PHY Division Register)

[R=W] [0x3018] [0x01]

내장 Ethernet PHY 제어를 위해 System Operation Clock(SYS_CLK)에서 분주된 Clock을 사용하며, 분주 Clock은 2.5MHz를 초과하지 않도록 주의한다.

Value	Divider	SYS_CLK=100MHz	SYS_CLK=25MH		
0x00	1/32	3.125MHz (N/A)	781.25KHz		
0x01	1 1/64 1.5625MHz		390.625KHz		
Others	1/128	781.25KHz	195.3125KHz		

4.1.24 PHYCR0 (PHY Control Register 0) [WO] [0x301C] [0x00]

PHYCRO 는 SYSR[PHYL] = '0'((PHYLCKR(PHY Lock Register)가 Unlock 상태)인 경우, Ethernet PHY Operation Mode 를 설정한다. PHYCRO 를 통해 설정된 bits 는 PHYSR [5:3]로 확인한다.

7	7	6	5	4	3	2	1	0
		-	-	-	-	MODE2	MODE1	MODE0
						WO	WO	WO

Bit	Symbol	Description	Description							
[7:3]	-	Reserved	Reserved							
	MODE	MODE	MODE2	MODE1	MODE0	Description				
			0	х	х	Auto Negotiation				
[2:0]			1	0	0	100BASE-TX FDX				
[2.0]			1	0	1	100BASE-TX HDX				
			1	1	0	10BASE-TX FDX				
			1	1	1	10BASE-TX HDX				

4.1.25 PHYCR1 (PHY Control Register 1)

[R=W] [0x301D] [0x40]

PHYCR1 은 SYSR[PHYL] = '0'((PHYLCKR(PHY Lock Register)이 Unlock 상태)인 경우, PHY Power down Mode, PHY HW Reset 을 설정한다.

7	6	5	4	3	2	1	0
-	-	PWDN	-	TE	-		RST
-	-	R=W	-	R=W	-	-	AC

Bit	Symbol	Description
7	-	Reserved
6	-	Should be always written by '1'
5	PWDN	PHY Power Down 0 : Disable Power Down Mode SYS_CLK 은 SYCR1[CLKSEL] 설정에 따라 변경된다.

			SYCR1[CLKSEL]	SYS_CLK					
			0	100 MHz					
			1	25 MHz					
		1 : Enable Powe SYS_CLK 은 2 참조) 8.4.1 Rese	5MHz로 자동 변경	된다.					
4	-	Reserved	Reserved						
3	TE	10BASE-Te MODE PHYSR[MODE2:MODE0] = '000' 일 경우에만 유효하다. 0 : Disable 10BASE-Te MODE 1 : Enable 10BASE-Te MODE							
[2:1]	-	Reserved							
0	RST	PHY Reset PHY HW Reset 시, SYS_CLK 은 25MHz 로 변경된다. Reset 이 완료되었을 경우, 이 bit 는 Auto-clear 되고, SYS_CLK 은 이전 설정 Clock 으로 복구된다. 참조) 8.4.1 Reset Timing 0: Normal Operation 1: PHY HW Reset							

4.1.26 NET4MR (Network IPv4 Mode Register) [R=W] [0x4000] [0x00]

NET4MR 은 IPv4 와 관련한 Network Mode 를 설정한다.

7	6	5	4	3	2	1	0
-	-	-	-	UNRB	PARP	RSTB	РВ
-	-	-	-	R=W	R=W	R=W	R=W

Bit	Symbol	Description
[7:4]	-	Reserved
		UDP4 Port Unreachable Packet Block
		설정되지 않은 Port number 의 SOCKET 으로 UDP4 Packet 을 전송할
	UNRB	경우, Destination Port Unreachable Packet 을 전송하는데 이는 UDP
3		Port scan 방식의 공격대상이 된다. 이를 방지하기 위해서
		Unreachable Packet 전송을 Block 할 수 있다.
		0: Unblock
		1: Block
2	PARP	ARPv4 for PINGv4 Reply

		PINGv4 Reply 전송 전에 ARPv4를 수행할 수 있는데, 이 bit 는 해당
		기능의 설정/해제를 지정한다.
		0: Disable
		1 : Enable
		TCP4 RST Packet Block
		지정한 Port number 로 Listen 하는 SOCKET 없는 시스템에 SYN
		Packet 을 전송할 경우, 해당 시스템은 RST Packet 을 전송하는데
1	RSTB	이는 TCP Port Scan 방식의 공격 대상이 될 수 있다. 이를 방지하기
		위해서 RST Packet 전송을 Block 할 수 있다.
		0 : Unblock
		1 : Block
		PINGv4 Reply Block
		PINGv4 Request 에 대한 Reply 를 전송하지 않도록 지정할 수 있다.
0	PB	
		0 : Unblock
		1: Block

4.1.27 NET6MR (Network IPv6 Mode Register) [R=W] [0x4004] [0x00]

NET6MR 은 IPv6 와 관련한 Network Mode 를 설정한다.

7	6	5	4	3	2	1	0
-	-	-	-	UNRB	PARP	RSTB	РВ
-	-	-	-	R=W	R=W	R=W	R=W

Bit	Symbol	Description
[7:4]	-	Reserved
3	UNRB	UDP6 Port Unreachable Packet Block 준비되지 않은 Port number 로 UDP6 Packet 을 전송할 경우, Destination Port Unreachable Packet 을 전송하는데 이는 UDP Port scan 방식의 공격대상이 될 수 있다. 이를 방지하기 위해서 Unreachable Packet 전송을 Block 할 수 있다. 0: Unblock 1: Block
2	PARP	ARPv6 for PINGv6 Reply PINGv6 Reply 전송 전에 ARPv6(ND -Neighbor Discovery) Process 을 수행하도록 지정한다. 0: Disable 1: Enable

		TCP6 RST Packet Block
		지정한 Port number 로 Listen 하지 않는 시스템에 SYN Packet 을
		전송할 경우, 해당 시스템은 RST Packet 을 전송하는데 이는 TCP
1	RSTB	Port Scan 방식의 공격 대상이 될 수 있다. 이를 방지하기 위해서
		RST Packet 전송을 Block 할 수 있다.
		0: Unblock
		1 : Block
		PINGv6 Reply Block
		PINGv6 Request 에 대한 Reply 를 전송하지 않도록 지정한다.
0	PB	
		0 : Unblock
		1: Block

4.1.28 NETMR (Network Mode Register) [R=W] [0x4008] [0x00]

NETMR 은 각 종 Block mode 와 WOL 을 설정한다.

7	6	5	4	3	2	1	0
-	-	ANB	M6B	-	WOL	IP6B	IP4B
-	-	R=W	R=W	-	R=W	R=W	R=W

Bit	Symbol	Description
[7:6]	_	Reserved
		Should be always '0'.
		IPv6 ALLNODE Block
		All-Node Multicasting address 를 갖는 PING6-Request 를 block 한다.
5	ANB	
		0 : Disable
		1 : Enable
		IPv6 Multicast Block5
	M6B	자신이 속한 Multicasting Group Address 를 갖는 PING6-Request 를
4		block 한다.
		0 : Disable
		1 : Enable
3		Reserved
3	-	Should be always '0'
		WOL(Wake On LAN)
2	WOL	0 : Disable
		1 : Enable

		IPv6 Packet Block
1	IP6B	0 : Unblock
		1 : Block - ANB & M6B bit 는 무시된다.
		IPv4 Packet Block
0	IP4B	0 : Unblock
		1 : Block

4.1.29 NETMR2 (Network Mode Register 2) [R=W] [0x4009] [0x00]

NETMR2 는 PPPoE Mode 를 설정한다.

7	6	5	4	3	2	1	0
DHAS	-	-	-	-	-	-	PPPoE
R=W	-	-	-	-	-	-	R=W

Bit	Symbol	Description
		Destination Hardware Address Selection in ARP/ ND process
7 DHAS 0 : Select the Ethernet Frame MAC		0 : Select the Ethernet Frame MAC
		1 : Select the ARP Target MAC
[6:1]	-	Reserved
		PPPoE Mode
0	PPPoE	0: PPP Mode disable
		1 : PPP Mode enable

4.1.30 PTMR (PPP Link Control Protocol Request Timer Register) [R=W] [0x4100] [0x28]

PTMR 은 LCP Echo Request 주기를 설정한다.

단위는 25ms 이다. PTMR 는 PPPoE Mode 인 경우, 유효하다.

Ex) PTMR = 200 (0xC8), 200 * 25ms = 5s

4.1.31 PMNR (PPP Link Control Protocol Magic number Register) [R=W] [0x4104] [0x00]

PMNR 은 LCP Negotiation Packet 의 4 Bytes Magic Number 를 설정한다.

PMNR은 PPPoE Mode 인 경우, 유효하다.

Ex) PMNR = 0x01

PMNR(0x4104)

0x01

LCP Magic number = 0x01010101

4.1.32 PHAR (PPPoE Server Hardware Address Register on PPPoE) [R=W] [0x4108-0x410D] [0x0000]

PPPoE Destination Hardware Address 를 설정한다.

PHAR 은 PPPoE Mode 인 경우, 유효하다.

Ex) PHAR = "11:22:33:AA:BB:CC"

PHAR0(0x4108)	PHAR1(0x4109)	PHAR2(0x410A)	
0x11	0x22	0x33	
PHAR3(0x410B)	PHAR4(0x410C)	PHAR5(0x410D)	
0xAA	0xBB	0xCC	

4.1.33 PSIDR (PPPoE Session ID Register on PPPoE) [R=W] [0x4110-0x4111] [0x0000]

PPPoE Session ID 를 설정한다.

PSIDR 은 PPPoE Mode 인 경우, 유효하다.

Ex) PSIDR = 0x1234

PSIDR0(0x4110)	PSIDR1(0x4111)
0x12	0x34

4.1.34 PMRUR (PPPoE Maximum Receive Unit Register) [R=W] [0x4114-0x4115] [0xFFFF]

PMRUR 은 PPPoE Mode 에서 MRU(Maximum Receive Unit)를 설정하며, 1472 보다 큰 값을 설정하면 자동으로 1472 로 설정된다. PMRUR 은 SOCKET 생성(Sn_CR [OPEN] = '1') 전에 설정되어야 한다.

PMRUR 은 PPPoE Mode 인 경우, 유효하다.

Ex) PMUR = 1000 (0x03E8)

PMUR0(0x4114)	PMUR1(0x4115)
0x03	0xE8

4.1.35 SHAR (Source Hardware Address Register) [R=W] [0x4120-0x4125] [0x00000_0000_0000]

SHAR 은 SYSR[NETL] = '0'(NETLCKR(Network Lock Register)이 Unlock)인 경우, Source Hardware Address 를 설정한다.

Ex) SHAR = "11:22:33:AA:BB:CC"

SHAR0(0x4120)	SHAR1(0x4121)	SHAR2(0x4122)
0x11	0x22	0x33

SHAR3(0x4123)	SHAR4(0x4124)	SHAR5(0x4125)
0xAA	0xBB	0xCC

4.1.36 GAR (Gateway IP Address Register)

[R=W] [0x4130-0x4133] [0x0000_0000]

GAR 은 SYSR[NETL] = '0'(NETLCKR(Network Lock Register)이 Unlock)인 경우, Source Gateway Address 를 설정한다.

Ex) GAR = "192.168.0.1"

GAR0(0x4130)	GAR1(0x4131)	GAR2(0x4132)	GAR3(0x4133)
192 (0xC0)	168 (0xA8)	0 (0x00)	1 (0x01)

4.1.37 SUBR (Subnet Mask Register)

[R=W] [0x4134-0x4137] [0x0000_0000]

SUBR 은 SYSR[NETL] = '0'(NETLCKR(Network Lock Register)이 Unlock)인 경우, Subnet Mask 범위를 설정한다.

Ex) SUBR = "255.255.255.255"

SUBR0(0x4134)	SUBR0(0x4135)	SUBR0(0x4136)	SUBR0(0x4137)
255 (0xFF)	255 (0xFF)	255 (0xFF)	255 (0xFF)

4.1.38 SIPR (IPv4 Source Address Register)

[R=W] [0x4138-0x413B] [0x0000_0000]

SIPR 은 SYSR[NETL] = '0'(NETLCKR(Network Lock Register)이 Unlock)인 경우, Source IP Address 를 설정한다.

Ex) SIPR = "192.168.0.100"

SIPR0(x4138)	SIPR1(0x4139)	SIPR2(0x413A)	SIPR3(0x413B)
192 (0xC0)	168 (0xA8)	0 (0x00)	100(0x64)

4.1.39 LLAR (Link Local Address Register)

[R=W] [0x4140-0x414F] [0x0000_0000_0000_0000_0000_0000_0000]

LLAR 은 SYSR[NETL] = '0'(NETLCKR(Network Lock Register)이 Unlock)인 경우, Link Local Address 를 설정한다.

Ex) LLAR = "FE80::AB:CDEF"

LLAR0(0x4140)	LLAR1(0x4141)	LLAR2(0x4142)	LLAR3(0x4143)	
0xFE	0×80	0×00	0x00	
LLAR4(0x4144)	LLAR5(0x4145)	LLAR6(0x4146)	LLAR7(0x4147)	
0x00	0x00	0x00	0x00	

LLAR8(0x4148)	LLAR9(0x4149)	LLAR10(0x414A)	LLAR11(0x414B)
0x00	0×00	0x00	0x00
LLAR12(0x414C)	LLAR13(0x414D)	LLAR14(0x414E)	LLAR15(0x414F)
0x00	0xAB	0xCD	0xEF

4.1.40 GUAR (Global Unicast Address Register)

[R=W] [0x4150-0x415F] [0x0000_0000_0000_0000_0000_0000_0000]

GUAR 은 SYSR[NETL] = '0'(NETLCKR(Network Lock Register)이 Unlock)인 경우, Global Unicast Address 를 설정한다.

Ex) GUAR = "2001::AB:CDEF"

GUAR0(0x4150)	GUAR1(0x4151)	GUAR2(0x4152)	GUAR3(0x4153)
0x20	0x01	0x00	0x00
GUAR4(0x4154)	GUAR5(0x4155)	GUAR6(0x4156)	GUAR7(0x4157)
0x00	0x00	0x00	0×00
GUAR8(0x4158)	GUAR9(0x4159)	GUAR10(0x415A)	GUAR11(0x415B)
0x00	0x00	0x00	0x00
GUAR12(0x415C)	GUAR13(0x415D)	GUAR14(0x415E)	GUAR15(0x415F)
0x00	0xAB	0xCD	0xEF

4.1.41 SUB6R (IPv6 Subnet Prefix Register)

[R=W] [0x4160-0x416F] [0x0000_0000_0000_0000_0000_0000_0000]

SUB6R 은 SYSR[NETL] = '0'(NETLCKR(Network Lock Register)이 Unlock)인 경우, Prefix Mask 를 설정한다

Prefix Length 만큼 최상위 비트(MSB)부터 '1'로 설정하고 나머지 비트들은 모두 '0'으로 설정한다.

Ex) SUB6R = "FFFF:FFFF:FFF::"

PRFXR0(0x4160)	PRFXR1(0x4161)	PRFXR2(0x4162)	PRFXR3(0x4163)
0xFF	0xFF	0xFF	0xFF
PRFXR4(0x4164)	PRFXR5(0x4165)	PRFXR6(0x4166)	PRFXR7(0x4167)
0xFF	0xFF	0xFF	0xFF
PRFXR8(0x4168)	PRFXR9(0x4169)	PRFXR10(0x416A)	PRFXR11(0x416B)
0x00	0x00	0×00	0x00
PRFXR12(0x416C)	PRFXR13(0x416D)	PRFXR14(0x416E)	PRFXR15(0x416F)
0x00	0x00	0×00	0x00

4.1.42 GA6R (IPv6 Gateway Address Register)

[R=W] [0x4170-0x417F] [0x0000_0000_0000_0000_0000_0000] IPv6 Gateway Address 를 설정한다.

Ex) GA6R = "FE80::FE:DCBA"

GA6R0(0x4170)	GA6R1(0x4171)	GA6R2(0x4172)	GA6R3(0x4173)
0xFE	0×80	0×00	0×00
GA6R4(0x4174)	GA6R5(0x4175)	GA6R6(0x4176)	GA6R7(0x4177)
0x00	0x00	0x00	0×00
GA6R8(0x4178)	GA6R9(0x4179)	GA6R10(0x417A)	GA6R11(0x417B)
0x00	0×00	0×00	0×00
GA6R12(0x417C)	GA6R13(0x417D)	GA6R14(0x417E)	GA6R15(0x417F)
0x00	0xFE	0xDC	0xBA

4.1.43 SLDIP6R (SOCKET-less Destination IPv6 Address Register) [R=W] [0x4180-0x418F] [0x0000_0000_0000_0000_0000_0000]

SLDIP6R 은 SLCR 에 의해 전송될 Packet 의 Destination IPv6 Address 를 설정한다.

Ex) SLDIP6R = "FE80::AB:CDEF"

SLDIP6R0(0x4180)	SLDIP6R1(0x4181)	SLDIP6R2(0x4182)	SLDIP6R3(0x4183)
0xFE	0x80	0x00	0x00
SLDIP6R4(0x4184)	SLDIP6R5(0x4185)	SLDIP6R6(0x4186)	SLDIP6R7(0x4187)
0x00	0x00	0x00	0x00
SLDIP6R8(0x4188)	SLDIP6R9(0x4189)	SLDIP6R10(0x418A)	SLDIP6R11(0x418B)
0x00	0x00	0x00	0x00
SLDIP6R12(0x418C)	SLDIP6R13(0x418D)	SLDIP6R14(0x418E)	SLDIP6R15(0x418F)
0x00	0xAB	0xCD	0xEF

4.1.44 SLDIPR (SOCKET-less Destination IPv4 Address Register) [R=W] [0x418C-0x418F] [0x0000_0000]

SLDIPR 은 SLCR 에 의해 전송될 Packet 의 Destination IPv4 Address 를 설정하며 Sn_DIP6R12 부터 Sn_DIP6R15 까지 같은 Address 를 사용한다.

Ex) SLDIPR = "192.169.0.21"

SLDIPRO /	SLDIPR1 /	SLDIPR2 /	SLDIPR3 /
SLDIP6R12(0x418C)	SLDIP6R13(0x418D)	SLDIP6R14(0x418E)	SLDIP6R15(0x418F)
192(0xC0)	168(0xA8)	0(0x00)	21(0x15)

4.1.45 SLDHAR (SOCKET-less Destination Hardware Address Register)

[RO] [0x4190-0x4195] [0x0000_0000_0000]

SLDHAR 은 SLCR[ARP4] 혹은 SLCR[ARP6] Command 에 대한 Reply Packet 을 수신한 경우 (SLIR[ARP4] = '1' 또는 SLIR[ARP6] = '1'), Destination Hardware Address 로 설정된다.

Ex) SLDHAR = "11:22:33:AA:BB:CC"

SLDHAR0(0x4190)	SLDHAR1(0x4191)	SLDHAR2(0x4192)
0x11	0x22	0x33
SLDHAR3(0x4193)	SLDHAR4(0x4194)	SLDHAR5(0x4195)
0xAA	0xBB	0xCC

4.1.46 PINGIDR (PING ID Register)

[R=W] [0x4198-0x4199] [0x0000]

PINGIDR 은 SLCR[PING4] 또는 SLCR[PING6]에 의해 전송될 PING Request Packet 의 ID 를 설정한다.

Ex) PINGIDR = 256 (0x0100)

PINGIDR0(0x4198)	PINGIDR1(0x4199)
0x61	0x00

4.1.47 PINGSEQR (PING Sequence-number Register) [R=W] [0x419C-0x419D] [0x0000]

PINGSEQR 은 SLCR[PING4] 또는 SLCR[PING6]에 의해 전송될 PING Request Packet 의

Sequence Number 를 설정하며, 자동 증가하지 않는다.

Ex) PINGSEQR = 1000 (0x03E8)

PINGSEQR0(0x419C)	PINGSEQR1(0x419D)	
0x03	0xE8	

4.1.48 UIPR (Unreachable IP Address Register) [R0] [0x41A0-0x41A3] [0x0000_0000]

UIPR 은 ICMPv4 Unreachable Packet 을 수신한 경우(IR[UNR4] = '1'), 수신한 Packet 의 Destination IPv4 Address 로 설정된다.

Ex) Unreachable IP Address = "192.169.10.10"

UIPR0(0x41A0)	UIPR1(0x41A1)	UIPR2(0x41A2)	UIPR3(0x41A3)
192(0xC0)	168(0xA8)	10(0x0A)	10(0x0A)

4.1.49 UPORTR (Unreachable Port Register)

[RO] [0x41A4-0x41A5] [0x0000]

UPORTR 은 ICMPv4 Unreachable Packet 을 수신한 경우(IR[UNR4] = '1'), 수신한 Packet 의 Destination Port 로 설정된다.

Ex) Unreachable PORT = "3000" (0x0BB8)

UPORTR0(0x41A4)	UPORTR1(0x41A5)	
0x0B	0xB8	

4.1.50 UIP6R (Unreachable IPv6 Address Register)

[RO] [0x41B0-0x41BF] [0x0000_0000_0000_0000_0000_0000_0000]

UIP6R 은 ICMPv6 Unreachable Packet 을 수신한 경우(IR[UNR6] = '1'), 수신한 Packet 의 Destination IP Address 로 설정된다.

Ex) Unreachable IP is "FE80::AB:CDEF"

UIP6R0(0x41B0)	UIP6R1(0x41B1)	UIP6R2(0x41B2)	UIP6R3(0x41B3)
0xFE	0x80	0x00	0x00
UIP6R4(0x41B4)	UIP6R5(0x41B5)	UIP6R6(0x41B6)	UIP6R7(0x41B7)
0x00	0x00	0x00	0x00
UIP6R8(0x41B8)	UIP6R9(0x41B9)	UIP6R10(0x41BA)	UIP6R11(0x41BB)
0x00	0x00	0x00	0x00
UIP6R12(0x41BC)	UIP6R13(0x41BD)	UIP6R14(0x41BE)	UIP6R15(0x41BF)
0x00	0xAB	0xCD	0xEF

4.1.51 UPORT6R (Unreachable IPv6 Port Register) [R0] [0x41C0-0x41C1] [0x0000]

UPORT6R 은 ICMPv6 Unreachable Packet 을 수신한 경우(IR[UNR6] = '1'), 수신한 Packet 의 Destination Port 로 설정된다.

Ex) Unreachable PORT is "3000" (0x0BB8)

UPORT6R0(0x41C0)	UPORT6R1(0x41C1)
0x0B	0xB8

4.1.52 INTPTMR (Interrupt Pending Time Register) [RW][0x41C5-0x41C6][0x0000]

INTPTMR은 내부 Interrupt Pending Timer Count 를 설정한다. Timer Count 는 INTn 이 High Deassert 되는 경우 INTPTMR 로 초기화되며, Interrupt 가 발생한 시점부터 0 이 될 때까지 SYS_CLK X 4 시간단위로 1 씩 감소하게 된다.

INTn 은 Interrupt 가 발생하고 해당 Interrupt Mask 가 활성화되고 INTPTMR = 0 인 경우, Low Assert 된다.

Ex) INTPTMR = 1000(0x03EB)

INTPTMR0(0x41C5)	INTPTMR1(0x41C6)
0x03	0xEB

4.1.53 PLR (Prefix Length Register)

[RO] [0x41D0] [0x00]

RA(Router Advertisement) Packet 을 수신한 경우(SLIP[RS] = '1' 혹은 SLIP[RA] = '1'), 수신된 RA 의 Prefix Information Option 내의 Prefix Length Field 로 설정된다.

Ex) RA Prefix Length = 0x10

PLR(0x41D0)
0x10

4.1.54 PFR (Prefix Flag Register)

[RO] [0x41D4] [0x00]

RA(Router Advertisement) Packet 을 수신한 경우(SLIP[RS] = '1' 혹은 SLIP[RA] = '1'), 수신된 RA 의 Prefix Information Option 내의 Prefix Flag Field 로 설정된다.

Ex) Flag = 0xC0

PFR(0x41D4)
0xC0

4.1.55 VLTR (Valid Life Time Register)

[RO] [0x41D8-0x41DB] [0x0000_0000]

RA(Router Advertisement) Packet 을 수신한 경우(SLIP[RS] = '1' 혹은 SLIP[RA] = '1'), 수신된 RA 의 Prefix Information Option 내의 Valid Life Time Field 로 설정된다.

Ex) Valid Life Time = 2592000

VLTR0(0x41D8)	VLTR1(0x41D9)	VLTR2(0x41DA)	VLTR3(0x41DB)
0x00	0x27	0x8D	0x00

4.1.56 PLTR (Preferred Life Time Register)

[RO] [0x41DC-0x41DF] [0x0000_0000]

RA(Router Advertisement) Packet 을 수신(SLIP[RS] = '1' 혹은 SLIP[RA] = '1')한 경우, 수신된 RA 의 Prefix Information Option 내의 Preferred Life Time Field 로 설정된다.

Ex) Preferred Life Time = 604800

PLTR0(0x41DC)	PLTR1(0x41DD)	PLTR2(0x41DE)	PLTR3(0x41DF)
0×00	0x09	0x3A	0x80

4.1.57 PAR (Prefix Address Register)

[RO] [0x41E0-0x41EF] [0x0000_0000_0000_0000_0000_0000_0000]

RA(Router Advertisement) Packet 을 수신(SLIP[RS] = '1' 혹은 SLIP[RA] = '1')한 경우, 수신된 RA 의 Prefix Information Option 내의 Prefix Address Field 로 설정된다.

Ex) Prefix is "2001:2b8:10:1::"

PAR0(0x41E0)	PAR1(0x41E1)	PAR2(0x41E2)	PAR3(0x41E3)
0x20	0x01	0x02	0xb8
PAR4(0x41E4)	PAR5(0x41E5)	PAR6(0x41E6)	PAR7(0x41E7)
0x00	0x10	0x00	0x01
PAR8(0x41E8)	PAR9(0x41E9)	PAR10(0x41EA)	PAR11(0x41EB)
0x00	0x00	0x00	0x00
PAR12(0x41EC)	PAR13(0x41ED)	PAR14(0x41EE)	PAR15(0x41EF)
0x00	0x00	0x00	0x00

4.1.58 ICMP6BLKR (ICMPv6 Block Register)

[R=W] [0x41F0] [0x00]

PING6, Multicast Listener Discovery(MLD) Query, Router Advertisement(RA), Neighbor Advertisement (NA), Neighbor Solicitation(NS)와 같은 ICMPv6 Packet 수신을 선택적으로 Block 한다. Block 한 Packet 들은 IPRAW6 SOCKET을 통해 수신할 수 있다.

7	6	5	4	3	2	1	0
			PING6	MLD	RA	NA	NS
			R=W	R=W	R=W	R=W	R=W

Bit	Symbol	Description
[7:5]	-	Reserved
		ICMPv6 Echo Request Block
4	PING6	1 : Block Echo request Packet
		0 : Normal Operation
		ICMPv6 Multicast Listener Discovery(MLD) Query Block
3	MLD	1 : Block Multicast Listener Discovery Query Packet
		0: Normal Operation
		ICMPv6 Router Advertisement Block
2	RA	1 : Block Router Advertisement Packet
		0 : Normal Operation
		ICMPv6 Neighbor Advertisement Block
1	NA	1 : Block Neighbor Advertisement Packet
		0: Normal Operation
		ICMPv6 Neighbor Solicitation Block
0	NS	1 : Block Neighbor Solicitation Packet
		0 : Normal Operation

4.1.59 CHPLCKR (Chip Lock Register) [WO] [0x41F4] [0x00]

SYSR[CHPL]을 설정한다.

SYSR[CHPL]이 'Unlock' 인 경우, SYCRO, SYCR1 을 설정할 수 있다.

Unlock	Lock
0xCE	Others

4.1.60 NETLCKR (Network Lock Register) [W0] [0x41F5] [0x00]

SYSR[NETL]을 설정한다.

SYSR[NETL]이 'Unlock'이면 Network Configuration Registers(SHAR, GAR, SUBR, SIPR, LLAR, GUAR, SUB6R)를 설정할 수 있다.

Unlock	Lock
0x3A	0xC5

4.1.61 PHYLCKR (PHY Lock Register) [WO] [0x41F6] [0x00]

SYSR[PHYL]을 설정한다.

SYSR[PHYL]이 'Unlock'인 경우, PHYCRO, PHYCR1 을 설정할 수 있다.

Unlock	Lock
0x53	Others

4.1.62 RTR (Retransmission Time Register) [R=W] [0x4200-0x4201] [0x07D0]

RTR 은 Sn_RTR(SOCKET n Retransmission Time Register)의 초기값을 설정한다.

단위는 100us 이다.

RCR(Retransmission Counter Register)과 함께 Packet (ARP/ND, TCP) 재전송에 관여한다.

참조) 6.7 Retransmission

Ex) RTR = 5000 (0x1388) 5000*100us = 0.5s

RTR0(0x4200)	RTR1(0x4201)
0x13	0x88

4.1.63 RCR (Retransmission Count Register) [R=W] [0x4204] [0x08]

RCR 은 Sn_RCR(SOCKET n Retransmission Count Register)의 초기값을 설정한다.

RTR(Retransmission)과 함께 SOCKET 에 의한 Packet (ARP/ND, ICMPv6, TCP) 재전송에 관여한다.

참조) 6.7 Retransmission

4.1.64 SLRTR (SOCKET-less Retransmission Time Register) [R=W] [0x4208-0x4209] [0x07D0]

SLRTR 은 SLCR 의 Retransmission Time 을 설정한다. 단위는 100us 이다. SLCR 에 의해 전송된 Request Packet 에 대한 응답이 없는 경우 재전송이 발생하며, 재전송 회수가 SLRCR (SOCKET-less Retrans mission Count Register)에 지정된 값을 초과하면 Timeout(SLIR [TOUT] = '1')이 발생한다.

참조) 6.7 Retransmission

Ex) SLRTR = 5000 (0x1388), 5000 * 100us = 0.5s

SLRTR0(0x4208)	SLRTR1(0x4209)
0x013	0x88

4.1.65 SLRCR (SOCKET-less Retransmission Count Register) [R=W] [0x420C] [0x00]

SLRCR 은 SLCR 의 Retransmission Counter 를 설정한다.

Retransmission Counter 가 SLRCR을 초과하면 SLIR[TOUT]는 '1'이 된다.

참조) 6.7 Retransmission

4.1.66 SLHOPR (Hop limit Register) [RW] [0x420F] [0x80]

SLCR 에 의해 전송되는 ND Messages(NS, NA)의 HOP을 설정한다.

Ex) SLHOPR = 128

SLHOPR(0x420F)

0x80 (128)

4.2 **SOCKET Register**

4.2.1 Sn_MR (SOCKET n Mode Register) [R=W] [0x0000] [0x00]

Sn_MR 은 SOCKET n 의 Mode 와 Option 을 설정한다.

Sn_MR 은 SOCKET n 생성(Sn_CR[OPEN] = '1') 전에 설정해야 한다.

7	6	5	4	3	2	1	0
MULTI/ MF	BRDB/ FPSH	ND/ MC/ SMB/ MMB	UNIB/ MMB6	Р3	P2	P1	P0
R=W	R=W	R=W	R=W	R=W	R=W	R=W	R=W

Bit	Symbol	Description
Dic	Symbol	MULTI : Multicast Mode
		Sn_MR[3:0]이 UDP4, UDP6, UDPD 인 경우, 유효하다.
		<i>替조</i>) 6.3.3 UDP Multicast
		0 : Disable UDP Multicast 1 : Enable UDP Multicast
		1. Enable obi Matticast
7	MULTI/ MF	UDP6, UDPD 인 경우 IPv6 Multicasting 만 지원한다.
		MF : MAC Filter Enable
		Sn_MR[3:0]이 MACRAW Mode 인 경우, 유효하다.
		0 : Disable MAC Filter (모든 Packet 수신)
		1 : Enable MAC Filter (Multicast, Broadcast 와 패킷의 Destination
		MAC 이 SHAR 값과 같은 경우 수신)
		BRDB : Broadcast Block
		Sn_MR[3:0]이 UDP4, UDP6, UDPD, MACRAW Mode 인 경우, 유효하다.
		참조) 6.3.2 UDP Broadcast
		0 : UnblockUDP Broadcast
		1 : Block UDP Broadcast
6	BRDB/	FPSH: Force Push flag
O	FPSH	Sn_MR[3:0]이 TCP4, TCP6, TCPD 인 경우, 전송되는 모든 DATA
		Packet 의 PSH flag 를 설정한다.
		0 : No Force PSH flag (SEND Command 에 의해 전송되는 DATA
		Packet 중 마지막 DATA Packet 에만 PSH flag 설정)
		1 : Force PSH flag
		ND: No Delayed ACK
5	ND/	Sn_MR[3:0]이 TCP4, TCP6, TCPD 인 경우, 유효하다.
	MC/	0 : Delayed ACK (Sn_RTR 시간 이 후 ACK Packet 전송)

	SMB/ MMB	1 : No Delayed ACK (DATA Packet 수신 시 ACK Packet 전송)					
		참조) ND 설정과 무관하게 Sn_CR[RECV] 수행 이후, SOCKET n Window					
		Size 가 MSS 보다 작은 경우는 ACK Packet 을 곧바로 전송 한다.					
		MC : Multicast IG	MP Vorsio	n			
				'' n_MR[MULTI] = '1' 인 경우.	으ㅎ하다		
		0 : Using IGMP ve			, ㅠ프이니.		
		1 : Using IGMP ve					
		SMB : UDP6 Solic					
		Sn_MR[3:0] = UDF	P6 or UDPD) 인 경우, 유효하다.			
		W6100의 Solicite	ed Multica:	st Address 로 송신된 Packe	et 의 수신여부를		
		결정한다.					
		0 : Unblock Solici 1 : Block Solicited					
		MMB : UDP4 Mult	ticast Bloc	k in MACRAW Mode			
		Sn_MR [3:0] = MA	CRAW 이고	└ Sn_MR [MF] = '1'인 경우	, 유효하다.		
		0 : Unblock IPv4 /					
		1 : Block IPv4 Mu UNIB : Unicast Bl					
		Sn_MR[3:0]이 UDP4, UDP6, UDPD 이고 MULTI = 1 인 경우, 유효하다.					
		참조) 6.3.5.2 UDP Block					
		0 : Unblock UDP Unicast					
4	UNIB/ MMB6	1 : Block UDP Uni	icast				
	7,4,1,50	MMB6 : UDP6 Mu	ılticast Blo	ock in MACRAW Mode			
		Sn_MR [3:0] = MACRAW 이고 Sn_MR [MF] = '1'인 경우, 유효하다.					
		0 : Unblock IPv6 Multicast					
		1 : Block IPv6 Mu P[3:0] : Protocol					
		SOCKET n Protoco		선전하다			
		JOEKET II TOLOCC	or mode 2	2007.			
			P[3:0]	Protocol Mode			
			0000	Socket Closed			
			0001	TCP4			
[3:0]	P[3:0]		0010	UDP4			
			0011	IPRAW4			
		_	0111	MACRAW			
			1001	TCP6			
			1010	UDP6			
			1011	IPRAW6			
	1	<u> </u>					

	1101	TCP Dual (TCPD)
	1110	UDP Dual (UDPD)
MACRAW Mode	는 SOCKET ()인 경우, 유효하다.

4.2.2 Sn_PSR (SOCKET n Prefer Source IPv6 Address Register) [RW] [0x0004] [0x00]

Sn_PSR 은 SOCKET n 의 Source IPv6 Address(SIP6)를 결정한다.

Value	Symbol	Description
		Destination IPv6 Address(Sn_DIP6R (SOCKET n Destination IPv6
		Address Register))에 따라 Source IPv6 Address(SIP6)를 선택한다.
0x00	AUTO	
		Sn_DIP6R 이 LLA 이면 SIP6 은 LLAR 로 설정
		Sn_DIP6R 이 GUA 이면 SIP6 은 GUAR 로 설정
0x02	LLA	SIP6 은 LLAR 로 고정된다.
0x03	GUA	SIP6 은 GUAR 로 고정된다.

4.2.3 Sn_CR (SOCKET n Command Register) [RW,AC] [0x0010] [0x00]

Sn_CR 은 SOCKET Command 를 수행한다. SOCKET Command 는 수행 완료 후 Auto Clear 되며, Auto Clear 전에는 다른 SOCKET Command 를 수행할 수 없다.

Value	Symbol	Descrip	Description			
		SOCKE Sn_MR	Command T n 을 OPEN 한다. [3:0] 설정에 따른 Commai Register)로 확인한다.	nd 수행 결과는 Sn_SR(SOCI	KET n	
			Sn_MR[3:0]	Sn_SR		
	0x01 OPFN		Sn_MR_CLOSE('0000')	SOCK_CLOSED(0x00)		
0x01		OPEN	Sn_MR_TCP('0001')	SOCK_INIT(0x13)		
			Sn_MR_UDP('0010')	SOCK_UDP(0x22)		
			Sn_MR_IPRAW('0011')	SOCK_IPRAW(0x32)		
			S0_MR_MACRAW('0100')	SOCK_MACRAW(0x42)		
			Sn_MR_TCP6('1001')	SOCK_INIT(0x13)		
			Sn_MR_UDP6('1010')	SOCK_UDP(0x22)		
			Sn_MR_IPRAW6('1011')	SOCK_IPRAW6(0x33)		
			Sn_MR_TCPD('1101')	SOCK_INIT(0x13)		

		Sn_MR_UDPD('1110') SOCK_UDP(0x22)				
		LISTEN Command				
		Sn_MR[3:0]이 TCP4, TCP6, TCPD 이고 Sn_SR = SOCK_INIT 인 경우,				
0x02	LISTEN	Destination 의 접속을 대기한다.				
		참조) 6.2.1 TCP SERVER : LISTEN				
		TCP CONNECT Command				
		Sn_MR[3:0]이 TCP4, TCPD 이고 Sn_SR = SOCK_INIT 인 경우, Destination				
0x04	CONNECT	에게 접속을 요청한다.				
		참조) 0 TCP CLIENT: CONNECT				
		TCP6 CONNECT Command				
0x84	CONNECT6	Sn_MR[3:0]이 TCP6, TCPD Mode 이고 Sn_SR = SOCK_INIT 인 경우,				
		Destination 에게 접속을 요청한다.				
		TCP DISCON Command				
		Sn_MR[3:0]이 TCP4, TCP6, TCPD 이고, Sn_SR = SOCK_ESTABLESHED 또는				
		Sn_SR = SOCK_CLOSE_WAIT 인 경우, Destination 에게 접속 해제를 요청				
80x0	DISCON	한다. 즉, 접속중인 Destination 에게 Disconnect-Request (FIN Packet)를				
		 전송한다.				
		' ' 참조) 6.2.1 TCP SERVER: Disconnected (Active Close)				
		CLOSE Command				
		SOCKET n 을 CLOSE 한다.				
0x10	CLOSE	Sn_MR[3:0] 설정과 상관 없이 Sn_SR 은 SOCK_CLOSED 로 변경된다.				
		* CAUTION : TCP 인 경우, FIN Packet 전송 없이 강제 CLOSE 된다.				
		SEND Command				
0x20	SEND *	Sn_MR[3:0]이 TCP4, TCP6, TCPD, UDP4, UDPD, IPRAW4, MACRAW 인				
		경우, DATA 를 전송한다.				
		IPv6 SOCKET SEND Command				
0xA0	SEND6 *	Sn_MR[3:0]이 UDP6, UDPD Mode, IPRAW6 Mode 인 경우, DATA 를 전송				
		한다.				
		TCP SEND_KEEP Command				
		Sn_MR[3:0]이 TCP4, TCP6, TCPD Mode 이고 최소 1 Byte 이상의				
		DATA 를 전송한 후 수행 가능하다.				
		CENID VEED Command & Destination (MAI) Name of the (VA) Destination				
0x22	SEND_KEEP	SEND_KEEP Command 는 Destination 에게 Keep alive(KA) Packet 을				
		송신하여 Connection 이 유효한지 확인한다. 만약 Destination 이				
		응답이 없는 경우 설정된 Retransmission Time 이후 Sn_IR [TIMEOUT] =				
		'1'이고 되고, Sn_SR = SOCK_CLOSED 이 된다.				
		참조) 6.2.4.2 Keep Alive				
0x40	RECV	SOCKET RECV Command				

HOST 는 SOCKET n RX Buffer Block 에서 수신된 DATA 를 읽고 RECV Command 를 통해 DATA 를 읽은 만큼 Sn_RX_RD (SOCKET n Read Pointer Register)를 증가시켜야 한다.

참조) 4.2.28 Sn_RX_RSR (SOCKET n RX Received Size Register), 0
Sn_RX_WR (SOCKET n RX Write Pointer Register), 4.2.29 Sn_RX_RD (SOCKET n RX Read Pointer Register)

- * Sn_TX_WR (SOCKET n TX Write Point Register)과 Sn_TX_RD (SOCKETn Rx Read Pointer Register)로 계산된 크기의 DATA 를 전송하며, 전송 DATA 는 Sn_TX_FSR (SOCKETn TX Free Buffer Size Register)를 초과할 수 없다. HOST 는 Sn_IR [SENDOK]='1'를 확인 후 그 다음 SEND Command 를 수행할 수 있다.
- * TCP4, TCP6, TCPD, UDP4, UDP6, UDPD Mode 인 경우, 전송하려는 DATA 가 MSS(Maximum Segment Size)를 초과할 경우 자동으로 MSS 단위로 나누어 전송한다.
- * IPRAW4, IPRAW6, MACRAW Mode 인 경우, HOST 는 전송하려는 DATA 를 MSS 단위로 직접 나누어 전송해야 한다. TCP4, TCP6, TCPD Mode 인 경우, DATA 를 Destination 에게 성공적으로 전송하지 못한 경우 (Destination 으로부터 ACK 를 수신하지 못한 경우), Sn_IR[TIMEOUT] = '1' 이 되고 Sn_SR = SOCK_CLOSED 이 된다. TCP4, TCP6, TCPD, UDP4, UDP6, UDPD, IPRAW4, IPRAW6, MACRAW Mode 인 경우, Sn_IR [SENDOK] = '1' 이후 Sn_TX_FSR 은 전송한 DATA Size 만큼 증가한다.

4.2.4 Sn_IR (SOCKET n Interrupt Register) [R0] [0x0020] [0x00]

Sn_IR 은 SOCKET n 의 상태변화나 Sn_CR 수행 결과를 확인한다.

Sn_IR 의 Event 가 발생하고, Sn_IMR 의 1:1 대응되는 Bit 가 설정되어 있을 경우, SIR[Sn_INT]는 '1' 로 설정된다.

 7	6	5	4	3	2	1	0
-	-	-	SENDOK	TIMEOUT	RECV	DISCON	CON
			RO	RO	RO	RO	RO

Bit	Symbol	Description				
[7:5]	-	Reserved				
4	SENDOK	SEND OK Interrupt				
		Sn_CR[SEND]이 완료된 경우, '1'로 설정된다.				
	3 TIMEOUT	TIMEOUT Interrupt ARP/ND 또는 TCP 통신과정에서 재전송 횟수가 Sn_RCR(SOCKET n				
3						
		Retrans mission Count Register)을 초과한 경우, '1'로 설정된다.				
		RECEIVED Interrupt				
2	2 RECV	SOCKET n RX Buffer 에 DATA 가 수신되거나, Sn_CR [RECV] 수행 후				
		DATA 가 남아있는 경우, '1'로 설정된다.				
1	DISCON	DISCONNECTED Interrupt				

		Sn_CR[DISCON]을 통해 FIN Packet 을 전송 후 Destination 으로부터
		ACK 응답 받은 경우나, 혹은 Destination 으로부터 FIN Packet 을
		수신하거나 RST Packet 을 수신한 경우, '1'로 설정된다.
		CONNECTED Interrupt
		Sn_CR[CONNET] 또는 Sn_CR[CONNECT6]을 통해 TCP 접속이 완료된
0	CON	경우, 혹은 Destination 으로부터의 SYN Packet 수신하고 접속이
		완료된 경우에 '1'로 설정된다.

4.2.5 Sn_IMR (SOCKET n Interrupt Mask Register) [R=W] [0x0024] [0xFF]

Sn_IMR 은 Sn_IR 의 1:1 대응되는 bit 를 Mask 한다.

7	6	5	4	3	2	1	0
-	-	-	SENDOK	TIMEOUT	RECV	DISCON	CON
-	-	-	R=W	R=W	R=W	R=W	R=W

Bit	Symbol	Description
[7:5]	-	Reserved
4	SENDOK	Sn_IR[SENDOK] Interrupt Mask
3	TIMEOUT	Sn_IR[TIMEOUT] Interrupt Mask
2	RECV	Sn_IR[RECV] Interrupt Mask
1	DISCON	Sn_IR[DISCON] Interrupt Mask
0	CON	Sn_IR[CON] Interrupt Mask

4.2.6 Sn_IRCLR (Sn_IR Clear Register) [w0] [0x0028] [0x00]

Sn_IMR 은 Sn_IR 의 1:1 대응되는 bit 를 Clear 한다.

Bit	Symbol	Description
[7:5]	-	Reserved
4	SENDOK	Sn_IR[SENDOK] Interrupt Clear
3	TIMEOUT	Sn_IR[TIMEOUT] Interrupt Clear
2	RECV	Sn_IR[RECV] Interrupt Clear
1	DISCON	Sn_IR[DISCON] Interrupt Clear
0	CON	Sn_IR[CON] Interrupt Clear

4.2.7 Sn_SR (SOCKET n Status Register) [RO] [0x0030] [0x00]

Sn_SR 은 Sn_CR 수행 또는 DATA 송수신에 의해 변경되는 SOCKET n Status 를 확인한다.

Value	Symbol	Description
0x00	SOCK_CLOSED	SOCKET 이 Close 된 상태.
0x13	SOCK_INIT	SOCKET 이 TCP Mode 로 Open 된 상태.
0x14	SOCK_LISTEN	SOCKET 이 TCP Mode 이고 Destination 의 접속을 기다리는 상태
0x17	SOCK_ESTABLISHED	SOCKET 이 TCP Mode 이고 Destination 과 접속된 상태.
0x1C	SOCK_CLOSE_WAIT	SOCKET 이 TCP Mode 이고 접속해제 요청을 수신한 상태.
0x22	SOCK_UDP	SOCKET 이 UDP Mode 로 Open 된 상태.
0x32	SOCK_IPRAW	SOCKET 이 IPRAW Mode 로 Open 된 상태.
0x33	SOCK_IPRAW6	SOCKET 이 IPRAW6 Mode 로 Open 된 상태.
0x42	SOCK_MACRAW	SOCKET 이 MACRAW Mode 로 Open 된 상태.

아래 SOCKET status 은 Sn_SR 의 전이 과정에서 관찰될 수 있는 Temporary Status 들이다.

Value	Symbol	Description	
0x15	SOCK_SYNSENT	Connect-Request 를 전송한 상태.	
0x16	SOCK_SYNRECV	Connect-Request 를 수신한 상태.	
0x18	SOCK_FIN_WAIT		
0X1B	SOCK_TIME_WAIT	SOCKET 이 Closing 되는 상태.	
0X1D	SOCK_LAST_ACK		

Figure 4 State Diagram

4.2.8 Sn_ESR (SOCKET n Extension Status Register) [R0] [0x0031] [0x00]

Sn_ESR 은 Sn_MR[3:0]이 TCP4, TCP6, TCPD 인 경우, SOCKET n Extension Status 를 확인 한다.

7	6	5	4	3	2	1	0
-	-	-	-	-	ТСРМ	TCPOP	IP6T
-	-	-	-	-	RO	RO	RO

Bit	Symbol	Description
[7:3]	-	Reserved
		TCP Mode Sn_MR [3:0]이 TCPD 이고 Destination 과 접속한 경우, 접속된 실제
2	TCD H 나 를 하이하다	
		0 : TCP4 1 : TCP6
1	ТСРОР	TCP Operation Mode 0: TCP Client 1: TCP Server
0	IP6T	IPv6 address type Sn_MR[3:0]이 TCP6, TCPD 이고, Destination 에게 전송한 Packet 의 Source IPv6 Address 를 확인한다. 0: LLA 1: GUA

4.2.9 Sn_PNR (SOCKET n IP Protocol Number Register) [R=W] [0x0100] [0x0000]

SOCKET 이 IPRAW4 또는 IPRAW6 Mode 인 경우, Sn_PNR 은 각각의 Mode 에 따라 SOCKET 이 송수신하는 IPv4 의 상위 Protocol Number 또는 IPv6 의 Next Header 를 설정한다.

Sn_PNR 설정 값은 *Table 7* 및 *IANA_Protocol Numbers* 를 참고하라. 단, Sn_PNR 은 TCP(0x06)나 UDP(0x11)는 설정될 수 없다.

4.2.10 Sn_TOSR (SOCKET n IP Type of Service Register) [R=W] [0x0104] [0x00]

Sn_TOSR 은 SOCKET n 의 IPv4 Header TOS field 를 설정한다.

참조) IANA_IP Parameters

* CAUTION IPv6 Header 의 Traffic Class 와 Flow Label Field 설정은 지원하지 않으며, 0 값으로 고정된다.

4.2.11 Sn_TTLR (SOCKET n IP Time To Live Register) [R=W] [0x0108] [0x80]

Sn_TTLR 은 SOCKET n 의 IPv4 header TTL field 나 IPv6 의 HOP Limit field 를 설정한다.

참조) IANA_IP_Parameters

4.2.12 Sn_FRGR (SOCKET n Fragment Offset in IP Header Register) [R=W] [0x010C-0x010D] [0x4000]

Sn_FRGR 은 SOCKET n 의 IPv4 Header Fragment field 를 설정한다.

* CAUTION Fragment field 는 설정이 가능하나, IP Fragment 기능을 수행하지는 않으며, 수신된 Fragment Packet 역시 처리되지 않는다.

Ex) S0_FRGR0 = 0x0000 (Don't Fragment)

S0_FRGR0(0x010C)	S0_FRGR1(0x010D)
0x00	0x00

4.2.13 Sn_MSSR (SOCKET n Maximum Segment Size Register) [RW] [0x0110-0x0111] [0x0000]

 Sn_MSSR 은 $Sn_CR[OPEN]$ 이전에 SOCKET n MSS 를 설정한다. 최대 MSS 를 초과할 수 없으며 초과할 경우, 자동으로 최대 MSS 로 설정된다. 아래는 $Sn_MR[3:0]$ 과 NETMR2[PPPoE] 설정에 따른 최대 MSS 를 나타낸 표이다.

Sn_MR[3:0]	Normal Range (NETMR2[PPPoE]='0')	PPPoE Range (NETMR2[PPPoE]='1')
TCP	1~1460	1~1452
TCP6	1~1440	1~1432

UDP	1~1472	1~1464
UDP6	1~1452	1~1444
IPRAW	1~1480	1~1472
IPRAW6	1~1460	1~1452
MACRAW	1~1514	

 $Ex) SO_MSSR = 1460 (0x05B4),$

S0_MSSR0(0x0110)	S0_MSSR1(0x0111)
0x05	0xB4

4.2.14 Sn_PORTR (SOCKET n Source Port Register) [R=W] [0x0114-0x0115] [0x0000]

SOCKET n Source Port Number 를 설정한다.

 $Ex) SO_PORTR = 5000 (0x1388)$

S0_PORTR0(0x0114)	S0_PORTR1(0x0115)	
0x013	0x88	

4.2.15 Sn_DHAR (SOCKET n Destination Hardware Address Register)

[RW] [0x0118-0x11D] [0x0000_0000_0000]

Sn_DHAR 은 Sn_MR[3:0]이 TCP4, TCP6, TCPD Mode 이고 Destination 과 접속한 경우 (Sn_SR = SOCK_ESTABLISHED), Destination Hardware Address 가 기록된다.

Sn_DHAR 은 Sn_MR[3:0]이 UDP4, UDP6 이고 Sn_MR[MULTI] = '1' 인 경우, Multicast Group 의 Hardware Address 가 설정된다. *참조*) 6.3.3 UDP Multicast

Ex) S0_DHAR = "11:22:33:AA:BB:CC"

S0_DHAR0(0x0118)	S0_DHAR1(0x0119)	S0_DHAR2(0x011A)
0x11	0x22	0x33
S0_DHAR3(0x011B)	S0_DHAR4(0x011C)	S0_DHAR5(0x011D)
0xAA	0xBB	0xCC

4.2.16 Sn_DIPR (SOCKET n Destination IPv4 Address Register) [RW] [0x0120-0x0123] [0x0000_0000]

Sn_DIPR 은 Sn_MR[3:0]에 설정된 Protocol type 에 따라 아래와 같은 기능을 수행한다.

Sn_MR[3:0]	Sn_MR[MULTI]	Sn_DIPR
TCP4	Don't care	Set or Get Destination IPv4 Address

TCPD	Don't care		
UDP4	0		
UDPD	Don't care	Set Destination IPv4 Address	
IPRAW4	Don't care		
UDP4	1	Set Multicast Group IPv4 Address	

참조) 6.3.3 UDP Multicast

Ex) S0_DIPR = "192.168.0.11"

S0_DIPR0(0x0120)	S0_DIPR1(0x0121)	S0_DIPR2(0x0122)	S0_DIPR3(0x0123)
192 (0xC0)	168 (0xA8)	0 (0x00)	11 (0x0B)

4.2.17 Sn_DIP6R (SOCKET n Destination IPv6 Address Register) [RW] [0x0130-0x013F] [0x0000_0000_0000_0000_0000_0000_0000]

Sn_DIP6R 은 Destination IPv6 Address 지정하는데, Protocol Type 에 따라서 그 의미가 달라진다.

Sn_MR[3:0]	Sn_MR[MULTI]	Sn_DIP6R
TCP6	Don't care	Set or Get Destination IPv6 Address
TCPD	Don't care	Set of Get Destination if vo Address
UDP6	0	
UDPD	Don't care	Set Destination IPv6 Address
IPRAW6	Don't care	
UDP6	1	Set Multicast Group IPv6 Address

참조) 6.3.3 UDP Multicast

Ex) Destination IP is "FE80::AB:CDEF"

S0_DIP6R0(0x0130)	S0_DIP6R1(0x0131)	S0_DIP6R2(0x0132)	S0_DIP6R3(0x0133)	
0xFE	0x80	0x00	0x00	
S0_DIP6R4(0x0134)	S0_DIP6R5(0x0135)	S0_DIP6R6(0x0136)	S0_DIP6R7(0x0137)	
0x00	0x00	0x00	0x00	
S0_DIP6R8(0x0138)	S0_DIP6R9(0x0139)	S0_DIP6R10(0x013A)	S0_DIP6R11(0x013B)	
0x00	0x00	0x00	0x00	
S0_DIP6R12(0x013C)	S0_DIP6R13(0x013D)	S0_DIP6R14(0x013E)	S0_DIP6R15(0x013F)	
0x00	0xAB	0xCD	0xEF	

4.2.18 Sn_DPORTR (SOCKET n Destination Port Register) [R=W] [0x0140-0x0141] [0x0000]

Sn_DPORTR 은 Destination Port 를 지정하는데, Protocol Type 에 따라서 그 의미가 달라진다.

Sn_MR[3:0]	Sn_MR[MULTI]	Sn_DPORTR	
TCP4	Don't care		
TCP6	Don't care	Set or Get Destination Port	
TCPD	Don't care		
UDP4	0		
UDP6	0		
UDPD	Don't care	Set Destination Port	
IPRAW4	Don't care		
IPRAW6	Don't care		
UDP4	1	Set Multicast Group Port	
UDP6	1	Set muticast Group Fort	

TCP4, TCP6, TCPD Mode 인 경우, 접속할 Destination Port 를 설정하거나, 접속된 Destination Port 를 확인한다.

Sn_DPORTR 은 UDP4, UDP6, UDPD, IPRAW6 Mode 인 경우, 전송할 Destination Port 를 설정한다.

Sn_DPORTR 은 UDP4, UDP6 Multicast 인 경우, Multicast Group Port 를 설정한다.

참조) 6.3.3 UDP Multicast

 $Ex) SO_DPORTR = 5000 (0x1388),$

S0_DPORTR0(0x0140)	S0_DPORTR1(0x0141)	
0x13	0x88	

4.2.19 Sn_MR2 (SOCKET n Mode register 2) [R=W] [0x0144] [0x00]

Sn_MR2 는 Sn_MR 과 함께 SOCKET n 의 Option 을 설정한다.

7	6	5	4	3	2	1	0
	-	-	-	-	-	DHAM	FARP
						R=W	R=W

Bit	Symbol	Description
[7:2]	-	Reserved
1	DHAM	Destination Hardware address Mode Sn_MR 이 MACRAW 가 아닌 경우 Ethernet Frame 의 Destination Hardware Address 를 설정한다.

		0 : 자동으로 수행되는 ARP/ND-process 에서 획득한 Address 을
		사용
		1 : HOST 가 설정한 Sn_DHAR 를 사용
		Force ARP
		Sn_MR 이 UDP4, UDP6, UDPD, IPRAW4, IPRAW6 이고, Sn_CR [SEND]나
		Sn_CR[SEND6]을 수행 시 마다 ARP/ND-process 를 수행하여 획득한
		Destination Hardware Address 를 사용한다.
		Sn_MR 이 TCP4, TCP6, TCPD 이고, "TCP SERVER"인 경우, "TCP
0	FARP	CLIENT"에게 SYN/ACK packet 을 전송하기 이전에 ARP/ND-process 를
		수행하여 획득한 Destination Hardware Address 를 사용한다.
		0 : Disable
		1 : Enable
		* CAUTION DHAM = '1'인 경우, ARP/ND-process 를 수행하지만
		Sn_DHAR 을 Destination Hardware Address 로 사용한다.

4.2.20 Sn_RTR (SOCKET n Retransmission Time Register) [R=W] [0x0180-0x0181] [0x0000]

Sn_RTR 은 100us 단위의 SOCKET n Retransmission Time 을 설정한다.

Sn_RTR = '0'인 경우, Sn_CR[OPEN] = '1'에 의해 RTR 값으로 초기화된다.

참조) 6.7 Retransmission

Ex) SO_RTR = 5000 (0x1388), 5000 * 100us = 0.5s

S0_RTR0(x0180)	S0_RTR1(0x0181)
0x013	0x88

4.2.21 Sn_RCR (SOCKET n Retransmission Count Register) [R=W] [0x0184] [0x00]

Sn_RCR 은 SOCKET n Retransmission Counter 를 설정한다. Sn_RCR = '0'인 경우, Sn_CR[OPEN] = '1'에 의해 RCR 값으로 초기화된다. *참조*) 6.7 Retransmission

4.2.22 Sn_KPALVTR (SOCKET n Keep Alive Time Register) [R=W] [0x0188] [0x00]

Sn_KPALVTR 는 5s 단위로 SOCKET n TCP Keep Alive(KA) Time 을 설정한다. KA Packet 은 Sn_SR 이 SOCK_ESTABLISHED 이고 1 Byte 이상의 DATA 를 전송한 이후부터 전송 가능하며, Sn_KPALVTR 시간 이후 전송된다.

단, Sn_KPALVRT = 0x00 인 경우, Sn_CR [SENDKEEP]에 의해 수동으로 전송된다.

Ex) SO_KPALVTR = 10 (0x0A), 10 * 5s = 50s

S0_KPALVTR(0x0188)

0x0A

4.2.23 Sn_TX_BSR (SOCKET n TX Buffer Size Register) [R=W] [0x0200] [0x02]

Sn_TX_BSR 는 SOCKET n TX Buffer Size 를 0, 1, 2, 4, 8, 16 Kbytes 단위로 설정한다.

TX Memory 는 SOCKET 0 부터 SOCKET 7 까지 Sn_TX_BSR 값으로 순차적으로 할당된다.

만약 그 외의 값으로 설정되거나 Sn_TX_BSR 의 총합이 16 KB 를 초과하는 경우, SOCKET TX Buffer 의 Read/Write Access 과정에서 오작동을 초래할 수 있다.

Value (Dec)	0	1	2	4	8	16
Buffer size	0KB	1KB	2KB	4KB	8KB	16KB

Ex) S0_TX_BSR= 4 Kbytes

S0_TX_BSR(0x0200)

0x04

4.2.24 Sn_TX_FSR (SOCKET n TX Free Buffer Size Register) [R01 [0x0204-0x205] [0x0800]

Sn_TX_FSR 은 SOCKET n TX Buffer Block 의 빈 Buffer Size 를 확인한다.

In UDP, IPRAW and MACRAW mode

 $Sn_TX_FSR = Sn_TX_BSR - | Sn_TX_WR^{(1)} - Sn_TX_RD^{(2)} |$

In TCP mode,

Sn_TX_FSR = Sn_TX_BSR - | Sn_TX_WR - Internal Pointer⁽³⁾ |

- (1) SOCKET n TX Write Pointer Register
- (2) SOCKET n TX Read Pointer Register
- (3) TCP ACK Pointer managed by W6100

Sn_TX_FSR 보다 큰 DATA 를 SOCKET n TX Buffer Block 에 저장하지 않게 주의한다.

Ex) S0_TX_FSR = 1024 (0x0400)

S0_TX_FSR0(0x0204)	S0_TX_FSR1(0x0205)	
0x04	0x00	

4.2.25 Sn_TX_RD (SOCKET n TX Read Pointer Register) [RO] [0x0208-0x0209] [0x0000]

Sn_TX_RD 는 Sn_CR[OPEN]에 의해 초기화된다. 단, Sn_MR[3:0]이 TCP4, TCP6, TCP Dual 인경우, TCP 연결 단계에서 초기값이 재설정된다.

Sn_CR[SEND]는 SOCKET n TX Buffer 에서 Sn_TX_RD 부터 Sn_TX_WR 까지 저장된 DATA 를 전송하고 Sn_TX_RD 를 Sn_TX_WR 과 같은 값으로 자동으로 증가시켜 준다. 만약, 자동증가한 값이 16bit Offset Address 의 최대 값 0xFFFF 를 초과하여 Carry Bit(17th bit)가 발생한 경우, 그 Carry bit 는 무시되고, 하위 16bits 값으로 자동 설정된다.

Ex) $SO_TX_RD = 0xd4b3$

S0_TX_RD0(0x0208)	S0_TX_RD1(0x0209)		
0xd4	0xb3		

4.2.26 Sn_TX_WR (SOCKET n TX Write Pointer Register) [RW] [0x020C-0x20D] [0x0000]

Sn_TX_WR은 Sn_CR[OPEN]에 의해 초기화된다. 단, Sn_MR[3:0]이 TCP4, TCP6, TCPD 인 경우, TCP 연결 단계에서 초기값이 재설정된다.

Sn TX WR 은 또한 DATA 를 전송하기 위해 다음 절차에 따라 읽거나 갱신한다.

- 1. HOST 는 전송할 DATA 를 저장할 시작 Address 인 Sn_TX_WR 을 읽는다.
- 2. HOST 는 읽은 Sn_TX_WR을 시작 Address 로 하여 전송할 DATA 를 SOCKET n TX Buffer 에 저장한다.
- 3. HOST 는 저장한 DATA Size 만큼 Sn_TX_WR 를 증가시킨다. 만약, Sn_TX_WR 값이 16bits Offset Address 의 최대 값 0xFFFF 를 초과할 경우, 그 Carry bit 는 무시하고 하위 16bits 의 값으로 갱신해야 한다.
- 4. HOST 는 Sn_CR[SEND]를 수행하여 SOCKET n TX Buffer 에 저장된 DATA 를 전송한다.

Ex) S0_TX_WR = 0x0800

S0_TX_WR0(0x020C)	S0_TX_WR1(0x020D)		
0x08	0x00		

4.2.27 Sn_RX_BSR (SOCKET n RX Buffer Size Register) [R=W] [0x0220] [0x02]

Sn_RX_BSR 은 SOCKET n RX Buffer Size 를 0, 1, 2, 4, 8, 16 Kbytes 단위로 설정한다.

SOCKET n RX Buffer 는 RX Memory 에 SO_RX_BSR 에서 S7_RX_BSR 까지 순차적으로 할당된다. 만약 그 외의 값으로 설정되거나 Sn_RX_BSR 의 총합이 16 Kbytes 를 초과하는 경우, SOCKET n RX Buffer 의 Read/Write Access 과정에서 오작동을 초래할 수 있다.

Value (Dec)	0	1	2	4	8	16
Buffer size	0KB	1KB	2KB	4KB	8KB	16KB

Ex) SO_RX_BSR = 8 Kbytes

S0_RX_BSR(0x0220)

80x0

4.2.28 Sn_RX_RSR (SOCKET n RX Received Size Register) [R0] [0x0224-0x0225] [0x0000]

Sn_RX_RSR 은 SOCKET n RX Buffer 에 수신된 DATA Size 를 확인한다.

In TCP, UDP, IPRAW and MACRAW mode,

 $Sn_RX_RSR = | Sn_RX_WR^{(1)} - Sn_RX_RD^{(2)}|$

- (1) SOCKET n RX Write Pointer Register
- (2) SOCKET n RX Read Pointer Register

Ex) S0_RX_RSR = 2048 (0x0800)

S0_RX_RSR0(0x0224)	S0_RX_RSR1(0x0225)
0x08	0x00

4.2.29 Sn_RX_RD (SOCKET n RX Read Pointer Register) [RW] [0x0228-0x229] [0x0000]

Sn_RX_RD 는 Sn_CR[OPEN]에 의해서 초기화된다. SOCKET n Buffer 에 수신된 DATA 는 다음 절차에 따라 읽거나 갱신한다.

- 1. HOST 는 SOCKET n Buffer 에 수신된 DATA 의 시작 Address 인 Sn_RX_RD 을 읽는다.
- 2. HOST 는 시작 Address 부터 수신된 DATA 를 읽는다.
- 3. HOST 는 Sn_RX_RD 를 읽은 DATA Size 만큼 증가시킨다. 증가된 Sn_RX_RD 값이 16bits Offset Address 의 최대 값 0xFFFF 를 초과하여 Carry bit(17th bit)가 발생한 경우, 그 Carry bit 는 무시되고 하위 16bits 값으로 갱신한다.
- 4. HOST 는 Sn_CR[RECV]를 수행하여 SOCKET n Buffer 를 비운다.

Ex) SO_RX_RD =1536(0x0600)

S0_RX_RD0(0x0228)	S0_RX_RD1(0x0229)		
0x06	0x00		

4.2.30 Sn_RX_WR (SOCKET n RX Write Pointer Register) [RO] [0x022C-0x022D] [0x0000]

Sn_RX_WR 은 SOCKET n RX Buffer Block 에 마지막으로 수신된 DATA 의 Address 이다.

Sn_RX_WR 은 Sn_CR[OPEN]에 의해 초기화 되며 DATA 수신에 의해 자동 증가된다. 만약, 증가된 값이 16bit Offset Address 의 최대 값인 0xFFFF 를 초과하여 Carry bit(17th bit)가 발생한 경우, 그 Carry bit 는 무시되고 하위 16bits 값으로 자동 설정된다.

Ex) S0_RX_WR = 1536(0x0600)

S0_RW_WR0(0x022C)	S0_RW_WR1(0x022D)		
0x06	0x00		

5 HOST Interface Mode

W6100 은 HOST 와의 통신을 위한 interface Mode 로써 SPI(Serial Peripheral Interface)와 Parallel BUS 를 제공하며 이는 PIN MOD[3:0]를 통해 설정할 수 있다.

SPI는 CSn, SCLK, MOSI, MISO로 구성되어 있고 Parallel BUS의 경우 4개의 Control Signal (CSn, WRn, RDn, INTn)과 Address Bus(2bits), Data Bus(8bits) 로 구성되어 있다.

5.1 SPI Mode

W6100 은 MOD[3:0] = '000X'일 경우, SPI Mode 로 동작하며, SPI Slave 만으로 사용 가능하다. HOST 와 W6100 은 '5.1.2 Variable Length Data Mode (VDM)' & '5.1.3 Fixed Length Data Mode (FDM)'에서 설명될 SPI Operation Mode 에 따라서 아래의 Figure 5 오류! 참조 원본을 찾을 수 없습니다. 와 Figure 6 의 두 가지 방식으로 연결될 수 있다. Figure 5 오류! 참조 원본을 찾을 수 없습니다. 방식은 SPI Master 의 선택에 따라 다른 SPI Slave 들과 공유할 수 있는 반면, Figure 6 은 W6100 전용 SPI 로 사용되어 다른 SPI Slave 들과 공유할 수 없다.

Figure 5 Variable Length Data Mode (CSn controlled by Host)

Figure 6 Fixed Length Data Mode (CSn is always connected by Groud)

또한 W6100은 Figure 7과 같이 SPI Mode 0과 Mode 3 만을 지원하며, MOSI는 SCLK의 Rising edge 인 경우, 수신(Sampling)되고, MISO는 Falling edge 인 경우, 송신(Toggling)된다. 그리고 MOSI와 MISO는 SCLK 마다 MSB에서 LSB까지 순차적으로 송수신된다.

Figure 7 SPI Mode 0 & Mode 3

5.1.1 SPI Frame

W6100은 HOST 로부터 송수신되는 SPI Frame에 의해 제어되며 해당 SPI Frame은 Figure 8 과 같이 Address Phase, Control Phase, Data Phase 로 구성되어 있다.

Figure 8 SPI Frame Format

Address Phase 는 W6100 의 Register 나 TX/RX Memory 에 대한 16bits Offset Address 를 지정한다. Control Phase 는 Address Phase 에서 지정된 Offset Address 가 속한 Block 을 선택하고, Read/Write Access Mode 및 SPI Operation Mode(Variable Length Data / Fixed Length Data Mode)를 지정한다. 마지막으로 Data Phase 에서는 SPI Operation Mode 에 따른 임의 길이(N byte) Data 또는 1,2,4 byte Data 를 지정한다.

SPI Operation Mode 가 Variable Length Data Mode(VDM)일 경우 CSn은 반드시 HOST에 의해 SPI Frame 단위로 제어 되어야 한다. VDM 인 경우, HOST는 W6100에게 CSn를 Assert(Highto-Low)함으로써 SPI Frame 의 시작을 알리고, De-assert(Low-to-High)를 통해 종료(N byte Data Phase 전송종료)를 알린다.

VDM 과 FDM 을 간단히 설명하자면, VDM 은 SCS 의 컨트롤로 Data 를 전송하기 때문에 length 제한이 없고 FDM 은 CSn 이 low 로 고정 되어있고, SPI Operation Mode 에 따라 1,2,4 bytes 를 전송할 수 있다.

5.1.1.1 Address Phase

Address Phase 는 W6100의 Common 및 Socket Register, Socket n TX/RX Buffer Block에 대한 16bits Offset Address 를 지정한다. 이때 16bits Offset Address 값은 MSB 부터 LSB 순으로 순차적으로 송신된다.

W6100 SPI Interface 는 SPI Frame 의 Offset Address 를 시작(Base)으로 1 byte Data 전송 마다 자동으로 Offset Address 가 1 씩 증가하는 Sequential Data Read/Write 를 지원한다.

5.1.1.2 Control Phase

Control Phase 는 Block Select Bits(BSB[4:0])를 통해 Address Phase 에서 지정된 Offset Address 가 속한 Block을 지정하고, Read/Write Access Mode, SPI Operation Mode를 각각 Read Write Access Mode Bit(RWB)와 SPI Operation Mode Bits(OM[1:0])를 통해 지정한다.

7	6	5	4	3	2	1	0	
BSB4	BSB3	BSB2	BSB1	BSB0	RWB	OM1	OM0	

Bit	Symbol	Description							
		Block Selection Bits							
		W6100 에는 1 개의 Common, 8 개의 SOCKET n Register(n=0-7) 그리고							
		각각의 SOCKET n 에 할당되는 TX/RX Buffer 와 같은 Block 들이							
		존재한다.							
		아래 표는 BSB[4:0]를 통해 선택되는 Block을 도식화한다.							
			BSB[4:2]	BSB[1:0]	Block				
				00	Common Register				
	BSB		000	01	Socket 0 Register				
7~3				10	Socket 0 TX Buffer				
. 3				11	Socket 0 RX Buffer				
			001	00	Reserved				
				01	Socket 1 Register				
			001	10	Socket 1 TX Buffer				
				11	Socket 1 RX Buffer				
			010	00	Reserved				
				01	Socket 2 Register				
				10	Socket 2 TX Buffer				
				11	Socket 2 RX Buffer				

			•	
			. 00	Reserved
			01	Socket 7 Register
		111	10	Socket 7 TX Buffer
			11	Socket 7 RX Buffer
			11	Socker Flox Bullet
		Ex) SOCKET 2 Register 인 경	경우, BSB[4:2]	= '010', BSB[1:0] = '01'.
		Read/Write Access Mode B		
2	RWB	SPI Read/Write Access Mode	를 설정한다	
_	I I I I I I I I I I I I I I I I I I I	0 : Read		
		1 : Write		
		SPI Operation Mode Bits	하며 Operati	on Mode 는 Variable Length Data
		Mode(VDM)와 Fixed Length	·	_
		mode(VDM)± Tixed Letigui	Data Mode(I	DM) / M / I.
		OM[1:0]		Mode
		00 \	/DM, N bytes	Data Phase (1 ≤ N)
		01 F	FDM, 1 byte D	ata Phase
		10 F	DM, 2 bytes	Data Phase
		11 F	DM, 4 bytes	Data Phase
		Versiehle Leurste Dete Made	(1/D11)	
		Variable Length Data Mode	,	es Data 를 송수신하는 Mode 로,
			•	결정된다. HOST 는 CSn 을
1~0	OM[1:0]		-	에게 SPI Frame 의 Address Phase
				'을 포함하는 Control Phase 를
				을 모습하는 Control Filase 을 수신을 완료 후, CSn 을 De-
			₩6100 ○	SPI Frame 송수신 이 완료
		되었음을 알린다.	المحت الله الماخ	II CDI E 다이크 페이 디이아
			HUSI MI A	H SPI Frame 단위로 제어 되어야
		한다 .		
		Fixed Length Data Mode (F	DM)	
		VDM 에서는 HOST 의 CS	n Control 에	의해 Data Length 가 결정되는
		반면, Fixed Length Data M	Node 에서는 (DM[1:0]값에 의해 Data Length 가
		결정된다. 따라서, CSn	은 항상 Lov	v 상태를 유지해야 하며, Data

Length 는 OM[1:0] 값 설정에 따라 반드시 1, 2, 4 bytes 중 하나의 값을 갖는다.

5.1.1.3 Data Phase

Data Phase 의 크기는 Control Phase 의 SPI Operation Mode Bits(OM[1:0])의 설정에 따라 N bytes(VDM) 또는 1, 2, 4 bytes(FDM)로 결정된다. Data 는 byte 단위로 송수신되며 반드시 MSB 부터 LSB 순으로 MOSI 또는 MISO 를 통해 1 bits 씩 순차적으로 송수신된다.

5.1.2 Variable Length Data Mode (VDM)

VDM 은 HOST의 CSn Control에 의해 SPI Frame의 Data Phase Length가 결정된다. 즉, Data Phase의 Length는 CSn Control에 따라 1 byte부터 N byte까지 임의의 길이를 가질 수 있다. 또한 VDM 에서 Control Phase의 OM[1:0]는 반드시 '00'값으로 설정되어야 한다.

5.1.2.1 Write Access in VDM

Figure 9 Write SPI Frame in VDM

Figure 9 는 VDM 으로 Write Access 하는 SPI Frame 을 보여준다. HOST는 CSn을 Assert(Highto-Low)함으로써 W6100 에게 Address Phase 전송을 알린다. Control Phase 전송시 RWB를 '1', OM[1:0]을 '00'으로 설정해 Write Access 및 VDM 임을 알린다. MOSI를 통해 전송되는 Data Bits는 Toggling SCLK(Falling-Edge)에 동기화되어 W6100으로 전송된다. VDM은 CSn이 Low 이고 Data Phase가 계속 전송될 경우 Sequential Data Write를 지원한다. 모든 Data Phase의 전송이 완료되면 CSn을 De-assert(Low-to-High)한다.

5.1.2.2 Read Access in VDM

Figure 10 은 VDM 으로 Read Access 하는 SPI Frame 을 보여준다. HOST 는 CSn 을 Assert(Highto-Low)함으로써 W6100 에게 Address Phase 전송을 알린다. Control Phase 전송시 RWB 를 '0'으로, OM[1:0]을 '00'으로 설정해 Read Access 및 VDM 임을 알린다. Address & Control Phase 를 Toggling SCLK(Falling-Edge)에 동기화하여 MOSI을 통해 1 Bit 씩 전송하고 Sampling SCLK(Rising-Edge)에 동기화하여 MISO를 통해 들어오는 Data를 수신한다. CSn 이 Low 이고 Data Phase를 계속 수신할 경우 Sequential Data Read를 지원한다. Data Phase 의 수신이 완료되면 CSn을 De-assert(Low-to-High)한다.

5.1.3 Fixed Length Data Mode (FDM)

FDM은 HOST에서 CSn을 Control할 수 없고 W6100의 CSn이 Always Low (Connected GND)인 경우에 사용된다.

VDM 에서 CSn 을 Assert 및 De-assert 함으로써 Data Phase 의 Length 를 결정하는 것에 반해 FDM 에서는 Control Phase 의 SPI Operation Mode Bits(OM[1:0])를 통해 Data Phase Length 를 결정한다. OM[1:0]의 값이 '01' / '10' / '11'에 따라서 Data Phase Length 는 각기 1 / 2 / 4 bytes 로 결정되며 OM[1:0]의 설정과 다른 Data Phase Length 를 갖는 SPI Frame 의 전송은 W6100 의 비정상 동작을 야기한다.

SPI Frame 은 VDM 과 동일하므로 생략한다. 참조) 5.1.2Variable Length Data Mode (VDM)

5.1.3.1 Write Access in FDM

1 byte Write Access

Г	Address Phase												C	ontr	ol Ph	ase					[Data	Phase	2								
											BSB			RWB	0	M				1 st [Data											
1	5 1	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	4	3	2	1	0	R/W	1	0	7	6	5	4	3	2	1	0
)		х	X	X	X	X	X	Х	X	Х	Х	X	X	Х	X	X	X	X	X	X	X	1	0	1	X	Х	Х	Х	Х	X	Х	X

Figure 11 1 byte Data Write Access SPI Frame in FDM

2 bytes Write Access

						۸.	1 -1	- Db -										C	ontr	ol Ph	ase					[Data I	Phase	2		
	Address Phase									BSB			RWB	O	M				1 st [Data											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	4	3	2	1	0	R/W	1	0	7	6	5	4	3	2	1	0
X	X	Х	Х	Х	X	Х	Х	X	X	Х	X	X	Х	Х	Х	X	X	X	X	X	1	1	0	X	X	X	X	X	Х	Х	X

		[Data	Phase	2		
			2 nd [Data			
7	6	5	4	3	2	1	0
Х	Х	Х	Х	Х	X	X	Х

Figure 12 2 bytes Data Write Access SPI Frame in FDM

4 bytes Write Access

	Address Phase										0	ontr	ol Ph	ase					[Data I	Phase	2									
											BSB			RWB	0	M				1 st [Data										
15	14	13		11	10	9	8	7	6	5	4	3	2	1	0	4	3	2	1	0	R/W	1	0	7	6	5	4	3	2	1	0
X	X	х	X	х	X	Х	Х	Х	X	X	X	х	Х	Х	х	X	X	х	х	Х	1	1	1	х	X	X	X	х	X	X	X

		[Data	Phase	е					[Data	Phas	e					[Data	Phase	2		
			2 nd I	Data				3 rd Data									4 th [Data					
7	6	5	4	3	2	1	0	3 Data 7 6 5 4 3 2 1 0						0	7	6	5	4	3	2	1	0	
X	Х	Х	Х	Х	X	Х	Х	x x x x x x x x							X	X	Х	X	X	X	X	X	Х

Figure 13 4 bytes Data Write Access SPI Frame in FDM

5.1.3.2 Read Access in FDM

1 byte Read Access

						۸		s Pha										C	ontr	ol Ph	ase						ata l	Phase	2		
						At	ures	S PIId	se									BSB			RWB	0	M				1 st [Data			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	4	3	2	1	0	R/W	1	0	7	6	5	4	3	2	1	0
Х	X	X	X	Х	Х	Х	Х	X	X	X	X	Х	Х	х	Х	X	х	X	X	Х	0	0	1								
																								X	X	X	Х	X	Х	х	X

Figure 14 1 byte Data Read Access SPI Frame in FDM

2 bytes Read Access

						۸۰	ddroc	s Pha										C	ontr	ol Ph	ase					[Data I	Phase	е		
						AL	Jules	SFIIG	150									BSB			RWB	0	M				1 st [)ata			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	4	3	2	1	0	R/W	1	0	7	6	5	4	3	2	1	0
X	X	Х	Х	х	Х	х	X	Х	X	X	X	х	Х	х	X	Х	Х	X	х	X	0	1	0								
																								х	х	x	х	х	X	х	х

		[Data	Phase	-		
			2 nd [Data			
7	6	5	4	3	2	1	0
v	v	v	v	v	v	v	v

Figure 15 2 bytes Data Read Access SPI Frame in FDM

4 bytes Read Access

						۸.	ldres	- Db -										C	ontr	ol Ph	ase)ata I	Phase	2		
						A	iures	S Pna	ise									BSB			RWB	0	M				1 st [ata			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	4	3	2	1	0	R/W	1	0	7	6	5	4	3	2	1	0
X	Х	Х	Х	Х	X	Х	Х	Х	X	X	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	0	1	1								
																								Х	Х	X	X	X	X	X	X

			Data I	Phase	е			Data Phase 3 rd Data 7 6 5 4 3 2 1 0										[Data	Phase	2		
			2 nd [Data							3 rd [Data							4 th [Data			
7	6	5	4	3	2	1	0	7	6	5	4		2	1	0	7	6	5	4	3	2	1	0
								7 6 5 4 3 2 1 0															
Х	X	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	X

Figure 16 4 bytes Data Read Access SPI Frame in FDM

5.2 Parallel BUS Mode

PIN MOD[3:0] = '010X' 일 경우 Parallel BUS Mode 를 지원하며, HOST 와 W6100 은 Figure 17 과 같이 연결된다.

Figure 17 Host Interface in Parallel BUS Mode

Parallel BUS Mode 에서 W6100 은 HOST 에서 전송되는 ADDR[1:0]을 통해 DAT [7:0]는 Read/Write Access 할 16 bits Offset Address Register 인지, 지정된 Offset Address 가 속한 Block을 선택하는 Block Select Bits 인지, 또는 지정된 Offset Address 에 저장되는 Data 인지를 구분된다.

ADDR[1:0]은 Table 3 에서 보여주는 것처럼 값에 따라서 16 bits Offset Address Register 의상위 8 bits 를 지정하는 IDM_ARH, 하위 8 bits 를 지정하는 IDM_ARL, 지정된 Offset Address 가 속한 Block 을 선택하는 IDM_BSB 그리고 Offset Address 에 저장되는 Data 를 나타내는 IDM_DR 로 구분된다.

Table 3	Registers	in	Parallel	BUS	Mode
---------	-----------	----	----------	-----	------

ADDR[1:0]	Symbol	Description
00	IDM_ARH	Indirect Mode High Address Register 상위 8 bits Offset Address Register
01	IDM_ARL	Indirect Mode Low Address Register 하위 8 bits Offset Address Register

W6100 에는 Common, 8 개의 Socket n Register(n=0~7) 그리고 각각의 Socket n 에 할당되는 TX/RX Buffer 와 같은 Block 들이 존재한다.

아래 표는 IDM_BSR[7:3]을 통해 선택되는 Block 을 도식화한다.

[7:5]	[4:3]	[2:0]	Description
000	00		Common Register
	01		Socket 0 Register
	10		Socket 0 TX Buffer
	11		Socket 0 RX Buffer
	00		Reserved
001	01	Reserved	Socket 1 Register
001	10	keserved	Socket 1 TX Buffer
	11		Socket 1 RX Buffer
	00		Reserved
010	01		Socket 2 Register
010	10		Socket 2 TX Buffer
	11		Socket 2 RX Buffer
		• •	
	00		Reserved
111	01	Reserved	Socket 7 Register
	10	reserved	Socket 7 TX Buffer
	11		Socket 7 RX Buffer

10

11

IDM_BSR

IDM_DR

5.2.1 Parallel BUS Mode Data Write

Figure 18 Parallel Bus N-Bytes Data Write Access

Figure 18 은 N-Bytes Data Write 를 보여준다. HOST 는 CSn 을 Assert(High-to-Low) 함으로써 W6100 에게 N-Bytes Data 전송을 알린다. Write Access 시 ADDR[1:0]의 값을 순차적으로 '00' / '01' / '10' / '11'으로 설정함으로써 16 bits Offset Address Register 의 상위 8bits, 하위 8bits, Block Select Bits 를 설정하고 Data 를 전송한다.

Parallel Bus Mode 는 N-Bytes Sequential Data Write 를 지원한다.

5.2.2 Parallel Bus Mode Data Read

Figure 19 Parallel Bus Mode Continuous Read Access

Figure 19 는 N-Bytes Data Read 를 보여준다. HOST 는 CSn 을 Assert(High-to-Low) 함으로써 W6100 에게 N-Bytes Data 전송을 알린다. Write Access 시 ADDR[1:0]의 값을 순차적으로 '00' / '01' / '10' / '11'으로 설정함으로써 16 bits Offset Address Register 의 상위 8bits, 하위 8bits, Block Select Bits 를 설정하고 W6100 으로부터 Data 를 수신한다.

Parallel Bus Mode 는 N-Bytes Sequential Data Read 를 지원한다.

6 Functional Description

W6100 은 간단한 Register 조작만으로 Internet Connectivity 를 제공한다. Functional Description 은 W6100 의 Initialization 및 각 Protocol(TCP, UDP, IPRAW, MACRAW) 과 추가 기능에서 따른 DATA 통신방법에 대하여 단계별 Pseudo Code 를 설명한다.

6.1 Initialization

Network 정보와 SOCKET n TX/RX Buffer Block 등을 초기화한다.

6.1.1 Network Information Setting

IPv4 및 IPv6 통신을 위한 기본 Network Information 을 설정한다.

```
Network Configuration Unlock:
                     /* Network Unlock before set Network Information */
                    NETLCKR = 0x3A;
Source Hardware Address:
                    /* Source Hardware Address, 11:22:33:AA:BB:CC */
                    SHAR[0:5] = \{ 0x11, 0x22, 0x33, 0xAA, 0xBB, 0xCC \};
IPv4 Network Information:
                    /* Gateway IP Address, 192.168.0.1 */
                    GAR[0:3] = \{ 0xC0, 0xA8, 0x00, 0x01 \};
                    /* Subnet MASK Address, 255.255.255.0 */
                    SUBR[0:3] = \{ 0xFF, 0xFF, 0xFF, 0x00 \};
                    /* W6100 IP Address, 192.168.0.100 */
                    SIPR[0:3] = \{0xC0, 0xA8, 0x00, 0x64\};
IPv6 Network Information:
                    /* Link Local Address, FE80::1322:33FF:FEAA:BBCC */
                    LLAR[0:15] = \{ 0xFE, 0x80, 0x00, 0x01, 0x00, 0
                                                                                0x13, 0x22, 0x33, 0xFF, 0xFE, 0xAA, 0xBB, 0xCC };
                    /* Global Unicast Address, 2001:0DB8:E001::1222:33FF:FEAA:BBCC */
                    GUAR[0:15] = \{ 0x20, 0x01, 0x0D, 0xB8, 0xE0, 0x01, 0x00, 0
                                                                                0x13, 0x22, 0x33, 0xFF, 0xFE, 0xAA, 0xBB, 0xCC };
                    /* IPv6 Subnet Mask Address, FFFF:FFF:: */
                    SUB6R[0:15] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
                                                                               0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
                     /* IPv6 Gateway Address, FE80::1322:33FF:FE44:5566 */
                    GA6R[0:15] = \{ 0xFE, 0x80,0x00, 0x00, 0x00, 0x00, 0x00, 0x00 \}
```



```
0x13, 0x22, 0x33, 0xFF, 0xFE, 0x44, 0x55, 0x66 };
}
Network Configuration Lock:
{
    /* Network Lock before set Network Information */
    NETLCKR = Any value except 0x3A;
}
```

6.1.2 SOCKET TX/RX Buffer Size Setting

SOCKET 통신 이전에 사용자는 Sn_TX_BSR/Sn_RX_BSR 설정을 통해 SOCKET n TX/RX Buffer Size 를 결정한다.

SOCKET n TX/RX Buffer Size 는 0,1,2,4,8,16KB 로 설정 가능하나 각 총합이 TX/RX Memory 의 크기 16KB 를 초과할 수 없다.

```
In case of, assign 2Kbytes RX/TX Memory per SOCKET

{

// set Base Address of TX/RX Memory for SOCKET n

TxTotalSize = 0;  // for check the total size of SOCKET n TX Buffer

RxTotalSize = 0;  // for check the total size of SOCKET n RX Buffer

for (n=0; n<7; n++) {

Sn_TX_BSR = 2; // assign 2 Kbytes TX Memory per SOCKET

Sn_RX_BSR = 2; // assign 2 Kbytes RX Memory per SOCKET

TxTotalSize = TxTotalSize + Sn_TX_BSR;

RxTotalSize = RxTotalSize + Sn_RX_BSR;

If( TxTotalSize > 16 or RxTotalSize > 16 ) goto ERROR; // invalid Total Size

} // end for
}
```


6.2 TCP

TCP(Transmission Control Protocol)는 IP Layer 위의 전송계층에 위치하며 1:1 연결 기반의 양방향 DATA 전송 Protocol 이다. 또한 Port Number 를 이용해 Application 간 통신을 제공한다.

TCP 는 1:1 연결 기반이므로 Destination 과의 DATA 송수신을 위해서 Destination 에게 연결요청을 하거나 Destination 으로부터 연결요청을 받는다. 이 과정에서 먼저 연결요청을 하는 쪽을 'TCP CLIENT', 연결요청을 받는 쪽을 'TCP SERVER'로 구분한다. TCP 는 신뢰성 있는 전송 프로토콜로써 연결이 완료된 이후의 DATA 송수신 과정에서 확인 응답 메커니즘을 통해 전송 DATA의 수신여부를 확인하고 손실되거나 훼손된 DATA는 재전송한다. 'TCP SERVER'와 'TCP CLIENT'는 TCP 연결종료가 이루어지기 전까지 연결을 유지하며 DATA를 송수신한다.

Figure 20 TCP SERVER and TCP CLIENT

6.2.1 TCP SERVER

Figure 21 TCP SERVER Operation Flow

• OPEN

SOCKET n 을 TCP4/TCP6 Mode 로 OPEN 한다.

```
TCP Mode : TCP4, TCP6
{
START :
    Sn_MR[3:0] = '0001'; /* set TCP4 Mode */
    // Sn_MR[3:0] = '1001'; /* set TCP6 Mode */

    Sn_PORTR[0:1] = {0x13,0x88}; /* set PORT Number, 5000(0x1388) */
    Sn_CR[OPEN] = '1'; /* set OPEN Command */
    while(Sn_CR != 0x00); /* wait until OPEN Command is cleared*/

    /* check SOCKET Status */
    if(Sn_SR != SOCK_INIT) goto START;
}
```

LISTEN

SOCKET n 을 'TCP SERVER'로 동작시킨다. Destination 의 연결요청(SYN packet)을 대기한다.

{


```
Sn_CR = LISTEN; /* set LISTEN Command */
while(Sn_CR != 0x00); /* wait until LISTEN Command is cleared*/

if(Sn_SR != SOCK_LISTEN) goto OPEN; /* check SOCKET Status */
}
```

• ESTABLISHED?

'TCP SERVER'는 SYN Packet 수신 전까지 대기상태(Sn_SR=SOCK_LISTEN)를 유지하며, 'TCP CLIENT'로부터 SYN Packet 을 수신하면 SYN/ACK Packet 을 전송하고, 연결을 완료한다. 접속이 완료될 경우, Sn_IR[CON] 또는 Sn_SR[SOCK_ESTABLISHED]로 확인할 수 있다. 접속이 완료되면 TCP4/TCP6 Mode 에 따라 Destination Address 는 Sn_DIPR 또는 Sn_DIP6R 을 확인할 수 있다.

```
First method:
    /* check SOCKET Interrupt */
    if(Sn_IR[CON] == '1')
        Sn_IRCLR[CON] = '1'; /* clear SOCKET Interrupt */
        goto Received DATA?; /* or goto Send DATA?; */
    } // end if
    else if(Sn_IR[TIMEOUT] == '1') goto Timeout?;
    /* check destination address */
    if(Sn_MR[3:0] == TCP6 Mode)
        destination_addr[0:15] = Sn_DIP6R;
    else if(Sn_MR[3:0] == TCP4 Mode)
        destination_addr[0:3] = Sn_DIPR;
Second method:
    /* checnk SOCKET status */
    if (Sn_SR == SOCK_ESTABLISHED)
        Sn_IRCLR[CON] = '1'; /* clear SOCKET Interrupt */
        goto Received DATA? /* or goto Send DATA?; */
    else if(Sn_IR[TIMEOUT] == '1') goto Timeout?;
    /* check destination address */
    if(Sn_MR[3:0] == TCP6 Mode)
        destination_addr[0:15] = Sn_DIP6R;
    else if(Sn_MR[3:0] == TCP4 Mode)
        destination_addr[0:3] = Sn_DIPR;
```

• Receive DATA?

SOCKET n 의 DATA 수신여부는 Sn_RX_RSR 또는 Sn_IR[RECV]을 통해 확인한다.


```
First method :
{
    /* check SOCKET RX Memory Received Size */
    if (Sn_RX_RSR > 0) goto Receiving Process;
}
Second method :
{
    /* check SOCKET RECV Interrupt bit */
    if (Sn_IR[RECV] == '1')
    {
        Sn_IRCLR[RECV] = '1'; /* clear SOCKET Interrupt */
        goto Receiving Process;
    } // end if
}
```

• Receiving Process

SOCKET RX Buffer 로부터 수신된 DATA 를 Read 한다.

수신 DATA를 Read 후, 그 Size만큼 Sn_RX_RD를 증가시키고, Sn_CR[RECV]를 수행한다. 만약, Sn_CR[RECV] 수행 이후 SOCKET n RX Buffer 에 DATA 가 남아있는 경우 Sn_IR[RECV]이 다시 발생한다.

```
{
    /* get Received size */
    get_size = Sn_RX_RSR;

    /* calculate SOCKET n RX Buffer Size */
    gSn_RX_MAX = Sn_RX_BSR * 1024;

    /* calculate Read Offset Address */
    get_start_address = Sn_RX_RD;

    /* copy get_size of get_start_address to destination_address */
    memcpy(get_start_address, destination_address, get_size);

    /* increase Sn_RX_RD as get_size */
    Sn_RX_RD += get_size;

    /* set RECV Command */
    Sn_CR[RECV] = '1';
    while(Sn_CR != 0x00); /* wait until RECV Command is cleared */
}
```

Send DATA? / Sending Process

SOCKET n TX Buffer 에 Write 된 DATA 를 전송한다.

DATA Write 후, 그 Size 만큼 Sn_TX_WD 를 증가시키고, Sn_CR[SEND]를 수행한다. 다음 DATA 를 전송할 준비가 완료(Sn_IR[SENDOK] = '1')될 때까지 다음 "Sending Process"를 수행할 수 없으며, 전송 TIMEOUT 이 발생할 수 있다. 참조) 6.7 Retransmission

Sn_IR[SENDOK]가 발생할 때까지의 시간은 사용된 SOCKET Count, DATA Size 와 Network Traffic 등에 의존적이다.

전송될 DATA Size 는 SOCKET n TX Buffer Size 를 초과할 수 없고, MSS 보다 큰 DATA 는 MSS 단위로 나뉘어 전송된다.

```
/* calculate SOCKET n TX Buffer Size */
gSn_TX_MAX = Sn_TX_BSR * 1024;
/* check the Max Size of DATA(send_size) & Free Size of SOCKET n TX
Buffer(Sn_TX_FSR) */
if( send_size > gSn_TX_MAX ) send_size = gSn_TX_MAX;
while(send_size > Sn_TX_FSR); // wait until SOCKET n TX Buffer is free */
/* If you don't want to wait TX Buffer Free
send_size = Sn_TX_FSR; // write DATA as Size of Free Buffer
/* calculate Write Offset Address */
get_start_address = Sn_TX_WR;
/* copy get_size of get_start_address to destination_address */
memcpy(get_start_address, destination_address, send_size);
/* increase Sn_TX_WR as send_size */
Sn_TX_WR += send_size;
/* set SEND and SEND6 Command in each TCP and TCP6 Mode */
Sn_CR = SEND; /* set SEND command in TCP Mode */
while(Sn_CR != 0x00); /* wait until SEND or SEND6 Command is cleared */
/* wait until SEND or SEND6 Command is completed or Timeout is occurred */
while(Sn_IR[SENDOK] == '0' and Sn_IR[TIMEOUT] = '0');
/* clear SOCKET Interrupt*/
if(Sn_IR[SENDOK] == '1') Sn_IRCLR[SENDOK] = '1';
                        goto Timeout?;
else
```

• Received FIN (Passive Close)

Destination 으로부터 연결종료 요청(FIN Packet)을 수신한 경우이며 FIN Packet 의 수신여부는 Sn_SR 또는 Sn_IR[DISCON]을 통해 확인한다.

```
First Method:
{
    If(Sn_SR == SOCK_CLOSE_WAIT) goto Disconnecting Process;
}

Second Method:
{
    If(Sn_IR[DISCON] == '1') goto Disconnecting Process;
}
```


• Disconnected (Active Close)

Destination 에게 연결종료 요청(FIN Packet)을 전송한다.

```
{
    Sn_CR[DISCON] = '1';    /* send FIN Packet */
    while(Sn_CR != 0x00);    /* wait until DISCON Command is cleared */
    goto Disconnecting Process;
}
```

• Disconnecting Process

Destination 으로부터 FIN Packet 을 수신한 경우(Passive Close), 더 이상 DATA 통신이 필요하지 않다면 Destination 에게 FIN Packet 을 전송하고 SOCKET 을 Close 한다.

Destination 에게 FIN Packet 을 전송한 경우(Active Close), Destination 의 FIN Packet 수신을 대기하고 수신 후 SOCKET 이 Close 된다. 이 Process 에서 Sn_IR[TIMEOUT]이 발생할 수 있다.

```
Passive Close: /* received FIN Packet from Destination */
    Sn_CR = DISCON; /* send FIN Packet */
    while(Sn_CR != 0x00); /* wait until DISCON Command is cleared */
    /* wait unit ACK Packet is received */
    while(Sn_IR[DISCON] == '0' and Sn_IR[TIMEOUT] == '0');
    if (Sn_IR[DISCON] == '1')
    {
        Sn_IRCLR[DISCON] = '1';  /* clear Interrupt */
        goto CLOSED;
    else goto Timeout?;
Active Close: /* sent FIN Packet to Destination */
    /* wait until FIN Packet is received */
    while(Sn_IR[DISCON] == '0' and Sn_IR[TIMEOUT] == '0');
    if (Sn_IR[DISOCN] == '1')
        Sn_IRCLR[DISCON] = '1'; /* clear Interrupt */
        goto CLOSED;
    else goto Timeout?;
```

• Timeout?

TCP 는 SYN/DATA/FIN Packet 전송에 대한 응답(ACK Packet)을 수신하지 못한 경우, 설정된시간 동안 재전송을 수행한다. 재전송을 실패할 경우 Sn_IR[TIMEOUT]이 발생한다.

참조) 6.7 Retransmission


```
{
    /* check TIMEOUT Interrupt */
    if(Sn_IR[TIMEOUT] == '1')
    {
        Sn_IRCR[TIMEOUT] = '1'; /* clear Interrupt */
        goto CLOSE;
    }
}
```

• CLOSE

SOCKET n 은 Disconnecting Process, Sn_IR[TIMEOUT], Sn_CR[CLOSE]에 의해 CLOSE 된다.

```
{
    /* Wait until SOCKET n is closed */
    while(Sn_SR != SOCK_CLOSED);
}
```

6.2.2 TCP CLIENT

Figure 22 TCP CLIENT Operation Flow

• OPEN

참조) 6.2.1 TCP SERVER

CONNECT

SOCKET n 을 'TCP CLIENT'로 동작시킨다.

Sn_CR[CONNECT] 또는 Sn_CR[CONNECT6]을 통해 'TCP SERVER'로 SYN Packet 을 전송한다.

```
Sn_MR[3:0] = TCP4:
            /* set destination IP address, 192.168.0.11 */
           Sn_DIPR[0:3] = \{ 0xC0, 0xA8, 0x00, 0x0B \};
            /* set destination PORT number, 5000(0x1388) */
           Sn_DPORTR[0:1] = \{0x13, 0x88\};
           Sn_CR = CONNECT; /* set CONNECT command in TCP Mode */
           while(Sn_CR != 0x00); /* wait until CONNECT or CONNECT6 command is cleared */
           goto ESTABLISHED?;
Sn_MR[3:0] = TCP6:
            /* set destination IP address, FE80::10D:FC:34A:EF90 */
           Sn_DIP6R[0:15] = \{0xFE, 0x80, 0x00, 0x00
                                                                             0x01, 0x0D, 0x00, 0xFC, 0x03, 0x4A, 0xEF, 0x90};
            /* set destination PORT number, 5000(0x1388) */
            Sn_PORTR[0:1] = \{0x13, 0x88\};
            Sn CR = CONNECT6; /* set CONNECT6 command in TCP6 Mode */
            while(Sn_CR != 0x00); /* wait until CONNECT or CONNECT6 command is cleared */
            goto ESTABLISHED?;
```

• ESTABLISHED?

'TCP CLIENT'은 'TCP SERVER'로 전송한 SYN Packet 에 대한 SYN/ACK Packet 을 수신 전까지 접속요청상태 (Sn_SR=SOCK_SYNSENT)를 유지하며, 'TCP SERVER'로부터 SYN/ACK Packet 를 수신하면 연결이 완료되며, Sn_IR[CON] 또는 Sn_SR[SOCK_ESTABLISHED]로 확인할 수 있다. 접속이 완료되면 TCP4/TCP6 Mode 에 따라 Destination Address 는 Sn_DIPR 또는 Sn_DIP6R 을 통해 알 수 있다.

참조) 6.2.1 TCP SERVER: ESTABLISHED?

Others flow

참조) 6.2.1 TCP SERVER

6.2.3 TCP DUAL

SOCKET 은 W6100 의 Dual Stack(IPv4/IPv6)을 기반으로 TCP Dual(TCPD) Mode 를 제공한다. TCPD Mode 로 OPEN 된 SOCKET 이 Sn_CR[LISTEN]에 의해 'TCP DUAL SERVER'로 동작하는 경우, 접속하는 Destination 의 IP 버전에 따라 TCP4 또는 TCP6 로의 동작이 결정된다. 'TCP DUAL CLIENT'로 동작하는 경우, Sn_CR[CONNECT] 또는 Sn_CR[CONNECT6]을 통해 TCP4 또는 TCP6 로 동작한다.

Destination 과의 접속이 완료되면 HOST 는 Sn_ESR[TCPM]을 통해 SOCKET 이 TCP4 또는 TCP6 로 동작함을 확인할 수 있다.

6.2.3.1 TCP DUAL SERVER

'TCP DUAL SERVER'의 Operation Flow 는 Figure 21 과 동일하다.

OPEN

SOCKET n 을 TCPD Mode 로 OPEN 한다.

```
TCP Mode : TCP4, TCP6, TCPD
{
START :
    Sn_MR[3:0] = '1101'; /* set TCPD Mode */

    Sn_PORTR[0:1] = {0x13,0x88}; /* set PORT Number, 5000(0x1388) */
    Sn_CR[OPEN] = '1'; /* set OPEN Command */
    while(Sn_CR != 0x00); /* wait until OPEN Command is cleared */

    /* check SOCKET Status */
    if(Sn_SR != SOCK_INIT) goto START;
}
```

Others flow

참조) 6.2.1 TCP SERVER

6.2.3.2 TCP DUAL CLIENT

'TCP DUAL CLIENT'의 Operation Flow 는 Figure 22 와 동일하다.

OPEN

참조) 6.2.3.1 TCP DUAL SERVER: OPEN

CONNECT

Sn_CR[CONNECT] 또는 Sn_CR[CONNECT6]을 통해 'TCP SERVER'로 SYN Packet 을 전송하며 TCP4/TCP6 로의 동작이 결정된다.

```
TCP4:
{
    /* set destination IP address, 192.168.0.11 */
    Sn_DIPR[0:3] ={ 0xC0, 0xA8, 0x00, 0x0B};
    /* set destination PORT number, 5000(0x1388) */
    Sn_DPORTR[0:1] = {0x13, 0x88};

    Sn_CR = CONNECT; /* set CONNECT command */
    while(Sn_CR != 0x00); /* wait until CONNECT or CONNECT6 command is cleared */
    goto ESTABLISHED?;
}
```


Others flow

참조) 6.2.1 TCP SERVER

6.2.4 Other Functions

6.2.4.1 TCP SOCKET Options

SOCKET 을 OPEN 하는 과정에서 Sn_MR 과 Sn_MR2 를 통해서 SOCKET Option 을 설정한다.

- No Delayed ACK : Sn_MR[ND] = '1'
 No Delayed ACK Flag 는 SOCKET 이 TCP 토시 주에 Destin
 - No Delayed ACK Flag 는 SOCKET 이 TCP 통신 중에 Destination 의 DATA Packet 에 대한 ACK Packet 을 Delay 없이 즉시 전송하는 기능이다.
- Delayed ACK : Sn_MR[ND] = '0'

RTR 설정 시간 이후 수신한 DATA Packet 에 대한 ACK Packet 을 전송하거나, Sn_CR[RECV] = '1'에 의해 TCP Window Size 가 설정된 MSS 보다 작을 경우 ACK Packet 을 전송한다.

- Force PSH Flag: Sn_MR [FPSH] = '1'

 TCP Force PSH 는 모든 DATA Packet 의 PSH flag 를 설정한다.
- Auto PSH Flag: Sn_MR[FPSH] = '0'
 Destination 의 Window Size 가 0 이거나, Sn_CR[SEND]에 의해서 MSS 단위로 나뉘어
 전송된 마지막 DATA packet의 PSH flag 를 설정한다.
- Destination Hardware Address by Sn_DHAR : Sn_MR2[DHAM] = '1'
 HOST 가 설정한 Sn_DHAR 을 Destination Hardware Address 로 사용한다.
- Destination Hardware Address by ARP: Sn_MR2[DHAM] = '0'

 'TCP SERVER'인 경우, Destination 으로부터 수신한 SYN Packet 에서

 'TCP CLIENT'인 경우, ARP/ND-process 에서 획득한 Destination Hardware Address 를 사용한다.
- Destination Hardware Address by Sn_DHAR: Sn_MR2[FARP] = '1'

'TCP SERVER'인 경우, "TCP CLIENT"로부터 수신한 SYN Packet 에 대한 SYN/ACK Packet 을 응답하기 이전에 ARP/ND-process 를 수행하여 획득한 Destination Hardware Address 를 사용한다.

Sn_MR2[DHAM] = '1' 인 경우 ARP/ND-process 를 수행하지만, Sn_DHAR 을 Destination Hardware Address 로 사용한다.

• Destination Hardware Address by Sn_DHAR: Sn_MR2[FARP] = '0'
'TCP SERVER'인 경우, Destination 으로부터 수신한 SYN Packet 에서
'TCP CLIENT'인 경우, ARP/ND-process 에서 획득한 Destination Hardware Address 를 사용한다.

6.2.4.2 Keep Alive

Keep Alive (KA)는 Destination 과의 연결이 유효한지 검사하기 위해 이미 전송한 DATA Packet 의 마지막 1 Byte 를 재전송한다. 따라서 이 기능은 1 Byte 이상의 DATA 를 전송한 경우 사용할 수 있다. KA Packet 전송에 대한 ACK Packet 을 수신하지 못할 경우, 설정된 Retransmission Time 이후 Sn_IR[TIMEOUT] = '1' 발생한다.

KA Packet 은 설정한 주기(Sn_KPALVTR > 0)마다 전송하거나, 설정 주기가 없는(Sn_KPALVTR = 0) 경우 Sn_CR[SEND_KEEP] = '1' 로 전송한다.

6.3 UDP

UDP(User Datagram Protocol)은 IP Layer 위의 전송계층에 위치하며 신뢰성을 보장하지 않는 Datagram 통신을 하는 Protocol 이다. 또한 Port Number 를 이용해 Application 간 통신을 제공한다. UDP 는 연결과정이 필요 없으며 하나 이상의 Destination 과 통신을 할 수 있는 이점이 있는 반면 DATA 전송에 대한 신뢰성을 보장하지 않으므로 DATA 송수신 과정에서 DATA 손실이나 원하지 않는 Destination 으로부터 DATA 수신이 발생할 수 있다. UDP 전송방식은 DATA 송수신 범위에 따라 크게 Unicast, Broadcast, Multicast 로 구분한다. 아래의 Figure 23은 UDP Mode SOCKET 의 동작흐름을 나타낸다.

Figure 23 UDP Operation Flow

6.3.1 UDP Unicast

UDP Unicast 는 하나의 송신자가 하나의 Destination 에 DATA 를 전송하는 통신방식이다. DATA 전송 전에 UDP SOCKET 은 최초의 Destination 또는 새로운 Destination 에 대해서만 ARP/ND-process 을 수행한다. 이 process 에서 Sn_IR[TIMEOUT] = '1'이 발생할 수 있다. (참조) 6.7 Retransmission)

또한, Sn_MR2[DHAM] = '1'인 경우, ARP/ND-process 는 생략되고, HOST 가 설정한 Sn_DHAR 을 Destination Hardware Address 로 사용한다.

UDP Unicast 의 동작흐름은 Figure 23 과 동일하다.

• OPEN

SOCKET n 을 UDP4 / UDP6 Mode 로 Open 한다.

UDP4, UDP6 Mode :


```
{
START:
    Sn_MR[3:0] = '0010';    /* set UDP4 Mode */
    // Sn_MR[3:0] = '1010;    /* set UDP6 Mode */

    /* set Source PORT Number, 5000(0x1388) */
    Sn_PORTR[0:1] = {0x13, 0x88};

    Sn_CR[OPEN] = '1';    /* set OPEN Command */
    while(Sn_CR != 0x00);    /* wait until OPEN Command is cleared */

    /* check SOCKET for UDP6 Mode */
    if(Sn_SR != SOCK_UDP) goto START;
}
```

Received DATA?

참조) 6.2.1 TCP SERVER: Received DATA?

• Receiving Process

UDP 는 하나 이상의 Destination 로부터 DATA Packet 을 수신할 수 있으며, 각 Destination 의 구분을 위해 DATA Packet 은 Figure 24 와 같이 "PACKET INFO"와 함께 SOCKET n RX Buffer 에 저장된다.

HOST 는 SOCKET n RX Buffer 에서 반드시 Figure 24 단위로 Read 해야한다. 수신할 UDP Packet 이 SOCKET n RX Buffer 의 Free Size 보다 크거나 Fragmentation 된 경우 Discard 된다.

* DATA SIZE is only the size of UDP DATA

Figure 24 Received DATA in UDP Mode SOCKET RX Buffer Block

Table 11 drameter bescription in 174th21 in 0		
PACKET INFO	Description	
IPv6	0 : UDP/IPv4 Packet 수신	
IPVO	1 : UDP/IPv6 Packet 수신	
	0: others	
BRD/ALL	1 : Broadcast(Allnode) Packet 수신	
	0: others	
MUL	1 : Multicast Packet 수신	
0	always '0'	
LLA	0: GUA	

Table 4 Parameter Description in PACKET INFO

	1:LLA
DATA Length	*UDP DATA Length 저장
Destination IP	UDP4 수신시, Destination IPv4 Address 저장 (4 Byte)
Address	UDP6 수신시, Destination IPv6 Address 저장 (16 Byte)
Destination Port Number	Destination Port Number

```
UDP4 Mode:
    /* receive PACKINFO */
    goto 6.2.1 TCP SERVER: Receiving Process with get_size = 8 bytes;
    /* extract Destination IP, Port, Size in PACKET INFO */
    data_Info = destination_address[0] & "11111000";
    data_size = (destination_address[0] & "00000111" << 8) + destination_address[1];</pre>
    if( data_info & '10000000' == 0 ) /* Is Destination IPv4 Address? */
    {
        dest_ip[0:3] = destination_address[2:5];
       dest_port = (destination_address[6] << 8) + destination_address[7];</pre>
    }
    /* read UDP DATA */
    goto 6.2.1 TCP SERVER: Receiving Process with get_size = data_size;
UDP6 Mode:
{
    /* receive PACKINFO */
    goto 6.2.1 TCP SERVER: Receiving Process with get_size = 20 bytes;
    /* extract Destination IP, Port, Size in PACKET INFO */
    data_Info = destination_address[0] & "11111000";
    data_size = (destination_address[0] & "00000111" << 8) + (destination_address[1];</pre>
    if( data_info & '1000000' ! = 0) /* Is Destination IPv6 Address? */
        dest_ip[0:15] = destination_address[2:17];
        dest_port = (destination_address[18] << 8) + destination_address[19];</pre>
    /* read UDP DATA */
    goto 6.2.1 TCP SERVER: Receiving Process with get_size = data_size;
```

• Send DATA? / Sending Process

참조) 6.2.1 TCP SERVER: Send DATA? / Sending Process

```
UDP4 Mode
{
    /* set destination IP address, 192.168.0.11 */
    Sn_DIPR[0:3] = {0xC0, 0xA8, 0x00, 0x0B};
    /* set destination PORT number, 5000(0x1388) */
    Sn_DPORTR[0:1] = {0x13, 0x88};
```


• Complete Sending? / Timeout?

최초의 Destination 또는 새로운 Destination 으로 DATA Packet 를 전송할 경우, DATA Packet 전송 이전에 ARP/ND-process 을 수행하며, 이 Process 에서 Sn_IR[TIMEOUT]이 발생할 수 있으며, 해당 DATA packet 은 Discard 된다.

UDP 는 TCP 와 달리 1:N 통신을 지원하므로, Sn_IR[TIMEOUT] = '1'((*참조*) 6.7 Retransmission)이 발생하더라도 SOCKET 은 CLOSE 되지 않는다.

```
{
    /* check TIMEOUT Interrupt */
    if(Sn_IR[TIMEOUT] == '1')
    {
        Sn_IR[TIMEOUT] = '1'; /* clear TIMEOUT Interrupt */
        goto Finished?;
    }
}
```

• Finished? / CLOSE

더 이상 보낼 DATA 가 없는 경우 Sn_CR[CLOSE]를 통해 SOCKET 을 CLOSE 한다.

```
{
    Sn_CR = CLOSE; /* set CLOSE Command */
    while(Sn_CR != 0x00); /* wait until CLOSE Command is cleared*/
    /* wait until SOCKET n is closed */
    while(Sn_SR == SOCK_CLOSED);
}
```

6.3.2 UDP Broadcast

Broadcast 는 하나의 송신자가 동일 Network 내 다수 Node 들에게 DATA 를 전송하는 통신방식이다.

UDP4 의 경우, 동일 Network 내의 모든 Node 들에게 DATA 를 전송하는 방식(All Node Broad casting)과, 동일 Network 내 동일한 Subnet 에 속한 Node 들에게만 DATA 를 전송하는 방식(Subnet Broadcasting) 이 있다.

UDP6 의 경우, All-Node Multicast Address 인 FF02::01 를 활용하여 UDP4 의 All-Node Broadcasting 과 동일한 전송 방식을 지원한다.

OPEN

참조) 6.3.1 UDP Unicast: OPEN

Received DATA?

참조) 6.2.1 TCP SERVER: Received DATA?

Receiving Process

참조) 6.3.1 UDP Unicast: Receiving Process

• Send DATA? / Sending Process

UDP4 Broadcasting 과 UDP6 All-Node Multicasting 에 따른 Destination IP Address 를 설정한다.

```
UDP4 All Node Broadcasting:
               /* set broadcast address, 255.255.255.255 */
              Sn_DIPR[0:3] = \{0xFF, 0xFF, 0xFF, 0xFF\};
              /* set Destination PORT Number, 5000(0x1388) */
              Sn_DPORTR[0:1] = \{0x13,0x88\};
              goto 6.2.1 TCP SERVER: Sending Process with Sn_CR[SEND];
UDP4 Subnet Broadcasting: Assume SIPR = "192.168.0.10" & SUBR = "255.255.255.0"
              /* set Broadcast Address, 192.168.0.255 */
              Sn_DIPR[0:3] = \{0xC0, 0xA8, 0x00, 0xFF\};
              /* set Destination PORT Number, 5000(0x1388) */
              Sn_DPORTR[0:1] = \{0x13,0x88\};
              goto 6.2.1 TCP SERVER: Sending Process with Sn_CR[SEND];
UDP6 All-Node Multicasting:
               /* set destination IP address, FF02::01 */
              Sn_DIP6R[0:15] = \{0xFF, 0x02, 0x00, 0x00
                                                                       0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01;
              /* set Destination PORT Number, 5000(0x1388) */
              Sn_DPORTR[0:1] = \{0x13,0x88\};
              goto 6.2.1 TCP SERVER: Sending Process with Sn_CR[SEND];
```

• Complete sending? / Timeout?

참조) 6.3.1 UDP Unicast: Complete Sending? / Timeout?

• Finished? / CLOSE

참조) 6.3.1 UDP Unicast: Finished? / CLOSE

6.3.3 UDP Multicast

UDP Multicast는 하나의 송신자가 하나의 Multicast Group에 DATA를 전송하는 통신방식이다. IPv4 의 경우, Multicast-Group Address 범위는 224.0.0.0 ~ 239. 255.255.255 이며 (*참조 : LANA_Multicast_Address*) 또한 이에 대응되는 Hardware Address 는 01:00:5E:00:00:00 ~ 01:00:5E:7F: FF:FF 이다. Multicast Hardware Address 설정 시 하위 23 Bits 는 Multicast-Group Address 와 동일해야 한다. (*참조*, rfc1112)

IPv6 의 경우, 아래 Figure 25 과 같이 Multicast-Group Address 를 지정한다.
UDP Multicast 의 동작흐름은 Figure 23 과 동일하다.

Figure 25 IPv6 Multicast-Group Address Format

Table 5 Parameters of Flags in IPv6 Multicast Address

Flags	Description	
0	always '0'	
	1 : Embedded RP	
R	0 : No embedded RP	
	* If R = '1', P must be '1'	
	1 : Based on Unicast Network Prefix	
Р	0 : Not based on Unicast Network Prefix	
	* If P = '1', T must be '1'	
Т	1 : Temporary address(Local assigned)	
	0: Permanent address(IANA assigned)	

Table 6 Definition of Scope in IPv6 Multicast Address

Scope	Description
1	Node
2	Link
3	Subnet
4	Admin
5	Site
8	Organization
E	Global
	Global

• OPEN

Multicast-Group 정보와 Sn_MR[MULTI]를 설정한 후, Sn_CR[OPEN]을 수행한다.

UDP4 Multicast Mode 의 경우 IGMPv1 또는 IGMPv2 를 통해, UDP6 Multicast Mode 의 경우 MLDv1 을 통해 Multicast-Group 에 Join 한다.

```
UDP4 Multicast Mode:
START:
             /* set Multicast-Group Hardware Address, 01:00:5E:00:00:64 */
             Sn_DHAR[0:5] = \{0x01, 0x00, 0x5E, 0x00, 0x00, 0x64\};
             /* set Multicast-Group IP Address, 224.0.0.100 */
             Sn_DIPR[0:3] = \{0xE0, 0x00, 0x00, 0x64\}
             /* set Multicast-Group PORT Number, 3000(0x0BB8) */
             Sn_DPORTR[0:1] = \{0x0B, 0xB8\};
            Sn_MR[MULTI] = '1'; /* set UDP Multicast */
             /* set IGMP Version
                   Sn_MR[MC] = '1' : IGMPv1,
                   Sn_MR[MC] = '0' : IGMPv2 */
             Sn_MR[MC] = '1';
            goto 6.3.1 UDP Unicast : OPEN(UDP Mode)
UDP6 Multicast Mode:
START:
             /* set Multicast-Group Hardware Address, 33:33:00:AB:34:56 */
             Sn_DHAR[0:5] = \{0x33, 0x33, 0x00, 0xAB, 0xCD, 0xEF\};
             /* set Multicast-Group IP Address, FF02::100:00AB:CDEF */
             Sn_DIP6R[0:15] = \{0xFF, 0x02, 0x00, 0x00
                                                                 0x00, 0x00, 0x00, 0x01, 0x00, 0xAB, 0xCD, 0xEF};
             /* set Multicast-Group PORT Number, 3000(0x0BB8) */
             Sn_DPORTR[0:1] = \{0x0B, 0xB8\};
            Sn_MR[MULTI] = '1'; /* set UDP Multicast */
             goto 6.3.1 UDP Unicast: OPEN(UDP6 Mode)
```

Received DATA?

참조) 6.2.1 TCP SERVER: Received DATA?

• Receiving Process

참조) 6.3.1 UDP Unicast: Receiving Process

Send DATA? / Sending Process

참조) 6.3.1 UDP Unicast: Sending Process

• Complete sending? / Timeout?

참조) 6.3.1 UDP Unicast: Complete Sending? / Timeout?

• Finished? / CLOSE

참조) 6.3.1 UDP Unicast: Finished? / CLOSE

6.3.4 UDP DUAL

UDPD Mode 로 OPEN 된 SOCKET 은 UDP4/UDP6 Packet 을 모두 송수신할 수 있다.
UDP4 DATA 와 UDP6 DATA 송신은 각각 Sn_CR[SEND]와 Sn_CR[SEND6]으로 송신가능하며, 또한
UDP4 DATA 와 UDP6 DATA 수신된 Packet 의 PACKET INFO 를 통해 구분할 수 있다.

UDPD 의 동작흐름은 Figure 23 과 동일하다.

OPEN

HOST 는 SOCKET n 을 UDPD Mode 로 설정한다.

```
UDP6 Mode
{
START :
    Sn_MR[3:0] = '1110'; /* set UDPD Mode */

    /* set Source PORT Number, 5000(0x1388) */
    Sn_PORTR[0:1] = {0x13, 0x88};

    Sn_CR[OPEN] = '1'; /* set OPEN Command */
    while(Sn_CR != 0x00); /* wait until OPEN Command is cleared */

    /* check SOCKET for UDPD Mode */
    if(Sn_SR != SOCK_UDP) goto START;
}
```

Received DATA?

참조) 6.2.1 TCP SERVER: Received DATA?

• Receiving Process

UDPD Mode SOCKET 은 하나 이상의 Destination 으로부터 UDP4/UDP6 Packet 을 수신할 수 있으며, 수신된 DATA Packet 은 'PACKET INFO'와 함께 SOCKET n RX Buffer 에 저장된다. HOST 는 'PACKET INFO'를 통해 수신된 DATA Packet 의 IP Version, 전송방식 및 Destination 정보를 확인한다.

HOST 는 SOCKET n RX Buffer 에서 반드시 Figure 24 에 표시된 것과 같은 단위로 Read 해야한다.

수신할 UDP Packet 이 SOCKET n RX Buffer 의 Free Size 보다 크거나 Fragmentation 된 경우, 해당 Packet 은 Discard 된다.

*'PACKET INFO'에 대한 자세한 설명은 Figure 24 와 Table 4 를 참조

• Send DATA? / Sending Process

참조) 6.3.1 UDP Unicast: Send Data? / Sending Process

Complete sending? / Timeout?

참조) 6.3.1 UDP Unicast: Complete Sending? / Timeout?

• Finished? / CLOSE

참조) 6.3.1 UDP Unicast: Finished? / CLOSE

6.3.5 Other Functions

6.3.5.1 UDP Mode SOCKET Options

UDP Mode SOCKET 을 OPEN 하는 과정에서 Sn_MR 과 Sn_MR2 를 통해서 SOCKET Option 을 설정한다.

- Destination Hardware Address by Sn_DHAR: Sn_MR2[DHAM]= '1'
 ARP/ND-process 을 생략하고 Sn_DHAR에 저장된 Destination Hardware Address 를 사용해
 UDP Packet 을 전송한다.
- Destination Hardware Address by ARP: Sn_MR2[DHAM]= '0'
 ARP/ND-process 을 통해 획득한 Destination Hardware Address를 사용하여 UDP packet 을
 전송한다.
- Force ARP : Sn_MR2[FARP]= '1'

Sn_CR[SEND] 혹은 Sn_CR[SEND6]에 의한 UDP Packet 전송 시 마다 ARP/ND-process 를 수행한다.

Sn_MR2[DHAM] = '1' 인 경우 ARP/ND-process 를 수행하지만, Sn_DHAR 을 Destination Hardware Address 로 사용한다.

• Auto ARP: Sn_MR2[FARP]= '0'

ARP/ND-process 를 첫 번째 UDP DATA Packet 을전송하거나 Destination 이 변경될 경우에만 수행한다.

6.3.5.2 UDP Block

UDP SOCKET n (Sn_MR[MULTI] = '0')은 기본적으로 Unicasting, Broadcasting Packet 수신을 지원하지만, Sn_MR[BRDB] = '1'인 경우, Broadcasting Packet 을 Block 한다.

UDP SOCKET n 이 Multicast 통신방식을 사용하는 경우(Sn_MR[MULTI] = '1'), 기본적으로 Unicasting, Broadcasting, Multicasting Packet 수신을 지원하지만, Sn_MR[UNIB] = '1' 인 경우, Unicasting Packet 을 Block 하며, Sn_MR[BRDB] = '1' 인 경우, Broadcasting Packet 을 Block 한다. UDP Block Options 은 Sn_CR[OPEN] = '1' 이전에 설정한다.

Sn_MR[MULTI]	Sn_MR[BRDB]	Sn_MR[UNIB]	Unicast	Multicast	Broadcast
0	0	Don't Care	0	Х	0
0	1	Don't Care	0	Х	Х
1	0	0	0	0	0
1	0	1	Х	0	0
1	1	0	0	0	Х
1	1	1	Х	0	Х

UDP6Mode 이고 Sn_MR[SMB] = '1'인 경우, 자신이 속한 Solicited Multicast Packet 을 Block 한다.

6.3.5.3 Port Unreachable Block

Destination 이 Open 되지 않은 Port 로 UDP Packet 을 전송할 경우, 일반적으로 Destination Port Unreachable Packet 을 전송한다. 이는 Port Scan 공격의 대상이 되며, 이를 방지하기 위해서 Port Unreachable Packet 전송을 Block 할 수 있다.

UDP4 인 경우는 NET4MR [UNRB] = '1', UDP6 인 경우는 NET6MR[UNRB] = '1'을 통해 Port Unreachable Packet 전송을 각각 Block 한다.

6.4 IPRAW

IPRAW 는 Internet Protocol Layer 에 정의된 다양한 상위 Protocol(*참조*) <u>IANA_Protocol</u>

<u>Numbers</u>)중 Table 7 에서 보여주는 Protocol 통신을 지원한다.

SOCKET n 은 IPRAW4 또는 IPRAW6 Mode 로 설정될 수 있으며 Sn_PNR 를 통해 각각 IPv4 Protocol field 와 IPv6 Extension Header 의 값을 설정할 수 있다. SOCKET n 은 Sn_PNR 에 설정된 Protocol 이외의 다른 Protocol 을 사용하여 통신할 수 없다.

Table 7 Internet Protocol Supported In IPRAW Mode

Protocol	Number	Semantic	Support
HOPOPT	0	IPv6 Hop-by-Hop Option	0
ICMP	1	Internet Control Message Protocol	0
IGMP	2	Internet Group Management	0
IPv4	4	IPv4 encapsulation	0
ТСР	6	Transmission Control	Х
UDP	17	User Datagram	Х
IPv6	41	IPv6 encapsulation	0
ICMP6	58	ICMP for IPv6	0
others	-	Other Protocols	0

IPRAW4 Mode 에서 Sn_PNR = ICMP 인 경우, Destination 의 PING-Request 에 대한 Auto PING Reply 를 더 이상 지원하지 않으며, PING-Request Packet 은 IPRAW SOCKET n RX Buffer Block 으로 저장된다.

IPRAW6 Mode 에서 Sn_PNR = ICMP6 인 경우, Echo Request, NA(Neighbor Advertisement), NS(Neighbor Solicitation), RA(Router Advertisement)에 대한 W6100 의 Auto Reply Packet 전송은 ICMP6BLKR 설정을 통해 각각의 Packet 을 Block 할 수 있으며, Block 된 Packet 의 경우 SOCKET n RX Buffer 에 저장되지 않는다.

Figure 26 은 IPRAW4/IPRAW6 Mode 일때, Socket n 의 동작흐름이다.

Figure 26 IPRAW Operation Flow

• OPEN

SOCKET n 을 IPRAW4/IPRAW6 Mode 로 설정한다.

```
IPRAW4 Mode:
START:
   Sn_PNR = protocol_num; /* set Protocol Number */
   Sn_MR[3:0] = '0011'; /* set IPRAW4 Mode */
   Sn_CR[OPEN] = '1'; /* set OPEN Command */
   while(Sn_CR != 0x00); /* wait until OPEN Command is cleared */
    /* check SOCKET for IPRAW6 Mode */
   if(Sn_SR != SOCK_IPRAW6) goto START;
IPRAW6 Mode:
START:
   Sn_PNR = protocol_num; /* set Protocol Number(Next Header) */
   Sn_MR[3:0] = '1001'; /* set IPRAW6 Mode */
   Sn_CR[OPEN] = '1'; /* set OPEN Command */
   while(Sn_CR != 0x00); /* wait until OPEN Command is cleared */
    /* check SOCKET for IPRAW Mode */
    if(Sn_SR != SOCK_IPRAW) goto START;
```

• Received DATA?

참조) 6.2.1 TCP SERVER: Received DATA?

Receiving Process

IPRAW4/IPRAW6 Mode 는 하나 이상의 Destination 으로부터 IP DATA Packet 을 수신할 수 있으며, 각 Destination 의 구분을 위해 DATA Packet 은 Figure 27 또는 Figure 28 과 같이 "PACKET INFO"와 함께 SOCKET n RX Buffer Block 에 저장된다. "PACKET INFO"는 IPRAW4/IPRAW6 Mode 에 따라서 Size 및 Parameters 가 다르며 해당 내용은 Table 8 과 Table 9 에 정의되어 있다. SOCKET n RX Buffer 의 Free Size 보다 큰 Packet 은 Discard 되며 HOST 는 반드시 Figure 27 또는 Figure 28 단위로 Read 해야 한다.

* IPRAW DATA is only the size of DATA in Recevied Packet

Figure 27 Received DATA in IPRAW4 Mode SOCKET RX Buffer Block

Table 8 parameters of 'PACKET INFO' in IPRAW4 Mode

PACKET INFO	Description
DATA Length	*IPRAW DATA Length 저장
Destination IPv4 Address	Destination IPv4 Address (4 Byte)

* IPRAW DATA is only the size of DATA in Recevied Packet

Figure 28 Received DATA in IPRAW6 Mode SOCKET RX Buffer Block

Table 9 parameters of 'PACKET INFO' in IPRAW6 Mode

Description
IPv6 수신한 경우, '1'로 설정
All Node Packet 수신한 경우, '1'로 설정
Multicast Packet 수신한 경우, '1'로 설정
Destination Address 가 GUA 인 경우, '1'로 설정
Destination Address 가 LLA 인 경우, '1'로 설정
*IPRAW DATA Length 저장

Destination IPv6 Address

Destination IPv6 Address (16 Byte)

```
IPRAW4 Mode:
  /* receive PACKINFO */
  goto 6.2.1 TCP SERVER: Receiving Process with get_size = 6;
  /* extract Destination DATA Size, IP Address in PACKET INFO*/
  data_size = (destination_address[0] << 8) + destination_address[1];</pre>
  dest_ip[0:3] = destination_address[2:5];
  /* read UDP DATA */
  goto 6.2.1 TCP SERVER: Receiving Process with get_size = data_size;
IPRAW6 Mode:
  /* receive PACKINFO */
  goto 6.2.1 TCP SERVER: Receiving Process with get_size = 18;
    /* extract Destination Information, DATA Size, IP Address in PACKET INFO */
    data_Info = destination_address[0] & "11111000";
    data_size = (destination_address[0] & "00000111" << 8) + (destination_address[1];</pre>
    dest_ip[0:15] = destination_address[2:17];
    /* read UDP DATA */
    goto 6.2.1 TCP SERVER: Receiving Process with get_size = data_size;
```

Sending DATA? / Sending Process

전송될 DATA Size 는 SOCKET n TX Buffer Block Size 를 초과할 수 없고, 설정된 MSS 보다 큰 DATA 는 MSS 단위로 직접 나누어 전송한다. IPRAW6 Mode 의 MSS 는 1460 보다 크게 설정될 수 없고, IPRAW Mode 의 MSS 는 1480 보다 크게 설정될 수 없다.

• Complete sending? / Timeout?

최초 Destination 으로의 전송이나, 이전 Destination 과 다른 Destination 으로 DATA Packet 를 전송할 경우, DATA Packet 전송 이전에 ARP/ND-process 을 수행하며, 이 과정에서 Sn_IR[TIMEOUT] 이 발생할 수 있으며 해당 DATA packet 은 Discard 된다. IPRAW4/IPRAW6 는 UDP 처럼 1:N 통신을 지원하므로, Sn_IR[TIMEOUT](참조) 6.7 Retransmission)이 발생하더라도 SOCKET은 CLOSE 되지 않는다.

• Finished? / CLOSE

더 이상 보낼 DATA 가 없는 경우 Sn_CR[CLOSE]로 SOCKET을 CLOSE할 수 있다.

```
{
    Sn_CR = CLOSE;    /* set CLOSE Command */
    while(Sn_CR != 0x00);    /* wait until CLOSE Command is cleared*/

    /* wait until SOCKET n is closed */
    while(Sn_SR == SOCK_CLOSED);
}
```

6.4.1 Other Functions

6.4.1.1 IPRAW Mode SOCKET Options

IPRAW4/6 Mode SOCKET 을 OPEN 하는 과정에서 Sn_MR 과 Sn_MR2 를 통해서 SOCKET Option을 설정한다.

- Destination Hardware Address by Sn_DHAR: Sn_MR2[DHAM]= '1'
 ARP/ND-process 을 생략하고 Sn_DHAR에 저장된 Destination Hardware Address 를 사용해
 IPRAW4 또는 IPRAW6 Packet 을 전송한다.
- Destination Hardware Address by ARP : Sn_MR2[DHAM] = '0'
 ARP/ND-process 을 통해 획득한 Destination Hardware Address 를 사용하여 IPRAW4 또는
 IPRAW6 packet 를 전송한다.
- Force ARP : Sn_MR2[FARP]= '1'

 Sn_CR[SEND] 혹은 Sn_CR[SEND6]에 의한 IPRAW4 또는 IPRAW6 DATA 전송 시 마다

 ARP/ND-process 을 수행한다.

Sn_MR2[DHAM] = '1' 인 경우 ARP/ND-process 를 수행하지만, Sn_DHAR 을 Destination Hardware Address 로 사용한다.

• Auto ARP: Sn_MR2[FARP]= '0'

ARP/ND-process 를 첫 번째 IPRAW DATA Packet 을전송하거나 Destination 이 변경될 경우에만 수행한다.

6.5 MACRAW

MACRAW Mode 는 Ethernet MAC 을 이용한 DATA 통신을 제공하며 오직 SOCKET 0 인 경우, 사용 가능하다.

Sn_MR[MF] = '0' 인 경우, Ethernet PHY 로 수신된 모든 Ethernet Packet 을 수신한다.

Sn_MR[MF] = '1'인 경우, Destination Hardware Address 가 Broadcast, Multicast, Source Hardware Address(SHAR)인 Packet 만 수신한다.

Figure 29 는 MACRAW SOCKET 0 의 동작흐름을 도식화한다.

Figure 29 MACRAW Operation Flow

OPEN

SOCKET 0 을 MACRAW Mode 로 설정한다.

```
{
    START :
        SO_MR[3:0] = '0100'; /* set MACRAW Mode */
```


Received DATA?

참조) 6.2.1 TCP SERVER: Received DATA?

• Receiving Process

MACRAW 는 하나 이상의 Destination 으로부터 DATA Packet 을 수신할 수 있으며, 각 Destination 의 구분을 위해 DATA Packet 은 Figure 30 과 같이 "PACKET INFO"와 함께 SOCKET 0 RX Buffer Block 에 저장된다. HOST 는 반드시 Figure 30 단위로 Read 한다

MACRAW DATA

Figure 30 Received DATA Format in MACRAW

```
{
  /* receive PACKINFO */
  goto 6.2.1 TCP SERVER: Receiving Process with get_size = 2;

  /* extract Size in PACKET INFO*/
  data_size = (destination_address[0] << 8) + destination_address[1];

  /* read MACRAW DATA */
  goto 6.2.1 TCP SERVER: Receiving Process with get_size = data_size;
}</pre>
```

• Sending DATA? / Sending Process

전송될 DATA Size 는 SOCKET 0 TX Buffer Size 를 초과할 수 없고, MSS 보다 큰 DATA 는 MSS 단위(1512)로 직접 나누어 전송해야 한다. 또한 60Bytes 보다 작은 경우 60Bytes 로 Zero Padding 되어 전송된다.

참조) 6.2.1 TCP SERVER: Send DATA? / Sending Process

Finished? / CLOSE

참조) 6.3.1 UDP Unicast: Finished? / CLOSE

6.6 SOCKET-less Command (SLCR)

SLCR Command 는 SOCKET 사용없이 ARP Request, PING Request, NS, RS 등과 같은 Request Packet 을 전송한다. 전송된 Packet 에 대한 응답은 SLIR 을 통해 확인할 수 있으며 설정한 재전송 시간 동안 응답이 없는 경우 SLIR[TOUT]이 발생한다. 참조) 6.7 Retransmission SLCR의 Command는 동시에 수행될 수 없으며, 반드시 해당 Command에 대한 SLIR이 발생하거나 SLIR[TOUT]이 발생한 뒤 다음 Command를 수행한다.

Figure 31 은 SOCKET-less Command 의 동작흐름을 나타낸다.

Figure 31 SOCKET-less Command Operation Flow

6.6.1 ARP

SLCR[ARP]는 SLDIPR 에 설정된 Destination IP Address 로 ARP Request Packet 을 전송한다. Destination 로부터 ARP Reply 가 수신된 경우, SLIR[ARP]가 설정되고 해당 Destination Hardware Address 는 SLDHAR 에 저장된다. 만약 설정한 재전송 시간 동안 응답을 수신하지 못한 경우 SLIR[TOUT]이 발생한다. *참조*) 6.7 Retransmission

Configuration

SLRTR 과 SLRCR 을 통해 재전송 시간을 설정하고, SLIMR 의 ARP 및 TOUT Interrupt Mask 를 설정하고, SLDIPR 에 Destination IP Address 를 설정한다.

{
START:
 /* set SOCKET-less Retransmission Time, 100ms(0x03E8) (Unit 100us) */


```
//SLRTR[0:1] = {0x03, 0xE8};
/* set SOCKET-less Retransmission Counter, 5 */
//SLRCR = 0x05;

/* set Interrupt Mask Bit */
//SLIMR[ARP] = '1'; /* ARP Interrupt Mask Bit */
//SLIMR[TOUT] = '1'; /* TIMEOUT Interrupt Mask Bit */
/* set Destination IP Address, 192.168.0.100 */
SLDIP6R[12:15] = {0xC0, 0xA8, 0x00, 0x64};
}
```

SOCKET-less Command

ARP Command 를 통해 ARP Request Packet 을 전송한다.

```
{
    SLCR[ARP] = '1'; /* set ARP Command */
    while(SLCR != 0x00); /* Wait until ARP Command is completed*/
}
```

• Response?

Destination 으로부터 ARP Reply Packet 을 수신한 경우 SLIR[ARP]가 설정된다.

```
{
    /* check ARP Interrupt */
    if(SLIR[ARP] == '1') /* received ARP Reply Packet */
    {
        SLIRCLR[ARP] = '1'; /* clear Interrupt */
        goto SUCCESS;
    }
    else goto Timeout?;
}
```

• Timeout?

Destination 으로부터 설정된 재전송 시간 동안 ARP Reply Packet 을 수신하지 못한 경우 SLIR [TOUT]이 발생한다.

```
{
    /* check TIMEOUT Interrupt */
    if(SLIR[TOUT] == 1)
    {
        SLIRCLR[TOUT] = '1'; /* clear Interrupt */
        goto END;
    }
    else goto Response?;
}
```

SUCCESS

Destination Hardware Address 는 SLDHAR 에 저장된다.

```
{
```



```
dst_haddr[0:5] = SLDHAR[0:5]; /* get Destination Hardware Address */
goto END;
}
```

6.6.2 PING

SLCR[PING]은 SLDIPR 에 설정된 Destination IP Address 로 ARP 및 PING Request Packet 을 전송한다. ARP Reply Packet 와 PING Reply Packet 을 수신한 경우 SLIR[PING]가 설정되고 해당 Destination Hardware Address 는 SLDHAR 에 저장된다.

만약 설정된 재전송 시간 동안 ARP 와 PING Request Packet 을 수신하지 못한 경우 SLIR[TOUT]이 발생한다. 참조) 6.7 Retransmission

• Configuration

SLRTR 과 SLRCR 을 통해 재전송 시간을 설정하고, SLIMR 의 PING 및 TOUT Interrupt Mask 를 설정하고, SLDIPR 에 Destination IP Address 를 설정한다.

또한 PINGSEQR 과 PINGIDR 을 통해 PING Request Packet 의 Sequence Number 와 ID 를 설정한다.

```
{
START :
    /* set SOCKET-less Retransmission Time, 100ms(0x03E8)(Unit 100us) */
    //SLRTR[0:1] = { 0x03, 0xE8};
    /* set SOCKET-less Retransmission counter, 5 */
    //SLRCR = 0x05;

    /* set Interrupt Mask Bit */
    //SLIMR[PING] = '1'; /* PING Interrupt Mask Bit */
    //SLIMR[TOUT] = '1'; /* TIMEOUT Interrupt Mask Bit */

    /* set Destination IP Address, 192.168.0.100 */
    SLDIP6R[12:15] = {0xC0, 0xA8, 0x00, 0x64};

    /* set PING Sequence Number, 1000(0x03E8) */
    PINGSEQR[0:1] = {0x03, 0xE8};

    /* set PING ID, 256(0x0100) */
    PINGIDR[0:1] = {0x01,0x00};
}
```

• SOCKET-less Command

PING Command 를 통해 PING Request Packet 을 전송한다.

```
{
    SLCR[PING] = '1'; /* set PING Command */
    while(SLCR != 0x00) ; /* Wait until PING Command is completed*/
}
```

• Response?

Destination 으로부터 PING Reply Packet 을 수신한 경우 SLIR[PING]이 설정된다.

```
{
    /* check PING Interrupt */
    if(SLIR[PING] == '1') /* received PING Reply Packet */
    {
        SLIRCLR[PING] = '1'; /* clear Interrupt */
        goto SUCCESS;
    }
    else goto Timeout?;
}
```

Timeout? / SUCCESS

참조) 6.6.1 ARP Timeout? / SUCCCESS

6.6.3 ARP6 (ND, Neighbor Discovery)

SLCR[ARP6]는 SLDIP6R 에 설정된 Destination IP Address 로 ICMPv6 NS(Neighbor Solicitation) Packet 을 전송하며, 이는 ARP-process 기능과 동일하다. Destination 로부터 NA(Neighbor Advertisement) Packet 을 수신한 경우, SLIR[ARP6]가 설정되고 해당 Destination Hardware Address 는 SLDHAR 에 저장된다. 만약 설정된 재전송 시간 동안 응답을 수신하지 못한 경우 SLIR[TOUT]이 발생한다. 참조) 6.7 Retransmission

• Configuration

SLRTR 과 SLRCR 을 통해 재전송 시간을 설정하고, SLIMR 의 ARP6 및 TOUT Interrupt Mask 를 설정하고, SLDIP6R 에 Destination IP Address 를 설정한다.

```
{
START:
    /* set SOCKET-less Retransmission Timer, 100ms(0x03E8) (Unit 100us) */
    //SLRTR[0:1] = {0x03, 0xE8};

    /* set SOCKET-less Retransmission Counter, 5 */
    //SLRCR = 0x05;

    /* set Interrupt Mask Bit */
    //SLIMR[ARP6] = '1'; /* ARP6 Interrupt Mask Bit */
    //SLIMR[TOUT] = '1'; /* TIMEOUT Interrupt Mask Bit */

    /* set Target IP Address, FE80::1D0:AABB:CCDD */
    SLDIP6R[0:15] = { 0xFE, 0x80, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x13, 0x22, 0x33, 0xFF, 0xFE, 0xAA, 0xBB, 0xCC };
}
```

• SOCKET-less Command

ARP6 Command 를 통해 NS(Neighbor Solicitation) Packet 을 전송한다.

```
{
SLCR[ARP6] = '1'; /* set ARP6 Command */
```



```
while(SLCR != 0x00); /* Wait until ARP6 Command is completed*/
}
```

• Response?

Destination 으로부터 NA(Neighbor Advertisement) Packet 을 수신한 경우 SLIR[ARP6]가 설정된다.

```
{
    /* check ND Interrupt */
    if(SLIR[ARP6] == '1') /* received NA Packet */
    {
        SLIRCLR[ARP6] = '1'; /* clear Interrupt */
        goto SUCCESS;
    }
    else goto Timeout;
}
```

Timeout?

Destination 으로부터 설정된 재전송 시간 동안 NA Packet 을 수신하지 못한 경우 SLIR [TOUT]이 발생한다.

```
{
    /* check TIMEOUT Interrupt */
    if(SLIR[TOUT] == 1)
    {
        SLIRCLR[TOUT] = '1'; /* clear Interrupt */
        goto END;
    }
    else goto Response;
}
```

SUCCESS

Destination Hardware Address 는 SLDHAR 에 저장된다.

```
{
    dst_haddr[0:5] = SLDHAR[0:5]; /* get Destination Hardware Address */
    goto END;
}
```

6.6.4 PING6 (ICMPv6 Echo)

SLCR[PING6]은 SLDIP6R 에 설정된 Destination IP Address 로 ICMPv6 NS(Neighbor Solicitation) 및 ICMPv6 Echo Request Packet 을 전송한다. ICMPv6 NA(Neighbor Advertisement) 와 ICMPv6 Echo Reply Packet 을 수신한 경우 SLIR[PING6]가 설정되고, 해당 Destination Hardware Address 는 SLDHAR 에 저장된다.

만약 설정된 재전송 시간 동안 ICMPv6 NA 와 ICMPv6 Echo Reply Packet 을 수신하지 못한 경우 SLIR[TOUT]이 발생한다. 참조) 6.7 Retransmission

• Configuration

SLRTR 과 SLRCR 을 통해 재전송 시간을 설정하고, SLIMR 의 PING6 및 TIMEOUT Interrupt Mask 를 설정하고, SLDIP6R 에 Destination IP Address 를 설정한다.

SOCKET-less Command

PING6 Command 를 통해 NS Packet 및 Echo Request Packet 을 전송한다.

```
{
    SLCR[PING6] = '1'; /* set PING6 Command */
    while(SLCR != 0x00) ; /* Wait until PING6 Command is completed*/
}
```

• Response?

Destination 으로부터 Echo Reply Packet 을 수신한 경우 SLIR[PING6]가 설정된다.

```
{
    /* check PING6 Interrupt */
    if(SLIR[PING6] == '1') /* received PING6 Packet */
    {
        SLIRCLR[PING6] = '1'; /* clear Interrupt */
        goto SUCCESS;
    }
    else goto Timeout?;
}
```

• Timeout? / SUCCESS

참조) 6.6.3 ARP6 (ND, Neighbor Discovery) Timeout? / SUCCCESS

6.6.5 DAD (Duplicate Address Detection)

SLCR[NS]는 SLDIP6R 에 설정된 Destination IP Address 로 DAD(Duplicate Address Detection) 메커니즘을 수행한다.

NS Command 를 통해 DAD NS Packet 을 전송하고 임의의 Destination 으로부터 DAD NA Packet 을 수신하여 SLIR[NS]가 설정된 경우, Destination IP Address 는 이미 사용되는 Address 이므로 Source IPv6 Address 로 사용 할 수 없다.

만약 설정된 재전송 시간 동안 응답을 받지 못하고 SLIR[TOUT]이 발생한 경우, Destination IP Address 를 Source IPv6 Address 로 사용할 수 있다. *참조*) 6.7 Retransmission

아래의 Figure 32 는 DAD Operation Flow 를 보여준다.

Figure 32 DAD Operation Flow

• Configuration

SLRTR 과 SLRCR 을 통해 재전송 시간을 설정하고, SLIMR 의 NS 및 TOUT Interrupt Mask 를 설정하고,

SLDIP6R 에 Destination IP Address 를 설정한다.

```
{
START:

/* set SOCKET-less Retransmission Timer, 100ms(0x03E8) (단위, 100us) */

//SLRTR[0:1] = {0x03, 0xE8};

/* set SOCKET-less Retransmission Counter, 5 */

//SLRCR = 0x05;

/* set Interrupt Mask Bit */

//SLIMR[NS] = '1'; /* NS Interrupt Mask Bit */

//SLIMR[TOUT] = '1'; /* TIMEOUT Interrupt Mask Bit */
```



```
/* set Target IP Address, FE80::1D0:AABB:CCDD */
SLDIP6R[0:15] = { 0xFE, 0x80, 0x00, 0x00,
```

SOCKET-less Command

NS Command 를 통해 DAD NS Packet 을 전송한다.

```
{
    SLCR[NS] = '1'; /* set NS Command */
    while(SLCR != 0x00); /* Wait until NS Command is completed*/
}
```

• Response?

Destination 으로부터 DAD NA Packet 을 수신한 경우 SLIR[NS]가 설정되며, SLDIP6R 에 설정한 IP Address 를 Source IPv6 Address 로 사용할 수 없다.

```
{
    /* check NS Interrupt */
    if(SLIR[NS] == '1') /* received DAD NA Packet */
    {
        SLIRCLR[NS] = '1'; /* clear Interrupt */
        goto Configuration;
    }
    else goto Timeout?;
}
```

• Timeout?

Destination 으로부터 설정된 재전송 시간 동안 DAD NA Packet 을 수신하지 못한 경우 SLIR [TOUT]이 발생한다.

```
{
    /* check TIMEOUT Interrupt */
    if(SLIR[TOUT] == 1)
    {
        SLIRCLR[TOUT] = '1'; /* clear Interrupt */
        goto SUCCESS;
    }
    else goto Response?;
}
```

SUCCESS

SLDIP6R 에 설정한 Destination IP Address 를 Source Link Local Address 로 사용할 수 있다.

```
{
    LLAR[0:15] = SLDIP6R[0:15]; /* get Source Link-Local Address */
    goto END;
}
```


6.6.6 RS (Router Solicitation)

SLCR[RS]는 Link Local All-Router Multicast Address(FF02::2)로 RS(Router Solicitation) Packet 을 전송한다. Router 로부터 RA(Router Advertisement) Packet 을 수신한 경우 SLIR[RS]가 설정되고 RA Packet 의 Prefix Length, Flags, Valid Lifetime, Prefix Lifetime, Prefix Address 는 각각 PLR, PFR, VLTR, PLTR, PAR 에 저장된다. 만약 설정된 재전송 시간 동안 응답을 수신하지 못한 경우 SLIR[TOUT]이 발생한다. 참조) 6.7 Retransmission

Figure 33 RS Operation Flow

*CAUTION: RA 수신시Option Field 의 첫번째 Type 이 Source Link-layer Address, 두번째
Type 이 Prefix Information(0x03)이 아닐 경우, PLR, PFR, VLTR, PLTR, PAR 값은 보장되지 않는다.
이 경우 IPRAW6 SOCKET 을 이용하여 해당 값들을 수신한다.

• Configuration

SLRTR, SLRCR 을 통해 SOCKET-less 의 재전송을 설정하고, SLIMR 의 RS 및 TOUT Interrupt Mask 를 설정한다.

```
{
START:

/* set SOCKET-less Retransmission Timer, 100ms(0x03E8) (단위, 100us) */

//SLRTR[0:1] = {0x03, 0xE8};

/* set SOCKET-less Retransmission Counter, 5 */

//SLRCR = 0x05;

/* set Interrupt Mask Bit */

//SLIMR[RS] = '1'; // RS Interrupt Mask Bit

//SLIMR[TOUT] = '1'; // TIMEOUT Interrupt Mask Bit
}
```

SOCKET-less Command

RS Command 를 통해 RS Packet 을 전송한다.


```
{
    SLCR[RS] = '1'; /* set RS Command */
    while(SLCR != 0x00); /* Wait until RS Command is completed*/
}
```

· Response?

Router 로부터 RA Packet 을 수신한 경우 SLIR[RS]가 설정된다.

```
{
    /* check RS Interrupt */
    if(SLIR[RS] == '1') /* received RA Packet */
    {
        SLIRCLR[RS] = '1'; /* clear Interrupt */
        goto Configuration;
    }
    else goto Timeout?;
}
```

Timeout?

설정된 재전송 시간 동안 Router 로부터 RA Packet 을 수신하지 못한 경우 SLIR[TOUT]이 발생한다.

```
{
    /* check TIMEOUT Interrupt */
    if(SLIR[TOUT] == 1)
    {
        SLIRCLR[TOUT] = '1'; /* clear Interrupt */
        goto SUCCESS;
    }
    else goto Response?;
}
```

SUCCESS

RA Packet 의 Prefix Length, Flags, Valid Lifetime, Prefix Lifetime, Prefix Address 는 각각 PLR, PFR, VLTR, PLTR, PAR 에 저장된다.

```
{
    Prefix_length = PLR; /* RA Prefix Length */
    Flags = PFR; /* RA Flags */
    Valid_Lifetime = VLTR; /* RA Valid Life Time */
    Prefix_Lifetime = PLTR; /* RA Prefix Life Time */
    Prefix_address[0:15] = PAR[0:15]; /* RA Prefix Address */
}
```

6.6.7 Unsolicited NA(Neighbor Advertisement)

SLCR[NA]는 자신의 새로운 Network 정보를 알리기 위해 Unsolicited NA(Neighbor Advertisement) Packet 을 전송한다. Unsolicited NA 의 Destination 는 All-Node Multicast

Address 인 FF02::1 로 자동 설정되며 Target Address 는 SLPSR 에 따라 LLAR 또는 GUAR 이 선택된다.

Unsolicited NA 는 응답이 없는 형태의 메시지이며 전송을 완료한 경우 SLIR[TOUT]이 발생한다.

아래의 Figure 34는 Unsolicited NA Operation Flow 를 보여준다.

Figure 34 Unsolicited NA Operation Flow

• Configuration

LLAR 또는 GUAR 에 바뀐 Address 를 저장하고 SLPSR 을 통해 Target Address 에 들어갈 Address 를 선택한다.

마지막으로 SLIMR 의 TOUT Interrupt Mask 를 설정한다.

```
{
START :
    if (Target Address is Link Local Address)
    {
        LLAR[0:15] = { 0xFE, 0x80, 0x00, 0x04, 0x56 };
        SLPSR = 0x10;
    }
    else /* Target Address is Global Unicast Address */
    {
        GUAR[0:15] = { 0x20, 0x01, 0x00, 0x012, 0x34, 0x56 };
        SLPSR = 0x11;
    }
    /* set SOCKET-less TIMEOUT Interrupt Masking bit */
    SLIMR[TOUT] = '1';
}
```


SOCKET-less Command

NA Command 를 통해 Unsolicited NA Packet 을 전송한다.

```
{
    SLCR[NA] = '1';    /* set Unsolicited NA Command */
    while(SLCR != 0x00); /* Wait until Unsolicited NA Command is completed*/
}
```

• Timeout

Unsolicited NA 전송이 완료되면 SLIR[TIMEOUT]이 발생한다.

```
{
    /* check TIMEOUT Interrupt */
    if(SLIR[TOUT] == 1)
    {
        SLIRCLR[TOUT] = '1'; /* clear Interrupt */
        goto SUCCESS;
    }
}
```

6.7 Retransmission

6.7.1 ARP & PING & ND Retransmission

ARP & PING & ND(Neighbor Discovery) Retransmission 은 Request Packet 전송에 대한 Destination 의 응답이 없을 경우 해당 Packet 에 대한 Retransmission 이 발생한다. 이때 Retransmission 은 Destination 의 응답을 수신할 때까지 지정된 RTR 시간마다 해당 Packet 을 전송하고, 지정된 RCR 횟수를 초과하여 전송한 경우 해당 Packet 애 대한 TIMEOUT 이 발생한다.

Retransmission TIMEOUT 시간(ARP_{TO}, PING_{TO}, ND_{TO})은 다음과 같다.

```
ARP_{TO}, PING_{TO}, ND_{TO} = (TIMEOUT<sub>VAL</sub> x 0.1ms) x (TIMEOUT<sub>CNT</sub> + 1)

TIMEOUT<sub>VAL</sub> = SLRTR or Sn_RTR

TIMEOUT<sub>CNT</sub> = SLRCR or Sn_RCR
```

```
Ex) TIMEOUT<sub>VAL</sub> = 2000(0x07D0), TIMEOUT<sub>CNT</sub> = 8(0x0008)

ARP_{TO}= 2000 X 0.1ms X 9 = 1.8s
```

ARP_{TO}은 TCP4 Mode 에서 Sn_CR[CONNECT], UDP4 와 IPRAW4 Mode 에서 Sn_CR[SEND] 그리고 SOCKET-less Command 의 SLCR[ARP]에 의한 ARP-Process 에서 Destination 의 응답이 없는 경우 발생 하며, SLIR[TOUT] 이나 Sn_IR [TIMEOUT]으로 확인한다.

 $PING_{70}$ 은 SOCKET-less Command 의 SLCR[PING] 또는 SLCR[PING6]에 의한 ARP-Process 에서 Destination 의 응답이 없는 경우 발생하거나 ARP-Process 이후 Destination 로부터 PING Reply 가 없는 경우 발생하며 SLIR [TOUT]으로 확인한다.

ND_{TO} 는 TCP6 또는 TCPD Mode 에서 Sn_CR[CONNECT6]에 의한, UDP6, UDPD 또는 IPRAW6 Mode 에서 Sn_CR[SEND6], 그리고 SOCKET-less Command 의 SLCR[ARP6], SLCR[NS], SLCR[RS] 에 의한 ND 과정에서 발생하며 SLIR [TOUT]이나 Sn_IR[TIMEOUT]으로 확인한다.

6.7.2 TCP Retransmission

TCP Retransmission 은 SYN, FIN, DATA Packet 등을 전송한 후, Destination 으로부터 해당 ACK Packet 을 수신하지 못한 경우 발생한다. SOCKET 은 Destination 으로부터 ACK Packet 을 수신할 때까지 지정된 RTR 시간마다 이전 Packet 을 재전송하고, 지정된 RCR 횟수를 초과하여 전송한 경우 해당 Packet 에 대한 TIMEOUT을 발생시킨다.

TCP Retransmission Timeout(TCP_{TO})은 다음과 같다.

$$\text{TCP}_{\text{TO}} = \left(\sum_{N=0}^{M} (\text{TIMEOUT}_{\text{VAL}} \times 2^{N}) + ((\text{TIMEOUT}_{\text{CNT}} - M) \times \text{TIMEOUT}_{\text{MAXVAL}})\right) \times 0.1 \text{ms}$$

N : Retransmission Counter, $0 \le N \le M$

 $M: TIMEOUT_{VAL} \times 2^{(M+1)} > 65535$ and $0 \le M \le TIMEOUT_{CNT}$ 에서의 최소값

 $TIMEOUT_{VAL} = Sn_RTR$

 $TIMEOUT_{CNT} = Sn_RCR$

TIMEOUT_{MAXVAL}: TIMEOUT_{VAL} \times 2^M

Ex) RTR = 2000(0x07D0), RCR = 8(0x0008)

 $TCP_{TO} = (0x07D0+0x0FA0+0x1F40+0x3E80+0x7D00+0xFA00+0xFA00+0xFA00+0xFA00) X 0.1 ms$

= (2000 + 4000 + 8000 + 16000 + 32000 + ((8 - 4) X 64000)) X 0.1ms

= 318000 X 0.1ms = 31.8s

TCP_{το}은 Sn_CR 의 CONNECT, CONNECT6, SEND, SEND6, DISCON Command 에 의해 발생하며, Sn_IR[TIMEOUT] 으로 확인한다.

6.8 Others Functions

6.8.1 System Clock(SYS_CLK) Switching

SYS_CLK 은 25MHz 나 100MHz 로 동작 할 수 있으며, SYCR1[CLKSEL]이나, PHYCR1[RST], PHYCR1[PWDN] 의 설정에 의해 Switching 된다. Clock Switching 이 발생할 경우 SYS_CLK 이 안정화 될 때까지 대기한다. (참조 8.4.1 Reset Timing)

SYCR1[CLKSEL]	PHYCR1[RST]	PHYCR1[PWDN]	SYS_CLK(MHz)
0	0	Х	25
0	1	0	100 (Default)
0	1	1	25
1	X	X	25

6.8.2 Ethernet PHY Operation Mode Configuration

PHYCRO 을 통해 PHY Operation Mode(Speed, Duplex)를 설정하고, Ethernet PHY HW Reset 이후 적용된다. 설정된 PHY Operation Mode 는 PHYSR[5:3]을 통해 확인할 수 있으며, Ethernet PHY Link Up 이후 Link 상태 정보는 PHYSR[2:0]을 통해 확인할 수 있다. PHYCRO 설정 이전에, PHYLCKR 을 Unlock 한다.

Ex) PHY Operation Mode 설정

```
PHY_10FDX:
    /* PHYCR0 & PHYCR1 Unlock */
   PHYLCKR = 0x53;
    /* Set PHYCR0 100/10BASE & Full/Duplex */
   phy_mode = '000' // Auto Negotiation
    //phy_mode = '100' // 100BASE-TX FDX
    //phy_mode = '101' // 100BASE-TX HDX
    //phy_mode = '110' // 10BASE-TX FDX
    PHYCR0[2:0] = phy_mode;
    /* PHY Reset Process */
   PHYCR1[RST] = '1';
   Wait T<sub>PRST</sub>; // refer to 8.4.1 Reset Timing
    /* PHYCR0 & PHYCR1 Lock */
   PHYLCKR = 0x00; // for Lock, write any value
    /* wait until PHY Link is up */
   while(PHYSR[LNK] != '0');
    /* read PHYSR */
    If( (PHYSR[5:3] == phy_mode) ) SUCCESS;
   else FAIL;
```


6.8.3 Ethernet PHY Parallel Detection

Link Partner 가 Auto-negotiation 을 지원하지 않을 경우, 내장 Ethernet PHY 는 Parallel Detection 을 통해 Link 를 형성한다.

*CAUTION 10F/10H 와 같이 Duplex Mode 가 일치하지 않는 경우 Network 성능 저하의 원인 될 수 있다.

Link Partner PHY	Auto	10H	10F	100H	100F
Auto	100F 100F	10H 10H	10F 10H	100H 100H	100F 100H
Manual 10H	10H 10H	10H 10H	10F 10H		
Manual 10F	10H 10F	10H 10F	10F 10F		
Manual 100H	100H 100H			100H 100H	100F 100F
Manual 100F	100H 100F			100H 100F	100F 100F

6.8.4 Ethernet PHY Auto MDIX

Ethernet PHY 를 Auto-negotiation(PHYCR0[MODE2] = '0')로 사용할 경우 Auto-MDIX 를 지원하며, Symmetric Transformer(Figure 43 Transformer Type)를 사용한다.

Auto-negotiation 를 사용하지 않는 경우는 Auto-MDIX를 지원하지 않으므로 Cross UTP Cable을 사용한다.

*CAUTION : Link 된 두 Node 간 어느 한 Node 라도 Auto-MDIX 를 지원할 경우, Straight 혹은 Cross UTP Cable 둘 다 사용 가능하다.

6.8.5 Ethernet PHY Power Down Mode

PHYCR1[PWDN] = '1' 로 설정할 경우 Ethernet PHY 는 Power Down Mode 로 진입하며, SYS_CLK은 25MHz 로 변경된다.

PHYCR1[PWDN] = '0'로 설정할 경우 Ethernet PHY 는 Normal Mode 로 진입하고, SYS_CLK 은 SYCR1[CLKSEL] 설정에 따라 결정된다. *참조*) 4.1.5 SYCR1 (System Config Register 1)

```
Enter Power Down mode :
{
    /* PHYCR0 & PHYCR1 Unlock */
    PHYLCKR = 0x53;

    /* Enable Power Down Mode */
```



```
PHYCR1[PWDN] = '1';
    /* PHYCR0 & PHYCR1 Lock */
    PHYLCKR = 0x00; // for Lock, write any value
    /* wait until clock is stable switched */
    Wait T<sub>PRST</sub>; // refer to 8.4.1 Reset Timing
Exit Power Down mode:
    /* PHYCR0 & PHYCR1 Unlock */
    PHYLCKR = 0x53;
    /* enable Power Down Mode */
    PHYCR1[PWDN] = '0';
    /* PHYCR0 & PHYCR1 Lock */
    PHYLCKR = 0x00; // for Lock, write any value
    /* wait until Clock is stable switched */
    Wait T<sub>PRST</sub>; // refer to 8.4.1 Reset Timing
    /* wait until Clock is switched 25 to 100MHz*/
    Wait T<sub>LF</sub>; // refer to 8.4.1 Reset Timing
```

6.8.6 Ethernet PHY's Registers Control

Ethernet PHY 의 Register 들은 일반적으로 MDC/MDIO(Management Data Clock / Input Output) Interface 를 통해 Access 된다. W6100 은 MDC/MDIO Controller 를 내장하고 있으며, HOST 는 PHYDIVR, PHYRAR, PHYDOR, PHYDIR, PHYACR 을 통해 Control 할 수 있다.

아래의 Figure 35 는 MDC/MDIO Write Control Flow 를 나타낸다.

Figure 35 MDC/MDIO Write Control Flow

• Config PHY Register Address

PHYRAR 에 Write Access 하려는 PHY Register Address 를 저장한다.

```
{
START:
    /* set PHY Register Address into PHYRAR */
PHYRAR = 0x00;    /* BMCR Address is 0x00 */
}
```

• Config Input Data

PHYDIRO & PHYDIR1 를 통해 PHY Register 에 Write 할 16bits Data 를 저장한다.
PHYDIR1 에는 상위 8bits Data 를 저장하고 PHYDIR0 에 하위 8bits Data 를 저장한다.

```
{
    Data = 0x8000; /* set RST bit in BMCR */

PHYDIR1 = (Data & 0xFF00) >> 8; /* set upper 8bits Data */
PHYDIR0 = Data & 0x00FF; /* set lower 8bits Data */
}
```

Write Access / Complete?

PHYACR을 '0x01'로 설정하면, PHYRAR에 지정된 PHY Register를 PHYDIR을 통해 Write Access 한다. 완료 후 자동 Clear 된다.

```
{
    PHYACR = 0x01;    /* set Write Access */
    while(PHYACR != 0); /* wait until MDC/MDIO Control is complete */
}
```


아래의 Figure 36 은 MDC/MDIO Read Control Flow 를 나타낸다.

Figure 36 MDC/MDIO Read Control Flow

• Config PHY Register Address

PHYRAR 에 Write Access 하려는 PHY Register Address 를 저장한다.

```
{
START:
    /* set PHY Register Address into PHYRAR */
    PHYRAR = 0x01;    /* BMSR Address is 0x01 */
}
```

• Read Access / Complete?

PHYACR을 '0x02'로 설정하면, PHYRAR에 지정된 PHY Register를 PHYDOR을 통해 Read Access 한다. 완료 후 자동 Clear 된다.

```
{
    PHYACR = 0x02;    /* set Read Access */
    while(PHYACR != 0); /* wait until MDC/MDIO Control is complete */
}
```

• Read Output Data

Read Access 가 완료되면 PHY Register 값은 PHYDOR0,1 에 저장된다. PHYDOR1 은 상위 8bits Data 가 저장되고, PHYDOR0 에는 하위 8bits Data 가 저장된다.

```
{
    Data = (PHYDOR1 & 0x00FF) << 8; /* get upper 8bits Data */
```



```
Data = Data + (PHYDOR0 & 0x00FF); /* get lower 8bits Data */
}
```

6.8.7 Ethernet PHY 10BASE-Te Mode

W6100 Ethernet PHY 는 10BASE-Te Mode 로 동작할 수 있으며 설정방법은 아래와 같다.

```
{
    /* PHYCR0&PHYCR1 Unlock */
    PHYLCKR = 0x53;

    /* Enable Auto-negotiation */
    PHYCR0[MODE2:MODE0] = '000';

    /* set PHY Te Mode */
    PHYCR1[TE] = '1';

    /* PHY Reset Process */
    PHYCR1[RST] = '1';
    Wait T<sub>PRST</sub>;    // refer to 8.4.1 Reset Timing
}
```


7 Clock & Transformer Requirements

7.1 Quartz Crystal Requirements.

Table 10 Quartz Crystal

Parameter	Condition / Description	Min	Тур	Max	Unit
Frequency(F)			25		MHz
Frequency Tolerance	At 25°C	-50		+50	ppm
Frequency Stability	1 Year aging.	-50		+50	ppm
Load Capacitance(C _L)	ESR = 30 Ω		8		pF
Feedback Resistor(R _F)	External resistor		1M		Ω
Startup time	W6100 Reset			60	ms
Trans-conductance(g _m)			8.43		mA/V
Gain Margin (gain _{margin})	gain _{margin} = g _m / g _{mcrit}	6.99			dB

 $C_0^{(1)}$: The Packaging Parasitic Shunt Capacitance.

 $C_L^{(1)}$: Load Capacitance. eq) $C_L = (C_{L1} X C_{L2}) / (C_{L1} X C_{L2}) + C_s$

 C_{L1} , C_{L2} : External Capacitances of the circuit connected to the crystal (Typically, $C_{L1} = C_{L2}$)

C_s: Stray Capacitance of printed circuit board and connections.

 g_{mcrit} : Oscillator loop critical gain. eq) $g_{mcrit} = 4 \times (ESR + R_{Ext}) \times (2\pi F)^2 \times (C_0 + C_L)^2$

 $ESR^{(1)}$: Maximal equivalent series resistance. eq) $ESR = R_m X (1 + C_0/C_L)^2$

 R_{Ext} : Resistor for limiting the drive level(DL) of the crystal.

DL⁽¹⁾: The power dissipated in the crystal. Excess power can destroy the crystal.

 $R_F^{(2)}$: Feedback resistor.

- C₀, C_L, ESR and DL are provided by the crystal manufacturer.
- The W6100 has no feedback resistor. Therefore, it must be inserted outside.
- * Crystal 회로는 아래와 같은 형식으로 모델링 된다.

Figure 37 Quartz Crystal Model

Table 11 Crystal Recommendation Characteristics

Parameter	Range	
Frequency	25 MHz	
Frequency Tolerance (at 25°C)	±30 ppm	

Shunt Capacitance	7pF Max		
Drive Level	500uW		
Load Capacitance	8pF		
Aging (at 25°C)	±3ppm / year Max		

7.2 Oscillator requirements.

Table 12 Oscillator Characteristics

Parameter	Condition / Description	Min	Тур	Max	Unit
Frequency			25		MHz
Frequency Tolerance	At 25°C	-50		+50	ppm
Frequency Stability	1 Year aging. 25°C	-50		+50	ppm
Clock Duty	50% of waveform	45	50	55	%
Input High Voltage		-	0.97	-	٧
Input Low Voltage		-	0.13	-	٧
Rise/Fall Time	10% to 90% of waveform			8ns	
Start Up Time		-	-	10ms	
Operating Voltage		1.08V	1.2V	1.32V	
Aging (at 25°C)		±3 / year Max		ppm	

7.3 Transformer Characteristics

Table 13 Transformer Characteristics

Parameter	Transmit End	Receive End
Turn Ratio	1:1	1:1
Inductance	350 uH	350 uH

Figure 38 Transformer Type

8 Electrical Specification

8.1 Absolute Maximum ratings

Table 14 Absolute Maximum ratings

Symbol	Parameter	Rating	Unit
V _{DD}	DC Supply voltage	-0.5 to 4.6	٧
V _{IN}	DC input voltage	-0.5 to 4.6	٧
V _{OUT}	DC output voltage	-0.5 to 3.63	٧
I _{IN}	DC input current	20	mA
T _{OP}	Operating temperature	-40 to +85	°C
Тлмах	Maximum junction temperature	125	°C
T _{STG}	Storage temperature	-65 to +150	°C

^{*}COMMENT: Stressing the device beyond the 'Absolute Maximum Ratings' may cause permanent damage.

8.2 Absolute Maximum ratings (Electrical Sensitivity)

Table 15 Electro Static Discharge (ESD)

Symbol	Parameter	Test Condition	Class	Maximum value(1)	Unit	
V _{ESD} HBM	Electrostatic discharge voltage (human body model)	TA = +25 °C conforming to MIL-STD 883F Method 3015.7	2	2000	٧	
V _{ESD} MM	Electrostatic discharge voltage (man machine model)	TA = +25 °C conforming to JEDEC EIA/JESD22 A115-A	В	200	٧	
V _{ESD} CDM	Electrostatic discharge voltage (charge device model)	TA = +25 °C conforming to JEDEC JESD22 C101-C	III	500	٧	

Table 16 Latch up Test

Test Condition	Class	Maximum value	Unit
TA = +25 °C conforming to JESD78	Current	≥ ±100	mA
TA = +23 C comorning to JESD76	Voltage	≥ 1.5*V _{DD}	٧

8.3 DC Characteristics

Table 17 DC Characteristics

(Test Condition: $Ta = -40 \text{ to } 85^{\circ}\text{C}$)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
V_{DD}	Supply voltage	Apply VDD, AVDD	2.97	3.3	3.63	٧
V _{IH}	High level input voltage		2.0	-	-	٧
V_{IL}	Low level input voltage		-		0.8	V
V_{T+}	Schmitt trig Low to High Threshold point	All inputs except Analog PINs	0.8	1.1	-	٧
V_{T-}	Schmitt trig High to Low Threshold point	All inputs except Analog PINs	-	1.6	2.0	٧
TJ	Junction temperature		-40	25	125	°C
ار	Input Leakage Current			±1	±10	μΑ
R_{PU}	Pull-up Resistor		40	75	190	Kohm
R _{PD}	Pull-down Resistor		40	75	190	Kohm
V _{OL}	Low level output voltage	IOL = 4.0mA ~ 16mA All outputs except XO			0.4	٧
V _{OH}	High level output voltage	IOH = 4.0m ~ 6mA, All outputs except XO	2.4			٧
I _{DD1}	Supply Current (Normal operation mode)	VDD=3.3V, AVDD=3.3V, Ta = 25°C		132		mA
I _{DD2}	Supply Current (Power Down mode)	PHY Power Down mode, VDD=3.3V, AVDD=3.3V, Ta = 25°C		13		mA

8.4 AC Characteristics

8.4.1 Reset Timing

Figure 39 Reset Timing

Table 18 Reset Table

Symbol	Description	Min	Тур	Max
T_{RST}	Reset Time	350 ns	580 ns	1.0 us
T_{STA}	Stable Time	-		60.3 ms
_	Fast to Low Time by SYCR1[CLKSEL]	100 ns		-
T_{FL}	Fast to Low Time by PHYCR1[RST] or PHYCR1[PWDN]	300 ns		
	PHY Auto Reset Time	0.6 ms		-
T_{PRST}	PHY Power Down Time	200 us		
	Clock Switch Time	200 ns		
	Low to Fast Time by SYCR1[CLKSEL]	100 ns		-
T _{LF}	Low to Fast Time by PHYCR1[RST] or PHYCR1[PWDN]	100 ns		

*COMMENT: PHY Power-down Mode has T_{FI} and T_{LF} (In PHY Power-down Mode, SYS_CLK switches to Low Clock. After T_{FL} , User can be disable PHY Power-down Mode.)

*CAUTION: User must not set PHY Auto Reset and PHY Power-down Mode at the same time

8.4.2 BUS ACCESS TIMING

8.4.2.1 READ TIMING

Figure 40 Bus Read Timing

Table 19 BUS Read Timing

Symbol	Description	Min	Max
T_{ADDRs}	Address Setup Time	SYS_CLK	
T _{CR}	CSn Low to RDn Low Time	0 ns	
T _{cs}	CSn Low Time	4 SYS_CLK	
T _{RC}	RDn High to CSn High Time	0 ns	
T _{csn}	CSn Next Assert Time	3 SYS_CLK	
T_{RD}	RDn Low Time	4 SYS_CLK	
T_{RDn}	RDn Next Assert Time	3 SYS_CLK	
T _{DATAs}	Data Setup Time	3 SYS_CLK+5ns	

8.4.2.2 WRITE TIMING

Figure 41 BUS Write Timing

Table 20 BUS Write timin	Table	20 BUS	Write	timing
--------------------------	-------	---------------	-------	--------

Symbol	Description	Min	Max
T_{ADDRs}	Address Setup Time	SYS_CLK	
T_CW	CSn Low to WRn Low Time	0 ns	
T _{cs}	CSn Low Time	4 SYS_CLK	
T _{WC}	WRn High to CSn High Time	0 ns	
T _{csn}	CSn Next Assert Time	3 SYS_CLK	
T _{WR}	WRn Low Time	4 SYS_CLK	
T _{WRn}	WRn Next Assert Time	3 SYS_CLK	
T _{DATAs}	Data Setup Time	2 SYS_CLK	

8.4.3 SPI ACCESS TIMING

Figure 42 SPI Access Timing

Table 21 SPI Access Timing

Symbol	mbol Description Min		Max	Units
F _{SCLK}	SCLK Clock Frequency		70	MHz
T _{CSS}	CSn Setup Time	3 SYS_CLK		ns
T _{CSH}	CSn Hold Time	2 SYS_CLK		ns
T _{CS}	CSn High Time	2 SYS_CLK		ns
T _{WH}	SCLK High time	6		ns
T _{WL}	SCLK Low Time	6		ns
T _{DS}	Data Setup Time	3		ns
T _{DH}	Data In Hold Time	3		ns
T _{DI}	Data Invalid Time	7		ns

8.4.4 Transformer Characteristics

Table 22 Transformer Characteristics

|--|

Turn Ratio	Ratio 1:1	
Inductance	350 uH	350 uH

Figure 43 Transformer Type

8.4.5 MDIX

W6100 는 Auto-Negotiation Mode 인 경우, Auto-MDIX 를 지원한다.

8.5 POWER DISSIPATION

Table 23 Power Dissipation

(Test Condition: VDD=3.3V, AVDD=3.3V, Ta = 25°C)

Condition	Min	Тур	Max	Unit
100M Link	-	98	115	mA
10M Link	-	112	265	mA
10M-Te Link	-	75	190	mA
100M Unlink(실측)	-	50	199	mA
10M Unlink(실측)	-	26	170	mA
10M-Te Unlink(실측)	-	26	130	mA
Un-Link (Auto-negotiation mode)(실측)	-	50	199	mA
Power Down mode	-	14	20	mA

9 Package Information

9.1 **LQFP48**

Table 24 LQFP48 VARIATIONS (ALL DEMINSIONS SHOWN IN MM)

SYMBOL	MIN NOM		MAX
A			1.60
A1	0.05		0.15
A2	1.35	1.40	1.45
b	0.17	0.22	0.27
С	0.09	0.09	
D	9.00 BSC		
D1	7.00 BSC		
E	9.00 BSC		
E1	7.00 BSC		
e	0.50 BSC		
L	0.45 0.60 0.75		
L1	1.00 REF		
θ	0° 3.5° 7°		

NOTES:

- 1. JEDEC OUTLINE:
 - MS-026 BBC
 - MS-026 BBC-HD (THERMALLY ENHANCED VARIATIONS ONLY)
- 2. DATUM PLANE $\rm H$ IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY
- 3. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE. DIMENSIONS D1 AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE \blacksquare .
- 4. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION.

9.2 **QFN48**

Table 25 QFN48 VARIATIONS (ALL DEMINSIONS SHOWN IN MM)

SYMBOL	MIN		NOM			MAX
A	0.70		0.	75		0.80
A1	0.00		0.0	02		0.05
A3			0.203	REF		
b	0.20		0.3	25		0.30
D			7.00 BSC			
E			7.00 BSC			
е	0.50 BSC					
D2	5.25		5.30			5.35
E2	5.25		5.30			5.35
L	0.35		0.40			0.45
K	0.20					
LEAD FINISH	Pure Tin		V PPF			Х
JEDEC CODE	N/A					

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS
- 2. DEMENSION B APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15mm AND 0.30mm FROM THE TERMINAL TIP. IF THE TERMINAL HAS THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL, THE DIMENSION b SHOULD NOT BE MEASURED IN THAT RADIUS AREA.
- 3. BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.

10 Document Revision History

Version	Date	Descriptions
Ver. 1.0.0	1FEB2019	Initial Release
Ver. 1.0.1	7MAR2019	1.Modified Power Dissipation (in 8.5 POWER DISSIPATION)
Ver. 1.0.2	15MAY2019	1. Added Maximum junction temperature (in 8.1 Absolute Maximum ratings)
Ver. 1.0.3	8OCT2019	Modified Hyperlink about "Clock Selection Guide" in page 13

Copyright Notice

Copyright 2018 WIZnet Co., Ltd. All Rights Reserved.

Technical Support: https://forum.wiznet.io/

Wiki: https://wizwiki.net

Sales & Distribution: <u>mailto:sales@wiznet.io</u>

For more information, visit our website at http://www.wiznet.io/