Задачи по курсу случайных графов. Часть 6

Константинов Даниил Николаевич, M05-015a dkonstantinov0@gmail.com

1. Доказательство. Из теоремы Спенсера и Шела следует, что $\forall \alpha > 0, \alpha$ — иррациональное, $G(n, n^{-\alpha})$ подчиняется закону 0 или 1. Значит, у Консерватора есть выигрышная стратегия в игре $EHR(G(n, n^{-\alpha}), G(m, m^{-\alpha}), k)$ для любого $k \in \mathbb{N}$.

Понятно, что при $p=1-n^{-\alpha}$ получаем дополнение к графу $G(n,n^{-\alpha})$ почти наверняка (т.е. в графе $G(n,1-n^{-\alpha})$ ребра смежны тогда и только тогда, когда они несмежны в $G(n,n^{-\alpha})$ с вероятностью, стремящейся к 1 и наоборот. Небольшое пояснение: для проведения ребер в графах $G(n,n^{-\alpha})$ и $G(n,1-n^{-\alpha})$ можно использовать одну ассиметричную монетку).

Нам же нужно показать, что для любого $k \in \mathbb{N}$ у Консерватора есть выигрышная стратегия в игре $\mathrm{EHR}(G(n,1-n^{-\alpha}),G(m,1-m^{-\alpha}),k)$. Но раз графы $G(n,n^{-\alpha})$ и $G(m,m^{-\alpha})$ были k—элементарно эквивалетны, то и их дополнения должны быть k—элементарно эквивалетны (раз они были k—элементарно эквивалетны для любого k, то их геометрическая структура подобна, а значит и дополнения к этой структуре подобны. Или если весь граф был раскрашен в красные $(p=n^{-\alpha})$ и синие $(p=n^{1-\alpha})$ ребра, то у нас сначала были красные, а затем мы перешли к синим, причем на красных Консерватор выигрывал). Из чего следует, что граф $G(n,1-n^{-\alpha})$ подчиняется закону 0 или 1.

2. Доказательство. Путь доказательства аналогичен доказательству теоремы 1 (Глебский, Коган, Легонький, Толанов, Фагин). Нужно показать, что для данного k Консерватор имеет выигрышную стратегию в игре EHR(G(n, p(n)), G(m, p(m)), k). Для этого воспользуемся леммой, по которой нужно показать, что граф G(n, p(n)) обладает свойством расширения уровня k-1.

(я понимаю, что нам не давали теорему про то, что у Консерватора есть выигрыш. стратегия в игре из k шагов тогда и только тогда, когда граф подчиняется k—закону 0 или 1, но вроде как она следует из доказательства общей теоремы)

Воспользуемся методом первого момента и покажем что вероятность того, что G(n,p) не обладает свойством расширения уровня k-1 стремится к нулю.

Пусть $A = \{v_1, ..., v_a; u_1, ..., u_{k-1-a}:$ попарно различны $\}$. (я пропущу 2 промежуточных шага в следующих рассуждениях, которые аналогичны доказательству с лекции)

$$\mathrm{P}\left(G(n,p)\right)$$
 не обладает свойством расширения уровня $k-1\right)\leq$

$$\leq \sum_{0 \leq a \leq k-1} \sum_{A} (1 - p^{a}(1-p)^{k-1-a})^{n-(k-1)} \leq C_{n}^{k-1} 2^{k-1} (1-p^{k-1})^{n} \leq n^{k-1} 2^{k-1} e^{-n^{1-(k-1)\alpha}} = 0$$

$$= \exp\left((k-1)\ln n + (k-1)\ln 2 - n^{1-(k-1)\alpha}\right) \to 0,$$

т.к. $1-(k-1)\alpha>0$ по условию и $p^a(1-p)^{s-a}\geq p^s$ при $n\to\infty$ и $p\to0.$

3. -

4. Доказательство. Для начала запишем формулу для данного свойства:

$$\phi = \forall x \forall y \exists z (x \sim z) \land (y \sim z)$$

(конечно, по хорошему нужно еще добавить запрещающие условия на то, что z может совпасть с x или y, или x и y могут совпасть, но я это опущу как маловероятные события) Хочу показать, что

$$\mathrm{P}\left(G(n,p) \vDash \phi\right) = 1 - \mathrm{P}\left(\exists x, y \forall z \neg ((x \sim z) \land (y \sim z))\right) = 1 - C_n^2 (1 - p^2)^{n-2} \approx 1 - n^2 \exp(-np^2)$$

Пусть $\hat{p} = n^{-1/2}$ — пороговая вероятность. Тогда при $p = n^{-1/2 + \varepsilon/2} >> \hat{p}, \, \varepsilon > 0$:

$$P(G(n,p) \models \phi) \approx 1 - \exp(2 \ln n - n^{\epsilon}) \to 1.$$

Тепер посмотрим на случай, когда $p = \mathrm{o}(\hat{p}) = n^{-1/2 - \varepsilon/2}.$

Пусть X_n — число вишен (то есть штук, в которых 2 вершины имеют какого-то соседа). Покажем, что в этом случае их не может быть больше, чем C_n^2 , тем самым получая, что существует 2 вершины, не имеющие соседа. Воспользуемся неравенством Маркова:

$$P(X_n \ge C_n^2) \le \frac{EX_n}{C_n^2} = \Theta\left(\frac{C_n^3 p^2}{c_n^2}\right) = \Theta\left(np^2\right) = \Theta\left(n^{-\varepsilon}\right) \to 0$$

Значит, пороговой вероятностью для свойства ϕ является функция $n^{-1/2}$.

5. Доказательство. .

(а) Возьмем полный двудольный подграф $K_{k,k}$ на 2k вершинах. Он строго сбалансирован, его плотность $\rho = \frac{k^2}{2k} = \frac{k}{2}$. Значит, по теореме Боллобаша число копий $K_{k,k}$ в $G(n,n^{-2/k})$ стремится по распределению к случ. величине, распределенной по $\operatorname{Pois}(\frac{1}{\operatorname{aut}(K_{k,k})})$. Как следствие

$$P\left(\mathbf{B}\;G(n,n^{-2/k})\;\mathrm{нет}\;\mathrm{копий}\;K_{k,k}
ight)
ightarrow e^{-1/aut(K_{k,k})}$$

Очевидно, что свойство содержать $K_{k,k}$ является выразимым на языке 1го порядка и его кванторная глубина равна 2k (по одному квантору на вершину).

- (b) Воспользовавшись результатом 2й задачи, при $\alpha < 0.5$ граф $G(n, n^{-\alpha})$ удовлетворяет 3-закону 0 или 1. Если же $1 > \alpha \geq 0.5$, то рассмотрим следующие случаи:
 - і. Заметим, что $p=n^{-1}$ пороговая вероятность для появления треугольника, а значит, в структуре нашего графа почти наверняка он присутствует. Значит, с такой штукой Консерватор справится.
 - ії. $p = n^{-3/2}$ пороговая вероятность для вишни, так что она у нас тоже есть.
 - ііі. Теперь предположим, что Новатор выбрал 2 вершины u и v: тогда возможны варианты: а) когда есть вершина, соединенная с одной из них, б) есть вершина, не соединенная ни с кем из них.
 - а) Запишем свойство, выражающая эту конфигурацию:

$$\phi = \exists z \, (u \sim z \land v \nsim z \lor u \nsim z \land v \sim z)$$
$$\neg \phi = \forall z \neg (u \sim z \land v \nsim z \lor u \nsim z \land v \sim z)$$

Использую оценку:

$$1+x \leq e^x$$

$$\mathrm{P}\left(G(n,p) \vDash \neg \phi\right) = \left(1-2p(1-p)\right)^{n-2} = \left(1-2p+2p^2\right)^n \leq e^{-np+np^2} = e^{-n^{1-\alpha}+n^{1-2\alpha}} \to 0,$$
 т.к. при $1>\alpha \geq 0.5 \Rightarrow -n^{1-\alpha}+n^{1-2\alpha} \to -\infty.$

Значит, такая вершина есть. б)

$$\phi = \exists z \, (u \nsim z \land v \nsim z)$$

2

$$\neg \phi = \forall z \neg (u \nsim z \land v \nsim z)$$

$$P(G(n,p) \vDash \neg \phi) = (1 - (1-p)^2)^{n-2} = (2p - p^2)^n \le 2^n p^n e^{-0.5pn} = e^{n \ln 2 + n \ln p - 0.5np} = e^{n \ln 2 + n \ln p - 0.5np} = e^{n \ln 2 - \alpha n \ln n} = e^{n \ln 2 - \alpha$$

Следовательно, и такая вершина сущесвует.

Тем самым все варианты разобраны, следовательно, у Консерватора всегда есть возможность ответить Новатору.

6. Доказательство. Хотим построить строго сбалансированный граф G с определенной плотностью $\rho \in [1,3/2)$ — рациональное число. Пусть:

$$\rho = \frac{e(G)}{v(G)} = \frac{v(G) - 1 + r}{v(G)},$$

где $0 \le r \le v(G)/2 + 1$.

Для начала подберем подходящее число вершин графа v(G) и число ребер e(G): $v(G) \leq e(G) \leq C_{v(G)}^2$, чтобы получить нужную плотность (это можно сделать, так как плотность является рациональным числом). Далее, два случая:

- 1) r=1. Тривиальный случай с плотностью =1. Нужно просто построить цикл на всех вершинах.
- 2) $r \geq 2$. На (v(G)-1) вершине построим цикл (строго сбалансированный граф с единичной плотностью) и проведем оставшиеся r ребер от последней вершины ко всем из множества $T_G(r)$ (учитывая, что мы занумеровали вершины графа от 1 до v(G)=n+1):

$$T_G(r) = \{t : (t-1)r > t \cdot r \pmod{n}\},\$$

где t пробегает по всем (v(G)-1) вершинам. Замечание: $|T_G(r)|=r$.

Докажем, что мы получили строго сбалансированный граф.

Введем функцию

$$f(H) = (v(H) - 1)\frac{e(G)}{v(G) - 1} - e(H)$$
$$f(G) = 0$$

Понятно, что если f(H) > 0 для любого подграфа H из G, то G — строго сбалансированный граф

Теперь посмотрим на то, что может быть внутри графа G. Если его индуцированному графу H не принадлежит последняя вершина, то это максимум цикл с плотностью 1, а значит его плотность меньше плотности G. Если же последняя вершина принадлежит H, то графу H (n' = v(H) - 1) принадлежит не больше, чем $\lfloor n'r/n + 1 \rfloor + n' - 1$ ребер (первая часть ребер от последней вершины, оставшиеся n' - 1 — максимальное число от неполного цикла на n' вершинах). Замечание: для получения чего-то по плотности большего чем G, нужно набирать вершины подряд, надеяся получить как минимум по 2 ребра за каждую вершину. Из этого следует оценка на ребра из множества $T_G(r)$.

$$f(H) = (v(H) - 1)\frac{n+r}{n} - e(H) > n' + \frac{n'r}{n} - (\frac{n'r}{n} + n') = 0$$

Значит, построенный граф является строго сбалансированным.