- Soit la fonction f définie [-4;4] par $f(x) = \frac{x}{x^2 + 1}$.
 - 1 Calculer f'(x).
 - 2 Étudier le signe de f'(x) et dresser le tableau de variations de f.
 - 3 Donner l'équation de la droite (T), tangente à (C_f) au point d'abscisse 0.
 - Tracer dans repère orthonormé $(O; \vec{i}; \vec{j})$ la courbe (C_f) ainsi que ses tangentes.
- On considère la fonction f définie sur $\mathbb R$ par :

$$f(x) = 2 - \frac{2(1-x)}{x^2 + 1}$$

On note (C_f) sa courbe représentative.

- a. Calculer f'(x); vérifier que $f'(x) = \frac{-2(x^2 2x 1)}{(x^2 + 1)^2}$.
 - b. Étudier le signe de f'(x) puis dresser le tableau de variation de f. On ne demande pas les valeurs exactes des extremums mais une valeur arrondie aux centièmes.
- 2 Déterminer l'équation de la tangente T à (\mathcal{C}_f) au point A d'abscisse 1.
- On veut montrer qu'il existe un point B de (\mathcal{C}_f) tel que la tangente à (\mathcal{C}_f) en B soit parallèle à la droite Δ d'équation y = -x.
 - a. Montrer que le problème revient à résoudre l'équation $x^4 + 4x + 3 = 0$.
 - b. Vérifier que $x^4 + 4x + 3 = (x+1)^2(x^2 2x + 3)$.
 - c. Conclure.
- 4 Construire la courbe (C_f) dans un repère orthonormé $(O; \vec{i}; \vec{j})$ ainsi que ses tangentes.
- 5 Résoudre f(x) = 0 et interpréter graphiquement.
- Déterminer les coordonnées du point d'intersection entre (C_f) et la droite (\mathcal{D}) d'équation y = 2, puis la position relative entre (C_f) et (\mathcal{D}) . Tracer (\mathcal{D}) .
- 7 Démontrer que la fonction f est minorée par -1 sur \mathbb{R} , c'est-à-dire que f(x) > -1 pour tout $x \in \mathbb{R}$.

03

Soit $g:]-\infty$, $0[\to \mathbb{R}, x\mapsto x+1+\frac{1}{x}]$. On note \mathcal{C} la courbe représentative de g dans un repère orthonormé d'unité 1cm.

- 1 Calculer $\lim_{x\to 0} g(x)$, interpréter le résultat.
- 2 Montrer que la droite \mathcal{D} d'équation y = x + 1 est asymptote oblique à \mathcal{C} en $-\infty$.
- 3 Déterminer la position relative de \mathcal{D} et \mathcal{C} .
- Montrer que pour tout x < 0, $g'(x) = \frac{x^2 1}{x^2}$ et dresser le tableau de variation de g.
- 5 Représenter \mathcal{D} et l'allure de \mathcal{C} .

04

Partie A

On considère la fonction f définie sur $]0;+\infty[$ et on note C_f sa courbe représentative. C_f passe par le point A de coordonnées (1;1).

 C_f admet la droite (d) d'équation y = -x + 2 pour tangente au point A.

- 1 En utilisant les données du texte et en justifiant la réponse, déterminer f(1) et f'(1).
- 2 f est de la forme $f(x) = \frac{x^2 + ax + b}{x}$; exprimer f'(x) en fonction des coefficients a et b.
- $\boxed{3}$ En déduire la valeur des coefficients a et b.

Partie B

On suppose pour la suite que a=-2 et b=2 et on a alors $f(x)=\frac{x^2-2x+2}{x}$ définie sur $]0;+\infty[$.

- floor Étudier les variations de f puis dresser son tableau de variations. Donner la valeur exacte du minimum puis sa valeur arrondie aux centièmes.
- 2 Déterminer l'équation réduite de la tangente (d_1) à la courbe au point d'abscisse 2.
- 3 Dans un repère orthonormé, tracer C_f , (d) et (d_1) .

Soient f et g les fonctions définies respectivement sur \mathbb{R} et sur $\mathbb{R}\setminus\{1\}$ par :

$$f(x) = 2x^3 - 3x^2 - 2x + 3$$
 $g(x) = \frac{2x^2 - x - 3}{x - 1}$

On note \mathcal{C}_f et \mathcal{C}_g leurs courbes représentatives dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

1ère Partie : Étude de la fonction f

- 1 Déterminer les limites de f aux bornes de son domaine de définition.
- 2 Calculer f' la fonction dérivée de f, puis dresser le tableau de variations de f.

2ème Partie : Étude de la fonction g

- lacktriangle Déterminer les limites de g aux bornes de son domaine de définition et interpréter graphiquement.
- a. Déterminer les réels a, b et c tels que

$$g(x) = ax + b + \frac{c}{x - 1}$$

- b. En déduire que la droite (\mathcal{D}) d'équation y=ax+b est asymptote à \mathcal{C}_g ; déterminer la position relative de (\mathcal{D}) et \mathcal{C}_g .
- Calculer g' la fonction dérivée de g, puis dresser le tableau de variations de g.

3ème Partie:

- a. Vérifier que $f(x) = g(x) \iff x(x+1)(x-2)(2x-3) = 0$
 - b. En déduire les coordonnées de tous les points d'intersection de \mathcal{C}_f et \mathcal{C}_g .
- a. Déterminer l'équation de la droite (T), tangente à C_f au point d'abscisse $-\frac{1}{2}$.
 - b. En quels points \mathcal{C}_g admet-elle une tangente parallèle à (T)?
- 3 Construire les courbes C_f et C_g dans le repère $(O; \vec{i}; \vec{j})$

On considère les fonctions f et g définies respectivement sur $\mathbb{R}\setminus\{1\}$ et sur \mathbb{R} par :

$$f(x) = \frac{x^2 + 3x - 5}{x - 1}$$
 et $g(x) = \frac{1}{3}x^3 - 3x^2 + 5x + 5$

On note C_f et C_g , les courbes représentatives de f et de g dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

Partie A - Étude de la fonction f

- 1 Étudier les limites de f aux bornes de son domaine de définition.
- **2** Écrire f(x) sous la forme $ax + b + \frac{c}{x-1}$; en déduire que C_f admet une asymptote oblique (d).

Préciser la position relative de C_f et de (d).

- 3 Montrer que C_f admet un centre de symétrie I dont on précisera les coordonnées.
- 4 Calculer f' la dérivée de f, puis dresser le tableau de variations de f.

Partie B - Étude de la fonction g

- 1 Étudier les limites de g aux bornes de son domaine de définition.
- 2 Calculer g' la dérivée de g, puis dresser le tableau de variations de g.

Partie C - Tangentes aux courbes

- 1 Écrire l'équation de la tangente T_A à C_f au point A de la courbe d'abscisse $\frac{1}{2}$.
- 2 Montrer que C_g admet des tangentes parallèles à T_A en un ou plusieurs points dont on précisera les coordonnées.

O7 Soit f la fonction définie sur \mathbb{R} par $f(x) = \cos(2x) - 2\cos(x)$

- \blacksquare Montrer que f est périodique et déterminer sa parité éventuelle.
- 2 Démontrer que $f'(x) = 2\sin(x)(1 2\cos(x))$
- 3 Étudier le sens de variation de f sur $[0; \pi]$.
- 4 Construire la courbe représentative de f sur $[-\pi; 3\pi]$ en expliquant votre construction.

- 1 Justifier que l'on peut réduire l'intervalle d'étude à $[0;\pi]$.
- Montrer que $f'(x) = (\cos(x) + 1)(2\cos(x) 1)$, puis dressez le tableau de variations de f sur l'intervalle $[0;\pi]$ (on justifiera les signes trouvés dans le tableau).
- Montrer que (\mathcal{C}_f) , la courbe représentative de la f, est concave sur $[0;\pi]$
- 4 Déterminer une équation de la tangente (T) à (\mathcal{C}_f) au point d'abscisse 0.
- Construire (T) et (C_f) sur l'intervalle $[-\pi; 3\pi]$ en justifiant la construction.

09 Partie A:

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{3(x-1)^3}{3x^2+1}$ et soit (\mathcal{C}_f) sa courbe représentative dans le plan rapporté à un repère orthonormal d'unité 1cm.

- 1 Montrez qu'il existe un unique triplet de réels (a; b; c), que l'on déterminera, tel que pour tout réel x: $f(x) = ax + b + \frac{cx^2}{3x^2 + 1}$.
- 2 Déterminez les limites de la fonction f en $-\infty$ et en $+\infty$.
- Montrez que f est dérivable sur \mathbb{R} et que $f'(x) = \frac{9(x-1)^2(x+1)^2}{(3x^2+1)^2}$, où f' est la fonction dérivée de la fonction f.
- 4 Dressez le tableau de variation de la fonction f.
- Donnez l'équation réduite de la tangente (T) à (C_f) au point d'abscisse 0.
- 6 Tracez la tangente (T) ainsi que la courbe (\mathcal{C}_f) .

Partie B: On pourra dans cette partie utiliser certains résultats de la partie A.

On considère la fonction g définie sur \mathbb{R} par $g(x) = \frac{3(\sin(x) - 1)^3}{3\sin^2(x) + 1}$.

- Montrez que la fonction g est dérivable sur \mathbb{R} et calculer g'(x), où g' est la fonction dérivée de la fonction g.
- Montrer que pour tout x réel, on a $g'(x) = \frac{9\cos^5(x)}{(3\sin^2(x) + 1)^2}$.
- Dressez le tableau des variations de la fonction g sur $[-\pi;\pi]$.
- Tracez sur un nouveau graphique, la courbe représentative de la fonction g sur $[-\pi; 2\pi]$.