STATS C161/C261: Homework 4

Due May 30 at 4pm (brought to class or submitted electronically on CCLE)

Send questions regarding problem submission to Rosie Jia (ruoxuan@ucla.edu). In the problems below, we will assume a neural network of the form,

Hidden layer:
$$z_j^{\text{H}} = \sum_{k=1}^{N_i} W_{kj}^{\text{H}} x_k + b_j^{\text{H}}, \quad u_j^{\text{H}} = g_{\text{act}}(z_j^{\text{H}}), \quad j = 1, \dots, N_h$$
 (1a)

Output layer:
$$z_j^{\text{O}} = \sum_{k=1}^{N_h} W_{kj}^{\text{O}} u_k^{\text{H}} + b_j^{\text{O}}, \quad u^{\text{O}} = g_{\text{out}}(\mathbf{z}^{\text{O}}). \quad j = 1, \dots, N_o.$$
 (1b)

1. Consider the neural network for binary classification with a scalar input x and parameters

$$W^{\mathrm{H}} = [1,1], \quad b^{\mathrm{H}} = [-1,-3] \quad W^{\mathrm{O}} = \left[\begin{array}{c} -1 \\ 2 \end{array} \right], \quad b^{\mathrm{O}} = 0.5,$$

using a hard thresholds for the activation and output functions,

$$g_{\text{act}}(z) = \begin{cases} 1 & \text{if } z \ge 0, \\ 0 & \text{if } z < 0, \end{cases} \quad g_{\text{out}}(z) = \begin{cases} 1 & \text{if } z \ge 0, \\ 0 & \text{if } z < 0. \end{cases}$$
 (2)

- (a) What is N_h , the number of hidden units? What is N_o , the number of output units?
- (b) Write \mathbf{z}^{H} in terms of x. Draw the functions for each component z_i^{H} .
- (c) Write \mathbf{u}^{H} in terms of x. Draw the functions for each component u_{i}^{H} .
- (d) Draw z^{O} in terms of x.
- (e) Draw $\hat{y} = u^{\circ}$ in terms of x. Note that since we are using a hard threshold output $g_{\text{out}}(z)$, u° can be interpreted as a hard decision estimate on the class (not a soft probability).
- 2. Re-do problem 1 for the continuous-valued prediction case where we use a identity output map. Use a ReLU activation,

$$g_{\text{act}}(z) = \max\{0, z\}, \quad g_{\text{out}}(z) = z.$$

3. Two-dimensional example: Consider a neural network on a 2-dimensional input $\mathbf{x} = (x_1, x_2)$ with weights and biases:

$$W^{\mathrm{H}} = \left[egin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 1 \end{array}
ight], \quad b^{\mathrm{H}} = [0,0,-1], \quad W^{\mathrm{O}} = \left[egin{array}{ccc} 1 \\ 1 \\ -1 \end{array}
ight], \quad b^{\mathrm{O}} = -1.5.$$

Assume the network uses hard threshold activation function and sigmoid output function,

$$g_{\text{act}}(z) = \begin{cases} 1 & \text{if } z \ge 0, \\ 0 & \text{if } z < 0, \end{cases} \quad g_{\text{out}}(z) = \frac{1}{1 + e^{-z}}.$$
 (3)

- (a) Write the components of \mathbf{z}^{H} and \mathbf{u}^{H} as a function of (x_1, x_2) . For each component j, indicate where in the (x_1, x_2) plane $u_i^{H} = 1$.
- (b) Write z° as a function of (x_1, x_2) .
- (c) Assuming $P(y = 1|x) = u^{o}$, what is the maximum of P(y = 1|x) and for what values x does the highest probability occur.