R6. 07. 17 Network (2)

大城 優賀

先週の復習

ネットワークとは

複数のコンピュータを互いに接続して使うこと

ネットワークの分類

 $LAN(5) \geq WAN(7)$

ネットワークの分類

LAN:1つの建物内や学内等の限られた狭い地域のネットワークのこと

ネットワークの分類

WAN:離れた地域のコンピュータやLAN同士を接続したネットワークのこと

インターネットとは

WANを世界規模で実現しているのが、インターネットである(世界規模のネットワーク)

インターネットを通じて 世界とつながる!

インターネット

通信の仕組み

コンピュータ同士が通信できているわけには

「プロトコル」と呼ばれる「約束事」を決めてい

るからである

通信の仕組み

同じ「プロトコル」を用いることで、メーカーや OSが異なるコンピュータ同士でも通信ができる!

コンピュータ同士の通信は複数のプロトコルを

用いて通信をしている

OSI参照モデルとは

国際標準化機構(ISO)によって、策定された コンピュータネットワークに求められる通信機能 を7階層に分割、定義したものである

OSI参照モデル

層	名称	主な役割	
第7層	アプリケーション層	アプリケーションごとの規定	
第6層	プレゼンテーション層	データフォーマットの交換	
第5層	セッション層	通信の管理	
第4層	トランスポート層	データ転送の管理	
第3層	ネットワーク層	アドレスの管理と経路選択	
第2層	データリンク層	データフレームの識別と転送	
第1層	物理層	物理的な接続の規定	

※これは「モデル」であり、プ ロトコルの設計や勉強する時の ガイドラインである

現在、使われているプロトコル はTCP/IPである

TCP/IPとは

現在のインターネット通信等で最も利用されているプロトコルである。プロトコル群の総称である中心的な役割を果たすのがTCPとIPの2つのプロトコルであるため、この名称である。

TCP/IPとOSI参照モデルの対応付け

層	OSI参照モデル名称	TCP/IP	プロトコル
第7層	アプリケーション層		HTTP, POP
第6層	プレゼンテーション層	アプリケーション層	SMTP
第5層	セッション層		TELNET,IMAP
第4層	トランスポート層	トランスポート層	UDP, TCP
第3層	ネットワーク層	インターネット層	IP, ICMP
第2層	データリンク層	ネットワークインターフェース層	Ethernet, PPP
第1層	物理層	イットフーンインダーフェー人僧	Linemet, FFF

「IP」とは

OSI参照モデルの第3層ネットワーク層の「IP」は パケットを送り届けるためのプロトコルである。 パケットを目的のコンピュータまで届ける役割が ある

ネットワークに接続するコンピュータにはIPアドレスという識別子が割り当てられている。

例. 204.56.3.1

郵便物を送るときの住所のようなもの

IPアドレス 「204.56.3.1」

IPアドレスが 「204. 56. 3. 1」に データを届けよう

現在多く使われているのがIPv4である

[11001011000000000111000100000000]

このような2進数32桁の数字の列

人間にとってわかりずらい 普段使っている10進数のほうが 分かりやすい

なので、IPアドレスを記述するときは

8桁ずつ4つに分け、2進数から10進数に変換

110010110000000000111000100000000

「203.0.113.0」のようにピリオドで区切る

IPv4アドレスが割り当てられる数 は2³²、約43億である

インターネットが発達したこと により、IPアドレスが 不足し始めた。

対策として

自宅や社内などの限定されたネットワーク内で

はプライベートIPアドレスが各デバイスに割り振

ることにした

グローバルIPアドレスと プライベートIPアドレス とは?

IPアドレスの種類

グローバルIPアドレス:インターネットに接

続するとき際に割り当てられるIPアドレス

世界でユニーク(唯一)である

グローバルIPアドレス

IPアドレスの種類

プライベートIPアドレス:特定のネットワーク

内で割り当てられるIPアドレスのこと。

そのネットワーク内でユニーク(唯一)である

プライベートIPアドレス

ネットワークの範囲を定義するためのもの 1つの大きなネットワークを小さなネット ワークに分割する

IPアドレスはネットワーク部とホスト部に分けることができる サブネットマスクとはネットワーク部とホスト部を示している

ネットワーク部:「どのネットワークですよ」 という情報を示している

ホスト部:「どのコンピュータですよ」という情報を示している

先週の復習はここまで

今日やること wiresharkを使って 通信を可視化してみよう

Wiresharkとは

Wiresharkとは

ネットワークを流れるデータをキャプチャ したり それを解析したりできるツール

通信は目に見えない

Wiresharkを使用することで 通信状況を可視化する ことができる

使ってみよう!

Wireshark起動画面

Wireshark動作確認

スライド通りの画面が 表示されるはず

1つ1つ流れているのがパケット

パケットとは

インターネットなどTCP/IPネットワークで 通信を行う際、データはIPによって分割される この分割されたデータのことをパケットと呼ぶ

172.16.30.117	52.111.232.50	TLSv1.2	82 Application Data
34.230.174.202	172.16.30.117	TCP	66 443 → 65524 [ACK] Seq=1 Ack=2 Win=324 Len=0
52.111.232.50	172.16.30.117	TCP	60 443 → 49943 [ACK] Seq=1 Ack=29 Win=16380 Ler
Century_94:f6:fc	Broadcast	ARP	60 Who has 172.16.30.142? Tell 172.16.0.1
172.16.30.114	224.0.0.251	MDNS	139 Standard query 0x0000 PTR _companion-linkt
fe80::1001:ea5c:3cf	ff02::fb	MDNS	159 Standard query 0x0000 PTR _companion-linkt
Century_94:f6:fc	Broadcast	ARP	60 Who has 172.16.30.142? Tell 172.16.0.1
172.16.30.117	142.250.199.106	TCP	55 50293 → 443 [ACK] Seq=1 Ack=1 Win=259 Len=1
142.250.199.106	172.16.30.117	TCP	66 443 → 50293 [ACK] Seq=1 Ack=2 Win=272 Len=0
172.16.30.117	172.217.175.67	TCP	55 50307 → 443 [ACK] Seq=1 Ack=1 Win=256 Len=1
Century_94:f6:fc	Broadcast	ARP	60 Who has 172.16.30.142? Tell 172.16.0.1
172.217.175.67	172.16.30.117	TCP	66 443 → 50307 [ACK] Seq=1 Ack=2 Win=290 Len=0
Century_94:f6:fc	Broadcast	ARP	60 Who has 172.16.30.142? Tell 172.16.0.1
Century_94:f6:fc	Broadcast	ARP	60 Who has 172.16.30.142? Tell 172.16.0.1
172.16.30.117	54.95.144.31	TLSv1.2	110 Application Data

1つ1つがパケット!

Destination	Protocol	Length Info
54.95.144.31	TCP	54 63369 → 443 [ACK] Seq=1 Ack=1 Win=258 Len=0
54.95.144.31	TCP	54 63349 → 443 [ACK] Seq=1 Ack=1 Win=257 Len=0
142.251.170.188	TCP	55 63320 → 443 [ACK] Seq=1 Ack=1 Win=256 Len=1 [T
172.16.30.117	TCP	66 443 → 63320 [ACK] Seq=1 Ack=2 Win=265 Len=0 SL
34.230.174.202	TCP	55 65524 → 443 [ACK] Seq=1 Ack=1 Win=256 Len=1 [T
ff02::16	ICMPv6	90 Multicast Listener Report Message v2
224.0.0.2	IGMP∨2	46 Leave Group 224.0.0.251
224.0.0.251	IGMP∨2	46 Membership Report group 224.0.0.251
224.0.0.251	MDNS	139 Standard query 0x0000 PTR _companion-linktcp
ff02::fb	MDNS	159 Standard query 0x0000 PTR _companion-linktcp
52.111.232.50	TLSv1.	82 Application Data
Broadcast	ARP	60 Who has 172.16.31.50? Tell 172.16.0.1
Broadcast	ARP	60 Who has 172.16.30.142? Tell 172.16.0.1
172.16.30.117	TCP	60 443 → 49936 [ACK] Seq=1 Ack=29 Win=16385 Len=0
52.111.232.50	TLSv1.	82 Application Data
172.16.30.117	TCP	66 443 → 65524 [ACK] Seq=1 Ack=2 Win=324 Len=0 SL
172.16.30.117	TCP	60 443 → 49943 [ACK] Seq=1 Ack=29 Win=16380 Len=0
Broadcast	ARP	60 Who has 172.16.30.142? Tell 172.16.0.1
224.0.0.251	MDNS	139 Standard query 0x0000 PTR _companion-linktcp
ff02::fb	MDNS	159 Standard query 0x0000 PTR _companion-linktcp
Broadcast	ARP	60 Who has 172.16.30.142? Tell 172.16.0.1
1/12 250 100 106	TCD	FF E0202 \ 1/12 [ACV] Sog=1 Ack=1 Win=2E0 Lon=1 [T

Length がパケットサイズ

パケットには最大サイズがあり 一般的には1500bytesと

なっている

現在、使われているプロトコルは TCP/IPである

TCP/IPとは

現在のインターネット通信等で最も利用されているプロトコルである。プロトコル群の総称である

※プロトコルは「決まり事、約束事」のこと

通信の仕組み

同じ「プロトコル」を用いることで、メーカーや OSが異なるコンピュータ同士でも通信ができる!

コンピュータ同士の通信は 複数のプロトコルを 用いて通信をしている

TCP/IPの構造

アプリケーション層

トランスポート層

インターネット層

ネットワークインターフェース層

データ送受信の流れ

送信側

アプリケーション層

トランスポート層

インターネット層

ネットワーク

インターフェース層

受信側

アプリケーション層

トランスポート層

インターネット層

ネットワーク

インターフェース層

httpパケットの層を 見てみよう

以下のurlをクリック、ダウンロードする

https://wiki.wireshark.org/uploads/27707187a

eb30df68e70c8fb9d614981/http.cap

http.cap をダウンロード

右上の「ファイル」

から「開く」をクリック

ダウンロードした

http.capを選択する


```
145.254.160.237
12 2.553672
                                       65.208.228.223
                                                             TCP
                                                                         54 3372 → 80 [ACK]
                                                                         89 Standard query
13 2.553672
                 145.254.160.237
                                       145.253.2.203
                                                             DNS
14 2.633787
                 65.208.228.223
                                                                       1434 80 → 3372 [ACK]
                                       145.254.160.237
                                                             TCP
                                                                         E/ 2272 \ QA [ACV]
15 2 91/0/6
                                       6E 200 220 222
                 1/15 25/ 160 227
                                                             TCD
```

- ▶ Frame 4: 533 bytes on wire (4264 bits), 533 bytes captured (4264 bits)
- ▶ Ethernet II, Src: Xerox_00:00:00 (00:00:01:00:00:00), Dst: fe:ff:20:00:01:00 (fe:ff:20:00:0
- ▶ Internet Protocol Version 4, Src: 145.254.160.237, Dst: 65.208.228.223
- ▶ Transmission Control Protocol, Src Port: 3372, Dst Port: 80, Seq: 1, Ack: 1, Len: 479
- ► Hypertext Transfer Protocol

各層の役割

```
▶ Frame 4: 533 bytes on wire (4264 bits),

▶ Ethernet II, Src: Xerox_00:00:00 (00:00:ペネットワークインターフェース層
▶ Internet Protocol Version 4, Src: 145.254 インターネット層
▶ Transmission Control Protocol, Src Port:
▶ Hypertext Transfer Protocol
▶ Hypertext Transfer Protocol
```

アプリケーション層

役割:アプリケーションごとの固有の規定

主なプロトコル

HTTP・・HTML文章や画像、音声、動画などの送受信に用いられる

HTTPS…TLS/SSLを使ってHTTPの通信を暗号化したもの

FTP・・異なるコンピュータ間でファイルを転送する時に用いられる

SSH…暗号化された遠隔ログインシステム

各層の役割

```
    ▶ Frame 4: 533 bytes on wire (4264 bits),
    ▶ Ethernet II, Src: Xerox_00:00:00 (00:00:ペネットワークインターフェース層
    ▶ Internet Protocol Version 4, Src: 145.254 インターネット層
    ▶ Transmission Control Protocol, Src Port:
    ▶ Hypertext Transfer Protocol
```

トランスポート層

役割:ノード間のデータ転送の信頼性を確保

主なプロトコル

TCP…コネクション型で、信頼性のあるプロトコル

スピード遅い

UDP…コネクションレス型で、信頼性のないプロトコル

スピード速い

各層の役割

```
▶ Frame 4: 533 bytes on wire (4264 bits), :
▶ Ethernet II, Src: Xerox_00:00:00 (00:00:(ネットワークインターフェース層
▶ Internet Protocol Version 4, Src: 145.25
▶ Transmission Control Protocol, Src Port:
▶ Hypertext Transfer Protocol
アプリケーション層
```

インターネット層

役割:ネットワーク間のエンドツーエンドの通信

主なプロトコル

IPv4…ネットワークデバイスを識別するためのプロトコル

32ビットのアドレス空間をもつ

IPv6·・ネットワークデバイスを識別するためのプロトコル

128ビットのアドレス空間をもつ

ARP・・IPアドレスからMACアドレスを調べる

各層の役割

```
    ▶ Frame 4: 533 bytes on wire (4264 bits),
    ▶ Ethernet II, Src: Xerox 00:00:00 (00:00: ネットワークインターフェース層
    ▶ Internet Protocol Version 4, Src: 145.254
    ▶ Transmission Control Protocol, Src Port: トランスポート層
    ▶ Hypertext Transfer Protocol
```

ネットワークインターフェース層

役割:物理的に接続されたノード間の通信

主なプロトコル

Ethernet(有線LAN)

IEEE802.11(無線LAN)

PPP・・コンピュータ同士の1対1の通信を行うプロトコル

http パケット層の確認が できた

ちょっとした セキュリティについて触れる

※ここからやることは絶対に 公衆回線で使用しないこと

公衆回線で使用した場合 法律に触れることになる

Wiresharkはネットワークに 流れるデータをキャプチャ 解析できるツール

つまり、同じネットワークを利 用する他人のデータを みることができる

それを踏まえて絶対に公衆回線で 使用しないようにして

下さい

実践!

Wiresharkを使って自分が見ている ウェブページを確認しよう

以下のurlをクリックする

http://www.chiseki.go.jp/

Wireshark を閉じてもう一度 パケットが確認できる状態にする すぐにウェブページに戻る

先ほどウェブページの左上を 1クリックする(再読み込み)

表示フィルタ <ctrl-></ctrl-> を適用				
No. Time	Source	Destination	Protocol Length	
434 27.975908	54.95.144.31	172.16.30.117	TCP 6	0
435 27.978215	54.95.144.31	172.16.30.117	TCP 6	0
436 27.981563	54.95.144.31	172.16.30.117	TCP 6	0
437 28.072405	172.16.30.117	52.192.46.121	TCP 5	5
438 28.073252	172.16.30.117	239.255.255.250	SSDP 21	7
439 28.092255	52.192.46.121	172.16.30.117	TCP 6	6
440 28.563231	Century_94:f6:fc	Broadcast	ARP 6	0
441 28.664571	Century 94:f6:fc	Broadcast	ARP 6	0
442 28.924261	172.16.30.117	18.213.32.120	TCP 5	5
443 29.176655	18.213.32.120	172.16.30.117	TCP 6	6
444 29.692839	Century_94:f6:fc	Broadcast	ARP 6	0
445 29.692839	Century_94:f6:fc	Broadcast	ARP 6	0
446 30.610732	Century_94:f6:fc	Broadcast	ARP 6	0
447 30.713068	Century_94:f6:fc	Broadcast	ARP 6	0
CHARLES AND				

Wireshark の画面に戻る そして、左上の停止ボ タンをクリック

ここまでやってみよう

N.	http						
No.	Time	Source	Destination	Protocol Len			
	622 42.931555	52.111.232.55	172.16.30.117	TCP			
	623 42.933156	52.111.232.55	172.16.30.117	TCP			
	624 42.951196	52.111.232.55	172.16.30.117	TCP			
	625 43.207524	Century_94:f6:fc	Broadcast	ARP			
	626 43.211525	52.111.232.55	172.16.30.117	TLSv1.2 1			
á	627 43.256014	172.16.30.117	52.111.232.55	TCP			
	628 43.263473	172.16.30.117	52.111.232.55	TLSv1.2 1			
	629 43.288568	52.111.232.55	172.16.30.117	TLSv1.2			
	630 43.334725	172.16.30.117	52.111.232.55	TCP			
	631 43.431188	172.16.30.117	52.111.232.50	TLSv1.2			
	632 43.453714	52.111.232.50	172.16.30.117	TLSv1.2			

フィルタのところに「http」を入力、Enterキーを押す

http	http							
	Time	Source	Destination	Protocol	Lenath Info			
	43 3.228227	172.16.30.117	203.180.136.104	HTTP	647 GET / HTTP/1.1			
	51 3.255200	203.180.136.104	172.16.30.117	HTTP	757 HTTP/1.1 200 OK			
	53 3.364086	172.16.30.117	142.250.196.142	HTTP	409 GET /cse.js?cx=			
	57 3.447595	142.250.196.142	172.16.30.117	HTTP	1224 HTTP/1.1 200 OK			

「Info」の欄に「GET/HTTP」と 書かれているパケットをクリック

```
▶ Frame 43: 647 bytes on wire (5176 bits), 647 bytes captured (5176 bits) on interface \Devious Ethernet II, Src: Intel_19:0b:36 (d4:54:8b:19:0b:36), Dst: Century_94:f6:fc (00:80:6d:94:f0) Internet Protocol Version 4, Src: 172.16.30.117, Dst: 203.180.136.104
▶ Transmission Control Protocol Src Port: 51862, Dst Port: 80, Seq: 1, Ack: 1, Len: 593
▶ Hypertext Transfer Protocol
```

アプリケーション層の横の「▶」をクリック

```
Frame 43: 647 bytes on wire (5176 bits), 647 bytes captured (5176 bits) on interface \Dev
Ethernet II, Src: Intel_19:0b:36 (d4:54:8b:19:0b:36), Dst: Century_94:f6:fc (00:80:6d:94:
Internet Protocol Version 4, Src: 172.16.30.117, Dst: 203.180.136.104
Transmission Control Protocol, Src Port: 51862, Dst Port: 80, Seq: 1, Ack: 1, Len: 593
Hypertext Transfer Protocol
■ GET / HTTP/1.1\r\n
  Host: www.chiseki.go.jp\r\n
  Connection: keep-alive\r\n
  Cache-Control: max-age=0\r\n
  Upgrade-Insecure-Requests: 1\r\n
  User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like
  Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,im
  Referer: https://www.google.com/\r\n
  Accept-Encoding: gzin deflate\r\n
```

「Host」がwww.chiseki.go.jp だと分かる

```
Cache-Control: max-age=0\r\n
Upgrade-Insecure-Requests: 1\r\n
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) App
Accept: text/html,application/xhtml+xml,application/xml;q
Referer: https://www.google.com/\r\n
Accept-Encoding: gzip, deflate\r\n
Accept-Language: ja,en-US;q=0.9,en;q=0.8\r\n
If-None-Match: "4cc4-61d55a5398451-gzip"\r\n
If-Modified-Since: Tue, 16 Jul 2024 04:19:01 GMT\r\n
\r\n
[Full request URI: http://www.chiseki.go.jp/]
[HTTP request 1/1]
[Response in frame: 51]
```

下にスクロールすると、URLが

「http://www.chiseki.go.jp」だと分かる

http://www.chiseki.go.jp/]

webページとwiresharkで取得したパケット

情報と一致している!

なぜwiresharkで 確認できたのか?

確認できた理由

「地籍調査Webサイト」を見ていること ができた理由は「http」を 使っているため。

ほとんどのウェブページは 暗号化されている

ウェブページのurlをみると、 「https」が付いている これはSSL/TLSを用いて暗号化し ているためである

なので、機密情報を扱う際は httpsが付いているサイトを使用 しよう!

※今日やったことは絶対に 公衆回線で使用しないこと

おしまい

ありがとうございました

アンケートの回答を

お願いします。

https://forms.gle/XKgZ6qdXG4nRJXoS6