

Санкт-Петербургский Государственный Политехнический Университет

Факультет Технической Кибернетики

Кафедра Компьютерные Системы и Программные Технологии

ОТЧЁТ

о лабораторной работе №2

«Активный эксперимент идентификации нелинейной системы» Вариант N212

Выполнили: гр. 5081/10 Туркин Е.А

Преподаватель: Сабонис С.С.

Санкт-Петербург 2011 г.

1. ИССЛЕДОВАТЬ ТОЧНОСТЬ МОДЕЛИ В ЗАВИСИМОСТИ ОТ ЕЕ ВИДА, ПРЕДПОЛАГАЯ, ЧТО ВХОДНЫЕ ВЕЛИЧИНЫ НЕ ИМЕЮТ ПОГРЕШНОСТИ:

linear – линейная, interaction – линейная + попарные произведения, purequadratic – квадратичная, quadratic – квадратичная + попарные произведения

Вариант	Функция модели	Инструментальная погрешность
12	$y = -x_3 + x_1^{x_2} + 2x^3 x^4 x^5$	6%

1.1 Определить диапазон изменения переменных.

 $x_1 \in [1;2];$ $x_2 \in [2;3];$ $x_3 \in [3;4];$ $x_4 \in [4;5];$ $x_5 \in [5;6]$

1.2 Сформировать D-план (функция cordexch), используя минимально возможные значения параметра NRUNS (количество экспериментов);

1) linear

$$P = a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4 + a_5 x_5 + a_6$$

2) interaction

$$P = a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4 + a_5 x_5 + a_6 + a_7 x_1 x_2 + a_8 x_1 x_3 + a_9 x_1 x_4 + a_{10} x_1 x_5 + a_{11} x_2 x_3 + a_{12} x_2 x_4 + a_{13} x_2 x_5 + a_{14} x_3 x_4 + a_{15} x_3 x_5 + a_{16} x_4 x_5$$

3) quadratic

$$\begin{split} P &= a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4 + a_5 x_5 + a_6 + a_7 x_1 x_2 + a_8 x_1 x_3 + a_9 x_1 x_4 + \\ &+ a_{10} x_1 x_5 + a_{11} x_2 x_3 + a_{12} x_2 x_4 + a_{13} x_2 x_5 + a_{14} x_3 x_4 + a_{15} x_3 x_5 + a_{16} x_4 x_5 + \\ &+ a_{17} x_1^2 + a_{18} x_2^2 + a_{19} x_3^2 + a_{20} x_4^2 + a_{21} x_5^2 \end{split}$$

4) purequadratic

$$P = a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4 + a_5 x_5 + a_6 + a_7 x_1^2 + a_8 x_2^2 + a_9 x_3^2 + a_{10} x_4^2 + a_{11} x_5^2$$

Число этапов моделирования для различных типов моделей соответствует числу коэффициентов в аппроксимирующем полиноме:

- linear 6:
- interaction 16;
- quadratic -21;
- purequadratic 11.

Матрицы S D-оптимального плана:

```
-1
     -1
            -1
                   -1
                                   1
      1
            -1
                   -1
                            1
                                  -1
S_{int} =
     -1
             1
                   -1
                           -1
                                  -1
      1
            -1
                    1
                           -1
                                  1
      1
             1
                    1
                           -1
                                  -1
      1
             1
                   -1
                            1
                                   1
      1
            -1
                   -1
                            1
                                   1
      1
             1
                    1
                            1
                                   1
                                   1
     -1
             1
                   -1
                            1
      1
             1
                   -1
                            1
                                  -1
     -1
            -1
                   -1
                            1
                                  -1
      1
            -1
                   1
                            1
                                  -1
             1
                    1
                            1
                                  -1
      1
             1
                   -1
                           -1
                                   1
     -1
            -1
                   -1
                           -1
                                   1
            -1
     -1
                    1
                           1
                                   1
      1
            -1
                           -1
                   -1
                                  -1
     -1
             1
                    1
                           -1
                                   1
S_pquad =
      0
                                  -1
            -1
                    0
                           -1
     -1
             1
                    0
                            1
                                   0
      0
            -1
                   -1
                            1
                                   1
     -1
            -1
                   -1
                            0
                                   0
     -1
             0
                   -1
                            1
                                  -1
      0
             0
                    1
                            0
                                   0
      0
             0
                   -1
                            0
                                   0
      1
             1
                   -1
                           -1
                                   1
      1
             0
                    0
                                   0
                            1
             0
                    0
                            0
                                   1
     -1
      1
             1
                    0
                            0
                                  -1
S quad =
      0
            -1
                   -1
                           -1
                                   1
             0
                   -1
      1
                            1
                                   1
     -1
             1
                    1
                            1
                                  -1
      1
            -1
                    1
                            1
                                  -1
      1
            -1
                    1
                           -1
                                   1
      1
            -1
                   -1
                           -1
                                  -1
     -1
             1
                   -1
                           -1
                                  -1
      0
             0
                    1
                           0
                                   0
     -1
             1
                    1
                           -1
                                   1
     -1
             0
                                   0
                   -1
                           -1
      1
             1
                   -1
                           -1
                                   1
      1
             1
                   -1
                            1
                                  -1
            -1
      1
                   -1
                            1
                                   0
     -1
            -1
                    1
                                   1
                            1
      1
             1
                    1
                            1
                                   1
     -1
             1
                   -1
                            1
                                   1
     -1
            -1
                    1
                           -1
                                  -1
     -1
            -1
                    0
                            0
                                   1
      0
            0
                    0
                            1
                                   0
     -1
                            1
            -1
                   -1
                                  -1
```

1.3 Определить коэффициенты аппроксимирующего полинома (функция rstool);

1.4 Сформировать тестовую случайную последователь и проверить точность полученной модели по относительной погрешности, нормированной по значению идеальной модели.

Оценка точности аппроксимации вычисляется по следующей формуле.

 $\varepsilon = \max_{i=1..N} \frac{y_{_M}(X_i) - y(X_i)}{y(X_i)}$, где X—случайно сформированный тестовый вектор, выборка N = 10000.

2. ИССЛЕДОВАТЬ ВЛИЯНИЕ КОЛИЧЕСТВА ЭКСПЕРИМЕНТОВ НА ПОЛУЧАЕМУЮ ОТНОСИТЕЛЬНУЮ ПОГРЕШНОСТЬ

2.1 Построить зависимости значений относительной погрешности для каждой модели от количества экспериментов (повторить пункты 1.2-1.4 для различных значений количества экспериментов в плане NRUNS).

Модель: linear

NRUNS	6	10	20	40
Eps	0.0067	0.0064	0.0070	0.0073

Модель: interaction

NRUNS	16	25	50	100
Eps	0.0021	0.0023	0.0024	0.0028

Модель: purequadratic

NRUNS	11	20	40	80
Eps	0.0064	0.0064	0.0066	0.0069

Модель: quadratic

NRUNS	21	30	60	120
Eps	0.00079	0.00077	0.00079	0.00084

3. ПРОВЕСТИ МОДЕЛИРОВАНИЕ НА СТОХАСТИЧЕСКОЙ СИСТЕМЕ (ПОВТОРИТЬ ПУНКТЫ 1 – 2). ПОДРАЗУМЕВАЕТСЯ, ЧТО ОБУЧЕНИЕ ПРОИСХОДИТ ПРИ СНЯТИИ ЗНАЧЕНИЙ ВХОДНЫХ ДАННЫХ С ЗАДАННОЙ ИНСТРУМЕНТАЛЬНОЙ ПОГРЕШНОСТЬЮ.

Стохастическая система моделируется путем добавления к рассчитанным значениям случайной составляющей с равномерным распределением в диапазоне [-0.06*Xn; 0.06*Xn] в соответствии с заданным значением инструментальной погрешности 6%.

Модель: linear

NRUNS	6	10	20	40
Eps	0.0190	0.0087	0.0113	0.0072

Модель: interaction

NRUNS	16	25	50	100
Eps	0.0032	0.0030	0.0032	0.0031

Модель: purequadratic

NRUNS	11	20	40	80
Eps	0.0104	0.0107	0.0092	0.0064

Модель: quadratic

NRUNS	21	30	60	120
Eps	0.0023	0.0023	0.0011	0.00093

4. ВЫВОДЫ

Наибольшую точность при моделировании обеспечивает модель quadratic, это объясняется тем, что полином, использующийся при вычислениях, имеет более высокий порядок, по сравнению с остальными. При добавлении к измерениям инструментальной погрешности точность моделирования ухудшается, повысить точность можно увеличением числа экспериментов NRUNS.