CE 5364 Groundwater Transport Phenomena Exercise Set 3

Exercises

1. A fuel mixture of benzene, toluene, ethylbenzene at mole fractions 0.075, 0.065, and 0.035 respectively equilibrates with the atmosphere at $25^{\circ}C$

Name	Structure	Molecular Weight	Solubility In Water	Soll-Water Partition Coefficient
Benzens		78.11	1780 mg/L	97
Toluene	© cH³	92.1	500 mg/L	242
Xylene, ortho	CH3	106,17	170 mg/L	363
Xylene, meta	CH3	106.17	173 mg/L	182
Xylene, pera	CH3	106.17	200 mg/L	331
Ethyl benzene	О—- cн₂сн₃	106.17	150 mg/L	622

Figure 4.13 Benzene related compounds.

Figure 1: Benzene Compounds - Structural diagrams and physical properties

Determine:

- (a) Concentration in the gas (air) phase of the three components in $\frac{mg}{L}$
- (b) Concentration in the gas (air) phase of the three components in $\frac{\mu g}{m^3}$
- 2. (Modified from 6.22 pg. 592)

A well with effective diameter of 0.5 m fully penetrates an aquifer that has a uniform saturated thickness of 10 m. One hundred grams of benzene are spilled into the well,

ES3 Page 1 of 5

TABLE 7.1 Properties for Selected Organic Compounds

Compound/ Family	Formula	Specific Gravity	Solubility (mg/L)	Kee	Vapor Pressure (mm Hg)	Henry's Law (unitiess)
		Fuels and	dertvattves			
Benzene	C _e H _e	0.879	1750	130	80	0.22
Ethylbenzene	C,H,,	0.867	152	1400	7	0.32
Phenoi	C,H,O	1.071	93,000	29	0.2	1.89 × 10 ⁻⁶
Toluene	C ₆ H ₅ CH ₃	0.866	535	130	22	0.26
o-Xylane	C ⁶ H ⁴ (CH ³) ⁵	0.880	175	890	5	0.22
		P	AHs			
Acenaphthene	C ₁₂ H ₁₀	1.069	3.42	10,000	0.01	0.321
Benzopyrene	C ₂₀ H ₁₂	1.35	0.0012	1.15×10^{6}	-	5.8 × 10 ⁻⁶
Benzoperylena	C22H12	-	0.0007	3.24×10^{6}	-	5.8 × 10 ⁻⁶
Naphthalene	C ₁₀ H ₈	1.145	32	2800	0.23	4.9 × 10 ⁻²
Methyl naphthalene	C ₁₀ H ₃ CH ₃	1.025	25.4	13,000	-	0.0164
		Ket	ones			
Acetone	сн,сосн,	0.791	inf	0.6	89	0.00104
Methyl sthyl ketone	CH3COCH3CH3	0.805	2.68 x 10 ⁵	1.B	77.5	0.00181
	н	alogenate	ed aromatics			
Chlorobenzena	C _a H _a Ct	1.106	466	690	9	0.165
2-Chicrophenol	C4H4CIOH	1.241	29,000	15	1.42	7.4 x 10 ⁻⁴
ρ-Dichlorobenzene (1,4)	C ₆ H ₄ Cl ₂	1.458	79	3900	0.6	0.067
Hexachlorobenzene	C ₆ CI ₈	2044	0.008	1.7 x 10 ⁵	1 × 10 ⁻⁶	0.062
Pentachiorophenol	C _e OHCI _s	1.978	14	1.0 × 10 ⁵	1 × 10 ⁻⁴	1.5 x 10⁴
1,2,4-Trichlorobenzene	C°H3Cl3	1.448	30	20,000	0.42	0.059
2,4,6-Trichlorophenol	C _e H ₂ Cl ₂ OH	1.490	800	74	0.012	-

Specific gravity at various temperatures; refer to Nyer and others (1991) for details; inf is infinite solubility Vapor pressure about 20 °C; 1 atm = 750 mm Hg. Modified from Nyer and others (1991). Reprinted by permission of Ground Water Monitoring Review Copyright © 1991. All rights reserved.

Figure 2: Physical properties for some organic compounds

immediately dissolve, and mix into the water in the well. The seepage velocity is $30~\mathrm{m/yr}$ in the x-direction, the longitudinal dispersivity is $1.0~\mathrm{m}$, and the transverse dispersivity is $0.1~\mathrm{m}$.

The aquifer has the following characteristics:

- Bulk density = 1.8 g/cc
- porosity = 0.30
- $f_{oc} = 1$ percent
- $K_{ow} = 135 \text{ L/kg}$

ES3 Page 2 of 5

Determine:

- (a) The retardation factor R for benzene in this aquifer.
- (b) The maximum benzene concentration at t = 1 yr.
- (c) The location of this maximum.

The following data for concentration of TCE were taken at a single monitoring well. Use the Mann-Kendall test (pp. 458-460) to determine whether the concentration has an upward or downward trend.

Table 1: TCE Observations in an Aquifer				
Initial Concentration	Equilibrium Concen-			
(mg/L)	tration (mg/L)			
Date	TCE (ppb)			
9/92	8			
12/92	19			
3/93	21			
6/93	13			
9/93	39			
12/93	24			
3/94	28			
6/94	25			

Determine:

3. (a) The upward or downward concentration trend, using a Mann-Kendall test.

4. (Data Analysis)

A batch isotherm test was performed with several 1-L solutions of the chemical of interest and one soil type, 20 g in each solution container. The initial and final solution concentrations are shown in Table 2. Fit the linear, Freundlich, and Langmuir isotherm equations to this data.

Determine:

- (a) The Linear isotherm equation for these data (i.e. fit the isotherm model to the data), plot the isotherm and data
- (b) The Freundlich isotherm equation for these data, plot the isotherm and data
- (c) The Langmuir isotherm equation for these data, plot the isotherm and data
- (d) Which isotherm model produces the best fit for these data?

ES3 Page 3 of 5

Show calculations and identify all fitted parameter values.

ES3 Page 4 of 5

5. (Data Analysis)

The following table (Table 3)has data from a column test with bromide (conservative) and chromium (sorbed). The porosity of the soil was 0.485, the bulk density was 1.85 g/cc, velocity was 0.244 cm/min, and the column was 25.4 cm long with a diameter of 2.54 cm.

Table 3: Effluent Breakthrough Observations

	Table 3: Effluent Breakthrough Observations					
Time (min)	Bromide $\frac{C}{Co}$	Chromium $\frac{C}{Co}$				
0	0.000	0.000				
15	0.000	0.000				
30	0.005	0.000				
45	0.003	0.000				
60	0.013	0.000				
75	0.075	0.000				
90	0.137	0.000				
105	0.530	0.000				
120	0.841	0.000				
135	1.000	0.000				
150	1.000	0.000				
165	1.000	0.009				
180	1.000	0.186				
195	1.000	0.595				
210	1.000	0.791				
225	1.000	0.875				
240	1.000	0.913				
255	1.000	0.946				
270	1.000	0.946				
285	1.000	1.000				
300	1.000	1.000				
315	1.000	1.000				
330	1.000	1.000				
345	1.000	1.000				
360	1.000	1.000				

Determine:

- (a) Sketch the system.
- (b) The dispersivity in *cm*
- (c) The retardation coefficient for Cr.

ES3 Page 5 of 5