Step	Algorithm: $[C] := \text{SYRK_AC_UNB_VAR3}(A, C)$
1a	$\{C = \widehat{C}\}$
4	$A \to \left(\begin{array}{c c} A_L & A_R \end{array} \right), C \to \left(\begin{array}{c c} C_{TL} & C_{TR} \\ \hline C_{BL} & C_{BR} \end{array} \right)$ where A_R has 0 columns, C_{BR} is 0×0
2	$ \left\{ \left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} \right) = \left(\frac{\widehat{C}_{TL}}{\widehat{C}_{BL}} \begin{vmatrix} \widehat{C}_{TR} \\ \widehat{C}_{BL} \end{vmatrix} A_R^T A_R + \widehat{C}_{BR} \right) \right\} $
3	while $n(A_R) < n(A)$ do
2,3	$\left\{ \left(\begin{array}{c c} C_{TL} & C_{TR} \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & \widehat{C}_{TR} \\ \hline \widehat{C}_{BL} & A_R^T A_R + \widehat{C}_{BR} \end{array} \right) \wedge n(A_R) < n(A) \right\}$
5a	$\left(\begin{array}{c c} A_L & A_R \end{array}\right) \to \left(\begin{array}{c c} A_0 & a_1 & A_2 \end{array}\right) , \left(\begin{array}{c c} C_{TL} & C_{TR} \\ \hline C_{BL} & C_{BR} \end{array}\right) \to \left(\begin{array}{c c} C_{00} & c_{01} & C_{02} \\ \hline c_{10}^T & \gamma_{11} & c_{12}^T \\ \hline C_{20} & c_{21} & C_{22} \end{array}\right)$
	where a_1 has 1 column, γ_{11} is 1×1
6	$\left\{ \begin{array}{c c c} C_{00} & c_{01} & C_{02} \\ \hline c_{10}^T & \gamma_{11} & c_{12}^T \\ \hline C_{20} & c_{21} & C_{22} \end{array} \right) = \begin{pmatrix} C_{00} & c_{01} & C_{02} \\ \hline c_{10}^T & \gamma_{11} & c_{12}^T \\ \hline C_{20} & c_{21} & A_2^T A_2 + \widehat{C}_{22} \end{pmatrix}$
8	$c_{12}^{T} = a_{1}^{T} A 2 + c_{12}^{T}$ $\gamma_{11} = a_{1}^{T} a 1 + \gamma_{11}$
7	$ \left\{ \begin{array}{c cccc} C_{00} & c_{01} & C_{02} \\ \hline c_{10}^T & \gamma_{11} & c_{12}^T \\ C_{20} & c_{21} & C_{22} \end{array} \right) = \left(\begin{array}{c cccc} C_{00} & c_{01} & C_{02} \\ \hline c_{10}^T & a_1^T a 1 + \widehat{\gamma}_{11} & a_1^T A 2 + \widehat{c}_{12}^T \\ C_{20} & c_{21} & A_2^T A_2 + \widehat{C}_{22} \end{array} \right) $
5b	$ \left(A_{L} \middle A_{R} \right) \leftarrow \left(A_{0} \middle a_{1} \middle A_{2} \right), \left(\frac{C_{TL}}{C_{BL}} \middle C_{TR} \right) \leftarrow \left(\frac{C_{00}}{c_{01}} \middle C_{02} \right) \\ \left(C_{00} \middle c_{01} \middle C_{02} \right) \\ \left(C_{20} \middle c_{21} \middle C_{22} \right) $
2	$\left\{ \begin{array}{c c} \left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} C_{BR} \right) = \left(\frac{\widehat{C}_{TL}}{\widehat{C}_{BL}} \begin{vmatrix} \widehat{C}_{TR} \\ \widehat{C}_{BL} \end{vmatrix} A_R^T A_R + \widehat{C}_{BR} \right) \right\}$
	endwhile
2,3	$\left\{ \left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} \right) = \left(\frac{\widehat{C}_{TL}}{\widehat{C}_{BL}} \begin{vmatrix} \widehat{C}_{TR} \\ \widehat{C}_{BL} \end{vmatrix} A_R^T A_R + \widehat{C}_{BR} \right) \land \neg (n(A_R) < n(A)) $
1b	$\{[C] = \operatorname{syrk_ac}(A, \widehat{C})$

Step	Algorithm: $[C] := \text{SYRK_AC_UNB_VAR3}(A, C)$
1a	{
4	where
2	
3	while do
2,3	
5a	where
6	
8	
7	
5b	
2	
	endwhile
2,3	$\left \left\{ \begin{array}{c} \\ \\ \end{array} \right. \right. $
1b	{

Step	Algorithm: $[C] := \text{SYRK_AC_UNB_VAR3}(A, C)$
1a	$\{C = \widehat{C}$
4	where
2	
3	while do
2,3	
5a	where
6	
8	
7	
5b	
2	
	endwhile
2,3	$ \left\{ \begin{array}{ccc} & & & \\ & & & \\ & & & \\ \end{array} \right. $
1b	$\left\{ [C] = \operatorname{syrk_ac}(A, \widehat{C}) \right\}$

Step	Algorithm: $[C] := \text{SYRK_AC_UNB_VAR3}(A, C)$
1a	${C = \widehat{C}}$
4	where
2	$\left\{ \left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} \right) = \left(\frac{\widehat{C}_{TL}}{\widehat{C}_{BL}} \begin{vmatrix} \widehat{C}_{TR} \\ \widehat{C}_{BL} \end{vmatrix} A_R^T A_R + \widehat{C}_{BR} \right) \right\}$
3	while do
2,3	$\left\{ \begin{array}{c c} \left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} \right) = \left(\frac{\widehat{C}_{TL}}{\widehat{C}_{BL}} \begin{vmatrix} \widehat{C}_{TR} \\ \widehat{C}_{BL} \end{vmatrix} A_R^T A_R + \widehat{C}_{BR} \right) \wedge \right.$
5a	where
6	
8	
7	
5b	
2	$\left\{ \begin{array}{c c} \left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} C_{BR} \right) = \left(\frac{\widehat{C}_{TL}}{\widehat{C}_{BL}} \begin{vmatrix} \widehat{C}_{TR} \\ \widehat{C}_{BL} \end{vmatrix} A_R^T A_R + \widehat{C}_{BR} \right) \right\}$
	endwhile
2,3	$ \left\{ \left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} \right) = \left(\frac{\widehat{C}_{TL}}{\widehat{C}_{BL}} \begin{vmatrix} \widehat{C}_{TR} \\ \widehat{C}_{BL} \end{vmatrix} A_R^T A_R + \widehat{C}_{BR} \right) \land \neg () \right\} $
1b	$\{[C] = \operatorname{syrk_ac}(A, \widehat{C})$ }

Step	Algorithm: $[C] := \text{SYRK_AC_UNB_VAR3}(A, C)$
1a	${C = \widehat{C}}$
4	where
2	$\left\{ \left(\frac{C_{TL}}{C_{BL}} \left \frac{C_{TR}}{C_{BR}} \right) = \left(\frac{\widehat{C}_{TL}}{\widehat{C}_{BL}} \left \frac{\widehat{C}_{TR}}{\widehat{C}_{BL}} \right A_R^T A_R + \widehat{C}_{BR} \right) \right\}$
3	while $n(A_R) < n(A)$ do
2,3	$\left\{ \begin{array}{c c} \left(\frac{C_{TL}}{C_{BL}} \middle C_{TR} \\ C_{BL} \middle C_{BR} \end{array} \right) = \left(\frac{\widehat{C}_{TL}}{\widehat{C}_{BL}} \middle \frac{\widehat{C}_{TR}}{\widehat{C}_{BL}} \middle A_R^T A_R + \widehat{C}_{BR} \right) \wedge n(A_R) < n(A) \end{array} \right\}$
5a	
	where
6	
8	
7	
5b	
2	$ \left\{ \begin{array}{c c} \left(\frac{C_{TL}}{C_{BL}} \middle C_{TR} \right) = \left(\frac{\widehat{C}_{TL}}{\widehat{C}_{BL}} \middle \frac{\widehat{C}_{TR}}{\widehat{C}_{BL}} \middle A_R^T A_R + \widehat{C}_{BR} \right) \right\} $
	endwhile
2,3	$\left\{ \left(\frac{C_{TL}}{C_{BL}} \left \frac{C_{TR}}{C_{BR}} \right) = \left(\frac{\widehat{C}_{TL}}{\widehat{C}_{BL}} \left \frac{\widehat{C}_{TR}}{\widehat{C}_{BL}} \right \wedge \neg (n(A_R) < n(A)) \right. \right\}$
1b	$\{ [C] = \operatorname{syrk_ac}(A, \widehat{C}) $ }

Step	Algorithm: $[C] := \text{SYRK_AC_UNB_VAR3}(A, C)$
1a	$\{C = \widehat{C}$
4	$\{C = \widehat{C} \}$ $A \to \left(A_L \middle A_R \right), C \to \left(\frac{C_{TL}}{C_{BL}} \middle C_{TR} \right)$ where A_R has 0 columns, C_{BR} is 0×0
2	$ \begin{cases} \begin{pmatrix} C_{TL} & C_{TR} \\ C_{BL} & C_{BR} \end{pmatrix} = \begin{pmatrix} \hat{C}_{TL} & \hat{C}_{TR} \\ \hat{C}_{BL} & \hat{C}_{BR} \end{pmatrix} $
3	while $n(A_R) < n(A)$ do
2,3	$\left\{ \left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} \right) = \left(\frac{\widehat{C}_{TL}}{\widehat{C}_{BL}} \begin{vmatrix} \widehat{C}_{TR} \\ \widehat{C}_{BL} \end{vmatrix} A_R^T A_R + \widehat{C}_{BR} \right) \land n(A_R) < n(A) $
5a	where
	where
6	
8	
7	
5b	
2	$ \left\{ \begin{array}{c c} C_{TL} & C_{TR} \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & \widehat{C}_{TR} \\ \hline \widehat{C}_{BL} & A_R^T A_R + \widehat{C}_{BR} \end{array} \right) $
	endwhile
2,3	$\left\{ \left(\frac{C_{TL}}{C_{BL}} \middle C_{TR} \atop C_{BR} \right) = \left(\frac{\widehat{C}_{TL}}{\widehat{C}_{BL}} \middle \widehat{C}_{TR} \atop \widehat{C}_{BL} \middle A_R^T A_R + \widehat{C}_{BR} \right) \land \neg (n(A_R) < n(A)) \right\}$
1b	$\left\{ [C] = \operatorname{syrk_ac}(A, \widehat{C}) \right\}$

Step	Algorithm: $[C] := \text{SYRK_AC_UNB_VAR3}(A, C)$
1a	$\{C = \widehat{C}$
4	$A o \left(A_L \middle A_R \right), C o \left(\frac{C_{TL} \middle C_{TR}}{C_{BL} \middle C_{BR}} \right)$ where A_R has 0 columns, C_{BR} is $0 imes 0$
2	$ \left\{ \left(\frac{C_{TL}}{C_{BL}} \left \frac{C_{TR}}{C_{BR}} \right) = \left(\frac{\widehat{C}_{TL}}{\widehat{C}_{BL}} \left \frac{\widehat{C}_{TR}}{\widehat{C}_{BR}} \right) \right. \right\} $
3	while $n(A_R) < n(A)$ do
2,3	$ \left\{ \begin{array}{c c} C_{TL} & C_{TR} \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & \widehat{C}_{TR} \\ \hline \widehat{C}_{BL} & A_R^T A_R + \widehat{C}_{BR} \end{array} \right) \wedge n(A_R) < n(A) $
5a	$\begin{pmatrix} A_L \mid A_R \end{pmatrix} \rightarrow \begin{pmatrix} A_0 \mid a_1 \mid A_2 \end{pmatrix}, \begin{pmatrix} C_{TL} \mid C_{TR} \\ C_{BL} \mid C_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} C_{00} \mid c_{01} \mid C_{02} \\ c_{10}^T \mid \gamma_{11} \mid c_{12}^T \\ \hline C_{20} \mid c_{21} \mid C_{22} \end{pmatrix}$ where a_1 has 1 column, γ_{11} is 1×1
6	
8	
7	
5b	$\left(\begin{array}{c c} A_L & A_R \end{array}\right) \leftarrow \left(\begin{array}{c c} A_0 & a_1 & A_2 \end{array}\right), \left(\begin{array}{c c} C_{TL} & C_{TR} \\ \hline C_{BL} & C_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c} C_{00} & c_{01} & C_{02} \\ \hline c_{10}^T & \gamma_{11} & c_{12}^T \\ \hline C_{20} & c_{21} & C_{22} \end{array}\right)$
2	$ \left\{ \begin{array}{c c} C_{TL} & C_{TR} \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & \widehat{C}_{TR} \\ \hline \widehat{C}_{BL} & A_R^T A_R + \widehat{C}_{BR} \end{array} \right) $
	endwhile
2,3	$ \left\{ \left(\frac{C_{TL}}{C_{BL}} \middle C_{TR} \right) = \left(\frac{\widehat{C}_{TL}}{\widehat{C}_{BL}} \middle \frac{\widehat{C}_{TR}}{\widehat{C}_{BL}} \middle A_R^T A_R + \widehat{C}_{BR} \right) \land \neg (n(A_R) < n(A)) \right\} $
1b	$\{[C] = \operatorname{syrk_ac}(A, \widehat{C})$

Step	Algorithm: $[C] := \text{SYRK_AC_UNB_VAR3}(A, C)$	
1a	$\{C=\widehat{C}$	}
4	$A o \left(\begin{array}{c c} A_L & A_R \end{array} \right), C o \left(\begin{array}{c c} C_{TL} & C_{TR} \\ \hline C_{BL} & C_{BR} \end{array} \right)$ where A_R has 0 columns, C_{BR} is $0 imes 0$	
2	$ \left\{ \left(\frac{C_{TL}}{C_{BL}} \left \frac{C_{TR}}{C_{BR}} \right) = \left(\frac{\widehat{C}_{TL}}{\widehat{C}_{BL}} \left \frac{\widehat{C}_{TR}}{\widehat{C}_{BR}} \right) \right. \right. $	
3	while $n(A_R) < n(A)$ do	
2,3	$\left\{ \begin{array}{c c} C_{TL} & C_{TR} \\ \hline C_{BL} & C_{BR} \end{array} \right\} = \left(\begin{array}{c c} \widehat{C}_{TL} & \widehat{C}_{TR} \\ \hline \widehat{C}_{BL} & A_R^T A_R + \widehat{C}_{BR} \end{array} \right) \wedge n(A_R) < n(A)$	$\bigg\}$
5a	$ \left(\begin{array}{c c} A_L & A_R \end{array} \right) \to \left(\begin{array}{c c} A_0 & A_1 & A_2 \end{array} \right) , \left(\begin{array}{c c} C_{TL} & C_{TR} \\ \hline C_{BL} & C_{BR} \end{array} \right) \to \left(\begin{array}{c c} C_{00} & c_{01} & C_{02} \\ \hline c_{10}^T & \gamma_{11} & c_{12}^T \\ \hline C_{20} & c_{21} & C_{22} \end{array} \right) $	
6	$ \begin{cases} $	
8		
7		
5b	$ \left(\begin{array}{c c} A_L & A_R \end{array} \right) \leftarrow \left(\begin{array}{c c} A_0 & a_1 & A_2 \end{array} \right) , \left(\begin{array}{c c} C_{TL} & C_{TR} \\ \hline C_{BL} & C_{BR} \end{array} \right) \leftarrow \left(\begin{array}{c c} C_{00} & c_{01} & C_{02} \\ \hline c_{10}^T & \gamma_{11} & c_{12}^T \\ \hline C_{20} & c_{21} & C_{22} \end{array} \right) $	
2	$ \left\{ \begin{array}{c c} C_{TL} & C_{TR} \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & \widehat{C}_{TR} \\ \hline \widehat{C}_{BL} & A_R^T A_R + \widehat{C}_{BR} \end{array} \right) $	$\left. \right\}$
	endwhile	
2,3	$\left\{ \left(\frac{C_{TL}}{C_{BL}} \middle C_{TR} \right) = \left(\frac{\widehat{C}_{TL}}{\widehat{C}_{BL}} \middle \frac{\widehat{C}_{TR}}{\widehat{C}_{BL}} \middle A_R^T A_R + \widehat{C}_{BR} \right) \land \neg (n(A_R) < n(A)) \right\}$	$\left. \right\}$
1b	$\{[C] = \operatorname{syrk_ac}(A, \widehat{C})$	}

Step	Algorithm: $[C] := \text{SYRK_AC_UNB_VAR3}(A, C)$
1a	${C = \widehat{C}}$
4	$A \to \begin{pmatrix} A_L & A_R \end{pmatrix}, C \to \begin{pmatrix} C_{TL} & C_{TR} \\ \hline C_{BL} & C_{BR} \end{pmatrix}$ where A_R has 0 columns, C_{BR} is 0×0
2	$ \left\{ \left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} \right) = \left(\frac{\widehat{C}_{TL}}{\widehat{C}_{BL}} \begin{vmatrix} \widehat{C}_{TR} \\ \widehat{C}_{BL} \end{vmatrix} A_R^T A_R + \widehat{C}_{BR} \right) \right\} $
3	while $n(A_R) < n(A)$ do
2,3	$\left\{ \left(\frac{C_{TL}}{C_{BL}} \middle C_{TR} \atop C_{BL} \middle C_{BR} \right) = \left(\frac{\widehat{C}_{TL}}{\widehat{C}_{BL}} \middle \frac{\widehat{C}_{TR}}{\widehat{C}_{RR}} \right) \wedge n(A_R) < n(A) \right\}$
5a	$\left(\begin{array}{c c}A_L & A_R\end{array}\right) \rightarrow \left(\begin{array}{c c}A_0 & a_1 & A_2\end{array}\right), \left(\begin{array}{c c}C_{TL} & C_{TR} \\\hline C_{BL} & C_{BR}\end{array}\right) \rightarrow \left(\begin{array}{c c}C_{00} & c_{01} & C_{02} \\\hline c_{10}^T & \gamma_{11} & c_{12}^T \\\hline C_{20} & c_{21} & C_{22}\end{array}\right)$
6	$ \begin{cases} $
8	(
7	$ \left\{ \begin{array}{c cccc} C_{00} & c_{01} & C_{02} \\ \hline c_{10}^T & \gamma_{11} & c_{12}^T \\ C_{20} & c_{21} & C_{22} \end{array} \right) = \left(\begin{array}{c cccc} C_{00} & c_{01} & C_{02} \\ \hline c_{10}^T & a_1^T a 1 + \widehat{\gamma}_{11} & a_1^T A 2 + \widehat{c}_{12}^T \\ C_{20} & c_{21} & A_2^T A_2 + \widehat{C}_{22} \end{array} \right) $
5b	$ \left(\begin{array}{c c} A_L & A_R \end{array} \right) \leftarrow \left(\begin{array}{c c} A_0 & a_1 & A_2 \end{array} \right) , \left(\begin{array}{c c} C_{TL} & C_{TR} \\ \hline C_{BL} & C_{BR} \end{array} \right) \leftarrow \left(\begin{array}{c c} C_{00} & c_{01} & C_{02} \\ \hline c_{10}^T & \gamma_{11} & c_{12}^T \\ \hline C_{20} & c_{21} & C_{22} \end{array} \right) $
2	$ \left\{ \begin{array}{c c} C_{TL} & C_{TR} \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & \widehat{C}_{TR} \\ \hline \widehat{C}_{BL} & A_R^T A_R + \widehat{C}_{BR} \end{array} \right) $
	endwhile
2,3	$ \left\{ \left(\frac{C_{TL}}{C_{BL}} \middle C_{TR} \right) = \left(\frac{\widehat{C}_{TL}}{\widehat{C}_{BL}} \middle \frac{\widehat{C}_{TR}}{\widehat{C}_{BL}} \middle A_R^T A_R + \widehat{C}_{BR} \right) \land \neg (n(A_R) < n(A)) \right\} $
1b	$\{[C] = \operatorname{syrk_ac}(A, \widehat{C})$

Step	Algorithm: $[C] := \text{SYRK_AC_UNB_VAR3}(A, C)$
1a	$\{C = \widehat{C}$
4	$A o \left(A_L \middle A_R \right), C o \left(\frac{C_{TL}}{C_{BL}} \middle C_{TR} \right)$
2	where A_R has 0 columns, C_{BR} is 0×0 $ \left\{ \begin{pmatrix} C_{TL} & C_{TR} \\ C_{BL} & C_{BR} \end{pmatrix} = \begin{pmatrix} \widehat{C}_{TL} & \widehat{C}_{TR} \\ \widehat{C}_{BL} & A_R^T A_R + \widehat{C}_{BR} \end{pmatrix} \right. $
3	while $n(A_R) < n(A)$ do
2,3	$\left\{ \begin{array}{c c} \left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} \right) = \left(\frac{\widehat{C}_{TL}}{\widehat{C}_{BL}} \begin{vmatrix} \widehat{C}_{TR} \\ \widehat{C}_{BL} \end{vmatrix} A_R^T A_R + \widehat{C}_{BR} \right) \wedge n(A_R) < n(A) \end{array} \right\}$
5a	$ \left(\begin{array}{c c} A_L & A_R \end{array} \right) \to \left(\begin{array}{c c} A_0 & A_1 & A_2 \end{array} \right) , \left(\begin{array}{c c} C_{TL} & C_{TR} \\ \hline C_{BL} & C_{BR} \end{array} \right) \to \left(\begin{array}{c c} C_{00} & c_{01} & C_{02} \\ \hline c_{10}^T & \gamma_{11} & c_{12}^T \\ \hline C_{20} & c_{21} & C_{22} \end{array} \right) $
	where a_1 has 1 column, γ_{11} is 1×1
6	$\left\{ \begin{array}{c cccc} C_{00} & c_{01} & C_{02} \\ c_{10}^T & \gamma_{11} & c_{12}^T \\ \hline C_{20} & c_{21} & C_{22} \end{array} \right) = \begin{pmatrix} C_{00} & c_{01} & C_{02} \\ c_{10}^T & \gamma_{11} & c_{12}^T \\ \hline C_{20} & c_{21} & A_2^T A_2 + \widehat{C}_{22} \end{pmatrix}$
8	$c_{12}^{T} = a_{1}^{T} A 2 + c_{12}^{T}$ $\gamma_{11} = a_{1}^{T} a 1 + \gamma_{11}$
7	$ \left\{ \begin{array}{c cccc} C_{00} & c_{01} & C_{02} \\ \hline c_{10}^T & \gamma_{11} & c_{12}^T \\ C_{20} & c_{21} & C_{22} \end{array} \right) = \left(\begin{array}{c cccc} C_{00} & c_{01} & C_{02} \\ \hline c_{10}^T & a_1^T a 1 + \widehat{\gamma}_{11} & a_1^T A 2 + \widehat{c}_{12}^T \\ C_{20} & c_{21} & A_2^T A_2 + \widehat{C}_{22} \end{array} \right) $
5b	$\left(\begin{array}{c c} C_{00} & C_{01} & C_{02} \end{array} \right)$
2	$ \left\{ \begin{array}{c c} C_{TL} & C_{TR} \\ \hline C_{BL} & C_{BR} \end{array} \right) = \left(\begin{array}{c c} \widehat{C}_{TL} & \widehat{C}_{TR} \\ \hline \widehat{C}_{BL} & A_R^T A_R + \widehat{C}_{BR} \end{array} \right) $
	endwhile
2,3	$\left\{ \left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BL} \end{vmatrix} \right) = \left(\frac{\widehat{C}_{TL}}{\widehat{C}_{BL}} \begin{vmatrix} \widehat{C}_{TR} \\ \widehat{C}_{BL} \end{vmatrix} A_R^T A_R + \widehat{C}_{BR} \right) \land \neg (n(A_R) < n(A)) $
1b	$\left\{ [C] = \operatorname{syrk_ac}(A, \widehat{C}) \right\}$

Algorithm:	$[C] := \text{SYRK_AC_UNB_VAR3}(A, C)$
	A_R), $C o \left(\frac{C_{TL}}{C_{BL}} \begin{vmatrix} C_{TR} \\ C_{BR} \end{vmatrix} \right)$ A_R has 0 columns, C_{BR} is 0×0
while $n(A_I)$	$n(A) ext{ do}$
	$(A_{R}) \rightarrow (A_{0} a_{1} A_{2}), (\frac{C_{TL} C_{TR}}{C_{BL} C_{BR}}) \rightarrow (\frac{C_{00} c_{01} C_{02}}{c_{10}^{T} \gamma_{11} c_{12}^{T}})$ The a_{1} has 1 column, γ_{11} is 1×1
12	$a_1^T A 2 + c_{12}^T$ $a_1^T a 1 + \gamma_{11}$
$\left(A_{L}\right) .$	$(A_R) \leftarrow (A_0 a_1 A_2), \left(\frac{C_{TL} C_{TR}}{C_{BL} C_{BR}}\right) \leftarrow \left(\frac{C_{00} c_{01} C_{02}}{c_{10}^T \gamma_{11} c_{12}^T}\right)$
endwhile	

Algorithm: $[C] := SYRK_AC_UNB_VAR3(A, C)$

$$A \to \left(A_L \mid A_R \right), C \to \left(\frac{C_{TL} \mid C_{TR}}{C_{BL} \mid C_{BR}} \right)$$

where A_R has 0 columns, C_{BR} is 0×0

while $n(A_R) < n(A)$ do

$$\left(\begin{array}{c|c} A_L & A_R \end{array} \right) \to \left(\begin{array}{c|c} A_0 & A_1 & A_2 \end{array} \right) , \left(\begin{array}{c|c} C_{TL} & C_{TR} \\ \hline C_{BL} & C_{BR} \end{array} \right) \to \left(\begin{array}{c|c} C_{00} & c_{01} & C_{02} \\ \hline c_{10}^T & \gamma_{11} & c_{12}^T \\ \hline C_{20} & c_{21} & C_{22} \end{array} \right)$$

where a_1 has 1 column, γ_{11} is 1×1

$$c_{12}^T = a_1^T A 2 + c_{12}^T$$

$$\gamma_{11} = a_1^T a \mathbf{1} + \gamma_{11}$$

$$\left(\begin{array}{c|c} A_L & A_R \end{array}\right) \leftarrow \left(\begin{array}{c|c} A_0 & a_1 & A_2 \end{array}\right), \left(\begin{array}{c|c} C_{TL} & C_{TR} \\ \hline C_{BL} & C_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c|c} C_{00} & c_{01} & C_{02} \\ \hline c_{10}^T & \gamma_{11} & c_{12}^T \\ \hline C_{20} & c_{21} & C_{22} \end{array}\right)$$

endwhile