Ethernet

OSI 1/2

Überblick

- 1. Geschichte
- 2. Bitübertragung
- 3. Formate der Datenübertragungsblöcke
- 4. Umwandlung in Datenstrom
- 5. Medientypen

1. Geschichte

Entwicklung

- Xerox Palo Alto Research Center
- 1973
- Ableitung von ALOHAnet
- Äther

Robert Metcalfe

Original Skizze

Dr. Robert Metcalfe - 22. Mai 1973

Geschichte

- Firmeninternes Produkt
- 3 Mbit/s
- 1979 3Com
- Ethernet als Standard DEC, Intel, Xerox
- 1980, **IEEE 802**. Arbeitsgruppe (Februar 1980)
- CSMA/CD (802.3), Token Bus (802.4), Token Ring (802.5)

IEEE Standard

- 1985 ISO/DIS 8802/3
- Erstmals Ethernet auf CAT-3
- 1991 (**10BASE-T**)
- 1992 (10BASE-F)

Geschichte

- Mitte 1990er (Nachfolger für 100 Mbit gesucht)
- HP und AT&T
 vs.
 Fast Ethernet Alliance (Bay Networks, 3Com, Intel, SUN, Novell)
- IEEE 802.12 (100BASE-VG)
 vs.
 100 Mbit mit IEEE 802.3 Standard

Fast Ethernet

- Fast Ethernet Alliance
- IEEE 802.3u
- 100 Mbit
- 802.11 Wireless LAN
- Arbeiten an 10-Gbit/s-Ethernet und Ethernet in the First Mile (EFM)

2. Bitübertragungsschicht

	OSI-Schicht	Einordnung	TCP/IP-Schicht	Protokollbeispiel	Einheiten	Kopplungselemente
7	Anwendungen (Application)	Anwendungs- orientiert	Anwendung	HTTP FTP HTTPS SMTP LDAP NCP	Daten	Gateway, Content-Switch, Layer-4-7-Switch
6	Darstellung (Presentation)					
5	Sitzung (Session)					
4	Transport (Transport)	Transport- orientiert	Transport	TCP UDP	TCP = Segmente UDP = Datagramme	
3	Vermittlung (Network)		Internet	ICMP IGMP IP IPsec	Pakete	Router, Layer-3-Switch
2	Sicherung (Data Link)		Netzzugriff	Ethernet Token Ring FDDI MAC ARCNET	Frames (Rahmen)	Bridge, Switch
1	Bitübertragung (Physical)				Bits, Symbole	Repeater, Hub

OSI-Modell

Die Idee

- Mehrere Teilnehmer
- Hochfrequente Nachrichtenübertragung
- Physische Beschränkung des Layer 1
- Global eindeutiger Schlüssel (48 Bit; 6 Byte)
 AA:11:BB: 22:CC:33
- Basisbandübertragung (Zeitmultiplexverfahren)

Synchron

Asynchron

Zeitmultiplexverfahren

Carrier Sense Multiple Access (CSMA)

- Mehrfachzugriff mit Trägerprüfung
- Dezentral und asynchron
- Verfahren zum erlangen des Zugriffsrechts nach dem Konkurrenzverfahren auf Busleitungen
- Nur senden, wenn Leitung frei (Trägerprüfung)
- **Zeitspanne** (frei): 9,6 µs 960 ns 96 ns 10 Mbit/s 100 Mbit/s
- 3 Arten von CSMA (Kollisionen)

Carrier Sense Multiple Access (CSMA)

- CSMA/CA (Collision Avoidance) Vermeiden
 - Zufällig Wartezeit nach Kanalfrei-Erkennung
 - Drahtlos (Wireless LANs), ISDN
- CSMA/CD (Collision Detection) Erkennen
 - Zufällig Wartezeit bei Kollision
 - Ethernet
- CSMA/CR (Collision Resolution) Lösen
 - Kollisionsauflösung durch Prioritäten
 - CAN-Bus

Carrier Sense Multiple Access/ Collision Detection CSMA/CD

- Erweiterung von CSMA
- Algorithmus zur Zugriffsregelung
- 1. Horchen, 2. Senden, (3. Belegt), (4. Fehler -> 1.),
 (5. Ende)

Funktionsdarstellung, Programmablaufplan

Alexander Hofstätter

Kollisionserkennung - Bsp.

- RoundTripDelayTime (RTDT/RTT)
 (Paketumlaufzeit)
- min. Sendedauer >> RTDT

Backoff-Verfahren

- Nach Konflikt: Neuer Sendeversuch
- Einlegen einer zufällig langen Pause
 - Wartezeit: z · slot time
 - **z:** [0; (2¹ -1)]
 - (Contention Window)

•	Binary	Exponentia	al Backoff
---	--------	------------	------------

Geschwindkeit	Bit Zeit	Slot Zeit	Zeitintervall
10 Mbit/s	100 ns	512 Bit Zeiten	51,2 ms
100 Mbit/s	10 ns	512 Bit Zeiten	5,12 ms
1 Gbit/s	1 ns	4096 Bit Zeiten	4,096 ms

- max 16. Konflikte: Systemfehler
- Keine rechnerische Garantie
- 70 30% der Nominalleistung
- Je mehr Rechner, je höher die Auslastung, desto mehr Kollisionen

Lösung?

Vollduplex

CSMA/CD wird nur bei Halfduplex verwendet. Bei Vollduplex schaltet die Netzwerkkarte CSMA/CD aus.

Simplex, Half- und Fullduplex

Unterschied

Broadcast und Sicherheit

- Früher: ein gemeinsamer Bus (Koaxialkabel)
- Jeder h
 ört alles!
- Lösungsansatz: Kryptographie auf höheren Layern
- Lösung: Aufteilung der Kollisions-Domänen (Switches, VLAN)
- Full Duplex
- Nur mehr (notwendige) gewollte Broadcasts
 - MAC-Flooding, MAC-Spoofing

Verbesserungen

- Ohne Switched Ethernet, Probleme bei hoher Auslastung
- Kapazitätsüberlastungen
- schlechte Effizienz
- -> Switches determinieren

3. Formate der Datenübertragungsblöcke

Frame Formate

- Ethernet-Version I (Definition 1980)
- Ethernet-II; DIX-Frame (Definition 1982; DEC, Intel und Xerox)

- IEEE 802.3 3.1.a Basic MAC Frame
- IEEE 802.3 3.1.b Tagged MAC Frame

Aufbau

- min. 64 Byte, max. 1518 Byte (VLAN: 1522 Byte)
- Serielle Übertragung
- Beginnend beim LSB
- Big Endian (> 1 Byte)
 - Byte mit der höheren Wertigkeit zuerst
- FCS (LSB -> MSB)
 - MSB des höchstwertigen Bytes zuerst

IEEE 802.3 Tagged MAC Frame

	7 alternierende Byte; 10101011 (SFD)
Ziel- und Quell-MAC-Adresse	Identifikation der Zielnetzwerkstation; (auch Multicast- oder Broadcast); 1./2. Bit
VLAN-Tag	2 Byte: 0x8100 (=802.1qTagType); 3 Bit Priorität; CFI (MAC anerkannt/ok [1] -> Switch: 1); 12 Bit für VLAN ID
Typ-Feld (EtherType)	Auskunft über Protokoll der nächsthöheren Schicht; kleiner als 0x600 (Ethernet-I Frame)
Nutzdaten	max. 1500 bytes; (Jumbo Frames)
PAD-Feld	Padding (Polsterung); Notwenig bei 42 bzw. 46 Bytes Daten ;
FCS	32-Bit-CRC-Prüfsumme an Frame angehängt, von Ziel-MAC - PAD Alexander Hofstätter

Herstellerkennung

Gerätenummer

Global (0) oder lokal (1) administriert

Unicast- (0) oder Broadcast-/Multicast-Adresse (1)

MAC Adresse nach 802.3

AA:BB:CC: 11:22:33

EtherType

Werte im Typfeld für einige wichtige Protokolle

Typfeld	Protokoll
0x0800	IP Internet Protocol, Version 4 (IPv4)
0x0806	Address Resolution Protocol (ARP)
0x0842	Wake on LAN (WoL)
0x8035	Reverse Address Resolution Protocol
0x809B	AppleTalk (EtherTalk)
0x80F3	Appletalk Address Resolution Protocol
0x8100	VLAN Tag (VLAN)
0x8137	Novell IPX (alt)
0x8138	Novell
0x86DD	IP Internet Protocol, Version 6 (IPv6)
0x8863	PPPoE Discovery
0x8864	PPPoE Session
0x8870	Jumbo Frames
0x8892	Echtzeit-Ethernet PROFINET
0x88A2	ATA over Ethernet Coraid AoE [7
0x88A4	Echtzeit-Ethernet EtherCAT
0x88A8	Provider Bridging
0x88AB	Echtzeit-Ethernet Ethernet POWERLINK
0x88CD	Echtzeit-Ethernet SERCOS III
0x8906	Fibre Channel over Ethernet
0x8914	FCoE Initialization Protocol (FIP) Alexander Hofstätte

4. Umwandlung in einen Datenstrom

Umwandlung in einen Datenstrom

- Bytestream
- Abhängig von physischem Medium
- Leitungscode
- Inter-Frame-Spacing (Übertragungsfreie Zeiten)
- Halfduplex: Abschaltung des Senders
- Fullduplex: Aufrechterhaltung einer Trägerschwingung

5. Medientypen

Ethernet Varianten

- Übertragungsrate
- Verwendeten Kabeltypen
- Leitungscodierung
- Ähnlicher Protkollstack

10-Mbit/s-Ethernet

- Manchesterkodierung
 - Ein Datenbit zwei Leitungsbits
- 20 MBaud
- max. 10 MHz Spektrum
- Belegung nur bei tatsächlichem Paket-Versand

10-Mbit/s-Ethernet mit Koaxialkabel **10BASE2**

- Wellenimpedanz: 50 Ohm
- Kabelbezeichnung: RG 58
- max. Segmentlänge: 185 m (200 Yard)
- max. Netzlänge: 925 m (5 x 185 m)
- Mindestabstand zwischen den T-Stücken: 0,5 m.
- Maximalabstand zwischen T-Stück und Transceiver ca. 30 cm.
- 10BASE2 nur im Halbduplex-Modus

10-Mbit/s-Ethernet mit Koaxialkabel

10BASE5

- Wellenimpedanz: 50 Ohm
- Kabelbezeichnung: RG-8
- Hohe Störsicherheit
- Geringe Dämpfung (Segmentlängen über 500 m)
- Maximal 5 Segmente mit insgesamt max. 3 belegten Segmenten mit jeweils max. 100 Stationen.
- 10BASE5 nur im Halbduplex-Modus

Alexander Hofstatter

RG-58 Coax

10-Mbit/s-Ethernet mit Twisted-Pair-Kabel 10BASET

- CAT-3 oder CAT-5
- Vier Adern (Zwei Paare)
- max. 100 m
- Erstmals Sternförmige Netze möglich
- Switch / Hub

100-Mbit/s-Ethernet mit Twisted-Pair-Kabel 100BASE-TX

- mind. CAT-5
- 4B5B-Code (Taktrückgewinnung)
- Symbolrate: 125 MBaud bei 31,25 MHz
- MLT-3 (+,0,-) zur Bandbreitenhalbierung

100-Mbit/s-Ethernet über Glasfasern 100BASE-FL/FX/SX/BX/LX10

- 10BASE-FL (FOIRL)
- Wellenlänge
- Segmentlänge
- MM/SM
- Reichweite

1-Gbit/s-Ethernet

- 1000BASE-X
 -Zerlegung 8-Bit Einheiten, 8b10b-Code, 1250 MBaud gebracht.
- kontinuierlicher, gleichspannungsfreier Datenstrom
- 1000BASE-CX 1 Trafo + verdrilltes Aderpaar
- 1000BASE-SX/LX/ZX optische Leitungen
- 1000BASE-T Unterteilung in vier Teilströme
 - PAM-5 und Trellis-Codierung
 - Vier Aderpaare
 - Gleichzeitiges TX / RX

1-Gbit/s-Ethernet über Kupfer **1000BASE-T**

- mind. CAT5 (besser CAT-5e, CAT-6)
- Verwendung aller vier Doppeladern in beide Richtungen (Echokompensation)
- Modulationsverfahren PAM-5 (Zwei Bit pro Schritt und Aderpaar
- Einsatz einer Trellis-Codierung (V.32 / SDSL) und Scrambling
- Symbolrate: 125 MBaud pro Aderpaar
- Übertragungsbandbreite: 62,5 MHz
- Vollduplexbetrieb

1-Gbit/s-Ethernet über Glasfaser 1000BASE-SX/LX

- mind. 2m Fasern
- 1000BASE-SX
 - 850 nm Wellenlänge
 - Multimode
 - 200-500m
- 1000BASE-LX
 - 1310 nm Wellenlänge
 - Singlemode
 - 5km

10-Gbit/s-Ethernet

- SM: 10GBASE-SR, 10GBASE-LRM, 10GBASE-LX4
 - 40km
 - -1310/1550nm
- MM: 10GBASE-LW4, **10GBASE-LR**, 10GBASE-ER
 - 10km
 - 62,5µm/50µm/850nm/1310nm

10GBASE-T

- Vier Paare
- 100m (CAT-6a/CAT-7)
- 50m (CAT-5e)
- 4x 2,5 Gbit/s (TX/RX)
- 128-DSQ (~doppeltes 64QAM)

40-Gbit/s und 100-Gbit/s Ethernet

40GBASE-LR4 40 Gbit/s

- OS2-Glasfaser und vier Farben/Wellenlängen, singlemode, CWDM
- mind. 10 km

100GBASE-ER4 100 Gbit/s

- 100GBASE-R mit 1 OS2-Glasfaser und vier Farben, singlemode
- mind. 40 km

· TWINAX

- Verdrillter Kupferadernpaar in einem Dielektrikum und einer Schirmung

Kabelkategorie	Übertragungsklass e	Standard	Linklänge	Übertragungs frequenz	Kabel genormt bis
Cat-3	Klasse C	10BASE-T, 100BASE-VG	100 m	2 × 10 MHz	16 MHz
Cat-5	-	100BASE-TX		2 × 31,25 MHz	100 MHz
Cat-5	- Klasse D	1000BASE-T		4 × 62,5 MHz	100 MHz
Cat-5e					100 MHz
Cat-5e, ungeschirmt		10GBASE-T	*) 45? m	- 4 × 417 MHz	100 MHz
Cat-5e, geschirmt			über 45 m		100 MHz
Cat-6, ungeschirmt	Klasse E Klasse Klasse F		*) 55100 m		250 MHz
Cat-6, geschirmt			100 m		250 MHz
Cat-6A					500 MHz
Cat-7					600 MHz

Kabellängen

400-Gbit/s- und 1-Terabit/s-Ethernet

- März 2013
 - IEEE 802.3 400 Gb/s Ethernet Study Group
 - Arbeit an der nächsten Generation mit 400 Gbit/s
- März 2014
 IEEE 802.3bs 400 Gb/s Ethernet Task Force gebildet
- Standards frühestens 2017
 - 100 m über MM-Glasfaser
 - 500 m, 2 km und 10 km über SM-Faser

Quellenverzeichnis

- http://de.wikipedia.org/wiki/Ethernet
- http://de.wikipedia.org/wiki/Robert_Metcalfe
- http://de.wikipedia.org/wiki/ALOHAnet
- http://de.wikipedia.org/wiki/%C3%84ther_(Physik)
- http://de.wikipedia.org/wiki/Robert_Metcalfe
- http://de.wikipedia.org/wiki/ALOHAnet
- http://de.wikipedia.org/wiki/Institute of Electrical and Electronics Engineers
- http://de.wikipedia.org/wiki/Carrier_Sense_Multiple_Access/Collision_Detection
- http://de.wikipedia.org/wiki/Carrier_Sense_Multiple_Access
- http://de.wikipedia.org/wiki/Carrier_Sense_Multiple_Access/Collision_Avoidance
- http://de.wikipedia.org/wiki/Token_Ring
- http://de.wikipedia.org/wiki/Xerox_PARC
- http://en.wikipedia.org/wiki/Ethernet_Alliance
- http://de.wikipedia.org/wiki/Power_over_Ethernet