ЛАБОРАТОРНАЯ РАБОТА 1.

ЧИСЛЕННОЕ РЕШЕНИЕ ЗАДАЧИ КОШИ

Отчет по лабораторной работе должен содержать

- 1) постановку задачи;
- 2) необходимый теоретический материал (формулы)
- 3) результаты вычисления;
- 4) текст программы и графический материал.

Задание 1. Найти приближенное решение задачи Коши для обыкновенного дифференциального уравнения (ОДУ) 1 порядка

$$\frac{du(t)}{dt} = f(t, u(t)), \quad u(t_0) = u_0, \quad t \in [t_0, T].$$
 (1)

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

- 1. найти приближенное решение задачи Коши с шагом h=0.05 по явному методу Эйлера.
- 2. найти приближенное решение задачи Коши с шагом h=0.1 по методу Коши—Эйлера.
- 3. На одном чертеже построить графики приближенных решений.

ВАРИАНТЫ ЗАДАНИЙ К ЗАДАНИЮ 1

No	f(t,u(t))	t_0	T	u_0	No	f(t,u(t))	t_0	T	u_0
1	$y/t+t^2$	1	2	0	16	-y/t+3t	1	2	1
2	$yctgt + 2t\sin t$	$\frac{\pi}{2}$	$\frac{\pi}{2}$ +1	0	17	$\frac{2ty}{1+t^2} + 1 + t^2$	1	2	3
3	$-y\cos t + \frac{\sin(2t)}{2}$	0	1	0	18	$\frac{2t-1}{t^2}y+1$	1	2	1
4	$-ytgt + \cos^2 t$	$\frac{\pi}{4}$	$\frac{\pi}{4}$ +1	0.5	19	$-\frac{3y}{t} + \frac{2}{t^3}$	1	2	1
5	$\frac{y}{t+2} + t^2 + 2t$	-1	0	1.5	20	$-2ty-2t^3$	1	2	e^{-1}
6	$\frac{y}{t+1} + e^t(t+1)$	0	1	1	21	$y/t-2/t^2$	1	2.5	1
7	$y/t + t \sin t$	$\frac{\pi}{2}$	$\frac{\pi}{2}+1$	1	22	$-ty-t^3$	0	1	3
8	$-y/t + \sin t$	π	π+1	$\frac{1}{\pi}$	23	$\frac{2}{t+1}y + e^t(t+1)^2$	0	1	1
9	$-\frac{y}{2t}+t^2$	1	2	1	24	$-2ty + te^{-t^2}\sin t$	0	1	1

10	$-\frac{2t}{1+t^2}y + \frac{2t^2}{1+t^2}$	0	1	$\frac{2}{3}$	25	$\frac{2y}{t+1} + (t+1)^3$	0	1	0.5
11	$\frac{2t-5}{t^2}y+5$	2	3	4	26	$y\cos t - \sin 2t$	0	1	3
12	$-y/t + \frac{t+1}{t}e^t$	1	2	e	27	$4ty - 4t^3$	0	1	-0.5
13	$y/t - 2\ln t/t$	1	2	1	28	$y/t - \ln t/t$	1	2	1
14	$y/t-12/t^3$	1	2	4	29	$3t^2y + t^2(1+t^3)/3$	0	1	0
15	$-2y/t+t^3$	1	2	$-\frac{5}{6}$	30	$y\cos t + \sin 2t$	0	1	-1

Задание 2. Найти решение задачи Коши для системы обыкновенных дифференциального уравнений первого порядка с заданными начальными условиями y(x0) = y0, z(x0) = z0 на отрезке $x \in [a;b]$ с числом шагов m = 5 и m = 10 явным методом Эйлера. На одном чертеже построить графики приближенных и точных решений y_m , z_m .

1.
$$\begin{cases} y' + 2y + 4z = 4x \\ z' + y - z = x^2 \end{cases}$$

$$y(\theta) = -\frac{8}{27}, z(\theta) = \frac{25}{27}, x \in [\theta; 1],$$

$$y_m = -\frac{4}{5}e^{2x} + \frac{4}{5}e^{-3x} + \frac{2}{3}x^2 + \frac{8}{9}x - \frac{8}{27},$$

$$z_m = -\frac{4}{5}e^{2x} + \frac{1}{5}e^{-3x} - \frac{x^2}{3} + \frac{2}{9}x - \frac{2}{27}.$$
2.
$$\begin{cases} y' = z \\ z' = -y \end{cases}$$

$$y(\theta) = 1, z(\theta) = 1, x \in \left[\theta; \frac{2}{2}\right],$$

$$y_m = \cos x + \sin x,$$

$$z_m = -\sin x + \cos x.$$
3.
$$\begin{cases} y' - z = 1 \\ z' + y = x \end{cases}$$

$$y(\theta) = 1, z(\theta) = 1, x \in \left[\theta; \frac{2}{2}\right],$$

$$y_m = \cos x + \sin x + x,$$

$$z_m = \cos x - \sin x.$$
4.
$$\begin{cases} y' = 2y + z \\ z' = 3y + 4z \\ y(\theta) = \theta, z(\theta) = 4, x \in [\theta; 1],$$

$$y_m = -e^x + e^{5x},$$

$$z_m = e^x + 3e^{5x}.$$

5.	$\int y' = y - z$	
	$\begin{cases} y' = y - z \\ z' = z - 4y \end{cases}$	
	$y(\theta) = \theta, \ z(\theta) = 4, \ x \in [\theta; 1],$	
	$y_m = e^{-x} - e^{3x},$	
	$z_m = 2e^{-x} + 2e^{3x}$.	
6.	$\begin{cases} y' = y + 5z \\ z' = -y - 3z \end{cases}$	
	$y(\theta) = 1, z(\theta) = 1, x \in [\theta; 1],$	
	$y_{m} = e^{-x} (\cos x + 7 \sin x),$	
	$z_m = e^{-x} (\cos x - 3\sin x).$	
7.	$\begin{cases} y' = y - z + 1 \\ z' = z - 4y + x \end{cases}$	
	z' = z - 4y + x	
	$y(\theta) = \frac{1}{g}, \ z(\theta) = -\frac{2}{g}, \ x \in [\theta; 1],$	
	$y_m = -\frac{1}{4}e^{-x} + \frac{1}{4}e^{3x} + \frac{1}{9} + \frac{x}{3},$	
	$z_{xx} = -\frac{1}{2}e^{-x} - \frac{1}{2}e^{3x} + \frac{7}{9} + \frac{x}{3}$	
8.	2 2 / 3	
	$\begin{cases} y' = y - z + e^x \\ z' = y - 4z + e^{3x} \end{cases}$	
	$y(\theta) = \frac{1}{16}, \ z(\theta) = -\frac{1}{8}, \ x \in [\theta; 1],$	
	$y_{xx} = -\frac{1}{16} \left(e^{-x} + 2(2x - 1)e^{3x} \right),$	
	10	
	$z_{xx} = -\frac{1}{8}e^{-x} + e^{x} + \frac{x}{2}e^{3x}.$	
9.	$\begin{cases} y' + 2y + 4z = 1 + 4x \\ z' + y - z = \frac{3}{2}x^2 \end{cases}$	
	$\left\{ \frac{1}{2} + v - z = \frac{3}{2} v^2 \right\}$	
	$y(\theta) = \theta, \ z(\theta) = -\frac{5}{4}, \ x \in [\theta; 1],$	
	$y_{m} = e^{2x} - e^{-3x} + x^{2} + x,$	
	$z_{m} = -e^{2x} - \frac{1}{4}e^{-3x} - \frac{1}{2}x^{2}.$	
10.	$\int y' = y + z$	
	$\begin{cases} y' = y + z \\ z' = x + y + z \end{cases}$	
	$y(\theta) = \theta, \ z(\theta) = \frac{7}{4}, \ x \in [\theta; 1],$	
	. *	
	$y_m = e^{2x} - I - \frac{I}{4}(x^2 + x),$	
	$z_{x} = e^{2x} + \frac{3}{4} + \frac{1}{4}(x^2 - x).$	
	4 4	

11.
$$\begin{cases} y' + 2y + z = sun x \\ z' - 4y - 2z = cos x \end{cases}$$

$$y(\theta) = I, z(\theta) = -5, x \in \left[0; \frac{2}{2}\right],$$

$$y_{m} = I + x + 2 sin x,$$

$$z_{m} = -3 - 2x - 3 sin x - 2 cos x.$$
12.
$$\begin{cases} y' + 3y + 4z = 2x \\ z' - y - z = x \end{cases}$$

$$y(\theta) = 0, z(\theta) = 0, x \in \left[0; I\right],$$

$$y_{m} = 14(1 - e^{-x}) - 2x(3 + 4e^{-x}),$$

$$z_{m} = -9(1 - e^{-x}) + x(5 - 4e^{-x}).$$
13.
$$\begin{cases} y' - 4y - z + 36x = 0 \\ z' + 2y - z + 2e^{x} = 0 \end{cases}$$

$$y(\theta) = 0, z(\theta) = I, x \in \left[0; I\right],$$

$$y_{m} = 10e^{2x} - 8e^{3x} - e^{x} + 6x - I,$$

$$z_{m} = -20e^{2x} + 8e^{3x} + 3e^{x} + 12x + 10.$$
14.
$$\begin{cases} y' = \frac{y^{2}}{z} \\ z' = \frac{y}{2} \end{cases}$$

$$y(\theta) = I, z(\theta) = I, x \in \left[0; I\right],$$

$$y_{m} = \frac{4}{(2 - x)^{2}},$$

$$z_{m} = \frac{2}{2 - x}.$$
15.
$$\begin{cases} y' + z = I \\ z' + \frac{2y}{x^{2}} = ln x \end{cases}$$

$$y(\theta) = \theta, z(\theta) = -\frac{I}{9}, x \in \left[I; e\right],$$

$$y_{m} = \frac{x^{2}}{3} - \frac{1}{3x} - \frac{x^{2}}{18}(3ln^{2}x - 2lnx),$$

$$z_{m} = I - \frac{2x}{3} - \frac{1}{3x^{2}} + \frac{x}{9}(3ln^{2}x + lnx - 1).$$
16.
$$\begin{cases} y' = I - \frac{2y}{x} \\ z' = y + z - I + \frac{2y}{x} \end{cases}$$

$$y(I) = \frac{1}{3}, z(I) = -\frac{1}{3}, x \in \left[I; 2\right],$$

$$y_{m} = \frac{x}{3},$$

$$z_{m} = -\frac{x}{3}.$$

17.
$$\begin{cases} y' = z - 7y \\ z' = 2y + 5z \end{cases} \\ y(\theta) = I, \ z(\theta) = \theta, \ x \in \left[\theta; \frac{\neq}{2}\right], \\ y_m = e^{-6x} (\cos x - \sin x), \\ z_m = -2e^{-6x} \sin x. \end{cases}$$
18.
$$\begin{cases} y' = y - 3z \\ z' = 3y + z \end{cases} \\ y(\theta) = I, \ z(\theta) = -I, \ x \in \left[\theta; \frac{\neq}{2}\right], \\ y_m = e^x (\cos 3x + \sin 3x), \\ z_m = e^x (\sin 3x - \cos 3x). \end{cases}$$
19.
$$\begin{cases} y' = 2z - 5y + e^x \\ z' = y - 6z + e^{-2x} \end{cases} \\ y(\theta) = -\frac{5}{8}, \ z(\theta) = \frac{13}{4\theta}, \ x \in \left[\theta; 1\right], \\ y_m = \frac{2}{3}e^{-4x} - \frac{1}{3}e^{-7x} + \frac{7}{4\theta}e^x + \frac{1}{5}e^{-2x}, \\ z_m = \frac{1}{3}e^{-4x} + \frac{1}{3}e^{-7x} + \frac{1}{4\theta}e^x + \frac{3}{10}e^{-2x}. \end{cases}$$
20.
$$\begin{cases} y' = \frac{x + y}{z} \\ z' = \frac{x - y}{y} \end{cases} \\ y(\theta) = I, \ z(\theta) = I, \ x \in \left[\theta; I\right], \\ y_m = \frac{\sqrt{I + x^2}}{e}, \\ x_m = \sqrt{I + x^2} \ln \frac{e}{x + \sqrt{I + x^2}}. \end{cases}$$
21.
$$\begin{cases} y' + z = \cos x \\ 4(\cos x - z) - z' + 3y = \sin x \\ y(\theta) = 2, \ z(\theta) = 3, \ x \in \left[\theta; \frac{\neq}{2}\right], \\ y_m = e^{-x} + e^{-3x}, \\ z_m = e^{-x} + e^{-3x} + \cos x. \end{cases}$$
22.
$$\begin{cases} y' = z \\ z' = -y \end{cases}$$

22.
$$\begin{cases} y' = z \\ z' = -y \end{cases}$$
$$y(\theta) = 1, \ z(\theta) = -1, \ x \in \left[\theta; \frac{\neq}{2}\right],$$
$$y_m = \cos x - \sin x,$$
$$z_m = -\sin x - \cos x.$$

23.
$$\begin{cases} y' = y + z \\ z' = x + y + z \end{cases}$$
$$y(\theta) = \theta, \ z(\theta) = -\frac{9}{4}, \ x \in [\theta; 1],$$
$$y_{xx} = 1 - e^{2x} - \frac{1}{4}(x^{2} + x),$$
$$z_{xy} = -1 - e^{2x} + \frac{1}{4}(x^{2} - x - 1).$$
24.
$$\begin{cases} y' + 2y + 4z = 1 + 4x \\ z' + y - z = \frac{3}{2}x^{2} \end{cases}$$
$$y(\theta) = \theta, \ z(\theta) = \frac{5}{4}, \ x \in [\theta; 1],$$

$$y_m = -e^{2x} + e^{-3x} + x^2 + x,$$

$$z_m = e^{2x} + \frac{1}{4}e^{-3x} - \frac{1}{2}x^2.$$