ELE 535: Machine Learning and Pattern Recognition Homework 2

Zachary Hervieux-Moore

Monday 1^{st} October, 2018

Exercise 1: Let $u \in \mathbb{R}^m$, $v \in \mathbb{R}^n$, and $A \in \mathbb{R}^{m \times n}$. Find the orthogonal projection of A onto $\operatorname{span}(uv^T)$.

Exercise 2: Norm Invariance under Orthogonal Transformations. Show that for any $A \in \mathbb{R}^{m \times n}$, $Q \in \mathcal{O}_m$, $R \in \mathcal{O}_n$, $\|QAR\|_F = \|A\|_F$. Thus the Frovenius norm is invariant under orthogonal transformations. Similarly, show the induced 2-norm of $A \in \mathbb{R}^{m \times n}$ is invariant under orthogonal transformations.

Exercise 3: Let A, B be matrices of appropriate size and $x \in \mathbb{R}^n$. Prove that

- a) $||Ax||_2 \le ||A||_2 ||x||_2$;
- b) $||AB||_2 \le ||A||_2 ||B||_2$.

Exercise 4: For $A, B \in \mathbb{R}^{m \times n}$. Show that $\sigma_1(A + B) \leq \sigma_1(A) + \sigma_1(B)$.

Exercise 5: The Moore-Penrose pseudo-inverse. The Moore-Penrose pseudo-inverse of a matrix $A \in \mathbb{R}^{m \times n}$ is the unique matrix $A^+ \in \mathbb{R}^{n \times m}$ satisfying the following four properties:

- a) $A(A^{+}A) = A$
- b) $(A^+A)A^+ = A^+$
- c) $(A^{+}A)^{T} = A^{+}A$
- $d) (AA^+)^T = AA^+$

Let A have compact SVD $A = U\Sigma V^T$. Show that $A^+ = V\Sigma^{-1}U^T$. Give an interpretation of A^+ in terms of $\mathcal{N}(A)$, $\mathcal{N}(A)^{\perp}$, and $\mathcal{R}(A)$.