Data Analytics Methodology

Analytical Modelling Techniques

Almost all the business problems are handled within a combination of these techniques

Business Problem	Analytical Technique	Algorithms
When you are trying to solve a business problem such as costs, revenue, margins, mileage of a car, viscosity of tires where the target variable is numeric in nature	Regression	Ordinary Least Square, Ridge, Lasso, Decision Tree, Neural Network, Random Forestetc.
When you trying to solve a problem such as potential for loan default, risk level of an insured, presence or absence of disease where the target variable is categorical variable or choices instead of numeric)	Classification	Logit, Decision Tree, Random Forest, Neural Network, XGBOOST, LIGHT GBM, SVMetc.
When you want to perform data mining to understand natural grouping of customers (like market/customer segmentation) or association of items without a target variable	Clustering, MBA, PCA	K-Means, Hierarchicaletc Apriori, FP-Growth

Data Types

Data Sources

Measures of Central Tendency

Term	Definition	Example	
Mean	Arithmetic Mean or Average is Σ Values / (No. of Values)	X = 8,1,2,4,6,0,7 Mean(x) = 28 / 7 = 4	
Term	Definition	Example	
Median	Mid point of a sequence of numbers arranged in alphabetical order (or average of mid 2 points if even)	X = 1,2,4,6,7,8,10 Median (x) = 6 X = 1,2,4,6,7,8,10, 11 Median (x) = (6 + 7) / 2 = 6.5	
Term	Definition	Example	
Mode	Number that occurs in maximum frequency in a given sequence of numbers https://www.	X = 1,2,2,3,2,4,5,4,4,4,5 Mode (x) = 4 coniggle.com	

Central Region - Quartile

Term	Definition	Example
	Divide the group into 4 parts each with 25% of the data	
		X = 100, 105, 107, 120, 125, 135, 145, 147, 150, 152,
	Q1 represents the point where you find 25% of the data below it (same as 25 th percentile)	152,154, 156, 165, 168, 170
	Q1 = Value at $(n + 1)/4$	There are n=16 values
Overstile	Q2 represents the point where you find 50% of the data	Q1 = Value at (16+ 1)/4 = Value at 4.5
Quartile	below it (also same as median and 50 th percentile)	Which is average of 120 and 125 = 122.5
	Q2 = Value at 2* (n + 1)/4	
		Q2 = Median = (147 + 150) / 2 = 148.5
	Q3 represents the point where you find 75% of the data	
	below it (same as 75 th percentile)	Q3 = Value at $3 * (16 + 1)/4 = Value$ at 12.75 which is
	Q2 = Value at $3* (n + 1)/4$	average between 154 & 156 = 155
	https://www.oniggle.com	6

Extreme Values - Outliers

• Outlier is an extreme value in your observations. Its an observation point that is distant from other observations in that group of data

Outliers

