R DPLYR Count Unique Groups and Mean within Groups

Fan Wang

2020-04-01

Contents

Groups Statistics

Go to the RMD, R, PDF, or HTML version of this file. Go back to fan's REconTools Package, R Code Examples Repository (bookdown site), or Intro Stats with R Repository (bookdown site).

Aggregate Groups only Unique Group and Count There are two variables that are numeric, we want to find all the unique groups of these two variables in a dataset and count how many times each unique group occurs

- r unique occurrence of numeric groups
- How to add count of unique values by group to R data.frame

hgt0	wgt0	n_obs_group
40	2000	122
45	2000	4586
45	4000	470
50	2000	9691
50	4000	13106
55	2000	126
55	4000	1900
60	6000	18

Aggreate Groups only Unique Group Show up With Means Several variables that are grouping identifiers. Several variables that are values which mean be unique for each group members. For example, a Panel of income for N households over T years with also household education information that is invariant over time. Want to generate a dataset where the unit of observation are households, rather than household years. Take average of all numeric variables that are household and year specific.

A complicating factor potentially is that the number of observations differ within group, for example, income might be observed for all years for some households but not for other households.

- r dplyr aggregate group average
- Aggregating and analyzing data with dplyr
- column can't be modified because it is a grouping variable
- see also: Aggregating and analyzing data with dplyr

```
# In the df_hgt_wgt from R4Econ, there is a country id, village id,
# and individual id, and various other statistics
vars.group <- c('S.country', 'vil.id', 'indi.id')</pre>
vars.values <- c('hgt', 'momEdu')</pre>
# dataset subsetting
df_use <- df_hgt_wgt %>% select(!!!syms(c(vars.group, vars.values)))
# Group, count and generate means for each numeric variables
df.group <- df_use %>% group_by(!!!syms(vars.group)) %>%
            arrange(!!!syms(vars.group)) %>%
            summarise_if(is.numeric,
                         funs(mean = mean(., na.rm = TRUE),
                               sd = sd(., na.rm = TRUE),
                               n = sum(is.na(.)==0)))
# Show results Head 10
df.group %>% head(10) %>%
 kable() %>%
  kable_styling_fc_wide()
```

S.country	vil.id	indi.id	hgt_mean	momEdu_mean	hgt_sd	$momEdu_sd$	hgt_n	momEdu_n
Cebu	1	1	61.80000	5.3	9.520504	0	7	18
Cebu	1	2	68.86154	7.1	9.058931	0	13	18
Cebu	1	3	80.45882	9.4	29.894231	0	17	18
Cebu	1	4	88.10000	13.9	35.533166	0	18	18
Cebu	1	5	97.70556	11.3	41.090366	0	18	18
Cebu	1	6	87.49444	7.3	35.586439	0	18	18
Cebu	1	7	90.79412	10.4	38.722385	0	17	18
Cebu	1	8	68.45385	13.5	10.011961	0	13	18
Cebu	1	9	86.21111	10.4	35.126057	0	18	18
Cebu	1	10	87.67222	10.5	36.508127	0	18	18

```
# Show results Head 10
df.group %>% tail(10) %>%
  kable() %>%
  kable_styling_fc_wide()
```

S.country	vil.id	indi.id	hgt_mean	momEdu_mean	hgt_sd	$momEdu_sd$	hgt_n	momEdu_n
Guatemala	14	2014	66.97000	NaN	8.967974	NaN	10	0
Guatemala	14	2015	71.71818	NaN	11.399984	NaN	11	0
Guatemala	14	2016	66.33000	NaN	9.490352	NaN	10	0
Guatemala	14	2017	76.40769	NaN	14.827871	NaN	13	0
Guatemala	14	2018	74.55385	NaN	12.707846	NaN	13	0
Guatemala	14	2019	70.47500	NaN	11.797390	NaN	12	0
Guatemala	14	2020	60.28750	NaN	7.060036	NaN	8	0
Guatemala	14	2021	84.96000	NaN	15.446193	NaN	10	0
Guatemala	14	2022	79.38667	NaN	15.824749	NaN	15	0
Guatemala	14	2023	66.50000	NaN	8.613113	NaN	8	0