Bootstrapping into Electronics

Teemu Hautala Markus Levlin

www.ell-i.org

First, get the doc

- This set and some pieces of code are at: https://github.com/mlevlin/electronics-training
- · Go get them!

Components

Resistors

- LEDs
- FET transistors

- Condensators
- Potentiometers (adjustable resistors)

- Buttons
- DC jacks
- Lamps

Resistors

Resistor values

• Either measure, or look up from this:

Color	Significant figures	Multiplier	Tolerance
Black	0	×10 ⁰	_
Brown	1	×10 ¹	±1%
Red	2	×10 ²	±2%
Orange	3	×10 ³	-
Yellow	4	×10 ⁴	(±5%)
Green	5	×10 ⁵	±0.5%
Blue	6	×10 ⁶	±0.25%
Violet	7	×10 ⁷	±0.1%
Gray	8	×10 ⁸	±0.05% (±10%)
White	9	×10 ⁹	-
Gold	-	×10 ⁻¹	±5%
Silver	-	×10 ⁻²	±10%
None	_	_	±20%

https://en.wikipedia.org/wiki/Electronic_color_code

Series circuit

Series and parallel

LEDs

LED

• The usual 1-color LED

- RGB LED, three leds in one package
 - One end of the leds connected together

- Different LEDs need different voltages
 - Red: typically ~1.8V
 - White: typically ~3V

Lighting a LED

FETs

IRL530N in TO220 package

BS107 in TO92 package

Typical use of a FET switch – dual voltage

Capacitors

https://en.wikipedia.org/wiki/Capacitor

Capacitors

- · Capacitors store energy!
- Connect
 - A led and 1k resistor in series, led to line
 - 1000 μF capacitor between line and resistor (+ end to resistor!)
 - Switch between + line and resistor/cap joint
 - DC jack to + and lines
- Press switch and see your energy storage problems solved!

Arduino

Arduino

- Smallest computer you have ever coded for
 - 32 kB flash
 - 2 kB RAM
 - 16 MHz
- · Perfect for hardware I/O
 - 14 digital I/O pins, of which 6 can do PWM
 - 6 analog input pins
- Arduino IDE supports the Arduino language, based on C/C++
 - See http://arduino.cc/en/Reference/HomePage

Arduino: setting up

- Fetch and install IDE from arduino.cc
 - Version 1.0.5
- Fetch and install USB drivers from http://www.ftdichip.com/FTDrivers.htm
- Settings in Arduino IDE:
 - Tools/Board: select Arduino Uno
 - Tools/Serial board: select /dev/tty.usbmodemXXX or similar

Hello World

- Blinking a led on the Arduino board
- Load example "Blink": File/Examples/01.Basics/Blink
- · Compile & upload
 - ... and the led should blink!

Play with the code, adjust blink periods, etc

Hello World with external led

- Always disconnect Arduino before adjusting connections!
- Connect a led and 1k resistor in series
- From the resistor, one jumper to pin 13 on Arduino
- From the led, one jumper to pin GND on Arduino
- Connect USB back: the led should blink

Fading a LED

- Connect a led and 1k resistor in series, then to pin 9 on Arduino
 - and to GND on the other end
- Load File/Examples/01.basics/Fade
- · Compile & upload

How does it work?

- Pulse Width Modulation, PWM!
 - See reference on analogWrite()
- Arduino generates pulses at a fixed frequency
 - about 500 Hz
- · Length of the pulses is adjusted

- Short pulses: dim

- Long pulses: bright

Measurement

- Control fading with a potentiometer!
- Connect a led and 1k resistor in series, then to pin 9 on Arduino
 - and to GND on the other end
- Connect a potentiometer:
 - Ends to + and lines
 - Middle to A0 input in Arduino
- Fetch https://github.com/mlevlin/electronics-training /Arduino/FadeControl
 - Open in IDE, compile & upload
- · Adjust the potentiometer and see brightness change

Filtering with capacitors

- Complete & test circuit as in "Measurement"
- Replace led & resistor with:
 - 1 kohm resistor from pin 9 to 10 μF capacitor
 - Other end of cap to line
 - 10 kohm resistor in parallel to cap
- Measure DC voltage over capacitor while adjusting the pot
 - Should see a voltage from 0 to 4.5 V

Playing with RGB colors

- RGB led: longest wire to GND
- Other wires to 1k (or 470 ohm) resistors
- Wires from resistors to pins 3,5,6 of Arduino
- Get code from https://github.com/mlevlin/electronics-trainin g /Arduino/RGB_with_sines
- Open in IDE, compile & upload

Dimming a lamp

FET: IRL530N

- Connect:
 - DC jack to + and lines (red == +)
 - G of FET through 1k resistor to pin 9
 - S of FET to line
 - D of FET to lamp
 - Other wire of lamp to + line
 - GND of Arduino to line
- Load File/Examples/01.Basics/Fade, compile & upload

Sound

- · FET: IRL530N
- Connect:
 - DC jack to + and lines (red == +)
 - G of FET through 1k resistor to pin 8
 - S of FET to line
 - D of FET to loudspeaker
 - Other wire of loudspeaker to 100 ohm resistor
 - Other end of resistor to + line
 - GND of Arduino to line
- · Load File/Examples/02.Digital/toneMelody, compile & upload
- Press Reset switch to play
- Move code from setup() to loop() to annoy everyone

Pinout

Pinout

Symbol

Symbol

Combine measurement & sound!

- Connect as previously in "Sound"
- Connect a potentiometer:
 - Ends to + and lines
 - Middle to A0 input in Arduino
- Fetch https://github.com/mlevlin/electronics-training /Arduino/followTone
 - Open in IDE, compile & upload
- · Adjust the potentiometer and annoy your brains out

Basic display, 1/2

- These 2x16 character displays are a standard (keyword: "HD44780" compatible)
 - Cheap
 - Common sizes from 1x16 to 4x40
- · Controlled using
 - 4 I/O lines for data
 - 2 I/O lines for control
 - Input for contrast control
 - Connections for backlight LED

Basic display, 2/2

- · Connect:
 - Arduino 5V to + line, GND to line
 - Arduino 12 to LCD 4
 - Arduino 11 to LCD 6
 - Arduino 5 to LCD 11
 - Arduino 4 to LCD 12
 - Arduino 3 to LCD 13
 - Arduino 2 to LCD 14
 - LCD 5 to line (GND)
 - LCD 16 to line (GND)
 - LCD 15 to 1k resistor to + line (5V)
 - LCD 1 to line, LCD 2 to + line
 - Potentiometer: ends to and +, middle to LCD 3
- · Load File/Examples/LiquidCrystal/HelloWorld, compile & upload
- Adjust potentiometer until you see text
- Play with other pieces in File/Examples/LiquidCrystal/*

Measure & Display

- Connect and test display as in "Basic display"
- Connect a second potentiometer:
 - Ends to + and lines
 - Middle to A0 input in Arduino
- Fetch https://github.com/mlevlin/electronics-training /Arduino/DisplayInput
 - Open in IDE, compile & upload
- Adjust the second potentiometer and see readings change

PIN NO.	SYMBOL		
1	Vss		
2	Vdd		
3	Vo		
4	RS		
5	R/W		
6	E		
7	DB0		
8	DB1		
9	DB2		
10	DB3		
11	DB4		
12	DB5		
13	DB6		
14	DB7		
15	Α		
16	K		

Develop something!

 Combine these examples, modify, experiment, play around!

Need more toys?

- Local suppliers in Helsinki:
 - Www.bebek.fi, Hakaniemi
 - Www.partco.biz, Metsälä
 - Www.yeoy.fi, Olari
- · From the web:
 - Sparkfun.com
 - Adafruit.com
 - Zillions of others...

Want to learn more?

- · Arduino reference: arduino.cc
- Good introductory learning material:
 - Learn.adafruit.com
 - Learn.sparkfun.com/tutorials