PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-071580

(43)Date of publication of application: 18.03.1997

(51)Int.CI.

C07D331/02 C07D303/34 G02B 1/04 G02C 7/02 // C08G 59/02 C08G 75/06

(21)Application number : 07-231283

(71)Applicant: MITSUBISHI GAS CHEM CO INC

(22)Date of filing:

08.09.1995

(72)Inventor: AMETANI SHOICHI

TAKEUCHI MOTOHARU TAKAHASHI KENICHI

(54) NEW BRANCHED ALKYL SULFIDE TYPE EPISULFIDE COMPOUND

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a new branched alkyl sulfide type episulfide compound which is useful as an optical material for plastic lenses, prisms, optical fibers, information-recording media and optical fibers, particularly for plastic lenses of eye glass.

SOLUTION: This compound is represented by formula I [x and u are each 0–1; y and z are each 0–4; n is 0–3, x+y+z+u=4; Eps is formula II (X is S, O where the number of S is $\geq 50\%$ to the total of S and O), typically 2–(2– β –epithiopropylthioethylthio)–1,3–bis(β –epithiopropylthio) propane. The compound of formula I is obtained by reaction of a tri– or tetramercaptal compound having a branched alkyl sulfide structure with an epihalohydrin in the presence of an alkali followed by reaction of the product, a branched alkyl sulfide type epoxy compound, with a thia group–forming agent such as thiocyanic acid or thiourea or the like.

LEGAL STATUS

[Date of request for examination]

03.09.2002

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Date of extinction of right]

[Patent number]
[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]

Copyright (C); 1998,2003 Japan Patent Office

1/10/2006

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-71580

(43)公開日 平成9年(1997)3月18日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ				技術表示箇所
C 0 7 D 331/02			C07D	331/02			
303/34				303/34			
G 0 2 B 1/04			G 0 2 B	1/04			
G 0 2 C 7/02				7/02			
// C 0 8 G 59/02	NGY		C08G	·		NGY	
		審査請求	未請求。請求		OL	_	最終頁に続く
(21)出願番号	特廢平7-231283		(71)出額	人 000004	466		
				三菱瓦	斯化学	株式会社	
(22)出顧日	平成7年(1995)9	-			区丸の内2丁	目5番2号	
			(72)発明				поди
				東京都	葛飾区	新宿6丁目13	番1号 三菱瓦
						社東京研究所	
		•	(72)発明				•
						新宿6丁目13	番1号 三菱瓦
	•					社東京研究所	
			(72)発明				-
					葛飾区	新宿6丁目1章	番1号 三菱瓦
						社東京研究所	
							· •
•							

(54) 【発明の名称】 新規な分岐アルキルスルフィド型エピスルフィド化合物

```
(57)【要約】
                                           *型エピスルフィド化合物。
【目的】
       眼鏡用レンズ材料の提供。
                                              【化1】
【構成】
        (1)式で表される分岐アルキルスルフィド*
                                         (H_n(sHD))
                         (E = S C H 2 C H 2 S ) = C - (C H 2 S E = s) ,
                                                             (1)
                                         (CH2SCH2CH2SEP2).
                  (ここに、xは0~1の、yは0~4の、zは0~4の、uは0~1の、nは
                 0\sim3の整数を表し、かつ、x+y+z+u=4の関係を満たす。さらにE_{rs}
                 は、-CH:CHCH: 基を表し、具体的にはβ-エピチオプロピル基 (-C
                 H<sub>2</sub>CHCH<sub>2</sub>) もしくはグリシジル基 (-CH<sub>2</sub>CHCH<sub>2</sub>) のいずれかであり、
                    \<u>'</u>
```

このX中のSの個数はSと〇の合計に対して平均で50%以上である。)

(2)

特開平9-71580

【特許請求の範囲】

*ィド型エピスルフイド化合物。

【請求項1】 (1)式で表される分岐アルキルスルフ* 【化1】

 $((CH_2)_nH)_x$

 $(E_{PS}SCH_{2}CH_{2}S)_{u}-C-(CH_{2}SE_{PS})$, (1)

(CH₂SCH₂CH₈SE_{Ps}).

(ここに、xは $0\sim1$ の、yは $0\sim4$ の、zは $0\sim4$ の、uは $0\sim1$ の、nは $0\sim3$ の整数を表し、かつ、x+y+z+u=4の関係を満たす。さらに E_{es} は、 $-CH_2CHCH_2$ 基を表し、具体的には $\beta-x$ ビチオプロビル基(-C

このX中のSの個数はSとOの合計に対して平均で50%以上である。)

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明の分岐アルキルスルフィド型エピスルフィド化合物は、プラスチックレンズ、プリズム、光ファイバー、情報記録基盤、フィルター等の光学材料、中でも、眼鏡用プラスチックレンズの原料として好適に使用される。

1

[0002]

【従来の技術】プラスチック材料は軽量かつ靭性に富 み、また染色が容易であることから、各種光学材料、特 に眼鏡レンズに近年多用されている。光学材料、特に、 眼鏡レンズに要求される性能は、低比重に加えるに、光 学性能としては高い屈折率と高アッベ数であり、物理的 性能としては、高耐熱性、高強度である。高い屈折率は レンズの薄肉化を可能とし、高アッベ数はレンズの色収 差を低減し、髙耐熱性、髙強度は二次加工を容易にする とともに、安全性等の観点から重要である。従来技術に おける初期の代表的なブラスチック材料は、ジエチレン グリコールピスアリルカーボネート、該ピスアリルカー 40 ボネートとジアリルフタレート、各種メタクリレート類 等の化合物を重合して得られるものであった。これら は、屈折率が1.5から1.55程度でありこのためレ ンズの肉厚が厚くなり、結果として軽量性が失われてい た。とのため、髙屈折率を有する材料が望まれ、屈折率 を1.6あるいはこれ以上とする種々の努力がこれまで になされてきた。既にクロル、ブロム原子を含むメタク リレート化合物の重合体、プロム原子を含むヒドロキシ 化合物とイソシアネート化合物との反応により得られる ウレタン構造を有する熱硬化型光学材料(特開昭58-

164615号公報等)が提案されている。しかしなが ら、クロル、ブロム原子を含む化合物を用いた場合は比 重が大となり、この場合も軽量性が損なわれる結果とな った。このため、ポリチオール化合物とポリイソシアネ ート化合物との反応により得られるチオウレタン構造を 有する熱硬化型光学材料が特公平4-58489号公 報、特開平5-148340号公報に提案されている。 またこれらのチオウレタンの原料となる新規なポリチオ 30 ール化合物も種々提案されている。すなわち、特開平5 -148340号公報には一分子中に硫黄原子を4個有 する分岐型ポリチオール化合物が、特開平2-2708 59号公報には一分子中に硫黄原子を5個有する分岐型 ポリチオール化合物が、特開平6-192250号公報 には分子中にジチアン環構造有するポリチオール化合物 が提案されている。さらには、公知のアミン系エポキシ 樹脂、フェノール系エポキシ樹脂、アルコール系エポキ シ樹脂、不飽和化合物系エポキシ樹脂、グリシジルエス テル系エポキシ樹脂、ウレタン系エポキシ樹脂、脂環式 エポキシ樹脂等エポキシ化合物のエポキシ基の一部また は全部をエピスルフィド基に変換した化合物を用いたレ ンズ材料の製造方法が特開平3-81320号公報に提 案されている。ポリチオール化合物とポリイソシアネー ト化合物より得られる、チオウレタン樹脂レンズは、最 大1.66程度の屈折率が可能となった。しかしなが ら、公知のエポキシ樹脂から誘導されるエピスルフィド 化合物より得られるエピスルフィド樹脂レンズは屈折率 1. 6程度が限界であった。いずれにしても、これら従 来技術の含硫黄化合物により、より薄い肉厚、軽量化の 50 問題はある程度解決されたが、さらに高い屈折率が望ま

しいことは言うまでもない。一方、光学材料に要求されるもう一つの重要な性能として色収差が少ないことが挙 げられる。色収差はアッベ数が高い程良好となるため高

けられる。色収差はアッペ数が高い程良好となるため高アッペ数材料が望まれる。すなわち、高屈折率と高アッペ数の同時実現も望まれている。しかしながら、一般に、アッペ数は屈折率の上昇に伴い低下する傾向を示

し、従来のジエチレングリコールビスアリルカーボネートおよび、公知のエピスルフィド化合物さらにはポリチオール化合物とポリイソシアネート化合物等の従来技術の化合物を原料とするプラスチック材料では、屈折率

1.5から1.55の場合アッベ数は約50から55が、屈折率1.60の場合40、屈折率1.66の場合32程度が限界であった。一方、耐熱性の改良に関しても、多官能化合物、架橋剤の使用による改良が種々試みられてはいるが、一般に、高屈折率発現のためには、原料化合物の分子量が大となりこのため架橋密度が低下

し、高アッベ数発現のためには、アルキル基含有量が増加しこのため原料化合物を構成する分子の剛直性が低下 し十分な改良効果が得られていないのが現状である。

[0003]

*【発明が解決しようとする課題】本発明が解決しようとする課題は、薄い肉厚および低い色収差さらには高い耐熱性を有する光学材料を可能とする新規な含硫黄化合物を見いだすことにある。従来技術の、エピスルフィド化合物、ポリチオール化合物とイソシアネート化合物より得られる光学材料では、高屈折率化には限界があり、さらに、高屈折率化はアッベ数の低下をもたらし、以上の光学特性の改良は耐熱性の低下を来たし、このため、十分に高い屈折率とアッベ数のバランスさらには耐熱性が10 得られないことの三点にあった。すなわち本発明の課題は、以上の問題点の解決を可能とする光学材料の原料となる新規な化合物を見い出すことにある。

[0004]

【課題を解決するための手段】本発明の課題は、(1) 式で表される新規な分岐アルキルスルフィド型エピスル フイド化合物により解決された。すなわち、これらを重 合硬化して得られる光学材料は従来技術の有する樹脂光 学材料の課題を解決することが明かとなった。

【化2】

(CH2SCH2CH3SEPS).

(ここに、xは0~1の、yは0~4の、zは0~4の、uは0~1の、nは0~3の整数を表し、かつ、x+y+z+u=4の関係を満たす。さらに E_{PS} は、 $-CH_2CHCH_2$ 基を表し、具体的には $\beta-x$ ビチオプロビル基(-CX

このX中のSの個数はSとOの合計に対して平均で50%以上である。)

(1) 式により示される化合物は、より具体的に表現し 40 (イ) x = 0の場合 示すならば、以下のようになる。下記の表現で、(x = 0、y = 4、0、y = 4、z = 0、u = 0)等は、x、y、z、uの 3、z = 1、u = 0 を整数が()内の値である時の対応する式(1)の分岐 = 1)、(x = 0、アルキルスルフィド型エビスルフイド化合物の構造を表 0、y = 2、z = 1、to この場合は = 3、u = 0)、(

[化3]

を表す。

40 (イ) x = 0の場合 (x = 0、y = 4、z = 0、u = 0)、(x = 0、y = 3、z = 1、u = 0)、(x = 0、y = 3、z = 0、u = 1)、(x = 0、y = 2、z = 2、u = 0)、(x = 0、y = 2、z = 1、u = 1)、(x = 0、y = 1、z = 3、u = 0)、(x = 0、y = 1、z = 2、u = 1)、(x = 0、y = 0、z = 4、u = 0)、(x = 0、y = 0、z = 3、u = 1) (ロ) x = 1、n = 0の場合 (x = 1、y = 3、z = 0、u = 0)、(x = 1、y = 50 2、z = 1、u = 0)、(x = 1、y = 2、z = 0、u (4)

特開平9-71580

5 = 1) (x = 1, y = 1, z = 2, u = 0), (x = 1)1, y = 1, z = 1, u = 1), (x = 1, y = 0, z) $= 3 \cdot u = 0 \cdot (x = 1 \cdot y = 1 \cdot z = 2 \cdot u = 1$ 1), (x=1, y=0, z=2, u=1), (ハ) x = 1、n = 1の場合 (x = 1, y = 3, z = 0, u = 0), (x = 1, y = 0)

2, z = 1, u = 0), (x = 1, y = 2, z = 0, u)= 1) (x = 1, y = 1, z = 2, u = 0) (x = 1) 1. y = 1, z = 1, u = 1), (x = 1, y = 0, z)(ニ) x = 1、n = 2の場合

(x=1, y=3, z=0, u=0), (x=1, y=0) $2 \cdot z = 1 \cdot u = 0$) $(x = 1 \cdot y = 2 \cdot z = 0 \cdot u)$ = 1), (x = 1, y = 1, z = 2, u = 0), (x = 1, y = 1, z = 2, u = 0)1. y = 1, z = 1, u = 1), (x = 1, y = 0, z) $= 3 \cdot u = 0 \cdot (x = 1 \cdot y = 0 \cdot z = 4 \cdot u = 0$ 0) (x = 1, y = 0, z = 2, u = 1)

(ホ) x = 1、n = 3の場合 (x = 1, y = 3, z = 0, u = 0), (x = 1, y = 0)2、z=1、u=0)、(x=1、y=2、z=0、u=0) (x=1、y=1、z=1、u=1) であり = 1) (x = 1, y = 1, z = 2, u = 0) (x = 1) 1, y = 1, z = 1, u = 1, (x = 1, y = 0, z) $= 3 \cdot u = 0$) $\cdot (x = 1 \cdot y = 0 \cdot z = 2 \cdot u = 1)$ 以上の例で好ましものは、(イ) x = 0 の場合と(ロ) \sim (二)のx=1、n=0 \sim 2の場合であり、より好ま*

*しいものは、(イ) x = 0 の場合、u = 0、y + z = 4の以下ものであり、

(x=0, y=4, z=0, u=0), (x=0, y=0)3. z = 1, u = 0), (x = 0, y = 2, z = 2, u)= 0), (x = 0, y = 1, z = 3, u = 0), <math>(x = 0)0, y = 0, z = 4, u = 0

(ロ)のx=1、n=0の場合、u=1、y+z=2の 以下のものであり、

(x=1, y=2, z=0, u=1), (x=1, y=1) $= 3 \cdot u = 0$), (x = 1, y = 0, z = 2, u = 1) 10 1, z = 1, u = 1), (x = 1, y = 0, z = 2, u = 1)= 1)

> (ハ)、(ニ)のx=1、n=1~2の場合、u=0、 y+z=3の以下のものである。

(x = 1, y = 3, z = 0, u = 0), (x = 1, y = 0)2. z = 1, u = 0), (x = 1, y = 1, z = 2, u)= 0) (x = 1, y = 0 (z = 3 (u = 0) 最も好ましいものは、(イ) x = 0 の場合の、(x =0, y = 4, z = 0, u = 0) であり、(ロ) x = 1n=0の場合の、(x=1、y=2、z=0、u=(ハ)、(ニ) x = 1、n = 1~2の場合の(x = 1、 y=3、z=0、u=0)である。最も好ましい具体例 を上記の順で構造式を用い以下に示す。

【化4】

C (CH₂SE_{PS}) 4 E_{PS}SCH₂CH₂SCHCH₂SE_{PS} CH2SEPS

E PS S C H 2 C H 2 S C H C H 2 S E PS CH2SCH2CH2SEPS

CH₃C (CH₂SE_{P8}) 3... CH₃CH₂C (CH₂SE_{P8}) 3

また、XはSまたはOを表すが、このSの個数は三員環 を構成するSと〇の合計に対して平均でが50%以上で あり、好ましくは80~100%、より好ましくは90 ~100%、、特に好ましくは95~100%である。 最も好ましくは100%である。以上、好ましい例、よ り好ましい例、最も好ましい例等を示したが、これの根 拠は、本発明の、新規な分岐アルキルスルフィド型エピ スルフイド化合物は、分岐を構成する枝部分の分子量が 大きくなりすぎると、耐熱性の発現が十分ではなく、ま た、硫黄含量が少ない場合、十分に高い屈折率が得られ ない(特にこの傾向は他の化合物と共に重合硬化すると き特に著しい)ととにある。また、X中のSの個数は三 員環を構成するSとOの合計に対して平均で80%以

下、特に50%以下の場合、硫黄含有量が低下し高屈折 率が達成されず、化合物の反応性低下に伴い髙温条件下 での重合が必要となるため、材料に着色が生じる。さら 40 に、効果が同一の場合、製造の煩雑さを避けるために は、多種類の枝を有する構造が好ましくないことも根拠 の一つである。

【0005】本発明の、新規な分岐アルキルスルフィド 型エピスルフィド化合物は、式(2)で表される分岐ア ルキルスルフィド構造を有するトリあるいはテトラメル カプタン化合物とエピクロロヒドリンに代表されるエピ ハロヒドリンをアルカリ存在下で反応させて、

【化5】

(E_{PO}SCH₂CH₂S)_u-C-(CH₂SE_{PO}), (3

(CH2SCH2CH2SE PO) .

(ここに、xは0~1の、yは0~4の、zは0~4の、uは0~1の、nは0~3の整敗を表し、かつ、x+y+z+u=4の関係を満たし、さらに E_{e} 0 は - C H $_2$ C H C H $_2$ 基を表す)

ついで、該エポキシ化合物を、チオシアン酸塩、チオ尿 素、トリフェニルホスフィンスルフィド、3-メチルベ ンゾチアゾールー2-チオン等のチア化剤と、好ましく はチオシアン酸塩、チオ尿素と反応させ製造される。式 (3)で表されるエボキシ化合物の製法において、エビ ハロヒドリン化合物として好ましいものはエピクロロヒ ドリンである。また、エピハロヒドリン化合物は量論的 には式(2)のトリあるいはテトラメルカプタン化合物 30 の3ないし4倍モルを使用するが、生成物の純度、反応 速度、経済性等のいずれかを重視するのであれば場合に よっては、これ以下でもこれ以上の量を使用してもかま わない。好ましくは量論~量論の5倍モル使用し反応す る。より好ましくは量論~量論の2.5倍モルを使用し 反応する。反応は、無溶媒あるいは溶媒中のいずれでも かまわないが、溶媒を使用するときは、エピハロヒドリ あるいは式(2)のジメルカプタン化合物あるいはジメ ルカプタン化合物の金属塩のいずれかが可溶のものを使 用することが望ましい。具体例としては、水、アルコー 40 ル類、エーテル類、芳香族炭化水素類、ハロゲン化炭化 水素類等があげられる。反応は塩基の存在下において容 易に進行する。塩基としては、ピリジン、トリエチルア ミン、ジアザビシクロウンデセン等の三級アミン、アル カリまたはアルカリ土類金属の水酸化物等があげられる が、好ましいものは、アルカリまたはアルカリ土類金属 の水酸化物であり、より好ましいものは、水酸化ナトリ ウム、水酸化カリウム等である。反応温度は通常0~1 00℃で実施されるが、好ましくは30~60℃であ る。反応時間は上記の各種条件下で反応が完結する時間 50

であればかまわないが通常10時間以下が適当である。 式(3)で表されるエポキシ化合物より式(1)のエピ スルフィド化合物を製造する方法において、チア化剤と してチオシアン酸塩を使用する場合、好ましいチオシア ン酸塩は、アルカリまたはアルカリ土類金属の塩であ り、より好ましいものは、チオシアン酸カリウム、チオ シアン酸ナトリウムである。また、チオシアン酸塩は量 論的には式(3)のエポキシ化合物の3ないし4倍モル を使用するが、生成物の純度、反応速度、経済性等のい ずれかを重視するのであれば場合によっては、これ以下 でもこれ以上の量を使用してもかまわない。好ましくは **重論~量論の5倍モル使用し反応する。より好ましくは 量論~量論の2.5倍モルを使用し反応する。反応は、** 無溶媒あるいは溶媒中のいずれでもかまわないが、溶媒 を使用するときは、チオシアン酸塩あるいは式(3)の エポキシ化合物いずれかが可溶のものを使用するととが 望ましい。具体例としては、水、アルコール類、エーテ ル類、芳香族炭化水素類、ハロゲン化炭化水素類等があ げられる。反応温度は通常0~100℃で実施される が、好ましくは20~70℃である。反応時間は上記の 各種条件下で反応が完結する時間であればかまわないが 通常20時間以下が適当である。以上とは別の製法とし て、式(3)のエポキシ化合物を対応する式(4)不飽 和化合物の有機過酸、アルキルヒドロペルオキサイド、 過酸化水素等による酸化により製造してれを上述の方法 により式(1)のエピスルフィド化合物とする方法もあ げられる。

0 【化7】

```
(6)
                                                                                       特開平9-71580
                          9
                                                                                    10
                                            ((CH<sub>2</sub>)<sub>n</sub>H)<sub>x</sub>
                  (RSCH<sub>2</sub>CH<sub>2</sub>S)<sub>u</sub>-C-(CH<sub>2</sub>SR)<sub>v</sub>
                                                                                   (4)
                                               (CH<sub>2</sub>SCH<sub>2</sub>CH<sub>2</sub>SR)<sub>z</sub>
(ここに、xは0~1の、yは0~4の、zは0~4 * タン化合物と塩化、臭化アリル等のハロゲン化アリル化
```

+y+z+u=4の関係を満たし、さらにRはCH₂= CHCH、-基を表す)

の、uは $0\sim1$ の、nは $0\sim3$ の整数を表し、かつ、x 10 合物を塩基の存在下縮合して製造可能である。さらに、 別法としては式(5)に示されるトリハロトリメルカプ タン

式(4)不飽和化合物は例えば式(2)の分岐メルカプ* 【化8】 ((CH₂)_nH)_x

> (R'SCH₂CH₂S)_u-C-(CH₂SR')_v(5)

> > (CH₂SCH₂CH₂SR')_z

(ととに、xは0~1の、yは0~4の、zは0~4 の、uは0~1の、nは0~3の整数を表し、かつ、x +y+z+u=4の関係を満たし、さらにR'はXCH , CHSHCH、-基を表し、Xは、塩素あるいは臭素 原子を表す)

あるいはテトラハロテトラメルカプタン化合物より脱ハ ロゲン化水素反応により製造することも有力な方法であ る。式(5)のハロメルカプタンは、式(4)の不飽和 化合物と塩化イオウ類から、容易に合成できることが知 ger5, J. Org. Chem., 34, 396 (1 969)).

【0006】本発明の新規な分岐アルキルスルフィド型 エピスルフィド化合物は、これの1種類以上を硬化触媒 の存在下、硬化重合して光学材料を製造することができ る。硬化触媒はエポキシ樹脂用として公知のもの等が使 用される。具体例としては、

(1) エチルアミン、n-プロピルアミン、sec-プ ロピルアミン、nーブチルアミン、secーブチルアミ ン、i - ブチルアミン、t - ブチルアミン、ペンチルア 40 ミン、ヘキシルアミン、ヘプチルアミン、オクチルアミ ン、デシルアミン、ラウリルアミン、ミスチリルアミ ン、1、2-ジメチルヘキシルアミン、3-ペンチルア ミン、2-エチルヘキシルアミン、アリルアミン、アミ ノエタノール、1-アミノプロパノール、2-アミノブ ロパノール、アミノブタノール、アミノペンタノール、 アミノヘキサノール、3-エトキシプロピルアミン、3 ープロポキシプロピルアミン、3-イソプロポキシプロ ピルアミン、3-プトキシプロピルアミン、3-イソブ トキシプロピルアミン、3-(2-エチルヘキシロキ

シ) プロピルアミン、アミノシクロペンタン、アミノシ クロヘキサン、アミノノルボルネン、アミノメチルシク ロヘキサン、アミノベンゼン、ベンジルアミン、フェネ チルアミン、α-フェニルエチルアミン、ナフチルアミ ン、フルフリルアミン等の1級アミン;エチレンジアミ ン、1,2-ジアミノプロパン、1,3-ジアミノプロ パン、1,2-ジアミノブタン、1,3-ジアミノブタ ン、1,4-ジアミノブタン、1,5-ジアミノベンタ ン、1,6-ジアミノヘキサン、1,7-ジアミノヘブ られている(例えば、F. Lautenschlaer 30 タン、1,8-ジアミノオクタン、ジメチルアミノプロ ピルアミン、ジエチルアミノプロピルアミン、ビスー (3-アミノプロピル)エーテル、1,2-ビス-(3 ーアミノプロポキシ) エタン、1,3-ビス-(3-ア ミノプロポキシ)-2,2'-ジメチルプロパン、アミ ノエチルエタノールアミン、1,2-、1,3-あるい は1,4-ビスアミノシクロヘキサン、1,3-あるい は1,4-ビスアミノメチルシクロヘキサン、1,3-あるいは1,4-ビスアミノエチルシクロヘキサン、 1, 3-あるいは1, 4-ピスアミノプロピルシクロへ キサン、水添4、4′ージアミノジフェニルメタン、2 -あるいは4-アミノピペリジン、2-あるいは4-ア ミノメチルピペリジン、2-あるいは4-アミノエチル ピペリジン、N-アミノエチルピペリジン、N-アミノ プロピルピペリジン、N-アミノエチルモルホリン、N ーアミノプロピルモルホリン、イソホロンジアミン、メ ンタンジアミン、1,4-ビスアミノプロビルピペラジ ン、oー、mー、あるいはpーフェニレンジアミン、 2. 4-あるいは2, 6-トリレンジアミン、2, 4-トルエンジアミン、m-アミノベンジルアミン、4-ク 50 ロローローフェニレンジアミン、テトラクロローローキ

11

シリレンジアミン、4-メトキシ-6-メチル-m-フ ェニレンジアミン、mー、あるいはpーキシリレンジア ミン、1,5-あるいは、2,6-ナフタレンジアミ ン、ベンジジン、4,4'-ピス(o-トルイジン)、 ジアニシジン、4、4'ージアミノジフェニルメタン、 2, 2-(4, 4'-ジアミノジフェニル)プロバン、 4, 4' -ジアミノジフェニルエーテル、4, 4' -チ オジアニリン、4、4'ージアミノジフェニルスルホ ン、4、4'ージアミノジトリルスルホン、メチレンビ プロピル) 2、4、8、10-テトラオキサスピロ [5, 5] ウンデカン、ジエチレントリアミン、イミノ ビスプロピルアミン、メチルイミノビスプロピルアミ ン、ビス(ヘキサメチレン)トリアミン、トリエチレン テトラミン、テトラエチレンペンタミン、ペンタエチレ ンヘキサミン、N-アミノエチルピペラジン、N-アミ ノプロピルピペラジン、1,4-ビス(アミノエチルピ ペラジン)、1,4-ビス(アミノプロビルピペラジ ン)、2,6-ジアミノビリジン、ビス(3,4-ジア ミノフェニル) スルホン等の1級ポリアミン; ジエチル 20 アミン、ジプロピルアミン、ジーnーブチルアミン、ジ -sec-ブチルアミン、ジイソブチルアミン、ジ-n ーペンチルアミン、ジー3ーペンチルアミン、ジヘキシ ルアミン、オクチルアミン、ジ(2-エチルヘキシル) アミン、メチルヘキシルアミン、ジアリルアミン、ピロ リジン、ピペリジン、2-、3-、4-ピコリン、2. 4-、2、6-、3、5-ルペチジン、ジフェニルアミ ン、N-メチルアニリン、N-エチルアニリン、ジベン ジルアミン、メチルベンジルアミン、ジナフチルアミ の2級アミン; N, N' -ジメチルエチレンジアミン、 N, N' -ジメチル-1, 2-ジアミノプロパン、N, N' -ジメチル-1, 3-ジアミノプロパン、N, N' ージメチルー1, 2 - ジアミノブタン、N, N' - ジメ チルー1, 3-ジアミノブタン、N, N' -ジメチルー 1, 4-ジアミノブタン、N, N'-ジメチル-1, 5 ージアミノペンタン、N, N' ージメチルー1, 6-ジ アミノヘキサン、N, N' -ジメチル-1, 7-ジアミ ノヘプタン、N, N' -ジエチルエチレンジアミン、 $N, N' - \mathcal{Y}I + \mathcal{Y}I - 1, 2 - \mathcal{Y}I - \mathcal{Y}I$ N' -ジエチル-1, 3-ジアミノプロパン、N, N' ージエチルー1, 2 - ジアミノブタン、N, N' - ジエ チル-1, 3-ジアミノブタン、N, N'-ジエチル-1, 4-ジアミノブタン、N, N'-ジエチル-1, 6 ージアミノヘキサン、ピペラジン、2 - メチルピペラジ ン、2,5-あるいは2,6-ジメチルピペラジン、ホ モピペラジン、1、1 ~ジ~(4~ピペリジル) メタ ン、1、2 - ジー(4 - ピペリジル)エタン、1、3 -ジー(4ーピペリジル)プロパン、1,4ージー(4-ピペリジル) ブタン、テトラメチルグアニジン等の2級 50 ン系化合物。

12 ポリアミン;トリメチルアミン、トリエチルアミン、ト リーnープロピルアミン、トリーisoープロピルアミ ン、トリー1、2-ジメチルプロピルアミン、トリー3 -メトキシプロピルアミン、トリーn-ブチルアミン、 トリーiso-ブチルアミン、トリーsec-ブチルア ミン、トリーペンチルアミン、トリー3ーペンチルアミ ン、トリーnーヘキシルアミン、トリーnーオクチルア ミン、トリー2-エチルヘキシルアミン、トリードデシ ルアミン、トリーラウリルアミン、トリーシクロヘキシ ス (o- クロロアニリン)、3, 9- ピス (3- アミノ 10 ルアミン、<math>N, N- ジメチルへキシルアミン、<math>N- yチ ルジヘキシルアミン、N、N-ジメチルシクロヘキシル アミン、N-メチルジシクロヘキシルアミン、トリエタ ノールアミン、トリベンジルアミン、N. N-ジメチル ベンジルアミン、ジエチルベンジルアミン、トリフェニ ルアミン、N. N-ジメチルアミノーp-クレゾール、 N, $N-\mathcal{Y}$ \mathcal{Y} $\mathcal{Y$ N-ジメチルアミノメチル) フェノール、N, N-ジメ チルアニリン、N, N-ジエチルアニリン、ピリジン、 キノリン、N-メチルモルホリン、N-メチルピペリジ ン、2-(2-ジメチルアミノエトキシ)-4-メチル -1,3,2-ジオキサボルナン等の3級アミン;テト ラメチルエチレンジアミン、ピラジン、N, N' -ジメ チルピペラジン、N, N'ービス((2-ヒドロキシ) プロピル) ピペラジン、ヘキサメチレンテトラミン、 N, N, N', N'-テトラメチル-1, 3-ブタンア ミン、2-ジメチルアミノ-2-ヒドロキシプロパン、 ジエチルアミノエタノール、N. N. N-トリス (3-ジメチルアミノプロビル) アミン、2、4、6-トリス (N, N-ジメチルアミノメチル) フェノール、ヘプタ ン、ピロール、インドリン、インドール、モルホリン等 30 メチルイソビグアニド等の3級ポリアミン;イミダゾー ル、N-メチルイミダゾール、2-メチルイミダゾー ル、4-メチルイミダゾール、、N-エチルイミダゾー ル、2-エチルイミダゾール、4-エチルイミダゾー ル、N-ブチルイミダゾール、2-ブチルイミダゾー ル、N-ウンデシルイミダゾール、2-ウンデシルイミ ダゾール、N-フェニルイミダゾール、2-フェニルイ ミダゾール、N -ベンジルイミダゾール、2 -ベンジル イミダゾール、1ーベンジル-2-メチルイミダゾー ル、N-(2'-シアノエチル)-2-メチルイミダゾ 40 ール、N-(2'-シアノエチル)-2-ウンデシルイ ミダゾール、N-(2'-シアノエチル)-2-フェニ ルイミダゾール、3、3-ビス-(2-エチル-4-メ チルイミダゾリル) メタン、アルキルイミダゾールとイ ソシアヌール酸の付加物、アルキルイミダゾールとホル ムアルデヒドの縮合物等の各種イミダゾール類;1,8 -ジアザビシクロ(5,4,0)ウンデセン-7、1, 5-ジアザビシクロ(4,3,0)ノネン-5、6-ジ ブチルアミノー1、8-ジアザビシクロ(5.4.0) ウンデセン-7等のアミジン類:以上に代表されるアミ

13

(2)(1)のアミン類とハロゲン、鉱酸、ルイス酸、 有機酸、ケイ酸、四フッ化ホウ酸等との4級アンモニウ ム塩。

(3)(1)のアミン類とボランおよび三フッ化ホウ素 とのコンプレックス。

(4)トリメチルフォスフィン、トリエチルフォスフィ ン、トリーisoープロピルフォスフィン、トリーn-プチルフォスフィン、トリシクロヘキシルホスフィン トリフェニルフォスフィン、トリベンジルホスフィン、 スフィン、エチルジフェニルフォスフィン、クロロジフ ェニルフォスフィン等のフォスフィン類。

であり、これらは単独でも2種類以上を混合して用いて も良い。

【0007】また、本発明の新規な分岐アルキルスルフ ィド型エピスルフィド化合物はエピスルフィド基と反応 可能な官能基を2個以上有する化合物あるいは、これら の官能基1個以上と他の単独重合可能な官能基を1個以 上有する化合物と硬化重合して光学材料を製造すること ては、エポキシ化合物、含硫黄エポキシ化合物、公知の エピスルフィド化合物、多価カルボン酸、多価カルボン 酸無水物、メルカプトカルボン酸、ポリメルカプタン、 メルカプトアルコール、メルカプトフェノール、ポリフ ェノール、アミン類、アミド類等があげられる。これら の官能基1個以上と他の単独重合可能な官能基を1個以 上有する化合物としては、ビニル、芳香族ビニル、メタ クリル、アクリル、アリル等の不飽和基を有するエポキ シ化合物、含硫黄エポキシ化合物、のエピスルフィド化 ボン酸、メルカプタン類、フェノール類、アミン類、ア ミド類等があげられる。

【0008】また、本発明の新規な分岐アルキルスルフ ィド型エピスルフイド化合物を重合硬化して光学材料を 得るに際して、公知の酸化防止剤、紫外線吸収剤等の添 加剤を加えて、得られる材料の実用性をより向上せしめ ることはもちろん可能である。また公知の外部および/ または内部離型剤を使用または添加して、得られる硬化 材料の型からの離型性を向上せしめることも可能であ る。ととに言う内部離型剤とは、フッ素系ノニオン界面 40 強度:オートグラフを用いた3点曲げ試験測定におい 活性剤、シリコン系ノニオン界面活性剤、アルキル第4 极アンモニウム塩、燐酸エステル、酸性燐酸エステル、 酸性燐酸エステルのアルカリ金属塩、髙級脂肪酸の金属 塩、髙級脂肪酸エステル、パラフィン、ワックス、髙級 脂肪族アミド、高級脂肪族アルコール、ポリシロキサン 類、脂肪族アミンエチレンオキシド付加物等があげられ る。

【0009】本発明の新規な分岐アルキルスルフィド型 エピスルフィド化合物を重合硬化して光学材料を得るに

14 所望に応じて前述の硬化触媒、不飽和基を有するエピス ルフィド基と反応可能な例えばグリシジルメタクリレー ト等を併用する場合、ラジカル重合開始剤、ラジカル重 合可能な単量体、さらには離型剤、酸化防止剤、紫外線 吸収剤等の添加剤混合後、次の様にして重合硬化してレ ンズ等の光学材料とされる。即ち、混合後の原料をガラ スや金属製の型に注入し、加熱によって重合硬化反応を 進めた後、型から外し製造される。硬化時間は0.1~ 100時間、通常1~48時間であり、硬化温度は-1 ジメチルフェニルフォスフィン、ジエチルフェニルフォ 10 0~160℃、通常-10~140℃である。また、硬 化終了後、材料を50から150°Cの温度で10分から 5時間程度アニール処理を行う事は、本発明の光学材料 の歪を除くために好ましい処理である。さらに必要に応 じてハードコート、反射防止、防曇性付与等表面処理を 行うことができる。

[0010]

【発明の効果】本発明の新規な分岐アルキルスルフィド 型エピスルフイド化合物により、従来技術の化合物を原 料とする限り困難であった十分に高い屈折率と、良好な もできる。これらの官能基を2個以上有する化合物とし 20 屈折率とアッベ数のバランスさらには高い耐熱性を有す る樹脂光学材料が可能となった。すなわち本発明の新規 な化合物により樹脂光学材料の高い耐熱性を保ったま ま、軽量化、薄肉化および色収差の低減化が格段に進歩 することとなった。また、本発明の新規な分岐アルキル スルフィド型エピスルフイド化合物を重合硬化して得ら れる光学材料は、各種用途に使用でき、特に眼鏡用レン ズ材料として好ましい。

[0011]

【実施例】以下、実施例により本発明を具体的に説明す 合物、カルボン酸、カルボン酸無水物、メルカプトカル 30 るが、本発明はこれらに限定されるものではない。な お、得られた重合物の性能測定は以下の測定法で行っ **7**C.

> 屈折率、アッベ数:アッベ屈折計を用い、25℃で測定 した。

> 比重:電子比重計を用いて25℃で測定し、常法により 補正した。

> 耐熱性: ビカット軟化点が120°C以上のものを○、1 20℃未満80℃以上のものを△、80℃未満のものを ×とした。

て、たわみが10mm以上のものを〇、10mm未満5 mm以上のものを△、5mm未満のものを×とした。 実施例1 (n=0), (x=1), y=2, z=0, u=11))

2-(2-メルカプトエチルチオ)-1, 3-ジメルカ プトプロパン1. 0mol(200.4g)とエピクロ ルヒドリン3. Omol(277.5g)を液温を10 でまで冷却し、水酸化ナトリウム15mmo1(0.6 g)を水6mlに溶かした水溶液を加え、この温度で1 際して、原料となる、エピスルフィド化合物、さらには 50 時間撹拌した。その後、液温を40-45℃前後に保ち

16

*-1.3-ビス(グリシジルチオ)プロパンO.3mo

1(110.6g)とエタノール40mlをチオシアン

酸カリウム87.5g(0.9mol)を水60mlに

溶解させた水溶液に加え、1時間かけて液温を45℃ま

で上昇させ、この温度で5時間反応させた。反応混合物

トルエン層を水500mlで3回洗浄した。トルエン層

を硫酸ナトリウムで乾燥させ、溶媒を留去し、2-(2

-β-エピチオプロピルチオエチルチオ) -1, 3-ビ

に水500mlを加え、トルエン500mlで抽出し、

15

ながら2時間擬拌した。室温に戻し、水酸化ナトリウム 3mol(120.0g)を水120mlに溶かした水 溶液を、液温を40-45℃前後に保ちながら滴下しそ の後、液温を40-45℃前後に保ちながら3時間攪拌 した。反応混合物に水200mlを加え、トルエン30 0mlで抽出し、トルエン層を水200mlで3回洗浄 した。トルエン層を硫酸ナトリウムで乾燥させ、溶媒を 留去し、無色透明液体の2-(2-グリシジルチオエチ ルチオ) - 1、3 - ビス (グリシジルチオ) プロパンを 368.1g(理論量の100%)で得た。ついで、と 10 ス(β-エピチオプロビルチオ)プロパンを106.6

とで得られた、2-(2-グリシジルチオエチルチオ)* 元素分析值:

(分析值)

45. 15% 5. 99%

53.69%

C

H

C

(計算值)

40. 34% 5.80%

g (理論量の85%) 得た。

53.85%

マススペクトル (EI): M* 416 (理論分子量41

赤外吸収スペクトル:620cm-1(エピスルフィド環 の伸縮振動)

さらに、本化合物をにトリブチルアミンを1重量部配合 20 〔(2-メルカプトエチル)チオ〕-3-メルカプトプ しこれを厚さ2mmに調節した2枚のガラス板からなる モウルド中に注入し、80℃で5時間重合硬化し光学材 料を得た得られた材料の屈折率、アッベ数および比重を 測定し結果を、表1に示した。 Ж

% [0012] 実施例2 [n=0 (x=1, y=1, z=1, u = 1)

実施例1において2-(2-メルカプトエチルチオ)-1,3-ジメルカプトプロパンの代わりに1,2-ビス ロパンを使用する以外は実施例1を繰り返し、1,2-ビス〔(2-β-エピチオプロビルチオエチル)チオ〕 -3-(β-エピチオプロピルチオ)プロパンを総収率 86%で得た。

30 実施例1において2-(2-メルカプトエチルチオ)-

1, 3-ジメルカプトプロパンの代わりにテトラキス

(メルカプトメチル)メタンを使用する以外は実施例1

を繰り返し、テトラキス(β-エピチオプロピルチオメ

1,3-ジメルカプトプロパンの代わりに1,1,1-

トリス(メルカプトメチル)プロパンを使用する以外は

実施例1を繰り返し、1, 1, 1-トリス(β-エピチ

オプロピルチオメチル) プロパン (式(1)のm=2,

元素分析值:

(分析值)

40.12%

40.29% 5. 92%

(計算値)

H 6.09% 53.64% S

53. 79%

マススペクトル (E I): M* 476 (理論分子量47 ★0)

6)

赤外吸収スペクトル:620cm-1 (エピスルフィド環 の伸縮振動)

重合硬化後、得られた材料の屈折率、アッベ数および比 重を測定し結果を、表1に示した。

【0013】実施例3(x=0、y=4、z=0、u=★

元素分析值:

(分析值) C 41. 59%

41.76%

(計算值)

5. 91% H

52.30%

5. 77% 52. 47%

チル)メタンを総収率78%で得た。

マススペクトル (EI): M* 488 (理論分子量48 40☆=0、u=0)] 実施例1において2-(2-メルカプトエチルチオ)-

S

赤外吸収スペクトル:620cm-1 (エピスルフィド環 の伸縮振動)

重合硬化後、得られた材料の屈折率、アッベ数および比 重を測定し結果を、表1に示した。

【0014】実施例4〔n=2、(x=1、y=3、z☆

n=2)を総収率75%で得た。

元素分析值:

(分析値)

6. 67%

45. 18%

Н S 48.09% 6. 57%

(計算值)

48. 25%

C

45.00%

17

マススペクトル (EI): M**398 (理論分子量39

赤外吸収スペクトル:620cm-1 (エピスルフィド環 の伸縮振動)

重合硬化後、得られた材料の屈折率、アッベ数および比 重を測定し結果を、表1に示した。

【0015】比較例1

2-(2-メルカプトエチルチオ)-1,3-ジメルカ プトプロパン0.2モルとメタキシリレンジイソシアナ ート0.3モルの混合物を重合硬化した。得られた材料 10 定し結果を、表1に示した。 の屈折率、アッベ数および比重を測定し結果を、表1に 示した。

*比較例2

実施例1において、2-(2-グリシジルチオエチルチ オ) -1, 3-ビス (グリシジルチオ) プロパン1モル に対してチオシアン酸カリウムを0.8モル使用する以 外は実施例1を繰り返した。得られた生成物は、NMR スペクトルより式(1)のn=0、x=1、y=2、z=0、u=1であり、X中のSの個数は三員環を構成す るSと〇の合計に対して平均で30%であった。重合硬 化後、得られた材料の屈折率、アッベ数および比重を測

18

[0016]

【表1】 *

表 1

	エピスルフィド化合物	ΝD	סע	比重	耐熱性	強度
実施例 — 1	2-(2-β-It°f47°0t°Rf4IfNf4)- 1,3-t~λ(β-It°f47°0t°Af4)7°0N°ン	1.69	36	1.38	0	0
実施例 - 2	1.2-ピス[(2-β-1ピチオプロピタチオ1チル)チォ]- 3-(β-1ピチオプロピタチオ)プロパン	1.70	36	1.38	0	0
実施例 - 3	テトラキス(β-Iピチォプロピルチォメチル)メタン	1-69	36	1.37	0	0
実施例 - 4	1.1.1-192(B-It°f47°0t'8f43f8)7°0h';	1-68	37	1.35	0	0
比較例 - 1	2-(2-メルカフ・トエチボチオ)-1,3-ジメルカフ・トフ・ロハ・ン 0.2もあ、 メタもシワレンジーインシアナートの.3もの	1.66	32	1.37	×	0
比較例 - 2	式(1)のn=0、x=1、y=2、z=0、u=1でX中の Sの個数がSとOの合計に対し平均30%	1.62	38	1.29	Δ	Δ

(11)

特開平9-71580

フロントページの続き

(51)Int.Cl.⁶
C O 8 G 75/06

識別記号 NTW

庁内整理番号

F I C 0 8 G 75/06

技術表示箇所

NTW

JP 1997-71580 A5 2005.10.13

【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第3部門第2区分 【発行日】平成17年10月13日(2005.10.13)

【公開番号】特開平9-71580

【公開日】平成9年3月18日(1997.3.18)

【出願番号】特願平7-231283

【国際特許分類第7版】

C 0 7 D 331/02

C 0 7 D 303/34

G 0 2 B 1/04

G 0 2 C 7/02

// C 0 8 G 59/02

C 0 8 G 75/06

[F I]

C 0 7 D 331/02

C 0 7 D 303/34

G 0 2 B 1/04

G 0 2 C 7/02

C 0 8 G 59/02 N G Y

C 0 8 G 75/06 N T W

【手続補正書】

【提出日】平成17年6月6日(2005.6.6)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正の内容】

【特許請求の範囲】

【請求項1】

(1) 式で表される分岐アルキルスルフィド型エピスルフィド化合物。

(2)

JP 1997-71580 A5 2005.10.13

【化1】

(ここに、xは $0\sim1$ の、yは $0\sim4$ の、zは $0\sim4$ の、uは $0\sim1$ の、nは $0\sim3$ の整数を表し、pつ、x+y+z+u=4の関係を満たす。さらに E_{es} は、 $-CH_2CHCH_2$ 基を表し、具体的には $\beta-x$ ビチオプロビル基(-C

H₂CHCH₂) もしくはグリシジル基 (-CH₂CHCH₂) のいずれかであり、 S

このX中のSの個数はSとOの合計に対して平均で50%以上である。)

【請求項2】

<u>請求項1記載の分岐アルキルスルフィド型エピスルフィド化合物を重合硬化してなる光学</u> <u>材料。</u>