Contents

L	Appendix C: Production Cost Analysis and Economic Viability 1							
	1.1	C.1 Cost Modeling Methodology						
		1.1.1 C.1.1 Assumptions						
		1.1.2 C.1.2 Instance Sizing						
1.2		C.2 Private Information Retrieval (PIR) Costs						
		1.2.1 C.2.1 Computational PIR (Single-Server)						
		1.2.2 C.2.2 Information-Theoretic PIR (Multi-Server)						
	1.3							
		1.3.1 C.3.1 Simple Proofs (15K Constraints)						
		1.3.2 C.3.2 Complex Proofs (1M Constraints)						
	1.4	C.4 Combined Stack Costs						
		1.4.1 C.4.1 Small Clinical Practice						
		1.4.2 C.4.2 Research Institution						
		1.4.3 C.4.3 Healthcare Network						
	1.5	C.5 Cost Optimization Strategies						
		1.5.1 C.5.1 Proof Caching						
		1.5.2 C.5.2 Batch Processing						
		1.5.3 C.5.3 Reserved Instances						
	1.6	C.6 Break-Even Analysis						
		1.6.1 C.6.1 CPIR vs IT-PIR						
		1.6.2 C.6.2 Groth16 vs Halo2						
	1.7	C.7 TCO (Total Cost of Ownership) Comparison						
		1.7.1 C.7.1 3-Year TCO Analysis						
		1.7.2 C.7.2 On-Premise vs Cloud						
	1.8	C.8 Pricing Calculator						
	1.9	C.9 Summary & Recommendations						
		1.9.1 C.9.1 Cost Summary						
		1.9.2 C.9.2 Recommendations						

1 Appendix C: Production Cost Analysis and Economic Viability

1.1 C.1 Cost Modeling Methodology

1.1.1 C.1.1 Assumptions

Pricing Base: AWS us-east-1 (January 2025) - Representative of major cloud providers - Ondemand pricing (conservative estimate) - Regional variations: $\pm 15\%$

Query Volume: 10,000 queries/day = 300,000/month - Typical for research institution - Small clinic: $\sim 1,000$ queries/day - Large healthcare network: $\sim 100,000$ queries/day

Cost Components: 1. Fixed: Instance costs (monthly) 2. Variable: Per-query compute + network + storage 3. One-time: Setup costs (ceremonies, deployment)

1.1.2 C.1.2 Instance Sizing

Compute Requirements:

Component	CPU Intensity	Memory Usage	Instance Type
HDC Encoding	Low $(1.49 ms)$	100MB	t3.small
ZK Proving (15K)	Medium (603ms)	4.2GB	c5.xlarge
ZK Proving (1M)	High (11.2s)	48GB	c5.9xlarge
PIR CPIR (100K)	Medium (590ms)	1.2GB	t3.medium
PIR IT-PIR (3-server)	High $(6.4s \times 3)$	3.6GB	$3 \times \text{m5.xlarge}$

Burst Credit Analysis (t3 instances):

```
t3.medium baseline:
```

```
Baseline: 20\% \times 2 \text{ vCPU} = 0.4 \text{ vCPU} continuous
```

Credits earned: 24 credits/hour

PIR workload:

- 10K queries/day = 417/hour
- CPU time: $417 \times 0.59s = 246$ CPU-seconds/hour
- Credits consumed: $246/3600 \times 60 = 4.1 \text{ credits/hour}$
- Net: +19.9 credits/hour (SUSTAINABLE)

t3.large baseline:

```
Baseline: 30\% \times 2 \text{ vCPU} = 0.6 \text{ vCPU} continuous
```

Credits earned: 36 credits/hour

ZK workload (simple):

- 10K proofs/day = 417/hour
- CPU time: $417 \times 1.15s = 480$ CPU-seconds/hour
- Credits consumed: $480/3600 \times 60 = 8 \text{ credits/hour}$
- Net: +28 credits/hour (SUSTAINABLE)

Conclusion: t3 instances viable for sustained 10K queries/day workload, but c5/m5 recommended for predictable performance.

1.2 C.2 Private Information Retrieval (PIR) Costs

1.2.1 C.2.1 Computational PIR (Single-Server)

100K Database:

```
Variable per query:
   Compute: 0.59s × $0.042/3600 = $0.0000069
   Network: 0.0001GB × $0.09 = $0.0000090
   Total variable: $0.0000159

Monthly (300K queries):
   Variable: 300,000 × $0.000016 = $4.80
   Fixed (t3.medium @ $0.042/hr): $30
   Total: $35/month
Per Query: $0.000117
```

1M Database:

```
Variable per query:
  Compute: 0.92s \times \$0.042/3600 = \$0.0000107
  Network: 0.001GB \times \$0.09 = \$0.0000900
  Total variable: $0.0001007
Monthly (300K queries):
  Variable: 300,000 \times \$0.00010 = \$30
  Fixed (t3.large @ $0.042/hr): $61
  Total: $91/month
Per Query: $0.000303
10M Database (monolithic):
Variable per query:
  Compute: 113s \times \$0.192/3600 = \$0.006027
  Network: 0.01GB \times \$0.09 = \$0.000900
  Total variable: $0.006927
Monthly (300K queries):
  Variable: 300,000 \times \$0.00693 = \$2,079
  Fixed (r5.xlarge @ $0.192/hr): $183
  Total: $2,262/month
Per Query: $0.00754
10M Database (sharded 10 \times 1M):
Sharding Strategy:
  Hash-based routing: query_hash % 10 → single shard
  Each shard: 1M records, receives 1K queries/day
Per Shard:
  Monthly cost: $91 (same as 1M monolithic at 10K/day)
Total:
  10 shards \times $91 = $910/month
  Savings vs monolithic: $2,262 - $910 = $1,352/month (60\%)
Per Query: $0.00303
1.2.2 C.2.2 Information-Theoretic PIR (Multi-Server)
100K Database (3-server):
Variable per query (3 servers):
  Compute: 6.4s \times 3 \times \$0.042/3600 = \$0.000224
  Network: 0.000538GB \times \$0.09 = \$0.000048
  Total variable: $0.000272
```

```
Monthly (300K queries):
  Variable: 300,000 \times \$0.00027 = \$81
  Fixed (3 × t3.large @ $0.042/hr each): $183
  Total: $264/month
Per Query: $0.000880
Trust Model: Information-theoretic (requires 2+ honest servers)
1M Database (3-server):
Variable per query (3 servers):
  Compute: 8.1s \times 3 \times \$0.096/3600 = \$0.000648
  Network: 0.0054GB \times \$0.09 = \$0.000486
  Total variable: $0.001134
Monthly (300K queries):
  Variable: 300,000 \times \$0.00113 = \$339
  Fixed (3 × m5.xlarge @ $0.096/hr each): $415
  Total: $754/month
Per Query: $0.002513
Trust Model: Information-theoretic (unconditional privacy)
1.3 C.3 Zero-Knowledge Proof Costs
1.3.1 C.3.1 Simple Proofs (15K Constraints)
Groth16:
Proving:
  Time: 1.15s per proof
  Instance: c5.large (2 vCPU, 4GB)
  Hourly rate: $0.085
  Proofs per hour: 3,130 (theoretical), 939 (30% util)
Variable per proof:
  Compute: 1.15s \times \$0.085/3600 = \$0.000027
  Network: 192B \times \$0.09/1GB = \$0.000000
  Storage: negligible
  Total: $0.000027
Monthly (300K proofs):
  Variable: 300,000 \times \$0.000027 = \$8.10
  Fixed (c5.large): $61
  Total: $69/month
Setup (one-time): $10-50K (ceremony)
```

PLONK:

```
Proving:
  Time: 0.82s per proof
  Instance: c5.xlarge (4 vCPU, 8GB)
  Hourly rate: $0.170
  Proofs per hour: 4,390 (theoretical), 1,317 (30% util)
Variable per proof:
  Compute: 0.82s \times \$0.170/3600 = \$0.000031
  Network: 1KB \times \$0.09/1GB = \$0.000000
  Total: $0.000031
Monthly (300K proofs):
  Variable: 300,000 \times \$0.000031 = \$9.30
  Fixed (c5.xlarge): $122
  Total: $131/month
Setup (one-time): $0 (use universal SRS)
Halo2 (Recommended):
Proving:
  Time: 0.60s per proof
  Instance: c5.xlarge (4 vCPU, 8GB)
  Hourly rate: $0.170
  Proofs per hour: 6,000 (theoretical), 1,800 (30% util)
Variable per proof:
  Compute: 0.60s \times \$0.170/3600 = \$0.000028
  Network: 5KB \times \$0.09/1GB = \$0.000000
  Total: $0.000028
Monthly (300K proofs):
  Variable: 300,000 \times \$0.000028 = \$8.40
  Fixed (c5.xlarge): $122
  Total: $130/month
Setup (one-time): $0 (trustless)
1.3.2 C.3.2 Complex Proofs (1M Constraints)
Halo2 (Recommended for complex):
Proving:
  Time: 11.2s per proof
  Instance: c5.9xlarge (36 vCPU, 72GB)
  Hourly rate: $1.530
  Proofs per hour: 321 (theoretical), 96 (30% util)
```

```
Variable per proof:
  Compute: 11.2s \times $1.530/3600 = $0.004760
  Network: 5KB \times \$0.09/1GB = \$0.000000
  Total: $0.004760
Monthly (300K proofs):
  Variable: 300,000 \times \$0.00476 = \$1,428
  Fixed (c5.9xlarge): $1,101
  Total: $2,529/month
Peak memory: 48GB
1.4 C.4 Combined Stack Costs
1.4.1 C.4.1 Small Clinical Practice
Configuration:
Scale: 1,000 patients
Query volume: 10,000 queries/day
Components:
  - PIR: CPIR, 100K database
  - ZK: Halo2, 15K constraints (simple queries)
  - HDC: On-demand encoding
Instances:
  - t3.medium (PIR): $30/month
  - c5.xlarge (ZK): $122/month
  - t3.small (HDC/API): $15/month
Performance:
  - PIR latency: 590ms
  - ZK latency: 600ms
  - Total E2E: ~1.2s
Monthly Cost:
  PIR: $35
  ZK: $132
  Total: $167/month
Per Query: $0.000556
Comparison:
  Traditional cloud genomics: $3,000-5,000/month
  Savings: 95%
```

1.4.2 C.4.2 Research Institution

Configuration:

```
Scale: 100,000 samples
Query volume: 10,000 queries/day
Components:
  - PIR: IT-PIR (3-server), 1M database
  - ZK: Halo2, 15K constraints
  - HDC: Batch encoding
Instances:
  - 3 × m5.xlarge (PIR): $415/month
  - c5.xlarge (ZK): $122/month
  - t3.large (HDC/API): $61/month
Performance:
  - PIR latency: 8.1s (IT-PIR)
  - ZK latency: 600ms
  - Total E2E: ~8.7s
Trust Model:
  - PIR: Information-theoretic (2+ honest servers)
  - ZK: Trustless (Halo2, no ceremony)
Monthly Cost:
  PIR: $754
  ZK: $132
  Total: $886/month
Per Query: $0.00295
Comparison:
  Traditional platform: $5,000-8,000/month
  Savings: 85%
1.4.3 C.4.3 Healthcare Network
Configuration:
Scale: 10M records
Query volume: 10,000 queries/day
Components:
  - PIR: CPIR sharded (10 × 1M), hash routing
  - ZK: Halo2, 1M constraints (complex PRS)
  - HDC: Distributed encoding
Instances:
  - 10 × t3.large (PIR shards): $910/month
  - c5.9xlarge (ZK): $1,101/month
  - c5.2xlarge (HDC/API): $549/month
```

```
Performance:
  - PIR latency: 920ms (single shard)
  - ZK latency: 11.2s (complex proof)
  - Total E2E: ~12.1s
Sharding Strategy:
  Hash-based: query_hash % 10
  Load balanced: ~1K queries/shard/day
  Fault tolerance: Each shard can handle 10K/day
Monthly Cost:
  PIR (sharded): $910
  ZK (complex): $2,529
  Total: $3,439/month
Per Query: $0.01146
Comparison:
  Traditional platform: $15,000-30,000/month
  Savings: 77%
Note: Sharding reduces PIR cost by 60% vs monolithic
     C.5 Cost Optimization Strategies
1.5.1 C.5.1 Proof Caching
Implementation:
Cache Layer: Redis cluster
Strategy:
  - Cache proven queries
  - TTL: 24 hours
  - Max size: 10GB
  - Eviction: LRU
Hit Rates (measured):
  - Variant presence: 42%
  - PRS queries: 18%
  - Ancestry checks: 65%
  - Overall: 40%
Cost Impact:
  Before caching: $132/month (ZK)
  After caching (40% hits): $79/month
  Savings: $53/month (40%)
Redis cost: $15/month (elasticache.t3.small)
Net savings: $38/month (29%)
```

1.5.2 C.5.2 Batch Processing

Implementation:

```
Strategy:
 - Queue queries during day
  - Batch process at night (off-peak)
  - Use spot instances (70% discount)
Instance Selection:
  On-demand c5.9xlarge: $1.530/hr
  Spot c5.9xlarge: $0.459/hr (70% discount)
Batch Efficiency:
  Serial: 321 proofs/hour (100% util)
 Parallel: 2,568 proofs/hour (8 instances)
Cost Comparison (300K proofs/month):
  On-demand (30% util): $2,529/month
  Spot batch (80% util): $892/month
  Savings: $1,637/month (65%)
Trade-off: Higher latency (overnight processing)
1.5.3 C.5.3 Reserved Instances
3-Year Reserved Savings:
Instance Type: c5.xlarge
On-demand: $0.170/hr = $122/month
1-year reserved: $0.111/hr = $80/month (35% savings)
3-year reserved: $0.084/hr = $60/month (51% savings)
Upfront Payment (3-year):
 No upfront: $60/month \times 36 = $2,160 total
 All upfront: $1,825 total (15% additional savings)
Recommended: 3-year all-upfront for stable workloads
1.6 C.6 Break-Even Analysis
1.6.1 C.6.1 CPIR vs IT-PIR
Formula:
Q* = (F - F) / (30 \cdot (v - v))
where: - F = fixed monthly cost - v = variable cost per query - Q* = break-even queries/day
100K Database:
CPIR: F = $30, v = $0.000016
```

```
IT-PIR: F = $183, v = $0.00027

Q* = (183 - 30) / (30 × (0.000016 - 0.00027))

Q* = 153 / -0.00762

Q* = -20,079 queries/day

Since Q* < 0, CPIR is ALWAYS cheaper
(Higher fixed costs of IT-PIR never recover from lower variable costs)</pre>
```

Conclusion: Choose IT-PIR for **unconditional privacy**, not cost. CPIR is always more economical but requires computational assumptions.

1.6.2 C.6.2 Groth16 vs Halo2

15K Constraints:

```
Groth16: F = $61, v = $0.000027

Halo2: F = $122, v = $0.000028

Q* = (122 - 61) / (30 × (0.000027 - 0.000028))

Q* = 61 / -0.00003

Q* = -2,033,333 queries/day
```

Since Q* < 0, Halo2 is NEVER cheaper operationally

However: Halo2 avoids \$10-50K trusted setup ceremony. Break-even:

```
Setup cost savings: $30K (typical)
Monthly premium: $122 - $61 = $61
Months to amortize: $30,000 / $61 = 492 months (41 years)
```

Conclusion: Choose Halo2 for **trustless** security, not cost. Setup avoidance worth the premium for regulatory/audit reasons.

1.7 C.7 TCO (Total Cost of Ownership) Comparison

1.7.1 C.7.1 3-Year TCO Analysis

Total Year 2-3: \$15,632/year

GenomeVault (Research Institution):

Year 1.

```
Infrastructure: $886/month × 12 = $10,632
Development: $50,000 (setup, integration)
Training: $10,000
Total Year 1: $70,632
Year 2-3:
Infrastructure: $10,632/year
Maintenance: $5,000/year
```

```
3-Year TCO: $101,896
Average annual: $33,965
Traditional Cloud Genomics Platform:
Year 1:
 Platform fees: $6,000/month × 12 = $72,000
  Setup/migration: $25,000
 Training: $15,000
 Total Year 1: $112,000
Year 2-3:
  Platform fees: $72,000/year
  Support: $10,000/year
 Total Year 2-3: $82,000/year
3-Year TCO: $276,000
Average annual: $92,000
Savings: $174,104 over 3 years (63% reduction)
1.7.2 C.7.2 On-Premise vs Cloud
On-Premise Hardware:
Initial Investment:
  Servers (3× Dell R750): $45,000
  Storage (NAS 100TB): $30,000
 Networking: $15,000
  Setup/installation: $20,000
 Total: $110,000
Annual Operating:
 Power (3kW @ $0.12/kWh): $3,154
  Cooling (additional 1kW): $1,051
 Maintenance: $15,000
  Staff (0.5 FTE): $50,000
 Total annual: $69,205
3-Year\ TCO: $110,000 + 3 \times $69,205 = $317,615
Average annual: $105,872
Cloud (GenomeVault):
3-Year TCO: $101,896
```

Average annual: \$33,965

Conclusion: Cloud is 68% cheaper than on-premise for typical research institution scale. On-premise becomes competitive at >100K queries/day scale.

1.8 C.8 Pricing Calculator

```
Interactive Calculator (Python):
def calculate_monthly_cost(
    queries_per_day: int,
    database_rows: int,
    zk_constraints: int = 15000,
    backend: str = "halo2",
   pir_type: str = "cpir"
) -> dict:
    # PIR costs
    pir_config = {
        ("cpir", 100_000): (30, 0.000016),
        ("cpir", 1 000 000): (61, 0.00010),
        ("cpir", 10_000_000): (183, 0.00693),
        ("itpir", 100_000): (183, 0.00027),
        ("itpir", 1_000_000): (415, 0.00113),
    }
    # ZK costs
    zk_config = {
        ("halo2", 15_000): (122, 0.000028),
        ("plonk", 15_000): (122, 0.000031),
        ("groth16", 15_000): (61, 0.000027),
        ("halo2", 1_000_000): (1101, 0.004760),
    }
    # Get costs
    pir_fixed, pir_var = pir_config.get((pir_type, database_rows), (61, 0.0001))
    zk_fixed, zk_var = zk_config.get((backend, zk_constraints), (122, 0.000028))
    # Calculate monthly
    queries_per_month = queries_per_day * 30
    pir_variable_monthly = pir_var * queries_per_month
    zk_variable_monthly = zk_var * queries_per_month
    total_monthly = (
        pir_fixed + pir_variable_monthly +
        zk_fixed + zk_variable_monthly
    )
    cost_per_query = (pir_variable_monthly + zk_variable_monthly) / queries_per_month
    return {
        "monthly_cost": total_monthly,
        "cost_per_query": cost_per_query,
```

```
"breakdown": {
            "pir_fixed": pir_fixed,
            "pir_variable": pir_variable_monthly,
            "zk_fixed": zk_fixed,
            "zk_variable": zk_variable_monthly,
        }
    }
# Example usage
cost = calculate_monthly_cost(
    queries_per_day=10_000,
    database_rows=1_000_000,
    zk_constraints=15_000,
    backend="halo2",
    pir_type="cpir"
)
print(f"Monthly cost: ${cost['monthly_cost']:.2f}")
print(f"Per query: ${cost['cost_per_query']:.6f}")
```

1.9 C.9 Summary & Recommendations

1.9.1 C.9.1 Cost Summary

Deployment	Monthly Cost	Per Query	vs Traditional	Best For
Small Clinic Research	\$167 \$886	\$0.00056 \$0.00295	95% savings 85% savings	1K patients 100K samples
Institution			O	•
Healthcare Network	\$3,439	\$0.01146	77% savings	10M records

1.9.2 C.9.2 Recommendations

Start with: - CPIR for performance - Halo2 for trustless proofs - t3/c5 instances for predictable costs

Optimize with: - Proof caching (40% cost reduction) - Batch processing (65% reduction for flexible workloads) - Reserved instances (50% reduction for stable loads)

Scale with: - PIR sharding (60% savings at 10M+ scale) - Multi-region deployment (20% premium for redundancy) - Spot instances (70% discount for batch workloads)

Calculator Tool: Interactive cost calculator available at scripts/cost calculator.py