funzioni convesse e concave

1 Funzioni convesse e concave

Sia $f: I \to \mathbb{R}$, con I intervallo. Se $\forall x_1, x_2 \in I$, $x_1 \neq x_2$, il segmento di estremi $(x_1, f(x_1))$ e $(x_2, f(x_2))$

• è non al di sotto (non al di sopra) del grafico di y = f(x), allora f è convessa (concava);

• è al di sopra (al di sotto) del grafico di y = f(x), esclusi gli estremi $(x_1, f(x_1))$ e $(x_2, f(x_2))$, allora f è strettamente convessa (strettamente concava).

Osservazione: Se f è (strettamente) convessa, -f è (strettamente) concava, e viceversa.

2 Affermazioni sulle funzioni convesse e concave

Sia $f:(a,b)\to\mathbb{R}$ (strettamente) convessa in (a,b). Allora:

- $\forall x \in (a,b) \quad \exists f'_{-}(x), f'_{+}(x)$
- $f'_+(x) \ge f'_-(x) \quad \forall x \in (a,b)$
- f è continua in (a,b), ma non necessariamente agli estremi. Ad esempio:

Se, inoltre, f è derivabile in (a, b), le seguenti affermazioni sono equivalenti:

- f è (strettamente) convessa in (a, b);
- f' è (strettamente) crescente in (a, b);
- le rette tangenti a y = f(x) sono non al di sopra (sono al di sotto) del grafico, cioè

$$\forall x, x_0 \in (a, b), x \neq x_0 \quad f(x) \geq f(x_0) + f'(x_0)(x - x_0)$$

Per le funzioni (strettamente) concave valgono affermazioni analoghe.

3 Derivata seconda e convessità

Teorema: Sia $f: I \to \mathbb{R}$ (con I intervallo) derivabile due volte in I. Allora

- $f''(x) \ge 0 \quad \forall x \in I \text{ se e solo se } f \text{ è } convessa \text{ in } I;$
- $f''(x) \le 0 \quad \forall x \in I \text{ se e solo se } f \text{ è } concava \text{ in } I.$

Inoltre,

- se $f''(x) > 0 \quad \forall x \in I$, allora f è strettamente convessa in I;
- se $f''(x) < 0 \quad \forall x \in I$, allora f è strettamente concava in I;

ma non viceversa. Ad esempio, $f(x) = x^4$ è strettamente convessa nel suo dominio \mathbb{R} , ma

$$f'(x) = 4x^{3}$$

$$f''(x) = 12x^{2} \ge 0, \quad f''(0) = 0$$

4 Punto di flesso

Sia $f: X \to \mathbb{R}$ e sia $x_0 \in X$ un punto interno. Se esiste la retta tangente del grafico di y = f(x) in x_0 , ed $\exists U(x_0)$ tale che

- f è concava in $U(x_0) \cap (x_0, +\infty)$
- f è convessa in $U(x_0) \cap (-\infty, x_0)$

o viceversa, il punto $(x_0, f(x_0))$ si dice **punto di flesso**.

In x_0 , o f è derivabile (una volta), oppure il grafico ha una retta tangente verticale, cioè

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \pm \infty$$

e allora si dice che $(x_0, f(x_0))$ è un punto di flesso a tangente verticale.

Invece, un punto in cui non esiste la retta tangente non è un punto di flesso, anche se f "cambia convessità" il tale punto. Ad esempio, nel seguente grafico, $(x_0, f(x_0))$ è un punto angoloso, e perciò non di flesso:

4.1 Derivata seconda nei punti di flesso

Se $f: X \to \mathbb{R}$ è derivabile due volte in x_0 , un punto interno di X, e se ha un punto di flesso in x_0 , allora $f''(x_0) = 0$.

Osservazioni:

- f può non essere derivabile due volte in un punto di flesso.
- $f''(x_0) = 0$ è una condizione necessaria, ma non sufficiente, per avere un punto di flesso in x_0 . Ad esempio, per $f(x) = x^4$,

$$f''(x) = 12x^2 \ge 0, \quad f''(0) = 0$$

ma $x_0 = 0$ è un punto di minimo (assoluto), non di flesso.