Wahadło matematyczne

Marek Łukasiewicz
czerwiec 2017

Techniki komputerowe II - zadanie domowe nr 2

Zadanie: Różniczkowe równania ruchu wahadła matematycznego o dużym wychyleniu tzn. $\sin(\alpha) \neq \alpha$

Wyprowadzenie

Opiszmy ruch punktu materialnego we współrzędnych biegunowych o początku w punkcie zamocowania nici. Ponieważ nić jest nieważka i nierozciągliwa, stale pozostaje prosta, a punkt porusza się po okręgu o promieniu l. Na potrzeby tego modelu załóżmy że odchylenie nici od pionu nie przekracza $\frac{\pi}{2}$.

Figure 1:

Wtedy:

Równowaga sił na kierunku normalnym:

$$\sum F^{n} = 0$$
$$-N + m \cdot \cos(\alpha) = 0$$
$$N = m \cdot \cos(\alpha)$$

gdzie N to napięcie nici

Zasada zmienności krętu:

$$\overline{\varepsilon} \cdot I = \sum \overline{M}_0$$

$$I = m \cdot l^2$$

$$\varepsilon = \frac{d^2 \alpha}{dt^2}$$

$$\sum M_0 = M_0(m \cdot \overline{g}) = -l \cdot m \cdot g \cdot \sin(\alpha)$$

$$\frac{d^2 \alpha}{dt^2} = -\frac{g}{l} \sin(\alpha)$$

Jeśli dodatkowo wprowadzimy prędkość kątową $\omega=\frac{d\alpha}{dt}$, można przekształcić powyższe równanie różniczkowe II rzędu na układ dwóch równań I rzędu:

$$\begin{cases} \frac{d\omega}{dt} = -\frac{g}{l}\sin(\alpha) \\ \frac{d\alpha}{dt} = \omega \end{cases}$$

Energia mechaniczna

Energia mechaniczna jest sumą energii mechanicznej potencjalnej i kinetycznej:

$$E_m = E_p + E_k$$

Ponieważ jednorodne pole grawitacyjne które jest zadane w tym zadaniu jest polem potencjalnym, można liczyć energię potencjalną grawitacji jako różnicę potencjałów. Przyjmując za poziom odniesienia położenie równowagi, otrzymujemy:

$$E_p = m \cdot g \cdot h_{obecne} - m \cdot g \cdot h_{odniesienia} \implies E_p = m \cdot g \cdot \Delta h \implies E_p = m \cdot g \cdot l \cdot \left(1 - \cos(\alpha)\right)$$

Energię kinetyczną obliczymy korzystając z podstawowego wzoru:

$$\begin{cases} E_k = \frac{m \cdot v^2}{2} \\ v = \omega \cdot l \end{cases} \implies E_k = \frac{1}{2} \cdot m \cdot \omega^2 \cdot l^2$$

Ponieważ masa punktu nie wpływa na opis ruchu, jedynie na wartość energii mechanicznej, dla wygody przedstawimy energię po podzieleniu przez masę.

$$e_m = \frac{E_m}{m} = \frac{E_p + E_k}{m} = g \cdot l \cdot \left(1 - \cos(\alpha)\right) + \frac{1}{2} \cdot \omega^2 \cdot l^2$$

Przykładowe dane

Zestaw 1:

Przyspieszenie ziemskie $g=9,81[\frac{m}{s^2}]$, wahadło długości l=1[m], o początkowym wychyleniu $\alpha_0=\frac{\pi}{3}=60^\circ$, bez nadanej prędkości początkowej

Zestaw 2:

Przyspieszenie ziemskie $g=9,81[\frac{m}{s^2}]$, wahadło długości l=3[m], o początkowym wychyleniu $\alpha_0=\frac{\pi}{6}=30^\circ$, z nadaną początkową prędkością $\omega_0=\frac{\pi}{4}[\frac{1}{s}]=45^\circ[\frac{1}{s}]$

