FORMULE UTILIZZABILI NELLE PROVE SCRITTE DI ELETTRONICA

TRANSISTOR A EFFETTO DI CAMPO METALLO-OSSIDO-SEMICONDUTTORE (MOSFET)

Parametri in DC

nMOSFET	pMOSFET
$K_n = \mu_n C_{\text{ox}} \frac{W}{L}$	$K_p = \mu_p C_{ox} \frac{W}{L}$
Zona di saturazione	
Condizioni: $V_{GS} > V_{TN}$ e $V_{DS} > V_{GS} - V_{TN}$	Condizioni: $V_{GS} < V_{TP}$ e $V_{DS} < V_{GS} - V_{TP}$
V _{GD} < V _{TN}	V_{GD} > V_{TP}
$I_D = \frac{K_n}{2} (V_{GS} - V_{TN})^2$	$I_D = \frac{K_p}{2} (V_{GS} - V_{TP})^2$
Zona triodo	
Condizioni: $V_{GS} > V_{TN}$ e $V_{DS} < V_{GS} - V_{TN}$	Condizioni: $V_{GS} < V_{TP}$ e $V_{DS} > V_{GS} - V_{TP}$
$V_{GD} > V_{TN}$	$V_{GD} < V_{TP}$
$I_{D} = K_{n} \left[(V_{GS} - V_{TN}) \cdot V_{DS} - \frac{V_{DS}^{2}}{2} \right]$	$I_D = K_p \left[(V_{GS} - V_{TP}) \cdot V_{DS} - \frac{V_{DS}^2}{2} \right]$
Zona di interdizione	
Condizioni: $V_{GS} < V_{TN}$	Condizioni: $V_{GS} > V_{TP}$
<i>I_D ≅ 0</i>	<i>I_D</i> ≅ <i>0</i>

Modello al piccolo segnale

Il modello equivalente del pMOSFET è identico a quello del nMOSFET

nMOSFET	pMOSFET
$g_m = \frac{2I_D}{V_{GS} - V_{TN}} = \sqrt{2K_n I_D} = K_n (V_{GS} - V_{TN})$	$g_m = \frac{2I_D}{ V_{GS} - V_{TP} } = \sqrt{2K_p I_D} = K_p V_{GS} - V_{TP} $
$r_o = \frac{1}{g_o} = \frac{\frac{1}{\lambda} + V_{DS}}{I_D}$	$r_o = \frac{1}{g_o} = \frac{\frac{1}{\lambda} + V_{DS} }{I_D}$

Specchio Corrente

