Binary					
1. heap	property		peu &	P < V-	
) comp	lete binary t	ree			
			\ \.		
- fi	ind min O(1)				
'.	lete min 000	091)			
	sert 0 (6)				
give	n de cre	osekey 0 ((191)		
pointe	rs. delet	e 0 (6)	an)		
	,				
	make- heap	O(n)			
			0 (Cogn)		
merge	: O(n) -		U (69n)		
/ 2 / 4 \ 22	+ 6200	012.		.000	
Let 118	t heap	(UM) lete	binary +	726	
1. he	pap property.				
2 bi	rary tree wi	ith letrist	D-ODERty		
	0				
L		12m	u to hull,	np((u) = s	horte it pain
<i>d d</i>		tom ec	uch u		
	/\	+h	e 15ght dece	ending posts /	rom 11 to null
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	the shortes	t from 4 4	6 null
			(one of)		

 $npl(p) = min \{npl(u), npl(u)\} + 1$ if leftist npllu) > npllu) Lemina For a leffist heap with a nodes, its right path has at most log, (n+1) nodes # nodes in leftst heap

2 -1 # nodes in High pouts. r bose: indultive hypothesi3 r=K step r: K+1 $2(2^{k}-1)+1=2^{k+1}-1$

for i=1,	U,' :	ancestons of u	10 (nodes influenced)
case 1 U;			np((4), np((u;-1)} -1
(ajl 2. V. Ui-1			
	case).	rp((Ui-1) >	npl (V)
	(Ose).)	my 1 Ui-12 =	$mp(U)$ $mp(U)$ $(ui) \Rightarrow swap children of ui$ (Ui)
01191		snop (hildren update npl	(Ui) => Sworp children of Ui
	1-1	H	
de masekey:			A/B)
		0(Gn)	
nake hecy	; 0(n)	. Hie some	as ordinary heap

skewed l	heap: make: nlugn - adjusting version of leftist heap.
J 54	ap (hildren offer merge without judging null, swap (hild for all nodes on the right parts
	except for the Cowest one. H debie (), still D(1)
2	7 /0
inserti delete	
de Ceti de creas	exey > not support
potential	t and debtern $O(69n)$ function: iven a node $U \in H$
	M is heavy if size (right subtree of u) > size (left subtree of u) light otherwise.
\$\bar{\phi}{\phi}\$	$(H) = \# \text{ howy woles in } H$ $(\text{omp+y}) = 0 \forall H-1 \overline{\Psi}(H) \geq 0$

1. $\frac{35}{h_1}$ $\frac{35}{h_2}$ $\frac{30}{h_1}$ $\frac{30}{h_1}$ $\frac{30}{h_1}$ $\frac{30}{h_2}$ $\frac{1}{h_2}$ $\frac{30}{h_1}$ $\frac{30}{h_2}$ $\frac{1}{h_2}$ $\frac{30}{h_1}$ $\frac{30}{h_2}$ $\frac{1}{h_2}$ (3); 4," swayo 2. 3, Mergo (hi'-> lefachid, hz') h," Null 12"

1. => 35 (4) 3 7then return bank. => (3) / 30

