PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-273862

(43)Date of publication of application: 18.10.1996

(51)Int.CI.

H05B 41/24 HO2M 7/48

H05B 41/02

(21)Application number : 07-071438

(71)Applicant: USHIJIMA MASAKAZU

(22)Date of filing:

29.03.1995

(72)Inventor: USHIJIMA MASAKAZU

(54) INVERTER CIRCUIT FOR DISCHARGE TUBE

(57)Abstract:

PURPOSE: To provide an inverter circuit for a discharge tube which does not decrease the lighting brightness of the discharge tube even if driving frequency is increased in order to make a set-up transformer or the like small, and decreases voltage applied to the discharge tube and does not decrease the lighting brightness of the discharge tube even if parasitic capacity in the periphery of the discharge tube is increased. CONSTITUTION: An inverter circuit for a discharge tube has a high frequency oscillation circuit OS and a set-up transformer T for raising the output of the high frequency oscillation circuit OS, and the discharge tube DT is connected to the secondary side of the transformer T. An impedance matching circuit 10 for matching the impedance of a circuit to the secondary side and that of the discharge tube DT is connected to the secondary side of the step-up transformer T. The step-up transformer T consists of a leakage flux wire-wound transformer having a secondary winding having at least one close coupling and one loose coupling closely coupled and loosely coupled to the primary winding, or a piezoelectric transformer.

EGAL STATUS

Date of request for examination

25.11.1996

Date of sending the examiner's decision of rejection]

Kind of final disposal of application other than the

examiner's decision of rejection or application

converted registration]

Date of final disposal for application]

Patent number

3292788

Date of registration]

29.03.2002

Number of appeal against examiner's decision of

eiection

Date of requesting appeal against examiner's decision

of rejection]

Date of extinction of right]

Copyright (C): 1998,2003 Japan Patent Office

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平8-273862

(43)公開日 平成8年(1996)10月18日

			·····			(43)公用日	十成0年(1990)10月18日
(51)Int. C1.	•	識別記号	庁内整理番号	FΙ			技術表示箇所
H05B	41/24			H 0 5 B	41/24	U	
H 0 2 M	7/48		9181 - 5 H	H 0 2 M	7/48	Α	
H 0 5 B	41/02			H 0 5 B	41/02	Α	
	審査請求	未請求 請求	対項の数 4 O I	L		(全9頁)	
(21)出願番号	特願平7-71438			(71)出願人	(71)出願人 593177594		
(22)出願日	平成7年(1995)3月29日				牛嶋 東京都	昌和 『中野区野方6丁	目30番24号
				(72)発明者		昌和 『中野区野方6-	30-24
				(74)代理人		淀野 秀雄	
				1	_		

(54)【発明の名称】放電管用インバータ回路

(57)【要約】

【目的】 昇圧トランスなどの小型化のために駆動周波数を高くしても放電管の点灯輝度を低下させることがなく、また放電管の周辺の寄生容量が増大しても放電管に印加する電圧を低下させて放電管の点灯輝度を低下させることがないようにした放電管用インバータ回路を提供する。

【構成】 放電管用インパータ回路は、高周波発振回路 OSと、その出力を昇圧する昇圧トランスTとを備え、その二次側に放電管DTが接続される。昇圧トランスの二次側に、該二次側までの回路と放電管とのインビーダンス整合を行うインビーダンスマッチイング回路10が接続される。昇圧トランスが、一次巻線に対して密結合及び疎結合された少なくとも1つづつの密結合部と疎結合部とを有する二次巻線を有する漏洩磁束型巻線トランス、又は圧電トランスからなる。

【特許請求の範囲】

高周波発振回路と、該高周波発振回路の 【請求項1】 出力を昇圧する昇圧トランスとを備え、該昇圧トランス の二次側に放電管を接続するようにした放電管用インバ ータ回路において、

前記昇圧トランスの二次側に、該二次側までの回路と放 電管とのインピーダンス整合を行うインピーダンス整合 回路を接続したことを特徴とする放電管用インバータ回 路。

【請求項2】 前記インピーダンス整合回路が、昇圧ト ランスの二次側の一端と放電管の一端との間に直列に挿 入した高周波チョークコイルと、昇圧トランスの二次側 寄生容量と、放電管の周辺に生じる寄生容量とにより形 成されたπ型整合回路からなることを特徴とする請求項 1記載の放電管用インバータ回路。

【請求項3】 前記昇圧トランスが、一次巻線と、該一 次巻線に対してそれぞれ密結合及び疎結合された少なく とも1つづつの密結合部と疎結合部とを有する二次巻線 とを備える漏洩磁束型の巻線トランスからなり、

前記インピーダンス整合回路が、前記巻線トランスの二 次側寄生容量と、放電管の点灯時に誘導性バラストとし て働くように前記二次巻線の疎結合部に形成される誘導 成分と、前記放電管などの寄生容量と、補助的に付与さ れた補助容量とによって形成された整合回路からなるこ とを特徴とする請求項1記載の放電管用インバータ回 路。

【請求項4】 前記昇圧トランスが圧電トランスからな り、

前記インピーダンス整合回路が、補助的に付与された補 助容量と、高周波チョークコイルと、前記放電管の寄生 容量と補助的に付与された補助容量によって形成された 整合回路からなることを特徴とする請求項1記載の放電 管用インバータ回路。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、冷陰極蛍光管、熱陰極 蛍光管、水銀灯、ナトリウム灯、メタルハライド灯、ネ オン灯などの放電管を点灯駆動するための放電管用イン バータ回路に関するものである。

[0002]

【従来の技術】放電管の点灯には、商用電源をはじめと する高圧電源と、電流制限のためのバラストとからなる 点灯回路を必要とするが、近年、点灯回路の小型化のた め、また可搬型機器の普及のため低圧の直流電源から高 圧の電源を得るためにインバータ回路が用いられるよう になった。

示インバータ回路は、一対のトランジスタQ1,Q 2 と、一次巻線L1、二次巻線L2及び補助巻線L3を 50

【0003】従来、この種のインバータ回路として、図 9に示すような構成のものが一般に使用されている。図

有する昇圧トランスTとを備え、トランジスタQ1,Q 2 のコレクタは昇圧トランスTの一次巻線L」の両端に それぞれ接続されると共に、エミッタは相互接続された 上でアースに接続されている。また、トランジスタ Q1,Q2のベースには、一次巻線L1の中間点が抵抗 R1, R2を介して接続されると共に、昇圧トランスT の補助巻線L3の両端が接続されている。なお、昇圧ト ランスTの一次巻線L1、これと並列に接続されたコン デンサC1、トランジスタQ1,Q2、補助巻線L3な どはコレクタ共振型のインバータ回路の高周波発振回路 OSを構成している。

【0004】昇圧トランスTの二次巻線L2の一端は、 バラストコンデンサC2、配線Lを介して放電管DTの 一端に接続されると共に、他端は放電管DTの他端と共 にアースに接続されている。なお、C。は二次巻線L2 の寄生容量、C4 は放電管DTの周辺に生じる寄生容量 である。

【0005】上述したインバータ回路の場合、回路上最 もスペースを要しているものは昇圧トランスであり、昇 20 圧トランスの小型化が難しいことがインバータ回路全体 の形状を小さくできない原因となっている。この昇圧ト ランスの小型化を図るには、その駆動周波数を高くすれ ばよいが、このようにすればインバータ回路全体の小型 化も可能になる。

[0006]

【発明が解決しようとする課題】上述した従来の回路で は、高いインピーダンスから低インピーダンス負荷にコ ンデンサバラストを介して強引に接続した構成となって いるに過ぎないため、高インピーダンスの電源側から見 た負荷のインピーダンスと、負荷側から見た電源側のイ ンピーダンスとの整合がとれているとは言いがたい。こ のため、駆動周波数が高くなると、負荷側で反射が生じ て供給電力の一部が電源側に戻ってくるようになる。

【0007】また、インピーダンスの不整合により、図 10に示すように、電圧と電流との位相がずれて有効に 使われず、前段に戻ってしまう電力が増え、これに伴う 無効電流の増大によって銅損または誘電体損失が増える と共に電力の変換効率が低下するなどの問題を生起す る。なお、電圧RMS値と電流RMS値をかけあわせて も放電管に供給される電力とはならない。

【0008】更に、駆動周波数が高くなると、設計上バ ラストコンデンサC2 の値を小さくするが、このように なるとバラストコンデンサC2 に対する寄生容量C3 の 比率が高くなって放電管DTへの供給電圧を低下させる ので、放電管DTの点灯輝度を低下させる。特に、放電 管を液晶バックライト用光源として使用するため、PE Tフィルムに銀をスパッタリングして形成した導電件シ ートからなる反射部材を使用した場合には、放電管の周 辺の寄生容量が更に増大し、この放電管周辺の寄生容量 が放電管に印加される電圧を低下させて放電管DTの点

30

灯輝度を大きく低下させる。

【0009】この現象は、昇圧トランスとして圧電トランスを用いたものにおいても同様に生じる。圧電トランスがその等価回路として内包しているパラストコンデンサ C_2 に該当する特性容量と寄生容量 C_3 との間でも、従来の巻線トランスのときと同様の分圧効果が生じ、このことにより放電管 D Tの点灯輝度が低下する。圧電トランスでは、導電性反射シートによる点灯輝度低下は避けられないものとされており、このためこの分圧効果を少なくするには圧電トランスの形状を大きくして特性容量 C_2 を大きくしなければならないという問題があった。

【0010】よって本発明は、上述した従来の問題点に 鑑み、昇圧トランスなどの小型化のために駆動周波数を 高くしても放電管の点灯輝度を低下させることがないよ うにした放電管用インバータ回路を提供することを目的 としている。

【0011】本発明はまた、放電管の周辺の寄生容量が増大しても放電管に印加する電圧を低下させてその点灯輝度を低下させることがないようにした放電管用インバ 20 ータ回路を提供することを目的としている。

[0012]

【課題を解決するための手段】上記目的を達成するため本発明により成された放電管用インバータ回路は、高周波発振回路と、該高周波発振回路の出力を昇圧する昇圧トランスとを備え、該昇圧トランスの二次側に放電管を接続するようにした放電管用インバータ回路において、前記昇圧トランスの二次側に、該二次側までの回路と放電管とのインビーダンス整合を行うインビーダンスマッチイング回路を接続したことを特徴としている。

【0013】前記インピーダンス整合回路が、昇圧トランスの二次側の一端と放電管の一端との間に直列に挿入した高周波チョークコイルと、昇圧トランスの二次側寄生容量と、放電管の周辺に生じる寄生容量とにより形成された

元型整合回路からなることを特徴としている。なお、上記寄生容量が整合条件に達しない場合は、それぞれの寄生容量に補助容量を加えて整合条件を整える。

【0014】前記昇圧トランスが、一次巻線と、該一次 巻線に対してそれぞれ密結合及び疎結合された少なくと も1つづつの密結合部と疎結合部とを有する二次巻線と を備える漏洩磁束型の巻線トランスからなり、前記イン ビーダンス整合回路が、前記巻線トランスの二次側寄生 容量と、放電管の点灯時に誘導性バラストとして働くよ うに前記二次巻線の疎結合部に形成される誘導成分と、 前記放電管などの寄生容量と、補助的に付与された補助 容量とによって形成された整合回路からなることを特徴 としている。

【0015】前記昇圧トランスが圧電トランスからなり、前記インピーダンス整合回路が、補助的に付与された補助容量と、高周波チョークコイルと、前記放電管の

寄生容量とによって形成された整合回路からなることを 特徴としている。

[0016]

【作用】上記構成において、高周波発振回路の出力を昇圧する昇圧トランスの二次側にインビーダンス整合回路を介して放電管を接続し、昇圧トランスの二次側までの回路と放電管とのインビーダンス整合を行っているので、電源側から見た負荷のインビーダンスと、負荷側から見た電源側のインビーダンスとの整合がとられ、昇圧した高周波電力が負荷側で反射されて供給電力の一部が電源側に戻ってくるようなことがなくなる。

【0017】特に、インビーダンス整合回路が、昇圧トランスの二次側の一端と放電管の一端との間に直列に挿入した高周波チョークコイルと、昇圧トランスの二次側寄生容量と、放電管の周辺に生じる寄生容量とにより形成されたπ型整合回路からなるので、高周波チョークコイルからなる誘導性バラストにより放電管点灯時の電流制限が適切に行われ、またこの高周波チョークコイルの使用により放電管周辺に導電性反射シートを巻いた場合のように放電管側に寄生する容量が大きくても、放電管に印加される電圧が低下することがなくなる。

【0018】また、昇圧トランスが漏洩磁束型の巻線トランスからなり、その二次巻線が一次巻線に対してそれぞれ密結合及び疎結合された少なくとも1つづつの密結合部と疎結合部とを有し、巻線トランスの二次側寄生容量と、放電管の点灯時に誘導性バラストとして働くように二次巻線の疎結合部に形成される誘導成分と、放電管などの寄生容量と、補助的に付与された補助容量とによって形成した整合回路をインピーダンス整合回路として使用しているので、インピーダンス整合回路を構成するために、格別に誘導性バラストを接続することが必要なく、しかも放電管が点灯するまでは昇圧した高い高周波電圧を放電管に印加し、放電管が点灯した後は点灯前よりも低くしかも電流を制限した電力を供給することができるようになる。

【0019】更にまた、昇圧トランスとして圧電トランスを使用した場合には圧電トランスに特性的に内包されたバラスト容量と、補助的に付与された補助容量と、高周波チョークコイルと、放電管の寄生容量とによって形成した整合回路をインピーダンス整合回路として使用しているので、点灯直前に高い昇圧比により高電圧を出力し、放電管の点灯開始のきっかけを作り、定常放電時には安定に放電管を点灯させる特性を生かしたまま、更にインピーダンスを、負荷側から見た電源側のインピーダンスと、負荷側から見た電源側のインピーダンスとの整合がとられ、昇圧した高周波電力が負荷で反射されて供給電力の一部が電源側に戻ることを防ぐ。つまり、力率を改善して変換効率を良くすることができる。当然、放電管の反射材として導電性反射シートを用いた場合でも、輝度低下を防ぐことができる。

5

[0020]

【実施例】以下、本発明の実施例を図面に基づいて説明する。図1は本発明によるインバータ回路の実施例の原理構成を示す図であり、図9について上述したものと同等の部分には同一の符号を付してある。同図において、昇圧トランスTの二次巻線 L_2 の一端と放電管DTの一方の端子との間には、昇圧トランスTの二次巻線 L_2 側から見たインピーダンスと放電管DT側から見たインピーダンスと放電管DT側から見たインピーダンスを合回路10が挿入されている。このインピーダンス整合回路10は二次巻線 L_2 の寄生容量、放電管DTの周辺に生じる寄生容量などを取り込んで構成され、二次巻線 L_2 の出力が放電管DTにより反射されて戻ってくることを無くして二次巻線 L_2 の出力を放電管DTに効率よく送り込めるようにする。

【0021】図2はインピーダンス整合回路10の具体的な回路例を示し、回路10は昇圧トランスTの二次巻線 L_2 の一端と放電管DTの一端との間に直列に挿入した高周波チョークコイル10aと、昇圧トランスTの二次側寄生容量 C_3 と、放電管DTの周辺に生じる寄生容 20量 C_4 とにより構成された π 型整合回路からなるインピ*

$$R s = \frac{Z p}{1 + Q^{2}}$$

$$X a_{1} = QR s$$

$$X c_{2} = \frac{Z p}{Q}$$

【0024】Rsを仮想した端子からLa2, C及びR aの回路をみたインピーダンスがRsとなるようなLa 2及びCを求める。ここで、La2及びCのリアクタン 30 スをXa1, Xa2, Xcとすれば、上式(1)で求め※

*一ダンス整合回路である。なお、C。は放電管DTの周辺に生じる寄生容量C。が不足するときに並列に加えられる補助容量であり、この容量によってインピーダンスの整合調整が行われるが、設計条件によってはその容量を0とすることもできる。

【0022】上記

エ型整合回路中のチョークコイル10 aのインダクタンスLaと、寄生容量C3と、寄生容量C4及び補助容量C5の合成容量Cとを計算するには、図3の等価回路に置き換えて考えるとよい。図において、Zpが二次側負荷のインビーダンス、Raが放電管 DTの抵抗であり、これらは予め与えられる。LaはLa1とLa2の二つの部分に分け、C3,La1,La2及びCを次のようにして求める。La2,C及びRaを取り除き、それらの代わりに抵抗Rsを接続したとき、左側からみたインビーダンスがZpとなるようなC3,La1及びRsを求める。ここで、C3及びLa1のリアクタンスをそれぞれXc3,Xa1とすれば、Zpとこの回路のQを決めれば次式(1)によって各定数を決定できる。

[0023]

【数1】

(1)

※たRsと放電管DTの抵抗Raが与えられると次式 (2) によって各定数を決定できる。

[0025]

【数2】

$$Q' = \left(\frac{Ra}{Rs} - 1\right)^{1/2}$$

$$Xa_2 = Q'Rs$$

$$Xc = \frac{Ra}{Q'}$$
(2)

ここで、Q'はLaz, C, Raの回路のQである。

【0026】上記式(1)及び(2)からC₃, La及 ★【0027】 びCは次式(3)によって計算することができる。 ★40 【数3】

$$C_{3} = \frac{1}{2 \pi f X c_{3}}$$

$$L_{a} = \frac{X a_{1} + X a_{2}}{2 \pi f}$$

$$C = \frac{1}{2 \pi f X c}$$
(3)

ここで、fは駆動周波数である。

【0028】図2について上述した π 型インピーダンス 50 整合回路10の使用により、昇圧トランスTの一次側に

構成された高周波発振回路の発振信号は昇圧されて二次巻線 L_2 に誘起されるが、この誘起された周波数の高い高電圧はインピーダンス整合回路10の作用により反射なく放電管DTに供給されるようになる。

【0029】図2の実施例では、高周波チョークコイル 10 aがどのようなものであるか特に言及していないが、昇圧トランスTとして図4及び図5に示すような構造の漏洩磁束型のものを使用することによって、昇圧トランスTの二次巻線L2の一部分にチョークコイル10 aの機能を持たせることができる。図4及び図5の漏洩磁束型昇圧トランスTは極端な漏洩磁束型となるようにするために採用したもので、図4の実施例では円柱状の形状をなしているが、その形状は円柱状以外の角柱状などに形成することも可能であり、図5の実施例では偏平円板状の形状をないしている。

【0030】図4の実施例では具体的には、中心の中空部に丸棒状コア(図示せず)が挿入されたボビン11の一方の終端部に昇圧トランスTの補助巻線(ベース巻線)L3が巻回され、これに隣接して一次巻線(コレクタ巻線)L1が巻回され、更にその隣に二次巻線L2が20巻回されている。二次巻線L2の巻回は、一次巻線L1の近傍から始め、ボビン11の他方の終端部に形成した終端11aで終わっている。なお、一次巻線L1に隣接した二次巻線L2の一端を接地した場合には、一次巻線L1から物理的に最も離れた二次巻線L2の終端が最も電圧が高くなる。また、12は昇圧トランスTと共にインバータ回路を構成する電子部品が搭載されるブリント基板の部分を示す。

【0031】図5の実施例では具体的には、円板11′ aの中心から一方に円柱12 bを突出させた構造のフェライトコア11′ を使用し、中心の円柱11′ bの周囲に昇圧トランス117 で使用し、中心の円柱11′ b0の周囲に昇圧トランス117 を使用し、中心の円柱110 の周囲に二次巻線118 に変換して巻回され、更にその周囲に二次巻線119 が巻回されている。二次巻線119 の巻回は、一次巻線119 の近傍から始め、フェライトコア111 の円板111 111 のの外周端で終わっている。なお、一次巻線111 に隣接した二次巻線112 の一端を接地した場合には、一次巻線111 から物理的に最も離れた二次巻線112 の終端が最も電圧が高くなる。

【0032】図4及び図5について上述した構造の昇圧 40トランスTでは、無負荷時、二次巻線 L_2 に電流が流れないので、トランスTの一次巻線 L_1 は、図4 (a) 及び図5 (b) に示すように、ポピン11内の図示しないコアの全長を貫くような磁束 Φ_1 が発生する。これに対し、負荷が接続された場合には、負荷に流れる電流によって二次巻線 L_2 が磁界を発生する。この磁界による磁束 Φ_2 の方向は図4 (b) 及び図5 (c) に示すように一次巻線 L_1 が発生する磁束 Φ_1 とは逆方向となる。このことにより、二次巻線 L_2 は、一次巻線に対して密結合となっている二次巻線として働く部分 L_{21} と、一次巻

線に対して疎結合となっている誘導性バラスト、すなわちチョークコイルとして働く部分L22とに分割される現象が生じる。両者の分岐点は、負荷の軽重によって変わり、負荷が重くなると一次巻線L1側に、軽くなると終端側に移動する。

【0033】上述のような作用により、負荷に電流が流れない無負荷時には、二次巻線 L_2 の終端部に誘起される高電圧が負荷である放電管D Tに印加されるが、放電管D Tが点灯して電流が流れるようになると、誘導性バラスト、すなわちチョークコイルとして働く部分 L_{22} の作用によって、点灯中に放電管D Tに流れる電流が制限されると共に印加電圧も低下されるようになり、別個にバラストを設けることなく、放電管の点灯に必要な理想的な電圧・電流特性が得られる。

【0034】しかも、この放電管DTの点灯時に分割されチョークコイルとして働く部分 L_{22} をインビーダンス整合回路10の高周波チョークコイルLaとして取り込むと共に、巻線トランスTの二次巻線 L_2 の寄生容量、放電管DTの周辺に生じる寄生容量などを取り込んでインビーダンス整合回路10を構成することができる。このインビーダンス整合回路10が巻線トランスTと放電管DTとの間に挿入されることにより、二次巻線 L_2 の出力が放電管DTにより反射されて戻ってくることを無くして二次巻線 L_2 の出力を放電管DTに効率よく送り込めるので、放電管DTを高輝度で点灯させることができる。

【0036】上述した実施例では昇圧トランスとして巻線トランスを使用した場合を示しているが、昇圧トランスとしては巻線トランスに限られず、圧電トランスを使用することもできる。圧電トランスは機械振動式のものであるので、巻線トランスと比べ、漏洩磁束がなくなることでその対策が必要でない他、素材が燃えないセラミックからなるので安全性が向上し、また小型化も可能である。

【0037】図6は昇圧トランスとして圧電トランスTaを使用して構成した放電管用インバータの概略構成を

20

50

示す。圧電トランスは、電極によって挟んだ圧電セラミックを高周波駆動することによって圧電セラミックを歪ませ、この歪みによって発生する高い電荷電圧を同じ圧電セラミックを挟んでいる他の電極によって取り出すようにしたものである。図中、OSは高周波発振回路、10はインビーダンス整合回路、DTは放電管である。

【0038】図7はインビーダンス整合回路10の具体的な回路例を示し、回路10は圧電トランスTaの二次側の一端と放電管DTの一端との間に直列に挿入した高周波チョークコイル10bと、補助容量Caとにより構成された π 型整合回路からなる。この回路の高周波チョークコイル10bと、補助容量Caとは、インビーダンス整合回路を構成するように、図3について上述したと同様の方法で定数を決定することができる。

【0039】同図に示す圧電トランスの二次側の等価回路 Ta_2 中の C_B は、圧電トランスが基本的に圧電セラミックの両面に電極を設けた構造となっていて、電極間に容量成分が寄生することによって生じる圧電トランスの等価容量であるが、この容量 C_B が無視できない程リアクタンスが大きい場合には、この容量 C_B も取り込んで構成した π 型のインビーダンス整合回路としてもよい。

【0040】なお、上述したインビーダンス整合回路1 0がない場合、インビーダンス不整合によって反射が生 じたり力率が悪化すると、圧電トランスの容量成分を構 成する誘電体損失などによって熱損失を多く生じさせる ようになって、変換効率の低下を招く。

【0041】また、液晶バックライトを構成するため、 蛍光管からなる放電管をバックライト照明用の導光体の エッジライトとして配置すると共に、導光体への光導入 効率を上げるため、放電管が発する光を反射する銀シー トによってその周囲を覆うような構成を採用した場合に は、銀シートとアースとの間に生じる容量が図8 (a) に示すように、放電管DTの寄生容量C₄ に加わるよう になり、この容量C₄と圧電トランスTa₂ の二次側の 容量CBとの容量分圧作用によって、放電管DTに印加 される電圧を低下させて、放電管DTの輝度を低下させ るようになる。しかし、インピーダンス整合回路10を 挿入したときには、このようなことが起こらなくなり、 容量分圧作用による輝度低下も防止することができる。 同様のことは、図8 (b) に示すように見かけ上大きな 特性容量を有する無電極蛍光管のようなものにおいても 起こるが、このような場合にもインピーダンス整合回路 10の挿入により同様の効果が得られる。

[0042]

【発明の効果】以上説明したように本発明によれば、昇 圧トランスの二次側にインピーダンス整合回路を介して 放電管を接続し、電源側から見た負荷のインピーダンス と、負荷側から見た電源側のインピーダンスとの整合を とり、昇圧した高周波電力が負荷側で反射されて供給電力の一部が電源側に戻ってくるようなことをなくしているので、昇圧トランスなどの小型化のために駆動周波数を高くしても放電管の点灯輝度を低下させることがない。

【0043】特に、昇圧トランスの二次側の一端と放電管の一端との間に直列に挿入した高周波チョークコイルと、昇圧トランスの二次側寄生容量と、放電管の周辺に生じる寄生容量とによりπ型整合回路を形成し、放電管点灯時の電流制限を高周波チョークコイルからなる誘導性パラストで適切に行い、この高周波チョークコイルの使用により放電管側に寄生する容量が大きくても、放電管に印加される電圧が低下しないようにしいているので、放電管の周辺の寄生容量が増大しても放電管に印加する電圧を低下させてその点灯輝度を低下させることがない。

【0044】また、漏洩磁束型の巻線トランスの二次巻 線が一次巻線に対してそれぞれ密結合及び疎結合された 少なくとも1つづつの密結合部と疎結合部とを有し、巻 線トランスの二次側寄生容量と、放電管の点灯時に誘導 性バラストとして働くように二次巻線の疎結合部に形成 される誘導成分と、放電管などの寄生容量と、補助的に 付与された補助容量とによってインピーダンス整合回路 を形成し、電源側から見た負荷のインピーダンスと、負 荷側から見た電源側のインピーダンスとの整合がとら れ、昇圧した高周波電力が負荷側で反射されて供給電力 の一部が電源側に戻ってくるようなことをなくしている ので、昇圧トランスなどの小型化のために駆動周波数を 高くしても放電管の点灯輝度を低下させることがない。 しかも、インピーダンス整合回路を構成するために、格 別に誘導性バラストを接続することをなくし、しかも放 電管が点灯するまでは昇圧した高い高周波電圧を放電管 に印加し、放電管が点灯した後は点灯前よりも低くしか も電流を制限した電力を供給することができるようにし ている。

【0045】更にまた、昇圧トランスとして圧電トランスを使用し、補助的に付与された補助容量と、高周波チョークコイルと、放電管の寄生容量とによって形成した回路をインピーダンス整合回路として使用しているので、圧電トランスの性質上等価的に内包してしまう特性容量Cbと放電管周辺に生じる寄生容量C4とによる輝度低下容量分圧作用を補正し、銀製反射シートによる輝度低下を防ぐことができ、また点灯直前は高い昇圧比によりを電圧を出力し、放電管点灯のきっかけを作るが、点灯気をでできまた点灯直前は高い昇圧比によりな電性来圧電トランスを形成している圧電セラミックに内包する等価容量による電流制限機能により放電管点灯電流を制限する。インピーダンスを合回路を挿入しているので、電源側から見た負荷のインピーダンスとの整合がとら

れ、昇圧した高周波電力が負荷側で反射されて供給電力 の一部が電源側に戻ってくるようなことがなくなる。

【図面の簡単な説明】

【図1】本発明による放電管用インバータの一実施例を 示す原理構成図である。

【図2】図1中の一部分の具体的な回路構成を示す回路 図である。

【図3】図2中の回路の回路定数の設定の仕方を説明するための図である。

【図4】図2中の昇圧トランスとして使用される漏洩磁 10 東型巻線トランスの一例の構成を示し、(a) は無負荷 時、(b) は負荷時の磁束の様子をそれぞれ示す図である。

【図5】図2中の昇圧トランスとして使用される漏洩磁 東型巻線トランスの他の例の構成を示し、(a) は外観 斜視図であり、(b) は無負荷時、(c) は負荷時の磁 東の様子をそれぞれ示す図である。

【図6】圧電トランスを使用した本発明による放電管用インバータの一実施例を示す原理構成図である。

【図7】図6中の一部分の具体的な回路構成を示す回路 20 図である。 【図8】圧電トランスを使用した場合の従来の問題を説明するための図である。

12

【図9】従来の放電管用インバータ回路の一例を示す回路図である。

【図10】従来の問題点を説明するためのグラフである。

【符号の説明】

	DΤ	放電管
	08	高周波発振回路
)	T	昇圧トランス (巻線トランス)
	Та	昇圧トランス (圧電トランス)
	L ₁	一次巻線
	L_2	二次巻線
	L ₂₁	密結合部
	L ₂₂	疎結合部
	1 0	インピーダンス整合回路
	10a	高周波チョークコイル
	1 0 b	高周波チョークコイル
	Сз	二次側寄生容量
	C ₄	放電管などの寄生容量
	C ₅ , C ₆	補助的に付与された補助容量

【図1】

【図2】

【図3】

[図6]

• •

[図10]

