Corrigés RMS 2019

Exercice 237:

Soient $\lambda_1, \ldots, \lambda_d$ des nombres complexes de module au plus 1, $P = \prod^a (X - \lambda_i)$.

Pour $n \in \mathbb{N}$, soit $f(n) = \sum_{i=1}^{d} \lambda_{i}^{n}$. On suppose que $P \in \mathbb{Z}[X]$.

- a) Montrer que $f(\mathbb{N}) \subset \mathbb{Z}$
- b) Montrer que f est périodique à partir d'un certain rang.
- c) Montrer que, pour tout $i \in \{1, \ldots, d\}$, λ_i est nul ou racine de l'unité.

On procède par récurrence sur $n \in \mathbb{N}$.

Initialisation : n = 0

$$\sum_{i=1}^{n} \lambda_i^0 = d \in \mathbb{Z}$$

Hérédité : On suppose, pour un certain $n \in \mathbb{N}^*$, que $\forall k < n \in \mathbb{N}^*$, $\sum_{i=1}^{a} \lambda_i^k \in \mathbb{Z}$

On a:

$$\begin{split} \sum_{i=1}^d \lambda_i^n &= \left(\sum_{i=1}^d \lambda_i\right) \left(\sum_{i=1}^d \lambda_i^{n-1}\right) - \sum_{1\leqslant i\neq j\leqslant d} \lambda_i \lambda_j^{n-1} \\ &= \left(\sum_{i=1}^d \lambda_i\right) \left(\sum_{i=1}^d \lambda_i^{n-1}\right) - \frac{1}{2} \left(\sum_{1\leqslant i\neq j\leqslant d} \lambda_i \lambda_j\right) \left(\sum_{k=1}^d \lambda_k^{n-2}\right) + \frac{1}{2} \sum_{1\leqslant i\neq j\neq k\leqslant d} \lambda_i \lambda_j \lambda_k^{n-2} \\ &= \cdots \\ &= \sum_{k=1}^n \left((-1)^{k+1} \left(\sum_{i=1}^d \lambda_i^{n-k}\right) \left(\sum_{1\leqslant i_1<\dots< i_k\leqslant d} \prod_{j=1}^k \lambda_{i_j}\right)\right) \end{split}$$

Or, par hypothèse de récurrence, $\forall k \in [\![1,n]\!], \sum_{i=1}^{a} \lambda_i^{n-k} \in \mathbb{Z}$

De plus, pour tout $k \in [1, n]$, $(-1)^k \sum_{1 \leqslant i_1 < \dots < i_k \leqslant d} \prod_{j=1}^k \lambda_{i_j}$ est le coefficient de degré n-k du polynôme P donc appartient à \mathbb{Z}

Finalement,

$$\sum_{i=1}^{d} \lambda_i^n \in \mathbb{Z}$$

Cela conclut la récurrence.

b) Pour $n \ge d$, on a :

$$f(n) = \sum_{k=1}^{d} \left((-1)^{k+1} f(n-k) \left(\sum_{1 \leqslant i_1 < \dots < i_k \leqslant d} \prod_{j=1}^{k} \lambda_{i_j} \right) \right)$$

Or, $\forall n \in \mathbb{N}, f(n) \in \llbracket -d, d \rrbracket$. Comme $\llbracket -d, d \rrbracket^d$ est fini, il existe $n < n' \in \mathbb{N}$ tels que n' - n > d et $\forall k \in \llbracket 0, d - 1 \rrbracket, f(n + k) = f(n' + k)$. Et comme f(n) dépend des d termes précédents,

la suite $(f(n))_{n\in\mathbb{N}}$ est (n'-n)-périodique

c) f est périodique à partir d'un certain rang donc $\exists r \in \mathbb{N}, \forall n \in \mathbb{N}^*, f(mr) = f(r)$

On pose $S(x) = \sum_{0}^{+\infty} f(nr)x^{n}$. Alors:

$$S(x) = d + f(r) \frac{x}{1 - x}$$

$$= d + \sum_{n=1}^{+\infty} \sum_{i=1}^{d} \lambda_i^{rn} x^n$$

$$= \sum_{n=0}^{+\infty} \sum_{i=1}^{d} (\lambda_i^r x)^n$$

$$= \sum_{i=1}^{d} \sum_{n=0}^{+\infty} (\lambda_i^r x)^n$$

$$= \sum_{i=1}^{d} \frac{1}{1 - \lambda_i^r x}$$

Donc
$$d - f(r) + \frac{f(r)}{1 - x} = \sum_{i=1}^{d} \frac{1}{1 - \lambda_i^r x}$$

Par unicité de la DES, tous les λ_i sont nuls ou tels que $\lambda_i^{-r} = 1$

Exercice 251:

Soit $A \in \mathcal{M}_n[\mathbb{R}]$. Comparer ses polynômes minimaux dans $\mathcal{M}_n(\mathbb{R})$ et dans $\mathcal{M}_n(\mathbb{C})$.

Soient $R \in \mathbb{R}[X]$ et $C \in \mathbb{C}[X]$ les polynômes minimaux de A dans $\mathcal{M}_n(\mathbb{R})$ et $\mathcal{M}_n(\mathbb{C})$ respectivement.

On a bien sur C|R.

C(A) = 0 donc iC(A) = 0 donc Re(iC(A)) = 0 donc Re(iC)(A) = 0

Or C est unitaire donc $\operatorname{Re}(iC)$ est de degré strictement inférieur à C (le coefficient de plus haut degré est imaginaire pur).

Ainsi, si C n'est pas à coefficients réels, Re(iC) est un polynôme non-nul, annulant A et de degré strictement inférieur à celui de C, ce qui est absurde.

Ainsi, C est réel et R|C.

Finalement,

$$R = C$$