Recorridos en grafos: BFS vs. DFS

Algoritmo genérico de recorrido

Objetivos:

- Dado un nodo de partida, explorar tantos nodos restantes como sea posible
- No explorar ningún nodo más de una vez, es decir, lograr O(M+N)

```
function searchAlgorithm(grafo G, nodo n):
    n = explorado, todos los demás inexplorados
    mientras sea posible
        elegir una arista (u, v), siendo u el nodo actual y v un
        nodo no explorado, parar en caso de no haber ninguno
        v = explorado
```

Funciona tanto para grafos dirigidos como no dirigidos

BFS versus DFS

¿Cómo elegir la arista (u,v) a partir del nodo actual u?

BFS (Breadth-First Search) o búsqueda en amplitud	DFS (Depth-First Search) o búsqueda en profundidad
Explora los nodos por "capas"	 Explora los nodos "agresivamente"
 Puede ejecutarse en O(M+N) usando una cola (FIFO) 	 Puede ejecutarse en O(M+N) usando una pila (LIFO) o usando recursión
 Puede calcular 	
"naturalmente" cantidad mínima de saltos entre nodos	 Puede calcular los componentes fuertemente conectados de un grafo dirigido
 Puede calcular los componentes conectados de un grafo no dirigido 	

BFS

```
function BFS(grafo G, nodo a):
   for each vertex u:
      u.explored = false
   a.explored = true
   q = new queue
   q.push(a)
  while (q is not empty):
      u = q.pop()
      for each edge (u, v){
         if v.explored = false{
            v.explored = true
            q.push(v)
```


Versión recursiva

for each vertex u:

```
u.explored = false

function DFS(grafo G, nodo u):
    u.explored = true
    for each edge (u, v):
        if v.explored = false:
        DFS(G, v)
```


DFS

```
Versión iterativa con pila
```

```
function DFS(grafo G, nodo a):
   for each vertex u:
      u.explored = false
   s = new stack
   s.push(a)
   while (s is not empty):
      u = s.pop()
      if u.explored = false:
         u.explored = true
         for each edge (u, v):
            s.push(v)
```