Prof. Fuhr, Prof. Kröner

Theoretische Informatik

Hilfsmittel: selbstgefertigte Unterlagen (8 Seiten), Bearbeitungsdauer: 90 Minuten

Seitenzahl (inkl. Deckblatt): 8

Aufgabe	1	2	3	4	5	6	Σ
mögliche Punkte	10	6	16	13	16	11	72
erreichte Punkte							

Aufgabe 1 (10 Punkte)

Gegeben sei die Sprache $L = \{b^n a | n \in \mathbb{N}_0\}$. Lösungshinweis: Die Angabe des Tupels ist nicht erforderlich.

a) Konstruieren Sie einen deterministischen endlichen Automaten A mit $L(x)$
--

b) Konstruieren Sie einen deterministischen Kellerautomaten KA mit L(KA) = L.

c) Konstruieren Sie einen deterministischen Turingautomaten T mit L(T) = L.

Aufgabe 2 (6 Punkte)

Gegeben sei der reguläre Ausdruck $R = ac^*b$. Konstruieren Sie mittels aus der Vorlesung bekannter Verfahren einen endlichen Automaten A mit L(A) = L(R).

Lösungshinweise:

- Das Einzeichnen der Zustandsübergangsgraphen in die Aufgabenstellung ist gestattet.
- Die Angabe des Tupels ist nicht erforderlich.
- Es soll <u>keine Minimierung</u> der Ergebnisse vorgenommen werden.

Aufgabe 3 (16 Punkte)

Gegeben sei die Grammatik $G = (\{S\}, \{a, b, c\}, S, P)$ mit $P = \{S \rightarrow bb | aSa | Tb; T \rightarrow S\}$.

a) Leiten Sie unter Angabe aller Verfahrensschritte die Normalform von G ab. Lösungshinweis: Die Angabe der resultierenden Produktionenmenge(n) ist ausreichend.

b) Beweisen Sie folgende Aussage: L(G) ist nicht regulär.

Aufgabe 4 (13 Punkte)

Gegeben sei die Sprache $L = \{(ab)^m c^n | m \in \mathbb{N}, n \in \mathbb{N}_0 \land m > n\}.$

a) Geben Sie eine Typ-2-Grammatik G an mit L(G) = L.

b) Konstruieren Sie den zu G zugehörigen Kellerautomaten K mit L(K) = L(G). Lösungshinweis: Die Angabe des Tupels ist nicht erforderlich.

Aufgabe 5 (16Punkte)

Gegeben seien die endlichen deterministischen Automaten

$$A_1 = (\{a, b\}, \{S_0, S_1, S_2, S_3, S_4, S_5\}, S_0, \delta_{A_1}, \{S_4\})$$
 mit Zustandsübergangstabelle

	a	b
S_0	S_4	S_1
S_1	S_4	S_1
$\overline{S_2}$	S_1	S_4
S ₂ S ₃ S ₄ S ₅	S_4	S_5
S_4	S_4	S_2
S_5	S_1	S_3

$$A_2 = (\{a, b\}, \{T_0, T_1, T_2\}, T_2, \delta_{A_2}, \{T_1\})$$
 mit Zustandsübergangsgraph

a) Minimieren Sie A_1 und geben Sie den entstehenden endlichen Automaten $A_{1,m}$, der minimal für $L(A_1)$ ist, in Form seines Zustandsgraphen an.

b)	Beantworten und begründen Sie ohne Durchführung des Minimierungsverfahrens für A_2 :
	(i) Ist A ₂ minimal?
	(ii) Sind A ₁ und A ₂ äquivalent?

(iii) Sind A_1 und A_2 isomorph?

Aufgabe 6 (11 Punkte)

Gegeben sei folgender Turingautomat *M*:

Der Turingautomat M habe als Eingabe die folgende Zeichenkette erhalten: aa\$

c) Geben Sie die Startkonfiguration und die Folge von Konfigurationen bis zum erstmaligen Erreichen des Zustands S_5 an.

d) Geben Sie die Konfiguration an, in der der Turingautomat M bei gegebener Eingabe aa\$ stoppt.

- e) Welche Sprache akzeptiert der Turingautomat M?
- f) Welche Berechnung führt der Turingautomat *M* aus?