MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2015 SOLUTION KEY

Team Round

A) (1, 1) on
$$P(y = 2x^2 - 8x + C) \Rightarrow 1 = 2(1)^2 - 8(1) + C \Rightarrow C = 7$$

 $y = 2x^2 - 8x + 7 \Leftrightarrow y - 7 = 2(x - 2)^2 - 8 \Leftrightarrow (x - 2)^2 = \frac{1}{2}(y + 1)$ (Parabola opens UP.)

Thus, the vertex of the parabola is at (2, -1) and $4p = \frac{1}{2} \Rightarrow p = \frac{1}{8} \Rightarrow \text{focus } F\left(2, -\frac{7}{8}\right)$.

The slope of
$$\overrightarrow{AF}$$
 is $\frac{1+\frac{7}{8}}{1-2} = -\frac{15}{8}$ and the equation of \overrightarrow{AF} is

 $(y-1) = -\frac{15}{8}(x-1)$ or $y = \frac{-15x+23}{8}$. Knowing that x = 1 would be a root of the following quadratic equation helps factor the trinomial.

Substituting,
$$\frac{-15x+23}{8} = 2x^2 - 8x + 7 \Leftrightarrow 16x^2 - 49x + 33 = 0 \Leftrightarrow (16x-33)(x-1) = 0$$

$$\Rightarrow x_Q = \frac{33}{16}$$
.

B) Note the original equations $y = \sqrt{x-1}$ and $x = \sqrt{72y+1}$ require that both $x + \frac{1}{2}$ and y be nonnegative. Since, in the first equation, $x = 1 \Rightarrow y = 0$ and (1, 0) satisfies the second equation, we have the (trivial) solution (1, 0).

Squaring both sides, we have
$$\begin{cases} y^2 = x - 1 \Leftrightarrow x = y^2 + 1 \\ x^2 = 72y + 1 \end{cases}$$

Substituting for x in the second equation,
$$(y^2 + 1)^2 = 72y + 1 \Leftrightarrow y^4 + 2y^2 - 72y = 0$$

If $y \ne 0$, $y^3 + 2y - 72 = 0$.

By inspection (lucky guess) or synthetic substitution,
$$y = 4$$
 is solution.

Synthetic substitution gives the complete factorization as $(y-4)(y^2+4y+18)$ and the trinomial factor does not give additional real solutions.

$$y = 4 \Rightarrow 16 = x - 1 \Rightarrow x = 17$$
 and a second solution is the ordered pair (17,4).