Student Number Theory Seminar

Nir Elber

Spring 2024

Contents

Contents			1
1	Janu	uary 25: Ekedahl–Oort Stratification	1
	1.1	Dieudonné Modules	1
	1.2	<i>F</i> -zips	2

1 January 25: Ekedahl-Oort Stratification

We're going to talk about the Ekedahl-Oort stratification.

1.1 Dieudonné Modules

We begin with some motivation. Fix a perfect field k of positive characteristic $p \coloneqq \operatorname{char} k$. There are three possibilities for an elliptic curve E/k.

- Ordinary: $E[p](\overline{k}) \cong \mathbb{Z}/p\mathbb{Z}$.
- Supersingular: $E[p](\overline{k}) = 0$.

Notably, E[p] should still have rank p^2 (as a finite flat group scheme). It turns out to be productive to use the theory of Dieudonné modules, which is somehow a linearization of the problem (analogous to how Lie algebras linearizes Lie groups).

Definition 1 (Dieudonné ring). Fix a perfect field k of positive characteristic, and let W(k) denote the ring of Witt vectors. Then the *Dieudonné ring* D_k is the non-commutative W(k)-algebra generated by F and V satisfying the relations

$$FV = VF = p$$
 and $Fw = w^{\sigma}$ and $wV = Vw^{\sigma}$,

where $(-)^{\sigma}$ is the Frobenius. A *Dieudonné module* is a D_k -module.

Here is why we care.

Theorem 2. Fix a perfect field k of positive characteristic. There is an additive anti-equivalence of categories from finite commutative p-group schemes over k and D_k -modules of finite W(k)-length. Given such a group scheme G, we will let $\mathbb{D}G$ denote the D_k -module.

Here are some examples.

Example 3. One has $\mathbb{D}(\mathbb{Z}/p\mathbb{Z}) \cong k$ with F being the Frobenius and V = 0.

Example 4. One has $\mathbb{D}(\mu_{p,k}) \cong k$ with F = 0 and V being the inverse Frobenius.

Example 5. Let α_p denote the kernel of the pth-power map $\mathbb{G}_a \to \mathbb{G}_a$. Then $\mathbb{D}(\alpha_p) \cong k$ with F = V = 0.

Example 6. Fix a perfect field k of positive characteristic, and let A be an abelian k-variety. Then we have $\mathbb{D}(A[p]) \cong H^1_{\mathrm{dR}}(A)$. (This isomorphism goes through the crystalline site.) In fact, there is an isomorphism of short exact sequences as follows.

Here, (k, σ^{-1}) denotes

So here is another characterization of an elliptic curve E being supersingular.

- Ordinary: $F^*: H^1(E, \mathcal{O}_E) \to H^1(E, \mathcal{O}_E)$ is nonzero; equivalently, $V^*: H^0(E, \Omega_{E/k}) \to H^0(E, \Omega_{E/k})$ is nonzero.
- Supersingular: otherwise.

For example, suppose E/k is ordinary. Note that V vanishes on $\mathbb{D}(E[V])$, so we get $\mathbb{D}(E[V]) = \mathbb{D}(\underline{\mathbb{Z}/p\mathbb{Z}})$. Similarly, F vanishes on $\mathbb{D}(A[F])$, so we get $\mathbb{D}(\mu_p)$. Thus, we get a short exact sequence

$$0 \to \mathbb{D}(\mu_p) \to \mathbb{D}(E[p]) \to \mathbb{D}(\mathbb{Z}/p\mathbb{Z}) \to 0,$$

which upon reversing \mathbb{D} produces

$$0 \to \mathbb{Z}/p\mathbb{Z} \to E[p] \to \mu_p \to 0.$$

This splits at $\mathbb{Z}/p\mathbb{Z} \to E[p]$ by the Frobenius, so $E[p] \cong \mu_p \oplus \mathbb{Z}/p\mathbb{Z}$.

On the other hand, the supersingular case will end up producing a short exact sequence

$$0 \to \alpha_p \to E[p] \to \alpha_p \to 0$$
,

which now need not split.

1.2 F-zips

Let X/k be a smooth proper k-scheme. As a technical hypothesis, we want the Hodge to de Rham spectral sequence degenerates at E_1 , though I'm not totally sure what that means. In this situation, we get two filtration.

- Hodge filtration: $H^1_{\mathrm{dR}}(X) \supseteq \mathrm{Fil}^1_H \supseteq \mathrm{Fil}^2_H \cdots \supseteq 0$. Set $C_i \coloneqq \mathrm{Fil}^i_H$ for brevity.
- Conjugate filtration: there is an analogous filtration $H^1_{dR}(X) \supseteq \overline{\mathrm{Fil}_H^1} \supseteq \overline{\mathrm{Fil}_H^2} \cdots \supseteq 0$. Set $D_i \coloneqq \overline{\mathrm{Fil}_H^{n-i}}$ for brevity.

In this situation, we will get a Cartier isomorphism $\sigma^*(C^i/C^{i+1}) \to (D_i/D_{i-1})$.

Example 7. Let A/k be an abelian variety.

- We have $\mathbb{D}(A[p]) = H^1_{\mathrm{dR}}(A)$.
- The first filtration: $H^1_{\mathrm{dR}}(A)\supseteq \ker F\supseteq 0.$
- The second filtration: $0 \subseteq \ker V \subseteq H^1_{\mathrm{dR}}(A)$.
- The Cartier isomorphism: $\operatorname{im} F = \ker V$ and $\ker F = \operatorname{im} V$.

We now package all this data into an F-zip.

Definition 8 (F-zip). Fix an \mathbb{F}_q -scheme S. Then an F-zip over S is a tuple $(M, C^{\bullet}, D_{\bullet}, \varphi_{\bullet})$ satisfying some coherence conditions. We define its type as the map $\tau \colon \mathbb{Z} \to \mathbb{Z}_{\geq 0}$ by $\tau(i) \coloneqq \dim_k \left(C^i/C^{i+1}\right)$.

We now want to understand F-zips. Continue with A/k as an abelian variety. Then a polarization on A induces a symplectic form on $H^1_{\mathrm{dR}}(A)$. So actually we want to understand F-zips with this extra symplectic structure.

Definition 9 (symplectic F-zip). Fix everything as above. A symplectic F-zip is an F-zip $(M, C^{\bullet}, D_{\bullet}, \varphi_{\bullet})$ such that there is a symplectic form ψ on M, with some coherence conditions. For example, we want C^{\bullet} and D_{\bullet} to be symplectic flags (i.e., the symplectic dual spaces of an element of C^{\bullet} lives in C^{\bullet} , and similar for D_{\bullet}).

So here is a classification result.

Theorem 10. Let k be algebraically closed, and let (V, ψ) be a symplectic k-vector space and let $G = \operatorname{Sp}(V, \psi)$ with Weyl group (W, I). Let τ be an "admissible type" (namely, on the type of our F-zips). Then there is a bijection between isomorphism classes of symplectic F-zips of type τ and $W_j \setminus W$.

The point is that F-zips can be understood from "combinatorial data" from the Weyl group.