

Zero Lect - zero lecture

Engineering Physics (Lovely Professional University)

Scan to open on Studocu

ZERO LECTURE

Dr. Goutam Mohanty

Block-33, Room-216(Cabin-17)
Assistant Professor, Department of Physics,
Lovely Professional University, Phagwara,
Punjab-144411,India.

Email: goutam.23352@lpu.co.in

Think BIG

Congratulations to all Vertos!!

LPU has been accredited with Highest grade A++ with a score of 3.68 out of 4.

University Vision and Mission

VISION

✓ To be a premier academic institution, recognized internationally for its contribution to industry and society through excellence in teaching, learning, research, internationalization, entrepreneurship and leadership.

MISSION

- ✓ To transform education through academic rigor, practical orientation, and outcome-based teaching. To develop and implement a relationship of cooperation between industry and academia. To undertake impactful research addressing local, national, and global challenges.
- ✓ To prepare graduates to be lifelong learners with strong analytical and leadership skills. To develop global professionals and entrepreneurs with an innovative spirit, tolerance, and desire to make a difference in society.
 Dr. Goutam Mohanty

School Vision and Mission

VISION

✓ To become one of the leading Schools globally in Computer Science Engineering recognized for its academics and innovations by nurturing professionals, researchers and entrepreneurs for sustainable growth of industry and society.

MISSION

- ✓ To provide a learning-based environment on technical concepts applied to real-life situations with measurable outcomes.
- ✓ To establish connections with the industry for curriculum design, and creating internship cum career opportunities.
- ✓ To address societal issues related to regional, national and global challenges through meaningful research.
- ✓ To inspire graduates for pursuing lifelong learning in professional careers.

 To develop leadership potential in ethically competent entrepreneurs.

Program Information

Program Name: B. Tech. CSE/ IT

Program Code: P132/P133

- ➤ This Bachelor of Technology program offered by Lovely Professional University has a minimum duration of 4 years and is offered under the Semester system through Regular mode. It is a Standalone program based on the Credit system.
- > The medium of Instruction in this program is English.

A. Program Educational Objectives		
Sr.No.	Objective	
1	Become a successful professional demonstrating amalagamation of science and information technology.	
2	hose employed in industry will demonstrate professional advancement, based on scientific learnings and experimental aptitude.	
3	Those who continue their formal education will achieve a higher degree or other advanced certification.	

Bloom's Taxonomy

CLASSROOM PROTOCOLS

- Rule 1: Listen and follow instructions.
- Rule 2: Discipline is the bridge between goal and accomplishment.
- Rule 3: Respect the teacher and other Students.
- Rule 4: Maintain your work ethic and always try your best.
- Rule 5: Safety first: Keep hands, feet, and objects to yourself.

Continuous Assessment(CA)

- Two Class Tests
 - One pre-MTE (30 Marks)
 - One post-MTE (30 Marks)
- One assignment Labs @ Home (Compulsory) 30 marks

Total 3 tasks, 1 compulsory(Lab @ home) and 1 best out of remaining 2 Test.

One assignment Labs @ Home (Compulsory) 30 marks

	Marks split up of Written report	[20 Marks]
✓	Presenting accurate information, highlighting key princip	oles, supporting facts
	and details in the report.	[10 marks]
\checkmark	Observation, conclusion and analysis including learning	g outcome form the
	topic (Graphical/circuit/data analysis)	[05Marks]
\checkmark	Completeness of the Problem/Task and References cited.	[05Marks]
Ч	Power point presentation	[10Marks]
✓	Presentation skill	[04 marks]
\checkmark	Quality of PPT	[03 marks]
\checkmark	Response to queries	[03 marks]

Brief Introduction To The Course

- Physics is the most basic science that models and understands the real world – its the root of why other sciences actually work.
- Engineering Physics is an approach to engineering that seeks understand the common underlying rules of all engineering disciplines.
- Engineering Physics isn't Engineering for Physics, but Engineering with a Physics approach.
- Study and understand the root of why all Engineering fields work – So you can design anything

Why study Engineering Physics?

- Engineering Physics teaches the skills to see problems from all angles at once, allowing you to find solutions where the whole is more than the sum of the parts.
- No matter what discipline you study, you'll still have times where you need to know aspects of the other ones.
- Engineering Physics gives you the basic literacy in all disciplines.

Tower building strategy

Objective of Course

- Review of some things which you learned in Intermediate levels.
- Thorough understanding of some fundamental laws of Physics, their basic principles and applications.
- Ability to use them in Engineering Applications.

Outcome Of The Course

- CO1: Understand the basic principles of physics to lay the foundation for various engineering courses.
- CO2: Explain the principle and working of lasers and optical fiber for their wide applications.
- CO3: Employ the principle of quantum mechanics to solve Schrodinger equations for standard systems.
- CO4: Articulate the physics of solids to understand their properties.

CO5: Determine the properties of engineering materials.

Detail Course Overview

This syllabus contains SIX units.

✓ Unit-I : Electromagnetic theory

Unit-II : Lasers and applications

✓ Unit-III : Fiber optics

Unit-IV : Quantum mechanics

✓ Unit-V : Solid state physics

✓ Unit-VI : Introduction to engineering materials

UMS log in >>UMS navigation>>Learning Management System>>Academic course syllabus>>syllabus files>>select the session >>PHY110

Electric Bell using Electromagnetism

Unit-2: LASERS and Applications

Absorption and emission processes

- a absorption
- b spontaneous emission
- c stimulated emission

Absorption

Molecule absorbs a quantum of radiation (a photon) and is excited from 1 to 2.

$$M + h\upsilon \rightarrow M^*$$
(state 1) (state 2)

Spontaneous emission

 M^* (in state 2) spontaneously emits a $M^* \rightarrow M + hv$ photon of radiation.

$$M * \rightarrow M + hv$$

Stimulated emission

A quantum of radiation is required to $M*+h\upsilon \rightarrow M+2h\upsilon$ stimulate M* to go from 2 to 1.

$$M * + h\upsilon \rightarrow M + 2h\upsilon$$

Laser in Computer

Optical Disks:

- ✓ Optical disks include CDs, videodisks, DVDs, and other types of data storage for computers that are read optically using lasers.
- ✓ They are collectively characterized by a high density of information storage and non-contact reading and writing.
- ✓ A CD can hold about 700 million bits (Mb) of digital information.
- ✓ A DVD (Digital-Video-Disk) about 4.7 billion bits (Gb), while a
 double-sided DVD can hold about 17 Gb, enough for about 4 fulllength videos, or about 4 million pages of text.

Unit-4: QUANTUM MECHANICS

Quantum Computers

- Quantum Computers does not use Binary bits to store the information, but it uses something called **Qubits**.
- ➤ It is a computing technology based on the laws of **Quantum Physics**, which deals with the behavior of energy and matter(At atomic level).
- ➤ A 30-qubit quantum computer would equal the processing power of a conventional computer that could run at 10 **teraflops** (trillions of floating-point operations per second).
- AI, Cybersecurity, Healthcare etc.

Quantum computer based on superconducting qubits developed by Dr. 4BMnResearch in Zürich, Switzerland.

Unit-5

SOLID STATE PHYSICS

- Fermi-Dirac distribution function
- Energy band diagram
- Hall Effect
- Semiconductor
- Application- solar cell basics

PAM Dirac

(Paul Adrien Maurice)

Albert

Einstein

Semiconductors, Insulators and Metals

The electrical properties of metals and insulators are well known to all of us.

Everyday experience has already taught us a lot about the electrical properties of metals and insulators.

But the same cannot be said about "semiconductors".

What happens when we connect a battery to a piece of a silicon;

would it conduct well? or would it act like an insulator?

The name "semiconductor" implies that it conducts somewhere between the two cases (conductors or insulators)

Conductivity : σ

$$\sigma$$
metals ~10¹⁰ /Ω-cm S/C σ insulators ~ 10⁻²² /Ω-cm

The conductivity (σ) of a semiconductor (S/C) lies between these two extreme cases.

REFERENCE BOOKS

Text Books: ENGINEERING PHYSICS by B K PANDEY AND S CHATURVEDI, CENGAGE LEARNING, 1st Edition, (2009).

References:

- ENGINEERING PHYSICS by HITENDRA K MALIK AND A K SINGH, MCGRAW HILL EDUCATION, 1st Edition, (2009)
- CONCEPT OF MODERN PHYSICS by ARTHUR BESIER, MCGRAW HILL EDUCATION.
- FUNDAMENTALS OF PHYSICS by HALLIDAY D., RESNICK RYNDAWALKER J, WILEY, 9th Edition, (2011)

