問題

- $(\cdot,\cdot):\mathbb{R}^2\times\mathbb{R}^2\to\mathbb{R}$ を,[1, p.117] の「内積の条件 (1)(2)(3)」を満たす写像とする.また, $\{e_1,e_2\}$ を \mathbb{R}^2 の基底とする.このとき,次の問に答えなさい.
 - (1) 任意のベクトル $\mathbf{a} = a_1 \mathbf{e}_1 + a_2 \mathbf{e}_2, \mathbf{b} = b_1 \mathbf{e}_1 + b_2 \mathbf{e}_2$ に対して,

$$(a,b) = a_1b_1(e_1,e_1) + (a_1b_2 + a_2b_1)(e_1,e_2) + a_2b_2(e_2,e_2)$$

が成り立つことを示しなさい.

(2) (\cdot,\cdot) が \mathbb{R}^2 上の内積となるための (e_i,e_i) の条件を求めなさい.

(解答).(1)省略

- (2) $A = (e_1, e_1), B = (e_1, e_2), C = (e_2, e_2)$ とおき、次の 2条件
- (i) 任意のベクトル $v \in \mathbb{R}^2$ に対して, $(v, v) \ge 0$ が成り立つ.
- (ii) $(\mathbf{v}, \mathbf{v}) = 0$ となるのは $\mathbf{v} = \mathbf{0}$ のときに限る.

を満たすような A, B, C の条件を求める.

(i) の条件から A,C>0 であることがすぐにわかる*1. $v=xe_1+ye_2$ とおき, (v,v) を x に関して平方完成すると,

$$(\mathbf{v}, \mathbf{v}) = Ax^{2} + 2Bxy + Cy^{2} = A\left(x^{2} + 2\frac{B}{A}xy + \frac{C}{A}y^{2}\right)$$

$$= A\left\{\left(x + \frac{B}{A}y\right)^{2} - \frac{B^{2}}{A^{2}}y^{2} + \frac{C}{A}y^{2}\right\} = A\left\{\left(x + \frac{B}{A}y\right)^{2} + (AC - B^{2})\frac{y^{2}}{A^{2}}\right\}$$

となる. $\left(x+\frac{B}{A}y\right)^2 \ge 0, \frac{y^2}{A^2} \ge 0$ であるから、 $({\pmb v},{\pmb v}) \ge 0$ となるためには、 $AC-B^2 \ge 0$ が必要かつ十分 であることがわかる *2 . しかし、実際には $AC-B^2>0$ でなければならない。なぜなら、仮に $AC-B^2=0$ ならば、 ${\pmb w}=B{\pmb e}_1-A{\pmb e}_2$ に対して、 $({\pmb w},{\pmb w})=0$ となるからである.

以上の考察から, (2) の解は

$$A, C > 0^{*3}$$
 かつ $AC - B^2 > 0$

であることがわかる*⁴.

参考文献

[1] 村上 正康・野澤 宗平・稲葉 尚志・佐藤 恒雄, 教養の線形代数 (5 訂版), 培風館, 2008.

^{*1 (}i) の条件を満たすためには, $A,C \ge 0$ でなくてはならない.しかし,A=0 ならば,(ii) の条件に矛盾するので $A \ne 0$ である. $C \ne 0$ であることも同様.

 $^{^{*2}}$ 仮に, $AC-B^2<0$ ならば, $y \neq 0, x=-\dfrac{B}{A}y$ とすることにより, $(oldsymbol{v},oldsymbol{v})<0$ となる.

 $^{^{*3}}$ 実際には,A>0 と C>0 のどちらか一方を仮定すればよい.A>0 と $AC-B^2>0$ から,C>0 が導かれる.

^{*4} この条件は、「行列 $D=(d_{ij}),\ d_{ij}=(e_i,e_j)$ の固有値がすべて正」と同値である。これにより、この事実は一般次元のベクトル空間に拡張できる。