A bullet of mass 2.0 g is fired horizontally into a block of wood of mass 600 g. The block is suspended from strings so that it is free to move in a vertical plane. The bullet buries itself in the block. The block and bullet rise together through a vertical distance of 8.6 cm, as shown in Fig. 3.1.

For Examiner's Use

Fig. 3.1

(a) (i) Calculate the change in gravitational potential energy of the block and bullet.

change = J [2]

(ii) Show that the initial speed of the block and the bullet, after they began to move off together, was $1.3 \,\mathrm{m\,s^{-1}}$.

[1]

(b)		ng the information in (a)(ii) and the principle of conservation of momentum, ermine the speed of the bullet before the impact with the block.	For Examiner's Use
		speed = $m s^{-1}$ [2]	
(c)	(i)	Calculate the kinetic energy of the bullet just before impact.	
		kinetic energy = J [2]	
	(ii)	State and explain what can be deduced from your answers to (c)(i) and (a)(i) about the type of collision between the bullet and the block.	
		[2]	

A glass fibre of length 0.24 m and area of cross-section 7.9×10^{-7} m² is tested until it breaks. The variation with load *F* of the extension *x* of the fibre is shown in Fig. 4.1.

For Examiner's Use

Fig. 4.1

(a) S	state whether	glass is ductile,	brittle or polymeric.
-------	---------------	-------------------	-----------------------

.....[1]

- (b) Use Fig. 4.1 to determine, for this sample of glass,
 - (i) the ultimate tensile stress,

© UCLES 2005 9702/02/M/J/05

For Examiner's Use

	(ii)	the Young modulus,	
		Young modulus = Pa [3]	
	(iii)	the maximum strain energy stored in the fibre before it breaks.	
		maximum strain energy = J [2]	
(c)			
		[3]	