Finite Fields

Let p(x) be a polynomial of degree n over F. Define

$$F[x]/(p(x)) = \{f(x) \bmod p(x) | f(x) \in F[x]\}$$
$$= \{\sum_{i=0}^{n-1} a_i x^i | a_i \in F\}.$$

Addition:

$$\sum_{i=0}^{n-1} a_i x^i + \sum_{i=0}^{n-1} b_i x^i = \sum_{i=0}^{n-1} (a_i + b_i) x^i.$$

Multiplication:

$$\left(\sum_{i=0}^{n-1} a_i x^i\right) \left(\sum_{i=0}^{n-1} b_i x^i\right) = \sum_{i=0}^{n-1} c_i x^i \mod p(x).$$

Theorem 23 The polynomials over F with addition and multiplication mod p(x)form a ring, i.e., F[x]/(p(x)) is a ring.

Note: The ring F[x]/(p(x)) is called the *ring of polynomials modulo* p(x) *over* F.

 $F_2[x]/(x^3+1) = \{0, 1, x, x+1, x^2, x^2+1, x^2+x, x^2+x+1\}$

Example: Let
$$p(x) = x^3 + 1$$
 and $F = \mathbb{F}_2$. Then

$$x^{2} \cdot (x^{2} + 1) = x^{4} + x^{2} \mod (x^{3} + 1)$$
$$= x(x^{3} + 1) + x + x^{2} \mod (x^{3} + 1)$$
$$= x^{2} + x \mod (x^{3} + 1)$$

$$(x^{2} + x + 1)(x + 1) = x^{3} + x^{2} + x + x^{2} + x + 1 \mod (x^{3} + 1)$$
$$= x^{3} + 1 \mod (x^{3} + 1)$$
$$= 0 \mod (x^{3} + 1)$$

Theorem 24 The ring F[x]/(p(x)) is a field if and only if p(x) is irreducible (prime).

Proof: (\Leftarrow) If p(x) is irreducible, we must show that every element has an inverse under multiplication modulo p(x). Let $a(x) \in F[x]/(p(x))$. Then we can assume WLOG that deg a(x) < deg p(x).

- \Rightarrow $(a(x), p(x)) = \alpha \in F$ since p(x) is irreducible.
- \Rightarrow 1 = a(x)s(x) + p(x)t(x) for some $s(x), t(x) \in F[x]$.
- \Rightarrow 1 = $a(x)s(x) \mod p(x)$.
- \Rightarrow s(x) is the inverse of a(x) under multiplication modulo p(x).

 (\Rightarrow) If p(x) is not irreducible, then

$$p(x) = a(x)b(x)$$

where $\deg a(x) < \deg p(x)$ and $\deg b(x) < \deg p(x)$. From the assumption, a(x) has an inverse $a^{-1}(x)$ under multiplication modulo p(x). Therefore,

$$b(x) = b(x) \mod p(x)$$

$$= a^{-1}(x)a(x)b(x) \mod p(x)$$

$$= a^{-1}(x)p(x) \mod p(x)$$

$$= 0 \mod p(x)$$

which is a contradiction.

Example: Irreducible and reducible polynomials over \mathbb{F}_2 .

degree	irreducible	reducible
1	x	
	x+1	
		$x^2 = x \cdot x$
2	$x^2 + x + 1$	$x^2 + 1 = (x+1)(x+1)$
		$x^2 + x = x(x+1)$
		x^3
		$x^3 + 1 = (x+1)(x^2 + x + 1)$
3	$x^3 + x + 1$	$x^3 + x = (x+1)^2 x$
	$x^3 + x^2 + 1$	$x^3 + x^2 = x^2(x+1)$
		$x^3 + x^2 + x = x(x^2 + x + 1)$
		$x^3 + x^2 + x + 1 = (x+1)^3$

Remark: Let $p(x) \in F[x]$, where deg p(x) = m.

- 1) F(x)/(p(x)) is an m-dimensional vector space over F, whose basis is given by $\{1, x, x^2, \cdots, x^{m-1}\}.$
- 2) When $F = \mathbb{F}_a$,

$$|F(x)/(p(x))| \triangleq \# \text{ of elements in } F(x)/(p(x))$$

= q^m .

Corollary 25 If there is an irreducible polynomial of degree m over \mathbb{F}_q , then there exists a finite field of order q^m .

Example: Extension Field $\mathbb{F}_q = \mathsf{GF}(q)$

$$\begin{aligned} \mathsf{GF}(4) &= \mathsf{GF}(2^2) &= \mathsf{GF}(2)[x] \big/ (x^2 + x + 1), \\ \mathsf{GF}(8) &= \mathsf{GF}(2^3) &= \mathsf{GF}(2)[x] \big/ (x^3 + x + 1) \\ &\quad \mathsf{or} \quad \mathsf{GF}(2)[x] \big/ (x^3 + x^2 + 1). \end{aligned}$$

Remark: Factorization of $x^{q^m} - x$ over \mathbb{F}_q

1) $x^{q^m} - x = \text{product of all monic polynomials, irreducible over } \mathbb{F}_q$, whose degree divides m.

Example: q = 2 case

$$x^{2^{2}} - x = x(x-1)(x^{2} + x + 1)$$

$$x^{2^{3}} - x = x(x-1)(x^{3} + x + 1)(x^{3} + x^{2} + 1)$$

$$x^{2^{4}} - x = x(x-1)(x^{2} + x + 1)(x^{4} + x + 1)(x^{4} + x^{3} + 1)$$

$$\cdot (x^{4} + x^{3} + x^{2} + x + 1)$$

2) $\mathbb{F}_{q^m} =$ the set of all roots of the polynomial $x^{q^m} - x$.

Theorem 26 Let $I_q(k)$ be the number of all monic polynomials of degree k which are irreducible over \mathbb{F}_q . Then

$$I_q(k) = \frac{1}{k} \sum_{d|k} \mu(d) q^{\frac{k}{d}}$$

where

$$\mu(d) = \begin{cases} 1 & \text{if } d = 1, \\ (-1)^r & \text{if } d \text{ is the product of } r \text{ distinct primes, i.e., } d = p_1 p_2 \cdots p_r, \\ 0 & \text{if } d \text{ contains any repeated prime.} \end{cases}$$

Remark:

- 1) $\mu(n)$ is called the *Möbius function* of n.
- 2) Möbius inversion formula: Let f(n) and g(n) be any two integer functions. lf

$$f(n) = \sum_{d|n} g(d),$$

then

$$g(n) = \sum_{d|n} \mu(d) f\left(\frac{n}{d}\right).$$

Proof of Theorem 26:

 $x^{q^m}-x=$ product of all monic polynomials, irreducible over \mathbb{F}_q , whose degree divides m.

$$\Rightarrow \qquad q^m = \sum_{d|m} dI_q(d).$$

By Möbius inversion formula,

$$mI_q(m) = \sum_{d|m} \mu(d)q^{\frac{m}{d}}.$$

Corollary 27 For any q (q > 1) and m,

$$I_q(m) \ge 1$$
.

Proof: Note that $\mu(d) \geq -1$ for any d > 1. Therefore,

$$\begin{split} I_q(m) &= \frac{1}{m} \sum_{d \mid m} \mu(d) \, q^{\frac{m}{d}} \\ &\geq \frac{1}{m} \Bigg[q^m - \sum_{\substack{d \mid m \\ d > 1}} q^{\frac{m}{d}} \Bigg] \\ &> (q^m - q^{m-1} - \dots - 1)/m \\ &\geq 0 \quad \text{(for any } q > 1.\text{)} \end{split}$$

Example: Number of irreducible polynomials over \mathbb{F}_2

$$I_2(1) = 2^1; x, x + 1$$

$$I_2(2) = \frac{1}{2}(2^2 - 1) = 1;$$
 $x^2 + x + 1$

$$I_2(3) = \frac{1}{3}(2^3 - 2) = 2;$$
 $x^3 + x + 1, x^3 + x^2 + 1$

$$I_2(4) = \frac{1}{4}(2^4 - 2^2 + 0) = 3;$$
 $x^4 + x + 1, x^4 + x^3 + 1, x^4 + x^3 + x^2 + x + 1$

$$I_2(5) = \frac{1}{5}(2^5 - 2) = 6$$

$$I_2(6) = \frac{1}{6}(2^6 - 2^3 - 2^2 + 2) = 9$$

:

$$I_2(60) = 19,215,358,392,200,893.$$

Theorem 28 For any prime power q^m , there is one and only one finite field of order q^m up to isomorphism.

Example: Consider the case q=2, m=2.

$$\mathsf{GF}(2^2) = \mathsf{GF}(4) \cong \mathsf{GF}(2)[x]/(p(x)) \triangleq \{0, 1, x, x+1\}$$

where $p(x) = x^2 + x + 1$.

+	0	1	\overline{x}	x+1
0	0	1	x	x+1
1	1	0	1+x	x
x	x	x + 1	0	1
x + 1	x+1	x	1	0

×	0	1	x	x+1
0	0	0	0	0
1	0	1	x	x+1
x	0	x	x+1	1
x+1	0	x+1	1	x

Example:
$$\operatorname{GF}(2^3) = \mathbb{F}_2[x]/(x^3 + x + 1) \left(\cong \mathbb{F}_2[x]/(x^3 + x^2 + 1) \right)$$

$$\operatorname{GF}(2^3) = \{0, 1, x, x + 1, x^2, x^2 + 1, x^2 + x, x^2 + x + 1\}$$

$$(x^2 + 1)(x^2 + x) = x^4 + x^3 + x^2 + x \mod x^3 + x + 1$$

$$= x^2 + x + x^3 + x^2 + x \mod x^3 + x + 1$$

$$= x^3 \mod x^3 + x + 1$$

Example: $GF(16) = \mathbb{F}_{2^4}$ defined by $p(x) = x^4 + x + 1$.

la.	multiplicative	additive	binary expression
log	representation	representation	$x^3 x^2 x 1$
$-\infty$	0	0	0 0 0 0
0	$x^{0} = 1$	1	0 0 0 1
1	x^1	x	0 0 1 0
2	x^2	x^2	0 1 0 0
3	x^3	x^3	1 0 0 0
4	x^4	x+1	0 0 1 1
5	x^5	$x^2 + x$	0 1 1 0
6	x^6	$x^3 + x^2$	1 1 0 0
7	x^7	$x^4 + x^3 = x^3 + x + 1$	1 0 1 1
8	x^8	$x^4 + x^2 + x = x^2 + 1$	0 1 0 1
9	x^9	$x^3 + x$	1 0 1 0
10	x^{10}	$x^4 + x^2 = x^2 + x + 1$	0 1 1 1
11	x^{11}	$x^3 + x^2 + x$	1 1 1 0
12	x^{12}	$x^4 + x^3 + x^2 = x^3 + x^2 + x + 1$	1 1 1 1
13	x^{13}	$x^4 + x^3 + x^2 + x = x^3 + x^2 + 1$	1 1 0 1
14	x^{14}	$x^4 + x^3 + x = x^3 + 1$	1 0 0 1
	$x^{15} = 1$	$x^4 + x = 1$	

$$x^{15} + 1 = (x+1)(x^2 + x + 1)(x^4 + x + 1)(x^4 + x^3 + 1)(x^4 + x^3 + x^2 + x + 1)$$

 $x^{15} = 1 \mod x^4 + x + 1.$

Definition 29 A *primitive* element of \mathbb{F}_q is an element α such that every nonzero field element can be expressed as a power of α (i.e., $\alpha^{q-1}=1$, but $\alpha^s\neq 1$ for any positive integer < q-1 or equivalently $o(\alpha)=q-1)$

Example: (cont.) In \mathbb{F}_{16} , $x = \alpha$ is a primitive element.

Remark:

- 1) \mathbb{F}_q = the set of all roots of $x^q x$.
- 2) Let $\mathbb{F}_q^* = \mathbb{F}_q \setminus \{0\}$. Then

$$x^{q-1} - 1 = \prod_{\beta \in \mathbb{F}_q^*} (x - \beta).$$

Proof: \mathbb{F}_q^* is a group of order q-1 under multiplication. Let $\beta\in\mathbb{F}_q^*$ and denote its order by $o(\beta)$. Then $o(\beta) \mid q-1$, so $q-1=o(\beta) \cdot l$. This implies that

$$\beta^{q-1} = \beta^{o(\beta)l} = \left(\beta^{o(\beta)}\right)^l = 1.$$

Therefore, β is a root of $x^{q-1}-1$.

Theorem 30 In \mathbb{F}_q , there is a primitive element α of order q-1. In other words, \mathbb{F}_q^* is a cyclic group.

Proof: If q-1 is prime, then we are done, because every element except 0 and 1 has order q-1 and so primitive.

If q-1 is not prime, let $q-1=p_1^{\nu_1}p_2^{\nu_2}\cdots p_m^{\nu_m}$. For each $i,\ i=1,2,\ldots,m$, there are at most $\frac{q-1}{p_i}$ roots of the equation $x^{\frac{q-1}{p_i}}-1=0$, since \mathbb{F}_q is a field. Therefore, for each i, there exists $a_i \in \mathbb{F}_q$ such that

$$a_i^{\frac{q-1}{p_i}} \neq 1.$$

Let $b_i=a_i^{(q-1)/p_i^{
u_i}}$ and $b=b_1b_2\cdots b_m$. By Claim 1 and Claim 2 in the following, $\alpha:=b$ is an element of order q-1 in \mathbb{F}_q . Therefore, α is a primitive element in \mathbb{F}_q .

Claim 1: $o(b_i) = p_i^{\nu_i}$ for each i.

(proof) Note that $b_i^{p_i^{\nu_i}}=a_i^{q-1}=1$ for each i, since \mathbb{F}_q^* is a group of order q-1under multiplication. This means that $o(b_i) \mid p_i^{\nu_i}$, so $o(b_i) = p_i^{n_i}$ for some $n_i \leq \nu_i$. If $n_i < \nu_i$, then

$$b_i^{p_i^{\nu_i-1}} = 1.$$