Report No.: NTC1702024FV00 FCC ID: ZKWWIFI1702221

RADIO TEST REPORT

The device described below is tested by Dongguan Nore Testing Center Co., Ltd. to determine the maximum emission levels emanating from the device, the severe levels which the device can endure and E.U.T.'s performance criterion. The test results, data evaluation, test procedures, and equipment of configurations shown in this report were made in accordance with the procedures in ANSI C63.10(2013).

Applicant/Manufacturer : Chenghai Udirc Toys Co., Ltd.

Address : Dengfeng Industrial Zone, Chenghai District, Shantou, Guangdong, China

Factory : Chenghai Udirc Toys Co., Ltd.

Address : Dengfeng Industrial Zone, Chenghai District, Shantou, Guangdong, China

E.U.T. : 2.4G WIFI FPV DRONE

Brand Name : N/A

Model No. : U818A Plus (For additional models refer to section 1)

FCC ID : ZKWWIFI1702221

Measurement Standard : FCC PART 15.247: 2016

Date of Receiver : February 06, 2017

Date of Test : February 08, 2017 to April 07, 2017

Date of Report : April 07, 2017

This Test Report is Issued Under the Authority of :

Prepared by

Alina Guo / Engineer

Approved & Authorized Signer

Nore
Testing Center

Iori Fap / Abtherized Signatory

This test report is for the customer shown above and their specific product only. This report applies to above tested sample only and shall not be reproduced in part without written approval of Dongguan Nore Testing Center Co., Ltd.

Table of Contents

1. GENERAL INFORMATION	5
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST	5
1.2 RELATED SUBMITTAL(S) / GRANT (S)	
1.3 TEST METHODOLOGY	10
1.4 EQUIPMENT MODIFICATIONS	
1.5 SUPPORT DEVICE	
1.6 TEST FACILITY AND LOCATION	
1.7 SUMMARY OF TEST RESULTS	
2. SYSTEM TEST CONFIGURATION	13
2.1 EUT CONFIGURATION	13
2.2 SPECIAL ACCESSORIES	13
2.3 DESCRIPTION OF TEST MODES	
2.4 EUT EXERCISE	13
3. CONDUCTED EMISSIONS TEST	14
3.1 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	14
3.2 TEST CONDITION	
3.3 MEASUREMENT RESULTS	14
4. MAX. CONDUCTED OUTPUT POWER	15
4.1 MEASUREMENT PROCEDURE	15
4.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	15
4.3 MEASUREMENT RESULTS	15
5. 6DB BANDWIDTH	17
5.1 MEASUREMENT PROCEDURE	17
5.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
5.3 MEASUREMENT RESULTS	
6. POWER SPECTRAL DENSITY	22
6.1 MEASUREMENT PROCEDURE	22
6.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
6.3 MEASUREMENT RESULTS	
7. BAND EDGE AND CONDUCTED SPURIOUS EMISSIONS	
7.1 REQUIREMENT AND MEASUREMENT PROCEDURE	
7.1 REQUIREMENT AND MEASUREMENT FROCEDURE	
7.3 MEASUREMENT RESULTS	27

8. RADIATED SPURIOUS EMISSIONS AND RESTRICTED BANDS	33
8.1 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	33
8.2 MEASUREMENT PROCEDURE	
8.3 LIMIT	35
8.4 MEASUREMENT RESULTS	35
9. ANTENNA APPLICATION	40
9.1 ANTENNA REQUIREMENT	40
9.2 MEASUREMENT RESULTS	40
10. TEST EQUIPMENT LIST	41

Revision History of This Test Report

Report Number	Description	Issued Date
NTC1702024FV00	Initial Issue	2017-04-07

Report No.: NTC1702024FV00 FCC ID: ZKWWIFI1702221

1. GENERAL INFORMATION

1.1 Product Description for Equipment under Test

This device is a WIFI Module with WIFI function. It's powered by DC 7.4V come from battery. For more details features, please refer to User's Manual.

Model name : See following pages of model list.

(All tests were carried on model U818A Plus.)

Model difference : These models have the same circuitry, PCB

layout, electrical mechanical and physical construction. The difference is model number

only due to trading purpose.

Power Supply : DC 7.4V From battery

Test voltage : DC 7.4V From battery

Hardware version : UD-UA21M

Software version : 2.0 Serial number : N/A

Technical parameters For WIFI Function

Frequency Range : 2412-2462MHz for 802.11b/g

Modulation : DSSS for 802.11b

OFDM for 802.11g

Number of Channel : 11 for 802.11b/g

Channel space : 5MHz

Date Rate : 802.11b:1~11Mbps,

802.11g:6~54Mbps

Antenna Type : Internal Antenna

Antenna Gain : 0 dBi

Report No.: NTC1702024FV00 FCC ID: ZKWWIFI1702221

Model List:

U31, U31C, U31W, U31R, U31B, U31D, U31E, U31G, U31Plus, U31Plus-C, U31Plus-W, U31Plus-F, U31F, U31Plus-R, U31Plus-B, U31Plus-D, U31Plus-E, U31Plus-G, U31Plus-WCH, U31Plus-WGR, U31Plus-FCH, U31Plus-FGR

U29, U29C, U29M, U29W U29-S, U29R, U29F, U29B, U29D, U29E, U29G, U29S, U29S-C, U29S-W, U29S-F, U29S-R, U29S-B, U29S-D, U29S-E, U291S-G, U29Plus, U29PlusC, U29Plus-W, U29Plus-F, U29Plus-R, U29Plus-D, U29Plus-WO, U29Plus-FO, U29Plus-RO, U29Plus-B, U29Plus-D, U29Plus-E, U29Plus-G

U36, U36C, U36W, U36F, U36B, U36D, U36E, U36G, U36Plus, U36Plus-C, U36Plus-W, U36Plus-F, U36Plus-R U36Plus-WA, U36Plus-FA, U36Plus-D, U36Plus-E, U36Plus-G

U34, U34C, U34W, U34F, U34R, U34B, U34D, U34E, U34G, U34Plus, U34Plus-C, U34Plus-W, U34Plus-F, U34Plus-B, U34Plus-D, U34Plus-E, U34Plus-G

U43, U43C, U43W, U43F, U43R, U43B, U43D, U43E, U43G, U43Plus, U43Plus-C, U43Plus-W, U43Plus-F, U43Plus-B, U43Plus-D, U43Plus-E, U43Plus-G

U46, U46C, U46W, U46F, U46B, U46D, U46E, U46G, U46Plus, U46Plus-C, U46Plus-W, U46Plus-F, U46Plus-R, U46Plus-WA, U46Plus-FA, U46Plus-D, U46Plus-E, U46Plus-G

U818A Plus, U818A Plus-C, U818A Plus-W, U818A Plus-F, U818A Plus-WCH, U818A Plus-WGR, U818A Plus-FCH, U818A Plus-FGR, U818A Plus-B, U818A Plus-D, U818A Plus-E, U818A Plus-G

U88,U88Plus, U88Plus-C, U88Plus-W, U88Plus-WCH, U88Plus-WGR, U88Plus-F, U88Plus-FCH, U88Plus-FGR, U88Plus-B, U88Plus-D, U88Plus-E, U88Plus-G, U88Plus-O, U88Plus-CO, U88Plus-WO, U88Plus-WCHO, U88Plus-WGRO, U88Plus-FCHO, U88Plus-FGRO

U48 U48C, U48W, U48F, U48R, U48B, U48D, U48E, U48G, U48Plus, U48Plus-C, U48Plus-W, U48Plus-F, U48Plus-B, U48Plus-D, U48Plus-E, U48Plus-G

Report No.: NTC1702024FV00 FCC ID: ZKWWIFI1702221

U47, U47C, U47W, U47F, U47R, U47CO, U47WO, U47FO, U47B, U47D, U47E, U47G, U47Plus, U47Plus-C, U47Plus-W, U47Plus-F, U47Plus-WCH, U47Plus-WGR, U47Plus-FGR, U47Plus-FGR, U47Plus-CO, U47Plus-WO, U47Plus-FO, U47Plus-WCHO, U47Plus-WGRO, U47Plus-FGRO, U47Plus-FGRO, U47Plus-B, U47Plus-D, U47Plus-E, U47Plus-G

U37Pro, U37Pro-C, U37Pro-W, U37Pro-N, U37Pro-F, U37Pro-NF, U37Pro-WCH, U37Pro-WGR, U37Pro-FCH, U37Pro-FGR, U37Pro-NFCH, U37Pro-NFGR, U37Pro-B, U37Pro-D, U37Pro-E U37Pro-G

U40, U40C, U40W, U40F, U40R, U40CO, U40WO, U40FO, U40RO, U40W-CH, U40W-GR, U40F-CH, U40F-GR, U40W-CHO, U40W-GRO, U40F-CHO, U40F-GRO, U40W-CHOA, U40W-GROA, U40F-CHOA, U40F-GROA

U30Pro, U30Pro-C, U30Pro-W, U30Pro-N, U30Pro-F, U30Pro-NF, U30Pro-WCH, U30Pro-WGR, U30Pro-FCH, U30Pro-FGR, U30Pro-NFCH, U30Pro-NFGR, U30Pro-B, U30Pro-D, U30Pro-E, U30Pro-G

U49, U49C, U49W, U49F, U49B, U49E, U49G

U50, U50C, U50W, U50F, U50R, U50CO, U50WO, U50FO, U50B, U50D, U50E, U50G, U50Plus, U50Plus-C, U50Plus-W, U50Plus-F, U50Plus-WCH, U50Plus-WGR, U50Plus-FGR, U50Plus-FGR, U50Plus-CO, U50Plus-WO, U50Plus-FO, U50Plus-WCHO, U50Plus-WGRO, U50Plus-FGRO, U50Plus-FGRO, U50Plus-B, U50Plus-D, U50Plus-E, U50Plus-G

U51, U51C, U51W, U51F, U51R, U51CO, U51WO, U51FO, U51B, U51D, U51E, U51G, U51Plus, U51Plus-C, U51Plus-W, U51Plus-F, U51Plus-WCH, U51Plus-WGR, U51Plus-FGR, U51Plus-FGR, U51Plus-CO, U51Plus-WO, U51Plus-FO, U51Plus-WCHO, U51Plus-WGRO, U51Plus-FGRO, U51Plus-FGRO, U51Plus-B, U51Plus-D, U51Plus-E, U51Plus-G

U52, U52C, U52W, U52F, U52R, U52CO, U52WO, U52FO, U52B, U52D, U52E, U52G, U52Plus, U52Plus-C, U52Plus-W, U52Plus-F, U52Plus-WCH, U52Plus-WGR, U52Plus-FGR, U52Plus-FGR, U52Plus-WCHO, U52Plus-WGRO, U52Plus-FGRO, U52Plus-FGRO, U52Plus-B, U52Plus-D, U52Plus-E, U52Plus-G.

Report No.: NTC1702024FV00 FCC ID: ZKWWIFI1702221

U53, U53C, U53W, U53F, U53R, U53CO, U53WO, U53FO, U53B, U53D, U53E, U53G, U53Plus, U53Plus-C, U53Plus-W, U53Plus-F, U53Plus-WCH, U53Plus-WGR, U53Plus-FGR, U53Plus-G, U53Plus-WCHO, U53Plus-WGRO, U53Plus-FGRO, U53Plus-FGRO, U53Plus-B, U53Plus-D, U53Plus-E, U53Plus-G

U54, U54C, U54W, U54F, U54B, U54D, U54E, U54G, U54Plus, U54Plus-C, U54Plus-W, U54Plus-F, U54Plus-R, U54Plus-WA, U54Plus-FA, U54Plus-D, U54Plus-E, U54Plus-G

U55, U55C, U55W, U55F, U55B, U55D, U55E, U55G, U55Plus, U55Plus-C, U55Plus-W, U55Plus-F, U55Plus-R, U55Plus-WA, U55Plus-FA, U55Plus-D, U55Plus-E, U55Plus-G

U56, U56C, U56W, U56F, U56R, U56CO, U56WO, U56FO, U56B, U56D, U56E, U563G, U56Plus, U56Plus-C, U56Plus-W, U56Plus-F, U56Plus-WCH, U56Plus-WGR, U56Plus-FGR, U56Plus-FGR, U56Plus-CO, U56Plus-WO, U56Plus-FO, U56Plus-WCHO, U56Plus-WGRO, U56Plus-FGRO, U56Plus-FGRO, U56Plus-B, U56Plus-D, U56Plus-E, U563Plus-G

U57, U57C, U57W, U57F, U57R, U57CO, U57WO, U57FO, U57B, U57D, U57E, U57G, U57Plus, U57Plus-C, U57Plus-W, U57Plus-F, U57Plus-WCH, U57Plus-WGR, U57Plus-FGR, U57Plus-FGR, U57Plus-CO, U57Plus-WO, U57Plus-FO, U57Plus-WCHO, U57Plus-WGRO, U57Plus-FGRO, U57Plus-FGRO, U57Plus-B, U57Plus-D, U57Plus-E, U57Plus-G

U58, U58C, U58W, U58F, U58R, U58CO, U58WO, U58FO, U58B, U58D, U58E, U58G, U58Plus, U58Plus-C, U58Plus-W, U58Plus-F, U58Plus-WCH, U58Plus-WGR, U58Plus-FGR, U58Plus-FGR, U58Plus-CO, U58Plus-WO, U58Plus-FO, U58Plus-WCHO, U58Plus-WGRO, U58Plus-FGRO, U58Plus-FGRO, U58Plus-B, U58Plus-D, U58Plus-E, U58Plus-G

U59Pro, U59Pro-C, U59Pro-W, U59Pro-N, U59Pro-F, U59Pro-NF, U59Pro-WCH, U59Pro-WGR, U59Pro-FCH, U59Pro-FGR, U59Pro-NFCH, U59Pro-NFGR, U59Pro-B, U59Pro-D, U59Pro-E, U59Pro-G

U60Pro, U60Pro-C, U60Pro-W, U60Pro-N, U60Pro-F, U60Pro-NF, U630Pro-WCH, U60Pro-WGR, U60Pro-FCH, U60Pro-FGR, U60Pro-NFCH, U60Pro-NFGR, U60Pro-B, U60Pro-D, U60Pro-E, U60Pro-G

VR3, VR4, VR5, VR6, VR7, VR8

Report No.: NTC1702024FV00 FCC ID: ZKWWIFI1702221

WIFI Channel List

802.11 b/g					
Channel	Frequency MHz				
1	2412				
2	2417				
3	2422				
4	2427				
5	2432				
6	2437				
7	2442				
8	2447				
9	2452				
10	2457				
11	2462				

Note: According to section 15.31(m), regards to the operating frequency range over 10MHz, the Lowest, middle, and the Highest frequency of channel were selected to perform the test. The selected frequency see below:

802.11b/g				
Channel	Frequency MHz			
1	2412			
6	2437			
11	2462			

Test SW version	DutApiWiFi8801BrdigeEth
-----------------	-------------------------

Report No.: NTC1702024FV00 FCC ID: ZKWWIFI1702221

1.2 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: ZKWWIFI1702221 filing to comply with Section 15.247 of the FCC Part 15(2016), Subpart C Rule.

1.3 Test Methodology

Radiated emission measurements were performed according to the procedures in ANSI C63.10 (2013). Radiated emission measurement was performed in semi-anechoic chamber and conducted emission measurement was performed in shield room. For radiated emission measurement, preliminary scans were performed in the semi-anechoic chamber only to determine the worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters. All other measurements were made in accordance with the procedures in 47 CFR part 2.

1.4 Equipment Modifications

Not available for this EUT intended for grant.

1.5 Support Device

Notebook PC : Manufacturer: Lenovo

Model: TP00067A P/N: SL10G10768 S/N: PF-0DS3YC 15/12

CE, FCC: DOC

Adapter : Manufacturer: Lenovo

Model: ADLX65NLC3A

I/P: AC 100-240V 50-60Hz, 1.8A

O/P: DC 20V 3.25A

Report No.: NTC1702024FV00 FCC ID: ZKWWIFI1702221

1.6 Test Facility and Location

Listed by CNAS, August 14, 2015
The certificate is valid until August 13, 2018
The Laboratory has been assessed and proved to be in compliance with CNAS/CL01
The Certificate Registration Number is L5795.

Listed by FCC, July 03, 2014
The Certificate Registration Number is 665078.
Listed by Industry Canada, June 18, 2014
The Certificate Registration Number is 9743A.

Dongguan NTC Co., Ltd. (Full Name: Dongguan Nore Testing Center Co., Ltd.)

Building D, Gaosheng Science and Technology Park, Hongtu Road, Nancheng District, Dongguan City, Guangdong, China (Full Name: Building D, Gaosheng Science & Technology Park, Zhouxi Longxi Road, Nancheng District, Dongguan, Guangdong, China.

FCC ID: ZKWWIFI1702221

1.7 Summary of Test Results

FCC Rules	Description Of Test	Result
§15.207 (a)	AC Power Conducted Emission	Not Applicable
§15.247(b)(3)	Max. Conducted Output Power	Compliance
§15.247(a)(2)	6dB Bandwidth	Compliance
§15.247(e)	Power Spectral Density	Compliance
§15.247(d)	Band Edge and Conducted Spurious Emissions	Compliance
§15.247(d),§15.209, §15.205	Radiated Spurious Emissions and Restricted Bands	Compliance
§15.203	Antenna Requirement	Compliance

Note: Although this product powered by rechargeable battery, but it must be separate from the product during charging.

Report No.: NTC1702024FV00 FCC ID: ZKWWIFI1702221

2. System Test Configuration

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2 Special Accessories

Not available for this EUT intended for grant.

2.3 Description of test modes

The EUT has been tested under continuous operating condition. Test program used to control the EUT staying in continuous transmitting mode. The Lowest, middle and highest channel were chosen for testing, and modulation type CCK, DQPSK, DBPSK, OFDM and all data rate were tested. But only the worst case data is shown in this report.

2.4 EUT Exercise

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements.

Report No.: NTC1702024FV00 FCC ID: ZKWWIFI1702221

3. Conducted Emissions Test

3.1 Test SET-UP (Block Diagram of Configuration)

3.2 Test Condition

Test Requirement: FCC Part 15.207

Frequency Range: 150KHz ~ 30MHz

Detector: RBW 9KHz, VBW 30KHz

Operation Mode: WIFI Mode

3.3 Measurement Results

Not Applicable.

Report No.: NTC1702024FV00 FCC ID: ZKWWIFI1702221

4. Max. Conducted Output Power

4.1 Measurement Procedure

Maximum Conducted Output power at Antenna Terminals, FCC Rules 15.247(b)(3):

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

RBW≥DTS bandwidth

This procedure shall be used when the measurement instrument has available a resolution bandwidth than is greater than the DTS bandwidth.

- 1. Set the RBW≥DTS bandwidth;
- 2. Set VBW≥3*RBW;
- 3. Set span≥3*RBW;
- 4. Sweep time = auto couple
- 5. Detector = peak
- 6. Trace mode = max hold;
- 7. Allow trace to fully stabilize;
- 8. Use peak marker function to determine the peak amplitude level.

4.2 Test SET-UP (Block Diagram of Configuration)

4.3 Measurement Results

Pass

Please refer to following table.

Temperature :	24 °C	Humidity :	50%		
Test By:	Sance	Test Date :	February 21, 2017		
Test Result:	PASS				
Frequency MHz	Data Rate Mbps	Peak Outp dB			
IEEE 802.11b Mode (CCK, Antenna Gain=0dBi)					
Low Channel: 2412	1	14.	30		
Middle Channel: 2437	1	13.78		30	
High Channel: 2462	1	13.	72	30	
IEEE 8	802.11g Mode (OF	OM, Antenna Gair	n=0dBi)		
Low Channel: 2412	6	12.9	90	30	
Middle Channel: 2437	6	13.3	31	30	
High Channel: 2462	6	12.0	30		

Report No.: NTC1702024FV00 FCC ID: ZKWWIFI1702221

5. 6dB Bandwidth

5.1 Measurement Procedure

DTS 6dB Channel Bandwidth, FCC Rule 15.247(a)(2):

The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer was set as below according to FCC KDB558074(v03r03):

- 1. For 6dB bandwidth, Set the RBW = 100KHz. For 20dB bandwidth, Set the RBW=1-5% of the OBW, not to exceed 1MHz.
- 2. Set the VBW ≥ 3 x RBW
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

5.2 Test SET-UP (Block Diagram of Configuration)

5.3 Measurement Results

Pass

Please refer to following table and plots.

Temperature :	24 °C	Humidity: 50 %		
Test By:	Sance	Test Date: February	21-22, 2017	
Test Result:	PASS			
Frequency MHz	Data Rate Mbps	6dB Bandwidth MHz	21-22, 2017 Limit >500KHz >500KHz >500KHz >500KHz >500KHz	
	IEEE 802.11b	Mode (CCK)		
Low Channel: 2412	1	10.38	>500KHz	
Middle Channel: 2437	1	10.38	>500KHz	
High Channel: 2462	1	10.14	>500KHz	
	IEEE 802.11g N	Mode (OFDM)		
Low Channel: 2412	6	16.54	>500KHz	
Middle Channel: 2437	6	16.54	>500KHz	
High Channel: 2462	6	16.54	>500KHz	

Report No.: NTC1702024FV FCC ID: ZKWWIFI1702221

802.11b Low Channel

Date: 21.FEB.2017 16:38:02

802.11b Middle Channel

Date: 21.FEB.2017 16:40:23

FCC ID: ZKWWIFI1702221

Date: 21.FEB.2017 16:42:56

802.11g Low Channel

Date: 21.FEB.2017 16:45:30

Report No.: NTC1702024FV00 FCC ID: ZKWWIFI1702221

802.11g Middle Channel

Date: 21.FEB.2017 16:49:14

802.11g High Channel

Date: 22.FEB.2017 13:51:56

Report No.: NTC1702024FV00 FCC ID: ZKWWIFI1702221

6. Power Spectral Density

6.1 Measurement Procedure

DTS 6dB Channel Bandwidth, FCC Rule 15.247(a)(2):

The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer was set as below according to FCC KDB558074 (v03r03):

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: 3 kHz≤RBW≤100KHz
- 4. Set the VBW ≥ 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.2 Test SET-UP (Block Diagram of Configuration)

6.3 Measurement Results

Pass

Please refer to following table and plots.

	I	I	1
Temperature :	24 ℃	Humidity:	50 %
Test By:	Sance	Test Date :	February 21, 2017
Test Result:	PASS		
Frequency MHz	Data Rate Mbps	PSD dBm/3kHz	Limit dBm/3kHz
	IEEE 802.11b	Mode (CCK)	
Low Channel: 2412	1	-11.87	8
Middle Channel: 2437	1	-11.97	8
High Channel: 2462	1	-12.99	8
	IEEE 802.11g N	Mode (OFDM)	
Low Channel: 2412	6	-14.65	8
Middle Channel: 2437	6	-16.23	8
High Channel: 2462	6	-16.54	8

FCC ID: ZKWWIFI1702221

802.11b Low Channel

Date: 21.FEB.2017 17:16:51

802.11b Middle Channel

Date: 21.FEB.2017 17:17:39

FCC ID: ZKWWIFI1702221

Date: 21.FEB.2017 17:19:00

802.11g Low Channel

Date: 21.FEB.2017 17:21:33

FCC ID: ZKWWIFI1702221

802.11g Middle Channel

Date: 21.FEB.2017 17:22:56

802.11g High Channel

Date: 21.FEB.2017 17:24:08

Report No.: NTC1702024FV00 FCC ID: ZKWWIFI1702221

7. Band Edge and Conducted Spurious Emissions

7.1 Requirement and Measurement Procedure

In any 100KHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100KHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer was set as below.

A Quasi-peak measurement was then made for that frequency point for below 1GHz test. PK and AV for above 1GHz emission test.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

Frequency Band (MHz)	Level	Resolution Bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 1000	Peak	1 MHz	3 MHz
Above 1000	Average	1 MHz	10 Hz

7.2 Test SET-UP (Block Diagram of Configuration)

7.3 Measurement Results

The test plots and table showed all spurious emission and up to the tenth harmonic was measured and they were found to be at least 20dB below the highest level of the desired power in the passband. Please refer to below plots.

Report No.: NTC1702024FV00 FCC ID: ZKWWIFI1702221

Spurious Emission in restricted band:

Operation Mode: TX Test Date: Mach 31, 2017

Frequency Range: Above 1GHz Temperature: 22 $^{\circ}$ C Test Result: PASS Humidity: 54 $^{\circ}$ Measured Distance: 3m Test By: Sance

Freq.	Ant.Pol.	Rea Level(•	Factor	Emission (dBu		Limi (dBu	t 3m V/m)	Maı (d	rgin B)
(MHz)	(H/V)	PK A	V	(dB/m)	PK	AV Pł	(AV PI	(AV
				Test Mo	de: 802.1	1b				
2390.000 I	H	57.73	43.99	0.09	57.82	44.08	74.00	54.00	-16.18	-9.92
2390.000	/	52.78	35.96	0.09	52.87	36.05	74.00	54.00	-21.13	-17.95
2483.500 I	Н	59.75	46.85	0.35	60.10	47.20	74.00	54.00	-13.90	-6.80
2483.500	/	58.74	44.92	0.35	59.09	45.27	74.00	54.00	-14.91	-8.73
Test Mode: 802.11g										
2390.000 I	Н	58.56	44.19	0.09	58.65	44.28	74.00	54.00	-15.35	-9.72
2390.000	/	53.20	37.02	0.09	53.29	37.11	74.00	54.00	-20.71	-16.89
2483.500 I	Н	60.52	47.00	0.35	60.87	47.35	74.00	54.00	-13.13	-6.65
2483.500	/	59.22	45.08	0.35	59.57	45.43	74.00	54.00	-14.43	-8.57

Note: (1) All Readings are Peak Value and AV.

(2) Emission Level= Reading Level+Probe Factor +Cable Loss

(3) Measurement uncertainty: ±3.7dB

FCC ID: ZKWWIFI1702221

Band Edge 802.11b Low Channel

Date: 21.FEB.2017 19:22:05

802.11b High Channel

Date: 21.FEB.2017 19:23:54

FCC ID: ZKWWIFI1702221

Date: 21.FEB.2017 19:26:37

802.11g High Channel

Date: 21.FEB.2017 19:29:42

FCC ID: ZKWWIFI1702221

Conducted Spurious Emissions

The worst case: 802.11b Low Channel

Date: 21.FEB.2017 19:35:48

Middle Channel

Date: 21.FEB.2017 19:39:17

FCC ID: ZKWWIFI1702221

Date: 21.FEB.2017 19:40:37

Note: Sweep points=30001pts

Report No.: NTC1702024FV00 FCC ID: ZKWWIFI1702221

8. Radiated Spurious Emissions and Restricted Bands

8.1 Test SET-UP (Block Diagram of Configuration)

8.1.1 Radiated Emission Test Set-Up, Frequency Below 30MHz

Report No.: NTC1702024FV00 FCC ID: ZKWWIFI1702221

8.1.2 Radiated Emission Test Set-Up, Frequency above 1GHz

8.2 Measurement Procedure

- a. Blow 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi- anechoic chamber room.
- b. For the radiated emission test above 1GHz:
 - The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter full anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to peak detect function and specified bandwidth with maximum hold mode.
- f. A Quasi-peak measurement was then made for that frequency point for below 1GHz test. PK and AV for above 1GHz emission test.

Report No.: NTC1702024FV00 FCC ID: ZKWWIFI1702221

During the radiated emission test, the spectrum analyzer was set with the following configurations:

oormgaradone.										
Frequency Band (MHz)	Level	Resolution Bandwidth	Video Bandwidth							
30 to 1000	QP	120 kHz	300 kHz							
Above 1000	Peak	1 MHz	3 MHz							
Above 1000	Average	1 MHz	10 Hz							

8.3 Limit

Frequency range	Distance Meters	Field Strengths Limit (15.209)
MHz		μV/m
0.009 ~ 0.490	300	2400/F(kHz)
0.490 ~ 1.705	30	24000/F(kHz)
1.705 ~ 30	30	30
30 ~ 88	3	100
88 ~ 216	3	150
216 ~ 960	3	200
Above 960	3	500

Remark: (1) Emission level (dB) μ V = 20 log Emission level μ V/m

- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.
- (4) The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.
- (5) §15.247(d) specifies that emissions which fall in the restricted bands, as defined in §15.205 comply with radiated emission limits specified in §15.209.

8.4 Measurement Results

Please refer to following plots of the worst case: 802.11b lowest channel.

Report No.: NTC1702024FV00 FCC ID: ZKWWIFI1702221

Site: Radiation

Dongguan NTC Co., Ltd. Tel:+86-769-22022444 Fax:+86-769-22022799

Nore Testing Center Web: <u>Http://www.ntc-c.com</u>

Test Time: 2017-3-31 14:37:17

Test Distance:

Power Rating:

Test Engineer:

Ant. Polarization:

Temp.(C)/Hum.(%):

3m

DC 7.4V

Bang

Horizontal

22(C) / 54 %

Report No.: **U818A Plus**

Test Standard: FCC Part 15_Class B_3M

Test item: **Radiation Emission**

Applicant: **Udirc Toys**

Product: 2.4G WIFI FPV DRONE

Model No.: U818A Plus

Test Mode:

Remark:											
No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	217.2100	-13.05	39.55	26.50	46.00	-19.50	QP			Р	
2	300.6298	-10.45	43.35	32.90	46.00	-13.10	QP			Р	
3	323.9100	-9.81	44.51	34.70	46.00	-11.30	QP			Р	
4	400.5400	-9.09	43.89	34.80	46.00	-11.20	QP			Р	
5	577.0800	-5.66	29.16	23.50	46.00	-22.50	QP			Р	
6	800.1799	-1.95	33.05	31.10	46.00	-14.90	QP			Р	

Note: Below 30MHz, the emissions are lower than 20dB below the allowable limit.

Report No.: NTC1702024FV00 FCC ID: ZKWWIFI1702221

Site: Radiation

14:44:48

Dongguan NTC Co., Ltd. Tel:+86-769-22022444 Fax:+86-769-22022799

Note Testing Center Web: <u>Http://www.ntc-c.com</u>

Report No.: U818A Plus

Test Standard: FCC Part 15_Class B_3M

Test item: **Radiation Emission**

Applicant: **Udirc Toys**

Product: 2.4G WIFI FPV DRONE Model No.: **U818A Plus**

Test Mode: ΤX

Remark:

Test Distance: 3m Ant. Polarization: Vertical Temp.(C)/Hum.(%): 22(C) / 54 % Power Rating: DC 7.4V

Bang

Test Engineer:

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	218.1800	-16.02	47.52	31.50	46.00	-14.50	QP			Р	
2	298.6899	-12.50	42.60	30.10	46.00	-15.90	QP			Р	
3	329.7300	-11.62	42.82	31.20	46.00	-14.80	QP			Р	
4	400.5400	-11.12	39.32	28.20	46.00	-17.80	QP			Р	
5	600.3600	-7.00	27.90	20.90	46.00	-25.10	QP			Р	
6	800.1799	-1.95	29.75	27.80	46.00	-18.20	QP			Р	

Note: Below 30MHz, the emissions are lower than 20dB below the allowable limit.

Report No.: NTC1702024FV00 FCC ID: ZKWWIFI1702221

Test Mode: 802.11b Test Date: March 31, 2017

Frequency Range: Above 1GHz Temperature : 22℃
Test Result: PASS Humidity : 54 %
Measured Distance: 3m Test By: Sance

Freq.	Ant.Pol.	Ant.Pol. Level		(dBuV) Factor		Emission Level (dBuV)		Limit 3m (dBuV/m)		rgin B)		
(MHz)	(H/V)	PK	AV	(dB/m)	PK	AV	PK	AV	PK	AV		
	Operation Mode: TX Mode (Low)											
4824	V	46.60	31.77	6.38	52.98	38.15	74.00	54.00	-21.02	-15.85		
7236	V	47.30	31.12	10.48	57.78	41.60	74.00	54.00	-16.22	-12.40		
4824	Н	46.26	31.49	6.38	52.64	37.87	74.00	54.00	-21.36	-16.13		
7236	Н	46.07	31.14	10.48	56.55	41.62	74.00	54.00	-17.45	-12.38		
			Ope	ration Mo	ode: TX N	lode (Mi	d)					
4874	V	46.83	32.02	6.56	53.39	38.58	74.00	54.00	-20.61	-15.42		
7311	V	45.60	30.92	10.53	56.13	41.45	74.00	54.00	-17.87	-12.55		
4874	Н	46.28	31.41	6.56	52.84	37.97	74.00	54.00	-21.16	-16.03		
7311	Н	46.30	30.98	10.53	56.83	41.51	74.00	54.00	-17.17	-12.49		
			Oper	ation Mo	de: TX M	ode (Hig	jh)					
4924	V	45.86	30.99	6.76	52.62	37.75	74.00	54.00	-21.38	-16.25		
7386	V	45.77	30.83	10.57	56.34	41.40	74.00	54.00	-17.66	-12.60		
4924	Н	48.56	31.03	6.76	55.32	37.79	74.00	54.00	-18.68	-16.21		
7386	Н	45.87	30.88	10.57	56.44	41.45	74.00	54.00	-17.56	-12.55		

Note: (1) All Readings are Peak Value and AV.

- (2) Emission Level= Reading Level + Factor
- (3) Factor= Antenna Gain + Cable Loss Amplifier Gain
- (4) Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 10dB below the permissible limits.
- (5) Measurement uncertainty: ±3.7dB.
- (6) Horn antenna used for the emission over 1000MHz.

Report No.: NTC1702024FV00 FCC ID: ZKWWIFI1702221

Test Mode: 802.11g Test Date: March 31, 2017

Frequency Range: Above 1GHz Temperature : 22° C Test Result: PASS Humidity : 54° Measured Distance: 3m Test By: Sance

Freq.	Ant.Pol.	Rea Level(•	Factor	Emission Level (dBuV)		Limit 3m (dBuV/m)			rgin B)	
(MHz)	(H/V)	PK	AV	(dB/m)	PK	AV	PK	AV	PK	AV	
	Operation Mode: TX Mode (Low)										
4824	V	46.30	31.69	6.38	52.68	38.07	74.00	54.00	-21.32	-15.93	
7236	V	46.80	30.74	10.48	57.28	41.22	74.00	54.00	-16.72	-12.78	
4824	Н	45.95	31.34	6.38	52.33	37.72	74.00	54.00	-21.67	-16.28	
7236	Н	45.94	30.67	10.48	56.42	41.15	74.00	54.00	-17.58	-12.85	
			Ope	ration Mo	ode: TX N	lode (Mi	d)				
4874	V	46.70	31.63	6.56	53.26	38.19	74.00	54.00	-20.74	-15.81	
7311	V	45.30	30.62	10.53	55.83	41.15	74.00	54.00	-18.17	-12.85	
4874	Н	45.93	30.82	6.56	52.49	37.38	74.00	54.00	-21.51	-16.62	
7311	Н	46.19	30.71	10.53	56.72	41.24	74.00	54.00	-17.28	-12.76	
			Oper	ation Mo	de: TX M	ode (Hig	jh)				
4924	V	45.52	30.81	6.76	52.28	37.57	74.00	54.00	-21.72	-16.43	
7386	V	45.38	31.06	10.57	55.95	41.63	74.00	54.00	-18.05	-12.37	
4924	Н	48.70	30.53	6.76	55.46	37.29	74.00	54.00	-18.54	-16.71	
7386	Н	45.51	31.01	10.57	56.08	41.58	74.00	54.00	-17.92	-12.42	

Note: (1) All Readings are Peak Value and AV.

- (2) Emission Level= Reading Level + Factor
- (3) Factor= Antenna Gain + Cable Loss Amtplifier Gain
- (4) Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 10dB below the permissible limits.
- (5) Measurement uncertainty: ±3.7dB.
- (6) Horn antenna used for the emission over 1000MHz.

Report No.: NTC1702024FV00 FCC ID: ZKWWIFI1702221

9. Antenna Application

9.1 Antenna requirement

According to of FCC part 15C section 15.203 and 15.240:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Systems operating in the 2400-2483.5MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

9.2 Measurement Results

The antenna is PCB antenna that no antenna other than that furnished by the responsible party shall be used with the device, and the best case gain of the antenna is 0 dBi, So, the antenna is consider meet the requirement.

FCC ID: ZKWWIFI1702221

10. Test Equipment List

Description	Manufacturer	Model Number	Serial Number	Characteristics	Calibration Date	Calibration Due Date
Test Receiver Rohde & Schwarz		ESCI7	100837	9KHz~7GHz	Nov. 23, 2016	Nov. 22, 2017
Antenna	Schwarzbeck	VULB9162	9162-010	30MHz~7GHz	Nov. 26, 2016	Nov. 25, 2017
Positioning Controller	UC	UC 3000	N/A	0~360°, 1-4m	N/A	N/A
Color Monitor	SUNSPO	SP-140A	N/A	N/A	N/A	N/A
Single Phase Power Line Filter	SAEMC	PF201A-32	110210	32A	N/A	N/A
3 Phase Power Line Filter	SAEMC	PF401A-200	110318	200A	N/A	N/A
DC Power Filter	SAEMC	PF301A-200	110245	200A	N/A	N/A
Cable	Huber+Suhner	CBL2-NN-1M	22390001	9KHz~7GHz	Nov. 06, 2016	Nov. 05, 2017
Cable	Huber+Suhner	CIL02	N/A	9KHz~7GHz	Nov. 06, 2016	Nov. 05, 2017
RF Cable	Huber+Suhner	SF-104	MY16559/4	9KHz~25GHz	Mar. 06, 2017	Mar. 05, 2018
Power Amplifier	HP	HP 8447D	1145A00203	100KHz~1.3GHz	Nov. 06, 2016	Nov. 05, 2017
Horn Antenna	Schwarzbeck	BBHA9170	9170-372	15GHz~26.5GHz	Oct.22, 2016	Oct.21, 2017
Horn Antenna	Com-Power	AH-118	071078	1GHz~18GHz	Nov. 04, 2016	Nov. 03, 2017
Loop antenna	Daze	ZA30900A	0708	9KHz~30MHz	Oct.09, 2016	Oct.08, 2017
Spectrum Analyzer	Rohde & Schwarz	FSU26	200409/026	20Hz~26.5GHz	Aug. 31, 2016	Aug. 30, 2017
Pre-Amplifier	Agilent	8449B	3008A02964	1GHz~26.5GHz	Nov. 02, 2016	Nov. 01, 2017
L.I.S.N.	Rohde & Schwarz	ENV 216	101317	9KHz~30MHz	Nov. 06, 2016	Nov. 07, 2017
Temporary antenna connector	TESCOM	SS402	N/A	9KHz-25GHz	N/A	N/A

Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.