Topologia Geral - T1

Nome completo:	

1. • Seja X um espaço topológico, e seja S um subespaço de X. Se $\mathcal B$ é uma base para X, mostre que

$$\{S \cap U : U \in \mathcal{B}\}$$

é uma base para S.

- Mostre que a função característica $\chi_S: S \to \mathbb{R}$ é contínua se e somente se S é um aberto e fechado de X.
- 2. Seja $\{M_i, i \in I\}$ uma família de espaços topológicos. Suponha que $A_i \subset M_i$ é fechado para cada $i \in I$.

Mostre que $\Pi_{i \in I} A_i$ é fechado em $\Pi_{i \in I} M_i$, considerando a topologia produto.

- 3. Verdadeiro ou falso? Para toda topologia τ em \mathbb{R} , tem-se que $f:(\mathbb{R},\tau)\to(\mathbb{R},\tau)$, dada por f(x)=-x, é contínua.
 - Sejam X e Y espaços topológicos, e seja π : X → Y sobrejetiva e contínua. Se π for fechada, mostre que a topologia de Y coincide com a topologia quociente.
- 4. Uma rede $(x_{\lambda})_{{\lambda} \in {\Lambda}}$ é dita *universal* se, dado ${\Lambda} \subset {X}$, existe ${\lambda}_0 \in {\Lambda}$ tal que

$$\{x_{\lambda}: \lambda \geqslant \lambda_0\} \subset A \text{ ou } \{x_{\lambda}: \lambda \geqslant \lambda_0\} \subset X \setminus A.$$

Mostre que se x é um ponto de acumulação de uma rede universal, então esta rede converge para x.

- Considere $\tau = \{\emptyset, \mathbb{Q}, \mathbb{I}, \mathbb{R}\}$. Mostre que τ é uma topologia em \mathbb{R} . A sequência $(1/n)_{n \in \mathbb{N}}$ converge nessa topologia?
- 5. (Bônus: 0.5) Verdadeiro ou falso? Suponha que $f_i:X\to M_i$ seja contínua, para cada $i\in I$. Então a aplicação definida por

$$f: X \to M \doteq \prod_{i \in I} M_i$$

$$x \mapsto (f_i(x))_{i \in I}$$

é contínua, considerando em M a topologia das caixas.