Image Processing and Computer Graphics

Image Processing

Class 8
Interest points and local descriptors

Matching of local structures

- Key problem in computer vision appearing in:
 - Motion estimation
 - Camera calibration
 - Stereo
 - Image retrieval
 - Object recognition

Object recognition: training image on the left, test image on the right. Matching here is quite hard.

Stereo pair: point matching needed to compute depth

Block matching

- Straightforward way to match points in images:
 - Regard the image patch around each point in image 1
 - Compare it to the image patches around all points in image 2

- Computationally expensive $O(kN^2)$, k: size of patch, N: size of image (in pixels)
- Not invariant to typical appearance changes

Interest points

- Often we need only a limited number of matches
- Idea: Do not match all points in the images, but only promising subsets
 → significantly reduced complexity
- Requirements for good interest points:
 - 1. Points must come with enough information for unique matching

2. Subset in image 2 must contain matches from subset in image 1

- Choose points with high information content and clear localization

 typically corner points
- Corner detection with the structure tensor: (Förstner-Gülch 1987, Harris-Stevens 1988)

$$J_{\rho} = K_{\rho} * (\nabla I \nabla I^{\top}) = \begin{pmatrix} K_{\rho} * I_{x}^{2} & K_{\rho} * I_{x}I_{y} \\ K_{\rho} * I_{x}I_{y} & K_{\rho} * I_{y}^{2} \end{pmatrix}$$

Measure of cornerness (fast to compute):

$$c = \det J_{\rho} - \alpha \operatorname{tr} J_{\rho}$$

= gradient magnitude

Eigenvalue decomposition of the structure tensor:

$$J_{\rho} = T \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} T^{\top}$$
$$c = \lambda_2$$

Input and second eigenvalue for different ρ

- Interpretation:
 - Smoothing of J integrates gradients from the neighborhood
 - Eigenvectors in *T* yield the dominant orientation in this neighborhood and the perpendicular orientation
 - Eigenvalues yield the structure magnitude in these directions
 - A large second eigenvalue indicates strong structures in multiple directions → corners

Corners: local maxima of the second eigenvalue

• Problem: Detected corners depend on the image scale

- Consider a Gaussian pyramid of smoothed images
- The characteristic scale can be computed based on the Laplacian: (Lindeberg 1998)

$$\sigma_c = \operatorname{argmax}_{\sigma} \left(\sigma^2 \cdot |\partial_{xx}(K_{\sigma} * I) + \partial_{yy}(K_{\sigma} * I)| \right)$$

- Yields an estimate of the scale shift between two images
- Uniqueness is not ensured
 - There may be multiple local maxima
 - Even the global maximum need not be unique
- Maximum operator is not robust
 - → a little noise can lead to a very different outcome

Authors: Krystian Mikolajczyk and Cordelia Schmid

Harris-Laplace detector

Authors: Krystian Mikolajczyk and Cordelia Schmid

- Alternative to Harris-Laplace detector
- Considers local maxima of the Laplacian in scale space:

$$x^*, y^*, \sigma^* = \operatorname{argmax}_{x,y,\sigma} \left(\sigma^2 \cdot |\partial_{xx}(K_\sigma * I(x,y)) + \partial_{yy}(K_\sigma * I(x,y))| \right)$$

- Advantage: Does not mix apples and oranges (corner detector and Laplacian)
- · Laplacian focuses on blobs rather than corners
 - → complementary information
 - → one might be interested in using both

Block matching at interest points

- Positive issue of interest points:
 - Significantly reduced complexity
 - With 100 detected points in both images, one has to compare only 10000 patches instead of 96 billion(!) in 640x480 images
- Negative issues:
 - Non-dense displacement fields (important matches might be missed)
 - Corresponding patches can be slightly shifted
- Further problems (independent of interest points)
 - Patches in both images may look very different due to:
 - Rotations
 - Projective transformations (different viewing angles)
 - Lighting changes (shadows, flickering)
 - Blurring
 - Subpixel accuracy not available

Example: rotation and scaling

Example: projective transformation

© 2007-2016 Thomas Brox

Example: lighting changes

Example: blurring

- Local descriptors: vectors that contain information about the local neighborhood of an interest point
- Simplest local descriptor: block of a certain size centered at the interest point
- Goal: design local descriptors that are invariant under the mentioned transformations

- Use characteristic scale from interest point detection
- Choose and normalize the size of the blocks, such that structures have the same scale in both images

Affine transformation:

$$f(x) = Ax + t$$

Maps a circle to an ellipse (or vice-versa):

- Approximation of a projective transformation
- Parameters can be estimated, e.g., from a region detector (maximally stable extremal regions)

Affine region detector

- Maximally stable extremal regions (Matas et al. 2002)
 - Regions encircled by large gradients
 - Obtained by watershed-like algorithm

Maximally stable extremal regions and fitted ellipses. Author: Andrea Vedaldi

- Apart from scale also yields elongation of fitted ellipses
 - → allows for affine invariance

Histograms

- Alternative to a normalized neighborhood: derive invariant features within the fixed block
- Gray value histogram:
 - Rotational invariance
 - Invariant to blurring
 - Sensitive to lighting changes (bad)
 - Significant loss of information (very bad)

- Histogram of the gradient direction (orientation histograms)
 - Invariant to (additive) lighting changes
 - Building block of many successful descriptors

- Very popular local descriptor (several variants exist)
- Based on local assembly of orientation histograms and adaptive local neighborhoods

Author: David Lowe

- Extract SIFT feature points
 - Strongest responses of Laplacian in scale space
 position and scale
 - Fit quadratic function to obtain subpixel accuracy
- Create orientation histogram at selected scale
 - Peak of smoothed histogram estimates orientation
 - In case of two peaks, create two feature points
- → Estimation of position, scale, and orientation
- Affine invariance can be provided with MSER
- In object recognition: dense sampling of such points at all positions and all scales, no rotation invariance

Author: David Lowe

Dense computation of SIFT/HOG descriptors

1. Compute gradient orientation and magnitude at each pixel

- 2. Compute orientation indicator at each pixel
 - Create NxMx8 array and initialize with zero
 - Quantize the orientation at each pixel (here 8 bins) and add the respective magnitude to the respective entry in the array

- 3. Local integration → orientation histogram Smooth array with a Gaussian kernel
- Smooth in orientation direction (among neighboring channels)

Dense computation of SIFT/HOG descriptors

- 5. Sample feature vectors from the histogram image
 - Original SIFT:
 - 4 pixel spacing, 4x4 histogram array
 - → 128-D vector
 - HOG for person detection (Dalal-Triggs 2005):
 6 pixel spacing, 16x8 histogram array,
 9 orientations
 - → 1152-D vector

- SIFT: normalize to unit length
- HOG: normalize all cells relative to the neighbors of a block

Block consisting of 4 cells

Descriptors learned with convolutional networks

- CNNs are trained on large datasets with class labels (e.g. ImageNet with 1M images)
 - → network learns a representation that is good for object classification
- Intermediate layer outputs turn out to be good generic descriptors

Unsupervised training to trigger invariant features

Train CNN to discriminate surrogate classes (Dosovitskiy et al. 2015)

Seed patch and transformed versions of it make up a surrogate class

- Applied transformations: translation, rotation, scaling, color, contrast, brightness, blur
- Transformations define invariance properties of the features to be learned by the network

Descriptor matching performance

Trained directly on matching and non-matching patches

Example from Zagoruyko&Komodakis 2015

Summary

- Interest points are distinctive points in an image with a significant information content in their neighborhood
- Interest point detection can help establish invariance to certain image transformations.
- Local descriptors describe a local area in the image for the purpose of matching.
- The SIFT descriptor is based on a grid of orientation
- Intermediate layers of ConvNets yield good descriptors

References

- T. Lindeberg: Feature detection with automatic scale selection, International Journal of Computer Vision, 30(2): 79-116, 1998.
- D. G. Lowe: Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision 60(2):91-110, 2004.
- J. Matas, O. Chum, M. Urban, T. Pajdla: Robust wide baseline stereo from maximally stable extremal regions, Proc. British Machine Vision Conference, 2002.
- N. Dalal, B. Triggs: Histograms of oriented gradients for human detection, CVPR, 2005.
- S. Belongie, J. Malik, J. Puzicha: Shape matching and recognition using shape contexts, *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 24(4):509-522, 2002.
- A. Dosovitskiy, P. Fischer, T. Springenberg, M. Riedmiller, T. Brox: Discriminative unsupervised feature learning with convolutional neural networks, *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2016.
- S. Zagoruyko, N. Komodakis: Learning to Compare Image Patches via Convolutional Neural Networks, *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2015.

Programming assignment

- Implement the corner detector based on the second eigenvalue of the structure tensor
 - For computing derivatives and for smoothing images you can make use of the predefined filter masks as well as the convolution operations in CFilter.h.
 - The structure tensor of a color image is the sum of tensors over all channels
 - See an online math lecture if you do not remember how to compute the eigenvalues of a matrix http://www.khanacademy.org/
- Apply the corner detector to the images in ImageProcessing08Ex03.zip and play with the parameters
- Implement the dense SIFT/HOG descriptor (without the detector). Use a 4 pixel spacing and a 3x3 grid of histograms. You can ignore scale and rotation invariance and even skip normalization for this exercise.
- Run your corner detector on tennis500.ppm and manually select among the interest points the 10 visually most interesting ones. Compute SIFT descriptors for these points.
- Compute SIFT descriptors for all points in tennis505.ppm. For each descriptor in tennis500.ppm find the best match in tennis505.ppm and visualize them in your result image.
- Play with the amount of smoothing, the spacing, and the number of histograms when computing the descriptors.

© 2007-2016 Thomas Brox