CME 106 - Probability Cheatsheet

10-12 minutes

By Afshine Amidi and Shervine Amidi

Introduction to Probability and Combinatorics

Sample space The set of all possible outcomes of an experiment is known as the sample space of the experiment and is denoted by S.

Event Any subset E of the sample space is known as an event. That is, an event is a set consisting of possible outcomes of the experiment. If the outcome of the experiment is contained in E, then we say that E has occurred.

Axioms of probability For each event E, we denote P(E) as the probability of event E occurring.

Axiom 1 — Every probability is between 0 and 1 included, i.e:

$$0 \le P(E) \le 1$$

Axiom 1

Axiom 2 — The probability that at least one of the elementary events in the entire sample space will occur is 1, i.e:

$$P(S) = 1$$

Axiom 2

Axiom 3 — For any sequence of mutually exclusive events $E_1, ..., E_n$, we have:

$$P(\bigcup_{i=1}^{n} E_i) = \sum_{i=1}^{n} P(E_i)$$

Axiom 3

Permutation A permutation is an arrangement of r objects from a pool of n objects, in a given order. The number of such arrangements is given by P(n,r), defined as:

$$P(n,r) = \frac{n!}{(n-r)!}$$

Combination A combination is an arrangement of r objects from a pool of n objects, where the order does not matter. The number of such arrangements is given by C(n, r), defined as:

$$C(n,r) = \frac{P(n,r)}{r!} = \frac{n!}{r!(n-r)!}$$

Conditional Probability

Bayes' rule For events A and B such that P(B) > 0, we have:

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

Partition Let $\{A_i, i \in [[1, n]]\}$ be such that for all $i, A_i \neq \emptyset$. We say that $\{A_i\}$ is a partition if we have:

$$\forall i \neq j, A_i \cap A_j = \emptyset$$
 and $\bigcup_{i=1}^n A_i = S$

Extended form of Bayes' rule Let $\{A_i, i \in [[1, n]]\}$ be a partition of the sample space. We have:

$$P(A_k | B) = \frac{P(B | A_k)P(A_k)}{\sum_{i=1}^{n} P(B | A_i)P(A_i)}$$

Independence Two events A and B are independent if and only if we have:

$$P(A \cap B) = P(A)P(B)$$

Random Variables

Definitions

Random variable A random variable, often noted X, is a function that maps every element in a sample space to a real line.

Cumulative distribution function (CDF) The cumulative distribution function F, which is monotonically non-decreasing and is such that $\lim_{x\to -\infty} F(x) = 0$ and $\lim_{x\to +\infty} F(x) = 1$, is defined as:

$$F(x) = P(X \le x)$$

Cumulative distribution function

Probability density function (PDF) The probability density function fis the probability that X takes on values between two adjacent realizations of the random variable.

Relationships involving the PDF and CDF

Discrete case Here, X takes discrete values, such as outcomes of coin flips. By noting f and F the PDF and CDF respectively, we have the following relations:

$$F(x) = \sum_{x_i \le x} P(X = x_i) \quad \text{and} \quad \boxed{f(x_j) = P(X = x_j)}$$

On top of that, the PDF is such that:

$$0 \le f(x_j) \le 1$$
 and $\sum_j f(x_j) = 1$

Continuous case Here, X takes continuous values, such as the temperature in the room. By noting f and F the PDF and CDF respectively, we have the following relations:

$$F(x) = \int_{-\infty}^{x} f(y)dy$$
 and $f(x) = \frac{dF}{dx}$

On top of that, the PDF is such that:

$$f(x) \ge 0$$
 and $\int_{-\infty}^{+\infty} f(x) dx = 1$

Expectation and Moments of the Distribution

In the following sections, we are going to keep the same notations as before and the formulas will be explicitly detailed for the discrete **(D)** and continuous **(C)** cases.

Expected value The expected value of a random variable, also known as the mean value or the first moment, is often noted E[X] or μ and is the value that we would obtain by averaging the results of the experiment infinitely many times. It is computed as follows:

(D)
$$E[X] = \sum_{i=1}^{n} x_i f(x_i) \quad \text{and} \quad (C) \quad E[X] = \int_{-\infty}^{+\infty} x f(x) dx$$

Generalization of the expected value The expected value of a function of a random variable g(X) is computed as follows:

(D)
$$E[g(X)] = \sum_{i=1}^{n} g(x_i) f(x_i) \quad \text{and} \quad (C) \quad E[g(X)] = \int_{-\infty}^{+\infty} g(x) f(x) dx$$

 k^{th} moment The k^{th} moment, noted $E[X^k]$, is the value of X^k that we expect to observe on average on infinitely many trials. It is computed as follows:

(D)
$$E[X^k] = \sum_{i=1}^n x_i^k f(x_i) \quad \text{and} \quad (C) \quad E[X^k] = \int_{-\infty}^{+\infty} x^k f(x) dx$$

Variance The variance of a random variable, often noted Var(X) or σ^2 , is a measure of the spread of its distribution function. It is determined as follows:

$$Var(X) = E[(X - E[X])^2] = E[X^2] - E[X]^2$$

Standard deviation The standard deviation of a random variable, often noted σ , is a measure of the spread of its distribution function which is compatible with the units of the actual random variable. It is determined as follows:

$$\sigma = \sqrt{\operatorname{Var}(X)}$$

Standard deviation

Characteristic function A characteristic function $\psi(\omega)$ is derived from a probability density function f(x) and is defined as:

(D)
$$\psi(\omega) = \sum_{i=1}^{n} f(x_i) e^{i\omega x_i}$$
 and (C) $\psi(\omega) = \int_{-\infty}^{+\infty} f(x) e^{i\omega x} dx$

Euler's formula For $\theta \in \mathbb{R}$, the Euler formula is the name given to the identity:

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

Euler formula

Revisiting the k^{th} moment The k^{th} moment can also be computed with the characteristic function as follows:

$$E[X^k] = \frac{1}{i^k} \left[\frac{\partial^k \psi}{\partial \omega^k} \right]_{\omega = 0}$$

Transformation of random variables Let the variables X and Y be linked by some function. By noting $\boldsymbol{f}_{\boldsymbol{X}}$ and $\boldsymbol{f}_{\boldsymbol{Y}}$ the distribution function of X and Y respectively, we have:

$$f_Y(y) = f_X(x) \left| \frac{dx}{dy} \right|$$

Leibniz integral rule Let g be a function of x and potentially c, and a, b boundaries that may depend on c. We have:

$$\frac{\partial}{\partial c} \left(\int_{a}^{b} g(x) dx \right) = \frac{\partial b}{\partial c} \cdot g(b) - \frac{\partial a}{\partial c} \cdot g(a) + \int_{a}^{b} \frac{\partial g}{\partial c} (x) dx$$

Probability Distributions

Chebyshev's inequality Let X be a random variable with expected value μ . For k, $\sigma > 0$, we have the following inequality:

$$P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

Chebyshev inequality

Discrete distributions Here are the main discrete distributions to have in mind:

Continuous distributions Here are the main continuous distributions to have in mind:

Jointly Distributed Random Variables

Joint probability density function The joint probability density function of two random variables X and Y, that we note f_{XY} , is defined as follows:

(D)
$$f_{XY}(x_i, y_j) = P(X = x_i \text{ and } Y = y_j)$$

(D)
$$\boxed{ f_{XY}(x_i, y_j) = P(X = x_i \text{ and } Y = y_j) }$$
 (C)
$$\boxed{ f_{XY}(x, y) \Delta x \Delta y = P(x \le X \le x + \Delta x \text{ and } y \le Y \le y + \Delta y) }$$

Marginal density We define the marginal density for the variable X as follows:

(D)
$$f_X(x_i) = \sum_j f_{XY}(x_i, y_j) \quad \text{and} \quad (C) \quad f_X(x) = \int_{-\infty}^{+\infty} f_{XY}(x, y) dy$$

Cumulative distribution We define cumulative distrubution F_{XY} as

(D)
$$\boxed{F_{XY}(x,y) = \sum_{x_i \le x} \sum_{y_j \le y} f_{XY}(x_i, y_j)} \quad \text{and} \quad (C) \quad \boxed{F_{XY}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{XY}(x,y)}$$

Conditional density The conditional density of X with respect to Y, often noted $f_{X|Y}$, is defined as follows:

$$f_{X|Y}(x) = \frac{f_{XY}(x, y)}{f_{Y}(y)}$$

Independence Two random variables X and Y are said to be

independent if we have:

$$f_{XY}(x, y) = f_X(x)f_Y(y)$$

Moments of joint distributions We define the moments of joint distributions of random variables X and Y as follows:

(D)
$$E[X^pY^q] = \sum_i \sum_j x_i^p y_j^q f(x_i, y_j) \quad \text{and} \quad (C) \quad E[X^pY^q] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x^p y^q f(x_i, y_j) dx_j dx_j$$

Distribution of a sum of independent random variables Let $Y=X_1+\ldots+X_n$ with X_1,\ldots,X_n independent. We have:

$$\psi_Y(\omega) = \prod_{k=1}^n \psi_{X_k}(\omega)$$

Covariance We define the covariance of two random variables X and Y, that we note σ_{XY}^2 or more commonly $\mathrm{Cov}(X,Y)$, as follows:

$$\mathsf{Cov}(X,Y) \triangleq \sigma_{XY}^2 = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - \mu_X \mu_Y$$

Correlation By noting σ_X , σ_Y the standard deviations of X and Y, we define the correlation between the random variables X and Y, noted ρ_{XY} , as follows:

$$\rho_{XY} = \frac{\sigma_{XY}^2}{\sigma_X \sigma_Y}$$