Projects

1. Money Laundering Detection System – Banking

Domain: Banking & Financial Crime

Goal: Build an ETL pipeline to ingest banking transactions (structured & unstructured) from multiple sources, identify suspicious transaction patterns using Spark MLlib, and store results in a DWH for analytics.

• Tech:

Ingest: Kafka → Spark Structured Streaming → HDFS

Process: Spark (Scala/Python) for anomaly detection

Store: PostgreSQL (DWH) + MongoDB (case details)

 Modeling: Star schema with fact_transactions & dim_customer, dim_account

o **Analytics:** BI dashboard for AML officers

2. Credit Card Fraud Detection - Banking

Domain: Banking & Risk Analytics

 Goal: Create a streaming pipeline to flag fraudulent credit card usage in near real-time.

Key Steps:

- \circ ETL from transaction logs in NoSQL & RDBMS sources
- Spark MLlib for classification (Random Forest / Isolation Forest)

- Store predictions in Hive for reporting
- Modeling: Snowflake schema for fact_fraud_events with dim_card, dim_location, dim_merchant

3. Manufacturing Defect Detection

Domain: Manufacturing & IoT Analytics

 Goal: Process sensor & quality inspection data from assembly lines to detect defects and bottlenecks.

• Pipeline:

- Ingest: IoT data via Kafka → HDFS
- o Process: Spark (Scala) for anomaly detection
- Store: PostgreSQL for structured metrics, MongoDB for image defect reports
- Modeling: Fact table fact_defects linked to dim_machine, dim_operator, dim_product

4. Predictive Maintenance for Industrial Equipment

Domain: Manufacturing

- Goal: Use historical maintenance logs & sensor telemetry to predict machine failures.
- Pipeline: Hadoop batch ingestion + Spark MLlib for time series forecasting
- Modeling: Fact table fact_maintenance_events with dim_equipment,
 dim_location, dim_maintenance_team

5. Patient Risk Prediction - Healthcare

Domain: Healthcare Analytics

- Goal: Identify patients at high risk of chronic diseases using EMR & lab test data.
- Tech: Spark (Scala/Python) for preprocessing + MLlib logistic regression
- Modeling: Star schema with fact_patient_risk and dimensions for patient, hospital, and diagnosis
- Store: PostgreSQL for DWH, MongoDB for unstructured notes

6. Drug Prescription Anomaly Detection

Domain: Healthcare Fraud Prevention

- Goal: Detect unusual prescription patterns indicating drug abuse or fraud.
- Pipeline: Hive + Spark SQL for trend analysis, ML model for outlier detection
- Modeling: Snowflake schema with fact_prescriptions, dim_doctor, dim_pharmacy, dim_drug

7. Real-time Retail Demand Forecasting

Domain: Retail & E-commerce

- Goal: Predict product demand using sales transactions, seasonality, and promotions.
- **Pipeline:** Kafka → Spark Streaming → PostgreSQL DWH

- Modeling: Star schema for fact_sales and related dimensions
- ML: ARIMA / Prophet forecasting in Python

8. E-commerce Recommendation Engine

Domain: Retail / E-commerce

- **Goal:** Build a collaborative filtering recommendation system using transaction logs and customer behavior data.
- Tech: Spark MLlib ALS (Alternating Least Squares) model
- Store: Hive (historical logs) + PostgreSQL (current recommendations)

9. Insurance Claim Fraud Detection

Domain: Insurance Analytics

- Goal: Identify fraudulent claims by correlating claim data with historical records
 & external datasets.
- **Pipeline:** ETL from relational + NoSQL sources → Spark MLlib classification
- Modeling: Snowflake schema for fact_claims linked to claim type, customer, and provider dimensions

10. Traffic Flow Prediction for Smart Cities

Domain: Transportation & IoT

• Goal: Predict traffic congestion using GPS + sensor data streams.

- Pipeline: Kafka ingestion, Spark Streaming processing, PostgreSQL storage
- Modeling: Fact table fact_traffic_flow linked with dim_location,
 dim_time, dim_weather

11. Financial Market Data Warehouse

Domain: Capital Markets

- Goal: Build a DWH for stock, forex, and commodity market data with real-time feeds.
- Pipeline: Hadoop batch loads + Spark for intraday aggregation
- Modeling: Star schema for fact_trades with ticker, exchange, and sector dimensions

12. Energy Consumption Forecasting

Domain: Utilities / Smart Grid

- Goal: Predict household and industrial electricity demand from smart meter data.
- Tech: Spark MLlib time series modeling, PostgreSQL DWH for historical data
- Modeling: Star schema with fact_energy_usage, dim_customer,
 dim meter

13. Social Media Sentiment Analytics

Domain: Marketing Analytics

- Goal: Analyze customer sentiment on social media posts for brand monitoring.
- **Pipeline:** Twitter API → Spark NLP → PostgreSQL DWH
- Modeling: Fact table fact_sentiment linked with dim_platform,
 dim_campaign

14. Airline Flight Delay Prediction

Domain: Aviation Analytics

- Goal: Predict flight delays based on weather, historical delays, and route data.
- Pipeline: Hadoop (historical batch) + Spark MLlib classification
- Modeling: Star schema for fact_flight_delays linked to dim_airline,
 dim_airport, dim_weather

15. Healthcare Image Processing & Storage

Domain: Healthcare + AI/ML

- Goal: Store, process, and analyze MRI/X-ray images for diagnostic assistance.
- Pipeline: Images in HDFS, metadata in PostgreSQL, ML inference in Python
- Modeling: fact_diagnostics linked to patient and scan dimensions, with image paths in NoSQL

If you want, I can create a table mapping all these 15 projects to the exact ETL stages, Data Modeling type, storage layers, and ML algorithms so you have a ready

blueprint for implementation.

That would make it very actionable for your trainees or team.

Got it — here's another 15 advanced, domain-diverse Data Engineering + Analytics project ideas involving PostgreSQL, Spark, Scala, Python, Unix, Hadoop, Hive, NoSQL, plus ETL, Data Warehousing, and Data Modeling concepts.

Banking & Finance

1. Anti-Money Laundering Network Analysis

- Goal: Build a graph-based analytics platform to detect hidden relationships between suspicious accounts.
- **Tech:** Spark GraphX for relationship analysis, PostgreSQL for transactional storage, Neo4j for visualization.
- Modeling: Snowflake schema with fact_transactions linked to dim_account, dim_customer, dim_relationship.

2. Loan Default Risk Prediction

- Goal: Predict likelihood of loan default using historical credit data and customer behavior.
- Pipeline: Hive staging tables → Spark MLlib (Gradient Boosted Trees) → DWH.
- Modeling: Star schema with fact_loans, dim_customer, dim_branch, dim_product.

Manufacturing & Industrial

3. Supply Chain Optimization

- **Goal:** Optimize delivery routes and vendor selection using cost, delay, and quality data.
- **Pipeline:** ETL from ERP → Spark for optimization → PostgreSQL DWH.
- Modeling: Fact table fact_shipments with dim_supplier, dim_route, dim_product.

4. Quality Assurance Image Analytics

- Goal: Use AI image classification to detect quality issues in assembly line product photos.
- Pipeline: Images in HDFS, features extracted via Python OpenCV, classification in Spark MLlib.
- Modeling: Star schema with image metadata in DWH, defect reports in NoSQL.

Healthcare & Life Sciences

5. Genomics Data Processing Pipeline

- Goal: Process large genomic datasets for disease association analysis.
- Pipeline: Hadoop for raw data storage, Spark for distributed sequence processing.
- Modeling: Star schema for fact_gene_analysis with dim_gene,
 dim_patient, dim_study.

6. Hospital Bed & Resource Forecasting

- Goal: Predict hospital occupancy rates using patient inflow and seasonal patterns.
- Pipeline: Hive for historical data, Spark MLIib ARIMA for forecasting.
- Modeling: Snowflake schema with fact_occupancy and multiple dimension tables.

Retail & E-commerce

7. Dynamic Pricing Engine

- Goal: Adjust prices in real-time based on demand, stock, and competitor data.
- **Pipeline:** Kafka (competitor feeds) → Spark Streaming → DWH.
- Modeling: Star schema for fact_price_changes with dim_product, dim_store, dim_event.

8. Customer Lifetime Value (CLV) Prediction

- Goal: Predict revenue contribution of customers over their lifecycle.
- **Pipeline:** Hive for transaction history, Spark MLlib regression models.
- Modeling: Fact table fact_customer_value with dim_customer, dim_campaign.

Transportation & Logistics

9. Fleet Fuel Optimization

- Goal: Reduce fuel costs by analyzing vehicle sensor and route data.
- Pipeline: HDFS for GPS/sensor logs, Spark SQL aggregation, Hive staging.

 Modeling: Star schema for fact_fuel_usage linked with vehicle, route, and driver dimensions.

10. Railway Delay Pattern Analysis

- Goal: Analyze delay causes and predict disruptions in train schedules.
- **Pipeline:** ETL from historical logs → Spark MLlib classification.
- Modeling: Snowflake schema with fact_train_delays and dim_route,
 dim_weather.

Energy & Utilities

11. Renewable Energy Production Forecast

- Goal: Forecast solar and wind energy generation using weather patterns.
- **Pipeline:** Hive for weather history, Spark MLlib for prediction.
- Modeling: Star schema for fact_energy_output with dim_plant,
 dim weather.

12. Smart Water Leakage Detection

- Goal: Detect unusual consumption patterns to identify leaks.
- **Pipeline:** IoT sensor feeds → Spark anomaly detection → PostgreSQL DWH.
- Modeling: Snowflake schema with fact_water_usage, dim_meter, dim_location.

Telecom & Media

13. Call Detail Record (CDR) Analysis

- Goal: Analyze telecom usage patterns for churn prevention.
- Pipeline: Kafka → Spark Streaming → Hive.
- Modeling: Star schema for fact_calls with dim_customer, dim_tower, dim_plan.

14. OTT Platform Recommendation System

- Goal: Recommend movies/shows based on user watch patterns.
- **Pipeline:** Spark MLlib ALS recommendation, Hive as data source, PostgreSQL as serving layer.
- Modeling: Snowflake schema with fact_views, dim_content, dim_user.

Government & Public Sector

15. Crime Pattern Prediction

- **Goal:** Predict crime-prone areas using historical police reports and socio-economic indicators.
- Pipeline: Hadoop for raw datasets, Spark MLlib classification, NoSQL for geo-tagged data.
- Modeling: Star schema with fact_crime_events, dim_location, dim_offense, dim_time.

SAAS

Ideas

Master Project Table – Data Engineering & Analytics (PostgreSQL, Spark, Scala, Python, Unix, Hadoop, Hive, NoSQL)

#	Domain	Business	ETL Flow	Data Modeling Approach	Tech Stack
		Problem	(High-Level)		

1	Banking	Money	Kafka → Spark	Star schema	Spark (Scala/Py), Kafka,
	January 9	Laundering Detection	Streaming → HDFS → PostgreSQL/MongoD B	(fact_transactions, dim_customer, dim_account)	PostgreSQL, MongoDB, Hive
2	Banking	Credit Card Fraud Detection	RDBMS/NoSQL → Spark MLlib → Hive	Snowflake (fact_fraud_events, dim_card, dim_location, dim_merchant)	Spark, Hive, PostgreSQL
3	Manufacturin g	Defect Detection	Kafka IoT → Spark → PostgreSQL/MongoD B	Star (fact_defects, dim_machine, dim_operator, dim_product)	Spark, HDFS, PostgreSQL, MongoDB
1	Manufacturin g	Predictive Maintenance	Hadoop batch → Spark MLlib	Star (fact_maintenance_event s, dim_equipment, dim_location, dim_team)	Hadoop, Spark, PostgreSQL
5	Healthcare	Patient Risk Prediction	EMR & lab data → Spark MLlib → DWH	Star (fact_patient_risk, dim_patient, dim_hospital, dim_diagnosis)	Spark, PostgreSQL, MongoDB
6	Healthcare	Drug Prescription Anomaly Detection	Hive → Spark SQL/ML → DWH	Snowflake (fact_prescriptions, dim_doctor, dim_pharmacy, dim_drug)	Hive, Spark, PostgreSQL
7	Retail	Real-time Demand Forecasting	Kafka → Spark Streaming → PostgreSQL	Star (fact_sales, dim_product, dim_store, dim_time)	Kafka, Spark, PostgreSQL
8	Retail	E-commerce Recommendatio n Engine	Logs → Spark MLlib ALS → Hive/PostgreSQL	Star (fact_user_item, dim_user, dim_item)	Spark MLlib, Hive, PostgreSQL
9	Insurance	Claim Fraud Detection	RDBMS + NoSQL → Spark MLlib → Hive	Snowflake (fact_claims, dim_customer, dim_provider, dim_type)	Spark, Hive, PostgreSQL
10	Transportatio n	Traffic Flow Prediction	Kafka → Spark → PostgreSQL	Star (fact_traffic_flow, dim_location, dim_time, dim_weather)	Kafka, Spark, PostgreSQL
1	Finance	Financial Market DWH	Real-time API → Hadoop batch + Spark	Star (fact_trades, dim_ticker, dim_exchange, dim_sector)	Hadoop, Spark, PostgreSQL
12	Energy	Energy Consumption Forecasting	IoT → Spark MLlib → PostgreSQL	Star (fact_energy_usage, dim_customer, dim_meter)	Spark, PostgreSQL
13	Marketing	Social Media Sentiment Analysis	Twitter API → Spark NLP → PostgreSQL	Star (fact_sentiment, dim_platform, dim_campaign)	Spark NLP, PostgreSQL
14	Aviation	Flight Delay Prediction	Hadoop batch → Spark MLlib → Hive	Star (fact_flight_delays, dim_airline, dim_airport, dim_weather)	Hadoop, Spark, Hive

15	Healthcare	Healthcare Image Processing	Images → HDFS → ML inference → PostgreSQL/NoSQL	Star (fact_diagnostics, dim_patient, dim_scan)	HDFS, Spark, PostgreSQL, MongoDB
16	Banking	AML Network Analysis	RDBMS + NoSQL → Spark GraphX → Neo4j/PostgreSQL	Snowflake (fact_transactions, dim_relationship)	Spark GraphX, PostgreSQL, Neo4j
17	Banking	Loan Default Risk Prediction	Hive → Spark MLlib → PostgreSQL	Star (fact_loans, dim_customer, dim_branch, dim_product)	Hive, Spark, PostgreSQL
18	Manufacturin g	Supply Chain Optimization	ERP → Spark optimization → PostgreSQL	Star (fact_shipments, dim_supplier, dim_route, dim_product)	Spark, PostgreSQL
19	Manufacturin g	QA Image Analytics	HDFS images → OpenCV → Spark MLlib	Star (fact_defect_images, dim_machine, dim_product)	HDFS, OpenCV, Spark
20	Healthcare	Genomics Data Processing	Hadoop → Spark → PostgreSQL	Star (fact_gene_analysis, dim_gene, dim_patient)	Hadoop, Spark
21	Healthcare	Hospital Bed Forecasting	Hive → Spark MLlib → DWH	Snowflake (fact_occupancy, dim_hospital, dim_time)	Hive, Spark, PostgreSQL
22	Retail	Dynamic Pricing Engine	Kafka → Spark Streaming → PostgreSQL	Star (fact_price_changes, dim_product, dim_store, dim_event)	Kafka, Spark, PostgreSQL
23	Retail	CLV Prediction	Hive → Spark MLlib → DWH	Star (fact_customer_value, dim_customer, dim_campaign)	Hive, Spark, PostgreSQL
24	Logistics	Fleet Fuel Optimization	IoT logs → Spark SQL → Hive/PostgreSQL	Star (fact_fuel_usage, dim_vehicle, dim_route, dim_driver)	Spark, Hive, PostgreSQL
25	Transportatio n	Railway Delay Analysis	Hadoop batch → Spark MLlib → Hive	Snowflake (fact_train_delays, dim_route, dim_weather)	Hadoop, Spark, Hive
26	Energy	Renewable Energy Forecasting	Hive weather data → Spark MLlib → DWH	Star (fact_energy_output, dim_plant, dim_weather)	Hive, Spark, PostgreSQL
27	Utilities	Smart Water Leakage Detection	IoT → Spark anomaly detection → PostgreSQL	Snowflake (fact_water_usage, dim_meter, dim_location)	Spark, PostgreSQL
28	Telecom	CDR Analysis	Kafka → Spark → Hive/PostgreSQL	Star (fact_calls, dim_customer, dim_tower, dim_plan)	Kafka, Spark, Hive
29	Media	OTT Recommendatio n System	Logs → Spark MLlib ALS → Hive/PostgreSQL	Snowflake (fact_views, dim_content, dim_user)	Spark MLlib, Hive, PostgreSQL
30	Public Sector	Crime Pattern Prediction	Hadoop batch → Spark MLlib → NoSQL/PostgreSQL	Star (fact_crime_events, dim_location, dim_offense, dim_time)	Hadoop, Spark, PostgreSQL, MongoDB