<u>6.857 Computer and Network Security</u> Lecture 5

Admin:

- Problem Set #1 due in Lecture 6
- Problem Set #2 out Lecture 6
- Next lecture by TA (secret sharing and bitcoin)
- Submit passwords (not real ones) for problem set #2

Project Ideas:

- "Format-Transforming Encryption"
- Shrimpton 2014 Real-World Crypto talk
- Also see https://fteproxy.org/

Today:

- Crypto hash functions: applications and constructions
- Applications:
 - Signatures
 - Commitments
 - Merkle trees
 - o Payword
 - o Hash-cash
- <u>Construction</u>:
 - o Merkle-Damgard
 - Sponge function

FILE UNDER

DATE

PAGE 19.6 LS. 2

3 Digital signatures ("hash a sign") PKA = Alize's public key (for signature verification) 5KA = Alice's secret key (for signing) Signing: 0 = sign (SKA, M) [Alices sig on M] Verify: Verify (M, o, PK,) & { True, False} Adversary wants to forge a signature that verifies. . For large M, easier to sign h (M): o = sign (ska, h(m)) ["hash dsign"] Verifier recomputes h (M) from M, then verifies o. In essence, h (M) is a "proxy" for M. · Need CR (Else Alice gets Bob to sign x, where h(x)=h(x'), then claims Bob really signed x', not x.) · Don't need DW (e.g. h=identity is OK here.)

Alice has value x (e.g. auction bid) Alice computes ((x) ("commitment to x") A submits ((x) as her "sealed bid" When bidding has closed, Alice should be able to "open" ((x) to reveal x Binding property: Alice should not be able to open ((x) in more than one would she is committed to just one x. Secrecy (hiding): Auctioneer (or anyone else) seeing ((x) should not lear anything about x. Non-malleability: Given ((x), it shouldn't be possible to produce ((x+1)), How: ((x) = h(r)(x) r & for should have be for secrecy. Note that this method is randomized (as it must be for secrecy. Need: OW, CR, NM (really need more, for secrecy, as ((x) should not reveal partial information about x, even	
A submits C(x) as her "sealed bid" When bidding has closed, Alice should be able to "open" C(x) to reveal x Binding property: Alice should not be able to open C(x) in more than one w. (she is committed to just one x. Secrecy (hiding): Auctioneer (or anyone else) seeing C(x) should not lear anything about x. Non-malleability: Given C(x), it shouldn't be possible to produce C(x+1), How: C(x) = h(r x) r = \$0,19 To open: reveal r &x Note that this method is randomized (as it must be for secrecy. Need: OW, CR, NM (really need more, for secrecy, as C(x) should have be for secrecy.	
when bidding has closed, Alie should be able to reveal x Binding property: Alice should not be able to open C(x) in more than one was (she is committed to just one x. Secrecy (hiding): Auctioneer (or anyone else) seeing C(x) should not lear anything about x. Non-malleability: Given C(x), it shouldn't be possible to produce C(x+1), Pows: C(x) = h(r x) r = 80,19 To open: reveal r &x Note that this method is random; sed (as it must be for secrecy. Need: OW, CR, NM (really need more, for secrecy, as C(x) should have be for secrecy.)
Binding property: Alice should not be able to open C(x) in more than one we (she is committed to just one x. Secrecy (hiding): Auctioneer (or anyone else) seeing C(x) should not lear anything about x. Non-malleability: Given C(x), it shouldn't be possible to produce C(x+1), how: C(x) = h(r x) r & 80,19 To open: reveal r &x Note that this method is randomized (as it must be for secrecy. Need: OW, CR, NM (really need more, for secrecy, as C(x) should	
Binding property: Alice should not be able to open C(x) in more than one we (she is committed to just one x. Secrecy (hiding): Auctioneer (or anyone else) Seeing C(x) should not lear anything about x. Non-malleability: Given C(x), it shouldn't be possible to produce C(x+1), How: C(x) = h(r x) r = 80,19 To open: reveal r &x Note that this method is randomized (as it must be for secrecy. Need: OW, CR, NM (really need more, for secrecy, as C(x) should	
open C(x) in more than one we (she is committed to just one x. • Secrecy (hiding): Auction er (or anyone else) seeing C(x) should not lear anything about x. • Non-malleability: Given C(x), it shouldn't be possible to produce C(x+1), • How: C(x) = h(r x) r = 80,19 To open: reveal r & x • Note that this method is random; zed (as it must be for secrecy. • Need: OW, CR, NM (really need more, for secrecy, as C(x) should	-
(she is committed to just one x. Secrecy (hiding): Auctioneer (or anyone else) seeing C(x) should not lear anything about x. Non-malleability: Given C(x), it shouldn't be possible to produce C(x+1), How: C(x) = h(r x) r = for secrecy, Note that this method is randomized (as it must be for secrecy. Need: OW, CR, NM (really need more, for secrecy, as C(x) should	
Secrecy (hiding): Auctioneer (or anyone else) seeing C(x) should not lear anything about x. Non-malleability: Given C(x), it shouldn't be possible to produce C(x+1), How: C(x) = h(r x) r = 80,19 To open: reveal r &x Note that this method is randomized (as it must be for secrecy. Need: OW, CR, NM (really need more, for secrecy, as C(x) should	way
seeing C(x) should not lear anything about x. Non-malleability: Given C(x), it shouldn't be possible to produce C(x+1), How: ((x) = h(r x) r = {0,1} To open: reveal r &x Note that this method is randomized (as it must be for secrecy. Need: OW, CR, NM (really need more, for secrecy, as C(x) should	el)
Non-malleability: Given & (x), it shouldn't be possible to produce & (x+1), How: C(x) = h(r x) r = \footnote{0} To open: reveal r & x Note that this method is randomized (as it must be for secrecy. Need: OW, CR, NM (really need more, for secrecy, as & (x) should	egrn
· How & C(x) = h(r//x) r = \$0,13 To open: reveal r &x Note that this method is randomized (as it must be for secrecy. Need: OW, CR, NM (really need more, for secrecy, as C(x) should	
· How & C(x) = h(r//x) r = \$0,13 To open: reveal r &x Note that this method is randomized (as it must be for secrecy. Need: OW, CR, NM (really need more, for secrecy, as C(x) should	10
· How & C(x) = h(r//x) r = \$0,13 To open: reveal r &x Note that this method is randomized (as it must be for secrecy. Need: OW, CR, NM (really need more, for secrecy, as C(x) should	1,599
To open: reveal r &x Note that this method is randomized (as it must be for secrecy. Need: OW, CR, NM (really need more, for secrecy, as C(x) should	
To open: reveal r &x • Note that this method is randomized (as it must be for secrecy. • Need: OW, CR, NM (really need more, for secrecy, as C(x) should	.22
 Note that this method is randomized (as it must be for secrecy. Need: OW, CR, NM (really need more, for secrecy, as C(x) should 	1,2
 Note that this method is randomized (as it must be for secrecy. Need: OW, CR, NM (really need more, for secrecy, as C(x) should 	+
Must be for secrecy. Need: OW, CR, NM (really need more, for secrecy, as C(x) should	
Must be for secrecy. Need: OW, CR, NM (really need more, for secrecy, as C(x) should	+
· Need: OW, CR, NM (really need more, for secrecy, as C(x) should	
(really need more, for secrecy, as C(x) should	
	1
	11
not reveal partial information about x, even	410
	ren.
	,

FILE UNDER

DATE

PAGE LH 3 LS.4

(5) To authenticate a collection of n objects: Build a tree with n leaves X, , x2, ..., Xn a compute author his tor node as for of values at children ... This is a "Merkle tree": root value at x = h (value at y // value at 2) Root is authenticator for all n values X, Xz, ..., Xn To authentizate Xi, give sibling of Xi & sibling of all his ancestors up to root Apply to : time-stemping data authentizating whole file system CR Need:

2		DATE: 2/18/14	
NDER:		PAGE: L5. 6	
Ha	sh-cash (by Adam Back)		
	· "Proof of work" by email sende . Intent: reduce span by making e "expensive" (computational)		
	- Sender must solve puzzle:		18.
	find r s,t. h (sender, recipient,	date, time, r)	
	ends in 20 zeros	16 1/0))
	e include r in header as "pro-		Jent
	· takes about 2 trials to so · doesn't work against bot-nets		1
	* doesn't ward against bol-ness	رف	
			į)

TOPIC	DATE
FILE UNDER	PAGE LULY LS.7

	Hash function construction ("Merkle-Damgard" style)
•	Choose output size d (e.g. d=256 bits)
•	Choose "chaining variable" size c (e.g. c= 512 bits)
	[Must have cod; better if coard]
	Choose "message block size" b (e.g. b=512 bits)
•	Design "compression function" F
	f: {0,1} x {0,1} -> {0,1} -
	[f should be OW, CR, PR, NM, TCR,]
•	Merkle-Dangard is essentially a "mode of operation"
	allowing for variable-length inputs:
	* Choose a c-bit initialization vector IV, co
	[Note that co is fixed & public.]
-	* [Padding] Given message, append
	- 10* bits
	- fixed-length representation of length of input
	so result is a multiple of b bits in length:
	M=M, Ma Mn (n b-bit blocks)
	m [10000[m]

			=		
п	1	Э		w	7

FILE UNDER

DATE

PAGE 145 L5,8

1 HAZI RUN DQG & RP SXVANU6 HFXULW

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.