الأعداد الطبيعية والأعداد الناطقة

 $(b \neq 0, a \neq 0)$ عددان طبیعیان غیر معدومین b, a

- PGCD(a,b)=1 : أن يعني أن فيما بينهما يعني أن b,a
- . الكسر $\frac{a}{b}$ غير قابل للاختزال يعني أن b,a أوليان فيما بينهما.
 - للبحث عن القاسم المشترك الأكبر لعددين نتبع الخطوات الآتية:
- * نجري عمليات الطرح المتتالية: نتوقف عندما نجد الفرق يساوي صفر (0). آخر فرق هو القاسم المشترك الأكبر.
 - * عمليات القسمة المتتالية: نتوقف عندما نجد الباقي معدوم. آخر باقي غير معدوم هو القاسم المشترك الأكبر.

الحساب على الجذور

و حل المعادلة b حيث عدد طبيعي :

$$-\sqrt{b}$$
 و \sqrt{b} و \sqrt{b} و \sqrt{b} و \sqrt{b} و \sqrt{b}

.0 : فإن للمعادلة
$$a=b$$
 فإن للمعادلة $b=0$ فإن المعادلة عاد المعادلة واحد المعادلة عاد المعادلة المع

- . اذا كان $b\langle 0 \rangle$ فإن المعادلة $b\langle 0 \rangle$ ليس لها حل
 - خــواص :

$$a>b$$
 موجبان و b,a ، $\sqrt{a}\times\sqrt{b}=\sqrt{a\times b}$ **
$$.\sqrt{a^2b}=a\sqrt{b}$$
 **

$$b \neq 0 \qquad \mathbf{`} \qquad \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \quad **$$

• مــلاحظات:

$$\sqrt{a+b} \neq \sqrt{a} + \sqrt{b} \quad ***$$

$$\sqrt{a-b} \neq \sqrt{a} - \sqrt{b} \quad ***$$

:
$$\sqrt{b}$$
 عددا ناطقا نضر ب كلا من البسط و المقام في عددا ناطقا نضر ب كلا من البسط عددا في عددا ناطقا في عددا ناطقا نضر ب

$$\sqrt{b}$$
 نضرب a و \sqrt{b} في العدد

الحساب الحرفي: المتطابقات الشهيرة

$$(a-b)^2 = a^2 + b^2 - 2ab$$

a > b مو جبان و b, a

$$(a+b)^2 = a^2 + b^2 + 2ab$$

$$a^2 - b^2 = (a+b)(a-b)$$

المعادلات من الدرجة الأولى بمجهول

معادلة من الدرجة الأولى ذات مجهول واحد . ax + b = 0

- حل المعادلة من الدرجة الأولى ذات مجهول واحد هو إيجاد مجموعة حلولها أي الأعداد التي تحقق المساواة.
 - لحل المسألة يجب:
 - 1 قراءة نص المسألة وفهمها وتحديد المعطيات.
 - 2 تحديد المجهول والترميز له.
 - 3 ترجمة المعطيات وكتابتها في صيغة المعادلة.
 - 4 القيام بحل المعادلة.
 - 5 ـ ملاءمة الحل للمعطيات.
 - 6 الإجابة عن السؤال.

المتراجحات من الدرجة الأولى بمجهول واحد

- كل عبارة من الشكل : $ax+b\geq 0$ ، $ax+b\leq 0$ ، $ax+b \leq 0$ ، $ax+b \leq 0$ تسمى متر اجحات من الدرجة الأولى بمجهول واحد.
 - حل المرابحة من الدرجة الأولى بمجهول واحد هو إيجاد كل القيم الممكنة للمجهول x حتى تكون المتباينة الصحيحة.

الدوال الخطية والدوال التآلفية

- كل دالة تكتب على شكل : f(x) = ax تسمى دالة خطية وتمثيلها البياني عبارة عن مستقيم يشمل المبدأ، ومعادلته y = ax + b
- كل دالة تكتب على شكل f(x) = ax + b تسمى دالة تآلفية وتمثيلها البياني عبارة عن مستقيم معادلته v = ax + b
 - النسب المئوية:

$$\frac{P}{100}$$
 : معناه $P\%$ حساب **

.
$$x\left(1+\frac{P}{100}\right)$$
 : معناه $P\%$ ب x زیادهٔ x

.
$$x\left(1-\frac{P}{100}\right)$$
 : معناه $P\%$ ب X ب انخفاض X ب X

جملة معادلتين من الدرجة الأولى بمجهولين

- $\begin{cases} ax+by=c \\ a'x+b'y=c' \end{cases}$ جملة معادلتين من الدرجة الأولى بمجهولين x و y هي جملة من الشكل •
- حل جملة معادلتين من الدرجة الأولى بمجهولين xو y هو إيجاد الثنائية (x,y) التي تحقق المعادلتين في آن واحد.
 - لحل الجملة جبريا نتبع أحد الطرق:
 - ** طريقة التعويض. ** طريقة الجمع و التعويض.
 - يمكن حل الجملة بيانيا وذلك بإيجاد نقطة تقاطع المستقيمين (إحداثياتها) المعرفين بالمعادلتين وتمثيلها.

حساب المثلثات

• جيب تمام وجيب وظل زاوية حادة:

$$\tan x = \frac{\sin x}{\cos x} \quad **$$

أي المقابل على المجاور.
$$\hat{B} = \frac{AC}{AB}$$
 **

.
$$\sin \hat{B} = \frac{CA}{BC}$$
 او تر. $\sin \hat{B} = \frac{CA}{BC}$

أي المجاور على الوتر.
$$\cos \hat{B} = \frac{BA}{BC}$$
 **

$$\cos x^2 + \sin x^2 = 1$$
 **: • خواص

$$A$$
ناغورس). (خاصية فيثاغورس). $BC^2 = AB^2 + AC^2$ ، A

خاصية طالس وعكسها

$$A$$
 مستقيمان متقاطعان في النقطة D,D' . (D) و B,M نقطتان من C,N نقطتان من C,N $\frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC}$: فإن $\frac{(MN)}{(BC)}$ فإن $\frac{AM}{AB} = \frac{AN}{AC}$ فإن $\frac{AM}{AB}$ فإن $\frac{AM}{AB} = \frac{AN}{AC}$

المحيط والمساحة

ملاحظة	المساحة (S)	المحيط (P)	
طول ضلع المربع C	$S = C \times C$	P = 4C	المربع
طول و $_{l}$ عرض المستطيل $_{L}$	$S = L \times l$	P = 2(L+l)	المستطيل
B قاعدة و A ارتفاع المثلث	$S = \frac{B \times h}{}$	P = B + H + l	المثلث
	2		
القاعدة الكبرى B	$S = \frac{(B+b)\times h}{2}$		شبه المنحرف
القاعدة الصغرى b	$S = \frac{1}{2}$		
R نصف القطر	$S = \pi R^{2}$	$P = 2 \pi R$	القرص

الحجم والمساحة الجانبية

ملاحظة	المساحة (S)	(V) الحجم	
طول ضلع المكعب C	$S = 6C^2$	$V = C^{3}$	المكعب
P محيط القاعدة	$S = P \times h$	$V = L \times l \times h$	متوازي المستطيلات
B مساحة القاعدة	$S = P \times h$	$V = B \times h$	الموشور القائم
	$S = \pi R^2$	$V = \frac{4}{3}\pi R^3$	الكرة
R نصف القطر	$S = \pi R^2$	$P = 2 \pi R$	القرص
		$V = \frac{1}{3}B \times h$	الهرم
		$V = \frac{1}{3}R^2 \times h$	المخروط

المعالم

- $B(x_B;y_B)$ و $A(x_A;y_A)$ و معلم متعامد ومتجانس، نعتبر النقطتين و $O,ec{I},ec{J}$
 - $\overrightarrow{AB} = (x_B x_A; y_B y_A)$: احداثیات شعاع: ***
- $M\left(rac{x_A+x_B}{2};rac{y_A+y_B}{2}
 ight)$: يعني $M\left(rac{x_A+x_B}{2};rac{y_A+y_B}{2}
 ight)$: يعني $M\left(rac{x_A+x_B}{2};rac{y_A+y_B}{2}
 ight)$
 - $AB = \sqrt{(x_B x_A)^2 + (y_B y_A)^2}$: طول قطعة مستقيم

تنظيم المعطيات

- التكرار المجمع المتزايد: في سلسلة إحصائية مرتبة ترتيبا تصاعديا، التكرار المجمع المتزايد لقيمة يحصل عليه بجمع تكرار هذه القيمة وتكرار القيم السابقة لها.
 - التكرار المجمع المتناقص: في سلسلة إحصائية مرتبة ترتيبا تصاعديا، التكرار المجمع المتناقص لقيمة يحصل عليه بجمع تكرار هذه القيمة وتكرار القيم الأكبر منها.
 - التكرار النسبي المجمع المتزايد والمتناقص:
 - ** التواتر المجمع المتزايد = التكرار المجمع المتزايد على التكرار الكلى.
 - ** التواتر المجمع المتناقص = التكرار المجمع المتناقص على التكرار الكلى.
 - \overline{x} : الوسط الحسابي لسلسلة
 - ** الوسط الحسابي لسلسلة إحصائية هو مجموع قيم هذه السلسلة على عدد قيمها.
- ** الوسط الحسابي المتوازن لسلسلة إحصائية هو مجموع جداءات قيمها بتكراراتها على مجموع التكرارات.

• الوسيط:

- ** إذا كان عدد قيم السلسلة فردي، الوسيط هو القيمة التي تتوسط السلسلة بعد ترتيبها.
- ** إذا كان عدد قيم السلسلة زوجي، الوسيط هو المتوسط الحسابي للقيمتين اللتان تقعان في الرتبتان:

و
$$\frac{N}{2}$$
 حيث N عدد قيم السلسلة.

- ** إذا كانت السلسلة مجمعة في فئات نبحث عن الفئة التي تنتمي إليها القيمة الوسطية.
 - المدى: مدى سلسلة إحصائية هو الفرق بين أكبر قيمة و أصغر قيمة لها.