Problem Set - 3

SPRING 2020

MATHEMATICS-II (MA1002)

- 1. (a) Prove that if $\lambda \neq 0$ be an eigenvalue of a non-singular matrix A, then $\frac{|A|}{\lambda}$ is an eigenvalue of adjA.
 - (b) Prove that if A and B be two square invertible matrices, then AB and BA have same characteristic roots.
 - (c) Prove that if λ be an eigenvalue of algebraic multiplicity r of A, then 0 is an eigenvalue of algebraic multiplicity r of the matrix $A \lambda I_n$.
- 2. For each of the following matrices, find all the eigenvalues and the corresponding eigenvectors.

$$(a) \ \begin{pmatrix} -5 & 2 \\ 2 & -2 \end{pmatrix} \ (b) \ \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \ (c) \ \begin{pmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{pmatrix} \ (d) \ \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}.$$

- 3. $A = \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}$. Use Cayley-Hamilton theorem to express $2A^5 3A^4 + A^2 5I$ as a linear polynomial in A
- 4. Let, $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, show that for every integer $(n \ge 3)$ $A^n = A^{n-2} + A^2 I$. Hence evaluate A^{50} .
- 5. Let, $A = \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix}$ and $P = \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix}$. If $A = P^{-1}DP$ then find the diagonal matrix D.
- 6. The square matrix A is defined as $A = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}$. Find a diagonal matrix D and an invertible matrix P such that $A = P^{-1}DP$.
- 7. Find two different 2×2 matrices A and B, such that both have same eigenvalues $\lambda_1 = \lambda_2 = 2$ and both have the same eigenvector $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ corresponding to 2.
- 8. (a) Show that $A = \begin{bmatrix} -i & 3+2i & -2-i \\ -3+2i & 0 & 3-4i \\ 2-i & -3-4i & -2i \end{bmatrix}$ is Skew-Hermitian.
 - (b) Diagonalize $A = \begin{bmatrix} 6 & -1 \\ 2 & 3 \end{bmatrix}$ and compute A^{2020} .
- 9. When a + b = c + d show that $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is an eigenvector of $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and find the eigenvalues.
- 10. (a) Show that if $0 < \theta < \pi$, then $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ has no real eigenvalues.
 - (b) Show that if λ is an eigenvalue of an orthogonal matrix, then $\frac{1}{\lambda}$ is also an eigenvalue of it.

1

11. Examine whether A is similar to B or not, where

(a)
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 6 & -1 \\ 4 & -1 \end{bmatrix}$

(b)
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & -3 \\ -2 & 4 \end{bmatrix}$.

- 12. If A and B are two unitary matrices, show that AB is a unitary matrix.
- 13. Express the matrix $A = \begin{bmatrix} i & 2-3i & 4+5i \\ 6+i & 0 & 4-5i \\ -i & 2-i & 2+i \end{bmatrix}$ as the sum of a Hermitian and a skew Hermitian matrix.
- 14. If $N = \begin{bmatrix} 0 & 1+2i \\ -1+2i & 0 \end{bmatrix}$ is a matrix, then show that $(I-N)(I+N)^{-1}$ is a unitary matrix, where I is the identity matrix of order 2.
- 15. If $M = \begin{pmatrix} 1 & 1 & 1 \\ 1 & a^2 & a \\ 1 & a & a^2 \end{pmatrix}$ where $a = e^{\frac{2i\pi}{3}}$, then prove that $M^{-1} = \frac{1}{3}\bar{M}$.