

Esolution

Sticker mit SRID hier einkleben

Hinweise zur Personalisierung:

- · Ihre Prüfung wird bei der Anwesenheitskontrolle durch Aufkleben eines Codes personalisiert.
- Dieser enthält lediglich eine fortlaufende Nummer, welche auch auf der Anwesenheitsliste neben dem Unterschriftenfeld vermerkt ist.
- Diese wird als Pseudonym verwendet, um eine eindeutige Zuordnung Ihrer Prüfung zu ermöglichen.

Grundlagen Rechnernetze und Verteilte Systeme

Klausur: IN0010 / Midterm Datum: Freitag, 14. Juni 2019

Prüfer: Prof. Dr.-lng. Georg Carle **Uhrzeit:** 17:30 – 18:15

Bearbeitungshinweise

- · Diese Klausur umfasst
- 8 Seiten mit insgesamt 4 Aufgaben
 Bitte kontrollieren Sie jetzt, dass Sie eine vollständige Angabe erhalten haben.
- Die Gesamtpunktzahl in dieser Prüfung beträgt 45 Punkte.
- Das Heraustrennen von Seiten aus der Prüfung ist untersagt.
- Als Hilfsmittel sind zugelassen:
 - die der Angabe beiliegende Formelsammlung (Cheatsheet)
 - ein nicht-programmierbarer Taschenrechner
 - ein analoges Wörterbuch Deutsch ↔ Muttersprache ohne Anmerkungen
- Mit * gekennzeichnete Teilaufgaben sind ohne Kenntnis der Ergebnisse vorheriger Teilaufgaben lösbar.
- Es werden nur solche Ergebnisse gewertet, bei denen der Lösungsweg erkennbar ist. Auch Textaufgaben sind grundsätzlich zu begründen, sofern es in der jeweiligen Teilaufgabe nicht ausdrücklich anders vermerkt ist.
- Schreiben Sie weder mit roter/grüner Farbe noch mit Bleistift.
- Schalten Sie alle mitgeführten elektronischen Geräte vollständig aus, verstauen Sie diese in Ihrer Tasche und verschließen Sie diese.

Hörsaal verlassen von	bis	/	Vorzeitige Abgabe um

a)* Was versteht man unter ARP-Spoofing?
Böswilliges Umleiten von Datenverkehr auf Schicht 2 durch Versenden gefälschter ARP Replies.
b)* Wofür wird das Identification-Feld im IPv4-Header benötigt?
Zur Reassemblierung von Fragmenten eines Pakets.
c)* Gegeben sei eine gedächtnislose Quelle <i>Q</i> , die <i>n</i> Zeichen emittiert. Wie muss die Auftrittswahrscheinlich keit der Zeichen gewählt werden, so dass die Entropie der Quelle maximiert wird (ohne Begründung)?
Gleichverteilt mit Auftrittswahrscheinlichkeit 1/n.
d)* Erläutern Sie kurz den Unterschied zwischen ASK und PSK.
e)* Die Kanalkapazität nach Shannon und Hartley liefert jeweils unterschiedliche Werte. Erklären Sie kurz welche äußeren Faktoren hier jeweils berücksichtigt werden.
Shannon berücksichtigt nur (additives, weißes) Rauschen im Verhältnis zur Signalleistung, aber keine Quantisierungsfehler, die durch Signalstufen entstehen. Hartley berücksichtigt nur Signalstufen und damit das Quantisierungsrauschen, aber keine Kanaleinflüße. Beide berücksichtigen die jeweilige Kanalbandbreite.
f)* Nennen Sie zwei Arten, wie sich Rahmengrenzen erkennen lassen (ohne Begründung).
f)* Nennen Sie zwei Arten, wie sich Rahmengrenzen erkennen lassen (ohne Begründung). Coderegelverletzung, Längenangabe im Header, Steuerzeichen

Aufgabe 2 CRC (7 Punkte)

		eduzi Ien.	bles	Poly	/non	1 V	on C	Эrac	d n	läs	st :	sich	n ni	cht	als	Pr	odı	ıkt	ZW	eiei	r P	olyr	non	ne I	mit	Gra	ad <	< n		L
egeb	en	sei d	er D	atenl	olock	(0(0000	110	11 l	oes	teh	enc	l au	s 1	0 bi	t, w	elc	her	mit	ttels	s r((x) (ges	ich	ert v	wer	den	sol	II.	
Ве	stim	ımen	Sie	den	gesi	che	erter	ı Da	ater	nblo	ck	(Da	iten	ink	d. C	Che	cks	um	me).										7
						Τ	\Box																							F
000	001	1011	000	00	: 1	101	101	 0	 000	01e	001																			F
		1010				\perp		_																						E
	-	0001	100	100	_	+	+	\vdash																						
		1	101		_	+	+	_																						
		-	+	+-+		+																								
		0	001	01		+	+																							
\Rightarrow	Res	t: 001	01														N.													
\Rightarrow	Ges	siche	ter	Dater	nbloc	:k:	0000	9011	01 ⁻	0	010	1																		
						\perp																								
				-		\perp		_						/										-						
				+++		+		_																-						
				-	+	+	-																							
								\vdash																						

)* Besc	chreib	en Si	e ku	ırz,	wie	e de	r E	mp	fän	ger	ein	ien	Üb	ertr	agı	ung	sfe	hle	r fe	sts	telle	n k	anı	1.			
	Modulo-Division der empfangenen Nachricht $(m(x) + c(x) + e(x)) \mod r(x)$. Wenn der Rest ungleich Null ist, ist sicher ein Übertragungsfehler aufgetreten.																										
* Nenr	* Nennen Sie ein Fehlermuster, welches mittels CRC nicht erkannt werden kann.																										
Alle \	Alle Vielfachen von $r(x)$.																										

Aufgabe 3 Data Link Layer (14 Punkte)

Gegeben sei die aus der Vorlesung bekannte Netzwerktopologie in Abbildung 3.1. Wir nehmen an, dass zunächst alle Caches leer sind (sowohl ARP-Tabellen der Clients als auch die Switching-Tabelle von S). Die beiden kabellosen Clients (verbunden über IEEE 802.11n) seien aber bereits mit dem AP assoziiert.

Abbildung 2.1. Notatonologia
Abbildung 3.1: Netztopologie
Hinweis: Die MAC-Adressen aller Stationen in Abbildung 3.1 können durch Angabe des Namens abgekürzt werden, z. B. PC1 für die MAC-Adresse von PC1.
a)* Begründen Sie kurz, ob S für seine normalen Funktionen im Netzwerk eine MAC-Adrese benötigt.
Nein, ein Switch trifft Weiterleitungsentscheidungen auf Basis von MAC-Adressen, wird aber selbst nicht adressiert.
b)* Begründen Sie kurz, ob der AP für seine normalen Funktionen im Netzwerk eine MAC-Adrese benötigt
Ja, der AP wird innerhalb des kabellosen Netzwerks direkt adressiert.
ca, doi 71 Wild Illifornalis des Nasoliosoff to Ewont different addression to
PC1 möchte nun mit NB1 kommunizieren. Die IP-Adresse von NB1 sei an PC1 bekannt.
c)* Was beinhaltet der erste Rahmen, der von PC1 gesendet wird (ohne Begründung)?
ARP-Request
NOTE OF THE OWN Address (OA) and Destination Address (DA) the see Balance of the Aberbailty of
d) Geben Sie die Source Address (SA) und Destination Address (DA) dieses Rahmens in den Abschnitten (1) und (2) an.
unu 2) an.
1) SA: PC1 DA: ff:ff:ff:ff:
② SA: PC1 DA: ff:ff:ff:ff:ff
e) Geben Sie direkt in Abbildung 3.1 alle Einträge an, die durch diesen Rahmen in der Switching-Tabelle

e) Geben Sie direkt in Abbildung 3.1 alle Einträge an, die durch diesen Rahmen in der Switching-Tabelle von S erzeugt werden.

IEEE 802.11	kennt für	Datenrahmen	bis zu vier	MAC-Adressen	mit den fold	aenden Bedeu	tunaen:

- Source Address (SA)
- Destination Address (DA)
- Transmitter Address (TA)
- Receiver Address (RA)

Im Infrastrukturmodus besitzen Datenrahmen **drei** MAC-Adressen, da in Abhängigkeit der Richting, in die ein Rahmen gesendet wird, jeweils zwei Adressen identisch sind. Somit hat in diesem Fall eine Adresse zwei unterschiedliche Bedeutungen.

f) Geben Sie für den Rahmen in Abschnitt ③ vom AP in Richtung der kabellosen Clients alle drei Adressen sowie die Bedeutung der dritten Adresse an.	用	0
TA: AP RA: ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff		2
g) Geben Sie für die Antwort von NB1 an PC1 in Abschnitt ③ alle drei Adressen sowie die Bedeutung der dritten Adresse an.	田	0
TA: NB1 = SA h) RA: AP DA: PC1	Ш	2
h) Markieren Sie in den Lösungen der Teilaufgaben f) und g) jeweils die Adresse, welche eine doppelte Bedeutung hat.	用	0
i)* Erläutern Sie kurz, wie die Bedeutung der einzelnen Adressfelder im Header festgelegt wird. Hinweis: Es reicht, das zugrundeliegende Prinzip zu erläutern.		0
Im Header gibt es ein Feld (Frame Control), in dem zwei Bit (FromDS und ToDS) die Bedeutung kodieren.		1 2
j)* Geben Sie für die Antwort an PC1 die MAC-Adressen in Abschnitt ② an.	Ш	0
SA: NB1 DA: PC1	Ш	1
k) Geben Sie alle Einträge direkt in Abbildung 3.1 an, die diese Antwort an PC1 in der Switching-Tabelle von S erzeugt.		0

Aufgabe 4 Multiple Choice (14 Punkte)

Kreuzen Sie richtige Antworten an

Kreuze können durch vollständiges Ausfüllen gestrichen werden

Die nachfolgenden Teilaufgaben sind jeweils unabhängig voneinander lösbar und stammen aus den vorlesungsbegleitenden Quizzen. Das Bewertungsschema entspricht ebenfalls dem der Quizze:

- Aufgaben mit nur einer richtigen Antwort werden
 - mit 1 Punkt bei richtiger Antwort und
 - mit 0 Punkten sonst bewertet.
- · Aufgaben mit mehr als einer richtigen Antwort werden
 - mit 1 Punkt bei vollständig richtiger Antwort,
 - mit 0,5 Punkten bei einer fehlenden oder falschen Antwort und
 - mit 0 Punkten sonst bewertet.
- a)* Gegeben seien der Rechtecksimpuls $s_1(t)$ sowie der \cos^2 -Impuls $s_2(t)$. Untenstehende Abbildung zeigt vier verschiedene Spektren. Welche Aussagen sind zutreffend?

- \square $s_2(t) \circ S_1(f)$
- \mathbf{X} $s_1(t) \circ \mathbf{S}_1(f)$

- \mathbf{X} $s_2(t) \circ \mathbf{S}_2(t)$
- \square $s_1(t) \circ \multimap S_4(f)$
- b)* Gegeben seien ein Signal s(t) mit Leistung $P_s = 100 \,\text{mW}$ sowie eine Rauschleistung von $P_N = 10 \,\text{mW}$. Welchen Wert hat der Signal-zu-Rauschabstand in diesem Fall?
 - 1 bit
- **X** 10
- 10 bit
- ☐ 1 dB
- c)* Ein wertkontinuierliches Signal soll im Intervall I = [-2;2] quantisiert werden, sodass der maximale Quantisierungsfehler innerhalb von I höchstens 1/2 beträgt. Wie viele Quantisierungsstufen sind dafür mindestens erforderlich?
 - \times 4
- \square 2
- **1**2
- 8
- **1**0
- 6 🔲 16
- **1**4
- d)* Nebenstehende Signalraumzuordnung stellt welche(s) Modulationsverfahren dar?
 - ☐ 1-PSK
- 🔀 2-ASK
- 2-QAM
- ☐ 1-ASK
- × 2-PSK
- e)* Kreuzen Sie die Matrix an, die für nebenstehendes Netzwerk nach Vorlesung die Adjazenzmatrix darstellt.

- 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1
- $\square \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 & -1 \end{bmatrix}$
- f)* Gegeben die sei Distanzmatrix \mathbf{D} für nebenstehendes Netzwerk. Für welches minimale n gilt $\mathbf{D}^n = \mathbf{D}^{n+1}$?
 - n = 7
- n=6
- \square n=4
- \square n=2

- \square n=5
- $\prod n = 0$
- \times n=3
- n=1

g)* G Orde	•	die binäre	Nachricht	10101010 000	00000 i	n Little En	dian. W	ie lautet si	e in Netwo	rk Byte
	0x00 0x55				X	0x00 0xaa	Э			
X	00000000 16	0101010				00000000	010101	0 1		
h)* A werk		n Broadca	st-Domäner	besteht das	neben	stehende l	Netz-	—	- Nin	-
	5	4	3	X 2	1		6	_	X	
i)* Au	ıs wie vielen l	Kollisionso	domänen bes	steht das nebe	enstehe	nde Netzw	erk?			
X	4	5	2	1	6		3			天
j)* W	orin besteht	der weser	ntliche Unter	schied zwisch	nen CS	MA/CD un	d CSMA	VCA?		
	Es gibt nur handlung, n			Kollisionsbe-		CSMA/CA ge von 64		gt eine mir	imale Rahr	nenlän-
X	Beim Medie immer eine			A/CA gibt es		CSMA/CI MA/CA B			Segensatz	zu CS-
k)* W	lelche Aussa	igen zum	Manchester-	Code sind zu	utreffen	d?				
X	automatisch	ne Taktrüc	kgewinnung		×	immer gle	eichstror	nfrei		
	gleichstrom Code	frei nur r	nit zusätzlio	chem 4B5B-		schmaler	es Spek	trum als N	RZ	
				it 16 untersch NR von 7. Be						ınal mit
X	3 Mbit/s	☐ 7 M	bit/s	4 Mbit/s		5 Mbit/s		6 Mbit/s	8 8	Mbit/s
m)* [Die Serialisie	rungszeit								
X	ist der Quot	ient aus F	lahmenlänge	e und Datenra	ate.					
X	ist Bestandt	eil des De	elays zwisch	en Sender un	d Empf	änger.				
	gibt die notv	wendige Z	eit zur Seria	lisierung eine	s einze	lnen Bits a	ın.			
	ist der Quot	ient aus D	istanz zwisc	hen Sender/	Empfä	nger und d	ler Signa	algeschwir	ıdigkeit.	
	kann aus de	em Bandb	reitenverzög	erungsprodul	kt besti	mmt werde	en.			
n)* D	ie Ausbreitur	ngsverzög	erung							
	kann im Ver	gleich zur	Serialisieru	ngszeit grund	lsätzlich	n vernachlä	ässigt w	erden.		
X	ist abhängig	y vom Übe	ertragungsm	edium.						
X	ist unabhän	gig von de	er Rahmenlä	nge.						
	wird in s^{-1}	angegebe	n.							

Zusätzlicher Platz für Lösungen. Markieren Sie deutlich die Zuordnung zur jeweiligen Teilaufgabe. Vergessen Sie nicht, ungültige Lösungen zu streichen.

