第13讲 从背包问题求解看算法——数学建模与不同算法策略

战渡臣

哈尔滨工业大学计算学部教学委员会主任 国家教学名师

18686783018, dechen@hit.edu.cn

一个示例

问题

【**示例**】有1个背包,可装载重量最大15Kg;有5种物品,其重量和价值如图所示。问:如何装载物品,才能使该背包装载的物品总价值最大。

一个示例

基本的求解思维—【枚举-计算-验证-优化】

【**示例**】有1个背包,可装载重量最大15Kg;有5种物品,其重量和价值如图所示。问:如何装载物品,才能使该背包装载的物品总价值最大。

- 产生一种装载方案,并计算其装载物品价值
 - ✓ 装载1种物品有5种方案
 - ✓ 装载2种物品:从5种中取出2种的所有组合=10
 - ✓ 装载3种物品:从5种中取出3种的所有组合=10
 - ✓ 装载4种物品:从5种中取出4种的所有组合=5
 - ✓ 装载5种物品有1种方案
- 产生所有装载方案,并从中选择出装载物品 价值最大的方案,同时满足背包重量约束

数学建模

背包问题的数学建模

【一般性问题】有1个背包,可装载重量有限制。有n种物品,每种物品最多1件,且其重量和价值已知。怎样选择物品放入背包,才能使背包中物品价值最大?

【输入/已知】

- n种物品可用编号1,...,n表示--- (整型变量)
- 每种物品j的重量为w_i--- (w[]数组变量)
- 每种物品j的价值为p_i --- (p[]数组变量)
- 背包的总重量限制为W--- (整型变量)

【输出/解】

▼ 求一组合x, x=(x₁,x₂,...x_j,...,x_n)。其中x_j=0不选物品j, =1
 选择物品j。(一个【可能解】就是一个二进制编码)

【约束】

● $\sum_{j=1}^{n} w_j x_j \le W$,其中 $x_j = 0$ 或1(【可行解】要满足约束) 【目标】

● 使 $\sum_{i=1}^{n} p_i x_i$ 最大的x (【最优解】要满足目标公式)

程序流程图的基本符号

算法的三种控制结构:顺序、分支、循环(有界循环和条件循环)

背包问题的求解算法【遍历算法】

- 用数组的下标i表示物品i
- 物品的一个组合表示为数组x,即:x[1],…,x[n]。 其中x[i]为0或1:为0表示不选择物品i,为1表示选择物品i
- 物品i的重量存储在w[i]中,价值存储在p[i]中
- 【当前物品组合S】与x一样的数组, S[1], ..., S[n]
- 【当前组合总价值SP】为一数值型变量
- 新组合,即产生一个不重复的x, j从1到n, 依次给x[j]赋0和1。 如 {0,0,0,0,0} {0,0,0,0,1} {0,0,0,1,0} {0,0,0,1,1} {0,0,1,0,0} ...
- 物品总重量的计算: Wnew = Σ w[i]*x[i] for i=1,...,n。
- 物品总价值的计算: Pnew = ∑ p[i]*x[i] for i=1,...,n。
- If Wnew > W W为背包的总重限制
- If Pnew > SP
- SP ← Pnew
- \bullet S \leftarrow x

算法模拟

背包问题求解-遍历策略【练习】

)	k=n		k=n	16
可能解空间	$\sum_{i=1}^{N-1} w_i x_j \le W$	可行解空间	$\sum_{j=1}^{n-1} p_j x_j$	问题的最优解
$X_{4}X_{3}X_{2}X_{1}$	k=1	X4X3X2X1	k=1	(精确解)
	被选中物品的总重量		被选中物品的总价值	X ₄ X ₃ X ₂ X ₁
0000	0,满足约束	0000	0	
0001	4,满足约束	0001	10	
0010	1,满足约束	0010	2	
0011	5,满足约束	0011	12	
0100	2,满足约束	0100	2	.0
0101	2,满足约束	0101	12	- Well
0110	3,满足约束	0110	4	79
0111	7,满足约束	0111	14	0111
1000	12,满足约束	1000	4	~
1001	16,不满足约束			
1010	13,满足约束	1010	6	
1011	17,不满足约束			
1100	14,满足约束	1100	6	-0
1101	18, 不满足约束		10	10
1110	15,满足约束	1110	8	-7/2
1111	19, 不满足约束			X

算法复杂性

算法的时间复杂性与空间复杂性

算法获得结果的时间有多长?

- ◆时间复杂性:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),通常评估算法基本步骤的执行次数来获得T(n),它是n的某一函数,则T(n)称为这一算法的"时间复杂性"或"时间复杂度"。
- ◆ "大O记法" :
- ✓基本参数 n——问题实例的规模
- ✓把复杂性或运行时间表达为n的函数。
- ✓ "O"表示量级 (order), 允许使用"="代替"≈", 如n²+n+1 =O(n²)。
- ◆空间复杂性: 算法在执行过程中所占存储空间的大小。

算法优化

背包问题的求解算法【遍历算法—优化】

算法的不同策略

背包问题求解-贪心策略

贪心算法是一种算法策略。基本思想"今朝有酒今朝醉",

- 一定要做当前情况下的最好选择,否则将来可能会后悔,故名"贪心"。
- ✓一个物品一个物品地选择,直到背包装满为止。
- ✓每次在选择下一个物品的时候,只考虑当前情况, 保证迄今为止所做出的选择是最好的。

算法的不同策略

背包问题求解-贪心策略【练习】

重量小的物品优先

物品选择次序	策略 1: 重量小的物品	策略 1:被 选中的重量		
第1次	优先 X ₅	和价值 1,1		
第2次	X_2	2,3		
第3次	X_3	4,5		
第4次	X_1	8,15		
最终结果	$\begin{array}{c} x_5 x_4 x_3 x_2 x_1 \\ = 10111 \end{array}$	8, 15		

价值高的物品优先

物品选择次序	策略 2: 价 值高的物品 优先	策略 2: 被 选中的重量 和价值
第1次	X_1	4,10
第2次	X_4	16,14
第3次	×	
第 4 次		
	5	-O ^C
最终结果	$ \begin{array}{c} X_5 X_4 X_3 X_2 X_1 \\ = 01001 \end{array} $	16, 14

性价比高的物品优先

物品选择次序	策略 3: 性 价比高的物 品优先	策略 3: 被 选中的重量 和价值
第1次	X_1	4,10
第2次	X_2	5,12
第 3 次	X_3	7,14
第 4 次	X_5	8,15
	-O ^C	
最终结果	$ \begin{array}{c} X_5 X_4 X_3 X_2 X_1 \\ = 10111 \end{array} $	8, 15

背包问题的贪心算法求解 (重量小的物品优先)

不同的问题

背包问题分类

有n种物品,物品j的重量为 w_j ,价格为 p_j ,假定所有物品的重量和价格都是非负的。背包所能承受的最大重量为W。

- 如果限定每种物品只能选择0个或1个,则为**0-1背包问题**
- 如果限定物品j最多只能选择b_i个,则为**有界背包问题**或**多重背包问题**
- 如果不限定每种物品的数量,则为**无界背包问题**或**完全背包问题**

背包问题是一类重要的问题,研究者提出了很多算法,如贪心算法、动态规划算法等,同学可自主研究之。

完成数学建模才能精准抓住应用问题的本质

不同的应用问题,可能是相同的算法问题

应用问题建模要素	股票投资组合问题	产品品种的组合问题	背包问题 (有界背包)
问题表述	有n种股票可供选择,每种股票j最	有n种产品可供销售,每种产品j最	有n种物品,每种物品j最多选择
	多买b _j 股,怎样一个投资组合,才	多可销售b _j 个,怎样一个产品组合,	b _j 个,怎样选择物品放入背包,
	能使股票收益最大	才能使产品销售价值最大	才能使背包中物品价值最大
输入/已知	n种股票可用编号1,,n表示	n种产品。可用编号1,,n表示	n种物品。可用编号1,,n表示
	每种股票j的价格为w _j 。	每种产品j的可销售数量为w _j 。	每种物品j的重量为w _j 。
	每种股票j的收益为p _j 。	每种产品j的价格为p _j 。	每种物品j的价值为p _j 。
	可用于购买股票的资本为W	市场可接受产品的总数量W	背包的总重量为W
输出/结果	求一组合x=(x ₁ ,x ₂ ,x _j ,,x _n)。	求一组合x=(x ₁ ,x ₂ ,x _j ,,x _n)。	求一组合x=(x ₁ ,x ₂ ,x _j ,,x _n)。
	其中股票j选择x _j 股。x _j =0,,b _j	其中产品j选择x _j 个。x _j =0,,b _j	其中物品j选择x _j 个。x _j =0,,b _j
	为购买股数	为销售数量	为选择个数
约束	$\sum_{k=1}^{k=n} w_j x_j \le W , 其中x_j = 0,,b_j$	$\sum_{k=1}^{k=n} w_j x_j \le W , 其中x_j = 0,,b_j$	$\sum_{k=1}^{k=n} w_j x_j \le W , 其中x_j = 0,,b_j$
目标	x要使得 $\sum_{k=1}^{k=n} p_j x_j$ 最大	x要使得 $\sum_{k=1}^{k=n} p_j x_j$ 最大	x要使得 $\sum_{k=1}^{k=n} p_j x_j$ 最大

从背包问题求解看算法

小结

- **问题建模**:输入【已知】,输出【可能解的形式】,约束【可行解的条件】,目标【最优解的条件】
- 用自然数1...n表达现实的具体对象,具体对象的相关特征数据就可用带下标的变量表达,如第i个对象的特征就可用p_i,t_i等来表达(对应到算法/程序就是p[i],t[i]等)。**通过自然数及其下标将不同类型的数据关联起来,是算法类问题抽象的重要方法**。
- 输出可用一个自然数序列来表示**x=(x₁,x₂,...,x_n)**,此时的i表示为对象i,而x_i则为对象i的某一特征值(典型的是0选择和1不选),在算法/程序中可用一维数组x[]来表达。这是表达**可能解空间**的典型形式。
- 衡量算法的执行时间长短,可用**算法复杂度**来衡量。
- 求解问题可有不同的**算法策略**,不同算法策略得到的解可能是不同的,算法复杂度也可能有很大的差异。
- 算法研究的基础就是**枚举-计算-验证**,然后对算法做**优化**,主要目标是**减少无效计算量**。