Lecture 11: Advanced Simulation Techniques 🟃 💨

Standard molecular dynamics (MD) simulations are powerful but can struggle to capture important events that happen over long timescales. To overcome this limitation, several **advanced sampling techniques** have been developed to explore a system's energy landscape more efficiently, often by focusing on specific "collective variables" of interest.

Simulated Annealing

This method is used to find local minima on an energy landscape. It involves two main steps:

- 1. Heating the system so that its thermal energy is high enough to overcome energy barriers.
- Slowly cooling the system, allowing it to settle into a low-energy minimum until the target temperature is reached.

Related global optimization methods include basin hopping and random structure searches.

Replica Exchange Molecular Dynamics (REMD)

Also known as parallel tempering, REMD runs multiple simultaneous simulations (replicas) of the same system at different temperatures.

- Low-temperature simulations probe the local free energy landscape in detail.
- High-temperature simulations explore the landscape more globally, easily crossing energy barriers.

Periodically, the configurations of adjacent replicas are swapped based on a Metropolis probability criterion, which depends on the energies of the two states and their respective temperatures. This process improves sampling efficiency and generates ensembles for multiple temperatures at once.

Umbrella Sampling

This technique forces a system to sample a specific section of a collective variable (CV) by applying a harmonic restraining potential (an "umbrella").

- A series of simulations is run, each with the umbrella potential centered at a different target value along the CV to explore its full range.
- The biased results from these individual simulations are then combined and reweighted—
 often using the Weighted Histogram Analysis Method (WHAM)—to recover the true, unbiased
 free energy landscape.
- A potential drawback is that it requires prior knowledge of the important CV.

Metadynamics

Metadynamics enhances sampling by "filling up the free energy wells with computational sand".

- During a simulation, the algorithm tracks the system's position along a chosen CV.
- It periodically adds a small, positive Gaussian potential at that location, which drives the system away from that region.
- Over time, the sum of these added Gaussians builds up to become an inverse of the free energy landscape.
- · Its problems include being slow to converge and having the potential to drive the system into unexpected or unwanted regions.

Hybrid and Multi-Scale Methods 🕸

QM/MM (Quantum Mechanics/Molecular Mechanics)

QM/MM is a hybrid approach that combines the accuracy of electronic structure methods (QM) with the efficiency of classical force fields (MM). The system is partitioned into two regions:

- An active region (e.g., a reaction center) is treated with high-accuracy QM.
- The surrounding environment is treated with computationally cheaper MM.
- A major challenge is handling the boundary between the QM and MM regions, which often involves special techniques like using "link atoms".

Multiple Time Stepping

This method speeds up simulations by acknowledging that different interactions happen on different timescales. The potential energy is split into fast- and slow-varying components ($V_{tot} =$ $V_{fast} + V_{slow}$).

- Fast forces (e.g., stiff bond stretching) are calculated frequently using a small time step.
- Slow forces (e.g., soft, long-range interactions) are updated less often with a larger time step.

Outlook: Future Directions 🎱

Research in molecular dynamics is expanding into several advanced areas:

- Non-equilibrium MD: Simulating systems under the influence of external fields or gradients, such as in electrochemistry or liquids flowing over solids.
- Beyond Born-Oppenheimer: Methods that go beyond the assumption of stationary electrons by including electronic excited states (e.g., surface hopping) or by treating the quantum dynamics of nuclei and/or electrons.