Ş	12.2		vectors
---	------	--	---------

· Intuitively, vectors have magnitude and direction.

La represent as directed arrows between two pts: Regardless of <u>location</u> two vectors w/ Same length & same direction considered: are a equal.

A= initial pt = "tail B = terminal pt = "head"

Can write $\vec{v} = \vec{AB}$.

Addition: If we war vectors in/ initial pt of it at the vector with terminal pt of Te, then Tet1 initial pt = initial pt of \vec{u}

Also: Parallelogram law!

 $\overline{U+V} = \overline{V+V}$ and is equal to diagonal of this parallelogram.

put these here

Scalar Multiplication: For CER, the scalar multiple \overrightarrow{CV} is the vector \overrightarrow{W} same direction of \overrightarrow{V} s length \overrightarrow{C} length \overrightarrow{C} (ength) \overrightarrow{C} \overrightarrow{C} \overrightarrow{C} opposite direction \overrightarrow{E} length $|\overrightarrow{C}|$ length $|\overrightarrow{V}|$. If \overrightarrow{C} or \overrightarrow{V} = \overrightarrow{O} vector, \overrightarrow{CV} = \overrightarrow{O} .

· write it - it for it + (-v

Ex: Given $\frac{a}{a}$ $\frac{a}{b}$ $\frac{a}{a-2b}$.

(a)
$$\frac{1}{a+b}$$
 (b) $\frac{1}{a-2b} = \frac{1}{a+(-2b)}$ $= \frac{1}{a}$

~

Components

Put vector at origin and see where terminal pt is.

This can be confusing!

These are all the same vector,

- different vectors called representations of $\vec{a} = \langle 3, 2 \rangle$
- the points Addarda vector b/c it starts

 B(xz, yz, zz) the position at origin.

 esponding to rep. AB

Def: Given the points Allacase $A(x_1y_1,Z_1)$ & $B(x_2,y_2,Z_2)$ the position vector corresponding to rep. \overline{AB} is $\overline{a} = \langle x_2 - x_1, y_2 - y_1, Z_2 - Z_1 \rangle$.

 $\hat{}$

Ex: Find vector represented by the directed line signer from A(2,-3,4) to B(-2,1,1).

Algebra w/ components

Let $|\vec{a}|$ or $||\vec{a}||$ be the length of vector \vec{a} . Then $\vec{a} = \langle a_1, a_2 \rangle \Rightarrow |a| = \sqrt{a_1^2 + a_2^2}$ $\vec{a} = \langle a_1, a_2, a_3 \rangle \Rightarrow |a| = \sqrt{a_1^2 + a_2^2 + a_3^2}$

· Also: If a= <9,,92,937 & b= <b1, b2, b37, then:

$$\overrightarrow{a\pm b} = \langle a_1 \pm b_1, a_2 \pm b_2, a_3 \pm b_3 \rangle$$

$$\overrightarrow{ca} = \langle ca_1, ca_2, ca_3 \rangle.$$

- · Same in 2 dimensions!
- Also, has all usual properties (add in any order,...)
 See table an pg 819.

• Let $V_2 = coll.$ of \mathbb{R} nectors in \mathbb{R}^2 $V_3 = \dots \qquad \mathbb{R}^3.$

Standard Basis vectors in 1R3

$$\vec{l} = \langle 1,0,0 \rangle$$
 $\vec{l} = \langle 0,1,0 \rangle$ $\vec{l} = \langle 0,0,1 \rangle$

Ly all have length 1 & point along axes.

Also, they help decompose vectors:

For any
$$\bar{a} = \langle a_{11} a_{21} a_{37} \rangle = \langle a_{11}, 0, 0 \rangle + \langle 0, 0_{22}, 0 \rangle + \langle 0, 0_{1}, 0 \rangle$$

$$\overline{a} = a_1 \overline{l} + a_2 \overline{j} + a_3 \overline{k}$$

Ex: Write
$$\overline{2a+3b}$$
 and wrot $\overline{1,\overline{1,k}}$ where $\overline{a}=\langle 1,z,-3\rangle \not\in \overline{b}=4\overline{1}+7\overline{k}$.

unit <u>vectors</u> A unit vector is a vector of length 1. 盛行,了,龙, 之虚,应,己. L) Given $\vec{a} \neq \vec{0}$, there is a unique unit vector w/ same direction as a: $\overline{u} = \frac{\overline{a}}{|\overline{a}|}$ Prone this has len 1! $= \left| \frac{1}{1a} \right| q$

Ex: $2\vec{i} - \vec{j} - 2\vec{k}$ has the treether length $\sqrt{4+1+4} = 3$, $50 \quad \frac{1}{3} (2\vec{i} - \vec{j} - 2\vec{k})$ is writh vec w/ same direction.

If $\frac{2\vec{i}}{3}\vec{i} - \frac{1}{3}\vec{j} - \frac{2\vec{k}}{3}\vec{k}$.

.