Домашнее задание 9

Ткачев Андрей, группа 166 17 ноября 2016 г.

Задача 1

Рассмотрим отношение $P = \{(x, y) | x \in A, y \in B\}$:

- $\bar{P} = (A \times B) \setminus P$
- $P^{-1} = \{(y, x) | (x, y) \in P\}$

Тогда из $a\bar{P}b \Rightarrow (a,b) \notin P \Rightarrow (b,a) \notin P^{-1} \Rightarrow \neg aP^{-1}b$. Тогда равенство $P^{-1} = \bar{P}$ невозможно ни для каких бинарных отношений.

Задача 2

 P_1 и P_2 транзитивны.

а) Транзитивно ли \bar{P}_1 ?

Рассмотрим отношение делимости $P_1 = |$ на множестве натуральных чисел. Это отношение транзитивно: если a|b и b|c, то a|c (c = bm = (ak)m). Но при этом если $a \nmid b$ и $b \nmid c$, то это не означает, что $a \nmid c$ (Пример a = 3, b = 5, c = 9). Т.е. $\bar{P_1} = |$ не транзитивно.

Ответ: не обязательно транзитивно.

б) Транзитивно ли $P_1 \cap P_2$?

Рассмотрим $M = \{(x,y) | (x,y) \in P_1 \cap P_2\}$. Если aMb и bMc, то $(a,b) \in M$ и $(b,c) \in M$, а так как $M \subseteq P_1$, то $(a,b) \in P_1$ и $(b,c) \in P_1$ и так как $M \subseteq P_2$, то $(a,b) \in P_2$ и $(b,c) \in P_2 \Rightarrow (a,c) \in P_1$ в силу транзитивности P_1 и $(a,c) \in P_2$ в силу транзитивности P_2 , но тогда $(a,c) \in P_1 \cap P_2 = M$. Т.е. M - транзитивно.

Ответ: да, транзитивно.

в) Транзитивно ли $P_1 \cup P_2$?

Пусть $P_1='<'$, а $P_2='>'$ на множестве действительных (Отношение строго больше(меньше) - транзитивно на R). Поймем, что если $(a,b)\in P_1\subseteq P_1\cup P_2$ и $(b,c)\in P_2\subseteq P_1\cup P_2$, то не обязательно, что $(a,c)\in P_1\cup P_2$. Например, если $a=1,\ b=3,\ c=1$ то $(a,c)\notin P_1\cup P_2$, т.к. a=c - отношение равенства, которое не пересекается с отношением строго больше(меньше).

Ответ: не обязательно транзитивно.

в) Транзитивна ли композиция $P_1 \circ P_2$?

Рассмотрим множество A=a,b,c,d,e. Определим отношения P_1 и P_2 , так, что $aP_2d,\ dP_1b,\ bP_2e$ и eP_1c . Тогда P_1 и P_2 - транзитивны (Действительно $\forall i<2,\ \not\exists x,y,z\in A: xP_iy,\ yP_iz \not\Rightarrow xP_iz$).

Также, по построению: $a\ P_1\circ P_2\ b$ и $b\ P_1\circ P_2\ c$. Но при этом не верно, что $a\ P_1\circ P_2\ c$, так как $\not\exists x:aP_2x$ и xP_1c . Тогда композиция транзитивных отношений $P_1\circ P_2$, не транзитивна.

Ответ: не обязательно транзитивна.

Задача 3

Путь a и b - карты из колоды. Отношение заданное на колоде R= «Одна из карт старше 10-ки, другая младше». Тогда $aRb\Leftrightarrow (a<10$ и b>10) или (a>10 и b<10).

Поймем, что R - симметрично. Действительно если aRb, то и bRa (условие - одна из карт больше 10, другая - меньше, выполняется вне зависимости от порядка карт).

Так как одна карта может быть больше 10, меньше 10 или же равна 10, то не для каких карт a в колоде не верно aRa, значит R - не рефлексивно.

Поймем также, что R не транзитивно. Например, если рассмотреть карты 6, 11, 5, то получим 6R11, 11R5, но неверно, что 6R5.

Посчитаем количество пар карт (a,b), таких, что a<10< b. Карт, младших 10 - всего $4\cdot 4=16$ (по четыре в каждой масти). Карт, старше чем 10-ка так же 16 (4 в каждой масти). По правилу произведения кол-во пар (a,b) равно $16\cdot 16=256$. Но так как R - симметричное отношение, то раз aRb, то и bRa. Тогда $|R|=256\cdot 2=512$.

Ответ: 512.

Задача 4

 \mathbf{a}

Да, это отношение может быть рефлексивным. Например, рассмотрим Декартово произведение этого множества с собой без трех пар вида (a,a). Получим подмножество Декартова произведения, которое задает какое-то симметричное отношение из 33 пар.

Ответ: да, может.

б)

Докажем от противного, что такое отношение не может быть транзитивным.

Положим, R - транзитивное отношение на множестве M из 6 элементах, такое что |R|=33. Тогда R - подмножество $M\times M$ без трех пар (x_0,y_0) , (x_1,y_1) , (x_2,y_2) .

Тогда рассмотрим граф отношений, выкинув из него те дуги, которые как-то соединяют x_i и y_i , и дуги которые соединяют вершину саму с собой. Для оставшихся дуг верно, что если дуга ведет из a в b, то есть дуга и из b в a, т.е. данный граф можно сопоставить полному графу на 6 вершинах без трех ребер G = (E, V).

Если в G нет вершины со степенью меньше, чем 3, то он Гамильтонов граф (выполняется условие Дирака), т.е. в нем есть цикл проходящий по каждой вершине ровно 1 раз. В этом случае поймем, что в силу транзитивности R, если из a в b есть путь через c, то есть дуга из a в c, а так как подмножество $R' \subseteq R$, которое изображает G, симметрично, то есть дуга и из c в a. Значит все вершины в графе G соединены ребром, значит он полный. Противоречие.

Тогда в G есть вершина u со степенью меньше чем 3. Так как G отличается от полного только отсутствием 3-х ребер, то минимальная степень вершины в этом графе deg(u)=2, причем $\exists !$ такая u. Но тогда $\forall v, w \in V, v \neq u, w \neq u, w \neq v$: $(v,w) \in E$. Пусть u не соединена с x, и соединена с y. Все вершины, кроме u попарно соединены $\Rightarrow (x,y) \in E$, но в силу транзитивности R, так как xRy, yRu, то xRu. Аналогично: uRy, $yRx \Rightarrow uRx$. Тогда $(x,u) \in E$ - противоречие.

Вывод: R не может быть транзитивным.

Ответ: нет, не может.

Задача 5

a)

Отношение на множестве A задается подмножеством пар из $A \times A$. $|A \times A| = n^2$, тогда всего подмножеств в $A \times A$: 2^{n^2} . Соответственно и число всех бинарных отношений на множестве A равно $2^{(n^2)}$.

Ответ: $2^{(n^2)}$.

б)

Если R - рефлексивно, то все пары вида (a,a) (n штук $) \in A \times A$ содержатся и в R, а остальные пары могут как содержаться, так и не содержаться. Т.е. $|R| = 2^{(n^2 - n)}$.

Ответ: $2^{(n^2-n)}$.

в)

Если R - симметрично, то из $(a,b) \in R \Rightarrow (b,a) \in R$. Тогда посчитаем число x таких подмножеств из $A \times A$ в которых одновременно содержатся и (a,b) и $(b,a),\ a \neq b$.

Для каждой пары (a,b) есть выбор включить ее и пару (b,a) в подмножество или нет; число таких пар (a,b), где $a\neq b$ равно n(n-1); причем если включить (a,b) в отношение, то необходимо включить и (b,a), значит число таких отношений $x=2^{\frac{n(n-1)}{2}}$. Осталось учесть, что R может содержать пары вида (a,a). Тогда в каждое из уже посчитанных подмножеств мы можем добавить от 0 до n новых пар, не меняя симметричности задаваемых ими отношений, т.е. дополнительно нужно выбрать включать какие-то из этих n пар в отношение или нет. Это и дает нам число симметричных отношений: $2^{\frac{n(n-1)}{2}+n}$.

Ответ: $2^{\frac{n(n-1)}{2}+n}$

г)

Поймем, что искомая оценка - это число всех сочетаний без x из прошлого пункта. И правда, множество R - антисимметрично если aRb и bRa влечет a=b, т.е. число антисимметричных отношений - в точности число отношений, в которых пары (a,b) и (b,a) не состоят одновременно, где $a\neq b$, т.е. $2^{(n^2)}-2^{\frac{n(n-1)}{2}}$.

Other: $2^{(n^2)} - 2^{\frac{n(n-1)}{2}}$.

Задача 6

a)

P - отношение эквивалентности, значит оно транзитивно, рефлексивно и симметрично. Тогда понятно, что a,b,c - принадлежат одному классу эквивалентности, а элементы d,e - другому, т.к. в силу транзитивности отношения P все a,b,c попарно эквивалентны, и не эквивалентны элементу d, который в свою очередь эквивалентен e.

Рассмотрим граф отношений R на данном множестве.

Так как $e\bar{P}f$, то e и f не эквивалентны. С другой стороны про отношения f с a,b,c ничего не известно, кроме того, что возможно f принадлежит тому же классу эквивалентности.

Так как отношение эквивалентности определяется разбиением множества на непересекающиеся подмножества, то возможны всего 2 варианта отношения P: первый, когда P разбивает множество A на два класса эквивалентности $\{a,b,c,f\}$ и $\{e,d\}$, второй, когда классов эквивалентности 3 $\{a,b,c\}$, $\{f\}$ и $\{e,d\}$.

б)

Для множества A, содержащего дополнительный элемент g выпишем все возможный разбиения на классы эквивалентности, с учетом пункта a).

Т.е. для каждого из классов эквивалентности для каждого из двух вариантов P из прошлого пункта, g может принадлежать одному из них или образовывать отдельный класс.

Каждое из приведенных разбиений на непересекающиеся множества задает возможное отношение эквивалентности P.

Задача 7

Докажем формулу $p_{n+1} = \sum_{i=0}^n \binom{n}{i} p_i$ по индукции по n.

База. Число отношений p_0 эквивалентности на множестве $A_0 = \emptyset$ равно способу разбить A_0 на непересекающиеся множества (здесь и далее будем под разбиением на непересекающиеся множества понимать некое отношение эквивалентности), т.е. 1. Число отношений эквивалентности p_1 на множестве $A_1 = a$ равно числу способов разбить A_1 на непересекающиеся подмножества, т.е. 1. В свою очередь: $1 = \binom{0}{0} p_0$.

Предположение, пусть формула верна для $\{0, \dots, n\}$.

Переход $\{0, \cdots, n\} \Rightarrow n+1$. Рассмотрим множество B из n+1 элемента. Зафиксируем какой-то один элемент $x \in B$. Рассмотрим множество $B' = B \setminus \{x\}$. По предположению, любое подмножество B' из k < n элементов можно разбить на p_k непересекающихся подмножеств. Рассмотрим тогда такое разбиение B на подмножества:

$$\{a_1, \dots, a_k\} \quad \{x, a_{k+1}, \dots, a_n\}; (a_i \in B')$$

Поймем, что все разбиения B на подмножества, в которых x входит в подмножество из n-k элементов (не считая сам x) могут быть получены разбиением $\{a_1,\cdots,a_k\}$ на другие непересекающиеся подмножества p_k способами (по предположению индукции), где к каждому такому разбиению добавляется $\{x,\ a_{k+1},\ \cdots,\ a_n\}$. А так как в любом разбиении B на непересекающиеся подмножества x входит в подмножество какой-то длины n-k, то нам достаточно найти количество способов разбить B' на подмножества C и D длины n-k и k, для которых в свою очередь нужно D разбить на все возможные разбиения на подмножества.

Выбрать k элементов из B', с которыми x будет образовывать подмножество из B длины n-k, можно $\binom{n}{n-k}=\binom{n}{k}$ способами. Разбить оставшиеся k элементов на непересекающиеся подмножества, по предположению индукции, можно p_k способами. Тогда всего разбиений B на непересекающиеся подмножества таких, что x входит в подмножество из n-k элементов равно $p_k\binom{n}{k}$.

Из этих соображений получаем, что общее число разбиений B на непересекающиеся подмножества равно числу способов разбить его так, чтобы x лежал в подмножестве из 0, 1-ого, ..., n элементов (не считая x). То есть получаем формулу для p_{n+1} :

$$p_{n+1} = \binom{n}{0} p_0 + \dots + \binom{n}{n} p_n = \sum_{i=0}^n \binom{n}{i} p_i$$