Diva workshop 2014 Diva in 4 dimensions (GODIVA)

Alexander Barth, Aida Alvera-Azcárate, Mohamed Ouberdous, Charles Troupin, Sylvain Watelet & Jean-Marie Beckers

Acknowledgements: SeaDataNet, EMODnet Chemistry, EMODnet Biology, STARESO

Installation

See Tutorial on installation (pdf)

Diva input info files

In input directory:

■ Edit info files and adapt them to your case by providing in the relevant information

File name	content
contour.depth	list file of all depths in meters
NCDFinfo	metadata information for climatology NetCDF files
general_info	information for metadata XML files generation

Data extraction: input files preparation

In Climatology directory:

- datasource file: list of paths to ODV4 spreadsheet(s) from which data sets will be extracted.
- varlist, yearlist and monthlist files.
- qflist (quality flags) file if desired.

varlist	yearlist	monthlist
Temperature Salinity	19002012	0101 0202 0303

Data extraction: driver configuration & divadoall

In Climatology directory:

Edit the driver file and put in a flag number for data extraction.

```
extract flag: 1 do it, 0 do nothing, -1 press coord, -10 pressure+Saunders 1 boundary lines and coastlines generation: 0 nothing, 1: contours, 2: UV, 3: 1+2 0 cleaning data on mesh: 1, 2: RL, 3: both, 4: 1 + outliers elimination, 5: =4+2 0 minimal number of data in a layer. If less, uses data from any month.
```

Figure 1: driver file configuration example.

- Run divadoall or godiva (basic error check-up included)
- Rem: do not forget to adapt the PATH (for ex. in .bashrc)

A subdirectory divadata is created in input directory, and contains the data sets.

Topography preparation: gebcomodif

For a GEBCO topography file, use the script file gebcomodif to:

- Eliminate header lines
- Change depth values from negative to positive values
- Change comas to dots in decimal numbers
- Change longitude values from [0:360] to [-180:180] range
- Mask rectangle regions by giving coordinates in a takeout.coord file

Topography preparation

In input:

■ Provide a topography file named topogebco.asc extracted from GEBCO Global Elevation Data.

In the Climatology directory:

■ Provide a takeout.coord file:

Minlon1 Minlon2 Minlon3	Maxlon1 Maxlon2 Maxlon3	Minlat1 Minlat2 Minlat3	Maxlat1 Maxlat2 Maxlat3

■ Run gebcomodif script file.

A topo.gebco file is generated in input.

Masking regions in topography

Example of topography preparation

- In input, we provide topogebco.asc covering the Mediterranean Sea area: 30°N to 46°N and 6°W to 37°E.
- In Climatology, we provide a takeout.coord file:

-6. -1. 42. 46. 26.5 40. 40. 46. 5. 9. 33. 35. 20. 30. 30. 30.5 35. 37. 31. 33.

After running the command gebcomodif in Climatology directory, we obtain a topo.gebco in input directory.

■ Or you can extract topography from diva-on-web!

Coastline files generation: input files

In input directory provide:

OR

OR

nx max x of output grid

ny max y of output grid 129 # yalex (exclusion yalue)

varbak variance of the background field

- (a) a topo.gebco file
 - (b) a topo.dat file
 - (c) topo.grd +
 TopoInfo.dat files
- the contour.depth file
- a param.par file

33.966702	35.116699	12.000000	
33.983299	35.116699	30.000000	topo.gebco
34.000000	35,116699	51.000000	
34.016701	35.116699	90.000000	
34.033298	35.116699	179.00000	
34.049999	35,116699	382.00000	
34.066700	35,116699	543.00000	
34.083302	35.116699	640.00000	
34.099998	35.116699	691.00000	
# ispec (output 11 # ireg (mode se 1 # xori (origin of -9.25 # yori (origin of	files required, of lected for back output regular	of data in km; = comments to con ground field: 0; grid, min values grid, min values	1; 2) of X)
# dx (step of ou	tout arid)		
125	war grid)		param.par
# dy (step of ou	tout arid)		param.par

snr signal to noise ratio (not yet used as such still set as 4th value of data dat)

Contour.depth

10

Coastlines files generation: driver configuration

In Climatology directory:

Edit the driver file and choose a flag number for boundary lines and coastlines generation:

Table 1: driver options for coastlines generation

Comment line	Flag value and corresponding action	
Boundary lines and coastlines generation:	0: no action is performed 1: generation of contour files of boundaries and coastlines 2: generation of advection UV files of velocities along coasts 3: generation of contour files and advection UV files	

```
Data extraction: 1 do it, 0 do nothing, -1 press coord, -10 pressure+Saunders 0 boundary lines and coastlines generation: 0 nothing, 1: contours, 2: UV, 3: 1+2 3 cleaning data on mesh: 1, 2: RL, 3: both, 4: 1 + outliers elimination, 5: =4+2 0 minimal number of data in a layer. If less, uses data from any month.
```

Figure 2: driver file configuration example.

Coastlines files generation: output

In Climatology directory

■ Run divadoall

A newinput directory is created which contains:

- divaparam: a subdirectory where coastline files coast.cont.100xx are stored
- divaUVcons_all: a subdirectory where velocity field files are stored

Copy divaparam and divaUVcons_all to your input directory.

Data Cleaning: input files

In input directory:

- divadata: directory which contains data set files of the considered layers.
- divaparam: directory which contains coastline coast.cont.100xx files for all considered layers.
- the contour.depth file.
- a param.par file.

Data Cleaning: input files

In Climatology directory

- Provide varlist, yearlist and monthlist files.
- Edit the driver file,
- Choose a flag number for data cleaning and
- give the considered minimum layer and maximum layer numbers.

Data Cleaning: driver configuration

Table 2: driver options for data cleaning

Comment line	Flag value and corresponding action	
0:		no action is performed
	1:	cleaning data out of the mesh
cleaning data on mesh	2:	generation of relative length (RL) fields
	3:	cleaning data out of the mesh and generations of RL fields
	4:	cleaning data set files from outliers
	5:	generations of RL fields and cleaning data set files from outliers

```
Data extraction: 1 do it, 0 do nothing, -1 press coord, -10 pressure+Saunders o boundary lines and coastlines generation: 0 nothing, 1: contours, 2: UV, 3: 1+2 cleaning data on mesh: 1, 2: RL, 3: both, 4: 1 + outliers elimination, 5: =4+2 minimal number of data in a layer. If less, uses data from any month, 0 eliminal number of data in a layer. If less, uses data from any month, 0 eliminal number of data in a layer. If less, uses data from any month, 0 eliminal numbers estimation and vertical filtering: 0 minimal L 0.5 Maximal L 3. Minimal SN 0.1 Maximal SN 0.1 Moximal SN 0.1 Moximal
```


Figure 3: driver file configuration example.

Data Cleaning: output

In Climatology directory:

Run divadoall.

A newinput directory is created and contains:

- divadata subdirectory which contains cleaned data sets
- divadata subdirectory which contains relative length files if generated

Copy the content of

newinput/divadata and

newinput/divaparam

to input/divadata and input/divaparam

directories.

Parameters optimisation: input

In input directory provide:

- divadata directory which contains the data set files of the considered depths.
- divaparam directory which contains coastline coast.cont.100xx files of the considered basin.
- The contour.depth file.
- A (template) param.par file.

Parameters optimisation: input files

In Climatology directory:

- Provide varlist, yearlist and monthlist files
- Edit the driver file and give a flag number for parameters optimisation and bounds for correlation length (L) and signal-to-noise (λ) parameters.

```
0
Parameters estimation and vertical filtering:
-30
Minimal L
0.5
Maximal L
3.
Minimal SN
0.5
Maximal SN
50.0
Analysis and reference field:
0
```

Figure 4: driver file configuration example.

Parameters optimisation: driver configuration

Table 3: driver options for parameters optimisation.

Comment line	Flag value a	e and corresponding action	
Parameters optimisation and vertical filtering	State Continue C	no action is performed estimation for each level of correlation length L parameter estimation for each level of signal to noise ratio (λ) parameter estimation and vertical filtering of L parameter estimation and vertical filtering of λ parameter estimation for each level of L and λ parameters estimation and vertical filtering of L and λ parameters estimation and vertical filtering of L and λ parameters estimation of L parameter for each level using data mean distance as a minimum estimation of L parameter using data mean distance as a minimum and vertical filtering estimation of L parameters for each level, using data mean distance as a minimum estimation of L parameters for each level, using data mean distance as a minimum for L	
	-30:	estimation and vertical filtering of λ and L parameters, using data mean distance as a minimum for L ,	

Parameters optimisation: output

In Climatology directory:

■ Run the divadoall script file.

A newinput directory is created and contains:

divaparam subdirectory with param.par.100xx files and summary files of the optimisation and filtering procedure.

Copy the content of newinput/divaparam to input/divaparam directory

Producing a Climatology: input

In input directory:

- divadata directory which contains data sets for the considered layers,
- divaparam directory which contains:

```
coastlines coast.cont.100xx files, coastlines param.par.100XX files.
```

- the contour.depth file,
- a param.par file if not provided in divaparam

Producing a Climatology: input & and driver

In Climatology directory:

Provide

```
varlist,
yearlist and
monthlist files.
```

■ Edit the driver file and choose a flag number for analysis.

```
Analysis and reference field:
1
lowerlevel number
5
upperlevel number
25
4D netcdf and Metadata XML metadata files genaration:
1
gnuplot plots: 0 or 1
0
Data detrending: number of groups, 0 if no detrending.
```

Figure 5: driver file configuration example.

Producing a Climatology: input & and driver

In Climatology directory:

Table 4: driver options analyses & climatologies production.

Comment line	Flag value and corresponding action			
	0 : no action is performed			
	1: Perform analyses defined by a set of input files: v	arlist, yearlist,		
	monthlist, constandrefe and the files in inpu	monthlist, constandrefe and the files in input/directory		
	2: generation of reference field			
Analysis	3: perform analyses as in 1 based on vertically filtere	d background		
and reference fields	11 : perform analyses using a log(data)-exp(analysis)			
	13 : perform analyses using the anamorphosis transformation			
	 4: perform analyses using a user defined transformation 1: perform reference fields using a log(data)-exp(analysis) transformation 			
	23: perform reference fields using the anamorphosis to	perform reference fields using the anamorphosis transformation		
	24: perform reference fields using user defined transfo	perform reference fields using user defined transformation		
	Adding 100 to flag values $1, 11, 13$ and 14 allows to perform the same action using a reference field for each layer generated on the basis of all data from the two neighbouring layers in addition to the layer data set.			
	Adding 100 to flag values 2, 21, 23 and 24 allows to perform			
	reference fields with the same action using all data from the two neighbouring layers in addition to the layer data set			

Producing a Climatology: output

An output/3Danalysis directory is created and contains:

■ The 4D climatology NetCDF file: Temperature.19002010.4Danl.nc

subdirectories:

Fields: contains all Diva analyses 2D-fields Meshes: contains depths meshes for each layer

- 3D NetCDF and binary (GHER format) files: Temperature.19002010.nnmm.100xx.100yy.anl.nc Temperature.19002010.nnmm.100xx.100yy.fieldgher.anl
- +4D netcdf files (Temperature.4Danl.nc) if netcdf flag = 11 or -11!

Production of a Climatology using advection fields

In input directory provide:

- divadata directory (data sets)
- divaparam directory (coast.cont.100xx and param.par.100xx files)
- divaUVcons_all directory which contains velocity fields:
 (GHER-format) binary files. (+ see asctobin)
- the contour.depth
- a param.par if not provided in divaparam

In input/divaUVcons_all provide

■ constraint.dat (one line) file.

Production of a Climatology using advection fields

In Climatology directory:

provide a constandrefe file:

Table 5: Example of constandrefe file.

```
# advection flag

1
# reference field flag

0
# variable year code

00000000
# variable month code

0000
```

- Provide varlist, yearlist and monthlist files.
- Edit the driver file and choose a flag number for analysis.
- Execute divadoall.

Data extraction for reference field

In input directory:

■ the contour.depth file

In Climatology directory provide:

- datasource file (ODV4 spreadsheet(s) path)
- varlist, yearlist and monthlist files

varlist	yearlist	monthlist
Temperature	19002010	0103

- qflist file if desired
- Edit the driver file and choose a flag number for data extraction
- Run divadoall script file.

The variable(s) data set files are stored in input/divadata directory

Production reference fields: inputs

In input directory:

- divadata directory (data sets)
- divaparam directory
 (coast.cont.100xx and param.par.100xx files)
- the contour.depth
- a param.par if not provided in divaparam with value equal to zero for ireg (ireg = 0)

In Climatology directory:

- Provide varlist, yearlist and monthlist files.
- Edit the driver and choose flag value 1 for data cleaning.
- and flag value 2, 21, 23 or 24 for analysis.
- Run divadoall script file.

Production reference fields: output

A newinput directory is created and contains:

divarefe subdirectory which contains reference fields (Diva 2D binary files) in GHER-format.

In output/3Danalysis directory:

- Fields: contains all Diva analyses 2D-fields.
- 3D NetCDF files:

```
Temperature.19002010.0103.100xx.100yy.ref.nc
```

■ Binary 3D files (GHER-format):

```
Temperature.19002010.0103.100xx.100yy.fieldgher.ref
```

Copy the content of newinput/divarefe to input/divarefe_all

Producing Climatology using reference fields

In input directory:

- divadata directory (data sets)
- divaparam(coast.cont.100xx and param.par.100xx)
- divarefe_all directory which contains reference fields
- the contour.depth file.

In Climatology directory:

```
# advection flag
0
# reference field flag
1
# variable year code
19002010
# variable month code
0103
```

■ constandrefe file:

Using reference fields

In Climatology directory:

- varlist, yearlist and monthlist files
- Edit driver file and choose a flag number for analysis.
- Run divadoall script file.

Results will be stored in output/3Danalysis directory.

Detrending

In input directory provide:

- divadata directory where data set files have more than five columns (5th, 6th, ... contain the information in which class the data point belongs)
- same other inputs as for normal run

In Climatology directory provide the usual input text files and:

- Edit the driver file and
- choose a flag number for detrending a value (less or equal to the number of groups) present in your data set

Run divadoall script file.

Results will be stored in

output/3Danalysis directory

To go further...

■ Result layers are *stacked* together

To go further...

- Result layers are *stacked* together
- Problems may occur between two levels...

To go further...

- Result layers are *stacked* together
- Problems may occur between two levels...
- ... so stabilisation is required

