Kurvenintegral

- Sei $U \subset \mathbb{R}^2(bzw.\mathbb{R}^3)$ offen. Dann ist $\overrightarrow{V}: U \rightarrow \mathbb{R}^2(bzw.\mathbb{R}^3)$ ein Vektorfeld
 - \overrightarrow{V} besteht aus Koordinatenfunktionen
 - $\overrightarrow{V}:U$ auf U koordinatenweise differenzierbar
 - * ==> differenzierbares Vektorfeld
- Gesucht: geleistete Arbeit W bei Bewegung entlang Kurve C in \overrightarrow{V}
 - C: $\vec{x}(t)$
 - t [a,b]

-
$$t$$
 [a,b]
- $W = \int_a^b < \overrightarrow{V}(\overrightarrow{x}(t)), \overline{\overrightarrow{x}}(t) > dt$
* $\overline{\overrightarrow{x}}(t)dt = d\overrightarrow{x}$

- \overrightarrow{V} besteht aus P(t), Q(t), R(t) ==> $W=\int_{C}Pdx+Qdy+Rdz$
- Kurven/Wegintegral ist unabhängig von orientierter Parametrisierung
 - lediglich von Kurve und Vektorfeld
- Bewegung entlang anderer Kurve in selbem Bereich ==> W anders

· Weitere Beispiele

[[Mehrdimensionale Integralrechnung]] [[Mehrdimensionale Differentialrechnung]]