Rappel tableau de dérivées usuelles

fonction f(x)	$d \acute{e} riv \acute{e} e f'(x)$
a x + b	а
<i>u</i> . <i>v</i>	u'v + uv'
$\frac{u}{v}$	$\frac{u'v - v'u}{v2}$
√u	$\frac{u'}{2\sqrt{u}}$
u^n	n u' un-1
sin u	u' COSu
C O S U	- u'sinu
t a n u	$\frac{u'}{\cos 2}u$ $= u' (1 + \tan 2u)$
e^u	u' µe
l n u	$\frac{u'}{u}$

Si f'(x)>0 alors la fonction f est strictement croissante sur Df. Si f'(x)<0 alors la fonction f est strictement décroissante sur Df. Si f'(xo)=0 alors la fonction f admet un extremum au point d'abscisse xo.

Equation de la tangente à la courbe en a: y = f'(a)(x-a) + f(a)

Approximation affine en a avec $h\rightarrow 0$: f(a+h) = f(a) + h f'(a)

Rappel tableau de primitives usuelles

fonction f(x)	primitive F(x) (à une constante près)
β (constante)	βx
$\frac{u'}{\sqrt{u}}$	2 √ <i>u</i>
u'un	$\frac{u n + 1}{n + 1}$
<u>u'</u> u n	$\frac{-1}{(n-1)^{n}u^{-1}}$
u'sinu	- c o s <i>u</i>
u ' c o s <i>u</i>	sin u
$\frac{u'}{c \circ s^2 u}$ $= u' (1 + t a n^2 u)$	t a n u
u'e u	e ^u
$\frac{u'}{u}$	l n u

Si F est la primitive de f alors F'(x) = f (x)

$$\int_{a}^{b} f(x) dx = [F(x)] b a = F(b) - F(a)$$

Si f est une fonction positive continue sur [a;b] et si C est la courbe représentative de f dans le plan rapporté à un repère orthogonal est la mesure de l'aire du plan délimité par C, l'axe des abscisses et les droites d'équations x=a et x=b