Scientific Computing for Biologists Singular Value Decomposition and Biplots

Instructor: Paul M. Magwene

18 October 2011

Overview of Lecture

- Singular Value Decomposition
 - Algebra of SVD
 - Geometry of SVD
 - Relationship to Eigendecomposition
 - Applications of SVD
- Biplots
 - Simultaneous representation of rows and columns of a matrix

Hands-on Session

- SVD and Biplots in R
- SVD in Python
- Applications of SVD in R and Python
 - 'Seriation' using SVD
 - Matrix approximation and image compression using SVD

Eigendecomposition

$$A = UDU^{-1}$$

where:

- U is a matrix of eigenvectors (in columns)
- D is a diagonal matrix with eigenvalues along diagonal.

when A is real-valued and symmetric than U is orthgonal.

Singular Value Decomposition

A =
$$U \leq V^T$$
 assume $n \geq p$
 $(n \times p) = (n \times n) (n \times p) (p \times p)$
 $n \times p = n \times n$
 $p \times p$
 $n \times p$
 \times p$

Facts about SVD

- Singular Value Decomposition is often referred to as giving the "basic structure" of a matrix
- The rank of A is equivalent to the number of non-zero singular values in $A = USV^T$

$$rank(A) \leq min(n, p)$$

■ The Euclidean norm (L_2) norm of a matrix is the relative amount it stretches a vector:

$$|\mathsf{A}|_E = \frac{|\mathsf{A}\mathsf{x}|}{|\mathsf{x}|}$$

The L_2 norm of A is given by S_{11} .

Geometric Interpretation of SVD

Any matrix, $A_{n \times p}$, represents a linear transformation from $\mathbb{R}^p \to \mathbb{R}^n$.

SVD can be thought of decomposing the transformation specified by A into a simple form:

$$A = (rotation)(scaling)(rotation)$$

- U and V are orthonormal matrices ~ Orthonormal matrices represent rigid rotations (or rotation plus reflection)
- Diagonal matrices represent "stretching"

SVD Example

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = USV^{T}$$
where $U = \begin{bmatrix} -0.41 & -0.91 \\ -0.91 & 0.41 \end{bmatrix} S = \begin{bmatrix} 5.47 & 0 \\ 0 & 0.37 \end{bmatrix}$

$$V^{T} = \begin{bmatrix} -0.58 & -0.82 \\ 0.82 & -0.58 \end{bmatrix}$$

Geometry

Relationship of SVD to Eigendecomposition

Using SVD to do PCA

let X be a mean-centered data matrix

coverience of X

$$C = \frac{1}{n} \times^T X$$
By SVD we can write $X = USV^T$

$$C = \frac{1}{n} VSU^T USV^T$$

$$= \frac{1}{n} VS^2 V^T$$
Principal Components given by Columns of V

PC Scares given by UD

Another Way of Thinking about SVD

Applications of SVD

- Pseudoinverse of an arbirary matrix
- Matrix approximation
- Motivates the Biplot and Correspondence Analysis

Pseudoinverse via SVD

The pseudoinverse of a matrix is a generalization of the concept of a matrix inverse. Only square matrices have a matrix inverse; the pseudoinverse applies to an arbitrary $n \times p$ matrix.

Given an $n \times p$ matrix A find matrix A^+ such that:

$$AA^{+}A = A$$

$$A^{+}AA^{+} = A^{+}$$

$$(AA^{+})^{T} = AA^{+}$$

$$(A^{+}A)^{T} = A^{+}A$$

Moore-Penrose Inverse via SVD:

if
$$A = USV^T$$

 $A^+ = VS^+U^T$

where S^+ has the reciprocal of non-zero elements of S.

SVD for Matrix Approximation

If $A = USV^T$ then the optimal (least-squares) k-dimensional approximation of A (where k < rank(A)) is given by:

$$\tilde{A} = US^*V^T$$

where:

$$S_{ii}^{\star} = S_{ii} \text{ for } i \leq k$$

 $S_{ii}^{\star} = 0 \text{ for } i > k$

Biplots

```
· Technique for simultaneously displaying row and Column data
 . Invented by K. Gabriel ( see also papers by
Given dota matrix X, unk
         X = U \leq V^{\mathsf{T}}
         (nxp) (nxp) (pxp) (pxp)
          \tilde{X}_{k} = U S^{*} T  (approximation to X)
reduce & to a product
      \widetilde{\chi}_{r} = GH^{T}
         where G= U(S*) HT= (S*) 1-2 VT
             (vow effects) (column effects)
    if L= |, PCs are "sphered"
```

Biplots

$$G = U(S^*)^{\alpha}$$
 (row effects)
 $H^T = (S^*)^{1-\alpha}V^T$ (columns effects)

Different choices of α emphasize different relationships in the data.

- $\alpha = 0$, column-metric preserving biplot; optimally approximates variance-covariance structure. Cosine of angles between vectors approximate correlations; distances between points approximate Mahalanobis distance ("correlation biplot")
- $\alpha = 1$, row-metric preserving biplot; optimally approximates Euclidean distances among observations. Coordinates of observations correspond to PC scores; coordinates of variables correspond to eigenvector coefficients ("distance biplot")
- $\alpha = 0.5$, optimally approximates observational values ("symmetric biplot")

Biplots, Example

Anderson's famous iris data set.

Biplots, Example II

- Observations drawn as points in space of PCs
- Variables drawn as vectors in PC space

Biplot ($\alpha = 1$) for dataset of five morphological measurements on crabs.