5

What is claimed is:

1. A compound of formula I

(I) R_2 R_4 R_4

wherein:

 R_1 - R_4 are independently H, alkyl, alkenyl, alkynyl, OH, NH₂, SH, O- R_6 , N- R_7R_8 , or a halogen;

R₅ is H, SH, OH, O-R₆, or N-R₇R₈;

 R_6 is H or C_1 - C_4 alkyl;

R₇ and R₈ are independently H, C₁-C₄ alkyl, O, or S;

X and Y are independently S, O, or N-R₉;

 R_9 is H, O, S, or C_1 - C_4 alkyl;

Q is a tail group; and

salts thereof.

2. The compound of claim 1, wherein Q has formula IA

(IA) R_{10} R_{11} R_{12} R_{13} R_{14} R_{15} R_{16}

wherein:

10

 R_{10} - R_{13} are independently H, C_1 - C_4 alkyl, OH, NH₂, SH, O- R_{25} , N- $R_{26}R_{27}$, or a halogen, or R_{10} and R_{11} taken together form a carbonyl, a sulfonyl or an imino moiety, or R_{12} and R_{13} taken together form a carbonyl, a sulfonyl or an imino moiety;

 R_{14} - R_{24} are independently H, C_1 - C_4 alkyl, OH, NH₂, SH, O- R_{25} , N- $R_{26}R_{27}$, or a halogen;

 R_{25} is H or C_1 - C_4 alkyl; and R_{26} and R_{27} are independently H, C_1 - C_4 alkyl, O, or S.

- 3. The compound of claim 2 that is different than 2-heptyl-3-hydroxy-4-quinolone.
- 4. The compound of claim 2, wherein R_{16} , R_{17} , and R_{18} are H.
- 5. The compound of claim 2, wherein R_2 is halogen.
- 6. The compound of claim 2, wherein R_3 is halogen.
- 7. The compound of claim 2, wherein R_4 is halogen.
- 8. The compound of claim 2, wherein X is S or N-R₉.
- 9. The compound of claim 2, wherein Y is O, S, or N- R_9 and wherein R_9 is C_1 - C_4 -alkyl.
- 10. The compound of claim 2, wherein R_5 is H, SH, O-R₆, or N-R₇R₈, and wherein R₆ is C_1 -C₄ alkyl.
- 11. The compound of claim 2, wherein R₅ is SH, O-R₆, or N-R₇R₈.
- 12. The compound of claim 2, wherein X is O.
- The compound of claim 12, wherein R_5 is OH and Y is N- R_9 .
 - 14. The compound of claim 1, wherein Q is an alkylene chain having a skeleton of three to twenty carbon atoms.
- 15. The compound of claim 14, wherein the alkylene chain contains one or more double bonds or triple bonds between the carbon atoms forming the skeleton alkylene side chain.
 - 16. The compound of claim 14, wherein one or more carbon atoms forming the skeleton of the alkylene side chain are replaced with sulfur or sulfur-substituted moieties.

- 17. The compound of claim 2, wherein the compound contains a chiral center.
- 18. The compound of claim 2, which is an optically active isomer.
- 19. The compound of claim 1, comprising the formula:

- 20. An autoinducer molecule comprising a compound of any one of claims 1, 2 or 19.
- 21. The autoinducer molecule of claim 20 that regulates gene expression.
- 22. The autoinducer molecule of claim 21 that regulates gene expression in bacteria.
- 23. The autoinducer molecule of claim 22, wherein said bacteria is *Pseudomonas aeruginosa*.
- 24. The autoinducer molecule of claim 23, wherein said gene expresses a virulence factor.
- 25. The autoinducer molecule of claim 24, wherein the virulence factor is elastase.
- 26. The autoinducer of claim 20 that regulates the activity of the LasR protein of *Pseudomonas aeruginosa*.
 - 27. The autoinducer of claim 20 that regulates the activity of the RhlR protein of *Pseudomonas aeruginosa*.
- 30 28. The autoinducer molecule of claim 20 that is isolated from culture media in which *Pseudomonas aeruginosa* is grown.
 - 29. A compound of claims 1 or 2 that modulates the autoinducer activity of 2-heptyl-3-hydroxy-4-quinolone.

- 30. The compound of claim 29 that inhibits the autoinducer activity of 2-heptyl-3-hydroxy-4-quinolone.
- 5 31. The compound of claim 29 that synergistically enhances the autoinducer activity of 2-heptyl-3-hydroxy-4-quinolone.
 - 32. A compound of claims 1 or 2 that modulates the activity of the LasR and/or the RhlR proteins of *Pseudomonas aeruginosa*.
 - 33. The compound of claim 32 that is an antagonist of the LasR and/or the RhlR proteins of *Pseudomonas aeruginosa*.
 - 34. The compound of claim 32 that is an antagonist of the LasR and/or the RhlR proteins of *Pseudomonas aeruginosa*.
 - 35. A pharmaceutical composition comprising a therapeutically effective amount of a compound of claim 1 and a pharmaceutically acceptable carrier therefor, wherein the compound inhibits the activity of one or more proteins in a microorganism that regulate expression of virulence factors.
 - 36. The pharmaceutical composition of claim 35, wherein the compound is present in an amount effective to affect the ability of the microorganism to initially infect or further infect an organism.
 - 37. The pharmaceutical composition of claim 35, wherein the microorganism is *Pseudomonas aeruginosa*.
- 38. The pharmaceutical composition of claim 37, wherein the compound inhibits the activity of the LasR and/or the RhlR proteins of *Pseudomonas aeruginosa*.
 - 39. The pharmaceutical composition of claim 38, wherein the compound inhibits the autoinducer activity of 2-heptyl-3-hydroxy-4-quinolone.
- 35 40. The pharmaceutical composition of claim 35, further comprising an antimicrobial, antibacterial or antifungal agent.
 - 41. A method of inhibiting the infectivity of *Pseudomonas aeruginosa* comprising administering to a subject a therapeutically effective amount of a compound of claim 1,

35

10

wherein the compound inhibits the activity of the LasR and/or the RhlR proteins of *Pseudomonas aeruginosa*.

- 42. The method of claim 41, wherein the compound inhibits the autoinducer activity of 2-heptyl-3-hydroxy-4-quinolone.
 - 43. A method of treating an immunocompromised subject infected with *Pseudomonas aeruginosa* comprising administering to a subject a therapeutically effective amount of a compound of claim 1, wherein the compound inhibits the activity of the LasR and/or the RhlR proteins of *Pseudomonas aeruginosa*.
 - 44. The method of claim 43, wherein the compound inhibits the autoinducer activity of 2-heptyl-3-hydroxy-4-quinolone.
 - 45. The method of claim 43, wherein the subject is afflicted with cystic fibrosis.
 - 46. A culture medium for microorganisms comprising, as an added compound, an autoinducer molecule as defined in claim 20, at a concentration effective to stimulate or promote the metabolism, growth and/or recovery of the microorganism.
 - 47. The culture medium of claim 46, wherein the microorganism is *Pseudomonas aeruginosa*.
 - 48. The culture medium of claim 47, wherein the autoinducer is 2-heptyl-3-hydroxy-4-quinolone.
 - 49. A method for identifying a compound that modulates an autoinducer molecule in bacteria, said method comprising:
 - providing a cell which comprises a quorum sensing controlled gene, wherein said cell is responsive to an autoinducer molecule of claim 20 such that a detectable signal is generated;

contacting said cell with an autoinducer as defined in claim 20 in the presence and absence of a test compound; and

- detecting a change in the detectable signal to thereby identify said test compound as a modulator of an autoinducer molecule in bacteria.
- 50. The method of claim 49, wherein the compound inhibits the autoinducer molecule.

35

5

10

- 51. The method of claim 49, wherein the compound synergizes activity of the autoinducer molecule.
- 52. The method of claim 49, wherein said bacteria is *Pseudomonas aeruginosa*.
- 53. The method of claim 49, wherein the autoinducer is 2-heptyl-3-hydroxy-4-quinolone.
- 54. The method of claim 52, wherein the compound inhibits binding of the autoinducer molecule to LasR and/or RhlR.
- 55. A method of regulating the expression of a gene in bacteria comprising:
 inserting a gene into bacteria chosen for enhancement of gene expression by a
 compound of claim 1 that enhances the activity of the LasR and/or RhlR protein; and
 incubating the bacteria with a compound of claim 1 that enhances the activity of the
 LasR protein, such that the expression of the gene is regulated.
- 56. The method of claim 55 wherein the method further comprises the additional steps of: allowing the gene expression to reach a desired level; and incubating the bacteria with a compound of claim 1 that inhibits the activity of the LasR and/or RhlR protein, thereby regulating the gene expression by the bacteria.
- 57. An inhibitor of the autoinducer activity of 2-heptyl-3-hydroxy-4-quinolone.
- 58. An analog of 2-heptyl-3-hydroxy-4-quinolone that inhibits the induction of virulence factors by 2-heptyl-3-hydroxy-4-quinolone, LasR or RhlR.
- 59. The analog of claim 58, wherein the virulence factor is exotoxin A.
- 60. The analog of claim 58, wherein the virulence factor is elastase.
- 61. The analog of claim 58, wherein the virulence factor is an alkaline protease.
- 62. An analog of 2-heptyl-3-hydroxy-4-quinolone that inhibits the induction of biofilm formation by 2-heptyl-3-hydroxy-4-quinolone, LasR or RhlR.
- 63. A method for modulating quorum sensing signaling in bacteria, said method comprising:

providing bacteria that comprise a quorum sensing controlled gene, wherein said bacteria are responsive to an autoinducer molecule; and

incubating the bacteria with a compound of claim 3, such that quorum sensing signalling in bacteria is modulated.

64. The method of claim 63, wherein the autoinducer molecule is 2-heptyl-3-hydroxy-4-5 quinolone.