Preface to the Second Edition

In the ten years since the publication of the first edition of this book, the field of nonlinear optics has continued to achieve new advances both in fundamental physics and in practical applications. Moreover, the author's fascination with this subject has held firm over this time interval. The present work extends the treatment of the first edition by including a considerable body of additional material and by making numerous small improvements in the presentation of the material included in the first edition.

The primary differences between the first and second editions are as follows.

Two additional sections have been added to Chapter 1, which deals with the nonlinear optical susceptibility. Section 1.6 deals with time-domain descriptions of optical nonlinearities, and Section 1.7 deals with Kramers–Kronig relations in nonlinear optics. In addition, a description of the symmetry properties of gallium arsenide has been added to Section 1.5.

Three sections have been added to Chapter 2, which treats wave-equation descriptions of nonlinear optical interactions. Section 2.8 treats optical parametric oscillators, Section 2.9 treats quasi-phase-matching, and Section 2.11 treats nonlinear optical surface interactions.

Two sections have been added to Chapter 4, which deals with the intensity-dependent refractive index. Section 4.5 treats thermal nonlinearities, and Section 4.6 treats semiconductor nonlinearities.

Chapter 5 is an entirely new chapter dealing with the molecular origin of the nonlinear optical response. (Consequently the chapter numbers of all the following chapters are one greater than those of the first edition.) This chapter treats electronic nonlinearities in the static approximation, semiempirical models of the nonlinear susceptibility, the nonlinear response of conjugated polymers, the bond charge model of optical nonlinearities, nonlinear optics of chiral materials, and nonlinear optics of liquid crystals.

In Chapter 7 on processes resulting from the intensity-dependent refractive index, the section on self-action effects (now Section 7.1) has been significantly expanded. In addition, a description of optical switching has been included in Section 7.3, now entitled optical bistability and optical switching.

In Chapter 9, which deals with stimulated Brillouin scattering, a discussion of transient effects has been included.

Chapter 12 is an entirely new chapter dealing with optical damage and multiphoton absorption. Chapter 13 is an entirely new chapter dealing with ultrafast and intense-field nonlinear optics.

The Appendices have been expanded to include a treatment of the gaussian system of units. In addition, many additional homework problems and literature references have been added.

I would like to take this opportunity to thank my many colleagues who have given me advice and suggestions regarding the writing of this book. In addition to the individuals mentioned in the preface to the first edition, I would like to thank G. S. Agarwal, P. Agostini, G. P. Agrawal, M. D. Feit, A. L. Gaeta, D. J. Gauthier, L. V. Hau, F. Kajzar, M. Kauranen, S. G. Lukishova, A. C. Melissinos, Q-H. Park, M. Saffman, B. W. Shore, D. D. Smith, I. A. Walmsley, G. W. Wicks, and Z. Zyss. I especially wish to thank M. Kauranen and A. L. Gaeta for suggesting additional homework problems and to thank A. L. Gaeta for advice on the preparation of Section 13.2.