Capítulo 1

Probabilidade

Objetivo: Definir um modelo estatístico que seja adequado à descrição e interpretação de fenômenos aleatórios.

Experimentos ou fenômenos aleatórios (ε) : são os acontecimentos cujos resultados não podem ser previstos com certeza, sob condições idênticas.

Exemplos:

- Lançamento de um dado.
- Lançamento de uma moeda
- Tempo de vida útil de um componente eletrônico.

Espaço Amostral (Ω) : refere-se ao conjunto de todos os possíveis resultados de um experimento ou fenômeno aleatório.

Exemplos:

$$\begin{split} &\Omega_1 &= \{1,2,3,5,6\} \\ &\Omega_2 &= \{c,k\} \text{ Aonde } k \text{ \'e cara e } c \text{ \'e coroa.} \\ &\Omega_3 &= [0,\infty\} \end{split}$$

Evento : qualquer subconjunto do espaço amostral Ω do experimento aleatório ε .

Notação:
$$A, B, C, D, \dots, A_1, A_2, A_3, \dots, B_1, B_2, \dots$$

Notamos que como A é um evento, então $A \subset \Omega$.

1.0.1 Tipos de Eventos

Evento Simples ou Elementar : é o evento formado por um único ponto do espaço amostral.

Exemplo : $A = \{W\}$.

Evento Composto : é o evento formado por dois ou mais pontos do espaço amostral.

Exemplo: $A = \{w_1, w_2, w_3\}$

Evento Certo: é o evento formado por todos os pontos amostrais.

Exemplo : $A = \Omega$

Evento Impossível : É o evento que não possuí elementos de Ω , isto é, evento vazio.

Notação : $A = \{\}$ ou $A = \emptyset$

Alguns Exemplos:

A= Face do dado maior que 5

 $A = \{6\}$

B =Face do dado sem par

 $B = \{2, 4, 6\}$

 $C={\rm Face}$ do dado maior que 1

 $C = \{1, 2, 3, 4, 5, 6\} = \Omega$

D =Face do dado maior que 6.

 $D = \{\}$ ou $D = \emptyset$

1.0.2 Operação com Eventos

Para ilustrar graficamente eventos, é costume utilizar-se os mesmos diagramas de Venn utilizados na teoria de conjuntos.

Considere eventos definidos em um espaço amostral Ω de um experimento aleatório ε .

União de eventos $(A \cup B)$: é o evento formado por todos os elementos que pertencem a A, ou B, ou ambos.

Figura 1.1:

Intersecção de eventos $(A \cap B)$: é o evento formado pelos elementos que pertencem a A e a B.

Figura 1.2:

Casos Particulares:

1. Se $B \subset A$, então $A \cap B = B$

Figura 1.3:

2. Se A e B são eventos disjuntos ou mutuamente exclusivos (não possui elementos comuns), então $A \cap B = \emptyset$.

Figura 1.4:

Diferença de eventos (A - B) : é o evento formado pelos elementos que

4

pertencem a A mas não pertencem a B.

Figura 1.5:

Evento Complementar $(\bar{A} \text{ ou } A^c)$: é o evento formado por todos os elementos de Ω que não pertencem a A.

Figura 1.6:

Alguns exemplos de eventos complementares :

(a)
$$(A \cup B)^c = A^c \cap B^c$$

Figura 1.7:

(b)
$$(A \cap B)^c = A^c \cup B^c$$

Figura 1.8:

Os itensaebsão conhecidos como Lei de Demorgan.

(c)
$$A \cup B^c = (A \cap B) \cup B^c = A \cup (A \cap B)^c$$

Figura 1.9:

(d)
$$A \cap B^c = B^c \cap (A \cup B)$$

Figura 1.10:

Outras operações:

I.
$$A \cap \emptyset = \emptyset$$

II.
$$A \cup \emptyset = A$$

III.
$$\emptyset^c = \Omega$$

$$\begin{split} \text{IV.} & \ \Omega^c = \emptyset \\ \text{V.} & \ (A^c)^c = A \\ \text{VI.} & \ B = (A \cap B) \cup (A^c \cap B) \\ \text{VII.} & \ A = (A \cap B) \cup (A \cap B^c) \end{split}$$

Exemplo : Escrever $A \cup B$ como união de eventos disjuntos.

Figura 1.11:

Situação 1:

Figura 1.12:

 $A \cup B = A \cup (A^c \cap B)$

Situação 2:

1.1. DEFINIÇÕES DE PROBABILIDADE

$$(A \cup B) = B \cup (B^c \cap A)$$

Considerando a situação 1 , vamos verficar se os eventos são disjuntos. Os eventos serão disjuntos se $A\cap (A^c\cap B)=\emptyset$. Vericando, temos:

$$A \cap A^c = \emptyset$$
$$\emptyset \cap B = \emptyset$$

1.1 Definições de Probabilidade

1.1.1 Probabilidade em Espaços Equiprováveis

Se um experimento aleatório tiver n resultados possíveis, $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$, mutuamente exclusivos e igualmente possíveis e se um evento A tiver n_A desses resultados, então a probabilidade deo evento A, representado por P(A), é dada por:

$$A \subset \Omega$$

$$P(A) = \frac{N_a}{n} \tag{1.1}$$

7

Sendo que Ω é definido como todo o espaco amostral, n_A o número de casos favoráveis A e n o número de casos possíveis.

Exemplo:

Dado o lançamento de duas moedas honestas, calcule a probabilidade de:

- (a) Obter duas faces iguais.
- (b) Obter pelo menos uma face diferente de cara
- (c) Obter pelo menos uma face diferente.

$$\begin{array}{c|cc} & c & k \\ c & (c,c) & (c,k) \\ k & (k,c) & (k,k) \end{array}$$

$$\Omega = \{(c,c); (c,k); (k,c); (k,k)\}$$

(a) A = Faces iguais

$$A = \{(c, c); (k, k)\}$$
$$P(A) = \frac{2}{4} = \frac{1}{2} = 0.5$$

(b) B = Pelo menos uma face diferente de cara.

$$B = \{(c, k); (k, c); (k, k)\}$$
$$P(B) = \frac{3}{4}$$

(c) C = Obter pelo menos uma face diferente

$$C = \{(c, k); (k, c)\}$$
$$P(C) = \frac{2}{4} = \frac{1}{2}$$

1.1.2 Probabilidade Frequentista

Um experimento é realizado n vezes, sendo n um número grande. O evento A ocorre exatamente N_a vezes com: $0 \le N_a \le n$. A frequência relativa de vezes que ocorreu o evento A é uma forma de aproximar a probabilidade do evento A, ou seja:

$$f_r(A) = \frac{n_a}{n} \tag{1.2}$$

Quando $n \to \infty$, $f_r(A)$ aproxima-se de P(A).

Exemplo:

Geração de n número inteiros entre 1 e 5, $\{1, 2, 3, 4, 5\}$, e o evento de interesse é a ocorrência do número 4.

1.1.3 Probabilidade axiomática

A probabilidade de um evento A é definida como sendo um número P(A) que satisfaz os seguintes axiomas:

- I. $P(A) > 0, \forall A \subset \Omega$
- II. $P(\Omega) = 1$
- III. Se A_1, A_2, \ldots são eventos mutuamente exclusivos $(A_i \cup A_j = \emptyset, \forall i \neq j)$, então:

$$P(\bigcup_{i=1}^{\infty} A_i) = P(A_1 \cup A_2 \cup \dots) = \sum_{i=1}^{\infty} P(A_i)$$
 (1.3)

Propriedades:

(a)
$$0 \le P(A) \le 1$$

1.1. DEFINIÇÕES DE PROBABILIDADE

(b) $P(\emptyset) = 0$

(c) Se
$$A \subset \omega$$
 então $P(A) = 1 - P(A^c)$

(d) Se
$$A \subset B \subset \Omega$$
, então $P(A) \leq P(B)$

(e) Se $A, B \subset \Omega$, então vale:

$$P(B) = P(B \cup A) + P(B \cup \bar{A}) \tag{1.4}$$

9

(f) Se $A, B \subset \omega$, então:

$$P(A \cup B) = P(A) + P(B) - P(A \cup B)$$
 (1.5)

(g) Se $A, B, C \subset \omega$, então:

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cup B) - P(A \cup C)$$
$$-P(B \cup C) + P(A \cup B \cup C)$$
$$(1.6)$$

Exemplo:

Mostre a propriedade (g).

Use o fato de que $A \cup (B \cup C) = (A \cup B) \cup (A \cup C)$:

$$\begin{split} P\left(A \cup B \cup C\right) - P\left(A \cup (B \cup C)\right) \\ &= P(A) + P(B \cup C) - P\left(A \cap (B \cup C)\right) \\ &= P(A) + P(B) + P(C) - P(B \cap C) - P(A \cap B) \cup (A \cap C) \\ &= P(A) + P(B) + P(C) - P(B \cap C) - P(A \cap B) \\ &- \{P\left(A \cap B\right) + P\left(A \cap c\right) - P\left((A \cap B) \cap (A \cap C)\right)\} \\ &= P(A) + P(B) + P(C) - P(B \cap C) - P(A \cap B) - P(A \cap C) + P(A \cap B \cap C) \end{split}$$

Exercício:

Considere um experimento aleátorio e os eventos A e B associados, tais que:

$$P(A) = \frac{1}{2}$$

$$P(B) = \frac{1}{3}$$

$$P(A \cap B) = \frac{1}{4}$$

Calcule as probabilidades:

- (a) $P(\bar{A} \cap \bar{B})$
- (b) $P(\bar{A} \cup \bar{B})$

Figura 1.13: Name

(a)
$$P(A^c \cap B^c) = 1 - P(A \cup B)$$
$$= 1 - \{P(A) + P(B) - P(A \cap B)\}$$
$$= 1 - \{\frac{1}{2} + \frac{1}{3} - \frac{1}{4}\} = \frac{5}{12}$$

Figura 1.14: Name

(b)
$$P(A^{c} \cup B^{c}) = P((A \cap B)^{c})$$
$$= 1 - P(A \cap B) = 1 - \frac{1}{4} = \frac{3}{4}$$

Ou de maneira similar:

$$P(A^{c} \cup B^{c}) = P(A^{c}) + P(B^{c}) - P(A^{c} \cap B^{c})$$
$$= (1 - P(A)) + (1 - P(B)) - \frac{5}{12}$$
$$= (1 - \frac{1}{2}) + (1 - \frac{1}{3}) - \frac{5}{12}$$

1.1.4 Probabilidade condicional

Sejam A e B dois eventos definidos em um mesmo espaco amostral Ω . A probabilidade de A dado que ocorre o evento B, denotada por P(A/B) é definida por:

$$P(A/B) = \frac{P(A \cap B)}{P(B)} \tag{1.7}$$

Para P(B) > 0. Consequentemente, podemos escrever:

Figura 1.15: Name

$$P(A \cap B) = P(A/B).P(B) \tag{1.8}$$

Conhecida como regra do produto:

$$P(B/A) = \frac{P(B \cap A)}{P(A)} = \frac{P \cap B}{P(A)}$$
 (1.9)

$$P(A \cap B) = P(B/A).P(A) \tag{1.10}$$

Figura 1.16: Um exemplo de uma àrvore de probabilidades

Exemplo: Suponha que um escritório possua 100 computadores de tipos Desktop (D) e Laptop (L) sendo alguns novos (N) e outro com um certo tempo de uso (U), distribuídos da seguinte forma: Um funcionário escolhe um laptop ao acaso. Qual a probabilidade de que seja novo?

Resolução:

	D	L	Total
N	40	30	70
U	20	10	30
Total	60	40	100

$$P(N/L) = \frac{P(N \cap L)}{P(L)} = \frac{\frac{30}{100}}{\frac{40}{100}} = \frac{3}{4}$$

Obs: $P(A \cap B)$ e P(A/B)

1.2 Àrvore de Probabilidades

Sejam $A,B\subset\Omega.$ Uma representação bastante útil é a àrvore de probabilidades.

Exemplo : No exemplo anterior, qual a probabilidade de um funcionário selecionar um desktop usado?

Figura 1.17: Name

$$P(D \cap U) = P(D/U)P(U)$$

Ou:

$$P(D \cap U) = P(U/D)P(D) = \frac{20}{60} \times \frac{60}{100} = 0, 2$$

Algumas propriedades:

- (a) $P(\emptyset/B) = 0$
- (b) Se $A \subset \Omega$, entao $P(A^c/B) = 1 P(A/B)$
- (c) Se $A, C \subset \Omega$, então:

$$P(A \cup C/B) = P(A/B) + P(C/B) - P(A \cap C/B)$$
 (1.11)

1.3 Independência de Eventos

Definição: Dois eventos A e B definidos em Ω são independentes se a informação da ocorrência ou não de B não altera a probabilidade de ocorrência de A. Isto é:

$$P(A/B) = P(A) \tag{1.12}$$

$$P(B) > 0 \tag{1.13}$$

Logo, dois eventos A e B são independentes se, e somente se, $P(A \cap B) = P(A) \times P(B)$.

Observação:

$$P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B)}{P(A)} = P(B)$$

Exemplo: Um estudante se inscreve em dois processos seletivos com probabilidade 30% de ser aprovado na empresa I e 50% de ser aprovado na empresa II. Se as aprovações são independentes, qual a probabilidade de que ele seja aprovado em pelo menos uma?

Definindo os eventos:

A: O estudante ser aprovado na empresa I

B: O esutdanbte ser aprovado na empresa II

$$P(A) = 0.30$$

$$P(B) = 0.50$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$= P(A) + P(B) - P(A) \times P(B)$$

$$= 0.3 + 0.5 - 0.3 \times 0.5$$

$$= 0.65$$

1.3.1 Independência de três eventos

Os eventos A,B,C em Ω são independentes se e somente se:

- (a) $P(A \cap B) = P(A) \times P(B)$
- (b) $P(A \cap C) = P(A) \times P(C)$
- (c) $P(B \cap C) = P(B) \times P(C)$
- (d) $P(A \cap B \cap C) = P(A) \times P(B) \times P(C)$

Resultado : Se A,B são eventos independentes em Ω , então:

I. $A \in B^c$ são independentes

II. A^c e B são independetes

III. A^c e B^c são independentes.

$$P(A \cap \bar{B}) = P(A) - P(A \cap B)$$
$$= P(A) - P(A) \times P(B)$$
$$= P(A)(1 - P(B))$$
$$= P(A) \times P(\bar{B})$$

Observação: Não confundir eventos mutuamente exclusivos com eventos independentes. Ou seja, não confunda $P(A \cap B) = 0$ com $P(A \cap B) = P(A) \times P(B)$.

Exemplo: Um atirador acerta 80% dos disparos e outro acerta, nas mesmas condições acerta 70%.

- (a) Qual a probabilidade de o alvo ser acertado se ambos os atiradores disparam simultanemaente?
- (b) Qual a probabilidade do alvo ser acertado se ambos os atiradores disparam simultanemaente?
- A: Atirador 1 acerta o alvo
- B: Atirador 2 acerta o alvo
- (a) A intersecção de dois eventos independentes é dada pela multiplicação de suas probabilidades:

$$P(A \cap B) = P(A)P(B)$$
$$= 0.8 \times 0.7 = 0.56$$

(b) É dado pela a união dos dois eventos:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$= P(A) + P(B - P(A) \times P(B))$$

$$= 0.8 + 0.7 - 0.8 \times 0.7$$

$$= 0.94$$

1.4 O Teorema de Bayes

1.4.1 Partições do espaco amostral

Definição : Uma coleção de eventos A_1, A_2, \dots, A_k formam uma partição do espaço amostral Ω se:

I.
$$A_i \cap A_j = \emptyset, \forall i \neq j, \text{ com } i, j = 1, \dots, k$$

II.
$$\bigcup_{i=1}^k A_i = \Omega$$

1.4.2 Lema da probabilidade total

Definição Se A_1, \ldots, A_k é uma partição de Ω , então para qualquer evento B de Ω , vale:

$$P(B) = \sum_{i=1}^{k} B(B \cap A_i)$$

$$= \sum_{i=1}^{k} P(B/A_i)P(A_i)$$
(1.14)

$$B = \bigcup_{i=1}^{k} A_i \cap B) \tag{1.15}$$

$$P(B) = \bigcup_{i=1}^{k} P(A_i \cap B)$$

$$= \bigcup_{i=1}^{k} P(B/A_i) P(A_i)$$
(1.16)

Figura 1.18:
$$B = (A_1 \cap B) \cup (A_2 \cap) \cup ... (A_k \cap B)$$

1.4.3 Fórmula de Bayes

Definição Se A_1, A_2, \ldots, A_k formam uma partição de Ω e $B \subset \Omega$ com P(B) > 0, então:

$$P(A_i/B) = \frac{P(A_i \cap B)}{P(B)}$$

$$= \frac{P(B/A_i)P(A_i)}{\sum_{j=1}^k P(B/A_j)P(A_j)}$$
(1.17)