Lecture 23 (Electromotive Force and Power)

Physics 161-01 Spring 2012
Douglas Fields

Current

- Remember that electric current in a conductor is caused by the drift of charges (usually electrons).
- The current, however, is defined to be in the direction of positive charge motion.
- This is also in the direction of the electric field which causes the drift velocity.
- But, what causes the electric field?

Electromotive Force

- Most of us are familiar with one driver of electric current – a battery.
- It is worthwhile to spend a few minutes talking about these.

Electromotive Force (EMF, \mathcal{E})

- If you look at the terminals of a battery, they are marked + and – for the high and low potential side, respectively.
- That means, internal to the battery, there is an electric field pointing from the + to the -.
- But, what causes that potential in the first place (since without anything else involved, positive charge would move to the negative terminal, etc...)
- There is some non-electrostatic force (usually chemical) that drives positive charges to the positive terminal, and negative charges to the negative terminal.
- When the battery is just sitting there, not hooked to anything, these two forces exactly cancel.
- Think of a little man sitting in there pushing positive charges to the positive terminal until there is an terminal voltage V_{ah}.

When the emf source is not part of a closed circuit, $F_n = F_e$ and there is no net motion of charge between the terminals.

© 2012 Pearson Education,

Electromotive Force (EMF, \mathcal{E})

- When there is a connection made between the terminals, current flows from positive to negative.
- Think of the little man desperately trying to keep enough positive charge on the positive terminal in order to keep the terminal voltage at V_{ab}.

Potential across terminals creates electric field in circuit, causing charges to move.

is connected to a circuit, V_{ab} and thus $F_{\rm e}$ fall, so that $F_{\rm n} > F_{\rm e}$ and $\vec{F}_{\rm n}$ does work on the charges.

© 2012 Pearson Education, Inc

Circuit Symbols

 We will need these next and for the coming chapters.

Ideal vs. Real

- Now, in a real source of EMF, there is usually some internal resistance.
- This can cause the terminal voltage, V_{ab} to be different that the EMF voltage, \mathcal{E} .
- Why?

© 2012 Pearson Education, Inc.

Potential Drop Across a Resistor

- Water analogy, again.
- With no pressure drop across the restriction, no current flows through it.

Potential Drop Across a Resistor

- When a potential difference is applied across a resistor, a current flows, given by Ohm's Law: V=IR.
- No current, no voltage drop.
- No voltage drop, no current (through the resistor).

Ideal vs. Real

- So, here we have a (real) battery, but it is not hooked up in a circuit.
- What is the reading on the ammeter?
- What is the reading on the voltmeter?

© 2012 Pearson Education, Inc.

Ideal vs. Real

- Here, we have a (real) battery, that is hooked up in a circuit.
- What is the reading on the ammeter?
- What is the reading on the voltmeter?

What is the current through the ammeter, and the voltage *across the battery's internal resistor*?

- B. 4A and 20V.
- C. 5A and 20V.
- D. 4A and 16V.
- E. 2A and 8V.

What is the current through the ammeter, and the voltage *across the battery's internal resistor*?

B. 4A and 20V.

E. 2A and 8V.

In diagram a, the ammeter reads 2A and the voltmeter reads 8V. What are the readings in diagram b?

(b)

- A. 2A and 8V.
- B. 2A and 0V.
- C. 0A and 12V.
- D. 0A and 0V.
- E. 2A and 12V.

In diagram a, the ammeter reads 2A and the voltmeter reads 8V. What are the readings in diagram b?

(b)

A. 2A and 8V.

B. 2A and 0V.

C. 0A and 12V.

D. 0A and 0V.

E. 2A and 12V.

Energy and Power

 What is the potential energy change of a charge going from potential zero to potential V?

$$\Delta U = q\Delta V$$

 So, how much work does the battery do per second?

$$P = \frac{dq}{dt} \Delta V = I \mathcal{E}$$

But, energy is lost in the internal resistor.

$$P = \frac{dq}{dt} \Delta V = I(Ir) = I^{2}r = \frac{V^{2}}{r}$$

(a) Diagrammatic circuit

- The emf source converts nonelectrical to electrical energy at a rate EI.
- Its internal resistance dissipates energy at a rate I^2r .
- The difference $\mathcal{E}I I^2r$ is its power output.

© 2012 Pearson Education, Inc.

Energy and Power

- In a real-life circuit, power is lost both in the light, and in the battery.
- Notice that when working with a cordless tool, the battery gets hot.
- The power used in the headlight heats the filament and is lost via the light and the heat lost.

(b) A real circuit of the type shown in (a)

Energy and Power

- Short circuiting a battery means that one directly connects the positive and negative terminals with a low-resistance wire.
- Doing so means that the current will be especially high, limited only by the internal resistance of the battery.
- Also, all of the power produced by the source, is lost in the source, hence doing this can cause a battery to heat up significantly, and perhaps explode.

Power Input Into a Source

 One can have more than one source of EMF in a circuit, and can do this in order to recharge a battery.

