List of input parameters for TASK/EQU

nr	I	257	number of grids in R
nz	I	257	number of grids in Z
nv	I	101	number of grids in ψ
device	C8	'JT60U'	device name
title	C70	"	job title
btv	R	13.5	Toroidal magnetic field multiplied by major radius $R * Bt[mT]$
tcur	R	2.0	Plasma current $I_p[MA]$
			note: in the code, $tcu = myu0*tcur$
<pre>icp(i)</pre>	Ι	$1,\!1$	dp/ds and dF/ds profiles: option id
			see subroutine eqequ and eqpds0 in eqsub.f:
			icp(1)=1: v=volume
			$pds0 = (1 - cp4) * (1 - v^{cp2})^{cp3} + cp4$
			$fds0 = (1 - cp8) * (1 - v^{cp6})^{cp7} + cp8$
			icp(1)=2:
			$pds0 = 1 - cp2 * v^{cp3} - (1 - vp2 + cp4) * v^{cp5}$
			$fds0 = 1 - cp6 * v^{cp7} - (1 - vp6 + cp8) * v^{cp9}$
			icp(1)=9:
			see subroutine eqpfds in eqpdfs.f
			icp(1)=11: hollow current profile
			$pds0 = (1 - cp4) * (1 - v^{cp2})^{cp3} + cp4$
			$fds0 = (1 - v^{vp6})^{cp7} * (1 + cp8 * exp(-((v - cp9)/cp10)^{2}))$
			icp(2)
			> 0: adjust poloidal beta pds
			1: adjust poloidal current fds for given $\langle J/R \rangle$
			2 : adjust poloidal current fds for given $\langle J \cdot B \rangle$
cp(1)	\mathbf{R}	0.1	beta-j: see sub eqequ
			see subroutine eqequ
cp(i)	\mathbf{R}	1.0, 1.0,0.05	dp/ds and dF/ds profiles: coefficients (i=210):
			see subroutine eqequ
rwmx	R	4.20	maximum R of computation area $(R < rwmx)$
rwmn	\mathbf{R}	1.90	minimum R of computation area $(R > rwmn)$
zwmx	\mathbf{R}	1.20	maximum $ Z $ of computation area $(Z < zwmx)$
			· · · · · · · · · · · · · · · · · · ·

iudsym	I	0	up-down symmetry (1 for symmetric)
msfx	I	9	number of marker points
IIIDIA	1	J	if positive, rmajtrig are generated from
rvac, zvac			F
,			if negative, rvac, zvac are generated from rmajtrig
rvac	$R(0:\mathtt{msfx})$		R coordinates of marker points
zvac	$Z(0:\mathtt{msfx})$		R coordinates of marker points
rmaj	R	3.05	optional: Major radius [m]
rpla	${ m R}$	0.9	optional: Minor radius [m]
zpla	${ m R}$	0.0	optional: Z position of magnetic axis [m]
elip	${ m R}$	1.0	optional: ellipticity
trig	\mathbf{R}	0.0	optional: triangularity
elipup	\mathbf{R}	1.0	optional: ellipticity for upper
trigup	\mathbf{R}	0.0	optional: triangularity for upper
yh	\mathbf{R}	0.5	optional: half height
yd	\mathbf{R}	0.995	optional: edge height
msetup	I	20	maximum iteration count of initial equilibrium
esetup	${ m R}$	1.D-3	covergence criterion of initial equilibrium
ieqmax	I	20	maximum iteration count of FCT equilibrium
eeqmax	${ m R}$	1.D-3	covergence criterion of FCT equilibrium
iodmax	I	10	maximum iteration count of ODE calculation
eodmax	R	1.D-5	covergence criterion of ODE calculation
\mathtt{iadmax}	I	1	maximum iteration count of vaccum adjustment
eadmax	${ m R}$	1.D-4	covergence criterion of vaccum adjustment
bavmax	R	0.8	FCT convergence parameter (see eqfct and eqrcu)
bavmin	R	0.2	FCT convergence parameter (see eqfct and eqrcu)
nsumax	I	101	number of points on plasma surface
ivac	I(0:13)	0,1,2,-1	model id of coil setting:
			negative: fixed coil current
			positive: adjustable
cvac	R(0:13)	0.0	surface flux $cvac(0)$ and coil current [AT]
ncoil	I(0:13)	0,70	number of coil turn
cvacst	R(13)		coil current (initial value) [AT]
cvacwg	R(13)		weight of coil current
cvact	R(13)		time derivative of coil current [AT/s]
isep	I	2	type of X point for divertor
			0: no X point
			1: lower X point
			2: outer X point (JFT-2a)
			3: upper X point
_	ъ	0.001	4: inner X point
dsep	R	0.001	separation between X point and
			LCMF (last-closed magnetic surface)