

ENV797 - TIME SERIES ANALYSIS FOR ENERGY AND ENVIRONMENT APPLICATIONS

M6 - Seasonal ARIMA Models

Prof. Luana Medeiros Marangon Lima, Ph.D.

Learning goals

□ Discuss the seasonal ARIMA model – SARIMA

Learn how to identify order of seasonal component

Learn how to fit SARIMA models in R

Seasonal Models

SARIMA

Modeling with Seasonality

So far we have two ways to deal with seasonality

- Linear regression on seasonal dummy variables and work with residuals
- Computing and subtracting the average of each "month" (season)
- □ In R: use stats::decompose() and forecast::seasadj()
- Drawbacks
 - Need to add seasonality back after fitting the model
 - Seasonal component is modeled as "constant" over time

Seasonal Models

- Today we will learn a new approach: work with seasonal models, i.e., models that can handle seasonal time series
- We still need to identify the seasonal component but we do not need to remove it from the series

 And we don't need to add it back after fitting the model

Seasonal ARIMA Models

- The Seasonal ARIMA models rely on seasonal lags and difference to fit the seasonal pattern
- The seasonal part of the ARIMA model have three additional parameters

P: number of seasonal autoregressive terms

D: number of seasonal differences

Q: number of moving average terms

The complete model is called an

$$ARIMA(p, d, q) \times (P, D, Q)_s$$

Non-seasonal Seasonal part

Seasonal ARIMA Models (cont'd)

- We have two terms that refer to differencing
- How does all this differencing work?

If
$$d = 0, D = 1$$
: $y_t = Y_t - Y_{t-s}$
If $d = 1, D = 1$: $y_t = (Y_t - Y_{t-1}) - (Y_{t-s} - Y_{t-s-1})$

- □ Note that s is the seasonal period, i.e., for monthly data s = 12
- D should never be more than 1
- \Box (d+D) should never be more than 2

Seasonal ARIMA Models (cont'd)

What about the seasonal AR and MA terms?

```
If P = 1: y_{t-s} is added to the equation If Q = 1: a_{t-s} is added to the equation
```

- \square (P+Q) should not be more than one
- After differencing plot ACF and PACF
 - Positive spikes in ACF at lag 12, 24, 36, ... and single positive spike in PACF at lag 12
 - Negative spike in ACF at lag 12 and negative spikes in PACF at lag 12, 24, 36, ...

P=1

Q=1

Examples: Seasonal ARIMA

SARIMA(1,0,1)(1,0,0)_[12]

SMA term

SARIMA(2,0,1)(0,0,1)_[12]

$$y_t = \mu + \phi_1 y_{t-1} + \phi_2 y_{t-2} + a_t - \theta_1 a_{t-1} - \theta_{12} a_{t-12}$$

Periodic AR Model (PAR)

- Also known as PAR(p) where p is the order of autoregressive model
- Similar to having one AR model for each season of the year

$$y_t = \phi_{1,s} y_{t-1} + \dots + \phi_{p,s} y_{t-p} + a_t$$

- □ Note that s = 1,2,3,... depending on the number of seasons
- The autoregressive parameter vary with the season for lag

ARIMA Models Summary

ARIMA Models Summary

- AR(p), MA(q), ARMA(p,q) stationary and non-seasonal process
- ARIMA(p,d,q) non-stationary and non-seasonal process
 - The Integrated part can handle the non-stationarity
 - The non-stationary could be either a deterministic or stochastic trend eliminated by differencing
- Seasonal ARIMA or SARIMA non-stationary and seasonal process $ARIMA(p, d, q) \times (P, D, Q)_S$

Fitting ARIMA Models

Cheat sheet

Start with non-seasonal part

- □ Step 1: Run stationary test
 - To identify stochastic trend use ADF
 - To identify determinist trend use Mann Kendall
- \square Step 2: If either trend is present d=1
 - It may be the case that you need differencing more than once to remove trend
 - lacksquare To find out if d=1 is enough, run the tests again on the differenced series
 - \blacksquare Repeat the process until there is no trend on data ($d \le 2$)
 - There is a function in R that returns the number of differences needed to achieve stationary

```
ndiffs(x, alpha = 0.05, test = c("kpss", "adf", "pp"), max.d = 2)
```

 Step 3: Plot ACF and PACF and look the behavior of non-seasonal lags

If cuts off (MA process)

If tails off, i.e., slow decay (AR process)

ACF gives you the value of q

If cuts off (AR process)

If tails off, i.e., slow decay (MA process)

PACF gives you the value of p

Move to seasonal component

- Step 4: Check if seasonal differencing is needed
 - Seasonality can usually be verified by plotting your time series or by spikes at equally spaced lags (multiples of lag S) on ACF and PACF
 - If you are still not sure about the existence of seasonal component you can run statistical tests
 - The seasonal difference is needed if the seasonal pattern is strong and stable over time
 - There is also a function in R that returns the number of seasonal differences needed to achieve stationary

```
nsdiffs(x, m = frequency(x), test = c("ocsb", "ch"), max.D = 1)
```

Move to seasonal component

 Step 5: Again ACF and PACF plots but now look at the seasonal lags

Multiple spikes at seas. lag (SAR process)
Single Spike (SMA process)

ACF gives you the value of Q

Multiple spikes at seas. lag (SMA process)
Single Spike (SAR process)

PACF gives you the value of P

Some Rules for ARIMA Modeling

- If the series have positive autocorrelations out to a high number of lags, then it probably needs differencing more than once
- If the lag-1 autocorrelation is zero or negative, or the autocorrelations are all small with no pattern, then the series does not need a higher order of differencing
- If the lag-1 autocorrelation is -0.5 or more negative, the series may be overdifferenced

Some Rules for ARIMA Modeling

- Never use more than 1 order of seasonal differencing $D \leq 1$
- □ Never use more than 2 orders of total differencing $seasonal(D) + nonseasonal(d) \le 2$
- If the autocorrelation at the seasonal period is <u>positive</u>, consider adding an SAR term to the model
- If the autocorrelation at the seasonal period is <u>negative</u>, consider adding an <u>SMA</u>
- Avoid mixing SAR and SMA terms in the same model,
 and avoid using more than one of either kind

$$P + Q \leq 1$$

The ndiffs() and nsdiffs() tests

Augmented Dickey Fuller (ADF)

Check for stochastic trend

```
\begin{cases} H_0: & \phi = 1 \text{ (i.e. contain a unit root)} \\ H_1: & \phi < 1 \text{ (i.e. is stationary)} \end{cases}
```

Kitawoski-Phillips-Schmidt-Shin (KPSS)

Check for deterministic & stochastic trend

```
\begin{cases} H_0 \colon \text{ stationary around determinist trend} \\ H_1 \colon \text{ contain a unit root} \end{cases}
```

Phillips-Perron test (PP)

Check for stochastic trend

```
\begin{cases} H_0: & \phi = 1 \text{ (i.e. contain a unit root)} \\ H_1: & \phi < 1 \text{ (i.e. is stationary)} \end{cases}
```

Canova and Hansen (CH)

Check for seasonal pattern

 H_0 : seasonal pattern is stable H_1 : not stable.

Osborn,. Chui, Smith and Birchenhall (OCSB)

Check for seasonal unit root $\begin{cases} H_0: & seasonal \ unit \ root. \\ H_1: & no \ seasonal \ unit \ root \end{cases}$

Covariates in ARIMA

ARIMAX model

More on ARIMA and SARIMA in R

Constants in the model

Constants in ARIMA models in R

- The function Arima() takes three arguments regarding constants
 - $lue{}$ include.mean only has effect when d=0 and is true by default
 - lacktriangledown include.drift allows $\mu
 eq 0$ when d=1 and is false by default
 - include.constant more general. If TRUE, will set include.mean=TRUE if d=0 and include.drift=TRUE if d=1
 - Note: For d>1 no constant is allowed
- The function auto.arima automates the inclusion of a constant
 - If alllowdrift=FALSE is specified then the constant is only allowed when d=0
- The arima() function only has the include.mean option

THANK YOU!

luana.marangon.lima@duke.edu

Master of Environmental Management Program
Nicholas School of the Environment - Duke University