```
In [1]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]: df = pd.read_csv("C:/Users/LEGION/Desktop/Python Project/Ecommerce Customers")

In [3]: df.head()

Out[3]:		Email	Address	Avatar	Avg. Session Length	Time on App	Time on Website	Length of Membership	Yearly Amount Spent
	0	mstephenson@fernandez.com	835 Frank Tunnel\nWrightmouth, MI 82180-9605	Violet	34.497268	12.655651	39.577668	4.082621	587.951054
	1	hduke@hotmail.com	4547 Archer Common\nDiazchester, CA 06566-8576	DarkGreen	31.926272	11.109461	37.268959	2.664034	392.204933
	2	pallen@yahoo.com	24645 Valerie Unions Suite 582\nCobbborough, D	Bisque	33.000915	11.330278	37.110597	4.104543	487.547505
	3	riverarebecca@gmail.com	1414 David Throughway\nPort Jason, OH 22070-1220	SaddleBrown	34.305557	13.717514	36.721283	3.120179	581.852344
	4	mstephens@davidson-herman.com	14023 Rodriguez Passage\nPort Jacobville, PR 3	MediumAquaMarine	33.330673	12.795189	37.536653	4.446308	599.406092

In [4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	Email	500 non-null	object
1	Address	500 non-null	object
2	Avatar	500 non-null	object
3	Avg. Session Length	500 non-null	float64
4	Time on App	500 non-null	float64
5	Time on Website	500 non-null	float64
6	Length of Membership	500 non-null	float64
7	Yearly Amount Spent	500 non-null	float64

dtypes: float64(5), object(3)
memory usage: 31.4+ KB

In [5]: df.describe()

Out[5]: Avg. Session Length Time on App Time on Website Length of Membership Yearly Amount Spent

	Avg. Session Length	Time on App	Tille on website	Length of Membership	rearry Amount Spent
count	500.000000	500.000000	500.000000	500.000000	500.000000
mean	33.053194	12.052488	37.060445	3.533462	499.314038
std	0.992563	0.994216	1.010489	0.999278	79.314782
min	29.532429	8.508152	33.913847	0.269901	256.670582
25%	32.341822	11.388153	36.349257	2.930450	445.038277
50%	33.082008	11.983231	37.069367	3.533975	498.887875
75%	33.711985	12.753850	37.716432	4.126502	549.313828
max	36.139662	15.126994	40.005182	6.922689	765.518462

```
In [6]: sns.jointplot(x="Time on Website", y="Yearly Amount Spent", data=df)
```

Out[6]: <seaborn.axisgrid.JointGrid at 0x25a74c7c470>

In [7]: sns.jointplot(x="Time on App", y="Yearly Amount Spent", data=df, alpha=0.5)

Out[7]: <seaborn.axisgrid.JointGrid at 0x25a74c987d0>

Out[8]: <seaborn.axisgrid.FacetGrid at 0x25a2a038890>


```
In [9]: from sklearn.model_selection import train_test_split

In [10]: X = df[['Time on App', 'Time on Website', 'Length of Membership']]
    y = df['Yearly Amount Spent']

In [11]: X_train, X_test, y_train, y_test = train_test_split(X,y,test_size =0.3, random_state= 42 )

In [12]: X_test
```

Out[12]:		Time on App	Time on Website	Length of Membership
-	361	10.347877	39.045156	3.434560
	73	12.817113	37.031539	3.851579
	374	10.101632	38.043453	4.238296
	155	13.457725	37.238806	2.941411
	104	10.994224	38.074452	3.428860
	•••			
	266	11.777772	37.979827	3.784273
	23	11.657576	36.772604	3.919302
	222	11.109456	38.585855	3.892891
	261	13.041245	36.655208	3.456234
	426	13.271475	37.239847	4.022103
		ws × 3 column		
In [13]:	from	sklearn.line	ar_model import	LinearRegression
In [15]:	lm =	LinearRegres	sion()	
[n [16]:	lm.fi	t(X_train, y	_train)	
ut[16]:	▼ L	inearRegres:	sion ^① ②	
	Linea	rRegression	()	
In [17]:	lm.co	ef_		
Out[17]:	array	/([38.6085434	6, 0.78562369,	62.55928792])
		pd.DataFramo (cdf)	e(lm.coef_, X.co	lumns, columns=['coef'
		n Ann	coef 38.608543	
T		n Website	0.785624 p 62.559288	

In [20]: predictions

```
Out[20]: array([429.47210171, 549.31218446, 469.45917026, 517.26864352,
                453.30743285, 586.77274082, 480.43964578, 507.87790281,
                424.42185231, 475.98961873, 470.09091211, 414.46445873,
                428.63754654, 487.01257302, 448.1500256 , 409.45375361,
                571.18066702, 479.50208277, 444.50723503, 483.66493466,
                460.11061419, 480.43797079, 527.63371392, 632.16176969,
                436.73240808, 503.55520124, 568.69314436, 528.72859582,
                429.36409196, 352.16513089, 513.97073363, 497.9897364,
                497.36719991, 317.14314417, 507.79503236, 472.15712634,
                543.92620023, 434.66394134, 469.50780249, 477.9911575,
                480.42766939, 426.87833886, 500.51404989, 514.65248448,
                497.32995695, 533.69902098, 559.53248572, 493.12170996,
                319.13483159, 471.82925757, 439.20574544, 495.41794949,
                602.50554948, 604.97133051, 602.81708635, 471.73760128,
                402.42393424, 477.47828545, 533.93141144, 512.76000721,
                502.91005133, 403.13108398, 488.30266824, 466.95844138,
                471.97010658, 559.32674432, 407.04309906, 563.85259862,
                467.51059071, 482.61642469, 480.87249518, 546.37856347,
                643.79924619, 528.87273585, 416.44323311, 475.88970084,
                498.86611121, 470.03207542, 438.208469 , 489.20375257,
                520.47980833, 608.52136562, 545.76616758, 636.30641467,
                516.4892317 , 452.85724749, 537.72208218, 565.13485183,
                399.0057803 , 521.79589862, 523.93028207, 484.83760218,
                352.55367666, 563.59471274, 450.46440537, 572.00748093,
                463.92317376, 482.55925587, 422.69266329, 510.81308662,
                500.88866708, 401.8620988, 608.02803112, 482.81886479,
                404.3831717 , 533.9806929 , 504.76271246 , 429.15859838 ,
                544.57575736, 424.54662907, 404.52546243, 456.17334969,
                473.12596335, 438.59626874, 692.63294587, 548.5217562,
                618.05034366, 416.18707903, 578.51730143, 560.15069587,
                491.74473117, 559.23166905, 390.29314482, 694.19919606,
                495.11569482, 484.862025 , 467.20484236, 440.44547222,
                531.7481646 , 435.78154748 , 449.2148069 , 436.19220503 ,
                446.62245893, 623.56592692, 513.91095924, 428.26026409,
                496.05816633, 668.70094577, 429.82936678, 530.58520163,
                552.71052106, 412.79215141, 382.38814996, 532.27705535,
                543.99374472, 505.71914007, 508.57745193, 487.18764328,
                532.93742025, 577.68595571])
In [24]: sns.scatterplot(x=predictions, y=y test)
         plt.xlabel("Predictions")
         plt.ylabel("Yearly Amount Spent") # Adding a Label for the y-axis
         plt.title("Evaluation of our LM Model")
```

plt.show()


```
Predictions
In [26]: from sklearn.metrics import mean_squared_error, mean_absolute_error
         import math
In [27]: print("Mean Absloute Error: ", mean_absolute_error(y_test, predictions))
         print("Mean Squared Error: ", mean_squared_error(y_test, predictions))
         print("RMSE: ", math.sqrt(mean_squared_error(y_test, predictions)))
        Mean Absloute Error: 22.57620980116825
        Mean Squared Error: 758.6208936474467
        RMSE: 27.543073424137813
In [28]: residual = y_test - predictions
In [29]: residual
Out[29]: 361 -28.438966
         73 -14.534996
         374 -50.856428
         155 -13.290264
         104 -43.237822
                 . . .
         266
              48.283953
         23
                10.763537
         222 15.222142
         261 -18.927602
         426 -46.919237
         Name: Yearly Amount Spent, Length: 150, dtype: float64
In [37]: sns.displot(residual, bins = 27, kde = True)
Out[37]: <seaborn.axisgrid.FacetGrid at 0x25a2f8516a0>
```



```
In [41]: residuals = y_test - predictions
    import pylab
    import scipy.stats as stats

stats.probplot(residuals, dist="norm", plot=pylab)
    pylab.show()
```


In []: