Leveraging Multi-Domain Prior Knowledge in Topic Models

Zhiyuan Chen[†] Arjun Mukherjee[†] Bing Liu[†] Meichun Hsu[‡] Malu Castellanos[‡] Riddhiman Ghosh[‡]

UNIVERSITY OF ILLINOIS AT CHICAGO

[†]University of Illinois at Chicago, [‡]HP Labs {czyuanacm, arjun4787}@gmail.com, liub@cs.uic.edu, meichun.hsu, malu.castellanos, riddhiman.ghosh}@hp.com

Introduction

- Problem Definition: Given prior knowledge from multiple domains, improve topic modeling in the new domain.
 - ☐ Knowledge in the form of *s-set* containing words sharing the same semantic meaning, e.g., {Light, Heavy, Weight}.
 - ☐ A novel technique to transfer knowledge to improve topic models.
- Existing Knowledge-based models
 - □ DF-LDA [Andrzejewski et al., 2009], Seeded Model (e.g., [Mukherjee and Liu, 2012]).
 - ☐ Two shortcomings: 1) Incapable of handling multiple senses, and 2) Adverse effect of Knowledge.

MDK-LDA

Generative Process

- 1. For each topic $t \in \{1, ..., T\}$
 - i. Draw a per topic distribution over s-sets, $\varphi_t \sim Dir(\beta)$
 - ii. For each s-set $s \in \{1, ..., S\}$
 - a) Draw a per topic, per s-set distribution over words, $\eta_{t,s} \sim Dir(\gamma)$
- 2. For each document $m \in \{1, ..., M\}$
 - i. Draw $\theta_m \sim Dir(\alpha)$
 - ii. For each word $w_{m,n}$, where $n \in \{1, ..., N_m\}$
 - a) Draw a topic $z_{m,n} \sim Mult(\theta_m)$
 - b) Draw an s-set $s_{m,n} \sim Mult(\varphi_{z_{m,n}})$
 - c) Emit $w_{m,n} \sim Mult(\eta_{z_{m,n},s_{m,n}})$
- **Plate Notation**

Figure 1: Plate notation of the proposed framework.

Collapsed Gibbs Sampling

□ Blocked Gibbs Sampler: Sample topic *z* and s-set *s* for word *w*

$$P(z_{i} = t, s_{i} = s | \mathbf{z}^{-i}, \mathbf{s}^{-i}, \mathbf{w}, \alpha, \beta, \gamma) \propto \frac{n_{m,t}^{-i} + \alpha}{\sum_{t'=1}^{T} (n_{m,t'}^{-i} + \alpha)} \times \frac{n_{t,s}^{-i} + \beta}{\sum_{s'=1}^{S} (n_{t,s'}^{-i} + \beta)} \times \frac{n_{t,s,w_{i}}^{-i} + \gamma_{s}}{\sum_{v'=1}^{V} (n_{t,s,v'}^{-i} + \gamma_{s})}$$

Generalized Pólya Urn Model

- ❖ Generalized Pálya urn model [Mahmoud, 2008]
 - ☐ When a ball is drawn, that ball is put back along with a certain number of balls of similar colors.
- Promoting s-set as a whole
 - ☐ If a ball of color w is drawn, we put back $\mathbb{A}_{s,w',w}$ balls of each color $w' \in \{1, ..., V\}$ where w and w' share s-set s.

$$\mathbb{A}_{s,w',w} = \begin{cases} 1 & w = w' \\ \sigma & w \in s, w' \in s, w \neq w' \\ 0 & \text{otherwise} \end{cases}$$

Collapsed Gibbs Sampling

$$P(z_{i} = t, s_{i} = s | \mathbf{z}^{-i}, \mathbf{s}^{-i}, \mathbf{w}, \alpha, \beta, \gamma, \mathbb{A}) \propto \frac{n_{m,t}^{-i} + \alpha}{\sum_{t'=1}^{T} (n_{m,t'}^{-i} + \alpha)} \times \frac{\sum_{w'=1}^{V} \sum_{v'=1}^{V} \mathbb{A}_{s,v',w'} \cdot n_{t,s,v'}^{-i} + \beta}{\sum_{s'=1}^{S} (\sum_{w'=1}^{V} \sum_{v'=1}^{V} \mathbb{A}_{s',v',w'} \cdot n_{t,s',v'}^{-i} + \beta)} \times \frac{n_{t,s,w_{i}}^{-i} + \gamma_{s}}{\sum_{v'=1}^{V} (n_{t,s,v'}^{-i} + \gamma_{s})}$$

Experiments

- ❖ Datasets: reviews from six domains from Amazon.com.
- Baseline Models
 - □ LDA [Blei et al., 2003], LDA_GPU [Mimno et al., 2011], and DF-LDA [Andrzejewski et al., 2009].
- Topic Discovery Results
 - \square Evaluation measure: *Precision* @ n (p @ n).
- ☐ Quantitative results in Table 1, Qualitative results in Table 2.
- Objective Evaluation
 - ☐ Topic Coherence [Mimno et al., 2011].

Domains	LDA	LDA_GPU	DF-LDA	MDK-LDA(b)	MDK-LDA
Camera	0.80	0.50	0.67	0.81	0.93
Computer	0.67	0.60	0.56	0.70	0.88
Food	0.87	0.61	0.67	0.84	0.91
Care	0.81	0.64	0.72	0.92	0.91
Average	0.79	0.59	0.66	0.82	0.91

Table 1 (Quantitative): Avg. precision of each model across domains.

Camera (Battery)		Computer (Price)		Food (Taste)		Care (Tooth)	
LDA	MDK	LDA	MDK	LDA	MDK	LDA	MDK
battery	extra	acer	cheap	taste	flavor	price	tooth
screen	charge	power	price	salt	sweet	tooth	gum
life	life	base	inexpensive	almond	sugar	amazon	dentist
<u>lcd</u>	replacement	year	money	fresh	salty	pen	dental
water	battery	button	expensive	pack	tasty	shipping	whitening
<u>usb</u>	charger	amazon	cost	tasty	tasting	gum	pen
cable	<u>aa</u>	control	dollar	oil	delicious	dentist	refill
case	power	price	buck	roasted	taste	whitening	year
charger	rechargeable	color	worth	pepper	salt	refill	date
1	4.	1	1		•	. 7	7

Table 2 (Qualitative): Example topics (MDK is short for MDK-LDA); *errors* are marked in red/italic.

low

|purchase|

hour

tıme

Poster Unique Code: 3e2315

spice