МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа фотоники, электроники и молекулярной физики

Отчёт о выполнении лабораторной работы 2.2.1

Исследование взаимной диффузии газов

Автор: Макаров Лев Евгеньевич Б04-306

1 Введение

Цель работы:

- 1. регистрация зависимости концентрации гелия в воздухе от времени с помощью датчиков теплопроводности при разных начальных давлениях смеси газов
- 2. определение коэффициента диффузии по результатам измерений

В работе используются:

- измерительная установка
- форвакуумный насос
- баллон с газом (гелий)
- манометр
- источник питания
- магазин сопротивлений
- гальванометр
- секундомер

2 Теоретические сведения

Диффузия - самопроизвольное взаимное проникновение веществ друг в друга, происходящее вследствие хаотичного теплового движения молекул. При перемешивании молекул разного сорта говорят о взаимной (или концентрационной) диффузии.

В системе, состоящей из двух компонентов, плотность потока вещества в результате взаимной диффузии описывается законом Фика:

$$j_a = -D_{ab} \frac{\partial n_a}{\partial x}, j_b = -D_{b_a} \frac{\partial n_b}{\partial x} \tag{1}$$

где $D_{ab} = D_{ba} = D$ – коэффициент взаимной диффузии компонентов, j_{ab} = плотности потока частиц соответствующего сорта (количество частиц, пересекающих единичную площадку в единицу времени).

В работе исследуется диффузия примеси лёгкого газа (гелия) на фоне воздуха, поэтому концентрация воздуха в опыте значительно больше концентрации гелия, и её относительное изменение незначительно. В процессе работы будет описываться только диффузия примеси гелия на стационарном фоне воздуха.

Проведём теоретическую оценку величины коэффициента взаимной диффузии. В работа мала концентрация гелия, более того, масса атомов гелия много меньше массы молекул, составляющих воздух. При таких условиях перемешивание газов в эксперимента можно рассматривать как диффузию гелия на стационарном форне воздуха. Тогда коэффициент диффузии приблизительно равен

$$D = \frac{1}{3}\lambda \bar{v} \tag{2}$$

где λ – длина свободного пробега частиц гелия, $\bar{v}=\sqrt{\frac{8kT}{\pi m}}$ – их средняя тепловая скорость. В общем случае необходимо считать $\lambda=\frac{1}{n_\Sigma\sigma}$, где $n_\Sigma=n_{He}+n_B=\frac{P_\Sigma}{kT}$ - полная концентрация частиц, σ – среднее сечение столкновения частиц гелия с воздухом. Также $\bar{v}=\sqrt{\frac{8kT}{\pi\mu}}$ – средняя относитель. Таким образом, теоретическая оценка предполагает, что коэффициент диффузии не зависит от пропорция элементов, а обратно пропорционален давлению $D\propto\frac{1}{P_\Sigma}$.

Рассмотрим процесс выравнивания концентрации в установке, она зависит от координат и времени во всей установке. Объём соединительной трубки мал по сравнению с с объёмами сосудов. Поэтому концентрации газов можно считать постоянной по всему объёму сосудов; считаем, что процесс выравнивания происходит только за счёт диффузии в трубке и является стационарным (так как считаем стационарным поток частиц). Величина этого стационарного потока $J = -DS\frac{\partial n}{\partial x}$, и он одинаковый во всём сечении трубки, тогда n(x) - линейная функция координаты и $\frac{dn}{dx} = \frac{\triangle n}{l}$ (l – длина трубки), получаем

$$J = -DS\frac{n_1 - n_2}{l} \tag{3}$$

Предположим, что установился линейный профиль концентрации и полученное соотношение справедливо в любой момент времени. Получаем квазистационарное приближение зависимости концентраций n_1 и n_2 от времени.

Через Δn_1 и Δn_2 обозначим изменения концентрации в объёмах V_1 и V_1 за время Δt . Тогда $V_1\Delta n_1$ - изменение количества компонента в объёме V_1 , а $V_2\Delta n_2$ - изменение количества этого компонента в объёме V_2 . По закону сохранения вещества следует, что $V_1\Delta n_1 + V_2\Delta n_2 = const$, поэтому $V_1\Delta n_1 = -V_2\Delta n_2$. Эти изменения происходят вследствие диффузии, поэтому

$$V_1 \Delta n_1 = -V_2 \Delta n_2 = J \Delta t = -DS \frac{n_1 - n_2}{l} \Delta t \tag{4}$$

Делим равенство на Δt

$$V_1 \frac{dn_1}{dt} = -DS \frac{n_1 - n_2}{l}, V_2 \frac{dn_2}{dt} = -DS \frac{n_1 - n_2}{l}$$
 (5)

Делим первое уравнение на V_1 , второе на V_2 , вычтем равенства друг из друга:

$$\frac{dn_1}{dt} - \frac{dn_2}{dt} = -\frac{n_1 - n_2}{l} DS(\frac{1}{V_1} + \frac{1}{V_2}) \tag{6}$$

Введём новую переменную $\Delta n = n_1 - n_2$, проинтегрируем уравнение, получим

$$\Delta n = \Delta n_0 e^{(-t/\tau)} \tag{7}$$

где Δn_0 - разность концентраций примеси в начльный момент времени, а

$$\tau = \frac{V_1 V_2}{V_1 + V_2} \frac{l}{SD} \tag{8}$$

Видим, что разность концентраций убывает по экспоненциальному закону и тем быстрее, чем меньше τ - величина, определяющаяся геометрическими параметрами установки и величиной коэффициента диффузии.

Для проверки применимости квазистационарного течения убедимся, что время τ много больше характерного времени диффузии одной частицы вдоль трубки длиной l: $t_{diff} \sim \frac{l^2}{D} \ll \tau$.

Для измерения концентраций применяются датчики теплопроводности D_1 и D_2 (см. рис. 1) и используется зависимость теплопроводности газовой смеси от её состава. Тонкая проволока радиуса r, протянутая вдоль оси цилиндра радиуса R, нагревается током. Тепло от проволоки

к стенке цилиндра передаётся главным образом вспледствие теплороводности газа, находящегося внутри цилиндра. Количество тепла переданного стенке цилиндра в единицу времени, определяется по формуле

$$Q = \kappa \frac{2\pi L}{\ln(R/r)} (T_1 - T_2) \tag{9}$$

где κ - теплопроводность, L - длина нити, T_1, T_2 - температуры проволочки и стенки. При Q=const температура проволоки и её сопротивление определяются теплопроводностью газа и, следовательно, его составом. Для измерения разности концентраций газов используется мостовая схема, представленная на рис. 2 (см. пункт 4).

В процессе диффузии разность концентраций убывает по экспоненциальному закону. По тому же закону изменяются во времени показания гальванометра:

$$U = U_0 e^{(-t/\tau)} \tag{10}$$

Измеряя экспериментально зависимость U(t), можно получить характерное время процесса τ , откуда определить коэффициент диффузии D.

3 Оборудование и экспериментальные погрешности

Секундомер: $\sigma_{\rm s} = 0.003 \; {\rm c}$

Гальванометр: $\sigma_{\rm v} = 0.0003 \; {\rm MB}$

Эксперементальная установка

Общий вид конструкции установки приведён на рис. 1. Установка состоит из двух сосудов V_1 и V_2 , соединённых краном K_3 , форвакуумного насоса Ф.Н. с выключателем Т, манометра М и системы напуска гелия, состоящей из кранов K_6, K_6', K_7 . Кран K_5 позволяет соединять форвакуумны насос либо с установкой, либо с атмосферой. Сосуды V_1 и V_2 соединены трубкой длины l и сечения S. Сосуды заполнены смесь двух газов при одинаковом давлении, но с различной концентрацией компонентов. Вследствие взаимной диффузии концентрации каждого из компонентов с течением времени выравниваются Между форвакуумным насосом и краном K_5 вставлен предохранительный баллон, защищающий кран и установку при неправильной её эксплуатации от попадания форвакуумного масла из насоса. Сосуды V_1 и V_2 можно соединять как с системой напуска гелия, так и с форвакуумным насосом. Для этот служат краны K_1, K_2, K_4, K_5 . Манометр М регистрирует давление газа, до которого заполняют тот или иной сосуды. Кран K_4 изолирует форвакуумный насос от установки. Для подачи воздуха в установку служит кран K_5 . Дополнительный кран K_6' служит для вакуумной изоляции установки от системы подачи гелия. Краны K_4, K_5, K_6' обладают повышенной вакуумплотностью и хорошо изолируют установку от протечек.

Для измерения разности концентраций газов используется мостовая схема, представленная на рис. 2.

Здесь D_1 , D_2 - датчики теплопроводности, расположенные в сосудах V_1 и V_2 . Сопротивления R_1 , R_2 , R служат для установки прибора на нуль (балансировка моста). В одну из диагоналей моста включен гальванометр, к другой подключается небольшое постоянное напряжение. Сопротивления R_1 и R_2 спарены (их подвижные контакты находятся на общей оси) и изменяются одновременно при повороте ручки грубой регулировки. Точная балансировка выполняется потенциометром R. Балансировку необходимо проводить перед каждым экспериментом заново: при этом установка заполняется чистым газом (воздухом без гелия) при давлении, близком «рабочему» (при котором затем будут проводится измерения).

Рис. 1: Установка для исследования взаимной диффузии газов

Мост балансируется при заполнении сосудов (и датчиков) одной и той же смесью. При заполнении сосудов смесями различного состава возникает «разбаланс» моста. При незначительном различии в составах смесей показания гальванометра, подсоединённого к диагонали моста, будут пропорциональны разности концентраций примеси: $U \propto \Delta \kappa \propto \Delta n$

Рис. 2: Мостовая схема с датчиками теплопроводности для измерения разности концентраций газов

Гелий содержится в баллоне (не изображен на рис. 1) под давлением, превышающим атмосферное. Для предотвращения избыточного расхода гелия и его неконтролируемого проникания в установку предусмотрен металлический кран (K7), отделяющий её от баллона с гелием. Его

открывают только на время непосредственного заполнения установки гелием, остальное время он должен быть закрыт. Для подачи малых порций гелия предусмотрен двухходовый кран с дозатором (рис. 3). При повороте рычажка P в положение I гелий в небольшом количестве поступает в дозатор (если открыт K7), а при повороте P в положение II порция из дозатора поступает в установку.

Рис. 3: Кран K_6

4 Результаты измерений и обработка данных

4.1 Знакомство с установкой

Познакомимся с установкой: изучим положение каждого крана на установке и всё остальное оборудование. Используется установка типа B (рис. 1). Проверим, что компьютер включен и работает исправно.

Для данной установки известны следующие параметры:

$$V_1 = (775 \pm 10) \text{ cm}^3, \quad V_2 = (775 \pm 10) \text{ cm}^3, \quad l/S = (5,3 \pm 0,1) \text{ 1/cm}$$
 (11)

4.2 Подготовка оборудования

Включим питание для всех приборов. Откроем краны К1, К2, К3. Убедимся, что кран К7 плотно закрыт.

Подсоединим установку в форвакуомному насосу. Откачаем её до давления ~ 0.1 торр, для этого насос должен рботать в течение 3 минут. После откачки выключим насос.

4.3 Балансировка измерительного моста

Запустим в установку рабочее давление (в данном случае $P_{\Sigma}=40$ торр). Изолируем объёмы V_1 и V_2 (закроем краны K1 и K2). Теперь сбалансируем измерительный мост с помощью переключателей грубо/точно так, чтобы напряжение на гальванометре было по модулю менее 0,1 мВ.

4.4 Подготовка рабочих смесей

Приготовим рабочие смеси для измерений. Для этого

- 1. откачаем установку до ~ 0.1 торр
- 2. Изолируем объём V_2 , закрыв краны K1 и K2
- 3. Напусти в установку $P_{He} = 0.2 P_{pa6}$ (в данном случае ~ 8 торр или 1 деление на вакуометре)
- 4. Перекроем подачу гелия и откачаем газ из патрубков (не забыв перекрыть кран К1)
- 5. Откроем кран K2 и запустим в установку воздуха на $P_{\rm B}=1,675P_{\rm pa6}$ (в данном случае 67 торр или 9 делений вакуометра)
- 6. Уравняем давление в сосудах V_1 и V_2 , открыв краны K1 и K2 и подождав 30 секунд.
- 7. Запишем получившееся значение рабочего давления $P_{\Sigma}=41_3$ торр

4.5 Измерения при процессе диффузии

Запутим программу для сбора данных на компьютере, вобъём туда рабочее значение давления. Теперь откроем кран К3, подождём 2-3 секунды и запустим процесс измерения. Измеряем до тех пор, пока значение на гальванометре не упадёт на 50 %. После измерения сохраним данные в папку (данные в здесь не представлены ввиду большого количества точек).

4.6 Прочие измерения

Проведём измерения, аналогичные пунктам 4.2-4.5, только для рабочих давлений в 80, 120 и 160 торр.

4.7 Проверка независимости коэффициента диффузии от пропорций компонентов

Данный пункт работы не выполнялся.

4.8 Проверка выполнения законы (7)

Для проверки выполнения закона (7) построи для каждого набора измерений график зависимости $\ln U$ от времени T. Если закон выполняется, то эта зависимость должна быть линейной. Значит можно воспользоваться МНК для нахождения наилучшей прямой для каждого набора точек. В данном случае x=T, а $y=\ln U$. Для аппроксимации наилучшей прямой воспользуемся формулой:

$$k = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2}, \text{ a } b = \langle y \rangle - k \langle x \rangle$$
 (12)

Погрешности для k и b рассчитываются по формулам:

$$\sigma_k = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - k^2}$$
(13)

$$\sigma_b = \sigma_k \sqrt{\langle x^2 \rangle - \langle x \rangle^2} \tag{14}$$

Посчитаем для каждого набора измерений промежуточные значения МНК и запишем их в таблицу ??.

P_{Σ} , ropp	41,3	82,5	120	161,3
T, c	62,525	137,173	190,499	278,500
$\ln(U)$	2,224	2,147	2,201	2,242
$T \cdot T$, c ²	5232	25119	48450	103509
$\ln(U) \cdot \ln(U)$	4,983	4,649	4,880	5,070
$T \cdot \ln(U)$, c	132,158	278,871	397,878	591,465
n	126	275	382	558
k, c^{-1}	-0,005219	-0,002482	-0,001755	-0,001273
$\sigma_k, \mathrm{c}^{-1}$	0,000001	0,000002	0,000002	0,000001
b	2,55038	2,4875	2,5350	2,5971
σ_b	0,00005	0,0002	0,0002	0,0001

Таблица 1: Вычисление промежуточных значений для МНК для всех серий опытов

Для каждого набора измерений вычислим параметры прямой и запишем в таблицу 1.

$$k_{41,3} = \frac{132,158 - 62,525 \cdot 2,224}{5232 - 62,525^2} \approx -0,005219 \text{ c}^{-1}$$

$$\sigma_{k_{41,3}} = \frac{1}{\sqrt{126}} \sqrt{\frac{4,983 - 2,224^2}{5232 - 62,525^2} - (-0,005219)^2} \approx 0,000001 \text{ c}^{-1}$$

$$b_{41,3} = 2,224 - (-0,005219) \cdot 62,525 \approx 2,55038$$

$$\sigma_{b_{41,3}} = 0,000001 \cdot \sqrt{5232 - 62,525^2} \approx 0,00005$$

$$k_{82,5} = \frac{278,871 - 137,173 \cdot 2,147}{25119 - 137,173^2} \approx -0,002482 \text{ c}^{-1}$$

$$\sigma_{k_{82,5}} = \frac{1}{\sqrt{275}} \sqrt{\frac{4,649 - 2,147^2}{25119 - 137,173^2} - (-0,002482)^2} \approx 0,000002 \text{ c}^{-1}$$

$$b_{82,5} = 2,147 - (-0,002482) \cdot 137,173 \approx 2,4875$$

$$\sigma_{b_{82,5}} = 0,000002 \cdot \sqrt{25119 - 137,173^2} \approx 0,0002$$

$$k_{120} = \frac{397,878 - 190,499 \cdot 2,201}{48450 - 190,499^2} \approx -0,001755 \text{ c}^{-1}$$

$$\sigma_{k_{120}} = \frac{1}{\sqrt{382}} \sqrt{\frac{4,880 - 2,201^2}{48450 - 190,499^2} - (-0,001755)^2} \approx 0,000002 \text{ c}^{-1}$$

$$b_{120} = 2,201 - (-0,001755) \cdot 190,499 \approx 2,5350$$

$$\sigma_{b_{120}} = 0,000002 \cdot \sqrt{48450 - 190,499^2} \approx 0,0002$$

$$k_{161,3} = \frac{591,465 - 278,500 \cdot 2,242}{103509 - 278,500^2} \approx -0,001273 \text{ c}^{-1}$$

$$\sigma_{k_{161,3}} = \frac{1}{\sqrt{559}} \sqrt{\frac{5,070 - 2,242^2}{103509 - 278,500^2} - (-0,001273)^2} \approx 0,000001 \text{ c}^{-1}$$

$$b_{161,3} = 2,242 - (-0,001273) \cdot 278,500 \approx 2,5971$$

$$\sigma_{b_{161,3}} = 0,000001 \cdot \sqrt{103509 - 278,500^2} \approx 0,0001$$

Нанесём прямые на график, изображённый на рис. 4. Экспериментальные точки наносить не будем, ввиду их количества.

Рис. 4: Γ рафик зависимости $\ln U$ от T для всех наборов измерений

Рассчитаем коэффициенты диффузии при выбранных рабочих давлениях. Так как мы имеем соотношение $\ln(U) = kt + b$, из которого получаем:

$$U = U_0 e^{-t/\tau} \quad \text{if} \quad U = e^{kt+b} \implies U_0 = e^b, \quad -\frac{1}{\tau} = k \implies \tau = -\frac{1}{k}$$
 (15)

Из формулы (8) имеем:

$$D = \frac{V_1 V_2}{V_1 + V_2} \frac{l}{S\tau} = -\frac{V_1 V_2}{V_1 + V_2} \frac{kl}{S}$$
 (16)

Погрешность измерения D можно вычислить по формуле:

$$\sigma_{D} = D\sqrt{\left(\frac{\partial D}{\partial V_{1}}\right)^{2} (\sigma_{V_{1}})^{2} + \left(\frac{\partial D}{\partial V_{2}}\right)^{2} (\sigma_{V_{2}})^{2} + \left(\frac{\partial D}{\partial l/S}\right)^{2} (\sigma_{l/S})^{2} + \left(\frac{\partial D}{\partial k}\right)^{2} (\sigma_{k})^{2}} =$$

$$= D\sqrt{k^{2}(l/S)^{2} \frac{V_{1}^{4} \sigma_{V_{2}}^{2} + V_{2}^{4} \sigma_{V_{1}}^{2}}{(V_{1} + V_{2})^{4}} + \frac{D^{2}}{(l/S)^{2}} \sigma_{l/S}^{2} + \frac{D^{2}}{k^{2}} \sigma_{k}^{2}} =$$

$$= D^{2}\sqrt{\frac{\sigma_{V_{1}}^{2} + \sigma_{V_{2}}^{2}}{(V_{1} + V_{2})^{2}} + \frac{\sigma_{l/S}^{2}}{(l/S)^{2}} + \frac{\sigma_{k}^{2}}{k^{2}}}$$
(17)

Теперь по формулам (16) и (17) рассчитаем коэффициент диффузии и его погрешность для каждого рабочего давления и запишем в таблицу 2.

$$D_{41,3} = \frac{775 \cdot 775}{775 + 775} \cdot 0,005219 \cdot 5,3 \approx 10,7 \text{ cm}^2 \cdot \text{c}^{-1}$$

$$\sigma_{D_{41,3}} = 11^2 \sqrt{\frac{10^2 + 10^2}{(775 + 775)^2} + \frac{0,1^2}{5,3^2} + \frac{0,000001^2}{(-0,005219)^2}} \approx 0,2 \text{ cm}^2 \cdot \text{c}^{-1}$$

$$D_{82,5} = \frac{775 \cdot 775}{775 + 775} \cdot 0,002482 \cdot 5,3 \approx 5,1 \text{ cm}^2 \cdot \text{c}^{-1}$$

$$\sigma_{D_{82,5}} = 5,1^2 \sqrt{\frac{10^2 + 10^2}{(775 + 775)^2} + \frac{0,1^2}{5,3^2} + \frac{0,000002^2}{(-0,002482)^2}} \approx 0,1 \text{ cm}^2 \cdot \text{c}^{-1}$$

$$D_{120} = \frac{775 \cdot 775}{775 + 775} \cdot 0,001755 \cdot 5,3 \approx 3,6 \text{ cm}^2 \cdot \text{c}^{-1}$$

$$\sigma_{D_{120}} = 5,1^2 \sqrt{\frac{10^2 + 10^2}{(775 + 775)^2} + \frac{0,1^2}{5,3^2} + \frac{0,000002^2}{(-0,001755)^2}} \approx 0,1 \text{ cm}^2 \cdot \text{c}^{-1}$$

$$D_{161,3} = \frac{775 \cdot 775}{775 + 775} \cdot 0,001273 \cdot 5,3 \approx 2,6 \text{ cm}^2 \cdot \text{c}^{-1}$$

$$\sigma_{D_{161,3}} = 5,1^2 \sqrt{\frac{10^2 + 10^2}{(775 + 775)^2} + \frac{0,1^2}{5,3^2} + \frac{0,000001^2}{(-0,001273)^2}} \approx 0,1 \text{ cm}^2 \cdot \text{c}^{-1}$$

$$\frac{P_{pa6}, \text{ Topp}}{0, \text{ cm}^2 \text{c}^{-1}} + \frac{10,7}{0,7} + \frac{10,1}{0,1} + \frac{10,1}{0,1} + \frac{10,1}{0,1}$$

Таблица 2: Коэффициенты диффузии для соотвтетствующих значений давления

4.9 График зависимости коэффициента диффуизии от обратного давления

Построим график зависимости коэффициента диффузии D от обратного давления 1/P. Так как зависимость должна быть линейной, то воспользуемся МНК, где x=1/P, а y=D. Для параметров наилучшей прямой имеем:

$$k = \frac{\langle xy \rangle}{\langle x^2 \rangle}, \quad \sigma_k = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle y^2 \rangle}{\langle x^2 \rangle} - k^2}$$
 (18)

Посчитаем все промежуточные значения МНК и запишем их в таблицу 3.

N	x	y	x^2	y^2	xy
1	0,024	11	0,00059	114,9	0,26
2	0,012	5,1	0,00015	26,0	0,06
3	0,008	3,6	0,00007	13,0	0,03
4	0,006	2,6	0,00004	6,8	0,02
ср	0,013	5,5	0,00021	40,2	0,09

Таблица 3: Вычисление промежсуточных значений МНК для зависимости D om 1/P

Теперь посчитаем по формуле (18) параметры прямой:

$$k_D = \frac{0.09}{0.00021} \approx 437 \text{ Topp} \cdot \text{cm}^2 \cdot \text{c}^{-1}$$
$$\sigma_{k_D} = \frac{1}{\sqrt{4}} \sqrt{\frac{40.2}{0.00021} - 437^2} \approx 5 \text{ Topp} \cdot \text{cm}^2 \cdot \text{c}^{-1}$$

Нанесём график этой прямой на рис. 5.

Теперь пользуясь полученной зависимостью вычислим значение коэффициента диффузии при атмосферном давлении $P_A = 753.5$ торр:

$$D_A = k_D/P_A = 437/753,5 \approx 0,580 \text{ Topp} \cdot \text{cm}^2 \cdot \text{c}^{-1}$$

$$\sigma_{D_A} = D_A \sqrt{\frac{\sigma_{k_D}^2}{k_D^2} + \frac{\sigma_{P_A}^2}{P_A^2}} = 0,580 \sqrt{\frac{5^2}{437^2} + \frac{0,3^2}{753,5^2}} \approx 0,006 \text{ Topp} \cdot \text{cm}^2 \cdot \text{c}^{-1}$$

Тогда

$$D_A = (580 \pm 6) \cdot 10^{-3} \text{ Topp} \cdot \text{cm}^2 \cdot \text{c}^{-1}$$
(19)

Табличное значение $D_A^{\text{табл}} = 620 \cdot 10^{-3} \text{ торр} \cdot \text{см}^2 \cdot \text{c}^{-1}$. Как видно полученное экспериментально значение неплохо совпадает с табличным.

Рис. 5: Γ рафик зависимости D om 1/P

4.10 Сравнение коэффециентов диффузии

Данный пункт работы не выполняется, так как не выполнялся пункт 4.7.

4.11 Оценка длины свободного пробега атомов гелия и эффективного сечения столкновения атомов гелия с молекулами воздуха

Оценим эффективное сечение столкновения атомов гелия с молекулами воздуха:

$$\sigma = \pi \left(R_{He} + R_{N2} \right)^2 = 3.14 \cdot \left(1.67824 \cdot 10^{-15} + 0.38 \cdot 10^{-9} \right)^2 \approx 4.5 \cdot 10^{-19} \,\mathrm{m}^2 \tag{20}$$

Вычислим среднюю тепловую скорость молекул гелия:

$$\overline{v} = \sqrt{\frac{8RT}{\pi\mu}} = \sqrt{\frac{8 \cdot 8,31 \cdot 296}{3,14 \cdot 4 \cdot 10^{-3}}} \approx 1250 \frac{M}{c}$$

Из формулы (2) получаем:

$$\lambda_{He} = \frac{3D_A}{\overline{v}} = \frac{3 \cdot 0.58 \cdot 133 \cdot 10^{-4}}{1250} \approx 1.9 \cdot 10^{-5} \text{ M}$$

5 Обсуждение результатов и выводы

В ходе работы была зарегистрирована зависимость концентрации гелия в воздухе от времени с помощью датчиков теплопроводности для четырёх рабочих значений давления.

Были измерены коэффициенты диффузии при рабочих давлениях. Было экстраполировано значение коэффициента диффузии при нормальных условиях, которое приблизительно совпадает с табличным значением.

Были оценены величины длины свободного пробега атомов гелия и эффективного сечения столкновения атомов гелия с молекулами воздуха.