```
import warnings
warnings.filterwarnings("ignore")
import pandas as pd
import sqlite3
import csv
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from wordcloud import WordCloud
import re
import os
from flask sqlalchemy import SQLAlchemy
from sqlalchemy import create engine # database connection
import sqlalchemy
import datetime as dt
from nltk.corpus import stopwords
from nltk.tokenize import word tokenize
from nltk.stem.snowball import SnowballStemmer
from sklearn.feature extraction.text import CountVectorizer
from sklearn.feature extraction.text import TfidfVectorizer
from sklearn.multiclass import OneVsRestClassifier
from sklearn.linear model import SGDClassifier
from sklearn import metrics
from sklearn.metrics import f1 score, precision score, recall score
from sklearn import svm
from sklearn.linear model import LogisticRegression
#from skmultilearn.adapt import mlknn
#from skmultilearn.problem transform import ClassifierChain
#from skmultilearn.problem transform import BinaryRelevance
#from skmultilearn.problem_transform import LabelPowerset
#from sklearn.naive bayes import GaussianNB
from datetime import datetime
print('Done importing all')
```


Done importing all

2.1.1 Data Overview

Refer: https://www.kaggle.com/c/facebook-recruiting-iii-keyword-extraction/data

All of the data is in 2 files: Train and Test.

```
Train.csv contains 4 columns: Id, Title, Body, Tags.
```

Test.csv contains the same columns but without the Tags, which you are to predict.

```
Size of Train.csv - 6.75GB
```

```
Size of Test.csv - 2GB
Number of rows in Train.csv = 6034195
```

The questions are randomized and contains a mix of verbose text sites as well as sites related to mat questions from each site may vary, and no filtering has been performed on the questions (such as clo

Data Field Explaination

Dataset contains 6,034,195 rows. The columns in the table are:

```
Id - Unique identifier for each question

Title - The question's title

Body - The body of the question

Tags - The tags associated with the question in a space-seperated format (all lowercase, shown).
```

2.1.2 Example Data point

```
Title: Implementing Boundary Value Analysis of Software Testing in a C++ program?
Body :
```

```
#include<
iostream>\n
#include<
stdlib.h>\n\n
using namespace std;\n\n
int main()\n
{\n
    int n,a[n],x,c,u[n],m[n],e[n][4];\n
    cout<<"Enter the number of variables";\n
    cin>>n;\n\n
```

```
cout<<"Enter the Lower, and Upper Limits of the variables";\n</pre>
for(int y=1; y<n+1; y++)\n</pre>
{\n
   cin>>m[y];\n
   cin>>u[y];\n
}\n
for(x=1; x<n+1; x++)n
{\n
   a[x] = (m[x] + u[x])/2;\n
}\n
c=(n*4)-4;\n
for(int a1=1; a1<n+1; a1++)\n
{\n\n}
   e[a1][0] = m[a1];\n
   e[a1][1] = m[a1]+1;\n
   e[a1][2] = u[a1]-1;\n
   e[a1][3] = u[a1];\n
}\n
for(int i=1; i<n+1; i++)\n</pre>
   for(int l=1; l<=i; l++)\n
   {\n
       if(1!=1)\n
           cout<<a[1]<<"\\t";\n
       }\n
   }\n
   for(int j=0; j<4; j++)\n
   {\n
       cout<<e[i][j];\n</pre>
       for(int k=0; k< n-(i+1); k++) n
       {\n
           cout << a[k] << "\t"; \n
       }\n
       cout<<"\\n";\n
   }\n
} \n\n
system("PAUSE");\n
return 0;
```

 $n\n$

}\n

```
The answer should come in the form of a table like\n\n
<code>
            50
                            50\n
2
            50
                            50\n
99
            50
                            50\n
100
            50
                            50\n
50
                            50\n
50
            2
                            50\n
            99
50
                            50\n
            100
                            50\n
50
50
            50
                            1\n
50
            50
                            2\n
                            99\n
50
            50
50
            50
                            100\n
</code>\n\n
if the no of inputs is 3 and their ranges are\n
1,100\n
1,100\n
1,100\n
(could be varied too)\n\n
The output is not coming, can anyone correct the code or tell me what\'s wrong?\n'
```

Tags : 'c++ c'

2.2 Mapping the real-world problem to a Machine Learning Problem

2.2.1 Type of Machine Learning Problem

It is a multi-label classification problem

Multi-label Classification: Multilabel classification assigns to each sample a set of target labels. This of a data-point that are not mutually exclusive, such as topics that are relevant for a document. A que of C, Pointers, FilelO and/or memory-management at the same time or none of these.

__Credit__: http://scikit-learn.org/stable/modules/multiclass.html

2.2.2 Performance metric

Micro-Averaged F1-Score (Mean F Score): The F1 score can be interpreted as a weighted average of score reaches its best value at 1 and worst score at 0. The relative contribution of precision and recal

the F1 score is:

```
F1 = 2 * (precision * recall) / (precision + recall)
```

In the multi-class and multi-label case, this is the weighted average of the F1 score of each class.

'Micro f1 score':

Calculate metrics globally by counting the total true positives, false negatives and false positives. Thi imbalance.

'Macro f1 score':

Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance

https://www.kaggle.com/wiki/MeanFScore

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html

Hamming loss: The Hamming loss is the fraction of labels that are incorrectly predicted.

https://www.kogalo.com/wiki/Hammingl.com

3. Exploratory Data Analysis

3.1 Data Loading and Cleaning

3.1.1 Using Pandas with SQLite to Load the data

```
#Creating db file from csv
start = datetime.now()
disk_engine = create_engine('sqlite:///train.db')

start = dt.datetime.now()
chunksize = 100000
j = 0
index_start = 1
for df in pd.read_csv('Train.csv', names=['Id', 'Title', 'Body', 'Tags'], chunksize=chunksize
    df.index += index_start
    j+=1
    print('{} rows'.format(j*chunksize))
    df.to_sql('train_data_of_stackoverflow', disk_engine, if_exists='append')
    index_start = df.index[-1] + 1
    print("Time taken to run this cell :", datetime.now() - start)
```


100000 rows Time taken to	run	this	cell	:	0:00:16.814435
200000 rows					
Time taken to 300000 rows	run	this	cell	:	0:00:24.448987
	run	this	cell	:	0:00:32.435646
	run	this	cell	:	0:00:40.369646
Time taken to	run	this	cell	:	0:00:48.488472
	run	this	cell	:	0:00:56.467731
	run	this	cell	:	0:01:04.549541
	run	this	cell	:	0:01:12.471692
	run	this	cell	:	0:01:20.393455
	run	this	cell	:	0:01:28.205321
	run	this	cell	:	0:01:35.980612
	run	this	cell	:	0:01:43.631223
	run	this	cell	:	0:01:51.895985
	run	this	cell	:	0:01:59.021229
	run	this	cell	:	0:02:06.206323
	run	this	cell	:	0:02:13.053242
	run	this	cell	:	0:02:19.806309
	run	this	cell	:	0:02:26.529283
	run	this	cell	:	0:02:33.389793
	run	this	cell	:	0:02:40.286096
2100000 rows Time taken to	run	this	cell	:	0:02:47.484527
2200000 rows Time taken to	run	this	cell	:	0:02:54.515509
2300000 rows Time taken to	run	this	cell	:	0:03:02.389808
2400000 rows Time taken to	run	this	cell	:	0:03:09.348553
2500000 rows Time taken to	run	this	cell	:	0:03:16.504127
2600000 rows Time taken to	run	this	cell	:	0:03:23.473060
2700000 rows					0:03:30.495699
2800000 rows					
Time taken to 2900000 rows	run	this	cell	:	0:03:37.421675

Time taken to run this cell: 0:03:44.619511 3000000 rows Time taken to run this cell: 0:03:51.736209 3100000 rows Time taken to run this cell: 0:03:59.100239 3200000 rows Time taken to run this cell: 0:04:06.150052 3300000 rows Time taken to run this cell : 0:04:13.417716 3400000 rows Time taken to run this cell: 0:04:20.678650 3500000 rows Time taken to run this cell: 0:04:28.218265 3600000 rows Time taken to run this cell: 0:04:35.977438 3700000 rows Time taken to run this cell: 0:04:44.146600 3800000 rows Time taken to run this cell: 0:04:51.271802 3900000 rows Time taken to run this cell: 0:04:58.699664 4000000 rows Time taken to run this cell: 0:05:05.817907 4100000 rows Time taken to run this cell: 0:05:12.953025 4200000 rows Time taken to run this cell: 0:05:20.199818 4300000 rows Time taken to run this cell: 0:05:27.687480 4400000 rows Time taken to run this cell: 0:05:34.998835 4500000 rows Time taken to run this cell : 0:05:42.185017 4600000 rows Time taken to run this cell: 0:05:49.634094 4700000 rows Time taken to run this cell: 0:05:57.294978 4800000 rows Time taken to run this cell: 0:06:05.639677 4900000 rows Time taken to run this cell: 0:06:13.564874 5000000 rows Time taken to run this cell: 0:06:21.073485 5100000 rows Time taken to run this cell: 0:06:28.415967 5200000 rows Time taken to run this cell: 0:06:36.274012 5300000 rows Time taken to run this cell: 0:06:44.149100 5400000 rows Time taken to run this cell: 0:06:51.557722 5500000 rows Time taken to run this cell: 0:06:58.869096 5600000 rows Time taken to run this cell: 0:07:06.003746 5700000 rows Time taken to run this cell: 0:07:13.543783 5800000 rows

```
Time taken to run this cell: 0:07:20.853520
5900000 rows
Time taken to run this cell: 0:07:29.640555
6000000 rows
Time taken to run this cell: 0:07:36.477392
6100000 rows
Time taken to run this cell: 0:07:39.232582
```

3.1.2 Counting the number of rows

3.1.3 Checking for duplicates

```
#Learn SQl: https://www.w3schools.com/sql/default.asp
# if os.path.isfile('train.db'):
start = datetime.now()
con = sqlite3.connect('train.db')
df_no_dup = pd.read_sql('SELECT Title, Body, Tags, COUNT(*) as Count_duplicate_questions FROM con.close()
print("Time taken to run this cell :", datetime.now() - start)
```



```
Traceback (most recent call last)
OperationalError
C:\anaconda\lib\site-packages\pandas\io\sql.py in execute(self, *args, **kwargs)
   1594
                    else:
-> 1595
                        cur.execute(*args)
   1596
                    return cur
OperationalError: database or disk is full
During handling of the above exception, another exception occurred:
DatabaseError
                                          Traceback (most recent call last)
<ipython-input-4-44509b173949> in <module>
      3 start = datetime.now()
      4 con = sqlite3.connect('train.db')
----> 5 df no dup = pd.read sql('SELECT Title, Body, Tags, COUNT(*) as Count duplicate q
      6 con.close()
      7 print("Time taken to run this cell :", datetime.now() - start)
C:\anaconda\lib\site-packages\pandas\io\sql.py in read sql(sql, con, index col, coerce f
    408
                    coerce float=coerce float,
    409
                    parse dates=parse dates,
--> 410
                    chunksize=chunksize,
                )
    411
    412
C:\anaconda\lib\site-packages\pandas\io\sql.py in read query(self, sql, index col, coerc
   1643
   1644
                args = convert params(sql, params)
-> 1645
                cursor = self.execute(*args)
                columns = [col_desc[0] for col_desc in cursor.description]
   1646
   1647
C:\anaconda\lib\site-packages\pandas\io\sql.py in execute(self, *args, **kwargs)
                        "Execution failed on sql '{sql}': {exc}".format(sql=args[0], exc
   1608
   1609
-> 1610
                    raise with traceback(ex)
   1611
   1612
            @staticmethod
C:\anaconda\lib\site-packages\pandas\compat\ init .py in raise with traceback(exc, tra
     42
            if traceback == Ellipsis:
                _, _, traceback = sys.exc_info()
     43
---> 44
            raise exc.with_traceback(traceback)
     45
     46
C:\anaconda\lib\site-packages\pandas\io\sql.py in execute(self, *args, **kwargs)
   1593
                        cur.execute(*args, **kwargs)
   1594
                    else:
-> 1595
                        cur.execute(*args)
   1596
                    return cur
   1597
                except Exception as exc:
DatabaseError: Execution failed on sql 'SELECT Title, Body, Tags, COUNT(*) as Count_dupl
```

SEARCH STACK OVERFLOW

```
df no dup.head()
# we can observe that there are duplicates
print("number of duplicate questions :", num_rows['count(*)'].values[0]- df_no_dup.shape[0],
      "(",(1-((df no dup.shape[0])/(num rows['count(*)'].values[0])))*100,"% )")
# From the 6 million ,1.8 million are duplicates
# number of times each question appeared in our database
df_no_dup.Count_duplicate_questions.value_counts()
# only 6 questions that are appear 5 times
# questions that appear 1 times are -> 2.6 millions .
df=df no dup
df.shape
sd=[]
start = datetime.now()
for i in range(df_no_dup.shape[0]):
    f=df no dup["Tags"][i]# no of characters==0
    if f==None:# when no tag given just remove that datapoint
        df no dup=df no dup.drop(i,axis=0)
                                              # remove this datapoint
    else:
        d=len(df no dup["Tags"][i].split(" "))
        sd.append(d)
print(datetime.now()-start)
df_no_dup.shape
df no dup["Tag Count"] = df no dup["Tags"].apply(lambda text: len(text.split(" ")))
# adding a new feature number of tags per question
print("Time taken to run this cell :", datetime.now() - start)
df_no_dup.head()
# distribution of number of tags per question
df_no_dup.Tag_Count.value_counts()
```

Save the Non_duplicate questions in a new database

```
#Creating a new database with no duplicates
if not os.path.isfile('train_no_dup.db'):
   disk dup = create engine("sqlite:///train no dup.db")
   no_dup = pd.DataFrame(df_no_dup, columns=['Title', 'Body', 'Tags'])
   no_dup.to_sql('no_dup_train',disk_dup)
#This method seems more appropriate to work with this much data.
#creating the connection with database file.
#if os.path.isfile('train_no_dup.db'):
start = datetime.now()
con = sqlite3.connect('train_no_dup.db')
tag data = pd.read sql query("""SELECT Tags FROM no dup train""", con)
   #Always remember to close the database
con.close()
   # Let's now drop unwanted column.
tag data.drop(tag data.index[0], inplace=True)
   #Printing first 5 columns from our data frame
tag data.head()
print(" The Time taken to run this cell is :", datetime.now() - start)
#
     print("Please download the train.db file from drive or run the above cells to genarate
tag data.head()
#no_dup.head()
```

3.2 Analysis of Tags

3.2.1 Total number of unique tags

```
# this can be done by countvectorizer that can give us Tag_name : Frequency
# Importing & Initializing the "CountVectorizer" object, which
#is scikit-learn's bag of words tool.
#by default 'split()' will tokenize each tag using space.
vectorizer = CountVectorizer(tokenizer = lambda x: x.split())
# fit transform() does two functions: First, it fits the model
# and learns the vocabulary; second, it transforms our training data
# into feature vectors. The input to fit transform should be a list of strings.
tag dtm = vectorizer.fit transform(tag data['Tags'])
```

```
print("Number of data points :", tag_dtm.shape[0])
print("Number of unique tags :", tag_dtm.shape[1])
# we have 42048 total unique tags!

#'get_feature_name()' gives us the vocabulary.
tags = vectorizer.get_feature_names()
#Lets look at the tags we have.
print("Some of the tags we have :", tags[:10])
```

3.2.3 Number of times a tag appeared

```
#
     THIS IS THE REPRESENTATION OF THE DATAPOINTS WITH THEIR DIMENSIONS
                                                                                     (SPARCE MATRIX)
. . .
                                                         TAG42048
             TAG1
                     TAG2
                               TAG3
         1
                                                                       0
DP1
                                       1
DP2
         0
                      0
                                        1
                                                                        1
DP3
          0
                      0
                                        0
                                                                        1
DP4206307
                                   1
                                                                 1
```

for calculating how many times a single tag appeared, we have to count the number of one's in

```
# https://stackoverflow.com/questions/15115765/how-to-access-sparse-matrix-elements
#Lets now store the document term matrix in a dictionary.
```

```
# We are saving each and every thing to database or file, so that if our computer crashes we
tag_df_sorted = tag_df.sort_values(['Counts'], ascending=False)
tag counts = tag df sorted['Counts'].values
plt.plot(tag_counts)
plt.title("Distribution of number of times tag appeared questions")
plt.grid()
plt.xlabel("Tag number")
plt.ylabel("Number of times tag appeared")
plt.show()
# first 10k tags
plt.plot(tag_counts[0:10000])
plt.title('first 10k tags: Distribution of number of times tag appeared questions')
plt.grid()
plt.xlabel("Tag number")
plt.ylabel("Number of times tag appeared")
plt.show()
print(len(tag_counts[0:10000:25]), tag_counts[0:10000:25])# :25 is the step sizes
```

Observations:

- Some Tags appear zero times, but its not much clear how many tags appear zero times, we have to zoom the plot.

```
plt.plot(tag_counts[0:1000])
plt.title('first 1k tags: Distribution of number of times tag appeared questions')
plt.grid()
plt.xlabel("Tag number")
plt.ylabel("Number of times tag appeared")
plt.show()
print(len(tag_counts[0:1000:5]), tag_counts[0:1000:5])  # these are the step sizes

plt.plot(tag_counts[0:500])
plt.title('first 500 tags: Distribution of number of times tag appeared questions')
plt.grid()
plt.xlabel("Tag number")
plt.ylabel("Number of times tag appeared")
plt.ylabel("Number of times tag appeared")
plt.show()
print(len(tag_counts[0:500:5]), tag_counts[0:500:5])
```

some tags are very huge in number , some tags are very less in number.

Observations:

- Some Tags appear large number of times and some tags are appear very few times, so we can say micro average to measuring performance.

```
plt.plot(tag_counts[0:100], c='b')
plt.scatter(x=list(range(0,100,5)), y=tag counts[0:100:5], c='orange', label="quantiles with
#quantiles with 0.25 difference
plt.scatter(x=list(range(0,100,25)), y=tag counts[0:100:25], c='m', label = "quantiles with 0
plt.title('first 100 tags: Distribution of number of times tag appeared questions')
plt.grid()
plt.xlabel("Tag number")
plt.ylabel("Number of times tag appeared")
plt.legend()
plt.show()
print(len(tag counts[0:100:5]), tag counts[0:100:5])
# Store tags greater than 10K in one list
lst tags gt 10k = tag df[tag df.Counts>10000]
#Print the length of the list
print ('{} Tags are used more than 10000 times'.format(len(lst tags gt 10k)))
# Store tags greater than 100K in one list
lst_tags_gt_100k = tag_df[tag_df.Counts>100000]
#Print the length of the list.
print ('{} Tags are used more than 100000 times'.format(len(lst_tags_gt_100k)))
```

Observations:

- 1. There are total 153 tags which are used more than 10000 times.
- 2. 14 tags are used more than 100000 times.
- 3. Most frequent tag (i.e. c#) is used 331505 times.
- 4. Since some tags occur much more frequenctly than others, Micro-averaged F1-score is the appropriate metric

3.2.4 Tags Per Question

```
# THIS IS THE REPRESENTATION OF THE DATAPOINTS WITH THEIR DIMENSIONS (SPARCE MATRIX)

''' TAG1 TAG2 TAG3 . . . . TAG42048

DP1 1 0 1 0

DP2 0 0 1 1
```

1

DP3

```
DP4206307
                                1
                                                            1
for calculating in one questions how many tags apear, just sum the numer of ones in the sing
#Storing the count of tag in each question in list 'tag_count'
tag_quest_count = tag_dtm.sum(axis=1).tolist()
#Converting list of lists into single list, we will get [[3], [4], [2], [3]] and we are
tag_quest_count=[int(j) for i in tag_quest_count for j in i]
print ('We have total {} datapoints.'.format(len(tag_quest_count)))
print(tag quest count[:5])
print( "Maximum number of tags per question: %d"%max(tag quest count))
print( "Minimum number of tags per question: %d"%min(tag quest count))
print( "Avg. number of tags per question: %f"% ((sum(tag_quest_count)*1.0)/len(tag_quest_coun
sns.countplot(tag quest count, palette='gist rainbow')
plt.title("Number of tags in the questions ")
plt.xlabel("Number of Tags")
plt.ylabel("Number of questions")
plt.show()
```

Observations:

- 1. Maximum number of tags per question: 5
- 2. Minimum number of tags per question: 1
- 3. Avg. number of tags per question: 2.899
- 4. Most of the questions are having 2 or 3 tags

3.2.5 Most Frequent Tags

```
).generate_from_frequencies(tup)

fig = plt.figure(figsize=(30,20))
plt.imshow(wordcloud)
plt.axis('off')
plt.tight_layout(pad=0)
fig.savefig("tag.png")
plt.show()
print("Time taken to run this cell :", datetime.now() - start)
```

Observations:

A look at the word cloud shows that "c#", "java", "php", "asp.net", "javascript", "c++" are some of the mc

3.2.6 The top 20 tags

```
i=np.arange(20)
tag_df_sorted.head(20).plot(kind='bar')
plt.title('Frequency of top 20 tags')
plt.xticks(i, tag_df_sorted['Tags'])
plt.xlabel('Tags')
plt.ylabel('Counts')
plt.show()
```

Observations:

- 1. Majority of the most frequent tags are programming language.
- 2. C# is the top most frequent programming language.
- 3. Android, IOS, Linux and windows are among the top most frequent operating systems.

3.3 Cleaning and preprocessing of Questions

3.3.1 Preprocessing

- 1. Sample 1M data points
- 2. Separate out code-snippets from Body
- 3. Remove Spcial characters from Question title and description (not in code)
- 4. Remove stop words (Except 'C')
- 5. Remove HTML Tags
- 6. Convert all the characters into small letters
- 7. Use SnowballStemmer to stem the words

```
det striphtml(data):
   cleanr = re.compile('<.*?>')
   cleantext = re.sub(cleanr, ' ', str(data))
   return cleantext
stop_words = set(stopwords.words('english'))
stemmer = SnowballStemmer("english")
#http://www.sqlitetutorial.net/sqlite-python/create-tables/
def create connection(db file):
    """ create a database connection to the SQLite database
       specified by db file
    :param db_file: database file
    :return: Connection object or None
   try:
       conn = sqlite3.connect(db file)
       return conn
   except Error as e:
       print(e)
   return None
def create table(conn, create table sql):
   """ create a table from the create_table_sql statement
    :param conn: Connection object
    :param create table sql: a CREATE TABLE statement
    :return:
    .....
   try:
       c = conn.cursor()
       c.execute(create table sql)
   except Error as e:
       print(e)
def checkTableExists(dbcon):
   cursr = dbcon.cursor()
   str = "select name from sqlite_master where type='table'"
   table names = cursr.execute(str)
   print("Tables in the databse:")
   tables =table names.fetchall()
   print(tables[0][0])
   return(len(tables))
def create_database_table(database, query):
   conn = create connection(database)
   if conn is not None:
       create_table(conn, query)
       checkTableExists(conn)
       print("Error! cannot create the database connection.")
```

conn.close()

```
sql create table = """CREATE TABLE IF NOT EXISTS QuestionsProcessed (question text NOT NULL,
create_database_table("Processed.db", sql_create_table)
    Tables in the databse:
    OuestionsProcessed
# http://www.sqlitetutorial.net/sqlite-delete/
# https://stackoverflow.com/questions/2279706/select-random-row-from-a-sqlite-table
start = datetime.now()
read db = 'train no dup.db'
                         # old database which has all the duplicates rows
write_db = 'Processed.db'
                          # new database which i make in this it has one table questio
if os.path.isfile(read db):
   conn_r = create_connection(read_db)
   if conn r is not None:
      reader =conn r.cursor()
      reader.execute("SELECT Title, Body, Tags From no_dup_train ORDER BY RANDOM() LIMIT 10
 #******* from the train_no_dup.db databas
if os.path.isfile(write db):
   conn_w = create_connection(write_db)
   if conn w is not None:
      tables = checkTableExists(conn w)
      writer =conn w.cursor()
      if tables != 0:
          writer.execute("DELETE FROM QuestionsProcessed WHERE 1") # rows are empty by the
          print("Cleared All the rows")
print("Time taken to run this cell :", datetime.now() - start)
Tables in the databse:
    OuestionsProcessed
    Cleared All the rows
    Time taken to run this cell: 0:02:13.422156
import nltk
nltk.download('punkt')
```

```
[nltk data] Downloading package punkt to
                    \_ we create a new data base to store the sampled and preprocessed questions \_
#http://www.bernzilla.com/2008/05/13/selecting-a-random-row-from-an-sqlite-table/
start = datetime.now()
preprocessed_data_list=[]
reader.fetchone()
questions with code=0
len pre=0
len post=0
questions_proccesed = 0
for row in reader: # reading one row
   is code = 0
   title, question, tags = row[0], row[1], row[2]
   if '<code>' in question:
       questions_with_code+=1
        is code = 1
   x = len(question)+len(title)
   len pre+=x
    code = str(re.findall(r'<code>(.*?)</code>', question, flags=re.DOTALL))
    question=re.sub('<code>(.*?)</code>', '', question, flags=re.MULTILINE|re.DOTALL)
    question=striphtml(question.encode('utf-8'))
   title=title.encode('utf-8')
    question=str(title)+" "+str(question)
    question=re.sub(r'[^A-Za-z]+',' ',question)
   words=word_tokenize(str(question.lower()))
   #Removing all single letter and and stopwords from question exceptt for the letter 'c'
    question=' '.join(str(stemmer.stem(j)) for j in words if j not in stop_words and (len(j)!
    len post+=len(question)
    tup = (question,code,tags,x,len(question),is_code)
    questions_proccesed += 1
    #********
                                We are inseting the updated preprocessed data to the new tab
   writer.execute("insert into QuestionsProcessed(question,code,tags,
                                                                       words_pre,
                                                                                    words p
    if (questions proccesed%100000==0):
```

```
print("number of questions completed=",questions proccesed)
no dup avg len pre=(len pre*1.0)/questions proccesed
no_dup_avg_len_post=(len_post*1.0)/questions_proccesed
print( "Avg. length of questions(Title+Body) before processing: %d"%no dup avg len pre)
print( "Avg. length of questions(Title+Body) after processing: %d"%no_dup_avg_len_post)
print ("Percent of questions containing code: %d"%((questions with code*100.0)/questions proc
print("Time taken to run this cell :", datetime.now() - start)
     Avg. length of questions(Title+Body) before processing: 1175
     Avg. length of questions(Title+Body) after processing: 326
     Percent of questions containing code: 57
     Time taken to run this cell: 0:05:20.314822
# dont forget to close the connections, or else you will end up with locks
conn r.commit()
conn_w.commit()
conn r.close()
conn_w.close()
if os.path.isfile(write db):
    conn r = create connection(write db)
    if conn r is not None:
        reader =conn r.cursor()
        reader.execute("SELECT question From QuestionsProcessed LIMIT 10")
        print("Questions after preprocessed")
        print('='*100)
        reader.fetchone()
        for row in reader:
            print(row)
            print('-'*100)
conn r.commit()
conn r.close()
```

```
Ouestions after preprocessed
```

```
______
('c program dump entir hklm registri tree consol tri write simpl consol app dump content
______
('android gridview column make ui like net gridview column product name textview product
______
('import databas magento want import tecdoc databas magento without success tecdoc msql
-----
('exampl libpcap libnet want captur ip packag one server forward packag anoth server lib
______
('getscript stylesheet jqueri titl say equival jqueri load stylesheet',)
('apach truncat static content tri set moinmoin offic wiki window server run apach origi
______
('googl map plot multipl marker array tri plot marker array use code pop current locat w
-----
('perl event loop multipl block watcher tri figur event loop perl current program someth
 ('mvvmlight viewmodelloc regist dataservic question might look naiv understand code view
```

```
#************************************From the Processed.db database select the table 'QuestionsProces
#Taking 1 Million entries to a dataframe.
write db = 'Processed.db'
if os.path.isfile(write db):
    conn r = create connection(write db)
    if conn r is not None:
        preprocessed_data = pd.read_sql_query("""SELECT question, Tags FROM QuestionsProcesse
conn r.commit()
conn_r.close()
preprocessed data.head()
```


		question	tags		
	0	user unabl access site connect vpn one user un	networking vpn routing		
	1	c program dump entir hklm registri tree consol	c# registry		
	2	android gridview column make ui like net gridv	android gridview		
	3	import databas magento want import tecdoc data	database magento import		
	4	exampl libpcap libnet want captur ip packag on	linux libpcap libnet		
<pre>print("number of data points in sample :", preprocessed_data.shape[0]) print("number of dimensions :", preprocessed_data.shape[1])</pre>					

4. Machine Learning Models

4.1 Converting tags for multilabel problems

```
X y1 y2 y3 y4
                                                          x1 1
                                                          x1 0 1 0 0
# binary='true' will give a binary vectorizer
vectorizer = CountVectorizer(tokenizer = lambda x: x.split(), binary='true')
multilabel y = vectorizer.fit transform(preprocessed data['tags'])
multilabel_y.shape# we have the total 18585 labels or tags.
     (99999, 18511)
```

We will sample the number of tags instead considering all of them (due to limitation of computing

```
def tags_to_choose(n):
   t = multilabel y.sum(axis=0).tolist()[0]# Frequency of the particular tag
                                                                                   cou
   #print(len(t))
   sorted_tags_i = sorted(range(len(t)), key=lambda i: t[i], reverse=True)# sort based on th
   #print(sorted tags i[:n])
   multilabel_yn=multilabel_y[:,sorted_tags_i[:n]]# questions with the tags(that get in sec
   #print(multilabel yn)
   return multilabel yn
def questions_explained_fn(n):
   multilabel yn = tags to choose(n)# tags output that i discussed
   x= multilabel yn.sum(axis=1)# how many tags a single quesition has !
   #print(x)
   return ((np.count nonzero(x==0)))# that questions we not able to explain with the labels
questions explained = []
total tags=multilabel y.shape[1]
total qs=preprocessed data.shape[0]
for i in range(500, total tags, 100):
   questions_explained.append(np.round(((total_qs-questions_explained_fn(i))/total_qs)*100,3
fig, ax = plt.subplots()
ax.plot(questions_explained)
```

8

```
xlabel = list(500+np.array(range(-50,450,50))*50)
ax.set_xticklabels(xlabel)
plt.xlabel("Number of tags")
plt.ylabel("Number Questions coverd partially")

plt.grid()
plt.show()
# you can choose any number of tags based on your computing power, minimun is 50(it covers 90 print("with ",5500,"tags we are covering ",questions_explained[50],"% of questions")
```


with 5500 tags we are covering 99.138 % of questions

```
multilabel_yx = tags_to_choose(5500)
print("number of questions that are not covered :", questions_explained_fn(5500),"out of ", t
print(multilabel_yx.shape)
preprocessed data.shape
```

number of questions that are not covered: 862 out of 99999 (99999, 5500) (99999, 2)

```
print("Number of tags in sample :", multilabel_y.shape[1])
print("number of tags taken :", multilabel_yx.shape[1],"(",(multilabel_yx.shape[1]/multilabel_yx.shape[1])
```

Number of tags in sample : 18511 number of tags taken : 5500 (29.71206309761763 %)

__ We consider top 15% tags which covers 99% of the guestions __

4.2 Split the data into test and train (80:20)

If we given with the time, we will do teh time split. because tags are changing with the ti # launched asp.2 . so time based splitting will work here,

predict

total size=preprocessed data.shape[0]

```
train size=int(0.80*total size)
x_train=preprocessed_data.head(train_size)
x test=preprocessed data.tail(total size - train size)
print(x train.shape)
print(x test.shape)
y train = multilabel yx[0:train size,:]
y_test = multilabel_yx[train_size:total_size,:]
     (79999, 2)
     (20000, 2)
print("Number of data points in train data :", y_train.shape)
print("Number of data points in test data :", y_test.shape)
     Number of data points in train data : (79999, 5500)
     Number of data points in test data: (20000, 5500)
4.3 Featurizing data
start = datetime.now()
vectorizer = TfidfVectorizer(min df=0.00009, max features=50000, smooth idf=True, norm="12",
                              sublinear tf=False, ngram range=(1,3))
x_train_multilabel = vectorizer.fit_transform(x_train['question'])
x test multilabel = vectorizer.transform(x test['question'])
print("Time taken to run this cell :", datetime.now() - start)
     Time taken to run this cell: 0:01:03.359503
print("Dimensions of train data X:",x_train_multilabel.shape, "Y:",y_train.shape)
print("Dimensions of test data X:",x_test_multilabel.shape,"Y:",y_test.shape)
     Dimensions of train data X: (79999, 50000) Y: (79999, 5500)
     Dimensions of test data X: (20000, 50000) Y: (20000, 5500)
# https://www.analyticsvidhya.com/blog/2017/08/introduction-to-multi-label-classification/
#https://stats.stackexchange.com/questions/117796/scikit-multi-label-classification
# classifier = LabelPowerset(GaussianNB())
from skmultilearn.adapt import MLkNN
classifier = MLkNN(k=21)
# train
classifier.fit(x_train_multilabel, y_train)
```

nnadictions - classifian nnadict(v tast multilahal)

```
hi entritions - reassities . hi entri(v rest mintritanet)
print(accuracy_score(y_test,predictions))
print(metrics.f1_score(y_test, predictions, average = 'macro'))
print(metrics.f1_score(y_test, predictions, average = 'micro'))
print(metrics.hamming_loss(y_test,predictions))
# we are getting memory error because the multilearn package
# is trying to convert the data into dense matrix
#MemoryError
                                           Traceback (most recent call last)
#<ipython-input-170-f0e7c7f3e0be> in <module>()
#----> classifier.fit(x train multilabel, y train)
```

"\nfrom skmultilearn.adapt import MLkNN\nclassifier = MLkNN(k=21)\n\n# train\nclassifier

4.5 Modeling with less data points (0.1M data points) and more weigh

```
# Now we'll repeat all the code from the previous sections
# procedure
#1. Take less datapoints
#2. remove the questions and give the high weitage to the title, by just repeating it 3 times
#3.If we see logically think, users have to write the title so much attractive or Title have
sql_create_table = """CREATE TABLE IF NOT EXISTS QuestionsProcessed (question text NOT NULL,
create_database_table("Titlemoreweightw.db", sql_create_table)
     Tables in the databse:
     QuestionsProcessed
# http://www.sqlitetutorial.net/sqlite-delete/
# https://stackoverflow.com/questions/2279706/select-random-row-from-a-sqlite-table
read_db = 'train_no_dup.db'
write db = 'Titlemoreweightw.db'
train_datasize = 400000
if os.path.isfile(read db):
    conn r = create connection(read db)
    if conn_r is not None:
        reader =conn r.cursor()
        # for selecting first 0.5M rows
        reader.execute("SELECT Title, Body, Tags From no_dup_train limit 100000;")
        # for selecting random points
        #reader.execute("SELECT Title, Body, Tags From no_dup_train ORDER BY RANDOM() LIMIT 5
if os.path.isfile(write_db):
    conn_w = create_connection(write_db)
    if conn w is not None:
                                                                                           25/65
```

```
tables = checkTableExists(conn_w)
writer =conn_w.cursor()
if tables != 0:
    writer.execute("DELETE FROM QuestionsProcessed WHERE 1")
    print("Cleared All the rows")
```

Tables in the databse:
QuestionsProcessed
Cleared All the rows

4.5.1 Preprocessing of questions

- 1. Separate Code from Body
- 2. Remove Spcial characters from Question title and description (not in code)
- 3. Give more weightage to title: Add title three times to the question

```
Remove stop words (Except 'C') 
      Remove HTML Tags 
      Convert all the characters into small letters 
      Use SnowballStemmer to stem the words 
#http://www.bernzilla.com/2008/05/13/selecting-a-random-row-from-an-sqlite-table/
start = datetime.now()
preprocessed_data_list=[]
reader.fetchone()
questions_with_code=0
len pre=0
len post=0
questions_proccesed = 0
for row in reader:
   is code = 0
   title, question, tags = row[0], row[1], str(row[2])
   if '<code>' in question:
        questions with code+=1
        is code = 1
   x = len(question)+len(title)
    len pre+=x
   code = str(re.findall(r'<code>(.*?)</code>', question, flags=re.DOTALL))
   question=re.sub('<code>(.*?)</code>', '', question, flags=re.MULTILINE|re.DOTALL)
    question=striphtml(question.encode('utf-8'))
   title=title.encode('utf-8')
```

```
# adding title three time to the data to increase its weight
    # add tags string to the training data
    question=str(title)+" "+str(title)+" "+str(title)+" "+question
#
      if questions_proccesed<=train_datasize:</pre>
          question=str(title)+" "+str(title)+" "+str(title)+" "+question+" "+str(tags)
#
#
      else:
          question=str(title)+" "+str(title)+" "+str(title)+" "+question
#
    question=re.sub(r'[^A-Za-z0-9#+.\-]+',' ',question)
    words=word tokenize(str(question.lower()))
    #Removing all single letter and and stopwords from question except for the letter 'c'
    question=' '.join(str(stemmer.stem(j)) for j in words if j not in stop words and (len(j)!
    len post+=len(question)
    tup = (question,code,tags,x,len(question),is_code)
    questions proccesed += 1
    writer.execute("insert into QuestionsProcessed(question,code,tags,words pre,words post,is
    if (questions proccesed%100000==0):
        print("number of questions completed=",questions proccesed)
no dup avg len pre=(len pre*1.0)/questions proccesed
no dup avg len post=(len post*1.0)/questions proccesed
print( "Avg. length of questions(Title+Body) before processing: %d"%no dup avg len pre)
print( "Avg. length of questions(Title+Body) after processing: %d"%no_dup_avg_len_post)
print ("Percent of questions containing code: %d"%((questions with code*100.0)/questions proc
print("Time taken to run this cell :", datetime.now() - start)
    Avg. length of questions(Title+Body) before processing: 1232
     Avg. length of questions(Title+Body) after processing: 441
     Percent of questions containing code: 57
     Time taken to run this cell: 0:07:51.700574
# never forget to close the conections or else we will end up with database locks
conn r.commit()
conn_w.commit()
conn r.close()
conn w.close()
_ Sample quesitons after preprocessing of data __
if os.path.isfile(write db):
    conn r = create connection(write db)
    if conn r is not None:
        reader =conn r.cursor()
```

```
reader.execute("SELECT question From QuestionsProcessed LIMIT 10")
print("Questions after preprocessed")
print('='*100)
reader.fetchone()
for row in reader:
    print(row)
    print('-'*100)
conn_r.commit()
conn_r.close()
```


Questions after preprocessed

```
______
('dynam datagrid bind silverlight dynam datagrid bind silverlight dynam datagrid bind si
______
('java.lang.noclassdeffounderror javax servlet jsp tagext taglibraryvalid java.lang.nocl
______
('java.sql.sqlexcept microsoft odbc driver manag invalid descriptor index java.sql.sqlex
______
('better way updat feed fb php sdk better way updat feed fb php sdk better way updat fee
______
('btnadd click event open two window record ad btnadd click event open two window record
______
('sql inject issu prevent correct form submiss php sql inject issu prevent correct form
('countabl subaddit lebesgu measur countabl subaddit lebesgu measur countabl subaddit le
-----
('hql equival sql queri hql equival sql queri hql equival sql queri hql queri replac nam
('undefin symbol architectur i386 objc class skpsmtpmessag referenc error undefin symbol
-----
```

_ Saving Preprocessed data to a Database __

```
#Taking 0.5 Million entries to a dataframe.
write_db = 'Titlemoreweightw.db'
if os.path.isfile(write_db):
    conn_r = create_connection(write_db)
    if conn_r is not None:
        preprocessed_data = pd.read_sql_query("""SELECT question, Tags FROM QuestionsProcesse
conn_r.commit()
conn_r.close()

preprocessed_data.shape

② (99999, 2)

print("number of data points in sample :", preprocessed_data.shape[0])
print("number of dimensions :", preprocessed_data.shape[1])
```



```
number of data points in sample . 00000
```

Converting string Tags to multilable output variables ___

```
vectorizer = CountVectorizer(binary='true')
multilabel y = vectorizer.fit transform(preprocessed data['tags'])
_ Selecting 500 Tags __
questions explained = []
total tags=multilabel y.shape[1]
total qs=preprocessed data.shape[0]
for i in range(500, total tags, 100):
    questions_explained.append(np.round(((total_qs-questions_explained_fn(i))/total_qs)*100,3
fig, ax = plt.subplots()
ax.plot(questions_explained)
xlabel = list(500+np.array(range(-50,450,50))*50)
ax.set_xticklabels(xlabel)
plt.xlabel("Number of tags")
plt.ylabel("Number Questions coverd partially")
plt.grid()
plt.show()
# you can choose any number of tags based on your computing power, minimun is 500(it covers 9
print("with ",5500,"tags we are covering ",questions_explained[50],"% of questions")
print("with ",500,"tags we are covering ",questions explained[0],"% of questions")
```


with 5500 tags we are covering 98.986 % of questions with 500 tags we are covering 93.743 % of questions

```
# we will be taking 500 tags
multilabel_yx = tags_to_choose(500)
print("number of questions that are not covered :", questions_explained_fn(500),"out of ", to
```



```
preprocessed data.shape[0]
     99999
# If we given with the time, we will do teh time split. because tags are changing with the ti
                 . so time based splitting will work here,
# launched asp.2
total size=preprocessed data.shape[0]
train size=int(0.80*total size)
x train=preprocessed data.head(train size)
x test=preprocessed data.tail(total size - train size)
print(x train.shape)
print(x_test.shape)
y_train = multilabel_yx[0:train_size,:]
y_test = multilabel_yx[train_size:total_size,:]
     (79999, 2)
     (20000, 2)
print("Number of data points in train data :", y train.shape)
print("Number of data points in test data :", y test.shape)
     Number of data points in train data: (79999, 500)
```

4.5.2 Featurizing data with Tfldf vectorizer

Number of data points in test data: (20000, 500)

```
start = datetime.now()
vectorizer = TfidfVectorizer(min_df=0.00009, max_features=10000, smooth_idf=True, norm="12",
x_train_multilabel = vectorizer.fit_transform(x_train['question'])
x_test_multilabel = vectorizer.transform(x_test['question'])
print("Time taken to run this cell :", datetime.now() - start)

    Time taken to run this cell : 0:01:16.136466

print("Dimensions of train data X:",x_train_multilabel.shape, "Y :",y_train.shape)
print("Dimensions of test data X:",x_test_multilabel.shape,"Y:",y_test.shape)

Dimensions of train data X: (79999, 10000) Y : (79999, 500)
Dimensions of test data X: (20000, 10000) Y: (20000, 500)
```

4.5.3 Applying Logistic Regression with OneVsRest Classifier

```
TINDOL C MOLLITIES
warnings.filterwarnings("ignore")
start = datetime.now()
classifier = OneVsRestClassifier(SGDClassifier(loss='log', alpha=0.00001, penalty='l1'), n jo
classifier.fit(x train multilabel, y train)
predictions = classifier.predict (x_test_multilabel)
print("Accuracy :",metrics.accuracy_score(y_test, predictions))
print("Hamming loss ",metrics.hamming loss(y test,predictions))
precision = precision score(y test, predictions, average='micro')
recall = recall score(y test, predictions, average='micro')
f1 = f1_score(y_test, predictions, average='micro')
print("Micro-average quality numbers")
print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
precision = precision score(y test, predictions, average='macro')
recall = recall_score(y_test, predictions, average='macro')
f1 = f1 score(y test, predictions, average='macro')
print("Macro-average quality numbers")
print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
print (metrics.classification report(y test, predictions))
print("Time taken to run this cell :", datetime.now() - start)
```


Accuracy: 0.1937

Hamming loss 0.0035708

Micro-average quality numbers

Precision: 0.7346, Recall: 0.3800, F1-measure: 0.5009

Macro-average quality numbers

Precision: 0.5558, Recall: 0.2813, F1-measure: 0.3510 precision recall f1-score support

0 0.80 0.47 0.59 1805

	precision	recall	t1-score	support
0	0.00	0 47	0.50	1005
0	0.80	0.47	0.59	1805
1	0.86	0.53	0.65	1186
2	0.87	0.55	0.68	484
3	0.82	0.46	0.59	1323
4	0.87	0.60	0.71	739
5	0.87	0.48	0.62	1023
6	0.77	0.39	0.52	1421
7	0.95	0.62	0.75	1450
8	0.98	0.82	0.89	1368
9	0.68	0.45	0.54	914
10	0.80	0.41	0.55	186
11	0.77	0.49	0.60	553
12	0.78	0.40	0.53	644
13	0.52	0.19	0.28	424
14	0.70	0.39	0.50	36
15	0.59	0.37	0.45	352
16	0.64	0.23	0.34	437
17	0.76	0.46	0.57	435
18	0.68	0.56	0.61	153
19	0.98	0.60	0.75	727
20	0.63	0.19	0.30	488
21	0.85	0.62	0.72	272
22	0.92	0.58	0.71	530
23	0.95	0.54	0.69	618
24	0.96	0.55	0.70	614
25	0.68	0.29	0.40	231
26	0.53	0.33	0.41	588
27	0.58	0.40	0.47	1224
28	0.71	0.45	0.55	165
29	0.62	0.54	0.58	231
30	0.72	0.28	0.40	190
31	0.82	0.59	0.69	296
32	0.69	0.34	0.46	274
33	0.56	0.38	0.45	292
34	0.73	0.27	0.40	190
35	0.86	0.44	0.59	99
36	0.88	0.59	0.71	357
37	0.69	0.38	0.49	870
38	0.81	0.47	0.60	135
39	1.00	0.35	0.52	17
40	0.53	0.08	0.14	99
41	0.67	0.29	0.40	176
42	0.29	0.05	0.09	236
43	0.88	0.32	0.47	22
44	0.53	0.19	0.28	106
45	0.56	0.13	0.22	178
46	0.43	0.24	0.30	241
47	0.64	0.17	0.27	217
48	0.64	0.49	0.55	223
+0	0.04	0.70	0.55	223

		Stack_	_overnow_tagging	j.ipyrib - Cola
49	0.67	0.07	0.13	54
50	0.62	0.35	0.44	92
51	0.86	0.59	0.70	203
52	0.71	0.47	0.57	116
53	0.81	0.49	0.61	72
54	0.38	0.20	0.26	15
55	0.25	0.02	0.03	60
56	0.90	0.79	0.84	216
57	0.35	0.08	0.13	74
58	0.35	0.13	0.19	139
59	0.71	0.45	0.55	91
60	0.48	0.10	0.17	156
61	0.42	0.33	0.37	76
62	0.52	0.18	0.27	89
63	0.48	0.17	0.25	173
64	0.53	0.28	0.36	227
65	0.45	0.11	0.18	383
66	0.65	0.22	0.32	148
67	0.56			189
		0.40	0.46	
68	0.75	0.35	0.48	169
69	0.14	0.06	0.08	50
70	0.68	0.26	0.38	145
71	0.42	0.26	0.32	31
72	0.93	0.72	0.81	141
73	0.88	0.43	0.58	246
74	0.54	0.30	0.39	210
75	0.70	0.10	0.18	159
76	0.49	0.21	0.30	108
77	0.94	0.78	0.86	65
78	0.97	0.70	0.81	145
79	0.91	0.71	0.79	41
80	0.73	0.57	0.64	129
81	0.89	0.53	0.66	76
82	0.63	0.45		124
			0.53	
83	0.41	0.13	0.20	69
84	0.44	0.16	0.24	91
85	0.49	0.42	0.46	66
86	0.21	0.08	0.12	100
87	0.43	0.26	0.33	38
88	0.73	0.45	0.56	98
89	0.52	0.39	0.45	38
90	0.97	0.68	0.80	154
91	0.88	0.65	0.75	152
92	0.00	0.00	0.00	13
93	0.00	0.00	0.00	47
94	0.80	0.27	0.41	44
95	0.78	0.29	0.43	200
96	0.40	0.24	0.30	25
97	0.61	0.28	0.39	39
98	0.58	0.43	0.49	51
99	0.35	0.26	0.30	43
100	0.33	0.11	0.16	211
101	0.57	0.22	0.32	18
102	0.67	0.50	0.57	32
103	0.77	0.42	0.54	24
104	0.80	0.29	0.42	14
105	0.70	0.48	0.57	96
106	1.00	0.41	0.58	32
	/4 0010: 41/01	"O 3TTILL	O A E // UT	

		_	_ 33 3 17	
107	0.60	0.38	0.46	80
108	0.74	0.19	0.31	160
109	0.39	0.07	0.12	123
110	0.37	0.05	0.09	202
111	0.56	0.46	0.51	39
112	0.35	0.07	0.11	123
113	0.71	0.53	0.60	55
114	0.45	0.13	0.20	98
115	0.35	0.16	0.22	50
116	0.84	0.54	0.65	275
117	0.40	0.04	0.07	101
118	0.67	0.12	0.20	50
119	0.57	0.20	0.29	41
120	0.62	0.27	0.37	98
121	0.44	0.13	0.21	30
122	0.83	0.33	0.47	73
123	0.91	0.79	0.85	121
124	0.55	0.38	0.45	29
125	0.92	0.21	0.34	57
126	0.50	0.15	0.23	48
127	0.90	0.75	0.82	24
128	0.48	0.25	0.33	48
129	0.75	0.19	0.30	48
130	0.89	0.51	0.65	99
131	0.50	0.38	0.43	29
132	0.45	0.08	0.14	60
133	0.71	0.74	0.73	89
134	0.71	0.04	0.08	113
135	0.38	0.13	0.19	70
136	0.38	0.07	0.12	68
137	0.94	0.55	0.70	146
138	0.79	0.33	0.47	66
139	0.73	0.06	0.11	49
140	0.89	0.47	0.62	51
141	0.56	0.33	0.42	27
141	0.20			
143		0.04 0.10	0.06	54 21
	0.50 0.40	0.14	0.16 0.21	43
144 145		0.41		49
	0.95		0.57	
146	0.64	0.54	0.58	137
147	0.84	0.47	0.61	91
148	0.48 0.95	0.34	0.40	29
149		0.62	0.75	88 67
150	0.70	0.10	0.18	67
151	0.70	0.41	0.52	46
152	0.59	0.33	0.42	187
153	0.81	0.42	0.55	60
154	0.83	0.38	0.52	40
155	0.38	0.04	0.08	67
156	0.33	0.11	0.16	46
157	0.64	0.30	0.41	23
158	0.68	0.50	0.57	54
159	0.46	0.37	0.41	87
160	0.70	0.21	0.33	66
161	0.88	0.54	0.67	69
162	0.41	0.15	0.22	78
163	0.98	0.82	0.89	50
1 E //	A 20 Iva8DI2irr4V2VtC	ົດ 11 SrmZTTLlvlcSOa	A 1Q A5#scrollTo=ynsn	115 dTaSM7

		_	_overflow_taggin@	
165	0.65	0.18	0.10	71
166	0.03	0.01	0.02	81
167	0.40	0.52	0.45	52
168	0.62	0.36	0.46	22
169	0.02	0.00	0.40	292
109 170	0.32	0.40	0.35	45
	0.32	0.03		146
171 172	0.00	0.00	0.06	5
			0.00	
173 174	0.53	0.30	0.38	66 21
174 175	0.30	0.14	0.19	21 26
175 176	0.50 0.42	0.08 0.09	0.13 0.15	86
170 177	0.42	0.17	0.13	18
177 178	0.43	0.04	0.24	27
178 179	0.00	0.04	0.00	0
180	1.00	0.71	0.83	7
181	1.00	0.53	0.69	34
182	0.73	0.63	0.68	35
183				51
184	0.68	0.51 0.63	0.58 0.74	38
185	0.89 0.20	0.05	0.08	39
186	0.50	0.03	0.08	13
187	0.60	0.34	0.13	35
188	0.31	0.11	0.44	44
189	0.50	0.11	0.17	46
190	0.69	0.17	0.18	52
191	0.48	0.17	0.18	88
192	0.48	0.02	0.18	41
193	0.96	0.53	0.69	88
194	0.50	0.04	0.07	51
195	0.55	0.20	0.30	127
196	0.00	0.00	0.00	60
197	1.00	0.17	0.29	18
198	0.33	0.03	0.05	36
199	0.19	0.04	0.06	85
200	0.50	0.19	0.27	48
201	0.45	0.29	0.36	17
202	0.40	0.22	0.29	27
202	0.65	0.18	0.29	60
204	0.82	0.50	0.62	105
205	0.64	0.50	0.56	50
206	0.55	0.27	0.36	45
207	0.40	0.32	0.35	19
208	0.57	0.27	0.37	73
209	0.00	0.00	0.00	51
210	0.80	0.20	0.32	20
211	0.00	0.00	0.00	47
212	0.00	0.00	0.00	44
213	0.63	0.35	0.45	34
214	0.72	0.49	0.58	106
215	0.79	0.44	0.57	59
216	0.33	0.10	0.16	87
217	0.80	0.26	0.39	31
218	0.74	0.61	0.67	46
219	0.60	0.11	0.19	27
220	0.27	0.08	0.12	39
221	0.75	0.38	0.51	55
	0.,5	3.50	J.J.	,,,

		Stack_	overnow_tagging	g.ipyrib - Cola
222	0.67	0.12	0.20	34
223	0.67	0.36	0.47	11
224	0.35	0.12	0.18	51
225	0.18	0.07	0.10	46
226	0.50	0.09	0.15	47
227	0.25	0.07	0.11	14
228	0.83	0.24	0.37	21
229	0.62	0.07	0.13	67
230	0.02	0.00	0.00	229
231	0.67	0.00	0.19	54
232		0.11		98
	0.77		0.18	
233	0.92	0.43	0.59	53
234	0.57	0.22	0.32	36
235	0.68	0.47	0.56	53
236	0.51	0.34	0.41	68
237	0.31	0.13	0.19	38
238	0.46	0.11	0.17	102
239	0.33	0.33	0.33	6
240	0.00	0.00	0.00	5
241	0.50	0.33	0.40	3
242	0.50	0.13	0.21	68
243	0.50	0.43	0.46	91
244	0.92	0.73	0.81	30
245	0.79	0.22	0.34	50
246	1.00	0.25	0.40	4
247	0.65	0.27	0.38	41
248	0.64	0.21	0.32	98
249	0.00	0.00	0.00	0
250	1.00	1.00	1.00	1
251	1.00	0.19	0.32	26
252	0.66	0.29	0.40	66
253	0.79	0.66	0.72	67
254	0.00	0.00	0.00	32
255	0.00	0.00	0.00	2
256	0.60	0.09	0.16	32
257	1.00	0.50	0.67	4
258	0.75	0.08	0.14	39
259	0.85	0.45	0.59	73
260	1.00	0.60	0.75	55
261	0.50	0.33	0.40	12
262	0.44	0.33	0.33	41
263	0.71	0.36	0.48	14
264	0.69	0.16	0.26	56
265		0.10	0.37	
	0.86			77 12
266	0.00	0.00	0.00	13
267	0.45	0.31	0.37	16
268	0.00	0.00	0.00	34
269	0.00	0.00	0.00	45
270	1.00	0.07	0.13	43
271	0.44	0.29	0.35	56
272	0.60	0.27	0.37	11
273	0.00	0.00	0.00	42
274	0.85	0.63	0.72	35
275	0.44	0.07	0.12	59
276	0.29	0.10	0.15	49
277	0.63	0.66	0.64	44
278	0.56	0.11	0.18	46
279	0.00	0.00	0.00	7
/ .	/4 = 1, = 0 D O; == 4) /O	V+Crm7TTI lyloC	O - A F // UT-	VDODGToCM7

		_	_ 33 3 17	
280	0.88	0.66	0.75	58
281	0.67	0.35	0.46	46
282	0.36	0.40	0.38	10
283	0.58	0.33	0.42	21
284	0.25	0.04	0.07	47
285	0.57	0.17	0.27	23
286	0.92	0.69	0.79	48
287	0.58	0.60	0.59	35
288	0.15	0.02	0.04	81
289	0.73	0.47	0.57	47
290	0.73	0.71	0.72	93
291	0.10	0.02	0.03	61
292	0.70	0.61	0.65	23
293	0.83	0.50	0.62	10
294	0.50	0.03	0.06	30
295	0.00	0.00	0.00	24
296	0.00	0.00	0.00	54
297	0.56	0.65	0.60	34
298	0.37	0.33	0.35	69
299	0.87	0.75	0.80	44
300	0.71	0.38	0.50	13
301	0.88	0.54	0.67	68
302	0.00	0.00	0.00	33
303	0.62	0.44	0.52	18
304	0.20	0.08	0.11	13
305	0.75	0.34	0.47	53
306	0.73	0.21	0.33	75
307	0.88	0.53	0.66	55
308	0.95	0.61	0.74	61
309	0.80	0.41		90
310			0.54	
311	0.56	0.09 0.84	0.15	58 19
	0.89		0.86	
312	0.67 0.40	0.06 0.31	0.11 0.35	34 13
313	0.40	0.25		4
314			0.22	•
315	0.44	0.10	0.16	41
316	0.81	0.41	0.54	54
317	0.86	0.24	0.38	25
318	0.20	0.25	0.22	4
319	0.40	0.07	0.12	29
320	0.62	0.22	0.32	37
321	1.00	0.17	0.29	6
322	0.14	0.05	0.07	22
323	0.25	0.05	0.09	19
324	0.20	0.25	0.22	4
325	0.54	0.39	0.45	18
326	0.75	0.43	0.55	21
327	0.00	0.00	0.00	26
328	0.72	0.47	0.57	49
329	0.61	0.54	0.58	35
330	1.00	0.05	0.10	19
331	0.60	0.20	0.30	15
332	0.00	0.00	0.00	10
333	0.74	0.53	0.62	38
334	0.14	0.11	0.12	9
335	0.60	0.06	0.10	53
336	1.00	0.56	0.72	32
227 e com/drive/1a h	a ココ va8Dl2irr4\/2VtC	a a⊿ crmZTTLlvlcSOa	A A7 A5#scrollTo=xnsna	າ⊿ TaSMT

		Stack_ove	erflow_tagging.ipynb	- Cola
))/))	رد. ت 1	۵.0 4	\document{\omega} \o	4 4
338 330	1.00	0.67	0.80	3
339 340	0.00	0.00	0.00	1
340 341	0.00	0.00	0.00	0
341 342	0.71	0.45	0.56	11
	0.68	0.47	0.56	40
343 344	0.00	0.00	0.00	30
	0.40	0.08	0.14	24
345	0.50	0.04	0.08	23 69
346 347	0.61	0.28	0.38	
348	0.20 0.17	0.06 0.03	0.09 0.05	18 65
349	0.17	0.23	0.31	78
350	1.00	0.08	0.15	12
351	0.50	0.08	0.13	13
352	0.40	0.11	0.17	18
353	1.00	0.63	0.77	46
354	0.82	0.57	0.68	40
355	0.00	0.00	0.00	19
356	0.67	0.08	0.14	26
357	0.53	0.23	0.32	39
358	1.00	0.17	0.29	12
359	0.60	0.19	0.29	16
360	0.70	0.29	0.41	24
361	0.33	0.11	0.16	57
362	0.84	0.80	0.82	20
363	0.83	0.06	0.11	84
364	0.73	0.65	0.69	54
365	0.44	0.12	0.19	33
366	0.67	0.13	0.22	30
367	1.00	0.07	0.12	30
368	0.20	0.05	0.08	19
369	0.00	0.00	0.00	19
370 371	1.00	0.03	0.06	32
371 372	0.62	0.42	0.50	12
372 373	0.50 0.12	0.07	0.12 0.09	15
373 374	0.12	0.07 0.65	0.76	15 17
375	1.00	0.66	0.79	41
376	0.94	0.55	0.70	29
377 377	0.00	0.00	0.00	28
378	0.50	0.16	0.24	19
379	0.40	0.06	0.11	31
380	0.67	0.14	0.23	29
381	0.29	0.08	0.13	49
382	0.00	0.00	0.00	8
383	0.29	0.08	0.13	24
384	0.50	0.35	0.41	20
385	0.00	0.00	0.00	15
386	0.81	0.57	0.67	37
387	0.00	0.00	0.00	22
388	1.00	0.04	0.07	27
389	0.50	0.38	0.43	29
390	0.00	0.00	0.00	20
391	0.72	0.54	0.62	39
392	0.50	0.10	0.17	10
393	0.38	0.14	0.21	42
394	0.67	0.09	0.15	46

		Stack_	_overflow_tagging	j.ipynb - Cola
395	0.10	0.10	0.10	10
396	0.75	0.08	0.14	39
397	0.00	0.00	0.00	43
398	0.71	0.30	0.42	50
399	1.00	0.57	0.73	7
400	0.25	0.06	0.10	17
401	1.00	0.17	0.29	6
402	0.00	0.00	0.00	26
403	1.00	0.10	0.18	10
404	0.71	0.10	0.18	14
405	0.00	0.00	0.00	14
406	0.82	0.41	0.55	22
407	0.62	0.17	0.26	60
408	0.39	0.17	0.24	40
409	0.00	0.00	0.00	31
410	0.38	0.33	0.35	9
411	0.42	0.26	0.32	19
412	0.67	0.53	0.59	19
413	0.50	0.20	0.29	5
414	0.33	0.08	0.13	12
415	1.00	0.66	0.79	29
416	0.67	0.06	0.11	33
417	0.33	0.03	0.06	33
418	0.40	0.17	0.24	12
419	0.36	0.10	0.15	42
420	0.50	0.58	0.54	12
421	0.33	0.18	0.24	98
422	0.33	0.12	0.18	8
423	0.00	0.00	0.00	7
424	0.75	0.46	0.57	13
425	0.33	0.08	0.12	13
426	0.33	0.10	0.15	20
427	0.25	0.05	0.09	58
428	0.67	1.00	0.80	2
4 29	0.38	0.30	0.33	27
430			0.42	38
430 431	0.50	0.37		40
	0.56	0.23	0.32	
432 433	1.00	0.05	0.09	43
	0.96	0.57	0.72	42
434	0.64	0.29	0.40	24
435	0.33	0.03	0.06	31
436	0.40	0.33	0.36	30
437	0.25	0.06	0.10	16
438	0.67	0.45	0.54	22
439	1.00	1.00	1.00	1
440	0.17	0.11	0.13	19
441	0.67	0.22	0.33	9
442	0.33	0.11	0.17	100
443	0.83	0.36	0.50	28
444	0.75	0.60	0.67	20
445	0.45	0.45	0.45	29
446	0.00	0.00	0.00	21
447	0.80	0.20	0.32	20
448	0.88	0.55	0.68	38
449	0.00	0.00	0.00	22
450	0.61	0.52	0.56	21
451	0.00	0.00	0.00	13
452	0.00	0.00	0.00	24
			SOaA5#scrollTo=v	

			_		
	453	0.55	0.12	0.20	48
	454	0.47	0.11	0.17	75
	455	0.00	0.00	0.00	18
	456	0.00	0.00	0.00	3
	457	0.55	0.46	0.50	13
	458	0.50	0.15	0.24	13
	459	0.27	0.25	0.26	24
	460	0.62	0.28	0.38	36
	461	0.64	0.50	0.56	18
	462	0.50	0.23	0.31	31
	463	0.67	0.07	0.13	28
	464	0.00	0.00	0.00	7
	465	0.89	0.30	0.44	27
	466	1.00	0.83	0.91	12
	467	0.67	0.14	0.24	14
	468	0.00	0.00	0.00	6
	469	0.27	0.18	0.21	17
	470	0.30	0.17	0.21	18
	471	0.67	0.07	0.12	29
	472	0.00	0.00	0.00	2
	473	0.38	0.09	0.14	34
	474	0.00	0.00	0.00	8
	475	0.25	0.25	0.25	4
	476	0.69	0.50	0.58	22
	477	0.50	0.67	0.57	6
	478	0.33	0.24	0.28	17
	479	0.00	0.00	0.00	23
	480	0.86	0.33	0.48	18
	481	0.83	0.45	0.59	11
	482	1.00	0.29	0.44	35
	483	0.59	0.62	0.60	21
	484	0.86	0.64	0.73	28
	485	0.62	0.36	0.45	14
	486	0.90	0.82	0.86	11
	487	1.00	0.13	0.24	15
	488	0.58	0.18	0.28	38
	489	0.08	0.01	0.02	75
	490	0.97	0.57	0.72	51
	491	1.00	0.68	0.81	19
	492	0.50	0.19	0.28	21
	493	0.67	0.12	0.21	16
	494	1.00	0.83	0.91	6
	495	0.40	0.18	0.25	22
	496	0.68	0.35	0.46	37
	497	0.29	0.20	0.24	20
	498	0.70	0.58	0.64	24
	499	0.00	0.00	0.00	17
micro	_	0.73	0.38	0.50	7151
macro	_	0.56	0.28		17151
weighted	_	0.68	0.38	0.47	17151
samples	avg	0.51	0.37	0.40	17151

Time taken to run this cell : 0:02:47.896331

micro macro weighted

```
# For saving the weights or results after run applying model
#joblib.dump(classifier, 'lr_with_more_title_weight.pkl')
```

5. Assignments

- 1. Use bag of words upto 4 grams and compute the micro f1 score with Logistic regression(OvR)
- 2. Perform hyperparam tuning on alpha (or lambda) for Logistic regression to improve the performance using G
- 3. Try OneVsRestClassifier with Linear-SVM (SGDClassifier with loss-hinge)

4.5.2 Featurizing data with BOW vectorizer

```
start = datetime.now()
vectorizer = CountVectorizer(min df=0.00009, max features=10000, ngram range=(1,4))
x train multilabel = vectorizer.fit transform(x train['question'])
x test multilabel = vectorizer.transform(x test['question'])
print("Time taken to run this cell :", datetime.now() - start)
     Time taken to run this cell: 0:02:01.153712
print("Dimensions of train data X:",x_train_multilabel.shape, "Y :",y_train.shape)
print("Dimensions of test data X:",x test multilabel.shape,"Y:",y test.shape)
     Dimensions of train data X: (79999, 10000) Y: (79999, 500)
     Dimensions of test data X: (20000, 10000) Y: (20000, 500)
```

Hyperparameter tuning:

```
from sklearn.metrics import roc auc score
import matplotlib.pyplot as plt
#from sklearn.grid_search import GridSearchCV"
from sklearn.linear model import LogisticRegression
from tqdm import tqdm
from sklearn.model_selection import learning_curve, GridSearchCV
alpha = [10**-5,10**-4,10**-3,10**-2,10**-1,5,10]
perf metric = []
for i in tqdm(alpha):
    clf = OneVsRestClassifier(SGDClassifier(loss='log', alpha=i, penalty='l1', random_state=4
    clf.fit(x_train_multilabel, y_train)
    predictions = clf.predict (x test multilabel)
    nerf metric annend(f1 score(v test nredictions average='micro'))
```

σουιο(y_ccsc, ριοατοστοπο, ανοιαge- micro //

#print("Time taken to run this cell :", datetime.now() - start)

100%

```
# plot the perf metric for each hyperparam(alpha)
fig, ax = plt.subplots()
ax.plot(perf_metric)
xlabel = list(range(-11, -3))
ax.set_xticklabels(xlabel)
plt.title("Perf-metric vs hyperparam plot")
plt.xlabel("Alpha(in 10^)")
plt.ylabel("Micro-averaged F1 score")
plt.grid()
plt.show()
```


Training the model with best hyperparameter

```
start = datetime.now()
# fetching the best alpha
best_alpha = alpha[np.argmax(perf_metric)]
print('Best hyperparam(alpha) : ',best_alpha)

# train the LR model with the best alpha
classifier = OneVsRestClassifier(SGDClassifier(loss='log', alpha=best_alpha, penalty='l1', r
classifier.fit(x_train_multilabel, y_train)
predictions = classifier.predict (x_test_multilabel)

# print the various performance metrices
print("Accuracy :",metrics.accuracy_score(y_test, predictions))
print("Hamming loss :",metrics.hamming_loss(y_test,predictions))
```

```
precision = precision_score(y_test, predictions, average='micro')
recall = recall_score(y_test, predictions, average='micro')
f1 = f1_score(y_test, predictions, average='micro')

print("\nMicro-average quality numbers -")
print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))

precision = precision_score(y_test, predictions, average='macro')
recall = recall_score(y_test, predictions, average='macro')
f1 = f1_score(y_test, predictions, average='macro')

print("\nMacro-average quality numbers -")
print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))

print("\n")
print (metrics.classification_report(y_test, predictions))
print("Time taken to run this cell :", datetime.now() - start)
```


Best hyperparam(alpha) : 0.001

Accuracy : 0.1366

Hamming loss : 0.0044873

Micro-average quality numbers -

Precision: 0.5368, Recall: 0.3521, F1-measure: 0.4253

Macro-average quality numbers -

Precision: 0.3906, Recall: 0.2561, F1-measure: 0.2861

	precision	recall	f1-score	sunnont
	precision	recarr	11-30016	support
0	0.77	0.44	0.56	1805
1	0.83	0.47	0.60	1186
2	0.74	0.56	0.64	484
3	0.81	0.43	0.56	1323
4	0.86	0.59	0.70	739
5	0.88	0.47	0.62	1023
6	0.67	0.41	0.51	1421
7	0.84	0.64	0.73	1450
8	0.92	0.57	0.71	1368
9	0.55	0.41	0.47	914
10	0.59	0.46	0.52	186
11	0.73	0.50	0.59	553
12	0.73	0.39	0.51	644
13	0.46	0.16	0.24	424
14	0.51	0.56	0.53	36
15	0.43	0.43	0.43	352
16	0.49	0.27	0.34	437
17	0.62	0.42	0.50	435
18	0.60	0.42	0.50	153
19	0.89	0.61	0.73	727
20	0.46	0.18	0.25	488
21	0.71	0.37	0.49	272
22	0.77	0.67	0.71	530
23	0.89	0.55	0.68	618
24	0.89	0.54	0.67	614
25	0.56	0.23	0.33	231
26	0.60	0.25	0.35	588 1224
27	0.13	0.21	0.16	
28	0.68 0.39	0.41 0.60	0.51	165
29 30	0.56	0.26	0.47 0.36	231 190
31	0.72	0.70	0.71	296
32	0.59	0.35	0.44	274
33	0.50	0.36	0.42	292
34	0.66	0.34	0.45	190
35	0.58	0.25	0.35	99
36	0.86	0.55	0.67	357
37	0.11	0.12	0.12	870
38	0.78	0.45	0.57	135
39	0.60	0.53	0.56	17
40	0.55	0.06	0.11	99
41	0.63	0.29	0.40	176
42	0.16	0.11	0.13	236
43	0.56	0.41	0.47	22
		J <u>-</u>	••••	

		Stack_	_overflow_tagging	g.ipynb - Cola
44	0.59	0.23	0.33	106
45	0.15	0.10	0.12	178
46	0.31	0.27	0.29	241
47	0.51	0.18	0.27	217
48	0.58	0.48	0.52	223
49	0.50	0.04	0.07	54
50	0.52	0.33	0.40	92
51	0.76	0.50	0.60	203
52	0.34	0.47	0.39	116
53	0.62	0.54	0.58	72
54	0.25	0.27	0.26	15
55	0.00	0.00	0.00	60
56	0.83	0.88	0.85	216
57	0.21	0.12	0.15	74
58	0.23	0.18	0.20	139
59	0.53	0.44	0.48	91
60	0.43	0.12	0.19	156
61	0.44	0.21	0.29	76
62	0.33	0.25	0.28	89
63	0.41	0.15	0.22	173
64	0.38	0.44	0.41	227
65	0.30	0.19	0.23	383
66	0.46	0.18	0.25	148
67	0.50	0.30	0.38	189
68	0.62	0.20	0.30	169
69	0.14	0.18	0.16	50
70	0.60	0.27	0.37	145
71	0.23	0.39	0.29	31
72	0.84	0.82	0.83	141
73	0.66	0.49	0.56	246
74	0.43	0.29	0.35	210
75	0.85	0.07	0.13	159
76	0.45	0.30	0.36	108
77	0.41	0.75	0.53	65
78	0.64	0.77	0.70	145
79	0.74	0.71	0.72	41
80	0.51	0.75	0.61	129
81	0.68	0.61	0.64	76
82	0.48	0.48	0.48	124
83	0.21	0.23	0.22	69
84	0.26	0.21	0.23	91
85	0.40	0.56	0.47	66
86	0.22	0.21	0.22	100
87	0.29	0.05	0.09	38
88	0.53	0.52	0.53	98
89	0.35	0.18	0.24	38
90	0.87	0.74	0.80	154
91	0.82	0.65	0.73	152
92	0.00	0.00	0.00	13
93	0.00	0.00	0.00	47
94	0.81	0.39	0.52	44
95	0.69	0.40	0.51	200
96	0.31	0.16	0.21	25
97	0.42	0.21	0.28	39
98	0.31	0.37	0.34	51
99	0.21	0.19	0.20	43
100	0.17	0.09	0.12	211
101	0.31	0.28	0.29	18
	// I ODIO: 4)/0)	3TT !!!	NO 45" UT	

		Otdon_	_overnow_tagging	J.IPYTID COI
102	0.55	0.34	0.42	32
103	0.71	0.50	0.59	24
104	0.26	0.36	0.30	14
105	0.50	0.28	0.36	96
106	0.36	0.47	0.41	32
107	0.57	0.50	0.53	80
108	0.08	0.01	0.01	160
109	0.24	0.07	0.11	123
110	0.16	0.01	0.03	202
111	0.55	0.56	0.56	39
112	0.19	0.07	0.11	123
113	0.61	0.62	0.61	55
114	0.25	0.19	0.22	98
115	0.32	0.26	0.29	50
116	0.80	0.48	0.60	275
117	0.00	0.00	0.00	101
118	0.40	0.12	0.18	50
119	0.20	0.24	0.22	41
120	0.44	0.38	0.41	98
121	0.31	0.13	0.19	30
122	0.73	0.33	0.45	73
123	0.84	0.81	0.82	121
124	0.35	0.21	0.26	29
125	1.00	0.09	0.16	57
126	0.21	0.15	0.17	48
127	0.50	0.62	0.56	24
128	0.68	0.27	0.39	48
129	0.50	0.25	0.33	48
130	0.82	0.45	0.58	99
131	0.34	0.38	0.36	29
132	0.15	0.08	0.11	60
133	0.56	0.75	0.64	89
134	0.08	0.02	0.03	113
135	0.23	0.24	0.24	70
136	0.21	0.06	0.09	68
137	0.84	0.60	0.70	146
138	0.43	0.48	0.45	66
139	0.24	0.24	0.24	49
140	0.66	0.65	0.65	51
141	0.75	0.22	0.34	27
142	0.21	0.07	0.11	54
143	0.33	0.14	0.20	21
144	0.29	0.28	0.29	43
145	0.89	0.35	0.50	49
146	0.56	0.36	0.44	137
147	0.66	0.41	0.50	91
148	0.27	0.24	0.25	29
149	0.86	0.49	0.62	88
150	0.04	0.03	0.04	67
151	0.76	0.35	0.48	46
152	0.45	0.26	0.33	187
153	0.73	0.45	0.56	60
154	0.31	0.45	0.36	40
155	0.29	0.06	0.10	67
156	0.21	0.30	0.25	46
157	0.33	0.04	0.08	23
158	0.55	0.59	0.57	54
150	Ω 2 <i>1</i> 1	α ၁၁	a 27	27

		Stack_	_overnow_taggin	g.ipyrib - Coi
160	0.59	0.24	0.34	66
161	0.62	0.45	0.52	69
162	0.02	0.43	0.23	78
163	0.55	0.19	0.23	50
164	0.47	0.06	0.11	115
165	0.39			71
166	0.07	0.13 0.02	0.19 0.04	81
	0.37	0.02		52
167 168	0.37	0.36	0.40	22
169			0.41 0.00	292
170	0.00 0.32	0.00	0.41	45
171	0.14	0.56 0.02	0.41	146
171 172	0.00	0.02	0.00	5
172 173	0.50	0.23	0.31	66
174	0.04	0.05	0.05	21
175	0.27	0.15	0.20	26
176	0.38	0.10	0.16	86
177	0.50	0.10	0.18	18
178	0.09	0.07	0.18	27
178 179	0.00	0.00	0.00	0
180	0.06	0.29	0.10	7
181	0.76	0.56	0.64	34
182	0.67	0.57	0.62	35
183	0.51	0.57	0.54	51
184	0.71	0.58	0.64	38
185	0.08	0.03	0.04	39
186	0.00	0.00	0.00	13
187	0.50	0.17	0.26	35
188	0.12	0.17	0.14	44
189	0.12	0.13	0.14	46
190	0.10	0.08	0.14	52
191	0.33	0.19	0.24	88
192	0.11	0.02	0.04	41
193	0.94	0.57	0.71	88
194	0.43	0.06	0.10	51
195	0.47	0.13	0.21	127
196	0.17	0.13	0.15	60
197	0.00	0.00	0.00	18
198	0.10	0.03	0.04	36
199	0.40	0.02	0.04	85
200	0.41	0.27	0.33	48
201	0.44	0.47	0.46	17
202	0.24	0.22	0.23	27
203	0.45	0.22	0.29	60
204	0.46	0.38	0.42	105
205	0.69	0.62	0.65	50
206	0.51	0.42	0.46	45
207	0.17	0.37	0.24	19
208	0.54	0.29	0.38	73
209	0.12	0.02	0.03	51
210	0.00	0.00	0.00	20
211	0.00	0.00	0.00	47
212	0.20	0.05	0.07	44
213	0.37	0.21	0.26	34
214	0.67	0.53	0.59	106
215	0.60	0.10	0.17	59
216	0.09	0.08	0.09	87

		Stack_	_overflow_taggin@	g.ipynb - Cola
217	0.33	0.06	0.11	31
218	0.66	0.67	0.67	46
219	0.20	0.15	0.17	27
220	0.32	0.15	0.21	39
221	0.41	0.13	0.19	55
222	0.67	0.06	0.11	34
223	0.11	0.64	0.19	11
224	0.10	0.14	0.12	51
225	0.09	0.13	0.10	46
226	0.17	0.09	0.11	47
227	0.06	0.07	0.07	14
228	0.33	0.10	0.15	21
229	0.31	0.07	0.12	67
230	0.00	0.00	0.00	229
231	0.30	0.11	0.16	54
232	0.50	0.03	0.06	98
233	0.91	0.40	0.55	53
234	0.62	0.28	0.38	36
235	0.70	0.40	0.51	53
236	0.41	0.37	0.39	68
237	0.08	0.21	0.12	38
238	0.07	0.07	0.07	102
239	0.07	0.33	0.11	6
240	0.15	0.40	0.22	5
241	0.00	0.00	0.00	3
242	0.03	0.03	0.03	68
243	0.38	0.32	0.35	91
244	0.96	0.77	0.85	30
245	0.50	0.10	0.17	50
246	0.00	0.00	0.00	4
247	0.42	0.37	0.39	41
248	0.60	0.33	0.42	98
249	0.00	0.00	0.00	0
250	1.00	1.00	1.00	1
251	0.67	0.15	0.25	26
252	0.56	0.29	0.38	66
253	0.77	0.61	0.68	67
254	0.12	0.06	0.08	32
255	0.00	0.00	0.00	2
256	0.25	0.06	0.10	32
257	0.25	0.25	0.25	4
258	0.14	0.03	0.04	39
259	0.80	0.44	0.57	73
260	0.90	0.64	0.74	55
261	0.20	0.58	0.30	12
262	0.14	0.15	0.14	41
263	0.50	0.07	0.12	14
264	0.55	0.11	0.18	56
265	0.73	0.29	0.41	77
266	0.00	0.00	0.00	13
267	0.33	0.25	0.29	16
268	0.00	0.00	0.00	34
269	0.00	0.00	0.00	45
270	0.06	0.02	0.03	43
271	0.31	0.30	0.31	56
272	0.60	0.27	0.37	11
273	0.03	0.02	0.03	42
274	0.75	0.51	0.61	35

		Otdon_	_overnow_tagging	ipyrib Colc
275	0.18	0.15	0.17	59
276	0.06	0.06	0.06	49
277	0.63	0.61	0.62	44
278	0.16	0.07	0.09	46
279	0.06	0.14	0.08	7
280	0.83	0.52	0.64	58
281	0.35	0.20	0.25	46
282	0.42	0.50	0.45	10
283	0.55	0.29	0.37	21
284	0.13	0.13	0.13	47
285	0.47	0.30	0.37	23
286	0.80	0.75	0.77	48
287	0.24	0.17	0.20	35
288	0.00	0.00	0.00	81
289	0.63	0.36	0.46	47
290	0.76	0.74	0.75	93
291	0.00	0.00	0.00	61
292	0.48	0.52	0.50	23
293	0.71	0.50	0.59	10
294	0.25	0.03	0.06	30
295	0.00	0.00	0.00	24
296				54
	0.00	0.00	0.00	
297	0.35	0.24	0.28	34
298	0.26	0.22	0.24	69
299	0.79	0.68	0.73	44
300	0.60	0.23	0.33	13
301	0.80	0.47	0.59	68
302	0.00	0.00	0.00	33
303	0.75	0.33	0.46	18
304	0.14	0.08	0.10	13
305	0.52	0.25	0.33	53
306	0.41	0.21	0.28	75
307	0.77	0.49	0.60	55
308	0.86	0.51	0.64	61
309	0.70	0.37	0.48	90
310	0.00	0.00	0.00	58
311	0.83	0.79	0.81	19
312	0.44	0.12	0.19	34
313	0.21	0.46	0.29	13
314	0.14	0.25	0.18	4
315	0.20	0.02	0.04	41
316	0.72	0.48	0.58	54
317	0.33	0.04	0.07	25
318	0.14	0.25	0.18	4
319	0.20	0.10	0.14	29
320	0.80	0.22	0.34	37
321	1.00	0.50	0.67	6
322	0.17	0.23	0.20	22
323	0.29	0.11	0.15	19
324	0.14	0.25	0.18	4
325	0.86	0.33	0.48	18
326	0.69	0.43	0.53	21
327	0.00	0.00	0.00	26
328	0.70	0.43	0.53	49
329	0.40	0.51	0.45	35
330	0.00	0.00	0.00	19
331	1.00	0.07	0.12	15
227	0 00	0.07	0.12	10
			SOaA5#scrollTo=x	

			_overflow_tagging	
ວວ∠ ວວວ	0.00 0.60	0.00 0.EE	ช.ชช ด 61	20 TA
333 334	0.68	0.55	0.61	38
33 4 335	0.08	0.11	0.10	9 53
336	0.83 0.83	0.09	0.17	
		0.47	0.60	32
337	0.05	0.12	0.07	24
338	0.17	0.33	0.22	3
339	0.00	0.00	0.00	1
340	0.00	0.00	0.00	0
341	0.00	0.00	0.00	11
342	0.54	0.55	0.54	40
343	0.21	0.10	0.14	30
344	0.25	0.08	0.12	24
345	0.17	0.30	0.22	23
346 347	0.38	0.22	0.28	69 10
347 348	0.03	0.06 0.03	0.04	18
	0.04		0.03	65 70
349 350	0.43	0.38	0.41	78 12
350 351	1.00	0.08	0.15	12
352	0.14 0.38	0.08	0.10	13
		0.28	0.32	18 46
353 354	1.00 0.62	0.54	0.70	40
		0.40	0.48	
355 356	0.00	0.00	0.00	19 26
356 357	0.00	0.00	0.00	26 39
358	0.38	0.08	0.13 0.29	12
359	1.00 0.00	0.17 0.00	0.29	16
360	0.22	0.08	0.12	24
361	0.22	0.11	0.12	57
362	0.67	0.90	0.77	20
363	0.00	0.00	0.00	84
364	0.60	0.46	0.52	54
365	0.30	0.09	0.14	33
366	0.03	0.03	0.03	30
367	0.00	0.00	0.00	30
368	0.17	0.05	0.08	19
369	0.00	0.00	0.00	19
370	0.33	0.03	0.06	32
371	0.40	0.67	0.50	12
372	0.00	0.00	0.00	15
372 373	0.03	0.07	0.05	15
374	0.83	0.59	0.69	17
375	0.83	0.61	0.70	41
376	0.86	0.41	0.56	29
377	0.00	0.00	0.00	28
378	0.50	0.21	0.30	19
379	0.06	0.03	0.04	31
380	0.00	0.00	0.00	29
381	0.13	0.18	0.15	49
382	0.00	0.00	0.00	8
383	0.38	0.12	0.19	24
384	0.33	0.20	0.25	20
385	0.38	0.20	0.26	15
386	0.64	0.49	0.55	37
387	0.00	0.00	0.00	22
388	0.00	0.00	0.00	27
389	0.16	0.17	0.16	29

		Stack_	overnow_tagging	g.ipyrib - Cola
390	0.17	0.10	0.12	20
391	0.54	0.33	0.41	39
392	0.00	0.00	0.00	10
393	1.00	0.05	0.09	42
394	0.11	0.04	0.06	46
395	0.20	0.30	0.24	10
396	1.00	0.05	0.10	39
397	0.00	0.00	0.00	43
398	0.30	0.20	0.24	50
399	0.33	0.29	0.31	7
400	0.00	0.00	0.00	17
401	1.00	0.17	0.29	6
402	0.00	0.00	0.00	26
403	0.04	0.10	0.06	10
404	0.62	0.36	0.45	14
405	0.11	0.07	0.09	14
406	0.80	0.36	0.50	22
407	0.39	0.12	0.18	60
408	0.15	0.10	0.12	40
409	0.00	0.00	0.00	31
410	0.25	0.22	0.24	9
411	0.62	0.26	0.37	19
412	0.69	0.58	0.63	19
413	1.00	0.20	0.33	5
414	0.17	0.08	0.11	12
415	0.86	0.62	0.72	29
416	0.13	0.15	0.14	33
417	0.00	0.00	0.00	33
418	0.08	0.08	0.08	12
419	0.05	0.02	0.03	42
420	0.33	0.42	0.37	12
421	0.00	0.00	0.00	98
422	0.00	0.00	0.00	8
423	0.75	0.43	0.55	7
424	0.50	0.38	0.43	13
425	0.03	0.08	0.04	13
426	0.00	0.00	0.00	20
427	0.00	0.00	0.00	58
428	0.67	1.00	0.80	2
429	0.29	0.26	0.27	27
430	0.49	0.50	0.49	38
431	0.39	0.30	0.34	40
432	0.00	0.00	0.00	43
433	0.96	0.52	0.68	42
434	0.50	0.33	0.40	24
435	0.25	0.03	0.06	31
436	0.33	0.30	0.32	30
437	0.00	0.00	0.00	16
438	0.56	0.45	0.50	22
439	0.00	0.00	0.00	1
440	0.06	0.05	0.06	19
441	0.25	0.22	0.24	100
442	0.00	0.00	0.00	100
443	0.50	0.32	0.39	28
444	0.60	0.60	0.60	20
445	0.44	0.41	0.43	29
446	0.17	0.05	0.07	21
447	0.00	0.00	0.00	20

			Oldok_0v0		
	448	0.85	0.29	0.43	38
	449	0.00	0.00	0.00	22
	450	0.56	0.48	0.51	21
	451	0.00	0.00	0.00	13
	452	0.00	0.00	0.00	24
	453	0.40	0.04	0.08	48
	454	0.00	0.00	0.00	75
	455	0.00	0.00	0.00	18
	456	0.00	0.00	0.00	3
	457	0.32	0.46	0.37	13
	458	0.00	0.00	0.00	13
	459	0.06	0.04	0.05	24
	460	0.27	0.17	0.21	36
	461	0.20	0.11	0.14	18
	462	0.50	0.03	0.06	31
	463	0.00	0.00	0.00	28
	464	0.25	0.14	0.18	7
	465	0.80	0.30	0.43	27
	466	0.00	0.00	0.00	12
	467	0.00	0.00	0.00	14
	468	0.00	0.00	0.00	6
	469	0.25	0.18	0.21	17
	470	0.15	0.22	0.18	18
	471	0.02	0.03	0.03	29
	472	0.00	0.00	0.00	2
	473	0.33	0.03	0.05	34
	474	0.00	0.00	0.00	8
	475	1.00	0.25	0.40	4
	476	0.22	0.09	0.13	22
	477	0.20	0.50	0.29	6
	478	0.26	0.29	0.28	17
	479	0.20	0.04	0.07	23
	480	1.00	0.06	0.11	18
	481 482	0.67	0.18	0.29	11
	483	0.93	0.37	0.530.56	35
	484	0.61 0.83	0.52 0.54		21 28
	485	0.33	0.29	0.65	20 14
	486	0.91	0.29	0.31 0.91	11
	487	1.00	0.20	0.33	15
	488	0.00	0.00	0.00	38
	489	0.00	0.00	0.00	75
	490	1.00	0.12	0.21	51
	491	1.00	0.58	0.73	19
	492	0.45	0.24	0.31	21
	493	0.00	0.00	0.00	16
	494	0.44	0.67	0.53	6
	495	0.11	0.09	0.10	22
	496	0.49	0.49	0.49	37
	497	0.17	0.10	0.12	20
	498	0.56	0.42	0.48	24
	499	0.00	0.00	0.00	17
micro	avg	0.54	0.35	0.43 47	151
macro	-	0.39	0.26		151
weighted	-	0.55	0.35		151
samples	_	0.42	0.34		151
•	_				

Time taken to run this cell: 0:03:22.300054

Task 3: Apply OneVsRestClassifier with Linear-SVM

Hyperparameter Tuning

```
from tqdm import tqdm
start = datetime.now()
alpha = [10 ** x for x in range(-10, -3, 2)]
perf_metric = []
for i in tqdm(alpha):
    clf = OneVsRestClassifier(SGDClassifier(loss='hinge', alpha=i, penalty='l1', random_state
    clf.fit(x_train_multilabel, y_train)
    predictions = clf.predict (x_test_multilabel)
    # append the micro-f1 score for the particular alpha trained classifier
    perf_metric.append(f1_score(y_test, predictions, average='micro'))
print("Time taken to run this cell :", datetime.now() - start)
```

8

```
100%||
```

Time taken to run this cell: 0:29:51.230015

```
# plot the perf metric for each hyperparam(alpha)
fig, ax = plt.subplots()
ax.plot(perf_metric)
xlabel = list(range(-11, -3))
ax.set_xticklabels(xlabel)
plt.title("Perf-metric vs hyperparam plot - Lin SVM")
plt.xlabel("Alpha(in 10^)")
plt.ylabel("Micro-averaged F1 score")
plt.grid()
plt.show()
```


Perf-metric vs hyperparam plot - Lin SVM

```
start = datetime.now()
# fetching the best alpha
best alpha = alpha[np.argmax(perf metric)]
print('Best hyperparam(alpha) : ',best_alpha)
# train the Lin SVM model with the best alpha
classifier = OneVsRestClassifier(SGDClassifier(loss='hinge', alpha=best_alpha, penalty='l1',
classifier.fit(x train multilabel, y train)
predictions = classifier.predict (x_test_multilabel)
# print the various performance metrices
print("Accuracy :",metrics.accuracy score(y test, predictions))
print("Hamming loss:", metrics.hamming loss(y test, predictions))
precision = precision_score(y_test, predictions, average='micro')
recall = recall score(y test, predictions, average='micro')
f1 = f1 score(y test, predictions, average='micro')
print("\nMicro-average quality numbers -")
print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
precision = precision score(y test, predictions, average='macro')
recall = recall_score(y_test, predictions, average='macro')
f1 = f1 score(y test, predictions, average='macro')
print("\nMacro-average quality numbers -")
print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
print("\n")
print (metrics.classification_report(y_test, predictions))
print("Time taken to run this cell :", datetime.now() - start)
```


Best hyperparam(alpha) : 0.0001

Accuracy : 0.0877

Hamming loss : 0.006592

Micro-average quality numbers -

Precision: 0.3473, Recall: 0.4527, F1-measure: 0.3931

Macro-average quality numbers -

Precision: 0.2390, Recall: 0.3426, F1-measure: 0.2656

	precision	recall	f1-score	cuppont
	precision	recarr	11-30016	support
0	0.59	0.53	0.56	1805
1	0.64	0.59	0.62	1186
2	0.52	0.70	0.60	484
3	0.60	0.51	0.55	1323
4	0.56	0.65	0.60	739
5	0.65	0.50	0.56	1023
6	0.54	0.47	0.50	1421
7	0.75	0.72	0.74	1450
8	0.83	0.80	0.82	1368
9	0.50	0.51	0.51	914
10	0.25	0.51	0.33	186
11	0.57	0.53	0.54	553
12	0.57	0.52	0.54	644
13	0.34	0.33	0.34	424
14	0.11	0.47	0.18	36
15	0.34	0.44	0.38	352
16	0.30	0.38	0.34	437
17	0.42	0.51	0.46	435
18	0.44	0.65	0.53	153
19	0.78	0.70	0.74	727
20	0.32	0.44	0.37	488
21 22	0.48	0.71	0.58 0.64	272
23	0.58 0.80	0.71 0.63	0.04	530 618
24	0.81	0.63	0.71	614
25	0.22	0.44	0.70	231
26	0.30	0.66	0.41	588
27	0.24	0.45	0.31	1224
28	0.54	0.60	0.57	165
29	0.32	0.61	0.42	231
30	0.20	0.42	0.27	190
31	0.63	0.66	0.64	296
32	0.33	0.36	0.35	274
33	0.29	0.42	0.34	292
34	0.31	0.35	0.33	190
35	0.47	0.58	0.52	99
36	0.56	0.65	0.60	357
37	0.25	0.39	0.30	870
38	0.50	0.56	0.53	135
39	0.12	0.47	0.19	17
40	0.17	0.17	0.17	99
41	0.25	0.40	0.31	176
42	0.14	0.19	0.16	236
43	0.09	0.32	0.14	22

		Stack_	_overflow_tagging	.ipynb - Cola
44	0.21	0.29	0.25	106
45	0.19	0.24	0.21	178
46	0.18	0.31	0.23	241
47	0.26	0.28	0.27	217
48	0.44	0.54	0.48	223
49	0.09	0.11	0.10	54
50	0.29	0.50	0.37	92
51	0.65	0.51	0.57	203
52	0.29	0.51	0.37	116
53	0.19	0.56	0.29	72
54	0.04	0.20	0.23	15
55 56	0.17	0.15	0.16	60
56	0.71	0.86	0.78	216
57	0.28	0.19	0.23	74
58	0.12	0.06	0.09	139
59	0.37	0.58	0.45	91
60	0.15	0.19	0.17	156
61	0.31	0.37	0.34	76
62	0.13	0.21	0.16	89
63	0.15	0.21	0.17	173
64	0.37	0.51	0.43	227
65	0.26	0.31	0.28	383
66	0.18	0.32	0.24	148
67	0.44	0.53	0.48	189
68	0.29	0.37	0.33	169
69	0.06	0.22	0.10	50
70	0.24	0.42	0.31	145
71	0.14	0.26	0.18	31
72	0.57	0.82	0.67	141
73	0.39	0.59	0.47	246
74	0.35	0.37	0.36	210
75	0.26	0.20	0.23	159
76	0.19	0.29	0.23	108
77	0.59	0.78	0.67	65
78	0.63	0.72	0.67	145
79	0.53	0.76	0.63	41
80	0.46	0.74		129
			0.56	76
81	0.28	0.63	0.38	
82	0.28	0.50	0.36	124
83	0.08	0.19	0.11	69
84	0.14	0.21	0.17	91
85	0.20	0.53	0.29	66
86	0.15	0.23	0.18	100
87	0.22	0.34	0.27	38
88	0.34	0.28	0.31	98
89	0.29	0.58	0.38	38
90	0.55	0.73	0.63	154
91	0.49	0.72	0.58	152
92	0.00	0.00	0.00	13
93	0.02	0.02	0.02	47
94	0.14	0.45	0.21	44
95	0.30	0.47	0.36	200
96	0.21	0.28	0.24	25
97	0.22	0.36	0.27	39
98	0.23	0.45	0.31	51
99	0.13	0.26	0.17	43
100	0.26	0.22	0.24	211
101	0.14	0.33	0.20	18
	/4 - IODIO: 4) /0)	//Owe 7TT	- · - ·	

		Otdon_	_ovornow_taggin	g.ipyrib Coil
102	0.37	0.56	0.44	32
103	0.09	0.58	0.15	24
104	0.03	0.21	0.05	14
105	0.42	0.43	0.42	96
106	0.41	0.53	0.47	32
107	0.46	0.34	0.39	80
108	0.42	0.34	0.37	160
109	0.14	0.11	0.12	123
110	0.13	0.22	0.16	202
111	0.34	0.56	0.43	39
112	0.23	0.26	0.24	123
113	0.39	0.51	0.44	55
114	0.16	0.14	0.15	98
115	0.12	0.30	0.18	50
116	0.34	0.57	0.43	275
117	0.08	0.11	0.09	101
118	0.14	0.24	0.18	50
119	0.19	0.27	0.22	41
120	0.33	0.32	0.32	98
121	0.07	0.20	0.10	30
122	0.29	0.49	0.36	73
123	0.49	0.83	0.62	121
124	0.26	0.55	0.36	29
125	0.43	0.37	0.40	57
126	0.14	0.12	0.13	48
127	0.19	0.79	0.30	24
128	0.20	0.23	0.21	48
129	0.24	0.27	0.25	48
130	0.39	0.62	0.48	99
131	0.09	0.41	0.14	29
132	0.08	0.13	0.10	60
133	0.53	0.62	0.57	89
134	0.07	0.11	0.09	113
135	0.12	0.33	0.18	70
136	0.11	0.22	0.15	68
137	0.59	0.62	0.61	146
138	0.30	0.47	0.36	66
139	0.07	0.22	0.11	49
140	0.20	0.59	0.30	51
141	0.26	0.41	0.32	27
142	0.07	0.13	0.09	54
143	0.05	0.14	0.07	21
144	0.15	0.44	0.22	43
145	0.45	0.37	0.40	49
146	0.36	0.49	0.41	137
147	0.37	0.56	0.41	91
148	0.16	0.41	0.43	29
149	0.50	0.62	0.56	88
150	0.11	0.16	0.13	67
151	0.40	0.41	0.13	46
152 153	0.24	0.32	0.27	187
	0.27 0.42	0.43 0.40	0.33 0.41	60 40
154 155	0.42	0.40	0.41	40 67
155 156	0.17	0.06	0.09	67 46
156	0.18	0.33	0.23	46
157	0.17	0.43	0.25	23 E4
158 150	0.41 a 22	0.59 a 23	0.48 a 22	54 27
	и,,	и / ч	ω ,,	× /

		Stack_	_overnow_taggin	g.ipyrib - Col
160	0.22	0.25 0.36	0.22	66
161	0.37	0.58	0.48	69
162	0.42	0.36	0.48	78
163	0.65	0.88	0.75	50
164	0.15	0.23	0.73	115
165	0.13		0.18	71
	0.05	0.15 0.07		81
166 167		0.50	0.06	52
167 168	0.18	0.59	0.26	22
169	0.28	0.01	0.38 0.01	292
170	0.50 0.20	0.58	0.30	45
171			0.04	146
172	0.08	0.03		5
173	0.00	0.00	0.00	66
	0.14 0.08	0.05	0.07	21
174 175		0.29	0.13	
175 176	0.10	0.23	0.14	26 86
177	0.16	0.14	0.15	86 19
178	0.09 0.04	0.17	0.12	18 27
		0.11	0.06	
179	0.00	0.00	0.00	0 7
180 181	0.11	0.57	0.19	34
182	0.54 0.46	0.62	0.58 0.54	
183	0.46	0.66	0.43	35 51
184	0.33	0.57		51
185	0.41	0.68	0.51	38 39
186	0.25	0.00 0.38	0.00 0.30	13
187	0.23		0.37	35
188	0.09	0.40	0.12	44
189	0.12	0.18 0.24	0.12	46
190	0.12	0.24	0.10	52
191	0.17	0.23	0.20	88
192	0.04	0.23	0.05	41
193	0.86	0.70	0.78	88
194	0.05	0.10	0.78	51
195	0.28	0.32	0.30	127
196	0.28	0.12	0.09	60
197	0.11	0.12	0.15	18
198	0.04	0.06	0.13	36
199	0.04	0.16	0.11	85
200	0.22	0.10	0.11	48
201	0.22	0.71	0.28	48 17
202	0.17	0.30	0.24	27
202	0.21	0.45	0.25	60
204	0.17	0.51	0.48	105
205	0.44	0.44	0.43	50
206	0.42	0.33	0.25	45
207	0.21	0.58	0.23	19
208	0.28	0.38	0.28	73
209	0.22	0.12	0.15	51
210	0.15	0.12	0.19	20
210	0.08	0.09	0.19	47
211	0.06	0.05	0.05	47
212	0.32	0.35	0.34	34
213	0.32	0.55	0.54	106
214	0.40	0.47	0.37	59
216	0.31	0.22	0.15	87
210	0.12	0.22	0.10	07

217 0.23 0.29 0.25 31 218 0.35 0.72 0.47 46 219 0.04 0.22 0.06 27 220 0.09 0.10 0.10 39 221 0.24 0.35 0.29 55 222 0.40 0.18 0.24 34 223 0.16 0.64 0.26 11 224 0.11 0.14 0.12 51 225 0.07 0.11 0.08 46 226 0.11 0.23 0.15 47 277 0.06 0.14 0.09 14 228 0.12 0.24 0.16 21 229 0.15 0.25 0.18 67 230 0.00 0.00 0.00 209 231 0.09 0.15 0.11 54 232 0.36 0.16 0.22 98 233 <th></th> <th></th> <th>Stack_</th> <th>overnow_tagging</th> <th>g.ipyrib - Cola</th>			Stack_	overnow_tagging	g.ipyrib - Cola
219 0.04 0.22 0.06 27 220 0.09 0.10 0.10 39 221 0.24 0.35 0.29 55 222 0.40 0.18 0.24 34 223 0.16 0.64 0.26 11 224 0.11 0.14 0.12 51 225 0.07 0.11 0.08 46 226 0.11 0.23 0.15 47 227 0.06 0.14 0.09 14 228 0.12 0.24 0.16 21 229 0.15 0.25 0.18 67 230 0.00 0.00 0.00 229 231 0.09 0.15 0.11 54 232 0.36 0.16 0.22 98 233 0.63 0.45 0.53 53 234 0.19 0.33 0.24 36 235 <td>217</td> <td>0.23</td> <td>0.29</td> <td>0.25</td> <td>31</td>	217	0.23	0.29	0.25	31
219 0.04 0.22 0.06 27 220 0.09 0.10 0.10 39 221 0.24 0.35 0.29 55 222 0.40 0.18 0.24 34 223 0.16 0.64 0.26 11 224 0.11 0.14 0.12 51 225 0.07 0.11 0.08 46 226 0.11 0.23 0.15 47 227 0.06 0.14 0.09 14 228 0.12 0.24 0.16 21 229 0.15 0.25 0.18 67 230 0.00 0.00 0.00 229 231 0.09 0.15 0.11 54 232 0.36 0.16 0.22 98 233 0.63 0.45 0.53 53 234 0.19 0.33 0.24 36 235 <td>218</td> <td>0.35</td> <td>0.72</td> <td>0.47</td> <td>46</td>	218	0.35	0.72	0.47	46
220 0.09 0.10 0.10 39 221 0.24 0.35 0.29 55 222 0.40 0.18 0.24 34 223 0.16 0.64 0.26 11 224 0.11 0.14 0.12 51 225 0.07 0.11 0.08 46 226 0.11 0.23 0.15 47 227 0.06 0.14 0.09 14 228 0.12 0.24 0.16 21 229 0.15 0.25 0.18 67 230 0.00 0.00 0.00 229 231 0.09 0.15 0.11 54 232 0.36 0.16 0.22 98 233 0.63 0.45 0.53 53 234 0.19 0.33 0.24 36 235 0.25 0.51 0.33 68 237 <td>219</td> <td></td> <td></td> <td></td> <td>27</td>	219				27
221 0.24 0.35 0.29 55 222 0.40 0.18 0.24 34 223 0.16 0.64 0.26 11 224 0.11 0.14 0.12 51 225 0.07 0.11 0.08 46 226 0.11 0.23 0.15 47 227 0.06 0.14 0.09 14 228 0.12 0.24 0.16 21 230 0.00 0.00 0.00 229 231 0.09 0.15 0.11 54 232 0.36 0.16 0.22 98 233 0.63 0.45 0.53 53 234 0.19 0.33 0.24 36 235 0.25 0.51 0.33 53 234 0.19 0.33 0.24 36 235 0.25 0.51 0.33 68 237 <td></td> <td></td> <td></td> <td></td> <td></td>					
222 0.40 0.18 0.24 34 223 0.16 0.64 0.26 11 224 0.11 0.14 0.12 51 225 0.07 0.11 0.08 46 226 0.11 0.23 0.15 47 227 0.06 0.14 0.09 14 228 0.12 0.24 0.16 21 230 0.00 0.00 0.00 229 231 0.09 0.15 0.11 54 232 0.36 0.16 0.22 98 233 0.63 0.45 0.53 53 234 0.19 0.33 0.24 36 235 0.25 0.51 0.33 53 236 0.28 0.40 0.33 53 237 0.05 0.21 0.09 38 238 0.14 0.23 0.17 102 240 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
223 0.16 0.64 0.26 11 224 0.11 0.14 0.12 51 225 0.07 0.11 0.08 46 226 0.11 0.23 0.15 47 227 0.06 0.14 0.09 14 228 0.12 0.24 0.16 21 229 0.15 0.25 0.18 67 230 0.00 0.00 0.00 229 231 0.09 0.15 0.11 54 232 0.36 0.16 0.22 98 233 0.63 0.45 0.53 53 234 0.19 0.33 0.24 36 235 0.25 0.51 0.33 68 237 0.05 0.21 0.09 38 238 0.14 0.23 0.17 102 240 0.03 0.20 0.06 5 241 <td></td> <td></td> <td></td> <td></td> <td></td>					
224 0.11 0.14 0.12 51 225 0.07 0.11 0.08 46 226 0.11 0.23 0.15 47 227 0.06 0.14 0.09 14 228 0.12 0.24 0.16 21 229 0.15 0.25 0.18 67 230 0.00 0.00 0.00 229 231 0.09 0.15 0.11 54 232 0.36 0.16 0.22 98 233 0.63 0.45 0.53 53 234 0.19 0.33 0.24 36 235 0.25 0.51 0.33 53 236 0.28 0.40 0.33 68 237 0.05 0.21 0.09 38 238 0.14 0.23 0.17 102 239 0.07 0.33 0.12 6 240 <td></td> <td></td> <td></td> <td></td> <td></td>					
225 0.07 0.11 0.08 46 226 0.11 0.23 0.15 47 227 0.06 0.14 0.09 14 228 0.12 0.24 0.16 21 229 0.15 0.25 0.18 67 230 0.00 0.00 0.00 229 231 0.09 0.15 0.11 54 232 0.36 0.16 0.22 98 233 0.63 0.45 0.53 53 234 0.19 0.33 0.24 36 235 0.25 0.51 0.33 53 236 0.28 0.40 0.33 68 237 0.05 0.21 0.09 38 237 0.05 0.21 0.09 38 237 0.05 0.21 0.09 38 238 0.14 0.23 0.17 102 240 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
226 0.11 0.23 0.15 47 227 0.06 0.14 0.09 14 228 0.12 0.24 0.16 21 229 0.15 0.25 0.18 67 230 0.00 0.00 0.00 229 231 0.09 0.15 0.11 54 232 0.36 0.16 0.22 98 233 0.63 0.45 0.53 53 234 0.19 0.33 0.24 36 235 0.25 0.51 0.33 53 236 0.28 0.40 0.33 68 237 0.05 0.21 0.09 38 238 0.14 0.23 0.17 102 239 0.07 0.33 0.12 6 240 0.03 0.20 0.06 5 241 0.15 0.67 0.25 3 242					
227 0.06 0.14 0.09 14 228 0.12 0.24 0.16 21 229 0.15 0.25 0.18 67 230 0.00 0.00 0.00 229 231 0.09 0.15 0.11 54 232 0.36 0.16 0.22 98 233 0.63 0.45 0.53 53 234 0.19 0.33 0.24 36 235 0.25 0.51 0.33 53 236 0.28 0.40 0.33 68 237 0.05 0.21 0.09 38 238 0.14 0.23 0.17 102 239 0.07 0.33 0.12 6 240 0.03 0.20 0.06 5 241 0.15 0.67 0.25 3 242 0.16 0.16 0.68 243 0.38 <td></td> <td></td> <td></td> <td></td> <td></td>					
228 0.12 0.24 0.16 21 229 0.15 0.25 0.18 67 230 0.00 0.00 0.00 229 231 0.09 0.15 0.11 54 232 0.36 0.16 0.22 98 233 0.63 0.45 0.53 53 234 0.19 0.33 0.24 36 235 0.25 0.51 0.33 53 236 0.28 0.40 0.33 68 237 0.05 0.21 0.09 38 237 0.05 0.21 0.09 38 238 0.14 0.23 0.17 102 239 0.07 0.33 0.12 6 240 0.03 0.20 0.06 5 241 0.15 0.67 0.25 3 242 0.16 0.16 0.16 68 241					
229 0.15 0.25 0.18 67 230 0.00 0.00 0.00 229 231 0.09 0.15 0.11 54 232 0.36 0.16 0.22 98 233 0.63 0.45 0.53 53 234 0.19 0.33 0.24 36 235 0.25 0.51 0.33 53 236 0.28 0.40 0.33 68 237 0.05 0.21 0.09 38 238 0.14 0.23 0.17 102 239 0.07 0.33 0.12 6 240 0.03 0.20 0.06 5 241 0.15 0.67 0.25 3 242 0.16 0.16 0.16 68 243 0.38 0.38 0.38 91 244 0.35 0.83 0.49 30 245					
230 0.00 0.00 0.00 229 231 0.09 0.15 0.11 54 232 0.36 0.16 0.22 98 233 0.63 0.45 0.53 53 234 0.19 0.33 0.24 36 235 0.25 0.51 0.33 53 236 0.28 0.40 0.33 68 237 0.05 0.21 0.09 38 238 0.14 0.23 0.17 102 239 0.07 0.33 0.12 6 240 0.03 0.20 0.06 5 241 0.15 0.67 0.25 3 242 0.16 0.16 0.16 68 243 0.38 0.38 0.38 91 244 0.35 0.83 0.49 30 245 0.21 0.32 0.26 50 246					
231 0.09 0.15 0.11 54 232 0.36 0.16 0.22 98 233 0.63 0.45 0.53 53 234 0.19 0.33 0.24 36 235 0.25 0.51 0.33 53 236 0.28 0.40 0.33 53 237 0.05 0.21 0.09 38 238 0.14 0.23 0.17 102 239 0.07 0.33 0.12 6 240 0.03 0.20 0.06 5 241 0.15 0.67 0.25 3 242 0.16 0.16 0.8 68 243 0.38 0.38 0.38 9.3 244 0.35 0.83 0.49 30 245 0.21 0.32 0.26 50 246 0.06 0.25 0.10 4 247					
232 0.36 0.16 0.22 98 233 0.63 0.45 0.53 53 234 0.19 0.33 0.24 36 235 0.25 0.51 0.33 53 236 0.28 0.40 0.33 68 237 0.05 0.21 0.09 38 238 0.14 0.23 0.17 102 239 0.07 0.33 0.12 6 240 0.03 0.20 0.06 5 241 0.15 0.67 0.25 3 242 0.16 0.16 0.16 68 243 0.38 0.38 0.38 91 244 0.35 0.83 0.49 30 245 0.21 0.32 0.26 50 246 0.06 0.25 0.10 4 247 0.25 0.10 4 4 248					
233 0.63 0.45 0.53 53 234 0.19 0.33 0.24 36 235 0.25 0.51 0.33 53 236 0.28 0.40 0.33 68 237 0.05 0.21 0.09 38 238 0.14 0.23 0.17 102 239 0.07 0.33 0.12 6 240 0.03 0.20 0.06 5 241 0.15 0.67 0.25 3 242 0.16 0.16 0.16 68 243 0.38 0.38 0.38 91 244 0.35 0.83 0.49 30 245 0.21 0.32 0.26 50 246 0.06 0.25 0.10 4 247 0.25 0.44 0.32 41 248 0.29 0.26 0.27 98 249					
234 0.19 0.33 0.24 36 235 0.25 0.51 0.33 53 236 0.28 0.40 0.33 68 237 0.05 0.21 0.09 38 238 0.14 0.23 0.17 102 239 0.07 0.33 0.12 6 240 0.03 0.20 0.06 5 241 0.15 0.67 0.25 3 242 0.16 0.16 0.16 68 243 0.38 0.38 0.38 9 244 0.35 0.83 0.49 30 245 0.21 0.32 0.26 50 246 0.06 0.25 0.10 4 247 0.25 0.44 0.32 41 248 0.29 0.26 0.27 98 249 0.00 0.00 0.00 0 250					
235 0.25 0.51 0.33 53 236 0.28 0.40 0.33 68 237 0.05 0.21 0.09 38 238 0.14 0.23 0.17 102 239 0.07 0.33 0.12 6 240 0.03 0.20 0.06 5 241 0.15 0.67 0.25 3 242 0.16 0.16 0.16 68 243 0.38 0.38 0.38 91 244 0.35 0.83 0.49 30 245 0.21 0.32 0.26 50 246 0.06 0.25 0.10 4 247 0.25 0.44 0.32 41 248 0.29 0.26 0.27 98 249 0.00 0.00 0.00 0 250 0.10 1.00 0.18 1 251					
236 0.28 0.40 0.33 68 237 0.05 0.21 0.09 38 238 0.14 0.23 0.17 102 239 0.07 0.33 0.12 6 240 0.03 0.20 0.06 5 241 0.15 0.67 0.25 3 242 0.16 0.16 0.16 68 243 0.38 0.38 0.38 91 244 0.35 0.83 0.49 30 245 0.21 0.32 0.26 50 246 0.06 0.25 0.10 4 247 0.25 0.44 0.32 41 248 0.29 0.26 0.27 98 249 0.00 0.00 0.00 0 250 0.10 1.00 0.18 1 251 0.12 0.27 0.33 66 252					
237 0.05 0.21 0.09 38 238 0.14 0.23 0.17 102 239 0.07 0.33 0.12 6 240 0.03 0.20 0.06 5 241 0.15 0.67 0.25 3 242 0.16 0.16 0.16 68 243 0.38 0.38 0.38 91 244 0.35 0.83 0.49 30 245 0.21 0.32 0.26 50 246 0.06 0.25 0.10 4 247 0.25 0.44 0.32 41 248 0.29 0.26 0.27 98 249 0.00 0.00 0.00 0 250 0.10 1.00 0.18 1 251 0.12 0.27 0.16 26 252 0.42 0.27 0.33 66 253			0.51		53
238 0.14 0.23 0.17 102 239 0.07 0.33 0.12 6 240 0.03 0.20 0.06 5 241 0.15 0.67 0.25 3 242 0.16 0.16 0.16 68 243 0.38 0.38 0.38 91 244 0.35 0.83 0.49 30 245 0.21 0.32 0.26 50 246 0.06 0.25 0.10 4 247 0.25 0.44 0.32 41 248 0.29 0.26 0.27 98 249 0.00 0.00 0.00 0 250 0.10 1.00 0.18 1 251 0.12 0.27 0.16 26 252 0.42 0.27 0.33 66 253 0.44 0.70 0.54 67 254 0.02 0.06 0.03 32 255 0.00 0.00	236	0.28	0.40	0.33	68
239 0.07 0.33 0.12 6 240 0.03 0.20 0.06 5 241 0.15 0.67 0.25 3 242 0.16 0.16 0.16 68 243 0.38 0.38 0.38 91 244 0.35 0.83 0.49 30 245 0.21 0.32 0.26 50 246 0.06 0.25 0.10 4 247 0.25 0.44 0.32 41 248 0.29 0.26 0.27 98 249 0.00 0.00 0.00 0 250 0.10 1.00 0.18 1 251 0.12 0.27 0.16 26 252 0.42 0.27 0.33 66 253 0.44 0.70 0.54 67 254 0.02 0.06 0.03 32 255 0.00 0.00 0.00 2 256 0.07 0.16	237	0.05	0.21		38
240 0.03 0.20 0.06 5 241 0.15 0.67 0.25 3 242 0.16 0.16 0.16 68 243 0.38 0.38 0.38 91 244 0.35 0.83 0.49 30 245 0.21 0.32 0.26 50 246 0.06 0.25 0.10 4 247 0.25 0.44 0.32 41 248 0.29 0.26 0.27 98 249 0.00 0.00 0.00 0 0 250 0.10 1.00 0.18 1 1 251 0.12 0.27 0.16 26 26 252 0.42 0.27 0.33 66 66 253 0.44 0.70 0.54 67 67 254 0.02 0.06 0.03 32 25 255 0.00 0.00 0.00 2 25 256 0.07 0.	238	0.14	0.23	0.17	102
241 0.15 0.67 0.25 3 242 0.16 0.16 0.16 68 243 0.38 0.38 0.38 91 244 0.35 0.83 0.49 30 245 0.21 0.32 0.26 50 246 0.06 0.25 0.10 4 247 0.25 0.44 0.32 41 248 0.29 0.26 0.27 98 249 0.00 0.00 0.00 0 249 0.00 0.00 0.00 0 250 0.10 1.00 0.18 1 251 0.12 0.27 0.16 26 252 0.42 0.27 0.33 66 253 0.44 0.70 0.54 67 254 0.02 0.06 0.03 32 255 0.00 0.00 0.00 2 256 0.07 0.16 0.10 32 257 0.03 0.50	239	0.07	0.33	0.12	6
242 0.16 0.16 0.16 68 243 0.38 0.38 0.38 9.38 91 244 0.35 0.83 0.49 30 245 0.21 0.32 0.26 50 246 0.06 0.25 0.10 4 247 0.25 0.44 0.32 41 248 0.29 0.26 0.27 98 249 0.00 0.00 0.00 0 250 0.10 1.00 0.18 1 251 0.12 0.27 0.16 26 252 0.42 0.27 0.33 66 253 0.44 0.70 0.54 67 254 0.02 0.06 0.03 32 255 0.00 0.00 0.00 2 256 0.07 0.16 0.10 32 257 0.03 0.50 0.05 4 258 0.04 0.08 0.05 39 259 0.51	240	0.03	0.20	0.06	5
243 0.38 0.38 0.38 91 244 0.35 0.83 0.49 30 245 0.21 0.32 0.26 50 246 0.06 0.25 0.10 4 247 0.25 0.44 0.32 41 248 0.29 0.26 0.27 98 249 0.00 0.00 0.00 0 259 0.10 1.00 0.18 1 250 0.10 1.00 0.18 1 251 0.12 0.27 0.16 26 252 0.42 0.27 0.33 66 252 0.42 0.27 0.33 66 253 0.44 0.70 0.54 67 254 0.02 0.06 0.03 32 255 0.00 0.00 0.00 2 255 0.00 0.00 0.00 2 255 0.00 0.00 0.00 2 257 0.03 0.50	241	0.15	0.67	0.25	3
244 0.35 0.83 0.49 30 245 0.21 0.32 0.26 50 246 0.06 0.25 0.10 4 247 0.25 0.44 0.32 41 248 0.29 0.26 0.27 98 249 0.00 0.00 0.00 0 250 0.10 1.00 0.18 1 251 0.12 0.27 0.16 26 252 0.42 0.27 0.33 66 253 0.44 0.70 0.54 67 254 0.02 0.06 0.03 32 255 0.00 0.00 0.00 2 255 0.00 0.00 0.00 2 255 0.00 0.00 0.00 2 256 0.07 0.16 0.10 32 257 0.03 0.50 0.05 4 258 0.04 0.08 0.05 39 259 0.51 0.49	242	0.16	0.16	0.16	68
244 0.35 0.83 0.49 30 245 0.21 0.32 0.26 50 246 0.06 0.25 0.10 4 247 0.25 0.44 0.32 41 248 0.29 0.26 0.27 98 249 0.00 0.00 0.00 0 250 0.10 1.00 0.18 1 251 0.12 0.27 0.16 26 252 0.42 0.27 0.33 66 253 0.44 0.70 0.54 67 254 0.02 0.06 0.03 32 255 0.00 0.00 0.00 2 255 0.00 0.00 0.00 2 255 0.00 0.00 0.00 2 256 0.07 0.16 0.10 32 257 0.03 0.50 0.05 4 258 0.04 0.08 0.05 39 259 0.51 0.49	243	0.38	0.38	0.38	91
245 0.21 0.32 0.26 50 246 0.06 0.25 0.10 4 247 0.25 0.44 0.32 41 248 0.29 0.26 0.27 98 249 0.00 0.00 0.00 0 250 0.10 1.00 0.18 1 251 0.12 0.27 0.16 26 252 0.42 0.27 0.33 66 253 0.44 0.70 0.54 67 254 0.02 0.06 0.03 32 255 0.00 0.00 0.00 2 256 0.07 0.16 0.10 32 257 0.03 0.50 0.05 4 258 0.04 0.08 0.05 39 259 0.51 0.49 0.50 73 260 0.71 0.55 0.62 55 261 0.24 0.67 0.36 12 262 0.11 0.24	244				30
246 0.06 0.25 0.10 4 247 0.25 0.44 0.32 41 248 0.29 0.26 0.27 98 249 0.00 0.00 0.00 0 250 0.10 1.00 0.18 1 251 0.12 0.27 0.16 26 252 0.42 0.27 0.33 66 253 0.44 0.70 0.54 67 254 0.02 0.06 0.03 32 255 0.00 0.00 0.00 2 256 0.07 0.16 0.10 32 257 0.03 0.50 0.05 4 258 0.04 0.08 0.05 39 259 0.51 0.49 0.50 73 260 0.71 0.55 0.62 55 261 0.24 0.67 0.36 12 262 0.11 0.24 0.15 41 263 0.25 0.29					
247 0.25 0.44 0.32 41 248 0.29 0.26 0.27 98 249 0.00 0.00 0.00 0 250 0.10 1.00 0.18 1 251 0.12 0.27 0.16 26 252 0.42 0.27 0.33 66 253 0.44 0.70 0.54 67 254 0.02 0.06 0.03 32 255 0.00 0.00 0.00 2 256 0.07 0.16 0.10 32 257 0.03 0.50 0.05 4 258 0.04 0.08 0.05 39 259 0.51 0.49 0.50 73 260 0.71 0.55 0.62 55 261 0.24 0.67 0.36 12 262 0.11 0.24 0.15 41 263 0.25 0.29 0.27 14 264 0.15 0.20 <td></td> <td></td> <td></td> <td></td> <td></td>					
248 0.29 0.26 0.27 98 249 0.00 0.00 0.00 0 250 0.10 1.00 0.18 1 251 0.12 0.27 0.16 26 252 0.42 0.27 0.33 66 253 0.44 0.70 0.54 67 254 0.02 0.06 0.03 32 255 0.00 0.00 0.00 2 256 0.07 0.16 0.10 32 257 0.03 0.50 0.05 4 258 0.04 0.08 0.05 39 259 0.51 0.49 0.50 73 260 0.71 0.55 0.62 55 261 0.24 0.67 0.36 12 262 0.11 0.24 0.15 41 263 0.25 0.29 0.27 14 264 0.15 0.20 0.17 56 265 0.37 0.38 <td></td> <td></td> <td></td> <td></td> <td></td>					
249 0.00 0.00 0.00 0 250 0.10 1.00 0.18 1 251 0.12 0.27 0.16 26 252 0.42 0.27 0.33 66 253 0.44 0.70 0.54 67 254 0.02 0.06 0.03 32 255 0.00 0.00 0.00 2 256 0.07 0.16 0.10 32 257 0.03 0.50 0.05 4 258 0.04 0.08 0.05 39 259 0.51 0.49 0.50 73 260 0.71 0.55 0.62 55 261 0.24 0.67 0.36 12 262 0.11 0.24 0.15 41 263 0.25 0.29 0.27 14 264 0.15 0.20 0.17 56 265 0.37 0.38 0.37 77 266 0.00 0.00 <td></td> <td></td> <td></td> <td></td> <td></td>					
250 0.10 1.00 0.18 1 251 0.12 0.27 0.16 26 252 0.42 0.27 0.33 66 253 0.44 0.70 0.54 67 254 0.02 0.06 0.03 32 255 0.00 0.00 0.00 2 256 0.07 0.16 0.10 32 257 0.03 0.50 0.05 4 258 0.04 0.08 0.05 39 259 0.51 0.49 0.50 73 260 0.71 0.55 0.62 55 261 0.24 0.67 0.36 12 262 0.11 0.24 0.15 41 263 0.25 0.29 0.27 14 264 0.15 0.20 0.17 56 265 0.37 0.38 0.37 77 266 0.00 0.00 0.00 13 267 0.27 0.44 <td></td> <td></td> <td></td> <td></td> <td></td>					
251 0.12 0.27 0.16 26 252 0.42 0.27 0.33 66 253 0.44 0.70 0.54 67 254 0.02 0.06 0.03 32 255 0.00 0.00 0.00 2 256 0.07 0.16 0.10 32 257 0.03 0.50 0.05 4 258 0.04 0.08 0.05 39 259 0.51 0.49 0.50 73 260 0.71 0.55 0.62 55 261 0.24 0.67 0.36 12 262 0.11 0.24 0.15 41 263 0.25 0.29 0.27 14 264 0.15 0.20 0.17 56 265 0.37 0.38 0.37 77 266 0.00 0.00 0.00 13 267 0.27 0.44 0.33 16 268 0.02 0.03 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
252 0.42 0.27 0.33 66 253 0.44 0.70 0.54 67 254 0.02 0.06 0.03 32 255 0.00 0.00 0.00 2 256 0.07 0.16 0.10 32 257 0.03 0.50 0.05 4 258 0.04 0.08 0.05 39 259 0.51 0.49 0.50 73 260 0.71 0.55 0.62 55 261 0.24 0.67 0.36 12 262 0.11 0.24 0.15 41 263 0.25 0.29 0.27 14 264 0.15 0.20 0.17 56 265 0.37 0.38 0.37 77 266 0.00 0.00 0.00 13 267 0.27 0.44 0.33 16 268 0.02 0.03 0.03 34 269 0.04 0.02 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
253 0.44 0.70 0.54 67 254 0.02 0.06 0.03 32 255 0.00 0.00 0.00 2 256 0.07 0.16 0.10 32 257 0.03 0.50 0.05 4 258 0.04 0.08 0.05 39 259 0.51 0.49 0.50 73 260 0.71 0.55 0.62 55 261 0.24 0.67 0.36 12 262 0.11 0.24 0.15 41 263 0.25 0.29 0.27 14 264 0.15 0.20 0.17 56 265 0.37 0.38 0.37 77 266 0.00 0.00 0.00 13 267 0.27 0.44 0.33 16 268 0.02 0.03 0.03 34 269 0.04 0.02 0.03 45 270 0.06 0.12 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
254 0.02 0.06 0.03 32 255 0.00 0.00 0.00 2 256 0.07 0.16 0.10 32 257 0.03 0.50 0.05 4 258 0.04 0.08 0.05 39 259 0.51 0.49 0.50 73 260 0.71 0.55 0.62 55 261 0.24 0.67 0.36 12 262 0.11 0.24 0.15 41 263 0.25 0.29 0.27 14 264 0.15 0.20 0.17 56 265 0.37 0.38 0.37 77 266 0.00 0.00 0.00 13 267 0.27 0.44 0.33 16 268 0.02 0.03 0.03 34 269 0.04 0.02 0.03 45 270 0.06 0.12 0.08 43 271 0.27 0.46 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
255 0.00 0.00 0.00 2 256 0.07 0.16 0.10 32 257 0.03 0.50 0.05 4 258 0.04 0.08 0.05 39 259 0.51 0.49 0.50 73 260 0.71 0.55 0.62 55 261 0.24 0.67 0.36 12 262 0.11 0.24 0.15 41 263 0.25 0.29 0.27 14 264 0.15 0.20 0.17 56 265 0.37 0.38 0.37 77 266 0.00 0.00 0.00 13 267 0.27 0.44 0.33 16 268 0.02 0.03 0.03 34 269 0.04 0.02 0.03 45 270 0.06 0.12 0.08 43 271 0.27 0.46 0.34 56 272 0.14 0.27 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
256 0.07 0.16 0.10 32 257 0.03 0.50 0.05 4 258 0.04 0.08 0.05 39 259 0.51 0.49 0.50 73 260 0.71 0.55 0.62 55 261 0.24 0.67 0.36 12 262 0.11 0.24 0.15 41 263 0.25 0.29 0.27 14 264 0.15 0.20 0.17 56 265 0.37 0.38 0.37 77 266 0.00 0.00 0.00 13 267 0.27 0.44 0.33 16 268 0.02 0.03 0.03 34 269 0.04 0.02 0.03 45 270 0.06 0.12 0.08 43 271 0.27 0.46 0.34 56 272 0.14 0.27 0.19 11 273 0.10 0.05<					
257 0.03 0.50 0.05 4 258 0.04 0.08 0.05 39 259 0.51 0.49 0.50 73 260 0.71 0.55 0.62 55 261 0.24 0.67 0.36 12 262 0.11 0.24 0.15 41 263 0.25 0.29 0.27 14 264 0.15 0.20 0.17 56 265 0.37 0.38 0.37 77 266 0.00 0.00 0.00 13 267 0.27 0.44 0.33 16 268 0.02 0.03 0.03 34 269 0.04 0.02 0.03 45 270 0.06 0.12 0.08 43 271 0.27 0.46 0.34 56 272 0.14 0.27 0.19 11 273 0.10 0.05 0.06 42 274 0.69 0.57<					
258 0.04 0.08 0.05 39 259 0.51 0.49 0.50 73 260 0.71 0.55 0.62 55 261 0.24 0.67 0.36 12 262 0.11 0.24 0.15 41 263 0.25 0.29 0.27 14 264 0.15 0.20 0.17 56 265 0.37 0.38 0.37 77 266 0.00 0.00 0.00 13 267 0.27 0.44 0.33 16 268 0.02 0.03 0.03 34 269 0.04 0.02 0.03 45 270 0.06 0.12 0.08 43 271 0.27 0.46 0.34 56 272 0.14 0.27 0.19 11 273 0.10 0.05 0.06 42 274 0.69 0.57 0.62 35					
259 0.51 0.49 0.50 73 260 0.71 0.55 0.62 55 261 0.24 0.67 0.36 12 262 0.11 0.24 0.15 41 263 0.25 0.29 0.27 14 264 0.15 0.20 0.17 56 265 0.37 0.38 0.37 77 266 0.00 0.00 0.00 13 267 0.27 0.44 0.33 16 268 0.02 0.03 0.03 34 269 0.04 0.02 0.03 45 270 0.06 0.12 0.08 43 271 0.27 0.46 0.34 56 272 0.14 0.27 0.19 11 273 0.10 0.05 0.06 42 274 0.69 0.57 0.62 35					
260 0.71 0.55 0.62 55 261 0.24 0.67 0.36 12 262 0.11 0.24 0.15 41 263 0.25 0.29 0.27 14 264 0.15 0.20 0.17 56 265 0.37 0.38 0.37 77 266 0.00 0.00 0.00 13 267 0.27 0.44 0.33 16 268 0.02 0.03 0.03 34 269 0.04 0.02 0.03 45 270 0.06 0.12 0.08 43 271 0.27 0.46 0.34 56 272 0.14 0.27 0.19 11 273 0.10 0.05 0.06 42 274 0.69 0.57 0.62 35					
261 0.24 0.67 0.36 12 262 0.11 0.24 0.15 41 263 0.25 0.29 0.27 14 264 0.15 0.20 0.17 56 265 0.37 0.38 0.37 77 266 0.00 0.00 0.00 13 267 0.27 0.44 0.33 16 268 0.02 0.03 0.03 34 269 0.04 0.02 0.03 45 270 0.06 0.12 0.08 43 271 0.27 0.46 0.34 56 272 0.14 0.27 0.19 11 273 0.10 0.05 0.06 42 274 0.69 0.57 0.62 35					
262 0.11 0.24 0.15 41 263 0.25 0.29 0.27 14 264 0.15 0.20 0.17 56 265 0.37 0.38 0.37 77 266 0.00 0.00 0.00 13 267 0.27 0.44 0.33 16 268 0.02 0.03 0.03 34 269 0.04 0.02 0.03 45 270 0.06 0.12 0.08 43 271 0.27 0.46 0.34 56 272 0.14 0.27 0.19 11 273 0.10 0.05 0.06 42 274 0.69 0.57 0.62 35					
263 0.25 0.29 0.27 14 264 0.15 0.20 0.17 56 265 0.37 0.38 0.37 77 266 0.00 0.00 0.00 13 267 0.27 0.44 0.33 16 268 0.02 0.03 0.03 34 269 0.04 0.02 0.03 45 270 0.06 0.12 0.08 43 271 0.27 0.46 0.34 56 272 0.14 0.27 0.19 11 273 0.10 0.05 0.06 42 274 0.69 0.57 0.62 35					
264 0.15 0.20 0.17 56 265 0.37 0.38 0.37 77 266 0.00 0.00 0.00 13 267 0.27 0.44 0.33 16 268 0.02 0.03 0.03 34 269 0.04 0.02 0.03 45 270 0.06 0.12 0.08 43 271 0.27 0.46 0.34 56 272 0.14 0.27 0.19 11 273 0.10 0.05 0.06 42 274 0.69 0.57 0.62 35					
265 0.37 0.38 0.37 77 266 0.00 0.00 0.00 13 267 0.27 0.44 0.33 16 268 0.02 0.03 0.03 34 269 0.04 0.02 0.03 45 270 0.06 0.12 0.08 43 271 0.27 0.46 0.34 56 272 0.14 0.27 0.19 11 273 0.10 0.05 0.06 42 274 0.69 0.57 0.62 35					
266 0.00 0.00 0.00 13 267 0.27 0.44 0.33 16 268 0.02 0.03 0.03 34 269 0.04 0.02 0.03 45 270 0.06 0.12 0.08 43 271 0.27 0.46 0.34 56 272 0.14 0.27 0.19 11 273 0.10 0.05 0.06 42 274 0.69 0.57 0.62 35					
267 0.27 0.44 0.33 16 268 0.02 0.03 0.03 34 269 0.04 0.02 0.03 45 270 0.06 0.12 0.08 43 271 0.27 0.46 0.34 56 272 0.14 0.27 0.19 11 273 0.10 0.05 0.06 42 274 0.69 0.57 0.62 35					
268 0.02 0.03 0.03 34 269 0.04 0.02 0.03 45 270 0.06 0.12 0.08 43 271 0.27 0.46 0.34 56 272 0.14 0.27 0.19 11 273 0.10 0.05 0.06 42 274 0.69 0.57 0.62 35					
269 0.04 0.02 0.03 45 270 0.06 0.12 0.08 43 271 0.27 0.46 0.34 56 272 0.14 0.27 0.19 11 273 0.10 0.05 0.06 42 274 0.69 0.57 0.62 35					
270 0.06 0.12 0.08 43 271 0.27 0.46 0.34 56 272 0.14 0.27 0.19 11 273 0.10 0.05 0.06 42 274 0.69 0.57 0.62 35					
271 0.27 0.46 0.34 56 272 0.14 0.27 0.19 11 273 0.10 0.05 0.06 42 274 0.69 0.57 0.62 35					
272 0.14 0.27 0.19 11 273 0.10 0.05 0.06 42 274 0.69 0.57 0.62 35					
273 0.10 0.05 0.06 42 274 0.69 0.57 0.62 35					
274 0.69 0.57 0.62 35					
	274				

		_	_ 33 3 17	
275	0.04	0.03	0.04	59
276	0.07	0.18	0.11	49
277	0.61	0.64	0.62	44
278	0.11	0.11	0.11	46
279	0.00	0.00	0.00	7
280	0.55	0.66	0.60	58
281	0.48	0.26	0.34	46
282	0.19	0.50	0.27	10
283	0.30	0.33	0.32	21
284	0.07	0.11	0.09	47
285	0.15	0.26	0.19	23
286	0.49	0.77	0.60	48
287	0.39	0.51	0.44	35
288	0.05	0.04	0.04	81
289	0.37	0.53	0.44	47
290	0.62	0.83	0.71	93
291	0.18	0.21	0.19	61
292	0.26	0.70	0.38	23
293	0.23	0.50	0.31	10
294	0.22	0.07	0.10	30
295	0.05	0.08	0.06	24
296	0.08	0.07	0.08	54
297	0.23	0.62	0.34	34
298	0.21	0.39	0.28	69
299	0.63	0.86	0.73	44
300	0.47	0.54	0.50	13
301	0.52	0.56	0.54	68
302	0.02	0.06	0.04	33
303	0.28	0.39	0.33	18
304	0.07	0.38	0.11	13
305	0.19	0.28	0.23	53
306	0.22	0.33	0.26	75
307	0.45	0.62	0.52	55
308	0.79	0.67	0.73	61
309	0.46	0.49	0.47	90
310	0.53	0.16	0.24	58
311	0.28	0.84	0.42	19
312	0.16	0.24	0.19	34
313	0.16	0.38	0.22	13
314	0.11	0.50	0.18	4
315	0.06	0.07	0.07	41
316	0.43	0.52	0.47	54
317	0.18	0.24	0.20	25
318	0.13	0.50	0.21	4
319	0.04	0.14	0.06	29
320	0.10	0.16	0.13	37
321	0.33	0.50	0.40	6
322	0.22	0.50	0.30	22
323	0.08	0.11	0.09	19
324	0.12	0.50	0.20	4
325	0.29	0.56	0.38	18
326	0.35	0.57	0.44	21
327	0.07	0.12	0.09	26
328	0.28	0.55	0.37	49
329	0.43	0.51	0.47	35
330	0.00	0.00	0.00	19
331	0.17	0.20	0.18	15
227	0.17	0.20	0.10 0.10	10
o com/drivo/1a l	va8DI2irr/1\/2VtC	rm7TTI lylcSOa	A5#scrollTo=xnsna	Ta SM

			_overflow_tagging	
333	0.51	0.20 0.50	0.12 0.51	38
334	0.06	0.22	0.09	9
335	0.39	0.22	0.03	53
336	0.68	0.66	0.27	32
337	0.05	0.08	0.06	24
338	0.03	0.33	0.05	3
339	0.00	0.00	0.00	1
340	0.00	0.00	0.00	0
341	0.12	0.27	0.17	11
342	0.27	0.72	0.39	40
343	0.12	0.07	0.09	30
344	0.11	0.04	0.06	24
345	0.08	0.35	0.13	23
346	0.29	0.25	0.27	69
347	0.10	0.22	0.14	18
348	0.11	0.20	0.14	65
349	0.33	0.27	0.30	78
350	0.00	0.00	0.00	12
351	0.10	0.46	0.16	13
352	0.00	0.00	0.00	18
353	0.76	0.76	0.76	46
354	0.24	0.47	0.32	40
355	0.05	0.11	0.07	19
356	0.08	0.08	0.08	26
357	0.23	0.23	0.23	39
358	0.15	0.17	0.16	12
359	0.00	0.00	0.00	16
360	0.08	0.08	0.08	24
361 262	0.20	0.18	0.19	57 20
362 363	0.55 0.36	0.85 0.11	0.67 0.17	20 84
364	0.44	0.11	0.17	54
365	0.15	0.07	0.18	33
366	0.05	0.10	0.07	30
367	0.08	0.03	0.05	30
368	0.00	0.00	0.00	19
369	0.00	0.00	0.00	19
370	0.05	0.06	0.06	32
371	0.15	0.67	0.25	12
372	0.04	0.07	0.05	15
373	0.05	0.13	0.07	15
374	0.61	0.65	0.63	17
375	0.52	0.83	0.64	41
376	0.28	0.62	0.39	29
377	0.04	0.04	0.04	28
378	0.09	0.16	0.12	19
379	0.16	0.16	0.16	31
380	0.18	0.14	0.16	29
381	0.11	0.22	0.14	49
382	0.03	0.12	0.05	8
383	0.08	0.29	0.13	24
384 385	0.11 0.06	0.45 0.13	0.17 0.09	20 15
386	0.52	0.13	0.56	37
387	0.03	0.09	0.05	22
388	0.00	0.00	0.00	27
389	0.20	0.34	0.25	29
		3.5		

		Stack_	overnow_tagging	g.ipyrib - Cola
390	0.06	0.10	0.07	20
391	0.33	0.56	0.42	39
392	0.06	0.10	0.07	10
393	0.27	0.31	0.29	42
394	0.12	0.13	0.12	46
395	0.03	0.10	0.05	10
396	0.00	0.00	0.00	39
397	0.00	0.00	0.00	43
398	0.27	0.24	0.25	50
399	0.12	0.71	0.21	7
400	0.02	0.06	0.03	17
401	0.08	0.33	0.13	6
402	0.00	0.00	0.00	26
403	0.02	0.10	0.03	10
404	0.17	0.29	0.22	14
405	0.07	0.14	0.10	14
406	0.50	0.55	0.52	22
407	0.22	0.23	0.22	60
408	0.26	0.28	0.27	40
409	0.06	0.13	0.08	31
410	0.17	0.33	0.22	9
411	0.15	0.32	0.20	19
412	0.41	0.63	0.50	19
413	0.17	0.20	0.18	5
414	0.00	0.08	0.01	12
415	0.47	0.59	0.52	29
416	0.04	0.09	0.06	33
417	0.10	0.21	0.13	33
418	0.04	0.08	0.05	12
419	0.11	0.14	0.12	42
420	0.12	0.08	0.10	12
421	0.29	0.32	0.30	98
422	0.06	0.12	0.08	8
423	0.08	0.14	0.10	7
424	0.25	0.62	0.36	13
425	0.08	0.15	0.11	13
426	0.13	0.30	0.18	20
427	0.07	0.12	0.09	58
428	0.25	1.00	0.40	2
429	0.28	0.41	0.33	27
430	0.35	0.39	0.37	38
431	0.22	0.38	0.28	40
432	0.03	0.12	0.05	43
433	0.60	0.67	0.63	42
434	0.21	0.21	0.21	24
435	0.12	0.23	0.16	31
436	0.17	0.17	0.17	30
437	0.06	0.12	0.08	16
438	0.31	0.41	0.35	22
439	0.00	0.00	0.00	1
440	0.09	0.11	0.10	19
441	0.03	0.22	0.05	9
442	0.30	0.20	0.24	100
443	0.44	0.57	0.50	28
444	0.34	0.75	0.47	20
445	0.41	0.62	0.49	29
446	0.04	0.10	0.06	21
447	0.24	0.45	0.32	20
le com/drive/1	a lyg8DI2irr4\/2	VtCrm7TTI lvlcS	OaA5#scrollTo=	vnenaTaSM7

			Oldok_ovo		
	448	0.78	0.55	0.65	38
	449	0.05	0.09	0.06	22
	450	0.45	0.43	0.44	21
	451	0.07	0.23	0.11	13
	452	0.03	0.08	0.05	24
	453	0.20	0.10	0.14	48
	454	0.28	0.32	0.30	75
	455	0.14	0.22	0.17	18
	456	0.04	0.33	0.07	3
	457	0.19	0.46	0.27	13
	458	0.00	0.00	0.00	13
	459	0.18	0.33	0.24	24
	460	0.20	0.36	0.25	36
	461	0.31	0.61	0.42	18
	462	0.18	0.32	0.23	31
	463 464	0.22	0.14	0.17	28 7
	465	0.00	0.00	0.00	
	466	0.26 0.41	0.33	0.30	27 12
	467	0.41	0.75 0.21	0.53 0.15	14
	468	0.00	0.00	0.00	6
	469	0.08	0.12	0.10	17
	470	0.11	0.28	0.16	18
	471	0.14	0.10	0.10	29
	472	0.00	0.00	0.00	2
	473	0.35	0.18	0.24	34
	474	0.00	0.00	0.00	8
	475	0.10	0.50	0.17	4
	476	0.28	0.50	0.35	22
	477	0.09	0.67	0.15	6
	478	0.20	0.24	0.22	17
	479	0.25	0.04	0.07	23
	480	0.18	0.28	0.22	18
	481	0.04	0.18	0.06	11
	482	0.32	0.34	0.33	35
	483	0.31	0.57	0.40	21
	484	0.47	0.61	0.53	28
	485	0.11	0.21	0.15	14
	486	0.42	0.73	0.53	11
	487	0.21	0.33	0.26	15
	488	0.16	0.21	0.18	38
	489	0.15	0.16	0.15	75
	490	0.89	0.49	0.63	51
	491	0.74	0.74	0.74	19
	492	0.25	0.24	0.24	21
	493	0.07	0.25	0.11	16
	494	0.31	0.83	0.45	6
	495	0.05	0.05	0.05	22
	496	0.27	0.49	0.35	37
	497	0.03	0.05	0.04	20
	498	0.55	0.50	0.52	24
	499	0.04	0.12	0.06	17
micro	_	0.35	0.45		151
macro	-	0.24	0.34		151
weighted	_	0.40	0.45		151
samples	avg	0.39	0.44	0.37 47	151

Time taken to run this cell: 0:05:57.704523

```
from prettytable import PrettyTable
tb = PrettyTable()
tb.field_names= ("Vectorizer",
                                                       "Model",
tb.add row(["
                             tf-idf",
                                                         "Logistic Regression with OVR classif
tb.add row(["
                             Bow",
                                                      "Logistic Regression with OVR classifier
                                                       "SGD classifier(Logistic loss) with OVR
tb.add row(["
                             Bow",
tb.add row(["
                                                        "SGD classifier(Hinge loss) with OVR
                             Bow",
print(tb.get_string(titles = "KNN - Observations"))
```


	Vectorizer	Model
	tf-idf Bow Bow Bow	Logistic Regression with OVR classifier Logistic Regression with OVR classifier SGD classifier(Logistic loss) with OVR classifier with parame SGD classifier(Hinge loss) with OVR classifier with paramet

Step by Step Procedure

- Get the Data from csv file and load into the sqlite database.
- Remove the duplicates rows and load the data in a new database.
- Analysis on tags and save the dictionary(Frequecny of each tag) into csv file.
- Text preprocessing and save the preprocessed text in a new database.
- Now we have 42k tags, now we will reduce the unnecessary tags and use only the most frequen questions.
- Now we have many rows, high dimensions with 5500 tags, even if we apply a simple logistic reg above24 hours with my low ram.
- Now i Took a 0.1 million datapoint From Non_duplicate_Rows_table and again did all the steps -
 - Text Preprocessing and gave high weitage to title by repeating it 3 times.
- Took a first 500 frequent tags that cover the 90% of questions.
- Now apply a logistic regression with tfidf vectorizer.
- Now at last i applied 2 modles logistic regression and linear sym One vs rest classifier with hype
- Compare all models

2/23/2019	Stack_overflow_tagging.ipynb - Colaboratory