2021-2022 秋季学期 数值分析与算法 课程作业 第二章 插值法

- 1、若 $x_n = 5^n$,求 $\nabla^2 x_n$ 及 $\delta^2 x_n$.
- 2、用牛顿法求经过点 (-1,-5), (0,-1), (2,1), (3,11) 的 3 次多项式,并求出经过这些点的所有 4 次多项式的通用表达式。
- 3、已知 $\sin x$, $x \in [30^\circ, 60^\circ]$ 的 6 位有效数字函数表,步长 $h = 6' = (6/60)^\circ$. 不考虑加减乘除计算误差,分析用分段线性插值方法求区间内 $\sin x$ 近似值的总误差界。
- 4、设 $f(x) \in C^{(5)}[1,3]$ 为 5 阶导连续的实函数,且 $\forall x \in [1,3], |f^{(5)}(x)| \leq M$. 试求出满足以下条件的不高于 4 次的插值多项式 P(x),并对插值截断误差进行分析:

$$P(1) = f(1) = 0,$$
 $P'(1) = f'(1) = 0,$ $P''(1) = f''(1) = 4,$ $P(2) = f(2) = 0,$ $P(3) = f(3) = 0.$

5、若设原始黑白景象投映到平面 (x,y) 点处的灰度值函数为 g(x,y),那么数字图像可认为记录了整数坐标像素点位置 (u,v) 上的函数值 g(u,v), $u,v \in \mathbb{N}$ 。当图像变换时,往往需要通过插值得到之前没有在图像上记录的灰度 g(x,y), $x \in (u,u+1)$, $y \in (v,v+1)$ 。查阅资料,给出二维函数的<u>最近邻插值</u>和双线性插值的插值方法,并分析其插值方法误差。(设函数 g(x,y) 二阶可导,且满足不等式 $\left|\frac{\partial g}{\partial x}\right| \leq M_1$, $\left|\frac{\partial g}{\partial y}\right| \leq M_2$, 以及 $\left|\frac{\partial^2 g}{\partial x^2}\right| \leq M_{11}$, $\left|\frac{\partial^2 g}{\partial x\partial y}\right| \leq M_{12}$, $\left|\frac{\partial^2 g}{\partial y^2}\right| \leq M_{22}$)