COMPARISON_MediaPipe+CNN

June 21, 2025

Paper Reference: https://j-innovative.org/index.php/Innovative/article/download/15199/10372/26113

```
[1]: import os
     from modules.SignLanguageProcessor import load_and_preprocess_data,parse_frame
[2]: ROOT PATH = ''
     sequences,labels,label_map = load_and_preprocess_data(os.path.
      ⇔join(ROOT_PATH, 'data'))
[3]: num_classes = len(label_map)
[4]: len(labels)
[4]: 5643
[5]: sequences.shape
[5]: (5643, 3, 61, 3)
[6]: from sklearn.model_selection import train_test_split
     X_train, X_temp, y_train, y_temp = train_test_split(
         sequences, labels, test_size=0.4, stratify=labels, random_state=42
     )
     X_val, X_test, y_val, y_test = train_test_split(
         X_temp, y_temp, test_size=0.5, stratify=y_temp, random_state=42
[7]: import numpy as np
     def normalize_landmark_data(X):
         Normalize the landmark features (x, y) to have zero mean and unit variance \sqcup
      \hookrightarrowacross the training set.
         Assumes X shape is (N, F, L, T), where F=3 (x, y, vis).
         11 11 11
         X = X.copy()
         # Flatten across all samples, landmarks, and frames
```

```
x_vals = X[:, 0, :, :].flatten()
         y_vals = X[:, 1, :, :].flatten()
         # Compute mean and std
         x_mean, x_std = np.mean(x_vals), np.std(x_vals)
         y_mean, y_std = np.mean(y_vals), np.std(y_vals)
         # Normalize
         X[:, 0, :, :] = (X[:, 0, :, :] - x_mean) / x_std
         X[:, 1, :, :] = (X[:, 1, :, :] - y_mean) / y_std
         return X, (x_mean, x_std), (y_mean, y_std)
     def apply_normalization(X, x_mean, x_std, y_mean, y_std):
         X = X.copv()
         X[:, 0, :, :] = (X[:, 0, :, :] - x_mean) / x_std
         X[:, 1, :, :] = (X[:, 1, :, :] - y_mean) / y_std
         return X
[8]: def reshape_frames_for_cnn(X, y):
         Reshape a dataset of (N, F, L, T) into (N*T, L, F, 1) for Conv2D,
         where each frame becomes its own sample.
         Parameters:
         - X: np.ndarray of shape (N, F, L, T)
         - y: np.ndarray of shape (N,)
         Returns:
         - reshaped_X: np.ndarray of shape (N*T, L, F, 1)
         - reshaped_y: np.ndarray of shape (N*T,)
         reshaped_X = []
         reshaped_y = []
         for sample, label in zip(X, y):
             T = sample.shape[-1]
             for t in range(T):
                 frame = sample[:, :, t].T[..., np.newaxis]
                 reshaped_X.append(frame)
                 reshaped_y.append(label)
```

reshaped_X = np.array(reshaped_X)
reshaped_y = np.array(reshaped_y)
return reshaped_X, reshaped_y

```
[9]: X_train_norm, (x_mean, x_std), (y_mean, y_std) = ___
       →normalize_landmark_data(X_train)
      X_val_norm = apply_normalization(X_val, x_mean, x_std, y_mean, y_std)
      X_test_norm = apply_normalization(X_test, x_mean, x_std, y_mean, y_std)
      X_train_cnn, y_train_cnn = reshape_frames_for_cnn(X_train_norm, y_train)
      X_val_cnn, y_val_cnn = reshape_frames_for_cnn(X_val_norm, y_val)
      X_test_cnn, y_test_cnn = reshape_frames_for_cnn(X_test_norm, y_test)
      print(X_train_cnn.shape)
      print(y_train_cnn.shape)
     (10155, 61, 3, 1)
     (10155.)
[10]: input_shape = X_train_cnn.shape[1:]
      print(input_shape)
     (61, 3, 1)
[11]: import tensorflow as tf
      train_ds = tf.data.Dataset.from_tensor_slices((X_train_cnn, y_train_cnn))
      train_ds = train_ds.shuffle(buffer_size=1000).batch(64).prefetch(tf.data.
       →AUTOTUNE)
      val_ds = tf.data.Dataset.from_tensor_slices((X_val_cnn, y_val_cnn))
      val_ds = val_ds.batch(64).prefetch(tf.data.AUTOTUNE)
      test_ds = tf.data.Dataset.from_tensor_slices((X_test_cnn, y_test_cnn))
      test_ds = test_ds.batch(64).prefetch(tf.data.AUTOTUNE)
[12]: from tensorflow.keras.models import Sequential
      from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, L
       →Dense, BatchNormalization,Input
      cnn_model = Sequential([
          Input(input_shape),
          Conv2D(32, (3, 2), activation='relu', padding='same'),
          MaxPooling2D((2, 1)),
          Dropout(0.25),
          Conv2D(64, (3, 2), activation='relu', padding='same'),
          MaxPooling2D(pool_size=(2, 1)),
          Dropout(0.25),
          Flatten(),
          Dense(128, activation='relu'),
          Dropout(0.2),
          Dense(num_classes, activation='softmax')
```

```
])
      cnn_model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',_
       →metrics=['accuracy'])
[13]: history = cnn_model.fit(train_ds,validation_data=val_ds, epochs=50,
       ⇒batch_size=64)
     Epoch 1/50
     159/159
                         3s 9ms/step -
     accuracy: 0.0588 - loss: 3.6041 - val accuracy: 0.0880 - val loss: 3.1822
     Epoch 2/50
     159/159
                         1s 8ms/step -
     accuracy: 0.0937 - loss: 3.1580 - val_accuracy: 0.1305 - val_loss: 2.9874
     Epoch 3/50
     159/159
                         1s 8ms/step -
     accuracy: 0.1380 - loss: 2.9858 - val_accuracy: 0.1904 - val_loss: 2.7930
     Epoch 4/50
     159/159
                         1s 8ms/step -
     accuracy: 0.1812 - loss: 2.8329 - val_accuracy: 0.2400 - val_loss: 2.6368
     Epoch 5/50
     159/159
                         1s 8ms/step -
     accuracy: 0.2153 - loss: 2.7008 - val_accuracy: 0.2764 - val_loss: 2.4937
     Epoch 6/50
     159/159
                         1s 8ms/step -
     accuracy: 0.2449 - loss: 2.5736 - val accuracy: 0.3198 - val loss: 2.3608
     Epoch 7/50
     159/159
                         1s 9ms/step -
     accuracy: 0.2809 - loss: 2.4456 - val_accuracy: 0.3381 - val_loss: 2.2513
     Epoch 8/50
     159/159
                         1s 8ms/step -
     accuracy: 0.3034 - loss: 2.3623 - val_accuracy: 0.3679 - val_loss: 2.1709
     Epoch 9/50
     159/159
                         1s 8ms/step -
     accuracy: 0.3202 - loss: 2.2838 - val_accuracy: 0.3841 - val_loss: 2.1101
     Epoch 10/50
     159/159
                         1s 8ms/step -
     accuracy: 0.3427 - loss: 2.2191 - val_accuracy: 0.3912 - val_loss: 2.0464
     Epoch 11/50
     159/159
                         1s 9ms/step -
     accuracy: 0.3567 - loss: 2.1630 - val accuracy: 0.4012 - val loss: 2.0283
     Epoch 12/50
     159/159
                         1s 8ms/step -
     accuracy: 0.3647 - loss: 2.1226 - val_accuracy: 0.4175 - val_loss: 1.9710
     Epoch 13/50
     159/159
                         1s 9ms/step -
     accuracy: 0.3741 - loss: 2.0781 - val_accuracy: 0.4234 - val_loss: 1.9347
     Epoch 14/50
     159/159
                         1s 9ms/step -
```

```
accuracy: 0.3816 - loss: 2.0405 - val_accuracy: 0.4343 - val_loss: 1.9141
Epoch 15/50
159/159
                   1s 8ms/step -
accuracy: 0.3923 - loss: 2.0112 - val_accuracy: 0.4455 - val_loss: 1.8798
Epoch 16/50
159/159
                   1s 8ms/step -
accuracy: 0.4066 - loss: 1.9682 - val accuracy: 0.4529 - val loss: 1.8571
Epoch 17/50
159/159
                   1s 8ms/step -
accuracy: 0.4110 - loss: 1.9506 - val_accuracy: 0.4600 - val_loss: 1.8291
Epoch 18/50
159/159
                   1s 8ms/step -
accuracy: 0.4256 - loss: 1.9082 - val_accuracy: 0.4585 - val_loss: 1.8236
Epoch 19/50
159/159
                   1s 9ms/step -
accuracy: 0.4246 - loss: 1.8985 - val_accuracy: 0.4680 - val_loss: 1.8238
Epoch 20/50
159/159
                   1s 8ms/step -
accuracy: 0.4275 - loss: 1.8891 - val_accuracy: 0.4609 - val_loss: 1.8221
Epoch 21/50
                   1s 8ms/step -
159/159
accuracy: 0.4261 - loss: 1.8734 - val accuracy: 0.4665 - val loss: 1.8021
Epoch 22/50
159/159
                   1s 8ms/step -
accuracy: 0.4270 - loss: 1.8606 - val_accuracy: 0.4774 - val_loss: 1.7894
Epoch 23/50
159/159
                    1s 8ms/step -
accuracy: 0.4391 - loss: 1.8242 - val_accuracy: 0.4683 - val_loss: 1.7828
Epoch 24/50
159/159
                   1s 9ms/step -
accuracy: 0.4530 - loss: 1.7970 - val_accuracy: 0.4762 - val_loss: 1.7594
Epoch 25/50
159/159
                   1s 9ms/step -
accuracy: 0.4466 - loss: 1.8124 - val_accuracy: 0.4845 - val_loss: 1.7465
Epoch 26/50
159/159
                   2s 9ms/step -
accuracy: 0.4511 - loss: 1.8027 - val accuracy: 0.4836 - val loss: 1.7454
Epoch 27/50
159/159
                   1s 9ms/step -
accuracy: 0.4547 - loss: 1.7692 - val_accuracy: 0.4845 - val_loss: 1.7369
Epoch 28/50
159/159
                   1s 8ms/step -
accuracy: 0.4646 - loss: 1.7616 - val_accuracy: 0.4854 - val_loss: 1.7397
Epoch 29/50
159/159
                   1s 8ms/step -
accuracy: 0.4616 - loss: 1.7565 - val_accuracy: 0.4877 - val_loss: 1.7325
Epoch 30/50
159/159
                   1s 9ms/step -
```

```
accuracy: 0.4697 - loss: 1.7294 - val_accuracy: 0.4957 - val_loss: 1.7190
Epoch 31/50
159/159
                   1s 9ms/step -
accuracy: 0.4674 - loss: 1.7113 - val_accuracy: 0.4880 - val_loss: 1.7206
Epoch 32/50
159/159
                   1s 8ms/step -
accuracy: 0.4693 - loss: 1.7273 - val accuracy: 0.4951 - val loss: 1.7226
Epoch 33/50
159/159
                   1s 9ms/step -
accuracy: 0.4778 - loss: 1.7043 - val_accuracy: 0.4966 - val_loss: 1.7135
Epoch 34/50
159/159
                   1s 9ms/step -
accuracy: 0.4794 - loss: 1.6963 - val_accuracy: 0.4960 - val_loss: 1.7193
Epoch 35/50
159/159
                   1s 9ms/step -
accuracy: 0.4821 - loss: 1.6897 - val_accuracy: 0.4939 - val_loss: 1.6957
Epoch 36/50
159/159
                   1s 9ms/step -
accuracy: 0.4774 - loss: 1.6923 - val_accuracy: 0.5019 - val_loss: 1.6964
Epoch 37/50
159/159
                   1s 9ms/step -
accuracy: 0.4886 - loss: 1.6742 - val accuracy: 0.4981 - val loss: 1.6871
Epoch 38/50
159/159
                   1s 9ms/step -
accuracy: 0.4912 - loss: 1.6628 - val_accuracy: 0.5028 - val_loss: 1.6894
Epoch 39/50
159/159
                    1s 9ms/step -
accuracy: 0.4861 - loss: 1.6629 - val_accuracy: 0.5075 - val_loss: 1.6850
Epoch 40/50
159/159
                   1s 9ms/step -
accuracy: 0.4832 - loss: 1.6728 - val_accuracy: 0.5084 - val_loss: 1.6824
Epoch 41/50
159/159
                   1s 9ms/step -
accuracy: 0.4941 - loss: 1.6576 - val_accuracy: 0.5049 - val_loss: 1.6904
Epoch 42/50
159/159
                   2s 10ms/step -
accuracy: 0.4956 - loss: 1.6316 - val accuracy: 0.5013 - val loss: 1.6966
Epoch 43/50
159/159
                   2s 9ms/step -
accuracy: 0.4857 - loss: 1.6400 - val_accuracy: 0.5004 - val_loss: 1.7038
Epoch 44/50
                   1s 9ms/step -
159/159
accuracy: 0.4972 - loss: 1.6144 - val_accuracy: 0.5069 - val_loss: 1.6763
Epoch 45/50
159/159
                   1s 9ms/step -
accuracy: 0.5008 - loss: 1.6082 - val_accuracy: 0.5096 - val_loss: 1.6744
Epoch 46/50
159/159
                   1s 9ms/step -
```

```
accuracy: 0.5145 - loss: 1.5788 - val_accuracy: 0.5117 - val_loss: 1.6758
     Epoch 47/50
     159/159
                         1s 9ms/step -
     accuracy: 0.5075 - loss: 1.6016 - val_accuracy: 0.5120 - val_loss: 1.6782
     Epoch 48/50
     159/159
                         2s 10ms/step -
     accuracy: 0.4999 - loss: 1.6121 - val accuracy: 0.5140 - val loss: 1.6717
     Epoch 49/50
     159/159
                         1s 9ms/step -
     accuracy: 0.5100 - loss: 1.5664 - val_accuracy: 0.5146 - val_loss: 1.6774
     Epoch 50/50
     159/159
                         2s 9ms/step -
     accuracy: 0.5016 - loss: 1.5960 - val_accuracy: 0.5128 - val_loss: 1.6649
[14]: test_loss, test_accuracy = cnn_model.evaluate(test_ds)
      print(f"Test Accuracy: {test_accuracy:.4f}")
      print(f"Test Loss: {test_loss:.4f}")
      1/53
                       Os 17ms/step - accuracy:
     0.5156 - loss: 1.6272
     53/53
                       0s 4ms/step -
     accuracy: 0.5117 - loss: 1.6484
     Test Accuracy: 0.5158
     Test Loss: 1.6373
[15]: import matplotlib.pyplot as plt
      from sklearn.metrics import classification_report, confusion_matrix
      import seaborn as sns
[16]: plt.figure(figsize=(12, 4))
      plt.subplot(1, 2, 1)
      plt.plot(history.history['accuracy'])
      plt.plot(history.history['val_accuracy'])
      plt.title('Model accuracy')
      plt.ylabel('Accuracy')
      plt.xlabel('Epoch')
      plt.legend(['Train', 'Validation'], loc='upper left')
      # Plot training & validation loss values
      plt.subplot(1, 2, 2)
      plt.plot(history.history['loss'])
      plt.plot(history.history['val_loss'])
      plt.title('Model loss')
      plt.ylabel('Loss')
      plt.xlabel('Epoch')
      plt.legend(['Train', 'Validation'], loc='upper left')
      plt.show()
```



```
[17]: y_true, y_pred = [], []
      target_names = [label_map[i] for i in range(len(label_map))]
      for X_batch, y_batch in test_ds:
          y_true.append(y_batch.numpy())
          batch_pred = cnn_model.predict(X_batch, verbose=0)
          y_pred.append(np.argmax(batch_pred, axis=1))
      y_true = np.concatenate(y_true)
      y_pred = np.concatenate(y_pred)
      print(classification_report(
          y_true, y_pred,
          digits=3,
          target_names=target_names
      ))
      cm = confusion_matrix(y_true, y_pred, labels=range(len(label_map)))
      labels = [label_map[i] for i in range(len(label_map))]
      plt.figure(figsize=(10, 8))
      sns.heatmap(cm, annot=True, fmt="d", cmap="Blues",
                  xticklabels=labels, yticklabels=labels)
      plt.xlabel("Predicted Label")
      plt.ylabel("True Label")
      plt.title("Confusion Matrix - Test Set")
      plt.show()
```

p	recision	recall	il-score	support
A	0.632	0.400	0.490	60
R	0.710	0 319	0 440	69

C	0.603	0.580	0.591	81
D	0.370	0.270	0.312	63
Е	0.683	0.551	0.610	78
F	0.690	0.403	0.509	72
G	0.849	0.517	0.643	87
Н	0.627	0.427	0.508	75
I	0.690	0.444	0.541	90
J	0.627	0.578	0.601	90
K	0.400	0.333	0.364	78
L	0.566	0.531	0.548	81
M	0.493	0.376	0.427	93
N	0.552	0.333	0.416	96
0	0.620	0.473	0.537	93
P	0.267	0.107	0.152	75
Q	0.517	0.333	0.405	93
R	0.690	0.372	0.483	78
S	0.812	0.433	0.565	90
T	0.391	0.321	0.352	78
U	0.631	0.488	0.550	84
V	0.560	0.654	0.604	78
W	0.576	0.469	0.517	81
Х	0.151	0.545	0.236	66
Y	0.633	0.244	0.352	78
Z	0.138	0.857	0.238	84
baca	0.762	0.667	0.711	48
bantu	0.812	0.619	0.703	42
bapak	0.719	0.511	0.597	45
buangairkecil	0.769	0.833	0.800	24
buat	0.698	0.771	0.733	48
halo	0.588	0.783	0.671	60
ibu	0.571	0.444	0.500	18
kamu	0.729	0.530	0.614	66
maaf	0.364	0.762	0.492	63
makan	0.793	0.451	0.575	51
mau	0.933	0.700	0.800	60
nama	0.671	0.707	0.688	75
pagi	0.800	0.611	0.693	72
paham	0.864	0.760	0.809	75
sakit	1.000	0.467	0.636	15
sama-sama	0.738	0.738	0.738	84
saya	0.562	0.462	0.507	39
selamat	0.617	0.587	0.602	63
siapa	0.655	0.396	0.494	48
tanya	0.600	0.650	0.624	60
tempat	0.789	0.625	0.698	24
terima-kasih	0.582	0.650	0.614	60
terlambat	0.776	0.745	0.760	51
tidak	0.667	0.588	0.625	51

tolong	0.483	0.519	0.500	54
accuracy			0.516	3387
macro avg	0.628	0.528	0.552	3387
weighted avg	0.612	0.516	0.538	3387

