Esperienza 10: caratteristiche fisiche porte logiche

Gruppo BN Federico Belliardo, Lisa Bedini, Marco Costa

23 marzo 2017

1 Scopo dell'esperienza

Lo scopo dell'esperienza surare le caratteristiche statiche e dinamiche delle porte NOT dell'integrato SN74LS04.

2 Materiale occorrente

- IC SN74LS04
- trimmer da 2 k Ω e 100 k Ω ;
- Arduino Nano
- IC SN74LS244
- $\bullet\,$ trimmer da 10 k $\!\Omega$

3 Caratteristiche statiche

Abbiamo montato il circuito come in figura 1. I valori delle componenti sono state misurate tramite multimetro digitale. Come incertezze abbiamo preso quelle riportate sul manuale dello strumento. Abbiamo misurato la tensione di alimentazione $V_{CC} = 4.85 \pm 0.03V$ tramite multimetro digitale (incertezza riportata nel manuale), nei limiti di funzionamento riportati nel datasheet.

3.1 Misura delle tensioni di operazione

Per ottenere diversi valori di V_{in} abbiamo variato opportunamente il trimmer (che ha la funzione di partitore di tensione). Una volta fissata la sua posizione, abbiamo misurato tramite multimetro digitale V_{in} e V_{out} . In tabella 1 e in figura 2abbiamo riportato le misure ottenute.

Si osserva che V_{out} va da un massimo di $V_{OH,max}=4.30\mathrm{V}$ fino a $V_{OH,min}=3.7\pm0.1\mathrm{V}$, valore subito dopo il quale si osserva una rapida variazione di V_{out} Si pusiderare quindi che l'uscita della porta sia al livello alto nella fascia trovata. Pertanto abbiamo stimato $V_{OH}=3.7\pm0.2\mathrm{V}^2$. Abbiamo stimato l'incertezza su questo valore come la differenza fra il primo punto per cui si servata la variazione e quello immediatamente precedente.

Come stima di V_{OL} abbiamo preso 0.144V, ossia il valore asintotico. Abbiamo tuttavia una grande incertezza su questa stima: in effetti abbiamo riscontrato difficoltrendere misure per valori di V_{out} poco superiori a 0.144 V; in particolare, era sufficiente una leggera variazione della posizione del trimmer per portare V_{out} dal valore di 2.15 V a 0.144V. Per quanto riguarda le tensioni in ingresso, si osserva che esse vengono considerate dalla

 $^{^2}$ in accordo con la definizione data di $V_{OH}\,$

Figura 1: Circuito utilizzato

¹E' lo strumento di misure di tensione in continua con maggiore resistenza interna credo

Figura 2: V_{out} in funzione di V_{in}

0 0

Tabella 1: Misure dei potenziali $V_{in},\,V_{out}$

porta come valore basso in un range che va da 0 a 0.8 V circa, mentre alto da 1.3 V in poi. Per stimare i valori di soglia V_{IH} , V_{IL} , abbiamo preso i valori di V_{in} per i quali si osserva l'inizio della transizione di V_{out} da alto a basso. Con i dati presi si imato $V_{IH} = 0.8 \pm 0.1$ V, dove l'incertezza rappresenta la differenza dal valore di V_{in} in cui V_{out} iziato a scendere bruscamente. In modo del tutto analogo si ha $V_{IL} = 1.3$ pm0.2 V. I valori stimati risultano tutti in buon accordo con quanto riportato sul datasheet. Il comportamento che si osserva per valori di V_{in} compresi fra V_{IL} e V_{IH}

3.2 Misura delle correnti in ingresso

Abbiamo inserito l'amperometro in serie all'ingresso del circuito di figura 1 e abbiamo misurato I_{in} al variare di V_{in}^3 . Per avere pi sensibilitlla misura di corrente si ato il multimetro analogico (l'incertezza usata ella riportata nel manuale) I dati sono riportati in tabella?? e in figura3. Si osserva che per V_{in} corrispondenti al valore

Figura 3: Corrente in ingresso alla porta Not in funzione di V_{in}

logico basso, si ha una corrente I_{in} negativa e dell'ordine delle centinaia di μA (massimo sui $260\mu A$), mentre per V_{in} su stato alto, si ha una corrente nulla entro l'errore. Abbiamo stimato i valori delle correnti di soglia in corrispondenza dei punti in cui si hanno variazioni brusche dell'andamento di $I_{in}{}^4$. Si ha quindi $I_{IH}=0\pm0.1\mu A$ e $I_{IL}=-180\pm20\mu A$ I rispettivi valori massimi riportati sul datasheet sono $I_{IL,att}=-0.4 \text{mA}$, $I_{IH}=20\mu A$. I valori stimati quindi rientrano nei limiti riportati dal costruttore.

3.3 Misura delle correnti in uscita

Per misurare la massima e minima corrente in uscita dalla porta, abbiamo montato il circuito 5 come in figura 4. Per la misura di I_{OL} si collega l'uscita a V_CC e si varia il potenziometro R_1 in figura 4 in modo che l'uscita

 $^{^3{\}rm La}$ procedura per variare $V_{in}~$ stessa del punto precedente

 $^{^{4}}$ questi sono anche punti in cui V_{in} ossimo a V_{IL} , V_{IH}

⁵Il circuito collegato all'ingresso della porta stesso di prima

Figura 4: Schema del circuito utilizzato per la misura delle correnti di uscita

Figura 5: Schema del pulsatore utilizzato

sia in stato basso. Per misurare la corrente abbiamo misurato la caduta di potenziale V_{ab} ai capi della resistenza R_2 tramite multimetro digitale. Per verificare che l'uscita fosse effettivamente nello stato basso, si ntrollato V_{out} tramite oscilloscopio. Abbiamo deciso di prendere la misura di corrente in corrispondenza del valore di V_{OL} in precedenza. Tuttavia, in questo modo si ottiene $I_{OL}=$, che risulta pi basso del valore riportato sul datasheet. Abbiamo quindi deciso di prendere una ulteriore misura, in corrispondenza del punto in cui si osservava una brusca variazione di V_{out} e V_{ab} . Ciiene per $V_{out}=$ e $V_{ab}=$. Cos ottiene una stima pi vicina ai valori riportati nel datasheet. Un motivo per cui fallisce il metodo effettuare la misura a V_{OH} stimato e nelle misure riportate nel grafico 2 non si usciti a ottenere misure di V_{out} che non fossero del valore limite 0.144 V. Per la misura di I_{OH} si collega l'uscita al ground facendo in modo che essa sia in stato alto. Abbiamo preso la misura in corrispondenza di $V_{OUT}=3.7$ V, ossia il valore stimato di V_{OH} . Cos ottiene $I_{OH}=$, valore in accordo con quanto riportato nel datasheet. La strategia di mettere V_{out} pari alla stima del valore di soglia ottenuto in questo caso funziona meglio perchati del grafico 2 coprono un intorno sufficientemente grande del punto in cui avviene la variazione brusca. Con questi valori si to una stima del fanout. Le correnti che determinano tale valore sono I_{OL} e I_{IL} .

4 Montaggio di Arduino

Abbiamo montato il circuito pulsatore in figura 5. Successivamente abbiamo verificato il suo comportamento da generatore di onde quadre. La frequenza del segnale dipende dalla posizione del trimmer, e va dagli Hz ai 50 kHz a,. L'ampiezza dell'onda picco-picco ri a $v_{pp}=3.16\pm0.04\mathrm{V}$. In figura 6 si possono osservare i segnali (misurati tramite oscilloscopio) ai piedini Y_1 e Y_2 .

5 Caratteristiche dinamiche

5.1 Onda in ingresso

Si nerato tramite Arduino un segnale ad onda quadra di frequenza di circa 1.01 ± 0.1 kHZ di ampiezza da 0 a 3.16 ± 0.4 V. In figura 7 si puervare il corretto funzionamento della porta NOT. Si fettuata la misura tramite oscilloscopio. Le incertezze sui potenziali sono la sensibilitl cursore pi il 3% di calibrazione, mentre sui tempi il massimo fra la sensibilitl cursore e la semidispersione dei valori plausibili.

5.2 Misura dei tempi di propagazione

Abbiamo eseguito una misura dei due tempi di propagazione, misurando il tempo fra i segnali in ingresso e in uscita fra i due punti a metlla v_{pp} della rampa in salita e discesa rispettivamente. In figura 8 e ?? si possono osservare il tempo di propagazione tPHL e tPLH rispettivamente.

Figura 6: Onde sfasate di $\pi/2$ in uscita a Y_1 , Y_2 . L'ampiezza dei segnali stessa, si sono solo usate scale diverse per comoditafica)

Figura 7:

Figura 8: Tempo di propagazione tPHL

Figura 9: Tempo di propagazione tPLH

Figura 10: Tempo di salita del segnale in ingresso

Segnale	t_s (ns)	t_d (ns)
Ingresso	8.6 ± 0.2	6.0 ± 0.2
Uscita	36.2 ± 0.2	20.4 ± 0.4

Tabella 2: Tempi di salita e discesa all'ingresso e all'uscita della porta NOT

La misura di tempo ata eseguita tramite oscilloscopio. L'incertezza sui tempi vuta sia alla sensibiliti cursori, sia all'incertezza sul trovare i punti con il giusto pontenziale. Per stimarla si esa la semidispersione sui valori misurati nei punti con potenziale compatibile con la mettro la sensibilitl cursore dei potenziali⁶. I valori riportati nel datasheet sono tPHL = 10ns e tPLH = 9ns⁷ I valori misurati sono $tPHL = 10.2 \pm 0.2$ ns e $tPLH = 12.8 \pm 0.4$ ns, pertanto sono in buon accordo con quanto riportato dal costruttore.

5.3 Misura del tempo di salita

Abbiamo misurato i tempi di salita t_s e discesa t_d del segnale in uscita e in ingresso, ossia il tempo necessario per passare dal 10% della v_{pp} massima⁸ al 90% (Il contrario per il tempo di discesa). In figura 10 abbiamo riportato il tempo di salita del segnale in ingresso per mostrare la procedura di misura utilizzata.

In tabella 2 sono riportati le misure:

6 Conclusioni

L'integrato si comporta come porta NOT entro i potenziali indicati dal costruttore. La stima delle correnti di soglia in uscita I_{OL} , I_{OH} ha riportato alcune difficolt i valori non sono in completo accordo con quanto riportato sul datasheet. Il comportamento dinamico del circuito presenta ritardi nei tempi di salita in accordo con quanto atteso.

 $^{^6}$ L'oscilloscopio utilizzato consentiva di visualizzare contemporaneamente entrambe le coordinate del punto in cui si prendeva la misura

 $^{^7}$ valori tipici con resistenza di carico $R_L=2\mathrm{k}\Omega$

 $^{^8}$ ai fini dei calcoli si considera v_{pp} senza overshoot