个人赛设计报告

学校:安徽新华学院 姓名:范紫骝

目 录

→,	设计简介	2
	(一) 提交设计	2
	(二) 特色	2
Ξ,	设计方案	2
	(一)总体设计思路	2
	(二) myCPU 模块设计	4
	(三) pc_reg 模块设计	5
	(四) if_id 模块设计	6
	(五) id 模块设计	7
	(七) ex 模块设计	12
	(八) ex_mem 模块设计	14
	(九) mem 模块设计	17
	(十) mem_wb 模块设计	19
	(十一) regfile 模块设计	20
	(十二) stall_ctrl 模块设计	21
	(十三) extram_cache 模块设计	22
	(十四) cache 模块设计	24
	(十五) external_device 模块设计	26
	(十六) baseram 模块设计	28
	(十七) extram 模块设计	29
	(十八) serial 模块设计	31
	(十九) external_device_ctrl 模块设计	32
三、	设计结果	33
	(一)设计交付物说明	33
	(二)设计演示结果	35
四、	参考设计说明	36
Ŧī、	参考文献	36

一、设计简介

(一) 提交设计

顺序单发射 5 级流水线 MIPS CPU。在确保测试通过的情况下,主频最高可支持63.87MHz。可执行大赛要求的基本22 条指令和3 条个人随机指令(SLT, SRA, JALR),已通过一级、二级、三级和性能测试(均 100 分)。

(二) 特色

CPU 设计实现延迟槽技术、尽量减少了流水线气泡的产生、伪 Dcache (历史数据记录堆)。

1. 【说明】

设计的伪 Dcache 采用全相联的地址映射策略 和 LRU(最近最少使用)替换策略,在测试通过的最高主频下,伪 Dcache 可存储数据的容量为 16B。

2. 【解释】

之所以说是"伪 Dcache",是因为该 cache 不具备写回功能,且该 cache 的功能是记录历史中写入 ExtRAM 中的数据,尽可能减少因为 laod 数据相关现象(id 模块需要的数据存在上一条指令,且上一条指令是 load 指令,需要的数据还未从 sram 中取出)而暂停流水线的问题。

二、设计方案

(一) 总体设计思路

总体设计: 经典的顺序单发射 5 级流水线 CPU, 大致分为 2 个部分: myCPU 模块和 external_device 模块。 myCPU 模块实现 cpu 核功能, external_device 模块为外部存储器数据访问处理模块(包含对 SRAM、串口的处理)。

myCPU 模块包含 5 个阶段: IF(取值)阶段、ID(译码)阶段、EX(执行)阶段、MEM(访存)阶段、WB(写回)阶段。除此之外,还包含每个阶段之间相应的暂存器: IF_ID、ID_EX、EX_MEM、MEM_WB,以及流水线暂停控制模块 stall_ctrl 和历史数据记录堆extram_cache (伪 Dcache)模块。

external_device 模块包含 4 个子模块: baseram 模块、extram 模块、serial 模块以及 external device ctrl 模块。前三个子模块分别处理与 BaseRAM、ExtRAM、串口(UART)

的数据交互,最后一个子模块是将前三个模块中在外部储存器(或串口)中读取的数据统一 处理 (选择其一) 送往 cpu 核中。

图 1 CPU 总体设计图

(二) myCPU 模块设计

模块功能:

实现 cpu 核功能,与 sram 进行信息交互,接收 sram 传来的指令和数据,传送 sram 指令地址以及 sram 的数据交互参数(如 ram 控制状态)。

作用 端口名称 位宽 来自 clk 1bit thinpad_top 模块 时钟端 输 λ thinpad top 模块 复位端 rst 1bit ininst i 32bit external device 模块 从 basesram 中读取的指令 put 从外部存储器中读取的数据 ram_data_i 32bit external_device 模块

表 2.1 myCPU 模块输入端口表

表 2.2 myCPU 模块输出端口表

	端口名称	位宽	送往	作用
输	base_ram_state	4bit	external_device 模块	访存 baseram 的状态
出	ext_ram_state	3bit	external_device 模块	访存 extram 的状态
out	Serial_state	4bit	external_device 模块	访存串口的状态
- put	rom_addr_o	32bit	external_device 模块	从 pc_reg 模块取出的指令地址
	ram_addr_o	32bit	external_device 模块	从 mem 模块取出的访存数据地址

ram_data_o	32bit	external_device 模块	从 mem 模块取出的写入sram 的数据
nom col n	4bit	autamal davias 柑州	从 mem 模块取出的写入sram 的字节
ram_sel_n	4011	external_device 模块	选取

(三) pc_reg 模块设计

模块功能:

指令地址寄存器(取指模块),可存储指令地址。这里在译码模块中取出部分信号和数 据 作为转移指令是否跳转的依据,减少译码模块对于确定操作数的相关路径长度。

表 3.1 pc_reg 模块输入端口表

	端口名称	位宽	来自	作用	
	clk	1bit	myCPU 模块	时钟端	
	rst	1bit	myCPU 模块	复位端	
输入	stall	1bit	stall_ctrl 模块	暂停 if 阶段	
in-		5bit id 模块		每一位包含 1 或 2 种转移指令确认	
put	j inst sign i		5hit	pit id 模块	产生信号,从高位至低位依次代表
	j_ilist_sigii_i		id KA	bgtz、bne、beq、jr/jalr、jal、j 指令	
				信号	
	branch_address_temp_i	32bit	id 模块	beq、bne、bgtz 分支指令跳转成功	

				的转移地址		
	j_address_temp_i	32bit	id 模块	j、jal、jr、jalr跳转指令的转移地址		
	id maal data i	32bit	id 模块	id (译码) 模块的操作数 1, 用于分		
	id_reg1_data_i	32011	II 快大	支指令是否跳转的判断条件		
	id_reg2_data_i	32bit	. 1 4# 14	id (译码)模块的操作数 2,用于分		
		32011	id 模块	支指令是否跳转的判断条件		

表 3.2 pc_reg 模块输出端口表

输	端口名称	位宽	送往	作用
出		32bit	if_id 模块	指令地址,用于取指
out	pc	32011	/myCPU 模块	11 专地址,用 1 联11
- put	ce	1bit	mem 模块	指令使能,用于取指

(四) if_id 模块设计

模块功能:

取指阶段和译码阶段的信号暂存器。

表 4.1 if_id 模块输入端口表

输	端口名称	位宽	来自	作用
入	clk	1bit	myCPU 模块	时钟端

in-	rst	1bit	tmyCPU 模块	复位端
put	stall	1bit	stall_ctrl 模块	暂停 if_id 模块
	if_pc	32bit	pc_reg 模块	-
	if_inst	32bit	pc_reg 模块	-

表 4.2 if_id 模块输出端口表

输	端口名称	位宽	送往	作用
出	id_pc	32bit	id 模块	-
out				
-	id_inst	32bit	id 模块	-
put				

(五) id 模块设计

7

译码模块,对指令进行译码操作,模块代码里使用了分类识别的方法,即先确认指令的类型,对传入执行模块的信号参数进行修改,再进一步确定具体是哪条指令,最后对一些专用指令的信号进行修改,这样有效减少了代码复杂度。

表 5.1 id 模块输入端口表

	端口名称	位宽	来自	作用
	pc_i	32bit	if_id 模块	-
	inst_i	32bit	if_id 模块	-
	ex_inst_is_load_i	1bit	ex 模块	ex 模块执行 load 指令的标志
	ex_memory_Load_AND_Store_addr_i	32bit	ex 模块	ex 模块执行load 或 store 指令时的访存地址
· · · · · · · · · · · · · · · · · · ·	mem_last_memorystore_addr_i	32bit	ex_mem 模块	ex_mem 暂存器记录的 最近一次存储的地址, 用于解决数据相关问题
入 in- put	mem_last_memorystore_data_i	32bit	ex_mem 模块	ex_mem 暂存器记录的 最近一次存储的数据, 用于解决数据相关问题
	hit_dcache_i	1bit	extram_ cache 模块	命中伪 dcache 的标志, 用于解决数据相关问题
	hit_extram_data_i	32bit	extram_ cache 模块	命中伪 dcache 的数据, 用于解决数据相关问题
	ex_reg_wen_i	1bit	ex 模块	ex 模块执行指令写寄存器标志,用于解决数据相关问题
	ex_waddr_i	5bit	ex 模块	ex 模块执行指令写寄存器的地址,用于解决数据相关问题

				ex 模块执行指令写寄存
	ex_wdata_i	32bit	ex 模块	器的数据,用于解决数
				据相关问题
				mem 模块执行指令写寄
	mem_reg_wen_i	1bit	mem 模块	存器标志,用于解决数
				据相关问题
	mem_waddr_i			mem 模块执行指令写寄
		5bit	mem 模块	存器的地址,用于解决
				数据相关问题
				mem 模块执行指令写寄
	mem_wdata_i	32bit	mem 模块	存器的数据,用于解决
				数据相关问题
	regl data i	32bit	regfile 模块	不发生数据相关的寄存
	regr_data_r	32011	Tegine 疾坏	器操作数 1
	mag2 data i	32bit	roofic 柑州	不发生数据相关的寄存
	reg2_data_i	32011	regfile 模块	器操作数 2

表 5.2 id 模块输出端口表

	AC OLD TO INSCRIPTING THE ACT							
	端口名称	位宽	送往	作用				
	pc_o	32bit	id_ex 模块	-				
	inst_o	32bit	id_ex 模块	-				
输	aluop_o	3bit	id_ex 模块	运算的子类型(准确类型)				
出 out	alusel_o	3bit	id_ex 模块	运算的类型,例如逻辑、算数、 移位、访存				
- put	reg1_data_o	32bit	id_ex 模块/ pc_reg 模块	源操作数 1				
	reg2_data_o	32bit	id_ex 模块/ pc_reg 模块	源操作数 2				
	reg_wen_o	1bit	id_ex 模块	写寄存器使能				

ì
3
i i
址
址
自令确认
Z依次代
jal、
跳转成
的转移
寄存
数据相
停信号

译码阶段和执行阶段的信号暂存器。

表 6.1 id_ex 模块输入端口表

端口名称	位宽	来自	作用
clk	1bit	myCPU 模块	时钟端
rst	1bit	myCPU 模块	复位端
stall	1bit	stall_ctrl 模块	暂停 id_ex 模块
id_pc	32bit	id 模块	-
id_inst	32bit	id 模块	-
id_aluop	3bit	id 模块	
id_alusel	3bit	id 模块	-
id_reg_wen	1bit	id 模块	-
id_waddr	5bit	id 模块	-
id_reg1_data	32bit	id 模块	-
id_reg2_data	32bit	id 模块	-
id_link_addr	32bit	id 模块	-
	clk rst stall id_pc id_inst id_aluop id_alusel id_reg_wen id_waddr id_reg1_data id_reg2_data	clk 1bit rst 1bit stall 1bit id_pc 32bit id_inst 32bit id_aluop 3bit id_alusel 3bit id_reg_wen 1bit id_waddr 5bit id_reg1_data 32bit id_reg2_data 32bit	clk 1bit myCPU模块 rst 1bit myCPU模块 stall 1bit stall_ctrl模块 id_pc 32bit id模块 id_inst 32bit id模块 id_aluop 3bit id模块 id_alusel 3bit id模块 id_reg_wen 1bit id模块 id_reg1_data 32bit id模块 id_reg2_data 32bit id模块

表 6.2 id_ex 模块输出端口表

	端口名称	位宽	送往	作用
输	ex_pc	32bit	ex 模块	-
出	ex_inst	32bit	ex 模块	-
out -	ex_aluop	3bit	ex 模块	-
put	ex_alusel	3bit	ex 模块	-
	ex_reg_wen	1bit	ex 模块	-

ex_waddr	5bit	ex 模块	-
ex_reg1_data	32bit	ex 模块	-
ex_reg2_data	32bit	ex 模块	-
ex_link_addr	32bit	ex 模块	-

(七) ex 模块设计

模块功能:

执行模块,对译码阶段的操作数进行运算,这里特别将访存阶段的访存 sram 数据在这里 提前计算,这是为了避免在访存阶段计算时会延迟得到从 sram 传来的数据,间接需要降频才 能够使得有足够的是时间得到正确的 sram 数据。

表 7.1 ex 模块输入端口表

输	端口名称	位宽	来自	作用
λ	pc_i	32bit	id_ex 模块	-

in-	inst_i	32bit	id_ex 模块	-
put	alusel_i	3bit	id_ex 模块	确定执行运算的类型
	aluop_i	3bit	id_ex 模块	确定执行运算的具体 类型
	reg_wen_i	1bit	id_ex 模块	写寄存器使能
	waddr_i	5bit	id_ex 模块	写寄存器地址
	reg1_data_i	32bit	id_ex 模块	操作数 1
	reg2_data_i	32bit	id_ex 模块	操作数 2
	link_address_i	32bit	id_ex 模块	寄存 jal, jalr 指令专用 写寄存器的值

表 7.2 ex 模块输出端口表

	端口名称	位宽	送往	作用
	pc_o	32bit	ex_mem 模块	-
				准确识别为加载
	Load_and_Store_op_o	4bit	ex_mem 模块	指令和存储指令
				的类型
输				ex阶段执行load
出			av	类指令标志,供
out	ar inst is look a	21.:4	ex_mem 模块 3bit /id 模块	id(译码)模块
_	ex_inst_is_load_o	3011		load 竞争冒险
put			/extram_cache 模块	(数据相关) 条
				件判断
	ex_memory_Load_AND_Store_addr_o	32bit	ex_mem 模块 /id 模块 /extram_cache 模块	加载指令或存储指令访存地址
	reg2_data_o	32bit	ex_mem 模块	源操作数 2,用

			于存储指令写入		
			ram 的数据		
	11.5	ex_mem 模块	写象去明什 处		
reg_wen_o	1bit	/id 模块	写寄存器使能		
11	5bit	ex_mem 模块	写寄存器地址		
waddr_o	3011	/id 模块	与前付益地址 		
1-4-	221:4	ex_mem 模块	写 字 左 思 粉 捉		
wdata_o	32bit	/id 模块	写寄存器数据		
			提前在执行阶段		
	1bit	+ + + + + + + + + + + + + + + +	判断访存写状		
ex_memory_wen_o	1010	1010	1011	ex_mem 模块	态,这里低电平
			有效		
			提前判断访存地		
ex_is_base_ram_o	1bit	ex_mem 模块	址范围是否在		
			baseram		
			提前判断访存地		
ex_is_ext_ram_o	1bit	ex_mem 模块	址范围是否在		
			extram		
			提前判断访存地		
ex_is_SerialDate_o	1bit	ex_mem 模块	址范围是否在串		
			口(接受数据)		
			提前判断访存地		
ex_is_SerialStat_o	1bit	ex_mem 模块	址范围是否在串		
			口(状态)		

(八) ex_mem 模块设计

图 8 ex mem 模块端口图

执行阶段和访存阶段的信号暂存器,这里为了修改因伪 dcache 延时 1 周期写入数据,而读取刚写入数据时却无法命中的问题,在这里特别做了"最近一次写入 ram"的记录变量。

	端口名称	位宽	来自	作用
	clk	1bit	myCPU 模块	时钟端
	rst	1bit	myCPU 模块	复位端
	ex_pc	32bit	ex 模块	-
输	ex_Load_and_Store_op	4bit	ex 模块	-
λ	ex_reg_wen	1bit	ex 模块	-
in- put	ex_waddr	5bit	ex 模块	-
Put	ex_wdata	32bit	ex 模块	-

表 8.1 ex_mem 模块输入端口表

32bit

32bit

1bit

ex 模块

ex 模块

ex 模块

ex_memory_Load_AND_Store_addr

 ex_reg2_data

ex_memory_wen

ex_is_base_ram	1bit	ex 模块	-
ex_is_ext_ram	1bit	ex 模块	-
ex_is_SerialDate	1bit	ex 模块	-
ex_is_SerialStat	1bit	ex 模块	-

表 8.2 ex_mem 模块输出端口表

	端口名称	位宽	送往	作用
	mem_pc	32bit	mem 模块	-
	mem_Load_and_Store_op	4bit	mem 模块	-
	mem_reg_wen	1bit	mem 模块	-
	mem_waddr	5bit	mem 模块	-
	mem_wdata	32bit	mem 模块	-
输出	mem_memory_Load_AND_Store_addr	32bit	mem 模块	-
out	mem_reg2_data	32bit	mem 模块	-
-	mem_memory_wen	1bit	mem 模块	-
put	mem_is_base_ram	1bit	mem 模块	-
	mem_is_ext_ram	1bit	mem 模块	-
	mem_is_SerialDate	1bit	mem 模块	-
	mem_is_SerialStat	1bit	mem 模块	-
	mem_last_memorystore_addr	32bit	id 模块	-
	mem_last_memorystore_data	32bit	id 模块	-

(九) mem 模块设计

模块功能:

访存模块,实现了对 baseram、extram、串口的访存状态机,可从外部存储器做数据交互。

端口名称 位宽 来自 作用 myCPU 模块 复位端 1bit rst 32bit ex mem 模块 pc_i 输 load 指令读取的 ram_data_i 32bit myCPU 模块 λ 数据 in-1bit ex mem 模块 写寄存器使能 mem_reg_wen_i put 5bit ex mem 模块 写寄存器地址 mem_waddr_i 写寄存器地址 ex mem 模块 mem_wdata_i 32bit 4bit mem Load and Store op i ex mem 模块 访存指令码

表 9.1 mem 模块输入端口表

memory_Load_AND_Store_addr_i	32bit	ex_mem 模块	访存地址
reg2_data_i	32bit	ex_mem 模块	store 指令写入的 数据
rom_ce	1bit	pc_reg 模块	取指使能
mem_memory_wen	1bit	ex_mem 模块	写存储器使能,这 里低电平有效
mem_is_base_ram_i	1bit	ex_mem 模块	访存地址范围是 否在 baseram
mem_is_ext_ram_i	1bit	ex_mem 模块	访存地址范围是 否在 extram
mem_is_SerialDate_i	1bit	ex_mem 模块	访存地址范围是 否在串口(接收数 据)
mem_is_SerialStat_i	1bit	ex_mem 模块	访存地址范围是 否在串口(状态)

表 9.2 mem 模块输出端口表

	端口名称	位宽	送往	作用	
	pc_o	32bit	mem_wb 模块	-	
		11.:4	mem_wb 模块	它 宏 方 思 估 纶	
输	mem_reg_wen_o	1bit	/id 模块	写寄存器使能	
出	man na walla a	mem_wb 模块		写寄存器地址	
out	mem_reg_waddr_o	5bit	/id 模块	与 可 付 命 地 址	
_	mam rag vydata a	mem_wb 模块		它宏方现料识	
put	mem_reg_wdata_o	32bit	/id 模块	写寄存器数据	
	mam sal a	4bit	mom wh 档抽	访存外部存储器	
	mem_sel_o	4011	mem_wb 模块	的字节选取	
	memory_Load_AND_Store_addr_o	32bit	myCPU 模块	访存地址	

	mem_memory_wdata_o	32bit	myCPU 模块	写存储器的数据
				mem (访存) 模
				块存在对
	stallreq_from_mem	11.54	, 11 , 1 1 1 1 1 1 	baseram 访存的
		1bit	stall_ctrl 模块	结构冲突,需要
				发射流水线暂停
				信号
	has non state	1bit	myCPU 模块	访存 baseram 的
	base_ram_state	1011	/extram_cache 模块	状态
		11.34	myCPU 模块	访存extram 的状
	ext_ram_state	1bit	/extram_cache 模块	态
	Carial atata	1bit	myCPU 模块	注 方电口的44大
	Serial_state		/extram_cache 模块	访存串口的状态

(十) mem_wb 模块设计

模块功能:

访存阶段和写回阶段的信号暂存器。

表 10.1 mem_wb 模块输入端口表

	端口名称	位宽	来自	作用
	clk	1bit	myCPU 模块	时钟端
输	rst	1bit	myCPU 模块	复位端
λ	mem_pc	32bit	mem 模块	-
in- put	mem_reg_wen	1bit	mem 模块	-
	mem_reg_waddr	5bit	mem 模块	-
	mem_reg_wdata	32bit	mem 模块	-

表 10.2 mem_wb 模块输出端口表

	端口名称	位宽	送往	作用
输出	wb_pc	32bit	regfile 模块	-
out	wb_reg_wen	1bit	regfile 模块	-
-	wb_reg_waddr	5bit	regfile 模块	-
put	wb_reg_wdata	32bit	regfile 模块	-

(十一) regfile 模块设计

寄存器堆(写回模块),双端口读数据寄存器文件,可同时进行读出 2 个操作数。

表 11.1 regfile 模块输入端口表

	端口名称	位宽	来自	作用
	clk	1bit	myCPU 模块	时钟端
	rst	1bit	myCPU 模块	复位端
	we	1bit	mem_wb 模块	写寄存器堆使能
输入	waddr	5bit	mem_wb 模块	写寄存器堆地址
in-	wdata	32bit	mem_wb 模块	写寄存器堆数据
put	re1	1bit	id 模块	读数据 1 使能
	raddr1	5bit	id 模块	读数据 1 的地址
	re2	1bit	id 模块	读数据 2 使能
	raddr2	5bit	id 模块	读数据 2 的地址

表 11.2 regfile 模块输出端口表

输	端口名称	位宽	送往	作用
出 out	rdata l	32bit	id 模块	读数据 1
- put	rdata2	32bit	id 模块	读数据 2

(十二) stall_ctrl 模块设计

图 12 stall_ctrl 模块端口图

流水线暂停控制模块,设计减少了气泡的产生,保留了必要的暂停流水线带来的气泡, 极限提高了 ipc。只有当译码模块产生"load 数据相关"或访存模块产生"baseram 结构访问冲突"才会发送暂停信号。

	The state of the s						
+\	端口名称	位宽	来自	作用			
输入	rst	1bit	myCPU 模块	复位端			
in-	stallreq_from_id	1bit	id 模块	id 模块暂停流水线信号			
put	stallreq_from_mem	1bit	mem 模块	mem 模块暂停流水线信号			

表 12.1 stall ctrl 模块输入端口表

表 12.2 stall_ctrl 模块输出端口表

输	端口名称	位宽	送往	作用
出			pc_reg 模块	
out	stall	1bit	/if id 模块	暂停流水线统一信号
-			/id ex 模块	
put			_	

(十三) extram_cache 模块设计

尽可能 减少 id 模块 产生数据相关现象 且 ex 模块执行 load 指令 而造成暂停流水线产生气泡问题。

表 13.1 extram_cache 模块输入端口表

	表 16.1 CALICIE (大外間) Vill 日本				
	端口名称	位宽	来自	作用	
	clk	1bit	myCPU 模	时钟端	
		块			
	,	11 %	myCPU 模	有尺池	
	rst	1bit	块	复位端	
				用作传输至 extram 模块判断 extram 访问状	
<i>t</i> :A				态,ext_ram_state[2]代表对 extram 进行写数	
输	ext_ram_state	3bit	mem 模块	据操作,这里主要是借用这一位,在对 extram 写	
入				操作的同时,对 extram_cache 也进行写数	
in-				据操作	
put				用作对 extram 写操作时的地址,同时也是对	
	ram_addr_i	32bit	mem 模块	extram_cache 写操作时保存记录数据在 ram	
				的地址,并非在 cache 中的写操作的地址	
	nom vydoto i	2.2h;+	mam 樹州	用作对 extram 写操作时的写入数据,同时也	
	Talli_wdata_1	ram_wdata_i 32bit mem 模均		是对 extram_cache 写操作时保存记录的数据	
	hit ren i	hit ren i 1bit ex	ex 模块	对应 ex_inst_is_load 信号, 即在 ex 模块执行	
	IIIt_ICII_I	1011	CX (天)穴	load 指令时就对 cache 进行读取数据的操作	

				尽可能减少 id 模块产生数据相关现象且 ex
				模块执行 load 指令而造成暂停流水线问题
				判断ex 模块执行load 指令时访问的地址是否在
			oit ex 模块	ExtRAM 上,这里是辅助上个端口 hit_ren_i 进行
	is_ext_ram 1	11. 4		读操作,因为设计时避免相关路径过长,
		1bit		hit_extram_addr 是直接来自 ex 阶段计算出的访
				存地址,而并非确指访存 ExtRAM 的地址,
				为确保正确性,故加此端口
	hit aytuum addu	2.2h;+	ex 模块	ex 阶段计算出的访存地址,而并非确指访存
	hit_extram_addr	32bit		ExtRAM 的地址

表 13.2 extram_cache 模块输出端口表

输	端口名称	位宽	送往	作用
出 out	hit_extram_data	32bit	id 模块	命中伪 dcache 的数据
- put	hit_dcache	1bit	id 模块	命中伪 dcache 的信号

(十四) cache 模块设计

模块功能:

作为 extram_cache 模块的存储数据模块,也可以说是历史数据记录堆,本质还是寄存器堆。

该伪 cache 具有延时 1 周期写入数据特点(在前面的 ex_mem 模块中提到过,并给出了优化办法)。该特点是因为,每个数据块(即寄存器),配有一个计数器,当写入信号为 1 时,需要得到写入寄存器地址(即寄存器号),由于设计没办法立即判断,只好在该周期时钟下降沿修改需要写入的寄存器号,在下一个时钟上升沿才会将数据写入寄存器里。

表 14.1 cache 模块输入端口表

	端口名称	位宽	来自	作用
	clk	1bit	extram_cache 模块	时钟端
	rst	1bit	extram_cache 模块	复位端
	we	1bit	extram_cache 模块	对 extram_cache 进行写数据操作
				对 extram_cache 写操作时保存记录数
	ram_waddr_i	32bit	extram_cache 模块	据在 ram 的地址,并非在 cache 中的
输	输		写操作的地址	
λ		221	. 144.11.	对 extram_cache 写操作时保存记录的
in-	ram_wdata_i	32bit	extram_cache 模块	数据
put				ex 模块执行load 指令时就对cache 进
	hit_ren_i	1bit	extram_cache 模块	行读取数据的操作信号,并非单纯的
				读信号
	: :	11.34	extram cache 模块	判断 ex 模块执行 load 指令时访问的
	is_ext_ram_1	is_ext_ram_i 1bit extran		地址是否在 ExtRAM 上
		221-:4	ovet	ex 阶段计算出的访存地址,而并非确
	memory_addr_i	32bit	extram_cache 模块	指访存 ExtRAM 的地址

表 14.2 cache 模块输出端口表

输	端口名称	位宽	送往	作用
出 out	hit_cache_data_o	32bit	extram_cache 模块	命中伪 cache 的数据
- put	hit_cache_sign_o	1bit	extram_cache 模块	命中伪 cache 的信号

(十五) external_device 模块设计

模块功能:

外部存储器模块,可与 sram、串口的数据交互。

表 15.1 external_device 模块输入端口表

	端口名称	位宽	来自	作用
	clk	1bit	thinpad_top 模块	时钟端
	rst	1bit	thinpad_top 模块	复位端
<i>+</i> -^	base_ram_state	4bit	myCPU 模块	访存 baseram 的状态
输	ext_ram_state	3bit	myCPU 模块	访存 extram 的状态
入	Serial_state	4bit	myCPU 模块	访存串口的状态
in-	rom_addr_i	32bit	myCPU 模块	pc 指令地址
put	ram_addr_i	32bit	myCPU 模块	访存 sram 地址
	ram_sel_i	4bit	myCPU 模块	访存地址字节选取,这里低电平有效
	ram_data_i	32bit	myCPU 模块	访存数据
	rxd	1bit	thinpad_top 模块	串口接收端

表 15.2 external_device 模块输出端口表

			_	
	端口名称	位宽	送往	作用
	rom_data_o	32bit	myCPU 模块	读取的指令,送至 if_id 模块
	ram_data_o	1bit	myCPU 模块	读取的数据,送至 mem 模块
	base_ram_addr	20bit	thinpad_top 模块	访存 baseram 的地址
	base_ram_be_n	4bit	thinpad_top 模块	访存 baseram 的字节使能,低电平有效
输	base_ram_ce_n	1bit	thinpad_top 模块	访存 baseram 的片选信号,低电平有效
出	base_ram_oe_n	1bit	thinpad_top 模块	访存 baseram 的读使能,低电平有效
out	base_ram_we_n	1bit	thinpad_top 模块	访存 baseram 的写使能,低电平有效
- put	ext_ram_addr	20bit	thinpad_top 模块	访存 extram 的地址
	ext_ram_be_n	4bit	thinpad_top 模块	访存 extram 的字节使能,低电平有效
	ext_ram_ce_n	1bit	thinpad_top 模块	访存 extram 的片选信号,低电平有效
	ext_ram_oe_n	1bit	thinpad_top 模块	访存 extram 的读使能,低电平有效
	ext_ram_we_n	1bit	thinpad_top 模块	访存 extram 的写使能,低电平有效
	txd	1bit	thinpad_top 模块	串口发送端

表 15.3 external_device 模块双向端口表

双	端口名称	位宽	来自/送往	作用
向				
输				
入	base_ram_data	32bit	thinpad_top 模块	访存 baseram 的数据
输				
出				
in-	ext_ram_data	32bit	thinpad_top 模块	访存 extram 的数据
out				

(十六) baseram 模块设计

模块功能:

baseram 模块,可取指也可读写数据,对应 baseram 存储器的数据交互。

端口名称 位宽 来自 作用 external device 模块 访存 baseram 的状态 base_ram_state 4bit 输 读取 baseram 的指令地址 external_device 模块 rom_addr_i 32bit 入 访存 baseram 的数据地址 external device 模块 ram_addr_i 1bit input 32bit external_device 模块 访存 baseram 的数据 ram_data_i 访存 baseram 的字节选取 external device 模块 ram_sel_i 4bit

表 16.1 baseram 模块输入端口表

表 16.2 baseram 模块输出端口表

输	端口名称	位宽	送往	作用
出	rom_data_o	32bit	external_device 模块	读取的指令
out	base_ram_addr	20bit	external_device 模块	访存 baseram 的地址

-	base ram be n	4bit	external device 模块	访存 baseram 的字节使能,低电
put			_	平有效
	base ram ce n	1bit	external_device 模块	访存 baseram 的片选信号,低电
	base_ram_ce_n	Ton		平有效
	hasa ram aa n	1bit	external device 模块	访存 baseram 的读使能,低电平
	base_ram_oe_n	1011	external_device 侯庆	有效
	haaa mama xxxa m	11.:4	external device 模块	访存 baseram 的写使能,低电平
	base_ram_we_n	1bit	CAUCHIAI_UCVICE 疾坏	有效
	base_ram_o	32bit	external_device_ctrl 模块	读取 baseram 的数据

表 16.3 baseram 模块双向端口表

双	端口名称	位宽	来自/送往	作用
向				
输				
λ				
输	base_ram_data	32bit	external_device 模块	访存 baseram 的数据
出				
in-				
out				

(十七) extram 模块设计

extram 模块,可读写数据,对应 extram 存储器的数据交互。

表 17.1 extram 模块输入端口表

	端口名称	位宽	来自	作用
输	ext_ram_state	4bit	external_device 模块	访存 extram 的状态
λ	ram_addr_i	1bit	external_device 模块	访存 extram 的数据地址
in- put	ram_data_i	32bit	external_device 模块	访存 extram 的数据
	ram_sel_i	4bit	external_device 模块	访存 extram 的字节选取

表 17.2 extram 模块输出端口表

	端口名称	位宽	送往	作用
	ext_ram_addr	20bit	external_device 模块	访存 extram 的地址
输	ext_ram_be_n	4bit	external_device 模块	访存 extram 的字节使能,低电平 有效
出 out	ext_ram_ce_n	1bit	external_device 模块	访存 extram 的片选信号,低电平 有效
- put	ext_ram_oe_n	1bit	external_device 模块	访存 extram 的读使能,低电平有效
	ext_ram_we_n	1bit	external_device 模块	访存 extram 的写使能,低电平有效
	ext_ram_o	32bit	external_device_ctrl 模块	读取 extram 的数据

表 17.3 extram 模块双向端口表

双	端口名称	位宽	来自/送往	作用
向				
输	4 1-4-	221:4	1 1 · +5++	还去 , 的 籽根
入	ext_ram_data	32bit	external_device 模块	访存 extram 的数据
输				

出		
in-		
out		

(十八) serial 模块设计

模块功能:

serial 模块,可接收串口数据,也可读出串口工作状态。

表 18.1 serial 块输入端口表

	端口名称	位宽	来自	作用
输	clk	1bit	external_device 模块	时钟端
λ	rst	1bit	external_device 模块	复位端
in-	Serial_state	4bit	external_device 模块	访存串口的状态
put	ram_data_i	32bit	external_device 模块	访存数据
	rxd	1bit	external_device 模块	串口接收端

表 18.2 serial 块输出端口表

输	端口名称	位宽	送往	作用
出 out	txd	1bit	external_device 模块	串口发送端
-	serial_o	32bit	external_device 模块	读取串口的数据/工作状态

put		

(十九) external_device_ctrl 模块设计

模块功能:

外部存储器数据统一处理模块,将 baseram、extram、serial 三个模块读出的数据通过 sram 状态机控制选取哪个数据送回 cpu 核。

	端口名称	位宽	来自	作用
	rst	1bit	external_device 模块	复位端
	base_ram_state	4bit	external_device 模块	访存 baseram 的状态
输	ext_ram_state	3bit	external_device 模块	访存 extram 的状态
入	Serial_state	4bit	external_device 模块	访存串口的状态
in-	ram_sel_i	4bit	external_device 模块	访存数据
put	base_ram_i	32bit	baseram 模块	读取 baseram 的数据
	ext_ram_i	32bit	extram 模块	读取 extram 的数据
	serial_i	32bit	external_device 模块	读取 baseram 的数据/工作状态

表 18.1 external_device_ctrl 模块输入端口表

表 18.2 external_device_ctrl 模块输出端口表

输	端口名称	位宽	送往	作用
出	ram_data_o	32bit	external_device 模块	读取的数据选择其一送回 cpu 核内

out		的 mem 模块
-		
put		

三、设计结果

(一)设计交付物说明

提交代码在 master 分支中,源文件目录如下:

thinpad_top.srcs

一 constrs_1

 new

 thinpad_top.xdc //约東文件(可不关注),添加了一些延时,使得访存更稳定

 sim_1

 imports

 CFImemory64Mb_bottom.mem

```
├— new
      include
      ├── 28F640P30.v
      - clock.v
      - cpld_model.v
      flag_sync_cpld.v
      - sram_model.v
                            //baseram 和 extram 实例化模块(可不关注)
      └─ tb.sv
                             //功能仿真
sources_1
  ├— ip
                         //所使用的ip 核,在 vivado 的 IP Catalog 中添加修改
                         //先进先出队列,用于优化串口输入输出
   ├— fifo
     └─ pll_example
                         //时钟分频模块
  - new
     - async.v
                         //串口实例化模块
     - baseram.v
     - cache.v
    ex.v
    ex mem.v
    - external_device.v
    external_device_ctrl.v
     - extram.v
     extram cache.v
     ├─ id.v
     ├─ id_ex.v
     ├─ if_id.v
     ├─ mem.v
     ├─ mem_wb.v
    ├─ myCPU.v
    ├─ pc reg.v
  regfile.v
```

```
│ ├── SEG7_LUT.v
│ ├── serial.v
│ ├── stall_ctrl.v
│ ├── thinpad_top.v //顶层文件
│ └── vga.v
```

(二)设计演示结果

性能测试总用时: 0.599s

四、参考设计说明

参考设计:

- 1. 在设计流水线暂停控制 stall_ctrl 模块、serial (串口) 模块中访问串口代码参考了 龙芯杯NSCSCC2022 选手 (西北工业大学)夏卓的作品中stall 模块、RAM_Serial_ctrl 模块 (https://github.com/xiazhuo/nscc2022_personal)
- 2. 总体设计借鉴了《自己动手写 CPU》(雷思磊)[1]
- 3. serial (串口) 模块中添加了 vivado 软件自带的 IP 核: FIFO Generator

五、参考文献

[1]. 雷思磊. 自己动手写 CPU[M]. 电子工业出版社: 雷思磊, 2014.