An Algebraic Framework for Describing and Studying Binary Enzymatic Networks

Gilles Gnacadja

http://math.GillesGnacadja.info/

AMGEN

Thousand Oaks, California, USA

Society for Industrial and Applied Mathematics

Conference on the Life Sciences

Minisymposium on the Algebraic Aspects of Biochemical Reaction Networks

> Charlotte, North Carolina, USA 4-7 August 2014

An Algebra for Binary Enzymatic Networks

Introduction and Motivation

The Algebraic Formalism

An Algebra for Binary Enzymatic Networks

Introduction and Motivation

The Algebraic Formalism

Enzymes and Enzymatic Reactions (oversimplified)

Enzyme *E* catalyzes (enables or accelerates) the conversion of substrate *A* into product *B*.

Simple Futile Cycle

$$E + A \rightleftharpoons EA \rightarrow E + B$$

 $F + A \leftarrow FB \leftrightharpoons F + B$

Species A and B are converted one into the other.

- Enzyme E catalyzes the conversion of A into B.
- Enzyme *F* catalyzes the reverse conversion.

Simple Cascade

$$E_0 + A_0 \rightleftharpoons Y_0 \rightarrow E_0 + E_1 \\ + \\ A_1 \\ \downarrow \\ Y_1 \\ \downarrow \\ E_1 \\ + \\ E_2 + A_2 \rightleftharpoons Y_2 \rightarrow E_2 + B_2$$

- E₁ is product in first conversion and enzyme in second.
- E_2 is product in second conversion and enzyme in third.

Some More Elaborate Enzymatic Networks

A futile cycle of two two-step pathways

Two futile cycles in a cascade

One futile cycle with two alternate pathways in each direction

Persistence in Enzymatic Networks

The three example enzymatic networks are persistent, i.e. if all species are initially present, then none tend to extinction.

Proof: The networks are conservative and their minimal siphons coincide with the supports of the canonical conservation laws.

Persistence in Enzymatic Networks

The three example enzymatic networks are persistent, i.e. if all species are initially present, then none tend to extinction.

Proof: The networks are conservative and their minimal siphons coincide with the supports of the canonical conservation laws.

- Computing minimal siphons can be complex.
- Intuition: The three example networks are different, yet they look the same and I can see that they (and other enzymatic networks) are persistent.
 All sensible enzymatic networks should be persistent; enzymatic feedback mechanisms keep things going.
- Goal: Formalize this intuition.

Define enzymatic networks and pertinent attributes to:

- Express biochemical reality; and
- Facilitate mathematical reasoning and results, e.g.:
 If a binary enzymatic network is futile and cascaded, then it is persistent.

- Computing minimal siphons can be complex.
- Intuition: The three example networks are different, yet they look the same and I can see that they (and other enzymatic networks) are persistent.
 - All sensible enzymatic networks should be persistent, enzymatic feedback mechanisms keep things going.
- Goal: Formalize this intuition.
 - Define enzymatic networks and pertinent attributes to:
 - Express biochemical reality; and
 - Facilitate mathematical reasoning and results, e.g.:
 If a binary enzymatic network is futile and cascaded, then it is persistent.

- Computing minimal siphons can be complex.
- Intuition: The three example networks are different, yet they look the same and I can see that they (and other enzymatic networks) are persistent.
 All sensible enzymatic networks should be persistent; enzymatic feedback mechanisms keep things going.
- Goal: Formalize this intuition.

Define enzymatic networks and pertinent attributes to:

- Express biochemical reality; and
- Facilitate mathematical reasoning and results, e.g.:
 If a binary enzymatic network is futile and cascaded, then it is persistent.

- Computing minimal siphons can be complex.
- Intuition: The three example networks are different, yet they look the same and I can see that they (and other enzymatic networks) are persistent.
 All sensible enzymatic networks should be persistent; enzymatic feedback mechanisms keep things going.
- Goal: Formalize this intuition.

Define enzymatic networks and pertinent attributes to:

- Express biochemical reality; and
- Facilitate mathematical reasoning and results, e.g.:
 If a binary enzymatic network is futile and cascaded, then it is persistent.

Axiomatics ahead

Half the battle in understanding is having the right representation.

Attributed to Pierre-Simon Laplace

An Algebra for Binary Enzymatic Networks

Introduction and Motivation

The Algebraic Formalism

Defining Binary Enzymatic Networks

Binary Enzymatic Network

A reaction network $\mathcal{N} = (\mathcal{S}, \mathcal{C}, \mathcal{R})$ is a binary enzymatic network provided the five conditions (Enz1)-(Enz5) are satisfied.

$$E + A \rightleftharpoons EA \rightarrow E + B$$

$$\mathscr{S}$$
: Set of species

$$\mathscr{S}$$
: Set of species $\{E, A, B, EA\}$
 \mathscr{C} : Set of complexes $\{E + A, E + B, EA\}$

$$\mathcal{R}$$
: Set of reactions

$$\{(E + A, EA), (EA, E + A), (EA, E + B)\}$$

Preview: The Maps in Conditions (Enz1)-(Enz5)

Binary Enzymatic Networks – Condition (Enz1)

Condition (Enz1): species roles

There are four sets Enz, Sub, Pro, Int satisfying

- $\emptyset \neq \text{Enz}, \text{Sub}, \text{Pro}, \text{Int} \subsetneq \mathscr{S}$ and
- $\mathscr{S} = (\mathsf{Enz} \cup \mathsf{Sub} \cup \mathsf{Pro}) \sqcup \mathsf{Int}.$

Sub : Substrates **Pro** : Products

Int : Intermediates

Par := **Sub** ∪ **Pro** Enzyme partners

Enz₀ := **Enz****Par** Enzymes that are not enzyme partners

$$\mathscr{S} = (\mathsf{Enz} \cup \mathsf{Par}) \sqcup \mathsf{Int} = \mathsf{Enz_0} \sqcup \mathsf{Par} \sqcup \mathsf{Int}$$

Binary Enzymatic Networks – Condition (Enz2)

Condition (Enz2): starting and ending info on conversions

There is the set $\mathbf{Cat} \subseteq \mathbf{Enz} \times \mathbf{Sub} \times \mathbf{Pro}$ of *catalysis triples*. The three canonical projections restricted to \mathbf{Cat} are surjective.

 $(E, A, B) \in \mathbf{Cat} \Leftrightarrow \mathbf{Enzyme} \ E \ catalyzes \ (somehow)$ the conversion of substrate A into product B

Equivalence relation on $Par = Sub \cup Pro$:

 $A \sim B \Leftrightarrow (E, A, B) \in \mathbf{Cat}$ for some enzyme E.

Quotient map: cl : Par \rightarrow Par .

Binary Enzymatic Networks – Condition (Enz3)

Condition (Enz3): conversions each enzyme catalyzes

There is a surjective map $par : Enz \rightarrow \overline{Par}$ satisfying

- $\forall E \in Enz, E \notin par(E)$, and
- $\forall (E, A, B) \in \mathbf{Cat}, \{A, B\} \subseteq \mathbf{par}(E)$.

```
par(E) : Equivalence class of partners of enzyme E
```

 $E \notin par(E)$: No self-catalyzed enzyme conversion

```
sub(E) := par(E) \cap Sub Substrates of E

pro(E) := par(E) \cap Pro Products of E
```

Binary Enzymatic Networks – Condition (Enz4)

Condition (Enz4): the intermediates for each enzyme

There are

an equivalence relation on Int with quotient map

cl : Int \rightarrow Int, and

two mutually inverse bijections

int : Enz \rightarrow Int and enz : Int \rightarrow Enz.

int(E): Intermediates in conversion catalyzed by enzyme E

 $\mathbf{enz}(\mathscr{Y})$: Enzyme that catalyzes conversions where

intermediates in class \(\gamma \) occur

Binary Enzymatic Networks – Condition (Enz5)

Condition (Enz5): the reactions

All intermediate pathways are specified for each catalysis triples (E, A, B).

The Maps in Conditions (Enz1)-(Enz5)

Initial Substrates and Terminal Products

$$\mathscr{C}(E)$$
 : Complexes of enzyme E

$$\mathscr{C}(E) = \big\{ E + A : A \in \mathsf{par}(E) \big\} \sqcup \mathsf{int}(E)$$

isub(E): Initial substrates of E

$$A \in \mathbf{isub}(E) \Leftrightarrow \left\{ \begin{array}{l} A \in \mathbf{sub}(E) \\ E + A \text{ ultimately reacts to} \\ \text{every complex in } \mathscr{C}(E) \end{array} \right.$$

tpro(E): Terminal products of E

Reversing Enzyme

An enzyme F is a *reversing enzyme* for an enzyme E provided $\emptyset \neq \mathbf{tpro}(E) = \mathbf{isub}(F)$.

Futile Network

A binary enzymatic network is *futile* provided every enzyme is a reversing enzyme.

- "Every enzyme has a reversing enzyme" did not work.
- In examples, there is a *futility involution* φ : **Enz** \rightarrow **Enz**.
 - $\varphi \circ \varphi = \operatorname{Id}_{\mathsf{Enz}}$.
 - For every enzyme E, E and $\varphi(E)$ are mutually reversing enzymes

Reversing Enzyme

An enzyme F is a *reversing enzyme* for an enzyme E provided $\emptyset \neq \mathbf{tpro}(E) = \mathbf{isub}(F)$.

Futile Network

A binary enzymatic network is *futile* provided every enzyme is a reversing enzyme.

- "Every enzyme has a reversing enzyme" did not work.
- In examples, there is a *futility involution* φ : **Enz** \rightarrow **Enz**.
 - $\varphi \circ \varphi = \operatorname{Id}_{\operatorname{Enz}}$.
 - For every enzyme E, E and $\varphi(E)$ are mutually reversing enzymes

Reversing Enzyme

An enzyme F is a *reversing enzyme* for an enzyme E provided $\emptyset \neq \mathsf{tpro}(E) = \mathsf{isub}(F)$.

Futile Network

A binary enzymatic network is *futile* provided every enzyme is a reversing enzyme.

- "Every enzyme has a reversing enzyme" did not work.
- In examples, there is a *futility involution* φ : **Enz** \rightarrow **Enz**.
 - $\varphi \circ \varphi = \operatorname{Id}_{\mathsf{Enz}}$.
 - For every enzyme E, E and $\varphi(E)$ are mutually reversing enzymes

Reversing Enzyme

An enzyme F is a *reversing enzyme* for an enzyme E provided $\emptyset \neq \mathbf{tpro}(E) = \mathbf{isub}(F)$.

Futile Network

A binary enzymatic network is *futile* provided every enzyme is a reversing enzyme.

- "Every enzyme has a reversing enzyme" did not work.
- In examples, there is a *futility involution* φ : **Enz** \rightarrow **Enz**.
 - $\varphi \circ \varphi = \mathsf{Id}_{\mathsf{Enz}}$.
 - For every enzyme E, E and $\varphi(E)$ are mutually reversing enzymes.

Cascaded Network

Cascade Index of Enzymes

$$\begin{array}{lcl} \mathsf{Enz}_0 & = & \mathsf{Enz} \setminus \mathsf{Par} \\ \mathsf{Enz}_m & = & \left(\mathsf{Enz} \setminus \left(\mathsf{Enz}_0 \sqcup \cdots \sqcup \mathsf{Enz}_{m-1} \right) \right) \cap \bigcup_{E \in \mathsf{Enz}_{m-1}} \mathsf{tpro}(E) \end{array}$$

Cascaded Network

A binary enzymatic network is cascaded provided

$$\mathsf{Enz} = \bigsqcup_{m=0}^{\infty} \mathsf{Enz}_m.$$

Illustrative (Simple, Anticlimactic ©) Example

$$E + A \rightleftharpoons EA \rightarrow E + B$$

 $F + A \leftarrow FB \leftrightharpoons F + B$

Enz =
$$\{E, F\}$$
 Sub = $\{A, B\}$ Par = $\{A, B\}$
Enz₀ = $\{E, F\}$ Pro = $\{A, B\}$ Int = $\{EA, FB\}$
Cat = $\{(E, A, A), (E, A, B), (F, B, B), (F, B, A)\}$
ParGraph : $A \cap B$
Par = $\{\{A, B\}\}$ Int = $\{\{EA\}, \{FB\}\}$
cl(A) = $\{A, B\}$ cl(EA) = $\{EA\}$
cl(EA) = $\{EA\}$

Illustrative (Simple, Anticlimactic ©) Example

$$E + A \implies EA \rightarrow E + B$$

$$F + A \leftarrow FB \iff F + B$$
Enz = $\{E, F\}$ Sub = $\{A, B\}$ Par = $\{A, B\}$
Enz₀ = $\{E, F\}$ Pro = $\{A, B\}$ Int = $\{EA, FB\}$

$$Cat = \{(E, A, A), (E, A, B), (F, B, B), (F, B, A)\}$$
ParGraph : $A \implies B$

$$Par = \{\{A, B\}\}$$
 Int = $\{\{EA\}, \{FB\}\}$

$$cl(A) = \{A, B\}$$
 $cl(EA) = \{EA\}$

Illustrative (Simple, Anticlimactic ③) Example

$$E + A \rightleftharpoons EA \rightarrow E + B$$

$$F + A \leftarrow FB \leftrightharpoons F + B$$

$$Enz = \{E, F\} \quad Sub = \{A, B\} \quad Par = \{A, B\}$$

$$Enz_0 = \{E, F\} \quad Pro = \{A, B\} \quad Int = \{EA, FB\}$$

$$Cat = \{(E, A, A), (E, A, B), (F, B, B), (F, B, A)\}$$

$$ParGraph : A \supseteq B$$

$$Par = \{\{A, B\}\} \quad Int = \{\{EA\}, \{FB\}\}$$

$$cl(A) = \{A, B\} \quad cl(EA) = \{EA\}$$

$$cl(B) = \{A, B\} \quad cl(EB) = \{EA\}$$

Illustrative (Simple, Anticlimactic ©) Example

$$E + A \implies EA \rightarrow E + B$$

$$F + A \leftarrow FB \implies F + B$$

$$Enz = \{E, F\} \qquad Sub = \{A, B\} \qquad Par = \{A, B\}$$

$$Enz_0 = \{E, F\} \qquad Pro = \{A, B\} \qquad Int = \{EA, FB\}$$

$$Cat = \{(E, A, A), (E, A, B), (F, B, B), (F, B, A)\}$$

$$ParGraph : A \longrightarrow B$$

$$Par = \{\{A, B\}\} \qquad Int = \{\{EA\}, \{FB\}\}$$

$$cl(A) = \{A, B\} \qquad cl(EA) = \{EA\}$$

Illustrative (Simple, Anticlimactic ③) Example

$$E + A \implies EA \rightarrow E + B$$

$$F + A \leftarrow FB \iff F + B$$

$$Enz = \{E, F\} \qquad Sub = \{A, B\} \qquad Par = \{A, B\}$$

$$Enz_0 = \{E, F\} \qquad Pro = \{A, B\} \qquad Int = \{EA, FB\}$$

$$Cat = \{(E, A, A), (E, A, B), (F, B, B), (F, B, A)\}$$

$$ParGraph : A \longrightarrow B$$

$$Par = \{\{A, B\}\} \qquad Int = \{\{EA\}, \{FB\}\}$$

$$cl(A) = \{A, B\} \qquad cl(EA) = \{EA\}$$

$$cl(B) = \{A, B\} \qquad cl(FB) = \{FB\}$$

Illustrative (Simple, Anticlimactic ©) Example

$$E + A \implies EA \rightarrow E + B$$

$$F + A \leftarrow FB \iff F + B$$

$$Enz = \{E, F\} \qquad Sub = \{A, B\} \qquad Par = \{A, B\}$$

$$Enz_0 = \{E, F\} \qquad Pro = \{A, B\} \qquad Int = \{EA, FB\}$$

$$Cat = \{(E, A, A), (E, A, B), (F, B, B), (F, B, A)\}$$

$$ParGraph : A \longrightarrow B$$

$$Par = \{\{A, B\}\} \qquad Int = \{\{EA\}, \{FB\}\}$$

$$cl(A) = \{A, B\} \qquad cl(EA) = \{EA\}$$

$$cl(B) = \{A, B\} \qquad cl(FB) = \{FB\}$$

Illustrative (Simple, Anticlimactic ©) Example – continued

$$E + A \rightleftharpoons EA \rightarrow E + B$$

 $F + A \leftarrow FB \leftrightharpoons F + B$

$$\begin{aligned} \mathbf{par}(E) &= \{A,B\} && \mathbf{int}(E) &= \{EA\} && \mathbf{enz}\big(\{EA\}\big) &= E\\ \mathbf{par}(F) &= \{A,B\} && \mathbf{int}(F) &= \{FB\} && \mathbf{enz}\big(\{FB\}\big) &= F\\ \mathbf{sub}(E) &= \{A\} && \mathbf{pro}(E) &= \{A,B\}\\ \mathbf{sub}(F) &= \{B\} && \mathbf{pro}(F) &= \{A,B\}\\ \mathbf{isub}(E) &= \mathbf{tpro}(F) &= \{A\}\\ \mathbf{isub}(F) &= \mathbf{tpro}(E) &= \{B\} \end{aligned}$$

Illustrative (Simple, Anticlimactic ©) Example - continued

$$E + A \implies EA \rightarrow E + B$$

$$F + A \leftarrow FB \iff F + B$$

$$par(E) = \{A, B\} \quad int(E) = \{EA\} \quad enz(\{EA\}) = E$$

$$par(F) = \{A, B\} \quad int(F) = \{FB\} \quad enz(\{FB\}) = F$$

$$sub(E) = \{A\} \quad pro(E) = \{A, B\}$$

$$sub(F) = \{B\} \quad pro(F) = \{A\}$$

$$isub(E) = tpro(F) = \{A\}$$

$$isub(F) = tpro(E) = \{B\}$$

$$\varphi(E) = F$$

$$\varphi(F) = E$$

Illustrative (Simple, Anticlimactic ©) Example - continued

$$E + A \implies EA \rightarrow E + B$$

$$F + A \leftarrow FB \iff F + B$$

$$par(E) = \{A, B\} \quad int(E) = \{EA\} \quad enz(\{EA\}) = E$$

$$par(F) = \{A, B\} \quad int(F) = \{FB\} \quad enz(\{FB\}) = F$$

$$sub(E) = \{A\} \quad pro(E) = \{A, B\}$$

$$sub(F) = \{B\} \quad pro(F) = \{A, B\}$$

$$isub(E) = tpro(F) = \{A\}$$

$$isub(F) = tpro(E) = \{B\}$$

$$\varphi(E) = F$$

$$\varphi(F) = E$$

Illustrative (Simple, Anticlimactic ©) Example – continued

$$E + A \rightleftharpoons EA \rightarrow E + B$$

$$F + A \leftarrow FB \leftrightharpoons F + B$$

$$par(E) = \{A, B\} \quad int(E) = \{EA\} \quad enz(\{EA\}) = E$$

$$par(F) = \{A, B\} \quad int(F) = \{FB\} \quad enz(\{FB\}) = F$$

$$sub(E) = \{A\} \quad pro(E) = \{A, B\}$$

$$sub(F) = \{B\} \quad pro(F) = \{A, B\}$$

$$isub(E) = tpro(F) = \{A\}$$

$$isub(F) = tpro(E) = \{B\}$$

$$\varphi(E) = F$$

$$\varphi(E) = F$$

Illustrative (Simple, Anticlimactic ©) Example – continued

$$E + A \rightleftharpoons EA \rightarrow E + B$$

$$F + A \leftarrow FB \rightleftharpoons F + B$$

$$par(E) = \{A, B\} \quad int(E) = \{EA\} \quad enz(\{EA\}) = E$$

$$par(F) = \{A, B\} \quad int(F) = \{FB\} \quad enz(\{FB\}) = F$$

$$sub(E) = \{A\} \quad pro(E) = \{A, B\}$$

$$sub(F) = \{B\} \quad pro(F) = \{A, B\}$$

$$isub(E) = tpro(F) = \{A\}$$

$$isub(F) = tpro(E) = \{B\}$$

$$\varphi(E) = F$$

$$\varphi(F) = E$$

The paper

J Math Chem (2011) 49:2158–2176 DOI 10.1007/s10910-011-9895-3

ORIGINAL PAPER

Reachability, persistence, and constructive chemical reaction networks (part III): a mathematical formalism for binary enzymatic networks and application to persistence

Gilles Gnacadja

