Jürgen Schaffner-Bielich: Compact Stars

4.3 Scaling Solutions for Compact Stars

Basic Idea

scaling arguments = reasonable combination of dimensionful parameters

(1) make TOV dimensionless

(2) solve dimensionless TOV

(3) rescale with $\sqrt{\varepsilon_0} \rightarrow \text{physical solution}$

Making TOV Dimensionless

•
$$\frac{dP}{dr} = -G\frac{m_r}{r^2}\varepsilon\left(1 + \frac{P}{\varepsilon}\right)\left(1 + \frac{4\pi r^3 P}{m_r}\right)\left(1 - \frac{2Gm_r}{r}\right)^{-1}$$

$P = \varepsilon_0 P'$	$arepsilon=arepsilon_0arepsilon'$
r = ar'	$m_r = b m_r^\prime$

$$\bullet \frac{\varepsilon_0 dP'}{adr'} = -G \frac{bm'r}{(ar')^2} \varepsilon_0 \varepsilon' \left(1 + \frac{P'}{\varepsilon'} \right) \left(1 + \frac{4\pi (ar')^3 \varepsilon_0 P'}{bm'r} \right) \left(1 - \frac{2Gbm'r}{ar'} \right)^{-1}$$

Gb = a	$a^3\varepsilon_0=b$
$a = (G\varepsilon_0)^{-\frac{1}{2}}$	$b = (G^3 \varepsilon_0)^{-\frac{1}{2}}$

$$\frac{dP'}{dr'} = -G\frac{m_r'}{r'^2}\varepsilon'\left(1 + \frac{P'}{\varepsilon'}\right)\left(1 + \frac{4\pi r'^3 P'}{m_r'}\right)\left(1 - \frac{2m_r'}{r'}\right)^{-1}$$

$$m_r = rac{m_r'}{\sqrt{G^3arepsilon_0}}\!\sim\!rac{1}{\sqrt{arepsilon_0}} \qquad \qquad r = rac{r}{\sqrt{Garepsilon_0}}\!\sim\!rac{1}{\sqrt{arepsilon_0}}$$

Making TOV Dimensionless

Gb = a	$a^3 \varepsilon_0 = b$
$a = (G\varepsilon_0)^{-\frac{1}{2}}$	$\mathbf{b} = (G^3 \varepsilon_0)^{-\frac{1}{2}}$

$$\frac{dP'}{dr'} = -G\frac{m_r'}{r'^2}\varepsilon'\left(1 + \frac{P'}{\varepsilon'}\right)\left(1 + \frac{4\pi r'^3 P'}{m_r'}\right)\left(1 - \frac{2m_r'}{r'}\right)^{-1}$$

$$m_r = rac{m_r'}{\sqrt{G^3 arepsilon_0}} \sim rac{1}{\sqrt{arepsilon_0}} \qquad \qquad r = rac{r}{\sqrt{G arepsilon_0}} \sim rac{1}{\sqrt{arepsilon_0}}$$

$$r=rac{r}{\sqrt{Garepsilon_0}}\!\sim\!rac{1}{\sqrt{arepsilon_0}}$$

$$M_{max} = \frac{M'}{\sqrt{G^3 \varepsilon_0}} = M' \frac{m_p^3}{\sqrt{\varepsilon_0}}$$

$$R_{crit} = rac{R'}{\sqrt{Garepsilon_0}} = R' rac{m_p}{\sqrt{arepsilon_0}}$$

Example: Free Massive Fermi Gas

dimensionful quantity: fermion mass

$$P' = \frac{P'}{\varepsilon_0} = \frac{P'}{m_f^4}$$

$$\varepsilon' = \frac{\varepsilon}{\varepsilon_0} = \frac{\varepsilon'}{m_f^4}$$

 $ightarrow arepsilon_0 = m_f^4$

$$M_{max} = M' \frac{m_p^3}{\sqrt{\varepsilon_0}} = M' \frac{m_p^3}{m_f^2}$$

$$R_{crit} = R' \frac{m_p}{\sqrt{\varepsilon_0}} = R' \frac{m_p}{m_f^2}$$

• Compactness $C = \frac{GM}{R}$

•
$$C_{\text{max}} = \frac{M'}{R'} = \frac{0.384}{3.367} = 0.11$$

Example: Relativistic Fermi Gas with Vacuum Term

- relativistic particles: $P = \frac{1}{3}\varepsilon \rightarrow P = \frac{1}{3}(\varepsilon \varepsilon_0)$
- ullet vanishing P at nonvanishing arepsilon
- MIT bag model:

•
$$P = P_{free} - B \leftrightarrow \varepsilon = \varepsilon_{free} + B$$

• relativistic massless gas of particles: $P_{free} = \frac{1}{3} \varepsilon_{free}$

•
$$P = \frac{1}{3} \varepsilon_{free} - B = \frac{1}{3} (\varepsilon - B) - B = \frac{1}{3} (\varepsilon - 4B)$$

$$\to \varepsilon_0 = 4B$$

•
$$C = 0.271$$
 $(C_{free\ Fermion} = 0.11)$

Limiting EOS from causality

- stiffest possible EOS (Zeľdovich): P=arepsilon
 - $c_{sound}^2 = \frac{\partial P}{\partial \varepsilon} = 1$
 - maximum P for given ε
 - unstable TOV solutions
- know low-density EOS for $0 < P < P_f$
- stiffest possible EOS for higher densities must be Zel'dovich EOS
 - maximum $P \leftrightarrow \text{maximum } M$
- Rhoades-Ruffini mass limit: $M_{max} = M' \frac{1}{\sqrt{G^3 \varepsilon_f}} = 4.2 \ M_{solar} \sqrt{\frac{\varepsilon_{nm}}{\varepsilon_f}}$

$$P = P_f + (\varepsilon - \varepsilon_f)$$

Selfbound Linear EOS

- selfbound stars:
 - ullet vanishing P at nonvanishing arepsilon
 - vanishing P at surface
 - do not need gravity to be stabilized
- $P = s(\varepsilon \varepsilon_0)$ • $c_{sound}^2 = \frac{\partial P}{\partial \varepsilon} = s$
- reedshift factor: $1 + z = \frac{1}{\sqrt{\frac{1}{1-2C}}}$

Selfbound Linear EOS

s=1/3 MIT bag model	M_{max} $= 2.57 M_{solar} \sqrt{\frac{\varepsilon_{nm}}{\varepsilon_0}}$	$R_{crit} = 14 \ km \sqrt{\frac{\varepsilon_{nm}}{\varepsilon_0}}$	$C_{max} = 0.271$	$z_{max} = 0.478$	$\frac{\varepsilon_{max}}{\varepsilon_0} = 4.81$	$\frac{\varepsilon_{max}(2M_{solar})}{\varepsilon_{nm}} = 7.91$
s=2/3	M_{max} $= 3.64 M_{solar} \sqrt{\frac{\varepsilon_{nm}}{\varepsilon_0}}$	$R_{crit} = 16.4 km \sqrt{\frac{\varepsilon_{nm}}{\varepsilon_0}}$	$C_{max} = 0.328$	$z_{max} = 0.705$	$\frac{\varepsilon_{max}}{\varepsilon_0} = 3.54$	$\frac{\varepsilon_{max}(2M_{solar})}{\varepsilon_{nm}} = 11.8$
s=3/3 Fel'dovic h	M_{max} $= 4.23 M_{solar} \sqrt{\frac{\varepsilon_{nm}}{\varepsilon_0}}$	$R_{crit} = 17.6 km \sqrt{\frac{\varepsilon_{nm}}{\varepsilon_0}}$	$C_{max} = 0.354$	$z_{max} = 0.851$	$\frac{\varepsilon_{max}}{\varepsilon_0} = 3.03$	$\frac{\varepsilon_{max}(2M_{solar})}{\varepsilon_{nm}} = 13.5$

Thank you for listening

NOTES 1

- free massive fermi gas
 - P=?
 - rescale with fermi mass⁴
 - C=0,11
- relativistic fermi gas with vacuum term
 - P=1/3 e -> polytrope 1
 - rescale with offset P=1/3(e-e0) -> pressure vanishes at nonvanishing e
 - MIT bag model
 - gas of free relativistic quarks in bag stabilizes by outside pressure B -> P_tot = P_free B and e = e_free + B (nonvanishing vacuum energy density contributions due to quark gluon condensates)
 - relativistic massless gas of particles: P_free = 1/3 e_free -> P = 1/3 e_free B = 1/3 (e-B) -B=1/3 (e-4B)
 - M_max, R_crit -> C=0.271 -> more compact than free fermion star

NOTES 2

- limiting EOS from causality
 - stiffest possible EOS (Zel'dovich): $P = \varepsilon$

•
$$c_{sound}^2 = \frac{\partial P}{\partial \varepsilon} = 1$$

- maximum P for given ε
- unstable TOV solutions
- know low-density EOS for $0 < P < P_f$

$$P = P_f + (\varepsilon - \varepsilon_f)$$

- stiffest possible EOS for higher densities must be Zel'dovich EOS
 - maximum $P \leftrightarrow \max M$
- Rhoades-Ruffini mass limit: $M_{max} = M' \frac{1}{\sqrt{G^3 \varepsilon_f}} = 4.2 \ M_{solar} \sqrt{\frac{\varepsilon_{nm}}{\varepsilon_f}}$
 - would give M_max = 3 M_s for e_f=e_nm but we know 4.2 M_s is true

NOTES 3

- selfbound stars:
 - ullet vanishing P at nonvanishing arepsilon
 - vanishing P at surface
 - do not need gravity to be stabilized

s=1/3

Fel'dovich

• selfbound linear eos $\frac{1}{\sqrt{3}}$ see table reedshift factor: $1+Z=\frac{MIT\ bag\ mbdel}{\sqrt{\frac{1}{1-2C}}}$ = 2.57 M_{solar} $= 14\ km$ $\frac{\varepsilon_{nm}}{\varepsilon_0}$ $C_{max}=0.271$ $Z_{max}=0.478$ S=1/3 M_{max} M_{max}

 R_{crit}

 M_{max}

 $C_{max} = 0.354$

 $z_{max} = 0.851$

Selfbound Linear EOS- whole table

s=1/3 MIT bag model	M_{max} $= 2.57 M_{solar} \sqrt{\frac{\varepsilon_{nm}}{\varepsilon_0}}$	$R_{crit} = 14 \ km \sqrt{\frac{\varepsilon_{nm}}{\varepsilon_0}}$	$C_{max} = 0.271$	$z_{max} = 0.478$	$\frac{\varepsilon_{max}}{\varepsilon_0} = 4.81$	$\frac{\varepsilon_{max}(2M_{solar})}{\varepsilon_{nm}} = 7.91$
s=2/3	M_{max} $= 3.64 M_{solar} \sqrt{\frac{\varepsilon_{nm}}{\varepsilon_0}}$	$R_{crit} = 16.4 km \sqrt{\frac{\varepsilon_{nm}}{\varepsilon_0}}$	$C_{max} = 0.328$	$z_{max} = 0.705$	$\frac{\varepsilon_{max}}{\varepsilon_0} = 3.54$	$\frac{\varepsilon_{max}(2M_{solar})}{\varepsilon_{nm}} = 11.8$
s=3/3 Fel'dovic h	M_{max} $= 4.23 M_{solar} \sqrt{\frac{\varepsilon_{nm}}{\varepsilon_0}}$	$R_{crit} = 17.6 km \sqrt{\frac{\varepsilon_{nm}}{\varepsilon_0}}$	$C_{max} = 0.354$	$z_{max} = 0.851$	$\frac{\varepsilon_{max}}{\varepsilon_0} = 3.03$	$\frac{\varepsilon_{max}(2M_{solar})}{\varepsilon_{nm}} = 13.5$