Assignment Date	
Student Name	CHITTABATHINI SIVA
Student Roll Number	111519104019
Maximum Marks	2 Marks

Problem Statement: Abalone Age Prediction

Description:

Predicting the age of abalone from physical measurements. The age of abalone is determined by cutting the shell through the cone, staining it, and counting the number of rings through a microscope -- a boring and time-consuming task. Other measurements, which are easier to obtain, are used to predict age. Further information, such as weather patterns and location (hence food availability) may be required to solve the problem.

Importing Modules

import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import
numpy as np

1. Dataset has been downloaded

#Name of the dataset: abalone.csv

2. Load the dataset into the tool

data=pd.read_csv("abalone.csv") data.head()

uc	ıca—	·pa.r	eau_cs	5 V (abaioi.	ie.Csv	, (Jata. He	au()		
	Sex	Length	Diameter	Height	Whole weight	Shucked w	eight	Viscera weight	Shell weight	Rings	
0	М	0.455	0.365		0.095	0.5140	0.2245	0.1010	0.150		15
1	М	0.350	0.265		0.090	0.2255	0.0995	0.0485	0.070		7
2	F	0.530	0.420		0.135	0.6770	0.2565	0.1415	0.210		9
3	М	0.440	0.365		0.125	0.5160	0.2155	0.1140	0.155		10
	Sex	Length	Diameter	Height	Whole weight	Shucked w	eight	Viscera weight	Shell weight	Rings	
4	,	0.330	0.255		0.080	0.2050	0.0805	0.0395	0.055		7

In []:

In[12]:

Out[12]:

Let's know the shape of the data

In[13]:
data.shape
Out[13]:

One additional task is that, we have to add the "Age" column using "Rings" data. We just have to add '1.5' to the ring data

In [14]:

Out[14]:

0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	16.5
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	8.5
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	10.5
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	11.5
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	8.5

Length Diameter Height Whole_weight Shucked_weight Viscera_weight Shell_weight Age

3. Perform Below Visualizations.

(i) Univariate Analysis

#

The term univariate analysis refers to the analysis of one variable. You can remember this because the prefix "uni" means "one." There are three common ways to perform univariate analysis on one variable: 1. Summary statistics – Measures the center and spread of values.

#

Histogram

In[16]: sns.displot(data["Age"], color='darkorange')

Out[16]:

In[103]: sns.histplot(y=data.Age,color='pink')
Out[103]:

In[106]: sns.histplot(x=data.Age,color='green')

Boxplot

ln[52]: sns.boxplot(x=data.Age,color='pink')

<AxesSubplot:xlabel='Age'>

Countplot

<AxesSubplot:xlabel='Age', ylabel='count'>

(ii) Bi-Variate Analysis

#

Image result for bivariate analysis in python It is a methodical statistical technique applied to a pair of variables (features/ attributes) of data to determine the empirical relationship between them. In order words, it is meant to determine any concurrent relations (usually over and above a simple correlation analysis).

#

Barplot

In[50]: sns.barplot(x=data.Height, y=data.Age)

<AxesSubplot:xlabel='Height', ylabel='Age'>

Linearplot

In[49]: sns.lineplot(x=data.Age,y=data.Height, color='purple')

Scatterplot

 $\label{eq:color_green} $$\inf_{\{42\}:$ sns.scatterplot(x=data.Age,y=data.Height,color='green')$} $$\operatorname{Out}_{\{42\}:} $$ <AxesSubplot:xlabel='Age', ylabel='Height'>$$$

Pointplot

In[45]: sns.pointplot(x=data.Age, y=data.Height, color="blue")
Out[45]:

Regplot

In[48]: sns.regplot(x=data.Age,y=data.Height,color='orange')
Out[48]:
<AxesSubplot:xlabel='Age', ylabel='Height'>

(iii) Multi-Variate Analysis

#

Multivariate analysis is based in observation and analysis of more than one statistical outcome variable at a time. In design and analysis, the technique is used to perform trade studies across multiple dimensions while taking into account the effects of all variables on the responses of interest.

#

Pairplot

```
sns.pairplot(data=data[["Height","Length","Diameter","Age","Whole_weight","Sh ucked_weight","Viscera_weight","Shell_weight"]])
Out[57]:
```

<seaborn.axisgrid.PairGrid at 0x7fd3d93e1040>

sns.pairplot(data=data[["Height","Length","Diameter","Age","Whole_weight","Sh ucked_weight","Viscera_weight","Shell_weight"]],kind="kde")

<seaborn.axisgrid.PairGrid at 0x7fd39840c790>

4. Perform descriptive statistics on the dataset

In[63]: data.describe(include='all')

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age
count	4177	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
unique	3	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age

top	M	NaN							
freq	1528	NaN							
mean	NaN	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	11.433684
std	NaN	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
min	NaN	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	2.500000
25%	NaN	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	9.500000
50%	NaN	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	10.500000
75%	NaN	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	12.500000
max	NaN	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	30.500000

5. Check for Missing values and deal with them

In[64]: data.isnull().sum()
Out[64]:

Sex 0 Length 0 0 Diameter Height Whole weight 0 Shucked weight 0 Viscera weight 0 Shell_weight 0 0 Age dtype: int64

6. Find the outliers and replace them outliers

outliers=data.quantile(q=(0.25,0.75)) outliers

In[65]:

Out[65]:

	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age
0.25	0.450	0.35	0.115	0.4415	0.186	0.0935	0.130	9.5
	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age
0.75	0.615	0.48	0.165	1.1530	0.502	0.2530	0.329	12.5

In[66]:

```
c = b - a lower_limit = a - 1.5
data.median(numeric_only=True)
Length
                    0.5450
Diameter
                    0.4250
Height
                    0.1400
Whole weight
                    0.7995
Shucked weight
                    0.3360
Viscera weight
                    0.1710
Shell weight
                    0.2340
Age dtype:
                   10.5000
float64
```

Out[67]: <AxesSubplot:xlabel='Age'>

7. Check for Categorical columns and performencoding

In[68]: data.head()

Out[68]:

Out[66]:

	Sex	Length	Diameter	Height Whole_w	eight Shucke	d_weight	Viscera_weight	Shell_weight	Age
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	16.5
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	8.5
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	10.5
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	11.5
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	8.5

Out[83]:

```
lab = LabelEncoder()
data.Sex = lab.fit_transform(data.Sex)
data.head()
```

	Sex	Length	Diameter	Height	Whole_weight	Shucked	_weight	Viscera_weight	Shell_weight	Age
0	2	0.455	0.365		0.095	0.5140	0.2245	0.1010	0.150	12
1	2	0.350	0.265		0.090	0.2255	0.0995	0.0485	0.070	4
2	0	0.530	0.420		0.135	0.6770	0.2565	0.1415	0.210	6
3	2	0.440	0.365		0.125	0.5160	0.2155	0.1140	0.155	7
4	1	0.330	0.255		0.080	0.2050	0.0895	0.0395	0.055	4

8. Split the data into dependent and independent variables

```
| In [84]:
| Y = data["Sex"] y.head()
| Out[84]:
| Out[84]:
| Out[84]:
| Out[84]:
| Out[85]: x=data.drop(columns=["Sex"], axis=1)
| X.head()
| Length | Diameter | Height | Whok_weight | Viscera_weight | Shell_weight | Age
```

0	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	12
1	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	4
2	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	6
3	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	7
4	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	4

9. Scale the independent variables

In[86]: **from** sklearn.preprocessing **import** scale X_Scaled = pd.DataFrame(scale(x), columns=x.columns) X Scaled.head()

_			.,									0	ut[86]:
	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weig	ht Shell_wei	ght A	ige			J	atiooj.
0	-0.	574558	-0.432149	-1.064424	-0.641898	-0.607685	-0.726212	-0.638217					
	1.5	55152 1	-1.448986	-1.439929	-1.183978	-1.230277	-1.170910	-1.205221					
	-1.	212987	-0.884841										
2	0.050033 0.1	22130	-0.107991	-0.309469	-0.463500	-0.356690	-0.207139	-0.274842					
3	-0.699476 -0.	432149	-0.347099	-0.637819	-0.648238	-0.607600	-0.602294	0.030157 4	-1.615544	-1.540707	-		
	1.423087 -1.	272086	-1.215968	-1.287337	-1.320757	-0.884841							

10. Split the data into training and testing

In[87]: from sklearn.model_selection import train_test_split X_Train, X_Test, Y_Train, Y_Test = train_test_split(X_Scaled, y, test_size=0.2, random_state=0)

X_Train.shape,X_Test.shape

		_						O
3341,	8),	(836,	8))					
[rain.	.shape	e, Y Te	st.shap	oe				
		_						O
3341,)	, (83	36,))						
[rain.	head (()						0
Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age	, and the second se
-2.864726	-2.750043	-1.423087	-1.622870	-1.553902	-1.583867	-1.644065	-1.799838	
-2.573250	-2.598876	-2.020857	-1.606554	-1.551650	-1.565619	-1.626104	-1.494839	
1.132658	1.230689	0.728888	1.145672	1.041436	0.286552	1.538726	1.555152	
1.590691	1.180300	1.446213	2.164373	2.661269	2.330326	1.377072	0.030157	
0.591345	0.474853	0.370226	0.432887	0.255175	0.272866	0.906479	1.250153	
	Frain. 3341,) Frain. Length -2.864726 -2.573250 1.132658	Frain.shape 3341,), (83 Frain.head) Length Diameter -2.864726 -2.750043 -2.573250 -2.598876 1.132658 1.230689 1.590691 1.180300	Frain.shape, Y_Te 3341,), (836,)) Frain.head() Length Diameter Height -2.864726 -2.750043 -1.423087 -2.573250 -2.598876 -2.020857 1.132658 1.230689 0.728888 1.590691 1.180300 1.446213	3341,), (836,)) Frain.head() Length Diameter Height Whole_weight -2.864726 -2.750043 -1.423087 -1.622870 -2.573250 -2.598876 -2.020857 -1.606554 1.132658 1.230689 0.728888 1.145672 1.590691 1.180300 1.446213 2.164373	Frain.shape, Y_Test.shape 3341,), (836,)) Frain.head() Length Diameter Height Whole_weight Shucked_weight -2.864726 -2.750043 -1.423087 -1.622870 -1.553902 -2.573250 -2.598876 -2.020857 -1.606554 -1.551650 1.132658 1.230689 0.728888 1.145672 1.041436 1.590691 1.180300 1.446213 2.164373 2.661269	Train.shape, Y_Test.shape 3341,), (836,)) Train.head() Length Diameter Height Whole_weight Shucked_weight Viscera_weight -2.864726 -2.750043 -1.423087 -1.622870 -1.553902 -1.583867 -2.573250 -2.598876 -2.020857 -1.606554 -1.551650 -1.565619 1.132658 1.230689 0.728888 1.145672 1.041436 0.286552 1.590691 1.180300 1.446213 2.164373 2.661269 2.330326	Train.shape, Y_Test.shape 3341,), (836,)) Train.head() Length Diameter Height Whole_weight Shucked_weight Viscera_weight Shell_weight -2.864726 -2.750043 -1.423087 -1.622870 -1.553902 -1.583867 -1.644065 -2.573250 -2.598876 -2.020857 -1.606554 -1.551650 -1.565619 -1.626104 1.132658 1.230689 0.728888 1.145672 1.041436 0.286552 1.538726 1.590691 1.180300 1.446213 2.164373 2.661269 2.330326 1.377072	Train.shape, Y_Test.shape 3341,), (836,)) Train.head() Length Diameter Height Whole_weight Shucked_weight Viscera_weight Shell_weight Age -2.864726 -2.750043 -1.423087 -1.622870 -1.553902 -1.583867 -1.644065 -1.799838 -2.573250 -2.598876 -2.020857 -1.606554 -1.551650 -1.565619 -1.626104 -1.494839 1.132658 1.230689 0.728888 1.145672 1.041436 0.286552 1.538726 1.555152 1.590691 1.180300 1.446213 2.164373 2.661269 2.330326 1.377072 0.030157

In[88]:

```
X Test.head()
                                                                                                                                                      Out[91]:
                             Height
                                     Whole_weight
                                                  Shucked_weight
                                                                 Viscera_weight
                                                                               Shell_weight
                                                       -0.443224
                                                                     -0.343004
                 -0.079426
                           -0.466653
                                         -0.433875
       -0.199803
                                                                                 -0.325685
3784 0.799543 0.726798 0.370226 0.870348 0.755318 1.764639 0.565209 0.335156 463 -2.531611 -2.447709 -2.020857 -1.579022 -1.522362 -1.538247 -1.572219
-1.799838
       1.007740
                0.928354
                         0.848442
                                        1.390405
                                                       1.415417
                                                                     1.778325
                                                                                 0.996287
                                                                                           0.640155
                                                                                                                                                       In[92]:
Y Train.head()
                                                                                                                                                      Out[92]:
3141
                1
3521
               1
883
3627
               2
2106
Name: Sex, dtype: int64
                                                                                                                                                       In[93]:
Y Test.head()
                                                                                                                                                      Out[93]:
668
1580
               1
3784
                2
463
                1
2615
```

Name: Sex, dtype: int64

11. Build the Model

```
In[94]: from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier(n_estimators=10,criterion='entropy')

In[95]: model.fit(X_Train,Y_Train)

Out[95]:

RandomForestClassifier(criterion='entropy', n_estimators=10)

In[96]: y_predict = model.predict(X_Test)

In[97]: y_predict_train = model.predict(X_Train)
```

12. Train the Model

```
In[98]: from sklearn.metrics import accuracy_score,confusion_matrix,classification_report print('Training accuracy: ',accuracy_score(Y_Train,y_predict_train)) Training accuracy: 0.9787488775815624
```

13.Test the Model

[100]:print('Testing accuracy: ',accuracy_score(Y_Test,y_predict)) Testing accuracy: 0.5526315789473685

14. Measure the performance using Metrics

In[101]: pd.crosstab (Y_Test, y_predict)
Out[101]:

2 120 53

col_0 0 1 2

In[102]: print (classification_report(Y_Test, y_predict))

	precision	recall	f1-score	support
0	0.44	0.49	0.46	249
1	0.73	0.75	0.74	291
2	0.48	0.42	0.44	296
accuracy			0.55	836
macro avg	0.55	0.55	0.55	836
weighted avg	0.55	0.55	0.55	836

n