HEMOGLOBINOPATHIES

AMY BUENING MLS(ASCP)^{CM}

TODAY'S TOPICS

Q	Hemoglobin review	
Q	Hemoglobinopathies	
Q	Hemoglobin S	
Q	Hemoglobin C	
Q	Hemoglobin E	
Q	Hemoglobin O-Arab	
Q	Hemoglobin D and Hemoglobin G	
Q	Hemoglobin M	
Q	Compound Heterozygosity	
Q	Unstable Hemoglobin Variants	
Q	Concomitant CIS Mutations with HbS	

HEMOGLOBIN MOLECULE

- 4 globin chains
 - <u>2 α-like</u>- 141 amino acids
 - Alpha (α) and zeta (ζ)
 - $2 \text{ non-}\alpha \text{ like } (\beta \text{-like}) \text{- } 146 \text{ amino acids}$
 - Beta (β), gamma (γ), delta (δ), and epsilon (ϵ)
- 4 heme groups
 - 1 O₂ per heme and 4 per Hb

GLOBIN SYNTHESIS

Chromosome 16 (α -like genes)

• Alpha and zeta

Chromosome 11 (β -like genes)

• Beta, gamma, delta, epsilon

GLOBIN SYNTHESIS

HEMOGLOBIN DEVELOPMENT

Fetal development

- 1st three months of embryo development
 - 1 alpha-like gene (zeta) and 1 β-like gene (epsilon) are activated
 - Gower-1 ($\zeta_2 \varepsilon_2$)
- Alpha and gamma synthesis begin
 - Gower-2 ($\alpha_2 \epsilon_2$) and Portland ($\zeta_2 \gamma_2$)
- Zeta and epsilon synthesis ceases
 - Leaves alpha and gamma chains
 - Pair to produce HbF $(\alpha_2 \gamma_2)$

HEMOGLOBIN DEVELOPMENT

Birth through Adulthood

- 6 months after birth, gamma chain synthesis gradually decreases
 - Gamma chain gene silenced by transcriptional repressors
 - Replaced by beta chain synthesis
 - " γ - β switching"
 - HbA $(\alpha_2 \beta_2)$ is produced
- Delta globin gene is activated at birth and pairs with alpha globin
 - HbA₂ ($\alpha_2 \delta_2$)

	<u>Adult</u>	<u>Newborn</u>
Hb A $(\alpha_2 \beta_2)$	95%	10-40%
$\operatorname{Hb} A_2 (\alpha_2 \delta_2)$	<3.5%	0.2%
Hb F ($\alpha_2 \gamma_2$)	<1-2%	60-90%

HEMOGLOBINOPATHY

- Hemoglobinopathy- disease state involving hemoglobin molecule
 - Result from a mutation in one or more genes that affect hemoglobin synthesis
 - Genes that are mutated either:
 - Code for proteins that make up hemoglobin molecule (globin or polypeptide chain)
 - Are involved in synthesizing or regulating synthesis of the globin chains
- Qualitative= <u>Hemoglobinopathies</u>
- *
- Synthesis is normal/near normal
- Altered amino acid sequence within globin chain
 - Alter the structure and function.
- Quantitative= Thalassemia
 - Reduction in hemoglobin synthesis
 - Reduction of specific hemoglobin can cause anemia
 - Stimulates production of other hemoglobins not affected to compensate for the anemia

HEMOGLOBINOPATHIES

HEMOGLOBINOPATHIES

Nomenclature

- Originally given a letter from the alphabet... too many variants
- Currently single capital letter used along with the place of discovery
- Hb G- Philadelphia
- Hb G- Copenhagen
- Hb C- Harlem

Genetic Mutations

- More than 1200 hemoglobinopathies known to exist
- 1 or more genetic mutation that alter the amino acid sequence of polypeptide chain
- Types of mutations:
- Point mutation
- Deletion
- Insertion
- Fusion

TABLE 24.1 Genetic Abnormalities of Hemoglobin Variants

	α	β	δ	γ	Total
Point mutations with amino acid substitution	444	564	73	.97	1178
Deletions	19	37	1	1	58
Insertions	12	16	0	0	28
Duplications	1	1	0	0	2
Total	476	618	74	98	1266
Fusions		TEL A		-	9**

Rodak's Hematology, Clinical Principles and Applications 6th Edition

GENETIC MUTATION-POINT MUTATION

- Most common type of genetic mutation
- · Replacement of one nucleotide in a normal gene with a different nucleotide
 - Substitution of 1 amino acid
 - Codon triplet intact, reading frame is unaltered
- 2 point mutations are possible
 - 2 mutations in same globin gene
 - 2 AA substitutions in same gene
 - Cause >35 mutations

GENETIC MUTATION- DELETION AND INSERTION

- <u>Deletion</u>- removal of one or more nucleotides
- Insertion- addition of one or more nucleotides
- Varies whether or not the reading frame is affected
 - Disrupt the reading frame: void synthesis of corresponding globin chain
 - Quantitative thalassemia
 - Does not disrupt the reading frame
 - Hemoglobinopathies
 - Affects the structure/function
- Chain extension
 - Stop codon is mutated
 - Translation continues beyond typical last codon
 - Can cause quantitative and qualitative defects

GENETIC MUTATION- GENE FUSION

- 2 normal genes break between nucleotides, switch positions, and anneal to opposite gene
 - Head from 1 gene, tail from another gene
- Hybrid globin genes are able to be transcribed and translated if the reading frame is not disrupted and the globin chain lengths are similar
- Fusion genes will fold differently and affect hemoglobin function
- 9 fusion globin chains have been identified

ZYGOSITY

- **Zygosity** association between # gene mutations and level of severity of the resultant genetic defect
 - Normal adult gene- 4 copies of α and γ , 2 copies of β and δ
 - 4 levels of severity of α and γ (4 copies)
 - 2 levels of severity for β and δ (2 copies) *
- Inheritance patterns (β chain variants) *
 - "<u>Trait</u>"- heterozygous
 - Only 1 β gene is mutated
 - Clinically more mild
 - "<u>Disease</u>"- homozygous
 - Both β genes are mutated
 - Clinically more severe

ZYGOSITYS AFFECT ON PATHOPHYSIOLOGY

- Can predict the severities of a disease
- β-hemoglobinopathies
 - 2 severities
 - Homozygous β-hemoglobinopathies
 - Both genes mutated
 - Variant hemoglobin dominant
 - Heterozygous β-hemoglobinopathies
 - One mutated β gene and one normal gene
 - 50/50 distribution
 - Variant Hb usually there in a lesser amount than Hb A

COMMON HEMOGLOBINOPATHIES FOUND IN THE UNITED STATES

Condition	Hb Types
Sickle Cell Trait	AS
Sickle Cell Anemia	SS
Hb CTrait	AC
Hb C Disease	CC
SC Disease	SC
Hb D Trait	AD
Hb D Disease	DD
Hb E Trait	AE
Sickle β Thalassemia	S-β-Thal
Thalassemia trait	Thal minor

HEMOGLOBINOPATHIES

HEMOGLOBIN S

HB S DISEASE (SICKLE CELL DISEASE)

- Sickle Cell Disease- symptomatic hemoglobinopathies that have in common sickle cell formation and the associated crisis
 - Formations include
 - Homozygous Hb SS
 - Heterozygous Hb S with another β chain mutation
 - Hb S with Hb C or β thalassemia
- SCD most common hemoglobinopathy
 - Hb SS then variants Hb SC and Hb S- β thal
- Highest frequency found in the sub-Saharan Africa

SCD- ETIOLOGY AND PATHOPHYSIOLOGY

- Hb S structural formula α_2 β₂ 6 Glu → Val
 - Polar glutamic acid is replaced by nonpolar valine at the 6^{th} position of the β chain
- Hb S structure
 - Valine (nonpolar) extends outward to bind hydrophobic niche
 - Hydrophobic niche is not present when fully oxygenated
 - Deoxygenation that occurs naturally creates hydrophobic niche for adjacent Hb S to bind
- Hemoglobin pairs (4 Hbs) polymerize and create elongated helical formation at the core
- Outer layer of 10 Hb molecules form around this, creating a long, slender Hb S polymer
 - Less soluble RBC
 - Formation tactoids or liquid crystals of Hb S polymers that grow in length beyond RBC diameter (cause sickling)

https://slideplayer.com/slide/5985833/

SCD- ETIOLOGY AND PATHOPHYSIOLOGY

SCD- ETIOLOGY AND PATHOPHYSIOLOGY

When does sickling occur?

- Homozygotes- O₂ Saturation < 85%
- Heterozygotes- O₂ Saturation <40%

Reversible Sickle Cell

- Hb S containing RBCs that change shape due to oxygen tension
- Oxygenated- circulate as normal biconcave disc
- Deoxygenatedhemoglobin polymerize, ↑ viscosity, change shape

Irreversible Sickle Cell

- Do <u>not</u> change their shape regardless of change in oxygen tension or degree of Hb polymerization
- Seen on PB smear
- Recognized by the spleen as abnormal and removed from circulation

ARCH project MSCA

CLINICAL FEATURES OF SCD

- 8 genotypes cause severe disease
 - Hb SS, Hb S- β° thal, Severe Hb S- β+-thal, Hb SD- Punjab, Hb SO-Arab, Hb-SC-Harlem, Hb-SC-Antilles, Hb S-Quebec-CHOR1
- Symptoms of variables depend on
 - Intracellular ratio of Hb S to Hb F
 - Factors that affect vessel tone and cellular activation
- Development of symptoms
 - Symptom free until 2nd half of 1st year of life
 - 1st 6 months- mutant β chains gradually replace normal γ chains \rightarrow Hb S \uparrow , Hb F \downarrow
 - Causes hemolysis, hemolytic anemia, and splenomegaly

CRITICAL FEATURES OF SCD

<u>Crises</u>- Episodes of reoccurring pain occurred in patients with SCD

Vasoocclusive crisis (VOC)

- Hallmark of SCD
- SC blocks blood flow in the capillaries and post capillary venules
- Areas become oxygen deprived
- Pain occurs in the bones, lungs, liver, spleen, etc.
- Triggered by acidosis, hypoxia, dehydration, infection, fever, and extreme cold

Splenic sequestration and infarcts

- Sudden trapping of blood in the spleen
- ↓ in Hb
- Repeated splenic infarcts
- Scarring
- Diminished spleen tissue
- Abnormal function
- Autosplenectomy
- Evidenced by HJ and Pappenheimer bodies on PB

Acute chest syndrome

- Acute illness with fever and/or other respiratory symptoms that displays pulmonary infiltrates on a chest radiograph
- 2nd common cause of hospitalization

Avascular necrosis

- Impaired blood supply to head of femur and hummerus
- 50% of SCD develop this
- Requires PT and surgery to relieve intramedullary pressure in the head of long bones
- Can cause skin ulcers

Decreased chances of malarial infection

- Offers protection against cerebral falciparum malaria in young patients
- Malarial parasites are living organisms within RBCs and use oxygen
- Causes the cells to sickle and be removed
- ↓ # malarial organisms, ↑ time for immunity to develop

DIAGNOSIS OF SICKLE CELL DISEASE

- Chronic, normocytic, normochromic hemolytic anemia
- Sickle cells and target cells seen on peripheral smear
- Poikilocytosis
- Increased polychromasia (Retic 10-25%)
- Diagnosis of SCD is generally a 2 step process
 - Insolubility of deoxygenated Hb S in solution
 - (+) sickle solubility
 - Confirmation of presence through Hb Electrophoresis,
 HPLC, or capillary electrophoresis

https://consultqd.clevelandclinic.org/what-are-the-latest-advances-in-treating-patients-with-sickle-cell-disease/

TREATMENT OF SCD

- Allogeneic bone marrow or hematopoietic stem cell transplantation is only curative therapy
- Supportive care mainstay of SCD
 - Adequate hydration
 - Prophylactic vitamin therapy
 - Avoidance of low oxygen environments
 - Analgesics for pain
 - Aggressive antibiotic therapy at the 1st signs of infection
 - Transfusions are used to decrease blood viscosity and percentage of circulating sickle cells
 - Usually 8 or more a year
 - Must watch for iron overload, transfusion reactions and related infections

SCD COURSE AND PROGNOSIS

- Management has an increase in lifespan
- Able to pursue wide range of vocations
 - Discouraged from physical exertion, increased altitude, or temperature variations
- Newborn screenings have reduced mortality in children with SCD
- Monitoring during pregnancy
 - Requires intervention before conception, during, and after

SICKLE CELL TRAIT (HB S TRAIT, SCT)

- Heterozygous state (Hb AS)
- Hb A (60%) and Hb S (40%)
- Benign condition but will have symptoms under extreme conditions
 - Extreme hypoxia
 - Vascular occlusion with pooling sickles in spleen, focal necrosis in the brain, rhabdomyolysis and even death can occur
 - Severe respiratory infection, situations where oxygen levels are lower
 - Sickling can occur, patients may develop splenic infarcts
- Failure to concentrate urine is only consistent abnormality
 - Caused by diminished perfusion of the kidney vasa recta

TESTING FOR SCT

- PB has normal RBC morphology, few target cells
- (+) hemoglobin solubility
- Hb S and Hb A detected through electrophoresis or HPLC
- If Hb S levels less than 40% patient could also have αthalassemia or iron or folate deficiency

https://www.thebloodproject.com/target-cells/

HEMOGLOBINC

HBC

- Hb C Disease
 - Most common nonsickling variant encountered in the US
 - Found almost exclusively in the African American population
 - 3rd most common in the world
 - Structural formula $\alpha_2 \beta_2$ 6 Glu \rightarrow Lys
 - Results in a net charge of 2+
 - Forms polymers intracellularly
 - Forms crystals in an oxygenated state
 - Short, thick crystals in RBC occur in band 3 in RBC membrane nucleation center

https://slideplayer.com/slide/7778208

HB C- CLINICAL FEATURES

Hb C Disease (homozygous)

- Milder disease compared with SCD
- Mild splenomegaly and hemolysis may be present
- Vasoocclusive crisis does not occur

Hb C trait (heterozygous)

Asymptomatic

HB C- LABORATORY DIAGNOSIS

- Mild to moderate, normochromic, normocytic anemia in HbCC
- ↑ Target cells and ↑ reticulocytes
- Hexagonal crystals
 - Short, thick crystal
 - Form within RBC
 - Maybe present on PB
 - Densely stained, pyramid shaped
- Occurs under high oxygen tension
- Does not alter RBC shape
 - Less splenic sequestration
 - Less hemolysis

http://imagebank.hematology.org/image/3137/homozygous-hemoglobin-c-disease--6

HB C- LABORATORY DIAGNOSIS

- (-) Hemoglobin solubility
- Diagnosed through electrophoresis, HPLC, and nucleic acid testing
 - Hb CC Disease: No Hb A and 90% Hb C
 - Hb AC Trait: 60% Hb A and 30% Hb C
- Electrophoresis
 - Alkaline electrophoresis
 - Hb C migrates with Hb A₂, Hb E, and Hb- O-Arab
 - Acid electrophoresis
 - Migrates separately

HB C-HARLEM (HEMOGLOBIN C-GEOREGTOWN)

- Double substitution on β chain
 - Valine for glutamic acid at 6
 - Identical to Hb S substitution
 - Aspartic acid for asparagine at 73
 - Same as Hb Korle Bu
- Laboratory Diagnosis
 - May have a (+) hemoglobin solubility
 - Migrates with Hb C on alkaline electrophoresis
 - Migrates with Hb S in acid electrophoresis
- Clinical features
 - Heterozygous are asymptomatic
 - Heterozygous for Hb S and Hb C- Harlem have symptoms similar to Hb SS Disease
- Rare

HEMOGLOBIN E

HB E

- Present in Asia population
 - Prevalence of 30% in SE Asia and can be as high as 50% in border areas of Cambodia, Laos, and Thailand

https://www.mja.com.au/journal/2016/204/6/antenatal-haemoglobinopathy-screening-australia

HB E

- β chain variant

 - Insertion at 26 causes abnormal alternative splicing and decreased transcription of functional mRNA for Hb E globin chain
 - Reduce Hb E synthesis
- Mutation is both <u>quantitative</u> and <u>qualitative</u>
 - Qualitative- AA substitution
 - Quantitative- decrease production of globin chain
- Often coinherited with either α -thalaessemia, β -thalassemia or other hemoglobin variants
 - Hb E-β°-thal is the most severe

HB E

- Laboratory Diagnosis
 - Mild anemia with microcytes and target cells
 - (-) solubility test
 - Electrophoresis
 - Alkaline agar: Hb E migrates with Hb C, O-Arab and A2
 - Acid agar: Separates from Hb C but migrates with A and O-Arab
 - Main concept is differentiating between iron deficiency, β-thal trait, and Hb E-β-thal
- Treatment and prognosis
 - No therapy is required for Hb E disease and trait
 - Hb E- β °-thal is treated like β -thal major
 - Chronic transfusion therapy, iron chelation therapy, splenectomy with hypersplenism

https://doctor lib.info/hematology/rodak-hematology-clinical-principles-applications/28.html

HEMOGLOBIN O-ARAB

HB O-ARAB

- Rare disorder found in Kenya, Israel, Egypt, and Bulgaria
- Found in 0.4% of African American population
- β chain variant*
- Laboratory Diagnosis
 - (-) hemoglobin solubility
 - Alkaline agar: migrates with Hb A₂, Hb C and Hb E
 - Acid agar: differentiate from Hb C
- Clinically: minimal symptoms unless coinherited
 - Hb S-O-Arab: severe clinical symptoms similar to Hb SS
- No Treatment necessary

HEMOGLOBIN D AND HEMOGLOBIN G

HB D AND HB G

- Hb D and Hb G are a group of at least 16 β chain variants (Hb D) and 6 α chain variants (Hb G)
 - Do <u>not</u> sickle with reduced oxygen tension
 - Alkaline agar: Migrate at the same position as Hb S
 - Acid agar: migrate separately from Hb S
- Asymptomatic in heterozygous state
- Mild hemolytic anemia in homozygous state
- Hb D- Punjab and Hb-D-Los Angeles $(\alpha_2 \beta_2^{121 \text{ Glu}} \rightarrow \text{ Gln})$
 - Hb D- Punjab- 3% of population in NW India
 - Hb D- Los Angles- <2% African Americans</p>
- Hb G-Philadelphia ($\alpha_2^{68 \text{ Asn}} \rightarrow \text{Lys } \underline{\beta}_2$)
 - Most common Hb G variant encountered in African Americans

HEMOGLOBIN M

HB M

- Cause
 - Mutation in the α , β , and γ globin genes
 - All result in production of methemoglobin
- Genetic mutation result in a structural abnormality in the globin portion of the molecule
 - Usually a substitution of tyrosine amino acid for either the proximal (F8) or the distal (E7) histidine amino acid on the globin gene
- Carries iron in the ferric state (Fe³⁺)
 - Unable to carry oxygen
- Inherited as autosomal dominant disorders
- Affected individuals have 30%-50% methemoglobin
 - Less than 1% in healthy individuals
 - Will increase with ingestion of sulfonamides/oxidant drugs

HB M

- Characteristics
 - Brown blood
 - Heinz bodies on wet prep
- Diagnosis
 - Spectral absorption of hemolysate
 - Hemoglobin electrophoresis
 - Before testing, all Hb types converted to methemoglobin (addition of potassium cyanide)
 - Migration differences caused by amino acid substitutions not differences in Fe state
 - Confirmation with HPLC or DNA globin gene analysis
- Treatment
 - None
 - Diagnosis used to rule out/prevent inappropriate treatment for conditions like cyanotic heart disease

- Inheritance of 2 different β mutant genes
 - Hb S
 - β chain hemoglobinopathy or thalassemia
- Produce hemolytic anemia of vary severity
 - Hb S with Hb C, Hb D, Hb O, or β-thal
- Disorders of no consequence
 - Hb S with Hb E, Hb-G-Philadelphia, Hb Korle Bu

Hemoglobin SC

- Most common compound heterozygous syndrome that results from AA substitutions that are found on both of the two β –globin chains
- Substitutions
 - Glutamic acid replaced by valine (Hb S) at position 6 on one β-globin chain
 - Glutamic acid replaced by lysine (Hb C) at position 6 on the other β-globin chain
- Clinical features
 - Mild form of SCD but can be severe in some cases
 - Vasoocclusive episodes, moderate hemolytic anemia, and splenomegaly
 - Proliferative and severe retinopathy (more than sickle cell anemia)
- Laboratory diagnosis
 - (+) Sickle Solubility
 - CBC few sickle cells, target cells, crystal structures
 - Electrophoresis
- Treatment
 - Same as SCD

https://imagebank.hematology.org/image/3967/hemoglobin-sc-crystals--2

Hb S-β –Thalassemia

- Most common sickle cell syndrome in the Mediterranean descent
- 2nd most common heterozygous disorder
- Symptoms
 - Mild to moderate sickle cell anemia
 - Severity depends on β chain production of β -thal
 - Hb S-β° thal
 - No β globin chain
 - Symptoms similar to Hb SS
 - Hb S-β+ thal
 - Production of β globin chain at some level
 - Milder condition than patients with Hb SC

UNSTABLE HEMOGLOBIN VARIANTS

UNSTABLE HEMOGLOBIN VARIANTS

- Result from genetic mutations to globin genes
- Create Hb that precipitate in vivo
 - Produce Heinz bodies and cause hemolytic anemia
- No major clinical significance
- Increased oxygen affinity
- Unstable hemoglobin disease
 - "Congenital Heinz body anemia"
- Autosomal dominant; homozygous incompatible with life
- Mild hemolytic anemia in 25% of unstable Hb
- Examples:
 - Hb Köln
 - Hb Kurich
 - Hb Gun Hill

http://atlas.gechem.org/en/component/k2/item/1004-heinz-bodies

https://www.semanticscholar.org/topic/Bite-cell-(cell)/1867907

CONCOMITANT CIS MUTATIONS WITH HB S

CONCOMITANT CIS MUTATIONS WITH HB S

- Double substitution on the β chain
 - Seen in Hb C-Harlem, Hb S-Antilles and Hb S-Oman
- (+) sickle solubility may occur
- Alkaline agar: migrates with Hb C
- Acid agar: migrates in the Hb S position
- Clinically important when patients are compound heterozygotes for Hb S

REFERENCES

Rodak's Hematology Clinical Principles and Applications 6th edition

