```
(* Definizione della funzione *)
Clear[Eulero];
Eulero[f_, x0_, y0_, xn_, n_] :=
 Module [{h, solesatta, xi, yi, yap, yiap, intestazione,
   valori, grafico, grlinea, grpunti, gresatto, listayap},
  (* Soluzione esatta dell'equazione *)
  solesatta = DSolve[{y'[x] = f[x, y[x]], y[x0] = y0}, y[x], x];
  Print["Soluzione esatta:"];
  Print[solesatta];
  Plot[y[x] /. solesatta, \{x, x0, xn\}, AxesLabel \rightarrow \{"x", "y(x)"\}];
  (* Metodo di Eulero *)
  h = \frac{xn - x0}{n};
  (* Con ricorrenza *)
  yap[i_] := yap[i-1] + h * f[x0 + (i-1) * h, yap[i-1]];
  yap[0] = y0;
  (* Iterativo *)
  yiterativo = y0;
  listayap = Join[{y0}, N[Table[yiterativo =
       yiterativo + h * f[x0 + i * h, yiterativo], {i, 0, n - 1}]]];
  (* Crea e stampa la tabella di valori *)
  intestazione =
   \{\{"i", "x_i", "y'(x_i)", "yap(x_i)", "y(x_i)", "Errore relativo (%)"\}\};
  valori = Table[\{i, xi = x0 + i * h, f[xi, yi = y[x] /. solesatta /. x \rightarrow xi],
      yiap = listayap[[i + 1]](*yap[i]*), yi,
      Abs[yi - yiap] / yi * 100}, {i, 0, n}] // N;
  Print["Metodo di Eulero: "];
  Print[TableForm[Join[intestazione, valori]]];
  (* Genera il grafico *)
  listapunti =
   Table[{valori[[i+1]][[2]], valori[[i+1]][[4]]}, {i, 0, n}] // N;
  grlinea = Graphics[{Hue[0.8], Thickness[0.01], Line[listapunti]}];
  grpunti = ListPlot[listapunti, PlotStyle → {PointSize[0.03], Hue[0.6]},
    DisplayFunction → Identity];
  gresatto = Plot[y[x] /. solesatta, \{x, x0, xn\}, PlotStyle \rightarrow
     \{GrayLevel[0.1], Thickness[0.01]\}, DisplayFunction \rightarrow Identity];
  grafico = {grlinea, grpunti, gresatto};
  Show[grafico, Axes → True]
```

```
(* Esempi d'uso *)
Clear[g];
g[x_, y_] := x + y
(* Condizione iniziale y[0] == 1 *)
Eulero[g, 0, 1, 3, 12]
```

Soluzione esatta:

$$\{ \{ y [x] \rightarrow -1 + 2 e^{x} - x \} \}$$

Metodo di Eulero:

i	Xi	y'(x _i)	yap(x _i)	y(x _i)	Errore relativo (%)
0.	0.	1.	1.	1.	0.
1.	0.25	1.56805	1.25	1.31805	5.16299
2.	0.5	2.29744	1.625	1.79744	9.59377
3.	0.75	3.234	2.15625	2.484	13.1944
4.	1.	4.43656	2.88281	3.43656	16.1135
5.	1.25	5.98069	3.85352	4.73069	18.5421
6.	1.5	7.96338	5.12939	6.46338	20.6391
7.	1.75	10.5092	6.78674	8.75921	22.5187
8.	2.	13.7781	8.92093	11.7781	24.2584
9.	2.25	17.9755	11.6512	15.7255	25.909
10.	2.5	23.365	15.1265	20.865	27.5032
11.	2.75	30.2853	19.5331	27.5353	29.0616
12.	3.	39.1711	25.1038	36.1711	30.5969

- Graphics -

```
Clear[g];
g[x_, y_] := -x<sup>3</sup> + 6.5 x<sup>2</sup> - 11 x + 4
(* Condizione iniziale y[0] == 1 *)

Eulero[g, 0, 1, 3, 20]
```

Soluzione esatta:

$$\{\{y[x] \rightarrow 0.0833333 (12. + 48. x - 66. x^2 + 26. x^3 - 3. x^4)\}\}$$

Metodo di Eulero:

i	Xi	y'(x _i)	yap(x _i)	y(x _i)	Errore relativo (
0.	0.	4.	1.	1.	0.
1.	0.15	2.49288	1.6	1.48344	7.85771
2.	0.3	1.258	1.97393	1.76148	12.0613
3.	0.45	0.275125	2.16263	1.87344	15.4366
4.	0.6	-0.476	2.2039	1.8556	18.7702
5.	0.75	-1.01563	2.1325	1.74121	22.4722
6.	0.9	-1.364	1.98016	1.56048	26.8945
7.	1.05	-1.54138	1.77556	1.34056	32.4488
8.	1.2	-1.568	1.54435	1.1056	39.6843
9.	1.35	-1.46413	1.30915	0.876686	49.3294
10.	1.5	-1.25	1.08953	0.671875	62.1628
11.	1.65	-0.945875	0.902031	0.506186	78.2016
12.	1.8	-0.572	0.76015	0.3916	94.1139
13.	1.95	-0.148625	0.67435	0.337061	100.068
14.	2.1	0.304	0.652056	0.348475	87.1171
15.	2.25	0.765625	0.697656	0.428711	62.7335
16.	2.4	1.216	0.8125	0.5776	40.6683
17.	2.55	1.63487	0.9949	0.791936	25.6288
18.	2.7	2.002	1.24013	1.06548	16.3923
19.	2.85	2.29712	1.54043	1.38894	10.9073
20.	3.	2.5	1.885	1.75	7.71429

- Graphics -