(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-102480

(43)公開日 平成6年(1994)4月15日

(51)Int.Cl. ⁵	識別記号	庁内整理番号	FΙ	技術表示箇所
G 0 2 F 1/13	1 0 1	9315-2K		
C 0 3 B 33/037		9041 — 4 C		

審査請求 未請求 請求項の数1(全 4 頁)

(21)出願番号	特顯平4-253201	(71)出願人	000181284	
			鹿児島日本電気株式会社	
(22)出願日	平成 4 年(1992) 9 月22日		鹿児島県出水市大野原町2080	
		(72)発明者	太田 健一	
			鹿児島県出水市大野原町2080	鹿児島日本
			電気株式会社内	
		(74)代理人	弁理士 菅野 中	

(54)【発明の名称】 スクライブ装置

(57)【要約】

【目的】 ガラス基板の切断に際し、基板の厚さのばら つきに影響されないスクライブを行なうことにより、ブ レイク時の不良発生を防ぐ、

【構成】 スクライブする前に基板厚測定センサー4に て基板の厚みを測定し、この測定値に対応してカッター 高さ5を自動調整した後、スクライブを始める。これに より基板の厚さのばらつきに依存せず、スクライブによ る切り込み深さが一定となり、ブレーク時の不良発生が 低減できる。

1

【特許請求の範囲】

【請求項1】 基板厚測定センサーと、制御部とを有 し、ステージ上の絶縁基板にカッターを用いて切断用の スクライブ線をえがくスクライブ装置であって、

基板厚測定センサーは、ステージ上の絶縁基板の厚みを 測定するものであり、

制御部は、基板の厚みに対応してステージからカッター 刃先までの距離を調整するものであることを特徴とする スクライブ装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、絶縁基板切断用スクラ イブ装置に関する。

[0002]

【従来の技術】液晶表示素子の製造においては、二枚貼 り合わせたガラス基板の片面のみを切断する場合があ り、従来、図3に示す方法が取られている。

【0003】図3(a)に示すように、まず、スクライ ブ装置の超硬製もしくはダイヤモンド製カッター1でス み6を入れる。

【0004】次に図3(b)に示すように、切り込み6 を下にして、ブレイク装置のテーブル上に置き、反対側 のガラス基板上より切り込み6の部分にスキージ7を落 とし衝撃を加える。これにより、切り込み6を起点にし て、ガラス基板が分断(ブレイク)され、片面のみの切 断が可能となる。

【0005】

【発明が解決しようとする課題】従来の方法において、 歩留り良くブレイクするためには、スクライブによる切 30 示す構成図である。 り込み6の深さが重要となる。切り込み6が浅すぎる と、ブレイク装置でのブレイクができず、切り込み6が 深すぎると、切り込み6に沿ってチッピング(微少クラ ック)が発生し、ブレイク時に異常ブレイク(切断ライ ン通りに割れない)が起こる。

【0006】図4にスクライブの条件によるブレイク状 況を示す。図より切り込みの深さは、カッター1の基板 2に対する押し込み圧力9に依存し、圧力が低いと浅く なりブレイク不可となり、圧力が高いと深くなりチッピ ングが発生しやすくなる。

【0007】また、基板の厚さにも依存し、カッター高 さ設定値(ステージ上面からカッター先端までの距離) 8に対して、薄い基板の場合は切り込みが浅くなり、厚 い基板の場合は切り込みが深くなる。

【0008】ここで、図4よりカッター押し込み圧力9 が 1.0 kg/cm^2 の時が、基板の厚みばらつきに対 し、一番広いマージン(カッター高さ設定値に対し土 0.08mm)を取れる条件となっている。

【0009】しかしながら、図5に示すように、液晶表 示素子で使用するガラス基板は、貼り合わせ状態で基板 50 【0022】そこで実施例2では、スクライブラインに

毎に約 $\pm 0.1mm(2.04mm~2.24mm)$ の 範囲で厚みのばらつきがある。

【0010】これはブレーク可能範囲を超えてしまうた め、必ずブレーク不可もしくはブレーク異常不良となる 基板が発生する。

【0011】通常は図5のデータより、カッター高さ設 定値を2.16mmとし、ブレーク可能範囲を2.08 mm~2. 24mmとしている。よって、2. 08mm 未満の約3%の基板がブレーク不可不良として発生して 10 いる。

【0012】本発明の目的は、基板の厚さのばらつきに 影響されないスクライブを可能としたスクライブ装置を 提供することにある。

[0013]

【課題を解決するための手段】前記目的を達成するた め、本発明に係るスクライブ装置は、基板厚測定センサ ーと、制御部とを有し、ステージ上の絶縁基板にカッタ ーを用いて切断用のスクライブ線をえがくスクライブ装 置であって、基板厚測定センサーは、ステージ上の絶縁 クライブし、ガラス基板上の切断ラインに沿って切り込 20 基板の厚みを測定するものであり、制御部は、基板の厚 みに対応してステージからカッター刃先までの距離を調 整するものである。

[0014]

【作用】スクライブする前に基板の厚みを測定し、その 測定した値に対応してカッター高さ(ステージ上面から カッター先端までの距離)を自動調整する。

[0015]

【実施例】以下、本発明の実施例を図により説明する。 【0016】(実施例1)図1は、本発明の実施例1を

【0017】図1において、本発明は、ステージ3上の 基板2の厚みを測定する基板厚測定センサー4を設置 し、さらにセンサー4からの測定値に対応してカッター 1の高さ5を調整する制御部10を装備したものであ る。

【0018】カッター1にて基板2をスクライブする前 に、基板中央部に基板厚測定センサー4を基板に突き当 て基板厚測定を行なう。この測定値に対応してカッター 1の高さ5を制御部10により調整し、スクライブを始 40 める。

【0019】これにより、基板の厚さのバラツキに対応 してカッター高さ5を常時最適値に設定することがで き、スクライブによる切り込みが一定となる。

【0020】(実施例2)図2は、本発明の実施例2を 示す構成図である。

【0021】前記実施例1では測定位置が1ヶ所であ り、この1ヶ所で基板全体の厚さを代表しているため、 基板全面における厚みばらつきに対しては誤差が大き

8/25/2010, EAST Version: 2.4.1.1

3

沿って基板厚測定センサー4を前に、カッター1を後に して同期して走行させ、基板の厚み測定値を順次制御部 10にフィードバックし、カッター高さ5の自動調整を 行なっている。

【0023】これにより、スクライブ箇所すべてに対 し、カッター高さ5を最適値に設定でき、切り込みの深 さが一定となり、ブレイク不良が低減できるという利点 を有する。

[0024]

【発明の効果】以上説明したように本発明は、基板厚測 10 3 ステージ 定を行ない、その測定値に対応してカッター高さを自動 設定するため、常にカッター高さが最適値に設定され、 スクライブにより切り込み深さが一定となる。これによ りブレイク時の不良発生が3%から1%以下に低減でき る。

【図面の簡単な説明】

【図1】本発明の実施例1を示す構成図である。

【図1】

4

【図2】本発明の実施例2を示す構成図である。

【図3】(a),(b)は、従来のスクライブ・ブレイ ク方法を示す構成図である。

【図4】スクライブ条件によるブレイク状態を示す図で ある。

【図5】 基板毎の厚さ分布を示す図である。

【符号の説明】

- 1 カッター
- 2 基板
- 4 基板厚測定センサー
- 5 カッター高さ
- 6 切り込み
- 7 スキージ
- 8 カッター高さ設定値
- 9 カッター押し込み圧力

【図2】

基板毎の厚さ分布

