Software Engineering

http://proglang.informatik.uni-freiburg.de/teaching/swt/2009/

Exercise Sheet 3

Exercise 1: Properties of linksets (6 Points)

- 1. Which of the following linksets are well-formed, which are intra-checked, and which are inter-checked? Justify your answer.
 - $L_1 \equiv \emptyset \mid (x \approx \emptyset \vdash 1 : \mathtt{int}), (b \approx y : \mathtt{int} \vdash y > 0 : \mathtt{bool})$
 - $L_2 \equiv \emptyset \mid (x \approx \emptyset \vdash 1 : \mathtt{int}), (b \approx \emptyset \vdash y > 0 : \mathtt{bool})$
 - $L_3 \equiv y : \mathtt{bool} \mid (x \approx \emptyset \vdash 1 : \mathtt{int}), (b \approx x : \mathtt{int} \vdash y > 0 : \mathtt{bool})$
- 2. Define a linkset L_4 that is well-formed, intra-checked, but not inter-checked.

Exercise 2: Merging linksets (2 Points)

Given the two linksets

```
\begin{split} L_1 &\equiv x : \mathtt{int} \mid (b \approx y : \mathtt{int} \vdash x > y : \mathtt{bool}), (y \approx \emptyset \vdash 5 : \mathtt{int}) \\ L_2 &\equiv b : \mathtt{bool}, z : \mathtt{int} \mid (x \approx \emptyset \vdash \mathtt{if} \ b \ \mathtt{then} \ z \ \mathtt{else} \ 0 : \mathtt{int}) \end{split}
```

Merge L_1 and L_2 ; that is, compute $L_1 + L_2$.

Exercise 3: Linking (6 Points)

1. Link the following link set L; that is, execute link steps \leadsto as long as possible.

```
\begin{split} L \equiv z : \texttt{int} \mid (b \approx y : \texttt{bool}, x : \texttt{int} \vdash \texttt{if} \ y \ \texttt{then} \ x \ \texttt{else} \ z : \texttt{int}) \\ (y \approx x : \texttt{int} \vdash x > 5 : \texttt{bool}) \\ (x \approx \emptyset \vdash 6 : \texttt{int}) \end{split}
```

2. Show that the link step relation \leadsto does not preserve the intra-checked property. That is, find a linkset L with intra-checked(L), $L \leadsto L'$, but not intra-checked(L').

Exercise 4: Easy Modules (6 Points)

Consider the following Module, given in simple notation:

```
Module M
{
  import { x: int}
  export { y: int, z: bool}

  y: int = x + 23;
  z: bool = y < 42;
}</pre>
```

- 1. Give a binding judgement for the module M.
- 2. Compile the binding judgement into a linkset.