EECS 203A: HOMEWORK #3

Due: April 25, 2019

Submit your homework to the class dropbox as a single pdf that includes the images.

- 1. Consider two images. Image1 is 512×512 pixels where the first 256 columns have brightness 0 and the last 256 columns have brightness 200. Image2 is 512×512 pixels with the pattern of a chess board with an 8×8 pattern of 64×64 pixel squares that are alternatively brightness 0 and brightness 200. The histograms of Image1 and Image2 are the same. Suppose that each image is filtered by a 3×3 averaging mask where each weight in the mask is 1/9. Use pixel replication for the boundaries.
- a) Is the histogram of filtered Image1 the same as the histogram of filtered Image2? Explain.
- b) If your answer is no, submit a plot of the two histograms.
- 2. Let $f_1(x, y)$ be the 3×3 smoothing filter with nine elements each having a value of 1/9. Let $f_2(x, y)$ be the 3×3 Laplacian filter with -8 in the center of the mask.
- a) Suppose that we filter an input image using $f_2(x, y)$ and then filter the result with $f_1(x, y)$. Is this double filtering process a linear operation on the input image? Explain.
- b) If you answered yes to part a, derive the filter mask that corresponds to the double filtering process. If you answered no to part a, explain why not.
- c) Explain qualitatively the effect of this double filtering operation using these two filters on an input image. In particular, how does it compare to using only the Laplacian?
- d) Does the result of this double filtering operation depend on the order in which we apply the two filters to an input image? Explain your answer.
- 3. Let f(x,y) be the 3×3 smoothing filter with nine elements each having a value of 1/9.
- a) Suppose that we filter an input image using f(x,y) and then filter the result with f(x,y) again. Is this double filtering process a linear operation on the input image? Explain.
- b) If you answered yes to part a, derive the filter mask that corresponds to the double filtering process. If you answered no to part a, explain why not.
- c) What will be the difference in the appearance of the filtered image when using f(x, y) versus using the double filtering process?

Computer Problems:

- a) Apply an 11×11 linear averaging filter to the triangle image and the cat image. For this filter, you can let all 121 coefficients be 1 and scale the result by 1/121. Use pixel replication for the boundaries so that the input and output images are the same size. Submit the two displayable filtered images. Also submit a plot of the gray level histogram for the triangle and the cat image and the gray level histogram for the two filtered images.
- b) Repeat part a) for an 11×11 median filter. Thus, for parts a) and b), you should generate a total of four displayable images and a total of six distinct plots.