Informe de Proceso de Datos - Equipo Chancador

Alumnos: Milovan Bustamante

Diego Curin

Carrera: Ingeniería en Mantenimiento Industrial

Asignatura: Computación Aplicada

1. Lectura de datos (Read CSV)

Se cargó el archivo bruto `Chancador_Raw_Data.csv` usando el bloque Read CSV.

2. Eliminación de columnas innecesarias (Drop Columns)

Se eliminan columnas sin relevancia o vacías para evitar ruido en el análisis.

3. Renombrar columnas (Rename Columns)

Se renombran variables con nombres descriptivos para facilitar la identificación.

4. Formatear tipos de datos (Set Dtypes)

Se convierten la columna de fecha a datetime y las lecturas a numeric.

5. Indexar el tiempo (Set Index)

Se establece la columna 'Tiempo' como índice para permitir operaciones temporales.

6. Re-muestreo de datos (Resample)

Se agrupan las lecturas en intervalos de 10 minutos para regularidad a modo de ejemplo, pero en el ejecutable de Python se realizaron intervalos de tiempo de 1 hora (60 minutos "60T"), 2 horas (120 minutos "120 T") y 3 horas (180 minutos "180 T").

7. Agregación de datos (Aggregate)

Se calcula la mediana en bloques de re muestreo para mitigar valores atípicos.

8. Exportar CSV final (Write CSV)

Se exporta el DataFrame final a `Chancador_CA10T.csv` para usos posteriores.

Conclusión

Este flujo de trabajo en DataBruin nos permite procesar registros del chancador, limpiarlos, homogeneizar nombres, convertir tipos de datos, re muestrear a frecuencia fija entre otros. El archivo final `Chancador_CA10T.csv` es una base sólida para análisis de anomalías y mantenimientos predictivos.