CPSC 420 Lecture 5 : Today's announcements:

- ► HW1 available on Gradescope, due Jan 19, 23:59
- Examlet 1 on Jan 27 in class.
- ▶ Reading: Linear Programming [Intro to Algs 4th Ed. by Cormen, Leiserson, Rivest, Stein Ch. 29-29.2, pg 817]
- ▶ Reading: Maximum Flows & Minimum Cuts [Algorithms by Erickson Ch. 10]

Today's Plan

- Voronoi diagrams
- Linear Programming

Voronoi Diagram using Divide and Conquer [Shamos & Hoey '75]

This algorithm finds both VorD and CH of S.

0. Sort sites by x-coord

VorD+CHull(S)

- 1. if |S| = 1 return $VorD = \emptyset$ and $CHull = [s_1]$
- 2. if |S|=2 return VorD $=\perp$ -bisector of $\overline{s_1s_2}$ and CHull $=[s_1s_2]$
- 3. Recursively find $VorD_L$ and $CHull_L$ of $s_1, \ldots, s_{n/2}$
- 4. Recursively find $VorD_R$ and $CHull_R$ of $s_{n/2+1}, \ldots, s_n$
- 5. Merge $CHull_L$ and $CHull_R$ to get CHull
- 6. Stitch together $VorD_L$ and $VorD_R$ to get VorD
- 7. Return VorD and CHull

Merge CHull_L and CHull_R

See your Homework 1 for a (more general) O(n) time solution. The two blue lines are the upper and lower bridges.

Example from Computational Geometry by Preparate & Shamos

Manufacturing chocolate

	profit	demand
Box 1	\$1	\leq 200 boxes/day
Box 2	\$6	\leq 300 boxes/day

We can produce \leq 400 boxes/day. How many boxes of each type? x_1 is # Box 1, x_2 is # Box 2

max
$$\chi_1 + 6\chi_2$$

 $\chi_1 \leq 200$
 $\chi_2 \leq 300$
 $\chi_1 + \chi_2 \leq 400$
 $\chi_1, \chi_2 \geqslant 0$

Manufacturing chocolate

	profit	demand
Box 1	\$1	\leq 200 boxes/day
Box 2	\$6	\leq 300 boxes/day

We can produce \leq 400 boxes/day. How many boxes of each type? x_1 is # Box 1, x_2 is # Box 2

$$\max x_1 + 6x_2$$

$$x_1 \le 200$$

$$x_2 \le 300$$

$$x_1 + x_2 \le 400$$

$$x_1, x_2 > 0$$

General Problem We are given a set of variables. We want to assign real values to them so that:

- 1. They satisfy given linear equations and/or inequalities.
- 2. They maximize (or minimize) a given linear "objective" function.

General Problem We are given a set of variables. We want to assign real values to them so that:

- 1. They satisfy given linear equations and/or inequalities.
- 2. They maximize (or minimize) a given linear "objective" function.

Optimum point exists unless

```
infeasible The feasible set is empty.
```

E.g.
$$x_1 < 1$$
 and $x_1 > 3$

unbounded The feasible set is unbounded (in the direction of optimization).

E.g. max $(x_1 + x_2)$ where $x_1, x_2 \ge 0$.

Simplex algorithm Dantzig 1947

- 1. Start at a vertex v of the feasible set
- 2. While there is a neighbor v' of v with better objective value
- 3. v = v'

	profit	demand
Box 1	\$1	\leq 200 boxes/day
Box 2	\$6	\leq 300 boxes/day
Box 3	\$13	unlimited

We can produce \leq 400 boxes/day. Box 3 uses three times the filling as Box 2 and total filling is enough for 600 Box 2's per day.

	profit	demand
Box 1	\$1	\leq 200 boxes/day
Box 2	\$6	\leq 300 boxes/day
Box 3	\$13	unlimited

We can produce \leq 400 boxes/day. Box 3 uses three times the filling as Box 2 and total filling is enough for 600 Box 2's per day.

$$\max \ x_1 + 6x_2 + 13x_3$$

$$x_1 \le 200$$

$$x_2 \le 300$$

$$x_1 + x_2 + x_3 \le 400$$

$$x_2 + 3x_3 \le 600$$

$$x_1, x_2, x_3 \ge 0$$

$$\max x_1 + 6x_2 + 13x_3$$

$$x_1 \le 200$$

$$x_2 \le 300$$

$$x_1 + x_2 + x_3 \le 400$$

$$x_2 + 3x_3 \le 600$$

$$x_1, x_2, x_3 \ge 0$$

$$\max x_1 + 6x_2 + 13x_3$$

$$x_1 \le 200$$

$$x_2 \le 300$$

$$x_1 + x_2 + x_3 \le 400$$

$$x_2 + 3x_3 \le 600$$

$$x_1, x_2, x_3 \ge 0$$