\subseteq

Introdução à Investigação Operacional 4ª aula T - Resumo

Resumo - IIO - T4

Alg. Simplex – Multiplicidade de Soluções Ótimas

Maximizar F = 3. X + 3. Y	F ₁	1 1	Y 3	F1 1 0	F2	F3 0 0	T.I. 12 6	Δ _i 12/1 6/1		Quadro Inicial
sujeito a:	F ₂ F ₃	2	1	0	0	1	10	10/2	←	X = 0 ; Y = 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F	- 3	-3	0	0	0	0	Δ = 5		F = 0
2 . X + 1 . Y ≤ 10		↑	↑							
X , Y ≥ 0		Х	Υ	F ₁	F ₂	F ₃	T.I.	Δ_{i}		
	F ₁	0	5/2	1	0	-1/2	7	7/(5/2)		1ª Iteração
	F ₂	0	1/2	0	1	-1/2	1	1/(1/2)	\leftarrow	
	Х	1	1/2	0	0	1/2	5	5/(1/2)		X = 5; Y = 0
	F	0	-3/2	0	0	3/2	15	$\Delta = 2$		F = 15
			↑							
				_	_	_				
	_	Х	Y	F ₁	F ₂	F3	T.I.	∆i		2ª Iteração
	F1	0	0	1	-5	2	2	2/2	←	

 $\chi^{*}(X^{*},Y^{*}) = \lambda.(4,2) + (1-\lambda).(3,3) ; \lambda \in [0,1]$

Ruy Costa

 $F^* = 18$

Sol. óptima

3ª Iteração

 $F^* = 18$

Sol. óptima

Alg. Simplex – casos particulares

_		Χ	Υ	F ₁	F ₂	T.I.	Δ_{i}	1ª Iteração
	Υ	0	1	-1/6	2/3	23/6	_	
	Χ	1	0	-1/3	1/3	5/3	_	X = 5/3; $Y = 23/6$
	F	0	0	- 7/6	8/3	89/6	∆ = ?	F = 89/6

Sol. não óptima Sol. nã Problema com espaço de soluções ilimitado e sem sol. ótima limitada!

	Х	Υ	F ₁	F ₂	T.I.	Δį	1ª Iteração
Υ	0	1	-1/6	2/3	23/6	_	
Х	1	0	-1/3	1/3	5/3		X*= 5/3 ; Y* = 23/6
F	0	0	0	2	12	$\Delta = ?$	F* = 12
			↑		•	•	Sol. óptima não única !

 $(X^* = 5/3; Y^* = 23/6)$ é a única s.b.a que é ótima. Mas, há infinitas soluções ótimas não básicas ... (espaço de soluções ilimitado).

ű

Ruy Costa

Resumo – IIO – T4 Formulação Matricial do Simplex

Consideremos o seguinte problema de Programação Linear:

Maximizar F = 3.X + Y

sujeito a:

$$X \geq 1$$

$$Y \geq 2$$

$$X + Y \leq 5$$

$$X, Y \geq 0$$

Var.s Básicas: $(X; Y; F_1)$ Var.s Não Básicas: $(F_2; F_3)$

쓚

Var.s Básicas: $(X;Y;F_1)$ Var.s Não Básicas: $(F_2;F_3)$

$$B^{-1} = \begin{bmatrix} 0 & -1 & 1 \\ 0 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix} \qquad B^{-1}.D = \begin{bmatrix} 1 & 1 \\ -1 & 0 \\ 1 & 1 \end{bmatrix} \qquad X_B = \begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix}$$

	Х	Υ	F ₁	F_2	F_3	TI
Х	1	0	0	1	1	3
Y F₁	0	1	0	-1	0	3 2 2
F ₁	0	0	1	1	1	2
F	0	0	0	+ 2	+ 3	11

Resumo – IIO – T4

1 – Critério de Otimalidade: Analisar $r = -C_D + C_B \cdot B^{-1} \cdot D$

Se existir algum coeficiente $r_k < 0$, a solução não é ótima e entra na base a variável correspondente ao coeficiente $\mathbf{r}_{\mathbf{k}}$ com o valor mais negativo.

2 – Determinação das variáveis que pertencem à Nova Base:

Se quisermos fazer **entrar para a base a k-ésima variável**, deveremos começar por calcular o vetor $v_k = B^{-1} a_k$ onde a_k representa a k-ésima coluna da matriz A.

Em seguida, calculamos, para cada restrição, os quocientes

$$\Delta_{i} = (B^{-1}.b)_{i} / (v_{k})_{i}$$
, para $(v_{k})_{i} > 0$

Por fim, calculamos, $\Delta = \min (\Delta_i)$ com i = 1, 2, ..., m. Se $\Delta = \Delta_s$ a s-ésima variável da base deverá deixar a base.

3 - Mudança de Base: Escrever as matrizes B, D, C_B e C_D correspondentes à nova base.

Leituras de apoio:

Elementos de apoio às aulas de IIO - Caps VII e VIII - Formulação Matricial do Simplex; Alg. Simplex Revisto – ficheiro pdf pp. 67 a 81.

Disponível atividade semanal de apoio à aprendizagem no moodle!