

MITx: 14.310x Data Analysis for Social Scientists

Heli



- Module 1: The Basics of R and Introduction to the Course
- Entrance Survey
- Module 2:

   Fundamentals of
   Probability, Random

   Variables, Distributions,
   and Joint Distributions
- Module 3: Gathering and Collecting Data,
   Ethics, and Kernel
   Density Estimates
- Module 4: Joint,
   Marginal, and
   Conditional
   Distributions &
   Functions of Random
   Variable

Module 8: Causality, Analyzing Randomized Experiments, & Nonparametric Regression > Analyzing Randomized Experiments > Variance in the Average Treatment Effect - Quiz

## Variance in the Average Treatment Effect - Quiz

 $\square$  Bookmark this page

## **Question 1**

1/1 point (graded)

The variance of the average treatment effect is given by:  $V(\hat{ au}) = rac{S_c^2}{N_c} + rac{S_t^2}{N_t} - rac{S_{tc}^2}{N}$ .

What does the term  $\frac{S_t^2}{N_t}$  represent?

- ullet a. The standard deviation of the outcomes  $Y_i$  in the treatment group
- ullet b. The variance of the outcomes  $Y_i$  in the treatment group ullet
- ullet c. The average outcomes  $Y_i$  in the treatment group
- ullet d. The average of the variance of  $Y_i$  in the treatment group and in the control group

## **Explanation**

The term  $rac{S_t^2}{N_t}$  represents the variance of the outcomes  $Y_i$  in the treatment group.

- Module 5: Moments of a Random Variable,
   Applications to Auctions,
   Intro to Regression
- Module 6: Special
   Distributions, the
   Sample Mean, the
   Central Limit Theorem,
   and Estimation
- Module 7: Assessing and Deriving Estimators - Confidence Intervals, and Hypothesis Testing
- Module 8: Causality,
   Analyzing Randomized
   Experiments, &
   Nonparametric
   Regression

**Causality** 

due Nov 21, 2016 05:00 IST

<u>Analyzing Randomized</u> <u>Experiments</u>

due Nov 21, 2016 05:00 IST

Submit

You have used 1 of 2 attempts

✓ Correct (1/1 point)

## Question 2

1/1 point (graded)

The term  $\frac{S_{tc}^2}{N}$  represents the variance of the unit-level treatment effects. This cannot be directly observed, and is often ignored. Which of the following are consistent with why it would be okay to ignore this term? (Select all that apply.)

- ☑ a. If we are interested in a larger population than this particular sample, this term would drop
  from the variance in any case
- b. In applications of randomized experiments, treatment and control groups are balanced,  $S^2_{tc}$  = 0, and the term drops out overall
- c. If the treatment effect is constant, then  $\frac{S_{tc}^2}{N} = 0$  and we can disregard
- d. If the treatment effect is not constant, then using  $\frac{S_{tc}^2}{N}$  as an estimator of sampling variance is actually conservative





© All Rights Reserved



© 2016 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.















