Chap 13 : Fonctions d'une variable réelle

I. Généralités

 $A \subset \mathbb{R}$ non vide

 $(F(A,\mathbb{R}),+,\times,\cdot)$ est une \mathbb{R} -algèbre commutative :

 $(F(A,\mathbb{R}),+,\times)$ anneau commutatif (non intègre)

 $(F(A,\mathbb{R}),\cdot)$ \mathbb{R} -espace vectoriel

 $B(A,\mathbb{R})$, l'ensemble des fonctions bornées de A dans \mathbb{R} , est une sous-algèbre de $F(A,\mathbb{R})$

Relation d'ordre partiel : $f \le g \Leftrightarrow \forall x \in A, f(x) \le f(y)$

$$\max(f,g) = \begin{cases} A \to \mathbb{R} \\ x \mapsto \max(f(x), f(y)) \end{cases} = \sup\{f,g\} \text{ (max}\{f,g\} \text{ n'existe pas)}$$
$$\max(f,g) = \frac{f+g+|f-g|}{2} \quad \min(f,g) = \frac{f+g-|f-g|}{2}$$

 $f_+: x \mapsto \max(f(x), 0)$ partie positive

fpaire $\Leftrightarrow \forall x, f(-x) = f(x)$

$$\forall f \in F(A, \mathbb{R}), \exists ! (g,h) \in (F(A,\mathbb{R}))^2, \begin{cases} g \text{ paire, } h \text{ impaire} \\ g+h=f \end{cases}$$
 $g: x \mapsto \frac{f(x)+f(-x)}{2}$

$$g: x \mapsto \frac{f(x) + f(-x)}{2}$$

$$h: x \mapsto \frac{f(x) - f(-x)}{2}$$

Preuve: existence OK, unicité: $f = g + h = g' + h' \rightarrow g - g' = h - h'$ paire et impaire à la fois $\rightarrow 0$

$$f \in F(A,\mathbb{R})$$
 T-périodique si $\begin{cases} A+T=A \\ f(x+T)=x \end{cases} \Rightarrow A+nT=A, \ \ f(x+nT)=f(x)$

Preuve: récurrence, montrer que pour (-1) ça marche (double inclusion)

 $G_f = \{T \in \mathbb{R}^*, \text{ période de } f\} \cup \{0\} \quad (G,+) \text{ est un sous-groupe de } (\mathbb{R},+) \}$

Soit $f \in (A,\mathbb{R})$ T-périodique : soit G_f est dense dans \mathbb{R} , soit $\exists ! a \in \mathbb{R}_+^*, G_f = a\mathbb{Z}$ a est la (plus petite) période de f

II. Limites

I intervalle, $I = [\inf(I), \sup(I)]$

Un voisinage de $a \in \mathbb{R}$ est une partie contenant un intervalle $|a - \delta, a + \delta|, \delta > 0$

Un voisinage de $+\infty$ est un intervalle du type $]A, +\infty[$ $(A \in \mathbb{R})$

Un voisinage de $a \in I$ dans I est une partie contenant un intervalle $I \cap]a - \delta, a + \delta[$

 $a \in I, l \in \mathbb{R}, f$ converge vers l en a si : $*a \in \mathbb{R}$:

 $\forall \varepsilon > 0, \exists \delta > 0, \forall x \in I, |x - a| \le \delta \Rightarrow |f(x) - l| \le \varepsilon$

 $*a = +\infty$: $\forall \varepsilon > 0, \exists A \in \mathbb{R}, \forall x \in I, x \ge A \Longrightarrow |f(x) - l| \le \varepsilon$

Globalement : Quel que soit le voisinage V_0 de l, il existe un voisinage V de a dans I

tel que : $\forall x \in V, f(x) \in V_0 \iff f(V) \subset V_0$

La limite est unique (idem suites)

f majorée par M \Rightarrow limite inférieure à M

 $\lim_{x\to a}f=l>0 \Longrightarrow f \ \ \text{major\'ee par constante} \ \frac{l}{2}>0 \ \text{sur un voisinage de } a$

$$\begin{cases} f(x) \le g(x) \le h(x) \\ \lim_{x \to a} f(x) = \lim_{x \to a} h(x) = l \Rightarrow \lim_{x \to a} g(x) = l \end{cases}$$

$$F_{0,a}(I,\mathbb{R}) = \{f \in F(I,\mathbb{R}), \lim_{x \to a} f(x) = 0\}$$
 est un sous-espace vectoriel de $F(I,\mathbb{R})$

 $\lim_{a} f = 0$, g borné au voisinage de $a \Rightarrow \lim_{a} fg = 0$

$$\lim_{a} (f+g) = \lim_{a} f + \lim_{a} g \qquad \lim_{a} (f \times g) = \lim_{a} f \times \lim_{a} g$$

$$\mathbf{Preuve}: \ f(x)g(x) - l_1l_2 = \underbrace{g(x)}_{born\acute{e}}\underbrace{(f(x) - l_1)}_{\rightarrow 0} - l_1\underbrace{(g(x) - l_2)}_{\rightarrow 0} \rightarrow 0$$

$$\lim_{a} \frac{1}{f} = \frac{1}{\lim_{a} f}$$

Preuve: au voisinage de
$$a: \frac{1}{|f|} \le \frac{2}{|l|} \quad \frac{1}{f} - \frac{1}{l} = -\frac{1}{f!} (f-l)$$

On dit que f tend vers $\pm \infty$ en $a \in \overline{I}$ si pour tout voisinage V_0 de $\pm \infty$, il existe un voisinage V de a tq $f(V) \subset V_0$

Si f tend vers $+\infty$ et g est minorée, (f+g) et fg tendent vers $+\infty$

$$f(I) \subset J, \lim_{a} f = b \in \overline{J}, \lim_{b} g = l \Rightarrow \lim_{a} g \circ f = l$$

$$\begin{split} & \textbf{Preuve}: \ \forall \, \varepsilon > 0, \exists \, \delta > 0, f \, (I \cap [a - \delta, a + \delta]) \subset [b - \varepsilon, b + \varepsilon] \Rightarrow \forall \, \varepsilon > 0, \exists x_0, f \, (x_0) \in [b - \varepsilon, b + \varepsilon] \\ & \Rightarrow \forall \, \varepsilon > 0, J \cap [b - \varepsilon, b + \varepsilon] \neq \varnothing \Rightarrow b \in \overline{J}. \quad V_0 \text{ voisinage de } l \Rightarrow V_1 \text{ voisinage de } b \text{ dans } J, g \, (V_1 \cap J) \subset V_0 \\ & V_1 \text{ voisinage de } b \Rightarrow V \text{ voisinage de } a \text{ dans } I, f \, (V \cap I) \subset V_1 \end{split}$$

$$f \in F(I, \mathbb{R})$$
 $\lim_{a} f = l$ $\forall (u_n)_n \in I^{\mathbb{N}}$ $\lim_{n \to +\infty} u_n = a \Rightarrow \lim_{n \to +\infty} f(u_n) = l$

(Critère séquentiel) f converge en $a \Leftrightarrow \forall (u_n)_n \in I^{\mathbb{N}}$, si $\lim_{n \to +\infty} u_n = a$, $(f(u_n))_n$ convergente

Preuve: \rightarrow ok, \leftarrow : preuve de l'unicité de la limite des $f(u_n)$: $\lim f(u_n) \neq \lim f(v_n) \Rightarrow$ suite w_n avec termes pairs u_n termes impairs $v_n \rightarrow w_n$ converge vers a, donc $f(w_n)$ converge aussi (hypothèse) \rightarrow même limite La suite: contraposée

III. Continuité

f est continue en $a \in I$ si elle admet une limite en a

 $C^0(I,\mathbb{R},a) = \{ f \in F(I,\mathbb{R}) \text{ continue en } a \}$ est une sous-algèbre de $F(I,\mathbb{R})$

$$a = \sup/\inf(I), \lim_{a} f = l, \exists ! \tilde{f} \in C^{0}(I \cup \{a\}, \mathbb{R}, a)$$

On dit que f est continue sur I intervalle si $\forall a \in I, f$ continue en a

 $C^0(I,\mathbb{R}) = \{ f \in F(I,\mathbb{R}), f \text{ continue sur } I \}$ est une sous algèbre de $F(I,\mathbb{R})$

$$f \in C^0(I,\mathbb{R}) \Rightarrow f(I)$$
 est un intervalle

Preuve: on fixe γ dans [f(a), f(b)], on translate f de - γ , on pose A={x \in [a,b], g(x) \in 0}, A est maj par b, il a un sup c\neq b, on prend une suite cv vers c dans A, $\lim(g(u_n)) = g(c) \le 0$ fait par l'absurde pour montrer que g(c) = 0

L'image par une fonction continue d'un segment est un segment

Preuve: maj: abs $\exists (x_n), f(x_n) \ge n$ $a \le x_n \le b$ $\Rightarrow (x_{\varphi(n)})$ CV (BW) $\Rightarrow \lim f(x_{\varphi(n)}) = f(l) \Rightarrow p$ d borne sup f(x), suite (z_n) tq f(z_n) CV vers d, sous suite CV vers I, f(I)=d

$$f \in C^0(I, \mathbb{R}), f(I) \subset J, g \in C^0(J, \mathbb{R}) \Rightarrow g \circ f \in C^0(I, \mathbb{R})$$

f k-lipschitzienne si $\forall (x, y) \in I^2, |f(x) - f(y)|, \le k |x - y| \implies f$ continue sur I

f contractante si k-lipschitzienne, k < 1 f k-lip sur I, g k'-lip sur J, $f(I) \subset J$, $g \circ f$ kk'-lip sur I

f uniformément continue si :

$$\forall \varepsilon > 0, \exists \delta > 0, \forall (x, \frac{x_0}{\varepsilon}) \in I^2, |x - x_0| \le \delta \Longrightarrow |f(x) - f(y)| \le \varepsilon$$

 $(\neq f \text{ continue} : \forall x_0 \in I, \forall \varepsilon > 0, \exists \delta > 0, \forall x \in I, |x - x_0| \leq \delta \Rightarrow |f(x) - f(y)| \leq \varepsilon)$

Négation de l'uniforme continuité : $\exists \varepsilon > 0, \forall \delta > 0, \exists (x,y) \in I^2, |x-y| \le \delta \text{ et } |f(x)-f(y)| > \varepsilon$

$$\Leftrightarrow |x_n - y_n| \rightarrow 0, |f(x_n) - f(y_n)| \nearrow 0$$

Théorème de Heine: Toute fonction continue sur un segment est uniformément continue

Preuve: par l'absurde, suites $|x_n - y_n| \rightarrow 0$, $|f(x_n) - f(y_n)| > e$, ss-suite cv, dans [a,b]

IV. Monotonie, limite et continuité

 $f \in F(I,\mathbb{R})$ croissante sur I

Pour tout $a \in I \setminus \{\inf(I)\}$, f admet une limite à gauche $f(a^-)$ en a, $f(a^-) \le f(a)$ Si $\beta = \sup(I)$, soit f est majorée, et admet une limite finie en $\beta^$ soit $\lim f = +\infty$

$$a < b$$
 $f(a) \le f(a^+) \le f(b^-) \le f(b)$

Preuve : $A = \{f(x), x > a\}$ non minoré $\Rightarrow B \in \mathbb{R}, f(x_0) < B$ $F \nearrow \Rightarrow \forall x \in [a, x_0[, f(x) \le f(x_0) < B$ A minorée $\Rightarrow \gamma = \inf(A)$, caractérisation de la borne inf

$$(a,b) \in I^2, a < b$$
 $c \in]a,b[$ $f(b^-) \ge f(c)$ $f(a^-) \le f(c)...$

f non continue en a ssi $f(a^+) > f(a)$ ou $f(a^-) < f(a)$

 $f \in F(I,\mathbb{R})$ monotone sur I (intervalle) $\Rightarrow f$ continue ssif(I) intervalle

Preuve: contraposée (non continue \Rightarrow f(a+)>f(a-): aucune valeur entre f(a+) et f(a-))

 $f \in \mathcal{C}^0(I,\mathbb{R})$ f injective ssi strictement monotone

Preuve: contraposée: a, b, c, d, f(a)≥f(b), f(c)≤f(d), TVI

 $f \in \mathcal{C}^0(I,\mathbb{R})$ J = f(I) f bijection de I dans J ssi strictement monotone

Homéomorphisme : $f \, \mathcal{C}^0$ et bij de $I \, \mathrm{sur} \, J$, $f^{-1} \, \mathrm{continue} \, \mathrm{sur} \, J$

 $f \in \mathcal{C}^0(I, \mathbb{R}), \quad J = f(I), f \text{ bijective de } I \text{ sur } J \Rightarrow f \text{ homéomorphisme}$

V. Relations de comparaison

 $f(x) = \mathcal{O}(g(x))$ si $|f(x)| \le M |g(x)|$ sur un voisinage de a

 $f(x) = \underset{x \to a}{\mathbb{O}}(g(x)) \Leftrightarrow \exists \delta \text{ définie sur voisinage } V \text{ de a, } \forall x \in V, f(x) = \delta(x)g(x), \delta \text{ bornée}$

$$f(x) = \underset{x \to a}{\mathbb{O}}(g(x)), \ h(x) = \underset{x \to a}{\mathbb{O}}(g(x)) \quad (\alpha f + \beta h)(x) = \underset{x \to a}{\mathbb{O}}(g(x)) \quad + \quad transitivit\acute{e}$$

f(x) = o(g(x)) si $\forall \varepsilon > 0, \exists V$ voisinage de a, $\forall x \in V \cap I, |f(x)| \le \varepsilon |g(x)|$

 $f(x) = \underset{x \to a}{o}(g(x)) \Leftrightarrow \exists \, \mathcal{E}_0 \text{ définie sur voisinage } V \text{ de a, } \forall x \in V, f(x) = \mathcal{E}_0(x)g(x), \lim_a \mathcal{E}_0 = 0$

$$\alpha < \beta$$
 $x^{\alpha} = \underset{x \to +\infty}{o}(x^{\beta})$ $x^{\beta} = \underset{x \to 0^{+}}{o}(x^{\alpha})$

 $f(x) \sim g(x) \Leftrightarrow (f(x) - g(x)) = g(x)$ relation d'équivalence

 $f(x) \underset{x \to a}{\sim} g(x) \Leftrightarrow \exists \delta \text{ définie sur voisinage } V \text{ de a, } \forall x \in V, f(x) = \delta(x)g(x), \lim_{x \to a} \delta = 1$

$$f_1 \underset{a}{\sim} g_1$$
 $f_2 \underset{a}{\sim} g_2 \Rightarrow f_1 f_2 \underset{a}{\sim} g_1 g_2$
$$\frac{f_1}{f_2} \underset{a}{\sim} \frac{g_1}{g_2}$$
 $PAS + !$

 $f(x) \underset{x \to a}{\sim} g(x)$ $h(x) = \underset{x \to a}{\circ} g(x) \Longrightarrow (f+h) \underset{a}{\sim} g$

$$f(x) \underset{x \to a}{\sim} g(x)$$
 $h(x) = \underset{x \to a}{\sim} \lambda g(x) \Longrightarrow (f+h) \underset{a}{\sim} (\lambda+1)g \ (\lambda \neq -1)$

 $f(x) \underset{x \to a}{\sim} l \in \mathbb{R} \Leftrightarrow \lim_a f = l$ /!\ NE JAMAIS ECRIRE ~ 0 : cela signifie cst=0 à partir d'un certain rang /!\

VI. Fonctions à valeur complexe

On retrouve les mêmes propriétés en remplaçant les valeurs absolues par des modules, ou en n'étudiant que la partie réelle/complexe