Data Serialization From pickle to databases and HDF5

Francesc Alted

Freelance Developer and PyTables Creator

Advanced Scientific Programming in Python 2010 Autumn School, Trento, Italy

Outline

Outline

What "serialization" means?

"Serialization is the process of converting a data structure or object into a sequence of bits so that it can be stored in a file or memory buffer, or transmitted across a network connection link to be "resurrected" later in the same or another computer environment."

"The basic mechanisms are to flatten object(s) into a one-dimensional stream of bits, and to turn that stream of bits back into the original object(s)."

– From http://www.parashift.com/c++-faqlite/serialization.html

Serialization tools

There are literally zillions of serialization tools and formats (text, XML, or binary based), but well be focusing on those that are:

- Easy to use
- Space-efficient
- Fast

In particular, we are not going to discuss text-based formats (e.g. XML, CSV, JSON, YAML \dots).

Serialization tools that comes with Python

Python comes with a complete toolset of modules for serialization purposes:

- pickle, and its cousin, cPickle, for quick-and-dirty serialization.
- shelve, a persistent dictionary based on DBM databases.
- A common database API for communicating with relational databases.

Serialization tools for binary data

Additionally, there are lots of third-party libraries for specialized uses. Here will center on numerical formats:

- NPY, NPZ: NumPy own's format.
- Wrappers for HDF5, a standard de-facto format and library: PyTables, h5py.
- Wrappers for NetCDF4, a widely used library based on HDF5: netcdf4-python, Scientific.IO.NetCDF.

Outline

The pickle module

Serializes an object into a stream of bytes that can be saved to a file and later restored:

Example

```
import pickle
obj = SomeObject()
f = open(filename, 'wb')
pickle.dump(obj, f)
f.close()
# ... later on
import pickle
f = open(filename, 'rb')
obj = pickle.load(f)
f.close()
```

What pickle does

- It can serialize both basic Python data structures or user-defined classes.
- Always serializes data, not code (it tries to import classes if found in the pickle).

For security reasons, programs should not unpickle data received from untrusted sources.

Its cPickle cousin

- Implemented in C (i.e. significantly faster than pickle).
- But more restrictive (does not allow subclassing of the Pickler and Unpickler objects).
- Python 3 pickle can use the C implementation transparently.

Pickling a NumPy array

```
>>> a = np.linspace(0, 100, 1e7)
>>> time pickle.dump(a, open('p1','w'))
CPU times: user 5.89 s, sys: 0.59 s, total: 6.48 s
>>> time pickle.dump(a, open('p2','w'), pickle.HIGHEST_PROTOCOL)
CPU times: user 0.05 s, sys: 0.12 s, total: 0.16 s
>>> time cPickle.dump(a, open('p3','w'), pickle.HIGHEST_PROTOCOL)
CPU times: user 0.02 s, sys: 0.08 s, total: 0.11 s
>>> ls -sh p1 p2 p3
186M p1 77M p2 77M p3
```

Always try to use cPickle and HIGHEST_PROTOCOL

pickle/cPickle limitations

- You need to reload all the data in the pickle before you can use any part of it. That might be inconvenient for large datasets.
- Data can only be retrieved by other Python interpreters. You loose data portability with other languages.
- Not every object in Python can be serialized by pickle (e.g. extensions).

Recommendations for using pickle

- Use it mainly for small data structures.
- If you have a lot of variables that you want to save, use a dictionary for tying them together first.
- When using the IPython shell, be sure to use the very convenient %store magic (it uses pickle under the hood).

The shelve module

- Provides support for persitent objects using a special "shelf" object.
- The "shelf" behaves like a disk-based dictionary (DBM-style).
- The values of the dictionary can be any object that can be pickled.

Example with shelve

```
>>> import shelve
>>>
>>> db = shelve.open("database", "c")
>>> db["one"] = 1
>>> db["two"] = 2
>>> db["three"] = 3
>>> db.close()
>>>
>>> db = shelve.open("database", "r")
>>> for key in db.keys():
....: print repr(key), repr(db[key])
. . . . :
'one' 1
'two' 2
'three' 3
```

Pros and cons of the shelve module

Pros

Easy to retrieve just a selected set of variables.

Specially handy for large pickles.

Cons

Suffers the same problems than pickle.

Outline

What's a relational database?

- A set of tables containing data fitted into predefined categories.
- Each table (a relation) contains one or more data categories in columns.
- Each row contains a unique instance of data for the categories defined by the columns.
- Data can be accessed in many different ways without having to reorganize the tables.

Terminology

Base and derived relations

- In a relational database, all data are stored and accessed via relations.
- Relations that store data are called "base relations", and in implementations are called "tables".
- Other relations do not store data, but are computed by applying relational operations to other relations.
- These relations are sometimes called "derived relations".
- In implementations these are called "views" or "queries".

Example of relational database

PubID	Publisher	PubAddress	
03-4472822	Random House	123 4th Street, New York	
04-7733903	Wiley and Sons	45 Lincoln Blvd, Chicago	
03-4859223	O'Reilly Press	77 Boston Ave, Cambridge	
03-3920886	City Lights Books	99 Market, San Francisco	

AuthorID	AuthorName	AuthorBDay
345-28-2938	Haile Selassie	14-Aug-92
392-48-9965	Joe Blow	14-Mar-15
454-22-4012	Sally Hemmings	12-Sept-70
663-59-1254	Hannah Arendt	12-Mar-06

ISBN	AuthorID	PubID	Date	Title
1-34532-482-1	345-28-2938	03-4472822	1990	Cold Fusion for Dummies
1-38482-995-1	392-48-9965	04-7733903	1985	Macrame and Straw Tying
2-35921-499-4	454-22-4012	03-4859223	1952	Fluid Dynamics of Aquaducts
1-38278-293-4	663-59-1254	03-3920886	1967	Beads, Baskets & Revolution

Queries with SQL language

Simple query involving one single table (relation):

```
SELECT AuthorName FROM AUTHORS WHERE AuthorBDay > 1970
```

Complex query involving multiple relations:

```
SELECT AuthorName FROM AUTHORS a, BOOKS b, PUBLISHERS p
WHERE AuthorBDay > 1970
AND a.AuthorID = b.AuthorID
AND b.PubID = p.PubID
AND p.Publisher = "Random House"
GROUP BY AuthorBDay
```

Beware: complex queries can consume a lot of resources!

Relational database API specification

- The Python community has developed a standard API for accessing relational databases in a uniform way (PEP 249).
- Specific database modules (e.g. MySQL, Oracle, Postgres ...)
 follow this specification, but may add more features.
- Python comes with SQLite, a relational database accessible via the sqlite3 module.

ORM (Object Relational Mapping)

- The relational database API in Python is powerful, but pretty rough to use and not object-oriented.
- Many projects have appeared to add an object-oriented layer on top of this API:
 - SQLAlchemy
 - Django's native ORM
 - Storm
 - Elixir
 - SQLObject (the one that started it all)
 - ... probably a lot more ...

Creating a database with an ORM (Storm)

```
class Kind:
    __storm_table__ = 'kinds'
    id = Int(primary=True)
    name = Unicode()
class Thing:
    __storm_table__ = 'things'
    id = Int(primary=True)
    name = Unicode()
    description = Unicode()
    kind id = Int()
    kind = Reference(kind id, Kind.id)
db = create_database('sqlite:'); store = Store(db)
kind = Kind(name='Flowers'); store.add(kind)
thing = Thing(name='Red Rose'); thing.kind = kind;
store.add(thing)
store.commit()
```

Querying with an ORM (Storm)

```
>>> result = store.find((Kind, Thing),
... Thing.kind_id == Kind.id,
... Thing.name.like(u"% Rose %"))
>>> [(kind.name, thing.name) for kind, thing in result]
[(u'Flowers', u'Red Rose'), (u'Jars', u'Rose Vase')]
```

RDBMs highlights

They offer ACID (atomicity, consistency, isolation, durability) properties, that can be translated into:

- Referential integrity.
- Transaction support.
- Data consistency.
- + Indexing capabilities (accelerate queries in large tables). But this comes with a price...

RDBMs drawbacks

- Insertions are SLOOOW.
- Not very space-efficient.
- Not well adapted to handle large numerical datasets (no direct interface with NumPy).
- You need a knowledgeable RDBM administrator to squeeze all the performance out of them.

Outline

What's a numerical binary format?

- It is a format specialized in saving and retrieving large amounts of numerical data.
- Usually come with libraries that can understand that format.
- They range from the very simple (NPY) to rather complex and powerful (HDF5).
- There are a really huge number of numerical formats depending on the needs. Will center just on a few.

Why we need a binary format?

- They are closer to memory representation.
- ullet Their representation is space-efficient (1 byte in-memory pprox 1 bytes on disk).
- They are CPU-friendly (in general you do not have to convert from one representation to another).

NumPy: the real cornerstone of numerical interfaces

- NumPy is the standard de-facto for dealing with numerical data in-memory.
- Hence, most of the interfaces to numerical formats in the Python world use NumPy to interact with the database.
- In some cases the integration is so tight that it could be difficult to say if you are working with NumPy or the interface.

Outline

The NPY format

- Created back in 2007 for overcoming limitations of pickle for NumPy arrays as well as numpy.tofile() / numpy.fromfile() functions (see "A Simple File Format for NumPy Arrays" NEP).
- It is a binary format, so it is space-efficient.
- It comes integrated with NumPy.

NPY exposes the simplest API for NumPy

Available via save/load NumPy functions:

```
>>> data = numpy.arange(1e7)
>>> numpy.save('test.npy', data)
>>> data2 = numpy.load('test.npy')
>>> numpy.alltrue(data == data2)
True
```

Simple to use!

Memory-mapping and NPY

You can open a NPY file in memmap-mode for accessing data directly from disk:

Saving several arrays with NPZ

The NPY format has a special mode that can save several arrays in one single zip file (but no compression is used at all!):

Pros and cons of NPY

Pros:

- Binary format, so space-efficient.
- Avoids duplication of data in memory during saving/loading operations.
- Array data accessible through memory-mapping.

Cons:

- The memory mapping feature only allows to deal with files that do not exceed the available virtual memory.
- Non-standard format outside the NumPy community.
- No other features than basic input/output (e.g. no metadata allowed).

Outline

The HDF5 format

- HDF5 (Hierarchical Data Format v5) is a library and file format for storing and managing da any kind of data: http://www.hdfgroup.org/HDF5/doc/H5.format.html
- It supports an unlimited variety of datatypes, and is designed for flexible and efficient I/O and for high volume and complex data.
- Originally developed at the NCSA, and currently maintained by The THG Group, a non for-profit organization.
- HDF5 has been around for over twenty years, and has become a standard de-facto format supported by many applications (MatLab, IDL, R, Mathematica ...).

Outstanding features of HDF5

- Can store all kinds of data in a variety of ways.
- Runs on most systems.
- Lots of tools to access data.
- Long term format support (HDF-EOS, CGNS).
- Library and format emphasis on I/O efficiency and different kinds of storage.

An HDF5 "file" is a container

HDF5-suitecase.png

Structures to organize objects

HDF5-container.png

Python interfaces

h5py is an attempt to map the HDF5 feature set to NumPy as closely as possible:

- It also provides access to nearly all of the HDF5 C API (the so-called low-level API).
- Not designed to go beyond HDF5/NumPy capabilities.

PyTables builds up an additional abstraction layer on top of HDF5 and NumPy where it implements things like:

- An enhanced type system (enumerated, time, variable length types and default values supported).
- An engine for enabling complex queries and out-of-core computations (using Numexpr behind the scenes).
- Advanced indexing capabilities (Pro version).

Creating an HDF5 file

```
>>> import tables
>>> f = tables.openFile("example.h5", "w")
>>> group = f.createGroup("/","reduced_data")
>>> ds = f.createArray(group, "array", np.array([1,2,3,4]))
>>> ds
/reduced_data/array (Array(4,)) "
   atom := Int64Atom(shape=(), dflt=0)
   maindim := 0
   flavor := 'numpy'
   byteorder := 'little'
   chunkshape := None
>>> f.close()
```

Creating a table

```
>>> gen = ((i, i*2, i**3) for i in xrange(1000000))
>>> sa = numpy.fromiter(gen, dtype="i4,i8,f8")
>>> tab = f.createTable(f.root, 'table', sa)
>>> tab
/table (Table(1000000,)) "
   description := {
    "f0": Int32Col(shape=(), dflt=0, pos=0),
    "f1": Int64Col(shape=(), dflt=0, pos=1),
    "f2": Float64Col(shape=(), dflt=0.0, pos=2)}
   byteorder := 'little'
   chunkshape := (8192,)
```

Querying a table

Modifying table data

```
>>> tab[0] = (3, 3, 3.0)
>>> tab[:4]
array([(3, 3, 3.0), (1, 2, 1.0), (2, 4, 8.0), (3, 6, 27.0)].
        dtype=[('f0', '<i4'), ('f1', '<i8'), ('f2', '<f8')])
>>> tab[[1, 3]] = [(4, 4, 4.0)]*2
>>> tab[:4]
array([(3, 3, 3.0), (4, 4, 4.0), (2, 4, 8.0), (4, 4, 4.0)],
        dtype=[('f0', '<i4'), ('f1', '<i8'), ('f2', '<f8')])
>>> for row in tab.where("(f0 < 4) & (f2 <= 8.)"):
... row['f1'] = 0
... row.update()
. . .
>>> tab[:4]
array([(3, 0, 3.0), (4, 4, 4.0), (2, 0, 8.0), (4, 4, 4.0)],
       dtype=[('f0', '<i4'), ('f1', '<i8'), ('f2', '<f8')])
```

Annotating your datasets

```
>>> print tab /table (Table(1000000,)) "
>>> tab.attrs.TITLE = "sample data"
>>> print tab
/table (Table(1000000,)) 'sample data'
>>> tab.attrs.CLASS
'TABLE'
>>> tab.attrs.mycomment = "Enjoy data!"
>>> tab.attrs.complementary_data = np.array([3,2,3])
>>> tab.attrs.complementary_data
array([3, 2, 3])
```

Outline

The NetCDF4 format

- NetCDF (network Common Data Form) is a set of libraries data formats that support array-oriented scientific data.
- NetCDF4 uses HDF5 as the underlying storage layer.
- Creating a netCDF4 file with the netCDF4 library results in an HDF5 file.
- Very spread in Oceanography, Meteorology and similar disciplines.

Python interfaces for NetCDF4

Scientific.IO.NetCDF: http://dirac.cnrs-orleans.fr/ScientificPythonnetcdf4-python: http://code.google.com/p/netcdf4-python

Creating a NetCDF4 file

```
>>> from netCDF4 import Dataset
>>> rootgrp = Dataset('test.nc', 'w', format='NETCDF4')
>>> fcstgrp = rootgrp.createGroup('forecasts')
>>> analgrp = rootgrp.createGroup('analyses')
>>> print rootgrp.groups
{'analyses': <netCDF4._Group object at 0x24a54c30>,
   'forecasts': <netCDF4._Group object at 0x24a54bd0>}
>>> rootgrp.close()
```

Outline

Why compression?

- Files takes less space (the obvious reason).
- I/O speed can benefit a lot.
- If compression speed is good enough, it is a nice way to shelve arrays in-memory.

Two compression paradigms

Solid: Data is compressed and decompressed as a whole. A compressed buffer must be decompressed completely before usage. The typical case is compressing a pickle.

Chunked: Data is stored compressed in chunks and a chunk is decompressed only when it is needed. Typical case is HDF5 / NetCDF4 files (or compressed filesystems).

Outline

Creating a compressed pickle

Python comes with a series of compressors that are ready to use. The usual method is to compress a pickle:

```
>>> a = np.linspace(0, 100, 1e7)
>>> pa = cPickle.dumps(a, cPickle.HIGHEST_PROTOCOL)
>>> a.size*a.itemsize, len(pa)
(80000000, 80000135)
>>> zpa = zlib.compress(pa, 9)
>>> len(pa), len(zpa), len(pa) / len(zpa)
(80000135, 52946378, 1.5109652071006632)
>>> bloscpa = blosc.compress(pa, a.itemsize, 9)
>>> len(pa), len(bloscpa), len(pa) / len(bloscpa)
(80000135, 8028398, 9.9646448768484071)
```

I/O with a compressed pickle

Compressed pickles can be saved easily. Simply treat them as binary streams:

```
>>> f = open("my_cpickle.bin", "wb")
>>> f.write(zpa)
>>> f.close()
>>> f = open("my_cpickle.bin", "rb")
>>> zpa = f.read()
>>> f.close()
```

Unpickling a compressed pickle

Just decompress it first:

```
>>> pa = zlib.decompress(zpa)
>>> a2 = cPickle.loads(pa)
>>> np.alltrue(a == a2)
True
```

Very easy!

Be sure to use compression if you are short of disk.

Resource consumption for solid compression

Memory: You need to book some spare memory to keep the compressed pickle.

CPU: Compressors consume quite a lot of it, but you may

always find a compressor that fits your needs.

For example, for a pickle of np.linspace(0, 100, 1e7):

(all compressors with level 9)	memcpy	blosc	zlib	bzip2
final size (MB)	76	7.7	50	55
compress throughput (MB/s)	3500	3600	4.8	4.5
decompress throughput (MB/s)	3500	3500	120	9.9

Hardware: 2 x Intel E5520 @ 2.27GHz, 8 MB third level cache.

Outline

Chunked compression

- Data is stored compressed in chunks (on-disk or in-memory) and chunks are decompressed when needed only.
- HDF5 / NetCDF4 support this paradigm.
- Saves disk and memory resources and may, in some situations, even accelerate the I/O speed.

Examples with PyTables/HDF5

- PyTables includes support for a fair number of compressors:
 Zlib, Bzip2, LZO and Blosc.
- It also supports "shuffle", an interesting filter designed to improved compression ratios.
- You can choose whatever combination that proves to be more convenient for your needs.

Querying compressed data

The dataset is a table with real data used in astronomy:

- 30 columns, most of them floating points and some ints
- Around 77000 entries
- \bullet Query: all entries where "ra" > 19 (3% selectivity)

(all compressors with level 5)	no compr	blosc	zlib	bzip2
table size (MB)	10	5.3	4.7	4.6
creation throughput (MB/s)	330	250	22	7.7
query throughput (MB/s)	170	140	38	10

Effect of chunked compression when writing large datasets

Effect of chunked compression when reading large datasets

When should you use compression?

- Your data has to be compressible (sparse matrices, time series, data with low entropy, ...).
- Whether your disk space is tight or your datasets are large.
- You want to optimize I/O speed.
- It's fun!

Summary

- Pickle is the most basic, but still powerful, way to serialize
 Python data. But it is mainly meant for small datasets and it
 is not portable.
- Relational databases are portable, mature and solid as a rock.
 However, they do not interact well with NumPy and write performance is pretty lame.
- HDF5 / NetCDF4 formats show best performance, Python APIs interacts well with NumPy and are extremely portable. They lack safety features.
- Using compression allows you to deal with more data using the same resources. In general, they can save I/O time to disk.

More Info

David Beazley Python – Essential Reference Addisson-Wesley, 2009

Robert Kern
NPY: A Simple File Format for NumPy Arrays

NumPy Enhancement Proposal, December 2007

► The HDF Group What is HDF5?

http://www.hdfgroup.org/HDF5/whatishdf5.html

Thank You!

Contact:

faltet@pytables.org