## CSE215 Foundations of Computer Science

Instructor: Zhoulai Fu

**State University of New York, Korea** 

### Agenda

- Pigeonhole principle
- Inverse functions

### The Pigeonhole Principle

### Intuition

 Imagine there is a set A of pigeons and a set B of pigeonholes, and all the pigeons fly into the pigeonholes. You can think of this as describing a function f : A → B, where pigeon X flies into pigeonhole f(X).



## The Pigeonhole Principle (function version)

Suppose *A* and *B* are finite sets and  $f: A \rightarrow B$  is any function. Then:

• If |A| > |B|, then f is not injective.

### Example 1

- Prove the following statement: There are at least two people in Incheon with the same number of hairs on their heads.
- We accept two facts. First, the population of Incheon is around 3 million. Second, it is a biological fact that every human head has fewer than one million hairs.

### Solution

Let A be the set of all people of Incheon and let B = {0,1,2,3,4,...,1000000}. Let f: A → B be the function for which f (x) equals the number of hairs on the head of x. Since |A| > |B|, the pigeonhole principle asserts that f is not injective. Thus there are two people of Incheon x and y for whom f(x) = f (y), meaning that they have the same number of hairs on their heads.

### Example 2

Prove the following statement: If A is any set of 10 integers between 1 and 100, then there exist two different subsets X ⊆ A and Y ⊆ A for which the sum of elements in X equals the sum of elements in Y.

Prove the following statement: If A is any set of 10 integers between 1 and 100, then there exist two different subsets X ⊆ A and Y ⊆ A for which the sum of elements in X equals the sum of elements in Y.

To illustrate what this proposition is saying, consider the random set

$$A = \{5, 7, 12, 11, 17, 50, 51, 80, 90, 100\}$$

of 10 integers between 1 and 100. Notice that A has subsets  $X = \{5,80\}$  and  $Y = \{7,11,17,50\}$  for which the sum of the elements in X equals the sum of those in Y. If we tried to "mess up" A by changing the 5 to a 6, we get

$$A = \{6, 7, 12, 11, 17, 50, 51, 80, 90, 100\}$$

which has subsets  $X = \{7, 12, 17, 50\}$  and  $Y = \{6, 80\}$  both of whose elements add up to the same number (86). The proposition asserts that this is always possible, no matter what A is. Here is a proof:

### Solution

*Proof.* Suppose  $A \subseteq \{1,2,3,4,...,99,100\}$  and |A| = 10, as stated. Notice that if  $X \subseteq A$ , then X has no more than 10 elements, each between 1 and 100, and therefore the sum of all the elements of X is less than  $100 \cdot 10 = 1000$ . Consider the function

$$f: \mathcal{P}(A) \to \{0, 1, 2, 3, 4, \dots, 1000\}$$

where f(X) is the sum of the elements in X. (Examples:  $f(\{3,7,50\}) = 60$ ;  $f(\{1,70,80,95\}) = 246$ .) As  $|\mathscr{P}(A)| = 2^{10} = 1024 > 1001 = |\{0,1,2,3,\ldots,1000\}|$ , it follows from the pigeonhole principle that f is not injective. Therefore there are two unequal sets  $X,Y \in \mathscr{P}(A)$  for which f(X) = f(Y). In other words, there are subsets  $X \subseteq A$  and  $Y \subseteq A$  for which the sum of elements in X equals the sum of elements in Y.

 Prove that if six numbers are chosen at random, then at least two of them have the same remainder when divided by 5.

### Solution

- Suppose we randomly choose 6 integers.
- Let A be the set of the six integers.
- Let B the the set {0,1,2,3,4}
- Let f: A -> B be the function defined as f(a) = a mod 5
- Then f cannot be one-to-one because |A|>|B|
- Therefore there exists a1, a2 of A such that f(a1) = f(a2)

 Prove that if a is a natural number, then there exist two unequal natural numbers k and I for which a^k – a^I is divisible by 10.

### Solution

- Suppose we randomly choose a natural number "a".
- Let f: N -> {0,1,2,...,9} be a function defined as f(k) = last digit of a^k
- Following the pigeonhole principle, f cannot be injective.
- Thus there exists k and I such that f(k) = f(I)
- Thus a^k and a^l have the same last digit. Thus a^k a^l is a multiple of 10.

# One-to-one correspondence (or bijective functions)

### Important Note

- No need to know how to prove bijectivity, although it helps
- But we we need to be able to determine if a function is bijective

#### One-to-one correspondences

#### Definition

• A one-to-one correspondence (or bijection) from a set X to a set Y is a function  $F:X\to Y$  that is both one-to-one and onto.

### Example

#### **Problem**

• Define  $F: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$  by the rule F(x,y) = (x+y,x-y) for all  $(x,y) \in \mathbb{R} \times \mathbb{R}$ . Is F a one-to-one correspondence? Prove or give a counterexample.

#### Proof

To show that F is a one-to-one correspondence, we need to show that:

- 1. F is one-to-one.
- 2. F is onto.

#### Proof (continued)

#### Proof that F is one-to-one.

Suppose that  $(x_1, y_1)$  and  $(x_2, y_2)$  are any ordered pairs in  $\mathbb{R} \times \mathbb{R}$  such that  $F(x_1, y_1) = F(x_2, y_2)$ .

$$\implies (x_1 + y_1, x_1 - y_1) = (x_2 + y_2, x_2 - y_2)$$

 $(:: \mathsf{Defn.} \ \mathsf{of} \ F)$ 

$$\implies x_1 + y_1 = x_2 + y_2 \text{ and } x_1 - y_1 = x_2 - y_2$$

(: Defn. of equality of ordered pairs)

$$\implies x_1 = x_2 \text{ and } y_1 = y_2$$

(:. Solve the two simultaneous equations)

$$\implies (x_1, y_1) = (x_2, y_2)$$

(: Defn. of equality of ordered pairs)

Hence, F is one-to-one.

#### Proof (continued)

#### Proof that F is onto.

Suppose (u,v) is any ordered pair in the co-domain of F. We will show that there is an ordered pair in the domain of F that is sent to (u,v) by F.

Let  $r=\frac{u+v}{2}$  and  $s=\frac{u-v}{2}$ . The ordered pair (r,s) belongs to  $\mathbb{R}\times\mathbb{R}.$  Also,

$$\begin{split} &F(r,s)\\ &=F(\frac{u+v}{2},\frac{u-v}{2}) \quad (\because \text{ Defn. of } F)\\ &=(\frac{u+v}{2}+\frac{u-v}{2},\frac{u+v}{2}-\frac{u-v}{2}) \quad (\because \text{ Substitution})\\ &=(u,v) \quad (\because \text{ Simplify})\\ &\text{Hence, } F \text{ is onto.} \end{split}$$

#### Problem 3. [5 points]

Let  $X = \{1, 2, 3\}$ ,  $Y = \{1, 2, 3, 4\}$  and  $Z = \{1, 2\}$ . Use arrow diagrams to define functions.

- 1. Define a function  $f: X \to Y$  that is one-to-one but not onto.
- 2. Define a function  $g: X \to Z$  that is onto but not one-to-one. 3. Define a function  $h: X \to X$  that is neither one-to-one nor onto.
- 4. Define a function  $k:X\to X$  that is one-to-one and onto but is not the identity function on X.

A function  $f: Z \times Z \to Z \times Z$  is defined as f(m,n) = (m+n, 2m+n).

Check if the function f is bijective

Consider the function  $\theta : \{0,1\} \times \mathbb{N} \to \mathbb{Z}$  defined as  $\theta(a,b) = (-1)^a b$ . Is  $\theta$  injective? Is it surjective?