Beyond Sparse Graphical Models: Incorporating Mixtures and Residuals

Anima Anandkumar

U.C. Irvine

Data Deluge and Data Desert

- Current technologies unable to handle data deluge.
- Current algorithms unable to handle data desert.

High-dimensional data: Many variables, few samples

• Qualitative: Graph structure(s).

• Quantitative: Interaction strengths.

• Qualitative: Graph structure(s).

• Quantitative: Interaction strengths.

Steps

- Estimate structure(s) and parameters from samples.
- Employ model to predict future behavior.

• Qualitative: Graph structure(s).

• Quantitative: Interaction strengths.

Steps

- Estimate structure(s) and parameters from samples.
- Employ model to predict future behavior.

Challenges

- Computational complexity: Large no. of variables.
- Sample complexity: Fewer observations.
- Latent or Hidden Variables: Unobserved influences.
- Parsimony vs. Faithful representation

• Qualitative: Graph structure(s).

• Quantitative: Interaction strengths.

Steps

- Estimate structure(s) and parameters from samples.
- Employ model to predict future behavior.

Challenges

- Computational complexity: Large no. of variables.
- Sample complexity: Fewer observations.
- Latent or Hidden Variables: Unobserved influences.
- Parsimony vs. Faithful representation

Goals

Tractable models, Novel algorithms, Provable guarantees, Applications.

Motivating Example: Topic Modeling

Data: word counts in documents. Graph: Topic-word relationships.

Motivating Example: Topic Modeling

Data: word counts in documents. Graph: Topic-word relationships.

Independence models

Marginal Independence

$$X_u \perp \!\!\! \perp X_v$$

Motivating Example: Topic Modeling

Data: word counts in documents. Graph: Topic-word relationships.

Independence models

Marginal Independence $X_{u} \perp X_{v}$

Markov/graphical models

Conditional Independence $X_u \perp X_v | X_S$

Motivating Example: Topic Modeling

Data: word counts in documents. Graph: Topic-word relationships.

Independence models

Marginal Independence $X_u \perp \!\!\! \perp X_v$

Markov/graphical models

Conditional Independence $X_u \perp X_v | X_S$

Shortcoming

A single independence/Markov graph may not capture all the relationships

Motivating Example: Topic Modeling

Data: word counts in documents. Graph: Topic-word relationships.

Independence models

Marginal Independence $X_u \perp X_v$

Markov/graphical models

Conditional Independence $X_u \perp X_v | X_S$

Shortcoming

A single independence/Markov graph may not capture all the relationships

Solution: High-dimensional modeling via multiple graphs

High-dimensional Modeling via Multiple Graphs

Graphical Model Mixtures

- Multiple graphs: context specific dependencies
- Hidden context
- Learning guarantees

High-dimensional Modeling via Multiple Graphs

Graphical Model Mixtures

- Multiple graphs: context specific dependencies
- Hidden context
- Learning guarantees

Markov+Independence Models

- Multiple graphs: different statistical relationships
- Markov and Independence Graphs
- Efficient decomposition

High-dimensional Modeling via Multiple Graphs

Graphical Model Mixtures

- Multiple graphs: context specific dependencies
- Hidden context
- Learning guarantees

Markov+Independence Models

- Multiple graphs: different statistical relationships
- Markov and Independence Graphs
- Efficient decomposition

Novel Approaches Beyond Sparse Graphical Modeling

State of Art Approaches

Learning Sparse Graphical Models

- Combinatorial: Bresler, Mossel & Sly. A*, Tan & Willsky.
- Convex: Meinshausen & Bühlmann. Ravikumar, Wainwright & Lafferty.

Learning with Latent Variables

- Trees: Erdös, et. al., Daskalakis, Mossel & Roch. Choi, Tan, A* & Willsky.
- Loopy models: Chandrasekaran, Parrilo & Willsky. A* & Valluvan.

State of Art Approaches

Learning Sparse Graphical Models

- Combinatorial: Bresler, Mossel & Sly. A*, Tan & Willsky.
- Convex: Meinshausen & Bühlmann. Ravikumar, Wainwright & Lafferty.

Learning with Latent Variables

- Trees: Erdös, et. al., Daskalakis, Mossel & Roch. Choi, Tan, A* & Willsky.
- Loopy models: Chandrasekaran, Parrilo & Willsky. A* & Valluvan.

Learning Mixture Models

- Gaussian Mixtures: Dasgupta. Kannan et al. Chaudhuri et al.
 - Separation condition for mixture components
- Method of Moments: Prony, Belkin & Sinha. Moitra & Valiant.
 - ► Comp. & sample complexities exponential in no. of components
- Latent Class Models: Chang. Hsu, Kakade & Zhang. Mossel & Roch.
 - Mixtures of discrete product distributions.

^{*}Special EECS Seminar, March 12, 2012.

Outline

- Introduction
- Decomposition of Graphical Model Mixtures
 - Estimation of Union Graph Structure
 - Parameter Estimation of Mixture Components
- 3 Decomposition into Markov and Independence Domains
- 4 Conclusion

Data processing inequality for Markov chains

$$I(X_1; X_3) \le I(X_1; X_2), I(X_2; X_3).$$

Tree Structure Estimation (Chow and Liu '68)

• MLE: Max-weight tree with estimated mutual information weights

Data processing inequality for Markov chains

$$I(X_1; X_3) \le I(X_1; X_2), I(X_2; X_3).$$

Tree Structure Estimation (Chow and Liu '68)

- MLE: Max-weight tree with estimated mutual information weights
- Pairwise statistics suffice

Data processing inequality for Markov chains

$$I(X_1; X_3) \le I(X_1; X_2), I(X_2; X_3).$$

Tree Structure Estimation (Chow and Liu '68)

- MLE: Max-weight tree with estimated mutual information weights
- Pairwise statistics suffice
- n samples and p nodes

Sample complexity:
$$\frac{\log p}{n} = O(1)$$
.

Data processing inequality for Markov chains

$$I(X_1; X_3) \le I(X_1; X_2), I(X_2; X_3).$$

Tree Structure Estimation (Chow and Liu '68)

- MLE: Max-weight tree with estimated mutual information weights
- Pairwise statistics suffice
- n samples and p nodes

Sample complexity:
$$\frac{\log p}{n} = O(1)$$
.

Efficient inference using belief propagation

Data processing inequality for Markov chains

$$I(X_1; X_3) \le I(X_1; X_2), I(X_2; X_3).$$

Tree Structure Estimation (Chow and Liu '68)

- MLE: Max-weight tree with estimated mutual information weights
- Pairwise statistics suffice
- n samples and p nodes

Sample complexity:
$$\frac{\log p}{n} = O(1)$$
.

Efficient inference using belief propagation

What other models are tractable for learning and inference?

Tree Mixture Model

- Each component is a tree model
- Class variable is latent or hidden

Tree Mixture Model

- Each component is a tree model
- Class variable is latent or hidden

Why use tree mixtures?

- Efficient Inference: BP on component trees and combining them.
- Similarly marginalization and sampling also efficient.

Tree Mixture Model

- Each component is a tree model
- Class variable is latent or hidden

Why use tree mixtures?

- Efficient Inference: BP on component trees and combining them.
- Similarly marginalization and sampling also efficient.

Learning Tree Mixtures?

Tree Mixture Model

- Each component is a tree model
- Class variable is latent or hidden

Why use tree mixtures?

- Efficient Inference: BP on component trees and combining them.
- Similarly marginalization and sampling also efficient.

Learning Tree Mixtures? Alternatives to EM (Meila & Jordan)?

Tree Mixture Model

- Each component is a tree model
- Class variable is latent or hidden

Why use tree mixtures?

- Efficient Inference: BP on component trees and combining them.
- Similarly marginalization and sampling also efficient.

Learning Tree Mixtures? Alternatives to EM (Meila & Jordan)?

Our approach

- Approximating graphical model mixtures with a tree mixture model
- Efficient algorithms with guarantees to learn best approximation

Tree Mixture Model

- Each component is a tree model
- Class variable is latent or hidden

Why use tree mixtures?

- Efficient Inference: BP on component trees and combining them.
- Similarly marginalization and sampling also efficient.

Learning Tree Mixtures? Alternatives to EM (Meila & Jordan)?

Our approach

- Approximating graphical model mixtures with a tree mixture model
- Efficient algorithms with guarantees to learn best approximation

Novel approach to learning tree mixture approximations

Our Approach

- Consider data from graphical model mixture
- Output tree mixture: best tree approx. of each component

Our Approach

- Consider data from graphical model mixture
- Output tree mixture: best tree approx. of each component

Steps

Our Approach

- Consider data from graphical model mixture
- Output tree mixture: best tree approx. of each component

Steps

Estimation of union graph

Our Approach

- Consider data from graphical model mixture
- Output tree mixture: best tree approx. of each component

Steps

Estimation of union graph

Our Approach

- Consider data from graphical model mixture
- Output tree mixture: best tree approx. of each component

Steps

- Estimation of union graph
- Estimation of pairwise moments in each component

Our Approach

- Consider data from graphical model mixture
- Output tree mixture: best tree approx. of each component

Steps

- Estimation of union graph
- Estimation of pairwise moments in each component
- Tree approximation of each component via Chow-Liu algorithm.

Our Approach

- Consider data from graphical model mixture
- Output tree mixture: best tree approx. of each component

Steps

- Estimation of union graph
- Estimation of pairwise moments in each component
- Tree approximation of each component via Chow-Liu algorithm.

Efficient Learning of Tree Mixture Approximations

Outline

- Introduction
- Decomposition of Graphical Model Mixtures
 - Estimation of Union Graph Structure
 - Parameter Estimation of Mixture Components
- 3 Decomposition into Markov and Independence Domains
- 4 Conclusion

• First consider a graphical model with no latent variables

Markov Property of Graphical Models

$$X_u \perp X_v | X_S \iff I(X_u; X_v | X_S) = 0$$

• First consider a graphical model with no latent variables

Markov Property of Graphical Models

$$X_u \perp X_v | X_S \iff I(X_u; X_v | X_S) = 0$$

• First consider a graphical model with no latent variables

Markov Property of Graphical Models

$$X_u \perp X_v \mid X_S \iff I(X_u; X_v \mid X_S) = 0$$

$$P(X_u = i, X_v = j | \mathbf{X}_S = k) = P(X_u = i | \mathbf{X}_S = k) \qquad P(X_v = j | \mathbf{X}_S = k)$$

$$P(X_v = j | \mathbf{X}_S = k)$$

• First consider a graphical model with no latent variables

Markov Property of Graphical Models

$$X_u \perp X_v \mid X_S \iff I(X_u; X_v \mid X_S) = 0$$

$$P(X_{u} = i, X_{v} = j | X_{S} = k) = P(X_{u} = i | X_{S} = k) P(X_{v} = j | X_{S} = k)$$

$$M_{u,v,\{S;k\}} := [P(X_{u} = i, X_{v} = j, X_{S} = k)]_{i,j}.$$

$$M_{u,v,\{S;k\}} = P(X_{u} = i, X_{v} = j, X_{S} = k)$$

• First consider a graphical model with no latent variables

Markov Property of Graphical Models

$$X_u \perp X_v \mid X_S \iff \operatorname{Rank}(M_{u,v,\{S;k\}}) = 1$$

$$P(X_u = i, X_v = j | \mathbf{X}_S = k) = P(X_u = i | \mathbf{X}_S = k) \quad P(X_v = j | \mathbf{X}_S = k)$$

$$M_{u,v,\{S:k\}} := [P(X_u = i, X_v = j, \mathbf{X}_S = k)]_{i,j}.$$

$$M_{u,v,\{S;k\}}$$
 =

• First consider a graphical model with no latent variables

Markov Property of Graphical Models

$$X_u \perp X_v \mid X_S \iff \operatorname{Rank}(M_{u,v,\{S;k\}}) = 1$$

Alternative Test for Conditional Independence?

$$P(X_{u} = i, X_{v} = j | X_{S} = k) = P(X_{u} = i | X_{S} = k) P(X_{v} = j | X_{S} = k)$$

$$M_{u,v,\{S;k\}} := [P(X_{u} = i, X_{v} = j, X_{S} = k)]_{i,j}.$$

$$M_{u,v,\{S;k\}} = P(X_{u} = i, X_{v} = j, X_{S} = k)$$

Rank Test on Pairwise Probability Matrices

• Dimension of latent H is r and each observed variable is d > r.

- Dimension of latent H is r and each observed variable is d > r.
- First assume Markov graph is the same for all components.

- Dimension of latent H is r and each observed variable is d > r.
- First assume Markov graph is the same for all components.

 $X_u \not\perp X_v | \mathbf{X}_S$

- Dimension of latent H is r and each observed variable is d > r.
- First assume Markov graph is the same for all components.

$$X_u \not\perp \!\!\! \perp X_v | \mathbf{X}_S$$

- Dimension of latent H is r and each observed variable is d > r.
- First assume Markov graph is the same for all components.

 $X_u \not\perp X_v | \mathbf{X}_S$

- Dimension of latent H is r and each observed variable is d > r.
- First assume Markov graph is the same for all components.

$$X_u \perp X_v | X_S, H$$

- Dimension of latent H is r and each observed variable is d > r.
- First assume Markov graph is the same for all components.

$$X_u \perp X_v \mid X_S, H$$

$$P(X_u, \mathbf{X}_v | \mathbf{X}_S) = \sum_{h=1}^r P(X_u | \mathbf{X}_S, \mathbf{H} = \mathbf{h}) P(\mathbf{H} = \mathbf{h} | \mathbf{X}_S) P(X_v | \mathbf{X}_S, \mathbf{H} = \mathbf{h})$$

$$P(\mathbf{H} = \mathbf{h} | \mathbf{X}_S)$$

$$P(X_v|X_S, \mathbf{H} = \mathbf{h})$$

- Dimension of latent H is r and each observed variable is d > r.
- First assume Markov graph is the same for all components.

$$X_u \perp X_v \mid X_S, H$$

$$M_{u,v,\{S;k\}} := [P(X_u = i, X_v = j, X_S = k)]_{i,j}.$$

$$P(X_u, X_v | \mathbf{X}_S) = \sum_{k=1}^r P(X_u | \mathbf{X}_S, \mathbf{H} = \mathbf{h}) P(\mathbf{H} = \mathbf{h} | \mathbf{X}_S) P(X_v | \mathbf{X}_S, \mathbf{H} = \mathbf{h})$$

$$P(X_u|\mathbf{X}_S, \mathbf{H} = \mathbf{h})$$

$$P(\mathbf{H} = \mathbf{h} | \mathbf{X}_S)$$

$$P(X_{v}|X_{S}, \mathbf{H} = \mathbf{h})$$

- Dimension of latent H is r and each observed variable is d > r.
- First assume Markov graph is the same for all components.

$$X_u \perp X_v \mid X_S, H$$
 \iff $\operatorname{Rank}(M_{u,v,\{S;k\}}) = r$

$$M_{u,v,\{S;k\}} := [P(X_u = i, X_v = j, X_S = k)]_{i,j}.$$

$$d \times r$$

$$P(X_u, X_v | \mathbf{X}_S) = \sum_{h=1}^r P(X_u | \mathbf{X}_S, \mathbf{H} = \mathbf{h}) P(\mathbf{H} = \mathbf{h} | \mathbf{X}_S) P(X_v | \mathbf{X}_S, \mathbf{H} = \mathbf{h})$$

$$P(\mathbf{X}_{\mathbf{v}}|\mathbf{X}_S, \mathbf{H} = \mathbf{h})$$

- Dim(H) is r and each observed variable is d > r.
- G_{\cup} : union of Markov graphs of components.
- η : Bound on separators btw. node pairs in G_{\cup} .
- $M_{u,v,\{S;k\}} := [P(X_u = i, X_v = j, X_S = k)]_{i,j}$

Declare
$$(u,v)$$
 as edge if $\min_{\substack{S\subset V\setminus\{u,v\}\\|S|\leq \eta}}\max_{k\in\mathcal{X}^{|S|}}\mathrm{Rank}(M_{u,v,\{S;k\}};\xi_{n,p})>r.$

- Dim(H) is r and each observed variable is d > r.
- G_{\cup} : union of Markov graphs of components.
- η : Bound on separators btw. node pairs in G_{\cup} .
- $M_{u,v,\{S;k\}} := [P(X_u = i, X_v = j, X_S = k)]_{i,j}$

Declare
$$(u,v)$$
 as edge if $\min_{\substack{S \subset V \setminus \{u,v\} \\ |S| \leq \eta}} \max_{k \in \mathcal{X}^{|S|}} \mathrm{Rank}(M_{u,v,\{S;k\}}; \xi_{n,p}) > r.$

Small $\eta \Rightarrow$ computationally efficient, uses only low order statistics.

- Dim(H) is r and each observed variable is d > r.
- G_{\cup} : union of Markov graphs of components.
- η : Bound on separators btw. node pairs in G_{\cup} .
- $M_{u,v,\{S;k\}} := [P(X_u = i, X_v = j, X_S = k)]_{i,j}$

Declare
$$(u,v)$$
 as edge if $\min_{\substack{S\subset V\setminus\{u,v\}\\|S|\leq \eta}}\max_{k\in\mathcal{X}^{|S|}}\operatorname{Rank}(M_{u,v,\{S;k\}};\xi_{n,p})>r.$

Small $\eta \Rightarrow$ computationally efficient, uses only low order statistics.

Examples of graphs G_{\cup} with small η

- Mixture of product distributions: G_{\cup} is trivial and $\eta = 0$.
- Mixture on same tree: G_{\cup} is a tree and $\eta = 1$.
- Mixture on arbitrary trees: G_{\cup} is union of r trees and $\eta = r$.

- Dim(H) is r and each observed variable is d > r.
- G_{\cup} : union of Markov graphs of components.
- η : Bound on separators btw. node pairs in G_{\cup} .
- $M_{u,v,\{S;k\}} := [P(X_u = i, X_v = j, X_S = k)]_{i,j}$

Declare
$$(u,v)$$
 as edge if $\min_{\substack{S\subset V\setminus\{u,v\}\\|S|\leq \eta}}\max_{k\in\mathcal{X}^{|S|}}\mathrm{Rank}(M_{u,v,\{S;k\}};\xi_{n,p})>r.$

Small $\eta \Rightarrow$ computationally efficient, uses only low order statistics.

Examples of graphs G_{\cup} with small η

- Mixture of product distributions: G_{\cup} is trivial and $\eta = 0$.
- Mixture on same tree: G_{\cup} is a tree and $\eta = 1$.
- Mixture on arbitrary trees: G_{\cup} is union of r trees and $\eta = r$.

Simple Test for Estimation of Union Graph of Mixtures

Guarantees on Rank Test

Theorem (A., Hsu, Kakade '12)

Rank test recovers graph structure G_{\cup} correctly w.h.p on p nodes under n samples when

$$\frac{\rho_{\min}^{-2}\log p}{n} = O(1).$$

• ρ_{\min} : Min. $(r+1)^{th}$ singular value between neighbors.

Guarantees on Rank Test

Theorem (A., Hsu, Kakade '12)

Rank test recovers graph structure G_{\cup} correctly w.h.p on p nodes under n samples when

$$\frac{\rho_{\min}^{-2}\log p}{n} = O(1).$$

• ρ_{\min} : Min. $(r+1)^{th}$ singular value between neighbors.

Efficient Test with Low Sample and Computational Requirements.

Guarantees on Rank Test

Theorem (A., Hsu, Kakade '12)

Rank test recovers graph structure G_{\cup} correctly w.h.p on p nodes under n samples when

$$\frac{\rho_{\min}^{-2}\log p}{n} = O(1).$$

• ρ_{\min} : Min. $(r+1)^{th}$ singular value between neighbors.

Efficient Test with Low Sample and Computational Requirements.

Recall examples of graphs G_{\cup} with small η

- Mixture of product distributions: G_{\cup} is trivial and $\eta = 0$.
- Mixture on same tree: G_{\square} is a tree and $\eta = 1$.
- Mixture on arbitrary trees: G_{11} is union of r trees and $\eta = r$.

Outline

- Introduction
- Decomposition of Graphical Model Mixtures
 - Estimation of Union Graph Structure
 - Parameter Estimation of Mixture Components
- 3 Decomposition into Markov and Independence Domains
- 4 Conclusion

- $\bullet X_u \perp X_v \perp X_w \mid H$
- Union graph of mixture components is trivial
- Transition matrices full rank (non-singular)
- Consider special case when d = r

- $\bullet X_u \perp X_v \perp X_w \mid H$
- Union graph of mixture components is trivial
- Transition matrices full rank (non-singular)
- Consider special case when d = r

Parameter Estimation: Generalized Eigenvalue Problem

• Studied by (Chang), (Mossel & Roch), (Hsu, Kakade & Zhang)

- $\bullet X_u \perp X_v \perp X_w \mid H$
- Union graph of mixture components is trivial
- Transition matrices full rank (non-singular)
- Consider special case when d = r

Parameter Estimation: Generalized Eigenvalue Problem

• Studied by (Chang), (Mossel & Roch), (Hsu, Kakade & Zhang)

$$M_{u,v} := [P(X_u = i, X_v = j)]_{i,j}$$

- $\bullet X_u \perp X_v \perp X_w \mid H$
- Union graph of mixture components is trivial
- Transition matrices full rank (non-singular)
- Consider special case when d = r

Parameter Estimation: Generalized Eigenvalue Problem

• Studied by (Chang), (Mossel & Roch), (Hsu, Kakade & Zhang)

$$M_{u,v} := [P(X_u = i, X_v = j)]_{i,j}$$

$$M_{u,v,\{w;k\}} := [P(X_u = i, X_v = j, X_w = k)]_{i,j}$$

- $\bullet X_u \perp X_v \perp X_w | H$
- Union graph of mixture components is trivial
- Transition matrices full rank (non-singular)
- Consider special case when d=r

Parameter Estimation: Generalized Eigenvalue Problem

Studied by (Chang), (Mossel & Roch), (Hsu, Kakade & Zhang)

$$M_{\mathbf{u},\mathbf{v}} := [P(X_{\mathbf{u}} = i, X_{\mathbf{v}} = j)]_{i,j}$$

$$M_{u,v,\{w;k\}} := [P(X_u = i, X_v = j, X_w = k)]_{i,j}$$

$$M_{\mathbf{u}}$$

$$M_{u,v,\{w;k\}}M_{u,v}^{-1} = V \underline{\text{Diag}}(P(X_w = k|H))V^{-1}$$

- \bullet $X_u \perp \!\!\! \perp X_v \perp \!\!\! \perp X_w | H$
- Union graph of mixture components is trivial
- Transition matrices full rank (non-singular)
- Consider special case when d = r

Parameter Estimation: Generalized Eigenvalue Problem

• Studied by (Chang), (Mossel & Roch), (Hsu, Kakade & Zhang)

$$M_{u,v} := [P(X_u = i, X_v = j)]_{i,j}$$

$$M_{u,v,\{w;k\}} := [P(X_u = i, X_v = j, X_w = k)]_{i,j}$$

$$M_{u,v,\{w;k\}}M_{u,v}^{-1} = V \underline{\text{Diag}}(P(X_w = k|H))V^{-1}$$

Efficient estimation of non-singular product mixtures

Adapt Eigenvalue Method for Graphical Model Mixtures?

Challenges

Not a mixture of product distributions:
 Eigenvalue method not valid.

Adapt Eigenvalue Method for Graphical Model Mixtures?

Challenges

Not a mixture of product distributions:
 Eigenvalue method not valid.

Solutions

• G_{\cup} : union graph learnt from rank test

Adapt Eigenvalue Method for Graphical Model Mixtures?

Challenges

• Not a mixture of product distributions: Eigenvalue method not valid.

- G_{\cup} : union graph learnt from rank test
- Use separators on union graph G_{\cup} :

Adapt Eigenvalue Method for Graphical Model Mixtures?

Challenges

• Not a mixture of product distributions: Eigenvalue method not valid.

- G_{\cup} : union graph learnt from rank test
- Use separators on union graph G_{\cup} :

$$X_u \perp X_v \perp X_w \mid X_S, H$$

Adapt Eigenvalue Method for Graphical Model Mixtures?

Challenges

- Not a mixture of product distributions:
 Eigenvalue method not valid.
- Need to learn higher order moments of mixture components.

- G_{\cup} : union graph learnt from rank test
- Use separators on union graph G_{\cup} :

$$X_u \perp X_v \perp X_w \mid X_S, H$$

Adapt Eigenvalue Method for Graphical Model Mixtures?

Challenges

- Not a mixture of product distributions:
 Eigenvalue method not valid.
- Need to learn higher order moments of mixture components.

- G_{\cup} : union graph learnt from rank test
- Use separators on union graph G_{\cup} : $X_u \perp X_v \perp |X_S, H|$
- Learn tree mixture approximation: estimate pairwise mixture moments

Adapt Eigenvalue Method for Graphical Model Mixtures?

Challenges

- Not a mixture of product distributions:
 Eigenvalue method not valid.
- Need to learn higher order moments of mixture components.

- G_{\cup} : union graph learnt from rank test
- Use separators on union graph G_{\cup} : $X_u \perp X_v \perp X_{w,w'} | X_S, H$
- Learn tree mixture approximation: estimate pairwise mixture moments

Learning Graphical Model Mixtures

Adapt Eigenvalue Method for Graphical Model Mixtures?

Challenges

- Not a mixture of product distributions:
 Eigenvalue method not valid.
- Need to learn higher order moments of mixture components.

Solutions

- G_{\cup} : union graph learnt from rank test
- Use separators on union graph G_{\cup} : $X_u \perp X_v \perp X_{w,w'}|X_S, H$
- Learn tree mixture approximation: estimate pairwise mixture moments

Efficient Estimation of Tree Mixture Approximations

Guarantees for Learning Graphical Model Mixtures

Steps Involved in Tree Mixture Approximation

- ullet Rank tests for structure estimation of union graph G_{\cup}
- Eigenvalue decomposition for estimation of pairwise moments of mixture components
- Chow-Liu algorithm to estimate mixture component trees

Computationally Efficient Algorithm for Learning Graphical Model Mixtures

Guarantees for Learning Graphical Model Mixtures

Steps Involved in Tree Mixture Approximation

- ullet Rank tests for structure estimation of union graph G_{\cup}
- Eigenvalue decomposition for estimation of pairwise moments of mixture components
- Chow-Liu algorithm to estimate mixture component trees

Computationally Efficient Algorithm for Learning Graphical Model Mixtures

Theorem (A., Hsu, Kakade '12)

The above method recovers correct tree mixture approximation correctly w.h.p on p nodes of r component mixture under n samples when

$$n = \text{poly}(p, r).$$

Guarantees for Learning Graphical Model Mixtures

Steps Involved in Tree Mixture Approximation

- ullet Rank tests for structure estimation of union graph G_{\cup}
- Eigenvalue decomposition for estimation of pairwise moments of mixture components
- Chow-Liu algorithm to estimate mixture component trees

Computationally Efficient Algorithm for Learning Graphical Model Mixtures

Theorem (A., Hsu, Kakade '12)

The above method recovers correct tree mixture approximation correctly w.h.p on p nodes of r component mixture under n samples when

$$n = \text{poly}(p, r).$$

Efficient Learning of Multiple Graphs and Models in High Dimensions

Exact vs. Local Separators in Union Graph

 η is bound on local separators of G_{\cup} and mixture components satisfy correlation decay.

Exact vs. Local Separators in Union Graph

 η is bound on local separators of G_{\cup} and mixture components satisfy correlation decay.

Exact vs. Local Separators in Union Graph

 η is bound on local separators of G_{\cup} and mixture components satisfy correlation decay.

Estimation of component graphs

- Estimate joint moments in nbd. of union graph for each component.
- Neighborhood selection for each mixture component.
- Efficient for low degree union graphs.

Exact vs. Local Separators in Union Graph

 η is bound on local separators of G_{\cup} and mixture components satisfy correlation decay.

Estimation of component graphs

- Estimate joint moments in nbd. of union graph for each component.
- Neighborhood selection for each mixture component.
- Efficient for low degree union graphs.

G_1 G_2

Estimation in other models

- HMM, latent trees and general multiview mixtures
- Improvement for product mixtures

Outline

- Introduction
- 2 Decomposition of Graphical Model Mixtures
 - Estimation of Union Graph Structure
 - Parameter Estimation of Mixture Components
- 3 Decomposition into Markov and Independence Domains
- 4 Conclusion

Recall notion of graphical models...

• Conditional Independence: $\mathbf{X}_A \perp \mathbf{X}_B | \mathbf{X}_S$

•
$$P(\mathbf{x}) \propto \exp \left[\sum_{(i,j) \in G} \Psi_{i,j}(x_i, x_j) \right]$$
.

Gaussian Graphical Models

 $f(\mathbf{x}) \propto \exp\left[\sum_{(i,j)\in G} J_{i,j}^* x_i, x_j\right].$

• Covariance: $\Sigma^* = J^{*-1}$.

Recall notion of graphical models...

• Conditional Independence: $X_A \perp X_B | X_S$

•
$$P(\mathbf{x}) \propto \exp\left[\sum_{(i,j)\in G} \Psi_{i,j}(x_i,x_j)\right]$$
.

Gaussian Graphical Models

 $f(\mathbf{x}) \propto \exp\left[\sum_{(i,j)\in G} J_{i,j}^* x_i, x_j\right].$

• Covariance: $\Sigma^* = J^{*-1}$.

Incorporating Residuals:
$$\Sigma^* = J_M^{*-1} + \Sigma_R^*$$
.

Generalize independence and graphical modeling

Recall notion of graphical models...

• Conditional Independence: $X_A \perp X_B | X_S$

•
$$P(\mathbf{x}) \propto \exp \left[\sum_{(i,j) \in G} \Psi_{i,j}(x_i, x_j) \right]$$
.

Gaussian Graphical Models

 $f(\mathbf{x}) \propto \exp\left[\sum_{(i,j)\in G} J_{i,j}^* x_i, x_j\right].$

• Covariance: $\Sigma^* = J^{*-1}$.

Incorporating Residuals:
$$\Sigma^* = J_M^{*-1} + \Sigma_R^*$$
.

Generalize independence and graphical modeling

Recall notion of graphical models...

• Conditional Independence: $X_A \perp X_B | X_S$

•
$$P(\mathbf{x}) \propto \exp\left[\sum_{(i,j)\in G} \Psi_{i,j}(x_i,x_j)\right]$$
.

Gaussian Graphical Models

 $f(\mathbf{x}) \propto \exp\left[\sum_{(i,j)\in G} J_{i,j}^* x_i, x_j\right].$

• Covariance: $\Sigma^* = J^{*-1}$.

Incorporating Residuals:
$$\Sigma^* = J_M^{*-1} + \Sigma_R^*$$
.

- Generalize independence and graphical modeling
- Decompose and simultaneously enforce sparsity in J_M and Σ_R

Recall notion of graphical models...

• Conditional Independence: $X_A \perp X_B | X_S$

•
$$P(\mathbf{x}) \propto \exp \left[\sum_{(i,j) \in G} \Psi_{i,j}(x_i, x_j) \right]$$
.

Gaussian Graphical Models

 $f(\mathbf{x}) \propto \exp\left[\sum_{(i,j)\in G} J_{i,j}^* x_i, x_j\right].$

• Covariance: $\Sigma^* = J^{*-1}$.

Incorporating Residuals:
$$\Sigma^* = J_M^{*-1} + \Sigma_R^*$$
.

- Generalize independence and graphical modeling
- Decompose and simultaneously enforce sparsity in J_M and Σ_R
- Convex programs? Regularizers? High-dimensional guarantees?

Recall notion of graphical models...

- Conditional Independence: $X_A \perp X_B | X_S$
- $P(\mathbf{x}) \propto \exp \left[\sum_{(i,j) \in G} \Psi_{i,j}(x_i, x_j) \right]$.

Gaussian Graphical Models

 $f(\mathbf{x}) \propto \exp\left[\sum_{(i,j)\in G} J_{i,j}^* x_i, x_j\right].$

• Covariance: $\Sigma^* = J^{*-1}$.

Incorporating Residuals:
$$\Sigma^* = J_M^{*-1} + \Sigma_R^*$$
.

$$\Sigma^* = J_M^{*-1} + \Sigma_R^*.$$

- Generalize independence and graphical modeling
- Decompose and simultaneously enforce sparsity in J_M and Σ_R
- Convex programs? Regularizers? High-dimensional guarantees?

Decomposition and Estimation of Markov and Independence Components

$$\Sigma^* = J_M^{*-1} + \Sigma_R^*.$$

$$\Sigma^* = J_M^{*-1} + \Sigma_R^*.$$

 ℓ_1 penalized MLE for Graphical Models (Ravikumar et. al. '08)

• $\widehat{\Sigma}^n$: sample covariance using n i.i.d. samples

$$\Sigma^* = J_M^{*-1} + \Sigma_R^*.$$

 ℓ_1 penalized MLE for Graphical Models (Ravikumar et. al. '08)

• $\widehat{\Sigma}^n$: sample covariance using n i.i.d. samples

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma \|J_M\|_{1, \text{off}}$$

$$\Sigma^* = J_M^{*-1} + \Sigma_R^*.$$

ℓ_1 penalized MLE for Graphical Models (Ravikumar et. al. '08)

• $\widehat{\Sigma}^n$: sample covariance using n i.i.d. samples

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma \|J_M\|_{1, \text{off}}$$

Max-entropy Formulation for Graphical Models

$$\widehat{\Sigma}_M \qquad := \underset{\Sigma_M \succ 0}{\operatorname{argmax}} \log \det \Sigma_M$$

s.t.
$$\|\widehat{\Sigma}^n - \Sigma_M\|_{\infty, \text{off}} \le \gamma$$
, $(\Sigma_M)_d = (\widehat{\Sigma}^n)_d$

$$\Sigma^* = J_M^{*-1} + \Sigma_R^*.$$

ℓ_1 penalized MLE for Graphical Models (Ravikumar et. al. '08)

• $\widehat{\Sigma}^n$: sample covariance using n i.i.d. samples

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma \|J_M\|_{1, \text{off}}$$

Max-entropy Formulation for Graphical Models

$$\widehat{\Sigma}_M := \underset{\Sigma_M \succ 0}{\operatorname{argmax}} \log \det \Sigma_M$$

s.t.
$$\|\widehat{\Sigma}^n - \Sigma_M - \Sigma_R\|_{\infty, \text{off}} \le \gamma$$
, $(\Sigma_M)_d = (\widehat{\Sigma}^n)_d$

$$\Sigma^* = J_M^{*-1} + \Sigma_R^*.$$

ℓ_1 penalized MLE for Graphical Models (Ravikumar et. al. '08)

ullet $\widehat{\Sigma}^n$: sample covariance using n i.i.d. samples

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma \|J_M\|_{1, \text{off}}$$

Max-entropy Formulation for Graphical Models

$$(\widehat{\Sigma}_M, \widehat{\Sigma}_R) := \underset{\Sigma_M \succ 0, \Sigma_R}{\operatorname{argmax}} \log \det \Sigma_M$$

s. t.
$$\|\widehat{\Sigma}^n - \Sigma_M - \Sigma_R\|_{\infty, \text{off}} \le \gamma$$
, $(\Sigma_M)_d = (\widehat{\Sigma}^n)_d$, $(\Sigma_R)_d = 0$.

$$\Sigma^* = J_M^{*-1} + \Sigma_R^*.$$

ℓ_1 penalized MLE for Graphical Models (Ravikumar et. al. '08)

• $\widehat{\Sigma}^n$: sample covariance using n i.i.d. samples

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma ||J_M||_{1, \text{off}}$$

s. t. $||J_M||_{\infty, \text{off}} \leq \lambda$,

Max-entropy Formulation for Graphical Models

$$(\widehat{\Sigma}_M, \widehat{\Sigma}_R) := \underset{\Sigma_M \succ 0, \Sigma_R}{\operatorname{argmax}} \, \log \det \Sigma_M - \lambda \|\Sigma_R\|_{1, \text{off}}$$

s. t.
$$\|\widehat{\Sigma}^n - \Sigma_M - \Sigma_R\|_{\infty, \text{off}} \le \gamma$$
, $(\Sigma_M)_d = (\widehat{\Sigma}^n)_d$, $(\Sigma_R)_d = 0$.

$$\Sigma^* = J_M^{*-1} + \Sigma_R^*.$$

ℓ_1 penalized MLE for Graphical Models (Ravikumar et. al. '08)

• $\widehat{\Sigma}^n$: sample covariance using n i.i.d. samples

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma ||J_M||_{1, \text{off}}$$

s. t. $||J_M||_{\infty, \text{off}} \le \lambda$,

Max-entropy Formulation for Graphical Models (Janzamin, A. '12)

$$(\widehat{\Sigma}_M, \widehat{\Sigma}_R) := \underset{\Sigma_M \succ 0, \Sigma_R}{\operatorname{argmax}} \, \log \det \Sigma_M - \lambda \|\Sigma_R\|_{1, \text{off}}$$

s.t.
$$\|\widehat{\Sigma}^n - \Sigma_M - \Sigma_R\|_{\infty, \text{off}} \le \gamma$$
, $(\Sigma_M)_d = (\widehat{\Sigma}^n)_d$, $(\Sigma_R)_d = 0$.

$$\Sigma^* = J_M^{*-1} + \Sigma_R^*.$$

 ℓ_1 penalized MLE for Graphical Models (Ravikumar et. al. '08)

• $\widehat{\Sigma}^n$: sample covariance using n i.i.d. samples

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma ||J_M||_{1, \text{off}}$$

s. t. $||J_M||_{\infty, \text{off}} \le \lambda$,

Max-entropy Formulation for Graphical Models (Janzamin, A. '12)

• Lagrangian dual of ℓ_1 -penalized MLE

$$(\widehat{\Sigma}_M, \widehat{\Sigma}_R) := \underset{\Sigma_M \succ 0, \Sigma_R}{\operatorname{argmax}} \log \det \Sigma_M - \lambda \|\Sigma_R\|_{1, \text{off}}$$

s.t.
$$\|\widehat{\Sigma}^n - \Sigma_M - \Sigma_R\|_{\infty, \text{off}} \le \gamma$$
, $(\Sigma_M)_d = (\widehat{\Sigma}^n)_d$, $(\Sigma_R)_d = 0$.

Efficient Method for Covariance Decomposition and Estimation

Guarantees for High-Dimensional Estimation

$$\Sigma^* = J_M^{*-1} + \Sigma_R^*.$$

Theorem (Janzamin and A. '12)

When the number of samples n, number of nodes p and maximum degree Δ in the Markov graph (corresponding to J_M^*) satisfy

$$\frac{\Delta^2 \log p}{n} = O(1),$$

- \bullet $(\widehat{J}_M,\widehat{\Sigma}_R)$ are sparsistent and sign consistent
- satisfy norm guarantees

$$\|\widehat{J}_M - J_M^*\|_{\infty}, \|\widehat{\Sigma}_R - \Sigma_R^*\|_{\infty} = O\left(\sqrt{\frac{\log p}{n}}\right).$$

Guarantee Sparsistency and Efficient Estimation in Both Domains

Outline

- Introduction
- 2 Decomposition of Graphical Model Mixtures
 - Estimation of Union Graph Structure
 - Parameter Estimation of Mixture Components
- 3 Decomposition into Markov and Independence Domains
- 4 Conclusion

Summary and Outlook

Learning Graphical Model Mixtures

- Tree mixture approximations
- Combinatorial search + spectral decomposition
- Computational and sample guarantees

Markov/Independence Decomposition

- Efficient convex program for decomposition
- Similar requirements as graphical model selection

Outlook

- Converse results for learning graphical mixtures
- Mixed variables, latent models etc.

