Isothermal compressibility, κ , for one component fluid in three dimension

Rubel Mozumder, ID: 2601575

February 15, 2020

0.1 Theory:

For a N-particles System of volume V with density profile $\rho(\mathbf{r}) = \sum_{i=1}^{N} \delta(\mathbf{r} - \mathbf{r}_i)$, the static Structure factor $S(\mathbf{k})$ is defined as the Fourier density correlation

$$S(\mathbf{k}) \equiv \frac{1}{N} \langle \hat{\rho}_{\mathbf{k}} \hat{\rho}_{-\mathbf{k}} \rangle \tag{1}$$

And for $K \rightarrow 0$ the S(K) is reduced to

$$\lim_{k \to 0} S(k) = \rho K_B T \kappa \tag{2}$$

where κ is the isothermal compressibility and K_B Boltzman constant. In equation (1) $\hat{\rho_k}$ is the Fourier transformation of $\rho(\mathbf{r})$,

$$\hat{\rho}(\mathbf{k}) = \int \rho(\mathbf{r})e^{i\mathbf{k}\cdot\mathbf{r}}.\mathbf{dr} = \sum_{i=1}^{N} e^{i\mathbf{k}\cdot\mathbf{r}_{i}}$$
(3)

and

$$\rho(\mathbf{r}) = (2\pi)^{-3} \int \hat{\rho}_{\mathbf{k}} e^{-i\mathbf{k}\cdot\mathbf{r}} \cdot \mathbf{d}\mathbf{k} = (2\pi)^{-3} \sum_{i=1}^{N} \hat{\rho}_{\mathbf{k}} e^{-i\mathbf{k}\cdot\mathbf{r}}$$
(4)

A general expression for $S(\mathbf{k})$ is

$$S(\mathbf{k}) = \frac{1}{N} \left\langle \sum_{i=1}^{N} e^{i\mathbf{k} \cdot \mathbf{r}_i} \cdot \sum_{j=1}^{N} e^{-i\mathbf{k} \cdot \mathbf{r}_j} \right\rangle$$
 (5)

$$= \frac{1}{N} \left\langle \left| \sum_{i=1}^{N} \cos i \mathbf{k.r}_{i} \right|^{2} \cdot \left| \sum_{i=1}^{N} \sin i \mathbf{k.r}_{i} \right|^{2} \right\rangle$$
 (6)

Here equation (6) is valid for uniform liquid, glasses and periodic structure system e.g. crystal and core equation of this simulation.

One can choose to calculate $S(\mathbf{k})$ for $(n_k+1)^3$ number of \mathbf{k} 's, $\Delta k(n_x,n_y,n_z)$ with $n_x,n_y,n_z=0,1,2,3,...$ but $n_x=n_y=n_z\neq 0$. For same value of \mathbf{k} , $S(\mathbf{k})$ can be counted in the same bin $[\mathbf{k}+\mathrm{d}\mathbf{k}]$ and later an averaged over \mathbf{k} for $S(\mathbf{k})$ can be considerd.

0.2 Molecular Dynamic Method:

In this investigation of Isothermal compressibility, a canonical (PVT) system, based on WCA potential, usingNosHoover thermostat and Velocitc Verlet

algorithm has been fuctionalised (figure-2). An initial cubic latice box with density= $0.2\sigma^{-3}$, particle number = $12\times12\times12$, mass, m = 1, temperature, T = 1, time unit, $\tau = \sqrt{\frac{m\sigma^2}{\epsilon}}$, characteristic energy unit = ϵ , characteristic length unit = σ coupling factor Q = 1.0, has been propagated for dt = 0.0005τ till t = 7τ . As particle number and density is fixed, the box volume is determined. Here, repulsive pairwise Weeks-Chandler-Andersen (WCA) potential(figure-1) is

$$u(r_{ij}) = \begin{cases} 4\epsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right] + \epsilon & ; r_{cut} \le 2^{\frac{1}{6}} \\ 0 & ; \text{ otherwise} \end{cases}$$
 (7)

where $r_{ij} = |\mathbf{r}_j - \mathbf{r}_i|$ is the absolute distance between j^{th} particle and i^{th} particle.

Figure 1: Weeks-Chandler- Time Andersen (WCA) potential

0.3 Static Structure Factor and Isothermal Compressibility:

The system obtained using molecular dynamic method has been implemented to interpret static structure factor and later Isothermal compressibility. In this work, the wave vector component $k_x = k_y = k_z = 30\Delta k$ where $\Delta k = \frac{2\pi}{L}$ and $L = (\frac{N_{part}}{density})^{\frac{1}{3}}$. All the combination of K's components is considered but $k_x = k_y = k_z = 0$. For the same absolute value of **k** the corresponding $S(\mathbf{k})$ is accounted in the bin $(k+dk) = (k+\Delta k)$ and later has been averaged by the corresponding number stored in k-bin. Finally, the program, with a constant

particle density, for interpreting Static Structure Factor has been run and averaged over the last 5 position space data obtained from MD method at the time steps $(6.9980\tau, 6.9985\tau, 6.9990\tau, 6.9995\tau, 7.0\tau)$. In figure-3 the plot is shown for five different density $(0.1, 0.2, 0.3, 0.4, 0.5)\sigma^3$. To calculate Isothermal Compressibility (τ) from equation(2) it is essential to extrapolate the static structure factor at k=0. So, using the taylor series and Symmerty of Static factor

$$S(\Delta k)=S(0)+\frac{\Delta k^2}{2}\alpha+\frac{\Delta k^4}{4}\beta$$
 and
$$\kappa=\frac{\lim_{k\to 0}S(k)}{\rho K_BT}$$
 Where
$$\alpha=\frac{d^2S}{dk^2}and\beta=\frac{d^4S}{dk^4}$$

The obtained Isothermal Compressibility for different density is shown in figure-4. It is clear from figure that $\kappa=18.9455$ at $\rho=0.1, \kappa=3.98956$ at $\rho=0.2, \kappa=1.48044$ at $\rho=0.3, \kappa=0.937772$ at $\rho=0.4, \kappa=0.731694$ at $\rho=0.5$. And the magnitude of κ is decreasing with increasing density.

Figure 3: evaluation of Static Factor from wavevector, ${\bf k}$

Figure 4: Isothermal Compressibility

0.4 Reference:

- 1. kai Zhang, On the Concept of Static Structure Factor.
- 2. J. Horbach, Lecture note