AutoML: Evaluation

Background: Statistical Hypotheses Tests

Bernd Bischl Frank Hutter Lars Kotthoff <u>Marius Lindauer</u> Joaquin Vanschoren

Background: statistical hypothesis tests

- When we have a lot of data, we need to summarize it
 - ▶ But we already saw that summarization hides a lot of data
 - Ideally, we want to draw high-level conclusions (e.g., "A outperforms B on datasets of type X")

Background: statistical hypothesis tests

- When we have a lot of data, we need to summarize it
 - ▶ But we already saw that summarization hides a lot of data
 - ▶ Ideally, we want to draw high-level conclusions (e.g., "A outperforms B on datasets of type X")
- Problem: we only have a finite number of observations
 - Can we attribute observed performance differences to chance?
 - Are we reasonably sure that a claim we make is reproducible?
 - → Statistical tests can help

Statistical hypothesis testing

Define initial research hypothesis

Statistical hypothesis testing

- Define initial research hypothesis
- ② Derive null H_0 and alternative H_1 hypothesis
 - ▶ Alternative hypothesis should be your research hypothesis

First example: Courtroom Tiral

- A prosecutor tries to prove the guilt of the defendant
- H_0 : The defendant is not guilty
 - Accepted for the moment ("not guilty as long as their guilt is not proven")
- H_1 : The defendant is guilty
 - prosecutor hopes to support that

First example: Courtroom Tiral

- A prosecutor tries to prove the guilt of the defendant
- H_0 : The defendant is not guilty
 - Accepted for the moment ("not guilty as long as their guilt is not proven")
- H_1 : The defendant is guilty
 - prosecutor hopes to support that

First example: Courtroom Tiral

- A prosecutor tries to prove the guilt of the defendant
- H_0 : The defendant is not guilty
 - Accepted for the moment ("not guilty as long as their guilt is not proven")
- H_1 : The defendant is guilty
 - prosecutor hopes to support that

	Truly not guilty	Truly guilty
Found not guilty	Acquittal	Type II Error
Found guilty	Type I Error	Conviction

→ We want to minimize Type I error!

- Define initial research hypothesis
- ② Derive null H_0 and alternative H_1 hypothesis
 - ▶ Alternative hypothesis should be your research hypothesis
- Onsider statistical assumptions
 - ► E.g., is your data Gaussian distributed?

- Define initial research hypothesis
- ② Derive null H_0 and alternative H_1 hypothesis
 - ▶ Alternative hypothesis should be your research hypothesis
- Onsider statistical assumptions
 - E.g., is your data Gaussian distributed?
- Oecide test and test statistic T
 - ▶ The correct test depends on your statistical assumptions.
 - ► Typically: if you use more assumptions, the test is more powerful (i.e., less Type-I error)

- Define initial research hypothesis
- ② Derive null H_0 and alternative H_1 hypothesis
 - Alternative hypothesis should be your research hypothesis
- Consider statistical assumptions
 - E.g., is your data Gaussian distributed?
- Oecide test and test statistic T
 - ▶ The correct test depends on your statistical assumptions.
 - ► Typically: if you use more assumptions, the test is more powerful (i.e., less Type-I error)
- Decide significance level α (i.e., acceptable Type-I error to reject null hypothesis)

- Define initial research hypothesis
- ② Derive null H_0 and alternative H_1 hypothesis
 - Alternative hypothesis should be your research hypothesis
- Consider statistical assumptions
 - ► E.g., is your data Gaussian distributed?
- Oecide test and test statistic T
 - ▶ The correct test depends on your statistical assumptions.
 - ► Typically: if you use more assumptions, the test is more powerful (i.e., less Type-I error)
- **o** Decide significance level α
 - (i.e., acceptable Type-I error to reject null hypothesis)
- **o** Compute observed t_{obs} of test statistic T
- ${f 0}$ Calculate p-value given t_{obs}
 - i.e., probability under the null hypothesis of sampling a test statistic as extreme as observed (probability of Type-I error)

- Define initial research hypothesis
- Derive null H_0 and alternative H_1 hypothesis
 - Alternative hypothesis should be your research hypothesis
- Consider statistical assumptions
 - ► E.g., is your data Gaussian distributed?
- Decide test and test statistic T
 - ▶ The correct test depends on your statistical assumptions.
 - ▶ Typically: if you use more assumptions, the test is more powerful (i.e., less Type-I error)
- **o** Decide significance level α (i.e., acceptable Type-I error to reject null hypothesis)
- **1** Compute observed t_{obs} of test statistic T
- Calculate p-value given t_{obs}
 - ▶ i.e., probability under the null hypothesis of sampling a test statistic as extreme as observed (probability of Type-I error)
- **1** If $p < \alpha$, reject null hypothesis in favor of alternative hypothesis
 - If $p > \alpha$, it doesn't tell you anything about the null hypothesis!

• Claim: "the students in this course are more intelligent than average"

- Claim: "the students in this course are more intelligent than average"
- ullet Null Hypothesis H_0 : $\mu=100$ (μ is the population mean of this class)
- Alternative Hypothesis H_1 : $\mu > 100$ (one-sided hypothesis)

- Claim: "the students in this course are more intelligent than average"
- Null Hypothesis H_0 : $\mu=100$ (μ is the population mean of this class)
- ullet Alternative Hypothesis H_1 : $\mu > 100$ (one-sided hypothesis)
- ullet IQ values are known to be normally distributed with $X \sim \mathcal{N}(100, 15)$
 - $lackbox{}
 ightarrow$ statistical assumption

- Claim: "the students in this course are more intelligent than average"
- Null Hypothesis H_0 : $\mu=100$ (μ is the population mean of this class)
- Alternative Hypothesis H_1 : $\mu > 100$ (one-sided hypothesis)
- IQ values are known to be normally distributed with $X \sim \mathcal{N}(100, 15)$
 - $lackbox{}{}
 ightarrow$ statistical assumption
- Let's say we observed IQ values x_i of 9 students in the class:
 - $\{x_1, \dots, x_9\} = \{116, 128, 125, 119, 89, 99, 105, 116, 118\}.$
 - ▶ The sample mean is $\bar{x} = 112.8$
 - Does this data support the claim?

Example continued

- Distribution of the test statistic
 - ▶ Under H_0 , we know that each $x_i \sim \mathcal{N}(100, 15)$
 - ▶ The test statistic that we measure is the sample mean $\bar{x} = \frac{1}{9} \sum_{i=1}^{9} x_i$

Example continued

- Distribution of the test statistic
 - ▶ Under H_0 , we know that each $x_i \sim \mathcal{N}(100, 15)$
 - ▶ The test statistic that we measure is the sample mean $\bar{x} = \frac{1}{9} \sum_{i=1}^{9} x_i$
 - ▶ Under H_0 , the distribution of \bar{x} is $\mathcal{N}(100, 15/\sqrt{9})$
 - Our observation $\bar{\boldsymbol{x}} = 112.8$ is quite extreme under that distribution

• Compare the test statistic (here: \bar{x}) to its sampling distribution under H_0

- Compare the test statistic (here: \bar{x}) to its sampling distribution under H_0
- ullet P-value: probability p of observing values at least as extreme as $ar{x}$

- Compare the test statistic (here: \bar{x}) to its sampling distribution under H_0
- ullet P-value: probability p of observing values at least as extreme as $ar{x}$
- Compare p to pre-defined confidence level α (usually $\alpha=0.05$); if $p<\alpha$, reject H_0

- Compare the test statistic (here: \bar{x}) to its sampling distribution under H_0
- ullet P-value: probability p of observing values at least as extreme as $ar{x}$
- Compare p to pre-defined confidence level α (usually $\alpha=0.05$); if $p<\alpha,$ reject H_0
- With $\alpha = 0.01$, would we reject H_0 in this case?

- ullet We just used a so-called Z-test
- H_0 : $\mu = \mu_0$, H_1 : $\mu > \mu_0$
- \bullet Assumptions: $X \sim \mathcal{N}(\mu, \sigma^2)$, with known μ and σ^2

- We just used a so-called Z-test
- H_0 : $\mu = \mu_0$, H_1 : $\mu > \mu_0$
- ullet Assumptions: $X \sim \mathcal{N}(\mu, \sigma^2)$, with known μ and σ^2
- Test statistic: sample mean \bar{x} ; evaluate under $\mathcal{N}(\mu=\mu_0,s=\sigma^2/\sqrt{n})$

- We just used a so-called Z-test
- H_0 : $\mu = \mu_0$, H_1 : $\mu > \mu_0$
- ullet Assumptions: $X \sim \mathcal{N}(\mu, \sigma^2)$, with known μ and σ^2
- Test statistic: sample mean \bar{x} ; evaluate under $\mathcal{N}(\mu = \mu_0, s = \sigma^2/\sqrt{n})$
- Equivalent: compute the Z-statistic: $Z=(\bar{x}-\mu_0)/s$ and evaluate cumulative distribution $\Phi(Z)$ of Z under $\mathcal{N}(0,1)$

- We just used a so-called Z-test
- H_0 : $\mu = \mu_0$, H_1 : $\mu > \mu_0$
- \bullet Assumptions: $X \sim \mathcal{N}(\mu, \sigma^2)$, with known μ and σ^2
- Test statistic: sample mean \bar{x} ; evaluate under $\mathcal{N}(\mu = \mu_0, s = \sigma^2/\sqrt{n})$
- Equivalent: compute the Z-statistic: $Z=(\bar x-\mu_0)/s$ and evaluate cumulative distribution $\Phi(Z)$ of Z under $\mathcal{N}(0,1)$
 - ▶ There are standard tables to look up $\Phi(Z)$ for different values of Z
 - $lackbox{ Nowadays, there are standard libraries to compute } \Phi(Z)$

Two-sided tests

- Similar to one-sided tests, but testing for extreme values in both tails
- ullet Example Z-test: two-sided alternative hypothesis H_1 : $\mu
 eq \mu_0$

Two-sided tests

- Similar to one-sided tests, but testing for extreme values in both tails
- ullet Example Z-test: two-sided alternative hypothesis H_1 : $\mu
 eq \mu_0$
- Compute $Z=(\bar{x}-\mu_0)/s$ as before
- Compute p-value as $p=2\Phi(Z)$, to account for both tails

Two-sided tests

- Similar to one-sided tests, but testing for extreme values in both tails
- ullet Example Z-test: two-sided alternative hypothesis H_1 : $\mu
 eq \mu_0$
- \bullet Compute $Z=(\bar{x}-\mu_0)/s$ as before
- Compute p-value as $p=2\Phi(Z)$, to account for both tails
- With $\alpha = 0.01$, would we reject H_0 in this case?

General points about statistical hypothesis tests

- What if $p > \alpha$?
 - ▶ Failure to reject H_0
 - lacktriangle We cannot conclude that we can accept $H_0!$

General points about statistical hypothesis tests

- What if $p > \alpha$?
 - ▶ Failure to reject H_0
 - ▶ We cannot conclude that we can accept $H_0!$
- Beware (i): most tests make some assumptions
 - ► E.g., Z-test and popular t-test assume normality
 - Our data is often far from normally-distributed
 - \leadsto E.g., exponential runtime distributions of optimizers
 - E.g., distribution of fitting a neural network with different random seeds is not well studied

General points about statistical hypothesis tests

- What if $p > \alpha$?
 - ▶ Failure to reject H_0
 - ▶ We cannot conclude that we can accept $H_0!$
- Beware (i): most tests make some assumptions
 - ▶ E.g., Z-test and popular t-test assume normality
 - Our data is often far from normally-distributed
 - --- E.g., exponential runtime distributions of optimizers
 - E.g., distribution of fitting a neural network with different random seeds is not well studied
- Beware (ii): if you use cross-validation, observations are not independent (you cannot apply statistical tests that assume independence)