Bond price volatility and the price value of a basis point

BOND VALUATION AND ANALYSIS IN R

Clifford Ang

Senior Vice President, Compass Lexecon

Bond price volatility

- Bond price volatility depends on many factors
- Some examples:
 - Size of yield change
 - Coupon rate
 - Time to maturity

Small change, symmetric effect

- Small changes in yield: % change for most bonds are similar whether yield goes up or down
- Example:
 - o 100 USD par value, 10% coupon rate, 20 years, 10% yield

```
bondprc(100, 0.10, 20, 0.101) / bondprc(100, 0.10, 20, 0.10) - 1
```

-0.<u>008455776</u>

```
bondprc(100, 0.10, 20, 0.099) / bondprc(100, 0.10, 20, 0.10) - 1
```


Large change, asymmetric effect

- For large changes in yield, the percentage change is higher when the yield decreases
- Example:
 - 100 USD par value, 10% coupon rate, 20 years, 10% yield

```
bondprc(100, 0.10, 20, 0.14) / bondprc(100, 0.10, 20, 0.10) - 1
```

-0.2649252

```
bondprc(100, 0.10, 20, 0.06) / bondprc(100, 0.10, 20, 0.10) - 1
```


Lower coupon, more volatile

- Fixing the time to maturity and yield, bond price volatility is higher if the coupon rate is lower
- Example:
 - 100 USD par value, 20 years, 10% initial yield, 8% new yield

```
bondprc(100, 0.10, 20, 0.08) / bondprc(100, 0.10, 20, 0.10) - 1
```

0.1963629

```
bondprc(100, 0.05, 20, 0.08) / bondprc(100, 0.05, 20, 0.10) - 1
```


Lower coupon, more volatile

```
bondprc(100, 0.00, 20, 0.08) / bondprc(100, 0.00, 20, 0.10) - 1
```


Longer maturity, more volatile

- Fixing the coupon rate and yield, bond price volatility is higher if the time to maturity is longer
- Example:
 - 100 USD par value, 10% coupon rate, 10% initial yield, 8% new yield

```
bondprc(100, 0.10, 20, 0.08) / bondprc(100, 0.10, 20, 0.10) - 1
```

0.1963629

```
bondprc(100, 0.10, 10, 0.08) / bondprc(100, 0.10, 10, 0.10) - 1
```


Shorter maturity, more volatile

```
bondprc(100, 0.10, 5, 0.08) / bondprc(100, 0.10, 5, 0.10) - 1
```


Price value of a basis point

- Or "dollar value of an 01" = measure of bond price volatility
 = price of the bond if the required yield changes by 0.01%
- Example:

```
bondprc(100, 0.05, 20, 0.05)
```

100

bondprc(100, 0.05, 20, 0.0501)

Price value of a basis point

```
abs(bondprc(100, 0.05, 20, 0.0501) - bondprc(100, 0.05, 20, 0.05))
```

0.1245165

• abs() to make sure the change is positive

Let's practice!

BOND VALUATION AND ANALYSIS IN R

Duration

BOND VALUATION AND ANALYSIS IN R

Clifford Ang

Senior Vice President, Compass Lexecon

What is duration?

- Estimated price change for a 100 basis point change in yield
 - Two bonds with the same duration will have same estimated price change
- A way to manage the risk of interest rate sensitive liabilities

Calculating duration

$$D = rac{P(ext{down}) - P(ext{up})}{(2 \cdot P \cdot \Delta y)}$$

- D = Duration
- P(down) = Price when yield goes down
- P(up) = Price when yield goes up
- P = Current price
- Δy = Change in yield

Estimating price change

$$rac{\Delta P}{P} = -D \cdot \Delta y$$

$$\Delta P = -D \cdot \Delta y \cdot P$$

$$\frac{\Delta P}{P} = \text{Percent change}$$

$$D$$
 = duration

$$\Delta y$$
 = Change in yield

$$\Delta P$$
 = Dollar change

$$P$$
 = Current price

How do you use these formulas?

Example: \$100 par value, 5% coupon rate, 10 years to maturity, initial yield = 4%, expected increase in yield = 1%

```
(p <- bondprc(100, .05, 10, .04))
```

108.1109

```
(p_down <- bondprc(100, .05, 10, .03))
```

117.0604

```
(p_up <- bondprc(100, .05, 10, .05))
```

100

How do you use these formulas?

```
(duration <- (p_down - p_up) / (2 * p * 0.01))
```

7.890234

```
(duration_pct_change <- - duration * 0.01)</pre>
```

-0.07890234

(duration_dollar_change <- duration_pct_change * p)</pre>

-8.530203

Bond Price: Full Valuation vs. Duration Estimate

Let's practice!

BOND VALUATION AND ANALYSIS IN R

Convexity

BOND VALUATION AND ANALYSIS IN R

Clifford Ang

Senior Vice President, Compass Lexecon

Convexity measure

- Duration does a poor job when yield changes are large
- Convexity measure is used to adjust the duration estimate

Calculating the convexity measure

$$C = rac{P(down) + P(up) - 2 \cdot P}{(P \cdot (\Delta y)^2}$$

- C = Convexity measure
- P(down) = Price when yield goes down
- P(up) = Price when yield goes up
- P = Current price
- $(\Delta y)^2$ = Change in yield squared
- $2 \cdot P = 2x$ current price

Estimating effect on price

$$rac{\Delta P}{P} = 0.5 \cdot C \cdot (\Delta y)^2$$

• $\frac{\Delta P}{P}$ = Percent change

$$\Delta P = 0.5 \cdot C \cdot (\Delta y)^2 \cdot P$$

- ΔP = Dollar change
- C = Convexity measure
- $(\Delta y)^2$ = Change in yield squared
- P = Current price

How do you use these formulas?

- Example (same as duration)
 - \$100 par value, 5% coupon rate, 10 years to maturity, initial yield = 4%, expected increase
 in yield = 1%

p

108.1109

```
(convexity <- (p_down + p_up - 2 * p) / (p * (0.01^2)))
```

How do you use these formulas?

(convexity_pct_change <- 0.5 * convexity * 0.01 ^ 2)</pre>

0.00387849

(convexity_dollar_change <- 0.5 * convexity * 0.01 ^ 2 * p)</pre>

Effect of duration and convexity

• Estimated change in price

duration_dollar_change

-8.530203

convexity_dollar_change

duration_dollar_change + convexity_dollar_change

-8.110896

Estimated price

p

108.1109

duration_dollar_change + convexity_dollar_change + p

100

Bond Price: Full Valuation vs. Duration/Convexity Estimate

Let's practice!

BOND VALUATION AND ANALYSIS IN R

