## Credit EDA Case Study

## Key Observations

- ▶ After loading the source file in a dataframe, selecting the required columns and then performing clean-up activity on them, the first thing that needed to be checked was the presence of outliers.
- ► For this activity only 3 major columns were considered AMT\_INCOME\_TOTAL, AMT\_CREDIT and AMT\_ANNUITY.
- Outliers were present for all the 3 columns mentioned above.

- ► AMT\_INCOMT\_TOTAL
  - ▶ Before removing the ouliers



► After removing the outliers



- Detailed steps on how to remove the outliers are mentioned in the jupyter notebook
- In similar manner, outliers were detected in AMT\_CREDIT and AMT\_ANNUITY column.
- Post detecting the outliers, we moved on to perform the univariate analysis for categorical variables based on target value 0 and 1.
- From the plot and results displayed for NAME\_CONTRACT\_TYPE column it is observed that there are only 2 distinct types of loans which are sanctioned, one is Cash Loans another one is revolving loans. Furthermore, the number of Cash Loans are tremendously high compared to Revolving Loans.
- ▶ Looking at subplot 2, it is observed that the number of females who have defaulted the loans are higher than number of males who have defaulted the loan.
- ▶ From the plot drawn NAME\_INCOME\_TYPE column, it is observed that maximum number of people that have defaulted the loan are salaried.

- Similarly the univariate analysis was carried out for other categorical columns and their observations are mentioned with appropriate comments in jupyter notebook
- After completing the univariate analysis for categorical values, we have performed the univariate analysis for continuous columns.
- Distplot was used to perform analysis of continuous variables.
- For all the continuous variables the dist plot was plotted and the appropriate comments are mentiond in jupyter notebook
- Post that, we found correlation between numerical columns.
- From heatmap and python dataframe, we observed that below mentioned columns are highly correlated.

| VAR1                     | VAR2                     | CORR     |
|--------------------------|--------------------------|----------|
| OBS_60_CNT_SOCIAL_CIRCLE | OBS_30_CNT_SOCIAL_CIRCLE | 0.998269 |
| AMT_GOODS_PRICE          | AMT_CREDIT               | 0.983103 |
| DEF_60_CNT_SOCIAL_CIRCLE | DEF_30_CNT_SOCIAL_CIRCLE | 0.868994 |
| AMT_GOODS_PRICE          | AMT_ANNUITY              | 0.752699 |
| AMT_ANNUITY              | AMT_CREDIT               | 0.752195 |
|                          |                          |          |

- After findind, the correlation between numerical columns, we moved on to perform bivariate analysis.
- ▶ After performing the bivariate analysis on target value equal to 0, we observed that amt\_income\_total column is highly correlated with amt\_credit, amt\_annuity and amt\_goods\_price. (Detailed comments are mentioned in jupyter notebook)
- Similarly, For account holders that have defaulted, amt\_income\_total column has very less correlation with amt\_credit, amt\_annuity and amt\_goods\_price columns. (Detailed comments are mentioned in jupyter notebook)
- Post completing the bivariate analysis, we imported the previous application file, selected only that columns that were required and performed the clean-up activity on them.
- ▶ Post completing the clean-up activity we performed the univariate and bivariate analysis on the previous application data. (Detailed comments are mentioned in jupyter notebook)