

FORMATO DE SYLLABUS

Código: AA-FR-003

Macroproceso: Direccionamiento Estratégico

Versión: 01

SIGUD V

Proceso: Autoevaluación y Acreditación

Fecha de Aprobación: 27/07/2023

FACULTAD:				Tecnológica					
PROYECTO CURRICULAR:		Tecnología en Electrónica Industrial			CÓDIGO PLAN DE ESTUDIOS:				
I. IDENTIFICACIÓN DEL ESPACIO ACADÉMICO									
NOMBRE DEL ESPACIO ACADÉMICO: MICROONDAS									
Código del espacio académico:			24709	Número de créditos académicos:			2		
Distribución horas de trabajo:			HTD	2	нтс	2	НТА	2	
Tipo de espacio académico:			Asignatura	х	Cátedra				
NATURALEZA DEL ESPACIO ACADÉMICO:									
Obligatorio Básico	х	_	atorio mentario		Electivo Intrínseco		Electivo Extrínseco		
CARÁCTER DEL ESPACIO ACADÉMICO:									
Teórico		Práctico		Teórico-Práctico	х	Otros:		Cuál:	
MODALIDAD DE OFERTA DEL ESPACIO ACADÉMICO:									
Presencial	х	Presencial con incorporación de TIC		Virtual		Otros:		Cuál:	
II. SUGERENCIAS DE SABERES Y CONOCIMIENTOS PREVIOS									

Es conveniente que el estudiante haya cursado asignaturas de electromagnetismo, medios de transmisión, antenas y propagación, y fundamentos de sistemas de telecomunicaciones. También se recomienda tener conocimientos básicos de software de simulación electromagnética (CST, HFSS, ADS) y manejo de herramientas como MATLAB para modelado y análisis.

III. JUSTIFICACIÓN DEL ESPACIO ACADÉMICO

La banda de microondas es una de las más importantes para aplicaciones actuales y futuras en comunicaciones, detección remota, radar, radioenlaces de alta capacidad, y redes 5G/6G. Esta asignatura proporciona las competencias esenciales para diseñar, evaluar y simular sistemas de transmisión en microondas, considerando fenómenos como pérdidas, desvanecimientos, interferencias y propagación atmosférica. Su enfoque aplicado la hace esencial para quienes participen en el desarrollo de redes inalámbricas avanzadas, comunicaciones satelitales o soluciones de monitoreo basadas en sensores.

IV. OBJETIVOS DEL ESPACIO ACADÉMICO (GENERAL Y ESPECÍFICOS)

Objetivo General:

Formar al estudiante en el análisis y diseño de sistemas de telecomunicaciones basados en tecnología de microondas, incluyendo redes terrestres, satelitales, radares y sensores remotos.

Objetivos Específicos:

Explicar los fundamentos físicos de la propagación en microondas.

Modelar pérdidas, interferencias y desvanecimientos en enlaces terrestres y satelitales.

Diseñar enlaces microondas considerando condiciones reales y normativas.

Aplicar simuladores CAD para evaluar desempeño de sistemas microondas.

Explorar aplicaciones emergentes en sensores, radar, 5G y 6G.

V. PROPÓSITOS DE FORMACIÓN Y DE APRENDIZAJE (PFA) DEL ESPACIO ACADÉMICO

Propósitos de formación:

Capacitar al estudiante en el diseño de sistemas de microondas en contextos reales, considerando aspectos técnicos, económicos y normativos.

 $Promover\,el\,uso\,de\,herramientas\,de\,simulaci\'on\,y\,tecnolog\'as\,emergentes\,para\,dise\~nar\,soluciones\,innovadoras.$

Estimular el pensamiento crítico para interpretar fenómenos electromagnéticos en enlaces de alta frecuencia.

Resultados de aprendizaje:

Identifica y modela fenómenos de propagación en sistemas microondas terrestres y satelitales.

Diseña enlaces punto a punto con criterios de disponibilidad, ganancia, márgenes y eficiencia espectral.

Simula y valida enlaces en software especializado (CST, HFSS, MATLAB).

Aplica tecnologías de microondas en contextos como radar, IoT satelital y comunicaciones 5G/6G.

VI. CONTENIDOS TEMÁTICOS

1. Introducción a microondas y propagación

Espectro de microondas y aplicaciones

Pérdidas por espacio libre, troposféricas y gaseosas

Influencia de la atmósfera y obstáculos

2. Fenómenos electromagnéticos críticos

Zonas de Fresnel y difracción

Cálculo de altura de torres y línea de vista (LoS)

Desvanecimientos y márgenes de diseño (fade margin)

3. Diseño de radioenlaces terrestres

Cálculo de trayectorias, pérdidas totales y potencia recibida

Planeación de frecuencias, interferencia, ruido

Normativas ITU-R para diseño de enlaces

4. Comunicaciones satelitales

Sistemas GEO, MEO, LEO: estructuras y coberturas

Diseño de estaciones terrenas y enlace ascendente/descendente

Interferencias, pérdidas por apuntamiento, efectos climáticos

5. Aplicaciones emergentes y posicionamiento global

Redes satelitales IoT y móviles (NB-IoT, 5G NTN)

Sistemas de posicionamiento (GPS, Galileo, GLONASS)

Radar, teledetección y sensores remotos

6. Instrumentación y simulación

Simulación de enlaces con HFSS, Pathloss, MATLAB

Uso de analizadores, medidores de potencia y redes vectoriales

Laboratorios de diseño y medición de enlaces reales

VII. ESTRATEGIAS DE ENSEÑANZA QUE FAVORECEN EL APRENDIZAJE

El curso se desarrollará mediante aprendizaje activo basado en proyectos, clases magistrales interactivas, resolución de problemas, prácticas de laboratorio, uso de simuladores y análisis de casos. Se integrará el desarrollo de dos proyectos: uno de enlace microondas terrestre y otro de red satelital.

VIII. EVALUACIÓN

De acuerdo con el estatuto estudiantil vigente (Acuerdo No. 027 de 1993 expedido por el Consejo Superior Universitario y en su Artículo No. 42 y al Artículo No. 3, Literal d) el profesor al presentar el programa presenta una propuesta de evaluación como parte de su propuesta metodológica.

Para dar cumplimiento a lo dispuesto en el estatuto estudiantil, los porcentajes por corte se definen como se indica a continuación, con base en las fechas establecidos por el Consejo Académico en el respectivo calendario académico.

Primer corte (hasta la semana 8) à 35%

Segundo corte (hasta la semana 16) à 35%

Proyecto final (hasta la semana 18) à 30%

En todo caso, la evaluación será continua e integral, teniendo en cuenta los avances del estudiante en los siguientes aspectos: i) comprensión conceptual (pruebas escritas, talleres); ii) aplicación práctica (laboratorios, informes técnicos); iii) proyecto integrador final (análisis, diseño, montaje y presentación); y iv) participación y trabajo en equipo. Asimismo, se debe valorar el desarrollo de competencias comunicativas, resolución de problemas, uso de instrumentos, pensamiento lógico y creatividad. Las pruebas se concertarán con el grupo y se ajustarán a las fechas establecidas en el respectivo calendario académico.

IX. MEDIOS Y RECURSOS EDUCATIVOS

Para el adecuado desarrollo de este espacio académico, se requiere el uso de medios institucionales y recursos individuales que faciliten los procesos de enseñanza y aprendizaje, tanto en ambientes presenciales como virtuales. Las actividades teóricas se apoyarán en aulas de clase dotadas de medios audiovisuales (tablero, videobeam, sillas) y plataformas virtuales institucionales como Microsoft Teams o Google Meet. Además, será fundamental el acceso a presentaciones digitales, textos base, hojas de datos, artículos técnicos y bibliotecas digitales.

En cuanto al trabajo práctico, se utilizarán aulas de laboratorio equipadas con fuentes de voltaje DC, generadores de señales, osciloscopios, multímetros y otros instrumentos de medición. Adicionalmente se cuenta con laboratorio de microondas con generadores, analizadores de espectro, kits de enlace, medidores de potencia, acceso a estaciones meteorológicas para correlación de datos climáticos con desvanecimientos.

Como recursos propios, el estudiante debe disponer de una calculadora científica, conexión estable a internet que la universidad proporciona, un sistema para la toma de apuntes (cuaderno, tablet o computador) y acceso a los materiales de clase. Será responsabilidad del estudiante descargar los insumos digitales y contar con los elementos necesarios que serán especificados previamente en cada práctica o proyecto.

X. PRÁCTICAS ACADÉMICAS - SALIDAS DE CAMPO

Se propondrán visitas a centros de control de telecomunicaciones, estaciones base de microondas o universidades/centros con infraestructura satelital para observación directa del entorno técnico. Además, los estudiantes aplicarán sus diseños sobre mapas reales con herramientas de simulación geoespacial.

XI. BIBLIOGRAFÍA

Neri Vela, R. Comunicaciones por Satélite. Ed. Thomson, 2003.							
TU-R Recommendations y Manuales de diseño de enlaces (P-series).							
Zekavat, R.; Buehrer, R. Handbook of Position Location. Wiley, 2011.							
IEEE Xplore y 3 GPP sobre redes satelitales 5 G y enlaces mmWave.							
XII. SEGUIMIENTO Y ACTUALIZACIÓN DEL SYLLABUS							
Fecha revisión por Consejo Curricular:							

Número de acta:

Pozar, D.M. Microwave Engineering. John Wiley & Sons, 2012.

Fecha aprobación por Consejo Curricular:

Freeman, R.L. Radio System Design for Telecommunications. Wiley, 2007.