Study of French labour market and inequalities

L. Insolia, J. Kim and G. Yeghikyan

SNS

— Midterm results —

March 14, 2018

Objectives

- Structure of French labour market
- Inequalities (in terms of salary):
 - ages
 - gender
 - job categories
 - spatial distribution
- Firms' distribution
- Exploratory analyses

Methodology

INSEE data

- Population: age, sex and cohabitation mode
- Salary: job categories, age and sex (mean net salary per hour in €)
- Firms: number of firms for each size
- Geography: GPS location

for different geographical levels (communes, departments, towns) in 2014

What has been done so far . . .

Pre-processing phase

o ...

...

Demographic profiles

Demographic profiles

Inequality of salary

Inequality of salary

Inequality of salary

ANOVA using sex, job, age and interaction effects


```
lm(formula = sal_v ~ sal_sex + sal_age + sal_iob + sal_sex:sal_age +
    sal_sex:sal_job)
Residuals:
                      Median
-0.084405 -0.004353 0.000683 0.005477 0.057842
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 1.061e-01 8.471e-05 1252.443 < 2e-16 ***
sal sex
                 -1.097e-02 1.198e-04 -91.569 < 2e-16 ***
sal_agel
                 -2.160e-02 1.467e-04 -147.227
sal age2
                 -2.838e-02
                            1.467e-04 -193.440
sal_jobl
                 -5.601e-02 1.467e-04 -381.776 < 2e-16 ***
sal iob2
                 -3.036e-02 1.467e-04 -206.917
                 -8.621e-03 1.467e-04 -58.758 < 2e-16 ***
sal iob3
sal sex:sal agel -2.502e-03 2.075e-04
sal_sex:sal_age2 -7.572e-03 2.075e-04
                                       -36,491 < 2e-16 ***
sal sex:sal job1 1.197e-03 2.075e-04
sal_sex:sal_job2 4.873e-04 2.075e-04
                                         2.349 0.0188 *
sal sex:sal job3 3.059e-03 2.075e-04
                                        14.742 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.008585 on 71892 degrees of freedom
                               Adjusted R-squared: 0.841
Multiple R-squared: 0.841,
F-statistic: 3.458e+04 on 11 and 71892 DF. p-value: < 2.2e-16
```

ANOVA using sex, job, age and interaction effects

Prediction for young people using BSS

Best subset selection for salary 18-25 Number of Variables 2 Number of Variables Number of Variables

Elastic net and and 10-folds CV

Best lambda for salary 18-25 using elastic net with alpha=0.5 and 10-folds CV

Distribution of firms per town

Distribution of firms per town

Bivariate relations

Excluding Paris

Bivariate relations

Correlation matrix for firms in log scale

Correlation matrix for inition in log scale							
	total	micro	small	medium	large	Ē	_ 1
total		0.93	0.79	0.61	0.39	0.99	-0.8
micro	0.93		0.83	0.64	0.41	0.9	-0.6 -0.4
small	0.79	0.83		0.8	0.54	0.76	0.2
medium	0.61	0.64	0.8		0.71	0.59	-0.2
large	0.39	0.41	0.54	0.71		0.39	-0.4
null	0.99	0.9	0.76	0.59	0.39		-0.8

Including Paris

PCA

Using original data scaled (not logs) Most typical vs. Excluding just Paris

Issues

- A lot of NA in geo locations (retrieved from Google API)
- Unique code for salary data 1/7 of the total
- Difficult to combine the separated datasets
- Missing additional information
- French DOM-TOM regions
- Outliers and spatial correlation
- Combine the separated datasets

Future works

- Create meaningful indicators
- Take correlation into account (especially spatial)
- Perform clustering techniques to identify geographical clusters
- Perform groupwise lasso to predict salary data
- Verification/improvement of the obtained results
- Compare the methodologies used with robust ones
- Find complementary datasets

- Thank you -