Solution & Architecture for Subscription with INTELL & USDT

12 April 2023 Dmitry Eremenko

Solution: Mixing USDT and INTELL at a certain ratio

Architecture

Offering Subscription Plan & Subscripting with USDT(85%) + INTELL(15%)

Withdrawing USDT & INTELL through Subscription Pool & Staking Pool

Withdrawing USDT & INTELL through Subscription Pool & Staking Pool

Reason for mixing USDT and INTELL tokens in Subscription Payment method

TIEX Protocol analysis

For one year after launching, the INTELL token price volatility is considered to be very large. In other words, since the LP(Liquidity Pool) of the INTELL token is not large for a while after the initial launch, big investors and traders can cause big changes in the INTELL price. This can lead to huge losses and huge profits for data scientists and investors.

That is, it means that the PNL increases.

Big PNL is not good for them. Therefore, we proposed a subscription payment method that mixes USDT with no volatility, and INTELL token with high volatility.

In the future, when the INTELL Token LP(Liquidity Pool) becomes large enough, the INTELL ratio will need to be increased in the mixed payment method like the following table.

After Launching	USDT Ratio	INTELL Ratio
For 1 year	90%	10%
After 1 year	85%	15%
After 2 year	80%	20%
After 3 year	75%	25%
After 4 year	70%	30%

Mathematical modeling of PNL

ΔV: INTELL Token Price Change Rate (%)

Mixing Rate; X(%) + Y(%) = 100%

X(%); USDT Ratio

Y(%); INTELL Ratio

Finally, PNL(%) = $\pm | Y * \Delta V | / 100$ (%)

For Instance

-50%
$$\leq \Delta V \leq$$
 50%

Mixing Rate; $X(\%) + Y(\%) = 100\%$
 $X(\%) = 90\%$ (USDT)

 $Y(\%) = 10\%$ (INTELL)

 $PNL(\%) = \pm | Y * \Delta V | / 100 = \pm | 10 * 50 | / 100(100\%) = \pm 5 (\%)$