Amostragem

Cálculo do tamanho da amostra

Prof.: Wagner Pinheiro

wagner2235@gmail.com

Sumário

- 1 Amostragem
 - Cálculo do tamanho da mostra
 - Exercícios

Determinando tamanho da amostra

- i) Com base na estimativa da Média Populacional
- ii) Com base na estimativa da Proporção Populacional
- iii) Para populações finitas com base em (i) e (ii)
- iv) Para situações em que não se tem parâmetros.

Com base na estimativa da Média Populacional

A fórmula para cálculo do tamanho da amostra para uma estimativa confiável da MÉDIA POPULACIONAL (μ) é dada por:

$$n = \left(\frac{Z_{\frac{\alpha}{2}} \cdot \sigma}{\varepsilon}\right)^2 \tag{1}$$

Com base na estimativa da Média Populacional

Os valores de confiança mais utilizados e os valores de Z correspondentes podem ser encontrados na Tabela a seguir.

Table: Valores críticos associados ao grau de confiança na amostra.

Grau de Confiança	α	Valor Crítico $Z_{\frac{\alpha}{2}}$
90%	0,10	1,64
95%	0,05	1,96
99%	0,01	2,58

Com base na estimativa da Média Populacional

Os valores de confiança mais utilizados e os valores de Z são extraídos da curva Gaussiana, ou curva normal.

Exemplo

Um economista deseja estimar a renda média para o primeiro ano de trabalho de um bacharel em direito. Quantos valores de renda devem ser tomados, se o economista deseja ter 95% de confiança em que a média amostral esteja a menos de R\$500,00 da verdadeira média populacional? Suponha que saibamos, por um estudo prévio, que para tais rendas, S = R\$6250,00.

Queremos determinar o tamanho n da amostra, dado que $\alpha=0,05$ (95% de confiança). Desejamos que a média amostral seja a menos de R\$ 500 da média populacional, de forma que E=500. Supondo S=6250, aplicamos na Equação, obtendo:

$$n = \left(\frac{Z_{\frac{\alpha}{2}} \cdot \sigma}{\varepsilon}\right)^2 = \left(\frac{1,96 \cdot 6250}{500}\right)^2 = 600,25 = 601^*$$

Devemos, portanto, obter uma amostra de pelo menos 601 rendas de primeiro ano, selecionadas aleatoriamente, de bacharéis de faculdades que tenham feito um curso de direito. Com tal amostra teremos 95% de confiança em que a média amostral \bar{X} difira em menos de R\$500,00 da verdadeira média populacional μ .

Com base na estimativa da Proporção Populacional

A fórmula para cálculo do tamanho da amostra para uma estimativa confiável da PROPORÇÃO POPULACIONAL (p) é dada por:

$$n = \frac{Z_{\alpha/2}^2 \cdot p \cdot q}{\varepsilon^2} \tag{2}$$

Mas se p e q forem desconhecidos, substituímos ambos por 0, 5.

Exemplo

Uma assistente social deseja saber o tamanho da amostra (n) necessário para determinar a proporção da população atendida por uma Unidade de Saúde, que pertence ao município de Contagem. Não foi feito um levantamento prévio da proporção amostral e, portanto, seu valor é desconhecido. Ela quer ter 90% de confiança que na sua amostra o erro máximo para a estimativa (E) seja de $\pm 5\%$ (ou 0,05). Quantas pessoas necessitam ser entrevistadas?

Considerando que o valor da proporção amostral de atendimentos para pessoas de Contagem não é conhecida. Utilizamos a Equação da proporção para determinar o tamanho da amostra. Sabemos que, para 90% de confiança teremos o valor crítico $(Z_{\frac{\alpha}{2}})=1,64$, conforme Tabela.

$$n = \frac{Z_{\alpha/2}^2 \cdot 0,25}{\varepsilon^2} = \frac{1,64^2 \cdot 0,25}{0,05^2} = 270,6 = 271$$

Devemos, portanto, obter uma amostra de 271 pessoas para determinar a proporção da população atendida na Unidade de Saúde, que se origina do município de Contagem.

Fórmula para populações FINITAS

Fórmula para determinação do tamanho da amostra (n) com base na estimativa da média e da proporção populacional.

$$n = \frac{N \cdot \sigma^2 \cdot (Z_{\frac{\alpha}{2}})^2}{(N-1) \cdot \varepsilon^2 + \sigma^2 \cdot (Z_{\frac{\alpha}{2}})^2} \qquad n = \frac{N \cdot (Z_{\alpha/2})^2 \cdot \hat{p} \cdot \hat{q}}{(Z_{\alpha/2})^2 \cdot \hat{p} \cdot \hat{q} + (N-1) \cdot \varepsilon^2}$$

Sem Informação

Para os casos onde não se tem informação alguma a respeito de estimativas do parâmetro da população em estudo, podemos obter uma estimativa para o tamanho da amostra da seguinte maneira:

População Infinita

$$n = n_0 = \frac{1}{\varepsilon^2} \tag{3}$$

População Finita

$$n = \frac{N \times n_0}{N + n_0} \tag{4}$$

Exercício

Aplicar os cálculos nas populações para responder o problema escolhidos para estudo.

Dica: http://www.calculoamostral.vai.la