Pertemuan 2 LOGIC

Naim Rochmawati

Proporsitional logic

- The simplest logic
- Definition:

A proposition is a statement that is either true or false.

- Examples:
- Penny stays in Sidoarjo (T)
- -5+2=8 (F)
- It is raining today (either T or F)

Propositional Logic

Examples (cont.):

- How are you?
- a question is not a proposition
- -x + 5 = 3
- since x is not specified, neither true nor false
- -2 is a prime number (T)
- There are other life forms on other planets in the universe either T or F

Composite Statements

More complex propositional statements can be build from elementary statements using **logical connectives**.

Example:

- Proposition A: It rains outside
- Proposition B: We will see a movie
- A new (combined) proposition:

If it rains outside then we will see a movie

Composite Statements

More complex propositional statements can be build from elementary statements using **logical connectives**.

- Logical connectives:
- Negation
- Conjunction
- Disjunction
- Exclusive or
- Implication
- Biconditional

Negation

<u>Definition</u>: Let p be a proposition. The statement "It is not the case that p." is another proposition, called the **negation of p**. The negation of p is denoted by \neg p and read as "not p."

Example:

- Pitt is located in the Oakland section of Pittsburgh.
 - \rightarrow
- It is not the case that Pitt is located in the Oakland section of Pittsburgh.

Other examples:

- $-5+2 \neq 8$.
- 10 is not a prime number.
- It is not the case that buses stop running at 9:00pm.

Negation

- Negate the following propositions:
 - It is raining today.
 - It is **not** raining today.
 - 2 is a prime number.
 - 2 is not a prime number
 - There are other life forms on other planets in the universe.
 - It is not the case that there are other life forms on other planets in the universe.

Negation

A truth table displays the relationships between truth values (T or F) of different propositions.

р	¬р
Т	F
F	T

Rows: all possible values of elementary propositions:

Conjunction

<u>Definition</u>: Let p and q be propositions. The proposition "p and q" denoted by p \(\times \) q, is true when both p and q are true and is false otherwise. The proposition p \(\times \) q is called the conjunction of p and q.

- Pitt is located in the Oakland section of Pittsburgh and 5 +
 2 = 8
- It is raining today and 2 is a prime number.
- -2 is a prime number and $5+2 \neq 8$.
- 13 is a perfect square and 9 is a prime.

Disjunction

<u>Definition</u>: Let p and q be propositions. The proposition "p or q" denoted by p v q, is false when both p and q are false and is true otherwise. The proposition p v q is called the disjunction of p and q.

- Pitt is located in the Oakland section of Pittsburgh or 5 + 2
 = 8.
- It is raining today or 2 is a prime number.
- 2 is a prime number or $5 + 2 \neq 8$.
- 13 is a perfect square or 9 is a prime.

Truth tables

Conjunction and disjunction

• Four different combinations of values for p and q

p	q	p∧q	p∨q
T	T		
Т	F		
F	Т		
F	F		

Rows: all possible combinations of values for elementary propositions: 2ⁿ values

Truth table

- Conjunction and disjunction
- Four different combinations of values for p and q

р	q	p∧q	p∨q
Т	T	Т	Т
Т	F	F	Т
F	Т	F	Т
F	F	F	F

NB: p v q (the or is used inclusively, i.e., p v q is true when either p or q or both are true).

Exclusive or

Definition: Let p and q be propositions. The proposition "p exclusive or q" denoted by p q, is true when exactly one of p and q is true and it is false otherwise.

р	q	p⊕q
T	T	F
Т	F	Т
F	Т	Т
F	F	F

Implication

- Definition: Let p and q be propositions. The proposition "p implies q" denoted by p → q is called implication. It is false when p is true and q is false and is true otherwise.
- In p → q, p is called the hypothesis and q is called the conclusion.

р	q	$p \rightarrow q$
Т	T	Т
Т	F	F
F	T	Т
F	F	Т

Implication

- p → q is read in a variety of equivalent ways:
 - if p then q
 - p only if q
 - p is sufficient for q
 - q whenever p

- if Steelers win the Super Bowl in 2013 then 2 is a prime.
 - If F then T?

Implication

- p → q is read in a variety of equivalent ways:
 - if p then q
 - p only if q
 - p is sufficient for q
 - q whenever p

- if Steelers win the Super Bowl in 2013 then 2 is a prime.
 - T
- if today is Tuesday then 2 * 3 = 8.
 - What is the truth value?

Biconditional

Definition: Let p and q be propositions. The biconditional p

 → q (read p if and only if q), is true when p and q have the same truth values and is false otherwise.

р	q	$p \leftrightarrow q$
Т	T	T
Т	F	F
F	T	F
F	F	Т

Note: two truth values always agree.

Case

Example: Construct a truth table for

$$(p \rightarrow q) \land (\neg p \leftrightarrow q)$$

Simpler if we decompose the sentence to elementary and intermediate propositions

р	q	¬р	$p \rightarrow q$	¬p ↔ q	(p→q)∧ (p↔qr)
Т	T				
Т	F	0			
F	Т	2			
F	F	50			

Answer

p	q	¬р	$p \rightarrow q$	¬p ↔ q	(p→q)∧ (p↔qr)
Т	T	F	T	F	F
Т	F	F	F	Т	F
F	Т	Т	Т	Т	Т
F	F	Т	Т	F	F