Database Systems

Spring Semester 2018

Assignment #4

Due Date: Before the start of the class (2nd April, 2018)

Instructions:

- Use proper assignment papers for solving your assignment questions. Assignment done on diary pages, register pages, rough pages will not be credited.
- Do not copy the work of your peers. In case cheating is detected, then your case will be referred to DC.

Question 1: Consider a relation R(A, B, C, D) with FD's A B -> C, B C -> D, CD -> A, and AD->B.

- a) What are all the nontrivial FD's that follow from the given FD's? You should restrict yourself to FD's with single attributes on the right side.
- b) What are all the keys of R?
- c) List any five superkeys for R that are not keys?

Question 2: Show that each of the following are *not* valid rules about FD's by giving relational instance that satisfy the given FD's (following the "if") but not the FD that allegedly follows (after the "then").

b) If *AB* -> *C* and *A* -> *C*, then *B* -> *C*.

c) If AB -> C, then A -> C or B -> C.

Question 3: Find out whether the following set of functional dependencies for a relation R (A,B,C,D,E) are equivalent or not.

- 1. E->D, ED->C, B->EC, B->A, D->A
- 2. E->ADC, B->AE, D->B

Question 4: Consider the relation R(A,B,C,D,E,F,G,H,I) and a set of functional dependencies:

$$FD's = \{A \rightarrow B, ABCD \rightarrow E, EF \rightarrow GH \text{ and } ACDF \rightarrow EG.\}$$

- i. Find Keys for the above relation R?
- ii. Find a minimal cover for the above set of FDs'?
- iii. Decompose the above relation into 3NF that preserve all the dependencies.

Question 5: Suppose you are given a relation R(A, B, C, D). For each of the following sets of FDs, assuming they are the only dependencies that hold for R, do the following: (a) Identify the candidate key(s) for R. (b) State whether or not the proposed decomposition of R into smaller relations is a good decomposition (lossless, dependency preserving, attribute preserving), and briefly explain why or why not.

- a) AB -> C, C -> A, C -> D; decompose into ACD and BC.
- b) A -> BC, C -> AD; decompose into ABC and AD.
- c) $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow D$; decompose into AB and ACD.
- d) $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow D$; decompose into AB, AD and CD.

Question 6:

Shipment ID:		0-0001			01/10/2010 01/14/2010
Origin:	Boston Brazil				
Destination:					
Ship Number:	39		Captain:		002-15
					Henry Moore
Item Number	Туре	Description	Weight	Quantity	TOTALWEIGHT
3223	BM	Concrete	500	100	50,000
		Form			
3297	BM	Steel	87	2,000	174,000
		Beam			
				Shipment Total:	224,000

Figure given above shows a shipping manifest. Your assignment is as follows:

- a. Identify the functional dependencies between the attributes.
- b. Draw a relational schema and diagram the functional dependencies in the relation.
- c. In what normal form is this relation(1NF,2NF,3NF,BCNF,4NF)? Decompose the above relation into a set of 3NF relations.
- d. Draw a relational schema for your 3NF relations and show the referential integrity constraints.

Question 7:

The following statement is presented to the patient (or patient representative) when the patient is discharged. Assume that each item on the bill has a unique description and that the charge for a particular item may vary from one patient to another.

Using the normalization, develop a set of BCNF relations for the patient billing system shown below.

Draw a relational schema for the BCNF relations you developed. Be sure to show the functional dependencies and referential integrity constraints.

INVOICE

MOUNTAIN VIEW COMMUNITY HOSPITAL 200 Forest Dr. Mountain View, CO 80638

Mary Baker 200 Oak St. Mountain View, CO 806338 INVOICE DATE: ACCOUNT NUMBER: DUE DATE:

10/24/2010 000976555 11/14/2010

PATIENT NAME	PATIENT NAME PATIENT #		DATE DISCHARGED
Mary Baker	3249	10/15/2010	10/18/2010

CODE	DESCRIPTION	TOTAL CHARGE
200	Room semi-pr	1,800.00
205	Television	75.00
307	X-ray	150.00
413	Lab tests	200.00

TOTAL CHARGES DUE

2,225.00