洲江水学

本科实验报告

课程名称:		电子电路设计实验II		
姓	名:			
学	院:	信息与电子工程学院		
专	业:	电子科学与技术		
学	号:			
指导教师:		施红军、李锡华、叶险峰		

2020年 8月 14 日

浙沙大学实验报告

专业:	电子科学与技术
姓名:	
学号:	

果程名称:	电子电路设计实验II	指导老师:	施红军、	李锡华、	叶险峰
小川王 1日 1小小・		10 / (0////		T 1997	

实验名称: 电流电压转换电路研究

一、实验目的

二、实验任务与要求

三、实验方案设计与实验参数计算(3.1 总体设计、3.2 各功能电路设计与计算、3.3 完整的实验电路……)

四、主要仪器设备

五、实验步骤与过程

六、实验调试、实验数据记录

七、实验结果和分析处理

八、讨论、心得

一、实验目的

- (1) 熟悉电流信号转换成电压信号的原理。
- (2) 掌握标准电流信号转换成电压信号的设计方法。

二、实验任务与设计要求

熟悉电流-电压转换电路的工作原理。设计出电流-电压转换电路。要求如下:

将标准电流信号 4mA~20mA 转换为标准电压信号 0V~10V,误差控制在 5%以内。

三、实验原理

在自动控制技术中,传感器输出的标准电流信号为 4mA~20mA,需要将其转换成 0V~10V 的电压信号,以便进一步处理。利用工作在线性区的运算放大器可以实现这个任务。图 1 给出了这样一种转换电路的例子。4mA 为满量程的 0%,对应的输出电压为 0V,12mA 为满量程的 50%,对应的输出电压为 5V,20mA 为满量程的 100%,对应的输出电压为 10V。

在图 1 中,运放 A_1 采用差分输入,电阻 R_1 跨接在电流源两端,此级电路将 $4\sim20$ mA 的电流转换为一定的电压。第一级放大电路中,电阻 R_2 、 R_3 、 R_4 、 R_5 相等、放大倍数为 1,对应输出电压 V_{o1} =- I_iR_1 ,实现了电流到电压的转换。第二级放大电路实现从 V_{o1} 到 $0V\sim10V$ 的电平变换,根据对第二级电路的分析有: $\frac{V_{o1}}{R_6} + \frac{V_f}{R_7} = -\frac{V_o}{R_f}$,由此可推出: $V_o = \frac{R_f R_1 I_i}{R_6} - \frac{R_f V_f}{R_7}$ 。只要合理选取 R_6 、 R_7 的阻值,调整 V_f 和 R_f 的值,就能使输入电流 I_i 从 4mA ~20 mA 变化时,对应输出 $0\sim10V$ 的电压信号。

四、实验方案设计和参数计算

4.1 总体设计

电流电压转换电路由两级放大电路构成,第一级放大电路将输入电流 $4\sim20$ mA 转换为电压- $0.8\sim-4$ V,,第二级放大电路将输入电压- $0.8\sim-4$ V 转换为 $0\sim10$ V。

4.2 各功能电路的设计和计算

(1) 第一级放大电路设计

参数计算: 取 $R_1=200\Omega$,可将电流信号 4mA~20mA 转换为电压信号为 0.8~4V,取 $R_2=R_3=R_5=R_4=10k\Omega$,则第一级放大电路增益为 1,可得到 V_{o1} 为-0.8~-4V。电容 C 用来抑制高频干扰,取C=100pF。

参数值: $R_1=200\Omega$, $R_2=R_3=R_5=R_4=10k\Omega$, C=100pF。 电路图:

(1) 第二级放大电路设计

参数计算: 根据第一级的输出电压为-0.8~-4V,第二级的放大倍数要求为 2.5 倍。根据公式 $V_o = \frac{R_f R_1 I_i}{R_6}$ —

 $\frac{R_f V_f}{R_7}$, $R_1 = 200\Omega$ 已经确定, I_i 的范围为 4~20mA,以及实验可提供的稳压管,选择稳压值为 5.1V 的稳压二极管 1N4733A,取 $R_{w1} = 2k\Omega$, $R_{12} = 1k\Omega$,则 $V_f = 1.7$ ~5.1V,于是 $V_o = \left(\frac{0.2 \times (4 \sim 20)}{R_6} - \frac{1.7 \sim 5.1}{R_7}\right) \times R_f$,当 $I_i = 4mA$ 时, $V_o = 0V$, $\frac{R_7}{R_6} = 2.125$ ~6.375,取 $\frac{R_7}{R_6} = 4.5$, $V_f = 3.6V$,于是可取 $R_6 = 2k\Omega$,则 $R_7 = 9.1k\Omega$ 。当 $I_i = 20mA$ 时, $V_o = 10V$,计算得 $R_f \approx 6.36k\Omega$,可以用一个 $5.6k\Omega$ 的电阻串联上一个 $20k\Omega$ 的电位器得到。考虑到运放非理想运放, R_{10} 阻值对输出有较大影响,故取 $R_{10} = 10\Omega$ 。另外取 $R_9 = 10k\Omega$, $R_{11} = 1k\Omega$ 。

参数值: $R_6=2k\Omega$, $R_7=9.1k\Omega$, $R_8=5.6k\Omega$, $R_9=10k\Omega$, $R_{10}=10\Omega$, $R_{11}=1k\Omega$, $R_{12}=1k\Omega$, $R_{w1}=2k\Omega$, $R_{w2}=20k\Omega$,

电路图:

4.3 完整的实验电路

五、主要仪器设备

Multisim10, AD9

六、实验步骤及实验结果

6.1 V₀₁测试

(1) 输入 4mA 电流

分析: $V_{o1} = -0.792V$, 与理论值-0.8V 相对误差 1%。

(2) 输入 12mA 电流

分析: $V_{o1} = -2.376V$, 与理论值-2.4V 相对误差 1%。

(3) 输入 20mA 电流

分析: $V_{o1}=-3.96V$,与理论值-4V 相对误差 1%。

6.2 调节 R_{w1}, 将 V_f 调整为 2V

(1) V_f原先值

(2) 调节电位器 Rw1

分析: 当电位器接入电路约 82%时,可以将 V_f 调整为 $2V_o$

6.3 调整 Ii 为 20mA,调节 Rw2,使 A2 的输出电压 Vo=10V

分析:此时输出电压为 9.768V,与理论值相对误差为 2.32%。此时 V_{ol} =-3.96V,理论值 V_{ol} =-4V,相对误差为 1%。

- 6.4 进行电路联调, 当 Ii 在 4mA~20mA 之间变化时,观察输出 Vo 是否为 0V~10V
- (1) 输入电流为 20mA 时

分析:此时输出电压为9.768V,与理论值相对误差为2.32%。

(2) 输入电流为 12mA 时,通过调整 Rw1,可以得到:

分析:此时输出电压为 5.016V,与理论值相对误差为 0.32%。

(3) 输入电流为 4mA 时

分析:此时输出电压为 264.075mV,与理论值 0V 相差较小。

由以上仿真可见,在 Rw1 接入 48%, Rw2 接入 2%时,输入电流 4-12mA 可以输出电压 0-10V。设计基本可以达到预期效果。

6.5 AD 电路原理图及 PCB 版图

AD 电路原理图:

PCB 版图:

PCB 版图中稳压管正负极接反,在实际电路焊接中已改正。

6.6 焊接

6.7 数据测试

电流 /mA	电压/V	理论值 /V	相对误差/%
4	-0.02	0	/
5	0.67	0.625	7.20
6	1.29	1.25	3.20
7	1.84	1.875	-1.87
8	2.50	2.5	0.00
9	3.09	3.125	-1.12
10	3.82	3.75	1.87
11	4.44	4.375	1.49
12	5.07	5	1.40
13	5.65	5.625	0.44
14	6.28	6.25	0.48
15	6.86	6.875	-0.22
16	7.56	7.5	0.80
17	8.21	8.125	1.05
18	8.77	8.75	0.23
19	9.37	9.375	-0.05
20	10.00	10	0.00

由以上数据可见,除输入电流 5mA 得到的电压误差>5%以外,其余各点电流误差均在 5%以内。实验过程一切顺利,未出现异常现象。

七、思考题

电路原理图:来自网络,电路设计参考自此图。网上能找到的参考资料大多是0~10V电压转换为0~5mA电流。唯一符合题意的参考电路图只有下图。在理解的基础上我将参数进行了推算,证明此电路设计符合要求,并将其转换为了 Multisim 电路图。

设计思路:

常规电压电流转换电路设计中,电流与电压呈线性关系,一般通过运放和三极管的组合电路实现。要使输入 $0\sim10V$ 电压输出 $4\sim20$ mA 电流,则真正转换电路的电压输入应从不为 0 的值开始。若以 R_{13} 上的电流为输出电流,范围为 $4\sim20$ mA,当 R_{13} 为 $100\,\Omega$ 时, V_0 的值应为 $0.4\sim2V$ 。通过第一级放大电路得到的电压值从 0 开始,故 V_{i2} 应通过运放提供给 V_o 0.4V 的电压分量, V_{i1} 通过运放应提供 $0\sim1.6V$ 的电压分量,两者相加得到 V_o 。当第二级放大电路增益为-1 时,可以推算出 V_{i1} 的范围为- $(0\sim1.6)V$;取 $R_5=100k$ 时,第二级放大电路反馈电阻为 10k 时,可以推算出 V_{i2} 的稳定值为 4V。

故第一级电路应是电压衰减电路,将 $0\sim10V$ 的电压转换为- $(0\sim1.6)V$ 的电压。第二级电路为反相加法器,将第一级得到的电压 V_{i1} 和通过电位器 R_9 得到的电压 V_{i2} 通过运放相加后得到 V_0 ,再通过电阻 R_{13} 转换为 $4\sim20$ mA 电流, R_{13} 上的电流即为输出电流。

参数计算:

(1) 第一级电路

第一级电路输入电压 0~10V,输出电压-(0~1.6)V,增益A = $-\frac{R_2+R_3}{R_1}$ = -0.16。取 $R_1=R_4=100k\Omega$,则 R_2 可取 15k, R_3 可取 2k 的电位器。

(2) 第二级电路

第二级电路为反相加法器。取 $R_6=R_7=R_8=R_{11}=10k\Omega$,由 V。的计算公式 $V_o=-\left(\frac{R_{11}+R_{12}}{R_6}V_{i1}+\frac{R_{11}+R_{12}}{R_5}V_{i2}\right)$ 可以计算出此时 V_o 的取值范围: $V_o=\left((0\sim1.6)\times\frac{(10\sim10.2)}{10}+\frac{(10\sim10.2)}{100}\times4\right)=0.4\sim2.04V$,基本符合要求 电路仿真:

(1) 输入 0V 时

分析:此时输出电流 4.13mA,与理论值相对误差 3.25%。

(2) 输入 5V 时

分析:此时输出电流 12.08mA,与理论值相对误差 0.67%。

(3) 输入10V时

分析:此时输出电流 20.03mA,与理论值相对误差 0.15%。

电路设计基本符合要求。

八、实验心得

(1) 仿真部分

电流电压转换电路因为有老师提供的帮助文档,设计起来相对容易,但是在 Multisim 仿真过程中,我发现,第二个运放输入端和输出端的电阻对实验结果有较大影响,当电阻的比例设计符合实验要求时,其阻值大小对结果的影响也是不可忽略的,需要不断调整电阻大小才能得到符合预期的结果,主要原因应该时运放非理想运放,可能在实际电路测试中也需要调整现在设计的电阻值。电压电流转换电路设计比较困难,老师没有提供文档且网上参考资料较少,唯一可以供参考的便是那张模糊的电路图,虽然设计是参考了那张电路图,但自己仿真过之后也理解了电压电流转换电路设计的思想。

另外谢谢施老师在PCB版图设计上提出的修改意见。在整个实验过程我觉得PCB版图是相当重要的,如果版图设计错了,仿真做成功了也没有地方可以测试电路。

(2) 焊接和测试部分

焊接过程基本是根据图纸来的,使用的是前期设计好的参数,除了运放端的电位器由 2k 改成了 20k,

其余参数与前期仿真时一致。完成试验后我已经将前面的仿真内容更新,所有涉及到运放端电位器的部分全部换成了 20k。焊接时我本来想先焊完第一级放大器测试后再焊第二级的,在老师的建议下改成了全部焊完再测试,我觉得全部焊完再测试其实是有一定风险的,如果电路复杂些,其中一个点错了很有可能要花大量的时间去纠正。这次可以如此顺利地完成实验,我觉得还是前期仿真的功劳。

在测试阶段,也没有碰到什么麻烦,先调整稳压管处的电位器使输入 4mA 电流时输出 0V 电压,此后该电位器保持不变。当输入 20mA 电流时,去调整运放端的电位器使输出 10V 电压,然后将输入电流调整为 12mA,验证输出是否为 5V 电压。如此,测试基本完成,然后输入电流由 4~20mA 递增,记录输出电压数据,由此实验完成。

这里谢谢老师让我把运放端的电位器换成了 20k, 做完实验后想想虽然 2k 的设计是合理的, 但是实际电路与仿真还是有较大差异, 选择较大的电位器可以有更多的调整空间, 避免了电位器不合适需要从焊好的板子上取下来的风险。