Assignment Pslides Oct Exam Help Modeling Long Run relationship

https://tutoresyeom

School of Economics UNSW

WeChat: cstutorcs

Lecture Plan

- Long-run relationship: co-movement in trending time series
- Cointegration and common trend

 Integration and common trend

 Integration and short term interest rates. COM
- ullet Regression with I(1) series under cointegration and dynamic OLS
- Spurious regression
- Tervo editerriat: CStutorcs
- Error correction models
 - Information & price discovery

Long-run relationships

Assignment Peroject Exam Help

(1946:12-1987:2, 483 monthly observations) Both appear non-stationary but move together.

Long-run relationships

Assignment Project Exam Help

eg. NYSE log Composite & Industrial indices

Long-run relationships

- Co-movement among time series
 - Two (or more) time series move together over time and never the time series are motivated by and vary a great deal. But their long-run relationship appears stable over time.
 - There must be a **common trend** that drives both time series.
 - Important to exploit long-run relationships in finance eg.
 - We introduce basic facts on modelling long-run relationships, mainly with hi-variate cases.

pairs=trading

Assignment Project Exam Help

Pairs triding is a market-neyltraktrading strategy that matches a long position with a short position in a pair of highly carried and instruments such as two stocks, exchange, raded funds (ETFs), currencies, commodities or options. Pairs traders wait for weakness in the correlation and then go long the under-performer while simultaneously short selling the over-performer, closing the positions as the relationship returns to statistical norms.

We hat: cstutores

The spurious regression problem

Assignment Project Exam Help

- ▶ General result: a linear combination z_t of a set of variables x_{it} , with order $x_{it} \sim I(1)$, will have an order of integration equal to 1, if there exists a linear combination, $z_t = \sum_{i=1}^k \alpha_i x_{it} \sim I(0)$
- there exists a linear combination $z_t = \sum_{t=0}^k \alpha_t x_{tt} \sim I(0)$ Example Consider two series y_t and x_t , with

$$y_t \sim I(1); \ x_t \sim I(1)$$

anWie Cohoto a Cistotitores

$$z_t = \alpha_0 + \alpha_1 y_t + \alpha_2 x_t \sim I(0)$$

The spurious regression problem

Assignment Project Exam Help

https://tutorcs.c.om

Examples of Spurious Regression

Assignment metality rate (%) f 19f 1090 annual label p Honduran money supply (M_t)

https:
$$\hat{Y}/\text{tulter} rcs^{0.304}_{1.26}$$
 on $R^2 = 0.918$; $F = 95.17$; $DW = 0.475$

We northy (Y_t) , 1950 1190; or Y_t , on Australian males life expectancy (X_t)

$$\hat{Y}_t = -2943 + 45.80X_t$$
 $(16.70) (17.76)$
 $R^2 = 0.916; F = 315.2; DW = 0.360$

The spurious regression problem

- The spurious regression problem is characterized by HED Soil of the OFCS. COM Fairly high R2
- Reason: distribution of the conventional test statistics are very different from conventional case (stationary data)
 - OLG estimator tops not converge in probability as $T \to \infty$ t—stats do not have well-defined asymptotic distributions

 - Estimated stdv strongly underestimates true stdv (b/c autocorrelation)
- Sign something is wrong:
 - Highly autocorrelated residuals

Implication

Assignment Project Exam Help

The spurious regression problem implies that when regressing non-stationary variables, the estimation results should not be taken too seriously!!!

httkps-difference from an Sles (C) In ction for authorielation)

An important exception arises when the non-stationary series have a convolutional probability of the state o

- Don't take first-differences
 - specification error!
 - advantage of I(1) variables (superconsistency)

Definition cointegration

Assignment Project Exam Help The k variables of the $k \times 1$ vector $x_t = (x_{1t}, x_{2t}, \dots, x_{kt})'$ are said to

The k variables of the $k \times 1$ vector $x_t = (x_{1t}, x_{2t}, \cdots, x_{kt})'$ are said to be cointegrated of order **one**, denoted as $x_1 \sim CI(1)$ if

- All variables in x_i are integrated of the same order one, i.e. x_{ii} (0), (0), (0), (0), (0), (0)
- ② There exists at least one vector $\beta = (\beta_1, \beta_2, \cdots, \beta_k)'$ of coefficients, called the **cointegrating vector**, such that the linear combination

is integrated of a order **zero**, i.e. $x_t \sim I(0)$

Example

In practice, $x_t \sim CI(1)$ is most common. Scaling a native two variable, if the esiduals ϵ_t of the regression

are I(0), then g_t and x_t are said to be cointegrated of order CI(1) with cointegrating vector $\beta=(1,-\beta_1,-\beta_2)$ as

WeChat: cstutorcs

- eg. When (9monthRate 3monthRate) is stationary, they are cointegrated with cointegrating vector $\beta = [1, -1]$.
- eg. When (logIndustrial 0.98 logComposite) is stationary, they are cointegrated with cointegrating vector $\beta = [1, -0.98]$.

Cointegration & common trend

- - eg. A model of interest rates (Fisher equation)
 - Short & long, term interest rates (r_t^s, r_t^l) are directly influenced by https:///tutores.com

$$r_t^s = a^s + \pi_t + \epsilon_t^s$$
, $r_t^l = a^l + \pi_t + \epsilon_t^l$

- Both will be I(1) when the π_t is I(1). Where t_t acts as the confidence that the trend (non-stationary part) in both r_t^s and r_t^t .
- (r_t^s, r_t^l) are cointegrated with $\beta = [1, -1]'$ because $r_t^s - r_t^l = a^s - a^l + \epsilon_t^s - \epsilon_t^l$ is I(0).

Economic Interpretation

Assignment Project Exam Help

then even though the series themselves are non-stationary they will neverthal strong elosely together over time of they have a common trend, such that deviations from the equilibrium

$$\epsilon_t = y_t - (\beta_1 + \beta_2 x_t)$$

are staWaeChat: cstutorcs

▶ The concept of cointegration indicates the existence of a long-run equilibrium to which an economic system converges over time and ϵ_t can be interpreted as the equilibrium error, i.e. the distance the system is away from the equilibrium at time t. As equilibrium errors should be temporary, ϵ_t should be stationary.

Economic Interpretation

Assignment Project Exam Help

The concept of spurious regression indicates that there is no lang run equilibrium relation between y_t and x_t as the error term ϵ_t is non-stationary, implying that deviations from the presumed relation between y_t and x_t are permanent such that this relation is not a long-run equilibrium relation.

Econometric implication

- If non-stationary variables are cointegrated, regression analysis imparts meaningful information about the long-run relationship between the variables utores. Compute variables utores computed the constant of $\hat{\beta}$ is even a super consistent estimator for β , i.e. $\hat{\beta}$ converges to β at a much faster rate than with conventional asymptotics (i.e. for
- styronage (ariables at: CSTUTOTCS

 If non-stationary variables are not cointegrated, regression results are not meaningful, i.e. spurious regression problem.

Cointegration and Error-Correction Mechanisms

Assignment Project Exam Help

The existence of a long-run equilibrium relationship also has its implications for the short-run behaviour of the I(1) variables

• The Grange representation theorem states that if a set of variables is cointegrated, there has to be a mechanism that drives the variables back to their long-run equilibrium relationship after the equilibrium has been disturbed by a shock

WeChat: cstutorcs

• This mechanism is called an error-correction model

Example of an error-correction model

A Son legaling relies that the property of the count grated with Help

A simple error-correction model (ECM) is given by

$$https=//\gamma tuttor_{t} - \alpha(y_{t-1} - \beta_1 - \beta_2 x_{t-1}) + \mu_t$$
(1)
(2)

The ECM incorporates both short-run and long-run effects

The long-run equilibrium is obtained by imposing the 'no change' covartion $y_{\nu} = M_{\nu} = N$ and solve for y_{ν}

$$y_t = \beta_1 + \beta_2 x_t$$

Thus, the long-run impact of x_t on y_t is given by β_2 .

▶ The contemporaneous impact of x_t on y_t is given by γ_1 .

Error correction mechanism

Assimption of the depth of the error-correction mechanism. The term $\alpha>0$.

When y_t is below its equilibrium value implied by x_t , $\epsilon_t < 0$ such that y_t increases back the equilibrium value implies x_t , $\epsilon_t > 0$ such that y_t decreases back to the equilibrium

Note that α measures the **speed of adjustment** towards the equilibrium. The smaller α (i.e. the closer to zero), the lower this speed of adjustment α (i.e. the closer to zero).

- When y_t and x_t are cointegrated, ϵ_t is the deviation from their long-run equilibrium.
- y_{t+1} and x_{t+1} must move toward eliminating the deviation, or correcting the cointegation error ϵ_t .
- Hence, ϵ_t is useful for predicting Δy_{t+1} and Δx_{t+1} and the models for Δy_{t+1} and Δx_{t+1} should include ϵ_t as an explanatory variable.

Vector Error correction VEC

Assignment Project Exam Help Vector error correction (VEC) model:

$$https://cluboffe.sxc.pmy_{t-1} + u_{1t}
\Delta y_t = c_2 + \alpha_2 \epsilon_{t-1} + \phi_{21} \Delta x_{t-1} + \phi_{22} \Delta y_{t-1} + u_{2t}
(3)$$
(4)

Egywhen $g_1 = 0$, the adjustment toward equilibrium is all done by y_t and the common trend \mathcal{E}_{t} \mathcal{E}_{t} \mathcal{E}_{t} \mathcal{E}_{t} \mathcal{E}_{t}

Call α_1 and α_2 adjustment coefficients.

What happens when both α_1 and α_2 are zero?

Price discovery in parallel markets

Signament or Project Exam Help

- - Bi-listed stock: which market sets the price?
 - Spot & futures, prices: does spot follows futures?

https://tutorcs.com

- For two log prices, y_t and x_t , on the same asset, the rule-of-one-price dictates that $\epsilon_t = y_t - x_t$ can only fluctuate around zero.
- We chat: cstutores Hence, y_t and x_t are cointegrated with [1,-1] being the
- cointegrating vector. The error correction model is applicable.
- The relative magnitudes of α_1 and α_2 can tell us to what extent x_t acts as price setter, $s_x = \frac{|\alpha_1|}{|\alpha_1| + |\alpha_2|}$

Example: Price discovery in parallel markets

Assignmentes Project Exam Help

– The adjustment coefficients:

 κ_{futures} is insignificant (t-stat = 0.46).

LFUT(-1) - Futures appears to be the price-setter.

Vector Error Correction Estimates

Example: US and Canadian 10-years bond yeilds

Assignment Project Exam Help

Error correction model:

https://wstutorcs.

Correction is done by CA, not US.

Cusatta
the common trend.

Dependent Variable: DUS Method: Least Squares

Durbin-Watson stat

Dependent Variable: DCA Method: Least Squares Sample (adjusted): 3 328

Sample (adir stair 3.356 Included obs ryan inst 326 page a justments Variable Coefficient Std_Er or It-fat stail Prof

	Variab	Co fficient	Std Er or	t- tat stic	Brob.
	C E(-1)	-0.005204 0.001231	0.007874 0.022301	-0.660939 0.055186	0.509
	DUS(-1) DCA(-1)	-0.152839 0.008363	0.083884 0.063225	-1.822014 0.132278	0.069 0.894
	R-squared Adjusted R-squared	0.020776 0.011653	Mean dependent var S.D. dependent var		-0.00446 0.14289
	S.É. of regression Sum squared resid	0.142060 6.498254	Akaike info criterion Schwarz criterion		-1.05294 -1.00648
	Log likelihood	175.6303	F-statistic		2.27728

Prob(F-statistic)

0.079572

1.982983

١,		Gentlen	Più.	tstatistic	1 100.
	С	-0.007500	0.010229	-0.733158	0.4640
	E(-1)	-0.068559	0.028973	-2.366334	0.018
	DUS(-1)	-0.279985	0.108980	-2.569134	0.0106
	DCA(-1)	0.042490	0.082140	0.517294	0.6053
	R-squared	0.045295	036400 S.D. dependent var 184560 Akaike info criterion		-0.006380
	Adjusted R-squared	0.036400			0.188013
	S.É. of regression	0.184560			-0.529493
	Sum squared resid	10.96805			-0.483028
	Log likelihood	90.30744	F-statistic		5.092300
	Durbin-Watson stat	2 028832	Prob(F-statistic)		0.001861

Properties of OLS: Super consistency

A Senjider propring equation y_t Deproving another the p_t $y_t = \beta_1 + \beta_2 x_t + \epsilon_t$

using OLS yields super consistent estimates of the long-run parameters β_1 and the S is I (UUTOTCS.COM

- ► Super consistency means that the OLS estimator converges to the true population parameters at a much faster rate than with stationary variables
- ▶ This result arises as OLS picks the coefficients $\hat{\beta}$ such that the variance of the variance detailed residuals $\hat{\epsilon}_t$ is as small at least letting $\hat{\beta} \neq \beta$ implies that $\epsilon_t \sim I(1)$ such that its variance becomes infinitely large when $T \to \infty$, OLS is very efficient in picking the correct β
- ▶ The super consistency property of the OLS estimator implies that in estimating the long-run relation between cointegrated variables, dynamics and endogeneity issues can be ignored asymptotically

Properties of OLS: Super consistency

Assignment, Parojecuteg Lexanna Help be fitted in the linear regression

$$y_t = \beta_0 + \beta_1 x_t + \varepsilon_t$$
, ε_t being stationary white DS β_1 is the tortical solution.

- As long as ε_t is stationary, the OLS estimator of β_1 is consistent, but generally has a non-standard asymptotic division. hat: CStutores
- To make valid inference about β_1 , the "dynamic" OLS estimator of β_1 from

$$y_t = \beta_0 + \beta_1 x_t + \sum_{i=-a}^{q} \psi_i \Delta x_{t-i} + \varepsilon_t.$$

Properties of OLS: Super consistency

- The addition of leads and lags removes the deleterious effects that short-run dynamics of the equilibrium process ϵ_t have on the entire of the confection. Com
- The DOLS estimator is consistent, asymptotically normally distributed, and efficient.
- Asymptotically valid standard errors for the individual elements of the estimated confederation control and given by their corresponding HAC (e.g., Newey-West) standard errors.

Testing for cointegration

Assignment, Project Exam Help

Suppose we want to estimate the following equation:

https://tutorcs.com Prior to estimation, test the variables for their order of integration

- **1** If both are I(0): standard regression analysis is valid
- 2 If they are integrated of a different order, e.g. y_t is I(1) and x_t is I(1) there can be do (long rub relation) tween these two variables
- **3** If both are I(1): use cointegration analysis

Note however that there is almost never certainty about the true order of integration

Assignment Project Exam Help

A popular methodology to test for cointegration and to analyse cointegrating responsibility in the cointegration and to analyse cointegration and the cointegration and the

- Estimate the static model and test for cointegration
- Ettimate a EQM to analyse the short-run dynamics
 CSTUTOTCS

distinguished

Assignments Project Examineto Estimate the model in levels using OLS. Two cases can be

1 the regression results presourious if Γ (1) 2. OLS is super consistent if Γ (0)

After estimating a model including non-stationary variables, it is therefore very important to test the order of integration of the estimated residuals $\hat{\varepsilon}_t$. We consider two alternative tests:

- 1. The cointegrating regression Durbin-Watson (CRDW) test
- 2. ADF cointegration test

ASSI Cointegrating Regression Durbin-Watson (CRDW) rest elp process:

https://tutorcs.com against the alternative that $\hat{\varepsilon}_t$ is generated by a stationary

AR(1) process:

WeChat: estutores

using the Durbin-Watson (DW) statistic.

As $DW \approx 2(1-\hat{\rho})$ this test boils down to testing whether DW is significantly larger than zero.

Assignment Project Exam Help $H_1: \hat{\varepsilon}_t \sim I(0) \text{ corresponds to } \rho < 1 \text{ or } d > 0$

The 5% critical values for the CRDW test are given by $\frac{\text{(incl. } y_t)}{2} = \frac{50 - 100 - 250}{2}$ $\frac{0.72 - 0.38 - 0.20}{0.89 - 0.48 - 0.25}$ $\frac{0.89 - 0.48 - 0.25}{0.68 - 0.35}$

▶ Drawback: the CRDW test is only valid when ε_t follows an AR(1) process as the DW statistic only checks for an AR(1) pattern in the data.

Assistandard DF specification

$$\begin{array}{c} \mathbf{https:} \overset{\Delta \hat{\varepsilon}_t}{\underset{t=1}{\bar{r}}} \overset{\tilde{\varepsilon}_{t-1}}{\underset{t=1}{\bar{r}}} \overset{p-1}{\underset{t=1}{\bar{r}}} \alpha_i \Delta \hat{\varepsilon}_{t-i} + \omega_t \\ \overset{\tilde{\varepsilon}_t}{\underset{t=1}{\bar{r}}} \overset{\tilde{\varepsilon}_{t-1}}{\underset{t=1}{\bar{r}}} \overset{\tilde{\varepsilon}_{t-i}}{\underset{t=1}{\bar{r}}} \overset{\omega_i}{\underset{t=1}{\bar{r}}} \overset{\tilde{\varepsilon}_{t-i}}{\underset{t=1}{\bar{r}}} + \omega_t \\ \overset{\tilde{\varepsilon}_t}{\underset{t=1}{\bar{r}}} \overset{\tilde{\varepsilon}_{t-1}}{\underset{t=1}{\bar{r}}} \overset{\tilde{\varepsilon}_{t-1}}{\underset{t=1}{\bar{r}}} \overset{\tilde{\varepsilon}_{t-i}}{\underset{t=1}{\bar{r}}} \overset{\tilde$$

Important notes:

Deterministic components (i.e. intercept and trend) can be include either in the coint grain are glession of it the ADF test (but not in both!)

▶ The standard DF critical values are not valid! Reason: the OLS estimator 'picks' β such that the residuals $\hat{\varepsilon}_t$ have the lowest possible variance, i.e. making the residuals appear as stationary as possible even if there is no cointegration (i.e. ε_t is non-stationary).

Assignment Project Exam Help dynamics Help

$$\begin{array}{lll} \text{Uilon finding cointegration, estimate an ECM} & \text{COM} \\ \text{LUDS}.//\text{LUDICS}. & \text{COM} \\ \text{A}(\textit{L}) \, \Delta \textit{y}_t = \delta + \textit{B}(\textit{L}) \, \Delta \textit{x}_t + \alpha \hat{\varepsilon}_{t-1} + \textit{C}(\textit{L}) \, \mu_t \end{array}$$

where
$$\hat{\varepsilon}_{t-1} = y_{t-1} - \hat{\beta}_1 - \hat{\beta}_2 x_{t-1}$$
. Since III Cribbles are \hat{Q}_t , this Capatilla Conditions and statistical inference using standard t - and F -tests is possible.

Assignment samproje of Q4Exam Help

- - Unit root in first differences is rejected
 - Unit root in levels is not rejected
- be full hypothesis of the countegration can be rejected at the call of the fisignificance of the counter the call of the counter the call of the call
 - ► The CRDW equals 0.31, which is just above the 5% critical value of ≈ 0.30 .
 - ► The ADF test on the residuals of the static regression equals

VI.19 (hich lis below) the 5% critical value of 78 CS

▶ The error-correction term is significant and shows that consumption is only slowly converting to the long-run equilibrium implied by income and wealth, i.e. every quarter 5.7% of the equilibrium gap is closed.

Assignment-Project Exam Help

Dependent Variable: CONS Method: Least Squares Date: 11/08/07 Time: 12:39 Sample: 1951Q4 2005Q4 Included by been barrions: 217 Proh t-Statistic 1.246159 0.025660 48.56510 0.0000 INC 0.663406 0.009252 71.70442 0.0000 186052 0.008974 20 73252 0.0000 R-squared Adjusted R-squared 0.998648 S.D. dependent var 0.323944 S.E. of regression 0.011913 Akaike info criterion -6.008628 Sum squared resid 0.030371 Schwarz criterion -5 961901 Loa likelihood 654 9361 Hannan-Quinn criter -5 989752 F-statistic 79750.23 0.309370 Durbin-Watson stat 0.000000 Prob(F-statistic)

