Combinatorics 2018 Fall

Taught by: Professor Xiande Zhang

2018.10.29

Key words: SDR, Latin Rectangle, Permutation Matrix

Theorem 1. (Hall's marriage Theorem) The sets of S_1, S_2, \dots, S_m has a $SDR \iff \bigcup_{i \in I} S_i \ge |I|$ for $I \subset [m]$ (Hall's condition).

Corollary 1. |X| = n, $|S_i| = r$, $S_i \subset X$, $i \in [m].s.t. |\{i : x \in S_i\}| = d$ for all $x \in X$. If $m \le n$, then S_1, \dots, S_m have a SDR.

Theorem 2. Suppose elements in X are colored by either red or blue. $S_i \subset X, i \in [m]$, then S_1, \dots, S_m have a SDR with $\leq t$ red elements iff S_1, \dots, S_m have a SDR and $\forall I \subset [m], \bigcup_{i \in I} S_i$ has $\geq |I| - t$ blue elements.

proof:

 $\overline{\overset{\bullet}{n}}\Longrightarrow\overset{\bullet}{\text{"}}$ Let x_1,\cdots,x_m be a SDR of S_1,\cdots,S_m with $\leq t$ red elements. then $\forall I\subset [m],\ \{x_i,i\in I\}$ has at least |I|-t blue elements $\Rightarrow \cup_{i\in I}S_i$ has at least |I|-t blue elements.

"\(==" \text{Let } R \) be the set of red elements in X. If $|R| \leq t$, trivial. Assume |R| > t, let $S_{m+1} = S_{m+2} = \cdots = S_{m+r} = R$, where r = |R| - t. then S_1, \dots, S_m have a SDR with $\leq t$ red elements $\iff S_1, \dots, S_m, S_{m+1}, \dots, S_{m+r}$ have a SDR. So we need to check Hall's condition for S_1, \dots, S_{m+r} , let $Y = \bigcup_{i \in I} S_i$, if $I \subset [m]$, then $|Y| \geq |I|$ since S_1, \dots, S_m have a SDR. if $I = J_1 \cup J_2$, where $J_1 \subset [m], J_2 \subset [m+1, m+r]$, then $|J_2| \leq |R| - t, |Y| = |\bigcup_{i \in J_1} (S_i \setminus R)| + |R| \geq |J_1| - t + |R| = |J_1| + (|R| - t) \geq |J_1| + |J_2| = |I|$.

Application

Def: A $r \times n (r \leq n)$ Latin rectangle is $r \times n$ matrix over [n] s.t.numbers $1, 2, \dots, n$ occurs once in each row and \leq once in each column. A Latin square is an $n \times n$ Latin rectangle.

<u>Theorem</u> 3. (Evans conjecture) If fewer than n cells of an $n \times n$ matrix are filled, then one can always complete it into a Latin square.

Theorem 4. If r < n, then any given $r \times n$ Latin rectangle can be extended to an $(r + 1) \times n$ Latin rectangle.

proofs

Let $\overline{\mathbf{R}}$ be $r \times n$ LR, For $j \in [n]$, let S_j be the set of integers in [n] which don't occur in the j-th column. Then it suffices to prove S_1, \dots, S_n have a SDR. Since $|S_j| = n - r$, and each $i \in [n], i$ occurs in n - r sets S_j , by Corollary 1, S_1, \dots, S_n have a SDR.

Def: An $n \times n$ matrix $A = \{A_{ij}\}$ with $a_{ij} \geq 0$ is called doubly stochastic if $\sum_{j=1}^{n} a_{ij} = \sum_{i=1}^{n} a_{ij} = 1$ for $\forall i, j \in [n]$. If $a_{ij} = 0$ or 1, then it is a permutation matrix.

<u>Theorem</u> 5. (Birkhoff) Every doubly stochastic matrix A is a convex combination of permutation matrixes, that is, \exists permutation matrixes P_1, \dots, P_s and non-negative reals $\lambda_1, \dots, \lambda_s$ s.t. $A = \sum_{i=1}^s \lambda_i P_i$ and $\sum_{i=1}^s \lambda_i = 1$.

proof:

Let \overline{A} be an $n \times n$ doubly stochastic matrix, let m be the number of non-zero entries in A, then $m \geq n$. prove by induction on m. If m = n, then each non-zero entry is 1, so A itself is a permutation matrix. If m > n and the results holds for matrices with < m non-zero entries. Define $S_i = \{j : a_{ij} > 0\}, i \in [n]$. If for some of the sets $S_{i_1}, S_{i_2}, \cdots, S_{i_k}, |\bigcup_{i=1}^k S_{i_k}| \leq k-1$, that is all non-zero entries in rows i_1, \cdots, i_k occupy at most k-1 columns, say columns j_1, \cdots, j_{k-1} , if count by rows, we have the sum is k, but if count by columns, the sum is at most k-1, a contradiction. By Hall's Theorem, there is a SDR $j_1 \in S_1, j_2 \in S_2, \cdots, j_n \in S_n$. Take a permutation matrix $P_1 =$

 (P_{ij}) with entries $p_{ij}=1$ iff $j=j_i$. Let $\lambda_1=\min\{a_{1j_1},\cdots,a_{nj_n}\}$. and consider $B_1=A-\lambda_1P_1$. By definition of S_i , we have $\lambda_1>0$, matrix B_1 has at most m-1 non-zero entries, and the row sum and column sum of B_1 is $1-\lambda_1$. Let $A_1=\frac{1}{1-\lambda_1}B_1$, then A_1 is a doubly stochastic matrix with less than m non-zero entries. By assumption $A_1=\mu_2P_2+\cdots+\mu_sP_s$ a convex combination. Hence, $A=\lambda_1P_1+(1-\lambda_1)A_1=\lambda_1P_1+(1-\lambda_1)\mu_2P_2+\cdots+(1-\lambda_1)\mu_sP_s$. Since $\sum_{i=2}^s\mu_i=1$, we have $\lambda_1+(1-\lambda_1)(\sum\mu_i)=1$.

Def: Let $S_1, \dots, S_m \subseteq X = \{x_1, \dots, x_n\}$, and $M = (a_{ij})$ be the corresponding incidence matrix. The **permanent** of M is

$$Per(M) = \sum_{(i_1, \dots, i_m) \in S_n(m)} a_{i_1 1} a_{i_2 2} \dots a_{i_m m},$$

where $S_n(m)$ is the set of all vectors of length m over [n] without repetition.

Fact: $Per(M) = \sharp different SDR's of S_1, \dots, S_m$.

Def: Let A be a 0-1 matrix. Two 1's are dependent if they are in the same row or the same column, otherwise, they are independent.

<u>Theorem</u> 6. (König) Let A be an $m \times n$ 0-1 matrix, then $max \sharp independent 1$'s $r = the min \sharp rows$ and columns R required to cover all 1's in A.

<u>proof</u>: Clearly, $R \geq r$, since we can find r independent 1's and every row or column covers at most one of them.

Now we show $r \geq R$. Assume that some a rows and b columns cover all 1's and a + b = R. We may assume the first a rows and the first b columns cover all the 1's. Write A as the form

$$A = \begin{pmatrix} B_{a \times b} & C_{a \times (n-b)} \\ D_{(m-a) \times b} & E_{(m-a) \times (n-b)} \end{pmatrix},$$

with no 1 in $E_{(m-a)\times(n-b)}$. If we can show that there are a independent 1's in C and b independent 1's in D, then we find at least a+b independent 1's, so we have $r \geq a+b=R$.

For each $1 \le i \le a$, let $S_i = \{j : c_{ij} = 1\} \subseteq [n-b]$. If S_1, \dots, S_a have an SDR, then we find a independent 1's in C If not, by Hall's

theorem, there are some $k \in [a]$ sets, say S_{i_1}, \cdots, S_{i_k} , such that $\begin{vmatrix} k \\ \bigcup_{j=1}^k S_{i_j} \end{vmatrix} < k$, i.e. the 1's in these k rows occupy at most k-1 columns of C, say j_1, \cdots, j_{k-1} . Then the first b columns of A, the columns j_1, \cdots, j_{k-1} of C and the first a rows of A deleting the rows i_1, \cdots, i_k will cover all 1's in A. So we find b+(k-1)+a-k=a+b-1 rows and columns cover all 1's in A, contradiction!