Using Embeddings to Correct for Unobserved Confounding in Networks

Victor Veitch, Yixin Wang, David M. Blei

Setup

 \bullet Goal: infer (causal) average treatment effect ψ of treatment T on outcome Y

$$\psi = \mathbb{E}[Y \mid \operatorname{do}(T=1)] - \mathbb{E}[Y \mid \operatorname{do}(T=0)]$$

- ullet Problem: unobserved confounder Z might affect T and Y
- ullet Salvation: we observe a surrogate X for Z

The surrogate is nasty

- Network (non-iid) structure
 - \implies standard non-parametrics = :(
- no plausible generative model for $(X, \{Z_i\}, \{T_i\}, \{Y_i\})$:
 - \implies standard parametrics = :(

Example: Social Network

- Have treatments and outcomes of people in a social network.
- Maybe latent confounders; age, sex, affinity for punk rock.
- These are associated with the social network itself.

If life was easy, we'd observe $\{Z\}$

- estimate $\hat{Q}_n(t,z) \approx Q(t,z) = \mathbb{E}[Y \mid t,z]$
- estimate $\hat{g}_n(z) \approx g(z) = P(T = 1 \mid z)$
- plug-in to (non-parametrically efficient, robust) estimator

Or at least have a good generative model

- estimate $\{\hat{z}_{n,i}\}$.
- \bullet plug-in as though z observed.
- works if $\hat{z}_{n,i}$ is really good estimate.
- but generative models for networks suck \implies :(
- [1] V. Veitch, M. Austern, W. Zhou, D.M. Blei, and P. Orbanz. Empirical Risk Minimization and Stochastic Gradient Descent for Relational Data. 2018.
- [2] L. Takac and M. Zabovsky. Data Analysis in Public Social Networks. 2012

Overview

- A network connecting units can be a surrogate for unobserved confounding
- Insight: identification only requires treatment and outcome predictions
- Causal adjustment achieved by adapting black-box node embeddings
- IF [pure homophily] and [black-box predictor works] THEN correct estimation at parametric rate

So What?

- Doesn't require knowledge of relationship between network and confounding
- Stop worrying and love the black box

Method

- Assign embedding $\lambda_i \in \mathbb{R}^p$ for each unit i
- Not justified by generative model, but kickass for prediction
- ullet Train by jointly minimizing (we use [1] default)
- 1 graph reconstruction on subgraphs
- 3 predictor $\hat{Q}^Y(t,\lambda)$ for Y from treatment t and λ (minimize MSE)
- Plug into modified A-IPTW estimator

$$\hat{\psi}_{n}^{A} = \frac{1}{n} \sum_{i} \hat{Q}_{n}(1, z_{i}) - \hat{Q}_{n}(0, z_{i})$$

$$+ \frac{1}{n} \sum_{i} \left(\frac{I[t_{i} = 1]}{\hat{g}_{n}(z_{i})} - \frac{I[t_{i} = 0]}{1 - \hat{g}_{n}(z_{i})} \right) (y_{i} - \hat{Q}_{n}(t_{i}, z_{i}))$$

Assumptions and Validity

- IF Many technical conditions
- ullet IF Pure homophily and observing Z would make identifiable
- IF The model learns something, eventually. For $t \in \{0, 1\}$:

$$\|\mathbb{E}[Y|T=t,Z] - \tilde{Q}(t,\hat{\lambda}_{n,i};\hat{\gamma}_{n}^{Q})\|_{2}\|P(T=1|Z) - \tilde{g}(\hat{\lambda}_{n,i};\hat{\gamma}_{n}^{g})\|_{2} = o(\frac{1}{\sqrt{n}})$$

• Asymptotically, the embeddings are independent-ish. For all bounded continuous f with mean 0, $\mathbb{E}[f(\hat{\lambda}_i)f(\hat{\lambda}_j)] = o(\frac{1}{n})$ THEN

 $\hat{\psi}_{n}^{A}$ converges to the ATE ψ at \sqrt{n} -rate.

Example: Pokec

Semi-synethetic data using a large social network (Pokec) [2].

	age		district		join date	
Conf.	Low	High	Low	High	Low	High
Unadjusted	1.32 ± 0.02	4.34 ± 0.05	1.34 ± 0.03	4.51 ± 0.05	1.29 ± 0.03	4.03 ± 0.06
Parametric	1.30 ± 0.00	4.06 ± 0.01	1.21 ± 0.00	3.22 ± 0.01	1.26 ± 0.00	3.73 ± 0.01
Two-stage	1.33 ± 0.02	4.55 ± 0.05	1.34 ± 0.02	4.55 ± 0.05	1.30 ± 0.03	4.16 ± 0.06
$\hat{\psi}_n^{ ext{A}}$	1.24 ± 0.04	3.40 ± 0.04	1.09 ± 0.02	2.03 ± 0.07	1.21 ± 0.05	3.26 ± 0.09

Outcome and propensity simulated using labeled attribute as hidden confounder. Ground truth is 1. Network adjustment always helps relative to baseline.