Lattice Reduction for Modular Knapsack

Thomas PLANTARD Willy SUSILO Zhenfei ZHANG

Centre for Computer and Information Security Research University of Wollongong

http://www.uow.edu.au/~thomaspl thomaspl@uow.edu.au

Outline

- Introduction
- 2 Lattice Theory
 - Lattice Basics
 - Lattice Reduction
 - LLL
- 3 LLL for Modular Knapsack Lattice
 - Modular Knapsack lattice
 - LLL for modular knapsack lattice
- A Recursive LLL
- Conclusion

Introduction

- Introduction
- 2 Lattice Theory
 - Lattice Basics
 - Lattice Reduction
 - LLL
- 3 LLL for Modular Knapsack Lattice
 - Modular Knapsack lattice
 - LLL for modular knapsack lattice
- 4 A Recursive LLL
- Conclusion

Cryptography concerned by Lattice Reduction

Problem

- Shortest Vector Problem (SVP): Ajtai-Dwork, Regev, ...
- Closet Vector Problem (CVP): GGH, NTRU, ...
- Knapsack Problem
- Coding based cryptosystem
- RSA, Factorization.
- Short Integer Solution (SIS): SWIFFT, SWIFFTX, ...
- Learning With Error (LWE).
- Approximate-GCD Problem.

Lattice Reduction: Heuristic BUT successful

- Weeks, Month of Computation: Good Estimation.
- 2⁸⁰, 2¹⁰⁰: Unknown.

The 2010 FHE Gentry-Halevi implementation

Challenge

- Find a short vector in a modular knapsack type lattice.
- Dimension, d = 2048
- Length of digits, $\beta = 720,000$.

Security based on impossibility to run LLL

- Perform a LLL reduction is enough to break challenge.
- However, $d^3\beta^2 = (2^{11})^3(2^{19.5})^2 = 2^{72}$.

Lattice Theory

- Introduction
- 2 Lattice Theory
 - Lattice Basics
 - Lattice Reduction
 - LLL
- 3 LLL for Modular Knapsack Lattice
 - Modular Knapsack lattice
 - LLL for modular knapsack lattice
- A Recursive LLL
- Conclusion

Lattice

Definition of a Lattice

• All the integral combinations of $d \le n$ linearly independent vectors over $\mathbb R$

$$\mathcal{L} = \mathbb{Z} \, \mathbf{b}_1 + \dots + \mathbb{Z} \, \mathbf{b}_d = \{ \lambda_1 \mathbf{b}_1 + \dots + \lambda_d \mathbf{b}_d : \lambda_i \in \mathbb{Z} \}$$

- d dimension.
- $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_d)$ is a basis.

An Example

$$\mathbf{B} = \begin{pmatrix} 5 & \frac{1}{2} & \sqrt{3} \\ \frac{3}{5} & \sqrt{2} & 1 \end{pmatrix}$$

 $d = 2 \le n = 3$

In this work, integer Basis: $B \in \mathbb{Z}^{d,n}$.

A lattice \mathcal{L}

$$\mathbf{B} = \begin{pmatrix} 8 & 5 \\ 5 & 16 \end{pmatrix}$$

A lattice \mathcal{L}

$$\mathbf{UB} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 8 & 5 \\ 5 & 16 \end{pmatrix} = \begin{pmatrix} 8 & 5 \\ -3 & 11 \end{pmatrix}$$

A lattice \mathcal{L}

$$\mathbf{UB} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 8 & 5 \\ 5 & 16 \end{pmatrix} = \begin{pmatrix} 8 & 5 \\ 13 & 21 \end{pmatrix}$$

A lattice \mathcal{L}

$$\mathbf{UB} = \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 8 & 5 \\ 5 & 16 \end{pmatrix} = \begin{pmatrix} 29 & 31 \\ 21 & 26 \end{pmatrix}$$

The Shortest Vector and The First Minima

$$\mathbf{v} = \begin{pmatrix} 8 & 5 \end{pmatrix}$$
, with $\lambda_1 = \sqrt{8^2 + 5^2} = 9.434$

The Shortest Vector

The Determinant

$$\det \mathcal{L} = \sqrt{\det \left(\mathbf{B} \mathbf{B}^T \right)} = 103$$

The Determinant

Lattice Reduction Algorithm

Find $v \in \mathcal{L}$ smallest

- SVP is NP-Hard under randomized reduction.
- Deterministic $O(d^{\frac{d}{2e}})$: Kannan 1986, Hanrot and Sthele 2007.
- Probabilistic $O(2^d)$: AKS 2001.

Find $v \in \mathcal{L}$ small

- LLL: Lenstra, Lenstra and Lovasz (Poly in d).
- $DEEP_k$: LLL with Deep Insertion (Exponential in k, Poly in d).
- BKZ_k : Block Korkine Zolotaref (Exponential in k, Poly in d).
- ...

LLL

LLL

- Input: a matrix $A \in [-2^{\beta}, 2^{\beta}]^{d,n}$.
- Output: a matrix $B \in \mathbb{Z}^{d,n}$ with $\|b_i\| \sim 2^{\frac{d}{2}} det^{\frac{1}{d}}$
- Shortest Basis: $\|b_i\| \sim \sqrt{rac{d}{2\pi e}} det^{rac{1}{d}}$

Comparison of time complexity

Algorithms	Time Complexity
LLL	$O(d^{5+arepsilon}eta^{2+arepsilon})$
L^2	$O(d^{4+\varepsilon}\beta^2+d^{5+\varepsilon}\beta)$
L^1	$O(d^{4+\varepsilon}\beta^{1+\varepsilon}+d^{5+\varepsilon}\beta)$

LLL for Modular Knapsack Lattice

- Introduction
- 2 Lattice Theory
 - Lattice Basics
 - Lattice Reduction
 - LLL
- 3 LLL for Modular Knapsack Lattice
 - Modular Knapsack lattice
 - LLL for modular knapsack lattice
- A Recursive LLL
- Conclusion

Modular Knapsack Basis

A modular knapsack basis

$$\mathbf{A} = egin{pmatrix} A_0 & 0 & 0 & 0 & 0 \ A_1 & 1 & 0 & 0 & 0 \ A_2 & 0 & 1 & 0 & 0 \ dots & 0 & 0 & \ddots & 0 \ A_{d-1} & 0 & 0 & 0 & 1 \ \end{pmatrix} ext{ with } |A_i| < 2^{eta}.$$

A classic format

- Natural format of lattice attack on knapsack problem.
- Use as public key as most of lattice based cryptosystem.
- Easy to compute from a random basis, using Hermite Normal Form.

LLL for modular knapsack lattice

Comparison of time complexity

Algorithms	Time Complexity
LLL for knapsack	$O(d^{4+arepsilon}eta^{2+arepsilon})$
L ² for knapsack	$O(d^{3+\varepsilon}\beta^2+d^{4+\varepsilon}\beta)$
L^1	$O(d^{4+\varepsilon}\beta^{1+\varepsilon}+d^{5+\varepsilon}\beta)$

Why faster than random basis: an intuition

- To reduce i + 1 vectors, LLL requires the first i vectors to be reduced.
- For modular knapsack basis, each i first vectors are a triangular matrix.

```
      (86670401
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
```

```
      86670401
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0<
```

/ -3227	-3165	0	0	0	0	0	0\
-14111	13018	0	0	0	0	0	0
10117311	0	1	0	0	0	0	0
38269415	0	0	1	0	0	0	0
45874978	0	0	0	1	0	0	0
33538152	0	0	0	0	1	0	0
61611560	0	0	0	0	0	1	0
66174289	0	0	0	0	0	0	1/

/ -3227	-3165	0	0	0	0	0	0\
-14111	13018	0	0	0	0	0	0
10117311	0	1	0	0	0	0	0
38269415	0	0	1	0	0	0	0
45874978	0	0	0	1	0	0	0
33538152	0	0	0	0	1	0	0
61611560	0	0	0	0	0	1	0
66174289	0	0	0	0	0	0	1/

/ -24	153	-215	0	0	0	0	0\
183	242	76	0	0	0	0	0
-920	440	343	0	0	0	0	0
38269415	0	0	1	0	0	0	0
45874978	0	0	0	1	0	0	0
33538152	0	0	0	0	1	0	0
61611560	0	0	0	0	0	1	0
\66174289	0	0	0	0	0	0	1/

/ -24	153	-215	0	0	0	0	0\
183	242	76	0	0	0	0	0
-920	440	343	0	0	0	0	0
38269415	0	0	1	0	0	0	0
45874978	0	0	0	1	0	0	0
33538152	0	0	0	0	1	0	0
61611560	0	0	0	0	0	1	0
\66174289	0	0	0	0	0	0	1/

/ 8	-27	-66	42	0	0	0	0/
-40	-45	-47	-38	0	0	0	0
0	126	-18	-23	0	0	0	0
103	26	0	-53	0	0	0	0
45874978	0	0	0	1	0	0	0
33538152	0	0	0	0	1	0	0
61611560	0	0	0	0	0	1	0
\66174289	0	0	0	0	0	0	1/

/ 8	-27	-66	42	0	0	0	0\
-40	-45	-47	-38	0	0	0	0
0	126	-18	-23	0	0	0	0
103	26	0	-53	0	0	0	0
45874978	0	0	0	1	0	0	0
33538152	0	0	0	0	1	0	0
61611560	0	0	0	0	0	1	0
\66174289	0	0	0	0	0	0	1/

$$\begin{pmatrix} -17 & -31 & -5 & 6 & 1 & 0 & 0 & 0 \\ 24 & -20 & -6 & 4 & 7 & 0 & 0 & 0 \\ -3 & -7 & -45 & 3 & 17 & 0 & 0 & 0 \\ 8 & 4 & -13 & -14 & -36 & 0 & 0 & 0 \\ 13 & 0 & 15 & -35 & 24 & 0 & 0 & 0 \\ \hline 33538152 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 61611560 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 66174289 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} -17 & -31 & -5 & 6 & 1 & 0 & 0 & 0 \\ 24 & -20 & -6 & 4 & 7 & 0 & 0 & 0 \\ -3 & -7 & -45 & 3 & 17 & 0 & 0 & 0 \\ 8 & 4 & -13 & -14 & -36 & 0 & 0 & 0 \\ 13 & 0 & 15 & -35 & 24 & 0 & 0 & 0 \\ \hline 33538152 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ \hline 61611560 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 66174289 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} -7 & -6 & -14 & 11 & 4 & -7 & 0 & 0 \\ -14 & -9 & -3 & -1 & -15 & -6 & 0 & 0 \\ -2 & 15 & 14 & 10 & -6 & 4 & 0 & 0 \\ 8 & -14 & 5 & 13 & -14 & -2 & 0 & 0 \\ -5 & 11 & -6 & -10 & -12 & 12 & 0 & 0 \\ 4 & -16 & 12 & -4 & 12 & 13 & 0 & 0 \\ \hline 61611560 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 66174289 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} -7 & -6 & -14 & 11 & 4 & -7 & 0 & 0 \\ -14 & -9 & -3 & -1 & -15 & -6 & 0 & 0 \\ -2 & 15 & 14 & 10 & -6 & 4 & 0 & 0 \\ 8 & -14 & 5 & 13 & -14 & -2 & 0 & 0 \\ -5 & 11 & -6 & -10 & -12 & 12 & 0 & 0 \\ 4 & -16 & 12 & -4 & 12 & 13 & 0 & 0 \\ \hline 66174289 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 5 & -4 & -8 & 0 & 1 & 10 & -1 & 0 \\ 9 & -1 & 4 & -6 & -7 & -8 & 2 & 0 \\ 1 & -4 & 0 & 6 & -12 & -1 & 4 & 0 \\ 4 & 8 & -4 & 9 & 4 & 0 & -3 & 0 \\ 3 & -2 & -11 & -4 & -5 & -3 & -6 & 0 \\ 4 & -9 & -7 & 9 & 3 & -2 & 7 & 0 \\ 7 & -10 & 5 & 7 & -2 & -1 & -4 & 0 \\ \hline 66174289 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 5 & -4 & -8 & 0 & 1 & 10 & -1 & 0 \\ 9 & -1 & 4 & -6 & -7 & -8 & 2 & 0 \\ 1 & -4 & 0 & 6 & -12 & -1 & 4 & 0 \\ 4 & 8 & -4 & 9 & 4 & 0 & -3 & 0 \\ 3 & -2 & -11 & -4 & -5 & -3 & -6 & 0 \\ 4 & -9 & -7 & 9 & 3 & -2 & 7 & 0 \\ 7 & -10 & 5 & 7 & -2 & -1 & -4 & 0 \\ 66174289 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} -2 & 6 & -1 & -8 & 0 & 1 & -3 & 1 \\ 2 & -3 & -8 & 1 & 3 & -1 & 4 & 1 \\ 3 & -3 & 6 & 2 & -6 & 2 & 4 & 3 \\ -2 & -1 & -6 & 4 & -6 & -3 & 0 & -3 \\ 5 & -4 & 4 & -1 & -2 & 0 & -7 & 1 \\ 4 & 2 & 3 & -1 & -4 & 1 & -1 & -7 \\ -2 & 3 & -4 & 0 & 0 & 11 & 2 & -2 \\ 5 & 11 & 1 & 3 & -2 & 3 & -2 & 4 \end{pmatrix}$$

A Recursive LLL

- Introduction
- 2 Lattice Theory
 - Lattice Basics
 - Lattice Reduction
 - LLL
- 3 LLL for Modular Knapsack Lattice
 - Modular Knapsack lattice
 - LLL for modular knapsack lattice
- 4 A Recursive LLL
- Conclusion

Example Recursive LLL

```
\begin{pmatrix} 86670401 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 38009011 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 10117311 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 38269415 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 45874978 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 33538152 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 61611560 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 66174289 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}
```

Example Recursive LLL

/ -3227	-3165	0	0	0	0	0	0\
-14111	13018	0	0	0	0	0	0
10117311	0	1	0	0	0	0	0
38269415	0	0	1	0	0	0	0
45874978	0	0	0	1	0	0	0
33538152	0	0	0	0	1	0	0
61611560	0	0	0	0	0	1	0
66174289	0	0	0	0	0	0	1/

/ -3227	-3165	0	0	0	0	0	0\
-14111	13018	0	0	0	0	0	0
10117311	0	1	0	0	0	0	0
38269415	0	0	1	0	0	0	0
45874978	0	0	0	1	0	0	0
33538152	0	0	0	0	1	0	0
61611560	0	0	0	0	0	1	0
66174289	0	0	0	0	0	0	1/

/ -3227	-3165	0	0	0	0	0	0\
-14111	13018	0	0	0	0	0	0
1391	0	4036	-1067	0	0	0	0
-8121	0	3949	-1044	0	0	0	0
45874978	0	0	0	1	0	0	0
33538152	0	0	0	0	1	0	0
61611560	0	0	0	0	0	1	0
\66174289	0	0	0	0	0	0	1/

/	-3227	-3165	0	0	0	0	0	0\
1	-14111	13018	0	0	0	0	0	0
١	1391	0	4036	-1067	0	0	0	0
l	-8121	0	3949	-1044	0	0	0	0
ľ	45874978	0	0	0	1	0	0	0
I	33538152	0	0	0	0	1	0	0
	61611560	0	0	0	0	0	1	0
1	66174289	0	0	0	0	0	0	1/

1	-3227	-3165	0	0	0	0	0	0\
	-14111	13018	0	0	0	0	0	0
ı	1391	0	4036	-1067	0	0	0	0
ı	-8121	0	3949	-1044	0	0	0	0
Ī	1348	0	0	0	2830	-3871	0	0
	10894	0	0	0	-2009	2748	0	0
	61611560	0	0	0	0	0	1	0
	66174289	0	0	0	0	0	0	1/

/	-3227	-3165	0	0	0	0	0	0\
1	-14111	13018	0	0	0	0	0	0
İ	1391	0	4036	-1067	0	0	0	0
١	-8121	0	3949	-1044	0	0	0	0
١	1348	0	0	0	2830	-3871	0	0
١	10894	0	0	0	-2009	2748	0	0
ľ	61611560	0	0	0	0	0	1	0
1	66174289	0	0	0	0	0	0	1/

	/ -3227	-3165	0	0	0	0	0	0 \
	-14111	13018	0	0	0	0	0	0
İ	1391	0	4036	-1067	0	0	0	0
١	-8121	0	3949	-1044	0	0	0	0
١	1348	0	0	0	2830	-3871	0	0
ı	10894	0	0	0	-2009	2748	0	0
	3	0	0	0	0	0	2248	-2093
1	29437	0	0	0	0	0	29	−27 <i>J</i>

/-3227	-3165	0	0	0	0	0	0 \
-14111	13018	0	0	0	0	0	0
1391	0	4036	-1067	0	0	0	0
-8121	0	3949	-1044	0	0	0	0
1348	0	0	0	2830	-3871	0	0
10894	0	0	0	-2009	2748	0	0
3	0	0	0	0	0	2248	-2093
29437	0	0	0	0	0	29	-27 \int

/ 8	-27	-66	42	0	0	0	0 \
-40	-45	-47	-38	0	0	0	0
0	126	-18	-23	0	0	0	0
103	26	0	-53	0	0	0	0
1348	0	0	0	2830	-3871	0	0
10894	0	0	0	-2009	2748	0	0
3	0	0	0	0	0	2248	-2093
29437	0	0	0	0	0	29	-27

$$\begin{pmatrix} 8 & -27 & -66 & 42 & 0 & 0 & 0 & 0 \\ -40 & -45 & -47 & -38 & 0 & 0 & 0 & 0 \\ 0 & 126 & -18 & -23 & 0 & 0 & 0 & 0 \\ 103 & 26 & 0 & -53 & 0 & 0 & 0 & 0 \\ \hline -22 & 0 & 0 & 0 & -7 & -19 & -36 & 48 \\ 93 & 0 & 0 & 0 & -25 & -2 & -5 & 23 \\ -32 & 0 & 0 & 0 & -97 & 13 & 63 & 2 \\ 1 & 0 & 0 & 0 & -25 & -111 & 93 & -13 \end{pmatrix}$$

$$\begin{pmatrix} 8 & -27 & -66 & 42 & 0 & 0 & 0 & 0 \\ -40 & -45 & -47 & -38 & 0 & 0 & 0 & 0 & 0 \\ 0 & 126 & -18 & -23 & 0 & 0 & 0 & 0 \\ 103 & 26 & 0 & -53 & 0 & 0 & 0 & 0 \\ -22 & 0 & 0 & 0 & -7 & -19 & -36 & 48 \\ 93 & 0 & 0 & 0 & -25 & -2 & -5 & 23 \\ -32 & 0 & 0 & 0 & -97 & 13 & 63 & 2 \\ 1 & 0 & 0 & 0 & -25 & -111 & 93 & -13 \end{pmatrix}$$

$$\begin{pmatrix} -2 & 6 & -1 & -8 & 0 & 1 & -3 & 1 \\ 2 & -3 & -8 & 1 & 3 & -1 & 4 & 1 \\ 3 & -3 & 6 & 2 & -6 & 2 & 4 & 3 \\ -2 & -1 & -6 & 4 & -6 & -3 & 0 & -3 \\ 5 & -4 & 4 & -1 & -2 & 0 & -7 & 1 \\ 4 & 2 & 3 & -1 & -4 & 1 & -1 & -7 \\ -2 & 3 & -4 & 0 & 0 & 11 & 2 & -2 \\ 5 & 11 & 1 & 3 & -2 & 3 & -2 & 4 \end{pmatrix}$$

Recursive LLL

RLLL

- If d = 2, Return LLL(A);
- If d > 2,

 - $A_0' = RLLL(A_0).$
 - $A_1'' = RLLL(A_1).$
 - Reconstruct $A' = \left(\frac{A'_0}{A'_1}\right)$.
 - Return LLL(A')

Analysis

Why better?

- LLL (L²) complexity is in $O(d^4\beta^2 + d^5\beta)$.
- If d' = (d/2) and $\beta = 2\beta'$ therefore $d'^4\beta'^2 + d'^5\beta' < d^4\beta^2 + d^5\beta$.
- All preprocessing are negligible compare to last LLL.

Complexity of the last LLL

- Assuming uniform distribution, $\beta' = \frac{2\beta}{d}$.
- $O(d^4\beta'^2 + d^5\beta')$
- $O\left(d^4\left(\frac{2\beta}{d}\right)^2+d^5\frac{2\beta}{d}\right)$
- $O(d^2\beta^2 + d^4\beta)$

Conclusion

- Introduction
- 2 Lattice Theory
 - Lattice Basics
 - Lattice Reduction
 - LLL
- 3 LLL for Modular Knapsack Lattice
 - Modular Knapsack lattice
 - LLL for modular knapsack lattice
- A Recursive LLL
- Conclusion

Conclusion

Improvement

- Previous complexity of LLL for knapsack lattice: $O(d^{3+\varepsilon}\beta^2 + d^{4+\varepsilon}\beta)$.
- New recursive techniques: $O(d^{2+\varepsilon}\beta^2 + d^{4+\varepsilon}\beta)$.

Future Work

- Specificity of Ideal Lattice.
- For given input and a given quality, estimate 2^x .