Detection and Classification of moving objects with a 24 GHz fast chirp Radar for people counting applications

By XXX ID:XXX

Supervised by Prof. Dr. Andreas Becker, Daniel Bonney

Outline

- 1. Introduction
- 2. Walking pattern extraction
- 3. Test cases and results
- 4. System implementation
- 5. Summary

Section 1: Introduction

1.1 Motivation

People counting
in shopping malls
in car accidents

1.2 Problem statement

Micro-Doppler effect walking recognition Signal processing

1.3 Research method

Test case driven experiments based on literature research

1.4 Radar module

Specification (customizable)

	resolution	Max range	
Range 0.6m,		38.4m	
velocity	±0.49km/h	±31.5 km/h	
angle	1 degree	ee 50 degree	

Carrier frequency	24GHz
Wavelength	1.25cm
Sweep bandwidth	250MHz
ADC sample frequency	366.3kHz
Number of samples per chirp	128
Number of chirps per measurement	128
Sweep period	354.9us

1.4 Radar module

Fachhochschule Dortmund
University of Applied Sciences and Arts

Setup

1.4 Radar module

Fachhochschule
Dortmund
University of Applied Sciences and Arts

Setup

Signal recording: Ubuntu

Signal analysis: Matlab

System implementation: Ubuntu

Section 2: Walking pattern extraction

- 2.1 Signal preprocessing
- 2.2 Target tracking
- 2.3 Pattern sequence extraction
- 2.4 Feature sequence extraction

2.1.1 Initial processing

packet processing (fast chirp)

2D fft

2.1.1 Initial processing

packet processing

2D fft

SNR

2.1.2 Clutter removal

stationary clutter correlated clutter

2.1.3 Weak signal enhancement

the time gain method,
$$b_{r,d} = a_{r,d} \cdot r^k$$
, $k = 1,2,...,n$

2.1.4 Signal detection

angle pre-separation (2 person)

2.1.4 Signal detection

local maxima detector & CA-CFAR detector

2.2 Target tracking

2.2.1 Single target tracking single track management

- 1, Calculate Kalman prediction
- 2, Polar to Cartesian conversion for all detection points.
- 3, Calculate **distance array** between detection points and prediction point
- 4, Remove outliner and noise points
- 5, Calculate Kalman estimation with the closest detection
- 6, Update current location

2.2 Target tracking

2.2.2 Multi-target tracking track management

- 1, calculate Kalman prediction for all tracks
- 2, calculate **cost matrix**
- 3, apply **Hungarian algorithm** for assignment
- 4, calculate Kalman estimation for tracks with update
- 5, update current track properties
- 6, remove tracks in lost state and initialize new tracks for all detections with no assigned track
- 7, update current location of tracked target

2.3 Pattern sequence extraction

Fachhochschule
Dortmund
University of Applied Sciences and Arts

2.3.1 Range-Doppler profile ambiguity

2.3 Pattern sequence extraction

2.3.1 Range-Doppler profile ambiguity

2.3 Pattern sequence extraction

Fachhochschule Dortmund

University of Applied Sciences and Arts

2.3.2 Extraction result using Kalman filter

2.4.1 Feature definition

minDS (Minimum Doppler Spread): the Doppler bin minimum
maxDS (Maximum Doppler Spread): the Doppler bin maximum
NDS (Negative Doppler Spread): the maximal difference between minDS and core
PDS (Positive Doppler Spread): the maximal difference between maxDS and core

pattern_d: maximum allowed doppler profile

pattern_r: maximum allowed range profile

2.4.2 Original pattern sequence

Fachhochschule Dortmund

University of Applied Sciences and Arts

doppler-t plot

2.4.3 Simplified signal model

2.4.4 Online peak/trough extraction

2.4.4 Online peak/trough extraction cycle measurement of test 1.1

2.4.4 Online peak/trough extraction proposed features

- 1, Pattern cycles: core_cycle, maxDS_cycle, minDS_cycle
- 2, Average walking radial velocity: walk_mean_v
- 3, NDS and PDS
- 4, Walking acceleration: walk_acceleration

Section 3: Test cases & results

University of Applied Sciences and Arts

- 3.1 Test cases 1: test 1.1 test 1.9
- 3.2 Feature analysis compare set 1-3

3.1 Test cases 1

Fachhochschule
Dortmund
University of Applied Sciences and Arts

Test 1.1 - 1.9

Scenario: One people walking (longitudinal and lateral)

Objective: Test basic measurement capabilities

3.1 Test cases 1

Fachhochschule Dortmund

University of Applied Sciences and Arts

Test 1.1 tracking result

pattern sequences comparison test 1.2 and test 1.4

Casual walking

Hands in pockets

pattern sequences comparison test 1.2 and test 1.5

Casual walking

running

pattern sequences comparison test 1.2 and test 1.8

pattern sequences comparison test 1.2 and test 1.9

adult cart

Compare set 1

- Test 1.2: person A is walking casually inside a tent.
- Test 1.3: person A is walking slower inside a tent.
- Test 1.4: person A is walking casually inside a tent with hands in pockets.
- Test 1.5: person A is running inside a tent.

Compare set 2

Test 1.2: person A is walking casually inside a tent.

Test 1.6: person B is walking casually inside a tent.

Test 1.7: person C is walking casually inside a tent.

Compare set 3

Test 1.2: person A is walking casually inside a tent.

Test 1.8: person D (child) is walking casually inside a tent.

Test 1.9: person A is a moving cart tray in a lab.

Cycle measurement of all test 1

	Test	core_cycle	maxDS_cycle	minDS_cycle
	Test 1.1	8.1061	8.1194	8.0735
walk	Test 1.2	7.5556	7.3191	7.4255
	Test 1.3	8.3800	8.7174	9.2500
	Test 1.4	8.0435	8.7857	8.4750
run	Test 1.5	6.5667	6.8929	6.4545
	Test 1.6	8.2642	8.0189	8.3269
	Test 1.7	8.4000	8.0357	8.6346
child	Test 1.8	6.8621	6.9808	6.8571
cart	Test 1.9	8.7143	6.7719	7.2340
	Test 1.10	8.3676	8.0896	7.3788

short summary

- 1, Pattern cycles: core_cycle, maxDS_cycle, minDS_cycle
 walk/run, adult/child
- 2, Average walking radial velocity: walk_mean_v walk
- 3, NDS and PDS people/objects
- 4, Walking acceleration: walk_acceleration not specific result

09.05.2020 36

Section 4: System implementation

University of Applied Sciences and Arts

- 4.1 Signal processing blocks overview
- 4.2 Radar data recording tool
- 4.3 Live tracking tool

4.1 Signal processing blocks overview

4.1 Radar data recording tool

Application features:

- 1, visualize incoming radar signal
- 2, show pictures of FOV (field of view)
- 3, save incoming radar data and the photo of FOV
- 4, operate by key press

4.1 Radar data recording tool

4.2 Live tracking tool

Application features:

- 1, visualize incoming radar signal
- 2, single tracking mode, show detailed features of a single target
- 3, multi-target tracking mode, show the map view of the tracked targets

4, operate by key press

4.2 Live tracking tool

University of Applied Sciences and Arts

Section 5: Summary

5.1 Conclusion

Detection: 2D Maxima and CA-CFAR

Tracking: Multi-target Kalman tracker

Recognition: two pass sampling technique

Classification: simple classification by features is possible

5.2 Future research

Angle separation

Loop optimization, parallelization

Walking model optimization, other features

Port algorithms into radar module

Classification

University of Applied Sciences and Arts

Thank you

Backup slides

Fachhochschule Dortmund

University of Applied Sciences and Arts

1.4 Radar module

University of Applied Sciences and Arts

Infinion 24 GHz automotive radar kit (block diagram)

1.4 Literature research

Clutter filtering

Clustering algorithms

K-Means Clustering, Mean-Shift, DBSCAN

Kalman Filter

Classification

SVM, HMM

2.1 Signal preprocessing

2.1.2 Clutter removal

stationary clutter

correlated clutter

2.1 Signal preprocessing

University of Applied Sciences and Arts

2.1.3 Weak signal enhancement

the time gain method, $b_{r,d} = a_{r,d} \cdot r^k$, k = 1,2,...,n

2.1 Signal preprocessing

2.1.4 Signal detection

angle pre-separation (3 person)

Iniversity of Applied Sciences and Arts

2.2.1 Kalman filter

prediction

$$\overline{X}_t = A \cdot X_{t-1}
\overline{P}_t = A \cdot P_{t-1} \cdot A^T + E_x$$

$$\begin{bmatrix} x \\ y \\ v_x \\ v_y \end{bmatrix}_t = \begin{bmatrix} 1 & 0 & T & 0 \\ 0 & 1 & 0 & T \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ v_x \\ v_y \end{bmatrix}_{t-t}$$

update

$$K_{t} = \overline{P}_{t} \cdot H^{T} \cdot (H \cdot \overline{P}_{t} \cdot H^{T} + E_{z})^{-1}$$

$$X_{t} = \overline{X}_{t} + K_{t} \cdot (z_{t} - H \cdot \overline{X}_{t})$$

$$P_{t} = (I - K_{t} \cdot H) \cdot \overline{P}_{t}$$

University of Applied Sciences and Arts

2.2.1 Kalman filter

$$A = \begin{bmatrix} 1 & 0 & T & 0 \\ 0 & 1 & 0 & T \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & T & 0 \\ 0 & 1 & 0 & T \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad H = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \quad T \approx 59.6ms$$

$$E_{x} = \begin{bmatrix} \frac{T^{4}}{4} & 0 & \frac{T^{3}}{2} & 0\\ 0 & \frac{T^{4}}{4} & 0 & \frac{T^{3}}{2}\\ \frac{T^{3}}{2} & 0 & T^{2} & 0\\ 0 & \frac{T^{3}}{2} & 0 & T^{2} \end{bmatrix} \qquad E_{z} = \begin{bmatrix} z_{x} & 0\\ 0 & z_{y} \end{bmatrix}, \quad z_{x} = z_{y} \approx 1e-2$$

$$E_z = \begin{bmatrix} z_\chi & 0 \\ 0 & z_y \end{bmatrix}$$
, $z_\chi = z_y \approx 1$ e-2

2.2.3 Multi-target tracking hungarian algorithm

7	8	89	43	84
13	3	69	83	27
5	1	22	6	34
21	4	45	24	2
6	33	5	58	29

Objective: minimize cost

Min cost = 7+3+5+6+2=23

2.2.3 Multi-target tracking track state transition

a: the number of valid target inputs of a track

p: the number of continuous updates without valid target input

e: the mean error between the target input and estimation

3.1 Test cases 1

Fachhochschule Dortmund
University of Applied Sciences and Arts

Test 1.1 - 1.10

Scenario: One people walking (longitudinal and lateral)

Objective: Test basic measurement capabilities

3.2 Test cases 2

Fachhochschule
Dortmund
University of Applied Sciences and Arts

Test 2.1 - 2.2

Scenario: two people walking (longitudinal and lateral)

Objective: test the two target measurement capabilities

3.2 Test cases 2 Test 2.1 – 2.2 tracking result

Fachhochschule Dortmund

University of Applied Sciences and Arts

57

3.2 Test cases 2

Fachhochschule
Dortmund
University of Applied Sciences and Arts

Test 2.3 - 2.4

Scenario: two people walking (longitudinal and lateral)

Objective: test the two target measurement capabilities

3.2 Test cases 2 Test 2.3 – 2.4 tracking result

Fachhochschule Dortmund

59

University of Applied Sciences and Arts

3.2 Test cases 3

Test 3

Scenario: three people walking (longitudinal).

Objective: test the three target measurement capabilities

