STWLC33

Multi-mode Qi/AirFuel inductive wireless power receiver for 15 W applications with transmitter functions

Datasheet - production data

Features

- Up to 15 W output power in Rx mode
- Supporting Tx mode
- Qi 1.2 and AirFuel inductive wireless standard communication protocols
- Integrated high efficiency synchronous rectifier
- Low drop regulator with output current and input voltage regulation loops
- Total system efficiency up to 80%
- 32-bit, 32 MHz ARM Cortex microcontroller with 32 kB FW memory, 8 kB RAM
- 4 kB NVM for configuration
- 32 MHz PWM timer
- 10-bit 8-channel A/D converter

- I2C interface
- Configurable GPIOs
- Precise voltage and current measurements for FOD function
- Thermal protection
- Flip Chip 52 bumps (3.97x2.67 mm)

Applications

- Phones, PDAs
- Power banks
- Navigation systems
- Wearable devices
- Medical and healthcare instrumentation

Description

The STWLC33 is an integrated wireless power receiver solution suitable for portable applications up to 15 W. The STWLC33 is able to operate with Qi 1.2 or AirFuel inductive communication protocol. It can be switched to transmitter mode to provide power to another receiver. Thanks to the integrated low impedance synchronous rectifier and low drop-out linear regulator, the STWLC33 achieves high efficiency, low power dissipation. I²C interface allows many parameters to be customized in the device and this configuration can be stored in the embedded NVM.

The Flip Chip (3.97x2.67 mm) is suitable for very compact applications.

Table 1: Device summary

Order code	Package	Packing
STWLC33JR	Flip Chip (3.97x2.67 mm)	Tape and reel

Contents STWLC33

Contents

1	Overvie	NA /		7		
_						
2		•				
3		•				
4		-				
5	Maximu	m ratings	S	12		
6	Electric	al charac	teristics	13		
7	Wireles	s power i	nterface	17		
	7.1	-	ceiver interface			
	7.2	Power tra	ansmitter interface	18		
	7.3	Chip ena	ble pin	18		
	7.4	GPIO 0-4	1 pins	18		
8	I ² C inter	face		19		
	8.1		dity			
	8.2		I stop conditions			
	8.3	Byte format				
	8.4	-	edge			
	8.5		protocol			
	8.6		o a single register			
	8.7	_	o multiple registers with incremental addressing			
	8.8		from a single register			
	8.9	_	from multiple registers with incremental addressing			
9	Applica	•	· · · · · · · · · · · · · · · · · · ·			
	9.1		pplications			
	9.2		omponent list			
	9.3		passive component selection			
		9.3.1	Resonant circuit components (L ₁ , C _{SER} , C _{PAR})			
		9.3.2	Voltage clamping circuit capacitors (CCL1, CCL2)	27		
		9.3.3	Load modulation capacitors (CM1, CM2)	27		
		9.3.4	Surge resistor (RCL)			
		9.3.5	ESD protection diodes (Z1, 2)			
		9.3.6	Additional thermal protection (RT, RNTC)			
		9.3.7	Pre-conditioning filter (DFLT, RFLT1, 2, 3, CFLT1, 2, 3)	27		

STWLC33 Contents

10	PCB rou	iting strategy and component placement	28
11	Example	es of system integration	29
	11.1	Standalone application (Rx mode only)	29
	11.2	Small pin count (TRx mode capable)	29
	11.3	Maximum features (TRx mode capable)	30
12	NVM co	nfiguration update procedure	31
	12.1	Read NVM sector procedure	31
	12.2	Write NVM sector procedure	31
13	Procedu	re to load executable binary	32
14	I ² C regis	ster map description	33
	14.1	Overview	33
15	NVM ma	p description	52
16	Package	e information	58
	16.1	Flip Chip 52 bumps (3.97x2.67 mm) package information	
17	Referen	ce	60
18	Revision	history	61

List of tables STWLC33

List of tables

Table 1: Device summary		1
Table 2: Pin description		10
Table 3: Absolute maximum ratings		12
Table 4: Thermal data		12
Table 5: STWLC33 electrical characteris	stics	13
Table 6: Typical component list for Rx or	peration only	25
	operation	
	able binary	
_ ;_ 0		
_ •		
Table 26: Com register		40
Table 30. OVP_Set register		42
Table 31: VRECT_L register		42
	er	
	r	
	er	
	er	
	register	
Table 53: Min_Freq_Tx_L register		47
4/62	DocID030801 Rev 2	57/

STWLC33	List of tables
Table 54: Min_Freq_Tx_H register	47
Table 55: Ping_Freq_Tx_L register	
Table 56: Ping_Freq_Tx_H register	47
Table 57: ASK_High_Thr_Tx register	48
Table 58: ASK_Low_Thr_Tx register	48
Table 59: RxPower_Rcvd_Value_Tx register	48
Table 60: EPT_Reason_Tx register	48
Table 61: Status_Tx register	49
Table 62: INT_Tx register	49
Table 63: INT_Enable_Tx register	49
Table 64: VRECT_Tx_L register	50
Table 65: VRECT_Tx_H register	50
Table 66: IIN_Tx_L register	
Table 67: IIN_Tx_H register	
Table 68: INT_Clear_Tx register	50
Table 69: NVM organization	
Table 70: Sector 0: Qi LP profile configuration	
Table 71: Sector 1: Qi MP profile configuration	
Table 72: Sector 2: Qi general configuration	54
Table 73: Sector 3: Qi identification	
Table 74: Sector 4: PMA LP profile configuration	
Table 75: Sector 6: PMA general configuration	56
Table 76: Sector 7: PMA identification	56
Table 77: Sector 8: Platform configuration	
Table 78: Flip Chip (3.97x2.67 mm) package mechanical data	
Table 79: Document revision history	61

List of figures STWLC33

List of figures

Figure 1: STWLC33 block diagram	8
Figure 2: Pinout top view	9
Figure 3: Init flowchart	17
Figure 4: I ² C timing reference	
Figure 5: Data validity on the I2C bus	
Figure 6: Start and stop condition on the I2C bus	20
Figure 7: Bit transfer	
Figure 8: Acknowledge on the I ² C bus	
Figure 9: Interface protocol	
Figure 10: Writing to a single register	
Figure 11: Writing to multiple registers	22
Figure 12: Reading from a single register	23
Figure 13: Reading from multiple registers	23
Figure 14: STWLC33 schematic diagram for Rx operation only	24
Figure 15: STWLC33 schematic diagram for TRx operation	25
Figure 16: System integration example 1	
Figure 17: System integration example 2	30
Figure 18: System integration example 3	30
Figure 19: Flip Chip (3.97x2.67 mm) package outline	
Figure 20: Flip Chip (3.97x2.67 mm) recommended footprint	50

STWLC33 Overview

1 Overview

The STWLC33 is first of all a wireless power receiver providing regulated voltage to the output. The power receiver firmware is placed in ROM and is able to operate fully autonomously. Optionally, the device can be controlled and configured over I²C interface. The device contains several output pins, for example to drive signal LEDs or to indicate the status to the host processor. The STWLC33 contains also hardware blocks to support transmitter mode functions. The transmitter firmware is not placed inside, but has to be loaded over I²C into internal RAM. In this manner, the device can serve as a wireless power transmitter with limited functions. The same coil can be used (with limitations coming from the different coil parameters) or an external switch can be used to connect Tx mode coil.

Block diagram STWLC33

2 Block diagram

Figure 1: STWLC33 block diagram

STWLC33 Pin assignment

3 Pin assignment

Figure 2: Pinout top view

Pin description STWLC33

4 Pin description

Table 2: Pin description

Pin name	Position	Description		
PGND	11, 12, 13, 14, 15, 16	Rectifier power ground		
AC1	H1, H2, G2	Rx/Tx coil circuit terminal connection		
AC2	H5, H6, G5	Rx/Tx coil circuit terminal connection		
BST1	G1	Bootstrap capacitor connection for rectifier		
BST2	G6	Bootstrap capacitor connection for rectifier		
СМА	B1	This pin is used for a non-power dissipative overvoltage protection on the AC side. The CCL1 capacitor is connected between this pin and AC1. It can be used also as additional modulation capacitor connection		
СМВ	CMB B6 This pin is used for a non-power dissipative overvoltage protection on the AC side. The CCL2 capacitor is connected between this pin and AC2. It can be used als as additional modulation capacitor connection			
VRECT	E1, E2, F2, F3, F4, F5, E5, E6	Synchronous rectifier output		
ISL	G3	Not used internally		
ISH	H3	Not used internally		
VS1	G4	Tx function demodulator input		
NTC	H4	External NTC connection pin		
CM1	A1	Load modulation capacitor 1 connection. The CM1 capacitor is connected between this pin and AC1		
CM2	A6	Load modulation capacitor 2 connection. The CM2 capacitor is connected between this pin and AC2		
OUT D1, D2, D3, D4, D5, D6		Output voltage pin		
V18	F6	1.8 V LDO output. Digital core, ADC and analog circuits supply		
V5V	F1	5 V LDO output. Auxiliary circuit supply		
AGND	C6	Analog ground		
GND	C1	Digital ground		
/EN	B5	Chip enable input, active low		
HVOD	C2	Pre-clamp (dissipative clamp) connection		
SCL	А3	I ² C clock line		
SDA	В3	I ² C data line		
/INT	C3	Interrupt line (active low)		
NA	A2	Not used, connect to GND or leave floating		
NA	B2	Not used, connect to GND or leave floating		
GPIO0	A4	Configuration dependent feature		
GPIO1	B4	Configuration dependent feature		

STWLC33 Pin description

Pin name	Position	Description
GPIO2 C4		Configuration dependent feature
		Configuration dependent feature, do not load to ground during startup
GPIO4	C5	Configuration dependent feature

Maximum ratings STWLC33

5 Maximum ratings

Table 3: Absolute maximum ratings

Pin	Parameter	Value	Unit
AC1, AC2, CM1, CM2, CMA, CMB	Input AC voltage	-0.3 to 20	V
ISL, ISH	Not used internally	-0.3 to 14.4	V
OUT	Output voltage	-0.3 to 15	V
BST1, BST2	Voltage on bootstraps	AC1, AC2 -0.3; AC1, AC2 + 6 Abs. maximum 25	V
воот	Voltage on bootstrap	VRECT-0.3; VRECT + 6	V
VRECT, HVOD	Rectified voltage	-0.3 to 20	V
V1V8	LDO voltage	-0.3 to 2	V
V5V	LDO voltage	-0.3 to 6	V
/EN	Enable pin voltage	20	V
GPIO 0-4	Digital pin voltage	-0.3 to 2	V
SCL, SDA, INT, NA	Open drain digital pin voltage	-0.3 to 6	V
VS1	Voltage on Tx mode sensing pin	-0.3 to 6	V
NTC	External NTC connection	-0.3 to 2	V
VS1	Voltage on Tx mode sensing pin	-0.3 to 6	V
ESD	Human body model	2	kV

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

Table 4: Thermal data

Symbol Parameter		Value	Unit
Rтнја	Junction-to-ambient thermal resistance	40	°C/W
T _A	Operating ambient temperature	0-85	°C

STWLC33 Electrical characteristics

6 Electrical characteristics

0 °C < T_A < 85 °C; V_{RECT} = 5 to 10 V; typical values are at T_A = 25 °C, unless otherwise specified.

Table 5: STWLC33 electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
General sect	ion					
Vuvlo_rx	Undervoltage lockout threshold, power from AC	VRECT rising		2.5		V
Vuvlo_tx	Undervoltage lockout threshold, power from VOUT	VOUT rising		3.7		V
la	Current	/EN=1 for>1 ms (shutdown state), supplied from OUT		500		
lo consumption in the shutdown mode	/EN=1 for>1 ms (shutdown state), supplied from V _{RECT}		500		μA	
		/EN=0 (enabled state), supplied from V _{RECT} in RX mode		12+І _{римму}		
Icc	Current consumption of the device	/EN=0 (enabled state), supplied from OUT in RX mode		12+Ідимму		mA
		/EN=0 (enabled state), supplied from OUT in TX mode, not engaged with RX, long average		24		
VSUP_RX_MAX	Operating supply voltage in RX mode	Voltage on VRECT pin		4.5		V
Vsup_rx_min	Operating supply voltage in RX mode	Voltage on VRECT pin		16		>
V _{SUP_TX_MAX}	Operating supply voltage in TX mode	Voltage on OUT pin		4.5		>
V _{SUP_TX_MIN}	Operating supply voltage in TX mode	Voltage on OUT pin		12		>
I _{AC_MAX}	AC1/2 current capability	RMS value		2		Α
LDO1						
V _{LDO1}	LDO1 output voltage	I _A = 5 mA		1.8		V
LDO2						
V _{LDO2}	LDO2 output voltage	I _{V5V} = 5 mA, V _{RECT} =5.1 V		5		V
I _{LDO2OUT}	Maximum current allowed for external load				10	mA

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
Synchronou	Synchronous rectifier						
⊏#ioionov	Target rectifier	I _{RECT} =1 A, V _{RECT} =5.2 V, f _{RECT} =100 kHz to 250 kHz		97		%	
Efficiency	efficiency	IRECT=1 A, VRECT=9.2 V, fRECT=100 kHz to 250 kHz		97		70	
frectifier	Rectifier frequency range		50		500	kHz	
Inverter drive	er						
f _{INV}	Inverter frequency range			100-300		kHz	
AC clamp							
VCLAMP	AC clamp threshold			15		V	
V _{CLAMP_HYST}	AC clamp hysteresis			0.5		V	
ICLAMP	AC clamp max. current		1.0			Α	
Pre-clamp (H	IVOD pin)						
V _H VOD	V _{RECT} voltage threshold			13.5		V	
VHVOD_HYST	VR voltage active clamp hysteresis			0.7		V	
Load modula	ation		•		•		
RDSONCM1,2	Load modulation MOS R _{DS(on)}	VRECT = 5 V		1		Ω	
ICMOD_MAX	MOD1/2 current capability	RMS value		0.5		Α	
Dummy load						•	
	Dummy load current	V _{RECT} = 5 to 12 V		32		mA	
IDUMMY	Dummy load I _{OUT} threshold	Enabled at I _{OUT} < threshold		200		mA	
Thermal pro	tection						
tshon	Thermal shutdown			150		°C	
tshdn_hyst	Thermal shutdown hysteresis			20		°C	
Current sens	sor						
Inwas van	Sensing current	RX mode	0		1600	mΛ	
IRANGE_VLD	range	TX mode	1000		0	mA	
Vout_vld_tol	Overall block tolerance			1		%	
leoc	End of charging current threshold	V _{OUT} = 3.5 to 12.5 V		150		mA	

STWLC33 Electrical characteristics

Complete L	Danamatan	Took oon ditteres		T		
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Power LDO	T	T	1	T		
Vоит	Output voltage	VOUT_SET=00h		3.5		V
	range	VOUT_SET=5Ah		12.5		
VOUT_STEP	Programmable step size	VOUT_SET LSB size		0.1		V
V_{DROP}	LDO drop voltage	Іоит=1 А		70		mV
V _{RECT_RANGE}	Typical input	Vout = 5 V		5.1 – 8		V
V RECT_RANGE	voltage range	VOUT = 9 V		9.1 – 12		٧
LINEREG	Line regulation	I _{OUT} = 0.1 A, V _{OUT} = 5 V, V _{RECT} 5.1 V↔15 V		3	10	mV
LOADREG	Load regulation	V _{RECT} =5.1 V, V _{OUT} =5 V, I _{OUT} 1 mA↔1 A		30	70	mV
OVP _{VOUT}	Overvoltage protection threshold			V _{ОUТ} +25%		٧
I _{OVERCURR}	LDO overcurrent protection	Security HW protection		1700		mA
Current limit	ation loop					
	Input current limitation threshold	ILIM_SET=0Fh		1600		A
ILIM		ILIM_SET=00h		100		mA
ILIM_STEP	Programmable step size	ILIM_SET LSB size		100		mA
	I _{LIM} threshold	ILIM_SET=0Fh		5		%
ILIM_TOL	tolerance	ILIM_SET=01h		10		%
Digital interf	ace (GPIO pins, EN, I	2C, INT)		•		
V_{IL}	Low level input voltage				0.55	V
V _{IH}	High level input voltage		1.14			V
V _{OH}	GPIOx high level output voltage	Output high, source=3 mA	1.25			V
Іон	GPIOx pin current capability	Output high	3			mA
V_{OL}	Low level output voltage	Output low, sink = 3 mA		360		mV
Microcontro	ller		•			
Architecture	ARM Cortex			32		bit
RAM	RAM size			8		kB
NVM	Memory size for configuration			4		kbit
Clock genera	ator	ı	1	ı	1	

Electrical characteristics STWLC33

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
fosc	Clock generator and PWM timer frequency	V _{SUP} = V _{UVLO} to 15 V		32		MHz
fosc_tol	Tolerance of the clock generator frequency	T = 0 °C to 85 °C	-4		+4	%

7 Wireless power interface

7.1 Power receiver interface

Power receiver is the default mode of operation.

Following protocols are supported:

- Qi 1.2 including FOD extensions up to 15 W (1.5 A @ 10 V)
- Qi backward compatible basic power profile up to 5 W (1.0 A @ 5 V)
- PMA SR1 (AirFuel inductive) up to 5 W (0.9 A @ 5.6 V)

The STWLC33 selects automatically between Qi mode and PMA mode based on Tx frequency measurement and PMA advertising detection. See figure below.

Qi EPP I2C
REG. INIT
FROM NVM
FROM INIT
FROM NVM

Figure 3: Init flowchart

In case of Qi mode the STWLC33 goes autonomously through Ping, identification, negotiation and calibration phase to power transfer phase. During power transfer phase, the STWLC33 sends periodically RxPower and control error packets. If overvoltage, overcurrent or overtemperature event happens, the STWLC33 sends automatically end power transfer packet.

During power transfer phase, the device can be commanded over I²C to send end power transfer packet (with any response value) or any custom packet (proprietary packets or e.g. charge status packet). The custom packet can be sent in any of three modes: without expecting a reply, expecting pattern response from Tx or expecting data packet response from Tx. If the response is received the content is captured and is available in I²C registers.

In case of PMA mode, the STWLC33 goes autonomously through Ping and identification phase to power transfer phase. If PMA advertising message is received the content is captured in I²C registers. If overvoltage, overcurrent or overtemperature event happens, the STWLC33 sends automatically end-of-charge signal.

In every operating mode the output voltage can be reconfigured over I²C on the fly or stored in NVM as the new default value.

Important notes:

- Changing the output voltage must respect the overall system design (coil selection, transmitter types etc.)
- Load must avoid fast transients
- Minimum operating load is 150 mA (to ensure interoperability with all Tx)

Starting load should not exceed 2.5 W, ramping to full power is recommended

7.2 Power transmitter interface

Power transmitter functions are available only after loading the STWLC33 TxMode RAM binary. See Section 13: "Procedure to load executable binary" for instructions.

The implemented protocol is based on Qi.

The maximum power delivered to the Rx is strongly influenced by coil selection. Using common thin Rx coils in Tx mode limits the delivered power to approximately 3 W (on Rx output).

7.3 Chip enable pin

Chip enable pin can block the operation of the device by putting the device in reset state. After releasing the reset, the STWLC33 starts always in Rx mode.

7.4 **GPIO 0-4 pins**

GPIO functions can be assigned in NVM. GPIO3 pin needs special care because it has connected an internal pull-up and must not be tied low during the device startup.

STWLC33 I2C interface

8 I²C interface

The STWLC33 can operate fully independently on I²C interface but when it is embedded into an application I²C can provide a flexibility to get the device status, executing custom commands or reconfiguring the default values. In parallel to I²C bus there is also the interrupt pin to indicate events.

The I²C bus[™] is configured as a slave serial interface compatible with the I²C register, built with a data line (SDA) and a clock line (SCL):

- SCL: input clock
- SDA: input/output bidirectional data transfer line

The STWLC33 device works as a slave and supports the following data transfer mode: standard mode (100 kbit/s) and fast mode (400 kbit/s) as defined in the I²C_busTM specification version developed by Philips semiconductor.

The STWLC33 device supports 7-bit addressing, plus one bit dedicated to write (0) or read (1) mode. The master initiates data transfer by generating a start condition. The start condition is when a high to low transition occurs on SDA line while SCL is high. The master then generates the SCL pulses and transmits the 7-bit address for the device IDD plus 1 bit for read/write.

The device with a matching address only generates acknowledge by pulling the SDA line low during the entire period of the 9th SCL cycle. The SDA data are shifted MSB first. The master device sends 8 bits on SDA corresponding to the register address followed by acknowledge and 8-bit data field corresponding to the register content followed or not by another acknowledge. To signal the end of the data transfer, the master generates a STOP condition by pulling the SDA line from low to high while the SCL line is high. This releases the bus and stops the communication link with the addressed slave device.

Figure 4: I²C timing reference

I2C interface STWLC33

8.1 Data validity

As shown in *Figure 5: "Data validity on the I2C bus"*, the data on the SDA line must be stable during the high period of the clock. The HIGH and LOW state of the data line can only change when the clock signal on the SCL line is LOW.

SCL data line stable data change data valid allowed

Figure 5: Data validity on the I2C bus

8.2 Start and stop conditions

Both DATA and CLOCK lines remain HIGH when the bus is not busy. As shown in figure below, a start condition is a HIGH to LOW transition of the SDA line while SCL is HIGH. The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH. A STOP condition must be sent before each START condition.

Figure 6: Start and stop condition on the I2C bus

8.3 Byte format

Every byte transferred to the SDA line must contain 8 bits. Each byte must be followed by an acknowledge bit. The MSB is transferred first. One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse. Any change in the SDA line at this time is meant as a control signal.

STWLC33 **I2C** interface

8.4 **Acknowledge**

The master (µC) puts a resistive HIGH level on the SDA line during the acknowledge clock pulse (see Figure 8: "Acknowledge on the I2C bus"). The peripheral (STWLC33), which acknowledges, has to pull down (LOW) the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during this clock pulse. The peripheral, which has been addressed, has to generate an acknowledge pulse after the reception of each byte, otherwise the SDA line remains at the HIGH level during the 9th clock pulse duration. In this case, the master transmitter can generate the STOP information in order to abort the transfer. The STWLC33 does not generate acknowledge if the power supply is below the undervoltage lockout threshold.

SCL SDA ACKNOWLEDGEMENT :START: FROM SLAVE

Figure 8: Acknowledge on the I2C bus

8.5 Interface protocol

The interface protocol is composed of (see figure below):

- A start condition (START)
- A device address + R/W bit (read =1 / write =0)
- A register H address byte
- A register L address byte
- A sequence of data n* (1 byte + acknowledge)
- A stop condition (STOP)

The register address byte determines the first register in which the read or write operation takes place. When the read or write operation is finished, the register address is automatically incremented.

I2C interface STWLC33

Figure 9: Interface protocol

Γ	De	evice address + R	/W	bit	Ī	Ļ	Register address	Ī	7	Data	$\prod_{i=1}^{n}$		Γ	1
	S M T S A B	6 5 4 3 2	LSE	R /	C	S	sl Is	L /	c I	Isl Is	Ξ١	С	ST	-
11	R F		В	vv	K	E		3 1	_	В	В	K	P	

8.6 Writing to a single register

Writing to a single register starts with a START bit followed by the 7-bit device address of STWLC33. The 8th bit is the R/W bit, which is 0 in this case. R/W = 1 means a reading operation. Then the master waits for the STWLC33 acknowledge. Then the 8-bit address of register is sent to STWLC33. It is also followed by an acknowledge pulse. The last transmitted byte is the data that is going to be written to the register. It is again followed by an acknowledge pulse from the STWLC33. The master then generates a STOP bit and the communication is over. See *Figure 10: "Writing to a single register"* below.

Figure 10: Writing to a single register

8.7 Writing to multiple registers with incremental addressing

The STWLC33 supports writing to multiple registers with incremental addressing. When data is written to register, the address register is automatically incremented, so the next data can be sent without sending the device address and the register address again. See *Figure 11: "Writing to multiple registers"*.

Figure 11: Writing to multiple registers

STWLC33 I2C interface

8.8 Reading from a single register

The reading operation starts with a START bit followed by 7-bit device address of the STWLC33. The 8th bit is the R/W bit, which is 0 in this case. The STWLC33 confirms to receive the address + R/W bit by an acknowledge pulse. The address of the register, which should be read, is sent afterward and confirmed again by an acknowledge pulse of the STWLC33 again. The master generates a START bit again and sends the device address followed by the R/W bit, which is 1 now. The STWLC33 confirms to receive the address + R/W bit by an acknowledge pulse and starts to send the data to the master. No acknowledge pulse from the master is required after receiving the data. Then the master generates a STOP bit to terminate the communication.

Figure 12: Reading from a single register

8.9 Reading from multiple registers with incremental addressing

Reading from multiple registers starts in the same way like reading from a single register. As soon as the first register is read, the register address is automatically incremented. If the master generates an acknowledge pulse after receiving the data from the first register, then the reading of the next register can start immediately without sending the device address and the register address again. The last acknowledge pulse before the STOP bit is not required. See *Figure 13: "Reading from multiple registers"*.

Figure 13: Reading from multiple registers

Application hints STWLC33

9 Application hints

This section presents the application hints. The schematic, PCB guidelines, the minimum components to properly run the application and other aspects.

9.1 Typical applications

The two figures below show the typical application for the STWLC33.

Figure 14: STWLC33 schematic diagram for Rx operation only COIL $C_{\mathsf{PAR}}^{\mathsf{I}}$ C_{BOOT1} BST1 BST2 СМВ CM2 AC2 VS1 HVOD SCL VRECT SDA $\overline{\mathsf{INT}}$ CRECT STWLC33 ĒΝ оитрит OUT C_{OUT} GPI00 GPIO1 V5V GPIO2 GPIO3 GPIO4 V18 ISH ISL NTC GND PGND AGND

STWLC33 Application hints

Figure 15: STWLC33 schematic diagram for TRx operation

9.2 Typical component list

Table 6: "Typical component list for Rx operation only" provides the list of the minimum components required to run the application.

Table 6: Typical component list for Rx operation only

Component	Manufacturer	Part number	Value	Notes
L ₁	Wurth	760308102207	8 µH	
Cser	Murata	4x GRM155R61H104KE19	100 nF/50 V	
C _{PAR}	Murata	GRM155R71H392KA01	3.9 nF/50 V	
С _{воот1} , С _{воот2}	Murata	GRM033R61A153KE84	15 nF/10 V	
См1, См2	Murata	Murata GRM155R61H473KE19 47 nF/50 V		
C _{CL1} , C _{CL2}	Murata	GRM155R61H104KE14 100 nF/50 V		
C ₇	Murata	GRM155R61A105KE15	1 μF/10 V	
C ₆	Murata GRM155R61A105KE15		1 μF/10 V	
CRECT	Murata	3x GRM21BR61E106KA73	10 μF/25 V	
Соит	Murata	2x GRM21BR61E106KA73	10 μF/25 V	
RcL	Panasonic	ERJ-P6WF30R0V	30 Ω	Surge resistor

Application hints STWLC33

Component	Manufacturer	Part number	Value	Notes
D _{1,2}	NXP	PESD12VV1BL		ESD protection diodes
R _T			30 kΩ	Optional
R _{NTC}			100 kΩ	Optional

All the above components refer to a typical application. Operation of the device is not limited to the choice of these external components.

Table 7: Typical component list for TRx operation

Component	Manufacturer	Part number	Value	Notes
L ₁	Wurth	760308102207	8 µH	
C _{SER}	Murata	4x GRM155R61H104KE19	100 nF/50 V	
CPAR	Murata	GRM155R71H392KA01	3.9 nF/50 V	
Своот1, Своот2	Murata	GRM033R61A153KE84	15 nF/10 V	
См1, См2	Murata	GRM155R61H473KE19	47 nF/50 V	
C _{CL1} , C _{CL2}	Murata	GRM155R61H104KE14	100 nF/50 V	
C ₇	Murata	GRM155R61A105KE15	1μF/10V	
C ₆	Murata	GRM155R61A105KE15	1 μF/10 V	
CRECT	Murata	3x GRM21BR61E106KA73	10 μF/25 V	
Соит	Murata	2x GRM21BR61E106KA73	10 μF/25 V	
R _{CL}	Panasonic	ERJ-P6WF30R0V	30 Ω	Surge resistor
D _{1,2}	NXP	PESD12VV1BL		ESD protection diodes
D _F LT	ST	BAT48		Schottky diode
R _{FLT1}			10 kΩ/1%	
R _{FLT2}			68 kΩ/1%	
R _{FLT3}			620 Ω/1%	
C _{FLT1}	Murata	GRM155R71H152KA01	1.5 nF/50 V	
C _{FLT2}	Murata	GRM155R71H223KA12	22 nF/50 V	
C _{FLT3}	Murata	GRM155R71H682KA88	6.8 nF/50 V	
R⊤			30 kΩ	Optional
R _{NTC}			100 kΩ	Optional

All the above components refer to a typical application. Operation of the device is not limited to the choice of these external components.

STWLC33 Application hints

9.3 External passive component selection

9.3.1 Resonant circuit components (L₁, C_{SER}, C_{PAR})

Rx coil should be selected with respect to the requested transferred power. The inductance of the L $_1$ coil and capacitance of C_{SER} and C_{PAR} capacitors define the resonant frequency of the LC circuit. This frequency should fit the requests given by the wireless power transfer standards.

9.3.2 Voltage clamping circuit capacitors (CCL1, CCL2)

The X5R type is suitable for this purpose. The value of the caps should move the resonant frequency of the circuit enough in overvoltage conditions to ensure the V_{RECT} voltage decreases fast.

9.3.3 Load modulation capacitors (CM1, CM2)

The X5R type is suitable for this purpose.

9.3.4 Surge resistor (RCL)

The surge resistor (pulse withstanding resistor) is recommended to protect the device from voltage peaks coming from coil. It needs to dissipate V_{RECT} voltage peaks above HVOD protection threshold. A 0.5 W capable component is recommended.

9.3.5 ESD protection diodes (Z1, 2)

Using ESD diodes is recommended to protect the power input pins from fast voltage peaks coming from the coil. Diodes should have a high clamping threshold so not to open during normal operations (with respect to the selected V_{OUT} plus the regulation headroom and positive modulation pulses).

9.3.6 Additional thermal protection (RT, RNTC)

This is an optional thermal protection that can sense the temperature directly at the desired spot, for example near the coil. The voltage threshold is configurable in NVM. The factory default value is 0, this means that the protection is off and NTC pin can be left unconnected. To enable the protection, non-zero value needs to be set in NVM. See NVM map and NVM update procedure.

9.3.7 Pre-conditioning filter (DFLT, RFLT1, 2, 3, CFLT1, 2, 3)

The filter is needed in Tx mode only for ASK demodulation. The purpose of the filter is to suppress the carrier frequency and provide envelope voltage to the VS1 pin. The voltage has to be within an operating range of VS1 pin 0-1.5 V and should also correspond with ASK threshold I^2C register setting.

10 PCB routing strategy and component placement

Rules to be followed:

- 1. Auxiliary LDO capacitors C₆ and C₇ should be placed as close as possible to the STWLC33. Tracks connection should be short and placed to top layer. Capacitor ground can be connected directly into GND plane.
- 2. Crect and Cout capacitors should be placed close to the STWLC33 with higher priority than Rcl resistor or Tx mode filter.
- 3. Power tracks (AC1, AC2, VRECT and VOUT) should be routed wide enough with respect to high current that flows through.
- 4. AC1 and AC2 tracks should be routed close together to minimize the loop area.

11 Examples of system integration

11.1 Standalone application (Rx mode only)

This example shows the integration where only output power line is connected into the system. In this example, the STWLC33 operates fully autonomously. Tx mode is not available because it requires I²C connection.

Figure 16: System integration example 1

11.2 Small pin count (TRx mode capable)

This example shows how minimal integration can help to achieve a lot of functions.

Figure 17: System integration example 2

11.3 Maximum features (TRx mode capable)

This example gives the chance of disabling the STWLC33 by host application processor. It also simplifies read power transfer status and low power / medium power status just by GPIO pin levels.

Host STWLC33

Host GPI01
GPI03
GPI03
GPI03
GPI04

Figure 18: System integration example 3

4

12 NVM configuration update procedure

NVM is organized into 16 sectors by 32 bytes. The read and write operations are defined for the whole sector, so it is not possible to read or write just a part of the sector.

To update a single byte in the sector: read the whole sector, update the byte and write back the whole sector.

For the NVM map the relevant section.

The device is power supplied either from wireless power or by providing 5 V to OUT pin.

It is important to note that: some reserved sectors contain factory calibration values. Modification to these values may result in unrecoverable loss of functionality.

12.1 Read NVM sector procedure

- 1. Write into register 8Fh (NVM_Control) a value that consists of NVM_R ORed with NVM sector number.
- 2. Await for till NVM R bit is cleared or 250 µs.
- 3. Read the data from registers 90h to AFh.

12.2 Write NVM sector procedure

- 1. Check if, in register 8Fh (NVM_Control), NVM_R and NVM_W bits are zero or simply await for 250 µs.
- 2. Prepare the data into registers 90h to AFh (or update the data after previous read).
- Write into register 8Fh (NVM_Control) a value that consists of NVM_W ORed with NVM sector number.

13 Procedure to load executable binary

Loading the executable binary file into RAM over I²C interface consists of several steps.

- Applying a power supply
- 2. Activation of the loader
- 3. Loading the binary data into RAM
- 4. Running the code from RAM

Power supply 5 V has to be provided to OUT pin.

First, write the password 0x5A to the FWSwitchKey register at address 0x4F.

Await for 250 µs or more and write data 0x40 to the com register at address 0x4E.

Await for 250 µs or more and write data 0x00 to address 0x00. It is a dummy write that activates the loader. This dummy write is not acknowledged by the STWLC33.

Await for 250 µs or more and then start to load the binary executable content.

It is recommended to send the binary executable data to packets of 128 bytes. However, shorter packets can be used (down to 4 bytes), but they increase the loading time.

The binary file size must be always a multiple of 4 bytes. Trailing zero can be added.

Table 8: "Packet structure to load executable binary" shows the packet structure for loading the binary.

Table 8: Packet structure to load executable binary

Byte index	Byte/data	Note
1	0xC2	Device address + R/W bit
2	Address of the first byte of the packet MSB	Number of bytes already sent MSB
3	Address of the first byte of the packet MSB	Number of bytes already sent LSB
4	First byte of the packet	
5	Second byte of the packet	
Packet size +2	(n-1) th byte of the packet	
Packet size +3	n th byte of the packet	

Await for 250 µs or more and write data 0x01 to address 0x00. This command terminates the binary file transfer.

Await for 250 μs or more and write data 0x5A to the FWSwitchKey register at address 0x4F.

Await for 250 µs or more and write data 0x40 to the Com register at address 0x4E.

Before starting the binary file loading process, the host has to check that the STWLC33 is not in power transfer with a wireless power transmitter.

14 I²C register map description

The STWLC33 can be monitored and controlled using the I^2C compatible communication interface.

- Device address is 61h (7-bit address 1100001b)
- Register addresses are 8 bits

14.1 Overview

Table 9: Register overview

Table 9: Register overview			
Address	RxMode (ROM firmware)	TxMode (loaded the STWLC33 TxMode RAM binary)	
00h	Chip_ID	Chip_ID	
02h	Chip_Rev		
04h	FW_Major_Rev	FW_Major_Rev	
06h	FW_Minor_Rev	FW_Minor_Rev	
10h		Max_Freq_Tx_L	
11h		Max_Freq_Tx_H	
12h		Min_Freq_Tx_L	
13h		Min_Freq_Tx_H	
14h		Ping_Freq_Tx_L	
15h		Ping_Freq_Tx_H	
16h		ASK_High_Thr_Tx	
17h		ASK_Low_Thr_Tx	
1Ch		RxPower_Rcvd_Value_Tx	
1Dh		EPT_Reason_Tx	
34h	Status_Rx		
35h		Status_Tx	
36h	INT_Rx		
37h		INT_Tx	
38h	INT_Enable_Rx		
39h		INT_Enable_Tx	
3Bh	EPT		
3Eh	VOUT_Set		
40h		VRECT_Tx_L	
41h		VRECT_Tx_H	
42h		IIN_Tx_L	
43h		IIN_Tx_H	
44h	IOUT_L		
45h	IOUT_H		

Address	RxMode (ROM firmware)	TxMode (loaded the STWLC33 TxMode RAM binary)
46h	Die_Temp_L	Die_Temp_L
47h	Die_Temp_H	Die_Temp_H
4Ah	ILim_Set	
4Bh		INT_Clear_Tx
4Dh	Sys_Op_Mode	Sys_Op_Mode
4Eh	Com	Com (MCU_rst and Clr_Int only)
4Fh	FWSwitchKey	
50h-55h	Qi_Data_Send[05]	
56h	INT_Clear_Rx	
5Ch-61h	RXID[05]	
62h	OVP_Set	
64h	VRECT_L	
65h	VRECT_H	
66h	VOUT_L	
67h	VOUT_H	
78h	PMA_ADV_L	
79h	PMA_ADV_H	
FAh	Op_Freq_L	
FBh	Op_Freq_H	
FCh	Ping_Freq_L	
FDh	Ping_Freq_H	
80h	PRMC_ID_L	
81h	PRMC_ID_H	
87h	Qi_Data_Send_Control	
8Fh	NVM_Control	
90h-AFh	NVM_Manipulation[031]	
D0h	Qi_Data_Rcvd_Status	
D1h	Qi_Data_Rcvd_Length	
D2h	Qi_Data_Rcvd_Format	
D3h-D7h	Qi_Data_Rcvd[04]	
F6h-F9h	Qi_Power_Transfer_Contract[03]	

Table 10: Chip_ID register

Address	RxMode (ROM firmware)	TxMode (loaded STWLC33 TxMode RAM binary)
00h	Chip_ID	Chip_ID
02h	Chip_Rev	

Address	RxMode (ROM firmware)	TxMode (loaded STWLC33 TxMode RAM binary)
04h	FW_Major_Rev	FW_Major_Rev
06h	FW_Minor_Rev	FW_Minor_Rev
10h		Max_Freq_Tx_L
11h		Max_Freq_Tx_H
12h		Min_Freq_Tx_L
13h		Min_Freq_Tx_H
14h		Ping_Freq_Tx_L
15h		Ping_Freq_Tx_H
16h		ASK_High_Thr_Tx
17h		ASK_Low_Thr_Tx
1Ch		RxPower_Rcvd_Value_Tx
1Dh		EPT_Reason_Tx
34h	Status_Rx	
35h		Status_Tx
36h	INT_Rx	
37h		INT_Tx
38h	INT_Enable_Rx	
39h		INT_Enable_Tx
3Bh	EPT	
3Eh	VOUT_Set	
40h		VRECT_Tx_L
41h		VRECT_Tx_H
42h		IIN_Tx_L
43h		IIN_Tx_H
44h	IOUT_L	
45h	IOUT_H	
46h	Die_Temp_L	Die_Temp_L
47h	Die_Temp_H	Die_Temp_H
4Ah	ILim_Set	
4Bh		INT_Clear_Tx
4Dh	Sys_Op_Mode	Sys_Op_Mode
4Eh	Com	Com (only MCU_rst and Clr_Int)
4Fh	FWSwitchKey	
50h-55h	Qi_Data_Send[05]	
56h	INT_Clear_Rx	
5Ch-61h	RXID[05]	
62h	OVP_Set	

Address	RxMode (ROM firmware)	TxMode (loaded STWLC33 TxMode RAM binary)
64h	VRECT_L	
65h	VRECT_H	
66h	VOUT_L	
67h	VOUT_H	
78h	PMA_ADV_L	
79h	PMA_ADV_H	
FAh	Op_Freq_L	
FBh	Op_Freq_H	
FCh	Ping_Freq_L	
FDh	Ping_Freq_H	
80h	PRMC_ID_L	
81h	PRMC_ID_H	
87h	Qi_Data_Send_Control	
8Fh	NVM_Control	
90h-AFh	NVM_Manipulation[031]	
D0h	Qi_Data_Rcvd_Status	
D1h	Qi_Data_Rcvd_Length	
D2h	Qi_Data_Rcvd_Format	
D3h-D7h	Qi_Data_Rcvd[04]	
F6h-F9h	Qi_Power_Transfer_Contract[03]	

Chip_ID: chip unique ID byte

Table 11: Chip_Rev register

· · · · · · · · · · · · · · · · · · ·												
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
Addr = 02h	Chip_Rev											
POR = 01h	0	0	0	0	0	0	0	1				
Comments	Read-only				Read-only							

Chip_Rev: chip revision number

Table 12: FW_Major_Rev register

Table 12.1 W_Major_Nev register												
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
Addr = 04h	FW_Major_Rev											
POR = 00h	0	0	0	0	0	0	0	0				
Comments	Read-only											

FW_Major_Rev: ROM / RAM memory firmware major revision number (check Sys_Op_Mode register to determine ROM/RAM)

Table 13: FW_Minor_Rev register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 06h				FW_Mir	nor_Rev			
POR = 00h	0	0	0	0	0	0	0	0
Comments				Read	l-only			

FW_Minor_Rev: ROM / RAM memory firmware minor revision number (check Sys_Op_Mode register to determine ROM/RAM)

Table 14: Status_Rx register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 34h	Vout	Vrect	AC_Mis	TX_Rcvd	Reserved	RX_OTP	RX_OVP	RX_OCP
POR = 20h	0	0	1	0	0	0	0	0
Comments	R	R	R	R	R	R	R	R

Vout: power output status; 0 = VOUT is below UVLO; 1 = VOUT is above UVLO

Vrect: VRECT status; 0 = VRECT is below UVLO; 1 = VRECT is above UVLO

AC_Mis: coil AC signal presence status; 0 = AC signal present in Rx mode; 1 = AC signal not present or Tx mode

TX_Rcvd: Tx data received (Rx mode only); 0 = no data received; 1 = data received

RX_OTP: Rx mode over temperature protection status; 0 = normal conditions; 1 = overtemperature

RX_OVP: Rx mode overvoltage protection status; 0 = normal conditions; 1 = overvoltage

RX_OCP: Rx mode overcurrent protection status; 0 = normal conditions; 1 = overcurrent

Table 15: INT_Rx register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 36h	Vout	Vrect	AC_Mis	TX_Rcvd	Reserved	RX_OTP	RX_OVP	RX_OCP
POR = 00h	0	0	0	0	0	0	0	0
Comments	R	R	R	R	R	R	R	R

Vout: 1 indicates pending interrupt (sensitive to any status change)

Vrect: 1 indicates pending interrupt (sensitive to any status change)

AC_Mis: 1 indicates pending interrupt (sensitive to any status change)

TX_Rcvd: 1 indicates pending interrupt

RX_OTP: 1 indicates pending interrupt

RX_OVP: 1 indicates pending interrupt

RX_OCP: 1 indicates pending interrupt

Table 16: INT_Enable_Rx register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 38h	Vout	Vrect	AC_Mis	TX_Rcvd	Reserved	RX_OTP	RX_OVP	RX_OCP
POR = 20h	0	0	1	0	0	0	0	0
Comments	RW	RW	RW	RW	R	RW	R'	W

Vout: 0 INT pin output disabled; 1 = INT pin output enabled

Vrect: 0 INT pin output disabled; 1 = INT pin output enabled

AC Mis: 0 INT pin output disabled; 1 = INT pin output enabled

TX_Rcvd: 0 INT pin output disabled; 1 = INT pin output enabled

RX OTP: 0 INT pin output disabled; 1 = INT pin output enabled

RX_OVP: 0 INT pin output disabled; 1 = INT pin output enabled

RX_OCP: 0 INT pin output disabled; 1 = INT pin output enabled

Note: POR values are the default values after the STWLC33 powers up. Wireless standard detection value is automatically overwritten by NVM pre-configured value for the related wireless standard.

Table 17: INT_Clear_Rx register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 56h	Vout	Vrect	AC_Mis	TX_Rcvd	Reserved	RX_OTP	RX_OVP	RX_OCP
POR = 00h	0	0	0	0	0	0	0	0
Comments	RW/Clear	RW/Clear	RW/Clear	RW/Clear	R	RW/Clear	RW/Clear	RW/Clear

Vout: writes 1 to enable clearing of the corresponding bit in INT_Rx register; auto-cleared from Com registers, Clr_Int bit

Vrect: writes 1 to enable clearing of the corresponding bit in INT_Rx register; auto-cleared from Com registers, Clr_Int bit

AC_Mis: writes 1 to enable clearing of the corresponding bit in INT_Rx register; autocleared from Com registers, Clr_Int bit

TX_Rcvd: writes 1 to enable clearing of the corresponding bit in INT_Rx register; autocleared from Com registers, Clr_Int bit

RX_OTP: writes 1 to enable clearing of the corresponding bit in INT_Rx register; autocleared from Com registers, Clr_Int bit

RX_OVP: writes 1 to enable clearing of the corresponding bit in INT_Rx register; autocleared from Com registers, Clr_Int bit

RX_OCP: writes 1 to enable clearing of the corresponding bit in INT_Rx register; autocleared from Com registers, Clr_Int bit

Table 18: EPT register

					<u> </u>			
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 3Bh			E	PT/EOC/E	OP_Reaso	on		
POR = FFh	1	1	1	1	1	1	1	1
Comments				Read	-Write			

EPT/EOC/EOP_Reason: Qi or PMA end power transfer packet/message to be sent, codes according to wireless power protocol specifications. The power transfer termination must be confirmed by writing into COM register.

Table 19: VOUT_Set register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 3Eh				VOU	T_Set			
POR = 00h	0	0	0	0	0	0	0	0
Comments				Read	-Write			

VOUT_Set: power LDO output voltage setting; voltage [V] = VOUT_set * 0.1 V + 3.5 V (range 3.5 V - 12.5 V)

Note: wireless standard detection value is automatically overwritten by NVM pre-configured value for the related wireless standard.

Table 20: IOUT_L register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 44h				IOUI	Γ[7:0]			
POR = 00h	0	0	0	0	0	0	0	0
Comments				Read	l-only			

IOUT[7:0]: measured IOUT value (Rx mode only) lower bits

Table 21: IOUT_H register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Addr = 45h				IOUT	[15:8]						
POR = 00h	0	0	0	0	0	0	0	0			
Comments		Read-only									

IOUT[9:8]: measured IOUT value (Rx mode only) upper bits. Current = IOUT[15:0] * 1 mA

Table 22: Die_Temp_L register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 46h				Die_Te	mp[7:0]			
POR = 00h	0	0	0	0	0	0	0	0
Comments				Read	l-only			

Die_Temp[7:0]: AD converter value lower bits

Table 23: Die_Temp_H register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Addr = 47h		Reserved						[9:8]			
POR = 00h	0	0 0 0 0 0						0			
Comments		Read-only									

Die_Temp[9:8]: AD converter value upper bits. Temp = 377 - (Die_Temp[9:0] / 2) [°C]

Table 24: ILim_Set register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Addr = 4Ah	Reserved					ILim	_Set		
POR = 00h	0	0 0 0 0				0	0 0		
Comments		Read-only				Read	-Write		

ILim_Set: output current limit in Rx mode; current_limit [A] = ILim_Set * 0.1 A + 0.1 A (range 0.1 – 1.6 A)

Note: wireless standard detection value is automatically overwritten by NVM pre-configured value for the related wireless standard.

Table 25: Sys_Op_Mode register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 4Dh	Reserved	FV	FW_Exec_Src Reserved Operation				rational_N	/lode
POR = 00h	0	0	0	0	0	0	0	0
Comments	R	Read-only			R		Read-only	/

Operational_Mode: current operational mode indication

Bit 0: Qi (WPC) mode

• Bit 1: PMA mode

• Bit 2: AC missing

FW_Exec_Src: source of currently executed firmware

Bit 4: ROM

Bit 5: (not used)

• Bit 6: RAM (when using the STWLC33 TxMode RAM binary)

Table 26: Com register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 4Eh	Reserved	Fw_RAM	Clr_Int	Reserved	S_EPT	MCU_rst	LDO_tog	Reserved
POR = 00h	0	0	0	0	0	0	0	0
Comments	R	RW/Clear	RW/Clear	R	RW/Clear	RW/Clear	RW/Clear	R

Fw_RAM: switches code execution to RAM firmware; self-cleared; password protected – see FWSwitchKey

Clr_Int: Clears all interrupt flag(s) corresponding to the bit(s) which are set in INT_Clear registers and also clears the bit(s) in INT_Clear registers; self-cleared (available also with the loaded STWLC33 TxMode RAM binary)

S_EPT: sends Qi/PMA end power transfer packet/message; self-cleared

MCU_rst: MCU reset (available also with the loaded STWLC33 TxMode RAM binary)

LDO_tog: toggles LDO state (turns LDO from on to off and from off to on); self-cleared

Table 27: FWSwitchKey register

		, ,									
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Addr = 4Fh				FWSwi	itchKey						
POR = 00h	0	0	0	0	0	0	0	0			
Comments		Read-Write									

FWSwitchKey: password protection; write value 5Ah before attempting to switch to RAM firmware execution (Com[6])

Table 28: Qi_Data_Send register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 50h				Hea	ader			
51h		Data[0]						
52h				Dat	a[1]			
53h				Dat	a[2]			
54h				Dat	a[3]			
55h				Dat	a[4]			
Comments				Read	-Write			

The set of registers sends Qi packets (up to 5 byte long).

Header: Qi (WPC) packet header, see WPC specification [2] for valid headers. Packet length is derived from header value.

To send the packet, see Qi_Data_Send_Control register.

Table 29: RXID register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 5Ch				RXI	D[0]			
5Dh				RXI	D[1]			
5Eh				RXI	D[2]			
5Fh				RXI	D[3]			
60h				RXI	D[4]			
61h				RXI	D[5]			
Comments				Read	l-only			

RXID: based on operation mode – PMA or Qi (WPC) receiver ID (chip unique data stored in NVM). Data are valid after detecting the wireless standard.

Referring to Qi specification [2], to define the identification packet. RXID[0] corresponds to byte B_3 and RXID[3] to B_6 . RXID[4] and [RXID5] have no meaning for Qi.

Referring to PMA specification [3], RXID[0] corresponds to MSByte and RXID[5] to LSByte.

Table 30: OVP_Set register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 62h			Reserved			Cl	amp_Volta	ge
POR = 00h	0	0 0 0 0				0	0	0
Comments		Read-only					Read-Write)

Clamp_Voltage: clamping voltage setup (for OVP interrupt and for CL1/2 capacitive clamps)

000: 17 V
001: 20 V
010: 15 V
011: 13 V
100-111: 11 V

Note: wireless standard detection value is automatically overwritten by NVM pre-configured value for the related wireless standard.

Table 31: VRECT_L register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Addr = 64h				VREC	T[7:0]				
POR = 00h	0	0	0	0	0	0	0	0	
Comments				Read	l-only				

VRECT[7:0]: VRECT measured value lower bits

Table 32: VRECT_H register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 65h				VREC*	T[15:8]			
POR = 00h	0	0	0	0	0	0	0	0
Comments		Read-only						

VRECT[15:8]: VRECT measured value upper bits. Voltage = VRECT[15:0] * 1 mV

Table 33: VOUT_L register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 66h				VOU ⁻	T[7:0]			
POR = 00h	0	0	0	0	0	0	0	0
Comments		Read-only						

VOUT[7:0]: VOUT measured value lower bits

Table 34: VOUT_H register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Addr = 67h				ADC_VC	UT[15:8]					
POR = 00h	0	0	0	0	0	0	0	0		
Comments				Read	l-only					

VOUT[15:8]: VOUT measured value upper bits. Voltage = VOUT[15:0] * 1 mV

Table 35: PMA_ADV_L register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 78h		PMA_ADV	_MSG[3:0]			PMA_A	DV_CS	
POR = 00h	0	0	0	0	0	0	0	0
Comments		Read-only				Read	d-only	

PMA_ADV_CS: PMA advertisement Checksum

PMA_ADV_MSG[3:0]: PMA advertisement message, lower bits

Table 36: PMA_ADV_H register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 79h		Rese	erved			PMA_ADV	_ADV_MSG[7:4]	
POR = 00h	0	0 0 0 0 0 0						0
Comments	Read-only					Read	l-only	

PMA_ADV_MSG[7:4]: PMA advertisement message, upper bits

Table 37: Op_Freq_L register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = FAh				Op_Fr	eq[7:0]			
POR = 00h	0	0	0	0	0	0	0	0
Comments				Read	l-only			

Op_Freq[7:0]: measured frequency, lower byte

Table 38: Op_Freq_H register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = FBh		Rese	erved			Op_Fre	Bit 2 Bit 1 Bit Op_Freq[11:8] 0 0 Read-only 0 0	
POR = 00h	0	0	0	0	0	0	0	0
Comments		Read	l-only			Read	d-only	

Op_Freq[11:8]: measured frequency, upper byte. Frequency = Op_Freq[11:0]*1 kHz

Table 39: Ping_Freq_L register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = FCh				Ping_F	req[7:0]			
POR = 00h	0	0	0	0	0	0	0	0
Comments				Read	l-only			

Ping_Freq[7:0]: measured ping frequency, lower byte

Table 40: Ping_Freq_H register

			,		9.0.0.			
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = FDh		Rese	erved			Ping_Fr	eq[11:8]	
POR = 00h	0	0	0	0	0 0 0 0			
Comments		Read	l-only			Read	l-only	

Ping_Freq[11:8]: measured ping frequency, upper byte. Frequency = Ping_Freq[11:0]*1 kHz

Table 41: PRMC_ID_L register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 80h				PRMC_	_ID[7:0]			
POR = 00h	0	0	0	0	0	0	0	0
Comments				Read	l-only			

PRMC_ID[7:0]: IC vendor Qi (WPC) PRMC ID for Rx mode, lower byte

Table 42: PRMC_ID_H register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 81h				PRMC_	ID[15:8]			
POR = 00h	0	0	0	0	0	0	0	0
Comments				Read	l-only			

PRMC_ID[15:8]: IC vendor Qi (WPC) PRMC ID for Rx mode, upper byte

Referring to Qi specification [2], to define the identification packet. PRMC_ID_H refers to byte B₁, PRMC_ID_L to B₂.

Note: wireless standard detection value is automatically overwritten by NVM pre-configured value for the related wireless standard.

Table 43: Qi_Data_Send_Control register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 87h	Priority	Reserved	Reserved	Reserved	Reserved	Rcv_Dat	Rcv_Pat	Send
POR = 00h	0	0	0	0	0	0	0	0
Comments	RW	R	R	R	R	RW	RW	RW/Clear

Send: schedules sending the packet

44/62

Rcv_Pat: if set the STWLC33 enables FSK demodulator to receive pattern response from the transmitter after sending the packet

Rcv_Dat: if set the STWLC33 enables FSK demodulator to receive data response from the transmitter after sending the packet

Priority: if set the STWLC33 sends the packet immediately even if it causes violation of Qi timing specification for control error or received power packets. Use this feature carefully.

Table 44: NVM_Control register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 8Fh	Reserved	NVM_R	NVM_W	Reserved		NVM_	sector	
POR = 00h	0	0	0	0	0	0	0	0
Comments		Write_1-	autoclear			Read	-Write	

NVM_sector[3:0]: selects NVM sector (0..15) to be addressed

NVM_W: writes NVM_manipulation register content into selected NVM sector (data write finished after self-clearing the bit)

NVM_R: reads selected NVM sector and copies the data into NVM_manipulation registers (data ready after self-clearing the bit)

Table 45: NVM_Manipulation register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 90h				NVM	byte 0			
91h				NVM	byte 1			
AEh				NVM b	yte 30			
AFh				NVM b	yte 31			
Comments				Read	-Write			

Auxiliary registers for NVM access, see NVM_control register description.

Table 46: Qi_Data_Rcvd_Status register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = D0h				Data_Rc\	/d_Status			
POR = 00h	0	0	0	0	0	0	0	0
Comments				Read	-Only			

Data_Rcvd_Status: 0 = idle; 1 = waiting; 2 = received; 3 = timeout; 4 = error

Note: receiver is activated in Qi mode after sending a proprietary packet with Rcv_Dat or Rcv_Pat bits set

Table 47: Qi_Data_Rcvd_Length register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = D1h				Data_Rcv	d_Length			
POR = 00h	0	0	0	0	0	0	0	0
Comments				Read	-Only			

Data_Rcvd_Length: number of received data bytes or pattern bits

Table 48: Qi_Data_Rcvd_Format register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = D2h				Data_Rcv	d_Format			
POR = 00h	0	0	0	0	0	0	0	0
Comments				Read	l-only			

Data_Rcvd_Format: 1 = pattern; 2 = data

Table 49: Qi Data Rcvd register

Tubic 43. Qi_Dutu_i\tova register										
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Addr = D3h				Data[0] o	or pattern					
D4h		Data[1]								
D5h		Data[2]								
D6h				Dat	a[3]					
D7h				Dat	a[4]					
Comments				Read	l-only					

Pattern: FFh for ACK, 00h for NAK and 55h for ND. Note that the response may not contain all bits, e.g. FEh or 7Fh should be also recognized as ACK

Data: all received data including checksum byte

Table 50: Qi_Power_Transfer_Contract register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Addr = F6h				Guarante	ed power				
F7h		Maximum power							
F8h		RxPwr format							
F9h				FSK con	figuration				
Comments				Read	d-only				

These registers contain the values of valid power transfer contract. Registers are updated after successful (acknowledged) Qi negotiation phase.

Table 51: Max_Freq_Tx_L register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 10h				Max_Fre	q_Tx[7:0]			
POR = 9Ch	1	0	0	1	1	1	0	0
Comments				Read	-Write			

Max_Freq_Tx[7:0]: maximal operation frequency in Tx mode, lower byte

Note: available with the loaded STWLC33 TxMode RAM binary only.

Table 52: Max Freq Tx H register

				. • •	9			
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 11h				Max_Fred	7_Tx[15:8]			
POR = 00h	0	0	0	0	0	0	0	0
Comments				Read	-Write			

Max_Freq_Tx[15:8]: maximal operation frequency in Tx mode, upper byte. Frequency f = 32 MHz / Max_Freq_Tx[15:0]. Default value 205 kHz

Note: available with the loaded STWLC33 TxMode RAM binary only.

Table 53: Min_Freq_Tx_L register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 12h				Min_Free	q_Tx[7:0]			
POR = 22h	0	0	1	0	0	0	1	0
Comments				Read	-Write			

Min_Freq_Tx[7:0]: minimal operation frequency in Tx mode, lower byte

Note: available with the loaded STWLC33 TxMode RAM binary only.

Table 54: Min_Freq_Tx_H register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 13h				Min_Freq	_Tx[15:8]			
POR = 01h	0	0	0	0	0	0	0	1
Comments				Read	-Write			

Min_Freq_Tx[15:8]: minimal operation frequency in Tx mode, upper byte. Frequency f = 32 MHz / Min_Freq_Tx[15:0]. Default value 110 kHz

Note: available with the loaded STWLC33 TxMode RAM binary only.

Table 55: Ping_Freq_Tx_L register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 14h				Ping_Fre	q_Tx[7:0]			
POR = C8h	1	1	0	0	1	0	0	0
Comments				Read	-Write			

Ping_Freq_Tx[7:0]: Tx ping frequency, lower byte

Note: available with the loaded STWLC33 TxMode RAM binary only

Table 56: Ping_Freq_Tx_H register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 15h				Ping_Fred	7_Tx[15:8]			
POR = 00h	0	0	0	0	0	0	0	0
Comments				Read	-Write			

Ping_Freq_Tx[15:8]: Tx ping frequency, upper byte. Frequency f = 32 MHz / Ping_Freq_Tx[15:0]. Default value 160 kHz

Note: available with the loaded STWLC33 TxMode RAM binary only.

Table 57: ASK_High_Thr_Tx register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 16h			P	\SK_High_	Thr_Tx[7:0)]		
POR = 28h	0	0	1	0	1	0	0	0
Comments				Read	-write			

ASK_High_Thr_Tx[7:0]: ASK demodulator relative threshold – positive polarity

Note: available with the loaded STWLC33 TxMode RAM binary only.

Table 58: ASK_Low_Thr_Tx register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 17h			A	ASK_Low_	Thr_Tx[7:0]		
POR = 28h	0	0	1	0	1	0	0	0
Comments		Read-write						

ASK_Low_Thr_Tx[7:0]: ASK demodulator relative threshold – negative polarity

Note: available with the loaded STWLC33 TxMode RAM binary only.

Table 59: RxPower_Rcvd_Value_Tx register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 1Ch			RxPo	ower_Rcvd	I_Value_T	([7:0]		
POR = 00h	0	0	0	0	0	0	0	0
Comments				Read	l-only			

RxPower_Rcvd_Value_Tx[7:0]: last value received in RxPower packet from the receiver

Note: available with the loaded STWLC33 TxMode RAM binary only

Table 60: EPT_Reason_Tx register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 1Dh				EPT_Reas	on_Tx[7:0]			
POR = 00h	0	0	0	0	0	0	0	0
Comments				Read	l-only			

EPT_Reason_Tx[7:0]: last reason of end power transfer:

- 00h: EPT not happened yet
- 01h: control error packet timeout (1800 ms)
- 02h: received power packet timeout (24000 ms)
- 03h: packet order not comply with Qi spec
- 04h: Tx overtemperature
- 05h: Tx overcurrent
- 06h: FOD error

- 10h 1Bh: received end power transfer packet with value 00h 0Bh
- 1Ch: received end power transfer packet with invalid value

Note: available with the loaded STWLC33 TxMode RAM binary only, see *Section 13:* "Procedure to load executable binary".

Table 61: Status_Tx register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 35h	Reserved	TX_OCP	TX_OTP	Reserved	TX_CON	Reserved		
POR = 00h	0	0	0	0	0	0 0		0
Comments	R	R	R	R	R	Read-only		у

TX_OCP: Tx mode overcurrent; 0 = normal condition; 1 = overcurrent (power transfer is automatically terminated)

TX_OTP: Tx mode temperature status; 0 = normal condition; 1 = overtemperature (power transfer is automatically terminated)

TX_CON: Tx mode power transfer status; 0 = not in power transfer; 1 = in power transfer

Note: available with the loaded STWLC33 TxMode RAM binary only

Table 62: INT_Tx register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 37h	Reserved	TX_OCP	TX_OTP	Reserved	TX_CON	Reserved		
POR = 00h	0	0	0	0	0	0 0		0
Comments	R	R	R	R	R	Read-only		у

TX_OCP: 1 = indicates pending interrupt; (interrupt triggered on setting of TX_OCP bit in Status_Tx register)

TX_OTP: 1 = indicates pending interrupt; (interrupt triggered on setting of TX_OTP bit in Status_Tx register)

TX_CON: 1 = indicates pending interrupt; (interrupt triggered on any change of TX_CON bit in Status_Tx register)

Note: available with the loaded STWLC33 TxMode RAM binary only.

Table 63: INT_Enable_Tx register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 39h	Reserved	TX_OCP	TX_OTP	Reserved	TX_CON	Reserved		
POR = 00h	0	0	0	0	0	0 0		0
Comments	RW	RW	RW	RW	RW	Read-Write		te

TX_OCP: 0 = INT pin output disabled; 1 = INT pin output enabled

TX_OTP: 0 = INT pin output disabled; 1 = INT pin output enabled

TX CON: 0 = INT pin output disabled; 1 = INT pin output enabled

Note: available with the loaded STWLC33 TxMode RAM binary only.

Table 64: VRECT_Tx_L register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Addr = 40h				VRECT	_Tx[7:0]					
POR = 00h	0	0	0	0	0	0	0	0		
Comments				Read	d-only					

VRECT_Tx[7:0]: measured VRECT voltage lower bits

Note: available with the loaded STWLC33 TxMode RAM binary only.

Table 65: VRECT_Tx_H register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Addr = 41h		VRECT_Tx[15:8]								
POR = 00h	0	0	0	0	0	0	0	0		
Comments		Read-only								

VRECT_Tx[15:8]: measured VRECT voltage upper bits, voltage = VRECT_Tx[15:0] * 1 mV Note: available with the loaded STWLC33 TxMode RAM binary only.

Table 66: IIN_Tx_L register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Addr = 42h				IIN_T	x[7:0]					
POR = 00h	0	0	0	0	0	0	0	0		
Comments		Read-only								

IIN_Tx[7:0]: measured IIN (OUT pin current) lower bits

Note: available with the loaded STWLC33 TxMode RAM binary only.

Table 67: IIN_Tx_H register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Addr = 43h				IIN_T	<[15:8]					
POR = 00h	0	0	0	0	0	0	0	0		
Comments		Read-only								

IIN_Tx[15:8]: measured IIN (OUT pin current) upper bits, current = IIN_Tx[15:0] * 1 mA Note: available with the loaded STWLC33 TxMode RAM binary only.

Table 68: INT_Clear_Tx register

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addr = 4Bh	Reserved	TX_OCP	TX_OTP	Reserved	TX_CON	Reserved		
POR = 00h	0	0	0	0	0	0 0		0
Comments	RW	RW/Clear	RW/Clear	RW	RW/Clear	Read-Write		te

TX_OCP: writes 1 to enable clearing of the corresponding bit in INT_Tx register; autocleared from Com registers, Clr Int bit

TX_OTP: writes 1 to enable clearing of the corresponding bit in INT_Tx register; autocleared from Com registers, Clr_Int bit

TX_CON: writes 1 to enable clearing of the corresponding bit in INT_Tx register; autocleared from Com registers, Clr_Int bit

Note: available with the loaded STWLC33 TxMode RAM binary only, see *Section 13:* "Procedure to load executable binary".

NVM map description STWLC33

15 NVM map description

The STWLC33 contains 4 kbit NVM organized into 16 sectors by 32 bytes.

Do not change any value in reserved bytes/sectors. It may lead to loss of functionality or even to permanent damage.

Table 69: NVM organization

Sector	Content
0	Qi LP (5W) profile configuration
1	Qi MP (15W) profile configuration (FOD extensions)
2	Qi general configuration
3	Qi identification
4	PMA 5 W profile configuration
5	PMA reserved
6	PMA general configuration
7	PMA identification
8	Platform configuration
9	Reserved
10	Reserved
11	Reserved
12	Reserved
13	Reserved
14	Reserved, contains factory calibration
15	Reserved

Table 70: Sector 0: Qi LP profile configuration

Sector	Content
0	Qi LP (5 W) profile configuration
1	Qi MP (15 W) profile configuration (FOD extensions)
2	Qi general configuration
3	Qi identification
4	PMA 5 W profile configuration
5	PMA reserved
6	PMA general configuration
7	PMA identification
8	Platform configuration
9	Reserved

Sector	Content
10	Reserved
11	Reserved
12	Reserved
13	Reserved
14	Reserved, contains factory calibration
15	Reserved

This sector defines the power receiver variables in case Qi wireless standard is detected and Qi negotiation phase has not finished yet or new guaranteed power has not negotiated.

Table 71: Sector 1: Qi MP profile configuration

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default	
Byte 0					Reserve	d			4B	
Byte 1					Reserve	d			3D	
Byte 2					Reserve	d			25	
Byte 3					Reserve	d			66	
Byte 4					Reserve	d			14	
Byte 5					Reserve	d			A2	
Byte 6					Reserve	d			0F	
Byte 7		Rese	erved			Rese	erved		0D	
Byte 8		VOUT voltage; VOUT = value * 0.1 V + 3.5 V								
Byte 9		F	Reserve	d	Input curre	nt limit; Ilim	= value * 0.1	1 A + 0.1 A	2F	
Byte 10		Reserved								
Byte 11		Reserved Reserved							07	
Byte 12		F	Reserve	d			26			
Byte 13					Reserve	d			00	
Byte 14					Reserve	d			00	
Byte 15					Reserve	d			3C	
Byte 16				FC	DD_A correct	ion LSB			72	
Byte 17				FC	D_A correct	ion MSB			02	
Byte 18	F	RxPwr_c	corrected		FOD_B corre t value) = Rx		FOD_B + F0	OD_A	85	
Byte 19					Reserve	d			02	
Byte 20					Reserve	d			14	
Byte 21		Reserved								
Byte 22	E	xternal	NTC thr	eshold;	threshold =	value * 1.46	mV; 0 = dis	abled	00	
Byte 23					Reserve	d			02	
Byte 24					Reserve	d			04	

NVM map description STWLC33

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
Bytes 25-31					Reserved, s	et to 0			00

This sector defines the power receiver variables in case Qi wireless standard is detected and Qi negotiation phase successfully negotiates new guaranteed power.

Table 72: Sector 2: Qi general configuration

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
Byte 0		Reserved							
Byte 1		Neg	otiation: m	naximum p	ower (e.g.	1Eh for 1	5 W)		1E
Byte 2		Negotiation: guaranteed power (e.g. 1Eh for 15 W)							1E
Byte 3		Negotiation: reference quality factor							38
Byte 4			EPT thres	shold; thres	shold = va	lue * 4 mA	1		00
Byte 5	Automat	EPT timeout; timeout = value * 15 s utomatic EPT if lout < threshold for time > timeout; to disable set threshold 0 and timeout FFh						FF	
Byte 6		Reserved							00
Byte 7				Rese	erved				14
Byte 8				Rese	erved				00
Byte 9				Rese	erved				59
Byte 10				Rese	erved				00
Byte 11				Rese	erved				00
Byte 12		Reserved							00
Byte 13		Reserved							00
Byte 14		INT_Enable_Rx register default (pre-configured) value							00
Bytes 15- 31				Reserved	d, set to 0				00

This sector defines the power receiver variables in case Qi wireless standard is detected.

Table 73: Sector 3: Qi identification

	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0							Default
Byte 0		Manufacturer code MSB							
Byte 1		Manufacturer code LSB							16
Byte 2			Bas	ic device	identifier N	/ISB			00
Byte 3		Basic device identifier							11
Byte 4		Basic device identifier							22
Byte 5			Bas	sic device	identifier l	_SB			33
Byte 6			Exten	ded devic	e identifie	r MSB			11
Byte 7		Extended device identifier							12
Byte 8		Extended device identifier							13
Byte 9			Ext	tended de	vice Identi	fier			14

STWLC33 NVM map description

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
Byte 10		Extended device identifier							15
Byte 11		Extended device identifier							16
Byte 12		Extended device identifier							17
Byte 13		Extended device identifier LSB						18	
Byte 14				Rese	erved				0A
Byte 15		Reserved						05	
Bytes 16-31		Reserved, set to 0						00	

This sector contains Qi identification strings.

Table 74: Sector 4: PMA LP profile configuration

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
Byte 0					Reserve	d			44
Byte 1					Reserve	d			3D
Byte 2					Reserve	d			15
Byte 3		Reserved							
Byte 4		Reserved							
Byte 5					Reserve	ed			90
Byte 6		Reserved							15
Byte 7		Rese	erved			Rese	erved		05
Byte 8		VOUT voltage; VOUT = value * 0.1 V + 3.5 V						15	
Byte 9		Reserved Input current limit; Ilim = value * 0.1 A + 0.1 A						2C	
Byte 10		Reserved						89	
Byte 11	Reserved Reserved						0F		
Byte 12		F	Reserve	d		66			
Byte 13					Reserve	ed			19
Byte 14					Reserve	ed			1E
Byte 15					Reserve	ed			1E
Byte 16					Reserve	ed			00
Byte 17					Reserve	ed			00
Byte 18					Reserve	ed			00
Byte 19		Reserved							02
Byte 20		Reserved							14
Byte 21		Reserved							15
Byte 22	Е	External NTC threshold; threshold = value * 1.46 mV; 0 = disabled							00
Bytes 23-31					Reserved, s	et to 0			00

This sector defines the power receiver variables if PMA wireless standard is detected.

Table 75: Sector 6: PMA general configuration

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
Byte 0		Rese	erved			Rese	erved		38
Byte 1				Rese	erved				03
Byte 2				Rese	erved				00
Byte 3		Reserved							00
Byte 4		Reserved							00
Byte 5			EOC thres	shold; thre	shold = va	lue * 4 mA	1		25
Byte 6	Automat	EOC timeout; timeout = value * 15 s Automatic EOC if lout < threshold for time > timeout; to disable set threshold 0 and timeout FFh					8C		
Byte 7		Reserved							07
Byte 8				Rese	erved				03
Byte 9				Rese	erved				56
Byte 10				Rese	erved				00
Byte 11				Rese	erved				00
Byte 12				Rese	erved				00
Byte 13		Reserved					00		
Byte 14		INT_Enable_Rx register default (pre-configured) value						00	
Byte 15		Reserved							00
Bytes 16- 31				Reserved	d, set to 0				00

This sector defines the power receiver variables if PMA wireless standard is detected.

Table 76: Sector 7: PMA identification

	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0							Default
Byte 0		Preamble byte (00h)							00
Byte 1		Message ID (AAh)							AA
Byte 2		Certification version							10
Byte 3		PMA ID LSB							00
Byte 4		PMA ID							00
Byte 5		PMA ID						00	
Byte 6				PM	A ID				25
Byte 7				PM	A ID				50
Byte 8		PMA ID MSB						02	
Byte 9		PMA ID CRC LSB						63	
Byte 10				PMA ID C	CRC MSB				25

STWLC33 NVM map description

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
Bytes 11-31				Reserved	d, set to 0				00

This sector contains PMA identification data.

Table 77: Sector 8: Platform configuration

	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0							
Byte 0		FOD_C (LSB)							
Byte 1		FOD_C (MSB)							
Byte 2			GF	PIO2 funct	ion selecti	on			01
Byte 3		GPIO1 function selection							00
Byte 4			GF	PIO0 funct	ion selecti	on			03
Byte 5			GF	PIO3 funct	ion selecti	on			00
Byte 6		GPIO4 function selection							00
Bytes 7-31		Reserved, set to 0							00

FOD_C: 16-bit value that represents a model value for RxCoil losses ("equivalent Rx coil resistance"). Value is in Ohms multiplied by 1024.

GPIO0 function selection: 0 = no function assigned, pin remains in HiZ state; 1 = power good push-pull output signal (H = in power transfer); 2 = power good push-pull output signal inverted (L=in power transfer); 3 = Qi medium power negotiated push-pull output (H = MP, L = LP); 4 = Qi medium power negotiated push-pull output inverted (H = LP, L = MP).

GPIO1 function selection: 0 = no function assigned, pin remains in HiZ state; 1 = power good open-drain output signal (L=in power transfer, open=not in power transfer); 2 = Qi medium power negotiated open-drain output signal (L=MP, open=LP).

GPIO2 function selection: 0 = no function assigned, pin remains in HiZ state; 1 = power good push-pull output signal (H=in power transfer); 2 = power good push-pull output signal inverted (L=in power transfer); 3 = Qi medium power negotiated push-pull output (H = MP, L = LP); 4 = Qi medium power negotiated push-pull output inverted (H = LP, L = MP).

GPIO3 function selection: 0 = no function assigned, pin remains in HiZ state with internal weak pull-up. (Do not tie low during the device startup).

GPIO4 function selection: 0 = no function assigned, pin remains in HiZ state; 1 = power good open-drain output signal (L = in power transfer, open = not in power transfer); 2 = Qi medium power negotiated open-drain output signal (L = MP, open = LP).

Package information STWLC33

16 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

16.1 Flip Chip 52 bumps (3.97x2.67 mm) package information

Figure 19: Flip Chip (3.97x2.67 mm) package outline

STWLC33 Package information

Table 78: Flip Chip (3.97x2.67 mm) package mechanical data

Dim.		mm	
Dim.	Min.	Тур.	Max.
Α	0.545	0.600	0.655
A1	0.170	0.200	0.230
A2	0.350	0.375	0.400
b	0.230	0.260	0.290
D	3.910	3.940	3.970
D1		3.20	
Е	2.610	2.640	2.670
E1		2.00	
е		0.40	
SE		0.20	
fD		0.370	
fE		0.320	
\$		0.025	
ccc		0.060	

The terminal A1 on the bump side is identified by a distinguishing feature (for instance by a circular "clear area", typically 0.1 mm diameter) and/or a missing bump. The terminal A1 on the backside of the product is identified by a distinguishing feature (for instance by a circular "clear area", typically between 0.1 and 0.5 mm diameter, depending on the die size).

Figure 20: Flip Chip (3.97x2.67 mm) recommended footprint

STWLC33 Reference

17 Reference

- I²C bus specification and user manual; rev. 6
- 2.

Qi wireless power transfer system; power class 0 specification; version 1.2.2 PMA inductive wireless power transfer receiver specification - system release 1 3.

STWLC33 Revision history

18 Revision history

Table 79: Document revision history

Date	Revision	Changes
25-Sep-2017	1	Initial release
13-Nov-2017	2	Updated features in cover page and Section 16.1: "Flip Chip 52 bumps (3.97x2.67 mm) package information".

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved