Discrete Structures for Computer Science

William Garrison

bill@cs.pitt.edu 6311 Sennott Square

Lecture #28: N-ary relations

Binary relations establish a relationship between elements of two sets

Definition: Let A and B be two sets. A binary relation from A to B is a subset of $A \times B$.

In other words, a binary relation R is a set of ordered pairs (a_i, b_i) where $a_i \in A$ and $b_i \in B$.

Notation: We say that

- a R b if $(a,b) \in R$
- a **R** b if (a,b) ∉ R

Example: Course Enrollments

Let's say that Alice and Bob are taking CS 441. Alice is also taking Math 336. Furthermore, Charlie is taking Art 212 and Business 444. Define a relation R that represents the relationship between people and classes.

Solution:

- Let the set P denote people, so P = {Alice, Bob, Charlie}
- Let the set C denote classes, so C = {CS 441, Math 336, Art 212, Business 444}
- By definition R ⊆ P × C
- From the above statement, we know that
 - \rightarrow (Alice, CS 441) \in R
 - \rightarrow (Bob, CS 441) \in R
 - \gg (Alice, Math 336) \in R
 - \rightarrow (Charlie, Art 212) \in R
 - > (Charlie, Business 444) ∈ R
- So, R = {(Alice, CS 441), (Bob, CS 441), (Alice, Math 336), (Charlie, Art 212), (Charlie, Business 444)}

A relation can also be represented as a graph

Let's say that Alice and Bob are taking CS 441. Alice is also taking Math 336. Furthermore, Charlie is taking Art 212 and Business 444. Define a relation R that represents the relationship between people and classes.

A relation can also be represented as a table

Let's say that Alice and Bob are taking CS 441. Alice is also taking Math 336. Furthermore, Charlie is taking Art 212 and Business 444. Define a relation R that represents the relationship between people and classes.

We can also "relate" elements of more than two sets

Definition: Let A_1 , A_2 , ..., A_n be sets. An n-ary relation on these sets is a subset of $A_1 \times A_2 \times ... \times A_n$. The sets A_1 , A_2 , ..., A_n are called the domains of the relation, and n is its degree.

Example: Let R be the relation on $\mathbf{Z} \times \mathbf{Z} \times \mathbf{Z}^+$ consisting of triples (a, b, m) where $\mathbf{a} \equiv \mathbf{b} \pmod{m}$.

- What is the degree of this relation?
- What are the domains of this relation?
- Are the following tuples in this relation?
 - > (8,2,3)
 - **>** (-1,9,5)
 - **>** (11,0,6)

N-ary relations are the basis of relational database management systems

Data is stored in relations (a.k.a., tables)

Students			
Name	ID	Major	GPA
Alice	334322	CS	3.45
Bob	546346	Math	3.23
Charlie	045628	CS	2.75
Denise	964389	Art	4.0

Enrollment		
Stud_ID Course		
334322	CS 441	
334322	Math 336	
546346	Math 422	
964389	Art 707	

Columns of a table represent the attributes of a relation

Rows, or records, contain the actual data defining the relation

Operations on an RDBMS are formally defined in terms of a relational algebra

Relational algebra gives a formal semantics to the operations performed on a database by rigorously defining these operations in terms of manipulations on sets of tuples (i.e., records)

Operators in relational algebra include:

- Selection
- Projection ☆
- Rename
- Join
 - Equijoin
 - Left outer join
 - Right outer join
 - **>** ...
- Aggregation

The selection operator allows us to filter the rows in a table

Definition: Let R be an n-ary relation and let C be a condition that elements in R must satisfy. The selection s_C maps the n-ary relation R to the n-ary relation of all n-tuples from R that satisfy the condition C.

Example: Consider the Students relation from earlier in lecture. Let the condition C1 be Major="CS" and let C2 be GPA > 2.5. What is the result of $s_{C1 \land C2}$ (Students)?

Answer:

- (Alice, 334322, CS, 3.45)
- (Charlie, 045628, CS, 2.75)

Students			
Name	ID	Major	GPA
Alice	334322	CS	3.45
Bob	546346	Math	3.23
Charlie	045628	CS	2.75
Denise	964389	Art	4.0

The projection operator allows us to consider only a subset of the columns of a table

Definition: The projection $P_{i_{1,...,i_{m}}}$ maps the n-tuple $(a_{1}, a_{2}, ..., a_{n})$ to the m-tuple $(a_{i_{1}}, ..., a_{i_{m}})$ where $m \le n$

Example: What is the result of applying the projection $P_{1,3}$ to the Students table?

Students			
Name	ID	Major	GPA
Alice	334322	CS	3.45
Bob	546346	Math	3.23
Charlie	045628	CS	2.75
Denise	964389	Art	4.0

The equijoin operator allows us to create a new table based on data from two or more related tables

Definition: Let R be a relation of degree m and S be a relation of degree n. The equijoin $J_{i1=j1,...,ik=jk}$, where $k \le m$ and $k \le n$, creates a new relation of degree m+n-k containing the subset of S \times R in which $s_{i1} = r_{j1}$, ..., $s_{ik} = r_{jk}$ and duplicate columns are removed (via projection).

Example: What is the result of the equijoin $J_{2=1}$ on the Students and Enrollment tables?

Students			
Name	ID	Major	GPA
Alice	334322	CS	3.45
Bob	546346	Math	3.23
Charlie	045628	CS	2.75
Denise	964389	Art	4.0

Enrollment		
Stud_ID Course		
334322	CS 441	
334322	Math 336	
546346	Math 422	
964389	Art 707	

What is the result of the equijoin J₂₌₁ on the Students and Enrollment tables?

Students			
Name	ID	Major	GPA
Alice	334322	CS	3.45
Bob	546346	Math	3.23
Charlie	045628	CS	2.75
Denise	964389	Art	4.0

Enrollment		
Stud_ID Course		
334322	CS 441	
334322	Math 336	
546346	Math 422	
964389	Art 707	

SQL queries correspond to statements in relational algebra

Students			
Name	ID	Major	GPA
Alice	334322	CS	3.45
Bob	546346	Math	3.23
Charlie	045628	CS	2.75
Denise	964389	Art	4.0

Name	ID
Alice	334322
Charlie	045628

SELECT Name, ID FROM Students WHERE Major = "CS" AND GPA > 2.5

SELECT is actually a projection (in this case, $P_{1,2}$)

The WHERE clause lets us filter (i.e., $S_{major="CS" \land GPA>2.5}$)

SQL: An Equijoin Example

Students			
Name	ID	Major	GPA
Alice	334322	CS	3.45
Bob	546346	Math	3.23
Charlie	045628	CS	2.75
Denise	964389	Art	4.0

Enrollment		
Stud_ID Course		
334322	CS 441	
334322	Math 336	
546346	Math 422	
964389	Art 707	

SELECT Name, ID, Major, GPA, Course FROM Students, Enrollment WHERE ID = Stud_ID

Name	ID	Major	GPA	Course
Alice	334322	CS	3.45	CS 441
Alice	334322	CS	3.45	Math 336
Bob	546346	Math	3.23	Math 422
Denise	964389	Art	4.0	Art 707

Why are n-ary relations and relational algebra interesting?

Reason 1: Formal representation of DB state

Reason 2: Efficient way to process SQL queries

- Parse/tokenize SQL query
- Compile into a tree of relational operators
- Optimize tree for efficient execution
- Execute plan and return results

<u>Example</u>

Assume table T has 1,000,000 tuples with two attributes, a and b. Ten of these tuples have a = 5, while the other 999,990 have $a \ne 5$.

Query: SELECT b FROM T WHERE a = 5

Parse 1: $S_{a=5}$ P_2 T

 \triangleright Parse 2: $P_2 S_{a=5} T$

In-class exercises

Students					
Name	ID	Major	GPA		
Alice	334322	CS	3.45		
Bob	546346	Math	3.23		
Charlie	045628	CS	2.75		
Denise	964389	Art	4.0		

Enrollment				
Stud_ID	Course			
334322	CS 441			
334322	Math 336			
546346	Math 422			
964389	Art 707			

Problem 1: What is $P_{1,4}$ (Students)?

Problem 2: What relational operators would you use to generate a table containing only the names of Math and CS majors with a GPA > 3.0?

Problem 3: Write an SQL statement corresponding to the solution to problem 2.

Final Thoughts

Relations allow us to represent and reason about the relationships between sets in a more general way than functions did

Without n-ary relations, DBMS systems would not exist!

Do you find this stuff interesting?

- CS 1555: Introduction to Database Systems
- CS 1571: Introduction to Artificial Intelligence

Next: Review and wrap up!