

Lesson 17B

Khải có một dãy A gồm N phần tử A_1, A_2, \dots, A_N mà ban đầu $A_1 = A_2 = \dots = A_N = 0$.

Hưng cho Khải Q truy vấn, mỗi truy vấn gồm hai vị trí L,R mà $1 \le L \le R \le N$ sau đó yêu cầu Khải thực hiện tăng các giá trị A_L,A_{L+1},\ldots,A_R lên 1 đơn vị và sau khi kết thúc Q truy vấn thì phải đưa ra dãy A.

Khải nhận thấy rằng, trước đây cậu đã thực hiện việc tăng các giá trị từ $A_L \to A_R$ lên một đơn vị nhưng không cần duyệt toàn bộ các vị trí mà chỉ cần tác động A[L]+=1 và A[R+1]-=1 thôi. Như vậy với Q truy vấn trên, Khải sẽ thực hiện mỗi truy vấn mà không cần phải FOR từ $L \to R$ nữa. Sau khi kết thúc Q truy vấn, Khải thực hiện đoạn code magic như trước đây để có được kết quả dãy A như mong đợi:

```
for(int i = 1; i <= N; ++i) {
    A[i] += A[i - 1];
}</pre>
```

Như vậy theo cách của Khải thì chỉ cần thực hiện với độ phức tạp O(2Q + N) thay vì O(NQ) trong trường hợp xấu nhất.

Việc chứng minh điều này khá đơn giản nên Khải nhường lại cho các bạn.

Yêu cầu: Thực hiện Q truy vấn của Hưng và in ra dãy đó theo cách của Khải (hoặc không).

Input:

- Dòng đầu chứa hai số nguyên dương N và Q ($N, Q \le 10^5$).
- Q dòng tiếp theo chứa hai số nguyên dương L, R yêu cầu bạn tăng các giá trị từ $A_L \to A_R$ lên 1 đơn vị $(1 \le L \le R \le N)$.

Output: In ra dãy *A* sau khi thực hiện *Q* truy vấn.

Ví dụ:

Sample Input	Sample Output
5 2	1 2 2 1 0
1 3	
2 4	

