

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Veröffentlichungsnummer: 0 456 063 A2

⑫

EUROPÄISCHE PATENTANMELDUNG

⑬ Anmeldenummer: 91106870.8

⑮ Int. Cl. 5: C07D 207/408, C07D 207/38,
C07D 403/12, C07D 207/404,
C07D 405/12, A01N 43/36

⑭ Anmeldetag: 27.04.91

⑯ Priorität: 10.05.90 DE 4014941
08.03.91 DE 4107394

W-5060 Bergisch Gladbach(DE)

Erfinder: Santel, Hans-Joachim, Dr.

Gruenstrasse 9a

W-5090 Leverkusen 1(DE)

Erfinder: Schmidt, Robert R., Dr.

Im Waldwinkel 110

W-5060 Bergisch Gladbach(DE)

Erfinder: Wachendorff-Neumann, Ulrike, Dr.

Kriescherstrasse 81

W-4019 Monheim(DE)

Erfinder: Fischer, Reiner, Dr.

Nelly-Sachs-Strasse 23

W-4019 Monheim 2(DE)

Erfinder: Erdelen, Christoph, Dr.

Unterbuescherhof 22

W-5653 Leichlingen 1(DE)

⑰ Veröffentlichungstag der Anmeldung:
13.11.91 Patentblatt 91/46

⑲ Benannte Vertragsstaaten:
BE CH DE ES FR GB GR IT LI NL

⑳ Anmelder: BAYER AG

W-5090 Leverkusen 1 Bayerwerk(DE)

㉑ Erfinder: Krauskopf, Birgit, Dr.
Kicke 19
W-5060 Bergisch Gladbach 1(DE)
Erfinder: Lürssen, Klaus, Dr.
August-Kierspel-Strasse 151

㉒ 1-H-3-Aryl-pyrrolidin-2,4-dion-Derivate.

㉓ Es werden neue 3-Aryl-pyrrolidin-2,4-dion-Derivate der allgemeinen Formel (I)

EP 0 456 063 A2

bereitgestellt, in welcher

X für Alkyl, Halogen, Alkoxy steht,

Y für Wasserstoff, Alkyl, Halogen, Alkoxy, Halogenalkyl steht,

Z für Alkyl, Halogen, Alkoxy steht,

n für eine Zahl von 0-3 steht,

R für Wasserstoff oder für die Gruppen
-CO-R¹, -CO-O-R² oder E⁰

steht, in welchen

R¹ für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylthioalkyl, Polyalkoxyalkyl und Cycloalkyl, das durch Heteroatome unterbrochen sein kann, gegebenenfalls subst. Phenyl, gegebenenfalls substituiertes Phenylalkyl, substituiertes Hetaryl, substituiertes Phenoxyalkyl und substituiertes Hetaryloxyalkyl steht und

R² für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl und gegebenenfalls substituiertes Phenyl steht,

A für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch Heteroatome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen-, Alkyl-, Halogenalkyl-, Alkoxy-, Nitro substituiertes Aryl, Arylalkyl oder Hetaryl steht,

B für Wasserstoff, Alkyl oder Alkoxyalkyl steht,

oder worin

A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen Carbocyclus bilden und

E* für ein Metallionäquivalent oder ein Ammoniumion steht,

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

Die neuen Verbindungen der Formel (I) besitzen eine hervorragende herbizide, insektizide und akarizide Wirksamkeit.

Die Erfindung betrifft neue 3-Aryl-pyrrolidin-2,4-dion-Derivate, mehrere Verfahren zu ihrer Herstellung und ihre Verwendung als Insektizide, Akarizide und Herbicide.

- Von 3-Acyl-pyrrolidin-2,4-dionen sind pharmazeutische Eigenschaften vorbeschrieben (S. Suzuki et. al. Chem. Pharm. Bull. 15 1120 (1967)). Weiterhin wurden N-Phenyl-pyrrolidin-2,4-dione von R. Schmieder und H. Mildenberger Liebigs Ann. Chem. 1985 1095 synthetisiert. Eine biologische Wirksamkeit dieser Verbindungen wurde nicht beschrieben.
- 5 In EP-A 0 282 399 werden ähnlich strukturierte Verbindungen (3-Aryl-pyrrolidin-2,4-dione) offenbart, von denen jedoch keine herbizide, insektizide oder akarizide Wirkung bekannt geworden ist.

- In DE-A 3 525 109 werden ähnlich strukturierte 1-H-3-Arylpvrrolidin-2,4-dione offenbart, die als Zwischenprodukte für Farbstoffsynthesen verwendet wurden.
- 10 Es wurden nun neue 3-Aryl-pyrrolidin-2,4-dion-Derivate gefunden, die durch die Formel (I) dargestellt sind,

15

20

in welcher

- X für Alkyl, Halogen, Alkoxy steht,
 Y für Wasserstoff, Alkyl, Halogen, Alkoxy, Halogenalkyl steht,
 Z für Alkyl, Halogen, Alkoxy steht,
 25 n für eine Zahl von 0-3 steht,
 R für Wasserstoff oder für die Gruppen
 $-\text{CO-R}^1$, $-\text{CO-O-R}^2$ oder E°
 steht, in welchen
 R¹ für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkythioalkyl, Polyalkoxyalkyl und Cycloalkyl, das durch Heteroatome unterbrochen sein kann, gegebenenfalls subst. Phenyl, gegebenenfalls substituiertes Phenylalkyl, substituiertes Hetaryl, substituiertes Phenoxyalkyl und substituiertes Hetaryloxyalkyl steht und
 R² für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl und gegebenenfalls substituiertes Phenyl steht,
 35 A für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkinyl, Alkoxyalkyl, Alkythioalkyl, gegebenenfalls durch Heteroatome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen-, Alkyl-, Halogenalkyl-, Alkoxy-, Nitro substituiertes Aryl, Arylalkyl oder Hetaryl steht,
 B für Wasserstoff, Alkyl oder Alkoxyalkyl steht,
 40 oder worin
 A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen Carbocyclus bilden und
 E° für ein Metallionäquivalent oder ein Ammoniumion steht,
 sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).
 45 Im folgenden seien die folgenden Untergruppen definiert:
 (Ia): Verbindungen der Formel (I) worin R = Wasserstoff,
 (Ib): Verbindungen der Formel (I) worin R = COR¹,
 (Ic): Verbindungen der Formel (I) worin R = COOR²,
 (Id): Verbindungen der Formel (I) worin R = E[°] für ein Metallionäquivalent oder ein Ammoniumion steht.
 50 Weiterhin wurde gefunden, daß man 3-Aryl-pyrrolidin-2,4-dione bzw. deren Enole der Formel (Ia)

55

in welcher A, B, C, X, Y, Z und n die oben angegebene Bedeutung haben,
erhält, wenn man

(A)
N-Acylaminosäureester der Formel (II)

5

10

15

20

25

30

35

40

45

50

55

in welcher
A, B, X, Y, Z und n die oben angegebene Bedeutung haben
und

R³ für Alkyl steht,

in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base intramolekular kondensiert.

(B)

Außerdem wurde gefunden, daß man Verbindungen der Formel (Ib)

in welcher A, B, X, Y, Z, R¹ und n die oben angegebene Bedeutung haben,
erhält, wenn man Verbindungen der Formel (Ia),

in welcher
A, B, X, Y, Z und n die oben angegebene Bedeutung haben,
a) mit Säurehalogeniden der allgemeinen Formel (III)

in welcher
R¹ die oben angegebene Bedeutung hat
und

Hal für Halogen, insbesondere Chlor und Brom steht,
gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines

Säurebindemittels,
oder

β) mit Carbonsäureanhydriden der allgemeinen Formel (IV)

5 R¹-CO-O-CO-R¹ (IV)

in welcher

R¹ die oben angegebene Bedeutung hat,
gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines
10 Säurebindemittels,

umsetzt,

(C)

Ferner wurde gefunden, daß man Verbindungen der Formel (Ic)

15

25 in welcher

A, B, C, X, Y, Z, R² und n die oben angegebene Bedeutung haben,
erhält, wenn man Verbindungen der Formel (Ia)

30

35

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben,
mit Chlorameisensäureester der allgemeinen Formel (V)

40 R²-O-CO-Cl (V)

in welcher

R² die oben angegebene Bedeutung hat,
gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt.

45 D)

Weiterhin wurde gefunden, daß man Verbindungen der Formel (I)

50

in welcher X, Y, Z, A, B und n die oben angegebene Bedeutung haben,

erhält, wenn man Verbindungen der Formel (Ia)

5

10

in welcher X, Y, Z, A, B und n die oben angegebene Bedeutung haben,
mit Metallhydroxiden oder Aminen der allgemeinen Formeln (VI) und (VII)

15

20

in welchen Me für ein- oder zweiwertige Metallionen,

s und t für die Zahlen 1 und 2 und

R^4 , R^5 und R^6 unabhängig voneinander für Wasserstoff und Alkyl
stehen,

25

gegebenenfalls in Gegenwart eines Verdünnungsmittels, umsetzt.

Überraschenderweise wurde gefunden, daß die neuen 3-Arylpyrrolidin-2,4-dion-Derivate der Formel (I)
sich durch hervorragende insektizide, akarizide und herbizide Wirkungen auszeichnen.

Bevorzugt sind 3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I), in welcher

X für $\text{C}_1\text{-C}_6$ -Alkyl, Halogen, $\text{C}_1\text{-C}_6$ -Alkoxy steht,

30

Y für Wasserstoff, $\text{C}_1\text{-C}_6$ -Alkyl, Halogen, $\text{C}_1\text{-C}_6$ -Alkoxy, $\text{C}_1\text{-C}_3$ -Halogenalkyl steht,

Z für $\text{C}_1\text{-C}_6$ -Alkyl, Halogen, $\text{C}_1\text{-C}_6$ -Alkoxy steht,

n für eine Zahl von 0-3 steht,

R für Wasserstoff (Ia) oder für die Gruppen der Formel

35

40

steht, in welchen

R^1 für gegebenenfalls durch Halogen substituiertes: $\text{C}_1\text{-C}_{20}$ -Alkyl, $\text{C}_2\text{-C}_{20}$ -Alkenyl, $\text{C}_1\text{-C}_8$ -Alkoxy- $\text{C}_2\text{-C}_8$ -alkyl, $\text{C}_1\text{-C}_8$ -Alkylothio- $\text{C}_2\text{-C}_8$ -alkyl, $\text{C}_1\text{-C}_8$ -Polyalkoxy- $\text{C}_2\text{-C}_8$ -alkyl und Cycloalkyl mit 3-8 Ring-
atomen, das durch Sauerstoff und/oder Schwefel unterbrochen sein kann, steht,

45

für gegebenenfalls durch Halogen-, Nitro-, $\text{C}_1\text{-C}_6$ -Alkyl-, $\text{C}_1\text{-C}_6$ -Alkoxy-, $\text{C}_1\text{-C}_6$ -Halogenalkyl-, $\text{C}_1\text{-C}_6$ -
Halogenalkoxy-substituiertes Phenyl;

für gegebenenfalls durch Halogen-, $\text{C}_1\text{-C}_6$ -Alkyl, $\text{C}_1\text{-C}_6$ -Alkoxy-, $\text{C}_1\text{-C}_6$ -Halogenalkyl-, $\text{C}_1\text{-C}_6$ -
Halogenalkoxy-substituiertes Phenyl- $\text{C}_1\text{-C}_6$ -alkyl steht,

für gegebenenfalls durch Halogen- und $\text{C}_1\text{-C}_6$ -Alkyl-substituiertes Hetaryl steht,

für gegebenenfalls durch Halogen- und $\text{C}_1\text{-C}_6$ -Alkyl-substituiertes Phenoxy- $\text{C}_1\text{-C}_6$ -alkyl steht,
für gegebenenfalls durch Halogen, Amino und $\text{C}_1\text{-C}_6$ -Alkyl-substituiertes Hetaryloxy- $\text{C}_1\text{-C}_6$ -Alkyl
steht,

50

R^2 für gegebenenfalls durch Halogen substituiertes: $\text{C}_1\text{-C}_{20}$ -Alkyl, $\text{C}_2\text{-C}_{20}$ -Alkenyl, $\text{C}_1\text{-C}_8$ -Alkoxy- $\text{C}_2\text{-C}_8$ -alkyl, $\text{C}_1\text{-C}_8$ -Polyalkoxy- $\text{C}_2\text{-C}_8$ -alkyl steht,

55

für gegebenenfalls durch Halogen-, Nitro-, $\text{C}_1\text{-C}_6$ -Alkyl-, $\text{C}_1\text{-C}_6$ -Alkoxy-, $\text{C}_1\text{-C}_6$ -Halogenalkyl-substi-
tiertes Phenyl steht,

A für Wasserstoff oder gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes
 $\text{C}_1\text{-C}_{12}$ -Alkyl, $\text{C}_3\text{-C}_8$ -Alkenyl, $\text{C}_3\text{-C}_8$ -Alkinyl, $\text{C}_1\text{-C}_{10}$ -Alkoxy- $\text{C}_2\text{-C}_8$ -alkyl, $\text{C}_1\text{-C}_8$ -Polyalkoxy- $\text{C}_2\text{-C}_8$ -

- alkyl, C₁-C₁₀-Alkylthio-C₂-C₆-alkyl, Cycloalkyl mit 3-8 Ringatomen, das durch Sauerstoff und/oder Schwefel unterbrochen sein kann oder gegebenenfalls durch Halogen, C₁-C₆-Alkyl-C₁-C₆-Haloalkyl-, C₁-C₆-Alkoxy-, Nitro substituiertes Aryl, Hetaryl oder Aryl-C₁-C₆-alkyl steht,
 B für Wasserstoff, geradkettiges oder verzweigtes C₁-C₁₂-Alkyl, C₁-C₈-Alkoxyalkyl steht,
- 6 oder worin
 A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen 3 bis 8-gliedrigen Ring bilden,
 E[⊕] für ein Metallionenäquivalent oder ein Ammoniumion steht,
 sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).
- 10 Besonders bevorzugt sind Verbindungen der Formel (I) in welcher
 X für C₁-C₄-Alkyl, Halogen, C₁-C₄-Alkoxy steht,
 Y für Wasserstoff, C₁-C₆-Alkyl, Halogen, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkyl steht,
 Z für C₁-C₄-Alkyl, Halogen, C₁-C₄-Alkoxy steht,
 n für eine Zahl von 0-3 steht,
 15 R für Wasserstoff (la) oder für die Gruppen der Formel

	-CO-R ¹	oder	-CO-O-R ²	oder	E [⊕]
20	(Ib)	(Ic)	(Id)		

- steht, in welchen
 R¹ für gegebenenfalls durch Halogen substituiertes: C₁-C₁₆-Alkyl, C₂-C₁₆-Alkenyl, C₁-C₆-Alkoxy-C₂-C₆-alkyl, C₁-C₆-Alkylthio-C₂-C₆-alkyl, C₁-C₆-Polyalkoxy-C₂-C₆-alkyl und Cycloalkyl mit 3-7 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann steht,
 für gegebenenfalls durch Halogen-, Nitro-, C₁-C₄-Alkyl-, C₁-C₄-Alkoxy-, C₁-C₃-Halogenalkyl-, C₁-C₃-Halogenalkoxy-substituiertes Phenyl steht,
 für gegebenenfalls durch Halogen-, C₁-C₄-Alkyl-, C₁-C₄-Alkoxy-, C₁-C₃-Halogenalkyl-, C₁-C₃-Halogenalkoxy-substituiertes Phenyl-C₁-C₄-alkyl steht,
 für gegebenenfalls durch Halogen- und C₁-C₆-Alkyl-substituiertes Hetaryl steht,
 gegebenenfalls für durch Halogen- und C₁-C₄-Alkyl-substituiertes Phenoxy-C₁-C₅-alkyl steht,
 für gegebenenfalls durch Halogen, Amino und C₁-C₄-Alkyl-substituiertes Hetaryloxy-C₁-C₅-alkyl steht,
 R² für gegebenenfalls durch Halogen substituiertes: C₁-C₁₆-Alkyl, C₂-C₁₆-Alkenyl, C₁-C₁₆-Alkoxy-C₂-C₆-alkyl, C₁-C₆-Polyalkoxy-C₂-C₆-alkyl steht,
 für gegebenenfalls durch Halogen, Nitro-, C₁-C₄-Alkyl, C₁-C₃-Alkoxy-, C₁-C₃-Halogenalkyl-substituiertes Phenyl steht,
 A für Wasserstoff, gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C₁-C₁₀-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₁-C₈-Alkoxy-C₂-C₆-alkyl, C₁-C₆-Polyalkoxy-C₂-C₆-alkyl, C₁-C₈-Alkylthio-C₂-C₆-alkyl, Cycloalkyl mit 3-7 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann oder gegebenenfalls durch Halogen-, C₁-C₄-Alkyl-, C₁-C₄-Haloalkyl-C₁-C₄-Alkoxy-, Nitro substituiertes Aryl, Hetaryl oder Aryl-C₁-C₄-alkyl steht,
 B für Wasserstoff, geradkettiges oder verzweigtes C₁-C₁₀-Alkyl, C₁-C₆-Alkoxyalkyl steht,
 45 oder worin
 A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen 3 bis 7-gliedrigen Ring bilden,
 E[⊕] für ein Metallionenäquivalent oder ein Ammoniumion steht
 sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).
 Ganz besonders bevorzugt sind Verbindungen der Formel (I) in welcher
 X für Methyl, Ethyl, Propyl, i-Propyl, Fluor, Chlor, Brom, Methoxy und Ethoxy steht,
 Y für Wasserstoff, Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl, tert.-Butyl, Fluor, Chlor, Brom, Methoxy, Ethoxy und Trifluormethyl steht,
 Z für Methyl, Ethyl, i-Propyl, Butyl, i-Butyl, tert.-Butyl, Fluor, Chlor, Brom, Methoxy und Ethoxy steht,
 n für eine Zahl von 0-3 steht,
 55 R für Wasserstoff (la) oder für die Gruppen der Formel

-CO-R^1 oder -CO-O-R^2 oder E^\oplus
 (Ib) (Ic) (Id)

5

- steht, in welcher
- R¹ für gegebenenfalls durch Fluor oder Chlor substituiertes: C₁-C₁₄-Alkyl, C₂-C₁₄-Alkenyl, C₁-C₄-Alkoxy-C₂-C₆-alkyl, C₁-C₄-Alkylothio-C₂-C₆-alkyl, C₁-C₄-Polyalkoxy-C₂-C₆-alkyl und Cycloalkyl mit 3-6 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann steht,
- 10 für gegebenenfalls durch Fluor-, Chlor-, Brom-, Methyl-, Ethyl-, Propyl-, i-Propyl, Methoxy, Etheno, Trifluormethyl-, Trifluormethoxy-, Nitro- substituiertes Phenyl steht,
- für gegebenenfalls durch Fluor-, Chlor-, Brom-, Methyl-, Ethyl-, Propyl-, i-Propyl, Methoxy, Etheno, Trifluormethyl-, Trifluormethoxy- substituiertes Phenyl-C₁-C₃-alkyl steht,
- 15 für gegebenenfalls durch Fluor-, Chlor-, Brom-, Methyl-, Ethyl-substituiertes Pyridyl, Pyrimidyl, Thiazolyl und Pyrazolyl steht,
- für gegebenenfalls durch Fluor-, Chlor-, Methyl-, Ethyl-substituiertes Phenoxy-C₁-C₄-alkyl steht,
- für gegebenenfalls durch Fluor-, Chlor-, Amino-, Methyl-, Ethyl-, substituiertes Pyridyloxy-C₁-C₄-alkyl, Pyrimidyloxy-C₁-C₄-alkyl und Thiazolyloxy-C₁-C₄-alkyl steht,
- 20 R² für gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₁₄-Alkyl, C₂-C₁₄-Alkenyl, C₁-C₄-Alkoxy-C₂-C₆-alkyl, C₁-C₄-Polyalkoxy-C₂-C₆-alkyl steht,
- oder für gegebenenfalls durch Fluor, Chlor, Nitro, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Etheno, Trifluormethyl substituiertes Phenyl steht,
- A für Wasserstoff, gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C₁-C₈-Alkyl, C₃-C₄-Alkenyl, C₃-C₄-Alkinyl, C₁-C₆-Alkoxy-C₂-C₄-alkyl, C₁-C₄-Polyalkoxy-C₂-C₄-alkyl, C₁-C₆-Alkylothio-C₂-C₄-alkyl, Cycloalkyl mit 3-6 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann oder gegebenenfalls durch Fluor-, Chlor-, Brom-, Methyl-, Ethyl-, Propyl-, iso-Propyl-, Methoxy-, Etheno-, Trifluormethyl-, Nitro susbtituiertes Aryl, Pyridin, Imidazol, Pyrazol, Triazol, Indol, Thiazol oder Aryl-C₁-C₃-alkyl steht,
- 25 B für Wasserstoff, geradkettiges oder verzweigtes C₁-C₈-Alkyl, C₁-C₄-Alkoxyalkyl steht,
- oder worin
- A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen 3 bis 6-gliedrigen Ring bilden,
- E[⊕] für ein Metallionenäquivalent oder ein Ammoniumion steht
- 30 sowie die enantiomerenreinen Formen von Verbindungen der Formel I.
- 35 Verwendet man gemäß Verfahren (A) N-2,6-Dichlorphenylacetyl-alaninethylester, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren (B) (Variante α) 3-(2,4,6-Träumethylphenyl)-5-isopropyl-pyrrolidin-2,4-dion und Pivaloylchlorid als Ausgangsstoffe, so kann der Verlauf des erfindungsgemäßen Verfahrens durch 50 folgendes Reaktionsschema wiedergegeben werden.

- Verwendet man gemäß Verfahren B (Variante β) 3-(2,4,6-Trimethylphenyl)-5-cyclopentyl-pyrrolidin-2,4-dion und Acetanhydrid, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden.

- Verwendet man gemäß Verfahren C 3-(2,4,6-Trimethylphenyl)-5-phenyl-pyrrolidin-2,4-dion und Chlorameisensäureethoxyethylester, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden.

- 45 Verwendet man gemäß Verfahren D 3-(2,4-Dichlorphenyl)-5-(2-indolyl)-pyrrolidin-2,4-dion und Methylamin, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden.

Die bei dem obigen Verfahren (A) als Ausgangsstoffe benötigten Verbindungen der Formel (II)

in welcher
 A, B, X, Y, Z, n und R³ die oben angegebene Bedeutung haben sind teilweise bekannt oder lassen sich
 nach im Prinzip bekannten Methoden in einfacher Weise herstellen. So erhält man z.B. Acyl-aminoäure-
 ster der Formel (II), wenn man
 15 a) Aminoäuredérivate der Formel (VIII),

25 in welcher
 R⁷ für Wasserstoff (VIIIa) und Alkyl (VIIIb) steht
 und
 A die oben angegebene Bedeutung haben
 mit Phenylsuccinylhalogeniden der Formel (IX)

30

40 in welcher
 X, Y, Z und n die oben angegebene Bedeutung haben und
 Hal für Chlor oder Brom steht,
 acyliert (Chem. Reviews 52 237-416 (1953));
 oder wenn man Acylaminoäuren der Formel (IIa),

55 in welcher
 A, B, X, Y, Z und n die oben angegebene Bedeutung haben
 und
 R⁷ für Wasserstoff steht,
 verestert (Chem. Ind. (London) 1568 (1968)).

Beispielhaft seien folgende Verbindungen der Formel (II) genannt:

1. N-2,4-Dichlorphenyl-acetyl-glycinethylester
2. N-2,6-Dichlorphenyl-acetyl-glycinethylester
3. N-(2,6-Dichlorphenyl-acetyl)-alanin-ethylester
5. N-(2,6-Dichlorphenyl-acetyl)-valin-ethylester
5. N-(2,6-Dichlorphenyl-acetyl)-leucin-ethylester
6. N-(2,6-Dichlorphenyl-acetyl)-methionin-ethylester
7. N-(2,6-Dichlorphenyl-acetyl)-phenylalanin-ethylester
8. N-(2,6-Dichlorphenyl-acetyl)-tryptophan-ethylester
10. N-(2,6-Dichlorphenyl-acetyl)-isoleucin-ethylester
10. N-(2,4,6-Trimethylphenyl-acetyl)-glycin-methylester
11. N-(2,4,6-Trimethylphenyl-acetyl)-alanin-ethylester
12. N-(2,4,6-Trimethylphenyl-acetyl)-valin-ethylester
13. N-(2,4,6-Trimethylphenyl-acetyl)-leucin-ethylester
15. N-(2,4,6-Trimethylphenyl-acetyl)-isoleucin-ethylester
15. N-(2,4,6-Trimethylphenyl-acetyl)-methionin-ethylester
16. N-(2,4,6-Trimethylphenyl-acetyl)-phenylalaninethylester
17. N-(2,4,6-Trimethylphenyl-acetyl)-tryptophan-ethylester
18. N-(2,4,6-Trimethylphenyl-acetyl)-(4-chlorphenyl)-alanin-ethylester
20. N-(2,4,6-Trimethylphenyl-acetyl)-S-methyl-cystein-ethylester
20. N-(2,4,6-Trimethylphenyl-acetyl)-S-benzyl-cystein-ethylester
21. N-(2,4,6-Trimethylphenyl-acetyl)-O-methyl-threonin-ethylester
22. N-(2,4,6-Trimethylphenyl-acetyl)-tert.-butyl-alanin-ethylester
23. N-(2,4,6-Trimethylphenyl-acetyl)-histidin-ethylester
25. N-(2,4,6-Trimethylphenyl-acetyl)-O-methyl-tyrosin-ethylester
25. N-(2,4,6-Trimethylphenyl-acetyl)-1-amino-cyclopropan-carbonsäure-methylester
26. N-(2,4,6-Trimethylphenyl-acetyl)-1-amino-cyclopentan-carbonsäure-methylester
27. N-(2,4,6-Trimethylphenyl-acetyl)-1-amino-cyclohexan-carbonsäure-methylester
28. N-(2,4,6-Trimethylphenyl-acetyl)-amino-isobuttersäure-methylester
30. N-(2,4,6-Trimethylphenyl-acetyl)-2-ethyl-2-amino-buttersäure-methylester
30. N-(2,4,6-Trimethylphenyl-acetyl)-2-methyl-2-amino-buttersäure-methylester
31. N-(2,4,6-Trimethylphenyl-acetyl)-2-methyl-2-amino-valeriansäure-methylester
32. N-(2,4,6-Trimethylphenyl-acetyl)-2,3-dimethyl-2-amino-valeriansäure-methylester

Beispielhaft seien folgende Verbindungen der Formel (IIa) genannt:

35. 1. N-2,4-Dichlorphenyl-acetyl-glycin
2. N-2,6-Dichlorphenyl-acetyl-glycin
3. N-(2,6-Dichlorphenyl-acetyl)-alanin
4. N-(2,6-Dichlorphenyl-acetyl)-valin
5. N-(2,6-Dichlorphenyl-acetyl)-leucin
40. 6. N-(2,6-Dichlorphenyl-acetyl)-methionin
7. N-(2,6-Dichlorphenyl-acetyl)-phenylalanin
8. N-(2,6-Dichlorphenyl-acetyl)-tryptophan
9. N-(2,6-Dichlorphenyl-acetyl)-isoleucin
10. N-(2,4,6-Trimethylphenyl-acetyl)-glycin
11. N-(2,4,6-Trimethylphenyl-acetyl)-alanin
12. N-(2,4,6-Trimethylphenyl-acetyl)-valin
13. N-(2,4,6-Trimethylphenyl-acetyl)-leucin
14. N-(2,4,6-Trimethylphenyl-acetyl)-isoleucin
15. N-(2,4,6-Trimethylphenyl-acetyl)-methionin
50. 16. N-(2,4,6-Trimethylphenyl-acetyl)-phenylalanin
17. N-(2,4,6-Trimethylphenyl-acetyl)-tryptophan
18. N-(2,4,6-Trimethylphenyl-acetyl)-(4-chlorphenyl)-alanin
19. N-(2,4,6-Trimethylphenyl-acetyl)-S-methyl-cystein
20. N-(2,4,6-Trimethylphenyl-acetyl)-S-benzyl-cystein
55. 21. N-(2,4,6-Trimethylphenyl-acetyl)-O-methyl-threonin
22. N-(2,4,6-Trimethylphenyl-acetyl)-tert.-butyl-alanin
23. N-(2,4,6-Trimethylphenyl-acetyl)-histidin
24. N-(2,4,6-Trimethylphenyl-acetyl)-O-methyl-tyrosin

25. N-(2,4,6-Trimethylphenyl-acetyl)-1-amino-cyclopropancarbonsäure
 26. N-(2,4,6-Trimethylphenyl-acetyl)-1-amino-cyclopentancarbonsäure
 27. N-(2,4,6-Trimethylphenyl-acetyl)-1-amino-cyclohexancarbonsäure tancarbonsäure
 28. N-(2,4,6-Trimethylphenyl-acetyl)-1-amino-isobuttersäure
 5 29. N-(2,4,6-Trimethylphenyl-acetyl)-2-ethyl-2-amino-buttersäure-methylester
 30. N-(2,4,6-Trimethylphenyl-acetyl)-2-methyl-2-amino-buttersäure-methylester
 31. N-(2,4,6-Trimethylphenyl-acetyl)-2-methyl-2-amino-valeriansäure-methylester
 32. N-(2,4,6-Trimethylphenyl-acetyl)-2,3-dimethyl-2-amino-valeriansäure-methylester
 Verbindungen der Formel (IIa) sind beispielsweise aus den Phenylessigsäurehalogeniden der Formel
 10 (IX) und Aminosäuren der Formel (VIIIa) nach Schotten-Baumann (Organikum 9. Auflage 446 (1970) VEB
 Deutscher Verlag der Wissenschaften, Berlin) erhältlich.
 Verbindungen der Formel (VIIIa) und (VIIIb) sind bekannt oder aber nach im Prinzip bekannten
 Literaturverfahren einfach herstellbar.
 Das Verfahren (A) ist dadurch gekennzeichnet, daß Verbindungen der Formel (II) in welcher A, B, X, Y,
 15 Z, n und R³ die oben angegebene Bedeutung haben in Gegenwart von Basen einer intramolekularen
 Kondensation unterwirft.
- Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (A) alle üblichen inerten organischen Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Toluol und Xylo, ferner Ether, wie Dibutylether, Tetrahydrofuran, Dioxan, Glykoldimethylether und Diglykoldimethylether, außerdem polare Lösungsmittel, wie Dimethylsulfoxid, Sulfolan, Dimethylformamid und N-Methylpyrrolidon.
- Als Deprotonierungsmittel können bei der Durchführung des erfindungsgemäßen Verfahrens (A) alle üblichen Protonenakzeptoren eingesetzt werden. Vorzugsweise verwendbar sind Alkalimetall- und Erdalkalimetall-oxide, -hydroxide und -carbonate, wie Natriumhydroxid, Kaliumhydroxid, Magnesiumoxid, Calciumoxid, Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat, die auch in Gegenwart von Phasen-transferkatalysatoren wie z.B. Triethylbenzylammoniumchlorid, Tetrabutylammoniumbromid, Adogen 464 oder TDA 1 eingesetzt werden können. Ferner sind Alkalimetall- und Erdalkalimetallamide und -hydride, wie Natriumamid, Natriumhydrid und Calciumhydrid, und außerdem auch Alkalimetall-alkoholate, wie Natrium-methylat, Natriummethylat und Kalium-tert.-butylat einsetzbar.
- Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (A) innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0 °C und 250 °C, vorzugsweise zwischen 50 °C und 150 °C.
- Das erfindungsgemäße Verfahren (A) wird im allgemeinen unter Normaldruck durchgeführt.
- Bei der Durchführung des erfindungsgemäßen Verfahrens (A) setzt man die Reaktionskomponenten der Formeln (II) und die deprotonierenden Basen im allgemeinen in etwa äquimolaren Mengen ein. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 3 Mol) zu verwenden.
- Das Verfahren (Bα) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (Ia) mit Carbonsäurehalogeniden der Formel (III) umsetzt.
- Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (Bα) bei Verwendung der Säurehalogenide alle gegenüber diesen Verbindungen inerten Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Benzín, Benzol, Toluol, Xylo und Tetralin, ferner Halogenkohlenwasserstoffe, wie Methylenechlorid, Chloroform, Tetrachlorkohlenstoff, Chlorbenzol und o-Dichlorbenzol, außerdem Ketone, wie Aceton und Methylisopropylketon, weiterhin Ether, wie Diethylether, Tetrahydrofuran und Dioxan, darüberhinaus Dimethylsulfoxid und Sulfolan. Wenn die Hydrolysestabilität des Säurehalogenids es zuläßt, kann die Umsetzung auch in Gegenwart von Wasser durchgeführt werden.
- Verwendet man die entsprechenden Carbonsäurehalogenide so kommen als Säurebindemittel bei der Umsetzung nach dem erfindungsgemäßen Verfahren (Bα) alle üblichen Säureakzeptoren in Betracht. Vorzugsweise verwendbar sind tertiäre Amine, wie Triethylamin, Pyridin, Diazabicyclooctan (DABCO), 50 Diazabicycloundecen (DBU), Diazabicyclononen (DBN), Hüning-Base und N,N-Dimethyl-anilin, ferner Erdalkalimetallocide, wie Magnesium- und Calciumoxid, außerdem Alkali- und Erdalkali-metall-carbonate, wie Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat.
- Die Reaktionstemperaturen können auch bei dem erfindungsgemäßen Verfahren (Bα) auch bei der

55

Adogen 464 = Methyltrialkyl(C_n-C_m)ammoniumchlorid

TDA 1 = Tris-(methoxyethoxyethyl)-amin

Verwendung von Carbonsäurehalogeniden innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen -20 °C und +150 °C, vorzugsweise zwischen 0 °C und 100 °C.

Bei der Durchführung des erfindungsgemäßen Verfahrens (B α) werden die Ausgangsstoffe der Formel (Ia) und das Carbonsäurehalogenid der Formel (III) im allgemeinen in angenähert äquivalenten Mengen verwendet. Es ist jedoch auch möglich, das Carbonsäureanhydrid in einem größeren Überschuß (bis zu 5 Mol) einzusetzen. Die Aufarbeitung erfolgt nach üblichen Methoden.

Das Verfahren (B β) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (Ia) mit Carbonsäureanhydriden der Formel (IV) umsetzt.

10 Verwendet man bei dem erfindungsgemäßen Verfahren (B β) als Reaktionskomponente der Formel (IV) Carbonsäureanhydride, so können als Verdünnungsmittel vorzugsweise diejenigen Verdünnungsmittel verwendet werden, die auch bei der Verwendung von Säurehalogeniden vorzugsweise in Betracht kommen. Im Übrigen kann auch ein im Überschuß eingesetztes Carbonsäureanhydrid gleichzeitig als Verdünnungsmittel fungieren.

15 Die Reaktionstemperaturen können auch bei dem erfindungsgemäßen Verfahren (B β) auch bei der Verwendung von Carbonsäureanhydriden innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen -20 °C und +150 °C, vorzugsweise zwischen 0 °C und 100 °C.

Bei der Durchführung des erfindungsgemäßen Verfahrens werden die Ausgangsstoffe der Formel (Ia) 20 und das Carbonsäureanhydrid der Formel (IV) im allgemeinen in angenähert äquivalenten Mengen verwendet. Es ist jedoch auch möglich, das Carbonsäureanhydrid in einem größeren Überschuß (bis zu 5 Mol) einzusetzen. Die Aufarbeitung erfolgt nach üblichen Methoden.

Im allgemeinen geht man so vor, daß man Verdünnungsmittel und im Überschuß vorhandenes Carbonsäureanhydrid sowie die entstehende Carbonsäure durch Destillation oder durch Waschen mit einem 25 organischen Lösungsmittel oder mit Wasser entfernt.

Das Verfahren (C) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (Ia) mit Chlorameisensäureestern der Formel (V) umsetzt.

30 Verwendet man die entsprechenden Chlorameisensäureester so kommen als Säurebindemittel bei der Umsetzung nach dem erfindungsgemäßen Verfahren (C) alle üblichen Säureakzeptoren in Betracht. Vorzugsweise verwendbar sind tertiäre Amine, wie Triethylamin, Pyridin, DABCO, DBC, DBA, Hünig-Base und N,N-Dimethyl-anilin, ferner Erdalkalimetalloxide, wie Magnesium- und Calcium-oxid, außerdem Alkali- und Erdalkali-metall-carbonate, wie Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (C) bei Verwendung der Chlorameisensäureester alle gegenüber diesen Verbindungen inerten Solventien eingesetzt werden. Vorzugsweise 35 verwendbar sind Kohlenwasserstoffe, wie Benzin, Benzol, Toluol, Xylool und Tetralin, ferner Halogenkohlenwasserstoffe, wie Methylchlorid, Chloroform, Tetrachlorkohlenstoff, Chlorbenzol und o-Dichlorbenzol, außerdem Ketone, wie Aceton und Methylisopropylketon, weiterhin Ether, wie Diethylether, Tetrahydrofuran und Dioxan, darüberhinaus Carbonsäureester, wie Ethylacetat, und auch stark polare Solventien, wie Dimethylsulfoxid und Sulfolan.

40 Bei Verwendung der Chlorameisensäureester als Carbonsäure-Derivate der Formel (V) können die Reaktionstemperaturen bei der Durchführung des erfindungsgemäßen Verfahrens (C) innerhalb eines größeren Bereiches variiert werden. Arbeitet man in Gegenwart eines Verdünnungsmittels und eines Säurebindemittels, so liegen die Reaktionstemperaturen im allgemeinen zwischen -20 °C und +100 °C, vorzugsweise zwischen 0 °C und 50 °C.

45 Das erfindungsgemäße Verfahren (C) wird im allgemeinen unter Normaldruck durchgeführt.

Bei der Durchführung des erfindungsgemäßen Verfahrens (C) werden die Ausgangsstoffe der Formel (Ia) und der entsprechende (Chlorameisensäureester der Formel (V) im allgemeinen in angenähert äquivalenten Mengen verwendet. Es ist jedoch auch möglich, die eine oder andere Komponente in einem 50 größeren Überschuß (bis zu 2 Mol) einzusetzen. Die Aufarbeitung erfolgt dann nach üblichen Methoden. Im allgemeinen geht man so vor, daß man ausgefallene Salze entfernt und das verbleibende Reaktionsgemisch durch Abziehen des Verdünnungsmittels einengt.

Das Verfahren (D) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (Ia) mit Metallhydroxiden (VI) oder Aminen (VII) umsetzt.

55 Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren vorzugsweise Ether wie Tetrahydrofuran, Dioxan, Diethylether oder aber Alkohole wie Methanol, Ethanol, Isopropanol, aber auch Wasser eingesetzt werden. Das erfindungsgemäße Verfahren (D) wird im allgemeinen unter Normaldruck durchgeführt. Die Reaktionstemperatur liegen im allgemeinen zwischen -20 °C und 100 °C, vorzugsweise zwischen 0 °C und 50 °C.

Bei der Durchführung des erfindungsgemäßen Verfahrens (D) werden die Ausgangsstoffe der Formel (Ia) bzw. (VI= oder (VII) im allgemeinen in angenähert äquimolaren Mengen verwendet. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 2 Mol) einzusetzen. Im allgemeinen geht man so vor, daß man das Reaktionsgemisch durch Abziehen des Verdünnungsmittels einengt.

Herstellungsbeispiele

Beispiel 1

10

20

124,9 g (0,428 Mol) N-(2,4,6-Trimethylphenyl-acetyl)-valinmethylester werden in 430 ml abs. Toluol suspendiert. Nach Zugabe von 51,6 g Kalium-tert.-butylat (95 %ig) wird unter DC-Kontrolle unter Rückfluß erhitzt. Man röhrt in 500 ml Eiswasser ein, trennt das Toluol ab und tropft die wäßrige Phase bei 0-20 °C in 25 600 ml 1N HCl. Der Niederschlag wird abgesaugt, getrocknet und aus Chloroform/Methyl-tert.-butyl-Ether/n-Hexan umkristallisiert.

Ausbeute: 51,5 g (= 46,4 % d.Th.) der illustrierten Verbindung Fp. 126 °C

Beispiel 2

30

45 5,46 g (20 mmol) 5-Isobutyl-3-(2,4,6-Trimethylphenyl)-pyrrolidin-2,4-dion werden in 70 ml Methyl-tert.-Butyl-Ether suspendiert und mit 3,4 ml (20 mmol) Hünig-Base versetzt. Bei 0-10 °C werden 2,52 ml (20 mmol) Pivaloylchlorid in 5 ml Methyl-tert.-butyl-Ether zugetropft und anschließend unter Dünnschichtchromatographie-Kontrolle weitergerührt. Der Niederschlag wird abgesaugt, nachgewaschen und das Filtrat einrotiert. Nach SC an Kieselgel mit Cyclohexan/Essigester 1:1 und Kristallisation aus 50 Methyl-tert.-butyl-Ether/n-Hexan erhielt man 2,14 g (29,9 % d.Th.) der illustrierten Verbindung vom Schmp. 154 °C.

Beispiel 3

55

15 4,19 g (20 mmol) 5-Isopropyl-3-(2,4,6-trimethylphenyl)-pyrrolidin-2,4-dion werden in 70 ml Methyl-tert.-butyl-Ether suspendiert und mit 3,4 ml (20 mmol) Hünig-Base versetzt. Bei -70 °C tropft man 1,92 ml (20 mmol) Chlorameisensäure-ethylester in 5 ml Methyl-tert.-butyl-Ether zu und lässt auf Raumtemperatur erwärmen. Nach dem Einrotieren wird der Rückstand in Methylenchlorid aufgenommen, mit Wasser gewaschen, getrocknet und erneut einrotiert. Nach Kristallisation aus Methyl-tert.-butyl-Ether/n-Hexan erhält man 2,6 g (= 39,3 % d.Th.) der illustrierten Verbindung vom Schmp. 190 °C.
 20 Die folgenden Verbindungen der Tabellen 1, 2 und 3 können in Analogie zu den Beispielen 1, 2 bzw. 3 hergestellt werden.

25

30

35

40

45

50

55

5

10

15

20

25

30

35

40

45

50

55

Tabelle 1

Bsp. -Nr.	X	Y	Zn	A		B		Fp° C
				B	A	B	A	
4	C1	C1	H	H	H	H	H	
5	C1	C1	H	CH ₃	H	H	H	
6	C1	C1	H	CH(CH ₃) ₂	H			
7	C1	C1	H	CH ₃				
8	C1	C1	H	C ₂ H ₅				
9	C1	C1	H	C ₂ H ₅				
10	C1	C1	H	C ₃ H ₇				
11	C1	C1	H	i-C ₃ H ₇	CH ₃			
12	C1	C1	H			-(CH ₂) ₂ -		
13	C1	C1	H			-(CH ₂) ₄ -		
14	C1	C1	H			-(CH ₂) ₅ -		
15	C1	C1	H	C ₂ H ₅	H			
16	C1	C1	H	C(CH ₃) ₃	H			
17	C1	C1	H	CH ₂ CH(CH ₃) ₂	H			

Tabelle 1 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	Fp°C
18	C1	C1	H		H	
19	C1	C1	H		H	
20	C1	C1	H		H	
21	C1	C1	H		H	
22	C1	C1	H			
23	C1	C1	H		H	
24	C1	C1	H		H	

5

10

15

20

25

30

35

40

45

50

55

5
10
15
20
25
30
35
40
45
50

55

Tabelle 1 (Fortsetzung)

Bsp.-Nr.	X	Y	Z_n	A	B	$Fp^o C$
25	C1	H	6-C1	H	H	
26	C1	H	6-C1	CH ₃	H	
27	C1	H	6-C1	CH(CH ₃) ₂	H	
28	CH ₃	CH ₃	H	H	H	
29	CH ₃	CH ₃	H	CH ₃	H	
30	CH ₃	CH ₃	H	CH(CH ₃) ₂	H	
31	CH ₃	CH ₃	6-CH ₃	H	H	
32	CH ₃	CH ₃	6-CH ₃	CH ₃	H	> 230
33	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃	223
34	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	
35	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅	
36	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃	
37	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃	
38	CH ₃	CH ₃	6-CH ₃	-(CH ₂) ₂ -		225
39	CH ₃	CH ₃	6-CH ₃	-(CH ₂) ₄ -		
40	CH ₃	CH ₃	6-CH ₃	-(CH ₂) ₅ -		

5

10

15

20

30

35

40

45

50

55

Tabelle 1 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	Fp°C
41	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	H	
42	CH ₃	CH ₃	6-CH ₃	C(CH ₃) ₃	H	
43	CH ₃	CH ₃	6-CH ₃	CH ₂ CH(CH ₃) ₂	H	> 220
44	CH ₃	CH ₃	6-CH ₃	CH ₂ CH(CH ₃)C ₂ H ₅	H	
45	CH ₃	CH ₃	6-CH ₃	CH ₂ -CH ₂ -S-CH ₃	H	
46	CH ₃	CH ₃	6-CH ₃	CH ₂ -S-CH ₃	H	
47	CH ₃	CH ₃	6-CH ₃	CH ₂ -S-CH ₂ -C ₆ H ₅	H	
48	CH ₃	CH ₃	6-CH ₃	CH ₂ -C ₆ H ₅		
49	CH ₃	CH ₃	6-CH ₃	CH ₂ -	H	
50	CH ₃	CH ₃	6-CH ₃	CH ₂ -	H	

5
10
15
20
25
30
35
40
45
50
55

Tabelle 2

Bsp. -Nr.	X	Y	Zn	A	B	R ¹	Fp ^o C
51	C1	C1	H	H	H	CH ₃	
52	C1	C1	H	CH ₃	H	CH ₃	
53	C1	C1	H	CH ₃	H	C(CH ₃) ₃	
54	C1	C1	H	CH ₃	CH ₃	CH ₃	
55	C1	C1	H	CH ₃	CH ₃	(CH ₃) ₂ CH-	
56	C1	C1	H	CH ₃	CH ₃	(CH ₃) ₃ C-	
57	C1	C1	H	CH ₃	CH ₃	CH ₃ -(CH ₂) ₃ -	
58	C1	C1	H	CH ₃	CH ₃	C ₂ H ₅ -C(CH ₃) ₂	
59	C1	C1	H	CH ₃	CH ₃	(CH ₃) ₃ C-CH ₂ -	
60	C1	C1	H	CH ₃	CH ₃	(CH ₃) ₂ CH-C(CH ₃) ₂	
61	C1	C1	H	CH ₃	CH ₃	CH ₂ =CH-(CH ₂) ₈ -	

45 40 35 30 25 20 15 10 5

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ¹	Fp°C
62	C1	C1	H	CH ₃	CH ₃		
63	C1	C1	H	CH ₃	CH ₃		
64	C1	C1	H	CH ₃	CH ₃		
65	C1	C1	H	CH ₃	CH ₃		
66	C1	C1	H	CH ₃	CH ₃		
67	C1	C1	H	CH ₃	CH ₃		

50

55

5

10

15

20

25

30

35

40

45

50

55

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ¹	Fp°C
68	C1	C1	H	CH ₃	CH ₃	CH ₃	
69	C1	C1	H	CH ₃	CH ₃		
70	C1	C1	H	CH ₃	CH ₃		
71	C1	C1	H	CH ₃	CH ₃		
72	C1	C1	H	CH ₃	CH ₃		
73	C1	C1	H	CH ₃	CH ₃		

45 40 35 30 25 20 15 10 5

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ¹	Fp°C	
74	C1	C1	H	CH ₃	CH ₃			
75	C1	C1	H	CH ₃	CH ₃			
76	C1	C1	H	CH ₃	CH ₃			
77	C1	C1	H	CH ₃	CH ₃			
78	C1	C1	H	CH ₃	CH ₃			

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ¹	Fp ^o C
79	c1	c1	H	CH ₃	CH ₃	O ₂ N- C ₆ H ₄ -	
80	c1	c1	H	CH ₃	CH ₃	C ₆ H ₅ -	
81	c1	c1	H	CH ₃	CH ₃	C ₆ H ₅ -	C1
82	c1	c1	H	CH ₃	CH ₃	C ₆ H ₅ -	C1
83	c1	c1	H	CH ₃	CH ₃	2-methyl- C ₆ H ₅ -	

5

10

15

20

25

30

35

40

45

50

55

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ¹	Fp° C
84	C1	C1	H	C ₂ H ₅	CH ₃	CH ₃	5
85	C1	C1	H	C ₂ H ₅	CH ₃	(CH ₃) ₂ CH-	10
86	C1	C1	H	C ₂ H ₅	CH ₃	(CH ₃) ₃ C-	15
87	C1	C1	H	C ₂ H ₅	CH ₃	CH ₃ -(CH ₂) ₃ -	20
88	C1	C1	H	C ₂ H ₅	CH ₃	C ₂ H ₅ -C(CH ₃) ₂	25
89	C1	C1	H	C ₂ H ₅	CH ₃	(CH ₃) ₃ C-CH ₂ -	30
90	C1	C1	H	C ₂ H ₅	CH ₃	(CH ₃) ₂ CH-C(CH ₃) ₂	35
91	C1	C1	H	C ₂ H ₅	CH ₃	CH ₂ =CH-(CH ₂) ₈ -	40
92	C1	C1	H	C ₂ H ₅	CH ₃		45
93	C1	C1	H	C ₂ H ₅	CH ₃	C ₄ H ₉ -CH-	50

Tabelle 2 (Fortsetzung)

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ¹	<u>Rp° C</u>					
							5	10	15	20	25	30
102	C1	C1	H	C ₂ H ₅	CH ₃	OCH ₃						
103	C1	C1	H	C ₂ H ₅	CH ₃	H ₃ CO						
104	C1	C1	H	C ₂ H ₅	CH ₃	CH ₃						
105	C1	C1	H	C ₂ H ₅	CH ₃	CH ₃						
106	C1	C1	{ H	C ₂ H ₅	CH ₃	H ₃ C						
107	C1	C1	H	C ₂ H ₅	CH ₃	NO ₂						

5

10

15

20

25

30

35

40

45

50

55

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ¹	Fp°C
108	C1	C1	H	C ₂ H ₅	CH ₃		
109	C1	C1	H	C ₂ H ₅	CH ₃ O ₂ N-		
110	C1	C1	H	C ₂ H ₅	CH ₃		
111	C1	C1	H	C ₂ H ₅	CH ₃		
112	C1	C1	H	C ₂ H ₅	CH ₃		
113	C1	C1	H	C ₂ H ₅	CH ₃		

5
10
15
20
25
30
35
40
45
50

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ¹	Fp° C
114	C1	C1	H	C ₂ H ₅	C ₂ H ₅	CH ₃	
115	C1	C1	H	C ₂ H ₅	C ₂ H ₅	(CH ₃) ₂ CH-	
116	C1	C1	H	C ₂ H ₅	C ₂ H ₅	(CH ₃) ₃ C-	
117	C1	C1	H	C ₂ H ₅	C ₂ H ₅	CH ₃ -(CH ₂) ₃ -	
118	C1	C1	H	C ₂ H ₅	C ₂ H ₅	C ₂ H ₅ -C(CH ₃) ₂	
119	C1	C1	H	C ₂ H ₅	C ₂ H ₅	(CH ₃) ₃ C-CH ₂ -	
120	C1	C1	H	C ₂ H ₅	C ₂ H ₅	(CH ₃) ₂ CH-C(CH ₃) ₂	
121	C1	C1	H	C ₂ H ₅	C ₂ H ₅	CH ₂ =CH-(CH ₂) ₈ -	
122	C1	C1	H	C ₂ H ₅	C ₂ H ₅	CH ₃ —	
123	C1	C1	H	C ₂ H ₅	C ₂ H ₅	C ₄ H ₉ -CH-C ₂ H ₅	

55

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Z _n	A	B	R ¹	Fp ^a C
124	C1	C1	H	C ₂ H ₅	C ₂ H ₅	C1— CH ₃	
125	C1	C1	H	C ₂ H ₅	C ₂ H ₅	H ₃ C—O— CH ₃	
126	C1	C1	C1	H	C ₂ H ₅	H ₃ C—O— CH ₃	
127	C1	C1	C1	H	C ₂ H ₅	H ₃ C— C=C	
128	C1	C1	H	C ₂ H ₅	C ₂ H ₅	H ₃ C-S-CH ₂ -	
129	C1	C1	C1	H	C ₂ H ₅		
130	C1	C1	H	C ₂ H ₅	C ₂ H ₅		

5

10

15

20

25

30

35

40

45

50

55

5
10
15
20
25
30
35
40
45
50

55

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ¹	Fp°C
131	C1	C1	H	C ₂ H ₅	C ₂ H ₅	OCH ₃ 	
132	C1	C1	H	C ₂ H ₅	C ₂ H ₅	OCH ₃ 	
133	C1	C1	H	C ₂ H ₅	C ₂ H ₅	H ₃ CO- 	
134	C1	C1	H	C ₂ H ₅	C ₂ H ₅	CH ₃ 	
135	C1	C1	H	C ₂ H ₅	C ₂ H ₅	CH ₃ 	
136	C1	C1	H	C ₂ H ₅	C ₂ H ₅	H ₃ C- 	

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ¹	Fp°C
137	C1	C1	H	C ₂ H ₅	C ₂ H ₅		5
138	C1	C1	H	C ₂ H ₅	C ₂ H ₅		10
139	C1	C1	H	C ₂ H ₅	C ₂ H ₅		15
140	C1	C1	H	C ₂ H ₅	C ₂ H ₅		20
141	C1	C1	H	C ₂ H ₅	C ₂ H ₅		25
142	C1	C1	H	C ₂ H ₅	C ₂ H ₅		30
143	C1	C1	H	C ₂ H ₅	C ₂ H ₅		35
							40
							45
							50
							55

5
10
15
20
25
30
35
40
45
50

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ¹	Fp° C
144	C1	C1	H	C ₃ H ₇	CH ₃	CH ₃	(CH ₃) ₂ CH-
145	C1	C1	H	C ₃ H ₇	CH ₃	(CH ₃) ₃ C-	CH ₃ -
146	C1	C1	H	C ₃ H ₇	CH ₃	(CH ₃) ₂ CH-C(CH ₃) ₂	
147	C1	C1	H	C ₃ H ₇	CH ₃	CH ₃ -	(CH ₂) ₃ -
148	C1	C1	H	C ₃ H ₇	CH ₃	C ₂ H ₅ -C(CH ₃) ₂	
149	C1	C1	H	C ₃ H ₇	CH ₃	(CH ₃) ₃ C-CH ₂ -	
150	C1	C1	H	C ₃ H ₇	CH ₃		
151	C1	C1	H	C ₃ H ₇	CH ₃	CH ₂ =CH-(CH ₂) ₈ -	
152	C1	C1	H	C ₃ H ₇	CH ₃		C ₁ — CH ₃
153	C1	C1	H	C ₃ H ₇	CH ₃		C ₄ H ₉ -CH-C ₂ H ₅

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ¹	Fp° C
154	C1	C1	H	C ₃ H ₇	CH ₃		5
155	C1	C1	H	C ₃ H ₇	CH ₃		10
156	C1	C1	H	C ₃ H ₇	CH ₃		15
157	C1	C1	H	C ₃ H ₇	CH ₃		20
158	C1	C1	H	C ₃ H ₇	CH ₃		25
159	C1	C1	H	C ₃ H ₇	CH ₃		30
160	C1	C1	H	C ₃ H ₇	CH ₃		35
161	C1	C1	H	C ₃ H ₇	CH ₃		40
							50
							55

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ¹	Kp°C
162	C1	C1	H	C ₃ H ₇	CH ₃	OC ₂ H ₅	
163	C1	C1	H	C ₃ H ₇	CH ₃	CH ₃ CO-	
164	C1	C1	H	C ₃ H ₇	CH ₃	CH ₃	
165	C1	C1	H	C ₃ H ₇	CH ₃	CH ₃	
166	C1	C1	H	C ₃ H ₇	CH ₃	CH ₃ G	
167	C1	C1	H	C ₃ H ₇	CH ₃	NO ₂	
168	C1	C1	H	C ₃ H ₇	CH ₃	NO ₂	

5

10

15

20

25

30

35

40

45

50

55

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Z _n	A	B	R ¹	Fp °C				
							5	10	15	20	25
169	C1	C1	H	C ₃ H ₇	CH ₃	O ₂ N-C ₆ H ₄ -					
170	C1	C1	H	C ₃ H ₇	CH ₃	C ₆ H ₅ -					
171	C1	C1	H	C ₃ H ₇	CH ₃	C ₆ H ₅ -					
172	C1	C1	H	C ₃ H ₇	CH ₃	C ₆ H ₅ -					
173	C1	C1	H	C ₃ H ₇	CH ₃	C ₆ H ₅ -					
174	C1	C1	H	i-C ₃ H ₇	CH ₃	CH ₃					
175	C1	C1	H	i-C ₃ H ₇	CH ₃	(CH ₃) ₂ CH-					
176	C1	C1	H	i-C ₃ H ₇	CH ₃	(CH ₃) ₃ C-					
177	C1	C1	H	i-C ₃ H ₇	CH ₃	CH ₃ -(CH ₂) ₃ -					
178	C1	C1	H	i-C ₃ H ₇	CH ₃	C ₂ H ₅ -C(CH ₃) ₂					

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R1	Fp° C
179	C1	C1	H	i-C ₃ H ₇	CH ₃	(CH ₃) ₃ C-CH ₂ -	
180	C1	C1	H	i-C ₃ H ₇	CH ₃	(CH ₃) ₂ CH-C(CH ₃) ₂	
181	C1	C1	H	i-C ₃ H ₇	CH ₃	CH ₂ =CH-(CH ₂) ₈ -	
182	C1	C1	H	i-C ₃ H ₇	CH ₃	C1-	
183	C1	C1	H	i-C ₃ H ₇	CH ₃	C ₄ H ₉ -CH-C ₂ H ₅	
184	C1	C1	H	i-C ₃ H ₇	CH ₃	C1-	
185	C1	C1	H	i-C ₃ H ₇	CH ₃	H ₃ C-O-	
186	C1	C1	H	i-C ₃ H ₇	CH ₃	H ₃ C-O-	
187	C1	C1	H	i-C ₃ H ₇	CH ₃	H ₃ C-	

46 40 35 30 25 20 15 10 5

50

55

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ¹	Fp° C			
							5	10	15	20
188	C1	C1	H	i-C ₃ H ₇	CH ₃	H ₃ C-S-CH ₂ -				
189	C1	C1	H	i-C ₃ H ₇	CH ₃					
190	C1	C1	H	i-C ₃ H ₇	CH ₃					
191	C1	C1	H	i-C ₃ H ₇	CH ₃					
192	C1	C1	H	i-C ₃ H ₇	CH ₃					
193	C1	C1	H	i-C ₃ H ₇	CH ₃					
194	C1	C1	H	i-C ₃ H ₇	CH ₃					
195	C1	C1	H	i-C ₃ H ₇	CH ₃					

50

55

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R1	Fp°C					
							6	10	15	20	25	30
196	C1	C1	H	H	-C ₃ H ₇	CH ₃ C ₆ H ₅						
197	C1	C1	H	H	-C ₃ H ₇	CH ₃						
198	C1	C1	H	H	-C ₃ H ₇	CH ₃						
199	C1	C1	H	H	O ₂ N-C ₆ H ₄ -NO ₂							
200	C1	C1	H	H	-C ₃ H ₇	CH ₃						
201	C1	C1	H	H	-C ₃ H ₇	CH ₃						
202	C1	C1	H	H	-C ₃ H ₇	CH ₃						

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ¹	Fp°C			
							5	10	15	20
203	C1	C1	H	i-C ₃ H ₇	CH ₃					
204	C1	C1	H		-(CH ₂) ₄ -	CH ₃				
205	C1	C1	H		-(CH ₂) ₄ -	(CH ₃) ₂ CH-				
206	C1	C1	H		-(CH ₂) ₄ -	(CH ₃) ₃ C-				
207	C1	C1	H		-(CH ₂) ₄ -	CH ₃ -(CH ₂) ₃ -				
208	C1	C1	H		-(CH ₂) ₄ -	C ₂ H ₅ -C(CH ₃) ₂				
209	C1	C1	H		-(CH ₂) ₄ -	(CH ₃) ₃ C-CH ₂ -				
210	C1	C1	H		-(CH ₂) ₄ -	(CH ₃) ₂ CH-C(CH ₃) ₂				
211	C1	C1	H		-(CH ₂) ₄ -	CH ₂ =CH-(CH ₂) ₈ -				
212	C1	C1	H		-(CH ₂) ₄ -					
213	C1	C1	H		-(CH ₂) ₄ -	C ₄ H ₉ -CH-C ₂ H ₅				

50

55

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Z _n	A	B	R ¹	Fp°C				
							5	10	15	20	25
214	C1	C1	H		-(CH ₂) ₄ -						
215	C1	C1	H		-(CH ₂) ₄ -						
216	C1	C1	H		-(CH ₂) ₄ -						
217	C1	C1	H		-(CH ₂) ₄ -						
218	C1	C1	H		-(CH ₂) ₄ -						
219	C1	C1	H		-(CH ₂) ₄ -						
220	C1	C1	H		-(CH ₂) ₄ -						

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ¹	Fp°C
221	C1	C1	H			-(CH ₂) ₄ -	OCH ₃
222	C1	C1	H			-(CH ₂) ₄ -	OCH ₃
223	C1	C1	H			-(CH ₂) ₄ -	H ₃ CO-
224	C1	C1	H			-(CH ₂) ₄ -	CH ₃
225	C1	C1	H			-(CH ₂) ₄ -	CH ₃
226	C1	C1	H			-(CH ₂) ₄ -	H ₃ C-

5

10

15

20

25

30

35

40

45

50

55

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ¹	Fp ⁰ C
227	C1	C1	H	-(CH ₂) ₄ -			5
228	C1	C1	H	-(CH ₂) ₄ -			10
229	C1	C1	H	-(CH ₂) ₄ -			15
230	C1	C1	H	-(CH ₂) ₄ -			20
231	C1	C1	H	-(CH ₂) ₄ -			25
232	C1	C1	H	-(CH ₂) ₄ -			30
233	C1	C1	H	-(CH ₂) ₄ -			35
							40
							45
							50
							55

5
10
15
20
25
30
35
40
45

50
55

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ¹	F _p ⁰ C
234	C1	C1	H	-(CH ₂) ₅ -		CH ₃	
235	C1	C1	H	-(CH ₂) ₅ -		(CH ₃) ₂ CH-	
236	C1	C1	H	-(CH ₂) ₅ -		(CH ₃) ₃ C-	
237	C1	C1	H	-(CH ₂) ₅ -		CH ₃ -(CH ₂) ₃ -	
238	C1	C1	H	-(CH ₂) ₅ -		C ₂ H ₅ -C(CH ₃) ₂	
239	C1	C1	H	-(CH ₂) ₅ -		(CH ₃) ₃ C-CH ₂ -	
240	C1	C1	H	-(CH ₂) ₅ -		(CH ₃) ₂ CH-C(CH ₃) ₂	
241	C1	C1	H	-(CH ₂) ₅ -		CH ₂ =CH-(CH ₂) ₈ -	
242	C1	C1	H	-(CH ₂) ₅ -		C1—	
243	C1	C1	H	-(CH ₂) ₅ -		C ₄ H ₉ -CH-C ₂ H ₅	
244	C1	C1	H	-(CH ₂) ₅ -		C1—	

5
10
15
20
25
30
35
40
45
50

55

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ¹	Fp°C	
245	C1	C1	H		-(CH ₂) ₅ -			
246	C1	C1	H		-(CH ₂) ₅ -			
247	C1	C1	H		-(CH ₂) ₅ -			
248	C1	C1	H		-(CH ₂) ₅ -			
249	C1	C1	H		-(C ₂ H ₂) ₅			
250	C1	C1	H		-(CH ₂) ₅ -			
251	C1	C1	H		-(CH ₂) ₅ -			

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	R ¹	Fp° C
252	C1	C1	H	-(CH ₂) ₅ -	OCH ₃
253	C1	C1	H	-(CH ₂) ₅ -	H ₃ CO-
254	C1	C1	H	-(CH ₂) ₅ -	CH ₃
255	C1	C1	H	-(CH ₂) ₅ -	CH ₃
256	C1	C1	H	-(CH ₂) ₅ -	H ₃ C-
257	C1	C1	H	-(CH ₂) ₅ -	N ₂ O
258	C1	C1	H	-(CH ₂) ₅ -	

50

55

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ¹	R ^p °C	
							5	10
259	C1	C1	H		-(CH ₂) ₅ -	O ₂ N-		
260	C1	C1	H		-(CH ₂) ₅ -			
261	C1	C1	H		-(CH ₂) ₅ -			
262.	C1	C1	H		-(CH ₂) ₅ -			
263	C1	C1	H		-(CH ₂) ₅ -			
264	C1	H		6-C1	H	H	CH ₃	
265	C1	H		6-C1	H	H	C(CH ₃) ₃	
266	C1	H		6-C1	CH ₃	H	CH ₃	
267	C1	H		6-C1	CH ₃	H	C(CH ₃) ₃	
268	CH ₃	CH ₃	H		H	H	CH ₃	
269	CH ₃	CH ₃	H		H	H	C(CH ₃) ₃	

50

55

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ¹	Fp° C
270	CH ₃	CH ₃	H	CH ₃	H	CH ₃	5
271	CH ₃	CH ₃	H	CH ₃	H	C(CH ₃) ₃	10
272	CH ₃	CH ₃	6-CH ₃	H	H	CH ₃	15
273	CH ₃	CH ₃	6-CH ₃	H	H	CH(CH ₃) ₂	20
274	CH ₃	CH ₃	6-CH ₃	H	H	C(CH ₃) ₃	25
275	CH ₃	CH ₃	6-CH ₃	H	H	C(CH ₃) ₂ CH ₂ Cl	30
276	CH ₃	CH ₃	6-CH ₃	H	H	C(CH ₃) ₂ CH ₂ -O-CH ₃	35
277	CH ₃	CH ₃	6-CH ₃	H	H	CH ₂ -S-CH ₃	40
278	CH ₃	CH ₃	6-CH ₃	H	H		45
279	CH ₃	CH ₃	6-CH ₃	H	H		50
280	CH ₃	CH ₃	6-CH ₃	H	H		55
281	CH ₃	CH ₃	6-CH ₃	CH ₃	H	CH ₃	132
282	CH ₃	CH ₃	6-CH ₃	CH ₃	H	CH(CH ₃) ₂	148
283	CH ₃	CH ₃	6-CH ₃	CH ₃	H	C(CH ₃) ₃	152

5
10
15
20
25
30
35
40
45
50

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ¹	Fp° C
284	CH ₃	CH ₃	6-CH ₃	CH ₃	H	C(CH ₃) ₂ CH ₂ C1	
285	CH ₃	CH ₃	6-CH ₃	CH ₃	H	C(CH ₃) ₂ CH ₂ -O-CH ₃	
286	CH ₃	CH ₃	6-CH ₃	CH ₃	H	CH ₂ -S-CH ₃	
287	CH ₃	CH ₃	6-CH ₃	CH ₃	H		
288	CH ₃	CH ₃	6-CH ₃	CH ₃	H		
289	CH ₃	CH ₃	6-CH ₃	CH ₃	H		
290	CH ₃	CH ₃	6-CH ₃	CH(CH ₃) ₂	H	CH ₃	188
291	CH ₃	CH ₃	6-CH ₃	CH(CH ₃) ₂	H	CH(CH ₃) ₂	
292	CH ₃	CH ₃	6-CH ₃	CH(CH ₃) ₂	H	C(CH ₃) ₃	213
293	CH ₃	CH ₃	6-CH ₃	CH(CH ₃) ₂	H	C(CH ₃) ₂ CH ₂ C1	
294	CH ₃	CH ₃	6-CH ₃	CH(CH ₃) ₂	H	C(CH ₃) ₂ CH ₂ -O-CH ₃	
295	CH ₃	CH ₃	6-CH ₃	CH(CH ₃) ₂	H	CH ₂ -S-CH ₃	

55

5
10
15
20
25
30
35
40
45
50
55

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Z _n	A	B	R ¹	Fp°
296	CH ₃	CH ₃	6-CH ₃	CH(CH ₃) ₂	H		
297	CH ₃	CH ₃	6-CH ₃	CH(CH ₃) ₂	H		
298	CH ₃	CH ₃	6-CH ₃	CH(CH ₃) ₂	H		
299	CH ₃	CH ₃	6-CH ₃	CH ₂ CH(CH ₃) ₂	H	CH ₃	
300	CH ₃	CH ₃	6-CH ₃	CH ₂ CH(CH ₃) ₂	H	C ₂ H ₅	
301	CH ₃	CH ₃	6-CH ₃	CH ₂ CH(CH ₃) ₂	H	CH(CH ₃) ₂	
302	CH ₃	CH ₃	6-CH ₃	CH ₂ CH(CH ₃) ₂	H	C(CH ₃) ₂ CH ₂ C ₁	
303	CH ₃	CH ₃	6-CH ₃	CH ₂ CH(CH ₃) ₂	H	C(CH ₃) ₂ CH ₂ C ₁	
304	CH ₃	CH ₃	6-CH ₃	CH ₂ CH(CH ₃) ₂	H	CH ₂ -S-CH ₃	
305	CH ₃	CH ₃	6-CH ₃	CH ₂ CH(CH ₃) ₂	H		
306	CH ₃	CH ₃	6-CH ₃	CH ₂ CH(CH ₃) ₂	H		

5

10

20

25

30

35

40

50

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Z _n	A	B	R ¹	Fp ^o
307	CH ₃	CH ₃	6-CH ₃	CH ₂ CH(CH ₃) ₂	H		
308	CH ₃	CH ₃	6-CH ₃	CH ₃ / C ₂ H ₅	H	CH ₃	184
309	CH ₃	CH ₃	6-CH ₃	CH ₃ / C ₂ H ₅	H	CH(CH ₃) ₂	
310	CH ₃	CH ₃	6-CH ₃	CH ₃ / C ₂ H ₅	H	C(CH ₃) ₃	
311	CH ₃	CH ₃	6-CH ₃	CH ₃ / C ₂ H ₅	H	C(CH ₃) ₂ CH ₂ Cl	
312	CH ₃	CH ₃	6-CH ₃	CH ₃ / C ₂ H ₅	H	C(CH ₃) ₂ CH ₂ -O-CH ₃	
313	CH ₃	CH ₃	6-CH ₃	CH ₃ / C ₂ H ₅	H	CH ₂ -S-CH ₃	

55

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ¹	Fp ^o
314	CH ₃	CH ₃	6-CH ₃	CH ₃ C ₂ H ₅	H		
315	CH ₃	CH ₃	6-CH ₃	CH ₃ C ₂ H ₅	H		
316	CH ₃	CH ₃	6-CH ₃	CH ₃ C ₂ H ₅	H		
317	CH ₃	CH ₃	6-CH ₃	-(CH ₂) ₂ SCH ₃	H	CH ₃	
318	CH ₃	CH ₃	6-CH ₃	-(CH ₂) ₂ SCH ₃	H	CH(CH ₃) ₂	
319	CH ₃	CH ₃	6-CH ₃	-(CH ₂) ₂ SCH ₃	H	C(CH ₃) ₂	
320	CH ₃	CH ₃	6-CH ₃	-(CH ₂) ₂ SCH ₃	H	C(CH ₃) ₂ CH ₂ C ₁	
321	CH ₃	CH ₃	6-CH ₃	-(CH ₂) ₂ SCH ₃	H	C(CH ₃) ₂ CH ₂ -O-CH ₃	
322	CH ₃	CH ₃	6-CH ₃	-(CH ₂) ₂ SCH ₃	H	CH ₂ -S-CH ₃	

5

10

15

20

25

30

35

40

45

50

55

314	CH ₃	CH ₃	6-CH ₃	CH ₃ C ₂ H ₅	H	CH ₃	
315	CH ₃	CH ₃	6-CH ₃	CH ₃ C ₂ H ₅	H	CH ₃	
316	CH ₃	CH ₃	6-CH ₃	CH ₃ C ₂ H ₅	H	CH ₃	
317	CH ₃	CH ₃	6-CH ₃	-(CH ₂) ₂ SCH ₃	H	CH ₃	
318	CH ₃	CH ₃	6-CH ₃	-(CH ₂) ₂ SCH ₃	H	CH(CH ₃) ₂	
319	CH ₃	CH ₃	6-CH ₃	-(CH ₂) ₂ SCH ₃	H	C(CH ₃) ₂	
320	CH ₃	CH ₃	6-CH ₃	-(CH ₂) ₂ SCH ₃	H	C(CH ₃) ₂ CH ₂ C ₁	
321	CH ₃	CH ₃	6-CH ₃	-(CH ₂) ₂ SCH ₃	H	C(CH ₃) ₂ CH ₂ -O-CH ₃	
322	CH ₃	CH ₃	6-CH ₃	-(CH ₂) ₂ SCH ₃	H	CH ₂ -S-CH ₃	

5
10
15
20
25
30
35
40
45
50

55

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Z _n	A	R ¹	R ²	Fp ⁰
323	CH ₃	CH ₃	6-CH ₃	-(CH ₂) ₂ SCH ₃	H		
324	CH ₃	CH ₃	6-CH ₃	-(CH ₂) ₂ SCH ₃	H		
325	CH ₃	CH ₃	6-CH ₃	-(CH ₂) ₂ SCH ₃	H		
326	CH ₃	CH ₃	6-CH ₃	-	-(CH ₂) ₂ -	CH ₃	94
327	CH ₃	CH ₃	6-CH ₃	-	-(CH ₂) ₂ -	-C(CH ₃) ₃	95
328	CH ₃	CH ₃	6-CH ₃	CH ₃		CH ₃	216
329	CH ₃	CH ₃	6-CH ₃	CH ₃		(CH ₃) ₂ CH-	
330	CH ₃	CH ₃	6-CH ₃	CH ₃		(CH ₃) ₃ C-	> 230
331	CH ₃	CH ₃	6-CH ₃	CH ₃		CH ₃ -(CH ₂) ₃ -	
332	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃	C ₂ H ₅ -C(CH ₃) ₂	183
333	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃	(CH ₃) ₃ C-CH ₂ -	175
334	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃	(CH ₃) ₂ CH-C(CH ₃) ₂	

Tabelle 2 (Fortsetzung)

Bsp. -Nr.	X	Y	Z _n	A	B	R ¹	Fp ^o
335	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃	CH ₂ =CH-(CH ₂) ₈ -	5
336	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃		10
337	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃	C ₄ H ₉ -CH-C ₂ H ₅	15
338	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃		20
339	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃		25
340	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃		30
341	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃		35
342	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃	H ₃ C-S-CH ₂ -	40
							45
							50
							55

6

10

15

20

25

30

40

45

50

55

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ¹	R ²
343	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃		
344	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃		
345	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃		
346	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃		
347	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃		
348	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃		
349	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃		

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Z _n	A	B	R ¹	Fp ^o
350	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃	H ₃ C-C ₆ H ₄ -	5
351	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃	2-N ₂ O-C ₆ H ₄ -	10
352	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃	4-N ₂ O-C ₆ H ₄ -	15
353	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃	2-O ₂ N-C ₆ H ₄ -	20
354	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃	2-C ₁ -C ₆ H ₄ -	25
355	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃	4-C ₁ -C ₆ H ₄ -	30
356	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃	2-C ₁ -C ₆ H ₄ -	35

5
10
15
20
25
30
35
40
45
50
55

Tabelle 2 (Fortssetzung)

Bsp.-Nr.	X	Y	Z _n	A	B	R ¹	Fp°
357	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃		5
358	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	CH ₃	10
359	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	(CH ₃) ₂ CH-	15
360	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	(CH ₃) ₃ C-	20
361	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	CH ₃ -(CH ₂) ₃ -	25
362	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	C ₂ H ₅ -C(CH ₃) ₂	30
363	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	(CH ₃) ₃ C-CH ₂ -	35
364	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	(CH ₃) ₂ CH-C(CH ₃) ₂	40
365	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	CH ₂ =CH-(CH ₂) ₈ -	45
366	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	C1-	50
367	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	C ₄ H ₉ -CH-C ₂ H ₅	55

5
10
15
20
25
30
35
40
45
50

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Z _n	A	B	R ¹	Fp°		
								5	10
368	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	CH ₃	CH ₃		
369	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	CH ₃	CH ₃		
370	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	CH ₃	CH ₃		
371	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	CH ₃	CH ₃		
372	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	CH ₃	CH ₃		
373	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	CH ₃	CH ₃		
374	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	CH ₃	CH ₃		
375	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	CH ₃	CH ₃		

55

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ¹	Fp ^o
376	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	OCH ₃ 	6
377	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	H ₃ CO 	10
378	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	CH ₃ 	15
379	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	CH ₃ 	20
380	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	H ₃ C 	25
381	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	NO ₂ 	30
382	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	NO ₂ 	35

5

10

15

20

25

30

40

50

55

5
10
15
20
25
30
35
40
45
50
55

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Z _n	A	B	R ¹	Fp°
383	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	O ₂ N-	
384	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃		
385	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃		
386	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃		
387	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃		
388	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅	CH ₃	
389	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅	(CH ₃) ₂ CH-	
390	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅	(CH ₃) ₃ C-	
391	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅	CH ₃ - (CH ₂) ₃ -	
392	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅	C ₂ H ₅ -C(CH ₃) ₂	

55 45 40 35 30 25 20 15 10 5

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ¹	Fp ^o
393	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅	(CH ₃) ₃ C-CH ₂ -	
394	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅	(CH ₃) ₂ CH-C(CH ₃) ₂	
395	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅	CH ₂ =CH-(CH ₂) ₈ -	
396	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅		
397	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅		
398	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅		
399	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅		
400	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅		
401	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅		

50

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ¹	Fp ⁰
402	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅	H ₃ C-S-CH ₂ -	
403	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅		CH ₃
404	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅		C ₂ H ₅
405	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅		OCH ₃
406	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅		OCH ₃
407	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅		H ₃ CO-
408	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅		CH ₃

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Z _n	A	B	R ¹	Fp°	5
								10
409	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅		C ₂ H ₅		10
410	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅		C ₂ H ₅		10
411	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅		C ₂ H ₅		10
412	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅		C ₂ H ₅		10
413	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅		C ₂ H ₅	O ₂ N-	10
414	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅		C ₂ H ₅		10
415	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅		C ₂ H ₅		10

50

55

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ¹	Fp°
416	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅	C ₁ -	5
417	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅		10
418	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃	CH ₃	15
419	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃	(CH ₃) ₂ CH-	20
420	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃	(CH ₃) ₃ C-	25
421	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃	CH ₃ -(CH ₂) ₃ -	30
422	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃	C ₂ H ₅ -C(CH ₃) ₂ 	35
423	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃	(CH ₃) ₃ C-CH ₂ -	40
424	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃	(CH ₃) ₂ CH-C(CH ₃) ₂	45
425	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃	CH ₂ =CH-(CH ₂) ₈ -	50
426	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃		55

5
10
15
20
25
30
35
40
45
50

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Z _n	A	B	R ¹	Fp°
427	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃	C ₄ H ₉ -CH-C ₂ H ₅	
428	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃		
429	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃		
430	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃		
431	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃		
432	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃	H ₃ C-S-CH ₂ -	
433	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃		
434	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃		

55

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Z _n	A	B	R ¹	Fp ⁰
435	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃		5
436	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃		10
437	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃		15
438	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃		20
439	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃		25
440	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃		30
441	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃		35

50 45 40 35 30 25 20 15 10 5

55

5
10
15
20
25
30
35
40
45
50

55

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ¹	Fp ⁰
442	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃		NO ₂
443	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃		O ₂ N-
444	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃		G1
445	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃		C1
446	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃		
447	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃		
448	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃		CH ₃
449	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃		(CH ₃) ₂ CH-
450	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃		(CH ₃) ₃ C-
451	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃		CH ₃ -(CH ₂) ₃ -

55 50 45 40 35 30 25 20 15 10 5

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Z _n	A	B	R ¹	Fp ⁰
452	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃	C ₂ H ₅ -C(CH ₃) ₂	
453	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃	(CH ₃) ₃ C-CH ₂ -	
454	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃	(CH ₃) ₂ CH-C(CH ₃) ₂	
455	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃	CH ₂ =CH-(CH ₂) ₈ -	
456	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃	C ₁	
457	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃	C ₄ H ₉ -CH-C ₂ H ₅	
458	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃	C ₁	
459	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃	H ₃ C-O	
460	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃	H ₃ C-O	

5
10
15
20
25
30
35
40
45
50

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Z _n	A	B	R ¹	Fp ^o
461	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃		5
462	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃		10
463	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃		15
464	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃		20
465	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃		25
466	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃		30
467	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃		35

55

5
10
15
20
25
30
35
40
45
50
55

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Z _n	A	B	R ¹	Fp ^o
468	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	H		
469	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	H		
470	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	H		
471	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	H		
472	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	H		
473	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	H		
474	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	H		

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ¹	Fp ^o
475	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	H		5
476	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	H		10
477	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	H		15
478	CH ₃	CH ₃	6-CH ₃	-	-(CH ₂) ₄ -	CH ₃	20
479	CH ₃	CH ₃	6-CH ₃	-	-(CH ₂) ₄ -	(CH ₃) ₂ CH-	25
480	CH ₃	CH ₃	6-CH ₃	-	-(CH ₂) ₄ -	(CH ₃) ₃ C-	30
481	CH ₃	CH ₃	6-CH ₃	-	-(CH ₂) ₄ -	CH ₃ -(CH ₂) ₃ -	35
482	CH ₃	CH ₃	6-CH ₃	-	-(CH ₂) ₄ -	C ₂ H ₅ -C(CH ₃) ₂	40
483	CH ₃	CH ₃	6-CH ₃	-	-(CH ₂) ₄ -	(CH ₃) ₃ C-CH ₂ -	45
484	CH ₃	CH ₃	6-CH ₃	-	-(CH ₂) ₄ -	(CH ₃) ₂ CH-C(CH ₃) ₂	50
485	CH ₃	CH ₃	6-CH ₃	-	-(CH ₂) ₄ -	CH ₂ =CH-(CH ₂) ₈ -	55

50 4 8 36 30 26 20 15 10 5

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Z _n	A	B	R ¹	Fp ⁰
486	CH ₃	CH ₃	6-CH ₃	- (CH ₂) ₄ -			
487	CH ₃	CH ₃	6-CH ₃	- (CH ₂) ₄ -			C ₄ H ₉ -CH-C ₂ H ₅
488	CH ₃	CH ₃	6-CH ₃	- (CH ₂) ₄ -			
489	CH ₃	CH ₃	6-CH ₃	- (CH ₂) ₄ -			H ₃ C-O-
490	CH ₃	CH ₃	6-CH ₃	- (CH ₂) ₄ -			H ₃ C-O-
491	CH ₃	CH ₃	6-CH ₃	- (CH ₂) ₄ -			H ₃ C-S-
492	CH ₃	CH ₃	6-CH ₃	- (CH ₂) ₄ -			H ₃ C-CH ₂ -
493	CH ₃	CH ₃	6-CH ₃	- (CH ₂) ₄ -			
494	CH ₃	CH ₃	6-CH ₃	- (CH ₂) ₄ -			

55

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Z _n	A	B	R ¹	Fp ^o
495	CH ₃	CH ₃	6-CH ₃		-(CH ₂) ₄ -		
496	CH ₃	CH ₃	6-CH ₃		-(CH ₂) ₄ -		
497	CH ₃	CH ₃	6-CH ₃		-(CH ₂) ₄ -		
498	CH ₃	CH ₃	6-CH ₃		-(CH ₂) ₄ -		
499	CH ₃	CH ₃	6-CH ₃		-(CH ₂) ₄ -		
500	CH ₃	CH ₃	6-CH ₃		-(CH ₂) ₄ -		
501	CH ₃	CH ₃	6-CH ₃		-(CH ₂) ₄ -		
						OCH ₃	6
							10
							15
							20
							25
							30
							35
							40
							45
							50
							55

Tabelle 2 (Fortsetzung)

Bsp. -Nr.	X	Y	Z _n	A	B	R ¹	Fp ^a				
								45	46	47	48
502	CH ₃	CH ₃	6-CH ₃		- (CH ₂) ₄ -			5	10	15	20
503	CH ₃	CH ₃	6-CH ₃		- (CH ₂) ₄ -			5	10	15	20
504	CH ₃	CH ₃	6-CH ₃		- (CH ₂) ₄ -		C1	5	10	15	20
505	CH ₃	CH ₃	6-CH ₃		- (CH ₂) ₄ -		C1	5	10	15	20
506	CH ₃	CH ₃	6-CH ₃		- (CH ₂) ₄ -		C1	5	10	15	20
507	CH ₃	CH ₃	6-CH ₃		- (CH ₂) ₄ -			5	10	15	20
508	CH ₃	CH ₃	6-CH ₃		- (CH ₂) ₅ -		CH ₃	5	10	15	20
509	CH ₃	CH ₃	6-CH ₃		- (CH ₂) ₅ -		(CH ₃) ₂ CH-	5	10	15	20
510	CH ₃	CH ₃	6-CH ₃		- (CH ₂) ₅ -		(CH ₃) ₃ C-	5	10	15	20
511	CH ₃	CH ₃	6-CH ₃		- (CH ₂) ₅ -		CH ₃ -(CH ₂) ₃ -	5	10	15	20

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R1	Fp ⁰					
							6	10	15	20	25	30
512	CH ₃	CH ₃	6-CH ₃	- (CH ₂) ₅ -	C ₂ H ₅ -C(CH ₃) ₂							
513	CH ₃	CH ₃	6-CH ₃	- (CH ₂) ₅ -	(CH ₃) ₂ CH-C(CH ₃) ₂							
514	CH ₃	CH ₃	6-CH ₃	- (CH ₂) ₅ -	CH ₂ =CH-(CH ₂) ₈ -							
515	CH ₃	CH ₃	6-CH ₃	- (CH ₂) ₅ -	C ₄ H ₉ -CH-C ₂ H ₅							
516	CH ₃	CH ₃	6-CH ₃	- (CH ₂) ₅ -	C ₁ CH ₃							
517	CH ₃	CH ₃	6-CH ₃	- (CH ₂) ₅ -	C ₁ CH ₃							
518	CH ₃	CH ₃	6-CH ₃	- (CH ₂) ₅ -	C ₁ CH ₃							
519	CH ₃	CH ₃	6-CH ₃	- (CH ₂) ₅ -	H ₃ C-O-CH ₃							
520	CH ₃	CH ₃	6-CH ₃	- (CH ₂) ₅ -	H ₃ C-O-CH ₃							

Tabelle 2 (Fortsetzung)

Bsp. -Nr.	X	Y	Z _n	A	B	R ¹	R ⁹
521	CH ₃	CH ₃	6-CH ₃	-(CH ₂) ₅ -		H ₃ C C=C\	H ₃ C
522	CH ₃	CH ₃	6-CH ₃	-(CH ₂) ₅ -		H ₃ C-S-CH ₂ -	
523	CH ₃	CH ₃	6-CH ₃	-(CH ₂) ₅ -			CH ₃
524	CH ₃	CH ₃	6-CH ₃	-(CH ₂) ₅ -			C ₂ H ₅
525	CH ₃	CH ₃	6-CH ₃	-(CH ₂) ₅ -			OCH ₃
526	CH ₃	CH ₃	6-CH ₃	-(CH ₂) ₅ -			OCH ₃
527	CH ₃	CH ₃	6-CH ₃	-(CH ₂) ₅ -			H ₃ CO

5
10
15
20
25
30
35
40
45
50
55

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ¹	Fp ⁰
528	CH ₃	CH ₃	6-CH ₃		-(CH ₂) ₅ -		
529	CH ₃	CH ₃	6-CH ₃		-(CH ₂) ₅ -		
530	CH ₃	CH ₃	6-CH ₃		-(CH ₂) ₅ -		
531	CH ₃	CH ₃	6-CH ₃		-(CH ₂) ₅ -		
532	CH ₃	CH ₃	6-CH ₃		-(CH ₂) ₅ -		
533	CH ₃	CH ₃	6-CH ₃		-(CH ₂) ₅ -		

5
10
15
20
25
30
35
40
45
50
55

Tabelle 2 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	R1	Fp°
534	CH ₃	CH ₃	6-CH ₃	- (CH ₂) ₅ -	C1	
535	CH ₃	CH ₃	6-CH ₃	- (CH ₂) ₅ -	C1	
536	CH ₃	CH ₃	6-CH ₃	- (CH ₂) ₅ -	C1	
537	CH ₃	CH ₃	6-CH ₃	- (CH ₂) ₅ -		

Tabelle 3

5
10
15
20
25
30
35
40
45
50

Bsp. -Nr.	X	Y	Z _n	A	B	R ²	Fp ⁰ C
538	C1	C1	H	CH ₃	CH ₃	CH ₃	CH ₃
539	C1	C1	H	CH ₃	CH ₃	C ₂ H ₅	(CH ₃) ₂ CH-
540	C1	C1	H	CH ₃	CH ₃	(CH ₃) ₂ CH-	(CH ₃) ₂ CH-CH ₂ -
541	C1	C1	H	CH ₃	CH ₃	C ₂ H ₅ -CH-	
542	C1	C1	H	CH ₃	CH ₃	CH ₃	CH ₃
543	C1	C1	H	CH ₃	CH ₃	(CH ₃) ₃ C-	(CH ₃) ₃ C-CH ₂ -
544	C1	C1	H	CH ₃	CH ₃		
545	C1	C1	H	CH ₃	CH ₃	cyclohexane	
546	C1	C1	H	CH ₃	CH ₃	C ₂ H ₅ O-	
547	C1	C1	H	CH ₃	CH ₃	C ₂ H ₅ O-	C ₂ H ₅ O-

55

Tabelle 3 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ²	R ⁰ C
548	C1	C1	H	CH ₃	CH ₃	CH ₃	cyclohexyl
549	C1	C1	H	CH ₃	CH ₃	CH ₃	CH ₂ CH ₅ -O-CH ₂ -CH(CH ₃)CH ₃
550	C1	C1	H	CH ₃	CH ₃	CH ₃	(CH ₃) ₂ CH-O-CH ₂ -CH ₃
551	C1	C1	H	CH ₃	CH ₃	CH ₃	CH ₃ H ₇ -O-CH ₂ -CH(CH ₃)CH ₃
552	C1	C1	H	CH ₃	CH ₃	CH ₃	CH ₂ CH ₅ -O-CH ₂ -CH(CH ₃)CH ₃
553	C1	C1	H		CH ₃	CH ₃	CH ₃
554	C1	C1	H		CH ₃	CH ₃	CH ₂ CH ₅
555	C1	C1	H		CH ₃	CH ₃	(CH ₃) ₂ CH-
556	C1	C1	H		CH ₃	CH ₃	(CH ₃) ₂ CH-CH ₂ -
557	C1	C1	H		CH ₃	CH ₃	CH ₂ CH ₅ -CH-
					CH ₃	CH ₃	CH ₃
558	C1	C1	H		CH ₃	CH ₃	(CH ₃) ₃ C-
559	C1	C1	H		CH ₃	CH ₃	(CH ₃) ₃ C-CH ₂ -

Tabelle 3 (Fortsetzung)

	Bsp. -Nr.	X	Y	Zn	A	B	R2	Fp°C
560	C1	C1	H		C2H5	CH3		
561	C1	C1	H		C2H5	CH3	<chem>C2H5OCC</chem>	
562	C1	C1	H		C2H5	CH3	<chem>C2H5OCOC</chem>	
563	C1	C1	H		C2H5	CH3	<chem>c1ccccc1</chem>	
564	C1	C1	H		C2H5	CH3	<chem>C2H5OC(C)C</chem>	
565	C1	C1	H		C2H5	CH3	<chem>(CH3)2CH-O-C2H5</chem>	
566	C1	C1	H		C2H5	CH3	<chem>C3H7OC(C)C</chem>	
567	C1	C1	H		C2H5	CH3	<chem>C2H5OC(C)C2H5</chem>	
568	C1	C1	H		C2H5	CH3		
569	C1	C1	H		C2H5	CH3		
570	C1	C1	H		C2H5	CH3	<chem>(CH3)2CH-</chem>	
571	C1	C1	H		C2H5	CH3	<chem>(CH3)2CH-CH2-</chem>	

Tabelle 3 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ²	R ³ 0°C
572	C1	C1	H	C ₂ H ₅	C ₂ H ₅	C ₂ H ₅ -CH- CH ₃	
							5
							10
							15
							20
							25
							30
							35
							40
							45
							50
573	C1	C1	H	C ₂ H ₅	C ₂ H ₅	(CH ₃) ₃ C-	
574	C1	C1	H	C ₂ H ₅	C ₂ H ₅	(CH ₃) ₃ C-CH ₂ -	
575	C1	C1	H	C ₂ H ₅	C ₂ H ₅	cyclohexane	
576	C1	C1	H	C ₂ H ₅	C ₂ H ₅	C ₂ H ₅ O-	
577	C1	C1	H	C ₂ H ₅	C ₂ H ₅	C ₂ H ₅ O-	
578	C1	C1	H	C ₂ H ₅	C ₂ H ₅	cyclohexane	
579	C1	C1	H	C ₂ H ₅	C ₂ H ₅	C ₂ H ₅ -O-	
580	C1	C1	H	C ₂ H ₅	C ₂ H ₅	(CH ₃) ₂ CH-O-	
581	C1	C1	H	C ₂ H ₅	C ₂ H ₅	C ₃ H ₇ -O-	
582	C1	C1	H	C ₂ H ₅	C ₂ H ₅	C ₂ H ₅ -O-	

Tabelle 3 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ²	Fp° C
583	C1	C1	H	C ₃ H ₇	CH ₃	CH ₃	
584	C1	C1	H	C ₃ H ₇	CH ₃	C ₂ H ₅	
585	C1	C1	H	C ₃ H ₇	CH ₃	(CH ₃) ₂ CH-	
586	C1	C1	H	C ₃ H ₇	CH ₃	(CH ₃) ₂ CH-CH ₂ -	
587	C1	C1	H	C ₃ H ₇	CH ₃	C ₂ H ₅ -CH- CH ₃	
588	C1	C1	H	C ₃ H ₇	CH ₃	(CH ₃) ₃ C-	
589	C1	C1	H	C ₃ H ₇	CH ₃	(CH ₃) ₃ C-CH ₂ -	
590	C1	C1	H	C ₃ H ₇	CH ₃	cyclohexyl	
591	C1	C1	H	C ₃ H ₇	CH ₃	C ₂ H ₅ O-	
592	C1	C1	H	C ₃ H ₇	CH ₃	C ₂ H ₅ O-	
593	C1	C1	H	C ₃ H ₇	CH ₃	phenyl	
594	C1	C1	H	C ₃ H ₇	CH ₃	C ₂ H ₅ -O-	
						CH ₃	

Tabelle 3 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R2	Fp° C
595	C1	C1	H	C3H7	CH3	(CH3)2CH-O-CH-	5
596	C1	C1	H	C3H7	CH3	C3H7-O-CH-	10
597	C1	C1	H	C3H7	CH3	C2H5-O-CH-	15
						C2H5-	20
598	C1	C1	H	i-C3H7	CH3	CH3	25
699	C1	C1	H	i-C3H7	CH3	C2H5	30
600	C1	C1	H	i-C3H7	CH3	(CH3)2CH-	35
601	C1	C1	H	i-C3H7	CH3	(CH3)2CH-CH2-	40
602	C1	C1	H	i-C3H7	CH3	C2H5-CH-	45
						CH3	50
603	C1	C1	H	i-C3H7	CH3	(CH3)3C-	55
604	C1	C1	H	i-C3H7	CH3	(CH3)3C-CH2-	60
605	C1	C1	H	i-C3H7	CH3	cyclohexyl	65
606	C1	C1	H	i-C3H7	CH3	C2H5O-	70

Tabelle 3 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ²	Fp ^a C
607	C1	C1	H	i-C ₃ H ₇	CH ₃	C ₂ H ₅ O-	15
608	C1	C1	H	i-C ₃ H ₇	CH ₃	Ph	10
609	C1	C1	H	i-C ₃ H ₇	CH ₃	C ₂ H ₅ -O-	5
610	C1	C1	H	i-C ₃ H ₇	CH ₃	(CH ₃) ₂ CH-O-	20
611	C1	C1	H	i-C ₃ H ₇	CH ₃	CH ₃	15
612	C1	C1	H	i-C ₃ H ₇	CH ₃	C ₂ H ₅ -O-	10
613	C1	C1	H			-(CH ₂) ₄ -	5
614	C1	C1	H			CH ₃	35
615	C1	C1	H			C ₂ H ₅	40
616	C1	C1	H			(CH ₃) ₂ CH-	45
617	C1	C1	H			(CH ₃) ₂ CH-CH ₂ -	40
						C ₂ H ₅ -CH-	40
						CH ₃	50

Tabelle 3 (Fortsetzung)

Bsp.-Nr.	X	Y	Z _n	A	B	R ²	R ³ C
618	C1	C1	H		-(CH ₂) ₄ -	(CH ₃) ₃ C-	
619	C1	C1	H		-(CH ₂) ₄ -	(CH ₃) ₃ C-CH ₂ -	
620	C1	C1	H		-(CH ₂) ₄ -		
621	C1	C1	H		-(CH ₂) ₄ -	C ₂ H ₅ O-	
622	C1	C1	H		-(CH ₂) ₄ -	C ₂ H ₅ O-	
623	C1	C1	H		-(CH ₂) ₄ -		
624	C1	C1	H		-(CH ₂) ₄ -	C ₂ H ₅ -O-	
625	C1	C1	H		-(CH ₂) ₄ -	(CH ₃) ₂ CH-	
626	C1	C1	C1	H	-(CH ₂) ₄ -	C ₃ H ₇ -O-	
627	C1	C1	C1	H	-(CH ₂) ₄ -	C ₂ H ₅ -O-	

5 10 15 20 25 30 35 40 45 50

Tabelle 3 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R2	Fp°C
628	C1	C1	H	-(CH ₂) ₅ -	CH ₃		5
629	C1	C1	H	-(CH ₂) ₅ -	C ₂ H ₅		10
630	C1	C1	H	-(CH ₂) ₅ -	(CH ₃) ₂ CH-		15
631	C1	C1	H	-(CH ₂) ₅ -	(CH ₃) ₂ CH-CH ₂ -		20
632	C1	C1	H	-(CH ₂) ₅ -	C ₂ H ₅ -CH-		25
					CH ₃		30
633	C1	C1	H	-(CH ₂) ₅ -	(CH ₃) ₃ C-		35
634	C1	C1	H	-(CH ₂) ₅ -	(CH ₃) ₃ C-CH ₂ -		40
635	C1	C1	H	-(CH ₂) ₅ -	cyclohexane		45
636	C1	C1	H	-(CH ₂) ₅ -	C ₂ H ₅ O-		50
637	C1	C1	H	-(CH ₂) ₅ -	C ₂ H ₅ O-CH ₂ -O-		55
638	C1	C1	H	-(CH ₂) ₅ -	cyclohexyl		60
639	C1	C1	H	-(CH ₂) ₅ -	C ₂ H ₅ -O-CH ₂ -CH ₃		65

Tabelle 3 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ²	Fp ^o C
640	C1	C1	H	-	-(CH ₂) ₅ -	(CH ₃) ₂ CH-O-	5
641	C1	C1	H	-	-(CH ₂) ₅ -	C ₃ H ₇ -O-	10
642	C1	C1	H	-	-(CH ₂) ₅ -	C ₂ H ₅ -O-	15
643	C1	C1	-	6-C1	H	H	CH ₃
644	C1	C1	-	6-C1	CH ₃	H	CH ₃
645	C1	C1	-	6-C1	CH ₃	H	CH(CH ₃) ₂
646	C1	C1	-	6-C1	CH ₃	H	CH ₂ C(CH ₃) ₃
647	CH ₃	CH ₃	H	-	H	H	CH ₃
648	CH ₃	CH ₃	H	-	CH ₃	H	CH ₃
649	CH ₃	CH ₃	H	-	CH ₃	H	CH(CH ₃) ₂
650	CH ₃	CH ₃	H	-	CH ₃	H	CH ₂ C(CH ₃) ₃
651	CH ₃	CH ₃	-	6-CH ₃	H	H	CH ₃
652	CH ₃	CH ₃	-	6-CH ₃	H	H	C ₂ H ₅
653	CH ₃	CH ₃	-	6-CH ₃	H	H	CH(CH ₃) ₂
654	CH ₃	CH ₃	6-CH ₃	H	H	-	

50 45 40 35 30 25 20 15 10 5

55

5
10
15
20
25
30
35
40
45
50
55

Tabelle 3 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ²	Fp°C
655	CH ₃	CH ₃	6-CH ₃	H	H	CH ₂ -C(CH ₃) ₃	
656	CH ₃	CH	6-CH ₃	H	H	(CH ₂) ₂ O-C ₂ H ₅	
657	CH ₃	CH ₃	6-CH ₃	H	H		
658	CH ₃	CH ₃	6-CH ₃	H	H		
659	CH ₃	CH ₃	6-CH ₃	CH ₃	H	CH ₃	
660	CH ₃	CH ₃	6-CH ₃	CH ₃	H	C ₂ H ₅	
661	CH ₃	CH ₃	6-CH ₃	CH ₃	H	CH(CH ₃) ₂	
662	CH ₃	CH ₃	6-CH ₃	CH ₃	H		
663	CH ₃	CH ₃	6-CH ₃	CH ₃	H	CH ₂ C(CH ₃) ₃	
664	CH ₃	CH ₃	6-CH ₃	CH ₃	H	(CH ₂) ₂ O-C ₂ H ₅	
665	CH ₃	CH ₃	6-CH ₃	CH ₃	H		

5
10
15
20
25
30
35
40
45
50
55

Tabelle 3 (Fortsetzung)

Bsp.-Nr.	X	Y	Z _n	A	B	R ²	Fp° C
666	CH ₃	CH ₃	6-CH ₃	CH ₃	H		5
667	CH ₃	CH ₃	6-CH ₃	CH(CH ₃) ₂	H	CH ₃	10
668	CH ₃	CH ₃	6-CH ₃	CH(CH ₃) ₂	H	C ₂ H ₅	15
669	CH ₃	CH ₃	6-CH ₃	CH(CH ₃) ₂	H	CH(CH ₃) ₂	20
670	CH ₃	CH ₃	6-CH ₃	CH(CH ₃) ₂	H		25
671	CH ₃	CH ₃	6-CH ₃	CH(CH ₃) ₂	H	CH ₂ C(CH ₃) ₃	30
672	CH ₃	CH ₃	6-CH ₃	CH(CH ₃) ₂	H	(CH ₂) ₂ O-C ₂ H ₅	35
673	CH ₃	CH ₃	6-CH ₃	CH(CH ₃) ₂	H		40
674	CH ₃	CH ₃	6-CH ₃	CH(CH ₃) ₂	H		45
675	CH ₃	CH ₃	6-CH ₃	CH ₂ CH(CH ₃) ₂	H	CH ₃	50
676	CH ₃	CH ₃	6-CH ₃	CH ₂ CH(CH ₃) ₂	H	C ₂ H ₅	55

Tabelle 3 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ²	Fp°C
677	CH ₃	CH ₃	6-CH ₃	CH ₂ CH(CH ₃) ₂	H	CH(CH ₃) ₂	
678	CH ₃	CH ₃	6-CH ₃	CH ₂ CH(CH ₃) ₂	H	CH ₂ CH(CH ₃) ₂	
679	CH ₃	CH ₃	6-CH ₃	CH ₂ CH(CH ₃) ₂	H		
680	CH ₃	CH ₃	6-CH ₃	CH ₂ CH(CH ₃) ₂	H	CH ₂ C(CH ₃) ₃	
681	CH ₃	CH ₃	6-CH ₃	CH ₂ CH(CH ₃) ₂	H	(CH ₂) ₂ O-C ₂ H ₅	
682	CH ₃	CH ₃	6-CH ₃	CH ₂ CH(CH ₃) ₂	H		
683	CH ₃	CH ₃	6-CH ₃	CH ₂ CH(CH ₃) ₂	H		
684	CH ₃	CH ₃	6-CH ₃	(CH ₂) ₂ -SCH ₃	H	CH ₃	
685	CH ₃	CH ₃	6-CH ₃	(CH ₂) ₂ -SCH ₃	H	C ₂ H ₅	

5
10
15
20
25
30
35
40
45
50

Tabelle 3 (Fortsetzung)

Bsp.-Nr.	X	Y	Z _n	A	B	R ²	Fp °C
686	CH ₃	CH ₃	6-CH ₃	(CH ₂) ₂ -SCH ₃	H	CH(CH ₃) ₂	
687	CH ₃	CH ₃	6-CH ₃	(CH ₂) ₂ -SCH ₃	H		
688	CH ₃	CH ₃	6-CH ₃	(CH ₂) ₂ -SCH ₃	H	CH ₂ C(CH ₃) ₃	
689	CH ₃	CH ₃	6-CH ₃	(CH ₂) ₂ -SCH ₃	H	(CH ₂) ₂ O-C ₂ H ₅	
690	CH ₃	CH ₃	6-CH ₃	(CH ₂) ₂ -SCH ₃	H		
691	CH ₃	CH ₃	6-CH ₃	(CH ₂) ₂ -SCH ₃	H		
692	CH ₃	H	6-CH ₃	CH ₃	CH ₃	CH ₃	
693	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃	C ₂ H ₅	140
694	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃	(CH ₃) ₂ CH-	161-163
695	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃	(CH ₃) ₂ CH-CH ₂ -	
696	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃	C ₂ H ₅ -CH-	
						CH ₃	98

55

50 45 40 35 30 25 20 15 10 5

Tabelle 3 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ²	Fp° C
697	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃	(CH ₃) ₃ C-	
698	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃	(CH ₃) ₃ C-CH ₂ -	
699	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃	cyclohexyl	
700	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃	C ₂ H ₅ O-	
701	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃	C ₂ H ₅ O-	
702	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃	cyclohexyl	
703	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃	C ₂ H ₅ -O-	
704	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃	(CH ₃) ₂ CH-O-	
705	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃	C ₃ H ₇ -O-	
706	CH ₃	CH ₃	6-CH ₃	CH ₃	CH ₃	C ₂ H ₅ -O-	

Tabelle 3 (Fortsetzung)

Bsp.-Nr.	X	Y	Z _n	A	B	R ²	R ³ C
707	CH ₃	H	6-CH ₃	C ₂ H ₅	CH ₃	CH ₃	C ₂ H ₅
708	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	(CH ₃) ₂ CH-	(CH ₃) ₂ CH-CH ₂ -
709	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	(CH ₃) ₂ CH-	(CH ₃) ₂ CH-CH ₂ -
710	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	C ₂ H ₅ -CH-	C ₂ H ₅ -CH-
711	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	CH ₃	CH ₃
				CH ₃			
712	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	(CH ₃) ₃ C-	
713	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	(CH ₃) ₃ C-CH ₂ -	
714	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃		CH ₃
715	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	C ₂ H ₅ O-	
716	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	C ₂ H ₅ O-	
717	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃		CH ₃
718	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	C ₂ H ₅ -O-	C ₂ H ₅ -O-
				CH ₃			CH ₃

50 45 40 35 30 25 20 15 10 5

55

Tabelle 3 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ²	Fp°C
60	45	40	35	30	25	20	15
65	45	40	35	30	25	20	15
719	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	(CH ₃) ₂ CH-O-	5
720	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	C ₃ H ₇ -O-	6
721	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	CH ₃	C ₂ H ₅ -O-	7
722	CH ₃	H	6-CH ₃	C ₂ H ₅	C ₂ H ₅	CH ₃	8
723	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅	C ₂ H ₅	9
724	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅	(CH ₃) ₂ CH-	10
725	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅	(CH ₃) ₂ CH-CH ₂ -	11
726	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅	C ₂ H ₅ -CH-	12
727	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅	(CH ₃) ₃ C-	13
728	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅	(CH ₃) ₃ C-CH ₂ -	14
729	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅		15

5
10
15
20
25
30
35
40
45
50
55

Tabelle 3 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ²	Fp° C
730	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅	C ₂ H ₅ -O-CH-	5
731	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅	C ₂ H ₅ -O-CH-	10
732	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅	cyclohexyl	15
733	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅	C ₂ H ₅ -O-CH-	20
734	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅	(CH ₃) ₂ CH-O-CH-	25
735	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅	C ₃ H ₇ -O-CH-	30
736	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅	C ₂ H ₅ -O-CH-	35
737	CH ₃	H	6-CH ₃	C ₃ H ₇	CH ₃	CH ₃	40
738	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃	C ₂ H ₅	45
739	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃	(CH ₃) ₂ CH-	50
740	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃	(CH ₃) ₂ CH-CH ₂ -	55
741	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃	C ₂ H ₅ -CH-	60

55 60 45 40 35 30 25 20 15 10 5

Tabelle 3 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ²	Fp° C
742	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃	(CH ₃) ₃ C-	
743	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃	(CH ₃) ₃ C-CH ₂ -	
744	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃	cyclohexane	
745	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	C ₂ H ₅	C ₂ H ₅ O-	
746	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃	C ₂ H ₅ O-	
747	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃	cyclohexane	
748	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃	C ₂ H ₅ -O-	
749	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃	(CH ₃) ₂ CH-O-	
750	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃	CH ₃ -O-	
751	CH ₃	CH ₃	6-CH ₃	C ₃ H ₇	CH ₃	C ₂ H ₅ -O-	
752	CH ₃	H	6-CH ₃	i-C ₃ H ₇	CH ₃	CH ₃	

5
10
15
20
25
30
35
40
45
50

Tabelle 3 (Fortsetzung)

Bsp.-Nr.	X	Y	Z _n	A	B	R ²	Fp °C
753	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃	C ₂ H ₅	
754	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃	(CH ₃) ₂ CH-	
755	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃	(CH ₃) ₂ CH-CH ₂ -	
756	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃	C ₂ H ₅ -CH- CH ₃	
						(CH ₃) ₃ C-	
						(CH ₃) ₃ C-CH ₂ -	
757	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃		
758	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃		
759	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃	cyclohexane	
760	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃	C ₂ H ₅ O-	
761	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃	C ₂ H ₅ O-CH-	
762	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃	cyclohexyl	
763	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	CH ₃	C ₂ H ₅ -O-CH(CH ₃) ₂	

55

Tabelle 3 (Fortsetzung)

50 45 40 35 30 25 20 15 10 5

Tabelle 3 (Fortsetzung)

Bsp.-Nr.	X	Y	Zn	A	B	R ²	Fp° C
775	CH ₃	CH ₃	6-CH ₃	- (CH ₂) ₄ -	C ₂ H ₅ O-	CH ₃	
776	CH ₃	CH ₃	6-CH ₃	- (CH ₂) ₄ -	C ₂ H ₅ O-	C ₂ H ₅	
777	CH ₃	CH ₃	6-CH ₃	- (CH ₂) ₄ -	cyclohexyl	(CH ₃) ₂ CH-	
778	CH ₃	CH ₃	6-CH ₃	- (CH ₂) ₄ -	C ₂ H ₅ -O-	(CH ₃) ₂ CH-	
779	CH ₃	CH ₃	6-CH ₃	- (CH ₂) ₄ -	C ₂ H ₅ -O-	C ₃ H ₇ -	
780	CH ₃	CH ₃	6-CH ₃	- (CH ₂) ₄ -	C ₂ H ₅ -O-	C ₃ H ₇ -O-	
781	CH ₃	CH ₃	6-CH ₃	- (CH ₂) ₄ -	C ₂ H ₅ -O-	C ₃ H ₇ -O-	
782	CH ₃	H	6-CH ₃	- (CH ₂) ₅ -	C ₂ H ₅ -	C ₂ H ₅	
783	CH ₃	CH ₃	6-CH ₃	- (CH ₂) ₅ -	(CH ₃) ₂ CH-	(CH ₃) ₂ CH-	
784	CH ₃	CH ₃	6-CH ₃	- (CH ₂) ₅ -	(CH ₃) ₂ CH-	(CH ₃) ₂ CH-	
785	CH ₃	CH ₃	6-CH ₃	- (CH ₂) ₅ -	(CH ₃) ₂ CH-	(CH ₃) ₂ CH-	
786	CH ₃	CH ₃	6-CH ₃	- (CH ₂) ₅ -	C ₂ H ₅ -CH-	C ₂ H ₅ -CH-	

Tabelle 3 (Fortsetzung)

Bsp. -Nr.	X	Y	Zn	A	B	R2	Fp°C
787	CH3	CH3	6-CH3	- (CH2)5-	(CH3)3C-		
788	CH3	CH3	6-CH3	- (CH2)5-	(CH3)3C-CH2-		
789	CH3	CH3	6-CH3	- (CH2)5-			
790	CH3	CH3	6-CH3	- (CH2)5-			
791	CH3	CH3	6-CH3	- (CH2)5-			
792	CH3	CH3	6-CH3	- (CH2)5-			
793	CH3	CH3	6-CH3	- (CH2)5-			
794	CH3	CH3	6-CH3	- (CH2)5-			
795	CH3	CH3	6-CH3	- (CH2)5-			
796	CH3	CH3	6-CH3	- (CH2)5-			

Beispiel (III)

138 g (0,5 Mol) N-(2,4,6-Trimethylphenyl-acetyl)-valin werden in 500 ml Methanol suspendiert, mit 73
15 ml (0,55 Mol) Dimethoxypropan versetzt und nach Zugabe von 4,75 g (25 mmol) p-Toluolsulfonsäure-
monohydrat und Dünnschicht-Chromatographie (DC)-Kontrolle unter Rückfluß erhitzt.

Nach Abrotieren des Lösungsmittels nimmt man den Rückstand in Methylchlorid auf, wäscht mit
Natriumhydrogencarbonat-Lösung, trocknet und rotiert ein.

Ausbeute: 127,6 g (= 88 % d.Th.)

20

Beispiel (IIa1)

35 58,8 g (0,5 Mol) L-Valin in 720 ml Wasser werden mit 10 g (0,25 Mol) NaOH-Plätzchen versetzt.
Anschließend werden synchron 30 g (0,75 Mol) NaOH-Plätzchen in 150 ml Wasser und 98,2 g (0,5 Mol)
Mesitylenessigsäurechlorid so zugetropft, daß die Temperatur 40 °C, nicht überschreitet. Nach 1 h wird bei
0-20 °C mit konz. Salzsäure angesäuert, das Produkt abgesaugt und i.Vak. bei 70 °C über Diphosphorpent-
oxid getrocknet.

40 Ausbeute: 138 g (= 100 % d.Th.) Fp. 140 °C.

Die erfindungsgemäßen Wirkstoffe der Formel (I) eignen sich bei guter Pflanzenverträglichkeit und
günstiger Warmblütertoxizität zur Bekämpfung von tierischen Schädlingen, insbesondere der Klasse Arach-
nida und der Ordnung Milben (Acarina), die in der Landwirtschaft, in Forsten, im Vorrats- und Materialschutz
sowie auf dem Hygienesektor vorkommen. Sie sind gegen normal sensible und resistente Artn sowie gegen
alle oder einzelne Entwicklungsstadien wirksam. Zu den oben erwähnten Schädlingen gehören:

Aus der Ordnung der Acarina z.B. *Acarus siro*, *Argas spp.*, *Ornithodoros spp.*, *Dermanyssus gallinae*,
Eriophyes ribis, *Phyllocoptura oleivora*, *Boophilus spp.*, *Rhipicephalus spp.*, *Amblyomma spp.*, *Hyalomma*
spp., *Ixodes spp.*, *Psoroptes spp.*, *Chorioptes spp.*, *Sarcopetes spp.*, *Tarsonemus spp.*, *Bryobia praetiosa*,
Panonychus spp., *Tetranychus spp.*.

50 Die erfindungsgemäßen Wirkstoffe wirken nicht nur gegen Pflanzen-, Hygiene- und Vorratsschädlinge,
sondern auch auf dem veterinärmedizinischen Sektor gegen tierische Parasiten (Ektoparasiten) wie Schild-
zecken, Lederzecken, Räudemilben, Laufmilben.

Sie sind gegen normalsensible und resistente Arten und Stämme, sowie gegen alle parasitierenden und
nicht parasitierenden Entwicklungsstadien der Ektoparasiten wirksam.

55 Die erfindungsgemäßen Wirkstoffe zeichnen sich durch eine hohe akarizide Wirksamkeit aus. Sie lassen
sich mit besonders gutem Erfolg gegen pflanzenschädigende Milben, wie wie beispielsweise gegen die
gemeine Spinnmilbe (*Tetranychus urticae*) einsetzen.

Die erfindungsgemäßen Wirkstoffe können weiterhin als Defoliants, Desiccants, Krautabtötungsmittel

und insbesondere als Unkrautvernichtungsmittel verwendet werden. Unter Unkraut im weitesten Sinne sind alle Pflanzen zu verstehen, die an Orten aufwachsen, wo sie unerwünscht sind. Ob die erfindungsgemäßen Stoffe als totale oder selektive Herbizide wirken, hängt im wesentlichen von der angewendeten Menge ab.

Charakteristisch für die erfindungsgemäßen Verbindungen ist, daß sie eine selektive Wirksamkeit gegen

- 6 monokotyle Unkräuter im Vor- und Nachlaufverfahren (Pre- und Postemergence) bei guter Kulturpflanzenverträglichkeit aufweisen.

Die erfindungsgemäßen Wirkstoffe können z.B. bei den folgenden Pflanzen verwendet werden:

- Monokotyle Unkräuter der Gattungen: Echinochloa, Setaria, Panicum, Digitaria, Phleum, Poa, Festuca, Eleusine, Bracharia, Lolium, Bromus, Avena, Cyperus, Sorghum, Agropyron, Cynodon, Monochoria, Fimbriostylis, Sagittaria, Eleocharis, Scirpus, Paspalum, Ischaemum, Sphenoclea, Dactyloctenium, Agrostis, Alopecurus, Apera.

Monokotyle Kulturen der Gattungen: Oryza, Zea, Triticum, Hordeum, Avena, Secale, Sorghum, Panicum, Saccharum, Ananas, Asparagus, Allium.

Dikotyle Kulturen der Gattungen: Gossypium, Glycine, Beta, Daucus, Phaseolus, Pisum, Solanum,

- 15 Linum, Ipomoea, Vicia, Nicotiana, Lycopersicon, Arachis, Brassica, Lactuca, Cucumis, Cucurbita.

Die Verwendung der erfindungsgemäßen Wirkstoffe ist jedoch keineswegs auf diese Gattungen beschränkt, sondern erstreckt sich in gleicher Weise auch auf andere Pflanzen.

- 20 Die Verbindungen eignen sich in Abhängigkeit von der Konzentration zur Totalunkrautbekämpfung z.B. auf Industrie- und Gleisanlagen und auf Wegen und Plätzen mit und ohne Baumbewuchs. Ebenso können die Verbindungen zur Unkrautbekämpfung in Dauerkulturen, z.B. Forst, Ziergehölz-, Obst-, Wein-, Citrus-, Nuß-, Bananen-, Kaffee-, Tee-, Gummi-, Ölbaum-, Kakao-, Beerenfrucht- und Hopfenanlagen und zur selektiven Unkrautbekämpfung in einjährigen Kulturen eingesetzt werden.

- 25 Dabei zeigen die erfindungsgemäßen Wirkstoffe neben einer hervorragenden Wirkung gegen Schadpflanzen gute Verträglichkeit gegenüber wichtigen Kulturpflanzen, wie z. B. Weizen, Baumwolle, Sojabohnen, Citrusfrüchten und Zuckerrüben, und können daher als selektive Unkrautbekämpfungsmittel eingesetzt werden.

- 30 Die Wirkstoffe können in die üblichen Formulierungen übergeführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Pasten, Granulate, Aerosole, Wirkstoff-imprägnierte Natur- und synthetische Stoffe, Feinstverkapselungen in polymeren Stoffen und in Hüllemassen für Saatgut, ferner in Formulierungen mit Brennsätzen, wie Räucherpatronen, -dosen, -spiralen u.ä., sowie ULV-Kalt- und Warmnebel-Formulierungen.

- 35 Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehenden verflüssigten Gasen und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln. Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol, oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylen oder Methylchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfaktionen, 40 Alkohole, wie Butanol oder Glycol sowie deren Ether und Ester, Ketone, wie Aceton, Methyläthylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser; mit verflüssigten gasförmigen Streckmitteln oder Trägerstoffen sind solche Flüssigkeiten gemeint, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosoltreibgas, wie Halogenkohlenwasserstoffe sowie Butan, Propan, Stickstoff und Kohlendioxid; als feste 45 Trägerstoffe kommen in Frage: z.B. natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate; als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem 50 Material wie Sägemehl, Kokosnusschalen, Maiskolben und Tabakstengel; als Emulgier und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäure-Ester, Polyoxyethylen-Fettalkohol-Ether, z.B. Alkylarylpolyglykol-Ether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate; als Dispergiermittel kommen in Frage: z.B. Lignin-Sulfitablauge und Methylcellulose.

- 55 Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulverige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.

Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gewichtsprozent Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.

Die erfindungsgemäßen Wirkstoffe können in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit anderen Wirkstoffen, wie Insektiziden, Lockstoffen, Sterilantien, Akariziden, Nematiziden, Herbiziden oder Fungiziden vorliegen. Zu den Insektiziden zählen beispielsweise Phosphorsäureester, Carbamate, Carbonsäureester, chlorierte Kohlen-

10 wasserstoffe, Phenylharnstoffe, durch Mikroorganismen hergestellte Stoffe u.a.

Die erfindungsgemäßen Wirkstoffe können ferner in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit Synergisten vorliegen. Synergisten sind Verbindungen, durch die die Wirkung der Wirkstoffe gesteigert wird, ohne daß der zugesetzte Synergist selbst aktiv wirksam sein muß.

15 Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann in weiten Bereichen variieren. Die Wirkstoffkonzentration der Anwendungsformen kann von 0,0000001 bis zu 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,0001 und 1 Gew.-% liegen.

Die Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen Weise.

Die erfindungsgemäßen Wirkstoffe eignen sich auch zur Bekämpfung von Milben, Zecken usw. auf dem 20 Gebiet der Tierhaltung und Viehzucht, wobei durch die Bekämpfung der Schädlinge bessere Ergebnisse, z.B. höhere Milchleistungen, höheres Gewicht, schöneres Tierfell, längere Lebensdauer usw. erreicht werden können.

Die Anwendung der erfindungsgemäßen Wirkstoffe geschieht auf diesem Gebiet in bekannter Weise wie durch orale Anwendung in Form von beispielsweise Tabletten, Kapseln, Tränken, Granulaten, durch 25 dermale bzw. äußerliche Anwendung in Form beispielsweise des Tauchens (Dippen), Sprühens (Sprayen), Aufgießens (pour-on and spot-on) und des Einpuderns sowie durch parenterale Anwendung in Form beispielsweise der Injektion sowie ferner durch das "feed-through"-Verfahren. Daneben ist auch eine Anwendung als Formkörper (Halsband, Ohrmarke) möglich.

Bei den im folgenden aufgeführten biologischen Beispielen wurden folgende Verbindungen als Ver-
30 gleichsstoffe eingesetzt:

A)

35

40 bekannt aus DE-A 2 361 084 und US-A 4 632 698

B)

45

50 bekannt aus DE-A 2 361 084 und US-A 4 632 698

C)

55

bekannt aus DE-A 2 361 084 und US-A 4 632 698

10
Beispiel A

Phaedon-Larven-Test

- 15 Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
- 20 Kohlblätter (*Brassica oleracea*) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Meerrettichblattkäfer-Larven (*Phaedon cochleariae*) besetzt, solange die Blätter noch feucht sind.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, daß alle Käfer-Larven abgetötet wurden; 0 % bedeutet, daß keine Käfer-Larven abgetötet wurden.
- 25 Bei diesem Test zeigen z.B. die folgenden Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik:
(1), (2), (32), (40), (278), (280), (290), (299).

30
Beispiel B

Plutella-Test

- Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
35 Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Kohlblätter (*Brassica oleracea*) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Raupen der Kohlschabe (*Plutella maculipennis*) besetzt, solange die Blätter noch feucht sind.
40 Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, daß alle Raupen abgetötet wurden; 0 % bedeutet, daß keine Raupen abgetötet wurden.
Bei diesem Test zeigen z.B. die folgenden Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik: (1), (32), (283), (299).

45
Beispiel C

Nephrotettix-Test

- 50 Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
- 55 Reiskeimlinge (*Oryza sativa*) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Larven der Grünen Reiszikade (*Neophotettix cincticeps*) besetzt, solange die Keimlinge noch feucht sind.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, daß alle Zikaden

abgetötet wurden; 0 % bedeutet, daß keine Zikaden abgetötet wurden.

Bei diesem Test zeigen z.B. die folgenden Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik: (1), (32), (43), (290), (292), (299), (301).

5 Beispiel D

Pre-emergence-Test

Lösungsmittel: 7 Gewichtsteile Aceton

10 Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Samen der Testpflanzen werden in normalen Boden ausgesät und nach 24 Stunden mit der Wirkstoffzubereitung begossen. Dabei hält man die Wassermenge pro Flächeneinheit zweckmäßigerweise konstant. Die Wirkstoffkonzentration in der Zubereitung spielt keine Rolle, entscheidend ist nur die Aufwandmenge des Wirkstoffs pro Flächeneinheit. Nach drei Wochen wird der Schädigungsgrad der Pflanzen bonitiert in % Schädigung im Vergleich zur Entwicklung der unbehandelten Kontrollen. Es bedeuten:

0 % = keine Wirkung (wie unbehandelte Kontrolle)

20 100 % = totale Vernichtung

Bei diesem Test zeigen z.B. die folgenden Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik: (32), (281), (283).

Beispiel E

25

Post-emergence-Test

Lösungsmittel: 7 Gewichtsteile Aceton

Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether

30 Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Mit der Wirkstoffzubereitung spritzt man Testpflanzen, welche eine Höhe von 5 - 15 cm haben so, daß die jeweils gewünschten Wirkstoffmengen pro Flächeneinheit ausgebracht werden. Die Konzentration der Spritzbrühe wird so gewählt, daß in 2000 l Wasser/ha die jeweils gewünschten Wirkstoffmengen ausgebracht werden. Nach drei Wochen wird der Schädigungsgrad der Pflanzen bonitiert in % Schädigung im Vergleich zur Entwicklung der unbehandelten Kontrolle. Es bedeuten:

0 % = keine Wirkung (wie unbehandelte Kontrolle)

100 % = totale Vernichtung

40 Bei diesem Test zeigen z.B. die folgenden Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik: (32), (281), (283).

Beispiel F

45 Tetranychus-Test (OP-resistant)

Lösungsmittel: 7 Gewichtsteile Dimethylformamid

Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether

50 Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschten Konzentrationen.

Bohnenpflanzen (*Phaseolus vulgaris*), die stark von allen Entwicklungsstadien der gemeinen Spinnmilbe oder Bohnenspinnmilbe (*Tetranychus urticae*) befallen sind, werden mit einer Wirkstoffzubereitung der gewünschten Konzentration tropfnäß gespritzt.

55 Nach der gewünschten Zeit wird die Wirkung in % bestimmt. Dabei bedeutet 100 %, daß alle Spinnmilben abgetötet wurden; 0 % bedeutet, daß keine Spinnmilben abgetötet wurden.

Bei diesem Test zeigen z.B. die folgenden Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik: (281), (283).

Patentansprüche**1. 3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I)**

5

10

in welcher

- X für Alkyl, Halogen, Alkoxy steht,
- Y für Wasserstoff, Alkyl, Halogen, Alkoxy, Halogenalkyl steht,
- Z für Alkyl, Halogen, Alkoxy steht,
- n für eine Zahl von 0-3 steht,
- R für Wasserstoff oder für die Gruppen
-CO-R¹, -CO-O-R² oder für E[®]
steht, in welchen
- R¹ für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylthioalkyl, Polyalkoxyalkyl und Cycloalkyl, das durch Heteroatome unterbrochen sein kann,
gegebenenfalls subst. Phenyl, gegebenenfalls substituiertes Phenylalkyl, substituiertes Hetaryl, substituiertes Phenoxyalkyl und substituiertes Hetaryloxyalkyl steht und
- R² für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl und gegebenenfalls substituiertes Phenyl oder Cycloalkyl steht,
- A für Wasserstoff, gegebenenfalls durch Halogen substituierte Alkyl, Alkenyl, Alkinyl, Alkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch Heteroatome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen-, Alkyl-, Halogenalkyl-, Alkoxy-, Nitro substituiertes Aryl, Arylalkyl oder Hetaryl steht,
- B für Wasserstoff, Alkyl oder Alkoxyalkyl steht,

oder worin

A und B gemeinsam mit dem Kohlenstoffatom an das sie gebunden sind einen Carbocyclus bilden und

E[®] für ein Metallionäquivalent oder einen Ammoniumion steht,

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

40

2. 3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I) gemäß Anspruch 1, in welcher

- X für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy steht,
- Y für Wasserstoff, C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy, C₁-C₃-Halogenalkyl steht,
- Z für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy steht,
- n für eine Zahl von 0-3 steht,
- R für Wasserstoff (la) oder für die Gruppen der Formel
-CO-R¹ (lb) oder -CO-O-R² (lc)

50

oder E[®] (ld)

steht, in welchen

- R¹ für gegebenenfalls durch Halogen substituiertes C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₂-C₈-alkyl, C₁-C₈-Alkylthio-C₂-C₈-alkyl, C₁-C₈-Polyalkoxy-C₂-C₈-alkyl und Cycloalkyl mit 3-8 Ringatomen, das durch Sauerstoff und/oder Schwefel unterbrochen sein kann, steht,

- für gegebenenfalls durch Halogen-, Nitro-, C₁-C₆-Alkyl-, C₁-C₆-Alkoxy-, C₁-C₆-Halogenalkyl-, C₁-C₆-Halogenalkoxy-substituiertes Phenyl;
- 5 für gegebenenfalls durch Halogen-, C₁-C₆-Alkyl-, C₁-C₆-Alkoxy-, C₁-C₆-Halogenalkyl-, C₁-C₆-Halogenalkoxy-substituiertes Phenyl-C₁-C₆-alkyl steht,
- für gegebenenfalls durch Halogen- und C₁-C₆-Alkyl-substituiertes Hetaryl steht.
- 10 für gegebenenfalls durch Halogen- und C₁-C₆-Alkyl-substituiertes Phenoxy-C₁-C₆-alkyl steht,
- für gegebenenfalls durch Halogen-, Amino und C₁-C₆-Alkyl-substituiertes Hetaryloxy-C₁-C₆-Alkyl steht,
- 15 R² für gegebenenfalls durch Halogen substituiertes: C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₂-C₈-alkyl, C₁-C₈-Polyalkoxy-C₂-C₈-alkyl steht,
- für gegebenenfalls durch Halogen-, Nitro-, C₁-C₆-Alkyl-, C₁-C₆-Alkoxy-, C₁-C₆-Halogenalkyl substituiertes Phenyl oder Cycloalkyl mit 3-8 Ringatomen steht,
- 20 A für Wasserstoff oder gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C₁-C₁₂-Alkyl, C₃-C₈-Alkenyl, C₃-C₈-Alkinyl, C₁-C₁₀-Alkoxy-C₂-C₈-alkyl, C₁-C₈-Polyalkoxy-C₂-C₈-alkyl, C₁-C₁₀-Alkylothio-C₂-C₈-alkyl, Cycloalkyl mit 3-8 Ringatomen, das durch Sauerstoff und/oder Schwefel unterbrochen sein kann oder gegebenenfalls durch Halogen, C₁-C₆-Alkyl-C₁-C₆-Halogenalkyl-, C₁-C₆-Alkoxy, Nitro substituiertes Aryl, Hetaryl oder Aryl-C₁-C₆-alkyl steht,
- 25 B, für Wasserstoff, geradkettiges oder verzweigtes C₁-C₁₂-Alkyl, C₁-C₈-Alkoxyalkyl steht, oder
- A und B gemeinsam mit dem Kohlenstoffatom an das sie gebunden sind einen 3-8 gliedrigen Ring bilden oder
- 30 E⁰ für einen Metallionenäquivalent oder ein Ammoniumion steht
- sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).
3. 3-Aryl-pyrrolidin-2,4-dion-Derivat der Formel (I) gemäß Anspruch 1 oder 2, in welcher
- X für C₁-C₄-Alkyl, Halogen, C₁-C₄-Alkoxy steht,
- 35 Y für Wasserstoff, C₁-C₆-Alkyl, Halogen, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkyl steht,
- Z für C₁-C₄-Alkyl, Halogen, C₁-C₄-Alkoxy steht,
- n für eine Zahl von 0-3 steht,
- R für Wasserstoff (Ia) oder für die Gruppen der Formel
- 40 -CO-R¹ (Ib), -CO-O-R² (Ic) oder E⁰ (Id)
- steht, in welchen
- R¹ für gegebenenfalls durch Halogen substituiertes C₁-C₁₆-Alkyl, C₂-C₁₆-Alkenyl, C₁-C₆-Alkoxy-C₂-C₆-alkyl, C₁-C₆-Alkylothio-C₂-C₆-alkyl, C₁-C₆-Polyalkoxy-C₂-C₆-alkyl und Cycloalkyl mit 3-7 Ringatomen, das durch 1-2 Sauerstoff-und/oder Schwefelatome unterbrochen sein kann steht,
- 45 für gegebenenfalls durch Halogen-, Nitro-, C₁-C₄-Alkyl-, C₁-C₄-Alkoxy-, C₁-C₃-Halogenalkyl-, C₁-C₃-Halogenalkoxy-substituiertes Phenyl steht,
- 50 für gegebenenfalls durch Halogen-, C₁-C₄-Alkyl-, C₁-C₄-Alkoxy-, C₁-C₃-Halogenalkyl-, C₁-C₃-Halogenalkoxy-substituiertes Phenyl-C₁-C₄-alkyl steht,
- 55 für gegebenenfalls durch Halogen- und C₁-C₆-Alkyl-substituiertes Hetaryl steht,
- gegebenenfalls für durch Halogen- und C₁-C₄-Alkyl-substituiertes Phenoxy-C₁-C₅-alkyl steht,

- 5
- R²** für gegebenenfalls durch Halogen, Amino und C₁-C₄-Alkyl-substituiertes Hetarylloxy-C₁-C₅-alkyl steht,
für gegebenenfalls durch Halogen substituiertes C₁-C₁₆-Alkyl, C₂-C₁₆-Alkenyl, C₁-C₁₆-Alkoxy-C₂-C₆-alkyl, C₁-C₆-Polyalkoxy-C₂-C₆-alkyl steht,
- 10 **A** für Wasserstoff gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C₁-C₁₀-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₁-C₈-Alkoxy-C₂-C₆-alkyl, C₁-C₆-Polyalkoxy-C₂-C₆-alkyl, C₁-C₈-Alkylothio-C₂-C₆-alkyl, Cycloalkyl mit 3-7 Ringatomen, das durch 1-2 Sauerstoff-und/oder Schwefelatome unterbrochen sein kann oder gegebenenfalls durch Halogen-, C₁-C₄-Alkyl-, C₁-C₄-Halogenalkyl-C₁-C₄-Alkoxy-Nitro, substituiertes Aryl, Hetaryl oder Aryl-C₁-C₄-alkyl steht,
- 15 **B** für Wasserstoff, geradkettiges oder verzweigtes C₁-C₁₀-Alkyl, C₁-C Alkoxyalkyl steht oder
- A und B** gemeinsam mit dem Kohlenstoffatom an das sie gebunden sind einen 3-7-gliedrigen Ring bilden und
- 20 **E^o** für ein Metallionenäquivalent oder ein Ammoniumion steht,
sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).
4. 3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I) gemäß Anspruch 1 bis 3, in welcher
- 25 **X** für Methyl, Ethyl, Propyl, i-Propyl, Fluor, Chlor, Brom, Methoxy und Ethoxy steht,
Y für Wasserstoff, Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl, terti.-Butyl, Fluor, Chlor, Brom, Methoxy, Ethoxy und Trifluormethyl steht,
Z für Methyl, Ethyl, i-Propyl, Butyl, i-Butyl, terti.-Butyl, Fluor, Chlor, Brom, Methoxy und Ethoxy steht,
- 30 **n** für eine Zahl von 0-3 steht,
R für Wasserstoff (la) oder für die Gruppen der Formel
-CO-R¹ (lb), -CO-O-R² (lc) oder E^o (ld)
- 35 **R¹** steht, in welcher für gegebenenfalls durch Fluor oder Chlor substituiertes: C₁-C₁₄-Alkyl, C₂-C₁₄-Alkenyl, C₁-C₄-Alkoxy-C₂-C₆-alkyl, C₁-C₄-Alkylothio-C₂-C₆-alkyl, C₁-C₄-Polyalkoxyl-C₂-C₄-alkyl und Cycloalkyl mit 3-6 Ringatomen, das durch 1-2 Sauerstoff-und/oder Schwefelatome unterbrochen sein kann steht,
- 40 für gegebenenfalls durch Fluor-, Chlor, Brom-, Methyl-, Ethyl-, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl-, Trifluormethoxy-, Nitro- substituiertes Phenyl steht,
- 45 für gegebenenfalls durch Fluor-, Chlor-, Brom-, Methyl-, Ethyl-, Propyl-, i-Propyl, Methoxy, Ethoxy, Trifluormethyl, Trifluormethoxy-substituiertes Phenyl-C₁-C₃-alkyl steht,
- 50 für gegebenenfalls durch Fluor-, Chlor-, Brom-, Methyl-, Ethyl-substituiertes Pyridyl, Pyrimidyl, Thiazolyl und Pyrazolyl steht,
- 55 **R²** für gegebenenfalls durch Fluor-, Chlor-, Methyl-, Ethyl-substituiertes Phenoxy-C₁-C₄-alkyl steht,
für gegebenenfalls durch Fluor-, Chlor-, Amino-, Methyl-, Ethyl-, substituiertes Pyridyloxy-C₁-C₄-alkyl, Pyrimidyloxy-C₁-C₄-alkyl und Thiazolyloxy-C₁-C₄-alkyl steht,
für gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₁₄-Alkyl, C₂-C₁₄-Alkenyl, C₁-C₄-Alkoxy-C₂-C₆-alkyl, C₁-C₄-Polyalkoxy-C₂-C₆-alkyl steht
oder

- 5 A für gegebenenfalls durch Fluor-, Chlor-, Nitro-, Methyl-, Ethyl-, Propyl-, i-Propyl-,
Methoxy-, Ethoxy-, Trifluormethyl-substituiertes Phenyl steht,
für Wasserstoff gegebenenfalls durch Halogen substituiertes geradkettiges oder ver-
zweigtes C₁-C₈-Alkyl, C₃-C₄-Alkenyl, C₃-C₄-Alkinyl, C₁-C₆-Alkoxy-C₂-C₄-alkyl, C₁-C₄-
Polyalkoxy-C₂-C₄-alkyl, C₁-C₆-Alkylthio-C₂-C₄-alkyl, Cycloalkyl mit 3-6 Ringatomen, das
durch 1-2 Sauerstoff- und/oder Schwefelatomen unterbrochen sein kann oder gegebe-
nenfalls durch Fluor-, Chlor-, Brom-, Methyl-, Ethyl-, Propyl-, iso-Propyl-, Methoxy-,
Ethoxy-, Trifluormethyl-, Nitro substituiertes Aryl, Pyridin, Imidazol, Pyrazol, Triasol,
Indol, Thiazol oder
- 10 B für Wasserstoff, geradkettiges oder verzweigtes C₁-C₈-Alkyl, C₁-C₄-Alkoxyalkyl steht,
oder
- 15 A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind ein 3-6 gliedrigen Ring
bilden, und
- 15 E* für ein Metallionenäquivalent oder ein Ammoniumion steht
sowie die enantiomerenreinen Formen von Verbindungen der Formel I.

5. Verfahren zur Herstellung von 3-Aryl-pyrrolidin-2,4-dion-Derivaten der (I)

- in welcher
- 25 X für Alkyl, Halogen, Alkoxy steht,
Y für Wasserstoff, Alkyl, Halogen, Alkoxy, Halogenalkyl steht,
30 Z für Alkyl, Halogen, Alkoxy steht,
n für eine Zahl von 0-3 steht,
R für Wasserstoff oder für die Gruppen

-CO-R¹, -CO-O-R²
- 35 steht, in welchen
- 35 R¹ für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylthioalkyl,
Polyalkoxyalkyl und Cycloalkyl, das durch Heteroatome unterbrochen sein kann, gegebenen-
falls subst. Phenyl, gegebenenfalls substituiertes Phenylalkyl, substituiertes Hetaryl, substitu-
iertes Phenoxyalkyl und substituiertes Hetaryloxyalkyl steht und
- 40 R² für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl
und gegebenenfalls substituiertes Phenyl steht,
- 45 A für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkylthioalkyl, gegebe-
nenfalls durch Heteroatome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen-,
Alkyl-, Haloalkyl-, Alkoxy-, Nitro substituiertes Aryl, Arylalkyl oder Hetaryl steht,
B für Wasserstoff, Alkyl oder Alkoxyalkyl steht,
- oder worin
- 50 A und B gemeinsam mit dem Kohlenstoffatom an das sie gebunden sind einen Carbocyclylus
bilden und
- 50 E* für einen Metallionenäquivalent oder ein Ammoniumion steht,
dadurch gekennzeichnet,
- 55 daß man zum Erhalt von 3-Aryl-pyrrolidin-2,4-dionen bzw. deren Enolen der Formel (Ia)

5

(Ia)

10

in welcher A, B, C, X, Y, Z und n die oben angegebene Bedeutung haben,
(A)

10

N-Acylaminosäureester der Formel (II)

15

(II)

20

in welcher

25

A, B, X, Y, Z und n die oben angegebene Bedeutung haben

25

und

R³ für Alkyl steht,
in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base intramolekular kondensiert,
(B)

30

oder daß man zum Erhalt von Verbindungen der Formel (Ib)

35

(Ib)

40

in welcher A, B, X, Y, Z, R¹ und n die oben angegebene Bedeutung haben,

45

Verbindungen der Formel (Ia),

45

(Ia)

50

in welcher

55

A, B, X, Y, Z und n die oben angegebene Bedeutung haben,
α) mit Säurehalogeniden der allgemeinen Formel (III)

(III)

5

in welcher

R¹ die oben angegebene Bedeutung hat
und

10 Hal für Halogen, insbesondere Chlor und Brom steht,
gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

oder

15 β) mit Carbonsäureanhydriden der allgemeinen Formel (IV)

in welcher

20 R¹ die oben angegebene Bedeutung hat,
gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,
umsetzt,
(C)

25

oder daß man zum Erhalt von Verbindungen der Formel (Ic)

35

in welcher

40 A, B, C, X, Y, Z, R² und n die oben angegebene Bedeutung haben,
Verbindungen der Formel (Ia)

50

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben,
mit Chlorameisensäureester der allgemeinen Formel (V)
R²-O-CO-Cl (V)

in welcher

R^2 die oben angegebene Bedeutung hat,
gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt,
D)

5

oder daß man zum Erhalt von Verbindungen der Formel (Id)

10

15

in welcher X, Y, Z, A, B und n die oben angegebene Bedeutung haben,

20

Verbindungen der Formel (Ia)

25

30

in welcher X, Y, Z, A, B und n die oben angegebene Bedeutung haben,
mit Metallhydroxiden oder Aminen der allgemeinen Formeln (VI) und (VII)

$MesOH_t$ (VI)

35

40

in welchen
 Me für ein- oder zweiwertige Metallionen,
 s und t für die Zahl 1 und 2 und
 R^4 , R^5 und R^6 unabhängig voneinander für Wasserstoff und Alkyl
 stehen,

45

gegebenenfalls in Gegenwart eines Verdünnungsmittels, umsetzt.

50

6. Insektizide, akarizide und herbizide Mittel, gekennzeichnet durch einen Gehalt an mindestens einem 3-Aryl-pyrrolidin-2,4-dion-Derivat der Formel (I).
7. Verfahren zur Bekämpfung von Insekten und/oder Spinnentieren und/oder Unkräutern, dadurch gekennzeichnet, daß man 3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I) auf Insekten und/oder Spinnentieren und/oder Unkräutern und/oder deren Lebensraum einwirken läßt.
8. Verwendung von 3-Aryl-pyrrolidin-2,4-dion-Derivaten der Formel (I) zur Bekämpfung von Insekten und/oder Spinnentieren und/oder Unkräutern.
9. Verfahren zur Herstellung von insektiziden und/oder akariziden und/oder herbiziden Mitteln, dadurch

gekennzeichnet, daß man 3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I) mit Streckmitteln und/oder oberflächenaktiven Mitteln vermischt.

5

10

15

20

25

30

35

40

45

50

55

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Veröffentlichungsnummer: **0 456 063 A3**

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: **91106870.8**

(51) Int. Cl.⁵: **C07D 207/38, C07D 209/54,
C07D 207/408, C07D 403/12,
C07D 207/404, C07D 405/12,
A01N 43/36**

(22) Anmeldetag: **27.04.91**

(30) Priorität: **10.05.90 DE 4014941
08.03.91 DE 4107394**

(43) Veröffentlichungstag der Anmeldung:
13.11.91 Patentblatt 91/46

(60) Benannte Vertragsstaaten:
BE CH DE ES FR GB GR IT LI NL

(62) Veröffentlichungstag des später veröffentlichten
Recherchenberichts: **08.07.92 Patentblatt 92/28**

(71) Anmelder: **BAYER AG**

W-5090 Leverkusen 1 Bayerwerk(DE)

(72) Erfinder: **Krauskopf, Birgit, Dr.
Kicke 19
W-5060 Bergisch Gladbach 1(DE)**

Erfinder: **Lürssen, Klaus, Dr.
August-Klerspel-Strasse 151
W-5060 Bergisch Gladbach(DE)**
Erfinder: **Santel, Hans-Joachim, Dr.
Gruenstrasse 9a
W-5090 Leverkusen 1(DE)**
Erfinder: **Schmidt, Robert R., Dr.
Im Waldwinkel 110
W-5060 Bergisch Gladbach(DE)**
Erfinder: **Wachendorff-Neumann, Ulrike, Dr.
Kriescherstrasse 81
W-4019 Monheim(DE)**
Erfinder: **Fischer, Reiner, Dr.
Nelly-Sachs-Strasse 23
W-4019 Monheim 2(DE)**
Erfinder: **Erdelen, Christoph, Dr.
Unterbuescherhof 22
W-5653 Leichlingen 1(DE)**

(54) 1-H-3-Aryl-pyrrolidin-2,4-dion-Derivate.

(57) Es werden neue 3-Aryl-pyrrolidin-2,4-dion-Deri-
vate der allgemeinen Formel (I)

EP 0 456 063 A3

bereitgestellt, in welcher

- X für Alkyl, Halogen, Alkoxy steht,
- Y für Wasserstoff, Alkyl, Halogen, Alkoxy, Halogenalkyl steht,
- Z für Alkyl, Halogen, Alkoxy steht,
- n für eine Zahl von 0-3 steht,
- R für Wasserstoff oder für die Gruppen

-CO-R¹, -CO-O-R² oder E⁶

steht, in welchen

R¹ für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylothioalkyl, Polyalkoxyalkyl und Cycloalkyl, das durch Heteroatome unterbrochen sein kann, gegebenenfalls subst. Phénol, gegebenenfalls substituiertes Phenylalkyl, substituiertes Hetaryl, substituiertes Phenoxyalkyl und substituiertes Hetaryloxyalkyl steht und

R² für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl und gegebenenfalls substituiertes Phenyl steht,

A für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkoxyalkyl, Alkylothioalkyl, gegebenenfalls durch Hetero-

atome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen-, Alkyl-, Halogenalkyl-, Alkoxy-, Nitro substituiertes Aryl, Arylalkyl oder Hetaryl steht,

B für Wasserstoff, Alkyl oder Alkoxyalkyl steht,

oder worin

A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen Carbocyclus bilden und

E^o für ein Metallionäquivalent oder ein Ammoniumion steht,
sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

Die neuen Verbindungen der Formel (I) besitzen eine hervorragende herbizide, insektizide und akarizide Wirksamkeit.

Europäisches
Patentamt

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 91 10 6870

EINSCHLÄGIGE DOKUMENTE

Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.5)
D,Y	US-A-4 632 698 (UNION CARBIDE CORPORATION) 30. Dezember 1986 Beispiel II, Spalte 7; Verbindungen 1-18 in Tabelle I * Spalte 4, Zeile 55 - Spalte 5, Zeile 34 * * Spalte 5, Zeile 59 - Zeile 64 * ---	1-9	C07D207/38 C07D209/54 C07D207/408 C07D403/12 C07D207/404 C07D405/12 AD1N43/36
Y	US-A-3 272 842 (ELI LILLY AND COMPANY) 13. September 1966 Beispiel 2 ; Anspruch 4 * Spalte 3, Zeile 23 - Zeile 38 * * Spalte 3, Zeile 43 - Zeile 46 * * Spalte 4, Zeile 5 - Zeile 12 * ---	1-9	
Y	WD-A-8 804 652 (NIPPON SODA CO., LTD.) 30. Juni 1988 * das ganze Dokument *---	1-9	
P,Y	EP-A-0 377 893 (BAYER AG) 18. Juli 1990 * das ganze Dokument *---	1-9	
P,Y	EP-A-0 415 185 (BAYER AG) 6. März 1991 * das ganze Dokument *---	1-9	RECHERCHIERTE SACHGEBIETE (Int. Cl.5)
P,Y	EP-A-0 423 482 (BAYER AG) 24. April 1991 * das ganze Dokument *---	1-9	C07D AD1N
D,A	DE-A-2 361 084 (UNION CARBIDE CORPORATION) 20. Juni 1974 * das ganze Dokument *-----	1-9	

Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt

Recherchierter	Abschlußdatum der Recherche	Prüfer
MUENCHEN	07 MAI 1992	HARTRAMPF G.W.

KATEGORIE DER GENANNTEN DOKUMENTE

X : von besonderer Bedeutung allein betrachtet
 Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie
 A : technologischer Hintergrund
 O : nichtschriftliche Offenbarung
 R : Zwischenliteratur

T : der Erfindung zugrunde liegende Theorie oder Grundsätze
E : älteres Patentdokument, das jedoch erst mit oder nach dem Anmeldedatum veröffentlicht worden ist
D : in der Anmeldung angeführtes Dokument
L : aus anderen Gründen angeführtes Dokument
.....
& : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument