

UMELÁ INTELIGENCIA

prednášateľ: Prof. Ing. Pavol Návrat, PhD. štúdium: bakalárske študijný odbor: Informatika nominálny ročník: III

Literatúra:

Odporúčaná literatúra:

Návrat a kol.: Umelá Inteligencia, STU Bratislava, 2002, 2006. (Malé centrum)

Vzorová svetová literatúra:
1. Russell, Norvig: Artificial Intelligence: A Modern Approach. Prentice Hall, 1995. Tiež druhé vydanie 2002

- Kelemen a spol.: Základy umelej inteligencie. Alfa 1992.
 I.M. Havel: Robotika. Úvod do teórie kognitívnych robotov. SNTL
- 3. Mařík a spol: Umělá inteligence (1), (2), (3) a (4), Academia Praha, 1993, 1997, 2000 a 2003.

Absolvovanie predmetu

Študent napĺňa podmienky absolvovania predmetu preukazovaním vlastných vedomostí. Odovzdanie práce prevzatej od iného, aj ak sa vhodne cituje, nevedie k naplneniu podmienok, pokiaľ študent súčasne nepreukázal vlastné vedomosti v dostatočnej miere.

Podmienky na získanie zápočtu:

•Vypracovanie a odovzdanie všetkých požadovaných zadaní s tým, že za każdé jedno zadanie musi študent ziskať aspoň jeden bod a v súhrne zo všetkých požadovaných zadaní musí získať aspoň 17,5 bodu - t.j. polovicu možných bodov zo všetkých zadaní.

•Získanie aspoň 7 bodov z priebežného testu

Podmienky na vykonanie skúšky: Získanie zápočtu.

Podmienky na absolvovanie predmetu: Získanie dostatočného počtu bodov (podľa čl. 4 študijného poriadku), ktorými sa hodnotí:

•zadania (max. 35 bodov)

•priebežný test (max. 20 bodov)
•záverečná skúška (max. 45 bodov)
Pričom je nutné zo záverečnej skúšky získať aspoň 18 bodov.

Akademická bezúhonnosť

Odpisovanie je vedomé prezentovanie cudzej práce ako svoj vlastný výsledok. V tomto predmete sa nebude plagiát tolerovať. Plagiát je prevzatá myšlienka bez priznania, že autorom je niekto iný (napr. citovaním). Môže ale nemusí byť vyjadrená totožným alebo podobným spôsobom ako v origináli. Často je to odpísaná alebo parafrázovaná alebo inak upravená pasáž (aj časť programu) z diela iného autora bez jej citovania.

V každej práci, ktorú predkladáme ako vlastný výsledok (napr. zadanie, program, projekt) treba uviesť všetky zdroje informácií, ktoré sme použili pri vypracovaní.

Nedodržanie sa podľa <u>Štatútu FIIT STU</u> posudzuje a rieši pred disciplinárnou komisiou.

Robocup: simulačná liga, 2D

Robocup: turnaj FIIT 2003

Robocup: turnaj FIIT 2010

Robocup: turnaj FIIT 2012

- niekedy v máji 2012
- tímové projekty, diplomové projekty, zadania UI
- · alternatívna možnosť namiesto zadaní UI: z2, z3, z4
- http://www.fiit.stuba.sk/generate_page.php?page_id= 2637

Robocup: liga humanoidov, detská veľkosť

Robocup: liga humanoidov, tínedžerská veľkosť

Humanoid TeenSize (Foto: D. Kriesel)

Umelá inteligencia

- Cieľom UI je vytvoriť, zostrojiť inteligentné objekty a porozumieť im.
- Metóda UI je vo svojej podstate spätá s použitím výpočtových procesov.

ČO TO JE UMELÁ INTELIGENCIA?

- či sa skúma alebo sa usiluje o myšlienkové procesy a usudzovanie na jednej strane alebo o správanie sa na druhej strane,
- či sa hodnotí úspech podľa podobnosti s ľudským konaním alebo s ideálnou predstavou o inteligencii - tzv. rozumnosťou. Systém je rozumný, ak robí správnu vec.

40

Allan Newell

- (* 19. marec 1927, San Francisco, Kalifornia, USA † 19. júl 1992, Pittsburgh, Pensylvánia, USA)
- 1949 Bc, Stanford
- 1950 MS matematika, Princeton
- PhD CMU Tepper School of Business, školiteľ Herb Simon
- americký informatik a kognitívny vedec RAND Corporation
- výskum v umelej inteligencii a kognitívnej vede
- 1956 Logic Theory Machine 1957 General Problem Solver
- 1975 Turingova cena spolu s Herbertom Simonom

all Newel

15

Herbert Simon

- (June 15, 1916 Miwaukee, Wisc. February 9, 2001, Pittsburgh, Penn.)
- 1936 Bc U Chicago
- 1942 PhD administratívne rozhodovanie, U Chicago / U Cal Berkeley
- americký politológ, ekonóm, sociológ, psychológ
- zakladateľ / významné príspevky:
- kognitívna psychológia, verejná správa, ekonómia, informatika, manažment, politológia
- vedecké výsledky:

 umelá inteligencia, spracovanie informácií, rozhodovanie, riešenie problémov, zložité systémy
- pôsobil na CMU 52 rokov
- 1975 Turingova cena
- 1978 Nobelova cena za ekonómiu za priekopnícky výskum procesu rozhodovania v hospodárskych organizáciách

rôzne pohľady na Ul

- systémy, ktoré myslia ako ľudia,
 - GPS (general problem solver všeobecný riešič problémov) (Newell a Simon, 1961)
 - Sinior, 1961)
 Kognitívna veda spája skúmanie výpočtových modelov z UI a
 experimentálnych metőd psychológie s cieľom nájsť presné a overiteľné
 teórie fungovania ľudského rozumu.
- · systémy, ktoré konajú ako ľudia,
 - Turingov test: systém koná ako človek (t.j. inteligentne), ak dokáže prekabátiť vyšetrovateľa tak, že ho nedokáže rozlíšiť od človeka.
- · systémy, ktoré myslia rozumne,
- sylogizmy vyjadrujú vzory správneho myslenia · systémy, ktoré konajú rozumne
 - systém koná tak, aby dosiahol svoje ciele s ohľadom na tvrdenia, ktorých pravdivosť predpokladá (ktorým verí).

Alan Turing

- 23. jún 1912 Maida Vale, London, Anglicko – 7. jún 1954 Wilmslow, Cheshire, Anglicko) 1934 – Bc matematika, King's
- College Cambridge
- 1938 PhD matematika, Princeton (školiteľ Alonzo Church)
- anglický matematik, logik, kryptoanalytik, informatik
- formalizácia pojmov algoritmus a výpočet Turingov stroj
- problém zastavenia
- 1950 Môžu stroje myslieť? –
- Turingov test

16

Turingov test

Umelá inteligencia

- · disciplína, ktorá skúma rozumné konatele a spôsoby ich zostrojovania.
- Konateľ (agent) je systém, ktorý vníma a koná.
- Ústrednou hypotézou v tomto prístupe je chápanie inteligencie ako rozumného konania.

Rozumný konateľ

- Ideálny rozumný konateľ by mal pre ľubovoľnú možnú postupnosť vnemov vykonať na základe faktov získaných postupnosťou vnemov a všetkých znalostí, ktoré má v sebe zapísané takú akciu, od ktorej sa očakáva čo najväčšie ohodnotenie mierou úspešnosti.
 - vstup: postupnosť vnemov
 - výstup: konanie (akcia), ktoré je reakciou na postupnosť vnemov.
- Navrhnúť ideálny rozumný konateľ znamená špecifikovať, akú akciu má vykonať ako odpoveď na ľubovoľnú postupnosť vnemov.
- rozumný konateľ = program + technické zariadenie

Konateľ - agent

2

agent

- · vnem: vstup, ktorý agent získa vnímaním
- postupnosť vnemov: úplná história všetkého, čo agent vnímal
- funkcia: zobrazenie l'ubovolnej postupnosti vnemov do akcie
- program: vykonáva sa na fyzickej architektúre agenta, realizuje jeho funkciu
- · agent = architektúra + program

opis úlohy agenta

- úspešnosť (performance measure)
 - objektívna miera hodnotiaca úspešnosť konania agenta
- · prostredie
- aktuátory
- senzory

21

22

automatizovaný taxík

- · úspešnosť:
 - bezpečnosť, dosiahnutie cieľa, zisk, dodržiavanie predpisov, pohodlie zákazníka,...
- prostredie:
 - európska cestná sieť, iní účastníci cestnej premávky, chodci, počasie
- aktuátory:
 - volant, rýchlostný pedál, brzda, klaksón, displej,...
- · senzory:
 - tachomer, otáčkomer, ďalšie snímače stavu motora, okolia, $\ensuremath{\mathsf{GPS}},\!\dots$

internetový kupujúci

- · úspešnosť:
 - cena, kvalita, vhodnosť, efektívnosť,...
- prostredie
 - súčasné aj budúce webové sídla, predajcovia, dodávatelia,...
- aktuátory:
 - displej pre používateľa, prechod na inú stránku podľa URL,...
- · senzory:
 - HTML stránky (text, grafika, skripty),...

svet vysávača

· 2 miesta: miestnosť A, miestnosť B

 Agent vníma miesto a jeho stav (čisté/špinavé) (dirty/not dirty)

· Akcie: doľava, doprava, vysávaj, no_op

vysávací agent

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Suck
i i	:

 $function \ {\it Reflex-Vacuum-Agent}([{\it location.status}]) \ {\it returns an action}$

if status = Dirty then return Suckelse if location = A then return Rightelse if location = B then return Left

- Aký je "správny" spôsob vyplnenia tabuľky?
- · 'Správny' spôsob robí agenta dobrým/inteligentným

2

Rozumnosť

- "robit' správnu vec", formálnejšie:
- "Rozumný agent je taký, ktorý koná tak, aby dosahoval najlepší výsledok alebo, ak je neurčitosť, najlepší očakávaný výsledok."
- otázky:
 - Čo to znamená 'najlepší'?
 - Čo je výsledok?
 - Čo to stojí dosiahnuť výsledok?
 - Čo všetko treba na vypočítanie 'očakávaného' výsledku?

27

Rozumnosť

- · Čo je rozumné závisí od:
 - kritéria úspešnosti
 - postupnosti vnemov
 - agentových apriorných znalostí o prostredí
 - akcií, ktoré dokáže vykonávať
- Rozumný agent: vyberá si akciu, ktorá maximalizuje jeho úspešnosť, na základe faktov daných postupnosťou vnemov a apriórnymi znalosťami o prostredí

28

mierka úspešnosti

- · opatrne s voľbou!
 - Vysávací agent: merať úspešnosť množstvom špiny vyčistenej počas 8-hodinovej smeny
- navrhovať podľa toho, čo chceme dosiahnuť v prostredí, nie podľa toho, ako sa má agent správať

Je vysávací agent rozumný?

- · áno za týchto predpokladov:
 - mierka úspešnosti: 1 bod za každú čistú miestnosť
 - pozná rozmiestnenie miestností ale nepozná ktoré sú špinavé ani ktorá má byť jeho začiatočná pozícia
 - čisté miestnosti zostávajú čisté, vysávanie čistí
 - pohyby doľava alebo doprava nezavedú agenta mimo prostredie
 - dostupné akcie: doľava, doprava, vysávaj, NoOp
 - agent vie, kde sa nachádza a je to miesto špinavé

Je vysávací agent rozumný?

- ale za iných predpokladov by vysávací agent nebol rozumný
 - mierka úspešnosti určená pokutou za zbytočný pohyb
 - ak sa čisté miesta môžu stať špinavými
 - ak celé prostredie nie je známe

- ...

viac o rozumnosti

- · rozumnosť nie je vševedúcosť
- · rozumnosť nie je jasnovidnosť
- · rozumnosť nemusí viesť k úspechu!
- · rozumné správanie často vyžaduje
 - zbieranie informácií: skúmanie neznámeho prostredia
 - učenie sa: zistiť, ktorá akcia pravde podobne povedie k želanému výsledku (a získať spätnú väzbu z prostredia o úspechu)
- ...takže rozumný agent by mal byť autonómny (nespolieha sa výlučne len na apriornu vedomosť jeho návrhára, učí sa zo svojej skúsenosti)

32

bližšie o prostredí

- · prostredie môže byť
 - skutočné alebo umelé
 - jednoduché (napr. dopravníkový pás) alebo zložité (letový simulátor)
- rozhoduje zložitosť vzťahov medzi správaním sa robota, postupnosťou vnemov generovanou prostredím a mierou pre úspešnosť

vlastnosti prostredia

- úplná alebo čiastočná pozorovateľnosť
 - úplná: agentove senzory sprístupňujú úplný stav prostredia v každom okamihu
 - efektívne úplná: (stačí ak) senzory rozpoznajú všetky aspekty relevantné pre výber akcie (tak, ako určuje miera pre úspešnosť)
 - úplná: agent nepotrebuje vnútorný stav na reprezneotvanie stavu prostredia

34

vlastnosti prostredia

- · Deterministické vs stochastické
 - Deterministické ak je nasledujúci stav prostredia úplne určený súčasným stavom a akciou, ktorú agent vykoná
 - čiastočne pozorovateľné prostredie môže sa javiť ako stochastické

vlastnosti prostredia

- · Epizodické vs sekvenčné
 - Epizodické prostredie: agentova skúsenosť sa člení na atomické epizódy: každá epizóda pozostáva z vnímania a potom vykonania jednej akcie
 - epizódy sú nezávislé: ďalšia epizóda nezávisí od akcií vykonaných pri predchádzajúcich epizódach
 - napr: klasifikačná úloha: rozpoznanie chybnej súčiastky na montážnej linke
 - sekvenčné: súčasné rozhodnutie môže ovplyvniť všetky budúce rozhodnutia
 - · napr. ťah v šachu

36

vlastnosti prostredia

- · Statické vs dynamické
 - Dynamické: prostredie sa môže meniť počas toho, keď agent hľadá ďalšiu akciu
 - semidynamické: ohnodnotenie úspešnosti sa môže meniť v čase, hoci prostredie sa nemení (napr. hranie v šachy s hodinami)
- · Diskrétne vs spojité
 - tento rozdiel sa môže vzťahovať na stav prostredia, spôsob práce s časom, vnemy alebo akcie

37

vlastnosti prostredia

- · jeden agent vs viac agentov
 - Ako rozhodnúť, či nejaký iný objekt sa má chápať ako agent?
 - Je to agent alebo len stochasticky sa správajúci objekt (napr vlna na pobreží)?
 - Základná otázka: dá sa jeho správanie opísať ako maximalizácia úspešnosti v závislosti od akcií "nášho" agenta?
 - viackonateľské (multiagentové) prostredie sa dá klasifikovať ako (čiastočne) súťaživé a/alebo (čiastočne) spolupracujúce
 - napr taxíky sú čiastočne súťaživé a čiastočne spolupracujúce

38

príklady prostredia

- Solitér: pozorovateľné, deterministické, sekvenčné, diskrétne, statické, jednoagentové
- Backgammon: pozorovateľné, deterministické, sekvenčné, diskrétne, semi-statické, multiagentové
- Internetové nakupovanie: čiastočne pozorovateľné, čiastočne deterministické, sekvenčné, semi-statické, diskrétne, jednoagentové (okrem aukcií, napr ebay)
- jazdenie v taxíku ("skutočný svet"): čiastočne pozorovateľné, nedeterministické, sekvenčné, spojité, multiagentové

Príklady rozumných agentov

Druh agenta	Vnemy	Akcie	Ciele	Prostredie
lekársky dia-g-nos-tický sys-tém	symptómy, nálezy, odpo-vede picienta	otásky, testy, liečebné postupy	zdravý pa-ciert, min. ná-klady	pacient, ne-mocnica
systém ana-lýzy sate-lit-ných sní-mok	body snimku různej inten-zity a farby	vytlačenie conú-menia o kate-go-rizácii scény	správna kate-gori-zácia	obrazy z obie-hajúceho sate-litu
robot na trie-de-nie súčias-tok	body snimku různej inten-zity	uchopenie sú-čias-tky, umies-menie do koša	súčiastky sú v správnych košoch	bežiaci pás so súčiastkami rôzneho druhu
systém riade-nia rafinérie	zosnimané hodnoty tep-loty a tlaku	otvorenie/uzavre-tie ven-tilov, pri-spô-sobenie tep-loty	maximálna čistota, výťa-žok a bezpeč-nosť	rafinéria
vodič taxi	tachometer, zrý mikrofón ko			mafory,

systém na pod-poru	slová rapi-sa-né	vytlačenie cvi-čeni,	max. počet bodov	množina
učenia sa angličtiny	kláves-ni-cou	návodov, opráv	štu-denta na teste	štu-dentov

program rozumného agenta vo veľmi zjednodušenej podobe

function Agent-Kostra(vnem) returns akcia

static: pamät', pamät' agenta o svete pamät' ← Obnov-Pamät'(pamät', vnem) akcia ← Vyber-Najlepšiu-Akciu(pamät') pamät' ← Obnov-Pamät'(pamät', akcia)

return akcia

Agent riadený tabuľkou

 $\textbf{function} \ \mathsf{Agent}\text{-}\mathsf{Riaden}\circ\mathsf{-}\mathsf{Tabul'kou}(\mathit{vnem}) \ \textbf{returns} \ \mathit{akcia}$

return akcia

Pre šach by musela mať približne 35 100 položiek

Ak by agent konal výlučne na základe v ňom zapísaných znalostí a vôbec by nepotreboval brať do úvahy vnemy, tak by vôbec nebol autonómny.

Agent s odrazom

Agent s odrazom

 $\textbf{function} \ \textbf{Agent-s-Odrazom}(\textit{vnem}) \ \textbf{returns} \ \textit{akcia}$

static: stav, opis súčasného stavu prostredia pravidlá, množina pravidiel v tvare podmienka-akcia $stav \leftarrow \text{Obnov-Stav}(stav, vnem)$ $akcia \leftarrow \text{Urči-Akciu}(\text{Nájdi-Pravidlo}(stav, pravidlá))$ $stav \leftarrow Obnov-Stav(stav, akcia)$

return akcia

Agent s odrazom založený na modeli

State

Agent uvažujúci cieľ

Agent uvažujúci cieľ

 ${\bf function}~{\rm Agent-Uva} \\ {\rm \check{z}u\check{j}}\\ {\rm \check{u}}\\ {\rm \check{c}i-}\\ {\rm Ciel}^{\rm \'{e}}\\ ({\it vnem})~{\bf returns}~akcia$

static: stav, opis súčasného stavu prostredia cieľ, na začiatku prázdny
stav ← Obnov-Stav(stav, vnem)
ito cieľ je prázdny then cieľ ← Vyjadri-Cieľ(stav)
akcia ← Urči-Akciu(cieľ, Nájdi-Nasledovníky(stav)) $stav \leftarrow \text{Obnov-Stav}(stav, akcia)$

return akcia

Agent uvažujúci užitočnosť

Agent uvažujúci užitočnosť

function Agent-Uvažujúci-Užitočnosť (vnem) returns akcia

static: stav, opis súčasného stavu prostredia
užitočnosť, funkcia oceňujúca užitočnosť stavu
stav ← Obnov-Stav(stav, vnem)
akcia ← Urči-Asicu(užitočnosť, Nájdi-Nasledovníky(stav))
stav ← Obnov-Stav(stav, akcia)
return akcia

ohraničená rozumnosť

- ohraničenými výpočtovými prostriedkami (veľkosť pamäti, čas, dokedy treba rozhodnúť o ďalšom kroku),
- ohraničenými nákladmi na úsilie, ktoré možno vynaložiť na získanie údajov z prostredia (ohraničenie doby, ktorú získavanie môže najviac trvať, ohraničenie finančných nákladov získavania apod.),
- neúplnosťou a prípadnou protirečivosťou poznatkov v jeho báze,
- · neurčitosťou niektorých poznatkov,
- · nepresnosťou niektorých údajov.

učiaci sa agent

