창원 AI 아카데미 팀 프로젝트

- MCT 제조 데이터 분석 및 이상탐지 모델 개발 -

데이터 분석 대상

MCTMachining Center Tool

• MCT는 여러 공구를 자동으로 교체하며 고정된 재료의 면을 깎거나 구멍을 뚫는 역할을 수행하는 대표적인 공작기계

[MCT 예, 출처: ㈜미래하이테크, tradekorea]

[MCT 가공 예]

데이터 분석 대상

MCT 제품 생산 과정

[단계 ②] 제품 가공

[단계 ③] 제품 검수

데이터 분석 대상

MCT 주요 고장

- 1) MCT에서 발생하는 고장
- 2) 제품 가공과정에서 공구나 생산된 제품에서 발생하는 문제

기계계¹¹

스핀들

베어링

배선 단선

열변위 진도

유압

공압

가공계²⁾

절삭 중 공구 파손

공구마모에 의한 가공 오차

MCT 제조 데이터 소개

MCT 제조 데이터 수집

- 1) MCT 자체에서 자동으로 생성되는 데이터
 2) MCT 주요 위치 또는 구성요소에 별도로 설치된 센서를 통해 수집되는 데이터
- 3) Energy Metering Device, 전력 데이터 수집 및 통신 기능 지원 장치
- 4) Integrated Sensing Unit, 전력 데이터, 센서 데이터 수집 및 통신 기능 지원 장치
- 제조 데이터는 크게 설비 데이터¹)와 센서 데이터²)로 구분

Edge Computer

- EMD³) 전력 데이터 수집 위치(●)
 - x축, y축, z축, 스핀들 모터 드라이브 출력측
- ISU⁴) 전력 데이터 수집 위치(●)
 - 설비 메인 판넬 차단기

- ISU 센서 데이터 수집 위치 및 데이터 종류
 - 설비 메인 판넬 내 온습도 데이터
 - 스핀들 모터의 진동
 - 유압 유닛 온도
 - 유압 유닛 압력

MCT 제조 데이터 소개

MCT 제조 데이터 구조

순서	컬럼 이름	데이터 타입	단위	유효범위	설명
1	GDatetime	varchar	-	-	데이터 수집 시각
2	F_RunState	varchar	-	-	구동 상태
3	F_OperationTime	varchar	초	-	운전 시간
4	F_CuttingTime	varchar	초	-	절삭 시간
5	F_CycleTime	varchar	초	-	공정 주기
6	F_SpindleRPM1	float	RPM	-	1번 스핀들 RPM
7	F_SpindleTroq1	float	-	-	1번 스핀들 토크
8	F_SpindleGearRatio1	float	-	-	1번 스핀들 기어 비율
9	F_ToolNum	varchar	-	-	공구 번호
10	F_AbsoluteX	float	-	-	X 절대 좌표 (설정값)
11	F_AbsoluteY	float	-	-	Y 절대 좌표 (설정값)
12	F_AbsoluteZ	float	-	-	Z 절대 좌표 (설정값)
13	F_DistanceX	float	-	-	X축 남은 이동거리 (설정값)
14	F_DistanceY	float	-	-	Y축 남은 이동거리 (설정값)
15	F_DistanceZ	float	-	-	Z축 남은 이동거리 (설정값)
16	G_ADC1	float	-	-	일반 센서값 (1)

MCT 제조 데이터 소개

MCT 제조 데이터 구조

순서	컬럼 이름	데이터 타입	단위	유효범위	설명
17	G_ADC2	float	-	-	일반 센서값 (2)
18	G_ADC3	float	-	-	일반 센서값 (3)
19	G_ADC4	float	-	-	일반 센서값 (4)
20	G_MV	float	V	0~655.35	메인 전압
21	G_MA	float	А	0~65.535	메인 전류
22	G_MActP	float	W	0~32.767	메인 유효전력
23	G_MRActP	float	KVar	0~32.767	메인 무효전력
24	G_MPF	float	-	-1.000~+1.000	메인 역률
25	G_MFeq	float	Hz	45.00~65.00	메인 주파수
26	G_MTemp	float	°C	-	메인 온도
27	G_SV	float	V	0~655.35	스핀들 전압
28	G_SA	float	Α	0~65.535	스핀들 전류
29	G_SActP	float	W	0~32.767	스핀들 유효전력
30	G_SPF	float	-	-1.000~+1.000	스핀들 역률
31	G_SFeq	float	Hz	45.00~65.00	스핀들 주파수
32	G_STemp	float	°C	-	스핀들 온도

프로젝트 목표

MCT 제조 데이터 분석 및 이상탐지 모델 개발

MCT 제조 데이터 분석	MCT 이상탐지 모델 개발
데이터 간 상관관계 확인	인공지능 모델 선정
데이터 패턴 분석	학습 데이터셋 구축
데이터 정제	이상탐지 모델 개발 및 성능 평가
데이터 추출 및 정규화	

감사합니다.