ANALISIS

1. camera.c

Deskripsi:

Program ini mengontrol robot untuk mendeteksi **blob warna tertentu (merah, hijau, biru)** di area pandangan kamera. Robot mendeteksi warna dominan di tengah-tengah pandangan kamera dan menggerakkan roda untuk berbelok atau berhenti tergantung keberadaan blob tersebut.

Penjelasan Kode:

• Kamera diaktifkan dengan wb_camera_enable(camera, time_step) untuk menangkap gambar.

Deteksi Blob:

- o Program memindai piksel kamera pada area tertentu, menjumlahkan intensitas warna merah, hijau, dan biru.
- Jika salah satu warna lebih dominan dari yang lain, maka blob warna itu terdeteksi.
- Robot berhenti ketika blob ditemukan (pause_counter digunakan untuk mencegah pendeteksian berulang).
- Warna yang terdeteksi disimpan dalam gambar menggunakan wb_camera_save_image().

Tujuan Simulasi:

Deteksi warna di lingkungan robot dengan kamera, lalu lakukan tindakan sesuai warna yang ditemukan.

2. camera_auto_focus.c

Deskripsi:

Program ini menggunakan fitur **auto-focus kamera** untuk mengatur fokus berdasarkan jarak objek yang terdeteksi dengan sensor jarak.

Penjelasan Kode:

Kamera diaktifkan, dan fokusnya diatur menggunakan wb_camera_set_focal_distance().

Sensor Jarak:

- Robot menggunakan sensor jarak (wb_distance_sensor_get_value()), mengukur jarak objek di depan kamera.
- o Fokus kamera diatur sesuai dengan nilai jarak tersebut.

Tujuan Simulasi:

Menunjukkan bagaimana kamera dapat digunakan bersama sensor jarak untuk memperbaiki gambar dengan fokus otomatis.

3. camera_motion_blur.c

Deskripsi:

Robot memanfaatkan kamera untuk mendeteksi blob warna sambil bergerak, sehingga simulasi menghasilkan **motion blur** pada gambar kamera.

Penjelasan Kode:

- Mirip dengan camera.c, tetapi dengan fokus pada visualisasi pergerakan kamera.
- Warna yang terdeteksi disimpan, dan program memanfaatkan *blur effect* yang melekat pada pergerakan.

Tujuan Simulasi:

Menunjukkan efek blur saat kamera menangkap gambar dalam kondisi robot bergerak.

4. camera_noise_mask.c

Deskripsi:

Simulasi ini memperkenalkan **masking noise** pada gambar kamera, yang bertujuan untuk menunjukkan efek gangguan visual dan bagaimana robot dapat tetap mendeteksi warna.

Penjelasan Kode:

- Deteksi blob menggunakan logika serupa pada camera.c.
- Namun, tambahan noise memengaruhi akurasi deteksi blob warna.

Tujuan Simulasi:

Mengajarkan bagaimana robot beradaptasi dalam lingkungan dengan gangguan visual.

5. camera_recognition.c

Deskripsi:

Program ini menggunakan fitur **camera recognition** untuk mengenali objek di lingkungan simulasi berdasarkan atribut seperti model, ukuran, dan posisi.

Penjelasan Kode:

- Recognition Mode: Diaktifkan dengan wb_camera_recognition_enable(camera).
- Informasi objek yang dikenali diperoleh dari wb_camera_recognition_get_objects() dan dicetak, termasuk:
 - o Model: Nama objek.
 - o **ID:** Identitas unik objek.
 - Posisi: Posisi relatif dalam koordinat kamera.
 - Orientasi: Rotasi objek relatif terhadap robot.

o **Ukuran:** Dimensi objek di dunia nyata dan gambar kamera.

Tujuan Simulasi:

Penggunaan kamera untuk mengenali objek dan mengidentifikasi atribut mereka secara rinci.

6. camera_segmentation.c

Deskripsi:

Program ini menggunakan **segmented image** untuk membedakan objek yang dikenali dan menampilkan gambar hasil segmentasi pada layar robot.

Penjelasan Kode:

- Segmentation diaktifkan dengan wb_camera_recognition_enable_segmentation(camera).
- Gambar segmentasi diperoleh dengan wb_camera_recognition_get_segmentation_image() dan ditampilkan dengan wb_display_image_paste().
- Robot terus bergerak sambil menunjukkan hasil segmentasi dalam layar simulasi.

Tujuan Simulasi:

Demonstrasi kemampuan segmentasi visual untuk memisahkan objek di lingkungan simulasi.

7. spherical_camera.c

Deskripsi:

Simulasi ini melibatkan kamera berbentuk **spherical** (kamera 360 derajat) untuk mendeteksi blob warna dan arah mereka dalam ruang 3D.

Penjelasan Kode:

- Kamera mendeteksi blob warna merah, hijau, dan biru di area pandangan 360 derajat.
- Posisi blob dihitung berdasarkan koordinat piksel dan dikonversi menjadi sudut menggunakan atan().

Tujuan Simulasi:

Mengeksplorasi aplikasi kamera spherical dalam simulasi navigasi robot.

Kesimpulan Analisis

Simulasi ini menunjukkan penggunaan kamera robot dalam berbagai aplikasi, meliputi:

- 1. Blob Detection: Deteksi warna spesifik.
- 2. Auto-focus: Penyesuaian kamera berdasarkan jarak objek.
- 3. Motion Blur: Simulasi pergerakan.
- 4. **Noise Masking:** Penanganan gangguan visual.

- 5. **Object Recognition:** Identifikasi objek di lingkungan.
- 6. Image Segmentation: Pemisahan objek dari latar belakang.
- 7. **360-Degree Vision:** Deteksi arah objek dalam ruang.