Ampliació de Matemàtiques Tema 6. Transformada de Fourier

Lali Barrière Departament de Matemàtiques - UPC

Enginyeria de Sistemes Aeroespacials Enginyeria d'Aeroports Enginyeria d'Aeronavegació EETAC

Continguts

6.1 Transformada de Fourier

6.2 Propietats de la transformada de Fourier Propietats relacionades amb operacions Transformada de funcions reals Transformacions sinus i cosinus Igualtat de Parseval

- 6.3 El producte de convolució
- 6.4 Funcions generalitzades

 δ de Dirac

Transformada de les funcions sinus i cosinus

Funció u de Heaviside

Transformada d'un tren de deltes

6.1 Transformada de Fourier

Definició Donada una funció f(t), la transformada de Fourier de f és

$$F(\omega) = \mathcal{F}\{f(t)\} = \int_{-\infty}^{+\infty} f(t)e^{-j\omega t} dt$$

Diem que f(t) és la transformada inversa o antitransformada de $F(\omega)$. Es compleix:

$$f(t) = \mathcal{F}^{-1}{F(\omega)} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega)e^{j\omega t} d\omega$$

La notació:

$$f(t) \longleftrightarrow F(\omega)$$

equival a

$$F(\omega) = \mathcal{F}\{f(t)\}, \quad F(\omega)$$
 és la transformada de $f(t)$

i també a

$$f(t) = \mathcal{F}^{-1}\{F(\omega)\}, \quad f(t)$$
 és l'antitransformada de $F(\omega)$

Tant f(t) com $F(\omega)$ són funcions complexes de variable real.

Exemple 1: La funció impuls rectangular

L'impuls rectangular és la funció

$$p_a(t) = \begin{cases} 1 & \text{si } |t| \le a \\ 0 & \text{si } |t| > a \end{cases}$$

La seva transformada de Fourier és

$$\mathcal{F}\{p_a(t)\} = \int_{-\infty}^{+\infty} p_a(t)e^{-j\omega t} dt = \int_{-a}^{a} e^{-j\omega t} dt = \left[\frac{1}{-j\omega}e^{-j\omega t}\right]_{-a}^{a} = \frac{1}{-j\omega}(e^{-j\omega a} - e^{j\omega a}) = \frac{2}{\omega}\sin\omega a$$

La funció
$$\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$$

Exemple 2: La funció exponencial

$$F(\omega) = \int_{-\infty}^{+\infty} f(t) \, e^{-\mathrm{j}\omega t} \, dt = \int_{0}^{+\infty} e^{-at} e^{-\mathrm{j}\omega t} \, dt = \frac{1}{a+\mathrm{j}\omega}$$

$$F(\omega) = \int_{-\infty}^{+\infty} f(t) e^{-j\omega t} dt = \int_{-\infty}^{0} e^{at} e^{-j\omega t} dt = \frac{1}{a - j\omega}$$

No existeix la transformada de la funció $f(t)=e^{at}$, amb $a\neq 0$, perquè

$$\lim_{x \to +\infty} f(t) = \infty, \text{ si } a > 0 \qquad \lim_{x \to -\infty} f(t) = \infty, \text{ si } a < 0$$

Ampliació de Matemàtiques

Tema 6. Transformada de Fourier

Exercici Dibuixa la funció $f(t)=e^{-a|t|}$, amb a>0, i calcula la seva transformada de Fourier.

Quina propietat has aplicat?

Sèrie de Fourier i transformada de Fourier

Apartat 8 dels apunts, pàgines 33-34.

Donada un funció f(t), considerem la funció T-periòdica:

$$f_T(t) = \begin{cases} f(t) & \text{si } -\frac{T}{2} \le t \le \frac{T}{2} \\ f(t+T) & \text{si } |t| > \frac{T}{2} \end{cases}$$

amb sèrie de Fourier: $f_T(t)\simeq\sum_{k=-\infty}^\infty c_k\,e^{\mathrm{j}k\omega_0t}$, amb $c_k=rac{1}{T}\int_{-T/2}^{T/2}\!\!f_T(t)e^{-\mathrm{j}k\omega_0t}\,dt$.

Recordem: $\omega_0 = \frac{2\pi}{T}$, i per a $k \ge 1$, $\omega_k = k\omega_0$. Definim la funció (de variable discreta):

$$F(\omega_k) = Tc_k = \int_{-T/2}^{T/2} f_T(t)e^{-jk\omega_0 t} dt$$

Es compleix:

$$f_T(t) \simeq \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t} = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} F(k\omega_0) e^{jk\omega_0 t} \omega_0.$$

La transformada de Fourier s'obté fent tendir el període T a $+\infty$.

$$F(\omega_k) = Tc_k = \int_{-T/2}^{T/2} f_T(t) e^{-jk\omega_0 t} dt \quad \xrightarrow[T \to +\infty]{} F(\omega) = \int_{-\infty}^{+\infty} f(t) e^{-j\omega t} dt$$

$$f_T(t) = \frac{1}{2\pi} \sum_{n=1}^{\infty} F(k\omega_0) e^{jk\omega_0 t} \omega_0 \qquad \xrightarrow[T \to +\infty]{} f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) e^{j\omega t} d\omega$$

Hem de tenir en compte que, quan $T \to +\infty$:

- ▶ En la transformada: f_T passa a ser f.
- En l'antitransformada:
 - ω_0 és la diferència entre dos valors consecutius $\omega_{k+1} \omega_k$ i, per tant, passa a ser $d\omega$.
 - $k\omega_0$ és el punt on estem avaluant la funció F, i per tant passa a ser $F(\omega)$.

Observació

Espectre d'amplitud i espectre de freqüència

Donada una funció real o complexa f(t), la seva transformada de Fourier és una funció $F(\omega)$ complexa. Podem escriure:

$$F(\omega) = R(\omega) + jI(\omega) = |F(\omega)| \cdot e^{j\phi(\omega)}$$

 $|F(\omega)|$ es diu espectre d'amplitud de f. $\phi(\omega)$ es diu espectre de fase de f.

Existència i convergència de la transformada de Fourier

Dins de l'apartat 9 dels apunts, pàgina 35.

Condició suficient d'existència de la transformada de Fourier Si f és contínua a trossos i de quadrat integrable, és a dir,

$$\int_{-\infty}^{+\infty} |f(t)|^2 dt < +\infty$$

aleshores existeix la transformada de Fourier de f(t).

La condició és suficient però no necessària.

▶ Si f(t) és C^1 a trossos, aleshores:

$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) e^{j\omega t_0} d\omega = \frac{1}{2} (f(t_0^+) + f(t_0^-))$$

Per tant, si f és contínua en t_0 , aleshores:

$$f(t_0) = \mathcal{F}^{-1} \{ \mathcal{F} \{ f(t_0) \} \}$$

És l'equivalent de les condicions de Dirichlet per a sèries de Fourier.

Propietats relacionades amb operacions

Apartat 10.1 dels apunts, pàgines 37-41. Inclou algues dempostracions i alguns exemples.

$$f(t) \longleftrightarrow F(\omega)$$

1. Linealitat

$$af(t) + bg(t) \,\longleftrightarrow\, aF(\omega) + bG(\omega)$$

2. Translació en temps

$$f(t-t_0) \longleftrightarrow e^{-j\omega t_0} F(\omega)$$

Translació en freqüència

$$f(t) e^{j\omega_0 t} \longleftrightarrow F(\omega - \omega_0)$$

3. Dualitat

$$F(t) \longleftrightarrow 2\pi f(-\omega)$$

4. Canvi d'escala

$$f(at) \longleftrightarrow \frac{1}{|a|} F\left(\frac{\omega}{a}\right)$$

Observació Com a conseqüència, fent a = -1:

$$f(-t) \longleftrightarrow F(-\omega)$$

Per tant:

- f(t) és parella si i només si $F(\omega)$ és parella.
- f(t) és senar si i només si $F(\omega)$ és senar.

5. Derivació en temps

$$f'(t) \longleftrightarrow j\omega F(\omega)$$

 $f^{(n)}(t) \longleftrightarrow (j\omega)^n F(\omega)$

Derivació en freqüència

$$-jtf(t) \longleftrightarrow F'(\omega)$$
$$(-jt)^n f(t) \longleftrightarrow F^{(n)}(\omega)$$

Ampliació de Matemàtiques

6. Modulació

$$f(t)\cos\omega_0 t \longleftrightarrow \frac{1}{2}(F(\omega-\omega_0)+F(\omega+\omega_0))$$

7. Conjugació

$$\overline{f(t)} \longleftrightarrow \overline{F(-\omega)}$$

Exemple 3: La funció impuls triangular

L'impuls triangular és la funció

$$q_c(t) = \begin{cases} 1 + t/c & \text{si } -c < t < 0 \\ 1 - t/c & \text{si } 0 < t < c \\ 0 & \text{si } |t| > c \end{cases}$$

La seva transformada de Fourier es pot calcular directament o aplicant les propietats de derivació en temps i de linealitat.

Directament

$$Q_c(\omega) = \int_{-\infty}^{+\infty} q_c(t)e^{-j\omega t}dt = \int_{-c}^{0} \left(1 + \frac{t}{c}\right)e^{-j\omega t}dt + \int_{0}^{c} \left(1 - \frac{t}{c}\right)e^{-j\omega t}dt =$$

$$= \frac{1}{\omega^2 c}(-e^{j\omega c} + 2 - e^{-j\omega c}) = \frac{4}{\omega^2 c}\sin^2\frac{\omega c}{2}$$

Ampliació de Matemàtiques

Tema 6. Transformada de Fourier

Aplicant propietats. Observem que

$$q_c'(t) = \begin{cases} 1/c & \text{si } -c < t < 0 \\ -1/c & \text{si } 0 < t < c \\ 0 & \text{si } |t| > c \end{cases} = \frac{1}{c} p_{\frac{c}{2}} \left(t + \frac{c}{2} \right) - \frac{1}{c} p_{\frac{c}{2}} \left(t - \frac{c}{2} \right)$$

Sabem que:
$$p_a(t-t_0) \longleftrightarrow e^{-j\omega t_0} \frac{2}{\omega} \sin(\omega a)$$

$$\begin{split} \text{Per tant: } \mathcal{F}\{q_c'(t)\} &= \frac{2}{\omega c} e^{\mathrm{j}\omega\frac{c}{2}} \sin\frac{\omega c}{2} - \frac{2}{\omega c} e^{-\mathrm{j}\omega\frac{c}{2}} \sin\frac{\omega c}{2} = \\ &= \frac{2}{\omega c} \sin\frac{\omega c}{2} (e^{\mathrm{j}\omega\frac{c}{2}} - e^{-\mathrm{j}\omega\frac{c}{2}}) = \frac{4\mathrm{j}}{\omega c} \sin^2\frac{\omega c}{2} \end{split}$$

Aplicant la propietat de derivació: $\mathcal{F}\{q_c'(t)\}=\mathtt{j}\omega Q_c(\omega)$ obtenim

$$Q_c(\omega) = \frac{4}{\omega^2 c} \sin^2 \frac{\omega c}{2}$$

Ampliació de Matemàtiques

Tema 6. Transformada de Fourier

Transformada de funcions reals

Apartat 10.2 dels apunts, pàgines 41-43.

$$f(t) \longleftrightarrow \mathcal{F}(\omega) = R(\omega) + \mathrm{j} I(\omega)$$

$$f \ \mathrm{real} \Leftrightarrow f(t) = \overline{f(t)} \Leftrightarrow F(\omega) = \overline{F(-\omega)} \quad \text{[P. de conjugació]}$$

Això és equivalent a:

$$R(\omega) + jI(\omega) = R(-\omega) - jI(-\omega) \Leftrightarrow \begin{cases} R(\omega) = R(-\omega) \\ I(\omega) = -I(-\omega) \end{cases}$$

- La part real de $F(\omega)$ és una funció parella.
- La part imaginària de $F(\omega)$ és una funció senar.

Com a conseqüència:

- f és una funció real i parella si i només si la seva transformada de Fourier és una funció real i parella.
- f és una funció real i senar si i només si la seva transformada de Fourier és una funció imaginària pura i senar.
- ightharpoonup Si f és real, a partir de la descomposició de f en suma d'una funció parella i una funció senar es dedueix:

$$f(t) = f_p(t) + f_s(t) \longleftrightarrow F(\omega) = R(\omega) + jI(\omega) \Rightarrow$$

$$\Rightarrow \begin{cases} f_p(t) \longleftrightarrow R(\omega) \\ f_s(t) \longleftrightarrow jI(\omega) \end{cases}$$

Transformacions sinus i cosinus

Apartat 10.3 dels apunts, pàgines 43-44.

Definició

La transformada cosinus de la funció real f(t) és:

$$\mathcal{F}_C\{f(t)\} = \int_0^{+\infty} f(t) \cos(\omega t) dt$$

La transformada sinus de la funció real f(t) és:

$$\mathcal{F}_{S}\{f(t)\} = \int_{0}^{+\infty} f(t)\sin(\omega t) dt$$

Observació

$$\mathcal{F}\{f(t)\} = \int_{-\infty}^{+\infty} (f_p(t) + f_s(t))e^{-j\omega t} dt = \int_{-\infty}^{+\infty} (f_p(t) + f_s(t))(\cos \omega t - \mathbf{j}\sin \omega t) dt =$$

$$= \int_{-\infty}^{+\infty} f_p(t)\cos \omega t dt - \mathbf{j} \int_{-\infty}^{+\infty} f_s(t)\sin \omega t dt =$$

 $=2\int_0^{+\infty}\!\!f_p(t)\cos\omega t\,dt-2\mathrm{j}\int_0^{+\infty}\!\!f_s(t)\sin\omega t\,dt=2\mathcal{F}_C\{f_p(t)\}-2\mathrm{j}\mathcal{F}_S\{f_s(t)\}$

Transformacions sinus i cosinus, funcions parelles i senars

Tenint en compte que $f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) e^{j\omega t} d\omega$:

Igualtat de Parseval

Apartat 10.4 dels apunts, pàgines 44-45.

La igualtat de Parseval proporciona una relació entre l'energia de f(t) i la de la seva transformada.

$$\int_{-\infty}^{+\infty} |f(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |F(\omega)|^2 d\omega.$$

El producte de convolució

Apartat 11 dels apunts, pàgines 45-47.

Definició El producte de convolució de dues funcions integrables f i g és la funció

$$(f * g)(t) = f(t) * g(t) = \int_{-\infty}^{+\infty} f(u) \cdot g(t - u) du$$

Propietats

- f * q = q * f
- f * (g + h) = f * g + f * h
- (f * g) * h = f * (g * h)

El producte de convolució es pot calcular, en molts casos, de manera gràfica.

Teorema de convolució

$$f(t) \longleftrightarrow F(\omega)$$

 $g(t) \longleftrightarrow G(\omega)$

Convolució en temps

$$f(t) * g(t) \longleftrightarrow F(\omega) \cdot G(\omega)$$

► Convolució en freqüència

$$f(t) \cdot g(t) \longleftrightarrow \frac{1}{2\pi} F(\omega) * G(\omega)$$

6.4 Funcions generalitzades

Apartat 12 dels apunts, pàgines 47-52.

δ de Dirac

Definició La funció generalitzada δ es defineix a partir del valor d'una integral:

$$\int_{\alpha}^{\beta} \delta(t - t_0) \cdot g(t) dt = \begin{cases} g(t_0) & \text{si } t_0 \in (\alpha, \beta) \\ 0 & \text{si } t_0 \notin [\alpha, \beta] \end{cases}$$

Propietats

- $\delta(t) = \delta(-t)$
- $f(t)\delta(t-t_0) = f(t_0)\delta(t-t_0)$
- $ightharpoonup f(t) * \delta(t) = f(t)$
- $f(t) * \delta(t t_0) = f(t t_0)$

Propietats relacionades amb la transformada de Fourier

$$\mathcal{F}\{\delta(t)\} = \int_{-\infty}^{+\infty} e^{-j\omega t} \delta(t) dt = 1$$

$$\mathcal{F}\{\delta(t-t_0)\} = \int_{-\infty}^{+\infty} e^{-j\omega t} \delta(t-t_0) dt = e^{-j\omega t_0}$$

També es pot calcular aplicant la propietat de translació:

$$\mathcal{F}\{\delta(t-t_0)\} = e^{-j\omega t_0}\mathcal{F}\{\delta(t)\} = e^{-j\omega t_0}$$

Aplicant la propietat de dualitat:

$$\mathcal{F}\{1\} = 2\pi\delta(-\omega) = 2\pi\delta(\omega)$$
$$\mathcal{F}\{e^{-jt\alpha}\} = 2\pi\delta(-\omega - \alpha) = 2\pi\delta(\omega + \alpha)$$

▶ Si $f(t) \longleftrightarrow F(\omega)$, aleshores, aplicant el teorema de convolució:

$$\mathcal{F}\{f(t) * \delta(t)\} = \mathcal{F}\{f(t)\}\mathcal{F}\{\delta(t)\} = F(\omega)$$
$$\mathcal{F}\{f(t) * \delta(t - t_0)\} = F(\omega)e^{-j\omega t_0} = \mathcal{F}\{f(t - t_0)\}$$

Transformada de les funcions sinus i cosinus

Observació

lacktriangle Hem vist, utilitzant la funció δ que:

$$\begin{array}{ccc}
1 & \longleftrightarrow & 2\pi\delta(\omega) \\
e^{j\omega_0 t} & \longleftrightarrow & 2\pi\delta(\omega - \omega_0)
\end{array}$$

Aquestes transformades NO es poden calcular directament, perquè NO EXISTEIXEN les integrals:

$$\int_{-\infty}^{+\infty} e^{-j\omega t} dt \qquad \int_{-\infty}^{+\infty} e^{jt\omega_0} e^{-jt\omega} dt$$

Aquestes funcions no compleixen la condició suficient d'existència de la transformada de Fourier:

$$\int_{-\infty}^{+\infty} |f(t)|^2 dt = +\infty \qquad \text{per a } f(t) = 1 \text{ i } f(t) = e^{j\omega_0 t}$$

Transformada de les funcions sinus i cosinus

La transformada de les funcions sinus i cosinus tampoc es pot calcular directament, perquè NO EXISTEIX la integral:

$$\int_{-\infty}^{+\infty} e^{-j\omega t} \sin t \, dt$$

i tampoc es compleix la condició suficient d'existència de la transformada de Fourier.

Utilitzant

$$e^{j\omega_0 t} \longleftrightarrow 2\pi\delta(\omega - \omega_0)$$

i la fórmula d'Euler, s'obté:

$$\cos \omega_0 t = \frac{e^{j\omega_0 t} + e^{-j\omega_0 t}}{2} \longleftrightarrow \pi(\delta(\omega - \omega_0) + \delta(\omega + \omega_0))$$

$$\vdots \qquad e^{j\omega_0 t} - e^{-j\omega_0 t}$$

$$\sin \omega_0 t = \frac{e^{j\omega_0 t} - e^{-j\omega_0 t}}{2j} \quad \longleftrightarrow \quad j\pi(\delta(\omega + \omega_0) - \delta(\omega - \omega_0))$$

Cosinus i productes de cosinus No és als apunts

Dues maneres de calcular la transformada de $f(t) = \cos(at)$:

- 1. Fórmula d'Euler i la transformada $e^{\mathrm{j}\alpha t}\leftrightarrow 2\pi\delta(\omega-\alpha)$, amb $\alpha=a$ i $\alpha=-a$.
- 2. Propietat de modulació $f(t)\cos(at)\longleftrightarrow \frac{1}{2}(F(\omega+a)+F(\omega-a))$ amb la transformada $1\leftrightarrow 2\pi\delta(\omega)$.

$$\cos(at) \longleftrightarrow \pi(\delta(\omega - a) + \delta(\omega + a))$$

La propietat de modulació equival a traslladar la transformada cap a l'esquerra i cap a la dreta, sumar les dues translacions i dividir per dos.

Tres maneres de calcular la transformada del producte de cosinus, $f(t) = \cos(at)\cos(bt)$:

- 1. Propietat de modulació amb la transformada de $\cos(at)$.
- 2. Utilitzant $\cos(at)\cos(bt) = \frac{1}{2}(\cos((a+b)t) + \cos((a-b)t))$ amb la transformada de $\cos(at)$.
- 3. Utilitzant $\cos(at)\cos(bt)=\frac{e^{\mathrm{j}at}+e^{-\mathrm{j}at}}{2}\cdot\frac{e^{\mathrm{j}bt}+e^{-\mathrm{j}bt}}{2}$ amb la transformada de $e^{\mathrm{j}\alpha t}$.

Què passa si a = b?

$$\cos(at)\cos(bt)\longleftrightarrow \frac{\pi}{2}(\delta(\omega+a+b)+\delta(\omega+a-b)+\delta(\omega-a+b)+\delta(\omega-a-b))$$

$$1\longleftrightarrow 2\pi\delta(\omega)$$

$$\cos(at)\longleftrightarrow \pi(\delta(\omega+a)+\delta(\omega-a))$$

$$\pi\delta(\omega-a)$$

$$\cos(at)\cos(bt)\longleftrightarrow \frac{\pi}{2}(\delta(\omega+a+b)+\delta(\omega+a-b)+\delta(\omega-a-b))$$

$$\frac{\pi}{2}\delta(\omega+a+b)$$

$$\frac{\pi}{2}\delta(\omega+a-b)$$

$$\frac{\pi}{2}\delta(\omega-a-b)$$

Què passa si a = b?

Funció u de Heaviside

Apartat 12 dels apunts, pàgines 47-52.

Definició La funció u de Heaviside es defineix per:

$$u(t) = \begin{cases} 1 & \text{si } t \ge 0 \\ 0 & \text{si } t < 0 \end{cases}$$

Propietats

- $\begin{array}{ll} \blacktriangleright & u'(t) = \delta(t) \\ \blacktriangleright & u(t) = \frac{1}{2}(1 + \mathrm{sgn}(t)) \text{, on} \end{array}$

$$\operatorname{sgn}(t) = \begin{cases} 1 & \text{si } t \ge 0 \\ -1 & \text{si } t < 0 \end{cases}$$

Transformada de Fourier de la funció de Heaviside

$$u(t) \longleftrightarrow \pi \delta(\omega) + \frac{1}{j\omega}$$
$$u(t - t_0) \longleftrightarrow e^{-j\omega t_0} \left(\pi \delta(\omega) + \frac{1}{j\omega}\right) = \pi \delta(\omega) + \frac{1}{j\omega}e^{-j\omega t_0}$$

Propietat d'integració

$$f(t) \longleftrightarrow F(\omega)$$

$$\int_{-\infty}^t f(s) \, ds \, \longleftrightarrow \, \frac{1}{\mathrm{j}\omega} F(\omega) + \pi F(0) \delta(\omega), \text{ per a } \omega \neq 0$$

Funcions periòdiques

f(t) funció T-periòdica, amb sèrie de Fourier:

$$f(t) \simeq \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}, \quad \omega_0 = \frac{2\pi}{T}$$

La transformada de Fourier de f és:

$$F(\omega) = \mathcal{F}\{f(t)\} = \sum_{k=-\infty}^{\infty} c_k \, \mathcal{F}\{e^{jk\omega_0 t}\} = 2\pi \sum_{k=-\infty}^{\infty} c_k \, \delta(\omega - k\omega_0).$$

Tren de deltes

Definició Un tren de deltes és la funció generalitzada

$$\bar{\delta}_T(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT)$$

Transformada d'un tren de deltes

Considerem el tren de deltes com l'extensió T-periòdica de $\delta(t)$. Els coeficients de la seva sèrie de Fourier complexa són:

$$c_k = \frac{1}{T} \int_{-T/2}^{T/2} \delta(t) e^{-jk\omega_0 t} dt = \frac{1}{T} e^{-jk\omega_0 0} = \frac{1}{T}$$

Per tant:

$$\bar{\delta}_T(t) = \sum_{k=-\infty}^{\infty} c_k \, e^{jk\omega_0 t} = \frac{1}{T} \sum_{k=-\infty}^{\infty} e^{j\omega_0 kt}$$

I la transformada de Fourier de $\delta_T(t)$ és:

$$\mathcal{F}\{\bar{\delta}_T(t)\} = \frac{1}{T} \sum_{k=-\infty}^{\infty} 2\pi \,\delta(\omega - k\omega_0) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_0) = \omega_0 \bar{\delta}_{\omega_0}(\omega)$$

La transformada de Fourier d'un tren de deltes és també un tren de deltes.

Extensió periòdica com a producte de convolució amb un tren de deltes

Si f(t) està definida en l'interval $(-\frac{T}{2},\frac{T}{2}]$, la seva extensió periòdica es pot expressar com:

$$f(t) * \bar{\delta}_T(t) = \sum_{k=-\infty}^{\infty} f(t - kT)$$