Chapter Seven: Verilog

Chapter Eight: Memory

- 1. **True or False.** Given a ROM with address input A0~A7 and data output D0~D3, how many word lines it has? (16)
- 2. A Verilog module for the SHRG4U 4-bit **shift register** and its function table are shown as below. There are several errors in the Verilog module. Please find the errors and correct them.

Function table for the SHRG4U 4-bit shift register							
Inputs			Next state				Function
/CLR	S1	S0	Q3*	Q2*	Q1*	Q0*	Function
0	Χ	Х	0	0	0	0	Asynchronous clear
1	0	0	Q3	Q2	Q1	Q0	Hold
1	0	1	Q2	Q1	Q0	RIN	Shift right
1	1	0	LIN	Q3	Q2	Q1	Shift left
1	1	1	D3	D2	D1	D0	Synchronous load

```
module SHRG4U( CLK, CLR_L, RIN, LIN, S, D, Q );
                                                              //1
    input CLK, CLR L, RIN, LIN;
                                                              //2
    input S;
                                                              //3
    input [3:0]D;
                                                              //4
    output reg [3:0]Q;
                                                              //5
                                                              //6
    always @ (posedge CLK) begin
                                                              //7
        if( CLR_L ) Q <= 0;
                                                              //8
        else case(S)
                                                              //9
             0: Q \le Q;
                                                              //10
             1: Q \le \{RIN, Q[3:1]\};
                                                              //11
             2: Q \le \{Q[2:0],LIN\};
                                                              //12
             3: Q \le D;
                                                              //13
        endcase
                                                              //14
                                                              //15
    end
endmodule
                                                              //16
```

- 3. True or False. To implement a 1024*8 bit ROM, we need (16) 256*1 bit ROM chips.
- 4. Programmable Logic Design and Verilog Design.

The following Truth table can be used to implement a circuit that convert a 5421 BCD to Excess-3 Code.

- (1) Use Karnaugh map to simplify the output functions, write the minimal sum-of-products expression.
- (2) Implement the Truth table by Programmable Logic Device. Mark the '●' to program the Programmable Logic Device.
- (3) Design a Verilog module by Dataflow style or Gate Structural style that can implement the same function.

Truth Table

Programmable Logic Device