BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACION

MAESTRIA EN CIENCIAS DE LA COMPUTACION

Área: Sistemas Distribuidos

Programa de Asignatura: Ingeniería del Conocimiento basada en Modelo Lógico

Código:

Tipo: Optativa

Créditos: 9

Fecha: Noviembre 2012

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACION

1. DATOS GENERALES

	,
Nombre del Programa Educativo:	Maestría en Ciencias de la Computación
Modalidad Académica:	Escolarizada
Nombre de la Asignatura:	Ingeniería del Conocimiento basada en Modelo Lógico
Ubicación:	Segundo o Tercer semestre (Optativa)

2. REVISIONES Y ACTUALIZACIONES

Autores:	Dra. Claudia Zepeda Cortés Dr.José Luis Carballido Carranza Dr. Iván Olmos Pineda Dr. Arturo Olvera Alarcón
Fecha de diseño:	Noviembre 2012
Fecha de la última actualización:	
Revisores:	No aplica, Materia nueva
Sinopsis de la revisión y/o actualización:	No aplica, Materia nueva

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACION

3. OBJETIVOS:

General:

El estudiante reconocerá y aplicará los conceptos fundamentales de la teoría de representación del conocimiento utilizando enfoques basados en programación declarativa.

Específicos:

- 1.- El estudiante analizará los principales enfoques para representar conocimiento de sentido común basados en programación declarativa.
- 2.- El estudiante aplicará los diferentes enfoques para representar conocimiento de sentido.

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA

FACULTAD DE CIENCIAS DE LA COMPUTACION

4. CONTENIDO

Unidad	Contenido Temático/Actividades de	
1.Lógica	aprendizaje 1.1 Lógica proposicional 1.2 Semánticas de programación lógica	
2. Programación Lógica	 2.1 Tipos de programas lógicos 2.2 Estudio del software para calcular modelos bajo diferentes semánticas de programación lógica 	
3. Enfoques para representación de conocimientos	3.1 Actualización3.2 Planificación3.3 Preferencias3.4 Actualización	
4. Modelado de Problemas	 4.1 Análisis de diferentes dominios para modelar problemas basados en enfoques para representación de conocimiento. 4.2. Modelado de problemas utilizando los enfoques para representación de conocimiento. 4.3. Implementación de los problemas utilizando los enfoques para representación de conocimiento 	

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACION

Bibliografía		
Básica	Complementaria	
1Chitta Baral, Knowledge		
Representation, Reasoning and		
Declarative Problem Solving Cambridge		
University Press. First Edition 2003.		
2 Stuart Russell Peter Norvig Artificial		
Intelligence: A Modero Approach Prentice		
Hall; 3rd edition, 2009.		
3Knowledge Representation and		
Reasoning (The Morgan Kaufmann Series		
in Artificial Intelligence) Ronald Brachman		
Hector Levesque. Morgan Kaufmann; I		
edition(June 2,2004)		
4Martín Agner Discrete Mathematics		
American Mathematical Society AMS		
2007.		
5. Ernest Friedman-Hill, Jess in Action:		
Java Rule-Based Systems (In Action		
series), Manning Publications, 2003.		

5. CRITERIOS DE EVALUACIÓN

Criterios	Porcentaje
Exámenes	40%
Participación en clase	
Tareas	
Exposiciones	
Simulaciones	
 Trabajo de investigación y/o de 	
intervención	
 Prácticas de laboratorio 	30%
Visitas guiadas	
 Reporte de actividades académicas y 	
culturales	
Proyecto final	30%
• Otros	
Total	100%