TOM XII

1976

Вып. 1

УДК 62-507

МНОГОУРОВНЕВЫЕ МАГАЗИННЫЕ АВТОМАТЫ

А. Н. Маслов

Строится последовательность классов автоматов с памятью, являющейся расширением магазинной памяти, таким образом, что класс языков, допустимых автоматами из i-го класса, совпадает с обобщенными индексными языками уровня i.

С помощью порождающих грамматик в работе [1] введены индексные языки, а в работах [2, 3] введена иерархия обобщенных индексных языков, вторым членом которой являются индексные языки, а первым — бесконтекстные языки. Известно, что класс бесконтекстных языков совпадает с классом языков, допустимых магазинными автоматами. В настоящей статье строится последовательность классов автоматов с памятью, являющейся расширением магазинной памяти, таким образом, что класс языков, допустимых автоматами из *i*-го класса, совпадает с обобщенными индексными языками уровня *i*.

Магазинной памятью уровня 1 является обычный магазин (из символов), а магазинной памятью уровня i является магазинный список памятей уровня i-1. Действия с магазинной памятью уровня 1 описаны в [4,5]. Над магазинной памятью уровня i можно совершить следующие действия: 1) все допустимые действия над ее вершинной памятью уровня i-1; 2) заменить вершинную память уровня i-1 на две с ней совпадающие. При опустошении вершинной памяти уровня i-1 автомат переходит к следующей памяти уровня i-1.

Память уровня i удобно рассматривать расположенной в i-мерном пространстве так, чтобы элементы магазинного списка (памяти уровня i-1) занимали параллельные гиперплоскости; при действии 2 происходит дублирование вершинной гиперплоскости.

Предварительное сообщение о результатах настоящей статьи имеется

 $[a, b]^2$, сходные конструкции автоматов рассматривались в [a, b].

В первом разделе вводятся вспомогательные классы автоматов и устанавливается их эквивалентность классам индексных грамматик, с помощью этого во втором разделе излагаются основные результаты.

1. Для определения класса индексных грамматик нам потребуется операция возведения в степень на множестве языков. Обозначим через $V^v = \{A^B | A, B^{\in}V\}$ множество всех выражений вида A^B . Доопределим операцию возведения в степень до операции над языками с помощью равенств: $A^{\epsilon} = A$, $\epsilon^A = \epsilon$, $(L_1 \cup L_2)^L = L_1^L \cup L_2^L$, $(L_1 L_2)^L = L_1^L L_2^L$, $A^{L_1 \cup L_2} = A^{L_1 \cup A^{L_2}}$ и $A^{BL} = (A^B)^L$, где A и B— символы из алфавита V, а L_1 , L_1 и L_2 — языки в алфавите V. Указанные равенства позволяют по интерпретации для выражений A^B (т. е. по отображению $V^V \rightarrow V$) определить язык $L_1^{L_2}$ для языков L, и L_2 в алфавите V. Тем самым, в частности, определена операция возведения в степень для слов. В выражении A^B букву B будем называть индексом буквы A. Теперь можно определить класс индексных языков, используя несколько более удобные обозначения, чем в $[^1]$.

Определение $[^2]$. Индексной грамматикой называется пятерка G= $=\langle \Sigma, \ V, \ P, \ I, \ S_o \rangle$, где $\Sigma = \{\sigma_1, \dots, \ \sigma_d\}$ — терминальный алфавит, $V = \{S_0, \ S_1, \dots, \ S_m\}$ — нетерминальный алфавит, S_0 — начальный символ, P конечное множество продукций вида $S_i \rightarrow \omega$, $\omega \in (V^v \cup V \cup \Sigma)^*$ и $I: V \rightarrow V \perp$ ин-

терпретация операции возведения в степень.

Слово y выводимо из слова x применением продукции $p \in P$ (обозначается $x \vdash y$), если $x = aS_i^z b$, $y = a\omega^z b$, $p : S_i \rightarrow \omega$. Слова a, b и z в произвольном алфавите. Слово y выводимо из слова x, обозначается $x \vdash y$, если существует последовательность слов $x = y_0, y_1, \ldots, y_n = y$, такая, что либо $y_i \vdash y_{i+1}$ для $p \in P$, либо y_{i+1} получается из y_i заменой некоторого вхождения A^B на $I(A^B)$. Каждая грамматика G определяет язык $L(G) = \{x \in \Sigma^* | S_0 \vdash x\}$ выводимых в ней слов. Отметим, что выражения σ^A и A^σ , $\sigma^G \Sigma$, являются тупиками.

Определение выводимости в индексной грамматике допускает естественное расширение. Пусть $V(1) = V^*$, $V(2) = (V^v \cup V)^*$, $V(k) = \{A^x | x^{(i)}\}$ $\{V(k-1)\}^*$ in $V(\infty) = \bigcup V(k)$. Hampimer, $A^{B^{c}D}B^{F}\{V(3)\}$ in $A_1^{A_1...A_k} \{V(k)\}$.

Слово у выводимо из слова x применением правила $p \in P$ на уровне k > 1(обозначается $x\vdash y$), если существуют слова a_0 и b_0 из $(V(\infty)\cup\Sigma)^*,\ a_{i+1},$ b_{i+1}, z_i и t_i из $V(\infty)$, такие, что $x=a_0S_{i_0}{}^{z_0}b_0, \ y=a_0S_{i_0}{}^{t_0}b_0, \ z_j=a_{j+1}S_{i_j+1}^{\ z_{j+1}}\ b_{j+1}, \ t_j=a_{j+1}$ $=a_{j+1}S_{i_{k}+1}^{t_{j+1}}b_{j+1}$ при $0 \le j < k-1$, $z_{k-1}=a_{k}S_{i_{k}}^{z_{k}}b_{k}$, $t_{k-1}=a_{k}\omega^{z_{k}}b_{k}$, $p:S_{i_{k}}\to \omega$. Будем отождествлять выводимость \vdash , и выводимость \vdash . Неформально, выводимость на уровне k > 1 означает применение продукции к нетерминалу, являющемуся индексом k-го уровня. Слово y выводится из слова x на уровне k, обозначается $x \vdash y$, если существует последовательность слов $x = y_0$, $y_1,\ldots,y_n=y,y_i$ е $(V(k)\cup\Sigma)^*$, такая, что либо $y_i\vdash -y_{i+1}$ для pеP и $k'\leqslant k$, либо y_{i+1} получается из y_i заменой обозначения $A^{\scriptscriptstyle B}$ на $I(A^{\scriptscriptstyle B})$ на максимальном уровне, т. е. B не имеет индекса. Ясно, что \vdash и \vdash эквивалентны, а выводимость - эквивалентна выводимости в бесконтекстной грамматике. Пару $(G,\ k)$ будем называть индексной грамматикой уровня k. По грамматике $(G,\ k)$ легко построить грамматику $(G',\ k)$, порождающую тот же язык, что и (G, k), такую, что в выводах грамматики G' продукции (вида $A \to BC$) на уровне k не применяются.

Язык $L(G, k) = \{x \in \Sigma^* | S_0 \vdash x\}$, образованный из слов, выводимых на уровне k, назовем индексным языком уровня k, а язык $L(G, \infty)$ $=\{x\in\Sigma^*\mid \exists k(S_0\vdash x)\}$ индексным языком уровня ∞ . Через L_k будем обозначать класс индексных языков уровня k, а также класс индексных грамматик уровня k, если это не приводит к двусмысленности.

В ряде случаев элементы множества $V(\infty)$ будем называть словами. При этом элементы множества V(1) будем называть одноэтажными словами, а элементы множества V(k) k-этажными словами. Пустое слово будем обозначать ε , длину (одноэтажного) слова x будем обозначать l(x), а пустое множество символом ϕ . Через $\langle x \rangle$ обозначим множество символов, вхо-

дящих в одноэтажное слово x.

Определение. Левыми нетерминалами в слове xA^yz , где $x\in \Sigma^*$, а $A\in V$ назовем A и все левые нетерминалы из y. Таким образом, в k-этажном слове может быть k левых нетерминалов. Назовем вывод в индексной грамматике левым, если правила вывода применяются только к левым нетерминалам.

Ясно, что из каждого вывода перестановкой применения правил можно

получить левый вывод, приводящий к тому же результату.

В промежуточных словах выводов индексных грамматик уровня k один и тот же нетерминал может встречаться на разных уровнях. При $k<\infty$ можно, однако, по данной индексной грамматике уровня k построить эквивалентную ей такую, чтобы каждый нетерминал мог встречаться только на каком-то одном своем уровне. Для этого каждый нетерминал A заменим на k нетерминалов $A(1),\ldots,A(k)$, а каждую продукцию $A\to\omega$ на k продукций $A(i)\to\omega(i)$, $1\leqslant i\leqslant k$, где $\omega(i)$ получено из ω заменой каждого вхождения нетерминала B на уровне i (относительно ω) на B(i+j-1); если для некоторого i и некоторого вхождения B выполнено i+j-1>k, то продукция $A(i)\to\omega(i)$ ликвидируется. Каждое интерпретационное правило $I(A^B)=C$ заменим на k-1 правило $I(A(i)^{B(i+1)})=C(i)$, где $1\leqslant i\leqslant k-1$. После указанного преобразования нетерминальный алфавит будем называть разделенным.

Класс бесконтекстных языков совпадает с классом языков, допускаемых недетерминированными магазинными автоматами [^{4, 5}]. Аналогичную роль для индексных языков уровня *i*≥2 играют магазинные автоматы уров-

ня $i \ge 2$.

Действия магазинного автомата (с одним состоянием) совпадают с левым выводом в бесконтекстной грамматике, продукции которой приведены к виду: $A \to BC$ или $A \to \sigma$. В этом случае нетерминальную часть промежуточного слова при левом выводе можно рассматривать как содержимое магазина (точнее магазинного списка). Продукции индексной грамматики можно привести (как будет доказано в теореме 1) к виду $A \to B^c$, $A \to BC$ или $A \to \sigma$. Будем считать, что нетерминальный алфавит разделен по уровням. Промежуточное слово при левом выводе имеет вид $\sigma_i, \ldots \sigma_{in}A_{in}^{z_i}, \ldots A_{im}^{z_m}, z_i \in V(\infty)$. Нетерминальная часть должна естественным образом располагаться в памяти допускающего автомата.

Память уровня 1 — это магазин. Автомат может совершать с магазином следующие действия: 1) прочитать очередной символ на входной ленте и символ в вершине магазина, а затем стереть последний; 2) прочитать и заменить на два символа верхний символ в магазине. Память уровня 2 это магазинный список пар вида: «активный символ — магазинный список символов». Автомат работает с вершинной парой магазина. При опустошении вершинной пары автомат переходит к следующей паре. Автомат может совершать следующие действия, возможность выполнения которых зависит от читаемых символов: 1) если магазин в вершинной паре пуст, то прочитать очередной символ на входной ленте и активный символ, а затем стереть вершинную пару; 2) прочитать активный символ и заменить вершинную пару на две отличающихся от первоначальной лишь активным символом; 3) прочитать активный символ и заменить его, добавив при этом символ в вершину магазина символов; 4) прочитать символ и символ в вершине магазина, а затем стереть символ в вершине магазина и изменить активный символ. В левом выводе активные символы соответствуют первому уровню, а остальные символы памяти — второму уровню.

Память уровня k — это магазинный список пар вида: «активный символ — память уровня k—1». Автомат работает с вершинной парой, а при ее опустошении переходит к следующей паре. Автомат может совершать (недетерминированно) следующие действия, возможность выполнения которых зависит от читаемых символов (символ на входной ленте не чи-

тается, если не указано обратное);

1) если память уровня k-1 в вершинной паре пуста, то прочитать оче-

редной символ на входной ленте и активный символ, а затем стереть вершинную пару;

2) прочитать активный символ и заменить вершинную пару на две,

отличающихся от первоначальной лишь активным символом;

3) прочитать активный символ и изменить его, добавив при этом вершинный символ в память уровня k-1 (т. е. в вершину магазина уровня k-1 добавить пару «некоторый символ — пустая память уровня k-2»);

4) прочитать активный символ (вершинной пары) и активный символ ее памяти уровня k-1, если при этом память уровня k-2 (в вершине памяти уровня k-1) пуста, то стереть вершинную пару в памяти уровня k-1 и изменить прочитанный активный символ;

5) совершить одно из действий 2-5 с памятью уровня k-1, нахоля-

щейся в вершинной паре.

В начальный момент в магазине хранится единственная пара «начальный символ — пустая память уровня k-1». Если, прочитав слово, автомат опустошил память, слово считается допустимым. Ясно, что левый вывод в грамматике уровня $k \ge 1$ и допустимость соответствующим автоматом (с одним состоянием), использующим память уровня $k \ge 1$, тождественны.

Назовем грамматики эквивалентными, если они порождают один и тот

же язык.

Будем говорить, что грамматика в приведенной форме, если ее продукции имеют вид $A \rightarrow B^c$, $A \rightarrow BC$, $A \rightarrow \sigma$ и, возможно, $S_0 \rightarrow \varepsilon$, где S_0 — начальный символ, не встречающийся в правых частях продукций и интерпретационных правил.

T е о р е м а 1. По индексной грамматике (G, k) можно построить экви-

валентную индексную грамматику (G',k) в приведенной форме.

Доказательство. Не уменьшая общности, можно считать, что Gприведена к виду, указанному в лемме 3 из [³], т. е. ее продукции имеют вид $A \rightarrow B^c$, $A \rightarrow BC$, $A \rightarrow \sigma$ или $A \rightarrow \varepsilon$.

Преобразование грамматики (G, k) к (G', k_1) состоит из следующих этапов:

1) Произведем разделение нетерминального алфавита (см. выше). После этого множества V_i символов, которые могут появляться на i-уровне, станут пересекающимися. Полученный нетерминальный алфавит будем обозначать через V.

2) На всех уровнях, выше первого, заменим применения продукций $A \to \varepsilon$ на $A \to E$, где E — новый нетерминал, обладающий $I(B^{\scriptscriptstyle E}) = B$ и $I(E^{\scriptscriptstyle B}) = E$ для каждого нетерминала B.

- 3) Нетерминалу A на первом уровне может быть придано в качестве параметра (обозначается [A, N]) некоторое подмножество N первоэтажных нетерминалов, каждый из которых под влиянием находящихся над ним индексов имеет возможность перейти в пустое слово (в противном случае вывод заходит в тупик).
- 4) Если при некотором применении продукции $A \to BC$ на первом этаже в выводе грамматики \tilde{G} предполагается, что B или C в дальнейшем перейдет под влиянием находящихся над ним индексов в пустое слово, то добавим это B или C к параметру другого, т. е. применим продукцию $[A, N] \rightarrow [C, B \cup N]$ или $[A, N] \rightarrow [B, C \cup N]$. Введем также продукции $[A, N] \rightarrow [B, N][C, N], [A, \varnothing] \rightarrow A$ и $A \rightarrow [A, \varnothing]$, где A, B и C нетерминалы из V₁, а Ne2v₁.
- $(N_1, N_2), [N_1, B, N_2], \{B, N_3\},$ B и $ar{ar{B}}$, где N_i — подмножества первоэтажных нетерминалов из V, а B имевшийся второэтажный нетерминал. Добавим продукции $[A, N] \to B^{(c, N)}$ и $\{C, N\} \to C(\varnothing, N)$, если в G имелась продукция $A \to B^c$, позволяющие на

период времени от порождения индекса ${\it C}$ до исчезновения всех его наследников избавиться от параметров.

6) Введем продукции $B \to \overline{B}\overline{B}$ и $\overline{B} \to (N_1, N_2)[N_1, B, N_2]$, где B — второэтажный нетерминал, а N_i — подмножества первоэтажных нетерминалов. Введем интерпретационные правила

$$I([A, N_1]^{(N_1, N_2)}) = [A, N_2] \text{ m} I((N_1, N_2)^z) = (N_1, N_2)$$

(позволяющие, кроме прочего, ликвидировать последствия продукций из 5). В подслове $[A, N_1]^{B^{\omega}}$ применение введенных продукций и интерпретационных правил обозначает, что B, используя ω , переводит * N_1 в N_2 , τ . е.

$$\exists x\exists y \left(\langle x\rangle = N_1 \& \langle y\rangle = N_2 \& x^{B^{\omega}} \vdash_{\overline{G}}^{k} y\right).$$

7) Правила (продукции и интерпретационные) для обращения с нетерминалами $[N_1, B, N_2]$ совпадают с введенными в теореме 2 из $[^3]$, но только продукции $X \to \varepsilon$ заменяются на $X \to E$, а знак \subset заменяется на =. Нетерминал \overline{B} преобразуется, используя те же правила, которые были применимы к B до п. 6, но черта сохраняется над всеми его наследниками. Соответствующие интерпретационные правила имеют вид $I([A, N]^{\overline{B}}) = = [I(A^B), N]$.

8) Добавим продукции $[A, N] \rightarrow [A, N_1]$, если

$$\exists x\exists y \left(\langle x \rangle = N \& \langle y \rangle = N_1 \& x \vdash_{\overline{G}}^{k} y \right).$$

- 9) Теперь необходимо избавиться от продукций вида $A \to B$. Для этого заменим каждый нетерминал A на $[A] = \left\{B \mid A \vdash_{\overline{G}}^{k} B\right\}$. Нетерминалами новой грамматики будут подмножества нетерминалов старой грамматики; $[S_0]$ начальный. Продукции соответствуют продукциям старой грамматики: 1) $N \to [B][C]$, если $A \in N$ и была продукция $A \to BC$; 2) $N \to [B]^{[c]}$, если $A \in N$ и была продукция $A \to B^c$; 3) $N \to \sigma$, если $A \in N$ и была продукция $A \to \sigma$. Интерпретационные правила задаются равенствами: $I(N_1^{N_2}) = \{D \mid \exists A, B, C \left(A \in N_1 \& B \in N_2 \& I(A^B) = C\& C \vdash_{\overline{G}}^{k} D\right)\}$.
- 10) Полученная грамматика эквивалентна грамматике (G, k) с точностью до пустого слова. В случае необходимости можно добавить новый начальный символ \bar{S}_0 и продукции $\bar{S}_0 \rightarrow \epsilon$ и $\bar{S}_0 \rightarrow [S_0]$.

Теорема доказана.

2. Теперь мы покажем, что конечно-автоматное управление (левым) выводом в индексных грамматиках любого уровня не расширяет класс выводимых языков. И это позволит определить классы автоматов, допускающих индексные языки заданного уровня.

Пусть продукциям и интерпретационным правилам индексной грамматики G с разделенными нетерминалами приписаны номера r_1, \ldots, r_n и имеется конечный недетерминированный автомат U с входным алфавитом $\{r_i\}$. Каждому левому выводу в индексной грамматике G соответствует строка r_i, \ldots, r_{i_m} номеров применявшихся правил (продукций или интерпретационных правил). Будем называть вывод допустимым автоматом U, если

^{*} При применении продукций п. 6 преобразуемый нетерминал B «предполагает», что под ним стоит нетерминал $[A,N_1]$, и что, используя свои индексы, преобразуемый нетерминал B сможет перевести N_1 в N_2 . Если эти предположения не оправдалотся, то вывод зайдет в тупик.

ему соответствует строка $r_{i_1} \dots r_{i_m}$, допустимая автоматом U. Множество слов, полученных допустимыми выводами, обозначим через L(U, G, k).

T е о р е м а 2. Пусть G — индексная грамматика уровня k с разделенными нетерминалами, $\{r_i\}$ — множество номеров правил грамматики G. $a\ U$ — конечный недетерминированный автомат c входным алфавитом

 $\{r_i\}$. Тогда L(U, G, k) — индексный язык уровня k.

Доказательство. Нетерминалу А на первом уровне придадим два состояния q_i и q_j и будем выводить из A, используя его индексы, такие терминальные слова, что использованная последовательность правил (точнее, их номерев) переводит q_i в q_i . При левом выводе информация о применении правила на любом уровне может беспрепятственно достичь пер-

вого уровня.

Формальное доказательство проводится следующим образом. Пусть индексная грамматика $G=\langle \Sigma,\ V,\ P,\ I,\ S_0 \rangle$ в приведенной форме и автомат $U=\langle \{r_i\}, Q, \lambda, q_0, q_t \rangle$, где $\lambda: Q \times \{r_i\} \rightarrow 2^Q$, q_0 — начальное, а q_t — заключительное состояние. Введем новые нетерминалы: 1) $[q_i, A, q_j]$, где $A \in V$, $q_i \in Q, q_j \in Q; 2$) (q_i, q_j) , где $q_i \in Q, q_j \in Q; 3$) D — тупиковый символ. Нетерминал $[q_0, S_0, q_j]$ начальный. Нетерминал $[q_i, A, q_j]$ обозначает, что из Aвместе с его индексами в дальнейшем будет выведено терминальное слово таким образом, что строка номеров правил этого подвывода может перевести состояние q_i автомата U в q_i . Нетерминал (q_i, q_i) обозначает, что на некотором уровне (но не на первом) применено правило с номером r, таким, что $q_i \in \lambda(q_i, r)$.

Определим продукции индексной грамматики G(U) уровня k, порож-

дающей язык $L(\tilde{U}, G, k)$:

1) $[q_0, S_0, q_t] \rightarrow \varepsilon$, если $(S_0 \rightarrow \varepsilon) \in P$ и $q_t \in \lambda(q_0, r)$, где r — номер продукции $S_0 \rightarrow \varepsilon$;

2) $[q_i, A, q_j] \rightarrow [q_t, B, q_k][q_k, C, q_j]$, echi $(A \rightarrow BC) \in P$, $q_k \in Q$ if $q_t \in \lambda(q_i, r)$,

где r — номер продукции $A \rightarrow BC$;

3) $[q_i, A, q_i] \rightarrow [q_i, B, q_i]^c$, если $(A \rightarrow B^c) \in P$ и $q_i \in \lambda(q_i, r)$, где r — номер продукции $A \rightarrow B^c$; $\stackrel{\sim}{A} \rightarrow (q_i, q_i)$ $\stackrel{\sim}{\omega}$, если $(A \rightarrow \omega) \in P$, $q_i \in \lambda(q_i, r)$, где r — номер продукции

 $A \rightarrow \omega$, a $q_i \in Q$;

 $[q_i,A,q_j] \rightarrow \sigma$, если $(A \rightarrow \sigma) \in P$ и $q_i \in \lambda(q_i,r)$, где r — номер продукции $A \rightarrow \sigma$.

Интерпретация грамматики G(U) задается равенствами: 1) $I_{\mathfrak{s}}(A^{\mathfrak{s}}) =$ $=(q_i,q_i)C$, если $I(A^B)=C$ и q_i Є $\lambda(q_i,r)$, где r — номер интерпретационного правила $I(A^B) = C$; 2) $I_1([q_i, A, q_j]^B) = [q_i, C, q_j]$, если $I(A^B) = C$ и $q_i \in \lambda(q_i, r)$, где r — номер интерпретационного правила $I(A^B) = C$; 3) $I_1(A^{(q_i, q_j)}) = (q_i, q_j)A$, где $A \in V$, $q_i \in Q$, $q_j \in Q$; 4) $I_1([q_i, A, q_j]^{(q_i, q_i)}) = [q_i, A, q_j]$, $A \in V$, q_i , q_i и $q_i \in Q$; 5) $I_1(X^{v}) = D$ в тех случаях, когда I_i еще не определена.

Левые выводы грамматики G(U) моделируют левые выводы граммати-

ки G и действия автомата U. Теорема доказана.

Рассмотрим следующее устройство. Конечный недетерминированный автомат U с входным алфавитом Σ , к которому присоединена память уровня k, причем автомат U имеет доступ к активным символам на всех уровнях. Автомат U читает входной символ (или arepsilon) и активные символы (если вершинная память уровня i состоит из активного символа и пустой памяти уровня i-1, то i нетерминальных символов и k-i пустых слов), затем изменяет состояние и совершает с памятью одно из действий 1—5. Заметим, что чтение активных символов можно устранить (не изменяя при этом допустимый язык), заставив автомат U угадывать набор активных символов и совершая соответствующие действия с памятью; если какой-то активный символ угадан неправильно, то первое же действие с ним приведет в тупик.

Итак, предположим, что у автомата U устранены чтения активных символов, и что устройство допускает язык L. Заменим автомат U на недетерминированный автомат с одним состоянием, который может совершить под влиянием входного символа любое действие с присоединенной к нему памятью, которое может совершить U, находясь в некотором состоянии. Последовательность действий такого автомата, приводящая к допустимости слова x, в точности соответствует левому выводу в некоторой индексной грамматике G уровня k с разделенным нетерминальным алфавитом.

Пусть U' — недетерминированный конечный автомат, состояниями которого являются состояния автомата U, входной алфавит состоит из номеров правил грамматики G, его начальное состояние — начальное состояние автомата U. Под воздействием входа r автомат U' может перейти из состояния q_i в q_j , если автомат U в состоянии q_i мог совершить действие, соответствующее правилу с номером r, и перейти при этом в состояние q_i . Ясно,

что L(U', G, k) = L. Таким образом доказана

Теорема 3. Класс языков, допустимых автоматами (недетерминированными с конечным числом состояний) с дополнительной памятью уров-

ня і, совпадает с классом индексных языков уровня і.

После того как мы добавим управляющий автомат U, некоторые действия над памятью могут быть представлены в виде последовательности более простых (при увеличении числа состояний автомата U). Пусть некоторая память уровня i с активным символом A заменяется на две памяти уровня i, пусть B — активный символ вершинной из этих двух памятей, а C — активный символ второй (внутренней) из этих двух памятей. Тогда можно прочитать A и запомнить номер r продукции $A \rightarrow BC$. Затем заменить активный символ A на C. Затем произвести дублирование вершинной памяти уровня i. Затем изменить активный символ C на B и перейти в состояние, соответствующее номеру r и исходному состоянию. Таким образом дублирование можно производить вместо действия 2 (не изменяя при дублировании активные символы).

Далее, занумеруем все символы, которые могут записываться в память какого-либо автомата, и закодируем *i*-й символ в этой нумерации посредством 01°0. После этого память, использующую любое конечное число символов, можно промоделировать памятью того же уровня, использующей два символа 0 и 1, заменяя запись (или считывание) символа A_i на запись (или считывание) кода 01°0.

Память любого уровня с двумя используемыми символами, как легко

проверить, удовлетворяет аксиомам A0 и A1 из [7], поэтому верна

Теорема 4. Каждое из семейств языков L_k образует полное главное абстрактное семейство языков [8], и каждый язык L из L_k представим в виде $L=g(h^{-1}(Q_k)\cap R)$, где g и h— гомоморфизмы, R— регулярный язык, а Q_k — язык вход-выходных последовательностей памяти уровня k.

В частности, Q_2 порождается грамматикой уровня 2

$$G = \langle \{a, \bar{a}, b, \bar{b}, c, \bar{c}\}, \{S_0, S, A, B\}, P, I, S_0 \rangle,$$

где P содержит продукции $S_0 \to aS_0^A$, $S_0 \to bS_0^B$, $S_0 \to cSS_0$, $S_0 \to cS_0$, $S \to aS^A$, $S \to bS^B$, $S \to cSS$, $S \to \bar{c}$, $S_0 \to \bar{c}$, $S_0 \to \bar{c}$, $S_0 \to \bar{c}$, a I содержит интерпретационные правила $I(S^A) = \bar{a}S$, $I(S^B) = \bar{b}S$, $I(S_0^A) = \bar{a}S_0$ и $I(S_0^B) = \bar{b}S_0$.

Отметим, что гнездный стэк [9] получается из автомата с памятью уровня 2 отождествлением совпадающих начал у составляющих магазинов.

Автор признателен А. А. Мучнику и Э. Д. Стоцкому за полезные замечания.

ЛИТЕРАТУРА

- 1. Aho A. V. Indexed Grammars an Extension of Context-Free Grammars. J. Assoc. Comput. Machinery, 1968, 15, 4, 647-671. (Русск. перев.: Axo A. Индексные грамматики - расширение контекстно-свободных грамматик. Сб. «Языки и автоматы». М., «Мир», 1975, 130-165).
- 2. Маслов А. Н. Иерархия индексных языков произвольного уровня. Докл. АН СССР,
- 1974, 217, 5, 1013-1016.
 З. *Маслов А. Н.* Индексные грамматики и грамматики Вейнгаардена. Проблемы передачи информации, 1975, 11, 3, 81-89.
- 4. Гинзбург С. Математическая теория контекстно-свободных языков. М., «Мир», 1970.
- 5. Гладкий А. В. Формальные грамматики и языки. М., «Наука», 1973.
- 6. Greibach S. A. Full AFL's and Iterated Substitution. Inform. and Control., 1970, 16, 1, 7 - 35.
- 7. Маслов А. Н. Аксиоматический подход к описанию систем с управлением (в печати).
- 8. Ginsburg S., Greibach S. A., Abstract Families of Languages. Mem. Amer. Math. Soc., 1969, 87, 1—32. (Русск. перев.: Гинзбург С., Грейбах Ш. А. Абстрактные семейства языков. Сб. «Языки и автоматы», М., «Мир», 1975).
- 9. Aho A. V. Nested Stack Automata. J. Assoc. Compt. Machinery, 1969, 16, 3, 383-406.

Поступила в редакцию 23 сентября 1974 г.