Advanced Theory of Communication

University of Tehran

Instructor: Dr. Ali Olfat Spring 2024

Homework 9 Due: 1403/3/30

Problem 1

Suppose that the binary signal $\pm s_l(t)$ is transmitted over a fading channel and the received signal is:

$$r_l(t) = \pm as_l(t) + z(t), \quad 0 \le t \le T$$

where z(t) is zero-mean white Gaussian noise with autocorrelation function

$$R_{zz}(\tau) = 2N_0\delta(\tau)$$

The energy in the transmitted signal is $\mathcal{E} = \frac{1}{2} \int_0^T |s_l(t)|^2 dt$. The channel gain a is specified by the probability density function

$$p(a) = 0.1\delta(a) + 0.9\delta(a-2)$$

- (a) Determine the average probability of error P_b for the demodulator that employs a filter matched to $s_l(t)$.
- (b) What value does P_b approach as $\frac{\mathcal{E}}{N_0}$ approaches infinity?
- (c) Suppose that the same signal is transmitted on two statistically independently fading channels with gains a_1 and a_2 , where

$$p(a_k) = 0.1\delta(a_k) + 0.9\delta(a_k - 2), \quad \forall k = 1, 2$$

The noises on the two channels are statistically independent and identically distributed. The demodulator employs a matched filter for each channel and simply adds the two filter outputs to form the decision variable. Determine the average P_b .

(d) For the case in (c) what value does P_b approach as $\frac{\mathcal{E}}{N_0}$ approaches infinity?

Problem 2

Consider the model for a binary communication system with diversity as shown in Figure 1. The channels have fixed attenuations and phase shifts. The $z_k(t)$ are complex- valued white Gaussian noise processes with zero-mean and autocorrelation functions

$$R_{zz}(t) = \mathbb{E}\left[z_k^*(t)z_k(t+\tau)\right] = 2N_{0k}\delta(\tau)$$

(Note that the spectral densities N_{0k} are all different.) Also, the noise processes $z_k(t)$ are mutually statistically independent. The β_k are complex-valued weighting factors to be determined. The decision variable from the combiner is

$$U = \Re\left(\sum_{k=1}^{L} \beta_k U_k\right) \geqslant_{-1}^{1} 0$$

- 1. Determine the PDF p(u) when +1 is transmitted.
- 2. Determine the probability of error P_b as a function of the weights β_k .
- 3. Determine the values of β_k that minimize P_b .

Figure 1

Problem 3

A binary sequence is transmitted via binary antipodal signaling over a Rayleigh fading channel with Lth-order diversity. When $s_l(t)$ is transmitted, the received equivalent low-pass signals are

$$r_k(t) = \alpha_k e^{j\phi_k} s_l(t) + z_k(t), \quad k = 1, 2, \dots, L$$

The fading among the L subchannels is statistically independent. The additive noise terms $z_k(t)$ are zero-mean, statistically independent, and identically distributed white

Gaussian noise processes with autocorrelation function $R_{zz}(\tau) = 2N_0\delta(\tau)$. Assuming that recever knows only ϕ_k for k = 1, ..., L, each of the L signals is passed through a filter matched to $s_l(t)$ and the output is phase-corrected to yield

$$U_k = \Re \left[e^{-j\phi_k} \int_0^T r_k(t) s_l^*(t) dt \right], \quad k = 1, 2, \dots, L$$

The U_k are combined by a linear combiner to form the decision variable

$$U = \sum_{k=1}^{L} U_k$$

- (a) Determine the PDF of U conditional on fixed values for the α_k .
- (b) If receiver decides on U, determine the expression for the probability of error when the α_k are statistically independent and identically distributed Rayleigh random variables.
- (c) Determine the optimum detector when α_k and ϕ_k for k = 1, ..., L are available at receiver and derive the expression for the probability of error when the α_k are statistically independent and identically distributed Rayleigh random variables.

Problem 4

A multipath fading channel has a multipath spread of $T_m = 1s$ and a Doppler spread $B_d = 0.01Hz$. The total channel bandwidth at bandpass available for signal transmission is W = 5Hz. To reduce the effects of intersymbol interference, the signal designer selects a pulse duration T = 10s.

- (a) Determine the coherence band width and the coherence time.
- (b) Is the channel frequency selective? Explain.
- (c) Is the channel fading slowl or fast? Explain.
- (d) Suppose that the channel is used to transmit binary data via (antipodal) coherently detected PSK in a frequency diversity mode. Explain how you would use the available channel bandwidth to obtain frequency diversity and determine how much diversity is available.
- (e) For the case in(d), what is the approximate SNR required per diversity to achieve an error probability of 10^{-6} ?