Algorithme ID3, Arbre de Décision

Exercie 1

On souhaite construire un arbre de décision permettant de prédire si un étudiant révise ou non, à partir des attributs suivants :

Météo : Soleil, Pluie, Nuageux
Humeur : Bonne, Mauvaise
Temps libre : Oui, Non

Voici la base de données :

#	Météo	Humeur	Temps libre	Révision
1	Soleil	Bonne	Oui	Oui
2	Pluie	Mauvaise	Non	Non
3	Soleil	Bonne	Non	Oui
4	Nuageux	Bonne	Oui	Oui
5	Soleil	Mauvaise	Oui	Oui
6	Pluie	Bonne	Non	Non
7	Nuageux	Mauvaise	Oui	Non
8	Soleil	Bonne	Oui	Oui

Travail à faire:

- 1. Calculer l'entropie de la variable cible Révision.
- 2. Calculer le gain d'information de chaque attribut.
- 3. Choisir l'attribut optimal pour la racine de l'arbre.
- 4. Construire l'arbre de décision en suivant l'algorithme ID3.
- 5. Représenter l'arbre final.

Exercie 2

Cet exercice vous guide dans la création progressive d'un arbre de décision en Python, en implémentant une à une les fonctions de la classe ID3Classifier.

- Q1. Initialisation de la classe. Créez la classe ID3Classifier avec la méthode __init__ qui initialise deux attributs :
 - self.tree_ (pour l'arbre final)
 - self.splits_ (liste vide pour enregistrer les divisions)
- Q2. Entropie. Implémentez la méthode _entropy(self, y) qui reçoit une série ou une liste de classes, et retourne son entropie (utilisez Counter, numpy et log2).
- Q3. Gain d'information. Implémentez la méthode _info_gain(self, df, attr, target) qui :

- Calcule l'entropie globale de la cible.
- Calcule l'entropie conditionnelle pondérée après division par attr.
- Retourne la différence entre les deux (le gain).
- Q4. Construction récursive de l'arbre. Implémentez la méthode _build_tree(self, df, features, target):
 - Cas 1 : si toutes les cibles sont identiques, retournez la classe.
 - Cas 2 : si plus d'attributs disponibles, choisissez celui avec le plus grand gain.
 - Ajoutez un enregistrement dans self.splits_ avec :
 - l'attribut sélectionné
 - l'entropie globale
 - le gain
 - la taille du nœud
 - Construisez récursivement les sous-arbres.
- Q5. Apprentissage. Implémentez la méthode fit(self, df, features, target) qui appelle _build_tree et stocke l'arbre final dans self.tree_.
- Q6. Affichage en console. Implémentez la méthode print_tree(self, tree=None, indent="") pour afficher l'arbre sous forme textuelle, avec indentation croissante.
- undent="") pour afficher l'arbre sous forme textuelle, avec indentation croissante.

 Q7. Visualisation graphique. Implémentez la méthode visualize(self, filename="id3_tree")
 - Utilise le module graphviz pour créer un graphe.
 - Affiche et sauvegarde le graphe généré.
- Q8. Analyse des divisions. Implémentez la méthode get_splits_dataframe(self) qui retourne un DataFrame pandas contenant toutes les divisions faites (chaque split avec les infos stockées dans self.splits_).
- Q9. Test complet. Créez un script principal if __name__ == "__main__" qui :
 - a) charge un fichier CSV (data_revision.csv)
 - b) apprend l'arbre avec fit
 - c) affiche l'arbre avec print_tree et visualize
 - d) affiche les splits avec get_splits_dataframe

Proposition

qui:

Testez chaque méthode isolément dans un notebook ou un script avant de les combiner. Cela facilitera le débogage et la compréhension du fonctionnement de chaque composant.