

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO Centro Tecnológico Departamento de Engenharia Elétrica

Princípios de Comunicações I

Modulação Analógica Semestre Letivo 2020/1

Prof.: Jair A. Lima Silva

DEL-UFES

Índice

- I. Modulação Angular
- II. Tipos de Modulação Angular
 - a. Modulação PM
 - b. Modulação FM
- III. Potência de Sinais Modulados em Ângulo
- IV. Espectro de Sinais Modulados em Ângulo
- V. Largura de Banda destes Sinais

MODULAÇÃO ANGULAR

amplitude inalterada

ângulo alterado

A modulação angular, assim como a modulação em amplitude, são chamadas de modulação de onda contínua pois o sinal a ser modulado é uma portadora senoidal.

$$p(t) = E_0 \cos(2\pi f_0 t + \varphi(t)) = E_0 \cos(\omega_0 t + \varphi(t))$$
 portadora

Onde $\varphi(t)$ é a fase inicial da portadora, que assumiremos ser **nula** por simplificação.

Na modulação angular o sinal modulador x(t) irá alterar a fase – Modulação em Fase (PM), ou a frequência da portadora – Modulação em Frequência (FM).

Modulação em frequência e modulação em fase são inter-relacionadas, e por este motivo é que as duas são conhecidas como modulação angular.

Para entendermos melhor este inter-relacionamento vamos definir a portadora como:

$$p(t) = E_0 \cos \theta(t)$$

Onde

 $\theta(t) = \omega_0(t)$ é a *fase instantânea* da portadora que, como pode ser observado, é uma função linear da *frequência angular*.

A constante de integração $\phi_0 = \theta(0)$ é o ângulo no instante arbitrado como origem t = 0. Pode-se fazer $\phi_0 = 0$ através da escolha adequada da origem.

Fica evidente que há uma relação direta entre frequência e fase.

Quando a portadora é modulada em ângulo, o sinal na saída do modulador é:

$$y(t) = E_0 \cos \left[\theta(t)\right] = E_0 \cos \left[\omega_0 t + \phi(t)\right]$$
 Sinal modulado

Onde $\theta(t) = \omega_0 t + \phi(t)$ é a fase instantânea de y(t) e $\phi(t)$ é o desvio instantâneo de fase.

$$\frac{d\theta(t)}{dt} = \omega_0 + \frac{d\phi(t)}{dt} = \omega_i(t)$$

Onde $\omega_i(t)$ é a frequência angular instantânea do sinal modulado y(t). Observe que a frequência angular do sinal modulado é uma função do tempo indicando rotação fasorial não uniforme.

A *frequência instantânea* em Hertz do sinal modulado é:

$$f_i(t) = \frac{\omega_i(t)}{2\pi} = f_0 + \frac{1}{2\pi} \frac{d\phi(t)}{dt}$$

$$f_i(t) = \frac{\omega_i(t)}{2\pi} = f_0 + \frac{1}{2\pi} \frac{d\phi(t)}{dt}$$
Frequência da portadora

Frequência da em torno da frequência

no tempo imposta pelo sinal x(t) em torno da frequência portadora

E chamado de índice de modulação angular o valor absoluto máximo do desvio instantâneo de fase

$$\beta = \left| \phi(t) \right|_{\text{max}}$$

 β é medido em radianos.

E definido como desvio de frequência o valor absoluto máximo do afastamento da frequência instantânea em relação à frequência central (f_0) .

$$\Delta f = \left| f_i(t) - f_0 \right|_{\text{max}} = \frac{1}{2\pi} \left| \frac{d\phi(t)}{dt} \right|_{\text{max}}$$

a. Modulação de Fase – PM (*Phase Modulation*)

Ocorre quando a informação do sinal x(t) é impressa no desvio instantâneo de fase.

$$\phi(t) = k_P x(t)$$

k_P (rad/V) é a **constante de modulação de fase** ou **sensibilidade** do modulador PM.

O sinal na saída do modulador PM é descrito por:

$$y(t) = E_0 \cos \left[2\pi f_0 t + k_p x(t) \right]$$

A frequência instantânea do sinal modulado em fase é:

$$f_i(t) = f_0 + \frac{k_P}{2\pi} \frac{d}{dt} x(t)$$

Ao se modular em fase se está também modulando a frequência com a derivada do sinal modulador

a. Modulação de Fase – PM (*Phase Modulation*)

sinal modulador

sinal PM frequência instantânea proporcional à derivada de x(t)

Desvio instantâneo de fase $\phi(t) = k_P x(t)$

Frequência instantânea:
$$f_i(t) = f_0 + \frac{k_P}{2\pi} \frac{d}{dt} x(t)$$

b. Modulação de Frequência – FM (Frequency Modulation)

Ocorre quando a informação do sinal x(t) é impressa na frequência instantânea.

$$f_i(t) = f_0 + k_F x(t)$$

k_F (Hz/V) é a **constante de modulação de frequência** ou **sensibilidade** do modulador FM.

A frequência instantânea é escrita na forma geral como:

$$f_i(t) = f_0 + \frac{1}{2\pi} \frac{d\phi(t)}{dt}$$

Comparando as duas equações temos:

$$\frac{1}{2\pi} \frac{d\phi(t)}{dt} = k_F x(t)$$

$$\phi(t) = 2\pi k_F \int x(t)$$

b. Modulação de Frequência – FM (Frequency Modulation)

O sinal na saída do modulador FM é descrito por:

$$y(t) = E_0 \cos \left[2\pi f_0 t + 2\pi k_F \int x(t) dt \right]$$

Ao se modular em frequência se está também modulando a fase com a integral do

sinal modulador.

sinal modulador

Frequência instantânea: $f_i(t) = f_0 + k_F x(t)$

Desvio instantâneo de fase $\phi(t) = 2\pi k_F \int x(t)dt$

sinal FM frequência instantânea proporcional a x(t)

Comparação entre PM e FM – Atividade Extra Classe

Considerando um sinal modulador senoidal $x(t) = A\cos(2\pi f_m t)$, tem-se os seguintes parâmetros das modulações PM e FM.

Parâmetro	Símbolo	Unidade	PM	FM
Desvio instantâneo de fase	φ(t)	rad	$k_P A \cos(2\pi f_m t)$	$\frac{k_{\scriptscriptstyle F}A}{f_{\scriptscriptstyle m}}sen(2\pi f_{\scriptscriptstyle m}t)$
Índice de modulação angular	β	rad	$k_P A$	$\frac{k_F A}{f_m}$
Frequência instantânea	$f_i(t)$	Hz	$f_0 - k_P A f_m sen(2\pi f_m t)$	$f_0 + k_F A \cos\left(2\pi f_m t\right)$
Desvio de frequência	Δf	Hz	$k_P A f_m$	$k_{F}A$
Sinal modulado	y(t)	V	$E_0 \cos \left[2\pi f_0 t + \beta \cos \left(2\pi f_m t \right) \right]$	$E_0 \cos \left[2\pi f_0 t + \beta sen(2\pi f_m t) \right]$

Tanto para PM quanto para FM vale a relação: $\Delta \! f = \! eta f_m$

Desvios e Excursões – Atividade Síncrono com Matlab

Em ambas as modulações angulares a informação a ser transmitida é impressa através de desvios em torno do valor nominal dos parâmetros de frequência e fase da portadora não modulada.

Os desvios instantâneos de fase e frequência são conhecidos no domínio do tempo e é conveniente entendermos o seu significado no domínio da frequência.

$$\phi(t) = k_P x(t)$$

$$f_i(t) = f_0 + \frac{k_P}{2\pi} \frac{d}{dt} x(t)$$
 Modulação PM

Desvios e Excursões – Atividade Síncrono com Matlab

Os desvios em frequência e em fase deformam a portadora senoidal e em consequência o sinal modulado não pode ser representado por uma simples raia no domínio da frequência.

Tomemos como exemplo um sinal modulado em **FM** por um sinal senoidal.

$$y(t) = E_0 \cos \left[2\pi f_0 t + \beta sen(2\pi f_m t) \right]$$

$$\beta = \frac{k_F A}{f_m} \qquad \Delta f = k_F A \qquad f_i(t) = f_0 + k_F x(t)$$

Um aumento de **amplitude** do sinal modulador aumenta a frequência instantânea, o que **"comprime"** o sinal modulado – aumenta a largura de banda. Uma diminuição de amplitude do sinal modulador diminui o desvio de frequência, o que "expande" o sinal modulado – diminui a largura de banda

III. Potência de Sinais Modulados em Ângulo

Na modulação angular a amplitude é mantida constante e, como a potência é função da amplitude, a mesma é constante o tempo todo.

A potência média normalizada do sinal modulado em ângulo $y(t) = E_0 cos[\theta(t)]$ é:

$$P_{mn} = \overline{y^2(t)} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} E_0^2 \cos^2 \left[\theta(t)\right] dt$$

Aplicando a identidade trigonométrica,

$$E_0^2 \cos^2 \left[\theta(t)\right] = \frac{E_0^2 + E_0^2 \cos \left[2\theta(t)\right]}{2}$$

$$P_{mn} = \frac{E_0^2}{2} \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} dt + \frac{E_0^2}{2} \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} \cos[2\theta(t)] dt$$

Este limite é nulo

III. Potência de Sinais Modulados em Ângulo

$$P_{mn} = \frac{E_0^2}{2}$$
 Potência total dissipada

A potência total do sinal modulado em ângulo NÃO depende do sinal modulador e é igual à potência da portadora não modulada.

Na modulação angular a potência total permanece inalterada. Então, ao se produzirem raias espectrais, a potência associada às mesmas só pode ser produzida às custas da potência associada à portadora.

Diferentemente da modulação **AM**, a modulação em ângulo é um processo não linear (dão origem a outras frequências), o que complica a análise espectral do sinal modulado. Porém, conseguimos entender bem o comportamento espectral do sinal modulado em ângulo se considerarmos que o sinal modulador é um único tom senoidal.

Como já foi demonstrado **FM** e **PM** se relacionam estreitamente entre si, se conhecermos as propriedades de uma, poderemos determinar as da outra. Mas, devido ao fato da modulação **FM** ser a modulação utilizada em sistemas de radiodifusão **FM** e na modulação do som dos sistemas públicos de TV ela foi escolhida para a análise do comportamento espectral. O sinal modulado **FM** por uma onda senoidal $\mathbf{x}(\mathbf{t}) = \mathbf{Acos}(2\pi f_m \mathbf{t})$, é:

$$y(t) = E_0 \cos \left[2\pi f_0 t + \beta sen(2\pi f_m t) \right]$$

Onde: $\beta = \frac{k_F A}{f_m}$ é o índice de modulação angular **FM**

$$y(t) = E_0 \cos \left[2\pi f_0 t + \beta sen(2\pi f_m t) \right]$$

A composição do espectro do sinal modulado depende do índice de modulação angular podendo-se distinguir duas situações: Sistema de Faixa Estreita e Sistema de Faixa Larga.

Sistema de Faixa Estreita

Desenvolvendo o cosseno da soma de dois ângulos temos:

$$y(t) = E_0 \cos(2\pi f_0 t) \cos[\beta sen(2\pi f_m t)] - E_0 sen(2\pi f_0 t) sen[\beta sen(2\pi f_m t)]$$

Para β suficientemente pequeno ($\beta \le 0.2$ rad) são válidas as aproximações:

$$\cos \left[\beta sen(2\pi f_m t)\right] \cong 1$$

$$sen \left[\beta sen(2\pi f_m t)\right] \cong \beta sen(2\pi f_m t)$$

Sistema de Faixa Estreita

Incorporando as aproximações de β no sinal y(t) têm-se:

$$y(t) \cong E_0 \cos(2\pi f_0 t) - \frac{\beta E_0}{2} \cos[2\pi (f_0 - f_m)t] + \frac{\beta E_0}{2} \cos[2\pi (f_0 + f_m)t]$$

Podemos observar três raias espectrais no sinal modulado com baixo índice de modulação angular ($\beta \le 0,2$): a portadora (f_0), uma raia lateral inferior ($f_0 - f_m$) e uma raia lateral superior ($f_0 + f_m$).

O espectro de amplitude do sinal modulado em ângulo de faixa estreita é semelhante ao do sinal modulado **AM-DSB/TC**. Porém o espectro de fase é diferente, pois:

$$-\frac{\beta E_0}{2}\cos\left[2\pi\left(f_0-f_m\right)t\right] = \frac{\beta E_0}{2}\cos\left[2\pi\left(f_0-f_m\right)t+\pi\right]$$

A banda ocupada pelo sinal modulado é $B = 2f_m$

Sistema de Faixa Larga

Para $\beta > 0,2$ rad as aproximações anteriores não são válidas. A determinação do espectro depende de um desenvolvimento matemático mais elaborado.

O sinal modulado na saída de um modulador FM é:

$$y(t) = E_0 \cos \left[2\pi f_0 t + \beta sen(2\pi f_m t) \right]$$

$$y(t) = E_0 \cos(2\pi f_0 t) \cos[\beta sen(2\pi f_m t)] - E_0 sen(2\pi f_0 t) sen[\beta sen(2\pi f_m t)]$$

Podemos reescrever y(t) da seguinte forma:

$$y(t) = \Re \left\{ E_0 \exp(j2\pi f_0 t) \exp[j\beta sen(2\pi f_m t)] \right\}$$

Análise matemática complexa baseada em função de Bessel...

V. Largura de Banda de Sinais Modulados em Ângulo

A largura de banda de um sistema de **banda estreita** ($\beta \le 0,2$) modulado por um sinal senoidal com frequência f_m é aproximadamente B = 2fm.

Teoricamente, se o sistema for de **banda larga**, a largura de banda do espectro tende a "infinito". Na prática, entretanto, pode-se determinar um **espectro significativo**, onde as raias que se encontrarem fora deste espectro não provocarão distorção significativa da informação. A banda do espectro significativo pode ser determinada utilizando vários critérios, porém o mais utilizado é uma relação empírica conhecida como *Critério de Carson*.

Se observarmos o espectro de um sinal modulado em **FM** por um sinal **modulador senoidal**, veremos que as raias laterais ocupam uma banda maior do que $2\Delta f$ e decrescem rapidamente na direção de zero, de forma que a largura de banda sempre ultrapassa a excursão de frequência total. Especificamente, para valores elevados de β , pode-se afirmar que a largura de banda do espectro é ligeiramente maior do que $2\Delta f$.

V. Largura de Banda de Sinais Modulados em Ângulo

Dessa forma, podemos definir uma regra **aproximada** para a **largura de banda significativa** de um sinal **FM** gerado por um sinal modulador senoidal de frequência f_m , da seguinte maneira:

$$B = 2\Delta f + 2f_m$$

Conhecido como **critério de Carson**. O critério de Carson pode ser extendido para modulação **FM** e **PM** com sinais moduladores não senoidais com amplitude máxima \mathbf{A}_{max} e frequência máxima \mathbf{f}_{max} , como por exemplo, sinais de áudio.

$$B = 2(\Delta f_{\text{max}} + f_{\text{max}}) = \begin{cases} 2(k_F A_{\text{max}} + f_{\text{max}}) & \text{para } FM \\ 2f_{\text{max}} (k_P A_{\text{max}} + 1) & \text{para } PM \end{cases}$$

A equação acima é chamada de critério de Carson Extendido:

V. Largura de Banda de Sinais Modulados em Ângulo

Exemplo: O sistema de radiodifusão sonora FM tem portadoras com frequências na faixa de 87,9 a 107,9 MHz e sinal modulador de áudio com componentes espectrais de 50 Hz a 15 kHz. O desvio de frequência máximo arbitrado para este sistema é 75kHz. Utilizando o critério de Carson extendido tem-se:

$$B = 2(\Delta f + f_{\text{max}}) = 2(75+15)kHz = 180kHz$$

Na prática a largura de banda alocada para cada transmissor de FM é de 200kHz, pois é deixada uma margem de segurança para a transição dos filtros.

Exercícios – Atividade Assíncrona

Exercício: Uma portadora $E_0\cos(2\pi f_0t)$, com $f_0=10MHz$ e $E_0=10V$, é modulada em frequência por um sinal $x(t)=A\cos(2\pi f_mt)$, com $f_m=10KHz$ e o índice de modulação angular é $\beta=2,0$ rad.

- a) Qual é o desvio de frequência do sinal modulado?
- b) Quais são os valores máximo e mínimo da frequência instantânea do sinal FM?
- c) Qual é a expressão matemática que representa o sinal FM?
- d) Represente graficamente o espectro de amplitude do sinal FM, indicando valores.
- e) Qual a potência total dissipada pelo sinal y(t) e qual porcentagem desta potência está contida dentro da banda limitada pelo critério de Carson?
- f) Mantendo-se constante a amplitude do sinal modulador e a constante de modulação k_F, altera-se a sua frequência para 20kHz. Represente o espectro de amplitude do novo sinal FM, nessa condição. O que ocorre com o máximo desvio em frequência? Qual a potência contida dentro da banda limitada pelo critério de Carson?