

BACHELOR THESIS

Tomáš Arnold Tillmann

Emergency services shift plan optimization

Department of Software Engineering

Supervisor of the bachelor thesis: Adam Šmelko

Study programme: Programming and Software

Development

Study branch: Computer science

I declare that I carried out this bachelor thesis independently, and only with the cited sources, literature and other professional sources. It has not been used to obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the Charles University has the right to conclude a license agreement on the use of this work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.
In

Title: Emergency services shift plan optimization

Author: Tomáš Arnold Tillmann

Department: Department of Software Engineering

Supervisor: Adam Šmelko, Department of Distributed and Dependable Systems

Abstract:

Keywords: one two

Contents

In	troduction	2
1	Introduction 1.1 Problem definition	. 3
2	Title of the second chapter 2.1 Title of the first subchapter of the second chapter	
C	onclusion	6
Bi	ibliography	7
Li	st of Figures	8
Li	st of Tables	9
Li	st of Abbreviations	10
\mathbf{A}	Attachments A 1 First Attachment	11 11

Introduction

1. Introduction

1.1 Problem definition

One of the primary challenges faced by emergency medical service providers (EMS) revolves around determining the optimal availability schedule for their ambulances at specific depots. The primary objective is to maximize the number of successfully handled incidents while minimizing the operational costs associated with the ambulances. This allocation of ambulances and their availability is commonly referred to as a shift plan.

A shift plan entails assigning shifts and ambulances for a given time interval, typically a single day. It serves as a representation of when ambulances are available throughout the day.

Each shift represents a time interval during which an ambulance crew operates the vehicle, rendering it available for emergency response. Ambulance crews may possess specialized skills or equipment, such as the inclusion of a doctor or experienced personnel. Similarly, different ambulances can vary in size or possess advanced medical tools. To capture these distinctions, each ambulance is assigned a specific type.

Ambulance types provide an abstraction of these varying scenarios and specify the incidents they are equipped to handle. For instance, certain incidents may require specific tools or a larger ambulance. Consequently, only select ambulances may be suitable for handling such incidents.

Ultimately, our primary concern is determining whether a given ambulance can effectively respond to a particular incident, based on the mapping between ambulance types and incident requirements, hence such abstraction is sufficient for our purposes. Throughout the day, only one shift can be assigned to each ambulance, and there may be instances where no shift is assigned, rendering the ambulance unavailable for the day and unable to participate in incident response.

A shift plan incurs a cost, which we aim to minimize. This cost is determined by the duration of the shift and the associated cost of the ambulance type.

In evaluating the performance of a shift plan, we measure its effectiveness in handling a set of incidents. This set represents the spatial and temporal distribution of incidents that occur within a day. We can obtain such incident sets through two main approaches.

The first approach involves leveraging historical data, which document the occurrence of incidents in a given area over months or years. By uniformly sampling a representative subset of this data, we can test the generated shift plan's performance. This approach assumes that past incident patterns will persist in the future. Historical data provide the most reliable means of simulating incident occurrences accurately.

The second approach involves defining a distribution that generates incidents based on prior knowledge. For instance, we may observe that incidents primarily occur during early mornings, around lunchtime, or at transportation hubs due to commuting patterns. Conversely, we may notice a lower incidence rate during nighttime compared to the daytime.

While the first approach more accurately depicts the occurrence of incidents in the area of interest, obtaining such historical data can be challenging and time-consuming. Moreover, these data often remain confidential, making it difficult to access them, especially from other EMS organizations.

Therefore, for the purposes of this thesis, we will adopt the second approach, generating representative incident sets using a predefined distribution. This approach offers greater flexibility, allowing us to experiment with different distributions and simulate various scenarios, including unexpected or extreme situations.

Finally, with all this information at our disposal, we can now shift our focus towards evaluating the performance of the shift plan against a set of incident sets. In order to measure performance, we will assess the ratio of successfully handled incidents to the total number of incidents in the set. A higher number of handled incidents and lower costs indicate a better shift plan. While this approach is reasonable, we will take a slightly different route in this thesis. Since this thesis is associated with the Computer-Aided Dispatch System Organization Logis Solutions s. r. o. (Logis), which employs advanced solutions for existing EMS, Logis has the advantage of having historical incident data sets available. This leads us to examine the success rates achieved by each incident set on a given day. As the proposed solutions in this thesis may be utilized in the production software developed by Logis for their EMS clients, it would be ideal to generate a shift plan that maintains or surpasses the success rates indicated by the historical data, while concurrently reducing costs. Therefore, the success rate will be provided for each incident set, and our optimization will solely focus on minimizing the cost.

Introducing the concept of success rate provides a useful framework for considering a shift plan as either valid or invalid. A shift plan is deemed valid if it can meet the given success rate, indicating its ability to satisfy the incident requirements. Conversely, a shift plan is considered invalid if it fails to meet the specified success rate. It is worth noting that there may be scenarios where no shift plan can handle the incidents to meet the desired success rate, resulting in all shift plans being invalid. However, this particular case is not our primary concern, as the success rates derived from historical data are based on shift plans employed on previous days, which were not necessarily designed using highly sophisticated methods. Therefore, the probability of encountering such a situation in high-quality historical data is very low.

2. Title of the second chapter

- 2.1 Title of the first subchapter of the second chapter
- 2.2 Title of the second subchapter of the second chapter

Conclusion

Bibliography

List of Figures

List of Tables

List of Abbreviations

A. Attachments

A.1 First Attachment