Logique et preuves : élements de correction

REMI.MORVAN@U-BORDEAUX.FR

10 NOVEMBRE 2021

Exercice 1.4

Question 1. On a les tables de vérité suivantes.

P	Q	$P \rightarrow Q$	~P	$\sim P \vee Q$	P	Q	$P \wedge Q$	$\sim (P \wedge Q)$	~P	~Q	~P ∨
v	v	v	f	v	v	v	v	f	f	f	f
f	v	v	v	v	f	v	f	v	v	f	v
v	f	f	f	f	v	f	f	v	f	v	v
f	f	v	v	v	f	f	f	v	v	v	v

Ainsi, $P \to Q$ et $\sim P \lor Q$ sont équivalentes. Il en va de même pour $\sim (P \land Q)$ et $\sim P \lor \sim Q$.

Question 2. Par question 1, les formules $S \to R$ et $\sim S \lor R$ sont équivalentes. En effectuant la substitution $[S/P \land Q]$ on en déduit que $(P \land Q) \to R$ et $\sim (P \land Q) \lor R$ sont équivalentes. Cette dernière proposition, encore par question 1, est équivalente à $\sim P \lor \sim Q \lor R$, ou encore à $R \lor \sim P \lor \sim Q$. Ainsi, les formules $(P \land Q) \to R$ et $R \lor \sim P \lor \sim Q$ sont équivalentes.

Question 3. Il suffit d'utiliser deux fois de suite (une instance de) l'équivalence entre $P \to Q$ et $\sim P \vee Q$.

Question 4. Il faut utiliser l'équivalence entre $\sim (P \land Q)$ et $\sim P \lor \sim Q$.

Exercice 2.10

Prouvons le séquent $(((P \rightarrow Q) \rightarrow P) \rightarrow P) \rightarrow Q \vdash Q$.

Et voilà!

```
Supposons (((P \rightarrow Q) \rightarrow P) \rightarrow P) \rightarrow Q
                                                                                                                                             but : Q
     { Supposons (P \rightarrow Q) \rightarrow P
                                                                                                                                              but : P
           \{ Supposons P
                                                                                                                                             but : Q
                 { Supposons (P \rightarrow Q) \rightarrow P
                                                                                                                                              but : P
                       P [hyp 3]
                 ((P \rightarrow Q) \rightarrow P) \rightarrow P \ [\rightarrow_i \ 4-6]
                 Q [mp 1, 7]
           P \rightarrow Q \ [\rightarrow_i \ 3-9]
10
           P [mp 2, 10]
11
12 }
13 ((P \rightarrow Q) \rightarrow P) \rightarrow P \ [\rightarrow_i \ 2-12]
14 Q [mp 1, 13]
```

Exercice 4.2 Question 1

On souhaite montrer que la règle suivante n'est **pas** une règle dérivée de la logique minimale avec négation.

$$\frac{\Gamma \vdash \sim A \to B}{\Gamma \vdash \sim (A \to B)} \mathbf{R}$$

Si, par l'absurde, R était une règle dérivée (de la logique minimale avec négation), puisque l'on peut écrire la preuve suivante

on en déduirait que $\sim P, Q \vdash \sim (P \to Q)$ est un séquent prouvable en (logique minimale avec négation). Par méta-théorème de correction (de la logique minimale avec négation), ce séquent devrait donc être valide, ce qui est faux : la valuation v définie par v(P) := f et v(Q) := v satisfait les hypothèses du séquent, mais ne satisfait pas la conclusion : en effet, $v(P \to Q) = v$ donc $v(\sim (P \to Q)) = f$. Contradiction. Ainsi, R n'est pas une règle dérivée (de la logique minimale avec négation).

Remarque

Pourquoi avoir pris $\Gamma = \{\sim P, Q\}$ et $A = \sim P$ et B = Q? Parce qu'en écrivant la table de vérité des propositions $\sim A \to B$ et $\sim (A \to B)$, on s'est rendu compte que si A faux et B vrai alors $\sim A \to B$ est vrai, mais $\sim (A \to B)$ est faux. Comment forcer à ce que A soit faux et B vrai? En prenant comme propositions des variables propositionnelles (P et Q, respectivement), et en « encodant » leur valeur de vérité dans Γ : d'où le choix de $\Gamma = \{\sim P, Q\}$.

REMARQUE BIS

En écrivant la même table de vérité, on se rend compte que si A est vrai et B est vrai, alors on a encore un contre-exemple, i.e. on aurait aussi pu prendre $\Gamma = \{P,Q\}$ et A = P et B = Q. En fait, $\Gamma = \{Q\}$ aurait même suffit.

Exercice 5.1 Question 2

PREUVE ARBORESCENTE

On souhaite prouver le séquent $\vdash \sim (P \land Q) \leftrightarrow \sim P \lor \sim Q$ en logique classique. La conclusion du séquent étant une équivalence (proposition de la forme $A \leftrightarrow B$), on découpe la preuve en deux (une preuve $A \to B$ et une de $B \to A$ avec le même contexte).

Soit π_1 la preuve suivante, dans laquelle on a posé $\Gamma = \{ \sim P \lor \sim Q, P \land Q \}$:

$$\frac{\Gamma \vdash \neg P \lor \neg Q}{\Gamma \vdash \neg P} \text{ hyp } \frac{\Gamma, \neg P \vdash P}{\Gamma, \neg P \vdash P} \text{ hyp } \frac{\Gamma, \neg Q \vdash \neg Q}{\Gamma, \neg Q \vdash \neg Q} \text{ hyp } \frac{\Gamma, \neg Q \vdash \neg Q}{\Gamma, \neg Q \vdash \bot} \text{ hyp abs}}{\frac{\neg P \lor \neg Q, P \land Q \vdash \bot}{\neg P \lor \neg Q \vdash \neg (P \land Q)} \rightarrow_{i}}{\frac{\neg P \lor \neg Q \vdash \neg (P \land Q)}{\vdash \neg P \lor \neg Q \rightarrow \neg (P \land Q)} \rightarrow_{i}}$$

Soit π_2 la preuve suivante, où $\Delta = \{ \sim (P \land Q), P \}$:

$$\frac{\begin{array}{c}
\pi_{3} \\
\vdots \\
\hline
\sim (P \land Q) \vdash P \lor \sim P \\
\hline
\end{array} exm
\begin{array}{c}
\frac{\pi_{3}}{} \\
\vdots \\
\sim (P \land Q), P \vdash \sim P \lor \sim Q \\
\hline
\begin{array}{c}
\hline
\sim (P \land Q), \sim P \vdash \sim P \\
\hline
\sim (P \land Q), \sim P \vdash \sim P \lor \sim Q
\end{array} \\
\frac{}{} \\
\downarrow_{e} \\
\hline
\begin{array}{c}
\sim (P \land Q) \vdash \sim P \lor \sim Q \\
\hline
\vdash \sim (P \land Q) \to \sim P \lor \sim Q
\end{array}} \rightarrow_{i}$$

où π_3 est la preuve

$$\frac{\Delta, Q \vdash P \text{ hyp } \Delta, Q \vdash Q \text{ hyp}}{\Delta, Q \vdash P \land Q} \land_{i} \Delta, \neg Q \vdash \neg (P \land Q) \text{ hyp}} \land_{i} \Delta, \neg Q \vdash \neg (P \land Q) \text{ abs}}{\Delta, \neg Q \vdash \neg P \lor \neg Q} \lor_{i,2} \land_{i} \Delta, \neg Q \vdash \neg P \lor \neg Q} \lor_{e}$$

On peut alors facilement obtenir une preuve de $\vdash \sim (P \land Q) \leftrightarrow \sim P \lor \sim Q$ depuis π_1 et π_2 !

$$\begin{array}{ccc}
\pi_2 & \pi_1 \\
\vdots & \vdots \\
\vdash \sim (P \land Q) \to \sim P \lor \sim Q & \vdash \sim P \lor \sim Q \to \sim (P \land Q) \\
\vdash \sim P \lor \sim O \leftrightarrow \sim (P \land O)
\end{array} \land_i$$

Explication de la preuve π_2

La preuve π_2 peut se comprendre ainsi : pour montrer que $\sim P \vee \sim Q$ sous l'hypothèse $\sim (P \wedge Q)$, on a trois cas possibles :

- − P est faux, auquel cas $\sim P$ et donc $\sim P \lor \sim Q$ sont vraies;
- Q et faux, auquel cas ~Q et donc ~P ∨ ~Q sont vraies;

- *P* et *Q* sont vraies, donc *P* ∧ *Q* est vrai, ce qui contredit l'hypothèse \sim (*P* ∧ *Q*).

On remarque que dans le raisonnement précédent, on fait une disjonction de cas sur la valeur de vérité de P et de Q, ce qui correspond aux deux instances de la règle du tiers-exclus dans la preuve π_2 .

Preuve linéaire

```
but : \sim (P \land Q) \rightarrow \sim P \lor \sim Q
but : \sim P \lor \sim Q
            {
                   Supposons \sim (P \wedge Q)
 2
                   P \lor \sim P [exm]
 3
                          Supposons P
                          Q \lor \sim Q \text{ [exm]}
                          {
                                Supposons Q
                                P \wedge Q \ [\wedge_i \ 5, \ 8]
                                 \sim P \vee \sim Q [abs 2, 9]
                         }
11
                                Supposons \sim Q
                                \sim P \vee \sim Q [\vee_{i,2}]
14
15
                          \sim P \vee \sim Q \ [\vee_e \ 6, \ 7\text{--}11, \ 12\text{--}15]
16
                   }
18
                          Supposons \sim P
19
                          \sim P \vee \sim Q \ [\vee_{i,1} \ 19]
20
21
                   \sim P \lor \sim Q \lor_e 3, 4-17, 18-21
22
23
            {\sim}(P \land Q) \to {\sim}P \lor {\sim}Q \ [\to_i \ 1\text{--}23]
24
                                                                                                                            but : \sim P \vee \sim Q \rightarrow \sim (P \wedge Q)
25
                                                                                                                                                but : \sim (P \land Q)
                   Supposons \sim P \vee \sim Q
26
27
                          Supposons P \wedge Q
                                                                                                                                                            but : ⊥
                          \sim P \vee \sim Q [hyp 26]
29
                          {
30
                                Supposons \sim P
31
                                P \left[ \wedge_{e,1} 28 \right]
                                ⊥ [mp 31, 32]
33
                          }
34
                                 Supposons \sim Q
                                 Q [ \land_{e,2} 28 ]
37
                                 ⊥ [mp 36, 37]
39
                          \bot [\lor_e 29, 30-34, 35-39]
41
                   \sim (P \wedge Q) \ [\rightarrow_i \ 27-41]
42
43
            \sim P \vee \sim Q \rightarrow \sim (P \wedge Q) \ [\rightarrow_i \ 25-43]
44
            {\sim}(P \land Q) \leftrightarrow {\sim}P \lor {\sim}Q \ [\land_i \ 24 \, , \ 44]
45
```