Provas e Exercícios

Ref. Mathematical Logic - H. D. Ebbinghaus Primavera 2022

Contents

2	Sintaxe das Linguagens de Primeira Ordem	1
3	Semântica das Linguagens de Primeira Ordem	5
4	Cálculo de Sequentes	19
5	O Teorema da Completude	22
6	O Teorema de Löwenheim-Skolem e o Teorema da Compacidade	24
7	O Escopo da Lógica de Primeira Ordem	29
8	Interpretações Sintáticas e Formas Normais	29
9	Extensões da Lógica de Primeira Ordem	33
10	Computabilidade e suas Limitações	35

Parte A

2 Sintaxe das Linguagens de Primeira Ordem

Exercício 1.3. Seja $\alpha: \mathbb{N} \to \mathbb{R}$ dado. Para $a,b \in \mathbb{R}$ tq a < b mostre que $\exists c \in I := [a,b]$ tq $c \notin \text{Im}(\alpha)$. Conclua disso que I, e portanto \mathbb{R} , são incontáveis.

Proof. Seja $I_0 := [a, b]$ e defina recursivamente $I_{n+1} := I_n \setminus \{\alpha(n)\}$, obviamente $I_0 \supseteq I_1 \supseteq \ldots$ forma uma sequência de intervalos encaixantes e, por se tratar de \mathbb{R} , vale a propiedade dos intervalos encaixantes:

$$\bigcap_{n\in\mathbb{N}}I_n\neq\emptyset.$$

Como $\alpha(n) \notin I_k, \forall k > n$, então, em particular, $\alpha(n) \notin \bigcap_{i \in \mathbb{N}} I_i, \forall n \in \mathbb{N}$, i.e., existe um $c \in \bigcap_{i \in \mathbb{N}} I_i$ tq $c \neq \alpha(n), \forall n \in \mathbb{N}$ e, portanto, $c \notin \operatorname{Im}(\alpha)$. Como para cada α eu consigo construir um c em \mathbb{R} tq α não associa nenhum real a ele, então não existe uma bijeção de \mathbb{N} em \mathbb{R} .

Exercício 1.4. Prove que se $M_0, M_1, \dots \leq \aleph_0$, então

$$\bigcup_{n\in\mathbb{N}} M_n \le \aleph_0$$

e o utilize para provar o Lema 1.2.

Proof. Para provarmos que a união infinita é no máximo contável basta acharmos uma enumeração, i.e., uma função bijetora de \mathbb{N} para tal conjunto. Para simplificar o argumento assuma $M_n \approx \mathbb{N}, \forall n \geq 0$, se vale para uma sequência de conjuntos infinitos, obviamente vale para o caso em que alguns são finitos. Como M_n é equipotente a \mathbb{N} , seja $\pi^n : \mathbb{N} \to M_n$ tal bijeção, seja então a "matriz" infinita definida por $a_{ij} = \pi^i(j)$, é possível construir uma bijeção $\alpha : \mathbb{N} \to \bigcup_{n \in \mathbb{N}} M_n$ a partir das diagonais: iniciando com a_{00} , indo de a_{01} até a_{10} , de a_{02} até a_{20} , e assim por diante.

Definindo $M_n := \prod_{i=0}^n \mathbb{A}$, o conjunto de strings de comprimento n, é fácil mostrar que o produto cartesiano finito de conjuntos no máximo contáveis é no máximo contável, com isso, pelo teorema anterior

$$\bigcup_{n\in\mathbb{N}} M_n = \mathbb{A}^* \le \aleph_0.$$

Como \mathbb{A}^* é no mínimo infinito, i.e., $\mathbb{A}^* \succeq \aleph_0$, visto que é possível associar a cada string de comprimento n um natural, pelo Teorema de Schröder-Bernstein $\mathbb{A}^* \approx \aleph_0$.

Exercício 1.5. Demonstre o Teorema de Cantor: não existe $\alpha: M \to \mathcal{P}(M)$ sobrejetivo e, portanto, bijetivo.

Proof. Seja $S := \{a \in M \mid a \notin \alpha(a)\} \in \mathcal{P}(M)$, assumindo por hipótese que existe α sobrejetivo, então $\exists s \in M$ tq $\alpha(s) = S$. Se $s \in S$, por definição $s \notin \alpha(s) = S$, contradição. Se $s \notin S = \alpha(s)$, por definição $s \in S$, contradição, portanto não existe tal bijeção. Essa demonstração é conhecida como Argumento da Diagonal de Cantor. □

Exercício 4.6. (a) Seja \mathfrak{C}_v o cálculo consistindo das seguintes regras:

$$\frac{y}{x}$$
; $\frac{y}{y}$ $\frac{t_i}{ft_1...t_n}$ se $f \in \mathcal{S}$ é n -ária e $i \in \{1,...,n\}$.

- a) Mostre que para toda variável $x \in \mathcal{S}$ -termo t, x t é derivável em \mathfrak{C}_v sse $x \in \mathsf{var}(t)$.
- b) Dê um resultado para SF análogo ao resultado para var em a).

Proof. a)

(\Leftarrow) Se $x \in \mathsf{var}(t)$ então x t é derivável em \mathfrak{C}_v : Caso base: se t é uma variável, então x = t e, obviamente, $x \in \mathsf{var}(t)$. Indução nas regras: se t não for uma variável e $x \in \mathsf{var}(t)$, então $x \in \mathsf{var}(ft_1 \dots t \dots t_n)$.

(⇒) Se x t é derivável em \mathfrak{C}_v então $x \in \mathsf{var}(t)$: Se t = x a primeira regra garante que $x \in \mathsf{var}(t)$. Se $t = ft_1 \dots t_n$ então x t_i é derivável em \mathfrak{C}_v para algum $1 \le i \le n$, caso t_i seja da forma $ft'_1 \dots t'_m$ novamente, basta repetirmos o argumento, quando t for x voltamos ao primeiro caso.

b) Seja o cálculo \mathfrak{C}_a definido pelas regras:

$$\frac{1}{t_m \doteq t_n \quad t_m \doteq t_n}; \quad \frac{\Gamma}{Rt_1 \dots t_n}; \quad \frac{\Gamma}{\Gamma} \frac{\psi}{\Gamma \neg \psi};$$

$$\frac{\Gamma}{\Gamma} \frac{\varphi}{(\varphi * \psi)} \quad (\varphi * \psi) \quad * = \land, \lor, \rightarrow, \leftrightarrow; \quad \frac{\Gamma}{\Gamma} \frac{\psi}{Qx\psi} \quad Q = \forall, \exists.$$

Para todo termo t_m, t_n e toda variável x. $\Gamma \psi$ é derivável em \mathfrak{C}_a sse $\bigcup \Gamma = \mathsf{SF}(\psi)$.

Exercício 4.7. Altere o cálculo de fórmulas omitindo os parênteses que delimitam as fórmulas introduzidas da forma $\varphi \, \Box \, \psi$. Mostre que tais fórmulas não terão mais uma única decomposição e que SF não será mais uma função bem definida.

Proof. Pegue, por exemplo, a fórmula $\varphi := \exists x Px \land Qy$, podemos, utilizando o cálculo de fórmulas, construir duas derivações diferentes da mesma fórmula:

- 1. Px, (F2) em P e x;
- 2. Qy, (F2) em Q e y;
- 3. $Px \wedge Qy$, (F4) em (1) e (2) com \wedge ;
- 4. $\exists x Px \land Qy$, (F5) em (3) usando \exists e x.

e a outra altera somente os passos (3) e (4) para:

- 1. $\exists x P x$, (F5) em (1) usando \exists e x;
- 2. $\exists x Px \land Qy \ x$, (F4) em (2) e (3) com \land .

Obviamente $\mathsf{SF}(\varphi) = \{\varphi, Px \land Qy, Qy, Px\}$ utilizando a primeira derivação e $\mathsf{SF}(\varphi) = \{\varphi, \exists x Px, Qy, Px\}$ utilizando a segunda.

Exercício 4.8. Definimos uma S-fórmula em notação polonesa (S-P-fórmula) como as strings em A_S tq a regra (F4) é alterada para: Se φ, ψ são S-P-fórmulas, então também são $\Box \varphi \psi$, com $\Box = \land, \lor, \rightarrow, \leftrightarrow$.

Proof. Precisamos antes provar o análogo ao Lema 4.2.(b) para S-P-fórmulas: para $\varphi \neq \varphi'$, φ não é um segmento inicial próprio de φ' . Se $\varphi = \wedge \chi \psi$, assuma por contradição que φ é um segmento inicial próprio de φ' , i.e., existe $\zeta \neq \Box$ tq $\varphi \zeta = \wedge \psi \chi = \varphi'$, mas como φ' começa com \wedge este só pode ser formado a partir de (F4), portanto $\varphi = \wedge \chi' \psi'$ para algumas χ', ψ' S-P-fórmulas. Podemos então cancelar \wedge e ficar com $\chi \psi \zeta = \chi' \psi$, mas, pela hipótese de indução, se χ é um segmento próprio de χ' , só pode ser o caso que $\chi = \chi'$, o mesmo vale para ψ e ψ' , logo $\zeta = \Box$, contradição. Para provar o Lema 4.3.(b) provemos primeiro que se $\varphi_1 \dots \varphi_n = \varphi'_1 \dots \varphi'_n$, então $\varphi_i = \varphi'_i$ por indução. Caso base: φ_1 é segmento inicial próprio de φ'_1 , pelo Lema 4.2.(b) temos $\varphi_1 = \varphi'_1$. Hipótese de indução: assuma que $\varphi_i = \varphi'_i$, logo podemos cancelá-lo, o que implica que φ_{i+1} é segmento inicial próprio de φ'_{i+1} , i.e., $\varphi_{i+1} = \varphi'_{i+1}$.

Seja agora $n \neq m$, assuma sem perda de generalidade que n = m + k para k > 0, logo $\varphi_1 \dots \varphi_n = \varphi'_1 \dots \varphi'_m$, da prova anterior temos então que $\square = \varphi'_{n+1} \dots \varphi'_m$, contradição, logo k = 0. A prova do **Lema 4.4.(b)** é trivial, basta definirmos a função SF para \mathcal{S} -P-fórmulas, o que é muito simples. \square

Exercício 4.9. Seja $t_1, \ldots, t_n \in \mathcal{T}^{\mathcal{S}}$ de comprimento k, para $n \geqslant 1$. Mostre que $\exists \xi, \eta \in \mathbb{A}^*_{\mathcal{S}}$ unicamente determinados e $t \in \mathcal{T}^{\mathcal{S}}$ to comprimento de ξ é $1 \leqslant i < k$ e $t_1 \ldots t_n = \xi t \eta$.

Proof. Seja $i = \sum_{j=0}^m \log(t_j)$ para algum m < n, nesse caso $t = t_{m+1}$ e $\eta = t_{m+2} \dots t_n$ podendo ser possivelmente \square . Se todos os termos são constantes ou variáveis, este sempre é o caso, se for uma função é possível pararmos no meio de um termo $t_m = ft'_1 \dots t'_p$, nesse caso se ξ terminar antes de t'_q pegamos $t = t'_{q+1}$ e η como o resto.

Exercício 5.2. Mostre que o cálculo \mathfrak{C}_{nf} permite derivar precisamente aquelas strings da forma $x \varphi$ no qual $\varphi \in \mathcal{L}^{\mathcal{S}}$ tq $x \notin \mathsf{free}(\varphi)$:

$$\overline{x \quad t_1 \doteq t_2} \text{ Se } t_1, t_2 \in \mathcal{T}^{\mathcal{S}} \text{ e } x \notin \mathsf{var}(t_1) \cup \mathsf{var}(t_2);$$

$$\overline{x - Rt_1 \dots t_n}$$
 Se $R \in \mathcal{S}$ é n-ária, $t_1, \dots, t_n \in \mathcal{T}^{\mathcal{S}}$ e $x \notin \bigcup_{n \in \mathbb{N}} \mathsf{var}(t_n)$;

$$\frac{x-\varphi}{x-\neg\varphi}\ ; \qquad \frac{(x-\varphi)-(x-\psi)}{x-(\varphi*\psi)}\ *=\land,\lor,\rightarrow,\leftrightarrow; \qquad \frac{x-\varphi}{x-Qx\varphi}\ ; \qquad \frac{x-\varphi}{x-Qx\varphi}\ Q=\forall,\exists;$$

Proof. (⇒) Fazendo indução em cada regra:

 $\varphi = t_1 \doteq t_2$: por definição $x \notin free(\varphi)$;

 $\varphi = Rt_1 \dots t_n$: Também por definição $x \notin free(\varphi)$;

 $\varphi = Qx\psi$ nesse caso $x \notin free(\varphi) = free(\psi) \setminus \{x\};$

(*) Portanto todas as fórmulas φ deriváveis com premissa livre não tem uma ocorrência livre de x. $\varphi = \neg \psi$: Se $\neg \psi$ é derivável, então ψ também é, mas se ψ é derivável em \mathfrak{C}_{nf} então, por (*), $x \notin \mathsf{free}(\psi) \to x \notin \mathsf{free}(\neg \psi)$;

 $\varphi = (\psi * \chi)$: O argumento é análogo ao de cima, ambos ψ, χ tem de ser derivável e, por (*), não há ocorrência livre neles, o que implica que não há em $(\psi * \chi)$.

 (\Leftarrow) Agora assumindo $x \notin free(\varphi)$:

 $\varphi = t_1 \doteq t_2$: então ela é derivável pela regra 1;

 $\varphi = Rt_1 \dots t_n$: então ela é derivável pela $2^{\underline{a}}$ regra;

 $\varphi = Qx\psi$: a última e penúltima regra garantem que é derivável;

 $\varphi = \neg \psi$: então $x \notin free(\varphi)$, portanto a $3^{\underline{a}}$ regra garante que é derivável;

 $\varphi = (\psi * \chi)$: Se x não ocorre livre em φ então ela não ocorre livre em ambos, portanto a $5^{\underline{a}}$ regra garante sua derivação.

3 Semântica das Linguagens de Primeira Ordem

Exercício 1.4. Seja $\mathfrak{I} := (\mathfrak{A}, \beta)$ tq $\mathfrak{A} := (\mathbb{N}, +, \cdot, 0, 1, <)$ e $\beta(v_n) := 2n$ para $n \ge 0$. Interprete as seguintes fórmulas:

- a) $\exists v_0 v_0 + v_0 \doteq v_1$;
- b) $\exists v_0 v_0 \cdot v_0 \doteq v_1;$
- c) $\exists v_1 v_0 \doteq v_1;$
- d) $\forall v_0 \exists v_1 v_0 \doteq v_1$;
- e) $\forall v_0 \forall v_1 \exists v_2 (v_0 < v_2 \land v_2 < v_1).$

Proof. $\mathfrak{I} \models a$) sse há um $a \in \mathbb{N}$ tq $a + a = \beta(v_1) = 2$, de fato a = 1 satisfaz;

 $\mathfrak{I} \models b$) sse há um $a \in \mathbb{N}$ t
q $a \cdot a = 2$, obviamente a equação $x^2 = 2$ não tem solução nos naturais, portant
o $\mathfrak{I} \not\models b$);

 $\mathfrak{I} \models c$) sse há um $a \in \mathbb{N}$ to 0 = a, o que é claramente verdade;

 $\mathfrak{I} \models d$) sse para todo $a \in \mathbb{N}$ existe um $b \in \mathbb{N}$ to a = b, o que também é verdadeiro;

 $\mathfrak{I} \models e$) sse para todo $a, b \in \mathbb{N}$ existe um $c \in \mathbb{N}$ tq a < c e c < b. Em particular escolhendo b = a + 1 temos que existe um natural c tq a < c < a + 1 o que é falso, portanto $\mathfrak{I} \not\models e$).

Exercício 1.5. Seja $A \neq \emptyset$ e $A, \mathcal{S} < \aleph_0$ um conjunto de símbolos. Mostre que há uma quantidade finita de \mathcal{S} -estruturas com domínio A.

Proof. Seja $S = ((c_i)_{0 \le i \le n_1}, (R_i)_{0 \le i \le n_2}, (f_i)_{0 \le i \le n_3})$ com R_i k_i -ário e f_i l_i -ário e |A| = m. A quantidade total de associações possíveis para cada símbolo com uma respectiva interpretação no domínio é:

$$\alpha_{R_i} := \{ Z \mid Z \subseteq A^{k_i} \}, \quad |\alpha_{R_i}| = |\mathcal{P}(\alpha_{R_i})| = 2^{|A^{k_i}|} = 2^{m^{k_i}}$$

$$\alpha_{f_i} := A^{(A^{l_i})}, \quad |\alpha_{f_i}| = |A|^{|A^{l_i}|} = m^{(m^{l_i})}$$

$$\alpha_{c_i} := A, \quad |\alpha_{c_i}| = m$$

Dessa forma, como todos são finitos e a união e o produto cartesiano finito de conjuntos finitos é finito, então o conjunto total \mathcal{H} de estruturas não isomórficas dois a dois é tq:

$$\mathcal{H} := \prod \left\{ \bigcup_{0 \leqslant i \leqslant n_1} \alpha_{R_i}, \bigcup_{0 \leqslant i \leqslant n_2} \alpha_{f_i}, \bigcup_{0 \leqslant i \leqslant n_3} \alpha_{c_i} \right\} < \aleph_0.$$

Exercício 1.6. Para S-estruturas $\mathfrak{A} = (A, \mathfrak{a})$ e $\mathfrak{B} = (B, \mathfrak{b})$ seja $\mathfrak{A} \times \mathfrak{B}$ a S-estrutura com domínio $A \times B$ satisfazendo:

Para $R \in \mathcal{S}$ n-ária e $(a_1, b_1), \dots, (a_n, b_n) \in A \times B$:

$$R^{\mathfrak{A} \times \mathfrak{B}}(a_1, b_1) \dots (a_n, b_n) \leftrightarrow R^{\mathfrak{A}}a_1 \dots a_n \wedge R^{\mathfrak{B}}b_1 \dots b_n;$$

Para $f \in \mathcal{S}$ n-ária e $(a_1, b_1), \ldots, (a_n, b_n) \in A \times B$:

$$f^{\mathfrak{A} \times \mathfrak{B}}((a_1, b_1), \dots, (a_n, b_n)) := (f^{\mathfrak{A}}(a_1, \dots, a_n), f^{\mathfrak{B}}(b_1, \dots, b_n));$$

Para $c \in \mathcal{S}$:

$$c^{\mathfrak{A} \times \mathfrak{B}} := (c^{\mathfrak{A}}, c^{\mathfrak{B}});$$

Mostre que:

- (a) Se as $\mathcal{S}_{\sf gr}$ -estruturas $\mathfrak A$ e $\mathfrak B$ são grupos então $\mathfrak A \times \mathfrak B$ também é.
- (b) Se $\mathfrak{A}, \mathfrak{B}$ são estruturas satisfazendo os axiomas de equivalência então $\mathfrak{A} \times \mathfrak{B}$ também satisfaz.
- (c) Se as $\mathcal{S}_{\mathsf{ar}}$ -estruturas $\mathfrak{A},\mathfrak{B}$ são corpos, então $\mathfrak{A} \times \mathfrak{B}$ não é.

Proof. (a) Sejam $\mathfrak{A}=(A,\circ,e);\mathfrak{B}=(B,*,\varepsilon)$ e $\mathfrak{A}\times\mathfrak{B}=(A\times B,\circledast,\epsilon)$. Se $a,b,c\in\mathfrak{A};x,y,z\in\mathfrak{B}$ e $u,v,w\in\mathfrak{A}\times\mathfrak{B}$:

(i) $\forall u, v, w((u \circledast v) \circledast w = u \circledast (v \circledast w))$:

$$(\overbrace{(x,a)}^{u} \circledast \overbrace{(y,b)}^{v}) \circledast \overbrace{(z,c)}^{w} = (x \circ y, a * b) \circledast (z,c)$$

$$= (x \circ y \circ z, a * b * c)$$

$$= (x,a) \circledast (y \circ z, b * c)$$

$$= (x,a) \circledast ((y,b) \circledast (z,c))$$

$$(u \circledast v) \circledast w = u \circledast (v \circledast w).$$

(ii) $\forall u \exists v (u \circledast v) = \epsilon$:

$$(\overbrace{(x,a)}^{u} \circledast \overbrace{(y,b)}^{v}) = \overbrace{(e,\varepsilon)}^{\epsilon}$$

$$(x \circ y, a * b) = (e,\varepsilon)$$

$$\forall x \exists y (x \circ y = e) \land \forall a \exists b (a * b = \varepsilon).$$

(iii) $\exists \epsilon \forall u (u \circledast \epsilon = u)$:

$$(\overbrace{(x,a) \circledast (e,\varepsilon)}^{e}) = \overbrace{(x,a)}^{u}$$

$$(x \circ e, a \circ \varepsilon) = (x,a)$$

$$\exists e \forall x (x \circ e = x) \land \exists \varepsilon \forall a (a * \varepsilon = a).$$

(b) Sejam $\mathfrak{A} = (A, R); \mathfrak{B} = (B, \mathcal{R}), \mathfrak{A} \times \mathfrak{B} = (A \times B, \mathcal{R}) \text{ com } x, y, z \in \mathfrak{A}; a, b, c \in \mathfrak{B}; u, v, w \in \mathfrak{A} \times \mathfrak{B}$:

(i) $\forall u(u\mathcal{R}u)$:

$$\overbrace{(x,a)}^{u} \mathscr{R} \overbrace{(x,a)}^{u} \leftrightarrow xRx \wedge aRa$$
$$\forall x(xRx) \wedge \forall a(aRa).$$

(ii) $\forall u, v(u\Re v \leftrightarrow v\Re u)$:

$$(x,a) \mathscr{R} (y,b) \leftrightarrow (y,b) \mathscr{R} (x,a)$$

$$xRy \wedge a\mathcal{R}b \leftrightarrow yRx \wedge b\mathcal{R}a$$

$$\forall x, y(xRy \leftrightarrow yRx) \wedge \forall a, b(a\mathcal{R}b \leftrightarrow b\mathcal{R}a)$$

(iii) $\forall u, v, w (u \mathcal{R} v \wedge v \mathcal{R} w \rightarrow u \mathcal{R} w)$:

$$(x,a) \mathscr{R}(y,b) \wedge (y,b) \mathscr{R}(z,c) \to (x,a) \mathscr{R}(z,c)$$

$$(xRy \wedge a\mathcal{R}b) \wedge (yRz \wedge b\mathcal{R}c) \to xRz \wedge a\mathcal{R}c$$

$$(xRy \wedge yRz) \wedge (a\mathcal{R}b \wedge b\mathcal{R}c) \to xRz \wedge a\mathcal{R}c$$

$$\forall x, y, z(xRy \wedge yRz \to xRz) \wedge \forall a, b, c(a\mathcal{R}b \wedge b\mathcal{R}c \to a\mathcal{R}c)$$

(c) Sejam $\mathfrak{A}=(A,+,\cdot,0,1); \mathfrak{B}=(B,*,\times,\overline{0},\overline{1})$ e $\mathfrak{A}\times\mathfrak{B}=(A\times B,\oplus,\odot,\mathbf{0},\mathbf{1})$ com $x,y\in\mathfrak{A};a,b\in\mathfrak{B}$ e $u,v\in\mathfrak{A}\times\mathfrak{B}$:

Um dos axiomas é $\forall (u \neq \mathbf{0}) \exists v (u \oplus v = \mathbf{1})$:

$$(x, a) \oplus (y, b) = (1, \overline{1})$$

 $(x \cdot y, a * b) = (1, \overline{1})$

Se isso é verdade então, em particular, para ou x=0 ou $a=\overline{0}$ temos que $(0,b),(x,\overline{0})\neq \mathbf{0}$, logo ambos $0,\overline{0}$ possuiriam invreso, o que é falso.

Exercício 2.1. Mostre que para $x, y \in \{\top, \bot\}$:

- a) \rightarrow $(x,y) = \dot{\lor} (\dot{\neg} (x), y);$
- b) $\dot{\wedge}$ $(x,y) = \dot{\neg} (\dot{\vee} (\dot{\neg} (x), \dot{\neg} (y)));$
- c) \leftrightarrow $(x, y) = \dot{\land} (\dot{\rightarrow} (x, y), \dot{\rightarrow} (y, x)).$

x	y	$\dot{\neg}$ (x)	$\dot{\neg} (y)$	$\dot{\vee} (\dot{\neg} (x), \dot{\neg} (y))$	$\dot{\neg} \ (\dot{\lor} \ (\dot{\neg} \ (x), \dot{\neg} \ (y)))$	$\dot{\wedge} (x,y)$
T	Т	Τ	Τ	Τ	Т	T
T	\perp	Т	T	Т		
	Т	Т		Т		
	Τ	Т	Т	Т	Т	

x	y	$\dot{\rightarrow} (x,y)$	$\dot{\rightarrow} (y, x)$	$\dot{\wedge} \ (\dot{\rightarrow} (x,y), \dot{\rightarrow} (y,x))$	$\leftrightarrow (x,y)$
T	Т	Т	Т	Т	Т
T	\perp		Т		
	Т	Т			
		T	Т	T	Т

Exercício 3.3. Seja P um símbolo de relação unária e f de função binária. Determine duas interpretações para cada fórmula uma que a satisfaça e outra que não:

- a) $\forall v_1 f v_0 v_1 \doteq v_0$;
- b) $\exists v_0 \forall v_1 f v_0 v_1 \doteq v_1;$
- c) $\exists v_0(Pv_0 \wedge \forall v_1 Pfv_0 v_1)$.

Proof. a) Seja $\mathfrak{I} = (\mathbb{N}, R, \cdot)$ tq $\beta(v_0) = 0$, então $\mathfrak{I} \models a$) sse para todo $n \in \mathbb{N}$ vale $0 \cdot n = 0$, o que é fato. Entretanto para mesma interpretação com + temos n + 0 = 0, o que não é o caso.

- b) Interpretando com a mesma estrutura que em a) o que b) garante é a existência de um elemento neutro, o que é verdade. Pro caso de não satisfação basta retirarmos o elemento neutro do domínio.
- c) Seja Px := x é par, para mesma estrutura \Im com +, o que c) diz é que existe um x par tq para todo y, x + y é par, o que é claramente falso, use, entretanto, \cdot ao invés de +, então obviamente para todo y, xy é par se x for par.

Exercício 3.4. Uma fórmula sem \neg, \rightarrow e \leftrightarrow é denominada *positiva*. Prove que toda fórmula positiva é satisfatível.

Proof. Uma fórmula φ é satisfatível se existe um modelo que a satisfaça, seja então $\mathfrak{I}=(\mathfrak{A},\beta)$ tq $\mathsf{Dom}(\mathfrak{A})=\{a\}$ e $\beta(v)=a,$ com $R_i^{\mathfrak{A}}$ sendo o grafo da função identidade n-ária para todo i, assim como $f_i^{\mathfrak{A}}=$ id e $c_i^{\mathfrak{A}}=a.$ De fato, $\mathfrak{I}(t)=a, \forall t\in\mathcal{T}^{\mathcal{S}}.$ Por indução em fórmulas é claro que $\mathfrak{I}\models t_1\equiv t_2$ e $Rt_1\ldots t_n$, logo também satisfaz $\varphi\wedge\psi$ e $\varphi\vee\psi$, o mesmo para $\forall x\varphi$ e $\exists x\varphi.$

Exercício 4.9. Para fórmulas arbitrárias φ, ψ, χ prove que:

- a) $(\varphi \lor \psi) \models \chi \text{ sse } \varphi \models \chi \text{ e } \psi \models \chi$;
- b) $\models (\varphi \rightarrow \psi)$ sse $\varphi \models \psi$.

Proof. a)

$$\begin{split} \varphi \vDash \chi \text{ e } \psi \vDash \chi \text{ sse para todo } \mathfrak{I}, \text{ se } \mathfrak{I} \vDash \varphi, \text{ então } \mathfrak{I} \vDash \chi \text{ e se } \mathfrak{I} \vDash \psi, \text{ então } \mathfrak{I} \vDash \chi; \\ \text{sse se } \mathfrak{I} \vDash \varphi \text{ ou } \mathfrak{I} \vDash \psi, \text{ então } \mathfrak{I} \vDash \chi; \\ \text{sse } (\varphi \lor \psi) \vDash \chi. \end{split}$$

b)

```
\varphi \vDash \psi sse para todo \Im se \Im \vDash \varphi então \Im \vDash \psi;
sse para todo \Im \vDash (\varphi \to \psi);
sse \vDash (\varphi \to \psi).
```

Exercício 4.10. Mostre que:

- (a) $\exists x \forall y \varphi \models \forall y \exists x \varphi$;
- (b) $\forall y \exists x Rxy \not\models \exists x \forall y Rxy$.

Proof. (a) $\mathfrak{I} \models \exists x \forall y \varphi$ sse existe um $a \in A$ tq $\mathfrak{I} = \forall y \varphi$, então em particular existe um $a \in A$ tq $\mathfrak{I} = \exists x \forall y \varphi$ sendo $t \in A$ um termo genérico qualquer. Assim, devido a escolha arbitrária, concluímos que para todo $t \in A$ existe um $a \in A$ tq $\mathfrak{I} = \varphi$, i.e., $\mathfrak{I} \models \forall y \exists x \varphi$.

(b) $\mathfrak{I} \models \forall y \exists x Rxy$ sse para todo $a \in A$ existe um $t \in A$ tq $\mathfrak{I} \models Rta$, mas isso não necessariamente implica que exista um t tq Rta valha para todo a.

Obs: Lembre-se que a definição de satisfatibilidade é feita na metateoria que, por mais rigorosa que seja, é justificada pela noção intuitiva que temos de cada fórmula e verificada da mesma forma.

Exercício 4.11. Prove que para $Q = \forall, \exists$:

- a) $Qx(\varphi \wedge \psi) \models \exists (Qx\varphi \wedge Qx\psi);$
- b) $Qx(\varphi \vee \psi) \models \exists (\varphi \vee Qx\psi)$, se $x \notin free(\varphi)$;
- c) justifique o motivo da assunção $x \notin free(\varphi)$.

Proof. Provarei para $Q = \forall$ porque é fácil ver que a intuição se estende pro outro caso.

- a) Obviamente se para todo $a \in A$ temos $\mathfrak{I}^{\underline{a}}_{x} \models \varphi$ e para todo $b \in A$ temos $\mathfrak{I}^{\underline{b}}_{x} \models \psi$, então para todo $c \in A$, $\mathfrak{I}^{\underline{c}}_{x} \models \varphi$ e $\mathfrak{I}^{\underline{c}}_{x} \models \psi$, i.e., para todo $c \in A$, $\mathfrak{I} \models (\varphi \land \psi)$, analogamente vale a volta. A justificativa se baseia no fato intuitivo de que se estamos variando pelo domínio todo de uma forma numa fórmula e de outra forma na outra, então podemos variar em ambas da mesma forma.
- b) $\mathfrak{I} \models \forall x \varphi$ sse para todo $a \in A$, $\mathfrak{I}^{\underline{a}}_{x} \models \varphi$, i.e., utilizamos a valoração β que interpreta x como a, mas como $x \notin \mathsf{free}(\varphi)$, então $\mathfrak{I}^{\underline{a}}_{x}(\varphi) = \mathfrak{I}(\varphi)$, a partir disso é fácil provar ambos b) e c).

Exercício 4.12. Sejam φ, ψ fórmulas tais que $\varphi \models \exists \psi$. Seja χ' obtido de χ substituindo todas as subfórmulas da forma φ por ψ . Mostre que para todo $\chi, \chi \models \exists \chi'$.

Proof. Provaremos por indução em fórmulas: Se $\chi = \varphi$ é atômica então $\mathfrak{I} \models \varphi$ sse, por hipótese, $\mathfrak{I} \models \chi' = \psi$;

se $\chi = \neg \varphi$ então $\mathfrak{I} \models \chi$ sse não vale $\mathfrak{I} \models \varphi$ sse, por hipótese, não vale $\mathfrak{I} \models \psi$, i.e., $\mathfrak{I} \models \chi' = \neg \psi$; se $\chi = \xi \lor \varphi$ então $\mathfrak{I} \models \chi$ sse $\mathfrak{I} \models \xi$ ou $\mathfrak{I} \models \varphi$ sse, por hipótese, $\mathfrak{I} \models \xi$ ou $\mathfrak{I} \models \psi$, i.e., $\mathfrak{I} \models \chi' = \xi \lor \psi$; se $\chi=\exists x\varphi$ então $\Im\models\chi$ s
se existe um $a\in A$ tq $\Im\frac{a}{x}\models\varphi$ sse, por hipótese, existe um $a\in A$ tq $\mathfrak{I}^{\underline{a}}_{\underline{x}} \models \psi$, i.e., $\mathfrak{I} \models \chi' = \exists x \psi$. Portanto $\chi \models \exists \chi'$.

Exercício 4.13. Prove o análogo ao 4.8. para relação de consequência.

Proof. Pelo Lema 4.4. é fácil estender o caso que o conjunto é satisfatível para consequência lógica.

Exercício 4.14. Um conjunto Φ de sentenças é dito independente se não há um $\varphi \in \Phi$ tq $\Phi \setminus \{\varphi\} \models \varphi$. Mostre que os conjuntos Φ_{gr} e Φ_{eq} de axiomas dos grupos e relações de equivalência são independentes.

$$\begin{array}{l} \textit{Proof.} \ \ (a) \ \Phi_{\mathrm{gr}} = \{\underbrace{\forall uvw((u \circ v) \circ w = u \circ (v \circ w))}_{\varphi_1}, \underbrace{\forall u \exists v(u \circ v = e)}_{\varphi_2}, \underbrace{\exists c \forall u(u \circ c = u)}_{\varphi_3}\} \\ \ \ (i) \ \ \text{Como} \ \ \varphi_3 \ \ \text{garante a existência de um elemento neutro, mas não necessariamente precisamos} \end{array}$$

- interpretar e como este, peguemos $(\mathbb{N}\setminus\{1\},\cdot,0)$, de fato esta é associativa e possui um número que se operado com qualquer outro no domínio resulta em 0, sendo este, é claro, também o 0, então $\mathfrak{I} \models \Phi_{gr} \setminus \{\varphi_3\}, \text{ mas } \mathfrak{I} \not\models \varphi_3;$
- (ii) Como φ_2 garante a existência de um inverso, basta tomarmos a estrutura $(\mathbb{N}, +, 0)$ em \mathfrak{I} que vale $\mathfrak{I} \models \Phi_{gr} \setminus \{\varphi_2\}$, mas $\mathfrak{I} \not\models \varphi_2$;
- (iii) Como φ_1 garante associatividade tomamos o operador \circ como não associativo, por exemplo a estrutura $(\mathbb{Z}, -, 0)$ em \mathfrak{I} garante que $\mathfrak{I} \models \Phi_{gr} \setminus \{\varphi_1\}$, mas $\mathfrak{I} \not\models \varphi_1$.

(b)
$$\Phi_{\text{eq}} = \{ \underbrace{\forall a(aRa)}_{\varphi_1}, \underbrace{\forall ab(aRb \leftrightarrow bRa)}_{\varphi_2}, \underbrace{\forall abc(aRb \land bRc \rightarrow aRc)}_{\varphi_3} \}$$

(i) Para $\Phi_{\text{eq}} \setminus \{\varphi_3\}$ basta tomar (\mathbb{Z}, \cdot, R) tq aRb sse $a \cdot b \geqslant 0$. Assim ambos φ_1, φ_2 são satisfeitos,

mas escolhendo b = 0 em φ_3 tal relação não é sempre verdade;

- (ii) Para $\Phi_{eq} \setminus \{\varphi_2\}$ basta tomar (\mathbb{N}, \geq) , tal qual não é simétrica;
- (iii) Para $\Phi_{eq} \setminus \{\varphi_1\}$ basta tomar $A = \{a\}$ e (A, R) tq $\forall a \in A(aRa)$.

Exercício 4.15. (Generalização do Exercício 1.6.). Seja $I \neq \emptyset$, $\forall i \in I$, seja \mathfrak{A}_i uma \mathcal{S} -estrutura. Denotaremos por $\prod_{i\in I} \mathfrak{A}_i$ a S-estrutura do produto direto das S-estruturas \mathfrak{A}_i :

$$\mathsf{Dom}\left(\prod_{i\in I}\mathfrak{A}_i\right):=\left\{g\ \bigg|\ g:I\to\bigcup_{i\in I}\mathsf{Dom}(\mathfrak{A}_i),\ \mathrm{e}\ g(i)\in\mathsf{Dom}(\mathfrak{A}_i), \forall i\in I\right\}$$

i.e., n-tuplas de todas as possíveis combinações de elementos no domínio de cada estrutura (que denotaremos por $\langle g(i) \mid i \in I \rangle$, e:

para $R \in \mathcal{S}$ n-ária e $g_1, \ldots, g_n \in \prod_{i \in I} \mathsf{Dom}(\mathfrak{A}_i)$:

$$R^{\mathfrak{A}}g_1 \dots g_n \text{ sse } R^{\mathfrak{A}_i}g_1(i) \dots g_n(i), \forall i \in I;$$

para $f \in \mathcal{S}$ n-ária e $g_1, \dots, g_n \in \prod_{i \in I} \mathsf{Dom}(\mathfrak{A}_i)$:

$$f^{\mathfrak{A}}(g_1,\ldots,g_n):=\langle f^{\mathfrak{A}_i}(g_1(i),\ldots,g_n(i))\mid i\in I\rangle;$$

e $c^{\mathfrak{A}} := \langle c^{\mathfrak{A}_i} \mid i \in I \rangle$ para $c \in \mathcal{S}$.

Prove que para $t \in \mathcal{T}^{\mathcal{S}}$ se $\text{var}(t) \subseteq \{v_0, \dots, v_{n-1}\}$ e $g_0, \dots, g_{n-1} \in \prod_{i \in I} \text{Dom}(\mathfrak{A}_i)$, então

$$t^{\mathfrak{A}}[g_0, \dots, g_{n-1}] = \langle t^{\mathfrak{A}_i}[g_0(i), \dots, g_{n-1}(i)] \mid i \in I \rangle \ (*)$$

Proof. Se t = c, então, por definição, $c^{\mathfrak{A}} = \langle c^{\mathfrak{A}_i} \mid i \in I \rangle$. Se t = x, então, novamente por definição, $t^{\mathfrak{A}}[g_0] = g_0 = \langle g_0(i) \mid i \in I \rangle$. Provados os casos bases assuma (*) como hipótese indutiva. Se $t = f(t_1, \ldots, t_n)$, então $t^{\mathfrak{A}} = f^{\mathfrak{A}}(t_1^{\mathfrak{A}}, \ldots, t_n^{\mathfrak{A}})$, por hipótese para cada t_i temos $t_i^{\mathfrak{A}} = g_k$, para algum g_k , logo $t^{\mathfrak{A}} = f^{\mathfrak{A}}(g_{i_1}, \ldots, g_{i_n})$ que, por definição, é igual a $\langle f^{\mathfrak{A}_i}(g_{i_1}(i), \ldots, g_{i_n}(i)) \mid i \in I \rangle$. \square

Obs: Esse exercício captura a essência e os primeiros passos para introduzir o que os teoristas dos modelos chamam de *Ultraprodutos* e *Ultrapowers* (cuja tradução seria algo como ultrapotências) que são extremamente importantes para a construção de modelos não-padronizados como os hiperreais. Além disso nos providencia uma ferramenta extremamente útil para provar que determinadas classes de estruturas não são elementares, o Teorema de Łoś–Tarski, mas que infelizmente o Ebbinghaus não trata no livro dele.

Exercício 4.16. Fórmulas deriváveis no seguinte cálculo são denominadas fórmulas Horn:

$$\frac{1}{(\neg \varphi_1 \lor \cdots \lor \neg \varphi_n \lor \varphi)} \text{ Se } n \in \mathbb{N} \text{ e } \varphi_1, \ldots, \varphi_n, \varphi \text{ são atômicas;}$$

 $\neg \varphi_0 \lor \cdots \lor \neg \varphi_n$ Se $n \in \mathbb{N}$ e $\varphi_0, \ldots, \varphi_n$ são atômicas;

$$\frac{\varphi,\psi}{(\varphi\wedge\psi)}$$
; $\frac{\varphi}{\forall x\varphi}$; $\frac{\varphi}{\exists x\varphi}$.

Mostre que se φ é uma sentença Horn e se $\mathfrak{A}_i \models \varphi, \forall i \in I$, então $\prod_{i \in I} \mathfrak{A}_i \models \varphi$.

Proof. Pelo teorema anterior temos $\prod_{i \in I} \mathfrak{A}_i \models (t_1 \doteq t_2)$ sse $t_1^{\mathfrak{A}} = \langle t_1^{\mathfrak{A}_i} \mid i \in I \rangle = t_2^{\mathfrak{A}} = \langle t_2^{\mathfrak{A}_i} \mid i \in I \rangle$, i.e., $t_1^{\mathfrak{A}_i} = t_2^{\mathfrak{A}_i}, \forall i \in I$, então obviamente se cada \mathfrak{A}_i o satisfaz, o produto direto também. É fácil estender o argumento paras outras fórmulas atômicas. Disso é fácil tirar que se todas as estruturas satisfazem negações e disjunções de fórmulas atômicas, então o produto direto também satisfaz. Provado o caso base assuma como hipótese de indução que se $\mathfrak{A}_i \models \varphi, \forall i \in I$, então $\prod_{i \in I} \mathfrak{A}_i \models \varphi$. Se $\mathfrak{A}_i \models (\varphi \land \psi)$, então $\mathfrak{A}_i \models \varphi$ e $\mathfrak{A}_i \models \psi$, por hipótese isso implica que $\prod_{i \in I} \mathfrak{A}_i \models \varphi$ e $\prod_{i \in I} \mathfrak{A}_i \models \psi$, i.e., $\prod_{i \in I} \mathfrak{A}_i \models (\varphi \land \psi)$. Da mesma forma, $\mathfrak{A}_i \models \exists x \varphi$ sse existe $a \in \mathsf{Dom}(\mathfrak{A}_i)$ tq $\mathfrak{A}_i \stackrel{\circ}{x} \models \varphi$, se em cada domínio das \mathfrak{A}_i há um elemento que satisfaz, em particular pegando $a_i \in \mathsf{Dom}(\mathfrak{A}_i)$ temos que a n-tupla $(a_1, \ldots, a_n) \in \mathsf{Dom}\left(\prod_{i \in I} \mathfrak{A}_i\right)$ também satisfaz, o argumento é análogo para $\forall x \varphi$.

Exercício 5.9. Seja $\mathcal{S} < \aleph_0$ um conjunto de símbolos e \mathfrak{A} uma \mathcal{S} -estrutura to $\mathsf{Dom}(\mathfrak{A}) < \aleph_0$. Mostre que há $\varphi_{\mathfrak{A}} \in \mathcal{L}_0^{\mathcal{S}}$ cujos modelos são exatamente aquelas \mathcal{S} -estruturas isomórficas a \mathfrak{A} .

Proof. Construiremos $\varphi_{\mathfrak{A}}$ em função de \mathfrak{A} , enumere $\mathsf{Dom}(\mathfrak{A}) = \{a_0, \dots, a_{n-1}\}$. Como $\mathcal{S} < \aleph_0$, então para especificamente $x_1, \dots, x_n \in \mathsf{Var}$ defina $\Phi := \{\varphi \mid \varphi \text{ \'e atômica e free}(\varphi) = \{x_1, \dots, x_n\}\}$ o conjunto de \mathcal{S} -fórmulas atômicas com exatamente x_1, \dots, x_n como variáveis livres. Obviamente $\Phi < \aleph_0$, enumere portanto $\Phi = \{\varphi_1, \dots, \varphi_k\}$. Defina por indução $\Psi_0 := \emptyset$ e

$$\Psi_m := \begin{cases} \Psi_{m-1} \cup \{\varphi_m\}, \text{ se } \mathfrak{A} \models \varphi_m[a_1, \dots, a_n]; \\ \Psi_{m-1} \cup \{\neg \varphi_m\}, \text{ se } \mathfrak{A} \not\models \varphi_m[a_1, \dots, a_n]. \end{cases}$$

com isso o conjunto

$$\Psi := \bigcup_{i=1}^k \Psi_i$$

tem cardinalidade igual a Φ e, portanto, é finito. Obviamente Ψ possui todas as informações necessárias para definirmos todas as funções, relações e constantes e suas dependências com os elementos do domínio, portanto toda estrutura que satisfaz Ψ terá tais propriedades, basta agora garantir que o domínio dessa nova estrutura esteja em bijeção com o de \mathfrak{A} , defina então:

$$\varphi_{\mathfrak{A}} := \exists x_1 \dots x_n \left(\bigwedge \Psi \wedge \forall x \left(\bigvee_{i=1}^n x \doteq x_i \right) \right)$$

Exercício 5.10. Mostre que: (a) A relação < é elementarmente definível em $(\mathbb{R}, +, \cdot, 0)$, i.e., existe uma fórmula $\varphi \in \mathcal{L}_2^{\{+, \cdot, 0\}}$ tq $\forall a, b \in \mathbb{R}$:

$$(\mathbb{R}, +, \cdot, 0) \models \varphi[a, b] \text{ sse } a < b.$$

(b) A relação < não é elementarmente definível em $(\mathbb{R}, +, 0)$.

Proof. (a) Tome $\varphi = \exists c(\neg(c \doteq 0) \land (b \doteq a + c^2))$, dessa forma $(\mathbb{R}, +, \cdot, 0) \models \varphi[a, b]$ sse a < b.

- (b) Seja $\pi: \mathfrak{A} \cong \mathfrak{A}$ um automorfismo em $\mathfrak{A} = (\mathbb{R}, +, \cdot, 0)$ tq $\pi(a) = -a$ que é o $c \in \mathbb{R}$ tq a + c = 0. Para provar que π é um automorfismo precisamos:
- (i) π é uma bijeção;
- (ii) $\pi(a+b) = \pi(a) + \pi(b)$;
- (iii) $\pi(0) = 0$.

Como todos são verficados isso garante que é um automorfismo. Agora vejamos que se existe um $\varphi[a,b]$ tq $\mathfrak{A} \models \varphi[a,b]$ sse a < b então como π é estritamente decrescente, $\mathfrak{A} \models \varphi[\pi(a),\pi(b)]$ sse a > b. Sabemos, também, pelo **Lema do Isomorfismo** que $\mathfrak{A} \models \varphi[a,b]$ sse $\mathfrak{A} \models \varphi[\pi(a),\pi(b)]$, i.e., a < b sse b < a, o que é uma contradição, portanto não existe tal $\varphi[a,b]$ e, com isso, < não é elementarmente definível.

Exercício 5.11. Alterando o cálculo das fórmulas universais substituindo o quantificador universal em (iii) por um existencial conseguimos o cálculo de fórmulas existenciais. Prove que:

- a) A negação de uma sentença universal é logicamente equivalente a uma sentença existencial, e vice versa;
- b) Se $\mathfrak{A} \subseteq \mathfrak{B}$ e φ é uma sentença existencial, então $\mathfrak{A} \models \varphi \implies \mathfrak{B} \models \varphi$.

Proof. a) Caso base para ambas: Se φ é livre de quantificadores, obviamente $\neg \varphi$ também é, portanto se φ é uma sentença universal, $\neg \varphi$ é existencial e vice versa. Tomemos como hipótese indutiva que se φ é universal/existencial, então $\neg \varphi$ é existencial/universal. Se $\varphi = (\psi \land \chi)$, então $\neg \varphi$ é logicamente equivalente a $\neg \psi \lor \neg \chi$, assim como para $\varphi = (\chi \lor \psi)$ temos $\neg \psi \land \neg \chi$, por hipótese é fácil ver que a propriedade é preservada para ambos os casos. Da mesma forma se $\varphi = \forall x\psi$, então $\neg \varphi$ é logicamente equivalente a $\exists x \neg \varphi$, o caso contrário é análogo.

b) Por a) sabemos que $\neg \varphi$ é logicamente equivalente a uma fórmula universal, se $\mathfrak{A} \models \varphi$, então $\mathfrak{A} \not\models \neg \varphi$, pela contraposição do **Corolário 5.8.** temos que $\mathfrak{B} \not\models \neg \varphi$, i.e., $\mathfrak{B} \models \varphi$.

Exercício 6.7. Formalize as seguintes declarações usando o conjunto de símbolos de 6.2.:

- a) Todo real positivo tem uma raiz quadrada positiva;
- b) Se ρ é estritamente monótona, então ρ é injetiva;
- c) ρ é uniformemente contínua em \mathbb{R} ;
- d) para todo x, se ρ é diferenciável em x, então ρ é contínua em x.

Proof. a) $\forall x \exists y (0 < y \land y \cdot y \doteq x);$

b)
$$(\forall x \forall y (x < y \rightarrow \rho(x) < \rho(y)) \lor \forall x \forall y (x < y \rightarrow \rho(y) < \rho(x))) \rightarrow \forall x \forall y (\rho(x) \doteq \rho(y) \rightarrow x \doteq y);$$

- c) $\forall u (0 < u \rightarrow \exists v (0 < v \land \forall x \forall y (\Delta(x, y) < v \rightarrow \Delta(\rho(x), \rho(y)) < u)));$
- d) Sejam

$$C(x) := \forall u (0 < u \rightarrow \exists v (0 < v \rightarrow \forall y (\Delta(y,x) < v \rightarrow \Delta(\rho(y),\rho(x)) < u)));$$

$$L(\ell, f(y), p) := \forall u (0 < u \to \exists v (0 < v \land \forall y ((0 < \Delta(y, p) \land \Delta(y, p) < v) \to \Delta(f(y), \ell) < u).$$

Logo
$$\forall z (\exists w (\rho(x+y) \doteq w \cdot y + \rho(x) \land \exists \ell (L(\ell, w, 0))) \rightarrow C(x)).$$

Exercício 6.8. Seja $S_{eq} = \{R\}$, formalize:

- a) R é uma relação de equivalência com no mínimo duas classes de equivalência;
- b) R é uma relação de equivalência com uma classe de equivalência contendo mais de um elemento.

Proof. a) $\bigwedge \Phi_{eq} \wedge \exists a \exists b (Rab \wedge \exists c (\neg Rac));$

b)
$$\bigwedge \Phi_{\text{eq}} \wedge \exists a \exists b (Rab \wedge \neg (a \doteq b)).$$

Exercício 6.9. Utilize o Exercício 4.16. para provar que:

- a) Se para todo $i \in I$ a estrutura \mathfrak{A}_i é um grupo, então $\prod_{i \in I} \mathfrak{A}_i$ é um grupo;
- b) Nem a teoria da ordem, nem a dos corpos, pode ser axiomatizada por uma sentença de Horn.

Proof. a) Seja $\mathfrak{A} = \prod_{i \in I} \mathfrak{A}_i$, vale que $\mathfrak{A} \models \forall x (x \circ e \doteq x)$ sse para todo $g \in \mathsf{Dom}(\mathfrak{A})$ temos $g \circ^{\mathfrak{A}} e^{\mathfrak{A}} = g$, i.e., $\langle g(i) \circ^{\mathfrak{A}_i} e^{\mathfrak{A}_i} \mid i \in I \rangle = \langle g(i) \mid i \in I \rangle$ que é igual sse $g(i) \circ^{\mathfrak{A}_i} e^{\mathfrak{A}_i} = g(i)$, $\forall i \in I$ o que, por hipótese, é verdade. Destrinchando os axiomas de grupo desta forma é fácil mostrar que $\mathfrak{A} \models \Phi_{\mathsf{gr}}$.

b) Assuma que $\varphi_{fd} = \bigwedge \Phi_{fd}$ a conjunção dos axiomas de corpos seja uma sentença Horn, pelo **Exercício 1.6.** o produto direto de duas estruturas de corpos $\mathfrak{C} = \mathfrak{A} \times \mathfrak{B}$ não é um corpo e, pelo **Exercício 4.16.**, deveria ser. Contradição, então φ_{fd} não é uma sentença Horn.

Igualmente se $\varphi_{\mathrm{ord}} = \bigwedge \Phi_{\mathrm{ord}}$ é uma sentença de Horn, então se $\mathfrak{A}, \mathfrak{B}$ são estruturas de ordem, $\mathfrak{C} = \mathfrak{A} \times \mathfrak{B}$ precisa também ser. Note que $\mathfrak{C} \models \forall xy(x < y \lor x \doteq y \lor y < x)$ sse para x = (a, b) e y = (p, q) temos $\forall (a, b)(p, q)((a , entretando escolhendo <math>(a, b), (p, q)$ tq a < p e b > q temos \mathfrak{C} não o satisfaz, contradição.

Exercício 6.10. $M\subseteq \mathbb{N}$ é denominado spectrum se há um conjunto de símbolos \mathcal{S} e uma \mathcal{S} -sentença φ tq

 $M = \{n \in \mathbb{N} \mid \varphi \text{ possui um modelo com exatamente } n \text{ elementos}\}.$

Prove que é um spectrum: a) Todo $N \subseteq \mathbb{N} \setminus \{0\}$ finito;

- b) $\{n \in \mathbb{N} \setminus \{0\} \mid (n \equiv 0 \pmod{m}) \land m \geqslant 1\};$
- c) $\{n^2 \mid n \in \mathbb{N} \setminus \{0\}\};$
- d) $\{n \in \mathbb{N} \setminus \{0\} \mid n \text{ não é primo}\};$
- e) $\{n \in \mathbb{N} \mid n \text{ \'e primo}\}.$

Proof.a) Seja $\varphi_{\geqslant n}:=\bigwedge_{i,j\in\{1,\dots,n\}}\neg(v_i\doteq v_j),$ então

$$\varphi_n := \exists v_1 \dots v_n \left(\varphi_{\geqslant n} \wedge \forall v \left(\bigvee_{i=1}^n v \doteq v_i \right) \right)$$

é a formalização de há exatamente n elementos.

Como $N < \aleph_0$ enumere $N = \{a_1, \dots, a_n\}$, logo podemos descrever $N = \{k \in \mathbb{N} \mid \bigvee_{i=1}^n \varphi_{a_i}\}$.

b) Pegue $S = \{R\}$ e defina

$$\varphi = \bigwedge \Phi_{eq} \wedge \exists v_1 \dots v_n \left(\varphi_{\geqslant n} \wedge \forall v \left(\bigvee_{i=1}^n Rvv_i \right) \right)$$

Isso garante não só que R seja uma relação de equivalência como que o conjunto quociente $\mathsf{Dom}(\mathfrak{A})/R$ de qualquer modelo de φ terá exatamente n classes de equivalência, como todas possuem a mesma cardinalidade tem de ser possível particionar o domínio em n conjuntos diferentes, i.e., ser um múltiplo de n.

c) Seja $S = \{R, f, g\}$ a ideia é formalizar ψ tq f, g: Dom $(\mathfrak{A}) \to R$, χ tq (f(x), g(x)) é injetivo e ξ que é sobrejetivo, i.e.:

$$\psi := \forall x (Rf(x) \land Rg(x));$$

$$\chi := \forall x \forall y ((f(x) = f(y) \land g(x) = g(y)) \to x = y);$$

$$\xi := \forall x \forall y ((Rx \land Ry) \to \exists z (f(z) = x \land g(z) = y)).$$

Logo, se $\mathfrak{A} \models \varphi := \psi \land \chi \land \xi$, então \mathfrak{A} possui uma bijeção de $\mathsf{Dom}(\mathfrak{A})$ em R^2 , i.e., a cardinalidade do domínio será o quadrado de um natural. Para provarmos que sempre haverá um modelo para cada quadrado perfeito contruiremos um modelo para φ . Seja $\mathsf{Dom}(\mathfrak{A}) := \{1, \ldots, m\}$ e defina $R := \{1, \ldots, p\}$, se f(x) é o quociente de $x \in \mathsf{Dom}(\mathfrak{A})$ por $p \in g(x)$ o resto, então x = pf(x) + g(x) com f, g unicamente determinados, então para cada x no domínio existem $(f(x), g(x)) \in R^2$ e vice versa.

d) PENDENTE

e) $\varphi := \bigwedge \Phi_{\text{ofd}} \wedge \forall x (\neg (x \doteq x + 1) \to x < x + 1)$ garante, visto que todo corpo finito tem característica prima e, portanto, contém p^n elementos, a última restrição garante que n = 1. Assuma por contradição que existe $\mathfrak{A} \models \varphi$ tq $n \neq 1$, então $\exists a \notin \mathbb{F}_p$, portanto $a \neq 0$, a vista disso temos $a < a + 1 < \dots < a + p = a$, contradição, visto que < é uma relação de ordem total. \square

Exercício 7.5. Prove que:

- a) Se $\mathfrak{A}=(A,+^A,\cdot^A,0^A,1^A)\models\Pi$ e se $\sigma^A:A\to A$, dada por $\sigma^A(a)=a+^A1^A$, então $(A,\sigma^A,0^A)\models(\mathrm{P1})\text{-}(\mathrm{P3}).$
- b) $\mathfrak{N} = (\mathbb{N}, +, \cdot, 0, 1)$ é caracterizada por Π até o isomorfismo.

Proof. a) Interpretemos em \mathfrak{A} os 3 primeiros axiomas de Π :

- (i) $\forall x(\neg x +^A 1^A \doteq 0^A)$ sse $\forall x(\neg \sigma(x) \doteq 0)$ (P1);
- (ii) $\forall xy(x +^A 1^A \doteq y +^A 1^A \rightarrow x \doteq y)$ sse $\forall xy(\sigma(x) \doteq \sigma(y) \rightarrow x \doteq y)$ (P2);
- (iii) $\forall X((X0^A \land \forall x(Xx \to Xx + ^A1^A)) \to \forall yXy)$ sse $\forall X((X0^A \land \forall x(Xx \to X\sigma(x))) \to \forall yXy)$ (P3).
- b) Seja $\mathfrak{A} = (A, +^A, \cdot^A, 0^A, 1^A) \models \Pi$ para $\pi : \mathfrak{N} \cong \mathfrak{A}$ definimos indutivamente: $\pi(0) = 0^A$;

$$\pi(x+1) = \pi(x) + ^A 1^A$$
.

Demonstraremos agora que π é bijetivo:

Sobretividade: a definição garante o caso base, $0^A \in \text{Im}(\pi)$. Assuma por hipótese $a = \pi(n) \in \text{Im}(\pi)$, logo $a + A^A 1^A = \pi(n) + A^A 1^A = \pi(n) + A^A \pi(1)$, por definição $a + A^A 1^A = \pi(n+1) \in \text{Im}(\pi)$.

Injetividade: Queremos provar que $\forall nm(n \neq m \rightarrow \pi(n) \neq \pi(m))$. Indução em n:

Caso base: n=0 e $m \neq 0$, em particular, assuma sem perda de generalidade, que m=k+1, logo $\pi(n)=0^A$ e $\pi(m)=\pi(k+1)$, pela primeira sentença em Π , $k+1\neq 0$, portanto $\pi(m)=\pi(k+1)\neq \pi(0)=0^A=\pi(n)$.

Provado o caso base assuma como hipótese de indução que $\forall m(n \neq m \rightarrow \pi(n) \neq \pi(m))$, façamos agora indução dupla, dessa vez em m:

Caso base: m=0 e $n\neq 0$, em especial n=k+1, a prova deste é análogo ao caso base em n.

Hipótese indutiva: $n \neq m \rightarrow \pi(n) \neq \pi(m)$, sejam $n, m \neq 0$, então n = p + 1 e m = q + 1, se

 $n \neq m$, i.e., $\neg(p+1=q+1)$, por 2 em Π , $p \neq q$ e, por hipótese, $\pi(p) \neq \pi(q)$, portanto, se $\pi(n) = \pi(p) + ^A 1^A = \pi(m) = \pi(q) + ^A 1^A$, também por 2 em Π temos $\pi(p) = \pi(q)$, contradição, logo $\pi(n) \neq \pi(m)$.

Se π é isomorfismo, provemos que (i) $\pi(n+m) = \pi(n) + {}^A \pi(m)$ e (ii) $\pi(n \cdot m) = \pi(n) \cdot {}^A \pi(m)$: (i)

Caso base: $\pi(m+0) = \pi(m) = \pi(m) + {}^A 0^A = \pi(m) + {}^A \pi(0)$, pela propriedade 4 em Π . Assuma $\pi(n+m) = \pi(n) + {}^A \pi(m)$ como hipótese de indução:

$$\pi(m + (n + 1)) = \pi((m + n) + 1)$$

$$= \pi(m + n) +^{A} 1^{A}$$

$$= (\pi(m) +^{A} \pi(n)) +^{A} 1^{A}$$
passo indutivo;
$$= \pi(m) +^{A} (\pi(n) +^{A} 1^{A})$$

$$= \pi(m) +^{A} \pi(n + 1)$$
(P5);
$$= \pi(m) +^{A} \pi(n + 1)$$
definição.

(ii)

Caso base: $\pi(m \cdot 0) = \pi(0) = \pi(m) \cdot 0^A = \pi(m) \cdot \pi(0)$, pela propriedade 6 em Π . Assuma $\pi(n \cdot m) = \pi(n) \cdot {}^A \pi(m)$ como hipótese e indução:

$$\pi(m \cdot (n+1)) = \pi(m \cdot n + m)$$

$$= \pi(m \cdot n) +^{A} \pi(m);$$

$$= (\pi(m) \cdot^{A} \pi(n)) +^{A} \pi(m)$$
passo indutivo;
$$= \pi(m) \cdot^{A} (\pi(n) +^{A} 1^{A})$$

$$= \pi(m) \cdot^{A} \pi(n+1)$$
(P7);
$$= \pi(m) \cdot^{A} \pi(n+1)$$
definição.

Exercício 8.8. Para $n \ge 1$ dê uma definição similar dos quantificadores "existe no máximo n" e "existe exatamente n".

Proof. existe no máximo n pode ser formalizado como

$$\exists v_1 \dots v_n \forall v \left(\bigwedge_{i=1}^n \varphi \frac{v}{v_i} \to \bigvee_{j=1}^n v \doteq v_j \right)$$

enquanto que, para garantir a existência de exatamente n, restringimos as variáveis para:

$$\exists v_1 \dots v_n \forall v \left(\bigwedge_{x,y \in \{1,\dots,n\}} \neg v_x \doteq v_u \land \bigwedge_{i=1} \varphi \frac{v}{v_i} \to \bigvee_{j=1} v \doteq v_j \right)$$

Exercício 8.9. Sejam P e f binária e $x:=v_0,y:=v_1,u:=v_2,v:=v_3$ e $w:=v_4$. Mostre, usando a **Definição 8.2.** que:

- a) $\exists xy(Pxu \land Pyv)\frac{u}{x}\frac{u}{y}\frac{u}{v} = \exists xy(Pxu \land Pyu);$ b) $\exists xy(Pxu \land Pyv)\frac{v}{u}\frac{fuv}{v} = \exists xy(Pxv \land Pyfuv);$ c) $\exists xy(Pxu \land Pyv)\frac{u}{x}\frac{x}{u}\frac{fuv}{v} = \exists wy(Pwx \land Pyfuv);$ d) $(\forall x\exists y(Pxy \land Pxu) \lor \exists ufuu \doteq x)\frac{x}{x}\frac{fxy}{u} = \forall v\exists w(Pvw \land Pvfxy) \lor \exists ufuu \doteq x.$

Proof. a)

$$\exists xy (Pxu \land Pyv) \frac{u \ u \ u}{x \ y \ v} = \exists x \left(\exists y (Pxu \land Pyv) \frac{u \ u \ x}{y \ v \ x} \right);$$
$$= \exists xy \left(Pxu \frac{u \ x \ y}{v \ x \ y} \land Pyv \frac{u \ x \ y}{v \ x \ y} \right);$$
$$= \exists xy (Pxu \land Pyu).$$

b)

$$\begin{split} \exists xy (Pxu \wedge Pyv) \frac{v \ fuv}{u \ v} &= \exists x \left(\exists y (Pxu \wedge Pyv) \frac{v \ fuv \ x}{u \ v \ x} \right); \\ &= \exists xy \left(Pxu \frac{v \ fuv \ x \ y}{u \ v \ x \ y} \wedge Pyv \frac{v \ fuv \ x \ y}{u \ v \ x \ y} \right); \\ &= \exists xy (Pxv \wedge Pyfuv). \end{split}$$

c)

$$\exists xy (Pxu \land Pyv) \frac{u \ x \ fuv}{x \ u \ v} = \exists w \left(\exists y (Pxu \land Pyv) \frac{x \ fuv \ w}{u \ v \ x} \right);$$

$$= \exists wy \left(Pxu \frac{x \ fuv \ w \ y}{u \ v \ x \ y} \land Pyv \frac{x \ fuv \ w \ y}{u \ v \ x \ y} \right);$$

$$= \exists wy (Pwx \land Pyfuv).$$

d)

$$(\forall x \exists y (Pxy \land Pxu) \lor \exists u f u u \doteq x) \frac{x \ f x y}{x \ u} = \forall v \left(\exists y (Pxy \land Pxu) \frac{f x y \ v}{u \ x} \right) \lor \exists u f u u \frac{x \ u}{x \ u} \doteq x \frac{x \ u}{x \ u};$$

$$= \forall v \exists w \left(\left(Pxy \frac{f x y \ v \ w}{u \ x \ y} \land Pxu \frac{f x y \ v \ w}{u \ x \ y} \right) \lor \exists u f u u \doteq x \right);$$

$$= \forall v \exists w ((Pvw \land Pv f x y) \lor \exists u f u u \doteq x).$$

Exercício 8.10. Mostre que se $x_0, \ldots, x_r \notin \bigcup_{i=0}^r \mathsf{var}(t_i)$, então

$$\varphi \frac{t_0 \dots t_r}{x_0 \dots x_r} \models \exists \forall x_0 \dots x_r \left(\bigwedge_{i=0}^r x_i \doteq t_i \to \varphi \right).$$

Proof. Assuma que (*) $\Im \frac{a}{x}(t) = \Im(t)$ se $x \notin \mathsf{var}(t)$ e que (+) $\varphi \to (\psi \to \chi) \models \exists (\varphi \land \psi) \to \chi$, então: Caso base: r = 0, temos

$$\mathfrak{I} \vDash \varphi \frac{t_0}{x_0} \text{ sse } \mathfrak{I} \frac{t_0}{x_0} \vDash \varphi; \qquad \qquad \text{lema da substituição}$$
 sse para todo $a \in A$, se $a = \mathfrak{I}(t_0)$, então $\mathfrak{I} \frac{a}{x_0} \vDash \varphi;$ sse para todo $a \in A$, se $\mathfrak{I} \frac{a}{x_0}(x_0) = \mathfrak{I} \frac{a}{x_0}(t_0)$, então $\mathfrak{I} \frac{a}{x_0} \vDash \varphi;$ por (*) sse para todo $a \in A$, se $\mathfrak{I} \frac{a}{x_0} \vDash x_0 = t_0$, então $\mathfrak{I} \frac{a}{x_0} \vDash \varphi;$ sse $\mathfrak{I} \vDash \forall x_0(x_0 \doteq t_0 \rightarrow \varphi)$.

Hipótese de indução: assuma que vale o enunciado para r

$$\mathfrak{I} \vDash \varphi \frac{t_0 \dots t_{r+1}}{x_0 \dots x_{r+1}} \text{ sse } \mathfrak{I} \vDash \left(\varphi \frac{t_0 \dots t_r}{x_0 \dots x_r} \right) \frac{t_{r+1}}{x_{r+1}};$$

$$\text{sse } \mathfrak{I} \frac{t_{r+1}}{x_{r+1}} \vDash \varphi \frac{t_0 \dots t_r}{x_0 \dots x_r};$$

$$\text{lema da substituição}$$

$$\text{sse } \mathfrak{I} \frac{t_{r+1}}{x_{r+1}} \vDash \forall x_0 \dots x_r \left(\bigwedge_{i=0}^r x_i \doteq t_i \to \varphi \right); \text{ hipótese de indução}$$

$$\text{sse para todo } a \in A, \text{ se } \mathfrak{I} \frac{a}{x_{r+1}} \vDash x_{r+1} \doteq t_{r+1}, \text{ então } \mathfrak{I} \frac{t_{r+1}}{x_{r+1}} \vDash \varphi \frac{t_0 \dots t_r}{x_0 \dots x_r};$$

$$\text{sse } \mathfrak{I} \vDash \forall x_{r+1} \left(x_{r+1} \doteq t_{r+1} \to \forall x_0 \dots x_r \left(\bigwedge_{i=0}^r x_i \doteq t_i \to \varphi \right) \right);$$

$$\text{sse } \mathfrak{I} \vDash \forall x_0 \dots x_{r+1} \left(\left(x_{r+1} \doteq t_{r+1} \wedge \bigwedge_{i=0}^r x_i \doteq t_i \right) \to \varphi \right); \text{ por } (+);$$

$$\text{sse } \mathfrak{I} \vDash \forall x_0 \dots x_{r+1} \left(\bigwedge_{i=0}^{r+1} x_i \doteq t_i \to \varphi \right).$$

(*): Se $t = v_0$ uma variável qualquer, como $x \notin \mathsf{var}(t)$ temos $x \neq v_0$, portanto $\mathfrak{I}^{\underline{a}}_{\underline{x}}(t) = \mathfrak{I}(t)$ e se t = c obviamente também. Assuma que valha $\mathfrak{I}^{\underline{a}}_{\underline{x}}(t) = \mathfrak{I}(t)$, então $\mathfrak{I}^{\underline{a}}_{\underline{x}}(ft_1 \dots t_n) = f^{\mathfrak{A}}\mathfrak{I}^{\underline{a}}_{\underline{x}}(t_1) \dots \mathfrak{I}^{\underline{a}}_{\underline{x}}(t_n) = f^{\mathfrak{A}}\mathfrak{I}(t_1) \dots \mathfrak{I}(t_n) = \mathfrak{I}(ft_1 \dots t_n)$, pela hipótese de indução. (+):

$$\varphi \to (\psi \to \chi) \models \exists \neg \varphi \lor (\psi \to \chi);$$
$$\models \exists \neg \varphi \lor \neg \psi \lor \chi;$$
$$\models \exists \neg (\varphi \land \psi) \lor \chi;$$
$$\models \exists (\varphi \land \psi) \to \chi.$$

Exercício 8.11. Formalize um cálculo que derive strings exatamente da forma:

$$tx_0 \dots x_r t_0 \dots t_r t \frac{t_0 \dots t_r}{x_0 \dots x_r}$$
 ou $\varphi x_0 \dots x_r t_0 \dots t_r \varphi \frac{t_0 \dots t_r}{x_0 \dots x_r}$.

Proof. Da mesma forma que criamos o cálculo para outras regras de formação, como termos e fórmulas, basta repetir o mesmo para a definição de substituição.

Para o cálculo de substituição de termos:

$$\frac{x \ x_0 \dots x_r \ t_0 \dots t_r \ x}{c \ x_0 \dots x_r \ t_0 \dots t_r \ c} \quad \text{Se } x \neq x_0, \dots, x_r; \qquad \frac{x \ x_0 \dots x_r \ t_0 \dots t_r \ t_i}{c \ x_0 \dots x_r \ t_0 \dots t_r \ c} \quad \text{Se } x = x_1;$$

$$\frac{t'_1 \ x_0 \dots x_r \ t_0 \dots t_r \ s_1 \ \dots \ t'_n \ x_0 \dots x_r \ t_0 \dots t_r \ s_n}{f t'_1 \dots t'_n \ x_0 \dots x_r \ t_0 \dots t_r \ f s_1 \dots s_n} \quad \text{Se } f \in \mathcal{S}, \text{ n-ária.}$$

Para o cálculo de substituição de fórmulas:

$$\frac{t_1' \ x_0 \dots x_r \ t_0 \dots t_r \ s_1 \quad t_2' \ x_0 \dots x_r \ t_0 \dots t_r \ s_2}{t_1' \doteq t_2' \ x_0 \dots x_r \ t_0 \dots t_r \ s_1 \doteq s_2} \ ;$$

$$\frac{t_1' \ x_0 \dots x_r \ t_0 \dots t_r \ s_1 \ \dots \ t_n' \ x_0 \dots x_r \ t_0 \dots t_r \ s_n}{Rt_1' \dots t_n' \ x_0 \dots x_r \ t_0 \dots t_r \ Rs_1 \dots s_n} \ \text{Se } R \in \mathcal{S}, \text{ n-ária};$$

$$\frac{\varphi \ x_0 \dots x_r \ t_0 \dots t_r \ \psi}{\neg \varphi \ x_0 \dots x_r \ t_0 \dots t_r \ \neg \psi} \ ; \quad \frac{\varphi \ x_0 \dots x_r \ t_0 \dots t_r \ \chi \quad \psi \ x_0 \dots x_r \ t_0 \dots t_r \ \xi}{\varphi \lor \psi \ x_0 \dots x_r \ t_0 \dots t_r \ \chi \lor \xi} \ .$$

 $x_{i_1} \dots x_{i_s}$ $(i_1 < \dots < i_s)$ são as variáveis em x_0, \dots, x_r t
q $x_i \in \mathsf{free}(\exists x \varphi), \, x_i \neq t_i$ e $x \neq x_{i_1}, \dots, x_{i_s}$

$$\frac{\varphi \ x_{i_1} \dots x_{i_s} x \ t_{i_1} \dots t_{i_s} u \ \psi}{\exists x \varphi \ x_0 \dots x_r \ t_0 \dots t_r \ \exists u \psi}$$

onde u=x se $x\notin \mathsf{free}(t_{i_1},\ldots,t_{i_s})$, caso contrário u é a primeira variável $v_0,v_1,\cdots\notin \mathsf{var}(\varphi,t_{i_1},\ldots,t_{i_s})$

4 Cálculo de Sequentes

Exercício 2.7. Analise quais das regras abaixo estão corretas:

$$\frac{\Gamma \varphi_1 \psi_1 \qquad \Gamma \varphi_2 \psi_2}{\Gamma (\varphi_1 \vee \varphi_2) (\psi_1 \vee \psi_2)} (i); \qquad \frac{\Gamma \varphi_1 \psi_1 \qquad \Gamma \varphi_2 \psi_2}{\Gamma (\varphi_1 \vee \varphi_2) (\psi_1 \wedge \psi_2)} (ii).$$

Proof. Provemos primeiro que (i) é correta:

$$\frac{\Gamma \varphi_1 \psi_1}{\Gamma \varphi_2 (\psi_1 \vee \psi_2)} (\vee \mathbf{S}) \quad \frac{\Gamma \varphi_2 \psi_2}{\Gamma \varphi_2 (\psi_1 \vee \psi_2)} (\vee \mathbf{S})}{\Gamma (\varphi_1 \vee \varphi_2) (\psi_1 \vee \psi_2)} (\vee \mathbf{A})$$

Agora que (ii) não é correta: Note que se $\Gamma\varphi_1 \models \psi_1$ e $\Gamma\varphi_2 \models \psi_2$, então se \Im satisfaz $\Gamma(\varphi_1 \vee \varphi_2)$ temos que $\Im \models \varphi_1$ ou $\Im \models \varphi_2$, i.e., $\Im \models \psi_1$ ou $\Im \models \psi_2$, portanto não necessariamente $\Im \models (\psi_1 \wedge \psi_2)$, portanto este não é correto. Um argumento análogo também serve como prova para (i).

Exercício 3.6. Derive as seguintes regras:

$$\frac{\Gamma \varphi}{\Gamma \neg \neg \varphi} \text{ (a1)} \qquad \frac{\Gamma \neg \neg \varphi}{\Gamma \varphi} \text{ (a2)} \qquad \frac{\Gamma \varphi \Gamma \psi}{\Gamma (\varphi \wedge \psi)} \text{ (b)}$$

$$\frac{\Gamma \varphi \psi}{\Gamma (\varphi \rightarrow \psi)} \text{ (c)} \qquad \frac{\Gamma (\varphi \wedge \psi)}{\Gamma \varphi} \text{ (d1)} \qquad \frac{\Gamma (\varphi \wedge \psi)}{\Gamma \psi} \text{ (d2)}$$

Proof. a1):

$$\frac{\Gamma \neg \neg \neg \varphi \neg \neg \neg \varphi}{\Gamma \neg \neg \neg \varphi \neg \varphi} \stackrel{\textbf{(Assm)}}{\text{(a2)}} \frac{\Gamma \varphi}{\Gamma \neg \neg \neg \varphi} \stackrel{\textbf{(Ant)}}{\text{(Ctr)}}$$

a2):

$$\frac{\Gamma \neg \varphi \neg \varphi}{\Gamma \neg \varphi \neg \varphi} (\mathbf{Assm}) \quad \frac{\Gamma \neg \neg \varphi}{\Gamma \neg \varphi \neg \neg \varphi} (\mathbf{Ant})$$

$$\Gamma \varphi \quad (\mathbf{Ctr})$$

b):

$$\frac{\frac{\Gamma \varphi}{\Gamma \neg \psi \neg \psi} (\mathbf{Assm}) \quad \frac{\frac{\Gamma \varphi}{\Gamma \psi \varphi} (\mathbf{Ant})}{\frac{\Gamma \neg \psi \neg \psi}{\Gamma \neg \varphi \neg \psi} (\mathbf{Cp})} \frac{\Gamma \psi}{(\mathbf{VA})} \quad \frac{\Gamma \psi}{\frac{\Gamma (\neg \varphi \vee \neg \psi) \psi}{\Gamma \neg \psi \neg (\neg \varphi \vee \neg \psi)} (\mathbf{Cp})} \frac{\Gamma \neg \psi}{\Gamma \neg \psi \neg (\neg \varphi \vee \neg \psi)} \frac{(\mathbf{Cp})}{\Gamma \neg \psi \neg (\neg \varphi \vee \neg \psi)} \frac{(\mathbf{Cp})}{\Gamma \neg \psi} (\mathbf{PC})}$$

c):

$$\frac{\frac{\Gamma \varphi \psi}{\Gamma - \psi - \varphi} (\mathbf{Cp})}{\frac{\Gamma - \psi (\neg \varphi \vee \psi)}{\Gamma (\neg \varphi \vee \psi)}} (\vee \mathbf{S}) \quad \frac{\frac{\Gamma \psi \psi}{\Gamma (\neg \varphi \vee \psi)} (\wedge \mathbf{S})}{\Gamma (\neg \varphi \vee \psi)} (\mathbf{Pc})$$

d1) e d2) (basta comutá-los):

$$\frac{\frac{\Gamma \neg \varphi \neg \varphi}{\Gamma \neg \varphi (\neg \varphi \vee \neg \psi)}}{\frac{\neg \varphi (\neg \varphi \vee \neg \psi)}{\neg (\neg \varphi \vee \neg \psi) \neg \neg \varphi}} \frac{(\mathbf{Cp})}{(\mathbf{Cp})} \\
\frac{\Gamma \neg (\neg \varphi \vee \neg \psi) \varphi}{\Gamma \neg (\neg \varphi \vee \neg \psi) \varphi} \frac{(a2)}{\Gamma \varphi} \qquad \Gamma \neg (\neg \varphi \vee \neg \psi)} (\mathbf{Ch})$$

Exercício 4.5. Analise quais das regras abaixo estão corretas:

$$\frac{\varphi \ \psi}{\exists x \varphi \ \exists x \psi} \ (i); \qquad \frac{\Gamma \ \varphi \ \psi}{\Gamma \ \forall x \varphi \ \exists x \psi} \ (ii); \qquad \frac{\Gamma \ \varphi \frac{fy}{x}}{\Gamma \ \forall x \varphi} \ (iii).$$

Proof. (i): Sabemos que $\varphi \models \psi$, um modelo $\mathfrak{I} \models \exists x \varphi$ see existe um $a \in A$ tq $\mathfrak{I}^{\underline{a}}_{x} \models \varphi$, o que, por hipótese, implica que $\mathfrak{I}^{\underline{a}}_{x} \models \psi$, i.e., se $\mathfrak{I} \models \exists x \varphi$, então $\mathfrak{I} \models \exists x \psi$, portanto $\exists x \varphi \models \exists x \psi$.

(ii): Assumindo que $\Gamma^{\alpha}_{\varphi} \models \psi$, um modelo \Im satisfaz $\Gamma \forall x \varphi$ sse para todo $a \in A$ vale que $\Im^{\underline{a}}_{x} \models \varphi$, o que, por hipótese, implica que $\Im^{\underline{a}}_{x} \models \psi$. Então, em particular, existe um $a \in A$ tq $\Im^{\underline{a}}_{x} \models \psi$, i.e., $\Gamma \forall x \varphi \models \exists x \psi$.

(iii): Temos $\Gamma \vDash \varphi \frac{fy}{x}$, se $\mathfrak{I} \vDash \Gamma$, então, por hipótese, $\mathfrak{I} \vDash \varphi \frac{fy}{x}$, como há uma instância em que vale φ , pela regra de introdução do existencial no sucedente temos que $\mathfrak{I} \vDash \exists x \varphi$, mas obviamente isso não é o bastante para concluir que $\mathfrak{I} \vDash \forall x \varphi$.

Exercício 5.5. Derive as seguintes regras:

$$\frac{\Gamma \ \forall x \varphi}{\Gamma \ \varphi \frac{t}{x}} \ (a1) \qquad \frac{\Gamma \ \forall x \varphi}{\Gamma \ \varphi} \ (a2) \qquad \frac{\Gamma \ \varphi \frac{t}{x} \ \psi}{\Gamma \ \forall x \varphi \ \psi} \ (b1)$$

$$\frac{\Gamma \ \varphi \frac{y}{x}}{\Gamma \ \forall x \varphi} \ (b2) \ \text{se} \ y \notin \mathsf{free}(\Gamma \forall x \varphi) \qquad \frac{\Gamma \ \varphi \ \psi}{\Gamma \ \forall x \varphi \ \psi} \ (b3) \qquad \frac{\Gamma \ \varphi}{\Gamma \ \forall x \varphi} \ (b4)$$

Proof. a1) e a2) (a2 é uma instância de a1 para t = x):

$$\frac{\frac{-\frac{t}{\varphi \frac{t}{x}} \varphi \frac{t}{x}}{\varphi \frac{t}{x}} (\mathbf{Assm})}{\frac{\varphi \frac{t}{x}}{\Gamma \varphi \frac{t}{x}} (\mathbf{Ant})} \frac{\frac{-\frac{t}{\varphi \frac{t}{x}} \neg \varphi \frac{t}{x}}{\Gamma \neg \varphi \frac{t}{x}} (\mathbf{Ant})}{\frac{\Gamma \varphi \frac{t}{x}}{\Gamma \varphi \frac{t}{x}} (\exists \mathbf{X} \neg \varphi \vee \varphi \frac{t}{x})}{\Gamma \neg \varphi \frac{t}{x}} (\exists \mathbf{X} \neg \varphi \vee \varphi \frac{t}{x})} (\forall \mathbf{S})} \frac{\Gamma \exists \mathbf{X} \neg \varphi \vee \varphi \frac{t}{x}}{\Gamma \varphi \frac{t}{x}} \exists \forall \mathbf{X} \varphi \rightarrow \varphi \frac{t}{x}} (\mathbf{PC})}{\Gamma \varphi \frac{t}{x}} (\mathbf{Mp})$$

b1) e b3) (b3 é uma instância de b1 para t = x):

$$\frac{\Gamma \varphi_{x}^{t} \psi}{\Gamma \neg \psi \neg \varphi_{x}^{t}} (\mathbf{Cp})$$

$$\frac{\Gamma \neg \psi \exists x \neg \varphi}{\Gamma (\neg \exists x \neg \varphi) \neg \neg \psi} (\mathbf{Cp})$$

$$\frac{\Gamma (\neg \exists x \neg \varphi) \neg \neg \psi}{\Gamma \forall x \varphi \psi \equiv \neg \exists x \neg \varphi \psi} (a2)$$

b2) e b4) (b4 é uma instância de b2 para y = x):

$$\frac{\frac{\Gamma \varphi_{x}^{\underline{y}}}{\Gamma \chi \varphi_{x}^{\underline{y}}} (\mathbf{Ant})}{\frac{\Gamma \varphi_{x}^{\underline{y}}}{\Gamma \exists x \neg \varphi \neg \chi} (\mathbf{Cp})} \frac{\frac{\Gamma \varphi_{x}^{\underline{y}}}{\Gamma \neg \chi \varphi_{x}^{\underline{y}}} (\mathbf{Ant})}{\frac{\Gamma \neg \varphi_{x}^{\underline{y}} \neg \chi}{\Gamma \exists x \neg \varphi \neg \chi} (\exists \mathbf{A})} \frac{\frac{\Gamma \neg \varphi_{x}^{\underline{y}} \neg \chi}{\Gamma \neg \varphi_{x}^{\underline{y}} \neg \chi} (\mathbf{Cp})}{\frac{\Gamma \exists x \neg \varphi \neg \neg \chi}{\Gamma \neg \neg \neg \chi \neg \exists x \neg \varphi} (\mathbf{Cp})} \frac{(\mathbf{Cp})}{\Gamma \neg \neg \neg \chi \neg \exists x \neg \varphi} (\mathbf{PC})$$

escolha χ tq $y \notin \text{free}(\Gamma \exists x \varphi \chi)$ para utilizar $(\exists \mathbf{A})$.

Exercício 7.8. Defina $(\exists \forall)$ como a regra:

$$\overline{\Gamma \exists x \varphi \ \forall x \varphi}$$

- a) Determine quando (∃∀) é uma regra derivável;
- b) Seja $\mathfrak{S}' = \mathfrak{S} + (\exists \forall)$, para \mathfrak{S} o cálculo de sequentes. Todo sequente é derivável em \mathfrak{S}' ?

Proof. a) Um modelo \Im satisfaz $\Gamma \exists x \varphi$ sse há um $a \in A$ tq $\Im_x^a \models \varphi$, mas, como dito anteriormente, um elemento satisfazer não é condição suficiente para que todos satisfaçam. À vista disso $\Gamma \exists x \varphi \models \forall x \varphi$ quando $\Im \models \forall x \varphi$. Portanto a validez de $(\exists \forall)$ é contingente, mas esta com certeza não é correta.

b) Sim, escolhendo um φ específico tq $\exists x \varphi$, mas $\neg \forall x \varphi$, temos:

$$\frac{\exists x \varphi \ \forall x \varphi}{\vdots} \ (\exists \forall)$$

$$\frac{\vdots}{\psi \land \neg \psi} \ (\mathbf{Ctr'})$$

e, portanto, $\vdash \chi$ para um χ arbitrário. Note que uma confusão comum é a de que \mathfrak{S}' não necessariamente deriva uma contradição. Alguém poderia argumentar que, embora possamos provar que este deriva uma contradição, esta só é feita instanciando um φ específico e, portanto, o conjunto de fórmulas que derivaria uma contradição, não o cálculo. Acontece que o cálculo é único, suas regras seriam como "axiomas esquema" onde todos os sequentes deriváveis são justamente as instâncias destes, já que φ é uma metavariável, então derivar \bot a partir de uma instância não gera um problema.

5 O Teorema da Completude

Exercício 1.12. a) Seja $S = \{R\}$ com R unário e $\Phi := \{\exists x Rx\} \cup \{\neg Ry \mid y \in \mathsf{Var}\}$. Mostre que:

- $\mathsf{Sat}(\Phi)$ e, portanto, $\mathsf{Con}(\Phi)$;
- Para nenhum $t \in \mathcal{T}^{\mathcal{S}}$ vale $\Phi \vdash Rt$;
- Se $\mathfrak{I} = (\mathfrak{A}, \beta)$ é um modelo de Φ , então $\mathsf{Dom}(\mathfrak{A}) \setminus \{\mathfrak{I}(t) \mid t \in \mathcal{T}^{\mathcal{S}}\} \neq \emptyset$.

- b) Seja $S = \{R\}$ com R unário e $x, y \in Var$ com $x \neq y$. Para $\Phi = \{Rx \vee Ry\}$ mostre que:
- $\Phi \not\vdash Rx \in \Phi \not\vdash \neg Rx$, i.e., Φ não é completo sobre negação;
- $-\mathfrak{I}^{\Phi}\not\models\Phi.$

Proof. a) Basta primeiro acharmos um modelo para Φ, seja $\mathfrak{I} = (\mathfrak{A}, \beta)$ tq $\beta(v_i) := c \in \mathsf{Dom}(\mathfrak{A}), \forall i \in \mathbb{N}$ e $R^{\mathfrak{A}} = \{a\}$. Então $\mathfrak{I} \models \neg Ry$ sse não vale que $\mathfrak{I}(R)\beta(y) = R^{\mathfrak{A}}c$, o que é satisfeito, visto que $R^{\mathfrak{A}} = \{a\}$. Além disso, $\mathfrak{I} \models \exists xRx$, pois existe $a \in \mathsf{Dom}(\mathfrak{A})$ tq $\mathfrak{I} = \{x\}$. Logo $\mathsf{Sat}(\Phi)$ e, por consequência, $\mathsf{Con}(\Phi)$.

De fato, para nenhum $t \in \mathcal{T}^{\mathcal{S}}$ vale $\Phi \vdash Rt$, como não há símbolos de função, então $\mathcal{T}^{\mathcal{S}} = \mathsf{Var}$, assuma que $\Phi \vdash Rx$, mas x é uma variável, então em particular $\neg Rx \in \Phi$, logo $\Phi \vdash Rx$ e $\Phi \vdash \neg Rx$, contradição, pois Φ é consistente.

Assuma que $\mathsf{Dom}(\mathfrak{A})\setminus\{\mathfrak{I}(x)\mid x\in\mathsf{Var}\}=\varnothing$, logo $\mathsf{Dom}(\mathfrak{A})\subseteq\{\mathfrak{I}(x)\mid x\in\mathsf{Var}\}$, segue-se disso que, como $\forall x\in\mathsf{Var}$ vale $\neg Rx$, então $\forall a\in\mathsf{Dom}(\mathfrak{A})$ temos $\neg Ra$, i.e., não existe $b\in\mathsf{Dom}(\mathfrak{A})$ tq Rb, então \mathfrak{I} não é modelo de Φ , contradição.

b) \Im é modelo de Φ sse $\Im \models Rx$ ou $\Im \models Ry$, obviamente existem modelos \Im_1 e \Im_2 tq o primeiro satisfaz Rx e o segundo não, mas satisfaz Ry. Assuma que $\Phi \vdash Rx$, por correção $\Phi \models Rx$, o que é uma contradição, devido a existência de \Im_1 e \Im_2 , da mesma forma $\Phi \not\vdash \neg Rx$. Como Φ não prova algo da forma $t_1 \doteq t_2$ as classes de equivalência possuem somente um elemento, então $\mathsf{Dom}(\mathfrak{A}^\Phi) = \mathcal{T}^S$. Como $R^\Phi = \{t \in \mathsf{Dom}(\mathfrak{A}^\Phi) \mid \Phi \vdash Rt\}$ e Φ não deriva algo da forma Rt, então $R^\Phi = \varnothing$. Sabemos que $\Im^\Phi \models \Phi$ sse $\Im^\Phi \models Rx$ ou $\Im^\Phi \vdash Ry$, como não vale nenhum dos dois, então $\Im^\Phi \not\models \Phi$.

Exercício 1.13. Fixe um conjunto de símbolos S. Considere \mathfrak{I}^{Φ} para $Inc(\Phi)$. \mathfrak{I}^{Φ} depende da escolha do conjunto inconsistente Φ ?

Proof. Não, note que se Φ é inconsistente então ele deriva qualquer fórmula, em particular para todos $t_1, t_2 \in \mathcal{T}^S$ temos $\Phi \vdash t_1 \doteq t_2$, logo o domínio de \mathfrak{I}^Φ consistente somente de uma classe de equivalência sempre que $\mathsf{Inc}(\Phi)$, independendo da escolha das fórmulas em Φ .

Exercício 2.5. Seja \mathcal{S} arbitrário e $\Phi = \{v_0 \doteq t \mid t \in \mathcal{T}^{\mathcal{S}}\} \cup \{\exists v_0 v_1 \neg (v_0 \doteq v_1)\}$. Mostre que $\mathsf{Con}(\Phi)$ e que não há $\Psi \subseteq \mathcal{L}^{\mathcal{S}}$ tq $\Phi \subseteq \Psi$ e Ψ contém testemunhas.

Proof. Escolha β e a interpretação das funções e constantes tais que $\mathfrak{I}(t)=a\in \mathsf{Dom}(\mathfrak{A}), \forall t\in \mathcal{T}^{\mathcal{S}}$. Além disso seja $\mathsf{Dom}(\mathfrak{A})=\{a,b\}$ com $a\neq b$, portanto $\mathfrak{I}\models\Phi$, i.e., $\mathsf{Sat}(\Phi)$, logo $\mathsf{Con}(\Phi)$. Assuma agora que existe tal Ψ do enunciado. Como $\mathsf{Con}(\Phi)$ e ele contém testemunhas pelo **Lema 1.9.** c) (que pode ser usado sem a hipótese de que Φ é completo sobre negação, visto que não é necessário para prova de c)) $\Phi \vdash \exists v_0 v_1 \neg (v_0 \doteq v_1)$ see $\Phi \vdash \neg (t_1 \doteq t_2)$. Pela regra de substituição é possível provar também que $\Phi \vdash t_1 \doteq t_2$, i.e. $\mathsf{Inc}(\Phi)$, contradição, logo não existe tal Ψ .

6 O Teorema de Löwenheim-Skolem e o Teorema da Compacidade

Exercício 1.3. Mostre que todo conjunto de fórmulas Φ tq $\Phi \geq \aleph_0$ é satisfatível sobre um domínio contável.

Proof. É um corolário direto do **Teorema de Löwenheim, Skolem, e Tarski** cuja prova se segue da junção entre a versão descendente e ascendente do **Teorema de Löwenheim-Skolem**, que é provada após o exercício, portanto não daremos aqui. Do teorema ascendente existe um modelo de Φ com cardinalidade no mínimo \aleph_0 e, pelo descendente, um modelo com cardinalidade no máximo \aleph_0 , portanto existe um com exatamente a cardinalidade \aleph_0 .

Exercício 2.5. Seja \mathcal{S} um conjunto de símbolos. Para todo conjunto de \mathcal{S} -sentenças Φ satisfatível seja \mathfrak{A}_{Φ} uma \mathcal{S} -estrutura tq $\mathfrak{A}_{\Phi} \models \Phi$. Além disso seja $\Sigma := {\mathfrak{A}_{\Phi} \mid \Phi \subseteq \mathcal{L}_{0}^{\mathcal{S}}, \mathsf{Sat}(\Phi)}$, e para toda \mathcal{S} -sentença φ defina $X_{\varphi} := {\mathfrak{A} \in \Sigma \mid \mathfrak{A} \models \varphi}$. Mostre que:

- a) O sistema $\{X_{\varphi} \mid \varphi \in \mathcal{L}_{0}^{\mathcal{S}}\}$ é uma base para uma topologia em Σ ;
- b) Todo conjunto X_{φ} é fechado;
- c) Use o Teorema da Compacidade para mostrar que toda cobertura aberta de Σ tem uma subcobertura finita, portanto Σ é (quasi-)compacta.

Proof. PENDENTE

Exercício 3.7. Seja \mathfrak{K} uma classe de estruturas Δ -elementar. Mostre que a classe \mathfrak{K}^{∞} de estruturas em \mathfrak{K} com domínio infinito também é Δ -elementar.

Proof. Defina $\Psi := \{ \varphi_{\geq n} \mid n \in \mathbb{N} \}$ sendo $\varphi_{\geq n}$ o mesmo do **Exercício 6.10.**. Como \mathfrak{K} é elementar podemos descrevê-lo por $\mathsf{Mod}^{\mathcal{S}}\Phi$, basta então pegarmos $\mathsf{Mod}^{\mathcal{S}}\Phi \cup \Psi$ que esta será justamente a classe dos modelos de \mathfrak{K} cujo domínio é infinito.

Exercício 3.8. Se \mathfrak{K} é uma classe de \mathcal{S} -estruturas, $\Phi \subseteq \mathcal{L}_0^{\mathcal{S}}$ e $\mathfrak{K} = \mathsf{Mod}^{\mathcal{S}}\Phi$, então Φ é denominado um sistema de axiomas para \mathfrak{K} , mostre que:

- a) \Re é elementar sse existe um sistema de axiomas finito para \Re ;
- b) Se \mathfrak{K} é elementar e $\mathfrak{K} = \mathsf{Mod}^{\mathcal{S}}\Phi$, então existe $\Phi_0 \subseteq \Phi$ tq $\mathfrak{K} = \mathsf{Mod}^{\mathcal{S}}\Phi_0$.

Proof. a) (\Rightarrow) Se $\mathfrak{K} = \mathsf{Mod}^{\mathcal{S}} \varphi$ é elementar, trivialmente existe tal $\Phi = \{\varphi\}$ finito.

- (\Leftarrow) Se existe $\Phi < \aleph_0$ tq $\mathfrak{K} = \mathsf{Mod}^{\mathcal{S}}\Phi$ basta tomar $\varphi := \bigwedge \Phi$, como Φ é finito, então φ é uma fórmula finita, logo $\mathfrak{K} = \mathsf{Mod}^{\mathcal{S}}\varphi$, i.e., é elementar.
- b) Seja φ tq $\Re = \mathsf{Mod}^{\mathcal{S}} \varphi$, como $\Re = \mathsf{Mod}^{\mathcal{S}} \Phi$, então $\Phi \models \exists \varphi$, por completude $\Phi \vdash \varphi$. Obviamente o sequente $\varphi_1 \dots \varphi_n \varphi$ em Φ para derivar φ é finito, seja então $\Phi_0 = \{\varphi_1, \dots, \varphi_n\}$, como $\Phi_0 \vdash \varphi$ por correção $\Phi_0 \models \varphi$. Além disso $\varphi \models \Phi \models \Phi_0$, i.e., $\mathsf{Mod}^{\mathcal{S}} \Phi_0 = \mathsf{Mod}^{\mathcal{S}} \varphi = \Re$.

Exercício 3.9. Sejam \mathfrak{K} e \mathfrak{K}_1 classes de \mathcal{S} -estruturas tq $\mathfrak{K}_1 \subseteq \mathfrak{K}$. Seja também $\mathfrak{K}_2 := \mathfrak{K} \backslash \mathfrak{K}_1$ e considere \mathfrak{K} elementar e \mathfrak{K}_1 Δ -elementar, prove que:

$$\mathfrak{K}_1$$
 é elementar sse \mathfrak{K}_2 é Δ -elementar; sse \mathfrak{K}_2 é elementar;

b) Conclua que a classe de corpos de característica prima não é Δ -elementar.

Proof. a)(2)(⇒) ⇒ (1)(⇒) Seja $\mathfrak{K}_1 = \mathsf{Mod}^{\mathcal{S}}(\varphi)$ e $\mathfrak{K} = \mathsf{Mod}^{\mathcal{S}}(\psi)$, como $\mathfrak{K}_2 := \mathfrak{K} \setminus \mathfrak{K}_1$ basta tomarmos $\chi := \psi \land \neg \varphi$ que teremos $\mathfrak{K}_2 = \mathsf{Mod}^{\mathcal{S}}(\chi)$, o que é fácil provar, portanto \mathfrak{K}_2 é elementar e, por consequência, é também Δ-elementar.

 $(1)(\Leftarrow)$ Seja $\mathfrak{K}_1 = \mathsf{Mod}^{\mathcal{S}}(\Phi_1)$, $\mathfrak{K}_2 = \mathsf{Mod}^{\mathcal{S}}(\Phi_2)$ e $\mathfrak{K} = \mathsf{Mod}^{\mathcal{S}}(\varphi)$. Como $\mathfrak{K}_2 = \mathfrak{K} \backslash \mathfrak{K}_1$, então $\mathsf{Inc}(\Phi_1 \cup \Phi_2)$, por compacidade existe um $\Phi_0 \subseteq \Phi_1 \cup \Phi_2$ finito tq $\mathsf{Inc}(\Phi_0)$, seja, portanto, $\Psi := \Phi_2 \cap \Phi_0$, como $\Phi_0 \subseteq \Phi_1 \cup \Psi$ e este é inconsistente, então $\Phi_1 \cup \Psi$ também é. Como Ψ é finito é possível definir

$$\psi := \left(\bigvee_{\chi \in \Psi} \neg \chi\right) \wedge \varphi$$

Basta agora provar que $\mathsf{Mod}^{\mathcal{S}}(\psi) = \mathfrak{K}_1$:

 (\Rightarrow) Se $\mathfrak{A} \in \mathsf{Mod}^{\mathcal{S}}(\psi)$, i.e., $\mathfrak{A} \models \psi$, então $\mathfrak{A} \models \varphi$, portanto $\mathfrak{A} \in \mathfrak{K}$, além disso $\mathfrak{A} \models \chi$ para algum $\chi \in \Psi$, logo $\mathfrak{A} \notin \mathfrak{K}_2$, i.e., $\mathfrak{A} \in \mathfrak{K}_1$.

(\Leftarrow) Se $\mathfrak{A} \in \mathfrak{K}_1$, então $\mathfrak{A} \in \mathfrak{K}$, i.e., $\mathfrak{A} \models \varphi$. Além disso $\mathfrak{A} \models \Phi_1$, logo $\mathfrak{A} \not\models \Psi$, visto que $\mathsf{Inc}(\Phi_1 \cup \Psi)$, então existe um $\chi \in \Psi$ tq $\mathfrak{A} \not\models \chi$, ou melhor, $\mathfrak{A} \models \neg \chi$, portanto $\mathfrak{A} \models \psi$ e $\mathfrak{A} \in \mathsf{Mod}^{\mathcal{S}}(\psi)$.

 $(2)(\Leftarrow)$ Note que $\mathfrak{K}_1 = \mathfrak{K} \setminus \mathfrak{K}_2$, utilizando a mesma estratégia que nos primeiros casos temos que $\mathfrak{K}_1 = \mathsf{Mod}^{\mathcal{S}}(\psi \wedge \neg \varphi)$, para ψ e φ as caracterizações de \mathfrak{K} e \mathfrak{K}_2 , respectivamente.

b) Utilizando a primeira parte do exercício seja \mathfrak{K} a classe dos corpos, tomando φ_F a conjunção de todos os axiomas de corpo temos que $\mathfrak{K} = \mathsf{Mod}^{\mathcal{S}_{ar}} \varphi_F$ sendo esta, portanto, elementar. Seja também \mathfrak{K}_1 a classe de corpos cuja característica é 0, como explicitado em **3.2.** \mathfrak{K}_1 é Δ -elementar, mas pelo **Teorema 3.3.** este não é elementar. Note que tais condições satisfazem as hipóteses de a) e \mathfrak{K}_2 são todos os corpos cuja característica é prima, visto que todo corpo ou possui característica 0 ou prima. Como \mathfrak{K}_2 Δ -elementar implica \mathfrak{K}_1 elementar, por contraposição \mathfrak{K}_1 não elementar implica \mathfrak{K}_2 não Δ -elementar, visto que o antecedente é verdadeiro, então a classe de corpos de característica prima não é Δ -elementar.

Exercício 3.10. $\Phi \subseteq \mathcal{L}_0^{\mathcal{S}}$ é dito independente se nenhum $\varphi \in \Phi$ é tq $\Phi \setminus \{\varphi\} \vdash \varphi$, mostre que:

- a) Todo $\Phi \subseteq \mathcal{L}_0^{\mathcal{S}}$ tq $\Phi < \aleph_0$ tem um $\Phi_0 \subseteq \Phi$ independente tq $\mathsf{Mod}^{\mathcal{S}}\Phi = \mathsf{Mod}^{\mathcal{S}}\Phi_0$;
- b) Se $S \leq \aleph_0$, então toda classe de S-estruturas Δ -elementar tem um sistema de axiomas independente.

Proof. a) O caso que Φ é independente é trivial, seja portanto Φ não independente. Como Φ é finito enumere $\Phi = \{\varphi_0, \dots, \varphi_n\}$ e defina recursivamente: $\Psi_0 := \Phi$ e

$$\Psi_k = \begin{cases} \Psi_{k-1} \backslash \{\varphi_{k-1}\}, \text{ se } \Psi_{k-1} \backslash \{\varphi_{k-1}\} \vdash \varphi_{k-1}; \\ \Psi_{k-1}, \text{ caso contrário.} \end{cases}$$

Seja então $\Psi := \Psi_{n+1} = \Phi_0 \subseteq \Phi$, como Φ é finito, Ψ também é. Segue diretamente da definição que Ψ é independente e $\Psi \vdash \varphi_i$, para $i = 0, \ldots, n$, portanto $\mathsf{Mod}^{\mathcal{S}}\Psi = \mathsf{Mod}^{\mathcal{S}}\Phi$.

b) Seja $\mathfrak K$ tal estrutura, o caso em que $\mathfrak K$ é elementar é trivial, pelo **Exercício 3.8.** a) há Φ finito tal que $\mathfrak K = \mathsf{Mod}^{\mathcal S}\Phi$ e procedemos com a independência como em a). Assuma portanto $\mathfrak K$ não elementar, como $\mathcal S \leq \aleph_0$, então $\mathcal L_0^{\mathcal S} \approx \aleph_0$ e como $\Phi \subseteq \mathcal L_0^{\mathcal S}$, então $\Phi \approx \aleph_0$. Enumeremos portanto Φ como $\varphi_0, \varphi_1, \ldots$ e definimos recursivamente $\Psi_0 := \Phi$ e

$$\Psi_k = \begin{cases} \Psi_{k-1} \setminus \{\varphi_{k-1}\}, \text{ se } \Psi_{k-1} \setminus \{\varphi_{k-1}\} \vdash \varphi_{k-1}; \\ \Psi_{k-1}, \text{ caso contrário.} \end{cases}$$

Dessa forma $\Psi := \bigcap_{i=0}^{\infty} \Psi_i = \Phi_0 \subseteq \Phi$ é independente por definição e tal que $\Psi \vdash \varphi_i, \forall i \geqslant 0$, portanto $\mathsf{Mod}^{\mathcal{S}} \Psi = \mathsf{Mod}^{\mathcal{S}} \Phi$.

Exercício 3.11. Seja $\Phi < \aleph_0$ um sistema de axiomas para espaços vetorias expresso em termos de $\mathcal{S} = \{\underline{F}, \underline{V}, +, \cdot, 0, 1, \circ, e, *\}$, prove que:

- a) Para todo n a classe dos espaços vetoriais n-dimensionais é elementar;
- b) A classe de espaços vetoriais de dimensão infinita é Δ -elementar;
- c) A classe de espaços vetoriais de dimensão finita não é Δ -elementar.

Proof. a) Seja φ_F a conjunção dos axiomas de um espaço vetorial. Para provar que a classe $\mathfrak K$ dos espaços vetoriais n-dimensionais é elementar, basta construirmos $\varphi_{n\text{-Dim}}$ tq $\mathfrak K = \mathsf{Mod}^{\mathcal S} \varphi_{n\text{-Dim}}$. Adotaremos

$$\exists v_1 \dots v_n \in X\varphi := \exists v_1 \dots v_n (Xv_1 \wedge \dots \wedge Xv_n \to \varphi) \text{ e } a_1, \dots, a_n \neq x := \neg (a_1 \doteq x \vee \dots \vee a_n \doteq x)$$

temos então que $\varphi_{n-\mathrm{Dim}}$ pode ser descrita por:

$$\varphi := \bigwedge_{i,j \in \{1,\dots,n\}} v_i \neq v_j;$$

$$\psi := \forall a_1,\dots,a_n \in \underline{F}(a_1v_1 + \dots + a_nv_n \to a_1,\dots,a_n \neq 0)$$

$$\chi := \forall u \in \underline{V} \exists b_1,\dots,b_n \in \underline{F}(a_1v_1 + \dots + a_nv_n \doteq u)$$

$$\varphi_{n-\text{Dim}} := \exists v_1\dots v_n \in \underline{V}(\varphi \land \psi \land \chi)$$

onde φ expressa que existem n vetores distintos, ψ que estes são linearmente independentes e χ que todo vetor pode ser escrito como uma combinação linear destes.

b) Seja $\varphi_{n\text{-Dim}}$ a caracterização dos espaços n-dimensionais em a). Portanto

$$\Phi_{\inf} := \{ \neg \varphi_{n\text{-Dim}} \mid n \geqslant 0 \}$$

é tq $\mathfrak{A} \models \Phi_{\inf}$ sse \mathfrak{A} é um espaço vetorial de dimensão infinita, logo a classe \mathfrak{K} de corpos de dimensão infinita é tq $\mathfrak{K} = \mathsf{Mod}^{\mathcal{S}}\Phi_{\inf}$, i.e., é Δ -elementar.

c) Assuma por contradição que exista Φ_{fin} tq $\mathfrak{A} \models \Phi_{\text{fin}}$ sse \mathfrak{A} é um espaço vetorial de dimensão finita. Mostraremos que existe um espaço vetorial de dimensão infinita que também satisfaz Φ_{fin} :

$$\Psi := \Phi_{fin} \cup \Phi_{inf}$$

obviamente todo modelo de Ψ , além de possuir dimensão infinita, também é um modelo de Φ_{fin} , basta mostrarmos que $\mathsf{Sat}(\Psi)$. Note que para todo $\Psi_0 \subseteq \Psi$ finito existe um $n_0 \in \mathbb{N}$ tq $\Psi_0 \subseteq \Phi_{\text{fin}} \cup \{\neg \varphi_{n\text{-Dim}} \mid n_0 \geqslant n \geqslant 0\}$ é satisfatível, visto que, por a), sempre há um espaço vetorial de dimensão maior que n_0 que, obviamente, é finito. Pelo Teorema da Compacidade como todo subconjunto finito de Ψ é satisfatível, então também é Ψ , i.e., existe um modelo de Φ_{fin} cuja dimensão é infinita, contradição.

Exercício 4.8. Mostre que se uma S_{ar} -sentença φ é válida em todos os corpos ordenados não arquimedianos, então φ é válida em todos os corpos ordenados.

Proof. Basicamente, se existe tal φ então a classe dos corpos ordenados não-arquimedianos é elementar. Assuma portanto, por contradição, que a classe \mathfrak{K}_1 de corpos ordenados não arquimedianos seja elementar. Temos então que $\mathfrak{K}_1 \subseteq \mathbb{F}$, onde \mathbb{F} é a classe dos corpos ordenados. \mathbb{F} é elementar e \mathfrak{K}_1 é, por hipótese, elementar. Então, pelo **Exercício 3.9.**, seu complementar \mathfrak{K}_2 de corpos ordenados arquimedianos teria de ser elementar, o que é uma contradição, visto o **Teorema 4.5.** que prova que \mathfrak{K}_2 não é Δ -elementar.

Exercício 4.9. Seja a \mathcal{S}_{ar} -estrutura $\mathfrak A$ um modelo de $\mathsf{Th}(\mathfrak N)$. Seja a relação binária $<^{\mathfrak A}$ definida em $A = \mathsf{Dom}(\mathfrak A)$ como: $\forall a,b \in A$

$$a <^{\mathfrak{A}} b$$
 sse $a \neq b$ e existe um $c \in A$ tq $a +^{\mathfrak{A}} c \doteq b$

Mostre que $(\mathfrak{A}, <^{\mathfrak{A}}) \models \mathsf{Th}(\mathfrak{N}^{<}).$

Proof. Como $\mathfrak{A} \models \mathsf{Th}(\mathfrak{N})$ e $\mathfrak{N}^{<}$ é a aritmética, mas com a relação de ordem estrita usual, basta mostrarmos que $(\mathfrak{A},<^{\mathfrak{A}})$ satisfaz os axiomas de ordem Φ_{ord} :

- i) $\forall x(\neg x < x)$: sua satisfação segue diretamente da definição, visto que $a \neq b$.
- ii) $\forall xyz((x < y \land y < z) \rightarrow x < z)$: se existem c_1, c_2 tais que $x + c_1 \doteq y$ e $y + c_2 \doteq z$, então $x + (c_1 + c_2) \doteq z$, portanto x < z, visto que $c_1 + c_2 \in A$.
- iii) $\forall xy(x < y \lor x \doteq y \lor y < x)$: se $x \doteq y$ a condição é satisfeita, caso contrário ambos diferem por um natural, i.e., x < y ou y < x, o que também é simples verificar pela definição.

Exercício 4.10. Se $(\mathfrak{A},\beta) \models \mathsf{Th}(\mathfrak{N})$ e se $a,b \in A := \mathsf{Dom}(\mathfrak{A}), a$ é dito ser um divisor de b (escrito $a \mid b$) se existe um $c \in A$ tq $a \cdot A$ c = b. Seja Q um conjunto de números primos. Mostre que existe

um modelo $\mathfrak A$ da aritmética t
q existe um $a \in A$ cujos divisores primos são só os membros de Q, i.e., para todo primo p:

$$\underbrace{1^A + \dots + 1^A}_{p \text{ vezes}} \mid a \text{ sse } p \in Q.$$

Conclua que há, no mínimo, tantos modelos contáveis não isomórficos dois a dois da aritmética quanto subconjuntos de \mathbb{N} .

Proof. Seja \mathbb{P} o conjunto dos números primos. Considere

$$\Phi_Q = \{ p \mid x : p \in Q \} \cup \{ p \nmid x : p \in \mathbb{P} \backslash Q \} \cup \mathsf{Th}(\mathfrak{N}).$$

Note que para todo $\Phi_0 \subseteq \Phi_Q$ finito existe tal elemento $\beta(x)$ no domínio da estrutura (\mathfrak{A}, β) , basta pegarmos o produto dos elementos de $Q_0 \subseteq Q$. Como todo subconjunto finito é satisfatível, pelo Teorema da Compacidade Φ_Q também é e, portanto, para todo Q conjunto de números primos existe um modelo \mathfrak{A} da aritmética satisfazendo os critérios da questão.

Provamos então que, para certos conjuntos $Q \subseteq \mathbb{P}$, com $\beta(x) = a$ associado a Q (denotaremos por a_Q), existe um modelo $\mathfrak{A}_Q \models \Phi_Q$ tq $a_Q \in \mathsf{Dom}(\mathfrak{A}_Q)$ e valendo a propriedade que se $Q_0 \neq Q_1$, então $\mathfrak{A}_{Q_0} \not\cong \mathfrak{A}_{Q_1}$. Seja $A_n := \{p_{n^m} : m \in \mathbb{Z}^+\}$, sendo p_n o n-ésimo primo. Obviamente $A_{p_0} \cap A_{p_1} = \emptyset$, para p_0, p_1 primos distintos. Como existem uma quantidade infinita contável de primos, então o mesmo vale para a quantidade de conjuntos com contáveis infinitos elementos cuja diferença é vazia. À vista, disso, defina $Q_n := A_{p_n}$, basta provarmos agora que se $n \neq m$, então $\mathfrak{A}_{Q_n} \not\cong \mathfrak{A}_{Q_m}$. Provamos no começo que tal \mathfrak{A}_{Q_n} existe, peguemos, portanto, o menor desses modelos como fora feito no **Teorema 4.7.** do livro. Assim, para $a_{Q_n} \in \mathsf{Dom}(\mathfrak{A}_{Q_n})$, nunca será possível atingir algum $a_{Q_m} \in \mathsf{Dom}(\mathfrak{A}_{Q_m})$, com $m \neq n$, somente multiplicando a_{Q_n} por algum elemento no domínio da estrutura ou somando, visto que ambos, Q_n e Q_m , possuem infinitos primos distintos, e os únicos números não padrões de cada qual são os gerador por a_{Q_n} e a_{Q_m} , respectivamente, sendo impossível um ser gerado pelo outro, logo os modelos são não isomórficos.

Exercício 4.11. Seja $\mathfrak{A}=(A,<^A)$ uma ordenação parcialmente definida. Dizemos que $<^A$ tem uma cadeia descendente infinita se existem $a_0,a_1,\dots\in \mathsf{field}<^A$ tq $\dots<^A$ $a_1<^A$ a_0 . Prove que: a) $(\mathbb{N},<^{\mathbb{N}})$ não possui nenhuma cadeia descendente infinita; por outro lado, se \mathfrak{A} é um modelo não standard de $\mathsf{Th}(\mathfrak{N})$, então $(A,<^A)$ contém uma cadeia descendente infinta. b) Seja $<\in \mathcal{S}$ e $\Phi\subseteq \mathcal{L}_0^{\mathcal{S}}$. Assuma que para todo $m\in\mathbb{N}$ existe $\mathfrak{A}\models\Phi$ tq $(A,<^A)$ é uma ordenação parcialmente definida e field $<^A$ contém no mínimo m elementos. Então existe também $\mathfrak{B}\models\Phi$ tq $(B,<^B)$ é uma ordenação parcialmente definida contendo uma cadeia descendente infinita.

Proof. a) Para um modelo standard da aritmética, field $<^{\mathbb{N}} = \mathbb{N}$. Assuma por contradição que existam $a_0, a_1, \dots \in \mathbb{N}$ tq $\dots <^{\mathbb{N}}$ $a_1 <^{\mathbb{N}}$ a_0 . Como $\{a_0, a_1, \dots\} \approx \aleph_0$, então existe uma bijeção $f: \{a_0, a_1, \dots\} \to \mathbb{N}$, como em ambas a relação de ordem é a mesma e em $\{a_0, a_1, \dots\}$ o maior elemento é a_0 , então seria possível encontrar $f(a_0)$ o maior elemento em \mathbb{N} , contradição, visto que \mathbb{N} não possui maior elemento.

Em um modelo não-standard, como o gerado pelo Teorema da Compacidade, existe um a maior que todo natural canônico, i.e., $a, a-1, \dots \in \mathsf{field} <^A \mathsf{tq} \dots <^A a-1 <^A a$.

b) Seja $\Psi := \Phi \cup \{a_i, a_{i+1} \in \text{field} < \land a_{i+1} < a_i \mid i \geqslant 0\}$, obviamente um modelo de Ψ possui uma cadeia descendente infinita, basta mostrarmos portanto que $\mathsf{Sat}(\Psi)$. Note que para todo subconjunto finito $\Psi_0 \subseteq \Psi$ existe n_0 tq $\Phi \cup \{a_i, a_{i+1} \in \text{field} < \land a_{i+1} < a_i \mid n_0 \geqslant i \geqslant 0\}$, por hipótese, há uma ordenação parcialmente definida com n_0 elementos, i.e., $\mathsf{Sat}(\Psi_0)$. Segue-se portanto do Teorema da Compacidade que Ψ também é satisfatível.

7 O Escopo da Lógica de Primeira Ordem

Exercício 4.4. Um leitor que ficou confuso com a discussão deste capítulo diz: "Agora estou completamente confuso. Como a ZFC pode ser usada como base para a lógica de primeira ordem, uma vez que a última era necessária para construir a ZFC?" Ajude tal leitor a sair de seu dilema.

Proof. O problema na aparente circularidade aqui é gerada pelo fato de que a ZFC não é estritamente necessária como base para a construção da lógica de primeira ordem, poderíamos usar, na realidade, qualquer outro sistema expressivo o suficiente para definir a lógica de primeira ordem sem nenhum problema.

8 Interpretações Sintáticas e Formas Normais

Exercício 2.4. Sejam $U, V \notin \mathcal{S}$ símbolos de relação unária distintos e (\mathfrak{A}, U^A, V^A) uma $\mathcal{S} \cup \{U, V\}$ estrutura tq U^A, V^A são \mathcal{S} -fechados em \mathfrak{A} e $U^A \subseteq V^A$. Mostre que para $\varphi \in \mathcal{L}_0^{\mathcal{S}}$

$$(\mathfrak{A}, U^A, V^A) \vDash ([\varphi^V]^U \leftrightarrow \varphi^U)$$

.

Proof. A intuição aqui é que falar em $\mathfrak A$ sobre U é o mesmo que falar em V sobre U (em $\mathfrak A$), visto que $U^A \subseteq V^A$. Como ψ^P definido na prova do Lema da Relativização só altera o quantificador, então a relativização em V substitui $\exists x\psi$ em φ por $\exists x(Vx \wedge \psi^V)$, relativizando para U agora temos que $\exists x(Ux \wedge Vx \wedge [\psi^V]^U)$, como $Ux \wedge Vx$ é o mesmo que Ux, visto que $U^A \subseteq V^A$, então é notório que se a estrutura satisfaz φ^U ela também satisfaz $[\varphi^V]^U$, e vice versa, i.e., $(\mathfrak A, U^A, V^A) \models ([\varphi^V]^U \leftrightarrow \varphi^U)$.

Exercício 2.5. Sejam < e \le dois símbolos de relação binária. Mostre que para todo $\varphi \in \mathcal{L}_0^{\{<\}}$ existe um $\psi \in \mathcal{L}_0^{\{\le\}}$, e para todo $\psi \in \mathcal{L}_0^{\{\le\}}$ existe um $\varphi \in \mathcal{L}_0^{\{<\}}$ tq a) e b), respectivamente, valem: a) Uma ordenação $(A, <^A)$ satisfaz φ sse a ordenação correspondente (A, \le^A) no sentido de " \le " satisfaz ψ . b) Uma ordenação (A, \le^A) no sentido de " \le " satisfaz ψ sse a ordenação correspondente $(A, <^A)$ satisfaz φ .

Proof. a) Como $\Phi'_{\mathrm{ord}} := \Phi_{\mathrm{ord}} \cup \{ \forall xy (x \leqslant y \leftrightarrow (x < y \lor x \doteq y)) \}$ então ambos são intercambiáveis e, portanto, possuem mesmo poder expressivo. Para falarmos de $\{<\}$ em $\{\leqslant\}$ façamos a interpretação sintática $I: \{<, \{<\}\} \to \mathcal{L}^{\{\leqslant\}}$ definida para $\{<\}$ como a identidade $\varphi_{\{<\}}(v_0) := v_0 \doteq v_0$ e para < como $\varphi_{<}(x,y) := x \leqslant y \land \neg(x \doteq y)$, pelo Teorema da Interpretação Sintática a cada fórmula $\varphi \in \mathcal{L}^{<}$ podemos associar uma $\varphi^I \in \mathcal{L}^{\leqslant}$ tq

$$(A, <^A) \models \varphi \text{ sse } (A, \leq^A) \models \psi := \varphi^I.$$

b) Para fazer o mesmo invertendo os papéis basta construirmos $I: \{\leqslant, \{\leqslant\}\} \to \mathcal{L}^{\{<\}}$ como a identidade para $\{\leqslant\}$ e $\varphi_{\leqslant}(x,y):=x < y \lor x \doteq y$, logo

$$(A, \leq^A) \vDash \psi \text{ sse } (A, <^A) \vDash \varphi := \psi^I.$$

Exercício 2.6. Na discussão de grupos, a partir do enunciado do **Teorema 2.2.**, troque os papéis de Φ_{grp} e Φ_{g} .

Proof. Basta definirmos a interpretação sintática $I: \mathcal{S}_{g} \cup \{\mathcal{S}_{g}\} \to \mathcal{L}^{\mathcal{S}_{grp}}$ tq $\varphi_{\mathcal{S}_{g}}(x) := x \doteq x$ e $\varphi_{\circ}(x, y, z) := x \circ y \doteq z$, i.e., como a identidade. Portanto se uma \mathcal{S}_{grp} -estrutura $(A, \circ^{A}, ^{-1^{A}}, e^{A})$ é um grupo, então $\mathfrak{A}^{-I} = (A, \circ^{A})$ e para toda $\varphi \in \mathcal{L}_{0}^{\mathcal{S}_{g}}$ temos

$$\mathfrak{A}^{-I} \models \varphi \operatorname{sse} \mathfrak{A} \models \varphi^{I}$$

Exercício 2.7. a) Dê uma interpretação sintática I de S_{ar} em S_{ar} tq

para todo
$$\varphi \in \mathcal{L}_0^{\mathcal{S}_{ar}} : (\mathbb{N}, +, \cdot, 0, 1) \models \varphi \text{ sse } (\mathbb{Z}, +, \cdot, 0, 1) \models \varphi^I$$

. b) Prove o análogo à a) obtido trocando o papel de $\mathbb N$ por $\mathbb Z$.

Proof. definimos $I: \mathcal{S}_{ar} \cup \{\mathcal{S}_{ar}\} \to \mathcal{L}^{\mathcal{S}_{ar}}$ tq

$$S_{\text{ar}} \mapsto \varphi_{S_{\text{ar}}}(v_0) := \exists xyzw(x^2 + y^2 + z^2 + w^2 \doteq v_0);$$

$$+ \mapsto \varphi_+(x, y, z) := x + y \doteq z;$$

$$\cdot \mapsto \varphi_-(x, y, z) := x \cdot y \doteq z;$$

$$0 \mapsto \varphi_0(x) := x \doteq 0;$$

$$1 \mapsto \varphi_1(x) := x \doteq 1.$$

como $\varphi_{S_{ar}}[a]$ sse $a \in \mathbb{N}$, então $A^{-I} = \mathbb{N}$ e todas as outras definições são identidades, logo

$$(\mathbb{Z}, +, \cdot, 0, 1)^{-I} = (\mathbb{N}, +, \cdot, 0, 1) \models \varphi \text{ sse } (\mathbb{Z}, +, \cdot, 0, 1) \models \varphi^{I}$$

PENDENTE

Exercício 2.8. Prove o Teorema 1.3. usando o Teorema 2.2. a partir de uma interpretação sintática adequada.

Proof. Seja \mathcal{S}^r o conjunto de símbolos relacionais de \mathcal{S} , provemos a partir do Teorema da Interpretação Sintática que para $\psi \in \mathcal{L}^{\mathcal{S}}$, existe um $\psi^r \in \mathcal{L}^{\mathcal{S}^r}$ tq $(\mathfrak{A}, \beta) \models \psi$ sse $(\mathfrak{A}^r, \beta) \models \psi^r$. Seja portanto a interpretação sintática $I: \mathcal{S} \cup \{\mathcal{S}\} \to \mathcal{L}^{\mathcal{S}^r}$:

$$S \mapsto \varphi_{S}(v_{0}) := v_{0} \doteq v_{0};$$

$$R \mapsto \varphi_{R}(v_{0}, \dots, v_{n-1}) := Rv_{0} \dots v_{n-1};$$

$$f \mapsto \varphi_{f}(v_{0}, \dots, v_{n-1}, v_{n}) := Fv_{0} \dots v_{n-1}v_{n};$$

$$c \mapsto \varphi_{c}(v_{0}) := Cv_{0}.$$

Por definição obviamente $\mathfrak{A}^r \models \Phi_I$. Como $\mathfrak{A}^r \models \varphi_{\mathcal{S}}[a]$ para todo $a \in A$, então $A^{-I} = A$, além disso

$$f^{\mathfrak{A}^{-I}}(a_0, \dots, a_{n-1}) = a_n \operatorname{sse} \mathfrak{A}^r \models \varphi_f[a_0, \dots, a_{n-1}, a_n]$$

$$\operatorname{sse} F^{\mathfrak{A}^r} a_0, \dots, a_{n-1}, a_n$$

$$\operatorname{sse} f^{\mathfrak{A}}(a_0, \dots, a_{n-1}) = a_n.$$

portanto $f^{\mathfrak{A}^{-I}}=f^{\mathfrak{A}}$, o mesmo ocorre com os símbolos de relação e constante, i.e., $\mathfrak{A}^{-I}=\mathfrak{A}$, denotemos ψ^I por ψ^r , então, pelo Teorema da Interpretação Sintática

$$(\mathfrak{A}^r,\beta) \models \psi^I = \psi^r \text{ sse } (\mathfrak{A}^{-I},\beta) = (\mathfrak{A},\beta) \models \psi.$$

Exercício 3.3. Generalize o Teorema 3.2. para o caso com mais (possivelmente infinitas muitas) definicões de novos símbolos.

Proof. Seja $\Phi \subseteq \mathcal{L}_0^{\mathcal{S}}$ e $\{s_i \mid i \in X\}$ novos símbolos com δ_{s_i} uma \mathcal{S} -definição em Φ para cada s_i . a) Para todo $\varphi \in \mathcal{L}_0^{\mathcal{S}}$

$$\Phi \cup \{\delta_{s_i} \mid i \in X\} \text{ sse } \Phi \models \varphi.$$

- (\Leftarrow) se $\Phi \vDash \varphi$, obviamente $\Phi \cup \{\delta_{s_i} \mid i \in X\} \vDash \varphi$; (\Rightarrow) Assuma que $\Phi \cup \{\delta_{s_i} \mid i \in X\} \vDash \varphi$ e seja $\mathfrak A$ uma $\mathcal S$ -estrutura tq $\mathfrak A \vDash \Phi$. Para $I : S' \cup \{S'\} \to \mathcal L^{\mathcal S}$ uma interpretação sintática tq $S' = S \cup \{s_i \mid i \in X\}$ temos $I(S') = \varphi_{S'}(v_0) := v_0 \doteq v_0$,

$$\Phi_i = \begin{cases} \varnothing, \text{ se } s_i \text{ \'e um s\'mbolo relacional;} \\ \{ \forall v_0 \dots v_{n-1} \exists ! v_n \varphi_f(v_0, \dots, v_n) \}, \text{ se } s_i \text{ \'e um s\'mbolo de função n-\'aria;} \\ \{ \exists ! v_0 \varphi_c(v_0) \}, \text{ se } s_i \text{ \'e um s\'mbolo de constante.} \end{cases}$$

e $\Phi_I := \bigcup_{i \in X} \Phi_i$, portanto segue-se direto da definição de δ_{s_i} que $\mathfrak{A} \models \Phi_I$ e, para toda $S \cup S'$ -estrutura, $\mathfrak{A}^{-I} := (\mathfrak{A}, S'^A := \{s_i^A \mid i \in X\})$ com $\mathfrak{A} \models \Phi$ vale que $\mathfrak{A}^{-I} \models \{\delta_{s_i} \mid i \in X\}$, i.e., $\mathfrak{A}^{-I} \models \Phi \cup \{\delta_{s_i} \mid i \in X\}$ logo, por hipótese, $(\mathfrak{A}, S^{\prime A}) \models \varphi$ e, pelo Lema da Coincidência, $\mathfrak{A} \models \varphi$.

b) Para todo $\chi \in \mathcal{L}_0^{\mathcal{S} \cup \mathcal{S}'}$

$$\Phi \cup \{\delta_{s_i} \mid i \in X\} \models \chi \leftrightarrow \chi'.$$

Seja $\mathfrak{A}^{-I} = (\mathfrak{A}, S'^A)$ uma $S \cup S'$ -estrutura que satisfaz $\Phi \cup \{\delta_{s_i} \mid i \in X\}$, como definido em a), pelo Teorema da Interpretação Sintática segue-se que

$$\mathfrak{A}^{-I} \vDash \chi \text{ sse } \mathfrak{A} \vDash \chi^{I}$$

$$\text{sse } \mathfrak{A}^{-I} \vDash \chi^{I}.$$

c) Para todo $\varphi \in \mathcal{L}_0^{\mathcal{S} \cup \mathcal{S}'}$

$$\Phi \cup \{\delta_{s_i} \mid i \in X\} \models \varphi \text{ sse } \Phi \models \varphi^I.$$

De b) temos que para $\varphi \in \mathcal{L}_0^{S \cup S'}$ vale que $\Phi \cup \{\delta_{s_i} \mid i \in X\} \models \varphi \text{ sse } \Phi \cup \{\delta_{s_i} \mid i \in X\} \models \varphi^I \text{ e, por a), sse } \Phi \models \varphi^I$.

Exercício 3.4. Formalize precisamente e mostre que para $\Phi \subseteq \mathcal{L}_0^{\mathcal{S}}$ vale o seguinte: Uma extensão por definições de uma extensão por definição de Φ é uma extensão por definição de Φ .

Proof. Seja $s \notin \mathcal{S}$ e δ_s uma \mathcal{S} -definição de s em Φ , com $\mathcal{S}' := \mathcal{S} \cup \{s\}$ e $\Phi' := \Phi \cup \{\delta_s\}$. Suponha também que há $s' \notin \mathcal{S}'$ e que $\delta_{s'}$ é uma \mathcal{S}' -definição de s' em Φ' , com $\mathcal{S}'' := \mathcal{S}' \cup \{s'\}$ e $\Phi'' := \Phi' \cup \{\delta_{s'}\}$. Seja $I_1 : \mathcal{S}' \cup \{\mathcal{S}'\} \to \mathcal{L}^{\mathcal{S}}$ a interpretação sintática de \mathcal{S}' em \mathcal{S} e $I_2 : \mathcal{S}'' \cup \{\mathcal{S}''\} \to \mathcal{L}^{\mathcal{S}'}$ a interpretação sintática de \mathcal{S}'' em \mathcal{S}' . O que queremos enunciar é que, se é possível falar sobre \mathcal{S}' em \mathcal{S} , e sobre \mathcal{S}'' em \mathcal{S}' , sem ganhar expressividade, então é possível fazer o mesmo com \mathcal{S}'' em \mathcal{S} . Note que se ambos δ_s e $\delta_{s'}$ são definidos em função dos símbolos em \mathcal{S} então segue-se diretamente do exercício anterior que adicionar os dois novos símbolos é uma extensão por definição em Φ direto. Consideremos portanto o caso que $\delta_{s'}$ usa s em \mathcal{S}' , nesse caso a partir da interpretação sintática é fácil demonstrar que definição de s' com s pode ser substituido por um equivalente só em \mathcal{S} . \square

Exercício 3.5. Seja $P \notin \mathcal{S}$ um símbolo de relação k-ário e $\Phi' \subseteq \mathcal{L}_0^{\mathcal{S} \cup \{P\}}$ que define implicitamente P, no sentido que para toda \mathcal{S} -estrutura \mathfrak{A} e todo $P^1, P^2 \subseteq A^k$ vale que

se
$$(\mathfrak{A},P^1) \models \Phi'$$
 e $(\mathfrak{A},P^2) \models \Phi'$, então $P^1=P^2$.

Então, pelo Teorema da Definibilidade de Beth, existe uma definição explícita de P com respeito a Φ' , i.e., uma S-fórmula $\varphi_P(v_0, \ldots, v_{k-1})$ to

$$\Phi' \models \forall v_0 \dots v_{k-1}(Pv_0 \dots v_{k-1} \leftrightarrow \varphi_P(v_0, \dots, v_{k-1})).$$

A partir disso, mostre que existe $\Phi \subseteq \mathcal{L}_0^{\mathcal{S}}$ e uma definição δ_P de P em Φ tq para todo $\varphi \in \mathcal{L}_0^{\mathcal{S} \cup \{P\}}$

$$\Phi \cup \{\delta_P\} \models \varphi \text{ sse } \Phi' \models \varphi;$$

portanto Φ' é, até a equivalência, uma extensão de Φ por definições.

Proof. PENDENTE

Parte B

9 Extensões da Lógica de Primeira Ordem

Exercício 1.7. O sistema \mathcal{L}_{II}^w da Lógica de Segunda Ordem Fraca é tq para todo \mathcal{S} , $\mathcal{L}_{II}^{w,\mathcal{S}} := \mathcal{L}_{II}^{\mathcal{S}}$ e alteramos a noção de satisfatibilidade em \mathcal{L}_{II} , para fórmulas livres de quantificadores em variáveis de relação \models_w é o mesmo que \models , nos outros casos especificamos, para $\mathfrak{I} = (\mathfrak{A}, \gamma)$:

$$\mathfrak{I} \models_w \exists X^n \varphi$$
 sse existe um $C \subseteq A^n$ finito tq $\mathfrak{I} \frac{C}{X^n} \models_w \varphi$.

Portanto, só é permitido quantificar sobre conjuntos e relações finitos. Mostre que:

- a) Há uma sentença φ de segunda ordem e uma estrutura \mathfrak{A} tq $\mathfrak{A} \models_w \varphi$, mas $\mathfrak{A} \not\models \varphi$.
- b) Para cada sentença $\varphi \in \mathcal{L}_{\mathrm{II}}^{w,\mathcal{S}}$ há uma sentença $\psi \in \mathcal{L}_{\mathrm{II}}^{\mathcal{S}}$ tq para toda \mathcal{S} -estrutura \mathfrak{A} , $\mathfrak{A} \models_w \varphi$ sse $\mathfrak{A} \models_w \psi$.
- c) O Teorema da Compacidade não vale em $\mathcal{L}_{\mathrm{II}}^{w}$.

Proof. a) Seja A uma estrutura com domínio infinito, defina

$$\varphi_{\mathrm{fin}} := \forall X^2 \left(\left(\forall x \exists ! y X^2 x y \wedge \forall x, y, z \left(\left(X^2 x z \wedge X^2 y z \right) \rightarrow x \doteq y \right) \right) \rightarrow \forall y \exists x X^2 x y \right)$$

a formalização de "para toda função $f: X \to X$ injetora, esta é sobrejetora". Obviamente isso não é verdade na lógica de segunda ordem, visto que φ_{fin} é equivalente a dizer que todos os subconjuntos do domínio são finitos o que, por hipótese, é falso. Entretanto, na lógica de segunda ordem fraca a sentença é verdadeira por vacuidade, visto que $\forall X^2$ quantifica somente sobre subconjuntos finitos, portanto sim, todas as funções, se estas são injetoras, estas também são sobrejetoras.

b) Provaremos um teorema mais forte: Para cada **fórmula** $\varphi \in \mathcal{L}_{II}^{w,S}$ há uma **fórmula** $\psi \in \mathcal{L}_{II}^{S}$ **com** free $(\varphi) = \text{free}(\psi)$, tq para toda *S*-interpretação $\mathfrak{I} = (\mathfrak{A}, \beta)$, $\mathfrak{I} \models_{w} \varphi$ sse $\mathfrak{I} \models_{\psi}$. Procedemos por indução: Os casos em que φ, ψ são fórmulas atômicas ou livres de quantificadores

Procedemos por indução: Os casos em que φ, ψ são formulas atômicas ou livres de quantificadores é trivial, visto que \models e \models_w são definidos da mesma forma para eles, basta, portanto, tomarmos $\psi = \varphi$. Assuma como hipótese indutiva que, para cada $\varphi \in \mathcal{L}_{II}^{w,\mathcal{S}}$, exista $\psi \in \mathcal{L}_{II}^{\mathcal{S}}$ com os mesmos modelos e com free (φ) = free (ψ) , portanto, para $\varphi = \exists x \varphi'$ existe ψ' com os mesmos modelos de φ' , logo, para uma \mathcal{S} -interpretação \mathfrak{I} qualquer:

$$\mathfrak{I} \vDash_w \exists x \varphi'$$
 sse existe um $a \in \mathsf{Dom}(\mathfrak{A})$ tq $\mathfrak{I} \frac{a}{x} \vDash_w \varphi'$
sse exists um $a \in \mathsf{Dom}(\mathfrak{A})$ tq $\mathfrak{I} \frac{a}{x} \vDash \psi'$
 $\mathfrak{I} \vDash \exists x \psi'$

Uma vez que free (φ) = free $(\exists x \psi')$ tomemos $\psi = \exists x \psi'$.

Suponha, finalmente, $\varphi = \exists X^n \varphi'$ e seja, novamente, ψ' a fórmula correspondente a φ' pela hipótese indutiva. Seja Y uma relação unária, defina $\forall x \in Y\chi := \forall x(Yx \to \chi)$ e $\exists x \in Y\chi := \exists x(Yx \land \chi)$, substituindo todas as ocorrências de $Qx\chi$ em φ_{fin} (definido em a), com $Q = \forall, \exists$, por $Qx \in Y\chi$ obtemos $\gamma_{\text{fin}}(Y)$ que diz que o conjunto Y é finito. Definimos, portanto, $\psi = \exists X^n(\gamma_{\text{fin}}(X^n) \land \psi')$,

logo, é fácil ver que free (φ) = free (ψ) e, para toda \mathcal{S} -interpretação \mathfrak{I} :

$$\mathfrak{I} \vDash_{w} \exists X^{n} \varphi' \text{ sse há um } C \subseteq \mathsf{Dom}(\mathfrak{A})^{n} \text{ finito, tq } \mathfrak{I} \frac{C}{X^{n}} \vDash_{w} \varphi'$$

$$\text{sse há um } C \subseteq \mathsf{Dom}(\mathfrak{A})^{n} \text{ tq } \mathfrak{I} \frac{C}{X^{n}} \vDash_{w} \gamma_{\text{fin}}(X^{n}) \text{ e } \mathfrak{I} \frac{C}{X^{n}} \vDash \psi'$$

$$\text{sse há um } C \subseteq \mathsf{Dom}(\mathfrak{A})^{n} \text{ tq } \mathfrak{I} \frac{C}{X^{n}} \vDash_{w} (\gamma(X^{n}) \wedge \psi')$$

$$\text{sse } \mathfrak{I} \vDash \psi$$

O que termina a prova, sendo o exercício em si um corolário direto deste teorema mais forte.

c) Seja $\varphi_{\geqslant n}(Y):=(\bigwedge_{i=1}^n Yv_i) \wedge \bigwedge_{i,j\in\{1,\dots,n\}} \neg (v_i\doteq v_j)$ a formalização de Y tem no mínimo n elementos, então

$$\Phi := \{ \forall Y \varphi_{\geqslant n}(Y) \mid n \geqslant 2 \}$$

diz que todas relações unárias são infinitas, se interpretado na lógica de segunda ordem fraca diz que toda relação unária finita é infinita, portanto obviamente $\not\models_w \Phi$. Entretanto, para todo subconjunto finito Φ_0 de Φ temos que este é satisfatível, logo não pode valer o Teorema da Compacidade.

Exercício 2.7 Mostre que para toda $\mathcal{L}_{II}^{w,S}$ -sentença φ , existe uma $\mathcal{L}_{\omega_1\omega}^{S}$ -sentença ψ com os mesmos modelos, i.e., $\mathfrak{A} \models_w \varphi$ sse $\mathfrak{A} \models_w \psi$, para toda S-estrutura \mathfrak{A} . Conclua que o Teorema de Löwenheim-Skolem vale para \mathcal{L}_{II}^{w} .

Proof. A única adição semântica que é incrementada na relação de satisfatibilidade é que $\exists X^n \varphi$ é satisfeita sse existe um subconjunto do domínio da estrutura finito que satisfaz φ , portanto, para expresser finitude em $\mathcal{L}_{\omega_1\omega}$ definiremos:

$$\varphi_{\geqslant m}(C^n) := \bigwedge_{\substack{i_0, \dots, i_n \in \{1, \dots, m\} \\ i_0 \neq i_1, i_0 \neq i_2, \dots \\ i_{n-1} \neq i_n}} C^n v_{i_0} v_{i_1} \dots v_{i_n} \wedge \bigwedge_{\substack{i,j \in \{1, \dots, m\} \\ i_{n-1} \neq i_n}} \neg (v_i \doteq v_j)$$

a formalização de que C^n tem no mínimo m elementos, logo

$$\gamma_{\text{fin}}(C^n) := \bigvee \{ \neg \varphi_{\geqslant m}(C^n) : m \geqslant 2 \}$$

é satisfeita sse C^n é finito. À vista disso, procederemos por indução: para φ livre de quantificadores em variáveis relacionais tomemos $\psi=\varphi$ que, trivialmente, possuem os mesmos modelos. Assumindo como hipótese indutiva que para sentença $\varphi\in\mathcal{L}_{II}^{w,\mathcal{S}}$ há uma sentença $\psi\in\mathcal{L}_{\omega_1\omega}^{\mathcal{S}}$ com os mesmos modelos, para $\varphi=\exists X^n\varphi$ tomemos $\psi=\gamma_{\mathrm{fin}}(C)\wedge\varphi\frac{C}{X^n}$

PENDENTE

Exercício 2.8 Mostre que as seguintes classes podem ser axiomatizadas por uma $\mathcal{L}_{\omega_1\omega}$ -sentença:

- a) A classe de grupos finitamente gerados;
- b) A classe de estruturas isomórficas a $(\mathbb{Z}, <)$.

34

Proof. PENDENTE

Exercício 2.9 a) Para um S arbitrário, prove que $\mathcal{L}_{\omega_1\omega}^{S}$ é incontável;

b) Construa uma estrutura $\mathfrak B$ incontável (para um conjunto $\mathcal S$ de símbolos contáveis adequados) to não haja estruturas $\mathfrak A$ contáveis satisfazendo as mesmas $\mathcal L_{\omega_1\omega}^{\mathcal S}$ sentenças que $\mathfrak B$.

Proof. PENDENTE

Exercício 3.3 Mostre que toda \mathcal{L}_Q -sentenças satisfatível tem um modelo cuja cardinalidade é no máximo \aleph_1 .

Proof. PENDENTE

Exercício 3.4 Seja \mathcal{L}_Q^o obtido de \mathcal{L}_Q trocando a noção de satisfatibilidade como se segue:

$$\mathfrak{I} \vDash Qx\varphi \text{ sse } \left\{ a \in A \mid \mathfrak{I} \frac{a}{x} \vDash \varphi \right\} < \aleph_0$$

Mostre que o Teorema da Compacidade não vale em \mathscr{L}_Q^o , mas o Teorema de Löwenheim-Skolem sim.

Proof. PENDENTE

10 Computabilidade e suas Limitações

Obs: Como todos os símbolos em \mathbb{A}_{∞} podem ser representados em \mathbb{A}_0 finito, consideramos apenas alfabetos finitos no que se segue.

Exercício 1.2. Seja $\mathbb A$ um alfabeto, e sejam W,W' subconjuntos decidíveis de $\mathbb A^*$. Mostre que $W \cup W', W \cap W'$ e $\mathbb A^* \backslash W$ também são decidíveis.

Proof. Sejam \mathfrak{P}_1 e \mathfrak{P}_2 os procedimentos de decisão para W e W', respectivamente. Para $X \in W \cup W'$ o procedimento \mathfrak{P}_3 é tq este devolve □ se \mathfrak{P}_1 ou \mathfrak{P}_2 devolvem □; para $X \in W \cap W'$, \mathfrak{P}_3 devolve □ sse ambos \mathfrak{P}_1 e \mathfrak{P}_2 devolvem □ e $X \in \mathbb{A}^* \backslash W$ é tq \mathfrak{P}_3 devolve □ sse \mathfrak{P}_1 não devolve □. □

Exercício 1.3. Descreva um procedimento de decisão para os seguintes subconjuntos de \mathbb{A}_0^* :

- a) O conjunto de strings $x\varphi$ sobre \mathbb{A}_0 tq $x \in \mathsf{free}(\varphi)$;
- b) O conjunto das S_{∞} -sentenças.

Proof. a) Ao receber como entrada uma string $x\varphi$ procuramos em φ um quantificador da forma $\exists x$ ou uma ocorrência de x. Se encontrarmos tal quantificador pulemos todo seu escopo, i.e., toda a string ψ em $\exists x(\psi)$, se encontrarmos um x o procedimento para e devolve \neg , se chegarmos ao final sem encontrar uma ocorrência de x o procedimento para e devolve $\eta \neq \neg$;

b) É fácil notar que a definição recursiva de uma S-fórmula é tq qualquer conjunto de strings sobre um alfabeto pode ser verificado por um procedimento \mathfrak{P}_1 que devolve \square se esta é uma fórmula bem formada e $\eta \neq \square$ caso não seja. Basta, portanto, para todas as variáveis que ocorrem em φ , utilizar o procedimento \mathfrak{P}_2 de a) para verificar quando esta é uma sentença, devolvendo \square se for e $\xi \neq \square$ caso não seja. O procedimento de decisão \mathfrak{P}_3 devolveria \square quando ambos, \mathfrak{P}_1 e \mathfrak{P}_2 , devolvem \square para uma entrada φ , e $\eta \neq \square$ caso contrário.

Exercício 1.9. Suponha $U \subseteq \mathbb{A}^*$ decidível e $W \subseteq U$. Mostre que se W e $U \setminus W$ são enumeráveis, então W é decidível.

Proof. Seja \mathfrak{P}_U o processo de decisão para U, \mathfrak{P}_W e $\mathfrak{P}_{U\backslash W}$ de enumeração para W e $U\backslash W$, respectivamente. O processo de decisão \mathfrak{P} de W verificará, para uma entrada ζ , primeiro, se \mathfrak{P}_U devolve \Box , i.e., se $\zeta \in U$ (se não estiver ele retornará $\eta \neq \Box$) e depois rodara \mathfrak{P}_W e $\mathfrak{P}_{U\backslash W}$ em paralelo enumerando os elementos de ambos. Como $\zeta \in U$, eventualmente uma das duas enumerações será igual a ζ , caso \mathfrak{P}_W pare, \mathfrak{P} devolve \Box , caso contrário \mathfrak{P} devolve um $\eta \neq \Box$.

Exercício 1.10. Sejam \mathbb{A}_1 , \mathbb{A}_2 alfabetos tq $\mathbb{A}_1 \subseteq \mathbb{A}_2$, e suponha que $W \subseteq \mathbb{A}_1^*$. Mostre que W é decidível (enumerável) com respeito a \mathbb{A}_1 sse é decidível (enumerável) com respeito a \mathbb{A}_2 .

Proof. (\Leftarrow) Como $\mathbb{A}_1 \subseteq \mathbb{A}_2$ é imediato que se há um procedimento de decisão/enumeração \mathfrak{P}_2 para W em \mathbb{A}_2 , também há um \mathfrak{P}_1 em \mathbb{A}_1 .

(⇒) Seja \mathfrak{P}_1 o procedimento de decisão de W em \mathbb{A}_1 , pelo **Teorema 1.8.** ambos, W e $\mathbb{A}_1^* \backslash W$ são enumeráveis, como \mathbb{A}_1 é finito, então \mathbb{A}_1 é decidível em \mathbb{A}_2 , pelo exercício anterior $W \subseteq \mathbb{A}_1^* \subseteq \mathbb{A}_2^*$ com W decidível, como W e $\mathbb{A}_1^* \backslash W$ são enumeráveis, então W é decidível com respeito a \mathbb{A}_2 e, devido ao **Teorema 1.7.** este também é enumerável.

Exercício 1.11. Mostre que:

- a) O conjunto PIR de polinômios em várias incógnitas com coeficientes inteiros que possuem uma raiz inteira é enumerável.
- b) O conjunto PIR₁ de polinômios em *uma* incógnita que pertence a PIR é decidível.

Proof. Seja $\mathbb{A} := \{x, +, -, 0, \dots, 9, \underline{0}, \dots, \underline{9}, \overline{0}, \dots, \overline{9}\}$ o alfabeto usual para incógnitas com subscrito e superscrito para potência.

PENDENTE

Exercício 1.12. Sejam \mathbb{A}, \mathbb{B} alfabetos, $\# \notin \mathbb{A} \cup \mathbb{B}$ e $f : \mathbb{A}^* \to \mathbb{B}^*$. Mostre que os seguintes são equivalentes:

- (i) f é computável;
- (ii) $\{\zeta \# f(\zeta) \mid \zeta \in \mathbb{A}^*\}$ é enumerável;
- (iii) $\{\zeta \# f(\zeta) \mid \zeta \in \mathbb{A}^*\}$ é decidível.

Proof. O conjunto $\{\zeta \# f(\zeta) \mid \zeta \in \mathbb{A}^*\}$ pode ser considerado como o gráfico da função f, i.e., $(\zeta, f(\zeta))$, portanto f é computável see seu gráfico é enumerável (decidível).

- (i) \Rightarrow (iii): Assuma que f é computável, para uma string η podemos construir um procedimento de decisão \mathfrak{P} tq, procuramos por # em η , se não houver então ela não está no gráfico, se houver pegamos a string ζ antes de # e calculamos o valor de $f(\zeta)$, o que é possível, visto que f é computável, após isso comparamos tal string em \mathbb{B}^* com o restante de η , se for igual então η está no gráfico, caso contrário não está. Pelo **Teorema 1.7.** pelo gráfico ser decidível ele também é enumerável.
- (ii) \Rightarrow (i): Como decidibilidade implica enumerabilidade basta provarmos que o último implica em computabilidade. Assuma que o gráfico é enumerável, para uma string $\eta \in \mathbb{A}^*$ se quisermos calcular $f(\eta)$ enumeramos o gráfico a procura de uma string que antes do # possua η , sobre a hipótese de que \mathbb{A} é finito, eventualmente a encontraremos, basta, portanto, o procedimento devolver com a string posterior a #, que será justamente o valor de $f(\eta)$.

Exercício 2.9. Suponha $W, W' \subseteq \mathbb{A}^*$. Mostre que se W e W' são R-decidíveis, então $\mathbb{A}^* \backslash W, W \cap W'$, e $W \cup W'$ também são.

Proof. Se $W, W' \subseteq \mathbb{A}^*$ são R-decidíveis, então existem programas P e P', respectivamente, tq P (P') retorna □ se receber ζ , caso $\zeta \in W$ ($\zeta \in W'$), e $\eta \neq \Box$ caso contrário. Como $\zeta \in \mathbb{A}^* \backslash W$ sse $\zeta \notin W$, então o programa

PENDENTE

onde ... é equivalente a

$$P_0: \zeta \to \square \text{ se } P: \zeta \to \eta \neq \square$$

 $P_0: \zeta \to \eta \neq \square \text{ se } P: \zeta \to \square$

que decide $\mathbb{A}^*\backslash W$. Para $W\cap W'$ temos que ζ pertence a ele sse ζ pertence a ambos, logo

$$P_1: \zeta \to \square \text{ se } P: \zeta \to \square \text{ e } P': \zeta \to \square$$

$$P_1: \zeta \to \eta \neq \square \text{ se } P: \zeta \to \eta \neq \square \text{ ou } P': \zeta \to \eta \neq \square$$

decide $W \cap W'$. O caso $W \cup W'$ é análogo, basta trocarmos o casos anteriores para " $P : \zeta \to \square$ ou $P' : \zeta \to \square$ " e " $P : \zeta \to \eta \neq \square$ e $P' : \zeta \to \eta \neq \square$ ", respectivamente.

Exercício 2.10. Prove que: a) \mathbb{A}^* é R-enumerável; b) Se $W\subseteq \mathbb{A}^*$, então W é R-decidível sse W e $\mathbb{A}^*\backslash W$ são R-enumeráveis.

Proof. a)

b) (\Rightarrow) Se $W \subseteq \mathbb{A}^*$ é R-decidível, então, pelo **Exercício 2.9.**, existe P' um programa de decisão para $\mathbb{A}^* \backslash W$, logo, de a), sabemos que existe um programa P que enumera \mathbb{A}^* , basta então definirmos \square