Energy System Modelling and Energy Justice - Incompatible Concepts?

Session 3: Oemof-Tutorial

Workshop @ Meccanica Feminale, Stuttgart, 18.02 - 20.2.2025

Martha M. Hoffmann

© Reiner Lemoine Kolleg

Workshop Sessions

Day 1: Introduction to Energy Modelling			
10:00	11:30	Session 1	Basics of Energy Modelling
14:00	15:30	Session 2	Open Energy Models
16:00	17:30	Session 3	Oemof-Tutorial

Day 2: Introduction to Justice Concepts			
8:30	10:00	Session 4	Social aspects of energy systems
10:30	12:00	Session 5	Justice in energy systems
14:00	15:30	Session 6	Case Studies Development

Day 3: Co-Creation at the Intersection of Energy Modelling & Justice			
8:30	10:00	Session 7	Group Work on Case Studies
10:30	12:00	Session 8	Discussion of Case Studies

Repetition: Questions regarding sessions

- Which of the energy modelling applications was most interesting for you?
- What are necessary inputs and where can you get them?

Application of ESM - Overview

Generalizable Model Steps

Github reprository of the MVS: https://github.com/rl-institut/multi-vector-simulator

Manual of the MVS: https://multi-vector-simulator.readthedocs.io

Demand estimation approaches

Supporting colloborative development: GitHub

- Version control solution
 - History of changes
 - Reasoning behind changes
 - Public availability (can be disabled)
 - Authors
- Enables colloboration on programming projects
 - Discussion of issues
 - Validating proposed changes
 - Rights management
 - Projekt management

Further reading:

(1) Github: https://github.com/

Programming software: Python and Pycharm

- Install python via miniconda:
 - https://docs.conda.io/en/latest/miniconda.html
- Pycharm...
 - Is a GUI for programming
 - Can process, validate and highlight many file and programming styles
 - Includes file versioning and git features
 - Install from: https://www.jetbrains.com/pycharm/download
- Make sure you have Git installed, https://git-scm.com/book/en/v2/Getting-Started-Installing-Git or via Pycharm

Logo from: JetBrains https://www.jetbrains.com/co mpany/press/, Gemeinfrei, https://commons.wikimedia.or g/w/index.php?curid=5318567

Installation of cbc-solver on Windows (I)

- Recommended solver for oemof is Cbc (Coin-or branch and cut): https://projects.coin-or.org/Cbc
- Download cbc-solver:
 - 64bit: http://ampl.com/dl/open/cbc/cbc-win64.zip
 - 32bit: http://ampl.com/dl/open/cbc/cbc-win32.zip
- Unzip into chosen path
 - → Place into your pycharm project folder (for the quick training purpose)
 - →For future use you can also place it under system variables, as described here
 - https://offgridders.readthedocs.io/en/latest/Installation.html

What is the main idea behind oemof?

- Collaborative, public development
- Recycling and expansion of existing models
- Modular structure with defined interfaces to correlate other approaches/packages
- Improved review process by the community

What is the main idea behind oemof?

Is a community-driven open-Source modelling framework initiated by:

- Python packages specifically developed for energy system modelling
- Model individual requirements/aspects in research projects

Further reading:

(1) Hilpert S, Kaldemeyer C, Krien U, Günther S, Wingenbach C, Plessmann G (2018) The open energy modelling framework (oemof)—a new approach to facilitate open science in energy system modelling. Energy Strategy Rev 22:16–25

oemof projects at RLI

- Research projects
 - Publicly funded by EU, BMWI, **BMWF**
- Research studies
- Contract work
 - Model development
 - Workshops
 - Web-applications
- General oemof uses: https://oemof.org/projects/

Github reprositories of oemof

Oemof toolbox on github: https://github.com/oemof

Package structure

Packages of oemof

- oemof-solph Energy model generator
- TESPy Modelling of thermal engineering systems
- feedinlib PV potential
- demandlib Head and power demand profiles
- oemof-thermal Thermal energy components
- DHNx District heating optimization
- cydets Cycle detection
- ...and some more programming-related packages

Further reading:

(1) Oemof repositories: https://github.com/orgs/oemof/repositories?q=&type=&language=&sort=stargazers

Component models of oemof-solph

- Basic components:
 - Sink
 - Source
 - Transformer
 - Storage
 - Bus
- Advanced components:
 - Thermal storage
 - CHP (Combined Heat and Power)
 - Heat pump
 - Generator with efficiency curve

Objective Function of oemof-solph

- Optimization goal: Minimize annual energy supply costs
 - Decision variables: Asset capacities and their dispatch

Costs of components

$$\min \sum_{i} (Capex(i)*CRF(i)+Opex_{fix}(i))*P_{inst}(i)+\sum_{i} \sum_{t} Opex_{var}(i)*E_{gen}(i,t)$$

$$i \in \{WEA,PV,BHKW,Speicher\}$$

$$t \in \{1...8760\}$$

Capex	Capital expenditure	EUR/kW
CRF	Capital recovery factor	-
$Opex_{fix}$	Fixed operational expenditure	EUR/(kW*a)
$Opex_{var}$	Variable operational expenditure	EUR/kWh
P_{inst}	Capacity of component	kW
E_{gen}	Generated electricity per timestep	kWh
i	Index of system components	-
\mathbf{t}	Index of time steps	-

Limitations

- Component models limited to linear representations
 - No generator efficiency curve
 - No charging efficiency dependent on SOC
- Assuming that the system operation constant over project lifetime
 - Replacing pre-existing capacity as they exist (brownfield)
 - No price changes (fuel, investment cost) included
 - No degradation of efficiencies over the lifetime
- Perfect foresight
- No power flow analysis

Excercise: Demand profiles with demandlib

Excercise: Oemof – Dispatch and Capacity Optimization

Excercise: Oemof – Linear Equation System

Files Ru	unning Clusters				
Select items to	Select items to perform actions on them.				
□ 0 ▼	□ 0 ▼ ■1				
☐ ☐ figu	ıres				
□ □ time	eseries				
□ <i>■</i> 1_d	dispatch.ipynb				
□ <i>■</i> 2_ir	nvestment_optimization.ipynb				
□ <i>■</i> 3_n	micro_grid_basic_lp_file.ipynb				
□ ┛ 4_m	micro_grid_custom_constraint_renewable_minimum.ipynb				
□ / den	mandlib.ipynb				
□ □ cbc	:.exe				
□ □ mic	ro_grid_basic.lp				
□ □ mic	cro_grid_custom_renewable_minimum.lp				
□ □ REA	ADME.md				
□ □ requ	uirements.txt				

Learnig Outcomes of this Session

- Oemof packages, oemof.solph
- Objective function
- Limitations

Thank you for your participation ©

E-Mail: <u>martha.Hoffmann@rl-kolleg.de</u>

Web: https://www.reiner-lemoine-stiftung.de

/kolleg/team/martha-hoffmann

License

Except where otherwise noted, this work and its content (texts and illustrations) are licensed under the Attribution 4.0 International (CC BY 4.0)

See license text for further information.

Please cite as: "Title of presentation" Martha Hoffmann | <u>CC BY 4.0</u>