Implementing Logistic Regression Models in R

Vitthal Srinivasan CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Set up a logistic regression to predict whether a stock will rise or fall

Solve this logistic regression in R

Extend the logistic regression to include multiple explanatory variables

Ease of Prototyping

Excel is the fastest prototyping tool out there

Robustness and Reuse

No free lunches

"Make the common use-case easy and the difficult use-case possible."

Regression: Excel, R or Python?

Excel

Create a regression slide for an important presentation

R

Create a regression case study for a seminar

Python

Build trading model that scrapes websites, combines sentiment analysis and regression

Regression: Excel, R or Python?

R for Regression

Use **R for regression**: It makes sense whatever your use-case

Demo

Implement Logistic Regression in R

Logistic Regression in R

Cause
Changes in S&P 500

EffectChanges in price of Google Stock

Logistic Regression in R

y = Returns on Google stock (GOOG)

x = Returns on S&P 500 (S&P500)

Logistic Regression in R

DATE	GOOG	S&P500
2017-02-01	813.67	2316.10
2017-01-01	796.79	2278.87
2005-01-01	97.71	1181.27

Download prices and we refer to 'Adjusted Close'

Data Frame: Data in Rows and Columns

AD HICTED

DATE	OPEN	A	CLOSE
2016-12-01	772	• • •	779
2016-11-01	758	• • •	747
2006-01-01	302	• • •	309

Each column represents 1 variable (a list or vector)

Each row represents 1 observation

From File to Data Frame

DATE	OPEN	•••	ADJUSTED CLOSE
2016-12- 01	772	• • •	779
2016-11- 01	758	• • •	747
2006-01 -01	302	• • •	309

File

Data Frame

Never Regress Non-Stationary Data

Smoothly trending data will lead to poor quality regression models

First Differences

$$y'_{12} = \log y_2 - \log y_1$$

$$x'_{12} = \log x_2 - \log x_1$$

Regress y' and x'

Log Differences

$$y'_{12} = (y_2 - y_1)/y_1$$

$$x'_{12} = (x_2 - x_1)/x_1$$

Regress y' and x'

Returns

Take first differences of smooth data converting either to log differences or returns

DATE	GOOG. PRICE	NASDAQ. PRICE	
2016-12-01	779	5550	Ro
2016-11-01	747	5324	
2006-01-01	309	1900	Ro

Row 1

goog

Row nrow(goog)

Column 1

goog[-nrow(goog),-1]

goog[-nrow(goog),-1]

Element-wise Operations

779	5550	747	5324		779/747	5550/5324
					• • •	• • •
				=		
					•••	•••

goog[-nrow(goog),-1]/ goog[-1,-1]

Prices to Returns

779/747	5550/5324		1	1		779/
•••	• • •		1	1		
		-	1	1	=	
			1	1		
	***		1	1		

779/747 - 1	5550/5324 -1
• • •	• • •

This converts prices to returns

Using Logistic Regression in R

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

P(y) = Probability of Google going up in the current month i x = Returns on S&P 500 for current month

Multiple X Variables - Easy

A Much Harder Problem

Very difficult problem to solve - quant hedge funds are very interested in the answer

A Much Harder Problem

Very difficult problem to solve - quant hedge funds are very interested in the answer

Using Logistic Regression in R

Set up the Problem

Label GOOG returns as binary (1,0)

Using Logistic Regression in R

DATE	ACTUAL	PREDICTED
2005-01-01	NA	NA
2005-02-01	0	1
2005-03-01	0	0
2017-01-01	1	1
2017-02-01	1	1

Compare GOOG's actual labels vs. predicted labels

Summary

Logistic regression can be very easily implemented in R