物理实验报告

学号: __12311004 __ 姓名: 刘达洲 日期: __2025.3.7 __ 时间: 周五下午

1 实验名称:时间测量中随机误差的分布规律

2 实验目的

认识多次重复等精度测量过程中随机误差的离散性和分布规律,学习直接测量量的不确定度计算和表示方法。

3 实验原理

使用秒表重复测量音乐旋律周期 T_0 , 测量结果记为 T_1, T_2, \ldots, T_n 。当测量次数足够多时,测量结果服从正态分布:

$$p(T) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(T-\overline{T})^2}{2\sigma^2}\right)$$

其中 $\overline{T} = \frac{\sum_{i=1}^n T_i}{n}$ 为平均值, $\sigma = \sqrt{\frac{\sum_{i=1}^n (T-\overline{T})^2}{n-1}}$ 为标准差。置信区间 $[\overline{T} - k\sigma, \overline{T} + k\sigma]$ 的概率分别为 68.3% (k=1)、95.4% (k=2)、99.7% (k=3)。

• A 类不确定度

$$u_A = \frac{\sigma}{\sqrt{n}}$$

其中 σ 为数据的标准差,n为数据个数。

• B 类不确定度

• 不确定度的合成与扩展

$$u_p = \sqrt{(t_P u_A)^2 + (k_P u_B)^2}$$

其中 t_P 为 t 因子, k_P 为置信因子。

• 理论公式

$$T = \overline{T} \pm u_p, \quad P = 0.95$$

4 实验器材

电子秒表、电子节拍器、报告纸、中性笔。

5 实验内容

- 使用电子节拍器器重复测量周期 200 次
- 计算平均值和标准差
- 统计频率分布, 计算概率密度函数, 并据此绘制直方图
- 分析置信区间概率
- 计算测量不确定度

6 原始数据

序号	1	2	3	4	5	6	7	8	9	10
1	2.94	2.93	3.04	2.75	2.83	2.88	3.00	2.97	3.19	3.78
2	2.91	3.03	3.00	2.97	2.84	2.96	2.97	3.10	3.00	3.00
3	3.06	3.12	3.16	3.13	3.16	3.22	2.91	3.00	3.09	3.07
4	2.97	2.97	2.94	2.63	3.09	2.94	2.91	2.85	3.00	3.22
5	2.88	3.07	2.81	2.87	2.97	3.04	2.88	2.94	2.91	2.85
6	3.00	3.22	2.88	3.07	2.81	2.87	2.97	3.04	2.88	2.94
7	3.00	3.06	3.07	2.97	3.13	3.07	2.85	2.91	3.00	2.82
8	3.19	3.13	2.97	2.91	2.97	3.06	2.87	3.13	3.06	2.96
9	3.00	3.12	3.06	3.00	2.94	2.85	2.97	2.85	2.93	2.81
10	3.00	3.15	3.09	3.00	3.22	3.00	2.94	3.03	2.87	2.94
11	3.03	2.90	2.97	2.94	2.97	3.03	2.97	3.13	2.97	3.03
12	3.07	2.82	2.94	2.90	3.18	2.96	2.87	3.03	3.03	3.09
13	2.94	2.87	2.68	3.06	3.00	2.90	2.72	3.00	3.03	3.04
14	2.97	3.03	3.22	3.04	3.10	3.07	2.90	3.07	2.84	2.97
15	3.03	3.22	2.88	2.93	3.00	2.94	2.94	3.12	2.97	3.00
16	3.00	3.06	3.03	2.82	2.94	3.09	3.07	3.12	3.13	2.72
17	2.87	3.00	3.03	2.94	2.97	3.13	2.87	3.28	3.18	3.00
18	3.07	3.00	3.25	3.13	2.97	2.75	2.90	3.10	3.03	3.07
19	3.19	3.07	3.07	3.00	3.06	3.22	3.09	3.00	2.78	2.91
20	3.12	3.06	3.00	2.94	2.85	2.97	2.85	2.93	2.81	3.00

7 数据处理

7.1 原始数据

• 均值与标准差

平均值	标准差			
2.99975	0.126822146			

• 数据特征

统计量	值
平均值	2.99975
标准误差	0.00896768
中位数	3
众数	3
标准差	0.126822146
方差	0.016083857
峰度	6.547945993
偏度	0.994233401
区域	1.15
最小值	2.63
最大值	3.78
求和	599.95
观测数	200

• 数据分布

区间	区间中点	频率	概率	概率密度	正态分布值
[2.60, 2.63]	2.615	0	0	0.00	0.03
[2.63, 2.66]	2.645	1	0.005	0.17	0.06
[2.66, 2.69]	2.675	0	0	0.00	0.12
[2.69, 2.72]	2.705	1	0.005	0.17	0.21
[2.72, 2.75]	2.735	2	0.01	0.33	0.36
[2.75, 2.78]	2.765	2	0.01	0.33	0.57
[2.78, 2.81]	2.795	1	0.005	0.17	0.85
[2.81, 2.84]	2.825	3	0.015	0.50	1.22
[2.84, 2.87]	2.855	6	0.03	1.00	1.64
[2.87, 2.90]	2.885	14	0.07	2.33	2.09
[2.90, 2.93]	2.915	11	0.055	1.83	2.52
[2.93, 2.96]	2.945	10	0.05	1.67	2.87
[2.96, 2.99]	2.975	19	0.095	3.17	3.09
[2.99, 3.02]	3.005	20	0.1	3.33	3.14
[3.02, 3.05]	3.035	26	0.13	4.33	3.03
[3.05, 3.08]	3.065	19	0.095	3.17	2.76
[3.08, 3.11]	3.095	23	0.115	3.83	2.37
[3.11, 3.14]	3.125	9	0.045	1.50	1.93
[3.14, 3.17]	3.155	14	0.07	2.33	1.49
[3.17, 3.20]	3.185	3	0.015	0.50	1.08
[3.20, 3.23]	3.215	6	0.03	1.00	0.75
[3.23, 3.26]	3.245	7	0.035	1.17	0.48
[3.26, 3.29]	3.275	1	0.005	0.17	0.30
[3.29, 3.32]	3.305	1	0.005	0.17	0.17
[3.32, 3.35]	3.335	0	0	0.00	0.10
[3.35, 3.38]	3.365	0	0	0.00	0.05
[3.38, 3.41]	3.395	0	0	0.00	0.02
[3.41, 3.44]	3.425	0	0	0.00	0.01
[3.44, 3.47]	3.455	0	0	0.00	0.01
[3.47, 3.50]	3.485	0	0	0.00	0.00
[3.50, 3.53]	3.515	0	0	0.00	0.00
[3.53, 3.56]	3.545	0	0	0.00	0.00
[3.56, 3.59]	3.575	0	0	0.00	0.00
[3.59, 3.62]	3.605	0	0	0.00	0.00
[3.62, 3.65]	3.635	0	0	0.00	0.00
[3.65, 3.68]	3.665	0	0	0.00	0.00
[3.68, 3.71]	3.695	0	0	0.00	0.00
[3.71, 3.74]	3.725	0	0	0.00	0.00
[3.74, 3.77]	3.755	0	0	0.00	0.00
[3.77, 3.80]	3.785	1	0.005	0.17	0.00

• 直方图

图 1: 概率密度函数 & 正态分布

• 置信区间概率

	置信区间	实际概率	理论值
0	[Τ̄-1σ, Τ̄+1σ]	0.705	0.6827
1	[Τ̄-2σ, Τ̄+2σ]	0.970	0.9545
2	[Τ-3σ, Τ+3σ]	0.995	0.9973

图 2: 置信区间

7.2 不确定度

$$C = 3, t_P = k_P = 1.96$$

• A 类不确定度

$$u_A = \frac{\sigma}{\sqrt{n}} = 0.009$$

• B 类不确定度

$$u_B = \sqrt{\Delta_{\text{ft}}^2 + \Delta_{\text{fl}}^2}/C = 0.067$$

• 不确定度的合成与扩展

$$u_p = \sqrt{(t_P u_A)^2 + (k_P u_B)^2} = 0.132$$

7.3 完整表达式

$$T = 2.9998 \pm 0.132s, P = 0.95$$

8 思考题

- 1. 若测量结果偏离正态分布,请分析其主要原因。
- 样本量不足: 虽然测量次数为 200 次, 但若实际有效数据不足或存在重复性偏差, 中心极限定理的作用可能受限, 导致分布未充分接近正态。
- 系统误差干扰: 如秒表仪器误差未校准、实验者反应时间存在固定偏向(如总是提前/延后按键),导致误差分布不对称。
- 人为操作因素:实验者疲劳或练习效应导致测量结果随时间变化(如前期反应慢、后期反应快),引入非随机趋势。
- 数据处理不当: 直方图区间步长 ΔT 选择不合理(过大或过小), 使概率密度分布失真, 掩盖正态特性。
 - 2. 在不考虑系统误差的前提下, 多次等精度测量的随机误差分布有哪些特征?
- 单峰性: 误差绝对值较小的值出现概率较大, 形成分布曲线的单一峰值。
- 对称性:正负误差出现的概率相等,分布曲线关于均值对称。
- 有界性: 随机误差的绝对值存在实际界限, 极大误差概率趋近于零。
- 抵偿性: 随着测量次数增加, 随机误差的算术平均值趋于零, 正负误差相互抵消。
- 正态性: 在独立同分布条件下,随机误差服从正态分布,其概率密度由均值与标准差唯一确定。

9 误差分析

- 人体反应时间的不确定性
- 秒表机构的机械延迟
- 环境噪声对听觉判断的影响
- 注意力不集中导致测量偏差

10 实验结论

测量数据基本符合正态分布规律,但存在系统误差。95% 置信水平下的测量结果为 $T=2.9998\pm0.132s,\ P=0.95$ 。