

Areas of Parallelograms and Triangles Ex 15.3 Q1

Answer:

Given: Here from the given figure we get

- (1) ABCD is a quadrilateral with base AB,
- (2) AABD is a right angled triangle
- (3) ΔBCD is a right angled triangle with base BC right angled at B

To Find: Area of quadrilateral ABCD

Calculation:

In right triangle ΔBCD , by using Pythagoreans theorem

$$CD^2 = BD^2 + BC^2$$

$$\Rightarrow$$
 17² = BD²+8²

$$\Rightarrow$$
 BD² = 17² - 8²

$$\Rightarrow$$
 BD² = 289 - 64

$$\Rightarrow$$
 BD² = 225

$$\Rightarrow$$
 BD = 15 cm

since area of triangle = $\frac{1}{2}$ base \times height .So

Area of right triangle
$$\triangle BCD = \frac{1}{2} \times BC \times BD$$

= $\frac{1}{2} \times 8 \times 15$
= 60 cm^2

In right triangle ABD

$$BD^{2} = AB^{2} + AD^{2}$$

$$15^{2} = AB^{2} + 9^{2}$$

$$AB = \sqrt{225 - 81}$$

$$= \sqrt{144}$$

$$= 12 \text{ cm}$$

Area of right triangle
$$\triangle ABD = \frac{1}{2} \times AB \times AD$$

= $\frac{1}{2} \times 12 \times 9$
= 54 cm^2

Area of
$$\square ABCD = area(\triangle ABD) + area(\triangle BCD)$$

= $54 + 60$
= 114 cm^2

Hence we get Area of quadrilateral ABCD = $\boxed{114 \text{ cm}^2}$

Areas of Parallelograms and Triangles Ex 15.3 Q2

Answer:

Given: Here from the given figure we get

- (1) PQRS is a square,
- (2) T is the midpoint of PS which means $TS = \frac{1}{2}PS$
- (3) U is the midpoint of PS which means $QU = \frac{1}{2}QR$
- (4) QU = 8 cm

To find: Area of \triangle OTS

Calculation:

Since it is given that PQ = 8 cm. So

PS = SR = QR = 8 cm (side of square are equal)

$$TS = \frac{1}{2}SR$$
$$= \frac{1}{2}(8)$$

$$TS = 4 \text{ cm}$$

Since T and U are the mid points of PS and QR respectively. So

$$TO = \frac{1}{2}PQ$$
$$= \frac{1}{2} \times 8$$
$$= 4 \text{ cm}$$

Therefore area of triangle OTS is equals to

$$= \frac{1}{2} \times \text{base} \times \text{height}$$

$$= \frac{1}{2} \times 4 \times 4$$

$$= 8 \text{ cm}^2$$

Hence we get the result that Area of triangle OTS is 8 cm2

******* END *******