

Introduction to Embedded Systems Design

Ravi Suppiah Lecturer, NUS SoC

Introduction

- What is an Embedded System?
 - Application-specific computer system
 - Built into a larger system
- Why add a computer to the larger system?
 - Better performance
 - More functions and features
 - Lower cost
 - More dependability
- Economics
 - Microcontrollers (used for embedded computers) are high-volume, so recurring cost is low
 - "Nonrecurring" cost dominated by software development
- Networks
 - Often embedded system will use multiple processors communicating across a network to lower parts and assembly costs and improve reliability

Options for Building Embedded Systems

National Unive							
Implementation	Design Cost	Unit Cost	Upgrades & Bug Fixes	Size	Weight	Power	System Speed
Discrete Logic	low	mid	hard	large	high	?	very fast
ASIC	high (\$500K/ mask set)	very low	hard	tiny - 1 die	very low	low	extremely fast
Programmable logic – FPGA, PLD	low	mid	easy	small	low	medium to high	very fast
Microprocessor + memory + peripherals	low to mid	mid	easy	small to med.	low to moderate	medium	moderate
Microcontroller (int. memory & peripherals)	low	mid to low	easy	small	low	medium	slow to moderate
Embedded PC	low	high	easy	medium	moderate to high	medium to high	fast

Example Embedded System: Bike Performance Tracker

- Functions
 - Speed and distance measurement
- Constraints
 - Size
 - Cost
 - Power and Energy
 - Weight
- Inputs
 - Wheel rotation indicator
 - Mode key
- Output
 - Liquid Crystal Display
- Low performance MCU
 - 8-bit

Gasoline Automobile Engine Control Unit

Functions

- Fuel injection
- Air intake setting
- Spark timing
- Exhaust gas circulation
- Electronic throttle control
- Knock control

Constraints

- Reliability in harsh environment
- Cost
- Weight

Many Inputs and Outputs

- Discrete sensors & actuators
- Network interface to rest of car
- High Performance MCU
 - 32-bit, 3 MB flash memory, 150 300 MHz

Benefits of Embedded Computer Systems

National University of Singapore

- Greater performance and efficiency
 - Software makes it possible to provide sophisticated control

Lower costs

- Less expensive components can be used
- Manufacturing costs reduced
- Operating costs reduced
- Maintenance costs reduced

More features

- Many not possible or practical with other approaches
- Better dependability
 - Adaptive system which can compensate for failures
 - Better diagnostics to improve repair time

Embedded System Functions

- Closed-loop control system
 - Monitor a process, adjust an output to maintain desired set point (temperature, speed, direction, etc.)
- Sequencing
 - Step through different stages based on environment and system
- Signal processing
 - Remove noise, select desired signal features
- Communications and networking
 - Exchange information reliably and quickly

Attributes of Embedded Systems

- Interfacing with larger system and environment
 - Analog signals for reading sensors
 - Typically use a voltage to represent a physical value
 - Power electronics for driving motors, solenoids
 - Digital interfaces for communicating with other digital devices
 - Simple switches
 - Complex displays

Example Analog Sensor - Depth Gauge

Figure 4. Output vs. Absolute Pressure

Pressure (ref: to sealed vacuum) in kPa

1. Sensor detects pressure and generates a proportional output voltage V_sensor

ADC

Output Codes

111..111

ADC Code

000..001

- 2. ADC generates a proportional digital integer (code) based on V sensor and V ref
- 3. Code can convert that integer to a something more useful
 - I. first a float representing the voltage,
 - 2. then another float representing pressure,
 - 3. finally another float representing depth

Microcontroller vs. Microprocessor

- Both have a CPU core to execute instructions
- Microcontroller has peripherals for concurrent embedded interfacing and control
 - Analog
 - Non-logic level signals
 - Timing
 - Clock generators
 - Communications
 - point to point
 - network
 - Reliability and safety

Attributes of Embedded Systems

- Concurrent, reactive behaviors
 - Must respond to sequences and combinations of events
 - Real-time systems have deadlines on responses
 - Typically must perform multiple separate activities concurrently

MCU Hardware & Software for Concurrency

- CPU executes instructions from one or more thread of execution
- Specialized hardware peripherals add dedicated concurrent processing
 - DMA transferring data between memory and peripherals
 - Watchdog timer
 - Analog interfacing
 - Timers
 - Communications with other devices
 - Detecting external signal events
- Peripherals use interrupts to notify CPU of events

Concurrent Hardware & Software Operation

 Embedded systems rely on both MCU hardware peripherals and software to get everything done on time

Attributes of Embedded Systems

- Fault handling
 - Many systems must operate independently for long periods of time, requiring system to handle likely faults without crashing
 - Often fault-handling code is larger and more complex than the normal-case code
- Diagnostics
 - Help service personnel determine problem quickly

Constraints

- Cost
 - Competitive markets penalize products which don't deliver adequate value for the cost
- Size and weight limits
 - Mobile (aviation, automotive) and portable (e.g. handheld) systems
- Power and energy limits
 - Battery capacity
 - Cooling limits
- Environment
 - Temperatures may range from -40°C to 125°C, or even more

Impact of Constraints

- Microcontrollers used (rather than microprocessors)
 - Include peripherals to interface with other devices, respond efficiently
 - On-chip RAM, ROM reduce circuit board complexity and cost
- Programming language
 - Programmed in C rather than Java (smaller and faster code, so less expensive MCU)
 - Some performance-critical code may be in assembly language
- Operating system
 - Typically no OS, but instead simple scheduler (or even just interrupts + main code) (foreground/background system)
 - If OS is used, likely to be a lean RTOS

Target Board - FRDM-KL25Z

- 32-bit Cortex M0+ Processor Core
- Freescale Kinetis MKL25Z128VLK4 processor
 - Extremely low power use
 - 48 MHz max clock
 - On-chip 128 KB ROM, 16 KB RAM
 - Wide range of peripherals, including USB on-the-go
- FRDM-KL25Z board
 - \$13 (USD)
 - Peripherals: 3-axis accelerometer, RGB LED, capacitive touch slider
 - Expansion ports are compatible with Arduino shield ecosystem – endless opportunities, low-cost hardware
 - mbed.org enabled online software development toolchain, reusable code

The End!

- Thank You!
- Lets go onto the next adventure!

