Traduction automatique et attention

Introduction au TAL

Xiaoou Wang

Défis

 Faire comprendre l'utilité des réseaux de neurones dans la traduction automatique

 Contexte, développement et enjeux de la traduction automatique

Faire comprendre la langue aux machines

• La langue sous sa forme écrite est constituée d'utités discrètes

Pour l'ordinateur

chat à char -> passage discret, il n'existe rien d'intermédiaire entre les deux unités

degré de noirceur pour les images (qch. entre chat et char)

Pour une représentation continue

Male-Female

Verb tense

Une représentation continue

début : word2vec

Efficient Estimation of Word Representations in Vector Space

hypothèse distributionnelle

Tomas Mikolov

Google Inc., Mountain View, CA tmikolov@google.com

Greg Corrado

Google Inc., Mountain View, CA gcorrado@google.com Kai Chen

Google Inc., Mountain View, CA kaichen@google.com

Jeffrey Dean

Google Inc., Mountain View, CA jeff@google.com

'You shall know a word by the company it keeps'

Firth, John R., 1957. Modes of meaning. Oxford: Oxford University Press.

Implémentation

 Ce que l'on sait -> quels mots entourent le mot <dog> (distribution de probabilité)

- Supposons qu'on représente les mots < heard, a, dog, barking, in> par [x_i,y_i], comment fait-t-on pour arriver à la distribution de [0.1,0.2,0.3,0.4]?
- X_i,y_i -> word embeddings

Comment représenter une phrase ?

Faire la moyenne des word embeddings

Jean adore le chat. = Le chat adore Jean.

Comment représenter une phrase ?

RNN, un modèle autorégressif

Actualiser la représentation mentale d'une phrase au fil des mots.

Jean adore le chat.

```
1 state = init_state()
2 state = update(state, v("Jean"))
3 state = update(state, v("adore"))
4 state = update(state, v("le"))
5 state = update(state, v("chat"))
6 state = update(state, v("."))
```

Pourquoi représenter la phrase de manière continue

- Analyse sentimentale
- Classification de textes
- etc.

Améliorations

 On comprend mieux les mots quand on lit la phrase dans les deux sens.

 Jean lui montre le chat. (lui est souvent suivi d'un verbe et le précédé d'un verbe)

RNN bidirectionnel

• mettre bout à bout deux embeddings (forward et backward)

Problème

- Plus la phrase est longue, plus il est difficile d'encoder la phrase.
- Principale contribution de l'article

```
1 state = init_state()
2 state = update(state, v("Jean"))
3 state = update(state, v("adore"))
4 state = update(state, v("le"))
5 state = update(state, v("chat"))
6 state = update(state, v("."))
```

```
1 def rnn_simple(sentence):
2    word1, word2, word3, word4, word5, word6 = sentence
3    state = init_state()
4
5    state = f(w1 * f(w1 * f(w1 * f(w1 * f(w1 * f(w1 * state + w2 * word1 + b) + w2 * word2 + b) + w2 * word3 + b) + w2 * word4 + b) + w2 * word5 + b) + w2 * word6 + b)
6    return state
```

Petite histoire de machine translation

- système expert, Georgetown-IBM experiment, seconde guerre mondiale
- trouver la traduction d'un mot dans un dictionnaire de correspondance
- rédiger des règles pour aligner les mots
- Vite intenable!

spanish

chinese

japanese

1980s

• Statistical machine translation (SMT), plus de système expert

utiliser un corpus bilingue (bitextes)

 trouver des traductions candidates susceptibles de correspondre au texte original

Main » HomePage

Welcome to Moses!

Moses is a statistical machine translation system that allows you to automatically train translation models for any language problems.

THE USE OF THE PROPERTY OF THE

Moses statistical machine translation system

Moses

Overview
Manual D
Online Demos
FAQ
Mailing Lists

Get Involved Recent Changes

2. Getting Started

Source Installation
Baseline System
Packages
Releases
Sample Data

3 Tutorials

Links to Corpora

Welcome to Moses!

Moses is a **statistical machine translation system** that allows you to automatically train translation models for any language pair. All you need is a collection o algorithm quickly finds the highest probability translation among the exponential number of choices.

News

- 5 October 2017 Moses v 4.0 has been released!
- 8 September 2016 Moses2, a fast drop-in replacement for the Moses decoder
- · 12 December 2015 Add a new feature function to Moses
- 17 June 2015 Slate for Windows
- 15 June 2015 Moses, and more, on Amazon cloud Box
- · 1 June 2015 Developing Moses with Eclipse video
- · 4 February 2015 Moses v 3.0 has been released!
- · 21 July 2014 Moses now has nightly speed tests
- · 14 July 2014 How to compile Moses with Eclipse
- 4 March 2014 Bug fix release for Moses, now version 2.1.1
- 3 February The 2014 Machine Translation Marathon will take place in Trento, Italy from 8-13th September.
- 21 January 2014 Moses v 2.1 has been released!
- 26 March 2013 The 2013 Machine Translation Marathon (MTM2013) will take place in Prague, Czech Republic from 9-14th September
- 5 March 2013 What do you want to see in Moses v2.0? See here for projects and how to suggest them.
- 28 January 2013 Moses v 1.0 has been released!
- 12 October 2012 Moses v 0.91 released
- February 2012: Moses development is being supported by the EU under the MosesCore project
- . September 2011: Moses now has a cruise control page to see the status of the current builds
- September 2011: Moses is now hosted on github

from 8-13th September.

e in Prague, Czech Republic from 9-: to suggest them.

re project ent builds

En 2015

neural machine translation (NMT)

réseau de neurones (RNN bidirectionnel) + end-to-end

end-to-end, vous avez dit?

Avantage de NMT

 "Unlike the traditional statistical machine translation, the neural machine translation aims at building a single neural network that can be jointly tuned to maximize the translation performance

• Statistical machine translation (SMT), plus de système expert

- utiliser un corpus bilingue (bitextes)
- <u>trouver</u> des <u>traductions</u> candidates <u>susceptibles</u> de <u>correspondre</u> au <u>texte</u> original

De manière classique, SMT a besoin d'un modèle de langue pour choisir la bonne traduction, approche compone

Composante 1 -> trouver des bouts de traduction, composante 2 -> réagencement des segments 3 -> modèle de

Avantage de NMT

• En NMT, le système est structuré de manière à entraîner les componentes en même temps

Composante 1 (composante principale) : mécanisme d'attention

«We conjecture that the use of a fixed-length vector is a bottleneck in improving the performance of this basic encoder—decoder architecture, and propose to extend this by allowing a model to automatically (soft-)search for parts of a source sentence that are relevant to predicting a target word, without having to form these parts as a hard segment explicitly.»

Retournons au RNN

 Une phrase, quelle que soit sa longueur, est encodée dans un embedding [1.2,3.4,...,2.3]

The usual RNN, described in Eq. (1), reads an input sequence x in order starting from the first symbol x_1 to the last one x_{T_x} . However, in the proposed scheme, we would like the annotation of each word to summarize not only the preceding words, but also the following words. Hence, we propose to use a bidirectional RNN (BiRNN, Schuster and Paliwal, 1997), which has been successfully used recently in speech recognition (see, e.g., Graves *et al.*, 2013).

Retournons au RNN

Le décodeur (traducteur) ne dispose d'un seul embedding pour traduire toute la phrase, quelle que soit sa lo

Mécanisme d'attention

Que fait un traducteur humain?

Un traducteur humain ne mémorise pas la phrase, il traduit petit à petit, en se référant constamment à la partie pertinente de la phrase d'origine.

Au fil de la traduction, il focalise son attention sur une partie de la phrase.

Implémenter l'attention

Eléments principaux :

1, keys = values = les inputs (représentation de chaque mot)

Implémenter l'attention

Eléments principaux :

1, keys = values = les inputs (embeddings des mots)

2, Chaque key est comparée avec une query (le mot à traduire) grâce à une fonction d'atter f ----> une distribution de weights pour chaque input. Plus le poids est élevé, plus cet input est pertinent

«The context vector C_i depends on a sequence of annotations (h_1, \cdots, h_{Tx}) to which an encoder maps the input sentence. Each annotation h_i contains information about the whole input sequence with a strong focus on the parts surrounding the i-th word of the input sequence.»

Implémenter l'attention sur la machine

Eléments principaux :

3, Les inputs sont pondérés avec leur poids respectif pour produire une somme vectorielle.

«The context vector C_i depends on a sequence of annotations (h_1, \dots, h_{T_X}) to which an encoder maps the input sentence. Each annotation h_i contains information about the whole input sequence with a strong focus on the parts surrounding the i-th word of the input sequence.»

$$c_i = \sum_{i=1}^{T_x} lpha_{ij} h_j$$

Implémenter l'attention sur la machine

Eléments principaux :

Pour chaque nouveau mot à traduire (quer

le vecteur contextuel est donc distinct.

❖ Revisitons l'analogie avec le traducteur humain

Avantage de NMT

• En NMT, le système est structuré de manière à entraîner les componentes en même temps -> end-to-end

Autre bénéfice du vecteur contextuel : modèle d'alignement (composante 2)

We parametrize the alignment model a as a feedforward neural network which is jointly trained with all the other components of the proposed system.

We can understand the approach of taking a weighted sum of all the annotations as computing an expected annotation, where the expectation is over possible alignments.

Composante 3

2, Chaque key est comparée avec une query (le mot à traduire) grâce à une fonction d'attention f -> une distribution de weights pour chaque input. Plus le poids est élevé, plus cet input est pertinent.

Résultat quantitatif

- RNNsearch = RNN avec attention, RNNenc = RNN sans attention
- WMT '14 (corpus parallèle français-anglais)
- corpus : 348M mots | test : 3003 phrases

- One of the motivations behind the proposed approach was the use of a fixed-length context vector in the basic encoder-decoder approach. We conjectured that this limitation may make the basic encoder-decoder approach to underperform with long sentences.»
- RNNsearch50, especially, shows no performance deterioration even with sentences of length 50 or more.
- RNNsearch-30 even outperforms RNNencdec-50.

Résultat d'alignement

 «The strength of the soft-alignment, opposed to a hard-alignment, is evident. Any hard alignment will map [the] to [l'] and [man] to [homme]. This is not helpful for translation

 An additional benefit of the soft alignment is that it naturally deals with source and target phrases of different lengths, without requiring a counterintuitive way of mapping some words to or from nowhere ([NULL])

Conclusions et contributions principales

- Le réseau de neurones conçu par les auteurs forme un système end-toend, alors que les travaux précédents utilisent une approche considérent le réseau de neurones comme une composante d'un système (souvent SMT) dont le rôle est restreint (choisir la meilleure traduction candidate)
- Les approches précédentes utilisent un seul embedding pour encoder les phrases, entraînant une chute de performance lorsque la longueur de phrase est supérieure à 30 tokens. Le mécanisme d'attention proposé par les auteurs de l'article a permis d'éviter cette de chute de performance sur la traduction de l'anglais vers le français.
- Cet article constitue une véritable révolution et a inspiré le célèbre article « attention is all you need » de Vaswani, Ashish, et al.

Références principales

- Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
- Goldberg, Yoav. "A Primer on Neural Network Models for Natural Language Processing." ArXiv:1510.00726 [Cs], October 2, 2015. http://arxiv.org/abs/1510.00726.
- Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1, No. 2).
 Cambridge: MIT press.