Tsinghua-Berkeley Shenzhen Institute LEARNING FROM DATA Fall 2018

Programming Assignment 1

Issued: Tuesday 16th October, 2018 Due: Thursday 25th October, 2018

1.1. (5 points) Linear regression Consider the linear observation model

$$y = Ax + n$$

where \boldsymbol{A} is a $10\,000\times 10$ matrix, and $\boldsymbol{x},\boldsymbol{n}$ are column vectors with lengths 10 and 10 000. Use gradient descent to find the \boldsymbol{x} that minimizes the loss $\frac{1}{2}\|\boldsymbol{A}\boldsymbol{x}-\boldsymbol{y}\|_2^2$.

1.2. (5 points) Softmax regression of MNIST The MNIST database contains 60 000 training images and 10 000 testing images. In this task, each image of MNIST has been reshape to a column vector of length $28^2 = 784$. You need to calculate the gradient grad and update the weights soft max_weights in softmax regression.

Pa1_2018.py will walk you through this exercise.

Notice:

- Use matrix operations other than loops for efficiency. If the running time exceeds 5 minutes, you will get point deductions.
- In the second task, test accuracy is about 80% after 10 training epochs.