Fig. 1B Fig. 1A Lysine (mM) Glycerol (mM) **(A)** 12 **(B)** 30 10 8 20 6 10 0 40 80 60 40 60 80 0 Degradation time (days) Degradation time (days) Ascorbic acid (μΜ) 160 8.5 **(C) (D)** 8.0 120 **돌** 7.5 80 7.0 40 6.5 0 6.0 40 20 60 80 15 30 45 60 0 75 Degradation time (days) Degradation time (days) Fig. 1C Fig. 1D

Fig. 3A

Fig. 3B

	÷	GAPDH	HQ			රි	Collagen I			TGF-B1	چة 1	
Lane	Intensity (7 days)	%	Inten (14 d	Intensity % (14 days)	Intensity (7 days)	%	Inte (14	Intensity % (14 days)	Intensity (7 days)	ky %	Intensity (14 days)	%
	1609	100.00	1741	100.00	. 865	100.00	299	00.001	1516	1516 100.00	1422	100.00
2	1614	100.31	1730	99.37	1254	144.97	416	139.13	1915	126.32	2014	141.63
	. 1580	. 1580 ~ 98.20	1754	100.75	190	91.33	205	68.56	1480	97.63	1378	16.96
	1628	101.18	. 1921	101.49	1131	131.75	409	136.79	2028	133.17	1828	128.55

By William

Fig. 4B

Fig. 5

Fig. 6

Fig. 7

(a) An NCO-terminated prepolymer prepared by reacting two moles of disocyanate with one mole of a long-chain hydroxyl-terminated diol.

(b) Polyurethanes prepared by reacting equimolar quantities of an NCO-terminated prepolymer with (i) a short-chain diamine chain extender (yielding urea linkages) and (ii) a short-chain diol chain extender (yielding urethane linkages). The disocyanate and chain extender comprise the hard segment.

Fig. 8.

Fig. 9A Natural metabolites with diol functionality yielding urethane diols when coupled with a diisocyanate.

$$H_2N$$
 OH H_2N OH H_3C H_3C L-serine ethyl ester

pyridoxamine

Fig. 9B Natural metabolites with amine and hydroxyl functionality yielding urea diols when coupled with a disocyanate.

(a)
$$O=C=N$$
 $N=C=O$

butane diisocyanate

L-lysine ethyl ester diisocyanate

(b)
$$O=C=N$$
 $N=C=O$

hexamethylene diisocyanate (HDI)

$$O=C=N$$
 $N=C=O$

4,4'-methylenebis(phenylisocyanate) (MDI)

Figs. 10A and 10B.

Figs. 11A and 11B

(a)
$$_{2}$$
 $_{12}$ $_{12}$ $_{13}$ $_{14}$ $_{14}$ $_{15}$ $_$

Fig. 12A and 12B.

p-aminobenzoic acid

glycine

Fig. 13.

R

Fig. 14