TYPE-II

1. (1)	2. (1)	3. (2)	4. (4)
5. (2)	6. (3)	7. (3)	8. (3)
9. (4)	10. (3)	11. (3)	12. (4)
13. (3)	14. (2)	15. (*)	16. (1)
17. (2)	18. (3)	19. (4)	20. (2)
21. (2)	22. (3)	23. (4)	24. (3)

TYPE-III

1. (3)	2. (2)	3. (1)	4. (1)
5. (2)	6. (2)	7. (2)	8. (3)

TYPE-IV

1. (4)	2. (3)	3. (2)	4. (4)
5. (4)	6 . (1)	7. (3)	8. (1)
9. (3)	10. (2)	11. (1)	12. (2)
13. (3)	14. (1)	15. (3)	16. (3)
17. (2)	18. (2)	19. (3)	20. (2)
21. (1)	22. (4)	23. (1)	24. (3)
25. (3)			

TYPE-V

1. (4)	2. (2)	3. (4)	4. (1)
5. (3)	6. (4)	7. (2)	8. (1)
9. (1)	10. (2)	11. (3)	

TYPE-VI

1. (3)	2. (1)	3. (1)	4. (1)
5. (4)	6. (1)	7. (3)	8. (1)
9. (4)	10. (4)	11. (1)	12. (1)
13. (3)	14. (4)		

TYPE-VII

1. (1)	2. (1)	3. (1)	4. (4)
5. (3)	6. (4)	7. (1)	8. (2)
9. (3)	10. (2)	11. (3)	12. (4)
13. (2)	14. (4)	15. (2)	16. (1)
17. (3)	18. (3)	19. (3)	20. (1)
21. (1)	22. (2)	23. (2)	24. (*)
25. (3)	26. (1)	27. (4)	28. (2)
29. (1)	30. (1)		

EXPLANATIONS

TYPE-I

1. (2) Using Rule 1,

$$P = \frac{150 \times 100}{4} \times \frac{2}{1} = \mbox{ ? 7500}$$

2. (3) Using Rule 1, Principal (P) = ₹ 1600 T = 2 years 3 months

$$=\left(2+\frac{3}{12}\right)$$
yrs.= $\left(2+\frac{1}{4}\right)$ yrs.= $\frac{9}{4}$ yrs.

S.I = ₹ 252

R = % rate of interest per annum

$$\Rightarrow R = \frac{100 \times \text{S.I.}}{P \times t}$$

$$= \frac{100 \times 252}{1600 \times \frac{9}{4}}$$

Rate of interest = 7% per annum.

3. (4) If the principal be *x* and rate of interest be *r*% per annum, then

SI after 1 year =
$$920 - 880$$

= 740

∴ SI after 2 years =
$$₹80$$

$$\Rightarrow$$
 880 = x + 80

$$\Rightarrow x = ₹ (880 - 80) = ₹ 800$$

Aliter: Using Rule 12,

$$P = \left(\frac{A_2 T_1 - A_1 T_2}{T_1 - T_2}\right)$$

$$= \left(\frac{920 \times 2 - 880 \times 3}{2 - 3}\right)$$

$$= \left(\frac{1840 - 2640}{-1}\right)$$

$$= \frac{-800}{-1} = ₹800$$

4. (1) Using Rule 1,

If rate of interest be R% p.a. then

$$SI = \frac{Principal \times Time \times Rate}{100}$$

$$\therefore \ \frac{6000 \times 2 \times R}{100} + \frac{1500 \times 4 \times R}{100}$$

$$\Rightarrow$$
 120 R + 60R = 900

$$\Rightarrow R = \frac{900}{180} = 5\%$$

5. (4) Using Rule 1,

Let the rate of interest per annum be r%

According to the question,

$$\frac{5000 \times 2 \times r}{100} + \frac{3000 \times 4 \times r}{100} = 2200$$

$$\Rightarrow$$
 100r + 120r = 2200

$$\Rightarrow$$
 220 r = 2200

$$\Rightarrow r = \frac{2200}{220} = 10\%$$

6. (1) Simple interest for 2 years = ₹ (568 – 520) = ₹ 48

:. Interest for 5 years

$$= \stackrel{?}{\cancel{\stackrel{}{\cancel{}}}} \frac{48}{2} \times 5 = \stackrel{?}{\cancel{\stackrel{}{\cancel{}}}} 120$$

Principal = ₹ (520 - 120) = ₹ 400

Aliter: Using Rule 12,

$$P \ = \left(\frac{A_2 T_1 - A_1 T_2}{T_1 - T_2} \right)$$

$$= \left(\frac{568 \times 5 - 520 \times 7}{5 - 7}\right)$$

$$= \left(\frac{2840 - 3640}{-2}\right)$$

$$=\frac{-800}{-2}=$$
 $\stackrel{?}{<}400$

7. (3) Using Rule 1,

Simple interest gained from ₹500

$$=\frac{500 \times 12 \times 4}{100} = ₹ 240$$

Let the other Principal be x.

$$\therefore \frac{x \times 10 \times 4}{100} = 240$$

$$\Rightarrow x = \frac{240 \times 100}{40} = ₹ 600$$

8. (3) Difference in rate

$$=\left(8-7\frac{3}{4}\right)\% = \frac{1}{4}\%$$

Let the capital be ξx .

$$\frac{1}{4}\%$$
 of $x = 61.50$

$$\Rightarrow x = 61.50 \times 100 \times 4$$

9. (4) Using Rule 1, Let the sum lent to C be *x* According to the question,

$$\frac{2500 \times 7 \times 4}{100} + \frac{x \times 7 \times 4}{100} = 1120$$

or
$$2500 \times 28 + 28x = 112000$$

or
$$2500 + x = 4000$$

or
$$x = 4000 - 2500 = 1500$$

10. (4) S.I. for $1\frac{1}{2}$ years = ₹ (873 - 756) = ₹ 117

$$= \not \in \left(117 \times \frac{2}{3} \times 2\right) = \not \in 156$$

∴ Principal =
$$756 - 156 = ₹600$$

Now, P = 600 , T = 2,

$$S.I. = 156$$

$$\therefore R = \frac{100 \times \text{S.I.}}{P \times T}$$

$$=\frac{100\times156}{600\times2}=13\%$$

Aliter: Using Rule 12, Rate of interest

$$= \left(\frac{A_1 - A_2}{A_2 T_1 - A_1 T_2}\right) \times 100$$

$$= \left(\frac{756 - 873}{873 \times 2 - 756 \times \frac{7}{2}}\right) \times 100$$

$$=\left(\frac{-117}{1746-2646}\right)\times100$$

$$= \left(\frac{-117}{-900}\right) \times 100 = 13\%$$

11. (3) Using Rule 1,

$$P = \frac{A \times 100}{100 + r \times t}$$

$$=\frac{7000\times100}{100+\frac{10}{3}\times5}$$

$$= \frac{7000 \times 100 \times 3}{350} = ₹ 6000$$

12. (4) Using Rule 1,

Let the principal be x.

$$S.I. = \frac{Principal \times Rate \times Time}{100}$$

$$\Rightarrow 5400 = \frac{x \times 12 \times 3}{100}$$

$$\Rightarrow x = \frac{5400 \times 100}{12 \times 3} = \text{ } \boxed{15000}$$

13. (3) Principal + S.I. for $\frac{5}{2}$ years = ₹ 1012 ...(i) Principal + S.I. for 4 years = ₹ 1067.20 ...(ii) Subtracting equation (i) from (ii)

S.I. for
$$\frac{3}{2}$$
 years = ₹ 55.20

$$\therefore$$
 S.I. for $\frac{5}{2}$ years

$$=55.20 \times \frac{2}{3} \times \frac{5}{2} = ₹92$$

∴ Principal

$$\therefore \text{ Rate} = \frac{92 \times 100}{920 \times \frac{5}{2}}$$

$$= \frac{2 \times 92 \times 100}{920 \times 5} = 4\%$$

Aliter: Using Rule 12,

$$R = \left(\frac{A_1 - A_2}{A_2 T_1 - A_1 T_2}\right) \times 100$$

$$= \left(\frac{1012 - 1067.20}{1067.20 \times \frac{5}{2} - 1012 \times 4}\right) \times 100$$

$$=\frac{-55.2}{(2668-4048)}\times100$$

$$= \frac{-55.2}{-1380} \times 100$$

14. (2) Principal + SI for 2 years

Principal + SI for 7 years = ₹ 1020 (ii)

Subtracting equation (i) from (ii) get,

SI for 5 years

= ₹ (1020 - 720) = ₹ 300

∴ SI for 2 years

$$= ₹ 300 × \frac{2}{5} = ₹ 120$$

- ∴ Principal
- = ₹ (720 120) = ₹ 600

Aliter: Using Rule 12,

$$P = \left(\frac{A_2 T_1 - A_1 T_2}{T_1 - T_2}\right)$$

$$=\left(\frac{1020\times2-720\times7}{2-7}\right)$$

$$= \left(\frac{2040 - 5040}{-5}\right)$$

$$= \frac{-3000}{-5} = \text{ } 600$$

15. (4) Using Rule 1,

The sum of money will give ₹ 365 as simple interest in a year.

$$\Rightarrow$$
 S.I. = $\frac{PRT}{100}$

$$\Rightarrow$$
 365 = $\frac{P \times 5 \times 1}{100}$

$$\Rightarrow P = \frac{365 \times 100}{5} = ₹7300$$

16. (3) Using Rule 1,

Let the sum be x.

Using formula, $I = \frac{PRT}{100}$ we have

$$\frac{x \times \frac{15}{12} \times \frac{15}{2}}{100} - \frac{x \times \frac{8}{12} \times \frac{25}{2}}{100}$$

$$\Rightarrow \frac{25x}{2400} = 32.50$$

$$\Rightarrow x = \frac{32.50 \times 2400}{25} = 3120$$

- ∴ Required sum = ₹3120
- **17.** (1) Let each instalment be x

$$\left(x + \frac{x \times 5 \times 1}{100}\right) + \left(x + \frac{x \times 5 \times 2}{100}\right)$$

$$+\left(x+\frac{x\times5\times3}{100}\right)+x=6450$$

$$\Rightarrow \left(x + \frac{x}{20}\right) + \left(x + \frac{x}{10}\right) +$$

$$\left(x + \frac{3x}{20}\right) + x = 6450$$

$$\Rightarrow \frac{21x}{20} + \frac{11x}{10} + \frac{23x}{20} + x = 6450$$

$$\Rightarrow \frac{21x + 22x + 23x + 20x}{20}$$

$$= 6450$$

$$\Rightarrow \frac{86x}{20} = 6450$$

$$\Rightarrow x = \frac{6450 \times 20}{86} = 71500$$

Aliter: Using Rule 10, Equal instalment

$$= \frac{6450 \times 200}{4[200 + (4-1) \times 5]}$$

$$= \frac{6450 \times 200}{4(215)}$$

$$= \frac{6450 \times 50}{215} = ₹ 1500$$

18. (1) Using Rule 1, Interest = ₹ (81-72)= ₹ 9 Let the time be t years.

Then,
$$9 = \frac{72 \times 25 \times t}{4 \times 100}$$

$$\Rightarrow t = \frac{9 \times 400}{72 \times 25} = 2 \text{ years.}$$

19. (1) Using Rule 1,

Time from 11 May to 10 September, 1987

$$= 21 + 30 + 31 + 31 + 10$$

= 123 days

$$\therefore \text{ Time} = 123 \text{ days} = \frac{123}{365} \text{ year}$$

∴ S.I. =
$$\frac{7300 \times 123 \times 5}{365 \times 100} = ₹ 123$$

20. (3) Using Rule 1,

Case I:

S.I. =
$$\frac{5000 \times 2 \times 4}{100}$$
 = ₹ 400

Case II:

S.I. =
$$\frac{5000 \times 25 \times 2}{100 \times 4}$$
 = ₹ 625

∴ Gain = ₹ (625 – 400) = ₹ 225

21. (3) Using Rule 1,

Let the sum lent at 4% = Rs.x:. Amount at 5% = (16000 - x)According to the question,

$$\frac{x \times 4 \times 1}{100} + \frac{(16000 - x) \times 5 \times 1}{100}$$

= 700

$$\Rightarrow 4x + 80000 - 5x = 70000$$

$$\Rightarrow x = 80000 - 70000$$

= ₹ 10000

22. (4) Using Rule 1, After 10 years,

SI =
$$\frac{1000 \times 5 \times 10}{100}$$
 = ₹ 500

Principal for 11th year = 1000 + 500 = ₹ 1500 SI = 7 (2000 - 1500) = 7 500

$$\therefore T = \frac{SI \times 100}{P \times R} = \frac{500 \times 100}{1500 \times 5}$$

$$= \frac{20}{3} \text{ years} = 6\frac{2}{3} \text{ years}$$

∴Total time =
$$10 + 6\frac{2}{3}$$

$$= 16\frac{2}{3}$$
 years

P + S.I. for 5 years = 5200 ...(i) $P + SI \text{ for 7 years} = 5680 \dots (ii)$ On subtracting equation (i) from (ii),

SI for 2 years = 480

∴ SI for 1 year = ₹ 240

∴ From equation (i),

 $P + 5 \times 240 = 5200$

⇒ P = 5200 - 1200 = ₹ 4000

$$\therefore R = \frac{SI \times 100}{T \times P}$$

$$=\frac{240\times100}{1\times4000}=6\%$$

$$R = \left(\frac{A_1 - A_2}{A_2 T_1 - A_1 T_2}\right) \times 100$$

$$= \left(\frac{5200 - 5680}{5680 \times 5 - 5200 \times 7}\right) \times 100$$

$$= \frac{-480}{28400 - 36400} \times 100$$

$$= \frac{-480}{-8000} \times 100$$

24. (3) Using Rule 1,

$$\therefore Rate = \frac{S.I. \times 100}{Principal \times Time}$$

$$= \frac{156 \times 100}{800 \times 3} = 6.5\% \text{ per annum}$$

 \therefore New rate = 10.5%

$$\therefore S.I. = \frac{Principal \times Time \times Rate}{100}$$

∴ Amount = 800 + 252 = ₹ 1052

25. (1) Using Rule 1,

Let the rate of interest be R per cent per annum.

$$\therefore \frac{400 \times 2 \times R}{100} + \frac{550 \times 4 \times R}{100}$$

$$+\frac{1200 \times 6 \times R}{100} = 1020$$

 \Rightarrow 8R + 22 R + 72 R = 1020

⇒ 102 R= 1020

$$\Rightarrow R = \frac{1020}{102} = 10\%$$

26. (1) Using Rule 1,

$$4200 = \frac{29400 \times 6 \times R}{100}$$

$$\Rightarrow R = \frac{4200}{294 \times 6} = \frac{50}{21} = 2\frac{8}{21}\%$$

27. (2) Using Rule 1,

Let the amount lent at 4% be x \therefore Amount lent at 5% = (60000 - x)According to the question,

$$\frac{(60000 - x) \times 5 \times 1}{100} + \frac{x \times 4 \times 1}{100}$$

 \Rightarrow 300000 - 5x + 4x = 256000

 $\Rightarrow x = 300000 - 256000$

= ₹ 44000

28. (4) Principal + interest for 8 years= ₹ 2900... (i)

Principal + interest for 10 years

Subtracting equation (i) from (ii) Interest for 2 years = ₹ 100

: Interest for 8 years

$$= \frac{100}{2} \times 8 = 7400$$

From equation (i),

Principal = ₹ (2900 - 400)

= ₹ 2500

$$\therefore Rate = \frac{S.I \times 100}{Time \times Principal}$$

$$=\frac{400\times100}{8\times2500}=2\%$$

Aliter: Using Rule 12,

$$R = \left(\frac{A_1 - A_2}{A_2 T_1 - A_1 T_2}\right) \times 100$$

$$= \left(\frac{2900 - 3000}{3000 \times 8 - 2900 \times 10}\right) \times 100$$

$$= \left(\frac{-100}{24000 - 29000}\right) \times 100$$

$$= \frac{-100}{-5000} \times 100$$

$$= 296$$

29. (1) Using Rule 1,

$$Time = \frac{SI \times 100}{Principal \times Rate}$$

$$= \frac{1080 \times 100}{3000 \times 12} = 3 \text{ years}$$

30. (3) Interest for 1 year = ₹ (925 - 850) = ₹ 75

:. If a sum becomes a_1 in t_1 years and a_2 in t_2 years then rate of

interest =
$$\frac{100(a_2 - a_1)}{(a_1t_2 - a_2t_1)}$$
%

$$=\frac{100(925-850)}{850\times 4-3\times 925}=\frac{7500}{625}=12\%$$

$$\therefore Principal = \frac{SI \times 100}{Time \times Rate}$$

$$= \frac{75 \times 100}{1 \times 12} = ₹ 625$$

Aliter: Using Rule 12,

P =
$$\left(\frac{A_2T_1 - A_1T_2}{T_1 - T_2}\right)$$

= $\frac{925 \times 3 - 850 \times 4}{3 - 4}$
= $\frac{2775 - 3400}{-1}$
= $\frac{-625}{-1}$ = ₹ 625

31. (2) Using Rule 1, S.I. = 2641.20 - 1860 = ₹ 781.2

$$Time = \frac{S.I.\times100}{Principal\times Rate}$$

$$= \frac{781.2 \times 100}{1860 \times 12} = 3.5 = 3\frac{1}{2} \text{ years}$$

32. (2) Using Rule 18 of 'percentage' chapter,

Present population

$$= 10000 \left(1 - \frac{20}{100} \right)^2$$
$$= 10000 \times \frac{4}{5} \times \frac{4}{5} = 6400$$

33. (3) Using Rule 1, Annual interest = 365 × 2 = ₹ 730

$$Principal = \frac{S.I.\times100}{Time \times Rate}$$

$$=\frac{730\times100}{1\times5}$$
 = ₹ 14600

34. (4) If principal = x and rate = r% per annum, then

$$1380 = x + \frac{x \times 3 \times r}{100}$$
(i)

$$1500 = x + \frac{x \times 5 \times r}{100}$$
(ii)

S.I. for two years = 1500 - 1380 = ₹ 120

$$\therefore \frac{x \times 2 \times r}{100} = 120$$

$$\therefore \frac{xr}{100} = 60 \dots \text{(iii)}$$

:. From equation (i)

$$1380 = x + 60 \times 3$$

$$\Rightarrow x = 1380 - 180 = ₹ 1200$$

From equation (iii)

$$\frac{1200 \times r}{100} = 60$$

$$\Rightarrow r = \frac{6000}{1200} = 5\%$$
 per annum

Aliter: Using Rule 12,

$$R = \left(\frac{A_1 - A_2}{A_2 T_1 - A_1 T_2}\right) \times 100 \%$$

$$= \left(\frac{1380 - 1500}{1500 \times 3 - 1380 \times 5}\right) \times 100\%$$

$$= \frac{-120}{4500 - 6900} \times 100$$

$$= \frac{-120}{-2400} \times 100$$

- 50%

35. (3) S.I. for 1 year = 14250 - 12900 = Rs. 1350 S.I. for 4 years = 1350 × 4 = ₹ 5400

> ∴ Principal = 12900 – 5400 = ₹ 7500

$$\therefore \text{ Rate} = \frac{\text{S.I.} \times 100}{\text{Principal} \times \text{Time}}$$

$$= \frac{5400 \times 100}{7500 \times 4}$$

= 18% per annum

Aliter: Using Rule 12,

$$R = \left(\frac{A_1 - A_2}{A_2 T_1 - A_1 T_2}\right) \times 100$$

$$= \left(\frac{12900 - 14250}{14250 \times 4 - 12900 \times 5}\right) \times 100$$

$$= \frac{-1350}{57000 - 64500} \times 100$$

$$= \frac{1350}{7500} \times 100$$

= 18%

36. (1) Using Rule 1,

Required time = t years

$$S.I. = \frac{Principal \times Rate \times Time}{100}$$

$$\therefore \frac{6000 \times 4 \times 5}{100} = \frac{8000 \times 3 \times t}{100}$$

$$\Rightarrow$$
 6000 × 4 × 5 = 8000 × 3 × t

$$\therefore t = \frac{6000 \times 4 \times 5}{8000 \times 3} = 5 \text{ years}$$

37. (2) Using Rule 1,

Principal =
$$\frac{S.I. \times 100}{Time \times Rate}$$

$$=\frac{1\times100}{\frac{1}{365}\times5}=\frac{365\times100}{5}$$

= Rs. 7300

38. (1) S.I. for 5 years

∴ S.I. for 2 years

$$=\frac{300}{5} \times 2 = \text{Rs. } 120$$

 \therefore Principal = Rs. (720 – 120)

= Rs. 600

39. (4) Using Rule 1,

Number of days from 5th January to 31st May = 26 + 28 + 31 + 30

+31 = 146

∴ S.I.

$$= \frac{\text{Principal} \times \text{Time} \times \text{Rate}}{100}$$

$$= \frac{36000 \times 146 \times 9.5}{365 \times 100}$$

= Rs. 1368

40. (3)
$$\frac{\text{Principal}}{\text{Interest}} = \frac{10}{3}$$

$$\Rightarrow \frac{\text{Interest}}{\text{Principal}} = \frac{3}{10}$$

$$\therefore \text{ Time} = \frac{\text{S.I} \times 100}{\text{Principal} \times \text{Rate}}$$

$$=\frac{3}{10} \times \frac{100}{6} = 5 \text{ years}$$

41. (1) Principal

$$= \frac{S.I. \times 100}{\text{Time} \times \text{Rate}}$$

$$=\frac{60 \times 100}{5 \times 6}$$
 = Rs. 200

42. (1) According to the question, S.I. for 2 years 6 months = Rs. (5500 - 4000)

$$\Rightarrow$$
 S.I. for $\frac{5}{2}$ years = Rs. 1500

∴ S.I. for 1 year =
$$\frac{1500 \times 2}{5}$$

= Rs. 600

∴ S.I. for 2 years = Rs. 1200

∴ Principal = Rs. (4000 - 1200) = Rs. 2800

$$\therefore \text{ Rate} = \frac{\text{S.I.} \times 100}{\text{Pricipal} \times \text{Time}}$$

$$=\frac{1200\times100}{2800\times2}=\frac{150}{7}$$

=
$$21\frac{3}{7}$$
% per annum.

43. (2) Principal =
$$\frac{\text{S.I.} \times 100}{\text{Time} \times \text{Rate}}$$

$$= \frac{840 \times 100}{8 \times 5} = \text{Rs. } 2100$$

Case II.

S.I. = Rs. 840

Principal = Rs. 2100

Time = 5 years

Rate =
$$\frac{\text{S.I.} \times 100}{\text{Principal} \times \text{Time}}$$

$$= \frac{840 \times 100}{2100 \times 5} = 8\% \text{ per annum}$$

44. (2) Let first part be x.

∴ Second part

= Rs. (2800 - x)

According to the question,

S.I. =
$$\frac{\text{Principal} \times \text{Time} \times \text{Rate}}{100}$$

$$\therefore \quad \frac{x \times 5 \times 9}{100}$$

$$=\frac{\left(2800-x\right)\times6\times10}{100}$$

$$\Rightarrow$$
 3x = 4 × 2800 - 4x

$$\Rightarrow 7x = 4 \times 2800$$

$$\Rightarrow x = \frac{4 \times 2800}{7} = \text{Rs. } 1600$$

:. Second part

= Rs. (2800 - 1600) = Rs. 1200

45. (2) According to the question,

$$\frac{S.I.}{Principal} = \frac{2}{5}$$

Rate =
$$\frac{S.I.\times100}{Principal \times Time}$$

$$= \frac{2}{5} \times \frac{100}{5} = 8\% \text{ per annum}$$

= 0.08 per annum

46. (1) Rate =
$$\frac{\text{S.I.} \times 100}{\text{Principal} \times \text{Time}}$$

$$=\frac{280\times100}{400\times10}$$

= 7% per annum

47. (3) Rate =
$$\frac{\text{S.I.} \times 100}{\text{Principal} \times \text{Time}}$$

$$= \frac{\frac{1}{100} \times 100}{1 \times \frac{1}{12}} = 12\% \text{ p.a.}$$

48. (3) S.I.

$$= \frac{Principal \times Time \times Rate}{100}$$

= Rs.
$$\left(4000 \times \frac{18}{12} \times \frac{12}{100}\right)$$

= Rs. 720

49. (2) Time =
$$\frac{\text{S.I.} \times 100}{\text{Principal} \times \text{Rate}}$$

$$= \frac{1080 \times 100}{3000 \times 12} = 3 \text{ years}$$

50. (3) Let the principal be Rs. x. According to the question,

x + S.I. for 2 years

= Rs. 5182

...(i)

...(ii)

x + S.I. for 3 years

= Rs. 5832

By equation (ii) - (i),

S.I. for 1 year

= Rs. (5832 - 5182)

= Rs. 650

S.I. for 2 years

 $= Rs. (2 \times 650) = Rs. 1300$

Principal

= Rs. (5182 - 1300)

= Rs. 3882

51. (2) Principal = $\frac{S.I. \times 100}{Time \times Rate}$

$$= \frac{R \times 100}{2 \times R} = Rs. 50$$

52. (3)

S.I. =
$$\frac{Principal \times Time \times Rate}{100}$$

$$= \frac{2000 \times 2 \times 5}{100} = \text{Rs. } 200$$

:. Required amount

= Rs. (2000 + 200)

= Rs. 2200

53. (1) S.I. = Amount – Principal

= Rs. (6900 - 6000)

= Rs. 900

Interest
$$\times 100$$

$$\therefore \text{ Rate} = \frac{\text{Interest} \times \text{Foo}}{\text{Principal} \times \text{Time}}$$

$$= \frac{900 \times 100}{6000 \times 3}$$

= 5% per annum

TYPE-II

1. (1) Principal = P

Amount =
$$\frac{7p}{6}$$

S.I. =
$$\frac{7p}{6}$$
 - P = $\frac{P}{6}$

$$\therefore R = \frac{S.I \times 100}{P \times T} = \frac{P \times 100}{6 \times p \times 3}$$

$$=\frac{50}{9}=5\frac{5}{9}\%$$

Aliter: Using Rule 3,

$$R\% = \frac{\left(\frac{7}{6} - 1\right) \times 100\%}{3}$$

$$= \frac{1}{18} \times 100\%$$

$$=\frac{50}{9}\%$$

$$= 5\frac{5}{9}\%$$

2. (1) Let the principal be Re.1

$$\therefore$$
 S.I. = $\frac{41}{40} - 1 = \frac{1}{40}$

Now, rate = $\frac{Interest \times 100}{Principal \times Time}$

$$=\frac{\frac{1}{40}\times100}{1\times\frac{1}{4}}=\frac{100\times4}{40}=10\%$$

Aliter: Using Rule 3,

$$R = \frac{\left(\frac{41}{40} - 1\right) \times 100\%}{\frac{1}{4}}$$

$$= \frac{1}{40} \times 4 \times 100\%$$

= 10%

3. (2) Case-I

Let the principal be x

Amount = 3x

 \therefore Interest = 2x

Time = 20 years

$$\therefore I = \frac{PRT}{100} \Rightarrow 2x = \frac{x \times R \times 20}{100}$$

$$\Rightarrow$$
 R = 10%

Case-II

I = x

P = x

R = 10

T = ?

$$\therefore I = \frac{PRT}{100} \Rightarrow x = \frac{x \times 10 \times T}{100}$$

T = 10 years.

Aliter: Using Rule 3,

$$R\% = \frac{(3-1)}{20} \times 100\%$$

R% = 10%

Now,
$$T = \frac{(n-1)}{R} years$$

$$T = \frac{2-1}{10} \times 100$$

T = 10 years

4. (4) Using Rule 1,

Let P be the principal and R% rate of interest.

$$\therefore \text{ S.I.} = \frac{\text{PR} \times 10}{100} = \frac{\text{PR}}{10}$$

According to the question,

$$\frac{PR}{10} = \left(P + \frac{PR}{10}\right) \times \frac{2}{5}$$

$$\Rightarrow \frac{R}{10} = \left(1 + \frac{R}{10}\right) \times \frac{2}{5}$$

$$\Rightarrow \frac{R}{10} = \frac{2}{5} + \frac{R}{25}$$

$$\Rightarrow \frac{R}{10} - \frac{R}{25} = \frac{2}{5}$$

$$\Rightarrow \frac{5R - 2R}{50} = \frac{2}{5}$$

$$\Rightarrow \frac{3R}{50} = \frac{2}{5}$$

$$\Rightarrow R = \frac{50 \times 2}{3 \times 5} = \frac{20}{3} = 6\frac{2}{3} \%$$

5. (2) Using Rule 1,

SI = ₹ (7200–6000)

= ₹ 1200

$$\therefore SI = \frac{PRT}{100}$$

$$\Rightarrow 1200 = \frac{6000 \times R \times 4}{100}$$

$$\Rightarrow R = \frac{1200 \times 100}{6000 \times 4} = 5\%$$

New rate of $R = 5 \times 1.5 = 7.5\%$

Then, SI =
$$\frac{6000 \times 7.5 \times 5}{100}$$

= ₹ 2250

∴ Amount = ₹ (6000 + 2250) = ₹ 8250

6. (3) Let the principal be x.

Coco

$$2x = \frac{x \times R \times 15}{100}$$

$$\Rightarrow$$
 R = $\frac{2 \times 100}{15} = \frac{40}{3}\%$

Case-II

SI = 4x

$$\therefore 4x = \frac{x \times 40 \times T}{300}$$

$$\Rightarrow$$
 T = $\frac{4 \times 300}{40}$ = 30 years

Aliter: Using Rule 3.

$$R = \frac{(3-1)}{15} \times 100\%$$

$$= \frac{2}{15} \times 100\%$$

$$= \frac{2}{3} \times 20\%$$

$$=\frac{40}{3}\%$$

$$T = \frac{(n-1)}{R} Y ears$$

$$= \frac{\left(5-1\right)}{\frac{40}{3}} \times 100$$

= 30 years.

7. (3) Let the principal be x.

 \therefore Amount = 2x

$$\therefore$$
 Interest = $(2x - x) = x$

$$\therefore \text{ Rate} = \frac{\text{S.I.} \times 100}{\text{Principal} \times \text{Time}}$$

$$= \frac{x \times 100}{x \times 12} = \frac{25}{3} = 8\frac{1}{3}\%$$

Aliter · Using Rule 3

$$R = \frac{\left(2-1\right)}{12} \times 100\%$$

$$R = \frac{25}{3}\%$$

$$R = 8\frac{1}{3}\%$$

8. (3) Let the principal be x

$$\therefore \text{ Principal + SI} = \frac{7x}{4}$$

$$SI = \frac{7x}{4} - x = \frac{3x}{4}$$

Rate =
$$\frac{\text{SI} \times 100}{\text{Principal} \times \text{Time}}$$

$$= \frac{3x \times 100}{4 \times x \times 4} = 18\frac{3}{4}\%$$

Aliter: Using Rule 3,

$$R = \frac{\left(\frac{7}{4} - 1\right)}{4} \times 100\%$$

$$=\frac{3}{16}\times100\%$$

$$=\frac{75}{4}\%$$

$$R = 18\frac{3}{4}\%$$

9. (4) The sum gets doubled in 5 years and tripled in 12 years. Clearly rate of interest for 12 years will be lower. Let Principal be *x*.

then, Rate =
$$\frac{SI \times 100}{Principal \times Time}$$

$$=\frac{2x\times100}{x\times12}=\frac{50}{3}=16\frac{2}{3}\%$$

Aliter: Using Rule 3,

$$R_1 = \frac{(2-1)}{5} \times 100\%$$

$$R_2 = \frac{(3-1)}{12} \times 100\%$$
$$= 16\frac{2}{3}\%$$

- \Rightarrow Lower rate of interest = $16\frac{2}{3}\%$
- **10.** (3) TIme = $\frac{SI \times 100}{Principal \times Rate}$

$$= \frac{x \times 100}{x \times \frac{25}{4}} = 16 \text{ years}$$

Aliter: Using Rule 3,

$$T = \frac{(n-1)}{R\%} \text{ years}$$

$$= \frac{(2-1)}{\frac{25}{4}} \times 100 \text{ years}$$

- = 16 years.
- **11.** (3) If principal be x, interest = x and rate = r% p.a. then

$$Rate = \frac{SI \times 100}{Principal \times Time}$$

$$=\frac{x\times100}{x\times10}=10\%$$

Now, p = x, interest = 2x

Then, time =
$$\frac{SI \times 100}{Principal \times Rate}$$

$$= \frac{2x \times 100}{x \times 10} = 20 \text{ years}$$

Aliter: Using Rule 3,

$$R = \frac{(2-1)}{10} \times 100\%$$

R = 10%

$$T = \frac{(n-1)}{R} \times 100 \text{ years}$$

$$= \frac{3-1}{10} \times 100$$

- = 20 years
- **12.** (4) If the principal be x, the amount = 2x
 - \therefore SI = x

$$\therefore \text{ Time} = \frac{\text{SI} \times 100}{\text{Principal} \times \text{Rate}}$$

$$=\frac{x \times 100}{x \times 15} = \frac{20}{3} = 6\frac{2}{3}$$
 years

Aliter: Using Rule 3.

$$T = \frac{(n-1)}{R} \times 100\%$$

$$= \left(\frac{2-1}{15}\right) \times 100$$

$$=\frac{100}{15}=\frac{20}{3}$$
Years

$$= 6\frac{2}{3}$$
 years

13. (3) If the principal be ₹ 100 then S.I. = ₹ 100.

$$\therefore \text{ Time} = \frac{\text{S.I.} \times 100}{\text{Principal} \times \text{Rate}}$$

$$=\frac{100 \times 100}{100 \times 12} = \frac{25}{3}$$
 years

= 8 years 4 months

Aliter: Using Rule 3,

$$T = \frac{(n-1)}{R} \times 100\%$$

$$= \frac{\left(2-1\right)}{12} \times 100\%$$

$$=\frac{100}{12}=\frac{25}{3}$$
 years.

=
$$8\frac{1}{3}$$
 years

- = 8 years, 4 months.
- **14.** (2) Principal = Rs. x

Amount = Rs. 2x

- \therefore Interest = 2x x
- = Rs. x

$$\therefore \text{ Rate } = \frac{\text{S.I.} \times 100}{\text{Principal} \times \text{Time}}$$

 $=\frac{x\times100}{x\times8}=\frac{25}{2}$

= 12.5 % per annum

Aliter: Using Rule 3,

$$R \% = \frac{(n-1)}{T} \times 100\%$$

$$= \frac{(2-1)}{8} \times 100\%$$

- = 12.5%
- **15.** (*) Principal = Rs. x

Interest = Rs. x

Rate =
$$\frac{S.I \times 100}{Principal \times Time}$$

$$= \frac{x \times 100}{x \times 16} = \frac{25}{4} \% \text{ per annum}$$

Case II,

Interest = Rs. 2x

$$\therefore \text{ Time = } \frac{\text{S.I} \times 100}{\text{Principal} \times \text{Rate}}$$

$$= \frac{2x \times 100 \times 4}{x \times 25} = 32 \text{ years}$$

Aliter: Using Rule 3,

$$R = \frac{(n-1)}{T} \times 100\%$$

$$= \frac{\left(2-1\right)}{16} \times 100\%$$

$$= \frac{25}{4}\%$$

$$= 6\frac{1}{4}\%$$

Now,
$$T = \frac{(n-1)}{R} \times 100$$

$$= \frac{\left(3-1\right)}{\frac{25}{4}} \times 100$$

$$=\frac{800}{25}$$
 = 32 years.

16. (1) According to the question, If principal be Rs. *x*, then S.I. = Rs. *x*

$$\therefore \text{ Time } = \frac{\text{S.I. } \times 100}{\text{Principal } \times \text{Rate}}$$

$$=\frac{x \times 100}{x \times \frac{25}{4}} = \frac{400}{25} = 16 \text{ years}$$

Aliter: Using Rule 3,

$$T = \left(\frac{(n-1)}{R}\right) \times 100\%$$

$$= \frac{2-1}{25} \times 100$$

$$= \frac{400}{25} = 16 \text{ years.}$$

17. (2) Using Rule 1, Rate = R% per annum

$$\therefore$$
 Time = $\frac{R}{2}$ years

$$\therefore Rate = \frac{S.I. \times 100}{Principal \times Time}$$

$$\Rightarrow R = \frac{8}{25} \times \frac{100}{\frac{R}{2}}$$

$$\Rightarrow R^2 = \frac{8 \times 200}{25} = 64$$

$$\Rightarrow$$
 R = $\sqrt{64}$ = 8% per annum

18. (3) Case I,

Interest = Principal

Rate =
$$\frac{Interest \times 100}{Principal \times Time}$$

$$= \frac{100}{7}\% \text{ per annum}$$

Case II,

Interest = $3 \times Principal$

$$Time = \frac{Interest \times 100}{Principal \times Time}$$

$$= \frac{3 \times 100}{\frac{100}{7}} = 3 \times 7 = 21 \text{ years}$$

19. (4) Principal = Rs. P and time = T years

$$\therefore \text{ S.I.} = \frac{\text{Principal} \times \text{Time} \times \text{Rate}}{100}$$

According to the question,

$$\therefore P + \frac{PT \times 5}{100} = 2200$$

$$\Rightarrow$$
 P + $\frac{PT}{20}$ = 2200(i)

Again,
$$\frac{PT \times 8}{100} - \frac{PT \times 5}{100}$$

= 2320 - 2200

$$\Rightarrow \frac{3PT}{100} = 120$$

$$\Rightarrow PT = \frac{120 \times 100}{3} = 4000 ...(ii)$$

∴ From equation (i)

$$P + \frac{4000}{20} = 2200$$

$$\Rightarrow$$
 P = 2200 - 200 = Rs. 2000

 \therefore From equation (ii),

PT = 4000

$$\Rightarrow T = \frac{4000}{2000} = 2 \text{ years}$$

Alternative Method

Difference in rates

$$= 8 - 5 = 3\%$$

$$\therefore 3\% \equiv 2320 - 2200 = 120$$

$$\therefore 5\% \equiv \frac{120}{3} \times 5 = 200$$

 \therefore Principal = Rs. (2200 – 200)

= Rs. 2000

$$\therefore \text{ Time} = \frac{200 \times 100}{2000 \times 5} = 2 \text{ years}$$

20. (2) Let principal be Rs. x.

 \therefore Amount = Rs. 2x

 \therefore Interest = Rs. (2x - x)

= Rs. x

$$\therefore \text{ Rate} = \frac{\text{S.I.} \times 100}{\text{Principal} \times \text{Time}}$$

$$=\frac{x\times100}{x\times15}=\frac{20}{3}$$

=
$$6\frac{2}{3}$$
% per annum

21. (2) Principal = Rs. *x*Interest = Rs. *x*Time = 6 years

$$\therefore Rate = \frac{Interest \times 100}{Principal \times Time}$$

$$=\frac{x\times100}{x\times16}=\frac{50}{3}\% \text{ per annum}$$

Case II

$$Interest = \frac{x \times 12 \times 50}{100 \times 3} = Rs. \ 2x$$

i.e., Amount is thrice the principal.

22. (3) Principal = Rs. x (let)

 \therefore Amount = Rs. 5x

Interest = Rs. (5x - x) = Rs. 4x

$$\therefore \text{ Rate} = \frac{\text{S.I.} \times 100}{\text{Principal} \times \text{Time}}$$

$$= \frac{4x \times 100}{x \times 8} = 50\% \text{ per annum}$$

23. (4) Let principal be Rs. x.

 $\therefore \text{ Amount = Rs. } 2x$

Interest = Rs. (2x - x) = Rs. x

$$\therefore Rate = \frac{S.I. \times 100}{Principal \times Time}$$

$$=\frac{x\times100}{x\times8}=\frac{25}{2}$$

=
$$12\frac{1}{2}\%$$
 per annum

24. (3) According to the question, Principal = Rs. *x*.

Interest = Rs. x.

Time =
$$\frac{50}{3}$$
 years

$$\therefore Rate = \frac{Interest \times 100}{Principal \times Time}$$

$$= \frac{x \times 100}{x \times \frac{50}{3}} = \frac{100 \times 3}{50}$$

= 6% per annum

TYPE-III

1. (3) Let the principal be x

$$\therefore \text{ Interest } = \frac{2}{5}x$$

Rate = 8% per annum

$$\therefore \text{ Time } = \frac{\text{Interest } \times 100}{\text{Principal } \times \text{Rate}}$$

$$=\frac{\frac{2}{5}x \times 100}{x \times 8} = \frac{40}{8} = 5 \text{ years}$$

Aliter: Using Rule 5,

Here,
$$n = \frac{2}{5}$$
 and $R = 8\%$

$$\Rightarrow$$
 RT = (n × 100)

$$T = \frac{n \times 100}{R}$$

$$T = \frac{2}{5} \times \frac{100}{8}$$

$$T = 5$$
 years

S.I. =
$$100 \times \frac{1}{5} = ₹ 20$$

Rate =
$$\frac{20 \times 100}{100 \times 4} = 5\%$$

Aliter: Using Rule 5,

Here,
$$n = \frac{1}{5}$$
, $T = 4$ years.

$$R = \frac{n \times 100}{T}$$

$$R = \frac{1}{5} \times \frac{100}{4}$$

$$R = 5\%$$

3. (1) Rate =
$$\frac{\text{SI} \times 100}{\text{Principal} \times \text{Time}}$$

$$=\frac{9}{25} \times \frac{100}{6} = 6\%$$
 per annum

Aliter: Using Rule 5,

Here,
$$n = \frac{9}{25}$$
, T = 6 years.

$$R = \frac{n \times 100}{T}$$

$$R = \frac{9}{25} \times \frac{100}{6}$$

$$R = 6\%$$

4. (1)
$$\frac{\text{Simple interest}}{\text{Principal}} = \frac{1}{4}$$

$$\therefore \text{ Rate} = \frac{\text{S.I.} \times 100}{\text{Principal} \times \text{Time}}$$

$$= \frac{1 \times 100}{4 \times 5} = 5\% \text{ per annum}$$

Aliter: Using Rule 5,

Here,
$$n = \frac{1}{4}$$
, $T = 5$ years

$$R = \frac{n \times 100}{T}$$

$$= \frac{1}{4} \times \frac{100}{5} = R = 5\%$$

5. (2)
$$\frac{\text{Interest}}{\text{Principal}} = \frac{3}{8}$$

$$\therefore \text{ Rate = } \frac{\text{S.I.} \times 100}{\text{Principal} \times \text{Time}}$$

$$= \frac{3}{8} \times \frac{100}{\frac{25}{4}}$$

$$=\frac{3}{8} \times \frac{400}{25} = 6\%$$
 per annum

Aliter: Using Rule 5,

Here,
$$n = \frac{3}{8}$$
, $T = \frac{25}{4}$ years.

$$R = \frac{n \times 100}{T}$$

$$= \frac{3}{8} \times \frac{100}{\frac{25}{4}}$$

$$R = 6\%$$

6. (2) Using Rule 1,

S.I. =
$$\frac{\text{Principal} \times \text{Time} \times \text{Rate}}{100}$$

$$\therefore 1200 + \frac{1200 \times 7 \times r}{12 \times 100}$$

$$=$$
 Amount (A)

$$\Rightarrow$$
 1200 + 7r = A(i)

and,
$$1016 + \frac{1016 \times 5 \times r}{2 \times 100} = A$$

$$\therefore 1016 + 25.4r = A$$
 ...(ii)

$$\therefore 1016 + 25.4r = 1200 + 7r$$

$$\Rightarrow 25.4r - 7r = 1200 - 1016$$

$$\Rightarrow 18.4r = 184 \Rightarrow r = \frac{184}{18.4}$$

= 10% per annum

7. (2) Amount after 10 years

$$= P\left(1 + \frac{RT}{100}\right) = P\left(1 + \frac{R \times 10}{100}\right)$$

= Rs.
$$P\left(1 + \frac{R}{10}\right)$$

$$\therefore \text{ Interest = Rs. P} \left(1 + \frac{R}{10}\right) \times \frac{2}{5}$$

$$\therefore Rate = \frac{S.I \times 100}{Principal \times Time}$$

$$\Rightarrow R = \frac{P\left(1 + \frac{R}{10}\right) \times \frac{2}{5} \times 100}{P \times 10}$$

$$\Rightarrow$$
 R = 4 $\left(1 + \frac{R}{10}\right)$

$$\Rightarrow \frac{R}{4} = 1 + \frac{R}{10}$$

$$\Rightarrow \frac{R}{4} - \frac{R}{10} = 1$$

$$\Rightarrow \frac{5R - 2R}{20} = 1$$

$$\Rightarrow$$
 3R = 20

$$\Rightarrow$$
 R = $\frac{20}{3}$ = $6\frac{2}{3}$ %

Aliter: Using Rule 5,

Here, S.I. =
$$\frac{2}{5}$$
 amount

S.I. =
$$\frac{2}{5}$$
 (P + S.I.)

$$\Rightarrow$$
 S.I. = $\frac{2}{5}$ S.I. + $\frac{2}{5}$ P

$$\Rightarrow \frac{3}{5}$$
 S.I. = $\frac{2}{5}$ P

S.I. =
$$\frac{2}{3}$$
P

Now, n =
$$\frac{2}{3}$$
, T = 10 years.

$$\Rightarrow R = \frac{n \times 100}{T}$$
$$= \frac{2}{3} \times \frac{100}{10}$$

$$= \frac{20}{3} = 6\frac{2}{3}\%$$
8. (3) Rate of interest = r % per annum

S.I. =
$$\frac{Principal \times Time \times Rate}{100}$$

According to the question,

$$\frac{3200 \times 5 \times r}{100 \times 2} - \frac{3000 \times 5 \times r}{200} = 40$$

$$\Rightarrow 80r - 75r = 40$$

$$\Rightarrow 5r = 40 \Rightarrow r = \frac{40}{5}$$

= 8% per annum

Aliter: Using Rule 13,

Here,
$$P_1 = Rs. 3000$$
, R_1

= R,
$$T_1 = \frac{5}{2}$$
 years

$$P_2 = Rs. 3200,$$

$$R_2 = R, T_2 = \frac{5}{2} years$$

Difference S.I. =

Rs. 40

$$\frac{3200\times R\times \frac{5}{2}-3000\times R\times \frac{5}{2}}{100}$$

4000 = 8000 R - 7500 R

R = 8%

 \Rightarrow

TYPE-IV

 (4) According to question, Interest of one year = ₹ 42 Rate = 5% and Time = 1 year

$$\therefore Principal = \frac{Interest \times 100}{Rate \times Time}$$

$$= \frac{42 \times 100}{5 \times 1} = ₹840$$

Aliter: Using Rule 13,

$$P_1 = P, R_1 = 5\%, T_1 = 3$$
years.
 $P_2 = P, R_2 = 5\%, T_2 = 4$ years.

$$42 = \frac{20P - 15P}{100}$$

$$P = 42 \times 20$$

 (3) Let r₁, and r₂ be the required rate of interest Then,

$$13.50 = \frac{1500 \times 3 \times r_1}{100}$$

$$-\frac{1500\times3\times r_2}{100}$$

$$=\frac{4500}{100}\big(r_1-r_2\big)$$

$$r_1 - r_2 = \frac{135}{450} = \frac{27}{90}$$

$$=\frac{3}{10}=0.3\%$$

Aliter: Using Rule 13,

 $P_1 = Rs. 1500, R_1, T_1 = 3 years.$

 $P_2 = Rs. 1500, R_2, T_2 = 3 years.$

S.I. = Rs. 13.50

$$= \frac{1500 \times R_2 \times 3 - 1500 \times R_1 \times 3}{100}$$

$$\frac{1350}{100} = \frac{4500(R_2 - R_1)}{100}$$

$$R_{2} - R_{1} = \frac{1350}{4500} = \frac{27}{90}$$

$$=\frac{3}{10}=0.3\%$$

3. (2) Using Rule 1, We know that

$$S.I. = \frac{PRT}{100}$$

According to question,

$$S.I. = \frac{4}{9}P$$

& R = T (numerically)

$$\therefore \frac{4}{9} P = \frac{P \times R \times R}{100}$$

$$\therefore R^2 = \frac{400}{9}$$

$$R = \sqrt{\frac{400}{9}} = \frac{20}{3} = 6\frac{2}{3}\%$$

4. (4) Let the sum be *x*

$$\frac{x \times 5 \times 15}{100 \times 12} - \frac{x \times 4 \times 8}{100 \times 12} = 129$$

$$\Rightarrow \frac{x}{100 \times 12} (75 - 32) = 129$$

$$\Rightarrow x = \frac{129 \times 1200}{43} = 3600$$

Aliter: Using Rule 13,

$$P_1 = P, R_1 = 4\%, T_1$$

= 8 months =
$$\frac{8}{12}$$
 years

$$P_{2} = P_{1} R_{2} = 5\%, T_{2}$$

= 15 month =
$$\frac{15}{12}$$
 years

$$129 = \frac{P \times 5 \times \frac{15}{12} - P \times \frac{4 \times 8}{12}}{100}$$

$$12900 = \frac{75P - 32P}{12}$$

$$12900 = \frac{43P}{12}$$

5. (4) Using Rule 1,

Let the sum lent in each case be

Then,

$$\frac{x \times 9 \times 2}{100} + \frac{x \times 10 \times 2}{100} = 760$$

$$\frac{x \times 2}{100}$$
 (9 + 10) = 760

$$\Rightarrow \frac{2 \times 19x}{100} = 760$$

$$\Rightarrow x = \frac{760 \times 100}{2 \times 19} = \text{ ? 2000}$$

6. (1) Let the rate of interest be r% and principal be P. According to the question.

$$\frac{16P}{25} = \frac{P \times r \times r}{100}$$

 $[\cdot \cdot \cdot r = t \text{ numerically}]$

$$\Rightarrow r^2 = \frac{1600}{25}$$

$$\Rightarrow r = \frac{40}{5} = 8 \%$$

Aliter: Using Rule 5,

Here,
$$n = \frac{16}{25}$$
, $R = T$

Now
$$R \times R = \frac{16}{25} \times 100$$

$$R^2 = \frac{1600}{25}$$

$$R = \sqrt{\frac{1600}{25}}$$

$$R = \frac{40}{5}$$

$$R = 8\%$$

7. (3) Using Rule 1,

Let the sum lent out at 12.5% be x

- ∴ Sum lent out at 10%
- = 1500 x

Now,
$$\frac{(1500 - x) \times 10 \times 5}{100}$$

$$=\frac{x\times12.5\times4}{100}$$

$$\Rightarrow 50 (1500 - x) = 50x$$

$$\Rightarrow 2x = 1500$$

$$\Rightarrow x = \frac{1500}{2} = ₹750$$

8. (1) Let the principal be P and rate of interest be r %

According to the question,

$$\frac{30P}{100} = \frac{P \times R \times 6}{100}$$

$$\Rightarrow$$
 30 = 6 R

$$\Rightarrow$$
 R = 5

Now, let interest be equal to principal in T years.

$$\therefore P = \frac{P \times 5 \times T}{100}$$

$$\Rightarrow$$
 T = $\frac{100}{5}$ = 20 years.

Aliter: Using Rule 5,

Here,
$$n = \frac{30}{100} = \frac{3}{10}$$
, $T = 6$ years.

$$\Rightarrow$$
 RT = n × 100

$$R \times 6 = \frac{3}{10} \times 100$$

$$R = 5\%$$

$$As, S.I. = P$$

$$\Rightarrow S.I. = \frac{P \times R \times T}{100}$$

$$100 = RT$$

$$100 = 5 \times T$$

This is possible only when T = 20.

9. (3) Using Rule 1,

Let the period of time be T years. Then.

$$\frac{400 \times 5 \times T}{100} = \frac{500 \times 4 \times 6.25}{100}$$

$$\Rightarrow T = \frac{500 \times 4 \times 6.25}{400 \times 5} = \frac{25}{4}$$

$$=6\frac{1}{4}$$
 years

10. (2) Let the annual rate of interest = r%

Time = r years

Let the principal be x.

$$\therefore$$
 Interest = $\frac{x}{16}$

According to the question,

$$\frac{x}{16} = \frac{x \times r \times r}{100} \left[\cdot \cdot \cdot \cdot r = t \right]$$

$$\Rightarrow 16r^2 = 100$$

$$\Rightarrow r^2 = \frac{100}{16} = \frac{25}{4}$$

$$r = \sqrt{\frac{25}{4}} = \frac{5}{2} = 2\frac{1}{2}\%$$

Aliter: Using Rule 5,

Here,
$$n = \frac{1}{16}$$
, $R = T$

$$RT = n \times 100$$

$$R^2 = \frac{100}{16}$$

$$R = \sqrt{\frac{100}{16}}$$

$$R = \frac{10}{4}$$

$$R = 2\frac{1}{2}\%$$

11. (1) Using Rule 1,

Let the larger part of the sum be x∴ Smaller part = ₹ (12000 – x) According to the question,

$$\frac{x \times 3 \times 12}{100} = \frac{(12000 - x) \times 9 \times 16}{2 \times 100}$$

$$\Rightarrow$$
 36 $x = (12000 - x)$ 72

$$\Rightarrow x = (12000 - x) \times 2$$

$$\Rightarrow$$
 $x + 2x = 24000$

$$\Rightarrow 3x = 24000$$

$$\Rightarrow x = \frac{24000}{3} = ₹8000$$

12. (2) Let the principal be x and rate be y% per annum.

According to the question,

$$\therefore SI = \frac{P \times R \times T}{100}$$

$$\Rightarrow \frac{x}{4} = \frac{x \times y \times y}{100}$$

$$\Rightarrow y^2 = \frac{100}{4} = 25$$

$$\Rightarrow y = \sqrt{25} = 5\%$$
 per annum

Aliter: Using Rule 5.

$$n = \frac{1}{5}, R = T$$

$$RT = n \times 100$$

$$R^2 = \frac{1}{4} \times 100$$

$$R^2 = 25$$

$$R = 5\%$$

13. (3) Let the sum lent be x.

$$\therefore \quad \frac{x \times 7.5 \times 5}{100} - \frac{x \times 7.5 \times 4}{100} = 150$$

$$\Rightarrow \frac{x \times 7.5 \times 1}{100} = 150$$

$$\Rightarrow x = \frac{150 \times 100}{7.5} = ₹2000$$

Aliter: Using Rule 13,

Here,
$$P_1 = P$$
, $R_1 = 7.5\%$,

$$T_1 = 4$$
 years.

$$P_2 = P$$
, $R_2 = 7.5\%$, $T_2 = 5$ years.

S.I. =
$$\frac{P_2R_2T_2 - P_1R_1T_1}{100}$$

$$150 = \frac{P \times 7.5 \times 5 - P \times 7.5 \times 4}{100}$$

$$15000 = 7.5P$$

$$P = \frac{15000}{7.5}$$

$$P = \frac{150000}{75}$$

14. (1) Using Rule 1,

Let first part be x and second part be(1750 – x)

According to the question,

$$x \times \frac{8}{100} = (1750 - x) \times \frac{6}{100}$$

$$\Rightarrow 8x + 6x = 1750 \times 6$$

$$\Rightarrow 14x = 1750 \times 6$$

$$\Rightarrow x = \frac{1750 \times 6}{14} = ₹750$$

∴ Interest = 8% of 750

$$=750 \times \frac{8}{100} = ₹60$$

15. (3) Using Rule 1,

Let the period of time be T years.

$$\therefore 800 + \frac{800 \times 12 \times T}{100}$$

$$= 910 + \frac{910 \times 10 \times T}{100}$$

$$\Rightarrow$$
 800 + 96 T = 910 + 91T

$$\Rightarrow$$
 96 T - 91 T = 910 - 800

$$\Rightarrow$$
 5T = 110

$$\Rightarrow$$
 T = $\frac{110}{5}$ = 22 years.

16. (3) $\frac{\text{Simple interest}}{\text{Principal}} = \frac{1}{9}$

If the annual rate of interest be r%, then

Rate =
$$\frac{S.I.\times100}{Principal \times Time}$$

$$\Rightarrow r = \frac{1}{9} \times \frac{100}{r}$$

$$\Rightarrow r^2 = \frac{100}{9}$$

$$\Rightarrow r = \sqrt{\frac{100}{9}} = \frac{10}{3} = 3\frac{1}{3}\%$$

Aliter: Using Rule 5,

Here,
$$n = \frac{1}{9}$$
, $R = T$

$$RT = n \times 100$$

$$R^2 = \frac{1}{9} \times 100$$

$$R^2 = \frac{100}{9}$$

$$R = \sqrt{\frac{100}{9}}$$

$$R = \frac{10}{3}$$

$$R = 3\frac{1}{3}\%$$

17. (2) 411, Using Rule 1, Let 'r' be the rate of interest

$$190 = \frac{500 \times 4 \times r}{100} + \frac{600 \times 3 \times r}{100}$$

$$\Rightarrow$$
 20 r + 18 r = 190

$$\Rightarrow 38r = 190$$

$$\Rightarrow r = \frac{190}{38} = 5\%$$

18. (2)
$$\frac{500 \times 2 \times R_1}{100} - \frac{500 \times 2 \times R_2}{100}$$

= 2.5, where R_1 & R_2 are rate% of both banks

$$\Rightarrow$$
 10 (R₁ - R₂) = 2.5

$$\Rightarrow$$
 R₁ - R₂ = $\frac{2.5}{10}$

= 0.25 % per annum

Aliter: Using Rule 7,

Here, P = Rs. 500, x = Rs. 2.50, Difference in time = 2 years. Difference in rate = ?

$$500 = \frac{2.50 \times 100}{\text{(diff. in rate)} \times 2}$$

Different in rate = 0.25%

19. (3) Using Rule 1, Let the principal be *x*.

$$Time = \frac{SI \times 100}{Principal \times Rate}$$

$$=\frac{x\times100\times3}{x\times50}=6$$
 years

20. (2) Using Rule 1,

$$\frac{P\times r\times 1}{100} = \frac{P\times 5\times 2}{100}$$

[\cdot : Capital is same in both cases] $r \times 1 = 5 \times 2$

$$\Rightarrow$$
 r = 10%

21. (1) Using Rule 1,

S.I. =
$$\frac{\text{Principal} \times \text{Time} \times \text{Rate}}{100}$$

$$\therefore \frac{4000 \times 3 \times x}{100}$$

$$= \frac{5000 \times 2 \times 12}{100}$$

$$\Rightarrow x = \frac{5 \times 2 \times 12}{4 \times 3}$$

= 10% per annum

22. (4) Using Rule 1,

$$S.I. = \frac{P \times R \times T}{100}$$

$$\therefore y = \frac{x \times T \times R}{100}$$

and
$$z = \frac{y \times T \times R}{100}$$

So,
$$\frac{y}{z} = \frac{x}{y} \implies y^2 = zx$$

23. (1) Using Rule 1,

$$\therefore$$
 Amount lent at $\frac{4}{3}\%$ rate of

interest =
$$(20,000 - x)$$

$$\therefore \text{ S.I.} = \frac{\text{Principal} \times \text{Rate} \times \text{Time}}{100}$$

$$\therefore \frac{x \times 8 \times 1}{100} + \frac{(20,000 - x) \times \frac{4}{3} \times 1}{100}$$

= 800

$$\Rightarrow \frac{2x}{25} + \frac{20,000 - x}{75} = 800$$

$$\Rightarrow \frac{6x + 20,000 - x}{75} = 800$$

$$\Rightarrow 5x + 20,000 = 75 \times 800$$

= 60,000

$$\Rightarrow$$
 5x = 60,000-20,000 = 40,000

$$\Rightarrow x = \frac{40,000}{5} = 8000$$

24. (3) Let amount invested in each company be Rs. *x*.

S.I. =
$$\frac{Principal \times Rate \times Time}{100}$$

According to the question,

$$\frac{x \times 15 \times 5}{100} - \frac{x \times 12 \times 4}{100}$$

= 1350

$$\Rightarrow \frac{75x}{100} - \frac{48x}{100} = 1350$$

$$\Rightarrow \frac{27x}{100} = 1350$$

$$\Rightarrow x = \frac{1350 \times 100}{27} = \text{Rs. } 5000$$

Aliter: Using Rule 13.

Here,
$$P_1 = Rs. P$$
, $R_1 = 12\%$, $T_1 = 4 years$

$$P_2 = Rs. P, R_2 = 15\%,$$

$$T_2 = 5 \text{ years}$$

$$S.I. = Rs. 1350$$

S.I.=
$$\frac{P_2 \times R_2 \times T_2 - P_1 \times R_1 \times T_1}{100}$$

$$1350 = \frac{P \times 15 \times 5 - P \times 12 \times 4}{100}$$

135000 = 75 P - 48P

$$135000 = 75 P$$

$$\Rightarrow$$
 P = Rs. 5000

25. (3) Using Rule 1, True discount

$$= \frac{\text{Amount} \times \text{Rate} \times \text{Time}}{100 + (\text{Rate} \times \text{Time})}$$

$$= \frac{2400 \times 5 \times 4}{100 + (5 \times 4)}$$

$$=\frac{2400 \times 5 \times 4}{120} = \text{Rs. } 400$$

S.I. =
$$\frac{2400 \times 5 \times 4}{100}$$
 = Rs. 480

Required difference

= Rs. (480 - 400) = Rs. 80

TYPE-V

1. (4) Using Rule 1,

Let the sum lent at the rate of interest 5% per annum is x and at the rate of interest 8% per annum is (1550 - x)

According to the question,

$$\frac{x \times 5 \times 3}{100} + \frac{\left(1550 - x\right) \times 8 \times 3}{100} = 300$$

$$\Rightarrow \frac{15x}{100} + \frac{37200 - 24x}{100} = 300$$

- $\Rightarrow 15x + 37200 24x = 300 \times 100$ \Rightarrow 9x = 7200

 - 1550 x = 1550 800 = ₹750
 - :. Ratio of money lent at 5% to that at 8% = 800 : 750 = 16 : 15
- **2.** (2) Using Rule 1,

Let the sum of x be lent at the rate of 4% and (5000 - x) at the rate of 5%

$$\therefore \frac{x \times 4 \times 2}{100} + \frac{(5000 - x) \times 5 \times 2}{100} = 440$$

- $\Rightarrow 8x + 50000 10x = 44000$
- \Rightarrow 2x = 50000 44000 = 6000
- ⇒ x = ₹ 3000
- ∴ ₹ (5000 x)
- = ₹ (5000 3000) = ₹ 2000

Now, Required ratio

= 3000 : 2000 = 3 : 2

3. (4) Required ratio =
$$5: \frac{2}{5} = 25: 2$$

$$\frac{loan\ amount}{Interest\ amount} = \frac{5}{2}$$

$$\Rightarrow$$
 Interest rate = $\frac{2}{5}$

$$\Rightarrow \frac{P}{I} = \frac{3}{2}$$
, then $I = \frac{2}{5}$

$$\frac{loan\ amount}{Interest\ rate} = \frac{5}{2/5}$$

$$=\frac{25}{2}$$
 or 25:2

4. (1) Using Rule 1,

$$\begin{aligned} & \mathbf{P}_1 : \mathbf{P}_2 : \mathbf{P}_3 = \frac{1}{r_1 t_1} : \frac{1}{r_2 t_2} : \frac{1}{r_3 t_3} \\ & = \frac{1}{6 \times 10} : \frac{1}{10 \times 12} : \frac{1}{12 \times 15} \\ & = \frac{1}{60} : \frac{1}{120} : \frac{1}{180} \end{aligned}$$

= 6:3:2 **5.** (3) Using Rule 1,

Case-I,

Interest = 5x - 4x = x

$$\therefore x = \frac{4x \times R \times T}{100}$$

$$\Rightarrow$$
 T = $\frac{25}{R}$ years

$$T = \frac{25}{R} + 3 = \left(\frac{25 + 3R}{R}\right)$$
 years

$$SI = 7 y - 5y = 2y$$

$$\therefore 2y = \frac{5y \times R \times (25 + 3 R)}{R \times 100}$$

$$\Rightarrow$$
 40 = 25 + 3R

$$\Rightarrow$$
 3R = 40 –25 = 15 %

$$\Rightarrow R = \frac{15}{3} = 5\%$$

6. (4) Using Rule 1,

$$\frac{\text{Principal}}{\text{Amount}} = \frac{10}{12}$$

$$\frac{Amount}{Principal} = \frac{Principal + interest}{Principal}$$

$$=\frac{12}{10}$$

$$\Rightarrow 1 + \frac{\text{Interest}}{\text{Principal}} = \frac{12}{10}$$

$$\Rightarrow \frac{\text{Interest}}{\text{Principal}} = \frac{2}{10} = \frac{1}{5}$$

∴ Rate =
$$\frac{1}{5} \times 100 = 20\%$$

7. (2) Using Rule 1,

$$Time = \frac{S.I. \times 100}{Principal \times Rate}$$

$$=\frac{3}{10} \times \frac{100}{10} = 3 \text{ years}$$

8. (1) Using Rule 1,

First part = Rs. x and second part =(12000-x)

$$\therefore \frac{x \times 3 \times 12}{100}$$

$$= \frac{(12000 - x) \times 9 \times 16}{200}$$

$$\Rightarrow \frac{x}{12000-x}$$

$$= \frac{9 \times 16 \times 100}{3 \times 12 \times 200} = \frac{2}{1} = 2:1$$

Principal: Interest = 25:1

⇒ Interest : Principal = 1 : 25

$$\therefore \text{ Rate = } \frac{\text{S.I.} \times 100}{\text{Principal} \times \text{Time}}$$

$$\therefore Rate = \frac{}{Principal \times Time}$$

$$=\frac{1}{25} \times 100 = 4\%$$
 per annum

10. (2) Using Rule 1,

$$\frac{\text{Principal}}{\text{Interest}} = \frac{10}{3}$$

$$\Rightarrow \frac{Interest}{Principal} = \frac{3}{10}$$

$$\therefore \text{ Rate = } \frac{\text{S.I.} \times 100}{\text{Principal} \times \text{Time}}$$

$$=\frac{3}{10} \times \frac{100}{5} = 6\%$$
 per annum

11. (3) Principal lent at 8% S.I.

:. Principal lent at 10% S.I.

$$\therefore \frac{x \times 8}{100} + \frac{(4000 - x) \times 10}{100}$$

$$\Rightarrow 8x + 40000 - 10x = 35200$$

$$\Rightarrow 2x = 40000 - 35200 = 4800$$

$$\Rightarrow x = \frac{4800}{2} = \text{Rs. } 2400$$

TYPE-VI

1. (3) Using Rule 1, Interest = ₹. (480-400) = ₹80

$$\therefore 80 = \frac{400 \times r \times 4}{100} \Rightarrow r = 5$$

Now, r = 7% (2% increase)

$$\therefore$$
 S.I. = $\frac{400 \times 7 \times 4}{100}$ = 112

∴ Amount = ₹ (400+112) = ₹ 512

2. (1) Using Rule 1,

Let his capital be x.

According to the question,

$$\frac{x \times 11.5}{100} - \frac{x \times 10}{100} = 55.50$$

or
$$(11.5 - 10)x = 5550$$

or 1.5x = 5550

or
$$x = \frac{5550}{1.5} = 73700$$

3. (1) Using Rule 1, Change in SI

$$= \left(\frac{25}{2} - 10\right)\% = \frac{5}{2}\%$$

$$\therefore \frac{5}{2}\% \text{ of principal} = ₹ 1250$$

.: Principal

$$= ₹ \frac{1250 \times 2 \times 100}{5} = ₹ 50000$$

4. (1) Let the sum = P and original rate = R% per annum.

$$\frac{P \times \left(R+3\right) \times 2}{100} - \frac{P \times R \times 2}{100} = 72$$

$$\Rightarrow \frac{P \times 3 \times 2}{100} = 72$$

$$\Rightarrow P = \frac{72 \times 100}{3 \times 2} = ₹ 1200$$

Aliter: Using Rule 13,

$$P_1 = P, R_1 = R, T_1 = 2$$

$$P_2 = P, R_2 = R + 3, T_2 = 2$$

$$72 = \frac{P \times (R+3) \times 2 - P \times R \times 2}{100}$$

7200 = 6P

5. (4) If the sum lent be Rs. x, then

$$\frac{x \times 2.5 \times 3}{100} = 540$$

$$\Rightarrow x = \frac{540 \times 100}{2.5 \times 3} = ₹7200$$

Aliter: Using Rule 13,

$$P_1 = P, R_1 = R, T_1 = 3$$

$$P_1 = P, R_1 = R, T_1 = 3$$

 $P_2 = P, R_2 = R + 2.5\% T_2 = 3$

S.I. = Rs.
$$540$$

$$540 = \frac{P \times (R + 2.5\%) \times 3 - P \times R \times 3}{100}$$

54000 = 7.5P

$$P = \frac{540000}{75}$$

P = ₹ 7200

6. (1)
$$\frac{P \times 1 \times 2}{100} = 24$$

$$\Rightarrow P = \frac{2400}{2} = ₹ 1200$$

Aliter: Using Rule 13,

$$P_1 = P, R_1 = R, T_1 = 2.$$

$$P_2 = P, R_2 = R + 1, T_2 = 2$$

$$24 = \frac{P(R+1)2 - PR2}{100}$$

$$2400 = 2PR + 2P - 2PR$$

P = ₹ 1200

7. (3) If the capital after tax deduction be x, then

$$x \times (4 - 3.75) \% = 48$$

$$\Rightarrow \frac{x \times 0.25}{100} = 48$$

$$\Rightarrow \frac{x \times 25}{10000} = 48$$

$$\Rightarrow \frac{x}{400} = 48$$

$$\Rightarrow x = 48 \times 400 = 719200$$

: Required capital

$$=\frac{19200\times100}{96}$$
 = ₹ 20000

8. (1) If the principal be x, then

$$\frac{x \times 3 \times 2}{100} = 300$$

$$\Rightarrow x = \frac{300 \times 100}{3 \times 2} = ₹5000$$

Aliter: Using Rule 13.

$$P_1 = P_1, R_2 = R_2, T_3 = 2.$$

$$P_2 = P, R_2 = R + 3, T_2 = 2.$$

$$300 = \frac{P \times (R+3) \times 2 - PR2}{100}$$

$$300 = \frac{6P}{100}$$

9. (4) Using Rule 1,

Rate =
$$\frac{\text{S.I.} \times 100}{\text{Principal} \times \text{Time}}$$

$$=\frac{864 \times 100}{2400 \times 4} = 9\% \text{ per annum}$$

New rate = 10% per annum

∴ S.I. =
$$\frac{2400 \times 10 \times 4}{100}$$
 = ₹ 960

:. Amount = 2400 + 960= ₹ 3360

10. (4) Using Rule 1,

$$\therefore \text{ Rate = } \frac{\text{S.I.} \times 100}{\text{Principal} \times \text{Time}}$$

$$=\frac{120\times100}{800\times3}$$

= 5% per annum

New rate = 8% per annum

∴ S.I. =
$$\frac{800 \times 3 \times 8}{100}$$
 = ₹ 192

∴ Amount = (800 + 192) = ₹992

11. (1) Using Rule 1,

Case I,

Rate =
$$\frac{S.I. \times 100}{Principal \times Time}$$

$$=\frac{120 \times 100}{800 \times 3} = 5\% \text{ per annum}$$

Rate = 8% per annum

S.I. =
$$\frac{800 \times 8 \times 3}{100}$$
 = ₹ 192

∴ Amount = Principal + S.I.

= (800 + 192) = ₹ 992

Rate =
$$\frac{S.1. \times 100}{\text{Principal} \times \text{Time}}$$

$$=\frac{252\times100}{2100\times2}=6\%$$
 per annum

New rate = 5%

∴ S.I. =
$$\frac{252 \times 5}{6}$$
 = ₹ 210

13. (3) Using Rule 1,

$$S.I. = 956 - 800 = Rs. 156$$

$$\therefore \text{ Rate} = \frac{\text{S.I.} \times 100}{\text{Principal} \times \text{Time}}$$

$$= \frac{156 \times 100}{800 \times 3} = 6.5\%$$

New rate = (6.5 + 4)%= 10.5%

$$\therefore \text{ S.I.} = \frac{\text{Principal} \times \text{Time} \times \text{Rate}}{100}$$

$$= \frac{800 \times 3 \times 10.5}{100} = \text{Rs. } 252$$

- ∴ Amount = Rs.(800 + 252) = Rs.1052
- **14.** (4) Using Rule 1,

Amount deposited in bank = Rs.

Difference of rates = $5 - \frac{7}{2}$

- $=\frac{3}{2}\%$ per annum
- ∴ S.I.

$$= \frac{\text{Principal} \times \text{Time} \times \text{Rate}}{100}$$

$$\Rightarrow \frac{x \times 1 \times 3}{100 \times 2} = 105$$

$$\Rightarrow x = \frac{105 \times 200}{3} = \text{Rs. } 7000$$

TYPE-VII

(1) Using Rule 1,
 Let x be lent at 8%, then (10000 - x) is lent at 10%.
 Accordingly,

$$\frac{10000\times9.2\times t}{100} = \frac{x\times8\times t}{100}$$

$$+\frac{(10000-x)\times10\times t}{100}$$

$$\Rightarrow \frac{92000t}{100} = \frac{8xt}{100} + \frac{(10000 - x)10t}{100}$$
$$\Rightarrow 92000t = 8xt + (10000 - x) 10t$$

- \Rightarrow 92000 = 8x + 100000 10x
- \Rightarrow 2x = 8000
- \Rightarrow x = 4000
- ∴ First part = ₹ 4000
- Second part = $\stackrel{?}{\sim}$. 6000 **2.** (1) Let *x* be lent on 8%.
 - ∴ (1000 x) is lent on 10%. Interest = 9.2% of 1000 = ₹ 92

$$\therefore 92 = \frac{x \times 8}{100} + \left(\frac{1000 - x}{100}\right) \times 10$$

$$\Rightarrow 8x + 10000 - 10x = 9200$$

$$\Rightarrow$$
 - 2x = 9200 - 10000

$$\Rightarrow x = \frac{800}{2} = 7400 = \text{first part}$$

- ∴ Second part = ₹ 600
- **3.** (1) Interest
 - $= (7000 + 630 \times 8) 12000$
 - = (7000 + 5040) 12000
 - = 12040 12000 = ₹ 40

Total Principal = 5000 + 4370 + 3740 + 3110

- + 2480 + 1850 + 1220 + 590
- =₹22360

$$Rate = \frac{40 \times 100 \times 12}{22360 \times 1} \approx 2.1 \ per \ cent$$

4. (4) Let the sum be ₹ 100. For initial six months, Interest

$$= 100 \times \frac{6}{100} \times \frac{6}{12} = 3\%$$

Now, sum = 100 + 3 = 700 For another six months, Interest

$$=103 \times \frac{6}{100} \times \frac{6}{12} = 3.09$$

- \therefore Rate of interest per annum = 3 + 3.09 = 6.09%
- **5.** (3) Let the person have ₹ 100. Then SI for 1 year

$$= \overline{\xi} \left(\frac{40 \times 15 \times 1}{100} + \frac{30 \times 10 \times 1}{100} + \frac{30 \times 18 \times 1}{100} \right)$$

- = ₹ (6 + 3 + 5.4) = ₹ 14.4
- \therefore Rate of interest on whole sum = 14.4%
- **6.** (4) SI earned after two years

$$=\frac{15600 \times 10 \times 2}{100} = ₹ 3120$$

∴ Principal for next two years = ₹ (15600 + 3120)

= ₹ 18720

SI earned at the end of fourth

year =
$$\frac{18720 \times 10 \times 1}{100}$$
 = ₹ 1872

7. (1) Let *x* be lent at 10% per annum.
 ∴ (1500 - *x*) is lent at 7% per annum.

Now.

$$\frac{x \times 10 \times 3}{100} + \frac{(1500 - x) \times 7 \times 3}{100} = 396$$

- $\Rightarrow 30x + 31500 21x$
- = 39600
- $\Rightarrow 9x = 39600 31500$

$$\Rightarrow x = \frac{8100}{9} = 7900$$

8. (2) Let each instalment be *x*. Then,

$$\left(x + \frac{x \times 4 \times 1}{100}\right) + \left(x + \frac{x \times 4 \times 2}{100}\right) + \left(x + \frac{x \times 4 \times 3}{100}\right) + x = 848$$

$$\Rightarrow \left(x + \frac{x}{25}\right) + \left(x + \frac{2x}{25}\right) + \left(x + \frac{3x}{25}\right) + x$$

848

$$\Rightarrow \frac{26x}{25} + \frac{27x}{25} + \frac{28x}{25} + x = 848$$

$$\Rightarrow \frac{26x + 27x + 28x + 25x}{25} = 848$$

 $\Rightarrow 106x = 848 \times 25$

$$\Rightarrow x = \frac{848 \times 25}{106} = ₹200$$

Aliter: Using Rule 10,

Here, A = ₹ 848,

$$T = 4$$
 years, $r = 4\%$

Equal instalment

$$= \frac{848 \times 200}{4 \left[200 + (4-1)4\right]}$$

$$= \frac{848 \times 200}{4 \times 212} = ₹200$$

9. (3) Using Rule 1.

Remaining amount

- = 7 (50000 (8000 + 24000))
- =**₹**18000

Let ₹ 18000 be lent at the rate of r% p.a.

According to the question,

$$\frac{8000 \times 11 \times 1}{2 \times 100} + \frac{24000 \times 6 \times 1}{100}$$

$$+ \ \frac{18000 \times r \times 1}{100} = 3680$$

$$\Rightarrow 440 + 1440 + 180r = 3680$$

$$\Rightarrow 1880 + 180r = 3680$$

$$\Rightarrow 180r = 3680 - 1880 = 1800$$

$$\Rightarrow r = \frac{1800}{180} = 10\%$$

10. (2) Using Rule 1.

Let the principal be x.

$$\therefore I_1 = \frac{x \times 10 \times 1}{2 \times 100} = \frac{x}{20}$$

$$I_2 = \frac{x \times 9 \times 1}{3 \times 100} = \frac{3x}{20}$$

$$I_3 = \frac{x}{6} \times \frac{12 \times 1}{100} = \frac{x}{50}$$

$$\therefore I_1 + I_2 + I_3$$

$$= \left(\frac{x}{20} + \frac{3x}{100} + \frac{x}{50}\right)$$

$$=\left(\frac{5x+3x+2x}{100}\right)=\frac{x}{10}$$

∴ Average annual rate = 10%

11. (3) Using Rule 1.

If the principal be x, then Simple interest = (770 - x)

$$\therefore Principal = \frac{S.I.\times 100}{Time \times Rate}$$

$$\Rightarrow x = \frac{(770 - x) \times 100}{4 \times 10}$$

$$\Rightarrow 2x = (770 - x) \times 5$$

$$\Rightarrow 2x + 5x = 770 \times 5$$

$$\Rightarrow$$
 7 x = 770 \times 5

$$\therefore x = \frac{770 \times 5}{7} = 750$$

12. (4) Using Rule 1.

Desired gain on ₹ 20000

$$=20000 \times \frac{10}{100}$$
 = ₹ 2000

$$\therefore Rate = \frac{S.I.\times 100}{Principal \times Time}$$

$$=\frac{1040\times100}{8000}$$

= 13% per annum

13. (2) Using Rule 1.

S.I. after five years

$$= \frac{\text{Principal} \times \text{Time} \times \text{Rate}}{100}$$

$$= \frac{12000 \times 5 \times 10}{100} = ₹ 6000$$

Interest earned

$$\therefore \text{ Rate} = \frac{\text{S.I.} \times 100}{\text{Principal} \times \text{Time}}$$

$$=\frac{2680\times100}{12000\times3}=\frac{67}{9}=7\frac{4}{9}\%$$

14. (4) Using Rule 1.

Case I

Let principal be x then Amount = 3x

S.I. =
$$2x$$

$$\therefore \text{ Rate} = \frac{\text{S.I.} \times 100}{\text{Principal} \times \text{Time}}$$

$$=\frac{2x\times100}{x\times8}=25\%$$

Case II

$$Time = \frac{S.I. \times 100}{Principle \times Rate}$$

$$= \frac{3x \times 100}{x \times 25} = 12 \text{ years}$$

15. (2) Using Rule 1.

Required percent

$$=\frac{1}{4} \times 3 + \frac{2}{3} \times 5 + \left(1 - \frac{1}{4} - \frac{2}{3}\right) \times 11$$

$$=\frac{3}{4}+\frac{10}{3}+\frac{11}{12}=\frac{9+40+11}{12}=5\%$$

16. (1) Using Rule 1

$$120 = \frac{300 \times 4 \times r}{100} + \frac{400 \times 3 \times r}{100}$$

$$\Rightarrow 24r = 120$$

$$\Rightarrow r = \frac{120}{24} = 5\%$$
 per annum

17. (3) Using Rule 1.

If the sum of money be x, then

$$\frac{x \times 6 \times 3}{100} + \frac{x \times 5 \times 9}{100} + \frac{x \times 3 \times 13}{100}$$

= 8160

$$\Rightarrow 18x + 45x + 39x = 816000$$

$$\Rightarrow 102x = 816000$$

$$\Rightarrow x = \frac{816000}{102} = ₹8000$$

18. (3) Using Rule 1.

If each amount lent be x, then

$$\frac{x \times 7 \times 4}{100} + \frac{x \times 5 \times 4}{100} = 960$$

$$\Rightarrow \frac{48x}{100} = 960$$

$$\Rightarrow x = \frac{960 \times 100}{48} = ₹2000$$

19. (3) Using Rule 1.

Let the money lent to Tom be Rs. *x*.

Simple interest

$$= \frac{\text{Principal} \times \text{Time} \times \text{Rate}}{100}$$

$$\therefore \frac{500 \times 8 \times 4}{100} + \frac{x \times 8 \times 4}{100}$$

= 210

$$\Rightarrow 160 + \frac{32x}{100} = 210$$

$$\Rightarrow \frac{32x}{100} = 210 - 160 = 50$$

$$\Rightarrow x = \frac{50 \times 100}{32} = \text{Rs. } 156.25$$

20. (1) Using Rule 1.

Rate =
$$\frac{20}{3}$$
% per annum

∴ S.I.

$$= \frac{\text{Principal} \times \text{Time} \times \text{Rate}}{100}$$

$$= \frac{2600 \times 20 \times T}{3 \times 100}$$

∴ Required Time = 3 years

21. (1) Using Rule 1.

Principal = Rs. (60000 - 10000)

= Rs. 50000

$$\therefore \text{ S.I.} = \frac{50000 \times 15 \times 2}{100}$$

22. (2) Using Rule 1.

Let the loans taken by A, B and C be Rs. x, Rs. y and Rs. z respectively.

$$x + y + z = \text{Rs.} 7930$$

S.I. =
$$\frac{\text{Principal} \times \text{Time} \times \text{Rate}}{100}$$

According to the question,

$$x + \frac{x \times 2 \times 5}{100} = y + \frac{y \times 3 \times 5}{100}$$

$$= z + \frac{z \times 4 \times 5}{100}$$

$$\Rightarrow \frac{100x + 10x}{100}$$

$$=\frac{100y+15y}{100}=\frac{100z+20z}{100}$$

$$\Rightarrow 110x = 115y = 120z$$

$$\Rightarrow 22x = 23y = 24z$$

$$\Rightarrow \frac{22x}{6072} = \frac{23y}{6072} = \frac{24z}{6072}$$

[LCM of 22, 23 and 24 = 6072]

$$\Rightarrow \frac{x}{276} = \frac{y}{264} = \frac{z}{253}$$

 $\therefore x: y: z = 276: 264: 253$

Sum of terms of ratio

$$= 276 + 264 + 253 = 793$$

$$\therefore \text{ A's loan} = \frac{276}{793} \times 7930$$

23. (2) Using Rule 1.

Remaining amount

= Rs. (16000 - 4000)

= Rs. 12000

∴ S.I.

$$= \frac{\text{Principal} \times \text{Time} \times \text{Rate}}{100}$$

$$= \frac{12000 \times 15 \times 12}{12 \times 100} = \text{Rs. } 1800$$

∴ Total amount paid

= Rs. (16000 + 1800)

= Rs. 17800

24. (*) Using Rule 1.

S.I. after 1 year

$$= \frac{\text{Principal} \times \text{Time} \times \text{Rate}}{100}$$

$$= \frac{x \times 5}{100} = \text{Rs. } \frac{x}{20}$$

Principal for 2nd year

$$= Rs. \left(2x + \frac{x}{20}\right) = Rs. \frac{41x}{20}$$

S.I. after second year

$$= Rs. \left(\frac{41x}{20} \times \frac{5}{100} \right)$$

= Rs.
$$\frac{41x}{400}$$

Principal for third year

$$= Rs. \left(3x + \frac{41x}{400}\right)$$

$$= Rs. \left(\frac{1200x + 41x}{400} \right)$$

= Rs.
$$\frac{1241x}{400}$$

: S.I. after 3rd year

$$= Rs. \left(\frac{1241x}{400} \times \frac{5}{100} \right)$$

= Rs.
$$\frac{1241x}{8000}$$

.. Required amount

$$= Rs. \left(3x + \frac{1241x}{8000}\right)$$

$$= Rs. \left(\frac{24000x + 1241x}{8000} \right)$$

= Rs.
$$\left(\frac{25241x}{8000}\right)$$

25. (3) Using Rule 1.

S.I. =
$$\frac{\text{Principal} \times \text{Time} \times \text{Rate}}{100}$$

$$= \frac{100000 \times 6 \times 6}{100} = \text{Rs. } 36000$$

Total pocket money

 $= 6 \times 2500 = \text{Rs.} \ 15000$

Total expenses of trust

 $= 6 \times 500 = \text{Rs. } 3000$

Total expenses

= Rs. (15000 + 3000)

SME-534

= Rs. 18000

∴ Amount to be received by the

= Rs. (100000 + 36000 – 18000)

= Rs. 118000

26. (1) Let amounts be equal in T years.

S.I. =
$$\frac{Principal \times Time \times Rate}{100}$$

$$\therefore P + \frac{P \times x \times T}{100}$$

$$= Q + \frac{Q \times y \times T}{100}$$

$$\Rightarrow \frac{P xT}{100} - \frac{Q yT}{100} = Q - P$$

$$\Rightarrow T\left(\frac{Px - Qy}{100}\right) = Q - P$$

$$\Rightarrow T = 100 \left(\frac{Q - P}{Px - Qy} \right)$$

27. (4) Let the principal be Rs. 100

Interest = Rs. 10

Actual principal = Rs. 90

∵ Interest on Rs. 90 = Rs. 10

:. Interest on Rs. 100

$$=\frac{10}{90}\times100$$

$$=\frac{100}{9}=11\frac{1}{9}\%$$

28. (2) Let the principal be Rs. P.

$$S.I. = \frac{Principal \times Time \times Rate}{100}$$

$$= \frac{P \times 5 \times 5}{100} = \text{Rs. } \frac{P}{4}$$

Amount = P +
$$\frac{P}{4}$$
 = Rs. $\frac{5P}{4}$

According to the question,

$$\frac{5P}{4} \times \frac{2}{100} = 5$$

$$\Rightarrow \frac{P}{40} = 5$$

$$\Rightarrow$$
 P = 40 × 5

29. (1) Principal = Rs. 1950, Rate = 10% per annum

S. I. =
$$\frac{\text{Principal } \times \text{Time } \times \text{Rate}}{100}$$

$$= \frac{1950 \times 1 \times 10}{100} = \text{Rs. } 195$$