Introducción
Conceptos y definiciones
Clasificación de funciones
Operaciones con funciones
Funciones inversas
Funciones de permutación

Funciones

Luis Eduardo Amaya Sede Guanacaste, Universidad de Costa Rica.

> MA-0320 - Matemáticas Discretas Octubre 2020

Introducción
Conceptos y definiciones
Clasificación de funciones
Operaciones con funciones
Funciones inversas
Funciones de permutación

Contents

- Introducción
 - Justificación
 - Un poco de historia
- Conceptos y definiciones
 - Conceptos básicos
 - Tipos de funciones
 - Dominio, puntos de intersección y signo de una funciones
- Clasificación de funciones
 - Paridad de una función
 - Inyectividad, sobreyectividad y biyectividad
- Operaciones con funciones
- Funciones inversas
- Funciones de permutación

Paridad de una función

Inyectividad, sobreyectividad y biyectividad

Inyectividad, sobreyectividad y biyectividad

Definición

 Si f es una función de A en B, se dice que f es inyectiva o uno a uno, si y solo si para todo a y b en A se cumple

$$a \neq b \Rightarrow f(a) \neq f(b)$$

Es decir, elementos diferentes de A poseen imágenes diferentes en B.

- Si f es una función de A en B, se dice que f es sobreyectiva si y solo si f(A) = B. Es decir, f es sobreyectiva si el ámbito y el codominio de f son iguales.
- Si f es una función de A en B, se dice que f es biyectiva si y solo si es inyectiva y sobreyectiva.

Funciones de permutación

Paridad de una función Inyectividad, sobreyectividad y biyectividad

Inyectividad, sobreyectividad y biyectividad

Ejemplo 21

Considere la función
$$f: \mathbb{R} - \{4\} \rightarrow \mathbb{R} - \{5\}$$
 cuyo criterio es $f(x) = \frac{5x-2}{x-4}$. Pruebe que f es biyectiva.

i) Inyect. H. q.d $f(a) = f(b) \Rightarrow (a = b)$

$$\frac{5a-2}{a-2} = \frac{5b-2}{b-2} \Rightarrow (5a-2)(b-2) = (5b-2)(a-2)$$

$$5ab - 10a - 2b + 4 = 5ab - 10b - 2a + 4$$

$$-10a + 2a = -10b + 2b$$

$$-8a = -8b \Rightarrow f \text{ es inyect}$$

$$a = b \text{ for each } a = b \text{ es inyect}$$

ii) sobregative
$$b=f(a)$$

$$b=\frac{5a-2}{a-4}, b(a-4)=5a-2,$$

$$ab-4b=5a-2, ab-5a=4b-2$$

$$a(b-5)=4b-2, a=\frac{4b-2}{b-5}, b\neq 5$$

$$f(a)=b, (\frac{4b-2}{b-5}, b)$$

$$f(a)=b, (\frac{4b-2}{b-5}, b)$$

$$De(i) y(iii) fes biyevt.$$

Inyectividad, sobreyectividad y biyectividad

Ejemplo 22

- Sea $A = \{1, 2, 3, 4, 5\}$ y sea \mathbb{R} una relación definida en A, cuya gráfica H viene dada por $H = \{(1, 1), (2, 3), (4, 2), (5, 4), (3, 5)\}$. Justifique si R es una función biyectiva.
- On Determine todas las funciones biyectivas sobre $A = \{1, 2, 3\}$.
- Sea $A = \{1, 2, 3\}, B = \{1, 2, 3, 4\}$ y $f : A \times A \rightarrow B$ definida por

$$f((a,b)) = \begin{cases} 1 & si & a < b \\ 3 & si & a > b \\ 4 & si & a = b \end{cases}$$

- Determine si f es inyectiva y si f es sobreyectiva.
- ② Determine $f^{-1}(\{2\}), f^{-1}(\{3\})$

f es inyectiva, ya que el diagrama se observa que para cualesquiera 2 preimagenes diferentes se tienen 2 imagenes diferentes, y además es sobreyectiva, porque el codominio es igual al ámbito de la función, por los elementos anteriores f es biyectiva.

(2)
$$G_{R} = \{(1,1), (2,2), (3,3)\}$$

(1) $G_{R} = \{(1,1), (2,2), (3,3)\}$
(1) $G_{R} = \{(1,2), (2,1), (3,3)\}$

$$A^{A} \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$$

f, no es inyectiva, ya que existen diferentes preimagenes que tienen la misma imagen, como por ejemplo f((1,1))=4=f((2,2)).

Paridad de una función
Inyectividad, sobreyectividad y biyectividad

Inyectividad, sobreyectividad y biyectividad

Ejemplo 23: ejercicio estudiantes

Sea $A = \{a, b, c\}$ y considere la función $f : P(A) \rightarrow \{0, 1, 2, 3, 4\}$, definida por f(B) = |B|.

- Determine f ({a, c}) y f ({a}, {a, b}, {b})
- ① Determine $f^{-1}(\{2,4\})$
- Determine si f es inyectiva o sobreyectiva.

Conceptos y definiciones

Clasificación de funciones

Operaciones con funciones

Funciones inversas

Funciones de permutación

Operaciones con funciones

Definición

Dadas dos funciones, $f : A \rightarrow D$ y g : B, con A, B, C, D subconjuntos de \mathbb{R} , se define:

$$\circ$$
 $(cf)(x) = cf(x)$

$$(f \pm g)(x) = f(x) \pm g(x)$$

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

•
$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$
, siempre que $g(x) \neq 0$

En la definición anterior de las últimas cuatro operaciones básicas con funciones, el dominio de la función resultante es la intersección de los dominios de cada función involucrada, es decir, $A \cap B$. En la división de funciones, de esta intersección de los dominios se deben eliminar los valores que anulan a la función g.

Conceptos y definiciones

Clasificación de funciones

Operaciones con funciones

Funciones inversas

Funciones de permutación

Operaciones con funciones

Ejemplo 24

Dadas las funciones $f(x) = x^2 - 3x - 4$ y g(x) = 2x - 3, determine el criterio y dominio de (f - g)(x), $\left(\frac{g}{f}\right)(x)$, $(f \cdot g)(2)$

i)
$$[f-q](x) = f(x) - g(x)$$

 $= x^2 - 3x - 4 - (2x - 3)$
 $= x^2 - 3x - 4 - 2x + 3$
 $[f-q](x) = x - 5x - 1$, $f-q: \mathbb{R} \rightarrow \mathbb{R}$

(i)
$$\left(\frac{1}{f}\right)(x) = \frac{1}{f(x)} = \frac{2x-3}{x^2-3x-4}, (x-4)(x+1) = 0$$

$$x = 4, x = -1$$

$$\left(\frac{3}{f}\right)(x) = \frac{2x-3}{x^2-3x-4}, \frac{3}{f(x)} = 0$$

$$\left(\frac{3}{f}\right)(x) = \frac{3x-3}{x^2-3x-4}, \frac{3}{f(x)} = 0$$

$$\left(\frac{3}{f}\right)(x) = \frac{3x-3}{x^2-3x-4}, \frac{3}{f(x)} = 0$$

$$\left(\frac{3}{f}\right)(x) = \frac{3x-3}{x^2-3}, \frac{3x-4}{x^2-3x-4}, \frac{3x-4}{$$

Introducción
Conceptos y definiciones
Clasificación de funciones
Operaciones con funciones
Funciones inversas
Funciones de permutación

Operaciones con funciones

Composición

Dadas dos funciones $f: A \rightarrow B$ y $g: B \rightarrow C$, se define la composición de las funciones f y g como la nueva función $(g \circ f): A \rightarrow C$, que cumple:

$$(g \circ f)(x) = g(f(x))$$

f(x):

g(x):

 $gof \neq fog$

(f o g)(x):

(g o f)(x):

Conceptos y definiciones

Clasificación de funciones

Operaciones con funciones

Funciones inversas

Funciones de permutación

Operaciones con funciones

Ejemplo 25

• Si tenemos f(x) = 3 - 2x, $g(x) = -x^2 + 5x - 2$, ambas funciones de dominio real, determinar $g \circ f$, $f \circ g$, $f \circ f$ y $g \circ f \circ f$. Sea $f(x) = 5 - \frac{1}{x - 4}$.

Sea
$$f(x) = 5 - \frac{1}{x - 4}$$
.

Sea
$$f(x) = 5 - \frac{1}{x - 4}$$
.

Pruebe que $(f \circ f \circ f)(x) = x$.

Determine el dominio de f y el dominio de $f \circ f \circ f$.

() $(g \circ f)(x) = g = f(x) = -f(x) = -f(x)$

$$(a \circ f)_{(x)} = -4x^2 + 2x + 4$$

-
$$(f \circ f)_{(x)} = f[f(x)] = 3 - 2[f(x)]$$

= $3 - 2(3 - 2x)$
= $3 - 6 + 4x$
 $(f \circ f)_{(x)} = 4x - 3$, $f \circ f : \mathbb{R} \to \mathbb{R}$
- $g \circ f \circ f = g[f \circ f] = -5[f \circ f] + 5[f \circ f]$
= $-5(4x - 3) + 5(4x - 3) - 2$
= $-5(4x - 3) + 5(4x - 3) - 2$
= $-5(16x^2 - 24x + 9) + 20x - 15 - 1$
= $-80x^2 + 140x - 62$, $g \circ f \circ R \cdot \mathbb{R} \to \mathbb{R}$

$$\begin{cases}
f \circ f \circ f \rangle (x) = x, & f(x) = 5 - \frac{1}{x-4} \\
f \left[f (f) \right] = 5 - \frac{1}{f(x) - 4} = 5 - \frac{1}{f(x) - 4} \\
5 - \frac{1}{f(x) - 4} = 5 - \frac{1}{f(x) - 4} = 5 - \frac{1}{f(x) - 4} \\
5 - \frac{1}{f(x) - 4} = 5 - \frac{1}{f(x) - 4} = 5 - \frac{1}{f(x) - 4} \\
5 - \frac{1}{f(x) - 4} = 5 - \frac{1}{f(x) - 4} = 5 - \frac{1}{f(x) - 4} \\
5 - \frac{1}{f(x) - 4} = 5 - \frac{1}{f(x) - 4} = 5 - \frac{1}{f(x) - 4} \\
5 - \frac{1}{f(x) - 4} = 5 - \frac{1}{f(x) - 4} = 5 - \frac{1}{f(x) - 4} \\
5 - \frac{1}{f(x) - 4} = 5 - \frac{1}{f(x) - 4} = 5 - \frac{1}{f(x) - 4} \\
5 - \frac{1}{f(x) - 4} = 5 - \frac{1}{f(x) - 4} = 5 - \frac{1}{f(x) - 4} \\
5 - \frac{1}{f(x) - 4} = 5 - \frac{1}{f(x) - 4} = 5 - \frac{1}{f(x) - 4} = 5 - \frac{1}{f(x) - 4} \\
5 - \frac{1}{f(x) - 4} = \frac{1}$$

Conceptos y definiciones

Clasificación de funciones

Operaciones con funciones

Funciones inversas

Funciones de permutación

Operaciones con funciones

Ejemplo 26

Onsidere las funciones g definida por g(x) = -x + 5 y f

definida por

$$f(x) = \begin{cases} 2x + 1 & \text{si} \quad x \ge 2 \\ -3(-1)x - 1 & \text{si} \quad x < 2 \end{cases}$$
Determine el criterio de $(f \circ g)(x)$.

Considere la función $f: \mathbb{R} \to \mathbb{R}$ con criterio $f(x) = 8x^3 - 5$. Además, sea $g: \mathbb{R} \to \mathbb{R}$ otra función que cumple $(f \circ g)(x) = 35 - 8x$. Determine el criterio g(x).

(i)
$$f[q(x)] = 2[q(x)] + 2(-x+5) + 1 = -2x + 11$$

 $q(x) / 2 = -x + 5 / 2 = -x + 5 / 3$
 $(f \circ i) (x) = \begin{cases} -2x + 11 & 51 & x / 3 \\ -2x + 11 & 51 & x / 3 \end{cases}$

$$f(x) = 8 \times 3 - 5$$
, $g(x) = ?$
 $(f \circ g)(x) = 35 - 8 \times$
 $f(g(x)) = 35 - 8 \times$
 $g(x) = 35 - 8 \times$