Mini-Problems 6

- **1.** Let $f: \mathbb{R} \to \mathbb{R}^n$ be a function such that ||f(t)|| = 1 for all $t \in \mathbb{R}$. Prove that $f'(t) \cdot f(t) = 0$.
 - **2.** Define the function $f: \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0). \end{cases}$$

Show that its partial derivatives exist everywhere and are bounded functions on all of \mathbb{R}^2 (this implies that f is continuous). Nevertheless, show that f is not differentiable at (0,0). Hint: a sometimes useful way to prove that a function is not differentiable is to show that for some unit vector u and point a, the directional derivative $\partial_u f(a) \neq \nabla f(a) \cdot u$ (see Theorem 2.17 of the notes).

- **3.** Let $f: S \to \mathbb{R}^m$ be a differentiable function, where $S \subseteq \mathbb{R}^n$ is connected open set. Suppose that the Jacobian matrix Df(x) = 0 for every $x \in S$. Prove that f is constant. What goes wrong if S is not connected (the condition about openness is there just so that the derivative makes sense in S)?
- **4.** Prove the following identities for $f,g:\mathbb{R}^n\to\mathbb{R}$, which are clearly generalizations of the 1-variable product and quotient rules for derivatives: (i) $\nabla(fg)=f\nabla g+g\nabla f$ and (ii) $\nabla(1/f)=-f^{-2}\nabla f$ wherever $f\neq 0$.