

Time

CV time trace repeatly alternates between unimodal CV > bimodal CV, and unimodal CV < bimodal CV, in

All traj. ← Single delay distribution

All traj. ← Single delay distribution

All traj. ← Single delay distribution

All traj. ← **Different** delay distribution

All traj. ← Single delay distribution

All traj. ← **Different** delay distribution

Traj. 1: Small Delay (small index)

Traj. 1: Small Delay (small index)

Traj. 1: Fast Increase

Traj. 1: Small Delay (small index)

∀ Trajectory: Same Distribution

Traj. 1: Fast Increase

Traj. 1: Small Delay (small index)

∀ Trajectory: Same Distribution

Traj. 1: Small Delay (small index)

∀ Trajectory: Same Distribution

Traj. 1: Small Delay (small index)

∀ Trajectory: Same Distribution

Adding extrinsic noise in time delay increases CV in transient, but ultimately, no signficant difference in steady state CV.

Traj. 1: Small Delay (small index)

∀ Trajectory: Same Distribution

Same Extrinsic Noise (delay)

Same Extrinsic Noise (delay)

Same Extrinsic Noise (delay)

$$\lambda_b = 100, \ \lambda_d = 1$$

$$\lambda_b = 100, \ \lambda_d = 1$$

$$egin{aligned} \lambda_b &= 100 + 20 \cdot k, \;\; k \sim N(0,1) \ \lambda_d &= 1 \end{aligned}$$

For Each Trajectory,

$$\lambda_b = 100 + 20 \cdot k, ~~k \sim N(0,1)$$

$$egin{aligned} \lambda_b &= 100 + 10 \cdot k, \;\; k \sim N(0,1) \ \lambda_{ ilde{d}} &= 1 \end{aligned}$$

Steady-State:

Steady-State:

Steady-State:

Steady-State:

Steady-State:

