Машинне навчання

Класифікація методом kNN

Лабораторна робота №2

Метод класифікації kNN Постановка задачі

Розглянемо задачу класифікації, в якій об'єктам з $X=\mathbb{R}^n$ (об'єкти описуються n числовими признаками): $X=\{x_1...x_n\}$ відповідає один з кількох класів $Y=\{\mathbf{0},...M\}$. Нехай задана вибірка пар "об'єкт-відповідь": (x_i,y_i) , i=1...N. Необхідно класифікувати новий об'єкт.

Приклад алгоритму

f _I Вік	f ₂ Дохід	Y
46	41	No
36	54	No
34	29	Yes
38	23	Yes

Задача полягає в тому, щоб провести класифікацію нового об'єкта для якого $f_1 = 42$ и $f_2 = 34$

- 1. Зафіксувати значення параметра к
- 2. Для кожного об'єкта з тестової вибірки:

Розрахувати відстань від об'єкта з набором ознак a_i до кожного об'єкта з навчальної вибірки з ознаками f_i за формулою

$$D_{j} = \sqrt{\sum_{i=1}^{l} (f_{i} - a_{i})^{2}}$$

Розрахувати поеказник близькості

$$Q_{j} = \sum_{i=1}^{n_{j}} \frac{1}{D^{2}(f, a_{ij})}$$

Визначити до якого класу з навчальної вибірки належить об'єкт

- 3. Порахувати кількість помилок класифікації шляхом порівняння результатів класифікації з відомими значеннями класів для кожного об'єкта з тестової вибірки
- 4. Провести оптимізацію параметра k
- 5. Порівняти результати з kNN з sklearn
- 6. Оформити результати у вигляді звіту

- 1. З використанням вбудованого алгоритму kNN з бібліотеки sklearn провести класифікацію об'єктів. Визначити кількість помилок.
- 2. Перевірити результати роботи на тестовій вибірці.
- 3. Оформити результати у вигляді звіту.