TD4-Familles de vecteurs

Exercice 1. Soit $(\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3$. On a

$$\lambda_{1}A + \lambda_{2}B + \lambda_{3}C = 0_{\mathcal{M}_{2,3}(\mathbb{R})} \iff \begin{cases} \lambda_{1} + 6\lambda_{2} - \lambda_{3} = 0 \\ -2\lambda_{1} - 2\lambda_{2} - \lambda_{3} = 0 \\ 3\lambda_{2} - \lambda_{3} = 0 \\ 2\lambda_{1} + \lambda_{3} = 0 \\ \lambda_{1} + \lambda_{3} = 0 \\ \lambda_{1} + \lambda_{2} = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_{1} + 6\lambda_{2} - \lambda_{3} = 0 \\ -2\lambda_{1} - 2\lambda_{2} - \lambda_{3} = 0 \\ -2\lambda_{1} - 2\lambda_{2} - \lambda_{3} = 0 \\ \lambda_{1} = 0 \\ \lambda_{1} + \lambda_{3} = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \lambda_{1} + 6\lambda_{2} - \lambda_{3} = 0 \\ -2\lambda_{1} - 2\lambda_{2} - \lambda_{3} = 0 \\ \lambda_{1} = 0 \\ \lambda_{1} + \lambda_{2} = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \delta_{1} - \lambda_{3} = 0 \\ \lambda_{2} = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \lambda_{1} = 0 \\ \lambda_{3} = 0 \\ \lambda_{2} = 0 \end{cases}$$

Ainsi, la famille (A, B, C) est libre.

Exercice 2. 1. (a) Soit $(\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3$.

$$\lambda_{1}(1,-1,2) + \lambda_{2}(2,1,-1) + \lambda_{3}(-1,-5,8) = (0,0,0)$$

$$\iff \begin{cases} \lambda_{1} + 2\lambda_{2} - \lambda_{3} = 0 \\ -\lambda_{1} + \lambda_{2} - 5\lambda_{3} = 0 \\ 2\lambda_{1} - \lambda_{2} + 8\lambda_{3} = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_{1} + 2\lambda_{2} - \lambda_{3} &= 0 \\ 3\lambda_{2} - 6\lambda_{3} &= 0 \\ 2\lambda_{1} - \lambda_{2} + 8\lambda_{3} &= 0 \end{cases} \quad L_{2} \leftarrow L_{2} + L_{1}$$

$$\iff \begin{cases} \lambda_{2} &= 2\lambda_{3} \\ \lambda_{1} + 3\lambda_{3} &= 0 \\ 2\lambda_{1} + 6\lambda_{3} &= 0 \end{cases} \quad L_{2} \leftrightarrow L_{1}$$

$$\iff \begin{cases} \lambda_{2} &= 2\lambda_{3} \\ \lambda_{1} &= -3\lambda_{3} \end{cases}$$

En prenant $\lambda_3 = 1$, $\lambda_1 = -3$ et $\lambda_2 = 2$, on voit que

$$\lambda_1(1,-1,2) + \lambda_2(2,1,-1) + \lambda_3(-1,-5,8) = (0,0,0).$$

Donc \mathcal{F} est liée.

- (b) Pour savoir si \mathcal{F} est génératrice de \mathbb{R}^3 ou non, on peut procéder de plusieurs façons :
 - Méthode 1 (voir chapitre 5) : supposons qu'elle l'est. Comme $Card(\mathcal{F}) = 3 = \dim \mathbb{R}^3$, alors c'est une base. En particulier, elle est libre ce qui contredit ce qui précède. Par conséquent, \mathcal{F} n'est pas génératrice de \mathbb{R}^3 .
 - Méthode 2 : soit $(x, y, z) \in \mathbb{R}^3$.

$$(x,y,z) \in \text{Vect}(\mathcal{F})$$
 $\iff \exists (\lambda_{1},\lambda_{2},\lambda_{3}) \in \mathbb{R}^{3} \ (x,y,z) = \lambda_{1}(1,-1,2) + \lambda_{2}(2,1,-1) + \lambda_{3}(-1,-5,8)$
 $\iff \exists (\lambda_{1},\lambda_{2},\lambda_{3}) \in \mathbb{R}^{3} \ \begin{cases} \lambda_{1} + 2\lambda_{2} - \lambda_{3} = x \\ -\lambda_{1} + \lambda_{2} - 5\lambda_{3} = y \\ 2\lambda_{1} - \lambda_{2} + 8\lambda_{3} = z \end{cases}$
 $\iff \exists (\lambda_{1},\lambda_{2},\lambda_{3}) \in \mathbb{R}^{3} \ \begin{cases} \lambda_{1} + 2\lambda_{2} - \lambda_{3} = x \\ 3\lambda_{2} - 6\lambda_{3} = x + y \\ - 5\lambda_{2} + 10\lambda_{3} = z - 2x \end{cases} \xrightarrow{L_{2} \leftarrow L_{2} + L_{1}} \xrightarrow{L_{3} \leftarrow L_{3} - 2L_{1}}$
 $\iff \exists (\lambda_{1},\lambda_{2},\lambda_{3}) \in \mathbb{R}^{3} \ \begin{cases} \lambda_{1} + 2\lambda_{2} - \lambda_{3} = x \\ \lambda_{2} - 2\lambda_{3} = \frac{x + y}{3} \\ \lambda_{2} - 2\lambda_{3} = \frac{2x - z}{5} \end{cases}$
 $\iff \frac{x + y}{2} = \frac{2x - z}{5}.$

Donc, par exemple le vecteur (0,0,1) n'appartient pas à $Vect(\mathcal{F})$ car

$$\frac{0+0}{3} \neq \frac{2 \times 0 - 1}{5}.$$

Ainsi, \mathcal{F} n'est pas génératrice de \mathbb{R}^3 .

2. (a) Soit $(\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3$.

$$\begin{split} \lambda_{1}(X^{2}+2X) + \lambda_{2}(X^{2}+X+1) + \lambda_{3}(X+2) &= 0 \\ \iff \lambda_{2} + 2\lambda_{3} + (2\lambda_{1} + \lambda_{2} + \lambda_{3})X + (\lambda_{1} + \lambda_{2})X^{2} &= 0 \\ \iff \begin{cases} \lambda_{2} + 2\lambda_{3} &= 0 \\ 2\lambda_{1} + \lambda_{2} + \lambda_{3} &= 0 \\ \lambda_{1} + \lambda_{2} &= 0 \end{cases} \\ \iff \begin{cases} \lambda_{2} + 2\lambda_{3} &= 0 \\ -\lambda_{2} + \lambda_{3} &= 0 \\ \lambda_{1} &= -\lambda_{2} \end{cases} \\ \iff \begin{cases} 3\lambda_{2} &= 0 \\ \lambda_{3} &= \lambda_{2} \\ \lambda_{1} &= -\lambda_{2} \end{cases} \\ \iff \begin{cases} \lambda_{2} &= 0 \\ \lambda_{3} &= 0 \\ \lambda_{1} &= 0 \end{cases} \end{split}$$

Ainsi, la famille est libre.

- (b) Méthode 1 (voir chapitre 5) : comme $Card(\mathcal{F}) = 3 = \dim \mathbb{R}_2[X]$ et que \mathcal{F} est une famille libre de vecteurs de $\mathbb{R}_2[X]$, alors c'est une base de $\mathbb{R}_2[X]$. En particulier, elle est génératrice de $\mathbb{R}_2[X]$.
 - Méthode 2 :

$$\begin{aligned} &\operatorname{Vect}(X^2+2X,X^2+X+1,X+2)\\ &=\operatorname{Vect}(X^2+2X,-X+1,X+2) \quad \text{en soustrayant le } 1^{er} \text{ vecteur au } 2^{ieme}\\ &=\operatorname{Vect}(X^2+2X,-X+1,3) \quad \text{en ajoutant le } 2^{ieme} \text{ vecteur au } 3^{ieme}\\ &=\operatorname{Vect}(X^2+2X,-X+1,1)\\ &=\operatorname{Vect}(X^2+2X,-X,1) \quad \text{en soustrayant le } 3^{ieme} \text{ vecteur au } 2^{ieme}\\ &=\operatorname{Vect}(X^2,-X,1) \quad \text{en ajoutant deux fois le } 2^{ieme} \text{ vecteur au } 1^{er}\\ &=\operatorname{Vect}(X^2,X,1)=\mathbb{R}_2[X].\end{aligned}$$

• Méthode 3 : en montrant que pour tout $(a_0, a_1, a_2) \in \mathbb{R}^3$ le système $a_0 + a_1X + a_2X^2 = \lambda_1(X^2 + 2X) + \lambda_2(X^2 + X + 1) + \lambda_3(X + 2)$

d'inconnues $\lambda_1, \lambda_2, \lambda_3$ possède des solutions.

3. (a) Soit $(\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3$.

$$\lambda_{1} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} + \lambda_{2} \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix} + \lambda_{3} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\iff \begin{cases} \lambda_{1} & + \lambda_{3} &= 0 \\ 2\lambda_{1} - \lambda_{2} + \lambda_{3} &= 0 \\ \lambda_{1} + 2\lambda_{2} + \lambda_{3} &= 0 \end{cases}$$

$$\iff \begin{cases} \lambda_{1} & + \lambda_{3} &= 0 \\ 2\lambda_{1} - \lambda_{2} + \lambda_{3} &= 0 \\ \lambda_{2} + \lambda_{3} &= 0 \end{cases}$$

$$\iff \begin{cases} \lambda_{1} & + \lambda_{3} &= 0 \\ 2\lambda_{1} - \lambda_{2} + \lambda_{3} &= 0 \\ \lambda_{2} &= 0 \end{cases}$$

$$\iff \begin{cases} \lambda_{1} &= 0 \\ \lambda_{3} &= 0 \\ \lambda_{2} &= 0 \end{cases}$$

La famille est donc libre.

 $\iff 2x - y = z$

- (b) Méthode 1 (voir chapitre 5) : la dimension de $\mathcal{M}_2(\mathbb{R})$ est 4 et comme $\operatorname{Card}(\mathcal{F}) = 3 < 4$, \mathcal{F} n'est pas génératrice de $\mathcal{M}_2(\mathbb{R})$.
 - Méthode 2 : soit $\begin{pmatrix} x & y \\ z & t \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$.

$$\begin{pmatrix} x & y \\ z & t \end{pmatrix} \in \operatorname{Vect}(\mathcal{F})$$

$$\iff \exists (\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3, \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \lambda_1 \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix} + \lambda_3 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.$$

$$\iff \exists (\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3, \begin{cases} \lambda_1 & + \lambda_3 = x \\ 2\lambda_1 - \lambda_2 + \lambda_3 = y \\ \lambda_2 + \lambda_3 = z \\ \lambda_1 + 2\lambda_2 + \lambda_3 = t \end{cases}$$

$$\iff \exists (\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3, \begin{cases} \lambda_1 & + \lambda_3 = x \\ -\lambda_2 - \lambda_3 = y - 2x & L_2 \leftarrow L_2 - 2L_1 \\ \lambda_2 + \lambda_3 = z & L_4 \leftarrow L_4 - L_1 \end{cases}$$

$$\iff \exists (\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3, \begin{cases} \lambda_1 & + \lambda_3 = x \\ \lambda_2 + \lambda_3 = z \\ \lambda_2 + \lambda_3 = z \end{cases}$$

$$\iff \exists (\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3, \begin{cases} \lambda_1 & + \lambda_3 = x \\ \lambda_2 + \lambda_3 = z \\ \lambda_2 + \lambda_3 = z \end{cases}$$

$$\iff \exists (\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3, \begin{cases} \lambda_1 & + \lambda_3 = x \\ \lambda_2 + \lambda_3 = z \\ \lambda_2 + \lambda_3 = z \end{cases}$$

$$\iff \exists (\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3, \begin{cases} \lambda_1 & + \lambda_3 = x \\ \lambda_2 + \lambda_3 = z \\ \lambda_2 + \lambda_3 = z \end{cases}$$

$$\iff \exists (\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3, \begin{cases} \lambda_1 & + \lambda_3 = x \\ \lambda_2 + \lambda_3 = z \\ \lambda_2 + \lambda_3 = z \end{cases}$$

Donc par exemple, la matrice $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ n'appartient pas à $\text{Vect}(\mathcal{F})$. La famille \mathcal{F} n'est donc pas génératrice de $\mathcal{M}_2(\mathbb{R})$.

4. Soit $(\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3$.

$$\lambda_{1}(2^{n})_{n\in\mathbb{N}} + \lambda_{2}(3^{n})_{n\in\mathbb{N}} + \lambda_{3}(4^{n})_{n\in\mathbb{N}} = (0)_{n\in\mathbb{N}}$$

$$\iff \forall n \in \mathbb{N} \quad \lambda_{1}2^{n} + \lambda_{2}3^{n} + \lambda_{3}4^{n} = 0$$

$$\iff \begin{cases} \lambda_{1} + \lambda_{2} + \lambda_{3} = 0 & (n=0) \\ 2\lambda_{1} + 3\lambda_{2} + 4\lambda_{3} = 0 & (n=0) \\ 4\lambda_{1} + 9\lambda_{2} + 16\lambda_{3} = 0 & (n=2) \end{cases}$$

$$\iff \begin{cases} \lambda_{1} + \lambda_{2} + \lambda_{3} = 0 \\ \lambda_{2} + 2\lambda_{3} = 0 \\ 5\lambda_{2} + 12\lambda_{3} = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_{1} + \lambda_{2} + \lambda_{3} = 0 \\ + \lambda_{2} = -2\lambda_{3} \\ -10\lambda_{3} + 12\lambda_{3} = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_{1} = 0 \\ \lambda_{2} = 0 \\ \lambda_{3} = 0 \end{cases}$$

Donc \mathcal{F} est une famille libre.

Supposons que $(5^n)_{n\in\mathbb{N}}$ appartienne à $\mathrm{Vect}(\mathcal{F})$. Alors il existe des réels λ_1 , λ_2 et λ_3 tels que :

$$\forall n \in \mathbb{N}, \quad 5^n = \lambda_1 2^n + \lambda_2 3^n + \lambda_3 4^n.$$

Donc, en divisant par 5^n :

$$\forall n \in \mathbb{N}, \quad 1 = \lambda_1 \left(\frac{2}{5}\right)^n + \lambda_2 \left(\frac{3}{5}\right)^n + \lambda_3 \left(\frac{4}{5}\right)^n.$$

En passant à la limite dans cet égalité, on obtient :

$$1 = 0$$

Ceci est une contradiction. Ainsi $(5^n)_{n\in\mathbb{N}}$ n'appartient pas à $\text{Vect}(\mathcal{F})$. En particulier F n'est pas génératrice de $\mathbb{R}^{\mathbb{N}}$.

Exercice 3. Soit $(\lambda_0, \dots, \lambda_n) \in \mathbb{R}^{n+1}$ tels que

$$\sum_{k=0}^{n} \lambda_k f_k = \lambda_0 f_0 + \dots + \lambda_n f_n = 0.$$

Alors, pour tout $x \in \mathbb{R}$, on a

$$\sum_{k=0}^{n} \lambda_k e^{-kx} = \sum_{k=0}^{n} \lambda_k f_k(x) = \lambda_0 f_0(x) + \dots + \lambda_n f_n(x) = 0.$$

On cherche à montrer que nécessairement, $(\lambda_0, \ldots, \lambda_n) = (0, \ldots, 0)$. Supposons par l'absurde que $(\lambda_0, \ldots, \lambda_n) \neq (0, \ldots, 0)$ et considérons n_0 le plus petit entier de $\{0, \ldots, n\}$ tel que $\lambda_{n_0} \neq 0$. Ainsi, pour tout $k < n_0, \lambda_k = 0$. On a, pour tout $x \in \mathbb{R}$:

$$\sum_{k=0}^{n} \lambda_k e^{-kx} = \sum_{k=n_0}^{n} \lambda_k e^{-kx} \quad \text{car, pour tout } k < n_0, \ \lambda_k = 0$$

$$= e^{-n_0 x} \sum_{k=n_0}^{n} \lambda_k e^{(n_0 - k)x}$$

$$= e^{-n_0 x} \left(\lambda_{n_0} + \sum_{k=n_0 + 1}^{n} \lambda_k e^{(n_0 - k)x} \right).$$

Comme, pour tout $x \in \mathbb{R}$, $\sum_{k=0}^{n} \lambda_k e^{-kx} = 0$, on en déduit que, pour tout $x \in \mathbb{R}$,

$$e^{-n_0x}\left(\lambda_{n_0} + \sum_{k=n_0+1}^n \lambda_k e^{(n_0-k)x}\right) = 0.$$

Or , pour tout $x \in \mathbb{R}$, $e^{-n_0x} \neq 0$, on obtient :

$$\forall x \in \mathbb{R}, \quad \lambda_{n_0} + \sum_{k=n_0+1}^n \lambda_k e^{(n_0-k)x} = 0.$$

De plus, pour $k \ge n_0 + 1$, $n_0 - k < 0$ donc $\lim_{x \to +\infty} e^{(n_0 - k)x} = 0$. Donc, en passant à la limite dans l'égalité ci-dessus on trouve :

$$0 = \lim_{x \to +\infty} \left(\lambda_{n_0} + \sum_{k=n_0+1}^n \lambda_k e^{(n_0-k)x} \right) = \lambda_{n_0} + \sum_{k=n_0+1}^n \lambda_k \lim_{x \to +\infty} e^{(n_0-k)x} = \lambda_{n_0}.$$

Cela est absurde car, par définition de n_0 , $\lambda_{n_0} \neq 0$. Ainsi, notre supposition est fausse et donc $(\lambda_0, \dots, \lambda_n) = (0, \dots, 0)$.

On a montré que

$$\forall (\lambda_0,\ldots,\lambda_n)\in\mathbb{R}^n,\quad \sum_{k=0}^n\lambda_kf_k=0\Rightarrow\lambda_0=\cdots=\lambda_n=0.$$

La famille (f_0, \ldots, f_n) est donc libre.

Exercice 4. On note F l'ensemble des suites de $\mathbb{R}^{\mathbb{N}}$ vérifiant la relation de récurrence

$$\forall n \in \mathbb{N} \quad u_{n+2} = 2u_{n+1} + u_n.$$

1. • F est un sous-ensemble de $\mathbb{R}^{\mathbb{N}}$ non-vide car la suite nulle vérifie la relation de récurrence.

• Montrons que F est stable par combinaison linéaire. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux éléments de F, $\lambda\in\mathbb{R}$ et montrons que $(u_n)_{n\in\mathbb{N}}+\lambda(v_n)_{n\in\mathbb{N}}$ appartient à F. Comme $(u_n)_{n\in\mathbb{N}}\in F$, pour tout $n\in\mathbb{N}$, $u_{n+2}=2u_{n+1}+u_n$. Comme $(v_n)_{n\in\mathbb{N}}\in F$, pour tout $n\in\mathbb{N}$, $v_{n+2}=2v_{n+1}+v_n$. Donc, pour tout $n\in\mathbb{N}$ on a

$$u_{n+2} + \lambda v_{n+2} = 2u_{n+1} + u_n + \lambda (2v_{n+1} + v_n)$$

= $2(u_{n+1} + \lambda v_{n+1}) + u_n + \lambda v_n$.

Ainsi, $(u_n)_{n\in\mathbb{N}} + \lambda(v_n)_{n\in\mathbb{N}} = (u_n + \lambda v_n)_{n\in\mathbb{N}} \in F$. Donc pour tout $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ éléments de F et $\lambda \in \mathbb{R}$, $(u_n)_{n\in\mathbb{N}} + \lambda(v_n)_{n\in\mathbb{N}}$ appartient à F. Cela montre que F est stable par combinaison linéaire.

- D'après la caractérisation des sous-espaces vectoriels, F est donc un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.
- 2. Soit $(u_n)_{n\in\mathbb{N}}\in F$. Alors $(u_n)_{n\in\mathbb{N}}$ est une suite récurrence linéaire d'ordre 2 dont l'équation caractéristique est $r^2-2r-1=0$. Cette équation possède deux solutions distinctes $r_1=1-\sqrt{2}$ et $r_2=1+\sqrt{2}$. Par conséquent, il existe $(\alpha,\beta)\in\mathbb{R}^2$ tel que

$$\forall n \in \mathbb{N} \quad u_n = \alpha r_1^n + \beta r_2^n.$$

Ainsi, $r_1 = 1 - \sqrt{2}$ et $r_2 = 1 + \sqrt{2}$ conviennent.

3. (a) D'après la question précédente, pour tout $(u_n)_{n\in\mathbb{N}}\in F$, il existe $(\alpha,\beta)\in\mathbb{R}^2$ tel que

$$\forall n \in \mathbb{N} \quad u_n = \alpha a_n + \beta b_n.$$

Autrement dit, pour tout $(u_n)_{n\in\mathbb{N}}\in F$, il existe $(\alpha,\beta)\in\mathbb{R}^2$ tel que

$$(u_n)_{n\in\mathbb{N}}=\alpha(a_n)_{n\in\mathbb{N}}+\beta(b_n)_{n\in\mathbb{N}}.$$

Cela signifie que tout élément de F est combinaison linéaire de $(a_n)_{n\in\mathbb{N}}$ et de $(b_n)_{n\in\mathbb{N}}$. Donc $F\subset \mathrm{Vect}((a_n)_{n\in\mathbb{N}},(b_n)_{n\in\mathbb{N}})$.

Réciproquement, les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ appartiennent à F donc $\mathrm{Vect}((a_n)_{n\in\mathbb{N}},(b_n)_{n\in\mathbb{N}})\subset F$.

Finalement, $F = \text{Vect}((a_n)_{n \in \mathbb{N}}, (b_n)_{n \in \mathbb{N}})$ et la famille $((a_n)_{n \in \mathbb{N}}, (b_n)_{n \in \mathbb{N}})$ est donc une famille génératrice de F.

(b) On sait que $1 < \sqrt{2} < 2$ donc $-1 < 1 - \sqrt{2} < 0$.

D'autre part, $1 + \sqrt{2} > 1 > 0$ donc $|r_2| = r_2 = 1 + \sqrt{2} > 1$.

Par conséquent, pour tout $n \in \mathbb{N}$,

$$\frac{a_n}{b_n} = \left(\frac{r_1}{r_2}\right)^n$$

où
$$\left|\frac{r_1}{r_2}\right| \leq \frac{|r_1|}{|r_2|} < 1$$
. Ainsi, $\lim_{n \to +\infty} \frac{a_n}{b_n} = 0$.

(c) On sait que c'est une famille génératrice de F. Il suffit donc de montrer qu'elle est libre. Soit $(\lambda_1, \lambda_2) \in \mathbb{R}^2$ et supposons que

$$\lambda_1(a_n)_{n\in\mathbb{N}} + \lambda_2(b_n)_{n\in\mathbb{N}} = 0$$

Cela signifie que, pour tout $n \in \mathbb{N}$, on a

$$\lambda_1 a_n + \lambda_2 b_n = 0.$$

En factorisant par $b_n \neq 0$, on trouve que pour tout entier naturel n:

$$b_n\left(\lambda_1\frac{a_n}{b_n}+\lambda_2\right)=0.$$

Or $b_n \neq 0$ donc pour tout $n \in \mathbb{N}$:

$$\lambda_1 \frac{a_n}{b_n} + \lambda_2 = 0.$$

Grâce à la question, précédente, en passant à la limite on obtient

$$0 = \lim_{n \to +\infty} \lambda_1 \frac{a_n}{b_n} + \lambda_2 = \lambda_1 \times 0 + \lambda_2 = \lambda_2.$$

Ainsi $\lambda_2 = 0$. On vérifie ensuite que $\lambda_1 = 0$. Ainsi, on a montré que

$$\forall (\lambda_1, \lambda_2) \in \mathbb{R}^2, \quad \lambda_1(a_n)_{n \in \mathbb{N}} + \lambda_2(b_n)_{n \in \mathbb{N}} = 0 \Rightarrow \lambda_1 = \lambda_2 = 0.$$

La famille est donc libre. Par ce qui précède, on peut conclure que c'est une base de F.

4. On cherche $(\alpha, \beta) \in \mathbb{R}^2$ tel que pour tout $n \in \mathbb{N}$

$$v_n = \alpha a_n + \beta b_n$$
.

• Analyse (recherche d'une condition nécessaire) : soit $(\alpha, \beta) \in \mathbb{R}^2$ tel que pour tout $n \in \mathbb{N}$

$$v_n = \alpha a_n + \beta b_n.$$

En prenant n = 0 et n = 1 on obtient

$$\begin{cases} \alpha + \beta = 2 \\ \alpha(1 - \sqrt{2}) + \beta(1 + \sqrt{2}) = 3 \end{cases}$$

donc

$$\begin{cases} \beta & = 2 - \alpha \\ \alpha(1 - \sqrt{2}) + (2 - \alpha)(1 + \sqrt{2}) & = 3 \end{cases}$$

donc

$$\begin{cases} \beta = 1 + \frac{\sqrt{2}}{4} \\ \alpha = 1 - \frac{\sqrt{2}}{4} \end{cases}$$

• Synthèse : on vérifie que réciproquement, on a bien, pour tout $n \in \mathbb{N}$,

$$v_n = \left(1 - \frac{\sqrt{2}}{4}\right)a_n + \left(1 + \frac{\sqrt{2}}{4}\right)b_n$$

car la suite définie par le membre de droite vérifie la même relation de récurrence que $(v_n)_{n\in\mathbb{N}}$ avec les mêmes conditions initiales.

• Ainsi, les coordonnées de $(v_n)_{n\in\mathbb{N}}$ dans la base $((a_n)_{n\in\mathbb{N}},(b_n)_{n\in\mathbb{N}})$ sont $\left(1-\frac{\sqrt{2}}{4},1+\frac{\sqrt{2}}{4}\right)$.

Exercice 5.

- 1. E est un sous-ensemble de $\mathcal{M}_2(\mathbb{R})$ non vide car $A0_{\mathcal{M}_2(\mathbb{R})} = 0_{\mathcal{M}_2(\mathbb{R})} = 0_{\mathcal{M}_2(\mathbb{R})} = 0_{\mathcal{M}_2(\mathbb{R})} D$.
 - Montrons que E est stable par combinaison linéaire. Soient M, N deux éléments de E, $\lambda \in \mathbb{R}$ et montrons que $M + \lambda N \in E$.

Comme $M \in E$, on sait que AM = MD et, de même, comme $N \in E$, on sait que AN = ND. Ainsi

$$A(M + \lambda N) = AM + A(\lambda N)$$
$$= MD + \lambda AN$$
$$= MD + \lambda ND$$
$$= (M + \lambda N)D$$

Ainsi, $M + \lambda N \in E$. Ainsi, pour tout $M, N \in E$ et $\lambda \in \mathbb{R}$, $M + \lambda N \in E$. Cela montre que E est stable par combinaison linéaire.

- D'après la caractérisation des sous-espaces vectoriels, E est donc un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$.
- 2. Soit $M = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$, $(x, y, z, t) \in \mathbb{R}^4$ une matrice carrée d'ordre deux. On a

$$AM = \begin{pmatrix} z & t \\ z & t \end{pmatrix}$$
 et $MD = \begin{pmatrix} 0 & y \\ 0 & t \end{pmatrix}$.

Ainsi

$$M \in E \iff AM = MD$$

$$\iff \begin{pmatrix} z & t \\ z & t \end{pmatrix} = \begin{pmatrix} 0 & y \\ 0 & t \end{pmatrix}$$

$$\iff z = 0 \quad \text{et} \quad y = t.$$

3. Soit $M = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$, $(x, y, z, t) \in \mathbb{R}^4$ une matrice carrée d'ordre deux. D'après la ques-

tion précédente, on

$$M \in E \iff z = 0 \text{ et } y = t$$

$$\iff M = \begin{pmatrix} x & t \\ 0 & t \end{pmatrix}$$

$$\iff M = xU + tA.$$

Ainsi, E = Vect(U, A) et la famille (U, A) est donc génératrice de E. De plus, U et A ne sont pas colinéaires donc (U, A) est une famille libre. Ainsi la famille (U, A) est libre et génératrice de E, c'est donc une base de E.

4. On a

$$UA = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

Comme UA ne satisfait pas les équations de la question 2, on en conclut que $UA \notin E$.

Exercice 6.

Exercice 7.

1. • Montrons que \mathcal{B} est génératrice de \mathbb{R}^3 . On note $e_1 = (3,1,3)$, $e_2 = (2,2,1)$ et $e_3 = (4,3,2)$. Soit $(x,y,z) \in \mathbb{R}^3$ et $(\lambda_1,\lambda_2,\lambda_3) \in \mathbb{R}^3$; on a :

$$(x,y,z) = \lambda_{1}e_{1} + \lambda_{2}e_{2} + \lambda_{3}e_{3}$$

$$\iff \begin{cases} 3\lambda_{1} + 2\lambda_{2} + 4\lambda_{3} = x \\ \lambda_{1} + 2\lambda_{2} + 3\lambda_{3} = y \\ 3\lambda_{1} + \lambda_{2} + 2\lambda_{3} = z \end{cases}$$

$$\iff \begin{cases} 3\lambda_{1} + 2\lambda_{2} + 4\lambda_{3} = x \\ -2\lambda_{1} & -\lambda_{3} = y - x \\ 3\lambda_{1} + \lambda_{2} + 2\lambda_{3} = z \end{cases}$$

$$\iff \begin{cases} 3\lambda_{1} + 2\lambda_{2} + 4\lambda_{3} = x \\ -2\lambda_{1} & -\lambda_{3} = y - x \\ -2\lambda_{1} & -\lambda_{3} = y - x \end{cases} (L_{2} \leftarrow L_{2} - L_{1})$$

$$\implies \begin{cases} \lambda_{2} = \frac{x - 3\lambda_{1} - 4\lambda_{3}}{2} \\ \lambda_{3} = x - y - \lambda_{1} \\ \lambda_{1} = \frac{2z - x}{3} \end{cases}$$

$$\iff \begin{cases} \lambda_{2} = \frac{x - 3\frac{2z - x}{3} - 4(x - y - \frac{2z - x}{3})}{2} \\ \lambda_{3} = x - y - \frac{2z - x}{3} \end{cases}$$

$$\iff \begin{cases} \lambda_{2} = \frac{-7x + 6y + 5z}{3} \\ \lambda_{3} = \frac{5x - 3y - 4z}{3} \end{cases}$$

$$\iff \begin{cases} \lambda_{1} = \frac{2z - x}{3} \end{cases}$$

Ainsi, pour tout $(x, y, z) \in \mathbb{R}^3$, (x, y, z) est combinaison linéaire de e_1 , e_2 et e_3 . Plus précisément, on a

$$(x,y,z) = \frac{2z-x}{3} \cdot e_1 + \frac{-7x+6y+5z}{3} \cdot e_2 + \frac{5x-3y-4z}{3} \cdot e_3.$$

La famille \mathcal{B} est donc une famille génératrice de \mathbb{R}^3 .

• Montrons que la famille \mathcal{B} est libre. Soit $(\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3$. En appliquant les calculs précédents avec (x, y, z) = (0, 0, 0) on voit que

$$(0,0,0) = \lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3 \iff \begin{cases} \lambda_2 &= \frac{-7 \times 0 + 6 \times 0 + 5 \times 0}{3} = 0\\ \lambda_3 &= \frac{5 \times 0 - 3 \times 0 - 4 \times 0}{3} = 0\\ \lambda_1 &= \frac{2 \times 0 - 0}{3} = 0 \end{cases}$$

Ainsi la famille \mathcal{B} est libre.

• La famille \mathcal{B} est libre et génératrice de \mathbb{R}^3 , c'est donc une base 1 de \mathbb{R}^3 . De plus, d'après le premier point, on sait que les coordonnées d'un vecteur (x,y,z) dans cette base sont :

$$\left(\frac{2z-x}{3}, \frac{-7x+6y+5z}{3}, \frac{5x-3y-4z}{3}\right)$$
.

En particulier, les coordonnées de u dans cette base sont $\left(-\frac{1}{3}, -\frac{4}{3}, \frac{5}{3}\right)$

2. • Montrons que \mathcal{B} est génératrice de \mathbb{R}^3 . Soit $(x, y, z) \in \mathbb{R}^3$, on a :

$$(x,y,z) = y(0,1,0) + z(0,0,1) + x(1,0,0).$$

La famille est donc génératrice de \mathbb{R}^3 .

• Montrons que la famille \mathcal{B} est libre. Soit $(\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3$. On a

$$\lambda_1(0,1,0) + \lambda_2(0,0,1) + \lambda_3(1,0,0) = (0,0,0) \iff \lambda_1 = \lambda_2 = \lambda_3 = 0.$$

La famille est donc libre.

- La famille \mathcal{B} est libre et génératrice de \mathbb{R}^3 , c'est donc une base de \mathbb{R}^3 . De plus, d'après le premier point, on sait que les coordonnées d'un vecteur (x,y,z) dans cette base sont (y,z,x). En particulier, les coordonnées de u dans cette base sont (2,1,3).
- 3. Montrons que \mathcal{B} est génératrice de $\mathbb{R}_2[X]$. Soit $P = a_0 + a_1X + a_2X^2 \in \mathbb{R}_2[X]$ et $(\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3$; on a :

$$P = \lambda_{1} + \lambda_{2}(X - 1) + \lambda_{3}(X - 1)^{2} \iff P = \lambda_{1} - \lambda_{2} + \lambda_{3} + (\lambda_{2} - 2\lambda_{3})X + \lambda_{3}X^{2}$$

$$\iff \begin{cases} \lambda_{1} - \lambda_{2} + \lambda_{3} = a_{0} \\ \lambda_{2} - 2\lambda_{3} = a_{1} \\ \lambda_{3} = a_{2} \end{cases}$$

$$\iff \begin{cases} \lambda_{1} = a_{0} + a_{1} + a_{2} \\ \lambda_{2} = a_{1} + 2a_{2} \\ \lambda_{3} = a_{2} \end{cases}$$

Ainsi, pour tout $P = a_0 + a_1 X + a_2 X^2 \in \mathbb{R}_2[X]$, P est combinaison linéaire de 1, X-1 et $(X-1)^2$; plus précisément :

$$a_0 + a_1 X + a_2 X^2 = (a_0 + a_1 + a_2) \cdot 1 + (a_1 + 2a_2) \cdot (X - 1) + a_2 \cdot (X - 1)^2.$$

- ullet La famille ${\cal B}$ est une famille échelonnée formée de vecteurs non nuls donc elle est libre.
- La famille \mathcal{B} est libre et génératrice de $\mathbb{R}_2[X]$, c'est donc une base de $\mathbb{R}_2[X]$. De plus, d'après le premier point, on sait que les coordonnées d'un polynôme $P = a_0 + a_1X + a_2X^2$ dans cette base sont $(a_0 + a_1 + a_2, a_1 + 2a_2, a_2)$. En particulier, les coordonnées de u dans cette base sont (3,3,1).
- 4. Montrons que \mathcal{B} est génératrice de $\mathcal{M}_2(\mathbb{R})$. Soit $\begin{pmatrix} x & y \\ z & t \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$ et $(\lambda_1, \lambda_2, \lambda_3, \lambda_4) \in \mathbb{R}^4$; on a :

$$\begin{pmatrix} x & y \\ z & t \end{pmatrix} = \lambda_1 \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} + \lambda_3 \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} + \lambda_4 \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} \lambda_1 & + & \lambda_2 & + & \lambda_3 & = & x \\ \lambda_1 & & - & \lambda_3 & + & \lambda_4 & = & y \\ & & \lambda_2 & + & \lambda_3 & + & \lambda_4 & = & z \\ \lambda_1 & + & \lambda_2 & - & \lambda_3 & = & t \end{cases}$$

$$\Leftrightarrow \begin{cases} \lambda_1 & + & \lambda_2 & + & \lambda_3 & = & x \\ & - & \lambda_2 & - & 2\lambda_3 & + & \lambda_4 & = & y - x & L_2 \leftarrow L_2 - L_1 \\ & & \lambda_2 & + & \lambda_3 & + & \lambda_4 & = & y - x & L_4 \leftarrow L_4 - L_1 \end{cases}$$

$$\Leftrightarrow \begin{cases} \lambda_1 & + & \lambda_2 & + & \lambda_3 & = & x \\ & - & \lambda_2 & - & 2\lambda_3 & + & \lambda_4 & = & y - x \\ & - & \lambda_2 & - & 2\lambda_3 & + & 2\lambda_4 & = & z + y - x \\ & - & \lambda_3 & + & 2\lambda_4 & = & z + y - x & L_3 \leftarrow L_3 + L_2 \end{cases}$$

$$\Leftrightarrow \begin{cases} \lambda_1 & = & x - \lambda_2 - \lambda_3 \\ \lambda_2 & = & x - y - 2\lambda_3 + \lambda_4 \\ 2\lambda_4 & = & z + y - x + \lambda_3 \\ \lambda_3 & = & \frac{x - t}{2} \end{cases}$$

$$\Leftrightarrow \begin{cases} \lambda_1 & = & \frac{3x + 2y - 2z - t}{4} \\ \lambda_2 & = & \frac{-x - 2y + 2z + 3t}{4} \\ \lambda_4 & = & \frac{2z + 2y - x - t}{2} \\ \lambda_3 & = & \frac{x - t}{2} \end{cases}$$

Ainsi, pour tout $\begin{pmatrix} x & y \\ z & t \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$, $\begin{pmatrix} x & y \\ z & t \end{pmatrix}$ est combinaison linéaire des éléments de \mathcal{B} .

La famille $\mathcal B$ est donc une famille génératrice de $\mathcal M_2(\mathbb R)$.

^{1.} Avec les résultats du chapitre 5 on peut simplement montrer que $\mathcal B$ est libre et que $\operatorname{Card}(\mathcal B)=3=\dim(\mathbb R^3)$. La même remarque vaut pour les questions suivantes.

• Montrons que la famille \mathcal{B} est libre. Soit $(\lambda_1, \lambda_2, \lambda_3, \lambda_4) \in \mathbb{R}^4$. En appliquant les calculs précédents avec $\begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ on voit que

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \lambda_1 \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} + \lambda_3 \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} + \lambda_4 \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\iff \lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = 0$$

Ainsi la famille \mathcal{B} est libre.

• La famille \mathcal{B} est libre et génératrice de $\mathcal{M}_2(\mathbb{R})$, c'est donc une base de $\mathcal{M}_2(\mathbb{R})$. De plus, d'après le premier point, on sait que les coordonnées d'un vecteur $\begin{pmatrix} x & y \\ z & t \end{pmatrix}$ dans cette base sont :

$$\left(\frac{3x+2y-2z-t}{4}, \frac{-x-2y+2z+3t}{4}, \frac{x-t}{2}, \frac{2z+2y-x-t}{4}\right).$$

En particulier, les coordonnées de u dans cette base sont $(\frac{1}{2}, \frac{1}{2}, 0, -\frac{1}{2})$.

Exercice 8.

- 1. Fait en TD.
- 2. Fait en TD.
- 3. Fait en TD.
- 4. Fait en TD.

5. Soit
$$F = \left\{ \begin{pmatrix} a & a+b & 0 \\ 2a+b & -b & 3a+2b \end{pmatrix} \mid a,b \in \mathbb{R} \right\}$$
.

On a

$$F = \left\{ \begin{pmatrix} a & a & 0 \\ 2a & 0 & 3a \end{pmatrix} + \begin{pmatrix} 0 & b & 0 \\ b & -b & 2b \end{pmatrix} \mid a, b \in \mathbb{R} \right\}$$
$$= \left\{ a \begin{pmatrix} 1 & 1 & 0 \\ 2 & 0 & 3 \end{pmatrix} + b \begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix} \mid a, b \in \mathbb{R} \right\}$$
$$= \text{Vect} \left(\begin{pmatrix} 1 & 1 & 0 \\ 2 & 0 & 3 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix} \right).$$

Ainsi, la famille $\begin{pmatrix} 1 & 1 & 0 \\ 2 & 0 & 3 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix}$ est une famille génératrice de F.

Elle est constituée de deux vecteurs non colinéaires donc elle est libre.

Ainsi
$$\begin{pmatrix} 1 & 1 & 0 \\ 2 & 0 & 3 \end{pmatrix}$$
, $\begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix}$ est une base de F .

6. Même question que 4.

7. Notons
$$F = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \mid a+b=c+d \right\}$$
. Alors:

$$\begin{split} F &= \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \mid a = -b + c + d \right\} \\ &= \left\{ \begin{pmatrix} -b + c + d & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) ; (b, c, d) \in \mathbb{R}^3 \right\} \\ &= \left\{ \begin{pmatrix} -b & b \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} c & 0 \\ c & 0 \end{pmatrix} + \begin{pmatrix} d & 0 \\ 0 & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) ; (b, c, d) \in \mathbb{R}^3 \right\} \\ &= \left\{ b \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} + d \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) ; (b, c, d) \in \mathbb{R}^3 \right\} \\ &= \operatorname{Vect} \left(\begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right). \end{split}$$

La famille $\begin{pmatrix} \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ est donc une famille génératrice de F. Soit $(\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3$. Alors:

$$\lambda_{1} \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix} + \lambda_{2} \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} + \lambda_{3} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\iff \begin{cases} -\lambda_{1} & + \lambda_{2} & + \lambda_{3} & = 0 \\ \lambda_{1} & = 0 & = 0 \\ \lambda_{2} & = 0 \\ \lambda_{3} & = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_{1} & = 0 \\ \lambda_{2} & = 0 \\ \lambda_{3} & = 0 \end{cases}$$

La famille $\begin{pmatrix} \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ est libre.

C'est une famille libre et génératrice de F donc une base de F.