

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Grundlagen der Nachrichtentechnik

Aktive Filter

Autoren:

Tommy Jahnke J.Sebastian Frisch Nils Parche Professor: Prof. Dr. Schoenen

Abbildungsverzeichnis

1		3
2		4
3		5
4		7
5		8
6		8
7	Messaufbau zum Messen der Sprungantwort	15
8	Sprungantwort Butterworth-Tiefpass	15
9	Sprungantwort Tschebyscheff-Tiefpass	16
10	Sprungantwort Bessel-Tiefpass	16

Tabellenverzeichnis

1	Tiefpassfilter - Grundverstärkung V_0 , Grenzfrequenz f_g	2
2	Hochpassfilter - Grundverstärkung V_{∞} , Grenzfrequenz f_g	7
3	Gemessenen Grenzfrequenzen der verschieden Tiefpässe/Hochpässe	14
4	Frequenzen bei einer Phasenverschiebung von -60° und -120°	14
5	Mittenfrequenz und Sperrfrequenz des Bandpasses sowie der Band-	
	sperre	14
6	Vergleich der Werte, Tiefpässe und Hochpässe	17
7	Vergleich der Werte, Bandpass und Bandsperre	18
8	Gemessene Frequenzen bei einer Phasenverschiebung von -60° und	
	-120°	19
9	Gegenüberstellung: errechnete und ideale Koeffizienten	20
10	Anstiegszeit, Überschwingen und Einschwingzeit der drei Tiefpässe	21

Inhaltsverzeichnis

1 Vorbereitung					
	1.1	Grundverstärkung und Grenzfrequenzen der Hoch- und Tiefpässe . 1			
		1.1.1 Tiefpassfilter			
		1.1.2 Hochpassfilter			
		1.1.3 Bandpass			
		1.1.4 Bandsperre			
2	Mes	sungen 13			
	2.1	Verwendete Geräte			
	2.2	Messung von Amplituden- und Phasengang			
	2.3	Sprungantworten der Tiefpässe			
3	Aus	wertung 17			
	3.1	Zu: Messung von Amplituden- und Phasengang			
		3.1.1 Grenzfrequenzen Tiefpässe/Hochpässe			
		3.1.2 Mittenfrequenz/Sperrfrequenz des Bandpasses/der Bandsper-			
		re			
		3.1.3 Gemessenen Frequenzen bei einer Phasenverschiebung der			
		Tiefpässe			
	3.2	Zu: Sprungantworten der Tiefpässe			

1 Vorbereitung

Es sind an einem Universalfilter verschiedenen Filtertypen 2. Ordnung zu Untersuchen. Über die Widerstandsbeschaltung R_a , R_b , R_c , R_d , R_e und R_f können bestimmte Filtercharakteristiken, wie Butterworth, Tschebyscheff und Bessel nachgebildet werden. Mit der Tabelle [?] in der Aufgabenstellung sollen bei den Hochpassund Tiefpassfilter der drei genannten Filtercharakteristiken die Grenzfrequenz f_g und die Grundverstärkung V_0 bestimmt werden. Bei dem Bandpass ist die Mittenfrequenz f_M und die Bandbreite B zu berechnen. Die Bandsperre wird auf ihre Sperrfrequenz untersucht.

1.1 Grundverstärkung und Grenzfrequenzen der Hoch- und Tiefpässe

1.1.1 Tiefpassfilter

In der Versuchsbeschreibung [?] Kapitel 7: Gleichungen zum Universal-Filter wird die Übertragungsfunktion H_{TP} angegeben mit.

$$H_{TP}(j\omega) = \frac{U_{TP}}{U_e} = \frac{R_b \cdot R_f}{R_a \cdot R_c} \cdot \frac{1}{1 + \frac{R_b \cdot R_f}{R_c \cdot R_e} \cdot (j\omega\tau) + \frac{R_f}{R_d} \cdot (j\omega\tau)^2} \quad mit \ \tau = R \cdot C \ (1)$$

Durch die Wahl von $R_b=R_c=R_f=R_0$ vereinfacht sich die Gleichung zu:

$$H_{TP}(j\omega) = \frac{R_0}{R_a} \cdot \frac{1}{1 + \frac{R_0}{R_a} \cdot (j\omega\tau) + \frac{R_0}{R_d} \cdot (j\omega\tau)^2}$$
 (2)

Aus der Allgemeinen Gleichung eines Tiefpassfilter 2. Ordnung können so die Parameter a_1, b_1 und V_0 zugewiesen werden. V_0 ist die maximale Verstärkung bei $\omega - > 0$.

$$\frac{V_0}{1 + a_1 \cdot j\omega + b_1 \cdot (j\omega)^2} = \frac{R_0}{R_a} \cdot \frac{1}{1 + \frac{R_0}{R_e} \cdot (j\omega\tau) + \frac{R_0}{R_d} \cdot (j\omega\tau)^2}$$
(3)

$$V_0 = \frac{R_0}{R_a} \tag{4}$$

$$a_1 = \frac{R_0}{R_e} \cdot \tau \tag{5}$$

$$b_1 = \frac{R_0}{R_d} \cdot \tau^2 \tag{6}$$

Allgemeine Formel zur Bestimmung der Grenzfrequenzen

Der Amplitudengang lautet:

$$|H_{TP(j\omega)}| = \frac{|V_0|}{\sqrt{(1 - b_1 \cdot \omega^2)^2 + a_1^2 \cdot \omega^2}}$$
 (7)

Mit der Definition $H_{TP(j\omega_g)}=|H_{TP(j\omega)}|_{max}\cdot\frac{1}{\sqrt{2}}$ und $V_0=1$ (Tabelle 1) kann über einen Koeffizientenvergleich die Grenzfrequenz bestimmt werden.

$$2 = (1 - b_1 \cdot \omega^2)^2 + a_1^2 \cdot \omega^2 \tag{8}$$

$$0 = b_1^2 \cdot \omega^4 - (2 \cdot b_1 - a_1^2) \cdot \omega^2 - 1 \qquad substitutert \ \omega^2 = x$$
 (9)

$$0 = x^2 - \frac{2 \cdot b_1 - a_1^2}{b_1^2} \cdot x - \frac{1}{b_1^2} \tag{10}$$

Bestimmen der Möglichen Frequenzen:

$$x_{1,2} = -\frac{p}{2} \pm \sqrt{\frac{p^2}{2} - q} \tag{11}$$

$$w_{g1} = +\sqrt{x1} \tag{12}$$

$$w_{g2} = -\sqrt{x1} \tag{13}$$

$$w_{g3} = +\sqrt{x2} \tag{14}$$

$$w_{g4} = -\sqrt{x2} \tag{15}$$

$TP_{Filter charakteristik}$	Grundverstärkung V_0	Grenzfrequenz f_g
Butterworth	1	1,5726 kHz
Tschebyscheff	1	$1,5777~\mathrm{kHz}$
Bessel	1	$1,585~\mathrm{kHz}$

Tabelle 1: Tiefpassfilter - Grundverstärkung V_0 , Grenzfrequenz f_g

Bodeplot der TP-Filter Butterworth, Tschebyscheff und Bessel.

1.1.2 Hochpassfilter

In der Versuchsbeschreibung [?] Kapitel 7: Gleichungen zum Universal-Filter wird die Übertragungsfunktion H_{HP} angegeben mit.

$$H_{HP}(j\omega) = \frac{U_{HP}}{U_e} = \frac{R_b \cdot R_d}{R_a \cdot R_c} \cdot \frac{\frac{R_f}{R_d} \cdot (j\omega\tau)^2}{1 + \frac{R_b \cdot R_f}{R_c \cdot R_e} \cdot (j\omega\tau) + \frac{R_f}{R_d} \cdot (j\omega\tau)^2} \quad mit \ \tau = R \cdot C$$
(16)

Durch die Wahl von $R_b=R_c=R_d=R_0$ vereinfacht sich die Gleichung zu:

$$H_{HP}(j\omega) = \frac{R_0}{R_a} \cdot \frac{\frac{R_f}{R_d} \cdot (j\omega\tau)^2}{1 + \frac{R_f \cdot R_0}{R_0 \cdot R} \cdot (j\omega\tau) + \frac{R_f}{R_0} \cdot (j\omega\tau)^2}$$
(17)

Aus der Allgemeinen Gleichung eines Hochpassfilter 2. Ordnung können so die Parameter a_1, b_1 und V_0 zugewiesen werden. V_{∞} ist die maximale Verstärkung bei $\omega - > \infty$.

$$V_{\infty} \cdot \frac{\frac{1}{b_1} \cdot (j\omega)^2}{1 + \frac{a_1}{b_1} \cdot j\omega + \frac{1}{b_1} \cdot (j\omega)^2} = \frac{R_0}{R_a} \cdot \frac{\frac{R_f}{R_0} \cdot (j\omega\tau)^2}{1 + \frac{R_f \cdot R_0}{R_0 \cdot R_e} \cdot (j\omega\tau) + \frac{R_0}{R_d} \cdot (j\omega\tau)^2}$$
(18)

Abbildung 3

$$V_{\infty} = \frac{R_0}{R_a}$$

$$b_1 = \frac{R_0}{R_f} \cdot \frac{1}{\tau^2}$$

$$(19)$$

$$b_1 = \frac{R_0}{R_f} \cdot \frac{1}{\tau^2} \tag{20}$$

$$\frac{a_1}{b_1} = \frac{R_f \cdot R_0}{R_0 \cdot R_e} \cdot \tau$$

$$a_1 = \frac{R_f \cdot R_0}{R_0 \cdot R_e} \cdot \tau \cdot b_1$$

$$\Rightarrow \frac{R_f \cdot R_0}{R_0 \cdot R_e} \cdot \tau \cdot \frac{R_0}{R_f} \cdot \frac{1}{\tau^2}$$
(21)

$$a_1 = \frac{R_f \cdot R_0}{R_0 \cdot R_e} \cdot \tau \cdot b_1 \tag{22}$$

$$\Rightarrow \frac{R_f \cdot R_0}{R_0 \cdot R_e} \cdot \tau \cdot \frac{R_0}{R_f} \cdot \frac{1}{\tau^2} \tag{23}$$

$$\Rightarrow \frac{R_0}{R_e} \cdot \frac{1}{\tau} \tag{24}$$

Allgemeine Formel zur Bestimmung der Grenzfrequenzen

Der Amplitudengang lautet:

$$|H_{HP(j\omega)}| = \frac{|V_{\infty}| \cdot \left(\frac{1}{b_1}\right) \cdot \omega^2}{\sqrt{\left(1 - \left(\frac{1}{b_1}\right) \cdot \omega^2\right)^2 + \left(\frac{a_1}{b_1}\right) \cdot \omega^2}}$$
(25)

Mit der Definition $H_{HP(j\omega_g)} = |H_{HP(j\omega)}|_{max} \cdot \frac{1}{\sqrt{2}}$ und $V_{\infty} = 1$ (Tabelle 1) kann die Gleichung nach ω_g aufgelöst werden.

$$\frac{1}{\sqrt{2}} = \frac{|V_{\infty}| \cdot \left(\frac{1}{b_1}\right) \cdot \omega^2}{\sqrt{\left(1 - \left(\frac{1}{b_1}\right) \cdot \omega^2\right)^2 + \left(\frac{a_1}{b_1}\right) \cdot \omega^2}} \tag{26}$$

$$\sqrt{2} \cdot |V_{\infty}| \cdot \left(\frac{1}{b_1}\right) \cdot \omega^2 = \sqrt{\left(1 - \left(\frac{1}{b_1}\right) \cdot \omega^2\right)^2 + \left(\frac{a_1}{b_1}\right) \cdot \omega^2} \tag{27}$$

$$2 \cdot |V_{\infty}|^2 \cdot \left(\frac{1}{b_1^2}\right) \cdot \omega^2 = \left(1 - \left(\frac{1}{b_1}\right) \cdot \omega^2\right)^2 + \left(\frac{a_1}{b_1}\right) \cdot \omega^2 \tag{28}$$

$$0 = \left(\frac{1}{b_1^2} - 2 \cdot |V_{\infty}|^2 \cdot \frac{1}{b_1^2}\right) \cdot \omega^4 + \left(\frac{a_1^2}{b_1^2} - 2 \cdot \frac{1}{b_1}\right) \cdot \omega^2 + 1 \tag{29}$$

$$0 = x^2 + \frac{a_1^2 - 2 \cdot b_1}{1 - 2 \cdot |V_{\infty}|^2} \cdot x + \frac{b_1^2}{1 - 2 \cdot |V_{\infty}|^2}$$
 (30)

Bestimmen der Möglichen Frequenzen:

$$x_{1,2} = -\frac{p}{2} \pm \sqrt{\frac{p^2}{2} - q} \tag{31}$$

$$w_{g1} = +\sqrt{x1} \tag{32}$$

$$w_{a2} = -\sqrt{x1} \tag{33}$$

$$w_{g3} = +\sqrt{x2} \tag{34}$$

$$w_{g4} = -\sqrt{x2} \tag{35}$$

$HP_{Filter charakteristik}$	Grundverstärkung V_{∞}	Grenzfrequenz f_g	
Butterworth	1	1,6107 kHz	
Tschebyscheff	1	1,6055 kHz	
Bessel	1	$1,582~\mathrm{kHz}$	

Tabelle 2: Hochpassfilter - Grundverstärkung $V_{\infty},$ Grenzfrequenz f_g

Bodeplot der HP-Filter Butterworth, Tschebyscheff und Bessel.

9. Dezember 2016 7

1.1.3 **Bandpass**

Die vereinfachte Formel für den Bandpassfilter hergeleitet vom Universalfilter kann der Allgemeinen Übertragungsfunktion eine Bandpassen gleichgesetzt und so die Parameter bestimmt werden.

$$H_{BP}(j\omega) = V_{max} \cdot \frac{A \cdot j\omega}{1 + A \cdot j\omega + b \cdot (j\omega)^2} \Longleftrightarrow -\frac{R_0}{R_a} \cdot \frac{\frac{R_0}{R_C} \cdot (j\omega\tau)}{1 + \frac{R_0}{R_c} \cdot (j\omega\tau) + (j\omega\tau)^2}$$
(36)

Dadurch ergeben sich die nachfolgenden Parameter:

$$A = \frac{R_0}{R_c} \tag{37}$$

$$b = \tau^2 \tag{38}$$

$$A = \frac{R_0}{R_c}$$

$$b = \tau^2$$

$$V_{max} = -\frac{R_0}{R_a}$$
(37)
(38)

Das Maximum des Bandpassfilter wird erreicht wenn der Imaginärteil des Nenner = 0 ist. Somit entspricht V_{max} dem erreichbaren Maximum. An diesem Punkt befindet sich die Mittenfrequenz f_0 .

Abbildung 6

$$H_{BP}(jw) = V_{max} \cdot \frac{1}{\frac{1}{j\omega \cdot A} + 1 + \frac{j\omega \cdot b}{A}}$$

$$\tag{40}$$

$$\Rightarrow V_{max} \cdot \frac{1}{1 + j\left(\frac{b}{4} \cdot \omega - \frac{1}{4} \cdot \omega\right)} \tag{41}$$

$$0 = \frac{b}{A} \cdot \omega - \frac{1}{A \cdot \omega} \tag{42}$$

$$\frac{1}{A \cdot \omega} = \frac{b}{A} \cdot \omega \tag{43}$$

$$\omega_0 = \frac{1}{\sqrt{b}} \tag{44}$$

$$f_0 = \frac{1}{\tau} \cdot \frac{1}{2 \cdot \pi} = 1,592kHz \tag{45}$$

$$V_{f_0} = 1 \tag{46}$$

Die zwei zu berechnenden Grenzfrequenzen können nach der Definition $H_{BP(j\omega_g)}=$ $|H_{BP(j\omega)}|_{max} \cdot \frac{1}{\sqrt{2}}$ berechnet werden.

$$\frac{1}{\sqrt{2}} = \frac{V_{max} \cdot A \cdot \omega}{\sqrt{(1 - b \cdot \omega^2)^2 + A^2 \cdot \omega^2}}$$

$$0 = x^2 + \frac{A^2 - 2 \cdot b - 2 \cdot A^2 \cdot V_{max}}{b^2} \cdot x + \frac{1}{b^2}$$
(47)

$$0 = x^2 + \frac{A^2 - 2 \cdot b - 2 \cdot A^2 \cdot V_{max}}{b^2} \cdot x + \frac{1}{b^2}$$
 (48)

Bestimmen der Möglichen Frequenzen:

$$x_{1,2} = -\frac{p}{2} \pm \sqrt{\frac{p^2}{2} - q} \tag{49}$$

$$w_{g1} = +\sqrt{x1} \tag{50}$$

$$w_{g2} = -\sqrt{x1} \tag{51}$$

$$w_{g3} = +\sqrt{x2} \tag{52}$$

$$w_{g4} = -\sqrt{x2} \tag{53}$$

$$f_{gu} = 1,4395kHz$$
 (54)
 $f_{go} = 1,7597kHz$ (55)

$$f_{qo} = 1,7597kHz (55)$$

$$B = f_{go} - f_{gu} = 320, 2Hz (56)$$

1.1.4 Bandsperre

Die vereinfachte Formel für den Bandpassfilter hergeleitet vom Universalfilter kann der Allgemeinen Übertragungsfunktion eine Bandpassen gleichgesetzt und so die Parameter bestimmt werden.

$$H_{BS}(j\omega) = V_0 \cdot \frac{1 + (j\omega)^2}{1 + A \cdot j\omega + b \cdot (j\omega)^2} \Longleftrightarrow -\frac{R_0}{R_a} \cdot \frac{1 + (j\omega\tau)^2}{1 + \frac{R_0}{R_a} \cdot (j\omega\tau) + (j\omega\tau)^2}$$
 (57)

Dadurch ergeben sich die nachfolgenden Parameter:

$$A = \frac{R_0}{R_c} \cdot \tau \tag{58}$$

$$b = \tau^2 \tag{59}$$

$$V_0 = -\frac{R_0}{R_a} {}(60)$$

Das Maximum der Bandsperre kann für $\lim_{\omega \to \infty}$ oder $\lim_{\omega \to 0}$ bestimmt werden und strebt gegen 1. Somit kann nach der Definition $H_{BS(j\omega_g)} = |H_{HP(j\omega)}|_{max} \cdot \frac{1}{\sqrt{2}}$ die Gleichung nach ω_g aufgelöst werden.

$$\frac{1}{\sqrt{2}} = \frac{|V_0| \cdot |1 - b\omega^2|}{\sqrt{(1 - b \cdot \omega^2)^2 + A \cdot \omega^2}} \tag{61}$$

$$\sqrt{(1 - b \cdot \omega^2)^2 + A \cdot \omega^2} = |V_0| \cdot |1 - b\omega^2| \cdot \sqrt{2} \tag{62}$$

$$0 = x^{2} + \frac{A^{2} - 2 \cdot b + 4 \cdot bV_{0}^{2}}{b^{2} - 2 \cdot b^{2}V_{0}^{2}} \cdot x + \frac{1 - 2 \cdot V_{0}^{2}}{b^{2} - 2 \cdot b^{2}V_{0}^{2}}$$
(63)

Bestimmen der Möglichen Frequenzen:

$$x_{1,2} = -\frac{p}{2} \pm \sqrt{\frac{p^2}{2} - q} \tag{64}$$

$$w_{g1} = +\sqrt{x1} \tag{65}$$

$$w_{g2} = -\sqrt{x1} \tag{66}$$

$$w_{g3} = +\sqrt{x2} \tag{67}$$

$$w_{g4} = -\sqrt{x2} \tag{68}$$

$$f_{gu} = 1,4395Khz (69)$$

$$f_{qo} = 1,7597Khz (70)$$

$$f_{gu} = 1,4395Khz$$

$$f_{go} = 1,7597Khz$$

$$B = f_{go} - f_{gu} = 320,24Hz$$

$$(69)$$

$$(70)$$

$$f_0 = \sqrt{f_{go} \cdot f_{gu}} = \sqrt{1,7597kHz * 1,4395khZ} = 1,5916kHz$$
 (72)

 $\overline{9. \text{ Dezember } 2016}$ 12

2 Messungen

2.1 Verwendete Geräte

- Oszilloskop
 - Tektronix TDS 3014C Digital Phosphor Oszilloscope
- Puls-Generator
 - Hewlett Packard 33120A 15MHz Function/Arbitary Waveform Generator
- Kabel
 - 1m BNC Kabel
- Audio Analyzer
 - Rhode & Schwarz UPV Audio Analyzer DC...250kHz
- BNC Stecker T-Stücke

2.2 Messung von Amplituden- und Phasengang

In diesem Versuch geht es darum, die Amplituden und Phasengänge der Butterworth-, Tschebyscheff- und Bessel-Tiefpässe und die Amplitudengänge der Butterworth-, Tschebyscheff- und Bessel-Hochpässe sowie des Bandpasses und der Bandsperre mittels dem Audio-Analyzer UVP zu messen. Die folgende Tabelle zeigt unsere gemessenen Grenzfrequenzen der Tiefpässe/Hochpässe. Die Graphen sind im Anhang zu finden.

	Butterworth	Tschebyscheff	Bessel
Tiefpass	1.538kHz	1.557kHz	1.551kHz
Hoch pass	1.596kHz	1.592kHz	1.610kHz

Tabelle 3: Gemessenen Grenzfrequenzen der verschieden Tiefpässe/Hochpässe

Anschließend ging es darum, die Phasengänge der oben genannten Filtertypen für den Tiefpass zu messen. Die Frequenzen bei einer Phasenverschiebung von -60° und -120° wurden bestimmt und in die folgende Tabelle eingetragen. Auch diese Graphen sind im Anhang zu finden.

	Butterworth	Tschebyscheff	Bessel
-60°	1.046kHz	898.250kHz	1.229kHz
-120°	2.381kHz	1.400kHz	3.225kHz

Tabelle 4: Frequenzen bei einer Phasenverschiebung von -60° und -120°

Schließlich wurden die Mittenfrequenz und Sperrfrequenz des Bandpasses sowie der Bandsperre gemessen. Ergebnisse sind der folgenden Tabelle zu entnehmen. Für die Graphen siehe Anhang.

	Mitten frequenz	Sperrfrequenz
Bandpass	1.556kHz	-
Bandsperre	-	1.568kHz

Tabelle 5: Mittenfrequenz und Sperrfrequenz des Bandpasses sowie der Bandsperre

2.3 Sprungantworten der Tiefpässe

In diesem Versuch geht darum, die Anstiegszeit, Überschwingen und die Einstiegszeit der drei Tiefpässe nach Butterworth, Tschebyscheff und Bessel aus der Sprungantwort zu bestimmen. Die Filter wird mit einem Rechtecksignal ($500mV_pp$ und 250mv Offset und variabler Frequenz) angesteuert. Eingangs- und Ausgangssignal werden in einem gemeinsamen Oszillogramm dargestellt. Der Messaufbau ist in der nachfolgenden Abbildung zu sehen.

Abbildung 7: Messaufbau zum Messen der Sprungantwort

Abbildung 8: Sprungantwort Butterworth-Tiefpass

Abbildung 9: Sprungantwort Tschebyscheff-Tiefpass

Abbildung 10: Sprungantwort Bessel-Tiefpass

3 Auswertung

3.1 Zu: Messung von Amplituden- und Phasengang

3.1.1 Grenzfrequenzen Tiefpässe/Hochpässe

Alle Messwerte der Grenzfrequenzen wurden zusammen mit den vorausberechneten Werten in einer Tabelle dargestellt und verglichen.

		$f_{g,rech}$	$f_{g,mess}$	Δf_g	Δf_g [%]
Butterworth	TP	1.573kHz	1.538kHz	35Hz	2,23
	HP	1.611kHz	1.596kHz	15Hz	0,93
Tschebyscheff	TP	1.578kHz	1.557kHz	21Hz	1,33
	HP	1.606kHz	1.592kHz	14Hz	0,87
Bessel	TP	1.585kHz	1.551kHz	34Hz	2,15
	HP	1.582kHz	1.610kHz	28Hz	1,77

Tabelle 6: Vergleich der Werte, Tiefpässe und Hochpässe

3.1.2 Mittenfrequenz/Sperrfrequenz des Bandpasses/der Bandsperre

Die gemessenen Frequenzen wurden zusammen mit den vorausberechneten Werten in einer Tabelle dargestellt und anschließend verglichen.

	$Mittenfreq_{rech}$	Mittenfreq $_{mess}$	Sperrfreq $_{rech}$	$Sperrfreq_{mess}$
Bandpass	1.556kHz	1.591kHz	-	-
Bandsperre	-	-	1.568kHz	1.592kHz

Tabelle 7: Vergleich der Werte, Bandpass und Bandsperre

3.1.3 Gemessenen Frequenzen bei einer Phasenverschiebung der Tiefpässe

Die gemessenen Frequenzen wurden in einer Tabelle dargestellt und anschließend verglichen.

	−60°	-120°
Butterworth	1.046kHz	2.381kHz
Tschebyscheff	898.250kHz	1.400kHz
Bessel	1.229kHz	3.225kHz

Tabelle 8: Gemessene Frequenzen bei einer Phasenverschiebung von -60° und -120°

Aus den bei einer bestimmten Phasenverschiebung gemessenen Frequenzen ist es möglich die Koeffizienten der drei Filterarten zu bestimmen. Für einen Tiefpass bestimmter Art der 2. Ordnung gilt:

$$arg\underline{H}_{TP}(\Omega) = arg(V_0) - arctan(\frac{a_1 \cdot \Omega}{1 - b_1 \cdot \Omega^2})$$

$$tan(arg\underline{H}_{TP}(\Omega)) = tan(0) - \frac{a_1 \cdot \Omega}{1 - b_1 \cdot \Omega^2}$$

$$a_1 = \frac{\left(-tan(arg\underline{H}_{TP}(\Omega))\right)\left(1 - b_1 \cdot \Omega^2\right)}{\Omega}$$

$$\frac{\left(-tan(arg\underline{H}_{TP}(\Omega_{-60^\circ}))\right)\left(1 - b_1 \cdot \Omega^2_{-60^\circ}\right)}{\Omega_{-60^\circ}} = \frac{\left(-tan(arg\underline{H}_{TP}(\Omega_{-120^\circ}))\right)\left(1 - b_1 \cdot \Omega^2_{-120^\circ}\right)}{\Omega_{-120^\circ}}$$

$$\frac{\left(-tan(-60^\circ)\right)\left(1 - b_1 \cdot \Omega^2_{-60^\circ}\right)}{\Omega_{-60^\circ}} = \frac{\left(-tan(-120^\circ)\right)\left(1 - b_1 \cdot \Omega^2_{-120^\circ}\right)}{\Omega_{-120^\circ}}$$

$$\frac{\left(\sqrt{3}\right)\left(1 - b_1 \cdot \Omega^2_{-60^\circ}\right)}{\Omega_{-60^\circ}} = \frac{\left(-\sqrt{3}\right)\left(1 - b_1 \cdot \Omega^2_{-120^\circ}\right)}{\Omega_{-120^\circ}}$$

$$\rightarrow b_1 = \frac{\sqrt{3} \cdot \Omega_{-120^\circ} + \sqrt{3} \cdot \Omega_{-60^\circ}}{\sqrt{3} \cdot \Omega_{-120^\circ} + \sqrt{3} \cdot \Omega_{-60^\circ}}$$

Anschließend es ist möglich mit einer gegebenen Frequenz und b_1 den Koeffizienten a_1 zu berechnen:

$$\begin{split} arg\underline{H}_{TP}(\Omega) &= arg(V_0) - arctan(\frac{a_1 \cdot \Omega}{1 - b_1 \cdot \Omega^2}) \\ tan(arg\underline{H}_{TP}(\Omega)) &= tan(0) - \frac{a_1 \cdot \Omega}{1 - b_1 \cdot \Omega^2} \\ &\rightarrow a_1 = \frac{\left(-tan(arg\underline{H}_{TP}(\Omega))\right)\left(1 - b_1 \cdot \Omega^2\right)}{\Omega} \end{split}$$

Aus den Berechnungen ergeben sich folgende Ergebnisse:

	$a_{1,errechnet}$	$a_{1,ideal}$	$\Delta a_1 \ [\%]$	$b_{1,errechnet}$	$b_{1,ideal}$	$\Delta b_1 \ [\%]$
Butterworth	1.4279	1.414	0.98	0.9498	1	5.02
Tschebyscheff	1.076	1.065	1.03	1.928	1.931	0.16
\overline{Bessel}	1.353	1.362	0.66	0.607	0.618	1.78

Tabelle 9: Gegenüberstellung: errechnete und ideale Koeffizienten

3.2 Zu: Sprungantworten der Tiefpässe

Die Anstiegszeit, das Überschwingen sowie die Einschwingzeit der drei Tiefpässe wurden gemeinsam in einer Tabelle zusammengefasst und verglichen.

	Anstiegszeit	Überschwingen	Einschwingzeit
Butterworth	$220\mu s$	4.86%	$320\mu s$
Tschebyscheff	$220\mu s$	27.24%	1.06ms
Bessel	$268\mu s$	0%	$308\mu s$

Tabelle 10: Anstiegszeit, Überschwingen und Einschwingzeit der drei Tiefpässe

Die Werte wurden den Oszillogrammen entnommen. Diese sind im Anhang zu finden.

Literatur