

Heat transfer in buildings

Video n°4

Shortwave radiation

Simon Rouchier Polytech Annecy-Chambéry Université Savoie Mont Blanc

Global horizontal irradiance

 $F_{dir,Hz}$ [W/m²] $F_{dif,Hz}$ [W/m²] H_{S} [°] Az_{S} [°]

Direct solar irradiance

$$E_{dir} = F_{dir} \cos(I) - F_{dir} = \frac{F_{dir,Hz}}{\sin(H_S)}$$
 where

Fdir

 E_{dir} : to be calculated

 $F_{dir,Hz}$; $F_{dif,Hz}$; $H_{\rm S}$; ${\rm Az}_{\rm S}$: weather data

 β ; Az : building properties

Direct irradiance

$$E_{dir} = \frac{F_{dir,Hz}}{\sin(H_S)} \left[\cos(H_S) \cdot \sin(\beta) \cdot \cos(Az_S - Az) + \sin(H_S) \cdot \cos(\beta) \right]$$

Diffuse irradiance

$$E_{dif} = F_{dif,Hz} \frac{1 + \cos(\beta)}{2}$$

Reflected irradiance

$$E_{ref} = \left[F_{dir,Hz} + F_{dif,Hz}\right] \cdot \frac{1 - \cos(\beta)}{2}. \text{ alb}$$

$$\Phi_{SW} = \alpha.S.(E_{dir} + E_{dif} + E_{ref}) \quad [W]$$

$$E_{dir} \times \tau_D(I)$$

$$E_{dif} \times \tau_d$$

$$E_{ref}$$

