UNIVERSIDAD DE EL SALVADOR EDUCACIÓN A DISTANCIA

SISTEMAS DIGITALES I SDU115

UNIDAD III

CIRCUITOS COMBINACIONALES DE MEDIANA ESCALA DE INTEGRACIÓN - MSI

SISTEMAS DIGITALES I SDU115

Restadores y Multiplicadores

Objetivos de Unidad

Implementar sistemas digitales combinacionales, de mediana complejidad utilizando bloques lógicos funcionales de mediana escala de integración (MSI).

Agenda

✓ Diseñar restadores y multiplicadores con circuitos básicos.

✓ Implementar restadores y multiplicadores con circuitos MSI.

OBJETIVO

Estructurar, restadores y multiplicadores, usando compuertas básicas, sumadores y otros circuitos MSI.

Restador total

 Diseñe un Restador total de 2 números binarios de 1 bit cada uno

Х	Υ	P ₀	Р	R
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

$$R = X \oplus Y \oplus Po$$

$$P = \overline{X}Y + \overline{X}Po + YPo$$

 Podríamos armar el restador de n bits, como en el sumador, pero lo dejaremos asi.

Restador con Sumador Paralelo

Usando el concepto de resta en Complemento a dos A - B = A+(-B) = A + C'2(B) = A+(C'1(B)+1)

Sumador restador con Multiplexor

Si M = 0 suma (A+B), si M = 1 resta (A-B)

Multiplicadores

1 bit en c/término

$$B_0 * A_0 = B_0 \cdot A_0$$

B ₀	A ₀	C_0
0	0	0
0	1	0
1	0	0
1	1	1

$$C = A B$$

2 bits en el multiplicador 1 en el multiplicando

$$B_1B_0^*A_0 = (B_1 \cdot A_0) (B_0 \cdot A_0)$$

Multiplicadores (2bits * 2bits)

Multiplicador (4 bits * 3 bits)

В3	B2	B1	во	*	A2	A1	A0
				03	02	01	00
			13	12	11	10	
		S4	S3	S2	S1	S0	
		23	22	21	20		
	S4	S3	S2	S1	S0		
	C6	C5	C4	С3	C2	C1	CO

Multiplicador 8 bits por 8 bits como en papel

 $x_7x_6x_5x_4x_3x_2x_1x_0$; $y_7y_6y_5y_4y_3y_2y_1y_0$.

Multiplicador 8 bits por 8 bits con FA.

HASTA LA PROXIMA