06. Formulación de la teoría de la elasticidad en coordenadas cilíndricas

- Introducción -

Michael Heredia Pérez mherediap@unal.edu.co

Universidad Nacional de Colombia sede Manizales Departamento de Ingeniería Civil Mecánica de Sólidos

2022b

Advertencia

Estas diapositivas son solo una herramienta didáctica para guiar la clase, por si solas no deben tomarse como material de estudio y el estudiante debe dirigirse a la literatura recomendada [Álvarez, 2022].

- 1) ¿Por qué coordenadas cilíndricas?
- **2** 6.1. El sistema de coordenadas polares
- 3 6.2. El sistema de coordenadas cilíndricas
- 6.3. El gradiente, el laplaciano, la divergencia y el rotacional en coordenadas cilíndricas
- 6 Referencias

- 1) ¿Por qué coordenadas cilíndricas?
- 2 6.1. El sistema de coordenadas polares
- 3 6.2. El sistema de coordenadas cilíndricas
- 6.3. El gradiente, el laplaciano, la divergencia y el rotacional en coordenadas cilíndricas
- Referencias

En ciertos casos, la solución al problema de caracterizar el sólido Ω se vuelve más corta y simple cuando se formula en coordenadas cilíndricas o esféricas, que en coordenadas rectangulares.

- Túneles
- Tuberías sometidas a presión
- Arandelas
- Cargas puntuales actuando sobre planos semiinfinitos (cimentaciones)

En ciertos casos, la solución al problema de caracterizar el sólido Ω se vuelve más corta y simple cuando se formula en coordenadas cilíndricas o esféricas, que en coordenadas rectangulares.

- Túneles
- Tuberías sometidas a presión
- Arandelas
- Cargas puntuales actuando sobre planos semiinfinitos (cimentaciones)

En ciertos casos, la solución al problema de caracterizar el sólido Ω se vuelve más corta y simple cuando se formula en coordenadas cilíndricas o esféricas, que en coordenadas rectangulares.

- Túneles
- Tuberías sometidas a presión
- Arandelas
- Cargas puntuales actuando sobre planos semiinfinitos (cimentaciones)

En ciertos casos, la solución al problema de caracterizar el sólido Ω se vuelve más corta y simple cuando se formula en coordenadas cilíndricas o esféricas, que en coordenadas rectangulares.

- Túneles
- Tuberías sometidas a presión
- Arandelas
- Cargas puntuales actuando sobre planos semiinfinitos (cimentaciones)

En ciertos casos, la solución al problema de caracterizar el sólido Ω se vuelve más corta y simple cuando se formula en coordenadas cilíndricas o esféricas, que en coordenadas rectangulares.

- Túneles
- Tuberías sometidas a presión
- Arandelas
- Cargas puntuales actuando sobre planos semiinfinitos (cimentaciones)

En ciertos casos, la solución al problema de caracterizar el sólido Ω se vuelve más corta y simple cuando se formula en coordenadas cilíndricas o esféricas, que en coordenadas rectangulares.

- Túneles
- Tuberías sometidas a presión
- Arandelas
- Cargas puntuales actuando sobre planos semiinfinitos (cimentaciones)

Ejemplo: estudio de suelos y pavimentos

Figura: https://www.youtube.com/watch?v=zk4Xe_9AiKE

- 1) ¿Por qué coordenadas cilíndricas?
- 2 6.1. El sistema de coordenadas polares
- 3 6.2. El sistema de coordenadas cilíndricas
- 6.3. El gradiente, el laplaciano, la divergencia y el rotacional en coordenadas cilíndricas
- Referencias

Sistema bidimensional en el cual cada punto del plano se determina por un ángulo $(\theta \in [0, 2\pi))$ y una distancia $(r \ge 0)$.

De polares a rectangulares

$$x(r,\theta) = r\cos\theta$$
 $y(r,\theta) = r\sin\theta$

De rectangulares a polares

$$r(x,y) = \sqrt{x^2 + y^2} \qquad \theta(x,y) = \begin{cases} \arctan\left(\frac{y}{x}\right) & \text{si } x > 0 \text{y } y \ge 0 \\ \arctan\left(\frac{y}{x}\right) + 2\pi & \text{si } x > 0 \text{y } y < 0 \\ \arctan\left(\frac{y}{x}\right) + \pi & \text{si } x < 0 \end{cases}$$

$$\frac{\pi}{2} \qquad \qquad \text{si } x = 0 \text{y } y > 0$$

$$\frac{3\pi}{2} \qquad \qquad \text{si } x = 0 \text{y } y < 0$$

$$0 \qquad \qquad \text{si } x = 0 \text{y } y = 0$$

Sistema bidimensional en el cual cada punto del plano se determina por un ángulo $(\theta \in [0, 2\pi))$ y una distancia $(r \ge 0)$.

De polares a rectangulares

$$x(r, \theta) = r \cos \theta$$
 $y(r, \theta) = r \sin \theta$

De rectangulares a polares

$$r(x,y) = \sqrt{x^2 + y^2} \qquad \theta(x,y) = \begin{cases} \arctan\left(\frac{y}{x}\right) & \text{si } x > 0 \text{y } y \ge 0 \\ \arctan\left(\frac{y}{x}\right) + 2\pi & \text{si } x > 0 \text{y } y < 0 \\ \arctan\left(\frac{y}{x}\right) + \pi & \text{si } x < 0 \end{cases}$$

$$\frac{\pi}{2} \qquad \qquad \text{si } x = 0 \text{y } y > 0$$

$$\frac{3\pi}{2} \qquad \qquad \text{si } x = 0 \text{y } y < 0$$

$$0 \qquad \qquad \text{si } x = 0 \text{y } y = 0$$

Sistema bidimensional en el cual cada punto del plano se determina por un ángulo $(\theta \in [0, 2\pi))$ y una distancia $(r \ge 0)$.

De polares a rectangulares

$$x(r,\theta) = r\cos\theta$$
 $y(r,\theta) = r\sin\theta$

De rectangulares a polares

$$r(x,y) = \sqrt{x^2 + y^2} \qquad \theta(x,y) = \begin{cases} \arctan\left(\frac{y}{x}\right) & \text{si } x > 0 \text{y } y \geq 0 \\ \arctan\left(\frac{y}{x}\right) + 2\pi & \text{si } x > 0 \text{y } y < 0 \\ \arctan\left(\frac{y}{x}\right) + \pi & \text{si } x < 0 \end{cases}$$

$$\frac{\pi}{2} & \text{si } x = 0 \text{y } y > 0$$

$$\frac{3\pi}{2} & \text{si } x = 0 \text{y } y < 0$$

$$0 & \text{si } x = 0 \text{y } y = 0 \end{cases}$$

Si una función ϕ está definida en términos de coordenadas polares:

$$(r,\theta) \to \phi(r,\theta)$$

en virtud de la regla de la cadena es posible encontrar las derivadas de ϕ con respecto a las varibales x y y del sistema de coordenadas rectangulares, así:

$$\phi_x = \frac{\partial \phi}{\partial x} = \frac{\partial \phi}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial \phi}{\partial \theta} \frac{\partial \theta}{\partial x} = \frac{\partial \phi}{\partial r} \cos \theta - \frac{1}{r} \frac{\partial \phi}{\partial \theta} \sin \theta$$

$$\phi_x = \frac{\partial \phi}{\partial y} = \frac{\partial \phi}{\partial r} \frac{\partial r}{\partial y} + \frac{\partial \phi}{\partial \theta} \frac{\partial \theta}{\partial y} = \frac{\partial \phi}{\partial r} \sin \theta - \frac{1}{r} \frac{\partial \phi}{\partial \theta} \cos \theta$$

Derivando nuevamente se obtiene el laplaciano de la función ϕ en términos de coordenadas polares:

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = \frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \frac{\partial \phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2}$$
$$= \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \phi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2}$$

- 1) ¿Por qué coordenadas cilíndricas?
- 2 6.1. El sistema de coordenadas polares
- 3 6.2. El sistema de coordenadas cilíndricas
- 6.3. El gradiente, el laplaciano, la divergencia y el rotacional en coordenadas cilíndricas
- Referencias

Extensión tridimensional del sistema de coordenadas polares

S.C. Cilíndrico

Añade una coordenada de distancia desde el plano xy medida en la dirección del eje z al punto en consideración.

S.C. Esférico

Define un radio r y un ángulo polar θ medido desde el vector \hat{k} y añade una tercera coordenada que es el ángulo azimutal ϕ que se mide a partir del vector \hat{i} .

Podemos definir 3 vectores ortogonales al punto P.

$$\hat{\boldsymbol{r}}_p(t,\theta,z) \coloneqq [\cos\theta,\sin\theta,0]^T = \cos\theta\hat{\boldsymbol{i}} + \sin\theta\hat{\boldsymbol{j}}$$

$$\hat{\boldsymbol{\theta}}_p(t,\theta,z) \coloneqq [-\sin\theta,\cos\theta,0]^T = -\sin\theta\hat{\boldsymbol{i}} + \cos\theta\hat{\boldsymbol{j}}$$

$$\hat{\boldsymbol{z}}_p(t,\theta,z) \coloneqq [0,0,1]^T = \hat{\boldsymbol{k}}$$

- Estos vectores indican las direcciones en las que aumentan las coordenadas r, θ y z, respectivamente.
- $\hat{m{r}}_p$, $\hat{m{ heta}}_p$, $\hat{m{z}}_p$ se pueden entender como campos vectoriales.

Podemos tener una matriz de transformación entre el sistema de coordenadas rectangulares (r) y el sistema de coordenadas cilíndricas (r_{cil}) :

$$oldsymbol{r} = oldsymbol{T}oldsymbol{r}_{cil}$$

$$\boldsymbol{T}(r,\theta,z) = \begin{bmatrix} \hat{\boldsymbol{r}}_p(r,\theta,z) & \hat{\boldsymbol{\theta}}_p(r,\theta,z) & \hat{\boldsymbol{z}}_p(r,\theta,z) \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Podemos tener una matriz de transformación entre el sistema de coordenadas rectangulares (r) y el sistema de coordenadas cilíndricas (r_{cil}) :

$$oldsymbol{r} = oldsymbol{T} oldsymbol{r}_{cil}$$

$$\boldsymbol{T}(r,\theta,z) = \begin{bmatrix} \hat{\boldsymbol{r}}_p(r,\theta,z) & \hat{\boldsymbol{\theta}}_p(r,\theta,z) & \hat{\boldsymbol{z}}_p(r,\theta,z) \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Podemos tener una matriz de transformación entre el sistema de coordenadas rectangulares (r) y el sistema de coordenadas cilíndricas (r_{cil}) :

$$oldsymbol{r} = oldsymbol{T} oldsymbol{r}_{cil}$$

$$\boldsymbol{T}(r,\theta,z) = \begin{bmatrix} \boldsymbol{\hat{r}}_p(r,\theta,z) & \boldsymbol{\hat{\theta}}_p(r,\theta,z) & \boldsymbol{\hat{z}}_p(r,\theta,z) \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- 1) ¿Por qué coordenadas cilíndricas?
- 2 6.1. El sistema de coordenadas polares
- 3 6.2. El sistema de coordenadas cilíndricas
- 6.3. El gradiente, el laplaciano, la divergencia y el rotacional en coordenadas cilíndricas
- 6 Referencias

6.3.1. El gradiente en coordenadas cilíndricas

$$abla \phi = rac{\partial \phi}{\partial r} \hat{m{r}}_p + rac{1}{r} rac{\partial \phi}{\partial heta} \hat{m{ heta}}_p + rac{\partial \phi}{\partial z} \hat{m{k}}$$

- El gradiente de ϕ evaluado en x indica la dirección en la cual ϕ es más pendiente en el punto x.
- Su norma $\|\nabla\phi(x)\|$ representa qué tan pendiente es ϕ en ese punto x en la dirección del vector $\nabla\phi(x)$.

6.3.2. El laplaciano en coordenadas cilíndricas

$$\nabla^2 \phi = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \phi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2} + \frac{\partial^2 \phi}{\partial z^2}$$

• Es una convención matemática para escribir en forma compacta la suma de las derivadas segundas de ϕ con respecto a cada una de sus variables.

6.3.3. La divergencia en coordenadas cilíndricas

$$\operatorname{\mathsf{div}} \boldsymbol{f}(r,\theta,z)$$

- Mide el grado de divergencia (divf(x,y,z) > 0) o de convergencia (divf(x,y,z) < 0) de los vectores que conforman un campo vectorial en el vecindario de (x,y,z).
- (M. Sólidos) la divergencia del campo vectorial de desplazamiento \boldsymbol{u} de un sólido en el punto (x,y,z), representa la llamada dilatación cúbica $e(x,y,z)\coloneqq \operatorname{div}\boldsymbol{u}(x,y,z)$, que explica .el porcentaje"de cambio de volumen del sólido en dicho punto (x,y,z).

- 1) ¿Por qué coordenadas cilíndricas?
- 2 6.1. El sistema de coordenadas polares
- 3 6.2. El sistema de coordenadas cilíndricas
- 6.3. El gradiente, el laplaciano, la divergencia y el rotacional en coordenadas cilíndricas
- 6 Referencias

Referencias I

Álvarez, D. A. (2022). Teoría de la elasticidad.

Universidad Nacional de Colombia.