Special String Again

A string is said to be a *special string* if either of two conditions is met:

- All of the characters are the same, e.g. aaa.
- All characters except the middle one are the same, e.g. aadaa.

A *special substring* is any substring of a string which meets one of those criteria. Given a string, determine how many special substrings can be formed from it.

For example, given the string $s=\mathtt{mnonopoo}$, we have the following special substrings:

Function Description

Complete the *substrCount* function in the editor below. It should return an integer representing the number of special substrings that can be formed from the given string.

substrCount has the following parameter(s):

- n: an integer, the length of string s
- s: a string

Input Format

The first line contains an integer, n, the length of s.

The second line contains the string s.

Constraints

$$1 < n < 10^6$$

Each character of the string is a lowercase alphabet, **ascii[a-z]**.

Output Format

Print a single line containing the count of total special substrings.

Sample Input 0

5 asasd

Sample Output 0

7

Explanation 0

The special palindromic substrings of s = asasd are $\{a, s, a, s, d, asa, sas\}$

Sample Input 1

Sample Output 1

10

Explanation 1

The special palindromic substrings of s=abcbaba are $\{a,b,c,b,a,b,a,bcb,bab,aba\}$

Sample Input 2

```
4
aaaa
```

Sample Output 2

10

Explanation 2