## Devoir maison 1 - Etude de suites

On considère la fonction g définie sur  $\mathbb{R}$  par

$$g(x) = e^x - x$$

1. Montrer que pour tout entier  $n \geq 2$ , l'équation g(x) = n admet exactement deux solutions, l'une strictement négative notée  $a_n$ , l'autre strictement positive notée  $b_n$ .

g est dérivable sur  $\mathbb{R}$  comme somme de fonctions dérivables, et  $\forall x \in \mathbb{R}, g'(x) = e^x - 1$ .

On en déduit que g est strictement décroissante sur  $]-\infty,0]$  et strictement croissante sur  $[0,+\infty[$ . Les limites des fonctions usuelles donnent  $\lim_{x\to -\infty} g(x) = +\infty$  et le théorème des croissances comparées

donne  $\lim_{x \to +\infty} g(x) = +\infty$ .

Comme g(0) = 1, le théorème des valeurs intermédiaires donne le résultat attendu.



## 2. Recherche d'une valeur approchée de $a_2$ :

On considère la suite  $(u_n)_{n\in\mathbb{N}}$  définie par :

$$\begin{cases} u_0 = -1 \\ u_{n+1} = e^{u_n} - 2, & \text{pour } n \in \mathbb{N} \end{cases}$$

Dans la suite, on notera h la fonction définie sur  $\mathbb{R}$  par  $h(x) = e^x - 2$ .

Pour tout entier n on a  $u_{n+1} = h(u_n)$ .

On remarque d'ores et déjà que h est strictement croissante sur  $\mathbb{R}$ .

**a.** Montrer que  $-2 < a_2 < -1$ .

On a : g(-1) < 2 < g(-2) d'où, g étant strictement décroissante sur  $\mathbb{R}^-$ ,  $-2 < a_2 < -1$ .

**b.** Vérifier que  $e^{a_2} - 2 = a_2$ 

Par définition,  $a_2$  vérifie  $g(a_2)=2$  ce qui équivaut à  $e^{a_2}-a_2=2$  et donc  $e^{a_2}-2=a_2$  (qui équivaut à  $h(a_2)=a_2$ )

et en déduire que :

$$\forall n \in \mathbb{N}, \quad a_2 \le u_n \le -1$$

Pour  $n \in \mathbb{N}$ , on note  $P_n : a_2 \leq u_n \leq -1$ .

D'après la question  $\mathbf{a}_{\cdot}$ ,  $P_0$  est vérifiée.

Soit  $n \in \mathbb{N}$ ; on suppose que  $P_n$  est vérifiée, donc que  $a_2 \le u_n \le -1$ .

Par croissance de h on a :  $a_2 \le u_{n+1} \le e^{-1} - 2 < -1$ , ainsi,  $P_{n+1}$  est vérifiée.

Par principe de récurrence  $P_n$  est vérifiée pour tout entier n.

c. Montrer que :

$$\forall x \in [a_2, -1], \quad 0 \le e^x - e^{a_2} \le e^{-1} (x - a_2)$$

On a :  $x \in [a_2, -1] \Rightarrow e^x \ge e^{a_2}$  d'où  $\forall x \in [a_2, -1], 0 \le e^x - e^{a_2}$ .

La fonction f définie sur  $\mathbb{R}$  par  $f(x) = e^x - e^{-1}x$  est dérivable sur son domaine comme somme de fonctions dérivables, et pour tout réel x on a :  $f'(x) = e^x - e^{-1}$ . Elle est donc strictement décroissante sur  $[a_2, -1]$ .

On en déduit que  $e^{a_2} - e^{-1}a_2 \ge e^x - e^{-1}x$  puis que  $\forall x \in [a_2, -1], e^x - e^{a_2} \le e^{-1}(x - a_2)$ .

## **d.** En déduire que :

$$\forall n \in \mathbb{N}, \quad 0 \le u_{n+1} - a_2 \le e^{-1} (u_n - a_2),$$

On a :  $\forall n \in \mathbb{N}$ ,  $u_{n+1} - a_2 = e^{u_n} - 2 - a_2 = e^{u_n} - e^{a_2}$ ; la question **b.** donne  $\forall n \in \mathbb{N}$ ,  $a_2 \le u_n \le -1$ La question c. donne le résultat attendu puis que :

$$\forall n \in \mathbb{N}, \quad 0 \le u_n - a_2 \le e^{-n}$$

Pour  $n \in \mathbb{N}$ , on note  $H_n : 0 \le u_n - a_2 \le e^{-n}$ .

D'après la question  $\mathbf{a}_{\cdot}$ ,  $H_0$  est vérifiée.

Soit  $n \in \mathbb{N}$ ; on suppose que  $H_n$  est vérifiée, donc que  $0 \le u_n - a_2 \le e^{-n}$ . D'après le résultat précédent, on a donc :  $0 \le u_{n+1} - a_2 \le e^{-1} (u_n - a_2) \le e^{-(n+1)}$ , ainsi  $H_{n+1}$  est vérifiée.

Par principe de récurrence,  $H_n$  est vérifiée pour tout entier naturel n.

e. Écrire un algorithme permettant d'obtenir une valeur de  $a_2$  par excès à p près, p étant un réel strictement positif donné.

Le principe consiste à calculer les termes de la suite jusqu'à avoir  $0 \le u_n - a_2 \le e^{-n} \le p$ .  $u_n$  est alors bien une valeur approchée de  $a_2$  par excès à p près.



## 3. Étude de la suite $(b_n)$ :

Montrer que :

$$\forall n \in \mathbb{N}, \ n \ge 2, \qquad \ln(n) \le b_n \le \ln(2n)$$

 $\forall n \in \mathbb{N}, n \geq 2, g(\ln(n)) = n - \ln(n) \leq n \text{ donc } \ln(n) \leq b_n.$  $g(\ln(2n)) = 2n - \ln(2n)$ . Une rapide étude de la fonction  $x \mapsto x - \ln(2x)$  montre qu'elle est positive sur  $\mathbb{R}_+^*$ , donc que  $\forall n \in \mathbb{N}, n \geq 2$ ,  $g(\ln(2n)) \geq n$  et par suite que  $b_n \leq \ln(2n)$ .

**b.** En déduire la limite de  $(b_n)$  et de  $\left(\frac{b_n}{\ln(n)}\right)$  lorsque n tend vers  $+\infty$ .

 $\forall n \in \mathbb{N}, \ln(n) \leq b_n$  donc le théorème de comparaison donne  $\lim_{n \to +\infty} b_n = +\infty$ .

De plus, 
$$\forall n \ge 2, (\ln(n) \le b_n \le \ln(2n)) \Rightarrow \left(1 \le \frac{b_n}{\ln(n)} \le 1 + \frac{\ln(2)}{\ln(n)}\right).$$

Le théorème d'encadrement donne  $\lim_{n\to+\infty} \frac{b_n}{\ln(n)} = 1$ .