Московский авиационный институт национальный исследовательский университет

Факультет информационных технологий и прикладной математики Кафедра компьютерных методов в математическом моделировании сложных систем

Курсовая работа по Эконометрике на тему: регрессионный анализ

> Студент: Королев Егор Владимирович Преподаватель: Платонов Евгений Николаевич

Группа: М8О-401Б-18

Москва, 2021

Содержание

1	Зад	ание
	1.1	Теоретическая часть
	1.2	Практическая часть
		1.2.1 Модельная часть
		1.2.2 Метод наименьших квадратов
		1.2.3 Полиномиальная регрессия
		1.2.4 Регрессия для наблюдений с выбросами
		1.2.5 Квантильная регрессия
$oldsymbol{2}{3}$		есовская регрессия
J		
	3.1	Модельная часть
	3.2	Метод наименьших квадратов
	3.3	Полиномиальная регрессия
	3.4	Регрессия для наблюдений с выбросами
	3.5	Квантильная регрессия
4	Вы	воды

1 Задание

1.1 Теоретическая часть

Написать эссе по Байесовской регрессии.

1.2 Практическая часть

1.2.1 Модельная часть

Смоделировать данные:

$$X_k = f(h_k) + \varepsilon_k, \quad k = \overline{1,60},$$

где $f(h) = 1.5h - 2 - \frac{1}{2h}$, $h \in [0.1; 2]$, ε_k – независимый случайные величины с распределением $\mathcal{N}(0, \sigma^2)$.

Точки внутри носителя для h выбираются равномерно.

Смоделировать тестовую выборку объема 40, половина значений правее наблюдаемых значений, половина левее

1.2.2 Метод наименьших квадратов

Для регрессии вида:

$$X_k = \theta_0 + \theta_1 h_k + \varepsilon_k, k = \overline{1,60}$$

- 1 Найти МНК-оценки неизвестных параметров;
- 2 построить график, на котором отобразить наблюдения, исходную функцию и линию регрессии;
- 3 вычислить коэффициент детерминации и найти оценку ковариационной матрицы МНКоценки;
- 4 найти значения информационных критериев;
- 5 с помощью критерия Фишера проверить гипотезу: $\theta_0 = \theta_1 = 0$;
- 6 построить доверительный интервал надежности 0.95 и 0.8 для полезного сигнала $X = \theta_0 + \theta_1 h$ при h из исходного носителя $\pm 50\%$;
- 7 построить оценку метода наименьших модулей, отобразить ее на графике;
- 8 оценить качество построенных регрессий на тестовой выборке.

Для остатков $\hat{\varepsilon_k} = X_k - \hat{X_k}$:

- 1 построить гистограмму;
- 2 на графике изобразить ядерную оценку плотности распределения;
- 3 по остаткам проверить гипотезу, что $\hat{\varepsilon}$ имеет гауссово распределение с помощью одного из критериев:
 - критерий Шапиро-Уилка
 - критерий D'Agostino K^2 ;
 - критерий Зарке-Бера;
- 4 проверить наличие автокорреляции с помощью критерия Дарбина-Уотсона;
- 5 проверить наличие гетероскедастичности с помощью одного из критериев;

3

1.2.3 Полиномиальная регрессия

Построить следующие регрессии с помощью МНК:

$$X = \sum_{i=0}^{p} \theta_i h^i$$

Порядок полинома р подобрать несколькими способами:

- 1 по значению среднеквадратичной погрешности МНК-оценки (на обучающей и/или тестовой);
- 2 по значению статистики критерия Фишера для гипотезы $\theta_p = 0$;
- 3 по MSE на тестовой выборке;
- 4 другим способом;

Для выбранного значения p:

- провести анализ остатков по схеме из пункта 2.2;
- построить график, на котором отобразить наблюдения, исходную функцию и линию регрессии;
- проверить для подобранной модели является ли матрица H^TH мультиколлинеарной, если да, то построить оценку параметров с помощью метода редукции (ридж-оценка);

1.2.4 Регрессия для наблюдений с выбросами

Смоделировать ошибки для модели регрессии $X_k = \theta_0 + \theta_1 h_k + \varepsilon_k$ с помощью распределения Тьюки, приняв долю выбросов $\delta = 0.08$, номинальную регрессию $\sigma_0^2 = \sigma^2$, дисперсию аномальных наблюдений $\sigma_1^2 = 100\sigma^2$.

Построить МНК-оценку неизвестных параметров модели и оценить ее качество.

Провести анализ остатков по схеме их пункта 2.2.

Построить график, на котором отобразить наблюдения, исходную функцию и линию регрессии.

Провести отбраковку выбросов, пересчитать МНК-оценку и оценить качество оценки.

После отбраковки построить новый график, на котором отобразить наблюдения, исходную функцию и линию регрессии.

Провести анализ остатков по схеме их пункта 2.2.

Построить оценку метода наименьших модулей.

Построить график, на котором отобразить наблюдения, исходную функцию и линию регрессии метода наименьших модулей.

Провести анализ остатков по схеме их пункта 2.2.

Дополнительно: построить робастную оценку Хубера.

1.2.5 Квантильная регрессия

Смоделировать несимметричные ошибки для исходных данных, заменив у 90% отрицательных ошибок знак с минуса на плюс.

Построить МНК и МНМ оценки для получившихся наблюдений и регрессии.

Построить несколько квантильных регрессий (для различных значений параметра α) и оценить их качество.

Построить график, на котором отобразить наблюдения, исходную функцию и линии регрессий.

2 Байесовская регрессия

Байесовская регрессия

3 Практическая часть

3.1 Модельная часть

Для заданной функции $f(h)=1.5h-2-\frac{1}{2h}$ смоделируем обучающую выборку $f(h_k)+\varepsilon_k$. Точки h_k выбраны равномерно на отрезке [0.1;2], изменяется от 1 до 60. Аналогично смоделируем тестовую выборку с количеством наблюдений равным 40. В качетсве параметров нормального распределения ошибок ε было выбрано: $\mu=0,\sigma=1$.

3.3 Полиномиальная регрессия

3.4 Регрессия для наблюдений с выбросами

3.5 Квантильная регрессия

4 Выводы

Рис. 1: Обучающая и валидационная выборки