Datum: 18.5.2023	SPŠ CHOMUTOV	Třída:
Číslo úlohy: 23.	Měření parametrů polovo- dičových prvků – fotoprvky	Příjmení: Lacek

Zadání:

Změřte VA charakteristiku fotoodporu a fotodiody

Schéma:

Měření intenzity světla:

Měření fotoodporu:

Měření fotodiody:

Tabulka přístrojů:

Název přístroje:	Označení:	Údaje:	Ev. Číslo:
zdroj	U~	EA-STT 2000 B-3A	LE 5114
zdroj	U=	AUL 310	LE2 1033
fotometr			LE2 415
číslicový voltmetr	ČV	KEYSIGHT U3401A	LE 5094
miliampérmetr	mA	0-600mA <u> </u>	LE 2173/6
potenciometr	RP	250 Ω 1,6 Α	LE1 353

Teorie:

Fotoodpor je elektronická součástka, která reaguje na světlo a mění svojí rezistivitu v závislosti na intenzitě světla. Je vyroben z polovodičového materiálu s vysokou rezistivitou, která se snižuje při osvětlení. Fotoodpor je často používán jako senzor pro měření světelných intenzit v různých aplikacích, například ve fotografických zařízeních, regulacích osvětlení nebo v bezpečnostních systémech. Jeho výstupní signál je analogový, což znamená, že se mění spojitě v závislosti na světelných podmínkách.

Fotodioda je polovodičová součástka, která funguje jako světelný senzor, ale má schopnost převádět světelnou energii přímo na elektrický proud. Tato dioda je vyrobena z polovodičového materiálu,který tvoří PN přechod. Když je fotodioda osvětlena, fotony světla generují páry elektronů a děr v oblasti přechodu, což způsobuje proudovou reakci. Fotodioda se často používá ve fotovoltaických solárních panelech pro přeměnu slunečního záření na elektrickou energii. Díky své rychlé odezvě a vysoké citlivosti se fotodioda také využívá v komunikačních systémech pro přenos dat optickým vláknem nebo jako část infračervených senzorů ve vzdálenostních měřících přístrojích. Zapojuje se v odporovém nebo hradlovém režimu.

Postup:

Vyhledáme si mezní parametry fotoodporu a fotodiody.

Určení napětí pro dosažení požadovaného osvětlení

Zapojíme dle schématu.

Do otvoru fotometru vložíme čidlo luxmetru.

Zvyšujeme napětí.

Až dosáhneme požadovaného osvětlení, tak si zapíšeme aktuální napětí.

Takto postupujeme, až si změříme všechny intenzity světla, které potřebujeme.

Fotoodpor

Zapojíme dle schématu.

Nastavíme požadovanou intenzitu světla.

Potenciometrem RP zvyšujeme napětí, dokud nedosáhneme mezního parametru.

Fotodioda

Fotodiodu zapojíme v závěrném směru.

Nastavíme požadovanou intenzitu světla.

Nastavujeme napětí U_R od U_{Rmax} do nuly, odečítáme proud I_R.

Do hradlového směru přejdeme prohozením svorek diody a miliampérmetru.

Zvyšujeme napětí U_F odečítáme I_R.

V okamžiku, kdy I_R=0 je apětí diody stejné jako napětí zdroje.

Do propustného směru se dostaneme prohozením svorek miliampérmtru.

Zvyšujeme proud až do I_{Fmax} odečítáme U_F.

Hodnoty hradlového napětí a proudu porovnáme s katalogem.

Mezní parametry:

fotoodpor

$$I_{max} = 20 \text{ mA}$$

$$P_{max} = 150 \text{ mW}$$

fotodioda

$$I_{Fmax} = 0.5 \text{ mA}$$

$$U_{Rmax} = 5 V$$

hradlové napětí > 0,3 V, hradlový proud > 70 μA při 1000 lx

Cejchování

200 lx	140 V
400 lx	170 V
600 lx	188 V
800 lx	205 V
1000 lx	218 V

Tabulka naměřených hodnot:

Fotoodpor – 200 lx

U (V)	I (mA)
1	1,00
2	2,10
3	3,15
4	4,10
5	5,10
6	6,20
7	7,20
8	8,20
9	9,20
10	10,20
11	11,40
12	12,00

Fotoodpor – 600 lx

U (V)	I (mA)
1	2,20
2	4,45
3	6,60
4	8,90
5	11,00
6	13,20
7	15,40
8	17,60
8,2	18,10

Fotoodpor – 1000 lx

U (V)	I (mA)
0,5	1,50
1	3,00
1,5	4,45
2	6,00
2,5	7,50
3	9,00
3,5	10,40
4	12,00
4,5	13,40
5	14,90
5,5	16,40
6	18,00
6,5	19,60
6,7	20,00

Fotoodpor – 400 lx

U (V)	I (mA)
1	1,6
2	3,4
3	5,2
4	7,0
5	8,6
6	10,3
7	12,0
8	13,8
9	15,6
9,3	16,0

Fotoodpor – 800 lx

U (V)	I (mA)
1	2,5
2	5,1
3	7,8
4	10,4
5	13,1
6	15,8
7	18,4
7,5	19,6

Fotodioda – 200 lx

Závěrný

UR [V]	Ir [mA]
0	0,0925
1	0,0925
2	0,0925
3	0,0925
4	0,0925
5	0,0925

hradlový

Uf [V]	Ir [mA]
0,05	0,0925
0,10	0,0925
0,15	0,0900
0,20	0,0900
0,25	0,0900
0,30	0,0850
0,35	0,0650
0,40	0,0000

propustný

UF [V]	IF [mA]
0,405	0,010
0,410	0,020
0,415	0,040
0,420	0,065
0,425	0,090
0,430	0,120
0,435	0,165
0,440	0,205
0,445	0,260
0,450	0,315
0,455	0,400

Fotodioda – 600 lx

Závěrný

Ur [V]	IR [mA]
0	0,2000
1	0,2000
2	0,2025
3	0,2025
4	0,2050
5	0,2050

hradlový

Uf [V]	IR [mA]
0,050	0,200
0,100	0,200
0,150	0,200
0,200	0,200
0,250	0,200
0,300	0,190
0,350	0,175
0,400	0,100
0,422	0,000

propustný

Uf [V]	IF [mA]
0,425	0,010
0,430	0,050
0,435	0,085
0,440	0,140
0,445	0,195
0,450	0,255
0,455	0,335
0,458	0,400

Fotodioda – 1000 lx

Závěrný

Ur [V]	Ir [mA]
0	0,295
1	0,295
2	0,295
3	0,295
4	0,295
5	0.295

hradlový

Uf [V]	IR [mA]
0,050	0,290
0,100	0,290
0,150	0,290
0,200	0,290
0,250	0,290
0,300	0,280
0,350	0,265
0,400	0,195
0,436	0,000

propustný

UF [V]	IF [mA]
0,440	0,060
0,445	0,115
0,450	0,180
0,455	0,265
0,460	0,350
0,462	0,400

Grafy:

VA charakteristika fotoodporu

Závislost odporu R na intenzitě E při U = 6 V

Charakterisitka fotodiody

Závěr:

Sklon VA charakteristik fotoodporu mě překvapil, myslel jsem, že budou pod jinými úhly.

Hradlový proud a napětí vyhovovalo katalogovým hodnotám.

Vzhledem k apsenci kolegy mi celé měření tvrvalo dlouho.

Naměřené hodnoty u fotodiody odpovídaly mému předpokladu.

Měl jsem problém při vytváření grafu fotodiody zachovat správné rozměry, aby výsledný graf byl relevantní.