Dikumpulkan di MS Teams bagian UAS 2022 max 16 Desember 2022 jam 22.00 WIB

1. Rancanglah Star Schema untuk Sistem Akademik di suatu universitas

a. Pemilihan Proses

Data akademik merupakan data penting untuk merekam jejak aktivitas mahasiswa di universitas. Data perkuliahan dan data pengalaman yang pernah diambil di luar perkuliahan dapat digunakan untuk menganalisis keahlian yang dimiliki mahasiswa. Data ini dapat digunakan untuk melihat jejak *career path* dari mahasiswa tersebut.

Universitas meluluskan mahasiswa dengan jumlah meningkat setiap tahunnya. Lulusan universitas memiliki tanggung jawab sosial dan intelektual untuk menjadi anggota masyarakat yang memiliki kemampuan sehingga dapat menerapkan, mengembangkan dan menciptakan ilmu pengetahuan, teknologi, dan kesenian. Untuk mencapai hal tersebut, Dikti melakukan penyesuaian terhadap kompetensi lulusan universitas yaitu meliputi hard skills dan soft skills. Hal ini juga sebagai upaya menjawab permasalahan dominan yaitu kekhawatiran lulusan universitas menjadi pengangguran karena merasa belum dapat melihat potensi diri dan kurang memiliki pengalaman. Oleh karena itu, suatu universitas perlu melakukan upaya untuk membantu lulusannya dalam perencanaan karier yang baik.

b. Kebutuhan Data

Perancangan Star Schema untuk Sistem Akademik ini mengacu pada Aplikasi Simaster yang dimiliki Universitas Gadjah Mada. Aplikasi simaster dapat diakses melalui aplikasi web dan aplikasi *mobile*.

Berikut tampilan profil mahasiswa pada Aplikasi web Simaster.

Dari data mahasiswa pada menu profil, dapat diidentifikasi bahwa kebutuhan datanya adalah Nama, NIM, Program Studi, Jenjang, dan Angkatan.

Sistem aplikasi simaster memiliki menu Akademik Kemahasiswaan dan Alumni Karier yang sangat mendukung mahasiswanya melakukan perencanaan karier. Berikut tampilan sub menu Hasil Studi yang terdapat pada menu Akademik Kemahasiswaan.

Berdasarkan aplikasi simaster, dapat diidentifikasi bahwa untuk merekam hasil studi dibutuhkan data periode semester dan tahun, kode mata kuliah, mata kuliah, SKS, dan nilai.

Berikut tampilan sub menu Curriculum Vitae yang merekam jejak pengalaman mahasiswa pada menu Alumni Karier.

Data yang dicantumkan pada sistem mengenai pengalaman berupa nomor id, nama pengalaman seperti nama pelatihan yang diikuti, pengalaman posisi magang, serta deskripsi penjelasan dan periode waktu dari pengalaman tersebut.

Berikut tampilan sub menu baru di aplikasi simaster yaitu simfoni, terletak pada menu Alumni Karier. Sub menu simfoni berisi data tentang mahasiswa terkait nama, angkatan, prodi, fakultas, dan aktivitas yang diinput di sub menu Curriculum Vitae.

Proses yang dipilih dalam perancangan star schema yaitu proses perencanaan karier. Perancangan yang dilakukan akan mewakili sub menu Simfoni, yaitu perekaman aktivitas mahasiswa. Meskipun sedikit berbeda karena adanya data tambahan yang dibutuhkan seperti data hasil studi.

c. Pemilihan Grain

Memilih *grain* berarti menentukan secara tepat apa yang diwakili pada tabel fakta. Sesuai dengan pemilihan proses sebelumnya, *grain* dari tabel fakta adalah aktivitas mahasiswa di dalam ataupun di luar perkuliahan.

d. Identifikasi dan penyesuaian dimensi

Mahasiswa	dim_mahasiswa	ID mahasiswa, nama mahasiswa, nim, angkatan
Program Studi	dim_prodi	ID prodi, prodi, departemen, fakultas, jenjang
Periode	dim_periode	ID periode, periode, tahun
Mata kuliah	dim_matkul	ID matkul, nama matkul, SKS, nilai

Pengalaman	dim_pengalaman	ID pengalaman, tipe pengalaman,
		judul pengalaman, deskripsi, durasi

e. Pemilihan fakta

Disesuaikan dengan *grain* dan dimensi, fakta yang mewakili aktivitas mahasiswa di dalam ataupun di luar perkuliahan yaitu fact_aktivitas. Fact_aktivitas menyimpan data mahasiswa seperti IPK, sks yang diambil, dan keahlian.

Aktivitas fact_aktivitas	ID aktivitas, ID mahasiswa, ID prodi, ID periode, ID matkul, ID pengalaman, IPK, sks_ambil, keahlian
--------------------------	--

f. Menyimpan perhitungan awal dalam tabel fakta

Dalam perekaman aktivitas mahasiswa tidak ada penyimpanan khusus dalam basis data, namun data akan didapatkan melalui *query* dan *data mining* atau *text mining* yang dijalankan nantinya. Operasi *query* dapat dijalankan untuk menghitung IPK atau nilai IP kumulatif berdasarkan data nilai dan bobot SKS setiap mata kuliah serta jumlah total sks yang sudah diambil mahasiswa. *Data mining* dan *text mining* yang dilakukan berupa *classification* dan *clustering* yang menghasilkan pengelompokan mahasiswa ke dalam beberapa kategori keahlian.

g. Melihat kembali tabel dimensi

dim mahasiswa

ID mahasiswa	id_mahasiswa	int	Nomor Induk Universitas (unik)
nama mahasiswa	nama_mahasiswa	varchar	Nama lengkap mahasiswa
nim	nim	varchar	Nomor Induk Mahasiswa lengkap
angkatan	angkatan	int	Tahun masuk mahasiswa

dim_prodi

ID prodi	id_prodi	varchar	Kode unik program studi
prodi	prodi	varchar	Nama program studi
departemen	departemen	varchar	Nama departemen
fakultas	fakultas	varchar	Nama fakultas
jenjang	jenjang	varchar	Jenjang pendidikan

dim_periode

ID periode	id_periode	int	Nomor unik periode
periode	periode	varchar	periode gasal atau genap
tahun	tahun	int	tahun

dim_matkul

ID matkul	id_matkul	varchar	kode unik mata kuliah
nama matkul	matkul	varchar	Nama mata kuliah
SKS	sks_matkul	float	jumlah sks mata kuliah
nilai	nilai_matkul	float	nilai mahasiswa

dim_pengalaman

ID pengalaman	id_pengalaman	varchar	kode unik pengalaman
tipe pengalaman	tipe_pengalaman	varchar	Magang/PartTime/Pelatihan/ Riset/ Proyek/Skripsi
judul pengalaman	judul_pengalaman	varchar	jabatan atau judul kegiatan/ riset/proyek/skripsi
deskripsi pengalaman	desk_pengalaman	varchar	deskripsi pengalaman yang dilakukan dan keahlian yg dimiliki
durasi	durasi	varchar	durasi pengalaman

h. Memilih durasi database

Durasi database yang ditetapkan adalah 5 tahun sehingga sivitas akademik bisa melihat aktivitas mahasiswa selama 5 tahun. Hal ini mempertimbangkan rata-rata periode kelulusan mahasiswa adalah 4 hingga 5 tahun. Jadi sivitas akademik dapat menganalisis data dengan lebih mudah karena data keseluruhan selama masa studi masih tersimpan.

i. Menelusuri perubahan dimensi

- Dimensi yang berubah ditimpa ulang
- Atribut dari dimensi yang berubah mengakibatkan munculnya record baru (tidak ada fitur update)
- Atribut dimensi mengakibatkan atribut lain muncul menjadi nilai lama dan baru

j. Perancangan model data Star Schema

2. Jika kita akan melakukan data mining *classification* atau *clustering* data pada soal nomor 1, maka jelaskan data mana yang dipakai, bagaimana prosesnya, dan *outputnya*

Analisis data mining meliputi tahapan proses *Knowledge Discovery in Database* (KDD). KDD adalah proses menemukan informasi berguna dan pola di data. Berikut langkah-langkah dalam proses KDD:

- 1. memahami prior knowledge dan tujuan analisis
- 2. membuat dataset target: data selection
- 3. Pre-processing dan cleaning data
- 4. Transformation
- 5. Data Mining
- 6. Evaluasi pola dan presentasi discovered knowledge

Classification: memetakan data ke grup atau kelas yang sudah ditentukan

- Supervised learning
- Pattern recognition
- Predictive Modeling

Classification data pada soal nomor 1 dapat dilakukan dalam:

Klasifikasi untuk prediksi predikat IPK kelulusan mahasiswa

Adapun kategori Predikat IPK kelulusan universitas adalah sebagai berikut:

Range IP	Predikat
2.50-2.74	Memuaskan
2.75-3.50	Sangat memuaskan
3.51-3.79	Cum laude
3.80-3.99	Magna cum laude
4.00	Summa cum laude

Data selection, pre-processing, cleaning data, dan transformasi data

Data bisa didapatkan dengan query data warehouse dan contoh output perhitungan sebagai berikut:

SELECT id_mahasiswa as "NIU", nama_mahasiswa as "Nama", nilai_matkul as "nilai", sks matkul as "sks", nilai*sks as "total nilai

FROM fact_aktivitas, dim_mahasiswa, dim_matkul GROUP BY(NIU)

NIU	Nama nilai sks		sks	total_nilai
440305	Devi Luthfi	3.25	2.00	6.50
440305	440305 Devi Luthfi		3.00	9.00
440305	Devi Luthfi	3.00	4.00	12.00
440305	Devi Luthfi	4.00	3.00	12.00
440305	Devi Luthfi	3.25	2.00	6.50
null	null	null	14.00	46.00

IPS/IPK = 46.00/14.00 = 3.3 (sangat memuaskan)

Berdasarkan tahap data selection, pre-processing, cleaning data, dan transformasi data didapatkan konsep dataset yang dibutuhkan untuk klasifikasi mahasiswa berdasarkan kelompok predikat IPK kelulusannya adalah seperti tabel berikut:

NIU	Nama	IPS 1	IPS 2	IPS 3	IPS 4	IPS 5	IPS 6	IPS 7	IPS 8	IPK	Predikat
440305	Devi Luthfi	3.3	3.7	3.4	3.5	3.3	3.6	3.8	4.0	3.6	cumlaude
440402	Nadya Rosa	2.2	1.5	2.2	1.9	3.0	2.4	2.6	3.2	2.5	memuaskan
440403	Fazerian	3.0	3.6	2.2	2.3	2.5	2.8	3.0	2.9	2.8	sangat memuaskan
440450	David Yuli	3.8	3.4	3.9	3.8	3.8	3.9	3.8	3.8	3.8	magna cum laude
440451	Mufid Hani	2.0	1.5	1.8	2	2.2	2.3	2.4	3.2	2.6	memuaskan

Dataset berisi nim, nama, dan IP setiap semester di-split menjadi dataset training dan test. Algoritma yang biasa digunakan untuk klasifikasi adalah algoritma K-Nearest Neighbor. Pada algoritma ini, klasifikasi yang sudah ada di data training dapat digunakan untuk prediksi data yang belum terklasifikasi. Algoritma ini menemukan kelompok K dalam data training yang paling dekat dengan data test dan dilanjutkan pencarian label kelas tertentu. Pengujian nilai k terbaik berdasarkan akurasi tertinggi dilakukan menggunakan data test. Hasil klasifikasi dengan algoritma dibandingkan dengan data yang sudah diklasifikasi. Berikut contoh proses pencarian nilai k dengan akurasi tertinggi:

Nilai k	Nilai benar	Nilai salah	Persentase akurasi
1	198	52	78,6%
3	202	50	80,1%
5	228	22	91,3%

Maka algoritma K-Nearest Neighbor yang terbaik menggunakan nilai K=5.

Prediksi klasifikasi dilakukan ketika mahasiswa belum lulus (nilai IPS belum terpenuhi 8 semester) untuk forecast predikat IPK kelulusan. Dengan mengetahui prediksi predikat IPK lebih awal, hal ini akan membantu mahasiswa dalam menyusun strategi pencapaian target IPK yang diinginkan. Sehingga mahasiswa akan termotivasi untuk meningkatkan nilai di semester berikutnya.

Clustering: memetakan data yang memiliki kemiripan ke grup atau kelas yang belum diketahui

- Unsupervised learning
- Segmentation
- Partitioning

Clustering data pada soal nomor 1 dapat dilakukan dalam:

Clustering mata kuliah peminatan

Agar lebih mudah dipahami, dalam proses kali ini akan dilakukan *clustering* pada mata kuliah peminatan Teknologi Informasi. Program studi Teknologi Informasi memiliki 12 mata kuliah peminatan sebagai berikut:

Software Engineer

- TIF215111: Pengembangan Aplikasi Permainan
- TIF215112: Pengembangan Aplikasi Piranti Bergerak
- TIF215113: Arsitektur Perangkat Lunak
- TIF215114: Pengujian Perangkat Lunak

Data Engineer

- TIF215131: Pemrosesan Bahasa Alami
- TIF215132: Big Data dan Analitik
- TIF215133: Sistem Pendukung Keputusan
- TIF215134: Teknik Kompresi Data

Network & Security Engineer

- TIF215121: Forensik Digital
- TIF215122: Peretasan Beretika
- TIF215123: Keamanan dan Integritas Data
- TIF215124: Sistem Komunikasi Bergerak

Data selection, pre-processing, cleaning data, dan transformasi data

Data bisa didapatkan dengan query data warehouse dan contoh output perhitungan sebagai berikut:

SELECT id_matkul, COUNT(id_mahasiswa) as "jumlah_peserta" FROM fact_aktivitas GROUP BY (id_matkul)

Berdasarkan tahap data selection, pre-processing, cleaning data, dan transformasi data didapatkan konsep dataset yang dibutuhkan untuk clustering mata kuliah peminatan adalah seperti tabel berikut:

id_matkul	jumlah_peserta
TIF215111	33
TIF215112	12
TIF215113	80
TIF215114	30
TIF215121	30
TIF215122	15
TIF215123	60

TIF215124	12
TIF215131	30
TIF215132	45
TIF215133	30
TIF215134	12

Algoritma yang biasa digunakan untuk *clustering* adalah algoritma *K-Means*. Algoritma ini diawali dengan menentukan banyaknya *cluster* yang diinginkan dari dataset yang ada. Pada percobaan kali ini, ditentukan nilai k=3 artinya akan terbentuk 3 klaster yaitu C1, C2, dan C3. Pengelompokan berdasarkan variabel mata kuliah peminatan kurang diminati, cukup diminati, dan banyak diminati. Selanjutnya ditentukan centroid awal secara random.

Centroid	jumlah_peserta
C1	12
C2	30
С3	80

Lalu dengan rumus Euclidean Distance dilakukan perhitungan jarak data dengan centroid.

id_matkul	jumlah_peserta	jarak1	jarak2	jarak3	cluster
TIF215111	33	21	3	47	C2
TIF215112	12	0	18	68	C1
TIF215113	80	68	50	0	С3
TIF215114	30	18	0	50	C2
TIF215121	30	18	0	50	C2
TIF215122	15	3	15	65	C1
TIF215123	60	48	30	20	C3
TIF215124	12	0	18	68	C1
TIF215131	30	18	0	50	C2
TIF215132	45	33	15	35	C2
TIF215133	30	18	0	50	C2

TIF215134	12	0	18	68	C1
-----------	----	---	----	----	----

Klaster didapatkan dari centroid yang memiliki jarak minimum dengan data jumlah peserta. Algoritma K-Means dilakukan secara iterasi dengan perubahan centroid hingga anggota klaster tidak berubah. Nilai centroid pada iterasi berikutnya dihitung dari rata-rata data dari anggota klaster pada iterasi sebelumnya.

Contoh centroid C1=(12+15+12+12)/4 = 13, C2=198/6=33, C3=(80+60)/2=70

Dilanjutkan perhitungan jarak data dengan centroid seperti sebelumnya.

Dari iterasi 1, didapatkan klaster seperti berikut:

Mata kuliah kurang diminati: TIF215112, TIF215122, TIF215124, TIF215134

Mata kuliah cukup diminati: TIF215111, TIF215114, TIF215121, TIF215131,

TIF215132, TIF215133

Mata kuliah banyak diminati: TIF215113, TIF215123

3. Jika kita akan melakukan *forecast* data pada soal nomor 1, maka jelaskan data mana yang dipakai, bagaimana prosesnya, dan *outputnya*

Forecast IPS (Indeks Prestasi Semester) untuk tiap semester selanjutnya perlu dilakukan agar menjadi motivasi bagi mahasiswa dalam mencapai target IPK. Karena nilai IPK tidak bisa ditingkatkan secara instan, melainkan perlu strategi belajar dari awal masuk agar IPS diharapkan stabil dan memuaskan. IPS merupakan variabel respon terhadap waktu yaitu tiap periode semester sehingga dapat di-forecast dengan time series forecast. Dipertimbangkan dari nilai IPS yang seharusnya tidak membentuk suatu trend melainkan terjadi perubahan secara smooth, maka metode yang tepat adalah smoothing methods. Salah satu metode smoothing yang tepat untuk forecast nilai IPS adalah metode exponential smoothing. Pada exponential smoothing, nilai yang digunakan untuk forecast IPS selanjutnya adalah nilai IPS dan nilai forecast lalu. Hal ini dapat meminimalisasi faktor-faktor lain yang mempengaruhi IPS di periode tertentu (terbentuk outlier) pada perhitungan forecast. Nilai IPS periode lampau diberi bobot ω dimana 0 ≤ω≤1.

Forecast (t) = Forecast (t-1) + ω *{Actual(t-1)-Forecast(t-1)}

Data yang dipakai untuk *forecast* merupakan data IPS yang bisa didapat dari query seperti pada soal nomor 2 yang diambil di setiap periode semester.

SELECT id_mahasiswa as "NIU", nilai_matkul as "nilai", sks_matkul as "sks", nilai*sks as "total nilai

FROM fact aktivitas, dim matkul

WHERE id_mahasiswa=440305 AND id_periode=20191 GROUP BY(NIU)

NIU id periode nilai sks total nilai 440305 20191 3.25 2.00 6.50 440305 20191 3.00 3.00 9.00 440305 20191 3.00 4.00 12.00

440305	20191	4.00	3.00	12.00
440305	20191	3.25	2.00	6.50
null	null	null	14.00	46.00

IPS 1 = 46.00/14.00 = 3.33

Query tersebut dilakukan setiap periode semester dan dilakukan ke tiap data mahasiswa

Berikut contoh perhitungan forecast dengan bobot ω =0.2:

Semester	Data Real	Forecast (Exponential smoothing) ω=0.2
1	3.33	3.33 (disamakan data awal)
2	3.56	3.33+0.2*(3.33-3.33) = 3.33
3	3.39	3.33+0.2*(3.56-3.33) = 3.38
4	3.48	3.38+0.2*(3.39-3.38)= 3.38
5	3.34	3.38+0.2*(3.48-3.38)= 3.4
6	3.64	3.4+0.2*(3.34-3.4)=3.41
7	-	3.41+0.2*(3.64-3.41)=3.46

Berdasarkan *forecast exponential smoothing,* didapatkan kemungkinan IP Semester 7 adalah 3.46. Hasil *forecast* dari semester-semester sebelumnya tidak terlalu jauh dibanding data asli sehingga dapat dikatakan *forecast* cukup mewakili data IP semester mahasiswa dengan NIU 440305.

4. Apakah data pada soal nomor 1 memungkinkan untuk dilakukan association rule mining

Association rule menemukan hubungan antar-data. Hal ini bisa dilakukan untuk menganalisis hubungan antar mata kuliah peminatan yaitu kemungkinan dimana mahasiswa yang mengambil mata kuliah peminatan tertentu juga akan mengambil mata kuliah peminatan yang lain. Data yang dibutuhkan untuk operasi ini adalah data mahasiswa dan data mata kuliah yang diambil.

SELECT id_mahasiswa as "NIU", id_matkul FROM fact_aktivitas GROUP BY (id_mahasiswa)

NIU	id_matkul
440303	TIF215131

440303	TIF215132
440303	TIF215133
440305	TIF215123
440305	TIF215121
440305	TIF215132
440307	TIF215123
440307	TIF215131
440307	TIF215132
440309	TIF215111
440309	TIF215112
440309	TIF215121

Untuk melakukan association rule, data diatas perlu diubah ke dalam bentuk cross-tabulated seperti berikut:

Matkul	TIF21 5111	TIF215 112	TIF2151 21	TIF2151 23	TIF2151 31	TIF2151 32	TIF2151 33
TIF215111	1	1	1	0	0	0	0
TIF215112	1	1	1	0	0	0	0
TIF215121	1	1	2	1	0	0	0
TIF215123	0	0	1	2	1	1	0
TIF215131	0	0	0	1	2	1	1
TIF215132	0	0	0	2	2	3	1
TIF215133	0	0	0	0	0	0	1

Mata kuliah TIF215131 dan TIF215132 banyak diambil bersamaan oleh mahasiswa yang sama, sedangkan mata kuliah yang hampir diambil semua mahasiswa di atas adalah mata kuliah TIF215132.

5. Jika kita akan melakukan text mining yang berhubungan dengan sistem akademik di suatu universitas, data apa yang memungkinkan dipakai, jelaskan bagaimana prosesnya, dan *outputnya*

Data yang dapat dipakai untuk *text mining* yaitu data pada dim_pengalaman. Data yang dapat digunakan untuk *text mining* adalah judul_pengalaman dan desk_pengalaman. Text mining dapat dilakukan untuk mencari *skill* atau keahlian yang mahasiswa miliki berdasarkan pengalaman seperti magang, proyek, riset, dan lain-lain. Hal ini sangat dibutuhkan untuk mahasiswa maupun industri saat ini, dimana mahasiswa perlu mempublikasikan keahliannya agar dapat direkrut oleh perusahaan industri atau lapangan kerja dan proyek lainnya. Dengan adanya sistem akademik dengan text mining dan perancangan data model sebelumnya, diharapkan universitas dapat membantu mahasiswa menemukan keahlian dan potensi dirinya.

Text mining kali ini dilakukan dengan metode pencarian kata inti. Hal ini memerlukan tahap pembobotan dokumen untuk menemukan kata inti dari kalimat. Sumber data pada *text mining* adalah kumpulan teks tidak atau semi struktur. Berikut tahapan text processing yang bertujuan mempersiapkan teks menjadi data terstruktur dan dapat diproses.

- 1. **Cleansing**, proses memperbaiki atau menghapus data yang rusak dan tidak lengkap. Karena teks yang digunakan adalah data input di sistem akademik, diharapkan karakteristik kalimat cukup baku dan semi struktur sehingga tidak banyak *noise* dan kata tidak baku seperti di *twitter*.
- 2. **Case Folding,** proses mengubah huruf 'a' sampai dengan 'z' dalam teks menjadi huruf kecil.
- 3. **Tokenizing**, memotong string input berdasarkan tiap kata yang menyusunnya.
- 4. **Filtering**, mengambil kata-kata penting dari hasil tokenizing menggunakan algoritma stopword removal dengan membuang kata yang kurang penting.
- 5. **Stemming**, mencari roof kata dari tiap kata hasil filtering.

Tahap selanjutnya adalah metode *Term Frequency-Invers Document Frequency* (TF-IDF). Metode ini adalah cara pemberian bobot hubungan suatu kata (term) terhadap dokumen. Metode ini menggabungkan 2 konsep penghitungan bobot yaitu frekuensi kemunculan kata pada kalimat dan frekuensi banyaknya dokumen dimana suatu kata muncul. Bobot suatu istilah semakin besar jika istilah tersebut sering muncul dalam suatu teks dan semakin kecil jika istilah tersebut muncul dalam banyak dokumen. Hal ini tepat untuk menemukan potensi diri dan keahlian mahasiswa yang unik dari pengalaman mahasiswa. Karena kata istilah keahlian yang sering muncul di judul atau deskripsi pengalaman mahasiswa akan menjadi keahlian mahasiswa tersebut. Selain itu, istilah keahlian yang banyak dimiliki oleh orang lain akan memiliki bobot yang kecil. Jadi, bobot setiap kata adalah:

ω= TF*IDFContoh text mining:

440305	UNESCO UNITWIN Online Program Training	I lead the team to design Software Interface based natural language processing. In the last session, I am present our report and I can be Best Presenter of Innovation Idea Presentation
440305	Staff of Research and Technology	I lead the software requirement analysis and design team to designing technology device

Divis	and network architecture then present it to
	other division. I am communicate and contact technology stakeholders.

Berikut contoh perhitungan bobot TF-IDF

Kata kunci keahlian	Bobot
Lead	2*0,2=0,4
Design	3*0,2=0,6
Software	2*0,2=0,4
Technology	2*0,5=1
Present	3*0,2=0,6

Kata kunci keahlian dengan bobot tertinggi dari mahasiswa NIU 440305 adalah technology karena kata tersebut sering muncul dalam teks kalimat tetapi tidak banyak muncul di dokumen lain. Jadi, dapat disimpulkan bahwa career path mahasiswa tersebut berkaitan dengan technology. Pencarian kata kunci keahlian perlu dilakukan lagi untuk menemukan keahlian lain yang dimiliki oleh mahasiswa, minimal 5 kata kunci keahlian yang biasanya dapat mewakili untuk digunakan dalam keperluan lain seperti melamar beasiswa, pekerjaan, magang, dan lain-lain. Untuk melengkapi text-mining maka perlu dilanjutkan K-Means clustering seperti pada soal nomor 2.

Kesimpulan

Penyimpanan dan penambangan data melalui query OLAP dan berbagai teknik *Knowledge Discovery in Database* sangat bermanfaat dalam suatu organisasi untuk mengidentifikasi berbagai hal yang dibutuhkan. Banyaknya data tentu menjadi tantangan dalam menganalisis keseluruhan data. Namun dengan banyaknya data yang dimiliki juga tersimpan banyak manfaat dalam upaya *forecast* kebutuhan pengguna sistem dari berbagai aspek.

Perancangan Data pada dokumen ini belum diaplikasikan secara keseluruhan pada Aplikasi Simaster, hal ini mungkin dapat dikembangkan untuk sistem ke depannya agar dapat membantu personalisasi keahlian bagi setiap mahasiswa dalam persiapan karirnya. Perancangan data dan pembahasan teknik KDD pada dokumen ini juga masih dapat dikembangkan lagi untuk berbagai keperluan yang dibutuhkan dalam sistem akademik universitas terutama Simaster UGM.

Referensi

- Budiman, I., Muliadi, & Ramadina, R. (2015, April). Penerapan Fungsi Data Mining Klasifikasi untuk Prediksi Masa Studi Mahasiswa Tepat Waktu pada Sistem Informasi Akademik Perguruan Tinggi. *Jurnal Jupiter*, 7(1). https://media.neliti.com/media/publications/289138-penerapan-fungsi-data-mining-klasifikasi-c107fb0c.pdf
- Fadilah, U., Winarno, W. W., & Amborowati, A. (2016, Juli). Perancangan Data Warehouse Untuk Sistem Akademik STMIK Kadiri. *Jurnal Ilmiah SISFOTENIKA*, 6(2), 217-228.

https://sisfotenika.stmikpontianak.ac.id/index.php/ST/article/view/119/119

- Implementasi Star Schema dalam Perancangan Data Warehouse Akademik Perguruan Tinggi. (2021, Oktober). *CAKRAWALA Repositori IMWI*, 4(2). https://cakrawala.imwi.ac.id/index.php/cakrawala/article/view/91/70
- Indriyani, F., & Irfiani, E. (2019, November). Clustering Data Penjualan pada Toko Perlengkapan Outdoor Menggunakan Metode K-Means (Clustering Sales Data at Outdoor Equipment Stores Using K-Means Method). *JUITA: Jurnal Informatika*, 7(2), 109-113. https://www.researchgate.net/publication/337599172_Clustering_Data_Penjualan pada Toko Perlengkapan Outdoor Menggunakan Metode K-Means
- IRWANSYAH, E. (2017, March 9). *CLUSTERING*. School of Computer Science | BINUS University. Retrieved December 16, 2022, from https://socs.binus.ac.id/2017/03/09/clustering/
- Kambey, G. E.I., Sengkey, R., & Jacobus, A. (2020, April-Juni). Penerapan Clustering pada Aplikasi Pendeteksi Kemiripan Dokumen Teks Bahasa Indonesia. *Jurnal Teknik Informatika*, 15(2), 75-82.
- Noviansyah, M. R., Rismawan, T., & Midyanti, D. M. (2018). PENERAPAN DATA MINING MENGGUNAKAN METODE K-NEAREST NEIGHBOR UNTUK KLASIFIKASI INDEKS CUACA KEBAKARAN BERDASARKAN DATA AWS (AUTOMATIC WEATHER STATION) (STUDI KASUS: KABUPATEN KUBU RAYA). Jurnal Coding, Sistem Komputer Untan, 06(2), 48-56. https://jurnal.untan.ac.id/index.php/jcskommipa/article/view/26672/756765 77366
- Nurafifah, H. (2017). KLASIFIKASI MINAT STUDI MAHASISWA MENGGUNAKAN ALGORITMA NAIVE BAYESIAN CLASSIFIERS (NBC). *Simki-Techsain*, *01*(06), 1-7. http://simki.unpkediri.ac.id/mahasiswa/file_artikel/2017/ffb9db9392a901f24 9629594efda066d.pdf
- Ozora, D., Suharti, L., & Sirine, H. (2016). *POTRET PERENCANAAN KARIR PADA MAHASISWA (Studi terhadap Mahasiswa di Sebuah Perguruan Tinggi di Jawa Tengah).*media.neliti.com.

- https://media.neliti.com/media/publications/171974-ID-potret-perencanaan-karir-pada-mahasiswa.pdf
- Siregar, M. H. (2018, Desember). KLASTERISASI PENJUALAN ALAT-ALAT BANGUNANMENGGUNAKAN METODE K-MEANS (STUDI KASUS DI TOKO ADI BANGUNAN). *JURNAL TEKNOLOGI DAN OPEN SOURCE*, 1(2), 83-91. https://media.neliti.com/media/publications/284729-data-mining-klasterisasi-penjualan-alat-b873003e.pdf
- Suaibi, R., Lusiana, D., & Daryanto. (n.d.). APLIKASI TEKS MINING UNTUK AUTOMASI PENCARIAN KALIMAT INTI DALAM DOKUMEN TUNGGAL BERBAHASA INDONESIA DENGAN METODE Term Frecuency-Invers Document Frecuenty (TF-IDF).

 repository.unmuhjember.
 http://repository.unmuhjember.ac.id/2734/9/JURNAL.pdf
- Ulfah, R. F. (2017). 1 ANALISIS PERENCANAAN KARIER BERDASARKAN KOMPETENSI MAHASISWA PADA MAHASISWA PROGRAM STUDI PENDIDIKAN AKUNTANSI FAKULTAS KEGURU. Retrieved December 16, 2022, from http://eprints.ums.ac.id/52865/2/NASKAH%20PUBLIKASI.pdf