CORRECTION MATH II

Partie I

- 1. L'unicité découle du fait que $\langle \bullet, \bullet \rangle_n$ est un produit scalaire sur \mathbb{R}^n . Pour l'existence il suffit de prendre l'application linéaire u^* de matrice tB , car $\langle u(x), y \rangle_p = {}^tX^tBY = \langle x, u^*(y) \rangle_n$, $\forall x \in \mathbb{R}^n, y \in \mathbb{R}^p$.

Soit λ une valeur propre de $u^* \circ u$ et $x \neq 0$ tel que $u^* \circ u(x) = \lambda x$, alors $\lambda \langle x, x \rangle_n = \langle u^* \circ u(x), x \rangle_n = \langle u(x), u(x) \rangle_p \geq 0$, donc $\lambda \geq 0$.

3. $x \in \ker u^* \iff \forall y \in \mathbb{R}^n$. $\langle y, u^*(x) \rangle_n = 0 \iff \forall y \in \mathbb{R}^n$. $\langle x, u(y) \rangle_p = 0 \iff x \in (\operatorname{Im} u)^{\perp}$.

 $x \in \operatorname{Ker} u^* \circ u \Rightarrow \langle u^* \circ u(x), x \rangle_n = \langle u(x), u(x) \rangle_p = 0 \Rightarrow x \in \operatorname{Ker} u$. Il est évident que $\operatorname{Ker} u \subset \operatorname{Ker} u^* \circ u$.

- 4. a) Si $u^* \circ u(x) = \lambda x$, alors $u(x) \neq 0$ et $uu^* \circ u(x) = \lambda u(x)$, donc u(x) est un vecteur propre non nul de $u \circ u^*$ pour la même valeur propre λ .
 - b) L'endomorphisme $u^* \circ u$ de \mathbb{R}^n est un endomorphisme symétrique car sa matrice est tBB , donc il est diagonalisable dans une base orthonormée. Si λ est une valeur propre non nulle de $u^* \circ u$ de multiplicité m, alors dim $\ker(u^* \circ u \lambda \mathrm{id}) = m$. Soit (v_1, \ldots, v_m) une base de $\ker(u^* \circ u \lambda \mathrm{id})$, alors $(u(v_1), \ldots, u(v_m))$ est un système libre de $\ker(u \circ u^* \lambda \mathrm{id})$. Il en résulte que dim $\ker(u \circ u^* \lambda \mathrm{id}) \geq m$. Par réciprocité dim $\ker(u \circ u^* \lambda \mathrm{id}) = m$ et λ est une valeur propre de $u \circ u^*$ de même multiplicité.

c) Si $\lambda_1, \ldots, \lambda_s$ sont les valeurs propres non nulles de $u^* \circ u$ de multiplicités respectives m_1, \ldots, m_s , alors $\mathbb{R}^n = \ker u^* \circ u \oplus (\bigoplus_{j=1}^s \ker(u^* \circ u - \lambda_j \mathrm{id}))$ et $\mathbb{R}^p = \ker u \circ u^* \oplus (\bigoplus_{j=1}^s \ker(u \circ u^* - \lambda_j \mathrm{id}))$. Donc $\operatorname{rang}(u \circ u^*) = \operatorname{rang}(u^* \circ u)$. De plus $\ker(u^* \circ u) = \operatorname{Ker} u$. Donc $\operatorname{rang}(u^* \circ u) = \operatorname{rang} u$.

d) Si $n \geq p$ et $\lambda_1, \ldots, \lambda_s$ sont les valeurs propres non nulles de u^* o u de multiplicité respectives m_1, \ldots, m_s , et si $m = n - \sum_{j=1}^s m_j$, alors $P_{tBB} = (-1)^n X^{n-m} \prod_{j=1}^s (X - \lambda_j)^{m_j}$ et $P_{B^tB} = (-1)^p X^{p-m} \prod_{j=1}^s (X - \lambda_j)^{m_j}$. Donc $P_{tBB} = (-1)^{n-p} X^{n-p} P_{B^tB}$.

- b) D'après ce qui précède la matrice X^tX est semblable à une matrice diagonale de type $\begin{pmatrix} 0 & \dots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & & & 0 \end{pmatrix}$. Comme la trace de la matrice X^tX est $||x||^2 = \sum_{j=1}^n x_j^2$, alors
- b) Si $||x||_n = 1$, $H = I_n 2X^tX$ est la matrice de l'endomorphisme $I 2u \circ u^*$, avec u l'application linéaire de \mathbb{R} dans \mathbb{R}^n de matrice X. $H^2 = (I - 2X^tX)(I - 2X^tX) =$ $I - 4X^{t}X + 4X^{t}XX^{t}X = I$, car ${}^{t}XX = 1$.
- Si ${}^tXY = 0$, alors HY = Y, et $H\alpha X = \alpha X 2\alpha X^t X X = -\alpha X$.
- 6. $B = \begin{pmatrix} 2 & -1 \\ -1 & 2 \\ 2 & 2 \end{pmatrix}$. ${}^{t}BB = \begin{pmatrix} 9 & 0 \\ 0 & 9 \end{pmatrix}$ et $B^{t}B = \begin{pmatrix} 5 & -4 & 2 \\ -4 & 5 & 2 \\ 2 & 2 & 8 \end{pmatrix}$. Donc $B^{t}B$ est équivalente à la matrice $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{pmatrix}.$
- 7. Soit $A \in M_n(\mathbb{R})$ une matrice symétrique et soit $p \leq n$.
 - $(a) \Rightarrow b$) résulte de ce qui précède. (Il suffit de prendre l'application linéaire $u: \mathbb{R}^p \longrightarrow \mathbb{R}^n$ de matrice B.)
 - $(b) \Rightarrow a$ $A \in M_n(\mathbb{R})$ une matrice symétrique et $p \leq n$ de valeurs propres positives. Si $\lambda_1, \ldots, \lambda_m$ sont les valeurs propres non nulles de A répétées autant de fois que leur ordre de multiplicité, alors il existe une matrice P orthogonale telle que $A = PD^{t}P$, avec D =

$$\begin{pmatrix}
\lambda_1 & 0 & \dots & 0 \\
0 & \ddots & 0 & \dots & 0 \\
\vdots & \dots & \ddots & \vdots \\
0 & \dots & 0 & \lambda_m
\end{pmatrix} \quad 0 \\
\vdots \quad \dots & \ddots & \vdots \\
0 & \dots & 0 & \lambda_m
\end{pmatrix}, \text{ avec } (0_{n-m}) \text{ la matrice nulle de } M_{n-m}(\mathbb{R}).$$

Comme le rang de A est au plus p, alors $m \leq p$. Il suffit de prendre la matrice $B = PD_p$.

Comme le rang de
$$A$$
 est au plus p , alors $m \leq p$. Il suffit de prendre la matrice $B = PD_p$.
$$\begin{pmatrix} \sqrt{\lambda_1} & 0 & \dots & 0 \\ 0 & \ddots & 0 & \dots & 0 \\ \vdots & \dots & \ddots & \vdots \\ 0 & \dots & 0 & \sqrt{\lambda_m} \end{pmatrix}$$
 avec $(0_{n-m,p-m})$ la matrice nulle de type $(n-m,p-m)$.

Partie II

A)

Une matrice symétrique S ∈ M₂(ℝ) est diagonalisable. Si λ₁, λ₂ sont les valeurs propres de S. Alors S définit une forme bilinéaire symétrique positive ssi λ₁ et λ₂ sont positives ce qui est équivalent à λ₁λ₂ ≥ 0 et λ₁ + λ₂ ≥ 0, ce qui est encore équivalent à trS ≥ 0 et det S ≥ 0.

2.

$$\varphi(x,y) = a^{2}(x_{1}y_{2} + x_{2}y_{1}) + b^{2}(x_{2}y_{3} + x_{3}y_{2}) + c^{2}(x_{1}y_{3} + x_{3}y_{1})$$

- 3. a) $\varphi(v,v) = -2a^2$, $\varphi(v,w) = b^2 a^2 c^2$ et $\varphi(w,w) = -2c^2$. Donc la matrice $A_{\mathcal{H}} = \begin{pmatrix} -2a^2 & b^2 a^2 c^2 \\ b^2 a^2 c^2 & -2c^2 \end{pmatrix}$.
 - b) Comme $\operatorname{tr} A_{\mathcal{H}} = -2(a^2+c^2) \leq 0$, alors $A_{\mathcal{H}}$ définit une forme bilinéaire symétrique négative ssi $\det A_{\mathcal{H}} \geq 0$, ce qui est équivalent au fait que $2a^2b^2+2a^2c^2+2b^2c^2-a^4-b^4-c^4\geq 0$.
 - c) Soit A, B, C un triangle, dans tous les cas on peut se ramener à la situation suivante:

h est la mesure de la hauteur issue de C, alors $2S_{a,b,c} = hc$ et d'après le théorème de pythagore, $h^2 = a^2 - c_1^2 = b^2 - c_2^2$. Donc $a^2 - b^2 = c(c_1 - c_2)$. Donc $4S_{a,b,c}^2 = c^2\left(a^2 - \frac{(a^2 + c^2 - b^2)^2}{4c^2}\right)$, et $16S_{a,b,c}^2 = 2a^2b^2 + 2a^2c^2 + 2b^2c^2 - a^4 - b^4 - c^4$.

d) $A_{\mathcal{H}}$ définit une forme bilinéaire symétrique ssi a,b,c sont les mesures des côtés d'un triangle dans le plan.

B)

1. det $A \neq 0$, donc Q est non dégénérée.

2.
$$Q(x,y,z) = 2xy + 2xz + 2yz = \frac{1}{2}(x+y+2z)^2 - \frac{1}{2}(x-y)^2 - 2z^2$$
.

3. Il n'y a pas unicité de la base
$$(v_1, v_2, v_3)$$
. Il suffit de construire une base (u_1, u_2, u_3) formée de vecteurs propres de la matrice A et telle que $\varphi(u_j, u_k) = 0$ si $j \neq k$, et puis prendre le vecteur $v_j = \alpha_j u_j$ de manière que $\varphi(v_j, v_j) = \pm 1$. On prend par exemple

$$v_1 = \begin{pmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \\ 0 \end{pmatrix}, \ v_2 = \begin{pmatrix} \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \\ 0 \end{pmatrix} \text{ et } v_3 = \begin{pmatrix} -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix}. \text{ La matrice de } J \text{ de } \varphi \text{ dans la base}$$

$$(v_1, v_2, v_3) \text{ est } J = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

4. a) Les applications
$$x \longmapsto Q(u(x))$$
 et $x \longmapsto Q(x)$ sont des formes quadratiques. Elles sont égales ssi elles définissent la même forme bilinéaire symétrique. Il en résulte que $u \in \mathcal{O}(Q) \iff \varphi(u(x),u(y)) = \varphi(x,y), \ \forall (x,y) \in \mathbb{R}^3 \times \mathbb{R}^3.$

La matrice de la forme bilinéaire symétrique $(x,y) \longmapsto \varphi(u(x),u(y))$ est tMJM et la matrice la forme bilinéaire symétrique φ est J dans la base (v_1,v_2,v_3) , donc $u \in \mathcal{O}(Q) \iff \varphi(u(x),u(y)) = \varphi(x,y), \ \forall (x,y) \in \mathbb{R}^3 \times \mathbb{R}^3 \iff {}^tMJM = J.$

- b) $\det u = \pm 1$.
- 5. a) Vérification immédiate.
 - b) Si M est la matrice de u dans la base (v_1, v_2, v_3) , alors M commute avec $M_1(t)$ et $M_2(t)$ pour tout $t \in \mathbb{R}$. Il en résulte que $M = \lambda I$.
 - c) L'ensemble $\mathcal{M}(Q)$ n'est pas borné donc il n'est pas compact.
- 6. a) Comme φ est non dégénérée, il existe $u \in \mathcal{L}(\mathbb{R}^3)$ tel que $\psi(x,y) = \varphi(x,u(y)), \forall x \in \mathbb{R}^3$ et $\forall y \in \mathbb{R}^3$. Si A est la matrice de φ et B la matrice de ψ , alors l'endomorphisme u admet $A^{-1}B$ comme matrice.
 - b) Soit $v \in \mathcal{O}(Q)$ et $(x,y) \in \mathbb{R}^3 \times \mathbb{R}^3$, $\varphi(v(x),v \circ u(y)) = \varphi(x,u(y))$ car $v \in \overline{(Q)}$ et $\varphi(v(x),u \circ v(y)) = \psi(v(x),v(y)) = \psi(x,y) = \varphi(x,u(y))$, car $v \in \mathcal{O}(Q_1)$.
 - c) Il résulte de la question précédente que $\varphi(v(x), v \circ u(y)) = \varphi(v(x), u \circ v(y))$. Comme v est un endomorphisme injectif et φ non dégénérée, donc $u \circ v = v \circ u$, pour tout $v \in \mathcal{O}(Q)$.

Comme $\{v \in GL(\mathbb{R}^3), v \circ u = u \circ v, \ \forall u \in \mathcal{O}(Q)\} = \{\lambda I\}$, il existe $\lambda \neq 0$, tel que $u = \lambda I$ et $Q_1 = \lambda Q$, et $\mathcal{O}(Q_1) = \mathcal{O}(Q)$.

- 7. Dans la base (v_1, v_2, v_3) , l'ensemble $S = \{(x_1, x_2, x_3) \in \mathbb{R}^3; \ Q(x_1, x_2, x_3) = 1\} = \{(x_1, x_2, x_3) \in \mathbb{R}^3: \ x_1^2 x_2^2 x_3^2 = 1\}$. Cet ensemble n'est pas borné, donc non compact de \mathbb{R}^3 .
- 8. Soit $u \in GL(\mathbb{R}^3)$.
 - a) Soit $u \in \mathcal{O}(Q)$ et $x \in \mathcal{S}$, alors Q(u(x)) = Q(x) = 1 et donc $u(\mathcal{S}) \subset \mathcal{S}$. Soit $y \in \mathcal{S}$, comme u est un endomorphisme bijectif, il existe $x \in \mathbb{R}^3$ tel que u(x) = y. Q(x) = Q(u(x)) = Q(y) = 1, donc $x \in \mathcal{S}$ et $u(\mathcal{S}) = \mathcal{S}$.
 - b) On suppose que u(S) = S. On pose $x_1 = u(v_1)$, $x_2 = u(v_2)$ et $x_3 = u(v_3)$.
 - $Q(v_1) = \varphi(v_1, v_1) = 1, \text{ donc } v_1 \in \mathcal{S}. \ \varphi(\sqrt{2}v_1 \pm v_2, \sqrt{2}v_1 \pm v_2) = 2\varphi(v_1, v_1) + \varphi(v_2, v_2) = 1, \text{ donc } \sqrt{2}v_1 \pm v_2 \in \mathcal{S}. \text{ De même } \sqrt{2}v_1 \pm v_3 \in \mathcal{S} \text{ et } \sqrt{3}v_1 + v_2 + v_3 \in \mathcal{S}.$
 - Donc $Q(x_1) = Q(v_1) = 1$, $2\varphi(x_1, x_1) + \varphi(x_2, x_2) \pm 2\sqrt{2}\varphi(x_1, x_2) = 1$. Donc $\varphi(x_1, x_2) = 0$. De même on montre que $\varphi(v_j, v_k) = \varphi(x_j, x_k)$, pour j, k = 1, 2, 3. Donc $u \in \mathcal{O}(Q)$.

Partie III

1. La matrice de φ est symétrique, donc il existe une base orthonormée (u_1, \ldots, u_n) de \mathbb{R}^n

telle que la matrice de φ dans cette base est diagonale de la forme $\begin{pmatrix} \ddots & & & \\ & & \ddots & & \\ & & & & \lambda_n \end{pmatrix}$.

avec $\lambda_j > 0$, pour tout $1 \le j \le p$ et $\lambda_j < 0$, pour tout $p+1 \le j \le n$. Comme la base est orthonormée, cette matrice représente la matrice de φ dans cette base.

Pour $1 \le j \le p$, on pose $v_j = \frac{u_j}{\sqrt{\lambda_j}}$ et pour tout $p+1 \le j \le n$, $v_j = \frac{u_j}{\sqrt{-\lambda_j}}$. Dans la base orthogonale (v_1, \ldots, v_n) de \mathbb{R}^n , la matrice de φ est diagonale $A = \begin{pmatrix} I_p & 0 \\ 0 & -I_q \end{pmatrix}$.

- 2. On suppose dans cette question que p=q et n=2p et on pose $w_j=v_j+v_{p+j}$ et $w_{p+j}=v_j-v_{v+j}$ pour tout $1\leq j\leq p$.
 - a) $\sum_{j=1}^{n} \alpha_{j} w_{j} = 0 \Rightarrow \alpha_{j} \pm \alpha_{p+j} = 0$, pour tout $1 \leq j \leq p \Rightarrow \alpha_{k} = 0$, pour tout $1 \leq k \leq n$.

Donc (w_1, \ldots, w_n) est une base de \mathbb{R}^n .

- b) $Q(w_j) = 0$ et $\varphi(w_j, w_k) = 0$, pour $1 \le j \ne k \le p$, pour $1 \le j \ne k \le p$, $\varphi(w_j, w_{k+p}) = 0$ et pour $1 \le j \le p$, $\varphi(w_j, w_{j+p}) = 2$. Donc la matrice de φ dans cette base est $\begin{pmatrix} 0 & 2I_p \\ 2I_p & 0 \end{pmatrix}$.
- 3. Dans la base (v_1, \ldots, v_n) , $\mathcal{S} = \{(x_1, \ldots, x_n): x_1^2 + \ldots + x_p^2 x_{p+1}^2 \ldots x_n^2 = 1\}$. \mathcal{S} est non vide si $p \geq 1$ et \mathcal{S} est borné ssi p = n, ce qui est équivalent à φ définie positive.
- 4. Soit $u \in \mathrm{GL}(\mathbb{R}^n)$
 - a) $u \in \mathcal{O}(Q)$, alors $u(\mathcal{S}) = \mathcal{S}$. (même démonstration que dans la partie II B) 8) a).
 - b) Soit $u \in GL(\mathbb{R}^n)$ tel que u(S) = S. On pose $x_j = u(v_j)$, pour $j = 1, \ldots, n$.
 - i) La vérification est immédiate.
 - ii) $\frac{1}{\sqrt{2}}(v_j + v_k) \in \mathcal{S} \Rightarrow \varphi(x_j, x_k) = 0$, si $j \neq k$. Il est évident que $\varphi(x_j, x_j) = 1$, car $v_j \in \mathcal{S}$, $\sqrt{2}v_j \pm v_\ell \in \mathcal{S} \Rightarrow \varphi(x_j, x_\ell) = 0$.
 - $\sqrt{3}v_j + v_\ell + v_m \in \mathcal{S} \Rightarrow \varphi(x_m, x_\ell) = 0$. Il en résulte que $\varphi(x_j, x_k) = \varphi(v_j, v_k)$, pour tous $1 \leq j, k \leq n$ et donc $u \in \mathcal{O}(Q)$.