UFRGS

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA

Departamento de Matemática Pura e Aplicada

MAT01168 - Turma A - 2024/2

Prova da área I

1	2	3	4	Total

Nome:	Cartão:

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas

- $\bullet~$ Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

Tabela do operador $\vec{\nabla}$:

f=f(x,y,z) e g=g(x,y,z) são funções escalares; $\vec{F}=\vec{F}(x,y,z)$ e $\vec{G}=\vec{G}(x,y,z)$ são funções vetoriais.

I - I	$(x,y,z) \in G = G(x,y,z)$ sao funções vetoriais.
1.	$\vec{\nabla}\left(f+g\right) = \vec{\nabla}f + \vec{\nabla}g$
2.	$ec{ abla} \cdot \left(ec{F} + ec{G} ight) = ec{ abla} \cdot ec{F} + ec{ abla} \cdot ec{G}$
3.	$\vec{\nabla} imes \left(\vec{F} + \vec{G} \right) = \vec{\nabla} imes \vec{F} + \vec{\nabla} imes \vec{G}$
4.	$\vec{\nabla}\left(fg ight) = f\vec{\nabla}g + g\vec{\nabla}f$
5.	$ec{ abla} \cdot \left(f ec{F} ight) = \left(ec{ abla} f ight) \cdot ec{F} + f \left(ec{ abla} \cdot ec{F} ight)$
6.	$\vec{\nabla} \times \left(f \vec{F} \right) = \vec{\nabla} f \times \vec{F} + f \vec{\nabla} \times \vec{F}$
7.	$\vec{\nabla} \cdot \vec{\nabla} f = \vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2},$
	onde $\vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ é o operador laplaciano
8.	$\vec{\nabla} \times \left(\vec{\nabla} f \right) = 0$
9.	$\vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{F} \right) = 0$
10.	$ec{ abla} imes\left(ec{ abla} imesec{f} ight)=ec{ abla}\left(ec{ abla}\cdotec{F} ight)-ec{ abla}^2ec{f}$
11.	$\vec{\nabla} \cdot \left(\vec{F} \times \vec{G} \right) = \vec{G} \cdot \left(\vec{\nabla} \times \vec{F} \right) - \vec{F} \cdot \left(\vec{\nabla} \times \vec{G} \right)$
12.	$\vec{\nabla} \times \left(\vec{F} \times \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} - \vec{G} \left(\vec{\nabla} \cdot \vec{F} \right) - \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \vec{F} \left(\vec{\nabla} \cdot \vec{G} \right)$
13.	$\vec{\nabla} \left(\vec{F} \cdot \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} + \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \\ + \vec{F} \times \left(\vec{\nabla} \times \vec{G} \right) + \vec{G} \times \left(\vec{\nabla} \times \vec{F} \right)$
14.	$\vec{\nabla}\varphi(r)=\varphi'(r)\hat{r}$

Curvatura, torção	e aceleração:	
Nome	Fórmula	
Vetor normal	$\vec{N} = \frac{\vec{r}'(t) \times \vec{r}''(t) \times \vec{r}'(t)}{\ \vec{r}'(t) \times \vec{r}''(t) \times \vec{r}'(t)\ }$	
Vetor binormal	normal $\vec{B} = \frac{\vec{r}'(t) \times \vec{r}''(t)}{\ \vec{r}'(t) \times \vec{r}''(t)\ }$	
Curvatura	$\kappa = \left\ \frac{d\vec{T}}{ds} \right\ = \left\ \frac{\frac{d\vec{T}}{dt}}{\frac{ds}{dt}} \right\ = \frac{\left\ \frac{d\vec{T}}{dt} \right\ }{\left\ \frac{d\vec{r}}{dt} \right\ } = \frac{\ \vec{r}'(t) \times \vec{r}''(t)\ }{\ \vec{r}'(t)\ ^3}$	
Torção	$\tau = -\frac{d\vec{B}}{ds} \cdot \vec{N} = \frac{(\vec{r}'(t) \times \vec{r}''(t)) \cdot \vec{r}'''(t)}{\ \vec{r}'(t) \times \vec{r}''(t)\ ^2}$	
Módulo da Torção	$ au = \left\ rac{dec{B}}{ds} ight\ = \left\ rac{dec{B}}{dt} ight\ = \left\ rac{dec{B}}{dt} ight\ $	
Aceleração normal	$a_N = \frac{\ \vec{a} \times \vec{v}\ }{v} = \frac{v^2}{\rho} = \kappa v^2$	
Aceleração tangencial	$a_T = \frac{\vec{a} \cdot \vec{v}}{v} = \frac{dv}{dt}$	

Equações de Frenet-Serret:

$\frac{d\vec{T}}{ds}$	=		$\kappa \vec{N}$	
$\frac{d\vec{N}}{ds}$	=	$-\kappa \vec{T}$		$+ au ec{B}$
$\frac{d\vec{B}}{ds}$	=		$- au ec{N}$	

- Questão 1 (3.5 pontos) Um automóvel se desloca sobre uma pista horizontal na forma da curva $y=e^x$, medido em quilômetros, $0 \le x \le 2$, no sentido positivo de x.
 - a) (1.0 ponto) Calcule a curvatura da curva em função de x.
 - b) (0.5 ponto) Calcule o valor máximo curvatura.
 - c) (0.5 ponto) Calcule os vetores $\vec{T},\,\vec{N}$ e \vec{B} em x=1.
 - d) (0.75 ponto) Supondo que a aceleração em x=1 é dada por $\vec{a}=\vec{i}+2\vec{j}$, calcule as componentes normal e tangencial da aceleração nesse ponto. [Dica: Observe que você não conhece o vetor velocidade em x=1.]
 - e) (0.75 ponto) Calcule a velocidade escalar máxima com que o automóvel pode percorrer a pista sem que sua aceleração normal supere $32\sqrt{3}\,km/h^2$.

Questão 2 (2.0) Considere o campo vetorial dado por $\vec{F} = f(r)\vec{r}$, onde $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$, $r = ||\vec{r}|| = \sqrt{x^2 + y^2 + z^2}$ e f(r) é uma função diferenciável.

- a) (1.0) Calcule o rotacional e o divergente de $\vec{F}.$
- b) (1.0) Para $f(r) = \operatorname{senh}(r)$, calcule a circulação de \vec{F} ao realizar uma volta ao longo da curva C descrita pela equação

$$x^2 + y^2 = 4$$

orientada no sentido horário, isto é,

$$\oint_C \vec{F} d\vec{r}.$$

Questão 3 (2.0]	pontos) Calcule o trabe $(0,1,0)$ no sentido a	alho realizado pelo ca nti-horário.	umpo de forças $ec{F}=-$	$x^2y\vec{i}+(z^2+y^2)\vec{j}$ ao lo	ngo do triângulo cujos vér

Questão 4 (2.5 pontos) Considere o campo vetorial dado por $\vec{F} = x\vec{i} + y\vec{j} + (1+z)\vec{k}$ e a superfície S limitada inferiormente pelo plano z=1 e superiormente pela superfície que satisfaz a equação

$$z = 2 - x^2 - y^2.$$

- a) (1.0) Calcule o fluxo de \vec{F} através da superfície S orientada para fora através de uma parametrização direta da superfície (sem usar o Teorema da Divergência).
- b) (1.0) Calcule o fluxo de \vec{F} através da superfície S orientada para fora através do Teorema da Divergência.
- c) (0.5) Qual seria o valor do fluxo de \vec{F} através da superfície S orientada para dentro? Justifique sua resposta.