Algoritmos Imunológicos

- 1. Implemente o algoritmo imunológico Clonalg para resolver um problema de minimização multimodal de uma função com as seguintes características:
 - a) Max_it=50
 - b) $n_1=N=50$;
 - c) $n_2=0$
 - d) β =0,1
 - e) N_c = βN Define o número de clones a ser gerado para cada anticorpo
 - f) ρ parâmetro da equação de mutação

Bird Function

$$f(x,y) = \sin(x) e^{(1-\cos(y))^2} + \cos(y) e^{(1-\sin(x))^2} + (x-y)^2$$

A função tem dois mínimos globais em

$$f(x^*) = -106.764537$$
 localizado em $x^* = (4.70104, 3.15294)$ e $x^* = (-1.58214, -3.13024)$

http://benchmarkfcns.xyz/benchmarkfcns/birdfcn.html

Explicitar nas tabelas abaixo todos os parâmetros selecionados.

Genético	
Tamanho da população	
Forma de seleção	
Tipo de crossover	
Função objetivo	
Função de Fitness	
Número de Gerações	
Taxa de Crossover	
Taxa de Mutação	