

BASES DE DATOS 1

Introducción a las bases de datos relacionales

Sobre el conferencista

Miguel Angel Orjuela Rocha Ing. de Sistemas y Computación

Skills:

- Desarrollo Fullstack
- Analítica de datos
- Docencia universitaria

Contacto:

in https://www.linkedin.com/in/miguel-orjuela/

https://github.com/maorjuela73

Contenido

- Introducción
- Modelos de datos
- El modelo relacional
- Diagramas E-R
- ¿Qué es SQL?
- Entorno de trabajo
- Consultas básicas con SELECT

Contenido

- Introducción
- Modelos de datos
- El modelo relacional
- Diagramas E-R
- ¿Qué es SQL?
- Entorno de trabajo
- Consultas básicas con SELECT

Objetivo del módulo

Proporcionar una formación sólida en **bases de datos relacionales** y el **lenguaje SQL** que le permita al estudiante extraer y analizar información de forma eficiente.

Este módulo complementa la formación de científicos de datos para emplear fuentes de datos en bases de datos relacionales, de amplio uso en todos los sectores de la economía.

Habilidades a desarrollar

- Automatización de tareas de extracción y transformación de información almacenada en bases de datos relacionadas.
- Montaje de sistemas manejadores de bases de datos relacionales de uso profesional.
- Desarrollo de consultas complejas sobre bases de datos relacionales usando el lenguaje SQL.
- Conexión a bases de datos relacionales con el lenguaje Python.

KDnuggets Analytics, Data Science, Machine Learning Software Poll, 2016-2018

SQL: Atemporal Y Eficiente

- SQL es más útil como lenguaje de procesamiento de datos que como herramienta analítica avanzada.
- Gran parte del proceso de la ciencia de datos depende de procesos de ETL (Extract – Transform –Load), y la longevidad y eficiencia de SQL son prueba de que es un lenguaje muy útil para el científico de datos moderno.

Contenido

- Introducción
- Modelos de datos
- El modelo relacional
- Diagramas E-R
- ¿Qué es SQL?
- Entorno de trabajo
- Consultas básicas con SELECT

Bases de datos

Son contenedores que guardan y organizan la información.

Ejemplos:

- Directorio telefónico
- Listado de pacientes
- Registros de ventas de una empresa

Modelos de datos

Aplicaciones de bases de datos

- Fueron de las primeras aplicaciones desarrolladas para computador.
- Mecanismos para almacenamiento y recuperación de información.
- Almacenan datos de forma electrónica.
- Indexan datos de múltiples maneras.
- Aseguran la información de fallos y accesos no autorizados.

Modelos de datos

Algunos tipos de aplicaciones

- Sistemas de ventas
- Sistemas de contabilidad
- Sistemas de recursos humanos
- Sector de manufactura
- Banca y finanzas
- Universidades

- Aerolíneas
- Telecomunicaciones
- Servicios basados en Web
- Bases de datos de documentos
- Sistemas de navegación

Sobre los datos

- Altamente valiosos.
- Relativamente grandes.
- Son accedidos por múltiples usuarios y aplicaciones.

Rol del modelo de datos

- Determinar la estructura lógica de la base de datos.
- Determinar el modo de almacenar, ordenar y manipular los datos.

Algunos modelos de datos:

- Relacional
- Entidad-Relación
- De datos semiestructurados
- Basados en objetos

Modelo relacional

Postulado en 1970 por Edgar Frank Codd de IBM Research Labs.

La información se representa en tablas

- Cada tabla tiene filas y columnas.
- Cada columna tiene un nombre único.
- Cada tabla tiene información que identifica únicamente a cada fila.

	ID	name	dept_name	salary
	22222 12121 32343 45565 98345	Einstein Wu El Said Katz Kim	Physics Finance History Comp. Sci. Elec. Eng.	95000 90000 60000 75000 80000
dept_name		building	budget i.	72000 65000
Comp. Sci. Biology Elec. Eng. Music Finance History Physics		Taylor Watson Taylor Packard Painter Painter Watson	100000 90000 85000 80000 120000 50000 70000	62000 92000 40000 87000 80000

Modelo Entidad-Relación

- Una entidad es una cosa u objeto que en el modelamiento se diferencia de otros objetos
- Se usa ampliamente en diseño de bases de datos

Modelo semiestructurado

Cada individuo puede tener el mismo o diferentes conjuntos de atributos

Ejemplos

- JSON
- XML


```
{
  "type": "Feature",
  "geometry": {
    "type": "Point",
    "coordinates": [125.6, 10.1]
},
  "properties": {
    "name": "Dinagat Islands"
}
}
```


Modelos de datos

Modelo basado en objetos

- Parte del paradigma de programación orientada a objetos.
- Es un modelo relacional extendido a nociones de encapsulamiento.

Contenido

- Introducción
- Modelos de datos
- El modelo relacional
- Diagramas E-R
- ¿Qué es SQL?
- Entorno de trabajo
- Consultas básicas con SELECT

Definición

Colección finita de relaciones de dos dimensiones: tuplas-atributos

Características principales:

- Simplicidad en su representación
- Precisión en su implementación
 - Matemáticamente riguroso
 - No ambiguo
- Flexibilidad en cuanto a estructura y contenido

El modelo relacional

Principios básicos del modelo

El conjunto de esquemas de las relaciones de una base de datos se llama <u>esquema de base de datos relacional</u>, o solo <u>esquema de base de</u> <u>datos</u>.

Principios básicos del modelo

El modelo relacional requiere que cada componente de cada tupla sea atómico.

Cada atributo tiene un tipo de datos, llamado dominio

Movies(title:string, year:integer, length:integer, genre:string)

Atributo: Columna de la relación

title	year	length	genre
Gone With the Wind	1939	231	drama
Star Wars	1977	124	sciFi
Wayne's World	1992	95	comedy

Tupla: Fila de la relación

El modelo relacional

Principios básicos del modelo

El modelo relacional tiene una restricción importante para su correcto funcionamiento: Cada tabla DEBE TENER información que identifique **únicamente** a cada fila.

Una *llave* es el conjunto de atributos que identifica de forma única a cada fila de la relación

Ejemplo: Llave de Movies

Movies(title, year, length, genre)

El modelo relacional

Términos clave

- Relación: Una tabla
- Tabla: Conjunto de filas
- Fila: Conjunto de columnas que describen completamente una entidad. También se le llama *registro* o *tupla*
- Columna: Conjunto de información individual que describe a los elementos de interés. También se les llama atributos
- Dominio: Tipo de dato de cada columna
- Llave primaria: Identificador único de fila en una tabla
- Llave foránea: Identificador de fila en otra tabla
- Esquema de base de datos: Diseño lógico de la base de datos

Llave primaria (PK)

Atributo o grupo de atributos que identifican de forma única cada tupla de una relación

- Toda relación debe tener una única PK
- Los atributos que forman la PK <u>no</u> pueden ser <u>nulos</u>

Llave foránea (FK)

Si una relación r_1 tiene dentro de sus atributos la llave primaria de una relación r_2 , ese atributo es una llave foránea de r_1 , referenciando a r_2

- r_1 es la relación que referencia.
- r_2 es la relación referenciada.

Se pueden configurar restricciones de integridad referencial

Esquema de base de datos

Es el diseño lógico de la base de datos

 Cuando se le saca un pantallazo al esquema con datos, se le conoce como una instancia de la base de datos

Contenido

- Introducción
- Modelos de datos
- El modelo relacional
- Diagramas E-R
- ¿Qué es SQL?
- Entorno de trabajo
- Consultas básicas con SELECT

Diagramas E-R

Modelo Entidad Relación (E-R)

Facilita el diseño permitiendo especificar la estructura lógica de las bases de datos

Tres conceptos básicos del modelo

- Conjuntos de entidades
- Conjuntos de relaciones
- Atributos

Diagramas E-R

Diferencias entre modelo relacional

y E-R

	MODELO ER	MODELO RELACIONAL
Labor	Representa la colección de objetos llamada entidades y la relación entre esas entidades.	Representa la colección de tablas y la relación entre esas tablas.
Describir	El Modelo de relación de entidad describe los datos como conjunto de entidades, conjunto de relaciones y atributo.	El Modelo Relacional describe los datos en una tabla como Dominio, Atributos, Tuplas.
Relación	ER Model es más fácil de entender la relación entre las entidades.	Comparativamente, es menos fácil derivar una relación entre tablas en el Modelo Relacional.
Cartografía	El modelo de ER describe la asignación de cardinalidades.	El Modelo Relacional no describe las cardinalidades de mapeo.

Conjunto de entidades

Entidad: Cosas u objetos del mundo real que se distinguen de otros objetos.

Estudiante

Tipo de entidad

Conjunto de entidades: Entidades del mismo tipo.

Cada miembro del conjunto tiene las mismas propiedades o atributos.

Atributos

- Cada entidad es representada por un conjunto de atributos
- Un atributo es una propiedad descriptiva que tiene cada miembro del conjunto de entidades
- Cada entidad tiene un valor para cada uno de sus atributos

Ejemplo

Un diagrama en una notación cualquiera que muestra los conjuntos de entidades *instructor* y *student*.

instructor

<u>ID</u> name salary student

<u>ID</u> name

tot_cred

Conjuntos de relaciones

- Una relación es una asociación entre varias entidades
- Un conjunto de relaciones está compuesto por relaciones del mismo tipo

Conjuntos de relaciones

Ejemplo

Relación advisor.

Instancia de relación

Diagrama E-R con la relación

Diagramas E-R

Tipos de relaciones según su cardinalidad

- Uno a uno: Gerente de punto y punto de venta
- Uno a muchos: Cliente y pedidos
- Muchos a muchos: Estudiantes y clases

Notaciones

- Notación Chen
- Notación UML
- Notación Crow's foot

Notación Chen

Cuadro: Entidad

Rombo: Asociación entre entidades

• Elipse: Atributo en una relación

Diagramas E-R

Notación Chen

Notación UML

- Las asociaciones se representan con una línea directa.
- Las restricciones de número de objetos en cada relación se representa con m...n

Diagramas E-R

Notación UML

Notación Crow's foot

- Las asociaciones se representan con una línea directa.
- Las restricciones de número de objetos en cada relación se representa con líneas y círculos al final de cada línea que conecta relaciones.

Diagramas E-R

Notación Crow's Foot

Diagramas E-R

Ejemplo de un modelo E-R

Contenido

- Introducción
- Modelos de datos
- El modelo relacional
- Diagramas E-R
- ¿Qué es SQL?
- Entorno de trabajo
- Consultas básicas con SELECT

Definición

Structured Query Language (SQL) es un lenguaje estandar de computador para administración de bases de datos relacionales y manipulación de datos.

- Se emplea para comunicarse con la base de datos
- Las sentencias de SQL tienen palabras clave en inglés altamente descriptivas.
- NO es un lenguaje procedimental.
- NO se pueden escribir aplicaciones completas con SQL.

Componentes principales

Lenguaje de definición de datos (DDL)

Permite definir la estructura de la base de datos

Lenguaje de manipulación de datos (**DML**)

- Son comandos que no afectan la estructura de la base de datos
- Pueden afectar el contenido de la base de datos o extraer información de la base de datos

Sistemas manejadores de bases de datos (DBMS)

Es una colección de **software muy específico**, cuya función es servir de **interfaz** entre la base de datos, el usuario y las distintas aplicaciones utilizadas.

¿Qué es SQL?

Sistemas manejadores de bases de datos (DBMS)

Contenido

- Introducción
- Modelos de datos
- El modelo relacional
- Diagramas E-R
- ¿Qué es SQL?
- Entorno de trabajo
- DML Parte 1: Consultas básicas con SELECT

Arquitectura Cliente - Servidor

Arquitectura Cliente - Servidor

Cliente

Es un programa que permite conectarse al servidor de base de datos Puede ser de comandos (CLI) o tener interfaz gráfica (GUI)

Debe por lo menos solicitar la siguiente información:

Server: Dirección IP del servidor

■ **Port**: Puerto de conexión

User: Nombre de usuario autorizado

Pass: Contraseña de conexión

Credenciales de conexión:

Server: database-1.cdqgqt4oejnt.us-west-2.rds.amazonaws.com

Port: 5432

User: postgres

Pass: MEeLaN2z

Contenido

- Introducción
- Modelos de datos
- El modelo relacional
- Diagramas E-R
- ¿Qué es SQL?
- Entorno de trabajo
- Consultas básicas con SELECT

DVD Rental ER Model

Consultas básicas con SELECT

Sobre el modelo a consultar

https://www.postgresqltutorial.com/postgstarted/postgresql-sample-database/

Recuperar todas las filas y todas las columnas

SELECT Code, Name, Continent, Region, SurfaceArea, IndepYear, Population, LifeExpectancy, GNP, GNPOld, LocalName, GovernmentForm, HeadOfState, Capital, Code2 FROM country;

SELECT *
FROM country;

Recuperar todas las filas y columnas específicas

Uso del DISTINCT

SELECT Continent
FROM country;

Entrega todos los resultados, así tengan columnas repetidas

Elimina los repetidos

SELECT DISTINCT Continent
FROM country;

Recuperar datos con SELECT

Columnas calculadas/derivadas

- Se pueden realizar operaciones en una columna
- La columna toma el nombre de la operación (por defecto)

SELECT Name, SurfaceArea, Population, Population/SurfaceArea
FROM country;

Alias AS en el nombre de la columna

Unidad de Educación Continua y Consultoría construimos país desde

#URSolucionesInnovadoras #URConsultoría

@RosarioContinua