The complexity of homomorphisms of signed graphs

Florent Foucaud (Universitat Politècnica de Catalunya, Barcelona)

joint work (in progress) with:

Richard Brewster (Thompson Rivers U., Kamloops)
Pavol Hell (Simon Fraser U., Vancouver)
Reza Naserasr (U. Paris-Sud, Orsay)

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \to H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \to H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \to H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \to H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \to H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \to H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \to H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \to H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \to H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \to H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \to H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \to H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \to H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \to H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \to H$.

Target graph: $H = C_5$

Remark: Homomorphisms generalize proper vertex-colourings

$$G \to K_k \iff G$$
 is k-colourable

Signature Σ **of graph** G: assignment of + or - sign to each edge of G. Σ : set of - edges.

$$\Sigma = \{12,34\}$$

Signature Σ **of graph** G: assignment of + or - sign to each edge of G. Σ : set of - edges.

$$\Sigma = \{12, 34\}$$

Re-signing operation at v: switch sign of each edge incident to v

Signature Σ **of graph** G: assignment of + or - sign to each edge of G. Σ : set of - edges.

$$\Sigma = \{12, 34\}$$

Re-signing operation at v: switch sign of each edge incident to v

Signature Σ **of graph** G: assignment of + or - sign to each edge of G. Σ : set of - edges.

$$\Sigma = \{12,34\}$$

Re-signing operation at v: switch sign of each edge incident to v

Signature Σ **of graph** G: assignment of + or - sign to each edge of G. Σ : set of - edges.

$$\Sigma = \{12,34\}$$

Re-signing operation at v: switch sign of each edge incident to v

Signature Σ **of graph** G: assignment of + or - sign to each edge of G. Σ : set of - edges.

$$\Sigma = \{12,34\}$$

Re-signing operation at v: switch sign of each edge incident to v

Signature Σ **of graph** G: assignment of + or - sign to each edge of G. Σ : set of - edges.

$$\Sigma = \{12,34\}$$

Re-signing operation at v: switch sign of each edge incident to v

Signature Σ **of graph** G: assignment of + or - sign to each edge of G. Σ : set of - edges.

$$\Sigma = \{12,34\}$$

Re-signing operation at v: switch sign of each edge incident to v

Signature Σ **of graph** G: assignment of + or - sign to each edge of G. Σ : set of - edges.

$$\Sigma = \{12,34\}$$

Re-signing operation at v: switch sign of each edge incident to v

Signature Σ **of graph** G: assignment of + or - sign to each edge of G. Σ : set of - edges.

$$\Sigma = \{12,34\}$$

Re-signing operation at v: switch sign of each edge incident to v

Signature Σ **of graph** G: assignment of + or - sign to each edge of G. Σ : set of - edges.

$$\Sigma = \{12,34\}$$

Re-signing operation at v: switch sign of each edge incident to v

Signature Σ **of graph** G: assignment of + or - sign to each edge of G. Σ : set of - edges.

$$\Sigma = \{12,34\}$$

Re-signing operation at v: switch sign of each edge incident to v

Signature Σ **of graph** G: assignment of + or - sign to each edge of G. Σ : set of - edges.

$$\Sigma = \{12,34\}$$

Re-signing operation at v: switch sign of each edge incident to v

Signature Σ **of graph** G: assignment of + or - sign to each edge of G. Σ : set of - edges.

$$\Sigma = \{12,34\}$$

Re-signing operation at v: switch sign of each edge incident to v

Signature Σ **of graph** G: assignment of + or - sign to each edge of G. Σ : set of - edges.

$$\Sigma = \{12,34\}$$

Re-signing operation at v: switch sign of each edge incident to v

Signature Σ **of graph** G: assignment of + or - sign to each edge of G. Σ : set of - edges.

$$\Sigma = \{12, 34\}$$

Re-signing operation at v: switch sign of each edge incident to v

Signatures Σ , Σ' are **equivalent** ($\Sigma \equiv \Sigma'$) if one can be obtained from the other with **re-signings**. (equivalently: changing signs along an edge-cut)

Signed graph: Graph G with an equivalence class C of signatures.

Notation: (G, Σ) with any $\Sigma \in C$.

Signed graphs: (un)balanced cycles

Definition - Unbalanced cycle

Cycle with an odd number of negative edges.

unbalanced C4: UC4

Signed graphs: (un)balanced cycles

Definition - Unbalanced cycle

Cycle with an odd number of negative edges.

unbalanced C4: UC4

Remark

Re-signing always preserves the balance of a cycle.

Signed graphs: (un)balanced cycles

Definition - Unbalanced cycle

Cycle with an odd number of negative edges.

unbalanced C_4 : UC_4

Remark

Re-signing always preserves the balance of a cycle.

Theorem (Zaslavsky, 1982)

Two signatures are equivalent if and only if they induce the same set of unbalanced cycles.

Why signed graphs?

Introduced by Harary (1953): notion of **balanced** signed graphs (each cycle is balanced)

→ **Social psychology:** "like" and "dislike" relations in a social network. Balanced networks are socially stable. (Cartwright and Harary, 1956)

Why signed graphs?

Introduced by Harary (1953): notion of **balanced** signed graphs (each cycle is balanced)

→ **Social psychology:** "like" and "dislike" relations in a social network. Balanced networks are socially stable. (Cartwright and Harary, 1956)

$\rightarrow \textbf{Graph theory}$

Conjecture (Hadwiger, 1943)

If G has no K_k as a minor, $\chi(G) \leq k - 1$.

Very difficult; proved up to k = 6.

Why signed graphs?

Introduced by Harary (1953): notion of **balanced** signed graphs (each cycle is balanced)

→ **Social psychology:** "like" and "dislike" relations in a social network. Balanced networks are socially stable. (Cartwright and Harary, 1956)

ightarrow Graph theory

Conjecture (Hadwiger, 1943)

If G has no K_k as a minor, $\chi(G) \leq k - 1$.

Very difficult; proved up to k = 6.

Conjecture ("Odd Hadwiger" - Seymour; Gerards, 1993)

If (G, E(G)) has no $(K_k, E(K_k))$ as a minor, $\chi(G) \leq k - 1$.

Extends the previous one; proved up to k = 5.

Definition - Signed graph homomorphism from (G, Σ_G) to (H, Σ_H)

Homomorphism $f:G\to H$ such that there exists $\Sigma_G'\equiv \Sigma_G$ for which the signs are preserved with respect to Σ_G', Σ_H .

Recently introduced by Naserasr, Rollova and Sopena (2012)

Definition - Signed graph homomorphism from (G, Σ_G) to (H, Σ_H)

Homomorphism $f:G\to H$ such that there exists $\Sigma_G'\equiv \Sigma_G$ for which the signs are preserved with respect to Σ_G',Σ_H .

Recently introduced by Naserasr, Rollova and Sopena (2012)

Definition - Signed graph homomorphism from (G, Σ_G) to (H, Σ_H)

Homomorphism $f:G\to H$ such that there exists $\Sigma_G'\equiv \Sigma_G$ for which the signs are preserved with respect to Σ_G',Σ_H .

Recently introduced by Naserasr, Rollova and Sopena (2012)

Definition - Signed graph homomorphism from (G, Σ_G) to (H, Σ_H)

Homomorphism $f:G\to H$ such that there exists $\Sigma_G'\equiv \Sigma_G$ for which the signs are preserved with respect to Σ_G',Σ_H .

Recently introduced by Naserasr, Rollova and Sopena (2012)

Definition - Signed graph homomorphism from (G, Σ_G) to (H, Σ_H)

Homomorphism $f:G\to H$ such that there exists $\Sigma_G'\equiv \Sigma_G$ for which the signs are preserved with respect to Σ_G', Σ_H .

Recently introduced by Naserasr, Rollova and Sopena (2012)

arget: UC₄

Definition - Signed graph homomorphism from (G, Σ_G) to (H, Σ_H)

Homomorphism $f:G\to H$ such that there exists $\Sigma_G'\equiv \Sigma_G$ for which the signs are preserved with respect to Σ_G',Σ_H .

Recently introduced by Naserasr, Rollova and Sopena (2012)

arget: *UC*₄

Definition - Signed graph homomorphism from (G, Σ_G) to (H, Σ_H)

Homomorphism $f:G\to H$ such that there exists $\Sigma_G'\equiv \Sigma_G$ for which the signs are preserved with respect to Σ_G', Σ_H .

Recently introduced by Naserasr, Rollova and Sopena (2012)

arget: UC₄

Definition - Signed graph homomorphism from (G, Σ_G) to (H, Σ_H)

Homomorphism $f:G\to H$ such that there exists $\Sigma_G'\equiv \Sigma_G$ for which the signs are preserved with respect to Σ_G', Σ_H .

Recently introduced by Naserasr, Rollova and Sopena (2012)

arget: UC₄

Definition - Signed graph homomorphism from (G, Σ_G) to (H, Σ_H)

Homomorphism $f:G\to H$ such that there exists $\Sigma_G'\equiv \Sigma_G$ for which the signs are preserved with respect to Σ_G', Σ_H .

Recently introduced by Naserasr, Rollova and Sopena (2012)

Target: $(K_2, E(K_2))$

arget: *UC*₄

Definition - Signed graph homomorphism from (G, Σ_G) to (H, Σ_H)

Homomorphism $f:G\to H$ such that there exists $\Sigma_G'\equiv \Sigma_G$ for which the signs are preserved with respect to Σ_G', Σ_H .

Recently introduced by Naserasr, Rollova and Sopena (2012)

 UC_4

Definition - Signed graph homomorphism from (G, Σ_G) to (H, Σ_H)

Homomorphism $f:G\to H$ such that there exists $\Sigma_G'\equiv \Sigma_G$ for which the signs are preserved with respect to Σ_G', Σ_H .

Recently introduced by Naserasr, Rollova and Sopena (2012)

Target: $(K_2, E(K_2))$

 UC_4

Definition - *H*-Colouring

INSTANCE: A graph G. QUESTION: does $G \rightarrow H$?

Definition - *H*-Colouring

INSTANCE: A graph G. QUESTION: does $G \rightarrow H$?

Theorem (Karp, 1972)

 K_3 -Colouring is NP-complete.

Definition - *H*-Colouring

INSTANCE: A graph G. QUESTION: does $G \rightarrow H$?

Theorem (Hell, Nešetřil, 1990)

H-Colouring is NP-complete for every non-bipartite graph H. Polynomial (trivial) if H is bipartite or has a loop.

Definition - *H*-Colouring

INSTANCE: A graph G. QUESTION: does $G \rightarrow H$?

Theorem (Hell, Nešetřil, 1990)

H-Colouring is NP-complete for every non-bipartite graph H. Polynomial (trivial) if H is bipartite or has a loop.

Conjecture (Feder-Vardi, 1998: Dichotomy conjecture)

For every **digraph** D, D-COLOURING is either NP-complete or polynomial-time solvable.

(Equivalent to dichotomy for CSP and MMSNP — tough conjecture!)

Complexity: questions for signed graphs

```
Definition - (H, \Sigma_H)-COLOURING
```

INSTANCE: A signed graph (G, Σ) . QUESTION: does $(G, \Sigma) \rightarrow (H, \Sigma_H)$?

Complexity: questions for signed graphs

Definition - (H, Σ_H) -COLOURING

INSTANCE: A signed graph (G, Σ) . QUESTION: does $(G, \Sigma) \rightarrow (H, \Sigma_H)$?

Remark

- ullet checking if $\Sigma \equiv \Sigma'$: polynomial
- $\bullet \ (\textit{G}, \Sigma) \rightarrow (\textit{H}, \emptyset) \ \mathsf{IFF} \ \textit{G} \rightarrow \textit{H} \ \mathsf{and} \ \Sigma \equiv \emptyset.$
- ullet $(G,\Sigma) o (H,E(H))$ IFF G o H and $\Sigma \equiv E(G)$.
- \to If $\Sigma_H \equiv \emptyset$ or $\Sigma_H \equiv E(H)$, (H, Σ_H) -COLOURING has same complexity as H-COLOURING.

Complexity: questions for signed graphs

Definition - (H, Σ_H) -Colouring

INSTANCE: A signed graph (G, Σ) . QUESTION: does $(G, \Sigma) \rightarrow (H, \Sigma_H)$?

Remark

- checking if $\Sigma \equiv \Sigma'$: polynomial
- $\bullet \ (\textit{G}, \Sigma) \rightarrow (\textit{H}, \emptyset) \ \mathsf{IFF} \ \textit{G} \rightarrow \textit{H} \ \mathsf{and} \ \Sigma \equiv \emptyset.$
- $(G, \Sigma) \to (H, E(H))$ IFF $G \to H$ and $\Sigma \equiv E(G)$. \to If $\Sigma_H \equiv \emptyset$ or $\Sigma_H \equiv E(H)$, (H, Σ_H) -Colouring has same complexity as H-Colouring.

Polynomial cases:

- H bipartite, $\Sigma_H \equiv \emptyset \equiv E(H)$
- H has one vertex with both + loop and loop
- H has a loop and $\Sigma_H \equiv \emptyset$ or $\Sigma_H \equiv E(H)$
- H is bipartite and contains a multi-edge (+ and -)

Reduction from classical H-COLOURING

Theorem (Brewster, F., Hell, 2013+)

$$(G, E(G)) o (H, \Sigma)$$
 IFF $G o ((H, \Sigma) imes K_2^{R-})^U$

Reduction from classical H-COLOURING

Theorem (Brewster, F., Hell, 2013+)

$$(G, E(G)) o (H, \Sigma)$$
 IFF $G o ((H, \Sigma) imes K_2^{R-})^U$

Reduction from classical H-Colouring

Theorem (Brewster, F., Hell, 2013+)

$$(G, E(G)) \rightarrow (H, \Sigma) \text{ IFF } G \rightarrow ((H, \Sigma) \times K_2^{R-})^U$$

Corollary

If (H, Σ) has an **unbalanced odd** cycle, then (H, Σ) -Colouring is NP-complete.

Reduction from classical H-COLOURING

Theorem (Brewster, F., Hell, 2013+)

$$(G, E(G)) o (H, \Sigma)$$
 IFF $G o ((H, \Sigma) imes \mathcal{K}_2^{R-})^U$

Corollary

If (H, Σ) has an **unbalanced odd** cycle, then (H, Σ) -Colouring is NP-complete.

Reduction from classical H-Colouring

Theorem (Brewster, F., Hell, 2013+)

$$(G, E(G)) o (H, \Sigma)$$
 IFF $G o ((H, \Sigma) imes \mathcal{K}_2^{R-})^U$

Corollary

If (H, Σ) has an **unbalanced odd** cycle, then (H, Σ) -COLOURING is NP-complete.

Reduction from classical H-COLOURING

Theorem (Brewster, F., Hell, 2013+)

$$(G, E(G)) \rightarrow (H, \Sigma) \text{ IFF } G \rightarrow ((H, \Sigma) \times K_2^{R-})^U$$

Corollary

If (H, Σ) has an **unbalanced odd** cycle, then (H, Σ) -Colouring is NP-complete.

Reduction from classical H-COLOURING

Theorem (Brewster, F., Hell, 2013+)

$$(G, E(G)) \rightarrow (H, \Sigma) \text{ IFF } G \rightarrow ((H, \Sigma) \times K_2^{R-})^U$$

Corollary

If (H, Σ) has an **unbalanced odd** cycle, then (H, Σ) -Colouring is NP-complete.

Reduction from NAE-3SAT

Definition - UC_{2k} -Colouring

INSTANCE: A (bipartite) signed graph (G, Σ) .

QUESTION: does $(G, \Sigma) \rightarrow UC_{2k}$?

Reduction from NAE-3SAT

Definition - UC_{2k} -Colouring

INSTANCE: A (bipartite) signed graph (G, Σ) .

QUESTION: does $(G, \Sigma) \rightarrow UC_{2k}$?

Theorem (F., Naserasr, 2012+)

 $\mathit{UC}_{2k}\text{-}\mathrm{Colouring}$ is NP-complete for every $k\geq 2.$

Reduction from NAE-3SAT

Definition - UC_{2k} -Colouring

INSTANCE: A (bipartite) signed graph (G, Σ) .

QUESTION: does $(G, \Sigma) \rightarrow UC_{2k}$?

Theorem (F., Naserasr, 2012+)

 UC_{2k} -Colouring is NP-complete for every $k \geq 2$.

Definition - MONOTONE NOT-ALL-EQUAL-3SAT

INSTANCE: A set of clauses of 3 Boolean variables from set X. QUESTION: Is there a truth assignment $X \to \{0,1\}$ s.t. each clause has variables with different values?

NAE-3SAT $\leq_R UC_4$ -Colouring: clause gadget

Construction of G(F): one clause gadget per clause of F. All vertices with same labels (c or x_i) identified with each other.

Main idea: In a mapping, re-signing at $x_i \iff x_i = \mathsf{TRUE}$

NAE-3SAT $\leq_R UC_{2k}$ -Colouring: clause gadget

(where P_k has length k-1)

Constraint Satisfaction Problem (CSP) for relational system

 $T = (X_T, V_T)$: domain X_T , set V relations R_1, \ldots, R_k of arity a_1, \ldots, a_k with $R_i \subseteq X^{a_i}$ (vocabulary).

Definition -
$$T$$
-CSP, $T = (X_T, V_T)$

INSTANCE: domain X with vocabulary $V\cong V_{\mathcal{T}}$.

QUESTION: does $(X, V) \rightarrow T$?

Constraint Satisfaction Problem (CSP) for relational system $T = (X_T, V_T)$: domain X_T , set V relations R_1, \ldots, R_k of arity a_1, \ldots, a_k with $R_i \subseteq X^{a_i}$ (vocabulary).

Definition -
$$T$$
-CSP, $T = (X_T, V_T)$

INSTANCE: domain X with vocabulary $V \cong V_T$. QUESTION: does $(X, V) \to T$?

Examples:

- (Di)graph homomorphism to D: $X_T = V(D)$, V_T is one binary (non-)symmetric relation.
- 3SAT: $X_T = \{0, 1\}$, V_T : one ternary relation with all triples except 000.

Constraint Satisfaction Problem (CSP) for relational system

 $T = (X_T, V_T)$: domain X_T , set V relations R_1, \ldots, R_k of arity a_1, \ldots, a_k with $R_i \subseteq X^{a_i}$ (vocabulary).

Definition -
$$T$$
-CSP, $T = (X_T, V_T)$

INSTANCE: domain X with vocabulary $V \cong V_T$.

QUESTION: does $(X, V) \rightarrow T$?

Conjecture (Feder-Vardi, 1998: Dichotomy conjecture)

For every T, T- CSP is either NP-complete or polynomial-time.

Constraint Satisfaction Problem (CSP) for relational system

 $T = (X_T, V_T)$: domain X_T , set V relations R_1, \ldots, R_k of arity a_1, \ldots, a_k with $R_i \subseteq X^{a_i}$ (vocabulary).

Definition -
$$T$$
-CSP, $T = (X_T, V_T)$

INSTANCE: domain X with vocabulary $V \cong V_T$.

QUESTION: does $(X, V) \rightarrow T$?

Conjecture (Feder-Vardi, 1998: Dichotomy conjecture)

For every T, T-CSP is either NP-complete or polynomial-time.

Signed CSP: + and - tuples, re-signing allowed.

Proposition

Dichotomy for CSP ← Dichotomy for signed CSP

Perspectives

- Prove dichotomy for (H, Σ) -COLOURING. \rightarrow remaining cases: H bipartite or has both kinds of loops
- Study signed CSPs