Exploiting Memory Hierarchy: Dependability, Hamming Code, Virtual Memory

Dr. Vincent C. Emeakaroha

15-03-2017

vc.emeakaroha@cs.ucc.ie

Multilevel Caches

- Goal
 - To reduce cache miss penalty
 - Close gap between fast CPU clock rate and long time to access DRAM
- Primary cache attached to CPU
 - Known as level-1 cache
 - Small, but fast
- Level-2 cache services misses from primary cache
 - Larger, slower, but still faster than main memory
- Main memory services L-2 cache misses
- Some high-end systems include L-3 cache

Multilevel Cache Example

- How significant is the performance improvement from the use of level-2 cache?
- Given
 - CPU base CPI = 1, clock rate = 4GHz
 - Miss rate/instruction = 2%
 - Main memory access time = 100ns
- With just primary cache
 - Miss penalty = 100ns/0.25ns = 400 cycles
 - Effective CPI = Base CPI + Memory-stall cycles per instruction
 - \bullet = 1 + 0.02 × 400 = 9

Example (cont.)

- Now add L-2 cache
 - Access time = 5ns
 - Global miss rate to main memory = 0.5%
- Primary miss with L-2 hit
 - Penalty = 5ns/0.25ns = 20 cycles
- Total CPI = 1 + primary stall + secondary stall
 - CPI = $1 + 0.02 \times 20 + 0.005 \times 400 = 3.4$
- Performance ratio = 9/3.4 = 2.6
 - Faster by a factor of 2.6 with secondary cache

Multilevel Cache Considerations

- Primary cache
 - Focus on minimal hit time
- L-2 cache
 - Focus on low miss rate to avoid main memory access
 - Hit time has less overall impact
- Results
 - L-1 cache usually smaller than a single cache
 - L-1 block size smaller than L-2 block size

Interactions with Advanced CPUs

- Out-of-order CPUs can execute instructions during cache miss
 - Pending store stays in load/store unit
 - Dependent instructions wait in reservation stations
 - Independent instructions continue
- Effect of miss depends on program data flow
 - Much harder to analyse
 - Use system simulation

Interactions with Software

- Misses depend on memory access patterns
 - Algorithm behavior
 - Compiler optimization for memory access

Memory System Dependability

- Fault: failure of a component
 - May or may not lead to system failure
 - Fault avoidance
 - Fault tolerance
 - Fault forecasting
- Failure can be intermittent or permanent

Dependability Measures

- Reliability: mean time to failure (MTTF)
- Service interruption: mean time to repair (MTTR)
- Mean time between failures
 - MTBF = MTTF + MTTR
- Availability = MTTF / (MTTF + MTTR)
- Improving Availability
 - Increase MTTF: fault avoidance, fault tolerance, fault forecasting
 - Reduce MTTR: improved tools and processes for diagnosis and repair

The Hamming Single Error Correction (SEC) Code

- A redundancy scheme for memory
- Hamming distance
 - Number of bits that are different between two bit patterns
- Minimum distance = 2 provides single bit error detection
 - E.g. parity code
 - 1 for odd and 0 for even
- Minimum distance = 3 provides single error correction, 2 bit error detection
 - Hamming Error Correction Code (ECC)

Encoding SEC

- To calculate Hamming Error Correction Code:
 - Number bits from 1 on the left
 - All bit positions that are a power 2 are parity bits
 - All other bit positions are used for data bits
 - Each parity bit checks certain data bits:

Bit position		1	2	3	4	5	6	7	8	9	10	11	12
Encoded date bits		p1	p2	d1	р4	d2	d3	d4	p8	d5	d6	d7	d8
Parity bit coverate	p1	Х		Χ		Χ		Χ		Х		Χ	
	p2		Χ	Χ			Χ	Χ			Χ	Χ	
	р4				Χ	Χ	Χ	Χ					Χ
	р8								Х	Х	Χ	Χ	Χ

Bit position check patterns 0001 for p1

0010 for p2

0100 for p4

1000 for p8

Decoding SEC

- Value of parity bits indicates which bits are in error
 - Use numbering from encoding procedure
 - E.g.
 - Parity bits = 0000 indicates no error
 - Parity bits = 1010 indicates bit 10 was flipped

SEC/DED Code

- Make Hamming distance = 4
- Add an additional parity bit for the whole word (p_n)
- Decoding:
 - Let H = SEC parity bits
 - H even, p_n even, no error
 - H odd, p_n odd, correctable single bit error
 - H even, p_n odd, error in p_n bit
 - H odd, p_n even, double error occurred
- Note: ECC DRAM uses SEC/DEC with 8 bits protecting each 64 bits

Virtual Machines

- Host computer emulates guest operating system and machine resources
 - Improved isolation of multiple guests
 - Avoids security and reliability problems
 - Aids sharing of resources
- Virtualization has some performance impact
 - Feasible with modern high-performance comptuers
- Examples
 - IBM VM/370 (1970s technology!)
 - VMWare
 - VirtualBox

Virtual Machine Monitor

- Also known as hypervisor
 - Heart of the virtual machine technology
- Maps virtual resources to physical resources
 - Memory, I/O devices, CPUs
- Guest code runs on native machine in user mode
 - Traps to VMM on privileged instructions and access to protected resources
- Guest OS may be different from host OS
- VMM handles real I/O devices
 - Emulates generic virtual I/O devices for guest

Example: Timer Virtualization

- In native machine, on timer interrupt
 - OS suspends current process, handles interrupt, selects and resumes next process
- With Virtual Machine Monitor
 - VMM suspends current VM, handles interrupt, selects and resumes next VM
- If a VM requires timer interrupts
 - VMM emulates a virtual timer
 - Emulates interrupt for VM when physical timer interrupt occurs

Instruction Set Support

- User and System processor modes
- Privileged instructions only available in system mode
 - Trap to system if executed in user mode
- All physical resources only accessible using privileged instructions
 - Including page tables, interrupt controls, I/O registers
- Revival of virtualization support
 - Current ISAs (e.g., x86) adapting

Virtual Memory

- Use main memory as a "cache" for secondary (disk) storage
 - Managed jointly by CPU hardware and the operating system (OS)
- Programs share main memory
 - Each gets a private virtual address space holding its frequently used code and data
 - Protected from other programs
- CPU and OS translate virtual addresses to physical addresses
 - Virtual memory "block" is called a page
 - Virtual memory translation "miss" is called a page fault