

CSE 5255

INTRODUCTION TO COMPUTER GRAPHICS CLASS NOTES

Dr. William D. Shoaff

Spring 1996

Table of Contents

Introduction
Data Structures for Graphics 1.1
Basic Math for Graphics
Transformations
View Coordinates4.1
Projections and Normalized Device Coordinates5.1
Clipping 6.1
Scan Conversion
Rendering and Illumination Models8.1
Visible Object Algorithms9.1
Color Models10.1
Exams and Quizzes
Bibliography B.1
0 1 0

Clipping Concepts

- Clipping (internal) removing picture parts outside an area
- External clipping removing picture parts inside an area
- Cohen-Sutherland algorithm (line clipping)
- Liang-Barsky/Cyrus-Beck algorithm (line clipping)
- Sutherland-Hodgman algorithm (polygon clipping)
- Weiler-Atherton algorithm (polygon clipping)
- Text character clipping

Type of Clipping

- Scissoring clip the primitive during scan conversion to pixels
 - Consider a polygon filled on scan line at a time
 - Only the extreme points on the scan line need to be clipped
- Bit (Pixel) block transfers (bitblts/pixblts)
 - Copy a 2D array of pixels from a large canvas to a destination window
 - Useful for text characters, pulldown menus, etc.
- Analytic methods
 - Computer intersections of primitives with the clipping window's boundary
- For floating point graphics packages, clip analytically in floating point coordinate system then scan convert the clipped primitives
- For integer based packages either analytic clipping or scissoring can be used
- Bitblts/Pixblts often used in windowing systems

Point, Line, and Polygon Clipping

- 2-dimensional point clipping
 - A point is saved if

$$x_{min} \le x \le x_{max}$$
 and $y_{min} \le y \le y_{max}$

- Very expensive to test each point on a primitive
- For 3-dimensional point clipping, need to compare z values as well

$$z_{min} \leq z \leq z_{max}$$

- Line clipping
 - Determine if line segment is wholly within the window
 - Determine if line segment is wholly outside window
 - Determine if line segment is partially inside, partially outside
 - Efficient line clipping algorithms will be studied
- Polygon clipping
 - Determine areas of polygon inside window and areas outside window

Cohen-Sutherland Line Clipping

1001	0001	0101
1000	0000 Window	0100
	() III (10 ()	

- Clip a line to an upright rectangular window
- Extended window boundaries to define 9 regions: top left, top center, top right, center left, center, center right, bottom left, bottom center, bottom right
- Assign 4 bit code to identify each region
- \bullet For each point (x, y)
 - First bit set $(1) \Rightarrow$ point lies to left of window
 - Second bit set $(1) \Rightarrow$ point lies to right of window
 - Third bit set $(1) \Rightarrow$ point lies below window
 - Fourth bit set $(1) \Rightarrow$ point lies above window
- LRBT (Left, Right, Bottom, Top) somewhat arbitrary sequence
- On the window edge (boundary) \Rightarrow inside window (bit= 0)

Cohen-Sutherland, continued

- ullet Given a line segment with end points $P_1=(x_1,\,y_1)$ and $P_2=(x_2,\,y_2)$
- Compute 4-bit codes for each end point
 - If both codes are 0000, (bitwise OR of codes yields 0000) line is totally visible – pass end points to draw routine
 - If both codes have 1's in the same bit position (bitwise AND of codes is <u>not</u> 0000), line is totally invisible
 - Otherwise, indeterminate case line may be partially visible or not visible
- In the indeterminate case, analytically compute the intersection of the line with the appropriate window edges

Cohen-Sutherland Indeterminate Case

- ullet One of two end-points must be outside the window, say it is $P_1=(x_1,\,y_1)$
- Read P_1 's 4-bit code in order, say left-to-right
- When a set bit (1) is found, compute intersection I of corresponding window edge with line from P_1 to P_2 .
 - Suppose we want intersection with the left window edge
 - The x value of the intersection is x_{\min}
 - The y value of the intersection is found by substituting x_{\min} into the line equation (from P_1 to P_2)

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$$

and solving for y

$$y = y_1 + \frac{y_2 - y_1}{x_2 - x_1} (x_{\min} - x_1)$$

- Other cases are handled similarly
- ullet Replace P_1 with I and repeat Cohen–Sutherland algorithm

Cohen-Sutherland Example

• Define window by

x = 0 Left edge y = 1 Top edge y = 0 Bottom edge x = 1 Right edge

- End-points (1/2, 1/2) and (1/4, 3/4) both have 4-bit codes 0000 draw line between them
- End-point (3, 3) has 4-bit code 0101 and end-point (-2, 5) has 4-bit code 1001. Logical AND: $0101 \wedge 1001 = 0001 \neq 0000 \Rightarrow$ both end-points to right of window. Therefore line is invisible
- End-point (3, 3) has 4-bit code 0101 and end-point (0, 1/2) has 4-bit code 0000.
 - -(3, 3) is outside
 - Reading 4-bit code from left-to-right, "top" bit is set
 - Intersection with top edge is at I = ?
 - -I has 4-bit code?

Cohen-Sutherland Midpoint Subdivision

- In the indeterminate case, compute the midpoint of the line segment
- Midpoint calculation

$$x_m = (x_1 + x_2)/2$$

 $y_m = (y_1 + y_2)/2$

- Process each half of line segment
- Continue until intersection point is found or single pixel is reached
- Easy to implement in hardware

Cohen-Sutherland Line Clipping in 3D

- Extended 3D-window (NDC cube) boundaries define 27 regions
- Assign 6 bit code to each region
- ullet For each point (x, y, z)
 - Left bit set $(1) \Rightarrow$ point lies to left of window
 - Second bit set $(1) \Rightarrow$ point lies to right of window
 - Third bit set $(1) \Rightarrow$ point lies below window
 - Fourth bit set $(1) \Rightarrow$ point lies above window
 - Fifth bit set $(1) \Rightarrow$ point lies to in front of window (near)
 - Sixth bit set $(1) \Rightarrow$ point lies to behind of window (far)
- LRBTNF (Left, Right, Bottom, Top, Near, Far) somewhat arbitrary sequence
- On the window edge (boundary) \Rightarrow inside window (bit= 0)

Cohen-Sutherland Line Clipping in 3D

- 2D algorithm extends naturally
 - Trivial accept (visible) if both end points have code 000000
 - Trivial reject (invisible) if both end points have code with common bit set
 - Indeterminant case, use parametric form of the line

$$x = x_1 + t(x_2 - x_1)$$

$$y = y_1 + t(y_2 - y_1)$$

$$x = z_1 + t(z_2 - z_1)$$

- To clip against a face, say $y=y_{
m max}$, compute

$$t = \frac{y_{\text{max}} - y_1}{y_2 - y_1}$$

and use it to evaluate the \boldsymbol{x} and \boldsymbol{z} intersections

Liang-Barsky/Cyrus-Beck Line Clipping

- The Liang-Barsky and Cyrus-Beck algorithms use the same ideas, but Liang-Barsky has be optimized for an upright rectangular clip window
- Use of parametric equations, clip window edge normals, and inner products can improve the efficiency of line clipping
- Let $P(t) = P_1 + t(P_2 P_1)$, $0 \le t \le 1$ denote the parametric equation of the line segment from P_1 to P_2
- \bullet Let \vec{n} denote the outward pointing normal of the clip window edge E
- ullet Let P_E be an arbitrary point of edge E

Liang-Barsky/Cyrus-Beck Line Clipping

- ullet Consider the vector $P(t)-P_E$ from P_E to a point on the line P(t)
- \bullet At the intersection of P(t) and E the inner product of \vec{n} and $P(t)-P_E$ is zero

$$\vec{n} \cdot (P(t) - P_E) = \vec{n} \cdot (P_1 + t(P_2 - P_1) - P_E)$$

= $\vec{n} \cdot (P_1 - P_E) + t\vec{n} \cdot (P_2 - P_1)$
= 0

Solving for t yields

$$t = \frac{\vec{n} \cdot (P_E - P_1)}{\vec{n} \cdot (P_2 - P_1)}$$

 Note that checks need to be made that the denominator above is not zero

Liang-Barsky Line Clipping, continued

- Using the 4 edge normals for an upright rectangular clip window and 4 points, one on each edge, we can calculate 4 parameter values where P(t) intersects each edge
- ullet Let's call these parameter values t_1 , t_2 , t_3 , t_4
- ullet Note any of the t's outside of the interval $[0,\ 1]$ can be discarded
- The remaining t values are characterized as "potentially entering" (PE) or "potentially leaving" (PL)
 - The parameter t_i is PE if when traveling along the (extended) line from P_1 to P_2 we move from the outside to the inside of the window with respect to the edge i
 - The parameter t_i is PL if when traveling along the (extended) line from P_1 to P_2 we move from the inside to the outside of the window with respect to the edge i

Liang-Barsky Line Clipping, continued

- ullet The inner product of the outward pointing edge normal $ec{n}_i$ with P_2-P_1 can be used to classify the parameter t_i as PE or PL
- If

$$\vec{n}_i \cdot (P_2 - P_1) < 0$$

the parameter t_i is potentially entering (PE)

If

$$\vec{n}_i \cdot (P_2 - P_1) > 0$$

the parameter t_i is potentially leaving (PL)

- ullet Let t_E be the largest PE parameter value and t_L the smallest PL parameter value
- The clipped line extends from t_E to t_L , where $0 \le t_E \le t_L \le 1$

Clipping In Homogeneous Coordinates

- ullet Let $(x,\,y,\,z,\,w)$ denote a point in homogeneous space and let $(X,\,Y,\,Z)$ represent the same point in 3-space
- The clipping plane boundaries $X=0,\ X=1,\ Y=0,$ $Y=1,Z=0,\ Z=1$ correspond to homogeneous boundary conditions $x=0,\ w-x=0,\ y=0,$ $w-y=0,z=0,\ w-z=0$
- ullet We can represent these homogeneous boundary conditions as dot products of $(x,\,y,\,z,\,w)$ with column boundary vectors

$$B_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad B_2 = \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \quad B_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$B_4 = \begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \end{bmatrix} \quad B_5 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \quad B_6 = \begin{bmatrix} 0 \\ 0 \\ -1 \\ 1 \end{bmatrix}$$

being equal to zero

Clipping In Homogeneous Coordinates

ullet Let $P=(x,\,y,\,z,\,w)$ be a point and notice if the dot product

$$P \cdot B_i$$

is less than, equal to, or greater than zero, the point is outside, on, or inside the boundary, respectively

Consider a line

$$P(u) = P_0 + u(P_1 - P_0)$$

from $P_0 = (x_0, y_0, z_0, w_0)$ to $P_1 = (x_1, y_1, z_1, w_1)$ that crosses a boundary (dot products of P_0 and P_1 with the corresponding boundary vector B_j have opposite signs)

• We find the parameter value u where the line crosses by taking the dot product of the line with B_j

$$P(u) \cdot B_j = P_0 \cdot B_j + u(P_1 \cdot B_j - P_0 \cdot B_j)$$

ullet Since we want P(u) to be on the boundary, its dot product is zero, so

$$u = \frac{P_0 \cdot B_j}{(P_0 \cdot B_j - P_1 \cdot B_j)}$$

• Given a list $(Q_0, Q_1, \ldots, Q_{n-1})$ of polygon vertices, we clip and move to the first point, then clip and draw the remaining points back to Q_0

```
clip(Q_0, move);
\mathbf{for} \ i = 1 \ \mathbf{to} \ n - 1 \ \mathbf{do}
clip(Q_i, draw);
clip(Q_0, draw);
```

ullet The clip routine calculates outcodes for the boundary planes based on the dot product values

```
kalc\text{-}kodes(bc_1,\ kode_1); { kode_1=0; \mathbf{for}\ j=1\ \mathbf{to}\ 6\ \mathbf{do} bc_1[j]=P_1\cdot B_j; \mathbf{if}\ bc_1[j]<0\ \mathbf{then} kode_1\ \mathbf{and}\ 1 shift\ kode_1\ |\ left\ one bit }
```

Clipping In Homogeneous Coordinates

- ullet The clip routine is called with a point and a flag
- If the flag is move and the point is visible (kode=0) it is passed down the pipeline as the first point of a line segment
- If the *flag* is *draw* and the point can not be trivially rejected and if both points are in view, the last point is passed down the pipe
- If both points are not in view, the non-trivial clip takes placed
- The values of P_1 , bc_1 , $kode_1$ are saved for the next call

```
\begin{aligned} & clip(P_1, flag); \\ \{ & kalc\text{-}kodes(bc_1, kode_1); \\ & \textbf{if } flag = move \textbf{ then} \\ & \textbf{if } kode_1 = 0 \textbf{ then } viewpt(P1, move) \\ & \textbf{else} \\ & \textbf{if } (kode_0 \textbf{ and } kode_1) = 0 \\ & \textbf{if } (kode_0 \textbf{ or } kode_1) = 0 \\ & viewpt(P1, draw) \\ & \textbf{else do } nontrivial\text{-}stuff(); \\ & P_0 = P_1; \ bc_0 = bc_1; \ kode_0 = kode_1; \\ \} \end{aligned}
```

```
nontrivial-stuff()
  klip = kode_0 or kode_1;
  u_0 = 0; u_1 = 1; mask = 1;
  for i = 1 to 6 do
     if klip and mask \neq 0 then
       u = bc_0[i]/(bc_0[i] - bc_1[i]);
       if kode_0 and mask \neq 0 then
          u_0 = \max(u_0, u);
       else
          u_1 = \min(u_1, u);
       if (u_1 < u_0) return;
     shift mask left one bit;
  if (\mathbf{kode}_0 \neq 0) then
     P = P_0 + u_0(P_1 - P_0);
     viewpt(P, move)
  if (\mathbf{kode}_1 \neq 0) then
     P = P_0 + u_1(P_1 - P_0);
     viewpt(P, draw)
  else viewpt(P, draw)
}
```

Sutherland-Hodgman Polygon Clipping

- Since polygons are basic primitives, algorithms have been developed for clipping them directly
- Given a *subject* polygon (to be clipped) with an ordered sequence of vertices

$$v_1, v_2, \ldots, v_n$$

- Compare each subject polygon edge against a single clip window edge
- Save vertices on the in-side of the edge
- Save the intersection points when crossing the edge

Sutherland-Hodgman Polygon Clipping

• Four cases:

- Polygon edge goes from outside window edge to outside window edge – save nothing
- Polygon edge goes from outside window edge to inside window edge – save intersection and inside point
- Polygon edge goes from inside window edge to outside window edge – save intersection point
- Polygon edge goes from inside window edge to inside window edge – save second inside point (first was saved previously)
- Start point if inside save it, drop it otherwise
- Last edge if start point was save, don't save again

Sutherland-Hodgman Example

- Clip the polygon against each edge
- Diagram shows result of clipping against the left edge
- Sutherland and Hodgman structure the algorithm so it is reentrant
 - As soon as a vertex is output, clipper calls itself with that vertex
 - Clip is then performed against the next boundary edge
 - No intermediate storage required for partially clipped polygon
 - The is the basis for Clark's "Geometry Engine,"
 which was used in the first Silicon Graphics machines

Weiler-Atherton Polygon Clipping

- Sutherland-Hodgman can clip an arbitrary polygon against any convex polygonal window (not just rectangles)
- Sutherland-Hodgman may produce connecting lines that were not in the original polygon
- Weiler-Atherton can clip an arbitrary polygon against an arbitrary clipping window and does not produce connecting lines
- Weiler-Atherton is a 2D clip algorithm

Weiler-Atherton Polygon Clipping

- Assume the vertices of the subject polygon are listed in clockwise order (interior is on the right)
- Start at an entering intersection
- Follow the edge(s) of the polygon being clipped until an exiting intersection is encountered
- Turn right at the exiting intersection and following clip window edge until intersection is found
- Turn right and follow the subject polygon
- Continue until vertex already visited is reached
- If entire polygon has not be processed, repeat

Weiler-Atherton Example

- Consider the subject polygon with vertices a, b, c, d and the clip polygon with vertices A, B, C, D
- Insert the intersections in both vertex lists
 - Subject list: a, 1, b, 2, c, 3, 4, d, 5, 6
 - Clip list: A, 6, 3, 2, B, 1, C, D, 4, 5

- ullet Starting at vertex a of the clip polygon, find 1 is first entering intersection
- Traversing the subject, find 2 is exiting intersection
- "Jump" to vertex 2 in clip polygon, follow until vertex 1 (which has be visited)
- ullet Output clipped list 1, b, 2, B

Weiler-Atherton Example

- Jump back to subject list, restarting at c, find 3 is entering intersection
- ullet Traversing the subject, find 4 is exiting intersection
- Jump to vertex 4 in clip polygon, follow until vertex 5 (which is entering)
- Jump to subject, at vertex 5, find 6 is exiting
- Jump to clip, at vertex 6, find 3 is visited
- Output clipped list 3, 4, 5, 6
- All entering intersections have been visited

Character Clipping

- Characters can be defined as curved or polygonal outlines
 - Computationally expensive to clip and scan convert each character
 - Fonts are "scalable" and can be manipulated by matrix transforms
- Characters can be defined as small rectangular bitmaps
 - Image stored in an offscreen canvas, called a font cache
 - Bitblt used to copy character to the frame buffer
 - Bitmaps do not scale well, multiple bitmaps must be defined for each character (at multiple point sizes)
 - A distinct cache is needed for each font
 - Each character can be clipped to destination rectangle on a pixel-by-pixel basis
 - Some systems clip characters or whole strings on an all-or-nothing basis

Problems

- 1. Given the points below, determine there outcodes relative to the unit cube $0 \le x \le 1, \ 0 \le y \le 1, \ 0 \le z \le 1$
 - \bullet (0.5, 0.5, 0.5)
 - (5, 5, 5)
 - \bullet (-5, 5, -5)
 - (5, -5, 0.5)
 - (5, 5, 0.5)
 - \bullet (-5, 5, -0.5)
- 2. Show how the Cohen-Sutherland algorithm would clip the line between the points below. Assume the unit cube as the clipping volume.
 - (2, 3, 5) and (-1, -3, 0).
 - (0.2, 0.3, 0.5) and (-1, -3, 0).
- 3. Given a window defined by the lines

$$x = -1, x = 1, y = -1, y = 1$$

Show how the Cohen-Sutherland algorithm clips the following lines. That is, find the 4-bit codes for the end-points of the lines, determine that the line is completely visible, completely invisible, or, in the indeterminate case, show the algorithm determines any visible portions of the line.

- 1. $P_1 = (0, 0), P_2 = (0.75, -0.75)$
- 2. $P_1 = (-2, 2), P_2 = (-0.5, 1.5)$
- 3. $P_1 = (-2, -2), P_2 = (3, 3)$
- 4. $P_1 = (1, 2), P_2 = (4, 1)$
- 4. What are the four cases in the Sutherland-Hodgman polygon clipping algorithm?
- 5. Use the Sutherland-Hodgman algorithm to clip the polygon $P=(v_0,\,v_1,\,v_2,\,v_3)$, where

$$v_0 = (-1, -2), v_1 = (-2, -1), v_2 = (-2, 2), v_3 = (3, 2).$$

against the triangle T where the interior of T is defined by the inequalities

$$e_0: y \le 0, e_1: x \le 0, \text{ and } e_2: x + y + 4 \ge 0.$$

Problems

- 6. Explain how the Weiler-Atherton clipping algorithm works.
- 7. Show how to use the Weiler-Atherton algorithm on the polygon $P = (v_0, v_1, v_2, v_3)$, where

$$v_0 = (-1, -2), v_1 = (-2, -1), v_2 = (-2, 2), v_3 = (3, 2).$$

against the triangle T where the interior of T is defined by the inequalities

$$e_0: y \le 0, e_1: x \le 0, \text{ and } e_2: x + y + 4 \ge 0.$$

- 8. In this question you are to answer questions about the Sutherland-Hodgman polygon clipping algorithm. In each case below, let S and F be the start and final points of a line that crosses edge E and let I be the intersection point.
 - 1. If both S and F are inside the polygon with respect to the edge E what points will be output to the new polygon?
 - 2. If S is inside and F is outside the polygon with respect to the edge E what points will be output to the new polygon?
 - 3. If both S and F are outside the polygon with respect to the edge E what points will be output to the new polygon?
 - 4. If S is outside and F is inside the polygon with respect to the edge E what points will be output to the new polygon?