Aufgabe 1

Bestimmen Sie mit Hilfe des Master-Theorems für die folgenden Rekursionsgleichungen möglichst scharfe asymptotische untere und obere Schranken, falls das Master-Theorem anwendbar ist! Geben Sie andernfalls eine kurze Begründung, warum das Master-Theorem nicht anwendbar ist!

Exkurs: Master-Theorem

$$T(n) = a \cdot T\left(\frac{n}{h}\right) + f(n)$$

a = Anzahl der Unterprobleme in der Rekursion

 $\frac{1}{h}$ = Teil des Originalproblems, welches wiederum durch alle Unterpro-

f(n) = Kosten (Aufwand, Nebenkosten), die durch die Division des Problems und die Kombination der Teillösungen entstehen

1. Fall:
$$T(n) \in \Theta(n^{\log_b a})$$

falls
$$f(n) \in \mathcal{O}(n^{\log_b a - \varepsilon})$$
 für $\varepsilon > 0$

1. Fall:
$$T(n) \in \Theta(n^{\log_b a})$$
2. Fall: $T(n) \in \Theta(n^{\log_b a} \cdot \log n)$

falls
$$f(n) \in \Theta(n^{\log_b a})$$

3. Fall:
$$T(n) \in \Theta(f(n))$$

falls $f(n) \in \Omega(n^{\log_b a + \varepsilon})$ für $\varepsilon > 0$ und ebenfalls für ein c mit 0 < c < 1 und alle hinreichend großen n gilt: $a \cdot f(\frac{n}{b}) \le c \cdot f(n)$

(a)
$$T(n) = 16 \cdot T(\frac{n}{2}) + 40n - 6$$

Allgemeine Rekursionsgleichung:

$$T(n) = a \cdot T(\frac{n}{b}) + f(n)$$

Anzahl der rekursiven Aufrufe (a):

Anteil Verkleinerung des Problems (*b*):

um
$$\frac{1}{2}$$
 also $b = 2$

Laufzeit der rekursiven Funktion (f(n)):

$$40n - 6$$

Ergibt folgende Rekursionsgleichung:

$$T(n) = 16 \cdot T(\frac{n}{2}) + 40n - 6$$

1. Fall:
$$f(n) \in \mathcal{O}\left(n^{\log_b a - \varepsilon}\right)$$
:

für
$$c = 14$$

1. Fall:
$$f(n) \in \mathcal{O}\left(n^{\log_b a - \varepsilon}\right)$$
:

$$\text{für } \varepsilon = 14:$$

$$f(n) = 40n - 6 \in \mathcal{O}\left(n^{\log_2 16 - 14}\right) = \mathcal{O}\left(n^{\log_2 2}\right) = \mathcal{O}(n)$$

2. Fall:
$$f(n) \in \Theta(n^{\log_b a})$$
:

$$f(n) = 40n - 6 \notin \Theta\left(n^{\log_2 16}\right) = \Theta(n^4)$$

3. Fall:
$$f(n) \in \Omega\left(n^{\log_b a + \varepsilon}\right)$$
:
$$f(n) = 40n - 6 \notin \Omega\left(n^{\log_2 16 + \varepsilon}\right)$$

$$\Rightarrow T(n) \in \Theta(n^4)$$

Berechne die Rekursionsgleichung auf WolframAlpha: WolframAlpha

(b)
$$T(n) = 27 \cdot T(\frac{n}{3}) + 3n^2 \log n$$

Allgemeine Rekursionsgleichung:

$$T(n) = a \cdot T(\frac{n}{b}) + f(n)$$

Anzahl der rekursiven Aufrufe (a):

27

Anteil Verkleinerung des Problems (b):

um
$$\frac{1}{3}$$
 also $b = 3$

Laufzeit der rekursiven Funktion (f(n)):

$$3n^2 \log n$$

Ergibt folgende Rekursionsgleichung:

$$T(n) = 27 \cdot T\left(\frac{n}{3}\right) + 3n^2 \log n$$

1. Fall:
$$f(n) \in \mathcal{O}\left(n^{\log_b a - \varepsilon}\right)$$
:

$$f(n) = 3n^2 \log n = n \in \mathcal{O}\left(n^{\log_3 27 - 24}\right) = \mathcal{O}\left(n^{\log_3 3}\right) = \mathcal{O}(n)$$

2. Fall: $f(n) \in \Theta(n^{\log_b a})$:

$$f(n) = 3n^2 \log n = n \notin \Theta\left(n^{\log_3 27}\right) = \Theta(n^3)$$

3. Fall: $f(n) \in \Omega(n^{\log_b a + \varepsilon})$:

$$f(n) = 3n^2 \log n = n \notin \Omega\left(n^{\log_3 27 + \varepsilon}\right)$$

$$\Rightarrow T(n) \in \Theta(n^3)$$

Berechne die Rekursionsgleichung auf WolframAlpha: WolframAlpha

(c)
$$T(n) = 4 \cdot T(\frac{n}{2}) + 3n^2 + \log n$$

Allgemeine Rekursionsgleichung:

$$T(n) = a \cdot T(\frac{n}{b}) + f(n)$$

Anzahl der rekursiven Aufrufe (a):

4

Anteil Verkleinerung des Problems (*b*):

um
$$\frac{1}{2}$$
 also $b = 2$

Laufzeit der rekursiven Funktion (f(n)):

$$3n^2 + \log n$$

Ergibt folgende Rekursionsgleichung:

$$T(n) = 4 \cdot T\left(\frac{n}{2}\right) + 3n^2 + \log n$$

1. Fall: $f(n) \in \mathcal{O}\left(n^{\log_b a - \varepsilon}\right)$:

$$f(n) = 3n^2 + \log n = n^2 = n \notin \mathcal{O}\left(n^{\log_2 4 - \varepsilon}\right)$$

2. Fall: $f(n) \in \Theta(n^{\log_b a})$:

$$f(n) = 3n^2 + \log n = n^2 = n \in \Theta(n^{\log_2 4}) = \Theta(n^2)$$

3. Fall: $f(n) \in \Omega(n^{\log_b a + \varepsilon})$:

$$f(n) = 3n^2 + \log n = n^2 = n \notin \Omega\left(n^{\log_2 4 + \varepsilon}\right)$$

$$\Rightarrow T(n) \in \Theta(n^2 \log n)$$

Berechne die Rekursionsgleichung auf WolframAlpha: WolframAlpha

(d)
$$T(n) = 4 \cdot T(\frac{n}{2}) + 100 \log n + \sqrt{2n} + n^{-2}$$

Allgemeine Rekursionsgleichung:

$$T(n) = a \cdot T\left(\frac{n}{h}\right) + f(n)$$

Anzahl der rekursiven Aufrufe (a):

4

Anteil Verkleinerung des Problems (b):

um
$$\frac{1}{2}$$
 also $b = 2$

Laufzeit der rekursiven Funktion (f(n)):

$$100 \log n + \sqrt{2n} + n^{-2}$$

Ergibt folgende Rekursionsgleichung:

$$T(n) = 4 \cdot T(\frac{n}{2}) + 100 \log n + \sqrt{2n} + n^{-2}$$

1. Fall: $f(n) \in \mathcal{O}\left(n^{\log_b a - \varepsilon}\right)$:

$$f(n) = 100 \log n + \sqrt{2n} + n^{-2} = n \in \mathcal{O}(n^{\log_2 4 - 2}) = \mathcal{O}(n)$$

2. Fall: $f(n) \in \Theta(n^{\log_b a})$:

$$f(n) = 100 \log n + \sqrt{2n} + n^{-2} = n \notin \Theta(n^{\log_2 4}) = \Theta(n^2)$$

3. Fall: $f(n) \in \Omega(n^{\log_b a + \varepsilon})$:

$$f(n) = 100\log n + \sqrt{2n} + n^{-2} = n \notin \Omega\left(n^{\log_2 4 + \varepsilon}\right)$$

$$\Rightarrow T(n) \in \Theta(n^2)$$

Berechne die Rekursionsgleichung auf WolframAlpha: WolframAlpha