MY MODEL

1: Data Loading and Preprocessing

```
import numpy as np
import pandas as pd
import librosa
import os
import pickle
from sklearn.preprocessing import LabelEncoder
from sklearn.utils import resample
metadata_path = '/content/drive/MyDrive/dataset for bird/264 birds/birdsong_metadata.csv'
df = pd.read_csv(metadata_path)
# Path to audio files
audio_files_path = '/content/drive/MyDrive/dataset for bird/264 birds/songs'
# Function to extract Mel spectrogram from FLAC audio file
def extract_features(file_path, max_pad_len=128):
        audio, sr = librosa.load(file_path, sr=None)
        mels = librosa.feature.melspectrogram(y=audio, sr=sr, n_mels=128, fmax=8000)
       mels = librosa.power_to_db(mels, ref=np.max)
        # Pad or truncate Mel spectrogram
        if mels.shape[1] < max pad len:</pre>
            pad_width = max_pad_len - mels.shape[1]
            mels = np.pad(mels, pad_width=((0, 0), (0, pad_width)), mode='constant')
            mels = mels[:, :max_pad_len]
        return mels
    except Exception as e:
       print(f"Error processing {file_path}: {str(e)}")
# Analyze class distribution
class_counts = df['species'].value_counts()
print("Original class distribution:")
print(class_counts)
# Determine maximum number of samples in any class (majority class)
max_samples = class_counts.max()
# Oversample to balance the dataset
balanced_features = []
balanced_labels = []
for species in class_counts.index:
    species_files = df[df['species'] == species]['file_id']
    # Extract features for each file in the species
    species features = []
    for file_id in species_files:
        file_path = os.path.join(audio_files_path, f"xc{file_id}.flac")
        if os.path.exists(file_path):
           feature = extract_features(file_path)
            if feature is not None:
                species_features.append(feature)
            print(f"File not found: {file_path}")
    # If species has fewer samples than the max_samples, oversample by duplicating
    if len(species_features) < max_samples:</pre>
        species\_features = resample(species\_features, replace=True, n\_samples=max\_samples, random\_state=42)
    balanced_features.extend(species_features)
    balanced_labels.extend([species] * max_samples)
```

```
# Convert balanced features and labels to numpy arrays
balanced_features = np.array(balanced_features, dtype=np.float32)
balanced_labels = np.array(balanced_labels)
# Label Encoding for balanced labels
label_encoder = LabelEncoder()
encoded_labels = label_encoder.fit_transform(balanced_labels)
# Save the label encoder for future use
with open('label_encoder.pkl', 'wb') as f:
    pickle.dump(label_encoder, f)
# Print final balanced data shapes
print(f"Balanced features shape: {balanced_features.shape}")
print(f"Balanced labels shape: {encoded_labels.shape}")
→ Original class distribution:
     species
     major
     nalustris
                   6
     montanus
                   6
     trochilus
     sibilatrix
                   3
     caeruleus
     canorus
     frugilegus
     corone
     coelebs
     Name: count, Length: 85, dtype: int64
     Balanced features shape: (510, 128, 128)
     Balanced labels shape: (510,)
```

Visualization:

```
import matplotlib.pyplot as plt

# Visualize a random Mel spectrogram
plt.figure(figsize=(10, 4))
plt.imshow(balanced_features[0], aspect='auto', origin='lower')
plt.title('Mel Spectrogram')
plt.colorbar(format='%+2.0f dB')
plt.tight_layout()
plt.show()
```


2: Model Building

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
# Define the CNN model
model = Sequential([
Conv2D(32, (3, 3), activation='relu', input_shape=(128, 128, 1)), # Assuming (128, 128) Mel spectrogram
MaxPooling2D(2, 2),
Conv2D(64, (3, 3), activation='relu'),
MaxPooling2D(2, 2),
Flatten(),
Dense(128, activation='relu'),
Dropout(0.5).
Dense(len(label_encoder.classes_), activation='softmax') # Number of output neurons = number of species
# Compile the model
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
# Model summary
model.summary()
```

/usr/local/lib/python3.10/dist-packages/keras/src/layers/convolutional/base_conv.py:107: UserWarning: Do not pass an `input_shape`/`inpu super().__init__(activity_regularizer=activity_regularizer, **kwargs)

Model: "sequential_8"

Layer (type)	Output Shape	Param #
conv2d_8 (Conv2D)	(None, 126, 126, 32)	320
max_pooling2d_8 (MaxPooling2D)	(None, 63, 63, 32)	0
conv2d_9 (Conv2D)	(None, 61, 61, 64)	18,496
max_pooling2d_9 (MaxPooling2D)	(None, 30, 30, 64)	0
flatten_4 (Flatten)	(None, 57600)	0
dense_16 (Dense)	(None, 128)	7,372,928
dropout_4 (Dropout)	(None, 128)	0
dense_17 (Dense)	(None, 85)	10,965

Total params: 7,402,709 (28.24 MB) Trainable params: 7,402,709 (28.24 MB)

\blacksquare

3: Model Training and Validation

```
# Train the model
history = model.fit(balanced_features, encoded_labels, epochs=50, batch_size=32, validation_split=0.2)
# Save the model
model.save('bird_species_model.keras') # Save model for later use
```

```
13/13 •
                              - 8s 444ms/step - accuracy: 0.0041 - loss: 56.1417 - val_accuracy: 0.0000e+00 - val_loss: 4.4429
    Epoch 2/50
    13/13 -
                             - 4s 26ms/step - accuracy: 0.0830 - loss: 4.2989 - val_accuracy: 0.0000e+00 - val_loss: 4.6454
    Epoch 3/50
    13/13 -
                              - 1s 19ms/step - accuracy: 0.3040 - loss: 3.2685 - val_accuracy: 0.0000e+00 - val_loss: 4.9327
    Epoch 4/50
    13/13 •
                              - 0s 17ms/step - accuracy: 0.5888 - loss: 2.0589 - val_accuracy: 0.0000e+00 - val_loss: 8.4073
    Epoch 5/50
    13/13 -
                             — 0s 18ms/step - accuracy: 0.8282 - loss: 0.9021 - val_accuracy: 0.0000e+00 - val_loss: 10.1100
    Epoch 6/50
    13/13 •
                             – 0s 17ms/step - accuracy: 0.9549 - loss: 0.2960 - val_accuracy: 0.0000e+00 - val_loss: 12.1584
    Epoch 7/50
                             — 0s 19ms/step - accuracy: 0.9731 - loss: 0.1765 - val_accuracy: 0.0000e+00 - val_loss: 11.8808
    13/13 -
    Epoch 8/50
    13/13 •
                              - 0s 17ms/step - accuracy: 0.9821 - loss: 0.0994 - val_accuracy: 0.0000e+00 - val_loss: 10.5967
    Epoch 9/50
    13/13 -
                              - 0s 16ms/step - accuracy: 0.9868 - loss: 0.1235 - val_accuracy: 0.0000e+00 - val_loss: 10.4527
    Fnoch 10/50
    13/13 -
                              - 0s 16ms/step - accuracy: 0.9805 - loss: 0.0943 - val_accuracy: 0.0000e+00 - val_loss: 11.0569
    Epoch 11/50
    13/13
                             — 0s 16ms/step - accuracy: 0.9950 - loss: 0.0514 - val_accuracy: 0.0000e+00 - val_loss: 10.8663
```

```
Epoch 12/50
                         - Os 15ms/step - accuracy: 0.9910 - loss: 0.0494 - val accuracy: 0.0000e+00 - val loss: 13.4339
13/13
Epoch 13/50
13/13 •
                         - 0s 15ms/step - accuracy: 0.9910 - loss: 0.0691 - val accuracy: 0.0000e+00 - val loss: 18.4669
Epoch 14/50
13/13 -
                           Os 16ms/step - accuracy: 0.9840 - loss: 0.0741 - val_accuracy: 0.0000e+00 - val_loss: 13.4831
Epoch 15/50
                         - 0s 15ms/step - accuracy: 0.9934 - loss: 0.0524 - val_accuracy: 0.0000e+00 - val_loss: 12.9841
13/13 •
Epoch 16/50
13/13 -
                         - 0s 16ms/step - accuracy: 0.9898 - loss: 0.0676 - val_accuracy: 0.0000e+00 - val_loss: 12.3813
Epoch 17/50
                         - 0s 16ms/step - accuracy: 0.9889 - loss: 0.0571 - val_accuracy: 0.0000e+00 - val_loss: 13.0866
13/13 -
Epoch 18/50
13/13 •
                         - 0s 16ms/step - accuracy: 0.9882 - loss: 0.0417 - val accuracy: 0.0000e+00 - val loss: 12.4625
Epoch 19/50
13/13 •
                         - 0s 17ms/step - accuracy: 0.9879 - loss: 0.0910 - val_accuracy: 0.0000e+00 - val_loss: 13.2601
Epoch 20/50
13/13
                         - 0s 16ms/step - accuracy: 0.9904 - loss: 0.0783 - val_accuracy: 0.0000e+00 - val_loss: 11.1171
Epoch 21/50
13/13 -
                         - 0s 16ms/step - accuracy: 0.9820 - loss: 0.0973 - val_accuracy: 0.0000e+00 - val_loss: 11.4379
Epoch 22/50
13/13 •
                         - 0s 16ms/step - accuracy: 0.9978 - loss: 0.0356 - val_accuracy: 0.0000e+00 - val_loss: 13.1843
Epoch 23/50
13/13 -
                         - 0s 17ms/step - accuracy: 0.9974 - loss: 0.0417 - val_accuracy: 0.0000e+00 - val_loss: 12.5246
Epoch 24/50
13/13 •
                         - 0s 17ms/step - accuracy: 0.9877 - loss: 0.0316 - val accuracy: 0.0000e+00 - val loss: 10.7373
Epoch 25/50
13/13 •
                         - 0s 17ms/step - accuracy: 0.9975 - loss: 0.0261 - val_accuracy: 0.0000e+00 - val_loss: 12.6505
Epoch 26/50
13/13 -
                         - 0s 16ms/step - accuracy: 0.9995 - loss: 0.0121 - val_accuracy: 0.0000e+00 - val_loss: 13.2682
Epoch 27/50
13/13
                         - 0s 16ms/step - accuracy: 0.9955 - loss: 0.0199 - val_accuracy: 0.0000e+00 - val_loss: 11.6348
Epoch 28/50
13/13 -
                         - 0s 16ms/step - accuracy: 0.9881 - loss: 0.0358 - val_accuracy: 0.0000e+00 - val_loss: 12.5774
Epoch 29/50
13/13 •
                         - 0s 17ms/step - accuracy: 0.9934 - loss: 0.0328 - val accuracy: 0.0000e+00 - val loss: 13.5234
```

Visualization:

Training and Validation Accuracy Plot

```
import matplotlib.pyplot as plt
# Plot training & validation accuracy over epochs
plt.figure(figsize=(10, 6))
plt.plot(history.history['accuracy'], label='Training Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend(loc='upper left')
plt.grid(True)
plt.show()
```

 \overline{z}

20

Epochs

30

50

40

Training and Validation Loss Plot

```
# Plot training & validation loss over epochs
plt.figure(figsize=(10, 6))
plt.plot(history.history['loss'], label='Training Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.title('Training and Validation Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend(loc='upper right')
plt.grid(True)
plt.show()
```

10

4: Model Evaluation

5: Bird Species Prediction

```
# Path to the new audio file
new_audio_path = '/content/drive/MyDrive/dataset for bird/264 birds/songs/xc101935.flac'
# Extract features from the new audio file
new_feature = extract_features(new_audio_path)
new_feature = np.expand_dims(new_feature, axis=0) # Add batch dimension
new_feature = np.expand_dims(new_feature, axis=-1) # Add channel dimension (for grayscale)
# Predict using the trained model
prediction = model.predict(new_feature)
# Get the predicted label (the index of the highest probability)
predicted_label = np.argmax(prediction, axis=1)
# Decode the predicted label back to the species name
predicted_species = label_encoder.inverse_transform(predicted_label)
print(f"Predicted Bird Species: {predicted_species[0]}")
    1/1 -
                           -- 0s 236ms/step
     Predicted Bird Species: sibilatrix
```

Visualization:

Plotting the Confusion Matrix with Axes Subplot

```
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
# Ensure validation features have the right shape: (batch_size, 128, 128, 1)
validation_features = balanced_features[:int(0.2 * len(balanced_features))] # Assuming 20% validation split
validation_labels = encoded_labels[:int(0.2 * len(encoded_labels))]
# Expand dimensions to match the model's input shape (batch_size, 128, 1)
validation_features = np.expand_dims(validation_features, axis=-1) # Add the channel dimension
# Generate predictions
predictions = model.predict(validation_features)
predicted_labels = np.argmax(predictions, axis=1)
# Create confusion matrix
cm = confusion_matrix(validation_labels, predicted_labels)
# Set up the plot grid and axes subplot
fig, ax = plt.subplots(figsize=(12, 10))
# Plot the confusion matrix using seaborn heatmap
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', ax=ax,
           xticklabels=label_encoder.classes_, yticklabels=label_encoder.classes_)
# Set titles and labels for better understanding
ax.set_title('Confusion Matrix: Predictions vs Actual Labels', fontsize=16)
ax.set_xlabel('Predicted Labels', fontsize=14)
```

ax.set_ylabel('True Labels', fontsize=14)
Display the plot
plt.show()

Confusion Matrix with Heatmap

```
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
import numpy as np

# Ensure the input features have the correct shape (batch_size, 128, 128, 1)
features_with_channel = np.expand_dims(balanced_features, axis=-1) # Add channel dimension for grayscale

# Generate predictions
y_pred = model.predict(features_with_channel) # Make predictions on the features with the correct shape
y_pred_classes = np.argmax(y_pred, axis=1) # Get the predicted class labels

# Compute confusion matrix
conf_matrix = confusion_matrix(encoded_labels, y_pred_classes)
```

```
# Plot heatmap
plt.figure(figsize=(12, 10))
sns.heatmap(conf_matrix, annot=True, fmt="d", cmap="Blues", xticklabels=label_encoder.classes_, yticklabels=label_encoder.classes_)
plt.title('Confusion Matrix Heatmap')
plt.ylabel('True Label')
plt.xlabel('Predicted Label')

# Show the plot
plt.show()
```


Heatmap of the Model's Prediction Probabilities

```
# Assuming y_pred is the prediction probabilities (from model.predict())
plt.figure(figsize=(12, 8))
sns.heatmap(y_pred, cmap="YlGnBu", annot=False)
plt.title('Prediction Probabilities Heatmap')
plt.xlabel('Species Classes')
plt.ylabel('Samples')
# Show the plot
```

plt.show()

Countplot for Bird Species Distribution

```
import seaborn as sns
import matplotlib.pyplot as plt

# Assuming you have the labels and they are already encoded
species_labels = label_encoder.inverse_transform(encoded_labels)  # Decode the labels back to species names

# Create a countplot
plt.figure(figsize=(15, 8))
sns.countplot(y=species_labels, order=pd.Series(species_labels).value_counts().index, palette="viridis")

# Set titles and labels for the plot
plt.title('Bird Species Count Distribution', fontsize=16)
plt.xlabel('Count', fontsize=14)

# Show the plot
plt.show()
```

<ipython-input-67-000f6f6048e9>:9: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend sns.countplot(y=species_labels, order=pd.Series(species_labels).value_counts().index, palette="viridis")

Precision-Recall Curve

```
from sklearn.metrics import precision_recall_curve, average_precision_score
from sklearn.preprocessing import label_binarize
import matplotlib.pyplot as plt
import numpy as np
# Ensure labels are one-hot encoded if they are not
if len(validation_labels.shape) == 1:
    val_labels_binarized = label_binarize(validation_labels, classes=np.unique(validation_labels))
    val_labels_binarized = validation_labels # Already one-hot encoded
# Get predicted probabilities for the validation set
y_scores = model.predict(validation_features)
# Define the number of classes based on training data or unique labels in encoded
n_classes = val_labels_binarized.shape[1] # This should work now
# Calculate Precision-Recall for each class
precision = dict()
recall = dict()
average_precision = dict()
for i in range(n_classes):
    if np.sum(val_labels_binarized[:, i]) == 0:
        print (f"Warning: \ No \ positive \ samples \ in \ class \ \{i\}, \ skipping \ Precision-Recall \ computation.")
        continue
    precision[i], recall[i], _ = precision_recall_curve(val_labels_binarized[:, i], y_scores[:, i])
    average_precision[i] = average_precision_score(val_labels_binarized[:, i], y_scores[:, i])
# Plot Precision-Recall curve for each class
```

```
plt.figure(figsize=(15, 10))
for i in range(n_classes):
    if i in precision:
        plt.plot(recall[i], precision[i], lw=2, label=f'Class {i} (area = {average_precision[i]:.2f})')

plt.xlabel("Recall")
plt.ylabel("Precision")
plt.title("Precision-Recall Curve for Multiclass Classification (One-vs-Rest)")
plt.legend(loc="best")
plt.show()
```


→ Receiver Operating Characteristic (ROC) Curve

```
from sklearn.metrics import roc_curve, auc
from sklearn.preprocessing import label_binarize
import matplotlib.pyplot as plt
import numpy as np

# Ensure labels are one-hot encoded if they are not
if len(validation_labels.shape) == 1:
    val_labels_binarized = label_binarize(validation_labels, classes=np.unique(validation_labels))
else:
    val_labels_binarized = validation_labels # Already one-hot encoded

# Get predicted probabilities for the validation set
y_scores = model.predict(validation_features)
```

```
# Define the number of classes based on the validation labels or training data
n classes = val labels binarized.shape[1] # This should work now
# Calculate ROC curve and AUC for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
    fpr[i], tpr[i], _ = roc_curve(val_labels_binarized[:, i], y_scores[:, i])
    roc_auc[i] = auc(fpr[i], tpr[i])
# Plot ROC curve for each class
plt.figure(figsize=(10, 8))
for i in range(n_classes):
    plt.plot(fpr[i], \; tpr[i], \; lw=2, \; label=f'Class \; \{i\} \; (AUC = \{roc\_auc[i]:.2f\})')
# Plot the diagonal line (random guessing)
plt.plot([0, 1], [0, 1], 'k--', lw=2)
plt.title('Multiclass ROC Curves')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.legend(loc="best")
plt.show()
```

→ 4/4 — 0s 4ms/step

Cumulative Gain Curve (Multiclass Classification)

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import label_binarize
from sklearn.metrics import precision_recall_curve

# Ensure the labels are one-hot encoded
if len(validation_labels.shape) == 1:
```

11/18/24. 11:10 PM

```
val_labels_binarized = label_binarize(validation_labels, classes=np.unique(validation_labels))
else:
    val_labels_binarized = validation_labels # Already one-hot encoded
# Get predicted probabilities for the validation set
y_scores = model.predict(validation_features)
# Define the number of classes based on the validation labels
n_classes = val_labels_binarized.shape[1]
# Calculate the Cumulative Gain curve for each class
cumulative_gain = dict()
for i in range(n_classes):
    # Get predicted probabilities and true labels for the class
    probs = y_scores[:, i]
    true labels = val labels binarized[:, i]
    # Sort by predicted probabilities in descending order
    sorted_indices = np.argsort(probs)[::-1]
    sorted_true_labels = true_labels[sorted_indices]
    # Calculate cumulative gain (i.e., cumulative sum of true positives)
    cumulative_gain[i] = np.cumsum(sorted_true_labels).astype(float)  # Ensure it's a float array
    # Normalize cumulative gain (to get the percentage of true positives)
    cumulative_gain[i] /= cumulative_gain[i][-1]
# Plot Cumulative Gain Curves for each class
plt.figure(figsize=(10, 8))
for i in range(n classes):
    \verb|plt.plot(np.linspace(0, 1, len(cumulative\_gain[i])), cumulative\_gain[i], lw=2, label=f'Class \{i\}')|
plt.xlabel('Proportion of Instances (Ranked by Predicted Probability)')
plt.ylabel('Cumulative Gain')
plt.title('Cumulative Gain Curves for Multiclass Classification')
plt.legend(loc='best')
plt.grid(True)
plt.show()
```


Class Distribution Plot (Count Plot)

```
import seaborn as sns

# Plot the distribution of labels
plt.figure(figsize=(10, 6))
sns.countplot(x=encoded_labels)
plt.title('Class Distribution in Dataset')
plt.xlabel('Classes')
plt.ylabel('Count')
plt.xticks(rotation=90) # Rotate labels if necessary
plt.show()
```


Class Distribution in Dataset

∨ Learning Rate Finder Plot

```
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import (
   confusion_matrix,
   precision recall curve,
   average_precision_score,
   roc_curve,
    auc
from keras.callbacks import Callback
import keras
from sklearn.preprocessing import MultiLabelBinarizer
# Custom Callback to log learning rates
class LearningRateLogger(Callback):
    def __init__(self):
        super(LearningRateLogger, self).__init__()
        self.learning_rates = []
    def on_epoch_end(self, epoch, logs=None):
        # Access the learning rate directly from the optimizer
        lr = self.model.optimizer.learning_rate.numpy() # Use .numpy() to get the value
        self.learning_rates.append(lr)
# Example: Generate synthetic data for demonstration (replace this with your actual data)
num_samples = 1000  # Total number of samples
num classes = 18  # Number of classes
# Generate random features and labels (for demonstration)
np.random.seed(42)
features = np.random.rand(num_samples, 64) # Assuming 64 features
encoded_labels = np.random.randint(0, num_classes, size=(num_samples,)) # Random class labels
# Convert to one-hot encoding (binarization)
mlb = MultiLabelBinarizer()
encoded_labels = mlb.fit_transform(encoded_labels.reshape(-1, 1))
# Split the data into training and validation sets
train_size = int(0.8 * num_samples)
training_features = features[:train_size]
training_labels = encoded_labels[:train_size]
```

```
validation_features = features[train_size:]
validation labels = encoded labels[train size:]
# Create an instance of the learning rate logger
lr_logger = LearningRateLogger()
# Assuming 'model' is your trained Keras model
# Here is a sample model definition (replace with your actual model)
from keras.models import Sequential
from keras.layers import Dense
model = Sequential()
model.add(Dense(128, activation='relu', input_shape=(training_features.shape[1],)))
model.add(Dense(num_classes, activation='softmax')) # Output layer for multi-class classification
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# Train the model with the learning rate logger
history = model.fit(
    training_features,
    training_labels,
    epochs=300, # Adjust as needed
    validation_data=(validation_features, validation_labels),
    callbacks=[lr_logger]
# Generate predictions for confusion matrix and other metrics
predictions = model.predict(validation_features)
predicted_labels = np.argmax(predictions, axis=1)
# Create confusion matrix
cm = confusion_matrix(np.argmax(validation_labels, axis=1), predicted_labels)
# Plot confusion matrix
plt.figure(figsize=(12, 10))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
            xticklabels=mlb.classes_, yticklabels=mlb.classes_)
plt.title('Confusion Matrix: Predictions vs Actual Labels')
plt.xlabel('Predicted Labels')
plt.ylabel('True Labels')
plt.show()
# Ensure predictions are properly formatted for precision-recall
y_scores = predictions # No need to use [:, 1] as it's multiclass
# Compute precision-recall curve
precision, recall, _ = precision_recall_curve(validation_labels.ravel(), y_scores.ravel())
average precision = average precision score(validation labels, y scores, average="micro")
# Plot Precision-Recall Curve
plt.figure(figsize=(8, 6))
plt.plot(recall, precision, label=f'Average Precision = {average_precision:.2f}')
plt.title('Precision-Recall Curve')
plt.xlabel('Recall')
plt.vlabel('Precision')
plt.legend()
plt.show()
# Compute ROC curve and AUC for each class
for i in range(validation_labels.shape[1]):
    fpr, tpr, _ = roc_curve(validation_labels[:, i], y_scores[:, i])
    roc_auc = auc(fpr, tpr)
    plt.figure(figsize=(8, 6))
    plt.plot(fpr, tpr, label=f'AUC for class {mlb.classes_[i]} = {roc_auc:.2f}')
    plt.plot([0, 1], [0, 1], 'k--') # Dashed diagonal line
    plt.title(f'ROC Curve for class {mlb.classes_[i]}')
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.legend()
    plt.show()
# Plot Learning Rate vs Loss
lrs = lr_logger.learning_rates
losses = history.history['loss']
plt.figure(figsize=(8, 6))
plt.plot(lrs, losses)
```

11/18/24, 11:10 PM

25/25 •

→ Epoch 1/300 /usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87: UserWarning: Do not pass an `input_shape`/`input_dim` argumen super().__init__(activity_regularizer=activity_regularizer, **kwargs) • 2s 35ms/step - accuracy: 0.0627 - loss: 2.9519 - val_accuracy: 0.0450 - val_loss: 2.8942 25/25 Epoch 2/300 25/25 **- 0s** 4ms/step - accuracy: 0.0598 - loss: 2.8739 - val_accuracy: 0.0800 - val_loss: 2.8988 Epoch 3/300 25/25 -Os 5ms/step - accuracy: 0.0905 - loss: 2.8517 - val_accuracy: 0.0700 - val_loss: 2.8998 Epoch 4/300 25/25 -Os 3ms/step - accuracy: 0.0950 - loss: 2.8326 - val_accuracy: 0.0700 - val_loss: 2.9019 Epoch 5/300 25/25 • **0s** 2ms/step - accuracy: 0.1125 - loss: 2.8019 - val_accuracy: 0.0650 - val_loss: 2.9030 Epoch 6/300 25/25 • Os 3ms/step - accuracy: 0.1065 - loss: 2.7979 - val_accuracy: 0.0550 - val_loss: 2.8988 Epoch 7/300 25/25 Os 3ms/step - accuracy: 0.1244 - loss: 2.7700 - val_accuracy: 0.0650 - val_loss: 2.9140 Epoch 8/300 25/25 • Os 3ms/step - accuracy: 0.1389 - loss: 2.7630 - val_accuracy: 0.0850 - val_loss: 2.9161 Epoch 9/300 25/25 • Os 2ms/step - accuracy: 0.1500 - loss: 2.7244 - val_accuracy: 0.0550 - val_loss: 2.9159 Epoch 10/300 25/25 -Os 3ms/step - accuracy: 0.1870 - loss: 2.6955 - val_accuracy: 0.0600 - val_loss: 2.9214 Epoch 11/300 25/25 -Os 3ms/step - accuracy: 0.2094 - loss: 2.6721 - val_accuracy: 0.0700 - val_loss: 2.9271 Epoch 12/300 25/25 • Os 2ms/step - accuracy: 0.2266 - loss: 2.6551 - val_accuracy: 0.0550 - val_loss: 2.9326 Epoch 13/300 25/25 Os 3ms/step - accuracy: 0.2167 - loss: 2.6494 - val accuracy: 0.0500 - val loss: 2.9308 Epoch 14/300 25/25 Os 3ms/step - accuracy: 0.1999 - loss: 2.6118 - val_accuracy: 0.0550 - val_loss: 2.9335 Epoch 15/300 25/25 Os 3ms/step - accuracy: 0.2433 - loss: 2.5903 - val_accuracy: 0.0550 - val_loss: 2.9487 Epoch 16/300 25/25 Os 3ms/step - accuracy: 0.2169 - loss: 2.5803 - val_accuracy: 0.0400 - val_loss: 2.9798 Epoch 17/300 25/25 -Os 3ms/step - accuracy: 0.2428 - loss: 2.5435 - val_accuracy: 0.0600 - val_loss: 2.9672 Epoch 18/300 25/25 • **0s** 3ms/step - accuracy: 0.2742 - loss: 2.5152 - val accuracy: 0.0500 - val loss: 2.9600 Epoch 19/300 25/25 Os 3ms/step - accuracy: 0.2886 - loss: 2.4906 - val_accuracy: 0.0450 - val_loss: 2.9965 Epoch 20/300 25/25 • **0s** 3ms/step - accuracy: 0.2624 - loss: 2.4765 - val accuracy: 0.0650 - val loss: 2.9839 Epoch 21/300 25/25 Os 3ms/step - accuracy: 0.2769 - loss: 2.4760 - val_accuracy: 0.0350 - val_loss: 2.9986 Enoch 22/300 25/25 Os 3ms/step - accuracy: 0.2764 - loss: 2.4535 - val_accuracy: 0.0500 - val_loss: 3.0089 Epoch 23/300 25/25 Os 2ms/step - accuracy: 0.3399 - loss: 2.3876 - val_accuracy: 0.0300 - val_loss: 3.0365 Epoch 24/300 25/25 -Os 3ms/step - accuracy: 0.2814 - loss: 2.4093 - val_accuracy: 0.0550 - val_loss: 3.0203 Epoch 25/300 25/25 -Os 3ms/step - accuracy: 0.2912 - loss: 2.3778 - val_accuracy: 0.0400 - val_loss: 3.0487 Epoch 26/300 25/25 Os 3ms/step - accuracy: 0.3570 - loss: 2.3234 - val_accuracy: 0.0600 - val_loss: 3.0492 Epoch 27/300 25/25 Os 3ms/step - accuracy: 0.3110 - loss: 2.3259 - val_accuracy: 0.0400 - val_loss: 3.0691 Epoch 28/300 25/25 Os 3ms/step - accuracy: 0.3438 - loss: 2.3189 - val_accuracy: 0.0450 - val_loss: 3.0672 Epoch 29/300 25/25 • Os 3ms/step - accuracy: 0.3612 - loss: 2.2501 - val_accuracy: 0.0500 - val_loss: 3.0770 Epoch 30/300 25/25 Os 3ms/step - accuracy: 0.3645 - loss: 2.2325 - val_accuracy: 0.0350 - val_loss: 3.0898 Epoch 31/300 **Os** 3ms/step - accuracy: 0.3719 - loss: 2.2255 - val_accuracy: 0.0450 - val_loss: 3.0975 25/25 -Epoch 32/300 25/25 Os 3ms/step - accuracy: 0.3582 - loss: 2.2402 - val_accuracy: 0.0400 - val_loss: 3.1260 Epoch 33/300 25/25 Os 3ms/step - accuracy: 0.3483 - loss: 2.2131 - val_accuracy: 0.0400 - val_loss: 3.1388 Epoch 34/300 25/25 **0s** 2ms/step - accuracy: 0.3599 - loss: 2.1893 - val accuracy: 0.0350 - val loss: 3.1450 Epoch 35/300 25/25 • Os 3ms/step - accuracy: 0.3484 - loss: 2.1720 - val_accuracy: 0.0450 - val_loss: 3.1687 Epoch 36/300 25/25 Os 3ms/step - accuracy: 0.4020 - loss: 2.1391 - val_accuracy: 0.0400 - val_loss: 3.1711 Epoch 37/300 25/25 **0s** 3ms/step - accuracy: 0.3798 - loss: 2.1503 - val accuracy: 0.0300 - val loss: 3.1943 Epoch 38/300 25/25 **Os** 3ms/step - accuracy: 0.4005 - loss: 2.1081 - val_accuracy: 0.0300 - val_loss: 3.2051 Epoch 39/300 25/25 Os 4ms/step - accuracy: 0.4176 - loss: 2.0783 - val_accuracy: 0.0250 - val_loss: 3.2273 Epoch 40/300 25/25 **0s** 3ms/step - accuracy: 0.3755 - loss: 2.0966 - val_accuracy: 0.0450 - val_loss: 3.2259 Epoch 41/300

Os 3ms/step - accuracy: 0.4146 - loss: 2.0568 - val_accuracy: 0.0300 - val_loss: 3.2308

Reasearch trained model.ipynb - Colab

	42/300							_			
25/25 Epoch	43/300	0s	3ms/step	- accuracy:	0.4121 -	- loss:	2.0086	- val_accuracy:	0.0350	- val_loss:	3.2423
25/25 Enoch	44/300	0s	2ms/step	- accuracy:	0.4235 -	- loss:	2.0211	- val_accuracy:	0.0250	- val_loss:	3.2626
25/25		0s	3ms/step	- accuracy:	0.3979 -	loss:	2.0005	- val_accuracy:	0.0500	- val_loss:	3.2895
25/25	45/300	0s	2ms/step	- accuracy:	0.3936 -	loss:	2.0065	- val_accuracy:	0.0250	- val_loss:	3.2908
Epoch 25/25	46/300	0s	3ms/step	- accuracy:	0.4428 -	- loss:	1.9623	- val_accuracy:	0.0200	- val_loss:	3.2925
Epoch 25/25	47/300	۵s	3ms/sten	- accuracy:	0 4373 -	- loss·	1 9521	- val accuracy:	0 0350	- val loss:	3 3172
Epoch	48/300									_	
	49/300							- val_accuracy:		_	
25/25 Epoch	50/300	0s	3ms/step	- accuracy:	0.4419 -	- loss:	1.9455	- val_accuracy:	0.0300	- val_loss:	3.3518
25/25 Epoch	51/300	0s	2ms/step	- accuracy:	0.4313 -	- loss:	1.9313	- val_accuracy:	0.0300	- val_loss:	3.3426
25/25		0s	3ms/step	- accuracy:	0.4368 -	loss:	1.9185	- val_accuracy:	0.0350	- val_loss:	3.3508
25/25		0s	3ms/step	- accuracy:	0.4765 -	- loss:	1.8787	- val_accuracy:	0.0300	- val_loss:	3.3879
25/25	53/300	0s	3ms/step	- accuracy:	0.4728 -	- loss:	1.8496	- val_accuracy:	0.0300	- val_loss:	3.3812
Epoch 25/25	54/300	0s	3ms/step	- accuracy:	0.4920 -	- loss:	1.8431	- val_accuracy:	0.0250	- val_loss:	3.3851
Epoch 25/25	55/300	05	3ms/sten	- accuracy:	0.4729 -	- loss:	1.8444	- val accuracy:	0.0450	- val loss:	3,4372
	56/300							- val accuracy:		_	
Epoch	57/300									_	
25/25 Epoch	58/300			-				- val_accuracy:			
25/25 Epoch	59/300	0s	3ms/step	- accuracy:	0.5272 -	- loss:	1.7865	- val_accuracy:	0.0300	- val_loss:	3.4391
25/25 Epoch	60/300	0s	3ms/step	- accuracy:	0.5166 -	- loss:	1.7773	- val_accuracy:	0.0300	- val_loss:	3.4680
25/25		0s	3ms/step	- accuracy:	0.4919 -	- loss:	1.7856	- val_accuracy:	0.0350	- val_loss:	3.4785
25/25		0s	3ms/step	- accuracy:	0.4934 -	loss:	1.7512	- val_accuracy:	0.0250	- val_loss:	3.4895
25/25		0s	3ms/step	- accuracy:	0.5128 -	- loss:	1.7509	- val_accuracy:	0.0250	- val_loss:	3.5080
Epoch 25/25	63/300	0s	3ms/step	- accuracv:	0.5532 -	- loss:	1.6870	- val_accuracy:	0.0450	- val loss:	3.5077
	64/300			-				val_accuracy:			
Epoch	65/300			-							
25/25 Epoch	66/300							- val_accuracy:		_	
25/25 Epoch	67/300	0s	3ms/step	- accuracy:	0.5669 -	- loss:	1.6484	- val_accuracy:	0.0400	- val_loss:	3.5274
25/25 Epoch	68/300	0s	3ms/step	- accuracy:	0.5199 -	- loss:	1.6484	- val_accuracy:	0.0400	- val_loss:	3.5925
25/25		0s	2ms/step	- accuracy:	0.5504 -	- loss:	1.6208	- val_accuracy:	0.0300	- val_loss:	3.5913
25/25		0s	3ms/step	- accuracy:	0.5360 -	loss:	1.6398	- val_accuracy:	0.0300	- val_loss:	3.5846
25/25	70/300	0s	3ms/step	- accuracy:	0.5318 -	loss:	1.6224	- val_accuracy:	0.0250	- val_loss:	3.5925
Epoch 25/25	71/300	0s	3ms/sten	- accuracy:	0.5513 -	loss:	1.5755	<pre>- val_accuracy:</pre>	0.0350	- val loss:	3.6274
Epoch	72/300			-				val_accuracy:			
	73/300			-							
25/25 Epoch	74/300	0s	3ms/step	- accuracy:	0.5313 -	- loss:	1.5944	- val_accuracy:	0.0300	- val_loss:	3.6454
25/25 Epoch	75/300	0s	3ms/step	- accuracy:	0.5556 -	- loss:	1.5482	- val_accuracy:	0.0200	- val_loss:	3.6659
25/25 Enoch	76/300	0s	3ms/step	- accuracy:	0.5900 -	- loss:	1.5269	- val_accuracy:	0.0300	- val_loss:	3.6675
25/25		0s	3ms/step	- accuracy:	0.5423 -	- loss:	1.5614	- val_accuracy:	0.0250	- val_loss:	3.6930
25/25		0s	3ms/step	- accuracy:	0.5782 -	- loss:	1.5161	- val_accuracy:	0.0300	- val_loss:	3.6763
25/25	78/300	0s	3ms/step	- accuracy:	0.6192 -	- loss:	1.4498	- val_accuracy:	0.0250	- val_loss:	3.7087
Epoch 25/25	79/300	0s	2ms/step	- accuracy:	0.6179 -	loss:	1.4713	- val_accuracy:	0.0250	- val_loss:	3.7160
Epoch 25/25	80/300	0s	3ms/sten	- accuracv:	0.5974 -	- loss:	1.4764	- val_accuracy:	0.0250	- val loss:	3.7520
	81/300							val_accuracy:			
Epoch	82/300										
	83/300			-				- val_accuracy:			
25/25 Epoch	84/300	0s	3ms/step	- accuracy:	0.6214 -	- loss:	1.4382	- val_accuracy:	0.0250	- val_loss:	3.7735

Reasearch trained model.ipynb - Colab

,											
25/25 Enoch	85/300	0s	3ms/step -	accuracy:	0.6365	- loss:	1.3585	- val_accuracy:	0.0250 -	val_loss:	3.7575
25/25		0s	3ms/step -	accuracy:	0.6343	- loss:	1.3837	- val_accuracy:	0.0250 -	val_loss:	3.7711
Epoch 25/25	86/300	0s	3ms/step -	accuracy:	0.6120	- loss:	1.3991	- val_accuracy:	0.0350 -	val_loss:	3.8060
Epoch 25/25	87/300	۵c	/ms/sten -	accuracy.	0 6770	- loss.	1 337/	- val accuracy:	0 0250 -	val loss:	3 8216
Epoch	88/300									_	
25/25 Epoch	89/300	0s	5ms/step -	accuracy:	0.6538	- loss:	1.3608	- val_accuracy:	0.0250 -	val_loss:	3.8393
25/25 Enoch	90/300	0s	4ms/step -	accuracy:	0.6630	- loss:	1.3286	- val_accuracy:	0.0300 -	val_loss:	3.8358
25/25		0s	4ms/step -	accuracy:	0.6622	- loss:	1.3122	val_accuracy:	0.0300 -	val_loss:	3.8349
25/25		0s	4ms/step -	accuracy:	0.6730	- loss:	1.2984	- val_accuracy:	0.0200 -	val_loss:	3.8541
Epoch 25/25	92/300	0s	4ms/step -	accuracy:	0.6937	- loss:	1.2836	- val_accuracy:	0.0250 -	val_loss:	3.8743
Epoch 25/25	93/300	05	5ms/step -	accuracy:	0.6863	- loss:	1.2554	- val accuracy:	0.0250 -	val loss:	3.9104
Epoch	94/300									_	
25/25 Epoch	95/300							- val_accuracy:		_	
25/25 Epoch	96/300	0s	4ms/step -	accuracy:	0.6869	- loss:	1.2360	- val_accuracy:	0.0300 -	val_loss:	3.9280
25/25 Enoch	97/300	0s	5ms/step -	accuracy:	0.7122	- loss:	1.2106	val_accuracy:	0.0150 -	val_loss:	3.9273
25/25		0s	4ms/step -	accuracy:	0.7262	- loss:	1.1916	val_accuracy:	0.0250 -	val_loss:	3.9405
25/25	98/300	0s	5ms/step -	accuracy:	0.7176	- loss:	1.1804	- val_accuracy:	0.0300 -	val_loss:	3.9718
Epoch 25/25	99/300	0s	5ms/step -	accuracy:	0.7370	- loss:	1.1807	- val accuracy:	0.0150 -	val loss:	3.9693
Epoch 25/25	100/300	as	4ms/sten -	accuracy.	0 7386	- loss	1 1556	- val accuracy:	0 0350 -	val loss:	3 9575
Epoch	101/300									_	
25/25 Epoch	102/300							- val_accuracy:		_	
25/25 Epoch	103/300	0s	4ms/step -	accuracy:	0.7670	- loss:	1.1200	- val_accuracy:	0.0100 -	val_loss:	4.0083
25/25 Enoch	104/300	0s	3ms/step -	accuracy:	0.7390	- loss:	1.1253	val_accuracy:	0.0200 -	val_loss:	3.9941
25/25		0s	3ms/step -	accuracy:	0.7577	- loss:	1.0978	- val_accuracy:	0.0200 -	val_loss:	4.0153
25/25	105/300	0s	3ms/step -	accuracy:	0.7653	- loss:	1.0854	- val_accuracy:	0.0200 -	val_loss:	4.0253
Epoch 25/25	106/300	05	3ms/step -	accuracy:	0.7398	- loss:	1.1345	- val accuracy:	0.0150 -	val loss:	4.0561
-	107/300							val accuracy:		_	
Epoch	108/300									_	
25/25 Epoch	109/300	0s	3ms/step -	accuracy:	0.7608	- loss:	1.0690	- val_accuracy:	0.0200 -	val_loss:	4.1216
25/25 Epoch	110/300	0s	3ms/step -	accuracy:	0.7590	- loss:	1.0680	- val_accuracy:	0.0100 -	val_loss:	4.0769
25/25		0s	3ms/step -	accuracy:	0.7436	- loss:	1.0681	val_accuracy:	0.0150 -	val_loss:	4.1202
25/25		0s	3ms/step -	accuracy:	0.7786	- loss:	1.0335	- val_accuracy:	0.0250 -	val_loss:	4.1346
25/25	112/300	0s	3ms/step -	accuracy:	0.7863	- loss:	0.9923	- val_accuracy:	0.0100 -	val_loss:	4.1387
Epoch 25/25	113/300	0s	3ms/step -	accuracy:	0.7618	- loss:	1.0304	- val accuracy:	0.0100 -	val loss:	4.1303
Epoch 25/25	114/300							- val_accuracy:		_	
Epoch	115/300									_	
25/25 Epoch	116/300							- val_accuracy:		_	
25/25 Epoch	117/300	0s	3ms/step -	accuracy:	0.8166	- loss:	0.9343	- val_accuracy:	0.0150 -	val_loss:	4.1744
25/25 Enoch	118/300	0s	3ms/step -	accuracy:	0.7984	- loss:	0.9687	- val_accuracy:	0.0200 -	val_loss:	4.2051
25/25		0s	3ms/step -	accuracy:	0.8001	- loss:	0.9445	val_accuracy:	0.0150 -	val_loss:	4.1976
25/25	119/300	0s	3ms/step -	accuracy:	0.8088	- loss:	0.9626	- val_accuracy:	0.0150 -	val_loss:	4.2344
Epoch 25/25	120/300	0s	3ms/step -	accuracy:	0.8310	- loss:	0.8855	- val accuracy:	0.0150 -	val loss:	4.2233
-	121/300							val_accuracy:		_	
Epoch	122/300									_	
	123/300							- val_accuracy:		_	
25/25 Epoch	124/300	0s	3ms/step -	accuracy:	0.8536	- loss:	0.8768	- val_accuracy:	0.0200 -	val_loss:	4.2773
25/25		0s	3ms/step -	accuracy:	0.8502	- loss:	0.8619	- val_accuracy:	0.0250 -	val_loss:	4.3110
25/25		0s	3ms/step -	accuracy:	0.8501	- loss:	0.8776	- val_accuracy:	0.0100 -	val_loss:	4.2893
25/25	126/300	0s	3ms/step -	accuracy:	0.8642	- loss:	0.8444	- val accuracy:	0.0100 -	val loss:	4.3027

- Enoch	127/300				,					-	-		_	
25/25		0s	3ms/step	-	accuracy:	0.8625	- loss:	0.8327	-	val_accura	асу:	0.0150	- val_loss:	4.3209
Epoch 25/25	128/300	۵s	3ms/stan		accuracy.	0 8809	- loss.	0 8375	_	val accur:	ocv.	0 0150	- val_loss:	A 359A
Epoch	129/300									_	-		_	
25/25 Epoch	130/300	0s	3ms/step	-	accuracy:	0.8859	- loss:	0.8041	-	val_accura	асу:	0.0250	- val_loss:	4.3685
25/25		0s	3ms/step	-	accuracy:	0.8660	- loss:	0.8180	-	val_accura	асу:	0.0250	- val_loss:	4.4124
25/25	131/300	0s	3ms/step	_	accuracy:	0.8761	- loss:	0.7987	_	val_accura	асу:	0.0250	- val_loss:	4.3759
Epoch 25/25	132/300	Q.c	3ms/stan		acclinacy.	0 8858	- 1000	0 7031		val accurs		0 0200	- val loss:	1 1002
Epoch	133/300									_			_	
25/25 Epoch	134/300	0s	3ms/step	-	accuracy:	0.8849	- loss:	0.7452	-	val_accura	асу:	0.0200	- val_loss:	4.3964
25/25 Enoch	135/300	0s	4ms/step	-	accuracy:	0.8897	- loss:	0.7448	-	val_accura	асу:	0.0300	- val_loss:	4.4435
25/25		0s	3ms/step	-	accuracy:	0.8965	- loss:	0.7522	-	val_accura	асу:	0.0100	- val_loss:	4.4488
25/25	136/300	0s	3ms/step	-	accuracy:	0.9077	- loss:	0.7188	-	val_accura	асу:	0.0250	- val_loss:	4.4525
Epoch 25/25	137/300	05	3ms/sten	_	accuracy:	0.9001	- loss:	0.7209	_	val accura	acv:	0.0300	- val loss:	4.4856
Epoch	138/300									_			_	
25/25 Epoch	139/300	05	3ms/step	-	accuracy:	0.8969	- 10SS:	0.7057	-	vai_accura	acy:	0.0150	- val_loss:	4.4910
25/25 Epoch	140/300	0s	3ms/step	-	accuracy:	0.9126	- loss:	0.7031	-	val_accura	асу:	0.0150	- val_loss:	4.4899
25/25		0s	3ms/step	-	accuracy:	0.9162	- loss:	0.7044	-	val_accura	асу:	0.0150	- val_loss:	4.5193
25/25	141/300	0s	3ms/step	-	accuracy:	0.9264	- loss:	0.6688	-	val_accura	acy:	0.0250	- val_loss:	4.5624
Epoch 25/25	142/300	0s	4ms/step	_	accuracy:	0.9051	- loss:	0.6940	_	val accura	acy:	0.0250	- val_loss:	4.5255
Epoch 25/25	143/300	۵s	3ms/stan		accuracy.	0 9/181	- loss.	0 6527	_	val accur:	-	0 0250	- val_loss:	A 5582
Epoch	144/300									_	-			
25/25 Epoch	145/300	0s	3ms/step	-	accuracy:	0.9341	- loss:	0.6578	-	val_accura	acy:	0.0150	- val_loss:	4.5782
25/25 Epoch	146/300	0s	3ms/step	-	accuracy:	0.9367	- loss:	0.6521	-	val_accura	асу:	0.0300	- val_loss:	4.6095
25/25		0s	3ms/step	-	accuracy:	0.9382	- loss:	0.6512	-	val_accura	асу:	0.0300	- val_loss:	4.6115
25/25		0s	3ms/step	-	accuracy:	0.9325	- loss:	0.6472	-	val_accura	асу:	0.0150	- val_loss:	4.5912
Epoch 25/25	148/300	0s	3ms/step	_	accuracy:	0.9473	- loss:	0.6169	_	val accura	acv:	0.0300	- val_loss:	4.6354
	149/300									_			- val_loss:	
Epoch	150/300									_				
25/25 Epoch	151/300	0s	3ms/step	-	accuracy:	0.9490	- loss:	0.6014	-	val_accura	асу:	0.0250	- val_loss:	4.6401
25/25 Enoch	152/300	0s	3ms/step	-	accuracy:	0.9594	- loss:	0.5798	-	val_accura	асу:	0.0250	- val_loss:	4.6611
25/25		0s	3ms/step	-	accuracy:	0.9446	- loss:	0.5832	-	val_accura	асу:	0.0250	- val_loss:	4.7063
25/25	153/300	0s	3ms/step	-	accuracy:	0.9687	- loss:	0.5538	-	val_accura	асу:	0.0250	- val_loss:	4.6828
Epoch 25/25	154/300	0s	3ms/step	_	accuracy:	0.9693	- loss:	0.5662	_	val accura	acv:	0.0150	- val_loss:	4.7226
Epoch 25/25	155/300									_	-		- val loss:	
Epoch	156/300									_			_	
25/25 Epoch	157/300	0s	3ms/step	-	accuracy:	0.9592	- loss:	0.5694	-	val_accura	acy:	0.0200	- val_loss:	4.7434
25/25 Epoch	158/300	0s	3ms/step	-	accuracy:	0.9774	- loss:	0.5205	-	val_accura	асу:	0.0250	- val_loss:	4.7642
25/25		0s	3ms/step	-	accuracy:	0.9671	- loss:	0.5327	-	val_accura	асу:	0.0250	- val_loss:	4.7914
25/25		0s	3ms/step	-	accuracy:	0.9730	- loss:	0.5166	-	val_accura	асу:	0.0200	- val_loss:	4.8172
Epoch 25/25	160/300	0s	3ms/step	-	accuracy:	0.9744	- loss:	0.5057	-	val_accura	асу:	0.0200	- val_loss:	4.8064
Epoch 25/25	161/300	05	4ms/sten	_	accuracy:	0.9699	- loss:	0.5005	_	val accura	acv:	0.0200	- val_loss:	4.8295
Epoch	162/300									_				
25/25 Epoch	163/300									_			- val_loss:	
25/25 Epoch	164/300	0s	3ms/step	-	accuracy:	0.9747	- loss:	0.4946	-	val_accura	асу:	0.0150	- val_loss:	4.8802
25/25 Enoch	165/300	0s	3ms/step	-	accuracy:	0.9801	- loss:	0.5003	-	val_accura	асу:	0.0300	- val_loss:	4.8755
25/25		0s	3ms/step	-	accuracy:	0.9822	- loss:	0.4629	-	val_accura	асу:	0.0200	- val_loss:	4.8486
25/25		0s	3ms/step	-	accuracy:	0.9832	- loss:	0.4577	-	val_accura	acy:	0.0250	- val_loss:	4.8913
Epoch 25/25	167/300	0s	3ms/step	_	accuracy:	0.9750	- loss:	0.4634	_	val_accura	acy:	0.0200	- val_loss:	4.8992
	168/300									_			- val loss:	
Fnoch	169/300									_			_	T. JIJ4
man rec	earch google com/drive	e/1f	JXD7(:IAX	١/١	ᄱᅚᄂᆸᅥᄸᢃᢃ	r Judiud	asnCKh	#SCrOII]	$\cap =$:zmi II iis4\	rK//k	บเ&nrintN	inde=frile	

.,		107/ 200												
25	/25		0s	3ms/step	-	accuracy:	0.9858	- loss:	0.4525	-	val_accuracy:	0.0200 -	val_loss:	4.9535
	och /25	170/300	0s	3ms/step	_	accuracy:	0.9839	- loss:	0.4335	_	val_accuracy:	0.0300 -	val_loss:	4.9589
	och /25	171/300	0s	3ms/sten	_	accuracy.	0 9919	- loss:	0 4103	_	val accuracy:	0 0200 -	val loss:	4 9959
Ер	och	172/300											_	
Ер		173/300									val_accuracy:		_	
	/ 25 och	174/300	0s	2ms/step	-	accuracy:	0.9889	- loss:	0.4157	-	val_accuracy:	0.0300 -	val_loss:	4.9861
	/25	175/300	0s	2ms/step	-	accuracy:	0.9941	- loss:	0.4043	-	val_accuracy:	0.0350 -	val_loss:	5.0185
25	/25		0s	2ms/step	-	accuracy:	0.9960	- loss:	0.3883	-	val_accuracy:	0.0200 -	val_loss:	5.0528
25	/25		0s	3ms/step	-	accuracy:	0.9887	- loss:	0.3951	-	val_accuracy:	0.0300 -	val_loss:	5.0539
	och /25	177/300	0s	3ms/step	-	accuracy:	0.9947	- loss:	0.3815	-	val_accuracy:	0.0200 -	val_loss:	5.1041
		178/300	0s	3ms/step	_	accuracy:	0.9926	- loss:	0.3806	_	val_accuracy:	0.0300 -	val loss:	5.0838
	och /25	179/300				_					val_accuracy:		_	
Ер	och	180/300				-							_	
Ер		181/300				-					val_accuracy:		_	
	/ 25 och	182/300									val_accuracy:		_	
	/25 och	183/300	0s	3ms/step	-	accuracy:	0.9948	- loss:	0.3416	-	val_accuracy:	0.0250 -	val_loss:	5.1617
	/25	184/300	0s	3ms/step	-	accuracy:	0.9996	- loss:	0.3365	-	val_accuracy:	0.0250 -	val_loss:	5.1633
25	/25		0s	3ms/step	-	accuracy:	0.9934	- loss:	0.3374	-	val_accuracy:	0.0250 -	val_loss:	5.1843
25	/25		0s	3ms/step	-	accuracy:	0.9985	- loss:	0.3350	-	val_accuracy:	0.0300 -	val_loss:	5.2149
	och /25	186/300	0s	3ms/step	-	accuracy:	0.9988	- loss:	0.3364	-	val_accuracy:	0.0300 -	val_loss:	5.2646
	och /25	187/300	0s	3ms/step	_	accuracy:	0.9982	- loss:	0.3228	_	val_accuracy:	0.0250 -	val loss:	5.1986
	och /25	188/300	05	3ms/sten	_	accuracy:	0.9954	- loss:	0.3115	_	val_accuracy:	0.0250 -	val loss:	5.2430
Ер		189/300				-					val_accuracy:		_	
Ер	och	190/300				-							_	
	/ 25 och	191/300	0s	4ms/step	-	accuracy:	0.9895	- loss:	0.3060	-	val_accuracy:	0.0300 -	val_loss:	5.2698
	/ 25 och	192/300	0s	4ms/step	-	accuracy:	0.9966	- loss:	0.3027	-	val_accuracy:	0.0250 -	val_loss:	5.2967
	/25 och	193/300	0s	4ms/step	-	accuracy:	0.9979	- loss:	0.3032	-	val_accuracy:	0.0250 -	val_loss:	5.2912
25	/25		0s	4ms/step	-	accuracy:	0.9973	- loss:	0.2892	-	val_accuracy:	0.0250 -	val_loss:	5.3759
25	/25		0s	4ms/step	-	accuracy:	0.9984	- loss:	0.2858	-	val_accuracy:	0.0300 -	val_loss:	5.3487
25	/25		0s	4ms/step	-	accuracy:	0.9987	- loss:	0.2827	-	val_accuracy:	0.0300 -	val_loss:	5.3489
	och /25	196/300	0s	5ms/step	-	accuracy:	1.0000	- loss:	0.2726	-	val_accuracy:	0.0250 -	val_loss:	5.3879
		197/300	0s	4ms/step	_	accuracy:	1.0000	- loss:	0.2682	_	val_accuracy:	0.0250 -	val_loss:	5.4063
	och /25	198/300	05	4ms/sten	_	accuracy:	1.0000	- loss:	0.2745	_	val accuracy:	0.0250 -	val loss:	5.4017
Ер		199/300									val accuracy:		_	
Ер	och	200/300											_	
Ер		201/300				-					val_accuracy:		_	
Ер		202/300	0s	4ms/step	-	accuracy:	1.0000	- loss:	0.2522	-	val_accuracy:	0.0300 -	val_loss:	5.4406
	/25 och	203/300	0s	5ms/step	-	accuracy:	1.0000	- loss:	0.2514	-	val_accuracy:	0.0250 -	val_loss:	5.4573
	/25 och	204/300	0s	5ms/step	-	accuracy:	0.9997	- loss:	0.2524	-	val_accuracy:	0.0250 -	val_loss:	5.4838
25	/25		0s	5ms/step	-	accuracy:	1.0000	- loss:	0.2414	-	val_accuracy:	0.0300 -	val_loss:	5.4841
25	/25		0s	8ms/step	-	accuracy:	1.0000	- loss:	0.2383	-	val_accuracy:	0.0300 -	val_loss:	5.5339
25	/25		0s	5ms/step	-	accuracy:	1.0000	- loss:	0.2300	-	val_accuracy:	0.0250 -	val_loss:	5.5169
	och / 25	207/300	0s	3ms/step	-	accuracy:	1.0000	- loss:	0.2286	-	val_accuracy:	0.0300 -	val_loss:	5.5620
	och /25	208/300	0s	3ms/step	_	accuracy:	1.0000	- loss:	0.2291	_	val_accuracy:	0.0200 -	val_loss:	5.5687
Ер		209/300				_					val accuracy:		_	
Ер		210/300									<pre>val_accuracy:</pre>		_	
Ер		211/300	- 05		-	accui acy:	T.0000	TO22;	0.211/	-	- accuracy:		 	J.J/JI
	_													

Reasearch trained model.ipynb - Colab

l, 11:10	PM					Reasea	arch traine	ed model.ipynb	- Colab		
25/25 Enoch	212/300	0s	3ms/step -	accuracy:	1.0000	- loss:	0.2083 -	val_accuracy:	0.0250	- val_loss:	5.6216
25/25		• 0s	3ms/step -	accuracy:	1.0000	- loss:	0.2046 -	val_accuracy:	0.0250	- val_loss:	5.6303
	213/300									_	
25/25 Fnoch	214/300	• 0s	3ms/step -	accuracy:	1.0000	- loss:	0.2062 -	val_accuracy:	0.0250	- val_loss:	5.6572
25/25		0s	3ms/step -	accuracy:	1.0000	- loss:	0.1975 -	val_accuracy:	0.0250	- val_loss:	5.6723
Epoch 25/25	215/300	- Oc	3ms/stan -	accuracy.	1 0000	- loss:	0 1992 -	val accuracy:	0 0300	- val loss.	5 6680
	216/300	03	эшэ/ эсср	accuracy.	1.0000	1033.	0.1552	var_accuracy.	0.0300	vai_1033.	3.0000
-	217/300	• 0s	3ms/step -	accuracy:	1.0000	- loss:	0.1940 -	val_accuracy:	0.0250	- val_loss:	5.6590
25/25		0s	3ms/step -	accuracy:	1.0000	- loss:	0.1949 -	val_accuracy:	0.0300	- val_loss:	5.6947
	218/300	- Oc	3ms/stan -	accuracy.	1 0000	- loss.	0 1900 -	val_accuracy:	0 0300	- val loss.	5 7323
-	219/300										
25/25 Enoch	220/300	• 0s	4ms/step -	accuracy:	1.0000	- loss:	0.1883 -	val_accuracy:	0.0250	- val_loss:	5.7241
25/25		0s	3ms/step -	accuracy:	1.0000	- loss:	0.1762 -	val_accuracy:	0.0300	- val_loss:	5.7552
Epoch 25/25	221/300	- 0s	3ms/sten -	accuracv:	1.0000	- loss:	0.1785 -	val accuracy:	0.0350	- val loss:	5.7853
-	222/300									_	
25/25 Epoch	223/300	· 0s	3ms/step -	accuracy:	1.0000	- loss:	0.1759 -	val_accuracy:	0.0300	- val_loss:	5.7781
25/25		0s	3ms/step -	accuracy:	1.0000	- loss:	0.1728 -	val_accuracy:	0.0300	- val_loss:	5.8116
Epoch 25/25	224/300	• 0s	3ms/step -	accuracv:	1.0000	- loss:	0.1707 -	val accuracy:	0.0300	- val loss:	5.8554
Epoch	225/300									_	
	226/300	· 0s	3ms/step -	accuracy:	1.0000	- loss:	0.1667 -	val_accuracy:	0.0300	- val_loss:	5.8419
25/25		0s	3ms/step -	accuracy:	1.0000	- loss:	0.1653 -	val_accuracy:	0.0250	- val_loss:	5.8558
Epoch 25/25	227/300	• 0s	3ms/step -	accuracv:	1.0000	- loss:	0.1579 -	val_accuracy:	0.0300	- val loss:	5.8705
Epoch	228/300										
25/25 Epoch	229/300	- 05	3ms/step -	accuracy:	1.0000	- 10SS:	0.1508 -	val_accuracy:	0.0300	- val_loss:	5.8/32
25/25 Enoch	230/300	0s	3ms/step -	accuracy:	1.0000	- loss:	0.1549 -	val_accuracy:	0.0350	- val_loss:	5.9001
		0s	3ms/step -	accuracy:	1.0000	- loss:	0.1536 -	val_accuracy:	0.0300	- val_loss:	5.9113
Epoch 25/25	231/300	- 05	3ms/sten -	accuracy:	1.0000	- loss:	0.1502 -	val accuracy:	0.0250	- val loss:	5.9118
Epoch	232/300									_	
25/25 Epoch	233/300	• 0s	3ms/step -	accuracy:	1.0000	- loss:	0.1452 -	val_accuracy:	0.0250	- val_loss:	5.9593
25/25		• 0s	3ms/step -	accuracy:	1.0000	- loss:	0.1502 -	val_accuracy:	0.0250	- val_loss:	5.9476
25/25	234/300	0s	3ms/step -	accuracy:	1.0000	- loss:	0.1447 -	val_accuracy:	0.0250	- val_loss:	5.9517
Epoch 25/25	235/300	- 05	3ms/sten -	accuracy:	1.0000	- loss:	0.1394 -	val accuracy:	0.0200	- val loss:	6.0125
Epoch	236/300									_	
25/25 Epoch	237/300	• 0s	3ms/step -	accuracy:	1.0000	- loss:	0.1367 -	val_accuracy:	0.0250	- val_loss:	6.0165
25/25		0s	3ms/step -	accuracy:	1.0000	- loss:	0.1333 -	val_accuracy:	0.0250	- val_loss:	6.0030
25/25	238/300	0s	3ms/step -	accuracy:	1.0000	- loss:	0.1333 -	val_accuracy:	0.0300	- val_loss:	6.0379
Epoch 25/25	239/300	. 00	3ms/ston -	accuracy.	1 0000	- 1000	0 1330 -	val_accuracy:	0 0250	- val loss:	6 0640
	240/300	03	эшэ/ эсср	accuracy.	1.0000	1033.	0.1330	var_accuracy.	0.0230	va1_1033.	0.00-0
25/25 Epoch	241/300	• 0s	3ms/step -	accuracy:	1.0000	- loss:	0.1309 -	val_accuracy:	0.0300	- val_loss:	6.0501
25/25		0s	3ms/step -	accuracy:	1.0000	- loss:	0.1267 -	val_accuracy:	0.0250	- val_loss:	6.0647
Epoch 25/25	242/300	• 0s	3ms/step -	accuracy:	1.0000	- loss:	0.1228 -	val_accuracy:	0.0250	- val_loss:	6.1092
	243/300	0-	2		1 0000	1	0 1245		0 0200		C 1100
25/25 Epoch	244/300	- 65	sms/step -	accuracy:	1.0000	- 1055:	0.1245 -	val_accuracy:	0.0300	- val_1055:	0.1102
	245/300	• 0s	3ms/step -	accuracy:	1.0000	- loss:	0.1247 -	val_accuracy:	0.0300	- val_loss:	6.1147
25/25		0s	3ms/step -	accuracy:	1.0000	- loss:	0.1174 -	val_accuracy:	0.0250	- val_loss:	6.0896
	246/300	- 0s	3ms/step -	accuracy:	1.0000	- loss:	0.1134 -	val_accuracy:	0.0300	- val loss:	6.1703
	247/300	0.0	2ms/s+on	2001120011	1 0000	10001	0 1167		0 0250	- val lacci	c 1000
25/25 Epoch	248/300	05	31115/3Cep -	accuracy.	1.0000	- 1055.	0.1107 -	val_accuracy:	0.0230	- vai_1055.	0.1000
25/25 Epoch	249/300	• 0s	3ms/step -	accuracy:	1.0000	- loss:	0.1183 -	val_accuracy:	0.0200	- val_loss:	6.1739
25/25		• 0s	3ms/step -	accuracy:	1.0000	- loss:	0.1090 -	val_accuracy:	0.0250	- val_loss:	6.1971
Epoch 25/25	250/300	• 0s	2ms/step -	accuracy:	1.0000	- loss:	0.1096 -	val_accuracy:	0.0300	- val_loss:	6.2050
	251/300							val accuracy:		_	
25/25 Epoch	252/300									_	
25/25 Epoch	253/300	• 0s	3ms/step -	accuracy:	1.0000	- loss:	0.1055 -	val_accuracy:	0.0250	- val_loss:	6.2509
25/25		0s	3ms/step -	accuracy:	1.0000	- loss:	0.1081 -	val_accuracy:	0.0300	- val_loss:	6.2712

```
Epoch 254/300
                           Os 4ms/step - accuracy: 1.0000 - loss: 0.1009 - val accuracy: 0.0300 - val loss: 6.2711
25/25
Epoch 255/300
25/25
                          Os 3ms/step - accuracy: 1.0000 - loss: 0.1035 - val_accuracy: 0.0300 - val_loss: 6.2782
Epoch 256/300
25/25 •
                           Os 3ms/step - accuracy: 1.0000 - loss: 0.0977 - val_accuracy: 0.0250 - val_loss: 6.3300
Epoch 257/300
25/25 -
                           0s 3ms/step - accuracy: 1.0000 - loss: 0.0948 - val_accuracy: 0.0250 - val_loss: 6.3267
Epoch 258/300
25/25
                           0s 3ms/step - accuracy: 1.0000 - loss: 0.0928 - val_accuracy: 0.0250 - val_loss: 6.3308
Epoch 259/300
25/25
                           0s 3ms/step - accuracy: 1.0000 - loss: 0.0914 - val accuracy: 0.0250 - val loss: 6.3367
Epoch 260/300
25/25
                           Os 3ms/step - accuracy: 1.0000 - loss: 0.0937 - val_accuracy: 0.0250 - val_loss: 6.3623
Enoch 261/300
25/25
                           Os 3ms/step - accuracy: 1.0000 - loss: 0.0886 - val_accuracy: 0.0250 - val_loss: 6.3815
Epoch 262/300
25/25
                           Os 3ms/step - accuracy: 1.0000 - loss: 0.0882 - val_accuracy: 0.0350 - val_loss: 6.3977
Epoch 263/300
25/25
                           Os 3ms/step - accuracy: 1.0000 - loss: 0.0868 - val_accuracy: 0.0250 - val_loss: 6.3962
Epoch 264/300
25/25
                           Os 3ms/step - accuracy: 1.0000 - loss: 0.0869 - val_accuracy: 0.0250 - val_loss: 6.4072
Epoch 265/300
25/25
                           Os 3ms/step - accuracy: 1.0000 - loss: 0.0859 - val_accuracy: 0.0250 - val_loss: 6.4431
Epoch 266/300
25/25
                           Os 3ms/step - accuracy: 1.0000 - loss: 0.0833 - val_accuracy: 0.0300 - val_loss: 6.4579
Epoch 267/300
25/25
                           Os 3ms/step - accuracy: 1.0000 - loss: 0.0836 - val_accuracy: 0.0250 - val_loss: 6.4620
Epoch 268/300
25/25
                           Os 3ms/step - accuracy: 1.0000 - loss: 0.0810 - val_accuracy: 0.0250 - val_loss: 6.4896
Epoch 269/300
25/25
                           Os 3ms/step - accuracy: 1.0000 - loss: 0.0811 - val_accuracy: 0.0250 - val_loss: 6.5004
Epoch 270/300
25/25 •
                           Os 4ms/step - accuracy: 1.0000 - loss: 0.0785 - val_accuracy: 0.0250 - val_loss: 6.5130
Epoch 271/300
25/25
                           Os 3ms/step - accuracy: 1.0000 - loss: 0.0793 - val_accuracy: 0.0300 - val_loss: 6.5484
Epoch 272/300
25/25
                           Os 3ms/step - accuracy: 1.0000 - loss: 0.0774 - val_accuracy: 0.0250 - val_loss: 6.5285
Epoch 273/300
25/25
                           Os 3ms/step - accuracy: 1.0000 - loss: 0.0742 - val_accuracy: 0.0250 - val_loss: 6.5371
Epoch 274/300
25/25
                           Os 4ms/step - accuracy: 1.0000 - loss: 0.0781 - val_accuracy: 0.0300 - val_loss: 6.5595
Epoch 275/300
25/25
                           Os 3ms/step - accuracy: 1.0000 - loss: 0.0736 - val_accuracy: 0.0250 - val_loss: 6.5834
Epoch 276/300
25/25
                           0s 3ms/step - accuracy: 1.0000 - loss: 0.0717 - val accuracy: 0.0250 - val loss: 6.6108
Epoch 277/300
25/25
                           Os 3ms/step - accuracy: 1.0000 - loss: 0.0699 - val_accuracy: 0.0250 - val_loss: 6.6417
Epoch 278/300
25/25
                           Os 3ms/step - accuracy: 1.0000 - loss: 0.0683 - val_accuracy: 0.0250 - val_loss: 6.6227
Epoch 279/300
25/25
                           Os 3ms/step - accuracy: 1.0000 - loss: 0.0659 - val_accuracy: 0.0300 - val_loss: 6.6326
Epoch 280/300
25/25
                           Os 3ms/step - accuracy: 1.0000 - loss: 0.0666 - val_accuracy: 0.0200 - val_loss: 6.6652
Epoch 281/300
25/25
                           Os 3ms/step - accuracy: 1.0000 - loss: 0.0664 - val_accuracy: 0.0300 - val_loss: 6.6665
Epoch 282/300
25/25
                           Os 3ms/step - accuracy: 1.0000 - loss: 0.0638 - val_accuracy: 0.0250 - val_loss: 6.6946
Epoch 283/300
25/25
                           0s 3ms/step - accuracy: 1.0000 - loss: 0.0623 - val accuracy: 0.0300 - val loss: 6.7004
Epoch 284/300
25/25 •
                           Os 3ms/step - accuracy: 1.0000 - loss: 0.0625 - val_accuracy: 0.0250 - val_loss: 6.7022
Epoch 285/300
                           0s 3ms/step - accuracy: 1.0000 - loss: 0.0618 - val_accuracy: 0.0250 - val_loss: 6.7420
25/25
Epoch 286/300
25/25
                           Os 3ms/step - accuracy: 1.0000 - loss: 0.0587 - val_accuracy: 0.0300 - val_loss: 6.7471
Epoch 287/300
25/25
                           Os 3ms/step - accuracy: 1.0000 - loss: 0.0608 - val_accuracy: 0.0250 - val_loss: 6.7515
Epoch 288/300
25/25
                           Os 3ms/step - accuracy: 1.0000 - loss: 0.0577 - val_accuracy: 0.0250 - val_loss: 6.7696
Epoch 289/300
25/25
                           Os 3ms/step - accuracy: 1.0000 - loss: 0.0591 - val_accuracy: 0.0250 - val_loss: 6.7606
Epoch 290/300
25/25
                           Os 3ms/step - accuracy: 1.0000 - loss: 0.0583 - val_accuracy: 0.0250 - val_loss: 6.7988
Epoch 291/300
25/25
                           Os 3ms/step - accuracy: 1.0000 - loss: 0.0564 - val_accuracy: 0.0300 - val_loss: 6.8139
Epoch 292/300
25/25
                           0s 5ms/step - accuracy: 1.0000 - loss: 0.0546 - val_accuracy: 0.0200 - val_loss: 6.8266
Epoch 293/300
25/25
                           Os 5ms/step - accuracy: 1.0000 - loss: 0.0552 - val_accuracy: 0.0300 - val_loss: 6.8395
Epoch 294/300
25/25
                           Os 4ms/step - accuracy: 1.0000 - loss: 0.0539 - val_accuracy: 0.0300 - val_loss: 6.8562
Epoch 295/300
25/25
                           Os 4ms/step - accuracy: 1.0000 - loss: 0.0532 - val_accuracy: 0.0250 - val_loss: 6.8548
Epoch 296/300
```

	-,														
25/25		0s	5ms/step	-	accuracy:	1.0000 -	- 1	oss:	0.0533	-	<pre>val_accuracy:</pre>	0.0300	- V	al_loss:	6.8833
Epoch	297/300														
25/25		0s	4ms/step	-	accuracy:	1.0000 -	- 1	oss:	0.0505	-	<pre>val_accuracy:</pre>	0.0250	- V	al_loss:	6.8826
Epoch	298/300														
25/25		0s	4ms/step	-	accuracy:	1.0000 -	- 1	oss:	0.0509	-	<pre>val_accuracy:</pre>	0.0250	- V	al_loss:	6.9151
Epoch	299/300														
25/25		0s	5ms/step	-	accuracy:	1.0000 -	- 1	oss:	0.0494	-	<pre>val_accuracy:</pre>	0.0250	- V	al_loss:	6.9388
Epoch	300/300														
25/25		0s	4ms/step	-	accuracy:	1.0000 -	- 1	oss:	0.0491	-	<pre>val_accuracy:</pre>	0.0200	- V	al_loss:	6.9188
7/7 -		5 2:	lms/step												

