See Aya Reading Group 13 July 2010 1) Jean + Sara, Murray & Donaste Ch 7

kculon patenbilionis: these that never would on < ? abit (as apposed to resonant part., which are only nonzero < ? when in resonance).

Disturbing for: $R = \frac{6m_1m_2m_3}{2(n_1+m_2)R_3} \left(\frac{n_1}{R_3}\right)^a \left(3cn^2 y-1\right)$

Want $\langle R \rangle = + \int R dT = \frac{1}{2\pi} \int R d\phi$

(actually average turin: once over imer orbit, once over outer orbit.) les, e.g. 6.164 from M & of, which comes from 6.107.

Recall D'écombert condition; & j. = 0 (j heeps track of the orders of the various angles in disturbing function stowns series.)

If set j. = 0, have uverage over λ ; recall remaining constraint the do it \$\frac{1}{2}\$

Reall Poincies variables: e_{q} 2.179 (1, f, ξ , Λ , Γ , ξ). $Y = -\omega \cdot \Lambda$; $\Gamma = \propto (1 - \sqrt{1 - e^{2}}) = e_{\chi 2}^{2}$ (=) $e = \sqrt{2}\Gamma$) $R = K/E^{2} M_{\chi} \Lambda^{2} E^{\Lambda} V_{\chi} M_{\chi}^{2} F^{2} C_{\chi} (\overline{\omega}) F^{2} N_{\chi}^{2} V_{\chi}^{2} + k_{2}e^{2} + k_{3}ee^{2} C_{\chi} (\overline{\omega} - \overline{\omega}^{2})$ Equation of motion (Banistonsis): $\frac{df}{dt} = \frac{dR}{d\Gamma}; \frac{d\Gamma}{dt} = -\frac{dR}{d\gamma} V_{\chi}^{2}$

Mes francform to a complex cononical variable:

= = \partie = \frac{dz}{dz} = +i \frac{\partial H}{\partial z} \quad \text{(note 2" = \sqrt{p} e^{-i} \delta.)}

Upply to S of eystem: $Z = \int P'e^{i\theta} d\theta d\theta = \frac{2}{32}e^{i\theta}$ Then $\langle R \rangle = 2k_1 |Z|^2 + k_3 e' \int_{Z}^{2} \left\{ e^{-i(V+i)} + e^{i(V+i)} \right\} |Z|$ That: $2 \text{ terms collapse into one because } k_i = k_2$.

イR>= ... + k3e 望 [zei西+ **e-i西]

=) $\frac{d^2}{dt} = i \left[2k_1 + \frac{1}{2} k_3 e e' e^{-i \tilde{\omega}'} \right]$ (combine 6.170, 6.171 in complex form)

Re-write as $\frac{d^2}{dt} = i \alpha + i b^2$, and from there to $e^{-i \omega_0^* t} = \frac{d^2}{dt} \left[\frac{1}{2} e^{-i \omega_0^* t} \right] = i b^2$ where $i \omega_0 = i \alpha = 2i k_1$.

Now such particular solution for this equation: $z = \frac{b}{\omega_0} z' + C_0 e^{-i\omega_0 z}$

This gives the moition of the orbit as a specific conciliation (from) plus a forced term is to from the effects of perturbers e.

=) if e'=0, then e totales in all has const magnitude; if e' + 0 then e magnitude fluctuates about freed solution to is the fig. 7.2 from M & D maying e, seein is besition.

e'+0

Mid = Total

Now force voter planet to precess: $\frac{d^2}{dt} = i(\omega_0 t + e'e^{i\omega t})$ g is precessing rate of prince planets.

Political is $\xi(t) = ke^{i\omega_0 t} + \frac{\omega_0 e'}{g - \omega_0} e^{igt}$

The denominator $g-\omega_0$ allows for resonance if pression of pertender forcers at the same rate as free precession of plant (ω_0) .

If we go into rotating from " and plot e-ight :

=) smallse: librate about part.] madified freq large se: Rotate) W.- 9

De = /2/-121 controlo-the dictance between fixed pt and circle.

[Your told a story about monlinear evaneures that I don't have down here.] Your is proparing a paper about Mereny Supiter in the framework (OR) plus non-linear torse) and

Kus' Mathed

deat bodies as rings distributed over their abits proportional to the time they spend @ cach Constum.

Then apply perturbative forces (see Ch 2) due to ring on orbit. (e.g. 2.165)

blues' method calculates the forces: $dF = R\hat{x} + T\hat{o} + N\hat{x}$ on the orbit.

Lee 7.98. House' method does VIT = Sam & F =- TV. When done in book, find 7.123. Can check prior expansions in e, i, etc. by expanding theres' approach ('cy theres does not assume that e «1 a : «1).