```
In [1]: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns
```

In [32]: s=pd.read_csv(r"C:\Users\user\Downloads\19_nuclear_explosions - 19_nuclear_explosions.csv")

Out[32]:

	WEAPON SOURCE COUNTRY				Location Cordinatos Latitudo	Location.Cordinates.Longitude	Data Magnitudo Rody	Data Magnitudo Surfaco	Location
			LOCATION	Data.Source	Location.cordinates.Latitude	Location.cordinates.Longitude	Data.magnitude.body	Data.Magintude.Surrace	Location
	0	USA	Alamogordo	DOE	32.54	-1 05.57	0.0	0.0	
	1	USA	Hiroshima	DOE	34.23	132.27	0.0	0.0	
	2	USA	Nagasaki	DOE	32.45	129.52	0.0	0.0	
	3	USA	Bikini	DOE	11.35	165.20	0.0	0.0	
	4	USA	Bikini	DOE	11.35	165.20	0.0	0.0	
2	041	CHINA	Lop Nor	HFS	41.69	88.35	5.3	0.0	
2	042	INDIA	Pokhran	HFS	27.07	71.70	5.3	0.0	
2	043	INDIA	Pokhran	NRD	27.07	71.70	0.0	0.0	
2	044	PAKIST	Chagai	HFS	28.90	64.89	0.0	0.0	
2	045	PAKIST	Kharan	HFS	28.49	63.78	5.0	0.0	

2046 rows × 16 columns

In [33]: s=s.head(20)

Out[33]:

	WEAPON SOURCE COUNTRY	WEAPON DEPLOYMENT LOCATION	Data.Source	Location.Cordinates.Latitude	Location.Cordinates.Longitude	Data.Magnitude.Body	Data.Magnitude.Surface	Location.C
0	USA	Alamogordo	DOE	32.54	-105.57	0.0	0.0	
1	USA	Hiroshima	DOE	34.23	132.27	0.0	0.0	
2	USA	Nagasaki	DOE	32.45	129.52	0.0	0.0	
3	USA	Bikini	DOE	11.35	165.20	0.0	0.0	
4	USA	Bikini	DOE	11.35	165.20	0.0	0.0	
5	USA	Enewetak	DOE	11.30	162.15	0.0	0.0	
6	USA	Enewetak	DOE	11.30	162.15	0.0	0.0	
7	USA	Enewetak	DOE	11.30	162.15	0.0	0.0	
8	USSR	Semi Kazakh	DOE	48.00	76.00	0.0	0.0	
9	USA	Nts	DOE	37.00	-116.00	0.0	0.0	
10	USA	Nts	DOE	37.00	-116.00	0.0	0.0	
11	USA	Nts	DOE	37.00	-116.00	0.0	0.0	
12	USA	Nts	DOE	37.00	-116.00	0.0	0.0	
13	USA	Nts	DOE	37.00	-116.00	0.0	0.0	
14	USA	Enewetak	DOE	11.30	162.15	0.0	0.0	
15	USA	Enewetak	DOE	11.30	162.15	0.0	0.0	
16	USA	Enewetak	DOE	11.30	162.15	0.0	0.0	
17	USA	Enewetak	DOE	11.30	162.15	0.0	0.0	
18	USSR	Semi Kazakh	DOE	48.00	76.00	0.0	0.0	
19	USSR	Semi Kazakh	DOE	48.00	76.00	0.0	0.0	
4								>

```
In [34]: s.info()
           <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 20 entries, 0 to 19
           Data columns (total 16 columns):
                                                     Non-Null Count Dtype
                Column
            #
            0
                WEAPON SOURCE COUNTRY
                                                     20 non-null
                                                                       object
                WEAPON DEPLOYMENT LOCATION
                                                     20 non-null
                                                                       object
                Data.Source
                                                     20 non-null
            2
                                                                       object
                Location.Cordinates.Latitude
                                                     20 non-null
            3
                                                                       float64
            4
                Location.Cordinates.Longitude
                                                    20 non-null
                                                                       float64
                Data.Magnitude.Body
                                                     20 non-null
                                                                       float64
            6
                Data.Magnitude.Surface
                                                     20 non-null
                                                                       float64
                                                     20 non-null
                                                                       float64
                Location.Cordinates.Depth
            8
                Data.Yeild.Lower
                                                     20 non-null
                                                                       float64
            9
                Data.Yeild.Upper
                                                     20 non-null
                                                                       float64
                Data.Purpose
                                                     20 non-null
            10
                                                                       object
                Data.Name
                                                     20 non-null
                                                                       object
            11
            12
                Data.Type
                                                     20 non-null
                                                                       object
            13
                Date.Day
                                                     20 non-null
                                                                       int64
            14
                Date.Month
                                                     20 non-null
                                                                       int64
            15 Date.Year
                                                     20 non-null
                                                                       int64
           dtypes: float64(7), int64(3), object(6)
           memory usage: 2.6+ KB
In [35]: s.describe()
Out[35]:
                  Location.Cordinates.Latitude Location.Cordinates.Longitude Data,Magnitude.Body Data,Magnitude.Surface Location.Cordinates.Depth Data,Yeild.Lower Da
                                   20.000000
                                                                20.000000
                                                                                         20.0
                                                                                                                20.0
                                                                                                                                    20.000000
                                                                                                                                                    20.000000
           count
                                   26.501000
                                                                63.483500
                                                                                                                 0.0
                                                                                                                                    -0.200000
                                                                                                                                                    37.175000
                                                                                          0.0
            mean
              std
                                   14.771883
                                                               123.128335
                                                                                          0.0
                                                                                                                 0.0
                                                                                                                                     0.204862
                                                                                                                                                    48.239882
                                   11.300000
                                                              -116.000000
                                                                                          0.0
                                                                                                                 0.0
                                                                                                                                    -0.600000
                                                                                                                                                     1.000000
             min
             25%
                                   11.300000
                                                              -108.177500
                                                                                                                                    -0.350000
                                                                                                                                                     17.250000
                                                                                          0.0
                                                                                                                 0.0
                                   32.495000
                                                                                                                 0.0
                                                                                                                                    -0.100000
                                                                                                                                                    21.500000
             50%
                                                               130.895000
                                                                                          0.0
             75%
                                   37.000000
                                                               162.150000
                                                                                          0.0
                                                                                                                 0.0
                                                                                                                                    -0.070000
                                                                                                                                                    42.875000
                                   48.000000
                                                               165.200000
                                                                                          0.0
                                                                                                                 0.0
                                                                                                                                     0.030000
                                                                                                                                                   225.000000
In [36]: s.columns
Out[36]: Index(['WEAPON SOURCE COUNTRY', 'WEAPON DEPLOYMENT LOCATION', 'Data.Source',
                    'Location.Cordinates.Latitude', 'Location.Cordinates.Longitude',
                   'Data.Magnitude.Body', 'Data.Magnitude.Surface', 'Location.Cordinates.Depth', 'Data.Yeild.Lower', 'Data.Yeild.Upper', 'Data.Purpose', 'Data.Name', 'Data.Type', 'Date.Day', 'Date.Month',
                   'Date.Year'l.
                  dtype='object')
```

In [38]: sns.pairplot(s)

Out[38]: <seaborn.axisgrid.PairGrid at 0x23cee83ebe0>

In [40]: sns.distplot(s['Location.Cordinates.Longitude'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar fle xibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[40]: <AxesSubplot:xlabel='Location.Cordinates.Longitude', ylabel='Density'>

In [61]: ude','Location.Cordinates.Latitude','Data.Magnitude.Body','Data.Magnitude.Surface','Location.Cordinates.Depth','Data.Yeild.Lower'

0	u-	tΙ	٦6	1	١:

	Location.Cordinates.Longitude	Location.Cordinates.Latitude	Data.Magnitude.Body	Data.Magnitude.Surface	Location.Cordinates.Depth	Data Yeild Lower
0	-105.57	32.54	0.0	0.0	-0.10	21.0
1	132.27	34.23	0.0	0.0	-0.60	15.0
2	129.52	32.45	0.0	0.0	-0.60	21.0
3	165.20	11.35	0.0	0.0	-0.20	21.0
4	165.20	11.35	0.0	0.0	0.03	21.0
5	162.15	11.30	0.0	0.0	-0.08	37.0
6	162.15	11.30	0.0	0.0	-0.08	49.0
7	162.15	11.30	0.0	0.0	-0.08	18.0
8	76.00	48.00	0.0	0.0	0.00	22.0
9	-116.00	37.00	0.0	0.0	-0.35	1.0
10	-116.00	37.00	0.0	0.0	-0.35	8.0
11	-116.00	37.00	0.0	0.0	-0.35	1.0
12	-116.00	37.00	0.0	0.0	-0.40	8.0
13	-116.00	37.00	0.0	0.0	-0.50	22.0
14	162.15	11.30	0.0	0.0	-0.10	81.0
15	162.15	11.30	0.0	0.0	-0.10	47.0
16	162.15	11.30	0.0	0.0	-0.07	225.0
17	162.15	11.30	0.0	0.0	-0.07	45.5
18	76.00	48.00	0.0	0.0	0.00	38.0
19	76.00	48.00	0.0	0.0	0.00	42.0

```
In [62]: sns.heatmap(s1.corr())
Out[62]: <AxesSubplot:>
                                                                                     - 1.0
            Location.Cordinates.Longitude
                                                                                     0.8
                                                                                     0.6
             Location.Cordinates.Latitude
                                                                                     0.4
                   Data.Magnitude.Body
                                                                                      0.2
                 Data.Magnitude.Surface -
                                                                                      0.0
                                                                                      -0.2
               Location.Cordinates.Depth
                       Data.Yeild.Lower
                                               Location.Cordinates.Latitude
                                                             Data.Magnitude.Surface
                                                                    Location.Cordinates.Depth
                                        .ocation.Cordinates.Longitude
                                                      Data.Magnitude.Body
In [63]: x=s1[['Location.Cordinates.Longitude','Location.Cordinates.Latitude','Data.Magnitude.Body','Data.Magnitude.Surface']]
           y=s1['Data.Magnitude.Body']
In [64]: from sklearn.model_selection import train_test_split
           x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
In [65]: from sklearn.linear_model import LinearRegression
           lr=LinearRegression()
           lr.fit(x_train,y_train)
Out[65]: LinearRegression()
In [66]: lr.intercept_
Out[66]: 0.0
In [67]: coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
           coeff
Out[67]:
                                          Co-efficient
            Location Cordinates Longitude
                                                  0.0
              Location Cordinates Latitude
                                                  0.0
                     Data.Magnitude.Body
                                                  0.0
                  Data.Magnitude.Surface
                                                  0.0
In [68]: prediction=lr.predict(x_test)
           plt.scatter(y_test,prediction)
Out[68]: <matplotlib.collections.PathCollection at 0x23cf6b861f0>
             0.04
             0.02
             0.00
             -0.02
             -0.04
                       -0.04
                                 -0.02
                                           0.00
                                                     0.02
                                                              0.04
In [69]: print(lr.score(x_test,y_test))
           1.0
```

```
In [70]: from sklearn.linear_model import Ridge,Lasso
                    from sklearn.linear_model import Ridge,Lasso
In [71]: rr=Ridge(alpha=10)
                    rr.fit(x_train,y_train)
                    rr.score(x_test,y_test)
Out[71]: 1.0
In [72]: la=Lasso(alpha=10)
                    la.fit(x_train,y_train)
                    la.score(x_test,y_test)
                    C: \P ordinate\_descent.py: 530: Convergence \ \ ordinate\_descent.py: 530: Convergence \ \ ordinate\_descent.py: 540: Convergence \ \ ordinate\_descent.py: 54
                    ot converge. You might want to increase the number of iterations. Duality gap: 0.0, tolerance: 0.0
                         model = cd_fast.enet_coordinate_descent(
Out[72]: 1.0
In [73]: from sklearn.linear_model import ElasticNet
                    en=ElasticNet()
                    en.fit(x_train,y_train)
                    C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_coordinate_descent.py:530: ConvergenceWarning: Objective did n
                    ot converge. You might want to increase the number of iterations. Duality gap: 0.0, tolerance: 0.0
                         model = cd_fast.enet_coordinate_descent(
Out[73]: ElasticNet()
In [74]: print(en.coef_)
                     [0. 0. 0. 0.]
In [75]: print(en.intercept_)
                    0.0
In [76]: print(en.predict(x_test))
                    [0. 0. 0. 0. 0. 0.]
In [77]: print(en.score(x_test,y_test))
                    1.0
In [78]: from sklearn import metrics
In [79]: print("Mean Absolute Error",metrics.mean_absolute_error(y_test,prediction))
                    Mean Absolute Error 0.0
In [80]: print("Mean squared Error", metrics.mean_squared_error(y_test, prediction))
                    Mean squared Error 0.0
In [81]: import pickle
In [82]: filename="prediction"
                    pickle.dump(lr,open(filename,'wb'))
In [83]: import pandas as pd
                    import pickle
In [87]: filename='prediction'
                    model=pickle.load(open(filename,'rb'))
In [91]: real=[[10,20,30,40],[40,55,66,88]]
                    result=model.predict(real)
In [92]: result
Out[92]: array([0., 0.])
  In [ ]:
```