CSC373

Week 5: Network Flow (contd)

Nisarg Shah

Recap

- Some more DP
 - > Traveling salesman problem (TSP)
- Start of network flow
 - > Problem statement
 - > Ford-Fulkerson algorithm
 - > Running time
 - > Correctness using max-flow, min-cut

This Lecture

- Network flow in polynomial time
 - > Edmonds-Karp algorithm (shortest augmenting path)
- Applications of network flow
 - Bipartite matching & Hall's theorem
 - Edge-disjoint paths & Menger's theorem
 - Multiple sources/sinks
 - > Circulation networks
 - > Lower bounds on flows
 - Survey design
 - > Image segmentation

- Define the residual graph G_f of flow f
 - > G_f has the same vertices as G
 - \triangleright For each edge e=(u,v) in G, G_f has at most two edges
 - Forward edge e = (u, v) with capacity c(e) f(e)
 - We can send this much additional flow on e
 - \circ Reverse edge $e^{rev} = (v, u)$ with capacity f(e)
 - The maximum "reverse" flow we can send is the maximum amount by which we can reduce flow on e, which is f(e)
 - \circ We only add each edge if its capacity >0

Example!

Residual graph G_f


```
MaxFlow(G):
// initialize:
Set f(e) = 0 for all e in G
// while there is an s-t path in G_f:
While P = FindPath(s, t, Residual(G, f))! = None:
  f = Augment(f, P)
  UpdateResidual(G, f)
EndWhile
Return f
```

Running time:

- > #Augmentations:
 - At every step, flow and capacities remain integers
 - For path P in G_f , bottleneck(P, f) > 0 implies bottleneck $(P, f) \ge 1$
 - Each augmentation increases flow by at least 1
 - At most $C = \sum_{e \text{ leaving } s} c(e)$ augmentations
- > Time for an augmentation:
 - \circ G_f has n vertices and at most 2m edges
 - \circ Finding an s-t path in G_f takes O(m+n) time
- ▶ Total time: $O((m+n) \cdot C)$

Edmonds-Karp Algorithm

• At every step, find the shortest path from s to t in G_f , and augment.

```
\begin{tabular}{ll} MaxFlow($G$): \\ // initialize: \\ Set $f(e) = 0$ for all $e$ in $G$ \\ \\ // Find shortest $s$-$t path in $G_f$ & augment: \\ While $P = $BFS(s,t,Residual($G,f$))!=None: \\ $f = Augment(f,P)$ \\ UpdateResidual($G,f$) \\ EndWhile \\ Return $f$ \\ \end{tabular}
```

Proof Overview

Overview

- ▶ Lemma 1: The length of the shortest $s \rightarrow t$ path in G_f never decreases.
 - (Proof ahead)
- ▶ Lemma 2: After at most m augmentations, the length of the shortest $s \rightarrow t$ path in G_f must strictly increase.
 - (Proof ahead)
- > Theorem: The algorithm takes $O(m^2n)$ time.
 - O Proof:
 - Length of shortest $s \to t$ path in G_f can go from 0 to n-1
 - Using Lemma 2, there can be at most $m \cdot n$ augmentations
 - Each takes O(m) time using BFS.

Level Graph

- Level graph L_G of a directed graph G = (V, E):
 - \triangleright Level: $\ell(v)$ = length of shortest $s \rightarrow v$ path
 - > Level graph $L_G = (V, E_L)$ is a subgraph of G where we only retain edges $(u, v) \in E$ where $\ell(v) = \ell(u) + 1$
 - Intuition: Keep only the edges useful for shortest paths

Level Graph

- Level graph L_G of a directed graph G = (V, E):
 - \triangleright Level: $\ell(v)$ = length of shortest $s \rightarrow v$ path
 - > Level graph $L_G = (V, E_L)$ is a subgraph of G where we only retain edges $(u, v) \in E$ where $\ell(v) = \ell(u) + 1$
 - Intuition: Keep only the edges useful for shortest paths
- Property: P is a shortest $s \to v$ path in G if and only if P is an $s \to v$ path in L_G .

Edmonds-Karp Proof

• Lemma 1:

 \triangleright Length of the shortest $s \rightarrow t$ path in G_f never decreases.

• Proof:

 \triangleright Let f and f' be flows before and after an augmentation step, and G_f and $G_{f'}$ be their residual graphs.

Edmonds-Karp Proof

• Lemma 1:

 \triangleright Length of the shortest $s \rightarrow t$ path in G_f never decreases.

Proof:

- > Let f and f' be flows before and after an augmentation step, and G_f and $G_{f'}$ be their residual graphs.
- \succ Augmentation happens along a path in L_{G_f}
- > For each edge on the path, we either remove it, add an opposite direction edge, or both.
- > Opposite direction edges can't help reduce the length of the shortest $s \rightarrow t$ path (exercise!).
- > QED!

Edmonds-Karp Proof

Lemma 2:

 \triangleright After at most m augmentations, the length of the shortest $s \rightarrow t$ path in G_f must strictly increase.

Proof:

- > In each augmentation step, we remove at least one edge from ${\cal L}_{G_f}$
 - Because we make the flow on at least one edge on the shortest path equal to its capacity
- > No new edges are added in L_{G_f} unless the length of the shortest $s \to t$ path strictly increases
- \triangleright This cannot happen more than m times!

Edmonds-Karp Proof Overview

Overview

- ▶ Lemma 1: The length of the shortest $s \rightarrow t$ path in G_f never decreases.
- ▶ Lemma 2: After at most m augmentations, the length of the shortest $s \rightarrow t$ path in G_f must strictly increase.
- > Theorem: The algorithm takes $O(m^2n)$ time.

Edmonds-Karp Proof Overview

Note:

- \triangleright Some graphs require $\Omega(mn)$ augmentation steps
- But we may be able to reduce the time to run each augmentation step
- Two algorithms use this idea to reduce run time
 - \Rightarrow Dinitz's algorithm [1970] \Rightarrow $O(mn^2)$
 - > Sleator-Tarjan algorithm $[1983] \Rightarrow O(m n \log n)$
 - Using the dynamic trees data structure

Network Flow Applications

Rail network connecting Soviet Union with Eastern European countries (Tolstoĭ 1930s)

Rail network connecting Soviet Union with Eastern European countries (Tolstoĭ 1930s)

Integrality Theorem

 Before we look at applications, we need the following special property of the max-flow computed by Ford-Fulkerson and its variants

Observation:

- > If edge capacities are integers, then the max-flow computed by Ford-Fulkerson and its variants are also integral (i.e. the flow on each edge is an integer).
- Easy to check that each augmentation step preserves integral flow

Problem

 \triangleright Given a bipartite graph $G=(U\cup V,E)$, find a maximum cardinality matching

 We do not know any efficient greedy or dynamic programming algorithm for this problem.

But it can be reduced to max-flow.

- Create a directed flow graph where we...
 - > Add a source node s and target node t
 - > Add edges, all of capacity 1:
 - $\circ s \to u$ for each $u \in U$, $v \to t$ for each $v \in V$
 - $\circ u \rightarrow v$ for each $(u, v) \in E$

Observation

- > There is a 1-1 correspondence between matchings of size k in the original graph and flows with value k in the corresponding flow network.
- Proof: (matching ⇒ integral flow)
 - > Take a matching $M = \{(u_1, v_1), \dots, (u_k, v_k)\}$ of size k
 - \triangleright Construct the corresponding unique flow f_M where...
 - \circ Edges $s \to u_i, u_i \to v_i$, and $v_i \to t$ have flow 1, for all $i=1,\ldots,k$
 - The rest of the edges have flow 0
 - > This flow has value k

Observation

- > There is a 1-1 correspondence between matchings of size k in the original graph and flows with value k in the corresponding flow network.
- Proof: (integral flow ⇒ matching)
 - \triangleright Take any flow f with value k
 - > The corresponding unique matching $M_f = \text{set of edges}$ from U to V with a flow of 1
 - \circ Since flow of k comes out of s, unit flow must go to k distinct vertices in U
 - \circ From each such vertex in U, unit flow goes to a distinct vertex in V
 - Uses integrality theorem

- Perfect matching = flow with value n
 - \rightarrow where n = |U| = |V|
- Recall naïve Ford-Fulkerson running time:
 - $> O((m+n) \cdot C)$, where C = sum of capacities of edges leaving s
 - > Q: What's the runtime when used for bipartite matching?
- Some variants are faster...
 - > Dinitz's algorithm runs in time $O(m\sqrt{n})$ when all edge capacities are 1

When does a bipartite graph have a perfect matching?

- \triangleright Well, when the corresponding flow network has value n
- > But can we interpret this condition in terms of edges of the original bipartite graph?
- \triangleright For $S \subseteq U$, let $N(S) \subseteq V$ be the set of all nodes in V adjacent to some node in S

Observation:

- \triangleright If G has a perfect matching, $|N(S)| \ge |S|$ for each $S \subseteq U$
- > Because each node in S must be matched to a distinct node in N(S)

- We'll consider a slightly different flow network, which is still equivalent to bipartite matching
 - \triangleright All $U \rightarrow V$ edges now have ∞ capacity
 - $> s \rightarrow U$ and $V \rightarrow t$ edges are still unit capacity

- Hall's Theorem:
 - $\succ G$ has a perfect matching iff $|N(S)| \ge |S|$ for each $S \subseteq V$

- Proof (reverse direction, via network flow):
 - > Suppose G doesn't have a perfect matching
 - \triangleright Hence, max-flow = min-cut < n
 - \triangleright Let (A, B) be the min-cut
 - \circ Can't have any $U \to V$ (∞ capacity edges)
 - \circ Has unit capacity edges $s \to U \cap B$ and $V \cap A \to t$

Hall's Theorem:

 $\succ G$ has a perfect matching iff $|N(S)| \ge |S|$ for each $S \subseteq V$

Proof (reverse direction, via network flow):

- $> cap(A,B) = |U \cap B| + |V \cap A| < n = |U|$
- > So $|V \cap A| < |U \cap A|$
- > But $N(U \cap A) \subseteq V \cap A$ because the cut doesn't include any ∞ edges
- > So $|N(U \cap A)| \le |V \cap A| < |U \cap A|$.

Some Notes

Runtime for bipartite perfect matching

- > 1955: $O(mn) \rightarrow Ford-Fulkerson$
- > 1973: $O(m\sqrt{n}) \rightarrow \text{blocking flow (Hopcroft-Karp, Karzanov)}$
- > 2004: $O(n^{2.378}) \rightarrow$ fast matrix multiplication (Mucha–Sankowsi)
- > 2013: $\tilde{O}(m^{10/7}) \rightarrow$ electrical flow (Mądry)
- > Best running time is still an open question

Nonbipartite graphs

- > Hall's theorem → Tutte's theorem
- > 1965: $O(n^4) \rightarrow$ Blossom algorithm (Edmonds)
- > 1980/1994: $O(m\sqrt{n}) \rightarrow \text{Micali-Vazirani}$

Problem

- \triangleright Given a directed graph G=(V,E), two nodes s and t, find the maximum number of edge-disjoint $s \rightarrow t$ paths
- > Two $s \rightarrow t$ paths P and P' are edge-disjoint if they don't share an edge

- Application:
 - > Communication networks
- Max-flow formulation
 - > Assign unit capacity on all edges

• Theorem:

> There is 1-1 correspondence between sets of k edge-disjoint $s \rightarrow t$ paths and integral flows of value k

Proof (paths → flow)

- \rightarrow Let $\{P_1, \dots, P_k\}$ be a set of k edge-disjoint $s \rightarrow t$ paths
- > Define flow f where f(e) = 1 whenever $e \in P_i$ for some i, and 0 otherwise
- Since paths are edge-disjoint, flow conservation and capacity constraints are satisfied
- Unique integral flow of value k

Theorem:

> There is 1-1 correspondence between k edge-disjoint $s \rightarrow t$ paths and integral flows of value k

Proof (flow → paths)

- \triangleright Let f be an integral flow of value k
- $\triangleright k$ outgoing edges from s have unit flow
- \triangleright Pick one such edge (s, u_1)
 - \circ By flow conservation, u_1 must have unit outgoing flow (which we haven't used up yet).
 - \circ Pick such an edge and continue building a path until you hit t
- > Repeat this for the other k-1 edges coming out of s with unit flow. \blacksquare

- Maximum number of edge-disjoint $s \rightarrow t$ paths
 - > Equals max flow in this network
 - > By max-flow min-cut theorem, also equals minimum cut
 - Exercise: minimum cut = minimum number of edges we need to delete to disconnect s from t
 - \circ Hint: Show each direction separately (\leq and \geq)

Exercise!

➤ Show that to compute the maximum number of edgedisjoint s-t paths in an undirected graph, you can create a directed flow network by adding each undirected edge in both directions and setting all capacities to 1

Menger's Theorem

> In any directed/undirected graph, the maximum number of edge-disjoint (resp. vertex-disjoint) $s \to t$ paths equals the minimum number of edges (resp. vertices) whose removal disconnects s and t

Multiple Sources/Sinks

Problem

 \succ Given a directed graph G=(V,E) with edge capacities $c\colon E\to\mathbb{N}$, sources s_1,\ldots,s_k and sinks t_1,\ldots,t_ℓ , find the maximum total flow from sources to sinks.

Multiple Sources/Sinks

Network flow formulation

- > Add a new source s, edges from s to each s_i with ∞ capacity
- \triangleright Add a new sink t, edges from each t_i to t with ∞ capacity
- > Find max-flow from s to t
- \triangleright Claim: 1 1 correspondence between flows in two networks

Input

- \triangleright Directed graph G = (V, E)
- \triangleright Edge capacities $c: E \rightarrow \mathbb{N}$
- \triangleright Node demands $d:V\to\mathbb{Z}$

Output

- \triangleright Some circulation $f:E\to\mathbb{N}$ satisfying
 - For each $e \in E : 0 \le f(e) \le c(e)$
 - For each $v \in V : \sum_{e \text{ entering } v} f(v) \sum_{e \text{ leaving } v} f(v) = d(v)$
- > Note that you need $\sum_{v:d(v)>0} d(v) = \sum_{v:d(v)<0} -d(v)$
- > What are demands?

- Demand at v = amount of flow you need to take out at node v
 - > d(v) > 0: You need to take some flow out at v
 - \circ So there should be d(v) more incoming flow than outgoing flow
 - "Demand node"
 - > d(v) < 0: You need to put some flow in at v
 - \circ So there should be |d(v)| more outgoing flow than incoming flow
 - "Supply node"
 - > d(v) = 0: Node has flow conservation
 - Equal incoming and outgoing flows
 - "Transshipment node"

Example

- Network-flow formulation G'
 - > Add a new source s and a new sink t
 - > For each "supply" node v with d(v) < 0, add edge (s, v) with capacity -d(v)
 - > For each "demand" node v with d(v) > 0, add edge (v,t) with capacity d(v)
- Claim: G has a circulation iff G' has max flow of value $\sum_{v:d(v)>0} d(v) = \sum_{v:d(v)<0} -d(v)$

Example

Example

Circulation with Lower Bounds

Input

- \triangleright Directed graph G = (V, E)
- \triangleright Edge capacities $c:E\to\mathbb{N}$ and lower bounds $\ell:E\to\mathbb{N}$
- \triangleright Node demands $d:V\to\mathbb{Z}$

Output

- \triangleright Some circulation $f:E\to\mathbb{N}$ satisfying
 - For each $e \in E : \ell(e) \le f(e) \le c(e)$
 - For each $v \in V : \sum_{e \text{ entering } v} f(v) \sum_{e \text{ leaving } v} f(v) = d(v)$
- > Note that you still need $\sum_{v:d(v)>0} d(v) = \sum_{v:d(v)<0} -d(v)$

Circulation with Lower Bounds

- Transform to circulation without lower bounds
 - > Do the following operation to each edge

- Claim: Circulation in G iff circulation in G'
 - > Proof sketch: f(e) gives a valid circulation in G iff $f(e) \ell(e)$ gives a valid circulation in G'

Survey Design

Problem

- \triangleright We want to design a survey about m products
 - We have one survey question in mind for each product
- > There are *n* consumers
- \triangleright Consumer i owns a subset of products O_i
 - We can ask consumer i questions only about these products
- > We want to ask each consumer i between c_i and c_i' questions
- \succ We want to ask between p_j and p_j' question about each product j
- > Is there a survey meeting all these requirements?

Survey Design

Bipartite matching is a special case

$$> c_i = c'_i = p_j = p'_i = 1$$
 for all i and j

Max-flow formulation:

- > Use circulation with lower bounds model
- \triangleright Create a network with special nodes s and t
- \triangleright Edge from s to node of consumer i with flow $\in [c_i, c_i']$
- \triangleright Edge from consumer i to product $j \in O_i$ with flow $\in [0,1]$
- \triangleright Edge from node of product j to sink t with flow $\in [p_j, p'_j]$
- \triangleright Edge from t to s with flow in $[0, \infty]$
- > All demands and supplies are 0

Survey Design

- Max-flow formulation:
 - > Feasible survey iff feasible circulation in this network

- Foreground/background segmentation
 - > Given an image, separate "foreground" from "background"
- Here's the power of PowerPoint (or the lack thereof)

- Foreground/background segmentation
 - > Given an image, separate "foreground" from "background"
- Here's what remove.bg gets using Al

Informal problem

- Given an image (2D array of pixels), and likelihood estimates of different pixels being foreground/background, label each pixel as foreground or background
- Want to prevent having too many neighboring pixels where one is labeled foreground but the other is labeled background

Input

- An image (2D array of pixels)
- $> a_i =$ likelihood of pixels i being in foreground
- $b_i = likelihood of pixels i being in background$
- > $p_{i,j}$ = penalty for separating pixels i and j (i.e. labeling one of them as foreground and the other as background)

Output

- > Label each pixel as "foreground" or "background"
- Minimize total penalty
 - \circ We want this to be high if a_i is high but i is labeled background, or b_i is high but i is labeled foreground, or $p_{i,j}$ is high but i and j are separated

Recall

- $> a_i =$ likelihood of pixels i being in foreground
- $> b_i$ = likelihood of pixels i being in background
- $> p_{i,j}$ = penalty for separating pixels i and j
- \triangleright Let E = pairs of neighboring pixels

Output

- Minimize total penalty
 - $\circ A = \text{set of pixels labeled foreground}$
 - $\circ B = \text{set of pixels labeled background}$

- Formulate as min-cut problem
 - \triangleright Want to divide the set of pixels V into (A, B) to minimize

$$\sum_{i \in A} b_i + \sum_{j \in B} a_j + \sum_{\substack{(i,j) \in E \\ |A \cap \{i,j\}| = 1}} p_{i,j}$$

- \triangleright Add a node v_i for each pixel i
- > Add a source node s, sink node t
- > Add $s \rightarrow v_i$ edge with capacity a_i and $v_i \rightarrow t$ edge with capacity b_i
- > For neighboring (i,j), add both $v_i \rightarrow v_j$ and $v_j \rightarrow v_i$ edges with capacity $p_{i,j}$

- Formulate as min-cut problem
 - > Here's what the network looks like

> Consider the min-cut (A, B)

$$cap(A,B) = \sum_{i \in A} b_i + \sum_{j \in B} a_j + \sum_{\substack{(i,j) \in E \\ i \in A}} p_{i,j}$$

If i and j are labeled differently, it will add $p_{i,j}$ exactly once

Exactly what we want to minimize!

GrabCut [Rother-Kolmogorov-Blake 2004]

"GrabCut" — Interactive Foreground Extraction using Iterated Graph Cuts

Carsten Rother*

Vladimir Kolmogorov[†] Microsoft Research Cambridge, UK Andrew Blake[‡]

Figure 1: Three examples of GrabCut. The user drags a rectangle loosely around an object. The object is then extracted automatically.