Moreau-Yosida Regularization of Maximal Monotone Operators of Type (D)

Конечно, вот перевод документа на русский язык с сохранением важных терминов и математических обозначений:

Регуляризация Моро-Йосиды максимальных монотонных операторов типа (D)

Майкон Маркес Алвес · Бенар Фукс Свайтер

Получено: 9 ноября 2009 / Принято: 2 марта 2010 / Опубликовано онлайн: 31

марта 2010

© Springer Science+Business Media B.V. 2010

Аннотация

Мы предлагаем регуляризацию Моро-Йосиды для максимальных монотонных операторов типа (D) в нерефлексивных банаховых пространствах. Она обобщает классическую регуляризацию Моро-Йосиды, а также расширение этой регуляризации Брези-Крандалл-Пази на строго выпуклые (рефлексивные) банаховы пространства с строго выпуклыми сопряженными. Наши основные результаты получены с использованием недавних результатов авторов о выпуклых представлениях максимальных монотонных операторов в нерефлексивных банаховых пространствах.

Ключевые слова: Максимальный монотонный оператор · Операторы типа (D) · Регуляризация Моро-Йосиды · Нерефлексивные банаховы пространства

Математические классификации (2000): 47H05 · 49J52 · 47N10

1 Введение

Пусть X — вещественное банахово пространство, X^* — его топологическое сопряжённое, а X^{**} — его топологическое бисопряжённое.

Нормы на X, X^* и X^{**} будут обозначаться как $\|\cdot\|$.

Обозначение $\langle \cdot, \cdot \rangle$ означает двойственное скалярное произведение в $X \times X^*$ и $X^* \times X^{**}$.

$$\langle x, x^*
angle = x^*(x), \quad \langle x^*, x^{**}
angle = x^{**}(x^*), \quad x \in X, x^* \in X^*, x^{**} \in X^{**}.$$

Оператор $T:X\rightrightarrows X^*$ — это отношение на X в X^* :

$$T \subset X \times X^*$$
.

и $x^* \in T(x)$ означает $(x,x^*) \in T$. Область определения T определяется как:

$$Dom(T) = \{x \in X \mid T(x) \neq \emptyset\}.$$

Оператор $T:X\rightrightarrows X^*$ называется **монотонным**, если:

$$\langle x-y, x^*-y^*
angle \geq 0, \quad orall (x, x^*), (y, y^*) \in T.$$

Оператор T называется **максимальным монотонным**, если он монотонный и максимальный в семействе монотонных операторов из X в X^* (с точки зрения порядка включения).

В вещественном гильбертовом пространстве H регуляризация Моро-Йосиды и резольвентный оператор максимального монотонного оператора $T:H\rightrightarrows H$ с параметром $\lambda>0$ определяются соответственно как: как:

$$T_{\lambda} = rac{I - R_{\lambda}}{\lambda}, \quad R_{\lambda} = (\lambda T + I)^{-1}.$$

(1)

Оператор T_λ определён на всём H, он точечный и липшицев. Для свойств и применений регуляризации Моро-Йосиды максимальных

монотонных операторов в гильбертовых пространствах см. [10](#Zeidler, E).

Субдифференциал функции $f:X \to \mathbb{R} \cup \{\infty\}$ — это точечномножественный оператор

$$\partial f:X
ightrightarrows X^*$$
:

$$\partial f(x) = \{x^* \in X^* \mid f(y) \geq f(x) + \langle y - x, x^* \rangle, orall y \in X\}.$$

Регуляризация Моро-Йосиды была расширена для максимальных монотонных операторов в строго выпуклых рефлексивных банаховых пространствах с строго выпуклыми сопряженными Брези, Крандаллом и Пази в [1]. В этом контексте тождественный оператор, используемый в уравнении (1), заменяется на отображение двойственности:

$$J=\partialrac{1}{2}\|\cdot\|^2,$$

которое является точечным. Регуляризация Брези-Крандалл-Пази обладает некоторыми свойствами классической регуляризации Моро-Йосиды [1, Lemma 1.3] и в гильбертовых пространствах совпадает с классической регуляризацией Моро-Йосиды.

Наша цель — расширить версию регуляризации Брези-Крандалл-Пази для максимальных монотонных операторов типа (D) в общем банаховом пространстве без перенормировки. В рефлексивном банаховом пространстве любой максимальный монотонный оператор является оператором типа (D). Таким образом, в частности, мы обобщим версию регуляризации Брези-Крандалл-Пази для максимальных монотонных операторов в рефлексивных пространствах без перенормировки пространства в строго выпуклую и гладкую норму.

2 Основные результаты и обозначения

Мы используем обозначение $\overline{\mathbb{R}}$ для расширенных вещественных чисел:

$$\overline{\mathbb{R}} = \{-\infty\} \cup \mathbb{R} \cup \{\infty\}.$$

Функция $f:X o\overline{\mathbb{R}}$ называется **выпуклой**, если $f>-\infty$ и существует точка $\hat{x}\in X$, для которой $f(\hat{x})<\infty$.

Сопряжённая функция Фенхеля–Лежандра для $f:X \to \overline{\mathbb{R}}$ — это $f^*:X^* \to \overline{\mathbb{R}}$, определённая как:

$$f^*(x^*) = \sup_{x \in X} \langle x, x^*
angle - f(x).$$

Заметим, что f^* всегда выпуклая и полунепрерывная снизу. Если функция f является собственной, выпуклой и полунепрерывной снизу, то её сопряжённая функция f^* также будет собственной, а её бисопряжённая функция $f^{**}:=(f^*)^*$ корректно определена и

$$f^{**}(x) = f(x)$$
, для всех $x \in X$.

Мы будем отождествлять $x \in X$ с его каноническим включением в X^{**} . Более того, из определения f^* напрямую следует **неравенство Фенхеля–Янга**:

для всех $x \in X$, $x^* \in X^*$:

$$\langle x^*,x
angle \leq f(x)+f^*(x^*)$$

 $f(x)+f^*(x^*)\geq \langle x,x^*
angle$ и $f(x)+f^*(x^*)=\langle x,x^*
angle$ тогда и только тогда, когда $x^*\in$

(3)

В частном случае $f(x)=\|x\|^2/(2\lambda)$, где $\lambda>0$, мы получаем характеризацию отображения двойственности $J:X\rightrightarrows X^*.$

$$rac{1}{2\lambda}\|x\|^2+rac{\lambda}{2}\|x^*\|^2\geq\langle x,x^*
angle,$$

 $rac{1}{2\lambda}\|x\|^2+rac{\lambda}{2}\|x^*\|^2=\langle x,x^*
angle$ тогда и только тогда, когда $x^*\in\lambda^{-1}J(x).$

(4)

Важным инструментом, который будет использоваться в следующих разделах, является классическая формула двойственности Фенхеля, которую мы приводим ниже.

Теорема 2.1.

Пусть $f,g:X \to \overline{\mathbb{R}}$ — собственные выпуклые и полунепрерывные снизу функции.

Если существует $\hat{x}\in X$ такое, что f (или g) непрерывна в \hat{x} , и $f(\hat{x})<\infty,\,g(\hat{x})<\infty,$ то:

$$\inf_{x \in X} f(x) + g(x) = \max_{x^* \in X^*} -f^*(-x^*) - g^*(x^*).$$

Фицпатрик доказал [3], что каждому максимальному монотонному оператору $T:X
ightharpoonup X^*$ соответствует семейство \mathcal{F}_T

выпуклых, собственных, полунепрерывных снизу функций, которые мажорируют двойственное скалярное произведение и совпадают с ним на T:

$$\mathcal{F}_T = \left\{ egin{aligned} h - & ext{выпуклая и полунепрерывная снизу} \ h : X imes X^*
ightarrow \overline{\mathbb{R}} & h(x,x^*) \geq \langle x,x^*
angle, & orall (x,x^*) \in X imes X^* \ (x,x^*) \in T \Rightarrow h(x,x^*) = \langle x,x^*
angle \end{aligned}
ight\}.$$

(5)

Фицпатрик также дал явную формулу для наименьшего элемента \mathcal{F}_T и доказал, что для любой $h\in\mathcal{F}_T$:

$$(x,x^*)\in T\Longleftrightarrow h(x,x^*)=\langle x,x^*
angle.$$

В связи с вышеуказанным уравнением, отныне мы будем называть любую $(h \in \mathcal{F}_T)$ выпуклым представлением T.

Следующая теорема принадлежит Маркесу Алвесу и Свайтеру [5]. Она была доказана для рефлексивных банаховых пространств Бурачиком и Свайтером в [2].

Теорема 2.2. ([5, Corollary 4.4, Theorem 4.2])

Пусть X — вещественное банахово пространство. Если $h: X \times X^* \to \overline{\mathbb{R}}$ — выпуклая функция и:

$$egin{align} h(x,x^*) &\geq \langle x,x^*
angle, &orall (x,x^*) \in X imes X^*, \ h^*(x^*,x^{**}) &\geq \langle x^*,x^{**}
angle, &orall (x^*,x^{**}) \in X^* imes X^{**}, \end{align}$$

то оператор $T:X
ightrightarrows X^*$, определённый как:

$$T = \{(x, x^*) \in X \times X^* \mid h^*(x^*, x) = \langle x, x^* \rangle \},$$

является максимальным монотонным, и функция $g(x,x^*):=h^*(x^*,x)$ — выпуклое представление T.

Кроме того, если h полунепрерывна снизу, то:

$$T = \{(x,x^*) \in X imes X^* \mid h(x,x^*) = \langle x,x^*
angle \},$$

и h также является выпуклым представлением T.

Следствие 2.3.

Для h и T, как в Теореме 2.2, замыкание снизу $\operatorname{cl} h$ также является выпуклым представлением T.

Чтобы это доказать, достаточно вспомнить, что двойственное скалярное произведение непрерывно, а операция сопряжения инвариантна относительно операции замыкания снизу.

3 Операторы типа (D) Госсеза

Госсез определил класс операторов типа (D), чтобы расширить некоторые свойства максимальных монотонных операторов в рефлексивных банаховых пространствах на нерефлексивные пространства.

Монотонное замыкание Госсеза [4] оператора (T: X \rightrightarrows X^{\wedge}) — это оператор (\widetilde{T}: X^{**} \rightrightarrows X^{\wedge}):

$$\widetilde{T} = \{(x^{**}, x^*) \in X^{**} imes X^* \mid \langle x^{**} - y, x^* - y^*
angle \geq 0, \quad orall (y, y^*) \in T \}.$$

(6)

Пусть T — оператор, который называется **оператором типа (D)**, если любой элемент из \tilde{T} является пределом в слабой — * \times сильной топологии X^* \times X^{**} ограниченной сети (x_i, x_i^*) на T. Отметим, что в рефлексивном банаховом пространстве любой максимальный монотонный оператор является оператором типа (D). Следующие две теоремы принадлежат Госсезу [4].

Теорема 3.1. Если T — максимальный монотонный оператор типа (D), то \tilde{T} — единственное максимальное монотонное расширение T на $X^{**} \times X^*$.

Теорема 3.2. Пусть $f:X \to \overline{\mathbb{R}}$ — собственная, выпуклая и полунепрерывная снизу функция. Тогда её субдифференциал ∂f — это оператор типа (D), и:

$$\widetilde{\partial f} = (\partial f^*)^{-1}.$$

Выпуклые представления Фицпатрика максимальных монотонных операторов могут быть использованы для характеризации максимальных монотонных операторов типа (D).

Теорема 3.3. ([7, 8, Теорема 4.4], [6, Теорема 1.4]) Пусть $T: X \rightrightarrows X^*$ — максимальный монотонный оператор. Тогда следующие свойства эквивалентны:

- 1. T оператор типа (D),
- 2. для любой $h\in\mathcal{F}_T$:

$$h^*(x^*,x^{**}) \geq \langle x^{**},x^*
angle, \quad orall (x^*,x^{**}) \in X^* imes X^{**},$$

3. существует $h \in \mathcal{F}_T$ такое, что:

$$h^*(x^*,x^{**}) \geq \langle x^{**},x^*
angle, \quad orall (x^*,x^{**}) \in X^* imes X^{**}.$$

Кроме того, если выполнено любое из этих условий и $h \in \mathcal{F}_T$, то:

$$h^*\in \mathcal{F}_{\widetilde{T}^{-1}}.$$

4 Регуляризация Моро-Йосиды в общих банаховых пространствах

Если X — строго выпуклое, гладкое и рефлексивное банахово пространство, то отображение двойственности:

$$J = \partial rac{1}{2} \|\cdot\|^2$$

является биекцией между X и X^* . В этом контексте для $T:X\rightrightarrows X^*$, максимального монотонного оператора, обобщение Брези-Крандалл-Пази резольвента и регуляризации Моро-Йосиды оператора T с параметром $\lambda>0$ определяются соответственно как:

$$R_{\lambda}:X o X,\quad T_{\lambda}:X o X^{st},$$

где для каждого $x\in X$, $\lambda>0$, $(z,x^*)\in X\times X^*$ — единственное решение:

$$\lambda x^* + J(z-x) = 0, \quad x^* \in T(z),$$

и таким образом:

$$R_\lambda(x):=z,\quad T_\lambda(x):=x^*.$$

Первая попытка обобщить версию регуляризации Брези-Крандалл-Пази (уравнение 8) заключалась бы в замене первого из этих уравнений на:

$$\lambda x^* + J(z-x)
i 0, \quad x^* \in T(z).$$

В нерефлексивном банаховом пространстве J не является сюръективным. Следовательно, если $T\equiv x^*$ и $x^*\not\in J(X)$, то вышеуказанное включение не имело бы решения для любого x, и мы получили бы пустой T_λ . Чтобы обойти эту проблему, мы будем работать с монотонными замыканиями Госсеза T и J, то есть \tilde{T} и \tilde{J} . Отметим, что поскольку J является субдифференциалом, в виду Теоремы 3.2, J — оператор типа (D), и:

$$\widetilde{J}=(J_{X^*})^{-1},$$

(9)

где J_{X^*} обозначает отображение двойственности X^* .

Определение 4.1. Пусть X — вещественное банахово пространство, а $T:X\rightrightarrows X^*$ — максимальный монотонный оператор типа (D). Регуляризация Моро-Йосиды и резольвента T с параметром регуляризации $\lambda>0$ определяются соответственно как $T_\lambda:X\rightrightarrows X^*$ и $R_\lambda:X\rightrightarrows X^{**}$:

$$T_\lambda=igg\{(x,x^*)\in X imes X^* egin{array}{cccc} \exists z^{**}\in X^{**} ext{ такое, что} \ \lambda x^*+\widetilde{J}(z^{**}-x)
ightarrow 0, & x^*\in \widetilde{T}(z^{**}) igg\}, \end{array}$$

(10)

(8)

$$R_\lambda=igg\{(x,z^{**})\in X imes X^{**} egin{array}{c}\exists x^*\in X^* ext{ такое, что}\ \lambda x^*+\widetilde{J}(z^{**}-x)
ightarrow 0, & x^*\in \widetilde{T}(z^{**}) igg\}.$$

(11)

В строго выпуклом, гладком и рефлексивном банаховом пространстве вышеуказанное определение тривиально приводит к версии регуляризации Брези-Крандалл-Пази. Основными инструментами для доказательства максимальной монотонности T_{λ} будут выпуклые представления Фицпатрика T, Теоремы 2.2 и 3.3.

Для $h: X \times X^* \to \overline{\mathbb{R}}$ и $\lambda > 0$ определим:

$$h_{\lambda}(x,x^*) = \inf_{z \in X} \left\{ h(z,x^*) + rac{1}{2\lambda} \|z-x\|^2
ight\} + rac{\lambda}{2} \|x^*\|^2.$$

(12)

Лемма 4.2. Пусть $h: X \times X^* \to \overline{\mathbb{R}}$ — выпуклая, собственная и полунепрерывная снизу функция. Тогда:

$$h_{\lambda}^*(x^*,x^{**}) = \min_{z^{**} \in X^{**}} \left\{ h^*(x^*,z^{**}) + rac{1}{2\lambda} \|z^{**} - x^{**}\|^2
ight\} + rac{\lambda}{2} \|x^*\|^2,$$

(13)

и h_{λ}^* , h_{λ} — выпуклые и собственные функции, причем h_{λ}^* полунепрерывна снизу. Кроме того, если X рефлексивно, то h_{λ} также полунепрерывна снизу, и инфимум в уравнении (12) является минимумом.

Доказательство. Прямой расчет дает:

$$h_{\lambda}^*(x^*,x^{**}) = \sup_{(y,y^*,z)} \langle y,x^*
angle + \langle y^*,x^{**}
angle - h(z,y^*) - rac{1}{2\lambda} \|z-y\|^2 - rac{\lambda}{2} \|y^*\|^2.$$

Определим $g(z,y^*)=rac{\lambda}{2}\|y^*\|^2.$ Тогда супремум в последнем члене вышеуказанного уравнения:

$$(h+g)^*(x^*,x^{**}).$$

Поскольку g выпукла и непрерывна, а h выпукла, собственна и полунепрерывна снизу, вышеуказанное сопряженное является (точной) инфи-конволюцией сопряженных h и g. Следовательно:

$$h_{\lambda}^*(x^*,x^{**}) = rac{\lambda}{2} \|x^*\|^2 + \inf_{(u^*,u^{**})} h^*(x^*-u^*,x^{**}-u^{**}) + g^*(u^*,u^{**}),$$

где $g^*(u^*,u^{**})=\frac{1}{2\lambda}\|u^{**}\|^2+\delta_0(u^*)$. Используя подстановку $z^{**}=x^{**}-u^{**}$, получаем уравнение (13), что доказывает первую часть леммы.

Легко проверить, что h_{λ} выпукла. Поскольку h конечна в некоторой точке, h_{λ} собственна. Функция h_{λ}^* выпукла и полунепрерывна снизу, так как она сопряженная к h_{λ} . Используя то, что h_{λ} собственна, заключаем, что $h_{\lambda}^* > -\infty$. Кроме того, из уравнения (13) следует, что $h_{\lambda}^* < \infty$ в некоторой точке. Следовательно, h_{λ}^* собственна. Теперь предположим, что X рефлексивно. Для доказательства того, что h_{λ} полунепрерывна снизу и что инфимум в её определении является минимумом, применим первую часть леммы к функции $\tilde{h}(x,x^*) = h^*(x^*,x)$, чтобы получить $(\tilde{h}_{\lambda})^* = h_{\lambda}$.

Теорема 4.3. Пусть $T:X\rightrightarrows X^*$ — максимальный монотонный оператор типа (D). Для любого $\lambda>0$ оператор T_λ является максимальным монотонным оператором типа (D). Кроме того, если h — выпуклое представление T, и h_λ определено как в уравнении (12):

$$h_{\lambda}(x,x^*) = \inf_{z \in X} \left\{ h(z,x^*) + rac{1}{2\lambda} \|z-x\|^2
ight\} + rac{\lambda}{2} \|x^*\|^2,$$

TO:

$$T_{\lambda} = \{(x,x^*) \in X imes X^* \mid h_{\lambda}^*(x^*,x) = \langle x,x^*
angle \},$$

и функции clh_λ и $g(x,x^*):=h_\lambda^*(x^*,x)$ являются выпуклыми представлениями T_λ . Если X рефлексивно, то h_λ также является выпуклым представлением T_λ .

Доказательство. Пусть h — выпуклое представление T. Поскольку h мажорирует двойственное скалярное произведение, для любых $x,z\in X$, $x^*\in X^*$:

$$h(z,x^*) + rac{1}{2\lambda}\|z-x\|^2 + rac{\lambda}{2}\|x^*\|^2 \geq \langle z,x^*
angle + \langle x-z,x^*
angle = \langle x,x^*
angle.$$

(14)

Следовательно, h_{λ} мажорирует двойственное скалярное произведение в $X \times X^*$. Используя Теорему 3.3, пункт 2, имеем, что h^* мажорирует двойственное скалярное произведение в $X^* \times X^{**}$. Следовательно, для любых $x^* \in X^*$, x^{**} , $z^{**} \in X^{**}$:

$$h^*(x^*,z^{**}) + rac{1}{2\lambda}\|z^{**} - x^{**}\|^2 + rac{\lambda}{2}\|x^*\|^2 \geq \langle z^{**},x^*
angle + \langle z^{**} - x^{**},x^*
angle = \langle x^{**},x^*
angle.$$

(15)

Соединяя вышеуказанное уравнение с Леммой 4.2, уравнением (13), заключаем, что (h_{λ}^*) также мажорирует двойственное скалярное произведение.

Согласно Лемме 4.2, h_{λ} и h_{λ}^* выпуклы, а h_{λ}^* полунепрерывна снизу. Поскольку h_{λ} и h_{λ}^* мажорируют двойственное скалярное произведение в своих соответствующих областях, определим:

$$S = \{(x,x^*) \in X imes X^* \mid h_\lambda^*(x^*,x) = \langle x,x^*
angle \},$$

и, используя Теорему 2.2 и Следствие 2.3, заключаем, что S максимально монотонен типа (D), и $g(x,x^*)=h_\lambda^*(x^*,x)$, $\mathrm{cl}h_\lambda$ — выпуклые представления S.

Чтобы доказать, что $T_{\lambda}=S$, используем уравнение (13), чтобы заключить, что $(x,x^*)\in S$ тогда и только тогда, когда существует $z^{**}\in X^{**}$ такое, что:

$$h^*(x^*,z^{**}) + rac{1}{2\lambda}\|z^{**} - x\|^2 + rac{\lambda}{2}\|x^*\|^2 = \langle x,x^*
angle.$$

(16)

Используя Теорему 2.2, имеем:

$$(z^{**},x^*)\in \widetilde{T} \Longleftrightarrow h^*(x^*,z^{**})=\langle z^{**},x^*
angle.$$

Соединяя два вышеуказанных уравнения с уравнением (15), фактом, что h^* мажорирует двойственное скалярное произведение, уравнениями (9) и (4), заключаем, что уравнение (16) эквивалентно:

$$x^* \in \widetilde{T}(z^{**}), \quad -\lambda x^* \in \widetilde{J}(z^{**}-x),$$

Следовательно, $T_{\lambda}=S$ максимально монотонно, и g, $\mathrm{cl}h_{\lambda}$ — выпуклые представления S. Поскольку $(\mathrm{cl}h_{\lambda})^*=h_{\lambda}^*$ и h_{λ}^* мажорирует двойственное скалярное произведение, используя снова Теорему 2.2, заключаем, что T_{λ} типа (D). Наконец, если X рефлексивно, используем Лемму 4.2, чтобы заключить, что h_{λ} полунепрерывна снизу, и следовательно, $h_{\lambda}=\mathrm{cl}h_{\lambda}$.

Мы доказали, что если T максимально монотонно типа (D), то T_{λ} также (максимально монотонно) типа (D). Следовательно, естественно искать выражения для $\widetilde{T_{\lambda}}$.

Следствие 4.4. Если $(T:X\rightrightarrows X^*)$ — максимальный монотонный оператор типа (D), то:

$$\widetilde{T_{\lambda}} = \left(\widetilde{T}^{-1} + \lambda^{-1}\widetilde{J}^{-1}
ight)^{-1}, \quad T_{\lambda} = \left(\widetilde{T}^{-1} + \lambda^{-1}\widetilde{J}^{-1}
ight)^{-1} \cap X imes X^*.$$

Если X рефлексивно, то:

$$T_{\lambda} = \left(T^{-1} + \lambda^{-1}J^{-1}
ight)^{-1},$$

и если X — гильбертово пространство, то $T_{\lambda} = \left(T^{-1} + \lambda^{-1}I\right)^{-1}$.

Для $h:X imes X^* o \overline{\mathbb{R}}$ и $(z,z^*)\in X imes X^*$ определим [5, 9]:

$$h_{(z,z^*)}(x,x^*) = h(x+z,x^*+z^*) - [\langle x,z^*
angle + \langle z,x^*
angle + \langle z,z^*
angle].$$

(17)

Лемма 4.5. Пусть $T:X \rightrightarrows X^*$ — максимальный монотонный оператор типа (D). Тогда для любого $\lambda>0$, $\mathrm{Dom}(T_\lambda)=X$.

Доказательство. Возьмем $x_0 \in X$. Выберем $h \in \mathcal{F}_T$ и пусть:

$$eta := \inf_{x^* \in X^*} h_\lambda(x_0, x^*) - \langle x_0, x^*
angle,$$

где h_λ определено как в уравнении (12). Определим также $f:X imes X^* o \overline{\mathbb{R}}$:

$$f(y,y^*)=h(y+x_0,y^*)-\langle x_0,y^*
angle.$$

Отметим, что f выпукла, полунепрерывна снизу и:

$$f^*(y^*,y^{**}) = h^*(y^*,y^{**}+x_0) - \langle x_0,y^*
angle.$$

Поскольку h и h^* мажорируют двойственное скалярное произведение, f и f^* мажорируют двойственное скалярное произведение в своих соответствующих областях, и $\beta \geq 0$

Прямое использование уравнения (12) дает:

$$\beta = \inf_{z \in X, x^* \in X^*} f(z - x_0, x^*) + \frac{1}{2\lambda} \|z - x_0\|^2 + \frac{\lambda}{2} \|x^*\|^2 = \inf_{x \in X, x^* \in X^*} f(x, x^*) + \frac{1}{2\lambda} \|x\|^2 + \frac{\lambda}{2}$$

Используя Теорему 2.1, заключаем, что существуют $w^* \in X^*$, $w^{**} \in X^{**}$ такие, что:

$$eta = -\left[f^*(w^*,w^{**}) + rac{\lambda}{2}\|w^*\|^2 + rac{1}{2\lambda}\|w^{**}\|^2
ight] \leq 0,$$

где последнее неравенство следует из того, что f^* мажорирует двойственное скалярное произведение. Поскольку $\beta \geq 0$, заключаем, что вышеуказанное неравенство выполняется как равенство. Следовательно, используя также уравнения (9) и (4), имеем:

$$h^*(w^*,w^{**}+x_0)-\langle x_0,w^*
angle=\langle w^*,w^{**}
angle,\quad -\lambda w^*\in \widetilde{J}(w^{**}).$$

Определив $z^{**}=w^{**}+x_0$, заключаем, что $h^*(w^*,z^{**})=\langle z^{**},w^*\rangle$. Поскольку h^* — выпуклое представление \widetilde{T}^{-1} , заключаем, что $w^*\in \widetilde{T}(w^*)$, и:

$$0 \in \lambda w^* + \widetilde{J}(z^{**} - x_0),$$

что означает $w^* \in T_\lambda(x_0)$.

Теорема 4.6. Пусть $T:X\rightrightarrows X^*$ — максимальный монотонный оператор типа (D). Тогда для всех $\lambda>0$ выполняются следующие утверждения:

- 1. T_{λ} максимальный монотонный оператор типа (D),
- 2. $Dom(T_{\lambda}) = X$,
- 3. T_{λ} отображает ограниченные множества в ограниченные множества.

Доказательство. Пункт 1 доказан в Теореме 4.3. Соединяя Теорему 4.3 и Лемму 4.5, получаем пункт 2. Для завершения доказательства остается доказать пункт 3. Зафиксируем $(y,y^*)\in T$. Возьмем $(x,x^*)\in T_\lambda$. По определению T_λ существует $z^{**}\in X^{**}$ такое, что:

$$x^* \in \widetilde{T}(z^{**})$$
 и $-\lambda x^* \in \widetilde{J}(z^{**}-x).$

(18)

Пусть $(y,y^*)\in T$. Используя оба включения в уравнении (18) и тот факт, что $T\subset\widetilde{T}$, получаем:

$$0 = rac{\lambda}{2} \|x^*\|^2 + rac{1}{2\lambda} \|z^{**} - x\|^2 + \langle x^*, z^{**} - x
angle$$

$$x^* = rac{\lambda}{2} \|x^*\|^2 + rac{1}{2\lambda} \|z^{**} - x\|^2 + \langle x^* - y^*, z^{**} - y
angle + \langle x^* - y^*, y - x
angle + \langle y^*, z^{**} - x
angle$$

$$egin{aligned} & \geq rac{\lambda}{2}\|x^*\|^2 - rac{\lambda}{2}\|y^*\|^2 + \langle x^* - y^*, y - x
angle \ & \geq rac{\lambda}{2}\|x^*\|^2 - \|x^*\|\|y - x\| - rac{\lambda}{2}\|y^*\|^2 - \|y^*\|\|y - x\|. \end{aligned}$$

Следовательно:

$$0 \geq \|x^*\|^2 - rac{2}{\lambda}\|y - x\|\|x^*\| - igg(\|y^*\|^2 + rac{2}{\lambda}\|y^*\|\|y - x\|igg),$$

и, следовательно:

$$\|x^*\| \leq rac{2}{\lambda}\|y-x\| + \|y^*\| \leq rac{2}{\lambda}\|x\| + igg(rac{2}{\lambda}\|y\| + \|y^*\|igg).$$

Литература

- 1. Brezis, H., Crandall, M.G., Pazy, A.: Perturbations of nonlinear maximal monotone sets in Banach space. Commun. Pure Appl. Math. 23, 123-144 (1970)
- 2. Burachik, R.S., Svaiter, B.F.: Maximal monotonicity, conjugation and the duality product. Proc. Am. Math. Soc. 131(8), 2379-2383 (2003, electronic)
- 3. Fitzpatrick, S.: Representing monotone operators by convex functions. In: Workshop/ Miniconference on Functional Analysis and Optimization (Canberra, 1988). Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 20, pp. 59-65. Austral. Nat. Univ., Canberra (1988)
- Gossez, J.-P.: Opérateurs monotones non linéaires dans les espaces de Banach non réflexifs. J. Math. Anal. Appl. 34, 371-395 (1971)
- Marques Alves, M., Svaiter, B.F.: Brøndsted-Rockafellar property and maximality of monotone operators representable by convex functions in nonreflexive Banach spaces. J. Convex Anal. 15(4), 693-706 (2008)
- 6. Marques Alves, M., Svaiter, B.F.: Maximal monotone operators with a unique extension to the bidual. J. Convex Anal. 16(2), 409-421 (2009)

- 7. Marques Alves, M., Svaiter, B.F.: On Gossez type (D) maximal monotone operators (2009). arXiv:0903.5332v2 [math.FA]
- 8. Marques Alves, M., Svaiter, B.F.: On Gossez type (D) maximal monotone operators. J. Convex Anal. 17(3&4) (2010)
- 9. Martínez-Legaz, J.-E., Svaiter, B.F.: Monotone operators representable by I.s.c. convex functions. Set-Valued Anal. 13(1), 21-46 (2005)
- 10. Zeidler, E.: Nonlinear Functional Analysis and its Applications. II/B. Springer, New York (1990) (Nonlinear monotone operators. Translated from the German by the author and Leo F. Boron)