Task 1 - Orthogonal vectors

Which of the following vectors is orthogonal to $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$?

$$\Box \left(\begin{array}{c} -1 \\ 0 \end{array} \right)$$

$$\Box \left(\begin{array}{c} -1 \\ \frac{1}{2} \end{array} \right)$$

$$\Box \left(\begin{array}{c} -1 \\ 2 \end{array} \right)$$

Task 2 - Matrix multiplication

$$\left(\begin{array}{c}2\\1\end{array}\right)\cdot\left(\begin{array}{c}0&3\end{array}\right)=$$

 \square 3

$$\Box \left(\begin{array}{c} 0\\3 \end{array}\right)$$

$$\Box \left(\begin{array}{cc} 0 & 6 \\ 0 & 3 \end{array} \right)$$

Task 3 - Inverse Matrices

Let $A \in \mathbb{R}^{d \times d}$ be a symmetric, invertible matrix and $\mathbf{v}, \mathbf{w} \in \mathbb{R}^d$ vectors. Which of the following statements is always true?

$$\Box (A\mathbf{v})^T \mathbf{w} = \mathbf{v}^T (A\mathbf{w})$$

$$\Box (A\mathbf{v})^T (A\mathbf{w}) = \mathbf{v}^T \mathbf{w}$$

$$\Box (A\mathbf{v})^T\mathbf{w} = \mathbf{v}^T(A^{-1}\mathbf{w})$$

Task 4 - Scalar product and rotation

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, and let $U \in \mathbb{R}^{n \times n}$ be an orthogonal matrix, i.e. $UU^T = U^TU = I$. Show: The multiplication with U is invariant with respect to the scalar product, i.e. :

$$(U\mathbf{x})^T U\mathbf{y} = \mathbf{x}^T \mathbf{y}.$$

Task 5 - Matrix algebra and eigenvectors

Let $A \in \mathbb{R}^{m \times n}$ be a rectangular matrix. A has rank n, and $m \neq n$. We define $B := A^T A$ und $C := AA^T$.

- 1. What are the dimensions of B and C?
- 2. Is m > n or m < n?
- 3. Is C invertible?
- 4. Is B symmetric?
- 5. Let $\mathbf{x} \in \mathbb{R}^n$ be an arbitrary vector. Show: $\mathbf{x}^T B \mathbf{x} \geq 0$
- 6. Let $\mathbf{v} \in \mathbb{R}^n$, $\|\mathbf{v}\| = 1$ be an eigenvector of B with eigenvalue λ , that is $B\mathbf{v} = \lambda \mathbf{v}$. Find an expression for $\mathbf{v}^T B \mathbf{v}$ that depends only on λ .
- 7. Combine (5) and (6). What do we know about the sign of λ ?