AI1110 Assignment 2

Hema Sri Cheekatla, CS21BTECH11013

Question 21a:

The cost function of a product is given by $C(x) = \frac{x^3}{3} - 45x^2 - 900x + 36$ where x is number of units produced. How many units should be produced to minimise the marginal cost?

Solution:

The marginal cost $MC = \frac{\Delta C}{\Delta Q}$ where, ΔC is change in cost ΔQ is change in quantity

TABLE I TABLE CONSISTING SYMBOLS, FORMULAE, DESCRIPTION

Symbol	Formula	Description
x	-	No. of units
C(x)	$\frac{x^3}{3} - 45x^2 - 900x + 36$	Cost function
MC	$\frac{d}{dx}\left(C(x)\right)$	Marginal Cost
c	$\frac{d}{dx}\left(C(x)\right) = 0$, at $x = c$	No. of units at min. MC

Hence Marginal Cost MC is given by,

$$MC = \frac{d}{dx} (C(x))$$
(1)
= $\frac{d}{dx} \left(\frac{x^3}{3} - 45x^2 - 900x + 36 \right)$ (2)
= $\frac{3x^2}{3} - 2 \times 45x - 900 + 0$ (3)

$$\implies MC = x^2 - 90x - 900 \tag{4}$$

Now let MC = y = f(x)

We need to find the number of units to be produced such that the Marginal cost is minimum. This Marginal cost (y = f(x)) is minimum for some x = c, at where it obeys the following conditions

(i)
$$\frac{dy}{dx} = 0$$
 at x=c
(ii) $\frac{d^2y}{dx^2} > 0$ at x=c

(ii)
$$\frac{\overline{d^2}y}{dx^2} > 0$$
 at x=c

Now let us consider $\frac{dy}{dx}$

$$\frac{dy}{dx} = \frac{d}{dx} \left(x^2 - 90x - 900 \right) \tag{5}$$

$$\implies \frac{dy}{dx} = 2x - 90 = f'(x) \tag{6}$$

From first condition, at x=c, $\frac{dy}{dx} = 0$

$$i.e., f'(c) = 0$$
 (7)

$$2c - 90 = 0 (8)$$

$$\implies c = 45$$
 (9)

Hence at x = 45, $\frac{dy}{dx} = 0$

Now let us consider the second condition at x=45

$$\frac{d^2y}{dx^2} > 0 \tag{10}$$

$$\frac{d}{dx}\left(\frac{dy}{dx}\right) > 0\tag{11}$$

$$\frac{d}{dx}\left(2x - 90\right) > 0\tag{12}$$

$$2 > 0 \tag{13}$$

Hence the second condition is also valid at x = 45Therefore at x = 45, y = f(x) is minimum, i.e., Marginal cost is minimum if we produce 45 units.

Hence the Number of units that are to be produced to minimise the marginal cost is 45 units.