Project 4 FYS4150

Kjetil Karlsen

November 16, 2017

Abstract

To do:
Enhet akse $(T' = \frac{k_b}{J}T), E' = x, E = xJ$
Error estimation
Problem: Ulike T_C for varmekapasitet og X !!!!!
Korrelasjonslengde? Vits plotte? Autokorrelation: NEI
Tidsberegning Parallell

Contents

1	Introduction	1
2	Theory	1
	2.1 The Ising model	2
	2.1.1 Statistical physics in the Ising model	2
	2.2 Simple example of the Ising model	
	2.3 Statistical physics	
3	Method	4
	3.1 Monte Carlo cycles	4
	3.2 Metropolis algorithm	4
	3.3 Random numbers	
	3.4 Parallelizing	5
4	Result	5
	4.1 The L=2 case	5
	4.2 The L=20 system	6
	4.2.1 Initial ordering of the system	7
	4.2.2 Equilibrium time for the random L=20 system	
	4.2.3 Probability distrubition for the L=20 system	9
	4.3 Phase transition and Critical temperature	10
5	Discussion	12
6	Conclusion	19

1 Introduction

2 Theory

Ising model

Markhow chain - convergance Error Random number ??????

2.1 The Ising model

The Ising model is a model used to simulate magnetic phase transitions of solids. In this project a somewhat simplified version of the model will be used, assuming no external magnetic field and a finite, 2 dimentional system. It is also assumed that the each spin can only take the values $s = \pm 1$. In this model only the nearest neighbours affect each other, excluding long range effects. The energy in a system of a total of N spins is then defined as

$$E = -J \sum_{\langle jk \rangle}^{N} s_k s_l \tag{1}$$

with J being a coupling constant and $\langle jk \rangle$ indicating that the sum is over the nearest neighbours only. The useful quantity Energy per spin is defined as $E_{spin} = \frac{E}{N}$.

2.1.1 Statistical physics in the Ising model

The spins in the Ising model follows Boltzmann statistics, meaning that the probability of a state $|i\rangle$ is defined as

$$P(E_i) = \frac{e^{-E_i\beta}}{Z_\beta} \tag{2}$$

with the partition function $Z_{\beta} = \int dE \ e^{-E\beta}$ normalizes the expression and $\beta = (k_B T)^{-1}$. The partition function used in the project is discrete, $Z_{\beta} = \sum_{i}^{N} e^{-E_i\beta}$. As the temperature T increases, the probability of each state decreases, giving a broader distribution of probable states.

In order to characterize the system, the mean energy, mean magnetization and mean absolute magnetization are important. The macroscopic property of mean energy $\langle E \rangle$ is needed to define the heat capacity C_V of the system, while the microscopic effect of mean magnetization and the magnetic moment leads to the susceptibility χ . These are defined below:

$$\langle E \rangle = \frac{1}{Z_{\beta}} \sum_{i}^{N} E_{i} P_{\beta}(E_{i}) \tag{3}$$

$$\langle M \rangle = \frac{1}{Z_{\beta}} \sum_{i}^{N} M_{i} P_{\beta}(E_{i}) \tag{4}$$

$$\langle |M| \rangle = \frac{1}{Z_{\beta}} \sum_{i}^{N} |M|_{i} P_{\beta}(E_{i}) \tag{5}$$

$$C_V = \frac{1}{k_B T^2} \left(\langle E^2 \rangle - \langle E \rangle^2 \right) \tag{6}$$

$$\chi = \frac{1}{k_B T} \left(\langle M^2 \rangle - \langle M \rangle^2 \right) \tag{7}$$

2.1.2 Periodic boundary conditions

At the boundaries of a finite spin matrix it is fewer nearest neighbours than in the bulk of the matrix. This is analogous to a surface of a material. By assuming periodic boundary conditions, the effects of the surface is neglected and easy to handle. For a 1 dimensional case with N spins, the neighbours of spin S_N is S_{N-1} and S_1 .

2.2 Phase transitions 2 THEORY

2.2 Phase transitions

Regardless of the matrix size of the 2 dimensional system, there are only 16

Energy, magnetic moment, susceptibility, heat capacity, critical temperature:

$$T_C(L) - T_C(L = \infty) = aL^{-1/\nu} \tag{8}$$

Analytical solution

If one has experimental data from two systems with different matrix sizes, L and L', and doing some simple algebra, the following expression emerges for $T_C(\infty)$:

$$T_C(\infty) = T_C(L) - aL^{-1/\nu} = T_C(L) - \frac{T_C(L') - T_C(L)}{\frac{1}{L'} - \frac{1}{L}} L^{-1/\nu}$$
(9)

2.3 Simple example of the Ising model

L=2 case:

$$Z = \sum_{i}^{M} e^{-\beta E_{i}} = e^{-\beta 8J} + e^{-\beta 8J} + e^{\beta 8J} e^{\beta 8J} + 12$$
$$= 4 \cosh(\beta 8J) + 12$$

Energy:

$$\langle E \rangle = k_B T^2 \left(\frac{\partial Z}{\partial T} \right)_{V,N}$$

$$= k_B T^2 \frac{\partial}{\partial T} \left[\ln \left(4 \cosh \left(\frac{8J}{k_B T} \right) + 12 \right) \right]$$

$$\frac{\partial \ln Z}{\partial T} = \frac{\partial Z}{\partial \beta} \frac{\partial \beta}{\partial T} = \frac{\partial \ln Z}{\partial \beta} \left(\frac{-1}{k_B T^2} \right)$$

$$\langle E \rangle = -\left(\frac{\partial Z}{\partial \beta} \right)_{V,N} = -\frac{\partial}{\partial \beta} \ln \left[4 \cosh \left(8J\beta \right) + 12 \right]$$

$$= \frac{-1}{4 \cosh \left(8J\beta \right) + 12} 4 \sinh \left(8J\beta \right) 8J\beta$$

$$= \frac{-8J\sinh(8J\beta)}{3\cosh(J\beta)+4}$$

Following the same method, we found that:

$$\langle |M| \rangle = \frac{1}{Z} \sum_{i}^{M} M_{i} e^{\beta E_{i}} = \frac{(8J)^{2} \cosh(8J\beta)}{\cosh(8J\beta) + 3}$$
$$\langle M \rangle = 0$$

$$\langle E^2 \rangle = \frac{8(e^{8J\beta} + 1)}{\cosh(8J\beta) + 3}$$

$$\langle M^2 \rangle = \frac{1}{Z} \left(\sum_{i=1}^{M} M_i^2 e^{\beta E_i} \right) = \frac{2 \left(e^{8J\beta} + 2 \right)}{\cosh(8J\beta) + 3}$$

We can use these to calculate the rest:

$$C_V = k\beta^2 \left(\left\langle E^2 \right\rangle - \left\langle E \right\rangle^2 \right)$$

$$\chi = \beta \left(\left\langle M^2 \right\rangle - \left\langle M \right\rangle^2 \right)$$

Table 2.1: text

No spin up	Deg	Energy	Magnetization
0	1	-8J	-4
1	4	0	-2
2	4	0	0
2	2	8J	0
3	4	0	2
4	1	-8J	4

3 Method

Metropolis (T,A,...) Stokastisk matrise - konvergens - Markhov chain. Equilibrium- hva skjer med Z?

Hvilken random number engine???

OBS: Bruker for venting av abs(M) i susceptbilitet.

VILDE:

3.1 Monte Carlo cycles

In Monte Carlo methods, the goal is to

3.2 Metropolis algorithm

3.3 Random numbers

Ikke uavhengig Periode Hvilken generator

3.4 Parallelizing 4 RESULT

3.4 Parallelizing

Speedup

Metropolis (T,A,...) Stochastic matrix - convergences (forhold eigenvalue).

Hvilken random number engine

MPI:

- Develop codes locally, run with some few processes and test your codes. Do benchmarking, timing and so forth on local nodes, for example your laptop or PC. - When you are convinced that your codes run correctly, you can start your production runs on available supercomputers.

MPI functions:

4 Result

4.1 The L=2 case

Figure 4.1

Se forelesningsnotat for kommentar + diskusjon!

Figure 4.2: $\theta/2\theta$ scan around the (0002) peak and (0004) peak of ZnO and GaN.

Figure 4.3

OBS! Need an number of MC cycles necessary!

All calculations in this subsection are at T = 1.0 K.

4.2 The L=20 system

HMM: Should define an area that is enough for equilibrium!

OBS: Need the number of MC cycles to reach equilibrium!

OBS: Need equilibration time! (5 1e5?)

OBS: Comment accepted configs T dependency

Table 4.1: This table compares the analytical values for L=2 with the numerical ones after 10^6 Monte Carlo cycles. The values are in units per spin.

	Numerical:	Analytical:
$\overline{\langle E \rangle}$	-1.9958	-1.9960
$\langle E^2 \rangle$	15.9664	15.9679
$\langle M \rangle$	0.0451	0
$\langle M^2 \rangle$	3.9930	3.9933
$\langle M \rangle$	0.9986	0.9987
χ	3.9849	3.9933
C_V	0.0335	0.0321

4.2.1 Initial ordering of the system

Figure 4.4

Figure 4.5: Plot of the

Figure 4.6

4.2.2 Equilibrium time for the random L=20 system

Figure 4.7

Figure 4.8

4.2.3 Probability distrubition for the L=20 system

OBS: Compare result with computed variance!

OBS: Discuss behavior (In Discussion - maybe just merge result and discussion?)

Computed variance (from same dataset?):

$$\sigma_E^2 = \langle E^2 \rangle - \langle E \rangle^2$$

T = 1.0 K:

$$\sigma_E^2 = 1595.45 - (-1.997)^2 = 1591.46$$

T = 2.4 K:

$$\sigma_E^2 = 620.734 - (-1.23759)^2 = 619.20$$

Figure 4.9

Figure 4.10

4.3 Phase transition and Critical temperature

OBS: Plot of E, M, Cv, X as functions of T (put L as legend and plot together)

OBS: Indication of phase transition? (Peak - at least for Cv and X)

OBS: Use Equation 11 to extract T_C .

Timing parallellisering

Figure 4.11

Figure 4.12

Figure 4.13

Table 4.2: text

L	T_C
40	2.29
60	2.28
80	2.28
100	2.28

5 Discussion

6 Conclusion

REFERENCES REFERENCES

References

Appendix

Table 6.1: Table of all the possible microstates for the L=2 system

State	Spinn	Energi	Magnetization
1	↓ ↓	-8J	-4
	↓ ↓		
2	↓ ↓	0	-2
	↓ ↑ 		
3		0	-2
4	↑ ↓	0	-2
4		U	-2
5	↓ ↓ ↑ ↓	0	-2
			2
6	↓ ↓ ↓ ↓	0	0
7	↑ ↑ ↑	0	0
	↓ ↑		
8	↓ ↑	8J	0
	↑ ↓ ↑ ↓		
9		8J	0
	↓ ↑		
10	↑ ↓	0	0
	↑ ↓		
11	↑ ↑	0	0
10	↓ ↓	0	2
12	↓ ↑ ↑ ↑	0	
13	↑ ↑ ↑ ↓	0	2
10			
14	<u> </u>	0	2
	↓ ↑		_
15	↑ ↑	0	2
	↑ ↓		
16	↑ ↑	-8J	4
	 		