Genome Analysis: Assembly and Annotation of E. faecalis

By: Joseph Sada

INTRODUCTION

Purpose

I will be performing a genome analysis on *Enterococcus faecalis* by assembling and annotating the genome. The purpose of this is to identify genes that attribute to the bacterium's survival in harsh environments. I will also focus on the genes that allow this bacterium to prevail in the gastrointestinal tract of humans and animals causing it to be a common cause of hospital-acquired infection.

Methods/Results

QUAST v5.3.0 Quality Report

SPAdes v4.1.0 and ABySS used for genome assembly

```
All statistics are based on contigs of size >= 500 bp, unless otherwise noted (e.g., "# contigs
(>= 0 bp)" and "Total length (>= 0 bp)" include all contigs).
Assembly
                             scaffolds
# contigs (>= 0 bp)
                             16
# contigs (>= 1000 bp)
# contigs (>= 5000 bp)
# contigs (>= 10000 bp)
# contigs (>= 25000 bp)
# contigs (>= 50000 bp)
Total length (>= 0 bp)
                             2876090
Total length (>= 1000 bp)
                            2873642
Total length (>= 5000 bp)
                            2873642
Total length (>= 10000 bp)
                            2868555
Total length (>= 25000 bp)
                            2849700
Total length (>= 50000 bp)
                            2801918
# contigs
                             1424258
Largest contig
                             2874457
Total length
GC (%)
                             37.32
N50
                             675746
N90
                             287553
auN
                             953985.6
L50
# N's per 100 kbp
                             13.92
```

```
All statistics are based on contigs of size >= 500 bp, unless otherwise noted (e.g., "# contigs
(>= 0 bp)" and "Total length (>= 0 bp)" include all contigs).
Assembly
                            assembly-scaffolds
                            2161
# contigs (>= 0 bp)
# contigs (>= 1000 bp)
                            223
                            159
# contigs (>= 5000 bp)
# contigs (>= 10000 bp)
                            102
                            26
# contigs (>= 25000 bp)
# contigs (>= 50000 bp)
Total length (>= 0 bp)
                            3176647
Total length (>= 1000 bp)
                            2809002
Total length (>= 5000 bp)
                            2631061
                            2228954
Total length (>= 10000 bp)
Total length (>= 25000 bp)
                            989695
Total length (>= 50000 bp)
                            277631
# contigs
                            268
                            91696
Largest contig
                            2842718
Total length
GC (%)
                            37.31
N50
                            19240
N90
                            5861
auN
                            24310.8
L50
                            46
                            146
# N's per 100 kbp
                            198.65
```

SPAdes assembly is more fit based on these results.

- Larger contigs, larger N50 and N90, longer contigs, less errors

Barrnap → Bedtools → Blastn Results

- Barrnap 0.9 used to identify 16S rRNA sequences
- Bedtools v2.31.1 used to pull FASTA sequences from SPAdes through the gff file

Confirmed genome to be Enterococcus faecalis

DFAST and Prokka results

DFAST ver 1.3.6 and Prokka used for genome annotation

Here are the results:

Gene	BP length	Product	Function
asa1	3,891	Aggregation	Promotes bacterial aggregation, which defined as the formation of
		substance	things into a cluster. This allows the bacteria to facilitate plasmid
			transfer and increase adherence to surfaces like the host cells and
			extracellular matrix proteins.
gelE	1,530	Gelatinase	Involved in cleaving of misfolded surface proteins, reducing
			pheromone levels, affecting chain length and degrading fibrin. All of
			these contribute to the ability of this bacterium to spread and interact
			with the environment (humans and animals)
htrA	1,299	Serine protease	Plays a vital role in the bacterium's ability to cause disease. This
			allows the bacteria to degrade host tissue and increase infection and
			colonization. This specific gene will work with genes like gelE as a key
			virulence factor in E. faecalis.

FastANI results

I then performed a FastANI on my genome against two strains of *Enterococcus faecalis*.

This is to determine the average nucleotide identity. Here are the results:

Column 1	Column 2	% Similarity	Fragments Matched	Total Quary Fragments
Scaffolds FASTA	VE14089 FASTA	98.850%	873	954
Scaffolds FASTA	VE18395 FASTA	98.845%	870	954

PathogenFinder2

I will use PathogenFinder2 to determine the pathogen capacity of my genome:

Module	Prediction
Neural network 1	0.8779
Neural Network 2	0.7822
Neural Network 3	0.8394
Neural Network 4	0.8623
Mean (std)	0.8405 (0.0363)

This shows me that on a scale of 0-1, 0 being least pathogenic and 1 being most

pathogenic, my genome has genes that are rated a 0.8405 (84.05%)

Conclusion

The purpose of this project was to perform a genome assembly and annotation on *Enterococcus faecalis*.

- I wanted to focus on genes that allow this bacterium to survive harsh environments.
 - Genes such as those that allow it to prevail in the gastrointestinal tract of humans and animals.
 - Also, genes that cause this bacteria to be a common cause for infection.
- After performing my genome assembly and annotation, I was able to find genes that directly contribute to this bacterium's pathogenicity.
- I also determined this bacterium to have a pathogen capacity of 0.8405.
- This means that this bacterium is very pathogenic and prevails in causing infection because of those specific genes discussed previously.