Билет 101

Автор1, ..., Aвтор<math>N

22 июня 2020 г.

Содержание

0.1	Билет	101:	ш	וטכו	иЗ.	вe,	де	ни	ıe	П	OJ.	ıyı	Ω	JIE	Щ.	. 1	Ιż	ıp	aJ.	IJI	eJ.	lei	ΙИ	Ш	ед	,Ы	И	1 2	14	еи	KI	1.	U	B	ЯЗ.	Ь	M	ем	ΚД	y		
	ними.																																								-	1

Билет 101 СОДЕРЖАНИЕ

0.1. Билет 101: Произведение полуколец. Параллелепипеды и ячейки. Связь между ними.

Определение 0.1.

Декартово произведение полуколец.

 \mathcal{P}, \mathcal{Q} – полукольца подмножеств X и Y соответственно.

 $\mathcal{P} \times \mathcal{Q} = \{P \times Q : P \in \mathcal{P}, Q \in \mathcal{Q}\}$ – семейство подмножеств $X \times Y$.

Теорема 0.1.

Декартово произведение полуколец – полукольцо.

Доказательство.

(скорее махание руками, чем доказательство)

Нужно проверить свойства полукольца.

1.
$$\emptyset = \emptyset \times \emptyset \in \mathcal{P} \times \mathcal{Q}$$

2.
$$(P \times Q) \cap (\tilde{P} \times \tilde{Q}) = (P \cap \tilde{P}) \times (Q \cap \tilde{Q})$$

Пересечение декартовых произведение - декартово произведение пересечений. Можно посмотреть на картинки ниже и понять.

+- формально: $(a,b)\in (P\times Q)\iff a\in P,b\in Q,$ аналогично $(a,b)\in (\tilde{P}\times \tilde{Q})\iff a\in \tilde{P},b\in \tilde{Q}.$

Тогда $a\in (P\times Q)\cap (\tilde{P}\times \tilde{Q})\iff (a\in P\ \text{и}\ a\in \tilde{P}),\ \text{и}\ (b\in Q\ \text{и}\ b\in \tilde{Q})\iff (a,b)\in (P\cap \tilde{P})\times (Q\cap \tilde{Q})$

3. Рисуем картинки. Это два прямоугольника, один вычитаем из другого. Нужно понять, что разность представляется в виде объединения прямоугольников.

Порисовав картинки, понимаем, что:

$$(P \times Q) \setminus (\tilde{P} \times \tilde{Q}) = P \times (Q \setminus \tilde{Q}) \sqcup (P \setminus \tilde{P}) \times (Q \cap \tilde{Q})$$

А это лежит в $\mathcal{P} \times \mathcal{Q}$: оба дизъюнкткных множества выше можно разбить на дизъюнктные объединения, ведь каждое из них является декартовым произведением множеств из полукольца или дополнением. Дополнения разбиваются по 3 свойству полукольца.

Замечание. На нашей лекции Храбров неправильно выписал формулу выше.

Определение 0.2.

 \mathbb{R}^n

Замкнутый параллелепипед – $[a_1, b_1] \times [a_2, b_2] \times ... \times [a_n, b_n] =: [a, b]$

$$a = [a_1, a_2, ..., a_n]$$

$$b = [b_1, b_2, ..., b_n]$$

Билет 101 COДЕРЖАНИЕ

Открытый параллелепипед – $(a_1, b_1) \times (a_2, b_2) \times ... \times (a_n, b_n) =: (a, b)$

Ячейка
$$-[a_1,b_1) \times [a_2,b_2) \times ... \times [a_n,b_n) =: [a,b)$$

Обозначения.

 \mathcal{P}^n – множество всех ячеек из \mathbb{R}^n

 $\mathcal{P}^n_{\mathbb{Q}}$ – множество всех ячеек из \mathbb{R}^n с рациональными координатами вершин.

Теорема 0.2.

Непустая ячейка представима в виде пересечения счетного множества открытых параллелепипедов и представима в виде счетного объединения замкнутых.

Доказательство.

$$[a,b) = [a_1, b_1) \times ... \times [a_n, b_n)$$

 $C_k := (a_1 - \frac{1}{k}, b_1) \times ... \times (a_n - \frac{1}{k}, b_n)$

$$\bigcap_{k=1}^{\infty} C_k = [a, b):$$

$$\bigcap\limits_{k=1}^{\infty}C_{k}\supset[a,b),$$
так как $C_{k}\supset[a,b)\forall k$

 $\bigcap\limits_{k=1}^{\infty}C_k\subset [a,b),$ так как если $\exists x\in C_k, x\notin [a,b),$ то начиная с некоторого номера $x\notin \bigcap\limits_{k=1}^nC_k,$ так как они сужаются

$$D_k := [a_1, b_1 - \frac{1}{k}] \times \dots \times [a_n, b_n - \frac{1}{k}]$$

$$\bigcup_{k=1}^{\infty} D_k = [a,b)$$

Доказательство аналогично: \subset очевиден, а \supset т.к. начиная с некоторого номера каждая точка попадёт в объединение