POTSDAM INSTITUTE FOR CLIMATE IMPACT RESEARCH UNIVERSITY OF POTSDAM

Introductory phase report

Optimal adjustment of the global trade system to local network disruption

Name: Sebastian Klipp

Matriculation number: 779142

Period: 1.5.15 - 31.9.15

E-Mail: sklipp@uni-potsdam.de

Supervisor: Leonie Wenz

Examiner Prof. Dr. Anders Levermann

Contents

Chapt	er 1 l	Introduction
1.1	Introd	luction
1.2	Motiv	ation, connection to real world, extreme events, climate
	change	e, examples
Chapt	er 2	Γ heory
2.1	MRIO	${ m Ts}$
	2.1.1	Economic background
	2.1.2	MRIOT in general
	2.1.3	EORA MRIOT
2.2	Econo	mic background
	2.2.1	Begriffe
	2.2.2	Supply Chains
2.3	Linear	Optimisation - Simplex method
	2.3.1	Mathematical derivation
	2.3.2	Simplex application scheme
	2.3.3	absolute value target function
2.4	Graph	theory
	2.4.1	disruption propagation
	2.4.2	First, Second, Third order effects / direct indirect
	2.4.3	Forward, backward effect
2.5	compl	ex systems, linear responses, phase transition
2.6	climat	e change and extreme events
Chapt	er 3	Model setup
3.1	proble	em specific linear optimisation problem
	3.1.1	Target function
	3.1.2	Final demand constraint
	3.1.3	Supply scaling constraint

	3.1.4 Production output balance constraint	6	
	3.1.5 Linear problem 1 (LP1): Maximal adaptation	6	
	3.1.6 Linear problem 2 (LP2): Reduced adaptation	6	
	3.1.7 Treatment of EORA to fit my model	6	
	3.1.8 Application on testworlds - behaviour knowledge	6	
3.2	Analysis of the EORA network		
3.3	Aggregated network	6	
Chapte	er 4 Results	7	
4.1	statistics	7	
	4.1.1 F(ir)	7	
	4.1.2 comp_ir(ir)	7	
4.2	comparison LPS/LPG $\ldots \ldots \ldots \ldots \ldots \ldots$	9	
4.3	absorption potential		
4.4	linear response	11	
4.5	phase transition	13	
4.6	case studies incl. forward/backward effects	13	
	4.6.1 Japan machinery drops out	13	
	4.6.2 other forward effect example	13	
	4.6.3 identify supply chains	13	
4.7	??? time evolution ???	13	
Chapte	er 5 Final	14	
5.1	discussion	14	
5.2	Ausblick	14	
5.3	Annendix	14	

Introduction

- 1.1 Introduction
- 1.2 Motivation, connection to real world, extreme events, climate change, examples

adsffdadf

Theory

adfdasfa

2.1 MRIOTs

- 2.1.1 Economic background
- 2.1.2 MRIOT in general
- 2.1.3 EORA MRIOT
- 2.2 Economic background
- 2.2.1 Begriffe
- 2.2.2 Supply Chains
- 2.3 Linear Optimisation Simplex method
- 2.3.1 Mathematical derivation
- 2.3.2 Simplex application scheme
- 2.3.3 absolute value target function
- 2.4 Graph theory
- 2.4.1 disruption propagation
- 2.4.2 First, Second, Third order effects / direct indirect
- 2.4.3 Forward, backward effect
- 2.5 complex systems, linear responses, phase transition
- 2.6 climate change and extreme events

Model setup

- 3.1 problem specific linear optimisation problem
- 3.1.1 Target function
- 3.1.2 Final demand constraint
- 3.1.3 Supply scaling constraint
- 3.1.4 Production output balance constraint
- 3.1.5 Linear problem 1 (LP1): Maximal adaptation
- 3.1.6 Linear problem 2 (LP2): Reduced adaptation
- 3.1.7 Treatment of EORA to fit my model
- 3.1.8 Application on testworlds behaviour knowledge
- 3.2 Analysis of the EORA network
- 3.3 Aggregated network

Results

4.1 statistics

• Idea: In case studies, we identify rules/indices that determine possible compensators due to network properties. So we can create a "law" / "equation" to determine the most probable compensators. This result can be checked with this statistics section

4.1.1 F(ir)

• Plot F(country(rs)) and F(sector(rs)) LPG and LPS

What insights does it give? - first overview about results, identifies first estimates about important regions/sectors/regional sectors that shall be examined more detailled later on.

Maybe aggregate results for regions and sectors and give a general result about "impact value"

Identify differences from LPG and LPS, explain that behaviour. Show that $F(\mathrm{LPG})_{\mathsf{i}}F(\mathrm{LPS})$

Mention not feasible runs

$4.1.2 \quad \text{comp_ir(ir)}$

Plot strongest compensator rs_comp(rs) for LPG and LPS
 Decide: max(p) or max(p_i * r) as criterion?
 USA and China as stabilisators of the world economy

Figure 4.1: F for all ir, LPG, pfix=0.5, by regions

Figure 4.2: F for all ir, LPS, pfix=0.5, by regions

Figure 4.3: compensator rs, LPG, pfix=0.5, by sectors

maybe case-study the other compensators? Why are they important in that specific case?

Order (as done already) in regions, but alsorder in sectors.

4.2 comparison LPS/LPG

4.3 absorption potential

 ${f ad}$ plots with ${f degree}(X),\,{f alpha}({f degree}),\,{f alpha}(X)$

For Agg=1, do some kind of statistics. Is the upper right one usually the one with the highest change? Are these three good criterions?

ad2 Maybe apply other criteria? Some graph theory properties?

 $afdafddafd\ asd ADSSADs asssssssssss$

Figure 4.4: compensator rs, LPG, pfix=0.5, by regions

Figure 4.5: compensator rs, LPS, pfix=0.5, by sectors

Figure 4.6: compensator rs, LPS, pfix=0.5, by regions

4.4 linear response

- Idea: In theory develop a rule / equation / law that hints at a linear response of the system. Maybe the "expansion" of the polyhedron, until it touches a hyperplane? In this chapter, show that this is the truth.
- \bullet Measure the slope F(pfix) / p(pfix) and connect it to some network properties estimate the behaviour without actually doing the simulation.
- shows phase transition
- shows F(LPS)¿F(LPG)

Figure 4.7: Agg=0, LPG, i*r*=2245, linear part

Figure 4.8: Agg=0, LPG, i*r*=2245, nonlinear part, slope: m=-1.841=m(Agg1,LP0)

- 4.5 phase transition
- 4.6 case studies incl. forward/backward effects
- 4.6.1 Japan machinery drops out
- 4.6.2 other forward effect example
- 4.6.3 identify supply chains
- 4.7 ??? time evolution ???

Final

- 5.1 discussion
- 5.2 Ausblick
- 5.3 Appendix

Bibliography