Started on Wednesday, 14 July 2021, 10:17 PM
State Finished
Completed on Wednesday, 14 July 2021, 10:28 PM
Time taken 11 mins 30 secs
Grade 9.00 out of 10.00 (90%)

Question 1
Correct
Mark 1.00 out of 1.00

Given the adjacency matrix of a digraph.

How many paths of length 4 from the vertex b to the vertex c?

- O a. 11
- ob. None of these
- oc. 28
- Od. 8
- ⊚ e. 14

Your answer is correct.

$$A^{4} = \begin{bmatrix} a & b & c & d \\ a & 36 & 37 & 11 & 47 \\ b & 53 & 53 & 14 & 68 \\ c & 28 & 29 & 8 & 37 \\ d & 50 & 49 & 14 & 63 \end{bmatrix}$$

The correct answer is: 14

Your answer is correct.

The correct answer is: (1) False, (2) True

Question **3**Correct

Mark 1.00 out of 1.00

Given the adjacency matrix of a pseudograph G.

 $\begin{bmatrix} 1 & 2 & 0 & 1 \\ 2 & 0 & 3 & 0 \\ 0 & 3 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$

How many edges does G have?

- O a. 11
- O b. 16
- Oc. 18
- Od. 8
- ⊚ e. 9

Your answer is correct.

The correct answer is: 9

4:	O:-	<i>(</i>			empt review
racnce	UHHZ	mass.	ורוח	· A116	mni review

Question 4	
Correct	
Mark 1.00 out of 1.00	
Given the adjacency matrix of a digraph.	
abc de	
a [0 1 1 0 2]	
b 1 0 1 2 0	
c 1 0 1 1 2	
d 1 1 0 1 1	
e 2 0 1 1 0	
- [2	
How many paths of length 2 from the vertex a to the vertex d?	
o a. 4	
	~
o c. None of these	
od. 2	
o e. 3	
Your answer is correct.	
row a [0 1 1 0 2]	
column d [0 2 1 1 1]	
result = $0 + 2 + 1 + 0 + 2 = 5$	
The correct answer is: 5	
Question 5	
Correct	
Mark 1.00 out of 1.00	
The length of the longest simple circuit in K_5 is	

The length of the longest simple circuit in K₅ is _____.

a. 8
b. 20
c. 10
d. 4!
e. 5!

Your answer is correct.

The longest simple circuit in K5 is an Euler circuit in K5, which contains every edge of K5.

K5 has 10 edges.

The correct answer is: 10

Question 6	
Correct	
Mark 1.00 out of 1.00	
A simple graph is called regular if every vertex of this graph has the same degree. A regular graph is called <i>n</i> - regular if every vertex in this graph has degree <i>n</i> .	
How many vertices does a regular graph of degree four with 10 edges have?	
a. 5	~
O b. 7	
○ c. 8	
O d. 6	
V	
Your answer is correct. The correct answer is: 5	
The correct answer is. 5	
Question 7	
Correct	
Mark 1.00 out of 1.00	
The graph K ₁₀ has edges.	
o a. 10	
b. 45	~
o c. 10!	
od. 90	
O a. 90	

Your answer is correct.

The correct answer is: 45

Question 8

Correct

Mark 1.00 out of 1.00

Solve the traveling salesperson problem for this graph by finding the total weight of all Hamilton circuits and determining a circuit with minimum total weight.

What is the minimum total weight?

- a. 17
- O b. 16
- Oc. 18
- Od. 20
- O e. 19

Your answer is correct.

a b c d a: 3 + 6 + 7 + 2 = 18

a b d c a: 3 + 4 + 7 + 5 = 19

a c b d a: 5 + 6 + 4 + 2 = 17

a c d b a: 5 + 7 + 4 = 3 = 19

a d b c a: 2 + 4+ 6+ 5 = 17

a d c b a: 2 + 7 + 6 + 3 = 18

The correct answer is: 17