Telecommunicatie A (EE2T11)

Lecture 4 overview:

System noise calculations and link budget

- Brief review equivalent noise temperature and noise figure
- Noise figure and equivalent noise temperature of cascaded communication components
- Link budget calculation: SNR at the receive system input

Non-ideal components for analog signal processing in telecommunication systems

- filters, amplifiers, limiters, mixers, frequency multipliers

EE2T11 Telecommunicatie A Dr.ir. Gerard J.M. Janssen February 1, 2016

Colleges en Werkcolleges **Telecommunicatie A**

Colleges:

Maandag 7-3, 14-3 5^e en 6^e uur, EWI-Pi

Dinsdag 15-3, 29-3 7^e en 8^e uur, EWI-Pi

Werkcolleges:

Donderdag 10-3 5^e en 6^e uur, EWI-Boole

Maandag 21-3, 4-4 5^e en 6^e uur, EWI-Pi

Review: Available noise power

For $R_L = R$, a matched load, the PSD of the noise (transferred to the load) is equal to:

$$P_a(f) = \frac{V_L^2(f)}{R} = \frac{V_v^2(f)}{4R} = \frac{kT}{2} \square \frac{N_0}{2} \quad [W/Hz] \longrightarrow \text{double sided}$$

Figure 8-18 Thermal source with a matched load.

with $V_v(f) = \sqrt{2kTR} \left[V/\sqrt{Hz} \right]$. This is the RMS-voltage of the source per \sqrt{Hz} of bandwidth.

The available noise power is given by:

$$P_a = \int_{-B_n}^{B_n} P_a(f) df = kTB_n \text{ [W]}$$

- proportional with B_n and T
- independent of f and R

Review: Equivalent noise temperature (1)

An arbitrary white noise source can be characterized by an equivalent noise temperature. We represent here the source as a noise generating resistor at temperature:

Equivalent noise temperature
$$T_n = \frac{P_a}{kB_n} = \frac{2P_a(f)}{k}$$

When the noise is not caused by thermal effects, T_n is not related to the physical temperature of the component.

Review: equivalent noise temperature (1)

The equivalent noise temperature T_{ρ} of a two port:

Figure 8-19 Noise model for an actual device.

Review: equivalent noise temperature (2)

Figure 8-20 Another noise model for an actual device.

The equivalent noise temperature T_{ρ} is defined as:

$$T_e = \frac{P_{ao} - kT_{n_i}G_aB_n}{kG_aB_n} = (F-1)T_0$$

where
$$F = 1 + \frac{T_e}{T_0}$$
 is the Noise Figure and $T_0 = 290$ K is

the standard room temperature.

Review: Noise Figure and equivalent noise temperature of a transmission line

For a transmission line with attenuation L = I/G, loaded at the input and output with its characteristic impedance R_0 , and which is at room temperature T_0 :

$$P_{in} = kT_0B \qquad T_0, L = \frac{1}{G} \qquad P_{out} = kT_0B$$

$$R_0 \text{ at } T_0 \qquad R_0 \qquad R_0$$

$$T_e = \frac{P_{\text{cable noise}}}{kGB} = \frac{P_{\text{out}} - \frac{P_{in}}{L}}{\frac{kB}{L}} = \frac{kT_0B(1 - \frac{1}{L})}{\frac{kB}{L}} = (L - 1)T_0$$

and $F=1+\frac{T_e}{T_0}=L \implies$ the Noise Figure of a cable at T_0 is equal to its loss.

7

Equivalent temperature of cascaded devices (1)

Figure 8-23 Noise model for two cascaded devices.

What is the equivalent noise temperature of a cascading of two-ports?

Effective temperature of cascaded devices (2)

The available output noise power consists of the following contributions:

Source:
$$kT_{i}B G_{a1}G_{a2}$$

 1^{st} stage: $kT_{e1}B G_{a1}G_{a2}$
 2^{nd} stage: $kT_{e2}B G_{a2}$
 $\rightarrow P_{oa} = k(G_{a1}G_{a2}T_{i} + G_{a1}G_{a2}T_{e1} + G_{a2}T_{e2})B$
 $\Rightarrow k(T_{i} + T_{e1} + \frac{T_{e2}}{G_{a1}})G_{a}B \square k(T_{i} + T_{e})G_{a}B$

and we find:
$$T_e = T_{e1} + \frac{T_{e2}}{G_{a1}}$$

Equivalent temperature of cascaded devices (3)

Figure 8-22 Cascade of four devices.

By induction we find Friis' formula:

$$T_e = T_{e1} + \frac{T_{e2}}{G_{a1}} + \frac{T_{e3}}{G_{a1}G_{a2}} + \frac{T_{e4}}{G_{a1}G_{a2}G_{a3}} + \dots$$

Using $T_e = (F-1)T_0$, we find a similar expression for the "system" noise figure:

$$(F-1)T_0 = (F_1-1)T_0 + \frac{(F_2-1)T_0}{G_{a1}} + \frac{(F_3-1)T_0}{G_{a1}G_{a2}} + \dots$$

$$\Rightarrow F = F_1 + \frac{(F_2-1)}{G_{a1}} + \frac{(F_3-1)}{G_{a1}G_{a2}} + \dots$$

Equivalent temperature of cascaded devices (4)

$$T_e = T_{e1} + \frac{T_{e2}}{G_{a1}} + \frac{T_{e3}}{G_{a1}G_{a2}} + \frac{T_{e4}}{G_{a1}G_{a2}G_{a3}} + \dots$$

When the gain of the 1st stage is high, the quality of the whole system will be mainly determined by its noise contribution!

However, when the 1st stage is lossy $(G_{al} < 1)$, then the other stages are also important!

What is the effective noise temperature at other locations in the chain?

Example: TV-station (1)

1. T_e and F without amplifier?

$$T_e = (F_1 - 1)T_0 + \frac{(F_2 - 1)T_0}{G_{a1}} = (L_k - 1)T_0 + (F_o - 1)T_0L_k$$
$$= (3 - 1)T_0 + (20 - 1) \cdot T_0 \cdot 3 = 59T_0 = 17110 \text{ K} \equiv 42.3 \text{ dBK}$$

$$F = F_1 + \frac{(F_2 - 1)}{G_{a1}} = L_k + (F_o - 1)L_k$$
$$= L_k F_o = 1 + \frac{T_e}{T_0} = 60 \equiv 18 \text{ dB}$$

Example: TV-station (2)

2. T_e and F with amplifier at the TV-input?

$$T_{e} = (F_{1} - 1)T_{0} + \frac{(F_{2} - 1)T_{0}}{G_{a1}} + \frac{(F_{3} - 1)T_{0}}{G_{a2}} = (L_{k} - 1)T_{0} + (F_{v} - 1)T_{0}L_{k} + \frac{(F_{o} - 1)T_{0}L_{k}}{G_{v}}$$

$$= (3 - 1)T_{0} + (4 - 1) \cdot T_{0} \cdot 3 + \frac{(20 - 1) \cdot T_{0} \cdot 3}{100} = 11.6T_{0} = 3364 \text{ K} \equiv 35.3 \text{ dBK}$$

$$F = 1 + \frac{T_{e}}{T_{0}} = 12.6 \equiv 11.0 \text{ dB}$$

Example: TV-station (3)

2. T_e and F with amplifier right after the antenna?

$$F = F_v + \frac{(L_k - 1)}{G_v} + \frac{(F_o - 1)}{G_v / L_k}$$
$$= 4 + \frac{(3 - 1)}{100} + \frac{(20 - 1) \cdot 3}{100} = 4.59 \approx 6.6 \text{ dB}$$

$$T_e = (F - 1)T_0 = 1041 \text{ K}$$

Link budget (1)

Which trade-off's can be made in achieving a required C/N?

Figure 8–24 Communication system model for link budget evaluation.

Figure 8.24 assumes linearity of the system.

Link budget (2)

Link budget: budget of CNR.

For an ideal receiver:

$$\frac{C}{N}\Big|_{Det} = \frac{C}{N}\Big|_{RX} = \frac{P_{EIRP} \cdot G_{FS} \cdot G_{AR}}{k \cdot T_{sys} \cdot B_n}$$

$$= \frac{P_{TX} \cdot G_{AT} \cdot G_{AR}}{L_{ES} \cdot k(T_{AR} + T_e)B_n}$$

Link budget (3)

Or in dB notation:

$$\frac{C}{N}\Big|_{dB} = (P_{EIRP})_{dBW} - (L_{FS})_{dB} + \left(\frac{G_{AR}}{T_{sys}}\right)_{dB/K} - (k)_{dBW/Hz/K} - (B_n)_{dBHz}$$
Figure of merit of the receiver station, with $T_{sys} = T_a + T_e$

$$k_{\rm dB} = -228.6 \, [{\rm dBW/Hz/K}]$$

$$L_{FS_dB} = 10\log_{10}\left(\frac{4\pi d}{\lambda}\right)^2$$
 [dB] \Rightarrow free-space loss $B_{n dB} = 10\log_{10}B_n$ [dBHz]

Telecommunication devices

In telecommunication systems several types of devices are used to perform analog signal processing functions:

- filters
- amplifiers
- limiters
- mixers (up- and down-converters)
- frequency multipliers

In general, these devices are non-ideal and several exploit non-linearity to achieve their goal.

Filters (1)

A filter is a linear device which modifies the frequency spectrum of its input signal:

- amplitude/phase/delay of the signal's frequency components can be changed
- but no new frequency components are added

A filter uses energy storage elements to obtain frequency discrimination.

Filters are classified based on:

- type of construction
- type of transfer function

Filters (2)

The quality of a filter is determined by the quality of the storage elements (especially due to parasitic resistors). One definition of quality is:

$$Q = \frac{2\pi(\text{maximum energy stored during one cycle})}{\text{energy dissipated per cycle}}$$

Perfect *L* 's and *C* 's have infinite *Q*.

Another definition of the quality of a bandpass filter:

$$Q = \frac{\text{center frequency}}{\text{-3 dB bandwidth}} = \frac{f_0}{B_{3dB}}$$

TABLE 4-2 FILTER CONSTRUCTION TECHNIQUES

Type of Construction	Description of Elements or Filter	Center Frequency Range	Unloaded Q (Typical)	Filter Application*
LC (passive)	-m -	dc-300 MHz	100	Audio, video, IF, and RF
Active and Switched Capacitor	-w - ± >>	- dc-500 kHz	200 ^b	Audio
Crystal	Quartz	1 kHz-100 MHz	100,000	IF
Mechanical	Transducers Rod Disk	50-500 kHz	1,000	IF
Ceramic	Ceramic disk Electrodes	10 kHz-10.7 MHz	1,000	IF
	One section Fingers electric Finger overlap region	10–800 MHz	¢	IF and RF
Transmission line	- \(\lambda /4 \) - 	UHF and microwave	1,000	RF
Cavity		Microwave	10,000	RF

a IF, intermediate frequency; RF, radio frequency. (See Sec. 4-16).

Filter constructions

Construction determines:

- frequency band,
- quality of the filter,
- allowable size,
- cost

b Bandpass Q's.

^c Depends on design: $N = f_0/B$, where N is the number of sections, f_0 is the center frequency, and B is the bandwidth. Loaded Q's of 18,000 have been.

Filters characteristics (1)

Another way to characterize a filter is by its transfer function. A general transfer function of an n'th order filter:

$$H(f) = \frac{b_0 + b_1(j\omega) + b_2(j\omega)^2 + \dots + b_k(j\omega)^k}{a_0 + a_1(j\omega) + a_2(j\omega)^2 + \dots + a_n(j\omega)^n}$$

Different types of filters:

- low pass filter,
- high pass filter,
- band pass filter,
- band stop filter,
- notch filter.

Filters characteristics (2)

TABLE 4-3 SOME FILTER CHARACTERISTICS

Type	Optimization Criterion	Transfer Characteristic for the Low-Pass Filter ^a	
Butterworth	Maximally flat: as many derivatives of $ H(f) $ as possible go to zero as $f \to 0$	$ H(f) = \frac{1}{\sqrt{1 + (f/f_b)^{2n}}}$	
Chebyshev	For a given peak-to-peak ripple in the passband of the $ H(f) $ characteristic, the $ H(f) $ attenuates the fastest for any filter of n th order	$ H(f) = \frac{1}{\sqrt{1 + \varepsilon^2 C_n^2(f/f_b)}}$ $\varepsilon = \text{a design constant; } C_n(f) \text{ is the } n \text{th-order}$ Chebyshev polynomial defined by the recursion relation $C_n(x) = 2xC_{n-1}(x) - C_{n-2}(x),$ where $C_0(x) = 1$ and $C_1(x) = x$	
Bessel	Attempts to maintain linear phase in the passband	$H(f) = \frac{K_n}{B_n(f/f_b)}$ $K_n \text{ is a constant chosen to make } H(0) = 1,$ and the Bessel recursion relation is $B_n(x) = (2n - 1) B_{n-1}(x) - x^2 B_{n-2}(x),$ where $B_0(x) = 1$ and $B_1(x) = 1 + jx$	

 $^{^{\}mathrm{a}}\,f_{\mathrm{b}}$ is the cutoff frequency of the filter.

Amplifiers

Ideal amplifier:

- linear,
- infinite bandwidth: no memory

Practical amplifier:

- approximately linear for small signals
- non-linear for large signals
- finite bandwidth: with memory

Distortionless amplifier:

$$H(f) = \frac{V_{out}(f)}{V_{in}(f)} = Ke^{-j\omega\tau} \qquad \Rightarrow \qquad v_{out}(t) = Kv_{in}(t-\tau)$$

Non-linear amplifier characteristics (1)

Figure 4–5 Nonlinear amplifier output-to-input characteristic.

For large input signals the output signal may contain 2nd, 3rd and higher powers of the input signal.

Causes: non-linear component behavior and output signal limitation due to limited supply voltage.

$$v_{out} = K_0 + K_1 v_{in} + K_2 v_{in}^2 + \dots = \sum_{n=0}^{\infty} K_n v_{in}^n$$
 with $K_n = \frac{1}{n!} \left(\frac{d^n v_{out}}{d v_{in}^n} \right) \Big|_{v_{in} = 0}$

Non-linear amplifier characteristics (2)

$$v_{out} = K_0 + K_1 v_{in} + K_2 v_{in}^2 + \dots = \sum_{n=0}^{\infty} K_n v_{in}^n$$

For a single-frequency input signal $v_{in}(t) = A_0 \sin \omega_0 t$ the output signal will contain higher order harmonics resulting from the 2nd, 3rd and higher order non-linearities:

$$K_2 v_{in}^2(t) = K_2 A_0^2 \sin^2 \omega_0 t = \frac{K_2 A_0^2}{2} (1 - \cos 2\omega_0 t)$$

$$K_3 v_{in}^3(t) = K_3 A_0^3 \sin^3 \omega_0 t = \frac{K_3 A_0^3}{4} (3\sin \omega_0 t - \sin 3\omega_0 t)$$
, etc.

In general:
$$v_{out}(t) = V_0 + V_1 \sin(\omega_0 t + \varphi_1) + V_2 \sin(2\omega_0 t + \varphi_2) + \dots$$
$$= \sum_{n=0}^{\infty} V_n \sin(n\omega_0 t + \varphi_n)$$

Non-linear amplifier characteristics (3)

An often used measure of non-linearity of an amplifier is the Total Harmonic Distortion (THD):

$$THD = \frac{\sqrt{\sum_{n=2}^{\infty} V_n^2}}{V_1} \cdot 100\%$$

Non-linear amplifier characteristics (4)

When the input signal contains 2 or more frequency components, amplifier non-linearity results in:

Inter-Modulation Distortion (IMD) \Rightarrow the frequency components modulate each other.

For a two-frequency input signal $v_{in}(t) = A_1 \sin \omega_1 t + A_2 \sin \omega_2 t$ the output signal will contain sum and differences (of multiples) of the input frequencies:

$$K_{2}v_{in}^{2}(t) = K_{2}(A_{1}\sin\omega_{1}t + A_{2}\sin\omega_{2}t)^{2}$$

$$= K_{2}(A_{1}^{2}\sin^{2}\omega_{1}t + 2A_{1}A_{2}\sin\omega_{1}t\sin\omega_{2}t + A_{2}^{2}\sin^{2}\omega_{2}t)$$

$$DC, 2\omega_{1} \qquad \omega_{1} - \omega_{2}, \omega_{1} + \omega_{2} \qquad DC, 2\omega_{2}$$

Non-linear amplifier characteristics (5)

$$K_{3}v_{in}^{3}(t) = K_{3}(A_{1}\sin\omega_{1}t + A_{2}\sin\omega_{2}t)^{3}$$

$$= K_{3}(A_{1}^{3}\sin^{3}\omega_{1}t + 3A_{1}^{2}A_{2}\sin^{2}\omega_{1}t\sin\omega_{2}t$$

$$+ 3A_{1}A_{2}^{2}\sin\omega_{1}t\sin^{2}\omega_{2}t + A_{2}^{3}\sin^{3}\omega_{2}t)$$

$$\omega_{1}, 3\omega_{1} \qquad 2\omega_{2} - \omega_{1} \qquad 2\omega_{1} - \omega_{2} \qquad \omega_{2}, 3\omega_{2}$$

$$2\omega_{2} + \omega_{1} \qquad 2\omega_{1} + \omega_{2}$$

$$\omega_{1} \qquad \omega_{2}$$

Non-linear amplification results in:

- sum and difference frequencies of multiples of the input frequency components,
- components are amplitude modulated by each other,
- components are phase/frequency modulated by each other.

Non-linear amplifier characteristics (6)

RF component's non-linearity is often characterized by the ratio of the desired component and the 3rd order IMD component:

$$R_{IMD} = \frac{K_1 A}{\frac{3K_3 A^3}{4}} = \frac{4}{3} \left(\frac{K_1}{K_3 A^2} \right)$$

With input signal: $v_{in}(t) = A \sin \omega_1 t + A \sin \omega_2 t$, the power of the intermodulation signal components $2\omega_1 \pm \omega_2$ and $2\omega_2 \pm \omega_1$ increase with A^6 , whereas the power of the desired components increases with A^2 . The input signal power A^2 at the virtual intersection point where the output power of both components becomes equal is called the 3^{rd} order intercept point: $R_{IMD} = 1$.

Non-linear amplifier output characteristics (7)

Figure 4-6 Amplifier output characteristics.

Classes of power amplifiers

Amplifiers are distinguished in various classes related to their basic setup. Each have their own power efficiency characteristics.

- Class A: transistor biased in linear region, for linear operation, due to continuous current at least 50% of power is turned into heat.
- Class B: push-pull setup, separate transistors for positive and negative signal parts, distortion around the cross-over point.
- Class C: limiting amplifier, amplitude variations are removed, only useful when the information is in the zero-crossing instants: phase and frequency modulation, power efficient, also produces odd order harmonics of the signal (so filtering is required).
- Class D: pulse-width modulation (currently popular in audio power amplifiers), very power efficient.

Ideal limiter

Figure 4-7 Ideal limiter characteristic with illustrative input and unfiltered output waveforms.

Ideal limiter: a comparator with zero reference:

- amplitude variations are removed
- phase information is preserved

but

 the output signal contains odd order harmonics of the input signal

Bandpass limiter

In RF-processing often bandpass limiters are applied.

- the first BPF removes all out-of-band noise which will otherwise disturb the limiting process,
- the second BPF will remove the odd harmonics of the input signal introduced by the limiter:

$$v_{in}(t) = R(t)\cos[\omega_c t + \theta(t)]$$

$$v_{out}(t) = KV_L \cos[\omega_c t + \theta(t)]$$

Ideal mixer

Figure 4–8 Mixer followed by a filter for either up or down conversion.

Ideal mixers:

- operate as a mathematical multiplier of two analog input signals,
- are used to:
 - 1. obtain a frequency transformation of a signal,
 - 2. or to modulate a signal.

Mixer as frequency converter (up or down)

Figure 4-8 Mixer followed by a filter for either up or down conversion.

$$v_{1}(t) = v_{in}(t)v_{LO}(t) = A_{0}R(t)\cos\omega_{0}t\cos[\omega_{c}t + \theta(t)]$$

$$= \frac{A_{0}R(t)}{2}\left\{\cos[(\omega_{0} - \omega_{c})t - \theta(t)] + \cos[(\omega_{0} + \omega_{c})t + \theta(t)]\right\}$$

$$v_{2}(t) = \begin{cases} LPF\left\{v_{1}(t)\right\} = \frac{A_{0}R(t)}{2}\cos[(\omega_{0} - \omega_{c})t - \theta(t)] \implies \text{down-conversion} \\ BPF\left\{v_{1}(t)\right\} = \frac{A_{0}R(t)}{2}\cos[(\omega_{0} + \omega_{c})t + \theta(t)] \implies \text{up-conversion} \end{cases}$$

Frequency conversion using a non-linearity

In practice a mixer does not operate as an ideal multiplier. The following devices are used:

- a continuously variable transconductance device, e.g. a dual gate FET,
- a non-linear device
- a linear device with a time-varying discrete gain (e.g. a switch)

Frequency conversion using a non-linearity

(a) A Double-Balanced Mixer Circuit

(b) Equivalent Circuit When $v_{LO}(t)$ Is Positive

(c) Equivalent Circuit When $v_{LO}(t)$ Is Negative

(d) Switching Waveform Due to the Local Oscillator Signal

Figure 4-11 Analysis of a double-balanced mixer circuit.

Frequency multiplier using a non-linearity

(a) Block Diagram of a Frequency Multiplier

(b) Circuit Diagram of a Frequency Multiplier

Figure 4–12 Frequency multiplier.

Let the LC-filter be tuned to $3f_c$.

The component generated at this frequency will be amplified due to the high impedance of the LC-filter at this frequency.

Other generated components including the original component at f_c , are attenuated.

Let:
$$v_{in}(t) = A_c \cos \omega_c t$$

Let:
$$v_{in}(t) = A_c \cos \omega_c t$$

$$Kv_{in}^3(t) = KA_0^3 \sin^3 \omega_c t = \frac{KA_0^2}{4} (3\sin \omega_c t - \sin 3\omega_c t)$$

