PRBench:

A Primer on the Probabilistic Robustness Benchmark

Your Name

Abstract

PRBench is the first comprehensive benchmark dedicated to *probabilistic robustness* (PR) of deep learning models. While adversarial robustness (AR) examines worst-case perturbations, PRBench evaluates the *likelihood* that a model withstands random perturbations within a specified budget. This tutorial-style article introduces the core concepts, metrics, and design of PRBench in an accessible yet academically rigorous manner.

1 Background: From Adversarial to Probabilistic Robustness

Modern classifiers achieve near-human performance on many tasks but can be fooled by imperceptible, worst-case perturbations called *adversarial examples* [?, ?]. Adversarial robustness (AR) focuses on the *maximum* loss under any perturbation $\|\delta\|_p \leq \epsilon$:

$$\min_{\theta} \mathbb{E}_{(x,y) \sim \mathcal{D}} \Big[\max_{\|\delta\|_{p} \le \epsilon} \ell \big(f_{\theta}(x+\delta), y \big) \Big].$$

In contrast, *probabilistic robustness* measures the *probability* that a random perturbation causes a misclassification:

$$PR_{p,\epsilon}(f,x) = \Pr_{\delta \sim \mathcal{P}_p(\epsilon)} [f(x+\delta) = y],$$

where $\mathcal{P}_p(\epsilon)$ is a distribution (e.g. uniform or Gaussian) over the ℓ_p -ball of radius ϵ .

2 Why PRBench?

- **Practicality.** Real-world noise often follows stochastic patterns rather than worst-case. PR captures this.
- Complementarity. PR complements AR by quantifying average-case rather than worst-case behavior.
- **Method Development.** Few methods are tailored to PR; PRBench drives progress by providing a standardized evaluation.

3 Key Metrics in PRBench

PRBench evaluates each model under multiple metrics, aggregated over datasets and architectures:

Clean Accuracy (Acc.) Percentage of correctly classified clean inputs.

Probabilistic Robustness $PR(\gamma)$ For perturbation radius γ ,

$$PR(\gamma) = \Pr_{\|\delta\| \le \gamma} [f(x+\delta) = y] \times 100\%.$$

ProbAcc (ρ, γ) Probability that confidence remains above threshold ρ under perturbation γ .

Generalisation Error (GE_PR(γ)) Difference between training- and test-time PR at radius γ .

4 Benchmark Design

4.1 Datasets and Architectures

PRBench covers common vision datasets (e.g. CIFAR-10, CIFAR-100, ImageNet subsets) and diverse network families (e.g. ResNet, DenseNet).

4.2 Perturbation Distributions

Three families of random perturbations are evaluated:

- Uniform noise on the ℓ_{∞} -ball.
- Gaussian noise truncated to ℓ_2 -ball.
- Laplace noise within ℓ_1 -ball.

4.3 Methods Compared

PRBench compares:

- Standard training (ERM).
- Adversarial training (PGD-based AT).
- PR-targeted training (e.g. corruption training with uniform, Gaussian, Laplace noise).
- Hybrid methods combining AR and PR objectives.

5 Using PRBench

- 1. Select dataset & architecture.
- 2. Choose perturbation radius γ .
- 3. Compute metrics. DataTables and plots summarize Acc., $PR(\gamma)$, ProbAcc, $GE_PR(\gamma)$.
- 4. **Analyse trade-offs.** Compare how methods balance clean accuracy, robustness, and generalisation.

6 Interpreting Results

- High PR but low Acc. Method may overfit to random noise.
- Low GE_PR. Indicates stable generalisation of PR across train/test split.
- Method ranking. A unified score aggregates multiple metrics to propose an overall ranking.

7 Conclusion

PRBench fills a critical gap by standardizing evaluation of probabilistic robustness. It encourages development of methods that not only guard against worst-case but also maintain high reliability under realistic, stochastic perturbations.

References

- Szegedy, C. et al. (2014). Intriguing properties of neural networks. ICLR.
- \bullet Madry, A. et al. (2018). Towards deep learning models resistant to adversarial attacks. ICLR.
- \bullet Cohen, J. et al. (2019). Certified robustness to adversarial examples via randomized smoothing. ICML.