Covid-19 Data Visualization using Plotly Express (50 graphs)

For Fast Processing :Go to runtime(headbar) > Change runtime type > GPU

▼ Task 1: Importing Necessary Libraries

Importing Pandas and Matplotlib

```
import pandas as pd  #Data analysis and Manipulation
import matplotlib.pyplot as plt  #Data Visualization
```

Importing Plotly

```
import plotly.offline as py
py.init_notebook_mode(connected=True)
import plotly.graph_objs as go  # Importing Plotly
import plotly.express as px
```

Initializing Plotly (#Plotly Consumes a lot of computing power, so its default mode is off in Google Colab, Hence we need to initialize it)

```
import plotly.io as pio
pio.renderers.default = 'colab'  # To initialize plotly
```

▼ Task 2: Importing the Datasets

```
from google.colab import files
files.upload()

Choose Files No file chosen Upload widget is only available when the cell has been executed in the current browser session Please rerun this cell to enable

df1= pd.read_csv("covid.csv")
df1.head()
```

	Country/Region	Continent	Population	TotalCases	NewCases	TotalDeaths	New
0	USA	North America	3.311981e+08	5032179	NaN	162804.0	
1	Brazil	South America	2.127107e+08	2917562	NaN	98644.0	
2	India	Asia	1.381345e+09	2025409	NaN	41638.0	

from google.colab import files
files.upload()

Choose Files No file chosen Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.

Saving covid_grouped.csv to covid_grouped.csv

{'covid_grouped.csv': b"Date,Country/Region,Confirmed,Deaths,Recovered,Active,New

df2= pd.read_csv("covid_grouped.csv")
df2.head()

	Date	Country/Region	Confirmed	Deaths	Recovered	Active	New cases	New deaths	rec
0	2020- 01-22	Afghanistan	0	0	0	0	0	0	
1	2020- 01-22	Albania	0	0	0	0	0	0	
2	2020- 01-22	Algeria	0	0	0	0	0	0	

df2.tail()

	Date	Country/Region	Confirmed	Deaths	Recovered	Active	New cases	New deaths
35151	2020- 07-27	West Bank and Gaza	10621	78	3752	6791	152	2
35152	2020- 07-27	Western Sahara	10	1	8	1	0	0
35153	2020- 07-27	Yemen	1691	483	833	375	10	4

Dataset 1 and Dataset 2 Columns

df1.columns

```
'ActiveCases', 'Serious,Critical', 'Tot Cases/1M pop', 'Deaths/1M pop', 'TotalTests', 'Tests/1M pop', 'WHO Region', 'iso_alpha'], dtype='object')
```

```
df1.drop(['NewCases','NewDeaths', 'NewRecovered'], axis=1, inplace=True)
```

df1.head()

	Country/Region	Continent	Population	TotalCases	TotalDeaths	TotalRecovere
0	USA	North America	3.311981e+08	5032179	162804.0	2576668.
1	Brazil	South America	2.127107e+08	2917562	98644.0	2047660.
2	India	Asia	1.381345e+09	2025409	41638.0	1377384.
3	Russia	Europe	1.459409e+08	871894	14606.0	676357.
4	South Africa	Africa	5.938157e+07	538184	9604.0	387316.

Creating Tables

from plotly.figure_factory import create_table
table=create_table(df1.head(10), colorscale="blues")
py.iplot(table)

USA	North	A3734/11/98	85 03320	796280	42 6 766	6 282.9 27	01/80/96	. 0 5194	. 0 92.0	63139	6 109 0 6 4	0AØnerio	c bls A	
Brazil	South	Amerit	62599127.5	6928644	. 0 0476	6 707.0 125	880 18.0	013716	5. 0 64.0	13206	1 62808 5	. @ merio	c a sA	
India	Asia	13813	4 210 121574	04 91638	. 0 3773	8906 38	789 44.0	01466.	030.0	22149	3 56100 5	.6 outh-	-ENSTAS	ia
Russia	Europe	e14594	03721489	414606	. 6 7635	7 18 093	12 0 00.	05974.0	0100.0	29716	9 200 73 6 2	Œ 0rop€	eRUS	
South	Affrica	59381	556368 0 8	49604.0	38731	6 10 126	4 50 9.0	9063.	0162.0	31498	05/3 0 44	. @ frica	ZAF	
Mexico	North	A12006	6460269	050517	. 0 0884	81 0 332	53 9 87.	03585.0	0391.0	10569	1 851 8 9.() Americ	c M EX	
Peru	South	AND 16	345 95 6 0	920424	. 0 1033	7 10 464	81 0 26.	013793	8. 6 19.0	24934	27956 21	. @ merio	c₽€R	
Chile	South	AIBIÈBI2	53666 7	19889.0	34016	81 6 614	. 0 358.	019165	5. 6 17.0	17606	1 9520 22	. @ merio	c & HL	
Colom	b‰outh	A57019Bi6	206527.071	011939	. 0 9235	51 6 341	6 10 93.	07023.	0234.0	18018	3 3550 74	. @ merio	CEOL	
Spain	Europe	e46756	6 315 34 5 3	028500	. 0 an	nan	617.0	7582.	0610.0	70643	2 950 08	Æ û rop€	eESP	

▼ Task 3: Quick Visualizations with Custom Bar Charts

Total Cases vs Countries

```
px.bar(df1.head(10), x='Country/Region', y='TotalCases', color='Country/Region', height=500, hover_data
```


Total Death vs Countries

```
px.bar(df1.head(10), x='Country/Region', y='TotalDeaths', color='Country/Region', height=500, hover_dat
```


px.bar(df1.head(10), x='Country/Region', y='TotalRecovered', color='TotalRecovered', height=500, hover_

Total Tests vs Countries (Orientation)

px.bar(df1.head(10), x='TotalTests', y='Country/Region', color='TotalTests', orientation="h",height=500

px.bar(df1.head(10), x='TotalTests', y='Continent', color='TotalTests', orientation="h",height=500, hov

▼ Task 4: Data Visualization using Bubble Chart

color='TotalCases', size='TotalCases', size_max=80)

Europe

Total Tests vs Continent (50 countries)

Total Deaths vs Continent (20 countries)

Total Cases vs Countries (All Countries)

Continent

Total Cases vs Countries (Top 30)

4M

df1.columns

Total death vs Countries (Top 10)

```
px.scatter(df1.head(10), x='Country/Region', y= 'TotalDeaths', hover_data=['Country/Region', 'Continent
```


Total Tests/1M vs Countries (Top 50)

df1.columns

Total case vs Total death

Total test vs Total cases

df2.columns

100k

Advanced Data Visualization using Line graph & Bar graph (Dataset 2)

```
# This Dataset contains DATE column which makes it more appropriate for more advanced Data Visualization
```

	Date	Country/Region	Confirmed	Deaths	Recovered	Active	New cases	New deaths	rec
	2020- 01-22	Afghanistan	0	0	0	0	0	0	
	2020- 01-22	Albania	0	0	0	0	0	0	
;	2020- 01-22	Algeria	0	0	0	0	0	0	
	01-22	J J							

df2.tail()

	Date	Country/Region	Confirmed	Deaths	Recovered	Active	New cases	New deaths
35151	2020- 07-27	West Bank and Gaza	10621	78	3752	6791	152	2
35152	2020- 07-27	Western Sahara	10	1	8	1	0	0
35153	2020- 07-27	Yemen	1691	483	833	375	10	4

Date Vs Confirmed (All Countries)

```
px.bar(df2, x="Date", y="Confirmed", color="Confirmed", hover_data=["Confirmed", "Date", "Country/Region
px.bar(df2, x="Date", y="Confirmed", color="Confirmed", hover_data=["Confirmed", "Date", "Country/Region
```

Date vs Death (All countries)[Line Graph]

```
px.bar(df2, x="Date", y="Deaths", color="Deaths", hover_data=["Confirmed", "Date", "Country/Region"],lo
df_US= df2.loc[df2["Country/Region"]=="US"]
```

Date Vs Confirmed (US)

```
px.bar(df_US, x="Date", y="Confirmed", color="Confirmed", height=400)
```


Date vs Death (US)

```
px.line(df_US,x="Date", y="Recovered", height=400)
```


px.line(df_US,x="Date", y="Deaths", height=400)

px.line(df_US,x="Date", y="Confirmed", height=400)

Date vs New Cases (US)[Line graph]

7

px.line(df_US,x="Date", y="New cases", height=400)

px.bar(df_US,x="Date", y="New cases", height=400)

Date Vs New cases (India) [Line graph]

```
df_india= df2.loc[df2["Country/Region"]== "India"]

by

px.bar(df_india, x="Date", y="New cases", height=400)
```


px.line(df_india, x="Date", y="New cases", height=400)

Date Vs Confirmed (India)

px.bar(df_india, x="Date", y="Confirmed", height=400)

Date Vs New Death (India)

px.bar(df_india, x="Date", y="Deaths", height=400)

px.bar(df_india, x="Date", y="New deaths", height=400)

px.bar(df_india, x="Date", y="Recovered", height=400)

px.scatter(df_US, x="Confirmed", y="Deaths", height=400)

px.scatter(df_india, x="Confirmed", y="New cases", height=400)

▼ Task 6: Represent Geographic Data as Choropleth Maps

Committee

A choropleth map displays divided geographical areas or regions that are coloured, shaded or patterne #Dataset 2

#parameters= dataset, locations= ISOALPHA, color, hover_name, color_continuous_scale= [RdYlGn, Blues, V

#Amazing Representation of data in a map . Choropleth maps provide an easy way to visualize how a measu

 $2020 \hbox{-} 01 \hbox{-} 22 \quad 2020 \hbox{-} 03 \hbox{-} 02 \quad 2020 \hbox{-} 04 \hbox{-} 11 \quad 2020 \hbox{-} 05 \hbox{-} 21 \quad 2020 \hbox{-} 06 \hbox{-} 30$

Orthographic Projection : Total Death

Equirectangular Projection: Total Recovered

▼ Task 7: Animations

```
#px.bar (data, x,y, color, hover_name, animation_frame)
#px.scatter (data, x,y, color, hover_name, animation_frame, size, size_max)
```

Bar Animation: Total Cases

px.bar(df2, x="WHO Region", y="Confirmed", color="WHO Region", animation_frame="Date", hover_name="Coun

Bar Animation: New cases

px.bar(df2, x="WHO Region", y="New cases", color="WHO Region", animation_frame="Date", hover_name="Coun

→ Bonus Lecture : WordCloud (Reasons of Death) (New dataset-3)

```
#Step 1. Importing WordCloud and datasets
#Step 2. Exploring data using pandas #NEW DATASET 3
#Step 3. Creating WordCloud

#Step3a= Convert the column with diseases count into list using tolist() function
#Step3b= Convert the list to one single string
#Step3x= Convert the string into WordCloud
```


Choose Files No file chosen Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable. Saving covid death.csv to covid death.csv {'covid death.csv': b'Data as of,Start Week,End Week,State,Condition Group,Conditi

df3= pd.read_csv("covid death.csv") df3.head()

		Data as of	Start Week	End Week	State	Condition Group	Condition	ICD10_codes	A Gro
	0	08/30/2020	02/01/2020	08/29/2020	US	Respiratory diseases	Influenza and pneumonia	J09-J18	0-
	4	00/20/2020	00/04/0000	00/20/2020	110	Respiratory	Influenza	100 140	O.E.
df3.ta	ail	()							

	Data as of	Start Week	End Week	State	Condition Group	Condition	ICD10_codes
12255	08/30/2020	02/01/2020	08/29/2020	YC	Coronavirus Disease 2019	COVID-19	U071
12256	08/30/2020	02/01/2020	08/29/2020	YC	Coronavirus Disease 2019	COVID-19	U071
12257	08/30/2020	02/01/2020	08/29/2020	YC	Coronavirus Disease 2019	COVID-19	U071

df3.groupby(["Condition"]).count()

	Data as of	Start Week	End Week	State	Condition Group	ICD10_codes	Age Group	Number of COVID- 19 Deaths	F
Condition									
Adult respiratory distress syndrome	540	540	540	540	540	540	540	272	
All other conditions and causes (residual)	540	540	540	540	540	540	540	363	
Alzheimer disease	530	530	530	530	530	530	530	144	
COVID-19	540	540	540	540	540	540	540	377	
Cardiac arrest	520	520	520	520	520	520	520	219	
Cardiac arrhythmia	540	540	540	540	540	540	540	192	
Cerebrovascular diseases	530	530	530	530	530	530	530	187	
Chronic lower respiratory diseases	540	540	540	540	540	540	540	229	
Diabetes	540	540	540	540	540	540	540	276	
Heart failure	540	540	540	540	540	540	540	204	
Hypertensive 	540	540	540	540	540	540	540	264	

df3.groupby(["Condition Group"]).count()

```
Data

Start End Age Covidence of Age Cov
```

Condition

```
#Step 3 : WordCloud 1
```

#Step3a= Convert the column with diseases count into list using tolist() function

```
sentences= df3["Condition"].tolist()
```

#Step3b= Convert the list to one single string

```
sentences_as_a_string= ' '.join(sentences)
```

#Step3c= Convert the string into WordCloud

and

```
plt.figure(figsize=(14,14))
plt.imshow(WordCloud().generate(sentences_as_a_string))
```

<matplotlib.image.AxesImage at 0x7fdd10c99be0>


```
column2_tolist= df3["Condition Group"].tolist()

#Step3b= Convert the list to one single string

column_to_string= " ".join(column2_tolist)

#Step3c= Convert the string into WordCloud

plt.figure(figsize=(20,20))
plt.imshow(WordCloud().generate(column_to_string))
```

#Step3a= Convert the column with diseases count into list using tolist() function

<matplotlib.image.AxesImage at 0x7fdd10ba3c50>

