§5. Формула Грина

Определение 5.1. Плоская область D называется *односвязной*, если для любого самонепересекающегося контура $\Gamma \subset D$ ограниченная им область D_1 также расположена в D (рис. 5.1).

Теорема 5.1 (*теорема Грина*). Пусть D – замкнутая односвязная область плоскости Oxy, ограниченная кусочно-гладким контуром Γ , а функции P(x,y) и Q(x,y) непрерывны в области D и имеют там непрерывные

частные производные $\frac{\partial Q}{\partial x}$ и $\frac{\partial P}{\partial y}$. Тогда

$$\iint_{\Gamma} P(x, y) dx + Q(x, y) dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$
 (5.1)

Формула (5.1) называется формулой Грина (Грин Д. (1793-1841, английский математик и физик); она связывает двойной интеграл по области D с криволинейным интегралом по границе Γ этой области. Предполагается, что обход контура Γ совершается в положительном направлении, т.е. область D при обходе контура остаётся слева (рис. 5.2).

D

Рис. 5.1. Односвязная Область

Рис. 5.2. К формуле Грина Р

Рис. 5.3. Многосвязная Область

Замечание 5.1. Формула (5.1) остаётся в силе и для многосвязных областей, т.е. для областей, граница которых состоит из двух и более кусочно-гладких контуров (рис. 5.3, контур Γ области D есть $\gamma_1 \bigcup \gamma_2 \bigcup \gamma_3$). При

Рис. 5.4. К примеру 5.1

этом обход каждого из контуров совершается в таком направлении, при котором область D остаётся слева (рис. 5.3).

Пример 5.1. Используя формулу Грина, вычислить интеграл: $I = \oint_{\Gamma} (x - 2y) dx + (3x - y) dy$, где $\Gamma - \Delta OAB$, O(0,0), A(2,0), B(0,2). Направление движения по Γ показано на рис. 5.4.

►
$$P(x, y) = x - 2y$$
, $Q(x, y) = 3x - y$, $\frac{\partial Q}{\partial x} = 3$, $\frac{\partial P}{\partial y} = -2$, $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 5$. В силу

формулы (5.1) имеем
$$I = \iint_{\Delta OAB} 5 dx dy = 5 S_{\Delta OAB} = 5 \cdot 2 = 10$$
. \blacktriangleleft