NUMERICAL OPTIMISATION

THE MOST GENERAL PROBLEM

- We have a finite number of variables: collectively denoted as \boldsymbol{X}
- ullet We have a function F(X)
- ullet Minimum value of F(X) for X satisfying some constraints
- \bullet i.e. X is restricted to some domain. E.g.
 - lacksquare X=(x,y,z) and x=y
 - positive-definite thermal displacement tensor

CONTINUOUS VS DISCRETE

- Variables continuously change? Or only by steps?
- Discrete optimisation: all variables are discrete

MIXED OPTIMISATION

- Some variables are continuous, some are discrete
- Very relevant to crystallography: element assignment

HOW TO DEAL WITH DISCRETE VARIABLES?

- Discrete optimisation:
 - Combinatorial methods: from mere enumeration to Al
 - Transform into continuous:
 - example: continuously deform X-ray form factors,
 C to N to O, with non-integer Z!

$$\sum_i a_i(Z) \exp \left[b_i(Z) \left(rac{\sin heta}{\lambda}
ight)^2
ight]$$

I won't talk about this further!

ITERATIVE ALGORITHMS

- 1. Starting variable X_0
- 2. Evaluate $F(X_0)$ and perhaps some of its derivatives
- 3. Guess a small move $X_0 o X_1 = X_0 + \delta$
- 4. Resume at step 1 with that new value unless
 - δ is small
 - ullet 1st order derivatives of F are small enough or $F(X_1)pprox F(X_0)$

ALGORITHMS USED IN CRYSTALLOGRAPHY

- no derivative: evolutionary algorithm and simulated annealing
 - ab-initio solution in powder crystallography (FOX)
- 1st order derivatives (exact) and 2nd order (approximated)
 - quasi-Newton methods:
 - $\circ n^2$ of them! but many are negligeable (sparse) derivative wrt to x_A and x_B very small if A and B are not close
 - Algorithms
 - Phenix: LBFGS (scitbx.lbfgs)
 - REFMAC: handmade
 - Small molecule: special approximations permitted by leastsquares
 - full matrix
 - CGLS

DATA FITTING (MAXIMUM LIKELIHOOD)

- Mostly interested in particular class of problem: model vs data
- Crystallographic refinement: archetype
 - data: we "measure" Bragg intensities ⇒ HKL file
 - \circ list of reflections: h, k, l, I_o, σ_I
 - model:
 - \circ some parameters X (atom positions, thermal displacements, etc)
 - \circ for each hkl: predict intensity $I_c(X)$
 - search best parameters: use probabilities

PREDICTED INTENSITIES

Complex structure factors: for each atom

$$F_c = f\left(rac{\sin heta}{\lambda}
ight)e^{ihr}e^{-hUh^T}$$

- Small molecule: richer!
 - lacktriangledown non-periodic crystals: h, k, l, m, n, \cdots
 - charge density: fit of anisotropic form factors
 - magnetic structures

MAXIMUM LIKELIHOOD

- ullet model parameters X and measured intensities I_o : random variable
 - lacksquare a priori probability p(X)
 - lacksquare prob of I_o knowing X: likelihood function $L(X,I_o)$
- Maximise prob of X knowing I_o = $p(X)L(X,I_o)$: minimise $-\log o$ of that $= -\log p(X) \log L(X,I_o)$

A PRIORI PROBABILITIES FOR PARAMETERS

ullet e.g. bond distance A-B shall be $d\pm\sigma$: Gaussian model

$$p \propto e^{-\left(rac{AB-d}{\sigma}
ight)^2}$$

- same for dihedral angles or torsion angles
- Log-likelihood

$$=rac{1}{\sigma^2}\Big(\sqrt{(x_A-x_B)^2+(y_A-y_B)^2+(z_A-z_B)^2}-d\Big)^2$$

restraint (soft)

LEAST-SQUARES: A SPECIAL CASE

Measured intensity: Gaussian distribution about computed one

$$F(X) = -\log L = \left(rac{I_o - I_c(X)}{\sigma_I}
ight)^2$$

Numerator I_o-I_c called "residual"

- Intensities for different hkl are independent
 - multiply likelihood, or
 - sum log-likelihood (over all hkl)
- Good assumption for small molecules, not so for proteins
- Inverse of matrix of 2nd order derivatives gives variances and correlations of parameters

LEAST-SQUARES: A SPECIAL CASE

Newton algorithm with approximate 2nd order derivatives

$$rac{\partial F_c}{\partial x_i \partial x_j} pprox rac{\partial F_c}{\partial x_i} rac{\partial F_c}{\partial x_j}$$

- Full matrix refinement (Gauss-Newton)
- very good approximation close to minimum
- nomenclature:
 - \circ design matrix: row i, col $j
 ightarrow rac{\partial F_c}{\partial x_j}$ for i-th reflection
 - \circ normal matrix: row i, col j
 ightarrow right hand side above

LEAST-SQUARES SOLVERS

- scipy.optimize
- CCTBX: dedicated module scitbx.lstbx
 - unknown scale:

$$F(X) = \sum_{hkl} \left(rac{I_o - KI_c(X)}{\sigma_I}
ight)^2$$

lacksquare Minimise K, then for other parameters; repeat