Unit 06: Abstract Data Types (ADTs)

Anthony Estey

CSC 115: Fundamentals of Programming II

University of Victoria

Data Structures

- ► A data structure is a container used to store data (objects).
- ► Typically, this is done in one of two ways:
 - ► Contiguous-based structure
 - ► Node-based structure

Array

Linked List

- ► Although their implementations are different, both data structures can store the same data, and perform the same operations on that data
 - ► For example: add and remove students from a course's waitlist
- ► There are tradeoffs associated with each implementation:
 - \blacktriangleright Arrays allow immediate access to the *i*th element in collection $(0 \le i < n)$
 - \triangleright A linked-list requires iteration from one end of the list to reach the *i*th position

Abstract Data Types (ADTs)

- ► An ADT is composed of:
 - ► A description of what data is stored (but not how the data is stored)
 - ► A set of operations on that data (but not how the operations are implemented)

► The separation of what something does (specification) and how it does it (implementation) is a fundamental concept in engineering!

Why the split?

▶ Think about it from a software development perspective:

- ▶ When we have specifications without implementation details:
 - ▶ This is the perfect medium for which clients and developers can communicate
 - ► Clients can request behaviours, developers can discuss these requests, until an agreement is made
 - ► Clients are not programmers, they are not interested in implementation details, but they are interested in *what* the program can do
 - ▶ Developers then provide an implementation based on the specification (the clients *use* the end product, but don't ever have to see the underlying code)

Example

- ► ADT Dictionary:
- ▶ What data is stored, and what operations must it perform?
 - ▶ Stores a pair of strings, representing the word and definition (data)
 - ▶ Operations:
 - ▶ insert(word, definition)
 - ► find(word)
 - ► delete(word)

We also know the effect operations have on the data.

If we *delete* a word from the dictionary, a subsequent *find* operation should fail.

- ► We use a data structure to implement an ADT
 - ▶ this is where the <u>how</u> comes in

Implementing the Dictionary ADT

Dictionary ADT Operations requests to perform operation insert delete Program Data structure (client view) find result of operation Interface Array

Client vs Programmer

- Clients know how to use something
 - ▶ What operations are available and what they do
- ▶ Programmers must decide *how* to implement the operations
- ► Their choices may be influenced by a number of things:
 - execution speed
 - memory requirements
 - maintenance (debugging, scalability, etc.)
- ▶ Dictionary example:
 - ► Clients/users: add new words to dictionary, look up words to see definitions
 - ▶ Programmer: determine *how* data is stored; *how* operations are implemented

The Notion of a Stack

- ► Collection of items
 - ▶ Items are returned in the *reverse* order they were added
 - ► This is behavior is often abbreviated LIFO (Last In, First Out)

The Stack ADT

- ► The Stack ADT specifies the following operations:
 - ▶ push(*o*): Insert object *o* onto the top of the stack
 - pop(): Access and remove the object from the top of the stack; an error occurs if the stack is empty
 - ▶ isEmpty(): Determines whether the stack is currently empty
 - ▶ top(): Accesses the object on top of the stack without removing it; an error occurs if the stack is empty
 - ➤ size(): Gets the current number of objects in the stack

Stack Examples

- ► Things we use all the time:
 - "Undo" function found in most applications
 - ▶ Back button when browsing the web

- ► Programming:
 - ► The runtime environment's handling of nested method calls
 - ► Recursion

- ▶ Problem solving:
 - ► Approaches where a problem is solved by breaking the problem up into smaller version of the same problem. (Divide-and-conquer)

Stack Implementation

- ► A stack can be implemented in multiple ways:
- ▶ In an array implementation, we typically have the following:
 - ightharpoonup A: an n-element array
 - ▶ t: an integer to keep track of the index of the top element in the array
- **Example:**

Stack Implementation

- ► A stack can be implemented in multiple ways:
- ▶ In an array implementation, we typically have the following:
 - ightharpoonup A: an n-element array
 - ▶ t: an integer to keep track of the index of the top element in the array
- **Example:**
 - **▶** push(*o*)

Stack Implementation

- ► A stack can be implemented in multiple ways:
- ▶ In an array implementation, we typically have the following:
 - ightharpoonup A: an n-element array
 - \triangleright t: an integer to keep track of the index of the top element in the array
- **Example:**
 - push(o)
 - **▶** pop()

The Notion of a Queue

- ► Collection of items
 - ▶ Items are returned in the *same* order they were added
 - ► This is behavior is often abbreviated FIFO (First In, First Out)

The Queue ADT

- ► The Queue ADT specifies the following operations:
 - ▶ enqueue(o): Insert object o at the rear (back) of the queue
 - ▶ dequeue(): Access and remove the object from the front of the queue; an error occurs if the queue is empty
 - ▶ isEmpty(): Determines whether the queue is currently empty
 - ► front(): Accesses the object at the front of the queue without removing it; an error occurs if the queue is empty
 - > size(): Gets the current number of objects in the queue

Queue Examples

- ► Any time people wait in line for something
 - ▶ the bank, the cafeteria, etc.

▶ Waitlists for classes here at Uvic!

Queue Implementation

► We will explore an array-based implementation of a queue during lecture

```
Algorithm enqueue(obj):

if isFull() then

return an error (queue is full)

A[b] \leftarrow obj
b \leftarrow (b+1) \mod N
```

```
Algorithm dequeue():

if isEmpty() then

return an error (queue is empty)

e \leftarrow A[f]

f \leftarrow (f+1) \mod N

return e
```



```
Algorithm enqueue(obj):

if isFull() then

return an error (queue is full)

A[b] \leftarrow obj
b \leftarrow (b+1) \mod N
```

```
Algorithm dequeue():

if isEmpty() then

return an error (queue is empty)
e \leftarrow A[f]
f \leftarrow (f+1) \bmod N
return e
```

enqueue(3);


```
Algorithm enqueue(obj):

if isFull() then

return an error (queue is full)

A[b] \leftarrow obj
b \leftarrow (b+1) \mod N
```

```
Algorithm dequeue():

if isEmpty() then

return an error (queue is empty)
e \leftarrow A[f]
f \leftarrow (f+1) \bmod N
return e
```

```
0 1 2 3 4
3 5

f
b
```

enqueue(3);
enqueue(5);

```
Algorithm enqueue(obj):

if isFull() then

return an error (queue is full)

A[b] \leftarrow obj

b \leftarrow (b+1) \mod N
```

```
Algorithm dequeue():

if isEmpty() then

return an error (queue is empty)
e \leftarrow A[f]
f \leftarrow (f+1) \bmod N
return e
```

enqueue(3);
enqueue(5);
dequeue();

```
Algorithm enqueue(obj):

if isFull() then

return an error (queue is full)

A[b] \leftarrow obj
b \leftarrow (b+1) \mod N
```

```
Algorithm dequeue():

if isEmpty() then

return an error (queue is empty)
e \leftarrow A[f]
f \leftarrow (f+1) \bmod N
return e
```

```
enqueue(3);
enqueue(5);
dequeue();
dequeue();
```

```
Algorithm enqueue(obj):

if isFull() then

return an error (queue is full)

A[b] \leftarrow obj

b \leftarrow (b+1) \mod N
```

```
Algorithm dequeue():

if isEmpty() then

return an error (queue is empty)
e \leftarrow A[f]
f \leftarrow (f+1) \bmod N
return e
```

```
enqueue(3);
enqueue(5);
dequeue();
dequeue();
```

```
Algorithm enqueue(obj):

if isFull() then

return an error (queue is full)

A[b] \leftarrow obj
b \leftarrow (b+1) \mod N
```

```
Algorithm dequeue():

if isEmpty() then

return an error (queue is empty)
e \leftarrow A[f]
f \leftarrow (f+1) \bmod N
return e
```

```
0 1 2 3 4
4 5 7 2 1
f
b
```

```
enqueue(3);
enqueue(5);
dequeue();
dequeue();
enqueue(7);
enqueue(2);
enqueue(1);
enqueue(4);
enqueue(5);
```

```
Algorithm enqueue(obj):

if isFull() then

return an error (queue is full)

A[b] \leftarrow obj
b \leftarrow (b+1) \mod N
```

```
Algorithm dequeue():

if isEmpty() then

return an error (queue is empty)
e \leftarrow A[f]
f \leftarrow (f+1) \mod N

return e
```

```
0 1 2 3 4
4 5 7 2 1
f
b
```

```
enqueue(3);
enqueue(5);
dequeue();
dequeue();
enqueue(7);
enqueue(2);
enqueue(1);
enqueue(4);
enqueue(5);
```

```
Algorithm enqueue(obj):

if isFull() then

return an error (queue is full)

A[b] \leftarrow obj

b \leftarrow (b+1) \mod N

count \leftarrow count + 1
```

```
Algorithm dequeue():

if isEmpty() then

return an error (queue is empty)

e \leftarrow A[f]

f \leftarrow (f+1) \mod N

count \leftarrow count - 1

return e
```

```
Algorithm isFull(): return count = N
```

Algorithm is Empty(): return count = 0

```
0 1 2 3 4
4 5 7 2 1
f
b
```

```
enqueue(3);
enqueue(5);
dequeue();
dequeue();
enqueue(7);
enqueue(2);
enqueue(1);
enqueue(4);
enqueue(5);
```

Method 1: Use a count variable

Pros:

 simplicity. Both isFull and isEmpty are easy to implement

Cons:

- Memory (allocated another variable)
- additional operations to update the variable every enqueue and dequeue

```
Algorithm enqueue(obj):

if isFull() then

return an error (queue is full)

A[b] \leftarrow obj
b \leftarrow (b+1) \mod N
```

```
Algorithm dequeue():

if isEmpty() then

return an error (queue is empty)

e \leftarrow A[f]

f \leftarrow (f+1) \mod N

return e
```

```
Algorithm is Full(): return (b+1) \mod N = f
```

Algorithm is Empty(): return f = b


```
enqueue(3);
enqueue(5);
dequeue();
dequeue();
enqueue(7);
enqueue(2);
enqueue(1);
enqueue(4);
enqueue(5);
```

Method 2: Full when size = N - 1

Pros:

- Speed. Fewest operations required

Cons:

- Array memory is never fully utilized (always at least 1 unused spot)

```
Algorithm enqueue(obj):

if isFull() then

return an error (queue is full)

else if isEmpty() then

f \leftarrow 0
b \leftarrow 0

A[b] \leftarrow obj
b \leftarrow (b+1) \mod N
```

```
Algorithm dequeue():

if isEmpty() then

return an error (queue is empty)

e \leftarrow A[f]

f \leftarrow (f+1) \mod N

if f = b then

f \leftarrow -1

return e
```

```
Algorithm is Empty(): return f = -1
```

Algorithm is Full(): return f = b


```
enqueue(3);
enqueue(8);
enqueue(2);
dequeue();
enqueue(5);
enqueue(4);
enqueue(9);
```

Method 3: f, b = -1 when empty

Pros:

- Relatively efficient (only re-assign f or b when the queue is full or empty)
- Array memory fully utilized

Cons:

- Additional conditional operations on every enqueue and dequeue

The Notion of a List

- ► Collection of items
 - ▶ Elements can be inserted and removed in *any* order
 - ► Any element can be accessed at any given time by their position in the list
 - ▶ Not just the front (Queue) or top (Stack) element

Index-Based Lists

- ▶ We can uniquely refer to each element in the list containing n elements using an integer in the range [0, n-1]
 - \blacktriangleright We define the **index** or **rank** of an element e in a list by the number of elements that come before e in the list
 - ▶ Hence the first element is at index 0, and the last element is at index n-1
- ► Index-based lists support the following operations:
 - **get**(r): Return the element in the list with index r.
 - **set**(r, e): Replace element at index r with e and return the element replaced.
 - ▶ add(r, e): Insert a new element e into the list at index r.
 - ightharpoonup remove(r): Remove the element at index r from the list.

Array Implementation of a List

- ▶ The get(r) and set(r, e) operations can be done in O(1) time:
 - ▶ get(3) returns 7
 - ▶ set(5, 12) returns 13

Lists - Array Implementation

- ▶ add(r, e) cannot be done in O(1) time
 - **▶** add(3, 6):

Algorithm add(r, e):

if n = N then

return error (List is full)

if r < n then

for
$$i \leftarrow n - 1$$
 to r do $A[i+1] \leftarrow A[i]$

$$A[r] \leftarrow e$$
$$n \leftarrow n + 1$$

On average, half of the elements need to be shuffled: O(n)

Lists - Array Implementation

- ▶ remove(r) has the same problem
 - ► remove(6):

```
Algorithm remove(r):

if r < n-1 then

e \leftarrow A[r]

for i \leftarrow r to n-2 do

A[i] \leftarrow A[i+1]

n \leftarrow n+1

return e
```


Runtime of **remove**(r): O(n)

Summary

► Running times of the index-based methods:

Method	Time
get(r)	0(1)
set(r,e)	0(1)
add(r,e)	O(n)
remove(r)	O(n)

Node-based (or reference-based) Lists

- ► A linked list is a data structure composed of nodes linked together
- ▶ A **node** is a data structure that contains:
 - data (whatever we want to store in the list)
 - ▶ a pointer to the location of the next element in the list
 - ▶ (sometimes a pointer to the previous element too)

```
public class Node {
    private int data;
    private Node next;
    ...
}
```

```
Node a = new Node(7, null);
Node b = new Node(3, null);
a.next = b;
```


Iteration implementation

➤ With linked lists, we need to keep a reference to the head of the list. From there, we can reach all subsequent elements:


```
for (Node cur = head; cur != null; cur = cur.next) {
    System.out.println(cur.data));
}
```

Iteration

► With linked lists, we need to keep a reference to the head of the list. From there, we can reach all subsequent elements:

```
Node cur = head;
while (cur != null) {
        System.out.println(cur.data));
        cur = cur.next;
}

for (Node cur = head; cur != null; cur = cur.next) {
        System.out.println(cur.data));
}
```

Insertion

- ▶ First, determine where to insert the new node
- ► Then, update the next pointers appropriately

CSC 225: Algorithms and Data Structures I -- Anthony Estey

Order of operations is important!

Let's revisit our insertion example, and assume we want to insert a node with data value 20 between node's 19 and 22.

Removal

- ▶ First, locate the element *preceding* the one to remove
- ▶ Then, update the next pointers so that the deleted node is skipped
 - ▶ Java's garbage collection will delete of any object that nothing points to

cur.next = cur.next.next;

Adding an item to the front of a list

- ▶ First, determine where to insert the new node
- ► Then, update the next pointers appropriately


```
Node n = new Node(12);
n.next = head;
head = n
```

Adding an item to the back of a list

- ▶ First, determine where to insert the new node
- ► Then, update the next pointers appropriately


```
Node n = new Node(30);
cur = head;
while (cur.next != null) {
        cur = cur.next;
}
cur.next = n;
```

Adding an item to the back of a list

- ▶ First, determine where to insert the new node
- ► Then, update the next pointers appropriately

Tail Reference

cur = cur.next;

cur.next = n;

- ▶ Idea: We have a reference to the front (head) of our list
 - ▶ Why don't we do the same with the back (tail)

Summary

- ➤ A linked list allows quick insertion and removal, without the need to reshuffle all other items in the list
 - ▶ This allows insertion/removal from the front and back in O(1) time
 - ▶ But accessing the middle elements still requires a traversal to get to the location where the insertion or removal should take place. Thus, O(n).

► Next, we will discuss a few variations of a linked list implementation

Doubly-linked list

- ▶ A doubly-linked list is a linked list where each node keeps a reference to both the preceding *and* following nodes in the chain.
- ► A **node** is a data structure that contains:
 - ▶ data (whatever we want to store in the list)
 - ▶ a pointer to the location of the next element in the list
 - (sometimes a pointer to the previous element too)

```
public class Node {
    private int data;
    private Node prev;
    private Node next;
    ...
}
```


Insertion

- ▶ First, determine where to insert the node
- ▶ Then, update pointers so that the order is correct

Removal

- ▶ First, locate the element to remove
- ▶ Then, update the next pointers so that the deleted node is skipped


```
cur.next.prev = cur.prev;
cur.prev.next = cur.next;
cur = null;
```

Sentinel Nodes

- ► A variation of a Linked List implementation is to use sentinel nodes
- ► Sentinel nodes are nodes that go at the front and end of the list
 - ▶ They are essentially **head** and **tail** nodes, but they never store any list data!
 - ► They are just position markers
- ► An empty list consists of just the sentinel nodes:

► And list elements are added between them:

Position-based List

- In our linked lists, we can think of each node as having a position
- ► We can view a linked list as a container of elements where each element is stored at a position
 - ► And the positions are arranged in a linear order relative to one another
 - ► Each position also has a data element (the data being stored at that position)
- ► A position is defined relative to its neighbours:
 - ▶ Position p will always be "after" some position q and "before" some position s

Position-based List

- ▶ Using the concept of a position to encapsulate the idea of node in a list, we can define a linked list that supports the following operations:
 - ▶ first(): return the position of the first element in the list
 - ▶ last(): return the position of the last element in the list
 - \blacktriangleright before(p): return the position of the element in the list preceding p
 - \triangleright after(p): return the position of the element in the list following p
 - **insertBefore**(p): insert a new element e into the list before position p
 - **insertAfter**(p): insert a new element e into the list after position p
 - ightharpoonup remove the element at position p from the list

Position-based List Implementation

► We will work through a Java example together

Summary

► Running times of the position-based methods:

Method	Time
first()	O(1)
last()	0(1)
before(p)	0(1)
after(p)	0(1)
insertBefore(p, e)	0(1)
insertAfter (p, e)	0(1)
remove(p)	0(1)

At first glace, it appears this implementation is clearly better than an array implementation

It is important to remember that accessing an element n spots from the front of the list still requires a traversal (O(n)). The array implementation is more efficient for getting or replacing at an index (O(1))

Summary

► Running times of the position-based methods:

Method	Time
first()	0(1)
last()	0(1)
before(p)	0(1)
after(p)	0(1)
insertBefore(p, e)	0(1)
insertAfter (p, e)	0(1)
remove(p)	0(1)

It is important to consider the way the program will typically be used.

Will there be frequent insertions before or after another item in the list? A **linked list** doesn't require shuffling of all subsequent items

Will there be frequent accesses from a rank/index? An **array** accesses items at any rank immediately