Project Applications:

- Companies that specialize in developing automotive software and providing them with modern and smart technological systems. international companies, most notably the companies (VALEO), (Magneti Marelli GmbH), (Vector), (SEITech Solutions), and (Hella), which specialize in developing automotive software and providing them with modern and smart technological systems.
- Transportation and infrastructure Authorities.

Conclusion:

Our ADAS project represents a significant advancement in automotive safety and driving experience. By integrating technologies like blind-spot detection, lane departure warning, traffic sign recognition, adaptive cruise control, and bump detection, we have comprehensively addressed key safety challenges on the road. Through research, development, and testing, we have implemented these systems and laid the groundwork for future enhancements in driver assistance. Our project highlights the potential of technology to revolutionize road safety worldwide, making driving safer, more efficient, and enjoyable for everyone.

4. Bump Detection (BD):

- Bump detection systems are equipped to detect and alert drivers of speed bumps and other road irregularities.
- Implementation:
- 1. We use NVIDIA Jetson Nano, Astra Pro Plus Depth camera as RGBD sensor.
- 2. We use Custom AI Model based on YOLOv5 to detect different Bumps on the road, we use Python, TensorRT, and OpenCV.

5. Traffic sign Recognition (TSR):

- Traffic Sign Recognition can interpret and display traffic signs to keep drivers informed about speed limits, no-entry signs, and more.
- Implementation:
- 1. We use NVIDIA Jetson Nano, Astra Pro Plus Depth camera as our RGB sensor.
- 2. We use Custom AI Model based on YOLOv5 to detect different Traffic Signs on the road, we use Python, TensorRT, and OpenCV.

Advanced Driver Assistance Systems (ADAS)

Team Members

Hatem Abdelhamid
Haneen Salah
Abdelrahman Amr
Abdelrahman Mohamed
Mahmoud Mohamed
Fesal Mohamed
Ahmed Mohamed
Toka Hamdy
Youssef Mohamed
Omar Hosny

Supervisor

Dr. Waleed Abd-Elshafi Ali Elshazly

Sponsor

The Academy of Scientific Research & Technology (ASRT)

Project Objective:

ADAS can work an important role in many factors to reduce the number of crashes cases as possible using the power of sensors and Machine learning algorithms to analyze the environment around the vehicle and take the required action in the suitable time, these factors are:

- 1. Blind Spot Detection System.
- 2. Lane Departure.
- 3. Adaptive Cruise Control.
- 4. Bump Detection.
- 5. Traffic Sign Recognition.

Software Tools:

- C++.
- YOLOv5.
- Python.
- NumPy.
- OpenCV.
- CUDA.
- TensorRT.
- Linux.

Features:

1. Blind Spot Detection (BSD):

- BSD technology helps drivers identify vehicles in their blind spots and alerts them to avoid dangerous maneuvers.
- Implementation:
- 1. We use ESP32 as MCU, and Ultrasonic sensor.
- 2. We use C++ to program this feature.

2. Lane Departure Warning (LDW):

- LDW alerts drivers when their vehicle unintentionally drifts out of their lane.
- Implementation:
- 1. We use NVIDIA Jetson Nano as our main MCU responsible for our ML, Astra Pro Plus Depth camera as our RGB sensor.
- 2. We use Python, Python's libraries such as: OpenCV, and NumPy to implement this feature.

3. Adaptive Cruise Control (ACC):

- ACC that adjusts the vehicle's speed automatically to maintain a safe distance from the vehicle ahead.
- Implementation:
- 1. We use NVIDIA Jetson Nano, Astra Pro Plus Depth camera as RGBD sensor and D for Depth.
- 2. We use Custom AI Model based on YOLOv5 to detect different vehicles on the road, we use Python, TensorRT, and OpenCV.

2