

Winter - 2012 Examination

Subject & Code: Basic Maths (17104)

Model Answer

Page No: 1/26

Out	Cub			Total
Que. No.	Sub. Que.	Model answers	Marks	Marks
1)		$\begin{vmatrix} 3 & -5 & -1 \\ 1 & 3 & 5 \\ -5 & 1 & 3 \end{vmatrix} = 3(9-5)+5(3+25)-1(1+15)$ $= 136$	1	2
	b)	$3A - 2B = 3\begin{bmatrix} 2 & 3 \\ 4 & 7 \end{bmatrix} - 2\begin{bmatrix} 1 & 3 \\ 4 & 6 \end{bmatrix}$ $= \begin{bmatrix} 6 & 9 \\ 12 & 21 \end{bmatrix} - \begin{bmatrix} 2 & 6 \\ 8 & 12 \end{bmatrix}$ $\begin{bmatrix} 4 & 3 \end{bmatrix}$	1	
		$= \begin{bmatrix} 4 & 3 \\ 4 & 9 \end{bmatrix}$	1	2
		OR		
		$3A = 3\begin{bmatrix} 2 & 3 \\ 4 & 7 \end{bmatrix} = \begin{bmatrix} 6 & 9 \\ 12 & 21 \end{bmatrix}$	1/2	
		$2B = 2\begin{bmatrix} 1 & 3 \\ 4 & 6 \end{bmatrix} = \begin{bmatrix} 2 & 6 \\ 8 & 12 \end{bmatrix}$	1/2	
		$3A - 2B = \begin{bmatrix} 6 & 9 \\ 12 & 21 \end{bmatrix} - \begin{bmatrix} 2 & 6 \\ 8 & 12 \end{bmatrix}$ $= \begin{bmatrix} 4 & 3 \\ 4 & 9 \end{bmatrix}$	1	2
	c)	$AB = \begin{bmatrix} 4 & 2 \\ 8 & 4 \end{bmatrix} \begin{bmatrix} 2 & 6 \\ -4 & -12 \end{bmatrix}$ $= \begin{bmatrix} 8 - 8 & 24 - 24 \\ 16 - 16 & 48 - 48 \end{bmatrix}$	1	
		$= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$	1	2
	d)	$AB = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ 9 \\ 8 \end{bmatrix}$		
		$= \begin{bmatrix} 1+18+24 \\ 4+45+48 \end{bmatrix}$	1	
		$= \begin{bmatrix} 43 \\ 97 \end{bmatrix}$	1	2

Subject & Code: Basic Maths (17104) **Page No:** 2/26

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
1)	e)	$\frac{1}{x^2 + 3x + 2} = \frac{1}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+2}$	1/2	
		$\therefore 1 = (x+2)A + (x+1)B$ $Put \ x = -1$ $\therefore 1 = (-1+2)A + 0$ $\therefore \boxed{A=1}$	1/2	
		$Put \ x = -2$ $\therefore 1 = 0 + (-2 + 1)B$		
		$\therefore B = -1$	1/2	_
		$\therefore \frac{1}{x^2 + 3x + 2} = \frac{1}{x + 1} + \frac{-1}{x + 2}$	1/2	2
		Note for partial fraction problems: The problems of partial fractions could also be solved by the method of "equating equal power coefficients". This method is also applicable. Give appropriate marks in accordance with the scheme of marking in the later problems as the solution by this method is not discussed. For the sake of convenience, the solution of the above problem with the help of this method is illustrated hereunder.		
		$\frac{1}{x^2 + 3x + 2} = \frac{1}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+2}$ $\therefore 1 = (x+2)A + (x+1)B$	1/2	
		$\therefore 0x + 1 = (A+B)x + (2A+B)$		
		By equating equal power coefficients, A + B = 0 and $2A + B = 1$		
		$A + B = 0 \text{and} 2A + B = 1$ $\therefore A = 1$ $B = -1$	1/ ₂ 1/ ₂	
		$\therefore \frac{1}{x^2 + 3x + 2} = \frac{1}{x + 1} + \frac{-1}{x + 2}$	1/2	2
	f)	$\cos(2A) = \cos(A+A)$ $= \cos A \cdot \cos A - \sin A \cdot \sin A$ $= \cos^2 A - \sin^2 A$	1 1	2

Subject & Code: Basic Maths (17104)

Page No: 3/26

Que.	Sub.	Model answers	Marks	Total
No. 1)	Que.	$\tan\left(75^{\circ}\right) = \tan\left(30^{\circ} + 45^{\circ}\right)$		Marks
,	0/	$= \frac{\tan(30^{\circ}) + \tan(45^{\circ})}{1 - \tan(30^{\circ})\tan(45^{\circ})}$	1/2	
		$= \frac{\frac{1}{\sqrt{3}} + 1}{1 - \frac{1}{\sqrt{3}} \cdot 1}$ $= \frac{1 + \sqrt{3}}{\sqrt{3} - 1}$	1	
		$=\frac{1+\sqrt{3}}{\sqrt{3}-1}$	1/2	2
		OR		
		$\tan(75^{\circ}) = \tan(45^{\circ} + 30^{\circ})$ $= \frac{1 + \tan(30^{\circ})}{1 - \tan(30^{\circ})}$	1/2	
		$= \frac{1 + \frac{1}{\sqrt{3}}}{1 - \frac{1}{\sqrt{3}}}$ $= \frac{\sqrt{3} + 1}{\sqrt{3} - 1}$	1	
		$=\frac{\sqrt{3}+1}{\sqrt{3}-1}$	1/2	2
	h)	$2\cos 70^{\circ} \sin 50^{\circ} = \sin A - \sin B$ $\therefore \sin (70^{\circ} + 50^{\circ}) - \sin (70^{\circ} - 50^{\circ}) = \sin A - \sin B$		
		$\therefore \sin(120^\circ) - \sin(20^\circ) = \sin A - \sin B$	1	
		$\therefore A = 120^{\circ}$	1/2	
		$B = 20^{\circ}$	1/2	2
		OR		
		$2\cos 70^{\circ}\sin 50^{\circ} = \sin A - \sin B$		
		$\therefore 2\cos 70^{\circ} \sin 50^{\circ} = 2\cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right)$	1/2	
		$\therefore \frac{A+B}{2} = 70 and \frac{A-B}{2} = 50$	1/2	
		$\therefore A + B = 140$ $\underline{A - B} = 100$		
		$\therefore A = 120$	1/2	2
		B = 20	1/2	_

Subject & Code: Basic Maths (17104)

Page No: 4/26

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
1)	i)	$\sin\left(\theta + \frac{\pi}{6}\right) - \sin\left(\theta - \frac{\pi}{6}\right) = 2\cos\left[\frac{\theta + \frac{\pi}{6} + \theta - \frac{\pi}{6}}{2}\right] \cdot \sin\left[\frac{\theta + \frac{\pi}{6} - \theta + \frac{\pi}{6}}{2}\right]$		Warks
		$=2\cos\theta\cdot\sin\left[\frac{\pi}{6}\right]$	1	
		$=2\cos\theta\cdot\frac{1}{2}$	1/2	
		$=\cos\theta$ OR	1/2	2
		$\therefore \sin\left(\theta + \frac{\pi}{6}\right) - \sin\left(\theta - \frac{\pi}{6}\right)$		
		$= \left(\sin\theta\cos\frac{\pi}{6} + \cos\theta\sin\frac{\pi}{6}\right) - \left(\sin\theta\cos\frac{\pi}{6} - \cos\theta\sin\frac{\pi}{6}\right)$	1/2	
		$=2\cos\theta\sin\frac{\pi}{6}$	1/2	
		$=2\cos\theta\cdot\frac{1}{2}$	1/2	
		$=\cos\theta$ OR	1/2	2
		$\sin\left(\theta + \frac{\pi}{6}\right) = \sin\theta\cos\frac{\pi}{6} + \cos\theta\sin\frac{\pi}{6}$	1/2	
		$=\frac{\sqrt{3}}{2}\sin\theta + \frac{1}{2}\cos\theta$	/2	
		$\sin\left(\theta - \frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}\sin\theta - \frac{1}{2}\cos\theta$	1/2	
		$\therefore \sin\left(\theta + \frac{\pi}{6}\right) - \sin\left(\theta - \frac{\pi}{6}\right) = \cos\theta$	1	2
	j)	Let $\sin^{-1}(x) = \theta$		
		$\therefore x = \sin \theta$	1/2	
		$\therefore \frac{1}{x} = \cos ec\theta$	1/2	
		$\therefore \cos ec^{-1}\left(\frac{1}{x}\right) = \theta$	1/2	
		$\therefore \cos ec^{-1}\left(\frac{1}{x}\right) = \sin^{-1}\left(x\right)$	1/2	2

Subject & Code: Basic Maths (17104)

Page No: 5/26

Que.	Sub.			Total
No.	Que.	Model answers	Marks	Marks
1)	k)	Two lines are parallel, if $m_1 = m_2$ Two lines are perpendicular, if	1	
		$m_1 = -\frac{1}{m_2}$ or $m_1 m_2 = -1$ or $1 + m_1 m_2 = 0$	1	2
	<i>l</i>)	Range = Largest Value - Smallest Value = $50-10$	1	
		$= 40$ $Coefficient of Range = \frac{\text{Largest Value} - \text{Smallest Value}}{\text{Largest Value} + \text{Smallest Value}}$		
		$=\frac{50-10}{50+10}$	1	2
		$=\frac{2}{3}$	1	
2)	a)	$D = \begin{vmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix} = 1(1-0)-1(0-1)+0$ $= 2$	1	
		$D_{x} = \begin{vmatrix} 0 & 1 & 0 \\ 2 & 1 & 1 \\ 4 & 0 & 1 \end{vmatrix} = 0 - 1(2 - 4) + 0$ $= 2$	1/2	
		$D_{y} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 1 & 4 & 1 \end{vmatrix} = 1(2-4) - 0 + 0$ $= -2$	1/2	
		$D_z = \begin{vmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 1 & 0 & 4 \end{vmatrix} = 1(4-0)-1(0-2)+0$		
		= 6 D 2 .	1/2	
		$\therefore x = \frac{D_x}{D} = \frac{2}{2} = 1$ $D = -2$	1/2	
		$y = \frac{D_y}{D} = \frac{-2}{2} = -1$	1/2	4
		$z = \frac{D_z}{D} = \frac{6}{2} = 3$	/2	

Subject & Code: Basic Maths (17104)

Page No: 6/26

0116	Sub			Total
No.	Que.	Model answers	Marks	Marks
Que. No. 2)	b)	Model answers $ \begin{cases} 3\begin{bmatrix} 3 & 1 \\ 4 & 0 \\ 3 & -3 \end{bmatrix} - 2\begin{bmatrix} 0 & 2 \\ -2 & 3 \\ -5 & 4 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} $ $ \therefore \begin{cases} 9 & 3 \\ 12 & 0 \\ 9 & -9 \end{bmatrix} - \begin{bmatrix} 0 & 4 \\ -4 & 6 \\ -10 & 8 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} $	1	
		$\therefore x = -11, y = -28, z = -53$	1	4
	c)	$ (AB)C = \begin{pmatrix} 2 & -2 \\ 3 & 1 \end{pmatrix} \begin{bmatrix} -1 & 5 \\ 4 & -3 \end{bmatrix} \begin{pmatrix} 7 & -5 \\ 0 & 5 \end{bmatrix} $ $ = \begin{bmatrix} -10 & 16 \\ 1 & 12 \end{bmatrix} \begin{bmatrix} 7 & -5 \\ 0 & 5 \end{bmatrix} $	1	
		$= \begin{bmatrix} -70 & 130 \\ 7 & 55 \end{bmatrix}$	1	
		1		
		$A(BC) = \begin{bmatrix} 2 & -2 \\ 3 & 1 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} -1 & 5 \\ 4 & -3 \end{bmatrix} \begin{bmatrix} 7 & -5 \\ 0 & 5 \end{bmatrix} $		
		$ = \begin{bmatrix} 2 & -2 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -7 & 30 \\ 28 & -35 \end{bmatrix} $	1	
		$= \begin{bmatrix} -70 & 130 \\ 7 & 55 \end{bmatrix}$	1/2	
		$\therefore \boxed{(AB)C = A(BC)}$	1/2	
		OK		
		$AB = \begin{bmatrix} 2 & -2 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -1 & 5 \\ 4 & -3 \end{bmatrix}$		
		$= \begin{bmatrix} -10 & 16 \\ 1 & 12 \end{bmatrix}$	1	

Subject & Code: Basic Maths (17104)

Page No: 7/26

Outo	Sub.			Total
Que. No.	Que.	Model answers	Marks	Marks
2)	~	$ (AB)C = \begin{bmatrix} -10 & 16 \\ 1 & 12 \end{bmatrix} \begin{bmatrix} 7 & -5 \\ 0 & 5 \end{bmatrix} $ $ = \begin{bmatrix} -70 & 130 \\ 7 & 55 \end{bmatrix} $	1	
		$BC = \begin{bmatrix} -1 & 5 \\ 4 & -3 \end{bmatrix} \begin{bmatrix} 7 & -5 \\ 0 & 5 \end{bmatrix}$ $= \begin{bmatrix} -7 & 30 \\ 28 & -35 \end{bmatrix}$	1	
		$A(BC) = \begin{bmatrix} 2 & -2 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -7 & 30 \\ 28 & -35 \end{bmatrix}$ $= \begin{bmatrix} -70 & 130 \\ 7 & 55 \end{bmatrix}$ $\therefore (AB)C = A(BC)$	1/2	4
	d)	$AB = \begin{bmatrix} 1 & -3 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 2 & -1 & 3 \end{bmatrix}$ $= \begin{bmatrix} -5 & 3 & -8 \\ 0 & 1 & -1 \end{bmatrix}$	1	
		$ (AB)^T = \begin{bmatrix} -5 & 0 \\ 3 & 1 \\ -8 & -1 \end{bmatrix} $	1	
		$B^T A^T = \begin{bmatrix} 1 & 2 \\ 0 & -1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -3 & -1 \end{bmatrix}$	1	
		$= \begin{bmatrix} -5 & 0 \\ 3 & 1 \\ -8 & -1 \end{bmatrix}$	1	4
		$(AB)^{T} = \left\{ \begin{bmatrix} 1 & -3 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 2 & -1 & 3 \end{bmatrix} \right\}^{T}$		
		$ = \left\{ \begin{bmatrix} -5 & 3 & -8 \\ 0 & 1 & -1 \end{bmatrix} \right\}^{T} $ $ \begin{bmatrix} -5 & 0 \end{bmatrix} $	1	
		$= \begin{bmatrix} -5 & 0 \\ 3 & 1 \\ -8 & -1 \end{bmatrix}$	1	

Subject & Code: Basic Maths (17104)

Page No: 8/26

Que.	Sub.	26.11	3.6.1	Total
No.	Que.	Model answers	Marks	Marks
2)		$B^T A^T = \begin{bmatrix} 1 & 2 \\ 0 & -1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -3 & -1 \end{bmatrix}$	1	
		$= \begin{bmatrix} -5 & 0 \\ 3 & 1 \\ -8 & -1 \end{bmatrix}$	1	4
	e)	$\frac{x^2+1}{x(x^2-1)} = \frac{x^2+1}{x(x+1)(x-1)} = \frac{A}{x} + \frac{B}{x+1} + \frac{C}{x-1}$	1/2	
		$\therefore x^2 + 1 = (x+1)(x-1)A + x(x-1)B + x(x+1)C$		
		$Put \ x = 0$		
		$\therefore 0+1 = (0+1)(0-1)A+0+0 \therefore 1 = -A$		
		$\therefore \boxed{A = -1}$	1	
		Put $x = -1$		
		$\therefore (-1)^2 + 1 = 0 - 1(-1 - 1)B + 0$		
		$\therefore 2 = 2B$		
		$\therefore B = 1$	1	
		Put $x = 1$ ∴ $(1)^2 + 1 = 0 + 0 + 1(1+1)C$		
		$\therefore (1)^{-1} = 0 + 0 + 1(1 + 1)C$ $\therefore 2 = 2C$		
		$\therefore \boxed{C=1}$	1	
		$\therefore \frac{x^2 + 1}{x(x^2 - 1)} = \frac{-1}{x} + \frac{1}{x + 1} + \frac{1}{x - 1}$	1/2	4
		Note: If the problem is solved as illustrated below, the solution is consider to be incomplete and marks may be given accordingly. $\frac{x^2+1}{x(x^2-1)} = \frac{A}{x} + \frac{Bx+C}{x^2-1}$		
		Consequently, we get		
		$\therefore \boxed{A = -1}$	1	
		B=2 and $C=0$		
		$\therefore \boxed{\frac{x^2+1}{x(x^2-1)} = \frac{-1}{x} + \frac{2x}{x^2-1}}$	1	

Subject & Code: Basic Maths (17104)

Page No: 9/26

Que.	Sub.	N. 1.1) A 1	Total
No.	Que.	Model answers	Marks	Marks
2)	f)	$\frac{1}{(x+1)^{2}(x+2)} = \frac{A}{x+1} + \frac{B}{(x+1)^{2}} + \frac{C}{(x+2)}$ $\therefore 1 = (x+1)(x+2)A + (x+2)B + (x+1)^{2}C$ $Put \ x = -1$ $\therefore 1 = 0 + (-1+2)B + 0$ $\therefore \boxed{B=1}$	1/2	
		Put $x = -2$ $\therefore 1 = 0 + 0 + (-2 + 1)^{2} C$ $\therefore \boxed{C = 1}$ Put $x = 0$	1	
		$\therefore 1 = (1)(2)A + (2)B + (1)^{2}C$ $\therefore 1 = 2A + 2B + C$ $\therefore \boxed{A = -1}$ $\boxed{1}$ $\boxed{1}$ $\boxed{1}$ $\boxed{1}$ $\boxed{1}$	1 1/2	
3)	a)	$\therefore \frac{1}{(x+1)^2(x+2)} = \frac{-1}{x+1} + \frac{1}{(x+1)^2} + \frac{1}{(x+2)}$ $x + y + z = 3$ $3x - 2y + 3z = 4$ $5x + 5y + z = 11$	72	4
		$\therefore A = \begin{bmatrix} 1 & 1 & 1 \\ 3 & -2 & 3 \\ 5 & 5 & 1 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, B = \begin{bmatrix} 3 \\ 4 \\ 11 \end{bmatrix}$		
		$\begin{vmatrix} A = \begin{vmatrix} 1 & 1 & 1 \\ 3 & -2 & 3 \\ 5 & 5 & 1 \end{vmatrix} = 1(-2 - 15) - 1(3 - 15) + 1(15 + 10)$ $= 20$	1/2	
		$\therefore adj(A) = \begin{bmatrix} -17 & 4 & 5 \\ 12 & -4 & 0 \\ 25 & 0 & -5 \end{bmatrix} \qquad(*)$	1	
		$\therefore A^{-1} = \frac{1}{ A } adj(A)$ $= \frac{1}{20} \begin{bmatrix} -17 & 4 & 5 \\ 12 & -4 & 0 \\ 25 & 0 & -5 \end{bmatrix}$	1	

Subject & Code: Basic Maths (17104) Page No: 10/26

Que.	Sub.	26.11	36.1	Total
No.	Que.	Model answers	Marks	Marks
No. 3)	Que.	∴ the solution is, $X = A^{-1}B$ $= \frac{1}{20} \begin{bmatrix} -17 & 4 & 5 \\ 12 & -4 & 0 \\ 25 & 0 & -5 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 11 \end{bmatrix}$ $= \frac{1}{20} \begin{bmatrix} 20 \\ 20 \\ 20 \end{bmatrix}$ $= \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ ∴ $x = 1$, $y = 1$, $z = 1$ (*) Note: Many methods are followed to find $adj(A)$ such as first to find Matrix of Minors and then to find Cofactor matrix. Many times students first find all the minors independently and then the Matrix of Minors is formed. Also directly Cofactor Matrix can be found for $adj(A)$. All these methods are applicable. Further note that if only few items in $adj(A)$ are incorrect, you may deduct mark accordingly. For sake of convenience, one method of finding $adj(A)$ using Cofactor Matrix is illustrated below. $C(A) = \begin{bmatrix} -2 & 3 \\ 5 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 5 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ 5 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 5 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 5 & 5 \end{bmatrix}$ $= \begin{bmatrix} -17 & 12 & 25 \\ 4 & -4 & 0 \\ 5 & 0 & -5 \end{bmatrix}$ ∴ $adj(A) = C(A)^T = \begin{bmatrix} -17 & 4 & 5 \\ 12 & -4 & 0 \\ 25 & 0 & -5 \end{bmatrix}$	1 1/2	4

Subject & Code: Basic Maths (17104) Page No: 11/26

Que.	Sub.	Model answers	Marks	Total
No.	Que.		TVICITES	Marks
3)	b)	$\frac{x}{x^3 - 1} = \frac{x}{(x - 1)(x^2 + x + 1)}$	1/2	
			/2	
		$=\frac{A}{x-1} + \frac{Bx+C}{x^2+x+1}$		
		$\therefore x = (x^2 + x + 1)A + (x - 1)(Bx + C)$		
		$Put \ x = 1$		
		$\therefore 1 = \left(\left(-1 \right)^2 + 1 + 1 \right) A + 0$		
		$\therefore 1 = 3A$		
		$A = \frac{1}{3}$	1	
		Put x = 0		
		$\therefore 0 = (0^2 + 0 + 1)A + (0 - 1)(0 + C)$		
		$\therefore 0 = A - C$		
		$\therefore 0 = \frac{1}{3} - C$		
		$\therefore C = \frac{1}{3}$	1	
		$Put \ x = -1$		
		$\therefore -1 = (1^2 - 1 + 1)A + (-1 - 1)(-B + C)$		
		$\therefore -1 = A + 2B - 2C$		
		$\therefore -1 = \frac{1}{3} + 2B - \frac{2}{3}$		
		1	1	
		$\therefore B = -\frac{1}{3}$		
		$\frac{1}{x}$ $\frac{1}{x+1}$	1/2	4
		$\therefore \frac{x}{x^3 - 1} = \frac{\frac{1}{3}}{x - 1} + \frac{\frac{1}{3}x + \frac{1}{3}}{x^2 + x + 1}$, 2	•
		$\begin{bmatrix} x - 1 & x - 1 & x + x + 1 \end{bmatrix}$		
	c)			
	,	$Put \sin \theta = x$		
		$\frac{\sin \theta + 1}{(\sin \theta + 2)(\sin \theta + 3)} = \frac{x+1}{(x+2)(x+3)} = \frac{A}{x+2} + \frac{B}{x+3}$	1	
		$\therefore x+1=(x+3)A+(x+2)B$		
		$Put \ x = -2$		
		$\therefore -2+1 = (-2+3)A+0$		
		$\therefore A = -1$	1	

Subject & Code: Basic Maths (17104) **Page No:** 12/26

Que.	Sub.			Total
No.	Que.	Model answers	Marks	Marks
3)		Put x = -3 ∴ $-3+1=0+(-3+2)B$ ∴ $B=2$ $x+1$ -1 2	1	
		$\therefore \frac{x+1}{(x+2)(x+3)} = \frac{-1}{x+2} + \frac{2}{x+3}$ $\therefore \frac{\sin \theta + 1}{(\sin \theta + 2)(\sin \theta + 3)} = \frac{-1}{\sin \theta + 2} + \frac{2}{\sin \theta + 3}$	1	4
	d)	$\cos(\pi + \theta) = \cos \pi \cos \theta - \sin \pi \sin \theta$	1	
	·	$= (-1)\cos\theta - 0\cdot\sin\theta$	1+1	
		$=-\cos\theta$	1	4
	e)	$\frac{\sin A - \sin 3A}{\sin^2 A - \cos^2 A} = \frac{2\cos 2A\sin(-A)}{\sin^2 A - \cos^2 A}$	1	
		$=\frac{-2\cos 2A\sin A}{-\left(\cos^2 A - \sin^2 A\right)}$	1	
		$= \frac{-2\cos 2A\sin A}{\sin A}$	1	
		$-\cos 2A$ $= 2\sin A$	1	4
		$ \begin{array}{c c} \mathbf{OR} \\ \sin A - \sin 3A & 2\cos 2A \sin (-A) \end{array} $	1	
		$\frac{\sin^2 A - \cos^2 A}{\sin^2 A - \cos^2 A} = \frac{-2\cos 2A \sin A}{\sin^2 A - \cos^2 A}$	1	
		$= \frac{\sin^2 A - \cos^2 A}{\sin^2 A - \sin^2 A \sin A}$ $= \frac{-2(\cos^2 A - \sin^2 A)\sin A}{-(\cos^2 A - \sin^2 A)}$	1	
		$-(\cos^2 A - \sin^2 A)$ $= 2\sin A$	1	4
		OR		
		$\frac{\sin A - \sin 3A}{\sin^2 A - \cos^2 A} = \frac{\sin A - (3\sin A - 4\sin^3 A)}{\sin^2 A - \cos^2 A}$	1	
		$=\frac{-2\sin A + 4\sin^3 A}{\sin^2 A - \cos^2 A}$		
		$=\frac{-2\sin A\left(1-2\sin^2 A\right)}{-\left(\cos^2 A-\sin^2 A\right)}$	1	
		$=\frac{-2\sin A(\cos 2A)}{-(\cos 2A)}$	1	
		$-(\cos 2A)$ $= 2\sin A$	1	4

Subject & Code: Basic Maths (17104)

Page No: 13/26

Que.	Sub.			Total
No.	Que.	Model answers	Marks	Marks
3)	f)	$\tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{13}\right) = \tan^{-1}\left(\frac{\frac{1}{7} + \frac{1}{13}}{1 - \frac{1}{7} \cdot \frac{1}{13}}\right)$	2	
		$= \tan^{-1}\left(\frac{20}{90}\right)$	1	
		$= \tan^{-1} \left(\frac{2}{9} \right)$	1	4
	g)	A+B $A+B$ N N M	1	
		Right Angled Acute Angle Trigonometric Ratios		
		$\triangle OMP$ $\angle MOP = A$ $\sin A = \frac{PM}{OP}$, $\cos A = \frac{OM}{OP}$		
		$\triangle OPQ$ $\angle POQ = B$ $\sin B = \frac{PQ}{OQ}, \cos B = \frac{OP}{OQ}$		
		$\triangle PRQ$ $\angle PQR = A$ $\sin A = \frac{PR}{PQ}, \cos A = \frac{QR}{PQ}$		
		$\triangle PRQ$ $\angle PQR = A$ $\sin A = \frac{PR}{PQ}, \cos A = \frac{QR}{PQ}$ $\triangle ONQ$ $\angle NOQ = A + B$ $\sin(A + B) = \frac{QN}{OQ}, \cos(A + B) = \frac{ON}{OQ}$		
		$\sin(A+B) = \frac{QN}{OQ}$ $= \frac{QR + RN}{OQ}$ $= \frac{QR + PM}{OQ}$ $= \frac{QR}{OQ} + \frac{PM}{OQ}$ $= \frac{QR}{PQ} \times \frac{PQ}{OQ} + \frac{PM}{OQ} \times \frac{OP}{OQ}$	1	
		$= \cos A \cdot \sin B + \sin A \cdot \cos B$	1	4

Subject & Code: Basic Maths (17104) Page No: 14/26

Que.	Sub.	Madal anguaga	Maulia	Total
No.	Que.	Model answers	Marks	Marks
3)		Note: The above is proved by different ways in several books. Consider all these proof but check whether the method is falling within the scope of curriculum and give appropriate marks in accordance with the scheme of marking. In accordance with the Teacher's Manual published by MSBTE, the result is treated as Fundamental Result which is not proved by the help of any another result. If the above result is proved by students using any another result, suppose using cos (A+B), then this result i.e., cos (A+B) must have been proved first.		
4)	a)	$\cos(510^{\circ}) = \cos(6 \times 90^{\circ} - 30^{\circ})$		
,	·	$=-\cos 30^{\circ}$ $=-\frac{\sqrt{3}}{2} \qquad or -0.866$	1/2	
		$\cos(330^\circ) = \cos(4 \times 90^\circ - 30^\circ)$		
		$=\cos 30^{\circ}$.,	
		$=\frac{\sqrt{3}}{2}$	1/2	
		$\sin(390^{\circ}) = \sin(4 \times 90^{\circ} + 30^{\circ})$		
		$= \sin 30^{\circ}$		
		$= \frac{1}{2}$ $\cos(120^{\circ}) = \cos(90^{\circ} + 30^{\circ})$	1/2	
		$=-\sin 30^{\circ}$		
		$=-\frac{1}{2}$	1/2	
		$\cos(510^{\circ})\cos(330^{\circ}) + \sin(390^{\circ})\cos(120^{\circ})$		
		$= \left(-\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right) + \left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)$	1	
		$\begin{vmatrix} -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 $	1	4
		Note: The above example may be proved in different ways by expressing the ratio in many ways e.g., instead of expressing $\cos(510^\circ) = \cos(6 \times 90^\circ - 30^\circ)$, one can express it as $\cos(510^\circ) = \cos(5 \times 90^\circ + 60^\circ)$ and the get the desired value. Further here in this example it is expected that it must be proved without using calculator. If directly calculator is used, no marks to be given. Also the value of $\cos(510^\circ)$ written in decimal points is also considerable.		

Subject & Code: Basic Maths (17104) **Page No:** 15/26

Que.	Sub.	Model answers	Marks	Total
No.	Que.		TVICTIO	Marks
4)	c)	We know that, cos(A+B) + cos(A-B) = 2 cos A cos B	1	
		Put A + B = C		
		A - B = D		
		$\therefore A = \frac{C+D}{2} and$	1	
		$B = \frac{C - D}{2}$	1	
		$\therefore \cos C + \cos D = 2\cos\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right)$	1	4
	d)	$\sin A \sin \left(60 - A\right) \sin \left(60 + A\right) = \sin A \left(\sin^2 60 - \sin^2 A\right)$	1	
		$=\sin A\left(\frac{3}{4}-\sin^2 A\right)$	1	
		$= \frac{1}{4}\sin A \left[3 - 4\sin^2 A \right]$		
		$=\frac{1}{4}\Big[3\sin A - 4\sin^3 A\Big]$	1	
		$=\frac{1}{4}\sin 3A$	1	4
		OR		
		$\sin A \sin (60 - A) \sin (60 + A) = \sin A \cdot \frac{1}{-2} (\cos 120 - \cos 2A)$	1	
		$= -\frac{1}{2}\sin A \cdot \left[\cos\left(90 + 30\right) - \cos 2A\right]$		
		$= -\frac{1}{2}\sin A \cdot \left[-\sin 30 - \cos 2A\right]$	1/2	
		$= \frac{1}{2}\sin A \cdot \left[\frac{1}{2} + 1 - 2\sin^2 A\right]$	1/2	
		$= \frac{1}{2}\sin A \cdot \left(\frac{3}{2} - 2\sin^2 A\right)$		
		$= \frac{1}{4}\sin A \left[3 - 4\sin^2 A \right]$		
		$=\frac{1}{4}\left[3\sin A - 4\sin^3 A\right]$	1	
		$= \frac{1}{4}\sin 3A$	1	4
		OR		

Subject & Code: Basic Maths (17104)

Page No: 16/26

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
4)	Z GIE!	$\sin A \sin \left(60 - A\right) \sin \left(60 + A\right)$		1/10/11/15
		$= \sin A \left(\sin 60 \cos A - \cos 60 \sin A \right) \left(\sin 60 \cos A + \cos 60 \sin A \right)$	1	
		$= \sin A \left(\sin^2 60 \cos^2 A - \cos^2 60 \sin^2 A\right)$		
		$= \sin A \left(\frac{3}{4} \cos^2 A - \frac{1}{4} \sin^2 A \right)$	1	
		$= \frac{1}{4}\sin A \left(3\cos^2 A - \sin^2 A\right)$		
		$= \frac{1}{4}\sin A \left[3\left(1-\sin^2 A\right)-\sin^2 A\right]$		
		$= \frac{1}{4}\sin A \left[3 - 4\sin^2 A \right]$	1	
		$= \frac{1}{4} \left[3\sin A - 4\sin^3 A \right]$		
		$=\frac{1}{4}\sin 3A$	1	4
	e)	$A = \cos^{-1}\left(\frac{4}{5}\right)$		
		$\therefore \cos A = \frac{4}{5}$		
		5 A		
		$\therefore \tan A = \frac{3}{4}$		
		$\therefore A = \tan^{-1}\left(\frac{3}{4}\right)$	1	
		$\therefore \cos^{-1}\left(\frac{4}{5}\right) + \tan^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{3}{5}\right)$		
		$= \tan^{-1} \left(\frac{\frac{3}{4} + \frac{3}{5}}{1 - \frac{3}{4} \cdot \frac{3}{5}} \right)$	1	
		$= \tan^{-1} \left(\frac{\frac{15+12}{20}}{\frac{20-9}{20}} \right)$	1	
		$= \tan^{-1} \left(\frac{27}{11} \right)$	1	4

Subject & Code: Basic Maths (17104)

Page No: 17/26

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
4)	f)	$A = \sin^{-1}\left(\frac{3}{5}\right) \qquad B = \cos^{-1}\left(\frac{12}{13}\right)$		IVIAIKS
		$\therefore \sin A = \frac{3}{5} \qquad \cos B = \frac{12}{13}$		
		5 A 4 13 5 12		
		$\sin(A+B) = \sin A \cos B + \cos A \sin B$	1	
		$= \frac{3}{5} \times \frac{12}{13} + \frac{4}{5} \times \frac{5}{13}$	1	
		$=\frac{36}{65}+\frac{20}{65}$		
		$=\frac{36+20}{65}$		
		$=\frac{56}{65}$	1	
		$\therefore A + B = \sin^{-1}\left(\frac{56}{65}\right)$		
		$\therefore \sin^{-1}\left(\frac{3}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \sin^{-1}\left(\frac{56}{65}\right)$	1	4
		OR		
		$A = \sin^{-1}\left(\frac{3}{5}\right) \qquad B = \cos^{-1}\left(\frac{12}{13}\right)$		
		$\therefore \sin A = \frac{3}{5} \qquad \qquad \cos B = \frac{12}{13}$		
		5 A 4 13 5 12		
		$\tan A = \frac{3}{4} \qquad \tan B = \frac{5}{12}$		
		$\therefore A = \tan^{-1}\left(\frac{3}{4}\right) \qquad B = \tan^{-1}\left(\frac{5}{12}\right)$		
		$\therefore \sin^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{3}{4}\right) \qquad \cos^{-1}\left(\frac{12}{13}\right) = \tan^{-1}\left(\frac{5}{12}\right)$	1	

Subject & Code: Basic Maths (17104) Page No: 18/26

Que.	Sub.	26.11	3.6.1	Total
No.	Que.	Model answers	Marks	Marks
No. 5)	Que.	$\therefore \sin^{-1}\left(\frac{3}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{5}{12}\right)$ $= \tan^{-1}\left(\frac{\frac{3}{4} + \frac{5}{12}}{1 - \frac{3}{4} \cdot \frac{5}{12}}\right)$ $= \tan^{-1}\left(\frac{\frac{9+5}{12}}{\frac{16-5}{16}}\right)$ $= \tan^{-1}\left(\frac{56}{33}\right)$ $Let \tan^{-1}\left(\frac{56}{33}\right) = C$ $\therefore \tan C = \frac{56}{33}$ 56	1	Marks
5)	a)	$\therefore \sin C = \frac{56}{65}$ $\therefore C = \sin^{-1}\left(\frac{56}{65}\right)$ $\therefore \tan^{-1}\left(\frac{56}{33}\right) = \sin^{-1}\left(\frac{56}{65}\right)$ $\therefore \sin^{-1}\left(\frac{3}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \sin^{-1}\left(\frac{56}{65}\right)$ $\frac{\sin 4\theta + \sin 2\theta}{1 + \cos 2\theta + \cos 4\theta} = \frac{\sin 2(2\theta) + \sin 2\theta}{1 + \cos 2(2\theta) + \cos 2\theta}$ $= \frac{2\sin 2\theta \cos 2\theta + \sin 2\theta}{2\cos^{2} 2\theta + \cos 2\theta}$ $= \frac{\sin 2\theta (2\cos 2\theta + 1)}{\cos 2\theta (2\cos 2\theta + 1)}$ $= \frac{\sin 2\theta}{\cos 2\theta}$ $= \tan 2\theta$	1 1 1 1 1	4

Subject & Code: Basic Maths (17104)

Page No: 19/26

Que.	Sub.	Model answers	Marks	Total
No. 5)	Que. b)	$\frac{\sin A + \sin 2A + \sin 3A + \sin 4A}{\cos A + \cos 2A + \cos 3A + \cos 4A}$ $= \frac{(\sin A + \sin 4A) + (\sin 2A + \sin 3A)}{(\cos A + \cos 4A) + (\cos 2A + \cos 3A)}$ $= \frac{2\sin\left(\frac{5A}{2}\right)\cos\left(\frac{-3A}{2}\right) + 2\sin\left(\frac{5A}{2}\right)\cos\left(\frac{-A}{2}\right)}{2\cos\left(\frac{5A}{2}\right)\cos\left(\frac{-3A}{2}\right) + 2\cos\left(\frac{5A}{2}\right)\cos\left(\frac{-A}{2}\right)}$ $= \frac{2\sin\left(\frac{5A}{2}\right)\left[\cos\left(\frac{-3A}{2}\right) + \cos\left(\frac{-A}{2}\right)\right]}{2\cos\left(\frac{5A}{2}\right)\left[\cos\left(\frac{-3A}{2}\right) + \cos\left(\frac{-A}{2}\right)\right]}$	1+1	Marks
	c)	$= \frac{\sin\left(\frac{5A}{2}\right)}{\cos\left(\frac{5A}{2}\right)}$ $= \tan\left(\frac{5A}{2}\right)$ $2\tan^{-1} x = \tan^{-1} x + \tan^{-1} x$ $= \tan^{-1} \left(\frac{x+x}{1-x \cdot x}\right)$ $= \tan^{-1} \left(\frac{2x}{1-x}\right)$	1 1 1 2 1	4
	d)	$\begin{array}{c} L_1 \\ \downarrow \\ O \end{array}$	1	
		Let $L_1 \equiv ax + by + c_1 = 0$ $L_2 \equiv ax + by + c_2 = 0$ (x_1, y_1) be a point on the line L_2 . $\therefore ax_1 + by_1 + c_2 = 0$	1	

Subject & Code: Basic Maths (17104)

Page No: 20/26

Que.	Sub.	Madal anguana	Monte	Total
No.	Que.	Model answers	Marks	Marks
5)		Now the perpendicular distance from (x_1, y_1) on L_1 is, $P = \left \frac{ax_1 + by_1 + c_1}{\sqrt{a^2 + b^2}} \right $	1	
		$= \left \frac{-c_2 + c_1}{\sqrt{a^2 + b^2}} \right $ $OR \left \frac{c_1 - c_2}{\sqrt{a^2 + b^2}} \right $	1	4
	e)	2x + 3y = 13 $5x - y = 7$ $2x + 3y = 13$ $15x - 3y = 21$ $17x = 34$		
		$\therefore x = 2$ $y = 3$ $\therefore \text{ Point of intersection} = (2, 3)$ Slope of the line $3x - y + 7 = 0$ is,	1/2 1/2	
		$m_0 = -\frac{a}{b} = -\frac{3}{-1} = 3$ ∴ Slope of the required line is,	1	
		$m = -\frac{1}{m_0} = -\frac{1}{3}$ $\therefore equation is,$	1	
		$y - y_1 = m(x - x_1)$ $\therefore y - 3 = -\frac{1}{3}(x - 2)$ $\therefore x + 3y - 11 = 0$	1	4
	f)	For $2x+3y+5=0$, slope $m_1 = -\frac{a}{b} = -\frac{2}{3}$ For $x-2y-4=0$, slope $m_1 = -\frac{a}{b} = -\frac{1}{-2} = \frac{1}{2}$	1/2	

Subject & Code: Basic Maths (17104)

Page No: 21/26

Que.	Sub.	Model answers	Marks	Total
No. 5)	Que.	$\therefore \tan \theta = \left \frac{m_1 - m_2}{1 + m_1 \cdot m_2} \right $		Marks
		$= \frac{-\frac{2}{3} - \frac{1}{2}}{1 + \left(-\frac{2}{3}\right) \cdot \left(\frac{1}{2}\right)}$	1	
		$=\frac{7}{4} or 1.75$	1	
		$\therefore \theta = \tan^{-1}\left(\frac{7}{4}\right) or \tan^{-1}\left(1.75\right)$	1	4
6)	a)	Let θ_1 = Angle of inclination of L_1 θ_2 = Angle of inclination of L_2 \therefore Slope of L_1 is $m_1 = \tan \theta_1$ Slope of L_2 is $m_2 = \tan \theta_2$	1	
		$\therefore from \ figure,$ $\theta = \theta_1 - \theta_2$ $\therefore \tan \theta = \tan (\theta_1 - \theta_2)$	1/2	
		$= \frac{\tan(\theta_1) - \tan(\theta_2)}{1 + \tan(\theta_1)\tan(\theta_2)}$	1	
		$=\frac{m_1-m_2}{1+m_1\cdot m_2}$	1/2	
		$\therefore \theta = \tan^{-1} \frac{m_1 - m_2}{1 + m_1 \cdot m_2}$	1/2	
		For angle to be acute,		
		$\theta = \tan^{-1} \left \frac{m_1 - m_2}{1 + m_1 \cdot m_2} \right $	1/2	4

Page No: 22/26

Subject & Code: Basic Maths (17104)

Que.	Sub.	Model answers	Marks	Total
No. 6)	Que. b)	x + y = 0		Marks
0)		2x - y = 9		
		$\therefore 3x = 9$		
		$\therefore x = 3$	1/	
		y = -3	1/ ₂ 1/ ₂	
		$\therefore \text{ Point of intersection} = (3, -3)$	1	
		∴ equation is,		
		_		
		$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$		
			1	
		$\therefore \frac{y-5}{-3-5} = \frac{x-2}{3-2}$		4
		$\therefore 8x + y - 21 = 0$	1	T
		OR	1	
		$\therefore \text{ Point of intersection} = (3, -3)$	1	
		$\therefore Slope m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-3 - 5}{3 - 2} = -8$	1	
		∴ equation is,		
		$y - y_1 = m(x - x_1)$		
		$\therefore y-5=-8(x-2)$		
		3x + y - 21 = 0	1	4
				•
	c)	Class x_i f_i $f_i x_i$ $D_i = x_i - \overline{x} $ $f_i D_i$		
		0-10 5 5 25 22 110		
		10-20 15 8 120 12 96		
		20-30 25 15 375 2 30	1+1	
		30-40 35 16 560 8 128 40-50 45 6 270 18 108		
		50 1350 472		
		$\bar{x} = \frac{\sum f_i x_i}{N} = \frac{1350}{50} = 27$	1	
		N = 50		
		$M.D. = \frac{\sum f_i D_i}{N}$		
		$=\frac{472}{50}$		
		= 9.44	1	4

Subject & Code: Basic Maths (17104) Page No: 23/26

Que.	Sub.				Mod	lel ansv	470 % C				Marks	Total
No.	Que.				WIOC	iei alisv	vers				Iviaiks	Marks
6)	d)									٦		
			Class	xi	f_{i}	$f_i x_i$	X_{i}	2 i	$f_i x_i^2$			
			0-5	2.5	3	7.5	6.2	25	18.75			
			5-10	7.5	5	37.5	56.		281.25			
			10-15	12.5	9	112.5	156		1406.25			
			15-20	17.5	15	262.5	306		4593.75		1+1	
			20-25	22.5	20	450	506		10125	_	1.1	
			25-30	27.5	16	440	756		12100	_		
			30-35	32.5	10	325	1056		10562.5	_		
			35-40	37.5	2	75	1406	5.25	2812.5	_		
		<u> </u>			80	1710			41900			
		C D	$\sum f_i x_i^2$	$\sum f_i$	$(x_i)^2$							
		S.D. =	$\sqrt{-N}$	$-\left(\frac{-}{N}\right)$	_)							
		=	41900_		•						1	
		V	80	80)							1	4
		$= \delta$.177			OB						4
			Class	<u> </u>	C	OR	<i>C</i> 1	1 2	c 12			
				xi	f_i	d_i	$f_i d_i$	d_i^2				
			0-5	2.5	3	-3	<u>-9</u>	9	27			
			5-10	7.5	5	-2	-10	4	20			
			10-15	12.5	9	-1	<u>-9</u>	1	9			
			15-20	17.5 22.5	15	0 1	20	1	0		1+1	
			20-25 25-30	27.5	20	2	32	4	20 64		1'1	
			30-35	32.5	10	3	30	9	90			
			35-40	37.5	2	4	8	16				
			33-40	37.3	80	4	62	10	262			
				<u> </u>	00		02		202			
		A = 17.5	5 h = 5,	$d_i = \frac{x_i}{x_i}$	$\frac{A}{h}$							
		S.D. = h	$5 h = 5,$ $n \times \sqrt{\frac{\sum f_i}{N}}$ $\times \sqrt{\frac{262}{80}} - \frac{1}{12}$	$\frac{d_i^2}{d_i^2} - \left(\sum_{i=1}^{n} \frac{1}{n}\right)^2$	$\int_{N} f_i d_i$	$\frac{1}{2}$						
			V IV		1 V	J						
		= 5	$\times \sqrt{\frac{262}{80}} -$	$\left(\frac{62}{80}\right)^2$							1	
			.177	(00)							1	4
				•	-				n the above			
									sponding v	alues		
		Į V	ary accord	anigiy. E	out the	rmal al	iswer v	vIII D	e the same.			

Subject & Code: Basic Maths (17104) Page No: 24/26

Que.	Sub.	26.11								Marks	Total		
No.	Que.		Model answers								Marks		
6)	e)												
	,		Class	xi	f_{i}	$f_i x_i$	x_i^2	$f_i x_i^2$					
		-	0-10	5	14	70	25	350					
		-	10-20 15 23 345 225 5175 20-30 25 27 675 625 16875										
		<u> </u>											
			30-40	35	21	735	1225	25725					
		_	40-50	45	15	675	2025	30375					
						2500		78500					
		$S.D. = \sqrt{\frac{1}{2}}$ $= \sqrt{\frac{1}{2}}$ $= 12$	$ \overline{x} = \frac{\sum f_i x_i}{N} = \frac{2500}{100} = 25 $ $ S.D. = \sqrt{\frac{\sum f_i x_i^2}{N} - \left(\frac{\sum f_i x_i}{N}\right)^2} $ $ = \sqrt{\frac{78500}{100} - \left(\frac{2500}{100}\right)^2} $ $ = 12.649 $ $ \therefore Variance = (S.D.)^2 $										
			=12.6							1/2			
			=159										
		Coeff.	of Varia	$=\frac{12}{1}$	$\frac{.D.}{\overline{x}} \times 10$ $\frac{2.649}{25} \times 0.596$					1	4		
						OR							
			∴ Variance = $\frac{\sum f_i x_i^2}{N} - \left(\frac{\sum f_i x_i}{N}\right)^2$ = $\frac{78500}{100} - \left(\frac{2500}{100}\right)^2$ = 160										
		Coeff.	Coeff. of Variance = $\frac{S.D.}{\overline{x}} \times 100$ = $\frac{12.649}{25} \times 100$ = 50.596 OR										

Subject & Code: Basic Maths (17104) **Page No:** 25/26

Que.	Sub.				3 f 1	1) / 1	Total
No.	Que.	Model answers									Marks	Marks
6)		OR										
			Class	xi	f_{i}	d_{i}	$f_i d_i$	$d_i^{\ 2}$	$f_i d_i^2$			
			0-10	5	14	-2	-28	4	56			
			10-20	15	23	-1	-23	1	23		1	
			20-30	25	27	0	0	0	0		1	
			30-40	35	21	1	21	1	21			
			40-50	45	15	2	30	4	60	_		
					100		0		160			
	$A = 25, h = 10, d_i = \frac{x_i - A}{h}$											
		$\therefore \overline{x} = A + \frac{\sum f_i d_i}{N} \times h$										
		= 25	$=25+\frac{0}{100}\times10$									
		= 25									1	
	$S.D. = h \times \sqrt{\frac{\sum f_i d_i^2}{N} - \left(\frac{\sum f_i d_i}{N}\right)^2}$ $= 10 \times \sqrt{\frac{160}{100} - \left(\frac{0}{100}\right)^2}$											
		=12.649									1/2	
		∴ Varia	nce = (S.D)	$.)^2$								
	$= 12.649^{2}$ $= 159.997$ $Coeff. of Variance = \frac{S.D.}{\overline{x}} \times 100$											
										1/2		
										,-		
		$=\frac{12.649}{25}\times100$										
		= 50.596									1	4
		OR $\therefore Variance = h^{2} \left[\frac{\sum f_{i} d_{i}^{2}}{N} - \left(\frac{\sum f_{i} d_{i}}{N} \right)^{2} \right]$										
	$= h^{2} \left[\frac{160}{100} - \left(\frac{0}{100} \right)^{2} \right]$ $= 159.997$ $Coeff. of Variance = \frac{S.D.}{\overline{r}} \times 100 = \frac{12.649}{25} \times 100$									1		
		33		=50.5		25					1	4

Subject & Code: Basic Maths (17104) **Page No:** 26/26

Que.	Sub.	Model answers	Marks	Total
No.	Que.	Wiodel diswell	17101103	Marks
6)	f)	$C.V.(I) = \frac{\sigma}{x} \times 100 = \frac{7.3}{82.5} \times 100 = 8.848$	1	
		$C. V.(II) = \frac{\sigma}{x} \times 100 = \frac{8.35}{48.75} \times 100 = 17.12$	1	
		$\therefore C.V.(I) < C.V.(II)$	1	
		∴ Group set II is more variable.	1	4
		Important Note In the solution of the question paper, wherever possible		
		all the possible alternative methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, first see whether the method falls within the scope of the curriculum, and then only give appropriate marks in accordance with the scheme of marking.		