For any change in G and any MPC

∆Spending=

∆Spending=

= AG

At equilibrium, total spending = Output

∆Spending=

Dutput

Change in equilibrium output

$$\Delta \text{Spending} = 100 \left(\frac{1}{1-0.9} \right)$$

For any change in G and any MPC

$$\Delta Spending = \Delta G \left(\frac{1}{1-MPC} \right)$$
At equilibrium, total spending = Output

$$\Delta Spending = \Delta Output$$

$$\Delta Spending = \Delta Output$$
Change in
$$\Delta Y = \Delta G \boxed{\frac{1}{1-MPC}}$$
equilibrium output

