

Semtech Concentrator for IOT

Connected Devices: Market

Connected Devices by 2020 (billions)

IoT Segments

Connected Devices: Market

Projected by Type

Connectivity is a Challenge

Internet of Objects 80% of volume

Requirements:

- How to connect battery operated low cost assets?
- Outdoor & harsh environments
- Low cost communication
- Low cost infrastructure
- Low power technology
- Robust communication
- Permits mobility
- Scalable system

Existing Communication Technologies

Connected Devices: Access

Short Range
Communicating Devices

35% **SOM**

- ✓ Well established standards
- ✓ Good for:
 - Mobile devices
 - In-home
 - Short range
- Not good:
 - Battery life
 - Long range

Long Range w/ Battery
Internet of Objects

55% SOM

- ✓ Emerging PHY solutions / Undecided
- √ Good for:
 - Long range
 - Long battery
 - Low cost
- □ Not good:
 - High data-rate

Long Range w/Power
Traditional M2M

10% SOM

- ✓ Well established standards
- ✓ Good for:
 - Long range
 - High data-rate
 - Coverage
- □ Not good:
 - Battery life
 - Cost

Low Power WAN: Network (Node) SEMTECH

Technology	2G	3 G	LAN	ZigBee	Lo Power WAN
Range (I=Indoor, O=Outdoor)	2-15km	2-15km	O: 300m I: 30m	O: 90m I: 30m	Better than 2G/3G
Tx current consumption	200mA- 500mA	500mA – 1000mA	50mA	35mA	28mA
Standby current	2.3mA	3.5mA	NC	0.003mA	0.001mA
Energy harvesting (solar, other)	No	No	No	Possible	Possible
Battery 2000mAh (LR6 battery)	4-8 hours(com) 36 days(idle)	2-4 hours(com) X hours(idle)	50 hours(com) X hours(idle)	60hours (com)	120 hours(com) 10 year(idle)
Module Revenue Annually	12 \$	20 \$	4 \$	\$3	3 \$

Autonomy GSM with 2000mAh - Autonomy LP WAN with 2000mAh -		Example for energy meter	
1 year	5 years	10 years	

LoRa Overview

☐ LoRa utilized a spread spectrum based modulation

Advantages

- □ Demodulate below noise floor 30dB better than FSK
- Better sensitivity than FSK (better Eb/No)
- More robust to interference, noise, and jamming
- Spreading codes orthogonal multiples signals can occupy same channel
- ☐ Tolerant to freq offsets (unlike DSSS)

LoRa Network Attributes

Key Features	Attribute/Benefit	
157 dB link budget	Long range	
>15 km range	Long range	
Minimal infrastructure	Ease of deployment easy	
Concentrator with capacity	Lase of deployment	
>10 yrs battery lifetime	Long battomy life	
RX - 10 mA, sleep <200 nA	Long battery life	
Unlicensed spectrum		
Low infrastructure cost	Low cost	
Low end-node cost		

- ☐ A long range star architecture with high capacity
- ☐ Supports both mobile and fixed nodes
- Supports variable data rates and multi-channel simultaneously
- Complete solution with both end node (SX127x) and concentrator (SX1301)

Network Architecture

Unique ID
Encryption
2 way
Low Cost Low
Power

Star network
Packet Forwarder
Full IPV6
Low Filtering

Protocol
Commissioning
Provisioning
Network Security
Data Integrity

Private Security Data Analytics

Network Options

AN **OPERATED N**ATIONAL **N**ETWORK TO COLLECT DATA FROM MILLIONS OF **D**EVICES

Applications are many:

- Metering
- > Tele- management
- Maintenance / Supervision
- Alerting
- > Identification / géolocalisation
- Back up for GSM existing solutions

Main asset of our solution:

No Network Infrastructure to build or manage for the Customer

LoRa Parameters and Interference Immunity

Parameter	Range	Effect	Change (125kHz)
Spreading Factor (SF)	7-12	DR	300bps – 9.6kbps
		Sensitivity	-138dBm to -121dBm
Bandwidth (BW)	125K typ 10-500kHz	DR vs sensitivity	300bps – 22kbps
Error correction	4/5 to 4/8	DR, time on air	
Freq	138M-1GHz		Freq agnostic

Interfere	LoRa Co-Channel	FSK Co-channel	
CW/FSK/GFSK	-5 to -20	+8 to +10	

Interference Immunity

- Co-channel interference performance and error correction give LoRa licensed band QOS
- Multiple channels and network management at server allow for additional or adaptive QOS features

Network Capacity: Adaptive Data Rate

Network Capacity: Single Data Rate

LoRa End Node

- □ Partner module solution for NA
- □ TX = 1W, GPS+sensors, battery
- ☐ Fully Compliant with FCC

- **□** Partner Module for EU
- **☐** ST Micro(STM32) + SX1272

LoRa Concentrator - SX1301

Superior System

- Multi-modem/channel concentrator
 - Improved network capacity
 - > Simultaneous reception on same channel
 - > Easily scalable to add more capacity
 - Simultaneously demod 2MHz spectrum
 - Simple star network no latency
 - Adaptive link rate
 - 5 million node transactions per SX1301
 - Easily scalable for more capacity
- □ Localization
 - The feature everyone wants
- ☐ Solves all system desires
 - Range, battery lifetime, capacity, cost
- □ Reduces design cycle
 - System HW and MAC provided

EU Concentrator Overview

- Multi-Modem/Multi-channel
 - 10 channels
 - 9 LoRa modems
 - 1 FSK modem
- □ Very high capacity
- □ Adaptive link rate
 - Optimize capacity
 - Scalable
- ☐ 2MHz of spectrum
 - Wide FE can be used

Semtech NA Concentrator

☐ FCC requirements

- Frequency hopping, 902-928MHz
- 400msec max channel dwell time
- 1W max output power

□ Gateway

- Embedded Linux
- 8x SX1301

□ PHY parameters

- Number of Channels: 64 Upstream, 2 down
- Number of Modems: 64 Rx Modems + 2 Tx
- Channel BW: 125 KHz Up and 500KHz Down
- RF Power: +20dBm up and +27dBm down (+36 with max antenna gain)
- Half Duplex (Possibility to split band and enable partial full duplex)
- Data rates up-link: 4 (SF7 SF10)
- Data rates down-link: 4 Down (SF7 SF10)

□ Protocol parameters

Asynchronous on all 64 channels

LoRaMAC North America

- ☐ Upstream 64 parallel channels using 125 kHz BW, ADR
- □ Downstream -
 - Unicast on same channel as Upstream
 - Beacon channel for network status and group ACK
 - 8 Wake-Up channels using 500 kHz BW

	EU	NA	China
Number of SX1301	1	8	8
Channels Up	10	64	64
Channels Dn	1	2	2
RX modems	10	64	64
Channel BW Up	125kHz	125kHz	125kHz
Channel BW Dn	125kHz	500kHz	125kHz
TX Power Up	+14dBm	+20dBm(or +30)	+20dBm
TX Power Dn	+14dBm	+27dBm	+20dBm
SF Up	7-12	7-10	7-12
Link Budget Up	155dB	154dB	161dB
Link Budget Dn	155dB	157dB	161dB
Capacity	10-50K nodes	100-300K nodes	100-300K nodes

What is LoRaMac?

- □ LoRa Based
 - LoRaTM is a wireless modulation for long-range low-power low-data-rate applications developed by Semtech.
- □ Protocol
- ☐ MAC Layer of OSI Model
- □ Specification Team: Semtech, IBM, Actility(ThingPark)
- □ Lora Alliance

Feature

- □ Long Range
- ☐ Star network
- □ Low Power
- □ Adaptive Data Rate
- Multi Channels

LoRaMac System Structure

- □ Node
- ☐ Gateway
- □ Server

LoRaMAC - Node

- ☐ Light weight protocol for nodes and server
- ☐ Developed in collaboration with 3rd party
- Semtech provides an open source reference
 - https://github.com/Lora-net
 - IBM provides a commercial implementation of the specification
- ☐ Securely transfer data to the network
 - Two layers of AES128 to provide secure network management and private data
- Maximize battery life
 - Simple Aloha style network
- Provides for two basic classes
 - Class A nodes are typically sensors.
 - Node Wakes up, sends data, sleeps for 1 second, and then wakes for any network traffic, goes back to sleep until next reporting cycle
 - Class B nodes are typically actuators
 - Node wake up at scheduled times and the network uses this opportunity to initiate down stream traffic.
 - As a special case, some nodes may be listening at all times

Device Type

- □ Class A Bi-Directional Active Mode (Released)
- ☐ Class C Enter RX Mode when IDLE (Powered Node) (Un-Released)
- □ Class B Receive periodically. (Beacon) (Developing)
- ☐ Class R Join new Network, keep current one. (Idea)

Class B

Class R

Class C

Future

LoRa MAC - Class A

Custom

LoRa modulation

Frame Formats

- □ Uplink (Sent by node)
- □ Downlink (Sent by gateway) No CRC Filed Make frame short to save band.

Figure 2 LoRa message format

Class A

Adaptive Data Rate

- □ Terminology
 - SF/Date Rate/Output power
- ☐ Gateway sends ADR packet periodically

□ Node decreases data rate if no ACK received for some times.

CCA(空闲信道检测)

- □ ALOHA 算法 (successor :CSMA/CD)
- ☐ Listen before talk
- ☐ Re-transmit with a random delay and channel when collision occur

LoRaMAC - Server

☐ Provides a single network controller

- Concentrators do not administer a subnet
- Concentrators forward packets to server after appending meta data.
- Server forwards data to other back-end servers and application servers

Packets may be forwarded by several GW

- Remove duplicates
- Select best down stream path based on meta data

□ Schedule downstream traffic

 Concentrators have accurate timing in order to transmit messages when nodes are scheduled to be awake

Semtech Class A Network Server Overview SEMTECH

SEMTECH

Overview of elements

□ Network Server

- Keeps a list of the Motes (End Nodes) accepted in network
- Consolidates all Mote messages received via different gateways
- Validation of network authentication
 - Decryption for MAC commands sent to Port 0 (No application message)
- Stores and forwards downstream application data and Mac commands to Mote
- Determines Gateway to use for downstream transmission to Mote

□ Application Server

- Decryption of the Application layer encryption
- Passes decrypted Mote payloads to Customer Server
- Forwards downstream Customer application data to Network Server

□ Customer Server

- Keeps an active list of all Motes in Network.
- Payload data from the Application Server stored it in Customer Database.
- Passes downstream payload data to Application Server for transmission to Mote

□ Network Controller

- Set up the network
- Implement the operator's network rules on ADR
- Receives error messages from the NetApp Server .

Semtech Contribution

□ Using existing LTE Microccell and Macrocell parameters

- Microcell 500m concentrator spacing w/ ~3000 nodes
- Macrocell 1700m concentrator spacing w/ 12000 nodes
- Similar path loss models for dense urban environments
- ☐ Reporting data hourly w/ 32 bytes of data
- **□** 64 channels in 902-928MHz

	LoRa Microcell 1	LoRa Microcell 2	LoRa Macrocell 1	LoRa Macrocell 2
Concentrator spacing	500m	500m	1700m	1700m
Nodes per concentrator	3000	16000	12000	48000
Output Power	10 dBm	10 dBm	19 dBm	19 dBm
Network Utilization (Duty cycle)	1.04%	5.57%	1.67%	6.63%

MicroCell Model - Results 1

- ☐ 500m spacing, 3000 nodes, 32 byte payload, TX =10dBm
- Results: 64 channel network, TX once per hour
 - End nodes not connected (percent): 0.00
 - System Redundancy (# of nodes received vs planned): 8.63
 - Duty cycle per RF Channel : (percent) 1.04

- ☐ 500m spacing, 16000 nodes, 32 byte payload, TX =10dBm
- ☐ Results: 64 channel network, TX once per hour
 - End nodes not connected (percent): 0.00
 - System Redundancy (# of nodes received vs planned): 8.85
 - Duty cycle per RF Channel : (percent) 5.57

MacroCell Model - Results 1

- □ 1732m spacing, 12000 nodes, 32 byte payload, TX =19dBm
- □ Results : 64 channel network. TX once per hour
 - End nodes not connected (percent): 0.00
 - System Redundancy (# of nodes received vs planned): 3.43
 - Duty cycle per RF Channel : (percent) 1.67

MacroCell Model - Results 2

- ☐ 1732m spacing, 48000 nodes, 32 byte payload, TX =19dBm
- □ Results : 64 channel network, TX once per hour
 - End nodes not connected (percent): 0.00
 - System Redundancy (# of nodes received vs planned): 3.39
 - Duty cycle per RF Channel : (percent) 6.63

41

