Control Systems

G V V Sharma*

	Contents			7	Compensators		2
1	Signal Flow Graph		2		7.1	Phase Lead	2
	1.1	Mason's Gain Formula	2		7.2	Lag Lead	2
	1.2	Matrix Formula	2			_	
	1.3	Example	2		7.3	Example	2
2	Bode Plot		2	8	Gain 1	Gain Margin	
	2.1	Introduction	2				3
	2.2	Example	2		8.1	Introduction	3
	2.3	Phase	2		8.2	Example	3
3	Second	order System	2		8.3	Example	3
	3.1	Damping	2				
	3.2	Example	2 2	9	Phace	Margin	3
	3.3	Settling Time	2				
4	Routh	Routh Hurwitz Criterion			9.1	Intoduction	3
	4.1	Routh Array	2 2		9.2	Example	3
	4.2	Marginal Stability	2				
	4.3	Stability	2	10	Oscillator 3		3
	4.4	Example	2	10	Oscilla	ator	3
	4.5	Example	2		10.1	Introduction	3
5	State-Space Model		2		10.2	Example	3
	5.1	Controllability and Observ-					
		ability	2	11	Root 1	Locus	3
	5.2	Second Order System	2		11 1	Turtus divisti su	2
	5.3	Example	2		11.1	Introduction	3
	5.4	Example	2				
	5.5	Example	2				
	5.6	Example		$\frac{2}{2}$ Ab	stract—T	his manual is an introduction to con	trol
	5.7	Example	2	syster	ns based	on GATE problems.Links to sample Pytlable in the text.	
6	Nyquis	t Plot	2	coues	art avall	able in the text.	
	6.1	Introduction	2	Do	Download python codes using		
	6.2	Example	2			-	

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

svn co https://github.com/gadepall/school/trunk/control/codes

1 SIGNAL FLOW GRAPH

- 1.1 Mason's Gain Formula
- 1.2 Matrix Formula
- 1.3 Example

2 Bode Plot

- 2.1 Introduction
- 2.2 Example
- 2.3 Phase

3 SECOND ORDER SYSTEM

- 3.1 Damping
- 3.2 Example
- 3.3 Settling Time

4 ROUTH HURWITZ CRITERION

- 4.1 Routh Array
- 4.2 Marginal Stability
- 4.3 Stability
- 4.4 Example
- 4.5 Example

5 STATE-SPACE MODEL

- 5.1 Controllability and Observability
- 5.2 Second Order System
- 5.3 Example
- 5.4 Example
- 5.5 Example
- 5.6 Example
- 5.7 Example

6 Nyouist Plot

- 6.1 Introduction
- 6.2 Example

7 Compensators

- 7.1 Phase Lead
- 7.2 Lag Lead
- 7.3 Example

A lead Compensator network includes a parallel combination of R and C in feed-forward path. If the transfer function of compensator is

$$G_c(s) = \frac{s+2}{s+4} \tag{7.0.1}$$

, the value of RC is?

And also find the value of RC for a lead compensator used in previous example.

$$G_c(s) = \frac{3(s + \frac{1}{3})}{s + 1} \tag{7.0.2}$$

Solution:

The transfer function for the following circuit is

$$T(s) = \frac{V_o}{V_i} \tag{7.0.3}$$

Let

$$\alpha = \frac{R_2}{R_1 + R_2} \tag{7.0.4}$$

and

$$\tau = R_1 C \tag{7.0.5}$$

Now our T(s) is

$$T(s) = \frac{R_2}{\frac{\frac{1}{sC}R1}{\frac{1}{cc}+R1} + R2}$$
 (7.0.6)

Simplifying T(s)

$$T(s) = \frac{s + \frac{1}{\tau}}{s + \frac{1}{\tau \alpha}}$$
 (7.0.7)

Comparing with the given

$$G_c(s) = \frac{s+2}{s+4}$$

$$\tau = R_1 C = 0.5 \tag{7.0.8}$$

for

$$T(s) = \frac{3(s + \frac{1}{3})}{s + 1} \tag{7.0.9}$$

here this is a lead compensator with a gain of 3. so we can simply write passive circuit part as.

$$T(s) = \frac{\left(s + \frac{1}{3}\right)}{s + 1} \tag{7.0.10}$$

again by comparing with

$$T(s) = \frac{s + \frac{1}{\tau}}{s + \frac{1}{\tau\alpha}}$$
 (7.0.11)

$$\tau = 3 \tag{7.0.12}$$

$$RC = 3$$
 (7.0.13)

8 Gain Margin

- 8.1 Introduction
- 8.2 Example
- 8.3 Example
- 9 Phase Margin
- 9.1 Intoduction
- 9.2 Example
- 10 OSCILLATOR
- 10.1 Introduction
- 10.2 Example
- 11 Root Locus
- 11.1 Introduction