Operações Binárias um resumo

Guilherme Philippi

15 de fevereiro de 2021

Apresenta-se nesse texto um compilado de definições e resultados envolvendo os principais conceitos de operações binárias. Tudo que aqui se apresenta fora extraído de [1, 2, 3], principalmente de [3].

1 Operações binárias

Definição 1.1 (Operação binária). Uma operação binária sobre um conjunto S é uma função $*: S \times S \longrightarrow S$.

Exemplo 1.1 (Produto sobre \mathbb{R}). Seja a função $\cdot : \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ tal que $\cdot (x, y) = x \cdot y$, isto é, associa-se a cada par (x, y) de números reais o respectivo produto $x \cdot y$. A função \cdot é a operação binária conhecida como *produto sobre* \mathbb{R} .

Exemplo 1.2 (Composição de funções). O mapa $\circ : \mathcal{F}_{\mathbb{R}} \times \mathcal{F}_{\mathbb{R}} \longrightarrow \mathcal{F}_{\mathbb{R}}$, em que $\mathcal{F}_{\mathbb{R}}$ representa o conjunto das funções de \mathbb{R} em \mathbb{R} , é a operação definida pela composição de funções $\circ (f,g) = f \circ g$ sobre $\mathcal{F}_{\mathbb{R}}$.

Observação 1.1 (Notação de operação). Usaremos a notação *(a,b) = a * b, para simplificar a escrita de propriedades. Também, quando não houver ambiguidade, suprimiremos o simbolo da operação, fazendo a * b = ab.

Exemplo 1.3 (Adição sobre \mathbb{R}). A função $+: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ definida pela soma x + y é a operação de *adição sobre* \mathbb{R} .

Definição 1.2. Para $a, b, c \in S$, uma operação binária * é dita

- Associativa, se (a * b) * c = a * (b * c);
- Comutativa, se a * b = b * a.

Exemplo 1.4 (Multiplicação matricial). Seja $\mathbb{R}^{n\times n}$ o conjunto das matrizes reais quadradas de ordem n. A operação $\times : \mathbb{R}^{n\times n} \times \mathbb{R}^{n\times n} \longrightarrow \mathbb{R}^{n\times n}$ é o produto matricial $\times (M, N) = M \times N$ sobre $\mathbb{R}^{n\times n}$. Sabe-se que essa operação é associativa, visto que $(XY)Z = X(YZ), \ \forall X, Y, Z \in \mathbb{R}^{n\times n}$. Porém, como

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \times \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} = \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix} \neq \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} \times \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 23 & 34 \\ 31 & 46 \end{pmatrix},$$

segue que × não pode ser comutativa.

Exemplo 1.5 (Potência em \mathbb{N}). Seja $f(x,y) = x^y$ a operação de *potenciação sobre* \mathbb{N} . f não é nem associativa,

pois
$$2^{(3^4)} = 2^{81} \neq (2^3)^4 = 2^{12}$$
,

nem comutativa,

pois
$$2^3 = 8 \neq 3^2 = 9$$
.

Exemplo 1.6 (Adição). As adições sobre $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ ou \mathbb{C} são operações tanto associativas quanto comutativas. Deixa-se ao leitor mostrar que isso é verdade.

Proposição 1.1. Seja uma operação associativa dada sobre o conjunto S. Há uma única forma de definir, para todo inteiro n, um produto de n elementos $a_1, \ldots, a_n \in S$ (diremos $[a_1 \cdots a_n]$) com as seguintes propriedades:

- 1. o produto [a₁] de um elemento é o próprio elemento;
- 2. o produto [a₁a₂] de dois elementos é dado pela operação binária;
- 3. para todo inteiro $1 \le i \le n$, $[a_1 \cdots a_n] = [a_1 \cdots a_i][a_{i+1} \cdots a_n]$.

Demonstração. A demonstração dessa proposição é feita por indução em n.

Definição 1.3 (Elemento neutro à esquerda e à direita). Dizemos que $e \in S$ é um elemento neutro à direita para uma operação binária * se e * a = a para todo $a \in S$. Caso a * e = a para todo $a \in S$, diremos que e é um elemento neutro à direita para a operação binária *.

Exemplo 1.7. 0 é o elemento neutro à direita e à esquerda da adição nos naturais, visto que para todo $a \in \mathbb{N}$ a + 0 = a e 0 + a = a.

Definição 1.4 (Elemento neutro). Dizemos que $e \in S$ é um elemento neutro para uma operação binária (ou, também, uma identidade) se ea = ae = a para todo $a \in S$.

Proposição 1.2. O elemento identidade é único.

Demonstração. Se e, e' são identidades, já que e é identidade, então ee' = e' e, como e' é uma identidade, ee' = e. Logo e = e', isto é, a identidade é única.

Exemplo 1.8. Seja a matriz

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
.

Esta matriz é o elemento neutro da operação de multiplicação matricial sobre $\mathbb{R}^{2\times 2}$.

Observação 1.2. Usaremos $\vec{1}$ para representar a identidade multiplicativa e $\vec{0}$ para denotar a aditiva.

Definição 1.5 (Elemento oposto). Seja uma operação binária que possua uma identidade. Um elemento $a \in S$ é chamado *invertível* se há um outro elemento $b \in S$ tal que ab = ba = 1. Desde que b exista, ela é única e a denotaremos por a^{-1} e a chamaremos *inversa de a* (ou *elemento oposto de a*).

Exemplo 1.9. Em \mathbb{R} , 3 é um elemento invertível para a multiplicação, pois

$$\frac{1}{3} \cdot 3 = \vec{1} = 3 \cdot \frac{1}{3}.$$

Porém, 0 não é invertível para essa operação, visto que não existe $n \in \mathbb{R}$ tal que $0 \cdot n = \vec{1} = 1$.

Exemplo 1.10 (Adição matricial). Seja $+: \mathbb{R}^{m \times n} \times \mathbb{R}^{m \times n} \longrightarrow \mathbb{R}^{m \times n}$ a operação de adição matricial para matrizes reais de m linhas e n columas. A matriz $\begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}$ é

invertível para + no $\mathbb{R}^{2\times 2}$ e seu inverso é $\begin{pmatrix} -1 & -2 \\ -3 & -6 \end{pmatrix}$, visto que

$$\begin{pmatrix} -1 & -2 \\ -3 & -6 \end{pmatrix} + \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \vec{0} = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix} + \begin{pmatrix} -1 & -2 \\ -3 & -6 \end{pmatrix}.$$

Proposição 1.3. Se $a,b \in S$ possuem inversa, então a inversa da composição $(ab)^{-1} = b^{-1}a^{-1}$.

Exemplo 1.11. Sejam as funções $f, g \in \mathcal{F}_{\mathbb{R}}$ tal que f(x) = 3x - 1 e $g(x) = \frac{x}{3} + 2$. Como ambas as funções são bijetoras, segue que possuem inversas para a composição de funções dadas por $f^{-1}(x) = \frac{x+1}{3}$ e $g^{-1}(x) = 3x - 6$. Da proposição 1.3,

$$(f \circ g)^{-1} = g^{-1} \circ f^{-1} = g^{-1}(f^{-1}(x)) = g^{-1}(f^{-1}(x)) = 3\frac{x+1}{3} - 6 = x - 5.$$

Observação 1.3 (Notação de potências). Usaremos as seguintes notações:

- $a^n = a^{n-1}a$ é a operação de $a \cdot \cdot \cdot a$ n vezes;
- a^{-n} é a inversa de a^n ;
- $a^0 = \vec{1}$.

Com isso, tem-se que $a^{r+s} = a^r a^s$ e $(a^r)^s = a^{rs}$. (Isso não induz uma notação de fração $\frac{b}{a}$ a menos que seja uma operação comutativa, visto que ba^{-1} pode ser diferente de $a^{-1}b$). Para falar de uma operação aditiva, usaremos -a no lugar de a^{-1} e na no lugar de a^n .

Definição 1.6 (Elemento regular à direita e à esquerda). Dizemos que $e \in S$ é um elemento regular à direita para uma operação binária * se, para todo $x, y \in S$, $e * x = e * y \implies x = y$. Caso $x * e = y * e \implies x = y$ para todo $x, y \in S$, diremos que e é um elemento regular à direita para a operação binária *.

Exemplo 1.12. 3 é regular à direita e à esquerda da adição nos naturais, visto que para todo $x, y \in \mathbb{N}, 3 + x = 3 + y \implies x = y$ e $x + 3 = y + 3 \implies x = y$.

Definição 1.7 (Elemento regular). Dizemos que $e \in S$ é um elemento regular para uma operação binária se for regular tanto à esquerda quanto à direita.

Exemplo 1.13. A matriz $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ é regular para a adição matricial em $\mathbb{R}^{2\times 2}$, pois,

$$\operatorname{se}\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}, \text{ então } \begin{pmatrix} 1+a & 2+b \\ 3+c & 4+d \end{pmatrix} = \begin{pmatrix} 1+a' & 2+b' \\ 3+c' & 4+d' \end{pmatrix},$$

$$\operatorname{donde}\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}.$$

Exemplo 1.14. A matriz $\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$ não é regular para a multiplicação matricial em $\mathbb{R}^{2\times 2}$, pois

$$\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 4 & 6 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix} e \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \neq \begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix}.$$

Proposição 1.4. Seja uma operação * sobre S associativa e que possua o elemento neutro e. Se $s \in S$ é invertível, então s é regular.

Demonstração. Sejam $x, y \in S$ tais que s * x = s * y e x * s = y * s. Como

$$s * x = s * y \implies s^{-1} * (s * x) = s^{-1} * (s * y),$$

pela associatividade,

$$(s^{-1} * s) * x = (s^{-1} * s) * y \Longrightarrow e * x = e * y \Longrightarrow x = y.$$

Analogamente, partindo de x * s = y * s, chega-se que x = y. Portanto, s é regular.

Definição 1.8 (Conjunto dos regulares). Seja * uma operação sobre um conjunto S. O conjunto de todos os elementos regulares de S para a operação * é o conjunto $\mathfrak{R}_*[S]$.

Definição 1.9 (Distributividade à esquerda e à direita). Sejam $*, \cdot$ duas operações sobre um conjunto S. Dizemos que \cdot é distributiva à esquerda relativamente a * se, para todo $a, b, c \in S$

$$a \cdot (b * c) = (a \cdot b) * (a \cdot c).$$

Da mesma forma, quando

$$(b * c) \cdot a = (b \cdot a) * (c \cdot a)$$

dizemos que · é distributiva à direita relativamente a *.

Exemplo 1.15. Em \mathbb{N} , a potênciação é distributiva à direita em realação a multiplicação, isso é, para $x, y, z \in \mathbb{N}$,

$$(x \cdot y)^z = x^z \cdot y^z.$$

No entanto, a potenciação em $\mathbb N$ não é distributiva à esquerda em relação a multiplicação, pois

$$2^{3\cdot 4} \neq 2^3 \cdot 2^4$$

Definição 1.10 (Distributividade). Dizemos que \cdot é distributiva relativamente a * sobre um conjunto S se for distributiva à esquerda e à direita de * em S.

Exemplo 1.16. A multiplicação em \mathbb{Z} é distributiva em relação à adição em \mathbb{Z} , pois, para todo $x, y, z \in \mathbb{Z}$,

$$x \cdot (y+z) = (x \cdot y) + (x \cdot z)$$

Referências

- [1] John B Fraleigh. A First Course in Abstract Algebra. Pearson, 2014.
- [2] Michael Artin. Algebra. A Simon and Schuster Company, 1991.
- [3] GELSON IEZZI and Hygino H DOMINGUES. Álgebra moderna. São Paulo: Atual Editora, 2003.