		OPBITAL MECHANICS																												
	سم	3	4	+1	æ	2	<u>.</u> (લ	417	ricit	¥	ve	elc	حد	Ìs	3	ه	داد	oi	ng.	K	esi	ne	40	s t	· i.	S	NΦ	me	1 F	ઇ
•	the	c	ho	6																										
	DEN	ra	4S7	RA	FT)S	Ж																								
	۲	4	1	P	دده	<u> </u>				و	•	ŋ	E	۲	_i e	حم	e e	l												
		٣	(ı	+€	රු	ე ტ) -	- p		_0	>		r4	- r	e (: S	۔ ح	- (2		re	رم	Ø,	=	P –	۲				
	.	<u>e</u> -	٠٧,	8	r	ر و	(Q /	28 ₁		ρ	-Y																			
		<u> </u>	r ₂		F	> —	ĸ																							
		e	۰ <u>۲</u>	`i -	<u>e</u>	۰۲	ì 	7	ß	٧	(ı —	. p -	ŧVε																	
			و	٥	د (۲	Z	<u>-Y</u>	1)	3	Y	٤ -	. r,					(3	, 4	1)											
						c						C		1														1/2		
									6]	ru	·e	a	lor	g .	_₽		<u> </u>	<u>' '</u> :		nui	ר ע	ec	Lογ	- [[1 +	nc	(dire	ΉO	iu.
	of		tm		ho	bro																								
												7 -	rz.	-უ																
						K		+	<u>၂</u> ၀																					
							rz					7																		
							6			/		•														٨				
									f	_																<u>ر</u> اا				
	<u>e</u>		lo	o 4	م	င	w	H	d		ρĽ	م مُ و	e(f	, 70U		d	اهر	مر	<u> </u>	ch	rd)		(<u>e</u>	0	<u>Y2</u>	<u>-Y</u>	<u> </u>			
	L	ær		هو		<u>:</u> }	- /	3	9	<u>'</u>	ا پ	0 1	b			۲2.	_r,		J								7			
								-		6							١													_
		=6	,	loc	LD.	of	tl	u	ود	a	tri	cit	φ	vc	h	r (S	و	str	ന്	W	. (, Vi	ıe		L	-	, +	لو	
					Na															1										
					ا ۲۰۰۸																									\dashv

Demoustration Cet's use Kepler equation to describe Dt [μ (tz-ti)= Q3/2 [Ez-E1-e(sin Ez-sin E1)] (3.44) EI, Ez one whowe eccurric oumories ne times only the difference between the This ouardin 0,02 untuour 0=0 E,Ez we know ouly (10-02-01) Note Kepler epudriou: initial volve problem company consider : pourque problem (3.46) Ep = 1/2 (E1+E2) $Em = \frac{1}{2} (E_1 - E_2) > 0$ (3.47) (et 5 use (2.4) r=@(1-econ E) we get r, +re = a (z-e (coog + conez)) (3.68) PECALL $\cos \alpha + \cos \beta = 2\cos\left[\frac{1}{2}(x+\beta)\right]\cos\left[\frac{1}{2}(x-\beta)\right]$ in es (3.48) prostafersis formulas r1+r2 = a(2-c(2 cool((=1+62) cos[1/(=- =1)] 1, + 12 = ZR (I-e coo Ep coo Em) (3.43)

The chard case be obtained oung the contenian coordinates with the origin @ content of ellipse of y = bsinE (3.50) b= a 1-e2 the chord can be written or c2 = (x2-x1) + (y2-y1)2 P. (x, y,) confesion coordinates wit the center P2 (x2, y2) c? - 03 (cos Ez - cos Ez) + (x-e2) 02 (sin Ez - sin E1)2 CON-COOP = Zeunt Peint P Recall peontoferin formula $sinx - sin\beta = 2 \cos x + \beta \sin x - \beta$ c2 - 22 (2sin Epsin Em) + (1-6) 22 (2cos Epsin Em) c? - 0245in2 Em [Su2Ep+ (1-e2) 0002Ep] c2 = 402 8in3 Em [1 - coo3 Ep + coox Ep - e2 coo2 Ep] CZ = 4028in2 Em [1 - e2coszep] suplest folm of c we con jutroduce author change of variable -s it is allowed becomes e<1 cosξ= e cos Gp c2 = 4 = 2 sw Em [1 - cos] 2 = 42 sim2 Em sin2 }

C = za sir Em sin § (3.52) cheful knowge of Eq (3.43) can be written on voicell, me ore t, + vz = ca (1-ecos Epastu) getting vid of e 1- 1- 1- 2= 28 (1- con & coo Em) (3.53) eart douge of voichler (3.54)x = 5+ Em G. 5s) B = 5-Em ect's combre the expression of cond r, + r2 to compte \bigoplus $C + V_1 + V_2$ B rz+rz-c (3.53) + Eq (3.52) VI+rz+C = Za (sinEm slus + 1 - cos Emcoss) V1 + V2 + C = 20 (5m + 3) cos(x+B) = coskOsB = sin xsinB r1+r2+c = 20 (1-coo x) 1,+12+c= 40 din 2 (3.56)

Pecall
$$\sin^2 \frac{\pi}{2} = \frac{1-\cos x}{2}$$
 $1-\cos x - 2\sin^2 \frac{x}{2}$

(B) E_{\uparrow} (3.53) - E_{\uparrow} (3.52)

 $r_1+r_2-c=z\alpha\left(1-\cos(\varepsilon_m-5)\right)$
 $r_1+r_2-c=z\alpha\left(1-\cos(\varepsilon_m-5)\right)$
 $F_1+r_2-c=z\alpha\left(1-\cos\beta\right)$
 $r_1+r_2-c=z\alpha(1-\cos\beta)$
 $r_1+r_2-c=z\alpha(1-\cos\beta)$

Let's unite E_{\uparrow} (3.45) so function of E_{\downarrow} and E_{\uparrow} (3.57)

Let's unite E_{\uparrow} (3.45) so function of E_{\downarrow} (3.57)

Cossisting that

 E_{\downarrow} (5.57)

 E_{\downarrow} (5.58)

 E_{\downarrow} (5.58)

$$\sqrt{\mu} \left(t_2 - t_1 \right) = za^{\frac{3}{2}} \left(\exists u_1 - \cos \xi \sin \xi m \right)$$

$$but a and \beta \qquad = \int t \xi m$$

$$\beta = \xi - \xi m$$

$$\alpha - \beta = z \xi m \qquad \beta m = \frac{\alpha - \beta}{2} \quad (3.58)$$

$$\alpha + \beta = z \xi \qquad \beta \qquad \xi = \frac{\alpha + \beta}{2} \quad (3.58)$$
we get
$$\sqrt{\mu} \left(t_2 - t_1 \right) = a^{\frac{3}{2}} \left(\alpha - \beta - z \cos \frac{\alpha + \beta}{2} \sin \alpha - \beta \right)$$

$$\sin \alpha - \sin \beta$$

$$\sqrt{\mu} \left(t_2 - t_1 \right) = a^{\frac{3}{2}} \left[\alpha - \beta - (\sin \alpha - \sin \beta) \right] \quad (3.69)$$

$$\cos \beta = \frac{3}{2} \sin \alpha \qquad \beta \qquad (3.69)$$

$$\cos \beta = \cos \beta \qquad \cos \beta \qquad \cos \beta \qquad (4 - \alpha) = 0$$

$$\cos \beta = \cos \beta \qquad \cos$$

Sing =
$$\frac{r_1 + r_2 - c}{4a}$$
 (3.61) $\frac{r_2}{4a}$ (3.62) if inserted in the Coubert's equation (3.61) end (3.62) if inserted in the Coubert's equation (3.60) proves the Loubert's theorem.

(3.61) — $\alpha = \frac{r_1}{4a}$ ($\alpha = \frac{r_1}{4a}$)

(3.60) — $\alpha = \frac{r_2}{4a}$ ($\alpha = \frac{r_1}{4a}$)

(3.60) — $\alpha = \frac{r_2}{4a}$ ($\alpha = \frac{r_1}{4a}$)

(3.60) — $\alpha = \frac{r_2}{4a}$ ($\alpha = \frac{r_1}{4a}$)

(3.61) $\alpha = \frac{r_2}{4a}$ ($\alpha = \frac{r_1}{4a}$)

(3.62) prove that $\alpha = \frac{r_2}{4a}$ ($\alpha = \frac{r_1}{4a}$)

(3.62) $\alpha = \frac{r_2}{4a}$ ($\alpha = \frac{r_1}{4a}$)

(3.63) — $\alpha = \frac{r_2}{4a}$ ($\alpha = \frac{r_1}{4a}$)

(3.64) $\alpha = \frac{r_2}{4a}$ ($\alpha = \frac{r_1}{4a}$)

(3.65) — $\alpha = \frac{r_2}{4a}$ ($\alpha = \frac{r_1}{4a}$)

(3.66) — $\alpha = \frac{r_2}{4a}$ ($\alpha = \frac{r_1}{4a}$)

(3.67) — $\alpha = \frac{r_2}{4a}$ ($\alpha = \frac{r_1}{4a}$)

(3.68) if inserted in the constant $\alpha = \frac{r_1}{4a}$ ($\alpha = \frac{r_1}{4a}$)

(3.69) — $\alpha = \frac{r_1}{4a}$ ($\alpha = \frac{r_1}{4a}$)

(3.60) — $\alpha = \frac{r_1}{4a}$ ($\alpha = \frac{r_1}{4a}$)

(3.61) • $\alpha = \frac{r_1}{4a}$ ($\alpha = \frac{r_1}{4a}$)

(3.62) if inserted in the constant $\alpha = \frac{r_1}{4a}$ ($\alpha = \frac{r_1}{4a}$)

(3.61) • $\alpha = \frac{r_1}{4a}$ ($\alpha = \frac{r_1}{4a}$)

(3.62) if inserted in the constant $\alpha = \frac{r_1}{4a}$ ($\alpha = \frac{r_1}{4a}$)

