Belief Networks V = Sci of variables $V = Sci of variables $ $V = S$	Belief Networks $V = Sch of Variables V = Sch of Variables (School School Sch$	2 16: Recap and Learning Conjunctions		_			
Rectansho $S = \{1, 1, 1, 1, 1\}$ Rectansho $S = \{1, 1, 1, 1, 1\}$ Rectansho $S = \{1, 1, 1, 1, 1\}$ Rectansho $S = \{1, 1, 1, 1, 1, 1\}$ Rectansho $S = \{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1$	Rectansho $S = \{x, x_1, x_2, x_3\}$ Rectansho $S = \{x, x_1, x_2, x_3\}$ Rectansho $S = \{x, x_2, x_3, x_4\}$ Rectansho $S = \{x, x_4, x_4, x_4\}$ Rectansho $S = \{x, x_4, x_4\}$ Rectansho $S = \{x, x_4, x_4\}$ Rec	$V = Set$ of variation $G(v_2 \in E)$: directed anythic years	$Z = \sum_{\alpha \in G_{\alpha}} T_{\alpha}(\alpha \alpha \alpha)$ Intersece Algorithm $P(x, x_{\alpha}, x_{\alpha}, x_{\alpha})$ Graph in like a free	- Markov Chain Monte Caplo - Contract Markov Chain st the sharmony dist. Is have as the dut we want to sample form - Ising Model	- N in put space Y output space P on N C unknown) S = E(xi, yi) 3 m Xi - 110 7100 for P - Jypothonia class H - Realizable Case Yi = F(xi) FEH	P[h(x) + y] Note to the property of the content compute - Sample Ensur (Engine) Ly (th) = ti : h (x) + y; } A sandom variable, We can compute	Sample Complexity How large should S b for achievin, CE, 87-PA guarantee? For Finite Hapathesis Cla
- VCdin (H) = d The (n):= frax H s) The	- VCdin (H) = d - VCdin (H) = d - It there a set of size d that is shattered - no set of size d - start $x_1 \wedge 7x_1 \wedge 3x_2 \wedge 7x_2$ - start $x_1 \wedge 7x_1 \wedge 3x_2 \wedge 7x_2$ - start $x_1 \wedge 7x_1 \wedge 3x_2 \wedge 7x_2$ - start $x_1 \wedge 7x_1 \wedge 3x_2 \wedge 7x_2$ - start $x_1 \wedge 7x_1 \wedge 3x_2 \wedge 7x_2$ - start $x_1 \wedge 7x_1 \wedge 3x_2 \wedge 7x_2$ - start $x_1 \wedge 7x_1 \wedge 3x_2 \wedge 7x_2$ - start $x_1 \wedge 7x_1 \wedge 3x_2 \wedge 7x_2$ - start $x_1 \wedge 7x_1 \wedge 3x_2 \wedge 7x_2$ - start $x_1 \wedge 7x_1 \wedge 3x_2 \wedge 7x_2$ - start $x_1 \wedge 7x_1 \wedge 3x_2 \wedge 7x_2 \wedge 7x_2$ - start $x_1 \wedge 7x_1 \wedge 3x_2 \wedge 7x_2 \wedge 7x_2 \wedge 7x_2 \wedge 7x_2$ - start $x_1 \wedge 7x_1 \wedge 3x_2 \wedge 7x_2 \wedge$	- Output smallest neckangles fith, positive examples VC dimension - Shatterias' A set 5 of min	24 - Rect - 4 - Hygenplanes n+1 - Savon-Shelah Lenne.	$X = \{0,1\}^n$ $Y = \{0,1\}$ $H = \{0,1\}^n$ $Y = \{0,1\}$ $H = \{0,1\}^n$ $\{0,1\}^n$ $\{1,1\}^n$	- too each the 1111111 1 example 111 0000 0 - find all literate 111 1000 1 1 that eval to 0 10110011 0 - servored all such literate.	Minimizes Demple and $E = R_n \left[l(a) = 0 \text{ and } g(a) = \overline{l} \right]$ (Suppose for all the literals of $R_n \left[l(a) = 0 \text{ and } g(a) = \overline{l} \right] \leq \frac{\varepsilon}{2n}$ $E = \frac{\varepsilon}{2n} \times \frac{\varepsilon}{2n} \leq \varepsilon$ Suppose there is literal l in l	$ \begin{array}{c} $
		- VCdin (it) = d -it there a set of size d that is shattened - no set of size d+1 is	Ty (n):= hax [H1s]	124 = 3m+) f. 2019 - 2019 Alsonithm:	- literals in $h \ge literals$ in g - $l_p(h) = P_p(h_{avp} + g(a))$ = $l_p(h_{avp} + g(a))$ = $l_p(h_{avp} + g(a))$	What is the probability that Poll in t) = (1- = m)	Runnis time = m