Claims

- 1. (Currently Amended) A thermoelectric power source comprising:
- a flexible substrate having an upper surface; and
- a plurality of thermoelectric couples with the thermoelectric couples comprising:
- (a) a sputter deposited thin film p-type thermoelement positioned on the upper surface of the flexible substrate;
- (b) a sputter deposited thin film n-type thermoelement positioned on the upper surface of the flexible substrate adjacent the p-type thermoelement;
- (c) an electrically conductive member positioned on the flexible substrate, and electrically connecting the first end of the p-type thermoelement with the second end of the n-type thermoelement, wherein the p-type or the n-type thermoelements comprise $\operatorname{Bi}_x\operatorname{Te}_y$, $\operatorname{Sb}_x\operatorname{Te}_y$, or $\operatorname{Bi}_x\operatorname{Se}_y$ wherein \underline{x} and \underline{y} form a non-stoichiometric compound and \underline{x} is about 2 and \underline{y} is about 3; and

wherein the thermoelectric couples are formed on a single substrate and the flexible substrate is in a coil configuration or an accordion configuration.

(,
a flexible substrate having an upper surface; and
a plurality of thermoelectric couples with the thermoelectric couples comprising:
(a) a sputter deposited thin film p-type thermoelement positioned on the upper
surface of the flexible substrate:

(Currently Amended) AThe thermoelectric power source of claim 1 comprising:

- (b) a sputter deposited thin film n-type thermoelement positioned on the upper surface of the flexible substrate adjacent the p-type thermoelement;
- (c) an electrically conductive member positioned on the flexible substrate, and electrically connecting the first end of the p-type thermoelement with the second end of the n-type thermoelement, wherein the p-type or the n-type thermoelements comprise Bi₂Te₂, Sb₂Te₂, or Bi₂Se₂ wherein and x is about 2 and y is about 3;
- wherein the thermoelectric couples are formed on a single substrate and the flexible substrate is in a coil configuration or an accordion configuration; and

wherein the p-type or the n-type thermoelements have L/A ratios greater than about $\underline{500}$ $\underline{20}$ cm⁻¹.

 (Original) The thermoelectric power source of claim 1 wherein the p-type or the ntype thermoelements have L/A ratios greater than about 400 1000 cm⁻¹.

4. (Canceled)

- 5. (Previously presented) The thermoelectric power source of claim 1 wherein the thermoelectric power source has a power output of at least about 1 μ W with a voltage of at least about 0.25 volt
- 6. (Previously presented) The thermoelectric power source of claim 1 further comprising at least about 50 thermoelectric couples, wherein the thermoelectric power source has a power output of at least about 1 µW with a voltage of at least about 0.25 volt.
- (Original) The thermoelectric power source of claim 6 wherein the p-type or the ntype thermoelements are at least about 1 mm in length and at least about 0.1 mm in width.
- (Original) The thermoelectric power source of claim 6 wherein the p-type or the ntype thermoelements are at least about 20 angstroms in thickness.
- 9. (Original) The thermoelectric power source of claim 1 further comprising at least about 1000 thermoelectric couples, wherein the thermoelectric power source has a power output of about 1 W with a voltage of at least about 1 volt.
- 10. (Previously presented) The thermoelectric power source of claim 1 wherein the p-type thermoelements each have a first width, the n-type thermoelements each have a second width, and the first width is different from the second width.
- 11. (Original) The thermoelectric power source of claim 1 wherein two or more p-type thermoelements are positioned and electrically connected in parallel with one another and the

parallel positioned p-type thermoelements are electrically connected in series to n-type thermoelements.

- 12. (Previously presented) The thermoelectric power source of claim 1 wherein the thin film p-type thermoelement and/or the thin film n-type thermoelement are co-sputter deposited thin films comprising Bi_xTe_y, Sb_xTe_y, or Bi_xSe_y wherein x is about 2 and y is about 3.
- 13. (Original) The thermoelectric power source of claim 1 wherein the volume of the thermoelectric power source is less than about $10~\rm cm^3$ and has a power output of from about $1~\mu W$ to about 1~W.
- 14. (Original) The thermoelectric power source of claim 1 wherein the volume of the thermoelectric power source is less than about 10 cm³ and provides voltages of greater than about 1 volt.
- 15. (Original) The thermoelectric power source of claim 14 wherein the thermoelectric power source produces power at temperature differences of about 20°C or less.
- 16. (Original) The thermoelectric power source of claim 1 wherein two or more n-type thermoelements are positioned and electrically connected in parallel with one another and the parallel positioned n-type thermoelements are electrically connected in series to p-type thermoelements.
- 17. (Original) The thermoelectric power source of claim 1 wherein the n-type thermoelements are substantially free of selenium.
- 18. (Original) The thermoelectric power source of claim 1 wherein the flexible substrate is a polyimide.

Claims 19 - 22 (Canceled)

23. (Currently Amended) A thermoelectric power source comprising:

a flexible substrate having an upper surface;

multiple thermocouples electrically connected to one another on the an upper surface of a single flexible substrate, the thermocouples comprising:

sputter deposited thin film p-type thermoelements $\underline{\text{having thicknesses of 0.1 mm}}$ or greater:

sputter deposited thin film n-type thermoelements alternatingly positioned adjacent the p-type thermoelements, the n-type thermoelements having a thickness of about 0.1 mm or greater;

wherein the thermoelectric power source has a volume of less than about $10~\text{cm}^3$ and has a power output of from about $1~\mu\text{W}$ to about 1~W generated by the thermocouples on the single flexible substrate; and

wherein the p-type thermoelements or the n-type thermoelements comprise a $Bi_x Te_y$, $Sb_x Te_y$, or $Bi_x Se_y$ alloy where x is about 2 and y is about 3.

- 24. (Previously presented) The thermoelectric device of claim 23 wherein said multiple thermocouples electrically connected to one another are in series-parallel.
- 25. (Currently Amended) The thermoelectric power source of claim 23 wherein the p-type thermoelements have L/A ratios greater than about 20 500 cm⁻¹.

Claims 26 - 36 (Canceled)

- 37. (Currently Amended) A thermoelectric power source comprising:
- a flexible substrate having an upper surface; and
- a thermoelectric couple comprising:
- (a) a sputter co-sputter deposited alternating thin film p-type and n-type thermoelements positioned on the upper surface of the flexible substrate;
- (b) a sputter deposited thin film n-type thermoelement positioned on the upper surface of the flexible substrate adjacent the n-type thermoelement; and

Page 5 of 15

- (be) an electrically conductive member positioned on the flexible substrate, and electrically connecting the a first end of the p-type thermoelement with the a second end of the n-type thermoelement, wherein the p-type or the n-type thermoelements comprise Bi_xTe_y where x is about 2 and y is about 3; and
 - (cd) wherein the flexible substrate is in a coil configuration.
- 38. (Previously presented) The thermoelectric power source of claim 37 wherein the ptype thermoelements or the n-type thermoelements are at least about 1 mm in length and at least about 0.1 mm in width.
- 39. (Previously presented) The thermoelectric power source of claim 37 wherein the volume of the thermoelectric power source is less than about 10 cm³ and has a power output of from about 1 µW to about 1 W.

Page 6 of 15