

CASE STUDY: PREDATOR PREY SYSTEM

MODELLING AND SIMULATION GRUPPE 5

Christoph Hämmerle Philipp Ganiu Jennifer Lumetzberger

Introduction

- Population model: deer (x) + foxes (y)
- Different approaches:
- Difference Equation Model
- Cellular Automata

Difference Equation Model

$$x(n + 1) = x(n) + h * [x(n) * \alpha * (M - x(n) - y(n)) - x(n)*y(n)*\beta]$$

$$y(n + 1) = y(n) + h * [y(n) * (\delta * x(n) - \gamma]$$

- α...deer growth
- β...deer reduction
- γ... fox reduction due to starving
- \bullet δ ... fresh meat increase

Difference Equation Model

Difference Equation Model

Cellular Automata

- Rectangular forest
- 3 states (0-empty, 1-fox, 2-deer)
- Matrix update each month

Cellular Automata

- If cell empty \rightarrow choose one random neighbor and check if cell is prey. If yes \rightarrow the initial cell becomes prey with probability p₁.
- If cell is prey \rightarrow choose one random neighbor and check if cell is predator. If yes \rightarrow the neighbor eats up the prey and the cell becomes predator with probability p₂.
- If cell is predator \rightarrow the predator dies with probability p₃.

Live Demo

Thank you for your attention!