Master of Computer Application Scheme (2024-2026)

			MCA SEM-I Syllabus							
Sr No	Category	Course Code	Subject	L	Т	P	CA	ESE	Total	Credit
1	PCC	MC1T001	Data Structures & Algorithms	4	0	0	40	60	100	4
2	PCC	MC1T002	Object Oriented Programming using JAVA	3	0	0	40	60	100	3
3	PCC	MC1T003	Operating System	3	0	0	40	60	100	3
4	PCC	MC1T004	Discrete Mathematics & Graph Theory	3	0	0	40	60	100	3
5	AEC	MC1A005	Computer Architecture & Organization	3	0	0	40	60	100	3
6	PCC	MC1L006	Data Structures & Algorithms LAB	0	0	4	60	40	100	2
7	PCC	MC1L007	Object Oriented Programming using JAVA LAB	0	0	4	60	40	100	2
8	PCC	MC1L008	Web Development LAB	0	0	4	60	40	100	2
			Total	16	0	12	380	420	800	22

Semester	Course Code	Name of the course	L	Т	P	Credits
I	MC1T001	Data Structure & Algorithm	4	0	0	4

Marks Distribution					
CA	MSE	ESE	Total		
40	-	60	100		

Prereq	Prerequisites for the course			
1	Basic understanding of programming concepts.			

Prior I	Prior Reading Material/useful links				
1	Data Structures and Algorithm Analysis by Mark Allen Weiss.				
2	2 https://www.geeksforgeeks.org/data-structures/				

	Course Objectives				
Sr No	Statement				
1	Introduce the fundamental concepts of data structures and algorithms.				
2	Understand and analyze the time and space complexity of algorithms.				
3	3 Learn and implement various data structures such as arrays, stacks, queues, linked				
	lists, trees, and graphs.				
4	Apply algorithms for sorting, searching, and hashing.				
5	5 Develop problem-solving skills through the application of data structures and				
	algorithms.				

	Course Outcomes						
Sr No	Code	CO statement					
1	CO1	Understand and Analyze the Efficiency of Algorithms					
2	CO2	Implement and Evaluate Hashing Techniques					
3	CO3	Develop and Compare Searching and Sorting Algorithms					
4	CO4	Develop and Compare Searching and Sorting Algorithms					
5	CO5	Analyze and Implement Tree and Graph Algorithms					

Unit	Course Contents	Duration
No		
	Complexity Analysis and Hashing	6 hours
	Complexity Analysis: Time and space complexity, asymptotic	
	notations (Big O, Theta, Omega).	
I	Efficient Algorithms: Importance and performance measurement.	
	Hashing: Implementation of dictionaries, hash functions, handling	
	collisions, open addressing, and analysis of search operations.	

	Arrays, Searching, and Sorting	7 hours
п	Arrays: Abstract Data Type (ADT). Searching: Linear and binary search on sorted arrays. Sorting: Bubble sort, insertion sort, merge sort, radix sort, bucket sort, and comparison-based sorting models.	
	Stacks and Queues	7 hours
ш	Stacks and Queues: Abstract data types, sequential and linked implementations. Applications: Parenthesis matching, Towers of Hanoi, path finding in a maze, queue simulations, and equivalence problems.	
	Linked Lists	8 hours
IV	Linked Lists: ADT, sequential and linked representations. Operations: Insertion, deletion, and search in sequential and linked lists. Advanced Types: Doubly linked lists, circular lists, skip lists, and their applications in sorting (bin sort, radix sort) and sparse tables.	
v	Trees and Graphs (8 hours) Trees: Rooted trees, binary search trees, spanning trees, minimal spanning trees (Kruskal's and Prim's algorithms). Binary Trees: Properties, traversal methods (in-order, pre-order, post-order), heaps, heap operations, heap sort, Huffman coding, and leftist trees.	8 hours
	Graphs: Graph representations, traversal techniques (BFS, DFS), and applications including minimum spanning trees.	

		Text Books		
		Author Name		Edition/
Code	Title of the Book	/Designation /	Publisher	Publication
		Organization		Year
	Introduction to	Thomas H. Cormen,	MIT Press	3rd Edition,
T1	Algorithms	Charles E. Leiserson,		2009.
		Ronald L. Rivest, and		
		Clifford Stein		
	Data Structures Using	Reema Thareja	Oxford	Second
T2	C	_	University	Edition 2011
			Press	

	Reference Books					
Code	Title of the Book	Author Name/Designation/ Organization	Publisher	Edition/ Publication Year		
R1	Data Structures: A	Richard F. Gilberg and	A. Forouzan	3rd Edition,		
	Pseudo code	Behrouz	Cengage	2014.		
	Approach		Learning			
R2	The Art of Computer	Donald E. Knuth	Addison-Wesley			
	Programming					

	Useful Links					
1	https://www.geeksforgeeks.org/data-structures/					
2	https://www.coursera.org/specializations/data-structures-algorithms					
3	https://ocw.mit.edu/courses/6-006-introduction-to-algorithms-spring-2020/					

Semester	Course Code	Name of the course	L	T	P	Credits
I	MC1T002	Object Oriented Programming using JAVA	4	-	-	4

Marks Distribution				
CA	MSE	ESE	Total	
40	-	60	100	

Prerequisites for the course		
1	1 Basic understanding of programming concepts and fundamentals	
2	Basic Knowledge of Computer & Algorithms	

Prior Reading Material/useful links				
1	http://www.coursera.org/projects/java-beginners-getting-started-			
2	http://www.udemy.com/course/mastering-object-oriented-design-in-java/			
3	https://www.udemy.com/course/oop-learnit/			

	Course Objectives				
Sr No	Statement				
1	To introduce the basic concepts of Object-Oriented Programming (OOP).				
2	2 To understand the fundamentals of Java and its application in internet programming.				
3	 To learn about Java data types, operators, and decision-making constructs. To explore the concepts of classes, objects, inheritance, and polymorphism in Java. 				
4					
5	5 To gain knowledge on handling exceptions and multithreading in Java programming.				

	Course Outcomes				
Sr No	Sr No Code CO statement				
1	CO1	Use the syntax and semantics of java programming language and basic concepts of OOP.			
2	CO2	Develop reusable programs using the concepts of inheritance, polymorphism, interfaces and packages.			
3	CO3	Proposed the use of certain technologies by implementing them in the Java			
	programming language to solve the given problem				
4	CO4	Apply the concepts of Multithreading and Exception handling to develop			
	efficient and error free codes.				
5	CO5	Evaluate user requirements for software functionality required to decide whether the Java programming language can meet user requirements			

Unit No	Course Contents	Duration
I	Basics of OOP: Abstraction, Inheritance, Encapsulation, Classes, subclasses and super classes, Polymorphism and Overloading, message communication Procedure-Oriented vs. Object-Oriented Programming concept. Introduction to Java Programming: Basics of Java, Background/History of Java, Java and the Internet, Advantages of Java, Java Virtual Machine & Byte Code, Java Environment Setup, Java Program Structure	
II	Primitive Data Types: Integers, Floating Point type, Characters, Booleans, User Defined Data Type, Identifiers &Literals, Declarations	
Ш	Class: Defining classes, fields and methods, creating objects, accessing rules, this keyword, static keyword, method overloading, final keyword Constructors: Default constructors, Parameterized constructors, copy constructors, Passing object as a parameter, constructor overloading	7 hours
IV	Basics of Inheritance: Inheritance, Types of inheritance: single, multiple, multilevel, hierarchical and hybrid inheritance, concepts of method overriding, extending class, super class, Abstract Class Package: Creating package, importing package, access rules for packages, class hiding rules in a package, defining interface, inheritance on interfaces, implementing interface, multiple inheritance using interface	8 hours
V	Exception Handling: Introduction, built in classes for Exception Handling, Mechanism of Exception Handling in Java, Error Handling	

	Text Books					
Code	Title of the Book	Author Name/Designation / Organization	Publisher	Edition/ Publication Year		
T1	"Java: The Complete Reference"	Herbert Schildt	McGraw-Hill	11th Edition/2018		
T2	Effective Java	Joshua Bloch	Addison- Wesley	3rd Edition/2018		

	Reference Books					
Code Title of the Book		Author Name/Designation/ Organization	Publisher	Edition/ Publication Year		
R1	Head First Java	Kathy Sierra, Bert Bates	O'Reilly Media	2nd Edition/2005		
R2	Java: How to Program	Paul Deitel, Harvey Deitel	Pearson	11th Edition/2017		

	Useful Links				
1	https://docs.oracle.com/javase/tutorial/				
2	https://www.w3schools.com/java/				
3	https://www.geeksforgeeks.org/java/				

Semester	Course Code	Name of the course	L	T	P	Credits
I	MC1T003	Operating Systems	3			4

Marks Distribution				
CA	MSE	ESE	Total	
	40	60	100	

Prereq	Prerequisites for the course			
1	Basic understanding of Computer Architecture			
2	Knowledge of Programming in C/C++			

Prior I	Prior Reading Material/useful links	
1	https://www.os-book.com/	
2	https://www.tutorialspoint.com/operating_system/index.htm	

	Course Objectives				
Sr No	Sr No Statement				
1	To understand the fundamental concepts and components of operating systems.				
2	To learn process management, including scheduling, synchronization, and deadlock				
	handling.				
3	To explore various memory management techniques, including paging and				
	segmentation.				
4	To study file systems and I/O management techniques.				
5	To understand security, protection, and advanced OS topics like virtualization and				
	cloud OS.				

	Course Outcomes					
Sr No	Sr No Code CO statement					
1	CO1	Explain the structure and functions of an operating system.				
2	CO2	Apply process scheduling and synchronization techniques.				
3	CO3	Analyze memory management techniques like paging and segmentation.				
4	CO4	Evaluate file systems and I/O management techniques.				
5	CO5	Design security mechanisms and explore advanced topics in OS.				

Unit	Course Contents					
No						
_	Introduction to Operating Systems: Overview, OS Structure, OS					
I						
	sharing, Real-time, Distributed, Parallel and Embedded Systems.					
	Process Management: Process Concept, Process Scheduling,					
	Operations on Processes, Inter-process Communication, Threads,					
II	Multithreading Models, CPU Scheduling Algorithms, Process	7 hours				
	Synchronization, Critical Section Problem, Semaphores, Deadlocks –					
	Avoidance, Prevention, and Recovery.					
	Memory Management: Memory Management Strategies, Contiguous					
III and Non-Contiguous Allocation, Paging, Segmentation, Virtual						
	Memory, Demand Paging, Page Replacement Algorithms, Allocation					
	of Frames, Thrashing.					
	File Systems and I/O Management: File Concept, Access Methods,					
	Directory Structure, File System Mounting, File Sharing, Protection,					
IV	Implementing File Systems, File-System Structure, Directory	•				
	Implementation, Allocation Methods, Free-Space Management, Disk					
	Structure, Disk Scheduling, Disk Management, Swap-Space					
	Management.					
	Security and Advanced Topics: Protection, Security, Authentication,					
\mathbf{v}	Encryption, OS Security, Case Studies of Unix/Linux, Windows,					
	Virtualization, Cloud OS Concepts, Virtual Machines.					

	Text Books					
Code	Title of the Book	Author Name /Designation / Organization	Publisher	Edition/ Publication Year		
T1	Operating System Concepts	Silberschatz, Galvin, Gagne	Wiley	9th Edition, 2018		
T2	Modern Operating Systems	Andrew S. Tanenbaum	Pearson Education	4th Edition, 2015		

	Reference Books				
Code	Title of the Book	Author Name/Designation/ Organization	Publisher	Edition/ Publication Year	
	Operating Systems: A Concept-Based	D.M. Dhamdhere	McGraw Hill	3rd Edition, 2012	

Approach			
Operating Systems and Middleware	Max Hailperin	Pearson Education	1st Edition, 2006

	Useful Links		
1	https://www.geeksforgeeks.org/operating-systems/		
2	https://www.youtube.com/watch?v=mXw9ruZaxzQ		
3	https://prepinsta.com/operating-systems/		

Semester	Course Code	Name of the course	L	T	P	Credits
I	MC1T004	Discrete Mathematics & Graph	3	-	-	3
		Theory				

Marks Distribution				
CA	MSE	ESE	Total	
40	-	60	100	

Prereq	Prerequisites for the course		
1	Knowledge of high school level arithmetic and algebra.		
2	Good understanding of elementary algebra and arithmetic.		

Prior 1	Prior Reading Material/useful links		
1	http://www.javatpoint.com/discrete-mathematics-tutorial		
2	http://www.geeksforgeeks.org/discrete-mathematics-tutorial/		

	Course Objectives		
Sr No	Statement		
1	Introduce the basic concepts of sets, logic, functions, and relations, providing		
	foundational knowledge for advanced topics in computer science and mathematics.		
2	Equip students with the skills to apply propositional and predicate logic, along with		
	mathematical induction, to solve mathematical problems and verify the correctness		
	of arguments.		
3	Teach the fundamental concepts of graph theory including paths, circuits, and graph		
	representations, enabling students to solve related problems in various domains such		
	as networking and algorithms.		
4	Cover algebraic structures such as groups, monoids, and rings, and explore their		
	properties and applications, enhancing students' understanding of abstract		
	mathematical concepts.		
5	Introduce Boolean algebra, its identities, and normal forms, emphasizing its		
	applications in computer science, digital logic design, and simplified representations		
	of logical expressions.		

	Course Outcomes				
Sr No	Code	CO statement			
1	CO1	Define and illustrate fundamental set theory concepts, logical connectives,			
		and propositional logic			
2	CO2	Analyse different types of functions and relations, including injective,			
		surjective, bijective, reflexive, symmetric, and transitive relations.			
3	CO3	Solve problems related to graph theory, including identifying shortest paths,			
		Euler and Hamiltonian paths, and graph isomorphisms			
4	CO4	Evaluate algebraic structures with one or two binary operations, such as			

		groups, rings, and fields, and perform operations within these structures	
5	CO5	Construct and simplify Boolean functions using identities and	
		representations such as Disjunctive and Conjunctive Normal Forms	

Unit	Course Contents			
No	Fundamental Structures and Basic Logic:Sets, Venn diagram, Cartesian			
	product, Power sets, Cardinality and countability, Propositional logic,			
I	Logical connectives, Truth tables, Normal forms, Validity, Predicate			
_	logic, Limitations of predicate logic, Universal and existential	7 hours		
	quantification, First order logic. Principles of Mathematical Induction:			
	The Well-Ordering Principle, Recursive definition, The Division			
	algorithm: Prime Numbers, The Greatest Common Divisor: Euclidean			
	Algorithm, The Fundamental Theorem of Arithmetic.			
	Functions and Relations: Subjective, Injective, Bijective and inverse			
	functions, Composition of function, Reflexivity, Symmetry,			
II	J 1			
	Graph Theory: Basic terminology, Multi graphs and weighted graphs,			
	Paths and circuits, shortest path problems, Euler and Hamiltonian paths,			
III	Representation of graph, Isomorphic graphs, Planar graphs,	7 hours		
	Connectivity, Matching Colouring.			
	Algebraic Structures and Morphism: Algebraic Structures with one Binary Operation, Semi Groups, Monoids, Groups, Congruence 7 hours			
	Binary Operation, Semi Groups, Monoids, Groups, Congruence			
IV	Relation and Quotient79 Structures, Free and Cyclic Monoids and			
	Groups, Permutation Groups, Substructures, Normal Subgroups			
	Algebraic Structures with two Binary Operation, Rings, Integral			
	Domain and Fields. Boolean Algebra and Boolean Ring, Identities of			
V	Boolean Algebra, Duality, Representation of Boolean Function,			
	Disjunctive and Conjunctive Normal Form			

	Text Books				
Code	Title of the Book	Author Name/Designation / Organization	Publisher	Edition/ Publication Year	
T1	Elements of	C. L. Liu	McGraw-Hill	3rd Edition,	
	Discrete		Publication	2008	
	Mathematics				
T2	Discrete	Kenneth H. Rosen	McGraw-Hill	8th Edition,	
	Mathematics and		Publication	2019.	
	its Applications				

	Reference Books					
Code	Title of the Book	Author Name/Designation/ Organization	Publisher	Edition/ Publication Year		
R1	Discrete Mathematics	Lipschutz, Discrete	McGraw-Hill Publication			
R2	Discrete Mathematics with Proof	Eric Gossett	Wiley	3rd edition/2021		

	Useful Links		
1	https://onlinecourses.nptel.ac.in/noc20_cs82/preview		
2	2 http://www.youtube.com/user/dmgtplc		

Semester	Course Code	Name of the course	L	T	P	Credits
I	MC1A005	Computer Architecture &	3	-	-	3
		Organization				

Marks Distribution				
CA	MSE	ESE	Total	
40	-	60	100	

Prerequisites for the course		
1	Basic Knowledge of Computer Hardware, Architecture, Memory etc.	

Prior l	Prior Reading Material/useful links			
1	Computer Organization and Architecture, 6th Edition, William Stallings			
2	Computer Architecture - A Quantitative Approach,5th edition, John L. Hennessy, David A. Patterson.			

	Course Objectives		
Sr. No	Statement		
1	Introduce the structure, function, and performance of computer systems.		
2	Understand the operations of CPU, memory, and I/O devices.		
3	Familiarize with assembly language and micro-level processing.		
4	Develop an understanding of data representation, machine-level arithmetic, and		
	control unit operations.		
5	Impart knowledge of modern architecture trends like RISC, CISC, and pipelining.		

	Course Outcomes				
Sr. No	Code	CO statement			
1	CO1	Understand the basic structure of computers and their functionalities.			
2	CO2	Analyse the interaction between hardware and software in computing systems.			
3	CO3	Demonstrate knowledge of machine instructions, addressing modes, and assembly programming.			
4	CO4	Evaluate various CPU architectures and their performance metrics.			
5	CO5	Explore the concepts of memory hierarchy, cache organization, and virtual memory.			

Unit No	Course Contents	Duration
I	 Unit 1: Introduction to Computer Architecture Introduction to Computer Architecture and Organization Basic structure of Computers: Von Neumann Architecture Functional units of a computer system 	6 hours
	 Types of computer architectures: SISD, SIMD, MIMD, MISD Performance metrics: Throughput, Latency, MIPS, FLOPS Machine language and assembly language Data representation: Number systems (Binary, Hexadecimal, 	
	Octal) Signed number representations (1's complement, 2's complement) Floating-point arithmetic and IEEE standards Overview of Septem Proceed Proceedings	
	Overview of System Bus and Bus Interconnection Unit 2: Central Processing Unit (CPU)	7 hours
II	 Structure and function of CPU Arithmetic Logic Unit (ALU): Design and operation Control Unit (CU): Hardwired vs. Microprogrammed Instruction cycle and execution process 	
	 Types of instructions: Data transfer, Arithmetic, Logical, Control flow Instruction formats and addressing modes 	
	 Register organization: General-purpose and special-purpose registers Program counter, stack pointer, and status register 	
	 Interrupt handling and exception processing Introduction to Pipelining and its types (Instruction and Arithmetic) 	
III	 Unit 3: Memory System Organization Overview of memory hierarchy: Primary, Secondary, Cache, Virtual memory RAM and ROM: Characteristics and types 	7 hours
	 Cache memory: Mapping techniques (Direct, Associative, Set-Associative) Cache coherence and write policies Memory interleaving and access optimization techniques 	
	 Memory interleaving and access optimization techniques Virtual memory: Paging and Segmentation Memory allocation: Dynamic, Static, and Fragmentation RAID: Levels, benefits, and performance considerations Memory management hardware: MMU and TLB 	
	 Memory management hardware: MNO and TLB Introduction to modern memory technologies: DRAM, SRAM, Flash 	

	Unit 4: Input/Output Organization	8 hours		
IV	Introduction to I/O systems and devices			
	I/O addressing: Memory-mapped and isolated I/O			
	 I/O communication techniques: Polling, Interrupt-driven, 			
	Direct Memory Access (DMA)			
	Types of I/O devices: Input, Output, and Storage devices			
	• I/O data transfer techniques: Programmed I/O, Interrupt I/O,			
	DMA			
	• I/O interfaces: SCSI, PCI, USB			
	Performance measures for I/O systems			
	Interrupt processing and handling mechanisms			
	Synchronization techniques: Semaphore, Spinlocks			
	• I/O performance improvements: Spooling, Buffering, Caching			
	Unit 5: Advanced Architectures and Concepts	8 hours		
\mathbf{V}	Introduction to Reduced Instruction Set Computing (RISC)			
	and Complex Instruction Set Computing (CISC)			
	Comparison of RISC and CISC architectures			
	Parallel processing: Symmetric and Asymmetric			
	Multiprocessing (SMP/AMP)			
	Flynn's taxonomy and its classification of parallel			
	architectures			
	 Introduction to multi-core processors and their organization 			
	Pipelining: Types, hazards (data, structural, control), and			
	handling strategies			
	Introduction to superscalar and VLIW architectures			
	Basics of GPU architecture and its applications			
	Quantum computing overview and its potential impact			
	Trends in modern computing: Cloud, Edge, and Distributed			
	systems			

	Text Books				
Code	Title of the Book	Author Name /Designation / Organization	Publisher	Edition/ Publication Year	
Т1	Digital Design and Computer Architecture	William Stallings	Pearson	11th Edition, 2018	
T2	Computer System Architecture	M. Morris Mano	Pearson	3rd Edition, 2017	

	Reference Books				
Code	Title of the Book	Author Name/Designation/ Organization	Publisher	Edition/ Publication Year	
R1	Advanced Computer Architecture	Kai Hwang	Tata McGraw Hill	3rd Edition, 2018	
R2	Computer Organization and Embedded Systems	Carl Hamacher, Zvonko Vranesic, Safwat Zaky	McGraw Hill	6th Edition, 2014	

Useful Links		
1	https://onlinecourses.nptel.ac.in/noc22_cs10/preview	

Semester	Course Code	Name of the Course	L	T	P	Credits
I	MC1L006	Data Structure and Algorithm LAB	0	0	4	2

Marks Distribution			
CA	MSE	ESE	Total
60	0	40	100

	Course Outcomes			
Sr No	Code	CO statement		
1	CO1	Understand and apply fundamental concepts of data structures including		
		arrays, pointers, and dynamic memory allocation in solving computational		
		problems.		
2	CO2	Implement and analyze the performance of linked list data structures		
		(singly, doubly, and circular linked lists) and advanced structures like skip		
		lists and self-adjusting lists.		
3	CO3	Utilize stack and queue data structures to solve practical problems involving		
		recursion, expression evaluation, and various queue types including priority and circular queues.		
4	CO4	Develop and implement various tree structures (binary trees, AVL trees, B-		
		trees) and graph algorithms (BFS, DFS, shortest path, spanning tree) in		
		practical applications.		
5	CO5	Analyze and apply advanced sorting, searching, and hashing techniques to		
		optimize data handling processes, with a focus on algorithmic efficiency		
		and performance.		

	List Of Experiments		
Sr No	Description		
1	Implement basic operations on arrays: insertion, deletion, updating, and searching		
	elements.		
2	Write a C++ program to implement bubble sort and display the sorted array.		
3	Implement a singly linked list with basic operations: insertion, deletion, and		
	traversal.		
4	Develop a program to implement doubly linked lists and circular linked lists,		
	including insertion and deletion operations.		
5	Develop a C++ program to create a queue using linked lists and perform enqueue,		
	dequeue, and display operations.		
6	Implement standard queue operations and a circular queue using arrays.		
7	Implement a stack using arrays in C++, and perform push, pop, and display		
	operations.		
8	Implement sorting algorithms such as quick sort, merge sort, and heap sort, and		
	compare their performance.		
9	Create a binary search tree (BST) in C++ and perform insert, delete, and search		
	operations.		
10	Implement Depth First Search (DFS) algorithm for a graph using adjacency matrix		
	representation in C++.		

	Content Beyond Syllabus		
Sr No	Sr No Description		
1	Introduction to implementing AVL trees in C++ and understanding their self-		
	balancing properties.		
2	Explore hashing techniques and implement basic hash functions in C++		

Semester	Course Code	Name of the Course	L	T	P	Credits
I	MC1L007	Object Oriented Programming using	-	-	4	2
		JAVA Lab				

Marks Distribution				
CA	MSE	ESE	Total	
60	-	40	100	

	Course Outcomes		
Sr No	Code	CO statement	
1	CO1	Explain the fundamental concepts of Object-Oriented Programming	
		including classes, objects, inheritance, polymorphism, and encapsulation.	
2	CO2	Apply object-oriented programming principles to design and implement	
		Java programs using classes, objects, and methods.	
3	CO3	Demonstrate the use of inheritance and polymorphism to create reusable and	
		modular Java code.	
4	CO4	Analyze and handle exceptions effectively in Java programs to ensure	
		robust and error-free applications.	
5	CO5	Create packages and interfaces to organize Java programs and implement	
		multiple inheritances through interfaces.	

	List Of Experiments		
Sr No	Description		
1	Write a simple Java program to display "Hello, World!". Learn the basics of Java		
	environment setup, compilation, and execution process.		
2	Implement a Java program that defines a class with fields and methods, creates objects, and		
	demonstrates accessing methods using objects.		
3	Create a program to demonstrate encapsulation by defining private fields and accessing them		
	through public getter and setter methods.		
4	Write a Java program to demonstrate constructor overloading by creating multiple		
	constructors with different parameters.		
5	Implement a Java program to show single inheritance. Define a base class and a derived		
	class, and demonstrate the use of the super keyword.		
6	Develop a program to show polymorphism by implementing method overloading and		
	method overriding concepts in Java		
7	Write a Java program that defines an abstract class and an interface. Implement these in a		
	subclass and demonstrate method implementation.		
8	Create a Java program to handle exceptions using try-catch blocks, demonstrating the use of		
	multiple catch blocks and finally block.		
9	Write a Java program that demonstrates array operations such as initialization, accessing		
	elements, and performing basic array manipulations.		
10	Develop a program that creates a package, defines classes within the package, imports the		
	package, and demonstrates access rules for the package.		

	Content Beyond Syllabus				
Sr No	Sr No Description				
1	Introduction to JavaFX for GUI Development: Basics of JavaFX, a framework for				
	building rich client applications, and creating a simple GUI application.				

Lambda Expressions and Functional Interfaces: Introduction to lambda expressions and their use in Java 8 to create concise and flexible code blocks.

2

Semester	Course Code	Name of the Course	L	T	P	Credits
II	MC1L008	Web Development LAB	-	-	4	2

Marks Distribution				
CA	MSE	ESE	Total	
60	-	40	100	

	Course Outcomes				
Sr	Code CO statement				
No					
1	CO1	Understand and apply HTML5 to create structured and semantic web pages.			
2	CO2	Utilize CSS for styling and implementing responsive design in web pages.			
3	3 CO3 Develop dynamic and interactive web applications using JavaScript.				
4	CO4	Apply advanced JavaScript techniques including ES6, Promises, and AJAX.			
5	CO5	Integrate modern front-end tools like Bootstrap, jQuery, and React.js.			

	List Of Experiments		
Sr No	Description		
1	Basic Web Page Layout (HTML + CSS): Create a simple web page with		
	headings, paragraphs, lists, and images.		
2	Form Creation (HTML + CSS): Design a contact form with input fields (name,		
	email, message) and a submit button.		
3	Styling with External CSS (CSS): Build a webpage and link an external CSS		
	file for styling various elements (e.g., fonts, colors, margins).		
4	Responsive Grid Layout (Bootstrap) : Use Bootstrap's grid system to create a		
	responsive layout with multiple columns.		
5	Navigation Bar (Bootstrap): Implement a responsive navigation bar with		
	dropdowns using Bootstrap.		
6	Image Gallery (HTML + CSS) : Create an image gallery with grid layout, and		
	add hover effects using CSS.		
7	Interactive Button (JS + CSS) : Add a JavaScript-powered button that changes		
	color or text when clicked.		
8	Form Validation (JavaScript): Implement real-time form validation using		
	JavaScript (e.g., check for empty fields or valid email).		
9	Modal Popup (Bootstrap + JS): Use Bootstrap's modal component to create a		
	popup that appears when a button is clicked.		
10	Slide Show (HTML + JS): Build a simple image slider that automatically cycles		
	through images using JavaScript.		

Content Beyond Syllabus			
Sr No	Sr No Description		
1	Responsive Web Design Principles: Study advanced responsive design		
	concepts like media queries, viewport settings, and fluid layouts.		
2	SEO Basics for Web Development: Learn how to optimize HTML structure,		
	metadata, and content for better search engine rankings.		