### Seguridad en Internet (2ª Sesión)

#### Jordi Forné

Universitat Politècnica de Catalunya Escola Tècnica Superior d'Enginyeria de Telecomunicació de Barcelona Departament de Matemàtica Aplicada i Telemàtica







## Prestaciones para el Atacante

| Ataques             | Prestaciones                                |  |
|---------------------|---------------------------------------------|--|
| Intercepción        |                                             |  |
| Escucha             | Obtención de información privada            |  |
| Análisis de tráfico | Información sobre relaciones entre clientes |  |
| Suplantación        | Mejora del perfil                           |  |
|                     | Fabricación de mensajes                     |  |
| Manipulación        | Modificar, retrasar o eliminar mensajes     |  |
| Intrusión           | Acceso a recursos reservados                |  |
| Degradación         | Pérdida competitividad corporación          |  |



### Seguridad

Amenaza + Vulnerabilidad = Ataque => Impacto









Identificar

Minimizar

Reducir y

Acotar

Detectar



### Problemática actual.

- ➤ Internet se ha convertido en el medio más popular de interconexión de recursos informáticos.
- ➤ Se utilizan las redes IP para la transmisión de información crítica.
- ➤ Mayor facilidad para realizar un ataque al disponer de tecnología más sofisticada.



## Solución.

- ➤ Implantación de Servicios de Seguridad para proteger la comunicación:
  - ⇒ Privacidad.
  - ⇒ Autenticidad.
  - ⇒ Verificabilidad.



# Ubicación de los Servicios de Seguridad.



## Equivalencia entre los modelos OSI y TCP/IP.

| APLICACIÓN      |                             |            |
|-----------------|-----------------------------|------------|
| PRESENTACIÓN    |                             | APLICACIÓN |
| SESIÓN          |                             |            |
| TRANSPORTE      |                             | TCP        |
| RED             |                             | IP         |
| ENLACE DE DATOS | ENLACE DE DATOS<br>Y FÍSICO |            |
| FÍSICO          |                             | Y FÍSICO   |

Niveles del Modelo de Referencia OSI

Niveles TCP/IP



## Ubicación de la Seguridad en el nivel de Aplicación (I).



► Solución adecuada si:

- ⇒ El servicio de seguridad es específico de la aplicación.
- El servicio de seguridad pasa a través de aplicaciones intermedias.

Niveles TCP/IP

Ejemplo: SSH, SET, PGP y S/MIME



## Ubicación de la Seguridad en el nivel de Aplicación (II).

#### ➤ Ventajas:

- Menos datos a procesar.
- ⇒ Interfaz sencilla con la aplicación.
- Compatibilidad con sistemas conectados a otro tipo de redes.

### ➤ <u>Desventajas:</u>

- → Implementación para cada aplicación en cada sistema extremo.
- ⇒ No se protegen las cabeceras de los protocolos de nivel inferior.

## ► Ubicación de la Seguridad por debajo del nivel de Aplicación (I).



Niveles TCP/IP

➤ Los datos procedentes de la aplicación se cifran en el terminal origen antes de ser transmitidos

Ejemplo: SSL, TLS, WTLS



## Ubicación de la Seguridad por debajo del nivel de Aplicación (II).

#### ➤ Ventajas:

⇒ Sólo es necesario diseñar dos interfaces entre el nivel de seguridad y el de transporte.

#### ➤ <u>Desventajas:</u>

- ⇒ No se protegen las cabeceras de los protocolos de nivel inferior.
- No permite ofrecer servicios a campos específico de la aplicación



# Ubicación de la Seguridad por debajo del nivel TCP (I).

APLICACIÓN

TCP

SEGURIDAD

IP

ENLACE DE DATOS
Y FÍSICO

Niveles TCP/IP

 Suponer que los sistemas extremos son fiables y las redes subyacentes no.

**Ejemplo: IPSEC** 



## Ubicación de la Seguridad por debajo del nivel TCP (II).

#### ➤ Ventajas:

- ⇒ Servicios de seguridad transparentes a las aplicaciones.
- Protección de las cabeceras de los protocolos de las capas superiores.
- ⇒ La capa TCP cifrada oculta detalles de la red.

### ⇒ Desventajas:

 Compatibilidad con sistemas conectados a otro tipo de redes.



## Ubicación de la Seguridad por debajo del nivel IP.

APLICACIÓN

TCP

IP

SEGURIDAD

ENLACE DE DATOS
Y FÍSICO

Niveles TCP/IP

- ➤ Si el descifrado de la cabecera IP no se realiza correctamente, los datos no llegarán a su destino.
- ➤ Todas las cabeceras se transmiten cifradas.
- ➤ Precisa confianza en nodos intermedios.

### Política de Seguridad



### Definición

- ➤ Conjunto de reglas que delimitan o controlan las actividades relevantes en cuanto a seguridad de sujetos o entidades.
- ➤ Política de seguridad
  - ➤ Estándares y reglas
  - ➤ Contratos de usuario
  - ➤ Procedimientos



### Características

- ➤ Duración: 5 años
- ➤ Documento breve: 4 ó 5 planes
- ➤ Exige el compromiso de los usuarios
- ➤ No debe tener referencias a tecnología



## Gestión de riesgos

- ➤ Coste asociado a los riesgos, en función de su probabilidad
- ➤ Coste asociado a las medidas de seguridad
- ➤ Gestión de riesgos: equilibrio entre coste protección y exposición
- ➤ Decisiones:
  - ➤ Aceptar riesgos
  - ➤ Asignarlos a terceros
  - ➤ Evitarlos



### Implementación

- ➤ Medidas transparentes a usuarios
- ➤ Fomentar cultura de seguridad entre usuarios
- ➤ Todo bien determinado en la política de seguridad



## Auditoría

- ➤ Automatización procesos cuando sea posible
- ➤ Programas fiables, scripts propios,...
- ➤ Monitorización del nivel de uso del sistema (root, usuarios, ...)
- ➤ Recogida Logs del sistema