Poliedros Regulares en Pantalla de Videojuegos Parte 2

Antonio Montero ¹ Asesor: Daniel Pellicer ²

¹FCFM-UMSNH

²CCM-UNAM

Seminario de Matemáticas Discretas 13 de febrero de 2013

... lo que a ustedes ya se les olvidó

ullet Un poliedro ${\mathcal P}$ es un objeto combinatorio...

... lo que a ustedes ya se les olvidó

- Un poliedro \mathcal{P} es un objeto combinatorio...
- Un automorfismo de $\mathcal P$ es una biyección de $\mathcal P$ en sí mismo que preserva el orden.

... lo que a ustedes ya se les olvidó

- Un poliedro \mathcal{P} es un objeto combinatorio...
- Un automorfismo de $\mathcal P$ es una biyección de $\mathcal P$ en sí mismo que preserva el orden.
- $\Gamma(\mathcal{P})$ es el grupo de automorfismos de \mathcal{P} .

... lo que a ustedes ya se les olvidó

- Un poliedro \mathcal{P} es un objeto combinatorio...
- Un automorfismo de $\mathcal P$ es una biyección de $\mathcal P$ en sí mismo que preserva el orden.
- $\Gamma(\mathcal{P})$ es el grupo de automorfismos de \mathcal{P} .
- \mathcal{P} es regular si $\Gamma(\mathcal{P})$ actúa transitivamente en banderas.

... algo que a mí se me había olvidado

Teorema

Un poliedro \mathcal{P} es regular si y sólo si para alguna bandera Φ y para todo $i \in \{0, 1, 2\}$ existe un automorfismo ρ_i de \mathcal{P} tal que

$$\rho_i(\Phi) = \Phi^i.$$

Además, cada automorfismo ρ_i es una involución, es decir, $\rho_i^2 = Id$.

... más de lo que a ustedes ya se les olvidó

Una realización de \mathcal{P} es una función $\beta: \mathcal{P}_0 \to \mathbb{R}^3$ de tal forma que todo automorfismo de \mathcal{P} induce una permutación de $\beta(\mathcal{P}_0)$ que se extiende a una isometría de \mathbb{R}^3 .

... más de lo que a ustedes ya se les olvidó

... más de lo que a ustedes ya se les olvidó

Si $\tau=\langle t_{\vec{v}_1},t_{\vec{v}_2},t_{\vec{v}_3}\rangle$ es un grupo de traslaciones con \vec{v}_1 , \vec{v}_2 , \vec{v}_3 linealmente independientes definimos el 3-toro generado por τ como

$$\mathbb{T}_{\tau}^{3} = \mathbb{R}^{3}/\tau = \{ [x]_{\tau} : x \in \mathbb{R}^{3} \}$$

... más de lo que a ustedes ya se les olvidó

Si $\tau=\langle t_{\vec{v}_1},t_{\vec{v}_2},t_{\vec{v}_3}\rangle$ es un grupo de traslaciones con \vec{v}_1 , \vec{v}_2 , \vec{v}_3 linealmente independientes definimos el 3-toro generado por τ como

$$\mathbb{T}_{\tau}^{3} = \mathbb{R}^{3}/\tau = \{ [x]_{\tau} : x \in \mathbb{R}^{3} \}$$

Definimos la métrica e_{τ} en \mathbb{T}^3_{τ} por:

$$e_{\tau}([x]_{\tau},[y]_{\tau}) = \inf \{e(t_1(x),t_2(y)) : t_1,t_2 \in \tau\}.$$

El problema:

Decidir para qué grupos au generados por 3 traslaciones linealmente independientes un poliedro regular $\mathcal P$ realizado en $\mathbb R^3$ tiene realización en $\mathbb T^3_{ au}=\mathbb R^3/ au$.

¿Cuándo se portan bien las isometrías?

Proposición

Si g es isometría de \mathbb{R}^3 , g induce una isometría \hat{g} de \mathbb{T}^3 si y sólo si $g \in \mathcal{N}(\tau)$, el normalizador de τ en $Isom(\mathbb{R}^3)$.

Si $au=\langle t_{\vec{v}_1},t_{\vec{v}_2},t_{\vec{v}_3}\rangle$ es un grupo generado por tres traslaciones linealmente independientes la latiz de puntos asociada a au, denotada por $\Lambda_{ au}$, es el conjunto

$$\Lambda_{\tau} = [0]_{\tau} = \{mv_1 + nv_2 + kv_3 : m, n, k \in \mathbb{Z}\}.$$

• Si
$$au = \langle (1,0,0), (0,1,0), (0,0,1)
angle$$
 entonces $\Lambda_{ au} =$

• Si
$$\tau = \langle (1,0,0), (0,1,0), (0,0,1) \rangle$$
 entonces $\Lambda_{\tau} = \mathbb{Z}^3 = \Lambda_{(1,0,0)}$.

- Si $\tau = \langle (1,0,0), (0,1,0), (0,0,1) \rangle$ entonces $\Lambda_{\tau} = \mathbb{Z}^3 = \Lambda_{(1,0,0)}$.
- Si $\tau = \langle (1,1,0), (1,0,1), (0,1,1) \rangle$ entonces $\Lambda_{\tau} = \Lambda_{(1,1,0)}$.

- Si $\tau = \langle (1,0,0), (0,1,0), (0,0,1) \rangle$ entonces $\Lambda_{\tau} = \mathbb{Z}^3 = \Lambda_{(1,0,0)}$.
- Si $\tau = \langle (1,1,0), (1,0,1), (0,1,1) \rangle$ entonces $\Lambda_{\tau} = \Lambda_{(1,1,0)}$.
- Si $\tau = \langle (1,1,1), (2,0,0), (0,2,0) \rangle$ entonces $\Lambda_{\tau} = \Lambda_{(1,1,1)}$.

- Si $\tau = \langle (1,0,0), (0,1,0), (0,0,1) \rangle$ entonces $\Lambda_{\tau} = \mathbb{Z}^3 = \Lambda_{(1,0,0)}$.
- Si $\tau = \langle (1,1,0), (1,0,1), (0,1,1) \rangle$ entonces $\Lambda_{\tau} = \Lambda_{(1,1,0)}$.
- Si $\tau = \langle (1,1,1), (2,0,0), (0,2,0) \rangle$ entonces $\Lambda_{\tau} = \Lambda_{(1,1,1)}$.

¿Cuándo las isometrías se portan bien con las latices?

Proposición

Sean τ un grupo de traslaciones generado por 3 traslaciones linealmente independientes, $g \in Isom(\mathbb{R}^3)$. Entonces $g \in \mathcal{N}(\tau)$ si y sólo si g' preserva a Λ_{τ} .

Latices Invariantes Bajo Reflexiones

Proposición

Sean Λ una latiz asociada a un grupo τ . Si Π un plano tal que Λ es invariante bajo la reflexión con respecto a Π , entonces existen dos vectores linealmente independientes \vec{v}_1 , \vec{v}_2 de tal forma que si $q \in \Lambda \cap \Pi$, entonces $\Lambda \cap \Pi = q + \langle \vec{v}_1, \vec{v}_2 \rangle$.

Latices Invariantes Bajo Reflexiones

Proposición

Sean Λ una latiz de un grupo τ y Π un plano tal que Λ es invariante bajo la reflexión con respecto a Π .

- $Si \pi(\Lambda) = \Lambda \cap \Pi$, entonces existe un vector $\vec{w} \in \Lambda$ ortogonal a Π tal que $\Lambda = \langle \vec{v}_1, \vec{v}_2, \vec{w} \rangle$ donde $\langle \vec{v}_1, \vec{v}_2 \rangle = \Lambda \cap \Pi$.
- Si $\pi(\Lambda) \neq \Lambda \cap \Pi$ entonces existen un vector $\vec{w} \in \Lambda$ ortogonal a Π tal que el índice de $\langle \vec{v}_1, \vec{v}_2, \vec{w} \rangle$ en Λ es 2.

Latices Invariantes Bajo Reflexiones

En resumen:

Si Λ es una latiz asociada a un grupo τ y Π un plano tal que Λ es invariante bajo la reflexión con respecto a Π , con $\Lambda \cap \Pi \neq \emptyset$, entonces todo punto de Λ se proyecta o bien en un punto de $\Lambda \cap \Pi$ o bien en el punto medio de dos puntos de $\Lambda \cap \Pi$.

(a) Proyección de $\Lambda_{(1,0,0)}$ en el plano x=0.

(a) Proyección de $\Lambda_{(1,0,0)}$ en el plano x=0.

(b) Proyección de $\Lambda_{(1,0,0)}$ en el plano x = y.

(c) Proyección de $\Lambda_{(1,1,1)}$ en el plano x=0.

(c) Proyección de $\Lambda_{(1,1,1)}$ en el plano x = 0.

(d) Proyección de $\Lambda_{(1,1,0)}$ en el plano y = 0.

Pensemos en el tetraedro...

Pensemos en el tetraedro...

Sean ρ_0 , ρ_1 y ρ_2 las reflexiones generadoras de $\Gamma(\mathcal{T})$ descritas antes, y $S = \rho_2 \rho_1$ una rotación del tetraedro \mathcal{T} . Si v_2 es un vector ortogonal al plano Π_2 , el plano de reflexión de ρ_2 , entonces los puntos $0, v_2, S(v_2)$ y $S^2(v_2)$ forman los vértices de un tetraedro regular \mathcal{T}' .

Si Λ es una latiz que queda invariante bajo $\Gamma(\mathcal{T})$ entonces $\pi_i(\Lambda) \neq \Pi_i \cap \Lambda$ para $i \in \{0, 1, 2\}$.

Un análisis en el tetraedro

Un análisis en el tetraedro

Todos los del tetraedro

Teorema

Sea au un grupo generado por tres traslaciones linealmente independientes. El tetraedro regular $\mathcal T$ admite realización en $\mathbb T^3_{ au}$ si y sólo si

$$\Lambda_{\tau} \in \{a\Lambda_{(1,0,0)}, b\Lambda_{(1,1,0)}, c\Lambda_{(1,1,1)} : a > 2, b > 3c > 1\}.$$

El Cubo

• $\Gamma(\mathcal{T}) \leq \Gamma(\mathcal{C})$.

El Cubo

- $\Gamma(\mathcal{T}) \leq \Gamma(\mathcal{C})$.
- Toda latiz preservada por $\Gamma(C)$ debe ser preservada por $\Gamma(T)$.

El Cubo

- $\Gamma(\mathcal{T}) \leq \Gamma(\mathcal{C})$.
- Toda latiz preservada por $\Gamma(C)$ debe ser preservada por $\Gamma(T)$.
- $\Gamma(\mathcal{C})$ preserva a todas las que $\Gamma(\mathcal{T})$ preserva.

Todas las del cubo

Teorema

Sea au un grupo de generado por tres traslaciones linealmente independientes. El octaedro regular admite realización en $\mathbb{T}^3_ au$ si y sólo si

$$\Lambda_{\tau} \in \{a\Lambda_{(1,0,0)}, b\Lambda_{(1,1,0)}, c\Lambda_{(1,1,1)} : a > 2, b > 3c > 1\}.$$

¿Y qué pasó con el icosaedro?

Teorema

Si \mathcal{P} es un poliedro de la familia del icosaedro, entonces no existe τ un grupo generado por 3 traslaciones linealmente independientes de tal forma que \mathcal{P} tenga realización en \mathbb{T}^3_{τ} .

¿Y qué pasó con el icosaedro?

Teorema

Sea τ un grupo generado por 3 traslaciones linealmente independientes. Si G es un grupo de isometrías de \mathbb{R}^3 que deja invariante a Λ_{τ} , entonces G no tiene rotaciones de orden distinto a 2, 3, 4 o 6.

• \mathcal{PC}_1 y \mathcal{PC}_2 son duales, así que $\Gamma(\mathcal{PC}_1) = \Gamma(\mathcal{PC}_2)$.

- \mathcal{PC}_1 y \mathcal{PC}_2 son duales, así que $\Gamma(\mathcal{PC}_1) = \Gamma(\mathcal{PC}_2)$.
- $\Gamma(\mathcal{C}) \leq \Gamma(\mathcal{PC}_1)$, por lo tanto toda latiz preservada por $\Gamma(\mathcal{PC}_1)$ debe ser preservada por $\Gamma(\mathcal{C})$.

- \mathcal{PC}_1 y \mathcal{PC}_2 son duales, así que $\Gamma(\mathcal{PC}_1) = \Gamma(\mathcal{PC}_2)$.
- $\Gamma(\mathcal{C}) \leq \Gamma(\mathcal{PC}_1)$, por lo tanto toda latiz preservada por $\Gamma(\mathcal{PC}_1)$ debe ser preservada por $\Gamma(\mathcal{C})$.
- $\Gamma(\mathcal{PC}_1)$ preserva a $\Lambda_{(1,0,0)}$, $\Lambda_{(1,1,0)}$, $\Lambda_{(1,1,1)}$.

Teorema

Sea τ un grupo de generado por tres traslaciones linealmente independientes. Los poliedros \mathcal{PC}_1 y \mathcal{PC}_2 admiten realización en \mathbb{T}^3_{τ} si y sólo si

$$\Lambda_{\tau} \in \{4a\Lambda_{(1,0,0)}, 4b\Lambda_{(1,1,0)}, 2c\Lambda_{(1,1,1)}: a,b,c \in \mathbb{Z}\}.$$

• $\Gamma(cT) \leq \Gamma(\mathcal{PC}_1)$, por lo tanto toda latiz preservada por $\Gamma(\mathcal{PC}_3)$ debe ser preservada por $\Gamma(\mathcal{T})$.

- $\Gamma(cT) \leq \Gamma(\mathcal{PC}_1)$, por lo tanto toda latiz preservada por $\Gamma(\mathcal{PC}_3)$ debe ser preservada por $\Gamma(\mathcal{T})$.
- $\Gamma(\mathcal{PC}_3)$ preserva a $\Lambda_{(1,0,0)}$, $\Lambda_{(1,1,0)}$, $\Lambda_{(1,1,1)}$.

Teorema

Sea au un grupo de generado por tres traslaciones linealmente independientes. El poliedro \mathcal{PC}_3 admite realización en $\mathbb{T}^3_{ au}$ si y sólo si

$$\Lambda_{\tau} \in \{8a\Lambda_{(1,0,0)}, 4b\Lambda_{(1,1,0)}, 2c\Lambda_{(1,1,1)}: a,b,c \in \mathbb{Z}\}.$$

¿Qué hicimos?

• Estudiamos las latices invariantes bajo una reflexión.

¿Qué hicimos?

- Estudiamos las latices invariantes bajo una reflexión.
- Con ayuda de éstas determinamos los grupos τ para los cuales los poliedros regulares finitos (18) realizados en \mathbb{R}^3 admiten realización en \mathbb{T}^3_τ .

¿Qué hicimos?

- Estudiamos las latices invariantes bajo una reflexión.
- Con ayuda de éstas determinamos los grupos τ para los cuales los poliedros regulares finitos (18) realizados en \mathbb{R}^3 admiten realización en \mathbb{T}^3_{τ} .
- Gracias a las relaciones entre los grupos de simetrías de los poliedros de Petrie-Coxeter y los grupos de simetría de los poliedros finitos, determinamos los grupos τ para los cuales los poliedros de Petrie-Coxeter (3) y sus Petriales (3) admiten realización en \mathbb{T}^3_{τ} .

¿Qué queda por hacer?

• Completar las lista de los 48.

¿Qué queda por hacer?

- Completar las lista de los 48.
- Completar la lista saltandose la realización en \mathbb{R}^3 .

¿Qué queda por hacer?

- Completar las lista de los 48.
- Completar la lista saltandose la realización en \mathbb{R}^3 .
- Explorar otras 3-variedades.

¡Gracias!

