Planche n° 24. Arithmétique dans $\mathbb Z$

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice no 1 (**)

Montrer que le produit de quatre entiers consécutifs, augmenté de 1, est un carré parfait.

Exercice nº 2 (***T)

- 1) Montrer que $\forall n \in \mathbb{Z}, 6 \mid 5n^3 + n$.
- **2)** Montrer que $\forall n \in \mathbb{N}, 7 \mid 4^{2^n} + 2^{2^n} + 1$.

Exercice nº 3 (***IT)

Montrer qu'un entier de la forme 8n + 7 ne peut pas être la somme de trois carrés parfaits.

Exercice nº 4 (**IT)

Pour $n \in \mathbb{N}^*$, on pose $(1+\sqrt{2})^n = a_n + b_n\sqrt{2}$ où $(a_n, b_n) \in (\mathbb{N}^*)^2$. Montrer que PGCD $(a_n, b_n) = 1$.

Exercice no 5 (****)

Montrer que, pour tout entier naturel n, 2^{n+1} divise $\left| \left(1 + \sqrt{3} \right)^{2n+1} \right|$.

Exercice nº 6 (***IT)

Soient A la somme des chiffres (en base 10) de 4444^{4444} et B la somme des chiffres de A. Trouver la somme des chiffres de B. (Commencer par majorer la somme des chiffres de $n = c_0 + 10c_1 + ... + 10^p c_p$.)

Exercice nº 7 (**)

Montrer que si p est premier et $8p^2 + 1$ est premier alors $8p^2 - 1$ est premier.

Exercice nº 8 (**I)

- $\textbf{1)} \ \mathrm{Montrer} \ \mathrm{que} \ \forall (k,n) \in (\mathbb{N}^*)^2, \ \left[k \wedge n = 1 \Rightarrow n \mid \binom{n}{k} \right].$
- 2) Montrer que $\forall n \in \mathbb{N}^*, (n+1) \mid {2n \choose n}.$

Exercice no 9 (**T)

Résoudre dans $(\mathbb{N}^*)^2$ les équations ou systèmes d'équations suivants :

$$1) \ \left\{ \begin{array}{l} x+y=56 \\ \mathrm{PPCM}(x,y)=105 \end{array} \right. \ 2) \ \left\{ \begin{array}{l} \mathrm{PGCD}(x,y)=x-y \\ \mathrm{PPCM}(x,y)=72 \end{array} \right. \ 3) \ \mathrm{PPCM}(x,y)-\mathrm{PGCD}(x,y)=243.$$

Exercice no 10 (***)

Montrer que la somme de cinq carrés parfaits d'entiers consécutifs n'est jamais un carré parfait.

Exercice no 11 (***IT)

Pour $n \in \mathbb{N}$, on pose $F_n = 2^{2^n} + 1$ (nombres de Fermat). Montrer que les nombres de Fermat sont deux à deux premiers entre eux.

Exercice nº 12 (***)

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=0,\ u_1=1$ et $\forall n\in\mathbb{N},\ u_{n+2}=u_{n+1}+u_n$ (suite de Fibonacci).

- 1) Montrer que $\forall n \in \mathbb{N}^*$, $u_{n+1}u_{n-1} u_n^2 = (-1)^n$ et en déduire que $\forall n \in \mathbb{N}^*$, $\operatorname{PGCD}(u_n, u_{n+1}) = 1$.
- 2) Montrer que $\forall n \in \mathbb{N}, \ \forall m \in \mathbb{N}^*, \ u_{m+n} = u_m u_{n+1} + u_{m-1} u_n$ et en déduire que $\operatorname{PGCD}(u_m, u_n) = u_{\operatorname{PGCD}(m,n)}$ pour m et n non nuls.

Exercice no 13 (***I)

On veut résoudre dans \mathbb{Z}^3 l'équation $x^2 + y^2 = z^2$ (de tels triplets d'entiers relatifs sont appelés triplets pythagoriciens, comme par exemple (3,4,5)).

1) Montrer que l'on peut se ramener au cas où PGCD(x, y, z) = 1. Montrer alors que dans ce cas, x, y et z sont de plus deux à deux premiers entre eux.

2) On suppose que x, y et z sont deux à deux premiers entre eux. Montrer que deux des trois nombres x, y et z sont impairs le troisième étant pair puis que z est impair.

On suppose dorénavant que x et z sont impairs et y est pair. On pose y = 2y', $X = \frac{z+x}{2}$ et $Z = \frac{z-x}{2}$.

- 3) Montrer que PGCD(X, Z) = 1 et que X et Z sont des carrés parfaits.
- 4) En déduire que l'ensemble des triplets pythagoriciens est l'ensemble des triplets de la forme

$$(d(u^2-v^2), 2duv, d(u^2+v^2))$$

où $d \in \mathbb{N}$, $(u, v) \in \mathbb{Z}^2$, à une permutation près des deux premières composantes.

Exercice nº 14 (**)

Résoudre dans \mathbb{N}^2 l'équation $3x^3 + xy + 4y^3 = 349$.

Exercice no 15 (***)

Résoudre dans $(\mathbb{N}^*)^2$ l'équation d'inconnue $(x,y):\sum_{k=1}^x k!=y^2.$

Exercice nº 16 (***)

Montrer que n = 4...48...89 (p chiffres 4 et p - 1 chiffres 8 et donc 2p chiffres) (en base 10) est un carré parfait.

Exercice nº 17 (***I)

Montrer que tout nombre impair non divisible par 5 admet un multiple qui ne s'écrit (en base 10) qu'avec des 1 (par exemple, $37 \times 1 = 37$, $37 \times 2 = 74$, $37 \times 3 = 111$).

Exercice no 18 (***)

Soit $u_n = 10...01_2$. (n chiffres égaux à 0). Déterminer l'écriture binaire de :

1)
$$u_n^2$$
 2) u_n^3 3) $u_n^3 - u_n^2 + u_n$.

Exercice nº 19 (**I)

- 1) Déterminer en fonction de n entier non nul, le nombre de chiffres de n en base 10.
- 2) Soit $\sigma(n)$ la somme des chiffres de n en base 10.
 - a) Montrer que la suite $\left(\frac{\sigma(n+1)}{\sigma(n)}\right)_{n\geq 1}$ est bornée. Cette suite converge-t-elle?
 - b) Montrer que pour tout naturel non nul n, $1 \le \sigma(n) \le 9(1 + \log n)$.
 - c) Montrer que la suite $(\sqrt[n]{\sigma(n)})_{n\geq 1}$ converge et préciser sa limite.

Exercice nº 20 (***I)

1) (Formule de LEGENDRE) Soit $\mathfrak n$ un entier naturel supérieur ou égal à 2 et $\mathfrak p$ un nombre premier. Etablir que l'exposant de $\mathfrak p$ dans la décomposition de $\mathfrak n!$ en facteurs premiers est

$$\left\lfloor \frac{\mathbf{n}}{\mathbf{p}} \right\rfloor + \left\lfloor \frac{\mathbf{n}}{\mathbf{p}^2} \right\rfloor + \left\lfloor \frac{\mathbf{n}}{\mathbf{p}^3} \right\rfloor + \dots$$

2) Par combien de 0 se termine l'écriture en base 10 de 1000!?

Exercice n° 21 (***I) (Petit théorème de FERMAT) Soit p un nombre premier.

- 1) Montrer que, pour tout entier k tel que $1 \le k \le p-1$, p divise $\binom{p}{k}$.
- 2) Montrer que $\forall \alpha \in \mathbb{N}^*$, $\alpha^p \equiv \alpha(p)$ (par récurrence sur α).

Exercice nº 22 (***I) (Théorème de WILSON)

Soit p un entier supérieur ou égal à 2. Montrer que : $(p-1)! \equiv -1$ $(p) \Rightarrow p$ est premier (en fait les deux phrases sont équivalentes mais en Sup, on sait trop peu de choses en arithmétique pour pouvoir fournir une démonstration raisonnablement courte de la réciproque).