Guarantees for Machine Learning: Fact Sheet

Tao SUN taosun47@student.ethz.ch

September 12, 2021

Contents

1	Introduction (Lec. 1)	2
	1.1 The Well-specified Case	2
	1.2 The Mis-specification Case	2
2	Concentration bounds (Ch. 2)	2
	2.1 Classical bounds	2
	2.2 Sub-Gaussian and Hoeffding bounds	3
	2.3 Sub-exponential and Bernstein bounds	
	2.4 Martingale-based Methods	
	2.5 Functional bounds	
3	Uniform Laws of Large Numbers (Ch. 4)	5
	3.1 Motivation	
	3.2 A uniform law via Rademacher complexity	
	3.3 Upper bounds on the Rademacher complexity	
4	Non-uniform Learnability (Lec. 6-7)	6
	4.1 Structural risk minimization (SRM)	6
	4.2 Margin bound for linear classifiers	
	4.3 Margin bounds for SVM	
5	Metric Entropy (Ch. 5)	7
	5.1 Covering and Packing	7
	5.2 Metric entropy and sub-Gaussian processes	
6	Reproducing Kernel Hilbert Spaces (Ch. 12)	8
	6.1 Basics of Hilbert space	8
	6.2 Reproducing kernel Hilbert space	
	6.3 Mercer's theorem and its consequences	
7	Non-parametric Least Squares (Ch. 13)	9
	7.1 Fixed design	9
	7.2 Error bounds for RKHS	
	7.3 Random design	

Disclaimer

This note is mainly based on our slides and the textbook (High-Dimensional Statistics: A Non-Asymptotic Viewpoint by Martin J. Wainwright). The main purpose of writing this note is to familiarize me with the concepts and mathematical derivations in the course. Therefore, I do not guarantee the correctness and completeness of it.

1 Introduction (Lec. 1)

1.1 The Well-specified Case

Given a collection of n samples $\{x_i\}_{i=1}^n$ sampled from a fixed distribution \mathbb{P} . Let f^* be the "true" estimator that minimizes some loss $\ell(x; f)$, i.e., $f^* := \arg\min_{f \in \mathcal{F}} \mathbb{E}_x \ell(x_i; f)$.

Def. 1 (Risk) The estimation of losses is called *risk*:

• Empirical risk:

$$R_n(f) := \frac{1}{n} \sum_{i=1}^n \ell(x_i; f)$$

• Population risk:

$$R(f) := \mathbb{E}_{x \sim \mathbb{P}} \ell(x; f)$$

Remark: Please note that the notation in our course is slightly different from the MW Chapter 4, where it uses a more burdensome notation as $R(f, f^*)$. Here, the f^* is omitted since it is fixed in a problem.

Def. 2 (Excess risk) The excess risk is defined as

$$\mathcal{E}_n(\hat{f}_n, f^*) := R(\hat{f}_n) - R(f^*).$$

Thm. 1 (Risk decomposition) The excess risk $R(\hat{f}) - R(f^*)$ can be decomposed into

$$= \underbrace{R(\hat{f}) - R_n(\hat{f})}_{T_1} + \underbrace{R_n(\hat{f}) - R_n(f^*)}_{T_3} + \underbrace{R_n(f^*) - R(f^*)}_{T_2}$$

Remark: The following figure illustrate the risk decomposition. In the figure, the upper and lower layers represent the empirical risk and the population risk, respectively.

Figure: Risk decomposition (well-specified)

1.2 The Mis-specification Case

We call the problem mis-specification, when $f^* \notin \mathcal{F}$.

Thm. 2 (Bias-variance trade-off) The excess risk $R(\hat{f})$ –

 $R(f^*)$ can be decomposed into

$$R(\widehat{f}_n) - R\left(f^{\star}\right) = \underbrace{R(\widehat{f}_n) - R\left(f^{\star,\mathcal{F}}\right)}_{\text{"Variance"}} + \underbrace{R\left(f^{\star,\mathcal{F}}\right) - R\left(f^{\star}\right)}_{\text{"Bias"} = \text{"approx error"}}$$

where $f^{\star,\mathcal{F}} = \arg\min_{f \in \mathcal{F}} R(f)$.

Remark: The following figure provides some insights.

Figure: Bias and variance under mis-specification

2 Concentration bounds (Ch. 2)

2.1 Classical bounds

The most basic tail bound is Markov's inequality.

Thm. 3 (Markov's inequality) For a random non-negative variable X with finite mean,

$$P(X \ge t) \le \frac{\mathbb{E}X}{t}, \quad \forall t > 0.$$

Proof. Using the non-negativity of X and the definition of expectation,

$$\mathbb{E}X = \int_0^\infty x f(x) \, dx = \int_0^t x f(x) \, dx + \int_t^\infty x f(x) \, dx$$
$$\geq \int_t^\infty x f(x) \, dx \geq t \int_a^\infty f(x) \, dx = t P(X \geq t).$$

Thm. 4 (Chebyshev's inequality) For a random variable X with finite k-th order center momentum,

$$P(|X - \mu| \ge t) = P(|X - \mu|^k \ge t^k)$$

$$\le \frac{\mathbb{E}|X - \mu|^k}{t^k}, \quad \forall t > 0.$$

Proof. Replacing X with $|X - \mu|^k$ in Markov's inequality. \square

Method. 1 (Chernoff bound) Apply Markov's inequality to random variable $Y = e^{\lambda(X-\mu)}$ ($0 < \lambda < b$), we get

$$P(X - \mu \ge t) = P(e^{\lambda(X - \mu)} \ge e^{\lambda t}) \le \frac{\mathbb{E}e^{\lambda(X - \mu)}}{e^{\lambda t}}.$$

Then, optimizing λ to get a tighter bound,

$$\log P(X - \mu \ge t) \le \inf_{\lambda} \left(\log \mathbb{E}e^{\lambda(X - \mu)} - \lambda t \right).$$

Chernoff bound will be used in achieving tail bounds of the sub-Gaussian and sub-exponential distribution.

2.2 Sub-Gaussian and Hoeffding bounds

Def. 3 (Sub-Gaussian) A random variable X with mean μ is sub-Gaussian with parameter if one of following holds:

• MGF condition:

$$\mathbb{E}e^{\lambda(X-\mu)} \le e^{\frac{\lambda^2\sigma^2}{2}}, \quad \forall \lambda \in \mathbb{R}.$$

• Tail bound condition $(Z \sim \mathcal{N}(0, \sigma^2))$:

$$P(|X - \mu| \ge t) \le cP(|Z - \mu| \ge t), \quad \exists c > 0, \forall t \ge 0.$$

For simplicity, we denote the sub-Gaussian random variable X with mean μ and parameter σ^2 as $X \sim SG(\mu, \sigma^2)$.

Prop. 1 (Sub-Gaussian tail bound) For $X \sim SG(\mu, \sigma^2)$,

$$P(X - \mu \ge t) \le e^{-\frac{t^2}{2\sigma^2}}, \quad \forall t \in \mathbb{R}.$$

Proof. Applying Chernoff bound on $e^{\lambda(X-\mu)}$, we have

$$\log P(X - \mu \ge t) \le \inf_{\lambda > 0} \left(\log \mathbb{E}e^{\lambda(X - \mu)} - \lambda t \right)$$
$$\le \inf_{\lambda > 0} \left(\frac{\sigma^2 \lambda^2}{2} - \lambda t \right) = -\frac{t^2}{2\sigma^2}$$

Taking exponential on both sides gives the desired form. \Box

Prop. 2 (Sum of sub-Gaussian RVs) For $X_1 \sim SG(\mu_1, \sigma_1^2), X_2 \sim SG(\mu_2, \sigma_2^2),$

$$X_1 + X_2 \sim SG(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2).$$

Prop. 3 (Sub-Gaussian for bounded RV) For a RV $X \in [a,b]$ almost surely, X is a sub-Gaussian with parameter at most $\sigma = \frac{b-a}{2}$.

Proof. Define function $\phi(\lambda) = \log \mathbb{E}e^{\lambda x}$. It is easy to show that $\phi(0) = 0$ and $\phi'(0) = \mathbb{E}X := \mu$. The second derivative is

$$\phi''(\lambda) = \mathbb{E}_{\lambda}[X^2] - \mathbb{E}_{\lambda}[X]^2, \quad \text{where } \mathbb{E}_{\lambda}[X] = \frac{\mathbb{E}f(X)e^{\lambda X}}{\mathbb{E}_{e}\lambda X}$$

Taking a Taylor expansion of $\phi(\lambda)$ at $\lambda = 0$,

$$\phi(\lambda) = \phi(0) + \lambda \phi'(0) + \frac{\lambda^2}{2} \phi''(\epsilon)$$
$$\leq \lambda \mu + \frac{\lambda^2}{2} - \frac{(b-a)^2}{4}.$$

Thm. 5 (Hoeffding bound) For n independent sub-Gaussian random variables $X_i \in SG(\mu_i, \sigma_i^2), i = [n],$

$$P\left(\sum_{i=1}^{n} (X_i - \mu_i) \ge t\right) \le e^{-\frac{t^2}{2\sum_{i=1}^{n} \sigma_i^2}}$$

Proof. Using the sub-Gaussian tail bound (Prop. 1) and the property of sum of Sub-Gaussian RVs (Prop. 2). \Box

Thm. 6 (Sub-Gaussian maxima) For a sequence of sub-Gaussian RVs $\{X_i\}_{i=1}^n$, $X_i \sim SG(0, \sigma^2)$, the following bounds hold,

$$\mathbb{E}\max_{i=1,\dots,n} X_i \le \sqrt{2\sigma^2 \log n}$$

$$\mathbb{E}\max_{i=1,\dots,n}|X|_i \le \sqrt{2\sigma^2\log 2n}$$

Remark: This bound is frequently used in deriving other bounds.

Proof. Let $f(x) = e^{\lambda x}$ ($\lambda > 0$), we have

$$\begin{split} e^{\lambda \mathbb{E}[\max_i X_i]} &\leq \mathbb{E}\left[e^{\lambda \max_i X_i}\right] \qquad (f(x) \text{ is convex}) \\ &= \mathbb{E}\left[\max_i e^{\lambda X_i}\right] \qquad (f(x) \text{ is mono-increasing}) \\ &\leq \sum_{i=1}^n \mathbb{E}\left[e^{\lambda X_i}\right] \leq n e^{\sigma^2 \lambda^2/2} \end{split}$$

Therefore,

$$\mathbb{E}[\max_{i} X_{i}] \leq \frac{\log n}{\lambda} + \frac{\lambda \sigma^{2}}{2}, \quad \forall \lambda > 0.$$

Using Chernoff bound, we get

$$\mathbb{E}[\max_{i} X_{i}] \leq \inf_{\lambda > 0} \frac{\log n}{\lambda} + \frac{\lambda \sigma^{2}}{2} = \sqrt{2\sigma^{2} \log n},$$

The second inequality can be proved by using the fact that

$$\max_{i} |X_i| = \max \{X_1, \dots, X_n, (-X_1), \dots, (-X_n)\}.$$

2.3 Sub-exponential and Bernstein bounds

Def. 4 (Sub-exponential) A random variable X with mean μ is sub-exponential with parameter (v, α) if one of following holds:

• MGF condition:

$$\mathbb{E}e^{\lambda(X-\mu)} \le e^{\frac{\lambda^2 v^2}{2}}, \quad \forall |\lambda| < \frac{1}{\alpha}.$$

• Tail bound condition:

$$P(|X - \mu| \ge t) \le c_1 e^{-c_2 t}, \quad \exists c_1, c_2 > 0, \forall t \ge 0.$$

3

Thm.7 (Bernstein-type bound) For any random variable satisfying the Bernstein condition $\left|\mathbb{E}\left[(X-\mu)^k\right]\right| \leq \frac{1}{2}k!\sigma^2b^{k-2}$, we have,

$$P(|X - \mu| \ge t) \le 2e^{-\frac{t^2}{2(\sigma^2 + bt)}}$$

Remark: For bounded RV, this bound is more tighter compared with Hoeffding bound for sub-Gaussian with σ when $\sigma << b$.

Proof. Using Taylor expansion of the MGF of sub-exponential RV, we have

$$\mathbb{E}\left[e^{\lambda(X-\mu)}\right] \le 1 + \frac{\lambda^2 \sigma^2}{2} + \sum_{k=3}^{\infty} \lambda^k \frac{\mathbb{E}\left[\left(X-\mu\right)^k\right]}{k!}$$
$$\le 1 + \frac{\lambda^2 \sigma^2}{2} + \frac{\lambda^2 \sigma^2}{2} \sum_{k=3}^{\infty} (|\lambda|b)^{k-2}$$
$$\le 1 + \frac{\lambda^2 \sigma^2/2}{1 - b|\lambda|} \le e^{\frac{\lambda^2 \sigma^2/2}{1 - b|\lambda|}}$$

Then, based on Chernoff bound, we get

$$\log P(X - \mu \ge t) \le \inf_{\lambda} \left(\log \mathbb{E}e^{\lambda(X - \mu)} - \lambda t \right)$$

$$\le \inf_{\lambda} \left(\frac{\lambda^2 \sigma^2 / 2}{1 - b|\lambda|} - \lambda t \right) = -\frac{t^2}{2(\sigma^2 + bt)}.$$

This gives the one-side bound. The two-side version can be obtained with additional factor of 2. \Box

2.4 Martingale-based Methods

Def. 5 (Martingale) A sequence of RVs Y_1, Y_2, \cdots is said to be a martingale with respect to another sequence of RVs X_1, X_2, \ldots if for all n,

$$\mathbb{E}|Y_n| < \infty$$
 and $\mathbb{E}[Y_{n+1} \mid X_1, \dots, X_n] = Y_n$.

Def. 6 (Doob martingale difference) For a function g_n : $\mathcal{X} \to \mathbb{R}$ on independent RV $X_i \in \mathcal{X}$ and the σ -field $F_i = \sigma(X_1, \dots, X_i)$, the Doob martingale difference $\{(D_i, F_i)\}_{i=1}^n$ is defined as

$$D_i := S_i - S_{i-1}$$
, where $S_i := \mathbb{E}[g_n(X) \mid X_1, \dots, X_i]$

Here, we often define $S_0 = \mathbb{E}[g_n(X)]$, so that we have the telescoping decomposing

$$S_n - S_0 = \sum_{i=1}^n D_i.$$

Thm. 8 (Azuma-Hoeffding) For a martingale difference sequence $\{(D_i, F_i)\}_{i=1}^n$, $D_i \mid F_{i-1} \in [a_i, b_i]$ almost surely for i = [n], then

$$P\left(\sum_{i=1}^{n} D_{i} \ge t\right) \le e^{-\frac{2t^{2}}{\sum_{i=1}^{n} (b_{i} - a_{i})^{2}}}$$

Proof. Since $D_i \mid F_{i-1} \in [a_i, b_i]$, we have

$$\mathbb{E}\left[e^{\lambda D_i} \mid F_{i-1}\right] \le e^{\frac{\lambda^2(b_i - a_i)^2}{8}}$$

To show the $\sum_{i=1}^{n} D_i$ is sub-Gaussian, we use the iterated expectation as,

$$\begin{split} \mathbb{E}\left[e^{\lambda\sum_{i=1}^{n}D_{i}}\right] &= \mathbb{E}_{D_{1},\cdots,D_{n}}\left[e^{\lambda\sum_{i=1}^{n-1}D_{i}}\cdot\mathbb{E}_{D_{n}}\left[e^{\lambda D_{n}}\mid F_{n-1}\right]\right] \\ &= \mathbb{E}_{D_{1},\cdots,D_{n-1}}\left[e^{\lambda\sum_{i=1}^{n-1}D_{i}}\right]\cdot\mathbb{E}_{D_{n}}\left[e^{\lambda D_{n}}\mid F_{n-1}\right] \\ &\leq \mathbb{E}_{D_{1},\cdots,D_{n-1}}\left[e^{\lambda\sum_{i=1}^{n-1}D_{i}}\right]e^{\frac{\lambda^{2}(b_{n}-a_{n})^{2}}{8}} \end{split}$$

Using it recursively, we get $\mathbb{E}\left[e^{\lambda\sum_{i=1}^nD_i}\right] \leq e^{\frac{\lambda^2\sum_{i=1}^n(b_i-a_i)^2}{8}}$. Then we can achieve the desired bound via Chernoff bound (similar to Prop. 1, sub-Gaussian tail bound).

Thm. 9 (McDiarmid inequality) If $g_n(Z)$ satisfies the bounded difference condition, i.e. $|g_n(z) - g_n(z^{\setminus k})| \le \sigma_k$, for a random vector Z with n independent entries, then

$$P(g_n(Z) - \mathbb{E}g_n(Z) \ge t) \le e^{-\frac{2t^2}{\sum_{i=1}^n \sigma_i^2}}$$
where $z = (z_1, \dots, z_k, \dots, z_n), z^{k} = (z_1, \dots, z_k', \dots, z_n).$

Proof. First, please note that

$$g_n(Z) - \mathbb{E}g_n(Z) = S_n - S_0 = \sum_{i=1}^n D_i,$$

where $D_i = \mathbb{E}[g_n(Z) \mid Z_1, \dots, Z_i] - \mathbb{E}[g_n(Z) \mid Z_1, \dots, Z_{i-1}]$. Therefore, we can use the Azuma-Hoeffding inequality if we show that D_i is bounded.

$$\begin{split} D_k & \leq \sup_{z} \mathbb{E}_{Z_{k+1:n}} \left[g_n \left(Z_{1:k-1}, z, Z_{k+1:n} \right) \right] \\ & - \inf_{z} \mathbb{E}_{Z_{k+1:n}} \left[g_n \left(Z_{1:k-1}, z, Z_{k+1:n} \right) \right] \\ & \leq \sup_{z,z'} \left| \mathbb{E}_{Z_{k+1:n}} \left[g_n \left(Z_{1:k-1}, z, Z_{k+1:n} \right) \right] \right. \\ & - \mathbb{E}_{Z_{k+1:n}} \left[g_n \left(Z_{1:k-1}, z', Z_{k+1:n} \right) \right] \right| \\ & \leq \sigma_k \end{split}$$

Then, we can plug it into the Azuma-Hoeffding inequality and conclude the proof. $\hfill\Box$

2.5 Functional bounds

Thm. 10 (Lipschitz functions) If $g: \mathbb{R}^n \to \mathbb{R}$ is L-Lipschitz function for vector z with edclidean norm, $z_i \sim \mathcal{N}(0, \sigma^2)$.

$$P(g(z) - \mathbb{E}g(z) \ge t) \le e^{-\frac{ct^2}{L^2\sigma^2}}$$

3 Uniform Laws of Large Numbers (Ch. 4)

3.1 Motivation

Def. 7 (Glivenko-Cantelli class) We say \mathcal{F} is Glivenko-Cantelli class if

$$||P_n - P||_{\mathcal{F}} := \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n f(X_i) - \mathbb{E}f(X_i) \right| \longrightarrow 0,$$

in probability as $n \to 0$.

3.2 A uniform law via Rademacher complexity

Thm. 11 (Uniform law of large number) For *b*-uniformly bounded \mathcal{F} , we have

$$P\left(\sup_{f\in\mathcal{F}}R(f)-R_n(f)\geq 2\mathcal{R}_n(\mathcal{F})+t\right)\leq e^{-\frac{nt^2}{2b^2}}.$$

Here, population risk is $R(f) = \mathbb{E}f(x)$ and empirical risk is $R_n(f) = \frac{1}{n} \sum_{i=1}^n f(x_i)$. The Rademacher complexity is

$$\mathcal{R}_n(\mathcal{F}) = \mathbb{E}_{\epsilon} \sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \epsilon_i h(z_i), \quad \epsilon_i \sim \text{Red}(\{-1, 1\})$$

Proof. 1. Concentration around mean. Let's denote

$$g_n(x_{1:n}) := \sup_{f \in \mathcal{F}} R(f) - R_n(f) = \sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n f(x_i) - \mathbb{E}f(x).$$

Let $z = (x_1, \dots, x_k, \dots, x_n)$ and $z^{\setminus k} = (x_1, \dots, x'_k, \dots, x_n)$,

$$\begin{aligned} & \left| g_{n}(z) - g_{n} \left(z^{\setminus k} \right) \right| \\ &= \left| \sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i} \left[h\left(z_{i} \right) - \mathbb{E}h \right] - \sup_{\tilde{h} \in \mathcal{H}} \frac{1}{n} \sum_{i} \left[\tilde{h} \left(z_{i}^{\setminus k} \right) - \mathbb{E}\tilde{h} \right] \right| \\ &\leq \left| \sup_{h \in \mathcal{H}} \frac{\sum_{i} h\left(z_{i} \right) - h\left(z_{i}^{\setminus k} \right)}{n} \right| \leq \left| \sup_{h \in \mathcal{H}} \frac{h\left(x_{k} \right) - h\left(x_{k}^{\prime} \right)}{n} \right| \leq \frac{2b}{n}, \end{aligned}$$

which means g_n has Lipschitz property. Using McDiarmid inequality, $P\left(g_n(X) - \mathbb{E}g_n(X) \ge t\right) \le e^{-\frac{nt^2}{2b^2}}$.

2. **Upper bound on mean**. Using symmetrization technique and the definition of Rademacher complexity, we have

$$\mathbb{E}g_{n}(X) = \mathbb{E}_{X} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} f(x_{i}) - \mathbb{E}f(x) \right]$$

$$\leq \mathbb{E}_{X,Y} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} f(x_{i}) - f(y_{i}) \right] \qquad \text{(symmetrize)}$$

$$= \mathbb{E}_{X,Y,\epsilon} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \epsilon(f(x_{i}) - f(y_{i})) \right] \qquad \text{(plug in } \epsilon)$$

$$\leq 2\mathbb{E}_{X,\epsilon} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \epsilon f(x_{i}) \right] = 2\mathcal{R}_{n}(\mathcal{F}).$$

Combining these two parts, we have the desired theorem that $P(g_n(X) - 2\mathcal{R}_n(\mathcal{F}) \ge t) \le e^{-\frac{nt^2}{2b^2}}$.

Thm. 12 (Uniform law - corollary) If $\mathcal{R}_n(\mathcal{F}) = o(1)$, then when $n \to \infty$, we have

$$\sup_{f \in \mathcal{F}} R(f) - R_n(f) \longrightarrow 0, \quad (a.s.)$$

In other words, $\mathcal{R}_n(\mathcal{F}) = o(1)$ implies that \mathcal{F} is a Glivenko-Cantelli class.

Proof. Let $\mathcal{E}_n(\alpha)$ denote the event that $\sup_{f \in \mathcal{F}} R(f) - R_n(f) \geq \alpha$. The uniform law shows that

$$P\left(\mathcal{E}_n(2\mathcal{R}_n(\mathcal{H})+t)\right) \le e^{-\frac{nt^2}{2b^2}}.$$

Using union bound, $\forall t > 0$, we have,

$$\sum_{n=1}^{\infty} P(\mathcal{E}_n(2t)) \le \sum_{n=1}^{k} P(\mathcal{E}_n(2t)) + \sum_{n=k+1}^{\infty} P(\mathcal{E}_n(2\mathcal{R}_n(\mathcal{H}) + t))$$

$$\le \sum_{n=1}^{k} P(\mathcal{E}_n(2t)) + \sum_{n=k+1}^{\infty} e^{-\frac{nt^2}{2b^2}} < \infty.$$

The k is chosen such that when n > k, $\mathcal{R}_n(f) < \frac{t}{2}$. Such k must exist, since $\mathcal{R}_n(f) = o(1)$. Using the Borel-Cantalli lemma, we show that

$$P\left(\lim_{n\to\infty}\sup \mathcal{E}_n(2t)\right) = 0.$$

Considering that t can be arbitrarily small, we have

$$P\left(\lim_{n\to\infty}\sup_{f\in\mathcal{F}}R(f)-R_n(f)=0\right)=1.$$

3.3 Upper bounds on the Rademacher complexity

Def. 8 (Growth function) The growth function $N_{\mathcal{H}}$ for a hypothesis space \mathcal{H} is defined as: $\forall m \in \mathbb{N}$,

$$N_{\mathcal{H}}(n) := \sup_{z_{1:n} \subseteq Z} \left| \left\{ \left(h\left(z_{1}\right), \cdots, h\left(z_{n}\right) \right) \mid h \in \mathcal{H} \right\} \right|$$

Remark: Growth function measures the maximum number of distinct ways in which m points can be classified using hypotheses in \mathcal{H} .

Thm. 13 (Massart lemma) For a data set $z_{1:n} = \{z_1, \dots, z_n\}$, the hypothesis $h: Z \to \{0, 1\}$ and the hypothesis space $\mathcal{H}(z_{1:n}) := \{(h(z_1), \dots, h(z_n)) \mid h \in \mathcal{H}\}$, we have

$$\mathcal{R}_{n}\left(\mathcal{H}\right) := \mathbb{E}_{\epsilon}\left[\sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} h\left(z_{i}\right)\right] \leq 2\sqrt{\frac{\log\left|\mathcal{H}\left(z_{1:n}\right)\right|}{n}}$$

Remark: Using this result, we can now bound the Rademacher complexity in terms of the growth function.

Proof. First, we show that $\epsilon^T \theta$ is \sqrt{n} sub-Gaussian. Using the independence of z, $\forall \lambda \in \mathbb{R}$, we have

$$\mathbb{E}_{\epsilon} \left[\exp(\lambda \epsilon^{\top} \theta) \right] = \mathbb{E}_{\epsilon} \left[\exp\left(\lambda \sum_{i=1}^{n} \epsilon_{i} \theta_{i}\right) \right]$$

$$= \mathbb{E}_{\epsilon_{1}} \left[\exp\left(\lambda \epsilon_{1} \theta_{1}\right) \right] \cdots \mathbb{E}_{\epsilon_{n}} \left[\exp\left(\lambda \epsilon_{n} \theta_{n}\right) \right]$$

$$\leq \exp\left(\frac{\lambda^{2} \theta_{1}^{2}}{2} + \cdots + \frac{\lambda^{2} \theta_{n}^{2}}{2}\right) \leq \exp\left(\frac{\lambda^{2} n}{2}\right).$$

Next, using the Gaussian maxima, we get

$$\mathbb{E} \max_{\theta \in \mathbb{T}} \epsilon^{T} \theta \leq 2 \sqrt{n \log \left| \mathcal{H} \left(z_{1}^{n} \right) \right|}$$

Then, we can get the intended results.

Def. 9 (VC Dimension) The VC dimension of \mathcal{H} is the biggest $n \in \mathbb{N}$ such that there exists n samples in \mathcal{H} which can be arbitrarily scattered by a binary classifier, i.e.,

$$d_{VC} = \max_{n \in \mathbb{N}} n$$
, s.t. $\exists z_{1:n} \in Z^n$, $\mathcal{H}(z_{1:n}) = \{0, 1\}^n$.

Here,
$$\mathcal{H}(z_{1:n}) := \{(h(z_1), \cdots, h(z_n)) \mid h \in \mathcal{H}\}$$

Remark: Finite VC dimension can make \mathcal{H} a Glivenko-Cantelli class.

Thm. 14 (Sauer-Shelah) For a space \mathcal{H} with VC dimension d_{VC} , for any z_1, \dots, z_n , we have growth function

$$N_{\mathcal{H}}(n) := \sup_{z_{1:n} \in \mathbb{Z}^n} |\mathcal{H}(z_{1:n})| \le (n+1)^{d_{VC}}, \quad \forall n \ge d_{VC}$$

Proof. Proof by combination algebra. See the Chapter 4.3 for more details. $\hfill\Box$

Thm. 15 (Rademacher contraction) For any $\mathbb{T} \subseteq \mathbb{R}^n$ and $\ell : \mathbb{R}^n \to \mathbb{R}^n$ with univariate *L*-Lipschitz functions it holds that

$$\tilde{\mathcal{R}}_n(\ell \circ \mathbb{T}) \leq L\tilde{\mathcal{R}}_n(\mathbb{T})$$

Proof. See the slides of Lecture 5.

4 Non-uniform Learnability (Lec. 6-7)

4.1 Structural risk minimization (SRM)

Def. 10 (SRM) Say we have a nested family of function spaces $\mathcal{H}_1 \subset \mathcal{H}_2 \subset \cdots$, where $\mathcal{H} = \bigcup_k \mathcal{H}_k$. For each \mathcal{H}_k define the event

$$E_{k,h} = \left\{ R(h) - R_n(h) \le c\sqrt{\frac{\log(1/\delta_k)}{n}} + 2\mathcal{R}_n(\mathcal{H}_k) \right\}.$$

Thm. 16 (Uniform law via the SRM) Define $k(h) = \min\{k \mid f \in \mathcal{H}_k\}$ which for each h finds the minimum set \mathcal{H}_k .

If $P(\bigcap_{h \in \mathcal{H}_k} E_{k,h}) \ge 1 - \delta_k$ for each k and if $\sum_k \delta_k \le \delta$, with probability at least $1 - \delta$,

$$\sup_{h \in \mathcal{H}} R(h) - R_n(h) \le c \sqrt{\frac{\log \left(1/\delta_{k(h)}\right)}{n}} + 2\mathcal{R}_n \left(\mathcal{H}_{k(h)}\right)$$

Proof. Observe that

П

$$A := \left\{ \sup_{h \in \mathcal{H}} R(h) - R_n(h) \le c \sqrt{\frac{\log\left(1/\delta_{k(h)}\right)}{n}} + 2\mathcal{R}_n\left(\mathcal{H}_{k(h)}\right) \right\}$$
$$= \bigcap_{h \in \mathcal{H}} \bigcap_{k:h \in \mathcal{H}_k} E_{k,h} = \bigcap_{k \in \mathbb{N}} \bigcap_{h \in \mathcal{H}_k} E_{k,h}$$

Then, we can use the union bound,

$$P(A) = 1 - P\left(\bigcup_{k \in \mathbb{N}} \bigcup_{h \in \mathcal{H}_k} E_{k,h}\right) \ge 1 - \sum_{k} \delta_k \ge 1 - \delta,$$

which concludes the proof.

Figure: Demonstration of SRM when k(h) = 3.

4.2 Margin bound for linear classifiers

Def. 11 (Linear classifiers) Define the empirical risk

$$R_n^{\gamma}(f) = \frac{1}{n} \sum_{i=1}^n 1_{y_i f(x_i) \le \gamma},$$

and the population risk

$$R^{\gamma}(f) := \mathbb{E}_{X,Y} 1_{y_i f(x_i) \le \gamma}.$$

Thm. 17 (Rademacher complexity of L_2 -bounded linear class) For a class of linear functions $\mathcal{F}_{B,2} = \{f(x) = \langle w, x \rangle : \|w\|_2 \leq B\}$, we have

$$\mathcal{R}_n\left(\mathcal{F}_{B,2}\right) \le \frac{B \max_i \|x_i\|_2}{\sqrt{n}}$$

Proof. Using the definition of Rademacher complexity and

Cauchy's inequality, we have

$$n \cdot \mathcal{R}_{n} \left(\mathcal{F}_{B,2} \right) = \mathbb{E}_{\sigma} \sup_{f \in \mathcal{F}_{B,2}} \sum_{i=1}^{n} \sigma_{i} f(x_{i})$$

$$= \mathbb{E}_{\sigma} \sup_{\|w\|_{2} \leq B} \sum_{i=1}^{n} \sigma_{i} \left\langle w, x_{i} \right\rangle$$

$$= \mathbb{E}_{\sigma} \sup_{\|w\|_{2} \leq B} \left\langle w, \sum_{i=1}^{n} \sigma_{i} x_{i} \right\rangle$$

$$\leq B \mathbb{E}_{\sigma} \sqrt{\left\| \sum_{i=1}^{n} \sigma_{i} x_{i} \right\|_{2}^{2}} \qquad \text{(Cauchy's)}$$

$$\leq B \sqrt{\mathbb{E}_{\sigma} \left\| \sum_{i=1}^{n} \sigma_{i} x_{i} \right\|_{2}^{2}} \qquad \text{(Jensen's)}$$

Finally, since the Rademacher variables σ are independent, we have

$$\mathbb{E}_{\sigma} \left\| \sum_{i=1}^{m} \sigma_{i} x_{i} \right\|_{2}^{2} = \mathbb{E}_{\sigma} \sum_{i,j} \sigma_{i} \sigma_{j} \left\langle x_{i}, x_{j} \right\rangle$$

$$= \sum_{i \neq j} \left\langle x_{i}, x_{j} \right\rangle \mathbb{E}_{\sigma} \left[\sigma_{i} \sigma_{j} \right] + \sum_{i=1}^{m} \left\langle x_{i}, x_{i} \right\rangle \mathbb{E}_{\sigma} [\sigma_{i}^{2}]$$

$$= \sum_{i=1}^{m} \left\| x_{i} \right\|_{2}^{2} \leq n \max_{i} \left\| x_{i} \right\|_{2}^{2}.$$

Plug into the previous inequality and we get the result. \Box

Thm. 18 (Non-uniform margin bound) If the assumptions are valid for any fixed γ , with probability at least $1-\delta$, for any $f\in\mathcal{F}_B$, we have

$$R^{0}(f) = P(y \neq \operatorname{sign}(f(x))) \leq R_{n}^{\gamma}(f) + \frac{2DB}{\gamma\sqrt{n}} + c\sqrt{\frac{\log(1/\delta)}{n}}$$

Proof. Please refer to Lec. 7 and Exercise class 1.

4.3 Margin bounds for SVM

Thm. 19 (Non-uniform margin bound for SVM) If the assumptions are valid for any fixed γ , with probability at least $1 - \delta$, for any $f \in \mathcal{F}_B$, we have

$$P(y \neq \operatorname{sign}(f(x))) \leq R_n^{\gamma}(f) + \frac{2D \|w^*\|_2}{\sqrt{n}} + c\sqrt{\frac{\log(1/\delta)}{n}}$$

Proof. Using the margin bound theorem (Thm. 18) with $\gamma=1$ then yields the result.

Thm. 20 (Uniform margin bound for SVM)

$$\begin{split} \mathbb{P}(yf_{SVM}(x) < 0) \leq & \frac{2eD \left\| w_{SVM} \right\|_2}{\sqrt{n}} \\ & + c\sqrt{\frac{\log(1/\delta) + \log\left(4\log\left\| w_{SVM} \right\|_2\right)}{n}} \end{split}$$

Proof. Choose $B_k=e^k$ and the nested function space is $\mathcal{F}_{B_k}:=\{w\mid \|w\|\leq B_k\}$. According to the Non-uniform margin bound for SVM (Thm. 19), let $\delta_k=\frac{\delta}{2k^2}$. Then $k(w)=\log\|w\|$ and thus $B_{k(w)}=\|w\|\,e$ and

$$\frac{1}{\delta_{k(w)}} = \frac{2(k(w))^2}{\delta} \le \frac{2(2\log||w||)^2}{\delta}.$$

Plugging in the quantities yields the results with probability at

$$1 - \sum_{i=1}^{\infty} \delta_k = 1 - \delta \sum_{i=1}^{\infty} \frac{1}{2k^2} \ge 1 - \delta,$$

which concludes the proof.

5 Metric Entropy (Ch. 5)

5.1 Covering and Packing

Def. 12 (Covering number) A δ -cover of a set \mathbb{T} with a metric ρ is a set $\{\theta^1, \cdots, \theta^N\} \subset \mathbb{T}$, such that $\forall \theta \in \mathbb{T}, \exists i \in [N], \rho(\theta, \theta^i) \leq \delta$. The covering number $N(\delta; \mathbb{T})$ is the cardinality of the smallest δ -cover.

Def. 13 (Packing number) A δ -cover of a set \mathbb{T} with a metric ρ is a set $\{\theta^1, \dots, \theta^N\} \subset \mathbb{T}$, such that $\forall \theta \in \mathbb{T}, \exists i \in [N], \rho(\theta, \theta^i) \leq \delta$.

The covering number $N(\delta; \mathbb{T})$ is the cardinality of the smallest δ -cover.

Below are some common spaces' complexity.

Space	Rademacher C.	Gaussian C.
$B_1^d(1)$	1	$\sqrt{2\log d} \pm o(1)$
$B_2^d(1)$	\sqrt{d}	$\sqrt{d} - o(1)$
$B_q^d(1), q > 1$	-	$\sqrt{\frac{2}{\pi}}d^{1-1/q} \sim c_q d^{1-1/q}$

5.2 Metric entropy and sub-Gaussian processes

Def. 14 (sub-Gaussian processes) For zero-mean random variables $\{X_{\theta}, \theta \in \mathbb{T}\}$, we say it is a sub-Gaussian process with metric $\rho_X(\cdot, \cdot)$ on T if

$$\mathbb{E}[e^{\lambda(X_{\theta}-X_{\theta'})}] \le e^{\frac{\lambda^2 \rho_X^2(\theta,\theta')}{2}}, \quad \forall \lambda \in \mathbb{R} \text{ and } \theta, \theta' \in \mathbb{T}.$$

Remark: It can be shown that $X_{\theta} - X_{\theta'}$ is a sub-Gaussian RV with parameter $\sigma = \sup_{\theta, \theta'} \rho_X(\theta, \theta')$.

Thm. 21 (One-step discretization bound) For a zeromean sub-Gaussian process $\{X_{\theta}, \theta \in \mathbb{T}\}$ with $\rho(\theta, \theta')$, we have an upper bound for any $\delta \in [0, \sigma]$,

$$\mathbb{E} \sup_{\theta, \theta' \in \mathbb{T}} X_{\theta} - X_{\theta'} \leq 2 \mathbb{E} \sup_{\substack{\theta, \theta' \in \mathbb{T} \\ \rho(\theta, \theta') < \delta}} (X_{\theta} - X_{\theta'}) + 4\sigma \sqrt{\log N(\delta)},$$

where $\sigma = \sup_{\theta, \theta' \in \mathbb{T}} \rho(\theta, \theta')$.

Proof. Let $\{\theta_1, \dots, \theta_N\}$ be a σ -cover of T. For any $\theta \in \mathbb{T}$, we can find at least one θ^* in the cover, s.t. $\rho(\theta, \theta^*) \leq \delta$, (the same for $\widetilde{\theta^*}$), and hence,

$$X_{\theta} - X_{\widetilde{\theta}} = X_{\theta} - X_{\theta^*} + X_{\theta^*} - X_{\widetilde{\theta}^*} + X_{\widetilde{\theta}^*} - X_{\widetilde{\theta}}$$

$$\leq 2 \sup_{\varrho(\theta, \theta') \leq \delta} (X_{\theta} - X_{\theta'}) + \max_{i, j = 1, \dots, N} |X_{\theta_i} - X_{\theta_j}|$$

Below is a figure to illustrate it.

Then, take the expectation on both sides. We use the sub-Gaussian maxima (Thm. 6) on $|X_{\theta_i} - X_{\theta_j}|$, which has parameter at most $\rho(\theta_i, \theta_j) \leq \sigma$. Therefore,

$$\mathbb{E} \sup_{\theta, \theta' \in \mathbb{T}} X_{\theta} - X_{\theta'} \leq 2\mathbb{E} \sup_{\substack{\theta, \theta' \in \mathbb{T} \\ \rho(\theta, \theta') \leq \delta}} (X_{\theta} - X_{\theta'}) + 4\sigma \sqrt{\log N(\delta)}$$

Thm. 22 (One-step discretization bound - corollary) Let $X_{\theta} = \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} \theta_{i}$, where ϵ are Rademacher RVs. Then $\{X_{\theta}, \theta \in \mathbb{T}\}$ is a sub-Gaussian process with $\rho(\theta, \theta') = \frac{\|\theta - \theta'\|_{2}}{\sqrt{n}}$. We have an upper bound as

$$\mathcal{R}_n(T) \le \frac{1}{\sqrt{n}} \mathbb{E} \sup_{\theta, \theta' \in \mathbb{T}} X_{\theta} - X_{\theta'} \le \frac{2}{\sqrt{n}} [\delta \sqrt{n} + 2\sigma \sqrt{\log N(\delta)}],$$

Remark: This provides a usage of sub-Gaussian process, to bound the Rademacher complexity.

Thm. 23 (Dudley's integral) Let $\{X_{\theta}, \theta \in \mathbb{T}\}$ be a zero-mean sub-Gaussian process with a metric ρ . Define $D = \sup_{\theta, \theta'} \rho(\theta, \theta')$.

$$\mathbb{E} \sup_{\theta, \theta'} X_{\theta} - X_{\theta'} \leq 2 \mathbb{E} \sup_{\rho(\theta, \theta')} X_{\theta} - X_{\theta'} + 16 \int_{\delta/4}^{D} \sqrt{\log N(t)} \mathrm{d}t.$$

Remark: The Dudley's integral (sometimes) achieves a tighter bound on the last term of $4\sigma\sqrt{\log N(\delta)}$ by chaining method.

Proof. Define $L = \log_2 \frac{D}{\delta}$ sets of δ_i -covers C_i , where $\delta_i = \frac{1}{2^i}D$. Let $N(\delta_i)$ denote the covering number in C_i .

$$\begin{split} X_{\theta_L} - X_{\widetilde{\theta_L}} &\leq X_{\theta_L} - X_{\theta_{L-1}^*} + X_{\theta_{L-1}^*} - X_{\widetilde{\theta_{L-1}^*}} + X_{\widetilde{\theta_{L-1}^*}} - X_{\widetilde{\theta_L}} \\ &= 2 \max_{\theta \in \mathcal{C}_L} X_{\theta} - X_{\theta_{L-1}^*} + \max_{\theta, \theta' \in \mathcal{C}_{L-1}} X_{\theta} - X_{\theta'} \\ & \dots \\ &\leq 2 \sum_{i=2}^L \max_{\theta \in \mathcal{C}_i} X_{\theta} - X_{\theta_{i-1}^*} + \max_{\theta, \theta' \in \mathcal{C}_1} X_{\theta} - X_{\theta'} \end{split}$$

Next, we use sub-Gaussian maxima,

$$\mathbb{E} \max_{\theta \in \mathcal{C}_{i}} X_{\theta} - X_{\theta_{i-1}^{*}} \leq 2\delta_{i-1} \sqrt{\log |\mathcal{C}_{i}|} \leq 2 \cdot \frac{D}{2^{i-1}} \sqrt{\log N \left(\frac{D}{2^{i-1}}\right)}$$

$$\leq 8 \int_{D/2^{i-1}}^{D/2^{i}} \sqrt{\log N (t)} dt$$

Putting things together, we get

$$\mathbb{E} \max_{\theta, \tilde{\theta} \in \mathcal{C}_L} X_{\theta} - X_{\tilde{\theta}} \leq 16 \sum_{i=2}^{L} \int_{\frac{D}{2^{i-1}}}^{\frac{D}{2^{i}}} \sqrt{\log N(t)} dt + 2D \sqrt{\log N\left(\frac{D}{2}\right)}$$
$$\leq 16 \int_{\delta/4}^{D} \sqrt{\log N_{\mathbb{T}}(t)} dt$$

This gives the desired form.

6 Reproducing Kernel Hilbert Spaces (Ch. 12)

6.1 Basics of Hilbert space

Def. 15 (Hilbert spaces) A Hilbert space $\mathcal H$ is a complete inner product space. In a Hilbert space

- There endows an inner product: $\langle \cdot, \cdot, \rangle_{\mathcal{H}}$,
- Every Cauchy sequence $(f_n)_{n=1}^{\infty}$ in \mathcal{H} converges to some element $f^* \in \mathcal{H}$.

Thm. 24 (Riesz representation) Let L be a bounded linear functional on a Hilbert space \mathcal{H} . Then there exists a unique representer $g \in \mathcal{H}$ such that $L(f) = \langle f, g \rangle_{\mathcal{H}}$ for all $f \in \mathcal{H}$.

Space	Kernel	Eigenfunctin
2-poly.		$\phi_j(x) = a_0^j + a_1^j x + a_2^j x^2$, const via eigen-decomposition.
1-Sobolev $W_2^1([0,1])$	$K(x,z) = \min\{x,z\}$	$\phi_j(t) = \sin\frac{(2j-1)\pi t}{2}, \mu_j = \left(\frac{2}{(2j-1)\pi}\right)^2$

Proof. Consider a null space $\operatorname{Null}(L) := \{h \mid L(h) = 0\}$. If $\operatorname{Null}(L) = H$, then $\operatorname{Null}(L)^{\perp} = \{0\}$, we take g = 0. In a non-trivial case (i.e., $\operatorname{Null}(L)^{\perp} \neq \{0\}$), there exist a nonzero element $g \in \operatorname{Null}(L)^{\perp}$ such that $\|g\|_{\mathcal{H}} = L(g)$. Define h := L(f)g - L(g)f, then we note

$$L(h) = L(f)L(g) - L(g)L(f) = 0,$$

which means $h \in \text{Null}(L)$. Therefore, we have $h \perp g$, i.e.,

$$0 = \langle h, g \rangle_{\mathcal{H}} = L(f) \|g\|_{\mathcal{H}}^2 - L(g) \langle f, g \rangle_{\mathcal{H}}.$$

This implies $L(f) = \langle f, g \rangle_{\mathcal{H}}$.

6.2 Reproducing kernel Hilbert space

Def. 16 (Kernel function) Given a feature map $\phi: \mathcal{X} \to \mathcal{H}$ and the Hilbert space \mathcal{H} that ϕ maps to, the kernel function is defined as

$$K(x,y) := \langle \phi(x), \phi(y) \rangle_{\mathcal{H}}.$$

Def. 17 (RKHS - **defined by kernel)** A reproducing kernel Hilbert space is a Hilbert space \mathcal{H} of functions $f: \mathcal{X} \to \mathbb{R}$ with a kernel function $K(\cdot, \cdot)$ that

- For any $x \in \mathcal{X}$, $K(\cdot, x) \in \mathcal{H}$,
- Satisfies the "reproducing property":

$$\langle f(\cdot), K(\cdot, x) \rangle_{\mathcal{H}} = f(x), \quad \forall f \in \mathcal{H}.$$

Thm. 25 (RKHS from kernel function) Given any positive semi-definite kernel function $K(\cdot, \cdot)$, there is a **unique** Hilbert space \mathcal{H} in which the kernel $K(\cdot, \cdot)$ satisfies the reproducing property.

Given some data $\{x_i\}_{i=1}^n$, such Hilbert space \mathcal{H} is

$$\mathcal{H} := \left\{ f(\cdot) = \sum_{i=1}^{n} \alpha_i K(\cdot, x_i) \mid x_i \in \mathcal{X} \right\}$$

with the norm

$$\langle f, f' \rangle_{\mathcal{H}} := \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha'_j K(x_i, x_j)$$

Remark: For a fixed kernel function, there will be (infinitely) many feature maps, and thus many Hilbert spaces of the feature. But the Hilbert space that satisfies the reproducing property is unique!

Def. 18 (RKHS - defined by evaluation functional) A reproducing kernel Hilbert space is a Hilbert space \mathcal{H} of functions $f: \mathcal{X} \to \mathbb{R}$ such that for each $x \in \mathcal{X}$, the evalu-

ation functional $L_x : \mathcal{H} \to \mathbb{R}$ that performs the operation $L_x(f) = f(x)$ is bounded, i.e.,

$$f(x) = |L_x(f)| \le M ||f||_{\mathcal{H}}, \quad \exists M < \infty, \forall f \in \mathcal{H}.$$

Proof. Let's prove the equivalence to the first definition. When L_x is a bounded linear functional, the Riesz theorem shows that there exists a unique $R_x \in \mathcal{H}$ such that

$$L_x(f) = \langle f, R_x \rangle_{\mathcal{H}}.$$

Similarly, we can get a unique R_y based on y. The kernel is defined as $K(x,y) = \langle R_x, R_y \rangle_{\mathcal{H}}$. Next, we can verify that K is positive semidefinite.

$$\alpha^T K \alpha = \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j K(x_i, x_j) = \langle \sum_{i=1}^n \alpha_i R_{x_i}, \sum_{j=1}^n \alpha_j R_{x_j} \rangle_{\mathcal{H}}$$
$$= \left\| \sum_{i=1}^n \alpha_i R_{x_i} \right\|_{\mathcal{H}}^2 \ge 0.$$

6.3 Mercer's theorem and its consequences

Thm. 26 (Mercer's) For a continuous and PSD kernel function K that satisfies the Hilbert-Schmidt condition. Then there exist a sequence of eigenfunctions $(\phi_i)_{i=1}^{\infty}$ that form an orthonormal basis of $L^2(\mathcal{X}; P)$ and non-negative eigenvalues $(\mu_i)_{i=1}^{\infty}$ such that

$$T_K(\phi_i) = \mu_i \phi_i, \quad \forall i = 1, 2, \cdots$$
 (6.1)

Moreover, the kernel function has the expansion

$$K(x,y) = \langle \Phi(x), \Phi(y) \rangle_{\ell^2(\mathbb{N})} := \sum_{i=1}^{\infty} \mu_i \phi_i(x) \phi_j(y)$$

7 Non-parametric Least Squares (Ch. 13)

7.1 Fixed design

Def. 19 (Least square regression) For a function f^* and data collection $\{(x_i, y_i)\}_{i=1}^n$, where $y_i = f^*(x_i) + \sigma w_i$, $w_i \sim \mathcal{N}0, 1$, the least-squares estimateor estimator is given by

$$\hat{f} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2.$$

Prop. 4 (Basic inequality) In the non-parametric least squares, we have the optimality of \hat{f} , which means

$$\frac{1}{n} \sum_{i=1}^{n} \left(\hat{f}(x_i) - y_i \right)^2 \le \frac{1}{n} \sum_{i=1}^{n} \left(f^*(x_i) - y_i \right)^2$$

Or, equivalently,

$$||f - f^*||_n^2 \le \frac{2\sigma}{n} \sum_{i=1}^n w_i (f(x_i) - f^*(x_i)).$$

Proof. Let's prove the equivalence. Note that $y_i = f^*(x_i) + \sigma w_i$, we have

$$0 \ge \frac{1}{n} \sum_{i=1}^{n} \left(\hat{f}(x_i) - y_i \right)^2 - \frac{1}{n} \sum_{i=1}^{n} \left(f^*(x_i) - y_i \right)^2$$

$$\ge \frac{1}{n} \sum_{i=1}^{n} \left((\hat{f}(x_i)^2 - f^*(x_i)^2) - 2y_i (\hat{f}(x_i) - f^*(x_i)) \right)$$

$$\ge \frac{1}{n} \sum_{i=1}^{n} \left((\hat{f}(x_i) - f^*(x_i))^2 - 2\sigma w_i (\hat{f}(x_i) - f^*(x_i)) \right),$$

which means

$$\frac{1}{n} \sum_{i=1}^{n} \left((\hat{f}(x_i) - f^*(x_i))^2 \right) \le \frac{2\sigma}{n} \sum_{i=1}^{n} \left(w_i (\hat{f}(x_i) - f^*(x_i)) \right).$$

Def. 20 (Localized Gaussian complexity) If we restrict the radius of function space \mathcal{F} , i.e., $\|f\|_n \leq \delta$, we have the localized Gaussian complexity for \mathcal{F} ,

$$\mathcal{G}_{n}\left(\delta; \mathcal{F}\right) := \mathbb{E}_{w \sim \mathcal{N}(0,1)} \left[\sup_{f \in \mathcal{F}, \|f\|_{n} \le \delta} \frac{1}{n} \sum_{i=1}^{n} w_{i} f\left(x_{i}\right) \right]$$

Def. 21 (Critical radius) For a local Gaussian complexity \mathcal{G}_n around f^* with radius δ , the radius δ is said to be *valid* if the following *critical inequality* satisfies,

$$\frac{\mathcal{G}_n\left(\delta;\mathcal{F}^*\right)}{\delta} \leq \frac{\delta}{2\sigma}$$

The smallest δ satisfies it is the *critical radius*, which must exist for any star-shaped function class \mathcal{F} .

Remark: One intuition is that the satisfaction of critical inequality means the optimality of \hat{f} . One example is that if we have the optimality of \hat{f} , i.e.,

$$\frac{1}{2n} \sum_{i=1}^{n} (y_i - \widehat{f}(x_i))^2 \le \frac{1}{2n} \sum_{i=1}^{n} (y_i - f^*(x_i))^2$$

And let $\delta = \mathbb{E} \left\| \hat{f} - f^* \right\|_n$, then we can show the δ satisfies $\frac{1}{2}\delta^2 \leq \sigma \mathcal{G}_n(\delta; \mathcal{F}^*)$, which is equivalent to the critical inequality.

Thm. 27 (Risk decomposition) In the least-squares regression, where $y_i = f^*(x_i) + \sigma w_i, w_i \sim \mathcal{N}(0, 1)$, we have risk decomposition

$$R(f) = (\mathbb{E}f(x) - \mathbb{E}f^*(x))^2 + \operatorname{var}(f(x)) + \sigma^2$$

Proof. Using the fact $var(x) = \mathbb{E}x^2 - (\mathbb{E}x)^2$ and the independence of y and f(x), we have

$$R(f) = \mathbb{E}\left[(y - f(x))^2 \right]$$

$$= \mathbb{E}y^2 + \mathbb{E}f(x)^2 - 2\mathbb{E}yf(x) \qquad (y \text{ and } f(x) \text{ are indep.})$$

$$= \text{var } (y) + (\mathbb{E}y)^2 + \text{var } ((f(x)) - (\mathbb{E}f(x))^2 + 2(\mathbb{E}y)(\mathbb{E}f(x))$$

$$= \text{var } (y) + \text{var } (f(x)) + (\mathbb{E}f(x) - \mathbb{E}y)^2$$

$$= \underbrace{\left(\mathbb{E}f(x) - \mathbb{E}f^*(x)\right)^2}_{\text{bias}^2} + \underbrace{\text{var } (f(x))}_{\text{variance}} + \underbrace{\sigma^2}_{\text{irreducible noise}}.$$

If there is no variance in model, we can also get the decomposition as,

$$R(f) = \mathbb{E} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

$$= \mathbb{E} \frac{1}{n} \sum_{i=1}^{n} (f^*(x_i) + \sigma w_i - f(x_i))^2$$

$$= \mathbb{E} \frac{1}{n} \sum_{i=1}^{n} (f^*(x_i) - f(x_i))^2 + \mathbb{E} \frac{1}{n} \sum_{i=1}^{n} \sigma^2 w^2$$

$$+ 2\mathbb{E} \frac{1}{n} \sum_{i=1}^{n} w (f^*(x_i) - f(x_i))$$

$$= \|f - f^*\|_n^2 + \sigma^2$$

Thm. 28 (Prediction error bound) If \mathcal{F}^* is star-shaped, then for any δ satisfies the critical inequality and $t \geq \delta$, the non-parametric least square estimate \hat{f}_n satisfies

$$P\left(\left\|\hat{f}_n - f^*\right\|_n^2 \ge 16t\delta_n\right) \le \exp\left(-\frac{nt\delta_n}{2\sigma^2}\right),$$

which also means for some constant c,

$$\mathbb{E} \left\| \hat{f}_n - f^* \right\|_n^2 \le c \left(\delta_n^2 + \frac{\sigma^2}{n} \right).$$

Remark: This theorem links the local Gaussian complexity to the error bounds.

Proof. Let $\hat{\Delta} = f - f^*$, and thus $\|\hat{\Delta}\| = \|f - f^*\|_n^2$. Our goal is to show for any $\|\hat{\Delta}\|_n \ge \sqrt{t}\delta_n$,

$$\|\hat{\Delta}\|_n^2 \le \frac{2\sigma}{n} \sum_{i=1}^n w_i \hat{\Delta}(x_i) \stackrel{(i)}{\le} 4\|\hat{\Delta}\|_n \sqrt{t} \delta_n$$

with probability $1-e^{-\frac{nt\delta_n^2}{2\sigma^2}}$. The theorem follows from rearranging terms. We organize the proof in multiple steps. For a given scalar $u \geq \delta_n$, define the event

$$\mathcal{A}(u) := \left\{ \exists g \in \mathcal{F}^* \cap \left\{ \left\|g\right\|_n \ge u \right\} \, \middle| \, \left| \frac{\sigma}{n} \sum_{i=1}^n \tilde{w}_i g\left(x_i\right) \right| \ge 2u \left\|g\right\|_n \right\}$$

Thm. 29 (Bounds via metric entropy) Any $\delta \in (0, \sigma]$ such that

$$\frac{16}{\sqrt{n}} \int_{\frac{\delta^{2}}{\delta^{-1}}}^{\delta} \sqrt{\log N_{n}\left(t; \mathbb{B}_{n}\left(\delta; F^{*}\right)\right)} dt \leq \frac{\delta^{2}}{4\sigma}$$

satisfies the critical inequality.

7.2 Error bounds for RKHS

Def. 22 (R-restrained space) The function space inside the radius R is

$$\mathcal{F}_R := \{ f \in \mathcal{F} \mid ||f||_{\mathcal{F}} \le R \}$$

Thm. 30 (Localized Gaussian complexity for RKHS) Let an RKHS $\mathcal F$ with kernel function $K(\cdot,\cdot)$. Defining $\hat\mu_j$ as eigenvalues of the kernel matrix K, we have the local Gaussian complexity bounded by

$$\mathcal{G}_n\left(\delta; \mathcal{F}_R\right) \le \sqrt{\frac{R+1}{n}} \sqrt{\sum_{j=1}^n \min\left\{\delta^2, \hat{\mu}_j\right\}}$$

Note that the localized Gaussian complexity is computed under $\|f\|_{\mathcal{F}} \leq R, \|f\|_n \leq \delta.$

Thm. 31 (Prediction error for norm-bounded RKHS) When $\lambda_n \geq 2\delta_{n;R}^2$ there is universal constants c_0, c_1, c_3 such that

$$P\left(\left\|\widehat{f}_{\lambda_n} - f^{\star}\right\|_{n}^{2} \ge cR^{2}\left(\delta_{n;R}^{2} + \lambda_n\right)\right) \le c_0 e^{-c_1 \frac{nR^{2} \delta_{n;R}^{2}}{\sigma^{2}}}$$

7.3 Random design

WIP...