Identification of Digits from sign languages

Data

- Use of 2062 images as a database, provided by Kaggle
- Data includes all numbers
 from 0 to 9 with 10 labels
- Use of Raw image data due to easier manipulation

Data Preprocessing

- Changes preformed randomly:
 - o rotate(-20° to 20°)
 - Gausian noise (0 to 0.05*255)
 - Gamma contrast(0.5 to 1.5)

With this changes for every image five new ones were made

Image processing

- Use of images that were grayscale and flattened showed better results
- Split the dataset into training and testing ![bg right:40% 95%]

Models

model	Accuracy	F1 score
Logistic regression	0.750	0.749
Decision Three Classifier	0.631	0.632
Random Forest Classifier	0.876	0.876
Naive Bayes	0.502	0.506
Support Vector Machines	0.888	0.888
Multilayer Perceptrion classifier	0.092	0.015

hyperparameter tuning & cross-validation

Support Vector machine

- Best performing model for the classification task.
- 88% Accuracy and F1 Score
- Best performing parameters
 - C=100
 - kernel=rbf
 - ∘ degree=2
 - o gamma=scale

Random Forest Classifier

- Second best model
- 88% Accuracy and F1 Score
- Best performing parameters
 - n_estimators=500
 - criterion=entropy
 - max_depth=None
 - min_samples_split=2
 - min_samples_leaf=1
 - max_features=auto

Multilayer Perceptron

- Worst results of all tests
- 9.2% Accuracy and 1.5% F1
 Score
- Best performing parameters
 - solver=lbfgs
 - max iter = 1000
 - hidden layer sizes = (256,512, 128)
 - activation = relu
 - \circ alpha = 0.0001
 - learning rate = adaptive
 - learning rate init = 0.001

Logistic Regression

- 75% Accuracy and 74.9% F1
 Score
- Best performing parameters
 - solver
 - max iter = 1000
 - \circ C = 10
 - class weight = balanced
 - ∘ penalty = l2

Conclusion

- Support Vector Machine is the best performing model for this task
- Most important aspect of these tests is the use of good data