## Multiplexed mRNA in-situ Hybridization Chain Reaction (HCR) in Sycon ciliatum

First created: Dec 5<sup>th</sup>, 2024 Last update: Dec 12<sup>th</sup>, 2024

#### - PROTOCOL -

## **Day 1 - Sample preparation (version with xylene clearing)**

This protocol refers to samples that have been already fixed and stored in pure methanol at -20 °C.

- 1. Wash samples for 15 min with 500 µL (or 1 mL) of **100% ethanol** at RT.
- 2. Clear samples for 30 min with 500 µL (or 1 mL) of 50% xylene in ethanol at RT.

Always use xylene in glass containers (as it dissolves plastic) and under a chemical safety hood.

- 3. Wash samples for 15 min with 500 µL (or 1 mL) of ice-cold 100 % ethanol at 4 °C.
- 4. Wash samples for  $\underline{15\,\text{min}}$  each with a graded series of 500  $\mu$ L (or 1 mL) ice-cold ethanol (75, 50 and 25%) in 0.25× HS at 4 °C.
- 5. Wash samples for 10 min with 500  $\mu$ L (or 1 mL) of **ice-cold 0.25** $\times$  **HS** at 4 °C.
- 6. Wash samples for 10 min with 500  $\mu$ L (or 1 mL) of ice-cold 1× PBS at 4 °C.
- 7. Post-fix samples for  $30 \, \text{min}$  with  $500 \, \mu\text{L}$  (or  $1 \, \text{mL}$ ) of **ice-cold fixative solution** at  $4 \, ^{\circ}\text{C}$ .

Pre-heat probe-hybridization buffer to 37 °C (you will need 700  $\mu$ L per tube [500  $\mu$ L for the pre-hybridization, and 200  $\mu$ L for the probe solution]).

8. Wash samples for  $2 \times 10 \, \text{min}$  with 500  $\mu \text{L}$  (or 1 mL) of **PBST** at 4 °C.

# Day 1 – Sample preparation (version with proteinase-K permeabilisation)

This protocol refers to samples that have been already fixed and stored in pure methanol at -20 °C.

1. Wash samples for 15 min with 500 µL (or 1 mL) of ice-cold 100 % ethanol at 4 °C.

- 2. Wash samples for 15 min each with a graded series of 500 μL (or 1 mL) ice-cold ethanol (75, 50 and 25%) in PBST at 4 °C.
- 3. Rock samples for 10 min with 500 μL (or 1 mL) of 7.5 μg/mL proteinase K in PBST at 37 °C.
- 4. Wash samples for 10 min with 500 µL (or 1 mL) of **PBST** at RT.
- 5. Quench samples for  $\underline{10\,min}$  with 500  $\mu$ L (or 1 mL) of **2 mg/mL glycine in PBST** at RT.
- 6. Wash samples for  $3 \times 10 \, \text{min}$  with 500  $\mu L$  (or 1 mL) of **PBST** at RT.
- 7. Acetylate samples for  $\underline{15\,\text{min}}$  each with a graded series of 500  $\mu$ L (or 1 mL) **0.1 M** triethanolamine containing **0, 1.5 and 3 \muL/mL acetic anhydride** ar RT.
- 8. Wash samples for  $2 \times 10 \text{ min}$  with 500  $\mu$ L (or 1 mL) of **PBST** at RT.
- 9. Post-fix samples for 30 min with 500 µL (or 1 mL) of **fixative solution** at RT.
- 10. Wash samples for  $2 \times 10 \text{ min}$  with 500  $\mu$ L (or 1 mL) of **PBST** at RT.

## Day 1 - HCR detection stage

1. Pre-hybridize samples for 30 min with 500 μL of **pre-warmed probe hybridiza- tion buffer** at 37 °C.

If reusing probes, pre-warm probe solution to 37 °C, then skip to Step 3.

At this step, samples can be stored in probe hybridization buffer at -20 °C for several months.

2. Prepare probe solution by adding 0.8 μL (0.8 pmol) of each **probe set 1 μM stock solution** to 200 μL of **probe hybridization buffer** (final concentration of 4 nM) at 37 °C.

Note: if using 500  $\mu$ L of probe solution, add 2  $\mu$ L (2 pmol) of each probe set.

3. Incubate samples for >12 h (overnight) with 200 µL of **pre-warmed probe solution** at 37 °C.

Pre-heat probe wash buffer at 37 °C (you will need 500  $\mu$ Lper tube per 4 washes).

## Day 2 - HCR amplification stage

Pre-equilibrate amplification buffer to room temperature (you will need 700  $\mu$ L per tube [500  $\mu$ L for pre-amplification, and 200  $\mu$ L for the hairpin solution]).

1. Wash samples for  $4 \times 20 \text{ min}$  with 500  $\mu$ L of **probe wash buffer** at 37 °C.

Probe solution can be saved and reused for 2-3 times; store at -20 °C.

- 2. Wash samples for  $3 \times 5$  min with 500  $\mu$ L (or 1 mL) of  $5 \times$  **SSCT** at RT.
- 3. Pre-amplify samples for 30 min with 500 µL of **amplification buffer** at RT.
- 4. Snap cool in separate tubes 4 μL of **hairpin H1** (30 pmol) and 4 μL of **hairpin H2** (30 pmol) **3 μM stock solutions**: heat at 95 °C for 90 s and cool to RT in the dark for 30 min.

If reusing hairpin solutions, heat at 95 °C and cool at RT, then skip at Step 6.

5. Prepare hairpin solution by adding **snap-cooled H1 hairpins** and **snap-cooled H2 hairpins** to 200 μL of **amplification buffer** (final concentration of each hairpin of 60 nM) at RT.

Note: if using 100  $\mu$ L of amplification buffer, add 2  $\mu$ L (15 pmol) of each hairpin.

Note: if using 500  $\mu$ L of amplification buffer, add 10  $\mu$ L (75 pmol) of each hairpin.

6. Incubate samples for  $\geq$ 12 h (overnight) with 200  $\mu$ L of **hairpin solution** at RT.

## Day 3 - HCR conclusion

1. Wash samples for  $2 \times 5$  min,  $2 \times 30$  min, and  $1 \times 5$  min with 500  $\mu$ L (or 1 mL) of  $5 \times 8$  SSCT at RT.

Hairpin solution can be saved and reused for 2-3 times; store at -20 °C.

At this step, samples can be stored in the dark in  $5 \times SSCT$  for several days at room temperature.

## Day 3 - Sample mounting

1. Wash samples for  $3 \times 5 \min$  with 500  $\mu$ L (or 1 mL) of  $1 \times PBS$  at RT.

If using VECTASHIELD® PLUS Antifade Mounting Medium with DAPI (H-2000), skip directly to Step 4.

- 2. Incubate samples for  $20\,\mathrm{min}$  with  $500\,\mu\mathrm{L}$  (or  $1\,\mathrm{mL}$ ) of **DAPI staining solution** at RT.
- 3. Wash samples for  $3 \times 5$  min with 500  $\mu$ L (or 1 mL) of  $1 \times PBS$  at RT.
- 4. Incubate samples for 30-60 min with 1 mL of 50 % glycerol in  $1 \times PBS$  at RT.
- 5. Incubate samples for 30-60 min with 1 mL of 75% glycerol in  $1 \times PBS$  at RT.

Maintaining samples at pH 7.40 is critical for the stability of fluorophores and long-term storage of mRNA in-situ HCR samples.

At this step, samples can be stored in the dark in 75% glycerol for several month at 4°C.

- 6. Collect precipitated samples from the 75 % glycerol solution and place them on a cleaned (bridged, if necessary) slide.
- 7. Add  $\sim$ 15–20 µL of mounting medium (or VECTASHIELD® PLUS Antifade Mounting Medium with DAPI [H-2000]) directly on samples.

Adjust the amount of embryo suspension and mounting medium according to the cover glass dimensions, the quantity of samples, and the thickness of the bridge.

8. Seal the slide with nail polish and store in the dark at 4 °C.

#### - RECIPES -

#### **Fixative solution**

| Compound            | Quantity          | Molar mass<br>(g/mol) | Final concentration (for 100 mL) |
|---------------------|-------------------|-----------------------|----------------------------------|
| 36–38% formaldehyde | $3.7\mathrm{mL}$  | 30.031                | 3.7%                             |
| 25 % gluteraldehyde | $0.2\mathrm{mL}$  | 100.120               | 0.05%                            |
| 10× PBS             | $10.0\mathrm{mL}$ | _                     | $1 \times PBS$                   |
| Distilled water     | 86.1 mL           | _                     | <del>-</del>                     |

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

| Compound            | Quantity         | Molar mass | Final concentration |
|---------------------|------------------|------------|---------------------|
|                     |                  | (g/mol)    | (for 100 mL)        |
| 36–38% formaldehyde | 3.7 mL           | 30.031     | 3.7%                |
| 25% gluteraldehyde  | $0.2\mathrm{mL}$ | 100.120    | 0.05%               |
| 10×PBS              | 10.0 mL          | 2.000      | $1 \times PBS$      |
| Distilled water     | 86.1 mL          | 2.000      | _                   |

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque

placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

#### - RESOURCES -

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.