Q1: Are lake and terrestrial primary productivity coherent?

Jonathan Walter, Grace Wilkinson, Rachel Fleck, Michael Pace 4/17/2019

This document organizes for openness and reproducibility analyses of the temporal coherence of interannual variation in lake primary productivity with terrestrial primary productivity in the landscape surrounding the lake

Data import

```
Data produced in 'ms1_prep.Rmd' are loaded.
load("/Users/jonathanwalter/Box Sync/NSF EAGER Synchrony/Data/RData files/ms1_analysis_inprogress1.RDat
any(sapply(analysislakes$lakedata, function(x){any(is.infinite(x))}))
## [1] FALSE
any(sapply(analysislakes$lakedata, function(x){any(is.na(x))}))
## [1] TRUE
which(sapply(analysislakes$lakedata, function(x){any(is.na(x))}))
## 7545 7595 7790 7970 8271
     74
          75
               77
                    81
analysislakes$lakeinfo[which(sapply(analysislakes$lakedata, function(x){any(is.na(x))})),]
        lagoslakeid
##
                            gnis_name nhd_lat nhd_long lake_area_ha
## 7445
               7545
                           Alton Pond 41.44294 -71.71835
                                                             17.843701
## 7495
               7595
                            Long Pond 41.41031 -71.55334
                                                             16.879950
## 7689
               7790
                        Watchaug Pond 41.38381 -71.69161
                                                            232.391660
## 7867
               7970
                          Yawgoo Pond 41.51113 -71.57300
                                                             60.724131
               8271 Meadow Brook Pond 41.44110 -71.69034
                                                              9.808244
## 8165
##
        lake_perim_meters nhd_ftype hu4_zoneid start
                                                       end
## 7445
                 3746.121
                                390
                                         HU4_10 1989 2010
## 7495
                 2751.178
                                390
                                         HU4_10
                                                1993 2010
## 7689
                 8397.096
                                390
                                         HU4_10
                                                 1989 2010
## 7867
                 3195.857
                                390
                                         HU4_10
                                                 1989 2010
## 8165
                 2030.864
                                390
                                         HU4_10
                                                 1989 2010
# image(accndvi)
# points(lakepts.prj[which(sapply(analysislakes$lakedata, function(x){any(is.na(x))})),])
dbuff[which(sapply(analysislakes$lakedata, function(x){any(is.na(x))}))]
```

analysislakes α lakeinfo<-analysislakes β lakeinfo[!sapply(analysislakes β lakedata, function(x){any(is.na(x) analysislakes β lakedata<-analysislakes β lakedata[!sapply(analysislakes β lakedata, function(x){any(is.na(x) analysislakes}

[1] 2500.000 2500.000 4939.589 2500.000 2500.000

```
source("~/GitHub/AquaTerrSynch/AnalysisCode/bandtest_coh.R")
tsranges<-rbind(c(2,4),c(4,Inf),c(2,Inf))
coh.chlaXaccndvi<-NULL
coh.chlaXmaxndvi<-NULL
for(lind in 1:length(analysislakes$lakedata)){
  lakedat.ii<-cleandat(analysislakes$lakedata[[lind]], as.numeric(colnames(analysislakes$lakedata[[lind
  chlaXaccndvi<-coh(lakedat.ii[1,], lakedat.ii[2,], as.numeric(colnames(analysislakes$lakedata[[lind]])
                    norm="powall", sigmethod="fast", nrand=10000)
  chlaXmaxndvi<-coh(lakedat.ii[1,], lakedat.ii[3,], as.numeric(colnames(analysislakes$lakedata[[lind]])</pre>
                    norm="powall", sigmethod="fast", nrand=10000)
  for(rind in 1:nrow(tsranges)){
    chlaXaccndvi<-bandtest.coh(chlaXaccndvi, tsranges[rind,])</pre>
    chlaXmaxndvi<-bandtest.coh(chlaXmaxndvi, tsranges[rind,])</pre>
  coh.chlaXaccndvi<-rbind(coh.chlaXaccndvi, c(t(as.matrix(chlaXaccndvi$bandp[,3:5]))))</pre>
  coh.chlaXmaxndvi<-rbind(coh.chlaXmaxndvi, c(t(as.matrix(chlaXmaxndvi$bandp[,3:5]))))</pre>
}
coh.chlaXaccndvi<-as.data.frame(coh.chlaXaccndvi)</pre>
coh.chlaXmaxndvi<-as.data.frame(coh.chlaXmaxndvi)</pre>
colnames(coh.chlaXaccndvi)<-paste0("accndvi",c("p.ts1","phi.ts1","coh.ts1","p.ts2","phi.ts2","coh.ts2",
colnames(coh.chlaXmaxndvi)<-paste0("maxndvi",c("p.ts1","phi.ts1","coh.ts1","p.ts2","phi.ts2","coh.ts2",
coh.chlaXaccndvi$lagoslakeid<-analysislakes$lakeinfo$lagoslakeid
coh.chlaXmaxndvi$lagoslakeid<-analysislakes$lakeinfo$lagoslakeid
#short timescales
hist(coh.chlaXaccndvi$accndvicoh.ts1, main="Accumulated NDVI, short timescales", xlab="Coherence", ylab
```

Accumulated NDVI, short timescales

hist(coh.chlaXmaxndvi\$maxndvicoh.ts1, main="Maximum NDVI, short timescales", xlab="Coherence", ylab="Fr

Maximum NDVI, short timescales

quantile (con. chiakacchavi vacchavicon. tsi)

0% 25% 50% 75% 100% ## 0.04230519 0.26855267 0.37281647 0.51749522 0.92134749

```
quantile(coh.chlaXmaxndvi$maxndvicoh.ts1)
                     25%
                                50%
                                            75%
## 0.03432407 0.24526250 0.35174752 0.47476306 0.80601025
alpha=0.05
sum(coh.chlaXaccndvi$accndvip.ts1<alpha)/nrow(coh.chlaXaccndvi)</pre>
## [1] 0.06802721
sum(coh.chlaXmaxndvi$maxndvip.ts1<alpha)/nrow(coh.chlaXmaxndvi)</pre>
## [1] 0.03401361
print(coh.chlaXaccndvi$accndviphi.ts1[coh.chlaXaccndvi$accndvip.ts1<alpha]/pi) #only pattern is that la
  [1] -0.69355770 0.97567765 0.84577293 -0.76068035 -0.10346014
## [6] 0.05131054 -0.60744627 -0.56248178 -0.15437429 -0.63997328
print(coh.chlaXmaxndvi$maxndviphi.ts1[coh.chlaXmaxndvi$maxndvip.ts1<alpha]/pi)</pre>
## [1] 0.3030499 0.1624359 -0.9406033 -0.5034587 -0.8338166
phicls<-c(-1,-.75,-0.25,0.25,0.75,1)
```

hist(coh.chlaXaccndvistaccndvi

Accumulated NDVI, short timescales

#hist(coh.chlaXmaxndvi\$maxndviphi.ts1[coh.chlaXmaxndvi\$maxndvip.ts1<0.2]/pi, main="Maximum NDVI, short
#long timescales
hist(coh.chlaXaccndvi\$accndvicoh.ts2, main="Accumulated NDVI, long timescales", xlab="Coherence", ylab=</pre>

Accumulated NDVI, long timescales

hist(coh.chlaXmaxndvi\$maxndvicoh.ts2, main="Maximum NDVI, long timescales", xlab="Coherence", ylab="Free

Maximum NDVI, long timescales

quantile(coh.chlaXaccndvi\$accndvicoh.ts2)

0% 25% 50% 75% 100% ## 0.07654579 0.39401711 0.54402381 0.75143055 0.95309993

```
quantile(coh.chlaXmaxndvi$maxndvicoh.ts2)
                                50%
                     25%
                                           75%
## 0.02843414 0.39347021 0.54275391 0.72063540 0.95965507
alpha=0.05
sum(coh.chlaXaccndvi$accndvip.ts2<alpha)/nrow(coh.chlaXaccndvi)</pre>
## [1] 0.1156463
sum(coh.chlaXmaxndvi$maxndvip.ts2<alpha)/nrow(coh.chlaXmaxndvi)</pre>
## [1] 0.08843537
print(coh.chlaXaccndvi$accndviphi.ts2[coh.chlaXaccndvi$accndvip.ts2<alpha]/pi)</pre>
## [1] 0.73992662 -0.90124264 0.53888310 0.27521830 -0.95606597
## [6] 0.52712388 0.66512195 -0.68599147 -0.91773670 -0.29662433
## [11] -0.10820287 -0.40541240 -0.22793834 -0.04840174 -0.57269988
## [16] -0.52827164 0.88106993
print(coh.chlaXmaxndvi$maxndviphi.ts2[coh.chlaXmaxndvi$maxndvip.ts2<alpha]/pi)</pre>
  [1] 0.70551340 -0.52165283 0.31832221 0.08039247 0.71001377
## [6] -0.31901830
                     0.06889035 0.75090709 -0.34232190 -0.47848554
## [11] 0.53740894 0.27725948 0.84338040
hist(coh.chlaXaccndvi$accndviphi.ts1[coh.chlaXaccndvi$accndvip.ts2<0.2]/pi, main="Accumulated NDVI, lon
```

Accumulated NDVI, long timescales

 $\begin{tabular}{ll} \#hist(coh.chlaXmaxndvismaxndvismaxndvicoh.ts2>0.6]/pi, main="Maximum NDVI, shorward to add: depth, average growing season Chlorophyll-a, TSI(chla) categories, pct ag \\ \begin{tabular}{ll} \#Need to add: depth, average growing season Chlorophyll-a, TSI(chla) categories, pct ag \\ \begin{tabular}{ll} \#Need to add: depth, average growing season Chlorophyll-a, TSI(chla) categories, pct ag \\ \begin{tabular}{ll} \#Need to add: depth, average growing season Chlorophyll-a, TSI(chla) categories, pct ag \\ \begin{tabular}{ll} \#Need to add: depth, average growing season Chlorophyll-a, TSI(chla) categories, pct ag \\ \begin{tabular}{ll} \#Need to add: depth, average growing season Chlorophyll-a, TSI(chla) categories, pct ag \\ \begin{tabular}{ll} \#Need to add: depth, average growing season Chlorophyll-a, TSI(chla) categories, pct ag \\ \begin{tabular}{ll} \#Need to add: depth, average growing season Chlorophyll-a, TSI(chla) categories, pct ag \\ \begin{tabular}{ll} \#Need to add: depth, average growing season Chlorophyll-a, TSI(chla) categories, pct ag \\ \begin{tabular}{ll} \#Need to add: depth, average growing season Chlorophyll-a, TSI(chla) categories, pct ag \\ \begin{tabular}{ll} \#Need to add: depth, average growing season Chlorophyll-a, TSI(chla) categories, pct ag \\ \begin{tabular}{ll} \#Need to add: depth, average growing season Chlorophyll-a, TSI(chla) categories, pct ag \\ \begin{tabular}{ll} \#Need to add: depth, average growing season Chlorophyll-a, TSI(chla) categories, pct ag \\ \begin{tabular}{ll} \#Need to add: depth, average growing season Chlorophyll-a, TSI(chla) categories, pct ag \\ \begin{tabular}{ll} \#Need to add: depth, average growing season Chlorophyll-a, TSI(chla) categories, pct ag \\ \begin{tabular}{ll} \#Need to add: depth, average growing season Chlorophyll-a, TSI(chla) categories, pct ag \\ \begin{tabular}{ll} \#Need to add: depth, average growing season Chlorophyll-a, TSI(chla) categories, pct ag \\ \begin{tabular}{ll} \#Need to add: depth, average growing season categories, pct ag \\ \begin{tab$

```
#agriculture -- is 500m buffer best? Other options include 100m buffer (probably too small) and hu12 wa
pct.ag<-lagosne_select(table="buffer500m.lulc", vars=c("lagoslakeid","buffer500m_nlcd2001_pct_82","buff
pct.ag<-pct.ag[pct.ag$lagoslakeid %in% analysislakes$lakeinfo$lagoslakeid,]
pct.ag.avg<-data.frame(lagoslakeid=pct.ag$lagoslakeid, pct.ag=rowMeans(pct.ag[,2:4]))</pre>
depth<-lagosne_select(table="lakes_limno", vars=c("lagoslakeid", "maxdepth"))</pre>
depth<-depth[depth$lagoslakeid %in% analysislakes$lakeinfo$lagoslakeid,] #use max depth because it's mo
#growing season Chlorophyll-a
chla<-lagosne_select(table="epi_nutr", vars=c("lagoslakeid","samplemonth","chla"))</pre>
chla<-chla[chla$lagoslakeid %in% analysislakes$lakeinfo$lagoslakeid,]</pre>
gs.chla<-chla[chla$samplemonth %in% 5:9,]
avg.chla<-aggregate(chla ~ lagoslakeid, data=gs.chla, FUN=mean, na.rm=T)
#Chlorophyll-a TSI class
\#TSI(CHL) = 9.81 ln(CHL) + 30.6
tsi.chl<-data.frame(lagoslakeid=avg.chla$lagoslakeid, tsi=9.81 * log(avg.chla$chla) + 30.6)
tsi.chl$tsi.cat<-rep("lake",nrow(tsi.chl))</pre>
tsi.chl$tsi.cat[tsi.chl$tsi < 40]<-"oligotrophic"
tsi.chl$tsi.cat[tsi.chl$tsi >=40 & tsi.chl$tsi < 50] <- "mesotrophic"
tsi.chl$tsi.cat[tsi.chl$tsi >=50 & tsi.chl$tsi < 70]<-"eutrophic"
tsi.chl$tsi.cat[tsi.chl$tsi >= 70] <-"hypereutrophic"
#huc2 and huc4 watershed codes
huc_codes<-read.csv("/Users/jonathanwalter/GitHub/AquaTerrSynch/AnalysisCode/match_huc_codes.csv", colC
predictors<-analysislakes$lakeinfo</pre>
predictors$tslength<-predictors$end-predictors$start+1</pre>
predictors<-left_join(predictors, depth, by="lagoslakeid")</pre>
predictors<-left_join(predictors, pct.ag.avg, by="lagoslakeid")</pre>
predictors<-left_join(predictors, avg.chla, by="lagoslakeid")</pre>
predictors<-left_join(predictors, tsi.chl, by="lagoslakeid")</pre>
predictors<-left_join(predictors, huc_codes, by="hu4_zoneid")</pre>
## Warning: Column `hu4_zoneid` joining factor and character vector, coercing
## into character vector
modvars.accndvi<-left_join(predictors, coh.chlaXaccndvi, by="lagoslakeid")</pre>
modvars.accndvi$nhd_ftype<-factor(modvars.accndvi$nhd_ftype)</pre>
modvars.accndvi$tsi.cat<-factor(modvars.accndvi$tsi.cat)</pre>
modvars.accndvi$tslength<-modvars.accndvi$end-modvars.accndvi$start + 1</pre>
modvars.accndvi<-modvars.accndvi[!is.na(modvars.accndvi$maxdepth),]
modvars.accndvi<-modvars.accndvi[!is.na(modvars.accndvi$pct.ag),]</pre>
modvars.accndvi.phist<-modvars.accndvi[modvars.accndvi$accndvip.ts1<0.2,]
modvars.accndvi.philt<-modvars.accndvi[modvars.accndvi$accndvip.ts2<0.2,]
#short timescales
gls.coh.accndvi.st<-gls(accndvicoh.ts1 ~ maxdepth + nhd_ftype + lake_area_ha + pct.ag + chla + tsi.cat
                        correlation=corExp(form = ~ nhd_lat + nhd_long))
summary(gls.coh.accndvi.st)
```

```
## Generalized least squares fit by REML
    Model: accndvicoh.ts1 ~ maxdepth + nhd_ftype + lake_area_ha + pct.ag + chla + tsi.cat + huc2_
##
##
    Data: modvars.accndvi
##
         AIC
                 BIC
                       logLik
##
    29.75993 80.9553 3.120035
##
## Correlation Structure: Exponential spatial correlation
## Formula: ~nhd_lat + nhd_long
## Parameter estimate(s):
##
       range
## 0.01020709
##
## Coefficients:
                                                t-value p-value
##
                             Value Std.Error
## (Intercept)
                        0.4272016 0.06975400 6.124403 0.0000
## maxdepth
                        -0.0007389 0.00133428 -0.553763
                                                        0.5807
## nhd_ftype436
                        0.0854864 0.21687431 0.394175
                                                        0.6941
                        -0.0000001 0.00000189 -0.042118
## lake_area_ha
## pct.ag
                        -0.0030727 0.00188636 -1.628913 0.1058
## chla
                        -0.0000208 0.00299418 -0.006945 0.9945
## tsi.cathypereutrophic 0.1186269 0.21466462 0.552615 0.5815
## tsi.catmesotrophic 0.0096149 0.04944307 0.194463
## tsi.catoligotrophic 0.0785448 0.05982687 1.312868
                                                        0.1916
## huc2_code02
                        -0.0802270 0.07432681 -1.079382
                                                        0.2825
## huc2_code04
                        0.0127429 0.05943050 0.214417
                                                        0.8306
## huc2_code07
                        -0.0609577 0.05423365 -1.123983
                                                        0.2631
## huc2_code08
                        -0.2498176 0.18847506 -1.325467
                                                        0.1874
## huc2_code09
                       -0.0660408 0.09570289 -0.690061
                                                        0.4914
                        0.0225775 0.07553533 0.298900
## huc2_code10
                                                        0.7655
## huc2_code11
                       -0.0780789 0.13847245 -0.563858 0.5738
##
## Correlation:
##
                        (Intr) mxdpth nh_436 lk_r_h pct.ag chla
## maxdepth
                        -0.322
## nhd_ftype436
                        -0.017 -0.035
## lake_area_ha
                         0.170 -0.573 0.019
## pct.ag
                         0.133 -0.109 0.074 0.085
## chla
                        -0.641 0.207 0.036 -0.113 -0.238
## tsi.cathypereutrophic 0.454 -0.101 -0.385 0.048 -0.089 -0.752
## tsi.catmesotrophic -0.582 0.005 0.032 -0.028 -0.132 0.673 -0.458
## tsi.catoligotrophic -0.524 -0.114 0.037 0.109 -0.097 0.642 -0.454
## huc2_code02
                        -0.290 -0.356 0.009 0.208 0.056 -0.156
                                                                  0.101
## huc2_code04
                        -0.519 0.047 -0.021 -0.130 -0.213 -0.017
                        -0.527 -0.031 -0.011 0.022 -0.053 -0.118
## huc2_code07
                                                                  0.062
## huc2_code08
                        -0.058 -0.055 -0.008 0.013 0.044 -0.224
                        -0.308 -0.031 -0.017 0.028 -0.199 -0.014
## huc2_code09
                                                                  0.060
## huc2_code10
                        -0.272 -0.206 -0.012  0.065 -0.005 -0.307
                                                                  0.267
## huc2_code11
                        -0.207 -0.212 0.009 0.061 0.037 -0.047
                                                                  0.033
##
                       ts.ctm ts.ctl hc2_02 hc2_04 hc2_07 hc2_08 hc2_09
## maxdepth
## nhd_ftype436
## lake_area_ha
## pct.ag
## chla
```

```
## tsi.cathypereutrophic
## tsi.catmesotrophic
## tsi.catoligotrophic
                         0.703
## huc2_code02
                        -0.083 0.048
## huc2_code04
                        -0.065 -0.137 0.498
                        -0.097 -0.088 0.596 0.741
## huc2 code07
## huc2 code08
                        -0.083 -0.084 0.206 0.204 0.252
                        -0.099 0.008 0.352 0.447 0.469 0.127
## huc2_code09
## huc2_code10
                        -0.050 -0.032 0.516 0.515 0.606 0.257
                                                                    0.334
## huc2_code11
                        0.089 0.099 0.304 0.262 0.311 0.116 0.168
##
                        hc2_10
## maxdepth
## nhd_ftype436
## lake_area_ha
## pct.ag
## chla
## tsi.cathypereutrophic
## tsi.catmesotrophic
## tsi.catoligotrophic
## huc2_code02
## huc2_code04
## huc2_code07
## huc2_code08
## huc2 code09
## huc2_code10
## huc2_code11
                          0.299
##
## Standardized residuals:
            Min
                            Q1
                                         Med
                                                        QЗ
## -1.875885e+00 -6.542012e-01 -1.890345e-15 6.077325e-01 2.829310e+00
## Residual standard error: 0.1761937
## Degrees of freedom: 143 total; 127 residual
dredge.coh.accndvi.st<-dredge(gls.coh.accndvi.st, beta="sd") #intercept only is best model. Disappointi
## Warning in dredge(gls.coh.accndvi.st, beta = "sd"): comparing models fitted
## by REML
## Warning in dredge(gls.coh.accndvi.st, beta = "sd"): do not know how to
## standardize coefficients of 'gls', argument 'beta' ignored
## Fixed term is "(Intercept)"
print(head(dredge.coh.accndvi.st))
## Global model call: gls(model = accndvicoh.ts1 ~ maxdepth + nhd_ftype + lake_area_ha +
       pct.ag + chla + tsi.cat + huc2_code, data = modvars.accndvi,
##
       correlation = corExp(form = ~nhd_lat + nhd_long))
##
## ---
## Model selection table
##
       (Int)
                   chl
                               mxd nhd_fty
                                              pct.ag tsi.cat df logLik AICc
## 1 0.3886
                                                              3 42.097 -78.0
## 17 0.3879
                                                              4 41.425 -74.6
                                           -0.001869
## 33 0.3976
                                                              4 37.268 -66.2
## 65 0.3686
                                                           + 6 38.748 -64.9
```

```
## 2 0.3980 -0.0008757
                                                             4 36.539 -64.8
## 9 0.4009
                       -0.0006435
                                                             4 36.296 -64.3
     delta weight
      0.00 0.845
## 1
## 17 3.46 0.150
## 33 11.77 0.002
## 65 13.14 0.001
## 2 13.23 0.001
## 9 13.72 0.001
## Models ranked by AICc(x)
gls.p.accndvi.st<-gls(accndvip.ts1 ~ tslength + maxdepth + nhd_ftype + lake_area_ha + pct.ag + chla + t
                      correlation=corExp(form = ~ nhd_lat + nhd_long))
summary(gls.p.accndvi.st)
## Generalized least squares fit by REML
    Model: accndvip.ts1 ~ tslength + maxdepth + nhd_ftype + lake_area_ha +
                                                                              pct.ag + chla + tsi.ca
##
    Data: modvars.accndvi
         AIC
##
                  BIC
                         logLik
    162.5399 216.4293 -62.26995
##
## Correlation Structure: Exponential spatial correlation
## Formula: ~nhd_lat + nhd_long
  Parameter estimate(s):
        range
## 0.008615349
## Coefficients:
##
                             Value Std.Error
                                                t-value p-value
## (Intercept)
                         0.1269522 0.3023176 0.4199299 0.6753
## tslength
                         0.0128091 0.0131020 0.9776387 0.3301
## maxdepth
                         0.0009036 0.0021961 0.4114461 0.6814
## nhd_ftype436
                         0.3911038 0.3570238 1.0954558 0.2754
                        -0.0000013 0.0000031 -0.4057159
## lake_area_ha
                                                         0.6856
## pct.ag
                         0.0060254 0.0031045 1.9408788 0.0545
## chla
                         0.0032723 0.0049026 0.6674558
                                                         0.5057
## tsi.cathypereutrophic -0.5327321 0.3515321 -1.5154581
                                                         0.1322
## tsi.catmesotrophic
                         0.0946554 0.0809872 1.1687701 0.2447
## tsi.catoligotrophic
                         0.0666966 0.0977252 0.6824910 0.4962
## huc2_code02
                         0.0367639 0.1213500 0.3029576 0.7624
## huc2_code04
                        -0.0915190 0.0971452 -0.9420843 0.3480
## huc2_code07
                        -0.0137036 0.0883488 -0.1551082 0.8770
## huc2_code08
                         0.1379913 0.3100448 0.4450687 0.6570
## huc2_code09
                        0.0123327 0.1567862 0.0786597 0.9374
## huc2 code10
                        -0.1720022 0.1244802 -1.3817628 0.1695
                         0.0214742 0.2287625 0.0938711 0.9254
## huc2_code11
##
##
  Correlation:
##
                        (Intr) tslngt mxdpth nh_436 lk_r_h pct.ag chla
                        -0.926
## tslength
                        -0.007 -0.122
## maxdepth
                        -0.119 0.121 -0.049
## nhd_ftype436
                         0.016 0.052 -0.574 0.025
## lake_area_ha
## pct.ag
                        -0.062 0.120 -0.122 0.088 0.090
## chla
                        -0.182 -0.064 0.214 0.027 -0.116 -0.244
```

```
## tsi.cathypereutrophic 0.234 -0.069 -0.093 -0.390 0.044 -0.096 -0.744
## tsi.catmesotrophic
                       -0.204 -0.017 0.009 0.029 -0.030 -0.133 0.672
                       -0.202 0.005 -0.112 0.037
                                                   0.108 -0.095 0.641
## tsi.catoligotrophic
## huc2_code02
                       -0.115  0.008  -0.355  0.009  0.209  0.057  -0.157
## huc2_code04
                       -0.257
                               ## huc2 code07
                       -0.213 0.017 -0.034 -0.009 0.024 -0.050 -0.120
## huc2 code08
                        0.086 -0.116 -0.041 -0.022 0.007 0.030 -0.214
## huc2_code09
                       -0.040 -0.080 -0.022 -0.026 0.025 -0.207 -0.009
## huc2_code10
                        ## huc2_code11
                        0.061 -0.149 -0.190 -0.010 0.053 0.018 -0.037
##
                       ts.cth ts.ctm ts.ctl hc2_02 hc2_04 hc2_07 hc2_08
## tslength
## maxdepth
## nhd_ftype436
## lake_area_ha
## pct.ag
## chla
## tsi.cathypereutrophic
## tsi.catmesotrophic
                        -0.455
## tsi.catoligotrophic
                        -0.453 0.703
## huc2_code02
                        0.101 -0.084 0.047
## huc2_code04
                        0.061 -0.066 -0.138
                                           0.496
                        0.061 -0.098 -0.090 0.596 0.740
## huc2_code07
## huc2_code08
                        0.186 -0.081 -0.084 0.203
                                                   0.193
                                                          0.248
## huc2_code09
                        0.065 -0.099 0.007 0.349
                                                   0.438
                                                          0.465
                                                                0.134
## huc2_code10
                        0.274 -0.047 -0.033 0.509
                                                   0.499
                                                          0.597
                                                                0.268
## huc2_code11
                        0.043 0.090 0.097 0.299
                                                   0.248
                                                          0.304 0.131
##
                       hc2_09 hc2_10
## tslength
## maxdepth
## nhd_ftype436
## lake_area_ha
## pct.ag
## chla
## tsi.cathypereutrophic
## tsi.catmesotrophic
## tsi.catoligotrophic
## huc2_code02
## huc2_code04
## huc2_code07
## huc2 code08
## huc2_code09
## huc2_code10
                        0.339
                        0.176 0.313
## huc2_code11
## Standardized residuals:
##
                       Q1
                                 Med
                                             Q3
## -1.94107750 -0.68067740 -0.01990797 0.84916917
                                                1.74873566
##
## Residual standard error: 0.2879222
## Degrees of freedom: 143 total; 126 residual
dredge.p.accndvi.st<-dredge(gls.p.accndvi.st, beta="sd") #intercept only is best model. Disappointing.
## Warning in dredge(gls.p.accndvi.st, beta = "sd"): comparing models fitted
```

```
## by REML
## Warning in dredge(gls.p.accndvi.st, beta = "sd"): do not know how to
## standardize coefficients of 'gls', argument 'beta' ignored
## Fixed term is "(Intercept)"
print(head(dredge.p.accndvi.st))
## Global model call: gls(model = accndvip.ts1 ~ tslength + maxdepth + nhd_ftype +
      lake_area_ha + pct.ag + chla + tsi.cat + huc2_code, data = modvars.accndvi,
##
      correlation = corExp(form = ~nhd_lat + nhd_long))
## ---
## Model selection table
##
       (Int)
                chl nhd_fty
                                         tsl df logLik AICc delta weight
                             pct.ag
## 1
      0.4872
                                              3 -25.632 57.4 0.00 0.762
## 17 0.4862
                                              4 -25.820 59.9 2.49 0.219
## 129 0.2987
                                     0.008592 4 -28.890 66.1 8.63 0.010
## 33 0.4698
                            0.003608
                                              4 -29.671 67.6 10.20 0.005
## 145 0.2919
                                    0.008850 5 -29.060 68.6 11.12 0.003
                                              4 -30.961 70.2 12.78 0.001
## 2
      0.4926 -5e-04
## Models ranked by AICc(x)
gls.phi.accndvi.st<-gls(cos(accndviphi.ts1) ~ maxdepth + lake_area_ha + pct.ag + chla + tsi.cat + huc2_
summary(gls.phi.accndvi.st)
## Generalized least squares fit by REML
    Model: cos(accndviphi.ts1) ~ maxdepth + lake_area_ha + pct.ag + chla +
                                                                              tsi.cat + huc2_code
##
    Data: modvars.accndvi.phist
##
                  BIC
                         logLik
##
    103.2394 111.7136 -36.61969
## Coefficients:
##
                             Value Std.Error
                                               t-value p-value
## (Intercept)
                        0.5571571 0.708438 0.7864588 0.4457
## maxdepth
                        -0.0413294 0.030556 -1.3525847
                                                       0.1992
## lake_area_ha
                        0.0002658 0.000378 0.7027756 0.4946
## pct.ag
                        ## chla
                         0.0337431 0.034275 0.9844887 0.3428
## tsi.cathypereutrophic -2.6661267 2.025591 -1.3162218 0.2108
## tsi.catmesotrophic
                         0.3635161 0.622191 0.5842514
                                                        0.5691
## tsi.catoligotrophic
                        0.4300884 0.764512 0.5625657
                                                        0.5833
## huc2_code02
                        -1.0094495 0.722341 -1.3974697
## huc2_code04
                        -0.8564502 0.619617 -1.3822260
                                                        0.1902
## huc2_code07
                        -0.2526052 0.564918 -0.4471534
                                                        0.6621
                        -1.0480555 0.970545 -1.0798630 0.2998
## huc2_code09
## huc2_code10
                        0.0099709 0.675156 0.0147683 0.9884
                        -1.2055855 4.259894 -0.2830084 0.7816
## huc2_code11
## Correlation:
                        (Intr) mxdpth lk_r_h pct.ag chla ts.cth ts.ctm
## maxdepth
                        -0.411
## lake_area_ha
                         0.062 -0.580
## pct.ag
                         0.179 -0.034 0.276
## chla
                        -0.670 0.185 -0.181 -0.433
```

tsi.cathypereutrophic 0.605 -0.165 0.144 0.382 -0.919

```
## tsi.catmesotrophic
                       -0.330 -0.290 0.093 -0.173 0.604 -0.501
## huc2_code02
                       -0.416 -0.043 -0.195 -0.214 0.188 -0.151 0.193
## huc2_code04
                       -0.494   0.337   -0.111   -0.179   0.013   -0.036   -0.304
## huc2_code07
                       -0.330 -0.050 0.347 0.218 -0.307 0.210 -0.344
## huc2 code09
                       -0.284 0.037 0.074 -0.188 -0.010 -0.016 -0.313
## huc2 code10
                       -0.123 -0.385 0.251 -0.158 -0.259 0.242 -0.108
                       0.044 0.268 -0.923 -0.291 0.111 -0.076 0.001
## huc2_code11
##
                       ts.ctl hc2_02 hc2_04 hc2_07 hc2_09 hc2_10
## maxdepth
## lake_area_ha
## pct.ag
## chla
## tsi.cathypereutrophic
## tsi.catmesotrophic
## tsi.catoligotrophic
## huc2_code02
                        0.307
## huc2_code04
                       -0.313 0.325
## huc2_code07
                       -0.291 0.277 0.589
## huc2_code09
                       -0.056
                              0.233 0.445 0.458
## huc2_code10
                        0.125  0.387  0.371  0.577  0.394
## huc2_code11
                        ##
## Standardized residuals:
            Min
                          Q1
                                      Med
                                                     QЗ
                                                                 Max
## -1.316683e+00 -3.695019e-01 1.516748e-16 2.866973e-01 1.378857e+00
##
## Residual standard error: 0.7319761
## Degrees of freedom: 27 total; 13 residual
dredge.phi.accndvi.st<-dredge(gls.phi.accndvi.st, beta="sd") #intercept only is best model. Disappointi
## Warning in dredge(gls.phi.accndvi.st, beta = "sd"): comparing models fitted
## by REML
## Warning in dredge(gls.phi.accndvi.st, beta = "sd"): do not know how to
## standardize coefficients of 'gls', argument 'beta' ignored
## Fixed term is "(Intercept)"
print(head(dredge.phi.accndvi.st))
## Global model call: gls(model = cos(accndviphi.ts1) ~ maxdepth + lake_area_ha + pct.ag +
      chla + tsi.cat + huc2_code, data = modvars.accndvi.phist)
## ---
## Model selection table
        (Int)
                 chl hc2_cod
                             pct.ag tsi.cat df logLik AICc delta weight
      0.11240
                                              2 -31.048 66.6 0.00 0.806
## 1
                                           + 5 -28.546 69.9 3.35 0.151
## 33 0.40590
                                              3 -33.732 74.5 7.91 0.015
## 17 0.16480
                             -0.01501
## 2 -0.02266 0.01113
                                              3 -34.111 75.3 8.67 0.011
## 3
      0.46800
                                              8 -25.731 75.5 8.86 0.010
## 34 -0.31370 0.04378
                                           + 6 -29.867 75.9 9.34 0.008
## Models ranked by AICc(x)
#long timescales
gls.coh.accndvi.lt<-gls(accndvicoh.ts2 ~ maxdepth + nhd_ftype + lake_area_ha + pct.ag + chla + tsi.cat
```

```
correlation=corExp(form = ~ nhd_lat + nhd_long))
summary(gls.coh.accndvi.lt)
## Generalized least squares fit by REML
##
    Model: accndvicoh.ts2 ~ maxdepth + nhd_ftype + lake_area_ha + pct.ag +
                                                                               chla + tsi.cat + huc2_
##
    Data: modvars.accndvi
##
         AIC
                  BIC
                         logLik
    92.70797 143.9033 -28.35398
##
##
## Correlation Structure: Exponential spatial correlation
  Formula: ~nhd_lat + nhd_long
   Parameter estimate(s):
##
      range
## 0.0317292
##
## Coefficients:
##
                             Value Std.Error
                                               t-value p-value
## (Intercept)
                         0.6267287 0.09341037 6.709413 0.0000
                                                        0.4568
## maxdepth
                        -0.0012909 0.00172968 -0.746341
## nhd_ftype436
                         0.4738853 0.28283750 1.675469
                                                        0.0963
## lake_area_ha
                        -0.0000002 0.00000246 -0.099489
                                                        0.9209
## pct.ag
                         0.0026158 0.00246775 1.059978
                                                        0.2912
## chla
                         0.0009980 0.00388382 0.256965
                                                        0.7976
## tsi.cathypereutrophic -0.1490334 0.27994212 -0.532372
                                                        0.5954
## tsi.catmesotrophic
                        -0.0075659 0.06213026 -0.121774
                                                        0.9033
## tsi.catoligotrophic
                         0.0829907 0.07725160 1.074291
                                                        0.2847
## huc2 code02
                        -0.0449029 0.09934088 -0.452008
                                                        0.6520
## huc2_code04
                        -0.0477740 0.08075671 -0.591579
                                                        0.5552
## huc2_code07
                        -0.1425729 0.07506912 -1.899221
                                                        0.0598
                        0.2055679 0.24671465 0.833221
## huc2_code08
                                                        0.4063
## huc2_code09
                        -0.1816884 0.12854881 -1.413380
                                                        0.1600
## huc2_code10
                        -0.0876704 0.10094829 -0.868468
                                                        0.3868
                         0.0520844 0.18198034 0.286209
## huc2_code11
                                                        0.7752
##
   Correlation:
##
                        (Intr) mxdpth nh_436 lk_r_h pct.ag chla
## maxdepth
                        -0.297
## nhd_ftype436
                        -0.017 -0.036
## lake_area_ha
                         0.154 -0.570 0.020
## pct.ag
                         0.131 -0.106 0.075 0.085
## chla
                        -0.619 0.186 0.036 -0.101 -0.236
## tsi.cathypereutrophic 0.438 -0.085 -0.386 0.039 -0.089 -0.751
## tsi.catmesotrophic
                        ## tsi.catoligotrophic
                        -0.517 -0.130
                                      0.037 0.115 -0.102 0.643 -0.454
## huc2_code02
                        -0.346 -0.339 0.009 0.198 0.051 -0.136
                                                                  0.089
## huc2 code04
                        -0.561 0.047 -0.020 -0.127 -0.211 -0.005
                        -0.570 -0.024 -0.011 0.017 -0.065 -0.097
## huc2_code07
                                                                  0.045
## huc2_code08
                        -0.081 -0.051 -0.008 0.011 0.042 -0.221
                        -0.345 -0.024 -0.016  0.023 -0.196 -0.004
## huc2_code09
                                                                  0.053
                        -0.320 -0.195 -0.012 0.060 -0.009 -0.291
## huc2_code10
## huc2_code11
                        -0.235 -0.210 0.009 0.061 0.034 -0.040
                                                                  0.028
##
                        ts.ctm ts.ctl hc2_02 hc2_04 hc2_07 hc2_08 hc2_09
## maxdepth
```

nhd_ftype436

```
## lake_area_ha
## pct.ag
## chla
## tsi.cathypereutrophic
## tsi.catmesotrophic
## tsi.catoligotrophic
                         0.719
## huc2 code02
                        -0.055 0.068
## huc2_code04
                        -0.047 -0.102 0.527
                        -0.067 -0.053 0.611 0.750
## huc2_code07
## huc2_code08
                        -0.084 -0.078 0.219 0.219 0.262
## huc2_code09
                        -0.075 0.023 0.369 0.464 0.480
                                                             0.138
                        -0.042 -0.015 0.539 0.543 0.623
                                                             0.269
## huc2_code10
                                                                    0.356
## huc2_code11
                         0.094 0.108 0.323 0.285 0.329
                                                             0.125 0.185
                        hc2_10
##
## maxdepth
## nhd_ftype436
## lake_area_ha
## pct.ag
## chla
## tsi.cathypereutrophic
## tsi.catmesotrophic
## tsi.catoligotrophic
## huc2_code02
## huc2_code04
## huc2_code07
## huc2_code08
## huc2_code09
## huc2_code10
                          0.317
## huc2_code11
##
## Standardized residuals:
          Min
                        Q1
                                   Med
                                                Q3
                                                           Max
## -2.24713790 -0.55609526 -0.07660139 0.62180817 1.84642434
## Residual standard error: 0.2297714
## Degrees of freedom: 143 total; 127 residual
dredge.coh.accndvi.lt<-dredge(gls.coh.accndvi.lt, beta="sd") #intercept only is best model. Disappointi
## Warning in dredge(gls.coh.accndvi.lt, beta = "sd"): comparing models fitted
## by REML
## Warning in dredge(gls.coh.accndvi.lt, beta = "sd"): do not know how to
## standardize coefficients of 'gls', argument 'beta' ignored
## Fixed term is "(Intercept)"
print(head(dredge.coh.accndvi.lt))
## Global model call: gls(model = accndvicoh.ts2 ~ maxdepth + nhd_ftype + lake_area_ha +
      pct.ag + chla + tsi.cat + huc2_code, data = modvars.accndvi,
##
       correlation = corExp(form = ~nhd_lat + nhd_long))
## ---
## Model selection table
       (Int)
                                            pct.ag df logLik AICc delta
                  chl
                              mxd nhd_fty
## 1 0.5542
                                                    3 6.491 -6.8 0.00
```

```
## 17 0.5512
                                                   4 7.315 -6.3 0.47
## 33 0.5426
                                         0.002276 4
                                                     1.835 4.6 11.43
## 49 0.5428
                                        + 0.001707 5 2.393 5.7 12.46
## 2 0.5448 0.0008675
                                                   4 1.080 6.1 12.94
## 9 0.5693
                      -0.0007822
                                                     0.928 6.4 13.24
##
     weight
## 1
      0.556
## 17 0.439
## 33 0.002
## 49 0.001
## 2
      0.001
## 9
      0.001
## Models ranked by AICc(x)
gls.p.accndvi.lt<-gls(accndvip.ts2 ~ tslength + maxdepth + nhd_ftype + lake_area_ha + pct.ag + chla + t
                       correlation=corExp(form = ~ nhd_lat + nhd_long))
summary(gls.p.accndvi.lt)
## Generalized least squares fit by REML
     Model: accndvip.ts2 ~ tslength + maxdepth + nhd_ftype + lake_area_ha +
##
                                                                              pct.ag + chla + tsi.ca
##
     Data: modvars.accndvi
          AIC
##
                  BIC
                          logLik
##
     181.3168 235.2061 -71.65839
##
## Correlation Structure: Exponential spatial correlation
  Formula: ~nhd_lat + nhd_long
  Parameter estimate(s):
##
##
         range
## 0.0005203966
##
## Coefficients:
                                                t-value p-value
##
                             Value Std.Error
## (Intercept)
                         0.1703609 0.3227742 0.5278020 0.5986
                         0.0013143 0.0139902 0.0939450
                                                         0.9253
## tslength
## maxdepth
                         0.0023092 0.0023565 0.9799216
                                                         0.3290
## nhd_ftype436
                        -0.2740421 0.3839574 -0.7137305
                                                         0.4767
                        0.0000016 0.0000033 0.4962372
## lake_area_ha
                                                         0.6206
## pct.ag
                        -0.0014182 0.0033373 -0.4249647
                                                         0.6716
## chla
                         0.0072056 0.0052726 1.3666126 0.1742
## tsi.cathypereutrophic -0.6021940 0.3780162 -1.5930375
                                                         0.1137
## tsi.catmesotrophic
                         0.0407581 0.0876744 0.4648802 0.6428
## tsi.catoligotrophic
                         0.1091835 0.1048805 1.0410274
                                                         0.2999
## huc2_code02
                         0.0523082 0.1297168 0.4032496 0.6874
## huc2_code04
                         0.1540052 0.1031885 1.4924644
                                                         0.1381
## huc2_code07
                         0.1746925 0.0933342 1.8716870
                                                         0.0636
## huc2_code08
                        -0.0481973 0.3330675 -0.1447073 0.8852
## huc2_code09
                        0.2813430 0.1677966 1.6766905
                                                        0.0961
                         0.0961973 0.1329634 0.7234875
## huc2_code10
                                                         0.4707
## huc2_code11
                        -0.0703673 0.2455461 -0.2865749 0.7749
##
##
   Correlation:
##
                         (Intr) tslngt mxdpth nh_436 lk_r_h pct.ag chla
## tslength
                        -0.927
## maxdepth
                        -0.004 -0.124
## nhd_ftype436
                        -0.118 0.120 -0.049
```

```
## lake_area_ha
                         0.015 0.052 -0.574 0.025
## pct.ag
                        -0.061 0.120 -0.122 0.087
                                                    0.091
                        -0.185 -0.062 0.215 0.028 -0.117 -0.244
## chla
## tsi.cathypereutrophic 0.236 -0.070 -0.093 -0.390 0.045 -0.096 -0.744
## tsi.catmesotrophic
                        -0.209 -0.014 0.012 0.030 -0.033 -0.131
## tsi.catoligotrophic
                        -0.201 0.003 -0.109 0.037 0.106 -0.094 0.644
## huc2 code02
                        -0.111 0.009 -0.364 0.010 0.213 0.060 -0.161
                        -0.254 0.071 0.029 -0.012 -0.122 -0.203 -0.026
## huc2_code04
## huc2_code07
                        -0.208 0.018 -0.044 -0.008
                                                    0.028 -0.046 -0.126
## huc2_code08
                        0.088 -0.116 -0.043 -0.022 0.008 0.031 -0.215
## huc2_code09
                        -0.036 -0.080 -0.027 -0.026  0.028 -0.206 -0.012
                         ## huc2_code10
## huc2_code11
                         0.062 -0.147 -0.193 -0.009 0.054 0.020 -0.038
                        ts.cth ts.ctm ts.ctl hc2_02 hc2_04 hc2_07 hc2_08
##
## tslength
## maxdepth
## nhd_ftype436
## lake_area_ha
## pct.ag
## chla
## tsi.cathypereutrophic
## tsi.catmesotrophic
                        -0.453
## tsi.catoligotrophic
                        -0.455 0.702
## huc2 code02
                         0.103 -0.087 0.042
## huc2_code04
                         0.063 -0.067 -0.143 0.488
## huc2_code07
                         0.064 -0.102 -0.100 0.590
                                                    0.736
## huc2_code08
                         0.187 -0.080 -0.086 0.199
                                                    0.189
                                                           0.244
## huc2_code09
                         0.067 -0.102 0.003 0.342
                                                    0.430
                                                           0.457
                                                                  0.130
                         0.277 -0.047 -0.037 0.502 0.491
                                                                  0.265
## huc2_code10
                                                           0.590
## huc2_code11
                         0.043 0.090 0.096 0.294 0.243
                                                           0.300
##
                        hc2_09 hc2_10
## tslength
## maxdepth
## nhd_ftype436
## lake_area_ha
## pct.ag
## chla
## tsi.cathypereutrophic
## tsi.catmesotrophic
## tsi.catoligotrophic
## huc2 code02
## huc2_code04
## huc2_code07
## huc2_code08
## huc2_code09
                         0.331
## huc2_code10
## huc2_code11
                         0.171 0.309
##
## Standardized residuals:
                                  Med
          Min
## -1.77046431 -0.84318300 0.04109281 0.78457936 1.70675570
## Residual standard error: 0.3096696
## Degrees of freedom: 143 total; 126 residual
```

```
dredge.p.accndvi.lt<-dredge(gls.p.accndvi.lt, beta="sd") #intercept only is best model. Disappointing.
## Warning in dredge(gls.p.accndvi.lt, beta = "sd"): comparing models fitted
## by REML
## Warning in dredge(gls.p.accndvi.lt, beta = "sd"): do not know how to
## standardize coefficients of 'gls', argument 'beta' ignored
## Fixed term is "(Intercept)"
print(head(dredge.p.accndvi.lt))
## Global model call: gls(model = accndvip.ts2 ~ tslength + maxdepth + nhd_ftype +
##
       lake_area_ha + pct.ag + chla + tsi.cat + huc2_code, data = modvars.accndvi,
       correlation = corExp(form = ~nhd_lat + nhd_long))
##
## ---
## Model selection table
        (Int)
                  mxd nhd_fty
                                                tsl df logLik AICc delta
                                   pct.ag
## 1
      0.4720
                                                     3 -36.419 79.0 0.00
                                                     4 -35.486 79.3 0.25
## 17 0.4753
                                          0.0008790 4 -39.873 88.0 9.03
## 129 0.4527
## 145 0.4723
                                          0.0001351 5 -38.947 88.3 9.32
## 9
      0.4342 0.002011
                                                     4 -41.173 90.6 11.62
## 33 0.4759
                               -0.0008419
                                                     4 -41.361 91.0 12.00
##
      weight
## 1
       0.524
## 17
       0.462
## 129 0.006
## 145 0.005
## 9
       0.002
## 33
       0.001
## Models ranked by AICc(x)
gls.phi.accndvi.lt<-gls(cos(accndviphi.ts2) ~ maxdepth + nhd_ftype + lake_area_ha + pct.ag + chla + tsi
                       correlation=corExp(form = ~ nhd_lat + nhd_long))
summary(gls.phi.accndvi.lt)
## Generalized least squares fit by REML
    Model: cos(accndviphi.ts2) ~ maxdepth + nhd_ftype + lake_area_ha + pct.ag +
##
                                                                                     chla + tsi.cat + 1
    Data: modvars.accndvi.philt
##
##
         AIC
                   BIC
                        logLik
     128.9434 145.6558 -48.4717
##
## Correlation Structure: Exponential spatial correlation
## Formula: ~nhd_lat + nhd_long
## Parameter estimate(s):
##
      range
## 0.2064398
##
## Coefficients:
                              Value Std.Error
##
                                                 t-value p-value
## (Intercept)
                        -0.3078653 0.8876303 -0.3468395 0.7322
## maxdepth
                         0.0022125 0.0155863 0.1419549 0.8885
## nhd ftype436
                        -1.3100328 1.2113344 -1.0814791 0.2917
                         0.0000590 0.0000456 1.2936721 0.2098
## lake_area_ha
## pct.ag
                         0.0039218 0.0217802 0.1800649 0.8588
```

```
## chla
                        -0.0096330 0.0326000 -0.2954902 0.7705
## tsi.cathypereutrophic 1.8327966 1.9970116 0.9177696 0.3692
## tsi.catmesotrophic 0.4079637 0.4693381 0.8692321 0.3945
## tsi.catoligotrophic
                         0.0653412 0.5906597 0.1106241 0.9130
## huc2_code02
                         0.4026739 0.6840031 0.5887018 0.5623
## huc2 code04
                         0.0732165 0.6694618 0.1093663 0.9140
## huc2 code07
                        0.1421377 0.5992983 0.2371735 0.8148
## huc2_code09
                        0.7425994 0.9693689 0.7660648 0.4522
## huc2_code10
                        -0.3158615 0.7884389 -0.4006163 0.6927
##
   Correlation:
##
                        (Intr) mxdpth nh_436 lk_r_h pct.ag chla
## maxdepth
                        -0.592
## nhd_ftype436
                        -0.022 -0.007
                        -0.142 -0.191 -0.110
## lake_area_ha
## pct.ag
                         0.056 -0.066 -0.438 0.254
## chla
                        -0.703 0.443 0.093 0.114 -0.155
## tsi.cathypereutrophic 0.612 -0.377 -0.339 -0.086 0.159 -0.911
## tsi.catmesotrophic -0.619 0.221 0.055 0.276 -0.075 0.761 -0.653
## tsi.catoligotrophic -0.592 0.101 0.060 0.327 -0.085 0.694 -0.600
## huc2_code02
                       -0.286 -0.207 -0.024 0.073 0.053 -0.212 0.198
## huc2_code04
                       -0.619 0.373 0.135 -0.259 -0.342 0.140 -0.123
## huc2_code07
                       -0.625 0.212 0.012 0.049 -0.061 0.032 -0.066
## huc2 code09
                        -0.396  0.157  0.061  -0.024  -0.156  0.071  -0.067
## huc2_code10
                        -0.222 -0.190  0.042 -0.008 -0.098 -0.202  0.185
                        ts.ctm ts.ctl hc2_02 hc2_04 hc2_07 hc2_09
## maxdepth
## nhd_ftype436
## lake_area_ha
## pct.ag
## chla
## tsi.cathypereutrophic
## tsi.catmesotrophic
## tsi.catoligotrophic
                         0.761
## huc2_code02
                        -0.135 0.026
## huc2_code04
                         0.041 0.014 0.486
## huc2 code07
                         0.025 0.100 0.641 0.737
## huc2_code09
                        -0.055 0.075 0.393 0.503 0.517
## huc2_code10
                        -0.142 0.001 0.579 0.470 0.559 0.360
##
## Standardized residuals:
                           Q1
            Min
                                        Med
                                                      QЗ
## -1.526120e+00 -4.771919e-01 1.040424e-07 3.036786e-01 1.626510e+00
##
## Residual standard error: 0.7686352
## Degrees of freedom: 35 total; 21 residual
dredge.phi.accndvi.lt<-dredge(gls.phi.accndvi.lt, beta="sd") #intercept only is best model. Disappointi
## Warning in dredge(gls.phi.accndvi.lt, beta = "sd"): comparing models fitted
## by REML
## Warning in dredge(gls.phi.accndvi.lt, beta = "sd"): do not know how to
## standardize coefficients of 'gls', argument 'beta' ignored
## Fixed term is "(Intercept)"
```

```
print(head(dredge.phi.accndvi.lt))
## Global model call: gls(model = cos(accndviphi.ts2) ~ maxdepth + nhd_ftype + lake_area_ha +
       pct.ag + chla + tsi.cat + huc2_code, data = modvars.accndvi.philt,
##
       correlation = corExp(form = ~nhd_lat + nhd_long))
## ---
## Model selection table
##
         (Int)
                    mxd nhd_fty
                                   pct.ag tsi.cat df logLik AICc delta
       0.05658
                                                    3 -36.338 79.4 0.00
## 1
## 17 0.06355
                                                    4 -35.747 80.8 1.38
## 65 -0.10320
                                                    6 -35.354 85.7 6.26
## 81 -0.10700
                                                   7 -33.796 85.7 6.29
## 33 0.09438
                                 -0.006614
                                                    4 -39.546 88.4 8.98
## 9 -0.05636 0.006575
                                                    4 -39.830 89.0 9.54
##
      weight
## 1
       0.622
## 17 0.312
## 65 0.027
## 81 0.027
## 33 0.007
## 9
       0.005
## Models ranked by AICc(x)
GLS models sucked, but inspection of results suggested that mixed effects models with random effects of
region on the intercept may likely be an improvement.
lme.coh.accndvi.st<-lmer(accndvicoh.ts1 ~ maxdepth + nhd_ftype + lake_area_ha + pct.ag + chla + tsi.cat</pre>
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(lme.coh.accndvi.st)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: accndvicoh.ts1 ~ maxdepth + nhd_ftype + lake_area_ha + pct.ag +
       chla + tsi.cat + (1 | huc2_code)
##
##
      Data: modvars.accndvi
##
## REML criterion at convergence: -22.4
##
## Scaled residuals:
                  1Q
                       Median
                                     3Q
## -1.90600 -0.68182 -0.06535 0.64780 2.88041
##
## Random effects:
## Groups
              Name
                          Variance Std.Dev.
## huc2_code (Intercept) 0.0005782 0.02405
                          0.0306185 0.17498
## Number of obs: 143, groups: huc2_code, 8
## Fixed effects:
                                                       df t value Pr(>|t|)
##
                           Estimate Std. Error
```

```
## (Intercept)
                       4.109e-01 5.846e-02 8.237e+01 7.029 5.54e-10
## maxdepth
                       -1.247e-03 1.179e-03 1.044e+02 -1.058
                                                                  0.293
                                                                  0.675
## nhd_ftype436
                       9.060e-02 2.153e-01 1.311e+02 0.421
                        6.788e-07 1.782e-06 1.279e+02 0.381
## lake_area_ha
                                                                  0.704
## pct.ag
                       -2.604e-03 1.777e-03 1.294e+02 -1.465
                                                                  0.145
## chla
                       -5.612e-04 2.768e-03 1.298e+02 -0.203 0.840
## tsi.cathypereutrophic 1.160e-01 2.032e-01 1.330e+02 0.571 0.569
## tsi.catmesotrophic
                       2.119e-03 4.870e-02 1.328e+02 0.044 0.965
## tsi.catoligotrophic 8.296e-02 5.768e-02 1.340e+02 1.438
                                                                  0.153
##
## (Intercept)
                        ***
## maxdepth
## nhd_ftype436
## lake_area_ha
## pct.ag
## chla
## tsi.cathypereutrophic
## tsi.catmesotrophic
## tsi.catoligotrophic
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Correlation of Fixed Effects:
              (Intr) mxdpth nh_436 lk_r_h pct.ag chla ts.cth ts.ctm
              -0.423
## maxdepth
## nhd_ftyp436 -0.031 -0.028
## lake_area_h 0.176 -0.530 0.013
              0.055 -0.032 0.070 0.021
## pct.ag
## chla
             -0.836 0.143 0.038 -0.072 -0.211
## ts.cthyprtr 0.588 -0.051 -0.401 0.030 -0.114 -0.731
## ts.ctmstrph -0.752  0.015  0.029 -0.025 -0.153  0.711 -0.468
## ts.ctlgtrph -0.703 -0.047 0.032 0.061 -0.137 0.707 -0.480 0.714
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
dredge.coh.accndvi.st<-dredge(lme.coh.accndvi.st, beta="sd") #intercept only is best model. Disappointi
## Warning in dredge(lme.coh.accndvi.st, beta = "sd"): comparing models fitted
## by REML
## Fixed term is "(Intercept)"
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
```

- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling

- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling

- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling

```
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
print(head(dredge.coh.accndvi.st))
## Global model call: lmer(formula = accndvicoh.ts1 ~ maxdepth + nhd_ftype + lake_area_ha +
       pct.ag + chla + tsi.cat + (1 | huc2_code), data = modvars.accndvi,
      na.action = "na.fail")
## ---
## Model selection table
     (Int)
                          mxd nhd_fty pct.ag tsi.cat df logLik AICc delta
                chl
## 1
                                                      3 42.253 -78.3 0.00
## 9
                                                       4 41.609 -74.9 3.40
         0
## 17
         0
                                      -0.1153
                                                       4 37.637 -67.0 11.35
## 2
         0 -0.05738
                                                       4 36.642 -65.0 13.34
## 5
                    -0.06052
                                                       4 36.495 -64.7 13.63
         Ω
## 33
         0
                                                    + 6 38.652 -64.7 13.65
##
    weight
## 1 0.841
## 9 0.153
## 17 0.003
## 2 0.001
## 5 0.001
## 33 0.001
## Models ranked by AICc(x)
## Random terms (all models):
## '1 | huc2 code'
lme.p.accndvi.st<-lmer(accndvip.ts1 ~ tslength + maxdepth + nhd_ftype + lake_area_ha + pct.ag + chla +</pre>
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(lme.p.accndvi.st)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: accndvip.ts1 ~ tslength + maxdepth + nhd_ftype + lake_area_ha +
      pct.ag + chla + tsi.cat + (1 | huc2_code)
##
##
     Data: modvars.accndvi
```

```
## REML criterion at convergence: 114.4
##
## Scaled residuals:
                 1Q
                     Median
                                  3Q
## -2.09352 -0.70997 -0.06146 0.80047 1.86426
## Random effects:
## Groups
             Name
                        Variance Std.Dev.
## huc2_code (Intercept) 0.00000 0.0000
## Residual
                        0.08213 0.2866
## Number of obs: 143, groups: huc2_code, 8
## Fixed effects:
##
                                                     df t value Pr(>|t|)
                         Estimate Std. Error
## (Intercept)
                        1.030e-01 2.773e-01 1.330e+02 0.371 0.7109
                        1.227e-02 1.240e-02 1.330e+02 0.990
## tslength
                                                                 0.3242
## maxdepth
                       1.513e-03 1.922e-03 1.330e+02 0.787 0.4325
                        3.725e-01 3.549e-01 1.330e+02 1.050 0.2958
## nhd_ftype436
## lake area ha
                        -2.591e-06 2.886e-06 1.330e+02 -0.898
                                                                0.3710
## pct.ag
                        5.068e-03 2.900e-03 1.330e+02 1.747 0.0829
## chla
                        2.378e-03 4.522e-03 1.330e+02 0.526 0.5999
## tsi.cathypereutrophic -4.101e-01 3.299e-01 1.330e+02 -1.243
                                                                 0.2160
                                                                 0.2098
## tsi.catmesotrophic
                        1.003e-01 7.960e-02 1.330e+02 1.260
## tsi.catoligotrophic
                         4.460e-02 9.400e-02 1.330e+02 0.474
                                                                0.6359
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Correlation of Fixed Effects:
##
              (Intr) tslngt mxdpth nh_436 lk_r_h pct.ag chla ts.cth ts.ctm
## tslength
              -0.943
## maxdepth
              0.058 -0.203
## nhd_ftyp436 -0.119 0.115 -0.050
## lake_area_h -0.027 0.087 -0.527 0.021
## pct.ag
              -0.122 0.147 -0.046 0.084 0.010
## chla
              -0.152 -0.138   0.151   0.022 -0.071 -0.221
## ts.cthyprtr 0.204 -0.007 -0.035 -0.402 0.028 -0.114 -0.723
## ts.ctmstrph -0.257 -0.003 0.014 0.029 -0.021 -0.153 0.712 -0.473
## ts.ctlgtrph -0.279 0.033 -0.037 0.035 0.051 -0.144 0.711 -0.489 0.717
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
dredge.p.accndvi.st<-dredge(lme.p.accndvi.st, beta="sd") #intercept only is best model. Disappointing.
## Warning in dredge(lme.p.accndvi.st, beta = "sd"): comparing models fitted
## by REML
## Fixed term is "(Intercept)"
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
```

- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider

- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider

- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider

- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider

- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider

- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider

- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider ## rescaling

```
print(head(dredge.p.accndvi.st))
## Global model call: lmer(formula = accndvip.ts1 ~ tslength + maxdepth + nhd_ftype +
      lake_area_ha + pct.ag + chla + tsi.cat + (1 | huc2_code),
       data = modvars.accndvi, na.action = "na.fail")
##
## ---
## Model selection table
      (Int) nhd_fty pct.ag
                              tsl df logLik AICc delta weight
## 1
                                   3 -26.080 58.3 0.00 0.760
## 9
                                   4 -26.261 60.8 2.48 0.220
## 65
         Ω
                          0.06570 4 -29.304 66.9 8.57 0.010
## 17
                                   4 -30.057 68.4 10.07 0.005
                   0.1236
                          0.06756 5 -29.467 69.4 11.04 0.003
## 73
         0
## 25
         0
                 + 0.1192
                                   5 -30.335 71.1 12.77 0.001
## Models ranked by AICc(x)
## Random terms (all models):
## '1 | huc2_code'
lme.phi.accndvi.st<-lmer(accndviphi.ts1 ~ maxdepth + lake_area_ha + pct.ag + chla + tsi.cat + (1|huc2_c</pre>
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(lme.phi.accndvi.st)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## accndviphi.ts1 ~ maxdepth + lake_area_ha + pct.ag + chla + tsi.cat +
       (1 | huc2_code)
##
##
     Data: modvars.accndvi.phist
##
## REML criterion at convergence: 118.8
##
## Scaled residuals:
##
       Min
                     Median
                                   30
              1Q
## -1.41084 -0.70979 0.04223 0.74514 1.63422
##
## Random effects:
## Groups
             Name
                         Variance Std.Dev.
## huc2_code (Intercept) 0.000
                                  0.000
                         2.729
## Residual
                                  1.652
## Number of obs: 27, groups: huc2_code, 7
##
## Fixed effects:
##
                          Estimate Std. Error
                                                      df t value Pr(>|t|)
                                                                  0.4303
## (Intercept)
                        -1.012e+00 1.256e+00 1.900e+01 -0.806
## maxdepth
                         3.899e-02 5.049e-02 1.900e+01 0.772
                                                                   0.4494
                        -6.788e-05 2.543e-04 1.900e+01 -0.267
## lake_area_ha
                                                                   0.7924
## pct.ag
                         9.842e-02 5.184e-02 1.900e+01
                                                          1.898
                                                                   0.0729
## chla
                        -1.024e-02 6.569e-02 1.900e+01 -0.156
                                                                   0.8778
## tsi.cathypereutrophic -4.689e-01 4.118e+00 1.900e+01 -0.114
                                                                   0.9105
```

```
## tsi.catmesotrophic
                        1.340e+00 1.152e+00 1.900e+01 1.163
                                                                  0.2593
## tsi.catoligotrophic -7.614e-01 1.345e+00 1.900e+01 -0.566 0.5780
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Correlation of Fixed Effects:
              (Intr) mxdpth lk_r_h pct.ag chla ts.cth ts.ctm
## maxdepth
            -0.425
## lake_area_h 0.287 -0.866
## pct.ag
              0.159 0.026 0.042
## chla
              -0.826 0.060 -0.051 -0.387
## ts.cthyprtr 0.686 -0.021 0.039 0.375 -0.907
## ts.ctmstrph -0.592 -0.241 0.281 -0.170 0.629 -0.528
## ts.ctlgtrph -0.560 -0.358 0.344 -0.336 0.707 -0.615 0.697
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
dredge.phi.accndvi.st<-dredge(lme.phi.accndvi.st, beta="sd") #model with TSI is unconvincingly better t
## Warning in dredge(lme.phi.accndvi.st, beta = "sd"): comparing models fitted
## by REML
## Fixed term is "(Intercept)"
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
```

- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning in optwrap(optimizer, devfun, getStart(start, rho\$lower, rho\$pp), :
 ## convergence code 3 from bobyqa: bobyqa -- a trust region step failed to
- ## reduce q
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling

```
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
print(head(dredge.phi.accndvi.st))
### Global model call: lmer(formula = accndviphi.ts1 ~ maxdepth + lake_area_ha + pct.ag +
       chla + tsi.cat + (1 | huc2_code), data = modvars.accndvi.phist,
##
       na.action = "na.fail")
## ---
## Model selection table
      (Int)
              chl mxd pct.ag tsi.cat df logLik AICc delta weight
## 17
                                       + 6 -47.683 111.6 0.00 0.543
          0
                                          3 -52.720 112.5 0.92 0.343
## 1
          0
## 25
          Λ
                          0.3546
                                       + 7 -48.072 116.0 4.47 0.058
                                         4 -53.679 117.2 5.61 0.033
## 9
          Λ
                          0.2974
                                       + 7 -49.412 118.7 7.15 0.015
## 18
          0 0.2803
                                      + 7 -50.142 120.2 8.61 0.007
## 21
          0
                   0.1552
## Models ranked by AICc(x)
## Random terms (all models):
## '1 | huc2 code'
lme.coh.accndvi.lt<-lmer(accndvicoh.ts2 ~ maxdepth + nhd_ftype + lake_area_ha + pct.ag + chla + tsi.cat</pre>
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(lme.coh.accndvi.lt)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: accndvicoh.ts2 ~ maxdepth + nhd_ftype + lake_area_ha + pct.ag +
       chla + tsi.cat + (1 | huc2_code)
      Data: modvars.accndvi
##
##
## REML criterion at convergence: 47.3
##
## Scaled residuals:
        Min
                  1Q
                      Median
                                    30
## -2.21276 -0.57031 -0.02055 0.75164 1.74788
##
## Random effects:
## Groups
             Name
                         Variance Std.Dev.
## huc2_code (Intercept) 0.001896 0.04354
```

```
## Residual
                         0.051117 0.22609
## Number of obs: 143, groups: huc2_code, 8
## Fixed effects:
                         Estimate Std. Error
                                                    df t value Pr(>|t|)
                       5.585e-01 7.738e-02 8.109e+01 7.217 2.55e-10
## (Intercept)
## maxdepth
                       -9.739e-04 1.548e-03 1.111e+02 -0.629 0.5306
                        4.656e-01 2.782e-01 1.311e+02 1.674 0.0965
## nhd_ftype436
## lake_area_ha
                       -2.708e-07 2.322e-06 1.308e+02 -0.117 0.9073
## pct.ag
                        2.006e-03 2.314e-03 1.321e+02 0.867 0.3876
## chla
                         9.604e-04 3.605e-03 1.310e+02 0.266 0.7903
## tsi.cathypereutrophic -1.544e-01 2.641e-01 1.335e+02 -0.585 0.5598
## tsi.catmesotrophic
                      -1.813e-02 6.301e-02 1.326e+02 -0.288 0.7740
## tsi.catoligotrophic
                        6.080e-02 7.478e-02 1.339e+02 0.813 0.4176
##
## (Intercept)
## maxdepth
## nhd ftype436
## lake_area_ha
## pct.ag
## chla
## tsi.cathypereutrophic
## tsi.catmesotrophic
## tsi.catoligotrophic
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Correlation of Fixed Effects:
##
              (Intr) mxdpth nh_436 lk_r_h pct.ag chla ts.cth ts.ctm
## maxdepth
              -0.431
## nhd_ftyp436 -0.030 -0.029
## lake_area_h 0.183 -0.537 0.014
## pct.ag
              0.058 -0.042 0.070 0.034
              -0.824 0.154 0.037 -0.080 -0.214
## chla
## ts.cthyprtr 0.584 -0.060 -0.399 0.032 -0.113 -0.733
## ts.ctmstrph -0.735 0.017 0.030 -0.027 -0.152 0.706 -0.465
## ts.ctlgtrph -0.677 -0.056 0.033 0.068 -0.129 0.697 -0.475 0.712
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
dredge.coh.accndvi.lt<-dredge(lme.coh.accndvi.lt, beta="sd") #lake type is marginal improvement over in
## Warning in dredge(lme.coh.accndvi.lt, beta = "sd"): comparing models fitted
## by REML
## Fixed term is "(Intercept)"
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
```

- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling

- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling

- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling

```
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
print(head(dredge.coh.accndvi.lt))
## Global model call: lmer(formula = accndvicoh.ts2 ~ maxdepth + nhd_ftype + lake_area_ha +
      pct.ag + chla + tsi.cat + (1 | huc2_code), data = modvars.accndvi,
      na.action = "na.fail")
##
## ---
## Model selection table
                        mxd nhd_fty pct.ag df logLik AICc delta weight
      (Int)
              chl
## 9
                                             4 7.370 -6.5 0.00 0.510
## 1
                                              3 6.264 -6.4 0.10 0.486
         Λ
## 17
                                     0.09355 4 1.599 5.1 11.54 0.002
## 25
                                   + 0.06678 5 2.404 5.6 12.08 0.001
         0
## 2
         0 0.07609
                                              4 1.074 6.1 12.59 0.001
## 5
         Ω
                   -0.07076
                                              4 0.853 6.6 13.03 0.001
## Models ranked by AICc(x)
## Random terms (all models):
## '1 | huc2_code'
lme.p.accndvi.lt<-lmer(accndvip.ts2 ~ tslength + maxdepth + nhd_ftype + lake_area_ha + pct.ag + chla +</pre>
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(lme.p.accndvi.lt)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: accndvip.ts2 ~ tslength + maxdepth + nhd ftype + lake area ha +
##
      pct.ag + chla + tsi.cat + (1 | huc2_code)
##
      Data: modvars.accndvi
##
## REML criterion at convergence: 134.2
```

```
##
## Scaled residuals:
       Min
                 1Q Median
## -1.71395 -0.76388 0.02568 0.84056 1.74987
## Random effects:
## Groups
            Name
                        Variance Std.Dev.
## huc2_code (Intercept) 0.0005271 0.02296
## Residual
                         0.0949908 0.30821
## Number of obs: 143, groups: huc2_code, 8
## Fixed effects:
                         Estimate Std. Error
                                                     df t value Pr(>|t|)
## (Intercept)
                         3.443e-01 2.996e-01 1.243e+02 1.149
                                                                  0.253
## tslength
                       -7.858e-04 1.336e-02 1.330e+02 -0.059
                                                                   0.953
                        1.321e-03 2.083e-03 1.017e+02
## maxdepth
                                                         0.634
                                                                  0.527
## nhd_ftype436
                       -2.605e-01 3.817e-01 1.298e+02 -0.683
                                                                  0.496
## lake_area_ha
                       2.297e-06 3.120e-06 1.226e+02 0.736
                                                                  0.463
                       1.487e-04 3.135e-03 1.234e+02 0.047
## pct.ag
                                                                  0.962
## chla
                         6.813e-03 4.881e-03 1.295e+02
                                                        1.396
                                                                  0.165
## tsi.cathypereutrophic -5.834e-01 3.559e-01 1.311e+02 -1.639
                                                                  0.104
## tsi.catmesotrophic 6.490e-02 8.567e-02 1.318e+02 0.758
                                                                  0.450
## tsi.catoligotrophic 1.395e-01 1.013e-01 1.330e+02 1.377
                                                                  0.171
## Correlation of Fixed Effects:
             (Intr) tslngt mxdpth nh_436 lk_r_h pct.ag chla ts.cth ts.ctm
## tslength
              -0.942
               0.050 -0.198
## maxdepth
## nhd_ftyp436 -0.119 0.116 -0.050
## lake_area_h -0.023 0.085 -0.529 0.021
              -0.119 0.145 -0.049 0.084 0.019
## pct.ag
## chla
              -0.156 -0.134  0.155  0.022 -0.075 -0.222
## ts.cthyprtr 0.208 -0.010 -0.039 -0.401 0.028 -0.115 -0.722
## ts.ctmstrph -0.255 -0.004 0.015 0.029 -0.023 -0.153 0.710 -0.471
## ts.ctlgtrph -0.274 0.031 -0.042 0.035 0.055 -0.140 0.707 -0.486 0.716
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
dredge.p.accndvi.lt<-dredge(lme.p.accndvi.lt, beta="sd") #intercept only is best model. Disappointing.
## Warning in dredge(lme.p.accndvi.lt, beta = "sd"): comparing models fitted
## by REML
## Fixed term is "(Intercept)"
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
```

- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling

- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
- ## rescaling

- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling

- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider ## rescaling

- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling

- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider ## rescaling

```
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
print(head(dredge.p.accndvi.lt))
## Global model call: lmer(formula = accndvip.ts2 ~ tslength + maxdepth + nhd_ftype +
      lake_area_ha + pct.ag + chla + tsi.cat + (1 | huc2_code),
      data = modvars.accndvi, na.action = "na.fail")
##
## ---
```

```
## Model selection table
##
     (Int)
              mxd nhd_fty pct.ag
                                         tsl df logLik AICc delta weight
## 1
                                              3 -36.419 79.0 0.00 0.524
## 9
                                              4 -35.486 79.3 0.25 0.462
         Λ
## 65
                                   0.0058720 4 -39.873 88.0 9.03 0.006
## 73
                                   0.0009026 5 -38.947 88.3 9.32 0.005
         0
## 5
                                              4 -41.173 90.6 11.62 0.002
         0 0.1004
## 17
                          -0.02605
                                              4 -41.361 91.0 12.00 0.001
         0
## Models ranked by AICc(x)
## Random terms (all models):
## '1 | huc2_code'
lme.phi.accndvi.lt<-lmer(accndviphi.ts2 ~ maxdepth + lake_area_ha + pct.ag + chla + tsi.cat + (1|huc2_c</pre>
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(lme.phi.accndvi.lt)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## accndviphi.ts2 ~ maxdepth + lake_area_ha + pct.ag + chla + tsi.cat +
       (1 | huc2_code)
##
     Data: modvars.accndvi.philt
##
## REML criterion at convergence: 159
## Scaled residuals:
       Min
                 10
                     Median
                                   30
## -1.46024 -0.72225 0.00125 0.57741 1.66743
##
## Random effects:
                         Variance Std.Dev.
## Groups
             Name
                                  0.000
## huc2_code (Intercept) 0.000
## Residual
                         3.308
                                  1.819
## Number of obs: 35, groups: huc2_code, 6
## Fixed effects:
##
                          Estimate Std. Error
                                                      df t value Pr(>|t|)
## (Intercept)
                        -3.944e-01 1.478e+00 2.700e+01 -0.267
                                                                    0.792
## maxdepth
                         1.673e-02 2.752e-02 2.700e+01
                                                           0.608
                                                                    0.548
## lake_area_ha
                        -5.263e-05 9.689e-05 2.700e+01 -0.543
                                                                    0.591
## pct.ag
                         5.962e-02 4.166e-02 2.700e+01
                                                          1.431
                                                                    0.164
## chla
                        -1.414e-02 7.100e-02 2.700e+01 -0.199
                                                                    0.844
## tsi.cathypereutrophic 1.217e+00 4.108e+00 2.700e+01 0.296
                                                                    0.769
## tsi.catmesotrophic
                        -7.606e-01 1.158e+00 2.700e+01 -0.657
                                                                    0.517
                        -1.656e-01 1.398e+00 2.700e+01 -0.118
## tsi.catoligotrophic
                                                                    0.907
##
## Correlation of Fixed Effects:
              (Intr) mxdpth lk_r_h pct.ag chla ts.cth ts.ctm
## maxdepth
              -0.455
```

```
## lake_area_h -0.351 -0.070
## pct.ag -0.117 0.176 0.050
## chla
              -0.874 0.208 0.258 -0.073
## ts.cthyprtr 0.777 -0.180 -0.205 -0.019 -0.936
## ts.ctmstrph -0.808 0.035 0.368 -0.041 0.760 -0.655
## ts.ctlgtrph -0.784 0.075 0.330 -0.152 0.772 -0.665 0.773
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
dredge.phi.accndvi.lt<-dredge(lme.phi.accndvi.lt, beta="sd") #model with TSI is unconvincingly better t
## Warning in dredge(lme.phi.accndvi.lt, beta = "sd"): comparing models fitted
## by REML
## Fixed term is "(Intercept)"
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
```

- ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider
 ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider ## rescaling
- ## Warning: Some predictor variables are on very different scales: consider

rescaling

```
print(head(dredge.phi.accndvi.lt))
## Global model call: lmer(formula = accndviphi.ts2 ~ maxdepth + lake_area_ha + pct.ag +
       chla + tsi.cat + (1 | huc2_code), data = modvars.accndvi.philt,
##
##
       na.action = "na.fail")
## ---
## Model selection table
      (Int)
              chl
                      mxd pct.ag tsi.cat df logLik AICc delta weight
                                          3 -68.922 144.6 0.00 0.622
## 1
## 17
          0
                                       + 6 -65.661 146.3 1.70 0.265
## 9
                           0.3005
                                          4 -69.737 148.8 4.19 0.077
## 25
                           0.2583
                                       + 7 -66.987 152.1 7.50 0.015
          0
## 2
                                          4 -71.706 152.7 8.13 0.011
          0 0.1398
## 5
          0
                   0.01092
                                          4 -71.710 152.8 8.14 0.011
## Models ranked by AICc(x)
## Random terms (all models):
## '1 | huc2_code'
```

Adding random effects of huc2 region on intercept helped somewhat. Some possibilities are to add more detailed lake type classes, and to model 2-3 regions separately.