

Aktive Sicherheit - AS

Cooperative Cars - CoCar

Dr. Ulrich Kreßel
Projektleitung Aktive Sicherheit - AS
DaimlerChrysler AG
Group Research
Team Machine Vision

Verkehrsmanagement - VM

Aktive Sicherheit - AS

Cooperative Cars - CoCar

Aktiv – Adaptive und kooperative Technologien für den intelligenten Verkehr

Budget, Förderung, Laufzeit

• Gesamtbudget ca. 60 Mio. €

• Fördermittel ca. 27 Mio. €

Laufzeit 01.09.2006 – 31.08.2010

Förderung durch

Bundesministerium für Wirtschaft und Technologie

Referat IV B5, Dr. Meuresch

Die Aktiv-Projekte

Partner Aktive Sicherheit

Das Projekt "Aktive Sicherheit"

Entwicklung von Assistenzsystemen

- zur Erhöhung der Verkehrssicherheit
- zur Reduzierung von Verkehrsunfällen
- zur Entlastung des Fahrers
- und Sicherheit für ungeschützte Verkehrsteilnehmer
- mit ganzheitlicher und robuster Erfassung der Fahrumgebung
- unter Einbeziehung des Fahrers

Das Projekt "Aktive Sicherheit"

Aktive Gefahrenbremsung

Fahrsicherheit und Aufmerksamkeit

und Radfahrer

Integrierte Querführung

Projektstruktur "Aktive Sicherheit"

Aktive Sicherheit - AS

Dr. Ulrich Kreßel, DC

Aktive Gefahren-Bremsung

W. Schwertberger, MAN

Integrierte Querführung

Dr. T. Giebel, VW

Kreuzungsassistenz

Dr. G. Breuel, DC (Dr. P. Zahn, BMW)

Sicherheit für Fußgänger und Radfahrer

Dr. G. Baratoff, Siemens

Fahrsicherheit und Aufmerksamkeit Dr. D. Manstetten, Bosch

Fahrsicherheit und Aufmerksamkeit

Teilprojekt

Fahrsicherheit und **Aufmerksamkeit**

FSA

Teilprojektleitung Dr. Dietrich Manstetten Robert Bosch GmbH Forschung und Vorausentwicklung Mensch-Maschine Interaktion

Fahrsicherheit und Aufmerksamkeit

Querschnittliches Projekt in AKTIV-AS mit den Schwerpunkten

Erkennung der Fahreraufmerksamkeit

- Erkennung der Aufmerksamkeit aus Fahrverhalten
- Erkennung der Aufmerksamkeit aus Blickrichtung und Kopfposition
- Prototypische Darstellung und Vergleich der Verfahren

Berücksichtigung der Aufmerksamkeit für Fahrerassistenzsysteme

- Integration der Aufmerksamkeit in Warn-/Eingriffskonzepte der Applikationen
- Verfahren zur Steigerung der Aufmerksamkeit

Testmethoden im Entwicklungsprozess

- Prüfverfahren zu Bedienbarkeit & Kontrollierbarkeit für Simulator und Feld
- Entwicklungstools zum Test von Sensorsystemen

Rahmenbedingungen und Auswirkungen der Nutzung

- Langfristige Auswirkungen der Systemnutzung auf Verkehrssicherheit
- Wirkpotenzial-/Nutzenanalyse auf Basis von Unfalldatenbanken
- Haftungs- und zulassungsrechtliche Rahmenbedingungen

Fahrsicherheit und Aufmerksamkeit

Zusammenarbeit von FSA mit den Applikationsprojekten

AP 4300 Rechtliche Rahmenbedingungen

Erster Workshop zur Diskussion rechtlicher Fragestellungen der Applikationen

Integrierte Querführung

Teilprojekt Integrierte Querführung IQF

Teilprojektleitung **Dr. Tobias Giebel**Volkswagen AG
Konzernforschung
Fahrzeugdynamik

Integrierte Querführung

Zielsystem:

- 1. Querführungsassistenzfunktion mit kontinuierlicher Lenkmomentenüberlagerung, die den Fahrer bei der Lenkaktivität (Querführungsaufgabe) entlastet jedoch nicht in der Kontrollfunktion. Es ist vorgesehen, dass der Fahrer die Hände am Lenkrad behält.
- 2. Hohe Verfügbarkeit: 0 km/h -180 km/h (Autobahnen, Gut ausgebaute Landstraßen, Magistralen, Stau, Baustellen)
- 3. Umfeldadaptives Systemverhalten basierend auf Umfelderfassung mit bildgebender und objektgebende Sensorik in Kombination mit digitaler Karte und Ortungssystem.

Integrierte Querführung

Zusätzliche partnerspezifische Schwerpunkte

- Fahrerähnliches umfeldabhängiges Fahrverhalten (Trajektorienplanung)
 BOSCH
- Baustellenassistenz: rückwärts- bzw. seitwärtsgerichteten Sensorik und Interaktion zwischen Längs- und Querführung

- Integration Längsführungsfunktionen in die Querführung, und damit Realisierung einer integrierten Regelung.
- Erfassen der Fahreraufmerksamkeit und Verwendung zur Adaption der Assistenzfunktion
- Spezielle HMI-Konzepte für die Assistenz: transparente Kommunikation des adaptiven Assistenzsystems mit dem Fahrer
- Systemanpassung an möglichen Gegenverkehr und nutzfahrzeugspezifische Trajektorienplanung

Fahrerschnittstelle mit Systemzuständen

- Zustand AUS:
 - System ist ausgeschaltet durch Fahrer
 - keine aktiven Eingriffe
- Zustand DEAKTIV
 - keine aktiven Eingriffe
 - Fahrer kann ggf. System aktivieren
- Zustand AKTIV:
 - nach Aktivierung durch Fahrer (C) falls System innerhalb der Systemgrenzen
 - kontinuierlicher Systemeingriff
- Zustand PASSIV:
 - Bei Übersteuerung oder Verlassen der Systemgrenzen (e)
 - vorübergehend keine aktiven Eingriffe
 - automatische Reaktivierenung (f) oder Deaktivierung (g) möglich

IQF Systemzustände

Übersteuerbarkeit

- Passivierung (e) durch begrenzten Fahrereingriffe
- Automatische Reaktivierung **(f)** nach beendetem Fahrereingriff
- Automatische Deaktivierung (g) durch Fahrereingriffe jenseits von situationsadaptiven Grenzen (z.B. Amplitude, Dauer, Gradienten)

Fahrerübergabe bei Erreichen der Systemgrenzen

- Passivierung (e) bei kurzzeitigem Verlassen der Systemgrenzen
- Automatische Reaktivierung (f) möglich falls Rückkehr in Systemgrenzen
- Automatische Deaktivierung **(g)** bei Überschreitung situationsadaptiven Grenzen (z.B. Dauer, Anzahl verletzter Systemgrenzen)

Zentrale Fragestellung an die BASt, Zulassungsfähigkeit:

Unter welchen Bedingungen ist das IQF-Assistenzsystem zulassungsfähig?

- Unter welchen Bedingungen ist die IQF-Bedienerschnittstelle zulassungsfähig, bzw. welche Punkte müssen diesbezüglich beachtet werden?
- Unter welchen Bedingungen ist der IQF-Unterstützungsgrad zulassungsfähig, bzw. welche Punkte müssen diesbezüglich beachtet werden?

Zulassungsfähigkeit Bedienerschnittstelle:

Missbrauch: Anforderungen zur Absicherung von Missbrauch bez.

- Hands-Off: Hands-Off-Erkennung Zulassungsrelevant, genügt Hinweis in Handbuch?
- Unsachgemäßes Verwenden der Funktion (z.B. Aufmerksamkeit nicht auf Fahraufgabe)
 - => Kompensierung des Sicherheitsvorteils (Langzeit-Lernverhalten)

Transparenz: Anforderungen an Nachweis zur Transparenz des Systemzustandes bez.

- Systemadaptivität (Umfeld, Fahrer) ("Vorhersagbarkeit des Systemverhaltens")
- Temporäre Passivierung ("Mode Confusion")

Fahrerübergabe: Anforderungen an Nachweis Praktikabilität der Fahrerübergabe bez.

- Bedingungen an Fahrsituation (Handelbarkeit durch Fahrer)
- Vorwarnzeit vor Passivierung/ Deaktivierung (Reaktionszeit)

Zulassungsfähigkeit Unterstützungsgrad

- Kontinuierliche Lenkmomentenüberlagerung bez. Genfer Übereinkommen
 - Reglung 79, Abschnitt 2.3.4.1. "Automatische geregelte Lenkfunktion"
 - 5.1.6.1. ... muss selbsttätig außer Kraft gesetzt werden, wenn die Fahrzeuggeschwindigkeit die eingestellte Grenze von 10 km/h um mehr als 20 % überschreitet oder die auszuwertenden Signale nicht mehr empfangen werden.
- Absicherung bez. unentdeckte Systemfehler
 - Fehlinterpretation/ Missinterpretation komplexer Fahrszenarien bei der Umfeldwahrnehmung
 - Fahrzeugeingriff aufgrund Systemfehlverhalten
 (Begrenzung der Momente in Amplitude und Dauer)

Aktive Gefahrenbremsung

Teilprojekt

Aktive Gefahrenbremsung AGB

Teilprojektleitung
Walter Schwertberger
MAN Nutzfahrzeuge AG
Zentralbereich Vorentwicklung
Fahrerassistenzsysteme

Die Unfallstatistik

zeigt den Bedarf an weiterer Forschungsarbeit auf dem Gebiet der Unfallvermeidung auf

Unfälle im Längsverkehr

- sind der häufigste Unfalltyp
- haben an getöteten Personen im Straßenverkehr einen Anteil von 21%

Die Forderung nach weiterer Unfallvermeidung wird aufgegriffen

Systeme zur Kollisionsvermeidung und Unfallfolgenminderung durch

- automatische Bremsungen mit situationsangepasster Stärke
- aktive Unterstützung des Fahrers zur Unfallvermeidung durch mehrstufiges Handlungskonzept
- Einbeziehung der Fahreraufmerksamkeit

Innovationsgehalt

- Signifikante Erhöhung der Detektionssicherheit
- dynamische Anpassung des Handlungskonzepts an die Fahrsituation (z.B. Verminderung der erforderlichen Bremsstärke durch zeitliches Vorverlegen der Bremsung)
- Plausibilisierung der Systementscheidung durch Ermittlung der Fahrerreaktion

Vorteile

- Systemwirkung gegenüber herkömmlichen Notbremssystemen deutlich erhöht
- Risiko einer falschen Systementscheidung deutlich reduziert

Kollisionsvermeidung statt Minderung der Kollisionsschwere

- → Früherer Bremseingriff notwendig
- → Systemeingriff wird "erlebbar"
- → Vertrauen in das System

Situationsangepasste Bremsung

- → Keine Auslegung des Systems auf eine Vollbremsung in "letzter Sekunde"
- → Verlängerung der Interaktionsphase des Fahrers
- → Erhöhung des Zeitbudgets der Interpretationsphase

Einbeziehung der Fahreraufmerksamkeit

- → Zuverlässigkeit ?
- → Aufmerksamkeit ← → Absicht
- → Differenz zwischen Fahrerabsicht und Systemreaktion

Aktive Gefahrenbremsung Rechtliche Fragestellungen

Aktive Gefahrenbremsung Rechtliche Fragestellungen Beispiele (1)

Zulassungskriterien:

- Welche Systeme wurden bisher in der EU zugelassen, und nach welchen Verfahren
- Auf Basis welcher Richtlinien erfolgte die Zulassung

Kontrollierbarkeit:

- Welche Forderungen gelten hinsichtlich Abschaltbarkeit / Übersteuerbarkeit
- Welche belastbaren Werte gelten hinsichtlich Fahrerreaktionszeiten
- Was ist die Definition von "kontrollierbar" und "nicht kontrollierbar"
- Welche Fahrerfähigkeiten und Fahrerfertigkeiten dürfen vorausgesetzt werden

Aktive Gefahrenbremsung Rechtliche Fragestellungen Beispiele (2)

Rechtssicherheit:

- Wie kann nachgewiesen werden, dass ein System dem Stand der Technik entspricht
- Inwieweit kann der "Code Of Practice" zum Nachweis der Systemsicherheit herangezogen werden

Fahrerinformation:

- Beeinflussen die Art und Tiefe der Fahrerinformation die Rechtssicherheit und / oder Zulassungskriterien
- Muss der Fahrer zukünftig über den Ausstattungsgrad seines Fahrzeugs informiert werden
- Was leistet mein System
- Was leistet mein System nicht

Kreuzungsassistenz

Teilprojekt

Kreuzungsassistenz KAS

Teilprojektleitung **Dr. Gabi Breuel**DaimlerChrysler AG

Group Research & Advanced Engineering
Assistance Systems & Chassis

Vortrag

Dr. Peter Zahn

BMW Forschung und
Technik GmbH

Projekte ConnectedDrive

BMW Group

Entwicklung von Fahrerassistenzsystemen zur nachhaltigen Reduktion der Unfallzahlen und der Unfallschwere an Kreuzungen in Städten und auf Landstraßen

Mit den Applikationsschwerpunkten

- Anfahren an eine Kreuzung mit Berücksichtigung des Vorderverkehrs (Schutz vor Auffahrunfällen an ampelgeregelten Kreuzungen)
- Assistenz zum Überqueren einer Kreuzung und bein Ein-/Abbiegen
- Abbiegen über die Spur des Gegenverkehrs

und den Technologien

- bordautonome Sensoren (Radar, Lidar, Video)
- kooperative Sensorik (Fzg-Fzg-Kommunikation)

Fehlverhalten

Fehlinterpretation	Sichtverdeckung	Unfaufmerk- samkeit	andere
38%	16%	41%	5%

Querender Verkehr

Fehlinterpretation	Sichtverdeckung	Unaufmerk- samkeit	andere
33%	23%	36%	8%

Ampel

Fehlinterpretation	Sichtverdeckung	Unaufmerk- samkeit	andere
31%	3%	30%	36%
Î	Î	Î	

Quelle: PReVENT

auf der Basis der GIDAS-Daten

Umgebungs-Interpretation Situationsanalyse c2c Fahrerinformation/Warnung Umgebungsinterpretation Situationsanalyse

Kreuzungsassistenz Funktionen und Szenarien

Anfahren an eine Kreuzung mit Berücksichtigung des Vorderverkehrs (Schutz vor Auffahrunfällen an Ampeloder Stoppschild-geregelten Kreuzungen)

Assistenz zum **Überqueren** einer Kreuzung und bein Ein-/Abbiegen

Abbiegen über die Spur des Gegenverkehrs

Fahrumgebungserfassung über Fahrzeug-Fahrzeug-Kommunikation:

Technologien:

- Positionierungssysteme
- Digitale Straßenkarte
- Fahrdynamik-Modelle
- Fahrerverhaltens-Modelle
- WLAN u.a.

BMW: kooperativer Ansatz Querverkehrsassistent, Gefahrenwarnung, Evaluierung Bremsstrategien zusammen mit AGB

Conti: kooperativer Ansatz Ein/Abbiegen auf die Hauptstrasse Warnung aller Beteiligten, Eingriff in die Bremse.

DC: bordautonomer und kooperativer Ansatz

Kreuzungsassistenz Offene Rahmen-Fragen 1 (Beispiele)

- Unfallvermeidung durch **schnellen aktiven Eingriff** ohne bzw. mit "kurzer" Vorwarnung in bestimmten Situationen in Ordnung?
- Welche Übersteuerungsvarianten sind möglich und praktikabel?
- Wie k\u00f6nnen Auswirkungen von Fehlausl\u00f6sungen (z.B. infolge Sensor-, Positions- und Kommunikationsfehlern) vermieden werden?
- Innerhalb welcher Zeit und wie muss ein Fahrer eine etwaige Fehlauslösung übersteuern können (Kontrollierbarkeit, Wiener Abkommen) ?
 Welche Fehlauslösungen sind tolerabel?
- Welche Eingriffs-Bremsstärken sind wann sinnvoll?
- Wie reagiert der Fahrer auf dringende Warnungen ("Kommando-Effekte")?
- Wer haftet für Einflüsse Dritter im Gesamtsystem?
 (z.B. Positionsgenauigkeit)

Kreuzungsassistenz Offene Rahmen-Fragen 2 (Beispiele)

- Kann Fahrerleistungsfähigkeit & Fahreraufmerksamkeit erfasst und berücksichtigt werden? In welchen Grenzen ist das transparent / zulässig?
- Wann ist **Rückraumüberwachung** für autonome Bremsungen zweckmäßig?
- Welchen Einfluss hat die Adaptivität von Systemen (z.B. Anpassung von Warn- und Interventionszeitpunkten an Fahrertyp, Fahrsituation etc.) auf die Kontrollierbarkeit?
- Müssen Verfügbarkeit und Systemgrenzen bewertet und mitgeteilt werden?
- Welche Aspekte sind für die Abspeicherung von Einschaltstatus, Anzeigeund Eingriffsstatus z.B. im Zeitraum eines Unfalls maßgeblich?
- Welche Modi sind bei Zündung ein und beim Einschalten verschiedener Systeme automatisch vorzugeben?

Teilprojekt

Sicherheit für

Fußgänger und Radfahrer

SFR

Teilprojektleitung **Dr. Gregory Baratoff**Siemens AG

Ziel: Erhöhung der Sicherheit von Fußgängern und Radfahrern (speziell im innerstädtischen Verkehr)

Ansatz:

- Vorausschauende Sensorik zur frühzeitigen Erkennung von Unfallsituationen mit Fußgängern und Radfahrern
- **Aktorik** zur Vermeidung von Unfällen (Warnen, Bremsen, Lenken), oder zur Unfallfolgenminderung (Ausfahren von Schutzvorrichtungen)

Motivation: Unfallstatistik

Die meisten innerorts getöteten und verletzten Verkehrsteilnehmer sind Fußgänger, Fahrradund Autofahrer.

Warn- und Handlungs-Strategie:

mehrstufiges Aktionskonzept abhängig von verbleibender Restzeit bis zur Kollision

- Warnung
 - des Fahrers : akustisch/visuell/haptisch
 - des Fußgängers/Radfahrers : akustisch (Hupe), visuell (Lichthupe)
- Bremsen :
 - Teilbremsung 1-2s vor Kollision
 - Vorfüllen der Bremse
 - Vollbremsung
- Lenkeingriff für Ausweichmanöver
- Vorbereitung reversibler Schutzvorrichtungen
 - Anstellen Motorhaube
 - Ausfahren Spoiler
- Auslösen irreversibler Schutzvorrichtungen über Kontaktsensorik
 - Außenairbags untere Motorhaube und A-Säule

Zeit bis Kollision

0.3

Grenzen der Funktion:

Bei schlechten Witterungsbedingungen oder plötzlichem Erscheinen des Fußgängers/Radfahrers hinter anderem Objekt :

- keine oder zu späte Detektion
- bei zu später Detektion

Eingriff:

Wie kann Eingriff in Fahrdynamik mit bestehender Regelung in der Wiener Konvention "der Fahrer muss jederzeit vollständige Hoheit über Fahrzeug haben" in Übereinkunft gebracht werden?

Datenübermittlung / Aufzeichnung : nicht vorgesehen

Fehlgebrauch: nicht absehbar

Verstoß gegen StVO:

Kann Warnung des Fußgängers/Radfahrers mittels Lichthupe trotz Blendung des entgegenkommenden Verkehrs in Kauf genommen werden ?

Verkehrsmanagement - VM

Aktive Sicherheit - AS

Cooperative Cars - CoCar

Aktiv – Adaptive und kooperative Technologien für den intelligenten Verkehr