Trig Final (SLTN v667)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The arc length is 8.7 meters. The radius is 3 meters. What is the angle measure in radians?

$$\theta = \frac{L}{r}$$
 $r = \frac{L}{\theta}$ $L = r\theta$

 $\theta = 2.9$ radians.

Question 2

Consider angles $\frac{-7\pi}{3}$ and $\frac{9\pi}{4}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\cos\left(\frac{-7\pi}{3}\right)$ and $\sin\left(\frac{9\pi}{4}\right)$ by using a unit circle (provided separately).

Find
$$cos(-7\pi/3)$$

$$\cos(-7\pi/3) = \frac{1}{2}$$

Find $sin(9\pi/4)$

$$\sin(9\pi/4) = \frac{\sqrt{2}}{2}$$

Question 3

If $\cos(\theta) = \frac{-5}{13}$, and θ is in quadrant II, determine an exact value for $\tan(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$5^{2} + B^{2} = 13^{2}$$
$$B = \sqrt{13^{2} - 5^{2}}$$
$$B = 12$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant II in a unit circle.

$$\tan(\theta) = \frac{\frac{12}{13}}{\frac{-5}{13}} = \frac{-12}{5}$$

Question 4

A mass-spring system oscillates vertically with an amplitude of 3.41 meters, a frequency of 6.09 Hz, and a midline at y = 7.28 meters. At t = 0, the mass is at the minimum height. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = -3.41\cos(2\pi6.09t) + 7.28$$

or

$$y = -3.41\cos(12.18\pi t) + 7.28$$

or

$$y = -3.41\cos(38.26t) + 7.28$$