CS 736

Assignment - 1

By: Ank Kumar Gupta (22B0623) & Veenus (22B0704)

Overview

 Objective: Implement and analyze Bayesian denoising algorithms and dictionary learning for image denoising.

Tasks:

- Bayesian Denoising of Phantom MRI Image
- 2. Bayesian Denoising of Brain MRI Image
- 3. Bayesian Denoising of RGB Microscopy Image
- 4. Dictionary Learning on Image Patches for Denoising

Objective

Bayesian Denoising of a Phantom Magnetic Resonance Image

Description

- Implementation of a MAP-based Bayesian image denoising algorithm using a suitable noise model (i.i.d. Gaussian) and an MRF prior with a 4-neighbor system
- 3 MRF priors to be used: (1) Quadratic, (2) Huber, and (3) Log-based discontinuity-adaptive.
- Parameters need to be manually tuned to minimize relative root-mean-squared error (RRMSE), using the noiseless image as reference.

Approach

- First scaled the noisy image with min-max scaling to ensure consistent values between [0, 1]
- Defined all 3 priors with their gradients.
- Compute the gradient of the likelihood function (based on Gaussian noise).
- Utilize gradient ascent optimization technique for Image Denoising.
- Computed the update using a weighted combination of likelihood and prior gradients and also fine-tuned the weight parameter for optimal result.
- Further used a momentum-based update with velocity to smooth out updates and overcome the problem of very early convergence.

Approach

- Computed the likelihood term as the sum of squared differences from the noisy image (log likelihood).
- Computed the prior term based on the chosen prior function (Quadratic, Huber, or Discontinuity Adaptive).
- Thus, computed the log posterior as a weighted sum of the likelihood and prior terms.
- Used dynamic step size modification for effective learning.
- Fine-tuned the associated parameter for Huber and Discontinuity
 Adaptive priors, as well as step-size and no. of iterations to get optimal results.

1(a) RRMSE of noisy image and original (noiseless) image

RRMSE = 0.29311377574241915

1(b) MRF Priors:

Quadratic function:

Optimal parameter, (Weight): 1.0

Optimal RRMSE: 0.29311377574241915

Evidence for optimality:

Weight: 0.8 RRMSE: 0.3174088137243337

Quad Prior

Denoised Image using Quad Prior

1(b) MRF Priors:

Discontinuity-adaptive huber function:

Optimal parameter:

Weight, Gamma: 0.1, 0.05

Optimal RRMSE: 0.19023

Evidence for optimality:

Parameters: 0.12, 0.05 RRMSE: 0.19269

Parameters: 0.08, 0.05 RRMSE: 0.19517

Parameters: 0.1, 0.06 RRMSE: 0.20013

Parameters: 0.1, 0.04 RRMSE: 0.19242

Huber Prior

Denoised Image using Huber Prior

1(b) MRF Priors:

• Discontinuity-adaptive function:

Optimal parameter:

Weight, Gamma: 0.08, 0.045

Optimal RRMSE: 0.19347

Evidence for optimality:

Parameters: 0.064, 0.045 RRMSE: 0.193580

Parameters: 0.096, 0.045 RRMSE: 0.201501

Parameters: 0.08, 0.054 RRMSE: 0.1971660

Parameters: 0.08, 0.036 RRMSE: 0.2092144

Discontinuity-Adaptive

Denoised Image using Disc Prior

1(c)

1(d) plots of the objective-function values

Objective

Bayesian Denoising of Brain MRI Image

Description

- Implementation of a MAP-based Bayesian image denoising algorithm using a suitable noise model (i.i.d. Gaussian) and an MRF prior with a 4-neighbor system
- 3 MRF priors to be used: (1) Quadratic, (2) Huber, and (3) Log-based discontinuity-adaptive.
- Parameters need to be manually tuned to minimize relative root-mean-squared error (RRMSE), using the noiseless image as reference.

Approach

Similar to task 1, only image to be processed is different.

MRF Prior 1:

Quadratic function:

Optimal parameter, (Weight): 0.5

Optimal RRMSE: 0.194409

Evidence for optimality:

Weight: 0.6 RRMSE: 0.196301

Weight: 0.4 RRMSE: 0.19505

MRF Prior 2 & 3:

Huber Function:

Optimal parameter:

Weight: 0.1

Gamma: 0.03

Optimal RRMSE: 0.1392411

Discontinuous Adaptive:

Optimal parameter:

Weight: 0.1

Gamma: 0.02

Optimal RRMSE: 0.143907

Output images for different priors

Noisy

RRMSE = 0.20111204

RRMSE = 0.1392411

RRMSE = 0.143907

plots of the objective-function values

Objective

Bayesian Denoising of RGB Microscopy Image

Description

- Implementation of a MAP-based Bayesian image denoising algorithm using a suitable noise model (i.i.d. Gaussian) and an MRF prior with a 4-neighbor system
- 3 MRF priors to be used: (1) Squared-L2-norm of vector difference, (2) L2-norm of vector difference, and (3) Huber-regularized L1-norm of vector difference..
- Parameters need to be manually tuned to minimize relative root-mean-squared error (RRMSE), using the noiseless image as reference.

Approach

- Used an optimization-based approach, by refining the noisy image iteratively by minimizing a objective function consisting of a data fidelity term and a prior-based regularization term.
- Used Adam optimizer for effective optimization.
- Implemented three different prior functions named as Squared L2 Norm, L2 Norm and Huber Regularized L1 Norm.
- Further, in each iteration, the denoised image gets updated by computing gradients of the total energy function with respect to the image pixels, thus, balancing noise suppression and detail preservation.

Output images for priors

Case C i.e. L1 norm provides better edge preservation, because it incorporate sparsity, leading to major differences in pixels (sharp transitions) across edges.

plots of the objective-function values

Objective

Dictionary Learning on Image Patches, Followed by Image Denoising

Description

- Implementing a function to learn the dictionary D for 8×8 image patches
- Experimenting with Different p Values and interpreting graph of objective function v/s iterations
- Visualizing dictionary atoms before and after optimization.
- Denoising a simulated noisy 2D Chest-CT Image Using Learned Dictionary
- Visualizing the results

Approach

- Extracted 8*8 overlapping patches, then selected patches having the variance in top 20%.
- Estimated sparse coefficients r for patches x by minimizing reconstruction error while enforcing sparsity using soft-thresholding with p-norm regularization.
- Improved dictionary D by computing the gradient of reconstruction error and updating D using a learning rate, followed by column-wise normalization to maintain unit-norm atoms.
- Then, Optimized $\Sigma \|X DR\|_F^2 + \lambda \sum |r|^p$ by fine-tuning λ for different p values.

Approach

- Further plotted Initial v/s Learned Dictionary and histogram of coefficients for different values of p.
- Simulated a noisy chest-CT image by adding Gaussian noise with a standard deviation of 10% of the intensity range
- Given the learned dictionary D, estimated sparse coefficients r for noisy patches using gradient descent and soft-thresholding, by focusing on minimizing reconstruction error while enforcing sparsity.
- Monitored and plotted the objective function across iterations.

Graph of the objective function v/s iterations for Dictionary Learning.

Inference: A tradeoff between reconstruction error and sparsity can be observed, where larger p value encourage less sparsity and allow a better approximation of the patches while smaller p value encourages sparsity but also compromises reconstruction quality.

Atoms used (Before Learning v/s After Learning)

Observation: With decreasing value of p, detailing is getting reduced and sparsity is increasing.

Histogram of Coeff within each ri, pooled across all ri

Observation & Inference: All cases are exhibiting bimodal distributions and as the p decreases, the graph gets narrower and peak increases, thus making histogram narrower and sharper, which confirms the earlier observation that lower p values enforce stronger sparsity, leading to fewer large coefficients and more very small or negligible ones.

Simulated Noisy Version of Image

Simulated by introducing i.i.d.
Gaussian zero-mean noise of standard deviation equaling 10% of the intensity range in the given image

Optimization Problem for the denoising of simulated noisy image:

$$\min_{X,R} \quad rac{1}{2} \|X - DR\|_F^2 + \lambda \sum_i \|R_i\|_p^p + rac{\mu}{2} \|X - Y\|_F^2$$

Reasoning for choosing this optimization problem:

- Here, the first term Ensures that the reconstructed patches X closely match their dictionary-based representation D&R.
- The other regularization term ensures sparse representation of the image, making the image compact and suppressing noise while the parameter λ balances both the detailing and noise.
- Last term ensures that the denoised image remains close to the noisy input, therefore, controlling how much noise is to be removed.

Graph of Optimization function v/s iterations:

Inference: The curve does not look good as it remains stable for most iterations but then faces a sharp increment, suggesting instability in the process, which could be due to non-enough parameter tuning or the dictionary itself be poorly adapted to the noisy image.

Simulated Noisy, Original & Denoised Image

Observation: Too blurred denoised image indicates Reconstructional inconsistencies are visible in the denoised images, thus have a major scope for improvement.

Thank You!