1) Donner la définition de f realise une bijection de [a,b] sur [f(a),f(b)]
2) Énoncer le théorème de la bijection
3) Quelle est la définition de la réciproque d'une bijection ?
4) Quel lien existe-t-il entre le graphe de f bijective et sa réciproque
5) Sous quelle condition suffisantes la réciproque de f bijective est dérivable et donner sa

dérivée

TEST 2 n.n

1) Donner la définition de f realise une bijection de [a,b] sur [f(a),f(b)]

Théorème 1.4.6 (Théorème de la bijection). Soit a < b deux réels, soit $f : [a, b] \to \mathbb{R}$ continue.

- 1. Si f est strictement croissante, pour tout $y \in [f(a), f(b)]$, il existe un unique $x \in [a, b]$ vérifiant y = f(x). On dit que f réalise une bijection de [a, b] sur [f(a), f(b)].
- 2. Si f est strictement décroissante, pour tout $y \in [f(b), f(a)]$, il existe un unique $x \in [a, b]$ vérifiant y = f(x). On dit que f réalise une bijection de [a, b] sur [f(b), f(a)].

On a des résultats analogues avec un intervalle semi-ouvert ou ouvert (de la forme]a,b], [a,b[ou]a,b[), même si a ou b valent $\pm \infty$, mais ces résultats font alors intervenir des limites.

- 2) Énoncer le théorème de la bijection : cf ci-dessus
- 3) Quelle est la définition de la réciproque d'une bijection ?

Définition 3.4.2.

Soit a < b deux réels, $f : [a, b] \to \mathbb{R}$ continue et strictement monotone. Soit x entre f(a) et f(b), il existe donc un unique $t \in [a, b]$ tel que x = f(t). On note ce réel $t = f^{-1}(x)$.

La fonction f^{-1} est appelée réciproque de f.

On a des résultats analogues avec un intervalle semi-ouvert ou ouvert (de la forme]a,b], [a,b[ou]a,b[), même si a ou b valent $\pm \infty$, mais ces résultats font alors intervenir des limites.

4) Quel lien existe-t-il entre le graphe de f bijective et sa réciproque

Proposition 3.4.4.

Soit a < b deux réels, $f : [a, b] \to \mathbb{R}$ continue et strictement monotone. Alors, le graphe de f^{-1} est le symétrique du graphe de f par rapport à la droite d'équation y = x (aussi appelée première bissectrice du plan).

5) Sous quelle condition suffisantes la réciproque de f bijective est dérivable et donner sa dérivée

Théorème 3.4.5.

Soit I un intervalle de \mathbb{R} et $f:I\to\mathbb{R}$ continue et strictement monotone.

- 1. La fonction f^{-1} est strictement monotone, de même monotonie que f.
- 2. Si f est impaire, alors f^{-1} est aussi impaire..
- 3. La fonction f^{-1} est continue.
- 4. Si f dérivable et si f' ne s'annule pas, alors f^{-1} est aussi dérivable et $(f^{-1})' = \frac{1}{f' \circ f^{-1}}$.