MAC0422 - Sistemas Operacionais

Bárbara de Castro Fernandes – 7577351 Taís Aparecida Pereira Pinheiro – 7580421

Exercício-programa 1

- Implementação de um shell
 - Funções básicas de um shell:
 - Função chown: baseada na Syscall chown
 - Função date: baseada nas chamadas de sistema da biblioteca time
 - Binários apoiados no fork()+execve():/bin/ping 10 www.google.com.br
 - /usr/bin/cal 2017
 - ./ep1 <argumentos do EP1>

Processos

- pthread_t *thread
- id
- nome
- t0
- dt
- deadline
- p
- Linha
- tr e tf
- struct processo *prox
- struct processo *ant
- ativo e chegada

Shortest job first

- Dupla ordenação: por t0 e por dt
- Sem preocupação com preempção e facilidade para checagem.
- Processos são executados na ordem de menor tempo para o maior
- Não-preemptivo

Round robin

- Definição simples do Quantum.
- Maior controle do escalonador sobre a execução.
- Todos os processos serão executados durante um quantum
- Altamente Preemptivo

Escalonamento com prioridade

- Basicamente SJF com deadline como parâmetro
- Os processos serão executados em ordem decrescente de prioridade

Ocupação da CPU

 Simulada por um semáforo iniciado com o número de núcleos do computador.

Experimentos:

Máquina 1

Marca: ASUS

Processador: Intel Core i3

2350M CPU 2.30GHz x 4

Memória: 5,6 GB

Disco: 63,3 GB

Máquina 2

Marca: DELL

Processador: Intel Core i3

4005U CPU 1.70GHz x 2

Memória: 4,0 GB

Disco: 120 GB

Máquina 1

Poucos Processos:

Máquina 1

• Número médio de Processos:

Máquina 1

• Número grande de Processos:

Máquina 1

 Mudança de contexto para Round Robin tempo em segundos

Máquina 2

Poucos Processos:

Máquina 2

• Número médio de Processos:

Máquina 2

• Número grande de Processos:

Máquina 2

 Mudança de contexto para Round Robin tempo em segundos

