

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS 4722

Core Mathematics 2

MARK SCHEME

Specimen Paper

© OCR 2004

MAXIMUM MARK 72

1	1-8	$x + 24x^2 - 32x^3 + 16x^4$	B1		For first two terms $1-8x$
			M1		For expansion in powers of $(-2x)$
			M1 A1		For any correct use of binomial coefficients For any one further term correct
			A1	5	For completely correct expansion
				5	1 ,
2	(i)	$\int x^{-2} \mathrm{d}x = -x^{-1} + c$	M1		For any attempt to integrate x^{-2}
			A1 B1	3	For correct expression $-x^{-1}$ (in any form) For adding an arbitrary constant
	 (ji)	$y = -x^{-1} + c$ passes through $(1, 3)$,			
	(11)	so $3 = -1 + c \Rightarrow c = 4$	M1		For attempt to use $(1,3)$ to evaluate c
			A1√		For correct value from their equation
		Hence curve is $y = -\frac{1}{x} + 4$	A1	3	For correct equation
		$\frac{1}{x}$	1 1 1		1 of correct equation
				6	
3	(a)	(i) 2log ₂ <i>x</i>	B1	1	For correct answer
		(ii) $\log_2(8x^2) = \log_2 8 + \log_2 x^2$	M1		For relevant sum of logarithms
			M1		For relevant use of $8 = 2^3$
		$= 3 + 2\log_2 x$	A1	3	For correct simplified answer
	(b)	$2\log_3 y = \log_3 27$	M1		For taking logs of both sides of the equation
		Hence $\log_3 y = \frac{3}{2}$	A1		For any correct expression for $\log_3 y$
			A1	3	For correct simplified answer
				7	
4	(i)	$r = \frac{2400}{3000} = 0.8$	B1		For the correct value of r
		Forecast for week 20 is $3000 \times 0.8^{19} \approx 43$	M1		For correct use of ar^{n-1}
			A1	3	For correct (integer) answer
	(ii)	$\frac{3000(1-0.8^{20})}{1-0.8} = 14827$	M1		For correct use of $\frac{a(1-r^n)}{1-r}$
		1-0.8	A1	2	1-r For correct answer (3sf is acceptable)
	(;;;) 	$\frac{3000}{1-0.8} = 15000$	M1		
	(111)	$\frac{1-0.8}{1-0.8}$			For correct use of $\frac{a}{1-r}$
			A1	7	For correct answer
5	(i)	LHS is $15(1-\sin^2\theta^\circ)$	M1		For using the relevant trig identity
		Hence equation is $15\sin^2\theta^\circ + \sin\theta^\circ - 2 = 0$	A1	2	For correct 3-term quadratic
	(ii)	$(5\sin\theta^{\circ} + 2)(3\sin\theta^{\circ} - 1) = 0$	M1		For factorising, or other solution method
		Hence $\sin \theta^{\circ} = -\frac{2}{5}$ or $\frac{1}{3}$	A1		For both correct values
		So $\theta = 19.5, 160.5, 203.6, 336.4$	M1		For any relevant inverse sine operation
			A1		For any one correct value
			A1√ A1√	_	For corresponding second value For both remaining values
Ī			\\\\\\\\\\	8	For both remaining values
				لت	

			1	1	
6	(i)	$\frac{3}{\sin C} = \frac{5}{\sin 2.1} \Rightarrow \sin C = \frac{3}{5}\sin 2.1$	M1		For any correct initial statement of the sine
		Hence $C = 0.544$	A1	2	rule, together with an attempt to find sin <i>C</i> For correct value
	(ii)	Angle A is $\pi - 2.1 - 0.5444 = 0.4972$	M1		For calculation of angle A
		Area is $\frac{1}{2} \times 5 \times 3 \times \sin 0.4972$	M1		For any complete method for the area
		i.e. 3.58 cm^2	A1√	3	For correct value, following their C
	(iii)	Sector perimeter is $6+3\times0.4972$	M1		For using $r\theta$ with their A in radians
	, ,	i.e. 7.49 cm	A1t		For correct value, following their A
		Sector area is $\frac{1}{2} \times 3^2 \times 0.4972$	M1		For using $\frac{1}{2}r^2\theta$ with their A in radians
		i.e. 2.24 cm ²	A1√	4	For correct value, following their A
				9	
7	(i)	-75+45+30=0, 25-15-10=0	B1		For checking one point in both equations
		-12-18+30=0, 4+6-10=0	B1	2	For checking the other point in both
	(ii)	Area is $\int_{-5}^{2} \{(-3x^2 - 9x + 30) - (x^2 + 3x - 10)\} dx$	M1		For use of $\int (y_1 - y_2) dx$
		i.e. $\int_{-5}^{2} (-4x^2 - 12x + 40) dx$, as required	A1	2	For showing given answer correctly
	(iii)	EITHER: Area is $\left[-\frac{4}{3}x^3 - 6x^2 + 40x \right]_{-5}^2$	M1		For integration attempt with one term OK
			A1		For at least two terms correct
		(32	A1		For completely correct indefinite integral
		$= \left(-\frac{32}{3} - 24 + 80\right) - \left(\frac{500}{3} - 150 - 200\right)$	M1		For correct use of limits
		$=228\frac{2}{3}$	A1		For showing given answer correctly
		OR: Area under top curve is	M1		For complete evaluation attempt
		The under top curve is	A1		For correct indefinite integration (allow for other curve if not earned here)
		$\left[-x^3 - \frac{9}{2}x^2 + 30x\right]_{-5}^2 = 171\frac{1}{2}$	A1		For correct value
		Area above lower curve is			
		$-\left[\frac{1}{3}x^3 + \frac{3}{2}x^2 - 10x\right]_{-5}^2 = 57\frac{1}{6}$	M1		For evaluation and sign change
		So area between is $171\frac{1}{2} + 57\frac{1}{6} = 228\frac{2}{3}$	A1	5	For showing given answer correctly
				9	
8	(i)	$1.25^x = 2 \Rightarrow x \log 1.25 = \log 2$	B1		For correct initial use of logs
		Hence $x = \frac{\log 2}{\log 1.25} = 3.11$	M1		For correct log expression for <i>x</i>
			A1	3	For correct numerical value
	(ii)	$\tfrac{1}{2}\{1.25^0 + 2(1.25^1 + 1.25^2 + 1.25^3) + 1.25^4\}$	В1		For correct recognition of $h = 1$
			M1		For any use of values 1.25^x for $x = 0,, 4$
		Area is 6.49	M1 A1	4	For use of correct formula For correct answer
	(iii)	The trapezia used in (ii) extend above the curve Hence the trapezium rule overestimates the area	M1 A1	2	For stating or sketching trapezia above curve For stating overestimate with correct reason
	(iv)	Use more trapezia, with a smaller value of h	B1	1 10	For stating that more trapezia should be used

4722 Specimen Paper [Turn over

(i)	8 + 4a + 2b - 6 = -8 + 4a - 2b - 6	M1		For equating $f(2)$ and $f(-2)$
	Hence $4b = -16 \Rightarrow b = -4$	A1 A1	3	For correct equation For showing given answer correctly
(ii)	1+a-4-6=0	M1		For equating $f(1)$ to 0 (not $f(-1)$)
	Hence $a = 9$	A1	2	For correct value
(iii)	$f(x) = (x-1)(x^2 + 10x + 6)$	M1		For quadratic factor with x^2 and/or +6 OK
		A1 A1	3	For trinomial with both these terms correct For completely correct factorisation
(iv)	The discriminant of the quadratic is 76 Hence there are 3 real roots altogether	M1 M1		For evaluating the discriminant For using positive discriminant to deduce the there are 2 roots from the quadratic factor
		A1	3	For completely correct explanation of 3 root
				11