অনুশীলনী - ৮.২

সমকোণী ত্রিভুজের বাহুগুলো চিহ্নিতকরণঃ

- 🗹 সমকোণের বিপরীত বাহু তথা বৃহত্তম বাহু সর্বদা **অতিভুজ**।
- $oxed{ }$ θ কোণের বিপরীত বাহু হলো লম্ব এবং অপরটি হলো ভূমি।

ত্রিকোণমিতিক অনুপাত ও সেগুলোর মনেরাখার কিছু সহজ পদ্ধতি:

ত্রিকোনোমিতিক অনুপাত	মনেরাখার রাখার সহজ পদ্ধতি			
$\sin\theta = \frac{\pi \pi}{\text{অতিভূজ}}$	সাগরে	লবণ	আছে	
	sin	লম্ব	অতিভুজ	
$\cos\theta = $ ভূমি	কবরে	<u>ভূত</u>	আছে	
অতিভূজ	cos	ভূমি	অতিভুজ	
$ tan \theta = \frac{e}{\sqrt[6]{h}} $	ট্যারা	লম্বা	<u>ভূত</u>	
	tan	লম্ব	ভূমি	

অন্যান্য অনুপাত যথা $cosec\theta$, $sec\theta$ ও $cot\theta$ যথাক্রমে $sin\theta$, $cos\theta$, $tan\theta$ এর উল্টো অনুপাত হবে।

$$\sin\theta,\cos\theta,\tan\theta$$
 এর উল্টো অনুপাত হবে।
$$\cos c\theta = \frac{\overline{uoven}}{\overline{mva}} \qquad [\because \csc\theta = \frac{1}{\sin\theta}]$$

$$\sec\theta = \frac{\overline{uoven}}{\overline{ven}} \qquad [\because \sec\theta = \frac{1}{\cos\theta}]$$

$$\cot\theta = \frac{\overline{ven}}{\overline{mva}} \qquad [\because \cot\theta = \frac{1}{\tan\theta}]$$

আদর্শ কোণসমূহের ত্রিকোণমিতিক অনুপাতসমূহ:

মনে রাখার কৌশল	কোণ অনুপাত	0°	30°	45°	60°	90°
0, 1, 2, 3 এবং 4 সংখ্যাগুলোর প্রত্যেকটিকে 4 দ্বারা ভাগ করে ভাগফলের বর্গমূল নিলে যথাক্রমে	sin	$\sqrt{\frac{0}{4}} = 0$	$\sqrt{\frac{1}{4}} = \frac{1}{2}$	$\sqrt{\frac{2}{4}} = \frac{1}{\sqrt{2}}$	$\sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}$	$\sqrt{\frac{4}{4}} = 1$
sin 0°, sin 30°, sin 45°, sin 60° এবং sin 90° এর মান পাওয়া যায়।	SIII	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\csc \theta = \frac{1}{\sin \theta}$ সম্পর্ক ব্যবহার করে	cosec	অসংজ্ঞায়িত	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
4, 3, 2, 1, 0 সংখ্যাগুলোর প্রত্যেকটিকে 4 দ্বারা ভাগ করে ভাগফলের বর্গমূল নিলে যথাক্রমে cos	205	$\sqrt{\frac{4}{4}} = 1$	$\sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}$	$\sqrt{\frac{2}{4}} = \frac{1}{\sqrt{2}}$	$\sqrt{\frac{1}{4}} = \frac{1}{2}$	$\sqrt{\frac{0}{4}} = 0$
0°, cos 30°, cos 45°, cos 60° এবং cos 90°এর মান পাওয়া যায়।	cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\sec \theta = \frac{1}{\cos \theta}$ সম্পর্ক ব্যবহার করে	sec	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	অসংজ্ঞায়িত
0, 1, 3 এবং 9 সংখ্যাগুলোর প্রত্যেকটিকে 3 দ্বারা ভাগ করে ভাগফলগুলোর বর্গমূল নিলে		$\sqrt{\frac{0}{3}} = 0$	$\sqrt{\frac{1}{3}} = \frac{1}{\sqrt{3}}$	$\sqrt{\frac{3}{3}} = 1$	$\sqrt{\frac{9}{3}} = \sqrt{3}$	_
যথাক্রমে tan 0°, tan 30°, tan 45° এবং tan 60° মান পাওয়া যায়। উল্লেখ্য, tan 90° এর অসংজ্ঞায়িত।	tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	অ সংজ্ঞায়িত
$\cot \theta = \frac{1}{\tan \theta}$ সম্পর্ক ব্যবহার করে	cot	অসংজ্ঞায়িত	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

বিদ্র: শূন্য দ্বারা কোনো কিছুকে ভাগ করা যায় না বিধায় cosec 0°, sec 90°, tan 90° ও cot 0° সংজ্ঞায়িত করা যায় না।

oxdots লক্ষণীয়: $\sin \theta$, $\cos \theta$ ও $\tan \theta$ অনুপাতের মান বিপরীতকরণ করে যথাক্রমে $\csc \theta$, $\sec \theta$ ও $\cot \theta$ পাওয়া যায়। এবং $\sin \theta$ এর অনুপাতের মানগুলোকে বিপরীতক্রম অনুপারে সাজালে $\cos \theta$ এর মানগুলো পাওয়া যায়। অনুরূপভাবে $(\tan \theta$ ও $\cot \theta)$ এবং $(\sec \theta)$ ও $\csc \theta$ এর মানগুলো পরস্পর বিপরীতক্রমে সজ্জিত রয়েছে। যেমন: $\sin 30^\circ = \cos 60^\circ = \frac{1}{2}$, $\sec 60^\circ = \csc 30^\circ = 2$

ত্রিকোণমিতিক অনুপাতসমূহের চিহ্নের ধরন: ত্রিকোণমিতিক অনুপাতগুলো মূলত বাহুর অনুপাত, তাই এদের মান কখনো ধনাত্মক এবং কখনো ঋণাত্মক হয়। কারণ বিভিন্ন চতুর্ভাগে লম্ব ও ভূমির চিহ্নের ধরন ভিন্ন হতে পারে। অতিভুজ সর্বদা ধনাত্মক ধরা হয়। নিম্নে চিত্রের সাহায্যে ব্যাখ্যা করা হলো।

দ্বিতীয় চতুর্ভাগ

এই চতুর্ভাগে ভূমি ঋণাত্মক কিন্তু লম্ব ও অতিভুজ ধনাত্মক হওয়ায় $\sin\! heta$ ও $\mathrm{cosec} heta$ ব্যতিত সকল ত্রিকোণমিতিক অনুপাত ঋণাত্মক।

$$\sin \theta = \frac{\text{লম }(+)}{\text{অতিভূজ }(+)} =$$
ধনাত্মক ; $\therefore \ \csc \theta = \frac{\text{অতিভূজ }(+)}{\text{লম }(+)} =$ ধনাত্মক

$$\cos \theta = \dfrac{$$
ভূমি $(-)}{$ অতিভুজ $(+)} =$ ঋণাত্মক $; : \sec \theta = \dfrac{$ অতিভুজ $(+)}{$ ভূমি $(-)} =$ ঋণাত্মক

$$an heta = rac{ ext{mw} \ (+)}{ ext{ছ} \widehat{ ext{h}} \ (-)} = ext{winings} \ ; \qquad \therefore \cot heta = rac{ ext{ছ} \widehat{ ext{h}} \ (-)}{ ext{mw} \ (+)} = ext{winings}$$

প্রথম চতুর্ভাগ

এই চতুৰ্জাগে ভূমি লম্ব ও অতিভুজ তিনটি ধনাত্মক হওয়ায় সকল ত্ৰিকোণমিতিক

$$\cos\theta = \frac{$$
ভূমি $(+)}{$ অতিভূজ $(+)$ $=$ ধনাত্মক $;$ \therefore $\sec\theta = \frac{$ অতিভূজ $(+)}{$ ভূমি $(+)$ $=$ ধনাত্মক

তৃতীয় চতুর্ভাগ

এই চতুর্ভাগে ভূমি ও লুমু ঋণাত্মক কিন্তু অতিভুজ ধনাত্মক হওয়ায় an heta ও $\cot heta$

$$\sin\theta = \frac{\text{লঘ}(-)}{\text{অতিভূজ}(+)} = \text{ঋণাত্মক}; \quad \therefore \ \csc\theta = \frac{\text{অতিভূজ}(+)}{\text{লঘ}(-)} = \text{ঋণাত্মক}$$

$$\cos\theta = \frac{\text{ভূম}(-)}{\text{অতিভূজ}(+)} = \text{ঋণাত্মক}; \quad \therefore \ \sec\theta = \frac{\text{অতিভূজ}(+)}{\text{ভূম}(-)} = \text{ঋণাত্মক}$$

$$\cos\theta = rac{\cup (1-)}{\cup (3-)} = \cup (4-)$$
 = ঋণাত্মক ; \cdots \cdot

$$tan\theta = \frac{ \overbrace{\text{लघ }(-)}}{\underbrace{\text{ছ}\widehat{\lambda}(-)}} = \text{ধনাত্মক} \; ; \qquad \therefore \cot\theta = \frac{\underbrace{\text{ছ}\widehat{\lambda}(-)}}{\widehat{\text{लघ }(-)}} = \text{ধনাত্মক}$$

চতুর্থ চতুর্ভাগ

এই চতুর্ভাগে লম্ ঋণাত্মক কিন্তু ভূমি ও অতিভুজ ধনাত্মক হওয়ায় $\cos \! heta$ ও $\sec \! heta$

ব্যতিত সকল ত্রিকোণমিতিক অনুপাত ঋণাত্মক।
$$\sin\theta = \frac{\text{mt}(-)}{\text{অতিভুজ}(+)} = ঋণাত্মক; \quad \therefore \csc\theta = \frac{\text{অতিভুজ}(+)}{\text{mt}(-)} = ঋণাত্মক$$

$$\cos\theta = \frac{\text{ভূম}(+)}{\text{অতিভুজ}(+)} = ধনাত্মক; \quad \therefore \sec\theta = \frac{\text{অতিভুজ}(+)}{\text{ভূম}(+)} = ধনাত্মক$$

$$\cos\theta = \frac{9 |\lambda| (+)}{\sqrt{\log 2} (+)} = 4$$
নাত্মক ; $\therefore \sec \theta = \frac{\sqrt{\log 2} (+)}{\sqrt{9} |\lambda| (+)} = 4$ নাত্মক

$$an heta = rac{\overline{\sigma} \overline{arksigma} \left(-
ight)}{\overline{arphi} \overline{\lambda} \left(+
ight)} = rak{arksigma}$$
ণাতাক ; $ext{cot} heta = rac{\overline{arphi} \overline{\lambda} \left(+
ight)}{\overline{\sigma} \overline{arksigma} \left(-
ight)} = rak{arksigma}$ ণাতাক

ত্রিকোণমিতিক অনুপাত সমূহের মানের সীমা:

👲 এর যেকোনো মানের জন্য ত্রিকোণমিতিক অনুপাত সমূহের মানের সীমা নিম্লে দেওয়া হলো:

ত্রিকোণমিতিক অনুপাত	মানের সীমা
sinθ s cosθ	—1 থেকে + 1
tanθ s cotθ	যেকোনো বাস্তব মান (R)
secθ ଓ cosecθ	+1 অপেক্ষা বড় এবং –1 অপেক্ষা ছোট (যেকোনো মান)

ত্রিকোণমিতিক অনুপাতসমূহের মধ্যকার কিছু সম্পর্ক:

অনুশীলনীর সমাধান

🔽 ক্যালকুলেটর ব্যবহার না করে মান নির্ণয় কর:

$$(\sqrt[4]{\cos\frac{\pi}{4} + \tan\frac{\pi}{6} \cdot \tan\frac{\pi}{3}}$$

ক
$$\frac{\cos\frac{\pi}{4}}{\cos\frac{\pi}{4}} = \frac{\frac{1}{\sqrt{2}}}{\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2}}$$

$$= \frac{\frac{1}{\sqrt{2}}}{\frac{\sqrt{3} + \sqrt{3}}{2}} = \frac{\frac{1}{\sqrt{2}}}{\frac{2\sqrt{3}}{2}} = \frac{1}{\sqrt{2}} \times \frac{2}{2\sqrt{3}} = \frac{1}{\sqrt{6}}$$
(Ans.)
$$\frac{\ln |A| \ln |A| \ln |A| \ln |A| \ln |A|}{\ln |A|} = \frac{\ln |A|}{\sqrt{2}} \times \frac{2}{2\sqrt{2} + (-4)^2} = \pm \sqrt{25 + 16}$$

$$= \pm \sqrt{9}$$

$$= \pm 3$$

$$= \pm 3$$

$$\Rightarrow |A| = 1$$

$$\tan\frac{\pi}{4} + \tan\frac{\pi}{6} \cdot \tan\frac{\pi}{3}$$

$$= 1 + \frac{1}{\sqrt{3}} \cdot \sqrt{3}$$

$$= 1 + 1$$

$$= 2 \quad (Ans.)$$

$$\cos \theta = -rac{4}{5}$$
 এবং $\pi < heta < rac{3\pi}{2}$ হলে $an heta$ এবং $\sin heta$ এর মান নির্ণয় কর।

সমাধান: দেওয়া আছে, $\cos\theta = -\frac{4}{5}$ যেহেতু $\cos \theta$ এর মান ঋণাতাুক তাই θ কোণটি অবশ্যই ২য় অথবা ৩য় চতুর্ভাগে অবস্থিত হবে।

কিন্তু heta এর সীমা হলো $\pi < heta < rac{3\pi}{2}$ বা, 180° $< heta < 270^\circ$ । তাই heta তৃতীয় চতুর্ভাগে অবস্থিত। আমরা জানি, $\sin^2\theta + \cos^2\theta = 1$

$$∃t, sin2θ = 1 - cos2θ$$

$$= 1 - \left(-\frac{4}{5}\right)^{2} = 1 - \frac{16}{25} = \frac{25 - 16}{25} = \frac{9}{25}$$

$$∴ sinθ = ± √{\frac{9}{25}} = ± \frac{3}{5}$$

কিন্তু θ তৃতীয় চতুর্ভাগে এবং তৃতীয় চতুর্ভাগে $\sin \theta$ ঋণাতাক.

$$\therefore \sin\theta = -\frac{3}{5}$$

জাবার,
$$\tan\theta = \frac{\sin\theta}{\cos\theta} = \frac{-\frac{3}{5}}{-\frac{4}{5}} = -\frac{3}{5} \times \left(-\frac{5}{4}\right) = \frac{3}{4}$$

∴
$$tan\theta = \frac{3}{4}$$
 [তৃতীয় চতুর্ভাগে $tan\theta$ ধনাত্মক]

∴
$$\sin\theta = -\frac{3}{5}$$
 এবং $\tan\theta = \frac{3}{4}$ (Ans.)

সমাধান (দ্বিতীয় পদ্ধতি)

দেওয়া আছে,
$$\cos\theta = -\frac{4}{5}$$
 এবং $\pi < \theta < \frac{3\pi}{2}$

আমরা জানি,
$$\cos\theta = \frac{\sqrt[6]{\pi}}{\sqrt[6]{\log \pi}} = -\frac{4}{5}$$

যেহেতু অতিভুজ সর্বদা ধনাত্মক ∴ ভূমি = – 4 ∴ পিথাগোরাসের উপপাদ্য হতে পাই,

$$\therefore \tan\theta = \frac{\overline{q}}{\overline{q}} = \frac{PQ}{OP} = \frac{-3}{-4} = \frac{3}{4}$$

এবং
$$\sin\theta = \frac{\overline{m}}{\overline{m}} = \frac{PQ}{QQ} = \frac{-3}{5} = -\frac{3}{5}$$

সমাধান (তৃতীয় পদ্ধতি)

দেওয়া আছে,
$$\cos\theta = -\frac{4}{5}$$

বা,
$$\cos^2\theta = \left(\frac{-4}{5}\right)^2$$
 [বর্গ করে]

বা,
$$\cos^2\theta = \frac{16}{25}$$

বা,
$$\frac{1}{\sec^2\theta} = \frac{16}{25}$$

বা,
$$\sec^2\theta = \frac{25}{16}$$
 [বিপরীত করণ করে]

বা,
$$1 + \tan^2 \theta = \frac{25}{16}$$

$$41, \tan^2\theta = \frac{25}{16} - 1 = \frac{25 - 16}{16} = \frac{9}{16}$$

$$\therefore \tan\theta = \pm \frac{3}{4}$$

এখানে,
$$\tan\theta \neq \frac{-3}{4}$$
 ; কারণ $\pi < \theta < \frac{3\pi}{2}$

অর্থাৎ ৩য় চতুর্ভাগে tanθ এর মান ধনাত্মক।

$$\therefore \tan\theta = \frac{3}{4}$$

আবার,
$$tan\theta = \frac{\sin\theta}{\cos\theta}$$

বা,
$$\sin\theta = \tan\theta$$
. $\cos\theta$

বা,
$$\sin\theta = \frac{3}{4} \times \left(-\frac{4}{5}\right) = -\frac{3}{5}$$

$$\therefore \tan\theta = \frac{3}{4}, \sin\theta = -\frac{3}{5} \quad (Ans.)$$

তি $\sin A = \frac{2}{\sqrt{5}}$ এবং $\frac{\pi}{2} < A < \pi$ এর ক্ষেত্রে $\cos A$ এবং $\tan A$ এর মান কত?

সমাধান: দেওয়া আছে, $\sin A = \frac{2}{\sqrt{5}}$, যেহেতু $\sin \theta$ এর মান ধনাত্মক তাই θ কোণটি অবশ্যই ১ম অথবা ২য় চতুর্ভাগে অবস্থিত হবে। কিন্তু θ এর সীমা

হলো $\frac{\pi}{2}$ < A < π বা, 90° < θ < 180° | তাই

heta ২য় চতুর্ভাগে অবস্থিত। আমরা জানি, $\sin^2\!A + \cos^2\!A = 1$ বা, $\cos^2\!A = 1 - \sin^2\!A$

बा,
$$\cos^2 A = 1 - \sin^2 A$$

= $1 - \left(\frac{2}{\sqrt{5}}\right)^2 = 1 - \frac{4}{5} = \frac{5 - 4}{5} = \frac{1}{5}$

 $\therefore \cos A = \pm \frac{1}{\sqrt{5}}$

কিন্তু A দ্বিতীয় চতুর্ভাগে এবং এখানে $\cos\!A$ ঋণাতাক

$$\therefore \cos A = -\frac{1}{\sqrt{5}}$$

আবার,
$$\tan A = \frac{\sin A}{\cos A} = \frac{\frac{2}{\sqrt{5}}}{-\frac{1}{\sqrt{5}}} = \frac{2}{\sqrt{5}} \times \frac{-\sqrt{5}}{1} = -2$$

 $\sin A$ ও $\cos A$ এর মান বসিয়ে] $\therefore \tan A = -2$ [দ্বিতীয় চতুর্ভাগে $\tan A$ ঋণাত্মক]

$$\therefore \cos A = -\frac{1}{\sqrt{5}}, \tan A = -2 \quad (Ans.)$$

সমাধান (দ্বিতীয় পদ্ধতি)

দেওয়া আছে, $\sin\!A = \frac{2}{\sqrt{5}}$ এবং $\frac{\pi}{2} < A < \pi$ এখানে A কোণটি ২য় চতুৰ্ভাগে অবস্থিত।

এক্ষেত্রে $\overrightarrow{OP} = -1$ $[\because A$ কোণটি ২য় চতুর্ভাগে]

$$\cos A = \frac{\text{ভূম}}{\text{অতিভূজ}} = \frac{OP}{OQ} = \frac{-1}{\sqrt{5}} = -\frac{1}{\sqrt{5}}$$

$$\tan A = \frac{\text{my}}{\text{ভূম}} = \frac{PQ}{OP} = \frac{2}{-1} = -2$$

$$\therefore \cos A = -\frac{1}{\sqrt{5}} \le \tan A = -2 \quad \text{(Ans.)}$$

সমাধান (তৃতীয় পদ্ধতি)

দেওয়া আছে, $\sin\!A=\frac{2}{\sqrt{5}}$ এবং $\frac{\pi}{2}\!<\!A\!<\!\pi$ এখানে A কোণটি ২য় চতুর্ভাগে অবস্থিত।

এখন,
$$\sin A = \frac{2}{\sqrt{5}}$$

 $\therefore \csc A = \frac{\sqrt{5}}{2}$
বা, $\csc^2 A = \left(\frac{\sqrt{5}}{2}\right)^2$
বা, $1 + \cot^2 A = \frac{5}{4}$

$$41, \cot^2 A = \frac{5}{4} - 1$$

$$4, \cot A = \pm \sqrt{\frac{5-4}{4}}$$

বা, $\cot A=-\sqrt{\frac{1}{4}}=\frac{-1}{2}$ $[\because$ ২য় চতুর্ভাগে \cot অনুপাত ঋণাত্মক] বা, $\tan A=-2$

Ans: $\cos A = -\frac{1}{\sqrt{5}} \le \tan A = -2$

8 দেওয়া আছে, $\cos A = \frac{1}{2}$ এবং $\cos A$ ও $\sin A$ একই চিহ্নবিশিষ্ট। $\sin A$ এবং $\tan A$ এর মান কত?

সমাধান: এখানে, $\cos A = \frac{1}{2}$ বা, $\cos^2 A = \left(\frac{1}{2}\right)^2$ [বৰ্গ করে] বা, $1 - \sin^2 A = \frac{1}{4}$ বা, $1 - \frac{1}{4} = \sin^2 A$ বা, $\frac{3}{4} = \sin^2 A$ বা, $\sin A = \pm \sqrt{\frac{3}{4}} = \pm \frac{\sqrt{3}}{2}$

যেহেতু, $\cos\!A$ ধনাত্মক সুতরাং $\sin\!A$ ধনাত্মক হবে।

[∵ cosA ও sinA একই চিহ্নবিশিষ্ট]

$$\therefore \sin A = \frac{\sqrt{3}}{2}$$

এবং
$$\tan A = \frac{\sin A}{\cos A} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \sqrt{3}$$

Ans: $\sin A = \frac{\sqrt{3}}{2}$, $\tan A = \sqrt{3}$

সমাধান (দ্বিতীয় পদ্ধতি)

দেওয়া আছে, $\cos A = \frac{1}{2}$ এবং $\cos A$ ও $\sin A$ একই চিহ্ন বিশিষ্ট। $\therefore \sin\! A$ এর মান ধনাতা্রক। শুধুমাত্র ১ম চতুর্ভাগে $\cos\! A$ ও $\sin\! A$ উভয়

ধনাত্মক। ∴ A কোণটি ১ম চতুর্ভাগে অবস্থিত।

পিথাগোরাসের উপপাদ্য অনুযায়ী.

$$PM = \sqrt{OM^2 - OP^2} = \sqrt{2^2 - 1^2} = \sqrt{3}$$

∴
$$\sin A = \frac{\text{লাম}}{\text{অতিভুজ}} = \frac{PM}{OM} = \frac{\sqrt{3}}{2}$$

$$\tan A = \frac{\text{লাম}}{\text{ভূমি}} = \frac{PM}{OP} = \frac{\sqrt{3}}{1} = \sqrt{3}$$

$$\therefore \sin A = \frac{\sqrt{3}}{2}, \tan A = \sqrt{3} \text{ (Ans.)}$$

lacktriangle দেওয়া আছে, $an\!A = -rac{5}{12}$ এবং $an\!A$ ও $\cos\!A$ বিপরীত চিহ্নবিশিষ্ট। $\sin\!A$ এবং $\cos\!A$ এর মান নির্ণয় কর।

সমাধান: আমরা জানি, $\sec^2 A = 1 + \tan^2 A$ $=1+\left(-rac{5}{12}
ight)^2=1+rac{25}{144}=rac{169}{144}$ দণওয়া আছে, $an A=-rac{5}{12}$ এবং an A ও $\cos A$ বিপরীত চিহ্ন বিশিষ্ট। $\therefore \sec A = \pm \sqrt{\frac{169}{144}} = \pm \frac{13}{12}$

$$\therefore \sec A = \pm \sqrt{\frac{144}{144}} = \pm \frac{12}{144}$$

$$\therefore \cos A = \pm \frac{12}{13}$$

যেহেতু an A ও $\cos A$ বিপরীত চিহ্নবিশিষ্ট এবং $an A = -rac{5}{12}$ যা ঋণাত্মক; সুতরাং $\cos\!A$ ধনাত্মক হবে।

$$\therefore \cos A = \frac{12}{13}$$

আমরা জানি, $\sin^2 A + \cos^2 A = 1$

ৰা,
$$\sin^2 A = 1 - \cos^2 A$$

= $1 - \left(\frac{12}{13}\right)^2 = 1 - \frac{144}{169} = \frac{25}{169}$

$$\therefore \sin A = \pm \sqrt{\frac{25}{169}} = \pm \frac{5}{13}$$

তৃতীয় ও চতুর্থ চতুর্ভাগে $an\!A$ ও $\cos\!A$ বিপরীত চিহ্ন বিশিষ্ট। কিন্তু যেহেতু $tanA=-rac{5}{12}$ এবং $cosA=rac{13}{12}$, তাই A কোণটি চতুর্থ চতুর্ভাগে অবস্থিত এবং চতুর্থ চতুর্ভাগে $\sin\!A$ ঋণাত্মক।

$$\therefore \sin A = -\frac{5}{13}$$

Ans: $\sin A = -\frac{5}{13}$, $\cos A = \frac{12}{13}$

সমাধান (দ্বিতীয় পদ্ধতি)

সুতরাং $\cos\!A$ ধনাতাক। শুধুমাত্র ৪র্থ চতুর্ভাগে $\tan\!A$ ঋণাতাক এবং $\cos\! A$ ধনাত্মক। $\therefore A$ কোণটি ৪র্থ চতুর্ভাগে অবস্থিত।

চিত্ৰ হতে.

$$OM = \sqrt{OP^2 + PM^2}$$
$$= \sqrt{(12)^2 + (-5)^2} = \sqrt{144 + 25} = \sqrt{169} = 13$$

এখন,
$$\sin A = \frac{\text{লম}}{\text{অতিভুজ}} = \frac{PM}{OM} = \frac{-5}{13} = -\frac{5}{13}$$

$$\cos A = \frac{5}{2} \sqrt{\frac{P}{N}} = \frac{OP}{OM} = \frac{12}{13}$$

$$\sin A = -\frac{5}{13}$$
, $\cos A = \frac{12}{13}$ (Ans.)

৬ নিম্নলিখিত অভেদসমূহ প্রমাণ কর:

$$(\overline{\diamond}) \quad \tan A + \cot A = \sec A \csc A$$

$$(\mathfrak{I}) \quad \sqrt{\frac{1-\sin A}{1+\sin A}} = \sec A - \tan A$$

(8)
$$(\sec\theta - \cos\theta)(\csc\theta - \sin\theta)(\tan\theta + \cot\theta) = 1$$

$$(\forall) \ \sqrt{\frac{1+\cos\theta}{1-\cos\theta}} = \csc\theta + \cot\theta = \sqrt{\frac{\sec\theta+1}{\sec\theta-1}}$$

(
$$\forall$$
) $\sec^4\theta - \sec^2\theta = \tan^4\theta + \tan^2\theta$

(b)
$$\frac{\tan\theta + \sec\theta - 1}{\tan\theta - \sec\theta + 1} = \tan\theta + \sec\theta$$

সমাধান:

ৰাম্পক্ষ =
$$\tan A + \cot A = \sec A \csc A$$

$$= \frac{\sin A}{\cos A} + \frac{\cos A}{\sin A} \quad [\because \tan A = \frac{\sin A}{\cos A} \text{ এবং } \cot A = \frac{\cos A}{\sin A}]$$

$$= \frac{\sin^2 A + \cos^2 A}{\cos A \cdot \sin A}$$

$$= \frac{1}{\cos A \cdot \sin A} \quad [\because \sin^2 A + \cos^2 A = 1]$$

$$= \sec A \cdot \csc A \quad [\because \sec A = \frac{1}{\cos A} \text{ এবং } \csc A = \frac{1}{\sin A}]$$

$$= \frac{\sin^2 A + \cos^2 A}{\cos A \cdot \sin A}$$

tanA + cotA = secA.cosecA (প্রমাণিত)

(i) এর দ্বিতীয় পদ্ধতি

$$tan A + \cot A$$

$$= tan A \left(1 + \frac{\cot A}{\tan A}\right)$$

$$= tan A . (1 + \cot^2 A) \quad [\because \frac{1}{\tan A} = \cot A]$$

$$= tan A . \csc^2 A$$

$$= \frac{\sin A}{\cos A} \cdot \frac{1}{\sin^2 A} = \frac{1}{\cos A} \cdot \frac{1}{\sin A} = \sec A \csc A \quad (প্রমাণিত)$$

(i) এর তৃতীয় পদ্ধতি

$$tan A + \cot A$$

$$= \cot A \left(\frac{\tan A}{\cot A} + 1\right)$$

$$= \cot A (1 + \tan^2 A)$$

$$= \cot A \cdot \sec^2 A$$

$$= \frac{\cos A}{\sin A} \cdot \frac{1}{\cos^2 A} = \frac{1}{\cos A} \cdot \frac{1}{\sin A} = \sec A \cdot \csc A \quad (A)$$

(i) এর চতুর্থ পদ্ধতি

$$tan A + \cot A = \tan A + \frac{1}{\tan A}$$

$$= \frac{\tan^2 A + 1}{\tan A}$$

$$= \frac{\sec^2 A}{\tan A}$$

$$= \sec A \cdot \frac{\sec A}{\tan A}$$

$$= \sec A \cdot \frac{\sec A}{\sin A \cdot \sec A} = \sec A \cdot \frac{1}{\sin A} = \sec A \cdot \csc A \text{ (প্রমাণিত)}$$

ম্ব
$$\sqrt{\frac{1+\cos\theta}{1-\cos\theta}}=\csc\theta+\cot\theta=\sqrt{\frac{\sec\theta+1}{\sec\theta-1}}$$
 বামপক্ষ = $\sqrt{\frac{1+\cos\theta}{1-\cos\theta}}$ = $\sqrt{\frac{1+\cos\theta}{1-\cos\theta}}$. $\sqrt{\frac{1+\cos\theta}{1+\cos\theta}}$ [এখানে হর ও লবকে $\sqrt{1+\cos\theta}$ দ্বারা গুণ করে]

$$= \sqrt{\frac{(1+\cos\theta)(1+\cos\theta)}{(1-\cos\theta)}(1+\cos\theta)}$$

$$= \sqrt{\frac{(1+\cos\theta)^2}{1-\cos^2\theta}}$$

$$= \sqrt{\frac{(1+\cos\theta)^2}{\sin^2\theta}}$$

$$= \frac{1+\cos\theta}{\sin\theta}$$

$$= \frac{1+\cos\theta}{\sin\theta}$$

$$= \cos \cos\theta + \cot\theta \quad [\because \frac{\cos\theta}{\sin\theta} = \cot\theta]$$

$$= \tan \sin\theta = \sqrt{\frac{1+\cos\theta}{1-\cos\theta}}$$

$$= \sqrt{\frac{1+\frac{1}{\sec\theta}}{1-\frac{1}{\sec\theta}}} \quad [\because \cos\theta = \frac{1}{\sec\theta}]$$

$$= \sqrt{\frac{\frac{1+\cos\theta}{\sec\theta}}{1-\frac{1}{\sec\theta}}} \quad [\because \cos\theta = \frac{1}{\sec\theta}]$$

$$= \sqrt{\frac{\frac{1+\cos\theta}{\sec\theta}}{1-\cos\theta}} = \sqrt{\frac{\frac{\sec\theta+1}{\sec\theta}}{\frac{\sec\theta-1}{\sec\theta}}}$$

$$= \sqrt{\frac{\frac{1+\cos\theta}{\sec\theta-1}}{\sec\theta}} \times \frac{\frac{\sec\theta+1}{\sec\theta-1}}{\frac{\sec\theta-1}{\sec\theta}}$$

$$\therefore \sqrt{\frac{1+\cos\theta}{1-\cos\theta}} = \csc\theta + \cot\theta = \sqrt{\frac{\frac{\sec\theta+1}{\sec\theta-1}}{\frac{\sec\theta-1}{\sec\theta-1}}}$$

$$\sqrt{\frac{(ii)}{\sec\theta-1}} = \frac{(\sqrt{\sec\theta+1})(\sqrt{\sec\theta+1})}{(\sqrt{\sec\theta-1})(\sqrt{\sec\theta-1})}$$

$$= \frac{\sqrt{(\sec\theta+1)^2}}{\sqrt{(\sec\theta+1)^2}}$$

$$= \frac{\cos\theta+1}{\tan\theta}$$

$$= \frac{1}{\cot\theta}$$

$$= \frac{1}{\tan\theta}$$

$$= \frac{1}{\cos\theta} \times \frac{\cos\theta}{\sin\theta} + \cot\theta$$

$$= \frac{1}{\sin\theta} + \cot\theta$$

$$= \cos \theta + \cot\theta$$

$$\therefore \sqrt{\frac{1+\cos\theta}{1-\cos\theta}} = \csc\theta + \cot\theta = \sqrt{\frac{\sec\theta+1}{\sec\theta-1}}} (\cot\theta)$$

$$\therefore \sqrt{\frac{1+\cos\theta}{1-\cos\theta}} = \csc\theta + \cot\theta$$

$$= \frac{1}{\sin\theta} + \cot\theta$$

$$= \cos \theta + \cot\theta$$

$$= \frac{1}{\sin\theta} + \cot\theta$$

$$= \cos \theta + \cot\theta$$

$$= \frac{1}{\sin\theta} + \cot\theta$$

$$= \cos \theta + \cot\theta$$

$$= \frac{1}{\theta} + \cot\theta$$

$$= \cos \theta + \cot\theta$$

$$= \frac{1}{\theta} + \cot\theta$$

$$= \cos \theta + \cot\theta$$

$$= \frac{1}{\theta} + \cot\theta$$

$$= \cos \theta + \cot\theta$$

$$= \frac{1}{\theta} + \cot\theta$$

$$= \cos \theta + \cot\theta$$

$$= \frac{1}{\theta} + \cot\theta$$

$$= \cos \theta + \cot\theta$$

$$= \frac{1}{\theta} + \cot\theta$$

$$= \cos \theta + \cot\theta$$

$$= \cos \theta + \cot\theta$$

$$= \cos \theta + \cot\theta$$

$$= \frac{1}{\theta} + \cot\theta$$

$$= \cos \theta + \cot\theta$$

$$= \frac{1}{\theta} + \cot\theta$$

$$= \cos \theta + \cot\theta$$

$$= \frac{1}{\theta} + \cot\theta$$

$$= \cos \theta + \cot\theta$$

$$= \cos \theta$$

া
$$\sqrt{\frac{1-\sin A}{1+\sin A}}=\sec A-\tan A$$
বামপক্ষ = $\sqrt{\frac{1-\sin A}{1+\sin A}}$

$$=\sqrt{\frac{1-\sin A}{1+\sin A}}\cdot\sqrt{\frac{1-\sin A}{1-\sin A}}$$

$$=\sqrt{\frac{(1-\sin A)(1-\sin A)}{(1+\sin A)(1-\sin A)}}$$

$$=\sqrt{\frac{(1-\sin A)(1-\sin A)}{(1+\sin A)(1-\sin A)}}$$

$$=\sqrt{\frac{(1-\sin A)^2}{1-\sin^2 A}}$$

$$=\sqrt{\frac{(1-\sin A)^2}{\cos^2 A}}\begin{bmatrix} \text{আমরা জান, } \sin^2 A+\cos^2 A=1\\ \therefore \cos^2 A=1-\sin^2 A \end{bmatrix}$$

$$=\frac{1-\sin A}{\cos A}$$

$$=\frac{1}{\cos A}-\frac{\sin A}{\cos A}=\sec A-\tan A=\sin A$$

$$\therefore\sqrt{\frac{1-\sin A}{1+\sin A}}=\sec A-\tan A$$
(প্রমাণিত)
বিদ্রু: ডানপক্ষ $\sec A-\tan A$ (প্রমাণিত)

অঙ্কটির নিচ থেকে ক্রমান্বয়ে উপরের দিকে গেলেও কাঙ্খিত সমাধান পাওয়া যায় অর্থাৎ ডানপক্ষ থেকে বামপক্ষ প্রমাণ করা যায়।

ষ
$$\sec^4\theta - \sec^2\theta = \tan^4\theta + \tan^2\theta$$

্বামপক্ষ = $\sec^2\theta$ ($\sec^2\theta - 1$)

 $= (1 + \tan^2\theta)(1 + \tan^2\theta - 1)$ [$\because \sec^2\theta = 1 + \tan^2\theta$]

 $= (1 + \tan^2\theta) \tan^2\theta$
 $= \tan^2\theta + \tan^4\theta$
 $= \tan^4\theta + \tan^2\theta =$ ভানপক্ষ

 $\therefore \sec^4\theta - \sec^2\theta = \tan^4\theta + \tan^2\theta$ (প্রমাণিত)

(iv) এর দিতীয় পদ্ধতি

বামপক্ষ = $\sec^4\theta - \sec^2\theta$
 $= (\sec^2\theta)^2 - \sec^2\theta$
 $= (1 + \tan^2\theta)^2 - (1 + \tan^2\theta)$
 $= 1 + 2\tan^2\theta + (\tan^2\theta)^2 - 1 - \tan^2\theta$
 $= \tan^4\theta + 2\tan^2\theta - \tan^2\theta$
 $= \tan^4\theta + \tan^2\theta =$ ভানপক্ষ

 $\therefore \sec^4\theta - \sec^2\theta = \tan^4\theta + \tan^2\theta$ (প্রমাণিত)

ামপক্ষ =
$$\sec^4\theta - \sec^2\theta$$

$$= \frac{1}{\cos^4\theta} - \frac{1}{\cos^2\theta}$$

$$= \frac{1 - \cos^2\theta}{\cos^4\theta}$$

$$= \frac{\sin^2\theta}{\cos^2\theta} \cdot \frac{1}{\cos^2\theta}$$

$$= \tan^2\theta \cdot \sec^2\theta$$

$$= \tan^2\theta \cdot 1 + \tan^2\theta \cdot 1 = \tan^4\theta + \tan^2\theta$$

$$\therefore \sec^4\theta - \sec^2\theta = \tan^4\theta + \tan^2\theta \cdot 1 = \tan^4\theta + \cot\theta = 1$$
বামপক্ষ = $(\sec\theta - \cos\theta)(\csc\theta - \sin\theta)(\tan\theta + \cot\theta) = 1$
বামপক্ষ = $(\sec\theta - \cos\theta)(\csc\theta - \sin\theta)(\tan\theta + \cot\theta)$

$$= \left(\frac{1}{\cos\theta} - \cos\theta\right)\left(\frac{1}{\sin\theta} - \sin\theta\right)\left(\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta}\right)$$

$$= \left(\frac{1 - \cos^2\theta}{\cos\theta}\right)\left(\frac{1 - \sin^2\theta}{\sin\theta}\right)\left(\frac{\sin^2\theta + \cos^2\theta}{\cos\theta \cdot \sin\theta}\right)$$

$$= \left(\frac{\sin^2\theta}{\cos\theta}\right)\left(\frac{\cos^2\theta}{\sin\theta}\right)\left(\frac{1}{\cos\theta \cdot \sin\theta}\right)$$

$$= \frac{\sin^2\theta \cdot \cos^2\theta}{\cos^2\theta \cdot \sin^2\theta} = 1 = \sin^2\theta$$

$$= \frac{\sin^2\theta \cdot \cos^2\theta}{\cos^2\theta \cdot \sin^2\theta} = 1 = \sin^2\theta$$

$$\therefore (\sec\theta - \cos\theta)(\csc\theta - \sin\theta)(\tan\theta + \cot\theta) = 1$$

$$\therefore (\sec\theta - \cos\theta)(\csc\theta - \sin\theta)(\tan\theta + \cot\theta) = 1$$

$$\frac{\tan\theta + \sec\theta - 1}{\tan\theta - \sec\theta + 1} = \tan\theta + \sec\theta$$

$$\exists \ln\theta - \sec\theta + 1$$

$$= \frac{\tan\theta + \sec\theta - 1}{\tan\theta - \sec\theta + 1}$$

$$= \frac{(\tan\theta + \sec\theta) - (\sec^2\theta - \tan^2\theta)}{\tan\theta - \sec\theta + 1}$$

$$= \frac{(\tan\theta + \sec\theta) - (\sec\theta + \tan\theta)(\sec\theta - \tan\theta)}{\tan\theta - \sec\theta + 1}$$

$$= \frac{(\sec\theta + \tan\theta)(1 - \sec\theta + \tan\theta)}{(1 - \sec\theta + \tan\theta)}$$

$$= \sec\theta + \tan\theta$$

$$\therefore \frac{\tan\theta + \sec\theta - 1}{\tan\theta - \sec\theta + 1} = \tan\theta + \sec\theta \quad (2\pi)$$

 $\therefore (\sec\theta - \cos\theta)(\csc\theta - \sin\theta)(\tan\theta + \cot\theta) = 1$

্বি যদি $\mathrm{cosec}A=rac{a}{b}$ হয়, যেখানে a>b>0, তবে প্রমাণ কর যে, $\mathrm{tan}A=rac{\pm \, b}{\sqrt{a^2-b^2}}$

সমাধান: দেওয়া আছে,
$$\csc A = \frac{a}{b}$$
 বা, $\csc^2 A = \frac{a^2}{b^2}$ [বৰ্গ করে]
$$\overline{d}, \ 1 + \cot^2 A = \frac{a^2}{b^2} \quad [\because \csc^2 A - \cot^2 A = 1]$$
 $\overline{d}, \ \cot^2 A = \frac{a^2}{b^2} - 1$

বা,
$$\frac{1}{\tan^2 A} = \frac{a^2 - b^2}{b^2}$$
বা, $\tan^2 A = \frac{b^2}{a^2 - b^2}$ [বিপরীতকরণ করে]
বা, $\tan A = \pm \sqrt{\frac{b^2}{a^2 - b^2}}$

$$\therefore \tan A = \frac{\pm b}{\sqrt{a^2 - b^2}}$$
 (প্রমাণিত)

সমাধান (দ্বিতীয় পদ্ধতি)

দেওয়া আছে, $\csc A = \frac{a}{b}$ $\therefore \sin A = \frac{b}{a}$ আমরা জানি, $\sin^2 A + \cos^2 A = 1$ $\therefore \cos A = \pm \sqrt{1 - \sin^2 A}$ $= \pm \sqrt{1 - \left(\frac{b}{a}\right)^2}$ $= \pm \sqrt{\frac{a^2 - b^2}{a^2}}$ $= \pm \frac{\sqrt{a^2 - b^2}}{a}$ এখন, $\tan A = \frac{\sin A}{\cos A} = \frac{b}{a} \times \left(\pm \frac{a}{\sqrt{a^2 - b^2}}\right)$ $\therefore \tan A = \pm \frac{b}{\sqrt{a^2 - b^2}}$ (প্রমাণিত)

সমাধান (তৃতীয় পদ্ধতি)

দেওয়া আছে,
$$\csc A = \frac{a}{b} = \frac{\text{অতি ছুজ}}{\text{লাম}}$$
 A
সমকোণী $\triangle ABC$ -এ $AB^2 = AC^2 - BC^2$
বা, $AB^2 = a^2 - b^2$
 $\therefore AB = \pm \sqrt{a^2 - b^2}$ ত A

$$\triangle ABC$$
-এ $\tan A = \frac{BC}{AB} = \frac{b}{\pm \sqrt{a^2 - b^2}}$ B

$$\therefore \tan A = \pm \frac{b}{\sqrt{a^2 - b^2}}$$
 (প্রমাণিত)

বি.দ্র: বাহুর দৈর্ঘ্য ঋণাত্মক হতে পারে না কিন্তু ত্রিকোণমিতিতে বাহুর দৈর্ঘ্য ঋণাত্মক দেওয়া থাকলে তা শুধু অবস্থান নির্দেশে ব্যবহৃত হয়। এখানে প্রমাণের স্বার্থে বাহুর দৈর্ঘ্যে ঋণাত্মক চিহ্ন বসানো হয়েছে।

🔷 🔷 অনুশীলনীর ৭নং প্রশ্নের আলোকে সৃজনশীল প্রশ্নোত্তর 🔷 🔷

 $a \sin \theta = b \cos \theta$

ক.
$$\frac{\sin \theta + \cos \theta}{\sin \theta - \cos \theta}$$
 এর মান নির্ণয় কর।

খ. দেখাও যে,
$$\cos \theta = \pm \frac{a}{\sqrt{a^2 + b^2}}$$

গ. প্রমাণ কর যে, $\csc^2\theta - \sec^2\theta = \frac{a^2}{b^2} - \frac{b^2}{a^2}$

নিজে নিজে চেষ্ট কর।

$$(\overline{\Phi}) \frac{b+a}{b-a}$$

টি যদি $\cos\theta - \sin\theta = \sqrt{2}\sin\theta$ হয়, তবে দেখাও যে, $\cos\theta + \sin\theta = \sqrt{2}\cos\theta$

<u>সমাধান</u>: দেওয়া আছে, $\cos\theta - \sin\theta = \sqrt{2}\sin\theta$

বা,
$$\cos\theta = \sqrt{2}\sin\theta + \sin\theta$$

বা,
$$\cos\theta = (\sqrt{2} + 1)\sin\theta$$

বা,
$$(\sqrt{2}-1)\cos\theta = (\sqrt{2}-1)(\sqrt{2}+1)\sin\theta$$

[উভয়পক্ষকে $\left(\sqrt{2}-1\right)$ দ্বারা গুণ করে]

বা,
$$(\sqrt{2}-1)\cos\theta = (2-1)\sin\theta$$

বা,
$$\sqrt{2}\cos\theta - \cos\theta = \sin\theta$$

$$\cos \theta + \sin \theta = \sqrt{2}\cos \theta$$
 (দেখানো হলো)

সমাধান (দ্বিতীয় পদ্ধতি)

দেওয়া আছে, $\cos\theta - \sin\theta = \sqrt{2}\sin\theta$

বা,
$$(\cos\theta - \sin\theta)^2 = (\sqrt{2}\sin\theta)^2$$
 [উভয়পক্ষকে বৰ্গ করে]

বা,
$$\cos^2\theta - 2\cos\theta$$
. $\sin\theta + \sin^2\theta = 2\sin^2\theta$

বা,
$$\cos^2\theta + \sin^2\theta - 2\sin^2\theta = 2\cos\theta \cdot \sin\theta$$

বা,
$$\cos^2\theta - \sin^2\theta = 2\cos\theta$$
. $\sin\theta$

বা,
$$(\cos\theta + \sin\theta)(\cos\theta - \sin\theta) = 2\cos\theta \cdot \sin\theta$$

বা,
$$(\cos\theta + \sin\theta)$$
. $\sqrt{2}\sin\theta = 2\cos\theta$. $\sin\theta$

$$[\because \cos\theta - \sin\theta = \sqrt{2}\sin\theta)$$

বা.
$$\cos\theta + \sin\theta = \frac{2\sin\theta \cdot \cos\theta}{\sqrt{2}\sin\theta}$$

$$\cos \theta + \sin \theta = \sqrt{2} \cos \theta$$
 (দেখানো হলো)

্রিটা $\tan\theta = \frac{x}{y}, x \neq y$ হলে, $\frac{x \sin\theta + y \cos\theta}{x \sin\theta - y \sin\theta}$ এর মান নির্ণয় কর।

সমাধান: দেওয়া আছে,
$$\tan\theta = \frac{x}{y}$$
 বা, $\frac{\sin\theta}{\cos\theta} = \frac{x}{y}$

বা,
$$\frac{x \sin \theta}{y \cos \theta} = \frac{x}{y} \cdot \frac{x}{y}$$
 [উভয়পক্ষকে $\frac{x}{y}$ দ্বারা গুণ করে] \therefore নির্ণেয় মান $\frac{x^2 + y^2}{x^2 - y^2}$ (Ans.)

বা,
$$\frac{x \sin \theta}{y \cos \theta} = \frac{x^2}{y^2}$$

$$\therefore \frac{x \sin \theta + y \cos \theta}{x \sin \theta - y \sin \theta} = \frac{x^2 + y^2}{x^2 - y^2}$$
 [যোজন-বিয়োজন করে]

♦♦ অনুশীলনীর ৫ ও ৯নং প্রশ্নের আলোকে সূজনশীল প্রশ্নোত্তর ♦♦

ত্রিকোণমিতিক অনুপাতের মাধ্যমে বর্ণিত সমীকরণ: $an heta = rac{3}{12}$

- ক. secθ এর মান নির্ণয় কর।
- খ. sin θ এবং cos θ এর মানসমূহ নির্ণয় কর।
- গ. $\sin\theta$ ঋণাত্মক হলে দেখাও যে, $\frac{-\sin(-\theta)+\cos(-\theta)}{\sec(-\theta)+\tan(-\theta)}=\frac{34}{39}$

নিজে নিজে চেষ্ট কর ।
$$(\mathtt{\overline{a}}) \pm \frac{13}{12} \ ; \ (\mathtt{\overline{v}}) \pm \frac{5}{13} \ , \pm \frac{12}{13}$$

Δo $\tan \theta + \sec \theta = x$ হলে, দেখাও যে, $\sin \theta = \frac{x^2 - 1}{x^2 + 1}$

সমাধান: দেওয়া আছে,
$$tan\theta + sec\theta = x$$

ৰা,
$$\frac{\sin\theta}{\cos\theta} + \frac{1}{\cos\theta} = x \left[\because \tan\theta = \frac{\sin\theta}{\cos\theta} \text{ এবং } \sec\theta = \frac{1}{\cos\theta} \right]$$

বা,
$$\frac{1+\sin\theta}{\cos\theta} = x$$

বা,
$$\frac{1+\sin\theta}{\cos\theta} = x$$

বা, $\frac{(1+\sin\theta)^2}{\cos^2\theta} = x^2$ [উভয়পক্ষকে বৰ্গ করে]

বা,
$$\frac{(1+\sin\theta)^2}{1-\sin^2\theta} = x^2 \left[\because \sin^2\theta + \cos^2\theta = 1$$
বা, $\cos^2\theta = 1 - \sin^2\theta \right]$

ৰা,
$$\frac{(1+\sin\theta)(1+\sin\theta)}{(1+\sin\theta)(1-\sin\theta)} = x^2$$

$$\frac{1+\sin\theta}{1-\sin\theta} = x^2$$

$$rac{1 + \sin\theta}{1 + \sin\theta} = x^2$$

বা,
$$\frac{1 + \sin\theta + 1 - \sin\theta}{1 + \sin\theta - 1 + \sin\theta} = \frac{x^2 + 1}{x^2 - 1}$$
 [যোজন-বিয়োজন করে]

$$41, \frac{2}{2\sin\theta} = \frac{x^2 + 1}{x^2 - 1}$$

বা,
$$\frac{1}{\sin \theta} = \frac{x^2 + 1}{x^2 - 1}$$

$$\therefore \sin\theta = \frac{x^2 - 1}{x^2 + 1}$$
 (দেখানো হলো)

সমাধান (দ্বিতীয় পদ্ধতি)

দেওয়া আছে, $tan\theta + sec\theta = x$

বা,
$$(\tan\theta + \sec\theta)^2 = x^2$$
 [উভয়পক্ষকে বৰ্গ করে]

বা,
$$tan^2\theta + 2tan\theta$$
. $sec\theta + sec^2\theta = x^2$

বা,
$$\frac{\sin^2\theta}{\cos^2\theta} + 2 \cdot \frac{\sin\theta}{\cos\theta} \cdot \frac{1}{\cos\theta} + \frac{1}{\cos^2\theta} = x^2$$

$$\overline{d}, \frac{\sin^2\theta + 2\sin\theta + 1}{\cos^2\theta} = x^2$$

বা,
$$\sin^2\theta + 2\sin\theta + 1 = x^2\cos^2\theta$$

বা,
$$\sin^2\theta + 2\sin\theta + 1 = x^2(1 - \sin^2\theta)$$
 [:: $\cos^2\theta = 1 - \sin^2\theta$]

বা,
$$(\sin\theta + 1)^2 = x^2 (1 + \sin\theta)(1 - \sin\theta)$$

বা,
$$\sin\theta+1=x^2\left(1-\sin\theta\right)$$
 [উভয়পক্ষকে $(1+\sin\theta)$ দ্বারা ভাগ করে]

বা,
$$\sin\theta + 1 = x^2 - x^2 \sin\theta$$

বা,
$$x^2 \sin\theta + \sin\theta = x^2 - 1$$
 [পক্ষান্তর করে]

বা,
$$(x^2 + 1)\sin\theta = x^2 - 1$$

$$\therefore \sin\theta = \frac{x^2 - 1}{x^2 + 1}$$
 (দেখানো হলো)

🕨 🔷 অনুশীলনীর ১০নং প্রশ্নের আলোকে সূজনশীল প্রশ্নোত্তর 💠

 $\tan \theta + \sec \theta = x$ হলে,

ক. $tan \theta - sec \theta$ এর মান নির্ণয় কর।

খ. দেখাও যে, $\sin\theta = \frac{x^2 - 1}{x^2 + 1}$

গ. প্রমাণ কর যে, $cosec\theta + cot\theta = \frac{x+1}{x-1}$

নিজে নিজে চেষ্ট কর। $(\overline{\Phi}) \frac{1}{\mathbf{v}}$

$\left[\frac{22}{a}\right]a\cos\theta-b\sin\theta=c$ হলে, প্রমাণ কর যে, $a\sin\theta+b\cos\theta=\pm\sqrt{a^2+b^2-c^2}$

সমাধানঃ দেওয়া আছে, $a\cos\theta - b\sin\theta = c$

বা,
$$(a\cos\theta - b\sin\theta)^2 = c^2$$
 [উভয়পক্ষকে বৰ্গ করে]

বা,
$$a^2\cos^2\theta - 2a\cos\theta \cdot b\sin\theta + b^2\sin^2\theta = c^2$$

ৰা,
$$a^2(1 - \sin^2\theta) - 2a\cos\theta.b\sin\theta + b^2(1 - \cos^2\theta) = c^2$$

[
$$\sin^2\theta + \cos^2\theta = 1$$
]
বা, $a^2 - a^2\sin^2\theta - 2a\cos\theta.b\sin\theta + b^2 - b^2\cos^2\theta = c^2$

$$a = \frac{1}{2} \cdot \frac{1}{2} \cdot$$

$$\exists t, -(a^2 \sin^2 \theta + 2a \cos \theta . b \sin \theta + b^2 \cos^2 \theta) = -(a^2 + b^2 - c^2)$$

ৰা,
$$a^2 \sin^2 \theta + 2a \cos \theta . b \sin \theta + b^2 \cos^2 \theta = a^2 + b^2 - c^2$$

ৰা, $(a \sin \theta)^2 + 2.a \sin \theta . b \cos \theta + (b \cos \theta)^2 = a^2 + b^2 - c^2$

$$(a\sin\theta) + 2.a\sin\theta.b\cos\theta + (b\cos\theta) = a + b - c$$

$$[\because a\cos\theta. b\sin\theta = ab\sin\theta\cos\theta = a\sin\theta. b\cos\theta]$$

বা,
$$(a\sin\theta + b\cos\theta)^2 = a^2 + b^2 - c^2$$

$$\therefore a\sin\theta + b\cos\theta = \pm \sqrt{a^2 + b^2 - c^2} \quad (প্রমাণিত)$$

বা,
$$y = \pm \sqrt{a}$$

$$a\sin\theta + b\cos\theta = \pm \sqrt{a^2 + b^2 - c^2}$$
 (প্রমাণিত)

সমাধান (দ্বিতীয় পদ্ধতি)

দেওয়া আছে,
$$a\cos\theta - b\sin\theta = c \dots (i)$$

ধরি,
$$a\sin\theta + b\cos\theta = y$$
 (ii)

$$(a\cos\theta - b\sin\theta)^2 + (a\sin\theta + b\cos\theta)^2 = c^2 + y^2$$

$$\exists 1, a^2\cos^2\theta + b^2\sin^2\theta - 2ab\sin\theta\cos\theta + a^2\sin^2\theta + b^2\cos^2\theta$$

$$+2ab \sin\theta \cos\theta = c^2 + y^2$$

$$\exists t, a^2(\sin^2\theta + \cos^2\theta) + b^2(\sin^2\theta + \cos^2\theta) = c^2 + y^2$$

बा,
$$c^2 + y^2 = a^2 + b^2$$

बा, $y^2 = a^2 + b^2 - c^2$
बा, $y = \pm \sqrt{a^2 + b^2 - c^2}$

বা,
$$y = \pm \sqrt{a^2 + b^2 - c^2}$$

$$\therefore a\sin\theta + b\cos\theta = \pm \sqrt{a^2 + b^2 - c^2}$$
 (প্রমাণিত)

♦♦ অনুশীলনীর ১১নং প্রশ্নের আলোকে সূজনশীল প্রশ্নোত্তর ♦♦

$$P = a \cos \theta$$
 $Q = b \sin \theta$

ক.
$$\frac{P^2}{a^2} + \frac{Q^2}{b^2}$$
 এর মান নির্ণয় কর।

খ.
$$P-Q=c$$
 হলে, প্রমাণ কর যে, $a\sin\theta+b\cos\theta=\pm\sqrt{a^2+b^2-c^2}$

গ.
$$a^2 = 3$$
, $b^2 = 7$ এবং $Q^2 + P^2 = 4$ হলে, প্রমাণ কর যে, $\tan \theta = \pm \frac{1}{\sqrt{3}}$

নিজে নিজে চেষ্ট কর। (ক) 1

১২ মান নির্ণয় কর:

$$(\overline{\Phi}) \sin^2 \frac{\pi}{6} + \cos^2 \frac{\pi}{4} + \tan^2 \frac{\pi}{3} + \cot^2 \frac{\pi}{6}$$

(4)
$$3\tan^2\frac{\pi}{4} - \sin^2\frac{\pi}{3} - \frac{1}{2}\cot^2\frac{\pi}{6} + \frac{1}{3}\sec^2\frac{\pi}{4}$$

(
$$^{\circ}$$
) $\tan^2 \frac{\pi}{4} - \sin^2 \frac{\pi}{3} \tan^2 \frac{\pi}{6} \tan^2 \frac{\pi}{3} \cdot \cos^2 \frac{\pi}{4}$

(\forall)
$$\frac{\tan\frac{\pi}{3} - \tan\frac{\pi}{6}}{1 + \tan\frac{\pi}{3}\tan\frac{\pi}{6}} + \cos\frac{\pi}{3}\cos\frac{\pi}{6} + \sin\frac{\pi}{3}\sin\frac{\pi}{6}$$

সমাধান:

$$\sin^2 \frac{\pi}{6} + \cos^2 \frac{\pi}{4} + \tan^2 \frac{\pi}{3} + \cot^2 \frac{\pi}{6}$$

$$= \left(\sin \frac{\pi}{6}\right)^2 + \left(\cos \frac{\pi}{4}\right)^2 + \left(\tan \frac{\pi}{3}\right)^2 + \left(\cot \frac{\pi}{6}\right)^2$$

$$= \left(\frac{1}{2}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2 + \left(\sqrt{3}\right)^2 + \left(\sqrt{3}\right)^2$$

$$= \frac{1}{4} + \frac{1}{2} + 3 + 3$$

$$= \frac{1 + 2 + 12 + 12}{4} = \frac{27}{4}$$

∴ নির্বেয় মান =
$$\frac{27}{4}$$
 (Ans.)

(i) এর দ্বিতীয় পদ্ধতি

প্রদন্ত রাশি =
$$\sin^2\frac{\pi}{6} + \cos^2\frac{\pi}{4} + \tan^2\frac{\pi}{3} + \cot^2\frac{\pi}{6}$$

= $\sin^2\frac{180^\circ}{6} + \cos^2\frac{180^\circ}{4} + \tan^2\frac{180^\circ}{3} + \cot^2\frac{180^\circ}{6}$
= $\sin^230^\circ + \cos^245^\circ + \tan^260^\circ + \cot^230^\circ$
= $(\sin30^\circ)^2 + (\cos45^\circ)^2 + (\tan60^\circ)^2 + (\cot30^\circ)^2$
= $\left(\frac{1}{2}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2 + \left(\sqrt{3}\right)^2 + \left(\sqrt{3}\right)^2$
= $\frac{1}{4} + \frac{1}{2} + 3 + 3 = \frac{1+2}{4} + 6 = \frac{3+24}{4} = \frac{27}{4}$
 \therefore নির্ণেয় মান = $\frac{27}{4}$ (Ans.)

3
$$\tan^2 \frac{\pi}{4} - \sin^2 \frac{\pi}{3} - \frac{1}{2} \cot^2 \frac{\pi}{6} + \frac{1}{3} \sec^2 \frac{\pi}{4}$$

$$= 3 \left(\tan \frac{\pi}{4} \right)^2 - \left(\sin \frac{\pi}{3} \right)^2 - \frac{1}{2} \left(\cot \frac{\pi}{6} \right)^2 + \frac{1}{3} \left(\sec \frac{\pi}{4} \right)^2$$

$$= 3(1)^2 - \left(\frac{\sqrt{3}}{2} \right)^2 - \frac{1}{2} \left(\sqrt{3} \right)^2 + \frac{1}{3} \left(\sqrt{2} \right)^2$$

$$= 3 - \frac{3}{4} - \frac{3}{2} + \frac{2}{3}$$

$$= \frac{36 - 9 - 18 + 8}{12} = \frac{17}{12}$$

$$\therefore$$
 নির্পেয় মান = $\frac{17}{12}$ (Ans.)

া
$$\tan^2 \frac{\pi}{4} - \sin^2 \frac{\pi}{3} \tan^2 \frac{\pi}{6} \tan^2 \frac{\pi}{3} \cdot \cos^2 \frac{\pi}{4}$$

$$= 1^2 - \left(\frac{\sqrt{3}}{2}\right)^2 \cdot \left(\frac{1}{\sqrt{3}}\right)^2 \cdot \left(\sqrt{3}\right)^2 \cdot \left(\frac{1}{\sqrt{2}}\right)^2$$

$$= 1 - \frac{3}{4} \cdot \frac{1}{3} \cdot 3 \cdot \frac{1}{2} = 1 - \frac{3}{8} = \frac{8 - 3}{8} = \frac{5}{8}$$

$$\therefore$$
 নির্পেয় মান = $\frac{5}{8}$ (Ans.)

$$\frac{\tan\frac{\pi}{3} - \tan\frac{\pi}{6}}{1 + \tan\frac{\pi}{3}\tan\frac{\pi}{6}} + \cos\frac{\pi}{3}\cos\frac{\pi}{6} + \sin\frac{\pi}{3}\sin\frac{\pi}{6}$$

$$= \frac{\sqrt{3} - \frac{1}{\sqrt{3}}}{1 + \sqrt{3} \cdot \frac{1}{\sqrt{3}}} + \frac{1}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} \cdot \frac{1}{2}$$

$$= \frac{\frac{3 - 1}{\sqrt{3}}}{1 + 1} + \frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{4}$$

$$= \frac{\frac{2}{\sqrt{3}}}{2} + 2 \cdot \frac{\sqrt{3}}{4}$$

$$= \frac{2}{\sqrt{3}} \times \frac{1}{2} + \frac{\sqrt{3}}{2}$$

$$= \frac{1}{\sqrt{3}} + \frac{\sqrt{3}}{2} = \frac{2 + 3}{2\sqrt{3}} = \frac{5}{2\sqrt{3}} = \frac{5\sqrt{3}}{2\sqrt{3} \cdot \sqrt{3}} = \frac{5\sqrt{3}}{2 \cdot 3} = \frac{5\sqrt{3}}{6}$$

$$\therefore \text{ FICER NITE } = \frac{5\sqrt{3}}{6} \text{ (Ans.)}$$

_ সরল কর:
$$\frac{1-\sin^2\frac{\pi}{6}}{1+\sin^2\frac{\pi}{4}} \times \frac{\cos^2\frac{\pi}{3}+\cos^2\frac{\pi}{6}}{\csc^2\frac{\pi}{2}-\cot^2\frac{\pi}{2}} \div \left(\sin\frac{\pi}{3}\tan\frac{\pi}{6}\right) + \left(\sec^2\frac{\pi}{6}-\tan^2\frac{\pi}{6}\right)$$

$$\begin{split} & \frac{1-\sin^2\frac{\pi}{6}}{1+\sin^2\frac{\pi}{4}} \times \frac{\cos^2\frac{\pi}{3}+\cos^2\frac{\pi}{6}}{\csc^2\frac{\pi}{2}-\cot^2\frac{\pi}{2}} \div \left(\sin\frac{\pi}{3}\tan\frac{\pi}{6}\right) + \left(\sec^2\frac{\pi}{6}-\tan^2\frac{\pi}{6}\right) \\ & = \frac{1-\left(\sin\frac{\pi}{6}\right)^2}{1+\left(\sin\frac{\pi}{4}\right)^2} \times \frac{\left(\cos\frac{\pi}{3}\right)^2 + \left(\cos\frac{\pi}{6}\right)^2}{\left(\csc\frac{\pi}{2}\right)^2 - \left(\cot\frac{\pi}{2}\right)^2} \div \left(\sin\frac{\pi}{3}\tan\frac{\pi}{6}\right) + \left\{\left(\sec\frac{\pi}{6}\right)^2 - \left(\tan\frac{\pi}{6}\right)^2\right\} \\ & = \frac{1-\left(\frac{1}{2}\right)^2}{1+\left(\frac{1}{\sqrt{2}}\right)^2} \times \frac{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2}{(1)^2 - 0} \div \left(\frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{3}}\right) + \left\{\left(\frac{2}{\sqrt{3}}\right)^2 - \left(\frac{1}{\sqrt{3}}\right)^2\right\} \\ & = \frac{1-\frac{1}{4}}{1+\frac{1}{2}} \times \left(\frac{1}{4} + \frac{3}{4}\right) \div \frac{1}{2} + \left(\frac{4}{3} - \frac{1}{3}\right) = \frac{\frac{3}{4}}{\frac{3}{2}} \times \frac{4}{4} \div \frac{1}{2} + \frac{3}{3} = \frac{3}{4} \times \frac{2}{3} \times 2 + 1 = 1 + 1 = 2 \end{split}$$

∴ নির্ণেয় সরলমান = 2 (Ans.)

🥞 পাঠ্যবইয়ের কাজের সমাধান

ABC একটি সমকোণী ত্রিভুজ এবং $\sin\! heta = rac{2}{\sqrt{5}}$ । অন্য ত্রিকোণমিতি অনুপাতসমূহ নির্ণয় কর ।

সমাধান: ধরি, ABC একটি সমকোণী ত্রিভুজ।

অতিভুজ
$$= AC$$
, ভূমি $= AB$,

লম্ব =
$$BC$$
 এবং $\angle BAC = \theta$

দেওয়া আছে,
$$\sin\theta = \frac{2}{\sqrt{5}}$$

বা,
$$\sin\theta = \frac{\pi \pi}{\text{অতিভুজ}} = \frac{2}{\sqrt{5}}$$

 $\therefore BC$ লম্ব = 2 একক এবং AC অতিভুজ $= \sqrt{5}$ একক। পিথাগোরাসের উপপাদ্য অনুযায়ী

ভূমি
$$AB = \sqrt{AC^2 - BC^2}$$

$$= \sqrt{(\sqrt{5})^2 - 2^2}$$

$$= \sqrt{5 - 4}$$

$$= \sqrt{1}$$

$$= 1 একক |$$

.. অন্য ত্রিকোণমিতিক অনুপাতসমূহ

$$\cos\theta = \frac{\sqrt[8]{\pi}}{\sqrt[8]{\log \pi}} = \frac{AB}{AC} = \frac{1}{\sqrt{5}}$$

$$\cos\theta = \frac{\text{ভূম}}{\text{অতিভুজ}} = \frac{AB}{AC} = \frac{1}{\sqrt{5}}$$

$$\sec\theta = \frac{\text{অতিভুজ}}{\text{ভূম}} = \frac{AC}{AB} = \frac{\sqrt{5}}{1} = \sqrt{5}$$

$$\tan\theta = \frac{\overline{qq}}{\overline{qq}} = \frac{BC}{4R} = \frac{2}{1} = 2$$

$$\cot\theta = \frac{\sqrt[8]{\pi}}{\sqrt[8]{\pi}} = \frac{AB}{BC} = \frac{1}{2}$$

$$\csc\theta = \frac{$$
অতিভুজ}{লম্ব} = $\frac{AC}{BC} = \frac{\sqrt{5}}{2}$

বিদ্র: sinθ, cosθ ও tanθ এর মানগুলো বিপরীতকরণ করলে যথাক্রমে $cosec\theta$, $sec\theta$ ও $cot\theta$ এর মান পাওয়া যায়। এ প্রক্রিয়া অবলম্বন করে ও সমাধান বের করা যায়।

>পাঠ্যবই পৃষ্ঠা-১৬৫

প্রমাণ কর যে. (চিত্রের সাহায্যে):

(খ) $\csc^2\theta - \cot^2\theta = 1$ $(\overline{\Phi}) \sec^2 \theta - \tan^2 \theta = 1$

সমাধানঃ

প্রমাণ: মনে করি, OX রশ্মি তার আদি অবস্থান OX হতে ঘড়ির কাঁটার বিপরীত দিকে ঘুরে OY অবস্থানে এসে $\angle XOY$ উৎপন্ন করে। ধরি, $\angle XOY = \theta$, OY-এর উপর কোনো বিন্দু P হতে $PM \perp OX$ আঁকি।

POM সমকোণী ত্রিভুজে $\angle POM = 0$

 θ কোণের প্রেক্ষিতে PM লম্ব, OM ভূমি এবং OP অতিভূজ।

তাহলে,
$$\sec\theta = \frac{OP}{OM}$$
 এবং $\tan\theta = \frac{PM}{OM}$

এখন, POM সমকোণী ত্রিভুজে $PM^2 + OM^2 = OP^2$

$$PM^2 + OM^2 = OP^2$$

$$PM + OM = OP$$

বা, $\frac{PM^2}{OM^2} + \frac{OM^2}{OM^2} = \frac{OP^2}{OM^2}$ [উভয়পক্ষকে OM^2 দারা ভাগ করে]

বা, $\left(\frac{PM}{OM}\right)^2 + \left(\frac{OM}{OM}\right)^2 = \left(\frac{OP}{OM}\right)^2$
বা, $(\tan\theta)^2 + (1)^2 = (\sec\theta)^2$

বা,
$$\left(\frac{PM}{OM}\right)^2 + \left(\frac{OM}{OM}\right)^2 = \left(\frac{OP}{OM}\right)^2$$

বা,
$$(\tan \theta)^2 + (1)^2 = (\sec \theta)^2$$

বা,
$$tan^2\theta + 1 = sec^2\theta$$

$$\therefore \sec^2\theta - \tan^2\theta = 1$$
 (প্রমাণিত)

প্রমাণ: মনে করি. OX রশ্মি তার আদি অবস্থান OX হতে ঘডির কাঁটার বিপরীত দিকে ঘুরে OY অবস্থানে এসে $\angle XOY$ উৎপন্ন করে।

ধরি, $\angle XOY = \theta$, OY-এর উপর কোনো বিন্দু P হতে $PM \perp OX$ আঁকি।

POM সমকোণী ত্রিভুজে $\angle POM = 0$

 $oldsymbol{ heta}$ কোণের প্রেক্ষিতে PM লম্ব,~OM ভূমি এবং OP অতিভুজ।

তাহলে,
$$\csc\theta = \frac{OP}{PM}$$
 এবং $\cot\theta = \frac{OM}{PM}$

এখন, POM সমকোণী ত্রিভুজে $PM^2 + OM^2 = OP^2$

$$PM^2 + OM^2 = OP^2$$

না,
$$\frac{PM}{PM^2} + \frac{OM}{PM^2} = \frac{OP^2}{PM^2}$$
 [উভয়পক্ষকে PM^2 দ্বারা ভাগ করে] বা, $\left(\frac{PM}{PM}\right)^2 + \left(\frac{OM}{PM}\right)^2 = \left(\frac{OP}{PM}\right)^2$

বা,
$$(1)^2 + (\cot \theta)^2 = (\csc \theta)^2$$

বা, $1 + \cot^2\theta = \csc^2\theta$

 $\therefore \csc^2\theta - \cot^2\theta = 1$ (প্রমাণিত)

কাজ

>পাঠ্যবই পৃষ্ঠা-১৭১

 θ স্থুলকোণ $\left(\frac{\pi}{2} < \theta < \pi\right)$ এবং $an \theta = \frac{1}{2}$ হলে, অপর ত্রিকোণমিতিক অনুপাতসমূহ্ীসমকোণী ত্রিভুজ এবং ত্রিকোণমিতিক অভেদ এর সাহায্যে নির্ণয় কর।

<u>সমাধান</u>: দেওয়া আছে, $\frac{\pi}{2} < \theta < \pi$ এবং $\tan \theta = \frac{1}{2}$

সমকোণী ত্রিভুজ
$$POQ$$
 হতে পাই, $OP^2 = PQ^2 + OQ^2 = 1^2 + 2^2 = 5$

$$\therefore OP = \sqrt{5}$$

যেহেতু $0< heta<rac{\pi}{2}$ সুতরাং heta ১ম চতুর্ভাগে অবস্থিত এবং ১ম চতুর্ভাগে সকল অনুপাতের মান ধনাত্মক

∴
$$\sin\theta = \frac{\text{বিপরীত বাছ}}{\text{অতিভুজ}} = \frac{1}{\sqrt{5}}$$
 $\cos \theta = \frac{\text{অতিভুজ}}{\text{বিপরীত বাছ}} = \frac{\sqrt{5}}{1} = \sqrt{5}$
 $\cos\theta = \frac{\text{সামিহিত বাছ}}{\text{অতিভুজ}} = \frac{2}{\sqrt{5}}$
 $\sec\theta = \frac{\text{অতিভুজ}}{\text{সামিহিত বাছ}} = \frac{\sqrt{5}}{2}$
এবং $\cot\theta = \frac{\text{সামিহিত বাছ}}{\text{বিপরীত বাছ}} = \frac{2}{1} = 2$

ত্রিকোণমিতি অভেদের সাহায্যে -

আমরা জানি. $\sec^2\theta - \tan^2\theta = 1$ বা, $\sec^2\theta = 1 + \tan^2\theta$

ৰা,
$$\sec^2\theta = 1 + \left(\frac{1}{2}\right)^2$$

বা,
$$\sec^2\theta = 1 + \frac{1}{4}$$

বা,
$$\sec^2\theta = \frac{5}{4}$$

বা,
$$\sec\theta = \pm \frac{\sqrt{5}}{2}$$

$$\therefore \sec \theta = \frac{\sqrt{5}^2}{2} \quad [\because 0 < \theta < \frac{\pi}{2}]$$

$$\therefore \cos\theta = \frac{1}{\sec\theta}$$
$$= \frac{1}{\sqrt{5}} = \frac{2}{\sqrt{5}}$$

আবার,
$$\sin^2\theta + \cos^2\theta = 1$$

বার,
$$\sin^2\theta + \cos^2\theta - 1$$

বা, $\sin^2\theta = 1 - \cos^2\theta$

বা,
$$\sin^2\theta = 1 - \left(-\frac{2}{\sqrt{5}}\right)^2$$

বা,
$$\sin^2\theta = 1 - \frac{4}{5}$$

বা,
$$\sin^2\theta = \frac{5-4}{5}$$

বা,
$$\sin^2\theta = \frac{1}{5}$$

বা,
$$\sin\theta = \pm \frac{1}{\sqrt{5}}$$

$$\therefore \sin\theta = \frac{1}{\sqrt{5}} \quad [\because 0 < \theta < \frac{\pi}{2}]$$

 $0 < heta < rac{\pi}{2}$ সুতরাং heta ১ম চতুর্ভাগে অবস্থিত এবং ১ম চতুর্ভাগে \sin ধনাত্মক। $\therefore \csc\theta = \frac{1}{\sin\theta} = \frac{1}{\underline{1}} = \sqrt{5}$

এবং
$$\cot\theta = \frac{\cos\theta}{\sin\theta} = \frac{\frac{2}{\sqrt{5}}}{\frac{1}{\sqrt{5}}} = \frac{2}{\sqrt{5}} \times \frac{\sqrt{5}}{1} = 2$$

কাজ

ক)
$$\sin^2\frac{\pi}{4}\cos^2\frac{\pi}{3} + \tan^2\frac{\pi}{6}\sec^2\frac{\pi}{3} + \cot^2\frac{\pi}{3}\csc^2\frac{\pi}{4}$$
 এর মান নির্ণয় কর।

সমাধান:
প্রদন্ত রাশি,
$$\sin^2\frac{\pi}{4}\cos^2\frac{\pi}{3} + \tan^2\frac{\pi}{6}\sec^2\frac{\pi}{3} + \cot^2\frac{\pi}{3}\csc^2\frac{\pi}{4}$$

$$= \left(\frac{1}{\sqrt{2}}\right)^2 \cdot \left(\frac{1}{2}\right)^2 + \left(\frac{1}{\sqrt{3}}\right)^2 \cdot 2^2 + \left(\frac{1}{\sqrt{3}}\right)^2 \cdot \left(\sqrt{2}\right)^2$$

$$= \frac{1}{2} \cdot \frac{1}{4} + \frac{1}{3} \cdot 4 + \frac{1}{3} \cdot 2$$

$$= \frac{1}{8} + \frac{4}{3} + \frac{2}{3}$$

$$= \frac{3 + 32 + 16}{24}$$

$$= \frac{51}{24} = \frac{17}{8}$$
 (Ans.)

খ) সরল কর:
$$\frac{\sin^2\frac{\pi}{3} + \sin\frac{\pi}{3}\cos\frac{\pi}{3} + \cos^2\frac{\pi}{3}}{\sin\frac{\pi}{3} + \cos\frac{\pi}{3}} - \frac{\sin^2\frac{\pi}{3} - \sin\frac{\pi}{3}\cos\frac{\pi}{3} + \cos^2\frac{\pi}{3}}{\sin\frac{\pi}{3} - \cos\frac{\pi}{3}}$$

মাধান:
$$\frac{\sin^2\frac{\pi}{3} + \sin\frac{\pi}{3}\cos\frac{\pi}{3} + \cos^2\frac{\pi}{3}}{\sin\frac{\pi}{3} + \cos\frac{\pi}{3}} - \frac{\sin^2\frac{\pi}{3} - \sin\frac{\pi}{3}\cos\frac{\pi}{3} + \cos^2\frac{\pi}{3}}{\sin\frac{\pi}{3} - \cos\frac{\pi}{3}}$$

$$= \frac{\left(\sin\frac{\pi}{3} - \cos\frac{\pi}{3}\right)\left(\sin^2\frac{\pi}{3} + \sin\frac{\pi}{3}\cos\frac{\pi}{3} + \cos^2\frac{\pi}{3}\right) - \left(\sin\frac{\pi}{3} + \cos\frac{\pi}{3}\right)\left(\sin^2\frac{\pi}{3} - \sin\frac{\pi}{3}\cos\frac{\pi}{3} + \cos^2\frac{\pi}{3}\right)}{\left(\sin\frac{\pi}{3} - \cos^3\frac{\pi}{3}\right)\left(\sin\frac{\pi}{3} - \cos\frac{\pi}{3}\right)}$$

$$= \frac{\sin^3\frac{\pi}{3} - \cos^3\frac{\pi}{3} - \cos^3\frac{\pi}{3} + \cos^3\frac{\pi}{3}}{\sin^2\frac{\pi}{3} - \cos^2\frac{\pi}{3}}$$

$$= \frac{\sin^3\frac{\pi}{3} - \cos^3\frac{\pi}{3} - \sin^3\frac{\pi}{3} - \cos^3\frac{\pi}{3}}{\sin^2\frac{\pi}{3} - \cos^2\frac{\pi}{3}}$$

$$= \frac{-2\cos^3\frac{\pi}{3}}{\sin^2\frac{\pi}{3} - \cos^2\frac{\pi}{3}}$$

$$= \frac{-2\left(\frac{1}{2}\right)^3}{\left(\frac{\sqrt{3}}{2}\right)^2 - \left(\frac{1}{2}\right)^2} \left[\because \cos\frac{\pi}{3} = \frac{1}{2} \text{ and } \sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}\right]$$

$$= \frac{-2 \times \frac{1}{8}}{\frac{3}{4} - \frac{1}{4}} = \frac{-\frac{1}{4}}{\frac{4}} \times \frac{4}{2} = -\frac{1}{2} \text{ (Ans.)}$$

কাত

> পাঠ্যবই পৃষ্ঠা-১৭৪

 $A=rac{\pi}{3}$ ও $B=rac{\pi}{6}$ এর জন্য নিম্নোক্ত অভেদসমূহ প্রমাণ কর:

$$(\overline{\Phi})$$
 $\sin(A - B) = \sin A \cos B - \cos A \sin B$

$$(\forall) \quad \cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$(\mathfrak{I}) \quad \cos (A - B) = \cos A \cos B + \sin A \sin B$$

$$(\triangledown) \quad \tan 2B = \frac{2 \tan B}{1 - \tan^2 B}$$

<u>সমাধান</u>: দেওয়া আছে, $A=\frac{\pi}{3}$ ও $B=\frac{\pi}{6}$

জ্ঞান
$$(A-B) = \sin A \cos B - \cos A \sin B$$

ত্যান পক্ষ = $\sin (A-B)$
 $= \sin \left(\frac{\pi}{3} - \frac{\pi}{6}\right)$
 $= \sin \left(\frac{2\pi - \pi}{6}\right)$
 $= \sin \left(\frac{\pi}{6}\right)$
 $= \frac{1}{2} \left[\because \sin \frac{\pi}{6} = \sin 30^\circ = \frac{1}{2}\right]$

ভানপক্ষ = $\sin A \cos B - \cos A \sin B$

নপক =
$$\sin A \cos B - \cos A \sin B$$

= $\sin \frac{\pi}{3} \cdot \cos \frac{\pi}{6} - \cos \frac{\pi}{3} \cdot \sin \frac{\pi}{6}$
= $\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} - \frac{1}{2} \times \frac{1}{2}$
= $\frac{3}{4} - \frac{1}{4} = \frac{3-1}{4} = \frac{2}{4} = \frac{1}{2}$

 $\therefore \sin(A - B) = \sin A \cos B - \cos A \sin B$ (প্রমাণিত)

ত
$$(A + B) = \cos A \cos B - \sin A \sin B$$
বামপক্ষ = $\cos (A + B)$

$$= \cos \left(\frac{\pi}{3} + \frac{\pi}{6}\right)$$

$$= \cos \left(\frac{2\pi + \pi}{6}\right)$$

$$= \cos \left(\frac{3\pi}{6}\right)$$

$$= \cos \left(\frac{\pi}{2}\right)$$

$$= 0 \quad \left[\because \cos \frac{\pi}{2} = \cos 90^{\circ} = 0\right]$$
ভানপক্ষ = $\cos A \cos B - \sin A \sin B$

$$= \cos \frac{\pi}{3} \cos \frac{\pi}{6} - \sin \frac{\pi}{3} \sin \frac{\pi}{6}$$

$$= \frac{1}{2} \times \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} \times \frac{1}{2} = \frac{\sqrt{3}}{4} - \frac{\sqrt{3}}{4} = 0$$

$$\therefore \cos(A + B) = \cos A \cos B - \sin A \sin B \quad (প্রমাণিত)$$

া
$$\cos (A - B) = \cos A \cos B + \sin A \sin B$$

বামপক্ষ = $\cos (A - B)$

= $\cos \left(\frac{\pi}{3} - \frac{\pi}{6}\right)$

= $\cos \left(\frac{2\pi - \pi}{6}\right)$

$$= \cos\left(\frac{\pi}{6}\right)$$
$$= \frac{\sqrt{3}}{2}$$

ভানপক্ষ = $\cos A \cos B + \sin A \sin B$ = $\cos \frac{\pi}{3} \cos \frac{\pi}{6} + \sin \frac{\pi}{3} \sin \frac{\pi}{6}$ = $\frac{1}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} \times \frac{1}{2}$ = $\frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{4} = \frac{\sqrt{3} + \sqrt{3}}{4} = \frac{2\sqrt{3}}{4} = \frac{\sqrt{3}}{2}$

 $\therefore \cos(A - B) = \cos A \cos B + \sin A \sin B \quad (প্রমাণিত)$

বাম
$$2B = \frac{2 \tan B}{1 - \tan^2 B}$$
বামপক্ষ = $\tan (2B)$

$$= \tan \left(\frac{\pi}{3} \right)$$

$$= \sqrt{3} \quad \left[\because \tan \frac{\pi}{3} = \tan 60^\circ = \sqrt{3} \right]$$
ভানপক্ষ = $\frac{2 \tan B}{1 - \tan^2 B}$

$$= \frac{2 \tan \frac{\pi}{6}}{1 - \left(\tan \frac{\pi}{6} \right)^2}$$

$$= \frac{2 \times \frac{1}{\sqrt{3}}}{1 - \left(\frac{1}{\sqrt{3}} \right)^2} \quad \left[\because \tan \frac{\pi}{6} = \tan 30^\circ = \frac{1}{\sqrt{3}} \right]$$

$$= \frac{\frac{2}{\sqrt{3}}}{1 - \frac{1}{3}} = \frac{\frac{2}{\sqrt{3}}}{\frac{3}{3} - 1}$$

$$= \frac{\frac{2}{\sqrt{3}}}{\frac{2}{3}} = \frac{2}{\sqrt{3}} \times \frac{3}{2} = \frac{3}{\sqrt{3}} = \frac{\sqrt{3} \times \sqrt{3}}{\sqrt{3}} = \sqrt{3}$$

$$\therefore \tan 2B = \frac{2 \tan B}{1 - \tan^2 B} \text{ (প্রমাণিত)}$$