Nonlinear Optimization Lecture 9 Garrick Aden-Buie

Thursday, February 11, 2016

Last Lecture

d is a vector $[\nabla f(\bar{x})]^T d < 0 \Rightarrow d$ is a descent direction.

Example: $d = -\nabla f(\bar{x})$

Necessary Conditions

Theorem

 $f: \mathbb{R}^n \to \mathbb{R}$ differentiable at \bar{x} . If \bar{x} is a local minimum, then $\nabla f(\bar{x}) = 0$ (necessary condition).

Figure 1:

Proof. Suppose not, i.e. assume $\nabla f(\bar{x}) \neq 0$. Let $d = -\nabla f(\bar{x})$. Then

$$[\nabla f(\bar{x})]^T d = -\|\nabla f(\bar{x})\|^2 < 0$$

.

This means that d is a descent direction at \bar{x} . Note that the inequality is strict because we assumed that $\nabla f(\bar{x}) \neq 0$. Then,

- $\exists \delta > 0 \colon f(\bar{x} + \lambda d) < f(\bar{x}), \, \forall \lambda \in (0, \delta)$
- $\exists \epsilon > 0 \colon f(x) > f(\bar{x}), \forall x \in N_{\epsilon}(\bar{x})$

Then choose a small δ such that $\bar{x} + \lambda d \in N_{\epsilon}(\bar{x})$. \rightarrow contradiction.

Remark. This is true for *Unconstrained* problems. For *constrained* problems the above is not necessarily true.

Theorem

 $f: \mathbb{R}^n \to \mathbb{R}$ twice-differentiable at \bar{x} .

If \bar{x} is a local minimum, then $\nabla f(\bar{x}) = 0$ and $H(\bar{x})$ is PSD (necessary condition).

Proof. Easy to prove using Taylor Expansion.

Sufficient Conditions

Theorem

 $f: \mathbb{R}^n \to \mathbb{R}$ and $H(\bar{x})$ PD, then \bar{x} is a **strict local minimum**.

Def. Strict local minimum: $\exists \epsilon > 0$ such that $f(\bar{x}) < f(x), \forall x \in N_{\epsilon}(\bar{x})$

Remark. When we are considering \bar{x} , we don't know yet if it is a local minimum. But if you find that the above conditions hold, then you know that \bar{x} is a local minimum. In the above necessary conditions, you don't necessarily know that \bar{x} is a local minimum if the conditions hold, just that **if** \bar{x} is a local minimum, those properties will be true.

Remark. Also notice that there is no convexity assumptions in the above, only differentiability.

Theorem

 $f \colon \mathbf{R}^n \to \mathbf{R}$, pseudoconvex at \bar{x} .

 \bar{x} is a **global minimum** if and only if $\nabla f(\bar{x}) = 0$.

This is one of the great properties of pseudoconvex functions. Note that pseudoconvex functions are by definition differentiable.

Proof. (\Rightarrow) Global min \Rightarrow local min $\Rightarrow \nabla f(\bar{x}) = 0$.

 (\Leftarrow) f is pseudoconvex at \bar{x} means that

$$\nabla f(\bar{x})^T(\bar{x} - x) \ge 0 \Rightarrow f(x) \ge f(\bar{x}) \qquad \forall x \in \mathbb{R}^n$$

$$\nabla f(\bar{x}) = 0 \Rightarrow \nabla f(\bar{x})^T(\bar{x} - x) \ge 0 \quad \forall x \in \mathbb{R}^n$$

$$\Rightarrow f(x) \ge f(\bar{x}) \qquad \forall x \in \mathbb{R}^n$$

The idea of pseudoconvex functions motivates proofs, in that many proofs rely on the first step above.

Summary

• Necessary Conditions

$$-\bar{x}$$
 local min $\Rightarrow \nabla f(\bar{x}) = 0$, $H(\bar{x})$ PSD

- $-\bar{x} \text{ local min} \Rightarrow \nabla f(\bar{x}) = 0, H(\bar{x}) \text{ NSD}$
- Sufficient Conditions
 - $-\nabla f(\bar{x}) = 0, \ H(\bar{x}) \ PD \Rightarrow \bar{x} \ local \ minimum$
 - $-\nabla f(\bar{x}) = 0, \ H(\bar{x}) \ \text{ND} \Rightarrow \bar{x} \ \text{local minimum}$
 - $-\nabla f(\bar{x}) = 0$, $H(\bar{x})$ indefinite $\Rightarrow \bar{x}$ inflection point.
 - $-\nabla f(\bar{x}) = 0$, $H(\bar{x})$ PSD $\forall x \Rightarrow \bar{x}$ global min.

Sets of Directions

$$S \subset \mathbb{R}^n, \ S \neq \emptyset, \ \bar{x} \in Cl(S)$$

The set of feasible directions of S at \bar{x} :

$$D = \{d \neq 0 : \bar{x} + \lambda d \in S, \ \forall \lambda \in (0, \delta), \text{ for sufficiently small } \delta\}$$

The set of improving directions $f: \mathbb{R}^n \to \mathbb{R}$

$$F = \{d : f(\bar{x} + \lambda d) < f(\bar{x}), \ \forall \lambda \in (0, \delta) \text{ for some } \delta > 0\}$$
$$F_0 = \{d : [\nabla f(\bar{x})]^T d < 0\}$$

F is a direct translation from English to math – which is to say that moving in direction d improves the objective function value – but the second is an similar statement, but $F_0 \subset F$. Note also that in F, d is not explicitly stated to be non-zero (because if d is 0, then the zero direction goes no where and the conditions would not hold).

The remaining direction sets are related to inequality constraints and will be discussed later:

$$G_0 = \{d : [\nabla g_i(\bar{x})]^T d < 0 \ \forall i \in I\}$$

$$G'_0 = \{d \neq 0 : \nabla g_i(\bar{x})]^T d \le 0 \ \forall i \in I\}$$

Unconstrained Problems

Theorem

$$\min \quad f(x)$$
 s.t $x \in S$
$$f \text{ diff. at } \bar{x} \in S$$

If \bar{x} is a local min then $F_0 \cap D = \emptyset$. Which is to say that if \bar{x} is a local minimum, then there is no improving feasible direction.

Figure 2:

Theorem

If f is pseudoconvex, then $F_0 = F$.

Proof. $F_0 = F$ has two parts: $F_0 \subset F$ and $F_0 \supset F$. We've already shown the first part, so we need to show the second.

If $d \in F$, then $d \in F_0$. $d \in F \Rightarrow d \neq 0$, $f(\bar{x} + \lambda d) < f(\bar{x}) \ \forall \lambda \in (0, \delta)$. Using the pseudoconvexity of f, $f(\hat{x}) < f(\bar{x}) \Rightarrow \nabla f(\bar{x})^T (\hat{x} - \bar{x}) < 0 \ \forall \hat{x}, \bar{x} \in \mathbb{R}^n$.

Let $\hat{x} = \bar{x} + \lambda d$. Then $f(\hat{x}) < f(\bar{x})$, because $d \in F$. Then $\nabla f(\hat{x})^T (\bar{x} + \lambda d - \bar{x}) < 0 \Rightarrow \nabla f(\bar{x})^T d < 0 \Rightarrow d \in F_0$.

- In general $F_0 \subset F$
- f pseudoconvexity $F_0 \supset F$ as well $\Rightarrow F_0 = F$.

Question: $d \in F$ but $d \notin F_0$? Consider $f(x) = -x^3$, $\nabla f(x) = -3x^2$, $\bar{x} = 0$, $\nabla f(\bar{x}) = 0$. $F_0\{d : \nabla f(\bar{x})^T d < 0\} \Rightarrow F_0 = \emptyset$, but for $d > 0 \Rightarrow d \in F$.

¹Note that this relies on definition of pseudoconvexity: $\nabla f(\bar{x})^T(\hat{x} - \bar{x}) \ge 0 \Rightarrow f(\hat{x}) \ge f(\bar{x})$. And if $A \Rightarrow B$, then $\neg B \Rightarrow \neg A$.]

Figure 3: