Лабораторная работа 7

Греков Максим Сергеевич 2021 Москва

RUDN University, Moscow, Russian Federation

Цель работы

Цель работы

Рассмотреть модель рекламной кампании.

Повысить навыки работы с открытым программным обеспечением для моделирования, симуляции, оптимизации и анализа сложных динамических систем - OpenModelica.

Построить графики распространения рекламы для нескольких случаев.

Описание задачи

Общее описание

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу.

Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке.

Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытиться, и рекламировать товар станет бесполезным.

Обозначения

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей.

Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации.

Обозначения

После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом.

Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих.

Модель рекламной кампании описывается следующими величинами.

Считаем, что $\frac{dn}{dt}$ - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, n(t) - число уже информированных клиентов.

Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом: $\alpha_1(t)(N-n(t))$, где N - общее число потенциальных платежеспособных покупателей, $\alpha_1(t)>0$ - характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени).

Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной $\alpha_2(t)n(t)(N-n(t))$, эта величина увеличивается с увеличением потребителей узнавших о товаре.

Математическая модель распространения рекламы описывается уравнением:

$$\frac{dn}{dt} = (\alpha_1(t) + \alpha_2(t)n(t))(N-n(t))$$

Постановка задачи

Постановка задачи

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

1.
$$\frac{dn}{dt} = (0.133 + 0.000033n(t))(N - n(t))$$

2.
$$\frac{dn}{dt} = (0.0000132 + 0.32n(t))(N - n(t))$$

3.
$$\frac{dn}{dt} = (0.8t + 0.15sin(t)n(t))(N - n(t))$$

Начальные значения

При этом объем аудитории N=1670, в начальный момент о товаре знает 12 человек. Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

Figure 1: График распространения рекламы для первого случая

Figure 2: График распространения рекламы для второго случая

Figure 3: График изменения скорости распространения рекламы для второго случая

Figure 4: Максимальное значение графика изменения скорости распространения рекламы для второго случая

Figure 5: График распространения рекламы для третьего случая

Figure 6: График изменения скорости распространения рекламы для третьего случая

Вывод

Вывод

Рассмотрели модель рекламной кампании.

Повысили навыки работы с открытым программным обеспечением для моделирования, симуляции, оптимизации и анализа сложных динамических систем - OpenModelica.

Построили графики распространения рекламы для нескольких случаев.

