Termoquímica

1 Joule = $1 \frac{\text{kg in}}{\text{s}^2}$

```
1 kilocaloría = 4184 joules

Energía
```

INFORMACIÓN NUTRICIONAL

	Por 100 g	1 galleta (6,1 g)	%* / 1 galleta
Valor energético	1855 kJ 440 kcal	113 kJ 27 kcal	1%
Grasas	10,5 g	0,7 g	1%
de las cuales saturadas	5,1 g	0,3 g	2%
Hidratos de carbono	77 g	4,7 g	2%
de los cuales azúcares	24 g	1,5 g	2%
Fibra alimentaria	2.1 g	0,1 g	
Proteinas	7,6 g	0,5 g	1%
Sal	0,83 g	0,05 g	1%

^{*} Ingesta de referencia de un adulto medio (8400 kJ / 2000 kcal).
Aproximadamente 131 galletas / pack.

Transferencia de calor

- Conducción
- Convección
- Radiación

Conducción: transferencia de calor debido al contacto directo entre las partículas cuando hay una diferencia de temperatura. Es característico de los materiales sólidos aunque también ocurre en líquidos y gases (fluidos).

Convección: es una combinación de conducción con el movimiento de grupos de partículas de un fluido.

Radiación: se debe a la emisión de radiación electromagnética de una superficie.

¿Qué es albedo?

¿Dónde es más fresco? ¿Qué papel juegan la conducción, la convección y la radiación?

Boston

La Ciudadela

¿Si los enlaces químicos se rompen, se absorbe o se libera energía?

Heat Energy In

Bond Breaking

¿Si los enlaces químicos se forman, se absorbe o se libera energía?

¿Para romper un enlace, se absorbe o se libera energía?

bond-making vs. bond-breaking

Función de estado

La energía interna, como función de estado, depende sólo del estado actual del sistema y no del camino por el cual llegó a ese estado. La energía interna de 50 g de agua a 25°C es la misma, sea que el agua se haya enfriado desde una temperatura más alta a 25°C o se haya obtenido fundiendo 50 g de hielo y calentando a 25°C.

Wanda

∆h (altura)

donde ΔV es el cambio de volumen. Si el cambio de volumen es positivo, como en nuestro ejemplo, el trabajo efectuado por el sistema es negativo. Es decir, se trata de trabajo realizado *por* el sistema *sobre* el entorno. El recuadro "Una perspectiva más detallada" examina el trabajo presión-volumen más a fondo, pero en realidad lo único que el lector debe recordar por el momento es la ecuación 5.7, que es válida para procesos que se efectúan a presión constante. Volveremos a las propiedades de los gases con más detalle en el capítulo 10.

La función termodinámica llamada **entalpía** (de la palabra griega *enthalpein*, que significa "calentar") representa el flujo de calor en cambios químicos que se efectúan a presión constante cuando no se efectúa más trabajo que el trabajo presión-volumen.

Mapa que muestra los centros de origen de *Saccharum officinarum* en Nueva Guinea, *S. sinensis* en el sur de China y Taiwán, y *S. barberi* en <u>India</u>

El comercio triangular: se importaban esclavos a las islas del Caribe para plantar y cosechar caña de azúcar.

¿Qué son calorías vacías?