Análisis de Supervivencia

Estimación no paramétrica

Sergio M. Nava Muñoz

2025 - 06 - 01

Table of contents

L	Esti	mación no paramétrica	
	1.1	La función de distribución acumulada empírica (FDAE)	
	1.2	Ejemplo en R: FDAE	
	1.3	Estimador de Kaplan-Meier	
	1.4	Ejemplo en R: Kaplan-Meier	
	1.5	Comparación conceptual	
	1.6	Ejemplo: Ensayo clínico con cáncer	
	1.7	Representación gráfica del seguimiento	
	1.8	Programación en R	
	1.9	Conjunto de datos gastricXelox de la biblioteca asaur	1
	1.10	Ejercicio	1
	1.11	Comparación entre grupos	1
	1.12	Prueba Log-Rank	1
	1.13	Modelo de riesgos proporcionales de Cox	1
	1.14	Supuestos del modelo de Cox	1
	1.15	Actividad práctica guiada	1

1 Estimación no paramétrica

1.1 La función de distribución acumulada empírica $({ m FDAE})$

Dada una muestra de tiempos de falla sin censura:

$$\hat{F}(t) = \frac{\#\{T_i \leq t\}}{n}$$

Es un estimador escalonado, que da saltos en cada observación. La función de supervivencia empírica se define como:

$$\hat{S}(t) = 1 - \hat{F}(t)$$

 ${\bf Limitaci\'on:}\ \ {\bf no}\ \ {\bf puede}\ \ {\bf manejar}\ \ {\bf adecuadamente}\ \ {\bf datos}\ \ {\bf censurados}.$

1.2 Ejemplo en R: FDAE

		~ 1
t	F_hat	S_hat
2.0	0.1428571	0.8571429
3.0	0.2857143	0.7142857
4.0	0.4285714	0.5714286
4.5	0.5714286	0.4285714
6.0	0.7142857	0.2857143
7.0	0.8571429	0.1428571
9.0	1.0000000	0.0000000

FDAE y supervivencia empírica sin censura

1.3 Estimador de Kaplan-Meier

Cuando hay censura, la FDAE no es válida. Kaplan-Meier estima la función de supervivencia como:

$$\hat{S}(t) = \prod_{t_i \leq t} \left(1 - \frac{d_i}{n_i}\right)$$

donde:

- $d_i \colon$ número de eventos en el tiempo t_i
- n_i : número de individuos en riesgo justo antes de t_i

Es un estimador escalonado que ajusta el denominador cuando hay censura.

Table 2: Comparación entre FDAE, Supervivencia Empírica y Kaplan-Meier

$_{\rm tiempo}$	status	FDAE	$S_{\underline{\hspace{0.1cm}}}$ empirica	Kaplan_Meier
2.0	1	0.1667	0.8333	0.8750
3.0	1	0.3333	0.6667	0.7500
4.0	1	0.5000	0.5000	0.6250
4.5	0	0.5000	0.5000	0.6250
6.0	1	0.6667	0.3333	0.4688
7.0	1	0.8333	0.1667	0.3125
9.0	0	0.8333	0.1667	0.3125
10.0	1	1.0000	0.0000	0.0000

1.4 Ejemplo en R: Kaplan-Meier

Table 3: Tabla de tiempos y estatus de censura

ID	tiempo	evento
Ind 1	2.0	1
$\mathrm{Ind}\ 2$	3.0	1
Ind 3	4.0	1
$\mathrm{Ind}\ 4$	4.5	0
Ind 5	6.0	1
Ind 6	7.0	1
Ind 7	9.0	0
Ind 8	10.0	1

Estimación de Kaplan-Meier

Call: survfit(formula = surv_obj ~ 1, data = datos)

time	n.risk	n.event	survival	std.err	lower	95% CI	upper	95% CI
2	8	1	0.875	0.117		0.673		1.000
3	7	1	0.750	0.153		0.503		1.000
4	6	1	0.625	0.171		0.365		1.000
6	4	1	0.469	0.187		0.215		1.000
7	3	1	0.312	0.178		0.102		0.955
10	1	1	0.000	NaN		NA		NA

1.5 Comparación conceptual

Característica	FDAE	Kaplan-Meier
Usa solo eventos		
Maneja censura		
Escalonada		
Basada en conteos simples		(ajusta denominadores)

1.6 Ejemplo: Ensayo clínico con cáncer

evento	$_{ m fin}$	entrada	paciente
0	2007	2000	1
1	2006	2000	2
0	2007	2001	3
0	2007	2002	4
1	2004	2002	5
1	2006	2002	6

Figure 1: Reclutamiento y seguimiento

1.7 Representación gráfica del seguimiento

Table 6: Ejemplo

paciente	tiempo	status
1	7	0
2	6	1
3	6	0
4	5	0
5	2	1
6	4	1

- X = evento (muerte)

Tiempo

1.8 Programación en R

• Librería survival:

```
library(survival)
Surv(tiempo, status)
```

- Este objeto puede usarse en:
 - Surv() codifica la información de tiempo y censura.
 - survfit() ajusta curvas de supervivencia (Kaplan-Meier).
 - coxph() para modelos de Cox

1.8.1 La función Surv() de survival

```
library(survival)

# Censura derecha
tiempos <- c(5, 8, 12, 3, 10)
evento <- c(1, 0, 1, 1, 0) # 1 = evento, 0 = censurado

datos <- Surv(tiempos, evento)
datos</pre>
```

- [1] 5 8+ 12 3 10+
 - Crea un objeto de clase Surv.
 - Es la base para ajustar modelos de supervivencia.

1.8.2 Visualizando Surv() con tipos de censura

```
# Censura izquierda
tiempos <- c(5, 8, 12, 3, 10)
evento <- c(1, 0, 1, 1, 0)
Surv(tiempos, evento, type = "left")</pre>
```

```
[1] 5 8-12 3 10-
```

```
# Censura por intervalo
inferior <- c(2, 6, 7, 5, 1)
superior <- c(4, 6, 9, 6, 3)
evento <- c(3, 0, 3, 0, 3) # 3 = intervalo
Surv(inferior, superior, type = "interval2")</pre>
```

[1] [2, 4] 6 [7, 9] [5, 6] [1, 3]

1.8.3 Ajuste con survfit()

```
# Datos con censura derecha
tiempos <- c(5, 8, 12, 3, 10)
evento <- c(1, 0, 1, 1, 0)
datos <- Surv(tiempos, evento)
print(datos)</pre>
```

[1] 5 8+ 12 3 10+

```
modelo <- survfit(datos ~ 1) # sin covariables
summary(modelo)</pre>
```

```
Call: survfit(formula = datos ~ 1)
```

```
time n.risk n.event survival std.err lower 95% CI upper 95% CI
  3
                                          0.516
         5
                1
                        0.8 0.179
                                                           1
  5
                              0.219
                                           0.293
         4
                 1
                        0.6
                                                           1
 12
         1
                 1
                        0.0
                                NaN
                                             NA
                                                          NA
```

• survfit() ajusta una curva de Kaplan-Meier.

1.8.4 Graficando la curva de supervivencia

Puedes usar $\operatorname{ggsurvplot}()$ del paquete $\operatorname{survminer}$ para una mejor presentación visual.

Curva de Kaplan-Meier

1.9 Conjunto de datos gastricXelox de la biblioteca asaur

library(asaur)
data("gastricXelox")

Table 7: Ejemplo

paciente	tiempo	status
1	8	1
2	64	1
3	76	1
4	57	0
5	8	1
6	66	1

- Tiempo: semanas hasta progresión o muerte
- delta = 1 si hubo evento, 0 si censurado
- Los datos se desordenaron para este ejemplo

1.10 Ejercicio

- Usar R para:
 - -Estimar la curva de supervivencia de ${\tt gastricXelox}$
 - $-\,$ Obtener la mediana de supervivencia
 - Graficar con intervalo de confianza

Call: survfit(formula = Surv(timeMonths, delta) ~ 1, data = gastricXelox)

time	${\tt n.risk}$	${\tt n.event}$	${\tt survival}$	std.err	lower	95% CI	upper	95% CI
0.926	48	1	0.979	0.0206		0.940		1.000
1.851	47	3	0.917	0.0399		0.842		0.998
2.083	44	1	0.896	0.0441		0.813		0.987
2.545	43	1	0.875	0.0477		0.786		0.974
2.777	42	1	0.854	0.0509		0.760		0.960
3.008	41	1	0.833	0.0538		0.734		0.946
3.702	40	2	0.792	0.0586		0.685		0.915
3.934	38	2	0.750	0.0625		0.637		0.883
4.397	36	1	0.729	0.0641		0.614		0.866
4.860	35	1	0.708	0.0656		0.591		0.849
5.554	34	2	0.667	0.0680		0.546		0.814
5.785	32	1	0.646	0.0690		0.524		0.796
6.479	31	2	0.604	0.0706		0.481		0.760
6.942	29	1	0.583	0.0712		0.459		0.741
8.562	28	2	0.542	0.0719		0.418		0.703

9.719	26	1	0.521	0.0721	0.397	0.683
9.950	25	1	0.500	0.0722	0.377	0.663
10.645	23	1	0.478	0.0722	0.356	0.643
12.264	19	1	0.453	0.0727	0.331	0.620
13.653	16	1	0.425	0.0735	0.303	0.596
13.884	14	1	0.394	0.0742	0.273	0.570
14.810	13	1	0.364	0.0744	0.244	0.544
15.273	12	1	0.334	0.0742	0.216	0.516
17.587	11	1	0.303	0.0734	0.189	0.487
18.050	10	1	0.273	0.0720	0.163	0.458

1.11 Comparación entre grupos

Note: La p-value corresponde a la prueba log-rank para igualdad de curvas.

1.12 Prueba Log-Rank

Call:

survdiff(formula = Surv(tiempo, evento) ~ grupo, data = datos.df)

N Observed Expected $(0-E)^2/E (0-E)^2/V$ 1.23 grupo=A 3 2 0.477 0.825 2 grupo=B 3 2.77 0.212 0.825

Chisq= 0.8 on 1 degrees of freedom, p= 0.4

Salida típica:

N Observed Expected (O-E)^2/E (O-E)^2/V 2.0 1.2 0.533 0.60 grupo= A 3 grupo= B 3 0.356 1.0 1.8 0.60

Modelo de riesgos proporcionales de Cox 1.13

Call:

coxph(formula = Surv(tiempo, evento) ~ grupo, data = datos.df)

n= 6, number of events= 4

Concordance= 0.727 (se = 0.136) Likelihood ratio test= 0.81 on 1 df, p=0.4

Wald test = 0.75 on 1 df, p=0.4 Score (logrank) test = 0.83 on 1 df, p=0.4

Salida relevante:

Interpretación: - HR = 0.429 indica que grupo B tiene menor riesgo relativo, pero no es significativo.

1.14 Supuestos del modelo de Cox

Global Schoenfeld Test p: 0.1941

Note: El test de cox.zph() evalúa el supuesto de proporcionalidad de riesgos.

1.15 Actividad práctica guiada

Datos: lung del paquete survival.

Pasos:

- 1. Cargar datos con data(lung)
- 2. Crear objeto Surv(time, status)
- 3. Estimar curvas por sex
- 4. Probar igualdad con log-rank
- 5. Ajustar modelo de Cox con covariables
- 6. Evaluar supuestos

Note: Proporciónales la estructura base y pídeles completar la interpretación.