

CHEMISTRY RETROALIMENTACIÓN

TOMO I y II

Propiedad del átomo de carbono de enlazarse a otros átomos

de carbono para formar cadena

carbonada.

- A) Covalencia
- B)Tetravalencia
- C Concatenación
 - D) Hibridación

RESOLUCIÓN:

RECORDEMOS

Rpta: C

Covalencia

Hibridación

Tetravalencia

No Saturado

Saturado

Propiedades químicas del carbono

Autosaturación

No Saturado

¿Cual es la fórmula molecular de la molécula mostrada?

RESOLUCIÓN:

RECORDEMOS

La fórmula molecular es la fórmula química que indica el número y tipo de átomos distintos presentes en la molécula. La fórmula molecular es la cantidad real de átomos que conforman una molécula.

A) C_8H_6O $B) C_8H_8O$ C) $C_8H_{10}O$ D) $C_8H_{16}O$

Rpta: B

Escriba verdadero (V) o falso (F) según corresponda, luego marque la alternativa correcta.

- Un hidrocarburo saturado responde a la fórmula general C_nH_{2n+2} . ()
- Los alcanos se denominan olefinas . ()
- Las olefinas son hidrocarburos que se caracterizan por tener enlace carbono-carbono con hibridación $sp^3 sp^3$. ()
- El número de átomos de hidrógeno en el 2-pentino son 8. ()
 A) FFFV B) FFVF C) VFFV D) VVVV

RECORDEMOS

-		70	71	20
Hidrocarburo	Enlaces presentes	Fórmula General	Terminación	
Alcano	Todos sencillos	C _n H _{2n+2}	ano	Parafinas
Alqueno	Al menos uno doble	C _n H _{2n}	eno	Olefinas
Alquino	Al menos uno triple	C_nH_{2n-2}	ino	Acetilénicos
Cicloalcano	Todos sencillos	C _n H _{2n}	ano	

Rpta: C

Realice la nomenclatura IUPAC del siguiente hidrocarburo:

RECORDEMOS

- ✓ Identificamos la cadena principal.
- ✓ Si un compuesto tiene dos o más cadenas del mismo tamaño, el hidrocarburo base será la cadena con mayor número de sustituyentes.
- ✓ Identificamos los radicales alquil.

N° de C	Prefijo
1	Met
2	Et
3	Prop'
4	But

Relaciona las estructuras con su respectivo grupo funcional:

- A. Hidroxilo
- B. Alcoxi
- C. Carbonilo primario
- D. Carbonilo secundario
- E. Carboxilo
- F. Carboalcoxi

$$\begin{array}{c|c}
 & O \\
 & C \\
 & R \\
\end{array}$$

$$\begin{array}{c|c}
 & O \\
 & R \\
\end{array}$$

$$\begin{array}{c|c}
 & O \\
 & R' \\
 & R^1 \\
\end{array}$$

$$\begin{array}{c|c}
 & R^2 \\
\end{array}$$

$$\begin{array}{c|c}
 & C \\
\end{array}$$

$$\begin{array}{c|c}
 & A \\
\end{array}$$

$$\begin{array}{c|c}
 & B \\
\end{array}$$

RECORDEMOS

Grupo funcional	Serie homóloga	Fórmula	Estructura
Grupo hidroxilo	Alcohol	R-OH	R_O_H
Grupo alcoxi	Éter	R-0-R*	R R'
Carre sarkanila	Aldehído	R-C(=0)H	O C R
Grupo carbonilo	Cetona	R-C(=0)-R'	0
Grupo carboxilo	Ácido carboxílico	R-COOH	R OH
Grupo acilo	Éster	R-C00-R'	R OR

Rpta: CABD

Realiza la nomenclatura IUPAC del siguiente compuesto:

RECORDEMOS

¿Qué son los alcoholes?

Son compuestos orgánicos oxigenados que poseen uno o más grupos oxidrilo (-OH) en sus moléculas.

Donde R- es un radical alquilo.

Estos compuestos se consideran como derivados de los hidrocarburos debido a la sustitución de un hidrógeno por un grupo oxidrilo (-OH)

CH₃- CH₃ → CH₃- CH₂OH Etano Etanol

Rpta: 5-bromo-4,5-dimetilhex an -3-ol

Determine la atomicidad del siguiente compuesto : dietilcetona

Fórmula global:

Atomicidad:

C₅H₁₀O

16

Rpta: D

RECORDEMOS

✓ La atomicidad indica el número de átomos de un mismo elemento en una molécula

Los ésteres se pueden sintetizar por reacción química de:

- a) 2 alcoholes (con pérdida de agua)
- b) 1 alcohol y un éter (con pérdida de agua)
- c) 2 ácidos orgánicos (con pérdida de agua)
- d) 1 alcohol y un ácido carboxílico (con pérdida de agua)

RECORDEMOS

Los **ésteres** se forman por reacción entre un ácido y un alcohol. La reacción se produce con pérdida de agua. Se ha determinado que el agua se forma a partir del OH del ácido y el H del alcohol. Este proceso se llama esterificación.

Rpta: D

Indique lo incorrecto con respecto a :

RECORDEMOS

Hibridación

ácido 3-etil-4-metil pentanoico

- A) Tiene 7 átomos de carbono con hibridación sp^3
- B) Tiene 1 enlaces pi
- C) Su nombre es ácido 3-etil-4-metilpentanoico.
- (D) Tiene un carbono con hibridación sp
- E) Su fórmula global es C₈H₁₆O

Rpta: D

Los átomos de carbono se pueden clasificar como primarios, secundarios, terciarios y cuaternarios. Según esta clasificación, determine el número de átomos de carbonos secundarios presentes en la siguiente estructura:

$$\label{eq:ch3} \begin{array}{c} \operatorname{CH}_3 & \operatorname{CH}_3 \\ \operatorname{CH}_3 - \operatorname{CH} - \operatorname{CH}_2 - \operatorname{CH} - \operatorname{CH}_2 - \operatorname{CH} - \operatorname{CH}_3 \\ \\ \\ \end{array}$$

RECORDEMOS

Se denomina carbono secundario, cuando un átomo de carbono está unido mediante enlaces simples a dos átomos de carbono, luego en la

A) 1

B) 2

C) 3

D) 4

E)5

Rpta: E