Durée 2 heures

Tout document interdit

Exercice 1. (2, 2)

Question 1. On considère Γ et $\Delta \subset \Gamma$ deux ensembles de formules d'un langage propositionnel L. Soient β_1 et β_2 deux formules de L telles que :

$$\Gamma \models \beta_1 \text{ et } \Delta \models \beta_2$$

Laquelle ou lesquelles des propositions suivantes est (sont) valide(s) ?

 $P_1: \Gamma \cup \{\neg \beta_1\}$ satisfiable.

 $P_2: \Gamma \cup \{\neg \beta_2\}$ non satisfiable.

 $P_3: \Gamma \cup \{\neg \beta_1 \lor \neg \beta_2\}$ satisfiable.

 $P_4 : \Delta \cup \{\neg \beta_1\}$ satisfiable.

Question 2. On considère Γ , $\Delta_1 \subset \Gamma$ et $\Delta_2 \subset \Gamma$ trois ensembles de formules de L et α_1 et α_2 deux formules de L telles que :

$$\Gamma \models \alpha_1 \vee \alpha_2 \text{ et } \Delta_1 \models \neg \alpha_1 \text{ et } \Delta_2 \models \neg \alpha_2$$

Laquelle ou lesquelles des propositions suivantes est (sont) valide(s) ?

 P_1 : Γ est non satisfiable.

P₂: $\Delta_1 \cup \Delta_2$ non satisfiable.

 $P_3: \Delta_1$ ou Δ_2 non satisfiable.

 P_4 : Γ contient un sous ensemble non satisfiable.

Exercice 2. (1)

La figure ci-dessous représente deux circuits logiques C_1 et C_2 dont les sorties sont respectivement s_1 et s_2 .

Question. Donner l'expression logique du circuit C_3 dont la sortie (s_3) est V lorsque C_1 et C_2 délivrent le même résultat et F lorsque C_1 et C_2 délivrent des résultats différents.

Exercice 3. (2, 2, 2, 2, 2)

Question 1. Construire, à partir de l'arbre sémantique clos de la figure ci-dessous, un ensemble non satisfiable de clauses à **deux littéraux chacune**. On appellera S_0 cet ensemble.

Question 2. Construire, à partir de S_0 un ensemble non satisfiable de clauses S_1 tel que $S_0 \subset S_1$.

Question 3. Montrer, sans utiliser la propriété de complétude de la résolution que l'ensemble S₀ est inconsistant.

Question 4. Montrer que l'ensemble $S_2 = \{c_1, c_2, c_4, c_6\}$ est consistant.

Question 5. Trouver une clause c telle que $S_2 \models c$.

Exercice 4.
$$((1, 1, 1) - (1) - (1))$$

Question 1. Ecrire les énoncés suivants dans le langage des prédicats du premier ordre :

E₁. Ceux qui trichent n'ont pas de mérite.

E₂. Le plus fort d'entre tous n'est pas le plus juste d'entre tous.

E₃. Si deux nombres ont le même successeur, alors ils sont égaux.

Question 2.

Lesquelles des expressions suivantes ne sont pas des formules :

exp.1
$$\forall x, y(P(y) \rightarrow Q(x))$$

exp.2
$$P(y) \rightarrow Q(x) \rightarrow P(f(y))$$

exp.3
$$Q(P(z))$$

exp.4
$$f(x, g(x))$$

Question 3.

Soient $\beta = \forall x P(y, x) \rightarrow Q(x)$ et t = g(x).

- t est-il libre pour x dans β ?
- t est-il libre pour y dans β ?

N. B. Remettre un carnet d'examen sans feuille intercalaire.

Correction

Exercice 1. (2, 2)

Question 1. On considère Γ et $\Delta \subset \Gamma$ deux ensembles de formules d'un langage propositionnel L. Soient β_1 et β_2 deux formules de L telles que :

$$\Gamma \models \beta_1 \text{ et } \Delta \models \beta_2$$

Laquelle ou lesquelles des propositions suivantes est (sont) valide(s) ?

 $\begin{array}{ll} P_1: \Gamma \cup \{\neg \beta_1\} \text{ satisfiable.} & \textbf{(non valide)} \\ P_2: \Gamma \cup \{\neg \beta_2\} \text{ non satisfiable.} & \textbf{(valide)} \\ P_3: \Gamma \cup \{\neg \beta_1 \vee \neg \beta_2\} \text{ satisfiable.} & \textbf{(non valide)} \\ P_4: \Delta \cup \{\neg \beta_1\} \text{ satisfiable.} & \textbf{(non valide)} \end{array}$

Question 2. On considère Γ , $\Delta_1 \subset \Gamma$ et $\Delta_2 \subset \Gamma$ trois ensembles de formules de L et α_1 et α_2 deux formules de L telles que :

$$\Gamma = \alpha_1 \vee \alpha_2$$
 et $\Delta_1 = \neg \alpha_1$ et $\Delta_2 = \neg \alpha_2$

Laquelle ou lesquelles des propositions suivantes est (sont) valide(s) ?

 $P_1: \Gamma \text{ est non satisfiable.} \qquad \qquad \text{(valide)} \\ P_2: \Delta_1 \cup \Delta_2 \text{ non satisfiable.} \qquad \qquad \text{(non valide)} \\ P_3: \Delta_1 \text{ ou } \Delta_2 \text{ non satisfiable.} \qquad \qquad \text{(non valide)} \\ P_4: \Gamma \text{ contient un sous ensemble non satisfiable.} \qquad \text{(valide)}$

Exercice 2. (1)

 S_3 est à V si $S_1 = S_2 = V$ ou bien $S_1 = S_2 = F$.

 $S_3 = S_1 \leftrightarrow S_2$

Exercice 3. (2, 2, 2, 2, 2)

Question 1. Construire, à partir de l'arbre sémantique clos de la figure ci-dessous, un ensemble non satisfiable de clauses à **deux littéraux chacune**. On appellera S_0 cet ensemble.

$$S_0 = \{C_1 : \neg P \lor \neg R, C_2 : \neg Q \lor R, C_3 : \neg P \lor Q, C_4 : P \lor \neg S, C_5 : \neg R \lor S, C_6 : P \lor R\}$$

 $S_1 = S_0 \cup \{\text{on peut ajouter une ou} + \text{clauses}\}\$

Question 3. Montrer, sans utiliser la propriété de complétude de la résolution que l'ensemble S₀ est inconsistant.

 $C_1: \neg P \lor \neg R$

 C_2 : $\neg Q \lor R$

 $C_3: \neg P \lor Q$

 $C_4: P \lor \neg S$

 $C_5: \neg R \lor S$

 $C_6: P \lor R$

 $C_7: \neg P \lor \neg Q \quad res(C_1, C_2)$

 $C_8: \neg P$ res (C_3, C_7)

 $C_9: P \lor \neg R \quad res(C_4, C_5)$

 $C_{10}: P$ res (C_4, C_5)

 $C_{11}: \Box$ res (C_8, C_{10})

Question 4. Montrer que l'ensemble $S_2 = \{c_1, c_2, c_4, c_6\}$ est consistant.

La valuation : $\{\neg P, \neg Q, \neg S, R\}$ satisfait S_2 .

Question 5. Trouver une clause c telle que $S_2 \models c$.

Prendre une clause déduite de S_2 , $\neg P \lor \neg Q$ par exemple.

Exercice 4. ((1, 1, 1) - (1) - (1))

Question 1. Ecrire les énoncés suivants dans le langage des prédicats du premier ordre :

T(x): x est un tricheur.

M(x): x n'a pas de mérite.

E₁. Ceux qui trichent n'ont pas de mérite.

$$\forall x (T(x) \rightarrow \neg M(x))$$

F(x,y): x est plus fort que y.

J(x,y): x est plus juste que y.

E₂. Le plus fort d'entre tous n'est pas le plus juste d'entre tous.

$$\forall x (\forall y (D(x,y) \land F(x,y)) \rightarrow \neg \forall y J(x,y)))$$

N(x): x est un nombre.

E(x,y): x et y sont égaux.

s(x) = au successeur de x.

E₃. Si deux nombres ont le même successeur, alors ils sont égaux.

 $\forall x \ \forall y (E(s(x), s(y)) \rightarrow E(x,y))$