

CSN08x14

Scripting for Cybersecurity and Networks Lecture 10:

Graphs and Networks

In this lecture: Graphs (Graph Theory) and Networks

- The origin of graph theory
- Graphs (in the graph theory sense)
 - Nodes and edges
 - Undirected and directed graphs
 - Complete, connected, unconnected graphs
- Eulerian and Hamiltonian paths
- Applications
- The small world effect and small world networks
 - Diameter and radius
 - Clustering coefficient
 - Examples: Scale-free and Watts & Strogatz networks

Go to <u>www.menti.com</u> Code 34 89 26

We will continue to discuss the coursework at the end of this lecture (separate slides)

Origins of graph theory
Applications in Cybersecurity and Computing

The 7 bridges of Königsberg

- Sunday walk crossing each bridge exactly once?
- Try it! http://gwydir.demon.co.uk/jo/games/puzzles/bridge.htm.

Topology - Graph theory

■ Euler proved in 1735 that there is no solution to the 7 bridges of Königsberg problem (http://en.wikipedia.org/wiki/Seven Bridges of K%C3%B6nigsberg; then in East Prussia, now Kaliningrad in Russia)

The beginning of graph theory or topology

Application: Cybersecurity

- Many computer security tools use graphs for visualisation
- Example: EtherApe network traffic monitoring tool (use with pcap) (http://etherape.sourceforge.net/)
- size of nodes and thickness of edges are proportional to traffic volume.
- edge colour denotes the prevalent protocol of the associated traffic.

le 7/31

Application: Chat-log analysis

- Anwar & Abulaish (2014)
- method to identify digital evidence from chat log data
- 3 scenarios for usergroup identification

Tarique Anwar, Muhammad Abulaish

A social graph based text mining framework for chat log investigation

Digital Investigation, Volume 11, Issue 4, 2014, 349–362

http://dx.doi.org/10.1016/j.diin.2014.10.001

Fig. 5. A snapshot of the generated social graph.

Other graph applications in computing

- Links between webpages
- Web site paths traversed by users
- Sitemaps
- Flow charts, UML diagrams
- Database schemata, ER diagrams
- Class hierarchies
- XML tree structures and DTDs
- Dependency diagrams / call graphs in programming
- Traveling salesman problem

Graph types & properties

A graph consists of nodes (vertices) and edges

Graph to represent a binary relation

[(Tim, Computing), (Tim, Maths), (Mary, Maths), (Mary, Science), (John, Biology), (Sue, Computing), (Sue, Science), (Pete, Computing)]

This is how we define a graph for using with NetworkX in Python

Connected, disconnected, complete graphs

A graph can be ...

disconnected

Picture of a Null Graph

Complete graphs

- In a complete graph, every node is connected directly to every other node by an edge
- Complete graphs for $n \le 6$

Draw the complete graph with 7 nodes.

In a complete graph with n nodes...

...How many edges does every node have? ...How many edges does the whole graph have?

Bipartite / tripartite graphs

- A bipartite graph has two sets of nodes. A tripartite graph has 3.
- Edges are from one set of nodes to the other(s).
- There are no edges linking nodes within the same set

3x3 Sudoku

"Studies" graph with students and subjects

Q: Are there any complete graphs which are bipartite?

1	2	3
2	3	1
3	1	2

1	2	3	
4	5	6	
7	8	9	

Directed graphs (digraphs)

- Edges have a direction
- E.g. Functional dependency in code (also called call graphs or dependency diagrams)

Isomorphic graphs

- Two graphs are isomorphic if they are "effectively the same"
 - Same number of components (vertices and edges)
 - Same edge connectivity
- Really just different representations/visualisations of the same graph
 - One may be a much better visualisation than another

Three isomorphic graphs

Visualising graphs

- Different standard layouts many algorithms
- Chosen layout can be very important

Graphs from http://www-rohan.sdsu.edu/~gawron/python_for_ss/course_core/book_draft/Social_Networks/Social_Networks.html.

Graphs tools in Python

- Several python packages
 - NetworkX (https://networkx.github.io/)
 - igraph (http://igraph.org/python/)
 - Use with a suitable python drawing package, eg matplotlib

Can you draw this figure ...

...in one go, without lifting your pen?

Can you draw this figure ...

...in one go, without lifting your pen?

Eulerian path

- A path through a graph where each edge is visited exactly once.
- Eulerian circuit or cycle an Eulerian path which starts and ends on the same node
- Euler asserted that a connected graph has an Eulerian path if and only if it has either no or two nodes with an odd number of edges.
 - To have an Eulerian circuit, all nodes must have an even number of edges.

Eulerian path?

How many nodes of odd degree does each of these graphs have?

The seven bridges

- Because this graph has four edges of odd degree, it does not have an Eulerian path or circuit.
- This is how Euler proved that a Sunday walk crossing each bridge exactly once is impossible

Hamiltonian path

- A path through a graph where each <u>node</u> is visited exactly once.
 - E.g. cities in travelling salesman problem
- Hamiltonian cycle: each node visited exactly once, finish in start node
- All cycle graphs have Hamiltonian cycles
- All complete graphs with more than two nodes have Hamiltonian cycles

Hamiltonian path

■ Which of these graphs has a Hamiltonian path?

Hamiltonian path

■ Which of these graphs has a Hamiltonian path?

(this one

- it has a Hamiltonian cycle)

(this one does not -

Impossible to visit every node without passing through the red one more than once)

Application: Travelling salesman problem

- What is the shortest path for a salesman to visit a given set of cities?
- A classic problem of optimisation and planning
- A graph where the edges are labelled with the distances between the cities (weights)
- Among all the Hamiltonian paths, find the one which minimises distances.

Minimum Spanning Tree MST

- Given a connected graph find the smallest subgraph that connects all the nodes.
- The subgraph will be a tree it cannot have a loop
- The MST is a core a minimal network required to keep all nodes connected.
- E.g.
 - Minimum cables required in a (wired) computer network
 - Minimum of Roads/railway lines required to keep all nodes (towns, factories...) accessible
- Kruskal's algorithm to find MST

Minimum spanning tree (green) from Wikipedia

Kruskal's Algorithm for finding MST

- Sort the edges so the minimum weighted edge comes first
- For each edge
 - If both end nodes are already in the MST then skip it
 - Otherwise add the current edge to the MST
- Stop processing edges as soon as all the nodes are included


```
0
*kruskal1.py - F:\Dropbox\CSN08115_MADC\Petra_notes\kruskal1.py (3.6.1)*
File Edit Format Run Options Window Help
# Kruskal's algorithm for finding Minimum Spanning Tree
# for Graphs lecture
N = 7 \# number of nodes
# E contains edges in the format [node, node, weight]
E = [[1, 2, 7], [1, 4, 5], [2, 3, 8], [2, 4, 9],
     [2, 5, 7], [3, 5, 5], [4, 5, 15], [4, 6, 6],
     [5, 6, 8], [5, 7, 9], [6, 6, 11]]
# Sort the edges, shortest first
E.sort(key=lambda a: a[2])
# Set of nodes that are in the mst
included = set() # ensures nodes can only be added once
# List of edges in MST
mst = []
while len(included)<N:</pre>
  h,E = E[0],E[1:] # h is the first edge
  print(f'checking edge {h}, nodes alredy added: {included}')
  print(f'edges remaining {E}')
  # Ignore edges where both nodes are included
  if h[0] in included and h[1] in included:
    pass # Do nothing - this is already there
  else:
    # Add both vertices to set of nodes
    included.add(h[0])
    included.add(h[1])
    mst.append(h) # add edge to mst
print (f'MST is {mst}')
```


Networks (Network Theory)

Computer networks are only one example of many different types of networks...

6 degrees of separation

- Do you know the US president?
- Do you know someone who knows the US president?
- Do you know someone who knows someone who knows the US president?
- **...**
- The claim: everybody is connected to everybody else by at most 6 degrees of separation
 - ⇒ It's a small world.

■ LinkedIn shows 1st (direct), 2nd, 3rd degree connections (though no longer this particular view)

- ...according to LinkedIn, I'm only 2 steps away from Barack Obama...
- ...but at least 4 steps away from Hilary Clinton...

6 degrees of separation

- Idea from 1950's
- the World is becoming increasingly interconnected
- Is there any truth in the "6 degrees" idea?
 - Stanley Milgram's Small-World Experiment
 - The Oracle of Bacon (the six degrees of Kevin Bacon)
 - The Erdös number

Stanley Milgram's Small-World Experiment (1967)

- Sending packages to a stockbroker in Boston by sending them to random people in Nebraska and asking them to forward to someone who might know the stockbroker.
- Average path length around 5.5-6
- But several critiques
- https://en.wikipedia.org/wiki/Small-world experiment.

The six degrees of Kevin Bacon

The Kevin Bacon game:

- start with any actor or actress who has been in a movie and connect them to Kevin Bacon in the smallest number of links possible (using the internet movie database).
- Two people are linked if they've been in a movie together.
- Bacon numbers higher than 4 are very rare
- Play the game at http://oracleofbacon.org/.

Erdös number

- Mathematician Paul Erdös published more papers than any other mathematician in history and had hundreds of co-authors.
- The Erdös number describes the "collaborative distance" between him and another person, as measured by authorship of mathematical papers.
- Co-authors have Erdös number 1.
- Co-authors of co-authors have Erdös number 2.
- 90 percent of the world's active mathematicians have an Erdös number smaller than 8.
- It has been said: Someone who does not have an Erdös number is not a mathematician.

Small-world effect

- Any node can be reached from any other node by a short path.
- i.e. small graph diameter
- Examples:
 - Social networks
 - Internet
 - Electric power grids

Not every network has a small world effect

- For example: Six degrees only relevant for living (or recent) people.
- Distance between people who lived hundreds of years apart is much larger.

- Similar consideration for "studied with" networks
 - Example: Carol Kirkwood, BBC weather presenter, graduated from Edinburgh Napier University in 1984.
 - How many degrees of separation to you (current students)? Explain your answer.

Which of these have a small-world effect?

Define small world effect as diameter <= 6

Two types of small world networks

- Watts & Strogatz networks
- Scale-free networks

Watts & Strogatz networks

Duncan J. Watts and Steven H. Strogatz, Collective dynamics of small-world networks, Nature, 393, pp. 440–442, 1998

regular structure

Plus some added random links

- high local clustering with a few distant links
- egalitarian
- no hubs
- Examples: electric power grid, neuron connections in the brain...

Watts & Strogatz networks with networkX

- watts strogatz graph(n,k,p) newman_watts_strogatz_graph(n,k,p) connected watts strogatz graph(n,k,p)
- ring over n nodes; each node joined to its k nearest neighbours; shortcuts: replacing / adding some edges with probability p.
- See https://networkx.github.io/documentation/latest/reference/generated/networkx.generators.random_gr aphs.watts strogatz graph.html

watts strogatz graph(12,4,0.2) [edges replaced - could lead to disconnected graph]

Scale-free networks

- hubs and resources
- power law distribution
- growths: preferential attachment ("the rich get richer")
- Examples: WWW, citation networks, airline networks, biological networks
- Excellent explanation at https://www.learner.org/courses/mathilluminated/units/11/textbook/05.php
- See also https://en.wikipedia.org/wiki/Scale-free network#Characteristics

Power law distribution

■ Examples:

- word frequencies,
- magnitude of earthquakes,
- popularity of movies,
- hubs and resources on the WWW
- The 80-20 rule:
 - e.g. 20% of words are used 80% of the time

Scale-free graphs in networkX

scale_free_graph(20)
[2 different examples, spring layout]

- scale_free_graph(n)
- n is the number of nodes
- Graph is directed
- Lots of options See

 https://networkx.github.io/documentation/latest/reference/generated/n
 etworkx.generators.directed.scale free graph.html

Application: disease control

Diseases are spread by "hubs".

 \Rightarrow Outbreaks can be controlled by treating the hubs.

Examples:

- Treatment of rabies in foxes:
 vaccinate the ones that are travelling long distance.
- Influenza: vaccinate children.

Comparison of small world network types

Watts & Strogatz	scale-free
egalitarian	hubs and resources
no growth	preferential attachment
local clusters and distant links	power law
under attack: deteriorates	under random attack: stable
no particular targets	under targeted attack: weak

Both: small average node-to-node distance

Clustering Coefficient

- The ratio of the number of actual edges there are between neighbours to the number of potential edges there are between neighbours
- In a social network, the probability that two randomly selected friends of A are friends with each other, i.e. the fraction of pairs of A's friends that are connected to each other.
- The clustering coefficient of a node measures how concentrated the neighbourhood of that node is.
- Network clustering coefficient: the average of all the nodes' coefficients

Clustering coefficient example

What is the clustering coefficient of node A?

- A has edges to 4 other nodes
- These could have up to $\binom{4}{2} = \frac{4(4-1)}{2} = 6$ edges between them
- They have only 4 of these 6 edges
- Clustering coefficient: 4/6 = 0.67

$$\binom{4}{2}$$
 is "4 choose 2"

actual
4 edges among
neighbours

$$\frac{4 \times 3}{2} = 6$$

possible edges among neighbours

Calculating the Clustering Coefficient

Clustering for node $n = \frac{\int actual edges between neighbours of n}{\int possible edges between neighbours of n}$

Number of possible edges between k nodes: $\frac{k(k-1)}{2}$ (I.e. number of edges in a complete graph with k nodes)

Clustering coefficient for node n with k neighbours

$$C(n) = \frac{|actual| edges|}{\frac{k(k-1)}{2}} = \frac{2 \times |actual| edges|}{k(k-1)}$$

the clustering coefficient for a node with 1 neighbour or with 0 neighbours is 0.

Exercise: Calculate the average clustering coefficient

Exercise: Calculate the average clustering coefficient

Triadic closure

- Sue is friends with Alice and with Bob
- According to triadic closure, Alice and Bob are likely to become friends and close the triangle
- if we have 2 snapshots of a social network, the later one will have many new edges that come from this triangle closing operation
- This creates graphs with high clustering coefficients: the small world effect

Small-world networks

Properties:

- Exhibit Small-world effect: small average node-to-node distance (shortest path length)
 - Measured as the diameter of a graph
- Clustering coefficient is larger than the clustering coefficient of a random graph with the same number of nodes and edges.
 - Having a large clustering coefficient means that "the people you know also know each other".
 - This could be the result of triadic closure

Scale-free graphs in networkX

- scale_free_graph() is not only directed, but also a multi-graph (i.e. a graph with self-loops and multiple edges between the same nodes)
- Cannot calculate clustering coefficient
- A simple graph that looks the same would have a very low clustering coefficient – because there is no triadic closure.
- To convert a scale-free graph SF to an undirected simple graph use

SFconv: SFconv=nx.Graph(SF)

scale_free_graph(20)
[2 different examples, spring layout]

Question

For a complete graph

- What is the clustering coefficient?
- What is the diameter?
- Is a complete graph a small world network?

Some Resources

- Interactive network theory tutorial at http://www.learner.org/courses/mathilluminated/interactives/network/. This will take you through various graph and network characteristics and is a great revision of the lecture. (Requires Flash player works for me in Firefox but not Chrome).
- Highly recommended for labs: NetworkX tutorials (8 page pdf) https://networkx.github.io/documentation/stable/tutorial.html
- Optional: Interactive graph creator http://illuminations.nctm.org/Activity.aspx?id=3550
 (the graph explorer tab allows you to test Hamiltonian and Eulerian paths)
- What truth is there in the "6 degrees of separation" theory?

 Read http://www.theguardian.com/technology/2008/aug/03/internet.email and have a look at http://www.sciencealert.com/are-we-all-really-connected-by-just-six-degrees-of-separation. Additional sources you could have a look at are https://www.psychologytoday.com/articles/200203/six-degrees-urban-myth.
- This lecture is partly based on the book "Small World" by Mark Buchanan.