STAT 620: Asymptotic Statistics

Spring 2022

Lecture: Apr 21

Lecturer: Xianyang Zhang

1 Big picture

	Real world	Bootstrap world
distribution	$P \mid \theta$	$\hat{P} \mid \hat{ heta}_n$
samples	$X_1, X_2, \dots, X_n \stackrel{i.i.d}{\sim} P \mid \theta$	$X_1^*, X_2^*, \dots, X_n^* \stackrel{i.i.d}{\sim} \hat{P} \mid \hat{\theta}_n$
parameter estimates	$\hat{\theta}_n$, $\hat{\sigma}_n$ using X_1, X_2, \dots, X_n	$\hat{\theta}_n^*, \hat{\sigma}_n^* \text{ using } X_1^*, X_2^*, \dots, X_n^*$
pivotal quantity	$rac{\hat{ heta}_n - heta}{\hat{\sigma}_n}$	$\frac{\hat{\theta}_n^* - \hat{\theta}_n}{\hat{\sigma}_n^*}$

Suppose we know

$$\mathbb{P}\left[\frac{\hat{\theta}_n - \theta}{\hat{\sigma}_n} \le x\right] \to F(x).$$

Then to show validity of the Bootstrap method, we show

$$\mathbb{P}\left[\frac{\hat{\theta}_n^* - \hat{\theta}_n}{\hat{\sigma}_n^*} \le x \,\middle|\, X_1, X_2, \dots, X_n\right] \stackrel{a.s.}{\to} F(x).$$

2 Bootstrap consistency: the mean case

Suppose X_1, X_2, \ldots, X_n are i.i.d with mean μ and covariance matrix Σ . From CLT we know

$$\sqrt{n}(\bar{X}_n - \mu) \stackrel{d}{\to} N(\mathbf{0}, \Sigma).$$

Given this result, we can ask ourselves the following question:

2.1 Question

Can we show

$$\sqrt{n}(\bar{X}_n^* - \bar{X}_n) \stackrel{d^*}{\to} N(\mathbf{0}, \Sigma)$$
?

Here, d^* denotes $\stackrel{d}{\to}$ almost surely and $\bar{X}_n^* = \frac{1}{n} \sum_{i=1}^n X_i^*$. Almost surely on the sequence X_1, X_2, \dots, X_n , the conditional distribution of the bootstrap estimate of the mean satsifies that

$$\sqrt{n}(\bar{X}_n^* - \bar{X}_n) \stackrel{d^*}{\to} N(\mathbf{0}, \Sigma).$$

Indeed by the Edgeworth expansion below, it can be shown that, the distribution of $\sqrt{n}(\bar{X}_n^* - \bar{X}_n)$ is closer to that of $\sqrt{n}(\bar{X}_n - \mu)$. Thus bootstrap estimate provides a better finite sample approximation to $\sqrt{n}(\bar{X}_n - \mu)$ than the normal approximation $N(\mathbf{0}, \Sigma)$.

2.2 Proof

Let us denote X_1, X_2, \ldots, X_n by $X_{1:n}$ Note that,

$$\mathbb{E}\big[\bar{X}_n^* \, \big| \, X_1, X_2, \dots, X_n\big] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}\big[X_i^* \, \big| \, X_{1:n}\big] = \mathbb{E}\big[X_1^* \, \big| \, X_{1:n}\big] = \bar{X}_n.$$

Fix any $i = 1, \dots, n$. Similarly,

$$\mathbb{E}[X_i^* X_i^{*\top} | X_{1:n}] = \frac{1}{n} \sum_{i=1}^n X_i X_i^{\mathrm{T}}.$$

This implies that

$$\operatorname{cov}[X_i^* \mid X_{1:n}] = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n) (X_i - \bar{X}_n)^{\top}$$

and

$$\operatorname{cov}[X_i \mid X_{1:n}] \stackrel{a.s.}{\to} \Sigma.$$

Following the Lindeberg condition, the goal is to show

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \left[||X_i^*||^2 \mathbf{1} \{ ||X_i^*|| > \epsilon \sqrt{n} \} \, \middle| \, X_{1:n} \right] \stackrel{a.s.}{\to} 0.$$

To this end, we note that for any ϵ , there exists a large enough M such that $\mathbb{E}||X_1||^2 \mathbf{1}\{||X_1|| > M\}] < \epsilon$. Thus when n is large enough, we get

$$\begin{split} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \big[\, ||X_{i}^{*}||^{2} \, \mathbf{1} \big\{ ||X_{i}^{*}|| > \epsilon \sqrt{n} \big\} \, \big| \, X_{1:n} \big] &= \mathbb{E} \big[\, ||X_{1}^{*}||^{2} \, \mathbf{1} \big\{ ||X_{1}^{*}|| > \epsilon \sqrt{n} \big\} \, \big| \, X_{1:n} \big] \\ &= \frac{1}{n} \sum_{i=1}^{n} \, ||X_{i}||^{2} \, \mathbf{1} \big\{ ||X_{i}|| > \epsilon \sqrt{n} \big\} \\ &\leq \frac{1}{n} \sum_{i=1}^{n} \, ||X_{i}||^{2} \, \mathbf{1} \big\{ ||X_{i}|| > M \big\} \stackrel{a.s.}{\to} \mathbb{E} ||X_{1}||^{2} \, \mathbf{1} \big\{ ||X_{1}|| > M \big\} \big] < \epsilon. \end{split}$$

As ϵ can be arbitrarily small, the Lindeberg condition holds almost surely.

2.3 Bootstrap consistency: the general case

Suppose we can show $\hat{\theta}_n \stackrel{a.s.}{\to} \theta$ and $\sqrt{n}(\hat{\theta}_n - \theta) \stackrel{d}{\to} T$. Then it can be shown that

- $\sqrt{n}(\hat{\theta}_n^* \hat{\theta}_n) \xrightarrow{d^*} T$ conditional on X_1, X_2, \dots, X_n .
- For any ϕ such that it is continuously differentiable at θ , then $\sqrt{n} \Big(\phi(\hat{\theta}_n^*) \phi(\hat{\theta}_n) \Big) \xrightarrow{d^*} D_{\theta} T$.

The aforementioned results can also be generalized to empirical process. For example,

- $\left\{\sqrt{n}(\mathbb{P}_n \mathbb{P}) f\right\}_{f \in \mathcal{F}} \xrightarrow{d} \left\{G_f\right\}_{f \in \mathcal{F}}$.
- $\left\{\sqrt{n}(\mathbb{P}_n^* \mathbb{P}_n) f\right\}_{f \in \mathcal{F}} \xrightarrow{d^*} \left\{G_f\right\}_{f \in \mathcal{F}}$

2.4 Edgeworth expansion

The Edgeworth expansion is used to show the high-order accuracy for bootstrap method. Specifically, we have

$$\mathbb{P} \left[\frac{\sqrt{n}(\bar{X}_n - \mu)}{\hat{\sigma}_n} \le x \right] = \Phi(x) + \phi(x) \left[\frac{p_1(x; \mu_3)}{\sqrt{n}} + \frac{p_2(x; \mu_3, \mu_4)}{n} + O\left(\frac{1}{n^{3/2}}\right) \right].$$

In the right-hand side of the expression, p_1 and p_2 are polynomials, and μ_3 and μ_4 are the skewness and kurtosis of the population respectively. Similarly, for the bootstrap version, we have,

$$\mathbb{P}\left[\frac{\sqrt{n}(\bar{X}_n^* - \bar{X}_n)}{\hat{\sigma}_n^*} \leq x\right] = \Phi(x) + \phi(x) \left[\frac{p_1(x; \hat{\mu}_3)}{\sqrt{n}} + \frac{p_2(x; \hat{\mu}_3, \hat{\mu}_4)}{n} + O\left(\frac{1}{n^{3/2}}\right)\right].$$

If we compare these two expanded expressions, we can see that bootstrap tries to match higher-order moments which leads to the high-order accuracy and thus faster convergence rate compared to the first order normal approximation.

Reference: For additional details, check the book The Bootstrap and Edgeworth Expansion by Peter Hall.

3 Gaussian Sequence Model

Consider the model $Y \sim N(\mu, \sigma^2 I_p)$ or equivalently $Y_i = \mu_i + \sigma \varepsilon_i$, where $\varepsilon_i \stackrel{iid}{\sim} N(0, 1)$ for i = 1, 2, ..., p. This model is of basic interest in empirical bayes, nonparametric regression, variable selection, multiple hypothesis testing, admisibility (JS estimator) and so on.

3.1 Goal

Estimate μ under the sparsity assumption, i.e. $\|\mu\|_0 \leq k$. For $S \subseteq \{1, \ldots, p\}$, define $\hat{\mu}(S)$ for μ as

$$\hat{\mu}_i(S) = \begin{cases} 0, & \text{if } i \notin S, \\ Y_i, & \text{if } i \in S. \end{cases}$$

Therefore, the L^2 -risk of $\hat{\mu}(S)$ is given by

$$R(\mu, \hat{\mu}(S)) = \mathbb{E}||\mu - \hat{\mu}(S)||^2 = \sum_{i \in S} \sigma^2 + \sum_{i \notin S} \mu_i^2.$$

3.2 Ideal risk

$$R^{I}(\mu) = \min_{S} R(\mu, \hat{\mu}(S)) = \min_{S} \left[\sum_{i \in S} \sigma^{2} + \sum_{i \notin S} \mu_{i}^{2} \right] = \sum_{i=1}^{p} \min(\sigma^{2}, \mu_{i}^{2}).$$

Note that, when $\|\mu\|_0 \le k$, then $R^I(\mu) \le k\sigma^2$. When p is large, the risk of MLE (Y) $p\sigma^2 \gg k\sigma^2$.

3.3 Hard Thresholding rule

$$\eta_H(y,\lambda) = \begin{cases} y, & \text{if } |y| \ge \lambda, \\ 0, & \text{if } |y| < \lambda. \end{cases}$$

3.4 Soft Thresholding rule

$$\eta_S(y,\lambda) = \begin{cases} y - \lambda, & \text{if } y \ge \lambda \\ 0, & \text{if } |y| < \lambda \\ y + \lambda, & \text{if } y \le -\lambda \end{cases} = \operatorname{sgn}(y) (|y| - \lambda)_+,$$

where sgn is the sign function and $x_+ = x I\{x \ge 0\}$. It can be verified that

$$\eta_S(y,\lambda) = \operatorname{argmin}_{\mu} \left[\frac{1}{2} (y-\mu)^2 + \lambda |\mu| \right].$$