DRAFT General Mission Analysis Tool (GMAT) Acceptance Test Plan

GMAT Build Date: May 18, 2007

Edwin Dove NASA Goddard Space Flight Center Greenbelt, MD 20771

May 21, 2007

2

Contents

1	Acc	ceptan	ce Test Plan Overview	17
	1.1	GMA'	T Introduction	17
	1.2	Testir	ng Methodology	17
		1.2.1	Propagation	18
		1.2.2	Calculation Parameters	19
		1.2.3	Integrators	20
		1.2.4	Stopping Conditions	21
		1.2.5	Libration Point	21
		1.2.6	Delta V	22
		1.2.7	Performance	22
		1.2.8	Control Flow	22
2	Pro	pagati	on	23
	2.1	Initial	Orbit State Conditions	23
		2.1.1	Earth Based Test Cases	23
		2.1.2	Non-Earth Based Test Cases	25
	2.2	Other	Initial State Conditions	25
		2.2.1	Earth Orientation Parameters(EOP) data	27
		2.2.2	Other Planetary Parameters	29
	2.3	Namin	g Convention	31
		2.3.1	Comparison Script Information	32
	2.4	Test C	ase Results	32

Draft:	Work	in	Progress
--------	------	----	----------

1		CONTE	NTS
	2.5	FF/STK Comparison	42
3	Cal	culation Parameters	45
	3.1	Initial Orbit State Conditions	45
	3.2	Central Body Dependent Parameters	45
		3.2.1 Naming Convention	45
		3.2.2 Comparison Script Information	46
		3.2.3 Test Case Results	46
	3.3	Coordinate System Dependent Parameters	50
		3.3.1 Naming Convention	50
		3.3.2 Comparison Script Information	51
		3.3.3 Test Case Results	51
1	Inte	egrators	61
	4.1	Initial Orbit Conditions	61
	4.2	Naming Convention	61
	4.3	Comparison Script Information	62
	4.4	Test Case Results	62
ŏ	Sto	pping Conditions	65
	5.1	Initial Orbit Conditions	66
	5.2	Naming Convention	70
	5.3	Comparison Script Information	70
	5.4	Test Case Results	71
3	Libi	ration Points	75
	6.1	Initial Orbit Conditions	75
	6.2	Naming Convention	76
	6.3	Comparison Script Information	77
	6.4	Test Case Results	77

79

7 Delta V

C	ONT	ENTS	5
	7.1	Initial Orbit Conditions	79
	7.2	Naming Convention	82
	7.3	Comparison Script Information	82
	7.4	Test Case Results	82
8	Cor	ntrolFlow	85
	8.1	Test Case Results	85
\mathbf{A}	Acr	conyms	87
В	Init	cial Conditions	89
	B.1	Propagator Test Cases	89
	B.2	Calculation Parameter Test Cases	105
	B.3	Integrator Test Cases	106
	B.4	Stopping Condition Test Cases	106
	B.5	Libration Point Test Cases	106
	B.6	DeltaV Test Cases	1.06
	B.7	Performance	106
C	Con	nparison Scripts Guide	107
	C.1	Folder Architecture	107
	C.2	Install Instructions	107
	C.3	Warnings/Script Hints	108
	C.4	BuildRun_Script_GMAT.m script	109
		C.4.1 Purpose	109
		C.4.2 Inputs	109
		C.4.3 Outputs	109
		C.4.4 Script Algorithm	109
	C.5	Comparison_Tool1_Tool2_PV.m	109
		C.5.1 Purpose	109
		C.5.2 Inputs	110

Draft:	Work	in	Progress
--------	------	----	----------

6		C)	CONTENTS
C.5.3	Outputs		110
C.5.4	Script Algorithm		110
C.6 Comp	parison_Tool1_Tool2_CS.m		111
C.6.1	Purpose		111
C.6.2	Inputs		111
C.6.3	Outputs		111
C.6.4	Script Algorithm		112
C.7 Comp	arison_Tool1_Tool2_Cb.m		112
C.7.1	Purpose		113
C.7.2	Inputs		113
C.7.3	Outputs		113
C.7.4	Script Algorithm		113
C.8 Comp	arison_Tool1_Tool2_Libr.m		114
C.8.1	Purpose		114
C.8.2	Inputs		115
C.8.3	Outputs		115
C.8.4	Script Algorithm		115
C.9 Comp	arison_Integ.m		115
C.9.1	Purpose		115
C.9.2	Inputs		115
C.9.3	Outputs		116
C.9.4	Script Algorithm		116
C.10 Comp	arison.DeltaV.m		117
C.10.1	Purpose		117
C.10.2	Inputs		117
C.10.3	Outputs		117
C.10.4	Script Algorithm		117
C.11 Compa	urison_StopCond.m	· · · · · · · · · · · · · · · · · · ·	117
C.11.1	Purpose		117

C	ONI	ENTS	
		C.11.2 Inputs	11
		C.11.3 Outputs	11
		C.11.4 Script Algorithm	11'
	C.1	2 STK_Repropagate.m	11'
		C.12.1 Purpose	11'
		C.12.2 Inputs	11'
		C.12.3 Outputs	118
		C.12.4 Script Algorithm	118
	C.13	3 TimeComparo.m	118
		C.13.1 Purpose	118
		C.13.2 Inputs	112
		C.13.3 Outputs	118
		C.13.4 Script Algorithm	118
D	erm	K Setup	1 1 6
0			119
		Support Files Needed	
	D.2	STK modules used	119
	D.3	Scenario Setup	1.20
		D.3.1 HPOP	1.20
		D.3.2 STK	1.20
	D.4	Astrogator Elements	121
		D.4.1 Calculation Objects: Cartesian Elements	121
		D.4.2 Calculation Objects: Geodetic Elements	122
		D.4.3 Calculation Objects: Keplerian Elements	1.23
		D.4.4 Calculation Objects: Other Orbit Elements	125
		Divisi Contention Objects. Other Other Diements	
		D.4.5 Calculation Objects: Target Vector Elements	25
		D.4.5 Calculation Objects: Target Vector Elements	125 125
		D.4.5 Calculation Objects: Target Vector Elements	

8		.x.		4.7 %	• ,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	 	 		ξ	, and			(CON	TE	NTS
		D.4.9	Propagator	s Element	s			 	 	 			 		 			129
		D.4.10	Axes Eleme	ents				 	 	 			 		 			129
		D.4.11	Coordinate	System I	Elemen	nts .		 	 	 			 		 			129
		D.4.12	Vectors Ele	ments				 		 			 		 			130
		D.4.13	Vectors: Ve	ehicle Loc	al Elei	ments		 	 	 			 		 	٠.		130
	D.5	Report	Styles					 	 	 			 		 			131
	D.6	Scripts	Used					 	 	 			 ٠		 			131
ישר	יבויבו	Setup																133
1	T. T.	Devub																

List of Figures

10

List of Tables

2.1	Satellite Initial Conditions	24
2.2	Apogee and Perigee Altitudes for Test Satellites	24
2.3	Integrator, Propagator, and Output Frequency	24
2.4	Non-Earth Keplerian Orbital Elements	25
2.5	Universal Test Case Parameters	26
2.6	EOP Format Accuracy	28
2.7	Planetary Gravitational Constants(mu values)	29
2.8	Flattening Coefficient	29
2.9	Equatorial Radius	30
2.10	Acceptance Matrix	33
2.11	GMAT/STK GEO STK Test Case Comparison	33
2.12	GMAT/STK GPS STK Test Case Comparison	33
2.13	GMAT/STK ISS STK Test Case Comparison	34
2.14	GMAT/STK Molniya STK Test Case Comparison	34
2.15	GMAT/STK SunSync STK Test Case Comparison	35
2.16	GMAT/STK Mars1 STK Test Case Comparison	36
2.17	GMAT/STK Mercury1 STK Test Case Comparison	36
2.18	GMAT/STK Moon STK Test Case Comparison	36
2.19	GMAT/STK Neptune1 STK Test Case Comparison	36
2.20	GMAT/STK Pluto1 STK Test Case Comparison	36
2.21	GMAT/STK Saturn1 STK Test Case Comparison	37
2.22	GMAT/STK Uranus1 STK Test Case Comparison	37

. 4		L	DI	OF I	LADL	גענ
	2.23	GMAT/STK Venus1 STK Test Case Comparison				37
	2.24	GMAT/STK DeepSpace STK Test Case Comparison				38
	2.25	GMAT/STK EML2 STK Test Case Comparison				38
	2.26	GMAT/STK ESL2 STK Test Case Comparison				38
	2.27	FF/GMAT GEO GMAT Test Case Comparison				39
	2.28	FF/GMAT GPS GMAT Test Case Comparison				39
	2.29	FF/GMAT ISS GMAT Test Case Comparison				39
	2.30	FF/GMAT Molniya GMAT Test Case Comparison				39
	2.31	FF/GMAT SunSync GMAT Test Case Comparison				40
	2.32	FF/GMAT EML2 GMAT Test Case Comparison				41
	2.33	FF/GMAT ESL2 GMAT Test Case Comparison				41
	2.34	FF/STK GEO STK Test Case Comparison				42
	2.35	FF/STK GPS STK Test Case Comparison				42
	2.36	FF/STK ISS STK Test Case Comparison				42
	2.37	FF/STK Molniya STK Test Case Comparison				42
	2.38	FF/STK SunSync STK Test Case Comparison			• •	43
	2.39	FF/STK EML2 STK Test Case Comparison				44
	2.40	FF/STK ESL2 STK Test Case Comparison				44
	3.1	GMAT/STK Central Body Dependent Parameter Differences (1)				47
	3.2	GMAT/STK Central Body Dependent Parameter Differences (2)				47
	3.3	GMAT/STK Central Body Dependent Parameter Differences (3)				47
	3.4	GMAT/STK Central Body Dependent Parameter Differences (4)				48
	3.5	GMAT/STK Central Body Dependent Parameter Differences (5)				48
		FF/GMAT Central Body Dependent Parameter Differences (1)				49
		FF/GMAT Central Body Dependent Parameter Differences (2)				49
		FF/GMAT Central Body Dependent Parameter Differences (3)				49
		FF/GMAT Central Body Dependent Parameter Differences (4)				49
		FF/GMAT Central Body Dependent Parameter Differences (5)				49
	0.10	22, Sillia Constant Doug Department i analitette Differences (6)	٠.			τIJ

Draft:	Work	111	Pro	gress
				§ 3:

	LIST OF TABLES	13
	3.11 FF/STK Central Body Dependent Parameter Differences (1)	50
	3.12 FF/STK Central Body Dependent Parameter Differences (2)	50
	3.13 FF/STK Central Body Dependent Parameter Differences (3)	50
	3.14 FF/STK Central Body Dependent Parameter Differences (4)	50
	3.15 FF/STK Central Body Dependent Parameter Differences (5)	50
	3.16 GMAT/STK Coordinate System Dependent Parameter Differences (Position)	53
	3.17 GMAT/STK Coordinate System Dependent Parameter Differences (Velocity)	54
	3.18 GMAT/STK Coordinate System Dependent Parameter Differences (Specific Angular Momentum)	55
	3.19 GMAT/STK Coordinate System Dependent Parameter Differences (Velocity Vector-based)	56
	3.20 GMAT/STK Coordinate System Dependent Parameter Differences (Angle-based)	57
	3.21 FF/GMAT Coordinate System Dependent Parameter Differences (Position)	58
	3.22 FF/GMAT Coordinate System Dependent Parameter Differences (Velocity)	58
	3.23 FF/GMAT Coordinate System Dependent Parameter Differences (Specific Angular Momentum)	58
	3.24 FF/GMAT Coordinate System Dependent Parameter Differences (Velocity Vector-based)	58
	3.25 FF/GMAT Coordinate System Dependent Parameter Differences (Angle-based)	58
	3.26 FF/STK Coordinate System Dependent Parameter Differences (Position)	59
	3.27 FF/STK Coordinate System Dependent Parameter Differences (Velocity)	59
	3.28 FF/STK Coordinate System Dependent Parameter Differences (Specific Angular Momentum)	59
	3.29 FF/STK Coordinate System Dependent Parameter Differences (Velocity Vector-based)	59
	3.30 FF/STK Coordinate System Dependent Parameter Differences (Angle-based)	59
	4.1 Exact/GMAT GEO Integrator Test Case Comparison	69
	4.2 Exact/GMAT ISS Integrator Test Case Comparison	62
٠	1.2 Estado, Grazia Iso Integration Test Case Comparison	63
	5.1 Stopping Conditions	65
	5.2 Initial Orbit Parameters (EarthPM & EarthMJ2000EqPM)	66
	5.3 Initial Orbit Parameters (EarthAll & EarthMJ2000EqAll)	67
	5.4 Initial Orbit Parameters (EarthPMhyper & EarthMJ2000EqPMhyper)	68
	5.5 Initial Orbit Parameters (MoonPM)	68
	5.6 Initial Orbit Parameters (MarsPM)	60

4		List Of TABL	משנ
	5.7	Exact/GMAT EarthPM StopCond Test Case Comparison	71
	5.8	Exact/GMAT EarthAll StopCond Test Case Comparison	71
	5.9	Exact/GMAT EarthPMhyper StopCond Test Case Comparison	72
	5.10	Exact/GMAT MoonPM StopCond Test Case Comparison	72
	5.11	Exact/GMAT MarsPM StopCond Test Case Comparison	72
	5.12	Exact/GMAT EarthMJ2000EqPM StopCond Test Case Comparison	72
	5.13	Exact/GMAT EarthMJ2000EqAll StopCond Test Case Comparison	73
	5.14	Exact/GMAT EarthMJ2000EqPMhyper StopCond Test Case Comparison	73
	5.15	Exact/GMAT MoonMJ2000EqPM StopCond Test Case Comparison	73
	5.16	Exact/GMAT MarsMJ2000EqPM StopCond Test Case Comparison	73
	5.17	Exact/GMAT Earth3MultiSatsPM StopCond Test Case Comparison	73
	6.1	Initial Orbit Parameters (Sun-Earth(SE) Libration Points)	75
	6.2	Initial Orbit Parameters (Sun-Earth-Moon(SEM) Libration Points)	76
	6.3	GMAT/STK SEM LibrationTest Test Case Comparison	77
	6.4	GMAT/STK SE LibrationTest Test Case Comparison	77
	7.1	Initial Orbit Parameters (Earth Impulsive Burns)	80
	7.2	Initial Orbit Parameters (Mars Impulsive Burns)	80
	7.3	Initial Orbit Parameters (Moon Impulsive Burns)	81
	7.4	Initial Orbit Parameters (Sun Impulsive Burns)	81
	7.5	Exact/GMAT IEarth DeltaV Test Case Comparison	83
	7.6	Exact/GMAT IMars DeltaV Test Case Comparison	83
	7.7	Exact/GMAT IMoon DeltaV Test Case Comparison	83
	7.8	Exact/GMAT ISun DeltaV Test Case Comparison	83
	8.1	Loop Test Case Results	86
	B.1	Initial Orbit Parameters (ISS)	89
	B.2	Initial Orbit Parameters (Sun-Sync)	90
	B.3	Initial Orbit Parameters (GPS)	91

Draft:	Work	in	Progress

j	LIST ()	F TABI	LES		****		•	3			~	 			 ****		``	****	7				1
	B.4	Initial	Orbit I	arame	ters (Molr	niya)					 			 				•	 			92
	B.5	Initial (Orbit F	arame	ters (GEC))					 		•	 	 				 	-		93
_	B.6	Initial (Orbit F	'arame	ters (1	Mars							٠.		 	 				 			94
	B.7	Initial (Orbit F	'arame	ters (I	Merc									 	 							95
	B.8	Initial (Orbit P	'aramet	ters (1	Mooi	n) .				٠.	 			 	 							96
	B.9	Initial (Orbit P	'aramet	ters (I	Nept	une)		· ·			 				 							97
	B.10	Initial (Orbit P	'aramet	ters (I	Pluto	o) · .					 				 							98
	B.11	Initial (Orbit P	'aramet	ers (S	Satuı	rn).	٠.				 . <i>.</i>				 							99
	B.12	Initial (Orbit P	'aramet	ers (U	Uran	us)					 				 						 -	100
	B.13	Initial C	Orbit P	aramet	ers (V	Venu:	s) .					 			 	 							101
	B.14	Initial C	Orbit P	aramet	ers (I	Deep	Spac	æ)				 				 					٠.	 	102
	B.15	Initial C)rbit P	aramet	ers (E	EML:	2) .			٠.		 				 				 		 . :	103
	B.16	Initial C)rbit Pa	aramet	ers (E	SL2) .					 			 	 				 		 .]	04
	B.17	Initial C)rbit Pa	aramete	ers (H	Iypeı	rboli	c)				 			 					 		 . 1	.05
	D.1	STK sur	pport fi	iles								 			 	 						 1	19
		STK mo																					20
	11.4		ALUHES 1	LOCAL -																		- 1	/11

16

Chapter 1

Acceptance Test Plan Overview

1.1 GMAT Introduction

The information presented in this Acceptance Test Plan document shows the current status of the General Mission Analysis Tool (GMAT). GMAT is a software system developed by NASA Goddard Space Flight Center (GSFC) in collaboration with the private sector. The GMAT development team continuously performs acceptance tests in order to verify that the software continues to operate properly after updates are made. The GMAT Development team consists of NASA/GSFC Code 583 software developers, NASA/GSFC Code 595 analysts, and contractors of varying professions.

GMAT was developed to provide a development approach that maintains involvement from the private sector and academia, encourages collaborative funding from multiple government agencies and the private sector, and promotes the transfer of technology from government funded research to the private sector.

GMAT contains many capabilities, such as integrated formation flying modeling and MATLAB compatibility. The propagation capabilities in GMAT allow for fully coupled dynamics modeling of multiple spacecraft, in any flight regime. Other capabilities in GMAT include: user definable coordinate systems, 3-D graphics in any coordinate system GMAT can calculate, 2-D plots, branch commands, solvers, optimizers, GMAT functions, planetary ephemeris sources including DE405, DE200, SLP and analytic models, script events, impulsive and finite maneuver models, and many more.

GMAT runs on Windows, Mac, and Linux platforms. Both the Graphical User Interface (GUI) and the GMAT engine were built and tested on all of the mentioned platforms. GMAT was designed for intuitive use from both the GUI and with an importable script language similar to that of MATLAB.

1.2 Testing Methodology

Purpose

GMAT needs to undergo a series of rigorous tests to validate the numerical implementations of its models and establish a set of acceptable performance times. The 595 analysts created the acceptance test plan to achieve this goal by comparing GMAT with flight-operational reference software packages and documenting the results. Results can be reproduced with the initial conditions and software setups presented in this document.

CHAPTER 1. ACCEPTÂNCE TEST PLAN OVERVIEW

18

Reference software

For this comparative study to have merit, GMAT was tested against reliable, trustworthy, and flight operational programs, such as STK-HPOP,STK-Astrogator, Free-Flyer, Swingby, and previous GMAT Builds that were comparable to the aforementioned programs. To achieve accurate comparison results, each program was compared with equivalent, or close to equivalent, test case setups.

Testing Categories

The Acceptance Test Plan divides into the following testing categories: Propagation, Calculation Parameters [Central body(Cb) and Coordinate System(CS) dependent], Integrators, Libration Points, Stopping Conditions, Delta V, and Performance.

Scripts Used

MATLAB scripts were created to make comparisons between GMAT Builds and the reference software. The majority of the comparisons involved taking the difference of the data and extracting the maximum absolute difference observed over the propagation duration. Scripts were also created to compare performance times for individual GMAT test cases to the reference software. The scripts created are as followed: Comparison_Tool1_Tool2_PV.m, Comparison_Tool1_Tool2_CS.m, Comparison_Tool1_Tool2_Cb.m, Comparison_Integ.m, TimeComparo.m, BuildRun_Script_GMAT.m, Comparison_Tool1_Tool2_Libr.m, Comparison_StopCond, and STK_Repropagate.m.

The user of the semi-automated scripts provides input when requested, in order to perform the script's core functions. For example, a user that wants to see the position and velocity differences between STK and GMAT would select a few choices from a menu. Next, the script would generate the comparisons based on the report data available. The semi-automation scripts adhere to the naming conventions outlined in their relevant testing category chapter.

Most of the scripts generate output in at least one of the following formats: ASCII, LaTex, MATLAB .mat, or Excel .xls files. The report files are in an ASCII space delimited format and contain the different test case parameters outputted after propagation. The LaTex files contain the comparison data between two programs and provide an easy way to include that data into a PDF document. The .mat and .xls file are two other methods used to save the comparison data that proved useful from the software development team.

The details of each script and how to use them are outlined in the relevant Testing Category section and/or the Comparison Scripts Guide section, located in Appendix C.

1.2.1 Propagation

The propagation test cases account for various orbits about Earth, as well as other celestial bodies. The main propagation parameters to monitor for differences are the position and velocity vectors. The following script was generated to perform the comparisons for this category:

Comparison_Tool1_Tool2_CS.m

See the Propagators section (Chapter 2) for more detail and comparison results.

1.2.2 Calculation Parameters

The calculation parameter test cases verify the internal calculations used to output the various parameters presented in the list below. This section consists of two subsections: Coordinate System(CS) and Central Body(Cb) dependent parameters. The following scripts were generated to perform the comparisons for this testing category: Comparison_Tool1_Tool2_CS.m & Comparison_Tool1_Tool2_Cb.m

· Coordinate Systems

- Earth Fixed
- Earth Mean J2000 Equator (MJ2000Eq)
- Earth Mean J2000 Ecliptic (MJ2000Ec)
- Earth Mean of Date Equator (MODEq)
- Earth Mean of Date Ecliptic (MODEc)
- Earth True of Date Equator (TODEq)
- Earth True of Date Ecliptic (TODEq)
- Earth Geocentric Solar Ecliptic (GSE)
- Earth Geocentric Solar Magnetic (GSM)
- Mars Fixed
- Mars MJ2000Eq
- Mars MJ2000Ec
- Mercury Fixed
- Mercury MJ2000Eq
- Mercury MJ2000Ec
- Moon Fixed
- Moon MJ2000Eq
- Moon MJ2000Ec
- Neptune Fixed
- Neptune MJ2000Eq
- Neptune MJ2000Ec
- Pluto Fixed
- Pluto MJ2000Eq
- Pluto MJ2000Ec
- Saturn Fixed
 - Saturn MJ2000Eq
- Saturn MJ2000Ec
- Uranus Fixed
- Uranus MJ2000Eq
- Uranus MJ2000Ec
- Venus Fixed
- Venus MJ2000Eq
- Venus MJ2000Ec
- Coordinate System Parameters
 - Position (X,Y,Z)

- Velocity(X,Y,Z)
- Magnitude of Velocity
- Right Ascension of Velocity
- Specific Angular Momentum
- Argument of Periapsis
- Declination
- Declination of Velocity
- Inclination
- Right Ascension
- Right Ascension of Ascending Node
- Central Body Parameters
 - Altitude
 - Beta Angle
 - C3 Energy
 - Eccentricity
 - Latitude
 - Longitude
 - Specific Angular Momentum
 - Mean Anomaly
 - -- Mean Motion
 - Period
 - Apoapsis Radius
 - Perigee Radius
 - Position Magnitude
 - Semi-major Axis
 - True Anomaly
 - Semilatus Rectum
 - Apoapsis Velocity
 - -- Periapsis Velocity
 - Greenwich Hour Angle
 - Local Sidereal Time

See the Calculation Parameters Section (Chapter 3) for more detail and comparison results.

1.2.3 Integrators

The integrator test cases isolate the differences that would occur when changing the integrators for the same orbit. The following script was generated to perform the test case comparisons for this category: Comparison_Integ.m

- RungaKutta(RKV) 8(9)
- DormandElMikkawyPrince(RKN) 6(8)

1.2. TESTING METHODOLOGY

- RungeKuttaFehlberg(RKF) 5(6)
- PrinceDormand(PD) 4(5)
- PrinceDormand(PD) 7(8)
- BulirschStoer(BS)
- AdamsBashforthMoulton(ABM)

See the Integrators Section (Chapter 4) for more detail and comparison results.

1.2.4 Stopping Conditions

The stopping condition test cases determine how effective GMAT is at stopping satellite propagation on certain conditions. The following script was created to perform the test case comparisons for this category: Comparison_StopCond.m

The stopping conditions tested are as followed:

- Epoch (A1 Modified Julian Date)
- Apoapsis
- Elapsed Days
- · Mean Anomaly
- Periapsis
- Elapsed Seconds
- True Anomaly
- XY Plane Intersection
- XZ Plane Intersection
- YZ Plane Intersection

See the Stopping Conditions Section (Chapter 5) for more detail and comparison results.

1.2.5 Libration Point

The libration point test cases create data about the location of several libration points. Current and future satellite missions use libration points as part of their mission architecture. It is important to have accurate data for these libration points. The following script was created to perform the test case comparisons for this category:

Comparison_Tool1_Tool2_Libr.m

See the Libration Point Section (Chapter 6) for more detail and comparison results.

CHAPTER 1. ACCEPTÂNCE TEST PLAN OVERVIEW

1.2.6 Delta V

22

The delta v test cases determine the effectiveness of the delta v capabilities built into GMAT. When thruster burns are added to the mission sequence it is important that they are added correctly. The following script was created to perform the test case comparisons for this category:

Comparison_DeltaV.m

See the Delta V Section (Chapter 7) for more detail and comparison results.

1.2.7 Performance

The performance test cases generate performance time data for later comparison between GMAT and the reference software packages. Numerical calculation accuracy is important, but the amount of computing time it takes for the software to run is equally as important. We extracted several test cases from previous sections and ran them on the reference software packages, in order to check to make sure GMAT can perform just as good or better.

See the Performance Section (Chapter ??) for more detail and comparison results.

1.2.8 Control Flow

The control flow tests generate report data that easily allows a Matlab script to produce a table of Pass and Fail cases. The following script was created to generate the Pass/Fail table for this category: LoopTestSummary.m

See the Control Flow Section (Chapter 8) for more detail and results.

Chapter 2

Propagation

In order to validate the accuracy of GMAT's propagation, the fundamental unit-level components need to be combined and propagated on a system level. From a software development point of view, if the program under development is tested in a wide range of core applications, it is more likely that problems would be found before each new version is released to the public. This Acceptance Test Plan tests GMAT by comparing many possible scenarios users of GMAT would encounter to reference software packages. Although it is impossible to create all the possible scenarios each user would encounter in GMAT, this is a start to eliminate possible frustrations a user could experience if a component did not work correctly.

Propagation is one of the most important aspects of GMAT. Everything from outputting parameters to performing a thruster burns at the correct stopping condition depend on whether or not GMAT is able to propagate the satellite/object for a defined time period with acceptable accuracy.

Parts of the Initial Orbit State Conditions section are referenced from Emergent Space Technologies' Orbit Determination Toolbox (ODTBX) Spiral 1 DEMO document, due to a similar objective of testing the numerical implementation of the program's base functions.

2.1 Initial Orbit State Conditions

2.1.1 Earth Based Test Cases

The initial orbit states for the Sun-Synchronous (SunSync), Geostationary (GEO), Molniya, International Space Station (ISS) and the Global Positioning Satellite (GPS) orbits were obtained from Emergent Space Technologies' ODTBX Spiral 1 Demo .¹ Emergent used STK-High Precision Orbit Propagator (STK-HPOP) models and two-Line Element (TLE) sets with an initial UTC orbit epoch of June 1st 2004, 12:00:00:00. The initial orbit states that were used for the test case orbits can be seen in Table 2.1, on Page 24. The perigee and apogee altitudes of the test case orbits can be seen in Table 2.2, on Page 24.

The propagation duration, report output step size, and integrator step sizes were varied for the different test cases. For the ISS, SunSync, GPS, Molynia, and GEO cases, the propagation length and report output step size were chosen based on a study performed by The Aerospace Corporation to validate STK-HPOP's.² The integrator time steps were chosen to allow for the most accurate comparison of the test case results. These time steps were based on Vallado's analysis of state vector propagation.³

CHAPTER 2. PROPAGATION

Table	2.1:	Satellite	Initial	Conditions

Category	Orbit Type	X(km)	Y(km)	Z(km)	Vx(km/s)	Vy(km/s)	Vz(km/s)
LEO	ISS	-4453.783586	-5038.203756	-426.384456	3.831888	-2.887221	-6.018232
LEO	Sun-Sync	-2290.301063	-6379.471940	0	-0.883923	0.317338	7.610832
MEO	GPS	5525.33668	-15871.18494	-20998.992446	2.750341	2.434198	-1.068884
HEO	Molniya	-1529.894287	-2672.877357	-6150.115340	8.717518	-4.989709	0 .
GEO	GEO	36607.358256	-20921.723703	0	1.525636	2.669451	.0

Table 2.2: Apogee and Perigee Altitudes for Test Satellites

Orbit Type	Perigee Altitude(km)	Apogee Altitude(km)
ISS	358.168	380.387
Sun-Sync	400	400
GPS	19757.6	20603.8
Molniya	500	39850.5
GEO	35786	35786

The chosen parameters can be seen in Table 2.3, on Page 24.

Table 2.3: Integrator, Propagator, and Output Frequency

Orbit Type	Integrator Step Size(s)	Propagator Length(days)	Output Frequency(mins)
ISS	5	1	1
Sun-Sync	5	1	1
GPS	60	2	2
Molniya	5	3	5
GEO	60	7	10

Several test cases were created for each satellite orbit to verify GMAT's ability to perform accurately, while applying various forces. The forces used for Earth-based test cases were two-body, JGM2, EGM96, and JGM3 gravity models, third-body perturbation effects from other planets, the Jacchia-Roberts (JR) and the Mass Spectrometer and Incoherent Scatter Radar Exosphere (MSISE 1990 & 2000) Atmospheric Drag Model, and Solar Radiation Pressure (SRP). Each of the force models were run independently within GMAT to verify their individual accuracy, as well as a test case that includes an atmospheric drag model, the SRP model, a non-spherical gravity model, and third-body perturbations. These last test cases were performed to validate the capability of the GMAT to accurately propagate satellite orbits while multiple force models were applied.

The Degree and Order for Earth-based non-spherical gravity cases was set at a constant 20 by 20.

Refer to Appendix B.1 for an alternate listing of all Propagator initial orbit state conditions.

2.2. OTHER INITIAL STATE CONDITIONS

2.1.2 Non-Earth Based Test Cases

GMAT is designed for accuracy in non-Earth mission scenarios. Test cases for Mars, Mercury, the Moon, Neptune, Pluto, Saturn, Uranus, Venus, L2 orbits, and deep space orbits were created to test various forces, individually and jointly, affecting a spacecraft in an orbit. Many satellite parameters, such as Cd,Cr, satellite area, and satellite mass, were kept the same as the Earth test cases for simplicity and consistency. The initial Keplerian satellite state only varied in Semi-Major Axis and gravity field degree & order for the non-Earth test cases.

Refer to Table 2.4 for the initial Keplerian orbital elements and the Degree & Order used for the non-spherical gravity force cases. The integrator step size, propagation length, and output frequency for all the non-Earth cases are 5 seconds, 3 days, and 5 minutes, respectively. Table 2.4 excludes the deep space and L2 orbit test cases.

Table 2.4: Non-Earth Keplerian Orbital Elements

Orbit Type	SMA (km)	Ecc.	Inc. (deg)	AOP (deg)	RAAN (dcg)	TA (deg)	Deg. x Ord. used		
Mars	4603	0.2	45	45	90	45	20x20		
Mercury	3640	0.2	45	45	90	45	4x0		
Moon	2500	0.2	45	45	90	45	20x20		
Neptune	34999	0.2	45	45	90	45	4x0		
Pluto	1795	0.2	45	45	90	45	4x0		
Saturn	80000	0.2	45	45	90	45	4x0		
Uranus	45000	0.2	45	45	90	45	4x()		
Venus	8125	0.2	45	45	. 90	45	20x20		

SMA: Semi-Major Axis | Ecc.: Eccentricity | Inc.: Inclination | AOP: Argument of Perigee

RAAN: Right Ascension of Ascending Node | TA: True Anomaly

The DeepSpace, Earth Moon L2 (EML2), and Earth Sun L2 (ESL2) cases involve propagating about libration points and propagating deep space orbits. Table B.14, B.15, and B.16, in Appendix B, provide the initial states for the DeepSpace, EML2, and ESL2 test cases, respectively.

Refer to Appendix B.1 for a listing of all Propagator initial orbit state conditions.

2.2 Other Initial State Conditions

In order to reduce the complications of the comparisons, certain initial orbit parameters were kept constant throughout all of the cases. These parameters are Cd, Cr, Spacecraft Area, each programs integrator, and software settings affecting the results of various force models.

The GMAT integrator used for all the test cases was Runga Kutta 8(9), except for the STK-HPOP test cases, to avoid any additional differences that could occur from changing integrators. The Integrators Section compares the differences between the various integrators GMAT can use.

The parameters in Table 2.5 shows the differences between GMAT and the reference programs. The ideal situation would be for all the programs to match perfectly, but that is not realistic due to the different approaches each program takes to solve each problem.

Table 2.5: Universal Test Case Parameters								
Parameter	GMAT	STK-HPOP	FF	STK-Astro_				
Cd	2.2	2.2	2.2	2.2				
Cr	1.2	1.2	1.2	1.2				
$Area(m^2)$	20	20	20	20				
Satellite Mass(kg)	1000	1000	1000	1000				
Integrator (excluding integrator test cases)	RK8(9)	RK7(8)	RK8(9)	RK8(9)				
Integrator error tolerance	1e-013	1e-013	1e-013	1e-013				
Integrator error control. Relative to	Step	Step?	?	Step				
Drag: Altitude Calculation	Approximate	Approximate	Exact	?				
Drag: Sun Position	True	True	True	True				
SRP: Sun Position	True	True	True?	True				
Solar Flux (W/m^2) at 1 AU	1359.38857	1359.38857	1358	1359.38857				
Solid Tides	N/A	Disabled	N/A	N/A				
Ocean Tides	N/A	Disabled	N/A	N/A				
Daily F10.7: JR and MSISE models	150	150	N/A	150				
Average F10.7	150	150	150	150				
Geomagnetic Index(Kp): JR and MSISE only	3	3	N/A	3				
Drag: Geomagnetic Flux Update	Constant	Constant	N/A	Constant				
Boundary Mitigation	N/A	Disabled	N/A	N/A				
Relativistic Accelerations	N/A	Disabled	N/A	N/A				
Shadow Modeling	Dual Cone	Dual Cone	Dual Cone	?				
IERS EOP format used:	Long term C04	Bulletin A	Bulletin A	Bulletin A				
Polar Motion calculation:	Enabled	Enabled	Enabled	Enabled?				
Nutation update interval: Earth (sec)	60	60	60	60				
Planetary Ephemeris update interval (sec)	00	0?	0	0?				

2.2. OTHER INITIAL STATE CONDITIONS

Exceptions to Table 2.5 are as followed:

• STK has trouble propagating the EML2 test case at an error tolerance of 1e-013 with a relative to step error control. The GMAT and STK cases were changed to both use relative to state error control

2.2.1 Earth Orientation Parameters(EOP) data

"International Earth Rotation Service (IERS) Bulletins A and B provide current information on the Earth's orientation in the IERS Reference System. This includes Universal Time, coordinates of the terrestrial pole, and celestial pole offsets. Bulletin A gives an advanced solution updated weekly by e-mail subscription or daily by anonymous ftp; the standard solution is given monthly in Bulletin B and updated every week in the (IERS) C04 solution."

"Bulletin A is issued by the IERS Rapid Service/Prediction Centre at the U.S. Naval Observatory(USNO), Washington, DC and Bulletin B", as well as the C04 data, "is issued by the IERS Earth Orientation Centre at the Paris Observatory."⁴

"Bulletin A is intended for users who need accurate information before the Bulletin B finals series is available, i.e., those who reduce data in the very recent past (require rapid service) or those who operate in real-time (require predictions). Bulletin B is intended for standard use. For scientific and long-term analyses of the Earth's orientation, the long-term continuous series", 4 C04 (1962- present), can be used.

"EOP (IERS) C04 is regularly recomputed to take advantage on one hand of the improvement of the various individual contributions and in the other hand of the refinement of the analysis procedures. To date, it is twice-weekly updated."⁵

"The EOP (IERS) CO4 is given at one-day intervals, it is free from the diurnal/subdiurnal terms due to the oceanic effects and can be interpolated linearly. The oscillations in UT and duration of the days due to zonal tides for periods under 35 days are present in full size in the series."

GMAT retrieves long term earth orientation IERS EOP CO4 data, which includes UTC-UT1 data, from a file. This file includes smoothed values at 1-day intervals and data from 1962-present.

STK and FF retrieves its EOP data from the USNO series 7 / IERS Bulletin A.

The differences between the EOP data sets are displayed in Table 2.6. The Terrestrial Pole column refers to the accuracy of the pole position [x,y] and the UT1 column refers to the accuracy of the rotation angle about the pole UT1.

As shown in Table 2.6, there are differences between STK and GMAT, but the Terrestrial Pole data agrees to within the thousandth place of a milli-arcseconds and the UT1 data agrees to within the hundredth place of second.

Draft: Work in Progress Chapter 2. PROPAGATION

Table	2.6:	EOP	Format	Accuracy

Table 2.0: EOP Format Accuracy							
EOP Format	Pole Position (mas)	UT1 (ms)					
Bulletin A obs. 1-d (1)	0.10	0.02					
Bulletin A pred. 1-d (2)	0.50	0.14					
Bulletin A pred. 4-d (2)	1.60	0.52					
Bulletin A pred. 10-d (2)	3.9	1.60					
Bulletin A pred. 40-d (2)	11.2	7.70					
Bulletin B obs. smooth 5-d (3)	0.15	0.02					
Bulletin B obs. raw 5-d (3)	0.15	0.02					
Bulletin B pred. 5-d (3)	1.6	0.60					
Bulletin B pred. 10-d (3)	3.0	1.60					
Bulletin B pred. 30-d (3)	10.0	4.0					
Long-Term C04 '62-'67	30.0	2.0					
Long-Term C04 '68-'71	20.0	1.5					
Long-Term C04 '72-'79	. 15.0	1.0					
Long-Term C04 '80-'83	2.0	().4					
Long-Term C04 '84-'95	0.7	0.04					
Long-Term C04 '96-present	0.2	0.02					

NOTES: (1) Based on data after 1997; applies only to latest epochs in each update.

The Terrestrial Pole and UT1 data is free from the diurnal/subdiurnal terms due to the oceanic effects and can be interpolated linearly.

⁽²⁾ Based on data since 1995.

⁽³⁾ Based on data since 1996.

These terms can be added after interpolation.

29

DISTE WOLK IN PROGRESS 2.2. OTHER INITIAL STATE CONDITIONS

2.2.2 Other Planetary Parameters

Gravitational Constant

All programs used for comparisons utilize the DE405 Planetary Gravitational Constants listed in Table 2.7, except when non-spherical gravity was used. When non-spherical gravity files are used they typically call the gravitational constants located in the file, unless the program creates an exception.

Table 2.7: Planetary Gravitational Constants(mu values)

Planet	mu (km^3/s^2)
Sun	132712440017.99
Mercury	22032.080486418
Venus	324858.59882646
Earth	398600.44150000
Moon	4902.8005821478
Mars	42828.314258067
Jupiter	126712767.85780
Saturn	37940626.061137
Uranus	5794549.0070719
Neptune	6836534.0638793
Pluto	981.60088770700

Flattening Coefficient

Whenever possible the flattening coefficients listed in Table 2.8 were used. Without the use of these values the planetary bodies could have wildly different shapes, which would result in large differences in parameters such as longitude, latitude, and altitude.

Table 2.8: Flattening Coefficient

Planet	Flattening Coefficient
Sun	0.00000000
Mercury	0.00000000
Venus	0.00000000
Earth	0.00335270
Moon	0.00000000
Mars	0.00647630
Jupiter	0.06487439
Saturn	0.09796243
Uranus	0.02292734
Neptune	0.01856029
Pluto	0.00000000

Equatorial Radius

The several celestial body equatorial radii used are listed in Table 2.9. Similar differences as the flattening coefficient occur when GMAT and the reference programs don't use the same values.

Table 2.9: Equatorial Radius

	1
Planet	Radius (km)
Sun	695990.0
Mercury	2439.7
Venus	6051.90
Earth	6378.1363
Moon	1738.2
Mars	3397.0
Jupiter	71492.0
Saturn	60268.0
Uranus	25559.0
Neptune	25269.0
Pluto	1162.0

Leap Seconds

The amount of leap seconds, or $\triangle AT$, has been used since 1972 in order to keep —UTC-UT1— \leq 0.9sec. GMAT and the reference software packages use all the leap seconds up until 2004. In 2004 the amount of leap seconds in use were 32 seconds.

30

2.3. NAMING CONVENTION

2.3 Naming Convention

This section describes the naming convention for propagator scripts and output reports. The naming convention consists of an ordered series of option strings, separated by underscores (2). Currently, options are allowed for the following fields, and will be present in the file name in order:

- 1. tool The tool used to generate the test case
- 2. traj The trajectory to use. This includes initial conditions, physical parameters, and time step
- 3. pmg The point-mass gravity model to use
- 4. nsg The non-spherical gravity model to use
- 5. drag The atmospheric drag model to use
- 6. other Any other forces to include, such as SRP, secondary body gravity, etc

The tool field should always be the first field. Future additional fields should be added to the end of the list of fields. If multiple other options are required, they should be added to the end of the file as required. For example, the file name will be tool_traj_pmg_nsg_drag_other1_other2.report (file extensions are described later.) Each field has a finite list of options, as follows (future options should be added to this list):

1. tool

STK

- Satellite Toolkit HPOP or Astrogator

FF - FreeFlyer

GMAT - General Mission Analysis Tool

2. traj

ISS - LEO orbit
SunSync - LEO orbit
GPS - MEO orbit
GEO - GEO orbit
Molniva - HEO orbit

Molniya - HEO orbit Mars1 - eccentric low orbit Mercury1 - eccentric low orbit Moon - eccentric low orbit Neptune1 - eccentric low orbit Pluto1 - eccentric low orbit Saturn1 - eccentric low orbit Uranus1 - eccentric low orbit Venus1 eccentric low orbit DeepSpace deep space orbit EML2 - Earth Moon L2 orbit ESL2 - Earth Sun L2 orbit

NOTE: Some test cases contain *traj* variations. In these cases, *traj* precedes the modification. For example, if ISS trajectory is needed with no output, then *traj* can be ISSnoOut. The lack of a report file is shortened to noOut.

3. pmg

Earth - Earth point mass gravity
Sun - Sun point mass gravity
Luna - Lunar point mass gravity

AllPlanets - Sun, Mercury, Venus, Earth, Moon, Mars, Mercury, Jupiter, and Pluto point mass gravity included.

NOTE: When dealing with a combination of pmg's the first point mass is the primary body and the following are third body point masses. For example, LunaSunEarth would be a Lunar primary body with

the Earth and Sun as third body point masses. The pmg's after the primary body are arranged based on the order from the sun, in order to reduce repeat filenames.

- no non-spherical gravity included 0

- Earth JGM2 20x20 gravity JGM2

- Earth JGM3 20x20 gravity JGM3 EGM96 - Earth EGM96 20x20 gravity

MARS50C - Mars Mars50c 20x20 gravity LP165P - Moon LP165P 20x20 gravity

5. drag

- drag not included

HP - Harris Priester **JRXX** - Jacchia-Roberts

MSISEXX - NRL MSISE

NOTE: XX in the drag field refers to the year. For example, JR77 would be the Jacchia-Roberts 1977 model, and MSISE00 would be NRL MSISE 2000. Refer to Table 2.5 for the drag settings used.

6. other

- no other forces included

- Solar Radiation Pressure

NOTE: Any of the above options may be included as an other field. Refer to Table 2.5 for the SRP settings used.

Comparison Script Information

The script used to perform the position and velocity comparisons needed for the Propagator section is Comparison_Tool1_Tool2_PV.m. This script takes the normalized position and velocity vector difference between two programs.

Refer to Appendix C for more details about this script and others used in the Acceptance Test Plan document.

Test Case Results 2.4

The following results are for the Propagator section. The current GMAT Build is compared to STK and FreeFlyer for this section, with the maximum normalized position and velocity difference displayed in table format.

To determine if a propagator test case comparison value was acceptable, an acceptance matrix, presented in Table 2.10, was created. The values in Table 2.10 were obtained from the lower position difference bounds of David Vallados An Analysis of State Vector Propagation Using Differing Flight Dynamics Programs, presented at the 2005 American Astronomical Society (AAS)/AIAA Astrodynamics Specialist Conference. These lower bounds are difficult to meet in some orbits due to the wide range of orbits that are possible but they give a order of magnitude number to strive for. If a case has a combination of either Drag, Non-Spherical Gravity, Solar Radiation Pressure(SRP), or Point Mass gravity, the largest acceptable position difference is used.

The next step beyond this acceptance matrix is to compare GMAT's comparison data to differences seen in FF and STK comparisons, and peer reviews.

32

Table 2.10: Acceptance Matrix

Difference in	Acceptable Position Difference (m)
Non-Spherical Gravity	< 0.001
Point Mass Gravity	< 0.001
Solar Radiation Pressure	< 0.6
Drag	< 20

Table 2.11: GMAT/STK GEO STK Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.0002573600464	1.793784749e-008
EarthLuna-0-0-0	0.000319469177	2.246260344e-008
EarthSunLuna-EGM96-JR-SRP	0.000157111986	1.101136958e-008
EarthSunLuna-EGM96-MSISE90-SRP	0.0001571119996	1.101136862e-008
EarthSunLuna-JGM2-JR-SRP	0.0001132816464	7.859884531c-009
EarthSunLuna-JGM2-MSISE90-SRP	0.0001132816525	7.859884883c-009
EarthSunLuna-JGM3-JR-SRP	0.0002438654858	1.730633303e-008
EarthSunLuna-JGM3-MSISE90-SRP	0.0002438654861	1.730633311e-008
EarthSun-0-0-0	2.279168371e-005	1.614468765e-009
Earth-0-0-0	2.111395905e-005	1.410324921e-009
Earth-0-0-SRP	4.571760608e-005	2.618694012e-009
Earth-0-JR-0	2.111395905e-005	1.410324921e-009
Earth-0-MSISE90-0	2.111395905e-005	1.410324921e-009
Earth-EGM96-0-0	0.0001110202624	8.029310693c-009
Earth-JGM2-0-0	2.954895496e-005	2.05598806e-009
Earth-JGM3-0-0	1.603674008e-005	1.08902881⇔009

Table 2.12: GMAT/STK GPS STK Test Case Comparison

Table 2.12. GRIAT/STA GFS STA Test Case Comparison		
Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	1.857890303c-005	2.696491985c-009
EarthLuna-0-0-0	2.280562281e-005	3.320021018e-009
EarthSunLuna-EGM96-JR-SRP	0.1959052443	2.485425413e-005
EarthSunLuna-EGM96-MSISE90-SRP	0.1959347769	2.485881465e-005
EarthSunLuna-JGM2-JR-SRP	0.1959143599	2.485563669e-005
EarthSunLuna-JGM2-MSISE90-SRP	0.1959227868	2.485702347e-005
EarthSunLuna-JGM3-JR-SRP	0.1959136649	2.485560304e-005
EarthSunLuna-JGM3-MSISE90-SRP	0.1959104274	2.485513888e-005
EarthSun-0-0-0	1.81527305c-006	2.257416233e-010
Earth-0-0-0	2.704817671c-006	3.741292798c-010
Earth-0-0-SRP	0.0878120195	9.617041298e-006
Earth-0-JR-0	2.704817671e-006	3.741292798e-010
Earth-0-MSISE90-0	1.54909103e-005	2.226217304e-009
Earth-EGM96-0-0	3.230673797e-005	4.260188402e-009
Earth-JGM2-0-0	3.207859422e- 005	4.299912419e-009
Earth-JGM3-0-0	3.197574489e-005	4.255726699e-009

Table 2.13: GMAT/STK ISS STK Test Case Comparison

Table 2.15: GWAT/STA 165 STA Test Case Comparison		
Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	1.236533809e-005	1.385493045e-008
EarthLuna-0-0-0	2.656381117e-005	3.027548132e-008
EarthSunLuna-EGM96-JR-SRP	278.7490457	0.3182017608
EarthSunLuna-EGM96-MSISE90-SRP	56.19367014	0.06443183746
EarthSunLuna-JGM2-JR-SRP	265.043753	0.3028869043
EarthSunLuna-JGM2-MSISE90-SRP	56.19388165	0.06443206028
EarthSunLuna-JGM3-JR-SRP	278.7489221	0.3182016489
EarthSunLuna-JGM3-MSISE90-SRP	56.19332541	0.06443145135
EarthSun-0-0-0	1.433764674e-005	1.600957323e-008
Earth-0-0-0	2.047203147e-005	2.325251323e-008
Earth-0-0-SRP	0.244823116	0.0002550285075
Earth-0-JR-0	251.765217	0.2867219205
Earth-0-MSISE90-0	54.12970949	0.06180127344
Earth-EGM96-0-0	0.0003663016096	4.164070917c-007
Earth-JGM2-0-0	0.0002104591217	2.411877645c-007
Earth-JGM3-0-0	0.0002166929687	2.47505086e-007

Table 2.14: GMAT/STK Molniya STK Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.0001645654561	1.252157429e-007
EarthLuna-0-0-0	0.0001587779228	1.205662193e-007
EarthSunLuna-EGM96-JR-SRP	13.53119687	0.009730652052
EarthSunLuna-EGM96-MSISE90-SRP	7.25773273	0.004949260662
EarthSunLuna-JGM2-JR-SRP	13.53346199	0.009731885706
EarthSunLuna-JGM2-MSISE90-SRP	7.260932491	0.00495105133
EarthSunLuna-JGM3-JR-SRP	13.53295584	0.009731601686
EarthSunLuna-JGM3-MSISE90-SRP	7.260582648	0.004951077623
EarthSun-0-0-0	0.000348717827	2.914208443e-007
Earth-0-0-0	0.0002791429809	2.328568085e-007
Earth-0-0-SRP	0.571576837	0.0004793217459
Earth-0-JR-0	15.70095053	0.01312840386
Earth-0-MSISE90-0	7.009963698	0.005861407998
Earth-EGM96-0-0	0.001747777921	1.46609522e-006
Earth-JGM2-0-0	0.00156516582	1.313722882e-006
Earth-JGM3-0-0	0.001286385724	1.080857462e-006

Table 2.15: GMAT/STK SunSync STK Test Case Comparison

Table 2.15: GMA1/STK SunSync STK Test Case Comparison		
Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	4.699222822e-005	5.325204802e-008
EarthLuna-0-0-0	1.738032476e-005	1.943588041e-008
EarthSunLuna-EGM96-JR-SRP	185.5519514	0.2108884067
EarthSunLuna-EGM96-MSISE90-SRP	45.12786362	0.05132420504
EarthSunLuna-JGM2-JR-SRP	185.5519345	0.2108883121
EarthSunLuna-JGM2-MSISE90-SRP	45.12684175	0.05132310311
EarthSunLuna-JGM3-JR-SRP	185.5517129	0.2108881509
EarthSunLuna-JGM3-MSISE90-SRP	45.12759811	0.0513239131
EarthSun-0-0-0	4.687777606c-006	5.023688912e-009
Earth-0-0-0	4.483249915c-005	5.068280737c-008
Earth-0-0-SRP	0.1578758295	0.0001369580266
Earth-0-JR-0	172.0259163	0.1950745493
Earth-0-MSISE90-0	42.66516434	0.04839009284
Earth-EGM96-0-0	7.308356983e-005	8.466691171e-008
Earth-JGM2-0-0	8.928348594e-005	9.655432558e-008
Earth-JGM3-0-0	6.997911597e-005	7.571452902e-008

Table 2.16: GMAT/STK Mars1 STK Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.1994303898	0.0001681334573
Mars-0-0-0	0.1873874394	0.0001577557948
Mars-0-0-SRP	0.7867928767	0.0006572167727
Mars-MARS50C-0-0	0.4488316637	0.0003800813667
Mars-MARS50C-0-SRP	1.214053862	0.001021133703

Table 2.17: GMAT/STK Mercury1 STK Test Case Comparison

Test Case Position Difference(m) · Velocity Difference(m/s) AllPlanets-0-0-0 0.1124163711 9.591759819e-005		
AllPlanets-0-0-0 0.1124163711 9.591759819e-005	est Case	rence(m/s)
	IIPlanets-0-0-0	19e-005
Mercury-0-0-0 0.02585481636 2.218352736e-005	lercury-0-0-0	36e-005
Mercury-0-0-SRP 58.83805392 0.05048777188	lercury-0-0-SRP	777188 .

Table 2.18: GMAT/STK Moon STK Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.0002146368472	1.355643864e-007
Luna-0-0-0	0.03443001175	2.456930533e-005
Luna-0-0-SRP	0.03471809841	2.413271946e-005
Luna-LP165P-0-0	0.0002701673647	1.922174669e-007
Luna-LP165P-0-SRP	0.1350043985	9.596583571e-005

Table 2.19: GMAT/STK Neptunel STK Test Case Comparison

20010 201101 0	TITLE / DATE I TO PORTOE DATE	LOOU COMO COMPONION
Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.9974264518	0.0005074875215
Neptune-0-0-0	1.171036908	0.0005920828399
Neptune-0-0-SRI	0.6214495234	0.0003128000507

Table 2.20: GMAT/STK Plutol STK Test Case Comparison

		A
Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.8883195792	0.0004683900657
Pluto-0-0-0	0.2632397208	0.0001382385307
Pluto-0-0-SRP	0.7534556636	0.0003932329143

Table 2.21: GMAT/STK Saturn1 STK Test Case Comparison

Test Case	Position Difference(in)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.1414864331	4.873107384e-005
Saturn-0-0-0	0.4497282767	0.0001561546333
Saturn-0-0-SRP	0.3124746558	0.000102600788

Table 2.22: GMAT/STK Uranus1 STK Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.2465709269	7.912323063e-005
Uranus-0-0-0	1.320413817	0.0004243963023
Uranus-0-0-SRP	1.156382201	0.0002904419051

Table 2.23: GMAT/STK Venus1 STK Test Case Comparison

	/	
Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.02561929021	2.548815625e-005
Venus-0-0-0	0.01793453836	1.768517227c-005
Venus-0-0-SRP	0.3477682342	0.0003453235732
Venus-MGNP180U-0-0	0.007510965788	7.525754724e-006
Venus-MGNP180U-0-SRP	0.4083837321	0.0004049592692

CHAPTER 2. PROPAGATION

Table 2.24: GMAT/STK DeepSpace STK Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.02027141264	3.996534351c-009

Table 2.25: GMAT/STK EML2 STK Test Case Comparison

20000 20201 02122	2/0222	
Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	522765.4104	2.863727549
AllPlanets-0-0-SRP	162722.736	0.8844521611
EarthSunLuna-0-0-0	191050.7674	1.043593205
EarthSunLuna-JGM2-0-0	83170.98289	0.4533442704

Table 2.26: GMAT/STK ESL2 STK Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	29036.76192	0.01713687194
AllPlanets-0-0-SRF	228360.2465	0.1774325007

Table 2.27: FF/GMAT GEO GMAT Test Case Comparison

	-,	Tout Ciale Comparison
Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.02466296086	2.348952999c-006
EarthLuna-0-0-0	0.02466037174	2.264158243e-006
EarthSun-0-0-0	4.79785384e-005	8.493947765e-007
Earth-0-0-0	5.214381207e-005	6.89627309e-007
Earth-0-0-SRP	2.899321865	0.0001245219489
Earth-JGM2-0-0	0.02515954067	2.313999898e-006

Table 2.28: FF/GMAT GPS GMAT Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.001885974435	1.052020705e-006
EarthLuna-0-0-0	0.001874007099	9.43361654e-007
EarthSun-0-0-0	3.432176702c-006	8.317293859e-007
Earth-0-0-0	5.489921041e-006	7.9829921e-007
Earth-0-0-SRP	0.5814667923	6.084184505e-005
Earth-JGM2-0-0	0.01104317452	2.140216499e-006

Table 2.29: FF/GMAT ISS GMAT Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	5.610904349e-006	8.224014796e-007
EarthLuna-0-0-0	1.133489824e-005	8.407000067e-007
EarthSun-0-0-0	9.638402495e-006	8.134703987e-007
Earth-0-0-0	2.358180759e-005	8.186468434e-007
Earth-0-0-SRP	0.1095353597	0.0001183226844
Earth-JGM2-0-0	0.2076314901	0.0002404721693

Table 2.30: FF/GMAT Molniya GMAT Test Case Comparison

2.007.0 2.007. 1.3	J GIVILL INCHILY & GIVERY	resi Owe Combinison
Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.01444526657	1.203396044e-005
EarthLuna-0-0-0	0.01424235005	1.19546892e-005
EarthSun-0-0-0	0.0003311394147	8.232647373e-007
Earth-0-0-0	5.789754939e-005	8.078947532e-007
Earth-0-0-SRP	2.735360369	0.002258471401
Earth-JGM2-0-0	3.064693947	0.002562937467

Table 2.31: FF	GMAT SunSync GMAT	Test Case Comparison	
cst Case	Position Difference(m)	Velocity Difference(m/s)	
IlPlanets-0-0-0	1.624452888e-005	8.363014362e-007	
arthLuna-0-0-0	3.641972152e-005	8.139327674e-007	
arthSun-0-0-0	1.62185169e-005	8.470799538e-007	
larth-0-0-0	8.93851495c-006	8.215195e-007	
arth-0-0-SRP	0.04776731849	4.873717267c-005	
with ICMP 0.0	0.00458368297	0.0001055216409	

Draft: Work in Progress 2.4. TEST CASE RESULTS

Table 2.32: FF/GMAT EML2 GMAT Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)	=
AllPlanets-0-0-0	732436.6987	4.007738969	•
AllPlanets-0-0-SRP	370563.5763	2.010501473	
EarthSunLuna-0-0-0	400326.9215	2.185454594	
EarthSunLuna-JGM2-0-0	292445.684	1.595241714	
			-

Table 2.33:	FF	/GMAT E	SL2	$GM\Lambda T$	Test	Case	Comparison

	, 0,2,32,2, 2,0,3,2, 0,2,4,1,2, 2,0	ATT COMP CONTINUE HOLD
Test Case	Position Difference(in)	Velocity Difference(m/s)
AllPlanets-0-0-0	5690806.264	3.131093893
AllPlanets-0-0-SRP	6881233.15	5.36031143

FF/STK Comparison 2.5

Table 2.34: FF/STK GEO STK Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.02441863704	2.331184604e-006
EarthLuna-0-()-()	0.02435631273	2.242954572e-006
EarthSunLuna-JGM2-HP-SRP	2.852626845	0.0001210061779
EarthSun-0-0-0	4.231055926e-005	8.493743904e-007
Earth-0-0-0	6.836800608e-005	6.88987973e-007
Earth-0-0-SRP	2.899330477	0.0001245232993
Earth-0-HP-0	6.836800608c-005	6.88987973c-007
Earth-JGM2-0-0	0.02513336324	2.312005795c-006

Table 2.35: FF/STK GPS STK Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.001903432726	1.05396749e-006
EarthLuna-0-0-0	0.001896072444	9.455905846e-007
EarthSunLuna-JGM2-HP-SRP	0.6785588953	6.968633054e-005
EarthSun-0-0-0	3.872950958e-006	8.316374468e-007
Earth-0-0-0	8.164858288e-006	7.983002389e-007
Earth-0-0-SRP	0.6692784196	6.82998191e-005
Earth-0-HP-0	8.164858288e-006	7.983002389e-007
Earth-JGM2-0-0	0.01104063243	2.139207943c-006

Table 2.36: FF/STK ISS STK Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)	
AllPlanets-0-0-0	1.17832665e-005	8.274193497e-007	
EarthLuna-0-0-0	2.023778135e-005	8.422716288e-007	
EarthSunLuna-JGM2-HP-SRP	3.468138188	0.00397058468	
EarthSun-0-0-0	2.067991746e-005	8.179978462e-007	
Earth-0-0-0	4.404163183e-005	8.18654414e-007	
Earth-0-0-SRP	0.1637932094	0.0001561216614	
Earth-0-HP-0	3.213782043	0.003648358687	
Earth-JGM2-0-0	0.2076446785	0.000240480153	

Table 2.37: FF/STK Molniya STK Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.01457313187	1.2154368570-005
EarthLuna-0-0-0	0.01409431455	1.184376375e-005
EarthSunLuna-JGM2-HP-SRP	7.784661066	0.004770671083
EarthSun-0-0-0	0.0006798546862	1.003656755e-006
Earth-0-0-0	0.0003365057467	8.083517746e-007
Earth-0-0-SRP	2.16384821	0.001779529358
Earth-0-HP-0	15.27354394	0.01277094127
Earth-JGM2-0-0	3.063128789	0.002561623786

Draft: Work in Progress 2.5. FF/STK COMPARISON

Table 2.38: FF/STK SunSync STK Test Case Comparison

Test Case Position Difference(rg) Velocity Difference(rg/s)					
Position Difference(m)	Velocity Difference(m/s)				
3.408772257e-005	8.692021282e-007				
1.971678896e-005	8.200608417e-007				
0.7800584002	0.0008377097648				
1.533280696e-005	8.472033081.e-007				
3.656123033e-005	8.215166636c-007				
0.2052485046	0.0001828464608				
0.6524853805	0.0007361489016				
0.09463135069	0.0001055896859				
	Position Difference(m) 3.408772257e-005 1.971678896e-005 0.7800584002 1.533280696e-005 3.656123033e-005 0.2052485046 0.6524853805				

44

Draft: Work in Progress CHAPTER 2. PROPAGATION

Table 2.39: FF/STK EML2 STK Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlancts-0-0-0	209675.042	1.144026162
AllPlanets-0-0-SRP	207842.4058	1.126072542
EarthSunLuna-0-0-0	209277.3283	1.141861547
EarthSunLuna-JGM2-0-0	209283.0998	1.141942278

Table 2.40: FF/STK ESL2 STK Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	5661795.443	3.114044494
AllPlanets-0-0-SRP	6652873.129	5.182879379

Chapter 3

Calculation Parameters

GMAT's Central Body (Cb) and Coordinate System (CS) dependent parameters were tested to verify that the internal calculations were correct. In order to minimize the effects of other forces/elements, the two-body cases from the Propagators section were used, with some modification, to test both the central body and coordinate system parameters. The only changes to the two body cases were in the report output intervals and report output parameters. Data was outputted in ten minute intervals. The ISS two-body case was used for the Earth case and each planets respective two-body case was used for the non-Earth cases.

3.1 Initial Orbit State Conditions

The ISS, GEO, Mars1, Mercury1, Moon, Neptune1, Pluto1, Saturn1, Uranus1 and Venus1 two-body case's initial orbit parameters were used from the Propagation section (Chapter 2) for the test cases in this section.

Refer to Appendix B.1 Tables B.1-B.13 for a listing of all Propagator initial orbit states used for the Calculation Parameter test cases.

3.2 Central Body Dependent Parameters

3.2.1 Naming Convention

This section describes the naming convention for central body dependent parameter scripts and output reports. The naming convention consists of a case sensitive ordered series of option strings, separated by underscores (_). Currently, options are allowed for the following fields, and will be present in the file name:

- 1. tool The tool used to generate the test case.
- 2. traj The trajectory to use. This includes initial conditions, physical parameters, and time step.

CbParams precedes the *tool* field and 2Body follows the *traj* field. The central body used can be determined based on the *traj* field. The final Cb file format is as followed: CbParams_tool_traj_2Body.report

CALCULATION PARAMETERS

The tool field should always be the first option field. Each field has a finite list of options, as follows (future options should be added to this list):

1. tool STK

- Satellite Toolkit HPOP or Astrogator

FF

- FreeFlyer

- General Mission Analysis Tool **GMAT**

- eccentric low orbit

2. traj

ISS

Venus1

- leo orbit

- eccentric low orbit Mars1 - eccentric low orbit Mercury1 Moon - eccentric low orbit Pluto1 - eccentric low orbit

NOTE: Some test cases contain traj variations. In this case traj precedes the modification. For example, if an ISS trajectory is needed with a different Cd, traj could be ISSdiffCd1.

Comparison Script Information 3.2.2

Comparison_Tool1_Tool2_Cb.m is the script used to perform the coordinate system comparisons needed for the Acceptance Test Plan. Many elements of this script were extracted from the Comparison_Tool1_Tool2_CS.m script.

Comparison_Tool1_Tool2_Cb.m was designed to allow the user to select two programs to compare to one another. The comparison involves taking the difference of the variables listed in the Acceptance Test Plan Overview Chapter->Testing Methodology->Calculation Parameters section.

Refer to Appendix C for more details on this script and others used in the Acceptance Test Plan document.

Test Case Results 3.2.3

The following results are for the Central Body-Calculation Parameter section. The current GMAT Build is compared to STK and FreeFlyer for this section.

FF-STK comparison results presented in Tables 3.11- 3.15 are used as a way to determine if the GMAT comparison values are acceptable. If GMAT comparison data is within the same order of magnitude as the FF-STK comparison data, that is acceptable. A more detailed acceptance metric/matrix will be developed at a later date.

46

Table 3.1: GMAT/STK Central Body Dependent Parameter Differences (1)

Test Case	Altitude (in)	Eccentricity	M. Anomaly (deg)	M. Motion (rad/sec)	Period (sec)
GEO-2Body	1.88447e-006	1.71688e-014	1.90007e-005	3.0114e-015	3.59432e-009
Hyperbolic-2Body	0.00422986	1.98064e-013	351.401	0.000223215	N/A
ISS-2Body	0.00543367	5.95719e-014	5.81025e- 010	4.99015e-015	2.54659e-010
Mars1-2Body	0.0144309	9.74698e-011	7.84791e-007	1.62511e-013	2.29212e-006
Mercury1-2Body	0.00224375	2.36836e-011	1.7241e-007	5.54375e-014	7.66082e-007
Moon-2Body	0.00576446	2.74547c-011	6.47192c-007	4.03859c-014	8.68182c-007
Neptune1-2Body	0.129938	1.31684c-010	6.04911c-007	1.00481c-013	4.02816c-006
Pluto1-2Body	0.19231	1.83823e-009	2.95607e-005	3.82792e-012	0.000141823
Saturn1-2Body	0.752271	1.05362e-011	6.3449e-008	1.11997e-014	1.04643e-006
Uranus1-2Body	0.216614	5.31596e-011	6.35362e-007	8.48005e-014	8.31598e-006
Venus1-2Body	0.000632367	1.26323e-011	2.13253e-008	1.53591e-014	1.51652e-007

Table 3.2: GMAT/STK Central Body Dependent Parameter Differences (2)

1. 1. 1.0010 0.2.	MINITED THE COMMENDOR	1850c 6.2. Offitt / DTIE Contra Dody Dependent Farameter Differences (2)					
Test Case	Semi-major Axis (m)	True Anomaly (deg)	Semilatus Rectum(m)				
GEO-2Body	1.17871e-006	1.90007e-005	7.42148e-007				
Hyperbolic-2Body	1.72076e-006	7.418070-012	1.322040-005				
ISS-2Body	2.08274e-007	5.77472c-010	1.70985e-007				
Mars1-2Body	0.000741843	1.15747e-006	0.000794765				
Mercury1-2Body	0.000199977	2.61636e-007	0.000175894				
Moon-2Body	0.000103879	9.75722e-007	7.23717⊕005				
Neptune1-2Body	0.00597339	9.2047e-007	0.00497125				
Pluto1-2Body	0.0111278	4.499e-005	0.0106515				
Saturn1-2Body	0.00241793	9.55595e-008	0.00235179				
Uranus1-2Body	0.0100126	9.19017e-007	0.00930848				
Vcnus1-2Body	0.000101745	3.079570-008	0.00013864				

Table 3.3: GMAT/STK Central Body Dependent Parameter Differences (3)

Test Case	Apoapsis Rad. (m)	Periapsis Rad. (m)	Apo. Vel. (m/sec)	Per. Vel. (m/sec)
GEO-2Body	1.25146e-006	1.27329e-006	8.21565e-011	1.03029e-010
Hyperbolic-2Body	N/A	4.50927e-006	N/A	1.86873e-009
ISS-2Body	5.26597e-007	3.38332e-007	4.39648e-010	3.47278e-010
Mars1-2Body	0.000683647	0.000800039	2.75849e-007	4.86309e-007
Mercury1-2Body	0.000280259	0.000125894	7.84977e-008	7.33316e-008
Moon-2Body	0.000193031	1.47281e-005	7.36031e-008	1.26232e-008
Neptune1-2Body	0.0107941	0.00538058	2.2861c-006	2.18703c-006
Pluto1-2Body	0.0145814	0.00998796	2.30184e-006	3.55073e-006
Saturn1-2Body	0.002828	0.00203526	2.94648e-007	5.08262e-007
Uranus1-2Body	0.0133233	0.00759641	1.41239e-006	1.43534e-006
Venus1-2Body	0.000149412	0.000183741	6.66214e-008	1.50022e-007

Table 3.4: GMAT/STK Central Body Dependent Parameter Differences (4)

1001	e 3.4. GMAI/DIA CEL	mai body bepen	dent i arameter Di		
Test Case	C3-Energy (m^2/sec^2)	Latitude (deg)	Longitude (deg)	MHA (deg)	LST (deg)
GEO-2Body	2.6823e-007	3.24498e-008	3.14812e-007	0.00196854	0.00196864
Hyperbolic-2Body	1.64846e-006	5.65537e-008	1.35016e-007	0.00196849	0.00196858
ISS-2Body	1.74794e-006	1.07149e-007	1.3276e-007	0.00196849	0.0019686
Mars1-2Body	0.00149955	5.58338e-007	9.73051e-007	N/A	N/A
Mercury1-2Body	0.000332532	1.88133e-007	2.69651e-007	N/A	N/A
Moon-2Body	0.000140608	7.42402e-007	1.06364e-006	N/A	N/A
Neptune1-2Body	0.0333365	7.39515e-007	1.15656c-006	N/A	N/A
Pluto1-2Body	0.00339014	3.20069c-005	7,441240-005	N/A	N/A
Saturn1-2Body	0.014334	1.24281e-006	5.18835e-007	N/A	N/A
Uranus1-2Body	0.028651	9.64237e-007	2.34538e-006	N/A	N/A
Venus1-2Body	0.000500677	2.22686e-008	3.82501e-008	N/A	N/A

Table 3.5: GMAT/STK Central Body Dependent Parameter Differences (5)

Test Case	Beta Angle (deg)	$\overline{(\text{RxV})\text{-Mag}(m^2/\text{sec})}$	R-Mag (m)
GEO-2Body	0.000773444	0.00180444	1.88447e-006
Hyperbolic-2Body	0.000706521	0.025655	1.35624e-005
ISS-2Body	0.00344889	0.000749424	4.62933e-007
Mars1-2Body	0.00315966	1.23719	0.0126011
Mercury1-2Body	0.00511923	0.220796	0.00224375
Moon-2Body	0.00394712	0.000777618	0.00576446
Neptunel-2Body	0.000741045	35.4559	0.0763421
Pluto1-2Body	0.000530341	4.01956	0.19231
Saturn1-2Body	0.00142058	26.1241	0.0181717
Uranus1-2Body	0.000807228	53.902	0.101524
Venus1-2Body	0.00414838	0.447268	0.000632365

3.2. CENTRAL BODY DEPENDENT PARAMETERS

Table 3.6: FF/GMAT Central Body Dependent Parameter Differences (1)

Test Case	Altitude (m)	Eccentricity	M. Anomaly (deg)	M. Motion (rad/sec)	Period (sec)
GEO-2Body	8.20728c-006	1.93962e-010	6.42153c-006	5.69653c-016	7.75617c-009
ISS-2Body	0.433346	6.39335e-012	1.714e-009	4.2466e-015	7.69433e-010

Table 3.7: FF/GMAT Central Body Dependent Parameter Differences (2)

Test Case	Semi-major Axis (m)	True Anomaly (deg)	Semilatus Rectum(m)
GEO-2Body	2.23372e-006	6.4215e-006	2.4811e-006
ISS-2Body	4.09273e-007	1.86708e-009	1.7917e-007

Table 3.8: FF/GMAT Central Body Dependent Parameter Differences (3)

Test Case	Apoapsis Rad. (m)	Periapsis Rad. (m)	Apo. Vel. (m/sec)	Per. Vel. (m/sec)
GEO-2Body	2.72848e-006	3.00497e-006	2.39764e-008	2.39013e-008
ISS-2Body	3.98359e-007	6.89397 e -007	2.91838e-008	2.88605e-008

Table 3.9: FF/GMAT Central Body Dependent Parameter Differences (4)

				311101 (1)	
Test Case	C3-Energy (m^2/sec^2)	Latitude (deg)	Longitude (deg)	MHA (deg)	LST (deg)
GEO-2Body	0.00014728	5.40781e-008	0	0.00300898	0.00300919
ISS-2Body	0.000444231	6.02545e-006	5.81869e-007	0.00300898	0.00300919

Table 3.10: FF/GMAT Central Body Dependent Parameter Differences (5)

	CINIZI COMMON DO	ay 201701141011011 drameter	r Differences (b)
Test Case	Beta Angle (deg)	(RxV) -Mag (m^2/sec)	R-Mag (m)
GEO-2Body	45.7413	0.00429281	3.27418c-006
ISS-2Body	98.3649	0.00164437	1.18325c-006

Table 3.11: FF/STK Central Body Dependent Parameter Differences (1)

Test Case	Altitude (m)	Eccentricity	M. Anomaly (deg)	M. Motion (rad/sec)	Period (sec)
GEO-2Body	8.04721c-006	1.9396c-010	1.77052c-005	2.446790-015	6.4756e-009
ISS-2Body	0.427915	6.34e-012	1.73014e-009	9.18666e-015	8.14907e-010

Table 3.12: FF/STK Central Body Dependent Parameter Differences (2)

Test Case	Semi-major Axis (m)	True Anomaly (deg)	Semilatus Rectum(m)
GEO-2Body	2.08092e-006	1.77044e-005	1.92085e-006
ISS-2Body	4.47471e-007	1.67336e-009	1.55524e-007

Table 3.13: FF/STK Central Body Dependent Parameter Differences (3)

Test Case	Apoapsis Rad. (m)	Periapsis Rad. (m)	Apo. Vel. (m/sec)	Per. Vel. (m/sec)
GEO-2Body	2.74304c-006	2.03727c-006	2.38942c-008	2.387960-008
ISS-2Body	5.23869c-007	6.24823e-007	2.87441c-008	2.88605c-008

Table 3.14: FF/STK Central Body Dependent Parameter Differences (4)

Test Case	C3-Energy (m^2/sec^2)	Latitude (deg)	Longitude (deg)	MHA (deg)	LST (deg)
GEO-2Body	0.000147141	3.06691e-008	0	0.00497708	0.00497715
ISS-2Body	0.000442895	5.92635e-006	6.1431e-007	0.00497708	0.00497716

Table 3.15: FF/STK Central Body Dependent Parameter Differen	nces !	fferences	1 6	5)
--	--------	-----------	-----	----

		·	
Test Case	Beta Angle (deg)	(RxV) -Mag (m^2/sec)	R-Mag(m)
GEO-2Body	0.000773444	0.00355067	4.05998e-006
ISS-2Body	0.00344889	0.00178261	1.01772c-006

3.3 Coordinate System Dependent Parameters

3.3.1 Naming Convention

This section describes the naming convention for coordinate system dependent parameter scripts and output reports. The naming convention consists of a case sensitive ordered series of option strings, separated by underscores (_). Currently, options are allowed for the following fields, and will be present in the file name:

- 1. tool The tool used to generate the test case
- 2. traj The trajectory to use. This includes initial conditions, physical parameters, and time step
- 3. CS The coordinate system to use. The celestial body to use is followed by the CS in the name

CSParams precedes the tool field and 2Body precedes the CS field. The final CS file format is as followed: CSParams_ $tool_traj_2$ Body_CS.report

3.3. COORDINATE SYSTEM DEPENDENT PARAMETERS

The tool field should always be the first option field. Each field has a finite list of options, as follows (future options should be added to this list):

1. tool

STK - Satellite Toolkit HPOP or Astrogator

FF - FreeFlyer

GMAT - General Mission Analysis Tool

2. traj

ISS - leo orbit
SunSync - leo orbit
GPS - meo orbit
GEO - geo orbit
Molniya - heo orbit

Mars1 - eccentric low orbit
Mercury1 - eccentric low orbit
Moon - eccentric low orbit
Pluto1 - eccentric low orbit
Venus1 - eccentric low orbit

NOTE: Some test cases contain *traj* variations. In this case *traj* precedes the modification. For example, if ISS trajectory is needed with no output, then *traj* can be ISSnoOut. The lack of a report file is shortened to noOut.

3. CS

EarthFixed EarthMJ2000Eq EarthMJ2000Ec EarthTODEq EarthTODEc EarthMODEq EarthMODEc EarthGSM EarthGSE MarsMJ2000Eq MarsFixed MarsMJ2000Ec MercuryFixed MercuryMJ2000Eq MercuryMJ2000Ec MoonFixed MoonMJ2000Eq MoonMJ2000Ec NeptuneFixed NeptuneMJ2000Eq NeptuneMJ2000Ec PlutoFixed PlutoMJ2000Eq PlutoMJ2000Ec SaturnFixed SaturnMJ2000Eq SaturnMJ2000Ec UranusFixed UranusMJ2000Eq UranusMJ2000Ec VenusFixed VenusMJ2000Eq VenusMJ2000Ec

3.3.2 Comparison Script Information

The script used to perform the Coordinate System comparisons needed for the Acceptance Test Plan is Comparison_Tool1_Tool2_CS.m. Many elements of this script were extracted from the Comparison_Tool1_Tool2_PV.m script.

Comparison_Tool1_Tool2_CS.m was designed to allow the user to select two programs to compare to one another. The comparison involves taking the difference of the variables listed in the Acceptance Test Plan Overview Chapter->Testing Methodology->Calculation Parameters section.

Refer to Appendix C for more details of this script and others used in the Acceptance Test Plan document.

3.3.3 Test Case Results

The following results are for the Coordinate System-Calculation Parameter section. The current GMAT Build is compared to STK and FreeFlyer for this section.

52

CHAPTER 3. CALCULATION PARAMETERS

FF-STK comparison results presented in Tables 3.26- 3.30 are used as a way to determine if the GMAT comparison values are acceptable. If GMAT comparison data is within the same order of magnitude as the FF-STK comparison data that is acceptable. A more detailed acceptance metric/matrix will be developed at a later date.

Diati: Work in Progress 3.3. COORDINATE SYSTEM DEPENDENT PARAMETERS

Table 3.16: GMAT/STK Coordinate System Dependent Parameter Differences (Posit	ion)	ļ
---	------	---

Table 3.16: GMAT/STK Coordinate System Dependent Parameter Differences (Position)				
Test Case	X-Pos (m)	Y-Pos (m)	Z-Pos (m)	
GEO-2Body-EarthFixed	0.2281413654	0.04023080692	0.02037045935	
GEO-2Body-EarthMJ2000Ec	2.294098067e-005	0.00032580283	0.0007504095265	
${ m GEO\text{-}2Body\text{-}EarthMJ2000Eq}$	2.294098067e-005	2.433989721e-005	4.46e-009	
GEO-2Body-EarthMODEc	0.001272894679	0.001382489927	8.563802112e-006	
${ m GEO} ext{-}2{ m Body} ext{-}{ m EarthMODE}_{ m Q}$	0.001272895247	0.001271371502	0.000543207701	
${ m GEO\text{-}2Body\text{-}EarthMOEEc}$	2.295053037e-005	2.237175067e-005	9.603354556e-006	
GEO-2Body-EarthMOEEq	2.295053037e-005	2.433989721e-005	4.162467864e-009	
GEO-2Body-EarthTODEc	0.006357750408	0.006834058695	0.0006267073331	
GEO-2Body-EarthTODEq	0.006357749726	0.006271528946	0.003423117541	
GEO-2Body-EarthTOEEc	0.005487542296	0.005975813906	9.603354556e-006	
GEO-2Body-EarthTOEEq	0.005487542239	0.005486127634	0.002404046552	
Hyperbolic-2Body-EarthFixed	0.3488040966	0.5436684769	0.1095402695	
Hyperbolic-2Body-EarthMJ2000Ec	1.6822014e-005	0.001917796908	0.004851564881	
Hyperbolic-2Body-EarthMJ2000Eq	1.6822014e-005	1.979060471e-006	2.124579623e-006	
Hyperbolic-2Body-EarthMODEc	0.008121191058	0.01077665365	7.392372936e-006	
${ m Hyperbolic-2Body-EarthMODEq}$	0.008121191058	0.0098834862	0.004294328392	
Hyperbolic-2Body-EarthMOEEe	1.6938429336-005	2.211891115c-006	2.153683454c-006	
Hyperbolic-2Body-EarthMOEEq	1.693842933e- 005	1.979060471e-006	2.066371962e-006	
Hyperbolic-2Body-EarthTODEc	0.01367426012	0.01950279769	0.003635126632	
Hyperbolic-2Body-EarthTODEq	0.01367420191	-0.02924879664	0.005363341188	
Hyperbolic-2Body-EarthTOEEc	0.03536941949	0.04713787348	2.153683454e-006	
Hyperbolic-2Body-EarthTOEEq	0.03536941949	0.04508509301	0.01691197394	
ISS-2Body-EarthFixed	0.01006907041	0.01444909003	0.002770384526	
ISS-2Body-EarthGSE	5.3005067e-005	3.604054655e-005	7.67059305e-006	
ISS-2Body-EarthGSM	4.954046062e-005	0.003799987553	0.00293166886	
ISS-2Body-EarthMJ2000Ec	1.033299668e-005	8.047527444e-005	0.0001261635134	
ISS-2Body-EarthMJ2000Eq	1.033299668e-005	9.667473932e-006	9.215000318e-006	
ISS-2Body-EarthMODEc	0.000210427288	0.0001799348865	7.613095931e-006	
ISS-2Body-EarthMODEq	0.0002104279702	0.0001652065293	7.136577551e-005	
ISS-2Body-EarthMOEEc	1.033140506e-005	1.099556357e-005	7.695803106e-006	
ISS-2Body-EarthMOEEq	1.033140506e-005	9.666564438e-006	9.215000318e-006	
ISS-2Body-EarthTODEc	0.0003583738817	0.0002511692401	0.0001079586127	
ISS-2Body-EarthTODEq	0.0003583786565	0.0003260520316	0.0003840964382	
ISS-2Body-EarthTOEEc	0.0009193927326	0.0007893422662	7.69603048c-006	
ISS-2Body-EarthTOEEq	0.0009193925052	0.0006983391359	0.0002934716576	
Marsl-2Body-MarsFixed	0.05898887696	0.05711927406	0.03425882358	
Mars1-2Body-MarsMJ2000Ec	0.04854124924	0.06378650704	0.05515928102	
Mars1-2Body-MarsMJ2000Eq	0.04854124947	0.06874534654	0.04854127501	
Mercury1-2Body-MercuryFixed	0.009607810114	0.01088151507	0.009587843124	
Mercury1-2Body-MercuryMJ2000Ec Mercury1-2Body-MercuryMJ2000Eq	0.008947269691	0.01142762343	0.01022404834	
Moon-2Body-MoonFixed	0.008947269691	0.01220655815	0.008947248972	
Moon-2Body-MoonMJ2000Ec	0.02659000859	0.01816027718	0.0259134155	
Moon-2Body-MoonMJ2000Ec	0.02282095541	0.02955069925	0.02583996015	
Neptune1-2Body-NeptuneFixed	0.02282095546	0.03242772568	0.02282108797	
NeptuneI-2Body-NeptuneMJ2000Ec	0.4543228424 0.2946186363	0.474102093	0.2913599029	
Neptune1-2Body-NeptuneMJ2000Eq	0.2946186363	0.379445413	0.3350099975	
Pluto1-2Body-PlutoFixed		0.4144292316 1.111364997	0.30129434	
Pluto1-2Body-PlutoMJ2000Ec	0.6182226091 0.7527405821	0.9494719067	0.7629325749 0.8475838174	
Pluto1-2Body-PlutoMJ2000Eq	0.7527405821			
Saturn1-2Body-SaturnFixed	0.6340523651	1.085654527	0.7521445426	
Saturn1-2Body-SaturnMJ2000Ec		0.6134889563	0.06666205172	
Saturn1-2Body-SaturnMJ2000Eq	0.07298453147	0.09547611444	0.08217663634	
Uranus1-2Body-UranusFixed	0.07298453147 0.4395935848	0.1048656477 0.5642743054	0.0737594446	
Uranus1-2Body-UranusMJ2000Ec	0.385162361		0.5180439475	
Uranus1-2Body-UranusMJ2000Eq	0.3851623601	0.5115039512 0.5548048448	0.433244951 0.3789037312	
Venus1-2Body-VenusFixed	0.003286658284	0.002153384223	0.002565443879	
Venus1-2Body-VenusMJ2000Ec	0.003230035254	0.002155554225	0.002565443879	
- OTTOO T- PEROCENA A CHICKLEST NOOTHING	0.004110104400	0.000201010120	0.002492022912	

Table 3.17: GMAT/STK Coordinate System Dependent Parameter Differences (Velocity)

Table 3.17: GMAT/STK Coordinate System Dependent Parameter Differences (Velocity)					
Test Case	X-Vel (m/s)	Y-Vel (m/s)	Z-Vel (m/s)		
GEO-2Body-EarthFixed	1.014408074e-005	1.788716823e-006	2.603041318c-007		
GEO-2Body-EarthMJ2000Ec	1.658007065e-009	2.383426789e-008	5.472688969e-008		
GEO-2Body-EarthMJ2000Eq	1.658007065e-009	1.708189146e-009	0		
GEO-2Body-EarthMODEc	9.276047985e-008	1.009415607e-007	6.031009026e-010		
GEO-2Body-EarthMODEq	9.276047985e-008	9.28549633e-008	3.961584403e-008		
GEO-2Body-EarthMOEEc	1.658895243e-009	1.566302643e-009	6.827038934e-010		
GEO-2Body-EarthMOEEq	1.658895243e-009	1.70885528e-009	3.03533858e-013		
GEO-2Body-BarthTODEc	4.572472123e-007	5.051409152e-007	4.601985459e-008		
GEO-2Body-EarthTODEc	4.572472123c-007	4.636103862e-007	2.6031013420-007		
GEO-2Body-EarthTOEEc	4.000988846e-007	4.359142977e-007	6.827038934e-010		
GEO-2Body-EarthTOEEq	4.000988846e-007	4.002142819e-007	1.75307769e-007		
	3.961039852e-005	4.825957234e-005	7.70518005e-006		
Hyperbolic-2Body-EarthFixed		2.841105129e-008	7.195000151e-008		
Hyperbolic-2Body-EarthMJ2000Ec	1.829647545e-010		7.505107646e-011		
Hyperbolic-2Body-EarthMJ2000Eq	1.900701818e-010	7.416289804e-011	2.733924198e-010		
Hyperbolic-2Body-EarthMODEc	1.202220545e-007	3.21276783e-007			
Hyperbolic-2Body-EarthMODEq	1.202220545e-007	2.946597966e-007	1.280426876e-007		
Hyperbolic-2Body-EarthMOEEc	1.8296475456-010	8.4821039080-011	5.306866058c-011		
Hyperbolic-2Body-EarthMOEEq	1.829647545c-010	7.2830630420-011	7.416289804c-011		
Hyperbolic-2Body-EarthTODEc	1.646727199e-007	2.454381143e-007	6.046185774e-008		
Hyperbolic-2Body-EarthTODEq	1.646727199e-007	3.61354946e-007	2.50673704e-007		
Hyperbolic-2Body-EarthTOEEc	5.242357659e-007	1.403959171e-006	5.306866058e-011		
Hyperbolic-2Body-EarthTOEEq	5.242357659e-007	1.28404859e-006	5.625165889e-007		
ISS-2Body-EarthFixed	1.122181903e-005	1.427654617e-005	3.056610076e-006		
ISS-2Body-EarthGSE	3.753886091e-008	6.98910979e-008	8.158362874e-009		
ISS-2Body-EarthGSM	3.523581427e-008	4.26608171e-006	3.338248789e-006		
ISS-2Body-EarthMJ2000Ec	1.084418666c-008	9.1469054550-008	1.4418399810-007		
ISS-2Body-EarthMJ2000Eq	1.084418666e-008	1.137612227e-008	1.016586815e-008		
ISS-2Body-EarthMODEc	2.404640931e-007	2.0532398e-007	8.086198378e-009		
ISS-2Body-EarthMODEq	2.404640931e-007	1.883493361e-007	8.17848 0115e-008		
ISS-2Body-EarthMOEEc	1.084238255e-008	1.291988738e-008	8.192335699e-009		
ISS-2Body-EarthMOEEq	1.084238255e-008	1.137490102e-008	1.016536855e-008		
ISS-2Body-EarthTODEc	4.073232862e-007	2.878270955e-007	1.22599042e-007		
ISS-2Body-EarthTODEq	4.073232862e-007	3.764446532e-007	4.359921313 e-007		
ISS-2Body-EarthTOEEc	1.051030152c-006	8.982550259c-007	8.192335699c-009		
ISS-2Body-EarthTOEEq	1.051030152e-006	7.945391012c-007	3.3386 89325c-007		
Mars1-2Body-MarsFixed	4.119460101e-005	5.040193685e-005	2.244996011e-005		
Mars1-2Body-MarsMJ2000Ec	3.9224898e-005	5.612389309e-005	$3.773446111 \div 005$		
Mars1-2Body-MarsMJ2000Eq	3.9224898e-005	5.5061041e-005	3.923428094e-005		
Mercury1-2Body-MercuryFixed	8.297573739e-006	1.056043131e-005	6.28309893e-006		
Mercury1-2Body-MercuryMJ2000Ec	7.406872116e-006	1.084578205e-005	6.911486272e-006		
Mercury1-2Body-MercuryMJ2000Eq	7.406872116e-006	1.046935982e-005	7.379157396e-006		
Moon-2Body-MoonFixed	2.015969569e-005	1.201479294e-005	1.474075317e-005		
Moon-2Body-MoonMJ2000Ec	1.554381401c-005	2.227603246e-005	1.46090765c-005		
Moon-2Body-MoonMJ2000Eq	1.554381401e-005	2.234036151e-005	1.554384002e-005		
Neptune1-2Body-NeptuneFixed	0.002311382259	0.00232459858	0.0001281027884		
Neptunel-2Body-NeptuneMJ2000Ec	0.0001425149572	0.0002082204933	0.0001364492723		
Neptune1-2Body-NeptuneMJ2000Eq	0.0001425149572	0.0002067147653	0.0001464608648		
Pluto1-2Body-PlutoFixed	0.0003613682175	0.0004667307785	0.0004682860251		
Pluto1-2Body-PlutoMJ2000Ec	0.0003872987759	0.0005522331561	0.000344448214		
Pluto1-2Body-PlutoMJ2000Eq	0.0003872987759	0.0005410307473	0.0003868007483		
Saturn1-2Body-SaturnFixed	0.0001164046752	0.0001207579849	2.354126405e-005		
Saturn1-2Body-SaturnMJ2000Ec	2.488907747c-005	3.488300981c-005	2.320261316c-005		
Saturn1-2Body-SaturnMJ2000Eq	2.488907747e-005	3.502235213e-005	2.510042485e-005		
Uranus1-2Body-UranusFixed	0.0001044264559	0.0001481343457	0.000160607621		
Uranus1-2Body-UranusMJ2000Ec	0.00010229694768	0.000170892658	0.0001139574768		
Uranus1-2Body-UranusMJ2000Eq	0.0001229694768	0.0001702024259	0.000120316952		
Venus1-2Body-VenusFixed	3.298453583e-006	1.926899973e-006	2.241729913e-006		
Venus1-2Body-VenusMJ2000Ec	2.213821571e-006	3.107874846e-006	2.148337952e-006		
······································		2.20.0. 20.00 000			

Table 3.18: GMAT/STK Coordinate System Dependent Parameter Differences (Specific Angular Momentum	Table 3.18:	GMAT/STK	Coordinate Syste	m Dependent	Parameter	Differences	(Specific Angular	r Momentum)
---	-------------	----------	------------------	-------------	-----------	-------------	-------------------	------------	---

e 3.18: GMAT/STK Coordinate System			
Test Case	$X-(H) (m^2/sec)$	$Y-(H) (m^2/sec)$	Z -(H) (m^2/sec)
GEO-2Body-EarthFixed	10.77395299	2.103745961	434.3113329
GEO-2Body-EarthMJ2000Ec	1.13710075e-005	2.306616807	1.000254997
GEO-2Body-EarthMJ2000Eq	0	0	0.001542503014
GEO-2Body-EarthMODEc	1.670208945	0.001840817276	0.001789885573
GEO-2Body-EarthMODEq	1.670203311	0.001656591829	0.002357410267
GEO-2Body-EarthMOEEc	2.159488468e-005	0.0008076312952	0.001688022166
GEO-2Body-EarthMOEEq	1.279825357e-005	2.844632424e-021	0.001542503014
GEO-2Body-EarthTODEc	8.5322038	1.939137292	0.8412171155
GEO-2Body-EarthTODEq	8.532204845	9.575566487	0.004365574569
GEO-2Body-EarthTOEEc	7.285380082	0.001295120455	0.001702574082
GEO-2Body-EarthTOEEq	7.285369859	1.252006488	0.001396983862
Hyperbolic-2Body-EarthFixed	12999.11505	5061.392323	11584.82954
Hyperbolic-2Body-EarthMJ2000Ec	0.0002509729892	1.80931238	0.7227790775
Hyperbolic-2Body-EarthMJ2000Eq	0.000197488248	0.01781154424	0.01760781743
Hyperbolic-2Body-EarthMODEc	1.183702615	0.007530616131	0.02339947969
Hyperbolic-2Body-EarthMODEq	1.183709749	0.01674925443	0.01817534212
Hyperbolic-2Body-EarthMOEEc	0.00026047443	0.008927599993	0.0233121682
Hyperbolic-2Body-EarthMOEEq	0.000217340812	0.01784064807	0.01766602509
Hyperbolic-2Body-EarthTODEc	2.066649429	1.515742042	0.6022310117
Hyperbolic-2Body-EarthTODEq	2.066692929	5.087713362	5.08732046
Hyperbolic-2Body-EarthTOEEc	5.182947816	0.00926957	0.02366141416
Hyperbolic-2Body-EarthTOEEq	5.182958375	0.6900227163	0.6991467671
ISS-2Body-EarthFixed	89.91428695	67.10288835	31.77834151
ISS-2Body-EarthGSE	0.2475171641	0.0290456228	0.0004511093721
ISS-2Body-EarthGSM	3.261639904	22.63645729	29.37958561
ISS-2Body-EarthMJ2000Ec	0.0007530616131	0.7919024938	0.2579763532
ISS-2Body-EarthMJ2000Eq	0.0007603375707	0.0005566107575	0.000301952241
ISS-2Body-EarthMODEc	0.4284956958	0.9411305655	0.001266016625
ISS-2Body-EarthMODEq	0.4284956958	0.8629867807	0.3752284101
ISS-2Body-EarthMOEEc	0.0007530616131	0.0002983142622	0.0004874891602
ISS-2Body-EarthMOEEq	0.0007603375707	0.0005566107575	0.000301952241
ISS-2Body-EarthTODEc	0.7472881407	2.260314432	0.2173910616
ISS-2Body-EarthTODEq	0.7472772268	3.630950232	2.533914085
ISS-2Body-EarthTOEEc	1.879539923	4.109922884	0.0004874891602
ISS-2Body-EarthTOEEq	1.879554475	4.081139195	1.909433195
Mars1-2Body-MarsFixed	23.98886318	22.21717	10.38143819
Mars1-2Body-MarsMJ2000Ec	0.9952709661	0.5993915693	0.5886722647
Mars1-2Body-MarsMJ2000Eq	0.9952691471	0.2261380806	0.7740909496
Mercury1-2Body-MercuryFixed	0.327698217	0.4808271115	0.2502738425
Mercury 1-2 Body-Mercury MJ 2000 Ec	0.1878624971	0.2510159902	0.2059750841
Mercury1-2Body-MercuryMJ2000Eq	0.1878634066	0.1111429479	0.2888264135
Moon-2Body-MoonFixed	5.71125554	5.283694918	0.1482353582
Moon-2Body-MoonMJ2000Ec	0.001037733455	0.04335993253	0.01902935765
Moon-2Body-MoonMJ2000Eq	0.001038642949	0.0002576208312	0.0003556124284
Neptune1-2Body-NeptuneFixed	42849.13634	43033.72977	96195.52572
Neptime1-2Body-NeptimeMJ2000Ec	29.59038829	77.10719365	79.3626532
Neptune1-2Body-NeptuneMJ2000Eq	29.59038829	84.00197472	57.43693328
Pluto1-2Body-PlutoFixed	12.66916559	15.03451797	18.39295624
Pluto1-2Body-PlutoMJ2000Ec	2.923446004	0.8473472235	3.204913128
Pluto1-2Body-PlutoMJ2000Eq	2.923445891	0.8302175236	3.147571306
Saturn1-2Body-SaturnFixed	7341.511315	7984.995318	864.7177 019
Saturn1-2Body-SaturnMJ2000Ec	13.2243149	25.11031926	27.86074765
Saturn1-2Body-SaturnMJ2000Eq	13.22408207	16.91115992	24.03883263
Uranus1-2Body-UranusFixed	2955.545322	3574.169823	2353.711105
Uranus1-2Body-UranusMJ2000Ec	5.186127964	39.40385068	90.66710481
Uranus1-2Body-UranusMJ2000Eq	5.186419003	61.77691968	77.83877663
Venus1-2Body-VenusFixed	0.7762544101	0.3817622201	0.2173546818
Venus 1-2 Body-Venus MJ 2000 Ec	0.2975648385	0.6312984624	0.4800604074

Table 3.19: GMAT/STK Coordinate	e System Dependent	Parameter Differences (Vel	locity Vector-based)
Test Case	Mag-Vel (m/s)	Right Asc. of Vel. (deg)	Dec. of Vel. (deg)
GEO-2Body-EarthFixed	3.278583187c-006	1.162789617	0.178531639
GEO-2Body-EarthMJ2000Ec	1.07913678e-010	2.7429081230-010	1.110862513e-009
GEO-2Body-EarthMJ2000Eq	1.07913678e-010	3.426237072e-011	0
GEO-2Body-EarthMODEc	1.070254996e-010	1.887912049e-009	1.108624303e-011
GEO-2Body-EarthMODEq	1.070254996e-010	1.733170052e-009	7.381565394e-010
GEO-2Body-EarthMOEEc	1.07913678e-010	3.628031209e-011	1.261213356e-011
GEO-2Body-EarthMOEEq	1.07913678e-010	3.427658157e-011	5.656303434e-015
GEO-2Body-EarthTODEc	1.070254996e-010	9.472358897e-009	9.347012053e-010
${ m GEO\text{-}2Body\text{-}EarthTODEq}$	1.070254996c-010	8.7028979580-009	4.8507531330-009
GEO-2Body-EarthTOEEc	1.07913678e-010	8.130868423e-009	1.261213356e-011
GEO-2Body-EarthTOEEq	1.07913678e-010	7.460869256e-009	3.266776493e-009
Hyperbolic-2Body-EarthFixed	4.71472088e-005	2.061432909e-007	5.501368605e-008
Hyperbolic-2Body-EarthMJ2000Ec	1.616484724e-010	2.155502443e-010	7.097700205e-010
Hyperbolic-2Body-EarthMJ2000Eq	1.616484724e-010	1.421085472e-012	9.201528428e-013
Hyperbolic-2Body-EarthMODEc	1.616484724e-010	1.854090215e-009	1.578293052e-012
Hyperbolic-2Body-EarthMODEq	1.616484724e-010	1.910734682e-009	7.375620115e-010
Hyperbolic-2Body-EarthMOEEc	1.6164847240-010	1.591615728e-012	2.415845302e-013
Hyperbolic-2Body-EarthMOEEq	1.6164847240-010	1.449507181e-012	9.1660012910-013
Hyperbolic-2Body-EarthTODEc	1.616484724e-010	3.401112281e-009	5.87760951e-010
Hyperbolic-2Body-EarthTODEq	1.616484724e-010	5.039368034e-009	1.719470788e-009
Hyperbolic-2Body-EarthTOEEc	1.616484724e-010	8.096151305e-009	2.415845302e-013 3.265999027e-009
Hyperbolic-2Body-EarthTOEEq	1.616484724e-010	8.594184919e-009 1.289334008e-007	3.871187459e-008
ISS-2Body-EarthFixed ISS-2Body-EarthGSE	1.000267424e-006 4.574118861e-010	5.30000932e-010	6.073808123e-011
ISS-2Body-EarthGSM	3.125233405e-008	2.998996962e-008	3.9872148256-008
ISS-2Body-EarthMJ2000Ec	4.636291351e-010	8.2936857380-010	1.1066418890-009
ISS-2Body-EarthMJ2000Eq	4.636291351e-010	1.526245796e-010	7.80993048e-011
ISS-2Body-EarthMODEc	4.52970994e-010	1.852903608e-009	6.026290578e-011
ISS-2Body-EarthMODEc	4.627409567e-010	2.479552563e-009	7.349498787e-010
ISS-2Body-EarthMOEEc	4.636291351e-010	1.305977548e-010	6.103206829e-011
ISS-2Body-EarthMOEEg	4.627409567e-010	1.526245796e-010	7.80993048e-011
ISS-2Body-EarthTODEc	4.627409567e-010	3.180247177e-009	9.443787974e-010
ISS-2Body-EarthTODEq	4.627409567e-010	4.238856377e-009	4.168732914e-009
ISS-2Body-EarthTOEEc	4.627409567c-010	8.094446002c-009	6.103206829c-011
ISS-2Body-EarthTOEEq	4.627409567c-010	1.066266009e-008	3.259224002c-009
Mars1-2Body-MarsFixed	9.592806993e-006	9.947378707e-007	3.948958787e-007
Mars1-2Body-MarsMJ2000Ec	8.899687209e-006	1.432667602e- 006	6.136789708e-007
Mars1-2Body-MarsMJ2000Eq	8.899676995e-006	1.215923845e-006	6.201466789 - 007
Mercury1-2Body-MercuryFixed	1.59941127e-006	3.112265077e-007	1.274611101e-007
Mercury1-2Body-MercuryMJ2000Ec	1.597606047e-006	3.378602003e-007	1.397476694e-007
Mercury1-2Body-MercuryMJ2000Eq	1.597606047e-006	2.85895851e-007	1.4250252e-007
Moon-2Body-MoonFixed	3.394075021e-006	1.115449194e-006	5.325181203e-007
${f Moon-2Body-MoonMJ2000Ec}$	3.384815983c-006	1.24027315e-006	5.264534106e-007
Moon-2Body-MoonMJ2000Eq	3.384815983e-006	1.048296383e-006	5.364797317e-007
Neptune1-2Body-NeptuneFixed	0.001546170623	1.309179918e-005	1.351642366e-005
Neptune1-2Body-NeptuneMJ2000Ec	3.205422061e-005	1.140866715e-006	4.847768089e-007
Neptune1-2Body-NeptuneMJ2000Eq	3.205422949e-005	9.779481331e-007	4.998895804e-007
Pluto1-2Body-PlutoFixed	8.217843617e-005	4.784315172e-005	2.956015004e-005
Pluto1-2Body-PlutoMJ2000Ec	8.345292613e-005	5.652545477e-005	2.377500014e-005
Pluto1-2Body-PlutoMJ2000Eq	8.345292613e-005	4.844967677e-005	2.512714485e-005
Saturn1-2Body-SaturnFixed	8.716019906e-006	4.920609911e-007	9.227543885e-008
Saturn 1-2Body-Saturn M 12000 Ec	5.18404164c-006	1.2423146250-007	5.306250017c-008 5.502680978e-008
Saturn1-2Body-SaturnMJ2000Eq Uranus1-2Body-UranusFixed	5.18404164e-006 3.448082886e-005	1.061025898e-007 7.157807744e-006	7.584381549e-007
Uranus1-2Body-UranusMJ2000Ec	2.627271023e-005	1.159199428e-006	5.016063795e-007
Uranus1-2Body-UranusMJ2000Eq	2.627271023e-005 2.627271023e-005	9.843604971e-007	5.082584709e-007
Venus1-2Body-VenusFixed	5.125109226e-007	3.693500616e-008	1.783747905e-008
Venus1-2Body-VenusMJ2000Ec	5.126095104e-007	3.734896836e-008	1.708282227e-008
V DALEMA A - MARINE Y CALIMANA AND MUNICIPAL.	. ジュエルハンタシェロ士で"ひひ!	17. 1 17±0@00000° 000	, , , , , , , , , , , , , , , , , , ,

56

Table 3.20:	GMAT/STK	Coordinate S	ystem Depend	lent Parameter	Differences ((Angle-based)

Test Case	Arg. of Per. (deg)	Decl. (deg)	Inc. (deg)	RA (deg)	RAAN (deg)
GEO-2Body-EarthFixed	3.357c-005	2.768c-008	0.2044	3.148c-007	9.529e-005
GEO-2Body-EarthMJ2000Ec	1.349e-005	1.111e-009	1.1116-009	2.715e-010	0
GEO-2Body-EarthMJ2000Eq	1.309e-005	0	le-014	3.513e-011	0
GEO-2Body-EarthMODEc	1.381e-005	1.148e-011	3.233e-013	1.886e-009	1.864e-009
GEO-2Body-EarthMODEq	1.334e-005	7.381e-010	7.548e-010	1.734e-009	8.657e-010
GEO-2Body-EarthMOEEc	1.349e-005	1.291e-011	3.126e-013	3.401e-011	Ò
GEO-2Body-EarthMOEEq	1.343e-005	5.656e-015	0	3.513e-011	0
GEO-2Body-EarthTODEc	1.356e-005	9.281e-010	9.348e-010	9.5e-009	9.482e-009
GEO-2Body-EarthTODEq	1.095c-005	4.652c-009	3.5370-009	8.705e-009	1.0460-005
GEO-2Body-EarthTOEEc	1.36e-005	1.291e-011	3.233e-013	8.129e-009	8.107e-009
GEO-2Body-EarthTOEEq	8.314e-005	3.267e-009	1.764e-009	7.462e-009	6.978e-005
Hyperbolic-2Body-EarthFixed	3.504e-007	1.754e-008	2.357e-007	1.35e-007	1.5286-007
Hyperbolic-2Body-EarthMJ2000Ec	7.617e-012	1.096e-009	1.111e-009	2.172e-010	1.4e-013
Hyperbolic-2Body-EarthMJ2000Eq	7.844e-012	8.207e-013	4.334e-013	1.251e-012	2.5e-013
Hyperbolic-2Body-EarthMODEc	1.18e-011	1.561e-012	3.411e-013	1.854e-009	1.858e-009
Hyperbolic-2Body-EarthMODEq	1.052e-009	7.379e-010	5.898e-013	2.405e-009	9.757e-010
Hyperbolic-2Body-EarthMOEEc	7.518c-012	2.984c-013	3.411e-013	1.393e-012	1.4e-013
Hyperbolic-2Body-EarthMOEEq	7.674c-012	8.313e-013	1.421c-013	1.251c-012	0
Hyperbolic-2Body-EarthTODEc	9.422e-012	$9.216 \leftarrow 010$	9.348e-010	3.396 ⇔ 009	3.235 - 009
Hyperbolic-2Body-EarthTODEq	1.824e-009	3.924e-009	4.129e-009	4.887e-009	1.696e-009
Hyperbolic-2Body-EarthTOEEc	7.702e-012	2.984e-013	3.375e-013	8.09 6e-009	8.107e-009
Hyperbolic-2Body-EarthTOEEq	4.561e-009	3.265e-009	5.531e-010	1.062e-008	4.29e-009
ISS-2Body-EarthFixed	3.206e-008	3.275e-008	3.965e-008	1.328e-007	1.38e-007
ISS-2Body-EarthGSE	7.614e-010	6.504e-011	5.684e-013	5.681e-010	4.463e-010
ISS-2Body-EarthGSM	2.427e-006	3.92e-008	4.043e-008	2.862e-008	7.132e-009
ISS-2Body-EarthMJ2000Ec	2.188c-009	1.109e-009	4.623c-010	8.22c-010	1.29c-009
ISS-2Body-EarthMJ2000Eq	5.556e-010	7.966e-011	5.471e-013	1.525e-010	5.4e-013
ISS-2Body-EarthMODEc	5.451e-010	6.455e-011	1.592e-012	1.853e-009	1.852e-009
ISS-2Body-EarthMODEq	1.206e-009	7.378e-010	5.283e-010	2.49e-009	1.291e-009
ISS-2Body-EarthMOEEc	5.49e-010	6.525e-011	4.121e-013	1.269e-010	7.105e-013
ISS-2Body-EarthMOEEq	5.525e-010	7.966e-011	5.471e-013	1.525e-010	5.542e-013
ISS-2Body-EarthTODEc	1.664e-009	9.461e-010	3.891e-010	3.178e-009	4.239e-009
ISS-2Body-EarthTODEq	3.32e-009	4.163e-009	3.569e-009	4.248e-009	4.395e-009
ISS-2Body-EarthTOEEc	5.487c-010	6.526c-011	4.050-013	8.0950-009	8.095c-009
ISS-2Body-EarthTOEEq	2.920-009	3.264c-009	2.689c-009	1.063c-008	5.96c-009
Mars1-2Body-MarsFixed	2.247e-006	5.221e-007	5.014e-008	9.731e-007	2.604e-007
Mars1-2Body-MarsMJ2000Ec Mars1-2Body-MarsMJ2000Ec	4.431e-008	8.568e-007	2.152e-009	1.285e-006	1.562e-009
Mercury1-2Body-MercuryFixed	4.543e-008	7.205e-007	2.049e-009 1.462e-009	1.377e-006 2.697e-007	1.3326-009
Mercury1-2Body-MercuryMJ2000Ec	7.263e-009 8.609e-009	1.881e-007 1.99e-007	1.402e-003 1.004e-009	3.065e-007	5.066e-009 2.237e-009
Mercury1-2Body-MercuryMJ2000Eq	7.477e-009	1.735e-007	1.664e-009	3.307e-007	1.026e-009
Moon-2Body-MoonFixed	2.966e-008	7.424e-007	2.672e-009	1.064e-006	1.418e-007
Moon-2Body-MoonMJ2000Ec	4.765c-009	7.3870-007	4.1140-010	1.173c-006	8.903c-010
Moon-2Body-MoonMJ2000Eq	6.126e-009	6.356e-007	1.155e-011	1.246e-006	6.068e-012
Neptune1-2Body-NeptuneFixed	4.002e-005	5.911e-007	1.341e-005	1.157e-006	7.627e-006
Neptunel-2Body-NeptuneMJ2000Ec	2.001e-008	6.812e-007	1.011e-008	1.058e-006	1.042e-008
Neptinel-2Body-NeptineMJ2000Eq	2.142e-008	6.033e-007	6.69e-009	1.147e-006	1.42e-008
Pluto1-2Body-PlutoFixed	5.512e-006	3.201e-005	7.484e-007	7.441e-005	8.117e-007
Pluto1-2Body-PlutoMJ2000Ec	5.338e-007	3.39e-005	4.962e-008	5.105e-005	3.472e-008
Pluto1-2Body-PlutoMJ2000Eq	5.077e-007	2.963e-005	3.899e-008	5.878e-005	5.172e-008
Saturn1-2Body-SaturnFixed	1.508e-007	5.809e-008	5.751e-008	5.188e-007	4.571e-007
Saturn1-2Body-SaturnMJ2000Ec	3.259c-009	7.328c-008	6.576e-010	1.179c-007	9.333c-010
Saturn1-2Body-SaturnMJ2000Eq	4.55e-009	6.548e-008	5.383e-010	1.273e-007	8.028e-010
Uranus1-2Body-UranusFixed	4.529e-006	8.4e-007	3.03e-017	2.345e-006	4.615e-007
Uranus1-2Body-UranusMJ2000Ec	1.129e-008	6.9e-007	8.766e-009	1.112e-006	5.248e-009
Uranus1-2Body-UranusMJ2000Eq	1.392e-008	6.011e-007	6.433e-009	1.201e-006	1e-008
Venus1-2Body-VenusFixed	1.012e-009	2.227e-008	1.379e-010	3.825e-008	1.158e-009
Venus1-2Body-VenusMJ2000Ec	2.027e-009	2.162e-008	4.209e-010	3.816e-008	8 709-010
	2.02.000				

CHAPTER 3. CALCULATION PARAMETERS

Table 3.21: FF/GMAT Coordinate System Dependent Parameter Differences (Position)

Test Case	X-Pos (m)	Y-Pos (m)	Z-Pos (m)
ISS-2Body-EarthMJ2000Eq	2.54757424c-005	2.516884479c-005	2.321598913c-005

Table 3.22: FF/GMAT Coordinate System Dependent Parameter Differences (Velocity)

Test Case	X-Vel (m/s)	Y-Vel (m/s)	Z-Vel (m/s)
ISS-2Body-EarthMJ2000Eq	4.993130354e-007	5.00476105e-007	4.961786537e-007

Table 3.23: FF/GMAT Coordinate System Dependent Parameter Differences (Specific Angular Momentum)

Test Case	X - (H) (m^2/sec)	$Y-(H) (m^2/sec)$	Z -(H) (m^2/sec)
ISS-2Body-EarthMJ2000Eq	0.0005493347999	0.001349690137	0.001567968866

Table 3.24: FF/GMAT Coordinate System Dependent Parameter Differences (Velocity Vector-based)

Test Case	Mag-Vel (m/s)	Right Asc. of Vel. (deg)	Dec. of Vel. (deg)
ISS-2Body-EarthMJ2000Eq	-4.860067904e-007	296.2928006	67.36750845

Table 3.25: FF/GMAT Coordinate System Dependent Parameter Differences (Angle-based)

Test Case	Arg. of Pcr. (dcg)	Decl. (deg)	Inc. (deg)	RA (deg)	RAAN (deg)
ISS-2Body-EarthMJ2000Eq	1.681e-009	5.884e-010	4.684e-010	7.628e-010	2.418e-010

58

3.3. COORDINATE SYSTEM DEPENDENT PARAMETERS

Table 3.26: FF/STK Coordinate System Dependent Parameter Differences (Position	Table 3.26:	FF/STK	Coordinate S	vstem Der	endent Paramete	r Differences	(Position
--	-------------	--------	--------------	-----------	-----------------	---------------	-----------

			(2 00101011)
Test Case	X-Pos (m)	Y-Pos (m)	Z-Pos (m)
ISS-2Body-EarthMJ2000Eq	3.580873909c-005	3.470836418c-005	3.243098945e-005

Table 3.27: FF/STK Coordinate System Dependent Parameter Differences (Velocity)

			execution (Constraint)
Test Case	X-Vel (m/s)	Y-Vel (m/s)	Z-Vel (m/s)
ISS-2Body-EarthMJ2000Eq	5.092002375e-007	5.105600387e-007	5.025699856e-007

Table 3.28: FF/STK Coordinate System Dependent Parameter Differences (Specific Angular Momentum)

Test Case	X - (H) (m^2/sec)	Y - (H) (m^2/sec)	Z -(H) (m^2/sec)
ISS-2Body-EarthMJ2000Eq	0.0005711626727	0.001346052159	0.00146246748

Table 3.29: FF/STK Coordinate System Dependent Parameter Differences (Velocity Vector-based)

Test Case	Mag-Vel (m/s)	Right Asc. of Vel. (deg)	Dec. of Vel. (deg)
ISS-2Body-EarthMJ2000Eq	4.857803049e-007	296.2928006	67.36750845

Table 3.30: FF/STK Coordinate System Dependent Parameter Differences (Angle-based)

				(
Test Case	Arg. of Per. (deg)	Decl. (deg)	Inc. (deg)	RA (deg)	RAAN (deg)
ISS-2Body-EarthMJ2000Eq	1.343e-009	6.518e-010	4.685e-010	8.637e-010	2.414e-010

Draft: Work in Progress
CHAPTER 3. CALCULATION PARAMETERS

60

Chapter 4

Integrators

GMAT's integrators were tested on a system level in order to verify that all the integrators were working correctly. In order to minimize the effects of other forces/elements, the two-body cases from the Propagators section were used, with some modification, for testing the integrators. The report output interval and integrators were the only parameter changed when using the Propagator two body test cases. Data was outputted in ten minute intervals.

4.1 Initial Orbit Conditions

The ISS and GEO two-body case's initial orbit parameters were used from the Propagation section (Chapter 2) for the test cases in this section.

Refer to Appendix B.1 Tables B.1- B.13 for a listing of all Propagation initial orbit states used for the Integrator test cases.

4.2 Naming Convention

This section describes the naming convention for integrator scripts and output reports. The naming convention consists of an ordered series of option strings, separated by underscores (_). Currently, options are allowed for the following fields, and will be present in the file name in order:

- 1. tool The tool used to generate the test case
- 2. traj The trajectory to use. This includes initial conditions, physical parameters, and time step
- 3. integ The integrator to use

The word Integrator precedes the *tool* field and 2Body follows the *integ* field. The final integrator file format is as followed:

Integrator_tool_traj_integ_2Body.report

The tool field should always be the first option field. Future additional fields should be added to the end of the list of fields. Each field has a finite list of options, as follows (future options should be added to this list):

CHAPTER 4. INTEGRATORS

62

STK - Satellite Toolkit HPOP or Astrogator

1. tool FF - FreeFlyer

GMAT - General Mission Analysis Tool

2. traj GEO - leo orbit GEO - geo orbit

NOTE: Some test cases contain traj variations. In this case traj precedes the modification. For example, if an ISS trajectory is needed with a different Cd, traj could be ISSdiffCd1.

RKV89 - RungaKutta 8(9)

RKN68 - DormandElMikkawyPrince 6(8)

RKF56 - RungeKuttaFehlberg 5(6)

3. integ PD45 - PrinceDormand 4(5)

PD78 - PrinceDormand 7(8)

BS - BulirschStoer

ABM - AdamsBashforthMoulton

4.3 Comparison Script Information

Comparison Integ.m is the script used to perform the integrator comparisons needed for the Integrators section of the Acceptance Test Plan. This script was designed to allow the user to select a GMAT Build or the exact analytic solution to compare to one another.

Refer to Appendix C for more details about this script and others used in the Acceptance Test Plan document.

4.4 Test Case Results

The following results are for the Integrator section. The GMAT Integrator results are being compared to an exact analytical two-body solution. We'd like the comparison data to be as close to zero as possible. A detailed acceptance metric/matrix will be developed at a later date.

Table 4.1: Exact/GMAT GEO Integrator Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
ABM-2Body	0.0001127712184	8.178707643e-009
BS-2Body	6.290317204e-005	4.535189696e-009
PD45-2Body	3.297921562e-005	2.320908148e-009
PD78-2Body	1.822370346e-005	1.253046654e-009
RKF56-2Body	3.4596975780-005	2.5640719180-009
RKN68-2Body	1.793126562e-005	1.297793489c- 009
RKV89-2Body	0.0001127712184	8.1787076436-009

Diaft. Work in Progress 4.4. TEST CASE RESULTS

Table 4.2: Exact/GMAT ISS Integrator Test (Case Comparison
---	-----------------

Test Case	Position Difference(m)	Velocity Difference(m/s)
ABM-2Body	1.0522111230-005	1.1726654320-008
BS-2Body	1.691079091e-005	1.926879767e-008
PD45-2Body	3.080434654e-005	3.521816658e-008
PD78-2Body	2.772621462e-005	3.15224572e-008
RKF56-2Body	3.336029534e-005	3.80119779e-008
RKN68-2Body	3.617025125e-006	3.875411333e-009
RKV89-2Body	1.052211123e-005	1.172665432e-008

Draft: Work in Progress CHAPTER 4. INTEGRATORS

64

Chapter 5

Stopping Conditions

GMAT's Stopping Conditions were tested on a system level in order to determine if it stops correctly on user selected conditions. Refer to Table 5.1 for a list of the stopping conditions tested and the units used for the output of data.

Table 5.1: Stopping Conditions

rable 5.1. Stopping Conditions					
Stopping Condition	Stopping Value	Unit Used			
Epoch (A1 Modified Julian Date)	23158.042037434974	Days			
Apoapsis	180	TA in degrees			
Elapsed Days	6 Hours	Days			
Elapsed Days (Multiple Satellites)	5 Hours	Days			
Mean Anomaly	45, 90, & 180	MA in degrees			
Periapsis	0	TA in degrees			
Elapsed Seconds	3600	Seconds			
True Anomaly	45, 90, & 180	TA in degrees			
XY Plane Intersection	Z=0	$_{ m Km}$			
XZ Plane Intersection	Y=0	$_{ m Km}$			
YZ Plane Intersection	X=0	Kın			

66

Initial Orbit Conditions 5.1

For a listing of the initial conditions used to produce the data for the Stopping Conditions Section, refer to Table 5.2 for the Earth based non-hyperbolic point mass test cases, Table 5.3 for the Earth based non-hyperbolic all forces test cases, and Table 5.4 for the Earth based hyperbolic point mass test cases.

Table 5.2: Initial Orbit Parameters (EarthPM & EarthMJ2000EqPM)

Initial State Parameter	Parameter Value (unit)
Coordinate System (CS)	Earth Mean J2000 Equator
X	-8043.9600382977915 (km)
Y	-1564.9950345568864 (km)
Z	3750.9601677510364 (km)
VX	0.99861303787927636 (km)
VY	-6.8834168529193462 (km)
VZ	-0.46566090709653452 (km)
Mass (No Fuel)	850 (kg)
Cd	2.2
Cr	1.8
Drag Area	$15 \ (m^2)$
Drag Model	None
NSG Model	None
SRP Area	$1 (m^2)$
SRP	Off
Integrator Type	RungaKutta 8(9)
Integrator Init. StepSize	60 (sec)
Integrator Accuracy	1e-13
Integrator Max. StepSize	2700 (sec)
Report Precision	16 significant figures
Report StepSize	Only initial state
Report CS/Cb	Same as initial state CS

Draft: Work in Progress 5.1. INITIAL ORBIT CONDITIONS

 ${\bf Table} \underline{{\bf 5.3:\ Initial\ Orbit\ Parameters\ (EarthAll\ \&\ EarthMJ2000E}{\bf qAll)}}$

Initial State Parameter	Parameter Value (unit)
Coordinate System (CS)	Earth Mean J2000 Equator
X	-8043.9600382977915 (km)
Y	-1564.9950345568864 (km)
Z	3750.9601677510364 (km)
VX	0.99861303787927636 (km)
VY	-6.8834168529193462 (km)
VZ	-0.46566090709653452 (km)
Mass (No Fuel)	850 (kg)
Cd	2.2
Cr	1.8
Drag Area	$15 \ (m^2)$
Drag Model	Jacchia Roberts
Drag F107/F107A	150/150
Drag Kp	3
NSG Model	$_{ m JGM2}$
Degree x Order	4x4
SRP Arca	$1 (m^2)$
SRP	On
Integrator Type	RungaKutta 8(9)
Integrator Init. StepSize	60 (sec)
Integrator Accuracy	1e-13
Integrator Max. StepSize	2700 (sec)
Report Precision	16 significant figures
Report StepSize	Only initial state
Report CS/Cb	Same as initial state CS

 ${\bf Table~5.4:~Initial~Orbit~Parameters~(EarthPMhyper~\&~EarthMJ2000EqPMhyper)}$

Initial State Parameter	Parameter Value (unit)
Coordinate System (CS)	Earth Mean J2000 Equator
X	12371.791482634855 (km)
Y	5050.7627227610719 (km)
Z	5050.762722761071 (km)
VX	-7.9859921512608487 (km)
VY	2.44520073255755 (km)
$\nabla \mathbf{Z}$	2.4452007325575495 (km)
Mass (No Fuel)	850 (kg)
Cd ,	2.2
Cr	1.8
Drag Area	$15 \ (m^2)$
Drag Model	None
NSG Model	None
SRP Area	$1 (m^2)$
SRP	Òff
Integrator Type	RungaKutta 8(9)
Integrator Init. StepSize	60 (sec)
Integrator Accuracy	10-13
Integrator Max. StepSize	2700 (sec)
Report Precision	16 significant figures
Report StepSize	Only initial state
Report CS/Cb	Same as initial state CS

Table 5.5: Initial Orbit Parameters (MoonPM)

	TEL MESTICOGES (MICHAEL INI)
Initial State Parameter	Parameter Value (unit)
Coordinate System (CS)	Earth Mean J2000 Equator
X	-1486.792117191545200 (km)
Y	0.0 (km)
Z	1486.792117191543000 (km)
VX	-0.142927729144255 (km)
VY	-1.631407624437537 (km)
VZ	$0.142927729144255 (\mathrm{km})$
Mass (No Fuel)	850 (kg)
Cd	2.2
Cr	1.8
Drag Area	$15 \ (m^2)$
Drag Model	None
NSG Model	None
SRP Area	$1 \ (m^2)$
SRP	Off
Integrator Type	RungaKutta 8(9)
Integrator Init. StepSize	60 (sec)
Integrator Accuracy	1e-13
Integrator Max. StepSize	2700 (sec)
Report Precision	16 significant figures
Report StepSize	Only initial state
Report CS/Cb	Same as initial state CS

Draft: Work in Progress 5.1. INITIAL ORBIT CONDITIONS

Table 5.0. Illulai Ofbit	Farameters (Marsh M	Ŀj
al State Parameter	Parameter Value (u	n
dinate System (CS)	Earth Mean J2000 Ec	17

Initial State Parameter	Parameter Value (unit)
Coordinate System (CS)	Earth Mean J2000 Equator
X	-2737.481646173082000 (km)
Y	0.0 (km)
\mathbf{Z}	2737.481646173082000 (km)
VX	-0.311321695052649 (km)
VY	-3.553492313930950 (km)
VZ	0.311321695052650 (km)
Mass (No Fuel)	850 (kg)
Cd	2.2
Cr	1.8
Drag Area	$15 \ (m^2)$
Drag Model	None
NSG Model	None
SRP Area	$1 (m^2)$
SRP	Òff
Integrator Type	RungaKutta 8(9)
Integrator Init. StepSize	60 (sec)
Integrator Accuracy	1e-13
Integrator Max. StepSize	2700 (sec)
Report Precision	16 significant figures
Report StepSize	Only initial state
Report CS/Cb	Same as initial state CS

5.2 Naming Convention

This section describes the naming convention for stopping condition scripts and output reports generated for use in GMAT's Acceptance Test Plan. The naming convention consists of an ordered series of option strings, separated by underscores (_). Currently, options are allowed for the following fields, and will be present in the file name in order:

- 1. tool The tool used to generate the test cases.
- 2. Cb The Central Body used for the stopping condition, including the force model setup.
- 3. stopCond The stopping condition used for the test case.

The word StopCond precedes the tool field. The final stopping condition file format is as followed: StopCond_tool_Cb_stopCond.report

The tool field should always be the first option field. Future additional fields should be added to the end of the list of fields. Each field has a finite list of options, as follows (future options should be added to this list):

STK

- Satellite Toolkit HPOP or Astrogator

1. tool FF

- FreeFlyer

GMAT

- General Mission Analysis Tool

EarthPM

- Earth central body with point mass force model

EarthMJ2000EqPM

- Same as EarthPM and plane intersection calculations based on EarthMJ2000Eq

EarthAll

- Earth central body with all force model types turned on - Same as EarthAll and plane intersection calculations based on EarthMJ2000Eq

2. Cb EarthMJ2000EqAll

- Same as EarthPM and the test case involves # satellites

Earth#MultiSatsPM MarsPM

- Mars central body with point mass force model

MoonPM

- Moon central body with point mass force model

A1ModJulian

- A1 Modified Julian Date

Apoapsis

- Apoapsis of orbit based on TA

Days

- Elapsed Days

MA###

- ### degree Mean Anomaly

Periapsis 3. stopCond

- Periapsis of orbit based on TA - Elapsed Seconds

Seconds

TA### XYplane - ### degree True Anomaly

XZplane

- XY Plane Intersection

- XZ Plane Intersection

YZplane

- YZ Plane Intersection

Comparison Script Information 5.3

Comparison_StopCond.m is the script used to perform the comparisons needed for the Stopping Condition chapter of the Acceptance Test Plan. This script was designed to allow the user to select a GMAT Build and/or the exact solution to compare to one another.

Refer to Appendix C for more details on this script and others used in the Acceptance Test Plan document.

<u>Draft: Work in Progress</u>

5.4. TEST CASE RESULTS

5.4 Test Case Results

The following results are for the Stopping Condition section. The GMAT Stopping Condition results are being compared to the exact desired stopping condition. We'd like the comparison data to be as close to zero as possible. A detailed acceptance metric/matrix will be developed at a later date.

Refer to Table 5.1 to determine the units used in the Difference(s) column of the Stopping Condition comparison results.

Table 5.7: Exact/GMAT EarthPM StopCond Test Case Comparison

Stopping Condition	$\overline{\text{Difference(s)}}$
AlModJulian	3.637978807e-012
Apoapsis	1.207418308e-006
Days	3.637978807e-012
EA180	1.334851106e-006
EA45	1.122458571e-009
EA90	5.233573575e-010
MA180	1.468336194e-006
MA90	5.793253877e-009
Periapsis	0
Secs	2.09548034e-007
TA180	1.207418308e-006
TA90	2.69331224 e - 009

Table 5.8: Exact/GMAT EarthAll StopCond Test Case Comparison

Difference(s)
7.275957614e-012
0
7.276013125c-012
0
1.370133873e-008
1.320385934e-008
. 0
1.408977823e-008
0
4.190951586e-007
0
8.076597169c-010

Table 5.9: Exact/GMAT EarthPMhyper StopCond Test Case Comparison

Stopping Condition	Difference(s)
A1ModJulian	3.637978807e-012
Days	0
HA45	5.94486238e-009
HA90	6.062620628e-009
MA45	4.032273182e-009
MA90	7.014335779e-010
Periapsis	0
Secs	2.09548034e-007
TA45	1.530786164e-008
TA90	3.041570551e-008

Table 5.10: Exact/GMAT MoonPM StopCond Test Case Comparison

	Stopping Condition	Difference(s)
•	A1ModJulian	3.637978807e-012
	Apoapsis	1.207418308e-006
	Days	3.637978807c-012
	EA180	0
	EA90	3.193633802e-009
	MA180	1.774535207e-006
	MA90	8.953790598e-009
	Periapsis	0
	Secs	2.09548034e-007
	TA180	1.207418308e-006
	TA90	9.594344874e-009

Table 5.11: Exact/GMAT MarsPM StopCond Test Case Comparison

Stopping Condition	Difference(s)
A1ModJulian	3.637978807e-012
Apoapsis	0
Days	0
EA180	0
EA90	2.220498629e-008
MA180	0
MA90	1.276124806e-008
Periapsis	0
Secs	2.09548034e-007
ΤΛ180	0
TA90	1.505739533c-008

Table 5.12: Exact/GMAT EarthMJ2000EqPM StopCond Test Case Comparison

Stopping Condition	Difference(s)
XYplane	1.967496619e-007
XZplane	1.187821727c-006
YZplane	4.2192789e-007

5.4. TEST CASE RESULTS

Table 5.13: Exact/GMAT EarthMJ2000EqAll StopCond Test Case Comparison

Stopping Condition	$\operatorname{Difference}(s)$
XYplane	8.57494129e-008
XZplane	1.575498128e-006
YZplane	2.401038834e-008

Table 5.14: Exact/GMAT EarthMJ2000EqPMhyper StopCond Test Case Comparison

Stopping Condition	Difference(s)
XYplane	9.138221522e-007
XZplane	9.138204291c-007
YZplane	3.637831914e-006

Table 5.15: Exact/GMAT MoonMJ2000EqPM StopCond Test Case Comparison

Stopping Condition	Difference(s)
XYplane	1.752778189e-007
XZplane	0
YZplane	1.752923708e-007

Table 5.16: Exact/GMAT MarsMJ2000EqPM StopCond Test Case Comparison

·		
S	topping Condition	Difference(s)
	(Yplane	2.384185791c-007
Х	Zplane	0
_Y	Zplane	2.235174179e-007

Table 5.17: Exact/GMAT Earth3MultiSatsPM StopCond Test Case Comparison

Stopping Condition	Difference(s)	
Days	7.276e-012 7.276e-012 7.276e-012	

Draft: Work in Progress CHAPTER 5. STOPPING CONDITIONS

74

Chapter 6

Libration Points

The libration point tests are designed to verify the location of various libration points. In each software tool used the location of the libration point is defined by the tool and then converted to a MJ2000Eq representation for comparison purposes.

6.1 Initial Orbit Conditions

Table 6.1: Initial Orbit Parameters (Sun-Earth(SE) Libration Points)

Initial State Parameter	Parameter Value (unit)	
Coordinate System (CS)	Sun-Earth L#* MJ2000Eq	
X	0 (km)	
Y	0 (km)	
Z	0 (km)	
VX	0 (km)	
VY	$0~(\mathrm{km})$	
VZ	$0~(\mathrm{km})$	
Mass (No Fuel)	850 (kg)	
Cd	2.2	
Cr	1.8	
Drag Area	$15\;(m^2)$	
Drag Model	None	
NSG Model	None	
SRP Area	$1 \ (m^2)$	
SRP	Off	
Integrator Type	N/A	
Integrator Init. StepSize	N/A	
Integrator Accuracy	N/A	
Integrator Max. StepSize	N/A	
Report Precision	16 significant figures	
Report StepSize	Only initial state	
Report CS/Cb	Earth MJ2000Eq	

NOTES: (*) All five libration points are defined in the test script.

Table 6.2: Initial	Orbit Parameters	(Sun-Earth-)	Moon(SEM)	Libration	Points)

Initial State Parameter	Parameter Value (unit)	
Coordinate System (CS)	Sun-Earth-Moon L#* MJ2000Eq	
X	$0~(\mathrm{km})$	
Y	0 (km)	
\mathbf{Z}	() (km)	
VX	$0~(\mathrm{km})$	
VY	0 (km)	
VZ	$0~(\mathrm{km})$	
Mass (No Fuel)	850 (kg)	
Cd	2.2	
Cr	1.8	
Drag Area	$15 \; (m^2)$	
Drag Model	None	
NSG Model	None	
SRP Area	$1 \ (m^2)$	
SRP	Off	
Integrator Type	N/A	
Integrator Init. StepSize	N/A	
Integrator Accuracy	N/A	
Integrator Max. StepSize	N/A	
Report Precision	16 significant figures	
Report StepSize	Only initial state	
Report CS/Cb	Earth MJ2000Eq	

NOTES: (*) All five libration points are defined in the test script.

6.2 Naming Convention

76

This section describes the naming convention for libration point scripts and output reports generated for use in GMAT's Acceptance Test Plan. The naming convention consists of an ordered series of option strings, separated by underscores (_). Currently, options are allowed for the following fields, and will be present in the file name in order:

- 1. tool The tool used to generate the trajectory.
- 2. lib Type The type of libration point used for the test case.
- 3. libPoint The libration point used for the test case.

The word LibrationTest precedes the *tool* field. The final stopping condition file format is as followed: LibrationTest_tool_libType_libPoint.report

The tool field should always be the first option field. Future additional fields should be added to the end of the list of fields. Each field has a finite list of options, as follows (future options should be added to this list):

- 3. libPoint # The libration Point number

6.3. COMPARISON SCRIPT INFORMATION

6.3 Comparison Script Information

Comparison_Tool1_Tool2_Libr.m is the script used to perform the comparisons needed for the Libration Points chapter of the Acceptance Test Plan. This script was designed to allow the user to select two tools from a list for comparison. The Tools available are presented in this chapter's Naming Convention section.

Refer to Appendix C for more details on this script and others used in the Acceptance Test Plan document.

6.4 Test Case Results

The following results are for the Libration Points section. The current GMAT Build is compared to STK for the Libration Points section. We'd like the comparison data to be as close to zero as possible. A detailed acceptance metric/matrix will be developed at a later date.

Table 6.3: GMAT/STK SEM LibrationTest Test Case Comparison

Libration Point	Position Difference(m)	Velocity Difference(m/s)
1	2.997694537e-006	1.082467449e-011
2	7.217749953e-006	-2.896988205e-011
3	8.940696716e-005	1.548983164 - 009
4	-0.0006556510925	18.76805413
5	0.0005066394806	-1.37023761

Table 6.4: GMAT/STK SE LibrationTest Test Case Comparison

		The state of the s
Libration Point	Position Difference(m)	Velocity Difference(m/s)
1	2.997694537e-006	1.082467449e-011
2	7.217749953e-006	-2.896988205e-011
3	8.940696716e-005	1.5489831640-009
4	-0.0006556510925	18.76805413
5	0.0005066394806	-1.37023761

Draft: Work in Progress Chapter 6. Libration Points

78

Chapter 7

Delta V

Once an initial state was created for these Delta V test cases, a set amount of Delta V was applied. For the impulsive burn test cases delta V values of 0.1, 0.1, and 0.1 were applied in the X,Y, and Z axes respectively for either the Cartesian or VNB axes. Each test case generate a report that contains the Cartesian elements of the state before and after the impulsive burn.

7.1 Initial Orbit Conditions

Initial conditions for the impulsive burn delta V test cases are presented in Tables 7.1-7.4.

CHAPTER 7. DELTA V

Table 7.1: Initial Orbit Parameters (Earth Impulsive Burns)

Initial State Parameter	Parameter Value (unit)
Start & Stop Time	01 Jan 2000 11:59:28.000 (UTCG)
Central Body	Earth
Coordinate System	Earth Mean J2000 Equator
X	7378.0 (km)
Y	0.0 (km)
Z	$0.0~(\mathrm{km})$
VX	$0.0~(\mathrm{km})$
VY	5.1973811193846027 (km)
VZ	5.1973811193846018 (km)
Mass (No Fuel)	850 (kg)
Ca `	2.2
Cr	1.8
Drag	$15 \ (m^2)$
Drag Model	None
PMG Bodies	Only Central Body
NSG Model	None
SRP Area	$1 \ (m^2)$
SRP	Off
Integrator Type	RungaKutta 8(9)
Integrator Init.	60 (sec)
Integrator Max. StepSize	2700 (sec)
Integrator Accuracy	1e-13
Report Precision	16 significant figures
Report CS/Cb	Same as initial state CS

Table 7.2: Initial Orbit Parameters (Mars Impulsive Burns)

Initial State Parameter	Parameter Value (unit)
Start & Stop Time	01 Jan 2000 11:59:28.000 (UTCG)
Central Body	Mars
Coordinate System	Mars Mean J2000 Equator
X	4500.0 (km)
Y	$0.0~(\mathrm{km})$
Z	$0.0 (\mathrm{km})$
VX	$0.0~(\mathrm{km})$
VY	2.1814448386859766 (km)
VZ	2.1814448386859713 (km)
Mass (No Fuel)	850 (kg)
Cd	$2.\overline{2}$
Cr	1.8
Drag	$15 \ (m^2)$
Drag Model	None
PMG Bodies	Only Central Body
NSG Model	None
SRP Area	$1 (m^2)$
SRP	Off
Integrator Type	RungaKutta 8(9)
Integrator Init.	60 (sec)
Integrator Max. StepSize	2700 (sec)
Integrator Accuracy	1e-13
Report Precision	16 significant figures
Report CS/Cb	Same as initial state CS

7.1. INITIAL ORBIT CONDITIONS

Table 7.3: Initial Orbit Parameters (Moon Impulsive Burns)

Initial State Parameter	Parameter Value (unit)
Start & Stop Time	01 Jan 2000 11:59:28.000 (UTCG)
Central Body	Moon
Coordinate System	Moon Mean J2000 Equator
X	2050.0 (km)
Y	0.0 (km)
Z	0.0 (km)
VX	0.0 (km)
VY	1.093528701 (km)
VZ	1.093528701 (km)
Mass (No Fuel)	850 (kg)
Ċd	2.2
Cr	1.8
Drag	$15 (m^2)$
Drag Model	None
PMG Bodies	Only Central Body
NSG Model	None
SRP Area	$1 (m^2)$
SRP	Off
Integrator Type	RungaKutta 8(9)
Integrator Init.	60 (sec)
Integrator Max. StepSize	2700 (sec)
Integrator Accuracy	1e-13
Report Precision	16 significant figures
Report CS/Cb	Same as initial state CS

Table 7.4: Initial Orbit Parameters (Sun Impulsive Burns)

manores (but impunive builty)
Parameter Value (unit)
01 Jan 2000 11:59:28.000 (UTCG)
Sun
Sun Mean J2000 Equator
1000000.0 (km)
$0.0~(\mathrm{km})$
$0.0~(\mathrm{km})$
$0.0~(\mathrm{km})$
257.597010870 (km)
257.597010870 (km)
850 (kg)
2.2
1.8
$15 (m^2)$
None
Only Central Body
None
$1 (m^2)$
Óff
RungaKutta 8(9)
60 (sec)
2700 (sec)
1e-13
16 significant figures
Same as initial state CS

82

7.2 Naming Convention

This section describes the naming convention for Delta V scripts and output reports generated for use in GMAT's Acceptance Test Plan. The naming convention consists of an ordered series of option strings, separated by underscores (_). Currently, options are allowed for the following fields, and will be present in the file name in order:

- 1. tool The tool used to generate the trajectory.
- 2. delta V body The type of Delta V applied and the central body the test case uses.
- 3. axes Axes type used for burn maneuver.

The word DeltaV precedes the *tool* field. The final stopping condition file format is as followed: DeltaV_tool_deltaVbody_axes.report

The tool field should always be the first option field. Future additional fields should be added to the end of the list of fields. Each field has a finite list of options, as follows (future options should be added to this list):

STK - Satellite Toolkit HPOP or Astrogator

1. tool FF - FreeFlyer

GMAT - General Mission Analysis Tool

OD - Orbital Determination Toolbox

IEarth - Earth centered impulsive burn

2. delta V body Mars - Mars centered impulsive burn

IMoon - Moon centered impulsive burn

ISun - Sun centered impulsive burn

3. axes VNB - Velocity, Velocity Normal, Velocity BiNormal axes
Cartesian - Typical X,Y,Z,Vx,Vy,Vz axes

7.3 Comparison Script Information

Comparison_DeltaV.m is the script used to perform the comparisons needed for the Delta V chapter of the Acceptance Test Plan. This script was designed to allow the user to select a GMAT Build and/or the exact solution to compare to one another.

Refer to Appendix C for more details on this script and others used in the Acceptance Test Plan document.

7.4 Test Case Results

The following results are for the Delta V section. The GMAT Delta V results are being compared to the exact desired Delta V values. We'd like the comparison data to be as close to zero as possible. A detailed acceptance metric/matrix will be developed at a later date.

Table 7.5: Exact/GMAT IEarth DeltaV Test Case Comparison

			/			
Test Case	X-Pos (m)	Y-Pos (m)	Z-Pos (m)	X-Vel (m/s)	Y-Vel (m/s)	Z-Vel (m/s)
Cartesian	0	0	0	0	8.881784197e-013	8.881784197e-013
VNB	0	0	0	0	2.664535259e-012	8.881784197e-013
**************************************	·····					

Table 7.6: Exact/GMAT IMars DeltaV Test Case Comparison

Test Case	X-Pos (m)	Y-Pos (m)	Z-Pos (m)	X-Vel (m/s)	Y-Vel (m/s)	Z-Vel (m/s)
Cartesian	0	0	0	1.387778781e-012	8.8817841970-013	0
VNB	0	0	0	1.387778781e-012	3.108624469e-012	8.881784197e-013

Table 7.7: Exact/GMAT IMoon DeltaV Test Case Comparison

Test Case	X-Pos (m)	Y-Pos (m)	Z-Pos (m)	X-Vel (m/s)	Y-Vel (m/s)	Z-Vel (m/s)
Cartesian	0	0	0	2.775557562e-014	0	0
VNB	0	00	00	2.775557562e-014	0	0

Table 7.8: Exact/GMAT ISun DeltaV Test Case Comparison

Test Case	X-Pos (m)	Y-Pos (m)	Z-Pos (m)	X-Vel (m/s)		Z-Vel (m/s)
Cartesian	0	0	0	1.387778781e-012	0	0
VNB	0	0	()	0	0	0

84

Chapter 8

ControlFlow

The Control Flow tests were designed to verify that the control flow commands (If, While, and For) function as expected. There are scripts that test the control flow commands by themselves, nested, and using different user defined parameters, such as arrays, numbers, variables, and spacecraft parameters. Each test script was designed to store flags that contained details of the command execution for each test case and reported to a text file.

Due to the layout of the report, a Matlab script can easily create a pass and fail table based on the values of the flag variables. In the report output the main columns to pay attention to are the ranOK and ansFlag columns. The ansFlag variable tells us if there was an incorrect control flow execution (ansFlag=-99), correct control flow execution (ansFlag=1), or the control flow didn't get executed (ansFlag=1). The ranOK variable tells us if each test case inside the test script ran correctly (ranOK = 1) or not (ranOK = 0). The only scripts that do not generate the ranOK column are the IfLoopTest##_##, IfLoopTest##, and IfIfLoopTest##_##.m, because the ansFlag column is sufficient.

8.1 Test Case Results

The results in Table 8.1 display the Pass and Fail outcome of each Control Flow test script.

Table 8.1: Loop Test Case Results

Table 8.1:	Loop Test (Case Results
TestName	Pass/Fail	Failed/TotalTests
For	Pass	0/15
ForFor	Pass	0/9
ForIf41-14	Pass	0/20
ForIf42-24	Pass	0/21
ForIf43-34	Pass	0/20
ForIf51-15	Pass	0/16
ForIf52-25	Pass	0/20
ForIf53-35	Pass	0/20
ForWhile42	Pass	0/8
If11	Pass	0/9
If12-21	Pass	0/18
If22	Pass	0/9
If32-23	Pass	0/18
If33	Pass	0/9
If42-24	Pass	0/16
If44	Pass	0/8
If52-25	Pass	0/16
If55	Pass	0/8
IfFor	Pass	0/9
IfIf41-14	Pass	0/16
IfIf42-24	Pass	0/16
IfIf43-34	Pass	0/20
IfIf51-15	Pass	0/16
IfIf52-25	Pass	0/16
IfIf53-35	Pass	0/16
IfWhile	Pass	0/8
While42-24	Pass	0/16
While43-34	Pass	0/16
While $52-25$	Pass	0/16
While $53-35$	Pass	0/16
WhileFor	Pass	0/9
WhileIf41-14	Pass	0/16
WhileIf42-24	Pass	0/16
WhileIf43-34	Pass	0/16
WhileIf51-15	Pass	0/17
WhileIf52-25	Pass	0/16
WhileIf53-35	Pass	0/16
While Target	Pass	0/1
WhileWhile42-24	Pass	0/16

Appendix A

Acronyms

```
Сb
         - Central Body
Cd
         - Drag coefficient
COTS
         - Commercial Off The Shelf software
\operatorname{Cr}
         - Coefficient of reflexivity
         - Coordinate System
CS
EGM
         - Earth Gravity Model
EOP
         - Earth Orientation Parameters
FDAB
         - Flight Dynamics Analysis Branch
\mathbf{F}\mathbf{F}
         - Free Flyer
GEO
         - Geosynchronous Orbit
        - General Mission Analysis Tool
GMAT
GPS
         - Global Positioning Satellite
HEO
         - Highly Elliptical Orbit
HPOP
         - High Precision Orbit Propagator
IAU
         - International Astronomical Union
IERS
         - International Earth Rotation and Reference Systems Service
ISS
         - International Space Station
JGM
         - Joint Gravity Model
         - Jacchia Roberts
JR
GMAT
        - General Mission Analysis Tool
LEO
         - Low Earth Orbit
LOD
         - Length of Day
MEO
         - Medium Earth Orbit
         - milliarcseconds
mas
         - Mass Spectrometer and Incoherent Scatter Radar Exosphere
MSISE
NSG
         - Non-Spherical Gravity
PIP
         - Professional Intern Program
PMG
         - Point Mass Gravity
         - Solar Radiation Pressure
SRP
STK
         - Satellite Tool Kit
TAI
         - International Atomic Time
TLE
         - Two Line Element
         - U.S. Naval Observatory
USNO
UΤ
         - Universal time
UTC
         - Coordinated Universal Time
```

Draft: Work in Progress
APPENDIX A. ACRONYMS

88

Appendix B

Initial Conditions

The text and tables in this appendix allow someone to have an easier time duplicating the test case setups described in the previous chapters. The same information was presented in the previous chapters but this appendix has the information arranged different for ease of duplication reasons.

B.1 Propagator Test Cases

Table B.1: Initial Orbit Parameters (ISS)

Initial State Parameter	Parameter Value (unit)
Coordinate System	Earth Mean J2000 Equator
Start Time	1 Jun 2004 12:00:00.000 (UTCG)
Stop Time	2 Jun 2004 12:00:00.000 (UTCG)
X	-4453.783586 (km)
Y	-5038-203756 (km)
Z	-426.384456 (km)
VX	3.831888 (km)
VY	-2.887221 (km)
VZ	-6.018232 (km)
Mass (No Fuel)	1000 (kg) (some exceptions)
Cd	2.2
Cr	1.2
Drag Arca	$20 \ (m^2)$
Drag Model	Case dependent
NSG Model	Case dependent
SRP Area	$20 \ (m^2)$
SRP	Case dependent
Integration Method	Tool/Program Dependent
Integrator StepSize control	Fixed
Integrator Init. StepSize	5 (sec)
Integrator Accuracy	1c-13
Integrator Max. StepSize	5 (sec)
Report Precision	16 significant figures
Report StepSize	60 (sec)
Report CS/Cb	Same as initial state CS

Table B.2: Initial Orbit Parameters (Sun-Sync)

Table B.2: Initial Orbit Parameters (Sun-Sync)					
Initial State Parameter	Parameter Value (unit)				
Coordinate System	Earth Mean J2000 Equator				
Start Time	1 Jun 2004 12:00:00.000 (UTCG)				
Stop Time	2 Jun 2004 12:00:00.000 (UTCG)				
X	-2290.301063 (km)				
Y	-6379.471940 (km)				
Z	$0.0~(\mathrm{km})$				
VX	$-0.883923~(\mathrm{km})$				
VY	$0.317338 \; (\mathrm{km})$				
VZ	$7.610832~({ m km})$				
Mass (No Fuel)	1000 (kg) (some exceptions)				
Cd	2.2				
Cr	1.2				
Drag Area	$20 \ (m^2)$				
Drag Model	Case dependent				
NSG Model	Case dependent				
SRP Area	$20 \ (m^2)$				
SRP	Case dependent				
Integration Method	Tool/Program Dependent				
Integrator StepSize control	Fixed				
Integrator Init. StepSize	5 (sec)				
Integrator Accuracy	1e-13				
Integrator Max. StepSize	5 (sec)				
Report Precision	16 significant figures				
Report StepSize	60 (sec)				
Report CS/Cb	Same as initial state CS				

Draft: Work in Progress B.1. PROPAGATOR TEST CASES

Table B.3: Initial Orbit Parameters (GPS)

Initial State Parameter Parameter Value (unit) Coordinate System Earth Mean J2000 Equator Start Time 1 Jun 2004 12:00:00.000 (UTCG) Stop Time 3 Jun 2004 12:00:00.000 (UTCG) X 5525.33668 (km) Y -15871.18494 (km) Z -20998.992446 (km) VX 2.750341 (km) VZ -1.068884 (km) Mass (No Fuel) 1000 (kg) (some exceptions) Cd 2.2 Cr 1.2 Drag Area 20 (m²) Drag Model Case dependent NSG Model Case dependent SRP Area 20 (m²) SRP Case dependent Integration Method Tool/Program Dependent Integrator Accuracy Fixed Integrator Max. StepSize 60 (sec) Report Precision 16 significant figures Report StepSize 120 (sec) Same as initial state CS	Table B.3: Initial Orbit Parameters (GPS)					
Start Time 1 Jun 2004 12:00:00.000 (UTCG) Stop Time 3 Jun 2004 12:00:00.000 (UTCG) X 5525.33668 (km) Y -15871.18494 (km) Z -20998.992446 (km) VX 2.750341 (km) VY 2.434198 (km) VZ -1.068884 (km) Mass (No Fuel) 1000 (kg) (some exceptions) Cd 2.2 Cr 1.2 Drag Area 20 (m²) Drag Model Case dependent NSG Model Case dependent SRP Area 20 (m²) SRP Case dependent Integration Method Tool/Program Dependent Integrator StepSize control Fixed Integrator Accuracy 1e-13 Integrator Max. StepSize 60 (sec) Report Precision 16 significant figures Report StepSize 120 (sec)	Initial State Parameter	Parameter Value (unit)				
Stop Time 3 Jun 2004 12:00:00.000 (UTCG) X 5525.33668 (km) Y -15871.18494 (km) Z -20998.992446 (km) VX 2.750341 (km) VY 2.434198 (km) VZ -1.068884 (km) Mass (No Fuel) 1000 (kg) (some exceptions) Cd 2.2 Cr 1.2 Drag Area 20 (m²) Drag Model Case dependent NSG Model Case dependent SRP Area 20 (m²) SRP Case dependent Integration Method Tool/Program Dependent Integrator StepSize control Fixed Integrator Accuracy 1e-13 Integrator Max. StepSize 60 (sec) Report Precision 16 significant figures Report StepSize 120 (sec)	Coordinate System	Earth Mean J2000 Equator				
X 5525.33668 (km) Y -15871.18494 (km) Z -20998.992446 (km) VX 2.750341 (km) VY 2.434198 (km) VZ -1.068884 (km) Mass (No Fuel) 1000 (kg) (some exceptions) Cd 2.2 Cr 1.2 Drag Area 20 (m²) Drag Model Case dependent NSG Model Case dependent SRP Area 20 (m²) SRP Case dependent Integration Method Tool/Program Dependent Integrator StepSize control Fixed Integrator Accuracy 1e-13 Integrator Max. StepSize 60 (sec) Report Precision 16 significant figures Report StepSize 120 (sec)	Start Time	1 Jun 2004 12:00:00.000 (UTCG)				
Y	Stop Time	3 Jun 2004 12:00:00.000 (UTCG)				
Z	X	5525.33668 (km)				
VX 2.750341 (km) VY 2.434198 (km) VZ -1.068884 (km) Mass (No Fuel) 1000 (kg) (some exceptions) Cd 2.2 Cr 1.2 Drag Area 20 (m²) Drag Model Case dependent NSG Model Case dependent SRP Area 20 (m²) SRP Case dependent Integration Method Tool/Program Dependent Integrator StepSize control Fixed Integrator Accuracy 1e-13 Integrator Max. StepSize 60 (sec) Report Precision 16 significant figures Report StepSize 120 (sec)	-	-15871.18494 (km)				
VY 2.434198 (km) VZ -1.068884 (km) Mass (No Fuel) 1000 (kg) (some exceptions) Cd 2.2 Cr 1.2 Drag Area 20 (m²) Drag Model Case dependent NSG Model Case dependent SRP Area 20 (m²) SRP Case dependent Integration Method Tool/Program Dependent Integrator StepSize control Fixed Integrator Accuracy 1e-13 Integrator Max. StepSize 60 (sec) Report Precision 16 significant figures Report StepSize 120 (sec)	_	-20998.992446 (km)				
VZ -1.068884 (km) Mass (No Fuel) 1000 (kg) (some exceptions) Cd 2.2 Cr 1.2 Drag Area 20 (m²) Drag Model Case dependent NSG Model Case dependent SRP Area 20 (m²) SRP Case dependent Integration Method Tool/Program Dependent Integrator StepSize control Fixed Integrator Init. StepSize 60 (sec) Integrator Max. StepSize 60 (sec) Report Precision 16 significant figures Report StepSize 120 (sec)		2.750341 (km)				
Mass (No Fuel) 1000 (kg) (some exceptions) Cd 2.2 Cr 1.2 Drag Area 20 (m²) Drag Model Case dependent NSG Model Case dependent SRP Area 20 (m²) SRP Case dependent Integration Method Tool/Program Dependent Integrator StepSize control Fixed Integrator Init. StepSize 60 (sec) Integrator Max. StepSize 60 (sec) Report Precision 16 significant figures Report StepSize 120 (sec)	VY	2.434198 (km)				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	VZ	-1.068884 (km)				
Cr 1.2 Drag Area $20 (m^2)$ Drag ModelCase dependentNSG ModelCase dependentSRP Area $20 (m^2)$ SRPCase dependentIntegration MethodTool/Program DependentIntegrator StepSize controlFixedIntegrator Init. StepSize $60 (sec)$ Integrator Accuracy $1e-13$ Integrator Max. StepSize $60 (sec)$ Report Precision $16 \text{ significant figures}$ Report StepSize $120 (sec)$	Mass (No Fuel)	1000 (kg) (some exceptions)				
Drag Area $20 \ (m^2)$ Drag ModelCase dependentNSG ModelCase dependentSRP Area $20 \ (m^2)$ SRPCase dependentIntegration MethodTool/Program DependentIntegrator StepSize controlFixedIntegrator Init. StepSize $60 \ (sec)$ Integrator Accuracy $1e-13$ Integrator Max. StepSize $60 \ (sec)$ Report Precision $16 \ significant \ figures$ Report StepSize $120 \ (sec)$	Cd	2.2				
Drag ModelCase dependentNSG ModelCase dependentSRP Area $20 (m^2)$ SRPCase dependentIntegration MethodTool/Program DependentIntegrator StepSize controlFixedIntegrator Init. StepSize $60 (sec)$ Integrator Accuracy $1e-13$ Integrator Max. StepSize $60 (sec)$ Report Precision $16 \text{ significant figures}$ Report StepSize $120 (sec)$	Cr	1.2				
NSG Model Case dependent SRP Area 20 (m²) SRP Case dependent Integration Method Tool/Program Dependent Integrator StepSize control Integrator Init. StepSize 60 (sec) Integrator Accuracy 1e-13 Integrator Max. StepSize 60 (sec) Report Precision 16 significant figures Report StepSize 120 (sec)	Drag Area	$20 \ (m^2)$				
SRP Area 20 (m²) SRP Case dependent Integration Method Tool/Program Dependent Integrator StepSize control Fixed Integrator Init. StepSize 60 (sec) Integrator Accuracy 1e-13 Integrator Max. StepSize 60 (sec) Report Precision 16 significant figures Report StepSize 120 (sec)	Drag Model	Case dependent				
SRP Case dependent Integration Method Tool/Program Dependent Integrator StepSize control Fixed Integrator Init. StepSize 60 (sec) Integrator Accuracy 1e-13 Integrator Max. StepSize 60 (sec) Report Precision 16 significant figures Report StepSize 120 (sec)	NSG Model	Case dependent				
Integration Method Tool/Program Dependent Integrator StepSize control Integrator Init. StepSize 60 (sec) Integrator Accuracy 1e-13 Integrator Max. StepSize 60 (sec) Report Precision 16 significant figures Report StepSize 120 (sec)	SRP Area	$20 \ (m^2)$				
Integrator StepSize control Fixed Integrator Init. StepSize 60 (sec) Integrator Accuracy 1e-13 Integrator Max. StepSize 60 (sec) Report Precision 16 significant figures Report StepSize 120 (sec)	SRP	Case dependent				
Integrator Init. StepSize 60 (sec) Integrator Accuracy 1e-13 Integrator Max. StepSize 60 (sec) Report Precision 16 significant figures Report StepSize 120 (sec)	Integration Method	Tool/Program Dependent				
Integrator Accuracy 1e-13 Integrator Max. StepSize 60 (sec) Report Precision 16 significant figures Report StepSize 120 (sec)	Integrator StepSize control	Fixed				
Integrator Max. StepSize 60 (sec) Report Precision 16 significant figures Report StepSize 120 (sec)	Integrator Init. StepSize	60 (sec)				
Report Precision 16 significant figures Report StepSize 120 (sec)	Integrator Accuracy	1e-13				
Report StepSize 120 (sec)	Integrator Max. StepSize	60 (sec)				
Report StepSize 120 (sec)	Report Precision	16 significant figures				
	Report CS/Cb	the state of the s				

Table B.4: Initial Orbit Parameters (Molniva)

Table B.4: Initial Orbit Parameters (Molniya)					
Initial State Parameter	Parameter Value (unit)				
Coordinate System	Earth Mean J2000 Equator				
Start Time	1 Jun 2004 12:00:00.000 (UTCG)				
Stop Time	4 Jun 2004 12:00:00.000 (UTCG)				
X	-1529.894287 (km)				
Y	-2672.877357 (km)				
${f Z}$	-6150.115340 (km)				
VX	8.717518 (km)				
VY	-4.989709 (km)				
$\mathbf{V}\mathbf{Z}$.	0.0 (km)				
Mass (No Fuel)	1000 (kg) (some exceptions)				
Cd	2.2				
Cr	1.2				
Drag Area	$20 \ (m^2)$				
Drag Model	Case dependent				
NSG Model	Case dependent				
SRP Area	$20 \ (m^2)$				
SRP	Case dependent				
Integration Method	Tool/Program Dependent				
Integrator StepSize control	Fixed				
Integrator Init. StepSize	5 (sec)				
Integrator Accuracy	1e-13				
Integrator Max. StepSize	5 (sec)				
Report Precision	16 significant figures				
Report StepSize	300 (sec)				
Report CS/Cb	Same as initial state CS				

Draft: Work in Progress B.1. PROPAGATOR TEST CASES

Table	R 5.	Initial	Orbit	Parameters	(CEO)
Table	D.0.	TITITUTE	Orbit	rarameters	TC+PSC 71

Table B.5: Initial Orbit Parameters (GEO)				
Initial State Parameter	Parameter Value (unit)			
Coordinate System	Earth Mean J2000 Equator			
Start Time	1 Jun 2004 12:00:00.000 (UTCG)			
Stop Time	8 Jun 2004 12:00:00.000 (UTCG)			
Χ .	36607.358256 (km)			
Y	-20921.723703 (km)			
Z	$0.0~(\mathrm{km})$			
VX	1.525636 (km)			
VY	2.669451 (km)			
VZ	0.0 (km)			
Mass (No Fuel)	1000 (kg) (some exceptions)			
Cd	2.2			
Cr	1.2			
Drag Area	$20 \ (m^2)$			
Drag Model	Case dependent			
NSG Model	Case dependent			
SRP Area	$20 \ (m^2)$			
SRP	Case dependent			
Integration Method	Tool/Program Dependent			
Integrator StepSize control	Fixed			
Integrator Init. StepSize	60 (sec)			
Integrator Accuracy	1e-13			
Integrator Max. StepSize	60 (sec)			
Report Precision	16 significant figures			
Report StepSize	600 (sec)			
Report CS/Cb	Same as initial state CS			

Table B.6: Initial Orbit Parameters (Mars)

Table B.6: Initial Orbit Parameters (Mars)				
Initial State Parameter	Parameter Value (unit)			
Coordinate System	Mars Mean J2000 Equator			
Start Time	1 Jun 2004 12:00:00.000 (UTCG)			
Stop Time	4 Jun 2004 12:00:00.000 (UTCG)			
X	-2737.481646173082000 (km)			
Y	0.0 (km)			
\mathbf{Z}	2737.481646173082000 (km)			
VX	-0.311321695052649 (km)			
VY	-3.553492313930950 (km)			
VZ	0.311321695052650 (km)			
Mass (No Fuel)	1000 (kg)			
Cd	2.2			
Cr	1.2			
Drag Area	$20 \; (m^2)$			
Drag Model	Case dependent			
NSG Model	Case dependent			
SRP Area	$20 \ (m^2)$			
SRP	Case dependent			
Integration Method	Tool/Program Dependent			
Integrator StepSize control	Fixed			
Integrator Init. StepSize	5 (sec)			
Integrator Accuracy	1e-13			
Integrator Max. StepSize	5 (sec)			
Report Precision	16 significant figures			
Report StepSize	300 (sec)			
Report CS/Cb	Same as initial state CS			

Draft: Work in Progress B.1. PROPAGATOR TEST CASES

Table	D 7.	Traitio	Orbit	Parameters	(Managemer)
13.016	15.7:	Initial	(ITDIT.	Parameters	IVIETCHTV

Table B.7: Initial Orbit Parameters (Mercury)				
Initial State Parameter	Parameter Value (unit)			
Coordinate System	Mercury Mean J2000 Equator			
Start Time	1 Jun 2004 12:00:00.000 (UTCG)			
Stop Time	4 Jun 2004 12:00:00.000 (UTCG)			
X	-2164.769322630887000 (km)			
Y	0.0 (km)			
\mathbf{Z}	2164.769322630886100 (km)			
VX	-0.251096955137200 (km)			
VY	-2.866074270797602 (km)			
VZ	0.251096955137201 (km)			
Mass (No Fuel)	1000 (kg)			
Cd	2.2			
Cr	1.2			
Drag Area	$20 \ (m^2)$			
Drag Model	Case dependent			
NSG Model	Case dependent			
SRP Area	$20 \ (m^2)$			
SRP	Case dependent			
Integration Method	Tool/Program Dependent			
Integrator StepSize control	Fixed			
Integrator Init. StepSize	5 (sec)			
Integrator Accuracy	1e-13			
Integrator Max. StepSize	5 (sec)			
Report Precision	16 significant figures			
Report StepSize	300 (sec)			
Report CS/Cb	Same as initial state CS			

Table	B &	· Initial	Orbit	Parameters	(Moon)

Table B.8: Initial Orbit Parameters (Moon)				
Initial State Parameter	Parameter Value (unit)			
Coordinate System	Moon Mean J2000 Equator			
Start Time	1 Jun 2004 12:00:00.000 (UTCG)			
Stop Time	4 Jun 2004 12:00:00.000 (UTCC			
X	-1486.792117191545200 (km)			
Y Z	0.0 (km)			
Ż	1486.792117191543000 (km)			
VX	-0.142927729144255 (km)			
VY	-1.631407624437537 (km)			
VZ	0.142927729144255 (km)			
Mass (No Fuel)	1000 (kg)			
Cd	2.2			
Cr	1.2			
Drag Area	$20 \ (m^2)$			
Drag Model	Case dependent			
NSG Model	Case dependent			
SRP Area	$20 \ (m^2)$			
SRP	Case dependent			
Integration Method	Tool/Program Dependent			
Integrator StepSize control	Fixed			
Integrator Init. StepSize	5 (sec)			
Integrator Accuracy	1e-13			
Integrator Max. StepSize	5 (sec)			
Report Precision	16 significant figures			
Report StepSize	300 (sec)			
Report CS/Cb	Same as initial state CS			

Diaft: Work in Progress B.1. PROPAGATOR TEST CASES

Table B.9: Initial Orbit Parameters (Neptune)				
Initial State Parameter	Parameter Value (unit)			
Coordinate System	Neptune Mean J2000 Equator			
Start Time	1 Jun 2004 12:00:00.000 (UTCG)			
Stop Time	4 Jun 2004 12:00:00.000 (UTCG)			
X	-20815.089640681723000 (km)			
Y	0.0 (km)			
\mathbf{Z}	20815.089640681723000 (km)			
VX	-1.426423063858300 (km)			
VY	-16.281497481173282 (km)			
VZ	1.426423063858303 (km)			
Mass (No Fuel)	1000 (kg)			
Cd	2.2			
Cr	1.2			
Drag Area	$20 \ (m^2)$			
Drag Model	Case dependent			
NSG Model	Case dependent			
SRP Area	$20 \ (m^2)$			
SRP	Case dependent			
Integration Method	Tool/Program Dependent			
Integrator StepSize control	Fixed			
Integrator Init. StepSize	5 (sec)			
Integrator Accuracy	1e-13			
Integrator Max. StepSize	5 (sec)			
Report Precision	16 significant figures			
Report StepSize	300 (sec)			
Report CS/Cb	Same as initial state CS			

Table B.10: Initial Orbit Parameters (Pluto)

Table D.10. Illinai	Orbit Parameters (Pluto)
Initial State Parameter	Parameter Value (unit)
Coordinate System	Pluto Mean J2000 Equator
Start Time	1 Jun 2004 12:00:00.000 (UTCG)
Stop Time	4 Jun 2004 12:00:00.000 (UTCG)
X	-1067.516740143530600 (km)
Y	0.0 (km)
\mathbf{Z}	1067.516740143529700 (km)
VX	-0.075474392886505 (km)
VY	-0.861480838897026 (km)
VZ	0.075474392886505 (km)
Mass (No Fuel)	1000 (kg)
Cd	$2.\overline{2}$
Cr	1.2
Drag Area	$20 \ (m^2)$
Drag Model	Case dependent
NSG Model	Case dependent
SRP Area	$20 \ (m^2)$
SRP	Case dependent
Integration Method	Tool/Program Dependent
Integrator StepSize control	Fixed
Integrator Init. StepSize	5 (sec)
Integrator Accuracy	1e-13
Integrator Max. StepSize	5 (sec)
Report Precision	16 significant figures
Report StepSize	300 (sec)
Report CS/Cb	Same as initial state CS

Draft: Work in Progress B.1. PROPAGATOR TEST CASES

Table B.11: Initial Orbit Parameters (Saturn	Table	B.11:	Initial	Orbit	Parameters	(Saturn
--	-------	-------	---------	-------	------------	---------

Table B.11: Initial Orbit Parameters (Saturn)				
Initial State Parameter	Parameter Value (unit)			
Coordinate System	Saturn Mean J2000 Equator			
Start Time	1 Jun 2004 12:00:00.000 (UTCG)			
Stop Time	4 Jun 2004 12:00:00.000 (UTCG)			
X	-47577.347750129338000 (km)			
Y	0.0 (km)			
Z	47577.347750129360000 (km)			
VX	-2.222652848522210 (km)			
VY	-25.369834288049386 (km)			
VZ	2.222652848522210 (km)			
Mass (No Fuel)	1000 (kg)			
Cd	2.2			
Cr	1.2			
Drag Area	$20 \ (m^2)$			
Drag Model	Case dependent			
NSG Model	Case dependent			
SRP Area	$20 \ (m^2)$			
SRP	Case dependent			
Integration Method	Tool/Program Dependent			
Integrator StepSize control	Fixed			
Integrator Init. StepSize	5 (sec)			
Integrator Accuracy	1e-13			
Integrator Max. StepSize	5 (sec)			
Report Precision	16 significant figures			
Report StepSize	300 (sec)			
Report CS/Cb	Same as initial state CS			

Table B.12: Initial Orbit Parameters (Uranus)

18Die B.12: Illitial	Orbit Parameters (Uranus)
Initial State Parameter	Parameter Value (unit)
Coordinate System	Uranus Mean J2000 Equator
Start Time	1 Jun 2004 12:00:00.000 (UTCG)
Stop Time	4 Jun 2004 12:00:00.000 (UTCG)
X	-26762.258109447845000 (km)
Y	0.0 (km)
Z	26762.258109447823000 (km)
VX	-1.158158360792704 (km)
VY	-13.219466869135891 (km)
VZ	1.158158360792704 (km)
Mass (No Fuel)	1000 (kg)
Cd	2.2
Cr	1.2
Drag Area	$20 \ (m^2)$
Drag Model	Case dependent
NSG Model	Case dependent
SRP Area	$20 \ (m^2)$
SRP	Case dependent
Integration Method	Tool/Program Dependent
Integrator StepSize control	Fixed
Integrator Init. StepSize	5 (sec)
Integrator Accuracy	1e-13
Integrator Max. StepSize	5 (sec)
Report Precision	16 significant figures
Report StepSize	300 (sec)
Report CS/Cb	Same as initial state CS

Draft: Work in Progress B.1. PROPAGATOR TEST CASES

Table B.13:	Initial	Orbit	Parameters	(Venus)
-------------	---------	-------	------------	---------

Table B.13: Initial Orbit Parameters (Venus)		
Initial State Parameter	Parameter Value (unit)	
Coordinate System	Venus Mean J2000 Equator	
Start Time	1 Jun 2004 12:00:00.000 (UTCG)	
Stop Time	4 Jun 2004 12:00:00.000 (UTCG)	
X	-4832.074380872521000 (km)	
Y	0.0 (km)	
\mathbf{Z}	4832.074380872517400 (km)	
VX	-0.645356787452373 (km)	
VY	-7.366240195908405 (km)	
VZ	0.645356787452373 (km)	
Mass (No Fuel)	1000 (kg)	
Cd	2.2	
Cr	1.2	
Drag Area	$20 \ (m^2)$	
Drag Model	Case dependent	
NSG Model	Case dependent	
SRP Area	$20 \ (m^2)$	
SRP	Case dependent	
Integration Method	Tool/Program Dependent	
Integrator StepSize control	Fixed	
Integrator Init. StepSize	5 (sec)	
Integrator Accuracy	1e-13	
Integrator Max. StepSize	5 (sec)	
Report Precision	16 significant figures	
Report StepSize	300 (sec)	
Report CS/Cb	Same as initial state CS	

Table B.14: Initial Orbit Parameters (DeepSpace)

Table B.14: Initial O	rbit Parameters (DeepSpace)
Initial State Parameter	Parameter Value (unit)
Coordinate System	Sun Mean J2000 Ecliptic
Start Time	01 Jan 2000 12:00:00.000 (UTCG)
Stop Time	01 Jan 2001 12:00:00.000 (UTCG)
\mathbf{X}	30043412.094803076000000 (km)
Y	143707423.481292670000000 (km)
Ž	2198384.040184043300000 (km)
$\mathbf{V}\mathbf{X}_{\cdot}$	-29.715920923036403 (km)
VY	6.056690472247896 (km)
VZ	0.123271169290614 (km)
Mass (No Fuel)	1000 (kg)
Cd	2.2
Cr	1.2
Drag Area	$20 \ (m^2)$
Drag Model	Case dependent
NSG Model	Case dependent
SRP Area	$20 \ (m^2)$
SRP	Case dependent
Integration Method	Tool/Program Dependent
Integrator StepSize control	Variable
Integrator Init. StepSize	30000 (sec)
Integrator Accuracy	1e-13
Integrator Max. StepSize	30000 (sec)
Report Precision	16 significant figures
Report StepSize	86400 (sec)
Report CS/Cb	Same as initial state CS

Diaft: Work in Progress B.1. PROPAGATOR TEST CASES

Table	R 15.	Initial	Orbit	Parameters	(EMIL9)
Laure	D.10:	шина	O_{1} O_{1}	ranameters	(E)WILZ

Table B.15: Initial Orbit Parameters (EML2)		
Initial State Parameter	Parameter Value (unit)	
Coordinate System	Earth Mean J2000 Equator	
Start Time	23 Jan 2010 00:00:03.999 (UTCG)	
Stop Time	6 Feb 2010 00:00:03.999 (UTCG)	
X	406326.22661300009 (km)	
Y	177458.38761599999 (km)	
Z	145838.58078999998 (km)	
VX	-0.517274673822 (km)	
VY	0.774650366561 (km)	
VZ	0.331416602654 (km)	
Mass (No Fuel)	1000 (kg)	
Cd	2.2	
Cr	1.2	
Drag Area	$20 \ (m^2)$	
Drag Model	Case dependent	
NSG Model	Case dependent	
SRP Area	$20 \ (m^2)$	
SRP	Case dependent	
Integration Method	Tool/Program Dependent	
Integrator StepSize control	Variable	
Integrator Init. StepSize	1200 (sec)	
Integrator Accuracy	1e-13	
Integrator Max. StepSize	1200 (sec)	
Report Precision	16 significant figures	
Report StepSize	2400 (sec)	
Report CS/Cb	Same as initial state CS	

Table B.16: Initial Orbit Parameters (ESL2)

Table B.16: Initial	Orbit Parameters (ESL2)
Initial State Parameter	Parameter Value (unit)
Coordinate System	Earth Mean J2000 Equator
Start Time	5 Feb 2006 17:05:48.772 (UTCG)
Stop Time	4 Aug 2006 17:05:48.772 (UTCG)
X	1010800.968074728 (km)
Ý	-910963.5377102628 (km)
Z	-295145.6311353027 (km)
VX	0.2642852647102676 (km)
VY	0.286744175490658 (km)
VZ	0.07338744995264675 (km)
Mass (No Fuel)	1000 (kg)
Cd	2.2
Cr	1.2
Drag Area	$20 \ (m^2)$
Drag Model	Case dependent
NSG Model	Case dependent
SRP Area	$20 \ (m^2)$
SRP	Case dependent
Integration Method	Tool/Program Dependent
Integrator StepSize control	Variable
Integrator Init. StepSize	15000 (sec)
Integrator Accuracy	1e-13
Integrator Max. StepSize	15000 (sec)
Report Precision	16 significant figures
Report StepSize	43200 (sec)
Report CS/Cb	Same as initial state CS

B.2. CALCULATION PARAMETER TEST CASES

B.2 Calculation Parameter Test Cases

The Cb and CS initial orbit state conditions for the ISS, GEO, Mars1, Mercury1, Moon, Neptune1, Pluto1, Saturn1, Uranus1 and Venus1 test cases are the same as the vales presented in Tables B.1, B.5, B.6-B.13. The only exception is that the Report StepSize is 600 seconds.

Table B.17: Initial Orbit Parameters (Hyperbolic)

Table B.17: Initial O	rbit Parameters (Hyperbolic)
Initial State Parameter	Parameter Value (unit)
Coordinate System	Earth Mean J2000 Equator
Start Time	01 Jun 2004 12:00:00.000 (UTCG)
Stop Time	02 Jun 2004 12:00:00.000 (UTCG)
X	12371.791482634855 (km)
Y	5050.7627227610719 (km)
\mathbf{Z}	5050.762722761071 (km)
VX	-7.9859921512608487 (km)
VY	2.44520073255755 (km)
VZ	2.4452007325575495 (km)
Mass (No Fuel)	1000 (kg)
Cd	2.2
Cr	1.2
Drag Area	$20 \ (m^2)$
Drag Model	None
NSG Model	None
SRP Area	$20 \; (m^2)$
SRP	None
Integration Method	Tool/Program Dependent
Integrator StepSize control	Fixed
Integrator Init. StepSize	5 (sec)
Integrator Accuracy	1e-13
Integrator Max. StepSize	5 (sec)
Report Precision	16 significant figures
Report StepSize	600 (sec)
Report CS/Cb	Case Dependent

B.3 Integrator Test Cases

The integrator initial orbit state conditions for the ISS and GEO test cases are the same as the vales presented in Tables B.1 and B.5. The only exception is that each test case uses one of the following Integration Methods: ABM, BS, PD45, PD78, RKF56, RKN68, and RKV89.

B.4 Stopping Condition Test Cases

Refer to Tables 5.2-5.6 in Chapter 5 for initial orbit state values for the Stopping Condition test cases.

B.5 Libration Point Test Cases

Refer to Tables 6.1- 6.2 in Chapter 6 for initial orbit state values for the Stopping Condition test cases.

B.6 DeltaV Test Cases

Refer to Tables 7.1-7.4 in Chapter 7 for initial orbit state values for the Performance test cases.

B.7 Performance

Refer to Tables ??- ?? in Chapter ?? for initial orbit state values for the Performance test cases.

Appendix C

Comparison Scripts Guide

Using specific naming conventions, outlined in this acceptance test plan, and a folder architecture, highlighted below for the test cases, several semi-automated scripts were generated to compare all of the GMAT test case results with other tools. Most of these scripts have the ability to also compare results of older versions of GMAT.

C.1 Folder Architecture

The folder architecture for the files needed for the comparison scripts is presented below:

- GMAT_RegSetup/
 - output/AcceptTest/CompareResults/
 - [Tool1]_[Tool2]
 - input/AcceptTest/
 - output/AcceptTest/[Tool]_reports/
 - output/AcceptTest/Good_reports/
 - FF
 - STK
- GMATDocuments/
 - AcceptTest

C.2 Install Instructions

- 1. Copy the GMAT_RegSetup and GMATDocuments folders to the same location on your hard drive.
- 2. Check to make sure the folders listed in Section C.1
- 3. Make sure the GMAT executable folder has a Matlab folder with the latest GMAT commands and keywords
- 4. Open Matlab
- 5. Set the path in Matlab to include the GMAT matlab folder

- 6. Open GMAT and start the Matlab server
- 7. Make sure Excel is closed
- 8. Set current directory to the main GMAT_results/GMAT_scripts folder and then type BuildCompare_GMATteam in the command window or
- 9. Open one of the following files and run (F5 in Windows): Click ok to change the current Matlab directory if prompted
 - (a) BuildRun_Script_GMAT.m
 - (b) Comparison_Tool1_Tool2_PV.m
 - (c) Comparison_Tool1_Tool2_CS.m
 - (d) Comparison_Tool1_Tool2_Cb.m
 - (c) Comparison_Tool1_Tool2_Libr.m
 - (f) Comparison_Integ.m
 - (g) Comparison_DeltaV.m
 - (h) Comparison_StopCond.m
 - (i) TimeComparo.m
 - (j) LoopTestSummary.m

C.3 Warnings/Script Hints

- The following scripts were not designed for the user to hit one button, run multiple calculations, and output data without user interaction. User interaction is necessary in all of these scripts.
- The [] notation indicates multiple words can be used. For example, [Tool] means replace the bracketed expression with words such as FF,STK, and GMAT.
- As of November 2005, the Excel data created by the comparison scripts will be saved in one file name [Tool1]_[Tool2]_Results_[DD-MMM-YYYY].xls in their respective [Tool1]_[Tool2] folder in the CompareResults folder.
- Be careful adding MATLAB .m files that contain the text GMAT in their file name. These scripts use the text GMAT as an indicator to know if the file is a GMAT compatible script.
- The adherence to the naming conventions are very strict in these scripts. Make sure when adding reports, scripts, or folders to use case sensitive filenames that agree with the naming conventions at all times.
- Several output formats are overwritten when running each script. The Excel documents are saved with the current date as part of the filename. If the filename exists it will be replaced. The same overwriting process occurs with the Matlab .mat files.
- In order to compare old GMAT Builds to one another, a new folder must be created with the date of the GMAT Build. For example, the [Month] [Day] build performed well so after running the scripts that generate all the comparison data for the [Month] [Day] Build, a new folder must be created. The folder can be named YYMMDDGMAT_reports with the appropriate GMAT Build Year Month and Date replacing YYMMDD. Now simply copy the contents of GMAT_reports into YYMMDDGMAT_reports and the data can be used to compare future build of GMAT to one another.
- All the .mat files, except for the TimeComparo files, are formatted in a similar way. They contain the following variables mat_Tool11, mat_Tool21, mat_header, maxDiffs, and diffMat_Tool1_Tool2 or norm_Mat_Tool1_Tool2.

The mat_header variable contains what parameters each column represents for the other variables The mat_Tool11 and mat_Tool21 variables contain the report file data minus any headers. Tool1 is the alphabetical first tool selected and Tool2 is the other tool selected

109

- Common mistakes made with these scripts:
 - Adding report files and not following the naming convention (i.e. FF_ISS_Earth_0_0_0 was misnamed as FF_ISS_Earth_0_0).
 - Outputting other tools and not following the proper ordering of parameters for comparison
 - Report files were outputted in the wrong time interval increment
 - Report files were outputted without enough numerical precision. GMAT outputs data at a fixed width of 12 numerical characters (default). Other programs should be the same or better.

C.4 BuildRun_Script_GMAT.m script

Win compatible / Mac & Linux?

C.4.1 Purpose

This script was designed to send multiple GMAT scripts from Matlab to GMAT to be built and ran. In early versions of GMAT, there was no capability to run multiple scripts, but since current versions of GMAT contain this capability this script is not as vital in the Acceptance test plan.

Its secondary purpose is to record the individual time elapsed to run each test case and output the results to a .mat file for later use.

C.4.2 Inputs

• All .m files located in the GMAT_RegSetup/input/AcceptTest/ folder that follow the GMAT comparison naming convention described in Sections 2.3, 3.2.1, 3.3.1, and 4.2

C.4.3 Outputs

- When choosing to build multiple scripts and the all command is used a mat file is created, which keeps a log of the time it takes to run each case. The script also displays the case name and the time it takes for GMAT to run the file in Matlab's command window.
- Any other output data is dependent on the GMAT script.

C.4.4 Script Algorithm

C.5 Comparison_Tool1_Tool2_PV.m

Win/Mac/Linux compatible

C.5.1 Purpose

This script is used to perform the position and velocity comparisons needed for the Propagator Section (2) of the Acceptance Test Plan. This script takes the normalized position and velocity vector differences between the

APPENDIX C. COMPARISON SCRIPTS GUIDE

110

two selected programs.

C.5.2 Inputs

- Folder to search for files: [RootFolder]/[Tool]_reports. (Refer to Section 2.3 for the naming convention of these report files.)
- The report files must be formatted the same way. The first column is time (Mod. Julian Date), second-fourth columns are the position vector components (x, y, z), and fifth-seventh columns are the velocity vector components (Vx, Vy, Vz). The data must be separated by spaces.
- Currently the location of the report's first row of numerical data is coded into the script. FreeFlyer is the fourth row, STK is the seventh row, GMAT is the first row, OD toolbox is the first row, and any other tools added will automatically search the first row.

C.5.3 Outputs

- Comparison data is displayed in MATLAB's command window for all test cases.
- Excel documents with comparison data and pass/fail information.
- MATLAB .mat files with comparison data.
- · Latex documents with comparison data.

C.5.4 Script Algorithm

- Display welcome message
- Display menu for Tool1 options based on [Tool]_reports folder
- Wait for user to choose tool from menu
 Implement error system for incorrect choice
- Display menu for Tool2 options based on [Tool]_reports folder
- Wait for user to choose tool from menu Implement error system for incorrect choice
- Alphabetize Tool1 and Tool2 for naming purposes and rename if necessary
- Store the row location of the first instance of numerical data for both Tools' report files
- Initialize variables and folder locations
- Display a menu of Tool1 *.report files

 Generate error report if no *.report files are located in [Tool1]_report folder
- Wait for user to choose report comparison option
 Implement error system for incorrect choice
 Open Excel Connection if compare all choice selected
- Display filename, position difference, and velocity difference header
- Begin Loop. Loop once for single comparison and several times for comparing all files.
 - Check the Tool2 folder for the same report
 Display error message if no report found

- Continue if match found or exit loop if no match found
- Read both output files and save the data to different matrices
- Check to see if the row sizes are the same in both matrices
 Display error if row sizes do not match
- Take difference of both Tools report data
- Normalize the results based on position and velocity
- Determine the maximum normalized position and velocity difference
- Store propagation duration of the test cases in a variable
- Add acceptable differences values for Excel output
- Save comparison data to .mat file
 - * If compare all reports chosen, format data for output to Latex
 - * Use BasicLatexTable script to save data to LaTex file
 - * Save comparison results, acceptance errors, and duration to Excel
- Close Excel connection if open.
- End Loop. Allow user to rerun script

C.6 Comparison_Tool1_Tool2_CS.m

Win/Mac/Linux compatible

C.6.1 Purpose

This script is used to perform the coordinate system dependent comparisons needed for the Calculation Parameters Section (3) of the Acceptance Test Plan. The comparison involves taking the maximum absolute value of the differences of the variables listed in the Inputs section of this help guide.

C.6.2 Inputs

- Folder to search for files: [RootFolder]/[Tool]_reports.
 (Refer to Section 3.3.1 for the naming convention of these report files.)
- The report files must be formatted the same way. Time, [X,Y,andZ] Position(km), [X,Y,andZ] Velocity(km/sec), Mag. of Velocity(km/sec), Right Ascension of Velocity(deg), [X,Y,andZ] RxV-Specific Angular Momentum(km^2/sec), Arg. of Perigee(deg), Declination(deg), Declination of Velocity(deg), Inclination(deg), Right Ascension(deg), Right Ascension of Ascending Node(deg)
- Currently the location of the reports first row of numerical data is coded into the script. FreeFlyer is the fourth row, STK is the seventh row, GMAT is the second row, OD toolbox is the first row, and any other tools added will automatically search the first row.

C.6.3 Outputs

- Excel documents with comparison data
- MATLAB .mat files with comparison data
- Latex documents with comparison data

C.6.4 Script Algorithm

- Display welcome message
- Display menu for Tool1 options based on [Tool]_reports folder
- Wait for user to choose tool from menu Implement error system for incorrect choice
- Display menu for Tool2 options based on [Tool]_reports folder
- Wait for user to choose tool from menu
 Implement error system for incorrect choice
- Alphabetize Tool1 and Tool2 for naming purposes and rename if necessary
- Store the row location of the first instance of numerical data for both Tools' report files
- Initialize variables and folder locations
- Display a menu of Tool1 *.report files
 Generate error report if no *.report files are located in [Tool1]_report folder
- Wait for user to choose report comparison option
 Implement error system for incorrect choice
 Open Excel Connection if compare all choice selected
- Display filename, position difference, and velocity difference header
- Begin Loop. Loop once for single comparison and several times for comparing all files.
 - Check the Tool2 folder for the same report
 Display error message if no report found
 - Continue if match found or exit loop if no match found
 - Read both output files and save the data to different matrices
 - Check to see if the row sizes are the same in both matrices
 Display error if row sizes do not match
 - Take difference of both Tools report data
 - Determine the maximum difference for each coordinate system dependent parameter
 - Store propagation duration of the test cases in a variable
 - Save comparison data to .mat file
 - * If compare all reports chosen, format data for output to Latex
 - * Use BasicLatexTable script to save data to LaTex file
 - * Save comparison results, acceptance errors, and duration to Excel
 - Close Excel connection if open.
- End Loop. Allow user to rerun script

C.7 Comparison_Tool1_Tool2_Cb.m

C.7. COMPARISON_TOOL1_TOOL2_CB.M

C.7.1 Purpose

This script is used to perform the central body dependent comparisons needed for the Calculation Parameters Section (3) of the Acceptance Test Plan. The comparison involves taking the maximum absolute value of the differences of the variables listed in the Inputs section of this help guide.

C.7.2 Inputs

- Folder to search for files: [RootFolder]/[Tool]_reports.
 (Refer to Section 3.2.1 for the naming convention of these report files.)
- The report files must be formatted the same way. Time, Altitude (km), Beta Angle (deg), C3_Energy (km^2/sec^2) , Eccentricity, Latitude (deg), Longitude (deg), (RxV)_Mag (km^2/sec) , Mean Anomaly (deg), Mean Motion (rad/sec), Period (sec), Apoapsis Radius (km), Perigee Radius (km), R_Mag (km), Semimajor Axis (km), True Anomaly (deg), Semilatus Rectum(km), Apoapsis Velocity (km/sec), Periapsis Velocity (km/sec), Greenwich Hour Angle(deg), Local Sidereal Time
- Due to the inability of FF and STK tools to output all the parameters listed in the previous bullet, exceptions for FF and STK are built into the code.

STK: Semilatus Rectum, Apoapsis Velocity, Perigee Velocity, Greenwich Hour Angle; and Local Sidereal Time can not be outputted in the same report file. Out of the aforementioned parameters Greenwich Hour Angle is the only parameter that can be outputted in a separate file. All the other parameters are calculated in MATLAB based on the results STK could generate.

FF: (RxV)_Mag and R_Mag could not be outputted easily. Instead the [XYZ] components were outputted and the script computes the magnitude of the vectors. Apoapsis Velocity, Periapsis Velocity, and Local Sidereal Time are all created in this script based on available parameters.

Modifications to the code will need to be made to add a new tool that cannot output all of the central body parameters that GMAT does.

• Currently the location of the reports first row of numerical data is coded into the script. FreeFlyer is the fourth row, STK is the seventh row, GMAT is the second row, OD toolbox is the first row, and any other tools added will automatically search the first row.

C.7.3 Outputs

- Excel documents with comparison data
- MATLAB mat files with comparison data
- Latex documents with comparison data

C.7.4 Script Algorithm

- Display welcome message
- Display menu for Tool1 options based on [Tool]_reports folder
- Wait for user to choose tool from menu

Implement error system for incorrect choice

- Display menu for Tool2 options based on [Tool]_reports folder
- Wait for user to choose tool from menu
 Implement error system for incorrect choice
- Alphabetize Tool1 and Tool2 for naming purposes and rename if necessary
- Store the row location of the first instance of numerical data for both Tools' report files
- Initialize variables and folder locations
- Display a menu of Tool1 *.report files

 Generate error report if no *.report files are located in [Tool1]_report folder
- Wait for user to choose report comparison option
 Implement error system for incorrect choice
 Open Excel Connection if compare all choice selected
- Display filename, position difference, and velocity difference header
- Begin Loop. Loop once for single comparison and several times for comparing all files.
 - Check the Tool2 folder for the same report
 Display error message if no report found
 - Continue if match found or exit loop if no match found
 - Read both output files and save the data to different matrices
 - Check to see if the row sizes are the same in both matrices
 Display error if row sizes do not match
 - Take difference of both Tools report data
 - Code in exceptions for STK, FF, and any other tools that don't output all the desired GMAT central body dependent parameters
 - Determine the maximum difference for each central body dependent parameter
 - Store propagation duration of the test cases in a variable
 - Save comparison data to .mat file
 - * If compare all reports chosen, format data for output to Latex
 - * Use BasicLatexTable script to save data to LaTex file
 - * Save comparison results, acceptance errors, and duration to Excel
 - Close Excel connection if open.
- End Loop. Allow user to rerun script

C.8 Comparison_Tool1_Tool2_Libr.m

Win/Mac/Linux compatible

C.8.1 Purpose

This script is used to perform the position and velocity comparisons needed for the Libration Points Section (6) of the Acceptance Test Plan. This script takes the normalized position and velocity vector differences between the two selected programs.

C.9. COMPARISON_INTEG.M

C.8.2 Inputs

- Folder to search for files: [Root Folder]/[Tool]_reports.
 (Refer to Section 6.2 for the naming convention of these report files.)
- The report files must be formatted the same way. The first column is time (Mod. Julian Date), second-fourth columns are the position vector components (x, y, z), and fifth-seventh columns are the velocity vector components (Vx, Vy, Vz). The data must be separated by spaces.
- Currently the location of the report's first row of numerical data is coded into the script. FreeFlyer is the fourth row, STK is the seventh row, GMAT is the first row, OD toolbox is the first row, and any other tools added will automatically search the first row.

C.8.3 Outputs

- Comparison data is displayed in MATLAB's command window for all test cases.
- Excel documents with comparison data and pass/fail information.
- MATLAB .mat files with comparison data.
- Latex documents with comparison data.

C.8.4 Script Algorithm

[INSERT script Algorithm]

C.9 Comparison_Integ.m

Win/Mac/Linux compatible

C.9.1 Purpose

This script is used to perform the integrator comparisons needed for the Integrator Section (4) of the Acceptance Test Plan. The comparison involves taking the difference of the position and velocity vector and then normalizing these two vectors to get the position and velocity difference. This script behaves similar to the Comparison_Tool1_Tool2_PV.m script but the components being varied are the integrators for two body test cases.

C.9.2 Inputs

- Folder to search for files: [RootFolder]/[Tool]_reports.
- Naming convention: Integrator_[Tool]_[Trajectory]_[IntegratorType]_2Body.report
- The report files must be formatted the same way. The first column is time, second-fourth columns are the position vector (x,y,z), and fifth-seventh columns are the velocity vector (x,y,z). The data must be separated by spaces.
- Currently the location of the reports' first row of numerical data is coded into the script. FreeFlyer is the fourth row, STK is the seventh row, GMAT is the second row, OD toolbox is the first row, and any other tools added will automatically search the first row.

Draft: Work in Progress

APPENDIX C. COMPARISON SCRIPTS GUI

C.9.3 Outputs

116

- Excel documents with comparison data into the following folder: [RootFolder]/CompareResults/[Tool1]_[Tool2]
- MATLAB .mat files with comparison data into the following folder: [RootFolder]/CompareResults/[Tool1]_[Tool2]
- Latex documents with comparison data into the following folder: [RootFolder]/Latex_Docs

C.9.4 Script Algorithm

- Display welcome message
- Display menu for Tool1 options based on [Tool]_reports folder (Can only be Exact or GMAT folders)
- Wait for user to choose tool from menu
 Implement error system for incorrect choice
- Display menu for Tool2 options based on [Tool]_reports folder (Can only be Exact or GMAT folders)
- Wait for user to choose tool from menu
 Implement error system for incorrect choice
- Alphabetize Tool1 and Tool2 for naming purposes and rename if necessary
- Store the row location of the first instance of numerical data for both Tools' report files
- Initialize variables and folder locations
- Display a menu of Tool1 *.report files
 Generate error report if no *.report files are located in [Tool1]_report folder
- Wait for user to choose report comparison option
 Implement error system for incorrect choice
 Open Excel Connection if compare all choice selected
- Display filename, position difference, and velocity difference header
- Begin Loop. Loop once for single comparison and several times for comparing all files.
 - Check the Tool2 folder for the same report
 - Display error message if no report found
 - Continue if match found or exit loop if no match found
 Read both output files and save the data to different matrices
 - Check to see if the row sizes are the same in both matrices
 Display error if row sizes do not match
 - Take difference of both Tools report data
 - Normalize the results based on position and velocity
 - Determine the maximum normalized position and velocity difference
 - Store propagation duration of the test cases in a variable
 - Save comparison data to mat file
 - * If compare all reports chosen, format data for output to Latex
 - * Use BasicLatexTable script to save data to LaTex file
 - * Save comparison results, acceptance errors, and duration to Excel
 - Close Excel connection if open.
- End Loop. Allow user to rerun script

C.10. COMPARISON_DELTAV.M

C.10 Comparison_DeltaV.m

Win/Mac/Linux compatible

- C.10.1 Purpose
- C.10.2 Inputs
- C.10.3 Outputs
- C.10.4 Script Algorithm

C.11 Comparison_StopCond.m

Win/Mac/Linux compatible

- C.11.1 Purpose
- C.11.2 Inputs
- C.11.3 Outputs
- C.11.4 Script Algorithm

C.12 STK_Repropagate.m

Win compatible

C.12.1 Purpose

The STK_Repropagate script was designed to reduce the time it took to generate STK report files, after modifications to the STK scenario were made, and obtain more accurate STK run times. Through STK's connect module Matlab connect with STK and propagates satellites, generates reports, and outputs run times.

C.12.2 Inputs

• STK scenario folders that follow the GMAT Acceptance Test Plan naming convention, in the following folder: [RootFolder]/TruthFiles/STK

C.12.3 Outputs

118

- STK report file saved into [RootFolder]/STK_reports.
- Matlab .mat file with the time taken to propagate each satellite.

C.12.4 Script Algorithm

C.13 TimeComparo.m

Win/Mac/Linux compatible

C.13.1 Purpose

When running the BuildRun_Script_GMAT.m script there is an all option after selecting the build & run multiple cases choice. By using this all option, the GMAT performance times for all the test cases are saved to a mat file. This script uses those saved performance times and, based on a pre-selected amount of test cases, creates a new excel file that contains GMAT, FF, and STK performance times for those pre-selected cases.

C.13.2 Inputs

- Template file containing pre-selected cases: [RootFolder]/NonGMATrunTimes.xls
- Folder to search for files: [RootFolder]/CompareResults
- Naming convention: [Date]/_Time2RunAll.mat

C.13.3 Outputs

• Excel document with comparison data

C.13.4 Script Algorithm

Appendix D

STK Setup

The STK setups were very crucial in determining a preliminary standard to compare GMAT to. In the initial stages of the Acceptance Test Plan STK scenarios were obtained from Emergent Space, as mentioned in Section 2.1. These Earth based cases were created in STK-HPOP and modified to provide a setup that was as equivalent to GMAT as was possible. Non-Earth test cases could not be created with STK-HPOP, so STK-Astrogator was used. In order to use STK-Astrogator several Astrogator elements needed to be created. Section D.4 details all the elements needed for the non-Earth STK test cases.

D.1 Support Files Needed

All alterations to STK scenarios were performed with STK 6.1 on the desktop machine described in the Performance Section (Section ??).

In order to duplicate data generated by STK for this Acceptance Test Plan, the same files presented in Table D.1 are needed.

Table D.1: STK support files

Filename(s)	File('s) and/or Folder('s) Location	Information in Section
EOP.dat	STK Root Directory DynamicEarthData	2.2.1
EOP.dat.all	STK Root Directory \DynamicEarthData	2.2.1
All planetary cb files	[STK Root Directory]\STKData\CentralBodies	2.2.2
Non-spherical grav (nsg) files	STK Root Directory \STKData \Central Bodies	2.3
Report Styles	[STK individual user folder]\Config\Styles	D.5
Non-Earth Astrogator Elements	STK Root Directory]\STKData\Astrogator	D.4
Leap Seconds File	[STK Root Directory]\STKData\Astro	2.2.2

D.2 STK modules used

Refer to Appendix B for a easy initial orbit state format to use as input into STK. Table D.2 displays the STK module to use in order to duplicate the results seen in their Acceptance Test Plan document.

APPENDIX D. STK SETUP

Table D.2: STK modules used			
Test Cases	Test Group(s)	STK-type	
ISS, GEO, SunSync, Molniya, GPS, Hyperbolic	Propagator, Cb, CS	STK-HPOP	
DeepSpace, EML2, ESL2, All non-Earth cases	Propagator	STK-Astrogator	
ISS, GEO	Integrator	STK-2Body	

D.3 Scenario Setup

The following are guidelines we followed when creating STK Scenarios, excluding HPOP or Astrogator specific guidelines:

- Initial Scenario Epoch is the same as the satellite epoch
- Make sure all support files (Table D.1) are present and match the information in this document.
- *.cb planetary files need to contain the values in Tables 2.5, 2.7, and 2.9
- Remember the Modified Julian Date used in GMAT and STK are different. (i.e. UTC_GMAT_ModJulian = UTC_STK_ModJulian + 29999.5)

D.3.1 HPOP

- $\bullet\,$ Planetary information should be taken from the JPL DE file
- Satellite properties must be consistent with table the values in Table 2.5

[INSERT Screen captures of HPOP]

D.3.2 STK

- All Astrogator support files (Table D.1) are essential in reproducing the values in this document.
- Make sure the maximum propagation is greater than the test case propagation duration or turn off the feature in STK.

[INSERT Screen captures of Astrogator]

D.4. ASTROGATOR ELEMENTS

D.4 Astrogator Elements

For the non-Earth cases a large number of Astrogator elements were created in order to compare STK to GMAT's results.

D.4.1 Calculation Objects: Cartesian Elements

Vx_Neptune_Centered_Mean_J2000_Earth_Ec Vx_EarthMJ2000Ec Vx_Neptune_Centered_Mean_J2000_Earth_Eq Vx_EarthMODEc Vy_Neptune_Centered_Mean_J2000_Earth_Ec Vx_EarthMODEq Vx_EarthMOEEc Vy_Neptune_Centered_Mean_J2000_Earth_Eq Vz_Neptune_Centered_Mean_J2000_Earth_Ec Vx_EarthMOEEq Vz_Neptune_Centered_Mean_J2000_Earth_Eq Vx_EarthTODEc Vx_NeptuneFixed Vx_EarthTODEq Vy_NeptuneFixed Vx_EarthTOEEc Vx_EarthTOEEq Vz_NeptuneFixed Vx_Pluto_Centered_Mean_J2000_Earth_Ec Vy_EarthMJ2000Ec Vx_Pluto_Centered_Mean_J2000_Earth_Eq Vy_EarthMODEc Vy_Pluto_Centered_Mean_J2000_Earth_Ec Vy_EarthMODEq Vv_Pluto_Centered_Mean_J2000_Earth_Eq Vy_EarthMOEEc Vz_Pluto_Centered_Mean_J2000_Earth_Ec Vy_EarthMOEEq Vz_Pluto_Centered_Mean_J2000_Earth_Eq Vy_EarthTODEc Vy_EarthTODEq Vx_PlutoFixed Vy_EarthTOEEc Vy_PlutoFixed Vy_EarthTOEEq Vz_PlutoFixed Vz_EarthMJ2000Ec Vx_Saturn_Centered_Mean_J2000_Earth_Ec Vz_EarthMODEc Vx_Saturn_Centered_Mean_J2000_Earth_Eo Vz_EarthMODEq Vy_Saturn_Centered_Mean_J2000_Earth_Ec Vz_EarthMOEEc Vy_Saturn_Centered_Mean_J2000_Earth_Eq Vz_Saturn_Centered_Mean_J2000_Earth_Ec Vz_EarthMOEEq Vz_EarthTODEc Vz_Saturn_Centered_Mean_J2000_Earth_Eq Vz_EarthTODEq Vx_SaturnFixed Vz_EarthTOEEc Vy_SaturnFixed Vz_EarthTOEEg Vz_SaturnFixed Vx_Mars_Centered_Mean_J2000_Earth_Ec Vx_Sun_Centered_Mean_J2000_Earth_Ec Vx Mars Centered Mean J2000 Earth Eq. Vx Sun Centered Mean J2000 Earth Eq Vy_Mars_Centered_Mean_J2000_Earth_Ec Vy_Sun_Centered_Mean_J2000_Earth_Ec Vy_Mars_Centered_Mean_J2000_Earth_Eq Vy_Sun_Centered_Mean_J2000_Earth_Eq Vz_Mars_Centered_Mean_J2000_Earth_Ec Vz_Sun_Centered_Meau_J2000_Earth_Ec Vz_Mars_Centered_Mean_J2000_Earth_Eq Vz_Sun_Centered_Mean_J2000_Earth_Eq Vx_MarsFixed Vx_SunFixed Vy_MarsFixed Vv_SunFixed Vz_MarsFixed Vz_SunFixed Vx_Mercury_Centered_Mean_J2000_Earth_Ec Vx_Uranus_Centered_Mean_J2000_Earth_Ec Vx_Mercury_Centered_Mean_J2000_Earth_Eq Vx_Uranus_Centered_Mean_J2000_Earth_Eq Vy_Mercury_Centered_Mean_J2000_Earth_Ec Vy_Uranus_Centered_Mean_J2000_Earth_Ec Vy_Mercury_Centered_Mean_J2000_Earth_Eq Vy_Uranus_Centered_Mean_J2000_Earth_Eq Vz_Uranus_Centered_Mean_J2000_Earth_Ec Vz_Mercury_Centered_Mean_J2000_Earth_Ec Vz_Mercury_Centered_Mean_J2000_Earth_Eq Vz_Uranus_Centered_Mean_J2000_Earth_Eq Vx_MercuryFixed Vx. Uranus Fixed Vy_UranusFixed Vy_MercuryFixed Vz_MercuryFixed Vz_UramusFixed

APPENDIX D. STK SETUP

Vx_Moon_Centered_Mean_J2000_Earth_Ec Vx_Moon_Centered_Mean_J2000_Earth_Eq Vy_Moon_Centered_Mean_J2000_Earth_Ec Vy_Moon_Centered_Mean_J2000_Earth_Eq Vz_Moon_Centered_Mean_J2000_Earth_Ec Vz_Moon_Centered_Mean_J2000_Earth_Eq Vx_MoonFixed Vy_MoonFixed Vz_MoonFixed X_EarthGSE Y_EarthGSE Z_EarthGSE Vx_EarthGSE

Vx_Venus_Centered_Mean_J2000_Earth_Ec Vx_Vcnus_Centered_Mean_J2000_Earth_Eq Vy_Venus_Centered_Mean_J2000_Earth_Ec Vy_Venus_Centered_Mean_J2000_Earth_Eq Vz_Venus_Centered_Mean_J2000_Earth_Ec Vz_Venus_Centered_Mean_J2000_Earth_Eq Vx. VenusFixed Vy_VemisFixed Vz_VenusFixed X_EarthGSM Y_EarthGSM Z_EarthGSM Vx_EarthGSM

D.4.2Calculation Objects: Geodetic Elements

Vy_EarthGSE

Vz_EarthGSE

Altitude_Mars Altitude_Pluto Latitude_Pluto Latitude_Mars Longitude_Pluto Longitude_Mars Altitude_Mercury Altitude_Saturn Latitude_Mercury Latitude_Saturn Longitude_Saturn Longitude Mercury Altitude_Uranus Altitude_Moon Latitude_Moon Latitude_Uranus Longitude_Moon Longitude_Uranus Altitude_Neptune Altitude_Venus Latitude_Neptune Latitude_Venus Longitude_Venus Longitude_Neptune

Vy_EarthGSM

Vz_EarthGSM

122

D.4. ASTROGATOR ELEMENTS

D.4.3 Calculation Objects: Keplerian Elements

Argument_of_Periapsis_(fixed) Inclination_(fixed) Argument_of_Periapsis_(MJ2000Ec) Inclination_(MJ2000Ec) Argument_of_Periapsis_(MODEc) Inclination_(MODEc) Argument_of_Periapsis_(MOEEc) Inclination_(MOEEc) Argument_of_Periapsis_(MOEEq) Inclination_(MOEEq) Argument_of_Periapsis_(TODEc) Inclination_(TODEc) Argument_of_Periapsis_(TOEEc) Inclination_(TOEEc) Argument_of_Periapsis_(TOEEq) Inclination_(TOEEq) Argument_of_Periapsis_(EarthGSE) Inclination_(EarthGSE) Argument_of_Periapsis_(EarthGSM) Inclination_(EarthGSM) Argument_of_Periapsis_(MarsFixed) Inclination_(MarsFixed) Argument_of_Periapsis_(MarsMJ2000Ec) Inclination_(MarsMJ2000Ec) Argument_of_Periapsis_Mars_(MJ2000Eq) Inclination_Mars_(MJ2000Eq) Argument_of_Periapsis_(MercurvFixed) Inclination_(MercuryFixed) Argument_of_Periapsis_(MercuryMJ2000Ec) Inclination_(MercuryMJ2000Ec) Argument_of_Periapsis_Mercury_(MJ2000Eq) Inclination_Mercury_(MJ2000Eq) Argument_of_Periapsis_(MoonFixed) Inclination_(MoonFixed) Argument_of_Periapsis_(MoonMJ2000Ec) Inclination_(MoonMJ2000Ec) Argument_of_Periapsis_Moon_(MJ2000Eq) Inclination_Moon_(MJ2000Eq) Argument_of_Periapsis_(NeptumeFixed) Inclination_(NeptuneFixed) Argument_of_Periapsis_(NeptuneMJ2000Ec) Inclination_(NeptuneMJ2000Ec) Argument_of_Periapsis_Neptune_(MJ2000Eq) Inclination_Neptune_(MJ2000Eq) Argument_of_Periapsis_(PlutoFixed) Inclination_(PlutoFixed) Argument_of_Periapsis_(PlutoMJ2000Ec) Inclination_(PlutoMJ2000Ec) Argument_of_Periapsis_Phito_(MJ2000Eq) Inclination_Pluto_(MJ2000Eq) Argument_of_Periapsis_(SaturnFixed) Inclination_(SaturnFixed) Argument_of_Periapsis_(SaturnMJ2000Ec) Inclination_(SaturnMJ2000Ec) Argument_of_Periapsis_Saturn_(MJ2000Eq) Inclination_Saturn_(MJ2000Eq) Argument_of_Periapsis_(UranusFixed) Inclination (UranusFixed) Argument_of_Periapsis_(UranusMJ2000Ec) Inclination_(UranusMJ2000Ec) Argument_of_Periapsis_Uranus_(MJ2000Eq) Inclination Argument_of_Periapsis_(VenusFixed) Inclination_(VenusFixed) Argument_of_Periapsis_(VenusMJ2000Ec) Inclination_(VenusMJ2000Ec) Argument_of_Periapsis_Venus_(MJ2000Eq) Inclination_Venus_(MJ2000Eq) Eccentricity_Mars Mean_Motion_Mars Eccentricity_Mercury Mean_Motion_Mercury Eccentricity_Moon Mean_Motion_Moon Eccentricity_Neptune Mean_Motion_Neptune Eccentricity_Pluto Mcan_Motion_Pluto Eccentricity_Saturn Mean_Motion_Saturn Eccentricity_Uranus Mean_Motion_Uranus Eccentricity_Venus Mean_Motion_Venus

Orbit_Period_Mars Orbit_Period_Mercury Orbit_Period_Moon Orbit_Period_Neptune Orbit_Period_Pluto Orbit_Period_Saturn Orbit_Period_Uranus Orbit_Period_Venus RAAN_(fixed) RAAN_(MJ2000Ec) RAAN_(MODEc) RAAN_(MOEEc) RAAN_(MOEEq) RAAN_(TODEc) RAAN_(TOEEc) RAAN_(TOEEq) RAAN_(MarsFixed) RAAN_(MarsMJ2000Ec) RAAN_Mars_(MJ2000Eq) RAAN_(MercuryFixed) RAAN_(MercuryMJ2000Ec) RAAN_Mercury_(MJ2000Eq) RAAN_(MoonFixed) RAAN_(MoonMJ2000Ec) RAAN_Moon_(MJ2000Eq) RAAN_(NeptuneFixed) RAAN_(NeptuneMJ2000Ec) RAAN_Neptune_(MJ2000Eq) RAAN_(PlutoFixed) RAAN_(PlutoMJ2000Ec) RAAN_Pluto_(MJ2000Eq) RAAN_(SaturnFixed) RAAN_(SaturnMJ2000Ec) RAAN_Saturn_(MJ2000Eq) RAAN_(UranusFixed) RAAN_(UramusMJ2000Ec) RAAN_Uranus_(MJ2000Eq) RAAN_(VenusFixed) RAAN_(VenusMJ2000Ec) RAAN_Venus_(MJ2000Eq)

Radius_Of_Apoapsis_Mars Radius_Of_Apoapsis_Mercury Radius_Of_Apoapsis_Moon Radius_Of_Apoapsis_Neptune Radius_Of_Apoapsis_Pluto Radius_Of_Apoapsis_Saturn Radius_Of_Apoapsis_Uranus Radius_Of_Apoapsis_Venus Radius_Of_Periapsis_Mars Radius_Of_Periapsis_Mercury Radius_Of_Periapsis_Moon Radius_Of_Periapsis_Neptune Radius_Of_Periapsis_Pluto Radius_Of_Periapsis_Saturn Radius_Of_Periapsis_Uranus Radius_Of_Periapsis_Venus Semimajor_Axis_Mars Semimajor_Axis_Mercury Semimajor_Axis_Moon Seminajor_Axis_Neptune Semimajor_Axis_Pluto Semimajor_Axis_Saturn Semimajor_Axis_Uranus Semimajor_Axis_Venus True Anomaly Mars True_Anomaly_Mercury True_Anomaly_Moon True_Anomaly_Neptune True_Anomaly_Pluto True_Anomaly_Saturn True_Anomaly_Uranus True_Anomaly_Venus RAAN_(EarthGSE) RAAN_(EarthGSM)

D.4. ASTROGATOR ELEMENTS

D.4.4 Calculation Objects: Other Orbit Elements

Beta_Angle_Mars
Beta_Angle_Mercury
Beta_Angle_Moon
Beta_Angle_Pluto
Beta_Angle_Saturn
Beta_Angle_Uranus
Beta_Angle_Venus

D.4.5 Calculation Objects: Target Vector Elements

C3.Energy_Mercury C3.Energy_Moon C3.Energy_Neptune C3.Energy_Pluto C3.Energy_Saturn C3.Energy_Uranus C3.Energy_Venus

D.4.6 Calculation Objects: Spherical Elements

Declination_(EarthGSE) Right_Asc_(MercuryMJ2000Ec) Declination_(EarthGSM) Right_Asc_(MoonFixed) Declination_(MJ2000Ec) Right_Asc_(MoonMJ2000Ec) Declination_(MODEc) Right_Asc_(NeptuneFixed) Declination_(MOEEc) Right_Asc_(NeptuneMJ2000Ec) Declination_(MOEEq) Right_Asc_(PlutoFixed) Declination_(MarsFixed) Right_Asc_(PlutoMJ2000Ec) Declination_(MarsMJ2000Ec) Right_Asc_(SaturnFixed) Declination_(MercuryFixed) Right_Asc_(SaturnMJ2000Ec) Declination_(MercuryMJ2000Ec) Right_Asc_(TODEc) Declination_(MoonFixed) Right_Asc_(TOEEc) Declination_(MoonMJ2000Ec) Right_Asc_(TOEEq) Right_Asc_(UranusFixed) Declination_(NeptuneFixed) Declination_(NeptuneMJ2000Ec) Right_Asc_(UranusMJ2000Ec) Declination_(PlutoFixed) Right_Asc_(VenusFixed) Declination_(PlutoMJ2000Ec) Right_Asc_(VenusMJ2000Ec) Declination_(SaturnMJ2000Ec) Right_Asc_Mars_(MJ2000Eq) Declination_(SaturnsFixed) Right_Asc_Mercury_(MJ2000Eq) Declination_(TODEc) Right_Asc_Moon_(MJ2000Eq) Declination_(TOEEc) Right_Asc_Neptune_(MJ2000Eq)

Declination_(TOEEq) Declination_(UranusFixed) Declination_(UranusMJ2000Ec) Declination_(VenusFixed) Declination_(VenusMJ2000Ec) Declination_Mars_(MJ2000Eq) Declination_Mercurv_(MJ2000Eq) Declination_Moon_(MJ2000Eq) Declination_Neptune_(MJ2000Eq) Declination_Pluto_(MJ2000Eq) Declination_Saturn_(MJ2000Eq) Declination_Uranus_(MJ2000Eq) Declination_Venus_(MJ2000Eq) R.Mag_(MarsFixed) R_Mag_(MercurvFixed) R_Mag_(MoonFixed) R_Mag_(NeptuneFixed) R_Mag_(PhitoFixed) R_Mag_(SaturnFixed) R_Mag_(UranusFixed) R_Mag_(VenusFixed) R_Mag_Mars R_Mag_Morcury R_Mag_Moon R_Mag_Neptune R_Mag_Pluto R_Mag_Saturn R_Mag_Uranus R_Mag_Venus R_Mag_(EarthGSE) R_Mag_(EarthGSM) Right_Asc_(MJ2000Ec) Right_Asc_(MODEc) Right_Asc_(MOEEc) Right_Asc_(MOEEq) Right_Asc_(MarsFixed) Right_Asc_(MarsMJ2000Ec) Right_Asc_(MercuryFixed) Right_Asc_(EarthGSM)

Right_Asc_Pluto_(MJ2000Eq) Right_Asc_Saturn_(MJ2000Eq) Right_Asc_Uranus_(MJ2000Eq) Right_Asc_Venus_(MJ2000Eq) V_Mag_(MJ2000Ec) V_Mag_(MODEc) V_Mag_(MOEEc) V_Mag_(MOEEq) V_Mag_(MarsFixed) V_Mag_(MarsMJ2000Ec) V_Mag_(MercuryFixed) V_Mag_(MercuryMJ2000Ec) V_Mag_(MoonFixed) V_Mag_(MoonMJ2000Ec) V_Mag_(NeptuneFixed) V_Mag_(NeptuneMJ2000Ec) V_Mag_(PlutoFixed) V_Mag_(PlutoMJ2000Ec) V_Mag_(SaturnMJ2000Ec) V_Mag_(SaturnsFixed) V_Mag_(TODEc) V_Mag_(TOEEc) V_Mag_(TOEEq) V_Mag_(UranusFixed) V_Mag_(UranusMJ2000Ec) V_Mag_(VenusFixed) V_Mag_(VenusMJ2000Ec) V_Mag_Mars_(MJ2000Eq) V_Mag_Mercury_(MJ2000Eq) V_Mag_(EarthGSE) V_Mag_(EarthGSM) V_Mag_Moon_(MJ2000Eq) V_Mag_Neptume_(MJ2000Eq) V_Mag_Pluto_(MJ2000Eq) V_Mag_Saturn_(MJ2000Eq) V_Mag_Uranus_(MJ2000Eq) V_Mag_Venus_(MJ2000Eq)

Right_Asc_(EarthGSE)

Draft: Work in Progress D.4. ASTROGATOR ELEMENTS

D.4.7 Calculation Objects: Vector Elements

(RxV)_Mag	$(R \times V)_{-}Z_{-}(MOEEq)$
(RxV)_Mag_(MarsFixed)	$(RxV)_Z(MarsFixed)$
(RxV)_Mag_(MarsMJ2000)	(RxV)_Z_(MarsMJ2000Ec)
(RxV)_Mag_(MarsMJ2000Ec)	(RxV)_Z_(MarsMJ2000Eq)
(RxV)_Mag_(MercuryFixed)	(RxV)_Z_(MercuryFixed)
(RxV)_Mag_(MercuryMJ2000)	(RxV)_Z_(MercuryMJ2000Ec)
(RxV)_Mag_(MercuryMJ2000Ec)	(RxV)_Z_(MercuryMJ2000Eq)
(RxV)_Mag_(MoonFixed)	$(RxV)_{Z}(MoonFixed)$
(RxV)_Mag_(MoonMJ2000)	(RxV)_Z_(MoonMJ2000Ec)
(RxV)_Mag_(MoonMJ2000Ec)	(RxV)_Z_(MoonMJ2000Eq)
(RxV)_Mag_(NeptuneFixed)	(RxV)_Z_(NeptuneFixed)
(RxV)_Mag_(NeptuneMJ2000)	(RxV)_Z_(NeptuneMJ2000Ec)
(RxV)_Mag_(NeptuneMJ2000Ec)	$(RxV)_{Z_{-}}(NeptuneMJ2000Eq)$
	(RxV)_Z_(PlutoFixed)
(RxV)_Mag_(PlutoFixed)	(RxV)_Z_(PlutoMJ2000Ec)
(RxV)_Mag_(PlutoMJ2000)	
(RxV)_Mag_(PlutoMJ2000Ec)	(RxV)_Z_(PlutoMJ2000Eq)
(RxV)_Mag_(SaturnFixed)	(RxV)_Z_(SaturnFixed)
(RxV)_Mag_(SaturnMJ2000)	(RxV)_Z_(SaturnMJ2000Ec)
(RxV)_Mag_(SaturnMJ2000Ec)	(RxV)_Z_(SaturnMJ2000Eq)
(RxV)_Mag_(UranusFixed)	(RxV)_Z_(TODEc)
(RxV)_Mag_(UranusMJ2000)	$(RxV)_Z$ - $(TODEq)$
(RxV)_Mag_(UranussMJ2000Ec)	(RxV)_Z_(TOEEc)
(RxV)_Mag_(VenusFixed)	$(RxV)_{-}Z_{-}(TOEEq)$
(RxV)_Mag_(VenusMJ2000)	(RxV)_Z_(UranusFixed)
$(RxV)_Mag_(VenusMJ2000Ec)$	(RxV)_Z_(UranusMJ2000Ec)
(RxV)_X	$(RxV)_Z(UranusMJ2000Eq)$
$(RxV)_X_F$	$(RxV)_Z(VenusFixed)$
(RxV)_X_(MJ2000Ec)	$(RxV)_Z(VenusMJ2000Ec)$
$(RxV)_X(MODEc)$	$(RxV)_{-}Z_{-}(VenusMJ2000Eq)$
$(RxV)_X_(MODEq)$	$(RxV)_X(MOEEc)$
(RxV)_X_(MOEEq)	Vector_Dec_(Fixed)
(RxV)_X_(MarsFixed)	Vector_Dec_(MJ2000Ec)
(RxV)_X_(MarsMJ2000Ec)	Vector_Dec_(MODEc)
(RxV)_X_(MarsMJ2000Eq)	Vector_Dec_(MODEq)
(RxV)_X_(MercuryFixed)	Vector_Dec_(MOEEc)
(RxV)_X_(MercuryMJ2000Ec)	Vector_Dec_(MOEEq)
(RxV)_X_(MercuryMJ2000Eq)	Vector_Dec_(MarsFixed)
(RxV)_X_(MoonFixed)	Vector_Dec_(MarsMJ2000Ec)
(RxV)_X_(MoonMJ2000Ec)	Vector_Dec_(MarsMJ2000Eq)
(RxV)_X_(MoonMJ2000Eq)	Vector_Dec_(MercuryFixed)
(RxV)_X_(NeptuneFixed)	Vector_Dec_(MercuryMJ2000Ec)
(RxV)_X_(NeptuneMJ2000Ec)	Vector_Dec_(MercuryMJ2000Eq)
(RxV)_X_(NeptuneMJ2000Eq)	Vector_Dec_(MoonFixed)
(RxV)_X_(PlutoFixed)	Vector_Dec_(MoonMJ2000Ec)
(RxV)_X_(PlutoMJ2000Ec)	Vector_Dec_(MoonMJ2000Eq)
(RxV)_X_(PlutoMJ2000Eq)	Vector_Dec_(NeptuneFixed)
(RxV)_X_(SaturnFixed)	Vector_Dec_(NeptuneMJ2000Ec)
(RxV)_X_(SaturnMJ2000Ec)	Vector_Dec_(NeptuneMJ2000Eq)
(RxV)_X_(SaturnMJ2000Eq)	(RxV)_Z_(MOEEc)
(RxV)_X_(EarthGSE)	(RxV)_X_(EarthGSM)
(RxV)_Y_(EarthGSE)	(RxV)_Y_(EarthGSM)
(RxV)_Z_(EarthGSE)	(RxV)_Z_(EarthGSM)
EarthGSM_Position_X	EarthGSM_Velocity_X

EarthGSM_Velocity_Y EarthGSM_Position_Y EarthGSM_Position_Z EarthGSM_Velocity_Z Vector_Dec_(EarthGSE) Vector_Dec_(EarthGSM) Vector RA_(EarthGSE) Vector_RA_(EarthGSM) Vector_Dec_(PlutoFixed) (RxV)_X_(TODEc) Vector_Dec_(PlutoMJ2000Ec) $(RxV)_X(TODEq)$ Vector_Dec_(PlutoMJ2000Eq) $(RxV)_X_(TOEEc)$ Vector_Dec_(SaturnFixed) $(RxV)_X_(TOEEq)$ Vector_Dec_(SaturnMJ2000Ec) $(RxV)_X_(UranusFixed)$ Vector_Dec_(SaturnMJ2000Eq) (RxV)_X_(UranusMJ2000Ec) Vector_Dec_(TODEc) (RxV)_X_(UranusMJ2000Eq) Vector_Dec_(TODEq) $(RxV)_X(VenusFixed)$ Vector_Dec_(TOEEc) $(RxV)_X_{venusMJ2000Ec}$ Vector_Dec_(TOEEq) $(RxV)_X_{(VenusMJ2000Eq)}$ Vector_Dec_(UramusFixed) $(RxV)_Y$ Vector_Dec_(UranusMJ2000Ec) $(RxV)_Y_{Fixed}$ Vector_Dec_(UranusMJ2000Eq) $(RxV)_Y_(MJ2000Ec)$ Vector_Dec_(VenusFixed) $(RxV)_Y(MODEc)$ Vector_Dec_(VenusMJ2000Ec) $(RxV)_Y_(MODEq)$ Vector_Dec_(VenusMJ2000Eq) $(RxV)_Y_(MOEEc)$ Vector_RA_(Fixed) $(RxV)_Y_MOEEq)$ Vector_RA_(MJ2000Ec) (RxV)_Y_(MarsFixed) Vector_RA_(MODEc) (RxV)_Y_(MarsMJ2000Ec) Vector_RA_(MODEq) (RxV)_Y_(MarsMJ2000Eq) Vector_RA_(MOEEc) (RxV)_Y_(MercuryFixed) $Vector_RA_{\perp}(MOEEq)$ (RxV)_Y_(MercuryMJ2000Ec) Vector_RA_(MarsFixed) (RxV)_Y_(MercuryMJ2000Eq) Vector_RA_(MarsMJ2000Ec) (RxV)_Y_(MoonFixed) (RxV)_Y_(MoonMJ2000Ec) Vector_RA_(MarsMJ2000Eq) Vector_RA_(MercuryFixed) $(RxV)_Y_(MoonMJ2000Eq)$ Vector_RA_(MercuryMJ2000Ec) (RxV)_Y_(NeptuneFixed) Vector.RA_(MercuryMJ2000Eq) (RxV)_Y_(NeptuneMJ2000Ec) (RxV)_Y_(NeptuneMJ2000Eq) Vector_RA_(MoonFixed) Vector_RA_(MoonMJ2000Ec) (RxV)_Y_(PlutoFixed) (RxV)_Y_(PlutoMJ2000Ec) Vector_RA_(MoonMJ2000Eq) $(RxV)_Y_(PlutoMJ2000Eq)$ Vector_RA_(NeptuneFixed) Vector_RA_(NeptuneMJ2000Ec) $(RxV)_Y_{saturn}Fixed)$ Vector_RA_(NeptuneMJ2000Eq) $(RxV)_Y_{saturnMJ2000Ec}$ Vector_RA_(PlutoFixed) $(RxV)_Y_{saturn}MJ2000Eq$ Vector_RA_(PlutoMJ2000Ec) $(RxV)_Y_(TODEc)$ (RxV)_Y_(TODEq) Vector_RA_(PlutoMJ2000Eq) Vector_RA_(SaturnFixed) $(RxV)_-Y_-(TOEEc)$ Vector_RA..(SaturnMJ2000Ec) $(RxV)_Y_(TOEEq)$ Vector_RA_(SaturnMJ2000Eq) (RxV)_Y_(UranusMJ2000Ec) $Vector_R\Lambda_(TODEc)$ (RxV)_Y_(UranusMJ2000Eq) Vector_RA_(TODEq) (RxV)_Y_(UranussFixed) Vector_RA_(TOEEc) (RxV)_Y_(VenusFixed) Vector_RA_(TOEEq) $(RxV)_Y_{venusMJ2000Ec}$ Vector_RA_(UranusFixed) (RxV)_Y_(VenusMJ2000Eq) Vector_RA_(UranusMJ2000Ec) $(RxV)_{-}Z$ Vector_RA_(UranusMJ2000Eq) $(RxV)_Z$ -(Fixed) Vector_RA_(VenusFixed) $(RxV)_Z(MJ2000Ec)$ Vector_RA_(VenusMJ2000Ec) $(RxV)_Z(MODEc)$

 $(RxV)_Z(MODEq)$

 $Vector_RA_(VenusMJ2000Eq)$

D.4. ASTROGATOR ELEMENTS

D.4.8 Coordinate Systems: Central Body Inertial Elements

Mars_Centered_Mean_J2000 Mercury_Centered_Mean_J2000 Moon_Centered_Mean_J2000 Neptune_Centered_Mean_J2000 Pluto_Centered_Mean_J2000 Saturn_Centered_Mean_J2000 Uranus_Centered_Mean_J2000 Venus_Centered_Mean_J2000 Sune_Centered_MJ2000Ec Mars_Centered_MJ2000Ec
Mercury_Centered_MJ2000Ec
Moon_Centered_MJ2000Ec
Neptune_Centered_MJ2000Ec
Pluto_Centered_MJ2000Ec
Saturn_Centered_MJ2000Ec
Uranus_Centered_MJ2000Ec
Venus_Centered_MJ2000Ec

D.4.9 Propagators Elements

Moon_LP165P

CisLunar

EarthMoon_L2_AllPlanets

EarthMoon_L2_AllPlanets_and_SRP

EarthMoon_L2_ESM

EarthMoon_L2_ESM_JGM

EarthMoon_L2_ESM_LP165P

EarthSun_L2_AllPlanets

EarthSun_L2_AllPlanets_and_SRP

Earth_J2

Earth_Point_Mass

Heliocentric

Lunar

Mars_2-Body

Mars_AllPlanets Mars_MARS50C

Mars_MARS50C_and_SRP

Mars_SRP

Mercury_2-Body

Mercury_AllPlanets

Mercury_SRP

Moon_2-Body

Moon_LP165P_and_SRP

Moon_SRP

Neptune_2-Body

Neptune_AllPlanets

Neptune_SRP

Pluto_2-Body

Pluto_AllPlanets

Pluto_SRP

Saturn_2-Body

Saturn_AllPlanets

Saturn_SRP

Sun_AllPlanets

Sun_AllPlanets_and_SRP

Uranus_2-Body

Uranus_AllPlancts

Uranus_SRP

Venus_2-Body

Venus_AllPlanets

Venus_MGNP180U

Venus_MGNP180U_and_SRP

Venus_SRP

Moon_AllPlanets

D.4.10 Axes Elements

Earth_GSE Earth_GSM

D.4.11 Coordinate System Elements

Earth_GSE Earth_GSM

APPENDIX D. STK SETUP

D.4.12 Vectors Elements

130

Cross_Product_(RxV) Cross_Product_(RxV)_(fixed) Cross_Product_(RxV)_(MarsFixed) Cross_Product_(RxV)_(MarsMJ2000) Cross_Product_(RxV)_(MarsMJ2000Ec) Cross_Product_(RxV)_(MercuryFixed) Cross_Product_(RxV)_(MercuryMJ2000) Cross_Product_(RxV)_(MercuryMJ2000Ec) Cross_Product_(RxV)_(MoonFixed) Cross_Product_(RxV)_(MoonMJ2000) Cross_Product_(RxV)_(MoonMJ2000Ec) Cross_Product_(RxV)_(NeptuneFixed) Cross_Product_(RxV)_(NeptuneMJ2000) Cross_Product_(RxV)_(NeptuneMJ2000Ec) Cross_Product_(YofGSM) EarthSun_J2K_Velocity DiPole_Vector_GSM

Cross_Product_(RxV)_(PlutoFixed) Cross_Product_(RxV)_(PlutoMJ2000) Cross_Product_(RxV)_(PlutoMJ2000Ec) Cross_Product_(RxV)_(SaturnFixed) Cross_Product_(RxV)_(SaturnMJ2000) Cross_Product_(RxV)_(SaturnMJ2000Ec) Cross_Product_(RxV)_(UranusFixed) Cross_Product_(RxV)_(UranusMJ2000) Cross_Product_(RxV)_(UranusMJ2000Ec) Cross_Product_(RxV)_(VenusFixed) Cross_Product_(RxV)_(VenusMJ2000) Cross_Product_(RxV)_(VcnusMJ2000Ec) $Cross_Product_(RxV)_(EarthGSE)$ Cross_Product_(RxV)_(EarthGSM) Cross_Product_(ZofGSE) EarthSun_Vector

D.4.13 Vectors: Vehicle Local Elements

Position_(MarsFixed) Position_(MarsMJ2000Ec) Position_(MercuryFixed) Position_(MercuryMJ2000Ec) Position_(MoonFixed) Position_(MoonMJ2000Ec) Position_(NeptuneFixed) Position_(NeptuneMJ2000Ec) Position_(PlutoFixed) Position_(PlutoMJ2000Ec) Position_(SaturnFixed) Position_(SaturnMJ2000Ec) Position_(UranusFixed) Position_(UranusMJ2000Ec) Position_(VenusFixed) Position_(VenusMJ2000Ec) Position_Mars_(MJ2000) Position_Mercury_(MJ2000) Position_Moon_(MJ2000) Position_Neptune_(MJ2000) Position_Saturn_(MJ2000) Position_Uranus_(MJ2000) Position_Venus_(MJ2000) Position_(EarthGSE) Position_(EarthGSM)

Velocity_(MarsFixed) Velocity_(MarsMJ2000Ec) Velocity_(MercuryFixed) Velocity_(MercuryMJ2000Ec) Velocity_(MoonFixed) Velocity_(MoonMJ2000Ec) Velocity_(NeptuneFixed) Velocity_(NeptuneMJ2000Ec) Velocity_(PlutoFixed) Velocity_(PlutoMJ2000Ec) Velocity_(SaturnFixed) Velocity_(SaturnMJ2000Ec) Velocity_(UranusFixed) Velocity_(UranusMJ2000Ec) Velocity_(VenusFixed) Velocity_(VenusMJ2000Ec) Velocity_Mars_(MJ2000) Velocity_Mercury_(MJ2000) Velocity_Moon_(MJ2000) Velocity_Neptune_(MJ2000) Velocity_Saturn_(MJ2000) Velocity_Uranus_(MJ2000) Velocity_Venus_(MJ2000) Velocity_(EarthGSE)

Velocity_(EarthGSM)

D.5. REPORT STYLES

D.5 Report Styles

Classical_Orbit_Elements Earth_MJ2000_Position_Velocity GMAT_Apoapsis_Periapsis GMAT_CSParameters_Fixed GMAT_CSParameters_MJ2000Ec GMAT_CSParameters_MJ2000Eq GMAT_CSParameters_MODEc GMAT_CSParameters_MODEq GMAT_CbParameters GMAT_CbParameters_Mars GMAT_CSParameters_MOEEq GMAT_CSParameters_MarsFixed GMAT_CSParameters_Mars_MJ2000Ec GMAT_CSParameters_Mars_MJ2000Eq GMAT_CSParameters_MercuryFixed GMAT_CSParameters_Mercury_MJ2000Ec GMAT_CSParameters_Mercury_MJ2000Eq GMAT_CSParameters_MoonFixed GMAT_CSParameters_Moon_MJ2000Ec GMAT_CSParameters_Moon_MJ2000Eq GMAT_CSParameters_NeptuneFixed GMAT_CSParameters_Neptune_MJ2000Ec GMAT_CSParameters_Neptune_MJ2000Eq Pluto_MJ2000_Position_Velocity Saturn_MJ2000_Position_Velocity Sun_MJ2000Ec_Position_Velocity Sun_MJ2000_Position_Velocity Uranus_MJ2000_Position_Velocity Venus_MJ2000_Position_Velocity Greenwich_Hour_Angle

GMAT_CSParameters_TODEq GMAT_CSParameters_TOEEc GMAT_CSParameters_TOEEq GMAT_CSParameters_UranusFixed GMAT_CSParameters_Uranus_MJ2000Ec GMAT_CSParameters_Uranus_MJ2000Eq GMAT_CSParameters_VenusFixed GMAT_CSParameters_Venus_MJ2000Ec GMAT_CSParameters_Venus_MJ2000Eq GMAT_CSParameters_MOEEc GMAT_CbParameters_Mercury GMAT_CbParameters_Moon GMAT_CbParameters_Neptune GMAT_CbParameters_Pluto GMAT_CbParameters_Saturn GMAT_CbParameters_Uranus GMAT_CbParameters_Venus J2000_ECI_Position_Velocity Mars_MJ2000_Position_Velocity Mercury_MJ2000_Position_Velocity Moon_MJ2000_Position_Velocity Neptune_MJ2000_Position_Velocity GMAT_CSParameters_PlutoFixed GMAT_CSParameters_Pluto_MJ2000Ec GMAT_CSParameters_Pluto_MJ2000Eq GMAT_CSParameters_SaturnFixed GMAT_CSParameters_Saturn_MJ2000Ec GMAT_CSParameters_Saturn_MJ2000Eq GMAT_CSParameters_TODEc

D.6 Scripts Used

The main script used with STK is the STK_Repropagate.m Matlab script. STK_Repropagate.m connects to STK, propagates satellites in the scenario, generates reports, and outputs performance run times. The STK_Repropagate script was designed to reduce the time it took to generate STK report files, after modifications to the STK scenario were made, and obtain accurate STK run times.

Refer to Appendix C for more details of this script and others used in the Acceptance Test Plan document.

132

Appendix E

FF Setup

[INSERT explanation of how the FF scenarios were setup]

Draft: Work in Progress
APPENDIX E. FF SETUP

134

Bibliography

- [1] Dave Gaylor, Kathryn Bradley, et al. Orbit Determination Toolbox(ODTBX) Spiral 1 Emergent Space Technology.
- [2] C. C. Chao and J. W. Cook et al. Independent Verification and Validation for Analytical Graphics, Inc. of Three Astrodynamic Functions of the Satellite Tool Kit: Version 4.1.0. Aerospace Corporation. El Segundo, CA. ATR-2000(7605)-1. 15 February 2000.
- [3] D. A. Vallado. An Analysis of State Vector Propagation Using Differing Flight Dynamics Programs. Paper AAS 05-199.
- [4] International Earth Rotation and Reference Service. Explanatory Supplement to IERS Bulietins A and B, 2004. URL:http://hpiers.obspm.fr/eoppc/bul/bulb/explanatory.html, Accessed June 2006.
- [5] International Earth Rotation and Reference Service. Earth Rotation Parameter EOP (IERS) C04, ?. URL: http://hpiers.obspm.fr/eoppc/eop/eopc04/E0PC04.GUIDE, Accessed June 2006.
- [6] International Earth Rotation and Reference Service. Explanatory Supplement to IERS Bulletins A and B, 1999. URL: ftp://cddisa.gsfc.nasa.gov/reports/iers/bulletin_a/iers_bulletinab.explain, Accessed June 2006.

Index

Acceptance Matrix, 32, 33 Acronyms, 87

Cb, 18, 19, 45, 105 Control Flow, 22, 85 CS, 18, 19, 45, 105

DE200, 17 DE405, 17, 29 DeepSpace, 25, 38, 102 Delta V, 18, 22, 82, 106

EGM96, 24 EML2, 25, 27, 38, 41, 44, 103 EOP, 27, 28 ESL2, 25, 38, 41, 44, 104

FF, 133 FreeFlyer, 18, 26, 32, 39, 41, 42, 44, 46, 49–52, 58, 59

GEO, 23, 32, 39, 42, 45, 61, 93, 105, 106 GPS, 23, 32, 39, 42, 91

IERS, 27 Initial Conditions, 106 Integrators, 18, 20, 21, 62, 106 ISS, 23, 32, 39, 42, 45, 61, 89, 105, 106

JGM2, 24 JGM3, 24 JR, 24

LaTex, 18 Libration Point, 21 Libration Points, 18, 21, 77, 106

MATLAB, 17, 18 Molniya, 23, 32, 39, 42, 92 Molynia, 23 MSISE, 24 mu, 29

ODTBX, 23

Performance, 18, 22, 106 Propagation, 18, 23, 45, 61 Propagators, 44

SLP, 17 SRP, 24, 32 STK, 18, 27, 32, 36, 38, 42, 44, 46, 50–52, 59, 77, 131
Astrogator, 18, 26
HPOP, 18, 23, 25, 26
Stopping Condition, 106
Stopping Conditions, 18, 21, 71
SunSync, 23, 39, 42, 90
Sunsync, 32
Swingby, 18

UTC-UT1, 30