In the Claims

Please amend claims 17-18 as indicated below; a complete listing of claims is provided pursuant to 37 C.F.R. § 1.121(c):

1. (previously presented) A compound of the formula:

wherein

Q is oxygen or sulfur;

X is hydrogen and Y is CHR^2R^3 , NHR^2 , $NHOR^2$, or $NHNR^2R^3$; or X and Y are taken together to form $=CR^2R^3$; $=NR^2$; $=NOR^2$; or $=NNR^2R^3$;

 R^1 , R^2 , and R^3 are each independently selected from the group consisting of hydrogen and a radical - $(CH_2)_mZ$, where m is an integer from 0-6 and Z is selected from the group consisting of halogen, hydroxy, formyl, C_1 - C_6 alkanoyloxy, optionally substituted benzoyloxy, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkoxy, C_2 - C_6 alkenyl, C_1 - C_6 alkoxyl, C_1 - C_6 haloalkyl, C_1 - C_6 haloalkoxy, C_3 - C_8 halocycloalkyl, C_3 - C_8 halocycloalkoxy, amino, C_1 - C_6 alkylamino, $(C_1$ - C_6 alkyl)(C_1 - C_6 alkyl)amino, alkylcarbonylamino, N-(C_1 - C_6 alkyl)alkylcarbonylamino, aminoalkyl, C_1 - C_6 alkylaminoalkyl, C_1 - C_6 alkyl)aminoalkyl, alkylcarbonylaminoalkyl, N-(C_1 - C_6 alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C_1 - C_6 alkylsulfonyl, optionally substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z is selected from the group consisting of -N₃, -CO₂R⁴, -CONR⁵R⁶, -P(O)(OR⁴)₂, -P(O)(NR⁴R⁵)₂, and -P(O)(NR⁴R⁵)(OR⁴), where R⁴, R⁵, and R⁶ are each independently selected in each occurrence from the group consisting of hydrogen, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_1 - C_6 haloalkyl, optionally substituted phenyl, and optionally substituted phenyl- C_1 - C_6 alkyl; or

when X and Y are taken together to form $=NNR^2R^3$, R^2 and R^3 are taken together with the attached nitrogen to form an optionally substituted heterocycle;

providing that Y and R1 are not both alkyl;

 R^A represents 1-4 substituents each independently selected from the group consisting of hydrogen and a radical -(CH₂)_{m'}Z', where m' is an integer from 0-6 and Z' is

selected from the group consisting of halogen, hydroxy, C₁-C₆ alkanoyloxy, optionally substituted benzoyloxy, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₃-C₈ cycloalkyl, C₃-C₈ cycloalkoxy, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₁-C₆ haloalkoxy, C₃-C₈ halocycloalkyl, C₃-C₈ halocycloalkyl, C₃-C₈ halocycloalkoxy, amino, C₁-C₆ alkylamino, (C₁-C₆ alkyl)(C₁-C₆ alkyl)amino, alkylcarbonylamino, N-(C₁-C₆ alkyl)alkylcarbonylamino, aminoalkyl, C₁-C₆ alkylaminoalkyl, (C₁-C₆ alkyl)aminoalkyl, alkylcarbonylaminoalkyl, N-(C₁-C₆ alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C₁-C₆ alkylsulfonyl, optionally substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z' is selected from the group consisting of -N₃, -CO₂R⁴', -CONR⁵'R⁶', -P(O)(OR⁴')₂, -P(O)(NR⁴'R⁵')₂, and -P(O)(NR⁴'R⁵')(OR⁴'), where R⁴', R⁵', and R⁶' are each independently selected in each occurrence from the group consisting of hydrogen, C₁-C₆ alkyl, C₃-C₈ cycloalkyl, C₁-C₆ haloalkyl, optionally substituted phenyl, and optionally substituted phenyl-C₁-C₆ alkyl; or

R^A represents 2-4 substituents where 2 of said substituents are adjacent substituents and are taken together with the attached carbons to form an optionally substituted carbocycle or an optionally substituted heterocycle, and the remaining 2 substituents are each independently selected from the group consisting of hydrogen and a radical -(CH₂)_{m'}Z', where m' is an integer from 0-6 and Z' is selected from the group consisting of halogen, hydroxy, C₁-C₆ alkanoyloxy, optionally substituted benzoyloxy, C1-C6 alkyl, C1-C6 alkoxy, C3-C8 cycloalkyl, C3-C₈ cycloalkoxy, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₁-C₆ haloalkoxy, C₃-C₈ halocycloalkyl, C₃-C₈ halocycloalkoxy, amino, C₁-C₆ alkylamino, (C₁-C₆ alkyl)(C₁-C₆ alkyl)amino, alkylcarbonylamino, N-(C1-C6 alkyl)alkylcarbonylamino, aminoalkyl, C1-C6 alkylaminoalkyl, (C₁-C₆ alkyl)(C₁-C₆ alkyl)aminoalkyl, alkylcarbonylaminoalkyl, N-(C₁-C₆ alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C₁-C₆ alkylsulfonyl, optionally substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z' is selected from the group consisting of -N₃, -CO₂R^{4'}, -CONR^{5'}R^{6'}, -P(O)(OR^{4'})₂, -P(O)(NR^{4'}R^{5'})₂, and -P(O)(NR⁴'R⁵')(OR⁴'), where R⁴', R⁵', and R⁶' are each independently selected in each occurrence from the group consisting of hydrogen, C₁-C₆ alkyl, C₃-C₈ cycloalkyl, C₁-C₆ haloalkyl, optionally substituted phenyl, and optionally substituted phenyl-C₁-C₆ alkyl; and

 R^B represents 1-4 substituents each independently selected from the group consisting of hydrogen and a radical - $(CH_2)_{m''}Z''$, where m'' is an integer from 0-6 and Z'' is selected from the group consisting of halogen, hydroxy, C_1 - C_6 alkanoyloxy, optionally substituted benzoyloxy, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkoxy, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 haloalkyl, C_1 - C_6 haloalkoxy, C_3 - C_8 halocycloalkyl, C_3 - C_8

halocycloalkoxy, amino, C₁-C₆ alkylamino, (C₁-C₆ alkyl)(C₁-C₆ alkyl)amino, alkylcarbonylamino, N-(C₁-C₆ alkyl)alkylcarbonylamino, aminoalkyl, C₁-C₆ alkylaminoalkyl, (C₁-C₆ alkyl)(C₁-C₆ alkyl)aminoalkyl, alkylcarbonylaminoalkyl, N-(C₁-C₆ alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C₁-C₆ alkylsulfonyl, optionally substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z" is selected from the group consisting of -N₃, -CO₂R⁴", -CONR⁵"R⁶", -P(O)(OR⁴")₂, -P(O)(NR⁴"R⁵")₂, and -P(O)(NR⁴"R⁵")(OR⁴"), where R⁴", R⁵", and R⁶" are each independently selected in each occurrence from the group consisting of hydrogen, C₁-C₆ alkyl, C₃-C₈ cycloalkyl, C₁-C₆ haloalkyl, optionally substituted phenyl, and optionally substituted phenyl-C₁-C₆ alkyl; or

R^B represents 2-4 substituents where 2 of said substituents are adjacent substituents and are taken together with the attached carbons to form an optionally substituted carbocycle or an optionally substituted heterocycle, and the remaining 2 substituents are each independently selected from the group consisting of hydrogen and a radical -(CH₂)_{m''}Z'', where m" is an integer from 0-6 and Z" is selected from the group consisting of halogen, hydroxy, C1-C₆ alkanoyloxy, optionally substituted benzoyloxy, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₃-C₈ cycloalkyl, C₃-C₈ cycloalkoxy, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₁-C₆ haloalkoxy, C₃-C₈ halocycloalkyl, C3-C8 halocycloalkoxy, amino, C1-C6 alkylamino, (C1-C6 alkyl)(C1-C6 alkyl)amino, alkylcarbonylamino, N-(C1-C6 alkyl)alkylcarbonylamino, aminoalkyl, C1-C6 alkylaminoalkyl, (C1-C6 alkyl)(C1-C6 alkyl)aminoalkyl, alkylcarbonylaminoalkyl, N-(C1-C6 alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C₁-C₆ alkylsulfonyl, optionally substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z" is selected from the group consisting of $-N_3$, $-CO_2R^{4''}$, $-CONR^{5''}R^{6''}$, $-P(O)(OR^{4''})_2$, $-P(O)(NR^{4''}R^{5''})_2$, and -P(O)(NR^{4"}R^{5"})(OR^{4"}), where R^{4"}, R^{5"}, and R^{6"} are each independently selected in each occurrence from the group consisting of hydrogen, C1-C6 alkyl, C3-C8 cycloalkyl, C1-C6 haloalkyl, optionally substituted phenyl, and optionally substituted phenyl-C₁-C₆ alkyl is described.

- 2. (original) The compound of claim 1, wherein X and Y are taken together to form $=CR^2R^3$.
- 3. (original) The compound of claim 1, wherein X and Y are taken together to form $=CR^2R^3$, and the carbon-carbon double bond formed thereby is an E-double bond.
- 4. (original) The compound of claim 1, wherein Z is selected from the group consisting of hydroxy, amino, C₁-C₆ alkylamino, and nitro.

- 5. (original) The compound of claim 1, wherein Z' is selected from the group consisting of C_1 - C_6 alkoxy and nitro.
- 6. (original) The compound of claim 1, wherein Z'' is selected from the group consisting of C_1 - C_6 alkoxy and nitro.
- 7. (original) The compound of claim 1, wherein X and Y are taken together to form $=CR^2R^3$; and R^2 is C_1-C_6 haloalkyl or aminoalkyl; and R^1 is hydrogen.
- 8. (original) The compound of claim 1, wherein R^B represents 2-4 substituents where 2 of said substituents are adjacent substituents and are taken together with the attached carbons to form an optionally substituted heterocycle.
- 9. (original) The compound of claim 1, wherein R^B represents 2-4 substituents where 2 of the substituents are adjacent substituents and are taken together with the attached carbons to form an heterocycle selected from the group consisting of dioxolane and dioxane.
- 10. (original) The compound of claim 1, wherein R^B represents 2-4 substituents where 2 of said substituents are adjacent substituents and are taken together with the attached carbons to form an optionally substituted heterocycle; and Z'' is selected from the group consisting of C_1 - C_6 alkoxy and nitro.
- 11. (original) The compound of claim 1, wherein Q is oxygen; and R^A is 2,3-bis(C₁-C₆ alkoxy).
- 12. (original) The compound of claim 1, wherein Q is oxygen; and R^1 is C_1 - C_6 alkyl, aminoalkyl, or C_1 - C_6 haloalkyl.
- 13. (original) The compound of claim 1, wherein Q is oxygen, R^A is 2,3-bis(C_1 - C_6 alkoxy), R^B is 8,9-alkylenedioxy, and X and Y are taken together to form = CR^2R^3 , where R^2 is hydrogen.
- 14. (original) The compound of claim 1, wherein Q is oxygen, R^A is 2,3-bis(C₁-C₆ alkoxy), R^B is 8,9-alkylenedioxy, X and Y are taken together to form =CR²R³, R^2 is hydrogen, and R^1 is hydrogen, C₁-C₆ alkyl, C₃-C₈ cycloalkyl, C₁-C₆ haloalkyl, C₃-C₈ halocycloalkyl, amino-C₁-C₆ alkyl, C₁-C₆ alkylamino-C₁-C₆ alkyl)(C₁-C₆ alkyl)amino-C₁-C₆ alkyl.
 - 15. (previously presented) A compound of the formula:

wherein

Q is oxygen or sulfur;

 R^1 , R^2 , and R^3 are each independently selected from the group consisting of hydrogen and a radical - $(CH_2)_mZ$, where m is an integer from 0-6 and Z is selected from the group consisting of halogen, hydroxy, formyl, C_1 - C_6 alkanoyloxy, optionally substituted benzoyloxy, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkoxy, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 haloalkyl, C_1 - C_6 haloalkoxy, C_3 - C_8 halocycloalkyl, C_3 - C_8 halocycloalkoxy, amino, C_1 - C_6 alkylamino, $(C_1$ - C_6 alkyl)(C_1 - C_6 alkyl)amino, alkylcarbonylamino, N-(C_1 - C_6 alkyl)alkylcarbonylamino, aminoalkyl, C_1 - C_6 alkyl)alkylcarbonylaminoalkyl, alkylcarbonylaminoalkyl, N-(C_1 - C_6 alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C_1 - C_6 alkylsulfonyl, optionally substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z is selected from the group consisting of -N₃, -CO₂R⁴, -CONR⁵R⁶, -P(O)(OR⁴)₂, -P(O)(NR⁴R⁵)₂, and -P(O)(NR⁴R⁵)(OR⁴), where R⁴, R⁵, and R⁶ are each independently selected in each occurrence from the group consisting of hydrogen, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_1 - C_6 haloalkyl, optionally substituted phenyl, and optionally substituted phenyl- C_1 - C_6 alkyl; or

R¹ is selected from the group consisting of hydrogen and a radical -(CH₂)_mZ, where m is an integer from 0-6 and Z is selected from the group consisting of halogen, hydroxy, formyl, C₁-C₆ alkanoyloxy, optionally substituted benzoyloxy, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₃-C₈ cycloalkyl, C₃-C₈ cycloalkoxy, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₁-C₆ haloalkoxy, C₃-C₈ halocycloalkoxy, amino, C₁-C₆ alkylamino, (C₁-C₆ alkyl)(C₁-C₆ alkyl)amino, alkylcarbonylamino, N-(C₁-C₆ alkyl)alkylcarbonylamino, aminoalkyl, C₁-C₆ alkylaminoalkyl, (C₁-C₆ alkyl)alkylcarbonylaminoalkyl, alkylcarbonylaminoalkyl, N-(C₁-C₆ alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C₁-C₆ alkylsulfonyl, optionally substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z is selected from the group consisting of -N₃, -CO₂R⁴, -CONR⁵R⁶, -P(O)(OR⁴)₂, -P(O)(NR⁴R⁵)₂, and -P(O)(NR⁴R⁵)(OR⁴), where R⁴, R⁵, and R⁶ are each independently selected in each occurrence from the group consisting of hydrogen, C₁-C₆ alkyl, C₃-C₈ cycloalkyl, C₁-C₆ haloalkyl, optionally

substituted phenyl, and optionally substituted phenyl-C₁-C₆ alkyl; and R² and R³ are taken together with the attached carbon to form an optionally substituted carbocycle or heterocycle;

R^A represents 1-4 substituents each consisting of an independently selected radical -(CH₂)_mZ', where m' is an integer from 0-6 and Z' is selected from the group consisting of halogen, hydroxy, C₁-C₆ alkanoyloxy, optionally substituted benzoyloxy, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₃-C₈ cycloalkyl, C₃-C₈ cycloalkoxy, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₁-C₆ haloalkoxy, C₃-C₈ halocycloalkyl, C₃-C₈ halocycloalkoxy, amino, C₁-C₆ alkylamino, (C₁-C₆ alkyl)(C₁-C₆ alkyl)amino, alkylcarbonylamino, N-(C₁-C₆ alkyl)alkylcarbonylamino, aminoalkyl, C₁-C₆ alkyl)alkylcarbonylaminoalkyl, C₁-C₆ alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C₁-C₆ alkylsulfonyl, optionally substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z' is selected from the group consisting of -N₃, -CO₂R⁴', -CONR⁵'R⁶', -P(O)(OR⁴')₂, -P(O)(NR⁴'R⁵')₂, and -P(O)(NR⁴'R⁵')(OR⁴'), where R⁴', R⁵', and R⁶' are each independently selected in each occurrence from the group consisting of hydrogen, C₁-C₆ alkyl, C₃-C₈ cycloalkyl, C₁-C₆ haloalkyl, optionally substituted phenyl, and optionally substituted phenyl-C₁-C₆ alkyl, providing that at least one of R^A is at carbon 8 or carbon 9 in the formula; or

R^A represents 2-4 substituents where 2 of said substituents are adjacent substituents and are taken together with the attached carbons to form an optionally substituted carbocycle or an optionally substituted heterocycle, and the remaining 2 substituents are each independently selected from the group consisting of hydrogen and a radical -(CH₂)_mZ', where m' is an integer from 0-6 and Z' is selected from the group consisting of halogen, hydroxy, C₁-C₆ alkanoyloxy, optionally substituted benzoyloxy, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₃-C₈ cycloalkyl, C₃-C₈ cycloalkoxy, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₁-C₆ haloalkoxy, C₃-C₈ halocycloalkyl, C₃-C₈ halocycloalkoxy, amino, C₁-C₆ alkylamino, (C₁-C₆ alkyl)(C₁-C₆ alkyl)amino, alkylcarbonylamino, N-(C₁-C₆ alkyl)alkylcarbonylamino, aminoalkyl, C₁-C₆ alkylaminoalkyl, (C1-C6 alkyl)(C1-C6 alkyl)aminoalkyl, alkylcarbonylaminoalkyl, N-(C1-C6 alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C1-C6 alkylsulfonyl, optionally substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z' is selected from the group consisting of -N₃, -CO₂R^{4'}, -CONR^{5'}R^{6'}, -P(O)(OR^{4'})₂, -P(O)(NR^{4'}R^{5'})₂, and -P(O)(NR4'R5')(OR4'), where R4', R5', and R6' are each independently selected in each occurrence from the group consisting of hydrogen, C₁-C₆ alkyl, C₃-C₈ cycloalkyl, C₁-C₆ haloalkyl, optionally substituted phenyl, and optionally substituted phenyl-C₁-C₆ alkyl;

R^B is selected from the group consisting of hydrogen and a radical -(CH₂)_{m"}Z", where m" is an integer from 0-6 and Z" is selected from the group consisting of halogen, hydroxy, C₁-C₆ alkanoyloxy, optionally substituted benzoyloxy, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₃-C₈ cycloalkyl, C₃-C₈ cycloalkoxy, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₁-C₆ haloalkyl, C₃-C₈ halocycloalkyl, C₃-C₈ halocycloalkoxy, amino, C₁-C₆ alkylamino, (C₁-C₆ alkyl)(C₁-C₆ alkyl)amino, alkylcarbonylamino, N-(C₁-C₆ alkyl)alkylcarbonylamino, aminoalkyl, C₁-C₆ alkylaminoalkyl, (C₁-C₆ alkyl)(C₁-C₆ alkyl)aminoalkyl, alkylcarbonylaminoalkyl, N-(C₁-C₆ alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C₁-C₆ alkylsulfonyl, optionally substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z" is selected from the group consisting of -N₃, -CO₂R^{4"}, -CONR^{5"}R^{6"}, -P(O)(OR^{4"})₂, -P(O)(NR^{4"}R^{5"})₂, and -P(O)(NR^{4"}R^{5"})(OR^{4"}), where R^{4"}, R^{5"}, and R^{6"} are each independently selected in each occurrence from the group consisting of hydrogen, C₁-C₆ alkyl, C₃-C₈ cycloalkyl, C₁-C₆ haloalkyl, optionally substituted phenyl, and optionally substituted phenyl-C₁-C₆ alkyl; and'

 R^{C} represents 1-4 substituents each independently selected from the group consisting of hydrogen and a radical -(CH₂)_m"Z"', where m"' is an integer from 0-6 and Z"' is selected from the group consisting of halogen, hydroxy, C_1 - C_6 alkanoyloxy, optionally substituted benzoyloxy, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkoxy, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 haloalkyl, C_1 - C_6 haloalkoxy, C_3 - C_8 halocycloalkoxy, amino, C_1 - C_6 alkylamino, (C_1 - C_6 alkyl)(C_1 - C_6 alkyl)amino, alkylcarbonylamino, N-(C_1 - C_6 alkyl)alkylcarbonylamino, aminoalkyl, C_1 - C_6 alkyl)aminoalkyl, alkylcarbonylaminoalkyl, N-(C_1 - C_6 alkyl)alkylcarbonylaminoalkyl, alkylcarbonylaminoalkyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z'' is selected from the group consisting of -N₃, -CO₂ $R^{4''}$, -CONR^{5''} $R^{6''}$, -P(O)(OR^{4''})₂, -P(O)(NR^{4''} $R^{5''}$)₂, and -P(O)(NR^{4''} $R^{5''}$)(OR^{4'''}), where $R^{4'''}$, $R^{5'''}$, and $R^{6'''}$ are each independently selected in each occurrence from the group consisting of hydrogen, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_1 - C_6 haloalkyl, optionally substituted phenyl, and optionally substituted phenyl- C_1 - C_6 alkyl; or

R^C represents 2-4 substituents where 2 of said substituents are adjacent substituents and are taken together with the attached carbons to form an optionally substituted carbocycle or an optionally substituted heterocycle, and the remaining 2 substituents are each independently selected from the group consisting of hydrogen and a radical -(CH₂)_{m"}Z"', where m"' is an integer from 0-6 and Z"' is selected from the group consisting of halogen, hydroxy, C₁-C₆ alkanoyloxy, optionally substituted benzoyloxy, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₃-C₈ cycloalkyl,

C₃-C₈ cycloalkoxy, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₁-C₆ haloalkoxy, C₃-C₈ halocycloalkyl, C₃-C₈ halocycloalkoxy, amino, C₁-C₆ alkylamino, (C₁-C₆ alkyl)(C₁-C₆ alkyl)amino, alkylcarbonylamino, N-(C₁-C₆ alkyl)alkylcarbonylamino, aminoalkyl, C₁-C₆ alkylaminoalkyl, (C₁-C₆ alkyl)(C₁-C₆ alkyl)aminoalkyl, alkylcarbonylaminoalkyl, N-(C₁-C₆ alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C₁-C₆ alkylsulfonyl, optionally substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z"' is selected from the group consisting of -N₃, -CO₂R^{4"'}, -CONR^{5"'}R^{6"'}, -P(O)(OR^{4"'})₂, -P(O)(NR^{4"'}R^{5"'})₂, and -P(O)(NR^{4"'}R^{5"'})(OR^{4"'}), where R^{4"'}, R^{5"'}, and R^{6"'} are each independently selected in each occurrence from the group consisting of hydrogen, C₁-C₆ alkyl, C₃-C₈ cycloalkyl, C₁-C₆ haloalkyl, optionally substituted phenyl, and optionally substituted phenyl-C₁-C₆ alkyl is described.

- 16. (previously presented) The compound of claim 15, wherein at least one of R¹, R², R³, R^B, or R^C is not hydrogen.
- 17. (currently amended) The compound of claim 15, wherein R^A is 2,3—bis8,9—bis C_1 - C_6 alkoxy).
- 18. (currently amended) The compound of claim 15, wherein Q is oxygen, R^A is 2,3-bis8,9-bis(C₁-C₆ alkoxy), and R^B, R^C, R¹, R² and R³ are each hydrogen.
- 19. (original) The compound of claim 15, wherein Z' is selected from the group consisting of hydroxy and nitro.
- 20. (original) The compound of claim 15, wherein R^A represents 2-4 substituents where 2 of said substituents are adjacent substituents and are taken together with the attached carbons to form an optionally substituted carbocycle or an optionally substituted heterocycle, and the remaining 2 substituents are each independently selected from the group consisting of hydrogen and a radical -(CH₂)_mZ', where Z' is selected from the group consisting of hydroxy and nitro.
 - 21. (original) The compound of claim 15, wherein Z" is nitro.
 - 22. (original) The compound of claim 15, wherein Z" is nitro.
- 23. (original) The compound of claim 15, wherein R^C represents 2-4 substituents where 2 of said substituents are adjacent substituents and are taken together with the attached carbons to form an optionally substituted carbocycle or an optionally substituted heterocycle, and the remaining 2 substituents are each independently selected from the group consisting of hydrogen and a radical - $(CH_2)_{m''}Z'''$; and Z''' is nitro.

- 24. (previously presented) A pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically acceptable carrier, excipient, or diluent therefor.
- 25. (previously presented) A method for treating a mammal in need of relief from a disease state including cancer, comprising administering to the mammal an effective amount of a compound according to claim 1.
- 26. (previously presented) A pharmaceutical composition comprising a compound of claim 15 and a pharmaceutically acceptable carrier, excipient, or diluent therefor.
- 27. (previously presented) A method for treating a mammal in need of relief from a disease state including cancer, comprising administering to the mammal an effective amount of a compound according to claim 15.