QUICK TEST 3 (Thu 22 nov 10:15-10:35)

In mathematics, the trapezoidal rule is a way to approximately calculate the definite integral:

$$\int_{a}^{b} f(x) \, dx$$

The trapezoidal rule works by approximating the region under the graph of the function f(x) by a trapezoid and calculating its area. It follows that:

$$\int_{a}^{b} f(x) dx \approx (b - a) \frac{1}{2} (f(a) + f(b))$$

To calculate this integral more accurately, split the interval of integration [a, b] into n smaller subintervals, and apply the trapezoidal rule on each of them. One obtains the *composite trapezoidal rule*:

$$\int_{a}^{b} f(x) dx \approx \frac{(b-a)}{2n} \left(f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n) \right)$$

where

$$x_k = a + k \frac{(b-a)}{n}$$
, for $k = 0, 1, \dots, n$

Write a C program to evaluate $F(x) = \int_0^1 \sqrt{x^2 + 1} dx$ and fill in the value

1 0	` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '		
	n = 5	n = 25	n = 50
$F(x) = \int_0^1 \sqrt{x^2 + 1} dx$			
$F(x) = \int_{0}^{1/2} \sqrt{1 - x^2} dx$			

Full name	Email	
1		
2		
3		
4		
5		
6		
Further feedbacks		