

Introduction to the Sarus container engine

PRACE HPC Workshop on Containers and Unikernels Lucas Benedicic, ETH Zurich / CSCS Alberto Madonna, ETH Zurich / CSCS July 7, 2021

Table of Contents: morning

1. 9:00 - 9:20 Introduction to Sarus form a user's perspective 9:20 - 9:30 Q&A

2. 9:30 - 9:45 Installing Sarus on your system 9:45 - 10:15 Hands on: installing Sarus on a Debian 10 VM

10:15 - 10:45 Break

3. 10:45 - 11:15 MPI examples with OSU benchmarks 11:15 - 12:00 Hands on:

- Sarus basic commands
- MPI exercises

12:00 - 13:00 Lunch break

Sarus container engine

- Combines container portability with native HPC performance
- Integrates with HPC infrastructure and software

Pulls regular Docker images

Provides a Docker-like command line interface

Typical user workflow at CSCS

2. Push to Docker Hub

3. Pull into storage at HPC center

1. Create Docker image

4. Run at scale on HPC system

Highlights of Sarus from a user perspective

- Consistent experience
 - With Docker: closely resembling CLI
 - With host environment: env variables, uid/gid, file permissions
- Pull images from Docker registries (e.g. Docker Hub, NVIDIA NGC)
- Import images from local tar archives (no cloud upload required)
- Integration with the workload manager (Slurm)
- Native performance from GPUs and high-speed interconnects
- Access to parallel filesystems inside containers

Sarus CLI

Sarus

```
# pull image
$ sarus pull [options] <image>[<:tag>]
# load image
$ sarus load [options] <file> <image>
# show list of images
$ sarus images
# remove image
$ sarus rmi <image>[<:tag>]
# run container
$ sarus run [options] <image>[<:tag>]
<command> <args>
```

Docker

```
# pull image
$ docker pull [options] <image>[<:tag>]
# load image
$ docker load [options] -i <file>
# show list of images
$ docker images [options] [repo[<:tag>]]
# remove image
$ docker rmi [options] <image> [image...]
# run container
$ docker run [options] <image>[<:tag>]
<command> <args>
```


Further reading

Sarus on the CSCS User Portal: https://user.cscs.ch/tools/containers/sarus/

Code on GitHub: https://github.com/eth-cscs/sarus

User documentation on Read the Docs: https://sarus.readthedocs.io/en/stable/user/index.html

Benedicic, L., Cruz, F.A., Madonna, A. and Mariotti, K., 2019, June. Sarus: Highly Scalable Docker Containers for HPC Systems. In International Conference on High Performance Computing (pp. 46-60). Springer, Cham.

https://doi.org/10.1007/978-3-030-34356-9 5

Installation tutorial

Hands on!

Break time! Back at 10:45

MPI containers on Piz Daint

MPI containers on Piz Daint

Generic images can run unmodified by instructing Slurm to use the PMI-2 interface:

```
srun --mpi=pmi2 sarus run <image> <args>
```

- This way, containers will use the MPI libraries from the image and run at sub-optimal performance
- Images using MPICH and derivatives: work out of the box
- Images using OpenMPI: OpenMPI must be built with PMI-2 support
 - Configure example on Ubuntu 18.04:

```
./configure --prefix=/usr --with-pmi=/usr/include/slurm-wlm --with-pmi-libdir=/usr/lib/x86_64-linux-gnu \
CFLAGS=-I/usr/include/slurm-wlm
```


MPI containers on Piz Daint

Images using MPICH-based implementations can take advantage of ABI compatibility (https://www.mpich.org/abi/)

Sarus can replace the image MPI with host libraries at runtime, achieving the <u>full performance</u> of the Cray Aries interconnect:

srun sarus run --mpi <image> <args>

Recommended libraries for compatibility with Piz Daint:

MPICH 3.1.4 MVAPICH2 2.2 Intel MPI Library 2017 Update 1

Hands on!

Lunch break! Back at 13:00

Table of Contents: afternoon

13:00 - 13:30 GPU examples with CUDA SDK 13:30 - 14:30 Hands on: CUDA samples or user-provided GPU applications

14:30 - 15:00 Break

15:00 - 15:30 Real-world application with data I/O: GROMACS 15:30 - 16:30 Hands on with GROMACS or other applications

16:30 - 17:00 Q&A with the trainers

17:00 **End of day**

GPU containers on Piz Daint

GPU containers on Piz Daint

- When running on Piz Daint's GPU nodes, GPU devices are automatically added to containers
- Fastest way to get CUDA in a Dockerfile: use NVIDIA official images! https://hub.docker.com/r/nvidia/cuda

FROM nvidia/cuda:11.3.0-devel-ubuntu20.04

- NVIDIA images are provided for Ubuntu, Red Hat UBI and CentOS
 - Other distributions can still install the CUDA Toolkit through package manager or runfile
- The NVIDIA driver should <u>NOT</u> be installed in the image (it's bound to the hardware!)

Hands on!

Break time! Back at 15:00

Thank you for your attention.

Backup slides

Docker and HPC: not a good fit

- Security model assumes root privileges
- No integration with workload managers
- Missing support for diskless nodes
- Very limited support for kernel bypassing devices (e.g. accelerators and NICs)
- No adequate parallel storage driver

