機械学習を用いた ARマーカの位置姿勢推定

ER17076 安井理

研究背景

- ・2次元コードは広い分野で利用されている
 - ∘3次元位置・姿勢の推定を行える
 - ・1次元コードよりも大量の情報を埋め込める
 - 特殊なパターンによりどの角度からでも検出可能

2次元コードの問題

- 変形が生じた時に認識機能が著しく低下する
- ・機械学習により変形したマーカを検出する方法は提案されているが姿勢推定までは至ってない

提案手法:機械学習を用いたARマーカの位置姿勢推定

- 。研究目的
 - 変形の加わったARマーカをカラー画像から検出・姿勢推定を行う

提案手法:機械学習を用いたARマーカの位置姿勢推定

- アプローチ
 - SSD(Single ShotMultiBox Detector)によってARマーカを検出しID・座標を検出
 - ・変形の加わったARマーカをAAE(Augument Autoencoder)を用いて 平面化と姿勢の推定を行う

提案手法:機械学習を用いたARマーカの位置姿勢推定

- アプローチ
 - SSD(Single ShotMultiBox Detector)によってARマーカを検出しID・座標を検出
 - ・変形の加わったARマーカをAAE(Augument Autoencoder)を用いて 平面化と姿勢の推定を行う

Augument Autencoder

- 変化が加わった画像を復元するオートエンコーダー
- ・提案手法では学習データを次のように用意した
 - 入力(b): 正解画像(a)に変化を加えたデータ
 - 。出力(c):正解画像(a)を復元するように学習

姿勢推定

- ・正解画像を復元できる様に学習を行ったAAEを使用
- · 姿勢推定は、「推定対象画像」と「各姿勢の画像」を用いて行う

推定対象画像

各姿勢の画像

姿勢推定

- ∘ 各姿勢の画像は、あらかじめAAEに入力する
 - •各姿勢画像(n枚)それぞれの潜在変数(zn)をデータベースとして保存する

各姿勢の画像(n枚)

姿勢推定

- 姿勢推定は、推定対象画像の潜在変数とデータベースの類似度の 計算を行う
- データベース内の最も近い姿勢を推定姿勢として決定する

学習モデル

- ・使用するARマーカ
 - ROSで利用されているAR_track_alvarパッケージのID0~9番を使用

学習モデル画像の作成

- ARマーカのサイズは縦横50mm
- 半径20, 30, 40mmの円柱に貼り付けたモデルを使用する
- 学習モデルの種類は、ID10種類と半径3種類の合計30種類使用
- ∘ 学習画像は1種類あたり1500枚用意
- ○合計45,000枚用意する

学習画像の作成

- センサシミュレーションにより学習サンプルを自動で作成する.
- ARマーカの背景にはテクスチャを付け現実環境を仮定

評価実験

- ・2つの評価指標によって提案手法の有効性を確認する
 - ARマーカの復元精度
 - AAEにより、復元された画像と正解画像のRMSEを算出
 - ②. AAEを用いた姿勢推定の精度
- ・評価データ
 - 画像:100枚
 - ∘モデル姿勢: ARマーカが半分以上見える範囲内からランダム
- ・データベース
 - 。モデル姿勢範囲: roll:0~360° pitch:-35~35° yaw:-15~15°
 - ・分解能3度の36,000枚の姿勢データを使用

評価実験

- ①ARマーカの復元精度
 - ・AAEによって復元された評価データと正解画像のRMSEを算出

評価データ

復元画像

正解画像

実験結果

・姿勢推定のMAEは、4前後となりズレはあるが推定は行えている

実験			2		
評価内容	娑	经勢推定	復元精度(RMSE)		
半径[mm]	roll	pitch	yaw	平均	平均
20	5.20	3.27	2.69	3.72	0.286
30	6.18	3.73	3.23	4.38	0.292
40	6.69	4.13	3.51	4.77	0.298

実験結果

• 復元精度の向上は、姿勢推定精度の向上となる

実験			2		
評価内容	娑	桑 勢推定	復元精度(RMSE)		
半径[mm]	roll	pitch	yaw	平均	平均
20	5.20	3.27	2.69	3.72	0.286
30	6.18	3.73	3.23	4.38	0.292
40	6.69	4.13	3.51	4.77	0.298

まとめ

- •機械学習により姿勢推定を提案した
 - 機械学習により姿勢推定を行うことができた
- ・今後の課題
 - 復元精度の向上が姿勢推定の精度向上につながるため復元精度 の向上を図る
 - ・リアルタイムでの姿勢推定を行う