- 1. If $r = \theta 3\sin\theta$ then $\frac{dr}{d\theta}$ at (π, π) is
 - (A) 2
- (B) π
- (C) 4
- (D) 2π

- 2. If $r = \frac{2}{1 \cos \theta}$ then $\frac{dr}{d\theta}$ at $(2, \frac{\pi}{2})$ is
 - (A) -2
- (B) −1
- (C) 0
- (D) 1

- 3. If $r = 3\sin\theta$ then $\frac{dy}{dx}$ at the point where $\theta = \frac{\pi}{3}$ is
 - (A) -2
- (B) $-\sqrt{3}$
- (C) −1
- (D) $\frac{\sqrt{3}}{3}$

- 1. The area of the region enclosed by the polar curve $r^2 = 6\sin(2\theta)$ is
 - (A) 2
- (B) 4
- (C) 6
- (D) 12

- 2. What is the area of the region enclosed by the loop of the graph of the polar curve $r = 2\cos(2\theta)$ shown in the figure above?
 - (A) $\frac{\pi}{4}$
- (B) $\frac{\pi}{2}$ (C) $\frac{3\pi}{4}$
- (D) π

- 3. The area of the shaded region that lies inside the polar curves $r = \sin \theta$ and $r = \cos \theta$ is

- (A) $\frac{1}{8}(\pi 2)$ (B) $\frac{1}{4}(\pi 2)$ (C) $\frac{1}{2}(\pi 2)$ (D) $\frac{1}{8}(\pi 1)$
- 4. The area of the region enclosed by the polar curve $r = 2 + \sin \theta$ is
 - (A) 3π
- (B) $\frac{7\pi}{2}$
- (C) 4π
- (D) $\frac{9\pi}{2}$

5.

The figure above shows the graphs of the polar curves $r=2+\cos(2\theta)$ and r=2. Let R_1 be the shaded region in the first quadrant bounded by the two curves and the *x*-axis, and R_2 be the shaded region in the first quadrant bounded by the two curves and the *y*-axis. The graphs intersect at point P in the first quadrant.

- (a) Find the polar coordinates of point P and write the polar equation for the line ℓ .
- (b) Set up, but do not integrate, an integral expression that represents the area of R_1 .
- (c) Set up, but do not integrate, an integral expression that represents the area of R_2 .
- (d) Let R_3 be the shaded region in the second quadrant bounded by the two curves and the coordinate axis. Find the area of R_3 .
- (e) The distance between the two curves changes for $0 < \theta < \frac{\pi}{4}$. Find the rate at which the distance between the two curves is changing with respect to θ when $\theta = \frac{\pi}{6}$.

Parametric Equations, Vectors, and Polar Coordinates _ ctns

The graph of the polar curve $r(\theta) = \theta \sin(\theta)\cos(\theta)$ is shown in the figure above for $0 \le \theta \le \frac{5\pi}{2}$. Let S be

the shaded region in the outer loop of the graph of $r(\theta)$ and also outside of the inner loop of $r(\theta)$, as shown in the figure above. Let R be the region bounded by the graph of $r(\theta)$ in quadrant IV, as shown in the figure.

- a. Find the area of S.
- b. Find the area of R.
- c. For $\frac{\pi}{2} < \theta < \frac{3\pi}{4}$, $r(\theta) < 0$ and $\frac{dr}{d\theta} < 0$. What do these facts say about the curve relative to the origin?