3. Recommender systems

Problem: What items to recommend to which user? Products, music, movies, dishes, learning material,...

Image source https://sudonull.com/post/12374-Anatomy-ofrecommendation-systems-Part-one
MDM course Aalto 2023 - p.1/21

Data and utility matrix

Data: User profiles, product descriptions, browsing and buying behaviour, explicit ratings.

Often possible to derive a utility matrix A, where A[i, j] = utility of item j for user i

• $n \times d$ matrix, n=number users, d=number of items

Two types:

- 1. Only positive preferences ("likes", browsing, buying)
- 2. Positive and negative preferences ("likes" and "dislikes", ratings)
- extremely large and sparse matrices!

Example utility matrices (movie preferences)

(a) Ratings-based utility

(b) Positive-preference utility

Empty cell=unspecified; in data, e.g., –, na, 0 (if non-positive ratings).

Image source Aggarwal Ch 18

Main approaches: Content-based and preference-based (collaborative filtering)

Image source

https://data-flair.training/blogs/data-science-r-movie-recommendation/

Content-based recommendations

Given

- 1. item profile = text descriptions, keywords
- 2. **user profile** = documents describing user's interests (e.g., descriptions of previously bought/liked items, explicitely specified or derived interests)

Search items whose profiles match (are similar) to the user's profile

a) If no utility matrix

- ullet search K most similar items to the user profile
- e.g., tf-idf presentation + cos similarity

Content-based recommendations

- b) If utility matrix exists, utilize the user's previous preferences!
- = prediction task where vector $\mathbf{A}[i]$ = target values for user i
 - If positive preference matrix, learn a classifier
 - If numerical ratings, learn a regression model
 - training sets extremely small
 - over-specialization: recommendations tend to favour items described by the same keywords
 - e.g., recommend movies with the same actors as before

Collaborative filtering

Assumption: The user probably likes what other similar users have liked.

Approaches for recommendation

- i) Neighbourhood-based
- ii) Graph-based
- iii) Clustering-based
- iv) Latent factor -based

Neighbourhood-based methods: 1. user-based

Utilize user-user similarity

e.g., **Pearson correlation coefficient** r for similarity between two users' rating vectors $\mathbf{x} = (x_1, \dots, x_d)$ and $\mathbf{y} = (y_1, \dots, y_d)$:

$$r(\mathbf{x}, \mathbf{y}) = \frac{\sum_{j \in J} (x_j - \mu_x)(y_j - \mu_y)}{\sqrt{\sum_{j \in J} (x_j - \mu_x)^2 \sum_{j \in J} (y_j - \mu_y)^2}}$$

 $J = \{j \mid x_j \neq na, y_j \neq na\}$ (items rated by both) μ_x is average rating, two alternatives:

- i) $\mu_x = \frac{1}{|J|} \sum_{j \in J} x_j$ (only common items) or
- ii) $\mu_X = \frac{1}{|J_X|} \sum_{j \in J_X} x_j$, where $J_X = \{j \mid x_j \neq na\}$ (all rated items; more common approach)

Predict missing ratings in rating vector x

- 1. search K nearest neighbours NN_x using similarity r
- 2. remove neighbours from NN_x if $r \le \theta$ (negative or weak correlations)
- 3. normalize ratings: $y'_j = y_j \mu_y$ (since in different scales)
- 4. calculate predicted rating for all items *j* with missing entries in **x**:

$$\tilde{x}_j = \frac{\sum_{\mathbf{y} \in NN_{\mathbf{x}}} w_{\mathbf{y}} \cdot y_j'}{\sum_{\mathbf{y} \in NN_{\mathbf{x}}} w_{\mathbf{y}}} + \mu_x$$

- $w_y = 1$ or weigh by similarity $w_y = r(x, y)$
- i.e., weighted average rating by similar users + return to
 x's original scale

Example: Predict missing ratings ($K = 2, r \ge 0.5$)

	m_1	m_2	m_3	m_4	m_5	m_6
u_1	_	1	2	2	3	_
u_2	3	1	1	2	4	3
u_3	4	2	3	3	_	5
u_4	2	5	4	_	1	2

User means:

$$\mu_1 = 2.000$$
 $\mu_2 = 2.333$
 $\mu_3 = 3.400$
 $\mu_4 = 2.800$

	u_1	u_2	u_3	u_4
u_1	1.000	0.836	0.927	-0.917
u_2	0.836	1.000	0.822	-0.974
u_3	0.927	0.822	1.000	-0.862
u_4	-0.917	-0.974	-0.862	1.000

 m_1 =Gladiator, m_2 =Goodfather, m_3 =Ben-Hur, m_4 =Goodfellas, m_5 =Scarface, m_6 =Spartacus

Example: Predict missing ratings ($K = 2, r \ge 0.5$)

	u_1	u_2	u_3	u_4
u_1	1.000	0.836	0.927	-0.917
u_2	0.836	1.000	0.822	-0.974
u_3	0.927	0.822	1.000	-0.862
u_4	-0.917	-0.974	-0.862	1.000

$$\mu_1 = 2.000$$

$$\mu_2 = 2.333$$

$$\mu_3 = 3.400$$

$$\mu_4 = 2.800$$

for u_1 nearest u_3 and u_2 , predicted for u_1 , m_1 :

$$\frac{0.836\cdot(3-2.333)+0.927\cdot(4-3.400)}{0.836+0.927}+2.000=2.63>\mu_1\to recommend$$

for u_1 , m_6 predicted 3.16 for u_3 nearest u_1 and u_2 , for m_5 predicted 4.71 for u_4 not enough neighbours! (all r < 0)

Neighbourhood-based methods: 2. item-based

Utilize item-item similarity

 $\mathbf{v} = j$ th item's rating vector, $\mathbf{x} = i$ th user's rating vector

- 1. search K nearest neighbours NN_v of v
- 2. select a subset $NN_{\mathbf{v},\mathbf{x}} \subseteq NN_{\mathbf{v}}$ of those items's ratings that user i has rated: $NN_{\mathbf{v},\mathbf{x}} = \{\mathbf{u}_r \mid \mathbf{u}_r \in NN_{\mathbf{v}}, x_r \neq na\}$
- 3. Predicted rating is

$$\tilde{x}_j = \frac{\sum_{\mathbf{u}_r \in NN_{\mathbf{v},\mathbf{x}}} w_{\mathbf{v},\mathbf{u}_r} \cdot x_r}{\sum_{\mathbf{u}_r \in NN_{\mathbf{v},\mathbf{x}}} w_{\mathbf{v},\mathbf{u}_r}}$$

• i.e., weighted average rating on similar items by user *i*

Neighbourhood-based methods: 2. item-based

What similarity measure to use? Should we normalize ratings?

- Pearson correlation (+ mean centering can be used also here)
- adjusted cosine similarity = cosine similarity after mean centering each user's ratings

See Aggarwal 18.5.2.2

Graph-based methods

Idea: Create a bipartite user-item graph and utilize random walk approaches.

- graph $G = (U \cup V, E)$
- U = nodes for users
- V = nodes for items
- \mathbf{E} = edges such that $(u_i, v_j) \in \mathbf{E}$, $u_i \in \mathbf{U}$, $v_j \in \mathbf{V}$, if the ith user has rated the jth item
- if rating matrix (positive and negative preferences), the edges may have weights:
 - normalize rating A[i, j] by subtracting mean of ratings on row $A_i \rightarrow$ signed network

Bipartite user-item graph

Image source Aggarwal Ch 18

Making recommendations

Let **G** be unweighted (presents only positive preferences). Two approaches:

1. Use G only to determine nearest neighbours:

- determine K most similar users to the ith user using personalized PageRank or SimRank
- or K most similar items to the jth item
- make recommendations as before (user-based or item-based)

Making recommendations

2. Use PageRank values to decide recommendations:

- i) given user i, search item nodes with largest PageRank values, when teleportation to user node u_i
 - → recommend these items to the *i*th user
- ii) given item j, search user nodes with largest PageRank values, when teleportation to item node v_j
 - → recommend the *j*th item to these users
- lacktriangle teleportation probability lpha affects results
 - ullet small lpha favours popular items
 - larger α makes recommendations more specific to the given user

Clustering-based methods

Idea: Determine peer groups (similar users or similar items) beforehand by clustering.

→ neighbourhood-based methods determine them separately for all users

What clustering methods to use?

- problem: data sets very sparse (many missing values)
- adapt K-means:
 - calculate distances $d(\mathbf{x}, \mathbf{c}_i)$ and centroids \mathbf{c}_i only over those dimensions where ratings available
- co-clustering approaches

Co-clustering of movie preference data

Image source Aggarwal Ch 18

Latent factor -based methods

Idea: summarize correlations by latent factors \rightarrow smaller dimensional representation of utility matrix $\mathbf{A} \approx \mathbf{F}_U \mathbf{F}_I^T$

- present n users by n k-dimensional latent factors, $\mathbf{F}_{U1}, \dots, \mathbf{F}_{Un}$
- present d items by d k-dimensional latent factors, $\mathbf{F}_{I1}, \dots, \mathbf{F}_{In}$
- \bullet k = new reduced dimensionality of latent representation
- estimate rating $\mathbf{A}[i, j] \approx \mathbf{F}_{Ui} \cdot \mathbf{F}_{Ij}$
- use (modified) SVD or other matrix factorization to get latent factors

Further reading Aggarwal 18.5.5 and 6.8

Summary

- Content-based recomendations: evaluate similarity between text descriptions and utilize only the user's own ratings
- Collaborative filtering: utilize all users' ratings
 - many approaches: neighbourhood-based, graph-based, clustering-based, latent factor-based
 - often 2 steps: determine a peer group and then calculate predicted ratings
 - sometimes 1 step: choose recommended items directly by PageRank or use matrix factorization

Further reading: Desrosiers and Karypis: A comprehensive survey of neighborhood-based recommendation methods. In Recommender Systems Handbook, 2011.