CS578: Internet of Things

IEEE 802.15.4

Standard: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6471722

Dr. Manas Khatua

Assistant Professor, Dept. of CSE, IIT Guwahati

E-mail: manaskhatua@iitg.ac.in, URL: http://manaskhatua.github.io/

IEEE 802.15 Task Group 4

- TG4 defines low-data-rate PHY and MAC layer specifications for wireless personal area networks (WPAN)
 - This standard has evolved over the years:
 - > IEEE 802.15.4-2003; IEEE 802.15.4-2006
 - > IEEE 802.15.4-2011; IEEE 802.15.4-2015

PAN

- span a small area (e.g., a private home or an individual workspace)
- communicate over a short distance
- low-powered communication
- primarily uses ad-hoc networking
- could be wireless or wired (e.g. using USB)

IEEE 802.15.4 market feature

- Low power consumption
- Low cost system and operation
- Low offered message throughput
- Supports large network (<= 65k nodes)
- Low to no QoS guarantees
- Flexible protocol design
- IEEE 802.15.4 PHY and MAC layers are the foundations for several networking protocol stacks used in different market applications.
- Few well-known protocol stacks:
 - ZigBee
 - ZigBee IP
 - 6LoWPAN
 - WirelessHART
 - Thread

 ZigBee shows how 802.15.4 can be leveraged at the PHY and MAC layers, independent of the protocol layers above.

What is ZigBee Alliance?

- An alliance of organizations with a mission to define
 - reliable,
 - cost effective,
 - low-power,
 - wirelessly networked,
 - monitoring and control products
 - based on an open global standard

- Alliance provides
 - interoperability,
 - certification testing, and
 - branding

- ZigBee Alliance
 - 45+ companies: Semiconductor mfrs, IP providers, OEMs, etc.

ZigBee/802.15.4 architecture

- ZigBee Alliance
 - Defining upper layers of protocol stack: from network to application, including application profiles
- IEEE 802.15.4 Working Group
 - Defining lower layers of protocol stack: MAC and PHY
- ZigBee takes full advantage of a powerful physical radio specified by IEEE 802.15.4
- ZigBee adds logical network, security and application software

ZigBee network applications

IEEE 802.15.4 PHY

IEEE 802.15.4 PHY overview

PHY functionalities:

- Activation and deactivation of the radio transceiver
- Energy detection within the current channel
- Link quality indication for received packets
- Clear channel assessment for CSMA-CA
- Channel frequency selection
- Data transmission and reception

Spectrum

- Federal Communications of Commissions (FCC) in USA allocates frequency bands
- Applications using ISM (Industrial, Scientific, and Medical) band do not require a licence for stations emitting less than 1W.

FCC Band	Max. Transmit Power	Frequencies
Industrial Band	< 1 W	902 MHz – 928 M Hz
Scientific Band	< 1 W	2.4 GHz – 2.48 GHz
Medical Band	< 1 W	5.725 GHz – 5.85 GHz
U-NII (Unlicensed National Information	< 40 mW	5.15 GHz – 5.25 GHz
	< 200 mW	5.25 GHz – 5.35 GHz
Infrastructure)	< 800 mW	5.725 GHz – 5.82 GHz

• Physical layer transmission options in IEEE 802.15.4-2015

2.4 GHz, 16 channels, data rate 250 kbps
915 MHz, 10 channels, data rate 250 kbps
868 MHz, 3 channel, data rate 100 kbps

Spread Spectrum

- Idea of Spread Spectrum is to spread the information signal over a wider bandwidth to make jamming and interception more difficult.
- can be used to transmit either analog or digital data, using an analog signal
- Types:
 - frequency hopping spread spectrum (FHSS)
 - direct sequence spread spectrum (DSSS)

Figure 9.1 General Model of Spread Spectrum Digital Communication System

Cont...

- Pseudorandom numbers
 - generated by an algorithm using some initial value called the seed
 - produce sequences of numbers that are not statistically random, but passes reasonable tests of randomness
 - unless you know the algorithm and the seed, it is impractical to predict the sequence

- Gain from this apparent waste of spectrum
 - The signals gains immunity from various kinds of noise and multipath distortion.
 - Immune to jamming attack
 - It can also be used for hiding and encrypting signals.
 - Several users can independently use the same higher bandwidth with very little interference. (e.g. CDMA)

DSSS

- each bit in the original signal is represented by multiple bits in the transmitted signal, using a spreading code
- spreading code spreads the signal across a wider frequency band in direct proportion to the number of bits used

Figure 9.6 Example of Direct Sequence Spread Spectrum

Modulation

Modulation schemes

OQPSK PHY : DSSS PHY employing Offset Quadrature Phase-Shift Keying (OQPSK)

• BPSK PHY : DSSS PHY employing binary phase-shift keying (BPSK)

• ASK PHY : PSSS PHY employing Amplitude Shift Keying (ASK) and BPSK

ASK
$$s(t) = \begin{cases} A\cos(2\pi f_c t) & \text{binary } 1\\ 0 & \text{binary } 0 \end{cases}$$

BPSK
$$s(t) = \begin{cases} A\cos(2\pi f_c t) \\ A\cos(2\pi f_c t + \pi) \end{cases} = \begin{cases} A\cos(2\pi f_c t) & \text{binary } 1 \\ -A\cos(2\pi f_c t) & \text{binary } 0 \end{cases}$$

Amplitude Shift Keying (ASK)

Binary Phase-Shift Keying (BPSK)

QPSK

Constellation diagram for QPSK

- More efficient use of bandwidth
 - as each signalling element represents more than one bit.

$$\mathbf{QPSK} \quad s(t) = \begin{cases} A\cos\left(2\pi f_c t + \frac{\pi}{4}\right) & 11 \\ A\cos\left(2\pi f_c t + \frac{3\pi}{4}\right) & 01 \\ A\cos\left(2\pi f_c t - \frac{3\pi}{4}\right) & 00 \\ A\cos\left(2\pi f_c t - \frac{\pi}{4}\right) & 10 \end{cases}$$

Orthogonal QPSK

Problem in QPSK: large phase shift at high transition rate is difficult to perform.
 Phase shift is 180° in QPSK.

OQPSK

- ✓ a variation of QPSK known as offset QPSK or orthogonal QPSK
- ✓ a delay of one bit time is introduced in the Q stream of QPSK
- ✓ Its spectral characteristics and bit-error performance are the same as that of QPSK
- ✓ at any time the phase change in the combined signal never exceeds 90° ($\pi/2$)

Other Attributes

- IEEE 802.15.4 does not prefer to use frequency hopping to minimize energy consumption.
- To minimize interference in 2.4 GHz band, IEEE 802.15.4 prefer channel no. 15, 20, 25, 26
- Transmission power is adjustable from 0.5 mW (min in 802.1.5.4) to 1 W (max in ISM band)
- Transmission power 1 mW provides theoretical distances as: Outdoor range 300 m; Indoor range 100 m.

Cont...

- 802.15.4 PHY provides energy detection (ED) feature
 - Application can request to asses each channel's energy level
 - Coordinator can make optimal selection of channel based on channels energy level
- 802.15.4 PHY provides link quality information (LQI) to NET and APP layers
 - Transmitter may decide to use high transmission power based on LQI
 - Applications may dynamically change 802.15.4 channels based on LQI
- 802.15.4 uses CSMA/CA which ask the PHY layer to do CCA
 - Clear Channel Assessment (CCA):
 - Can be energy threshold regardless of modulation
 - Can be detection of modulation
 - Can be both the above

PHY Frame

- PHY packet fields
 - Preamble (32 bits) synchronization of data transmission
 - SFD (8 bits) shall be formatted as "1110 0101"
 - PHY header (8 bits) PSDU length
 - PSDU (0 to 127 bytes) data field

Sync F	leader	PHY Hea	ader	PHY Payload
Preamble	Start of Frame Delimiter	Frame Length (7 bit)	Reserved (1 bit)	PHY Service Data Unit (PSDU)
4 Octets	1 Octets	1 Octet	ts	0-127 Bytes

IEEE 802.15.4 MAC

IEEE 802.15.4 Device Types

- There are two different device types :
 - full function device (FFD)
 - reduced function device (RFD)
- The FFD can operate in three modes by serving as
 - PAN Coordinator
 - scanning the network and selecting optimal RF channel
 - selecting the 16 bit PAN ID for the network
 - Coordinator
 - relaying messages to other FFDs including PAN coordinator
 - transmits periodic beacon (under beacon enable access mode)
 - respond to beacon requests
 - Device
 - cannot route messages
 - usually receivers are switched off except during transmission
 - attached to the network only as leaf nodes
- The RFD can only serve as:
 - Device

Star Topology

Peer-to-Peer Topology

Full Function Device (FFD)Communications Flow

General MAC Frame Format

MAC frame types:

- Data frame
- ACK frame
- Beacon frame
- Command frame

Frame Control

Bits: 3	1	1	1	1	3	2	2	2
Frame Type	Security enabled	Frame pending	ACK required	Pan ID	Reserved	Dest addr mode	Frame Version	Src addr mode

Beacon Frame Format

Octets:2	1	4 or 10		2	variable	variable	variable)	2
Frame control	Beacon sequence number	Source addr informatio	•	erframe ification	GTS fields	Pending address fields	Beacon pay	rload ch	ame eck uence
MAC header				MAC payload					
	Bits: 0-3	4-7	8-11	-11 12		13	14	15	
	Beacon order	Superframe order	Final CAP slot		ry life	Reserved	PAN coordinator	Associatio permit	n

Command Frame Format

Octets:2	1	4 to 20	1	variable	2
Frame control	Data sequence number	Address information	Command type	Command payload	Frame check sequence
	MAC head	er		MAC payload	MAC footer

Command Frame Types

- Association request
- Association response
- Disassociation notification
- Data request
- PAN ID conflict notification

- Orphan Notification
- Beacon request
- Coordinator realignment
- GTS request

Data & ACK Frame Format

Data Frame

Octets:2	1	4 to 20	variable	2
Frame control	Data sequence	Address information	Data payload	Frame check
	number			sequence
	MAC head	der	MAC Payload	MAC
WAC Headel			WAC Fayload	footer

ACK Frame

Octets:2	1	2
Frame	Data	Frame
control	sequence	check
COLLIO	number	sequence
MAC	MAC	
WACT	footer	

Device Addressing

- Two or more devices communicating on the same physical channel constitute a WPAN.
 - A WPAN includes <u>at least one FFD (PAN coordinator)</u>
 - Each independent PAN will select a unique PAN identifier
- Each device operating on a network has a unique 64-bit address, called extended unique identifier (EUI-64)
 - This address can be used for direct communication in the PAN
- A device also has a 16-bit short address, which is allocated by the PAN coordinator when the device associates with its coordinator.

Superframe

- A superframe is divided into two parts
 - Inactive: all station sleep.
 - no communication
 - nodes can turn their radios off and go into power saving mode
 - Active:
 - Active period is divided into 16 slots
 - 16 slots are further divided into two parts
 - Contention access period (CAP)
 - Contention free period (CFP)
 - Beacon only period (BOP)

- superframe order (SO): decides the length of the active portion in a superframe
- beacon order (BO): decides the length of a superframe or beacon transmission period
- beacon-enabled network should satisfy 0≤SO≤BO≤14
- PAN coordinator decides SO, BO

Cont...

- aBaseSlotDuration = The number of symbols forming a superframe slot when the superframe order (SO) is equal to zero = 60 PHY symbols
- aBaseSuperframeDuration = The number of symbols forming a superframe when the superframe order (SO) is equal to zero. = aBaseSlotDuration × aNumSuperframeSlots
- aNumSuperframeSlots = The number of slots contained in any superframe = 16
- Length of a superframe can range from 15.36 msec to 215.7 sec (= 3.5 min).
- Beacons are used for
 - starting superframes
 - synchronizing with other devices
 - announcing the existence of a PAN
 - informing pending data in coordinators

Cont...

- In a "beacon-enabled" network (i.e. uses superframe structure)
 - Devices use the slotted CAMA/CA mechanism to contend for the channels
 - FFDs which require fixed rates of transmissions can ask for guarantee time slots (GTS) from the coordinator
- In a "nonbeacon-enabled" network (i.e. do not use ssuperframe structure)
 - Devices use the unslotted CAMA/CA mechanism for channel access
 - GTS shall not be permitted
- CSMA/CA is not used for Beacon transmission; and Data frame transmission during CFP
- Each device will be
 - active for 2^{-(BO-SO)} portion of the time
 - sleep for 1 2^{-(BO-SO)} portion of the time
- Duty Cycle:

BO-SO	0	1	2	3	4	5	6	7	8	9	≥10
Duty cycle (%)	100	50	25	12	6.25	3.125	1.56	0.78	0.39	0.195	< 0.1

Data Transfer Model (I)

- Data transferred from device to coordinator
 - In a beacon-enable network,
 - a device finds the beacon to synchronize to the superframe structure.
 - Then it uses slotted CSMA/CA to transmit its data.
 - In a non-beacon-enable network,
 - device simply transmits its data using unslotted CSMA/CA

Communication to a coordinator In a beacon-enabled network

Communication to a coordinator In a non-beacon-enabled network

Data Transfer Model (II)

- Data transferred from coordinator to device
 - in a beacon-enabled network:
 - The coordinator indicates in the beacon that some data is pending.
 - A device periodically listens to the beacon and transmits a Data Request command using slotted CSMA/CA.
 - Then ACK, Data, and ACK follow ...

- Data transferred from coordinator to device
 - in a non-beacon-enable network:
 - The device transmits a Data Request using unslotted CSMA/CA.
 - If the coordinator has its pending data, an ACK is replied.
 - Then the coordinator transmits Data using unslotted CSMA/CA.
 - If there is no pending data, a data frame with zero length payload is transmitted.

Channel Access Mechanism

- CSMA/CA random channel access is used more often
 - beacon-enabled networks → slotted CSMA/CA channel access mechanism

In slotted CSMA/CA:

- The backoff period boundaries of every device in the PAN shall be aligned with the superframe slot boundaries of the PAN coordinator
- i.e. the start of first backoff period of each device is aligned with the start of the beacon transmission
- The MAC sublayer shall ensure that the PHY layer commences all of its transmissions on the boundary of a backoff period
- ➤ nonbeacon-enabled networks → unslotted CSMA/CA channel access mechanism

In unslotted CSMA/CA:

- The backoff periods of one device are not related in time to the backoff periods of any other device in the PAN.
- Algorithms runs using units of time called backoff periods, where one backoff period shall be equal to aUnitBackoffPeriod.

Slotted CSMA/CA algorithm

- Each device maintains 3 variables for each transmission attempt
 - NB (Number of Backoff): number of times that backoff has been taken in this attempt
 - if exceeding macMaxCSMABackoff, the attempt fails
 - BE (Backoff Exponent): the backoff exponent is related to how many backoff periods a device shall wait before attempting to assess a channel.
 - the number of backoff periods is greater than the remaining number of backoff periods in the CAP
 - MAC sublayer shall pause the backoff countdown at the end of the CAP,
 - and resume it at the start of the CAP in the next superframe
 - CW (Contention Window): contention window length, the number of clear slots that must be seen after each backoff
 - always set to 2 and count down to 0 if the channel is sensed to be clear
 - The design is for some PHY parameters, which require 2 CCA for efficient channel usage.
- Battery Life Extension (BLE):
 - designed for very low-power operation, where a node only contends in the first few slots

Cont...

Why 2 CCAs to Ensure Collision-Free

- Each CCA occurs at the boundary of a backoff slot (= 20 PHY symbols), and each CCA time = 8 PHY symbols.
- The standard species that a transmitter node performs the CCA twice in order to protect acknowledgment (ACK).
 - When an ACK packet is expected, the receiver shall send it after a $t_{\rm ACK}$ time on the backoff boundary
 - t_{ACK} varies from 12 to 31 symbols
 - One-time CCA of a transmitter may potentially cause a collision between a newly-transmitted packet and an ACK packet.
 - (See examples below)

Why 2 CCAs (case 1)

Why 2 CCAs (Case 2)

Why 2 CCAs (Case 3)

Unslotted CSMA/CA

NB (Number of Backoff)
BE (Backoff Exponent)
CW (Contention Window)
CCA (Clear Channel Assessment)

GTS Concepts

- A guaranteed time slot (GTS) allows a device to operate on the channel within a portion of the superframe
- A GTS shall only be allocated by the PAN coordinator
- The PAN coordinator can allocated up to 7 GTSs at the same time
- The PAN coordinator decides whether to allocate GTS based on:
 - Requirements of the GTS request
 - The current available capacity in the superframe
- A GTS can be deallocated
 - At any time at the discretion of the PAN coordinator or
 - By the device that originally requested the GTS
- A device that has been allocated a GTS may also operate in the CAP
- A data frame transmitted in an allocated GTS shall use only short addressing

Cont...

- Before GTS starts, the GTS direction shall be specified as either transmit or receive
 - Each device may request one transmit GTS and/or one receive GTS
- A device shall only attempt to allocate and use a GTS if it is currently tracking the beacon
- If a device loses synchronization with the PAN coordinator, all its GTS allocations shall be lost
- The use of GTSs by an RFD is optional

Association Procedures

A device becomes a member of a PAN by associating with its coordinator

Procedures:

- The ACK to an Association Request command does not mean that the device has associated.
- In IEEE 802.15.4, association results are announced in an indirect fashion.
 - A coordinator responds to Association Requests by appending devices' long addresses in Beacon frames
- Devices need to send a data request to the coordinator to acquire the association result
- After associating to a coordinator, a device will be assigned a 16-bit short address.

Security

- Security Enabled bit in Frame
 Control is set to 1.
 - IEEE 802.15.4 specification uses Advanced Encryption Standard (AES) with a 128-bit key length as the base encryption algorithm
 - Message integrity code (MIC), which is calculated for the entire frame using the same AES key, to validate the data that is sent

Limitations in 802.15.4

- Disadvantages of IEEE 802.1.5.4
 - MAC reliability
 - unbounded latency
 - multipath fading
- IEEE 802.15.4e amendment of 802.15.4-2011 expands the MAC layer feature set
 - to remedy the disadvantages of 802.15.4.
 - to better suitable in factory and process automation, and smart grid
 - Main modifications were:
 - frame format,
 - security,
 - · determinism mechanism, and
 - · frequency hopping

- IEEE 802.15.4g amendment of 802.15.4-2011 expands mainly PHY layer feature set
 - to optimize large outdoor wireless mesh networks for field area networks (FANs)
 - to better suitable in smart grid or smart utility network (SUN) communication
 - Main modifications were:
 - New PHY definitions
 - some MAC modifications needed to support the new PHY

Thanks!

Figures and slide materials are taken from the following sources:

- 1. David Hanes *et al.*, "IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things", 1st Edition, 2018, Pearson India.
- 2. Oliver Hersent et al., "The Internet of Things: Key Applications and Protocols", 2018, Wiley India Pvt. Ltd.