Normal Curves

Today's Goals

- Normal curves!
- Before this we need a basic review of statistical terms. I mean basic as in underlying, not easy.
- We will learn how to retrieve statistical data from normal curves.
- As an application, we'll see how to determine the margin of error of a poll.

Statistics basics

Here's some terminology you should be familiar with:

- **Mean/Average**: For a set of N numbers, d_1, d_2, \ldots, d_N , the mean is given by $\mu = (d_1 + d_2 + \cdots + d_N)/N$.
- **Median**: Sort the data set from smallest to largest: d_1, d_2, \ldots, d_N . The median is the *middle number*. If N is odd, the median is $d_{(N+1)/2}$. If N is even, the median is the average of $d_{N/2}$ and $d_{(N/2)+1}$.
- Mode: The most common number(s). A data set can have more than one mode. (We won't really study mode. It was just feeling left out so I put it on the slide.)
- Range: The difference between the highest and lowest values of the data (R = Max Min).

Percentiles

The pth **percentiles** of a data set is a number X_p such that p% is smaller or equal to X_p and (100 - p)% of the data is bigger or equal to X_p .

To find the pth percentile of a sorted data set d_1, d_2, \ldots, d_N , first find the locator L = (p/100) N.

If L is a whole number, then $X_p = \frac{d_L + d_{L+1}}{2}$.

If L is not a whole number, then $X_p=d_{L^+}$ where L^+ is L rounded up.

Percentiles

This is Evelyn.

Evelyn is in the 40th percentile for height (40% of babies Evelyn's age weigh as much or less than she does while 60% weigh as much or more).

Quartiles

- The **first quartile** Q_1 is the 25th percentile of a data set.
- The **median** is the 50th percentile of a data set (also technically the *second quartile*).
- The **third quartile** Q_3 is the 75th percentile of a data set.
- The **fourth quartile** is d_N (the last number in the data set).

The **interquartile range (IQR)** is the difference between the third quartile and the first quartile ($IQR = Q_3 - Q_1$).

IQR tells us how spread out the middle 50% of the data values are.

Hold up!

Why aren't we doing any examples?

Because I'm not going to ask you to compute any of these things directly from a set of data. Instead, we will study visual representations of the data called *bell curves*.

But, I want you to be familiar with the terminology and how it's computed. So bear with me.

Standard deviation and variance

Standard deviation tells us how spread out a data set is *from the mean*.

Let A be the mean of a data set. For each value x in the data set, x-A is the *deviation from the mean*. We want to average these values but for technical reasons we actually need to average their *squares*.

This average is called the **variance** V. The **standard deviation** is the square root of the variance, $\sigma = \sqrt{V}$.

Example

Scores (x)	Deviation (x-A)	(x-A)^2
40.00	-37.29	1390.22
41.00	-36.29	1316.65
48.00	-29.29	857.65
48.00	-29.29	857.65
70.00	-7.29	53.08
73.00	-4.29	18.37
73.00	-4.29	18.37
74.00	-3.29	10.80
77.00	-0.29	0.08
77.00	-0.29	0.08
82.00	4.71	22.22
85.00	7.71	59.51
85.00	7.71	59.51
88.00	10.71	114.80
90.00	12.71	161.65
90.00	12.71	161.65
94.00	16.71	279.37
95.00	17.71	313.80
96.00	18.71	350.22
98.00	20.71	429.08
99.00	21.71	471.51
77.29	0.00	330.78

The number 330.78 is the variance V, the average of squared devations.

The standard deviation is then

$$\sigma = \sqrt{V} \approx 18.19$$

Normal curves

Say we flipped a coin 100 times? We *expect* to get heads 50 times and tails 50 times, but it's also very likely that we would not get this. (For a challenge, compute the probability of this event.)

When John Kerrich was a POW during World War II he wanted to test the probabilistic theory on coin flipping with a real life experiment. He flipped a coin 10,000 times and recorded the number of heads for each 100 trials.

What took Kerrich weeks (months?) we can do in a matter of seconds via computer software like Maple.

Bell curves

A set of data with **normal distribution** has a bar graph that is perfectly bell shaped.

- Symmetry: Every normal curve has a vertical axis of symmetry.
- Median and mean: If a data set, then the median and mean are the same and they correspond to the point where the axis of symmetry intersects the horizontal axis.
- **Standard deviation**: The standard deviation is the horizontal distance between the mean and the **point of inflection**, where the graph changes the direction it is bending.

Normal distributions and curve

We say a distribution of data is **normal** if its bar graph is perfectly bell shaped.

This type of curve is called normal

Symmetry: Every normal curve has a vertical axis of symmetry.

Median and mean: If a data set is normal, then the median and mean are the same and they correspond to the point where the axis of symmetry intersects the horizontal axis.

Standard deviation: The standard deviation is the horizontal distance between the mean and the **point of inflection**, where the graph changes the direction it is bending.

Quartiles: The first and third quartiles can be found using the mean μ and the standard deviation σ .

$$Q_1 = \mu - (.675)\sigma$$
 and $Q_3 = \mu + (.675)\sigma$.

The 68-95-99.7 Rule: In a normal data set,

- Approximately 68% of the data falls between one standard deviation of the mean $(\mu \pm \sigma)$. This is the data between P_{16} and P_{84} .
- Approximately 95% of the data falls within two standard deviations of the mean ($\mu \pm 2\sigma$). This is the data between $P_{2.5}$ and $P_{97.5}$.
- Approximately 99.7% of the data falls within three standard deviations of the mean ($\mu \pm 3\sigma$). This is the data between $P_{0.15}$ and $P_{99.85}$.

Example

Suppose we have a normal data set with mean $\mu=500$ and standard deviation $\sigma=150$. We have the following:

- $Q_1 = 500 .675 \times 150 \approx 399$
- $Q_3 = 500 + .675 \times 150 \approx 601$
- Middle 68%: $P_{16} = 500 150 = 350$, $P_{84} = 500 + 150 = 650$.
- Middle 95%: $P_{2.5} = 500 2(150) = 200$, $P_{97.5} = 500 + 2(150) = 800$.
- Middle 99.7%: $P_{0.15} = 500 3(150) = 50$, $P_{99.85} = 500 + 3(150) = 850$.

Example

Consider a normal distribution represented by the normal curve with points of inflection at x=23 and x=45. Find the mean and standard deviation. Use them to compute Q_1, Q_3 and the middle 68%, 95%, and 99.7%.

Standardizing normal data

In essence, all normalized data sets are the same. They all have a mean μ and standard deviation σ . The same percentage of data is located in the same increments of σ from the mean. Thus, there is value in *standardizing normal data*.

Psychometry

This is Laura.

Laura is a *psychometrist*. She conducts psychological assessments.

Her patients are adults but their ages range from 18 and up. She uses z-values to standardize her patients' assessment scores.

Standardizing Rule

In a normal distribution with mean μ and standard deviation σ , the standardized value of a data point x is

$$z = \frac{x - \mu}{\sigma}$$
.

The result of this is the **z-value** of the data point x.

Conversions

Suppose we have a normal data set with mean $\mu=120$ and standard deviation $\sigma=30$. If x=100, then the z-value of x is

$$z = \frac{x - 120}{30} = -\frac{2}{3} \approx -.67.$$

If a z-value of some x is .5, what is x (for the data above)?

$$.5 = \frac{x - 120}{30}$$
$$15 = x - 120$$
$$135 = x$$

Or, we could recognize that a z-value of .5 means that x is $\frac{1}{2}$ a standard deviation to the right of the mean (so 120 + 15 = 135).

Variables

In algebra, a variable typically is a placeholder for some type of solution or set of solutions.

Given the equation x + 3 = 10, then the variable x represents the number 7.

Given the equation $x^2 + 5 = 21$, then x represents a member of the set of solutions $\{-4, 4\}$.

Random variables

A variable representing a random (probabilistic) event is called a **random variable**.

For example, if we toss a coin 100 times and let X represent the number of times heads comes up, then X is a random variable.

Like an algebraic variable, X represents a number between 0 and 100, but the possible values for X are not equally likely.

The probability of X=0 or X=100 is $(1/2)^{100}$, which is a very small number.

The probability of X = 50 is about 8%.

Random variable

Continuing with the example, we know that X has an approximately normal distribution with mean $\mu=50$ and standard deviation $\sigma=5$ (for a sufficiently large number of repetitions).

What is the (approximate) probability that X will fall between 45 and 55? This is 1 standard deviation from the mean, so the probability is approximately 68%.

The Honest-Coin Principle

We can now generalize the previous example to a trial with n tosses.

Let X be a random variable representing the number of heads in n tosses of an honest (fair) coin (assume $n \ge 30$).

Then X has an approximately normal distribution with mean $\mu=n/2$ and standard deviation $\sigma=\sqrt{n}/2$.

The Dishonest-Coin Principle

Let X be a random variable representing the number of heads in n tosses of a coin (assume $n \ge 30$), and let p denote the probability of heads on each toss of the coin.

Then X has an approximately normal distribution with mean $\mu = np$ and standard deviation $\sigma = \sqrt{np(1-p)}$.

Note that when $p = \frac{1}{2}$ we recover the Honest-Coin Principle.

In a poll conducted by Public Policy Polling before the recent Democratic primary in Missouri interviewed 839 likely voters.

Their poll found almost a tie between Hillary Clinton and Bernie Sanders.

Therefore, we can use the Honest-Coin Principle to compute the margin of error for the poll.

According the Honest-Coin Principle, we have

$$\mu = \frac{839}{2} = 419.5 \text{ and } \sigma = \frac{\sqrt{839}}{2} = 14.48.$$

The standard deviation σ is approximately 1.72% of the sample.

This means that the pollsters could assume with 95% confidence that either candidate would get between $(50\pm2(1.72))\%$ of the vote. That is, between 46.55% and 53.45%.

The value 2σ is called the **margin of error**.

On the other hand, in a poll conducted by Public Policy Polling before the recent Democratic primary in North Carolina interviewed 747 likely voters.

Their poll found Hillary Clinton with 60% support and Bernie Sanders with 40%.

Therefore, we can use the Dishonest-Coin Principle to compute the margin of error for the poll.

According the Dishonest-Coin Principle, we have

$$\mu = 747 * .6 = 448.2$$
 and $\sigma = \sqrt{747 * .6 * .4} = 13.39$.

The standard deviation σ is approximately 1.79% of the sample.

This means that the pollsters could assume with 95% confidence that Clinton candidate would get between $(60 \pm 2(1.79))\%$ of the vote. That is, between 56.42% and 63.58%.

The margin of error in this example is $2\sigma = 3.58\%$.