Lecture 33: Optimal Transport. Duality

- Lec 32 Optimal transport problems
 - Transport plans
 - Optimal transport problems
- Lec 33 ▶ One more concrete example. For distance squared cost.
 - Duality of optimal transport

Example (distance squared cost example: two points to two points in \mathbb{R}^1 .)

- $ightharpoonup x_1 = 0, x_2 = 1, y_1 = 2, y_2 = 3 \in \mathbb{R}.$
- $\mu = (1/2, 1/2)$, mass 1/2 at x_1 and mass 1/2 at x_2 .
- $\nu = (1/2, 1/2)$, mass 1/2 at y_1 and mass 1/2 at y_2 .

$$\min_{\pi \in \Pi(\mu,\nu)} \sum_{ij} \mathbf{C}_{ij} \pi_{ij}.$$

What are the optimal solutions?

Distance squared cost example: two points to two points in \mathbb{R}^1

$$[c_{ij}] = \begin{bmatrix} 2^2 & 3^2 \\ 1^2 & 2^2 \end{bmatrix}, \quad [\pi_{ij}] = \begin{bmatrix} \pi_{11} & \pi_{12} \\ \pi_{21} & \pi_{22} \end{bmatrix}$$

$$\sum_{ij} c_{ij} \pi_{ij} = 2^2 \pi_{11} + 3^2 \pi_{12} + \pi_{21} + 2^2 \pi_{22}$$

► Thus the LP problem is

$$\begin{array}{ll} \text{Minimize} & 2^2\pi_{11}+3^2\pi_{12}+\pi_{21}+2^2\pi_{22}\\ \text{subject to} & \pi_{11}+\pi_{12}=1/2\\ & \pi_{21}+\pi_{22}=1/2\\ & \pi_{11}+\pi_{21}=1/2\\ & \pi_{12}+\pi_{22}=1/2\\ & \pi_{11},\pi_{12},\pi_{21},\pi_{22}\geq 0 \end{array}$$

Distace squared cost example: two points to two points in \mathbb{R}^1

$$\begin{array}{ll} \text{Minimize} & 2^2\pi_{11} + 3^2\pi_{12} + \pi_{21} + 2^2\pi_{22} \\ \text{subject to} & \pi_{11} + \pi_{12} = 1/2 \\ & \pi_{21} + \pi_{22} = 1/2 \\ & \pi_{11} + \pi_{21} = 1/2 \\ & \pi_{12} + \pi_{22} = 1/2 \\ & \pi_{11}, \pi_{12}, \pi_{21}, \pi_{22} \geq 0 \end{array}$$

is equivalent to is equivalent to

Minimize
$$2^2\pi_{11} + 3^2(1/2 - \pi_{11}) + (1/2 - \pi_{11}) + 2^2\pi_{22}$$
 subject to $\pi_{11} \leq 1/2$ $1/2 - \pi_{11} + \pi_{22} = 1/2$ $\pi_{11} \leq 1/2$ $1/2 - \pi_{11} + \pi_{22} = 1/2$ $\pi_{11}, \pi_{22} > 0$

Distance squared cost: two points to two points in \mathbb{R}^1

Minimize
$$2^2\pi_{11} + 3^2(1/2 - \pi_{11}) + (1/2 - \pi_{11}) + 2^2\pi_{22}$$
 subject to $\pi_{11} \le 1/2$ $1/2 - \pi_{11} + \pi_{22} = 1/2$ $\pi_{11} \le 1/2$ $1/2 - \pi_{11} + \pi_{22} = 1/2$ $\pi_{11}, \pi_{22} \ge 0$

is equivalent to

Minimize
$$2^2\pi_{11} + 3^2(1/2 - \pi_{11}) + (1/2 - \pi_{11}) + 2^2\pi_{11}$$

subject to $\pi_{11} \le 1/2$
 $\pi_{11} \ge 0$

which is equivalent to

```
Minimize 5 - 2\pi_{11}
subject to 0 \le \pi_{11} \le 1/2
```

Distance squared cost: two points to two points in \mathbb{R}^1

Minimize
$$5 - 2\pi_{11}$$

subject to $0 \le \pi_{11} \le 1/2$

What does this mean?

Answer: Optimal solution is $\pi_{11} = 1/2$. So, from the constraints

$$\pi_{11} + \pi_{12} = 1/2$$
 $\pi_{21} + \pi_{22} = 1/2$
 $\pi_{11} + \pi_{21} = 1/2$
 $\pi_{12} + \pi_{22} = 1/2$

we get

$$\pi_{12} = 0, \pi_{21} = 0, \pi_{22} = 1/2.$$

Duality

Primal:

$$\begin{array}{ll} \text{Minimize} & \sum_{j=1}^{m} \sum_{j=1}^{n} c_{ij} \pi_{ij} \\ \text{subject to} & \sum_{j=1}^{n} \pi_{ij} = \mu_{i} \\ & \sum_{i=1}^{m} \pi_{ij} = \nu_{j} \\ & \pi_{ij} \geq 0 \\ & \forall i = 1,...,m, \forall j = 1,...,n \end{array}$$

Dual:

Maximize
$$\sum_{i=1}^{m} \frac{\phi_{i}}{\phi_{i}} \mu_{i} + \sum_{j=1}^{n} \frac{\psi_{j}}{\psi_{j}} \nu_{j}$$
subject to
$$\phi_{i} + \psi_{j} \leq c_{ij}$$
$$\forall i = 1, ..., m, \forall j = 1, ..., n$$

We will explain:

Primal:

Minmize $\vec{c}^T \vec{x}$

subject to $A\vec{x} = \vec{b}$ $\vec{x} \ge \vec{0}$

Dual:

Maximize $\vec{b}^T \vec{y}$ subject to $A^T \vec{y} \leq \vec{c}$

Primal:

Minmize
$$\vec{c}^T \vec{x}$$
 subject to $A\vec{x} = \vec{b}$ $\vec{x} \ge \vec{0}$

In standard (minimization) form

Minmize
$$\vec{c}^T \vec{x}$$

subject to $A\vec{x} \ge \vec{b}$
 $-A\vec{x} \ge -\vec{b}$
 $\vec{x} \ge \vec{0}$

$$\begin{array}{ll} \text{Minmize} & \vec{c}^T \vec{x} \\ \text{subject to} & A \vec{x} \geq \vec{b} \quad \text{(corresponds to } \vec{y}^+\text{)} \\ & -A \vec{x} \geq -\vec{b} \quad \text{(corresponds to } \vec{y}^-\text{)} \\ & \vec{x} \geq \vec{0} \end{array}$$

Dual variables are $\vec{y}^+, \vec{y}^- \ge \vec{0}$.

Primal

Min. $\vec{c}^T \vec{x}$ subj. $A\vec{x} \ge \vec{b}$ $-A\vec{x} \ge -\vec{b}$ $\vec{x} > \vec{0}$

Dual

$$\begin{array}{ll} \text{Max.} & \vec{b}^T \vec{y}^+ - \vec{b}^T \vec{y}^- \\ \text{subj.} & A^T \vec{y}^+ - A^T \vec{y}^- \leq \vec{c} \\ & \vec{y}^+, \vec{y}^- \geq \vec{0} \end{array}$$

Primal:

Minmize
$$\vec{c}^T \vec{x}$$

subject to $A\vec{x} = \vec{b}$
 $\vec{x} > \vec{0}$

In standard (minimization) form:

Min.
$$\vec{c}^T \vec{x}$$

subj. $A\vec{x} \ge \vec{b}$
 $-A\vec{x} \ge -\vec{b}$
 $\vec{x} > \vec{0}$

Dual

Max.
$$\vec{b}^T \vec{y}^+ - \vec{b}^T \vec{y}^-$$

subj. $A^T \vec{y}^+ - A^T \vec{y}^- \le \vec{c}$
 $\vec{y}^+, \vec{y}^- \ge \vec{0}$

By letting $\vec{y} = \vec{y}^+ - \vec{y}^-$, we have

Dual:
$$\begin{array}{ll}
\text{Max.} & \vec{b}^T \vec{y} \\
\text{subj.} & A^T \vec{y} \leq \vec{c}
\end{array}$$

So, we can (roughly) see **Primal:**

$$\begin{array}{ll} \text{Min.} & \vec{c}^T \vec{x} \\ \text{subj.} & A\vec{x} = \vec{b} \\ & \vec{x} \geq \vec{0} \end{array}$$

Primal:

Min.
$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij}\pi_{ij}$$

subj. $\sum_{j=1}^{n} \pi_{ij} = \mu_{i}$
 $\sum_{i=1}^{m} \pi_{ij} = \nu_{j}$
 $\pi_{ij} \geq 0$
 $\forall i = 1, ..., m,$
 $\forall j = 1, ..., n$

Dual:

Max.
$$\vec{b}^T \vec{y}$$
 subj. $A^T \vec{y} \leq \vec{c}$

Dual:

$$\begin{array}{ll} \text{Max} & \sum_{i=1}^{m} \phi_{i} \mu_{i} + \sum_{j=1}^{n} \psi_{j} \nu_{j} \\ \text{subj.} & \phi_{i} + \psi_{j} \leq c_{ij} \\ & \forall i = 1, ..., m, \\ & \forall j = 1, ..., n \end{array}$$

More precise explanation in this direction is possible. Just a bit tedious and complicated.

Another explanation of duality of OT

(Similar to Lecture 12 when we used the concept of Lagrange multiplier.)

Minimize
$$\sum_{j=1}^{m} \sum_{j=1}^{n} \mathbf{c}_{ij} \pi_{ij}$$
 subject to
$$\sum_{j=1}^{m} \pi_{ij} = \mu_{i}$$

$$\sum_{i=1}^{m} \pi_{ij} = \nu_{j}$$

$$\pi_{ij} \geq 0$$

is equivalent to

$$\min_{\pi \geq \mathbf{0}} \max_{\phi, \psi} \qquad \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} \pi_{ij} + \sum_{i} \phi_{i} \left[\mu_{i} - \sum_{j=1}^{n} \pi_{ij} \right] + \sum_{i} \psi_{i} \left[\nu_{j} - \sum_{i=1}^{m} \pi_{ij} \right]$$

Another explanation of duality: continued

$$\min_{\pi \geq \mathbf{0}} \max_{\phi, \psi} \qquad \sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{c}_{ij} \pi_{ij} + \sum_{i} \phi_{i} \left[\mu_{i} - \sum_{j=1}^{n} \pi_{ij} \right] + \sum_{j} \psi_{i} \left[\nu_{j} - \sum_{i=1}^{m} \pi_{ij} \right]$$

is equivalent to

$$\min_{\pi \geq \mathbf{0}} \max_{\phi, \psi} \left[\sum_{i} \phi_{i} \mu_{i} + \sum_{j} \psi_{i} \nu_{j} + \sum_{i=1}^{m} \sum_{j=1}^{n} \left[\mathbf{c}_{ij} - \phi_{i} - \psi_{j} \right] \pi_{ij} \right]$$

► In fact, in this case one can reorder min max to max min. (This is a bit of cheating for we know we can do this becasue the duality holds.)

Another explanation of duality: continued

$$\max_{\substack{\phi,\psi \\ \pi \geq \mathbf{0}}} \min_{\substack{i \\ \kappa \neq 0}} \left[\sum_{i} \phi_{i} \mu_{i} + \sum_{j} \psi_{i} \nu_{j} + \sum_{i=1}^{m} \sum_{j=1}^{n} \left[c_{ij} - \phi_{i} - \psi_{j} \right] \pi_{ij} \right]$$

▶ If $c_{i'i'} - \phi_{i'} - \psi_{i'} < 0$ for some i', j', one can choose

$$\pi_{ij} = \begin{cases} \lambda & \text{for } i = i', j = j' \ , \\ 0 & \text{otherwise.} \end{cases}$$

and such that the **minimum** $\to -\infty$ as $\lambda \to \infty$.

- For those ϕ , ψ with $c_{ij} \phi_i \psi_j \ge 0$, the minimum occurs when $\pi = \mathbf{0}$.
- ▶ Thus, the problem can be reduced to

$$\max_{\substack{\phi_i + \psi_j \leq c_{ij}}} \left[\sum_i \phi_i \mu_i + \sum_j \psi_i \nu_j \right].$$

c-transforms

c-transform.

$$\phi^{c}(y) = \min_{x} \left[c(x, y) - \phi(x) \right]$$
$$\psi^{c}(x) = \min_{y} \left[c(x, y) - \psi(y) \right]$$

Or the discrete version:

$$\phi_j^c = \min_i \left[c_{ij} - \phi_i \right]$$
 & $\psi_i^c = \min_j \left[c_{ij} - \psi_j \right]$

Note

$$ightharpoonup \phi(x) + \phi^c(y) \le c(x,y) \quad \forall x,y$$

$$\qquad \qquad \psi^{c}(x) + \psi(y) \leq c(x,y) \quad \forall x,y$$

Special case: $c(\vec{x}, \vec{y}) = \vec{x}^T \vec{y}$ for $\vec{x}, \vec{y} \in \mathbb{R}^d$

$$\phi^*(\vec{y}) = \min_{\vec{x} \in \mathbb{R}^d} \left[\vec{x}^T \vec{y} - \phi(\vec{x}) \right]$$

[This is a version of the so-called Legendre transform in convex analysis.]

The function ϕ^* is a concave function.

See board for a picture.

Example

[Your exercises] For $x, y \in \mathbb{R}$.

- If $\phi(x) = 0$, then $\phi^*(y) = -\infty$ if $y \neq 0$, and $\phi^*(0) = 0$.
- ▶ If $\phi(x) = x$, then $\phi^*(y) = -\infty$ if $y \neq 1$, and $\phi^*(1) = 0$.
- If $\phi(x) = -\frac{1}{2}x^2$, then $\phi^*(y) = -\frac{1}{2}y^2$.

