

Monday 4 March 2013 – Morning

GCSE MATHEMATICS B

J567/04 Paper 4 (Higher Tier)

Candidates answer on the Question Paper.

OCR supplied materials:

None

Other materials required:

- Geometrical instruments
- Tracing paper (optional)
- Scientific or graphical calculator

Duration: 1 hour 45 minutes

Candidate forename				Candidate surname			
Centre number	er			Candidate nu	ımber		

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the boxes above. Please write clearly and in capital letters.
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer all the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Your answers should be supported with appropriate working. Marks may be given for a correct method even if the answer is incorrect.
- Write your answer to each question in the space provided. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Do not write in the bar codes.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- Use the π button on your calculator or take π to be 3.142 unless the question says otherwise.
- Your Quality of Written Communication is assessed in questions marked with an asterisk (*).
- The total number of marks for this paper is 100.
- This document consists of 24 pages. Any blank pages are indicated.

This paper has been pre modified for carrier language

Formulae Sheet: Higher Tier

Area of trapezium = $\frac{1}{2}(a+b)h$

Volume of prism = (area of cross-section) × length

In any triangle ABC

Sine rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Area of triangle =
$$\frac{1}{2} ab \sin C$$

Volume of sphere = $\frac{4}{3}\pi r^3$

Surface area of sphere = $4\pi r^2$

Volume of cone = $\frac{1}{3}\pi r^2 h$

Curved surface area of cone = πrl

The Quadratic Equation

The solutions of $ax^2 + bx + c = 0$, where $a \neq 0$, are given by

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

PLEASE DO NOT WRITE ON THIS PAGE

1 Here is a grid with two triangles, **T** and **A**.

(a) Describe fully the single transformation that maps triangle T onto triangle A.

_____[3]

(b) Enlarge triangle **T** with scale factor 3 and centre P (4, 0). [2]

2 This is a graph for converting Pounds (£) to Danish Kroner (DKK).

(a) Use the graph to convert £6 to Danish Kroner (DKK).

1	'a)	DKK	Γ4 [•]
((a)	DNN	ַון.

(b) Work out the gradient of the line.

(b)_____[2]

(c) Explain what this gradient represents.

_____[1]

(d) Convert 152 DKK to Pounds.

(d) £_____[2]

3	(a)	Here is a list of n	umbers.						
			39	43	57	79	91	111	
		Write down all the	e numbe	rs in this	s list whic	ch are p	rime nu	mbers.	
	(b)	Write 42 as a pro	duct of it	ts prime	factors.		(a)		[1]
	(c)	Find the lowest c	ommon r	multiple	of 24 an		(b)		[2]
	(d)	A travel firm has It has taxis which They do not want	take 7 p	asseng	ers and r	it. minibus		n take 15 passenge	
		Work out how ma					ed to use	Э.	
						(d) taxis	S =		
					m	inibuses	s =		[2]

© OCR 2013

Turn over

4 Here is a diagram of a barn.

(a) The front elevation of the barn is sketched below.

Calculate the length x.

Not to scale

(a) _____ m [3]

(b) (i) Draw the $plan\ view$ of the barn on the grid below using a scale of 1 cm to 1 m.

(ii) Draw the side elevation of the barn on the grid below using a scale of 1 cm to 1 m.

[1]

Turn over

4	

5	Her	e are the first four terms	of a sequ	ence.			
			17	23	29	35	
	Writ	te an expression for the	<i>n</i> th term.				
							[2]
6	(a)	Multiply out the bracket	s and sim	plify.			
		5(x-3) + 2(x+5)					
					(a)		[2]
	(b)	Solve.					
		12x - 11 = 4x + 9					

7 Golf scores are recorded on cards. The table summarises the scores for one day.

Score	Frequency
60 – 66	10
67 – 73	15
74 – 80	14
81 – 87	4

(a) Calculate an estimate of the mean score.

(a)	[4]
, ,	

(b) A card is picked at random.

Work out the probability that the score on the card is 73 or below.

(b)_____[2]

8 The diagram shows a circular pond with paving stones around the edge making up a square. The length of each side of the square is 12 m.

Calculate the shaded area.

m² [4	
m- 14	

_		
9	(a)	Calculate.

$$\sqrt{18.5^2 - 11.1^2}$$

(a)_____[1]

(b) Here are three cards.

Work out the values written on each card. Put the values in order, smallest first.

(b) _____ [2] smallest

10 (a) The equation $x^3 - x^2 - 40 = 0$ has a solution between x = 3 and x = 4.

Find this value of *x* correct to 1 decimal place. Show clearly your trials and the values of their outcomes.

Х		

(a) $x = $	[3	3]
------------	----	---	---

(b) Solve.

$$\frac{(x-5)}{3} + \frac{(3x+4)}{2} = 15$$

11 Here are three sketch graphs.

Write the equation of each graph in the spaces on the answer line. Choose your answers from this list.

$$y = -4x - 4x^2$$

$$y = 4x$$

$$y = -4x - 4x^2$$
 $y = 4x$ $y = x^3 - 4x + 4$ $y = 4x^2 - 4x$

$$y = 4x^2 - 4x$$

$$y = -4x + 4$$

$$y = x^3 - 4x$$

$$y = -4x + 4$$
 $y = x^3 - 4x$ $y = 4x - 4x^2$ $y = x + 4$

$$v = x + 4$$

Graph A is y =_____

Graph B is y =_____

Graph C is y = [3]

12 ((a)	Write	16000	in	standard	form
,	· • ·	• • • • • •			otal laal a	

(a)	[1]
-----	-----

(b) Here are some facts about four planets.

	Mercury	Venus	Earth	Mars
Mass (kg)	3.30×10^{23}	4.87×10^{24}	5.97×10^{24}	6.42×10^{23}
Volume (m ³)	6.08×10^{19}	9.28×10^{20}	1.08×10^{21}	1.63×10^{20}

(i)	Complete this sentence	giving your	answer correct	to 3	significant	figures.
-----	------------------------	-------------	----------------	------	-------------	----------

The volume of Venus is times the volume of Mercury. [

(ii) Show that the Earth has the greatest density. Make all your working clear.

[3]

13 Make c the subject of this formula.

	$E = mc^2$			
			C =	[2]
14	y is directly proportional to x^2 and	and $y = 80$ when $x = 6$	4.	
	Write a formula for y in terms of	х.		
				[3]

15 Mr Chalmers gave a GCSE paper to all the 32 pupils in his class. The results are summarised in this cumulative frequency graph.

((a)) (Jse	the	grap	οh	to	fin	d

(i) the number of pupils who scored 30 marks or fewer,

(a)(i)[[1		
---------	----	--	--

(ii) the median,

(ii) ______[1]

(iii) the interquartile range.

(iii)______[2]

(b)* The marks for each grade for the GCSE paper are given in the table below.

Mark	Grade
0 to 9	U
10 to 24	Е
25 to 40	D
41 to 54	С
55 to 69	В
70 to 84	Α
85 to 100	A*

The percentage of students nationally achieving a grade C, or better, for the paper was 55%. Mr Chalmers says that his pupils' results are better than this.

Is he correct?	
Show your working clear	ΊV.

		[5]
(c)	Explain why this may not be a sensible comparison.	
		[1]

- 16 A golfer records the distances he hits golf balls.
 - (a) The table shows the distances with *Flylite* balls.

Distance (d metres)	0 ≤ <i>d</i> < 150	150 ≤ <i>d</i> < 200	200 ≤ <i>d</i> < 225	225 ≤ <i>d</i> < 250	250 ≤ <i>d</i> < 300
Frequency	60	84	58	20	15

Complete the histogram for this information. The shaded values have been drawn for you.

(b) The histogram below summarises the distances with the *Arrowe* balls.

Make two different comments comparing the distances he hits these two types of ball. Calculations are not necessary.

Comment 1			
Comment 2			

[2]

17 Here are the equations of two graphs.

$$y^2 = x^2 - 2x + 10$$

y = 3x + 2

(a) Show that the point of intersection of these graphs satisfies the equation $4x^2 + 7x - 3 = 0$. [3]

(b) Solve the equation $4x^2 + 7x - 3 = 0$, giving your answers correct to 2 decimal places.

(b) x = _____ and x = _____ [3]

18 ABC is a triangle.

Calculate angle x.

_____ ° [3]

		22
19	The	uilding project is expected to cost £4500000. e agreed completion date is 1 January 2014. er this date, for every month it is delayed, the cost increases by 2% of the cost for the previous onth
		Calculate the cost on 1 April 2014.
		(a) £[1]
	(b)	When the cost first exceeds £5500000, for how many months has the project been delayed?
		(b)[3]

20 WXYZ is a frustum of a cone.

The base radius, AY, of the frustum is 10 m and the top radius, BZ, is 4 m. $VB = 6 \, \text{m}$ and $BA = 9 \, \text{m}$.

Calculate the volume of the frustum.

_____m³ [4]

21 ABCDEFGH is a cuboid.

Calculate the angle GAF.

_____° [5]

END OF QUESTION PAPER