12.9 Due cilindri C_1 e C_2 (di masse m_1 , m_2 e raggi r_1 , r_2) rotolano senza strisciare su due piani inclinati e sono collegati da un filo inestensibile come è mostrato in figura; C_1 scende mentre C_2 sale. Le masse del filo e della carrucola sono trascurabili. Quanto vale l'accelerazione di un punto dell'asse C_1 ?

Un'asta AB di massa m viene premuta da una molla sopra il piano inclinato di un carrello di massa M che può scorrere su un piano orizzontale. La molla ha costante elastica k e, quando l'estremo B coincide con il punto C, è a riposo. All'istante t=0 l'estremo B coincide con D, le velocità sono nulle e il sistema è lasciato libero di muoversi. Tutti gli attriti sono trascurabili.

- la velocità del carrello nell'istante in cui
 B coincide con C;
- il modulo R della reazione del piano inclinato in funzione della compressione δ della molla e il modulo R_1 della reazione del piano orizzontale.

Due masse puntiformi $m_1 = 4.0 \ kg \ em_2 = 1.5 \ kg$ urtano da versi opposti un'asta di lunghezza $L = 4.2 \ m$ e massa $M = 1.7 \ kg$. Le due masse si muovono con velocità di modulo, rispettivamente, $v_1 = 4.2 \ ms^{-2}$ e $v_2 = 1.6 \ ms^{-2}$. L'urto (agli estremi dell'asta) è perfettamente anelastico e avviene nello stesso istante per entrambe le masse. Calcolare:

- la distanza del centro di massa del sistema dal punto O (estremo dell'asta);
- la velocità del centro di massa subito dopo l'urto;
- il modulo della velocità angolare del sistema subito dopo l'urto;
- l'energia meccanica dissipata nell'urto.

Energia cinetica, momento angolare e punto di contatto nel rotolamento

Nel moto di rotolamento il punto di contatto P ha velocità nulla e può essere considerato come un asse (fisso) istantaneo di rotazione. Abbiamo:

$$K = \frac{I_P}{2} \, \omega^2$$

$$\vec{L}_P = I_P \vec{\omega}$$

Un cilindro omogeneo di massa M e raggio R può rotolare senza strisciare su un piano orizzontale. Al centro del cilindro è fissata un'asta rigida e priva di massa, lunga L, alla cui estremità è vincolata una massa puntiforme di massa m. L'asta viene spostata in modo da formare un angolo θ con la verticale.

- l'accelerazione angolare $\ddot{\theta}$ in funzione di θ ,
- il periodo delle piccole oscillazioni.

Un disco di raggio R e massa M ruota attorno all'asse passante dal centro di massa con velocità angolare di modulo ω_i e trasla con velocità $v_{CM,i}$. Al tempo t=0 il disco urta una parete. La velocità iniziale del disco è normale alla parete. Supponendo che:

- l'urto sia istantaneo;
- l'urto sia elastico;
- durante l'urto ci sia attrito statico tra disco e parete.

- La velocità angolare finale del disco.
- La velocità finale del centro di massa.
- L'angolo di riflessione.

Siano dati due dischi omogenei:

- **Disco 1:** massa M_1 , raggio R_1 , che ruota attorno al proprio centro di massa con velocità angolare ω_1 . Il suo centro di massa è inizialmente a riposo.
- Disco 2: massa M_2 , raggio R_2 , che trasla, senza ruotare, con velocità v_2 diretta lungo la congiungente i centri dei dischi.

I due dischi collidono (urto centrale istantaneo) rimando "incollati", formando cioè un unico corpo rigido. Determinare, per questo nuovo corpo rigido, la velocità finale del centro di massa e la velocità angolare rispetto al centro di massa.

Consideriamo un disco omogeneo di raggio R e massa M. Dal disco viene rimosso del materiale, praticando un foro circolare avente:

- raggio $r_{\text{foro}} = \frac{R}{2}$,
- centro posto lungo una direzione passante per il centro del disco e a distanza $d = \frac{R}{2}$ dal centro.

- 1. il momento di inerzia del disco forato rispetto all'asse perpendicolare al piano passante per il centro geometrico O);
- 2. la posizione del centro di massa del disco forato rispetto a O;
- 3. il momento di inerzia del disco forato rispetto al suo centro di massa.

Il corpo rigido del problema precedente oscilla rispetto all'asse passante dal centro geometrico. In assenza di ulteriori forze dissipative, determinare il periodo delle piccole oscillazioni.

Il corpo rigido del problema precedente oscilla, rotolando senza slittare, su un piano orizzontale scabro. In assenza di ulteriori forze dissipative, determinare il periodo delle piccole oscillazioni.

Consideriamo due palline che vengono lasciate cadere da un'altezza h_i sopra il suolo, una sopra l'altra. La pallina 1 è in alto e ha massa M_1 , mentre la pallina 2 è sotto e ha massa $M_2 \gg M_1$. Supponiamo che non vi sia alcuna perdita di energia cinetica durante le collisioni. La pallina 2 colpisce per prima il suolo e rimbalza. Successivamente, mentre la pallina 2 inizia a muoversi verso l'alto, collide con la pallina 1, che sta ancora scendendo.

A quale altezza rimbalzerà la pallina 1?

