Graph Convolutional Network (GCN)

Data Scientist Intern, Seagate

Subhodip Saha

Graph Convolutional Network (GCN)

GCN is the most popular type of GNN. Similar to CNN, 'convolution' in GCN is similar to CNN.

The main difference with CNN: GCNs are the generalized version of CNN that can work on data with underlying non-regular structures.

Other types of GNN -- Graph LSTM, Gated GNN.

Comparison between inputs of CNN and CGN

An image

An atom in a lattice corresponds
To a pixel in the image

RGB values of pixel

Covalent radius, Valence electrons

RGB values of a pixel corresponds to the Covalent radius, valence electrons, Electronegativity etc

Forward propagation in Neural Network

Forward propagation in GCN

$$X^{[i+1]} = \sigma(W^{[i]} X^{[i]} A^*)$$

A adjacency matrix = an $N \times N$ matrix representation of the graph structure

Normalization of adjacency matrix

$$X^{[i+1]} = \sigma(W^{[i]} X^{[i]} A^*)$$

normalized features = $D^{-1}AX$

low-degree nodes would have bigger impacts on their neighbors, whereas high-degree nodes generate lower impacts as they scatter their influence at too many neighbors

Hyperparameter

- 1. # of layers: The number of layers is the farthest distance that node features can travel. For example, with 1 layer GCN, each node can only get the information from its Neighbors.
- 2. So, depends on how far we think a node should get information from the networks, we can config a proper number for #layer.
- 3. With 6–7 hops, we almost get the entire graph, which makes the aggregation less meaningful

How many layers should we stack the GCN?

the best results are obtained with a 2- or 3-layer model

Applications

- Material Science: Predicting Crystal properties,
- Biology/Chemistry: Drug Discovery (Cancer drug prediction)
- Physics: Particle Collision.
- Computer Vision: Unstructured images, images contain multiple objects.
- Social Media: Fake News detection.

. .

Comparison between CNN and CGN

Imagenet

For CNN:

- 1. Classification such as dog, cat, house etc, or fault detection.
- 2. Caption generation with RNN, Generate images with GAN.

Metal/ Insulator/ Superconductor

For CGCNN:

etc.

- 1. Classification: Metal, semiconductor, insulator etc.
- 2. Regression: Band gap, Fermi energy, Bulk modulus

References

- 0. How to do Deep Learning on Graphs with Graph Convolutional Networks by Tobias Skovgaard Jepsen (Medium Article)
- 1. Graph neural network: Kipf and Welling (2016) most cited paper on GCN
- 2. Multi-layer perceptron: Zaheer (2017) send states through MLP
- 3. Graph attention networks: Velickovic (2017) attention weights
- 4. Gated graph neural networks: Li (2015) recurrent update

Thank You!