Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №2

Студент	Соколов Ефим		
Группа	ИУ7-63Б		
Дисциплина	Моделирование		
Преподаватель:		Градов В.М.	
	подпись, дата	Фамилия, И.О.	
Оценка			

Цель работы

Целью данной лабораторной работы является получение навыков разработки алгоритмов решения задачи Коши при реализации моделей, построенных на системе ОДУ, с использованием метода Рунге-Кутта 4-го порядка точности.

Постановка задачи

Задана система электротехнических уравнений, описывающих разрядный контур, включающий постоянное активное сопротивление R_k , нелинейное сопротивление $R_p(I)$, зависящее от тока I, индуктивность L_k и ёмкость C_k .

$$\begin{cases} \frac{dI}{dT} = \frac{U - (R_k + R_p(I))I}{L_k} \\ \frac{dU}{dt} = -\frac{I}{C_k} \end{cases}$$

Начальные условия: $t=0, I=I_0, U=U_0$ Здесь I, U - ток и напряжение на конденсаторе. Сопротивление R_p рассчитать по формуле:

$$R_p = \frac{l_k}{2\pi R^2 \int_0^1 \sigma(T(z)) z \, dz}$$

Для функции T(z) применить выражение $T_z = T_0 + (T_w - T_0) z^m$. Параметры T_0 , m находятся интерполяцией из таблицы 1 при известном токе I. Коэффициент электропроводности $\sigma(T)$ зависит от T и рассчитывается интерполяцией из таблицы 2.

Таблица 1.

I, A	To, K	m
0.5	6730	0.50
1	6790	0.55
5	7150	1.7
10	7270	3
50	8010	11
200	9185	32
400	10010	40
800	11140	41
1200	12010	39

Таблица 2.

	таолица 2.		
T, K	σ , 1/Om cm		
4000	0.031		
5000	0.27		
6000	2.05		
7000	6.06		
8000	12.0		
9000	19.9		
10000	29.6		
11000	41.1		
12000	54.1		
13000	67.7		
14000	81.5		

Параметры разрядного контура:

$$R=0.35~{
m cm}$$
 $l_e=12~{
m cm}$ $l_e=12~{
m cm}$ $L_k=187*10^-6~{
m \Gamma H}$ $C_k=268*10^-6~{
m \Phi}$ $R_k=0.25~{
m Om}$ $U_co=1400~{
m B}$ $I_o=0..3~{
m A}$ $T_w=2000~{
m K}$

Для справки: при указанных параметрах длительность импульса около 600 мкс, максимальный ток – около 800 A.

Метод Рунге-Кутта 4-ого порядка

Порядок точности метода: $O(h^4)$.

$$y_{n+1} = y_n + \frac{k_1 + 2k_2 + 2k_3 + k_4}{6},$$

где

$$k_1 = h_n \phi(x_n, y_n),$$

$$k_2 = h_n \phi(x_n + \frac{h_n}{2}, y_n + \frac{k_1}{2}),$$

$$k_3 = h_n \phi(x_n + \frac{h_n}{2}, y_n + \frac{k_2}{2}),$$

$$k_4 = h_n \phi(x_n + h_n, y_n + k_3).$$

Погрешность приведенной схемы Рунге-Кутта определяется максимальными значением соответствующих производных. Оценку погрешностей можно получить для частного случая вида правой части дифференциального уравнения:

$$\phi(x,\mu) \equiv \phi(x)$$
.

Листинги кода

На листинге 1 приведена реализация метода Рунге-Кутта четвертого порядка на языке Python 3.

```
def runge_kutta_iv(I, U, R, h, Le, Lk, Rk, Ck):
    k1 = f(I, U, R, Le, Lk, Rk)
    m1 = g(I, Ck)

k2 = f(I + h * k1/2, U + h * m1/2, R, Le, Lk, Rk)
    m2 = g(I + h * k1/2, Ck)

k3 = f(I + h * k2/2, U + h * m2/2, R, Le, Lk, Rk)
```

```
m3 = g(I + h * k2/2, Ck)

k4 = f(I + h * k3, U + h * m3, R, Le, Lk, Rk)

m4 = g(I + h * k3, Ck)

In = I + h * (k1 + 2*k2 + 2*k3 + k4) / 6

Un = U + h * (m1 + 2*m2 + 2*m3 + m4) / 6

return (In, Un)
```

Листинг 1: Методы Рунге-Кутта четвертого порядка

На листинге 2 приведена реализация расчета $R_p(T)$ на языке Python 3.

```
def interpolate(table, table_y, y):
      idx_max = 0
      idx_min = 0
      for i in range(len(table_y)):
          if y > table_y[i]:
              idx_max = i
          else:
              idx max = i
              break
10
      if not idx_max:
11
          idx max = 1
12
      idx_min = idx_max - 1
13
14
      value = table[idx_min] + (table[idx_max] - table[idx_min]) /
15
         (table_y[idx_max] - table_y[idx_min]) * (y - table_y[
         idx_min)
      return value
16
17
 def f_|(|, z):
19
      t0 = interpolate(table_T0, table_I, I)
20
      m = interpolate(Table_M, table_I, I)
21
22
      t = t0 + (tw - t0) * (z ** m)
23
      sigma = interpolate(table_Sigma, table_T, t)
24
25
      return sigma * z
26
```

```
27
28
29 def integ(1):
       a = 0
      b = 1
31
      n = 100
32
      h = (b - a) / n
33
      s = () f_{l}(l, a) + f_{l}(l, b)) / 2
      x = 0
35
      for i in range (n - 1):
36
           x += h
37
           s += f | (| x |)
38
      s *= h
40
       return s
41
42
  def Rp(I, R, Le):
       return Le / (2*pi * R*R * integ(I))
```

Листинг 2: Методы Рунге-Кутта четвертого порядка

Выполнение заданий лабораторной работы

Графики зависимости от времени импульса t: I(t), U(t), Rp(t), произведения I(t) * Rp(t), T0(t) при заданных выше параметрах. Указать шаг сетки

На рисунках 1-5 изображены графики зависимости I(t), U(t), Rp(t), произведения I(t) * Rp(t), T0(t).

Шаг сетки: $1/2 * e^{-6}$.

График зависимости I(t) при Rk + Rp = 0

На рисунке 6 приведен график зависимости $I(t)R_k + R_p = 0$.

Рисунок 1: График зависимости I(t)

Рисунок 2: График зависимости U(t)

График зависимости I (t) при Rk + Rp = const = 200Ом в интервале значений t 0-20 мкс

На рисунке 7 приведен график зависимости $I(t)R_k + R_p = const = 200$ в интервале значений t 0-20 мкс.

Рисунок 3: График зависимости Rp(t)

Рисунок 4: График зависимости произведения I(t) * Rp(t)

Результаты исследования влияния параметров контура Ck, Lk, Rk на длительность импульса t имп. апериодической формы

Длительность импульса определяется по кривой зависимости тока от времени на высоте $0.35I_{max}$.

Изначальные замеры:

Рисунок 5: График зависимости T0(t)

Рисунок 6: График зависимости I(t) при Rk + Rp = 0

Рисунок 7: График зависимости I(t) при Rk + Rp = const = 200

- $C_k = 268 * 10^{-6} \Phi;$
- $L_k = 187 * 10^{-6} \Gamma_H$;
- $R_k = 0.25 \text{ Om}.$

При заданных параметрах получим следующие величины:

- $I_{max} = 788.175 \text{ A}, 0.35 I_{max} = 275.861 \text{ A};$
- $t_{imp_start} = 47,5 * 10^{-6} \text{ c}, t_{imp_stop} = 613 * 10^{-6} \text{ c};$
- $t_{imp} = t_{imp_stop} t_{imp_start} = 565, 5 * 10^{-6} \text{ c.}$

Исследование влияния параметра Ck

Уменьшим значение C_k : пусть $C_k = 150 * 10^{-6}$ Ф. При таких параметрах получим:

- $I_{max} = 654.55 \text{ A}, 0.35 I_{max} = 229.092 \text{ A};$
- $t_{imp_start} = 38,5 * 10^{-6} \text{ c}, t_{imp_stop} = 456 * 10^{-6} \text{ c};$
- $t_{imp} = t_{imp_stop} t_{imp_start} = 417,5 * 10^{-6} \text{ c.}$

Увеличим значение C_k : пусть $C_k = 300*10^{-6}$ Ф. При таких параметрах получим:

- $I_{max} = 838.551 \text{ A}, 0.35 I_{max} = 293.493 \text{ A};$
- $t_{imp_start} = 5,1 * 10^{-6} \text{ c}, t_{imp_stop} = 683 * 10^{-6} \text{ c};$
- $t_{imp} = t_{imp_stop} t_{imp_start} = 632 * 10^{-6} \text{ c.}$

На основании проделанных вычислений можно сделать вывод, что длительность импульса прямо пропорциональна C_k : при уменьшении C_k длительность импульса уменьшается и, наоборот, при увеличении C_k длительность импульса увеличивается.

Исследование влияния параметра Lk

Уменьшим значение L_k : пусть $L_k = 100*10^{-6}$ Гн. При таких параметрах получим:

- $I_{max} = 940.811 \text{ A}, 0.35 I_{max} = 329,284 \text{ A};$
- $t_{imp_start} = 3,1 * 10^{-6} \text{ c}, t_{imp_stop} = 455,5 * 10^{-6} \text{ c};$
- $t_{imp} = t_{imp \ stop} t_{imp \ start} = 424,5 * 10^{-6} \text{ c.}$

Увеличим значение L_k : пусть $C_k = 230*10^{-6}$ Гн. При таких параметрах получим:

- $I_{max} = 738.55 \text{ A}, 0.35 I_{max} = 258,493 \text{ A};$
- $t_{imp_start} = 5,4 * 10^{-6} \text{ c}, t_{imp_stop} = 678,5 * 10^{-6} \text{ c};$
- $t_{imp} = t_{imp_stop} t_{imp_start} = 624, 5 * 10^{-6} \text{ c.}$

На основании проделанных вычислений можно сделать вывод, что длительность импульса прямо пропорциональна L_k (так же, как и C_k): при уменьшении L_k длительность импульса уменьшается и, наоборот, при увеличении L_k длительность импульса увеличивается.

Исследование влияния параметра Rk

Уменьшим значение R_k : пусть $R_k=0,1$ Ом. При таких параметрах получим:

- $I_{max} = 870.66 \text{ A}, 0.35 I_{max} = 304,731 \text{ A};$
- $t_{imp_start} = 5,2 * 10^{-6} \text{ c}, t_{imp_stop} = 607,5 * 10^{-6} \text{ c};$
- $t_{imp} = t_{imp_stop} t_{imp_start} = 555, 5 * 10^{-6} \text{ c.}$

Увеличим значение R_k : пусть $R_k=2,2$ Ом. При таких параметрах получим:

- $I_{max} = 596.373 \text{ A}, 0.35 I_{max} = 208,731 \text{ A};$
- $t_{imp_start} = 3.6 * 10^{-6} \text{ c}, t_{imp_stop} = 667 * 10^{-6} \text{ c};$

•
$$t_{imp} = t_{imp_stop} - t_{imp_start} = 631 * 10^{-6} \text{ c.}$$

На основании проделанных вычислений можно сделать вывод, что длительность импульса прямо пропорциональна R_k (так же, как и C_k и L_k): при уменьшении R_k длительность импульса уменьшается и, наоборот, при увеличении R_k длительность импульса увеличивается.

Ответы на контрольные вопросы

- 1. Какие способы тестирования программы, кроме указанного в п.2, можете предложить ещё?
 - 1. Провести тестирование при разном значении шага: если при очередном уменьшении шага результат не изменился, значит найден хороший шаг;
 - 2. сравнить результаты двух методов разной точности (например, Рунге-Кутта 2-ого и 4-ого порядка точности);
 - 3. запустить программу на относительно больших значениях сопротивления.
- 2. Получите систему разностных уравнений для решения сформулированной задачи неявным методом трапеций. Опишите алгоритм реализации полученных уравнений.

$$\begin{cases} f(I,U) = \frac{dI}{dT} = \frac{U - (R_k + R_p(I))I}{L_k} \\ g(I) = \frac{dU}{dt} = -\frac{I}{C_k} \end{cases}$$

Выражения для метода трапеций:

$$\begin{cases} I_{n+1} = I_n + \Delta t \frac{f(I_n, U_n) + f(I_{n+1}, U_{n+1})}{2} \\ U_{n+1} = U_n + \Delta t \frac{g(I_n) + g(I_{n+1})}{2} \end{cases}$$

$$\begin{cases} I_{n+1} = I_n + \Delta t \frac{U_n - (R_k + R_p(I_n))I_n + U_{n+1} - (R_k + R_p(I_{n+1}))I_{n+1}}{2L_k} \\ U_{n+1} = U_n - \Delta t \frac{I_n + I_{n+1}}{2C_k} \end{cases}$$

Получили систему уравнений с двумя неизвестными: I_{n+1} и U_{n+1} . Подставим U_{n+1} из второго уравнения в первое и решим полученное уравнение относительно I_{n+1} :

$$I_{n+1} = \frac{-2C_k R_p(I_n)\Delta t + 4C_k L_k I_n - 2C_k I_n R_k \Delta t + 4C_k U_n \Delta t - I_n \Delta t^2}{4C_k L_k + 2C_k R_k \Delta t + 2C_k R_p(I_{n+1})\Delta t + \Delta t^2}.$$

Это уравнение решается методом простой итерации, то есть сначала в правую часть подставляется уже известное значение $R_p(I_{n+1})$, затем значение высчитывается повторно, но уже с новым найденным значением.

3. Из каких соображений проводится выбор численного метода того или иного порядка точности, учитывая, что чем выше порядок точности метода, тем он более сложен и требует, как правило, больших ресурсов вычислительной системы?

В случае, если функция $\phi(x,\mu)$ ограничена и непрерывна, а также ограничены и непрерывны ее N-ые производные, то оптимальный результат достигается при применении метода N-ого порядка точности. В случае, если же функция $\phi(x,\mu)$ имеет меньше N производных, то и N-ый порядок точности не сможет быть достигнут. Очевидно, тратить вычислительные ресурсы системы на расчет метода N-ого порядка точности не имеет смысла, логичнее будет использование некоторый метод меньшей точности.

4. Можно ли метод Рунге-Кутта применить для решения задачи, в которой часть условий задана на одной границе, а часть на другой? Например, напряжение по-прежнему задано при t=0, т.е. t=0, U=U0, а ток задан в другой момент времени, к примеру, в конце импульса, т.е. при t=T, I=IT. Какой можете предложить алгоритм вычислений?

Поскольку в методе Рунге-Кутта для вычисления каждого из последующих значений необходимо знать значения обеих параметров (в нашем примере, силы тока и напряжения) в предыдущий момент времени,

то сделаю вывод, что нет, в таком случае нельзя использовать метод Рунге-Кутта.

Для решения подобной задачи необходимо использовать алгоритм, способный решать краевые задачи и уже внутри него можно использовать, например, метод Рунге-Кутта заданного порядка точности.