Keras introduction

Romain Gautron

CIAT

March 5, 2019

Platform for Big Data in Agriculture

What is Keras? (©F. Chollet)

Keras: an API for specifying & training differentiable programs

Keras jobs (©F. Chollet)

Startup-land traction

Hacker News jobs board mentions - out of 964 job postings

Keras in research (©F. Chollet)

Research traction

arXiv mentions as of 2018/03/07 (past 3 months)

arXiv mentions as of 2018/03/07 (past 1 month)

Keras philosophy (©F. Chollet)

The Keras user experience

Keras is an API designed for human beings, not machines. Keras follows best practices for reducing cognitive load: it offers consistent & simple APIs, it minimizes the number of user actions required for common use cases, and it provides clear and actionable feedback upon user error.

This makes Keras easy to learn and easy to use. As a Keras user, you are more productive, allowing you to try more ideas than your competition, faster -- which in turn helps you win machine learning competitions.

This ease of use does not come at the cost of reduced flexibility: because Keras integrates with lower-level deep learning languages (in particular TensorFlow), it enables you to implement anything you could have built in the base language. In particular, as tf.keras, the Keras API integrates seamlessly with your TensorFlow workflows.

Keras APIs (©F. Chollet)

Three API styles

- The Sequential Model
 - Dead simple
 - Only for single-input, single-output, sequential layer stacks
 - Good for 70+% of use cases
- The functional API
 - Like playing with Lego bricks
 - Multi-input, multi-output, arbitrary static graph topologies
 - Good for 95% of use cases
- Model subclassing
 - Maximum flexibility
 - Larger potential error surface

Sequential API (©F. Chollet)

The Sequential API

```
import keras
from keras import layers

model = keras.Sequential()
model.add(layers.Dense(20, activation='relu', input_shape=(10,)))
model.add(layers.Dense(20, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))

model.fit(x, y, epochs=10, batch_size=32)
```

Functional API (©F. Chollet)

The functional API

```
import keras
from keras import layers
inputs = keras.Input(shape=(10,))
x = layers.Dense(20, activation='relu')(x)
x = layers.Dense(20, activation='relu')(x)
outputs = layers.Dense(10, activation='softmax')(x)
model = keras.Model(inputs, outputs)
model.fit(x, y, epochs=10, batch_size=32)
```

Learning process (©F. Chollet)

Figure 3.1 Relationship between the network, layers, loss function, and optimizer

- Basic architectures
- 2 Layers types
- Optimization
- 4 The use of callbacks

MLP

ConvNet general architecture

Classification VS Regression Output Layer

C1 :C: .:	/ · `
Classification	(m classes)

Regression

m == 2: **1 neuron** with **sigmoid** activation

m > 2: m neurons with softmax activation

1 neuron with linear activation

Softmax activation

Softmax

$$softmax(z_j) = rac{\exp z_j}{\sum_{i=1}^m \exp z_i}, \mathbb{R}
ightarrow]0,1]$$

Multi-Class Classification with NN and SoftMax Function

- \rightarrow Extension of the logistic regression to a multiclass (>2) problem
 - \hookrightarrow Outputs interpreted as the probability of each class
 - $\hookrightarrow \hat{y}$ is the maximum probability

- Basic architectures
- 2 Layers types
- Optimization
- 4 The use of callbacks

Dense: fully connected layers

keras.layers.Dense(units, activation=None, use_bias=True, kernel_initializer='glorot_uniform')

Input Shape

(N_features,)

Input Hidden Output layer layer layer H_1 I_2 I_3 H_n I_n $I_$

Output dim

2D

Multi-dimensional input data

Figure 2.3 A 3D timeseries data tensor

Figure 2.4 A 4D image data tensor (channels-first convention)

Convolutional layers

```
keras.layers.Conv1D(filters, kernel_size, strides=1, padding='valid')
keras.layers.Conv2D(filters, kernel_size, strides=(1, 1), padding='valid')
```

Input Shape (channel last)

Conv1D (steps, N_features)

Conv2D (height, width, channels)

For RGB images, channels = 3, for greyscale channels = 1

Output dim

Conv1D 3D

Conv2D 4D

Conv layers: padding & border effect (©F. Chollet)

Figure 5.5 $\,$ Valid locations of 3 \times 3 patches in a 5 \times 5 input feature map

Figure: 'valid' padding

Figure 5.6 Padding a 5 × 5 input in order to be able to extract 25 3 × 3 patches

Figure: 'same' padding \rightarrow same nb of patches than pixels

Conv layers: stride ©F. Chollet

Figure 5.7 3×3 convolution patches with 2×2 strides

Maxpooling layers: downsampling

```
keras.layers.MaxPooling1D(pool_size=2, strides=None, padding='valid')
keras.layers.MaxPooling2D(pool_size=(2, 2), strides=None, padding='valid')
```

Output dim

Conv1D 3D

Conv2D 4D

"strides: If None, it will default to pool_size" Single depth slice

max pool with 2x2 filters and stride 2

Flatten layer

keras.layers.Flatten()

- \rightarrow Flattens a N'-D input into a 2D output of shape (N_samples, N_features)
- \rightarrow often between a pooling layer and a dense layer

ConvNet layer roles ©Standford University

Some NN activation functions

Common layer activations in Keras

```
model.add(keras.layers.Dense(64))
model.add(keras.layers.Activation('tanh'))
# equivalent to:
model.add(keras.layers.Dense(64, activation='tanh'))
→ hyperbolic tangent: 'tanh'/keras.activations.tanh()
→ linear: None or 'linear'/ keras.activations.linear()
→ softmax: 'softmax'/keras.activations.softmax()
→ rectified linear unit: 'relu'/...
→ sigmoid: 'sigmoid'/...
```

Note: $keras.layers.Activation('Name') \equiv keras.activations.name()$

→ ReLu is a common choice for inner layers

BatchNormalization layer

keras.layers.BatchNormalization()

- → Applies an exponential moving average to normalize outputs of layers
- \rightarrow Stabilizes learning
- → Used after Dense or Conv layers

Dropout layer

keras.layers.Dropout(rate)

- → rate: probability of dropping one input to zero
- \rightarrow avoid co-adaptation of units: regularizes the network
- \rightarrow typically used between dense layers with rate>.5

(a) Standard Neural Net

(b) After applying dropout

- Basic architectures
- 2 Layers types
- Optimization
- The use of callbacks

Gradient descent

- \rightarrow theoretically analytically possible to minimize directly loss according to weights
 - \hookrightarrow intractable in practice
 - \hookrightarrow we use an iterative method

Stochastic gradient descent

- 1. draw a random batch (X, y) from training set
- 2. predict \hat{y}
- 3. compute loss between y and \hat{y}
- 4. compute loss gradient regarding each weight (partial derivatives)
- **5.** update weights in the opposite direction of gradient: $x_1, x_2, \dots, x_{t+1}, \dots, x_{t+1}, \dots, x_{t+1}, \dots, x_{t+1}, \dots, x_{t+1}$

$$w_{ijk}^{t+1} \leftarrow w_{ijk}^{t} (1 - Ir * grad)$$

Learning process (©F. Chollet)

Figure 3.1 Relationship between the network, layers, loss function, and optimizer

Gradient descent (©F. Chollet)

Figure 2.11 SGD down a 1D loss curve (one learnable parameter)

Gradient descent (©F. Chollet)

Figure 2.12 Gradient descent down a 2D loss surface (two learnable parameters)

Momentum notion (©F. Chollet)

Figure 2.13 A local minimum and a global minimum

Keras common optimizers

```
keras.optimizers.SGD(lr=0.01)
```

keras.optimizers.RMSprop(lr=0.001)

Many variant based on SGD and momentum

- \rightarrow SGD with momentum
- \rightarrow RMSprop
- \rightarrow ADAM
- $\rightarrow \dots$
 - → RMSprop works well in general case
 - \hookrightarrow keep default parameters of Keras, only adjust learning rate if needed
 - \hookrightarrow if called by string (ex: 'rmsprop'), comes with default values

Keras common losses

```
keras.losses.mean_squared_error(y_true, y_pred)
keras.losses.mean_absolute_error(y_true, y_pred)
keras.losses.categorical_crossentropy(y_true, y_pred)
keras.losses.binary_crossentropy(y_true, y_pred)
```

→ Classification task:

- \hookrightarrow binary cross entropy (\equiv log-loss): $-\frac{1}{N}\sum_{i=1}^{N}\left[y_{i}\log\left(p_{i}\right)+\left(1-y_{i}\right)\log\left(1-p_{i}\right)\right]$
- \hookrightarrow **y** = [0, 1, 0, \cdots , 1]
- \hookrightarrow categorical cross entropy : $-\frac{1}{N}\sum_{i=1}^{N}\sum_{c=1}^{m}y_{i}^{c}\log p_{i}^{c}$
- \hookrightarrow **y** = [[0,0,1],[0,1,0],[0,0,1],...,[1,0,0]] (example of 3 classes)

ightarrow Regression task:

- \hookrightarrow Mean Squared Error: $\frac{1}{N} \sum_{i=1}^{N} (y_i \hat{y}_i)^2$
- \hookrightarrow Mean Absolute Error: $\frac{1}{N}\sum_{i=1}^{N}|y_i-\hat{y}_i|$

Keras common metrics

keras.metrics.binary_accuracy(y_true, y_pred)

keras.metrics.categorical_accuracy(y_true, y_pred)

- \rightarrow Not used for optimization
 - \hookrightarrow measures to monitor performance for classification tasks
 - \hookrightarrow can be used in with callbacks (see later)
 - \hookrightarrow take max probability of predictions as predicted class

Keras steps

- 1. stack layers (sequential API) or manipulate tensors (functional API)
- **2.** compile your model: specify optimizer, loss, callbacks (see later), ...
- 3. fit your model
- 4. (evaluate your model on hold test set)

Sequential vs Functional API

→ Sequential API

- \hookrightarrow model = keras.models.Sequential()
- → model.add(keras.layers.Dense(128,input_shape=inputShape))
- → model.add(keras.layers.Dense(1,activation='sigmoid'))

→ Functional API

- $\rightarrow x = \text{keras.layers.dense}(128)(x)$
- \rightarrow xOutput = keras.layers.Dense(1,activation='sigmoid')(x)
- \hookrightarrow model = keras.models.Model(inputs=xInput,outputs=xOutput)

Model compilation: block assembling

```
### For a multi-class classification problem
model.compile(optimizer='rmsprop',
              loss='categorical_crossentropy',
              metrics=['accuracy'])
 if you need to tune the optimizer
model.compile(optimizer=RMSprop(lr=1e-4),
              loss='categorical_crossentropy',
              metrics=['accuracy'])
### For a binary classification problem
model.compile(optimizer='rmsprop',
              loss='binary_crossentropy',
              metrics=['accuracy'])
### For a mean squared error regression problem
model.compile(optimizer='rmsprop',
              loss='mse')
```


Model training

```
model.fit(x, y, batch_size, epochs=1, verbose=1,\
     callbacks=None, validation_split=0.0, validation_data=None, shuffle=True)
```

- \rightarrow x and y numpy.array objects, be careful with shaping
- \rightarrow if needed, validation_data is a tuple (x_{val}, y_{val})
- \rightarrow batch size: empirically better to keep it low (32 to 256)

Model training

Model training

- \rightarrow if you have computational resources: cross-validation
- \rightarrow if you have a lot of computational resources: nested cv

Learning curves inspection

Evaluating the model

```
## 1st way
model.evaluate(xTest,yTest)
# returns a tuple (lossValue,metricValue)
## 2nd way
yPredProb = model.predict(xTest,yTest)
# then convert yPredProd to classes
yPredClass = 1*(yPredProb>=.5) # binary
yPredClass = numpy.argmax(yPredProb, axis=-1) #multi-class
# then compute some score
score = keras.metrics.someMetric(yTest,yPred)
# or
score = keras.losses.someLoss(yTest,yPred)
```


- Basic architectures
- 2 Layers types
- Optimization
- The use of callbacks

Callbacks: very useful tools

```
keras.callbacks.ModelCheckpoint(filepath, monitor='val_loss', verbose=0, save_best_only=False)
keras.callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=0, verbose=0, mode='auto')
keras.callbacks.TensorBoard(log_dir='./logs')
keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=5, min_lr=0.001)
```

- \rightarrow sanitary checkups at each epoch
- \rightarrow help prevent overfitting
- \rightarrow specified as a list within fit call

