Electromagnetc Theory: PHYS330

Jordan Hanson

December 7, 2020

Whittier College Department of Physics and Astronomy

Summary

Week 6 Summary

- 1. Current and Newton's Law
- 2. Flux rule from Lorentz force
- 3. Faraday's Law: Inspired by Symmetry
 - Induced E-fields
 - Quasi-static behavior
- 4. Inductors and analog filtering (special topic)

Why does current move at a constant velocity, if it is driven by an electric field?

$$\vec{J} = \sigma(\vec{E} + \vec{v} \times \vec{B}) = \sigma \vec{E} \tag{1}$$

This formula governs the current density as a function of force per unit charge, and it assumes small drift velocities so that the magnetic contributions are zero.

What is the acceleration of an electron in the middle of a parallel plate capacitor with empty space in the middle? Let the charge density be 1 μ C per cm². The mass of an electron is 9.1×10^{-31} kg, and $\epsilon_0=8.85\times10^{-12}$ F/m.

Why does current move at a constant velocity, if it is driven by an electric field?

$$\vec{J} = \sigma(\vec{E} + \vec{v} \times \vec{B}) = \sigma \vec{E}$$
 (2)

This formula governs the current density as a function of force per unit charge, and it assumes small drift velocities so that the magnetic contributions are zero.

What is the acceleration of a charge flowing in a conductor that connects the parallel plates of the capacitor? Let the charge density be 1 μ C per cm². The mass of an electron is 9.1×10^{-31} kg, and $\epsilon_0=8.85\times 10^{-12}$ F/m. Let the total effective resitance be 1 Ω .

Figure 1: (Left) A conductor. (Right) A capacitor with the same geometry.

- Convince yourself that if the potential difference between the left and right sides of the conductor (left) is $V_0 0 = V_0$, that $V(z) = (V_0/L)z$.
- The E-field is therefore $\vec{E} = -V_0/L\hat{z}$, but the current does not accelerate.

4

Motional EMF Problems: Flux Rule

from the Lorentz Force

Flux Rule from Lorentz Force

Figure 2: Motional emf problems resulting from the Lorentz force, solvable by the flux rule. (Top) Frictionless rails problem ... rail guns. (Bottom): the AC generator.

Faraday's Law: Inspired by

Symmetry

In words: E-fields (via currents) generate B-fields. Changing B-fields induce E-fields (in loops). In differential form:

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
 (3)

In integral form (via Stoke's Theorem):

$$\oint \vec{E} \cdot d\vec{l} = -\frac{\partial}{\partial t} \int \vec{B} \cdot d\vec{a}$$
 (4)

Figure 3: Cylindrical symmetry and the use of Faraday's Law to obtain emf.

- What is the magnitude and shape of the \vec{E} -field a distance s from the origin?
- What is the current I in a loop of wire at the same radius?

Figure 4: Cylindrical symmetry and the use of Faraday's Law to obtain emf.

What is the acceleration of a point charge located a distance s from the origin?

Exercise 7.13: A square loop of wire, with sides of length a, lies in the first quadrant of the xy-plane, with one corner at the origin. In this region, there is a nonuniform time-dependent magnetic field $\vec{B}(y,t)=ky^3t^2\hat{z}$ (where k is constant). Find the emf induced in the loop.

Special Topic: Inductors and Analog Filtering of Voltage Signals

Conclusion

Week 6 Summary

- 1. Current and Newton's Law
- 2. Flux rule from Lorentz force
- 3. Faraday's Law: Inspired by Symmetry
 - Induced E-fields
 - Quasi-static behavior
- 4. Inductors and analog filtering (special topic)