

ALGEBRA Chapter 14

Ecuaciones polinomiales

HELICO MOTIVATING

La edad de Carla es $(a^3 + b^3 + c^3)$ años; donde a; b y c son las raíces de la ecuación: $x^3 + 2x - 4 = 0$ ¿Cuál será la edad de Carla dentro de 4 años?

RPTA: 16 años

HELICO THEORY CHAPTHER 14

ECUACIONES POLINOMIALES

I) ECUACIÓN POLINOMIAL

Son aquellas ecuaciones de grado "n" de la forma:

$$P(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n = 0$$
 $a_0 \ne 0, n \in \mathbb{Z}^+$

 $a_0, a_1, a_2, \dots, a_n$: son los coeficientes de P(x)

$$P(x) = x^3 - 2x^2 - x + 2 = 0$$

$$P(x) = 4x^5 + 7x^3 - 8x - 3 = 0$$

II) Raíz de un Polinomio

Diremos que "a" es una raíz de un polinomio P(x) si y sólo si P(a)=0.

Ejemplo:

Sea:
$$P(x) = x^3 - 2x^2 - x + 2 = 0$$

Se observa que "1" es raíz de P(x), pues:

$$P(1)=(1)^3-2(1)^2-1+2$$

$$P(1)=1-2-1+2=0 \Rightarrow P(1)=0$$

III. PROPIEDADES

Toda ecuación polinomial de grado "n" tiene exactamente "n" raíces.

$$x^3 - 2x^2 - x + 2 = 0$$
 \Rightarrow Presenta 3 raíces $x^5 + 7x^3 - 8x - 3 = 0$ \Rightarrow Presenta 5 raíces

Sea: $P(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + ... + a_n = 0$ Si $a + \sqrt{b}$ es raíz de P(x) $a - \sqrt{b}$ también es raíz de P(x)

Si:
$$5+\sqrt{3}$$
 es raíz de P(x) \Rightarrow 5- $\sqrt{3}$ es raíz de P(x)

TEOREMA DE CARDANO

Sea la ecuación:

$$P(x) = a_0^+ x^n + a_1^- x^{n-1} + a_2^+ x^{n-2} + a_3^- x^{n-3} + \dots + a_n^- = 0$$
cuyas raíces son: $x_1, x_2, x_3, \dots, x_n$

SUMA DE RAÍCES

$$x_1 + x_2 + x_3 + \dots + x_n = \frac{a_1}{a_0}$$

SUMA DE PRODUCTOS BINARIOS

$$x_1x_2 + x_1x_3 + x_2x_3 + \dots = \frac{a_2}{a_0}$$

SUMA DE PRODUCTOS TERNARIOS

$$x_1x_2x_3 + x_1x_2x_4 + \dots = \frac{-a_3}{-a_3}$$

Y así sucesivamente hasta llegar al "producto de raíces"

PRODUCTOS DE RAÍCES

$$x_1.x_2.x_3....x_n = (-1)^n \frac{a_n}{-}$$

EJEMPLOS APLICATIVOS

1) Sea:
$$2x^3-3x^2-7x+1=0$$

$$x_1 + x_2 + x_3 = \frac{3}{2}$$

$$x_1x_2+x_1x_3+x_2x_3=\frac{-7}{2}$$

$$\Rightarrow x_1 x_2 x_3 = \frac{-1}{2}$$

2) Sea:
$$2x^4-x^3-10x^2+7x-8=0$$

$$x_1 + x_2 + x_3 + x_4 = \frac{1}{2}$$

$$x_1x_2+....+x_3x_4=\frac{-10}{2}=\frac{-5}{2}$$

$$x_1x_2x_3 + + x_2x_3x_4 = \frac{-7}{2}$$

$$x_1x_2x_3x_4 = \frac{-8}{2} = -4$$

HELICO PRACTICE

CHAPTHER 14

Resuelva la ecuación polinomial:

$$x^3 - 6x^2 - x + 30 = 0$$

Resolución Divisores de 30: ± 1 ; ± 2 ; ± 3 ; ± 5 ; ± 6 ; ± 10 ; $\pm 15 \pm 30$;

$$(x^2-3x-10)(x-3)=0$$

$$(x-5)(x+2)(x-3)=0$$
 $C.S = \{-2; 3; 5\}$

$$x_1 = 5$$

$$x_1 = 5$$
 $x_2 = -2$ $x_3 = 3$

$$x_3 = 3$$

Sean x_1, x_2 y x_3 las raíces de la ecuación:

$$x^3 - 2x^2 + 5x + 3 = 0$$
 Efectúe: $T = \frac{(x_1 x_2 x_3)^{x_1 + x_2 + x_3}}{x_1 x_2 + x_2 x_3 + x_1 x_3}$

Resolución

$$x^3 - 2x^2 + 5x + 3 = 0$$

$$\rightarrow x_1 + x_2 + x_3 = 2$$

$$\rightarrow x_1x_2 + x_2x_3 + x_1x_3 = 5$$

$$T = \frac{(-3)^2}{5}$$

$$T = \frac{9}{5}$$

Sabiendo que a es la suma de raíces y b es el producto de raíces de la ecuación:

$$3x^4 + 2x^3 + 5x^2 + x + 3 = 0.$$

Efectúe: $P=(a+b)^{-4}$

Resolución

$$\begin{vmatrix} + & - & + & - & + \\ 3x^4 + 2x^3 + 5x^2 + x + 3 = 0 \end{vmatrix} \Rightarrow a = \frac{-2}{3} \qquad b = \frac{3}{3}$$

$$x_1 + x_2 + x_3 + x_4 = \frac{-2}{3}$$

$$x_1x_2x_3x_4 = \frac{3}{3}$$

$$\Rightarrow a = \frac{-2}{3} \qquad b = \frac{3}{3}$$

$$(a+b)^{-4}=81$$

HELICO | PRACTICE

PROBLEMA 4

Se tiene a $x_1, x_2 y x_3$ como raíces de la $x^3 + 7x + 5 = 0$ ecuación: Efectúe:

$$\mathbf{M} = \frac{x_1^3 + x_2^3 + x_3^3}{x_1^2 + x_2^2 + x_2^2}$$

$$x^{3} + 0x^{2} + 7x + 5 = 0$$

$$x_1 + x_2 + x_3 = 0$$

$$x_1x_2 + x_2x_3 + x_1x_3 = 7$$

$$x_1x_2x_3 = -5$$

Nota Si: a+b+c=0

$$a^3+b^3+c^3=3abc$$

$$a^3+b^3+c^3=3abc$$

 $a^2+b^2+c^2=-2(ab+bc+ac)$

$$\longrightarrow M = \frac{3x_1x_2x_3}{-2(x_1x_2 + x_2x_3 + x_1x_3)}$$

$$M = \frac{3(-5)}{-2(7)} = \frac{15}{14}$$

HELICO | PRACTICE

PROBLEMA 5

La edad de Lucio en años es $\frac{T}{2}$; donde T está dado por el siguiente problema:

"Si a; b y c son las raíces de: $x^3 - 2x^2 - 3x - 5 = 0$ Halle $T = a^2 + b^2 + c^2$ " ¿Cuál es la edad de Lucio?

Resolución
+ - + -

$$x^3 - 2x^2 - 3x - 5 = 0$$

 $\Rightarrow a+b+c=\frac{2}{1}=2$

$$\Rightarrow ab+bc+ca=-\frac{3}{1}=-3$$
$$\Rightarrow abc=\frac{5}{1}=5$$

$$(a+b+c)^2 = \frac{\text{RECORDAR:}}{a^2+b^2+c^2} + 2(ab+bc+ac)$$

Remplazando

$$(2)^{2} = a^{2} + b^{2} + c^{2} + 2(-3)$$

$$4 = T - 6$$

$$10 = T$$

Piden:
$$\frac{T}{2} = \frac{10}{2} = 5$$

RPTA: LUCIO TIENE 5 AÑOS

Si a, b y c son raíces de la ecuación $x^3 + 4x^2 + 2 = 0$.

Efectúe M=
$$\frac{a}{bc} + \frac{b}{ac} + \frac{c}{ab}$$

Resolución

$$a+b+c=-\frac{4}{4}=-4$$

$$\Rightarrow ab+bc+ca=\frac{1}{1}=0$$

$$\Rightarrow$$
 abc= $-\frac{2}{1} = -2$

del Dato:

$$M = \frac{a}{bc} \cdot \frac{a}{a} + \frac{b}{ac} \cdot \frac{b}{b} + \frac{c}{ab} \cdot \frac{c}{c}$$

$$M = \frac{a^2}{abc} + \frac{b^2}{abc} + \frac{c^2}{abc}$$

Recordar: $(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ac)$

$$(-4)^2 = a^2 + b^2 + c^2 + 2(0)$$

$$16 = a^2 + b^2 + c^2$$

Remplazando

$$\mathsf{M} = \frac{a^2 + b^2 + c^2}{abc} = \frac{16}{-2} = -8$$

$$M = -8$$

Halle el valor de a+b, si la ecuación:

$$x^3 + ax^2 + bx + 10 = 0$$
 tiene como raíces a

Resolución

$$x^3 + ax^2 + bx + 10 = 0$$

sea
$$x_1 = 5$$
 ; $x_2 = 2$

$$x_1 + x_2 + x_3 = -\frac{a}{1} = -a$$

$$x_1. x_2 + x_2. x_3 + x_3. x_1 = \frac{b}{1} = b$$

$$x_1.x_2.x_3 = -10$$

10.
$$x_3 = -10$$

$$x_3 = -1$$

Remplazando:

•
$$x_1 + x_2 + x_3 = -a$$

 $5+2-1 = -a$
 $-6 = a$

•
$$x_1. x_2 + x_2. x_3 + x_3. x_1 = b$$

 $(5)(2) + (2)(-1) + (5)(-1) = b$
 $10 - 2 - 5 = b$
 $3 = b$

piden: a + b:

$$a + b = -6+3$$

 $a + b = -3$

Siendo a, b y c las raíces de:
$$2x^3 + 3x - 12 = 0$$

Efectúe: $P=ab(a+b)^3+ac(a+c)^3+bc(b+c)^3$

$$\Rightarrow$$
 ab+bc+ca= $\frac{3}{2}$

$$\implies$$
 abc= $\frac{12}{2} = 6$

Recordar: Si²a+b+c=0

$$a^2 + b^2 + c^2 = -2$$
(ab+bc+ac)

del Dato:
$$P = ab(-c)^3 + ac(-b)^3 + bc(-a)^3$$

$$P = -abc^3 - acb^3 - bca^3$$

$$P = -abc(c^2 + b^2 + a^2)$$
Hallamos: $c^2 + b^2 + a^2$

$$a^2 + b^2 + c^2 = -2\left(\frac{3}{2}\right)$$

$$-3$$

Remplazamos

$$P = (-6)(-3)$$

$$rpta P = 18$$