Стековые автоматы

Теория формальных языков *2021 г*.

α -преобразование

По-разному воспринимают переименовку:

- Переменные vs конструкторы в TRS;
- Нетерминалы vs терминалы в грамматиках.

α-преобразование

По-разному воспринимают переименовку:

- Переменные vs конструкторы в TRS;
- Нетерминалы vs терминалы в грамматиках.

Для любой инъективной σ применение σ к правилам грамматики/trs для переменных и нетерминалов также называется α -преобразованием.

- \bullet α -преобразование не меняет терминальный язык;
- обычно термы различаются с точностью до α -преобразования.

α -преобразование

По-разному воспринимают переименовку:

- Переменные vs конструкторы в TRS;
- Нетерминалы vs терминалы в грамматиках.

Для любой инъективной σ применение σ к правилам грамматики/trs для переменных и нетерминалов также называется α -преобразованием.

- α-преобразование не меняет терминальный язык;
- обычно термы различаются с точностью до α -преобразования.

Неформально: контейнеры определяются не именем, а содержимым (см. экстенсиональность в логике).

Пересечение CFG и FA

Утверждение

Даны CFG G и FA \mathscr{A} . Можно построить CFG G' такую, что $L(G') = L(G) \cup L(\mathscr{A})$.

Предположим, что G — в k-CNF, q — множество состояний \mathscr{A} , q_f — единственное финальное состояние, N — множество нетерминалов G. Множество нетерминалов G' — множество троек $\langle q_i, A, q_j \rangle$, $q_i, q_j \in q$, $A \in N$.

- ullet По каждому правилу $A o A_1 \dots A_n$ из G строим правила $\langle p,A,q \rangle o \langle p,A_1,q_1 \rangle \langle q_{n-1},A_n,q \rangle$ для всех возможных p,q,q_i .
- По правилу вида $A \to t$ из G и переходу $p \to^t q$ строим правило $\langle p, A, q \rangle \to t$.
- Нетерминал $\langle q_0, S, q_f \rangle$ объявляем стартовым.

Пример

Построим пересечение CFG $S \to G_AT | SS$, $T \to b | SG_B$, $G_A \to a$, $G_B \to b$, и следующего автомата:

Стековая память

Пусть G — CFG. Неформально представим, что G — это стековый автомат, где состояния стека — нетерминальные сент. формы, порождаемые G. Скажем, что G распознаёт только слова, соответствующие пустому стеку.

Стековая память

Пусть G — CFG. Неформально представим, что G — это стековый автомат, где состояния стека — нетерминальные сент. формы, порождаемые G. Скажем, что G распознаёт только слова, соответствующие пустому стеку.

Грамматика и её стек

$$S \rightarrow aSB | SS | \varepsilon$$
 $B \rightarrow b$
 $\varepsilon, S/SS$
 $\varepsilon, S/\varepsilon$
 $\delta, B/\varepsilon$

Стековая память

Пусть G — CFG. Неформально представим, что G — это стековый автомат, где состояния стека — нетерминальные сент. формы, порождаемые G. Скажем, что G распознаёт только слова, соответствующие пустому стеку.

Грамматика и её стек

$$S \rightarrow aSB | SS | \varepsilon$$
 $B \rightarrow b$
 $\varepsilon, S/SS$
 $\varepsilon, S/\varepsilon$
 $\delta, B/\varepsilon$

А если в такие автоматы добавить ещё состояния?

Pushdown Automata

Определение

Стековый автомат \mathscr{A} — кортеж $\langle \Pi, \Sigma, Q, \delta, q_0, Z_0 \rangle$, где:

- П алфавит стека;
- Σ алфавит языка;
- Q множество состояний;
- δ правила перехода вида $\langle q_i, t, P_i \rangle \to \langle q_j, \alpha \rangle$, где $t \in \Sigma \cup \{\epsilon\}$, $\alpha \in \Pi^*$;
- q_0 стартовое состояние, Z_0 дно стека.

Pushdown Automata

Определение

Стековый автомат \mathscr{A} — кортеж $\langle \Pi, \Sigma, Q, \delta, q_0, Z_0 \rangle$, где:

- П алфавит стека;
- Σ алфавит языка;
- Q множество состояний;
- δ правила перехода вида $\langle q_i, t, P_i \rangle \to \langle q_j, \alpha \rangle$, где $t \in \Sigma \cup \{\epsilon\}$, $\alpha \in \Pi^*$;
- q_0 стартовое состояние, Z_0 дно стека.

Два варианта допуска слова:

- если слово полностью прочитано, и стек пуст;
- если слово полностью прочитано, и состояние финальное.

Виды допуска

Утверждение

PDA с допуском по конечному состоянию распознают те же языки, что и PDA с допуском по пустому стеку.

Виды допуска

Утверждение

PDA с допуском по конечному состоянию распознают те же языки, что и PDA с допуском по пустому стеку.

• Пусть PDA допускает пустой стек. Добавим новый символ дна Z_1 и добавим по нему ε -переходы из всех состояний в новое финальное состояние.

Виды допуска

Утверждение

PDA с допуском по конечному состоянию распознают те же языки, что и PDA с допуском по пустому стеку.

- Пусть PDA допускает пустой стек. Добавим новый символ дна Z_1 и добавим по нему ε -переходы из всех состояний в новое финальное состояние.
- Пусть PDA допускает финальные состояния. Добавим из них ϵ -переходы в состояние, опустошающее стек, а также новый символ стека Z_1 и новое стартовое состояние q_0' с переходом $\langle q_0', \epsilon, Z_0 \rangle \to \langle q_0, Z_0 Z_1 \rangle$.

От CFG к PDA

Утверждение

По всякой CFG G можно построить PDA A такой, что $L(G) = L(\mathscr{A}).$

От CFG к PDA

Утверждение

По всякой CFG G можно построить PDA $\mathscr A$ такой, что $\mathsf L(\mathsf G)=\mathsf L(\mathscr A).$

Переведём G в GNF и построим по ней PDA c единственным состоянием 0 и допуском по пустому стеку, такой что $Z_0=S$, правилу $A\to \alpha$ соответствует переход $(0,\alpha,A)\to (0,\epsilon)$; правилу $A\to \alpha B_1\dots B_n$ — переход $(0,\alpha,A)\to (0,B_1\dots B_n)$.

Утверждение

По всякому PDA \mathscr{A} можно построить CFG G такую, что $L(G) = L(\mathscr{A})$.

Утверждение

По всякому PDA $\mathscr A$ можно построить CFG G такую, что $L(G) = L(\mathscr A)$.

Пусть 🛭 допускает слова по пустому стеку.

- Построим по стеку Я вспомогательную G':
 - введём новые стековые символы и заменим правила $(q_i, t, A) \to (q_j, A_1 \dots A_n)$ $(n \geqslant 1)$ на пары $(q_i, \epsilon, A) \to (q_i, A_0 \dots A_n)$, $(q_i, t, A_0) \to (q_i, \epsilon)$.
 - переход $(q_i, \varepsilon, A) \to (q_j, A_0 A_1 \dots A_n)$ поставим в соответствие правилу $A \to A_0 A_1 \dots A_n$; переход $(q_i, t, A) \to (q_j, \varepsilon)$ поставим в соответствие правилу $A \to t_{i,j}$. Z_0 объявим стартовым символом. Пустой символ введём явно и так же пометим.

Пусть Я допускает слова по пустому стеку.

- Построим по стеку Я вспомогательную G':
 - введём новые стековые символы и заменим правила $(q_i, t, A) \to (q_i, A_1 \dots A_n)$ (n \geqslant 1) на пары $(q_i, \varepsilon, A) \rightarrow (q_i, A_0 \dots A_n), (q_i, t, A_0) \rightarrow (q_i, \varepsilon).$
 - переход $(q_i, \varepsilon, A) \to (q_i, A_0 A_1 \dots A_n)$ поставим в соответствие правилу $A \to A_0 A_1 \dots A_n$; переход $(q_i, t, A) \to (q_i, \varepsilon)$ поставим в соответствие правилу $A \to t_{i,i}$. Z_0 объявим стартовым символом. Пустой символ введём явно и так же пометим.
- Построим \mathscr{A}' FA с правилами вида $(q_i, t_{i,i}) \to q_i$, если для каких-нибудь A, α $(q_i, t, A) \rightarrow (q_i, \alpha)$ переход А. Все состояния объявим финальными.

Пусть $\mathscr A$ допускает слова по пустому стеку.

- - введём новые стековые символы и заменим правила $(q_i, t, A) \to (q_i, A_1 \dots A_n)$ (n \geqslant 1) на пары $(q_i, \varepsilon, A) \rightarrow (q_i, A_0 \dots A_n), (q_i, t, A_0) \rightarrow (q_i, \varepsilon).$
 - переход $(q_i, \varepsilon, A) \to (q_i, A_0 A_1 \dots A_n)$ поставим в соответствие правилу $A o A_0 A_1 \dots A_n$; переход $(q_i, t, A) o (q_i, \epsilon)$ поставим в соответствие правилу $A \to t_{i,j}$. Z_0 объявим стартовым символом. Пустой символ введём явно и так же пометим.
- Построим \mathscr{A}' FA с правилами вида $(q_i, t_{i,i}) \to q_i$, если для каких-нибудь A, α $(q_i, t, A) \rightarrow (q_i, \alpha)$ переход А. Все состояния объявим финальными.
- ullet Теперь построим CFG пересечение G' и \mathscr{A}' и сотрем все $\varepsilon_{i,j}$ и разметку терминалов. Грамматика G готова!

PDA в CFG формально

- Нетерминалы тройки [p,A,q], где $p,q\in Q$, $A\in\Pi$.
- По каждому переходу вида $(q,t,A) \to (p,A_1 \dots A_n)$ добавим правила для всех возможных q_i вида $[q,A,q_n] \to t[p,A_1,q_1] \dots [q_{n-1},A_n,q_n]$.
- По каждому переходу вида $(q, t, A) \to (p, \epsilon)$ добавим правило $[q, A, p] \to t$.
- Разрешим стартовому состоянию переписываться в любое из $[q_0, Z_0, q]$.

Определение

PDA *«* детерминированный, если:

- если есть переход $\langle q, \epsilon, Z \rangle \to \dots$, то больше никаких переходов по Z из состояния q нет;
- каждой тройке $\langle q, \alpha, Z \rangle$, $\alpha \in \Sigma$, соответствует не больше одной правой части.

Определение

PDA *A* детерминированный, если:

- если есть переход $\langle q, \epsilon, Z \rangle \to \dots$, то больше никаких переходов по Z из состояния q нет;
- каждой тройке $\langle q, \alpha, Z \rangle$, $\alpha \in \Sigma$, соответствует не больше одной правой части.

DPDA слабее, чем NPDA. Например, язык $\{a^nb^m]\,|\,n=m\lor m=2*n\}$ не распознается DPDA.

Определение

PDA *A* детерминированный, если:

- если есть переход $\langle q, \epsilon, Z \rangle \to \dots$, то больше никаких переходов по Z из состояния q нет;
- каждой тройке $\langle q, \alpha, Z \rangle$, $\alpha \in \Sigma$, соответствует не больше одной правой части.

DPDA слабее, чем NPDA. Например, язык $\{a^nb^m\} \mid n=m \lor m=2*n\}$ не распознается DPDA. DPDA с допуском по пустому стеку ещё слабее — язык $\{a^n\}$ не может быть распознан DPDA с таким допуском.

Двухсторонние PDA

Утверждение

Двухсторонние PDA распознают больше языков, чем односторонние.

Доказательство: язык $\{a^nb^nc^n\}$ распознаваем двухсторонним PDA.