Sistemas de Memória

Conceitos Básicos

João Canas Ferreira

Outubro de 2015

Assunto

Tópicos

Memórias

Aspetos gerais Memórias Estáticas Memórias Dinâmicas

Descodificação de endereços

Organização geral Descodificação total Descodificação parcial Memórias

Aspetos gerais Memórias Estáticas Memórias Dinâmicas

2 Descodificação de endereços

Organização geral Descodificação total Descodificação parcial

João Canas Ferreira (FEUP/DEEC)

Sistemas de Memóri

Outubro de 2015

3/20

Memórias

Aspetos gerais

Taxonomia

- Registos e bancos de registos permitem guardar pequenas quantidades de dados. Para maiores quantidades, usam-se memórias de acesso direto.
- RAM = random access memory (memória de acesso direto): permitem leitura e escrita em qualquer posição.
- ROM = read-only memory: permitem apenas leitura.
- A maior parte das memórias RAM perde os dados quando é desligada a alimentação (memória volátil). Exceções:
 - (E)EPROM: (Electrically) erasable programmable ROM
 - memórias FLASH.
- Dois tipos de memórias RAM voláteis:
 - SRAM: memória estática (cada célula de memória é um "flip-flop");
 - DRAM: memória dinâmica (cada célula deve ser atualizada periodicamente).

Circuitos de memória: organização conceptual

- Para P linhas de endereço: $N = 2^p$
- Abreviaturas: $2^{10} = 1024 = 1 \text{ K}$, $2^{20} = 1048576 = 1 \text{ M}$
- O porto de dados é bidirecional: é preciso especificar o tipo de acesso (leitura ou escrita).
- M é a *largura* da memória.

João Canas Ferreira (FEUP/DEEC)

Sistemas de Memória

Outubro de 2015

5/20

Memórias

Memórias Estáticas

Memórias estáticas

As memórias estáticas aproximam-se do modelo conceptual de funcionamento.

- Para aceder à memória:
 - ativar o circuito: chip select (CS) ativo
 - especificar o tipo de acesso:

ativar output enable (leitura) **OU** write enable (escrita).

Memórias estáticas: acessos

- Tempo de acesso para leitura: intervalo entre o instante em que output enable e endereço estão corretos e o aparecimento de dados na saída.
- Valores típicos para memórias estáticas:

■ rápidas: 2–4 ns

■ típicas: 8–20 ns (cerca de 32 milhões de bits)

■ de baixo consumo: 5–10 vezes mais lentas

- Durante esse tempo, um processador que execute uma instrução por ciclo e use um relógio de 2 GHz, executa:
 - 4-8 instruções
 - 16-40 instruções
- Tempo de acesso para escrita: endereços e dados devem estar estáveis antes e depois do flanco. O sinal de write enable é sensível ao nível (não ao flanco) e deve ter uma duração mínima para que a escrita se realize.
- O tempo de escrita é superior ao tempo de leitura.

João Canas Ferreira (FEUP/DEEC)

Sistemas de Memória

Outubro de 2015

7/20

Memórias

Memórias Estáticas

Memórias estáticas: circuito de saída

Buffer tristate

3 estados: 0, 1, desligado

Circuito de saída:

- Ao contrário de um banco de registos, o circuito de saída não pode ser baseado num multiplexador: uma SRAM 64K x 1 precisaria de ter um multiplexador 65536-para1.
- Solução: utilizar *buffer tristate*, cuja saída pode ter 3 estados (0, 1 ou alta-impedância).
- No estado de alta-impedância, a saída do circuito está desligada.
- O estado da saída é determinado por uma entrada de controlo: Sel.
- Todas as saídas são ligadas em paralelo. Não pode existir mais que uma saída ativa (i.e., não em alta-impedância) em cada instante.

Estrutura básica de uma memória estática

Memórias

Memórias Estáticas

Memórias estáticas organizadas por bancos

Para limitar o tamanho do descodificador de endereços:

Fonte: [COD3]

- Organização típica de uma memória 4Mx8 como uma coleção de blocos de memória 4Kx1024.
- Os blocos MUX são realizados por buffers de três estados.

Memória dinâmica (DRAM)

- Valor guardado como carga num condensador.
- O acesso é feito através de um transístor a operar como interruptor.
- Consequência: maior densidade (bit/mm²), logo circuitos de maior capacidade e menor custo.
- Comparação: SRAM requer 4 a 6 transístores por bit armazenado.
- Acesso a DRAM é feito em duas etapas:
 - 1 seleção de coluna (usando uma parte do endereço);
 - 2 seleção de linha (usando os restantes bits do endereço).
- DRAM é mais lenta que SRAM. Valor típico: 2 Gibit (512M×4), tempo de acesso 55 ns.
- Condensador vai perdendo a carga e deve ser periodicamente "refrescado", fazendo uma leitura seguida de escrita (circuito dinâmico). Refrescamento "consome" 1% a 2% dos acessos.

João Canas Ferreira (FEUP/DEEC)

Sistemas de Memória

Outubro de 2015

11/20

Memórias

Memórias Dinâmicas

Esquema geral do acesso a uma memória dinâmica

- Endereço: 11+11 bits.
- DRAM 4M×1: 11 bits selecionam a linha, que é "copiada" para 2048 trincos.
- Multiplexador seleciona uma de 2048 entradas.

Módulos de memória: DIMM

CIs individuais podem ser agrupados em módulos.

Ex: módulo 32Mx64 (256 MB) pode usar 16 componentes 32Mx4.

João Canas Ferreira (FEUP/DEEC)

Sistemas de Memória

Outubro de 2015

13/20

Descodificação de endereços

1 Memórias

Aspetos gerais Memórias Estáticas Memórias Dinâmicas

2 Descodificação de endereços

Organização geral Descodificação total Descodificação parcial

Organização da memória de um computador

- A memória física de um computador é geralmente composta por vários módulos (circuitos integrados, DIMM, etc.) por forma a ser possível obter maiores capacidades de armazenamento.
- Para além dos módulos de memória é necessário ter um circuito de descodificação de endereços que seleciona quais os módulos ativos durante um dado acesso (com base no endereço apresentado pelo CPU).
- Organização típica: os bits menos significativos são ligados diretamente aos módulos individuais, enquanto os bits mais significativos são usados para fazer a seleção dos módulos.
- Linhas de dados podem ser "partilhadas" por mais que um módulo (usando buffers tristate).
- Alguns módulos usam internamente esta abordagem.

João Canas Ferreira (FEUP/DEEC)

Sistemas de Memóri.

Outubro de 2015

15/20

Descodificação de endereços

Organização geral

Organização da memória: diagrama de blocos

Para memórias DRAM a descodificação de endereços é mais complicada. Apenas abordaremos o caso das memórias SRAM.

João Canas Ferreira (FEUP/DEEC) Sistemas de Memória Outubro de 2015 16/20

Regras para descodificação de endereços

Para que esta organização funcione bem, a descodificação de endereços deve garantir que:

Para o conjunto de todos os módulos que partilham uma mesma linha de dados: apenas um (ou nenhum) deve ser ativado durante um acesso.

Se esta condição não for respeitada, os componentes podem ser definitivamente danificados.

- O mapeamento de endereços para componentes pode ser classificado de acordo com o número de endereços que é mapeado na mesma posição física:
 - total: 1 endereço → 1 posição
 - **parcial:** N endereços \rightarrow 1 posição
- Na descodificação total, todos os bits do endereço são "usados": ligados diretamente aos componentes ou utilizados na seleção dos componentes.

João Canas Ferreira (FEUP/DEEC)

Sistemas de Memória

Outubro de 2015

17/20

Descodificação de endereços

Descodificação total

Descodificação total: exemplo

- Endereço B712H (46866) → RAM1
- Endereço C1E0H (49632) → nenhum circuito

Descodificação parcial: exemplo

- O byte 10 de RAM1 pode ser acedido através de que endereços?
- 800AH, 900AH, A00AH e B00AH

João Canas Ferreira (FEUP/DEEC)

Sistemas de Memóri

Outubro de 2015

19/20

Referências

Referências

COD4 D. A. Patterson & J. L. Hennessey, Computer Organization and Design, 4 ed.

COD3 D. A. Patterson & J. L. Hennessey, Computer Organization and Design, 3 ed.

Os tópicos tratados nesta apresentação são descritos na seguinte secção de [COD4]:

apêndice C, secção C.9

Também são tratados na seguinte secção de [COD3]:

■ apêndice B, secção B.9