Solución Numérica de Ecuaciones

Introducción al Análisis Numérico MA-1006

UCR

Temas de la clase

- a) Método del punto fijo.
- b) Método de Newton-Rhapson.
- c) Método de la secante.

Definición (Punto fijo)

Sea $A \subset \mathbb{R}^n$ y sea $g: A \to A$. Se dice que $x \in A$ es un punto fijo de g si se satisface que g(x) = x.

Ejemplo

La función $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 - 1$ posee un punto fijo en el intervalo [0,2].

Teorema (Brower)

Suponga que g es una función continua definida en el intervalo cerrado y acotado [a,b]. Suponga además que $g(x) \in [a,b]$, para todo $x \in [a,b]$. Entonces, g tiene un punto fijo.

Ejercicio

Justifique que la función $g(x) = \frac{1}{2}\cos(x)$ definida en $\left[0, \frac{\pi}{2}\right]$ satisface que $g(\left[0, \frac{\pi}{2}\right]) \subset \left[0, \frac{\pi}{2}\right]$.

Solución:

Note que g es continua y g(0)=1/2, $g(\pi/2)=0$. Además, $g'(x)=-\frac{1}{2}\sin(x)$ y g' es negativa en $[0,\frac{\pi}{2}]$, entonces g es decreciente.

Se sigue que $g([0,\frac{\pi}{2}])\subset [0,\frac{\pi}{2}].$

Definición (Iteración simple)

Sea $g:[a,b] \to [a,b]$ una función continua y sea $c_0 \in [a,b]$. La recursión

$$c_{k+1} = g(c_k), \quad k = 0, 1, 2, \cdots$$
 (1)

se llama iteración simple o método de aproximaciones sucesivas.

Definición (Función contractiva)

Sea g una función continua definida en un intervalo $[a,b]\subset\mathbb{R}.$ Entonces, g es una **contracción** en [a,b] si existe una constante L, 0< L<1 tal que

$$|g(x) - g(y)| \le L|x - y|, \quad \forall x, y \in [a, b]. \tag{2}$$

Teorema (Derivada y contractividad)

Suponga que $g:[a,b] \to [a,b]$ es diferenciable y que existe $L \in]0,1[$ tal que $|g'(x)| \le L$ para todo $x \in [a,b]$. Entonces g es una contracción sobre [a,b].

Teorema (Unicidad)

Sea g definida y continua sobre [a,b] y que además $g([a,b]) \subset [a,b]$ y siendo g una contracción sobre [a,b]. Entonces g tiene un único punto fijo $c \in [a,b]$. Además la iteración simple $c_{k+1} = g(c_k)$ converge a c para cualquier valor $c_0 \in [a,b]$.

Nota: si g no es contractiva, la sucesión $c_{k+1}=g(c_k)$ podría ser divergente.

Ejemplo

Muestre que $g(x)=\frac{x^2-1}{3}$ tiene un único punto fijo en el intervalo [-1,1].

Retomemos ahora el ejemplo de la motivación y justifiquemos adecuadamente todas las hipótesis del teorema para encontrar una iteración simple que converja al punto fijo de f.

Ejemplo

Sea $f(x) = x - \frac{1}{2}\cos(x)$ definida en el intervalo $[0, \frac{\pi}{2}]$. Utilice el método del punto fijo para determine una iteración simple que sea convergente a una raíz de f en el intervalo dado.

¿Cuándo parar?

Tomaremos el error relativo, que es el que compararemos con la tolerancia dada:

$$|e_k| = \frac{|c_{k+1} - c_k|}{|c_{k+1}|} < tol$$

Ejercicios

- Utilice la iteración de punto fijo para determinar una aproximación de una solución de $x^4 3x^2 = 3$ en el intervalo [1,2], utilizando $x_0 = 1$ y una tolerancia de 10^{-2} .
- ② Sea $f(x) = x^3 2x 5$. Muestre que la función $g(x) = \sqrt[3]{2x+5}$ en el intervalo [2,3] satisface las condiciones de unicidad del punto fijo.
- **3** En Matlab, cree una M-función llamada puntofijo2 que reciba como entradas una función anónima g, una tolerancia tol y un valor inicial c_0 . La función debe utilizar el método del punto fijo para aproximar el valor c de un punto fijo de g.

Método de Newton-Rhapson

Considere la ecuación f(x)=0. Supongamos que $\lambda(x)$ es una función sin ceros reales y definamos $g(x)=x-\lambda(x)f(x)$. Entonces,

$$g(c) = c$$

$$\Leftrightarrow c - \lambda(c)f(c) = c$$

$$\Leftrightarrow -\lambda(c)f(c) = 0$$

$$\Leftrightarrow f(c) = 0$$

Por teorema asociado a iteración de punto fijo, tiene sentido plantearse el siguiente método:

Definición (Iteración de Newton-Rhapson)

El método de Newton para aproximar una raíz de f(x)=0 consiste en aplicar la iteración

$$c_{k+1} = c_k - \frac{f(c_k)}{f'(c_k)}, \quad k = 0, 1, 2, \cdots,$$
 (3)

donde c_0 es un valor dado. Note que implícitamente se asume que $f'(c_k) \neq 0$, para cada $k \geq 0$.

Teorema

Sea $f \in C^2([a,b])$ es tal que

- $f(a) \cdot f(b) < 0;$
- ② $f'(x) \neq 0$ para todo $x \in [a, b]$;
- **3** $f''(x) \ge 0$ o $f''(x) \le 0$, para todo $x \in [a, b]$;

Entonces, el método de Newton converge a la única solución c de f(x)=0 para cualquier $c_0\in [a,b]$.

Ejemplo

Considere la función $f:[1,10] \to \mathbb{R}$, $f(x)=x^2-2$.

- Utilice el método de Newton-Rhapson para encontrar una sucesión (c_k) que converja a un cero de f para cualquier valor $c_0 \in [1,10]$.
- ② En Matlab, elabore una M-función de nombre Newton_Rhapson1 que reciba como entradas: la función anónima f, el criterio de f' también como función anómina, un valor inicial c_0 y una cantidad máxima de iteraciones n.
- **3** Pruebe su código con el valor $c_0 = 5 \in [1, 10]$ y una cantidad de iteraciones de su elección. ¿Se observa convergencia?
- Pruebe su código con el valor $c_0 = 20$ y una cantidad de iteraciones de su elección. ¿Se observa convergencia?

Ejercicio 00 Newton-Rhapson 0000●

0

00

Ejercicios

- Sea $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = x^2 6$ y sea $c_0 = 1$ un valor inicial. Use el método de Newton para encontrar c_2 .
- ② Muestre que $f(x)=x^2-x-2$ tiene una raíz única en [1,3] a la cual converge la sucesión del método de Newton para todo $x_0\in[1,3].$

Newton-Rhapso

son **Ejercicios** ⊙●○○

000

Ejercicios

3 En Matlab, cree una M-función Newton_Rhapson2 que aplique el método de Newton para calcular la raíz de f. Su código debe recibir como entradas: el criterio de una función f, el criterio de f', un valor inicial c_0 , una cantidad de iteraciones n y una tolerancia tol. debe calcular la aproximación de la raíz c de la función. Pruebe su código con la función $f:\mathbb{R}\to\mathbb{R}$ tal que $f(x)=x^2-2$ que posee una raíz $c=\sqrt{2}\approx 1.414213562373095$.

Ejercicio: 00 Newton-Rhapson

Ejercicios 000●

00

Método de la secante

A pesar de que el método de Newton es muy popular, se asume que la función es derivable y que podemos evaluar la derivada. En la práctica esto puede no ser viable.

Una alternativa es utilizar una aproximación de la derivada:

$$f'(c_k) pprox rac{f(c_k) - f(c_{k-1})}{c_k - c_{k-1}}$$
 y entonces se obtiene el método de la secante.

Definición

El método de la secante para aproximar una raíz c de una función f consiste en aplicar la iteración

$$c_{k+1} = c_k - \frac{c_k - c_{k-1}}{f(c_k) - f(c_{k-1})} f(c_k), \quad k \ge 0$$
(4)

donde c_0 y c_1 son valores iniciales.

Note que para calcular c_{k+1} con este método se necesita conocer c_k y c_{k-1} .

Teorema

Sea $I_{\delta}=[c-\delta,c+\delta]$, $\delta>0$ y suponga que $f\in C^2(I_{\delta})$ es tal que f(c)=0 y $f'(c)\neq 0$. Entonces, para valores iniciales $c_0,c_1\in I_{\delta}$ suficientemente cerca de c, el método de la secante (4) converge a c.

Éjemplo

Sea $f(x)=x^2-6$, $f:\mathbb{R}\to\mathbb{R}$ y sean $c_0=3$, $c_1=2$, aplicando el método de la secante tenemos

$$c_3 = c_1 - \frac{c_1 - c_0}{f(c_1) - f(c_0)} f(c_1)$$

$$= 2 - \frac{2 - 3}{f(2) - f(3)} f(2)$$

$$= 2 - \frac{(-1)}{(-5)} (-2)$$

$$= 2 + \frac{2}{5}$$

$$= 2.4$$

Ejercicios

• Sea $f(x) = x - 2\cos(x)$ y sean $x_0 = 0$, $x_1 = \pi/2$. Determine el valor de x_3 .