Machine Learning Modelling

1. Look at the Big Picture: Task and Initial Data Exploration

Define Your Task:

Build a model to predict housing prices using metrics like population, median income, and median housing price.

Initial Data Exploration:

Load data: data = pd.read csv("california housing.csv").

Explore data: data.head(), data.info(), data.describe(), data['category_column'].value_counts(), data.corr().

Visual Data Analysis:

Histograms and scatter plots: data.hist(), data.plot(kind="scatter", x="longitude", y="latitude").

Setting Analysis Scope & Planning Further Analysis:

Identify target and predictors.

Consider feature engineering, handling missing values/outliers, and data transformation

2. Get the Data: Sourcing and Preparing Your Dataset

Identify Data Sources:

Look for reliable open datasets relevant to your project (examples include public repositories and data portals).

Data Acquisition:

Implement methods for downloading or accessing the data, such as scripts for web scraping or APIs for database access.

Organize Data Storage:

Create a structured directory system for storing the datasets.

Load Data for Analysis:

Use Python libraries (like pandas) to load the data into a suitable format for analysis: **data = pd.read_csv("your_dataset.csv")**.

3. Discover and Visualize Data for Gaining Insights

Data Visualization:

Utilize scatter plots to observe spatial relationships and patterns in data.

Attribute Correlation Analysis:

Investigate how different data attributes correlate with each other, potentially using correlation matrices.

Combining Attributes (Feature engineering):

Explore creating new informative features by combining existing attributes (e.g., calculating ratios or aggregate metrics).

4. Prepare Data for Machine Learning Algorithms

Handle Missing Values:

Employ strategies like imputation, removing rows, or column elimination.

Process Text and Categorical Attributes:

Convert text and categorical data into numerical formats through encoding methods. EX LabelEncoder(Many values), OneHotEncoder(Less values)

Feature Scaling ex.(StandardScaler, RobustScaler):

Apply normalization or standardization to ensure uniformity in feature scales.

Transformation Pipelines:

Create pipelines to streamline data cleaning, feature engineering, and scaling processes.

5. Select and Train Models

Start Simple:

Begin with basic models such as ex. Linear Regression to establish a baseline.

Progress to Complex Models:

Gradually shift to more intricate models like Decision Trees and Random Forests for potentially better performance.

Employ Cross-Validation:

Use cross-validation techniques for a more robust and reliable evaluation of model performance.

6. Fine-Tune Models

Hyperparameter Tuning:

Utilize tools like **GridSearchCV** or **RandomSearch** to optimize model hyperparameters.

Analyze Best Models:

Examine top-performing models, study their characteristics and errors for insights.

Test Set Evaluation:

Assess the final model's performance on a previously unseen test dataset to gauge real-world efficacy.

7. Launch, Monitor, and Maintain the System

Deployment:

Integrate the model into a production environment for real-world use.

Monitoring:

Set up systems to continuously assess the model's performance, ensuring it remains effective over time.

Regular Updates:

Periodically refresh the model with new data to maintain its relevance and accuracy.