DE LA RECHERCHE À L'INDUSTRIE

PARAMETER ESTIMATION FOR GALACTIC BINARIES IN LISA WITH MACHINE LEARNING

YAO Kouamé

ABOUT ME

- Second year engineer student IMT Atlantique
- Brest campus
- Thematic of deepening 2A: Communications Systems Engineering
- Thematic of deepening 3A : Data Science

1. Presentation of LISA

LISA (Laser Interferometer Space Antenna)

- Spatial project ESA-NASA.
- LISA is a future space based gravitational wave observatory, to be launched around 2034.
- Allows the detection of gravitational waves undetectable by terrestrial interferometers such as LIGO ,VIRGO.

Depiction of the LISA Orbit.

2. LISA's missions

- Identify the formation and evolution of galactic binary systems (stars , etc).
- Characterize approximately 25,000 galactic binary systems.
- The characterization of these binary systems amounts to estimating the parameters of the physical models.
- \circ Work in the low frequency domain (from 10^{-3} Hertz to 1 Hertz).

3. Gravitational wave sources in LISA band

- Galactic binaries
 - Quasi monochromatic
 - Signal to noise ratio
 - Detected sources: 7 1000
 - Confusion noise from non-detected sources
 - Event rate
 - 25,000 detected sources
 - More than 10 guaranteed sources (verification binaries)
- Quasi-periodic signal in the time domain
 - So concentrated around a frequency in the Fourier domain.

4. Description of parameters

- Related to the gravitational wave
 - The amplitude *h*
 - Detection order greater than or equal to 10^{-22} Strain.
 - Frequency *f*
 - Frequency between 10^{-3} and 10^{-1} Hz.
- Sources and observer (LISA)
 - The declination β
 - Ecliptic longitude λ

CHAPTER 2: EXISTING ESTIMATION METHODS

1. Matched filtering

Fit the best model to the data by exploring a large parameters space.

- Template bank: check all sets of parameters (too heavy).
- Maximized likelihood (Generic algorithm, etc)
- Work in Fourier domain

2. MC-MC Approach

Classical maximum likelihood approach

- Method to sample probability distributions.
- Several algorithms for sampling.
- Problems with these methods
 - Long computing time
 - Slow convergence.

1. Neural Networks

Type of problem : regressor
(Data, parameters)
Black Box
The role of the black box will consist of:

- Estimate the direct correspondance between measurements and parameters .
- Black box ?
 - Neural Networks
- Several types of neural networks but the type of data leads us to choose :
 - Multi-Layers Perceptron
 - Convolutional neural networks

Neural network architecture

2. Network architecture

- Data for learning and testing: LISAcode
- Data is made up of:
 - A waveform
 - 3 channels (*X*, *Y*, *Z*)
 - 256 frequencies
- Complex type
 - Separation of the real and imaginary part of each waveform.
 - Changing the number of channels from 3 to 6.
 - Generate five different amplitudes for each waveform
 - Increase signal SNR up from 1 to 20 dB
- Input shape (2000,256,6).
- \odot Estimation in a single band at constant frequency f_0 .
- Estimated parameters
 - Amplitude
 - Beta
 - lambda

- •Weight and bias matrix
 - Shape tensor $W = (M_1, N_1, M_2, N_2), b = (M_1, N_1)$

• Prediction function
$$F(x) = \sum_{jt} w_{ikjt} \times x_{mjt} + b$$

- Activation function :Relu
- Number of hidden layers : 3
- Optimizer Adam.

3. Results

CONCLUSION

- First study of machine learning for the estimation of binary parameters from LISA data.
- Perspective
 - Comparison with MC-MC and matched filtering methods
 - Go to the estimation of the 8 parameters of interest
 - Process complete data
 - Several million points/samples
 - Invariance by translation
 - CNN