5. Sequence modeling with recurrent neural networks 5.1. Structure of the Elman Recursive Neural Network

Manel Martínez-Ramón Meenu Ajith Aswathy Rajendra Kurup

The Hopfield network

- Introduced in 1982 by John Hopfield.
- Structure previously introduced by W. A. Little in 1974.
- First to include the idea of recurrence.
- Used in optimization as the classic travelling salesman problem.
- Continuous state versions exist.

State equations

$$\mathbf{z}_{t}^{(x)} = \mathbf{W}_{hx}^{\top} \mathbf{x}_{t} + \mathbf{W}_{hh}^{\top} \mathbf{h}_{t-1} + \mathbf{b}_{h}$$

$$\mathbf{z}_{t}^{(o)} = \mathbf{W}_{oh}^{\top} \mathbf{h}_{t} + \mathbf{b}_{o}$$

$$\mathbf{h}_{t} = \tanh(\mathbf{z}_{t}^{(x)})$$

$$\mathbf{o}_{t} = \mathbf{o}(\mathbf{z}_{t}^{(o)}) = \operatorname{softmax}(\mathbf{z}_{t}^{(o)})$$
(1)

State equations

Introduced by J. L. Elman in 1990, which follows a similar structure by M. I. Jordan, 1986.

- ullet The input matrix ${f W}_{HX}$ extracts features from the input sample.
- The output matrix \mathbf{W}_{oh} transforms the hidden state into an output response, through a softmax activation.
- The hidden state matrix \mathbf{W}_{hh} performs the feedback. It must store the dependencies between the past inputs and the present output.
- the hidden state itself is a summary of the past samples.
- The network is an infinite impulse response structure.

The Elman RNN unfolded

A more compact view of the RNN

Unfolded compact representation of the RNN

Unfolded even more compact representation

- Input \mathbf{x}_t is transformed with \mathbf{W}_{hx} ,
- Hidden state \mathbf{h}_{t-1} is transformed with \mathbf{W}_{hh} and bias \mathbf{b}_h .
- The output of this box, transformed with a tanh, is \mathbf{h}_t .