INTELLIGENT DATA ANALYSIS

SPAM CLASSIFIER

Valdimar Ágúst Eggertsson (800244), 02.10.19

- ▶ 1. Introduction
- 2. Naive Bayes Classifier
- 3. Support Vector Machine
- 4. Random Forest
- 5. Conclusions / comments

INTRODUCTION

Problem Analysis - Requirements

- The task is to train a classifier that can determine whether a bag-of-words representation of an email is spam or not.
- ► False positives are worse than false negatives (losing mail as spam is bad story). No more than 0.2% FPR!
- Methods used:
 - Naive Bayes, the classic method.
 - Support Vector Machines (SVMs),
 - Random Forests (RF)
 - Neural Network

The data set

- The data has already been pre-processed to a bag of words representation, with a word count vector for each email.
- Stored in a sparse matrix, with 10.000 emails (data rows) and 57173 words (features).
- Class ratio is realistic.

Key results

- Naive Bayes, the go-to solution for the task, did the job just fine.
- To make it into more of a machine learning exercise:
 - I spent some days playing around with SVMs and RFs trying to get a classifier that was as good.
 - And it didn't really work out!
 - Found some ok classifiers but none as good.
- Moral: Use simple tools when they work!

Overview of the Jupyter Notebook written to solve the task

Machine Learning Exercise - Spam filter Table of contents Load the data & import tools Helper functions Stratified Triple Cross Validation Custom Scoring Function Naive Bayes Helper functions 'Manual' grid search Plot results Find best alpha 'manually' w/ RandomizedSearchCV Test it on the test set 4. SVM Helper functions Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Random Forests Helper functions Experiment 1 Experiment 2 Experiment 3

Experiment 4 Experiment 5

NAIVE BAYES

NAIVE BAYES

- Naive assumption
 - Words in an email are assumed to be independent events.
 - Only the relative frequencies of words are used to estimate the probability of a bunch of them occurring together. No correlation.
 - The assumption is obviously false.
 - But doesn't matter, because words such as 'viagra' are so much more likely to appear in spam than in ham.
 - -> We don't need to worry about the conditional probabilities of words on the other words appearing
 in the mail.
- Logic of the method makes sense (not a black box).
 - I started the exercise by programming it from scratch
 - but ended up using sklearn, and reminded myself to not waste energy on inventing the wheel

Finding the optimal smoothing parameter alpha

- Only one parameter to tune:
 - Smoothing parameter 'alpha'
 - With / Without TF-IDF
- Evaluation criteria:
 - Get minimum false positive rate and maximum accuracy.
 - If many alphas are as good, choose the one with the highest value.

Finding the optimal smoothing parameter alpha

- I trained models for various values, using 5-fold (triple) stratified cross validation
- Alpha is by default 1.0. Better results had lower alpha.
 - Might be a problem for emails with words not in the trained vocabulary they'll have a small probability.
 - Overfitting? New types of spam not caught?
- Using TF-IDF pre-processing didn't make it better.
- Tuned it manually. Programming everything took time, but I learned from it.
- Lesson learned: Don't spend energy coding things from scratch, except if there's something to learn from it!

0 < alpha < 1

- Precision, accuracy and alpha
- Accuracy increases slightly as alpha approaches 0.
- We don't want a very small alpha.

alpha drops when $> 10^-7$

Good NB classifiers with low alpha:

NAIVE BAYES

- Grid search for parameters that fulfil precision requirements
 - Best = Minimum false positive rate and maximum accuracy.
 - If many alphas are as good, choose the biggest one.
 - Best result: $alpha = 2*10^-7$
 - Average results in cross-validation:
 - 99.96% Precision, 99.5% accuracy, 0.15% FPR, 99.5% TPR
 - Results on test set:
 - ▶ 100% precision, 99% accuracy, 0% FPR, 98.5% TPR

Predicted:

	Ham	Spam
Ham	394	0
Spam	25	1581

Precision / Recall for various alpha

ROC curve for one of the good classifiers

Later, after getting used to doing grid search in sklearn, I found a very similar optimal classifier with few lines of code and quick computation:

Optimal hyperplanes, different C

Optimisation criteria (linear)

$$\max_{\beta_0,\beta_1,...,\beta_p,\epsilon_1,...,\epsilon_n,M} M$$
(9.12)

subject to
$$\sum_{j=1}^{p} \beta_{j}^{2} = 1$$
, (9.13)

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + ... + \beta_p x_{ip}) \ge M(1 - \epsilon_i),$$
 (9.14)

$$\epsilon_i \ge 0$$
, $\sum_{i=1}^{n} \epsilon_i \le C$, (9.15)

The kernel function can be any of the following:

- linear: (x, x').
- polynomial: (γ⟨x, x'⟩ + r)^d. d is specified by keyword degree, r by coef0.
- rbf: $\exp(-\gamma ||x x'||^2)$. γ is specified by keyword gamma, must be greater than 0.
- sigmoid $(\tanh(\gamma(x,x')+r))$, where r is specified by coef0.

- Hyper-parameters:
 - C (sum of slack variables = margin violations) "soft margin"
 - Kernel function (basis function / feature mapping, measures similarity)
 - Gamma (parameter in Kernels)
 - Class weight (how much C is allowed for each class)
- I programmed the grid search for the hyperparameters like I did for Naive Bayes.
 - Unlike Naive Bayes, the search was multidimensional and time consuming.

- Steps made in search of a good classifier:
 - ▶ 1. Try some random configurations of C, kernel function and class weights.
 - ▶ 2. For good results from 1, search for good hyper-parameters close to them.
 - ▶ 3. Search a wide range of values of C and class weights and different Kernel functions.
 - ▶ 4. Search even more values of C, class weights, along with Gamma, for the Kernel function found in 1.

Experiment 1

The kernel function can be any of the following:

- linear: (x, x').
- polynomial: $(\gamma \langle x, x' \rangle + r)^d$. d is specified by keyword degree, r by coeff.
- rbf: exp(-γ||x x'||²). γ is specified by keyword gamma, must be greater than 0.
- sigmoid (tanh(γ(x, x') + r)), where r is specified by coef0.

- Tried different values for the slack sum **C** and for the 'class_weight' parameter to tune the False Positive Rate.
- Trained SVMs with C = (0.5, 1.5, 5, 10) and class_weight for non-spam as (3,5,7,10,100) with the four different kernels
 - Training took long (up to 1 minute per training), compared to NB which was fast.
- Best results found:
 - ▶ **Sigmoid** kernel, class_weight = 5 and C = 0.5.

- Experiment 2
- \blacktriangleright Searched the space around the hyper-parameters whose models had good results (<0.2% FPR and >98% accuracy).
 - Only the **Sigmoid** kernel had good results, with C = 0.5 and weights 5 and 7.
- Searched close by it and found an OK model:
 - SVC(C=0.536, kernel='sigmoid', class_weight={1: 1, -1: 4.571},

Predicted:

	Ham	Spam
Ham	394	0
Spam	56	1550

- No real mail classified as spam, which is good.
- ▶ 100% precision, 97.2% accuracy.
- Double the number of misclassification compared to the best Naive Bayes classifier.

- Experiment 3
- Tried out many values for 'C' and 'class_weight' for the different Kernels.
 - Put strong constraints on accuracy for all 5 cross validation splits (>98%), along with the min false alarm rate (<0.2%).
 - Trained models using 30 different values of C and 22 class_weights for all 4 types of Kernels.
 - Took 1 hour. Found no good classifiers. Maybe the constraint on accuracy was too strong?

- Experiment 4: Big exhaustive search
- Tried even more values, varying 'C' and 'gamma',
 - with 'class_weight' either the best value found so far or equally balanced.
 - Only trained on the Sigmoid kernel.
 - Put weaker constraints than last time on accuracy for all 5 cross validation splits (>96%), along with the min false alarm rate (<0.2%).
 - After running the program for 14 hours while finding only 1 good candidate (similar to the NB model) out of thousands of models, I gave up.

- Experiment 4: Big exhaustive search
- Comments:
 - Should have put more thought into choosing the range of parameters to
 - Didn't know before what gammas were good.
 - Probably didn't need to train on gamma = 4*10^-6 when 2*10^-6 didn't give any good results.
 - The "slack budget" C shouldn't have been allowed to be very high.
 - Because we didn't want any false positives.
 - Next time: Use Randomized Grid Search from SKLearn!

- Best result that was found using SVMs:
- SVC(C=0.536, kernel='sigmoid', class_weight={1: 1, -1: 4.571}
 - ▶ 100% precision, 97% accuracy, 0% FPR, 96% recall.

Predicted:

	Ham	Spam
Ham	394	0
Spam	56	1550

RANDOM FORESTS

- Ensemble method
- Forests of randomised decision trees
 - Bagging (bootstrap aggregating)
 - Averaging a set of predictions reduces variance
 - Majority vote
 - The algorithm is not even allowed to consider most of the available features
 - De-correlates the trees
 - Like asking 10 different people for advice who ask you different yes/no questions

- This time didn't waste energy hard-coding, only used built-in methods from scikit-learn.
- Baseline model: Default RandomForestClassifier()
- Baseline results:
 - 99.7% accuracy and 99.4% precision. 1.4% false positive rate!
- Problem: There are so many hyper-parameters to try out that it would take ages to do an exhaustive search for a great configuration.

```
Out[1095]: {'bootstrap': True,
             'class weight': None,
             'criterion': 'gini',
             'max depth': None,
             'max features': 'auto',
             'max leaf nodes': None,
             'min impurity decrease': 0.0,
             'min impurity split': None,
             'min samples leaf': 1,
             'min samples split': 2,
             'min weight fraction leaf': 0.0,
             'n estimators': 'warn',
             'n jobs': None,
             'oob score': False,
             'random state': None,
             'verbose': 0,
             'warm start': False}
```

- Strategy: Randomly search for optimal configurations of various parameters using RandomizedSearchCV().
- Parameters to vary:
 - class_weight, max_depth, max_features, min_sample_split, min_sample_leaf, bootstrap
- First try:
 - Used the default scoring function in RandomizedSearchCV, for evaluating what is best.
 - After 10 iterations the best estimator found had 1.5% FPR and 99.9% TPR.

	Ham	Spam
Ham	388	6
Spam	2	1604

▶ I pursued 5 strategies:

- ▶ 1. Find a classifier with 100% <u>precision</u> and search for a better one close to it (with similar hyper-parameter configuration)
- 2. Find a classifier with 100% recall and search for a better one close to it.
- > 3. Find a classifier with very high <u>accuracy</u> and
 - a) look for a 0% FPR classifier close to it
 - b) post-process its output such that an email is classified as spam only if the classifier's predicted probability is high
- 4. Random search in a big hyper-parameter space for classifiers with 0% FPR and maximum accuracy
- 5. Exhaustive search in the vicinity of all the hyper-parameters of the best classifiers found in steps 1-4 for a 0% FPR and maximum recall classifier.

- **Experiment 1:** Look for a classifier with no false positives.
 - Ran it this time with precision as scoring (evaluation metric) for the search and found a classifier with no false positives.

Predicted

	Ham	Spam
Ham	394	0
Spam	410	1196

Next step: Search hyper-parameters close to it for classifiers with better recall.

- Experiment 1: Search hyper-parameters close by for classifiers with better recall.
- Customised a scoring function that gives 0 score when there are more than 0.2% FPR.
 - Score function maximises, Loss function minimises
- ▶ Found one classifier with 100% precision, 87% accuracy, 0% FPR and 84% TPR/recall.

def my_score_function(y_true, y_predict):
 """
 Use:
 score = my_score_function(y_true,y_predict)
 Before:
 y_true are true labels, y_predict predicted labels
 After:
 score is an evaluation of how good the prediction was
 (only good if the fpr was adequate and recall is good)
 """
 con = confusion_matrix(y_true,y_predict)
 precision, accuracy, fpr, recall = conf_interpretation(con)
 if fpr <= 1/500:
 score = 5* recall
 else:
 score = 0
 return score</pre>

Predicted:

	Ham	Spam
Ham	394	0
Spam	249	1357

- Experiment 2: Search for a classifier with no false negatives.
 - Found one when running 10 iterations using 'roc_auc' scoring.
 - ▶ 100% TPR/recall, 98.7% accuracy, but 6.6% FPR!

	Ham	Spam
Ham	368	26
Spam	0	1606

Idea: Search around it for more precise classifiers.

- **Experiment 2:** Found a classifier with no false negatives.
- ▶ Idea: Search around it for the classifier that maximises recall, with <=0.2% FPR.
- Results:

	Ham	Spam
Ham	394	0
Spam	57	1606

Further idea to do: Exhaustive search around there?

- Experiment 3: Search for a high accuracy classifier.
- Ran it this time for 600 iterations, with 'roc_auc' scoring, to find an accurate classifier.
 - With 1.7% FPR, the result didn't satisfy our minimum requirements.
 - Accuracy of 99.5% is great, but it doesn't take into account the severity of a false alarm.

	Ham	Spam
Ham	387	7
Spam	2	1604

- Next steps:
- a) Search around it to find one with <0.2% FPR.
- b) Post-process the outcome by only classifying as Spam if probability is > threshold

- Experiment 3a: Search around the high accuracy RF to find one with <= 0.2% FPR.
- Found one, at the cost of decreased accuracy.
- Average of 99.9% precision, 98% accuracy, 0.2% FPR and 97.5% TPR/recall.

	Ham	Spam
Ham	393	1
Spam	40	1566

- ▶ I tried to tune the FPR manually by post-processing the class predictions:
 - Have classification remain as Spam only if the predicted probability from the model is higher than a certain threshold.

```
def adjusted_classes(spam_probabilities,t):
    return [1 if y >= t else 0 for y in spam_probabilities]

# Example, prediction as Spam only if probability is over 0.7:
predicted_spam_p = clf.predict_proba(X_test)[:,1]
adjusted_classes(predicted_spam_p, 0.7)
```

- Found that by increasing the threshold from 0.50 to 0.52, the single false positive disappeared when testing on the test set.
- Threshold 0.50

Threshold 0.52

	Predicted			Predicted	
	Ham	Spam		Ham	Spam
Ham	393	1	Ham	394	0
Spam	40	1566	Spam	40	1566

- Experiment 4: Random search over a big grid with custom scoring to find classifiers with 0% FPR and high accuracy.
 - Score criteria: <= 0.2% FPR false positives, maximum accuracy.</p>
 - Tried 3 times:
 - A quick search found a classifier with 0 FP but 93% recall, which is not adequate.
 - Longer random searches of 300 and 600 iterations. Found classifiers with 0 FP but 90% and 87% recall.
- With TF-IDF:
 - Realised I needed to try something else. Pre-processing with TF-IDF improved it to 95% recall

- Experiment 5: Exhaustive search for good parameters
- Ran exhaustive search overnight for combinations of parameters from the best classifiers.

Class weight	max_depth	min_samples _split	max_features	min_samples _leaf	n_estimator
1,3,5,7,15	50,55,60 70,80	2,5,10	100,100, 'sqrt'	1,5,10	20,40,80,120

Results:

Default scoring				Custom scoring			
		???					
Predicted				Predicted			
	Ham	Spam			Ham	Spam	
Ham	389	5		Ham	389	5	
Spam	2	1604		Spam	4	1602	

Average Precision/Recall for the good classifiers, from cross validation

Best results from the different methods

Method	Accuracy	Precision	Recall	FPR
NB	99 %	100 %	98 %	0 %
RF	98 %	100 %	97 %	0 %
SVM	97 %	100 %	96 %	0 %

- Improvements?
 - Preprocess with TF-IDF
 - Did it with Naive Bayes didn't help.
 - Tried it with Random Forests (yesterday...) and it helped
 - Define a better scoring function?
 - Run exhaustive search on a big grid for a few days?

LESSONS LEARNED

- Just use a simple method if it works.
- Don't waste energy programming things from scratch
- When in doubt what hyper-parameter values are good, use RandomizedGridSearch() and an appropriate scoring function to find candidates.
- Pre-processing has different effects on different methods.
- "Brute force" training all kinds of hyper-parameters can take days.
- Machine learning can be a lot of trial & error!

Screenshots were taken from ScikitLearn docs and Introduction to Statistical Learning by Hastie.