Parte I - Atividades teóricas

Exercício 1

a)
$$P(A^C) = 1 - P(A) = 1 - \frac{1}{3} = \frac{2}{3}$$

b)
$$P(A^C \cup B) = P(A^C) + P(B) - P(A^CB) = P(A^C) + P(B) - (P(B) - P(AB)) = P(A^C) + P(AB) = \frac{2}{3} + \frac{1}{6} = \frac{5}{6}$$

c)
$$P(A \cup B^C) = P(A) + P(B^C) - P(AB^C) = P(B^C) + P(AB) = (1 - P(B)) + P(AB) = (1 - \frac{1}{4}) + \frac{1}{6} = \frac{11}{12}$$

d)
$$P(AB^C) = P(A) + P(B^C) - P(A \cup B^C) = \frac{1}{3} + \frac{3}{4} - \frac{11}{12} = \frac{2}{12} = \frac{1}{6}$$

e)
$$P(A^C \cup B^C) = 1 - P(AB) = 1 - \frac{1}{6} = \frac{5}{6}$$

Exercício 2

a)

$$F_X(x) = P(X \le x) = \int_{-\infty}^{x} f_X(\xi) d\xi = \int_{-\infty}^{x} \frac{1}{2} d\xi = \left[\frac{1}{2} \xi \right]_{0}^{x} = \frac{1}{2} x, \forall X \in [0, 2]$$

b)
$$E\{X\} = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{2} \frac{1}{2} x dx = \left[\frac{x^2}{4}\right]_{0}^{2} = 1$$

$$E\{X^2\} = \int_{-\infty}^{\infty} x^2 f_X(x) dx = \int_{0}^{2} \frac{1}{2} x^2 dx = \left[\frac{x^3}{6}\right]_{0}^{2} = \frac{4}{3}$$

$$E\{X^3\} = \int_{-\infty}^{\infty} x^3 f_X(x) dx = \int_{0}^{2} \frac{1}{2} x^3 dx = \left[\frac{x^4}{8}\right]_{0}^{2} = 2$$

Exercício 3

a) X_2 , pois quanto mais próximo da distribuição uniforme, mais difícil é acertar o resultado de um evento aleatório "chutando um valor", ou seja, a variável aleatória X_2 carrega mais informação que a variável aleatória X_1 , pois neste último eu poderia supor que o resultado será sempre 3 com uma taxa de acertos de 40% contra uma taxa de acertos de 25% para qualquer valor estimado para X_2 se não tivermos nenhuma informação a priori.

b)
$$H(X_1) = -\sum_{x} p(X_1)log_2[p(X_1)] = -[0, 1(-3, 32) + 0, 2(-2, 32) + 0, 3(-1, 74) + 0, 4(-1, 32)] = 1, 85$$

 $H(X_2) = -\sum_{x} p(X_2)log_2[p(X_2)] = -[0, 25(-2) + 0, 25(-2) + 0, 25(-2) + 0, 25(-2)] = 2$

c)
$$D(P_1||P_2) = \sum_{x} p(X_1)log_2\left[\frac{p(X_1)}{p(X_2)}\right] = 0, 1(-1, 32) + 0, 2(-0, 32) + 0, 3(-0, 26) + 0, 4(-0, 68) = -0, 54$$

 $D(P_2||P_1) = \sum_{x} p(X_2)log_2\left[\frac{p(X_2)}{p(X_1)}\right] = 0, 25(1.32 + 0.32 - 0.26 - 0.68) = 0, 18$

Exercício 4

a)
$$\mu_{ML} = argmax_{\mu}p(x|\mu) = argmax_{\mu}log[p(x|\mu)] = argmax_{\mu}\frac{p(x\mu)}{p(\mu)} = x$$

b)
$$\mu_{ML} = argmax_{\mu}p(\mathbf{x}|\mu) = argax_{\mu}log[p(\mathbf{x}|\mu)] = argmax_{\mu}\sum_{k=1}^{N}log[p(x_{k}|\mu)] = argmax_{\mu}\sum_{k=1}^{N}log\left[\frac{p(x_{k}\mu)}{p(\mu)}\right]$$

c)
$$\mu_{ML} = \frac{1}{N} \sum_{k=1}^{N} x_k$$

Parte II - Atividade computacional

a) Solução fechada com MMQ

$$\mathbf{X} = \begin{bmatrix} \mathbf{x_1} \\ \mathbf{x_2} \\ \vdots \\ \mathbf{x_N} \end{bmatrix} \qquad \mathbf{\Phi} = \mathbf{\Phi}(\mathbf{X}) = \begin{bmatrix} 1 & \mathbf{x_1} \\ 1 & \mathbf{x_2} \\ \vdots \\ 1 & \mathbf{x_N} \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$

Modelo:

$$\hat{y} = \hat{y}(\mathbf{X}) = \mathbf{\Phi}^T \mathbf{w} \tag{1}$$

Solução ótima com o método de mínimos múltiplos quadrados (MMQ):

$$\mathbf{w} = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{y} \tag{2}$$

Raiz quadrada do erro quadrático médio (RMSE) para o modelo treinado com o conjunto de treino:

$$RMSE_{train} = 15.3702$$
 $RMSE_{test} = 14.2495$

Resultado no conjunto de test:

Figura 1: Saída prevista pelo modelo (azul) em comparação com valores reais dos últimos 5 anos (60 meses).

b) Seleção de atributos usando wrapper (backward elimination), validação cruzada (k-fold) e regularização L2

Figura 2: Menor RMSE para cada passo do wrapper (atributo retirado).

Modelo escolhido pelo wrapper utilizando k-fold com 5 pastas:

N de atributos removidos: 10 λ : 70 $RMSE_{CV}$: 14.4200 $RMSE_{test}$: 14.1138 Atributos escolhidos: 0 (bias) , 1, 2, 3, 4, 5, 6, 9, 11, 18, 20

Figura 3: Saída prevista pelo modelo (azul) em comparação com valores reais dos últimos 5 anos (60 meses) com seleção de atributos usando wrapper.

Tabela 1: RMSE mínimo e respectivo lambda para cada número de atributos retirados.

N atributos retirados	min RMSE	lambda
0	15.4622	70
1	14.4457	70
2	14.4368	70
3	14.4318	70
4	14.4287	70
5	14.4261	70
6	14.4243	70
7	14.4231	70
8	14.4214	70
9	14.4202	70
10	14.4200	70
11	14.4212	70
12	14.4263	70
13	14.4390	60
14	14.4890	60
15	14.5561	60
16	14.7349	60
17	15.0097	70
18	15.0799	50
19	15.8712	60

c) Seleção de atributos usando filtro (correlação de Pearson)

Figura 4: Matriz de correlação, onde uma cor mais avermelhada significa uma correlação maior (dados foram alinhados na matriz de forma que a primeira linha e coluna correspondem ao rótulo e as próximas linhas e colunas correspondem aos atributos - mês anterior até 20 meses atrás).

Modelo escolhido pelo filtro (10 atributos com maior correlação):

Atributos selecionados: 0 (bias), 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

 $\lambda:30 \qquad RMSE_{CV}:15.7518 \qquad RMSE_{test}:13.8698$

Figura 5: Saída prevista pelo modelo (azul) em comparação com valores reais dos últimos 5 anos (60 meses) com seleção de atributos usando filtro.

Figura 6: Saída prevista por cada modelo: azul - modelo inicial com 20 atributos, RMSE = 14.2495; amarelo - modelo criado usando wrapper, RMSE = 14.1138; verde - modelo criado usando filtro, RMSE = 13.8698; em comparação com valores reais (vermelho) dos últimos 5 anos (60 meses).

Ambas as estratégias de seleção de atributos em conjunto com a regularização L2 mostraram melhoria em relação ao uso de todos os 20 atributos sem regularização. Curiosamente, embora o erro de validação tenha sido menor na abordagem com seleção de atributos usando wrapper, o erro no conjunto de testes foi menor na abordagem de filtro. Isso pode ser consequência de (?)