In [99]:

Assignment Questions

Group Number: CT1 Project Group-8

Team Members

- 1. Kaushik Sharan Rajamani
- 2. Mohamad Faizal
- 3. Priyadarsshini S

Problem Statement

About the data set (Rainfall Prediction data)

The dataset contains information about rainfall predictions. The aim is to find whether rainfall will occur or not based on the several parameters of the atmospheric conditions and profile.

RainTomorrow: Does tomorrow rainfall will happen or not: Yes(1) or No(0)

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
pd.options.display.max_columns = None
pd.options.display.max_rows = None
import warnings
warnings.filterwarnings('ignore')
from sklearn.impute import KNNImputer
```

1. Data Preparation

In [99]:

1.1 Read the Data

Read the dataset and print the first five observations.

```
In [98]:
```

```
df = pd.read_csv(r"C:\Users\priya\SRM PYTHON\MLSC\MP1\Rainfall_prediction_data.csv")
df.head(5)
```

Out[98]:

	Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir Wi	
0	07- 03- 2012	Wollongong	16.0	20.4	8.2	NaN	NaN	S	
1	06- 01- 2011	PerthAirport	18.5	25.9	16.0	5.4	11.8	WSW	
2	29- 06- 2014	Penrith	8.7	16.5	0.0	NaN	NaN	WNW	
3	16- 12- 2008	Cairns	25.5	33.9	0.2	5.0	7.0	SSE	
4	21-	0-1	^ ^	22.2	^ ^	X1 - X1	X I - X I	• •	•
4	04- 2015								

Let us now see the number of variables and observations in the data.

```
df.shape
Out[99]:
(1040, 23)
```

INFERENCE: The given dataset contains 23 features with over 1040 rows. From the non-null count, we can understand that there are missing values for several features.

1.2 Check the Data Type

Check the data type of each variable. If the data type is not as per the data definition, change the data type.

```
In [101]:
```

```
df.dtypes
```

Out[101]:

Date object object Location float64 MinTemp MaxTemp float64 float64 Rainfall float64 Evaporation float64 Sunshine object WindGustDir WindGustSpeed float64 WindDir9am object WindDir3pm object float64 WindSpeed9am WindSpeed3pm float64 Humidity9am float64 Humidity3pm float64 Pressure9am float64 Pressure3pm float64 float64 Cloud9am Cloud3pm float64 float64 Temp9am Temp3pm float64 RainToday object object RainTomorrow dtype: object

INFERENCE: Out of 23 features, 7 features are of categorical datatype and 16 features are numerical in nature.

Change the data type as per the data definition.

```
In [102]:
```

```
df['Date'].dtype
Out[102]:
```

dtype('0')

INFERENCE: From the above result, we can see that feature 'Date' is in categorical datatype. Lets convert it into datetime format for further analysis.

```
In [103]:

df['Date'].head()

Out[103]:

0     07-03-2012
1     06-01-2011
2     29-06-2014
3     16-12-2008
4     21-04-2015
Name: Date, dtype: object

In [104]:

pd.to_datetime(df['Date']).head(5)

Out[104]:
a     2013 07 03
```

```
Out[104]:

0    2012-07-03
1    2011-06-01
2    2014-06-29
3    2008-12-16
4    2015-04-21
Name: Date, dtype: datetime64[ns]
```

INFERENCE: When we compare results after converting 'Date' into datetime format, we could difference in values of the data. Lets consider the first record in 'Date' feature, '07-03-2012'(7th March 2012). After converting into datetime format, value has changed to 2012-07-03 (3rd July 2012).

Similarly, the 2nd record '06-01-2011' (6th Jan 2011) is converted to 2011-06-01 (1st June 2011). But the 3rd record '29-06-2014' (29th June 2014) has been properly converted into datetime format 2014-06-29 (29th June 2014).

In order to avoid this type of data corruption, lets extract only the month from 'Date' feature and save it in a seoarate column. Later we can convert it into datetime format and use for analysis.

```
In [105]:

df['Month']= df['Date']
```

```
In [106]:
df['Month'].head()
Out[106]:
     07-03-2012
0
1
     06-01-2011
     29-06-2014
2
3
     16-12-2008
4
     21-04-2015
Name: Month, dtype: object
In [107]:
# To extract only the month number
df['Month']=df['Month'].str[3:5]
df['Month'].head()
Out[107]:
     03
     01
1
2
     06
3
     12
4
     04
Name: Month, dtype: object
In [108]:
df['Month']=pd.to_datetime(df['Month'], format='%m').dt.month_name()
df['Month'].head()
Out[108]:
0
        March
1
      January
2
         June
3
     December
4
        April
Name: Month, dtype: object
```

INFERENCE: Since we have used only the month part from 'Date' feature to convert into month name, our data is now more reliable.

```
In [109]:
# Before conversion to numerical datatype
df['RainTomorrow'].value_counts()
Out[109]:
```

No 829 Yes 211

Name: RainTomorrow, dtype: int64

```
In [110]:
for i in ['RainTomorrow']:
    df[i].replace({'Yes': 1,'No': 0},inplace=True)

In [111]:
# After conversion to numerical datatype
df['RainTomorrow'].value_counts()

Out[111]:
0 829
1 211
Name: RainTomorrow, dtype: int64
```

INFERENCE: Feature - 'RainTomorrow'is converted to numerical datatype by replacing values 'Yes' with value 1 and 'No' with value 0.

Recheck the data type after the conversion.

```
In [112]:

df['Date']=pd.to_datetime(df['Date'])
df['Date'].dtype

Out[112]:

dtype('<M8[ns]')

In [113]:

df['Month'].dtype

Out[113]:
dtype('0')

In [114]:

df['RainTomorrow'].dtype

Out[114]:
dtype('int64')</pre>
```

INFERENCE: Feature 'Date' is in datetime format and feature 'Month' is in object datatype as it stores name of the month. We will be using 'Month' feature further in our analysis. And also target variable "RainTomorrow' is in numerical datatype.

1.3 Remove Insignificant Variables, if its applicable.

```
In [115]:

df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1040 entries, 0 to 1039
Data columns (total 24 columns):

#	Column	Non-Null Count	Dtype
0	Date	1040 non-null	datetime64[ns]
1	Location	1040 non-null	object
2	MinTemp	1035 non-null	float64
3	MaxTemp	1035 non-null	float64
4	Rainfall	1029 non-null	float64
5	Evaporation	582 non-null	float64
6	Sunshine	533 non-null	float64
7	WindGustDir	969 non-null	object
8	WindGustSpeed	969 non-null	float64
9	WindDir9am	981 non-null	object
10	WindDir3pm	1014 non-null	object
11	WindSpeed9am	1032 non-null	float64
12	WindSpeed3pm	1023 non-null	float64
13	Humidity9am	1031 non-null	float64
14	Humidity3pm	1016 non-null	float64
15	Pressure9am	929 non-null	float64
16	Pressure3pm	932 non-null	float64
17	Cloud9am	613 non-null	float64
18	Cloud3pm	597 non-null	float64
19	Temp9am	1034 non-null	float64
20	Temp3pm	1022 non-null	float64
21	RainToday	1029 non-null	object
22	RainTomorrow	1040 non-null	int64
23	Month	1040 non-null	object

dtypes: datetime64[ns](1), float64(16), int64(1), object(6)

memory usage: 195.1+ KB

In [116]:

```
fig, ax = plt.subplots(figsize=(15,8))
sns.heatmap(df.corr(),annot = True,linewidths=.5,cmap='RdBu',vmin=-1,vmax=1)
```

Out[116]:

<AxesSubplot:>

In [117]:

```
df.drop(columns=[ 'Date','Location','WindSpeed9am','WindSpeed3pm','WindGustDir'],axis=1,i
```

INFERENCE:

Feature 'Date' can be dropped since we have extracted month and kept it in a separate column 'Month'.

Feature 'WindSpeed9am' and 'WindSpeed3pm' is dropped as they have high correlation between them. Instead of these 2 features, we can use 'WindGustSpeed' for our model.

Feature 'WindGustDir' is dropped as we have two similar other features to determine direction of wind - 'WindSpeed9am' and 'WindSpeed3pm'.

1.4 Distribution of Variables

Distribution of numeric independent variables.

In [118]:

```
num_indep = df.select_dtypes(include=np.number).columns.tolist()
print(num_indep)
print("Number of numeric var:" ,len(num_indep))

['MinTemp', 'MaxTemp', 'Rainfall', 'Evaporation', 'Sunshine', 'WindGustSpe ed', 'Humidity9am', 'Humidity3pm', 'Pressure9am', 'Pressure3pm', 'Cloud9a m', 'Cloud3pm', 'Temp9am', 'RainTomorrow']
Number of numeric var: 15
```

In [119]:

```
# To remove RainTomorrow which is the target/dependent variable
num_indep.pop()
print(num_indep)
print("Number of numeric var:" ,len(num_indep))
```

```
['MinTemp', 'MaxTemp', 'Rainfall', 'Evaporation', 'Sunshine', 'WindGustSpe ed', 'Humidity9am', 'Humidity3pm', 'Pressure9am', 'Pressure3pm', 'Cloud9a m', 'Cloud3pm', 'Temp9am', 'Temp3pm']
Number of numeric var: 14
```

In [121]:

```
plt.figure(figsize= (10,15))
for i in range(0,len(num_indep)):
      plt.subplot(8,2,int(i+1))
      sns.distplot(df[num_indep[i]])
plt.tight_layout()
plt.show()
   0.06
                                                            0.04
0.02
 0.04
0.02
   0.00
                                                               0.00
                              10
                                                    30
                                                                                           20
                              MinTemp
                                                                                         MaxTemp
                                                               0.15
    0.3
  Density
                                                            Density
                                                               0.10
    0.2
                                                               0.05
    0.1
    0.0
                                                               0.00
                  20
                                60
                                       80
                                              100
                                                                                               15
                              Rainfall
                                                                                        Evaporation
                                                               0.04
   0.10
 0.10
0.05
                                                             Density
                                                               0.02
   0.00
                                                               0.00
          -2.5
                      2.5
                                  7.5
                                            12.5
                                                 15.0 17.5
                                                                             20
                                                                                                                  120
                0.0
                            5.0
                                       10.0
                                                                                            60
                                                                                                   80
                                                                                                          100
                                                                                       WindGustSpeed
   0.02
                                                               0.02
                                                             Density
   0.01
                                                               0.01
   0.00
                                                               0.00
             Ó
                    20
                                   60
                                                                          ò
                                                                                 20
                                                                                        40
                                                                                                60
                                                                                                       80
                                                  100
                                                                                                             100
                                                                                                                    120
                           Humidity9am
                                                                                        Humidity3pm
   0.06
                                                            0.04
0.02
0.04
0.02
                                                               0.00
   0.00
                      1000
                             1010
                                    1020
                                           1030
                                                  1040
                                                                          990
                                                                                 1000
                                                                                         1010
                                                                                                 1020
                                                                                                                 1040
         980
                990
                            Pressure9am
                                                                                        Pressure3pm
    0.3
                                                                0.3
  0.2
0.1
                                                              0.2
0.1
    0.0
                                                                0.0
                                                      10
                                                                                                                  10
                             Cloud9am
                                                                                         Cloud3pm
                                                               0.06
   0.06
                                                             0.04
0.02
 0.04
0.02
   0.00
                                                               0.00
                                                    40
                 ò
                                                                   -io
                                                                            ò
                                                                                    10
                         10
                                  20
                                                                                            20
                                                                                                     30
                                                                                                             40
                                                                                                                      50
                              Temp9am
                                                                                          Temp3pm
```

In [121]:

Distribution of categoric independent variable.

```
catg_indep = df.select_dtypes(include=object).columns.tolist()
catg_indep
```

Out[121]:

['WindDir9am', 'WindDir3pm', 'RainToday', 'Month']

In [122]:

```
df_cat=df[catg_indep]
df_cat.head()
```

Out[122]:

	WindDir9am	WindDir3pm	RainToday	Month
0	SSW	SW	Yes	March
1	SSW	WSW	Yes	January
2	WNW	WNW	No	June
3	SSE	SE	No	December
4	NE	W	No	April

In [123]:

```
# Lets drop null values to plot histplot using categorical independent variables

df_cat.dropna(inplace=True)
df_cat.isnull().sum()
```

Out[123]:

WindDir9am 0
WindDir3pm 0
RainToday 0
Month 0
dtype: int64

In [124]:

```
# pip install --user seaborn --upgrade
```

In [125]:

```
import seaborn as sns
for i in df_cat.columns:
    plt.figure(figsize= (12,5))
    y=sns.histplot(x=df_cat[i], hue=df['RainTomorrow'],multiple='dodge',stat='count')
    yes = []
    no = []
    for i,j in zip(y.containers[0], y.containers[1]):
        yes.append(i.get_height())
        no.append(j.get_height())
    y.bar_label(y.containers[0], labels=yes)
    y.bar_label(y.containers[1], labels=no)
    plt.show()
```


Distribution of dependent variable

1.5 Missing Value Treatment

First run a check for the presence of missing values and their percentage for each column. Then choose the right approach to treat them.

In [128]:

```
count=df.isnull().sum()
percent=(count/len(df))*100

df_missingvalues= pd.DataFrame({'Count': count, 'Percentage':percent})
df_missingvalues.sort_values(by='Percentage',ascending=False)
```

Out[128]:

	Count	Percentage
Sunshine	507	48.750000
Evaporation	458	44.038462
Cloud3pm	443	42.596154
Cloud9am	427	41.057692
Pressure9am	111	10.673077
Pressure3pm	108	10.384615
WindGustSpeed	71	6.826923
WindDir9am	59	5.673077
WindDir3pm	26	2.500000
Humidity3pm	24	2.307692
Temp3pm	18	1.730769
Rainfall	11	1.057692
RainToday	11	1.057692
Humidity9am	9	0.865385
Temp9am	6	0.576923
MinTemp	5	0.480769
MaxTemp	5	0.480769
RainTomorrow	0	0.000000
Month	0	0.000000

INFERENCE: For numerical features, lets impute using KNN imputation and for categorical features, lets impute missing values using mode.

In [130]:

```
# Numerical features

num_col = df.select_dtypes(include=np.number).columns.tolist()
num_col.pop() # to remove target variable "Rain Tomorrow"
print(num_col)
print("Number of numeric var:" ,len(num_col))
```

```
['MinTemp', 'MaxTemp', 'Rainfall', 'Evaporation', 'Sunshine', 'WindGustSpe ed', 'Humidity9am', 'Humidity3pm', 'Pressure9am', 'Pressure3pm', 'Cloud9a m', 'Cloud3pm', 'Temp9am', 'Temp3pm']
Number of numeric var: 14
```

In [131]:

```
# Categorical features

catg_col = df.select_dtypes(include='object').columns.tolist()
print(catg_col)
print("Number of numeric var:" ,len(catg_col))
```

```
['WindDir9am', 'WindDir3pm', 'RainToday', 'Month']
Number of numeric var: 4
```

In [132]:

```
# Function call to impute missing values

for i in num_col:
    KNN_imp(i)

for i in catg_col:
    mode_imp(i)
```

```
In [133]:
df.isnull().sum()
Out[133]:
MinTemp
                  0
MaxTemp
                  0
Rainfall
                  0
Evaporation
                  0
Sunshine
WindGustSpeed
                  0
WindDir9am
                  0
WindDir3pm
Humidity9am
                  0
Humidity3pm
Pressure9am
                  0
                  0
Pressure3pm
Cloud9am
                  0
Cloud3pm
                  0
Temp9am
                  0
Temp3pm
RainToday
                  0
RainTomorrow
                  0
                  0
Month
dtype: int64
```

INFERENCE: Now the dataset does not contain any missing values.

1.6 Dummy Encode the Categorical Variables

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1040 entries, 0 to 1039
Data columns (total 19 columns):
#
    Column
                   Non-Null Count Dtype
    ____
                   _____
                                   ____
0
    MinTemp
                   1040 non-null
                                   float64
                                   float64
1
    MaxTemp
                   1040 non-null
2
                                   float64
    Rainfall
                   1040 non-null
3
    Evaporation
                  1040 non-null
                                   float64
4
                                   float64
    Sunshine
                   1040 non-null
    WindGustSpeed 1040 non-null
5
                                   float64
6
    WindDir9am
                    1040 non-null
                                   object
7
    WindDir3pm
                   1040 non-null
                                   object
8
    Humidity9am
                   1040 non-null
                                   float64
                                   float64
9
    Humidity3pm
                   1040 non-null
    Pressure9am
                   1040 non-null
                                   float64
                                   float64
11
    Pressure3pm
                   1040 non-null
    Cloud9am
                                   float64
12
                   1040 non-null
13
    Cloud3pm
                   1040 non-null
                                   float64
14
    Temp9am
                   1040 non-null
                                   float64
15
    Temp3pm
                   1040 non-null
                                   float64
16
    RainToday
                   1040 non-null
                                   object
 17
    RainTomorrow
                    1040 non-null
                                   int64
 18
    Month
                    1040 non-null
                                   object
dtypes: float64(14), int64(1), object(4)
```

07/05/2023, 18:09 memory usage: 154.5+ KB

```
In [135]:
```

```
# Dependent variable/target - 'RainTomorrow'

df_dep = df['RainTomorrow']

df_dep.head(3)
```

Out[135]:

0 1 1 0 2 0

Name: RainTomorrow, dtype: int64

In [136]:

```
# independent variables/predictor - all features except 'RainTomorrow'

df_indep = df.drop('RainTomorrow', axis = 1)

df_indep.head(3)
```

Out[136]:

	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustSpeed	WindDir9am	WindD
0	16.0	20.4	8.2	5.183505	7.606379	63.0	SSW	
1	18.5	25.9	16.0	5.400000	11.800000	39.0	SSW	
2	8.7	16.5	0.0	5.183505	7.606379	56.0	WNW	
4								•

Filter numerical and categorical variables.

In [137]:

```
df_num = df_indep.select_dtypes(include = [np.number])
print(df_num.columns)
print(len(df_num.columns))
df_num.head(5)
```

Out[137]:

	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustSpeed	Humidity9am	Humi
0	16.0	20.4	8.2	5.183505	7.606379	63.0	69.0	
1	18.5	25.9	16.0	5.400000	11.800000	39.0	60.0	
2	8.7	16.5	0.0	5.183505	7.606379	56.0	41.0	
3	25.5	33.9	0.2	5.000000	7.000000	41.0	64.0	
4	3.8	23.0	0.0	5.183505	7.606379	28.0	56.0	
4								•

```
df_cat = df_indep.select_dtypes(include = [np.object])
print(df_cat.columns)
print(len(df_cat.columns))

Index(['WindDir9am', 'WindDir3pm', 'RainToday', 'Month'], dtype='object')
```

The logistic regression method fails in presence of categorical variables. To overcome this we use (n-1) dummy encoding.

Encode the each categorical variable and create (n-1) dummy variables for n categories of the

In [139]:

```
# To perform n-1 dummy encoding for each categorical variable - set drop_first to 'True'
# This will drop the first category of each categorical variable

df_dummy = pd.get_dummies(data=df_cat,drop_first = True)
df_dummy.head(5)
```

Out[139]:

	WindDir9am_ENE	WindDir9am_ESE	WindDir9am_N	WindDir9am_NE	WindDir9am_NNE	Wi
0	0	0	0	0	0	
1	0	0	0	0	0	
2	0	0	0	0	0	
3	0	0	0	0	0	
4	0	0	0	1	0	
4						•

```
In [140]:
```

```
df_dummy.shape
```

Out[140]:

(1040, 42)

INFERENCE: To perform n-1 dummy encoding for each categorical variable - set drop_first to 'True'. This will drop the first category of each categorical variable. After dummy encoding, number of categorical features has increased from 4 to 42 columns.

1.7 Scale the Data

We scale the variables to get all the variables in the same range. With this, we can avoid a problem in which some features come to dominate solely because they tend to have larger values than others.

In [141]:

```
# Min-max scaler

from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
num_scaled = scaler.fit_transform(df_num)
df_num_scaled = pd.DataFrame(num_scaled, columns = df_num.columns)
df_num_scaled.head()
```

Out[141]:

	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustSpeed	Humidity9am	Hum
0	0.614679	0.474273	0.067545	0.189822	0.551187	0.519231	0.670213	
1	0.691131	0.597315	0.131796	0.198413	0.855072	0.288462	0.574468	
2	0.391437	0.387025	0.000000	0.189822	0.551187	0.451923	0.372340	
3	0.905199	0.776286	0.001647	0.182540	0.507246	0.307692	0.617021	
4	0.241590	0.532438	0.000000	0.189822	0.551187	0.182692	0.531915	
4								•

INFERENCE: Scaling is performed only on numerical variables. We have used Min-Max scaler inorder to retain actual values of data and do not want to standardize them (i.e making mean =0 and SD=1). Since the data contains outliers, its better to use Min-Max scaler as they are robust to outliers.

Concatenate scaled numerical and dummy encoded categorical variables.

In [142]:

```
X = pd.concat([df_num_scaled,df_dummy], axis = 1)
X.head()
```

Out[142]:

	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustSpeed	Humidity9am	Hum
0	0.614679	0.474273	0.067545	0.189822	0.551187	0.519231	0.670213	
1	0.691131	0.597315	0.131796	0.198413	0.855072	0.288462	0.574468	
2	0.391437	0.387025	0.000000	0.189822	0.551187	0.451923	0.372340	
3	0.905199	0.776286	0.001647	0.182540	0.507246	0.307692	0.617021	
4	0.241590	0.532438	0.000000	0.189822	0.551187	0.182692	0.531915	
4								•

INFERENCE: After scaling numerical variables using a separate dataframe and performing dummy enoding for categorical variables in a different dataframe, lets merge them into a single input dataframe -'X'.

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1040 entries, 0 to 1039
Data columns (total 56 columns):

Data	Columns (coral		Dtura
#	Column	Non-Null Count	Dtype
	MinTomp	1040 non-null	float64
0	MinTemp		
1	MaxTemp	1040 non-null	float64
2	Rainfall	1040 non-null	float64
3	Evaporation	1040 non-null	float64
4	Sunshine	1040 non-null	float64
5	WindGustSpeed	1040 non-null	float64
6	Humidity9am	1040 non-null	float64
7	Humidity3pm	1040 non-null	float64
8	Pressure9am	1040 non-null	float64
9	Pressure3pm	1040 non-null	float64
10	Cloud9am	1040 non-null	float64
11	Cloud3pm	1040 non-null	float64
12	Temp9am	1040 non-null	float64
13	Temp3pm	1040 non-null	float64
14	WindDir9am ENE	1040 non-null	uint8
15	WindDir9am ESE	1040 non-null	uint8
16	WindDir9am N	1040 non-null	uint8
17	WindDir9am NE	1040 non-null	uint8
18	WindDir9am NNE	1040 non-null	uint8
19	WindDir9am NNW	1040 non-null	uint8
20	WindDir9am NW	1040 non-null	uint8
21	WindDir9am_S	1040 non-null	uint8
22	WindDir9am_SE	1040 non-null	uint8
23	WindDir9am_SSE	1040 non-null	uint8
	_		uint8
24 25	WindDir9am_SSW		
25	WindDir9am_SW	1040 non-null	uint8
26	WindDir9am_W	1040 non-null	uint8
27	WindDir9am_WNW	1040 non-null	uint8
28	WindDir9am_WSW	1040 non-null	uint8
29	WindDir3pm_ENE	1040 non-null	uint8
30	WindDir3pm_ESE	1040 non-null	uint8
31	WindDir3pm_N	1040 non-null	uint8
32	WindDir3pm_NE	1040 non-null	uint8
33	WindDir3pm_NNE	1040 non-null	uint8
34	WindDir3pm_NNW	1040 non-null	uint8
35	WindDir3pm_NW	1040 non-null	uint8
36	WindDir3pm_S	1040 non-null	uint8
37	WindDir3pm_SE	1040 non-null	uint8
38	WindDir3pm_SSE	1040 non-null	uint8
39	WindDir3pm_SSW	1040 non-null	uint8
40	WindDir3pm_SW	1040 non-null	uint8
41	WindDir3pm_W	1040 non-null	uint8
42	WindDir3pm_WNW	1040 non-null	uint8
43	WindDir3pm_WSW	1040 non-null	uint8
44	RainToday_Yes	1040 non-null	uint8
45	Month_August	1040 non-null	uint8
46	Month_December	1040 non-null	uint8
47	Month_February	1040 non-null	uint8
48	Month_January	1040 non-null	uint8
49	Month_July	1040 non-null	uint8
1,0		20.0 11011 11011	G-1100

```
50 Month June
                    1040 non-null
                                    uint8
51 Month March
                    1040 non-null
                                    uint8
52 Month May
                    1040 non-null
                                    uint8
                    1040 non-null
                                    uint8
53 Month_November
54 Month_October
                    1040 non-null
                                    uint8
55 Month_September 1040 non-null
                                    uint8
```

dtypes: float64(14), uint8(42)

memory usage: 156.5 KB

1.8 Train-Test Split

```
In [144]:
```

```
# import functions
import statsmodels
import statsmodels.api as sm
# Since intercept is not considered by default while using the 'Logit' method
# we can add it to the set of independent variables using 'add_constant()'
X = sm.add_constant(X)
# Here X = set of independent variables and df_dep = dependent variable('RainTomorrow')
X_train, X_test, Y_train, Y_test = train_test_split(X, df_dep, random_state=10, test_size
# Print dimension of train set
print('Shape of X_train', X_train.shape)
print('Shape of Y_train', Y_train.shape)
# Print dimension of test set
print('Shape of X_test', X_test.shape)
print('Shape of Y_test', Y_test.shape)
Shape of X_train (728, 57)
Shape of Y_train (728,)
Shape of X_test (312, 57)
Shape of Y_test (312,)
```

2. Logistic Regression (Full Model)

Build a full logistic model on a training dataset.

```
In
```

```
# Build the model on train data (X_train and Y_train)
logreg = sm.Logit(Y_train,X_train).fit()
# Print the summary of the model
logreg.summary()
Optimization terminated successfully.
          Current function value: 0.302582
          Iterations 8
Out[145]:
Logit Regression Results
   Dep. Variable:
                    RainTomorrow No. Observations:
                                                        728
          Model:
                            Logit
                                      Df Residuals:
                                                        671
         Method:
                             MLE
                                         Df Model:
                                                          56
            Date: Sun, 07 May 2023
                                    Pseudo R-squ.:
                                                      0.3868
           Time:
                         18:04:22
                                    Log-Likelihood:
                                                     -220.28
      converged:
                             True
                                           LL-Null:
                                                     -359.25
 Covariance Type:
                        nonrobust
                                      LLR p-value: 3.648e-31
```

INFERENCE:

Pseudo R-squ: 0.3868 - Pseudo R-squared value usually ranges from 0 to 1. Higher values indicate better fit.

Log-Likelihood: -226.89 - It measures the log-likelihood of the data. Higher value indicates better fit.

LL-Null: -359.25 - It is the log-likelihood of the data for a null model, which only includes the intercept.

LLR p-value: 3.648e-31 - LLR p-value (likelihood ratio test) is a statistical test that indicates the probability of observing the LLR statistic or a larger value under the null hypothesis. Lower p-values indicate stronger evidence against the null hypothesis. The LLR p-value less than 0.05, implies that the model is significant

A logistic regression model is set to have better fit when values are higher for LL, lower for LL-Null, and lower for LLR p-value.

Calculate the AIC (Akaike Information Criterion) value.

It is a relative measure of model evaluation. It gives a trade-off between model accuracy and model complexity.

```
In [146]:
print('AIC:', logreg.aic)
```

AIC: 554.5596483458571

INFERENCE: AIC is a measure of the trade-off between the goodness of fit of the model and the complexity of the model. It helps us choose a model that fits the data well without overfitting. This is useful when comparing multiple models fitted to the same data. Model with the lowest AIC value is usually considered to be the best model.

We can use the AIC value to compare different models created on the same dataset.

Interpret the odds for each variable

```
In [147]:

df_odds = pd.DataFrame(np.exp(logreg.params), columns= ['Odds'])
df_odds
```

Out[147]:

	Odds
const	0.000180
MinTemp	2.391608
MaxTemp	0.186897
Rainfall	0.566307
Evaporation	0.923009
Sunshine	0.201043
WindGustSpeed	1470.161649
Humidity9am	3.693517
Humidity3pm	2976.756988
Pressure9am	23765.376172
Pressure3pm	0.000005
Cloud9am	0.355462
Cloud3pm	5.083372
Temp9am	0.008614
Temp3pm	1323.878866
WindDir9am_ENE	1.567208
WindDir9am_ESE	0.473227
WindDir9am_N	2.123001
WindDir9am_NE	1.120816
WindDir9am_NNE	1.820621
WindDir9am_NNW	2.127994
WindDir9am_NW	1.924219
WindDir9am_S	2.372207
WindDir9am_SE	2.244945
WindDir9am_SSE	1.650849
WindDir9am_SSW	1.588141
WindDir9am_SW	1.514760
WindDir9am_W	1.346585
WindDir9am_WNW	2.614136
WindDir9am_WSW	0.616289
WindDir3pm_ENE	1.059003
WindDir3pm_ESE	1.464232
WindDir3pm_N	0.621669
WindDir3pm_NE	1.194824
WindDir3pm_NNE	0.450217
WindDir3pm_NNW	0.767925
WindDir3pm_NW	2.447041

INFERENCE:

Odds value of 'Humidity3pm' = 2976.7569. The odds that it will rain tomorrow increases by a factor of 3354.260 for every unit increase in 'Humidity3pm' while other variables are constant.

Odds value of 'Pressure9am' = 23765.209149. The odds that it will rain tomorrow increases by a factor of 2352.209 for every unit increase in 'Pressure9am' while other variables are constant.

Odds value of 'WindGustSpeed' = 1470.1616. The odds that it will rain tomorrow increases by a factor of 2023.649 for every unit increase in 'WindGustSpeed' while other variables are constant.

Odds value of 'Temp3pm' = 1323.8788 The odds that it will rain tomorrow increases by a factor of 220.567 for every unit increase in 'Temp3pm' while other variables are constant.

Odds constant/intercept = 0.0001797. The odds that it will Rain tomorrow by considering all other variables as zero value is 0.000118.

Do predictions on the test set.

```
In [148]:
```

```
# let 'y_pred_probability' be the predicted values of y
Y_pred_probability = logreg.predict(X_test)

# print the y_pred_probability
Y_pred_probability.head()
```

Out[148]:

```
195 0.027412
761 0.021263
109 0.201190
999 0.039386
853 0.022746
dtype: float64
```

INFERENCE: The target variable can take only two values either 0 or 1. The cut-off value to predict between 0 & 1 is 0.5. i.e. if 'y_pred_probability' is less than 0.5, consider it as 'value 0' else consider it as 'value 1'.

```
In [149]:
```

[0, 0, 0, 0, 0]

```
Y_pred = [ 0 if x < 0.5 else 1 for x in Y_pred_probability]
Y_pred[0:5]
Out[149]:</pre>
```

INFERENCE: Since the head of Y_pred_probability has values less than zero (i.e., 0.02,0.02,0.20..), Y_pred has considered value 0 for the above 5 records in Y pred probability.

Plot the confusion matrix.

DEFINITION: A confusion matrix is a tool for summarizing the performance of a classification algorithm. A confusion matrix will give us a clear picture of classification model performance and the types of errors produced by the model.

Four types of outcomes are possible while evaluating a classification model performance.

True Positives (TP) – True Positives occur when we predict an observation belongs to a certain class and the observation actually belongs to that class.

True Negatives (TN) – True Negatives occur when we predict an observation does not belong to a certain class and the observation actually does not belong to that class.

False Positives (FP) – False Positives occur when we predict an observation belongs to a certain class but the observation actually does not belong to that class. This type of error is called Type I error.

False Negatives (FN) – False Negatives occur when we predict an observation does not belong to a certain class but the observation actually belongs to that class. This is a very serious error and it is called Type II error.

In [150]:

```
from sklearn.metrics import confusion_matrix

# Confusion matrix is plotted btw the actual and predicted target values
cm = confusion_matrix(Y_test, Y_pred)

confusion_matrix = pd.DataFrame(data = cm, columns =['Predicted:0','Predicted:1'], index
sns.heatmap(confusion_matrix, annot = True, fmt = 'd',linewidths = 0.1, annot_kws = {'siz
plt.show()
```



```
# True Positives, TP = Actual '1' values predicted correctly as '1'.
TP = cm[1,1]
print('TP=',TP)

# True Negatives, TN = Actual '0' values predicted correctly as '0'.
TN = cm[0,0]
print('TN=',TN)

# False Positives FP = Actual '0' values that are falsely predicted as '1' (Type 1 error FP = cm[0,1]
print('FP=',FP)

# False Negatives FN = Actual '1' values that are falsely predicted as '0' (Type 2 error FN = cm[1,0]
print('FN=',FN)
```

TP= 31

TN= 218

FP= 25

FN= 38

INFERENCE:

True Positives (TP=31) – Actual '1' values predicted correctly as '1'.

True Negatives (TN=218) – Actual '0' values predicted correctly as '0'.

False Positives (FP=25) – Actual '0' values that are falsely predicted as '1' (Type 1 error).

False Negatives (FN=38) – Actual '1' values that are falsely predicted as '0' (Type 2 error).

Compute various performance metrics.

Precision: It is defined as the ratio of true positives to the total positive predictions.

In [152]:

```
Precision = TP / (TP+FP)

local Resease Production | Prod
```

```
07/05/2023, 18:09
Out[152]:
```

0.5535714285714286

```
In [153]:
```

```
Precision_score = metrics.precision_score(Y_test, Y_pred)
Precision_score
```

Out[153]:

0.5535714285714286

Recall: It is the ratio of true positives to the total actual positive observations. It is also known as, Sensitivity or True Positive Rate.

```
In [154]:
```

```
Recall = TP / (TP+FN)
Recall
```

Out[154]:

0.4492753623188406

In [155]:

```
Recall_score = metrics.recall_score(Y_test, Y_pred)
Recall_score
```

Out[155]:

0.4492753623188406

Specificity: It is the ratio of true negatives to the total actual negative observations.

```
In [156]:
```

```
Specificity = TN / (TN+FP)
Specificity
```

Out[156]:

0.897119341563786

f1-score: It is defined as the harmonic mean of precision and recall.

```
In [157]:
```

```
F1_score = (2*Precision*Recall)/(Precision+Recall)
F1_score
```

Out[157]:

0.496

In [158]:

```
F1score = metrics.f1_score(Y_test, Y_pred)
F1score
```

Out[158]:

0.496

Accuracy: It is the ratio of correct predictions (i.e. TN+TP) to the total observations. According to the confusion matrix, it is the ratio of the sum of diagonal elements to the sum of all the in the matrix. It is not a very good measure if the dataset is imbalanced.

In [159]:

```
Accuracy = (TN+TP)/(TN+FP+FN+TP)
Accuracy
```

Out[159]:

0.7980769230769231

In [160]:

```
Accuracy_score = metrics.accuracy_score(Y_test, Y_pred)
Accuracy_score
```

Out[160]:

0.7980769230769231

INFERENCE:

Precision = 0.55 Recall = 0.449 Specificity= 0.897 F1_score = 0.496 Accuracy = 0.7980

INFERENCE: For a good classification model all the above performance metrics should be of higher values. This shows that model is not fit properly and it can be caused due to data imbalance issue.

In [161]:

```
from sklearn.metrics import classification_report
acc_table = classification_report(Y_test, Y_pred)
print(acc_table)
```

	precision	recall	f1-score	support
0	0.85 0.55	0.90 0.45	0.87 0.50	243 69
_	0.55	0.45	0.50	0,5
accuracy			0.80	312
macro avg	0.70	0.67	0.68	312
weighted avg	0.79	0.80	0.79	312

INFERENCE: From the above output, we can see that recall of the positive class ('Sensitivity') is 0.45 and the recall of the negative class ('Specificity') is 0.90.

We can see that the model with cut-off = 0.5 is not that much accurate due to imbalanced data.

INFERENCE: 'Support' is the number of observations in the corresponding class. The 'Macro average' in the output is obtained by averaging the unweighted mean per label and the 'Weighted average' is given by averaging the support-weighted mean per label.

Kappa score: It is a measure of inter-rater reliability. For logistic regression, the actual and predicted values of the target variable are the raters.

In [162]:

```
from sklearn.metrics import cohen_kappa_score
kappa = cohen_kappa_score(Y_test, Y_pred)
print('kappa value:',kappa)
```

kappa value: 0.37145049884881043

Interpretation: Write the inference based on the kappa score value and this model falls under which agreeemnet.

INFERENCE: Kappa score, also known as Cohen's kappa coefficient, is used for inter-rater agreement for categorical items. It is often used to evaluate the degree of agreement between two or more raters when classifying items into categories. Kappa score ranges from -1 to 1.

Kappa < 0: Agreement is worse than chance.

Kappa between 0 and 0.20: Slight agreement.

Kappa between 0.21 and 0.40: Fair agreement.

Kappa between 0.41 and 0.60: Moderate agreement.

Kappa between 0.61 and 0.80: Substantial agreement.

Kappa between 0.81 and 1.00: Almost perfect agreement.

INFERENCE: Kappa score for the full model (with cut-off probability 0.5) is 0.3714. We can say that there is Fair agreement between the actual and predicted values.

Plot the ROC curve.

ROC curve is plotted with the true positive rate (tpr) on the y-axis and false positive rate (fpr) on the x-axis. The area under this curve is used as a measure of separability of the model.

In [163]:

```
from sklearn.metrics import roc curve
FPR, TPR, thresholds = roc_curve(Y_test, Y_pred_probability)
plt.plot(FPR, TPR)
# set limits for x and y axes
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.0])
# plot the straight line showing worst prediction for the model
plt.plot([0, 1], [0, 1], 'r--')
# add plot and axes labels
# set text size using 'fontsize'
plt.title('ROC curve for Rain Tomorrow', fontsize = 15)
plt.xlabel('FPR (1-Specificity)', fontsize = 15)
plt.ylabel('TPR (Sensitivity)', fontsize = 15)
# add the AUC score to the plot
 'x' and 'y' gives position of the text
# 's' is the text
# use round() to round-off the AUC score upto 4 digits
plt.text(x = 0.02, y = 0.9, s = ('AUC Score:', round(metrics.roc_auc_score(Y_test, Y_pred
# plot the grid
plt.grid(True)
```


Interpretation: Provide inference based on the obtained ROC curve and AUC score.

INFERENCE: AUC (Area Under the ROC Curve) is a metric to evaluate the performance of a binary classification model. The ROC (Receiver Operating Characteristic) curve is a plot of the true positive rate (TPR) against the false positive rate (FPR). AUC is the area under the ROC curve, which ranges between 0 and 1, where: An AUC score of 0.5 indicates a random classifier that

performs no better than chance. An AUC score between 0.5 and 1 indicates a classifier that is better than chance. In general, a higher AUC score indicates better classification performance.

If the dataset is imbalanced, i.e., the number of samples in one class is larger than other, then a high AUC score may be obtained even for a classifier that performs poorly on the minority class. In such cases, it is important to look at other metrics such as precision, recall, and F1-score to get a better understanding of the classifier's performance.

The AUC score for full model is 0.8449 and its a good performance score. Since the data is imbalanced, there could be a possibility that it correctly classifies positive cases, even if many negative cases are misclassified. Its better to look into other performance metrics value to evaluate the

Since all performance metrics state that model performance is poor, lets us balance the data through SMOTE and again build logistic regression model.

BALANCING DATA USING SMOTE -Synthetic Minority Oversampling Technique.

```
4
In [164]:
# Number of values in 'RainTomorrow' for each class before SMOTE
df dep.value counts()
Out[164]:
     829
     211
1
Name: RainTomorrow, dtype: int64
In [165]:
from imblearn.over sampling import SMOTE
smote = SMOTE(sampling strategy='minority')
X sm, Y sm = smote.fit resample(X, df dep)
# Number of values in 'RainTomorrow' for each class after SMOTE
Y_sm.value_counts()
Out[165]:
     829
     829
```

Name: RainTomorrow, dtype: int64

In [166]:

```
X_smtrain, X_smtest, Y_smtrain, Y_smtest = train_test_split(X_sm, Y_sm, test_size=0.3, re
print('Shape of X_train', X_smtrain.shape)
print('Shape of Y_train', Y_smtrain.shape)
# Print dimension of test set
print('Shape of X_smtest', X_smtest.shape)
print('Shape of Y smtest', Y smtest.shape)
Shape of X_train (1160, 57)
Shape of Y_train (1160,)
Shape of X_smtest (498, 57)
Shape of Y_smtest (498,)
In [167]:
# Build the model on train data (X_train and Y_train)
sm_logreg = sm.Logit(Y_smtrain,X_smtrain).fit()
# Print the summary of the model
sm_logreg.summary()
Optimization terminated successfully.
         Current function value: 0.252950
         Iterations 8
Out[167]:
Logit Regression Results
   Dep. Variable:
                   RainTomorrow No. Observations:
                                                     1160
         Model:
                                    Df Residuals:
                                                     1103
                           Logit
        Method:
                           MLE
                                       Df Model:
                                                       56
           Date: Sun, 07 May 2023
                                  Pseudo R-squ.:
                                                    0.6350
                        18:04:25
                                  Log-Likelihood:
                                                   -293.42
          Time:
     converged:
                           True
                                        LL-Null:
                                                   -803.91
Covariance Type:
                       nonrobust
                                    LLR p-value: 2.509e-177
```

INFERENCE:

Pseudo R-squ: 0.6277 - Pseudo R-squared value usually ranges from 0 to 1. Higher values indicate better fit. Value has improved from 0.3868 to 0.6277 for balanced data.

Log-Likelihood: -299.99 - It measures the log-likelihood of the data. Higher value indicates better fit. Value has improved from -226.89 to -299.99 for balanced data.

LL-Null: -803.91 - It is the log-likelihood of the data for a null model, which only includes the intercept. Value has further reduced from -359.25 to -803.91 for

balanced data.

LLR p-value: 6.641e-175 - LLR p-value (likelihood ratio test) is a statistical test that indicates the probability of observing the LLR statistic or a larger value under the null hypothesis. Lower p-values indicate stronger evidence against the null hypothesis. The LLR p-value less than 0.05, implies that the model is significant.

```
In [168]:
```

```
print('AIC:', sm_logreg.aic)
```

AIC: 700.8431732353822

In [169]

```
sm_df_odds = pd.DataFrame(np.exp(sm_logreg.params), columns= ['Odds'])
sm_df_odds
```

Out[169]:

	Odds
const	3.286865
MinTemp	3.863197
MaxTemp	0.003292
Rainfall	0.883990
Evaporation	0.972654
Sunshine	0.111382
WindGustSpeed	4282.861179
Humidity9am	0.644102
Humidity3pm	40809.134559
Pressure9am	50.638373
Pressure3pm	0.000071
Cloud9am	0.496597
Cloud3pm	3.844736
Temp9am	0.000420
Temp3pm	73052.372720
WindDir9am_ENE	0.099860
WindDir9am_ESE	0.048454
WindDir9am_N	0.103578
WindDir9am_NE	0.119612
WindDir9am_NNE	0.135251
WindDir9am_NNW	0.070698
WindDir9am_NW	0.107802
WindDir9am_S	0.326052
WindDir9am_SE	0.174577

7/05/2023, 18:09	
WindDir9am_SSE	0.144665
WindDir9am_SSW	0.112938
WindDir9am_SW	0.084195
WindDir9am_W	0.059933
WindDir9am_WNW	0.140676
WindDir9am_WSW	0.016058
WindDir3pm_ENE	0.089913
WindDir3pm_ESE	0.042105
WindDir3pm_N	0.074502
WindDir3pm_NE	0.065001
WindDir3pm_NNE	0.018913
WindDir3pm_NNW	0.061746
WindDir3pm_NW	0.105192
	Odds
WindDir3pm_S	0.111313
WindDir3pm_SE	0.059194
WindDir3pm_SSE	0.033517
WindDir3pm_SSW	0.130360
WindDir3pm_SW	0.036962
WindDir3pm_W	0.043519
WindDir3pm_WNW	0.024668
WindDir3pm_WSW	0.048548
RainToday_Yes	0.888265
Month_August	0.480208
Month_December	0.123317
Month_February	0.084112
Month_January	0.078962
Month_July	0.168490
Month_June	0.094946
Month_March	0.049564
Month_May	0.026322
Month_November	0.121446
Month_October	0.073820
Month September In [170]:	0.153072
E 2	

```
Y_smpred_prob = sm_logreg.predict(X_smtest)
# print the y_pred_probability
Y_smpred_prob.head()
```

```
07/05/2023, 18:09
Out[170]:
```

```
486 0.341469
1442 0.699630
1181 0.983067
123 0.937996
36 0.011933
dtype: float64
```

In [171]:

```
Y_smpred = [ 0 if x < 0.5 else 1 for x in Y_smpred_prob]
Y_smpred[0:5]</pre>
```

Out[171]:

```
[0, 1, 1, 1, 0]
In [172]:
```

```
from sklearn.metrics import confusion_matrix

# Confusion matrix is plotted btw the actual and predicted target values
cm_sm = confusion_matrix(Y_smtest, Y_smpred)

confusion_matrix = pd.DataFrame(data = cm_sm, columns =['Predicted:0','Predicted:1'], incompation_matrix, annot = True, fmt = 'd',linewidths = 0.1, annot_kws = {'size plt.show()
```


In [173]:

```
# True Positives, TP = Actual '1' values predicted correctly as '1'.
TP = cm_sm[1,1]
print('TP=',TP)

# True Negatives, TN = Actual '0' values predicted correctly as '0'.
TN = cm_sm[0,0]
print('TN=',TN)

# False Positives FP = Actual '0' values that are falsely predicted as '1' (Type 1 error FP = cm_sm[0,1]
print('FP=',FP)

# False Negatives FN = Actual '1' values that are falsely predicted as '0' (Type 2 error FN = cm_sm[1,0]
print('FN=',FN)
```

```
07/05/2023, 18:09
TP= 218
TN= 204
FP= 36
```

FN= 40

INFERENCE:

True Positives (TP=216) – Actual '1' values predicted correctly as '1'.

True Negatives (TN=204) - Actual '0' values predicted correctly as '0'.

False Positives (FP=36) – Actual '0' values that are falsely predicted as '1' (Type 1 error).

False Negatives (FN=42) – Actual '1' values that are falsely predicted as '0' (Type 2 error).

In [174]:

```
print('Precision_score = ', metrics.precision_score(Y_smtest, Y_smpred))
print('Recall_score = ', metrics.recall_score(Y_smtest, Y_smpred))
print('F1score = ', metrics.f1_score(Y_smtest, Y_smpred))
print('Accuracy_score = ', metrics.accuracy_score(Y_smtest, Y_smpred))
```

```
Precision_score = 0.8582677165354331

Recall_score = 0.8449612403100775

F1score = 0.8515625

Accuracy_score = 0.8473895582329317
```

In [175]:

```
Specificity = TN / (TN+FP)
print('Specificity= ',Specificity)
```

Specificity= 0.85

INFERENCE:

Precision = 0.857 Recall = 0.837 Specificity= 0.85 F1_score = 0.847 Accuracy = 0.8433

INFERENCE: From the above values we can conclude that the performance evaluation metrics are good and the classification model is fit properly.

```
from sklearn.metrics import classification_report
acc_table_sm = classification_report(Y_smtest, Y_smpred)
print(acc_table_sm)
```

	precision	recall	f1-score	support
0	0.84	0.85	0.84	240
1	0.86	0.84	0.85	258
accupacy			0.85	498
accuracy macro avg	0.85	0.85	0.85	498
weighted avg	0.85	0.85	0.85	498

INFERENCE: For a balanced model, we can infer from the above output that the recall of the positive class ('Sensitivity') is 0.84 and the recall of the negative class ('Specificity') is 0.85. The precision value for positive class is 0.86 and negative class is 0.84 which is relatively close to each other.

We can see that the model with cut-off = 0.5 is 84% accurate.

INFERENCE: 'Support' is the number of observations in the corresponding class. The 'Macro average' in the output is obtained by averaging the unweighted mean per label and the 'Weighted average' is given by averaging the support-weighted mean per label.

In [177]:

```
from sklearn.metrics import cohen_kappa_score
sm_kappa = cohen_kappa_score(Y_smtest, Y_smpred)
print('kappa value:',sm_kappa)
```

kappa value: 0.694557427852024

```
from sklearn.metrics import roc_curve
FPR_s, TPR_s, thresholds_s = roc_curve(Y_smtest, Y_smpred_prob)
plt.plot(FPR_s, TPR_s)
# set limits for x and y axes
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.0])
# plot the straight line showing worst prediction for the model
plt.plot([0, 1], [0, 1], 'r--')
# add plot and axes labels
# set text size using 'fontsize'
plt.title('ROC curve for Rain Tomorrow', fontsize = 15)
plt.xlabel('FPR (1-Specificity)', fontsize = 15)
plt.ylabel('TPR (Sensitivity)', fontsize = 15)
# add the AUC score to the plot
# 'x' and 'y' gives position of the text
# 's' is the text
# use round() to round-off the AUC score upto 4 digits
plt.text(x = 0.02, y = 0.9, s = ('AUC Score:', round(metrics.roc_auc_score(Y_smtest, Y_sm
# plot the grid
plt.grid(True)
```


INFERENCE: AUC (Area Under the ROC Curve) is a metric to evaluate the performance of a binary classification model.

The AUC score for a classification model created using balanced data is 0.9243 and its a very good performance score.

Identify the Best Cut-off value using Youden's Index

In [179]:

Out[179]:

	TPR_s	FPR_s	Threshold_s	Difference
0	0.844961	0.125000	0.535761	0.719961
1	0.825581	0.116667	0.579426	0.708915
2	0.829457	0.120833	0.569925	0.708624
3	0.802326	0.095833	0.651314	0.706492
4	0.810078	0.104167	0.623133	0.705911

In [186]:

```
Y_smpred_youden = [ 0 if x < 0.53 else 1 for x in Y_smpred_prob]
Y_smpred_youden[0:5]</pre>
```

Out[186]:

```
[0, 1, 1, 1, 0]
```

INFERENCE: Youden's index, also known as Youden's J statistic or simply J statistic, is a measure of the overall performance of a binary classifier. It is defined as the difference between the true positive rate (sensitivity) and the false positive rate (1-specificity), and it ranges from 0 to 1. The formula for Youden's index is: J = sensitivity + specificity - 1

INFERENCE: Sensitivity is the proportion of true positive results (TP) out of all actual positives (TP + FN). Specificity is the proportion of true negative results (TN) out of all actual negatives (TN + FP). The interpretation of Youden's index is that it represents the ability of a classifier to correctly identify both positive and negative samples. A value of 0 indicates that the classifier performs no better than chance, while a value of 1 indicates perfect classification.

The threshold value for maximum difference(0.719961) is 0.535761 and is fairly a good score.

```
from sklearn.metrics import confusion_matrix
sm_cm_you = confusion_matrix(Y_smtest, Y_smpred_youden)
conf_matrix_you = pd.DataFrame(data = sm_cm_you,columns = ['Actual:0','Actual:1'], index
sns.heatmap(conf_matrix_you, annot = True, linewidths = 0.1, annot_kws = {'size':10})
plt.show()
```


In [188]:

```
# True Positives, TP = Actual '1' values predicted correctly as '1'.
TP = sm_cm_you[1,1]
print('TP=',TP)

# True Negatives, TN = Actual '0' values predicted correctly as '0'.
TN = sm_cm_you[0,0]
print('TN=',TN)

# False Positives FP = Actual '0' values that are falsely predicted as '1' (Type 1 error FP = sm_cm_you[0,1]
print('FP=',FP)

# False Negatives FN = Actual '1' values that are falsely predicted as '0' (Type 2 error FN = sm_cm_you[1,0]
print('FN=',FN)
TP= 218
TN= 209
```

INFERENCE:

FP= 31 FN= 40

True Positives (TP=218) - Actual '1' values predicted correctly as '1'.

True Negatives (TN=209) – Actual '0' values predicted correctly as '0'.

False Positives (FP=31) – Actual '0' values that are falsely predicted as '1' (Type 1 error). This value has reduced compared to previous confusion matrix.

False Negatives (FN=40) – Actual '1' values that are falsely predicted as '0' (Type 2 error).

In [189]:

```
sm_acc_table_youden = classification_report(Y_smtest, Y_smpred_youden)
print(sm_acc_table_youden)
```

	precision	recall	f1-score	support
0	0.84	0.87	0.85	240
1	0.88	0.84	0.86	258
accuracy			0.86	498
macro avg	0.86	0.86	0.86	498
weighted avg	0.86	0.86	0.86	498

INFERENCE: For a balanced model with youden's cut off value, we can infer from the above output that the values have improved. The recall of the positive class ('Sensitivity') is 0.84 and the recall of the negative class ('Specificity') is 0.87. The precision value for positive class is 0.88 and negative class is 0.84 which is relatively close to each other.

We can see that the model with youden's cut-off value 0.53 is 86% accurate.

INFERENCE: 'Support' is the number of observations in the corresponding class. The 'Macro average' in the output is obtained by averaging the unweighted mean per label and the 'Weighted average' is given by averaging

In [190]:

```
kappa = cohen_kappa_score(Y_smtest, Y_smpred_youden)
print('kappa value:',kappa)
```

kappa value: 0.714859437751004

INFERENCE: Kappa score, also known as Cohen's kappa coefficient, is used for inter-rater agreement for categorical items. Kappa score ranges from -1 to 1.

INFERENCE: Kappa score for the balanced model (with cut-off probability 0.53) is 0.7148 which is almost 0.70. We can say that there is Substantial agreement between the actual and predicted values.

```
FPR s, TPR s, thresholds s = roc curve(Y smtest, Y smpred youden)
plt.plot(FPR_s, TPR_s)
# set limits for x and y axes
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.0])
# plot the straight line showing worst prediction for the model
plt.plot([0, 1], [0, 1], 'r--')
# add plot and axes labels
# set text size using 'fontsize'
plt.title('ROC curve for Rain Tomorrow', fontsize = 15)
plt.xlabel('FPR (1-Specificity)', fontsize = 15)
plt.ylabel('TPR (Sensitivity)', fontsize = 15)
# add the AUC score to the plot
# 'x' and 'y' gives position of the text
# 's' is the text
# use round() to round-off the AUC score upto 4 digits
plt.text(x = 0.02, y = 0.9, s = ('AUC Score:', round(metrics.roc_auc_score(Y_smtest, Y_sm'))
# plot the grid
plt.grid(True)
```


INFERENCE: AUC (Area Under the ROC Curve) is a metric to evaluate the performance of a binary classification model.

The AUC score for creating model using balanced data and after optimizing it with youden's index is 0.8579 and its a very good performance score.