Kapitola 1

(draft) Rezoluce v predikátové logice

[TODO]

V této kapitole si ukážeme, jak lze adaptovat rezoluční metodu, kterou jsme představili v Kapitole ??

1.1 Úvod

[TODO]

Rezoluční metoda v PL - úvod

- Zamítací procedura cílem je ukázat, že daná formule (či teorie)
 je nesplnitelná.
- Předpokládá otevřené formule v CNF (v množinové reprezentaci).

Literál je (tentokrát) atomická formule nebo její negace.

Klauzule je konečná množina literálů, □ značí prázdnou klauzuli.

Formule (v množinové reprezentaci) je množina (i nekonečná) klauzulí.

Poznámka Každou formuli (teorii) umíme převést na ekvisplnitelnou otevřenou formuli (teorii) v CNF, tj. na formuli v množinové reprezentaci.

- Rezoluční pravidlo je obecnější umožňuje rezolvovat přes literály, které jsou unifikovatelné.
- Rezoluce v PL je založená na rezoluci ve VL a unifikaci.

Lokální význam proměnných

Proměnné v rámci klauzule můžeme přejmenovat.

Nechť φ je (vstupní) otevřená formule v CNF.

- Formule φ je splnitelná, právě když její generální uzávěr φ' je splnitelný.
- Pro každé formule ψ , χ a proměnnou x $\models (\forall x)(\psi \wedge \chi) \leftrightarrow (\forall x)\psi \wedge (\forall x)\chi$ (i když x je volná v ψ a χ zároveň).
- Každou klauzuli ve φ lze tedy nahradit jejím generálním uzávěrem.
- Uzávěry klauzulí lze variovat (přejmenovat proměnné).

Např. variovaním druhé klauzule v (1) získáme ekvisplnitelnou formuli (2).

- (1) $\{\{P(x), Q(x,y)\}, \{\neg P(x), \neg Q(y,x)\}\}$
- (2) $\{\{P(x), Q(x,y)\}, \{\neg P(v), \neg Q(u,v)\}\}$

1.2 Skolemizace

[TODO]

1.2.1 Ekvisplnitelnost

[TODO]

Ekvisplnitelnost

Ukážeme, že problém splnitelnosti lze redukovat na otevřené teorie.

- Teorie T, T' jsou $ekvisplniteln\acute{e}$, jestliže T má model $\Leftrightarrow T'$ má model.
- Formule φ je v prenexním (normálním) tvaru (PNF), má-li tvar $(Q_1x_1)\dots(Q_nx_n)\varphi',$

kde Q_i značí \forall nebo \exists , proměnné x_1, \ldots, x_n jsou navzájem různé a φ' je otevřená formule, zvaná *otevřené jádro*. $(Q_1x_1)\ldots(Q_nx_n)$ je tzv. *prefix*.

• Speciálně, jsou-li všechny kvantifikátory \forall , je φ univerzální formule.

K teorii T nalezneme ekvisplnitelnou otevřenou teorii následujícím postupem.

- (1) Axiomy teorie T nahradíme za ekvivalentní formule v prenexním tvaru.
- (2) Pomocí nových funkčních symbolů je převedeme na univerzální formule, tzv. Skolemovy varianty, čímž dostaneme ekvisplnitelnou teorii.
- (3) Jejich otevřená jádra budou tvořit hledanou teorii.

1.2.2 Prenexní normální forma

[TODO]

Vytýkání kvantifikátorů

Nechť Q značí kvantifikátor \forall nebo \exists a \overline{Q} značí opačný kvantifikátor.

Pro každé formule $\varphi,\,\psi$ takové, že x není volná ve formuli $\psi,$

Uvedené ekvivalence lze ověřit sémanticky nebo dokázat tablo metodou (*přes generální uzávěr, není-li to sentence*).

Poznámka Předpoklad, že x není volná ve formuli ψ je v každé ekvivalenci (kromě té první) nutný pro nějaký kvantifikátor Q. Např.

$$\not\models \ ((\exists x)P(x) \land P(x)) \ \leftrightarrow \ (\exists x)(P(x) \land P(x))$$

Převod na prenexní tvar

Tvrzení Nechť φ' je formule vzniklá z formule φ nahrazením některých výskytů podformule ψ za formuli ψ' . Jestliže $T \models \psi \leftrightarrow \psi'$, pak $T \models \varphi \leftrightarrow \varphi'$. Důkaz Snadno indukcí dle struktury formule φ . \square

Tvrzení Ke každé formuli φ existuje ekvivalentní formule φ' v prenexním normálním tvaru, tj. $\models \varphi \leftrightarrow \varphi'$.

 $D\mathring{u}kaz$ Indukcí dle struktury φ pomocí vytýkání kvantifikátorů, náhradou podformulí za jejich varianty a využitím předchozího tvrzení o ekvivalenci. $Nap\check{r}$. $((\forall z)P(x,z) \wedge P(y,z)) \rightarrow \neg(\exists x)P(x,y)$

$$((\forall u)P(x,u) \land P(y,z)) \rightarrow (\forall x)\neg P(x,y)$$

$$(\forall u)(P(x,u) \land P(y,z)) \rightarrow (\forall v)\neg P(v,y)$$

$$(\exists u)((P(x,u) \land P(y,z)) \rightarrow (\forall v)\neg P(v,y))$$

$$(\exists u)(\forall v)((P(x,u) \land P(y,z)) \rightarrow \neg P(v,y))$$

1.2.3 Skolemova varianta

[TODO]

Nechť φ je sentence jazyka L v prenexním normálním tvaru, y_1, \ldots, y_n jsou existenčně kvantifikované proměnné ve φ (v tomto pořadí) a pro každé $i \leq n$ nechť x_1, \ldots, x_{n_i} jsou univerzálně kvantifikované proměnné před y_i . Označme L' rozšíření L o nové n_i -ární funkční symboly f_i pro každé $i \leq n$.

Nechť φ_S je formule jazyka L', jež vznikne z formule φ odstraněním $(\exists y_i)$ z jejího prefixu a nahrazením každého výskytu proměnné y_i za term $f_i(x_1, \ldots, x_n)$. Pak formule φ_S se nazývá *Skolemova varianta* formule φ .

Např. pro formuli φ

$$(\exists y_1)(\forall x_1)(\forall x_2)(\exists y_2)(\forall x_3)R(y_1, x_1, x_2, y_2, x_3)$$

je následují formule φ_S její Skolemovou variantou

$$(\forall x_1)(\forall x_2)(\forall x_3)R(f_1,x_1,x_2,f_2(x_1,x_2),x_3),$$

 $kde\ f_1\ je\ nový\ konstantní\ symbol\ a\ f_2\ je\ nový\ binární\ funkční\ symbol.$

Vlastnosti Skolemovy varianty

Lemma Nechť φ je sentence $(\forall x_1) \dots (\forall x_n)(\exists y) \psi$ jazyka L a φ' je sentence $(\forall x_1) \dots (\forall x_n) \psi(y/f(x_1, \dots, x_n))$, kde f je nový funkční symbol. Pak

- (1) redukt A každého modelu A' formule φ' na jazyk L je modelem φ ,
- (2) každý model \mathcal{A} formule φ lze expandovat na model \mathcal{A}' formule φ' .

Poznámka Na rozdíl od extenze o definici funkčního symbolu, expanze v tvrzení (2) tentokrát nemusí být jednoznačná.

 $D\mathring{u}kaz$ (1) Nechť $\mathcal{A}' \models \varphi'$ a \mathcal{A} je redukt \mathcal{A}' na jazyk L. Jelikož pro každé ohodnocení e je $\mathcal{A} \models \psi[e(y/a)]$, kde $a = (f(x_1, \ldots, x_n))^{A'}[e]$, platí $\mathcal{A} \models \varphi$. (2) Nechť $\mathcal{A} \models \varphi$. Pak existuje funkce $f^A \colon A^n \to A$ taková, že pro každé ohodnocení e platí $\mathcal{A} \models \psi[e(y/a)]$, kde $a = f^A(e(x_1), \ldots, e(x_n))$, a tedy expanze \mathcal{A}' struktury \mathcal{A} o funkci f^A je modelem φ' . \square

Důsledek Je-li φ' Skolemova varianta formule φ , obě tvrzení (1) a (2) pro φ , φ' rovněž platí. Tedy φ , φ' jsou ekvisplnitelné.

1.2.4 Skolemova věta

[TODO]

Skolemova věta

Věta Každá teorie T má otevřenou konzervativní extenzi T^* .

 $D\mathring{u}kaz$ Lze předpokládat, že T je v uzavřeném tvaru. Nechť L je její jazyk.

- Nahrazením každého axiomu teorie T za ekvivalentní formuli v prenexním tvaru získáme ekvivalentní teorii T°.
- Nahrazením každého axiomu teorie T° za jeho Skolemovu variantu získáme teorii T' rozšířeného jazyka L'.
- Jelikož je redukt každého modelu teorie T' na jazyk L modelem teorie T, je T' extenze T.
- Jelikož i každý model teorie T lze expandovat na model teorie T', je to extenze konzervativní.
- Jelikož každý axiom teorie T' je univerzální sentence, jejich nahrazením za otevřená jádra získáme otevřenou teorii T^* ekvivalentní sT'. \square

Důsledek Ke každé teorii existuje ekvisplnitelná otevřená teorie.

1.3 Grounding

[TODO]

Redukce nesplnitelnosti na úroveň VL

Je-li otevřená teorie nesplnitelná, lze to "doložit na konkrétních prvcích".

Např. teorie

$$T = \{ P(x, y) \lor R(x, y), \neg P(c, y), \neg R(x, f(x)) \}$$

jazyka $L = \langle P, R, f, c \rangle$ nemá model, což lze doložit nesplnitelnou konjunkcí konečně mnoha instancí (některých) axiomů teorie T v konstantních termech

$$(P(c, f(c)) \vee R(c, f(c))) \wedge \neg P(c, f(c)) \wedge \neg R(c, f(c)),$$

což je lživá formule ve tvaru výroku

$$(p \lor r) \land \neg p \land \neg r.$$

Instance $\varphi(x_1/t_1,\ldots,x_n/t_n)$ otevřené formule φ ve volných proměnných x_1,\ldots,x_n je základní (ground) instance, jsou-li všechny termy t_1,\ldots,t_n konstantní. Konstantní termy nazýváme také základní (ground) termy.

Přímá redukce do VL

Herbrandova věta umožňuje následující postup. Je ale značně neefektivní.

- Nechť S je (vstupní) formule v množinové reprezentaci.
- Lze předpokládat, že jazyk obsahuje alespoň jeden konstantní symbol.
- Nechť S' je množina všech základních instancí klauzulí z S.
- Zavedením prvovýroků pro každou atomickou sentenci lze S' převést na (případně nekonečnou) výrokovou formuli v množinové reprezentaci.
- Rezolucí na úrovni VL ověříme její nesplnitelnost.

Např. pro
$$S = \{\{P(x,y), R(x,y)\}, \{\neg P(c,y)\}, \{\neg R(x,f(x))\}\} \ je$$

$$S' = \{\{P(c,c), R(c,c)\}, \{P(c,f(c)), R(c,f(c))\}, \{P(f(c),f(c)), R(f(c),f(c))\} \dots, \{\neg P(c,c)\}, \{\neg P(c,f(c))\}, \dots, \{\neg R(c,f(c))\}, \{\neg R(f(c),f(f(c)))\}, \dots\}$$
nesplnitelná, neboť na úrovni VL je
$$S' \supseteq \{\{P(c,f(c)), R(c,f(c))\}, \{\neg P(c,f(c))\}, \{\neg R(c,f(c))\}\} \vdash_{R} \square.$$

1.3.1 Herbrandův model

[TODO]

Herbrandův model

Nechť $L = \langle \mathcal{R}, \mathcal{F} \rangle$ je jazyk s alespoň jedním konstantním symbolem. (Je-li třeba, do L přidáme nový konstantní symbol.)

- Herbrandovo univerzum pro L je množina všech konstantních termů z L.

 Např. pro $L = \langle P, f, c \rangle$, kde P je relační, f je binární funkční, c konstantní $A = \{c, f(c, c), f(f(c, c), c), f(c, f(c, c)), f(f(c, c), f(c, c)), \dots\}$
- Struktura \mathcal{A} pro L je $Herbrandova\ struktura$, je-li doména A Herbrandovo univerzum pro L a pro každý n-ární funkční symbol $f \in \mathcal{F}$ a $t_1, \ldots, t_n \in A$,

$$f^A(t_1,\ldots,t_n)=f(t_1,\ldots,t_n)$$

(včetně n=0, tj. $c^A=c$ pro každý konstantní symbol c).

Poznámka Na rozdíl od kanonické struktury nejsou předepsané relace.

Např.
$$\mathcal{A} = \langle A, P^A, f^A, c^A \rangle$$
, $kde\ P^A = \emptyset$, $c^A = c\ a\ f^A(c, c) = f(c, c)$,

 \bullet Herbrandův model teorie T je Herbrandova struktura, jež je modelem T.

1.3.2 Herbrandova věta

[TODO]

Herbrandova věta

Věta Nechť T je otevřená teorie jazyka L bez rovnosti a s alespoň jedním konstantním symbolem. Pak

- (a) T má Herbrandův model, anebo
- (b) existuje konečně mnoho základních instancí axiomů z T, jejichž konjunkce je nesplnitelná, a tedy T nemá model.

 $D\mathring{u}kaz$ Nechť T' je množina všech základních instancí axiomů z T. Uvažme dokončené (např. systematické) tablo τ z T' v jazyce L (bez přidávání nových konstant) s položkou $F\bot$ v kořeni.

- Obsahuje-li tablo τ bezespornou větev V, kanonický model z větve V je Herbrandovým modelem teorie T.
- Jinak je \(\tau \) sporné, tj. \(T' \) \(\perp \) . Navíc je konečné, tedy \(\perp \) je dokazatelný jen z konečně mnoha formulí \(T' \), tj. jejich konjunkce je nesplnitelná. □

1.3.3 Důsledky

[TODO]

Důsledky Herbrandovy věty

Nechť L je jazyk obsahující alespoň jeden konstantní symbol.

Důsledek Pro každou otevřenou $\varphi(x_1, ..., x_n)$ jazyka L je $(\exists x_1) ... (\exists x_n) \varphi$ pravdivá, právě když existují konstantní termy t_{ij} jazyka L takové, že $\varphi(x_1/t_{11}, ..., x_n/t_{1n}) \vee ... \vee \varphi(x_1/t_{m1}, ..., x_n/t_{mn})$

je (výroková) tautologie.

 $D\mathring{u}kaz \ (\exists x_1) \dots (\exists x_n) \varphi$ je pravdivá $\Leftrightarrow (\forall x_1) \dots (\forall x_n) \neg \varphi$ je nesplnitelná $\Leftrightarrow \neg \varphi$ je nesplnitelná. Ostatní vyplývá z Herbrandovy věty pro $\neg \varphi$.

Důsledek Otevřená teorie T jazyka L má model, právě když teorie T' všech základních instancí axiomů z T má model.

 $D\mathring{u}kaz$ Má-li T model \mathcal{A} , platí v něm každá instance každého axiomu z T, tedy \mathcal{A} je modelem T'. Nemá-li T model, dle H. věty existuje (konečně) formulí z T', jejichž konjunkce je nesplnitelná, tedy T' nemá model. \square

1.4 Unifikace

[TODO]

1.4.1 Substituce

[TODO]

Substituce - příklady

Efektivnější je využívat vhodných substitucí. Např. pro

- a) $\{P(x), Q(x, a)\}, \{\neg P(y), \neg Q(b, y)\}$ substitucí x/b, y/a dostaneme $\{P(b), Q(b, a)\}, \{\neg P(a), \neg Q(b, a)\}$ a z nich rezolucí $\{P(b), \neg P(a)\}.$ Nebo substitucí x/y a rezolucí dle P(y) dostaneme $\{Q(y, a), \neg Q(b, y)\}.$
- b) $\{P(x), Q(x, a), Q(b, y)\}, \{\neg P(v), \neg Q(u, v)\}$ substituce x/b, y/a, u/b, v/a dává $\{P(b), Q(b, a)\}, \{\neg P(a), \neg Q(b, a)\}$ a z nich rezolucí $\{P(b), \neg P(a)\}.$
- c) $\{P(x),Q(x,z)\}, \{\neg P(y),\neg Q(f(y),y)\}$ substitucí x/f(z),y/z dostaneme $\{P(f(z)),Q(f(z),z)\}, \{\neg P(z),\neg Q(f(z),z)\}$ a z nich $\{P(f(z)),\neg P(z)\}.$ Při substituci x/f(a),y/a,z/a dostaneme $\{P(f(a)),Q(f(a),a)\}, \{\neg P(a),\neg Q(f(a),a)\}$ a z nich rezolucí $\{P(f(a)),\neg P(a)\}.$ Předchozí substituce je ale obecnější.

Substituce

- Substituce je (konečná) množina $\sigma = \{x_1/t_1, \dots, x_n/t_n\}$, kde x_i jsou navzájem různé proměnné a t_i jsou termy, přičemž t_i není x_i .
- Jsou-li všechny termy t_i konstantní, je σ základní substituce.
- Jsou-li t_i navzájem různé proměnné, je σ přejmenování proměnných.
- Výraz je literál nebo term. (Substituci lze aplikovat na výrazy.)
- Instance výrazu E při substituci $\sigma = \{x_1/t_1, \dots, x_n/t_n\}$ je výraz $E\sigma$ vzniklý z E současným nahrazením všech výskytů proměnných x_i za t_i .
- Pro množinu výrazů S označmě $S\sigma$ množinu instancí $E\sigma$ výrazů E z S.

Poznámka Jelikož substituce je současná pro všechny proměnné zároveň, případný výskyt proměnné x_i v termu t_j nevede k zřetězení substitucí. Např. pro $S = \{P(x), R(y, z)\}$ a substituci $\sigma = \{x/f(y, z), y/x, z/c\}$ je $S\sigma = \{P(f(y, z)), R(x, c)\}.$

Skládání substitucí

Zadefinujeme $\sigma \tau$ tak, aby $E(\sigma \tau) = (E\sigma)\tau$ pro každý výraz E.

Např. pro
$$E = P(x, w, u), \ \sigma = \{x/f(y), w/v\}, \ \tau = \{x/a, y/g(x), v/w, u/c\} \ je$$

 $E\sigma = P(f(y), v, u), \quad (E\sigma)\tau = P(f(g(x)), w, c).$

Pak by mělo být $\sigma \tau = \{x/f(g(x)), y/g(x), v/w, u/c\}.$

Pro substituce $\sigma = \{x_1/t_1, \dots, x_n/t_n\}$ a $\tau = \{y_1/s_1, \dots, y_n/s_n\}$ definujeme

$$\begin{aligned} sigma\tau &= \{x_i/t_i\tau \mid x_i \in X, \ x_i \ \text{nen\'i} \ t_i\tau\} \cup \{y_j/s_j \mid y_j \in Y \setminus X\} \\ složenou \ substituci \ \sigma \ \text{a} \ \tau, \ \text{kde} \ X &= \{x_1,\ldots,x_n\} \ \text{a} \ Y &= \{y_1,\ldots,y_m\}. \end{aligned}$$

Poznámka Skládání substitucí není komutativní, např. pro uvedené σ a τ je $\tau \sigma = \{x/a, y/q(f(y)), u/c, w/v\} \neq \sigma \tau.$

Skládání substitucí - vlastnosti

Ukážeme, že definice vyhovuje našemu požadavku a skládání je asociativní.

Tvrzení Pro každý výraz E a substituce σ , τ , ϱ platí

- (i) $(E\sigma)\tau = E(\sigma\tau)$,
- (ii) $(\sigma \tau)\varrho = \sigma(\tau \varrho)$.

 $D\mathring{u}kaz$ Nechť $\sigma = \{x_1/t_1, \dots, x_n/t_n\}$ a $\tau = \{y_1/s_1, \dots, y_m/s_m\}$. Stačí uvážit případ, kdy E je proměnná, řekněme v.

(i) Je-li v proměnná x_i pro nějaké i, je $v\sigma = t_i$ a $(v\sigma)\tau = t_i\tau$, což je $v(\sigma\tau)$ dle definice $\sigma\tau$. Jinak $v\sigma = v$ a $(v\sigma)\tau = v\tau$.

Je-li v proměnná y_j pro nějaké j, je dále $(v\sigma)\tau=v\tau=s_j$, což je $v(\sigma\tau)$ dle definice $\sigma\tau$. Jinak $(v\sigma)\tau=v\tau=v$ a zároveň $v(\sigma\tau)=v$.

(ii) Opakovaným užitím (i) dostaneme pro každý výraz E,

$$E((\sigma\tau)\varrho) = (E(\sigma\tau))\varrho = ((E\sigma)\tau)\varrho = (E\sigma)(\tau\varrho) = E(\sigma(\tau\varrho)).$$

1.4.2 Unifikační algoritmus

[TODO]

Unifikace

Nechť $S = \{E_1, \dots, E_n\}$ je (konečná) množina výrazů.

- Unifikace pro S je substituce σ taková, že $E_1\sigma = E_2\sigma = \cdots = E_n\sigma$, tj. $S\sigma$ je singleton.
- \bullet S je $unifikovateln\acute{a}$, pokud má unifikaci.
- Unifikace σ pro S je nejobecnější unifikace (mgu), pokud pro každou unifikaci τ pro S existuje substituce λ taková, že $\tau = \sigma \lambda$.

Např. $S = \{P(f(x), y), P(f(a), w)\}$ je unifikovatelná pomocí nejobecnější unifikace $\sigma = \{x/a, y/w\}$. Unifikaci $\tau = \{x/a, y/b, w/b\}$ dostaneme jako $\sigma\lambda$ pro $\lambda = \{w/b\}$. τ není mgu, nelze z ní získat unifikaci $\varrho = \{x/a, y/c, w/c\}$.

Pozorování Jsou-li σ , τ různé nejobecnější unifikace pro S, liší se pouze přejmenováním proměnných.

Unifikační algoritmus

Nechť S je (konečná) neprázdná množina výrazů a p je nejlevější pozice, na které se nějaké dva výrazy z S liší. Pak neshoda v S je množina D(S) podvýrazů začínajících na pozici p ze všech výrazů v S.

Např. pro
$$S = \{P(x,y), P(f(x),z), P(z,f(x))\}\ je\ D(S) = \{x,f(x),z\}.$$

Vstup Neprázdná (konečná) množina výrazů S.

 $\mathit{V} \acute{y} \mathit{stup}\,$ Nejobecnější unifikace σ proSnebo "S $\mathit{nen\'e}$ unifikovatelná".

(0) Nechť
$$S_0 := S$$
, $\sigma_0 := \emptyset$, $k := 0$. (inicializace)

- (1) Je-li S_k singleton, vydej substituci $\sigma = \sigma_0 \sigma_1 \cdots \sigma_k$. (mgu pro S)
- (2) Zjisti, zda v $D(S_k)$ existuje proměnná x a term t neobsahující x.
- (3) Pokud ne, vydej "S není unifikovatelná".
- (4) Jinak $\sigma_{k+1} := \{x/t\}, S_{k+1} := S_k \sigma_{k+1}, k := k+1 \text{ a jdi na } (1).$

Poznámka Test výskytu proměnné x v termu t v kroku (2) může být "drahý".

Unifikační algoritmus - příklad

$$S = \{ P(f(y, g(z)), h(b)), P(f(h(w), g(a)), t), P(f(h(b), g(z)), y) \}$$

- 1) $S_0 = S$ není singleton a $D(S_0) = \{y, h(w), h(b)\}$ obsahuje term h(w) a proměnnou y nevyskytující se v h(w). Pak $\sigma_1 = \{y/h(w)\}, S_1 = S_0\sigma_1$, tj. $S_1 = \{P(f(h(w), g(z)), h(b)), P(f(h(w), g(a)), t), P(f(h(b), g(z)), h(w))\}.$
- 2) $D(S_1) = \{w, b\}, \ \sigma_2 = \{w/b\}, \ S_2 = S_1\sigma_2, \ \text{tj.}$ $S_2 = \{P(f(h(b), g(z)), h(b)), \ P(f(h(b), g(a)), t)\}.$
- 3) $D(S_2) = \{z, a\}, \ \sigma_3 = \{z/a\}, \ S_3 = S_2\sigma_3, \ \text{tj.}$ $S_3 = \{P(f(h(b), g(a)), h(b)), \ P(f(h(b), g(a)), t)\}.$
- 4) $D(S_3) = \{h(b), t\}, \ \sigma_4 = \{t/h(b)\}, \ S_4 = S_3\sigma_4, \ \text{tj.}$ $S_4 = \{P(f(h(b), g(a)), h(b))\}.$
- 5) S_4 je singleton a nejobecnější unifikace pro S je $\sigma = \{y/h(w)\}\{w/b\}\{z/a\}\{t/h(b)\} = \{y/h(b), w/b, z/a, t/h(b)\}.$

Unifikační algoritmus - korektnost

Tvrzení Pro každé S unifikační algoritmus vydá po konečně mnoha krocích korektní výsledek, tj. nejobecnější unifikaci σ pro S nebo pozná, že S není unifikovatelná. (*) Navíc, pro každou unifikaci τ pro S platí, že τ = στ.

Důkaz V každém kroku eliminuje jednu proměnnou, někdy tedy skončí.

- Skončí-li neúspěchem po k krocích, nelze unifikovat $D(S_k)$, tedy ani S.
- Vydá-li $\sigma = \sigma_0 \sigma_1 \cdots \sigma_k$, je σ evidentně unifikace pro S.
- Dokážeme-li, že σ má vlastnost (*), je σ nejobecnější unifikace pro S.
- (1) Nechť τ je unifikace pro S. Ukážeme, že $\tau = \sigma_0 \sigma_1 \cdots \sigma_i \tau$ pro každé $i \leq k$.
- (2) Pro i = 0 platí (1). Nechť $\sigma_{i+1} = \{x/t\}$, předpokládejme $\tau = \sigma_0 \sigma_1 \cdots \sigma_i \tau$.
- (3) Stačí dokázat, že $v\sigma_{i+1}\tau = v\tau$ pro každou proměnnou v.
- (4) Pro $v \neq x$ je $v\sigma_{i+1} = v$, tedy platí (3). Nyní v = x a $v\sigma_{i+1} = x\sigma_{i+1} = t$.
- (5) Jelikož τ unifikuje $S_i = S\sigma_0\sigma_1\cdots\sigma_i$ a proměnná x i term t jsou v $D(S_i)$, musí τ unifikovat x a t, tj. $t\tau = x\tau$, jak bylo požadováno pro (3).

1.5 Rezoluční metoda

[TODO]

1.5.1 Rezoluční pravidlo

[TODO]

Nechť klauzule $C_1,\,C_2$ neobsahují stejnou proměnnou a jsou ve tvaru

$$C_1 = C'_1 \sqcup \{A_1, \dots, A_n\}, \quad C_2 = C'_2 \sqcup \{\neg B_1, \dots, \neg B_m\},$$

kde $S=\{A_1,\ldots,A_n,B_1,\ldots,B_m\}$ lze unifikovat a $n,m\geq 1$. Pak klauzule $C=C_1'\sigma\cup C_2'\sigma,$

kde σ je nejobecnější unifikace pro S, je rezolventa klauzulí C_1 a C_2 .

Např. v klauzulích $\{P(x), Q(x, z)\}$ a $\{\neg P(y), \neg Q(f(y), y)\}$ lze unifikovat $S = \{Q(x, z), Q(f(y), y)\}$ pomocí nejobecnější unifikace $\sigma = \{x/f(y), z/y\}$ a získat z nich rezolventu $\{P(f(y)), \neg P(y)\}$.

Poznámka Podmínce o různých proměnných lze vyhovět přejmenováním proměnných v rámci klauzule. Je to nutné, např. $z \{\{P(x)\}, \{\neg P(f(x))\}\}$ lze po přejmenování získat \Box , ale $\{P(x), P(f(x))\}$ nelze unifikovat.

1.5.2 Rezoluční důkaz

[TODO]

Rezoluční důkaz

Pojmy zavedeme jako ve VL, jen navíc dovolíme přejmenování proměnných.

- Rezoluční důkaz (odvození) klauzule C z formule S je konečná posloupnost $C_0, \ldots, C_n = C$ taková, že pro každé $i \leq n$ je $C_i = C_i'\sigma$, kde $C_i' \in S$ a σ je přejmenování proměnných, nebo je C_i rezolventou nějakých dvou předchozích klauzulí (i stejných).
- Klauzule C je (rezolucí) dokazatelná z S, psáno $S \vdash_R C$, pokud má rezoluční důkaz z S.
- Zamitnuti formule S je rezoluční důkaz \square z S.
- S je (rezolucí) zamítnutelná, pokud $S \vdash_R \square$.

Poznámka Eliminace více literálů najednou je někdy nezbytná, např. $S = \{\{P(x), P(y)\}, \{\neg P(x), \neg P(y)\}\} \text{ je rezolucí zamítnutelná, ale nemá zamítnutí, při kterém by se v každém kroku eliminoval pouze jeden literál.}$

Příklad rezoluce

Mějme teorii
$$T=\{\neg P(x,x),\ P(x,y)\to P(y,x),\ P(x,y)\land P(y,z)\to P(x,z)\}.$$
 Je $T\models (\exists x)\neg P(x,f(x))$? Tedy, je následující formule T' nesplnitelná?
$$T'=\{\{\neg P(x,x)\},\{\neg P(x,y),P(y,x)\},\{\neg P(x,y),\neg P(y,z),P(x,z)\},\{P(x,f(x))\}\}$$
 files/rezolucePLpriklad.pdf

1.6 Korektnost a úplnost

[TODO]

1.6.1 Věta o korektnosti

[TODO]

Nejprve ukážeme, že obecné rezoluční pravidlo je korektní.

Tvrzení Nechť C je rezolventa klauzulí C_1 , C_2 . Pro každou L-strukturu A,

$$\mathcal{A} \models C_1 \text{ a } \mathcal{A} \models C_2 \Rightarrow \mathcal{A} \models C$$

 $D\mathring{u}kaz$ Nechť $C_1=C_1'\sqcup\{A_1,\ldots,A_n\},\,C_2=C_2'\sqcup\{\neg B_1,\ldots,\neg B_m\},\,\sigma$ je nejobecnější unifikace pro $S=\{A_1,\ldots,A_n,B_1,\ldots,B_m\}$ a $C=C_1'\sigma\cup C_2'\sigma$.

- Jelikož C_1 , C_2 jsou otevřené, platí i $\mathcal{A} \models C_1 \sigma$ a $\mathcal{A} \models C_2 \sigma$.
- Máme $C_1 \sigma = C_1' \sigma \cup \{S\sigma\}$ a $C_2 \sigma = C_2' \sigma \cup \{\neg(S\sigma)\}$.
- Ukážeme, že $\mathcal{A} \models C[e]$ pro každé e. Je-li $\mathcal{A} \models S\sigma[e]$, pak $\mathcal{A} \models C'_2\sigma[e]$ a tedy $\mathcal{A} \models C[e]$. Jinak $\mathcal{A} \not\models S\sigma[e]$, pak $\mathcal{A} \models C'_1\sigma[e]$ a tedy $\mathcal{A} \models C[e]$. \square

Věta (korektnost) Je-li formule S rezolucí zamítnutelná, je S nesplnitelná. Důkaz Nechť $S \vdash_R \square$. Kdyby $\mathcal{A} \models S$ pro nějakou strukturu \mathcal{A} , z korektnosti rezolučního pravidla by platilo i $\mathcal{A} \models \square$, což není možné. \square

1.6.2 Lifting lemma

[TODO]

Lifting lemma

Rezoluční důkaz na úrovni VL lze "zdvihnout" na úroveň PL.

Lemma Nechť $C_1^* = C_1\tau_1$, $C_2^* = C_2\tau_2$ jsou základní instance klauzulí C_1 , C_2 neobsahující stejnou proměnnou a C^* je rezolventa C_1^* a C_2^* . Pak existuje rezolventa C klauzulí C_1 a C_2 taková, že $C^* = C\tau_1\tau_2$ je základní instance C. Důkaz Předpokládejme, že C^* je rezolventa C_1^* , C_2^* přes literál $P(t_1, \ldots, t_k)$.

- Pak lze psát $C_1 = C_1' \sqcup \{A_1, \ldots, A_n\}$ a $C_2 = C_2' \sqcup \{\neg B_1, \ldots, \neg B_m\}$, kde $\{A_1, \ldots, A_n\}\tau_1 = \{P(t_1, \ldots, t_k)\}$ a $\{\neg B_1, \ldots, \neg B_m\}\tau_2 = \{\neg P(t_1, \ldots, t_k)\}$.
- Tedy $(\tau_1\tau_2)$ unifikuje $S=\{A_1,\ldots,A_n,B_1,\ldots,B_m\}$ a je-li σ mgu pro S z unifikačního algoritmu, pak $C=C_1'\sigma\cup C_2'\sigma$ je rezolventa C_1 a C_2 .
- Navíc $(\tau_1 \tau_2) = \sigma(\tau_1 \tau_2)$ z vlastnosti (*) pro σ a tedy $C\tau_1 \tau_2 = (C'_1 \sigma \cup C'_2 \sigma)\tau_1 \tau_2 = C'_1 \sigma \tau_1 \tau_2 \cup C'_2 \sigma \tau_1 \tau_2 = C'_1 \tau_1 \cup C'_2 \tau_2$ $= (C_1 \setminus \{A_1, \dots, A_n\})\tau_1 \cup (C_2 \setminus \{\neg B_1, \dots, \neg B_m\})\tau_2$ $= (C_1^* \setminus \{P(t_1, \dots, t_k)\}) \cup (C_2^* \setminus \{\neg P(t_1, \dots, t_k)\}) = C^*. \quad \Box$

1.6.3 Věta o úplnosti

[TODO]

Úplnost

Důsledek Nechť S' je množina všech základních instancí klauzulí formule S. Je-li S' \vdash_R C' (na úrovni VL), kde C' je základní klauzule, pak existuje klauzule C a základní substituce σ t.ž. C' = $C\sigma$ a $S \vdash_R C$ (na úrovni PL). Důkaz Indukcí dle délky rezolučního odvození pomocí lifting lemmatu.

Věta (úplnost) Je-li formule S nesplnitelná, je $S \vdash_R \Box$.

 $D\mathring{u}kaz$ Je-li S nesplnitelná, dle (důsledku) Herbrandovy věty je nesplnitelná i množina S' všech základních instancí klauzulí z S.

- Dle úplnosti rezoluční metody ve VL je $S' \vdash_R \square$ (na úrovni VL).
- Dle předchozího důsledku existuje klauzule C a substituce σ taková, že $\Box = C\sigma \text{ a } S \vdash_R C \text{ (na úrovni PL)}.$
- Jediná klauzule, jejíž instance je \square , je klauzule $C = \square$.

1.7 LI-rezoluce

[TODO]

Lineární rezoluce

Stejně jako ve VL, rezoluční metodu lze značně omezit (bez ztráty úplnosti).

- Lineární důkaz klauzule C z formule S je konečná posloupnost dvojic $(C_0, B_0), \ldots, (C_n, B_n)$ t.ž. C_0 je varianta klauzule v S a pro každé $i \leq n$
 - i) B_i je varianta klauzule v S nebo $B_i = C_j$ pro nějaké j < i, a
 - ii) C_{i+1} je rezolventa C_i a B_i , kde $C_{n+1} = C$.
- C je lineárně dokazatelná z S, psáno $S \vdash_L C$, má-li lineární důkaz z S.
- Lineární zamítnutí S je lineární důkaz \square z S.
- S je lineárně zamítnutelná, pokud $S \vdash_L \square$.

Věta S je lineárně zamítnutelná, právě když S je nesplnitelná.

 $D\mathring{u}kaz$ (\Rightarrow) Každý lineární důkaz lze transformovat na rezoluční důkaz. (\Leftarrow) Plyne z úplnosti lineární rezoluce ve VL (nedokazováno), neboť lifting lemma zachovává linearitu odvození.

LI-rezoluce

Stejně jako ve VL, pro Hornovy formule můžeme lineární rezoluci dál omezit.

- LI-rezoluce ("linear input") z formule S je lineární rezoluce z S, ve které je každá boční klauzule B_i variantou klauzule ze (vstupní) formule S.
- \bullet Je-li klauzule Cdokazatelná LI-rezolucí z S, píšeme $S \vdash_{LI} C.$
- Hornova formule je množina (i nekonečná) Hornových klauzulí.
- Hornova klauzule je klauzule obsahující nejvýše jeden pozitivní literál.
- Fakt je (Hornova) klauzule $\{p\}$, kde p je pozitivní literál.
- Pravidlo je (Hornova) klauzule s právě jedním pozitivním a aspoň jedním negativním literálem. Pravidla a fakta jsou programové klauzule.
- Cíl je neprázdná (Hornova) klauzule bez pozitivního literálu.

Věta Je-li Hornova T splnitelná a $T \cup \{G\}$ nesplnitelná pro cíl G, lze \square odvodit LI-rezolucí z $T \cup \{G\}$ začínající G.

 $D\mathring{u}kaz$ Plyne z Herbrandovy věty, stejné věty ve VL a lifting lemmatu. \Box

1.7.1	Rezoluce	\mathbf{V}	Prologi
[TODO]			

Program v Prologu

Program (v Prologu) je Hornova formule obsahující pouze programové klauzule, tj. fakta nebo pravidla.

files/rezolucePLprogram.pdf

Zajímá nás, zda daný existenční dotaz vyplývá z daného programu.

Důsledek Pro program P a cíl $G = \{\neg A_1, \dots, \neg A_n\}$ v proměnných X_1, \dots, X_m

- (1) $P \models (\exists X_1) \dots (\exists X_m) (A_1 \wedge \dots \wedge A_n), \ pr\'{a}v\check{e} \ kdy\check{z}$
- (2) \square lze odvodit LI-rezolucí z $P \cup \{G\}$ začínající (variantou) cíle G.

LI-rezoluce nad programem

Je-li odpoveď na dotaz kladná, chceme navíc znát výstupní substituci.

Výstupní substituce σ LI-rezoluce \square z $P \cup \{G\}$ začínající $G = \{\neg A_1, \dots, \neg A_n\}$ je složení mgu v jednotlivých krocích (jen na proměnné v G). Platí,

$$P \models (A_1 \land \ldots \land A_n)\sigma.$$

files/rezolucePLprogramLI.pdf

Výstupní substituce a) X = jiri, b) X = julie.