Die Vergelykingstoets / The Comparison Test

Gestel $\sum_{n=1}^{\infty} a_n$ en $\sum_{n=1}^{\infty} b_n$ is reekse met positiewe terme.

- 1. As $\sum_{n=1}^{\infty} b_n$ konvergeer en $a_n \leq b_n$ vir alle $n \in \mathbb{N}$, dan konvergeer $\sum_{n=1}^{\infty} a_n$.
- 2. As $\sum_{n=1}^{\infty}b_n$ divergeer en $a_n\geq b_n$ vir alle $n\in\mathbb{N}$, dan divergeer $\sum_{n=1}^{\infty}a_n$.

Huiswerk

Ex. 11.4 nr. 1, 5, 7, 9, 13, 15, 29, 39

Die Limietvergelykingstoets / The Limit Comparison Test

Gestel $\sum_{n=1}^{\infty} a_n$ en $\sum_{n=1}^{\infty} b_n$ is reekse met positiewe terme:

- 1. As $\lim_{n\to\infty}\frac{a_n}{b_n}=0$ en $\sum_{n=1}^\infty b_n$ is konvergent, dan is $\sum_{n=1}^\infty a_n$ konvergent.
- 2. As $\lim_{n\to\infty}\frac{a_n}{b_n}=c>0$, dan is $\sum_{n=1}^\infty b_n$ is konvergent as en slegs as $\sum_{n=1}^\infty a_n$ konvergent is.
- 3. As $\lim_{n\to\infty}\frac{a_n}{b_n}=\infty$ en $\sum_{n=1}^\infty b_n$ is divergent, dan is $\sum_{n=1}^\infty a_n$ divergent.

Huiswerk

Ex. 11.4 nr. 17, 19, 21, 25, 27, 31, 41(b)

Laat uit "Estimating Sums".