HỆ THỐNG TÌM KIẾM (PHẦN 3)

Trần Trung Kiên

ttkien@fit.hcmus.edu.vn

Tổng thể

Các thuật toán tìm kiếm sử dụng thông tin trạng thái đích để định hướng

- Greedy Search
- $-A^*$

Nhìn lại về UCS

- UCS đảm bảo tìm được lời giải có chi phí nhỏ nhất
- Tuy nhiên, UCS mở rộng theo mọi hướng, không có định hướng về trạng thái đích -> chạy chậm
 - Xem video demo ...
- Ta mong muốn tăng tốc quá trình tìm kiếm bằng cách sử dụng thông tin trạng thái đích để định hướng

Heuristic

- Một heuristic là một hàm: nhận đầu vào là một trạng thái và trả về mức độ gần đích ước lượng của trạng thái này
- Heuristic được thiết kế riêng cho một bài toán cụ thể
- Vd, trong bài toán tìm đường đi cho Pacman đến một vị trí, heuristic có thể là khoảng cách Manhattan hoặc khoảng cách Euclidean

Ví dụ về heuristic

Straight-line distant to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Thuật toán Greedy Search

Thuật toán Greedy Search

- Chạy Greedy Search với vd tìm đường đi từ Arad đến Bucharest: xem trên bảng ...
- Xem video demo ...

Thuật toán A*

Thuật toán A*

A* = UCS + Greedy Search

UCS: chọn kế hoạch có có chi phí lùi g nhỏ nhất để mở rộng Greedy Search: chọn kế hoạch có chi phí tiến ước lượng h nhỏ nhất để mở rộng

Khi mở kế hoạch S → a, ta được 3 kế hoạch:

- S \rightarrow a \rightarrow b (g = 2, h = 6)
- S \rightarrow a \rightarrow d (g = 4, h = 2)
- $S \rightarrow a \rightarrow e (g = 9, h = 1)$

UCS sẽ chọn S → a → b để mở tiếp dù kế hoạch này không hướng về đích ⊗ Greedy sẽ chọn S → a → e để mở tiếp dù kế hoạch này có chi phí (lùi) lớn ⊗

A*: chọn kế hoạch có f = g + h nhỏ nhất để mở rộng → không ưu tiên những hướng có chi phí lùi g quá lớn hoặc chi phí tiến h quá lớn

Trong vd trên, A* sẽ chọn S → a → d (vừa không có g quá lớn, vừa không có h quá lớn) để mở tiếp ©

A* có tìm được kế hoạch tối ưu?

- Chạy A* với đồ thị ở dưới ...
- Kế hoạch tìm được: S → G ⊗. Tại sao không tối ưu?
 - Do: chi phí thật sự của kế hoạch dở < chi phí ước lượng (= chi phí
 lùi thật sự + chi phí tiến ước lượng) của kế hoạch tốt
 - Chi phí tiến uớc lượng của heuristic cần ≤ chi phí tiến thật sự

Heuristic họp lệ

 Để A* tìm được kế hoạch tối ưu thì heuristic h phải hợp lệ (admissible / optimistic):

$$0 \le h(n) \le h^*(n)$$

Chi phí tiến thật sự từ trạng thái n đến đích

- Vd: trong bài toán tìm đường đi cho Pacman đến một ví trí thì khoảng cách Manhattan / Euclidean có phải là heuristic hợp lệ?
- Khi sử dụng A*, việc quan trọng nhất là thiết kế ra một heuristic hợp lệ nhưng phải đủ chính xác để có thể định hướng

C/m: nếu heuristic hợp lệ thì A* sẽ tìm được kế hoạch tối ưu

Giả sử:

- A là node ứng với kế hoạch đến đích tối ưu
- B là node ứng với kế hoạch đến đích không tối ưu
- Heuristic hợp lệ
- Ta sẽ c/m: A sẽ được lấy ra khỏi fringe trước B

C/m: nếu heuristic hợp lệ thì A* sẽ tìm được kế hoạch tối ưu

- Ta sẽ c/m: A sẽ được lấy ra khỏi fringe trước B
 - Giả sử B đang ở fringe, và tổ tiên n
 của A (hoặc A) cũng đang ở fringe
 - Dễ thấy: $f(n) \le f(A) \le f(B)$

Do h hợp lệ

Do giả thiết A tối ưu hơn B

 Do đó, từ tổ tiên n của A cho đến A sẽ được mở trước B

Cách tạo heuristic hợp lệ

- Tính h(n) bằng cách chạy thuật toán tìm kiếm để tìm chi phí nhỏ nhất từ n đến đích?
- Cho h(n) = 0?
- Heuristic hợp lệ thường được tạo ra bằng cách: nới lỏng bài toán (tức là làm cho bài toán dễ hơn), rồi tính h(n) bằng cách tính chi phí nhỏ nhất từ n đến đích trong bài toán nới lỏng này

Ví dụ: bài toán tìm đường đi cho Pacman đến một vị trí

Dùng heuristic là khoảng cách Manhattan ứng với bài toán nới lỏng: Pacman có thể đi xuyên tường

Ví dụ: bài toán 8 puzzle

Start State

Goal State

Ví dụ: bài toán 8 puzzle

- Heuristic: số miếng ghép bị sai vị trí
 - Vd, h(start) = 8
- Có hợp lệ không?
- Úng với bài toán nới lỏng:

Start State

Goal State

	Average nodes expanded when the optimal path has			
	4 steps	8 steps	12 steps	
UCS	112	6,300	3.6×10^6	
TILES	13	39	227	

Ví dụ: bài toán 8 puzzle

- Bài toán ít nới lỏng hơn: ta có thể di chuyển một miếng ghép sang ô bên cạnh cho dù ô đó đã có miếng ghép khác
- Heuristic: tổng khoảng cách Manhattan từ mỗi miếng ghép đến vị trí đúng
 - Vd, h(start) = 3 + 1 + 2 + ... = 18
- Có hợp lệ không?

Start State

Goal State

	Average nodes expanded when the optimal path has			
	4 steps	8 steps	12 steps	
TILES	13	39	227	
MANHATTAN	12	25	73	

Ý rút ra từ ví dụ 8 puzzle

- Heuristic càng chính xác thì càng giúp định hướng tốt (giúp giảm số trạng thái phải mở)
- Tuy nhiên, cũng không nên cố gắng tạo ra heuristic quá chính xác vì thời gian tính heuristic sẽ lâu → dù mở rất ít trạng thái, nhưng với mỗi thái lại tốn nhiều thời gian để tính heuristic → không đạt được mục tiêu tăng tốc ban đầu của A*
- Heuristic tốt là heuristic chính xác vừa phải; vừa để có thể định hướng được, vừa để có thể tính nhanh được

Quiz: ôn lại các thuật toán tìm kiếm

Xem video và trả lời ...