

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1 1. (Currently amended) A method for operating a key distribution center
2 (KDC) that provides keys to facilitate secure communications between clients and
3 servers across a computer network, wherein the KDC operates without having to
4 store long-term server secrets, comprising:
 - 5 receiving a communication from a server that is authenticated at the KDC;
 - 6 wherein the communication includes a temporary secret key to be used in
7 communications with the server for a limited time period, and wherein the
8 temporary secret key is shared between the server and the KDC; and
 - 9 storing the temporary secret key in a database at the KDC, so that the
10 temporary secret key can be subsequently used to facilitate one or more
11 communications between a client and the server, ~~wherein the temporary secret~~
12 ~~key is encrypted with a public key belonging to the KDC, so that the temporary~~
13 ~~secret key can only be decrypted using a private key belonging to the KDC;~~
14 wherein the temporary secret key is a short-term secret which becomes
15 invalid after a short time period; and wherein ~~the server generates a new~~
16 ~~temporary secret key a new temporary secret key is generated~~ in response to a
17 request from the KDC for a new temporary secret key to replace the invalid
18 temporary secret key, thereby avoiding the overhead of periodically establishing a
19 new temporary secret key.

1 2. (Original) The method of claim 1, wherein upon subsequently receiving
2 a request from the client at the KDC to communicate with the server, the method
3 further comprises facilitating communications between the client and the server
4 by:

5 producing a session key to be used in communications between the client
6 and server;

7 creating a ticket to the server by encrypting an identifier for the client and
8 the session key with the temporary secret key for the server; and

9 assembling a message that includes the identifier for the server, the
10 session key and the ticket to the server; and

11 sending the message to the client in a secure manner; and

12 allowing the client to forward the ticket to the server in order to initiate
13 communications between the client and the server.

1 3. (Original) The method of claim 2, wherein upon receiving the ticket
2 from the client at the server, the method further comprises:

3 decrypting the ticket at the server using the temporary secret key to restore
4 the session key and the identifier for the client; and

5 using the session key at the server to protect subsequent communications
6 between the server and the client.

1 4. (Original) The method of claim 2, wherein assembling the message
2 involves including an expiration time for the session key in the message.

1 5. (Original) The method of claim 2, wherein allowing the client to
2 forward the ticket to the server includes allowing the client to forward an
3 identifier for the temporary secret key to the server, so that the server can know
4 which temporary secret key to use in decrypting the ticket.

1 6. (Original) The method of claim 2, wherein sending the message to the
2 client in the secure manner involves encrypting the message with a second session
3 key that was previously communicated to the client by the KDC.

1 7. (Original) The method of claim 2, further comprising alternatively
2 creating the ticket to the server by encrypting the identifier for the client and the
3 session key with one of:
4 a public key for the server; and
5 a secret key for the server previously agreed upon between the server and
6 the KDC and stored at the KDC.

1 8. (Original) The method of claim 1, wherein receiving the
2 communication from the server involves authenticating the server.

1 9. (Original) The method of claim 8, wherein authenticating the server
2 involves using authentication information pertaining to the server, the
3 authentication information including a certificate chain from a trust anchor to the
4 server, and including a server public key that is associated with a server private
5 key to form a public key-private key pair associated with the server.

1 10. (Original) The method of claim 8, wherein authenticating the server
2 involves authenticating the server without having prior configuration information
3 pertaining to the server at the KDC.

1 11. (Original) The method of claim 8, wherein authenticating the server
2 includes using a server public key that is stored locally in the KDC.

1 12 (Canceled).

1 13. (Original) The method of claim 1, wherein the communication is
2 signed with a server private key so that the KDC can use a corresponding server
3 public key to verify that the communication was sent by the server.

1 14. (Original) The method of claim 1, wherein the communication is
2 received in response to a request being sent by the KDC to the server indicating
3 that the temporary secret key is needed from the server.

1 15. (Original) The method of claim 1, further comprising communicating
2 information to the server that enables the server to authenticate the KDC.

1 16. (Original) The method of claim 1, wherein the KDC operates in
2 accordance with the Kerberos standard.

1 17. (Original) The method of claim 1, wherein the communication
2 received from the server additionally includes an identifier for the server.

1 18. (Original) The method of claim 1, further comprising propagating the
2 temporary secret key to multiple KDCs.

1 19. (Currently amended) A computer-readable storage medium storing
2 instructions that when executed by a computer cause the computer to perform a
3 method for operating a key distribution center (KDC) that provides keys to
4 facilitate secure communications between clients and servers across a computer
5 network, wherein the KDC operates without having to store long-term server
6 secrets, the method comprising:

7 receiving a communication from a server that is authenticated at the
8 KDC;

9 wherein the communication includes a temporary secret key to be used in
10 communications with the server for a limited time period, and wherein the
11 temporary secret key is shared between the server and the KDC; and

12 storing the temporary secret key in a database at the KDC, so that the
13 temporary secret key can be subsequently used to facilitate one or more
14 communications between a client and the server, ~~wherein the temporary secret~~
15 ~~key is encrypted with a public key belonging to the KDC, so that the temporary~~
16 ~~secret key can only be decrypted using a private key belonging to the KDC;~~

17 wherein the temporary secret key is a short-term secret which becomes
18 invalid after a short time period; and wherein ~~the server generates a new~~
19 ~~temporary secret key a new temporary secret key is generated~~ in response to a
20 request from the KDC for a new temporary secret key to replace the invalid
21 temporary secret key, thereby avoiding the overhead of periodically establishing a
22 new temporary secret key.

1 20. (Original) The computer-readable storage medium of claim 19,
2 wherein upon subsequently receiving a request from the client at the KDC to
3 communicate with the server, the method further comprises facilitating
4 communications between the client and the server by:

5 producing a session key to be used in communications between the client
6 and server;

7 creating a ticket to the server by encrypting an identifier for the client and
8 the session key with the temporary secret key for the server; and

9 assembling a message that includes the identifier for the server, the
10 session key and the ticket to the server; and

11 sending the message to the client in a secure manner; and

12 allowing the client to forward the ticket to the server in order to initiate
13 communications between the client and the server.

1 21. (Original) The computer-readable storage medium of claim 20,
2 wherein upon receiving the ticket from the client at the server, the method further
3 comprises:

4 decrypting the ticket at the server using the temporary secret key to restore
5 the session key and the identifier for the client; and
6 using the session key at the server to protect subsequent communications
7 between the server and the client.

1 22. (Original) The computer-readable storage medium of claim 20,
2 wherein assembling the message involves including an expiration time for the
3 session key in the message.

1 23. (Original) The computer-readable storage medium of claim 20,
2 wherein allowing the client to forward the ticket to the server includes allowing
3 the client to forward an identifier for the temporary secret key to the server, so
4 that the server can know which temporary secret key to use in decrypting the
5 ticket.

1 24. (Original) The computer-readable storage medium of claim 20,
2 wherein sending the message to the client in the secure manner involves
3 encrypting the message with a second session key that was previously
4 communicated to the client by the KDC.

1 25. (Original) The computer-readable storage medium of claim 20,
2 wherein the method further comprises alternatively creating the ticket to the
3 server by encrypting the identifier for the client and the session key with one of:
4 a public key for the server; and

5 a secret key for the server previously agreed upon between the server and
6 the KDC and stored at the KDC.

1 26. (Original) The computer-readable storage medium of claim 19,
2 wherein receiving the communication from the server involves authenticating the
3 server.

1 27. (Original) The computer-readable storage medium of claim 26,
2 wherein authenticating the server involves using authentication information
3 pertaining to the server, the authentication information including a certificate
4 chain from a trust anchor to the server, and including a server public key that is
5 associated with a server private key to form a public key-private key pair
6 associated with the server.

1 28. (Original) The computer-readable storage medium of claim 26,
2 wherein authenticating the server involves authenticating the server without
3 having prior configuration information pertaining to the server at the KDC.

1 29. (Original) The computer-readable storage medium of claim 26,
2 wherein authenticating the server includes using a server public key that is stored
3 locally in the KDC.

1 30 (Canceled).

1 31. (Original) The computer-readable storage medium of claim 19,
2 wherein the communication is signed with a server private key so that the KDC
3 can use a corresponding server public key to verify that the communication was
4 sent by the server.

1 32. (Original) The computer-readable storage medium of claim 19,
2 wherein the communication is received in response to a request being sent by the
3 KDC to the server indicating that the temporary secret key is needed from the
4 server.

1 33. (Original) The computer-readable storage medium of claim 19,
2 wherein the method further comprises communicating information to the server
3 that enables the server to authenticate the KDC.

1 34. (Original) The computer-readable storage medium of claim 19,
2 wherein the KDC operates in accordance with the Kerberos standard.

1 35. (Original) The computer-readable storage medium of claim 19,
2 wherein the communication received from the server additionally includes an
3 identifier for the server.

1 36. (Original) The computer-readable storage medium of claim 19,
2 wherein the method further comprises propagating the temporary secret key to
3 multiple KDCs.

1 37. (Currently amended) An apparatus that provides keys to facilitate
2 secure communications between clients and servers across a computer network,
3 wherein the apparatus operates without having to store long-term server secrets,
4 comprising:
5 a key distribution center (KDC);
6 a receiving mechanism within the KDC that is configured to receive a
7 communication from a server;

8 wherein the communication includes a temporary secret key to be used in
9 communications with the server for a limited time period, and wherein the
10 temporary secret key is shared between the server and the KDC; and

11 a storage mechanism within the KDC that is configured to store the
12 temporary secret key in a database at the KDC, so that the temporary secret key
13 can be subsequently used to facilitate one or more communications between a
14 client and the server, wherein the temporary secret key is encrypted with a public
15 key belonging to the KDC, so that the temporary secret key can only be decrypted
16 using a private key belonging to the KDC;

17 wherein the temporary secret key is a short-term secret which becomes
18 invalid after a short time period; and wherein the server generates a new
19 temporary secret key a new temporary secret key is generated in response to a
20 request from the KDC for a new temporary secret key to replace the invalid
21 temporary secret key, thereby avoiding the overhead of periodically establishing a
22 new temporary secret key.

1 38. (Original) The apparatus of claim 37, further comprising a
2 communication facilitation mechanism within the KDC, wherein upon receiving a
3 request from the client to communicate with the server, the communication
4 facilitation mechanism is configured to:

5 produce a session key to be used in communications between the client
6 and server;

7 create a ticket to the server by encrypting an identifier for the client and
8 the session key with the temporary secret key for the server;

9 assemble a message that includes the identifier for the server, the session
10 key and the ticket to the server;

11 send the message to the client in a secure manner; and to

12 allow the client to forward the ticket to the server in order to initiate
13 communications between the client and the server.

1 39. (Original) The apparatus of claim 38, further comprising a mechanism
2 within the server that is configured to:

3 decrypt the ticket received from the client using the temporary secret key
4 to restore the session key and the identifier for the client; and to
5 use the session key to protect subsequent communications between the
6 server and the client.

1 40. (Original) The apparatus of claim 38, wherein the communication
2 facilitation mechanism is configured to include an expiration time for the session
3 key in the message.

1 41. (Original) The apparatus of claim 38, wherein the client is configured
2 to additionally forward an identifier for the temporary secret key to the server, so
3 that the server can know which temporary secret key to use in decrypting the
4 ticket.

1 42. (Original) The apparatus of claim 38, wherein in sending the message
2 to the client in the secure manner, the communication facilitation mechanism is
3 configured to encrypt the message with a second session key that was previously
4 communicated to the client by the KDC.

1 43. (Original) The apparatus of claim 38, wherein the communication
2 facilitation mechanism is configured to alternatively create the ticket to the server
3 by encrypting the identifier for the client and the session key with one of:
4 a public key for the server; and

5 a secret key for the server previously agreed upon between the server and
6 the KDC and stored at the KDC.

1 44. (Original) The computer-readable storage medium of claim 37, further
2 comprising an authentication mechanism that is configured to authenticate the
3 server.

1 45. (Original) The apparatus of claim 44, wherein in authenticating the
2 server, the authentication mechanism is configured to use authentication
3 information pertaining to the server, the authentication information including a
4 certificate chain from a trust anchor to the server, and including a server public
5 key that is associated with a server private key to form a public key-private key
6 pair associated with the server.

1 46. (Original) The apparatus of claim 44, wherein in authenticating the
2 server the authentication mechanism is configured to operate without having prior
3 configuration information pertaining to the server at the KDC.

1 47. (Original) The apparatus of claim 44, wherein in authenticating the
2 server, the authentication mechanism is configured to use a server public key that
3 is stored locally in the KDC.

1 48 (Canceled).

1 49. (Original) The apparatus of claim 37, wherein the communication is
2 signed with a server private key so that the KDC can use a corresponding server
3 public key to verify that the communication was sent by the server.

1 50. (Original) The apparatus of claim 37, further comprising a requesting
2 mechanism within the KDC that is configured to send a request to the server
3 indicating that the temporary secret key is needed from the server.

1 51. (Original) The apparatus of claim 37, further comprising a sending
2 mechanism that is configured to send information to the server that enables the
3 server to authenticate the KDC.

1 52. (Original) The apparatus of claim 37, wherein the KDC is configured
2 to operate in accordance with the Kerberos standard.

1 53. (Original) The apparatus of claim 37, wherein the communication
2 received from the server additionally includes an identifier for the server.

1 54. (Original) The apparatus of claim 37, wherein the storage mechanism
2 is additionally configured to communicate the temporary secret key to multiple
3 KDCs.

1 55. (New) The method of claim 1, wherein the temporary secret key is
2 encrypted with a public key belonging to the KDC, so that the temporary secret
3 key can only be decrypted using a private key belonging to the KDC.

1 56. (New) The computer-readable storage medium of claim 19, wherein
2 the temporary secret key is encrypted with a public key belonging to the KDC, so
3 that the temporary secret key can only be decrypted using a private key belonging
4 to the KDC.

1 57. (New) The apparatus of claim 37, wherein the temporary secret key is
2 encrypted with a public key belonging to the KDC, so that the temporary secret
3 key can only be decrypted using a private key belonging to the KDC.