Московский государственный технический университет им. Н.Э. Баумана

Факультет Радиотехнический Кафедра РТ5

Курс «Технологии машинного обучения»

Отчет по лабораторной работе №6 «Ансамбли машинного обучения. Часть 2.»

Выполнил: Руководитель:

студент группы РТ5-61Б: преподаватель каф. ИУ5

Бабасанова Н. С. Гапанюк Ю.Е.

Задание

- 1. Выберите набор данных (датасет) для решения задачи классификации или регресии.
- 2. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.
- 3. С использованием метода train_test_split разделите выборку на обучающую и тестовую.
 - 4. Обучите следующие ансамблевые модели:
 - одну из моделей группы стекинга.
 - модель многослойного персептрона. По желанию, вместо библиотеки scikit-learn возможно использование библиотек <u>TensorFlow</u>, <u>PyTorch</u> или других аналогичных библиотек.
 - двумя методами на выбор из семейства МГУА (один из линейных методов <u>COMBI</u> / <u>MULTI</u> + один из нелинейных методов <u>MIA</u> / <u>RIA</u>) с использованием библиотеки <u>gmdh</u>.
 - В настоящее время библиотека МГУА не позволяет решать задачу классификации !!!
- 5. Оцените качество моделей с помощью одной из подходящих для задачи метрик. Сравните качество полученных моделей.

Текст программы

```
import gmdh
import pandas as pd
import numpy as np
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
```

```
data = pd.read_csv('/content/sample_data/housing.csv')
data
```

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value	ocean_proximity
0	-122.23	37.88	41.0	880.0	129.0	322.0	126.0	8.3252	452600.0	NEAR BAY
1	-122.22	37.86	21.0	7099.0	1106.0	2401.0	1138.0	8.3014	358500.0	NEAR BAY
2	-122.24	37.85	52.0	1467.0	190.0	496.0	177.0	7.2574	352100.0	NEAR BAY
3	-122.25	37.85	52.0	1274.0	235.0	558.0	219.0	5.6431	341300.0	NEAR BAY
4	-122.25	37.85	52.0	1627.0	280.0	565.0	259.0	3.8462	342200.0	NEAR BAY
20635	-121.09	39.48	25.0	1665.0	374.0	845.0	330.0	1.5603	78100.0	INLAND
20636	-121.21	39.49	18.0	697.0	150.0	356.0	114.0	2.5568	77100.0	INLAND
20637	-121.22	39.43	17.0	2254.0	485.0	1007.0	433.0	1.7000	92300.0	INLAND
20638	-121.32	39.43	18.0	1860.0	409.0	741.0	349.0	1.8672	84700.0	INLAND
20639	-121.24	39.37	16.0	2785.0	616.0	1387.0	530.0	2.3886	89400.0	INLAND
20640 rows × 10 columns										

data.isnull().sum()


```
data = data.dropna(axis=0, how='any')
data
data['ocean_proximity'].unique()
```

```
ohe = OneHotEncoder()
encoded_data = ohe.fit_transform(data[['ocean_proximity']])
```

```
encoded_data = pd.get_dummies(data, columns=['ocean_proximity'],
prefix='ocean').astype(int)
encoded_data
```

```
X = encoded_data.drop(['median_house_value'], axis=1)
y = encoded_data['median_house_value']
```

```
scaler = StandardScaler()
scaler.fit(X)
encoded_data
```

```
from sklearn.neural_network import MLPRegressor

mlp = MLPRegressor(hidden_layer_sizes=(100, 50), activation='relu',
    solver='adam', max_iter=500)

mlp.fit(X_train, y_train)
```

```
from gmdh import Combi, split_data
import numpy as np

X = X.values
y = y.values.ravel()

X_train_combi, X_test_combi, y_train_combi, y_test_combi = train_test_split(X, y, test_size=0.33, random_state=42)

combi = Combi()
combi.fit(X_train_combi, y_train_combi)
y pred com = combi.predict(X test)
```

```
from gmdh import Mia
import numpy as np

mia = Mia()
mia.fit(X_train_combi, y_train_combi)
y_pred_mia = mia.predict(X_test_combi)
```

```
from sklearn.metrics import r2_score

print(f"Score (COMBI): {r2_score(y_test, y_pred_com):.3f}")
print(f"Score (MIA): {r2_score(y_test, y_pred_mia):.3f}")

Score (COMBI): 0.632
Score (MIA): 0.602
```

```
print(f"Score (Stacking): {score:.3f}")
print(f"Score (MLP): {mlp.score(X_test, y_test):.3f}")
Score (MLP): 0.708
Score (Stacking): 0.683
```