Exercice 1. Soit $f: \mathbb{R}_+^* \to \mathbb{R}$ définie par l'expression $f(x) = \arctan(x) + \frac{1}{x}$, pour tout nombre réel x > 0.

- 1. Montrer que f est bijective de \mathbb{R}_+^* sur un intervalle J qu'on déterminera.
- 2. En déduire que $\forall n \in \mathbb{N}$, $(n \ge 2) \implies (\exists ! x_n > 0, nx_n = 1 + x_n \arctan(x_n))$. On définit donc une suite $(x_n)_{n \ge 2}$.
- 3. Montrer que $x_n \to 0$.
- 4. Déterminer le développement asymptotique de (x_n) à l'ordre cinq en $\frac{1}{n}$. On cherche donc un polynôme P de degré au plus cinq tel que $x_n = P\left(\frac{1}{n}\right) + o\left(\frac{1}{n^5}\right)$.

Exercice 2. Dans l'espace on considère la rotation vectorielle r autour de l'axe Vect ((1,1,1)) et d'angle $\frac{\pi}{4}$.

- 1. Déterminer une base orthogonale $\mathcal{B} = (e_1, e_2, e_3)$ de \mathbb{R}^3 telle que $e_3 = (1, 1, 1)$.
- 2. Exprimer $P=P_{\mathcal{C}\to\mathcal{B}},$ où \mathcal{C} désigne la base canonique de $\mathbb{R}^3.$
- 3. Calculer P^{-1} .
- 4. Déterminer la représentation matricielle de r dans la base B.
- 5. En déduire la représentation matricielle canonique de r.