语法分析 (6. *LR*1 语法分析器)

魏恒峰

hfwei@nju.edu.cn

2021年12月03日

只考虑无二义性的文法

这意味着,每个句子对应唯一的一棵语法分析树

今日份主题: LR 语法分析器

自底向上的、

不断归约的、

基于句柄识别自动机的、

适用于LR 文法的、

LR 语法分析器

3/38

LR(0) 语法分析器

L: 从左向右 (Left-to-right) 扫描输入

R: 构建反向 (Reverse) 最右推导

0: 归约时无需向前看

		ACTION						GOT	O
	id	+	*	()	\$	E	T	F
0	s5			s4			g1	g2	g3
1		s6				acc			
2	r2	r2	s7, r2	r2	r2	r2			
3	r4	r4	r4	r4	r4	r4			
4	s5			s4			g8	g2	g3
5	r6	r6	r6	r6	r6	r6			
6	s5			s4				g9	g3
7	s5			s4					g10
8		s6			s11				
9	r1	r1	s7, r1	r1	r1	r1			
10	r3	r3	r3	r3	r3	r3			
11	r5	r5	r5	r5	r5	r5			

$$id + * ()$$

(1)
$$E \rightarrow E + T$$

(2)
$$E \to T$$

(3)
$$T \rightarrow T * F$$

(4)
$$T \rightarrow F$$

(5)
$$F \rightarrow (E)$$

(6)
$$F \rightarrow \mathbf{id}$$

$$Follow(E) = \{+, \}$$

SLR(1) 分析表

	状态				AC	LION		====	(COTO	
_ 1	人心		id	+	*	()	\$	E	T	F
	0		s5			s 4			1	2	3
	1			s6				acc			- (
Ì	2			r2	s7		r2	r2	ĺ		J
1	3			r4	r4		r4	r4			ĺ
ĺ	4		s5			s4			8	2	3
1	5		ļ	ŗ6	r6		r6	r6	}		
(6		s5	v		s4			l	9	3
	7		s5			s 4			ļ		10
1	8		ļ	s6			s11)		
	9			r1	s7		r1	r1			1
	10		}	r3	r3		r3	r3	\		
	11			r5	r5		_ r5	r5]

归约:

 $(3) \ [k:A\to\alpha\cdot]\in I_i\wedge A\neq S' \implies \forall t\in \operatorname{Follow}(A). \ \operatorname{action}[i,t]=rk$

Definition (SLR(1) 文法)

如果文法 G 的SLR(1) 分析表是无冲突的,则 G 是 SLR(1) 文法。

无冲突: ACTION 表中每个单元格最多只有一种动作

状态			ACTION					GOTO)
1人元		id	+	*	()	\$	E	T	F
0	7	s5			s4			1	2	3
1	ı	1	s6				acc			
2	ı	ļ	r2	s7		r2	r2	ĺ		
3	ı		r4	r4		r4	r4			
4	ı	s5			s4			8	2	3
5	ı	l	r6	r6		r6	r6	}		
6	ı	s5	*		s4			l	9	3
7	1	s5			54			ļ		10
8	ı	ļ	s6			s11		Ì		
9	1		r1	s7		r1	r1)		
10		}	r3	r3		r_3	r3	1		
11			r5	r_5		r5	r5	ļ		

两类可能的冲突: "移入/归约" 冲突、"归约/归约" 冲突

非 SLR(1) 文法举例

$$S \rightarrow L = R \mid R$$

 $L \rightarrow * R \mid \mathbf{id}$
 $R \rightarrow L$

$$I_{0}: S' \rightarrow S$$

$$S \rightarrow L = R$$

$$S \rightarrow R$$

$$L \rightarrow **R$$

$$L \rightarrow **d$$

$$R \rightarrow L$$

$$I_{1}: S' \rightarrow S$$

$$I_{2}: S \rightarrow L = R$$

$$R \rightarrow L$$

$$I_{3}: S \rightarrow R$$

$$I_{4}: L \rightarrow *R$$

$$R \rightarrow L$$

$$L \rightarrow *R$$

$$[S \to L \cdot = R] \in I_2 \implies \text{ACTION}(I_2, =) \leftarrow s6$$

= $\in \text{FOLLOW}(R) \implies \text{ACTION}(I_2, =) \leftarrow r5$

即使考虑了 $= \in Follow(A)$,对该文法来说仍然不够因为,这仅仅说明在某个句型中,a可以跟在A后面

但该文法没有 \mathbf{U} $R = \cdots$ **开头**的最右句型

希望 LR 语法分析器的每个状态能**尽可能精确**地 指明**哪些输入符号可以跟在句柄** $A \rightarrow \alpha$ **的后面**

在 LR(0) 自动机中,某个项集 I_j 中包含 $[A \to \alpha \cdot]$ 则在之前的某个项集 I_i 中包含 $[B \to \beta \cdot A\gamma]$ 与 $[A \to \cdot \alpha]$

这表明只有 $a \in FIRST(\gamma)$ 时, 才可以进行 $A \to \alpha$ 归约

但是, 对 I_i 求闭包时, 仅得到 $[A \rightarrow \cdot \alpha]$, 丢失了 $FIRST(\gamma)$ 信息

Definition (LR(1) 项 (Item))

$$[A \to \alpha \cdot \beta, {\color{red} a}] \qquad (a \in T \cup \{\$\})$$

此处, a 是**向前看符号**, 数量为 1.

思想: α 在栈顶, 期望剩余输入中开头的是可以从 βa 推导出的符号串

$$[A \to \alpha \cdot, a]$$

只有下一个输入符号为 a 时, 才可以按照 $A \rightarrow \alpha$ 进行归约

LR(1)句柄识别自动机

```
[A \to \alpha \cdot B\beta, \mathbf{a}] \in I \qquad (a \in T \cup \{\$\})
SetOfItems CLOSURE(I) {
         repeat
                  for (I中的每个项 [A \rightarrow \alpha \cdot B\beta, a])
                            for (G'中的每个产生式B \to \gamma)
                                    \mathbf{for} ( \mathrm{FIRST}(eta a)中的每个终结符号 b ) 将 [B 
ightarrow \gamma, b] 加入到集合 I中;
         until 不能向I 中加入更多的项;
         return I;
                   \forall b \in \text{First}(\beta a). [B \to \gamma, b] \in I
```

LR(1)句柄识别自动机

```
SetOfItems GOTO(I,X) {
                  将 J 初始化为空集;
                  for (I \text{ 中的每个项} [A \to \alpha \cdot X\beta, a])
将项 [A \to \alpha X \cdot \beta, a]加入到集合 J中;
                  return CLOSURE(J):
J = \text{GOTO}(I, X) = \text{CLOSURE}(\{[A \to \alpha X \cdot \beta, a] | [A \to \alpha \cdot X\beta, a] \in I\})
                                      (X \in N \cup T)
```

语法分析

LR(1)句柄识别自动机

初始状态: CLOSURE($[S' \rightarrow \cdot S, \$]$)

板书演示: LR(1) 自动机的构造过程

	First	Follow
\overline{S}	$\{c,d\}$	\$
\overline{C}	$\{c,d\}$	$\{c, d, \$\}$

16/38

LR(1) 分析表构造规则

(1)
$$\text{GOTO}(I_i, a) = I_j \land a \in T \implies \text{ACTION}[i, a] \leftarrow sj$$

(2)
$$\text{GOTO}(I_i, A) = I_j \land A \in N \implies \text{GOTO}[i, A] \leftarrow gj$$

(3)
$$[k: A \to \alpha, \mathbf{a}] \in I_i \land A \neq S' \implies \text{ACTION}[i, \mathbf{a}] = rk$$

(4)
$$[S' \to S, \$] \in I_i \implies ACTION[i, \$] \leftarrow acc$$

Definition (LR(1) 文法)

如果文法 G 的LR(1) 分析表是无冲突的,则 G 是 LR(1) 文法。

LR(1) 通过**不同的向前看符号**, 区分了状态对 (3,6), (4,7) 与 (8,9)

w = ccdcd\$

$$L(G) = c^* dc^* d$$

总结: LR(0)、SLR(1)、LR(1) 的<mark>归约</mark>条件

$$[k:A\to\alpha\cdot]\in I_i\wedge A\neq S'\implies \forall t\in T\cup \{\$\}.\ \mathrm{ACTION}[i,t]=rk$$

$$[k:A \to \alpha \cdot] \in I_i \land A \neq S' \implies \forall t \in \overline{\text{Follow}(A)}. \text{ ACTION}[i,t] = rk$$

$$[k: A \to \alpha, \mathbf{a}] \in I_i \land A \neq S' \implies \text{ACTION}[i, \mathbf{a}] = rk$$

LR(1) 虽然强大, 但是生成的 LR(1) 分析表可能过大, 状态过多

LALR(1): 合并具有相同核心 LR(0)项的状态 (忽略不同的向前看符号)

w = ccdcd\$

Q: 合并 I_4 与 I_7 为 I_{47} ({[$C \rightarrow d \cdot, c/d/\$$]}), 会怎样?

 $C \rightarrow d \cdot, c/d$

$$S' \rightarrow S$$

$$S \rightarrow C C$$

$$C \rightarrow c C \mid d$$

$$L(G) = c^* dc^* d$$

继续合并 (I_8, I_9) 以及 (I_3, I_6)

状态	A	СТЮ	GOTO		
1/1/ET	C	d	\$	\overline{S}	C
0	s3	s4		1	2
1			acc	ł	
2	s6	s7			5
3	s3	s4			8
4	r3	r3			
5			r1	ŀ	
6	s6	s7			9
7			r3		
8	r2	r2			
9			r2		

-	状态	A	CTION	GOTO		
	1人心	С	\overline{d}	\$	\mathcal{S}	C
	0	s36	s47		1	2
	1			acc	}	
1	2	s36	s47			5
	36	s36	s47		1	89
	47	r3	r3	r3		
ĺ	5			r 1		
	89	r2	r2	r2		

Q: GOTO 函数怎么办?

A: 可以合并的状态 I,J 的 GOTO 目标 (状态) 一定也是可以合并的

(I, J) 出边集合相同,且 GOTO(I, X) 与 GOTO(J, X) 具有相同的核心项)

Q: 对于 LR(1) 文法, 合并得到的 LALR(1) 分析表是否会引入冲突?

Theorem

LALR(1) 分析表不会引入移入/归约冲突。

反证法

假设合并后出现 $[A \to \alpha \cdot, a]$ 与 $[B \to \beta \cdot a \gamma, b]$

则在 LR(1) 自动机中,

存在某状态同时包含 $[A \to \alpha \cdot, a]$ 与 $[B \to \beta \cdot a\gamma, c]$ $(c \neq b)$

矛盾!

Q: 对于 LR(1) 文法, 合并得到的 LALR(1) 分析表是否会引入冲突?

Theorem

LALR(1) 分析表可能会引入归约/归约冲突。

$$L(G) = \{acd, ace, bcd, bce\}$$

$$S' \rightarrow S$$

$$S \rightarrow a \ A \ d \mid b \ B \ d \mid a \ B \ e \mid b \ A \ e$$

$$A \rightarrow c$$

$$B \rightarrow c$$

$$\{[A \rightarrow c \cdot, d], [B \rightarrow c \cdot, e]\}$$

$$\{[A \rightarrow c \cdot, e], [B \rightarrow c \cdot, d]\}$$

$$\{[A \rightarrow c \cdot, d/e], [B \rightarrow c \cdot, d/e]\}$$

Theorem

如果合并后的语法分析器无冲突,则它的行为与原分析器本质上一致。

- (1) 接受原分析器所接受的句子, 且状态转移相同
- (2) 拒绝原分析器所拒绝的句子, 但可能多一些不必要的归约动作

("实际上,这个错误会在移入任何新的输入符号之前就被发现")

("两个分析器有相同的移入动作")

LALR(1) 语法分析器的优点

状态数量与 SLR(1) 语法分析器的状态<mark>数量相同</mark> (LALR(1) 与 SLR(1) 都使用相同的 LR(0) 核心项)

对于 LR(1) 文法, 不会产生移入/归约冲突

Q: 但是你却通过 LR(1) 自动机构造 LALR(1) 项集族?

第 4.7.5 节 (本科教学版): 高效构造 LALR(1) 语法分析表的方法

除 LR(0) 外, 以上各种 LR 类文法对应的语言是等价的。

好消息: 善用 LR 语法分析器, 处理二义性文法

表达式文法

$$E \rightarrow E + E \mid E * E \mid (E) \mid \mathbf{id}$$

$$E
ightarrow E + T \mid T$$
 $T
ightarrow T * F \mid F$ $F
ightarrow (E) \mid \mathbf{id}$

$$E o TE'$$
 $E' o + TE' \mid \epsilon$
 $T o FT'$
 $T' o * FT' \mid \epsilon$
 $F o (E) \mid \mathbf{id}$

表达式文法: 使用 SLR(1) 语法分析方法

$$E \rightarrow E + E \mid E * E \mid (E) \mid \mathbf{id}$$

$$\{+,*\} \subseteq \text{Follow}(E)$$

考虑到结合性与优先级:

状态		ACTION						
小心	id	+	*	()	\$	E	
0	s3			s2			1	
1		s4	s5			acc		
2	s3			s2			6	
3		r4	r4		r4	r4		
4	s3			s2			7	
5	s3			s2			8	
6		s4	s5		s9			
7		r1	s5		r1	r1		
8		r2	r2		r2	r2		
9		r3	r3		r3	r3		

id + id * id id + id + id

```
expr[int _p]
              ID
             {4 >= $_p}? '*' expr[5]
{3 >= $_p}? '+' expr[4]
```

条件语句文法

stmt \rightarrow if expr then stmt $S' \rightarrow S$ | if expr then stmt else stmt | S \rightarrow i S \right

语法分析

条件语句文法: 使用 SLR(1) 语法分析方法

$$S' {\rightarrow} S$$

$$S \rightarrow i S e S + i S + a$$

<i>I</i> ₀ :	$S' \rightarrow \cdot S$ $S \rightarrow \cdot iSeS$	I_3 :	$S \to a \cdot$
	$S \rightarrow iSeS$ $S \rightarrow iS$	I_4 :	$S \rightarrow iS \cdot eS$
	$S \rightarrow \cdot a$	I_5 :	$S \to iS$ $S \to iSe \cdot S$
I_1 :	$S' \to S \cdot$	Ü	$S \to \cdot iSeS$
I_2 :	$S \rightarrow i \cdot SeS$ $S \rightarrow i \cdot S$		$S \to iS$ $S \to a$
	S ightarrow i SeS	I_6 :	$S \rightarrow iSeS \cdot$
٠.	$S \to iS \\ S \to a$		

状态		GOTO			
7//23	i	e	а	\$	S
0	s2		s3		1
1				ace	
2	s2		s3		4
3	1	r3		r3	
4	{	s5		r3 r2	Į
5	s2		s3		6
6		r 1		r1]

 $e \in \operatorname{Follow}(S)$

 $\arctan[4,e] = s5$

$$S \rightarrow i \ E \ t \ S \ S' + a$$

$$S' \rightarrow e \ S + \epsilon$$

$$E \rightarrow b$$

dh (da (da (da 🖂	输入符号								
非终结符号	a	<i>b</i>	e	i	t	\$			
S	$S \rightarrow a$			$S \rightarrow iEtSS'$					
S'			$S' \to \epsilon$ $S' \to eS$			$S' o \epsilon$			
E		$E \rightarrow b$			·				

if b then if b then a else a

解决二义性: 选择 $S' \rightarrow eS$, 将 **else** 与前面最近的 **then** 关联起来

Thank You!

Office 926 hfwei@nju.edu.cn