PRODUTO TENSORIAL E HOMOMORFISMO INTERNO DE GRUPOS ABELIANOS CONDENSADOS

Igor Martins Silva

25 de abril de 2023

Neste seminário, temos como objetivo:

- (a) definir o produto tensorial de dois grupos abelianos κ -condensados,
- (b) dados M, N e P grupos abelianos κ -condensados, mostrar que:
 - (i) existem isomorfismos naturais

$$M \otimes N \to N \otimes M$$
 e $M \otimes (N \otimes P) \to (M \otimes N) \otimes P$,

(ii) vale a propriedade universal: se $f: M \times N \to P$ é uma função bilinear, então existe único morfismo $\overline{f}: M \otimes N \to P$ tal que $\overline{f} \circ \otimes = f$,

$$M \times N \xrightarrow{\otimes} M \otimes N$$

$$\downarrow \\ f \qquad \qquad \downarrow \\ P$$

- (iii) se T_1 e T_2 são conjuntos condensados, então $\mathbb{Z}[T_1 \times T_2]$ é naturalmente isomorfo a $\mathbb{Z}[T_1] \otimes \mathbb{Z}[T_2]$,
- (iv) se T é um conjunto condensado, então $-\otimes \mathbb{Z}[T]$ é um funtor exato,
- (c) definir homomorfismo interno.

Vale lembrar algumas notações de categorias que usaremos ao longo do texto:

- AbGrp: categoria dos grupos abelianos,
- κ -EDSet: categoria dos conjuntos κ -pequenos extremamente desconexos,
- κ -Cond(AbGrp): categoria dos grupos abelianos κ -condensados,
- Func(\mathscr{C},\mathscr{D}): categoria dos funtores de \mathscr{C} para \mathscr{D} ,
- Sh(&, Set): categoria dos feixes de conjuntos sobre &.

Produto tensorial

Sejam $M, N \in \kappa$ -Cond(AbGrp). Considere o pré-feixe

$$\begin{array}{cccc} F_{M,N}: \ \kappa\text{-}\mathcal{E} \mathsf{DSet}^{\mathrm{op}} & \to & \mathsf{AbGrp} \\ & S & \mapsto & M(S) \otimes N(S) \\ & S_1 \xrightarrow{f} S_2 & \mapsto & M(S_2) \otimes N(S_2) \xrightarrow{M(f) \otimes N(f)} M(S_1) \otimes N(S_1) \end{array}$$

A feixificação de $F_{M,N}$ é o par $\left(F_{M,N}^{\rm sh}, \theta^{M,N}\right)$, onde $F_{M,N}^{\rm sh}: \kappa\text{-}\mathcal{E}\mathsf{DSet}^{\mathrm{op}} \to \mathcal{A}\mathsf{b}\mathsf{Grp}$ é um feixe e $\theta^{M,N}: F_{M,N} \to F_{M,N}^{\rm sh}$ é uma transformação natural, que satisfaz a seguinte propriedade universal: dados $G: \kappa\text{-}\mathcal{E}\mathsf{DSet}^{\mathrm{op}} \to \mathcal{A}\mathsf{b}\mathsf{Grp}$ um feixe e $\eta: F_{M,N} \to G$ uma transformação natural, existe única transformação natural $\overline{\eta}: F_{M,N}^{\rm sh} \to G$ tal que comuta o diagrama abaixo.

Definimos **produto tensorial** de M com N, denotado por $M \otimes N$, como sendo $F_{M,N}^{\rm sh}$, isto é, $M \otimes N := F_{M,N}^{\rm sh}$.

Proposição 1. Sejam $M, N, P \in \kappa$ -Cond(AbGrp). Então

- (a) $M \otimes N$ é naturalmente isomorfo a $N \otimes M$ e
- (b) $M \otimes (N \otimes P)$ é naturalmente isomorfo a $(M \otimes N) \otimes P$.

Demonstração. Provaremos o item (a) e deixaremos o item (b) como exercício. Seja $S \in \kappa$ - $\mathcal{E}\mathbf{DSet}$. Sabemos, da teoria sobre produto tensorial de grupos abelianos, que $M(S) \otimes N(S)$ é naturalmente isomorfo a $N(S) \otimes M(S)$. Vamos denotar por η_S o isomorfismo natural de $M(S) \otimes N(S)$ para $N(S) \otimes M(S)$. Assim, temos que $\eta_S : F_{M,N}(S) \to F_{N,M}(S)$ é um isomorfismo, para todo $S \in \kappa$ - $\mathcal{E}\mathbf{DSet}$. Defina $\eta := (\eta_S)_{S \in \kappa}$ - $\mathcal{E}\mathbf{DSet}$. Então $\eta : F_{M,N} \to F_{N,M}$ é um isomorfismo funtorial. Observe que $\theta^{N,M} \circ \eta$ é uma transformação natural de $F_{M,N}$ para $N \otimes M$. Logo, pela propriedade universal de $M \otimes N$, existe única transformação natural $\gamma^1 : M \otimes N \to N \otimes M$ tal que

$$\gamma^1 \circ \theta^{M,N} = \theta^{N,M} \circ \eta. \tag{1}$$

Analogamente, temos que $\theta^{M,N}\circ\eta^{-1}$ é uma transformação natural de $F_{N,M}$ para $M\otimes N$. Logo, pela propriedade universal de $N\otimes M$, existe única transformação natural $\gamma^2:N\otimes M\to M\otimes N$ tal que

$$\gamma^2 \circ \theta^{N,M} = \theta^{M,N} \circ \eta^{-1}. \tag{2}$$

As equações obtidas anteriormente podem ser mais facilmente percebidas através do diagrama abaixo.

Agora, note que

$$\gamma^2 \circ \gamma^1 \circ \theta^{M,N} \stackrel{(1)}{=} \gamma^2 \circ \theta^{N,M} \circ \eta \stackrel{(2)}{=} \theta^{M,N} \circ \eta^{-1} \circ \eta = \theta^{M,N}.$$

Isso quer dizer que $\gamma^2 \circ \gamma^1$ comuta o diagrama abaixo.

Como id $^{M\otimes N}$ também comuta o diagrama, então, pela unicidade, $\gamma^2\circ\gamma^1=\mathrm{id}^{M\otimes N}$. Um raciocínio análogo mostra que $\gamma^1\circ\gamma^2=\mathrm{id}^{N\otimes M}$. Portanto, $M\otimes N$ e $N\otimes M$ são naturalmente isomorfismos.

Sejam $M, N, P \in \kappa$ -Cond(AbGrp). Dizemos que $f: M \times N \to P$ é bilinear, se $f_S: M(S) \times N(S) \to P(S)$ é bilinear, para todo $S \in \kappa$ -EDSet. Para cada $S \in \kappa$ -EDSet, defina

$$t_S: M(S) \times N(S) \rightarrow \overbrace{F_{M,N}(S)}^{M(S) \otimes N(S)}$$
 $(m,n) \mapsto m \otimes n$

Considere a transformação natural $t: M \times N \to F_{M,N}$ fazendo $t = (t_S)_{S \in \kappa\text{-}\mathcal{E} D S \text{et}}$. Defina, agora, $\otimes := \theta^{M,N} \circ t$.

$$M \times N \xrightarrow{t} F_{M,N} \xrightarrow{\theta^{M,N}} M \otimes N$$

Proposição 2. Sejam $M,N \in \kappa$ -Cond(AbGrp). Então $M \otimes N$, junto da transformação natural \otimes , satisfaz a seguinte propriedade universal: dados $P \in \kappa$ -Cond(AbGrp) e $f: M \times N \to P$ uma função bilinear, existe única transformação natural $\overline{f}: M \otimes N \to P$ tal que $\overline{f} \circ \otimes = f$.

$$M \times N \xrightarrow{\otimes} M \otimes N$$

$$\downarrow \\ f \qquad \qquad \downarrow \\ P$$

$$\downarrow \exists ! \overline{f}$$

Demonstração. Seja $f: M \times N \to P$ uma função bilinear. Então, da teoria sobre produto tensorial de grupos abelianos, para cada $S \in \kappa$ - $\mathcal{E}DS$ et, existe único homomorfismo de grupos $\widetilde{f}_S: F_{M,N}(S) \to P(S)$ que comuta o seguinte diagrama.

$$M(S) \times N(S) \xrightarrow{t_S} \overbrace{F_{M,N}(S)}^{M(S) \otimes N(S)}$$

$$\downarrow \exists ! \widetilde{f}_S$$

$$P(S)$$

Defina a transformação natural $\widetilde{f}: F_{M,N} \to P$, fazendo $\widetilde{f} = (\widetilde{f_S})_{S \in \kappa\text{-}\mathcal{E}\mathfrak{D}\mathsf{Set}}$. Da propriedade universal da feixificação, existe única transformação natural $\overline{f}: M \otimes N \to P$ tal que $\overline{f} \circ \theta^{M,N} = \widetilde{f}$.

$$F_{M,N} \xrightarrow{\theta^{M,N}} M \otimes N$$

$$\downarrow \exists ! \overline{f}$$

Assim, para cada $S \in \kappa$ -EDSet, temos que

$$\overline{f}_S \circ \otimes_S = \overline{f}_S \circ \theta_S^{M,N} \circ t_S = \widetilde{f}_S \circ t_S = f_S$$

Portanto, $\overline{f} \circ \otimes = f$.

Sejam T um conjunto condensado e $S \in \kappa$ -£DSet. Vamos denotar o grupo abeliano livre gerado por pelo conjunto T(S) por $\mathbb{Z}[T(S)]$. Considere o pré-feixe

$$P_T: \kappa\text{-EDSet}^{\mathrm{op}} \to \mathsf{AbGrp}$$

$$S \mapsto \mathbb{Z}[T(S)]$$

$$S_1 \xrightarrow{f} S_2 \mapsto \mathbb{Z}[T(S_2)] \xrightarrow{\mathrm{extens\~ao} \ \mathrm{de} \ T(f) \ \mathrm{por \ linearidade}} \mathbb{Z}[T(S_1)]$$

Seja (P_T^{sh}, ζ^T) a feixificação de P_T . Denotaremos P_T^{sh} por $\mathbb{Z}[T]$.

Proposição 3. Sejam T_1 e T_2 conjuntos condensados. Então $\mathbb{Z}[T_1 \times T_2]$ é naturalmente isomorfo a $\mathbb{Z}[T_1] \otimes \mathbb{Z}[T_2]$.

Demonstração. AINDA SEM ENTENDIMENTO

Sejam $M_1, M_2 \in \kappa$ -Cond(AbGrp), $\eta: M_1 \to M_2$ uma transformação natural e T um conjunto condensado. A transformação natural $\eta \otimes \operatorname{id}^{\mathbb{Z}[T]}: M_1 \otimes \mathbb{Z}[T] \to M_2 \otimes \mathbb{Z}[T]$ é entendida como sendo o conjunto formado pelos homomorfismos de grupos

$$\eta_S \otimes \mathrm{id}_S^{\mathbb{Z}[T]} : M_1(S) \otimes \mathbb{Z}[T(S)] \to M_2(S) \otimes \mathbb{Z}[T(S)],$$

para cada $S \in \kappa$ -EDSet, ou seja, $\eta \otimes \operatorname{id}^{\mathbb{Z}[T]} := (\eta_S \otimes \operatorname{id}_S^{\mathbb{Z}[T]})_{S \in \kappa$ -EDSet.

Proposição 4. Seja T um conjunto condensado. Então o funtor

$$-\otimes \mathbb{Z}[T]: \kappa\text{-Cond}(\mathcal{A}\mathsf{b}\mathsf{Grp}) \to \kappa\text{-Cond}(\mathcal{A}\mathsf{b}\mathsf{Grp})$$

$$M \mapsto M \otimes \mathbb{Z}[T]$$

$$M_1 \xrightarrow{\eta} M_2 \mapsto M_1 \otimes \mathbb{Z}[T] \xrightarrow{\eta \otimes \mathsf{id}^{\mathbb{Z}[T]}} M_1 \otimes \mathbb{Z}[T]$$

é exato.

Demonstração. AINDA SEM ENTENDIMENTO

Homomorfismo interno

Antes de definirmos o funtor Hom interno entre dois grupos abelianos κ -condensados, vamos a alguns lemas.

5

 \boxtimes

X

Lema 1. Seja $L: \mathscr{C} \to \mathscr{D}$ o funtor adjunto à esquerda de $R: \mathscr{D} \to \mathscr{C}$. Seja $M: \mathscr{I} \to \mathscr{C}$ um diagrama e suponha que $\operatorname{colim}(M) \in \mathscr{C}$ exista. Então $L(\operatorname{colim}(M)) = \operatorname{colim}(L \circ M)$, ou seja, L comuta com colimites.

Lema 2. Seja \mathscr{C} um site e considere o funtor inclusão $\iota: Sh(\mathscr{C}, Set) \to Func(\mathscr{C}, Set)$. Então o funtor feixificação $-^{sh}$: $Func(\mathscr{C}, Set) \to Sh(\mathscr{C}, Set)$ é a adjunta à esquerda de ι .

Demonstração. Ver [3], Seção 7.10, comentário abiaxo da Proposição 7.10.12.

⊠

Sabemos, da teoria de grupos, que, fixado $A \in \mathcal{A}b\mathsf{Grp}$, o funtor

$$- \otimes A : \mathcal{A}b\mathsf{Grp} \to \mathcal{A}b\mathsf{Grp}$$

$$B \mapsto B \otimes A$$

$$B_1 \xrightarrow{f} B_2 \mapsto B_1 \otimes A \xrightarrow{f \otimes \mathrm{id}_A} B_2 \otimes A$$

comuta com colimites. Fixado $M \in Cond(AbGrp)$, seja

onde $(F_{\eta,M})_S := \eta_S \otimes \operatorname{id}_S^M : N_1(S) \otimes M(S) \to N_2(S) \otimes M(S)$, para cada $S \in \kappa$ -EDSet. Pode-se mostrar que do fato de $-\otimes A$ comutar com colimites, obtém-se que $F_{-,M}$ também comuta com colimites. Uma vez que $(F_{-,M})^{\operatorname{sh}} = -\otimes M$ e a feixificação é uma adjunta à esquerda (Lema 2), então $-\otimes M$ também comuta com colimites (Lema 1). Pelo Teorema da Função Adjunta, $-\otimes M$ possui uma adjunta à direita, a qual denotaremos por $\operatorname{\underline{Hom}}(M,-)$ e a qual chamaremos de funtor $\operatorname{\underline{Hom}}$ interno.

Sejam $S \in \kappa$ -EDSet e $\underline{S} = \operatorname{Hom}_{\mathsf{Top}}(-,S) \in \kappa$ -Cond(Set). Sabemos que a feixificação $\mathbb{Z}[-] : \kappa$ -Cond(Set) $\to \kappa$ -Cond(AbGrp), $T \mapsto \mathbb{Z}[T]$ é a adjunta à esquerda da inclusão $\iota : \kappa$ -Cond(AbGrp) $\to \kappa$ -Cond(Set). Logo, pela adjunção, temos que

$$\operatorname{Hom}_{\kappa\text{-Cond}(\operatorname{Set})}(\underline{S}, \underline{\operatorname{Hom}}(M, N)) \cong \operatorname{Hom}_{\kappa\text{-Cond}(\operatorname{flbGrp})}(\mathbb{Z}[\underline{S}], \underline{\operatorname{Hom}}(M, N))$$
(3)

é isomorfismo natural, para todo $N \in \kappa$ -Cond(AbGrp).

 \boxtimes

Observe que $-\otimes M$ e $\underline{\mathrm{Hom}}(M,-)$ são funtores de $\kappa\text{-}\mathrm{Cond}(\mathrm{AbGrp})$ para essa mesma categoria. Logo, pela adjunção

$$\operatorname{Hom}_{\kappa\text{-}\operatorname{Cond}(f\operatorname{lbGrp})}(\mathbb{Z}[\underline{S}] \otimes M, N) \cong \operatorname{Hom}_{\kappa\text{-}\operatorname{Cond}(f\operatorname{lbGrp})}(\mathbb{Z}[\underline{S}], \underline{\operatorname{Hom}}(M, N)) \tag{4}$$

é um isomorfismo natural, para todo $N \in \kappa$ -Cond(AbGrp).

Pelo Lema de Yoneda, temos que

$$\begin{array}{c} \underline{\mathrm{Hom}}(M,N)(S) \cong \mathrm{Hom}_{\kappa\text{-Cond}(\operatorname{Set})}(\underline{S},\underline{\mathrm{Hom}}(M,N)) \\ \stackrel{(3)}{\cong} \mathrm{Hom}_{\kappa\text{-Cond}(\operatorname{AbGrp})}(\mathbb{Z}[\underline{S}],\underline{\mathrm{Hom}}(M,N)) \\ \stackrel{(4)}{\cong} \mathrm{Hom}_{\kappa\text{-Cond}(\operatorname{AbGrp})}(\mathbb{Z}[\underline{S}] \otimes M,N). \end{array}$$

Seja * um conjunto com um único elemento em κ -£ DSet . GOSTARIA DE MOSTRAR QUE $\mathbb{Z}[\underline{*}] \otimes M \cong M$, O QUE NOS DARIA QUE $\underline{\mathsf{Hom}}(M,N)(*) \cong \mathsf{Hom}_{\kappa\text{-Cond}(\mathsf{AbGrD})}(M,N)$.

Referências

- [1] SCHOLZE, P. Lectures on Condensed Mathematics. Notas de aula. Website.
- [2] ÁSGEIRSSON, D. *The Foundations of Condensed Mathematics*. Dissertação de mestrado. Website.
- [3] The Stacks Project Authors. *Stacks Project*. Seções 4.24 e 7.10. Website.