DATA 609 Assignment 9: Game Theory

Dan Smilowitz

Section 10.1, Problem 1

Part a

The game has a pure Nash equilibrium with a value of 10. Strategy R1 maximizes Rose's value regardless of Colin's strategy. While the value can be achieved at more than one combination of strategies, it is still a Nash equilibrium since neither party can benefit by departing from that strategy (i.e. either (R1, C1) or (R2, C2)).

Part c

			Pitcher	
		Fastball		Knuckleball
	Guesses fastball	0.400	\Longrightarrow	0.100
Batter		\uparrow		\downarrow
	Guesses knuckleball	0.300	\Longrightarrow	0.250

The game has a pure Nash equilibrium with a value of 0.250. Pitcher strategy *Knuckleball* minimizes the score regardless of batter strategy; given this pitcher strategy, batter strategy *Guess knuckleball* maximizes the score.

Section 10.2, Problem 2a

Referring to x as the portion of times that Rose plays strategy R1 and 1-x the portion of the time that Rose plays strategy R2, her goal is to maximize the payoff P. If Colin plays purely strategy C1, the expected value of P is 10x + 5(1-x); if he plays purely strategy C3, the expected value of P is 10x. Thus, since x is a probability, the linear program for Rose is

Maximize P

Subject to

$$P \le 10x + 5(1 - x)$$

$$P \le 10x$$

$$x \ge 0$$

$$x \le 1$$

If y represents the portion of the time that Colin plays strategy C1, then the expected value of P is 10y + 10(1 - y) = 10 if Rose plays purely strategy R1 and 5y if Rose plays purely strategy R2. This means that, for Colin, the linear program is

Subject to $P \geq 10$ $P \geq 5y$ $x \geq 0$ $x \leq 1$

Geometric Solution

Rose's strategy

From this graph, any solution along or below the line P=10x is a feasible solution in the range $0 \le x \le 1$. The maximized value of P is P=10 at x=1 – if Rose plays strategy R1 100% of the time, she is guaranteed a maximum payoff of 10.

This graph shows that there is no optimal strategy for Colin – regardless of his mix of strategies, the furthest he can minimize the payoff is to P = 10. Due to this, Colin should likely play a strategy of pure C2, as this places him in the best position to take advantage of suboptimal play by Rose.

Algebraic Solution

For Rose, the intersection points of the above-stated constraints are shown below:

x	Р	Feasible
0	0	Y
1	10	${f Y}$
0	5	N
1	10	\mathbf{Y}

For Colin, the values are below:

X	Р	Feasible
0	10	\mathbf{Y}
1	10	\mathbf{Y}
0	0	N
1	5	N

As in the geometric solution, the best strategy for Rose is x = 1 i.e. always playing strategy R1, and Colin's strategy does not matter.

Section 10.3, Problem 3

Investor's Game

For the investor, the variables of interest are

- P = Payoff
- x_A = Portion of the time to play alternative A
- x_B = Portion of the time to play alternative B
- x_C = Portion of the time to play alternative C

The linear program is then

Maximize P

Subject to

This linear program can be solved using the lpSolve R package:

```
# LHS of constraints in matrix form
inv_mat <- matrix(c(3000, 1000, 4500, -1,
                    4500, 9000, 4000, -1,
                    6000, 2000, 3500, -1,
                    1, 0, 0, 0,
                    0, 1, 0, 0,
                    0, 0, 1, 0,
                    1, 0, 0, 0,
                    0, 1, 0, 0,
                    0, 0, 1, 0,
                    1, 1, 1, 0,
                    0, 0, 0, 1),
                  ncol = 4, byrow = TRUE,
                  dimnames = list(NULL, c('xA', 'xB', 'xC', 'P')))
# objective as vector
inv_obj <- c(0, 0, 0, 1)
# direction & RHS of constraints as vectors
inv_dir <- c(rep('>=', 3), rep('>=', 3), rep('<=', 3), "==", ">=")
inv_rhs \leftarrow c(rep(0, 3), rep(0, 3), rep(1, 3), 1, 0)
# solve system
library(lpSolve)
inv_strat <- lp('max', inv_obj, inv_mat, inv_dir, inv_rhs)</pre>
```

The optimal strategy for the investor is $x_A = 0.25$, $x_B = 0$, $x_C = 0.75$, which yields an optimal payoff of P = 4125.

Economy's Game

For the economy, the variables of interest are

- P = Payoff
- y_1 = Portion of the time to play condition 1
- y_2 = Portion of the time to play condition 2
- y_3 = Portion of the time to play condition 3

The linear program is

Minimize P

Subject to

```
\begin{array}{lll} 3000y_1 + 4500y_2 + 6000y_3 - P \leq 0 & Alternative \ A \\ 1000y_1 + 9000y_2 + 2000y_3 - P \leq 0 & Alternative \ B \\ 4500y_1 + 4000y_2 + 3500y_3 - P \leq 0 & Alternative \ C \\ y_1, y_2, y_3 \geq 0 & y_1, y_2, y_3 \leq 1 \\ y_1 + y_2 + y_3 = 1 & P \geq 0 \end{array}
```

The economy's program is solved in the same way as the investor's:

```
# LHS of constraints in matrix form
eco_mat <- matrix(c(3000, 4500, 6000, -1,
                     1000, 9000, 2000, -1,
                     4500, 4000, 3500, -1,
                     1, 0, 0, 0,
                     0, 1, 0, 0,
                     0, 0, 1, 0,
                     1, 0, 0, 0,
                     0.1.0.0.
                     0, 0, 1, 0,
                     1, 1, 1, 0,
                     0, 0, 0, 1),
                   ncol = 4, byrow = TRUE,
                   dimnames = list(NULL, c('y1', 'y2', 'y3', 'P')))
# objective as vector
eco_obj \leftarrow c(0, 0, 0, 1)
# direction & RHS of constraints as vectors
eco_dir <- c(rep('<=', 3), rep('>=', 3), rep('<=', 3), "==", ">=")
eco_rhs \leftarrow c(rep(0, 3), rep(0, 3), rep(1, 3), 1, 0)
# solve system
eco_strat <- lp('min', eco_obj, eco_mat, eco_dir, eco_rhs)</pre>
```

The optimal strategy for the economy is $y_1 = 0.625$, $y_2 = 0$, $y_3 = 0.375$, which yields an optimal payoff of P = 4125.

Section 10.4, Problem 1

The movement diagram from Section 10.1 is replicated below, with row minima and column maxima added:

	C 1	Colin	C2	Row min
R1	10	\iff	10	10
\mathbf{Rose}	\uparrow		\uparrow	
$\mathbf{R2}$	5	\Longrightarrow	0	0
Col max	10		10	

Two pure strategy solutions exist – Rose playing R1 and Colin playing either C1 or C2. In both cases, the value of the game is 10.

Section 10.5, Problem 3

As shown by the movement diagram below, a pure strategy exists – Rose playing R2 and Colin playing either C1 or C2

Due to this, neither the equating expected values or method of oddments will return useful solutions; however, they are still conducted for demonstration purposes.

Equating Expected Values

For Rose, the expected value under each of Colin's strategies are

$$E(C1) = 0.5x + 0.6(1 - x)$$

$$E(C2) = 0.3x + 1(1 - x)$$

where x is the portion of the time Rose uses strategy R1. Setting these equal to one another and solving,

$$0.5x + 0.6(1 - x) = 0.3x + 1(1 - x) \longrightarrow x = \frac{2}{3}; 1 - x = \frac{1}{3}$$

The value of the game is

$$E(C1) = 0.5x + 0.6(1 - x) = \frac{8}{15} \approx 0.5333$$

For Colin, the expected value under each of Rose's strategies are

$$E(R1) = 0.5y + 0.3(1 - y)$$

$$E(R2) = 0.6y + 1(1 - y)$$

where y is the portion of the time Colin uses strategy C1. Setting these equal to one another and solving,

$$0.5y + 0.3(1 - y) = 0.6y + 1(1 - y) \longrightarrow y = \frac{7}{6}; 1 - y = -\frac{1}{6}$$

Clearly this is a violation of the condition $0 \le y \le 0$ that applies since y is a probability. Nonetheless, the value of the game is calculated:

$$E(R1) = 0.5y + 0.3(1 - y) = \frac{7}{12} - \frac{3}{60} = \frac{8}{15} \approx 0.5333$$

Method of Oddments

As above, the solution does not produce useful results:

	C1	C2	$[\Delta]$
$\overline{R1}$	0.5	0.3	0.2
R2	0.6	1	0.4
$[\Delta]$	0.1	0.7	$0.6 \neq 0.8$

Section 10.6, Problem 2

$$\begin{array}{cccc} & & & & & & & \\ & & & & & & & \\ & & C1 & & & & \\ & R1 & (1,2) & \Longrightarrow & (3,1) \\ & & & & \downarrow & & & \downarrow \\ & R2 & (2,4) & \Longleftarrow & (4,3) \end{array}$$

There is a stable Nash equilibrium at (2,4) – neither player can utilaterally improve from this position.

Rose would rather Colin play C2, as it increases her potential payoff. To do this, she can issue a threat:

This meets the critera for a threat:

- it is contingent on Colin's action
- it harms Rose (lowers her payoff from 2 playing R2 to 1 playing R1)
- it is harmful to Colin (lowers his payoff from R under R2 to 2 under R1)

The game then becomes

Thus Colin will choose strategy C2, and Rose will choose strategy R2, maximizing her payoff at (4,3).

Section 10.7, Problem 3

To get the table of payoffs, the probabilities must be matched in a 3-by-3 grid and multiplied by the associated payoff per each outcome and summing the two numbers:

$$\begin{array}{cccc} & \textbf{IL} & \textbf{IM} & \textbf{IC} \\ \textbf{DL} & (3,-5) & (3,-10) & (3,-10) \\ \textbf{DM} & (10,-5) & (8,-6) & (8,-10) \\ \textbf{DC} & (10,-5) & (10,-6) & (10,-10) \\ \end{array}$$

Summing these values and completing the movement diagram yields

There is a nash equilibrium at (DC, IC) – here the game has a value of 0 and neither player can unilaterally improve.