

I.

Theoretical

Task Abstraction Validation

 \prod_{\cdot}

Practical

Part-to-Whole Rates & Ratios

Week 3 Oct 27, 2015

I.

Theoretical

Task Abstraction Validation

II.

Practical

Part-to-Whole Rates & Ratios

Week 3 Oct 27, 2015

Who is doing What with a viz, and Why?

Analyze

→ Consume

→ Produce

Search

	Target known	Target unknown		
Location known	·.·· Lookup	• Browse		
Location unknown	⟨`@.> Locate	₹ © .> Explore		

Query

All Data

Attributes

Network Data

→ Paths

Spatial Data

→ Shape

S Actions

- Analyze
 - → Consume

→ Enjoy

- → Produce
 - → Annotate
- → Record
- → Derive

	Target known	Target unknown		
Location known	·.•• Lookup	• Browse		
Location unknown	⟨`.⊙. Locate	₹ ! Explore		

- Query

 - → Identify → Compare
- → Summarize

Targets

→ All Data

→ Trends

- **Attributes**
 - → One
- → Many
- → Distribution atha

→ Extremes

- adh.
- **Network Data**
 - → Topology

→ Paths

- **Spatial Data**
 - → Shape

Why?

S Actions

→ Consume

→ Derive

	Target known	Target unknown		
Location known	·.·· Lookup	: Browse		
Location unknown	⟨`@.> Locate	₹ ! Explore		

Query

→ Identify

→ Compare

Targets

→ All Data

Attributes

- → One
- → Many
- → Distribution ath.
- → Dependency → Correlation → Similarity

adh.

→ Extremes

Network Data

→ Topology

→ Paths

Spatial Data

→ Shape

NOUNS

Why?

Targets

Analyze

→ Produce

→ Search

	Target known	Target unknown		
Location known	·.·· Lookup	• Browse		
Location unknown	⟨`@.> Locate	₹ ⊘ . > Explore		

Query

→ All Data

→ Attributes

→ Network Data

→ Paths

- Spatial Data
 - → Shape

Analyze: Consume

Q: How many trips did the DeLorean time machine take in the Back To The Future movies?

4	Α	В	С	D	Е	F	G	13
1	Trip	Movie	Departure Day	Arrival Day	Time Jump (days)	Direction	Passengers	D
2	1	Back to the Future	10/26/1985	10/26/1985	0.000694444	Forward	Einstein	E
3	2	Back to the Future	10/26/1985	11/5/1955	-10948	Backward	Marty	N
4	3	Back to the Future	11/12/1955	10/26/1985	10941	Forward	Marty	N
5	4	Back to the Future	10/26/1985	10/26/2015	10957	Forward	Doc	A
6	5	Back to the Future	10/21/2015	10/26/1985	-10952	Backward	Doc	Α
7	6	Back to the Future II	10/26/1985	10/21/2015	10952	Forward	Doc, Marty and Jennifer	D
8	7	Back to the Future II	10/21/2015	11/12/1955	-21893	Backward	Biff	Ċ
9	8	Back to the Future II	11/12/1955	10/21/2015	21893	Forward	Biff	₫
10	9	Back to the Future II	10/21/2015	10/26/1985	-10952	Backward	Doc, Marty and Jennifer	A
11	10	Back to the Future II	10/26/1985	11/12/1955	-10941	Backward	Doc and Marty	N
12	11	Back to the Future II	11/12/1955	1/1/1885	-25881	Backward	Doc	A
13	12	Back to the Future III	11/16/1955	9/2/1885	-25641	Backward	Marty	Δ
14	13	Back to the Future III	9/7/1885	10/27/1985	36574	Forward	Marty	N
15								

Every DeLorean Trip

in the Back To The Future Trilogy

Why?

S Actions

→ Consume

Search

	Target known	Target unknown		
Location known	·.•• Lookup	• Browse		
Location unknown	⟨`@.> Locate	₹ © .> Explore		

Query → Identify → Compare → Summarize ...

Attributes

→ Network Data

→ Topology

→ Paths

Spatial Data

→ Shape

S Actions

→ Consume

→ Produce

	Target known	Target unknown		
Location known	·.•• Lookup	• Browse		
Location unknown	⟨`@.> Locate	₹ ⊘ . > Explore		

Query

All Data

Attributes

- → One
- → Many
- → Distribution atha.

- → Extremes
- adh.

→ Topology

→ Paths

Spatial Data

→ Shape

2014 U.S. Flight Departure Delays Flights leaving from:

DEN on airlin

on airline: Southwest

Denver, CO

Flights: 57,145

1	DEN-) -PHX	3,002	4
2	DEN-) -LAS	2,915	
3	DEN → MDW	2,881	
4	DEN-) -LAX	2,323	
5	DEN→SLC	2,017	
6	DEN → MCI	1,767	
7	DEN→SAN	1,713	
8	DEN-) -HOU	1,677	
9	DEN→SMF	1,401	
10	DEN → OAK	1,377	
11	DEN-MSP	1.316	*

Avg delay: 00:17:43

1	DEN+PVD	00:56:53	4
2	DEN-)-EWR	00:38:43	
3	DEN-⊁LGA	00:28:23	
4	DEN-)-BDL	00:27:25	
5	DEN-) -JAX	00:26:23	
6	DEN-)-SFO	00:25:42	
7	DEN-⊁BOS	00:25:29	
8	DEN-)-RSW	00:24:48	
9	DEN+)-CAK	00:24:35	
10	DEN-)-AMA	00:23:06	
11	DEN-)-PIT	00:22:29	4

& Actions

Analyze

→ Consume

→ Produce

Search

	Target known	Target unknown		
Location known	·.·· Lookup	• Browse		
Location unknown	⟨`@.> Locate	₹ ⊘ . > Explore		

All Data

Attributes

Network Data

→ Topology

→ Paths

Spatial Data

→ Shape

Query: Identify

Query: Compare

Query: Summarize

Who won the most votes **overall**?

Validation

Domain situation

Observe target users using existing tools

Data/

Data/task abstraction

Visual encoding/interaction idiom

Justify design with respect to alternatives

Algorithm

Measure system time/memory
Analyze computational complexity

Analyze results qualitatively

Measure human time with lab experiment (lab study)

Observe target users after deployment (field study)

Measure adoption

Who are they and Why do they care?

What data do they have and what are they doing?

How is the data shown to them?

Does it work?

The Doctor Example

Group Exercise

Come up with your own example:

- 1. Who is the user and why do they care?
- 2. What data do they have and what are they trying to do with it?
- 3. How can the data be shown to them to help them do their job effectively?
- 4. What needs to happen so that the visual system doesn't fail them?

I.

Theoretical

Task Abstraction
Validation

II.

Practical

Part-to-Whole Rates & Ratios

Week 3 Oct 27, 2015

Comparative Quotients: 4 Types

ratios

proportions

rates

percentages

Comparative Quotients: Formulas

ratios

Value #1
Value #2

proportions

Partial amount
Whole amount

rates

Value #1
Value #7 (different units)

percentages

Partial amount × 100 Whole amount

Comparative Quotients: Examples

ratio

Screen resolution

proportion

Baseball batting average

rate

Miles per hour

percentage

Market share

PRECINCT DETECTIVES AND MURDERS: The NYPD's detective force has dropped by about 2,000 since Sept. 11, and specialists were done away with in the precincts, so detectives could "catch" anything from a mugging to a murder. This chart looks at the number of detectives in each precinct and their caseload in 2013.

Precinct Name	Detectives	Total cases	Cases per detective	Detectives per murder	Total Murders	OPEN CLOSED	
East Flatbush	28	3800	136	2.3	12		-
Crown Heights (north)	19	2900	153	1.6	12		
East New York	32	6200	194	1.9	17		
Brownsville	27	4200	156	2.1	13		
Soundview	28	4300	154	3.5	8		*

Detective staffing numbers are from a police source. Murders are compiled using information provided by the NYPD. "Total case load" is an estimate. "Open murders" indicates no arrest has been made, "closed murders" indicates an arrest; however the suspect could later be deemed innocent. The News does not have records for one murder.

Visualizing Part-to-Whole

Market Share Data

(Before)

Company A	0.1303
Our Company	0.1346
Company C	0.0885
Company D	0.5244
Company E	0.0495
Company F	0.0537
Company G	0.01
Company H	0.005
Company I	0.004

(After)

3D pie charts

Market Share

Why Not?

Pie charts

Suggestions for Pie Charts

Order slices from largest to smallest Color slices by magnitude (dual-encoded)

If one slice matters more, highlight it

Bar charts are easier to compare

Sort in descending order

Market Share

Other Part-to-Whole Visualizations

Visualizing Part-to-Whole

People Use Their Cellphones in Public for a Variety of Purposes

% of cellphone owners who do these things in public with their phones

Source: Pew Research Center American Trends Panel survey, May 30-June 30, 2014. N=3,042 cell users

PEW RESEARCH CENTER

YouGov

Sample 1000 A Conducted April 16 Margin of Error ±4.2%

1000 Adult Interviews April 16 - 20, 2015

How much do you trust these law enforcement agencies?

% of respondents who say they trust...

How much do you trust these law enforcement agencies?

http://www.huffingtonpost.com/2015/04/22/law-enforcement-trust-poll_n_7118634.html

Week 3 Homework

- Read the chapters for the Week 4 Lecture:
 - Munzner, Visualization Analysis & Design, Ch. 5
 - Jones, Communicating Data with Tableau, Ch. 6-7

Visualization

- Find a dataset that includes either a rate, ratio, percent or proportion.
- Create a visualization using this dataset (static or interactive)
- Write a single paragraph describing an imaginary user, their task, why the visual encoding that you created supports that task, and how the system needs to work to be effective