Noţiuni introductive

Multiset

- S o mulţime (finită) nevidă
- Multiset
 - Intuitiv: "mulțime" +se pot repeta elementele

Multiset

- S o mulţime (finită) nevidă
- Multiset
 - $R = (S, r), r : S \rightarrow \mathbb{N}$ funcție de multiplicitate
- Notaţie
 - $R = \{x^{r(x)} \mid x \in S\}$

Multiset

Exemplu

- \cdot S = {1, 2, 3, 4, 5}
- $R = \{2^2, 3, 5^3\}$
- |R| = 2+1+3 = 6 suma multiplicităților
- 1 ∉ R

- Graf orientat: G = (V, E)
 - V finită
 - E perechi (ordonate) de 2 elemente distincte din V
 - v ∈ V vârf
 - \circ e = (u, v) = uv arc
 - u = e- vârf inițial / origine / extremitate inițială
 - v = e⁺ vârf final / terminus / extremitate finală

- ightharpoonup G = (V, E)
 - $d_G^-(u)$ grad interior

$$d_G^-(u) = |\{e \in E \mid u \text{ extremitate final apentru } e \}|$$

- $d_G^+(u)$ grad exterior $d_G^+(u) = |\{e \in E \mid u \text{ extremitate initiala pentru } e \}|$
- $d_G(u)$ grad $d_G(u) = d_G^+(u) + d_G^-(u)$

Are loc relația

$$\sum_{u \in V} d_G^-(u) = \sum_{u \in V} d_G^+(u) = |E|$$

Multisetul gradelor

- G orientat, $V = \{v_1, v_2, ..., v_n\}$
 - Multisetul gradelor interioare

$$s^{-}(G) = \{d_{G}^{-}(v_{1}),...,d_{G}^{-}(v_{n})\}$$

Multisetul gradelor exterioare

$$s^{+}(G) = \{d_{G}^{+}(v_{1}),...,d_{G}^{+}(v_{n})\}$$

- Graf neorientat: G = (V, E)
 - V finită
 - E submulțimi de 2 elemente (distincte) din V
 - v ∈ V vârf / nod
 - $e = \{u,v\} = uv muchie$
 - u, v capete / extremități

Notații

- ▶ V(G), E(G)
- ▶ e = uv

Multigraf neorientat/orientat

Multigraf

G = (V, E, r)r(e) – multiplicitatea muchiei e

Multigraf neorientat

- G = (V, E, r)

 r(e) multiplicitatea muchiei e
 - \circ e = {u,u} = buclă
 - e cu r(e) >1 = muchie multiplă

 $d_G(u) = |\{e \in E \mid e \text{ nu este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ ext$

Alte noțiuni fundamentale

Adiacență. Incidență

Adiacență. Incidență

- ightharpoonup Fie G = (V, E) un graf neorientat
 - $u \neq v \in V \text{ sunt adiacente dacă } uv \in E$
 - Un vecin al lui u ∈ V este un vârf adiacent cu el
 - Notație N_G(u) = mulțimea vecinilor lui u

Adiacență. Incidență

- ightharpoonup Fie G = (V, E) un graf neorientat
 - O muchie e ∈ E este incidentă cu un vârf u dacă u este extremitate a lui e
 - e şi f ∈ E sunt adiacente dacă există un vârf în care sunt incidente (au o extremitate în comun)

- Drum (walk)
- Drum simplu (trail)
- Drum elementar (path)
- Circuit + elementar
- Lungimea unui drum
- Distanță între două vârfuri

Fie G un graf orientat

Un drum este o secvență P de vârfuri

$$P = [v_1, v_2, ..., v_{k-1}, v_k]$$

unde $v_1,...,v_k \in V(G)$

cu proprietatea că între oricare două vârfuri consecutive există arc:

$$(v_{i, v_{i+1}}) \in E(G), \forall i \in \{1, ..., k-1\}$$

Fie G un graf orientat și un drum

$$P = [v_1, v_2, ..., v_{k-1}, v_k]$$

- ▶ P este <u>drum simplu</u> dacă nu conține un arc de mai multe ori $((v_{i,} v_{i+1}) \neq (v_{i,} v_{i+1}), \forall i \neq j)$
- ▶ P este <u>drum elementar</u> dacă nu conține un vârf de mai multe ori $(v_i \neq v_i, \forall i \neq j)$

[1, 2, 4, 6, 2, 4] - drum care nu este simplu
[1, 2, 4, 6, 2, 3] - drum simplu care nu este elementar
[1, 2, 4, 6] - drum elementar

$$P = [v_1, v_2, ..., v_{k-1}, v_k]$$

- Lungimea lui P = I(P) = k-1 = |E(P)|
- \mathbf{v}_1 și \mathbf{v}_k se numesc capetele/ extremitățile lui P
- P se numeşte şi v₁-v_k drum
- Pentru i≤j notăm [v_i P v_j] subdrumul lui P dintre v_i și v_j

$$P = [v_1, v_2, ..., v_{k-1}, v_k]$$

Notăm

- $V(P) = \{v_1, v_2, ..., v_k\}$
- $\circ e_{i} = (v_{i}, v_{i+1})$
- \circ E(P) = {e₁, e₂, ..., e_{k-1}}

Pentru două vârfuri u și v definim distanța de la u la v astfel:

$$\delta_G(u,v) = \begin{cases} 0, \text{ daca } u = v \\ \infty, \text{ daca nu exista } u - v \text{ drum in } G \\ \min\{l(P) \mid P \text{ este } u - v \text{ drum in } G\}, \text{ altfel} \end{cases}$$

(cea mai mică lungime a unui u-v drum)

Pentru două vârfuri u și v definim distanța de la u la v astfel:

$$\delta_{G}(u,v) = \begin{cases} 0, \text{ daca } u = v \\ \infty, \text{ daca nu exista } u - v \text{ drum in } G \\ \min\{l(P) \mid P \text{ este } u - v \text{ drum in } G\}, \text{ altfel} \end{cases}$$

(cea mai mică lungime a unui u-v drum)

- Un u-v drum de lungime $\delta_G(u,v)$ se numește **drum** minim de la u la v
- Vom nota și $\delta(u, v)$ dacă G se deduce din context sau d(u,v) dacă nu apar confuzii de notație

Un circuit este un drum simplu cu capetele identice

$$C = [v_1, v_2, ..., v_{k-1}, v_k, v_1]$$

- Circuit elementar
- Notații V(C), E(C)

Lanțuri. Cicluri

Lanțuri. Cicluri

Pentru G graf neorientat - noțiuni similare

Un lanţ este o secvenţă P de vârfuri cu proprietatea
 că oricare două vârfuri consecutive sunt adiacente

$$P = [v_1, v_2, ..., v_{k-1}, v_k]$$

- lanţ simplu / lanţ elementar / lungime
- ciclu / ciclu elementar
- distanță / lanț minim

Graf parțial. Subgraf. Conexitate

- graf parţial
- subgraf
- subgraf indus

Fie G = (V, E) și $G_1 = (V_1, E_1)$ două grafuri

• G_1 este **graf parțial** al lui G (vom nota $G_1 \le G$) dacă $V_1 = V$, $E_1 \subseteq E$

Fie
$$G = (V, E)$$
 și $G_1 = (V_1, E_1)$ două grafuri

- G_1 este **graf parțial** al lui G (vom nota $G_1 \le G$) dacă $V_1 = V$, $E_1 \subseteq E$
- G_1 este **subgraf** al lui G (vom nota $G_1 \prec G$) dacă $V_1 \subseteq V$, $E_1 \subseteq E$

Fie
$$G = (V, E)$$
 și $G_1 = (V_1, E_1)$ două grafuri

- G_1 este **graf parțial** al lui G (vom nota $G_1 \le G$) dacă $V_1 = V$, $E_1 \subseteq E$
- G_1 este **subgraf** al lui G (vom nota $G_1 < G$) dacă $V_1 \subseteq V$, $E_1 \subseteq E$
- G_1 este **subgraf indus de V_1 în** G (vom nota $G_1=G[V_1]$) dacă $V_1\subseteq V$, $E_1=\{e\mid e\in E(G),\ e\ are\ ambele\ extremități\ în\ V_1\}$ (toate arcele/muchiile cu extremități în V_1)

Fie G = (V, E) un graf neorientat

- graf conex
- componentă conexă

două componente conexe

Fie G = (V, E) un graf neorientat

 G este graf conex dacă între orice două vârfuri distincte există un lanț

Fie G = (V, E) un graf neorientat

- G este graf conex dacă între orice două vârfuri distincte există un lanţ
- O componentă conexă a lui G este un subgraf indus conex maximal (care nu este inclus în alt subgraf conex)

Fie G = (V, E) un graf neorientat

- G este graf conex dacă între orice două vârfuri distincte există un lanţ
- O componentă conexă a lui G este un subgraf indus conex maximal (care nu este inclus în alt subgraf conex)
- Pentru cazul orientat tare-conexitate

Notații

- ightharpoonup G v, $v \in V(G)$
- ightharpoonup G e, $e \in E(G)$
- ightharpoonup G V', $V' \subseteq V(G)$
- ightharpoonup G E', $E' \subseteq E(G)$
- \rightarrow G + e

Egalitate. Izomorfism

Egalitate

Egalitate?

Fie G₁, G₂ două grafuri

- $G_1 = (V_1, E_1)$
- $G_2 = (V_2, E_2)$

Grafurile G_1 și G_2 sunt **izomorfe** ($G_1 \sim G_2$) \Leftrightarrow există $f: V_1 \rightarrow V_2$ bijectivă cu

$$uv \in E_1 \Leftrightarrow f(u)f(v) \in E_2$$

pentru orice $u,v \in V_1$

(f conservă adiacența și neadiacența)

Interpretare: se pot reprezenta în plan prin același desen

f:
$$2 -> a$$

 $4 -> c$
 $1 -> b$
 $3 -> d$

$$G_1 \sim G_2 \Rightarrow s(G_1) = s(G_2)$$

 $s(G_1) = s(G_2) \not\Rightarrow G_1 \sim G_2$ Exemplu??

Izomorfe?

Care dintre aceste grafuri sunt izomorfe?

Sunt aceste grafuri izomorfe?

Un graf neorientat G = (V, E) se numește **bipartit** \Leftrightarrow există o partiție a lui V în două submulțimi V_1, V_2 (**bipartiție**):

$$V = V_1 \cup V_2$$
$$V_1 \cap V_2 = \emptyset$$

astfel încât orice muchie $e \in E$ are o extremitate în V_1 și cealaltă în V_2 :

$$|e \cap V_1| = |e \cap V_2| = 1$$

Observație

G = (V, E) bipartit ⇔
 există o colorare a vârfurilor cu două culori:
 c : V → {1, 2}
 astfel încât pentru orice muchie e=xy∈E avem
 c(x) ≠ c(y)

(bicolorare)

nu este bipartit

▶ P_n – lanţ elementar

▶ C_n – ciclu elementar

▶ K_n – graf complet

▶ K_{p,q} – graf bipartit complet

► K_{3,3}

