Department of Electrical Engineering Indian Institute of Technology, Kanpur

EE 210 Assignment #6 Assigned: 12.2.21

- 1. An n-channel MOSFET is to be designed to carry a drain current of 100 μA , remaining in the saturation region with the least value of V_{DS} equal to 100 mV, and at this bias point, its output resistance must equal 1 M Ω . Design the values of its W and L, assuming $dX_d/dV_{DS}=10$ nm/V. Assume $k_N'=40~\mu A/V^2$, and $\lambda V_{DS}<<1$.
- 2. Determine the output current I_0 and the output resistance of the bipolar current mirror shown in Fig.1, for $V_0=1$ V, 5 V, and 30 V: i) neglecting any non-idealities, and ii) including all non-idealities. For each case, find the percent change between the ideal and the non-ideal performances. All the transistors have the same emitter-base junction areas. Assume $V_A=130$ V and $\beta=50$.
- 3. Consider the npn ratioed current mirror shown in Fig.2, with $V_{CC} = 5$ V and $R_1 = 1$ k Ω . Choose the values of R and R_2 , such that the output resistance of the mirror is at least 10 M Ω , and the circuit should operate properly for V_0 all the way down to 0.5 V. What is the output current I_0 ? Using the calculated value of I_{REF} , determine the value of I_0 , for which the simple approximation for the ratioed current mirror would *just* break down. What are the corresponding values of R_2 , $V_{0(min)}$, and R_0 ? Neglect base currents and Early effect for the dc analysis of the circuit, and assume $V_A = 130$ V for ac analysis.
- 4. Determine the quiescent currents flowing in all the branches of the circuit shown in Fig.3, and calculate the output resistance R_0 . Neglect base currents, and assume $V_A = 130 \text{ V}$.
- 5. Determine the output current and the output resistance of the circuit shown in Fig.4. Neglect base currents and assume $V_A = 130 \text{ V}$.

