

36th International Physics Olympiad Salamanca, Spain 3–12 July 2005

-----oOo-----

Theoretical Question 3: "Quantum effects of gravity"

Classically, the cavity behaves as a vertical velocity selector

Classically, the cavity behaves as a vertical velocity selector

1. Balls with high v_z will eventually hit the absorber: $|v_z(z)| < v_{\max}(z)$ (energy conservation)

Classically, the cavity behaves as a vertical velocity selector

- 1. Balls with high v_z will eventually hit the absorber: $|v_z(z)| < v_{\max}(z)$ (energy conservation)
- 2. One up-down cycle is necessary in order to select velocities \rightarrow minimum time and length t_c , L_c

Classically, the cavity behaves as a vertical velocity selector

- 1. Balls with high v_z will eventually hit the absorber: $|v_z(z)| < v_{\sf max}(z)$ (energy conservation)
- 2. One up-down cycle is necessary in order to select velocities \rightarrow minimum time and length t_c , L_c
- 3. Number of balls at D: $N_c \propto \int_0^H dz \ 2v_{\text{max}}(z)$

Classically, the cavity behaves as a vertical velocity selector

- 1. Balls with high v_z will eventually hit the absorber: $|v_z(z)| < v_{\max}(z)$ (energy conservation)
- 2. One up-down cycle is necessary in order to select velocities \rightarrow minimum time and length t_c , L_c
- 3. Number of balls at D: $N_c \propto \int_0^H dz \ 2v_{\text{max}}(z)$

- 1. Balls with high v_z will eventually hit the absorber: $|v_z(z)| < v_{\max}(z)$ (energy conservation)
- 2. One up-down cycle is necessary in order to select velocities \rightarrow minimum time and length t_c , L_c
- 3. Number of balls at D: $N_c \propto \int_0^{\pi} dz \ 2v_{\text{max}}(z)$

- 1. Energy levels $E_n = E_1 n^{2/3}$ (BS quantization rule — PROVIDED)
- 2. One up-down cycle is necessary in order to select velocities \rightarrow minimum time and length t_c , L_c
- 3. Number of balls at D: $N_c \propto \int_0^H dz \ 2v_{\text{max}}(z)$

- 1. Energy levels $E_n = E_1 n^{2/3}$ (BS quantization rule PROVIDED)
- 2. Time necessary to observe the first quantum level (Uncertainty relations: $\Delta t \gtrsim h/\Delta E \gtrsim h/E_1$)
- 3. Number of balls at D: $N_c \propto \int_0^H dz \ 2v_{\text{max}}(z)$

- 1. Energy levels $E_n = E_1 n^{2/3}$ (BS quantization rule — PROVIDED)
- 2. Time necessary to observe the first quantum level (Uncertainty relations: $\Delta t \gtrsim h/\Delta E \gtrsim h/E_1$)
- 3. Number of neutrons at D: $N_q = \int_0^H dz \ I(z)$ (intensity proportional to (amplitude)²)

Sketch of experimental data for neutron counting:

Only the first quantum sharp increase is analysed

Sketch of experimental data for neutron counting:

Only the first quantum sharp increase is analysed

Sketch of experimental data for neutron counting:

Only the first quantum sharp increase is analysed

Objective:

Compare classical and quantum predictions for neutrons in the Earth's gravitational field

Main references:

V. V. Nesvizhevsky et al.,

"(Measurement of) quantum states of neutrons in the Earth's gravitational field",

- □ Nature 415 (2002) 297;
- ☐ Phys. Rev. D67 (2003) 102002.

Precedent:

"Electron interference"

- ☐ 5th Iberoamerican Physics Olympiad, Jaca 2000, Spain
- ☐ 24th International Physics Olympiad, Williamsburgh 1993, U.S.A.

Concepts involved:

- Energy conservation
- → Heisenberg's uncertainty relations
- ◆ Energy levels of quantum systems
- ♦ Waves: intensity proportional to (amplitude)²

36th International Physics Olympiad Salamanca, Spain 3–12 July 2005

Theoretical Question 3: "Quantum effects of gravity"