Московский государственный технический университет им. Н.Э. Баумана

Применение методов машинного обучения (ML) для решения задач технического анализа при управлении активами на фондовом рынке

Выполнил: Онюшев А.А., РК6-86Б

Научный руководитель: Витюков Ф.А.

Цели и задачи

Целью данной работы является разработка системы для генерации рекомендаций по выставлению заявок take_profit и stop_loss при управлении активами на фондовом рынке.

Исследование проводится на нейронных сетях с различными архитектурами: MLP (Multi-Layer Perceptron), CNN (Convolutional Neural Network), ViT (Vision Transformer).

Задачи:

- 1. Разработка программ на основе фреймворка PyTorch для проведения исследований эффективности работы архитектур нейронных сетей MLP, CNN, ViT для поставленных целей;
- 2. Реализация метода дообучения для предложенных архитектур нейронных сетей;
- 3. По итогам исследования сформировать графики и собрать значения различных метрик, указывающих на эффективность той или иной настройки нейронной сети.

Основные определения

- Stop-loss это поручение продать актив, если его цена упадёт ниже заданного уровня, т.е. ограничитель убытков;
- Take-profit это поручение продать актив, если его цена вырастет до заданного уровня;
- High наибольшее значение цены актива за день;
- Low наименьшее значение цены актива за день;
- Open значение цены актива с которым она начала день;
- Close значение цены актива с которым она закончила день;
- EMA (Exponential Moving Average) экспоненциальная скользящая средняя. Один из показателей, помогающих при техническом анализе. В данном решении используется EMA 200, т.е. значение скользящей средней за 200-дневный интервал.

Рис. 1. Вид ЕМА 200 на графике котировок

Рис. 2. Схема свечей

$$\begin{split} EMA_{Today} &= (Value_{Today} * \left(\frac{Smoothing}{1 + Days}\right)) \\ &+ EMA_{Yesterday} * \left(1 - \left(\frac{Smoothing}{1 + Days}\right)\right) \end{split}$$

Рис. 3. Формула расчёта ЕМА

Рис. 4. Примеры заявок stop loss и take-profit

Решение задачи технического анализа на архитектуре MLP

Многослойный перцептрон (Multi-Layer Perceptron, MLP) — это класс искусственных нейронных сетей прямого распространения, состоящих как минимум из трех слоев: входного, скрытого и выходного. У каждого слоя есть заранее заданная функция активации. В данной работе для MLP используется функция активации ReLU.

Рис. 6. Функция ReLU

Рис. 5. Схема устройства МLР

Основные определения

MSE (mean squared error) – среднеквадратичная ошибка.

Для определения MSE используется формула:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2,$$

где

n – количество входных значений;

 Y_i — точная величина;

 \widehat{Y}_i – предугаданная величина.

MAE (mean absolute error) - средняя абсолютная ошибка.

Для определения МАЕ используется формула:

$$MAE = \frac{\sum_{i=1}^{n} |y_i - \hat{y}_i|}{n},$$

где;

n – количество входных значений;

 y_i – точная величина;

 $\overline{\hat{y}_i}$ – предугаданная величина.

Полученные результаты для MLP

Рис. 7. График для 200 эпох для MSE

Рис. 8. График для 800 эпох для МАЕ

На графиках синим цветом показаны предсказанные значения, красным – точные. По оси абсцисс – дни, по ординат – нормированное значение stop-loss.

Epochs	Time, sec.	Average_label	Average_prediction	Standard_deviation	Error, %
50	1,0	0,535	0,468	0,167	31,27
100	2,0	0,535	0,472	0,155	28,93
200	3,6	0,535	0,494	0,138	25,88
400	6,7	0,535	0,474	0,145	27,12
800	13,6	0,535	0,484	0,148	27,64
1600	27,8	0,535	0,479	0,139	26,07
3200	56,0	0,535	0,475	0,181	33,82
6400	195,3	0,535	0,467	0,148	27,79
10000	180,5	0,535	0,497	0,176	32,95

Таблица 1. Значения метрик для MSE

Epochs	Time, sec.	Average_label	Average_prediction	Standard_deviation	Error, %
50	1,0	0,535	0,4970	0,146	27,40
100	2,0	0,535	0,4780	0,157	29,38
200	3,5	0,535	0,4595	0,155	28,95
400	7,2	0,535	0,4670	0,158	29,49
800	14,7	0,535	0,4895	0,141	26,31
1600	28,4	0,535	0,4697	0,164	30,72
3200	58,8	0,535	0,4245	0,186	34,69
6400	117,3	0,535	0,4078	0,207	38,67
10000	188,0	0,535	0,4445	0,191	35,71

Таблица 2. Значения метрик для МАЕ

Решение задачи технического анализа на архитектуре CNN

Рис. 9. Схема устройства CNN

Сверточные нейронные сети (Convolutional Neural Network, CNN) в машинном обучении — это специализированный тип искусственных нейронных сетей, который используется для обработки и анализа данных с сеточной топологией, таких как изображения. CNN состоят из слоев сверток и пуллинга, которые позволяют автоматически извлекать пространственные иерархические признаки, что делает их особенно эффективными для задач классификации, детектирования и сегментации изображений или больших матриц.

Полученные результаты для CNN

Рис. 10. График для 50 эпох для MSE

Рис. 11. График для 400 эпох для МАЕ

На графиках синим цветом показаны предсказанные значения, красным – точные. По оси абсцисс – дни, по ординат – нормированное значение stop-loss.

Epochs	Time, sec.	Average_label	Average_prediction	Standard_deviation	Error, %
50	3,5	0,535	0,5478	0,185	34,66
100	4,7	0,535	0,7070	0,281	52,64
200	8,7	0,535	0,5522	0,187	35,01
400	13,0	0,535	0,6143	0,198	37,15
800	25,8	0,535	0,5760	0,216	40,41
1600	49,0	0,535	0,5205	0,246	45,87
3200	98,3	0,535	0,5173	0,281	52,56
6400	193,8	0,535	0,5000	0,210	39,30
10000	299,8	0,535	0,5724	0,239	44,71

Таблица 3. Значения метрик для MSE

Epochs	Time, sec.	Average_label	Average_prediction	Standard_deviation	Error, %
50	3,9	0,535	0,7153	0,288	53,79
100	4,8	0,535	0,5652	0,185	34,72
200	8,2	0,535	0,6572	0,204	38,17
400	13,4	0,535	0,5331	0,173	32,31
800	25,8	0,535	0,6463	0,187	34,85
1600	51,8	0,535	0,5064	0,208	38,92
3200	102,4	0,535	0,4783	0,241	44,99
6400	202,8	0,535	0,5502	0,179	33,42
10000	317,7	0,535	0,5000	0,194	36,19

Таблица 4. Значения метрик для МАЕ

Сравнение времени обучения MLP и CNN

MLP	Time, sec.	CNN	Time, sec.
50	1,00	50	3,48
100	2,00	100	4,67
200	3,59	200	8,71
400	6,72	400	13,04
800	13,57	800	25,76
1600	27,80	1600	48,98
3200	56,04	3200	98,29
6400	195,29	6400	193,84
10000	180,47	10000	299,83

Таблица 5. Зависимость времени обучения НС от количества эпох при использовании MSELoss

MLP	Time, sec.	CNN	Time, sec.
50	1,00	50	3,90
100	2,00	100	4,76
200	3,46	200	8,21
400	7,21	400	13,41
800	14,69	800	25,78
1600	28,40	1600	51,80
3200	58,80	3200	102,44
6400	117,31	6400	202,84
10000	187,95	10000	317,75

Таблица 6. Зависимость времени обучения НС от количества эпох при использовании MAELoss

Решение задачи технического анализа на архитектуре ViT

Зрительный трансформер (Vision Transformer, ViT) — ViT (Vision Transformer) - это модель глубокого обучения, которая применяет трансформерную архитектуру к задачам компьютерного зрения. В отличие от традиционных моделей, ViT не использует свертки, а вместо этого преобразует изображение в последовательность векторов и обрабатывает их с помощью механизма внимания трансформера.

Рис. 12. Схема устройства ViT

Полученные результаты для ViT

Рис. 13. График наилучшего результата (5)

Рис. 14. График второго наилучшего результата (4)

На графиках синим цветом показаны предсказанные значения, красным – точные. По оси абсцисс – дни, по ординат – нормированное значение stop-loss.

<u>.</u>	Nº	Time, sec.	Average_label	Average_prediction	Standard_deviation	Error, %
Transformer	1)	799,31	0,5352	0,5386	0,164	30,58
sfo	2)	81,76	0,5352	0,5106	0,233	43,57
ran	3)	81,52	0,5352	0,4846	0,217	40,70
L L	4)	82,36	0,5352	0,4636	0,163	30,46
Vision	5)	82,64	0,5352	0,5870	0,148	27,66
>	6)	846,01	0,5352	0,5298	0,194	36,25

Таблица 7. Наилучшие значения метрик

Применение метода дообучения

Управление активами на основе дневного таймфрейма графика цены подразумевает возможность для дообучения НС каждый день.

Поэтому было проведено исследование с использованием цикла дообучений НС.

Каждый день от брокера мы получаем новый элемент датасета с информацией о цене закрытия вчерашнего дня. На её основе, управляющий активами раз в день добавляет данные о правильном «take-profit» и «stoploss». Этой новой информации и будем дообучать НС.

Полученные результаты для метода дообучения MLP

Рис. 15. Слева – график до дообучения, Справа – после.

Рис. 16. Слева – график до дообучения, Справа – после.

Epochs	Time, sec.	Average_label	Average_prediction	Standard_deviation	Error, %
200	4,2	0,5352	0,3806	0,208	38,88

Таблица 8. Значения метрик для MLP до дообучения

Epochs	Time, sec.	Average_label	Average_prediction	Standard_deviation	Error, %
1000	904.2	0,5352	0,4613	0,130	24,32
512	458.2	0,5352	0,4583	0,134	25,01
256	227.4	0,5352	0,4657	0,123	23,02
128	118.4	0,5352	0,4520	0,137	25,60
64	61.2	0,5352	0,4483	0,132	24,62
32	33.4	0,5352	0,4457	0,144	27,00
16	18,2	0,5352	0,4362	0,157	29,44

Таблица 9. Значения метрик для MLP после дообучения

Полученные результаты для метода дообучения CNN

EpochsTime, sec.Average_labelAverage_predictionStandard_deviationError, %6400193,90,53520,56730,17733,1

Таблица 10. Значения метрик для CNN до дообучения

Рис. 17. Слева – график до дообучения, Справа – после.

Рис. 18. Слева – график до дообучения, Справа – после.

Epochs	Time, sec.	Average_label	Average_prediction	Standard_deviation	Error, %
1000	1375,9	0,5352	0,4766	0,160	29,96
512	741,0	0,5352	0,5295	0,126	23,47
256	383,8	0,5352	0,5278	0,139	25,92
128	190,1	0,5352	0,5298	0,141	26,36
64	98,3	0,5352	0,5266	0,145	27,00
32	53,7	0,5352	0,5258	0,152	28,40
16	29,3	0,5352	0,5431	0,149	27,89

Таблица 11. Значения метрик для CNN после дообучения

Полученные результаты для метода дообучения ViT

Рис. 19. Слева – график до дообучения, Справа – после.

Рис. 20. Слева – график до дообучения, Справа – после.

ViT	Time, sec.	Average_label	Average_prediction	Standard_deviation	Error, %
	78,7	0,5352	0,4560	0,221	41,22

Таблица 12. Значения метрик для ViT до дообучения

Epochs	Time, sec.	Average_label	Average_prediction	Standard_deviation	Error, %
25	208,3	0,5352	0,4706	0,193	36,06
50	392,1	0,5352	0,4872	0,181	33,94
75	556,1	0,5352	0,4938	0,193	36,15
100	789,5	0,5352	0,5108	0,158	29,53

Таблица 13. Значения метрик для ViT после дообучения

Заключение

- 1. В ходе выполнения выпускной квалификационной работы были изучены различные архитектуры НС, такие как: MLP, CNN, ViT;
- 2. Реализованы полномасштабные HC указанных архитектур на основе фреймворка PyTorch;
- 3. Написаны модули для удобного выбора и использования различных функций оптимизации и функций потерь;
- 4. Проведены исследования на реализованных НС и сделаны выводы по их эффективности.

