Structured Data Analysis with Spark SQL

Spark Summit China 2015 Cheng Lian

Part of the core distribution since Spark 1.0 (April 2014)

Part of the core distribution since Spark 1.0 (April 2014)

Runs SQL / HiveQL queries, optionally alongside or replacing existing Hive deployments

SELECT COUNT(*)
FROM hiveTable
WHERE hive_udf(data)

Connect existing BI tools to Spark through JDBC/ODBC

Bindings in Python, Scala, and Java

But... Hey

Spark SQL is not about SQL...

Spark SQL is about more than SQL

Official definition

is a Spark module for **Structured Data** processing

Spack SQL: The Whole Story

Creating and Running Spark Programs Faster:

- Write less code
- Read less data
- Let the optimizer do the hard work

DataFrame

- A distributed collection of rows organized into named columns
 - Evolved from SchemaRDD (cf. Spark < 1.3)
- An abstraction for selecting, filtering, aggregating, and plotting structured data
- Inspired by R and Python Pandas
 - Single machine small data processing experiences applied to distributed big data

DataFrame

Common operations can be expressed concisely as calls to the DataFrame API

- Selecting required columns
- Joining different data sources
- Aggregation (count, sum, average, etc)
- Filtering

DataFrame v.s. RDD[T]

Person
Person
Person
Person
Person
Person

Name	Age	Height	
String	Int	Double	
String	Int	Double	
String	Int	Double	
String	Int	Double	
String	Int	Double	
String	Int	Double	

RDD[Person]

DataFrame

DataFrame v.s. RDD[T]

String Int Double

RDD[Person]

Person

DataFrame

External Data Sources API

- An extensible way to integrate a variety of external data sources into Spark SQL
- Can read and write DataFrames using a variety of formats and storage systems

External Data Sources API

Write Less Code

```
private IntWritable one = new IntWritable(1);
private IntWritable output = new IntWritable();
protected void map(LongWritable key, Text value, Context context) {
 String[] fields = value.split("\t");
 output.set(Integer.parseInt(fields[1]));
 context.write(one, output);
private IntWritable one = new IntWritable(1);
private DoubleWritable average = new DoubleWritable();
protected void reduce(IntWritable key, Iterable<IntWritable> values, Context context) {
  int sum = 0;
 int count = 0;
                                              sc.textFile("hdfs://...")\
 for(IntWritable value : values) {
                                                .map(lambda x: (x[0], [x[1], 1]))\
    sum += value.get();
                                                .reduceByKey(
    count++;
                                                  lambda x, y: [x[0] + y[0], x[1] + y[1]])
                                                .map(lambda x: [x[0], x[1][0] / x[1][1]])\
                                                .collect()
 average.set(sum / (double) count);
 context.write(key, average);
                                              sqlContext.table("people")\
                                                         .groupBy("name")\
                                                         .agg("name", avg("age"))\
```

.collect()

Write Less Code for Clarity!

Write Less Code for Clarity!

Write Less Code for Clarity!

Full API Docs:

- Python
- Scala
- Java

Write Less Code and Run Faster!

Time to Aggregate 10 million int pairs (secs)

Eliminate Boilerplate Code

Schema inference

- Big data tends to be dirty
- Infer schema from semi-structured data (i.e. JSON)
- Merge different but compatible versions of schema (i.e. JSON, Parquet)

{"Name": "Alice", "Gender": "F", "Height": 160}

{"Name": "Bob", "Gender": "M", "Height": 175, "Age": 20}

{"Name": "Cavin", "Gender": "M", "Height": 180.3}

Name	Gender	Height	
STRING	STRING	INT	
Name	Gender	Height	Age
STRING	STRING	INT	INT
Name	Gender	Height	
STRING	STRING	DOUBLE	

Name	Gender	Height	Age
STRING	STRING	DOUBLE	INT

Name STRING	Gender STRING	Height DOUBLE	Age INT
Alice	F	160	null
Bob	М	175	20
Cavin	М	180.3	null

Eliminate Boilerplate Code

Automatic partition discovery

- Discover Hive style partitioned table directory layout
- Infer partition column types and values from partition directory paths

The fastest way to process big data is to

The fastest way to process big data is to IGNORE it

Read Less Data

Spark SQL can help you:

- Converting to more efficient data formats
- Using columnar formats (Parquet)
- Leveraging Hive style partitioning (i.e. /year=2015/month=04/...)
- Skipping data using min/max statistics
- Pushing predicates into intelligent storage systems (i.e. Parquet on HDFS, JDBC)

Plan Optimization and Execution

DataFrames and SQL share the same optimization/execution pipeline

Machine Learning Pipelines

```
tokenizer = Tokenizer(inputCol="text", outputCol="words")
hashingTF = HashingTF(inputCol="words", outputCol="features")
lr = LogisticRegression(maxIter=10, regParam=0.01)
pipeline = Pipeline(stages=[tokenizer, hashingTF, lr])
df = sqlContext.load("/path/to/data")
model = pipeline.fit(df)
```


DataFrame as the New RDD

Compared to RDD, DataFrame

- Leverages schema information of the data for well targeted optimizations
- Provides more user friendly and intuitive APIs instead of FP style transformations
- Is well integrated with external data sources
- Is becoming efficient data sharing abstraction between different Spark modules

Create and run Spark programs faster:

- Write less code
- Read less data
- Let the optimizer do the hard work

Thanks!

Q & A

