西南财经大学

Southwestern University of Finance and Economics

学生姓名:	杨双杰
所在学院:	会计学院
专 业:	财务管理
学 号:	2161202Z6024
任课教师:	

一、数据说明

$$Y_{it} = \beta_0 + \beta_1 downturn_{it} + \beta_2 controls_{it} + \sum_i ind + \sum_i year + u_i + \varepsilon_{it}$$

这个模型用于研究经济周期 X(downturn)对审计质量 Y(opinion_dum 和 Infee)具有怎么的影响关系,此外模型中除了行业(ind)、年度(year)外,还包含其他 10 个控制变量(controls),各变量具体说明如下表。

为了得到各个变量的数据,从 CSMAR,DIB 数据库里一共下载了近 20 份原始数据,现在利用 R 对这些数据进行清洗最后合并为一份最终数据。具体流程主要包括:①清洗各零散的控制变量,然后合并为一份 "control_data"。②清洗解释变量得到含有经济周期虚拟变量downturn 的数据 "GDP_grate",清洗被解释变量得到数据 "audit"。③最后将所有变量合并为一份 "final data",并结合前面清洗的数据绘制 3 张图。

变量选取列表

被解释变量	变量说明
Opinion_dum	审计意见,虚拟变量,事务所出具非标准审计意见则取值1,否则为0
Infee	审计费用,取对数
解释变量	
downturn	经济周期,虚拟变量,审计当年处于经济衰退期取值1,否则为0
控制变量	
lnasset	企业规模,年末总资产对数
roa	盈利能力,资产收益率
lev	财务杠杆,资产负债率
loss	盈亏状况,虚拟变量,公司盈利取值1,亏损为0
growth	公司成长性, 营业收入增长率
ndts	非债务税盾,固定资产折旧、无形资产摊销等资产折耗占总资产比率
soe	控制人性质,虚拟变量,公司实际控制人为国有,取值为1,否则为0
sanction	监管力度,每年被证监会处罚的事务所数量
complex	审计复杂程度,公司存货与应收账款占总资产的比例
peratio	投资需求,市盈率
ind	行业,虚拟变量,若为所属行业,取值为1,否则为0

二、清洗流程

(一)清洗控制变量

首先设置项目工作路径,加载清洗所需要的 R 包。

```
#Tidy Control Variables -----
setwd("./control")
library(tidyverse)
library(lubridate)
```

1. 第一份数据读取主要包含资产负债表变量的 balance.csv 文件,并自定义变量名,筛选出合并报表数据(A)以及年度数据(月份"12"),并删除不需要的四个变量(typrept,fasset,fadisposal,iasset),数据存为 balance。然后让年度变量 year 只显示年度,同时由于股票代码 stkcd 前面的 Ø 被省去,此处统一股票代码的数据格式为 6位数,以便后续数据合并。

balance\$year <- year(ymd(balance\$year))
balance\$stkcd <- sprintf("%06d",as.numeric(balance\$stkcd))</pre>

2. 第二份数据读入 grevenue.csv 文件,并自定义变量名,筛选合并报表和年度数据, 之后删除不需要的变量,对年度 year 和股票代码 stkcd 的处理同上。

```
#the second data
```

the first data

3. 第三份数据处理过程同前。

```
#the third data
```

4. 第四份数据处理过程同前。 #the fourth data depamor <- read_csv("depamor.csv",col_names = c(</pre> "stkcd", "year", "typrept", "ind", "depamor")) %>% filter(typrept=="A",str sub(year,6,7)=="12") %>% select(-typrept) depamor\$year <- year(ymd(depamor\$year))</pre> depamor\$stkcd <- sprintf("%06d",as.numeric(depamor\$stkcd))</pre> 5. 第五份数据处理过程同前。 #the fifth data netincome <- read_csv("NI.csv",col_names = c(</pre> "stkcd", "year", "typrept", "ni")) %>% filter(typrept=="A",str sub(year,6,7)=="12") %>% select(-typrept) netincome\$year <- year(ymd(netincome\$year))</pre> netincome\$stkcd <- sprintf("%06d",as.numeric(netincome\$stkcd))</pre> 6. 第六份数据处理过程同前。 #the sixth data roa <- read csv("ROAE.csv",col names = c(</pre> "stkcd", "year", "typrept", "ind", "roa", "roe", "roic")) %>% filter(typrept=="A",str_sub(year,6,7)=="12") %>% select(-typrept,-roe,-roic) roa\$year <- year(ymd(roa\$year))</pre> roa\$stkcd <- sprintf("%06d",as.numeric(roa\$stkcd))</pre> 7. 第七份数据处理过程同前。 #the seventh data roegrate <- read csv("roegrate.csv",col names = c(</pre> "stkcd", "year", "typrept", "ind", "roegrate")) %>% filter(typrept=="A",str_sub(year,6,7)=="12") %>% select(-typrept) roegrate\$year <- year(ymd(roegrate\$year))</pre> roegrate\$stkcd <- sprintf("%06d",as.numeric(roegrate\$stkcd))</pre> 8. 第八份数据不含子公司数据, 所以不需要删选出合并报表数据(A), 其余过程同前。 #the eighth data peratio <- read_csv("PEratio.csv",col_names = c(</pre> "stkcd", "year", "ind", "peratio")) %>% filter(str_sub(year,6,7)=="12") peratio\$year <- year(ymd(peratio\$year))</pre>

peratio\$stkcd <- sprintf("%06d",as.numeric(peratio\$stkcd))</pre>

9.第九份数据为对审计师的行政处罚(saction)数据,这里只需读入并删除一个不需要的数据(discipline)。

10.第十和第十一份数据共同得出需要的公司性质变量(soe),由两份不同来源的数据 经过清洗合并得出。首先读入 DIB 来源的数据,由于含有中文,读入时指定编码格式为 GB18030,筛选所需的 1,4,5 列的变量,并重命名,再生成一个缺失值变量 soe 用于根据公司性质 type 变量是否含有关键字段而分别赋予 0 和 1,即二值变量。第十一份数据处理过程与此类似。最后将两份 soe 数据进行 full_join,再利用 unique 去重。

```
#the tenth and eleventh data
soe1 <- read csv("境内公司基本信息-公司性质-DIB.csv",
               locale = locale(encoding = "gb18030")) %>%
               select(c(1,4,5)) %>%
               rename(
                 stkcd = 证券代码,
                 type = 公司性质,
                 controller = 实际控制人
                ) %>%
                 mutate(soe=NA)
soe1$stkcd <- str_sub(soe1$stkcd,1,6)</pre>
soe1$soe[soe1$type=="国有企业"] <- 1
soe1$soe[soe1$type=="其他" & str_detect(
                      soe1$controller,"国有资产监督管理")] <- 1
soe1$soe[is.na(soe1$soe)] <- 0</pre>
soe1 <- soe1 %>%
       select(stkcd,soe)
soe2 <- read csv("上市公司实际控制人.csv",
               locale = locale(encoding = "gb18030")) %>%
                select(c(1,4)) %>%
                rename(
                 stkcd = 代码,
                  contr type = 控制人类型
                  ) %>%
                  mutate(soe=NA)
soe2$stkcd <- str_sub(soe2$stkcd,1,6)</pre>
soe2$soe[str_detect(
              soe2$contr_type,"国资委|国有企业|中央|政府")] <- 1
soe2$soe[is.na(soe2$soe)] <- 0</pre>
```

11. 第十二份和第十三份数据分别为公司 ST 年份和 IPO 年份数据,这里处理过程依然与前述相同。只是进行了保存输出到 final 文件夹下。

```
#the twelveth and thirteenth data
ST <- read_csv("ST.csv",col_names = c("stkcd", "year", "typrept")) %>%
        filter(typrept=="A",str_sub(year,6,7)=="12") %>%
        select(-typrept) %>%
        mutate(st=1)
ST$year <- year(ymd(ST$year))
ST$stkcd <- sprintf("%06d",as.numeric(ST$stkcd))
write_csv(ST,"../final/ST.csv")

IPO <- read_csv("IPO.csv",skip = 1,col_names = c(
        "stkcd", "initial", "ipoyear", "listyear")) %>%
        filter(initial=="A") %>%
        select(stkcd,ipoyear)
IPO$ipoyear <- year(ymd(IPO$ipoyear))
IPO$stkcd <- sprintf("%06d",as.numeric(IPO$stkcd))
write_csv(IPO,"../final/IPO.csv")</pre>
```

12.这里将前述所有清洗的控制变量利用 reduce 函数进行 full 合并,并利用其他变量生成新的所需变量 lnassets、ndts、complex 和缺失值变量 loss,然后根据净利润 ni 大于还是小于 0 分别对 loss 赋值 0 或 1。最后保存输出为 control_data.csv。

(二)清洗解释变量和被解释变量 先将工作路径切换到 **XY** 文件夹。

```
#Tidy XY -----setwd("../XY")
```

1. 处理 X。读入 GDP 数据,根据各年的 GDP 指数计算 GDP 增长率(gdpgrate),然后根据本年增长率相较于去年是否下降生成虚拟变量 downtown。然后选取所需变量存为 GDP_cycle 数据,并输出为 X.csv。

2. 处理 Y。读入数据后,选取所需列并重命名,再过滤掉非年度数据,生成审计费用的对数(lnfees)。之后根据审计意见 opinon 变量是否为"标准无保留意见"对 opinion_dum分别赋值 0 和 1。最后删除第 3 和 4 列不需要的变量输出为 Y.csv。

```
audit$opinion_dum[audit$opinion=="标准无保留意见"] <- 0 audit$opinion_dum[is.na(audit$opinion_dum)] <- 1
```

```
audit <- select(audit,-3,-4)
write_csv(audit,"../final/Y.csv")</pre>
```

(三) 将所有变量合并清洗为最终数据

```
#Tidy Final Data -----setwd("../final")
```

这里先读取行业(ind)数据,这份数据较全,有利于减少最终数据中行业的缺失值。 过程同样如前大多数处理,读入-命名-选取合并报表数据(A)-年度数据(12)-删除不需 要的报告类型变量(-typre)。

将前面各步骤处理的数据作为列表传入 reduce 进行 full_join 操作,然后分别剔除 ST 年和 IPO 年度数据,再剔除金融业(行业代码 J 开头,股票代码 2 或 9 开头),最后剔除资产负债率(lev)大于 1 的数据,最终再剔除缺失值和重复值。

write csv(final data, "finaldata.csv")

- 三、利用清洗的数据作图
- (一) 第一张图为不同经济周期对数审计费用的统计差异

```
#picture 1
final_data %>%
    ggplot() +
```

stat_summary(aes(x=downturn,y=lnfees,color=downturn),

The Summary of Audit Fees in Different Economic Cycles

(二)第二张图为 GDP 增长率和审计费用增长率的变化图,这里先根据年度分组计算对数审计费用的平均值,剔除平均后各年的重复值,进而计算对数审计费用的增长率,最后与处于不同表格的 GDP 增长率进行 left_join 操作。

The Growthrate of GDP and Audit Fees

(三) 第三张图为不同经济周期审计意见的分布图。

```
#picture 3
final_data %>%
  ggplot() +
   geom_bar(aes(x=opinion_dum,fill=downturn),show.legend = FALSE) +
   facet_wrap(~downturn) +
    labs(
        title="The Distribution of Auditing
        Opinions in Different Cycles"
```

) +
scale_x_continuous(breaks=seq(0,1,1))
ggsave("opinion_distribution.jpeg")

The Distribution of Auditing Opinions in Different Cycles

