Outline

On errors-in-variables estimation with unknown noise variance ratio

Sabine Van Huffel, Ivan Markovsky, and Alexander Kukush

K.U.Leuven, ESAT-SISTA

SISTA

SISTA

Introduction

EIV model with unknown noise variance ration

Derivation of the estimator

Simulation example

Classic static EIV model

$$D = \overline{D} + \widetilde{D}, \quad \text{vec}(\widetilde{D}) \sim N(0, \sigma^2 I), \quad \text{colspan}(\overline{D}) \subset \overline{\mathscr{B}}$$

- $\overline{D} \in \mathbb{R}^{d \times N}$ "true" data matrix
- d := rowdim(D) number of variables
- $N := \operatorname{coldim}(D)$ number of data points (N > d)
- $\overline{\mathscr{B}}$ "true" linear static model (a subspace of \mathbb{R}^d)
- \widetilde{D} measurement errors (zero mean, i.i.d., Gaussian)
- D measured data matrix

 \overline{D} satisfies a linear static model $\overline{\mathscr{B}} \iff \overline{D}$ is low-rank \mathscr{B} is a subspace of \mathbb{R}^d with dimension $m := \operatorname{rank}(\overline{D}) < d$

Introduction

EIV model with unknown noise variance ratio

Derivation of the estimator

Simulation example

Introduction

IV model with unknown noise variance ra

Derivation of the estimate

Simulation example

Classic total least squares method

$$\{\widehat{R}_{tls}, \widehat{D}_{tls}\} := \underset{R, \widehat{D}}{\text{arg}} \min_{R, \widehat{D}} \left\| D - \widehat{D} \right\|_F^2 \text{ subject to } RR^\top = I_p, \ R\widehat{D} = 0$$

- \widehat{D}_{tls} TLS estimate of true data matrix \overline{D}
- $\widehat{\mathscr{B}}_{tls} := \ker(\widehat{R}_{tls})$ TLS estimate of the true model $\overline{\mathscr{B}}$

Notes:

- Typically we are interested in $\widehat{\mathscr{B}}_{tls}$, not $\widehat{\mathcal{D}}_{tls}$.
- $\widehat{\mathscr{B}}_{tls}$ is maximum likelihood estimate of $\overline{\mathscr{B}}$ in the EIV model.
- Without the Gaussianity assumption, $\widehat{\mathscr{B}}_{tls}$ is not ML but still a consistent estimator in the EIV model.
- The i.i.d. assumption is strong and we aim to relax it.

Generalized EIV model and TLS method

$$D = \overline{D} + \widetilde{D}, \quad \text{vec}(\widetilde{D}) \sim N(0, \sigma^2 W), \quad \text{colspan}(\overline{D}) \subset \overline{\mathscr{B}}$$

• $V := \sigma^2 W$ — measurement error covariance matrix

Maximum likelihood estimate — weighted TLS

$$\begin{split} \{\widehat{R}_{\text{tls}}, \widehat{D}_{\text{tls}}\} := & \arg\min_{R, \widehat{D}} \text{vec}^\top (D - \widehat{D}) \, W^{-1} \, \text{vec}(D - \widehat{D}) \\ & \text{subject to} \quad RR^\top = I_p \quad \text{and} \quad R\widehat{D} = 0 \end{split}$$

- V should be known up to a scaling factor.
- This is a restrictive assumption and we aim to relax it.

SISTA

ntroduction

EIV model with unknown noise variance ratio

Derivation of the estimator

Simulation example

Derivation of the estimator

Define the noise variance ratio $\bar{\lambda}_i/\bar{\lambda}_o =: \bar{\mu}$ and let

$$W(\mu) := egin{bmatrix} \mu \, W_{\mathrm{i}} & 0 \ 0 & W_{\mathrm{o}} \end{bmatrix}, \qquad ext{so that} \quad \mathbf{E} \, ilde{D} ilde{D}^ op = ar{\lambda}_{\mathrm{o}} W(ar{\mu}).$$

Assuming $\bar{\mu}$ is known, we can solve the weighted TLS problem

$$\min_{R |\widehat{D}|} \left\| W^{-1/2}(\bar{\mu})(D - \widehat{D}) \right\|_{F}^{2} \quad \text{subject to} \quad R\widehat{D} = 0,$$

or equivalently the nonlinear system of equations

$$R\left(DD^{\top} - \lambda_{o}W(\bar{\mu})\right) = 0,$$

where we aim at a solution corresponding to a minimal λ_o .

Computationally, we solve a generalized SVD problem.

SISTA

EIV model with unknown noise variance ratio

$$\mathbf{E}\tilde{D}\tilde{D}^{\top} = \begin{bmatrix} \mathbf{E}\tilde{D}_{i}\tilde{D}_{i}^{\top} & \mathbf{E}\tilde{D}_{i}\tilde{D}_{o}^{\top} \\ \mathbf{E}\tilde{D}_{o}\tilde{D}_{i}^{\top} & \mathbf{E}\tilde{D}_{o}\tilde{D}_{o}^{\top} \end{bmatrix} =: \begin{bmatrix} \bar{\lambda}_{i}W_{i} & 0 \\ 0 & \bar{\lambda}_{o}W_{o} \end{bmatrix}$$

where

- $W_i \in \mathbb{R}^{m \times m}$, $W_i > 0$ and $W_o \in \mathbb{R}$, $W_o > 0$ are known
- $\bar{\lambda}_i$ and $\bar{\lambda}_o$ are unknown positive scalars

This model is not identifiable, so additional assumptions are needed in order to make the estimation problem well defined.

Such assumptions are, e.g.,

- several independent data sets are available for estimation, or
- the true data can be clustered.

SISTA

Introduction

FIV model with unknown noise variance ra

Derivation of the estimator

Simulation example

Derivation of the estimator (cont.)

With unknown $\bar{\mu}$, we consider two estimating equations

$$R\left(D^k(D^k)^\top - \lambda_o W(\mu)\right) = 0$$
, for $k = 1, 2$,

corresponding to two disjoint subsets D^1 and D^2 of the data

$$D\Pi =: \begin{bmatrix} D^1 & D^2 \end{bmatrix} =: \begin{bmatrix} D_{\rm i}^1 & D_{\rm i}^2 \\ D_{\rm o}^1 & D_{\rm o}^2 \end{bmatrix} \begin{array}{c} m \\ 1 \end{array}, \quad \Pi$$
 — permutation matrix.

The clustering problem is

$$\max_{\text{permutation}} \left(\min_{j=1,\dots,m} \left| \lambda_j \left(D_i^1 (D_i^1)^\top - D_i^2 (D_i^2)^\top \right) \right| \right),$$

where $\lambda_1(A), \dots, \lambda_{\dim(A)}(A)$ are the eigenvalues of A.

Derivation of the estimator (cont.)

Aim: find a common generalized eigenvalue-eigenvector for

$$\big(D^k(D^k)^\top,W(\mu)\big),\quad k=1,2$$

Nonlinear least squares-type approximate solution

$$\widehat{\mu} = \arg\min_{\mu} \left(\left(\lambda_{o}^{1} - \lambda_{o}^{2} \right)^{2} + C \sin^{2} \left(\angle (R^{1}, R^{2}) \right) \right),$$

- $(\lambda_0^k, \mathbb{R}^k)$ minimal eigenvalue-eigenvec. of $(D^k(D^k)^\top, W(\mu))$
- C regularization parameter
- $\angle(R^1, R^2)$ angle between the vectors R^1 and R^2
- $(\lambda_0^1 \lambda_0^2)^2$ makes both eigenvalues close to each other
- $\sin^2(\angle(R^1, R^2))$ makes the corresponding eigenvec. close

Simulation example

Simulation example

 $\overline{D} \in \mathbb{R}^{3 \times 2N'}$ is a random rank-2 matrix, with $N' = 10, \dots, 500$ and two clusters — the first N' and the last N' columns of \overline{D} apply the algorithm for 500 noise realizations with $\lambda_i = 0.01$ and $\lambda_0 = 0.04$

average relative estimation error of estimation

$$e := \frac{1}{500} \sum_{k=1}^{500} \frac{\|\overline{X} - \widehat{X}^{(k)}\|}{\|\overline{X}\|}$$

where $\overline{\mathscr{B}} =: \ker(\left[\overline{X}^{\top} \quad -1\right])$ and $\widehat{R} =: \left[\widehat{X}^{\top} \quad -1\right]$ (normalization) $\widehat{X}^{(i)}$ — estimate of \overline{X} in the *i*th repetition of the experiment

Summary of the proposed estimation algorithm

- 1. Cluster the data using, e.g., the K-means algorithm.
- 2. Compute the noise variance ratio estimate $\hat{\mu}$ by solving

$$\widehat{\mu} = \arg\min_{\mu} \left(\left(\lambda_{o}^{1} - \lambda_{o}^{2} \right)^{2} + C \sin^{2} \left(\angle (R^{1}, R^{2}) \right) \right),$$

for the clusters identified on step 1.

3. Solve the weighted TLS problem for the estimated value of μ on step 2.

SISTA

Simulation example

Simulation example (cont.)

Relative error e as a function of half the sample size N'.

ntroduction EIV model with unknown nois

Derivation of the estimator

Simulation example

Simulation example (cont.)

Average values of $\widehat{\lambda}_i$ and $\widehat{\lambda}_o$ as functions of N'. dashed lines — the true values

SISTA

troduction EIV model with unknown hoise varial

Derivation of the estimator

Simulation example

Thank you

Introduction

Conclusions

- EIV model with error cov. known up to two parameters
- identifiable if the data has two distinct clusters
- estimation procedure:
 - cluster the data
 - 2. solve a univariate optimization problem for μ
 - 3. solve a weighted TLS problem for $\widehat{\mu}$
- generalizes to problems with more than two parameters: as many clusters are needed as there are parameters the optimization on step 2, however, becomes multidim.
- with Hankel structured data matrix the method is applicable to system identification

