

Applicability of GPU Computing for Efficient Merge in In-Memory Databases

Jens Krueger, Martin Grund, Ingo Jaeckel, Alexander Zeier, Hasso Plattner

Hasso Plattner Institute for IT Systems Engineering
University of Potsdam
Potsdam, Germany

Introduction (1)

- Enterprise applications have evolved: not just OLAP vs. OLTP
- Range selects occur often
- Real world is more complicated than single tuple access

Introduction (2)

- Enterprise data is wide and sparse
- Most columns are empty or have a low cardinality of distinct values
- Sparse distribution facilitates high compression

System Overview

- Based on HYRISE: In-memory compressed vertical partitionable database engine
 - Completely in main memory
 - Organizes data column-oriented
 - Applies dictionary compression with a order-preserving dictionary and a bit-compressed attribute vector
 - Uses a differential store concept to support data modifications
- Efficiently executes both OLTP and OLAP requests on structured enterprise data

Terminology

- Table: A relation table with NC columns, with one write (delta) and one read-optimized (main) partition.
- **Update**: Any modification operation on the table resulting in an entry in the delta partition.
- Main Partition: Compressed and read-optimized part of the column. Consists of a order-preserving dictionary and a attribute vector with bit-compressed value ids
- Delta Partition: Uncompressed write-optimized part of the column where all updates are stored until the mergoress is completed.
- Merge Process: Applies compression to delta and mai partition to create new main partition

System Overview (2)

Merge Process

- Transfer updates from uncompressed delta partition into main partition
- Requirements
 - has to be performed while the system is operational,
 - ... hence works on a copy
 - minimal time of increased resource utilization
- Phases.
 - Prepare merge
 - Attribute merge
 - 1. Merge dictionaries
 - 1.a Build delta dictionary
 - 1.b Merge main and delta dictionary
 - 2. Update compressed values
 - 2.a Compute new compressed value length
 - 2.b Create new compressed main
- Commit merge

Attribute Merge

of M', D' and U_{M}^{j} , while the output consists of M' and $U_{M}^{'j}$.

Runtime complexity:

Step 1:
$$|\mathbf{U}_{\mathbf{M}}^{',j}| = |\mathbf{D}^{j} \cup \mathbf{U}_{\mathbf{M}}^{j}|$$

Step 2:
$$N_M = N_M + N_D$$

As Step 2 is already bandwidth bound [1], we focus on Step

Motivation / Trade-offs

- GPUs offer up to two orders of magnitude more cores than a CPU
 - Increases the maximum possible speedup through parallelization accordingly
- But: the in-/output data needs to be transferred over the PCI-Express bus which has a limited bandwidth
 - to be faster, GPU implementations have to finish befor
 CPU implementations including the data transfers

NVIDIA Thrust

 Thrust is a CUDA library of parallel algorithms resembling the C⁻ STL

Assumption:

An implementation that uses operations provided by a matured CUDA library can provide better performance than a custon made CUDA kernel

• e.g. thrust::sort, thrust::unique, thrust::reduce, thrust::lower_bound

Year	Device	Rate	
		Ω	Ω
		CP	GP
2009	GTX 280		200
2010	Knights Ferry vs. GTX 280	560	176
2010	Core i7 vs. GTX 280	250	200
2009	Tesla C1060		300
2010	GTX 285		550
2011	GTX 480		1005

GPU Duplicate Removal

- Trade-off: Delta partition insert costs vs. costs for creatir delta dictionary during merge process
- Assuming that inserting into the CSB+ structure is too expensive in insert/update-intensive workloads
- Without the CSB+ structure duplicates have to be remove to create a dictionary

Duplicate Removal (2)

- Remove duplicates by sorting and removing subsequent duplicates with thrust::sort and thrust::unique
- Up to 27 times faster than naïve std::sort and std::unique

Dictionary Merge

- Propose a custom kernel for merging dictionaries
 - Block-Wise Parallel Slice Merge (BWS)
- ... And Thrust-supported approaches that reuses the duplicate removal approach
 - Concatenate-Sort-Unique-Binary Search (CSUBS)
 - Merge-Unique-Binary-Search (MUBS)

BWS Merge

НРІ

- Merge two sorted lists
- All values in a list are distinct
- But: a value can appear in both lists at the same time

ldea:

- Partition both input lists into slices
- All values of a slice are smaller than the values of the subsequent slice
- Static partitioning is not sufficient since it allows duplicates

BWS Merge (2)

- First list: partition into equally sized slices
- Second list: determine boundaries of the slices with binary search
- Partition both dictionaries (CPU)
- Merge slices (GPU)
 - Determine number of unique values per thread block
 - Inform other threads of local unique value count
 - Write unique values
- Concatenate block-wise output (CPU)
- Use parallel binary search to fill auxiliary structures or: set them on the GPU

CSUBS Merge

- Concatenate, Sort, Unique, Binary Search
- Use Thrust primitives to implement dictionary merge:
 - Concatenate dictionaries in GPU memory with thrust::copy
 - Sort concatenated dictionaries with thrust::sort
 - Remove subsequent duplicates with thrust::unique
 - Map values to their new position with thrust::lower_boι
 - create auxiliary structures with binary search for eac value of both dictionaries

MUBS Merge

- Merge, Unique, Binary Search
- CSUBS approach does not exhibit the fact that both lists a already sorted
- Rather than concatenating and sorting use *Thrust*'s merge primitive
 - Merge both sorted lists into a new list thrust::merge
 - Remove subsequent duplicates with thrust::unique
 - Map values to their new position with thrust::lower_bou

Evaluation - Environment

- GPU: Tesla C2050 GPU, 3GB memory
- CPU: single core of a Xeon E5620 processor as baseline
 - Used STL implementations, e.g. std::sort, std::unique, in the default merge implementation applied in HYRISE
- Data:
 - Single column
 - 32-bit integer values and
 - Strings with a length of up to eight characters

Evaluation - Results

Numbers:

- Dictionary merge approaches are up to 40% faster
- Duplicate removal is up to 27 times faster
- Page-locked memory increases throughput by up to 10%

Strings:

- Throughput of all implementations is reduced
- BWS and MUBS outperform the CPU implementation (sorting strings on a GPU is expensive)

Evaluation - Breakdown

Relative run-time of individual dictionary merge steps

Conclusion

- Architecture conscious optimizations are needed
- Merge run-time can be reduced with a GPU implementati
 - 27 times improvement on duplicate removal
 - 40% speed up on dictionary merge
- Data transfer is still a bottleneck
- String processing is expensive
- Limited global memory of the GPU compared to main memory

Thank You!

sources:

- J. Krueger, M. Grund, A. Zeier, and H. Plattner. Enterprise Application-Specific Data Management. In EDOC, pages 131-Computer Society, 2010.
- H. Plattner and A. Zeier. In-Memory Data Management: An Inflection Point for Enterprise Applications. Springer, 2011.
- Jens Krueger, Changkyu Kim, Martin Grund, Nadathur Satish, David Schwalb, Jatin Chhugani, Alexander Zeier, Pradeer and Hasso Plattner. Fast Updates on Read-Optimized Databases Using Multi-Core CPUs. VLDB, to appear 2012.
- D. Merrill and A. Grimshaw. High Performance and Scalable Radix Sorting: A Case Study of Implementing Dynamic Para GPU Computing. PPL, 2011.

Backup

Future Work

- Performance analysis for different data
 - Which speedup can be achieved for which data characteristics?
- Support for large numbers of distinct values
- More elaborate scheduling scheme
 - e.g. dynamic scheduling
- Dedicated merge server(s)
 - o receives merge tasks, responds merged tables
 - may be shared across multiple databases
 - e.g. server with few CPU cores but many GPUs

