N_1 Fonction logarithme népérien

D Fonction logarithme népérien

La fonction **logarithme népérien** noté \ln est la fonction définie, dérivable et continue sur $]0;+\infty[$ comme la primitive de la fonction $\frac{1}{r}$ qui s'annule en 1, c'est à dire :

$$\sqrt{[\ln(x)]'=\ln'(x)=rac{1}{x}}$$
 et $\ln(1)=0$

D Autre définition de la fonction logarithme népérien

La fonction logarithme népérien noté \ln est la fonction définie, dérivable et continue sur $]0;+\infty[$ telle que

$$y = \ln(x) \Leftrightarrow x = \mathrm{e}^y$$

R Remarques

•
$$ln(1) = 0$$
 et $ln(e) = 1$

• La dérivée de $\ln(x)$ est $\frac{1}{x}$

P Tableau de variation

La fonction $\ln(x)$ est définie et dérivable sur $]0; +\infty[$. La fonction $\ln(x)$ est **croissante** sur $]0; +\infty[$. On a de plus, $\lim_{x\to 0} \ln(x) = -\infty$ et $\lim_{x\to +\infty} \ln(x) = +\infty$:

P Représentation graphique

Dans un repère orthogonal, la courbe représentative de la fonction $\ln(x)$ a pour asymptote verticale l'axe des ordonnées lorsque $x \to 0^+$

- En utilisant la calculatrice donner $\ln(2)$; $\ln(3)$; $\ln(4)$; $\ln(2,6)$; $\ln(2,7)$ et $\ln(2,8)$. Arrondir au millième.
- Déterminer une approximation au millième du nombre e.
- Soit la fonction $g(x) = \ln(x-1) + 2$
 - a) Donner l'ensemble de définition et de dérivabilté de g.
 - **b)** Construire un tableau de variation de g.
 - c) Dans un repère, tracer la courbe représentative de g.
 - **d)** Déterminer graphiquement x tel que g(x)=4.

N₂ Relation fonctionnelle

P Relation fonctionnelle

Pour a et b deux réels tels que a>0 et b>0 : $\ln(ab)=\ln(a)+\ln(b)$

Calculer les expressions suivantes :

 $1 \ln(8 \times 6)$

 $2 \ln(7x)$

 $\ln(10 \times 10)$

 $\boxed{4 \quad \ln(2^7)}$

 $\log \ln(x imes x)$

N_3 Logarithme d'un quotient et de l'inverse

P Logarithme d'un quotient

Pour a et b deux réels tels que a>0 et b>0 : $\ln\left(\frac{a}{b}\right)=\ln(a)-\ln(b)$

P Logarithme de l'inverse

Pour b un réel tel que b>0 : $\ln\left(rac{1}{b}
ight)=-\ln(b)$

Calculer les expressions suivantes :

- $\ln\left(\frac{34}{2}\right)$
- $\frac{2}{\ln\left(\frac{1}{5x}\right)}$
- $\frac{3}{\ln\left(\frac{7}{x}\right)}$
- $4 \ln{(10^{-9})}$

- $\frac{5}{\ln\left(rac{2}{6x}
 ight)}$
- $egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$
- $\ln\left(\frac{2x}{7}\right)$
- $8 \ln (3^{-2})$

- $\frac{9}{\ln\left(\frac{8x}{3}\right)}$
- $\ln\left(\frac{9x}{y}\right)$
- $11 \ln\left(\frac{2y}{2x}\right)$
- $\frac{12}{\ln\left(\frac{xy}{z}\right)}$

N_4 Logarithme d'une puissance

P Logarithme d'une puissance

Pour a un réel tel que a>0 et $n\in\mathbb{Z}$: $\ln\left(a^{n}
ight)=n\ln\left(a
ight)$

Calculer les expressions suivantes :

- $\boxed{1} \ln{(x^8)}$
- $\boxed{3} \ln ((xy)^8)$
- $\boxed{4} \ln{(z^{-2})}$

N_5 Dérivée $\ln{(u(x))}$

 $extstyle egin{aligned} extstyle egin{ali$

Soit u une fonction dérivable sur un intervalle I de $\mathbb R$ telle que pour tout $x\in I,\ u(x)>0$. Soit f une u'(x)

fonction définie sur I et par : $f(x) = \ln \Big(u(x) \Big)$. f est dérivable sur I et : $f'(x) = \dfrac{u'(x)}{u(x)}$

Donner les dérivées de :

- $\boxed{1} \quad f_1(x) = \ln\left(3x+2\right)$
- $\boxed{2} \quad f_2(x) = \ln{(1-x)}$
- $\boxed{3f_3(x)=\ln{(x^2+1)}}$

- $\boxed{4} \ f_4(x) = x \ln{(x^2+3)}$
- $f_5(x) = \ln\left(1+rac{1}{x}
 ight)$

- $7 \quad f_7(x) = \ln \Big(\, \frac{x-1}{x+1} \, \Big)$
- $8 \quad f_8(x) = \ln \left(\, \frac{x^2 + 2}{x} \, \right)$
- $f_{9}(x)=(2x+1)\ln{(2x+1)}$

- $\boxed{10} \ f_{10}(x) = \ln{(x^3 + x^2)}$
- $\boxed{11} \ f_{11}(x) = \ln{(x)}$
- $f_{12}(x) = \ln{(7x^2 9x^3 + rac{1}{x})}$

 N_6 Primitive $\ln(u(x))$

 \square Primitive $\ln(u(x))$

Soit u une fonction dérivable sur un intervalle I de $\mathbb R$ telle que pour tout $x\in I$, u(x)>0 . Soit f une fonction définie sur I et par : $f(x)=rac{u'(x)}{u(x)}.$ Une primitive sur I de f est $F:F(x)=\ln\left(u(x)
ight)$

Donner une primitive de :

$$f_4(x) = x^2 + 3x + rac{1}{1-3x}$$

$$f_4(x)=x^2+3x+rac{1}{1-3x}$$
 5 $f_5(x)=2+rac{1}{2x-1}+rac{1}{(2x-1)^2}$ 6 $f_6(x)=rac{x+1}{x^2+2x+2}$

$$f_6(x) = rac{x+1}{x^2+2x+2}$$

$$f_7(x) = rac{2}{x-4} + rac{1}{2x+7}$$
 8 $f_8(x) = rac{1}{x \ln x}$

 N_7 | Limites de $\ln{(u(x))}$ et autres limites

 \square Limites de $\ln(u(x))$

Soient u une fonction définie sur un intervalle I de $\mathbb R$ et $a\in\mathbb R$ et $b\in\mathbb R$:

- $\bullet \text{ si } \lim_{x \to a} u(x) = b \text{ alors } \lim_{x \to a} \ln \left(u(x) \right) = \ln \left(b \right)$ $\bullet \text{ si } \lim_{x \to a} u(x) = +\infty \text{ alors } \lim_{x \to a} \ln \left(u(x) \right) = +\infty$ $\bullet \text{ si } \lim_{x \to +\infty} u(x) = b \text{ alors } \lim_{x \to +\infty} \ln \left(u(x) \right) = \ln \left(b \right)$ $\bullet \text{ si } \lim_{x \to +\infty} u(x) = +\infty \text{ alors } \lim_{x \to +\infty} \ln \left(u(x) \right) = +\infty$

- ullet si $\lim_{x o -\infty} u(x) = b$ alors $\lim_{x o -\infty} \ln\left(u(x)
 ight) = \ln\left(b
 ight)$ ullet si $\lim_{x o -\infty} u(x) = +\infty$ alors $\lim_{x o -\infty} \ln\left(u(x)
 ight) = +\infty$

P Autres limites

$$\bullet \lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\bullet \lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$$

$$\bullet \ \lim_{x\to 0} x \ln(x) = 0$$

Déterminer les limites suivantes :

$$\lim_{x o 1^-} \ln{(1-x^2)}$$

$$\lim_{x \to +\infty} \ln{(x^2+1)}$$

$$\lim_{x o 3} \ln\left(rac{x-3}{x}
ight)$$

$$\lim_{x\to+\infty}\ln\left(\frac{x+9}{x}\right)$$

$$\lim_{x o -\infty}e^{3x+9}$$

N₈ | Logarithme décimal

D Logarithme décimal

La fonction **logarithme décimal**, notée **log**, est la fonction définie sur l'intervalle $I =]0; +\infty[$ par :

 $\log\left(x\right) = \frac{\ln\left(x\right)}{\ln\left(10\right)}$

P Propriétés du logarithme décimal

Soient a et b deux réels tels que a>0 et b>0 et $n\in\mathbb{Z}$:

• $\log(1) = 0$ et $\log(10) = 1$

 $\bullet \ \log{(ab)} = \log{(a)} + \log{(b)}$

• $\log\left(\frac{a}{b}\right) = \log(a) - \log(b)$

• $\log\left(\frac{1}{b}\right) = -\log(b)$

 $\bullet \ \log{(a^n)} = n\log{(a)}$

 $\bullet \, \log \left(10^n \right) = n$

Calculer:

- $1 \log (10^3)$
- $\log (10\ 000)$
- $\log (10^{-2})$
- $\log(0,001)$

 $\overline{N_9}$ Nombre a^b

 \square Nombre a^b

Pour tout réel a>0 et pour tout réel b, le nombre a^b est défini par : $a^b=\mathrm{e}^{b\ln{(a)}}$

Ecrire les nombres suivants sous la forme $e^{b \ln{(a)}}$:

 $1,6^{8}$

 $2 0,5^x$

 $3 x^{-\frac{3}{4}}$

 $x^{9,6}$

 N_{10} | Exponentielle de base a

D Exponentielle de base **a**

Pour tout réel a>0, on appelle **fonction exponentielle de base** a la fonction f définie sur $\mathbb R$ et par :

$$f(x) = a^x = e^{x \ln{(a)}}$$

P Dérivée de **a**^x

Pour tout réel a>0, la fonction définie par $f(x)=a^x=e^{x\ln{(a)}}$ est dérivable sur $\mathbb R$ et :

$$\int f'(x) = \ln{(a)}a^x = \ln{(a)}e^{x\ln{(a)}}$$

Soit la fonction f définie par $f(x) = \frac{1}{2}^x$:

Donner l'ensemble de définition et de dérivabilité de $m{f}$.

Donner les limites de f aux bornes de son ensemble de définition.

3 Construire le tableau de variation de $m{f}$.

Dans un repère orthonormé, tracer la courbe représentative de $m{f}$.

 N_{11} | Equation $e^{ax} = b$

Résoudre dans ${\mathbb R}$ les équations suivantes :

 $\boxed{1} e^{2x} = 10$

 $\boxed{2 \quad 5e^{10x} - 100 = 0}$

 $3 e^{-2x+4} = \frac{1}{4}$

 $\boxed{4} \ e^{2x-7} = e^{0,5x}$

 $\boxed{^{5}} e^{x^2} = e^{2x-1}$

 $7 \quad e^{2x+9} = 1$

 $\boxed{8} \ \ 2e^{x-3} - 5 = 0$

 $\boxed{ \ \ \, 9 \ \ \, 0,5e^{3x-3} = \frac{1}{6} }$

 $\begin{array}{c}
10 \\
e^{x+2} = e^{1-x}
\end{array}$

 $\boxed{11} \ e^{x^2+6} = e^{3x}$

 $\boxed{12} e^{x+1} = e^{2x}$

 N_{12} Inéquation $\mathrm{e}^{ax} < b$

Résoudre dans ${\mathbb R}$ les inéquations suivantes :

 $e^x < 9$

 $\boxed{2} \quad 30e^x > 10$

 $e^{2x-4}\leqslant 5$

 $e^{7x}\geqslant 5$

 $\boxed{5} \ 20e^{3x}-\sqrt{2}<0$

 $\boxed{ 6 \quad e^{2x+9} > 1 }$

 $7 e^{5x+1} \leqslant e^{-x}$

 $\boxed{8} \ 4e^x - 5 \geqslant 0$

 N_{13} | Equation $\log{(ax)} = k$

Résoudre dans ${\mathbb R}$ les équations suivantes :

 $\log\left(x\right)=10$

 $\log (5x) = \frac{2}{3}$

 $\log (7x) = \frac{7}{8}$

 $\log(3x) = -\frac{10}{23}$

 N_{14} Equation $oldsymbol{x}^lpha=oldsymbol{k}$

Résoudre dans ${\mathbb R}$ les équations suivantes :

 $\begin{array}{c|c} 1 & x^{10} = 4 \end{array}$

 $3 x^{\frac{1}{3}} = 3$

 $x^6 = 5$

 $x^{13} = 0,47$

 $x^3 = 3$ $x^{6,9} = 10$

 $x^{0,5}=\sqrt{2}$

 N_{15} Inéquation $\ln(u(x)) > b$

Résoudre dans $\mathbb R$ les inéquations suivantes : $1 \ln(x) > -2$

 $\boxed{2 \quad \ln\left(1,5x-1\right) \leqslant 6}$

 $4\ln{(2x-6)} + 3 > 0$ 4 $\ln{(2-x)} < -1$

 $2\ln(3x-3)\leqslant 5$

 $4\ln(7-8x)\geqslant 3$

 $2\ln(3x-3)+5<0$ 8 $\ln(4x-5)\geqslant 3$

Inéquation $q^n \leq a$ ou $q^n \geq a$ N_{16}

Résoudre dans \mathbb{R} les inéquations suivantes :

 $1 10^n \leq 0,5$

 $5^n \geqslant 50$

 $0,65^n \leq 0,005$

 $0,1^n \geqslant 10^{-10}$

 $\ln\left(ax^2+bx+c\right)$ $n^{\circ}1$

Soient a, b et c trois réels et f une fonction définie par : $f(x) = \ln{(ax^2 + bx + c)}$. On suppose qu'il existe un intervalle I de $\mathbb R$ tel que pour tout $x\in I$, $ax^2+bx+c>0$.

Calculer la dérivée f' de f.

On suppose que f est dérivable en 0 et 1. Sachant que f(0) = f(1) = 0 et f'(1) = 1, déterminer a,b et

On considère la fonction g définie sur $\mathbb R$ par : $g(x) = \ln{(x^2 - x + 1)}$. Justifier que pour tout $x \in \mathbb R$, $x^2-x+1>0$

Calculer g', dérivée de g, puis étudier le signe de g'.

Déterminer les limites de g en $-\infty$ et en $+\infty$ puis donner le tableau de variations de g en y faisant figurer les limites.

Soit h le fonction définie sur $\left[-\frac{1}{3};+\infty\right[$ par : $h(x)=\ln\left(\frac{3x-1}{x+1}\right)$

Développer $(x-1)^2(x+2)$. En déduire les solutions de l'équation dans $\mathbb R$ de $x^3-3x+2=0$

Dans un repère $(O;\stackrel{
ightarrow}{i},\stackrel{
ightarrow}{j})$, on note \mathcal{C}_g la courbe représentative de g et \mathcal{C}_h la courbe représentative de h. Montrer que \mathcal{C}_g et \mathcal{C}_h ont un unique point en commun, et qu'en ce point, \mathcal{C}_g et \mathcal{C}_h ont la même tangente.

Fonction f $n^{\circ}2$

On considère la fonction f définie sur $[0;+\infty[$ par : $f(t)=5e^{\left(-rac{1}{2}\ln2
ight)t}$. Sa courbe représentative \mathcal{C}_f est représentée ci-contre.

1 Déterminer la limite de f(t) lorsque t tend vers $+\infty$. En donner une interprétation graphique.

Calculer f'(t) pour $t \in [0; +\infty[$. Déterminer une équation de la tangente à \mathcal{C}_f au point d'abscisse 0. La tracer dans le repère.

Vérifier que pour tout $t \in [0; +\infty[: f(t+2) = \frac{1}{2}f(t)]$. Le nombre de cellules, exprimé en millions, d'une culture cellulaire soumise à une expérimentation est modélisé, en fonction du temps, par la fonction f.

Comment interpréter l'égalité de la question 3. ?

Déterminer l'instant t (en heures et minutes) où le nombre de cellules n'est plus que de 750 000.

Retrouver graphiquement le résultat en faisant apparaître les tracés utiles.

n°3 Intensité sonore

L'intensité sonore I d'un son caractérise le volume de ce son. L'unité de mesure de l'intensité sonore est le watt par mètre carré (Wm^{-2}) . Le niveau sonore N de ce son est donné par la relation : $N=10\log\left(\frac{I}{I_0}\right)$ où I_0 est une intensité sonore de référence valant $I_0=10^{-12}~Wm^{-2}$. Le niveau sonore ainsi calculé est exprimé en décimal (dB)

- Déterminer le niveau sonore en dB quand l'intensité sonore vaut $10^{-12}\ Wm^{-2}$. On parle de seuil d'audibilité.
- On considère deux sons d'intensité sonore I_1 et I_2 et de niveau sonore N_1 et N_2 . Quand on double l'intensité sonore : $I_2=2I_1$, quelle est la différence N_2-N_1 des niveaux sonores ?
- Quand la différence de deux niveaux sonores vaut 20 dB, quel est le rapport entre les deux intensités sonores.

$n^{\circ}4$ Encadrement de $\ln\left(x+1\right)-\ln\left(x\right)$

Soient f et g deux fonctions définies sur $]0; +\infty[$ par :

$$ullet f(x) = \ln{(x+1)} - \ln{x} - rac{1}{x+1}$$
 et

- $ullet g(x) = \ln{(x+1)} \ln{x} rac{1}{x}$
 - 1 Calculer la limite de f en 0.
 - Déterminer la limite de $x\mapsto rac{x+1}{x}$ quand x tend vers $+\infty$. En déduire $\lim_{x o +\infty}\ln\left(rac{x+1}{x}
 ight)$
 - $\overline{}$ Déterminer la limite de f en $+\infty$.
 - Déterminer la dérivée f' de f.
 - Etudier le signe de f'.
 - Etablir le tableau de variations de $m{f}$ en y faisant figurer les limites.
 - Démontrer que pour x>0 : $\dfrac{1}{x+1}\leqslant \ln{(x+1)}-\ln{(x)}$
 - B Déterminer la dérivée g' de g.
 - 9 Etudier le signe de g'.
 - Etablir le tableau de variations de g.
 - Démontrer que pour x>0 : $\ln{(x+1)}-\ln{(x)}\leqslant rac{1}{x}$
 - Donner un encadrement de $\ln\left(rac{x+1}{x}
 ight)$

n°5 ∂pH

On note $[H_3O^+]$ et $[OH^-]$ les concentrations molaires (en $molL^{-1}$) en hydronium et hydroxydes dans une solution. Pour toute solution aqueuse à une température de $25\,^{\circ}C$, $[H_3O^+]\times[OH^-]=10^{-14}$. Le potentiel hydrogène d'une solution, noté pH, est donné par $pH=-\log\left([H_3O^+]\right)$ $(pH\in[0;14])$

- Une solution aqueuse est neutre quand $[H_3O^+]=[OH^-]$. Déterminer le pH d'une solution neutre (eau pure).
- Une solution est acide lorsque lorsque sa concentration $[H_3O^+]$ est supérieure à celle de l'eau pure. sinon elle est dite basique. Comparer le pH d'une solution acide au pH de l'eau pure.
- La solution S_1 a une concentration $[H_3O^+]$ 1 000 fois supérieure à celle de la solution S_2 dont le pH vaut 6. Quelle est le pH de la solution S_1 ?
- Résoudre $\log{(x)} = -8,5$. Une solution dont le pH vaut 8,5 est-elle acide ou basique ?