GPT-NeoX-20B

An Open-Source Autoregressive Language Model

Michael Pieler

MicPie @ EleutherAl

Sid Black, Eric Hallahan,

Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach

EleutherAl is a decentralized grassroots collective of researchers focused on Al alignment, scaling, and open source Al research.

How did this all start?

One day, Connor Leahy posted in the TPU Podcast Discord:

Daj 2020-07-02 https://arxiv.org/abs/2006.16668

Hey guys lets give OpenAl a run for their money like the good ol' days

To which Leo Gao replied:

bmk 2020-07-02

@Daj this but unironically

And so it began.

Our Community

- Organized via Discord
- Transparent research
- Community driven
- Anyone can join:
 - Research projects
 - Discussion of state-of-the-art
 - Interpretability reading group

Language Modeling

Why Train a(nother) Large Language Model?

- Access to large language models is essential for doing research on them.
- How does repeated exposure to the same data influence the probability that the language model will memorize that data?
 - Deduplicating Training Data Makes Language Models Better
 - Quantifying Memorization Across Neural Language Models
- To what extent do language models learn to generalize notions found in the training data to the testing data?
 - Impact of Pretraining Term Frequencies on Few-Shot Reasoning

What is a Transformer?

Figure 1: The Transformer - model architecture.

Language Modeling?

LLM Leaderboards

1		Announcement	Organizaton	Author Location	Language	Parameters	Model Accessibility	Data Accessibility
2	PaLM	2022-04-04	Google	USA	English	540.0B	Closed	Closed
3	Megatron-Turing	2021-10-11	Microsoft, NVIDIA	USA	English	530.0B	Closed	Closed + Pile
4	Gopher	2021-12-08	DeepMind	USA	English	280.0B	Closed	Closed + Pile
5	ERNIE 3.0	2021-12-08	Baidu	China	Chinese, English	260.0B	Closed	Closed
6	Yuan 1.0	2021-10-10	Inspur Al Research	China	Chinese	245.0B	Limited	Limited
7	HyperCLOVA	2021-09-10	NAVER	Korea	Korean	204.0B	Closed	Closed
8	PanGu-α	2021-04-26	Huawei	China	Chinese	200.0B	Closed	Closed
9	Jurassic-1	2021-08-11	Al21 Labs	Israel	English	178.0B	Closed	Open (Pile)
10	GPT-3	2020-05-28	OpenAl	USA	English	175.0B	Commercial	Closed
11	ОРТ	2021-05-03	Meta Al	USA	English	175.0B	Open (NC)	Closed (roBERTa) + Pile
12	LaMDA	2022-01-20	Google	USA	English	137.0B	Closed	Closed
13	Chinchilla	2022-03-29	DeepMind	USA	English	70.0B	Closed	Closed
14	Anthropic LM	2021-12-01	Anthropic	USA	English	52.0B	Closed	Closed
15	GPT-NeoX-20B	2022-02-02	EleutherAl	Germany, USA, India, Canada, UK, Australia, Austria	English	20.0B	Open	Open (Pile)
16	Turing NLG	2020-02-13	Microsoft	USA	English	17.2B	Closed	Closed
17	FairSeq Dense	2021-12-20	Meta Al	USA, UK, Germany	English	13.0B	Open	Closed
18	Big Science Model		Big Science	Multinational	Multilingual	13.0B	Closed	Open (OSCAR)
19	mT5	2020-10-22	Google	USA	Multilingual	13.0B	Open	Open (mC4)
20	ВуТ5	2021-05-28	Google	USA	Multilingual	13.0B	Open	Open (C4)
21	T5	2019-10-23	Google	USA	English	11.0B	Open	Open (C4)
22	CPM-2.1	2021-06-20	Tsinghua University	China	Chinese	11.0B	Open	???
23	Megatron 11B	2020-04-03	NVIDIA	USA	English	11.0B	Theoretically Open	???
24	WuDao-GLM-XXL		Beijing Academy of	China	Chinese	10.0B	Limited	???
25	WuDao-GLM-XXL		Beijing Academy of	China	English	10.0B	Limited	???

What Does it Take to Run?

- Slim checkpoint is 39 GB, 43 GB at runtime
- Full checkpoint 268 GB
- On an A6000 you can generate ~11 tokens per second
- Better performance on two RTX 3090 Tis, but less cost efficient

Model Training Details

The Pile: 800GB of Diverse Text for LLMs

Composition of the Pile by Category

Figure 1: Treemap of Pile components by effective size.

New Tokenizer

- Variant on standard BPE tokenizer
- Adds special tokens for spaces to handle code data better
- 15% fewer tokens on arXiv
- 23% fewer tokens on GitHub
- 0.001% more tokens on C4

New Tokenizer

- Variant on standard BPE tokenizer
- Adds special tokens for spaces to handle code data better

Model architecture

- Mostly the same as GPT-3, but all dense layers
- Pretty different from GPT-Neo
- Almost exactly the same as GPT-J
- 44 layers, hidden dimension size of 6144, and 64 heads

Parallel Attention and Feedforward Layers

Standard:
$$x + FF(LN_2(x + Attn(LN_1(x)))$$

GPT-J:
$$x + Attn(LN_1(x)) + FF(LN_2(x))$$

Rotary Embeddings

Figure 1: A pictorial representation of rotary embeddings, from Su et al. [2021].

Training

- Hyperparameters based on GPT-3
- Batch size of 3.15M tokens = 1538 contexts of 2048 tokens each
- 150,000 steps
- AdamW optimizer with beta values of 0.9 and 0.95 with ZeRO optimizer
- Tensor and pipeline parallelism

Tensor Parallelism

(b) Self-Attention

Pipeline Parallelism

Top: The naive model parallelism strategy leads to severe underutilization due to the sequential nature of the network. Only one accelerator is active at a time. **Bottom:** GPipe divides the input mini-batch into smaller micro-batches, enabling different accelerators to work on separate micro-batches at the same time.

3D Parallelism

Components of a Computing Cluster

96 A100s

12 nodes of 8 A100s

Performance Metrics

Knowledge-Intensive Tasks

Data is primarily questions that require extremely advanced knowledge <u>in humans</u>

"Mere" intelligence is insufficient: substantial subject specific expertise is required in humans

Standard Language Benchmarks

Standard Language Benchmarks

Mathematics

Scientific Observations

How Bad is a Second Epoch?

Improved Few-Shot Learning?

Perhaps due to "multitask" nature of the Pile

Energy and Carbon

	Coal	Gas	Hydro	Nuclear	Solar	Wind	Other
% Electricity Mix	30.40%	31.30%	1.30%	17.40%	0.30%	18.10%	1.30%
$t_{\rm CO_2}/{ m MWh}$	0.95	0.6078	0	0	0	0	0

1830 hours of training

920 hours of testing and evaluation

66.24 MWh -> 35 metric tons of CO2

Limitations

- Lack of coding evaluations
- Suboptimal training regime
- Further investigation of "multitask" training is needed
- Need for further improvement in democratizing access:

 If you want to use GPT-NeoX-20B in your research but do not have the computational resources to do so, email stella@eleuther.ai.

Questions?

Come join us!