Ejercicio extra: Modelo SSH

RESULTADOS DEL MODELO SSH (SU-SCHRIEFFER-HEEGER)

Los resultados mostrados a continuación fueron obtenidos con la simulación del modelo SSH implementada en el cuaderno de Julia. Se incluyen (i) el espectro completo de energías en función del parámetro intercelular t_2/t_1 , y (ii) el conteo de estados de borde localizados en los extremos de la cadena.

FIGURA 1. Izquierda: Espectro completo de energías vs t_2/t_1 para una cadena SSH con condiciones de borde abiertas (parámetros: Ncells=20, $t_1=1.0$). Se observan las bandas del bulk (estados extendidos) que se abren con un gap en $t_2/t_1=1$, y puntos en $E\approx 0$ correspondientes a estados de borde en la fase topológica $(t_2/t_1>1)$. Derecha: Número de estados de borde vs t_2/t_1 (mismos parámetros). El conteo es 0 en la fase trivial $(t_2/t_1<1)$ y salta a 2 en la fase topológica $(t_2/t_1>1)$, reflejando la transición topológica del modelo SSH.

Notar que: El modelo SSH describe una cadena unidimensional dimerizada con hopping intracelular t_1 y intercelular t_2 . La transición topológica ocurre en $t_2/t_1 = 1$, donde aparecen estados de borde de energía cero, localizados en los extremos para $t_2 > t_1$. Los resultados numéricos confirman la estructura de bandas y la presencia de estados de borde, alineándose con la teoría analítica.

Posgrado en Ciencias Físicas, UNAM