Farewell

Functional Programming 2018/19

Alejandro Serrano

Final menu

- Presentations about libraries and structures
- ► Q&A session
 - Ask me more in the break
- ► Closing remarks

Participation on research

We would like to gather your DomJudge assignments to perform research on programming education

- You do not need to do anything else than allowing us to look at the assignments
- Assignments are anonymized before anybody looks at it

Participation is **completely optional**

 During the exam I will give you a formulier toestemming, which you need to sign if you agree to help us

Presentations

- ► Parallelism with monad-par
- Semirings

Q&A session

Things with symbols: \$, <\$>, <*>, <|>, >>=

$$(\$) :: (a \rightarrow b) \rightarrow a \rightarrow b$$

Rule 1: writing \$ is like writing a parentheses until the end of the expression

Rule 2: nested uses of \$ create nested parentheses

```
f lst = map (+1) (filter even (map read lst))
-- Too many parentheses!
f lst = map (+1) $ filter even $ map read lst
-- In this case, better use composition
f = map (+1) . filter even . map read
```

Things with symbols: <\$>, <*>

-- From Functor and Applicative

```
fmap :: (a -> b) -> f a -> f b
(<$>) :: (a -> b) -> f a -> f b
(<*>) :: f (a -> b) -> f a -> f b
```

If we have a bunch of arguments inside a context/functor/monad

$$x :: m a, y :: m b, z :: m c \dots$$

and we want to apply a pure function

$$f :: a \rightarrow b \rightarrow \dots \rightarrow r$$

we need to *lift* the function using a combination of them

Things with symbols: <\$>, <*>

Things with symbols: <|>

<|> or mplus model the idea of trying different possibilities

▶ In the case of [], concatenate all solutions
(<|>) = (++)

In the case of Maybe, get the first one which doesn't fail
 That is, obtain the first Just

Things with symbols: >>=

(>>=) is the bind operation of a monad

```
class Monad m where
  return :: a -> m a
  (>>=) :: m a -> (a -> m b) -> m b
```

- ► If you give me an a inside a monad
- ▶ And tell me how to continue if I "unwrap" the a for you
- Then I can apply the continuation to the value for you

```
do x <- thing === thing >>= \xspacex -> continue continue
```

Monoids

Monoid is the generalization of the properties exhibited by +, \times , list concatenation, \vee , \wedge , ...

- ► A binary operation mappend or (<>)
- ► Which is associative

$$(x \leftrightarrow y) \leftrightarrow z === x \leftrightarrow (y \leftrightarrow z)$$

► And has a neutral element mempty

$$x \leftrightarrow mempty = x$$

 $mempty \leftrightarrow x = x$

▶ 0 for +, 1 for \times , [] for (++), False for \vee , True for \wedge

Monoids and monads

Are monoids and monads related in any way?

Yes, they are deeply connected.

Monoids and monads

Are monoids and monads related in any way?

Yes, they are deeply connected.

But we don't have time to explain how now.

Monoids and monads

Are monoids and monads related in any way?

Yes, they are deeply connected.

But we don't have time to explain how now.

You need to look at *category theory*, a branch of mathematics (and computer science).

```
return :: a -> m a -- is like `mempty`
join :: m (m a) -> m a -- is like `mappend`
```

Finish the proof of reverse \cdot reverse = id

We need the following lemmas:

```
-- Distributivity of (++) over reverse

reverse (xs ++ ys) = reverse ys ++ reverse xs

-- Reverse on singleton lists

reverse [x] = [x]
```

The second one is simple equational reasoning.

```
reverse (xs ++ ys) = reverse ys ++ reverse xs

By induction on xs:
```

```
reverse (xs ++ ys) = reverse ys ++ reverse xs
By induction on xs:
 ► Case xs = []
   reverse ([] ++ ys)
    = \{- defn of (++) -\}
   reverse ys
   reverse ys ++ reverse []
    = {- defn of reverse -}
    reverse ys ++ []
    = {- WE ARE STUCK AGAIN!!! -}
```

We need to prove a separate lemma: ts ++ [] = ts

Universiteit Utrecht

 \triangleright Case xs = z:zs ► IH:reverse (zs++ys) = reverse ys ++ reverse zs reverse ((z:zs) ++ ys) $= \{- defn of (++) -\}$ reverse (z : (zs ++ ys)) = {- defn of reverse -} reverse (zs ++ ys) ++ [z] reverse ys ++ reverse (z:zs) = {- defn of reverse -} reverse ys ++ (reverse zs ++ [z]) = {- associativity of (++) -} (reverse ys ++ reverse zs) ++ [z] $= \{ -IH - \}$ reverse (zs ++ ys) ++ [z]

$$ts ++ [] = ts$$

By induction on ts:

```
ts ++ [] = ts
By induction on ts:
 \triangleright Case ts = \square:
    [] ++ []
    = \{- defn of (++) -\}
     Г٦
 Case ts = p:ps
      ► IH:ps ++ [] = ps
    (p:ps) ++ []
    = \{- defn of (++) -\}
    p : (ps ++ [])
    = \{ -IH - \}
    p : ps
```

Define a function:

tuple :: Monad m => m a -> m b -> m (a, b)
using explicit (>>=), do-notation and applicative operators.

```
tuple :: Monad m \Rightarrow m a \rightarrow m b \rightarrow m (a, b)
Using do-notation
tuple x y = do x' < -x
                   y' <- y
                   return (x', y')
Usina (>>=)
tuple x y = x >>= \x' ->
               \Lambda >>= /\Lambda_1 ->
               return (x', y')
```

```
tuple :: Monad m => m a -> m b -> m (a, b)
Using applicative operators
```

```
We need to find a function a \rightarrow b \rightarrow (a, b) and lift it pair x y = (x, y) -- define it yourself (,) :: a \rightarrow b \rightarrow (a, b) -- constructor for pairs To lift it, use a combination of < and < tuple x y = (,) < > x < > y
```

Functor-applicative-monad hierarchy

Functor which is not applicatives?

Applicative which is not monad?

Functor-applicative-monad hierarchy

Functor which is not applicatives?

Applicative which is not monad?

Thanks, StackOverflow!

Functor which is not applicative

```
data Pair a b = Pair a b -- like a tuple
instance Functor (Pair a) where
  fmap f (Pair x y) = Pair x (f y)
instance Applicative (Pair a) where
  pure y = (\{-what here?? -\}, y)
-- You can fix it, but not for every "a"
instance Monoid a => Applicative (Pair a) where
  pure y = (mempty, y)
  (<*>) = ...
```


Applicative which is not monad

```
data ZipList a = ZL [a]
instance Applicative ZipList where
  pure x = ZL (repeat x) -- infinite list of "x"s
  ZL fs <*> ZL xs = ZL (zipWith (\f x -> f x) fs xs)
  -- This obbeys all the laws!
-- You can use the "Monad" from lists
-- But then the following does not hold:
f < *> x === do f' <- f
                 x' < -x
                 return (f' x')
```

Closing remarks

Goals for the course

- ► Learn the **functional** paradigm and **style**
 - ► You can apply FP techniques everywhere!
 - Every (serious) language has H-O functions
- Experience a strong static type system
- ► **Reason** about programs
 - Correct software is our ultimate goal

Courses about or using FP at UU

- ► Functioneel Programmeren
- ► Talen en Compilers: year 3, period 2
 - Haskell applied to compiler writing
- Software Testing en Verificatie: year 3, period 4
 - More reasoning about programs

If you want to know more

More Haskell?

- Pearls of Functional Algorithm Design, by Bird
 - Puzzles with a nice functional solution
- the fun of programming, by Gibbons and de Moor
 - Even more niceties in a functional style
- Haskell from First Principles, by Allen and Moronuki
 - Covers additional topics, like transformers
- Beginning Haskell, by, ehmmm... me
 - Which happens to be an intermediate book

If you want to know more

Learn other functional languages

- ► F# for the .NET platform
 - ▶ Beginning F# 4.0 and Expert F# 4.0
- Kotlin and Scala for the Java platform
 - ► Functional Kotlin
 - Functional Programming in Scala
- Swift for iOS development
 - Functional Swift

If you want to know more

Or just drop by my office

Success with your exams!

