Transformation of parameters: confidence intervals

- We will look at how parameter transformation affects confidence intervals
- How can we get the Wald confidence interval for the transformed parameter ϕ based on the information about the original parameter θ ?

Confidence interval for $\Phi(\theta)$

Suppose $y_1, y_2, ..., y_n$ are independent observations with log-likelihood function $\ell_{\theta}(\theta; y)$. Consider the equivalent parameterization $\overline{\phi} = \Phi(\theta)$.

An approximate $100(1-\alpha)\%$ confidence interval for ϕ is given by

$$\left(\Phi(\hat{\theta}) - z_{\alpha/2} \Phi'(\hat{\theta}) \sqrt{I_{\hat{\theta}}^{-1}}, \hat{\phi} + z_{\alpha/2} \Phi'(\hat{\theta}) \sqrt{I_{\hat{\theta}}^{-1}}\right).$$

$$\left(\hat{\phi} - Z_{\alpha/2} \sqrt{I_{\hat{\phi}}^{-1}}, \hat{\phi} + Z_{\alpha/2} \sqrt{I_{\hat{\phi}}^{-1}}\right).$$

(see next slide for explanation about this CI)

During the proof of Theorem 16, we have shown that $I_{\theta} = \left[\overline{\Psi}'(\theta) \right]^{2} I_{\phi}$ $\left[\overline{\Psi}'(\theta) \right]^{2} I_{\theta} = I_{\phi}$

So the asymptotic distribution of $\hat{\phi}$ is

$$\frac{\hat{\phi}}{\hat{\phi}} \longrightarrow \mathcal{N}(\phi, \vec{I_{\phi}})$$

$$Z = \frac{\hat{\phi} - \phi}{\sqrt{\vec{I_{\phi}}}} \longrightarrow \mathcal{N}(0, 1)$$

We can use Z as a pivotal quantity to construct a CI for ϕ :

$$CI = \hat{\phi} \pm Z_{\frac{\omega}{2}} \int \vec{I_{\phi}}$$

$$= \overline{\Phi}(\hat{\theta}) \pm Z_{\frac{\omega}{2}} \Phi'(\hat{\theta}) \sqrt{\vec{I_{\theta}}}$$

$$\approx \overline{\Phi}(\hat{\theta}) \pm Z_{\frac{\omega}{2}} \Phi'(\hat{\theta}) \sqrt{\vec{I_{\hat{\theta}}}}$$

Example 5.15

Suppose $y_1, y_2, ..., y_n$ are i.i.d. Bernoulli observations with probability θ . Consider the log-odds $\phi = \log\left(\frac{\theta}{1-\theta}\right)$. Find an approximate $100(1-\alpha)\%$ confidence interval for ϕ .

Recall
$$\hat{\theta} = \bar{y}$$
 and $S(\theta; y) = \frac{1}{\theta} \left(\frac{\bar{x}}{2}, y; \right) - \left(\frac{1}{1-\theta} \right) \left(n - \frac{\bar{x}}{2}, y; \right)$

$$\frac{\partial^2 L}{\partial \theta^2} = -\frac{1}{\theta^2} \left(\frac{\bar{x}}{2}, y; \right) - \left(\frac{1}{1-\theta} \right)^2 \left(n - \frac{\bar{x}}{2}, y; \right)$$

$$I_{\theta} = E \left[-\frac{\lambda^2 L}{\partial \theta^2} \right] = E \left[\frac{1}{\theta^2} \left(\frac{\bar{x}}{2}, y; \right) + \left(\frac{1}{1-\theta} \right)^2 \left(n - \frac{\bar{x}}{2}, y; \right) \right]$$

$$= \frac{1}{\theta^2} \left[E(Y_i) + \left(\frac{1}{1-\theta} \right)^2 \left(n - \frac{\bar{x}}{2}, E(Y_i) \right) + \left(\frac{1}{1-\theta} \right)^2 \left(n - \frac{\bar{x}}{2}, E(Y_i) \right)$$

$$= \frac{1}{\theta^2} \left(n\theta \right) + \left(\frac{1}{1-\theta} \right)^2 \left(n - n\theta \right)$$

$$= \frac{n}{\theta} + \frac{n}{1-\theta}$$

$$= \frac{n}{\theta} + \frac{n}{1-\theta}$$

$$CI = \overline{\Phi}(\hat{\theta}) \pm Z_{\frac{1}{2}} \overline{\Phi}(\hat{\theta}) \int \overline{I}_{\hat{\theta}}^{-1}$$

$$= \overline{\Phi}(\overline{y}) \pm Z_{\frac{1}{2}} \overline{\Phi}'(\overline{y}) \int \overline{I}_{\hat{y}}^{-1}$$

$$= \log(\overline{\frac{y}{1-y}}) \pm Z_{\frac{1}{2}} (\overline{y}(1-\overline{y})) \int \overline{y}(1-\overline{y})$$

$$= \log(\overline{\frac{y}{1-y}}) \pm Z_{\frac{1}{2}} (\overline{y}(1-\overline{y}))$$

$$= \log(\overline{\frac{y}{1-y}}) \pm Z_{\frac{1}{2}} \sqrt{n\overline{y}(1-\overline{y})}$$