События и их вероятности

Виды событий

События бывают достоверными, невозможными и случайными.

- 1) Достоверным называют событие, которое в результате испытания (осуществления определенных действий, определённого комплекса условий) обязательно произойдёт. Например, в условиях земного тяготения подброшенная монета непременно упадёт вниз.
- 2) Невозможным называют событие, которое в результате испытания заведомо не произойдёт. Пример невозможного события: в условиях земного тяготения подброшенная монета улетит вверх.
- 3) И, наконец, событие называется случайным, если в результате испытания оно может, как произойти, так и не произойти, при этом должен иметь место принципиальный критерий случайности: случайное событие есть следствие случайных факторов, воздействие которых предугадать невозможно или крайне затруднительно

Любой результат испытания называется исходом, который, собственно и представляет собой появление определённого события. В частности, при подбрасывании монеты возможно 2 исхода (случайных события): выпадет орёл, выпадет решка. Естественно, подразумевается, что данное испытание проводится в таких условиях, что монета не может встать на ребро или, скажем, зависнуть в невесомости.

События (любые) обозначают большими латинскими буквами A, B, C, D, E, F, ...

либо теми же буквами с подстрочными индексами, например:

A1 A2 A3 A4 A5

При этом стараются избегать буквы Р, которая зарезервирована под другие нужды.

A_O – в результате броска монеты выпадет «орёл»;

В5 – в результате броска игральной кости (кубика) выпадет 5 очков;

С_Т- из карточной колоды будет извлечена карта трефовой масти.

- выпадение орла или решки при броске монеты;
- выпадение 1, 2, 3, 4, 5 или 6 очков при броске игрального кубика;
- появление трефы, пики, бубны или червы при случайном извлечении карты из полной колоды.

При этом предполагается, что монета и кубик однородны и имеют геометрически правильную форму, а колода хорошо перемешана и «идеальна» с точки зрения неразличимости рубашек карт.

События называют несовместными, если в одном и том же испытании появление одного из событий исключает появление других событий. Простейшим примером несовместных событий является пара противоположных событий. Событие, противоположное данному, обычно обозначается той же латинской буквой с чёрточкой наверху:

A = 4 / 2 - 405H

А_О – в результате броска монеты выпадет орёл;

АО - в результате этого же броска выпадет решка

Совершено ясно, что в отдельно взятом испытании появление орла исключает появление решки (и наоборот), поэтому данные события и называются несовместными. Противоположные события легко формулируются из соображений элементарной логики:

В5 – в результате броска игрального кубика выпадет 5 очков;

B5 – в результате этого же броска выпадет число очков, отличное от пяти. 5, либо не 5, т.е. данные события несовместны и противоположны.

С_Т- из колоды будет извлечена карта трефовой масти, либо:

С_Т- извлечена пика, черва или бубна.

Множество несовместных событий образуют полную группу, если в результате отдельно взятого испытания обязательно появится одно и только одно из этих событий.

я пара противоположных событий, например, В5 и не В5 (выпадение / невыпадение «пятёрки») образует полную группу. Но, разумеется, полную группу могут образовывать не только противоположные события:

```
В1- в результате броска игрального кубика выпадет 1 очко;
```

В2- ... 2 очка;

В3- ... 3 очка;

В4- ... 4 очка;

В5- ... 5 очков;

В6- ... 6 очков.

События В1, В2, В3, В4, В5, В6

несовместны (поскольку появление какой-либо

грани исключает одновременное появление других) и образуют полную группу (так как в результате испытания обязательно появится одно из этих шести событий).

элементарность исхода (события). Если совсем просто, то элементарное событие нельзя «разложить на другие события».

Например, события В1, В2, В3, В4, В5, В6 элементарны, но событие

не В5 не является таковым, так как

подразумевает выпадение 1, 2, 3, 4 или 6 очков (включает в себя 5 элементарных исходов).

В примере с картами события С_Т С_П С_Ч С_Б(извлечение трефы, пики, червы или бубны соответственно) несовместны и образуют полную группу, но они неэлементарны.

Если считать, что в колоде 36 карт, то каждое из перечисленных выше событий включает в себя 9 элементарных исходов. Аналогично – события D_6 D_7 D_8 D_9 D_10

(извлечение шестёрки, семёрки, ..., короля, туза) несовместны, образуют полную группу и неэлементарны (каждое включает в себя 4 исхода).

Таким образом, элементарным исходом здесь считается лишь извлечение какой-то конкретной карты, и 36 несовместных элементарных исходов тоже образуют полную группу событий.

И коротко о событиях совместных. События называются совместными, если в отдельно взятом испытании появление одного из них не исключает появление другого.

Например:

С_Т – из колоды карт будет извлечена трефа;
 D_7 – из колоды карт будет извлечена семёрка.

D - завтра в 12.00 будет дождь;

G – завтра в 12.00 будет гроза;

S – завтра в 12.00 будет солнце.

 данные события совместны, т.к. при излечении семёрки треф одновременно имеют место оба события.
 Понятие совместности охватывает и

бОльшее количество событий:

Алгебра событий

Сложение событий обозначает логическую связку ИЛИ, а умножения событий – логическую связку И.

1) Суммой двух событий и называется событие которое состоит в том, что наступит или событие, или событие, или событие, или оба события одновременно. В том случае, если события несовместны, последний вариант отпадает, то есть может наступить или событие, или событие.

Правило распространяется и на бОльшее количество слагаемых, например, событие

 $A_1 + A_2 + A_3 + A_4 + A_5$ состоит в том, что произойдёт хотя бы одно из событий A_1, A_2, A_3, A_4, A_5

а если события несовместны — то одно и только одно событие из этой суммы: или событие , или событи

Событие $\overline{B}_5 = B_1 + B_2 + B_3 + B_4 + B_6$ состоит в том, что выпадет 1, или 2, или 3, или 4, или 6 очков.

Событие $B_{1,2} = B_1 + B_2$ состоит в том, что выпадет не более двух очков (1 или 2 очка)

событиями совместные: Ст + Д7

Событие состоит в том, что из колоды будет извлечена трефа или семёрка или семёрка треф.

Согласно данному выше определению, хотя бы что-то – или любая трефа или любая семёрка или их «пересечение» – семёрка треф. Легко подсчитать, что данному событию соответствует 12 элементарных исходов (9 трефовых карт + 3 оставшиеся семёрки).

$$D+G+S$$

Событие состоит в том, что завтра в 12.00 наступит ХОТЯ БЫ ОДНО из суммируемых совместных событий, а именно:

- будет только дождь / только гроза / только солнце;
- или наступит только какая-нибудь пара событий (дождь + гроза / дождь + солнце / гроза + солнце);
- или все три события появятся одновременно.

40 #1

Произведением двух событий и называют событие , которое состоит в совместном появлении этих событий, иными словами, умножение означает, что при некоторых обстоятельствах наступит и событие . Аналогичное утверждение справедливо и для бОльшего количества событий, так, например, произведение

 $A_1A_2A_3 \cdot \ldots \cdot A_{10}$ подразумевает, что при определённых условиях произойдёт и событие , и событие , и событие , ..., и событие

Рассмотрим испытание, в котором подбрасываются две монеты (не имеет значения, одновременно или нет) и следующие события:

 Дана 1-й монете выпадет орёл;

 Дана 1-й монете выпадет решка;

– на 2-й монете выпадет орёл; – на 2-й монете выпадет решка. A_1A_2 — событие состоит в том, что на 1-й монете выпадет орёл и на 2-й орёл; $\overline{A_1}\,\overline{A_2}$ — событие состоит в том, что на 1-й монете выпадет решка и на 2-й решка;

 $A_1 A_2 = 0.000$ событие состоит в том, что на 1-й монете выпадет орёл и на 2-й монете выпадет решка; $A_1 A_2 = 0.000$ событие состоит в том, что на 1-й монете выпадет решка и на 2-й монете выпадет орёл.

AN

 A_1A_2 , $\overline{A}_1\overline{A}_2$, $A_1\overline{A}_2$, \overline{A}_1A_2

несовместны (т.к. не может, например, выпасть 2 орла и в то же самое время 2 решки) и образуют полную группу

Вероятность события

Вероятность события- это количественная мера

возможности наступления этого события в результате испытания

Обозначения: вероятность некоторого события обозначается большой латинской буквой, а само событие берётся в скобки, выступая в роли своеобразного аргумента.

$$P(A_o)$$

$$P(B_5)$$

$$P(C_T)$$

Также для обозначения вероятности широко используется маленькая буква . В частности, можно отказаться от громоздких обозначений событий и их вероятностей и использовать следующую стилистику:

$$A_0, B_5, C_T$$

$$P(A_0), P(B_5), P(C_T)$$

$$p_0 = \frac{1}{2}$$
 — вероятность того, что в результате броска монеты выпадет «орёл»;

$$p_5 = \frac{1}{6}$$

 вероятность того, что в результате броска игральной кости выпадет 5 очков;

$$p_T = \frac{1}{4}$$

– вероятность того, что из полной колоды будет извлечена

трефа.

Вероятности можно выразить и в процентах, например: вероятность выпадение орла равна

$$\frac{1}{2} \cdot 100\% = 50\%$$

½ 100% = 50% ВЫПАДЕНИЯ ШЕСТЕРКИ ½ 100% ≈ 16,67%

но в теории вероятностей ЭТОГО ДЕЛАТЬ НЕ ПРИНЯТО

достоверное невозможное случайное

Принято использовать доли единицы, и, очевидно, что вероятность может изменяться в пределах

$$0 \le P(A) \le 1$$

При этом если , то событие является невозможным, если – достоверным, а если , то речь идёт о случайном событии.

Сумма вероятностей событий, которые образуют полную группу

равна единице

Это теорема. Грубо говоря, если события образуют полную группу, то со 100%-ной вероятностью какое-то из них произойдёт. В самом простом случае полную группу образуют противоположные события, например:

/\ • – в результате броска монеты выпадет орёл;

– в результате броска монеты выпадет решка.

TO TEOPEME: $P(A_0) + P(\overline{A}_0) = 1$

Поскольку данные события равновозможны, то их вероятности одинаковы

$$P(A_0) = \frac{1}{2}, P(\overline{A_0}) = \frac{1}{2}$$
 и по этой причине такие события называют равновероятными.

Рассматриваемая теорема удобна тем, что позволяет быстро найти вероятность противоположного события. Так, если известна вероятность

$$P(B_5) = \frac{1}{6}$$
 того, что на кубике выпадет пятёрка, то из суммы $P(B_5) + P(\overline{B}_5) = 1$

 $P(\overline{B}_5) = 1 - P(B_5) = 1 - \frac{1}{6} = \frac{3}{6}$ легко выразить и вычислить вероятность того, что она не выпадет.

в элементарных исходах и их вероятностях, для которых, к слову, данная теорема тоже справедлива:

$$P(B_1) + P(B_2) + P(B_3) + P(B_4) + P(B_5) + P(B_6) = 1$$

События $B_1, B_2, B_3, B_4, B_5, B_6$

как отмечалось выше, равновозможны – и теперь мы можем сказать, что равновероятны. Вероятность выпадения любой грани кубика равна

$$P(B_1) = P(B_2) = P(B_3) = P(B_4) = P(B_5) = P(B_6) = \frac{1}{6}$$

 $P(B_1) = P(B_2) = P(B_3) = P(B_4) = P(B_5) = P(B_6) = \frac{1}{6}$ В упрощенном варианте оформления вероятность противоположного события стандартно обозначается строчной буквой

qНапример, если p = 0.7 — вероятность того, что стрелок попадёт в цель, то

q = 1 - p = 1 - 0.7 = 0.3

вероятность того, что он промахнётся.

Перестановки, сочетания и размещения без повторений

что значит «без повторений»? Это значит, что в данном параграфе будут рассматриваться множества, которые состоят из различных объектов, либо которые считаются таковыми по смыслу задачи.

Представьте, что перед вами на столе слева направо выложены: яблоко / груша / банан

Вопрос первый: сколькими способами их можно переставить?

Формула количества перестановок: $P_n = n!$

Типичная смысловая нагрузка: «Сколькими способами можно переставить п объектов?»

яблоко / банан / груша груша / яблоко / банан груша / банан / яблоко банан / яблоко банан / груша / яблоко

6 комбинаций или 6 перестановок.

п-факториал-

это произведение всех натуральных чисел от до единицы до п, обозначают символом! Используя знак факториала, можно, например, записать:

1! = 1,

2! = 2*1=2,

3! = 3*2*1=6,

4! = 4*3*2*1=24,

Необходимо знать, что 0! = 1

5! = 5*4*3*2*1 = 120.