Prova 2 - Estatística - 2025.1

1) (1,5 pontos) Uma indústria de pequeno porte no setor de laticínios está enfrentando sérios problemas em sua linha de produção. Estima-se que 30% do leite recebido no estabelecimento apresente um resíduo indesejado específico que não está sendo detectado pelos testes físico-químicos realizados atualmente pelo laboratório dessa indústria.

Como a empresa é pequena e possui recursos limitados, não possui acesso aos melhores testes do mercado para identificação desse novo resíduo contaminante, mas consegue adquirir um teste que apresenta as seguintes características:

- Se a amostra estiver contaminada, o teste apresenta resultado positivo, identificando a presença de contaminantes, com 70% de chance.
- Se amostra não estiver contaminada, o teste apresenta resultado negativo, identificando ausência de contaminantes, com 80% de chance.

O engenheiro responsável pelo laboratório dessa indústria realiza o teste em uma amostra do lote e o teste dá positivo. Sabendo disso, ele precisa tomar a decisão de rejeitar ou não o lote. Ele decide estabelecer que, caso a probabilidade dessa amostra realmente estar contaminada seja maior que 50%, então o lote deve ser rejeitado. Caso contrário, mesmo o teste dando positivo, ele aceita o lote. Dado esse cenário, o engenheiro deve rejeitar ou aceitar o lote de leite recebido? Justifique sua resposta com os cálculos necessários.

- 2) (2,25 pontos) Um dos jogos da loteria federal que vem se tornando popular ao longo dos últimos anos devido à sua aparente facilidade de ganho é a Lotofácil. Diferentemente da tradicional Mega-Sena, na Lotofácil existem apenas 25 números dos quais, na aposta comum, o jogador deve marcar 15 números, pagando o valor de R\$ 3,00. O jogador recebe um prêmio relativo à quantidade de acertos, a seguir são listados os prêmios do último sorteio:
 - Prêmio ao acertar 15 números: R\$1.764.882,05
 - Prêmio ao acertar 14 números: R\$1.737, 36
 - Prêmio ao acertar 13 números: R\$30,00
 - Prêmio ao acertar 12 números: R\$12,00
 - Prêmio ao acertar 11 números: R\$6,00

A seguir é apresentada uma imagem do cartão do jogo:

Sabendo disso responda:

- a) (1,5 pontos) Sabemos que, por ser um jogo da loteria federal, trata-se de um jogo em que não há fraude e, portanto, é um jogo justo nesse quesito. Entretanto, ao longo da disciplina, vimos que, atrelado ao surgimento da probabilidade, também surge o ato de verificar, por meio do uso de probabilidades, se um jogo aleatório é justo. Dessa forma, considerando a aposta comum, é possível afirmar que, baseando-se nesse conceito de justiça, o jogo da Lotofácil é justo? Justifique sua resposta realizando os cálculos necessários.
- b) (0,75 pontos) Pierre, um jogador da Lotofácil, resolve adotar a seguinte estratégia para aumentar suas chances de ganho: Ele entra na internet e busca todos os números sorteados nos sorteios realizados ao longo do ano de 2024 e monta a seguinte tabela de frequência:

Table 1: Frequência das dezenas da Lotofácil no ano de 2024

Dezena	Vezes	Frequência Relativa		
10	195	67.24%		
25	191	65.86%		
12	185	63.79%		
02	184	63.45%		
01	181	62.41%		
08	181	62.41%		
04	178	61.38%		
03	177	61.03%		
15	176	60.69%		
20	176	60.69%		
05	175	60.34%		
19	173	59.66%		
07	172	59.31%		
21	171	58.97%		
22	171	58.97%		
23	171	58.97%		
18	170	58.62%		
06	168	57.93%		
13	167	57.59%		
14	166	57.24%		
09	165	56.90%		
24	165	56.90%		
11	164	56.55%		
16	164	56.55%		
17	164	56.55%		

Pierre acredita que a probabilidade de um número ser sorteado está relacionada à frequência com que ele apareceu em sorteios anteriores, ou seja, considera que a probabilidade é proporcional à frequência relativa observada. Assim, os números mais frequentes seriam, segundo ele, os mais prováveis de serem sorteados. Dessa forma, com o objetivo de aumentar suas chances de ganhar, ele simplesmente escolhe marcar, no cartão de aposta, os 15 primeiros números da tabela apresentada acima.

Dado esse cenário, responda:

- i) (0,25 pontos) Qual interpretação da probabilidade Pierre está usando?
- ii) (0,5 ponto) A interpretação adotada por Pierre é a mais adequada para o contexto do problema? Se a resposta for não, qual seria a interpretação mais adequada e por que? Se for sim, diga o motivo.
- 3) (2,5 pontos) Uma distribuição contínua bastante importante e adotada na geração de números aleatórios em programas computacionais é a Distribuição Uniforme Contínua. Dizemos que se uma variável aleatória X segue a distribuição uniforme contínua em um intervalo [a,b] (Notação: $X \sim U([a,b])$) com b>a, se ela assume valores no conjunto [a,b] e sua função densidade de probabilidade é dada por:

$$f(x) = \begin{cases} \frac{1}{b-a}, & \text{se } a \le x \le b\\ 0, & \text{caso contrário} \end{cases}$$

Sabendo disso responda:

- a) Mostre que se $X \sim U([a,b])$ então $\mathbb{E}[X] = \frac{a+b}{2}$ e $Var(X) = \frac{(b-a)^2}{12}$
- b) Além da Distribuição Uniforme Contínua, também existe a Distribuição Uniforme Discreta. Dizemos que uma variável aleatória Y segue a distribuição uniforme discreta em um conjunto $\{a,a+1,a+2,\ldots,b\}$ (Notação: $Y \sim \mathcal{U}\{a,b\}$) com b>a se Y assume valores no conjunto enumerável $\{a,a+1,a+2,\ldots,b\}$ e sua função de probabilidade é dada por:

$$p_Y(y) = \frac{1}{b-a+1}$$
 se $y \in \{a, a+1, \dots, b\}$

- i) O que é uma variável aleatória.
- ii) Explique a diferença entre uma variável aleatória discreta e uma contínua
- iii) Explique o que é uma função de probabilidade (Explique seu aspecto funcional, incluindo os requisitos para uma função ser função de probabilidade)
- iv) Suponha que $T \sim U([1,6])$ e $V \sim \mathcal{U}\{1,6\}$, obtenha $\mathbb{P}(T=2)$ e $\mathbb{P}(V=2)$
- v) Dê um exemplo de evento do mundo real que poderia ser modelado por uma variável aleatória que siga a distribuição uniforme discreta e outro que poderia ser modelado por uma que siga a uniforme contínua.
- 4) (2,5 pontos) Você é o Engenheiro responsável por um laboratório de controle de qualidade que está avaliando amostras de leite cru fornecido por diferentes produtores da região. Uma das análises realizadas é o teste de crioscopia, que mede o ponto de congelamento do leite.

Para verificar se os fornecedores estão adicionando água ao leite, você selecionou uma amostra aleatória de 36 lotes de leite e obteve uma média do ponto de congelamento igual a -0.533 °C.

Estudos anteriores do laboratório indicam que a variabilidade do ponto de congelamento do leite é bem conhecida, com desvio padrão populacional $\sigma = 0.072$ °C. Admita que a variável aleatória associada ao ponto de congelamento seja aproximadamente normal.

- (a) Construa um intervalo de confiança com 95% de confiança para a média real do ponto de congelamento do leite entregue pelos fornecedores.
- (b) Você decide mostrar o intervalo de confiança obtido para Leôncio, o técnico do laboratório. Ao ler seu resultado, Leôncio profere a seguinte frase para você:

"Baseado no intervalo que você me mostrou, podemos dizer que existe uma probabilidade de 95% de que a média verdadeira do ponto de congelamento do leite recebido esteja compreendida dentro desse intervalo"

Você concorda com a afirmação do técnico do laboratório? Justifique.

- (c) O que ocorreria com o intervalo calculado na questão a se o tamanho da amostra aumentasse? E se o nível de confiança aumentasse?
- (d) Se o laboratório desejasse uma margem de erro de no máximo 0,005 °C para a média, mantendo o mesmo nível de confiança e desvio padrão, qual deveria ser o tamanho mínimo da amostra?

Informações úteis:

•
$$\frac{25!}{15!10!} = 3268760$$

•
$$\binom{15}{12} = 455$$

•
$$\binom{15}{11} = 1365$$

•
$$\binom{10}{4} = 210$$

•
$$\frac{1}{\binom{25}{15}} \approx 3,06 \cdot 10^{-7}$$

•
$$\frac{150}{\binom{25}{15}} \approx 4,59 \cdot 10^{-5}$$

•
$$\frac{4725}{\binom{25}{15}} \approx 1,44 \cdot 10^{-3}$$

•
$$\frac{54600}{\binom{25}{15}} \approx 5,01 \cdot 10^{-2}$$

•
$$\frac{286650}{\binom{25}{15}} \approx 8,77 \cdot 10^{-2}$$

5)(1,1 pontos) Sejam $A \in B$ dois eventos em um mesmo espaço amostral. Responda:

- a) (0,3) O que significa dizer que A e B são mutuamente excludentes(ou exclusívos)?
- b) (0,3) O que significa dizer que A e B são independentes? Dizer que A é independente de B implica dizer que B é independente de A?

) (0,5) Se A e B são mu O contrário é valido?	?	 <i>,,,</i>	•