Question 1

NR

Swiss Prot

about:srcdoc Page 1 of 13

NR	
Number of sequneces with 100% coverage	12
Number of sequences with E value close to 0	100
Number of sequnces with identity 100%	1
Lowest % identity	67.67%
Max_score range	1305-505
Swiss Prot	
Number of sequneces with 100% coverage	0 (max coverage = 96%)
Number of sequences with E value close to 0	33
Number of sequnces with identity 100%	0 (max identity = 44.4%)
Lowest % identity	22.22%
·	544-50.8

Question 2

about:srcdoc Page 2 of 13

Parameters used:

General parameters displayed in comparison

- 1. Max target sequences
- 2. Expected threshold
- 3. Word size
- 4. Maximum matches in a query range
- 5. Short Queries

Scoring parameters

- 1. Matrix
- 2. Gap costs
- 3. Compositional alignments

Filter and Masking

- 1. Filter options
- 2. Mask options

Question 3

Range 1: 22 to 690 Graphics

tr|Q93PY6|Q93PY6_PSEFL RscC OS=Pseudomonas fluorescens OX=294 GN=rscC PE=3 SV=1 Sequence ID: Query_63209 Length: 713 Number of Matches: 1

▼ Next Match A Previous Match

530 bits(1366) 0.0 Compositional matrix adjust. 292/676(43%) 416/676(61%) 28/676(4%) RCRLLGALLMLCATLPAG---AQTPADWKEQSYAYSADRTPLSTVLQDFADGHSVDLHLG R + +L+ C PA A PA+WK +YAY AD PL VL+DFA L + RAKWQWLVLLGCIMAPAHNLLAAIPAEWKNTAYAYEADHKPLREVLEDFAQTFGTQLQIE Query 125 IKQALSGIGLLDPRFGWGELPDDGVVLVTGPPQYLELVKRFSEQREKKEDRRKVMTFPLR
+KQAL+ IGLLD RFGWGELP+DGVVLV+GP Y++ +K+FS +R ++++ V++FPL+
Sbjct 142 LKQALTDIGLLDSRFGWGELPEDGVVLVSGPKTYIDQIKQFSSKRRSADEKQSVLSFPLK Query 185 YASVADRTIHYRDQTVVIPGVATMLNELMNGKRAAPASA-SGIDSTPGGPDTNSMMQNTQ 243 +A+ ADR + YR + +V+PGVA +L L+ + A+ + S DS+ P T ++ + Sbjct 202 FANAADRKVDYRGEKLVVPGVANILRGLLEPRSASTLTGMSQPDSSQPSPLTPNVPRLGN 261 Query 244 TLLSRLSSRNKTSNRAGGRDN------EIEDVSGRISADVRNNALLIRDDDKRHDEYS 295
LL ++ N AG D + R+ ADVRNNA+LI D +R Y
Sbjct 262 PLLGQMLGAN---GNAGQLDTGPTVTPRAPVSKSRIRVEADVRNNAVLIYDLPERQAMYR 318 Query 296 QLIAKIDVPQNLVEIDAVILDIDRTALNRLEANWQATLGGVTGGSSLMSGSGTLFVSDFK LI ++DV + L+EIDA+ILDI+RT L NW GG ++ G+ + D + Sbjct 319 DLITQLDVARKLIEIDAIILDIERTQLREFGVNWGFQNSRFRGGVNMAPGTSSQVSIDHR Query 356 -RFFADIQALEGEGTASIVANPSVLTLENQPAVIDFSQTAYITATGERVADIQPVTAGTS RF+AD+ + G+G A++V+NPSVLTLENQPAVIDF++T YI+ G A I PVT GTS
Sbjct 379 DRFYADMPSTGGQGPATMVSNPSVLTLENQPAVIDFNRTQYISP-GRDYATILPVTVGTS 437 Query 415 LQVTPRAVGNEGHSSIQLMIDIEDGHV-QTNG--DGQATGVKRGTVSTQALISENRALVL LOV PR G I L++DIEDG++ +TN D V+RG VSTOA++ E R+LV+ Sbjct 438 LQVVPRVTTGRGVHQIHLVVDIEDGNLDETNPERDPNHLDVRRGKVSTQAVMQEKRSLVV $\label{eq:ggfhveesadrdrripligdipwigq-lfsskrheisqrqrlfiltprligdqtdptryv} $$\operatorname{\mathsf{GGFHV}} + S + D + + + \operatorname{\mathsf{IPLLGDIP}} \operatorname{\mathsf{LGF}} \operatorname{\mathsf{LSS}} + + R + R \operatorname{\mathsf{LFILTPR}} + \operatorname{\mathsf{IGDQ}} \operatorname{\mathsf{DP+RY}} + \operatorname{\mathsf{GGFHVTDSSDQQKKIPLLGDIPLLGKTLVSSTERHNNRERLFILTPRVIGDQDDPSRYL} $$$$ Query 472 Query 531 TADNRQQLSDAMGRVERRHSS----VNQHDVVENALRDLAEGQSPAGFQPQTSGTRLSEV D++ +L A+ + RR+S + + D++ R L G+ P F L+ + Sbjct 558 PQDDQAELQAALTPLARRYSPHQPVIKRSDIITTLAR-LVSGEVPKAFNAARMPLGLNTL Query 647 ALAPGESAEVYLAMDP L PGE AEV++AM P Sbjct 675 WLKPGEEAEVFIAMRP

Sequence identity = 43%

about:srcdoc Page 3 of 13

Question 4

The beta subunit of hemoglobin in chicken and human aer 69% identical and 82% similar (positives)

Question 5

```
import re
from DnaUtils import readFasta
import pandas as pd
human = readFasta("human.fasta")[1][0]
chick = readFasta("chicken.fasta")[1][0]
matches = set([human[i:i+5] for i in range(len(human)-5+1)]).intersection(sprint("Number of matches =", len(matches))
print("\nMatches:")
freq_h = [len(re.findall(f'(?={match})', human)) for match in matches]
freq_c = [len(re.findall(f'(?={match})', chick)) for match in matches]

df = pd.DataFrame([matches, freq_h, freq_c]).T
df.columns = ["Pentapeptide", "freq_human", "freq_chicken"]
df
```

about:srcdoc Page 4 of 13

Number of matches = 27

Matches:

rı		.CIICS •		
Out[1]:		Pentapeptide	freq_human	freq_chicken
	0	WTQRF	1	1
	1	NFRLL	1	1
	2	GKVNV	1	1
	3	HGKKV	1	1
	4	VDPEN	1	1
	5	LWGKV	1	1
	6	HCDKL	1	1
	7	PWTQR	1	1
	8	VYPWT	1	1
	9	ENFRL	1	1
	10	CDKLH	1	1
	11	PENFR	1	1
	12	FRLLG	1	1
	13	YPWTQ	1	1
	14	TQRFF	1	1
	15	AHGKK	1	1
	16	SELHC	1	1
	17	LHVDP	1	1
	18	LHCDK	1	1
	19	KLHVD	1	1
	20	GKKVL	1	1
	21	DPENF	1	1
	22	LSELH	1	1
	23	DKLHV	1	1
	24	ELHCD	1	1
	25	HVDPE	1	1
	26	WGKVN	1	1

Question 6

about:srcdoc Page 5 of 13

```
blast_seq = "MVH T EEK +T LWGKVNV E G EAL RLL+VYPWTQRFF SFG+LS+P A++GNP VELSELHCDKLHVDPENFRLLG++L+ VLA HF K+FTP QAA+QK+V VA+ALA KYH"

n = len(blast_seq)
identity = (n - blast_seq.count(' ') - blast_seq.count('+')) / n * 100
similarity = (n - blast_seq.count(' ')) / n * 100
query_coverage = n / len(human) * 100
gaps = blast_seq.count('-') / n * 100
df = pd.DataFrame([identity,similarity, query_coverage, gaps])
df.columns = ['Value (%)']
df.index = ["Identity", "Similarity", "Query Coverage", "Gap Percentage"]
df
```

```
      Out [2]:
      Value (%)

      Identity
      69.387755

      Similarity
      82.312925

      Query Coverage
      100.000000

      Gap Percentage
      0.0000000
```

Question 7

```
ids, seqs = readFasta("uniprot-id_Q9Y5J7+OR+id_O74700+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV98+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV99+OR+id_Q9WV9P+Id_Q9WV9P+Id_Q9WV9P+Id_Q9WV9P+Id_Q9WV9P+Id_Q9WV9P+Id_Q9WV9P+Id_Q9WV9P+Id_Q9WV9P+Id_Q9WV9P+Id_Q9WV9P+Id_Q9WV9P+Id_Q9WV9P+Id_Q9WV9P+Id_Q9WV9P+I
```

about:srcdoc Page 6 of 13

Out[3]:		Protein	Organism	
-	0	TIM9_HUMAN	Homo sapiens	
	1	TIM9_YEAST	Saccharomyces cerevisiae	
	2	TIM9_CAEEL	Caenorhabditis elegans	
	3	TIM9_MOUSE	Mus musculus	
	4	TIM9_RAT	Rattus norvegicus	
	5	TIM9_ARATH	Arabidopsis thaliana	
	6	T10B_BOVIN	Bos taurus	
	7	TIM9_NEUCR	Neurospora crassa	
	8	TIM9_CANGA	Candida glabrata	
	9	TIM9_DROME	Drosophila melanogaster	
	10	TIM9_BOVIN	Bos taurus	
	11	TIM9_CAEBR	Caenorhabditis briggsae	
	12	TIM9_DEBHA	Debaryomyces hansenii	
	13	TIM9_SCHPO	Schizosaccharomyces pombe	
	14	TIM9_DANRE	Danio rerio	
	15	TIM9_DICDI	Dictyostelium discoideum	
	16	TIM9_EMENI	Emericella nidulan	
	17	TIM9_CHICK	Gallus gallus	
	18	TIM9_XENLA	Xenopus laevis	
	19	TIM9_ORYSJ	Oryza sativa	

Clustal Omega

about:srcdoc Page 7 of 13

```
sp Q559H1 TIM9 DICDI
                       -----MDRRLSKKEEERIVNELNKLOMIEMVDTSVNLTNKCFOSCITNFRIRKLDDE
sp Q3SZW4 T10B BOVIN
                       ----MEQQQQQQQQQQLRNLRDFLLVYNRMTELCFQRCVPSLHHRALDAE
sp Q9XGX9 TIM9_ARATH
                       MDASMMAGLD-GLPEEDKAKMASMIDOLOLRDSLRMYNSLVERCFVDCVDSFTRKSLOKO
                       MDKSMLGDLD-GLPEEDKMRMAAMVDQLQIRDSLRMYNSLVERCFTDCVDTFRRKTLDKQ
sp Q9XGX7 TIM9 ORYSJ
sp|Q8J1Z1|TIM9_NEUCR
                       ----MD-GLTAAESRELDQRLQKRQVKEFMSVFGNLVDNCFTACVDDFTSKALSGR
sp|Q9Y8A7|TIM9 EMENI
                       ----MD-GLNAAEQRELANRMERKQMKEFMTMYSKLVQRCFDDCVNDFTTKSLISR
sp|Q9P7K0|TIM9_SCHPO
                       ----MD-RLNVKEQEHLTQVLEAKQLKEYLNMYSTLTQNCFSDCVQDFTSSKLSNK
sp | Q6BU42 | TIM9_DEBHA
                       ----MD-QLNVKEQQDFQQIVEQKQMKDFMRLYSNLVSKCFDDCVNDFTSNNLTTK
sp | 074700 | TIM9_YEAST
                       ----MD-ALNSKEQQEFQKVVEQKQMKDFMRLYSNLVERCFTDCVNDFTTSKLTNK
sp Q6FRT3 TIM9 CANGA
                       ----MD-QLNAKEQQEFQKLVEQKQMKDFMRLYSGLVERCFTDCVNDFTSSKLTSK
sp|Q17754|TIM9 CAEEL
                       -----MTSEQNIQTFRDFLTQYNLVAEQCFNSCVNEFGSRTVSGK
sp Q61TH2 TIM9 CAEBR
                       ----MASEQNIQTFRDFLTQYNLVAEQCFTSCVNEFGSRTVNAK
sp Q9VYD7 TIM9 DROME
                       ----MA-KTPENIAIDQLDKDQIKTFSDFLMSYNKLSETCFTDCIRDFTTRDVKDS
sp Q9W762 TIM9 DANRE
                       -----MAAOVTESDOIKOFKEFLGTYNKLTENCFMDCVKDFTTREVKPE
sp Q5ZIR8 TIM9_CHICK
                       -----MAGQISETDQIKQFKEFLGTYNKITENCFMDCIRDFTTREVKPE
sp Q4V7R1 TIM9 XENLA
                       -----MAAQMSESDQIKQFKEFLGTYNKLTENCFLDCVKDFTTREVKAE
                       -----MAAQIPESDQIKQFKEFLGTYNKLTETCFLDCVKDFTTREVKPE
sp|Q9WV98|TIM9 MOUSE
sp|Q9Y5J7|TIM9 HUMAN
                       -----MAAQIPESDQIKQFKEFLGTYNKLTETCFLDCVKDFTTREVKPE
sp|Q2KIV2|TIM9_BOVIN
                       -----MAAOIPESDOIKOFKEFLGTYNKLTETCFLDCVKDFTTREVKPE
sp|Q9WV97|TIM9 RAT
                       -----MAAQIPESDQIKQFKEFLGTYNKLTETCFLDCVKDFTTREVKPE
                                                           : . **
                                                  . : :
sp|Q559H1|TIM9 DICDI
                       EQLCVYKCVEKNMFFTSALNNHFMKLSNEGMF-----
sp|Q3SZW4|T10B BOVIN
                       EEACLHSCAGKLIHSNHRLMAAYVQLMPALVQRRMADYEAASAVPHATAEQLETSPSRSL
sp|Q9XGX9|TIM9_ARATH
                       EETCVMRCAEKFLKHTMRVGMRFAELNONAPTOD------
sp|Q9XGX7|TIM9 ORYSJ
                       EESCVRRCAEKFLKHSMRVGMRFAELNQGVATPD------
sp | Q8J1Z1 | TIM9_NEUCR
                       ESGCISRCVLKSMSTQTRLGERFGELNAAMTAEM-----Q-----R------
sp Q9Y8A7 TIM9 EMENI
                       EEGCVMRCVDKFMKGSQRLNERFQEQNAAMMOSG-----O----L------
sp Q9P7K0 TIM9_SCHPO
                       ESECIAKCADKFLKHSERVGQRFAEFNAKYMGQ------
                       ETGCITKCSEKFLKHSERVGQRFQEQNALLMQNM-----Q-----K------
sp Q6BU42 TIM9_DEBHA
sp | 074700 | TIM9_YEAST
                       EQTCIMKCSEKFLKHSERVGQRFQEQNAALGQGL-----G----R------
                       EESCILKCSEKFLKHSERVGQRFQEQNAALGQGL-----G-----R------
sp Q6FRT3 TIM9 CANGA
sp|Q17754|TIM9 CAEEL
                       EESCANNCLDKFLKMTQRVSQRFQEHQLLNAQANGAAIKVE----N-----N-----
                       EESCANNCLDKFLKMTQRVSQRFQEHQILNAQANGAAM-----
sp Q61TH2 TIM9 CAEBR
sp|Q9VYD7|TIM9 DROME
                       EEKCSLNCMEKYLKMNQRVSQRFQEFQVIAHENALAM--AQ-----K------
sp|Q9W762|TIM9_DANRE
                       ETTCSESCLQKYLKMTQRISMRFQEYHIQQNERWP----Q-----K------
sp|Q5ZIR8|TIM9 CHICK
                       EITCSEHCLQKYLKMTQRISMRFQEYHIQQNEALA----A----K------K
                       EMTCSEHCLQKYLKMTQRISMRFQEYHIQQNEALA----A----K------K
sp Q4V7R1 TIM9 XENLA
                       EVTCSEHCLQKYLKMTQRISVRFQEYHIQQNEALA----A----K------K
sp|Q9WV98|TIM9 MOUSE
sp Q9Y5J7 TIM9 HUMAN
                       ETTCSEHCLQKYLKMTQRISMRFQEYHIQQNEALA----A----K------
                       ETTCSEHCLOKYLKMTORISMRFOEYHIOONEALA----A-----K------
sp|Q2KIV2|TIM9_BOVIN
sp|Q9WV97|TIM9 RAT
                       EVTCSEHCLOKYLKMTQRISMRFOEYHIQQNEALA----A-----K-------
                                * :
sp Q559H1 TIM9 DICDI
sp|Q3SZW4|T10B BOVIN
                       PSGNLGKGGAG
sp Q9XGX9 TIM9 ARATH
sp|Q9XGX7|TIM9_ORYSJ
                       -----
sp Q8J1Z1 TIM9 NEUCR
                       -R-----
sp Q9Y8A7 TIM9 EMENI
                       -PGR----
sp|Q9P7K0|TIM9_SCHPO
sp | Q6BU42 | TIM9_DEBHA
                       -R-----
sp|074700|TIM9 YEAST
sp|Q6FRT3|TIM9 CANGA
sp Q17754 TIM9 CAEEL
                       -GGKINKIO--
sp Q61TH2 TIM9 CAEBR
                       -----
sp | Q9VYD7 | TIM9_DROME
                       -TGKL----
sp Q9W762 TIM9 DANRE
                       -PDY----
sp|Q5ZIR8|TIM9 CHICK
                       -AGLLSQPR--
sp Q4V7R1 TIM9 XENLA
                       -AGLLGOPR--
sp|Q9WV98|TIM9 MOUSE
                       -AGLLGQPR--
sp|Q9Y5J7|TIM9_HUMAN
                       -AGLLGQPR--
sp|Q2KIV2|TIM9_BOVIN
                       -AGLLGOPR--
sp|Q9WV97|TIM9 RAT
                       -AGLLGQPR--
```

MAFFT

about:srcdoc Page 8 of 13

```
sp|Q9Y5J7|TIM9_ MAA-----QIPESDQIKQFKEFLGTYNKLTETCFLDCVKDFTTREVKPEE
sp|Q2KIV2|TIM9_ MAA-----QIPESDQIKQFKEFLGTYNKLTETCFLDCVKDFTTREVKPEE
SP Q9WV98 TIM9 MAA-----QIPESDQIKQFKEFLGTYNKLTETCFLDCVKDFTTREVKPEE
sp | Q9WV97 | TIM9 MAA-----QIPESDQIKQFKEFLGTYNKLTETCFLDCVKDFTTREVKPEE
sp | Q4V7R1 | TIM9 MAA-----QMSESDQIKQFKEFLGTYNKLTENCFLDCVKDFTTREVKAEE
sp | Q5ZIR8 | TIM9 MAG-----QISETDQIKQFKEFLGTYNKITENCFMDCIRDFTTREVKPEE
sp | Q9W762 | TIM9 | MAA-----QVTESDQIKQFKEFLGTYNKLTENCFMDCVKDFTTREVKPEE
sp|Q9VYD7|TIM9_ MAK-----TPENIAIDQLDKDQIKTFSDFLMSYNKLSETCFTDCIRDFTTRDVKDSE
sp|Q17754|TIM9_ MTS------EQNIQTFRDFLTQYNLVAEQCFNSCVNEFGSRTVSGKE
sp | Q61TH2 | TIM9 MAS------EQNIQTFRDFLTQYNLVAEQCFTSCVNEFGSRTVNAKE
sp | 074700 | TIM9 MDA-----LNSKEQQEFQKVVEQKQMKDFMRLYSNLVERCFTDCVNDFTTSKLTNKE
sp | Q6FRT3 | TIM9 | MDQ------LNAKEQQEFQKLVEQKQMKDFMRLYSGLVERCFTDCVNDFTSSKLTSKE
sp | Q6BU42 | TIM9 MDQ-----LNVKEQQDFQQIVEQKQMKDFMRLYSNLVSKCFDDCVNDFTSNNLTTKE
sp Q9P7K0 TIM9 MDR-----LNVKEQEHLTQVLEAKQLKEYLNMYSTLTQNCFSDCVQDFTSSKLSNKE
sp | Q9Y8A7 | TIM9 | MDG-----LNAAEQRELANRMERKQMKEFMTMYSKLVQRCFDDCVNDFTTKSLISRE
sp|Q8J1Z1|TIM9_ MDG------LTAAESRELDQRLQKRQVKEFMSVFGNLVDNCFTACVDDFTSKALSGRE
sp|Q9XGX7|TIM9_ MDKSMLGDLDGLPEEDKMRMAAMVDQLQIRDSLRMYNSLVERCFTDCVDTFRRKTLDKQE
sp | Q3SZW4 | T10B_ MEQ------Q0QQQQQQQQLRNLRDFLLVYNRMTELCFQRCVPSLHHRALDAEE
sp|Q559H1|TIM9_ MDRR-----LSKKEEERIVNELNKLQMIEMVDTSVNLTNKCFQSCITNFRIRKLDDEE
                                                      : . ** *: :
                                        : .::
sp|Q9Y5J7|TIM9_ TTCSEHCLQKYLKMTQR------ISMRFQEYHIQQ--NEALAAKA-----sp|Q2KIV2|TIM9_ TTCSEHCLQKYLKMTQR------ISMRFQEYHIQQ--NEALAAKA-----
sp|Q9WV98|TIM9_ VTCSEHCLQKYLKMTQR-----ISVRFQEYHIQQ--NEALAAKA-----sp|Q9WV97|TIM9_ VTCSEHCLQKYLKMTQR-----ISMRFQEYHIQQ--NEALAAKA-----
sp|Q4V7R1|TIM9_MTCSEHCLQKYLKMTQR-----ISMRFQEYHIQQ--NEALAAKA-----
sp|Q5ZIR8|TIM9_ ITCSEHCLQKYLKMTQR------ISMRFQEYHIQQ---NEALAAKA------
sp|Q9W762|TIM9_ TTCSESCLQKYLKMTQR------ISMRFQEYHIQQ--NERWPQKP------
sp|Q9VYD7|TIM9_ EKCSLNCMEKYLKMNQR------VSQRFQEFQVIAHENALAMAQKT-----
sp|Q17754|TIM9_ ESCANNCLDKFLKMTQR------VSQRFQEHQLLNAQ-ANGAAIKVEN-----
sp|Q61TH2|TIM9_ ESCANNCLDKFLKMTQR------VSQRFQEHQILNAQ-ANGAAM-----
sp|074700|TIM9_QTCIMKCSEKFLKHSER------VGQRFQEQN-----A-ALGQGL-----
sp|Q6FRT3|TIM9_ ESCILKCSEKFLKHSER------VGQRFQEQN-----A-ALGQGL------
sp|Q6BU42|TIM9_ TGCITKCSEKFLKHSER------VGQRFQEQN-----A-LLMQNM------
sp|Q9P7K0|TIM9_ SECIAKCADKFLKHSER------VGQRFAEFN-----AKYMGQ------
sp|Q9Y8A7|TIM9_EGCVMRCVDKFMKGSQR------LNERFQEQN-----A-AMMQSG-----
sp|Q8J1Z1|TIM9_ SGCISRCVLKSMSTQTR------LGERFGELN-----A-AMTAEM-----
sp|Q9XGX9|TIM9_ETCVMRCAEKFLKHTMR------VGMRFAELN-----QNAPTQD------
sp|Q9XGX7|TIM9_ESCVRRCAEKFLKHSMR------VGMRFAELN-----QGVATPD------
sp|Q559H1|TIM9_QLCVYKCVEKNMFFTSA-----LNNHFMKLS----NEGMF-----
                                             : :: .
sp|Q9Y5J7|TIM9_ --GLLGQPR--
sp|Q2KIV2|TIM9_ --GLLGQPR--
sp|Q9WV98|TIM9_ --GLLGQPR--
sp|Q9WV97|TIM9_ --GLLGQPR--
sp|Q4V7R1|TIM9_ --GLLGQPR--
sp|Q5ZIR8|TIM9_ --GLLSQPR--
sp|Q9W762|TIM9_ --DY------
sp|Q9VYD7|TIM9_ --GKL-----
sp|Q17754|TIM9_ -GGKINKIQ--
sp|Q61TH2|TIM9_ -----
sp|074700|TIM9_ --GR-----
sp|Q6FRT3|TIM9_ --GR-----
sp|Q6BU42|TIM9_ --QKR-----
sp|Q9P7K0|TIM9_ -----
sp|Q9Y8A7|TIM9_ --QLPGR----
sp|Q8J1Z1|TIM9_ --QRR-----
sp|Q9XGX9|TIM9_ -----
sp|Q9XGX7|TIM9_ -----
sp|Q3SZW4|T10B_ PSGNLGKGGAG
sp|Q559H1|TIM9 -----
```

MUSCLE

about:srcdoc Page 9 of 13

```
sp|Q559H1|TIM9 DICDI
                       -----MDRRLSKKEEERIVNELNKLOMIEMVDTSVNLTNKCFOSCITNFRIRKLDDEE
sp | Q3SZW4 | T10B_BOVIN
                       ----ME00000000000----LRNLRDFLLVYNRMTELCFORCVPSLHHRALDAEE
sp Q9XGX9 TIM9_ARATH
                       MDASMMAGLDGLPEEDKAKMASMIDOLOLRDSLRMYNSLVERCFVDCVDSFTRKSLOKOE
sp|Q9XGX7|TIM9 ORYSJ
                       MDKSMLGDLDGLPEEDKMRMAAMVDQLQIRDSLRMYNSLVERCFTDCVDTFRRKTLDKQE
sp|Q8J1Z1|TIM9 NEUCR
                       ----MDGLTAAESRELDQRLQKRQVKEFMSVFGNLVDNCFTACVDDFTSKALSGRE
                       ----MDGLNAAEQRELANRMERKQMKEFMTMYSKLVQRCFDDCVNDFTTKSLISRE
sp|Q9Y8A7|TIM9 EMENI
sp|Q9P7K0|TIM9_SCHPO
                       ----MDRLNVKEQEHLTQVLEAKQLKEYLNMYSTLTQNCFSDCVQDFTSSKLSNKE
sp|Q6BU42|TIM9_DEBHA
                       ----MDQLNVKEQQDFQQIVEQKQMKDFMRLYSNLVSKCFDDCVNDFTSNNLTTKE
                       ----MDALNSKEQQEFQKVVEQKQMKDFMRLYSNLVERCFTDCVNDFTTSKLTNKE
sp | 074700 | TIM9_YEAST
sp|Q6FRT3|TIM9_CANGA
                       ----MDQLNAKEQQEFQKLVEQKQMKDFMRLYSGLVERCFTDCVNDFTSSKLTSKE
sp Q17754 TIM9 CAEEL
                       ----MTSEQN-----IQTFRDFLTQYNLVAEQCFNSCVNEFGSRTVSGKE
sp Q61TH2 TIM9 CAEBR
                       ----MASEQN-----IQTFRDFLTQYNLVAEQCFTSCVNEFGSRTVNAKE
sp|Q9VYD7|TIM9_DROME
                       ----MAKTPENIAIDQLDKDQIKTFSDFLMSYNKLSETCFTDCIRDFTTRDVKDSE
sp|Q9W762|TIM9 DANRE
                       ----MAAQVTESDQ-----IKQFKEFLGTYNKLTENCFMDCVKDFTTREVKPEE
sp|Q5ZIR8|TIM9 CHICK
                       -----MAGQISETDQ-----IKQFKEFLGTYNKITENCFMDCIRDFTTREVKPEE
sp | O4V7R1 | TIM9 XENLA
                       -----MAAOMSESDO-----IKOFKEFLGTYNKLTENCFLDCVKDFTTREVKAEE
sp Q9WV98 TIM9_MOUSE
                       -----MAAQIPESDQ-----IKOFKEFLGTYNKLTETCFLDCVKDFTTREVKPEE
sp|Q9Y5J7|TIM9_HUMAN
                       ----MAAQIPESDQ-----IKQFKEFLGTYNKLTETCFLDCVKDFTTREVKPEE
sp|Q2KIV2|TIM9_BOVIN
                       ----MAAQIPESDQ-----IKQFKEFLGTYNKLTETCFLDCVKDFTTREVKPEE
sp Q9WV97 TIM9 RAT
                       ----MAAQIPESDQ-----IKQFKEFLGTYNKLTETCFLDCVKDFTTREVKPEE
                                                 . : :
sp Q559H1 TIM9_DICDI
                       OLCVYKCVEKNMFFTSA-----LNNHFMKLS--NEG--MF-----
sp|Q3SZW4|T10B BOVIN
                       EACLHSCAGKLIHSNHRLMAAYVOLMPALVORRMADYEAASAVPHATAEOLETSPSRSLP
sp|Q9XGX9|TIM9 ARATH
                       ETCVMRCAEKFLKHTMR------VGMRFAELNQNAPTQD------
                       ESCVRRCAEKFLKHSMR------PGMRFAELNQGV-----AT------P
sp|Q9XGX7|TIM9 ORYSJ
sp Q8J1Z1 TIM9 NEUCR
                       EGCVMRCVDKFMKGSQR------LNERFQEQNAAMMQSGQLPG-----
sp|Q9Y8A7|TIM9 EMENI
                       SECIAKCADKFLKHSER------VGQRFAEFNAKYMGQ------
sp Q9P7K0 TIM9 SCHPO
sp | Q6BU42 | TIM9_DEBHA
                       TGCITKCSEKFLKHSER-----K
sp|074700|TIM9 YEAST
                       QTCIMKCSEKFLKHSER-----VGQRFQEQNAALGQG--LG-----
sp|Q6FRT3|TIM9 CANGA
                       ESCILKCSEKFLKHSER------VGQRFQEQNAALGQG---LG------
                      ESCANNCLDKFLKMTQR------VSQRFQEHQLLNAQANGAAIKVENGGKINKI
sp Q17754 TIM9 CAEEL
sp Q61TH2 TIM9_CAEBR
                      ESCANNCLDKFLKMTQR------VSQRFQEHQILNAQANGAAM-----
sp|Q9VYD7|TIM9_DROME
                       EKCSLNCMEKYLKMNQR------VSQRFQEFQVIAHENALAMA--QKTGKL---
                       TTCSESCLQKYLKMTQR-----ISMRFQEYHIQQNER-----WPQKP
sp Q9W762 TIM9_DANRE
sp|Q5ZIR8|TIM9 CHICK
                       ITCSEHCLQKYLKMTQR-----ISMRFQEYHIQQNEA---LA--AKAGLLSQP
sp Q4V7R1 TIM9 XENLA
                       MTCSEHCLOKYLKMTOR-----ISMRFQEYHIQONEA---LA-AKAGLLGOP
sp|Q9WV98|TIM9 MOUSE
                       VTCSEHCLQKYLKMTQR-----ISVRFQEYHIQQNEA---LA-AKAGLLGQP
                       TTCSEHCLQKYLKMTQR-----ISMRFQEYHIQQNEA---LA--AKAGLLGQP
sp|Q9Y5J7|TIM9_HUMAN
sp | Q2KIV2 | TIM9_BOVIN
                       TTCSEHCLQKYLKMTQR-----ISMRFQEYHIQQNEA---LA--AKAGLLGQP
sp|Q9WV97|TIM9 RAT
                       VTCSEHCLQKYLKMTQR-----ISMRFQEYHIQQNEA---LA-AKAGLLGQP
sp Q559H1 TIM9_DICDI
sp Q3SZW4 T10B BOVIN
                       SGNLGKGGAG
sp Q9XGX9 TIM9 ARATH
sp|Q9XGX7|TIM9 ORYSJ
                       D-----
sp|Q8J1Z1|TIM9 NEUCR
sp Q9Y8A7 TIM9_EMENI
                      R-----
sp|Q9P7K0|TIM9_SCHPO
sp | Q6BU42 | TIM9_DEBHA
sp|074700|TIM9 YEAST
sp Q6FRT3 TIM9 CANGA
sp Q17754 TIM9_CAEEL
                      0-----
sp|Q61TH2|TIM9_CAEBR
sp|Q9VYD7|TIM9_DROME
sp|Q9W762|TIM9_DANRE
sp|Q5ZIR8|TIM9 CHICK
                      R-----
sp Q4V7R1 TIM9 XENLA
sp|Q9WV98|TIM9 MOUSE
                      R-----
sp|Q9Y5J7|TIM9_HUMAN
                      R-----
                       R-----
sp|Q2KIV2|TIM9 BOVIN
sp|Q9WV97|TIM9_RAT
                       R-----
```

Positions 8, 9, 10, 11, 12 are aligned differently

about:srcdoc Page 10 of 13

Question 8

	Description	Scientific Name	Max Score	Total Score	Query	E value	Per.	Acc. Len	Accession
$\overline{\mathbf{v}}$	Crystal structure of 1-deoxy-D-xylulose 5-phosphate reductoisomerase complexed with a magnesium ion, NADPH and	Escherichia coli st	53.2	53.2	100%	2e-10	100.00%	424	2EGH_A
\checkmark	$\underline{\textbf{Crystal structure of 1-deoxy-D-xylulose 5-phosphate reducto isomerase~(DXR)}, \underline{\textbf{complexed with pyridin-2-ylmethylphosp.}}$	Escherichia coli K	53.2	53.2	100%	2e-10	100.00%	420	3ANL_A
$\overline{\mathbf{v}}$	IspC in complex with an N-methyl-substituted hydroxamic acid [Escherichia coli K-12]	Escherichia coli K	53.2	53.2	100%	2e-10	100.00%	410	3R0I_A
\checkmark	Crystal structure of DXR in complex with fosmidomycin [Escherichia coli]	Escherichia coli	53.2	53.2	100%	2e-10	100.00%	406	1Q0L_A
\checkmark	$\underline{\text{1-deoxy-}D\text{-xylulose-5-phosphate reductoisomerase}} \hspace{0.1cm} \textbf{[Escherichia coli K-12]} \\$	Escherichia coli K	53.2	53.2	100%	2e-10	100.00%	398	1K5H_A
\checkmark	Crystal Structure of the Reductoisomerase Complexed with a Bisphosphonate [Escherichia coli]	Escherichia coli	53.2	53.2	100%	2e-10	100.00%	398	1T1R_A
\checkmark	Crystal structure of selenomethionine-labelled DXR in complex with fosmidomycin [Escherichia coli]	Escherichia coli	43.1	43.1	100%	7e-07	85.71%	406	1Q0H_A
$\overline{\mathbf{Z}}$	Crystal structure of 1-deoxy-D-xylulose 5-phosphate reductoisomerase; a target enzyme for antimalarial drugs [Escheri	. Escherichia coli	43.1	43.1	100%	7e-07	85.71%	400	1JVS_A
~	Chain A, 1-deoxy-D-xylulose 5-phosphate reductoisomerase [Zymomonas mobilis]	Zymomonas mobilis	42.2	42.2	92%	1e-06	84.62%	388	1R0K_A
\checkmark	1-deoxy-D-xylulose 5-phosphate reductoisomerase from Yersinia pestis [Yersinia pseudotuberculosis YPIII]	Yersinia pseudotu	40.9	40.9	85%	4e-06	91.67%	401	3IIE_A
$\overline{\mathbf{Z}}$	Chain A, 1-deoxy-D-xylulose 5-phosphate reductoisomerase [Acinetobacter baumannii AB307-0294]	Acinetobacter bau	35.4	35.4	92%	3e-04	76.92%	406	4ZN6_A
\checkmark	Chain A, 1-deoxy-D-xylulose 5-phosphate reductoisomerase [Moraxella catarrhalis]	Moraxella catarrh	33.3	33.3	85%	0.002	75.00%	432	4ZQE_A
\checkmark	Chain A, 1-deoxy-D-xylulose 5-phosphate reductoisomerase [Moraxella catarrhalis]	Moraxella catarrh	33.3	33.3	85%	0.002	75.00%	415	4ZQG_A
$\overline{\mathbf{Z}}$	Chain A, 1-deoxy-D-xylulose 5-phosphate reductoisomerase [Vibrio vulnificus CMCP6]	Vibrio vulnificus C	28.2	28.2	85%	0.13	75.00%	427	5KQO_A
\checkmark	$\underline{1\text{deoxy-}D\text{xylulose 5phosphate reducto}} \text{ Index one plane in complex with } \underline{\text{Mn}(2+)}. \underline{\text{Vibrio vulnificus CM}}$	Vibrio vulnificus C	28.2	28.2	85%	0.13	75.00%	405	5KRR_A
\checkmark	Arabidopsis thaliana glutamate dehydrogenase isoform 1 in apo form [Arabidopsis thaliana]	Arabidopsis thaliana	24.4	37.3	92%	2.9	64.29%	414	6YEH_A
	Chain Bh, 30S ribosomal protein S9, mitochondrial [Arabidopsis thaliana]	Arabidopsis thaliana	24.4	24.4	42%	2.9	100.00%	430	6XYW_Bh
\checkmark	Human alpha3beta4 nicotinic acetylcholine receptor in complex with nicotine [Homo sapiens]	Homo sapiens	24.4	24.4	71%	2.9	63.64%	525	6PV7_A
\checkmark	Crystal structure of DXR from Thermooga maritia, in complex with fosmidomycin and NADPH [Thermotoga maritima]	Thermotoga marit	24.0	24.0	50%	4.2	85.71%	376	3A06_A
\checkmark	CryoEM structure of human alpha4beta2 nicotinic acetylcholine receptor in complex with varenicline [Homo sapiens]	Homo sapiens	24.0	24.0	71%	4.2	63.64%	397	6UR8_B
$ lap{}$	X-ray structure of the human Alpha4Beta2 nicotinic receptor [Homo sapiens]	Homo sapiens	24.0	24.0	71%	4.2	63.64%	403	5KXI_B
~	Chain A, Tricorn protease-interacting factor F3 [Thermoplasma acidophilum DSM 1728]	Thermoplasma ac	24.0	24.0	64%	4.2	66.67%	780	3Q7J_A
\checkmark	Chain A, Tricorn protease interacting factor F3 [Thermoplasma acidophilum]	Thermoplasma ac	24.0	24.0	64%	4.2	66.67%	780	1Z1W_A
✓	Chain A, Alpha-ketoglutarate-dependent dioxygenase alkB [Escherichia coli K-12]	Escherichia coli K	23.5	35.2	85%	5.9	75.00%	201	3BI3_A
\checkmark	Chain A, Alpha-ketoglutarate-dependent dioxygenase alkB [Escherichia coli K-12]	Escherichia coli K	23.5	35.2	85%	5.9	75.00%	201	3BKZ_A
\checkmark	Chain A, Alpha-ketoglutarate-dependent dioxygenase alkB [Escherichia coli K-12]	Escherichia coli K	23.5	35.2	85%	5.9	75.00%	202	3BIE_A
✓	Complex structure of AlkB/rhein [Escherichia coli]	Escherichia coli	23.5	35.2	85%	5.9	75.00%	203	4RFR_B
\checkmark	Crystal structure of AlkB protein with cofactors bound to dsDNA containing m6A [Escherichia coli]	Escherichia coli	23.5	35.2	85%	5.9	75.00%	205	4NID_A
\checkmark	Crystal structure of AlkB D135I mutant protein with cofactors bound to dsDNA containing m6A/A [Escherichia coli]	Escherichia coli	23.5	35.2	85%	5.9	75.00%	205	4NII_A
$\overline{\mathbf{Z}}$	Iron-Catalyzed Oxidation Intermediates Captured in A DNA Repair Dioxygenase [Escherichia coli K-12]	Escherichia coli K	23.5	35.2	85%	5.9	75.00%	206	301M_A
\checkmark	Crystal structure of AlkB in complex with Fe(III) and 2-(3-hydroxypicolinomido)acetic acid [Escherichia coli K-12]	Escherichia coli K	23.5	35.2	85%	5.9	75.00%	206	3T3Y_A
$\overline{\mathbf{v}}$	Crystal Structure of AlkB in complex with Fe(II), 2-oxoglutarate, and methylated trinucleotide T-meA-T [Escherichia coli	Escherichia coli K	23.5	35.2	85%	5.9	75.00%	211	2FD8_A
$\overline{\mathbf{v}}$	Crystal Structure of AlkB T208A mutant protein in complex with Co(II), 2-oxoglutarate, and methylated trinucleotide T	Escherichia coli K	23.5	35.2	85%	5.9	75.00%	211	4ZHN_A

about:srcdoc Page 11 of 13

about:srcdoc Page 12 of 13

Max Score	53.2
Min Score	21.4
Matches with >90% Query coverage	15
Matches with E value in the order of 10^-3	13
Matches with >90% identity	8
Min E value	34
Min Identity	41.67%

Since the query sequence is of a short lenght, there is a high chance that this particular sequence can be found by pure chance, that is why the E values are quite high.

Resuldues 2-14 are evolutionarily conserved (PRK05447) in E. coli and other organisms.

about:srcdoc Page 13 of 13