MAE 0311 2018 - INFERÊNCIA ESTATÍSTICA. PROF. ALEXANDRE PATRIOTA LISTA 5

1. Seja (X_1, \ldots, X_n) uma amostra aleatória de $X \sim f_{\theta}$, em que

$$f_{\theta}(x) = \begin{cases} \theta x^{\theta - 1}, & \text{se} \quad 0 < x < 1, \quad \theta > 0, \\ 0, & \text{c.c.} \end{cases}$$

- a) Mostre que $-2\theta \sum_{i=1}^{n} \log X_i$ é uma quantidade pivotal.
- b) Construa um intervalo de confiança para θ com coeficiente $\gamma=1-\alpha,$ utilizando a distribuição encontrada em (a).
- c) Seja $Y = (-\log X_1)^{-1}$, encontre o coeficiente de confiança associado ao intervalo [Y/2, Y].
- d) Construa dois intervalos de confiança aproximados para θ utilizando o EMV e o EM.
- e) Construa um intervalo de confiança aproximado para $g(\theta) = P_{\theta}(X \le 1/2)$.
- 2. Seja (X_1, \ldots, X_n) uma amostra aleatória de $X \sim f_\theta$, em que

$$f_{\theta}(x) = \begin{cases} \frac{(\lambda+1)x^{\lambda}}{\theta^{\lambda+1}}, & \text{se} \quad 0 < x < \theta, \quad \theta > 0, \\ 0, & \text{c.c.} \end{cases}$$

Obs: $\lambda > 1$ é conhecido, por exemplo $\lambda = 2$.

- a) Encontre duas quantidades pivotais (assintóticas) utilizando o EMV e EM.
- b) Obtenha os respectivos intervalos de confiança aproximados para θ com coeficiente $\gamma = 1 \alpha$.
- c) Construa um intervalo de confiança aproximado para $g(\theta) = Var_{\theta}(X)$.
- 3. Seja (X_1,\ldots,X_n) uma amostra aleatória de $X\sim f_\theta$, em que

$$f_{\theta}(x) = \begin{cases} \frac{\theta \lambda^{\theta}}{x^{\theta+1}}, & \text{se } 0 < \lambda < x, & \theta > 0, \\ 0, & \text{c.c..} \end{cases}$$

Obs: $\lambda > 1$ é conhecido, por exemplo $\lambda = 2$.

- a) Mostre que $2\sum_{i=1}^n\theta\log(X_i/\lambda)\sim\chi_{2n}^2$, isto é, uma chi-quadrado com 2n graus de liberdade.
- b) Construa, a partir do item (a), um intervalo de confiança para θ com coeficiente $1-\alpha$.
- c) Construa dois intervalos de confiança aproximados para θ utilizando o EMV e o EM com coeficiente $\gamma = 1 \alpha$.
- d) Construa um intervalo de confiança aproximado para $g(\theta) = E_{\theta}(X)$ com coeficiente $\gamma = 1 \alpha$.
- 4. Seja (X_1,\ldots,X_n) uma amostra aleatória de $X\sim f_\theta$, em que

$$f_{\theta}(x) = \begin{cases} \theta^{-\lambda} \lambda x^{\lambda - 1} \exp\{-(x/\theta)^{\lambda}\}, & \text{se } x > 0, \quad \theta > 0 \\ 0, & \text{c.c.} \end{cases}$$

Obs: $\lambda > 1$ é conhecido, por exemplo $\lambda = 2$.

- a) Obtenha uma quantidade pivotal que depende dos dados apenas através de uma estatística suficiente minimal e completa.
- b) Construa dois intervalos de confinça aproximados para θ utilizando seu EMV e EM.
- d) Construa um intervalo de confiança aproximado para $g(\theta) = \log \theta$ com coeficiente $\gamma = 1 \alpha$.
- 5. Seja (X_1, \ldots, X_n) uma amostra aleatória de $X \sim N(\theta, \theta^2)$.

- a) Construa dois intervalos de confiança aproximados para θ utilizando seu EMV e EM.
- b) Determine um intervalo de confiança para θ com coeficiente de confiança $\gamma = 1 \alpha$.
- c) Construa um intervalo de confiança para $g(\theta)$, em que $P_{\theta}(X \leq g(\theta)) = 0.9$ Obs: No item (c), deixe a expressão em função da distribuição acumulada da normal, $\Phi(\cdot)$.
- 6. Seja $(X_{(1)}, X_{(2)})$ uma amostra aleatória ordenada, $(X_{(1)} < X_{(2)})$, de $X \sim N(\theta, 1)$,
 - a) Calcule o coeficiente de confiança associado ao intervalo $[X_{(1)}, X_{(2)}]$.
 - b) Contrua o intervalo de confiança para θ , com a quantidade pivotal $\overline{X} \theta$.
 - c) Compare o comprimento dos intervalos encontrados em (a) e (b), dado a confiança γ .
- 7. Seja (X_1, \ldots, X_n) uma amostra aleatória de $X \sim Pois(\theta)$, em que conhecemos o verdadeiro valor do parâmetro $\theta = 0.01$. Proponha um tamanho de amostra n tal que mais do que 94% dos intervalos de confiança (construídos utilizando um coeficiente de confiança de 95%) contenham o verdadeiro parâmetro. Dica: Utilize os métodos de Monte Carlo e algoritmos dados em sala de aula.