Cálculo Diferencial e Integral en Varias Variables

Mauro Polenta Mora

CLASE 15 - 24/09/2025

Integrales impropias

Cuando inicialmente fue definida la integral, teníamos que tener en cuenta dos aspectos:

- Que el intervalo de integración fuera acotado, y
- Que la función a integrar fuera acotada en dicho intervalo.

En lo que sigue, vamos a levantar estas dos consideraciones, dando lugar a las integrales impropias de primera y segunda especie respectivamente.

Integrales impropias de primera especie

Definición 4.1

Sea $f:[a,\infty)\to\mathbb{R}$ continua, y llamemos $F(x)=\int_a^x f(t)dt$. Consideremos $\lim_{x\to\infty}F(x)$:

- Si es finito, entonces decimos que la integral impropia $\int_a^\infty f(x)dx$ converge a ese valor.
- Si es infinito, entonces decimos que la integral impropia $\int_a^\infty f(x)dx$ diverge.
- Por último, si el límite no existe, decimos que la integral impropia $\int_a^\infty f(x)dx$ oscila.

Ejemplos 4.2

Ejemplo 1

El primer caso que estudiaremos es el de la impropia:

•
$$\int_1^\infty \frac{1}{x^\alpha} dx$$

Para esto, queremos calcular la primitiva:

$$F(x) = \int_{1}^{x} \frac{1}{t^{\alpha}} dt = \int_{1}^{x} t^{-\alpha} dt$$

Entonces tenemos dos casos para distinguir:

Figure 1: Figura 1

Figura 2

Figure 2: Figure 2

$$\begin{cases} \log(t) & \text{si } t = 1 \\ \frac{t^{-\alpha+1}}{-\alpha+1} \Big|_1^x & \text{si } t \neq 1 \end{cases}$$

$$= \begin{cases} \log(t) & \text{si } t = 1 \\ \frac{x^{-\alpha+1}-1}{-\alpha+1} & \text{si } t \neq 1 \end{cases}$$

Entonces tenemos que:

- Si $\alpha > 1$, entonces $\lim_{x \to \infty} F(x) = \frac{1}{\alpha 1}$ Por lo que la integral impropia $\int_1^\infty \frac{1}{x^\alpha}$ converge a $\frac{1}{\alpha 1}$ en este caso.

 Si $\alpha \le 1$, entonces la integral impropia $\int_1^\infty \frac{1}{x^\alpha}$ diverge.

Ejemplo 2

Estudiemos la impropia:

•
$$\int_0^{+\infty} \frac{1}{1+x^2} dx$$

Para esto, queremos calcular la primitiva:

$$F(x) = \int_0^x \frac{1}{1+t^2} dt = \arctan(x) - \arctan(0) = \arctan(x)$$

Entonces tenemos que:

• $\lim_{n\to+\infty} arctan(x) = \frac{\pi}{2}$

Observación: Para el cálculo de este límite, lo mejor es graficar la función y observar su comportamiento a partir de la función inversa $(\tan(x))$

Proposición 4.3

Si $\int_a^{\infty} f(t)dt$ y $\int_a^{\infty} g(t)dt$ convergen, entonces:

- $\int_a^\infty (\alpha f(t) + \beta g(t)) dt$ también converge y vale: $\alpha \int_a^\infty f(t) dt + \beta \int_a^\infty g(t) dt$

En el caso de las series, teníamos que si una serie converge, entonces necesariamente su término general a_n converge a 0. Será que para las integrales impropias tenemos un resultado similar? Es decir, seremos capaces de construir una función f(t) que no tienda a cero, cuya integral impropia sea convergente? El siguiente ejemplo muestra que con las funciones tenemos un poco más de libertad que con las sucesiones.

Figura 3

Figure 3: Figura 3

Ejemplo 4.4

Tomemos la función $f:[0,+\infty)\to\mathbb{R}$ definida por:

$$f(x) = \begin{cases} 1 & \text{si } x \in [n, n + \frac{1}{2^n}], \text{ con } n \in \mathbb{N} \\ 0 & \text{en otro caso} \end{cases}$$

Es decir, son escalones de altura constante, que empiezan en cada natural y tienen un ancho cada vez menor (ver figura). Entonces si $F(x) = \int_0^{+\infty} f(t)dt$, es claro que F(n) es la suma de las áreas de los primeros n escalones: $F(n) = \sum_{k=0}^{n-1} \frac{1}{2^k}$, que forma una serie geométrica que converge a 2.

Entonces la integral impropia $\int_0^{+\infty} f(t)dt$ es convergente, aunque la función f(t) no tienda a 0 cuando x tiende a infinito.

En este caso particular, la función no tiene límite cuando $x \to \infty$. Sin embargo, si agregamos como hipótesis que el límite exista, entonces si tenemos una condición similar a la que teníamos con series.

Proposición 4.5

Sea f tal que $\int_a^\infty f(t)dt$ converge, y existe $\lim_{x\to\infty} f(x) = L$. Entonces L=0.

Observación: No se demuestra en las notas, pero la idea es que si la función tiende a un $L \neq 0$, entonces me puedo construir un rectángulo con area divergente, que es más pequeño que el área de la función, por lo que L tiene que ser 0.

Proposición 4.6 (criterio de comparación)

Sean f y g funciones continuas tales que $0 \le f(t) \le g(t)$ para todo t > a. Entonces:

- Si $\int_a^\infty g(t)dt$ converge, entonces $\int_a^\infty f(t)dt$ también converge. Si $\int_a^\infty f(t)dt$ diverge, entonces $\int_a^\infty g(t)dt$ también diverge.

La demostración es análoga a la hecha en el capítulo de series.

Ejemplos 4.7

Ejemplo 1

A pesar de que ya cálculamos el valor de $\int_0^\infty \frac{1}{x^2+1} dx$, podemos clasificarla observando

•
$$\frac{1}{x^2+1} \le \frac{1}{x^2}$$

Y como tenemos que $\int_1^\infty \frac{1}{x^2} dx$ converge, también lo hace $\int_0^\infty \frac{1}{x^2+1} dx$. Observar que pudimos utilizar el resultado aunque las impropias empiecen en diferentes puntos, esto porque lo que importa realmente es el comportamiento en el infinito.

Ejemplo 2

 $\int_2^\infty \frac{1}{\log(x)} dx$ diverge, pues $\log(x) \le x$ a partir de un cierto punto. Entonces tenemos que:

•
$$\frac{1}{\log(x)} \ge \frac{1}{x}$$

Y como $\int_1^\infty \frac{1}{x} dx$ diverge, también lo hace $\int_2^\infty \frac{1}{\log(x)} dx$.

Ejemplo 3

Clasifiquemos $\int_0^\infty e^{-x}x^2$. Observemos que a partir de un cierto punto, se cumple que:

- $e^x \ge x^4$, por lo tanto: $e^{-x} \le \frac{1}{r^4}$

Podemos dar un paso más múltiplicando ambos lados por $x^2 \ge 0$, obteniendo:

•
$$e^{-x}x^2 \le \frac{1}{x^2}$$

Y como $\int_1^\infty \frac{1}{x^2}$ converge, también lo hace $\int_0^\infty e^{-x} x^2$

Proposición 4.8 (criterio de equivalencia)

Sean f y g funciones continuas con $f(t) \ge 0$, $g(t) \ge 0$ para todo t, y $\lim_{x\to\infty} \frac{f(x)}{g(x)} = L > 0$.

• $\int_{a}^{\infty} f(t)dt$ y $\int_{a}^{\infty} g(t)dt$ son de la misma clase.

Es decir que para clasificar una integral impropia de primera especie, basta con estudiar el comportamiento de la función en el infinito.

Ejemplos 4.9

Ejemplo 1

Clasifiquemos $\int_0^\infty \frac{x}{\sqrt{x^4+1}} dx$. Para esto observemos que cuando $x \to \infty$, se tiene que:

$$\frac{x}{\sqrt{x^4 + 1}} \sim \frac{x}{\sqrt{x^4}} = \frac{x}{x^2} = \frac{1}{x}$$

Y como $\int_1^\infty \frac{1}{x}$ diverge, entonces $\int_0^\infty \frac{x}{\sqrt{x^4+1}}$ también diverge.

Ejemplo 2

Clasifiquemos $\int_0^\infty \frac{\sqrt{x}}{x^2+1}$. Para esto observemos que cuando $x\to\infty$, se tiene que:

$$\frac{\sqrt{x}}{x^2+1} \sim \frac{\sqrt{x}}{x^2} \sim \frac{x^{\frac{1}{2}}}{x^{\frac{4}{2}}} = x^{\frac{-3}{2}} = \frac{1}{x^{\frac{3}{2}}}$$

Por lo tanto $\int_0^\infty \frac{\sqrt{x}}{x^2+1}$ es convergente.