

National University of Computer & Emerging Sciences, Karachi Spring 2020 CS-Department

Midterm 1 23rd February 2020, 11:00 am – 12:00 pm

Course Code: CS481	Course Name: Data Science			
Instructor Name: Dr Muhammad Atif Tahir and Zeeshan Khan				
Student Roll No:	Section No:			

Instructions:

- Return the question paper.
- Read each question completely before answering it. There are 3 questions and 2 pages
- Show all steps clearly.

Time: 60 minutes. Max Marks: 12.5 points

Question 2 [1.5 Points]: Figure 1 outlines data science progression aiming to reduce the immaturity of capabilities and capacity. Complete the table below regarding space A, B, C, D. (If u wish, you can answer directly in question paper)

Figure 1: Data Science Space.

Space	Description	Example
A (Known space)	I know what I know	Profiling and Descriptive Analysis
B (Hidden space)		
C (Blind space)		
D (unknown space)		

Question 3 [6 Points]

Consider the algorithm below published in paper titled "Weighted k-Nearest-Neighbor Techniques and Ordinal Classification". This algorithm discusses weighted kNN classifier. You need to classify new data points from Table below using wKNN classifier. Use k = 4, city block distance: $d(p,q) = \sum_i |p_i - q_i|$, and compute kernel using inversion kernel (1/|d|). Note that I(x) is the indicator function which evaluates to 1 when the argument x is true and 0 otherwise

				_				
Instance #	Att1	Att2	Actual Class		Instance #	Att1	Att2	Predicted Class

1	2	3	0
2	1	5	1
3	4	2	1
4	2	5	0
5	6	8	0

1	3	1	?
2	2	2	?

Training and Test Data for Question 3.

Weighted k-Nearest-Neighbor classification (wkNN)

- 1. Let $L = \{(y_i, x_i), i = 1, ..., n_L\}$ be a learning set of observations x_i with given class membership y_i and let x be a new observation, whose class label y has to be predicted.
- 2. Find the k+1 nearest neighbors to x according to a distance function $d(x, x_i)$.
- 3. The (k+1)th neighbor is used for standardization of the k smallest distances via

$$D_{(i)} = D(x, x_{(i)}) = \frac{d(x, x_{(i)})}{d(x, x_{(k+1)})} .$$

- 4. Transform the normalized distances $D_{(i)}$ with any kernel function K(.) into weights $w_{(i)} = K(D_{(i)})$.
- 5. As prediction for the class membership y of observation x choose the class, which shows a weighted majority of the k nearest neighbors

$$\hat{y} = \max_r \left(\sum_{i=1}^k w_{(i)} I(y_{(i)} = r) \right) .$$

Figure 2: wkNN classifier.

BEST OF LUCK!