Answer to Part (a):对(a)部分的答复:

The Euclidean distance between the transformed vectors  $\mathbf{y}_1$  and  $\mathbf{y}_2$  is:

变换向量之间的欧几里德距离  $\mathbf{y}_1$  和  $\mathbf{y}_2$  是:

$$d_u(\mathbf{y}_1,\mathbf{y}_2) = \|\mathbf{y}_1 - \mathbf{y}_2\|_2 = \|\mathbf{W}^T(\mathbf{x}_1 - \mathbf{x}_2)\|_2.$$

Expressed in terms of  $\mathbf{x}_1$  and  $\mathbf{x}_2$ , we have:表达为  $\mathbf{x}_1$  和  $\mathbf{x}_2$  ,我们有:

$$d_u(\mathbf{y}_1,\mathbf{y}_2) = \|\mathbf{W}^T(\mathbf{x}_1 - \mathbf{x}_2)\|_2 = \sqrt{(\mathbf{x}_1 - \mathbf{x}_2)^T\mathbf{W}\mathbf{W}^T(\mathbf{x}_1 - \mathbf{x}_2)}.$$

对于任何距离都相等  $\mathbf{x}_1$  和  $\mathbf{x}_2$  ,必须满足以下条件:

For the distances to be equal for any  $x_1$  and  $x_2$ , the following condition must hold:

$$d_u(\mathbf{y}_1,\mathbf{y}_2) = d_u(\mathbf{x}_1,\mathbf{x}_2) \quad \Rightarrow \quad (\mathbf{x}_1 - \mathbf{x}_2)^T (\mathbf{W}\mathbf{W}^T - \mathbf{I})(\mathbf{x}_1 - \mathbf{x}_2) = 0.$$

Since this must hold for all  $\mathbf{x}_1,\mathbf{x}_2$ , it follows that:因为这必须适用于所有人  $\mathbf{x}_1,\mathbf{x}_2$  ,由此可知:

$$\mathbf{W}\mathbf{W}^T = \mathbf{I}.$$

Therefore, the condition is that  ${\bf W}$  must satisfy  ${\bf W}{\bf W}^T={\bf I}$ ; that is,  ${\bf W}$  must be a semi-orthogonal matrix with orthonormal rows.

因此,条件是  ${f W}$  必须满足  ${f W}{f W}^T={f I}$  ;那是,  ${f W}$  必须是具有正交行的半正交矩阵。

## Answer to Part (b):对(b)部分的答复:

First, note that the Mahalanobis distance between  $\mathbf{y}_1$  and  $\mathbf{y}_2$  is:

首先,请注意之间的马哈拉诺比斯距离  $\mathbf{y}_1$  和  $\mathbf{y}_2$  是:

$$d_m(\mathbf{y}_1,\mathbf{y}_2) = (\mathbf{y}_1 - \mathbf{y}_2)^T \Sigma_y^{-1} (\mathbf{y}_1 - \mathbf{y}_2),$$

where  $\Sigma_y$  is the covariance matrix of  ${f y}$ . Since  ${f y}={f W}^T{f x}$ , the covariance matrix  $\Sigma_y$  is:

在哪里  $\Sigma_y$  是协方差矩阵  ${f y}$  。自从  ${f y}={f W}^T{f x}$  ,协方差矩阵  $\Sigma_y$  是:

$$\Sigma_y = \mathbf{W}^T \Sigma_x \mathbf{W}.$$

To express  $d_m(\mathbf{y}_1,\mathbf{y}_2)$  in terms of  $\mathbf{x}_1$  and  $\mathbf{x}_2$ , we proceed as follows: 表达  $d_m(\mathbf{y}_1,\mathbf{y}_2)$  按照  $\mathbf{x}_1$  和  $\mathbf{x}_2$  ,我们按如下方式进行:

$$=(\mathbf{x}_1-\mathbf{x}_2)^T\mathbf{W}\Sigma_y^{-1}\mathbf{W}^T(\mathbf{x}_1-\mathbf{x}_2).$$

 $d_m(\mathbf{y}_1,\mathbf{y}_2) = (\mathbf{W}^T(\mathbf{x}_1 - \mathbf{x}_2))^T \Sigma_u^{-1} (\mathbf{W}^T(\mathbf{x}_1 - \mathbf{x}_2))$ 

 $\Sigma_{u}^{-1} = (\mathbf{W}^{T}\Sigma_{x}\mathbf{W})^{-1} = \mathbf{W}^{-1}\Sigma_{x}^{-1}\mathbf{W}^{-T},$ 

Since  $\Sigma_y = \mathbf{W}^T \Sigma_x \mathbf{W}$ , its inverse is:自从  $\Sigma_y = \mathbf{W}^T \Sigma_x \mathbf{W}$  ,其倒数为:

assuming 
$${f W}$$
 is invertible. Substituting back, we get:假设  ${f W}$  是可逆的。代入回去,我们得到:

 $d_m(\mathbf{y}_1,\mathbf{y}_2) = (\mathbf{x}_1 - \mathbf{x}_2)^T \mathbf{W} (\mathbf{W}^{-1} \Sigma_x^{-1} \mathbf{W}^{-T}) \mathbf{W}^T (\mathbf{x}_1 - \mathbf{x}_2)$ 

$$=(\mathbf{x}_1-\mathbf{x}_2)^T\Sigma_x^{-1}(\mathbf{x}_1-\mathbf{x}_2)=d_m(\mathbf{x}_1,\mathbf{x}_2).$$
 Therefore, the condition under which  $d_m(\mathbf{y}_1,\mathbf{y}_2)=d_m(\mathbf{x}_1,\mathbf{x}_2)$  for any  $\mathbf{x}_1,\mathbf{x}_2$  is that  $\mathbf{W}$ 

因此,在该条件下  $d_m(\mathbf{y}_1,\mathbf{y}_2)=d_m(\mathbf{x}_1,\mathbf{x}_2)$  对于任何  $\mathbf{x}_1,\mathbf{x}_2$  是那个  $\mathbf{W}$  必须是可逆的。

## • In **Part (a)**, the Euclidean distance is preserved when ${f W}$ is a semi-orthogonal matrix

Comparison with Part (a):与(a)部分的比较:

must be invertible.

satisfying  $\mathbf{W}\mathbf{W}^T = \mathbf{I}$ , which means  $\mathbf{W}$  has orthonormal rows but does not necessarily have to be square or invertible. 在(a)部分中,当  $\mathbf{W}$  是一个半正交矩阵,满足  $\mathbf{W}\mathbf{W}^T = \mathbf{I}$ ,这意味着  $\mathbf{W}$  具有正交行,但不一定必须是平方或可逆的。

• In **Part (b)**, the Mahalanobis distance is preserved when  ${f W}$  is invertible, regardless of

Thus, the condition in part (b) (invertibility of  ${f W}$ ) is less restrictive than in part (a), where  ${f W}$  must be semi-orthogonal.

whether it is orthogonal or not.在(b) 部分中,当 W 是可逆的,无论是否正交。

因此,(b)部分的条件 (W) 的限制性小于 (a) 部分,其中 W 必须是半正交的。

- Summary:概括:
- (a) The Euclidean distance is preserved ( $d_u(\mathbf{y}_1,\mathbf{y}_2)=d_u(\mathbf{x}_1,\mathbf{x}_2)$ ) if and only if  $\mathbf{W}$  satisfies  $\mathbf{W}\mathbf{W}^T=\mathbf{I}$ .
- (a) 欧氏距离保持不变(  $d_u(\mathbf{y}_1,\mathbf{y}_2)=d_u(\mathbf{x}_1,\mathbf{x}_2)$  ) 当且仅当  $\mathbf{W}$  满足  $\mathbf{W}\mathbf{W}^T=\mathbf{I}$  。
- (b) The Mahalanobis distance is preserved ( $d_m(\mathbf{y}_1,\mathbf{y}_2)=d_m(\mathbf{x}_1,\mathbf{x}_2)$ ) if and only if  $\mathbf{W}$  is invertible.(b) 马哈拉诺比斯距离保持不变( $d_m(\mathbf{y}_1,\mathbf{y}_2)=d_m(\mathbf{x}_1,\mathbf{x}_2)$ )当且仅当  $\mathbf{W}$  是可逆的。

The condition in part (b) is less restrictive, allowing any invertible  $\mathbf{W}$ , whereas part (a) requires  $\mathbf{W}$  to be semi-orthogonal.

(b)部分的条件限制较少,允许任何可逆的  $\mathbf{W}$  ,而 (a) 部分要求  $\mathbf{W}$  为半正交。

