Conteúdo

1	Introduction	1
	1.1 Motivação	1
	1.2 Objetivos	2
	1.3 Estrutura do Documento	2
2	Estado da Arte	3
	2.1 Métodos de Captura	3
	2.2 Sistemas de Aquisição 360	4
	2.3 Aplicações	4
	2.4 Sumário	4
3	Visão do Sistema	5
4	Implementação	7
5	Resultados	9
6	Conclusão e Trabalho Futuro	11
7	Ribliografia	13

Lista de Figuras

Lista de Tabelas

Introduction

Era uma vez mal escrevido ups coiso. [Fishkin, 2004]

1.1 Motivação

A utilização de informação em 3D é útil e pode ser usada de diferentes formas. O caso específico da captura 360º informação de um determinado objeto, além de útil levanta um desafio interessante relativamente ao método da sua realização.

A utilização de um setup móvel, isto é, um setup em que é necessário haver o movimento da câmara ou do objeto para a recolha de toda a informação do mesmo, faz com que o processo seja de certa forma barato, pois apenas é necessária uma câmara, mas lento, uma fez que a captura é incremental e não instantânea. Por outro lado, um setup estático permite que a captura de informação das várias perspetivas seja feita em simultâneo. Além de a aquisição de informação 3D de um objeto fixo ser feita de forma mais rápida, este setup possibilita ainda a aquisição e geração de informação em 3D das várias perspetivas em tempo real podendo neste caso almejar-se à captura de 3D de entidades em movimento. No entanto, este tipo de setup é por norma mais dispendioso uma vez que é frequente utilizar múltiplas câmaras para realizar a captura.

Desta forma e juntando o melhor dos dois setups, o desafio será conceber um sistema capaz de fazer uma aquisição 360ºem tempo real utilizando apenas uma câmara e um

setup estático. Isto permitiria a aquisição de mais informação em menos tempo e de uma forma económica. Um sistema deste género permitiria a geração de vídeo em 3D real (não apenas com a noção de profundidade estereoscópica) que posteriormente, no prisma de um espetador, possibilitaria a visualização desse vídeo de forma dinâmica em várias perspetivas. A geração de dados com estas características poderá também ser usada mais tarde em sistemas holográficos uma vez que existe a informação necessária para criar uma vista livre do objeto em foco.

1.2 Objetivos

Objetivos.

1.3 Estrutura do Documento

Estrutura do Documento.

Estado da Arte

Os primeiros sistemas de captura de informação em 3D remontam à década de 1960 e estes usavam luzes, câmaras e projetores para realizar a tarefa. Era um processo moroso que exigia muito esforço e tempo para conseguir ter resultados satisfatórios. Durante vários anos esta tecnologia não sofreu grandes desenvolvimentos e tal pode também ser justificado, por exemplo, pelas limitações de largura de banda ou pela capacidade de armazenamento disponível. No fim dos anos 1980 foram criados os primeiros scanners 3D a laser que usavam luz branca, lasers e sombras para capturar a superfície de objeto. Desde então a tecnologia tem evoluído a passos largos e têm surgido vários sistemas utilizando técnicas diferentes para o mesmo fim: fazer o scan 3D de informação. Apareceram vários sistemas com características distintas e como tal, com propósitos diferentes como a captura a longa ou curta distância, a aquisição de uma qualidade detalhada ou a preferência pela prototipagem rápida. O aperfeiçoamento e difusão destes instrumentos serviu também como alavanca para algumas áreas como a Antropometria ou a preservação digital. Atualmente já existem vários dispositivos capazes de fazer aquisição 3d de forma fácil e rápida. Além dos sensores industriais orientados a capturas de grandes dimensões, também já existem sistemas que permitem fazer esse tipo de aquisições em casa. Produtos como o

2.1 Métodos de Captura

Métodos de Captura.

2.2 Sistemas de Aquisição 360

Sistemas de Aquisição 360.

2.3 Aplicações

Aplicações.

2.4 Sumário

Sumário.

Visão do Sistema

Visão do Sistema

Implementação

Implementação

Resultados

Resultados

Conclusão e Trabalho Futuro

Conclusão

Bibliografia

Fishkin, Kenneth P. "A taxonomy for and analysis of tangible interfaces". *Personal Ubiquitous Comput.*, 8:347–358, September 2004. ISSN 1617-4909. doi: http://dx.doi.org/10.1007/s00779-004-0297-4. URL http://dx.doi.org/10.1007/s00779-004-0297-4. 1