Chapitre 2. Espérances et théorèmes limites

Prof. REMITA Mohamed Riad

National School of Artificial Intelligence.

2023-2024

Variables aléatoires indépendantes

Les v.a. X_1, X_2, \cdots, X_n sont indépendantes si pour tout $B_1, B_2, \cdots, B_n \subset \mathbb{R}$,

$$\mathbb{P}\left(X_{1} \in B_{1} \cap \cdots \cap X_{n} \in B_{n}\right) = \mathbb{P}\left(X_{1} \in B_{1}\right) \cdots \mathbb{P}\left(X_{n} \in B_{n}\right).$$

Proposition Si X_1, X_2, \dots, X_n sont des v.a. indépendantes, alors

- 1. Les v.a. $f_1(X_1)$, $f_2(X_2)$, \cdots , $f_n(X_n)$ sont indépendantes pour toutes fonctions f_1, f_2, \cdots, f_n .
- 2. Si les espérances sont bien définies, alors on a

$$\mathbb{E}(X_1X_2\cdot\cdot X_n)=\mathbb{E}(X_1)\mathbb{E}(X_2)\cdot\cdot\mathbb{E}(X_n).$$

3. Si les variances sont bien définies, alors on a $Cov(X_i, X_i) = 0, \forall i \neq j, d'où$

$$Var(X_1 + X_2 + \cdots + X_n) = Var(X_1) + Var(X_2) + \cdots + Var(X_n)$$
.

Definition

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé et \mathcal{P} une propriété susceptible ou non d'être vérifiée par tout $\omega \in \Omega$. On dit que \mathcal{P} est vraie **presque sûrement (ps)**, s'il existe $A \in \mathcal{A}$ tel que $\mathbb{P}(A) = 0$ et \mathcal{P} est vraie pour tous les $\omega \in \overline{A}$.

Theorem

Soient X et Y deux variables aléatoires discrètes définies sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$. On a les propriétés

- $\mathbb{E}[X]$ finie si et seulement si $\mathbb{E}[|X|]$ finie;
- $|X| \leq Y$ et $\mathbb{E}[Y]$ finie entraînent $\mathbb{E}[X]$ finie;
- $-\infty < a \le X \le b < \infty \Longrightarrow a \le \mathbb{E}[X] \le b$;
- $X = a \ p.s. \Longrightarrow \mathbb{E}[X] = a$.
- $\mathbb{E}[X]$ finie $\Longrightarrow |\mathbb{E}[X]| \leq \mathbb{E}[|X|]$.

Theorem

Soient X et Y deux v.a. définies sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$. Si $\mathbb{E}\left[|X|\right] < \infty$ et $\mathbb{E}\left[|Y|\right] < \infty$, on a les propriétés :

A. Linéarité

- $\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$;
- $\mathbb{E}\left[\lambda X\right] = \lambda \mathbb{E}\left[X\right]$, $(\lambda \in \mathbb{R})$
 - B. Monotonie
- $X \ge 0 \Longrightarrow \mathbb{E}[X] \ge 0$;
- $X \ge Y \Longrightarrow \mathbb{E}[X] \ge \mathbb{E}[Y]$;
- $X = Y \text{ p.s.} \Longrightarrow \mathbb{E}[X] = \mathbb{E}[Y]$;
 - C. Indépendance. Si X et Y sont indépendantes, alors $\mathbb{E}[XY]$ est finie et l'on a $\mathbb{E}[XY] = \mathbb{E}[X] \mathbb{E}[Y]$.

Definitions

Pour tout r > 0, on définie, S'il existe, le moment d'ordre r par

$$m_r = \mathbb{E}(X^r)$$

et le moment centré d'ordre r par

$$\mu_r = \mathbb{E}\left[(X - \mathbb{E}(X))^r \right].$$

Propriété. 1. Pour toute v.a. X, la v.a. $Y = \frac{X - \mathbb{E}(X)}{\sigma_X}$ est centrée $(\mathbb{E}[X] = 0)$ et de variance unité (Var(X) = 1).

2. Pour tout $A \in \mathcal{A}$ on a $\mathbb{P}(A) = \mathbb{E}[\mathbb{I}_A]$.

Proposition (Inégalité de Markov)

Soit X une v.a. Pour tout a > 0, on a

$$\mathbb{P}(|X| \ge a) \le \frac{\mathbb{E}(|X|)}{a}$$

et plus généralement, pour tout a > 0 et r > 0

$$\mathbb{P}(|X| \ge a) \le \frac{\mathbb{E}(|X|^r)}{a^r}.$$

Proposition (Inégalité de Bienaymé-Tchebychev)

Soit X une v.a. Pour tout a > 0

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge a) \le \frac{Var(X)}{a^2}.$$

Convergences

Soit $(X_n)_{n\geq 1}$ une suite de v.a. sur le même espace probabilisé.

1. La suite $(X_n)_{n\geq 1}$ converge en probabilité vers la variable X, noté $X_n \stackrel{\mathbb{P}}{\longrightarrow} X$, si

$$\forall \varepsilon > 0, \lim_{n \to +\infty} \mathbb{P}(|X_n - X| < \varepsilon) = 1.$$

Soit F_n les fonctions de répartitions de la suite (X_n)_{n≥1}.
 Supposons qu'il existe une v.a. Y ayant pour fonction de répartition F. On dit que (X_n) converge en loi vers X, noté X_n
 ^L X, si

$$\lim_{n\to+\infty}\left|F_{n}\left(x\right)-F\left(x\right)\right|=0.$$

3. On dit que la suite $(X_n)_{n\geq 1}$ converge presque surement vers la v.a. X, noté $X_n \stackrel{p.s}{\longrightarrow} X$, si

$$\mathbb{P}\left\{\omega\in\Omega,\lim_{n\to+\infty}X_{n}\left(\omega\right)=X\left(\omega\right)\right\}\right)=1.$$

Convergences

4. On dit que la suite $(X_n)_{n\geq 1}$ converge en moyenne d'ordre $r\ (r\geq 1)$ vers la variable X, noté $X_n\stackrel{r}{\longrightarrow} X$, si $\mathbb{E}\left[|X_n|^r\right]<\infty$ pour tout n et

$$\lim_{n\to+\infty}\mathbb{E}\left[\left|X_{n}-X\right|^{r}\right]=0.$$

Remarques. 1. Si $X_n \xrightarrow{1} X$, on dit que X_n converge en moyenne. 2. Si $X_n \xrightarrow{2} X$, on dit que X_n converge en moyenne quadratique.

Theorem

Les implications suivantes sont vérifiées

$$X_{n} \xrightarrow{p.s} X \Longrightarrow X_{n} \xrightarrow{\mathbb{P}} X \iff X_{n} \xrightarrow{s} X \stackrel{1 \leq s < r}{\iff} X_{n} \xrightarrow{r} X$$

$$X_{n} \xrightarrow{\mathcal{L}} X$$