Theorem. Let $K \subseteq \mathbb{C}$ compact, $f: K \to \mathbb{C}$ continuous, f holomorphic on K. Then, $\sup_{z \in K} |f(z)| = \sup_{z \in K} |f(z)|$.

Theorem. Let Ω be open & connected, $f:\Omega\to\mathbb{C}$ holomorphic, $z_0\in\Omega$, $|f(z_0)|=\sup_{z\in\Omega}$. Then, f constant. Remark: Apply to e^f and $|e^f|=e^{\mathrm{Re}f}$ and get $\mathrm{Re}f(z_0)=\sup_{z\in\Omega}\mathrm{Re}f(z)$ which implies that f is constant. Apply similar to logic to $\mathrm{Im}f$ (replacing f by -if).