Grupos e Corpos

Prof. Lucas Calixto

Aula 8 - Um resumo sobre anéis e corpos

Um anel R e um conjunto munido de duas funções (soma + e produto ·):

$$+: R \times R \to R, (a, b) \mapsto a + b, \quad \cdot: R \times R \to R, (a, b) \mapsto ab$$

tais que

- $oldsymbol{0}$ (R,+) é grupo abeliano (como usual, denotaremos por 0 o elemento identidade com respeito a soma +)
- $(ab)c = a(bc), \forall a, b, c \in R$
- $a(b+c) = ab + ac, \forall a, b, c \in R$
- **4** Se ab = ba, $\forall a, b \in R$, dizemos que R é anel comutativo
- **③** Se ∃ 1 ∈ R tal que 1a = a1 = a, $\forall a \in R$, dizemos que R é anel com identidade. O elemento 1 e chamado de elemento identidade com respeito ao produto ·

Nesse curso só vamos nos interessar por anéis comutativo com identidade, portanto durante nossas aulas

anel = anel comutativo com identidade

Um elemento $a \in R$ é invertível se $\exists \ a^{-1} \in R$ tal que $aa^{-1} = 1$. Se todo $a \in R \setminus \{0\}$ é invertível, dizemos que R é um corpo. R corpo $\Rightarrow (R, +)$ e $(R \setminus \{0\}, \cdot)$ são grupos abelianos

Definimos a característica do anel R por $\operatorname{car}(R) = |1|$ se $|1| < \infty$, e $\operatorname{car}(R) = 0$ se $|1| = \infty$ (aqui, a ordem |1| é tomada com respeito a soma de R)

Exercício: Prove que os elementos $0,1\in R$ são únicos, e, quando existe a^{-1} também é único

Exemplo: Os principais exemplos de anéis são \mathbb{Z} , \mathbb{Z}_n e $\mathbb{F}[x]$, onde \mathbb{F} é corpo

Exemplo: Os principais exemplos de corpos são \mathbb{Z}_p , \mathbb{Q} , \mathbb{C} , \mathbb{R}

 $S \subset R$ é um subanel se S for um anel com as mesmas operações de R

 $I \subset R$ é um ideal de R se valem:

- $(I, +) \le (R, +)$ (ou seja, $\forall a, b \in I \Rightarrow a b \in I$)
- $r \in R$, $a \in I \Rightarrow ra \in I$

Se $a \in R$, então $(a) = Ra = \{ra \mid r \in R\}$ é o menor ideal de R que contém a. Dizemos que a gera (a). Os ideais da forma (a) são chamados de ideais principais

Note: Todo ideal próprio de \mathbb{Z} é da forma $(n) = n\mathbb{Z}$ para algum $n \in \mathbb{Z}$

Exercício: Seja $I \subset R$ um ideal. Mostre que $I \neq R \Leftrightarrow \nexists \ a \in I$ invertível

Homomorfismos e quocientes

Um homomorfismo de anéis $\varphi: R \to S$ é uma função tal que, $\forall a, b \in R$:

- $\varphi(a+b)=\varphi(a)+\varphi(b)\Rightarrow \varphi$ é homomorfismo dos grupos abelianos (R,+) e (S,+)
- $\varphi(ab) = \varphi(a)\varphi(b)$

Se $I \subset R$ é ideal $\Rightarrow R/I = \{r + I \mid r \in R\}$ é anel:

$$(a+I) + (b+I) = (a+b) + I, \quad (a+I)(b+I) = ab + I$$

Como em grupos, $\phi:R\to R/I,\, \varphi(a)=a+I$ é um homomorfismo de aneis (canônico)

Exercício: $\mathbb{Z}/(n) = \{a+(n) \mid a \in Z\} = \{0+(n), 1+(n), \dots, n-1+(n)\}$ (por divisão de Euclides)

Um ideal próprio $I \subset R$ é maximal se I é maximal em $\{J \subsetneq R \mid J$ é ideal de $R\}$

Proposição: $I \subset R$ é maximal $\Leftrightarrow R/I$ é corpo

Exemplo: $(p) \subset \mathbb{Z}$ é maximal $\Leftrightarrow p$ é primo. Logo, $\mathbb{Z}/(p)$ é corpo $\Leftrightarrow p$ é primo

Um isomorfismo de aneis é um homomorfismo de aneis que é bijetor

Os teoremas de isomorfismo que existem para grupos também valem para anéis: trocando subgrupos normais por ideais, e subgrupos por subaneis:

1ºTI: Se $\phi:R\to S$ é homomorfismo de anéis, então ker ϕ é um ideal de R e $R/\ker\phi\cong\phi(R)$

 ${\bf 2^QTI}$ Se $S\subset R$ é subanel, e $I\subset R$ é um ideal, então $I\cap S$ é um ideal de S e

$$S/(I \cap S) \cong (I+S)/I$$

3ºTI: Sejam $I \subset J$ ideais de R, então

$$R/J \cong \frac{R/I}{J/I}$$

 \mathbf{TC} : Se I é ideal de R, então existe uma bijeção

$$\{S \text{ subanel de } R \mid I \subset S\} \leftrightarrow \{\bar{S} \text{ subanel de } R/I\}$$

Essa bijeção continua valida trocando a palavra subanel por ideal nos conjuntos

Pre-requisitos de Fundamentos de Álgebra - Cap. 17

- polinomio sobre um corpo
- grau de um polinomio
- polinomio monico
- divisibilidade de polinomios
- mdc entre polinomios
- polinomios coprimos
- algoritmo de Euclides para polinomios
- polinomios irredutíveis
- \bullet caracterização dos polinomios irredutíveis de $\mathbb{R}[x]$ e $\mathbb{C}[x]$
- o critério de Eisenstein

Dado um polinomio $f(x) \in \mathbb{F}[x]$

$$f(x) = \sum_{i=0}^{n} a_i x^i = a_0 + a_1 x + \dots + a_n x^n, \quad a_n \neq 0$$

- \bullet o coeficiente lider de f(x) é a_n . Escrevemos $cl(f(x)) = a_n$
- \bullet o grau de f(x) é n. Escrevemos $\operatorname{gr}(f(x))=n$
- Se $a_n = 1$, dizemos que f(x) é monico
- $\bullet \ \operatorname{gr}(f(x) + g(x)) \leq \max\{\operatorname{gr}(f(x)), \operatorname{gr}(g(x))\}$
- $\operatorname{gr}(f(x)g(x)) = \operatorname{gr}(f(x)) + \operatorname{gr}(g(x))$
- Se $f(x), g(x) \in \mathbb{F}[x]$, então existem únicos $q(x), r(x) \in \mathbb{F}[x]$ tais que

$$f(x) = g(x)q(x) + r(x),$$

onde r(x)=0, ou $r(x)\neq 0$ e $\operatorname{gr}(r(x))<\operatorname{gr}(g(x))$. Se r(x)=0, dizemos que g(x) divide f(x). Escrevemos $g(x)\mid f(x)$

• $f(x) \in \mathbb{F}[x]$ é divisível por $x - a \Leftrightarrow a$ é uma raíz de f(x) (ou seja, f(a) = 0)

- o mdc(f(x), g(x)) é o único polinomio monico d(x) que divide ambos f(x) e g(x) e que é divisível por qualquer outro polinomio g(x) que divida ambos g(x) e g(x)
- \bullet se mdc(f(x), g(x)) = 1, dizemos que f(x) e g(x) são comprimos
- \bullet $f(x)\in\mathbb{F}[x]$ é redutível se f(x)=g(x)q(x) com $\mathrm{gr}(g(x)),\mathrm{gr}(q(x))>0.$ Dizemos que f(x)é irredutível, se não for redutível
- $f(x) \in \mathbb{C}[x]$ é irredutível $\Leftrightarrow \operatorname{gr}(f(x)) = 1$
- $f(x) \in \mathbb{R}[x]$ é irredutível $\Leftrightarrow \operatorname{gr}(f(x)) = 1$, ou $\operatorname{gr}(f(x)) = 2$ e f(x) não admite raiz em \mathbb{R}

Lema de Gauss: Seja $f(x) \in \mathbb{Z}[x]$ monico. Então f(x) é redutível em $\mathbb{Z}[x] \Leftrightarrow f(x)$ é redutível em $\mathbb{Q}[x]$

Critério de Eisenstein: Seja $f(x) = a_n x^n + \cdots + a_1 x + a_0 \in \mathbb{Z}[x]$. Se existe um primo $p \in \mathbb{Z}$ tal que: $p \mid a_i$ para $i = 0, \ldots, n-1$, mas $p \nmid a_n$ e $p^2 \nmid a_0$, então f(x) é irredutível em $\mathbb{Q}[x]$

Considere $f(x) \in \mathbb{F}[x]$ tal que gr(f(x)) = k

Pelo algoritmo de Euclides, se $g(x) \in \mathbb{F}[x]$ então

$$g(x) = f(x)q(x) + r(x)$$
, onde $r(x) = 0$, ou $gr(r(x)) < k$

Logo,

- $\overline{g(x)} = \overline{r(x)}$ como elementos de $\mathbb{F}[x]/(f(x))$
- $\mathbb{F}[x]/(f(x)) = \{a_0 + a_1\bar{x} + \dots + a_{k-1}\bar{x}^{k-1} \mid a_i \in \mathbb{F}\} \Rightarrow \dim_{\mathbb{F}}(\mathbb{F}[x]/(f(x))) = k$

Proposição: Se I é ideal de $\mathbb{F}[x]$, então existe único polinômio mônico $f(x) \in \mathbb{F}[x]$ tal que I = (f(x)). Além disso, as afirmações que seguem são equivalentes:

- \bigcirc I é ideal maximal
- \bullet F[x]/I é corpo (ótima ferramenta para construir corpos)

Prova: Seja $f(x) \in I$ um polinomio de grau mínimo em I

Suponha que f(x) é mônico (caso não fosse, tome $cl(f(x))^{-1}f(x)$ no lugar de f(x))

 $(f(x)) \subset I$ é óbvio. Por outro lado, se $g(x) \in I$, então

$$g(x) = f(x)q(x) + r(x), \ \text{ onde } r(x) = 0, \text{ ou } \operatorname{gr}(r(x)) < \operatorname{gr}(f(x))$$

$$r(x) = g(x) - f(x)q(x) \in I \Rightarrow r(x) = 0$$
 pela minimalidade do grau de $f(x)$

$$\Rightarrow g(x) \in (f(x)) \Rightarrow I = (f(x))$$

- Note que $(g(x)) \subsetneq (q(x)) \Leftrightarrow g(x) = t(x)q(x)$, onde gr(t(x)) > 0
- (1) \Leftrightarrow (2): pela primeira parte, (f(x)) não é maximal \Leftrightarrow f(x) = g(x)q(x) com $\operatorname{gr}(g(x)), \operatorname{gr}(q(x)) > 0$ (que é a definição de f(x) ser redutível)
- $(2) \Leftrightarrow (3)$: segue de exercício anterior

Exemplo: $p(x) = x^2 + 1 \in \mathbb{R}[x]$ é irredutível (pq?). Logo

$$\mathbb{F} = \mathbb{R}[x]/(p(x)) = \{a + b\bar{x} \mid a, b \in \mathbb{R}\}\$$

é corpo. Além disso, $\overline{p(x)} = \overline{0} \Rightarrow \overline{x}^2 = -1$ em \mathbb{F}

Agora é fácil ver que $\mathbb{F} \cong \mathbb{C}$, onde o isomorfismo envia $a + b\bar{x}$ em a + bi

Corpo de frações

Um elemento $a \in R \setminus \{0\}$ é um divisor de zero se existe $b \in R \setminus \{0\}$ para o qual ab = 0

Um anel ${\cal D}$ que não tem divisores de zero é chamado um domínio

Exemplo: \mathbb{Z} , $\mathbb{F}[x]$ são domínios

Exemplo: \mathbb{Z}_{pq} (p,q>1) não é domínio

Exemplo: Todo corpo é um domínio

Pense em $a/b \in \mathbb{Q}$ como $(a,b) \in \mathbb{Z} \times \mathbb{Z}$. Sabemos que $a/b = c/d \Leftrightarrow ad = bc$, ou seja

$$(a,b) = (c,d) \Leftrightarrow ad = bc$$

Dado um domínio D, podemos construir um corpo Q a partir de D:

- Tome $S = \{(a, b) \in D \times D \mid a, b \in D \in b \neq 0\}$
- Mostre que $(a,b) \sim (c,d) \Leftrightarrow ad = bc$ define uma relação de equivalência em S

Denote a classe de equivalência de (a, b) por a/b

Considere o conjunto de tais classes de equivalência $Q = \{a/b \mid a,b \in D \text{ e } b \neq 0\}$

Em Q, defina + e · da seguinte forma (imitando \mathbb{Q}):

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
, e $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$

Exercício: Verifique que $(Q, +, \cdot)$ é um corpo

Qé chamado de corpo de frações do domínio ${\cal D}$

- $\iota:D\to Q$, $\iota(a)=a/1$ é um homomorfismo injetor de aneis (mergulho). Logo, $D\cong\iota(D)=\{a/1\mid a\in D\}$ e por isso pensamos em D como subanel de Q
- Q é o menor corpo que contem D no seguinte sentido: se \mathbb{F} é corpo que contem D, então existe mergulho de Q em \mathbb{F} . De fato, mostre que

$$\varphi: Q \to \mathbb{F}, \quad \varphi(a/b) = ab^{-1}$$

é mergulho

Exemplo: $\mathbb{F}[x_1,\ldots,x_n]$ é domínio e o seu corpo de frações é

$$\mathbb{F}(x_1, \dots, x_n) = \{ f(x_1, \dots, x_n) / q(x_1, \dots, x_n) \mid q(x_1, \dots, x_n) \neq 0 \}$$

Lista de exercício

Cap. 17 : 2 - d,e, 3, 8, 12, 13, 14, 20, 24, 26

Cap. 18:8 (fiquem a vontade para fazer qualquer outro exercício)