BUNDESREPUBLIK DEUTSCHLAND

(51)

62

21)

43)

Int. Cl.:

C 01 b, 25/32

C 05 b, 9/00

A 23 k

PATENTAMT

Deutsche Kl.:

12 i, 25/32

16 a, 9/00 53 g, 4/04

1925 180 1 Offenlegungsschrift ⑽

Aktenzeichen:

P 19 25 180.0

Annieldetag:

17. Mai 1969

Offenlegungstag: 26. November 1970

Ausstellungspriorität:

Unionspriorität 30

Datum: (32)

Land: **33** (31)

Aktenzeichen:

Verfahren zur Herstellung von Magnesiumalkaliphosphat-Gips-**5**4 Bezeichnung:

Mischverbindungen und deren Verwendung

Zusatz zu: (61)

Ausscheidung aus: 62)

Müller, Dr. Dipl.-Chem. Frank, 8091 Evenhausen Anmelder: 1

Vertreter:

Erfinder ist der Anmelder Als Erfinder benannt: 1

Benachrichtigung gemäß Art. 7 § 1 Abs. 2 Nr. 1 d. Ges. v. 4. 9. 1967 (BGBl. 1 S. 960):

BES! AVAILABLE COPY

MARKET STOR

11.70--009 848/1736

6/90

BNSDOCID: <DE___ 1925180A1_I, >

Dr. Frank Müller

8001 Evenhausen bei Wasserburg am Inn

Verfahren zur Herstellung von Magnesiumalkaliphosphat-Gips-Mischverbindungen und deren Verwendung.

Magnesiumkaliumphosphat wurde als Düngemittel beschrieben (1), das wegen seiner Wasserunlöslich it Vorteile gegenüber konventionellen K-Düngemitteln hat: das K ist pflanzenverfügbar, wird aber im Roden nicht ausgewaschen. Magnesiumkaliumphosphat ist ein Kalium-Vorrats-dünger, der als weitere Bestandteile nur den Pflanzenwuchs fördernde Stoffe, nämlich Mg und P, enthält. Ein größer Nachteil besteht darin, daß die Verbindung für ein Düngemittel relativ tener ist und deshalb nur für Spezialkulturen in Frage kommt. MgKPO₄. H₂O wird nämlich hergestellt, indem MgSO₄ oder MgCl₂ mit einem großen Überschuß an K₂MPO₄ umgesetzt wird (2), gder indem MgO mit KOH und H₃PO₄ zu MgKPO₄. H₂O reagiert.

Das Verfahren würde sich wesentlich verbilligen, wenn es gelünge, anstelle des teuren KOH K₂SO₄ einzusetzen. Das ist möglich, wenn man die SO₄-2-Ionen durch Ca⁺²-Ionen abfängt, wobei der entstelende Gips zwar das Düngemittel MgKPO₄. H₂O verdünnt, wertmäßig aber nicht verschlechtert, weil auch Ca und S Pflanzennührstoffe sind. Weiterhin ergibt sich der Vorteil, daß MgKPO₄. H₂S - CaSO₄ - Mischverbindungen, die nach dem weiter unten beschriebenen Verfahren herzestellt sind, eine bessere Zersetzbarkeit in Wasser aufweisen, als MgFPO₄. H₂O oder mechanische MgKPO₄. H₂O - CaSO₄ - Gemische, sodaß mit diesem Verfahren die Wasserlöslichkeit des Depotdüngers nach Wunsch eingestellt werden kann.

Das bisher Gesagte läßt sich vollkommen auf MgNal'O_{1,-}1,5 H₂O übertragen. Die Verbindung ist ein wertvoller Na-Depotdünger, wohei die große Bedeutung, die Na für die Pflanzenornährung hat, erst in den letzten Jahren deutlich erkannt wird. Auch bei dieser Verbindung ist neben der H₂PO₄ das NaOH der kostenbestimmende Fakter. Deim HgNal'O_{4,-}1,5 H₂O erhäht eich ehenfalls die Wasserlöslichkeit, wenn eine Mischverbindung mit Gips gebildet wird.

009848/1736

Die Reaktionen zur Herstellung der Verbindungen verlaufen prinzipiell nach folgenden Gleichungen:

2) $\text{MgAPO}_{4} \cdot \text{H}_{2}0 + \text{CaSO}_{4}$

Dolomit gebr. Schönit oder Astrakenit
$$(0,5 \text{ CaO} + 0,5 \text{ MgO}) + 0,5 \text{ CaO} + (0,5 (\text{MgSO}_{l_1} + \text{A}_2\text{SO}_{l_2}) \times \text{H}_2\text{O}) + \text{H}_3\text{PO}_{l_1} = \text{MgAPO}_{l_2} \cdot \text{H}_2\text{O} + \text{CaSO}_{l_2}$$

5) $MgAPO_{k} \cdot H_{2}O + 1.5 CaSO_{k}$

Superphosphat
$$(0,5)$$
 Ca $(H_2PO_k)_2$, $H_2O + CaSO_k$, $2H_2O) + 0,5$ $A_2SO_k + MgO = MgAPO_k$, $H_2O + 1,5$ C

Die Herstellung der . hindungen wird in nachstehenden Beispielen beschrieben, wob., wenn die Reaktion zu MgKPO₁.H₂0 + x CaSO₁
dargestellt wird, die Methode genauso für MgNaPO₁.H₂0 + x CaSO₂
gilt und umgekehrt.

Beispiel 1: $\operatorname{MgNaPO}_{\underline{k}}$, $\operatorname{H}_{\underline{2}}0 + 0$,5 $\operatorname{CaBO}_{\underline{k}}$

61,5 g Dolomit gebrannt (entspricht 28 g CaO und 19,8 g MgO) wurden mit 71 g Na₂SO₄ in 235 ml Wasser eine Stunde bei 80°C gerührt. Anschließend kamen 20,5 g MgO hinzu und nach einer weiteren Stunde 115 g M₂PO₄ 85 Sig. Nach Zugabe der M₃PO₄ entstand ein knetbarer Brei, der p_H-Wert lag bei 6. Nach 30 Minuten nahm der Brei eine krümelige Konsistenz an. Das Restwasser wurde im Trockenschrank bei 140°C entfernt. Das Reaktionsprodukt - Ausbeute 225 g - hat folgende Analyses

	borechnet	*	gefunden
Mg	10,7		11,1
Na ·	10,0		10,3
P	13,6		13,5
Ca	8,8	•	9,5
IL 0	7.9		6,1

217 g des Produktes wurden nach 'en Procknon gewahlen und eine Stunde in 1 Liter Wanser bei 80°C gerührt, anschließend abgesaugt und erneut bei 1'0° getrocknet. Die Ausbeute betrug 181 g = 83 %. Der Na-Gehalt

009848/1736

lag hei 7,8 %,d.h. 24 % des Natriums waven wasserlöslich.

 $\label{eq:control_gradient} \begin{aligned} &\text{MgKPO}_{k} \cdot \Pi_{2}\mathbf{0} + \mathbf{0.5} \cdot \text{CaSO}_{k} & \text{wurde in deraelben Weise hergestellt.} \\ &\text{Ansatz: 87 g K$_{2}$SO}_{k} & \text{in 500 ml Π_{2}O,dazu} \end{aligned}$

61,5 g Dolemit gebraunt und

20,5 g Hg0 | anschließend

115 g ILPO, 85 %ig

Ausbente: 247 g

Analyse:	berechnet	r) r	gefunden
Mg	9,9		9,7
K	16,0		16,8
P	12,7		and the second
Ca	8,2		9,3
11 ₂ 0	7,3	••	5,4

236 g des getrockneten Produktes wurden gemahlen und eine Stunde in 1 Liter Wasser bei 80° gerührt. Nach dem Absauge: und Trocknen lag die Ausbeute bei 205 g (87 %). Der K-Gehalt betrug 13,8 %, d.h. 18 % des Kaliums waren wasserlöslich.

Beispiel 2: $\operatorname{MgCO}_{\underline{1}} \cdot \operatorname{H}_{\underline{2}} 0 + \operatorname{CaSO}_{\underline{1}}$

182 g Leonit (NgSO₄.2.5 N₂O + K₂SO₄) 93 fig wurden in 500 ml N₂O gelöst und mit 59,3 g Dolomit gebranut (NgO + CaO) 81 fig 6 Stunden bei 80° gerührt (A). Gleichzeitig wurden in einer Porzellanschale 31 g CaO 90 fig mit 115 g H₂PO₄ 85 fig in 250 ml H₂O 6 Stunden bei 80° digeriert (B). Nach dieser Zeit wurde die Suspension A zur Suspension B in die Forzellanschale gegeben. Es entstand ein gut Knetbarer Brei, der p_H Stert lag bei 4. Nach 2 Stunden war der p_H auf 6 gestiegen und der Brei wurde krünelig. Nach dem Trocknen bei 140° verblieben 322 g Produkt mit folgender Analyse:

	bereelmet	Þ	gefun ^a en		
Иg	7.8		ខ ,3		
K .	12,5		11,9		
P	9,9		9,6		
Ca	12,8		13,5		
H ₀ O '	5,8		4.6		

320 g des Produktes werden gewahlen und mit 1,2 1 "asser eine Stunde bei 80° gerührt. Inch dem Absaugen und Trocknen betrug die Ausbeute 290 g (91 %). Der K-gehalt lag bei 10,5 %.

009848/1736

Das NgNaPO_k· H_2 O +CaSO_k wurde in derselben Weise hergestellt. Ansatz: 200 g Astrakanit (Na₂SO_k + MgSO_k· $7\Pi_2$ O) 92 %ig

59,5 g Dolomit gebrannt 81 %ig

31,1 g CaO 90 %ig

115 g 1L,PO₄ 85 %ig

Ausbeuter 306 g.

Analyse:	berechnet	<i>1</i> 5	gef::nden
Mg	8,2		7,8
Na	7,8		9,0
P	10,5		10,1
Ca	13,5		14,2
H ₂ 0	6,1		5,2

300 g des Produkts wurden eine Stunde bei 80° in 1,2 1 Wasser gerührt. Nach dem Absaugen und Trocknen betrug die Ausbeute 250 g (84 5). Der Na-Gehalt lag bei 5,1 %.

Beispiel 3: $\operatorname{MgKPO}_{k} \cdot \operatorname{H}_{2}0 + 1.5 \operatorname{CaSO}_{k}$ 263 g handelsübliches Superphosphat $(\operatorname{Ca}(\operatorname{H}_{2}\operatorname{PO}_{k})_{2} \cdot \operatorname{H}_{2}0 + 2 \operatorname{CaSO}_{k} \cdot 2\operatorname{H}_{2}0)$ in 350 ml Wasser wurden 6 Stunden mit 55 g $\operatorname{K}_{2}\operatorname{SO}_{k}$ bei 80°C gerührt. Danach wurdne 31 g MgO 37 %ig zugefügt. Vor der MgO-Zugabe lag der H_{1} Wert bei 2, nachher bei 4. Es entstand ein gut knetbarer Brei. Nach 40 Minuten war der H_{1} -Wert auf 6 gestiegen und die Masse wurde steif und krümelig, solaß sie sich nur mehr schwer kneten ließ. Nach dem Trockenen bei 140°C betrug die Ausbeute 316 g.

Analyse:	berchnet	%	gefunden
Mg	6,4		5,7
K	10,3		8,4
P	8,1		7,6
Ca	15,8		16,6
H ₂ 0	4.7		3,7

308 g worden eine Stunde bei 80° in 1,2 1 Wasser gerührt. Nach dem Absaugen und Trocknen betrug die Ausbeute 285 g (93 %). Der K-Gehalt lag bei 7,2 %.

Der MgNal O_{k} - $\Pi_{2}0$ + 1,5 CaS O_{k} - Ansatz wurde analog durchgeführt. Anstelle von 54,8 g K $_{2}$ S O_{k} wurden 47,3 g Na $_{2}$ S O_{k} eingesetzt. Es wurden 306 g Produkt mit folgender Analyse erhalten:

009848/1736

	berechnet	%	ge fun len
lig	6,7		5,8
Na	6,3		5,3
P	8,5		7,7
Ca	16,5		16,3
H ₂ 0	4,9		3,5

292 g wurden eine Stunde bei 80°C mit 1 Liter Wasser gerührt. Nach dem Absaugen und Trocknen lag die Ausbeute bei 254 g (87 %). Der Na-Gehalt war auf 3,9 % gefallen.

Die in den Beispielen 1 - 3 beschriebenen Reaktionen können großtechnisch kontinuierlich durchgeführt werden. Die Apparatur, die in beiliegender Zeichnung beschrieben wird, ist für alle 3 Reaktionen dieselbe. Bei Reaktion 1 (HgAPO4.1120 + 0.5 CaSO4) wird in Ammaischhehälter 1 in einer wässerigen Lösung von Natrium- oder Kallumsulfat gebrannter Dolomit aus Silo B gerührt. Im Rührbehälter 2 wird MgO aus Silo C mit H. PO, aus Tank D vermischt. Die Konzentration der Phosphorsäure kann von 25 - 50 % schwanken. Je konzentrierter die Säure ist, desto mehr Wassor wird zum Lösen des Alkalisulfates genomen. Behälter 1 und 2 speisen ständig die Reaktionsschneice 3, in der die Hauptreaktion Stattfindet. Von Schnecke 3 wird das Gut in den Drehtrocknor 4 gefördert. Nier findet beim Trocknen die Nachreaktion statt. Von 4 geht das Produkt entweder in eine Mihle 5 oder, wenn es als Granulat anfallen soll, was durch eine Zusatzeinrichtung der Beaktionsschnecke möglich ist, auf ein Schüttelsieb 6. Das Endprodukt läuft aus der Müble 5 oder vom Sieb 6 in einen Vorratssilo 7. Das therund Unterkorn von Sieb 6 wird über den Zwischenbehülter 8 wider der Reaktionsschnecke 3 zugeführt.

Bei Reaktion 2 (MgAPO, H2O + CaSO,) wird in 1 gebrannter Dolomit aus B mit Schönit oder Astrakanit aus A wagesetzt, während in 2 CaO aus C mit H2O, aus D reagiert.

Bei Reaktion 3 (MgAPO, HgO + 1,5 CaSO,) wird in 1 Superphosphat aus B mit Natrium- oder Kaliumsulfat imgesetst; in 2 mischt man gleichzeitig MgO aus C mit se viel Wasser, daß ein gerade noch rührbarer Brei entsteht. Im weiteren verliuft das Verfahren hier und hei Sealtion 2 wie oben beschrieben.

tie Mischwerbindengen las an eich als Düngemittel verwenden, die im Moden erst langenm aufgeschlossen verden. Das Na- bzw. E- Ten ist, wie aus nach- folgender Tabelle hervorgeht, busser wasscriüslich, als in den entsprechen-

 ${\tt den~CaSO}_h{\tt -freien~Verbindungen.}$

Die Löslichkeit wurde bestimmt, indem etwa 2 g Produkt in 100 ml H₂0 3, 24, 48, z.T. 96 und 192 Stunden geschüttelt wurden. Danach wurde filtriert, der Pilterrückstand getrocknet und das noch im Peststoff befindliche Na bzw. K bestimmt.

Stunden geschüttelt	0	3	24	48	96	192
MgNaPO4.1,5 H20 1)						
\$ No.	13,6	11,1	8,92	8,84	8,72	9,42
% von 0	100	81,7	65,6	65,0	6 4 ,3	69,3
MgNaPO, HgO+0,5 CaSO,						
火 Na	10,0	6,7	4,0	3,7	5,5	4,0
% von 0	3 , 100	67,0	40,0	37,0	35,6	40,0
MgNaPO ₄ H ₂ O+CaSO ₄						
% Na		4,7	3,0	2,4	*******	1,8
% von 0	100	60,0	39,1	31,0		23,3
MgNaPO ₄ ,1,5 H ₂ O+CaSO ₄ 3)				•		
≸ Na	7,8	 .	7,24	5,85		6,61
≸ von 0	100	·	92,8	75,0		64,8
MgNaPO, H20+1,5 CaSO,		•	4 .			
% Na	6,3	3,9			~== ·	
% von 0	100	62,0		***		*******
MgNaPO4.1,5 П202)						
% Na	13,6		11,2	12,1	$12, l_{1}$	13,2
≸ von 0	100		82,6	មទ.,ខ	91,4	97,0
MgKPO4•H201)						
\$ K	22,1	18,5	12,3	11,7	-	11,5
≯ von 0	100	83,8	55.7	53,0		52,2
MgKPO, H,O+O,5 CaSO,						
× K	15,5	_11,9	6,4	4,5		3,35
. % von 0	100	89,6	48,5	33,9		25,2
MgKPO, H20 + CaSO,						
8 K	11,9	8,3	4,7	2,5	_	2,5
٠ ٥١٥ کړ	100	69,8	39,2	21,1		21,1
мекто ^в чео + с -20 ⁸ 2)				•		
7 X	11,9		9,0	7,8		6,5
≸ von 0	100	-	75,7	65, 6	-	54, 6
		88984	8/173	8		
	•	-	BA	D ORIGIN	AL	٠, ٠

Stunden geschüttelt	, 0	3	24	48	96	192
Mg/11704 . 1120+1 . 5 CaSO4						
\$ K	8,4	7,2	3,8	3,1		2.9
% von 0	100	85,8	45,1	37,3		34,6
MgKPO4.IL202)						
% K	22,1		17,3	18,5	18,9	13,9
≸ von 0	100	-	78,1	83,7	85,6	85,6

Die Verbindungen wurden aus MgO, Na- bzw. KOH und H_10, in einer Breirenktion bergestellt.

Wie aus der Tabelle ersichtlich, hat man es in der Hand, die Wasserlüslichkeit der Alkali-Ionen zu steuern, und zwar 1. durch die Art der Herstellung und 2. durch Einbau von Gips. Gleichzeitig wird die eingangs erwähnte Verbindung der Produkte erreicht, sodaß Na- bzw. K- Depotdünger gefertigt werden kinnen, deren Preise durchaus mit denen heute auf dem Harkt befindleihen P₂O₅-Düngenitteln konkurrieren können.

Eine weitere interessante Einsatzmöglichkeit für die MgNalO₄-Mischverbindungen mit Gips sind die Mineralfutter. Die beute auf dem Markt befindlichen Produkte haben für Rinder folgende Ralmenzusammensetzungen:

\$ Ca Na Ng P

10,1 - 13,9 8,5 - 10,0 1,8 - 3,3 13,0 - 14,5 bei 30 \$
$$P_20_5$$
 und

7,5 - 10,4 7,5 - 11,2 4,0 -13,5 8,0 bei 18 \$ P_20_5

Als Vergleich sei die Zusammensetzung zweier hier beschriebener Verbindungen angeführt: Ca Na Mg P

MgNaFO_{4.4}E₂O + O₅D CaSO₄ 8,5 - 9,5 9,3 - 10,3 10,5 - 11,2 13,2 - 13,6

MgNaFO_{4.4}E₂O + CaSO₄ 13,0 -14,3 7,0 - 9,0 7,6 - 8,4 9,8 - 10,8

Die Verbindungen allein wind Mineralfutter, die spezifisch gegen Weidetetenie einsetzber sind. Aus der Vielzahl der Höglichkeiten seien zwei Mischungsbeispiele gegeben:

009848/1736

HYNYHER DAR

²⁾ Die Verbindungen wurden aus MgSO₄, NaCH bzw. KOH und H_PO₄ in Wasser mefällt.

³⁾ Mechanisches Gemisch der gefüllten Produkte 2) mit CaSOh.

*	Bestandteil	*	Ca	Na	Mg	P	P ₂ 0 ₅
50	$MgNaPO_{\underline{1}}\cdot H_{\underline{2}}0 + 0.5 CaSO_{\underline{1}}$						
38	Na ₂ HPO ₄ • 2 H ₂ O						
10	CaCO.	•					
1	Vitamine						
1	Spurenlemente	ــــــــــــــــــــــــــــــــــــــ					
100			8,8	15,2	5,3	13,4	3 0
80	MgNaPO ₁ .H ₂ O + CaSO ₄						
13	NaCl						
5	Melasse						•
1	Vitamine						•
1	Spurenelemente						<u> </u>
100			10,9	11,4	6,4	8,0	18

009848/1736

Ansprüche.

- 1) Verfahren zur Herstellung von Magnesiummatriumphosphat-Calciumsulfatund von Magnesiumkaliumphosphat-Calciumsulfat-Mischwerbindungen, dadurch gekennzeichnet, daß Calciumionen zum Abfangen der Sulfationen verwendet werden und dadurch die billigeren Alkalisulfate anstelle der Hydroxyde eingesetzt werden können.
- 2) Verfahren nach Anspruch i dadurch gekennzeichnet, daß nach Gleichung (0,5 CaO + 0,5 MgO) + 0,5 MgO + A₂SO₄ + H₃FO₄ = MgAPO₄, H₂O + 0,5 CaSO₄ hergestellt wird (A = K oder Na). (0,5 CaO + 0,5 MgO) kann ein Gemisch der beiden Oxyde, oder gebrannter Dolomit sein.
- Verfahren nach Anspruch 1 dadurch gekennzeichnet, daß n.ch Gleichung (0,5 Ca0 + 0,5 Mg0) + 0,5 Ca0 + (0,5 (MgS0_k x H₂0 + A₂S0_k)) + H₃IO_k
 MgAPO_k H₂0 + CaSO_k hergestellt wird, wobei die bergmännisch gewonnenen Mischkristalle Kalimagnesia (Schönit oder Leonit) und Astrakanit verwendet werden können, aber auch molare Mischungen von Magnesiumsulfat und Kalium-bzw. Natriumsulfat.
- 4) Verfahren nach Anspruch 1 dadurch gekennzeichnet, daß anstelle von CaO und H₂PO₄ Superphosphet verwendet wird, sodnß nach Gleichung (0,5 Ca(H₂PO₄)₂·H₂O + CaSO₄·2 H₂O) + 0,5 A₂SO₄ + MgO = MgAPO₄·H₂O + 1,5 CaSO₄ hergestellt wird.
- 5) Verfahren nach Anspruch 1 4 dadurch gekennzeichnet, daß die Reaktion kontinuierlich in einem Schneckenreaktor oder Granulator in der Breiphase durchgeführt wird.
- 6) Verwendung der nach den Ansprüchen 1 5 hergestellten Magnesiumalkaliphosphat-Calciumsulfat-Mischverbindungen als Düngemittel allein oder
 im Gemisch mit anderen als Düngemittel bekannten Stoffen, wie Ammonnitrat, Ammonsulfat, Harnstoff, Kaliumsulfat, KXXX Kuliumchlorid etc.
- 7) Verwendung der nach den Ansprüchen 1 5 hergestellten Magnesiumalkaliphosphat-Calciumsulfat-Mischverbindungen als Mineralfutter allein oder
 im Gemisch mit anderen, als Mineralfutterzusätze bekannten, Stoffen,
 wie Natriumchlorid, Natriumphosphat, Calciumphosphat, Kalk, Melasce,
 Kleie, Spurenkelemente, Vitamine etc.

BEST AVAILABLE COPY

009848/1736

Literaturverzeichnist

- 1) W.R. Grace & Co., Holl. Pat. 6405548, 19. 5. 1964
- 2) H. Bassett und W. L. Bedwell, J.chem.Soc. (London) 1055, 865

009848/1735

BED! WALIFFIE

009848/1736

BEO! WAVIEWORE COBA