Zastosowanie algorytmu TOPSIS do selekcji cech w systemach wykrywania intruzji na bazie zbioru danych NSL-KDD

Wprowadzenie

Systemy wykrywania intruzji (IDS) odgrywają kluczową rolę w ochronie sieci przed atakami i nieautoryzowanym dostępem. Współczesne IDS muszą przetwarzać miliony pakietów danych z licznymi cechami, co znacząco wydłuża czas detekcji anomalii. W związku z tym niezbędne staje się opracowanie efektywnych metod redukcji wymiarowości danych, które pozwolą na szybszą i bardziej precyzyjną identyfikację potencjalnych zagrożeń.

W ramach tego projektu wykorzystamy zmodyfikowany zbiór danych NSL-KDD oraz techniki selekcji cech oparte na algorytmie TOPSIS (ang. *Technique for Order of Preference by Similarity to Ideal Solution*). Celem jest zbadanie wpływu różnych metod selekcji cech na czas obliczeń i dokładność wykrywania intruzji przy użyciu popularnych klasyfikatorów.

Opis bazy danych NSL-KDD

Zbiór danych **NSL-KDD** został opracowany jako ulepszona wersja popularnego, lecz krytykowanego zbioru KDD'99. Główne cechy NSL-KDD to:

- Brak redundantnych rekordów w zbiorze uczącym, co zapobiega uprzedzeniom klasyfikatorów wobec często występujących danych.
- Brak duplikatów w zbiorze testowym, co zapewnia bardziej wiarygodną ocenę efektywności algorytmów.
- Zrównoważony podział danych według poziomu trudności, co pozwala na bardziej wszechstronną ocenę metod klasyfikacji.
- Rozsądna liczba rekordów w zbiorach uczących i testowych, co umożliwia przeprowadzanie eksperymentów na pełnym zbiorze bez konieczności losowej redukcji danych.

Zbiór danych zawiera pliki w różnych formatach, m.in. pełne zbiory uczące i testowe, ich podzbiory oraz dane w formacie ARFF i CSV.

Cel i problem badawczy

Podstawowym problemem, który staramy się rozwiązać, jest redukcja czasu obliczeń w procesie detekcji intruzji, przy jednoczesnym zachowaniu akceptowalnej dokładności klasyfikacji.

Wielowymiarowość danych oraz duża liczba cech zwiększają złożoność obliczeniową, co wpływa negatywnie na efektywność systemów IDS.

W projekcie zastosujemy algorytm TOPSIS, który umożliwia ocenę i wybór najbardziej efektywnych metod selekcji cech spośród różnych alternatyw. Algorytm TOPSIS polega na wyborze rozwiązania najbliższego rozwiązaniu idealnemu, z uwzględnieniem wielu atrybutów.

Metodyka

1. Wybór zbioru danych

 W projekcie wykorzystamy zbiór NSL-KDD, zbiór ten zawiera oznaczenia ataków i poziom trudności klasyfikacji.

2. Selekcja cech

 Zastosujemy dziesięć różnych technik selekcji cech, a wyniki zostaną ocenione za pomocą algorytmu TOPSIS.

3. Klasyfikacja

 Różne rodzaje klasyfikatorów zostaną wykorzystane, do uzyskania metryk pozwalających na dalszą analizę przy użyciu algorytmu TOPSIS.

4. Analiza wyników

 Wyniki TOPSIS zostaną obliczone w środowisku Python, co pozwoli na rangowanie technik selekcji cech pod kątem efektywności.

Oczekiwane efekty

- **Skrócenie czasu obliczeń**: Zastosowanie efektywnych metod selekcji cech pozwoli na redukcję wymiarowości danych, co przełoży się na krótszy czas detekcji intruzji.
- Poprawa dokładności: Zachowanie odpowiedniego balansu między redukcją cech a precyzją klasyfikacji.
- Ocena technik selekcji cech: Wytypowanie najlepszej metody selekcji cech na podstawie wyników algorytmu TOPSIS.
- **Zunifikowane wyniki**: Możliwość porównania efektywności różnych technik i klasyfikatorów na ujednoliconych danych, co zapewni spójność i powtarzalność badań.

Podsumowanie

Projekt ten ma na celu stworzenie podstaw dla bardziej wydajnych systemów IDS poprzez zastosowanie zaawansowanych metod selekcji cech oraz analizy klasyfikacji. Wykorzystanie zmodyfikowanego zbioru NSL-KDD, narzędzi takich jak Python oraz algorytmu TOPSIS pozwoli na zidentyfikowanie optymalnych rozwiązań dla redukcji czasu obliczeń w detekcji intruzji. Dzięki temu możliwe będzie opracowanie bardziej efektywnych i precyzyjnych systemów ochrony sieci.

Artykuł referencyjny:

https://www.researchgate.net/publication/269399129 TOPSIS Based Multi-Criteria Decision Making of Feature Selection Techniques for Network Traffic Dataset

Baza danych:

https://www.kaggle.com/datasets/hassan06/nslkdd/data