

Convolutional Neural Network

Jaegul Choo (주재걸) Korea University

https://sites.google.com/site/jaegulchoo/

Most slides made by my student, Yunjey Choi

- Introduction
- Convolutional Neural Network
- Convolutional Neural Network2
- Advanced CNN Architectures

O5 Advanced CNN Artitectures

CNN Architectures

Case Studies

- AlexNet
- VGG
- GoogLeNet
- ResNet

- ...

Review: LeNet-5 [LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1 Subsampling (Pooling) layers were 2x2 applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC] Case Study: AlexNet [Krizhevsky et al. 2012]

- [13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
- [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
- [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
- [6x6x256] MAX POOL3: 3x3 filters at stride 2 1600 TM To SLUTE 271
- [4096] FC6: 4096 neurons
- [4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

- batch size 128
- SGD Momentum 0.9 & ADAM OPFINIZAN
- Learning rate 1e-2, reduced by 10 manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

\dense

1000

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Case Study: VGGNet [Simonyan and Zisserman, 2014]

Small filters, Deeper networks

8 layers (AlexNet)

-> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC'13 (ZFNet)

-> 7.3% top 5 error in ILSVRC'14

Case Study: VGGNet [Simonyan and Zisserman, 2014]

Stack of three 3x3 conv (stride 1) layers has same effective receptive field as one 7x7 conv layer

But deeper, more non-linearities

And fewer parameters: 3 * (3²C²) vs. 7²C² for C channels per layer

Softmax

```
INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
                                                                                           FC 1000
                                                                                                       fc8
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
                                                                                           FC 4096
                                                                                                       fc7
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
                                                                                           FC 4096
                                                                                                       fc6
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
                                                                                            Pool
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
                                                                                                     conv5-3
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
                                                                                                     conv5-2
                                                                                                     conv5-1
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
                                                                                            Pool
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
                                                                                                     conv4-3
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
                                                                                                     conv4-2
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
                                                                                                     conv4-1
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
                                                                                            Pool
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
                                                                                          3x3 conv. 256
                                                                                                     conv3-2
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
                                                                                                     conv3-1
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
                                                                                            Pool
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
                                                                                                     conv2-2
                                                                                                     conv2-1
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
                                                                                            Pool
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512=2,359,296
                                                                                          3x3 conv, 64
                                                                                                     conv1-2
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
                                                                                                     conv1-1
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
                                                                                            Input
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
                                                                                          VGG16
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000
TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
                                                                                        Common names
TOTAL params: 138M parameters
```

Case Study: VGGNet [Simonyan and Zisserman, 2014]

Details:

- ILSVRC'14 2nd in classification,
- 1st in localization
- Similar training procedure as Krizhevsky 2012
- No Local Response Normalisation (LRN)
- Use VGG16 or VGG19 (VGG19 only slightly better, more memory)
- Use ensembles for best results
- FC7 features generalize well to other tasks

Deeper networks, with computational Efficiency

- 22 layers
- Efficient "Inception" module
- No FC layers
- Only 5 million parameters!
- 12x less than AlexNet
- ILSVRC'14 classification winner (6.7% top 5 error)

Inception module

"Inception module": design a good local network topology (network within a network) and then stack these modules on top of each other.

Example:

Q3:What is output size after filter concatenation?

Q: What is the problem with this? [Hint: Computational complexity]

Solution: "bottleneck" layers that use 1x1 convolutions to 28x28x256 reduce feature depth

Example:

Q3:What is output size after filter concatenation?

Q: What is the problem with this? [Hint: Computational complexity]

Solution: "bottleneck" layers that use 1x1 convolutions to 28x28x256 reduce feature depth

1x1 Convolutions

1x1 Convolutions

Naive Inception module

1x1 conv "bottleneck" layers

Inception module with dimension reduction

Stack Inception modules with dimension reduction on top of each other

Inception module

Stem Network: Conv-Pool-2x Conv-Pool

(AvgPool-1x1Conv-FC-FC-Softmax)

Deeper networks, with computational Efficiency

- 22 layers
- Efficient "Inception" module
- No FC layers
- Only 5 million parameters!
- 12x less than AlexNet
- ILSVRC'14 classification winner (6.7% top 5 error)

Inception module

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Very deep networks using residual connections

- 152-layer model for ImageNet
- ILSVRC'15 classification winner (3.57% top 5 error)
- Swept all classification and detection competitions in ILSVRC'15 and COCO'15!

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

56-layer model performs worse on both training and test error

-> The deeper model performs worse, but it's not caused by overfitting!

Hypothesis: the problem is an *optimization* problem, deeper models are harder to optimize

The deeper model should be able to perform at least as well as the shallower model.

A solution by construction is copying the learned layers from the shallower model and setting additional layers to identity mapping.

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping

Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3x3 conv layers
- Periodically, double # of filters and downsample spatially using stride 2 (/2 in each dimension)
- Additional conv layer at the beginning
- No FC layers at the end (only FC 1000 to output classes)

For deeper networks
(ResNet-50+), use "bottleneck"
layer to improve efficiency
(similar to GoogLeNet)

Experimental Results

- Able to train very deep networks without degrading (152 layers on ImageNet, 1202 on Cifar)
- Deeper networks now achieve lowing training error as expected
- Swept 1st place in all ILSVRC and COCO 2015 competitions

MSRA @ ILSVRC & COCO 2015 Competitions

- 1st places in all five main tracks
 - ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
 - ImageNet Detection: 16% better than 2nd
 - ImageNet Localization: 27% better than 2nd
 - COCO Detection: 11% better than 2nd
 - COCO Segmentation: 12% better than 2nd

ILSVRC 2015 classification winner (3.6% top 5 error) -- better than "human performance"! (Russakovsky 2014)

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Beyond ResNets

Densely Connected Convolutional Networks

[Huang et al. 2017]

- Dense blocks where each layer is connected to every other layer in feedforward fashion
- Alleviates vanishing gradient, strengthens feature propagation, encourages feature reuse

Summary: CNN Architectures

- VGG, GoogLeNet, ResNet all in wide use, available in model zoos
- ResNet current best default + Dense Not
- Trend towards extremely deep networks
- Significant research centers around design of layer / skip connections and improving gradient flow
- Even more recent trend towards examining necessity of depth vs. width and residual connections

References

Convolutional Neural Network

Bumsoo Kim, Computer Vision & Deep Learning pdf https://brohrer.github.io/how_convolutional_neural_networks_work.html http://cs231n.stanford.edu/syllabus.html

Convolutional Neural Network for Text Classification

http://cs224d.stanford.edu/syllabus.html

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

https://arxiv.org/abs/1510.03820

https://arxiv.org/abs/1408.5882

THANK YOU!

