TEST REPORT

Reference No.....: WTS19S09067414W V1

FCC ID.....: 2ALCVER100206

Applicant: Emerson Radio Corp.

Address : 35 Waterview Blvd, Parsippany, New Jersey 07054, United States

Manufacturer: ShenZhen YouLa Electronics Co.,Ltd.

Address : 11F, Building A, JianYu No 2 Industrial Area, XiXiang Street,

Bao'an District, Shenzhen, China

Product: Clock Radio with Bluetooth Speaker

Model(s). : ER100210, ER100206

Brand Name.....: Emerson, Scott

Standards : FCC CFR47 Part 15 Section 15.247:2019

Date of Receipt sample : 2019-09-26

Date of Test : 2019-09-26 to 2019-10-14

Date of Issue : 2019-12-19

Test Result : Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Test site/Test location:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen,

Guangdong, China Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Approved by:

Philo Zhong / Manager

Robin Zhou / Test Engineer

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

Page 1 of 58

Reference No.: WTS19S09067414W V1

1 Contents

			Page
1	CONT	ENTS	2
2	REVIS	ION HISTORY	4
3		RAL INFORMATION	
		SENERAL DESCRIPTION OF E.U.T	
		PETAILS OF E.U.T	
		EST MODE	
4		MENT USED DURING TEST	
	4.1 E	QUIPMENTS LIST	7
		1EASUREMENT UNCERTAINTY	
_		SUBCONTRACTED	
5		FACILITY	
6		SUMMARY	
7		UCTED EMISSION	
		.U.T. OPERATION	
		UT SETUP MEASUREMENT DESCRIPTION	
		CONDUCTED EMISSION TEST RESULT	
8	RADIA	TED EMISSIONS	13
		UT OPERATION	
		EST SETUP	
		PECTRUM ANALYZER SETUP	
		CORRECTED AMPLITUDE & MARGIN CALCULATION	
		SUMMARY OF TEST RESULTS	
9		EDGE MEASUREMENT	
		EST PROCEDUREEST SETUP	
		EST SETUP	
10		WIDTH MEASUREMENT	
	10.1	Test Procedure	25
	10.2	TEST SETUP	
44	10.3	TEST RESULT ##############################	
11		TEST PROCEDURE	
	11.1 11.2	TEST PROCEDURE	
	11.3	TEST RESULT	
12	HOPPI	ING CHANNEL SEPARATION	33
	12.1	TEST PROCEDURE	
	12.2 12.3	TEST SETUP TEST RESULT	
13		ER OF HOPPING FREQUENCY	
	13.1	Test Procedure	
	13.1	TEST FROCEDURE	

Reference No.: WTS19S09067414W V1 Page 3 of 58

	13.3	Test Result	39
14	DWEL	LL TIME	40
	14.1	Test Procedure	40
	14.2	TEST SETUP	
	14.3	Test Result	
15	ANTE	NNA REQUIREMENT	45
16	FCC I	D: 2ALCVER100206 RF EXPOSURE REPORT	46
	16.1	REQUIREMENTS	46
	16.2	THE PROCEDURES / LIMIT	46
	16.3	MPE CALCULATION METHOD	
	16.4	RESULT: COMPLIANCE	47
17	PHOT	OGRAPHS – MODEL ER100210 TEST SETUP PHOTOS	48
	17.1	PHOTOGRAPH-CONDUCTED EMISSIONS TEST SETUP PHOTOS	48
	17.2	PHOTOGRAPH – RADIATION SPURIOUS EMISSION TEST SETUP PHOTOS	48
18	PHOT	OGRAPHS - CONSTRUCTIONAL DETAILS	50
	18.1	Model ER100210 - External Photos	50
	18.2	Model ER100210 - Internal Photos	55

Reference No.: WTS19S09067414W V1 Page 4 of 58

2 Revision History

Test Report No.	Date of Receipt Sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTS19S09067414W	2019-09-26	2019-09-26 to 2019-10-14	2019-10-18	original	1	Replaced
WTS19S09067414W V1	2019-09-26	2019-09-26 to 2019-10-14	2019-12-19	Revision1	Updated the report	Valid

Reference No.: WTS19S09067414W V1 Page 5 of 58

3 General Information

3.1 General Description of E.U.T

Product: Clock Radio with Bluetooth Speaker

Model(s): ER100210, ER100206

Model difference:

Only the appearance colors, brand names and model names are different.

The model ER100210 is the tested sample.

Operation Frequency: 2402-2480MHz, 79 Channels in total

Antenna installation: PCB Printed Antenna

Antenna Gain: -0.58dBi

Type of Modulation: GFSK, $\pi/4DQPSK$

Frequency hopping systems (FHS):

This transmitter device is frequency hopping device, and complies with FCC Part15.247 Requirements.

This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. The average time of occupancy on any channel is less than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels (79 channels) employed.

All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an Bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part15.247.

Pseudorandom Frequency Hopping Sequence Table as below:

Channel: 08, 24, 19, 56, 40, 18, 50, 09, 02, 23, 32, 41, 33, 31, 65, 73, 53, 69, 06, 22, 67, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 17, 60, 63, 54, 03, 00, 59, 64, 75, 35, 66, 43, 15, 45, 39, 77, 55, 71, 47, 61, 27, 30, 48, 72, 01, 14, 07, 25, 34, 12, 28, 44, 51, 16, 49, 74, 11, 05, 13, 37, 62 etc.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Reference No.: WTS19S09067414W V1 Page 6 of 58

3.2 Details of E.U.T

Ratings: Input: 5V === 1A Power by AC ADAPTOR

(AC ADAPTOR: Model: AK06WG-0500100UU,

Input: 100-240V~50/60Hz 0.2A, Shenzhen Guijin Technology Co., Ltd.)

DC 3V by CR2032 Lithium Battery(CLOCK BACKUP)

3.3 Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
1	2402	2	2403	3	2404	4	2405
5	2406	6	2407	7	2408	8	2409
9	2410	10	2411	11	2412	12	2413
13	2414	14	2415	15	2416	16	2417
17	2418	18	2419	19	2420	20	2421
21	2422	22	2423	23	2424	24	2425
25	2426	26	2427	27	2428	28	2429
29	2430	30	2431	31	2432	32	2433
33	2434	34	2435	35	2436	36	2437
37	2438	38	2439	39	2440	40	2441
41	2442	42	2443	43	2444	44	2445
45	2446	46	2447	47	2448	48	2449
49	2450	50	2451	51	2452	52	2453
53	2454	54	2455	55	2456	56	2457
57	2458	58	2459	59	2460	60	2461
61	2462	62	2463	63	2464	64	2465
65	2466	66	2467	67	2468	68	2469
69	2470	70	2471	71	2472	72	2473
73	2474	74	2475	75	2476	76	2477
77	2478	78	2479	79	2480	-	_

3.4 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Test mode	Low channel	Middle channel	High channel
Transmitting	2402MHz	2441MHz	2480MHz

Note: The EUT has been tested under its typical operating condition. Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting. Only the worst case data were reported.

4 Equipment Used during Test

4.1 Equipments List

Condu	cted Emissions					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	EMI Test Receiver	R&S	ESCI	100947	2019-09-17	2020-09-16
2	LISN	R&S	ENV216	100115	2019-09-17	2020-09-16
3	Cable	Тор	TYPE16(3.5M)	1	2019-09-17	2020-09-16
3m Ser	mi-anechoic Chamber	for Radiation Emis	ssions(SAEMC)			
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	Spectrum Analyzer	R&S	FSP30	100091	2019-04-19	2020-04-18
2	Broad-band Horn Antenna(1-18GHz)	SCHWARZBECK	BBHA 9120 D	667	2019-04-19	2020-04-18
3	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	2019-04-19	2020-04-18
4	Coaxial Cable (above 1GHz)	Тор	1GHz-18GHz	EW02014-7	2019-04-19	2020-04-18
5	Spectrum Analyzer	R&S	FSP40	100501	2018-11-13	2019-11-12
6	Broad-band Horn Antenna(18-40GHz)	SCHWARZBECK	BBHA 9170	335	2018-10-25	2019-10-24
7	Microwave Broadband Preamplifier (18-40GHz)	SCHWARZBECK	BBV 9721	100472	2019-09-17	2020-09-16
8	Cable	Тор	18-40GHz	-	2018-10-15	2019-10-14
3m Ser	mi-anechoic Chamber	for Radiation Emis	sions(TDK)			
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date
1	Test Receiver	R&S	ESCI	101296	2019-04-20	2020-04-19
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	2019-05-24	2020-05-23
3	Active Loop Antenna	Com-power	AL-130R	10160007	2019-04-28	2020-04-27
4	Amplifier	ANRITSU	MH648A	M43381	2019-04-19	2020-04-18
5	Cable	HUBER+SUHNER	CBL2	525178	2019-04-20	2020-04-19
6	Coaxial Cable (below 1GHz)	Тор	TYPE16 (13M)	-	2019-09-12	2020-09-11

RF Conducted Testing									
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date			
1.	Spectrum Analyzer	R&S	FSL6	100959	2018-11-18	2019-11-17			
2	Coaxial Cable	Тор	10Hz-30GHz	-	2019-09-12	2020-09-11			
3	Antenna Connector*	Realacc	45RSm	-	2019-09-12	2020-09-11			
4	DC Block	Gwave	GDCB-3G-N- SMA	140307001	2019-09-12	2020-09-11			

[&]quot;*": The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

4.2 Measurement Uncertainty

Parameter	Uncertainty			
Radio Frequency	± 1 x 10 ⁻⁶			
RF Power	± 1.0 dB			
RF Power Density	± 2.2 dB			
	± 5.03 dB (30M~1000MHz)			
Radiated Spurious Emissions test	± 5.47 dB (1000M~25000MHz)			
Conducted Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)			
Confidence interval: 95%. Confidence factor:k=2				

4.3 Subcontracted

Whether	parts of	tests f	or the I	product	have	been su	bcon	tracted	to o	ther	labs
---------	----------	---------	----------	---------	------	---------	------	---------	------	------	------

☐ Yes ☐ No

If Yes, list the related test items and lab information:

Test Lab: N/A Lab address: N/A Test items: N/A

5 Test Facility

FCC Designation No.: CN1201. Test Firm Registration No.: 523476. ISED CAB identifier: CN0013. Test Firm Registration No.: 7760A.

Reference No.: WTS19S09067414W V1 Page 9 of 58

6 Test Summary

Test Items	Test Requirement	Result			
Conduct Emission	15.207	Pass			
	15.205(a)				
Radiated Spurious Emissions	15.209	Pass			
	15.247(d)				
Dand adea	15.247(d)	Door			
Band edge	15.205(a)	Pass			
Bandwidth	15.247(a)(1)	Pass			
Maximum Peak Output Power	15.247(b)(1)	Pass			
Frequency Separation	15.247(a)(1)	Pass			
Number of Hopping Frequency	15.247(a)(1)(iii)	Pass			
Dwell time	15.247(a)(1)(iii)	Pass			
Antenna Requirement	15.203	Pass			
RF Exposure	1.1307(b)(1)	Pass			
Note: Pass=Compliance; NC=Not Compliance; NT=Not Tested; N/A=Not Applicable.					

Reference No.: WTS19S09067414W V1 Page 10 of 58

7 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: F

Frequency (MHz)	Conducted Limit (dBµV)				
Frequency (MHZ)	Quasi-peak	Average			
0.15 to 0.5	66 to 56*	56 to 46*			
0.5 to 5.0	56	46			
5.0 to 30	60	50			
*Decreases with the logarithm of the frequency.					

7.1 E.U.T. Operation

Operating Environment:

Temperature: 22.4 °C
Humidity: 53.7 % RH
Atmospheric Pressure: 101.8kPa

Test Voltage: AC 120V, 60Hz

EUT Operation:

The test was performed in Transmitting mode, the worst test data (GFSK modulation Low channel) were shown in the report.

7.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013.

7.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

7.4 Conducted Emission Test Result

Remark: only the worst data (GFSK modulation Low channel mode) were reported

Live line:

Reference No.: WTS19S09067414W V1 Page 12 of 58

Neutral line:

Reference No.: WTS19S09067414W V1 Page 13 of 58

8 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.10:2013

Test Result: PASS
Measurement Distance: 3m

Limit:

_	Field Strei	ngth	Field Strength Limit at 3m Measurement Dist			
Frequency (MHz)	uV/m Distance (m)		uV/m	dBuV/m		
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80		
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40		
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

8.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 54.3 % RH
Atmospheric Pressure: 101.6kPa

Test Voltage: AC 120V, 60Hz

EUT Operation:

The test was performed in Transmitting mode, the worst test data (GFSK modulation) were shown in the report.

8.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10: 2013.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Anechoic 3m Chamber

Antenna Elevation Varies From 1 to 4 m
Turn Table From 0° to 360°

FUT

Absorbers

PC
System
Analyzer

AMP
Combining
Network

The test setup for emission measurement above 1 GHz.

8.3 Spectrum Analyzer Setup

. Auto
.10 kHz
.10 kHz
.10 kHz
. Auto
.PK
.100 kHz
.300 kHz
. Auto
.PK
.1 MHz
.3 MHz
.Ave.
.1 MHz
.10 Hz

Reference No.: WTS19S09067414W V1 Page 16 of 58

8.4 Test Procedure

1. The EUT is placed on a turntable, which is 0.8m above ground plane for below 1GHz and 1.5m for above 1GHz.

- The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are tested under 3-axes(X, Y, Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.
- 8. For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

8.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain
The "Margin" column of the following data tables indicates the degree of compliance with the applicable
limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B.
The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

Reference No.: WTS19S09067414W V1 Page 17 of 58

8.6 Summary of Test Results

Test Frequency: 9 kHz ~ 30 MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

Only the worst case GFSK mode were record in the report.

Fraguancy	Frequency Receiver Reading Detect	I LIGITACION I	Turn	RX An	tenna	Corrected	Camaatad	FCC Part 15.247/209/205	
Frequency			table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GFSK Lo	ow Chanr	nel 2402	MHz			
180.02	38.16	QP	198	1.7	Н	-7.24	30.92	43.50	-12.58
180.02	37.54	QP	49	1.5	V	-7.24	30.30	43.50	-13.20
4804.00	64.20	PK	317	1.6	V	-1.06	63.14	74.00	-10.86
4804.00	43.32	Ave	317	1.6	V	-1.06	42.26	54.00	-11.74
7206.00	57.85	PK	114	1.9	Н	1.33	59.18	74.00	-14.82
7206.00	43.09	Ave	114	1.9	Н	1.33	44.42	54.00	-9.58
2343.77	46.41	PK	261	1.5	V	-13.19	33.22	74.00	-40.78
2343.77	38.41	Ave	261	1.5	V	-13.19	25.22	54.00	-28.78
2380.17	43.11	PK	152	1.3	Н	-13.14	29.97	74.00	-44.03
2380.17	37.94	Ave	152	1.3	Н	-13.14	24.80	54.00	-29.20
2488.34	43.43	PK	322	1.5	V	-13.08	30.35	74.00	-43.65
2488.34	39.00	Ave	322	1.5	V	-13.08	25.92	54.00	-28.08

Fragues	Receiver	Datastan	Turn	RX Antenna		Corrected		FCC Part 15.247/209/205	
Frequency	Reading	Reading Detector table Angle Height Polar Factor	Factor	Corrected Amplitude	Limit	Margin			
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	GFSK Middle Channel 2441MHz								
180.02	39.47	QP	185	1.3	Н	-7.24	32.23	43.50	-11.27
180.02	38.48	QP	186	1.5	V	-7.24	31.24	43.50	-12.26
4882.00	63.59	PK	280	1.9	V	-0.62	62.97	74.00	-11.03
4882.00	43.52	Ave	280	1.9	V	-0.62	42.90	54.00	-11.10
7323.00	57.85	PK	16	1.4	Н	2.21	60.06	74.00	-13.94
7323.00	42.72	Ave	16	1.4	Н	2.21	44.93	54.00	-9.07
2345.69	45.51	PK	193	1.7	V	-13.19	32.32	74.00	-41.68
2345.69	37.96	Ave	193	1.7	V	-13.19	24.77	54.00	-29.23
2378.96	44.77	PK	304	1.3	Н	-13.14	31.63	74.00	-42.37
2378.96	37.88	Ave	304	1.3	Н	-13.14	24.74	54.00	-29.26
2484.85	42.86	PK	336	1.2	V	-13.08	29.78	74.00	-44.22
2484.85	37.65	Ave	336	1.2	V	-13.08	24.57	54.00	-29.43

	Receiver	Turn	RX An	ntenna Corrected			FCC Part 15.247/209/205		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	GFSK High Channel 2480MHz								
180.02	40.25	QP	36	1.2	Н	-7.24	33.01	43.50	-10.49
180.02	37.63	QP	61	1.9	V	-7.24	30.39	43.50	-13.11
4960.00	64.22	PK	324	1.3	V	-0.24	63.98	74.00	-10.02
4960.00	44.83	Ave	324	1.3	V	-0.24	44.59	54.00	-9.41
7440.00	56.59	PK	94	1.8	Н	2.84	59.43	74.00	-14.57
7440.00	43.46	Ave	94	1.8	Н	2.84	46.30	54.00	-7.70
2311.24	46.13	PK	291	1.2	V	-13.19	32.94	74.00	-41.06
2311.24	39.64	Ave	291	1.2	V	-13.19	26.45	54.00	-27.55
2364.69	43.11	PK	252	1.2	Н	-13.14	29.97	74.00	-44.03
2364.69	36.40	Ave	252	1.2	Н	-13.14	23.26	54.00	-30.74
2486.64	44.90	PK	35	1.8	V	-13.08	31.82	74.00	-42.18
2486.64	38.14	Ave	35	1.8	V	-13.08	25.06	54.00	-28.94

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported.

Reference No.: WTS19S09067414W V1 Page 20 of 58

9 Band Edge Measurement

Test Requirement: Section 15.247(d) In addition, radiated emissions which fall in the

restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see

Section 15.205(c)).

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247 (d), In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Mode: Transmitting

9.1 Test Procedure

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum:
- Set the spectrum analyzer: RBW = 100 kHz, VBW = 300 kHz, Sweep = auto
 Detector function = peak, Trace = max hold

9.2 Test Setup

9.3 Test Result

Test plots

Reference No.: WTS19S09067414W V1 Page 25 of 58

10 Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: C63.10: 2013

Test Mode: Test in fixing operating frequency at low, Middle, high channel.

10.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 30kHz, VBW = 100kHz

10.2 Test Setup

10.3 Test Result

Modulation	Test Channel 20 dB Bandwidth		99% Bandwidth	
GFSK	FSK Low 0.952MHz		0.838MHz	
GFSK	Middle	0.952MHz	0.844MHz	
GFSK	High	0.952MHz	0.844MHz	
π /4 DQPSK	Low	1.311MHz	1.180MHz	
π 4 DQPSK	Middle	1.287MHz	1.180MHz	
π /4 DQPSK High		1.311MHz	1.180MHz	

Reference No.: WTS19S09067414W V1 Page 26 of 58

Test result plot as follows:

Modulation: GFSK

Modulation: π /4 DQPSK

Reference No.: WTS19S09067414W V1 Page 29 of 58

11 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: C63.10:2013

Test Limit: Regulation 15.247 (b)(1), For frequency hopping systems

operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band:

0.125 watts.

Refer to the result "Number of Hopping Frequency" of this

document. The 1watts (30 dBm) limit applies.

Test mode: Test in fixing frequency transmitting mode.

11.1 Test Procedure

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3 MHz. VBW =3 MHz. Sweep = auto; Detector Function = Peak.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

11.2 Test Setup

11.3 Test Result

Toot	Data	Pea			
Test Mode	Data Rate	Low Channel	Middle Channel	High Channel	Limit (dBm)
GFSK	1Mbps	-0.82	-0.80	-0.82	30
π /4 DQPSK	2Mbps	-0.11	-0.06	-0.10	30

Reference No.: WTS19S09067414W V1 Page 30 of 58

Test result plot as follows:

Modulation: GFSK
Low Channel

Middle Channel

Reference No.: WTS19S09067414W V1 Page 31 of 58

High Channel

Modulation: π /4 DQPSK
Low Channel

Reference No.: WTS19S09067414W V1 Page 32 of 58

Middle Channel

High Channel

Reference No.: WTS19S09067414W V1 Page 33 of 58

12 Hopping Channel Separation

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: C63.10:2013

Test Limit: Regulation 15.247(a)(1) Frequency hopping systems shall have

hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the

systems operate with an output power no greater than 1W.

Test Mode: Test in hopping transmitting operating mode.

12.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 30 kHz. VBW = 100 kHz , Span = 3MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

12.2 Test Setup

12.3 Test Result

Test result plot as follows:

Modulation	Test Channel	Test Result	20dB Bandwidth	Limits (2/3 20dB Bandwidth)
GFSK	Low	1 MHz	0.952MHz	0.635MHz
GFSK	Middle	1 MHz	0.952MHz	0.635 MHz
GFSK	High	1 MHz	0.952MHz	0.635 MHz
π /4 DQPSK	Low	1 MHz	1.311MHz	0.874 MHz
π/4 DQPSK	Middle	1 MHz	1.287MHz	0.858 MHz
π /4 DQPSK	High	1 MHz	1.311MHz	0.874 MHz

Reference No.: WTS19S09067414W V1 Page 38 of 58

13 Number of Hopping Frequency

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: C63.10:2013

Test Limit: Regulation 15.247 (a)(1)(iii) Frequency hopping systems in the

2400-2483.5 MHz band shall use at least 15 channels.

Test Mode: Test in hopping transmitting operating mode.

13.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 100 kHz. VBW = 300 kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.4835GHz. Sweep=auto;

13.2 Test Setup

13.3 Test Result

Total Channels are 79 Channels.

Reference No.: WTS19S09067414W V1 Page 40 of 58

14 Dwell Time

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: C63.10:2013

Test Limit: Regulation 15.247(a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are

used.

Test Mode: Test in hopping transmitting operating mode.

14.1 Test Procedure

1.Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2.Set spectrum analyzer span = 0. centred on a hopping channel;
- 3.Set RBW = 1 MHz and VBW = 3 MHz. Sweep = as necessary to capture the entire dwell time per hopping channel.
- 4.Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

14.2 Test Setup

Reference No.: WTS19S09067414W V1 Page 41 of 58

14.3 Test Result

Dwell time = Pulse wide x (Hopping rate / Number of channels) x Period

The test period: T = 0.4(s) * 79 = 31.6(s)

DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 / 2 hops per second in each channel (1 time slot RX, 1 time slot TX).

So, the Dwell Time can be calculated as follows:

Data Packet Dwell Time(s)			
DH5	1600/79/6*31.6*(MkrDelta)/1000		
DH3	1600/79/4*31.6*(MkrDelta)/1000		
DH1	1600/79/2*31.6*(MkrDelta)/1000		
Remark	Mkr Delta is single pulse time.		

Modulation	Data Packet	Channel	pulse time(ms)	Dwell Time(s)	Limits(s)
	DH5	Low	2.888	0.308	0.4
GFSK		Middle	2.888	0.308	0.4
		High	2.888	0.308	0.4
π/4 DQPSK	DH5	Low	2.888	0.308	0.4
		Middle	2.888	0.308	0.4
		High	2.888	0.308	0.4

Reference No.: WTS19S09067414W V1 Page 42 of 58

Modulation: GFSK

Data Packet:

DH5 Low channel

Data Packet:

DH5 Middle channel

Reference No.: WTS19S09067414W V1 Page 43 of 58

Data Packet:

DH5 High channel

Modulation: π/4 DQPSK

Data Packet:

2DH5 Low channel

Data Packet: 2DH5 Middle channel

Data Packet: 2DH5 High channel

Reference No.: WTS19S09067414W V1 Page 45 of 58

15 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Result:

The EUT has a PCB Printed Antenna for Bluetooth Antenna, meets the requirements of FCC 15.203.

Reference No.: WTS19S09067414W V1 Page 46 of 58

16 FCC ID: 2ALCVER100206 RF Exposure Report

Test Requirement: FCC Part 1.1307

Evaluation Method: FCC Part 2.1091 & KDB 447498 D01 General RF Exposure Guidance v06

16.1 Requirements

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

16.2 The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

Reference No.: WTS19S09067414W V1 Page 47 of 58

16.3 MPE Calculation Method

$$\mathbf{S} = \frac{P \times G}{4 \times \pi \times R^2}$$

S = power density (in appropriate units, e.g. mW/cm²)

P = output power to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

From the peak EUT RF output power, the minimum mobile separation distance, R=20cm, as well as the gain of the used antenna, the RF power density can be obtained

Antenna Gain (dBi)	Antenna Gain (numeric)	Max. conducted Output Power (dBm)	Max. conducted Output Power (mW)	Power Density (mW/cm2)	Limit of Power Density (mW/cm2)	Reult
-0.58	0.875	-0.06	0.986	0.000172	1	Compliance

16.4 Result: Compliance

No SAR measurement is required.

17 Photographs – Model ER100210 Test Setup Photos

17.1 Photograph-Conducted Emissions Test Setup Photos

17.2 Photograph – Radiation Spurious Emission Test Setup Photos

9 kHz to 30 MHz

From 30 MHz to 1GHz

Above 1GHz

18 Photographs - Constructional Details

18.1 Model ER100210 - External Photos

Reference No.: WTS19S09067414W V1 Page 52 of 58

Reference No.: WTS19S09067414W V1 Page 53 of 58

Reference No.: WTS19S09067414W V1 Page 54 of 58

Reference No.: WTS19S09067414W V1 Page 55 of 58

18.2 Model ER100210 - Internal Photos

Reference No.: WTS19S09067414W V1 Page 58 of 58

====End of Report=====