Square in L

YasudaYasutomo

2019年12月19日

L で \square_{κ} が成り立つことを示す. \lozenge_{κ^+} と合わせて κ^+ -Suslin tree が存在することを導く. 最後に 0^{\sharp} と L の関係などを簡単にみる.

1 Square in L

定理の証明では fine structure を使うが、今回はあまり深くは立ち入らない. この記事では主定理の証明以外は fine structure を使わない.

定義 1.1. 集合 A に対して, A の rudimentary function による閉包を $\operatorname{rud}(A)$ と表す.

定義 1.2 (J-階層). J-階層を次のように定義する.

- $J_0 = \emptyset$
- $J_{\alpha+\omega} = \operatorname{rud}(J_{\alpha} \cup \{J_{\alpha}\})$
- 極限順序数 λ に対して, $J_{\omega\lambda} = \bigcup_{\alpha < \lambda} J_{\omega\alpha}$
- $L = \bigcup_{\alpha \in ON} J_{\omega \alpha}$

定理 1.3 (Gödel). $L \models ZFC + GCH$

定義 1.4. J-structure とは amenable structure $\langle J_{\alpha}, B \rangle$ と定義する. ただし α は極限順序数.

J-structure M に対して、整列順序 $<_M$ や Σ_1 -充足関係、 Σ_1 -Skolem 関数 h_M が一様に Σ_1 で定義可能である.

定義 1.5. κ を非可算正則基数とする. $S \subseteq \kappa$ とする.

- $\Diamond_{\kappa}(S)$ -列 $\langle A_{\xi} | \xi \in S \rangle$ とは次を満たす列のことである.
 - 1. 全ての $\xi \in S$ に対して, $A_{\xi} \subseteq \xi$ が成立する.
 - 2. 全ての $A \subseteq \kappa$ について, $\{\xi \in S \mid A \cap \xi = A_{\xi}\}$ は stationary in κ .
- $\Diamond_{\kappa}(S)$ とは $\Diamond_{\kappa}(S)$ -列が存在するという主張である.
- \Diamond_{κ} とは $\Diamond_{\kappa}(\kappa)$ のことである.

例えば \lozenge_{ω_1} は CH を導くことはとても簡単に示せる.

S が stationary のとき $\Diamond_{\kappa}(S)$ が L において成立する.

定理 1.6 (Jensen). V=L を仮定する. 任意の非可算正則基数 κ とその stationary $S\subseteq \kappa$ について $\Diamond_{\kappa}(S)$

が成立する.

アイデアとしては L の整列順序を使って最小の反例を取り続ける, それが \Diamond_{κ} -列となっていることは Condensation から従う.

証明. $S \subseteq \kappa$ を stationary とする.

 $\langle (B_\xi,C_\xi) \mid \xi \in S \rangle$ を次のように帰納的に構成する. $\xi \in S$ において (B_ξ,C_ξ) を次を満たすもので $<_{L_\kappa}$ において最小を取る.

- 1. $(B,C) \in J_{\kappa}$
- 2. $B \subseteq \xi$
- 3. C \sharp club in ξ
- 4. $\{\bar{\xi} \in S \cap \xi \mid B_{\bar{\xi}} = b \cap \bar{\xi}\} \cap C = \emptyset$

存在しないときは (\emptyset,\emptyset) とする.

 $\langle B_\xi \mid \xi \in S \rangle$ が \Diamond_κ -列となっていることを示す.そうではないとして,次を満たす $<_L$ -least な反例 (B,C) を取る.

- $B \subseteq \kappa$
- C lt club in κ
- $\{\xi \in S \mid B_{\xi} = B \cap \xi\} \cap C = \emptyset$

 $(B,C)\in J_{\alpha}$ とする. 初等埋め込み $\pi\colon J_{\bar{\alpha}}\to J_{\alpha}$ を次を満たすように取る.

- $\lambda = (\pi^{-1})(\kappa)$ $\exists \pi \mathcal{O}$ crtical point.
- $\{S, B, C\} \subseteq \operatorname{ran}(\pi)$
- $|J_{\bar{\alpha}}| < \kappa$
- $\xi \in S \cap C$

また $\bar{S}=\pi^{-1}(S)=S\cap\xi,\,\bar{B}=\pi^{-1}(B)=B\cap\xi,\,\bar{C}=\pi^{-1}(C)=C\cap\xi$ とする. 初等性より, $(B\cap\xi,C\cap\xi)$ は次を満たす $<_{J_{\bar{\alpha}}}$ -least なものとなっている.

- $B \cap \xi \subseteq \xi$
- $C \cap \xi$ \$\psi\$ club in \$\xi\$
- $\bullet \ \{\bar{\xi} \in S \cap \xi \mid B_{\bar{\xi}} = B \cap \bar{\xi}\} \cap C \cap \xi = \emptyset$

構成より $(B_{\xi}, C_{\xi}) = (B \cap \xi, C \cap \xi)$ となり矛盾.

定義 1.7. κ を無限基数とする. $S \subset \kappa^+$ とする.

• $\square_{\kappa}(S)$ -列 $\langle C_{\nu} \mid \nu < \kappa^{+} \rangle$ とは $\kappa < \nu < \kappa^{+}$ なる $\nu \in \text{Lim}$ に対して次が成立する列のことである.

- 1. C_{ν} is club in ν of otp $\leq \kappa$.
- 2. $\forall \mu \in \text{Lim}(C_{\nu})(C_{\nu} \cap \mu = C_{\mu} \wedge \mu \notin S)$
- $\square_{\kappa}(S)$ とは $\square_{\kappa}(S)$ -列が存在するという主張である.
- \square_{κ} とは $\square_{\kappa}(\emptyset)$ のことである.

定理 1.8 (Jensen). V=L を仮定する. 任意の無限基数 $\kappa \geq \aleph_1$ に対して \square_{κ} が成立する.

証明. ある club $C \subseteq \kappa^+$ と $\langle C_{\nu} \mid \nu \in C \land \mathrm{cf}(\nu) > \omega \rangle$ が存在して次を満たすことを示す.

- $\kappa < \nu < \kappa^+$ かつ $\nu \in \text{Lim}$ ならば $C_{\nu} \subseteq \nu$ は club かつ $otp(C_{\nu}) \leq \kappa$ が成立する.
- $\forall \bar{\nu} \in \text{Lim}(C_{\nu})(C_{\bar{\nu}} = C_{\nu} \cap \bar{\nu})$

 $C=\{\kappa<\nu<\kappa^+\mid J_{\nu}\prec_{\Sigma_{\omega}}J_{\kappa^+}\}$ とすると κ^+ の club となる. 定義より $\nu\in C$ に対して, κ は J_{ν} の最大の基数.

 $u\in C$ に対して, $\alpha(\nu)$ を ν が J_{α} において基数となるような最大の α とする, 存在しないとき ν と定義する. このとき acceptability から少し計算すると ultimate projectum は $\rho_{\omega}(J_{\alpha(\nu)})=\kappa$ となることがわかる. また $\nu\in C$ に対して, $n(\nu)$ を $\kappa=\rho_{n+1}(J_{\alpha(\nu)})<\nu\leq\rho_n(J_{\alpha(\nu)})$ となる $n\in\omega$ と定義する.

- $\bullet \ \bar{\nu} \in C \cap \nu$
- $n(\nu) = n(\bar{\nu})$
- ある weakly $r\Sigma_{n(\nu)+1}$ -elementary embedding $\sigma_{\bar{\nu},\nu}\colon J_{\alpha(\bar{\nu})}\to J_{\alpha(\nu)}$ が存在して, $\sigma_{\bar{\nu},\nu}\upharpoonright\bar{\nu}=\mathrm{id}$ かつ $\sigma_{\bar{\nu},\nu}(p_{n(\bar{\nu})+1}(J_{\alpha(\bar{\nu})}))=p_{n(\nu)+1}(J_{\alpha(\nu)})$ を満たす.
- $\bar{\nu} \in J_{\alpha(\bar{\nu})}$ ならば, $\nu \in J_{\alpha(\nu)}$ かつ $\sigma_{\bar{\nu},\nu}(\bar{\nu}) = \nu$ が成立する.

 $\nu \in C$ に対して, D_{ν} を次の条件を満たす $\bar{\nu}$ 全体の集合とする.

条件を満たすような weakly $r\Sigma_{n(\nu)+1}$ -elementary embedding は一意であることは容易にわかる.

主張 1. $\nu \in C$ に対して次が成立する.

- 1. D_{ν} は閉.
- 2. $cf(\nu) > \omega$ のとき, D_{ν} は非有界.
- 3. $\bar{\nu} \in D_{\nu}$ に対して, $D_{\nu} \cap \bar{\nu} = D_{\bar{\nu}}$ が成立する.

各 $\nu \in C$ に対して, C_{ν} を次のように定義する. $\alpha = \alpha(\nu)$, $n = n(\nu)$ とする.

まず $\langle \eta_i \mid i \leq \theta(\nu) \rangle$, $\langle \xi_i \mid i < \theta(\nu) \rangle$ を次のように帰納的に定義する.

- 2. $\eta_i < \nu$ まで構成したとする. $\xi_i \ \$ をある $j \in \omega, \ x \in [\xi]^{<\omega} \ \$ が存在して, $h_{J_\alpha}^{n+1,p_{n+1}(J_\alpha)}(j,x) \notin \operatorname{ran}(\sigma_{\eta_i,\nu})$ となるような最小の ξ とする.

- 3. 次に η_{i+1} を全ての $j \in \omega$, $x \in [\xi_i]^{<\omega}$ に対して, $h_{J_\alpha}^{n+1,p_{n+1}(J_\alpha)}(j,x) \in \operatorname{ran}(\sigma_{\bar{\eta},\nu})$ となる最小の $\bar{\eta} \in D_\nu$ で最小のものとして取る.
- 4. λ が極限順序数のとき, $\eta_{\lambda} = \sup\{\eta_i \mid i < \lambda\}$ と定義する.
- 5. θ_{ν} を $\eta_i = \nu$ となる最小の i と定義する.
- 6. $C_{\nu} = \{\eta_i \mid i < \theta(\nu)\}$ と定義する.

主張 2. $\nu \in C$ に対して、次が成立する.

- 1. $otp(C_{\nu}) = \theta(\nu) \leq \kappa$
- $2. C_{\nu}$ は閉.
- 3. D_{ν} が非有界ならば, C_{ν} も非有界.

 $4. \ \bar{\nu} \in C_{\nu}$ ならば, $C_{\nu} \cap \bar{\nu} = C_{\bar{\nu}}$ が成立する.

 $\because 1, 2, 3$ は $\langle \xi_i \mid i < \theta(\nu) \rangle$ が単調増加であることから従う. 4 は構成に従って帰納法で示す.

今 $C \subseteq \kappa^+$ と $\langle C_{\nu} | \nu \in C \rangle$ を次を満たすように構成した.

- 1. $C \bowtie \kappa^+ \mathcal{O} \text{ club.}$
- 2. $cf(\nu) > \omega, \nu \in Lim, \kappa < \nu < \kappa^+$ ならば, C_{ν} は ν の club かつ $otp(C_{\nu}) \leq \kappa$ が成立する.
- $3. \ \overline{\nu} \in \mathcal{C}_{\nu}$ ならば, $C_{\overline{\nu}} = C_{\nu} \cap \nu$ が成立する.

これらから \square_{κ} -列を構成する.

 $f: \kappa^+ \to C$ を数え上げとする. $\nu < \kappa^+$ に対して, $B_{\nu} = (f^{-1})$ " $C_{f(\nu)}$ と定義する. さらに $\mathrm{cf}(\nu) = \omega$ かつ C_{ν} が有界のとき, B_{ν} を ν の順序型 ω で共終なものに取り換える. このような操作を行っても, Coherent なことは破壊されないことに注意する.

このとき
$$\langle B_{\nu} \mid \nu < \kappa^{+} \rangle$$
 は \square_{κ} -列となる.

 \square_{κ} が成立するとき, Fodor lemma を使うことである stationary $S \subseteq \kappa^+$ が存在して, $\square_{\kappa}(S)$ が成立することがわかる. これらを使うと次を示すことができる.

定理 1.9 (Jensen). κ を無限基数とする. ある stationary $S \subseteq \kappa^+$ が存在して, $\Diamond_{\kappa^+}(S)$ と $\Box_{\kappa}(S)$ が成立すると仮定する. このとき κ^+ -Suslin tree が存在する.

系 1.10. V = L を仮定する. このとき任意の無限基数 κ について κ^+ -Suslin tree が存在する.

 0^{\sharp} が存在しないとき, V と L は近くなっていることを Jensen が示している.

定理 1.11 (Jensen's covering lemma). 0^{\sharp} が存在しないとする. X を順序数の集合とする.

このときある $Y \in L$ が存在して, $X \subseteq Y$ かつ $|Y| \le |X| + \aleph_1$ を満たす.

0[‡] が存在しないとき L は successor of singular を正しく計算できる.

系 1.12 (Weak covering). 0^{\sharp} が存在しないと仮定する. $\kappa \geq \aleph_2$ を L の基数とする. このとき V において $\operatorname{cf}(\kappa^+) \geq |\kappa|$ が成立する.

特に特異基数 κ について, $\kappa^{+L} = \kappa^+$ が成立する.

Weak covering から特異基数 κ において \square_{κ} が破れていることは巨大基数的性質であることがわかる.

系 1.13. 特異基数 κ について \square_{κ} が成立しないと仮定する. このとき 0^{\sharp} が存在する.

2 まとめ?

以上のように 0^{\sharp} が存在しないとき, L とV は近いことがわかった.

しかし L に巨大基数は全然ない (とても困る) のでもっと巨大基数を多く含むような L-like なモデルはないのか?その構造はどうなっているのか?

この問に答えるのが内部モデル理論である. 現在はより多くの巨大基数 (measurable, strong, Woodin な

ど)の内部モデルが構成されていて、その解析がなされている。また記述集合論、特に決定性との深い繋がりも 指摘されている。

実数の集合と巨大基数と集合論のモデルの関係, 筆者はそれに興味を持っていて集合論をやっています. 閲覧ありがとうございました.

参考文献

- $[1] \ \ Schindler, \ Ralf. \ (2014). \ Set \ theory. \ Exploring \ independence \ and \ truth. \ 10.1007/978-3-319-06725-4.$
- [2] Schindler R., Zeman M. (2010). Fine Structure. In: Foreman M., Kanamori A. (eds) Handbook of Set Theory. Springer, Dordrecht