Let G be a group acting on A. FIx $a \in A$. Show that $G_a = \{g \in G \mid ga = a\}$ is a subgroup of g.

To show that $G_a \leq G$, we need to show that G_a is nonempty and $\forall x,y \in G_a, xy^{-1} \in G_a$.

- nonempty: $e \in G_a$, trivially, since ea = a.
- Closure: Let $g,h\in G_a.$ Need $gh^{-1}\in G_a, i.e.gh^{-1}a=a.$

$$gh^{-1}a = g(h^{-1}a) = ga = a,$$
 (1)

where, we used the fact that $h^{-1} \in G_a$ since

$$\begin{split} h \in G \Rightarrow h^{-1} \in G \text{ and } ha &= a \\ \Rightarrow h^{-1}ha &= h^{-1}a \Rightarrow ea = h^{-1}a \Rightarrow a = h^{-1}a. \end{split} \tag{2}$$

Thus, $G_a \leq G$.

H is a group acting on A. Show that

$$a \sim b \text{ iff } \exists h \in s.t. \ a = hb$$
 (3)

is an equivalence relation on A.

- Reflexive : true, since $e \in H, ea = a \Rightarrow a \sim a$.
- Symmetric: Suppose $a \sim b$. Then, $\exists h \in H \ s.t. \ ha = b$. Since $h \in H \Rightarrow h^{-1} \in H$, we have $h^{-1}b = h^{-1}ha = ea = a \Rightarrow b \sim a$.
- Transitive: Suppose $a \sim b, b \sim c$, then

$$\begin{split} \exists h_1 \in H, a = h_1 b; \exists h_2 \in H, b = h_2 c \\ \Rightarrow a = h_1 h_2 c \\ \Rightarrow (h_1 h_2) \in H, a = (h_1 h_2) c \Rightarrow a \sim c. \end{split} \tag{4}$$

Thus \sim is an equivalence relation on A.

Let G be any group. Show that $(g_1,g_2)a:=g_1ag_1^{-1}$ gives an action of $G\times G$ on G. Show that the Kernel of this action is $\{(g,g)|\ g\in\mathbb{Z}(G)\}$

1

 $\text{consider } e_1, e_2 \in G$

$$(e_1, e_2)a = e_1 a e_2^{-1} = eae = a. (5)$$

• consider $(h_1,h_2),(g_1,g_2)\in G\times G.$

$$\begin{split} (h_1,h_2)((g_1,g_2)a) &= (h_1,h_2) \big(g_1 a g_2^{-1}\big) \\ &= h_1 g_1 a g_2^{-1} h_2^{-1}. \\ ((h_1g_1),(g_2h_2))a &= (h_1g_1) a (g_2h_2)^{-1} \\ &= h_1 g_1 a h_2^{-1} g_2^{-1} = (h_1,h_2) ((g_1,g_2)a). \end{split} \tag{6}$$

so this is an action of $G \times G$ on G.

2

Consider the kernel (g_1,g_2) s.t. $(g_1,g_2)a=a, \forall a\in G.$ Then

$$g_{1}ag_{2}^{-1} = a \Rightarrow g_{1} = ag_{2}a^{-1}, \forall a \in G \tag{7}$$

The only elements of G that are conjugate to each othre for every $a \in G$ must commute with every element, so $g_2 \in \mathbb{Z}(G)$ and $g_1 = g_2$. Thus the kernel is $\{(g,g) \mid g \in \mathbb{Z}(G)\}$.

Let G be a group and let G act on itself by left conjugation, s.t. each $g \in G$ maps $G \to G$ by $x \mapsto gxg^{-1}$. For fixed $g \in G$, prove:

- 1. Conjugation by g is automorphisim of G.
- 2. x, gxg^{-1} have same order $\forall x \in G$.
- 3. $\forall A \subseteq G, |A| = |gAg^{-1}|.$

1

Define $c_q: G \to G, c_{q(x)} = gxg^{-1}$. Now, for any $x, g \in G$, consider

$$\begin{split} c_{g(xy)} &= gxyg^{-1};\\ c_{g(x)}c_{g(y)} &= \big(gxg^{-1}\big)\big(gyg^{-1}\big) = gx\big(g^{-1}g\big)yg^{-1} = gxyg^{-1}\\ c_{g(xy)} &= c_{g(x)}c_{g(y)}. \end{split} \tag{8}$$

So c_g is a homomorphism. Further, recall that a map f is bijective if $\exists g: B \to A \ s.t. \ f \circ g = e_B, g \circ f = e_A$.

We define an "inverse conjugation" as $c_q^{-1}:G\to G, c_{q(x)}=g^{-1}xg.$ Then,

$$\begin{split} c_g \circ c_g^{-1}(x) &= c_{g(g^{-1}xg)} = g(g^{-1}xg)g^{-1} = exe = x; \\ c_q^{-1} \circ c_q(x) &= c_q^{-1}(gxg^{-1}) = g^{-1}(gxg^{-1})g = exe = x. \end{split} \tag{9}$$

Therefore $c_g \circ c_g^{-1} = e = c_g^{-1} \circ c_g$. Thus, c_g is bijective, and hence an automorphism of G.

2

Since c_g is an automorphism, it is isomorphic, so using proposition from lecture that isomorphic elements have the same order, we have that x and gxg^{-1} have the same order.

3

Since $c_g:G\to G$ is bijective, it is injective, and so a subset $A\subset G$ is injective to $c_{g(A)}=gAg^{-1}$. Further, we can show that c_g is surjective from A to gAg^{-1} . Consider any $y\in gAg^{-1}$. Then, $\exists a\in A\ s.t.\ y=gag^{-1}$. But then, $c_{g(a)}=gag^{-1}=y$. Thus, c_g is surjective from A to gAg^{-1} .

Since c_q is both injective and surjective from A to gAg^{-1} , c_q is bijective from A to gAg^{-1} , and so $|A|=|gAg^{-1}|$.

Give an explicit example where G is a group, $H \subset G$, $|H| = \infty$, H is closed under the group operation, but H is not a subgroup of G.

We can construct such an example by failing the subgroup definition that $\forall x \in H, x^{-1} \in H$.

Consider $G=(\mathbb{R},\times), H=\mathbb{Z}$. It is easily verified that $H\subset G, |H|=\infty,$ and H is closed under multiplication. However, consider $2\in H$. Its inverse would be $\frac{1}{2}$, but it is not in H. Thus, H is not a subgroup of G.

Prove that

- 1. If H and K are subgroups of G, then $H \cap K$ is a subgroup of G.
- 2. The intersection of an arbitrary nonempty collection of subgroups of G is a subgroup of G.

1

Consider arbitrary $x,y\in H\cap K$. Then $x,y^{-1}\in H, x,y^{-1}\in K$ and $xy^{-1}\in H, xy^{-1}\in K$ by subgroup definiton. Then $xy^{-1}\in H\cap K$. Further, $e\in H, e\in K\Rightarrow e\in H\cap K$, nonempty. Thus, $H\cap K\leq G$.

2

Denote $H_i \leq G(i=I)$ for some index set I, and denote $S = \cap_i \; H_i.$

First, it's clear that $e \in S$ as $e \in H_i \forall i$, and so S is nonempty.

Then, consider $x,y\in S$, then $x,y\in H_i \forall i\in I$ by definition of intersection. By subgroup definition, $xy^{-1}\in H_i \forall i\in I$, and so $xy^{-1}\in S$. Thus, $S\leq G$.

Prove the following:

- 1. Assume $H \leq G, K \leq G$, then $H \cup K$ not closed under multiplication unless $H \leq K$ or $K \leq H$.
- 2. 2. Let $H_n \leq G \ (n=1,2,\ldots) \ s.t. \ H_n \leq H_{n+1}.$ Prove that $\cup_{n=1}^{\infty} H_n \leq G.$

1

We need to prove : $H \cup K$ closed under multilpication $\Rightarrow H \leq K$ or $K \leq H$. Suppose not: $H \cup K$ but $H \nleq K$ or $K \nleq H$.

Then choose $h \in H \setminus K$, $k \in K \setminus H$. Since $H \cup K$ closed under multiplication, $hk \in H \cup K$.

If $hk \in H$, then since $h \in H$, by subgroup definition, $h^{-1} \in H$ and so $k = h^{-1}(hk) \in H$, a contradiction. If $hk \in K$, then since $k \in K$, by subgroup definition, $k^{-1} \in K$ and so $h = (hk)k^{-1} \in K$, a contradiction.

So, $H \cup K$ not closed under multiplication unless $H \leq K$ or $K \leq H$.

2

Denote $H=\cup_{n=1}^{\infty}H_n$. Choose $x,y\in H$. Then $x\in H_m,y\in H_n$ for some $m,n\in\mathbb{N}$. Take $k=\max(m,n)$, then $x,y\in H_k$ since $H_m\leq H_k,H_n\leq H_k$. By subgroup definition, $xy^{-1}\in H_k$, and so $xy^{-1}\in H$. Further, $e\in H_1\leq H$, so H is nonempty. Thus, $H\leq G$.

Let $H \leq G$ for G a group. Prove:

- 1. $H \subseteq N_G(H)$
- 2. Find an example where G is a group, $A \subseteq G$, but $A \not\subset N_G(A)$
- 3. $H \subseteq C_G(H)$ iff H is abelian.

1

Recall $N_G(H)=\left\{g\in G\mid gHg^{-1}=H\right\}$. To show $H\subseteq N_G(H)=\left\{g\in G\mid gHg^{-1}=H\right\}$ is to show $\forall h\in H, hHh^{-1}=H$.

Fix $h \in H$, $h^{-1} \in H$. Then $\forall x \in H$, $hxh^{-1} \in H \Rightarrow hHh^{-1} \subseteq H$.

Similarly, fix $h^{-1} \in H$. Then $\forall y \in H, h^{-1}yh \in H \Rightarrow y \in hHh^{-1}$. But since $y \in H, H \subseteq hHh^{-1}$.

Collectively, $hHh^{-1}=H$, and so $h\in N_G(H)$. Since $h\in H$ was arbitrary, $H\subseteq N_G(H)$.

2.

Consider $G = S_3 = \{(123), (12), (13), (132), e\}$. Consider $A = \{(12), (13)\} \subset G$.

Further, consider $(12) \in G$. Notice that it is in A, but not in $N_G(A)$, since:

$$(12)(12)(12) = (12) \in A.$$

$$(12)(13)(12) = (23) \notin A.$$

$$(10)$$

So $(12) \not \in N_G(A)$ while $(12) \in A$, so $A \not \subset N_G(A).$

3.

- Assume $H \subseteq C_G(H) \Leftrightarrow h \in C_G(H) \ \forall h \in H$, which implies for all $a \in A, ha = ah$ by the definition of centralizer. Thus, H is abelian.
- Assume H is abelian. Then, $\forall h \in H, \forall a \in H, ha = ah \Rightarrow hah^{-1} = ahh^{-1} = a \Rightarrow hHh^{-1} = H \Rightarrow h \in C_G(H)$. Since $h \in H$ was arbitrary, $H \subseteq C_G(H)$. Thus completes the proof.

$$G=Q_8, A=\{i,-i\}, \text{find } Z(G), C_G(A), N_G(A).$$

$$G = \{\pm 1, \pm i, \pm j, \pm k\}.$$

- 1. $Z(G)=Z(Q_8)=\{g\in Q_8\mid gx=xg, \forall x\in Q_8\}=\{1,-1\},$ since i,j,k do not commute with each other.
- $2. \ \ C_G(A) = \{g \in Q_8 \mid ga = ag, \forall a \in A\} = \{1, -1, i, -i\} = \langle i \rangle, \text{ as } Z(G) \subseteq C_G(A), \text{ and } j, k \text{ do not commute with } i.$
- 3. $N_G(A) = \{g \in G \mid gAg^{-1} = A\}$. Since $C_G(A) \subseteq N_G(A)$, examine only g = j, k.
 - for g = j, notice that $jAj^{-1} = \{-i, i\} = A$;
 - for g=k, notice that $kAk^{-1}=\{i,-i\}=A$.
 - for cases g=-j,-k, the same results hold in the exact same way.
- Thus, $N_G(A) = \{1, -1, i, -i, j, -j, k, -k\} = G_8.$