CMSC 411 - Homework #2 - 2/10/2014

Jeremy Neal

[12 points] Acronyms

Arithmetic Logic Unit	
Complex Instruction Set Computer	
Cycles Per Instruction	
Central Processing Unit	
Floating Point	
Million Instructions per Second	
Million floating point operations per second	
Random Access Memory	
Reduced Instruction Set Computer	
Single Instruction, Multiple Data	
Metal Oxide Semiconductor	
Field Effect Transistor	

[50 points] Definitions

Server

A computer used for running larger applications for multiple users, often simultaneously, and typically accessed only via a network.

Embedded Computer

A computer inside another device used for running one predetermined application or collection of software.

Supercomputers

A class of computer with the highest performance and cost; they are configured as servers and typically cost tens of hundreds of millions of dollars.

VHDL

Acronym for VHSIC (Very High Speed Integrated Circuit) Hardware Description Language. A high level language based off of Ada, that provides an abstract description of the hardware to simulate and debug the design.

Compiler

A program that takes a high level language as input and reduces it to some form that a computer or VM is able to interpret.

Assembler

A program that takes assembly language, and reduces it to binary or machine code.

Assembly Code

A symbolic language that can be translated into machine language. Easier to read, write

Due 2/11/2014

CMSC 411 - Homework #2 - 2/10/2014

and debug than binary.

Machine Language

A binary representation understood by computers.

Application Software

Software that end-users use to do work, not including the operating system, or compiler.

Examples include word processors and text editors.

System Software

Software that provides services that are commonly useful, including operating systems,

compilers, loaders and assemblers.

[20 points] CPI/MIPS

Consider two different implementations, M1 and M2, of the same instruction set. There are three classes of instructions (A, B, and C) in the instruction set. M1 has a clock rate of 950 MHz and M2 has a clock rate of 1200 MHz. The average number of cycles for each instruction class and their frequencies (for a typical program) are as follows:

ſ	Instructio	Machine M1 -	Machine M2 -	Frequency
	n Class	Cycles/Instruction	Cycles/Instruction	
		Class	Class	
	Α	1	2	50%
	В	2	1	35%
	С	5	4	15%

(a) Calculate the average CPI for each machine, M1, and M2.

M1: 1*0.5 + 2*0.35 + 5*0.15 = 1.95 CPI M2: 2*0.5 + 1*0.35 + 4*0.15 = 1.95 CPI

(b) Calculate the average MIPS ratings for each machine, M1 and M2.

M1: 950 MHz / 1.95 * 10⁶ ~ 487 MIPS M2: 1200 MHz / 1.95 * 10⁶ ~ 615 MIPS

CMSC 411 - Homework #2 - 2/10/2014

[18 points] Pipelines

The design team for a simple, single-issue processor is choosing between two pipelined implementations. Here are some design parameters for the two possibilities:

	Α	В
Clock Rate	700MHz	500 MHz
CPI for ALU instructions	1	1
CPI for Control instructions	3.1	1.5
CPI for Memory instructions	2.5	1.2

For a program with 20% ALU instructions, 15% control instructions and 65% memory instructions, which design will be faster? Give a quantitative CPI average for each case.

A: avg CPI =
$$1 * 0.2 + 3.1 * 0.15 + 2.5 * 0.65 = 2.29$$

MIPS = $700 \text{ MHz} / 2.29 * 10^6 = 700 / 2.29 \sim 305$

B: avg CPI =
$$1 * 0.2 + 1.5 * 0.15 + 1.2 * 0.65 = 1.205$$

MIPS = $500 \text{ MHz} / 1.205 * 10^6 = 500 / 1.205 \sim 415$

415 / 305 \sim 1.36 , so B is roughly 1.36 times faster than A.