Competitive Edge – IIT Mathematics

First Edition

By

Kairav Kalia and Manish Kalia

March 6, 2018

Algebra

Progression and Series

MCQ-Single Correct

32. Fifth term of a G.P. is 2, then the product of its 9 terms is
(1) 256
(2) 512
(3) 1024
(4) none of these
[2002]
33. If a,b,c are distinct positive real numbers and $a^2 + b^2 + c^2 = 1$, then ab + bc + ca is
(1) less than 1
(2) equal to 1
(3) greater than 1
(4) any real number
[2002]

Assertion-Reason Type

- (1) Statement-I is True; Statement-II is true; Statement-II is **not** a correct explaination of Statement-I.
- (2) Statement-I is True; Statement-II is False.
- (3) Statement-I is False; Statement-II is true
- (4) Statement-I is True; Statement-II is true; Statement-II is a **correct** explaination of Statement-I.
- 1. **Statement-I**: The sum of the series 1+(1+2+4)+(4+6+9)+(9+12+16)+.....+(361+380+400) is 8000.

Statement-II:
$$\sum_{k=1}^{n} (k^3 - (k-1)^3) = n^3 \text{ for any natural number n.}$$
 [2012]

Quadratic Equations

MCQ-Single Correct

1.

		·	
	(1) 12	(2) 9	
	(3) 10	(4) 11 [2	2017]
2.	The sum of all real values of x satisfying the ed	$\text{quation } \left(x^2 - 5x + 5\right)^{x^2 + 4x - 60} = 1$	
	(1) -4	(2) 6	
	(3) 5	(4) 3	2016]
3.	Let α and β be the roots of equation $x^2 - 6x - 6x$	$-2=0$. If $a_n=\alpha^n-\beta^n$, for $n\ge 1$, then the	value
	of $\frac{a_{10}-2a_8}{2a_9}$ is equal to :		
	(1) -6	(2) 3	
	(3) -3	(4) 6	2015]
4.	Let α and β be the roots of the equation px^2	$+qx+r=0$, p \neq 0. If p, q, r are in A.P. and	
	$\frac{1}{\alpha} + \frac{1}{\beta} = 4$, then the value of $ \alpha - \beta $ is		
	(1) $\frac{\sqrt{61}}{9}$	(2) $\frac{2\sqrt{17}}{9}$ (4) $\frac{2\sqrt{13}}{9}$	
	(3) $\frac{\sqrt{34}}{9}$	(4) $\frac{2\sqrt{13}}{9}$	2014]
5.	If the equations $x^2 + 2x + 3 = 0$ and $ax^2 + bx + c$ c is	= 0 , a , b, c ϵ R, have a common root , then	a:b:
	(1) 3:2:1	(2) 1:3:2	
	(3) 3:1:2	(4) 1:2:3	2013]
6.	The equation $e^{\sin x} - e^{-\sin x} - 4 = 0$ has		
	(1) infinite number of real roots	(2) exactly one real root	

If, for a positive integer n, the quadratic equation, $x(x + 1) + (x + 1)(x + 2) + \dots + (x + \overline{n-1})(x + n)$

= 10n has two consequitive integral solutions, then n is equal to :

7.	Let for $a \neq a_1 \neq 0$, $f(x) = ax^2 + bx + c$, $g(x) = 0$ only for $x = -1$ and $p(-2) = 2$, then the x		g(x). If,
	(1) 6	(2) 18	
	(3) 3	(4) 9	[2011]
8.	Sachin and Rahul attempted to solve a quadratic equation. Sachin made a mistake in writing down the constant term and ended up in roots (4,3). Rahul made a mistake in writing down coefficient of x to get roots (3,2). The correct roots of equation are		
	(1) -6,-1	(2) -4,-3	
	(3) 6,1	(4) 4,3	[2011]
9.	If α and β are the roots of the equation x^2 – .	$x+1=0$, then $\alpha^{2009}+\beta^{2009}=$	
	(1) -1	(2) 1	
	(3) 2	(4) -2	[2010]
10. If the roots of the equation $bx^2 + cx + a = 0$ be imaginary, then for all real expression $3b^2x^2 + 6bcx + 2c^2$ is			, the
	(1) greater than 4ab	(2) less than 4ab	
	(3) greater than -4ab	(4) less than -4ab	[2009]
11. The quadratic equations $x^2 - 6x + a = 0$ and $x^2 - cx + 6 = 0$ have one roots of the first and second equations are integers in the ratio 4:3			
	(1) 1	(2) 4	
	(3) 3	(4) 2	[2008]
12.	If the roots of the quadratic equation $x^2 + px - y$ value of $2 + q - p$ is	+ q = 0 are tan30° and tan15°, respectivel	y then the
	(1) 2	(2) 3	
	(3) 0	(4) 1	[2006]
13.	All the values of m for which both roots of the than -2 but less than 4, lie in the interval	e equations $x^2 - 2mx + m^2 - 1 = 0$ are go	reater

(4) exactly four real roots.

[2012]

(3) no real roots

	(3) -1 < m < 3	(4) 1 < m < 4	[2006]
14.	If x is real, the maximum value of $\frac{3x^2 + 9x + 1}{3x^2 + 9x + 7}$	$\frac{7}{7}$ is	
	(1) 1/4	(2) 41	
	(3) 1	(4) 17/7	[2006]
15.	The value of $\boldsymbol{\alpha}$ for which the sum of the square the least value is	of roots of the $x^2 - (a-2)x - a - 1 = 0$	assume
	(1) 1	(2) 0	
	(3) 3	(4) 2	[2005]
16.	If roots of the equation $x^2 - bx + c = 0$ be the co	nsecutive integers, then b ² -4c equals	
	(1) -2	(2) 3	
	(3) 2	(4) 1	[2005]
17.	If both the roots of the quadratic equation x^2 – the interval	$2kx + k^2 + k - 5 = 0$ are less than 5, then I	clies in
	(1) (5,6]	(2) (6,∞)	
	(3) (-∞,4)	(4) [4,5]	[2005]
18.	If ($1 - p$) is a root of quadratic equation $x^2 + px$	(+(1-p)=0, then its roots are	
	(1) 0,1	(2) -1,2	
	(3) 0,-1	(4) -1,1	[2004]
19.	If one root of the equation $x2 + px + 12 = 0$ is 4, roots, then the value of 'q' is	while the equation $x^2 + px + q = 0$ has e	qual
	(1) $\frac{49}{4}$	(2) 4	
	(3) 3	(4) 12	[2004]
20.	If the sum of the roots of the quadratic equation		he
	squares of their reciprocals, then $\frac{a}{c}$, $\frac{b}{a}$ and $\frac{c}{b}$	are in	

(2) m > 3

(1) -2 < m < 0

	(3) harmonic progression	(4) arithmetic-geometric-progression	[2003]
21.	The number of real solutions of the equation x ²	-3 x + 2 = 0 is	
	(1) 2	(2) 4	
	(3) 1	(4) 3	[2003]
22.	The value of 'a' for which one root of the quadr $(a^2-5a+3)x^2+(3a-1)x+2=0$ is twice as		
	(1) 2/3	(2) -2/3	
	(3) 1/3	(4) -1/3	[2003]
23.	If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$, then the	equation whose roots are $\dfrac{lpha}{eta}$ and $\dfrac{eta}{lpha}$ is	
	$(1) 3x^2 - 25x + 3 = 0$	(2) $x^2 + 5x - 3 = 0$	
	(3) $x^2 - 5x + 3 = 0$	$(4) 3x^2 - 19x + 3 = 0$	[2002]
24.	Difference between the corresponding roots of b, then	$x^{2} + ax + b = 0$ and $x^{2} + bx + a = 0$ is same	and a ≠
	(1) $a + b + 4 = 0$	(2) a + b - 4 = 0	
	(3) $a - b - 4 = 0$	(4) $a - b + 4 = 0$	[2002]
25.	If p and q are the roots of the equation $x^2 + px + px$	+ q = 0, then	
	(1) p = 1, q = -2	(2) p = 0, q = 1	
	(3) $p = -2$, $q = 0$	(4) p = -2, q = 1	[2002]
26.	Product of real roots of the equation $t^2x^2 + x $	+ 9 = 0	
	(1) is always positive	(2) is always negative	
	(3) does not exist	(4) none of these	[2002]

(2) geometric progression

(1) arithmetic progression

MCQ-Single Correct

1.	A man X has 7 friends, 4 of them are ladies and 3 are men. His wife Y also has 7 friends, 3 of them are ladies and 4 are men. Assume X and Y have no common friends. Then the total number of ways in which X and Y together can throw a party inviting 3 ladies and 3 men, so that 3 friends of each of X and Y are in this party, is:				
	(1) 485	(2) 468			
	(3) 469	(4) 484	[2017]		
2.	If all the words (with or without mean word SMALL and arranged as in a dicti		_		
	(1) 59 th	(2) 52 nd			
	(3) 58 th	(4) 46 th	[2016]		
3.	•	The number of points, having both co-ordinates as integers, that lie in the interior of the triangle with vertices $(0,0)$, $(0,41)$ and $(41,0)$, is:			
	(1) 861	(2) 820			
	(3) 780	(4) 901	[2015]		
4.	The number of integers greater than 6,000 that can be formed, using the digits 3, 5, 6, 7 and 8, without repetition, is :				
	(1) 192	(2) 120			
	(3) 72	(4) 216	[2015]		
5.	Let T_n be the number of all possible triangles formed by joining vertices of an n-sided regular polygon. If $T_{n+1} - T_n = 10$, then the value of n is				
	(1) 5	(2) 10			
	(3) 8	(4) 7	[2013]		
6.	Assuming the balls to be identical except for difference in colours, the number of ways in which one or more balls can be selected from 10 white, 9 green and 7 black balls is				
	(1) 630	(2) 879			
	(3) 880	(4) 629	[2012]		
7.	Let X = $\{1, 2, 3, 4, 5\}$. The number of di $Y \subseteq X$, $Z \subseteq X$, and $Y \cap Z$ is empty		be formed such that		

	(3) 5^2	(4) 3^5 .	[2012]
8.	8. There are 10 points in a plane, out of these 6 are collinear. If N is the number of triangles formed by joining these points, then		
	(1) 140 < N ≤ 190	(2) N > 190	
	(3) N ≤ 100	(4) 100 < N ≤140	[2011]
9.	From 6 different novels and 3 different dictions and arranged in a row on the shelf so that the number of such arrangements is	·	
	(1) less than 500	(2) at least 500 but less than 750	
	(3) at least 750 but less than 1000	(4) at least 1000	[2009]
10.	How many different words can be formed by juwhich no two S are adjacent?	umbling the letters in the word MISSISSIF	PPI in
	(1) $8.^6C_4.^7C_4$	(2) $6.7.^8C_4$	
	(3) $6.8.^{7}C_{4}$	(2) $6.7.^8C_4$ (4) $7.^6C_4.^8C_4$	[2008]
11.	The set S = {1, 2, 3,, 12} is to be partitioned $A \cup B \cup C = S$, $A \cap B = B \cap C = A \cap C = \emptyset$	·	, ,
	$(1) \ \frac{12!}{3!(4!)^3}$	$(2) \ \frac{12!}{3!(3!)^4}$	
	(3) $\frac{12!}{(4!)^3}$	$(4) \ \frac{12!}{(3!)^4}$	[2007]
12.	At an election, a voter may vote for any number be elected. There are 10 candidates and 4 are to candidate, then the number of ways in which he	to be elected. If a voter votes for at least	
	(1) 5040	(2) 6210	
	(3) 385	(4) 1110	[2006]
13.	If the letters of word SACHIN are arranged in a as in dictionary, then the word SACHIN appears	·	tten out

(2) 5^3

(1) 2^5

20.	Number of numbers greater than 1000 but less than 4000 formed using the digits 0, 2, 3, 4 with repetition allowed is		
	(1) 125	(2) 105	
	(3) 128	(4) 625	[2002]
21.	Five digit number divisible by 3 is formed using number of such numbers are	0, 1, 2, 3, 4, 6 and 7 without repetition.	Total
	(1) 312	(2) 3125	
	(3) 120	(4) 216	[2002]
22.	The sum of integers from 1 to 100 that are divis	sible by 2 or 5 is	
	(1) 3000	(2) 3050	
	(3) 3600	(4) 3250	[2002]
23.	Total number of four digit odd numbers that ca	n be formed using 0, 1, 2, 3, 5, 7 are	
	(1) 216	(2) 375	
	(3) 400	(4) 720	[2002]

Assertion – Reason Type

1. In a shop there are five types of ice-creams available. A child buys six ice-creams.

 ${\bf Statement-I}: {\bf The\ number\ of\ different\ ways\ the\ child\ can\ buy\ the\ six\ ice-creams\ is}\ ^{10}C_{\scriptscriptstyle 5}\,.$

Statement – II: The number of different ways the child can buy the six ice-creams is equal to the number of different ways of arranging 6 A's and 4 B's in a row.

Binomial Theorem

MCQ-Single Correct

- 1. The value of $\binom{21}{10}C_1 \binom{10}{10}C_1 + \binom{21}{10}C_2 \binom{10}{10}C_2 + \binom{21}{10}C_3 \binom{10}{10}C_3 + \binom{21}{10}C_4 \binom{10}{10}C_4 + \dots + \binom{21}{10}C_{10} \binom{10}{10}C_{10}$ is :
 - (1) $2^{21}-2^{11}$

(2) $2^{21} - 2^{10}$

(3) $2^{20}-2^9$

(4) $2^{20} - 2^{10}$

[2017]

- 2. If the number of terms in the expansion of $\left(1-\frac{2}{x}+\frac{4}{x^2}\right)^n$, $x \ne 0$, is 28, then the sum of the coefficients of all the terms in this expansion, is :
 - (1) 2187

(2) 243

(3) 729

(4) 64

[2016]

- 3. The sum of coefficients of integral powers of x in the binomial expansion of $\left(1-2\sqrt{x}\right)^{50}$ is :
 - (1) $\frac{1}{2}(3^{50})$

(2) $\frac{1}{2}(3^{50}-1)$

(3) $\frac{1}{2}(2^{50}+1)$

(4) $\frac{1}{2}(3^{50}+1)$

[2015]

- 4. If the coefficients of x^3 and x^4 in the expansion of $(1 + ax + bx^2)(1 2x)^{18}$ in powers of x are both zero, then (a,b) is equal to
 - (1) $\left(16, \frac{251}{3}\right)$

(2) $\left(14, \frac{251}{3}\right)$

(3) $\left(14, \frac{272}{3}\right)$

(4) $\left(16, \frac{272}{3}\right)$

[2014]

- 5. The term independent of x in the expansion of $\left(\frac{x+1}{x^{2/3}-x^{1/3}+1}-\frac{x-1}{x-x^{1/2}}\right)^{10}$ is
 - (1) 120

(2) 210

(3) 310

(4) 4

[2013]

Assertion - Reason Type

1. Let
$$S_1 = \sum_{j=1}^{10} j(j-1)^{10} C_j$$
, $S_2 = \sum_{j=1}^{10} j^{10} C_j$ and $S_3 = \sum_{j=1}^{10} j^{2} {}^{10} C_j$ [2010]

Statement – I: $S_3 = 55 \times 2^9$

Statement – II: $S_1 = 90 \times 2^8$ and $S_2 = 10 \times 2^8$

2. Statement-I:
$$\sum_{r=0}^{n} (r+1)^{n} C_r = (n+2)2^{n-1}$$
. [2008]

Statement-II:
$$\sum_{r=0}^{n} (r+1)^{n} C_{r} x^{r} = (1+x)^{n} + nx (1+x)^{n-1}$$

Matrices

MCQ-Single Correct

If $A = \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix}$, then $adj(3A^2 + 12A)$ is equal to:

$$(1)\begin{bmatrix} 72 & -84 \\ -63 & 51 \end{bmatrix}$$

$$(2) \begin{bmatrix} 51 & 63 \\ 84 & 72 \end{bmatrix}$$

$$(3) \begin{bmatrix} 51 & 84 \\ 63 & 72 \end{bmatrix}$$

(2)
$$\begin{bmatrix} 51 & 63 \\ 84 & 72 \end{bmatrix}$$

(4) $\begin{bmatrix} 72 & -63 \\ -84 & 51 \end{bmatrix}$

[2017]

If $A = \begin{bmatrix} 5a & -b \\ 3 & 2 \end{bmatrix}$ and $A adj A = AA^T$, then 5a +b is equal to :

(1) 5

(2) 4

(3) 13

(4) -1

[2016]

If A = $\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b \end{bmatrix}$ is a matrix satisfying the equation $AA^T = 9I$, where I is 3×3 identity 3.

matrix, then ordered pair (a,b) is equal to:

(1) (-2,1)

(2)(2,1)

(3) (-2,-1)

(4)(2,-1)

[2015]

If A is a 3×3 non-singular matrix such that AA'=A'A and $B=A^{-1}A$, then BB' equals 4.

(1) I + B

(2) I

(3) B^{-1}

(4) $(B^{-1})'$

[2014]

If P = $\begin{bmatrix} 1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{bmatrix}$ is the adjoint of a 3×3 matrix A and |A|=4, then α is equal to

(1) 11

(2) 5

(3) 0

Let $A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}$. If u_1 and u_2 are column matrices such that $Au_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ and $Au_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, then 6.

 $u_1 + u_2$ is equal to

$$\begin{pmatrix}
-1 \\
-1 \\
0
\end{pmatrix}$$

$$\begin{pmatrix}
1 \\
-1 \\
-1
\end{pmatrix}$$

(2) A

(1) A + I

$$(4) I - A$$

- If A = $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and I = $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then which one of the following holds for all $n \ge 1$, by the principle of mathematical induction
 - (1) $A^n = nA (n-1)I$

(2)
$$A^n = 2^{n-1}A - (n-1)I$$

- [2005]
- (3) A'' = nA + (n-1)I (4) $A^n = 2^{n-1}A + (n-1)I$ Let $A = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$. The only correct statement about the matrix A is 15.
 - (1) A is a zero matrix

(2) $A^2 = I$

(3) A^{-1} does not exist

(4) A = (-1)I, where I is a unit matrix

[2004]

- Let $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{pmatrix}$ (10) and $B = \begin{pmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{pmatrix}$. If B is the inverse of matrix A , then α is 16.
 - (1) -2

(3) 2

(4) -1

[2004]

[2003]

- If $A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$ and $A^2 = \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix}$, then 17.
 - (1) $\alpha = a^2 + b^2$, $\beta = ab$
- (2) $\alpha = a^2 + b^2$, $\beta = 2ab$ (4) $\alpha = 2ab \ \beta = a^2 + b^2$
- (3) $\alpha = a^2 + b^2$, $\beta = a^2 b^2$

Assertion-Reason type

- (1) Statement-I is True; Statement-II is true; Statement-II is **not** a correct explaination of Statement-I.
- (2) Statement-I is True; Statement-II is False.
- (3) Statement-I is False; Statement-II is true
- (4) Statement-I is True; Statement-II is true; Statement-II is a **correct** explaination of Statement-I.
- 1. Consider the following relation **R** on the set of real square matrices of order 3. **[2011]**

R = { $(A,B)|A = P^{-1}BP$ for some invertible matrix P}.

Statement – I: R is an equivalence relation.

Statement-II: For any two invertible 3×3 matrices M and N, $(MN)^{-1} = N^{-1}M^{-1}$.

2. Let A be a 2×2 matrix with non-zero entries and let $A^2 = I$, where I is 2×2 identity matrix.

Define Tr(A) = sum of diagonal elements of A and |A| = determinant of matrix A. [2010]

Statement-I: Tr(A) = 0

Statement-II: |A|=1

3. Let A be a 2×2 matrix

[2009]

Statement-I: adj(adj A) = A

Statement-II: |adj A| = |A|

4. Let A be a 2×2 matrix with real entries. Let I be the 2×2 identity matrix. Denote by tr(A), the

sum of diagonal entries of A. Assume that $A^2 = I$

[2008]

Statement-I : If $A \neq I$ and $A \neq -I$, then det A = -1.

Statement-II: If $A \neq I$ and $A \neq -I$, then $tr(A) \neq 0$

Solutions

1.
$$A^{2} = \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix} = \begin{bmatrix} 4+12 & -6-3 \\ -8-4 & 12+1 \end{bmatrix} = \begin{bmatrix} 16 & -9 \\ -12 & 13 \end{bmatrix}$$
$$3A^{2} + 12A = \begin{bmatrix} 48+24 & -27-36 \\ -36-48 & 39+12 \end{bmatrix} = \begin{bmatrix} 72 & -63 \\ -84 & 51 \end{bmatrix}$$
$$adj(3A^{2} + 12A) = \begin{bmatrix} 51 & 84 \\ 63 & 72 \end{bmatrix}$$

Option (3), is the correct answer.

2.
$$adj A = \begin{bmatrix} 2 & -3 \\ b & 5a \end{bmatrix}, A^{T} = \begin{bmatrix} 5a & 3 \\ -b & 2 \end{bmatrix}$$

$$Aadj(A) = AA^{T}$$

$$\Rightarrow Aadj A = \begin{bmatrix} 5a & -b \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ b & 5a \end{bmatrix} = \begin{bmatrix} 10a - b^{2} & -15a - 5ab \\ 6 + 2b & -9 + 10a \end{bmatrix}$$

$$\Rightarrow AA^{T} = \begin{bmatrix} \end{bmatrix}$$

Coordinate Geometry

Straight Line

MCQ-Single Correct

1.	Let k be an integer such that the triangle with vertices (k,-3k), (5,k) and (-k,2) has area 28 sq
	units. Then the orthocentre of this triangle is at the point :

(1)
$$\left(2, -\frac{1}{2}\right)$$

(2)
$$(1, \frac{3}{4})$$

(3)
$$\left(1, -\frac{3}{4}\right)$$

$$(4) \left(2,\frac{1}{2}\right)$$

[2017]

2. Two sides of a rhombus are along the lines, x-y+1=0 and 7x-y-5=0. If its diagonals intersect at (-1,-2), then which one of the following is a vertex of this rhombus?

$$(2)\left(\frac{1}{3}, -\frac{8}{3}\right)$$

(3)
$$\left(-\frac{10}{3}, -\frac{7}{3}\right)$$

[2016]

3. Locus of the image of the point (2,3) in the line (2x-3y+4)+k(x-2y+3)=0, $k \in \mathbb{R}$, is a :

- (1) straight line parallel to y-axis
- (2) circle of radius $\sqrt{2}$.

(3) circle of radius $\sqrt{3}$

(4) straight line parallel to x-axis.

[2015]

4. Let a, b, c and d be non-zero numbers. If the point of intersection of the lines 4ax + 2ay + c = 0 and 5bx + 2by + d = 0 lies in the fourth quadrant and is equidistant from the two axes then

(1) 2bc - 3ad = 0

(2) 2bc + 3ad = 0

(3) 3bc - 2ad = 0

(4)
$$3bc + 2ad = 0$$

[2014]

5. Let PS be the median of the triangle with vertices P(2,2), Q(6,-1) and R(7,3). The equation of the line passing through (1,-1) and parallel to PS is

(1)
$$4x-7y-11=0$$

(2)
$$2x+9y+7=0$$

(3)
$$4x+7y+3=0$$

(4)
$$2x-9y-11=0$$

[2014]

6. The x-coordinate of the incentre of the triangle that has the coordinates of mid points of its sides as (0,1) (1,1) and (1,0) is

(1)
$$2-\sqrt{2}$$

(2)
$$1+\sqrt{2}$$

(3)
$$1 - \sqrt{2}$$

(4)
$$2+\sqrt{2}$$

[2013]

7. A ray of light along $x + \sqrt{3}y = \sqrt{3}$ gets reflected upon reaching x-axis, the equation of the reflected rays is

(1)
$$\sqrt{3}y = x - \sqrt{3}$$

(2)
$$y = \sqrt{3}x - \sqrt{3}$$

(4) $y = x + \sqrt{3}$

[2013]

(3) $\sqrt{3}y = x - 1$

(2)(-1,-2)

(4) $\left(1, -\frac{1}{2}\right)$

[2005]

(1) (-1,2)

(3) (1,-2)

(3)	3	(4) -3	[2004]

- 27. If the equation of the locus of a point equidistant from the points (a_1,b_1) and (a_2,b_2) is $(a_1-a_2)x+(b_1-b_2)y+c=0$, then the value of 'c' is
 - (1) $\frac{1}{2} \left(a_2^2 + b_2^2 a_1^2 b_1^2 \right)$ (2) $a_1^2 + a_2^2 + b_1^2 b_2^2$
 - (3) $\frac{1}{2} \left(a_1^2 + a_2^2 b_1^2 b_2^2 \right)$ (4) $\sqrt{a_1^2 + b_1^2 a_2^2 b_2^2}$ [2003]
- 28. Locus of centroid of the triangle whose vertices are $(a\cos t, a\sin t)$, $(b\sin t, -b\cos t)$ and (1,0), where t is a parameter, is
 - (1) $(3x-1)^2 + (3y)^2 = a^2 b^2$ (2) $(3x-1)^2 + (3y)^2 = a^2 + b^2$
 - (3) $(3x+1)^2 + (3y)^2 = a^2 + b^2$ (4) $(3x+1)^2 + (3y)^2 = a^2 b^2$ [2003]
- 29. If the pair of straight lines $x^2 2pxy y^2 = 0$ and $x^2 2qxy y^2 = 0$ be such that each pair bisects the angle between the other pair, then
 - (1) p = q (2) p = -q
 - (3) pq = 1 (4) pq = -1 [2003]
- 30. A square of side a lies above the x-axis and has one vertex at the origin. The side passing through the origin makes an angle α $\left(0 < \alpha < \frac{\pi}{4}\right)$ with the positive direction of x-axis. The equation of its diagonal not passing through the origin is
 - (1) $y(\cos\alpha \sin\alpha) x(\sin\alpha \cos\alpha) = a$
 - (2) $y(\cos\alpha + \sin\alpha) + x(\sin\alpha \cos\alpha) = a$
 - (3) $y(\cos\alpha + \sin\alpha) + x(\sin\alpha + \cos\alpha) = a$
 - (4) $y(\cos\alpha + \sin\alpha) + x(\cos\alpha \sin\alpha) = a$ [2003]
- 31. If the pair of lines $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ intersect on the y-axis then

(1)
$$2fgh = bg^2 + ch^2$$

$$(2) bg^2 \neq ch^2$$

$$(3)$$
 abc = $2fgh$

(4) none of these

[2002]

32. Lines represented by $3ax^2 + 5xy + (a^2 - 2)y^2 = 0$ are 2 to each other for

(4) for no values of a

[2002]

33. Locus of mid-point of the portion between the axes of $x\cos\alpha + y\sin\alpha = p$, where p is constant, is

$$(1) x^2 + y^2 = \frac{4}{p^2}$$

(2)
$$x^2 + y^2 = 4p^2$$

(3)
$$\frac{1}{x^2} + \frac{1}{y^2} = \frac{2}{p^2}$$

(4)
$$\frac{1}{x^2} + \frac{1}{y^2} = \frac{4}{p^2}$$

[2002]

34. A triangle with vertices (4,0), (-1,-1), (3,5) is

(1) isosceles and right angled

- (2) isosceles but not right angled
- (3) right angled but not isosceles
- (4) neither right angled nor isosceles [2002]

<u>Circle</u>

MCQ Single Correct

1.	The radius of a circle, having minimum area, which touches the curve $y=4-x^2$ and the lines $y= x $ is :		
	(1) $2(\sqrt{2}+1)$	(2) $2(\sqrt{2}-1)$	
	(3) $4(\sqrt{2}-1)$	(4) $4(\sqrt{2}+1)$	[2017]
2.	If one of the diameters of the circle, given by the chord of the circle S, whose centre is at (-3,2),		-12=0, is a
	(1) $5\sqrt{3}$	(2) 5	
	(3) 10	(4) $5\sqrt{2}$	[2016]
3.	The number of common tangents to the circles $x^2 + y^2 + 6x + 18y + 26 = 0$, is :	$x^2 + y^2 - 4x - 6y - 12 = 0$ and	
	(1) 2	(2) 3	
	(3) 4	(4) 1	[2015]
4.	Let C be the circle with centre at (1,1) and radiu through origin and touching the circle C externa		
	$(1) \ \frac{\sqrt{3}}{\sqrt{2}}$	(2) $\frac{\sqrt{3}}{2}$	
	(3) $\frac{1}{2}$	(4) $\frac{1}{4}$	[2014]
5.	The circle passing through (1,-2) and touching point	the axis of x at $\left(3,0\right)$ also passes	through the
	(1) $(2,-5)$	(2) $(5,-2)$	
	(3) (-2,5)	(4) (-5,2)	[2013]

(3)
$$x^2 + y^2 - 2x + 2y - 62 = 0$$

(4)
$$x^2 + y^2 - 2x + 2y - 47 = 0$$
 [2006]

Let C be the circle with centre (0,0) and radius 3 units. The equation of the locus of the mid 13. points of the chords of the circle C that subtend an angle of $\frac{2\pi}{2}$ at its centre is

(1)
$$x^2 + y^2 = \frac{3}{2}$$

(2)
$$x^2 + y^2 = 1$$

(3)
$$x^2 + y^2 = \frac{27}{4}$$

(4)
$$x^2 + y^2 = \frac{9}{4}$$

[2006]

- If the circles $x^2 + y^2 + 2ax + cy + a = 0$ and $x^2 + y^2 3ax + dy 1 = 0$ intersect in two distinct 14. points P and Q then the line 5x+by-a=0 passes through P and Q for
 - (1) exactly one value of a

(2) no value of a

- (3) infinitely many values of a
- (4) exactly two values of a

[2005]

- A circle touches the x-axis and also touches the circle with centre at (0,3) and radius 2. The locus 15. of the centre of the circle is
 - (1) an ellipse

(2) a circle

(3) a hyperbola

(4) a parabola

[2005]

If a circle passes through the point (a,b) and cuts the circle $x^2 + y^2 = p^2$ orthogonally, then the 16. equation of the locus of its centre is [2005]

(1)
$$x^2 + y^2 - 3ax - 4by + (a^2 + b^2 - p^2) = 0$$
 (2) $2ax + 2by - (a^2 - b^2 + p^2) = 0$

(2)
$$2ax + 2by - (a^2 - b^2 + p^2) = 0$$

(3)
$$x^2 + y^2 - 2ax - 3by + (a^2 - b^2 - p^2) = 0$$
 (4) $2ax + 2by - (a^2 + b^2 + p^2) = 0$

(4)
$$2ax + 2by - (a^2 + b^2 + p^2) = 0$$

If a circle passes through the point (a,b) and cuts the circle $x^2 + y^2 = 4$ orthogonally, then the 17. locus of its centre is [2004]

(1)
$$2ax + 2by + (a^2 + b^2 + 4) = 0$$

 (2) $2ax + 2by - (a^2 + b^2 + 4) = 0$

(2)
$$2ax + 2by - (a^2 + b^2 + 4) = 0$$

(3)
$$2ax - 2by + (a^2 + b^2 + 4) = 0$$

(3)
$$2ax - 2by + (a^2 + b^2 + 4) = 0$$
 (4) $2ax - 2by - (a^2 + b^2 + 4) = 0$

A variable circle passes through the fixed point A (p,q) and touches x-axis. The locus of the other 18. end of the diameter through A is

(1)
$$(x-p)^2 = 4qy$$

(2)
$$(x-q)^2 = 4py$$

(3)
$$(y-p)^2 = 4qx$$

(4)
$$(y-q)^2 = 4px$$

[2004]

19. If the lines 2x+3y+1=0 and 3x-y-4=0 lie along diameters of a circle of circumference 10π , then the equation of the circle is

(1)
$$x^2 + y^2 - 2x + 2y - 23 = 0$$

(2)
$$x^2 + y^2 - 2x - 2y - 23 = 0$$

(3)
$$x^2 + y^2 + 2x + 2y - 23 = 0$$

(4)
$$x^2 + y^2 + 2x - 2y - 23 = 0$$
 [2004]

20. The intercept on the line y = x by the circle $x^2 + y^2 - 2x = 0$ is AB. Equation of the circle on AB as a diameter is

(1)
$$x^2 + y^2 - x - y = 0$$

(2)
$$x^2 + y^2 - x + y = 0$$

(3)
$$x^2 + y^2 + x + y = 0$$

(4)
$$x^2 + y^2 + x - y = 0$$

[2004]

21. If the two circles $(x-1)^2 + (y-3)^2 = r^2$ and $x^2 + y^2 - 8x + 2y + 8 = 0$ intersect in two distinct points, then

(1)
$$2 < r < 8$$

(2)
$$r < 2$$

$$(3) r = 2$$

(4)
$$r > 2$$

[2003]

22. The lines 2x-3y=5 and 3x-4y=7 are diameters of a circle having area as 154 sq units. Then the equation of the circle is

(1)
$$x^2 + y^2 + 2x - 2y = 62$$

(2)
$$x^2 + y^2 + 2x - 2y = 47$$

(3)
$$x^2 + y^2 - 2x + 2y = 47$$

(4)
$$x^2 + y^2 - 2x + 2y = 62$$
 [2003]

23. If the chord y = mx + 1 of the circle $x^2 + y^2 = 1$ subtends an angle of measure 45° at the major segment of the circle then the value of m is

(1)
$$2 \pm \sqrt{2}$$

(2)
$$-2 \pm \sqrt{2}$$

(3)
$$-1 \pm \sqrt{2}$$

[2002]

24. The centres of a set of circles, each of radius 3, lie on the circle $x^2 + y^2 = 25$. The locus of any point in the set is

$$(1) \ 4 \le x^2 + y^2 \le 64$$

(2)
$$x^2 + y^2 \le 25$$

(3)
$$x^2 + y^2 \ge 25$$

(4)
$$3 \le x^2 + y^2 \le 9$$

[2002]

25. The centre of the circle passing through (0,0) and (1,0) and touching the circle $y^2 = 9$ is

$$(1) \left(\frac{1}{2}, \frac{1}{2}\right)$$

$$(2) \left(\frac{1}{2}, -\sqrt{2}\right)$$

$$(3) \left(\frac{3}{2}, \frac{1}{2}\right)$$

$$(4) \left(\frac{1}{2}, \frac{3}{2}\right)$$

[2002]

26. The equation of a circle with origin as a centre and passing through equilateral triangle whose median is of length 3a is

(1)
$$x^2 + y^2 = 9a^2$$

(2)
$$x^2 + y^2 = 16a^2$$

(3)
$$x^2 + y^2 = 4a^2$$

(4)
$$x^2 + y^2 = a^2$$

[2002]

Parabola

MCQ-Single Correct

1.	Let P be the point on the parabola, $y^2 = 8x$ which is at a minimum distance from the centre C
	of the circle, $x^2 + (y+6)^2 = 1$. Then the equation of the circle, passing through C and having its
	centre at P is :

(1)
$$x^2 + y^2 - x + 4y - 12 = 0$$

$$(2) \quad n = \frac{C_P - C}{C - C_V}$$

(3)
$$x^2+y^2-4x+9y+18=0$$

(4)
$$x^2 + y^2 - 4x + 8y + 12 = 0$$
 [2016]

- 2. The centres of those circles which touch the circle, $x^2 + y^2 8x 8y 4 = 0$, externally and also touch the x-axis, lie on :
 - (1) an ellipse which is not a circle.
- (2) a hyperbola.

(3) a parabola.

(4) a circle

[2016]

3. Let O be the vertex and Q be any point on the parabola, $x^2 = 8y$. If the point P divides the line segment OQ internally in the ratio 1:3, then the locus of P is:

(1)
$$y^2 = x$$

(2)
$$y^2 = 2x$$

(3)
$$x^2 = 2y$$

(4)
$$x^2 = y$$

[2015]

4. The slope of the line touching both the parabolas $y^2 = 4x$ and $x^2 = -32y$ is

(1)
$$\frac{1}{2}$$

(2)
$$\frac{3}{2}$$

(3)
$$\frac{1}{8}$$

(4)
$$\frac{2}{3}$$

[2014]

- 5. If two tangents drawn from a point P to the parabola $y^2 = 4x$ are at right angles, then the locus of P is
 - (1) 2x+1=0

(2)
$$x = -1$$

(3)
$$2x-1=0$$

(4)
$$x = 1$$

[2010]

The area of the region bounded by the parabola $(y-2)^2=x-1$, the tangent to the parabola at

6.

the point (2,3) and the x-axis is

(3)
$$t_2 = t_1 - \frac{2}{t_1}$$

(4)
$$t_2 = t_1 + \frac{2}{t_1}$$

[2003]

12. Two common tangents to the circle $x^2 + y^2 = 2a^2$ and parabola $y^2 = 8ax$ are

$$(1) x = \pm (y + 2a)$$

(2)
$$y = \pm (x + 2a)$$

$$(3) x = \pm (y+a)$$

$$(4) \quad y = \pm (x+a)$$

[2002]

Assertion-Reason Type

- (1) Statement-I is True; Statement-II is true; Statement-II is **not** a correct explaination of Statement-I.
- (2) Statement-I is True; Statement-II is False.
- (3) Statement-I is False; Statement-II is true
- (4) Statement-I is True; Statement-II is true; Statement-II is a **correct** explaination of Statement-I.
- 1. Given: A circle, $2x^2 + 2y^2 = 5$ and a parabola, $y^2 = 4\sqrt{5}x$.

Statement-I: An equation of a common tangent to these curves is $y = x + \sqrt{5}$

Statement-II: If the line, $y = mx + \frac{\sqrt{5}}{m}$ $(m \ne 0)$ is their common tangent, then m satisfies $m^4 - 3m^2 + 2 = 0$

2. **Statement-I**: An equation of a common tangent to the parabola $y^2 = 16\sqrt{3}x$ and the ellipse $2x^2 + y^2 = 4$ is $y = 2x + 2\sqrt{3}$.

Statement-II: If the line $y = mx + \frac{4\sqrt{3}}{m}$, $(m \ne 0)$ is a common tangent to the parabola $y^2 = 16\sqrt{3}x$ and ellipse $2x^2 + y^2 = 4$, then m satisfies $m^4 + 2m^2 = 24$.

3. Let the tangent to the parabola be $y = mx + \frac{\sqrt{5}}{m}$, $(m \neq 0)$.

Now, its distance from the centre of the circle must be equal to the radius of the circle.

So,
$$\left| \frac{\sqrt{5}}{m} \right| = \frac{\sqrt{5}}{\sqrt{2}} \sqrt{1 + m^2} \Rightarrow (1 + m^2) m^2 = 2 \Rightarrow m^4 + m^2 - 2 = 0$$

$$\Rightarrow (m^2 - 1)(m^2 + 2) = 0 \Rightarrow m = \pm 1$$

So, the common tangents are $y = x + \sqrt{5}$ and $y = -x - \sqrt{5}$.

Ellipse

MCQ-Single Correct

1. The eccentricity of an ellipse whose centre is at the origin is $\frac{1}{2}$. If one of its directrices is x = -4, then the equation of the normal to it at $\left(1,\frac{3}{2}\right)$ is :

(1) 2y - x = 2

(2) 4x-2y=1

(3) 4x+2y=7

(4) x+2y=4

[2017]

The area (in sq. units) of the quadrilateral formed by the tangents at the end points of the latera recta to the ellipse $\frac{x^2}{9} + \frac{y^2}{5} = 1$, is :

(1) 18

(2) $\frac{27}{2}$

(3) 27

(4) $\frac{27}{4}$

[2015]

3. The locus of the foot of perpendicular drawn from the centre of the ellipse $x^2 + 3y^2 = 6$ on any tangent to it is

(1) $(x^2 - y^2)^2 = 6x^2 + 2y^2$

(2) $(x^2 - y^2)^2 = 6x^2 - 2y^2$

(3) $(x^2 + y^2)^2 = 6x^2 + 2y^2$

(4) $(x^2 + y^2)^2 = 6x^2 - 2y^2$ [2014]

4. The equation of the circle passing through the foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$, and having centre at (0,3) is

(1) $x^2 + y^2 - 6y + 7 = 0$

(2) $x^2 + y^2 - 6y - 5 = 0$

(3) $x^2 + y^2 - 6y + 5 = 0$

(4) $x^2 + y^2 - 6y - 7 = 0$ [2013]

5. An ellipse is drawn by taking a diameter of the circle $(x-1)^2 + y^2 = 1$, as its semi-minor axis and a diameter of the circle $x^2 + (y-2)^2 = 4$ as its semi-major axis. If the centre of the ellipse is at the origin and its axes are the coordinate axes, then the equation of the ellipse is

$$(1) \ 4x^2 + y^2 = 8$$

(2)
$$x^2 + 4y^2 = 16$$

(3)
$$4x^2 + y^2 = 4$$

(4)
$$x^2 + 4y^2 = 8$$

[2012]

6. The ellipse $x^2 + 4y^2 = 4$ is inscribed in a rectangle aligned with the coordinate axes, which in turn is inscribed in another ellipse that passes through the point (4,0). Then the equation of the ellipse is

(1)
$$x^2 + 16y^2 = 16$$

(2)
$$x^2 + 12y^2 = 16$$

(3)
$$4x^2 + 48y^2 = -48$$

(4)
$$4x^2 + 64y^2 = 48$$

[2009]

7. A focus of an ellipse is at the origin. The directrix is the line x = 4 and the eccentricity is $\frac{1}{2}$. Then the length of the semi-major axis is

(1)
$$\frac{8}{3}$$

(2)
$$\frac{2}{3}$$

(3)
$$\cot \left(\cos ec^{-1}\frac{5}{3} + \tan^{-1}\frac{2}{3}\right)$$

(4)
$$\frac{6}{17}$$

[2008]

8. In an ellipse, the distance between its foci is 6 and minor axis is 8. Then its eccentricity is

(1)
$$\frac{3}{5}$$

(2)
$$\frac{1}{2}$$

(3)
$$\frac{4}{5}$$

(4)
$$\frac{1}{\sqrt{5}}$$

[2006]

9. An ellipse has OB as semi minor axis, F and F' its focii and the angle FBF' is a right angle. Then the eccentricity of the ellipse is

(1)
$$\frac{1}{\sqrt{2}}$$

(2)
$$\frac{1}{2}$$

(3)
$$\frac{1}{4}$$

(4)
$$\frac{1}{\sqrt{5}}$$

[2005]

10. The eccentricity of an ellipse, with its centre at the origin, is $\frac{1}{2}$. If one of the directrices is x = 4, then the equation of the ellipse is

$$(1) 3x^2 + 4y^2 = 1$$

(2)
$$3x^2 + 4y^2 = 12$$

(3)
$$4x^2 + 3y^2 = 12$$

(4)
$$4x^2 + 3y^2 = 1$$
 [2004]

The foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ and the hyperbola $\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}$ coincide. Then the value of b^2 is

(1) 1

(2) 5

(3) 7

(4) 9

[2003]

Hyperbola

MCQ-Single Correct

1.	A hyperbola passes through the point $P(\sqrt{2},\sqrt{3})$ and has foci at $(\pm 2,0)$. Then the tangent to
	this hyperbola at P also passes through the point:

(1)
$$(3\sqrt{2}, 2\sqrt{3})$$

(2)
$$(2\sqrt{2}, 3\sqrt{3})$$

(3)
$$\left(\sqrt{3},\sqrt{2}\right)$$

(4)
$$(-\sqrt{2}, -\sqrt{3})$$

[2017]

2. The eccentricity of the hyperbola whose length of the latus rectum is equal to 8 and the length of its conjugate axis is equal half of the distance between its foci, is :

(1)
$$\frac{4}{\sqrt{3}}$$

(2)
$$\frac{2}{\sqrt{3}}$$

(3)
$$\sqrt{3}$$

(4)
$$\frac{4}{3}$$

[2016]

3. The equation of the hyperbola whose foci are (-2,0) and (2,0) and eccentricity is 2 is given by

$$(1) -x^2 + 3y^2 = 3$$

$$(2) -3x^2 + y^2 = 3$$

(3)
$$x^2 - 3y^2 = 3$$

$$(4) 3x^2 - y^2 = 3$$

[2011]

4. For the hyperbola $\frac{x^2}{\cos^2 \alpha} - \frac{y^2}{\sin^2 \alpha} = 1$, which of the following remains constant when α varies?

(1) eccentricity

(2) directrix

(3) abscissae of vertices

(4) abscissae of foci

[2007]

5. The locus of point $P(\alpha,\beta)$ moving under the condition that the line $y=\alpha x+\beta$ is a tangent to the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ is

(1) an ellipse

(2) a circle

(3) a parabola

(4) a hyperbola

[2005]

Calculus

Sets and Relations

MCQ-S	Single Correct		
1.	Let A and B be two sets containing four and two elements respectively. Then the number of subsets of the set $A \times B$, each having at least three elements is:		
	(1) 256	(2) 275	
	(3) 510	(4) 219	[2015]
2.	If $X = \{4^n - 3n - 1 : n \in N\}$ and $Y = \{9(n-1)\}$ then $X \cup Y$ is equal to	$: n \in N \}$, where N is the set of $: n \in N \}$	natural numbers,
	(1) N	(2) Y – X	
	(3) X	(4) Y	[2014]
3.	Let A and B be two sets containing 2 elements and 4 elements respectively. The number of subsets of $A \times B$ having 3 or more elements is		
	(1) 220	(2) 219	
	(3) 211	(4) 256	[2013]
4.	Let S be a non-empty subset of R. Consider the following statement:		
	P: There is a rational number $x \in S$ such that $x > 0$.		
	Which of the following statements is the negation of the statement P?		
	(1) There is no rational number $x \in S$ such that (2) Every rational number $x \in S$ satisfies $x \le S$ (3) $x \in S$ and $x \le S \Rightarrow x$ is not rational (4) There is a rational number $x \in S$ such that	0	[2010]
5.	Consider the following relations:		
	$R = \{(x,y) \mid x,y \text{ are real numbers and } x=wy \text{ for so}$	me rational number w};	

$$S = \left\{ \left(\frac{m}{n}, \frac{p}{q} \right) | m, n, p \text{ and } q \text{ are int } egers \text{ } such \text{ } n, q \neq 0 \text{ } and \text{ } qm = pn \right\}. \text{ Then}$$

- (1) neither R nor S is an equivalence relation
- (2) S is an equivalence relation but R is not an equivalence relation

	(4) R is an equivalence relation but S is not an	equivalence relation		
6.	If A, B nd C are three sets such that $A \cap B = A$	$\cap C$ and $A \cup B = A \cup C$, then	า	
	(1) A = B	(2) A = C		
	(3) B = C	$(4) \ A \cap B = \phi$	[2009]	
7.	Let R be the real line. Consider the following su	bsets of the plane $\mathit{R}{ imes}\mathit{R}$.		
	$S = \{(x,y): y = x + 1 \text{ and } 0 < x < 2 \}, T = \{(x,y): x - y \}$	is an integer}. Which one of the	following is true?	
	 (1) neither S nor T is an equivalence relation of (2) Both S and T are equivalence relations on R (3) S is an equivalence relation on R but T is no 	t	[2000]	
	(4) T is an equivalence relation on R but S is no	t	[2008]	
8.	Let W denote the words in the English dictional	ry. Define the relation R by :	[2006]	
	R = {(x,y) $\epsilon W \times W$ the words x and y have at least one letter in common}. Then R is			
	(1) Not reflexive, symmetric and transitive	(2) reflexive, symmetric and no	ot transitive	
	(3) reflexive, symmetric and transitive	(4) reflexive, not symmetric ar	nd transitive	
9.	Let R = $\{(3,3), (6,6), (9,9), (12,12), (6,12), (3,9), (3,6), (3,9), (3,6), (3,9), (3,6), (3$		t A = {3,6,9,12}	
	(1) reflexive and transitive only	(2) reflexive only		
	(3) an equivalence relation	(4) reflexive and symmetric on	ly [2005]	
10.	Let $R = \{(1,3),(4,2),(2,4),(2,3),(3,1)\}$ be a relation	n on the set $A = \{1,2,3,4\}$. The re	lation R is	
	(1) a function	(2) reflexive		
	(3) not symmetric	(4) transitive	[2004]	

(3) R and S both are equivalence relations

Functions

MCQ-Single Correct

- 1. The function f: $R \rightarrow \left[-\frac{1}{2}, \frac{1}{2} \right]$ defined as $f(x) = \frac{x}{1+x^2}$, is:
 - (1) invertible.

- (2) injective but not surjective.
- (3) surjective but not injective.
- (4) neither injective nor surjective.
 - -

[2017]

- 2. Let a , b , c ε R. If $f(x) = ax^2 + bx + c$ is such that a + b + c = 3 and $f(x+y) = f(x) + f(y) + xy <math>\forall x$, $y \varepsilon$ R, then $\sum_{n=1}^{10} f(n)$ is equal to :
 - (1) 330

(2) 165

(3) 190

(4) 255

- [2017]
- 3. If $f(x) + 2f\left(\frac{1}{x}\right) = 3x, x \neq 0$ and $S = \{x \in R : f(x) = f(-x)\}$; then S:
 - (1) contains exactly one element.
- (2) contains exactly two elements.
- (3) contains more than two elements
- (4) is an empty set

- [2016]
- 4. If $a \in R$ and the equation $-3(x-[x])^2 + 2(x-[x]) + a^2 = 0$ (where [x] denotes the greatest integer $\le x$) has no integral solution, then all possible values of a lie in the interval
 - (1) $(-1,0)\cup(0,1)$

(2)(1,2)

- (3) (-2,-1)
- (3) $\frac{1}{1+\{g(x)\}^5}$

(4) $1 + \{g(x)\}^5$

[2014]

- 6. For real x, let $f(x) = x^3 + 5x + 1$, then
 - (1) f is one-one but not onto R
- (2) f is onto R but not one-one

(3) f is one-one and onto R

- (4) f is neither one-one nor onto R
- [2009]
- 7. Let $f: N \to Y$ be a function defined as f(x) = 4x + 3, where $Y = \{y \in N : y = 4x + 3 \text{ for some } x \in N \}$. Show that f is invertible and its inverse is

(1) g(y) =
$$\frac{3y+4}{4}$$

(2)
$$g(y) = 4 + \frac{y+3}{4}$$

(3) g(y) =
$$\frac{y+3}{4}$$

(4)
$$g(y) = \log \left| \sin \left(x - \frac{\pi}{4} \right) \right| + c$$
 [2008]

8. The largest interval lying in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ for which the function

 $[f(x) = 4^{-x^2} + \cos^{-1}\left(\frac{x}{2} - 1\right) + \log(\cos x)]$ is defined, is

(1)
$$[0,\pi]$$

$$(2) \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

(3)
$$\left[-\frac{\pi}{4}, \frac{\pi}{2}\right]$$

$$(4) \left[0, \frac{\pi}{2}\right)$$
 [2007]

9. Let $f: (-1,1) \to B$, be a function defined by $f(x) = \tan^{-1} \left(\frac{2x}{1-x^2} \right)$, then f is both one-one and onto when B is the interval

(1)
$$\left(0,\frac{\pi}{2}\right)$$

(2)
$$\left[0, \frac{\pi}{2}\right]$$

(3)
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

(4)
$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

[2005]

10. A real valued function f(x) satisfies the functional equation f(x-y) = f(x) f(y) - f(a-x) f(a+y) where a is a given constant and f(0) = 1, f(2a-x) is equal to

$$(1) -f(x)$$

(3)
$$f(a) + f(a-x)$$

$$(4) f(-x)$$

[2006]

11. The range of the function $f(x) = {}^{7-x}P_{x-3}$ is

$$(3)$$
 {1,2,3,4}

[2004]

12. If f: $R \to S$, defined by $f(x) = \sin x - \sqrt{3}\cos x + 1$, is onto, then the interval of S is

$$(2) [-1,1]$$

	(3) [0,1]	(4) [-1,-3]	[2004]
13.	The graph of the function $y=f(x)$ is symmetrical about the line x = 2 , then		
	(1) $f(x + 2) = f(x - 2)$	(2) $f(2+x) = f(2-x)$	
	(3) $f(x) = f(-x)$	(4) $f(x) = -f(-x)$	[2004]
14.	The domain of the function $f(x) = \frac{\sin^{-1}(x-3)}{\sqrt{9-x^2}}$) is	
	(1) [2,3]	(2) [2,3)	
	(3) [1,2]	(4) [1,2)	[2004]
15.	A function f from the set of natural numbers to	integers defined by	
	$f(n) = \begin{cases} \frac{n-1}{2}, & when n is odd \\ -\frac{n}{2}, & when n is even \end{cases}$ is		
	(1) one-one but not onto	(2) onto but not one-one	
	(3) one-one and onto both	(4) neither one-one nor onto	[2003]
16.	If $f: R \rightarrow R$ satisfies $f(x+y) = f(x) + f(y)$, for all x	x_{r} , y ε R and f(1) = 7, then $\sum_{r=1}^{n} f(r)$ is	
	(1) $\frac{7n}{2}$	$(2) \ \frac{7(n+1)}{2}$	
	(3) 7n(n+1)	$(4) \ \frac{7n(n+1)}{2}$	[2003]
17.	Domain of definition of the function $f(x) = \frac{3}{4-x}$	$\frac{1}{x^2} + \log_{10}(x^3 - x)$, is	
	(1) (1,2)	(2) $(-1,0) \cup (1,2)$	
	(3) $(1,2) \cup (2,\infty)$	(4) $(-1,0) \cup (1,2) \cup (2,\infty)$	[2003]
18.	The function $f(x) = \log(x + \sqrt{x^2 + 1})$, is		

1	(1)	an	even	fun	ction
ı	1 1	all	CVCII	IUII	CLIOI

(2) an odd function

(4) neither an even nor an odd function [2003]

19. The period of $\sin^2 \theta$ is

(1)
$$\pi^2$$

(2) π

(3)
$$\pi^{3}$$

(4) $\pi / 2$

[2002]

20. Which one is not periodic

$$(1) \left| \sin 3x \right| + \sin^2 x$$

$$(2) \cos \sqrt{x} + \cos^2 x$$

(3)
$$\cos 4x + \tan^2 x$$

(4) $\cos 2x + \sin x$

[2002]

21. If $f(x+y) = f(x).f(y) \forall x,y \text{ and } f(5) = 2, f'(0) = 3, \text{ then } f'(5) \text{ is}$

(2) 1

(4) 2

[2002]

22. The domain of $\sin^{-1} \left[\log_3 \left(\frac{x}{3} \right) \right]$ is

(2) [-1,9]

(4) [-9,-1]

[2002]

Assertion – Reason Type

1. Let f be a function defined by $f(x) = (x-1)^2 + 1, (x \ge 1)$

Statement – I: The set $\{x : f(x) = f^{-1}(x)\} = \{1,2\}.$

Statement – II : f is bijection and $f^{-1}(x) = 1 + \sqrt{x-1}$, $x \ge 1$.

2. Let $f(x) = (x+1)^2 - 1$, $x \ge -1$

Statement – I: The set $\{x : f(x) = f^{-1}(x)\} = \{0,-1\}$

Statement – II: f is a bijection.

Limits Continuity and Differentiability

MCQ-Single Correct

1. If for $x \in \left(0, \frac{1}{4}\right)$, the derivative of $\tan^{-1}\left(\frac{6x\sqrt{x}}{1-9x^3}\right)$ is \sqrt{x} . g(x), then g(x) equals:

(1) $\frac{9}{1+9x^3}$

 $(2) \ \frac{3x\sqrt{x}}{1-9x^3}$

(3) $\frac{3x}{1-9x^3}$

(4) $\frac{3}{1+9x^3}$

[2017]

2. $\lim_{x \to \frac{\pi}{2}} \frac{\cot x - \cos x}{(\pi - 2x)^3} \text{ equals :}$

(1) $\frac{1}{24}$

(2) $\frac{1}{16}$

(3) $C_6H_5CH = CHC_6H_5$

(4) $\frac{1}{4}$

[2017]

3. Let $p = \lim_{x \to 0+} \left(1 + \tan^2 \sqrt{x}\right)^{\frac{1}{2x}}$ then log p is equal to :

(1) 1

(2) ½

(3) 1/4

(4) 2

[2016]

4. For $x \in R$, $f(x) = \log 2 - \sin x$ and g(x) = f(f(x)), then:

(1) $g'(0) = \cos(\log 2)$

(2) $g'(0) = -\cos(\log 2)$

(3) g is differentiable at x = 0 and $g'(0) = -\sin(\log 2)$

(4) g is not differentiable at x = 0

[2016]

5. $\lim_{x\to 0} \frac{(1-\cos 2x)(3+\cos x)}{x\tan 4x}$ is equal to :

(1) 3

(2) 2

(3) 1/2

(4) 4

[2015]

(3)
$$a \in R, b = 2$$

(4)
$$a = 1$$
 and $b = 2$

[2004]

23. Let $f(x) = \frac{1 - \tan x}{4x - \pi}$, $x \neq \frac{\pi}{4}$, $x \in \left[0, \frac{\pi}{2}\right]$. If f(x) is continuous in $\left[0, \frac{\pi}{2}\right]$, then $f\left(\frac{\pi}{4}\right)$ is

(1) 1

(2) ½

(3) -1/2

(4) -1

[2004]

24. If $x = e^{y + e^{y + \dots + to^{\infty}}}$, x > 0, then $\frac{dy}{dx}$ is

 $(1) \ \frac{x}{1+x}$

(2) $\frac{1}{x}$

(3) $\frac{1-x}{x}$

 $(4) \ \frac{1+x}{x}$

[2004]

25. $\lim_{x \to \pi/2} \frac{\left[1 - \tan\left(\frac{x}{2}\right)\right] \left[1 - \sin x\right]}{\left[1 + \tan\left(\frac{x}{2}\right)\right] \left[\pi - 2\pi\right]^3} \text{ is}$

(1) 1/8

(2) 0

(3) 1/32

(4) ∞

[2003]

26. If $\lim_{x\to 0} \frac{\log(3+x) - \log(3-x)}{x} = k$, the value of k is

(1) 0

(2) -1/3

(3) 2/3

(4) -2/3

[2003]

27. Let f (a) = g(a) = k and their n^{th} derivatives $f^n(a)$, $g^n(a)$ exist and are not equal for some n.

Further if $\lim_{x\to a} \frac{f(a)g(x) - f(a) - g(a)f(x) + g(a)}{g(x) - f(x)} = 4$, then the value of k is

(1) 4

(2) 2

(3) 1

(4) 0

[2003]

28. If
$$f(x) = \begin{cases} xe^{-\left(\frac{1}{|x|} + \frac{1}{x}\right)} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

then f(x) is

- (1) Continuous as well as differentiable for all x
- (2) Continuous for all x but not differentiable at x = 0
- (3) Neither differentiable nor continuous at x = 0
- (4) Discontinuous everywhere

[2003]

29.
$$\lim_{n\to\infty} \frac{1+2^4+3^4+\ldots +n^4}{n^5} - \lim_{n\to\infty} \frac{1+2^3+3^3+\ldots +n^3}{n^5}$$

is

(1)
$$\frac{1}{30}$$

(2) zero

(3)
$$\frac{1}{4}$$

(4)
$$\frac{1}{5}$$

[2003]

- 30. $\lim_{x\to 0} \frac{\log x^n [x]}{[x]}$, $n \in N$, ([x] denotes greatest integer less than or equal to x)
 - (1) has value -1

(2) has value 0

(3) has value 1

(4) does not exist

[2002]

31.
$$\lim_{n \to \infty} \frac{1^p + 2^p + 3^p + \dots + n^p}{n^{p+1}}$$
 is

(1)
$$\frac{1}{p+1}$$

(2)
$$\frac{1}{p-1}$$

(3)
$$\frac{1}{p} - \frac{1}{p-1}$$

(4)
$$\frac{1}{p+2}$$

[2002]

- 32. f is defined in [-5,5] as f(x) = x, if x is rational and = -x, if x is irrational. Then
 - (1) f(x) is continuous at every x, except x = 0
 - (2) f(x) is discontinuous at every x, except x = 0

- (3) f(x) is continuous everywhere
- (4) f(x) is discontinuous everywhere

33. If
$$y = \left(x + \sqrt{1 + x^2}\right)^x$$
, then $\left(1 + x^2\right) \frac{d^2 y}{dx^2} + x \frac{dy}{dx}$ is

(1) $n^2 y$

(2) $-n^2 y$

(3) - y

(4) $2n^2y$

[2002]

34. If f(1) = 1, f'(1) = 2, then $\lim_{x \to 1} \frac{\sqrt{f(x)} - 1}{\sqrt{x} - 1}$ is

(1) 2

(2) 4

(3) 1

(4) 1/2

[2002]

35. $\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{\sqrt{2}x} \text{ is}$

(1) 1

(2) -1

(3) 0

(4) does not exist

[2002]

36. $\lim_{x \to \infty} \left(\frac{x^2 + 5x + 3}{x^2 + x + 3} \right)^{1/x}$

(1) e^4

(2) e^2

(3) e^3

(4) 1

[2002]

37. Let f(x) = 4 and f'(x) = 4, then $\lim_{x \to 2} \frac{xf(2) - 2f(x)}{x - 2}$ equals

(1) 2

(2) -2

(3) -4

(4) 3

[2002]

Assertion - Reason Type

1. Define F (x) as the product of two real functions
$$f_1(x) = x$$
, $x \in R$ and [2011]

$$f_2(x) = \begin{cases} \sin 1/x, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$
 as follows

$$F(x) = \begin{cases} f_1(x).f_2(x), & if \ x \neq 0 \\ 0, & if \ x = 0 \end{cases}$$

Statement-I: F(x) is continuous on R

Statement-II: $f_1(x)$ and $f_2(x)$ are continuous on R

2. Let
$$f: R \to R$$
 be a continuous function defined by $f(x) = \frac{1}{e^x + 2e^{-x}}$, [2010]

Statement-I: $f(c) = \frac{1}{3}$, for some $c \in R$

Statement-II: $0 < f(x) \le \frac{1}{2\sqrt{2}}$, for all $x \in R$

3. Let
$$f(x) = x |x|$$
 and $g(x) = \sin x$ [2009]

Statement-I: gof is differentiable at x = 0 and its derivative is continuous at that point.

Statement-II: gof is twice differentiable at x = 0.

Applications of Derivatives

MCQ-Single Correct

1.	Twenty meters of wire is available for fencing off a flower-bed in the form of a circular sector.
	Then the maximum area (in sq. m) of the flower bed is

(1) 12.5 (2) 10

(3) 25 (4) 30 **[2017]**

2. The normal to the curve y(x-2)(x-3) = x+6 at the point where the curve intersects the y-axis passes through the point :

(1) $\left(-\frac{1}{2}, -\frac{1}{2}\right)$ (2) $\left(\frac{1}{2}, \frac{1}{2}\right)$

(3) $\left(\frac{1}{2}, -\frac{1}{3}\right)$ (4) $\left(\frac{1}{2}, \frac{1}{3}\right)$

3. A wire of length 2 units is cut into two parts which are bent respectively to form to form a square of side = x units and a circle of radius = r units. If the sum of the areas of the square and the circle so formed is minimum, then:

(1) $(4-\pi)x = \pi r$ (2) x = 2r

(3) 2x = r (4) $2x = (\pi + 4)r$ [2016]

4. Consider $f(x) = \tan^{-1}\left(\sqrt{\frac{1+\sin x}{1-\sin x}}\right)$, $x \in \left(0, \frac{\pi}{2}\right)$. A normal to y = f(x) at $x = \frac{\pi}{6}$ also passes

through the point:

 $(1) \left(0, \frac{2\pi}{3}\right)$ $(2) \left(\frac{\pi}{6}, 0\right)$

(3) $\left(\frac{\pi}{4}, 0\right)$ (4) (0,0) [2016]

5. Let f(x) be a polynomial of degree four having extreme values at x = 1 and x = 2. If

 $\lim_{x\to 0} \left[1 + \frac{f(x)}{x^2}\right] = 3$, then f(2) is equal to :

(1) -4 (2) 0

(3) 4 (4) -8 **[2015]**

6. The normal to the curve, $x^2 + 2xy - 3y^2 = 0$, at (1,1) :

- (1) meets the curve again in the second quadrant.
- (2) meets the curve again in the third quadrant.
- (3) meets the curve again in the fourth quadrant.

(4) does not meet the curve again. [2015]

7. If x = -1 and x = 2 are extreme points of f(x) = $\alpha \log |x| + \beta x^2 + x$, then

22.

(4) $\frac{\pi}{4}$

[2006]

(1) $\frac{\pi}{2}$

(3) $\frac{\pi}{6}$

Assertion – Reason Type

1. Consider the function, f(x) = |x-2| + |x-5|, $x \in R$

Statement – I : f'(4) = 0

Statement – II: f is continuous in [2,5], differentiable in (2,5) and f(2) = f(5)

Let a, b ϵ R be such that the function f given by f(x) = ln $|x| + bx^2 + ax$, $x \neq 0$ has extreme values 2. at x = -1 and x = 2.

Statement – I: f has local maximum at x = -1 and x = 2

Statement – **II** : $a = \frac{1}{2}$ and $b = -\frac{1}{4}$.

Let f be a function defined by $f(x) = \begin{cases} \frac{\tan x}{x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$ 3.

Statement-I: x = 0 is point of minima of f.

Statement – II: f'(0) = 0.

Definite Integrals

MCQ-Single Correct

1. The integral $\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 + \cos x}$ is equal to

(1) -2

(2) 2

(3) 4

(4) -1

[2017]

2. $\lim_{n\to\infty} \left(\frac{(n+1)(n+2).....3n}{n^{2n}}\right)^{1/n}$ is equal to :

(1) $\frac{27}{e^2}$

(2) $\frac{9}{e^2}$

(3) 3log3 -2

(4) $\frac{18}{a^4}$

[2016]

3. The integral $\int_{2}^{4} \frac{\log x^{2}}{\log x^{2} + \log \left(36 - 12x + x^{2}\right)} dx$ is equal to :

(1) 4

(2) 1

(3) 6

(4) 2

[2015]

4. The integral $\int_{0}^{\pi} \sqrt{1 + 4\sin^2 \frac{x}{2} - 4\sin \frac{x}{2}} dx$ equals

(1) $\pi - 4$

(2) $\frac{2\pi}{3} - 4 - 4\sqrt{3}$

(3) $4\sqrt{3}-4$

(4) $4\sqrt{3}-4-\frac{\pi}{3}$

[2014]

5. If $g(x) = \int_{0}^{x} \cos 4t dt$ then $g(x + \pi)$ equals

(1) g(x)

(2) $g(x) . g(\pi)$

(3) $\frac{g(x)}{g(\pi)}$

(4) $g(x) + g(\pi)$

[2012]

$$(3) \ \frac{\pi}{2} \int\limits_0^{\pi/2} f(\sin x) dx$$

$$(4) \ \pi \int_{0}^{\pi/2} f(\cos x) dx$$

12.
$$\int_{-3\pi/2}^{-\pi/2} \left[(x+\pi)^3 + \cos^2(x+3\pi) \right] dx$$
 is equal to

(1)
$$\frac{\pi^4}{32}$$

(2)
$$\frac{\pi^4}{32} + \frac{\pi}{2}$$

(3)
$$\frac{\pi}{2}$$

(4)
$$\frac{\pi}{4}$$
 -1

[2006]

13. The value of $\int_{1}^{a} [x] f'(x) dx$, a > 1, where [x] denotes the greatest integer not exceeding x is

(1)
$$af(a) - \{f(1) + f(2) + \dots + f([a])\}$$

(2) [a]
$$f(a) - \{f(1) + f(2) + \dots + f([a])\}$$

(3)
$$[a]f([a]) - \{f(1) + f(2) + + f(a)\}$$

(4)
$$af([a]) - \{f(1) + f(2) ++f(a)\}[2006]$$

14.
$$\lim_{n\to\infty} \left[\frac{1}{n^2}\sec^2\frac{1}{n^2} + \frac{2}{n^2}\sec^2\frac{4}{n^2} + \dots + \frac{1}{n^2}\sec^21\right] \text{ equals}$$

(1)
$$\frac{1}{2} \sec 1$$

$$(2) \ \frac{1}{2}\cos ec1$$

(4)
$$\frac{1}{2} \tan 1$$

[2005]

15. If
$$I_1 = \int_0^1 2^{x^2} dx$$
, $I_2 = \int_0^1 2^{x^3} dx$, $I_3 = \int_1^2 2^{x^2} dx$ and $I_4 = \int_1^2 2^{x^3} dx$ then

(1)
$$I_2 > I_1$$

(2)
$$I_1 > I_2$$

(3)
$$I_3 = I_4$$

(4)
$$I_3 > I_4$$

[2005]

16. Let $f: R \to R$ be a differentiable function having f(2) = 6, $f'(2) = \left(\frac{1}{48}\right)$. Then $\lim_{x \to 2} \int_{6}^{f(x)} \frac{4t^3}{x-2} dt$ equals

(1) 24

(2) 36

(3) 12

(4) 18

[2005]

22. If
$$f(x) = \frac{e^x}{1+e^x}$$
, $I_1 = \int_{f(-a)}^{f(a)} xg\{x(1-x)\}dx$ and $I_2 = \int_{f(-a)}^{f(a)} g\{x(1-x)\}dx$ then the value of $\frac{I_2}{I_1}$ is

(1) 2

(2) -3

- 23. If $f(y) = e^y$, g(y) = y; y > 0 and $F(t) = \int_0^t f(t y)g(y)dy$, then
 - (1) $F(t) = 1 e^{-t}(1+t)$ (2) $F(t) = e^{t} (1+t)$
 - (3) $F(t) = te^{-t}$ [2003]
- 24. If f(a + b x) = f(x), then $\int_{a}^{b} xf(x)dx$ is equal to
 - (1) $\frac{a+b}{2} \int_{a}^{b} f(b-x) dx$ (2) $\frac{a+b}{2} \int_{a}^{b} f(x) dx$
 - (3) $\frac{b-a}{2} \int_{a}^{b} f(x)dx$ (4) $\frac{a+b}{2} \int_{a}^{b} f(a+b-x)dx$ [2003]
- 25. The value of $\lim_{x\to 0} \frac{\int_{0}^{x^2} \sec^2 t dt}{x \sin x}$ is
 - (1) 3
 - (3) 1 (4) 0 **[2003]**
- 26. The value of the integral $I = \int_{0}^{1} x (1-x)^{n} dx$ is
 - (1) $\frac{1}{n+1}$ (2) $\frac{1}{n+2}$
 - (3) $\frac{1}{n+1} \frac{1}{n+2}$ (4) $\frac{1}{n+1} + \frac{1}{n+2}$
- 27. Let $\frac{d}{dx}F(x) = \left(\frac{e^{\sin x}}{x}\right), x > 0$. If $\int_{1}^{4} \frac{3}{x}e^{\sin x^{3}}dx = F(k) F(1)$, then one of the possible values of k, is
 - (1) 15 (2) 16
 - (3) 63 (4) 64 **[2003]**

(1)
$$e - \frac{e^2}{2} - \frac{5}{2}$$

(2)
$$e + \frac{e^2}{2} - \frac{3}{2}$$

(3)
$$e - \frac{e^2}{2} - \frac{3}{2}$$

(4)
$$e + \frac{e^2}{2} + \frac{5}{2}$$

[2003]

29.
$$\int_{0}^{\sqrt{2}} \left[x^2 \right] dx \text{ is}$$

(1)
$$2 - \sqrt{2}$$

(2)
$$2+\sqrt{2}$$

(3)
$$\sqrt{2}-1$$

(4)
$$\sqrt{2}-2$$

[2002]

30.
$$I_{n} = \int_{0}^{\pi/4} \tan^{n} x dx, \text{ then } \lim_{n \to \infty} [I_{n} + I_{n-2}] \text{ equals (1) } \frac{1}{2}$$

[2002]

$$31. \qquad \int_{\pi}^{10\pi} |\sin x| \, dx \text{ is}$$

(2) 8

[2002]

32. If y = f(x) makes positive intercept of 2 and 0 unit in x and y axes and encloses an area of $\sqrt[3]{4}$ square units with the axes then $\int_{0}^{2} f'(x)dx$ is

$$(4) - 3/4$$

33.
$$\int_{-\pi}^{\pi} \frac{2x(1+\sin x)}{1+\cos^2 x} dx \text{ is}$$

(1) $\frac{\pi^2}{4}$

(2) π²

(3) 0

 $(4) \ \frac{\pi}{2}$

Assertion – Reason Type

1. **Statement – I**: The value of the integral $\int_{\pi/6}^{\pi/3} \frac{dx}{1+\sqrt{\tan x}}$ is equal to $\frac{\pi}{6}$. [2013]

Statement – II:
$$\int_a^b f(x)dx = \int_a^b f(a+b-x)dx$$
.

Indefinite Integrals

MCQ-Single Correct

1. Let $I_n = \int \tan^n x dx$, (n > 1). If $I_4 + I_6 = a \tan^6 x + bx^5 + C$, where C is a constant of integration, then the ordered pair (a,b) is equal to :

$$(1) \left(-\frac{1}{5},1\right)$$

$$(2) \left(\frac{1}{5}, 0\right)$$

$$(3) \left(\frac{1}{5}, -1\right)$$

$$(4) \left(-\frac{1}{5},0\right)$$

[2017]

2. The integral $\frac{\pi^2}{16}$ is equal to :

(1)
$$\frac{x^{10}}{2(x^5+x^3+1)^2}+C$$

(2)
$$\frac{x^5}{2(x^5 + x^3 + 1)^2} + C$$

(3)
$$\frac{-x^{10}}{2(x^5+x^3+1)^2}+C$$

(4)
$$\frac{-x^5}{\left(x^5 + x^3 + 1\right)^2} + C$$

[2016]

3. The integral $\int \frac{dx}{x^2(x^4+1)^{3/4}}$ equals :

(1)
$$(x^4+1)^{1/4}+c$$

(2)
$$-(x^4+1)^{1/4}+c$$

(3)
$$-\left(\frac{x^4+1}{x^4}\right)^{1/4}+c$$

(4)
$$\left(\frac{x^4+1}{x^4}\right)^{1/4}+c$$

[2015]

4. The integral $\int \left(1+x-\frac{1}{x}\right)e^{x+\frac{1}{x}}dx$ is equal to

(1)
$$(x-1)e^{x+\frac{1}{x}}+c$$

(2)
$$xe^{x+\frac{1}{x}} + c$$

(3)
$$(x+1)e^{x+\frac{1}{x}}+c$$

(4)
$$-xe^{x+\frac{1}{x}}+c$$

[2014]

5. If $\int f(x)dx = \Psi(x)$, then $\int x^5 f(x^3)dx$ is equal to

[2013]

(1)
$$\frac{1}{3}x^3\Psi(x^3) - 3\int x^3\Psi(x^3)dx + C$$

(2)
$$\frac{1}{3}x^3\Psi(x^3) - \int x^2\Psi(x^3)dx + C$$

(3)
$$\frac{1}{3} \left[x^3 \Psi \left(x^3 \right) - \int x^3 \Psi \left(x^3 \right) dx \right] + C$$

(4)
$$\frac{1}{3} \left[x^3 \Psi \left(x^3 \right) - \int x^2 \Psi \left(x^3 \right) dx \right] + C$$

6. The value of
$$\sqrt{2} \int \frac{\sin x dx}{\sin \left(x - \frac{\pi}{4}\right)}$$
 is

(1)
$$x + \log \left| \cos \left(x - \frac{\pi}{4} \right) \right| + c$$

(2)
$$x - \log \left| \sin \left(x - \frac{\pi}{4} \right) \right| + c$$

(3)
$$x + \log \left| \sin \left(x - \frac{\pi}{4} \right) \right| + c$$

(4)
$$x - \log \left| \cos \left(x - \frac{\pi}{4} \right) \right| + c$$
 [2008]

7.
$$\int \left\{ \frac{(\log x - 1)}{1 + (\log x)^2} \right\}^2 dx$$
 is equal to

$$(1) \ \frac{\log x}{\left(\log x\right)^2 + 1} + C$$

$$(2) \ \frac{x}{x^2+1} + C$$

(3)
$$\frac{xe^x}{1+x^2} + C$$

(4)
$$\frac{x}{(\log x)^2 + 1} + C$$
 [2005]

8. If
$$\int \frac{\sin x}{\sin(x-\alpha)} dx = Ax + B \log \sin(x-\alpha) + C$$
, then the value of (A,B) is

(1) $(\sin\alpha, \cos\alpha)$

(2) $(\cos \alpha, \sin \alpha)$

(3) $(-\sin\alpha,\cos\alpha)$

(4) $(-\cos\alpha, \sin\alpha)$

[2004]

9.
$$\int \frac{dx}{\cos x - \sin x}$$
 is equal to

$$(1) \ \frac{1}{\sqrt{2}} \log |\tan \left(\frac{x}{2} - \frac{\pi}{8}\right)| + C$$

(2)
$$\frac{1}{\sqrt{2}} \log \left| \cot \left(\frac{x}{2} \right) \right| + C$$

(3)
$$\frac{1}{\sqrt{2}} \log \left| \tan \left(\frac{x}{2} - \frac{3\pi}{8} \right) \right| + C$$

(4)
$$\frac{1}{\sqrt{2}} \log \left| \tan \left(\frac{x}{2} + \frac{3\pi}{8} \right) \right| + C$$
 [2004]

Area

MCQ - Single Correct

(1) 36

1.	The area (in sq. units) of the region $\{(x,y): x \ge 0, x + y \le 3, x^2 \le 4y \text{ and } y \le 1 + \sqrt{x} \}$ is		
	(1) $\frac{59}{12}$	(2) $\frac{3}{2}$	

(3)
$$\frac{7}{3}$$
 (4) $\frac{5}{2}$ [2017]

2. The area (in sq. units) of the region $\{(x,y): y^2 \ge 2x \text{ and } x^2 + y^2 \le 4x \text{ , } x \ge 0 \text{ , } y \ge 0 \}$ is :

(1)
$$\pi - \frac{8}{3}$$
 (2) $\pi - \frac{4\sqrt{2}}{3}$ (3) $\frac{\pi}{2} - \frac{2\sqrt{2}}{3}$ (4) $\pi - \frac{4}{3}$ [2016]

3. The area (in square units) of the region described by $\{(x,y): y^2 \le 2x \text{ and } y \ge 4x - 1\}$ is:

(1)
$$\frac{5}{64}$$
 (2) $\frac{15}{64}$ (3) $\frac{9}{32}$ (4) $\frac{7}{32}$ [2015]

4. The area of the region described by $A = \{(x,y) : x^2 + y^2 \le 1 \text{ and } y^2 \le 1 - x \}$ is [2014]

(1)
$$\frac{\pi}{2} + \frac{4}{3}$$
 (2) $\frac{\pi}{2} - \frac{4}{3}$

(3)
$$\frac{\pi}{2} - \frac{2}{3}$$
 (4) $\frac{\pi}{2} + \frac{2}{3}$

5. The area (in square units) bounded by the curves $y = \sqrt{x}$, 2y - x + 3 = 0, x-axis, and lying in the first quadrant is

(3)
$$\frac{27}{4}$$
 (4) 9 [2013]

(2) 18

6.	The area bounded between the parabola $x^2 =$	$=\frac{y}{4}$ and $x^2 = 9y$ and the straight line y = 2 is		
	(1) $\frac{20\sqrt{2}}{3}$	(2) $10\sqrt{2}$		
	(3) $20\sqrt{2}$	(4) $\frac{10\sqrt{2}}{3}$)12]	
7.	The area bounded by the curves $y^2 = 4x$ and x^2	= 4y is		
	(1) 8/3	(2) 0		
	(3) 32/3	(4) 16/3)11]	
8.	The area bounded by the curves y = cos x and y is	$y = \sin x$ between the ordinates $x = 0$ and $x = 3$	3π/2	
	(1) $4\sqrt{2} + 2$ (3) $4\sqrt{2} + 1$	(2) $4\sqrt{2}-1$ (4) $4\sqrt{2}-2$ [20]		
	(3) $4\sqrt{2}+1$	(4) $4\sqrt{2}-2$ [20]	010]	
9.	The area of the plane region bounded by the co	urves $x + 2y^2 = 0$ and $x + 3y^2 = 1$ is equal to		
	(1) 5/3	(2) 1/3		
	(3) 2/3	(4) 4/3	008]	
10.	The area enclosed between the curve y = log _e (x	x + e) and the coordinate axes is		
	(1) 1	(2) 2		
	(3) 3	(4) 4 [20	005]	
11.	The parabolas $y^2 = 4x$ and $x^2 = 4y$ divide the square region bounded by the lines $x = 4$, $y = 4$ and the coordinate axes. If S_1 , S_2 , S_3 are respectively the areas of these parts numbered from top to bottom; then $S_1 : S_2 : S_3$ is			
	(1) 1:2:1	(2) 1:2:3		
	(3) 2:1:2	(4) 1:1:1	005]	
12.	Let f(x) be a non-negative continuous function			
	x-axis and the ordinates x = 3 : $\sqrt{2}$ and x = $\beta > \pi/4$ is $\left(\beta \sin \beta + \frac{\pi}{4} \cos \beta + \sqrt{2}\beta\right)$. Then f($\pi/2$)			
	is			

$$(1) \left(\frac{\pi}{4} + \sqrt{2} - 1\right)$$

$$(2) \left(\frac{\pi}{4} - \sqrt{2} + 1\right)$$

(3)
$$1 + \frac{1}{4.2!} + \frac{1}{16.4!} + \frac{1}{64.6!} + \dots$$

$$(4) \left(1 - \frac{\pi}{4} + \sqrt{2}\right)$$

[2005]

13. The area of the region bounded by the curves y = |x-2|, x = 1, x = 3 and the x-axis is

(1) 1

(2) 2

(3) 3

(4) 4

[2004]

14. The area of the region bounded by the curves y = |x - 1| and y = 3 - |x| is

(1) 2 sq units

(2) 3 sq units

(3) 4 sq units

(4) 6 sq units

[2003]

15. The area bounded by the curves $y = \ln x$, $y = \ln |x|$, $y = |\ln x|$ and $y = |\ln |x|$ is

(1) 4 sq. units

(2) 6 sq. units

(3) 10 sq. units

(4) none of these

Differential Equations

MCQ-Single Correct

1.	If $(2+\sin x)\frac{dy}{dx} + (y+1)\cos x = 0$ and $y(0) = 0$	1 , then $y\left(\frac{\pi}{2}\right)$ is equal to :		
	(1) 1/3	(2) -2/3		
	(3) -1/3	(4) 4/3 [2017]		
2.	If a curve $y = f(x)$ passes through the point (1,	-1) and satisfies the differential equation,		
	y(1 + xy) dx = x dy , then $f\left(-\frac{1}{2}\right)$ is equal to :			
	(1) -4/5	(2) 2/5		
	(3) 4/5	(4) -2/5 [2016]		
3.	Let y(x) be the solution of the differential equat	tion $(x \log x) \frac{dy}{dx} + y = 2x \log x$, $(x \ge 1)$. Then		
	y(e) is equal to :			
	(1) 0	(2) 2		
	(3) 2e	(4) e [2015]		
4.	Let the population of rabbits surviving at a time t be governed by the differential equation $\frac{dp(t)}{dt} = \frac{1}{2} p(t) - 200.$ If p(0) = 100, then p(t) equals			
	(1) $400 - 300e^{t/2}$	(2) $300 - 200e^{-t/2}$		
	(3) $600 - 500e^{t/2}$	(4) 400 – 300e ^{-t/2} [2014]		
5.	At present, a firm is manufacturing 2000 items.			
	production P w.r.t. additional number of workers x is given by $\frac{dP}{dx} = 100 - 12\sqrt{x}$. If the firm employs 25 more workers, then the new level of production of items is			
	(1) 3000	(2) 3500		
	(3) 4500	(4) 2500 [2013]		

	(3) $y = xe^{(x-1)}$	(4) $y = x \ln x + x$	[2008]
12.	The differential equation of the family of circles = 2 is	with fixed radius 5 units and centre on t	he line y
	(1) $(x-2)y'^2 = 25 - (y-2)^2$	(2) $(y-2)y'^2 = 25 - (y-2)^2$	
	(3) $(y-2)^2y'^2 = 25 - (y-2)^2$	(4) $(x-2)^2 y'^2 = 25 - (y-2)^2$	[2008]
13.	The normal to a curve at P(x,y) meets the x-axis the abscissa of P, then the curve is	at G. If the distance of G from the origin	is twice
	(1) an ellipse	(2) a parabola	
	(3) a circle	(4) a hyperbola	[2007]
14.	The differential equation of all circles passing the x-axis is	nrough the origin and having their centre	s on the
	$(1) x^2 = y^2 + xy \frac{dy}{dx}$	$(2) x^2 = y^2 + 3xy \frac{dy}{dx}$	
	$(3) y^2 = x^2 + 2xy \frac{dy}{dx}$	$(4) y^2 = x^2 - 2xy \frac{dy}{dx}$	[2007]
15.	The differential equation whose solution is Ax^2 is of	+ $By^2 = 1$, where A and B are arbitrary con	nstants
	(1) second order and second degree	(2) first order and second degree	
	(3) first order and first degree	(4) second order and first degree	[2006]
16.	The differential equation representing the fami parameter, is of order and degree as follows:	ly of curves $y^2 = 2c(x + \sqrt{c})$, where $c > 0$, is a
	(1) order 1, degree 2	(2) order 1, degree 1	
	(3) order 1, degree 3	(4) order 2, degree 2	[2005]
17.	If $x \frac{dy}{dx} = y(\log y - \log x + 1)$, then the solution	n of the equation is	
	$(1) y \log \left(\frac{x}{y}\right) = cx$	$(2) x \log \left(\frac{y}{x}\right) = cy$	

(3)
$$\log\left(\frac{y}{x}\right) = cx$$
 (4) $\log\left(\frac{x}{y}\right) = cy$

- 18. The differentatial equation for the family of curves $x^2 + y^2 2ay = 0$, where a is an arbitrary constant is
 - (1) $2(x^2 y^2)y' = xy$ (2) $2(x^2 + y^2)y' = xy$
 - (3) $(x^2 y^2)y' = 2xy$ (4) $(x^2 + y^2)y' = 2xy$ [2004]

[2005]

- 19. The solution of the differential equation $y dx + (x + x^2y) dy = 0$ is
 - (1) $-\frac{1}{xy} = C$ (2) $-\frac{1}{xy} + \log y = C$
 - (3) $\frac{1}{xy} + \log y = C$ (4) $\log y = Cx$ [2004]
- 20. The degree and order of the differential equation of the family of all parabolas whose axis is x-axis, are respectively
 - (1) 2,1 (2) 1,2
 - (3) 3,2 (4) 2,3 [**2003**]
- 21. The solution of the differential equation $(1+y^2) + (x-e^{\tan^{-1}y}) \frac{dy}{dx} = 0$, is
 - (1) $(x-2) = ke^{-\tan^{-1}y}$ (2) $2xe^{2\tan^{-1}y} = e^{2\tan^{-1}y} + k$
 - (3) $xe^{\tan^{-1}y} = \tan^{-1}y + k$ (4) $xe^{2\tan^{-1}y} = e^{\tan^{-1}y} + k$ [2003]
- 22. The solution of the equation $\frac{d^2y}{dx^2} = e^{-2x}$
 - (1) $\frac{1}{4}e^{-2x}$ (2) $\frac{1}{4}e^{-2x} + cx + d$
 - (3) $\frac{1}{4}e^{-2x} + cx^2 + d$ (4) $\frac{1}{4}e^{-2x} + c + d$ [2002]
- 23. The order and degree of the differential equation $\left(1+3\frac{dy}{dx}\right)^{2/3}=4\frac{d^3y}{dx^3}$ are

(1) 1, 2/3

(2) 3,1

(3) 3,3

(4) 1,2