Module 3: Reporting, Data Wrangling and Graphing (II)

Jianhui Gao

07/10/2025

Outline

Last module we reviewed how to tidy and plot data.

In this module, we will continue our discussion on

- Graphing (ggplot2) with a real-world dataset
- Git + Github

ggplot

- ggplot is the graphing package that goes with the tidyverse in R
- Very powerful to make a wide range of graphics
- Same pattern as tidyverse", but using"+" to connect.

How to write?

Specify the data using

```
ggplot(data = diamonds)
```

Specify the x-/y-axis,

```
ggplot(data = diamonds, mapping = aes(x = cut))
```

Specify the types of plots with geom, e.g.

```
+ geom_bar()
```

Data used - palmerpenguins

The palmerpenguins is a R package with data from the Long Term Ecological Research Network. It contains two datasets for 344 penguins and 3 species of penguins from 3 islands in the Palmer Archipelago, Antarctica.

Install and load package

From what we have learned so far, how to install package? What packages are we going to use?

Install and load package

From what we have learned so far, how to install package? What packages are we going to use?

```
install.packages("palmerpenguins")
```

```
library(tidyverse)
library(palmerpenguins)
```

Skim the data

How many observations? How many variables? What type?

Skim the data

How many observations? How many variables? What type?

```
head(penguins)
```

```
## # A tibble: 6 x 8
## species island bill_length_mm bill_depth_mm flipper_le
##
    <fct> <fct>
                              <dbl>
                                           <dbl>
## 1 Adelie Torgersen
                               39.1
                                            18.7
## 2 Adelie Torgersen
                             39.5
                                            17.4
                             40.3
## 3 Adelie Torgersen
                                            18
## 4 Adelie Torgersen
                               NA
                                            NΑ
## 5 Adelie Torgersen
                               36.7
                                            19.3
                                            20.6
## 6 Adelie Torgersen
                               39.3
## # i 2 more variables: sex <fct>, year <int>
```

Scatter plot

Consider a scatter plot of flipper length and body mass for species = "Adelie"

First let's prepare the data to plot (Hint: filter).

Scatter plot

Consider a scatter plot of flipper length and body mass for species = "Adelie"

First let's prepare the data to plot (Hint: filter).

```
pdata <- penguins %>%
  filter(species == "Adelie")
```

A blank canvas

aes stands for aesthetic and tells ggplot the main characteristics of your plot (x, y, and if the color or fill vary by group)

ggplot(data = pdata, aes(x = flipper_length_mm, y = body_mass_g))

Add the points

Add layers with ggplot using the +

```
ggplot(data = pdata, aes(x = flipper_length_mm, y = body_mass_g)) +
    geom_point()
```


Tidy up labels

```
ggplot(data = pdata, aes(x = flipper_length_mm, y = body_mass_g)) +
   geom_point() +
   xlab("Flipper length (mm)") +
   ylab("Body mass (g)")
```


Add a title

```
ggplot(data = pdata, aes(x = flipper_length_mm, y = body_mass_g)) +
geom_point() +
xlab("Flipper length (mm)") +
ylab("Body mass (g)") +
labs(title = "Penguin size, Palmer Station LTER")
```


Subtitle

```
ggplot(data = pdata, aes(x = flipper_length_mm, y = body_mass_g)) +
geom_point() +
xlab("Flipper length (mm)") +
ylab("Body mass (g)") +
labs(title = "Penguin size, Palmer Station LTER",
    subtitle = "Flipper length and body mass for Adelie")
```


Change color of points

To see all colors, type colors()

Size of points

Coloring by group

Now use the whole data penguins. Specifying the color in aes() because it **depends on the data**.

```
ggplot(data = penguins, aes(x = flipper_length_mm, y = body_mass_g, color = species)) +
geom_point(size = 3, alpha = 0.8) +
xlab("Flipper length (mm)") +
ylab("Body mass (g)") +
labs(title = "Penguin size, Palmer Station LTER",
    subtitle = "Flipper length and body mass for Adelie")
```


Change the color manually by group

Specifying the color in aes() because it **depends on the data**.

Change the theme

Change the color scheme

Optional: try ggsci functions.

```
ggplot(data = penguins, aes(x = flipper_length_mm, y = body_mass_g, color = species)) +
geom_point(size = 3, alpha = 0.8) +
xlab("Flipper length (mm)") +
ylab("Body mass (g)") +
labs(title = "Penguin size, Palmer Station LTER",
    subtitle = "Flipper length and body mass for Adelie") +
theme_bw() +
scale_color_viridis_d()
```


Other plot types?

Other types are also available, e.g. histograms, bar charts, box plots, line graphs and scatter plots.

Histograms

```
ggplot(data = penguins, aes(x = flipper_length_mm, fill = species)) +
geom_histogram(alpha = 0.8) +
scale_fill_manual(values = c("darkorange","purple","cyan4")) +
xlab("Flipper length (mm)") +
ylab("Frequency") +
labs(title = "Penguin flipper lengths") +
theme_bw()
```


Histogram

Try binwidth = and bins ==

```
ggplot(data = penguins, aes(x = flipper_length_mm, fill = species)) +
geom_histogram(binwidth = 1, alpha = 0.8) +
scale_fill_manual(values = c("darkorange","purple","cyan4")) +
xlab("Flipper length (mm)") +
ylab("Frequency") +
labs(title = "Penguin flipper lengths") +
theme_bw()
```


Boxplots

```
ggplot(data = penguins, aes(x = species, y = flipper_length_mm)) +
geom_boxplot(show.legend = FALSE) +
xlab("Flipper length (mm)") +
ylab("Frequency") +
labs(title = "Penguin flipper lengths") +
theme_bw()
```


Barcharts

First, try to summarize the penguin data by species and returns the proportion of each penguin types.

Barcharts

First, try to summarize the penguin data by species and returns the proportion of each penguin types.

```
gplot <- penguins %>%
  group_by(species) %>%
  tally() %>%
  mutate(prop = n / sum(n))
gplot

## # A tibble: 3 x 3
## species n prop
## <fct> <int> <dbl>
## 1 Adelie 152 0.442
## 2 Chinstrap 68 0.198
```

3 Gentoo 124 0.360

Barcharts

```
ggplot(data = gplot, aes(x = species, y = prop)) +
geom_bar(stat = "identity") +
xlab("Species") +
ylab("Proportions") +
labs(title = "Penguin species") +
theme_bw()
```


Faceting

```
ggplot(penguins, aes(x = flipper_length_mm, y = body_mass_g)) +
geom_point(aes(color = sex)) +
scale_color_manual(values = c("darkorange","cyan4"), na.translate = FALSE) +
labs(title = "Penguin flipper and body mass",
    subtitle = "Dimensions for male and female Adelie, Chinstrap and Gentoo Penguins at Palmer Station LTER"
    x = "Flipper length (mm)",
    y = "Body mass (g)",
    color = "Penguin sex") +
facet_wrap(-species)
```


Git + Github

What is Git?

- A control system to manage projects
- Good for tracking history

Git + Github

What is Git?

- A control system to manage projects
- Good for tracking history

What about Github?

- Cloud-based service for managing Git repositories
- Useful for teamwork
- Just like "Dropbox"

Why Git + Github?

- You can undo anything
- You won't need to keep undo-ing things (merge/load difference)
- You can identify exactly when and where changes were made
- Teamwork

Some github terminology

- User: A Github account for you (e.g., jules32).
- Organization: The Github account for one or more user (e.g., datacarpentry).
- Repository: A folder within the organization that includes files dedicated to a project.
- Local Github: Copies of Github files located your computer.
- Remote Github: Github files located on the https://github.com website.

Basic Git commands and workflow

When you are working on a your local machine you typically get started by:

git clone: Cloning a remote repository to work on locally. This is a
way to work with an ongoing project or edit someone else's project that
is available remotely (aka on GitHub).

From there, the typical workflow involves:

- git add: Adding files to your repo
- git commit: Commiting changes you have made
- git push: Pushing changes to a remote repository (aka GitHub)

For a collaborative project, or work between desktop and personal laptop, you would use the following first before git add

git pull: Pulling changes from a remote repository

Illustration diagram

REMOTE

(aka Github website)

Clone (i.e., copy) repository to your computer (a one time event)

Let's Git

Download Github and set up your github profile.

- Github Desktop, a GUI for using Github [link]
- (Optional) Learn how to use command line for Github management
 - Command line tutorial [link]

Resources

This tutorial is based on

- Monica Alexander's ggplot tutorial [link]
- Jesse Gronsbell's Github tutorial [link]

Other resources:

https://kbroman.org/github_tutorial/pages/resources.html