HPC Project Proposal Final Project EECE5640 High Performance Computing By Syed Shahbaaz Ahmed, Balaji Sundareshan

Problem Statement

The problem statement has two parts:

- To analyze Machine Learning(ML) and Deep Learning(DL) workloads on CPU, GPU and multi-GPU
- To use single-precision(FP32) and mixed precision(FP16 and FP32) for ML and DL workloads to obtain similar accuracy with reduced memory usage and faster training.

Workloads:

The following are the workloads that will be used in the project:

- 1. Linear Regression
- 2. Logistic Regression
- 3. Decision Trees
- 4. Image classification using Convolutional Neural Networks (CNN) CNN Architecture Backbone: ResNet 18

Datasets:

Two types of datasets will be used. One with tabular data (for ML workload) and other, image (matrix-type) data.

- Datasets for ML:
 - 1. UCI Higgs Dataset (classification)
 - 2. UCI YearPredictionMSD (regression)

- Datasets for DL:
 - 1. CIFAR 100 Dataset (classification)

Platform:

- All the proposed experiments would be on Discovery Cluster (K40, V100 GPUs)
- Framework: Pytorch which uses C++ and CUDA in the backend, for parallel implementation in CPU and GPU respectively.
- **Programming Language**: Python

Evaluation experiments:

- 1. Analyze run time and model accuracy for training and prediction across GPU and Multi-GPU for single precision and mixed precision inputs for image classification workload.
- 2. Analyze run time and model accuracy for training and prediction across CPU, GPU and Multi-GPU for the following workloads:
 - Linear Regression
 - Logistic Regression
 - Decision Trees
- 3. Number of experiments:

Workload	Number of experiments
Linear Regression	(CPU, GPU, Multi-GPU) * (training, prediction) * (single precision) = 3 * 2 * 1= 6
Logistic Regression	(CPU, GPU, Multi-GPU) * (training, prediction) * (single precision) = 3 * 2 * 1 = 6
Decision Trees	(CPU, GPU, Multi-GPU) * (training, prediction) * (single precision) = 3 * 2 * 1 = 6
Image Classification (CNNs)	(GPU, Multi-GPU) * (training, prediction) * (single precision, mixed precision) = 2 * 2 * 2 = 8

Total experiments = 26 (6 + 6 + 6 + 8)

Extra credit (+20 on quiz):

- Image reconstruction using CNNs
 - 1. Analyze run time and model accuracy for training and prediction across GPU and Multi-GPU for single precision and mixed precision inputs.
 - 2. Total number of experiments = 2 * 2 * 2 = 8

Grading Scheme:

A+	Analyzed all 4 workloads for CPU, GPU and Multi-GPU. Total experiments = 26 (6 + 6 + 6 + 8)	
A-	Analyzed 3 workloads for CPU, GPU and Multi-GPU. Total experiments = 20 (6 + 6 + 8)	
B+	Analyzed 2 workloads for CPU, GPU and Multi-GPU. Total experiments = 14 (6 + 8)	

References:

- 1. https://archive.ics.uci.edu/ml/datasets/HIGGS
- 2. https://archive.ics.uci.edu/ml/datasets/YearPredictionMSD
- 3. https://www.cs.toronto.edu/~kriz/cifar.html
- 4. https://pytorch.org/blog/accelerating-training-on-nvidia-gpus-with-pytorch-automatic-mixed-precision/
- 5. https://developer.nvidia.com/blog/gradient-boosting-decision-trees-xgboost-cuda/