

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1605

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: MID

Mode: TX Channel 11 (802.11b)

Model: GA20

Manufacturer: Leader Digital-tech Weitong

Note: Report No.:ATE20120037

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 12/02/06 Time: 10:23:55

Engineer Signature: Bob

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1606

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: MID

Mode: TX Channel 11 (802.11b)

Model: GA20

Manufacturer: Leader Digital-tech Weitong

Note: Report No.:ATE20120037

Power Source: AC 120V/60Hz

Date: 12/02/06 Time: 10:27:11

Engineer Signature: Bob

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #914

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: MID

Mode: TX Channel 1(802.11g)

Model: GA20

Manufacturer: Leader Digital-tech Weitong

Note: Report NO.:ATE20120037

Power Source: AC 120V/60Hz

Date: 12/02/03/ Time: 9/20/33 Engineer Signature:

	1	1 7 7	1 1 1		7	- 1	- ;	ż.	limit	1	
	1		111			1	1	1	Marg		
60	ļ										
50											
40						1					
30							3	Las chian	military delayersh	article is an experience	
				1				4			
20	years himself market manderly	May have for the filter about the	understately adapted	Market Ma	AND	nahamanahid	ya/mala				
20	HALLING THE STATE OF THE STATE	Padhater and Makes and	on the state of the same	man had mada from	a Magazanaya	Mountain	yaldakilish				
10				man harman ferr	m Approximately	polymous de	yes/milde				
10		50 60 70		Mary Park	m Appropriately	30				700 1000.0	
0.0				Result (dBuV/m)	Limit (dBuV/m)		00 40				
0.0	30.000 40 Freq.	50 60 70	80 Factor	Result	Limit	30 Margin	Detector	00 500	Degree	700 1000.0	
10	30.000 40 Freq. (MHz)	50 60 70 Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	эя Margin (dB)	Detector	00 500	Degree	700 1000.0	

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #913

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: MID

Mode: TX Channel 1(802.11g)

Model: GA20

Manufacturer: Leader Digital-tech Weitong

Note: Report NO.:ATE20120037

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 12/02/03/ Time: 9/19/10 Engineer Signature: Distance: 3m

F1.Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1626

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: mid

Mode: TX Channel 1 (802.11g)

Model: GA20

Manufacturer: Leader Digital-tech Weitong

ote: Report No.:ATE20120037

Polarization: Horizontal

Power Source: AC 120V/80Hz

Date: 12/02/06 Time: 12:05:30

Engineer Signature: Bob

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1625

Standard: FCC Class B 3M Radiated Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: mid

Mode: TX Channel 1 (802.11g)

Model: GA20

Manufacturer: Leader Digital-tech Weitong

Note: Report No.:ATE20120037

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 12/02/06 Time: 12:01:35

Engineer Signature: Bob

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1608

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: MID

Mode: TX Channel 1 (802.11g)

Model: GA20

Manufacturer: Leader Digital-tech Weitong

Note: Report No.:ATE20120037

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 12/02/06 Time: 10:35:56

Engineer Signature: Bob

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1607

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: MID

Mode: TX Channel 1 (802.11g)

Model: GA20

Manufacturer: Leader Digital-tech Weitong

Note: Report No.:ATE20120037

Power Source: AC 120V/60Hz

Date: 12/02/06 Time: 10:32:05

Engineer Signature: Bob

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #919

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: MID

Mode: TX Channel 6(802.11g)

Model: GA20

Manufacturer: Leader Digital-tech Weitong

Note: Report NO.:ATE20120037

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 12/02/03/ Time: 9/28/05 Engineer Signature:

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #920

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: MID

Mode: TX Channel 6(802.11g)

Model: GA20

Manufacturer: Leader Digital-tech Weitong

Note: Report NO.:ATE20120037

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 12/02/03/ Time: 9/29/04 Engineer Signature: Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1627

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT:

Mode: TX Channel 6 (802.11g)

Model: GA20

Manufacturer: Leader Digital-tech Weitong

Polarization: Horizontal Power Source: AC 120V/60Hz

Date: 12/02/06 Time: 12:09:47

Engineer Signature: Bob

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1628

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: mid

Mode: TX Channel 6 (802.11g)

Model: GA20

Manufacturer: Leader Digital-tech Weitong

Note: Report No.:ATE20120037

Polarization: Vertical Power Source: AC 120V/60Hz

Date: 12/02/06 Time: 12:13:30

Engineer Signature: Bob

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1609

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: MID

Mode: TX Channel 6 (802.11g)

Model: GA20

Manufacturer: Leader Digital-tech Weitong

Note: Report No.:ATE20120037

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 12/02/06 Time: 10:38:38

Engineer Signature: Bob

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1610

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: MID

Mode: TX Channel 6 (802.11g)

Model: GA20

Manufacturer: Leader Digital-tech Weitong

Note: Report No.:ATE20120037

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 12/02/06 Time: 10:43:17

Engineer Signature: Bob

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #926

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: MID

Mode: TX Channel 11(802.11g)

Model: GA20

Manufacturer: Leader Digital-tech Weitong

Note: Report NO.:ATE20120037

Power Source: AC 120V/60Hz

Date: 12/02/03/
Time: 9/34/13
Engineer Signature:
Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #925

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: MID

Mode: TX Channel 11(802.11g)

Model: GA20

Manufacturer: Leader Digital-tech Weitong

Note: Report NO.:ATE20120037

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 12/02/03/ Time: 9/33/17 Engineer Signature: Distance: 3m

70.0 dBuV/m

60

40

30

30

30

40

50

50

60

10

30.000 40

50

60

70.0 dBuV/m

Margin:

Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:
Margin:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	34.4059	12.21	16.82	29.03	40.00	-10.97	peak				
2	46.3806	10.12	15.53	25.65	40.00	-14.35	peak				
3	428.7960	10.82	23.01	33.83	46.00	-12.17	peak				

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 986 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Polarization: Horizontal

Job No.: Bob #1630

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1629

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: mid

Mode: TX Channel 11 (802.11g)

Model: GA20

Manufacturer: Leader Digital-tech Weitong

Note: Report No.:ATE20120037

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 12/02/06 Time: 12:15:47

Engineer Signature: Bob

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1611

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: MID

Mode: TX Channel 11 (802.11g)

Model: GA20

Manufacturer: Leader Digital-tech Weitong

Note: Report No.:ATE20120037

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 12/02/06 Time: 10:47:55

Engineer Signature: Bob

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #915

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: MID

Mode: TX Channel 1(802.11n)

Model: GA20

Manufacturer: Leader Digital-tech Weitong

Note: Report NO.:ATE20120037

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 12/02/03/ Time: 9/21/37 Engineer Signature:

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #916

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: MID

Mode: TX Channel 1(802.11n)

Model: GA20

Manufacturer: Leader Digital-tech Weitong

Note: Report NO.:ATE20120037

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 12/02/03/ Time: 9/22/34 Engineer Signature:

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1631

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: mid

Mode: TX Channel 1 (802.11n)

Model: GA20

Manufacturer: Leader Digital-tech Weitong

Note: Report No.:ATE20120037

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 12/02/06 Time: 12:21:30

Engineer Signature: Bob

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1832

Standard: FCC Class B 3M Radiated

Test item: Radiation Test Temp.(C)/Hum.(%) 24 C / 48 %

EUT: mid

Mode: TX Channel 1 (802.11n)

Model: GA20

Manufacturer: Leader Digital-tech Weitong

Note: Report No.:ATE20120037

Polarization: Vertical

Power Source: AC 120V/80Hz

Date: 12/02/06 Time: 12:23:06

Engineer Signature: Bob

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1617

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: MID

Mode: TX Channel 1 (802.11n)

Model: GA20

Manufacturer: Leader Digital-tech Weitong

Note: Report No.:ATE20120037

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 12/02/06 Time: 11:09:37

Engineer Signature: Bob

Distance:

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1618

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: MID

Mode: TX Channel 1 (802.11n)

Model: GA20

Manufacturer: Leader Digital-tech Weitong

Note: Report No.:ATE20120037

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 12/02/06 Time: 11:14:41

Engineer Signature: Bob

Distance:

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #918

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT:

MID

Mode: TX Channel 6(802.11n)

Model: GA

Manufacturer: Leader Digital-tech Weitong

Note: Report NO.:ATE20120037

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 12/02/03/ Time: 9/27/24 Engineer Signature:

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #917

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: MID

Mode: TX Channel 6(802.11n)

Model: GA20

Manufacturer: Leader Digital-tech Weitong

Note: Report NO.:ATE20120037

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 12/02/03/
Time: 9/26/06
Engineer Signature:
Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 986 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1634

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: mid

Mode: TX Channel 6 (802.11n)

Model: GA20

Manufacturer: Leader Digital-tech Weitong

Note: Report No.:ATE20120037

Polarization: Horizontal

Power Source: AC 120V/60Hz Date: 12/02/06 Time: 12:29:53

Engineer Signature: Bob

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1833

Standard: FCC Class B 3M Radiated

Test item: Radiation Test Temp.(C)/Hum.(%) 24 C / 48 %

EUT: mid

Mode: TX Channel 6 (802.11n)

Model: **GA20**

Manufacturer: Leader Digital-tech Weitong

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 12/02/06 Time: 12:26:47

Engineer Signature: Bob

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1616

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT:

Mode: TX Channel 6 (802.11n)

Model: GA20

Manufacturer: Leader Digital-tech Weitong

Note:

Report No.:ATE20120037

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 12/02/06 Time: 11:05:58

Engineer Signature: Bob

Distance:

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1615

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: MID

Mode: TX Channel 6 (802.11n)

Model: GA20

Manufacturer: Leader Digital-tech Weitong

Note: Report No.:ATE20120037

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 12/02/06 Time: 11:02:36

Engineer Signature: Bob

Distance:

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #927

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: MID

Mode: TX Channel 11(802.11n)

Model: GA20

Manufacturer: Leader Digital-tech Weitong

Note: Report NO.:ATE20120037

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 12/02/03/ Time: 9/35/12

Engineer Signature:

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #928

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: MID

Mode: TX Channel 11(802.11n)

Model: GA20

Manufacturer: Leader Digital-tech Weitong

Note: Report NO.:ATE20120037

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 12/02/03/ Time: 9/35/49 Engineer Signature:

Distance: 3m

3

428.7960

10.06

23.01

33.07

46.00

-12.93

QP

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1635

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: mid

Mode: TX Channel 11 (802.11n)

Model: GA20

Manufacturer: Leader Digital-tech Weitong

Note: Report No.:ATE20120037

Polarization: Horizontal Power Source: AC 120V/60Hz

Date: 12/02/06 Time: 12:33:17

Engineer Signature: Bob

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1636

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: mid

Mode: TX Channel 11 (802.11n)

Model: GA20

Manufacturer: Leader Digital-tech Weitong

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 12/02/06 Time: 12:36:07

Engineer Signature: Bob

F1, Bldg, A, Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1613

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: MID

Mode: TX Channel 11 (802.11n)

Model: GA20

Manufacturer: Leader Digital-tech Weitong

Report No.:ATE20120037

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 12/02/06 Time: 10:53:17

Engineer Signature: Bob

Distance:

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1614

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: MID

Mode: TX Channel 11 (802.11n)

Model: GA20

Manufacturer: Leader Digital-tech Weitong

Note: Report No.:ATE20120037

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 12/02/06 Time: 10:57:05

Engineer Signature: Bob

Distance:

10. CONDUCTED SPURIOUS EMISSION COMPLIANCE TEST

10.1.Block Diagram of Test Setup

10.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

10.3.EUT Configuration on Measurement

The following equipment is installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

10.3.1.MID (EUT)

Model Number : GA20 Serial Number : N/A

Manufacturer : Shenzhen Leader Digital-tech Weitong Co., Ltd.

10.4. Operating Condition of EUT

- 10.4.1. Setup the EUT and simulator as shown as Section 10.1.
- 10.4.2. Turn on the power of all equipment.
- 10.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2412-2462MHz. We select 2412MHz, 2437MHz, 2462MHz TX frequency to transmit.

10.5.Test Procedure

- 10.5.1. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 10.5.2.Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz.
- 10.5.3. The Conducted Spurious Emission was measured and recorded.

10.6.Test Result

Pass.

The spectrum analyzer plots are attached as below.

TX 802.11b Channel Low 2412MHz (1GHz-5GHz)

TX 802.11b Channel Low 2412MHz (10GHz-15GHz)

TX 802.11b Channel Low 2412MHz (20GHz-25GHz)

TX 802.11b Channel Middle 2437MHz (1GHz-5GHz)

TX 802.11b Channel Middle 2437MHz (10GHz-15GHz)

TX 802.11b Channel Middle 2437MHz (20GHz-25GHz)

TX 802.11b Channel High 2462MHz (1GHz-5GHz)

TX 802.11b Channel High 2462MHz (10GHz-15GHz)

TX 802.11b Channel High 2462MHz (20GHz-25GHz)

TX 802.11g Channel Low 2412MHz (1GHz-5GHz)

TX 802.11g Channel Low 2412MHz (10GHz-15GHz)

TX 802.11g Channel Low 2412MHz (20GHz-25GHz)

TX 802.11g Channel Middle 2437MHz (1GHz-5GHz)

TX 802.11g Channel Middle 2437MHz (10GHz-15GHz)

TX 802.11g Channel Middle 2437MHz (20GHz-25GHz)

TX 802.11g Channel High 2462MHz (1GHz-5GHz)

TX 802.11g Channel High 2462MHz (10GHz-15GHz)

TX 802.11g Channel High 2462MHz (20GHz-25GHz)

TX 802.11n Channel Low 2412MHz (1GHz-5GHz)

TX 802.11n Channel Low 2412MHz (10GHz-15GHz)

TX 802.11n Channel Low 2412MHz (15GHz-20GHz)

TX 802.11n Channel Low 2412MHz (20GHz-25GHz)

TX 802.11n Channel Middle 2437MHz (30MHz-1GHz)

TX 802.11n Channel Middle 2437MHz (1GHz-5GHz)

TX 802.11n Channel Middle 2437MHz (5GHz-10GHz)

TX 802.11n Channel Middle 2437MHz (10GHz-15GHz)

TX 802.11n Channel Middle 2437MHz (15GHz-20GHz)

TX 802.11n Channel Middle 2437MHz (20GHz-25GHz)

TX 802.11n Channel High 2462MHz (1GHz-5GHz)

TX 802.11n Channel High 2462MHz (10GHz-15GHz)

TX 802.11n Channel High 2462MHz (20GHz-25GHz)

11.AC POWER LINE CONDUCTED EMISSION FOR FCC PART 15 SECTION 15.207(A)

11.1.Block Diagram of Test Setup

11.1.1.Block diagram of connection between the EUT and simulators

11.1.2.Shielding Room Test Setup Diagram

(EUT: MID)

11.2. The Emission Limit

11.2.1.Conducted Emission Measurement Limits According to Section 15.207(a)

Frequency	Limit dB(μV)					
(MHz)	Quasi-peak Level	Average Level				
0.15 - 0.50	66.0 - 56.0 *	56.0 – 46.0 *				
0.50 - 5.00	56.0	46.0				
5.00 - 30.00	60.0	50.0				

^{*} Decreases with the logarithm of the frequency.

11.3. Configuration of EUT on Measurement

The following equipment are installed on the Conducted Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

11.3.1.MID (EUT)

Model Number : GA20 Serial Number : N/A

Manufacturer : Shenzhen Leader Digital-tech Weitong Co., Ltd.

11.4.Operating Condition of EUT

- 11.4.1. Setup the EUT and simulator as shown as Section 11.1.
- 11.4.2.Turn on the power of all equipment.
- 11.4.3.Let the EUT work in TX (802.11b Channel Middle, 802.11g Channel Middle, 802.11n Channel Middle) mode measure it.

11.5.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4: 2003 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

11.6.Power Line Conducted Emission Measurement Results

PASS.

The frequency range from 150kHz to 30MHz is checked.

Date of Test: February 3, 2012 Temperature: 25°C Humidity: 50%

Model No.: GA20 Power Supply: AC 120V/60Hz

Test Mode: TX 802.11b Channel Middle Test Engineer: Pei

Test Mode: T	X 802.11b Chan	nel Middle	_ Test Enginee	r: Pei	
Frequency (MHz)	Result (dBµV)	Limit (dBµV)	Margin (dB)	Detector	Line
0.154868	49.70	66	16.0	QP	
0.195997	46.60	64	17.2	QP	
0.451436	41.40	57	15.4	QP	- 37 / 1
0.154868	33.30	56	22.4	AV	Neutral
0.196781	29.40	54	24.3	AV	
0.438995	23.60	47	23.5	AV	
0.157990	48.10	66	17.5	QP	
0.194439	45.40	64	18.4	QP	
0.423503	38.50	57	18.9	QP] .
0.156109	31.70	56	24.0	AV	Live
0.195216	29.60	54	24.2	AV	
0.432041	24.20	47	23.0	AV	

Emissions attenuated more than 20 dB below the permissible value are not reported.

The spectral diagrams are attached as below.

Date of Test: February 3, 2012 Temperature: 25°C

EUT: MID Humidity: 50%

Model No.: GA20 Power Supply: AC 120V/60Hz

Test Mode: TX 802.11g Channel Middle Test Engineer: Pei

Frequency (MHz)	Result (dBμV)	Limit (dBµV)	Margin (dB)	Detector	Line
0.154868	47.10	66	18.6	QP	
0.194439	44.10	64	19.7	QP	
0.438995	39.40	57	17.7	QP	
0.154251	31.50	56	24.3	AV	Neutral
0.196781	28.70	54	25.0	AV	
0.432041	24.10	47	23.1	AV	
0.150600	49.70	66	16.3	QP	
0.206437	45.80	63	17.5	QP	
0.442514	41.60	57	15.4	QP	τ.
0.154251	33.90	56	21.9	AV	Live
0.192124	28.40	54	25.5	AV	
0.442514	23.30	47	23.7	AV	

Emissions attenuated more than 20 dB below the permissible value are not reported. The spectral diagrams are attached as below.

Date of Test:February 3, 2012Temperature:25°CEUT:MIDHumidity:50%Model No.:GA20Power Supply:AC 120V/60HzTest Mode:TX 802.11n Channel MiddleTest Engineer:Pei

Frequency (MHz)	Result (dBµV)	Limit (dBµV)	Margin (dB)	Detector	Line
0.153636	46.90	66	66	QP	
0.196781	43.50	64	64	QP	
0.442514	39.40	57	17.6	QP	
0.153024	32.30	56	23.5	AV	Neutral
0.194439	28.60	54	25.2	AV	
0.426898	24.20	47	23.1	AV	
0.153024	48.90	66	16.9	QP	
0.195216	46.20	64	17.6	QP	
0.449637	41.30	57	15.6	QP	. .
0.154868	32.60	56	23.1	AV	Live
0.190596	27.10	54	26.9	AV	
0.428605	23.20	47	24.1	AV	

Emissions attenuated more than 20 dB below the permissible value are not reported. The spectral diagrams are attached as below.

CONDUCTED EMISSION STANDARD FCC PART 15 B

MID M/N:GA20

Manufacturer: Leader Digital-tech Weitong

Operating Condition: TX Channel 6(802.11b) 1#Shielding Room Test Site:

Operator: Bob

Test Specification: L 120V/60Hz

Comment: Mains port

Reprot NO.:ATE20120037

SCAN TABLE: "V 150K-30MHz fin"

_SUB_STD_VTERM2 1.70 Short Description:

Start Stop Step Detector Meas. IF Transducer

Bandw. Width Time

Frequency Frequency 150.0 kHz 30.0 MHz 0.8 % QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "B-0203-03 fin"

2/3/2012	10:52	2AM						
Freque	ncy MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.157	990	48.10	11.0	66	17.5	QP	L1	GND
0.194	439	45.40	11.2	64	18.4	QP	L1	GND
0.423	503	38.50	11.9	57	18.9	QP	L1	GND

MEASUREMENT RESULT: "B-0203-03 fin2"

2AM						
Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
31.70	11.0	56	24.0	AV	L1	GND
29.60	11.2	54	24.2	AV	L1	GND
24.20	11.9	47	23.0	AV	L1	GND
	Level dBμV 31.70 29.60	Level Transd dB	Level Transd Limit dBμV dB dBμV 31.70 11.0 56 29.60 11.2 54	Level Transd Limit Margin dBμV dB dBμV dB 31.70 11.0 56 24.0 29.60 11.2 54 24.2	Level dBμV Transd dB dBμV Limit dBμV Margin dB Detector dB 31.70 11.0 56 24.0 AV 29.60 11.2 54 24.2 AV	Level dBμV Transd dB dBμV Limit dB dB dBμV Margin dB Detector Line dB dB dBμV 31.70 11.0 56 24.0 AV L1 29.60 11.2 54 24.2 AV L1

CONDUCTED EMISSION STANDARD FCC PART 15 B

EUT: MID M/N:GA20

Leader Digital-tech Weitong Manufacturer:

Operating Condition: TX Channel 6(802,11b) Test Site: 1#Shielding Room

Operator: Bob

Test Specification: N 120V/60Hz Comment: Mains port

Reprot NO.:ATE20120037

SCAN TABLE: "V 150K-30MHz fin"

Short Description: SUB STD VTERM2 1.70

Start Step Detector Meas. IF Transducer Stop Time Bandw. Width

Frequency Frequency 150.0 kHz 30.0 MHz 0.8 % QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "B-0203-04 fin"

2/3/2012 10:5	6AM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.154868	49.70	11.0	66	16.0	QP	N	GND
0.195997	46.60	11.2	64	17.2	QP	N	GND
0.451436	41.40	11.9	57	15.4	QP	N	GND

MEASUREMENT RESULT: "B-0203-04 fin2"

бам						
Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
33.30	11.0	56	22.4	AV	N	GND
29.40	11.2	54	24.3	AV	N	GND
23.60	11.9	47	23.5	AV	N	GND
	Level dBµV 33.30 29.40	Level Transd dB	Level Transd Limit dBμV dB dBμV 33.30 11.0 56 29.40 11.2 54	Level dBμV Transd dB dBμV Limit dB dBμV Margin dB 33.30 11.0 56 22.4 29.40 11.2 54 24.3	Level Transd dBμV Limit Margin dB Detector dB 33.30 11.0 56 22.4 AV 29.40 11.2 54 24.3 AV	Level Transd dBμV Limit dBμV Margin dB Detector Line dBμV 33.30 11.0 56 22.4 AV N 29.40 11.2 54 24.3 AV N

CONDUCTED EMISSION STANDARD FCC PART 15 B

EUT: MID M/N:GA20

Manufacturer: Leader Digital-tech Weitong

Operating Condition: TX Channel 6(802.11g) Test Site: 1#Shielding Room

Operator: Bob

Test Specification: L 120V/60Hz Comment: Mains port

Reprot NO.:ATE20120037

SCAN TABLE: "V 150K-30MHz fin"
Short Description: _SUB_S SUB_STD_VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer Frequency Frequency Width 150.0 kHz 30.0 MHz 0.8 % Bandw. Time QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "B-0203-05 fin"

2/3/2012 10):59AM						
Frequency	y Level	Transd	Limit	Margin	Detector	Line	PE
MH	z dBµV	dB	dBµV	dB			
0.150600	49.70	11.0	66	16.3	QP	L1	GND
0.20643	7 45.80	11.3	63	17.5	QP	L1	GND
0.44251	4 41.60	11.9	57	15.4	QP	L1	GND

MEASUREMENT RESULT: "B-0203-05 fin2"

2/3/2012	10:59	PAM						
Freque	ncy MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.154	251	33.90	11.0	56	21.9	AV	L1	GND
0.192	124	28.40	11.2	54	25.5	AV	LI	GND
0.442	514	23.30	11.9	47	23.7	AV	L1	GND

CONDUCTED EMISSION STANDARD FCC PART 15 B

EUT: MID M/N:GA20

Manufacturer: Leader Digital-tech Weitong

Operating Condition: TX Channel 6(802.11g)
Test Site: 1#Shielding Room

Operator: Bob

Test Specification: N 120V/60Hz Comment: Mains port

Mains port Reprot NO.:ATE20120037

SCAN TABLE: "V 150K-30MHz fin"

Short Description: __SUB_STD_VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.
150.0 kHz 30.0 MHz 0.8 % QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "B-0203-06 fin"

2/3/2012	11:0	3AM						
Freque	ncy	Level	Transd	Limit	Margin	Detector	Line	PE
	MHz	dΒμV	dB	dBµV	dB			
0.154	868	47.10	11.0	66	18.6	QP	N	GND
0.194	439	44.10	11.2	64	19.7	QP	N	GND
0.438	995	39.40	11.9	57	17.7	QP	N	GND

MEASUREMENT RESULT: "B-0203-06_fin2"

2/3/2012 11:0	ЗАМ						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dBµV	dB	dΒμV	dB			
0.154251	31.50	11.0	56	24.3	AV	N	GND
0.196781	28.70	11.2	54	25.0	AV	N	GND
0.432041	24.10	11.9	47	23.1	AV	N	GND

CONDUCTED EMISSION STANDARD FCC PART 15 B

EUT: MID M/N:GA20

Leader Digital-tech Weitong Manufacturer:

Operating Condition: TX Channel 6(802.11n) 1#Shielding Room Test Site:

Operator: Bob

Test Specification: N 120V/60Hz Comment: Mains port

Reprot NO.:ATE20120037

SCAN TABLE: "V 150K-30MHz fin"

SUB_STD_VTERM2 1.70 Short Description:

Start Stop Step Detector Meas. IF Transducer

Time Bandw.

Frequency Frequency Width 150.0 kHz 30.0 MHz 0.8 % QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "B-0203-07 fin"

2/	/3/2012	11:0	7AM						
	Frequent 1	ncy MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.153	536	46.90	11.0	66	18.9	QP	N	GND
	0.196	781	43.50	11.2	64	20.2	QP	N	GND
	0.442	514	39.40	11.9	57	17.6	OP	N	GND

MEASUREMENT RESULT: "B-0203-07 fin2"

2/3/2012 11:0	D7AM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.153024	32.30	11.0	56	23.5	AV	N	GND
0.194439	28.60	11.2	54	25.2	AV	N	GND
0.426898	24.20	11.9	47	23.1	AV	N	GND

CONDUCTED EMISSION STANDARD FCC PART 15 B

EUT: MID M/N:GA20

Manufacturer: Leader Digital-tech Weitong

Operating Condition: TX Channel 6(802.11n)

Test Site: 1#Shielding Room

Operator: Bob

Test Specification: L 120V/60Hz Comment: Mains port

Reprot NO.:ATE20120037

SCAN TABLE: "V 150K-30MHz fin"

_SUB_STD_VTERM2 1.70 Short Description:

Stop Start Step Detector Meas. IF Transducer

Bandw. Frequency Frequency Width Time NSLK8126 2008 150.0 kHz 30.0 MHz 0.8 % QuasiPeak 1.0 s 9 kHz

Average

MEASUREMENT RESULT: "B-0203-08 fin"

2/3/2012 1	1:11AM						
Frequency MH		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.15302	4 48.90	11.0	66	16.9	QP	L1	GND
0.19521	6 46.20	11.2	64	17.6	QP	L1	GND
0.44963	7 41.30	11.9	57	15.6	QP	L1	GND

MEASUREMENT RESULT: "B-0203-08 fin2"

2	/3/2012 11:1	1AM						
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.154868	32.60	11.0	56	23.1	AV	L1	GND
	0.190596	27.10	11.2	54	26.9	AV	L1	GND
	0.428605	23.20	11.9	47	24.1	AV	L1	GND

12.ANTENNA REQUIREMENT

12.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

12.2.Antenna Construction

Device is equipped with unique antenna, which isn't displaced by other antenna. Therefore, the equipment complies with the antenna requirement of Section 15.203.

