Toy Example

Permutation Closed Testing with Sum-Based Statistics

Data

Data with 5 variables and 10 permutations

		G		
(1)	(2)	(3)	(4)	(5)
28.42	16.68	9.36	6.12	9.40
0.10	0.06	1.37	0.08	0.56
0.69	3.07	4.33	0.83	0.36
1.07	30.31	1.11	8.55	0.26
0.22	7.45	2.87	0.48	1.02
1.83	0.04	2.85	0.04	0.02
17.68	1.82	6.00	1.52	1.06
1.77	26.12	0.29	0.26	4.07
2.71	0.37	8.47	5.83	4.42
1.14	0.03	24.06	8.84	2.41

We test $S=\{5\}$ with level $\alpha=$ 0.2

Analysis

Elements for the Analysis

d_S	$d_{\mathcal{S}}$ D				R
(5)	(4)	(3)	(2)	(1)	
0.00	0.00	0.00	0.00	0.00	0.00 (1) 0.00 (2) 0.00 (3) 0.00 (4)
-8.84	-6.03	-7.99	-16.62	-28.32	-6.03 (4) -7.99 (3) -16.62 (2) -28.32 (1)
-9.04	-5.29	-5.02	-13.61	-27.72	-5.02 (3) -5.29 (4) -13.61 (2) -27.72 (1)
-9.14	2.43	-8.25	13.63	-27.34	13.63 (2) 2.43 (4) -8.25 (3) -27.34 (1)
-8.38	-5.63	-6.49	-9.23	-28.19	-5.63 (4) -6.49 (3) -9.23 (2) -28.19 (1)
-9.38	-6.08	-6.51	-16.64	-26.59	-6.08 (4) -6.51 (3) -16.64 (2) -26.59 (1)
-8.34	-4.59	-3.36	-14.86	-10.74	-3.36 (3) -4.59 (4) -10.74 (1) -14.86 (2)
-5.33	-5.85	-9.07	9.44	-26.65	9.44 (2) -5.85 (4) -9.07 (3) -26.65 (1)
-4.98	-0.28	-0.89	-16.31	-25.71	-0.28 (4) -0.89 (3) -16.31 (2) -25.71 (1)
-6.99	2.72	14.70	-16.65	-27.27	14.70 (3) 2.72 (4) -16.65 (2) -27.27 (1)

Analysis

 L_{ν} and U_{ν} are the 8-th ordered statistics of

$$\mathbf{d}_{\tilde{V}} = \mathbf{d}_{S} + \sum_{i=1}^{v} \mathsf{D}_{i}$$
 $\mathbf{u}_{v} = \mathbf{d}_{S} + \sum_{i=1}^{v} \mathsf{R}_{i}$

V	0	1	2	3	4
U_{v}	-5.33	4.11	0.00	-6.22	-33.49
L_{ν}	-5.33	-5.26	-6.16	-6.22	-33.49
rej	Т	?	?	Т	Т

3

Analysis

Figure 1: Upper (red) and lower (blue) critical values and observed values (zero, black) by additional superset size ν .

Branch and Bound - Lowest

Statistic

Branch and Bound - Lowest Statistic

The total space is partitioned according to the inclusion of 4.

In both subspaces, U_{ν} decreases.

- \mathbb{S}_{-4} : L_{ν} may change, hence we examine both bounds
- ullet \mathbb{S}_{+4} : L_{v} does not change, hence we examine U_{v}

For each node, we save:

- ullet sizes v to be examined (when keeping an index, v decreases of 1 unit)
- R and the corresponding indices
- \bullet cumulative sums of $d_S + d_{kept}$ with R and D

Removal First - Step 1

- We enumerate the two subspaces: \mathbb{S}_{+4} is stored, and \mathbb{S}_{-4} is examined (both bounds)
- we keep removing indices until we can close a node
- then we start again from the node that was stored last

Removal First - Step 2

We start by examining U_{ν} in \mathbb{S}_{+4} (hence we cannot find any non-rejection).

Branch and Bound - Highest

Statistic

Branch and Bound - Highest Statistic

The total space may also be partitioned according to the inclusion of 1.

As in the previous case, U_{ν} decreases in both subspaces.

- ullet \mathbb{S}_{-1} : $L_{
 u}$ does not change, hence we examine $U_{
 u}$
- ullet \mathbb{S}_{+1} : L_{v} may change, hence we examine both bounds

In this case, it takes 3 steps in both cases.