Automata and Formal Languages (CS-2010)

Spring Mid-Semester Examination- 2020 School of Computer Engineering KIIT Deemed to be University, Bhubaneswar-24

Time: 1 hour 30 mins

Full Marks: 20

(Answer any four questions including question number 1)

1. Answer the following questions briefly.

 $[1\times5]$

- Show that the language $L = \{a^n : n \ge 0, n \ne 4\}$ is regular. b) Prove or disprove that the following pairs of regular expressions define the same language over the alphabet $\sum = \{a, b\}$

(ab+ a)*ab and (aa*b)*.

- c) Find an NFA with three states that accepts the language $L = \{a^n : n \ge 1\} \cup \{b^m a^k : m \ge 0, k \ge 0\}$.
- d) Construct an NFA equivalent to regular expression $r = (01 + 2^*)^* 1$.
- Find the shortest string not in the language over $\Sigma = \{a, b\}$ of the regular expression a*b*(ba)*a*.

2.

 $[2.5 \times 2]$

- a) Design a DFA to accept all the strings w over $\Sigma = \{1, 2, 3\}$ such that the digits in w appear in non-decreasing order. For example, it accepts 1123, but not 1232.
- b) Design a DFA for the following language on $\Sigma = \{a, b\}$

$$L = \{w : n_a(w) + 2n_b(w) \text{ mod } 3 < 2\}$$

3.

 $[2.5 \times 2]$

- a) Design an NFA that accepts strings over {0,1} that ends in 0 but doesn't have 11 as substring. Convert your NFA to DFA.
- b) Find the minimum state DFA equivalent to the following DFA.

$$M = (\{q_0, q_1, q_2, q_3, q_4, q_5\}, \sum = \{0, 1\}, \delta, q_0, F = \{q_3, q_5\})$$

13, 13)		
Q\∑ ->q ₀	0	1
->q ₀	q_1	q_3
q ₁	q_0	q_3
q ₂ *q ₃	q_1	q_4
*q ₃	q_5	q_5
q 4	q ₃	q_3
*q ₄	q_5	\mathbf{q}_{5}

a) Draw the transition diagram for the following transition table. Find a regular expression equivalent to the DFA.

		1
$Q\setminus\Sigma$	0	1
->q ₀	q ₀	<u>qı</u>
qı	<u>q2</u>	91
*q2	q ₀	1 42

- b) Write regular expression for the following language:
 - i. $L = \{b^m a b^n \mid m \ge 0, n \ge 0\}$
 - ii. Any string of length multiple of 5 over {0,1,2}
 - iii. Any string where first symbol is 0 and third symbol from right is 0 over $\{0,1\}$

[2+3]

If L_1 and L_2 are two regular languages then prove that L_1 - L_2 is also regular. 5.

State Pumping Lemma for the regular languages. Show that the language $L=\{a^nb^{2n}\mid n>=1\}$ a) b) is not regular.