Taller EDO

Diego Barajas Brandonn Cruz

October 2018

1 Puntos

1.1 1

La ecuación diferencial a resolver es:

$$\frac{dT}{dt} = \frac{-EyS(T^4(t) - Te^4)}{mC} \tag{1}$$

Donde E = 5.6x10^{-8}j/m^2K^2s, y = 1 (constante de emisividad), y S = 6m^2, $T_0{=}180{\rm K}$ Te = 200K, m = 1Kg y C = 100J/(Kg/K).

El resultado gráfico luego de aplicar el método de Euler, con 20 intervalos de 0 a 200 y h = 0.5 es:

Figure 1: Grafica Punto 1

La fórmula del método de Euler utilizada es: Método de Euler:

$$y_{i+1} = y_i + hf(x_i, y_i); y_0 = \alpha$$
 (2)

Donde α es la condición inicial, es decir que $\alpha = T_0 = 180$.

1.2 2

Para este problema, la ecuación diferencial a resolver era:

$$y' = 1 - x^2 + (x + y); y(0) = 1$$
(3)

Para obtener los cinco puntos solución de la ecuación, se utilizó el método de Taylor de segundo orden, es decir:

$$y_{i+1} = y_i + f(x_i, y_i)h + \frac{f'(x_i, y_i)}{2}h^2; y_0 = \alpha$$
 (4)

Donde α corresponde al valor inicial, es decir que $\alpha=1.$

Los resultados son:

X	Y	Error Truncamiento Solución Exacta		
0.0	1	0	1	
0.1	1.206	0.206	1.215171	
0.2	1.442778	0.236778	1.461403	
0.3	1.711571	0.2687931	1.739859	
0.4	2.013747	0.3021757	2.051825	

Figure 2: Grafica Punto 2

1.3 3

Para resolver el ejercicio se despejo la ecuación en términos de $\frac{dy}{dx}$ la cual queda de la siguiente manera:

$$\frac{dy}{dx} = -x^2 + x + y + 1; y(0) = 1$$
 (5)

posterior mente se aplico el método numérico de Euler para resolver la ecuación para los puntos 20 desde 0 hasta 1.9 con una diferencia de 0.1 entre cada punto y se obtuvieron los siguientes resultados:

X	Y	Solucion Exacta	Error Truncamiento
0	1	1	0
0.1	1.2	1.215171	0.01517092
0.2	1.429	1.461403	0.03240276
0.3	1.6879	1.739859	0.05195881
0.4	1.97769	2.051825	0.0741347
0.5	2.299459	2.398721	0.09926227
0.6	2.654405	2.782119	0.1277139
0.7	3.043845	3.203753	0.1599073

0.8	3.46923	3.665541	0.196311
0.9	3.932153	4.169603	0.2374502
1	4.434368	4.718282	0.2839136
1.1	4.977805	5.314166	0.336361
1.2	5.564586	5.960117	0.3955314
1.3	6.197044	6.659297	0.4622526
1.4	6.877749	7.4152	0.5374515
1.5	7.609523	8.231689	0.6221657
1.6	8.395476	9.113032	0.7175567
1.7	9.239023	10.06395	0.8249241
1.8	10.14393	11.08965	0.9457219
1.9	11.11432	12.19589	1.081576

Se graficaron los resultados:

Figure 3: Grafica Punto 3

1.4 4

se desarrollo el algoritmo descrito en el enunciado del taller para posteriormente evaluar la ecuación:

$$\frac{dy}{dx} = -x^2 + x + y + 1; y(0) = 1 \tag{6}$$

se obtuvieron los siguientes resulatados para los 20 puntos desde 0 hasta 1.9 con una diferencia de 0.1 entre cada punto:

X	Y	Solucion Exacta	Error Truncamiento
0	1	1	0
0.1	1.2145	1.215171	0.0006709181
0.2	1.459973	1.461403	0.001430258
0.3	1.73757	1.739859	0.002289195
0.4	2.048564	2.051825	0.003260276
0.5	2.394364	2.398721	0.004357585
0.6	2.776522	2.782119	0.005596927
0.7	3.196757	3.203753	0.006996038
0.8	3.656966	3.665541	0.008574808
0.9	4.159248	4.169603	0.01035555
1	4.705919	4.718282	0.01236327
1.1	5.29954	5.314166	0.01462602
1.2	5.942942	5.960117	0.01717522
1.3	6.639251	6.659297	0.02004608
1.4	7.391922	7.4152	0.02327807
1.5	8.204774	8.231689	0.02691537
1.6	9.082025	9.113032	0.03100749
1.7	10.02834	10.06395	0.03560984
1.8	11.04886	11.08965	0.04078447
1.9	12.14929	12.19589	0.04660083

Se graficaron los resultados:

1.5 5

Para resolver el ejercicio se despejo la ecuación en términos de $\frac{dy}{dx}$ la cual queda de la siguiente manera:

$$\frac{dy}{dx} = -x^2 + x + y + 1; y(0) = 1 \tag{7}$$

Luego se aplicó el método de Euler (ecuación (4)) y el método de Euler Mejorado (ecuación (5)).

Punto 4

Figure 4: Grafica Punto 4

Método de Euler:

$$y_{i+1} = y_i + hf(x_i, y_i); y_0 = \alpha$$
 (8)

Método de Euler mejorado:

$$y_{i+1} = y_i + h\left[\frac{f(x_i, y_i) + f(x_{i+1}, y_{i+1}^*)}{2}\right]; y_0 = \alpha$$
(9)

$$y_{i+1}^* = y_i + h f(x_i, y_i)$$
(10)

Donde α en ambas ecuaciones es la condición inicial, es decir que en este ejercicio $\alpha=1,$ dado que y(0)=1.

Los resultados son:

X	Euler	Euler mejorado	Exacta
0.0	1	1	1
0.1	1.2	1.2145	1.215171
0.2	1.429	1.459973	1.461403
0.3	1.6879	1.73757	1.739859
0.4	1.97769	2.048564	2.051825

0.5	2.299459	2.394364	2.398721
0.6	2.654405	2.776522	2.782119
0.7	3.043845	3.196757	3.203753
0.8	3.46923	3.656966	3.665541
0.9	3.932153	4.159248	4.169603

1.6 7

Para resolver el ejercicio se despejo la ecuación en términos de $\frac{dy}{dx}$ la cual queda de la siguiente manera:

$$\frac{dy}{dx} = -x^2 + x + y + 1; y(0) = 1 \tag{11}$$

Posteriormente se aplico el método de Runge Kutta de tercer y cuarto orden para obtener 10 puntos de la solución con un h=0.1, se compararon con el método de Euler y se obtuvieron los siguientes resultados

X	Euler	RK3	RK4	Exacta
0	1	1	1	1
0.1	1.2	1.215158	1.215171	1.215171
0.2	1.429	1.461376	1.461402	1.461403
0.3	1.6879	1.739816	1.739858	1.739859
0.4	1.97769	2.051763	2.051823	2.051825
0.5	2.299459	2.398638	2.398719	2.398721
0.6	2.654405	2.782012	2.782116	2.782119
0.7	3.043845	3.203618	3.20375	3.203753
0.8	3.46923	3.665375	3.665537	3.665541
0.9	3.932153	4.169402	4.169599	4.169603

Se graficaron los resultados:

Figure 5: Grafica punto 7