Electrophilic Attack On Benzene

from chapter(s)	in the recommended to	ext

A. Introduction

B. Electrophilic Bromination Of Alkenes And Benzene Compared

First Step: Approach Of Electrophile

is not

$$Br$$
 Br
 Br
 Br
 Br
 Br

do distribute

1 hydrogen atoms on C¹ and 1 on C².

faster than on benzene because for benzene aromatic

Second Step: Loss Of Positive Charge

<u>proton</u>. aromatic

heavier isotope the same as to attracted to)

$$H$$
 D^+ H

intermediate non-aromatic.

<u>loses</u> <u>slow</u>.

$$H$$
 Cl^+ H

$$H$$
 H
 H
 H

CI+ Br+

a nitronium ion, NO₂+

a sulfonium ion, HSO₃+

a methyl carbocation, Me+

an acylium ion, MeCO+

reversible.

<u>insufficiently</u>

$$CI-CI + FeCl_3 \longrightarrow Cl^{\delta+} - CI - - Fe^{\delta-}Cl_3$$
 $Br-Br + AlBr_3 \longrightarrow Br^{\delta+} - Br---Al^{\delta-}Br_3$

$$Br-Br + AlBr_3 \longrightarrow Br^{\delta+} - Br---Al^{\delta-}Br_3$$

acid

bromination

iodination

D. Sulfonation And Nitration Of Benzene

strong oleum. protonating.

sulfonation

nitration

E. Acylation Of Benzene (Friedel-Crafts)

acylium ions

CI AICI₃
$$\rightarrow$$
 $\stackrel{+}{=}$ 0 SnCI₄ \rightarrow $\stackrel{+}{=}$ 0 acylium acylium

ketones.

less electron rich do not tend to

equivalent.

F. Alkylation (Friedel-Crafts)

carbocations.

Lewis <u>acids</u>

$$\nearrow$$
 Br AlCl₃ \longrightarrow \nearrow SnCl₄ \longrightarrow

<u>do not</u> not to be is not a concern

methylation

alkylbenzenes, these are more do <u>are</u>

Carbocation Rearrangements Revisited <u>hydride</u>

decreases

