

Predicting Citi Bike Trip Duration Using Data Mining Algorithms

Katie Cao

Abstract

Purpose:

- Explore new revenue opportunities for bike share systems through data mining techniques.
- As these systems grow, sponsorship may not be able to scale at the same pace.

Goal:

- Predict Citi Bike trip duration based on geographic and demographic factors of trip-level data.
- Use this knowledge to implement dynamic pricing for peak use periods.

Methods:

- Downloaded Citi Bike system data and monthly operation reports.
- Applied data mining techniques including Decision Tree analysis, Logistic Regression, and Artificial Neural Networks.

Introduction

750+ active stations, across Manhattan, Brooklyn, Queens, and Jersey City Largest bike share system in North America - 6th largest in the world.

- 8K-9K active bikes on the fleet on any given day
- September 2018:
 - 146K active annual members
 - 121K casual passes purchased (single trip, 1 day, and 3 day)
 - 62K rides taken, with each bike averaging 7 rides per day
- Revenue for 2017 reached \$47M

Introduction

The current pricing model

Membership	Included	add'l 15 min
Subscriber	45 min	\$2.50
Customer	30 min	\$4.00

9.9 average trip duration Mins during Nov 2017 - Oct 2018

not charging dynamically

The flat rent rate should be around the same level as the average trip duration.

Learning Model

Classification

Ensemble

Higher Accuracy

Data Description Processing Data

12 months

Nov 2017 - Oct 2018

top 10 stations in Jersey City

based on Start frequency

Start time ->

- Morning
- Afternoon
- Evening
- Night

Birth year -> Age

- Youth
- Young adult
- Adult
- Senior

Trip duration (seconds -> minutes)

incoln Park

Jersey City

- < 5 Mins
- 5 10 Mins
- 10 15 Mins
- > 15 Mins

Marion Section Bergen Communipaw

www.citibikenyc.com/system-data

Croxton

Data Description - Variables

165,401 records in total with 60% training data, 30% testing and 10% validation to reduce overfitting problem

Field =	Measurement	Values	Missing	Check	Role
field1		[0,42010]		None	None
tripduration		[61.0,1193290		None	None
📆 starttime		[2017-11-01 0		None	○ None
📆 stoptime		[2017-11-01 0		None	○ None
start station id	💑 Nominal	3183.0,3186.0		None	○ None
start station name	Nominal Nominal	"Exchange Pla		None	> Input
🛞 start station latitu	Continuous	[40.71241882		None	○ None
start station longi	Continuous	[-74.06378388		None	○ None
end station id	Continuous	[212.0,3694.0]		None	None
end station name	💑 Nominal	"12 Ave & W 4		None	None
end station latitude	Continuous	[40.69263996		None	None
end station longit	Continuous	[-74.09693659		None	None
bikeid	Continuous	[14793.0,3500		None	○ None
usertype	Flag	Subscriber/Cu		None	> Input
♦ birth year	Continuous	[1887.0,2002.0]		None	○ None
gender	Nominal Nominal	0,1,2		None	> Input
⊕ age	∠ Continuous	[16.0,131.0]		None	○ None
A agegroup	Nominal Nominal	adult,senior,"y		None	> Input
A time	🔥 Nominal	afternoon,even		None	> Input
tripdurationinmins		[1.016666666		None	○ None
duration_window	Nominal	"10 - 15 mins",		None	Target

Methodology – Data Source and Data Pre-processing

- Data extracted from Citi Bike website directly
- Utilize Pandas and NumPy in Python to conduct feature engineering
 - Filter the top 10 stations to start and filter records with missing data
 - O Derive feature "age" using "birthyear" in the original dataset
 - Rescale trip duration from seconds to minutes and catergorize into four duration ranges

Methodology – Variable Selection and Model Building

- Utilize SPSS Feature Selection node to identify important features
 - However we didn't take out "usertype" as suggested by SPSS Modeler because doing so reduces the accuracy of the model
- Construct the following models to predict the duration window of the trip:

Decision Tree

Logistic Regression

Neural Network

Ensemble

Methodology – Overall Flow of the Project

Results – Decision Tree

Predicting 61.07% of the testing data correctly

usertype = Customer [Mode: >15 mins] >15 mins

Results – Neural Network

Network generated for classification

Classification for duration_window
Overall Percent Correct = 60.7%

Observed	Predicted				
Observed	10 - 15 mins	5 - 10 mins	<5 mins	>15 mins	100.00
10 - 15 mins	0.0%	21.5%	66.7%	11.8%	80.00 60.00 40.00
5 - 10 mins	0.0%	20.6%	75.3%	4.1%	0.00
<5 mins	0.0%	7.2%	91.8%	1.0%	
>15 mins	0.0%	13.9%	56.1%	29.9%	

Results – Neural Network

 Predicting 60.34% of data correctly for testing data

Model Summary

Target	duration_window
Model	Multilayer Perceptron
Stopping Rule Used	Minimum relative change in error achieved
Hidden Layer 1 Neurons	6

Results – Logistic Regression

 Predicting 60.07% of data correctly for testing data

Companing at-dura	ion_window v	ntii uurat	.ioii_wiiiuow			
'Partition'	1_Training		2_Testing		3_Validation	
Correct	59,866	60.36%	29,685	60.07%	10,158	60.47%
Wrong	39,315	39.64%	19,736	39.93%	6,641	39.53%
Total	99,181		49,421		16,799	
Coincidence Matr	ıx for \$∟-dura	tion_wind	dow (rows sh	ow actuals)		
$'Partition' = 1_{-1}$			- 15 mins		<5 mins	>15 mins
10 - 15 mins			1	1,546	4,690	813
- 5 - 10 mins			2	5,415	19,672	1,043
<5 mins			0	4,437	51,696	567
>15 mins			8	1,354	5,183	2,754
'Partition' = 2_7	Testing	10 -	- 15 mins	5 - 10 mins	<5 mins	>15 mins
10 - 15 mins			0	744	2,385	363
- 5 - 10 mins			1	2,593	9,865	507
<5 mins			0	2,208	25,758	263
>15 mins			1	713	2,686	1,334
'Partition' = 3_\	/alidation	1	10 - 15 mins	5 - 10 mins		>15 mins
10 - 15 mins			0	255		152
5 - 10 mins			1	931		150
			0	696	8,770	100
<5 mins			U	208		457

Results for output field duration_window

■ Comparing \$L-dura

Results – Ensemble

- Predicting 60.43% of data correctly for testing data
- Use confidence weighted voting method

Results for output field duration window Comparing \$XS-duration window with duration window 2 Testing 3 Validation 'Partition' 1 Training Correct 60.274 60.77% 29.865 60.43% 10.217 60.82% 6,582 39.18% Wrong 38.907 39.23% 19.556 39.57% Total 99.181 49.421 16.799 © Coincidence Matrix for \$x5-duration_window (rows show actuals) 'Partition' = 1 Training 5 - 10 mins <5 mins >15 mins 10 - 15 mins 1.534 4.671 845 5 - 10 mins 5.597 19.468 1.067 <5 mins 4.246 51,875 579 >15 mins 1.307 5,190 2,802 'Partition' = 2 Testing 5 - 10 mins <5 mins >15 mins 10 - 15 mins 729 2,392 371 5 - 10 mins 2.687 9,759 520 270 <5 mins 2.142 25,817 664 2.709 1,361 >15 mins 'Partition' = 3 Validation <5 mins >15 mins 5 - 10 mins 10 - 15 mins 248 799 152 5 - 10 mins 949 3,388 156 8.806 102 <5 mins 658 >15 mins 203 876 462

Results

PDecision tree outperforms all the other models in terms of predicting the testing data correctly (61.07%)

Most Important Factor:

Start Station

Rule 1

User type: Subscriber

Start Station: "Newport PATH"

Time of day: evening

Age Group: adult

Gender: 2

mode: 5 - 10 min

(210; 0.476)

Rule 2

User type: Subscriber

Start Station: "Exchange Place", "Grov

St PATH", "Hamilton Park",

"Harborside", "Marin Light Rail", "Morris

Canal", "Newark Ave"

mode: < **5** min (69,558; 0.671)

Rule 3

User type: Customer

mode: > 15 min

(5,364; 0.526)

Results – Limitation and Solution

Limitation: The data is not evenly distributed for the four trip duration range – "<5 mins" may be given more weights during the learning process

Reasons

- Relatively shorter distance between stations in Jersey city
- Re-docking errors

Solution: conduct k-fold cross validation for training data, however, it may incur significant computational cost

In [29]:	duration_class		
Out[29]:	duration_window		
	10 - 15 mins	11741	7.10%
	5 - 10 mins	43591	26.35%
	<5 mins	94495	57.13%
	>15 mins	15574	9.42%
	dtvpe: int64		

Conclusion

Predicting **trip duration range** is beneficial for Citi Bike to improve dynamic pricing strategy

- ► Implement flat-rate pricing during peak periods, similar to Lyft.
- ex: Evening commuters, charge \$3 premium for subscribers, \$5 for casual customers.
- Premium for certain stations (Rule 2)
- Ex: \$1.50 surcharge
- Need to dig deeper into more trends for these stations specifically, such as time of day.
- ► Reduce the "free" period for subscribers to fall closer in-line with the average trip duration.

Decision Tree as the prediction model because of:

- ► The highest **prediction accuracy** (61.07%) in testing data
- ► Readiness of explaining the results and rules to the management of Citi Bike
- ► Large dataset allows post-pruning hence reduces overfitting problem

Future Directions

- Explore more approaches to slice and dice the dataset for more accurate predictions
- Expand the size of the dataset to include records from a larger time span and wider stations