Notes for General Topology

Zhao Wenchuan

August 25, 2021

Contents

1	Metric Spaces		
	1.1	Metric Spaces	2
	1.2	Open sets in Metric Spaces	4
	1.3	Restrictions and Metric Subspaces	7
2	Topological Spaces		9
	2.1	Basic Definitions	9
	2.2	Some Important Topologies	10
	2.3	Comparison of Topologies	10

Chapter 1.

Metric Spaces

§1.1 Metric Spaces

Definition 1.1.1. Let X be any set. A function $d: X \times X \to \mathbb{R}_{\geq 0}$ is *metric function*, or, simply, *metric on* X iff it satisfies the *metric axioms*. That is, for any $x, y, z \in X$:

M1. d(x,y) = 0 iff x = y;

M2. d(x,y) = d(y,x);

M3. $d(x,z) \le d(x,y) + d(y,z)$.

Definition 1.1.2. Let X be any set and let d be a structure on X. The pair (X,d) is called a *metric space* iff d is a metric on X.

Definition 1.1.3. A M = (X, d) be a metric space, let $x \in X$ and let $\varepsilon \in \mathbb{R}_{>0}$. An *open* ε -ball, or just ε -ball, about x is defined to be the set

$$B_{\varepsilon}(x;d) := \{ y \in X : d(x,y) < \varepsilon \}.$$

A closed ball is defined to be the set

$$\overline{B}_{\varepsilon}(x;d) := \{ y \in X : d(x,y) \le \varepsilon \}.$$

Note 1.1.1. As

$$M = (X, d), M' = (X, d'), M'' = (X, d''), \dots$$

are different although they share the same set X, for any $x \in X$ and any $\varepsilon \in \mathbb{R}_{>0}$,

$$B_{\varepsilon}(x;d), B_{\varepsilon}(x;d'), B(x;d''), \ldots$$

are also different. However, if confusion is unlikely, we simply write " $B_{\varepsilon}(x)$ " for " $B_{\varepsilon}(x;d)$ ".

Example 1.1.1. The Euclidean metric space M = (X, d) is an n-dimensional set X equipped with the Euclidean metric d defined as

$$d(x,y) := \left(\sum_{i=1}^{n} |x_i - y_i|^2\right)^{\frac{1}{2}}.$$

This is also called $standard\ Euclidean\ metric$, in contrast to the non-standard $Euclidean\ metrics$

$$d_p(x,y) := \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{\frac{1}{p}}, \quad p \ge 1.$$

In particular,

$$d_{\infty}(x,y) := \max_{1 \le i \le n} |x_i - y_i|.$$

Example 1.1.2. A discrete metric space M = (X, d) is a set X equiped with the discrete metric d defined as

$$d(x,y) := \begin{cases} 0, & \text{if } x = y; \\ 1, & \text{else.} \end{cases}$$

This is an equivalent definition of the discrete metric:

$$d(x,y) := (\operatorname{sgn}(d'(x,y)))^2,$$

where $sgn(\cdot)$ is a sign function, and d' is any metric on X.

Example 1.1.3. ¹ Denote C[a, b] for the set of all continuous mapping $\mathbb{R}_{[a,b]} \to \mathbb{R}$. On C[a, b], we can define a metric d as

$$d_p(f,g) := \left(\int_a^b |f(t) - g(t)|^p dt \right)^{\frac{1}{p}}, \quad p \ge 1.$$

¹ See Minkowski inequality.

In particular,

$$d_{\infty}(f,g) := \sup_{t \in \mathbb{R}_{[a,b]}} |f(t) - g(t)|.$$

Example 1.1.4. ² Let M=(X,d) be a metric space. The *Hausdorff metric* d_H on $2^X \setminus \{\emptyset\}$ is defined as

$$d_H := \max \left\{ \sup_{x \in X} d(x, Y), \sup_{y \in Y} d(y, X) \right\},\,$$

where

$$d(x,Y):=\inf_{y\in Y}(x,y), \text{ and } d(y,X):=\inf_{x\in X}(y,x).$$

§1.2 Open sets in Metric Spaces

Definition 1.2.1. Let M = (X, d) be a metric space, and let $U \subseteq X$. U is said to be *open in* M, iff for any $y \in U$, there exists $\varepsilon \in \mathbb{R}_{>0}$, such that $B_{\varepsilon}(y) \subseteq U$.

Lemma 1.2.1. Let M = (X, d) be a metric space, let $x \in A$ and let $\varepsilon \in \mathbb{R}_{>0}$. For any $y \in B_{\varepsilon}(x)$, there is a $\delta \in \mathbb{R}_{>0}$ such that $B_{\delta}(y) \subseteq B_{\varepsilon}(x)$.

Proof. For any $y \in B_{\varepsilon}(x)$, by the definition of open balls (Definition 1.1.3), we have $d(x,y) < \varepsilon$.

Let $\delta \in \mathbb{R}_{>0}$ such that $\delta + d(x,y) = \varepsilon$.

By M3 in metric axioms (Definition 1.1.1), for any $z \in A$ with $d(y, z) < \delta$, we have

$$d(x, z) \le d(y, z) + d(x, y) < \varepsilon$$
.

Thus, again, by the definition of open balls, we have $B_{\delta}(y) \subseteq B_{\varepsilon}(x)$.

Theorem 1.2.1. Let M = (X, d) be a metric space, and let $U \subseteq X$. U is open in M iff it is a union of open balls.

Proof. First, prove \Rightarrow .

As U is open, for any $y \in U$, there exists $\varepsilon_y \in \mathbb{R}_{>0}$ such that $B_{\varepsilon_y}(y) \subseteq U$. Therefore,

$$U = \bigcup_{y \in U} B_{\varepsilon_y}(y).$$

 $^{^2}$ See Hausdorff distance.

Now, prove \Leftarrow .

Aiming for a contradiction, suppose U is a union of open balls but not open.

As U is not open, there is a $y \in U$ such that for any $\varepsilon \in \mathbb{R}_{>0}$, $B_{\varepsilon}(y) \not\subseteq U$.

As U is a union of open balls, there is an $x \in U$ and $r \in \mathbb{R}_{>0}$ such that $y \in B_r(x)$.

By Lemma 1.2.1, there exists a $\delta \in \mathbb{R}_{>0}$ such that $B_{\delta}(y) \subseteq B_r(x)$.

This is a contradiction by the assumption.

Thus, U has to be open.

Theorem 1.2.2. Let M=(X,d) be any metric space. M is *Hausdorff*. That is, For any distinct points $x,y\in X$, we can always find an $\varepsilon\in\mathbb{R}_{>0}$ such that

$$B_{\varepsilon}(x) \cap B_{\varepsilon}(y) = \emptyset.$$

Proof. Aiming for a contradiction, suppose there are $x, y \in X$ with $x \neq y$, such that for any $\varepsilon \in \mathbb{R}_{>0}$, we can always find a $z \in X$ such that

$$z \in B_{\varepsilon}(x) \cap B_{\varepsilon}(y)$$
.

Let r = d(x, y)/2, and let $z \in B_r(x) \cap B_r(y)$.

As $z \in B_r(x)$, by the definition of open balls (Definition 1.1.3), d(x, z) < r; as $z \in B_r(y)$, similarly, d(y, z) < r. Then we have

$$d(x,z) + d(y,z) < 2r = d(x,y).$$

This contradicts the metric axioms M3 (Definition 1.1.1).

Definition 1.2.2. Let M = (X, d) be any metric space, and let $V \subseteq X$. V is said to be *closed* in M, iff there is an open set U satisfies $X \setminus U = V$.

Lemma 1.2.2. In a metric space, any singleton is closed.

Proof. Let M = (X, d) be a metric space, let $x \in X$, and let $y \in X \setminus \{x\}$. As M is Hausdorff (Theorem 1.2.2), there is an $\varepsilon \in \mathbb{R}_{>0}$ such that

$$0 < \varepsilon < d(x, y),$$

thus $X \setminus \{x\}$ is open, hence, by Definition 1.1.1, its complement $\{x\}$ is open.

Theorem 1.2.3. Let M = (X, d) be a metric space, denote \mathcal{T} for the family of open subsets of X. Then \mathcal{T} satisfies the following conditions:

- **O1.** $X, \emptyset \in \mathcal{T}$;
- **O2.** For any $\mathcal{U} \subseteq \mathcal{T}$, $\bigcup \mathcal{U} \in \mathcal{T}$; in words, \mathcal{T} is closed under arbitrary union;
- **O3.** For any finite $V \subseteq \mathcal{T}$, $\bigcap V \in \mathcal{T}$; in words, \mathcal{T} is closed under finite intersection.

Proof.

- **O1.** As \emptyset is the subset of any set, $\emptyset \in \mathcal{T}$. $\bigcup \emptyset = \emptyset \in \mathcal{T}$. By Definition 1.2.2, $X = X \setminus \emptyset$.
- **O2.** Let $\mathcal{U} \subseteq \mathcal{T}$, and denote \mathcal{O} for the open balls in M.

For any $U \in \mathcal{U}$, there is an $\mathcal{O}_U \subseteq \mathcal{O}$ such that $U = \bigcup \mathcal{O}_U$.

Then we have

$$\bigcup \mathcal{U} = \bigcup_{U \in \mathcal{U}} \left(\bigcup \mathcal{O}_U \right) = \bigcup_{U \in \mathcal{U}} \mathcal{O}_U.$$

By Theorem 1.2.1, $\bigcup \mathcal{U}$ is open.

O3. Let \mathcal{V} be a finite subset of \mathcal{T} .

Aiming for a contradiction, suppose $\bigcap \mathcal{V}$ is not open.

By Definition 1.2.1, there exists a $y \in \bigcap \mathcal{V}$ such that for any $\varepsilon \in \mathbb{R}_{>0}$, $B_{\varepsilon}(y) \setminus \bigcap \mathcal{V} \neq \emptyset$.

By De Morgan's law, we have

$$\bigcup_{V\in\mathcal{V}} (B_{\varepsilon}(y)\setminus V) \neq \emptyset.$$

Thus, there exists $V \in \mathcal{V}$ such that $B_{\varepsilon}(y) \setminus V \neq \emptyset$.

As $V \in \mathcal{T}$ and ε is arbitrarily given, by Lemma 1.2.1, $y \notin V$. This is a contradiction.

Thus, $\bigcap \mathcal{V}$ is open.

Thus, the theorem is proved.

Theorem 1.2.4. Infinite intersections of open sets in some metric spaces are not necessarily open.

Proof. Consider \mathbb{R} is a Euclidean metric space, and denote \mathcal{T} .

Clearly, for any $n \in \mathbb{N}_{>0}$ and for any $x \in X$, the open interval $B_{\frac{1}{n}}(x)$ is open, but

$$\bigcap \left\{ B_{\frac{1}{n}}\left(x\right): n \in \mathbb{N}_{>0} \right\} = \{x\}.$$

For any $\varepsilon \in \mathbb{R}_{>0}$, $B_{\varepsilon}(x) \setminus \{x\}$ is not empty, thus $\{x\}$ is not open.

§1.3 Restrictions and Metric Subspaces

Restriction of metric function is a useful tool to describe the relation between metric spaces with different sets but "same" metric function on the sets.

As a restriction of a relation R on $X \times Y$ to a subset $A \times B \subseteq X \times Y$ is defined to be

$$R \upharpoonright_{A \times B} := R \cap (X \times Y),$$

a restriction of a metric d on a set S to a subset $U \subseteq S$ is defined to be

$$d \upharpoonright_{(U \times U) \times \mathbb{R}_{>0}} := d \cap ((U \times U) \times \mathbb{R}_{>0}).$$

If B=Y, customarily, we simply write $R \upharpoonright_A$ for $R \upharpoonright_{A\times B}$. Similarly, as the codomain of a metric function is alway $\mathbb{R}_{>0}$, so we simply write $d \upharpoonright_{U\times U}$ instead of $d \upharpoonright_{(U\times U)\times \mathbb{R}_{>0}}$.

Definition 1.3.1. Let M=(X,d) be a metric space, and let $A\subseteq X$. The *metric on A induced by d*, or the *subspace metric of d with respect to A* is defined to be

$$d_A := d \upharpoonright_{A \times A}$$
.

Theorem 1.3.1. Let M = (X, d) be a metric space, and let $A \subseteq X$ and let $d_A := d \upharpoonright_{A \times A}$. Then (A, d_A) is a metric space.

Proof. As metric axioms (Definition 1.1.1) holds for any $x, y \in X$, and $A \subseteq X$, they also holds for any $a, b \in A$. As d_A is the subspace metric of d with respect to A, d_A is a metric on A.

Thus, (A, d_A) is a metric space.

Definition 1.3.2. Let M = (X, d) be a metric space, and let $A \subseteq X$. (A, d_A) is a *metric subspace* of M iff d_A is a subspace metric of d with respect to A.

Chapter 2.

$Topological\ Spaces$

§2.1 Basic Definitions

Definition 2.1.1. Let X be any set, and let $\mathcal{T} \subseteq 2^X$. We call \mathcal{T} a topology on X iff it satisfies the open set axioms. That is,

O1. $X \in \mathcal{T}$;

O2. For any $\mathcal{U} \subseteq \mathcal{T}$, $\bigcup \mathcal{U} \in \mathcal{T}$; in words, \mathcal{T} is closed under arbitrary union.

O3. For any finite $V \subseteq \mathcal{T}$, $\bigcap V \in \mathcal{T}$; in words, \mathcal{T} is closed under finite intersection.

A subset $U \subseteq X$ is said to be *open in* M iff it is an element of \mathcal{T} .

Definition 2.1.2. Let X be any set, and let \mathcal{T} be a structure on X. The pair (X, \mathcal{T}) is called a *topological space* iff \mathcal{T} is a topology on X.

Theorem 2.1.1. Let $M = (X, \mathcal{T})$ be a topological space. Then $\emptyset \in \mathcal{T}$.

Proof. As empty set is an element of any set, it also an element of \mathcal{T} .

Therefore, we have

$$\emptyset = \bigcup \emptyset \in \mathcal{T}.$$

Definition 2.1.3. Let $M=(X,\mathcal{T})$ be a topological space. A subset $A\subseteq X$ is said to be *closed in* M iff there exists a $U\in\mathcal{T}$ such that $A=X\setminus U$.

Theorem 2.1.2. Let $M = (X, \mathcal{T})$ be a topological space, and denote \mathcal{C} for the family of all closed sets in M. Then \mathcal{C} satisfies the following condition

- C1. $X, \emptyset \in \mathcal{C}$;
- **C2.** For any $A \subseteq C$, $\bigcap A \in C$;
- **C3.** For any finite $\mathcal{B} \subseteq \mathcal{C}$, $\bigcup \mathcal{B} \in \mathcal{C}$.

Proof.

C1. As $\emptyset \in \mathcal{T}$ and $X = X \setminus \emptyset$, by Definition 2.1.3, X is closed. Similarly, as $X \in \mathcal{T}$ and $\emptyset = X \setminus X$, \emptyset is closed.

§2.2 Some Important Topologies

Definition 2.2.1. Let X be any set. A family $\mathcal{T} \subseteq 2^X$ is a discrete topology on X iff $\mathcal{T} = 2^X$.

Definition 2.2.2. Let X be any set. A family $\mathcal{T} \subseteq 2^X$ is an *indiscrete topology* on X iff $\mathcal{T} = \{X, \emptyset\}$.

Definition 2.2.3. Let M = (X, d) be a metric space. A family $\mathcal{T} \subseteq 2^X$ is a topology induced by d iff \mathcal{T} is the set of all open sets in M.

§2.3 Comparison of Topologies

Definition 2.3.1. Let X be any set and let \mathcal{T} and \mathcal{T}' be topologies on X. We say that \mathcal{T} is *coarser* than \mathcal{T}' , or \mathcal{T}' is *finer* than \mathcal{T} , iff $\mathcal{T} \subseteq \mathcal{T}'$.

Note 2.3.1. By the definition of cardinality and inclusion mapping, if $\mathcal{T} \subseteq \mathcal{T}'$, it is certainly true that $|\mathcal{T}| \leq |\mathcal{T}'|$. But, on the contrary, $|\mathcal{T}| \leq |\mathcal{T}'|$ does not implies $\mathcal{T} \subseteq \mathcal{T}'$. It is easy to find counter-example about this.

Example 2.3.1. By Definition 2.3.1, for any set X, if a family \mathcal{U} of open sets is given, then we can find the coarsest topology on X containing \mathcal{U} by

$$\mathcal{T} = \left\{ \bigcup \mathcal{I}, \bigcap \mathcal{I}, X : \mathcal{I} \subseteq \mathcal{U} \right\}.$$

For example, let $X = \{1, 2, 3, 4, 5\}$, and let

$$\mathcal{U} = \{\{1, 2\}, \{2, 3\}, \{4\}\}.$$

Then a topology on X contains at least these sets:

$$\{1,2,3,4\}, \{\}, \\ \{1,2\}, \{2,3\}, \{4\}, \\ \{1,2,3\}, \{1,2,4\}, \{2,3,4\}, \\ \{2\}.$$

Example 2.3.2. The discrete topology is the finest topology on any X, while the indiscrete topology is the coarsest.