Topology – Homework 04

Question 1:

$$\begin{split} \mathring{A} &= \{(x, \sin\frac{1}{x}) : x \in (0, 1)\} \\ \overline{A} &= \{(x, \sin\frac{1}{x}) : x \in (0, 1]\} \ \bigcup \ \{(0, x) : x \in [-1, 1]\} \\ A' &= \{(x, \sin\frac{1}{x}) : x \in (0, 1]\} \ \bigcup \ \{(0, x) : x \in [-1, 1]\} \\ \overline{A} \cap \overline{\mathcal{R}^2 - A} &= \{(0, x) : x \in [-1, 1]\} \end{split}$$

Question 2:

Proof:

(i)

When $A=\varnothing$, since $\varnothing\in\mathcal{P}(X)$, $f(\varnothing)=\varnothing$, we know $X-A=X\in\mathcal{T}_f$.

When A = X, since $X \subset f(X)$, $f(X) \in \mathcal{P}(X)$, $f(X) \supset X$, we know f(X) = X and $X \in \mathcal{T}_f$.

Consider $(X - A) \cap (X - B) = X - A \cup B$.

Since
$$A = f(A)$$
, $B = f(B)$, $A \cup B = f(A) \cup f(B) = f(A \cup B)$,

we know the intersection of finite elements in \mathcal{T}_f is also an element of \mathcal{T}_f .

Consider $(X - A) \bigcup (X - B) = X - A \cap B$.

If $x \in A$ and $x \in B$, then $f(x) \in f(A)$ and $f(x) \in f(B)$, that is $f(A \cap B) \subset f(A) \cap f(B)$.

Since A = f(A), B = f(B), $f(A \cap B) \subset f(A) \cap f(B) = A \cap B$, and $A \cap B \subset f(A \cap B)$,

we know that $A \cap B = f(A \cap B)$ and that the union of two elements in \mathcal{T}_f is also in \mathcal{T}_f ,

and this can be promoted to arbitrary number of elements in \mathcal{T}_f .

Above derivations show us that \mathcal{T}_f is a topology on X.

(ii)

From the definition of \mathcal{T}_f we know a set A is closed if and only if f(A) = A.

From f(A) = f(f(A)) we know that f(A) is closed.

For arbitrary $A \subset X$, we have $A \subset \overline{A}$ and $\overline{A} = A \bigcup \overline{A}$,

$$f(\overline{A}) = f(A \bigcup \overline{A}) = f(f(A \bigcup \overline{A})) = f(f(A) \bigcup f(\overline{A})) = f(f(A) \bigcup \overline{A}).$$

Since \overline{A} and f(A) are both closed, there should be $\overline{A} = f(A) \bigcup \overline{A}$, which means $f(A) \subset \overline{A}$.

 $A \subset f(A)$ and f(A) is closed, so we have $\overline{A} \subset f(A)$.

Then we know $f(A) = \overline{A}$, in other words, the closure \overline{A} of any $A \subset X$ with respect to the topology \mathcal{T}_f is just f(A).

Question 3:

Proof:

f is continuous but f^{-1} is not.

For the open set $U = [0, \frac{1}{4}) \subset [0, 1)$, f(U) is not an open set in S^1 , because there doesn't exist an open set V in \mathbb{R}^2 that includes f(0), s.t. $V \cap S \subset f(U)$.

Thus f is not a homeomorphism with respect to the standard subspace topologies on [0,1) and S^1 .

It's impossible to find a homeomorphism between [0,1) and S^1 .

Question 4:

(i)

 $(1,2) \bigcup (2,3)$ is an example of an open set in \mathcal{R} that is not regularly open.

The regularly open sets in \mathcal{R} can be characterized by arbitrary (a, b) with a < b and their union with no intervals have the same boundary.

(ii)

Proof:

For arbitrary $A \subset X$, there exist

$$(\overline{(\overline{A})^{\circ}})^{\circ} \supset ((\overline{A})^{\circ})^{\circ} = (\overline{A})^{\circ}$$

and

$$(\overline{(\overline{A})^{\circ}})^{\circ} \subset (\overline{(\overline{A})})^{\circ} = (\overline{A})^{\circ}.$$

Then we know that $(\overline{(\overline{A})^\circ})^\circ = (\overline{A})^\circ$ and that $(\overline{A})^\circ$ is regularly open.

Question 5:

Proof:

Consider arbitrary $x \in X$.

If $x \in A'$, then every neighborhood of x has points distinct with x in its intersection with A, and this shows $x \in \overline{A}$ and $A' \subset \overline{A}$.

According to the definition of closure, we know $A \subset \overline{A}$ and then we have $A \bigcup A' \subset \overline{A}$.

Let x be a point of \overline{A} , if $x \in A$ then we have $x \in A \bigcup A'$.

If $x \notin A$, because of that every neighborhood of x U is intersect with A, U has a point distinct with x, and then $x \in A'$ and $x \in A \bigcup A'$.

Thus we have $\overline{A} \subset A \bigcup A'$.

Then we know that the equality $\overline{A} = A \bigcup A'$ established.