

兰州大学信息科学与工程学院实验报告

学生姓名: _____Hollow Man

年级专业: 2018级计算机基地班

指导老师: 斯天玉

实验课程: _____数字逻辑实验____

实验题目: 组合数字电路实验(二)

一、实验目的

- 1. 掌握编码和译码的概念
- 2. 掌握编码器 74LS148, 译码器 74LS138 和数据选择器 74LS158 的引脚排列及功能。

二、实验原理

1. 编码

编码是把一组代码变成一组二进制代码。特点是输入信号线数量多于输出信号线(输入>输出),且输入信号线中,最多只有一条有效。编码也是把一组有特定含义(事件)的输入信号按一定的规律编成不同二进制代码输出的过程。事件和所编的代码是一一对应的。编码器是实现编码的组合电路。

2. 译码

译码是编码的反过程,就是把二进制数码按它的原意翻译成相应的输出信号。实现译码功能的电路称为译码器。特点是,输出信号位数多于输入信号位数(输入<输出),译码器的种类很多,本实验只涉及变量译码器。变量译码器就是其输出表示输人变量的状态的译码器。注意,这种译码器,任何时候,译码器的输出只能是一端有效,即不可能同时译出两个以上的码来。

3. 74LS148 编码器

级 联 入 EI	输 入76543210	输 出	级 联 出 EO GS	
		CB A		
1	×××××××	1 1 1	1 1	
0	1111110	1 1 1	1 0	
0	111110×	1 1 0	1 0	
0	1 1 1 1 1 0 ××	1 0 1	1 0	
0	1 1 1 1 0 ×××	1 0 0	1 0	
0	1 1 1 0 ××××	0 1 1	1 0	
0	1 1 0 ×××××	0 1 0	1 0	
0	$1 \text{ o} \times \times \times \times \times$	0 0 1	1 0	
0	0 ××××××	0 0 0	1 0	
0	11111111	1 1 1	0 1	

表 3-1 74LS148 功能表

从功能表得出:输入低电平有效, 优先级的次序由 7 到 0 依次降低;输出编码是输入有效号的各位取反码。 是使能端,低电平有效。 EO 和 GS 是为了扩展用的。

4. 74LS138 译码器

ľΊ 控 输 λ 出 $E_1 + E_2$ E_3 CBAY₇ Y₆ Y₅ Y₄ Y₃ Y₂ Y₁ Y₀ × $\times \times \times$ 1 1 1 0 Χ 0 1 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 0 1 1 1 0 0 0 1 1 0 1 1 0 1 1 1 0 0 1 1 0 1 1 1

表 3-2 74LS138 功能表

从表中可看到, 它还具有数据分配器的功能(当 E3=1 时,把 E1+E2 分配给 Y1; 或当 E1+E2=0 时,把 E3 分配给 Y1。

5. 74LS158 数据选择器

	输入			输出
G	S	A	В	Y
Н	X	Х	X	Н
L	L	L	X	Н
L	L	Н	X	L
L	Н	X	L	Н
L	Н	Х	Н	L

从功能表得出:控制端 S 为高电平时,将 B 引脚上的数据输出,S 为低电平时,将 A 引脚上的数据输出。

三、实验仪器

实验箱、编码器 74LS148、译码器 74LS138 和数据选择器 74LS158、导线若干。

四、实验内容

1. 测试 74LS148、74LS138 和 74LS158 的真值表

分别按实验原理中对应芯片的逻辑引脚图,连接电路,根据真值表进行测试。

连接线路图:

(74LS148 和 74LS138 的照片忘拍了 Orz)。

74LS158:

2. 针对以下电路图,利用分析逻辑电路法,得出真值表。电路图:

分析得到的真值表:

