机器学习优化目标

目录

- ◆ 模型优化概述
- ◆ 常见优化目标

模型优化概述

优化目标

◆ 机器学习用有限训练集上的期望损失作为优化目标(即代理损失函数 loss function), 损失代表预测值f(x)与真实值Y的不一致程度。

一般损失函数越小,模型的性能就越好, 观察训练集和测试集的误差就能知道模 型的收敛情况,估计模型的性能

过拟合与欠拟合状态

◆ 模型在训练集和测试集上的不同表现

训练集表现	测试集表现	结果
不好	不好	欠拟合
好	不好	过拟合
好	好	适当拟合

欠拟合 (under-fitting) 也称为欠学习,指模型在训练集上精度差

过拟合 (over-fitting) 也称为过学习,指模型在训练集上精度高,但在测试集上精度低,泛化性能差

过拟合的原因

◆ 模型过大,数据太少

模型本身过于复杂, 拟合了训练样本集中的噪声

训练样本太少或者缺乏代表性

两类常见的优化目标

◆ 分类任务优化目标与回归任务优化目标

常见优化目标

0-1损失

◆ 只看分类的对与错, 当标签与预测类别相等时, 损失为0, 否则为1

(())

◆ 真实的优化目标, 但是无法求导和优化, 只有理论意义

熵与交叉熵(cross entropy)

◆ 熵表示热力学系统的无序程度,在信息学中用于表示信息多少,不确定性越大,概率越低,则信息越多,熵越高

交叉熵损失(cross entropy loss)

◆ 衡量两个概率分布的相似性

令 表示第i个样本属于分类j的标签, 分类的概率 表示的是样本i预测为j

()

Softmax loss

◆ 交叉熵损失(cross entropy loss)与softmax loss

()

当()—

() 是

, 为交叉熵的特例!

L1 Loss

◆ L1损失即Mean absolute loss(MAE loss) ,以绝对误差作为距离。

主要问题:梯度在零点不平滑

L1/L2-loss

◆ L2损失即Mean Squared Loss(MSE loss),也被称为欧氏距离,以误差的平方和作为距离。

当预测值与目标值相差很大(异常值)时, 梯度容易爆炸, 因为梯度里有两者差值。

Smooth L1 loss

◆ 解决L1 loss梯度不平滑,L2 loss梯度爆炸的问题

在x比较小时,等价于L2 loss,保持平滑。 在x比较大时,等价于L1 loss,可以限制数值的大小。

下次预告: 机器学习案例实战