Computabilità e Algoritmi - 30 Marzo 2015

Soluzioni Formali

Esercizio 1

Dimostrare che un predicato $P(\bar{x})$ è semidecidibile se e solo se esiste un predicato decidibile $Q(\bar{x},y)$ tale che $P(\bar{x}) \equiv \exists y. Q(\bar{x},y)$.

Dimostrazione:

(\Rightarrow) **Direzione diretta:** Assumiamo che P(\bar{x}) sia semidecidibile. Per definizione, esiste una funzione semicaratteristica sc_p computabile tale che:

$$sc_p(\bar{x}) = \{1 \text{ se } P(\bar{x}) \}$$

 $\{1 \text{ altrimenti}\}$

Poiché sc_p è computabile, esiste un indice $e \in \mathbb{N}$ tale che $sc_p = \phi_e^{\ \ \ \ }(k)$.

Osserviamo che:

- $P(\bar{x}) \iff sc_p(\bar{x}) = 1$
- $P(\bar{x}) \iff SC_p(\bar{x}) \downarrow$
- $P(\bar{x}) \Longleftrightarrow \phi_e^{\ \ \ \ \ \ }(k)(\bar{x}) \downarrow$
- $P(\bar{x}) \iff \exists t. \ H^{\hat{x}}(k)(e, \bar{x}, t)$

dove H^(k) è il predicato di halting decidibile.

Definiamo $Q(\bar{x},t) \equiv H^{\wedge}(k)(e, \bar{x}, t)$. Chiaramente Q è decidibile e $P(\bar{x}) \equiv \exists t. Q(\bar{x},t)$.

(\Leftarrow) **Direzione inversa:** Assumiamo che $P(\bar{x}) \equiv \exists y. Q(\bar{x}, y)$ con $Q(\bar{x}, y)$ decidibile.

Poiché Q è decidibile, la sua funzione caratteristica χQ è computabile.

Definiamo la funzione semicaratteristica:

$$sc_p(\bar{x}) = 1(\mu y.|\chi Q(\bar{x},y) - 1|)$$

Questa funzione è computabile poiché:

- $sc_p(\bar{x}) = 1$ se e solo se $\exists y.\chi Q(\bar{x},y) = 1$
- $sc_p(\bar{x}) = 1$ se e solo se $\exists y.Q(\bar{x},y)$
- $sc_p(\bar{x}) = 1$ se e solo se $P(\bar{x})$

Esercizio 2

Dati due insiemi A, B $\subseteq \mathbb{N}$ definire il significato di A \leq_m B. È vero che per ogni insieme A vale A \leq_m A \cup {0}? In caso negativo, proporre una condizione che renda vero A \leq_m A \cup {0}.

Definizione di Riducibilità Many-One: $A \leq_m B$ se e solo se esiste una funzione $f: \mathbb{N} \to \mathbb{N}$ totale e computabile tale che: $\forall x \in \mathbb{N}: x \in A \iff f(x) \in B$

Risposta alla domanda: No, non è vero in generale che $A \leq_m A \cup \{0\}$.

Controesempio: Sia $A = \emptyset$ e consideriamo $A \cup \{0\} = \{0\}$.

Per avere $A \leq_t A \cup \{0\}$, dovrebbe esistere f: $\mathbb{N} \to \mathbb{N}$ totale computabile tale che:

 $\forall x \in \mathbb{N} : x \in \emptyset \Longleftrightarrow \mathsf{f}(x) \in \{0\}$

Questo significa:

 $\forall x \in \mathbb{N}$: False \iff f(x) = 0

Quindi $f(x) \neq 0$ per ogni $x \in \mathbb{N}$. Ma allora f non è una funzione a valori in \mathbb{N} che può servire come riduzione verso $\{0\}$.

Condizione sufficiente: $A \leq_m A \cup \{0\}$ è vero quando $0 \notin A$.

Dimostrazione: Se $0 \notin A$, definiamo: $f(x) = \{0 \text{ se } x \notin A \}$ $\{x \text{ se } x \in A \}$

Allora f è computabile (assumendo A ricorsivo) e:

 $x \in A \iff f(x) \in A \cup \{0\} \text{ (poiché se } x \in A \text{ allora } f(x) = x \in A \subseteq A \cup \{0\}, \text{ e se } x \notin A \text{ allora } f(x) = 0 \in A \cup \{0\} \text{ ma } 0 \notin A). \square$

Esercizio 3

Studiare la ricorsività dell'insieme $A = \{x \in \mathbb{N} : x \in E_x \cup W_x\}$.

Analisi: $A = \{x \in \mathbb{N} : x \in E_x \cup W_x\} = \{x \in \mathbb{N} : x \in E_x \vee x \in W_x\}$

Semidecidibilità di A: A è semidecidibile. Infatti, $x \in A$ se e solo se $x \in E_x \lor x \in W_x$.

$$SC_a(x) = 1(\mu w.S(x,x,(w)_1,(w)_2) \vee H(x,x,(w)_3))$$

dove S è il predicato che verifica se $\varphi_x((w)_1) = (w)_2$ in $(w)_3$ passi.

Non ricorsività di A: Dimostriamo che $K \leq_m A$ tramite la riduzione:

Definiamo $g(y,z) = \{z \text{ se } y \in K\}$

{\frac{1}{2}} altrimenti

Per il teorema SMN, esiste s: $\mathbb{N} \to \mathbb{N}$ totale computabile tale che $\phi_{s(y)}(z) = g(y,z)$.

Verifichiamo la riduzione:

- Se $y \in K$: $\phi_{s(y)}(z) = z$ per ogni z, quindi $E_{s(y)} = \mathbb{N}$ e $W_{s(y)} = \mathbb{N}$, così $s(y) \in s(y) \in E_{s(y)} \cup W_{s(y)}$
- Se y \notin K: $\phi_{s(y)}(z) = \uparrow$ per ogni z, quindi $E_{s(y)} = W_{s(y)} = \emptyset$, così $s(y) \notin E_{s(y)} \cup W_{s(y)}$

Quindi A non è ricorsivo.

Complemento $\bar{\mathbf{A}}$: $\bar{\mathbf{A}} = \{ \mathbf{x} \in \mathbb{N} : \mathbf{x} \notin \mathbf{E}_{\mathbf{x}} \land \mathbf{x} \notin \mathbf{W}_{\mathbf{x}} \}$

À non è semidecidibile. Se lo fosse, insieme ad A semidecidibile, avremmo A ricorsivo, contraddicendo quanto dimostrato.

Conclusione:

- A è semidecidibile ma non ricorsivo
- Ā non è semidecidibile (quindi non ricorsivo)

Esercizio 4

Studiare la ricorsività dell'insieme $B = \{x \in \mathbb{N} : 1 \le |E_x| \le 2\}$.

Analisi: B = $\{x \in \mathbb{N} : 1 \le |E_x| \le 2\}$ rappresenta i programmi la cui immagine ha cardinalità tra 1 e 2.

Saturazione: B è saturato poiché B = $\{x \mid \phi_x \in \mathcal{B}\}\ dove \mathcal{B} = \{f \in C : 1 \le |cod(f)| \le 2\}.$

Non ricorsività per Rice: Poiché B è saturato, B $\neq \emptyset$ (esiste una funzione costante), B $\neq \mathbb{N}$ (la funzione identità ha immagine infinita), per il teorema di Rice B non è ricorsivo.

Semidecidibilità di B: B è semidecidibile. Per verificare $x \in B$, cerchiamo due valori distinti nell'immagine:

$$SC_{\beta}(x) = 1(\mu w. \exists a,b,t_1,t_2. \ a \neq b \land S(x,a,b,t_1) \land S(x,b,b,t_2) \land \forall c,t_3 \leq (w)_4. \ S(x,c,(w)_5,t_3) \rightarrow ((w)_5 = a \lor (w)_5 = b))$$

Complemento $\bar{\mathbf{B}}$: $\bar{\mathbf{B}} = \{x \in \mathbb{N} : |E_x| = 0 \lor |E_x| \ge 3\}$

B non è semidecidibile. Se lo fosse, con B semidecidibile, avremmo B ricorsivo.

Conclusione:

- B è semidecidibile ma non ricorsivo
- B non è semidecidibile (quindi non ricorsivo) 🗆

Esercizio 5

Enunciare il secondo teorema di ricorsione. Utilizzarlo per dimostrare che l'insieme $C = \{x \in \mathbb{N} : [0,x] \subseteq W_x\}$ non è saturato.

Secondo Teorema di Ricorsione (Kleene): Per ogni funzione $f: \mathbb{N} \to \mathbb{N}$ totale e computabile, esiste $e_0 \in \mathbb{N}$ tale che $\phi_{e0} = \phi f(e_0)$.

Dimostrazione che C non è saturato:

Definiamo la funzione h: $\mathbb{N} \to \mathbb{N}$ usando il teorema SMN.

Consideriamo $g(e,x) = \{e \text{ se } x \le e \}$

Per SMN, esiste s: $\mathbb{N} \to \mathbb{N}$ totale computabile tale che $\phi_{s(e)}(x) = g(e,x)$.

Applicando il secondo teorema di ricorsione a s, esiste $e \in \mathbb{N}$ tale che:

$$\phi_e = \phi_{s(e)}$$

Quindi:

$$\phi_e(x) = \{e \text{ se } x \le e \}$$

Questo implica $W_e = [0,e]$ e quindi $e \in C$ poiché $[0,e] \subseteq W_e$.

Ora, esiste e' > e tale che $\phi_e = \phi_e'$ (infiniti indici per la stessa funzione).

Per questo e':

- $\phi_{e'} = \phi_{e'}$ quindi computano la stessa funzione
- $W_e' = W_e = [0,e]$
- Ma [0,e'] ⊈ [0,e] poiché e' > e
- Quindi e' ∉ C

Abbiamo trovato e \in C e e' \notin C con ϕ_{e} = ϕ_{e} ', quindi C non è saturato. \Box