COT4210 Discrete Structures – Exam 2

Fall 2023

1. (30) Let $G = (V, \Sigma, R, S)$ be a grammar with $V = \{Q, R, T\}; \Sigma = \{q, r, t\};$ and the set of rules:

```
S \rightarrow Q
Q \rightarrow q \mid RqT
R \rightarrow r \mid rT \mid QQr \mid \varepsilon
T \rightarrow t \mid S \mid tT
```

a. (25) Convert G to Chomsky Normal Form.

```
\begin{split} S &\to Q \\ Q &\to q | Rqt \\ R &\to r | rT | QQr | \varepsilon \\ T &\to t | S| tT \end{split}
```

Add S and remove any ε :

$$S_0 \to Q | \varepsilon$$

$$Q \to q | Rqt$$

$$R \to r | rT | QQr$$

$$T \to t | Q | tT$$

Remove single rewrites:

$$S_0 \rightarrow Q | \varepsilon$$

 $Q \rightarrow q | Rqt$
 $R \rightarrow r | rT | QQr$
 $T \rightarrow t | q | Rqt | tT$

Remove mixed/multiple terminals:

$$\begin{split} S_0 &\rightarrow Q | \varepsilon \\ Q &\rightarrow q | R Q_0 T_0 \\ R &\rightarrow r | R_0 T | Q Q R_0 \\ T &\rightarrow t | q | R Q_0 T_0 | T_0 T \\ Q_0 &\rightarrow q \\ R_0 &\rightarrow r \\ T_0 &\rightarrow t \end{split}$$

Remove long rewrites to get CNF:

$$\begin{split} S_0 &\rightarrow Q | \varepsilon \\ Q &\rightarrow q | R Q_1 \\ R &\rightarrow r | R_0 T | Q_2 R_0 \\ T &\rightarrow t | q | R Q_1 | T_0 T \\ Q_0 &\rightarrow q \\ Q_1 &\rightarrow Q_0 T_0 \\ Q_2 &\rightarrow Q Q \end{split}$$

$$R_0 \to r$$
$$T_0 \to t$$

b. (5) Convert the language of G to a PDA.

2. (20) Show that the class of context-free languages is closed under homomorphism.

Suppose we have a context free language $G=(V,\Sigma,R,S)$ and any homomorphism h on terminal symbols Σ , we can construct a grammar $h(G)=(V_h,\Sigma_h,R_h,S_h)$ by replacing each terminal symbol with the result of that symbol in function h, so where

$$\begin{split} & \Sigma_h = \left(h(\Sigma_1), h(\Sigma_2), \dots h(\Sigma_n)\right) \\ & V_h = V \\ & R_h = R \\ & S_h = S \\ & L(G) = \end{split}$$

For example, language
$$G=(\{S\},\{a,b\},R,S)$$
 with $S \to aSb \mid SS \mid \varepsilon$

Then language
$$h(G) = (\{S\}, \{h(a), h(b)\}, R, S)$$

 $S \rightarrow h(a)Sh(b) | SS | \varepsilon$

So if
$$h(a) = 00$$
, $h(b) = 11$ then $S \rightarrow 00S11 | SS | \varepsilon$

3. (15) Let $REPEAT_{!"\#} = \{\langle M \rangle | M \text{ is a DFA and for every } s \in L(M), s = uv \text{ where } u = v \}$. Show that $REPEAT_{!"\#}$ is decidable.

Proof: Construction, assume M_{Repeat} which decides $REPEAT_{!"\#}$

 M_{Reneat} on input <M>:

- WLOG, we receive DFA M
- Where for every $s \in L(M)$
 - where s can be split into even length substrings u and v
 - \circ And u = v
 - o Then we accept
- Otherwise reject.

This machine clearly accepts a DFA if it's language only contains strings where s = uv and u = v and rejects otherwise. Even if |s| is infinite it will still be decidable. For example, if $s = a^*$ this would reject since a^* cannot be evenly split into u and v.

4. (15) Let $SUBSET_{!"\#} = \{\langle M_{\$}, M_{\%} \rangle \mid M_{\$} \text{ and } M_{\%} \text{ are DFAs and } L(M_{\$}) \subseteq L(M_{\%})\}$. Show that $SUBSET_{!"\#}$ is decidable.

Proof: Construction, assume M_{Subset} which decides $SUBSET_{!"\#}$

 M_{Repeat} on input $\langle M_{\$}, M_{\%} \rangle$:

- WLOG, we receive DFA $M_{\$}$ and $M_{\%}$
- Where:
 - Reject if only $M_{\$}$ is infinite
 - Accept if every $s \in L(M_\$)$ is also $s \in L(M_\%)$ (so if $L(M_\$) \subseteq L(M_\%)$)
 - Otherwise reject.

This machine clearly accepts a DFA if it's $L(M_s) \subseteq L(M_{\%})$ rejects otherwise.

5. (20) A Turing machine *M* is **verbose** on the input string *s* if, when finished computing on *s*, *M* does not shrink the input – that is, leaves at least as many non-blank characters on the left of the tape as *s* has total characters.

Let $VERBOSE_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and is verbose on } s \}$, and show that $VERBOSE_{TM}$ is undecidable by reduction from A_{TM} . Do not use Rice's theorem.

Proof: If $M_{VERBOSE}$ decides *VERBOSE*_{TM}. Assume BWOC that $M_{VERBOSE}$ is decidable:

By definition of decidability let $M_{VERBOSE}$ be its decider where:

- We receive string s and Turing machine M
- We accept if M is a TM and is verbose on s
- We reject otherwise

Then we build a M_{accept} where:

- We mimic A_{TM} and we receive Turing machine M and string s
- We construct a new Turing machine $M_{Internal}$ that,
 - Receives string x and TM M
 - o Enumerator w where w is the number of things on the tape
 - \circ we reject if w is greater than or equal to the length of string x
 - This causes M to decide
 - Otherwise simulate the contrariwise of TM M on s
 - This mimics the opposite of M whether is accepts, or rejects. Also means that it mimics if it never halts

Interrogate $M_{Internal}$ using $M_{Verbose}$ which causes M_{Accept} to decide A_{TM} and creates a contradiction. Therefore $VERBOSE_{TM}$ must be undecidable.