Alfabeto, cadenas y lenguajes

Ayudantía

Noción de autómata

Alfabeto y Cadenas

Símbolo Es un objeto indivisible.

$$a_1, a_2, \ldots, a_n$$

• Alfabeto Es un conjunto no vacío de símbolos.

$$\Sigma = \{a_1, a_2, \dots, a_n\}$$

Cadena Arreglo finito de símbolos

$$w = a_1 a_2 \dots a_n$$

Longitud de cadenas

Ejemplos: Calcular la longitud de la cadena *jirafa*.

$$|j| = |\epsilon \cdot j| = 0 + 1 = 1$$

$$|ji| = |j \cdot i| = |j| + 1 = 1 + 1 = 2$$

$$|jir| = |ji \cdot r| = |ji| + 1 = 2 + 1 = 3$$

$$|jira| = |jir \cdot a| = |jir| + 1 = 3 + 1 = 4$$

$$|jiraf| = |jira \cdot f| = |jira| + 1 = 4 + 1 = 5$$

$$|jirafa| = |jiraf \cdot a| = |jiraf| + 1 = 5 + 1 = 6$$

Sea w = xyz. Entonces,

- $\circ x$ es un **prefijo** de w.
- $\circ x$ es un **prefijo propio** de w, si $z \neq \epsilon$.
- \circ z es un **sufijo** de w.
- \circ z es un **sufijo propio** de w, si $x \neq \epsilon$.
- \circ Si w = xyz, x, y y z son **subcadenas** de w.

Ejercicios

1. ¿Cuáles de los siguientes conjuntos no son un alfabeto?

a)
$$\{\epsilon, +, -, 0, 1\}$$

c)
$$\{ab, ba, aa, bb\}$$

b)
$$\{a, b, c, 0, 1, 2\}$$

d)
$$\{A, B, C, D, E, F, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

2. Dado $\Sigma = \{a, 0, 1, b\}$ escribe 5 cadenas de longitud 6.

a001b

0011*a*

10011

bba11

ababa

3. Escribe 5 subcadenas de longitud 4 de edddedeede.

eddd eede ddde

dede edee

4. Dadas las siguientes cadenas que están formadas con símbolos de un alfabeto Σ , determina cuáles son los símbolos que deben estar en Σ .

31@95! $13 \sqcup de \sqcup oct$

iHola! Una ⊔ ★

 $\Sigma = \{1, 3, 5, 9, a, c, d, e, H, l, n, o, t, U, @, !, j, \sqcup, \star \}$

5. Sea $\Sigma = \{a, d\}$. Escribe todas las cadenas posibles de longitud 3 que se pueden construir con este alfabeto.

aaa	add	dda	ada
aad	ddd	daa	dad

Proposición: La función para obtener la longitud de la cadena cuenta, en efecto, el número de símbolos de una cadena.

Demostración: Inducción sobre la cadena

Base:

Si $w=\epsilon$, entonces la cadena no tienen ningún símbolo de Σ , por lo que $|\epsilon|=0$ es correcto.

Si w=a con $a\in\Sigma$, entonces la cadena sólo contiene un símbolo, por lo tanto $|a|=|\epsilon\cdot a|=|\epsilon|+1=1$ es correcto.

Hipótesis de inducción:

Suponemos que se cumple para la cadena $w = x \operatorname{con} x \in \Sigma^*$, entonces |x| = n.

Paso inductivo:

Supongamos que la cadena $w = x \cdot a$, con $x \in \Sigma^*$ y $a \in \Sigma$. Entonces |w| = |x| + 1, por hipótesis de inducción, |w| = n + 1.

slidesgo