Splay Trees

David Kaplan

Dept of Computer Science & Engineering

Motivation for Splay Trees

Problems with AVL Trees

- extra storage/complexity for height fields
- ugly delete code

Solution: splay trees

- blind adjusting version of AVL trees
- amortized time for all operations is O(log n)
- worst case time is O(n)
- insert/find always rotates node to the root!

Splaying Cases

Node being accessed (n) is:

- Root
- Child of root
- Has both parent (p) and grandparent (g)

Zig-zig pattern: $g \rightarrow p \rightarrow n$ is left-left or right-right

Zig-zag pattern: $g \rightarrow p \rightarrow n$ is left-right or right-left

Access root: Do nothing (that was easy!)

Access child of root: Zig (AVL single rotation)

... still splaying ...

Splay Trees

CSE 326 Autumn 2001

... 6 splayed out!

... 4 splayed out!

Why Splaying Helps

- If a node n on the access path is at depth d before the splay, it's at about depth d/2 after the splay
 - Exceptions are the root, the child of the root, and the node splayed
- Overall, nodes which are below nodes on the access path tend to move closer to the root
- Splaying gets amortized O(log n) performance. (Maybe not now, but soon, and for the rest of the operations.)

Splay Operations: Find

- Find the node in normal BST manner
- Splay the node to the root

Splay Operations: Insert

- Ideas?
- Can we just do BST insert?

Digression: Splitting

- Split(T, x) creates two BSTs L and R:
 - all elements of T are in either L or R (T = L ∪ R)
 - all elements in L are ≤ x
 - all elements in R are ≥ x
 - L and R share no elements $(L \cap R = \emptyset)$

Splitting in Splay Trees

How can we split?

- We have the splay operation.
- We can find x or the parent of where x should be.
- We can splay it to the root.
- Now, what's true about the left subtree of the root?
- And the right?

Back to Insert


```
void insert(Node *& root, Object x)
{
  Node * left, * right;
  split(root, left, right, x);
  root = new Node(x, left, right);
}
```

Splay Operations: Delete

Now what?

Splay Trees CSE 326 Autumn 2001

Join

Join(L, R): given two trees such that L < R, merge them

Splay on the maximum element in L, then attach R

Delete Completed

Splay Trees

CSE 326 Autumn 2001

Splay Trees

CSE 326 Autumn 2001

Splay Tree Summary

Can be shown that any M consecutive operations starting from an empty tree take at most O(M log(N))

→ All splay tree operations run in amortized O(log n) time

O(N) operations can occur, but splaying makes them infrequent

Implements most-recently used (MRU) logic

Splay tree structure is self-tuning

Splay Tree Summary (cont.)

Splaying can be done top-down; better because:

- only one pass
- no recursion or parent pointers necessary

There are alternatives to split/insert and join/delete

Splay trees are very effective search trees

- relatively simple: no extra fields required
- excellent locality properties:

frequently accessed keys are cheap to find (near top of tree) infrequently accessed keys stay out of the way (near bottom of tree)