

Q-SMART

Quantum-Spatial Mesh Assignment with Resolution Tuning

Contents

- 01 Overview
- **02 MVP 1**
 - 02.1 Quantum-Driven Spatio-Temporal Clustering
 - 02.2 Skill-Matching as a Quantum Constraint Graph
 - 02.3 Geo-Temporal Load Balancing
 - 02.4 Cost-Aware Quantum Pathfinding
- 03 MVP 2
- 04 References

Overview

01 MVP 1

Identifies the optimum number of claim handlers at each skill level (1-5)

Matches handlers with claims of varying severity levels (1-5)

Accounts for geographic distribution of claims
Optimizes for fastest resolution time within cost
constraints

Incorporates the cost formula: Total = X + 200*(n-1)

where n is days in location

Uses actual tornado claim data for realistic optimization

02 MVP 2

Make real-time adjustments of assignments as new claims arrive

Adapt to changing conditions and claim patterns

Incorporate on-site vs. virtual claim handling requirements

Factor in drive time impacts on productivity (20% loss per 30 minutes)

Integrate geographic clustering to minimize travel between claims

Maintain 90% resolution within target timeframes while minimizing costs

MVP

Optimal Handler Staffing Model

Quantum-Driven Spatio-Temporal Clustering

QUBO Formulation

$$egin{aligned} ext{Minimize} & \sum_{i < j} d_{ij} \cdot x_i x_j - \lambda \sum_i x_i \end{aligned}$$

Subject to: $\sum_i x_i = k$

Quantum-Driven Spatio-Temporal Clustering

Skill-Matching as a Quantum Constraint Graph

- Formulate handler-chain assignment as a *graph*:
- Nodes: handlers * skill level
- Edges: potential assignments weighted by
 - productivity
 - claim severity compatibility
 - travel penalty

- Quantum Approximate Optimization Algorithm (QAOA) to find optimal matching
- Not just solving a binary yes/no QUBO, we are modelling relationship quality in assignments.

Skill-Matching as a Quantum Constraint Graph

Geo-Temporal Load Balancing

 $ext{Zone Load Capacity} = \sum_{ ext{severity}} (ext{Claim Count}_s imes ext{Productivity}_s imes ext{Resolution Time}_s)$

$$ext{Minimize:} \quad \sum_{i < j, z} w_{ij} x_{i, z} x_{j, z} + \lambda \sum_{z} \left(\sum_{i} w_{i} x_{i, z} - T
ight)^{2}$$

If workload > threshold, we allow lower-skilled handlers to pick up more severe claims with penalty-adjusted productivity.

(ex. Skill 3 handler assigned a Severity $4 \rightarrow$ incurs productivity penalty (e.g. 0.75x efficiency))

Geo-Temporal Load Balancing

Cost-Aware Quantum Pathfinding

Drive Time Penalty on Productivity

Effective Productivity = Base Rate \times $(1 - 0.2 \times \text{DriveTime}_{\text{hrs}}/0.5)$

	Handler	Num_Claims	Euclidean_Path_Length	Estimated_Travel_Hours	Productivity_Loss_%	Cost_Penalty_\$
į.	0 H1	160	78.71	157.42	6296.73	31800
	1 H2	393	88.36	176.72	7068.83	78400
30	2 H3	512	124.33	248.65	9946.14	102200

On-Site vs Virtual Claims

```
claims_df['mode'] = np.where(claims_df['severity'] >= 3, 'on-site', 'virtual')
```

Claim Type	Productivity Score	Travel Penalty	Travel Cost	Assignment Restriction
Virtual	Use standard productivity from matrix	X Not applicable	X None	Allowed (no geographic constraint)
On-site	Adjust productivity ↓ based on distance: 1.0 - 0.2 × (distance / 30)	✓ Yes (20% loss per 30 mins)	✓ Add to QUBO cost function	▼ Restrict if distance > max allowed threshold (e.g., 60 mins)

Quantum Advantage

- Multiple solutions simultaneously (quantum superposition)
- Solution space grows exponentially with the number of handlers, skills, and claim types (~ Hilbert space growth)

Quantum Advantage in Skill-Matching for Insurance Claims

References

- [1] Matsumoto, Nasa, et al. "Distance-Based Clustering Using Qubo Formulations." Nature News, Nature Publishing Group, 17 Feb. 2022, www.nature.com/articles/s41598-022-06559-z.
- [2] Otterbach, J. S., et al. "Unsupervised Machine Learning on a Hybrid Quantum Computer." arXiv preprint, Cornell University, 5 Dec. 2017, https://arxiv.org/abs/1712.05771.
- [4] Cerezo, M., et al. "Variational Quantum Algorithms." Nature Reviews Physics, vol. 3, no. 9, 11 Aug. 2021, pp. 625-644, https://www.nature.com/articles/s42254-021-00348-9.
- [5] Phillipson, F. "Quantum Computing in Logistics and Supply Chain Management: An Overview." arXiv preprint, Cornell University, 27 Feb. 2024, https://arxiv.org/abs/2402.17520.