Friedrich-Alexander-Universität Erlangen-Nürnberg

Decision Theory

Lecture 6

Michael Hartisch

Friedrich-Alexander Universität Erlangen-Nürnberg, Department Data Science May 27, 2024

Recap: What did we do?

- Analytic Hierarchy Process (AHP)
- Multi Attribute Utility Theory (MAUT)

FAU M. Hartisch Decision Theory May 27, 2024 2/46

Analytic Hierarchy Process (AHP)

- You want to choose between alternatives, how do you rank them?
- Structure problem, define hierarchy
- Create pairwise comparison matrices

$$R = \begin{pmatrix} r_{11} & \dots & r_{1n} \\ \vdots & \ddots & \vdots \\ r_{n1} & \dots & r_{nn} \end{pmatrix}$$

r_{ij}: how much is i better than j

Analytic Hierarchy Process (AHP)

$$R = \begin{pmatrix} r_{11} & \dots & r_{1n} \\ \vdots & \ddots & \vdots \\ r_{n1} & \dots & r_{nn} \end{pmatrix}$$

• Based on matrices, calculate suitable weight vectors

$$r_{ij} pprox rac{w_i}{w_j}$$

- Comparison matrix and weight vectors for all levels of hierarchy
- Choose alternative with best total weight

MAUT

- Multiple criteria (K many)
- Need to decide
 - \circ Normalised utility function u_k for each criterion
 - \circ Weight λ_k of each criterion
- Total utility of a_i is $U(a_i) = \sum_{k \in [K]} \lambda_k u_k(e_i^k)$

MAUT

- To find u_k :
 - Direct rating
 - Interval splitting
- To find λ_k :
 - Trade-off method

Direct Rating

- Take results from table
- Assign points directly
- Normalise to [0, 1]

Temperature	13	16.5	20	23.5	27
Points	0				100

Direct Rating

- Take results from table
- Assign points directly
- Normalise to [0, 1]

Temperature	13	16.5	20	23.5	27
Points	0	60			100

Direct Rating

- Take results from table
- Assign points directly
- Normalise to [0, 1]

Temperature	13	16.5	20	23.5	27
Points	0	60	90		100

Direct Rating

- Take results from table
- Assign points directly
- Normalise to [0, 1]

Temperature	13	16.5	20	23.5	27
Points	0	60	90	95	100

Direct Rating

- Take results from table
- Assign points directly
- Normalise to [0, 1]

Temperature	13	16.5	20	23.5	27
Points	0	60	90	95	100
U_k	0.00	0.60	0.90	0.95	1.00

- Give best and worst the utility 1 and 0, respectively
- Ask questions until desired degree of accuracy has been reached:
 - What value gives you utility 1/2?
 - What value gives you utility 1/4?
 - What value gives you utility 3/4?
 - 0 ...
- For missing values in the table, use interpolation

	X_i^0				X_i^1
Utility	0	-	-	-	1
Temperature	15	-	-	-	27

- Give best and worst the utility 1 and 0, respectively
- Ask questions until desired degree of accuracy has been reached:
 - What value gives you utility 1/2?
 - What value gives you utility 1/4?
 - What value gives you utility 3/4?
 - 0 ...
- For missing values in the table, use interpolation

	X_i^0		$X_{i}^{0.5}$		X_i^1
Utility	0	-	0.5	-	1
Temperature	15	-	?	-	27

- Give best and worst the utility 1 and 0, respectively
- Ask questions until desired degree of accuracy has been reached:
 - What value gives you utility 1/2?
 - What value gives you utility 1/4?
 - What value gives you utility 3/4?
 - 0 ...
- For missing values in the table, use interpolation

	X_i^0		$X_{i}^{0.5}$		X_i^1
Utility	0	-	0.5	_	1
Temperature	15	-	18	-	27

- Give best and worst the utility 1 and 0, respectively
- Ask questions until desired degree of accuracy has been reached:
 - What value gives you utility 1/2?
 - What value gives you utility 1/4?
 - What value gives you utility 3/4?
 - 0 ...
- For missing values in the table, use interpolation

	X_i^0	$X_i^{0.25}$	$X_i^{0.5}$		X_i^1
Utility	0	0.25	0.5	-	1
Temperature	15	?	18	-	27

- Give best and worst the utility 1 and 0, respectively
- Ask questions until desired degree of accuracy has been reached:
 - What value gives you utility 1/2?
 - What value gives you utility 1/4?
 - What value gives you utility 3/4?
 - 0 ...
- For missing values in the table, use interpolation

	X_i^0	$X_i^{0.25}$	$X_i^{0.5}$	$X_i^{0.75}$	X_i^1
Utility	0	0.25	0.5	-	1
Temperature	15	16	18	-	27

- Give best and worst the utility 1 and 0, respectively
- Ask questions until desired degree of accuracy has been reached:
 - What value gives you utility 1/2?
 - What value gives you utility 1/4?
 - What value gives you utility 3/4?
 - 0 ...
- For missing values in the table, use interpolation

	X_i^0	$X_i^{0.25}$	$X_i^{0.5}$	$X_i^{0.75}$	X_i^1
Utility	0	0.25	0.5	0.75	1
Temperature	15	16	18	?	27

- Give best and worst the utility 1 and 0, respectively
- Ask questions until desired degree of accuracy has been reached:
 - What value gives you utility 1/2?
 - What value gives you utility 1/4?
 - What value gives you utility 3/4?
 - 0 ...
- For missing values in the table, use interpolation

	X_i^0	$X_i^{0.25}$	$X_i^{0.5}$	$X_i^{0.75}$	X_i^1
Utility	0	0.25	0.5	0.75	1
Temperature	15	16	18	21	27

Trade-Off Method

- Have all utility functions u_k
- Find the one criterion k where the utility difference between x_k^0 and x_k^1 feels largest
- Let us call this criterion number 1
- We compare the other criteria against criterion 1:
- For all k = 2, ..., K:
 - \circ Find \overline{x}_1^k for criterion 1 such that the two options $(\overline{x}_1^k, x_k^0)$ and (x_1^0, x_k^1) are equally good
 - This gives equation $\lambda_k = u_1(\overline{X}_1^k)\lambda_1$
- Solve system of equations also using $\sum_{k \in [K]} \lambda_k = 1$

Today

- UTA
- Decisions with multiple time steps

FAU M. Hartisch Decision Theory May 27, 2024 10/46

UTA

- UTA = "UTilité Additive" (Jacquet-Lagreze, Siskos 1981)
- Setting as in MAUT:
 - List of alternatives
 - Multiple criteria
 - Find a utility function
- In MAUT: Asking for relevant comparisons to find utility functions and weights

UTA Approach

- Alternatives $A = \{a_1, a_2, a_3, ...\}$
- *n* criteria, $g_i: A \to X_i$ with $X_i = [\alpha_i, \beta_i]$ range in criterion *i*
- Assumption: the larger $g_i(a)$, the better a
- Search for (additive) utility function

$$U: \prod_{i\in[n]}X_i\to\mathbb{R},\ U(x)=\sum_{i\in[n]}u_i(x_i)$$

• Short: U(a) instead of $U(g_1(a), \ldots, g_n(a))$

Example: Ranking by IT Infrastructure Quality actions performances criteria Slovakia Denmark Denmark Netherlan Poland Sweden connectivity 7.85 8.05 ΙĪ Bulgaria UK business environment 8.18 8.05 Netherlan Turkey social and cultural environment 8.47 8.07 11 11 11 Norway Russia legal environment 8.10 8.45 11 Malta Kazakh. government policy and vision 8.70 8.25 11 Ukraine consumer and business adoption 9.00 8.90 France 11 11 Azerbaij. Germany Ireland

UTA Approach

- Know values g_i
- Receive information once and derive utility functions
- No iterative questioning like in MAUT
- Receive information on reference alternatives $A^R \subseteq A$
- On A^R , we obtain a (complete or partial) order like $a \succeq b$ (a at least as good as b)

UTA Approach

- Decompose relation $a \succeq b$ into:
 - \circ $a \succ b \Leftrightarrow a \succ b$ and not $b \succ a$
 - \circ $a \sim b \Leftrightarrow a \succeq b$ and $b \succeq a$
- Sort $A^R = \{a_1, ..., a_m\}$ so that $a_k \succeq a_{k+1}$
- Seek "compatible" utility function *U*, i.e.,
 - $\circ a_k \succ a_{k+1} \Leftrightarrow U(a_k) > U(a_{k+1})$
 - $\circ a_k \sim a_{k+1} \Leftrightarrow U(a_k) = U(a_{k+1})$

UTA Approach

- $U(x) = \sum_{i \in [n]} u_i(x_i)$
- Assume each function u_i is piecewise linear
- Interval $[\alpha_i, \beta_i]$ divided into γ_i equally sized subintervals:

$$[x_i^0, x_i^1], [x_i^1, x_i^2], \dots, [x_i^{\gamma_i-1}, x_i^{\gamma_i}]$$

with

$$\mathbf{x}_{i}^{j} = \alpha_{i} + \frac{(\beta_{i} - \alpha_{i})}{\gamma_{i}} \mathbf{j}$$

• Linear interpolation in between: for $g_i(a) \in [x_i^j, x_i^{j+1}]$

$$u_i(a) = u_i(x_i^j) + \frac{u_i(x_i^{j+1}) - u_i(x_i^j)}{x_i^{j+1} - x_i^j} (g_i(a) - x_i^j)$$

UTA Approach

- Also want normalization of U to interval [0, 1]
- Conditions on utility function can now be expressed as "linear" conditions:

$$U(a_k) > U(a_{k+1})$$

$$U(a_k) = U(a_{k+1})$$

$$u_i(x_i^{j+1}) - u_i(x_i^j) \ge 0$$

$$u_i(\alpha_i) = 0$$

$$\sum_{i \in [n]} u_i(\beta_i) = 1$$

$$\forall k \in [m-1] : a_k \succ a_{k+1}$$

$$\forall k \in [m-1] : a_k \sim a_{k+1}$$

$$\forall i \in [n], j \in [\gamma_i - 1]$$

$$\forall i \in [n]$$

UTA Approach

- Also want normalization of U to interval [0, 1]
- Conditions on utility function can now be expressed as "linear" conditions:

$$U(a_k) > U(a_{k+1})$$

$$U(a_k) = U(a_{k+1})$$

$$u_i(x_i^{j+1}) - u_i(x_i^j) \ge 0$$

$$u_i(\alpha_i) = 0$$

$$\sum_{i \in [n]} u_i(\beta_i) = 1$$

$$\forall k \in [m-1] : a_k \succ a_{k+1}$$

$$\forall k \in [m-1] : a_k \sim a_{k+1}$$

$$\forall i \in [n], j \in [\gamma_i - 1]$$

$$\forall i \in [n]$$

- Problem 1: ">" not allowed in linear programming
- Problem 2: What if there is no compatible function *U*?

UTA Approach

- ">" not allowed in linear program
 - Write $U(a_k) \geq U(a_{k+1}) + \varepsilon$ for a small constant ε
- What if there is no compatible function *U*?
 - Find the most suitable utility function
 - Minimize the violation of conditions
 - Allow slack variables
 - Example:

$$U(a_k) = U(a_{k+1})$$

becomes

$$U(a_k) + \sigma^+(a_k) - \sigma^-(a_k) = U(a_{k+1}) + \sigma^+(a_{k+1}) - \sigma^-(a_{k+1})$$

UTA Approach

Overall, the following LP (Linear Program):

$$\begin{aligned} & \min \ \sum_{k \in [m]} (\sigma^{+}(a_{k}) + \sigma^{-}(a_{k})) \\ & \text{s.t.} \ U(a_{k}) + \sigma^{+}(a_{k}) - \sigma^{-}(a_{k}) \\ & \geq U(a_{k+1}) + \sigma^{+}(a_{k+1}) - \sigma^{-}(a_{k+1}) + \varepsilon \qquad \forall k \in [m-1] : a_{k} \succ a_{k+1} \\ & U(a_{k}) + \sigma^{+}(a_{k}) - \sigma^{-}(a_{k}) \\ & = U(a_{k+1}) + \sigma^{+}(a_{k+1}) - \sigma^{-}(a_{k+1}) \qquad \forall k \in [m-1] : a_{k} \sim a_{k+1} \\ & u_{i}(x_{i}^{j+1}) - u_{i}(x_{i}^{j}) \geq 0 \qquad \qquad \forall i \in [n], j \in [\gamma_{i} - 1] \\ & u_{i}(\alpha_{i}) = 0 \qquad \qquad \forall i \in [n] \\ & \sum_{i \in [n]} u_{i}(\beta_{i}) = 1 \\ & \sigma^{+}(a_{k}), \sigma^{-}(a_{k}) \geq 0 \qquad \qquad \forall k \in [m] \end{aligned}$$

UTA Approach

- The solution gives us the utility function
- Optimal objective value = 0:
 - \circ There is a utility function compatible with all specifications in A^R
- Optimal objective value > 0:
 - There is no compatible utility function
 - \circ Increase γ_i for a more detailed model, or
 - \circ Change A^R , or
 - Accept a compromise
- In both cases, the solution is not necessarily unique!

Example Sweden Netherlan **Marginal value functions** Sweden **Marginal value functions** Netherlan Norway connectivity connectivity Denmark Sweden 0,2 Denmark Denmark 0,16 Norway 0.16 0,12 0.12 UK Germany 0.08 UK 0.08 France Ireland 0.04 0.04 Malta France 2.5 3.5 4.5 5.5 6.5 7.5 8.5 Malta 3.5 4.5 5.5 6.5 7.5 8 Ireland UK 9 Germany Malta France 10 Slovakia Slovakia 10 business environment business environment Poland Turkey 0.5 0.5 12 0.4 Bulgaria Turkey 0.4 Poland 0.3 0.3 13 Bulgaria Bulgaria 0.2 0.2 14 Russia 0.1 Kazakh. 15 Kazakh. 15 Russia Ukraine 16 Azerbaij. Azerbaij. Ukraine

IITAGMS

- Assume there is a compatible utility function
- Idea: identify
 - \circ necessary relations $a \succeq^N b$
 - \circ potential relations $a \succeq^P b$
- Necessary relations hold in all compatible utility functions
- Potential relations hold in at least one
- GMS = Greco, Mousseau, Słowiński

UTAGMS

- Observation:
 - ∘ $a \succeq b$ for $a, b \in A^R \Rightarrow a \succeq^N b$
 - \circ $a \succ b$ for $a, b \in A^R \Rightarrow \text{not } (b \succeq^P a)$
- Properties
 - $\circ \succeq^P \supseteq \succeq^N$
 - $\circ \succeq^N$ is transitive

UTAGMS

- How to calculate \succeq^N and \succeq^P ?
- Let $d(a, b) = \min(U(a) U(b))$ over all compatible U
- Let $D(a, b) = \max(U(a) U(b))$ over all compatible U
- It holds:
 - $\circ a \succeq^N b \Leftrightarrow d(a,b) \geq 0$
 - $\circ a \succeq^P b \Leftrightarrow D(a,b) \geq 0$

Entscheidungstheorie

UTA GMS

- Still, we might want to choose a single good representative U
- For this, a new lexicographic optimization problem:
 - 1. Represent necessary relations as strongly as possible, i.e., maximize utility difference for $a \succeq^N b$ and not $(b \succeq^N a)$
 - 2. Minimize utility difference for undecided pairs, i.e., when not $(a \succeq^N b)$ and not $(b \succeq^N a)$

IITAGMS

- Related approach: extreme ranking analysis
- Determine the highest and lowest possible rank across all compatible rankings

FAU M. Hartisch Decision Theory May 27, 2024 31/46

Poland

Sweden

Netherlan

UK

Norway

...

Germany

Malta

Ireland

Turkey

...

Kazakh.

Ukraine

the highest

 $P^*(a)$

rank

 $P_*(a)$

the lowest

assume that a is ranked

In the top in the bottom

identify minimal subset of alternatives that are simultaneously

not worse than a

not better than a

i.e., solve the following MILP problems

$$\begin{aligned} \textit{Minimize} : f_{\max}^{\textit{pos}} - \sum_{b \in A \setminus \{a\}} v_b & \textit{Minimize} : f_{\min}^{\textit{pos}} - \sum_{b \in A \setminus \{a\}} v_b \\ U(a) > U(b) - M \cdot v_b, \textit{ for all } b \in A \setminus \{a\} & U(b) > U(a) - M \cdot v_b \\ E(A^R) & E(A^R) \end{aligned}$$

read off the extreme ranks

$$P*(a) = f_{\text{max}}^{pos} + 1$$

 $P_*(a) = A - f_{\min}^{pos}$

the best case

the worst case

Sweden

Netherlan

UK

Norway

Germany

Malta

Ireland

Turkey

Kazakh.

Ukraine

Poland

UTA – Additional Techniques

- Stochastic ordinal regression
 - Relations with probabilities
 - o a is 80% better than b
- Model over-fitting
 - Want to balance accuracy against complexity
 - \circ Willing to accept that preferences A^R are not precisely represented if a simpler explanation is found
 - Hope: better performance out-of-sample
- Intensity of preference is given

New Topic! Decisions with Multiple Time Steps: Examples

- You switch to a whole-foods diet
 - Immediate disadvantage: no sweets
 - Later advantage: a healthy life
- Should one invest in basic research?
 - Immediate disadvantage: less money for other areas
 - Later advantage: strengthening other research areas
- "Intertemporal" decisions (under certainty)

Modeling

- Formally like a multi-criteria problem, e.g.:
 - Criterion 1: profit 2024
 - Criterion 2: profit 2025
 - Criterion 3: profit 2026
 - 0 ...
- Set up a utility function again:

$$U(a_i) = \sum_{t \in [T]} \lambda_t u_t(e_i^t)$$

- Can apply known methods
- Often $\lambda_t = \delta^t$, $\delta < 1$, exponential discounting
- Decision = Decision for all time steps

Variant

• Alternatively: Decision is made anew at each time point

$$U^{\tau}(a_i) = \sum_{t=\tau}^{T} \delta^t u_t(e_i^t)$$

- Again, exponential discount function, $\delta \in [0, 1]$
- $u_t(e_i^t)$: how satisfied am I on day t
- $U^{\tau}(a_i)$: on day τ , how satisfied am I with today and the future
- Time-consistent: preferences decrease uniformly

Extension

$$U^{\tau}(a_i) = \delta^{\tau} u_{\tau}(e_i^{\tau}) + \beta \sum_{t=\tau+1}^{I} \delta^t u_t(e_i^t)$$

- $\beta \in [0, 1]$
- δ : long-term impatience
- β : immediate satisfaction
- β = 1: as before
- β < 1: lack of self-control

Example

$$U^{\tau}(a_i) = \delta^{\tau} u_{\tau}(e_i^{\tau}) + \beta \sum_{t=\tau+1}^{T} \delta^t u_t(e_i^t)$$

- δ = 1, β = 0.5
- On Monday, one person considers the utility of the coming Friday and Saturday equally important
- On Friday, the utility on Friday is twice as important as the utility on Saturday

Types

$$U^{\tau}(a_i) = \delta^{\tau} u_{\tau}(e_i^{\tau}) + \beta \sum_{t=\tau+1}^{T} \delta^t u_t(e_i^t)$$

- Three types of decision-makers:
- Time-consistent (TC)
 - $\circ \beta = 1$, choose every day τ so that U^{τ} is maximal
 - Formulates a plan and sticks to it
- Naive
 - $\circ \beta <$ 1, also choose every day τ so that U^{τ} is maximal
 - Not aware of inconsistency
 - Optimistic: believes he will act consistently in the future
- Sophisticated:
 - Like naive but aware of inconsistency
 - Knows that he will apply this function in the future

Example

- Someone likes to go to the movies on Saturdays
- Program:
 - This week: mediocre movie
 - Next week: good movie
 - In two weeks: very good movie
 - In three weeks: the big hit (Nicolas Cage!)
- Person has to submit term paper within four weeks
- One of the movies has to be skipped

Evaluation

Week	Movie	
1	Medium	3
2	Good	5
3	Very good	8
4	Medium Good Very good Nic Cage	13

- TC (with δ = 1): misses the worst movie (Week 1)
- Assuming $\delta = 1$, $\beta = 0.5$
- Naive:
 - Week 1: better utility 3 than $\frac{1}{2} \cdot 5$
 - Week 2: better utility 5 than $\frac{1}{2} \cdot 8$
 - 0 ...
 - Misses Nic Cage

Evaluation

Week	Movie	Value
1	Medium	3
2	Good Very good	5
3	Very good	8
4	Nic Cage	13

• Assuming $\delta = 1$, $\beta = 0.5$

- Sophisticated:
 - In Week 3: 8 (watching) vs. 6.5 (not watching)
 - \rightarrow watch
 - In Week 2: 5+4 (watching) vs. 4+6.5 (not watching)
 - \rightarrow not watch
 - In Week 1: 3+10.5 (watching) vs. 2.5+4+6.5 (not watching)
 - \rightarrow watch
 - Watches the movie in Week 1,3, and 4 (a bit of procrastination)

Example, continued

Week	Movie	Value
1	Medium	3
2	Good	5
3		8
4	Nic Cage	13

- The person has only enough money to watch a single movie
- TC (with $\delta = 1$) watches the best movie
- Naive:
 - Week 1: utility 3 worse than utility $\frac{1}{2} \cdot 13$
 - Week 2: utility 5 worse than utility $\frac{1}{2} \cdot 13$
 - Week 3: utility 8 better than utility $\frac{1}{2} \cdot 13$
 - Watches the movie in Week 3
 - Waits because optimistic about the future

Example, continued

Week	Movie	Value
1	Medium	3
2	Good	5
3		8
4	Nic Cage	13

- The person has only enough money to watch a single movie
- Sophisticated:
 - Week 3: 8 (watch) vs. 6.5 (wait) → watch
 - Week 2: 5 (watch) vs. 4 (wait) → watch
 - Week 1: 3 (watch) vs. 2.5 (wait) → watch
 - Watches the movie in Week 1
 - Because aware that future actions won't be correct, the problem gets even worse

Quiz

Question 1

Given:

- *a* ≥ *b*
- $b \succeq c$

Is $a \succeq^P c$ true?

Question 2

How do you decide about the future? Are you of the type:

- TC
- Naive
- Sophisticated

How would you set δ and β in the cinema example?