Calculus I Lecture 21 The Fundamental Theorem of Calculus Part I

Todor Miley

https://github.com/tmilev/freecalc

2020

Todor Milev Lecture 21 ... 2020

Outline

Antiderivatives

Outline

Antiderivatives

- Evaluating Definite Integrals
 - The Evaluation Theorem (FTC part 2)
 - Indefinite Integrals

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work.

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein.

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work.

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein.

Antiderivatives

Definition (Antiderivative)

A function F is called an antiderivative of f on an interval I if F'(x) = f(x) for all x in I.

Todor Milev Lecture 21 ... 2020

Example

• Let $f(x) = x^2$.

- Let $f(x) = x^2$.
- Use the Power Rule to find an antiderivative of *f*:
- If $F(x) = \int_{0}^{x} f(x) dx = \int_{0}^{x} f(x) dx$, then $F'(x) = \int_{0}^{x} f(x) dx = \int_{0}^{x} f(x) dx$.

- Let $f(x) = x^2$.
- Use the Power Rule to find an antiderivative of f:
- If F(x) = f(x) = f(x), then $F'(x) = x^2 = f(x)$.

- Let $f(x) = x^2$.
- Use the Power Rule to find an antiderivative of f:
- If $F(x) = \frac{1}{3}x^3$, then $F'(x) = x^2 = f(x)$.

- Let $f(x) = x^2$.
- Use the Power Rule to find an antiderivative of f:
- If $F(x) = \frac{1}{3}x^3$, then $F'(x) = x^2 = f(x)$.
- Is this the only one?

- Let $f(x) = x^2$.
- Use the Power Rule to find an antiderivative of f:
- If $F(x) = \frac{1}{3}x^3$, then $F'(x) = x^2 = f(x)$.
- Is this the only one?
- No. If $G(x) = \frac{1}{3}x^3 + 1$, then $G'(x) = x^2 = f(x)$.

- Let $f(x) = x^2$.
- Use the Power Rule to find an antiderivative of f:
- If $F(x) = \frac{1}{3}x^3$, then $F'(x) = x^2 = f(x)$.
- Is this the only one?
- No. If $G(x) = \frac{1}{3}x^3 + 1$, then $G'(x) = x^2 = f(x)$.
- $\frac{1}{3}x^3 + 2$ will also work.

Example

- Let $f(x) = x^2$.
- Use the Power Rule to find an antiderivative of f:
- If $F(x) = \frac{1}{3}x^3$, then $F'(x) = x^2 = f(x)$.
- Is this the only one?
- No. If $G(x) = \frac{1}{3}x^3 + 1$, then $G'(x) = x^2 = f(x)$.
- $\frac{1}{3}x^3 + 2$ will also work.
- Any function of the form $H(x) = \frac{1}{3}x^3 + C$, where C is a constant, is an antiderivative of f.

Todor Milev Lecture 21 2020

Theorem

If F is an antiderivative of f on an interval I, then an arbitrary antiderivative of f on I is of the form

$$F(x) + C$$

where C is an arbitrary constant.

Example

$$f(x) = \sin x$$

$$f(x) = x^n, n \ge 0$$

Example

$$f(x) = \sin x$$

$$f(x) = x^n, n \ge 0$$

• If
$$F(x) = f'(x) = \sin x$$
, then

Example

$$f(x) = \sin x$$

$$f(x) = x^n, n \ge 0$$

• If
$$F(x) =$$
, then $F'(x) = \sin x$.

Example

$$f(x) = \sin x$$

$$f(x) = x^n, n \ge 0$$

• If
$$F(x) = -\cos x$$
, then $F'(x) = \sin x$.

Example

$$f(x) = \sin x$$

$$f(x) = x^n, n \ge 0$$

- If $F(x) = -\cos x$, then $F'(x) = \sin x$.
- Therefore antiderivative is of the form $G(x) = -\cos x + C$.

Example

$$f(x) = \sin x$$

$$f(x) = x^n, n \ge 0$$

- If $F(x) = -\cos x$, then $F'(x) = \sin x$.
- Therefore antiderivative is of the form $G(x) = -\cos x + C$.

• If
$$F(x) =$$
, then $F'(x) = x^n$.

Example

$$f(x) = \sin x$$

$$f(x) = x^n, n \ge 0$$

- If $F(x) = -\cos x$, then $F'(x) = \sin x$.
- Therefore antiderivative is of the form $G(x) = -\cos x + C$.

• If
$$F(x) =$$
, then $F'(x) = x^n$.

Example

$$f(x) = \sin x$$

$$f(x)=x^n, n\geq 0$$

- If $F(x) = -\cos x$, then $F'(x) = \sin x$.
- Therefore antiderivative is of the form $G(x) = -\cos x + C$.

• If
$$F(x) = \frac{x^{n+1}}{n+1}$$
, then $F'(x) = x^n$.

Example

Find all antiderivatives of each of the following functions.

$$f(x) = \sin x$$

$$f(x) = x^n, n \ge 0$$

- If $F(x) = -\cos x$, then $F'(x) = \sin x$.
- Therefore antiderivative is of the form $G(x) = -\cos x + C$.

• If
$$F(x) = \frac{x^{n+1}}{n+1}$$
, then $F'(x) = x^n$.

• Therefore any antiderivative is of the form $G(x) = \frac{x^{n+1}}{n+1} + C$.

Todor Milev Lecture 21 ... 2020

Example

Example

• If
$$F(x) =$$
, then $F'(x) = \frac{1}{x}$.

Example

• If
$$F(x) =$$
, then $F'(x) = \frac{1}{x}$.

Example

Find the most general antiderivative of $f(x) = \frac{1}{x}$.

• If $F(x) = \ln |x|$, then $F'(x) = \frac{1}{x}$.

Example

- If $F(x) = \ln |x|$, then $F'(x) = \frac{1}{x}$.
- This is valid for any interval on which $\frac{1}{x}$ is defined.

Example

- If $F(x) = \ln |x|$, then $F'(x) = \frac{1}{x}$.
- This is valid for any interval on which $\frac{1}{x}$ is defined.
- $\frac{1}{x}$ is defined

Example

- If $F(x) = \ln |x|$, then $F'(x) = \frac{1}{x}$.
- This is valid for any interval on which $\frac{1}{x}$ is defined.
- $\frac{1}{y}$ is defined everywhere except at 0.

Example

Find the most general antiderivative of $f(x) = \frac{1}{x}$.

- If $F(x) = \ln |x|$, then $F'(x) = \frac{1}{x}$.
- This is valid for any interval on which $\frac{1}{x}$ is defined.
- $\frac{1}{y}$ is defined everywhere except at 0.
- The most general answer needs two different constants, one for $(-\infty,0)$ and one for $(0,\infty)$.

Todor Milev Lecture 21 ... 2020

Example

- If $F(x) = \ln |x|$, then $F'(x) = \frac{1}{x}$.
- This is valid for any interval on which $\frac{1}{x}$ is defined.
- $\frac{1}{x}$ is defined everywhere except at 0.
- The most general answer needs two different constants, one for $(-\infty,0)$ and one for $(0,\infty)$.

$$G(x) = \begin{cases} \ln|x| + C_1 & \text{if} \quad x > 0 \\ \ln|x| + C_2 & \text{if} \quad x < 0 \end{cases}$$

Every differentiation formula gives rise to an antidifferentiation formula. Suppose F' = f and G' = g.

Function	Particular Antiderivative
	i articulai Artiluerivative
cf(x)	
f(x)+g(x)	
$x^n(n \neq -1)$	
1_	
$\stackrel{-}{e^x}$	
cos X	
sin X	
sec ² X	
sec X tan X	

Every differentiation formula gives rise to an antidifferentiation formula. Suppose F' = f and G' = g.

Function	Particular Antiderivative
cf(x)	
f(x)+g(x)	
$x^n(n \neq -1)$	
1	
e^{x}	
cos X	
sin X	
sec ² X	
sec X tan X	

Every differentiation formula gives rise to an antidifferentiation formula. Suppose F' = f and G' = g.

Function	Particular Antiderivative
cf(x)	cF(x)
f(x)+g(x)	
$x^n(n \neq -1)$	
1	
$\stackrel{-}{\overset{x}{e^{x}}}$	
cos X	
sin X	
sec ² X	
sec X tan X	

Function	Particular Antiderivative
cf(x)	cF(x)
f(x) + g(x)	,
$x^n(n \neq -1)$	
1	
$\stackrel{-}{e^x}$	
cos X	
sin X	
sec ² <i>X</i>	
sec X tan X	

Function	Particular Antiderivative
cf(x)	cF(x)
f(x)+g(x)	F(x)+G(x)
$x^n(n \neq -1)$	
1	
$\stackrel{-}{e^x}$	
cos X	
sin X	
sec ² X	
sec X tan X	

Every differentiation formula gives rise to an antidifferentiation formula. Suppose F' = f and G' = g.

Function	Particular Antiderivative
cf(x)	cF(x)
f(x) + g(x)	F(x) + G(x)
$x^n(n \neq -1)$	
1	
e^{x}	
cos X	
sin X	
sec ² <i>X</i>	
sec X tan X	

Function	Particular Antiderivative
cf(x)	cF(x)
f(x)+g(x)	F(x) + G(x)
$x^n (n \neq -1)$	$\frac{x^{n+1}}{n+1}$
$\begin{vmatrix} \dot{x} \\ e^x \end{vmatrix}$	
cos X	
sin X	
sec ² X	
sec X tan X	

Function	Particular Antiderivative
cf(x)	cF(x)
f(x) + g(x)	F(x) + G(x)
$x^n(n \neq -1)$	$\frac{x^{n+1}}{n+1}$
1	77 1
$\stackrel{-}{e^{x}}$	
cos X	
sin X	
sec ² X	
sec X tan X	

Function	Particular Antiderivative
cf(x)	cF(x)
f(x) + g(x)	F(x) + G(x)
$x^{n}(n \neq -1)$ $\frac{1}{x}$ e^{x}	$\frac{x^{n+1}}{n+1}$ $\ln x $
cos X	
sin X	
sec ² <i>X</i>	
sec X tan X	

Function	Particular Antiderivative
cf(x)	cF(x)
f(x) + g(x)	F(x) + G(x)
$x^{n}(n \neq -1)$ $\frac{1}{x}$ e^{x}	$\frac{x^{n+1}}{n+1}$ $\ln x $
cos X	
sin <i>X</i>	
sec ² <i>X</i>	
sec X tan X	

Every differentiation formula gives rise to an antidifferentiation formula. Suppose F' = f and G' = g.

Function	Particular Antiderivative
cf(x)	cF(x)
f(x)+g(x)	F(x) + G(x)
$x^n (n \neq -1)$	$\frac{X^{n+1}}{n+1}$
1	n+1
x e ^x	In X
	e^x
cos X	
sin X	
sec ² <i>x</i>	
sec X tan X	

Function	Particular Antiderivative
cf(x)	cF(x)
f(x)+g(x)	F(x) + G(x)
$x^{n}(n \neq -1)$ $\frac{1}{x}$ e^{x}	$\frac{x^{n+1}}{n+1}$ $\ln x $ e^x
cos X	
sin X	
sec ² <i>x</i>	
sec X tan X	

Every differentiation formula gives rise to an antidifferentiation formula. Suppose F' = f and G' = g.

Function	Particular Antiderivative
cf(x)	cF(x)
f(x) + g(x)	F(x) + G(x)
$x^{n}(n \neq -1)$ $\frac{1}{x}$ e^{x}	$\frac{x^{n+1}}{n+1}$ $\ln x $ e^x
cos X	sin X
sin X	
sec ² x	
sec X tan X	

Function	Particular Antiderivative
cf(x)	cF(x)
f(x) + g(x)	F(x) + G(x)
$x^{n}(n \neq -1)$ $\frac{1}{x}$ e^{x}	$\frac{x^{n+1}}{n+1}$ $\ln x $ e^x
cos X	sin X
sin X	
sec ² X	
sec X tan X	

Function	Particular Antiderivative
cf(x)	cF(x)
f(x) + g(x)	F(x) + G(x)
$x^n(n \neq -1)$	$\frac{x^{n+1}}{n+1}$
1_	$\ln x $
X	' '
e^{x}	e^x
cos X	sin X
sin X	$-\cos X$
sec ² <i>X</i>	
sec X tan X	

Function	Particular Antiderivative
cf(x)	cF(x)
f(x) + g(x)	F(x) + G(x)
$x^n(n \neq -1)$	$\frac{x^{n+1}}{n+1}$
<u> </u>	In <i>x</i>
$\stackrel{-}{e^x}$	e^{x}
cos X	sin <i>X</i>
sin X	$-\cos X$
sec ² X	
sec X tan X	

Function	Particular Antiderivative
cf(x)	cF(x)
f(x) + g(x)	F(x) + G(x)
$x^n(n \neq -1)$	$\frac{x^{n+1}}{n+1}$
 	In <i>x</i>
e^{x}	e^{x}
cos X	sin <i>X</i>
sin X	$-\cos X$
sec ² X	tan X
sec X tan X	

Function	Particular Antiderivative
cf(x)	cF(x)
f(x) + g(x)	F(x) + G(x)
$x^n (n \neq -1)$	$\frac{x^{n+1}}{n+1}$
<u> </u>	In <i>x</i>
$\stackrel{-}{e^x}$	e^{x}
cos X	sin <i>X</i>
sin X	$-\cos X$
sec ² <i>X</i>	tan X
sec X tan X	

Function	Particular Antiderivative
cf(x)	cF(x)
f(x) + g(x)	F(x) + G(x)
$x^n (n \neq -1)$	$\frac{x^{n+1}}{n+1}$
<u> </u>	In <i>x</i>
$\stackrel{-}{e^x}$	e^{x}
cos X	sin <i>X</i>
sin X	$-\cos X$
sec ² <i>X</i>	tan X
sec X tan X	sec X

Example

Find all functions g such that

$$g'(x) = 4\sin x + \frac{2x^5 - \sqrt{x}}{x}.$$

Example

Find all functions g such that

$$g'(x) = 4\sin x + \frac{2x^5 - \sqrt{x}}{x}.$$

Rewrite:

$$g'(x) = 4\sin x + 2\frac{x^5}{x} - \frac{\sqrt{x}}{x} = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$

Example

Find all functions g such that

$$g'(x) = 4\sin x + \frac{2x^5 - \sqrt{x}}{x}.$$

Rewrite:

$$g'(x) = 4\sin x + 2\frac{x^5}{x} - \frac{\sqrt{x}}{x} = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$

$$g'(x) = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$

$$g(x) = 4 + 2 -$$

Example

Find all functions g such that

$$g'(x)=4\sin x+\frac{2x^5-\sqrt{x}}{x}.$$

Rewrite:

$$g'(x) = 4\sin x + 2\frac{x^5}{x} - \frac{\sqrt{x}}{x} = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$

$$g'(x) = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$

$$g(x) = 4 + 2 -$$

Example

Find all functions g such that

$$g'(x) = 4\sin x + \frac{2x^5 - \sqrt{x}}{x}.$$

Rewrite:

$$g'(x) = 4\sin x + 2\frac{x^5}{x} - \frac{\sqrt{x}}{x} = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$

$$g'(x) = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$

$$g(x) = 4(-\cos x) + 2 \qquad -$$

Example

Find all functions g such that

$$g'(x)=4\sin x+\frac{2x^5-\sqrt{x}}{x}.$$

Rewrite:

$$g'(x) = 4\sin x + 2\frac{x^5}{x} - \frac{\sqrt{x}}{x} = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$

$$g'(x) = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$

$$g(x) = 4(-\cos x) + 2 \qquad -$$

Example

Find all functions g such that

$$g'(x) = 4\sin x + \frac{2x^5 - \sqrt{x}}{x}.$$

Rewrite:

$$g'(x) = 4\sin x + 2\frac{x^5}{x} - \frac{\sqrt{x}}{x} = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$

$$g'(x) = 4\sin x + 2x^{4} - \frac{1}{\sqrt{x}}$$
$$g(x) = 4(-\cos x) + 2\frac{x^{5}}{5} - \frac{1}{x^{5}}$$

$$g(x) = 4(-\cos x) + 2\frac{x^5}{5}$$

Example

Find all functions g such that

$$g'(x) = 4\sin x + \frac{2x^5 - \sqrt{x}}{x}.$$

Rewrite:

$$g'(x) = 4\sin x + 2\frac{x^5}{x} - \frac{\sqrt{x}}{x} = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$

$$g'(x) = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$
$$g(x) = 4(-\cos x) + 2\frac{x^5}{5} - \frac{1}{5}$$

$$g(x) = 4(-\cos x) + 2\frac{x^5}{5}$$

Example

Find all functions g such that

$$g'(x) = 4\sin x + \frac{2x^5 - \sqrt{x}}{x}.$$

Rewrite:

$$g'(x) = 4\sin x + 2\frac{x^5}{x} - \frac{\sqrt{x}}{x} = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$

$$g'(x) = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$
$$g(x) = 4(-\cos x) + 2\frac{x^5}{5} - \frac{x^{1/2}}{\frac{1}{2}}$$

Example

Find all functions g such that

$$g'(x) = 4\sin x + \frac{2x^5 - \sqrt{x}}{x}.$$

Rewrite:

$$g'(x) = 4\sin x + 2\frac{x^5}{x} - \frac{\sqrt{x}}{x} = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$

Find the antiderivative:

$$g'(x) = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$
$$g(x) = 4(-\cos x) + 2\frac{x^5}{5} - \frac{x^{1/2}}{\frac{1}{2}} + C$$

Todor Milev Lecture 21 2020

Example

Find all functions g such that

$$g'(x) = 4\sin x + \frac{2x^5 - \sqrt{x}}{x}.$$

Rewrite:

$$g'(x) = 4\sin x + 2\frac{x^5}{x} - \frac{\sqrt{x}}{x} = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$

$$g'(x) = 4\sin x + 2x^4 - \frac{1}{\sqrt{x}}$$

$$g(x) = 4(-\cos x) + 2\frac{x^5}{5} - \frac{x^{1/2}}{\frac{1}{2}} + C$$

$$= -4\cos x + \frac{2}{5}x^5 - 2\sqrt{x} + C$$

Find
$$f$$
 if $f'(x) = \frac{1}{x\sqrt{x}}$ for $x > 0$, and $f(1) = 1$.

Find
$$f$$
 if $f'(x) = \frac{1}{x\sqrt{x}}$ for $x > 0$, and $f(1) = 1$.

$$f'(x) = \frac{1}{x\sqrt{x}} = x^{-3/2}$$

Find
$$f$$
 if $f'(x) = \frac{1}{x\sqrt{x}}$ for $x > 0$, and $f(1) = 1$.

$$f'(x) = \frac{1}{x\sqrt{x}} = x^{-3/2}$$

$$f(x) =$$

Antiderivatives

Find
$$f$$
 if $f'(x) = \frac{1}{x\sqrt{x}}$ for $x > 0$, and $f(1) = 1$.

$$f'(x) = \frac{1}{x\sqrt{x}} = x^{-3/2}$$
$$f(x) = \frac{x^{-1/2}}{-\frac{1}{2}}$$

$$f(x) = \frac{x^{-1/2}}{-\frac{1}{2}}$$

Antiderivatives

Find
$$f$$
 if $f'(x) = \frac{1}{x\sqrt{x}}$ for $x > 0$, and $f(1) = 1$.

$$f'(x) = \frac{1}{x\sqrt{x}} = x^{-3/2}$$
$$f(x) = \frac{x^{-1/2}}{-\frac{1}{2}} + C$$

$$f(x) = \frac{x^{-1/2}}{-\frac{1}{2}} + C$$

Find
$$f$$
 if $f'(x) = \frac{1}{x\sqrt{x}}$ for $x > 0$, and $f(1) = 1$.

$$f'(x) = \frac{1}{x\sqrt{x}} = x^{-3/2}$$
$$f(x) = \frac{x^{-1/2}}{-\frac{1}{2}} + C$$
$$= -\frac{2}{\sqrt{x}} + C$$

Example

Find f if
$$f'(x) = \frac{1}{x\sqrt{x}}$$
 for $x > 0$, and $f(1) = 1$.

$$f'(x) = \frac{1}{x\sqrt{x}} = x^{-3/2}$$
$$f(x) = \frac{x^{-1/2}}{-\frac{1}{2}} + C$$
$$= -\frac{2}{\sqrt{x}} + C$$

To find C, use the fact that f(1) = 1.

$$f(1) = 1$$

Example

Find f if
$$f'(x) = \frac{1}{x\sqrt{x}}$$
 for $x > 0$, and $f(1) = 1$.

$$f'(x) = \frac{1}{x\sqrt{x}} = x^{-3/2}$$
$$f(x) = \frac{x^{-1/2}}{-\frac{1}{2}} + C$$
$$= -\frac{2}{\sqrt{x}} + C$$

To find C, use the fact that f(1) = 1.

$$f(1) = 1$$
$$-\frac{2}{\sqrt{1}} + C = 1$$

Example

Find f if
$$f'(x) = \frac{1}{x\sqrt{x}}$$
 for $x > 0$, and $f(1) = 1$.

$$f'(x) = \frac{1}{x\sqrt{x}} = x^{-3/2}$$
 To find C , use the fact that $f(1) = 1$.
$$f(x) = \frac{x^{-1/2}}{-\frac{1}{2}} + C$$

$$-\frac{2}{\sqrt{1}} + C = 1$$

$$= -\frac{2}{\sqrt{x}} + C$$

$$C = 3$$

Antiderivatives 12/23

Example

Find f if
$$f'(x) = \frac{1}{x\sqrt{x}}$$
 for $x > 0$, and $f(1) = 1$.

$$f'(x) = \frac{1}{x\sqrt{x}} = x^{-3/2}$$
To find C , use the fact that $f(1) = 1$.
$$f(x) = \frac{x^{-1/2}}{-\frac{1}{2}} + C$$

$$= -\frac{2}{\sqrt{x}} + C$$

$$C = 3$$

Therefore

$$f(x)=-\frac{2}{\sqrt{x}}+3.$$

2020 Todor Milev Lecture 21

Theorem (The Evaluation Theorem (FTC part 2))

If f is continuous on [a, b], then

$$\int_a^b f(x) dx = F(b) - F(a),$$

where F is any antiderivative of f.

$$\int_{a}^{b} f(x)dx \text{ exists for any continuous (over } [a,b])$$

function f.

Theorem (The Evaluation Theorem (FTC part 2))

If f is continuous on [a, b], then

$$\int_a^b f(x) dx = F(b) - F(a),$$

where F is any antiderivative of f.

Theorem

Let f be a continuous function on [a, b]. Then f is integrable over [a, b].

In other words, $\int_a^b f(x)dx$ exists for any continuous (over [a,b]) function f.

Theorem (The Evaluation Theorem (FTC part 2))

If f is continuous on [a, b], then

$$\int_a^b f(x) dx = F(b) - F(a),$$

where F is any antiderivative of f.

Todor Milev Lecture 21 ... 2020

Evaluate the integral $\int_{-2}^{1} x^3 dx$.

• x^3 is continuous on [-2, 1] (in fact, it's continuous everywhere).

Evaluate the integral $\int_{-2}^{1} x^3 dx$.

- x^3 is continuous on [-2, 1] (in fact, it's continuous everywhere).
- An antiderivative is F(x) =?

Evaluate the integral $\int_{-2}^{1} x^3 dx$.

- x^3 is continuous on [-2, 1] (in fact, it's continuous everywhere).
- An antiderivative is $F(x) = \frac{1}{4}x^4$.

Evaluate the integral $\int_{2}^{1} x^{3} dx$.

- x^3 is continuous on [-2, 1] (in fact, it's continuous everywhere).
- An antiderivative is $F(x) = \frac{1}{4}x^4$.

$$\int_{-2}^{1} x^3 \, \mathrm{d}x = F(1) - F(-2)$$

Evaluate the integral $\int_{2}^{1} x^{3} dx$.

- x^3 is continuous on [-2, 1] (in fact, it's continuous everywhere).
- An antiderivative is $F(x) = \frac{1}{4}x^4$.

$$\int_{-2}^{1} x^3 dx = F(1) - F(-2) = \frac{1}{4} (1)^4 - \frac{1}{4} (-2)^4$$

Evaluate the integral $\int_{0}^{1} x^{3} dx$.

- x³ is continuous on [-2,1] (in fact, it's continuous everywhere).
- An antiderivative is $F(x) = \frac{1}{4}x^4$.

$$\int_{-2}^{1} x^3 \, dx = F(1) - F(-2) = \frac{1}{4} (1)^4 - \frac{1}{4} (-2)^4 = \frac{1}{4} - \frac{16}{4} = -\frac{15}{4}$$

We often use the notation

$$F(x)]_a^b = F(b) - F(a)$$

or

$$[F(x)]_a^b = F(b) - F(a)$$

Therefore we can write

$$\int_a^b f(x) \mathrm{d}x = F(x)]_a^b$$

or

$$\int_a^b f(x) \mathrm{d}x = [F(x)]_a^b$$

Find the area under the parabola $y = x^2$ from 0 to 1.

• x^2 is continuous on [0, 1] (in fact, it's continuous everywhere).

- x^2 is continuous on [0, 1] (in fact, it's continuous everywhere).
- An antiderivative of x^2 is ?

- x^2 is continuous on [0, 1] (in fact, it's continuous everywhere).
- An antiderivative of x^2 is $\frac{1}{3}x^3$.

- x² is continuous on [0, 1] (in fact, it's continuous everywhere).
- An antiderivative of x^2 is $\frac{1}{3}x^3$.

$$\int_0^1 x^2 \, \mathrm{d} x = \left[\frac{1}{3} x^3 \right]_0^1$$

- x^2 is continuous on [0, 1] (in fact, it's continuous everywhere).
- An antiderivative of x^2 is $\frac{1}{3}x^3$.

$$\int_0^1 x^2 \, \mathrm{d}x = \left[\frac{1}{3}x^3\right]_0^1$$

- x² is continuous on [0, 1] (in fact, it's continuous everywhere).
- An antiderivative of x^2 is $\frac{1}{3}x^3$.

$$\int_0^1 x^2 dx = \left[\frac{1}{3} x^3 \right]_0^1 = \frac{1}{3} (1)^3 - \frac{1}{3} (0)^3$$

- x² is continuous on [0, 1] (in fact, it's continuous everywhere).
- An antiderivative of x^2 is $\frac{1}{3}x^3$.

$$\int_0^1 x^2 dx = \left[\frac{1}{3} x^3 \right]_0^1 = \frac{1}{3} (1)^3 - \frac{1}{3} (0)^3$$

- x² is continuous on [0, 1] (in fact, it's continuous everywhere).
- An antiderivative of x^2 is $\frac{1}{3}x^3$.

$$\int_0^1 x^2 dx = \left[\frac{1}{3} x^3 \right]_0^1 = \frac{1}{3} (1)^3 - \frac{1}{3} (0)^3 = \frac{1}{3}$$

Find the area under the cosine curve from 0 to b, where $0 \le b \le \frac{\pi}{2}$.

• $\cos x$ is continuous on $[0, \frac{\pi}{2}]$ (in fact, it's continuous everywhere).

- $\cos x$ is continuous on $[0, \frac{\pi}{2}]$ (in fact, it's continuous everywhere).
- An antiderivative of cos x is ?

- $\cos x$ is continuous on $[0, \frac{\pi}{2}]$ (in fact, it's continuous everywhere).
- An antiderivative of cos x is sin x.

- $\cos x$ is continuous on $[0, \frac{\pi}{2}]$ (in fact, it's continuous everywhere).
- An antiderivative of cos x is sin x.

$$\int_0^b \cos x \, \mathrm{d}x = [\sin x]_0^b$$

- $\cos x$ is continuous on $[0, \frac{\pi}{2}]$ (in fact, it's continuous everywhere).
- An antiderivative of cos x is sin x.

$$\int_0^b \cos x \, \mathrm{d}x = [\sin x]_0^b$$

- $\cos x$ is continuous on $[0, \frac{\pi}{2}]$ (in fact, it's continuous everywhere).
- An antiderivative of cos x is sin x.

$$\int_0^b \cos x \, dx = [\sin x]_0^b = \sin(b) - \sin(0)$$

- $\cos x$ is continuous on $[0, \frac{\pi}{2}]$ (in fact, it's continuous everywhere).
- An antiderivative of cos x is sin x.

$$\int_{0}^{b} \cos x \, dx = [\sin x]_{0}^{b} = \sin(b) - \sin(0)$$

- $\cos x$ is continuous on $[0, \frac{\pi}{2}]$ (in fact, it's continuous everywhere).
- An antiderivative of cos x is sin x.

$$\int_0^b \cos x \, dx = [\sin x]_0^b = \sin(b) - \sin(0) = \sin b$$

Indefinite Integrals

- The Evaluation Theorem establishes a connection between antiderivatives and definite integrals.
- It says that $\int_a^b f(x) dx$ equals F(b) F(a), where F is an antiderivative of f.
- We need convenient notation for writing antiderivatives.
- This is what the indefinite integral is.

Definition (Indefinite Integral)

The indefinite integral of f is another way of saying the antiderivative of f, and is written $\int f(x)dx$. In other words,

$$\int f(x) dx = F(x) \qquad \text{means} \qquad F'(x) = f(x).$$

Todor Milev Lecture 21 ... 2020

$$\int x^4 \mathrm{d}x = \mathbf{?}$$

$$\int x^4 dx = \frac{x^5}{5}$$

Todor Milev Lecture 21 ... 2020

$$\int x^4 \mathrm{d}x = \frac{x^5}{5} + C$$

$$\int x^4 dx = \frac{x^5}{5} + C$$

because

$$\frac{\mathsf{d}}{\mathsf{d}x}\left(\frac{x^5}{5}+C\right)=x^4.$$

$$\int x^4 \mathrm{d}x = \frac{x^5}{5} + C$$

because

$$\frac{\mathsf{d}}{\mathsf{d}x}\left(\frac{x^5}{5}+C\right)=x^4.$$

• The indefinite integral represents a whole family of functions.

$$\int x^4 \mathrm{d}x = \frac{x^5}{5} + C$$

because

$$\frac{\mathsf{d}}{\mathsf{d}x}\left(\frac{x^5}{5}+C\right)=x^4.$$

- The indefinite integral represents a whole family of functions.
- Example: the general antiderivative of $\frac{1}{x}$ is

$$F(x) = \begin{cases} \ln|x| + C_1 & \text{if} \quad x > 0\\ \ln|x| + C_2 & \text{if} \quad x < 0 \end{cases}$$

$$\int x^4 \mathrm{d}x = \frac{x^5}{5} + C$$

because

$$\frac{\mathsf{d}}{\mathsf{d}x}\left(\frac{x^5}{5}+C\right)=x^4.$$

- The indefinite integral represents a whole family of functions.
- Example: the general antiderivative of $\frac{1}{y}$ is

$$F(x) = \begin{cases} \ln|x| + C_1 & \text{if} \quad x > 0\\ \ln|x| + C_2 & \text{if} \quad x < 0 \end{cases}$$

 We adopt the convention that the constant participating in an indefinite integral is only valid on one interval.

> Todor Milev Lecture 21 2020

$$\int x^4 dx = \frac{x^5}{5} + C$$

because

$$\frac{\mathsf{d}}{\mathsf{d}x}\left(\frac{x^5}{5}+C\right)=x^4.$$

- The indefinite integral represents a whole family of functions.
- Example: the general antiderivative of $\frac{1}{x}$ is

$$F(x) = \begin{cases} \ln|x| + C_1 & \text{if} \quad x > 0\\ \ln|x| + C_2 & \text{if} \quad x < 0 \end{cases}$$

- We adopt the convention that the constant participating in an indefinite integral is only valid on one interval.
- $\int \frac{1}{v} dx = \ln |x| + C$, and this is valid either on $(-\infty, 0)$ or $(0, \infty)$.

Find the indefinite integral.
$$\int (8x^3 - 3\sec^2 x) dx$$

$$\int (8x^3 - 3\sec^2 x) dx = 8 \int x^3 dx - 3 \int \sec^2 x dx$$

$$\int (8x^3 - 3\sec^2 x) dx = 8 \int x^3 dx - 3 \int \sec^2 x dx$$
$$= 8? -3?$$

$$\int (8x^3 - 3\sec^2 x) dx = 8 \int x^3 dx - 3 \int \sec^2 x dx$$
$$= 8 \frac{x^4}{4} - 3$$
?

$$\int (8x^3 - 3\sec^2 x) dx = 8 \int x^3 dx - 3 \int \sec^2 x dx$$
$$= 8 \frac{x^4}{4} - 3?$$

$$\int (8x^3 - 3\sec^2 x) dx = 8 \int x^3 dx - 3 \int \sec^2 x dx$$
$$= 8 \frac{x^4}{4} - 3 \tan x$$

$$\int (8x^3 - 3\sec^2 x) dx = 8 \int x^3 dx - 3 \int \sec^2 x dx$$
$$= 8 \frac{x^4}{4} - 3 \tan x + C$$

$$\int (8x^3 - 3\sec^2 x) dx = 8 \int x^3 dx - 3 \int \sec^2 x dx$$
$$= 8 \frac{x^4}{4} - 3\tan x + C$$
$$= 2x^4 - 3\tan x + C$$

$$\int \frac{\cos \theta}{\sin^2 \theta} d\theta$$

$$\int \frac{\cos \theta}{\sin^2 \theta} d\theta = \int \left(\frac{1}{\sin \theta}\right) \left(\frac{\cos \theta}{\sin \theta}\right) d\theta$$

$$\int \frac{\cos \theta}{\sin^2 \theta} d\theta = \int \left(\frac{1}{\sin \theta}\right) \left(\frac{\cos \theta}{\sin \theta}\right) d\theta$$
$$= \int ? ? d\theta$$

$$\int \frac{\cos \theta}{\sin^2 \theta} d\theta = \int \left(\frac{1}{\sin \theta}\right) \left(\frac{\cos \theta}{\sin \theta}\right) d\theta$$
$$= \int \csc \theta ? \qquad d\theta$$

$$\int \frac{\cos \theta}{\sin^2 \theta} d\theta = \int \left(\frac{1}{\sin \theta}\right) \left(\frac{\cos \theta}{\sin \theta}\right) d\theta$$
$$= \int \csc \theta ? d\theta$$

$$\int \frac{\cos \theta}{\sin^2 \theta} d\theta = \int \left(\frac{1}{\sin \theta}\right) \left(\frac{\cos \theta}{\sin \theta}\right) d\theta$$
$$= \int \csc \theta \cot \theta d\theta$$

$$\int \frac{\cos \theta}{\sin^2 \theta} d\theta = \int \left(\frac{1}{\sin \theta}\right) \left(\frac{\cos \theta}{\sin \theta}\right) d\theta$$
$$= \int \csc \theta \cot \theta d\theta$$
$$= 2$$

$$\int \frac{\cos \theta}{\sin^2 \theta} d\theta = \int \left(\frac{1}{\sin \theta}\right) \left(\frac{\cos \theta}{\sin \theta}\right) d\theta$$
$$= \int \csc \theta \cot \theta d\theta$$
$$= -\csc \theta$$

$$\int \frac{\cos \theta}{\sin^2 \theta} d\theta = \int \left(\frac{1}{\sin \theta}\right) \left(\frac{\cos \theta}{\sin \theta}\right) d\theta$$
$$= \int \csc \theta \cot \theta d\theta$$
$$= -\csc \theta + C$$

$$\int_0^3 (x^3 - 6x) \mathrm{d}x$$

$$\int_0^3 (x^3 - 6x) dx = \left[\int (x^3 - 6x) dx \right]_0^3$$

$$\int_0^3 (x^3 - 6x) dx = \left[\int (x^3 - 6x) dx \right]_0^3$$
$$= \left[\int x^3 dx - 6 \int x dx \right]_0^3$$

$$\int_0^3 (x^3 - 6x) dx = \left[\int (x^3 - 6x) dx \right]_0^3$$
$$= \left[\int x^3 dx - 6 \int x dx \right]_0^3$$
$$= \begin{bmatrix} ? & -6? \end{bmatrix}_0^3$$

$$\int_0^3 (x^3 - 6x) dx = \left[\int (x^3 - 6x) dx \right]_0^3$$
$$= \left[\int x^3 dx - 6 \int x dx \right]_0^3$$
$$= \left[\frac{x^4}{4} - 6? \right]_0^3$$

$$\int_0^3 (x^3 - 6x) dx = \left[\int (x^3 - 6x) dx \right]_0^3$$
$$= \left[\int x^3 dx - 6 \int x dx \right]_0^3$$
$$= \left[\frac{x^4}{4} - 6? \right]_0^3$$

$$\int_0^3 (x^3 - 6x) dx = \left[\int (x^3 - 6x) dx \right]_0^3$$
$$= \left[\int x^3 dx - 6 \int x dx \right]_0^3$$
$$= \left[\frac{x^4}{4} - 6 \frac{x^2}{2} \right]_0^3$$

$$\int_{0}^{3} (x^{3} - 6x) dx = \left[\int (x^{3} - 6x) dx \right]_{0}^{3}$$

$$= \left[\int x^{3} dx - 6 \int x dx \right]_{0}^{3}$$

$$= \left[\frac{x^{4}}{4} - 6 \frac{x^{2}}{2} \right]_{0}^{3}$$

$$= \left(\frac{1}{4} \cdot 3^{4} - 3 \cdot 3^{2} \right) - \left(\frac{1}{4} \cdot 0^{4} - 3 \cdot 0^{2} \right)$$

$$\int_{0}^{3} (x^{3} - 6x) dx = \left[\int (x^{3} - 6x) dx \right]_{0}^{3}$$

$$= \left[\int x^{3} dx - 6 \int x dx \right]_{0}^{3}$$

$$= \left[\frac{x^{4}}{4} - 6 \frac{x^{2}}{2} \right]_{0}^{3}$$

$$= \left(\frac{1}{4} \cdot 3^{4} - 3 \cdot 3^{2} \right) - \left(\frac{1}{4} \cdot 0^{4} - 3 \cdot 0^{2} \right)$$

$$\int_{0}^{3} (x^{3} - 6x) dx = \left[\int (x^{3} - 6x) dx \right]_{0}^{3}$$

$$= \left[\int x^{3} dx - 6 \int x dx \right]_{0}^{3}$$

$$= \left[\frac{x^{4}}{4} - 6 \frac{x^{2}}{2} \right]_{0}^{3}$$

$$= \left(\frac{1}{4} \cdot 3^{4} - 3 \cdot 3^{2} \right) - \left(\frac{1}{4} \cdot 0^{4} - 3 \cdot 0^{2} \right)$$

$$= \frac{81}{4} - 27 - 0 + 0$$

$$\int_{0}^{3} (x^{3} - 6x) dx = \left[\int (x^{3} - 6x) dx \right]_{0}^{3}$$

$$= \left[\int x^{3} dx - 6 \int x dx \right]_{0}^{3}$$

$$= \left[\frac{x^{4}}{4} - 6 \frac{x^{2}}{2} \right]_{0}^{3}$$

$$= \left(\frac{1}{4} \cdot 3^{4} - 3 \cdot 3^{2} \right) - \left(\frac{1}{4} \cdot 0^{4} - 3 \cdot 0^{2} \right)$$

$$= \frac{81}{4} - 27 - 0 + 0$$

$$\int_0^3 (x^3 - 6x) dx = \left[\int (x^3 - 6x) dx \right]_0^3$$

$$= \left[\int x^3 dx - 6 \int x dx \right]_0^3$$

$$= \left[\frac{x^4}{4} - 6 \frac{x^2}{2} \right]_0^3$$

$$= \left(\frac{1}{4} \cdot 3^4 - 3 \cdot 3^2 \right) - \left(\frac{1}{4} \cdot 0^4 - 3 \cdot 0^2 \right)$$

$$= \frac{81}{4} - 27 - 0 + 0 = -\frac{27}{4}.$$

Evaluate:
$$\int_{1}^{9} \frac{2t^3 + t^2\sqrt{t} - 1}{t^2} dt$$

Evaluate:
$$\int_{1}^{9} \frac{2t^{3} + t^{2}\sqrt{t} - 1}{t^{2}} dt$$
$$= \int_{1}^{9} \left(2t + t^{\frac{1}{2}} - t^{-2}\right) dt$$

Evaluate:
$$\int_{1}^{9} \frac{2t^{3} + t^{2}\sqrt{t} - 1}{t^{2}} dt$$
$$= \int_{1}^{9} \left(2t + t^{\frac{1}{2}} - t^{-2}\right) dt = \left[\int (2t + t^{\frac{1}{2}} - t^{-2}) dt\right]_{1}^{9}$$

Evaluate:
$$\int_{1}^{9} \frac{2t^{3} + t^{2}\sqrt{t} - 1}{t^{2}} dt$$

$$= \int_{1}^{9} \left(2t + t^{\frac{1}{2}} - t^{-2}\right) dt = \left[\int (2t + t^{\frac{1}{2}} - t^{-2}) dt\right]_{1}^{9}$$

$$= \left[\int 2t dt + \int t^{\frac{1}{2}} dt - \int t^{-2} dt\right]_{1}^{9}$$

Evaluate:
$$\int_{1}^{9} \frac{2t^{3} + t^{2}\sqrt{t} - 1}{t^{2}} dt$$

$$= \int_{1}^{9} \left(2t + t^{\frac{1}{2}} - t^{-2}\right) dt = \left[\int (2t + t^{\frac{1}{2}} - t^{-2}) dt\right]_{1}^{9}$$

$$= \left[\int 2t dt + \int t^{\frac{1}{2}} dt - \int t^{-2} dt\right]_{1}^{9}$$

$$= \left[? + ? - ?\right]_{1}^{9}$$

Evaluate:
$$\int_{1}^{9} \frac{2t^{3} + t^{2}\sqrt{t} - 1}{t^{2}} dt$$

$$= \int_{1}^{9} \left(2t + t^{\frac{1}{2}} - t^{-2}\right) dt = \left[\int (2t + t^{\frac{1}{2}} - t^{-2}) dt\right]_{1}^{9}$$

$$= \left[\int 2t dt + \int t^{\frac{1}{2}} dt - \int t^{-2} dt\right]_{1}^{9}$$

$$= \left[t^{2} + ? - ?\right]_{1}^{9}$$

Evaluate:
$$\int_{1}^{9} \frac{2t^{3} + t^{2}\sqrt{t} - 1}{t^{2}} dt$$

$$= \int_{1}^{9} \left(2t + t^{\frac{1}{2}} - t^{-2}\right) dt = \left[\int (2t + t^{\frac{1}{2}} - t^{-2}) dt\right]_{1}^{9}$$

$$= \left[\int 2t dt + \int t^{\frac{1}{2}} dt - \int t^{-2} dt\right]_{1}^{9}$$

$$= \left[t^{2} + ? - ?\right]_{1}^{9}$$

Evaluate:
$$\int_{1}^{9} \frac{2t^{3} + t^{2}\sqrt{t} - 1}{t^{2}} dt$$

$$= \int_{1}^{9} \left(2t + t^{\frac{1}{2}} - t^{-2}\right) dt = \left[\int (2t + t^{\frac{1}{2}} - t^{-2}) dt\right]_{1}^{9}$$

$$= \left[\int 2t dt + \int t^{\frac{1}{2}} dt - \int t^{-2} dt\right]_{1}^{9}$$

$$= \left[t^{2} + \frac{t^{\frac{3}{2}}}{\frac{3}{2}} - ?\right]_{1}^{9}$$

Evaluate:
$$\int_{1}^{9} \frac{2t^{3} + t^{2}\sqrt{t} - 1}{t^{2}} dt$$

$$= \int_{1}^{9} \left(2t + t^{\frac{1}{2}} - t^{-2}\right) dt = \left[\int (2t + t^{\frac{1}{2}} - t^{-2}) dt\right]_{1}^{9}$$

$$= \left[\int 2t dt + \int t^{\frac{1}{2}} dt - \int t^{-2} dt\right]_{1}^{9}$$

$$= \left[t^{2} + \frac{t^{\frac{3}{2}}}{\frac{3}{2}} - ?\right]_{1}^{9}$$

Evaluate:
$$\int_{1}^{9} \frac{2t^{3} + t^{2}\sqrt{t} - 1}{t^{2}} dt$$

$$= \int_{1}^{9} \left(2t + t^{\frac{1}{2}} - t^{-2}\right) dt = \left[\int (2t + t^{\frac{1}{2}} - t^{-2}) dt\right]_{1}^{9}$$

$$= \left[\int 2t dt + \int t^{\frac{1}{2}} dt - \int t^{-2} dt\right]_{1}^{9}$$

$$= \left[t^{2} + \frac{t^{\frac{3}{2}}}{\frac{3}{2}} - \frac{t^{-1}}{-1}\right]_{1}^{9}$$

Evaluate:
$$\int_{1}^{9} \frac{2t^{3} + t^{2}\sqrt{t} - 1}{t^{2}} dt$$

$$= \int_{1}^{9} \left(2t + t^{\frac{1}{2}} - t^{-2}\right) dt = \left[\int (2t + t^{\frac{1}{2}} - t^{-2}) dt\right]_{1}^{9}$$

$$= \left[\int 2t dt + \int t^{\frac{1}{2}} dt - \int t^{-2} dt\right]_{1}^{9}$$

$$= \left[t^{2} + \frac{t^{\frac{3}{2}}}{\frac{3}{2}} - \frac{t^{-1}}{-1}\right]_{1}^{9} = \left[t^{2} + \frac{2}{3}t^{\frac{3}{2}} + \frac{1}{t}\right]_{1}^{9}$$

Evaluate:
$$\int_{1}^{9} \frac{2t^{3} + t^{2}\sqrt{t} - 1}{t^{2}} dt$$

$$= \int_{1}^{9} \left(2t + t^{\frac{1}{2}} - t^{-2}\right) dt = \left[\int (2t + t^{\frac{1}{2}} - t^{-2}) dt\right]_{1}^{9}$$

$$= \left[\int 2t dt + \int t^{\frac{1}{2}} dt - \int t^{-2} dt\right]_{1}^{9}$$

$$= \left[t^{2} + \frac{t^{\frac{3}{2}}}{\frac{3}{2}} - \frac{t^{-1}}{-1}\right]_{1}^{9} = \left[t^{2} + \frac{2}{3}t^{\frac{3}{2}} + \frac{1}{t}\right]_{1}^{9}$$

Evaluate:
$$\int_{1}^{9} \frac{2t^{3} + t^{2}\sqrt{t} - 1}{t^{2}} dt$$

$$= \int_{1}^{9} \left(2t + t^{\frac{1}{2}} - t^{-2}\right) dt = \left[\int (2t + t^{\frac{1}{2}} - t^{-2}) dt\right]_{1}^{9}$$

$$= \left[\int 2t dt + \int t^{\frac{1}{2}} dt - \int t^{-2} dt\right]_{1}^{9}$$

$$= \left[t^{2} + \frac{t^{\frac{3}{2}}}{\frac{3}{2}} - \frac{t^{-1}}{-1}\right]_{1}^{9} = \left[t^{2} + \frac{2}{3}t^{\frac{3}{2}} + \frac{1}{t}\right]_{1}^{9}$$

$$= \left(9^{2} + \frac{2}{3} \cdot 9^{\frac{3}{2}} + \frac{1}{9}\right) - \left(1^{2} + \frac{2}{3} \cdot 1^{\frac{3}{2}} + \frac{1}{1}\right)$$

Evaluate:
$$\int_{1}^{9} \frac{2t^{3} + t^{2}\sqrt{t} - 1}{t^{2}} dt$$

$$= \int_{1}^{9} \left(2t + t^{\frac{1}{2}} - t^{-2}\right) dt = \left[\int (2t + t^{\frac{1}{2}} - t^{-2}) dt\right]_{1}^{9}$$

$$= \left[\int 2t dt + \int t^{\frac{1}{2}} dt - \int t^{-2} dt\right]_{1}^{9}$$

$$= \left[t^{2} + \frac{t^{\frac{3}{2}}}{\frac{3}{2}} - \frac{t^{-1}}{-1}\right]_{1}^{9} = \left[t^{2} + \frac{2}{3}t^{\frac{3}{2}} + \frac{1}{t}\right]_{1}^{9}$$

$$= \left(9^{2} + \frac{2}{3} \cdot 9^{\frac{3}{2}} + \frac{1}{9}\right) - \left(1^{2} + \frac{2}{3} \cdot 1^{\frac{3}{2}} + \frac{1}{1}\right)$$

Evaluate:
$$\int_{1}^{9} \frac{2t^{3} + t^{2}\sqrt{t} - 1}{t^{2}} dt$$

$$= \int_{1}^{9} \left(2t + t^{\frac{1}{2}} - t^{-2}\right) dt = \left[\int (2t + t^{\frac{1}{2}} - t^{-2}) dt\right]_{1}^{9}$$

$$= \left[\int 2t dt + \int t^{\frac{1}{2}} dt - \int t^{-2} dt\right]_{1}^{9}$$

$$= \left[t^{2} + \frac{t^{\frac{3}{2}}}{\frac{3}{2}} - \frac{t^{-1}}{-1}\right]_{1}^{9} = \left[t^{2} + \frac{2}{3}t^{\frac{3}{2}} + \frac{1}{t}\right]_{1}^{9}$$

$$= \left(9^{2} + \frac{2}{3} \cdot 9^{\frac{3}{2}} + \frac{1}{9}\right) - \left(1^{2} + \frac{2}{3} \cdot 1^{\frac{3}{2}} + \frac{1}{1}\right)$$

$$= 81 + 18 + \frac{1}{9} - 1 - \frac{2}{3} - 1$$

Todor Milev Lecture 21 2020

Evaluate:
$$\int_{1}^{9} \frac{2t^{3} + t^{2}\sqrt{t} - 1}{t^{2}} dt$$

$$= \int_{1}^{9} \left(2t + t^{\frac{1}{2}} - t^{-2}\right) dt = \left[\int (2t + t^{\frac{1}{2}} - t^{-2}) dt\right]_{1}^{9}$$

$$= \left[\int 2t dt + \int t^{\frac{1}{2}} dt - \int t^{-2} dt\right]_{1}^{9}$$

$$= \left[t^{2} + \frac{t^{\frac{3}{2}}}{\frac{3}{2}} - \frac{t^{-1}}{-1}\right]_{1}^{9} = \left[t^{2} + \frac{2}{3}t^{\frac{3}{2}} + \frac{1}{t}\right]_{1}^{9}$$

$$= \left(9^{2} + \frac{2}{3} \cdot 9^{\frac{3}{2}} + \frac{1}{9}\right) - \left(1^{2} + \frac{2}{3} \cdot 1^{\frac{3}{2}} + \frac{1}{1}\right)$$

$$= 81 + 18 + \frac{1}{9} - 1 - \frac{2}{3} - 1 = \frac{868}{9}.$$

Todor Milev Lecture 21 2020