Media Mix Model

June 13, 2025

0.1 Importing Required Libraries

These libraries are necessary for data manipulation, visualization, and statistical modeling.

```
[]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import statsmodels.api as sm
from statsmodels.tsa.seasonal import seasonal_decompose
from statsmodels.stats.diagnostic import acorr_ljungbox, het_breuschpagan
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
```

0.2 Exploratory Data Analysis (EDA)

This section explores the dataset's structure, content, and variable distributions.

0.3 Data Preparation Summary

This step involves loading the dataset, checking for missing or duplicate values, and understanding the basic structure.

0.3.1 1. Loading Data and data description

```
[24]: data = pd.read_csv("./data/data.csv")
[25]: data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6240 entries, 0 to 6239
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	geo	6240 non-null	object
1	date	6240 non-null	object
2	tv_impression	6240 non-null	int64
3	radio_impression	6240 non-null	int64
4	<pre>print_impression</pre>	6240 non-null	int64
5	search_impression	6240 non-null	int64
6	social_impression	6240 non-null	int64

```
7
   competitor_sales_control 6240 non-null
                                            float64
   sentiment_score_control
                            6240 non-null
                                            float64
9
   tv_spend
                            6240 non-null
                                            float64
10 radio_spend
                            6240 non-null
                                            float64
   print_spend
                            6240 non-null
                                            float64
11
12 search_spend
                            6240 non-null
                                            float64
   social_spend
                            6240 non-null
                                            float64
14 population
                            6240 non-null
                                            float64
15 sales
                            6240 non-null
                                            float64
```

dtypes: float64(9), int64(5), object(2)

memory usage: 780.1+ KB

[26]: data.describe()

mean

542418.832750 211330.038098

[26]:		tv_impression	radio_impres	sion print_in	mpression s	search_impression	\
	count	6.240000e+03	6.240000	e+03 6.24	10000e+03	6.240000e+03	
	mean	8.851635e+05	5.206055	se+05 2.60	05050e+05	1.806810e+06	
	std	8.193451e+05	6.206231	.e+05 5.55	51842e+05	1.304818e+06	
	min	0.000000e+00	0.000000	e+00 0.00	00000e+00	0.000000e+00	
	25%	2.536458e+05	0.000000	e+00 0.00	00000e+00	8.083565e+05	
	50%	6.796705e+05	3.106525	6e+05 0.00	00000e+00	1.505379e+06	
	75%	1.324174e+06	8.075525	se+05 2.54	17340e+05	2.566118e+06	
	max	5.192032e+06	4.397540	0e+06 5.61	10156e+06	7.635147e+06	
		social_impres	sion competit	or_sales_conti	rol sentime	ent_score_control	\
	count	6.240000	e+03	6240.0000	000	6240.000000	
	mean	9.816780	e+05	-0.0444	112	-0.033675	
	std	9.141768	e+05	1.2101	164	1.175572	
	min	0.000000	e+00	-4.825634		-4.230392	
	25%	2.675945	e+05	-0.8727	736	-0.808085	
	50%	7.462475	e+05	-0.0503	346	-0.036433	
	75%	1.4767086	e+06	0.7436	333	0.739391	
	max	6.975542	e+06	3.9246	582	4.320259	
		tv_spend	radio_spend	print_spend	search_spe	end social_spend	\
	count	6240.000000	6240.000000	6240.000000	6240.0000	6240.000000	
	mean	6490.659147	5019.278558	1935.793164	14080.1856	7649.147993	
	std	6008.031135	5983.571424	4125.531614	10168.2392	254 7123.184932	
	min	0.000000	0.000000	0.000000	0.0000	0.000000	
	25%	1859.914025	0.000000	0.000000	6299.3932	2085.072625	
	50%	4983.835500	2995.072650	0.000000	11731.1785	500 5814.694600	
	75%	9709.803000	7785.800675	1892.909150	19997.3515	11506.376500	
	max	38071.730000	42397.700000	41688.645000	59499.4840	000 54352.810000	
	0011m±	population 6240.000000	sale 6240.00000				
	count	6240.000000					

```
std
            242839.719887
                           121605.908396
                              9742.282233
    min
            136670.940000
     25%
            335176.345000
                           114323.174425
     50%
            560478.825000
                           193995.582650
     75%
            736033.810000
                           287918.213625
     max
            994048.940000
                           739823.338900
[5]:
     data.head()
[5]:
         geo
                                       radio_impression
                 date
                       tv impression
                                                          print_impression
        Geo0
              1/25/21
                               280668
                                                       0
                                                                          0
     1
        Geo0
               2/1/21
                               366206
                                                  182108
                                                                      19825
     2 Geo0
               2/8/21
                               197565
                                                  230170
                                                                          0
     3 Geo0 2/15/21
                               140990
                                                   66643
                                                                          0
        Geo0 2/22/21
                                                                          0
                               399116
                                                  164991
        search_impression social_impression
                                                competitor_sales_control
                   470611
                                       108010
                                                               -1.338765
     0
     1
                   527702
                                       252506
                                                                0.893645
     2
                                                               -0.284549
                   393618
                                       184061
     3
                   326034
                                       201729
                                                               -1.034740
     4
                   381982
                                                               -0.319276
                                       153973
        sentiment_score_control
                                  tv_spend radio_spend print_spend
                                                                         search_spend
     0
                                  2058.0608
                                                  0.00000
                       0.115581
                                                               0.00000
                                                                            3667.3965
     1
                       0.944224
                                  2685.2874
                                               1755.74540
                                                             147.31808
                                                                            4112.2974
     2
                      -1.290579
                                 1448.6895
                                              2219.12230
                                                               0.00000
                                                                            3067.4023
                                  1033.8406
     3
                      -1.084514
                                                642.52057
                                                               0.00000
                                                                            2540.7310
     4
                      -0.017503
                                  2926.6072
                                               1590.71640
                                                               0.00000
                                                                            2976.7249
        social spend population
                                         sales
     0
            841.6044
                       136670.94
                                   39198.55690
     1
           1967.5044
                        136670.94
                                   41497.96063
     2
           1434.1870
                       136670.94 41579.08885
     3
           1571.8545
                        136670.94
                                   56492.86151
     4
           1199.7440
                        136670.94 71039.82718
    0.3.2 2. Null values identification
[6]: sns.heatmap(data.isnull())
     plt.title("Null values identification")
     plt.show()
```



```
[7]: print(f"Number of null values: {data.isnull().sum().sum()}")
```

Number of null values: 0

0.3.3 3. Duplicates detection

```
[8]: duplicates = data[data.duplicated()]
print(f"Number of duplicates records: {len(duplicates)}")
```

Number of duplicates records: 0

0.3.4 1. Pearson Correlation Heatmap

Visualizes linear relationships between numerical variables using Pearson's method.

```
[27]: correlations = data.select_dtypes(include=['number']).corr()

sns.heatmap(correlations)
plt.title("Features correlation matrix")
plt.show()
```


0.3.5 2. Correlation with Target (Sales)

Highlights which variables are most strongly correlated (positively and negatively) with sales.

```
[10]: # Compute correlations with 'sales'
numeric_cols = data.select_dtypes(include=['number'])
correlations = numeric_cols.corr()['sales'].drop('sales')

# Top 5 positive and negative correlations
top_positive = correlations.sort_values(ascending=False).head(5).reset_index()
top_negative = correlations.sort_values(ascending=True).head(5).reset_index()
```

```
# Rename columns
top_positive.columns = ['variable', 'correlation']
top_negative.columns = ['variable', 'correlation']
# Create figure
fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(14, 5))
# Plot positive correlations
sns.barplot(
    data=top_positive,
    x='correlation', y='variable',
    ax=axes[0], palette='Greens_r'
)
axes[0].set_title("Top 5 Positive Correlations")
axes[0].set_xlabel("Correlation")
axes[0].set_ylabel("Variable")
# Plot negative correlations
sns.barplot(
    data=top_negative,
    x='correlation', y='variable',
    ax=axes[1], palette='Reds'
)
axes[1].set_title("Top 5 Negative Correlations")
axes[1].set_xlabel("Correlation")
axes[1].set_ylabel("Variable")
plt.tight_layout()
plt.show()
C:\Users\Rafa Rincon\AppData\Local\Temp\ipykernel_14840\1830579637.py:17:
FutureWarning:
```

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.

```
sns.barplot(
C:\Users\Rafa Rincon\AppData\Local\Temp\ipykernel_14840\1830579637.py:27:
FutureWarning:
```

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.

```
sns.barplot(
```


0.4 Feature Engineering

New features are derived from existing data to enhance model performance and capture relevant signals.

0.4.1 1. Geographic Feature Encoding

Converts the 'geo' categorical variable into binary (dummy) variables for use in regression models.

0.4.2 2. Temporal Feature Transformation

Extracts seasonality and calendar-related components from the date column.

```
[12]: data['date'] = pd.to_datetime(data['date'])
data['year'] = data['date'].dt.year
data['month'] = data['date'].dt.month
data['weekofyear'] = data['date'].dt.isocalendar().week.astype(int)

#data['is_weekend'] = data['date'].dt.dayofweek >= 5
#data['is_weekend'] = data['is_weekend'].astype(int)
data['quarter'] = data['date'].dt.quarter
data['month_sin'] = np.sin(2 * np.pi * data['month'] / 12)
data['month_cos'] = np.cos(2 * np.pi * data['month'] / 12)
```

```
C:\Users\Rafa Rincon\AppData\Local\Temp\ipykernel_14840\1900084449.py:1:
UserWarning: Could not infer format, so each element will be parsed
individually, falling back to `dateutil`. To ensure parsing is consistent and
as-expected, please specify a format.
  data['date'] = pd.to_datetime(data['date'])
```

0.5 Seasonality and Time-Series Structure

Analyzes temporal sales patterns, decomposing them into trend, seasonal, and irregular components.

0.5.1 1. Outlier Detection in Sales

Boxplots help identify extreme values or irregular fluctuations in the sales data.

```
[13]: sns.boxplot(data["sales"])
   plt.title("Sales outliers")
   plt.show()
```


0.5.2 2. Time-Series Decomposition

Uses additive decomposition to separate sales into seasonal, trend, and residual components.

```
[14]: # Filter data by a specific geography and aggregate sales by date
      geo_df = data[data['geo'] == 'Geo0'].groupby('date')['sales'].sum()
      geo_df = geo_df.sort_index()
      # Perform seasonal decomposition (weekly frequency, assuming 52 periods peru
       ⇒year)
      result = seasonal_decompose(geo_df, model='additive', period=52)
      # Identify top 5 dates with the highest sales (sales peaks)
      top_peaks = geo_df.sort_values(ascending=False).head(5).index
      # Plot decomposition components and mark sales peaks with red lines
      fig = result.plot()
      fig.set_size_inches(10, 6)
      # Add vertical red dashed lines on the observed component for peak dates
      observed ax = fig.axes[0]
      for date in top_peaks:
          observed_ax.axvline(x=date, color='red', linestyle='--', linewidth=1)
      plt.tight_layout()
      plt.show()
```


0.6 Media Mix Modeling: Channel Effectiveness

This model evaluates how different marketing channels contribute to overall sales.

0.6.1 1. Adstock and Saturation Effects

Applies an adstock transformation to simulate delayed media effects, followed by log transformation for diminishing returns.

```
[15]: # Define a function to apply the adstock transformation
      # This simulates the carryover effect of advertising over time using a decay,
       \hookrightarrow factor
      def apply_adstock(series, decay=0.5):
          result = []
          for i, val in enumerate(series):
              if i == 0:
                  result.append(val) # First value remains unchanged
              else:
                  # Current value plus a portion of the previous value based on the
       ⇔decay factor
                  result.append(val + decay * result[i - 1])
          return pd.Series(result, index=series.index)
      # List of media spend channels to apply adstock to
      spend_channels = ['tv_spend', 'radio_spend', 'print_spend', 'search_spend', |
       # Set decay rate for adstock effect
      decay = 0.5
      # Apply adstock and log transformation (to model diminishing returns) for each_
       \hookrightarrow channel
      for channel in spend channels:
          adstocked = apply_adstock(data[channel], decay)
          data[f'{channel}_transformed'] = np.log1p(adstocked) # Log transformation_
       →for saturation effect
```

0.6.2 2. Regression Coefficient Interpretation

Estimates the marginal effect of each feature on sales using Ordinary Least Squares (OLS) regression.

```
[16]: features_adstock = [
    "tv_spend_transformed", "radio_spend_transformed",
    "print_spend_transformed",
    "search_spend_transformed", "social_spend_transformed",
    'competitor_sales_control', 'sentiment_score_control', 'population',
    'month_sin', 'month_cos'
]

# Add geographic dummy variables (geo_*) to the list of features
geo_features = geo_dummies.columns.tolist()
```

features_with_geo = features_adstock + geo_features [17]: # Add a constant (intercept) term to the feature set X_with_geo = sm.add_constant(data[features_with_geo]) # Define the target variable (sales) y_with_geo = data['sales'] # Fit an Ordinary Least Squares (OLS) regression model using the selected \Box \hookrightarrow features model_with_geo = sm.OLS(y_with_geo, X_with_geo).fit() # Display the summary of regression results print(model_with_geo.summary()) OLS Regression Results ______ Dep. Variable: sales R-squared: 0.696 Model: OLS Adj. R-squared: 0.694 Least Squares F-statistic: Method: 295.2 Date: Fri, 13 Jun 2025 Prob (F-statistic): 0.00 00:45:35 Log-Likelihood: -78201. Time: No. Observations: 6240 AIC: 1.565e+05 Df Residuals: 6191 BIC: 1.568e+05 Df Model: 48 Covariance Type: nonrobust coef std err t P>|t| [0.025] 0.975] 3.08e+04 -4.960 0.000 const -1.526e+05 -2.13e+05 -9.23e+04 2.332 0.020 tv_spend_transformed 4379.7523 1877.944 698.330 8061.175 radio_spend_transformed 2549.3814 1227.115 2.078 0.038 143.810 4954.953 print_spend_transformed 1553.4649 547.205 2.839 0.005 480.752 2626.177 search_spend_transformed 7195.1300 3424.370 2.101 0.036 482.176 1.39e+04 social_spend_transformed 2964.4336 2012.665 1.473 0.141 -981.089 6909.956 competitor_sales_control -1.517e+04 882.308 -17.194 0.000 -1.69e+04 -1.34e+04

879.537

-4.950

0.000

-6078.263

sentiment_score_control -4354.0644

-2629.866

population	0.3489	0.015	23.651	0.000	0.320
0.378 month_sin	-4076.6565	1380.674	-2.953	0.003	-6783.257
-1370.056 month_cos	1775.7455	1330.578	1.335	0.182	-832.649
4384.140 Geo1	-7430.5528	7241.948	-1.026	0.305	-2.16e+04
6766.180 Geo10 2.74e+04	1.509e+04	6295.585	2.396	0.017	2745.811
Geo11 -1.96e+04	-3.007e+04	5323.410	-5.649	0.000	-4.05e+04
Geo12 1617.573	-9183.6249	5509.839	-1.667	0.096	-2e+04
Geo13 5971.992	-5776.0835	5992.854	-0.964	0.335	-1.75e+04
Geo14 -1.6e+04	-2.647e+04	5345.552	-4.951	0.000	-3.69e+04
Geo15 2.32e+04	1.283e+04	5312.333	2.415	0.016	2412.962
Geo16 6203.062	-6194.2840	6324.056	-0.979	0.327	-1.86e+04
Geo17 -9554.135	-2.007e+04	5364.338	-3.741	0.000	-3.06e+04
Geo18 -1.9e+04	-2.96e+04	5415.389	-5.466	0.000	-4.02e+04
Geo19 -8047.415	-2.002e+04	6109.157	-3.278	0.001	-3.2e+04
Geo2 -2e+04	-3.12e+04	5690.988	-5.483	0.000	-4.24e+04
Geo20 -2231.386	-1.307e+04	5528.165	-2.364	0.018	-2.39e+04
Geo21 -2.74e+04	-3.822e+04	5511.291	-6.935	0.000	-4.9e+04
Geo22 1.97e+04	7690.0288	6124.062	1.256	0.209	-4315.259
Geo23 -2729.040	-1.494e+04	6227.989	-2.399	0.016	-2.71e+04
Geo24 1.68e+04	1894.3192	7599.960	0.249	0.803	-1.3e+04
Geo25 1.99e+04	9408.5695	5365.957	1.753	0.080	-1110.569
Geo26 5808.767	-7649.6668	6865.332	-1.114	0.265	-2.11e+04
Geo27 3356.340	-7482.6548	5529.120	-1.353	0.176	-1.83e+04
Geo28 1.75e+04	7049.2178	5308.324	1.328	0.184	-3356.941

Geo29 2.37e+04	1.188e+04	6042.941	1.966	0.049	33.547
Geo3 9257.528	-4606.0132	7071.983	-0.651	0.515	-1.85e+04
Geo30 2.05e+04	7080.0069	6838.591	1.035	0.301	-6326.006
Geo31 1.48e+04	3710.7586	5656.443	0.656	0.512	-7377.834
Geo32 -1.01e+04	-2.056e+04	5310.595	-3.871	0.000	-3.1e+04
Geo33 3467.446	-7233.0453	5458.467	-1.325	0.185	-1.79e+04
Geo34 5537.763	-5059.8442	5405.985	-0.936	0.349	-1.57e+04
Geo35 -1.44e+04	-2.481e+04	5310.746	-4.671	0.000	-3.52e+04
Geo36 5.87e+04	4.657e+04	6166.777	7.551	0.000	3.45e+04
Geo37 1.59e+04	3020.6015	6563.431	0.460	0.645	-9846.003
Geo38 1.72e+04	3477.4263	7016.740	0.496	0.620	-1.03e+04
Geo39 1.13e+05	1.026e+05	5423.319	18.909	0.000	9.19e+04
Geo4 2.13e+04	8606.5773	6474.249	1.329	0.184	-4085.200
Geo5 665.616	-1.203e+04	6473.701	-1.858	0.063	-2.47e+04
Geo6 1.25e+04	-1475.8298	7128.859	-0.207	0.836	-1.55e+04
Geo7 5.49e+04	4.445e+04	5315.113	8.362	0.000	3.4e+04
Geo8 1.69e+04	3900.6397	6645.157	0.587	0.557	-9126.175
Geo9 5.15e+04	4.031e+04	5695.099	7.079	0.000	2.91e+04
Omnibus: Prob(Omnibus): Skew:	221.064 0.000 -0.003	Jarque-Bera (JB):			1.988 646.214 1.75e-141
Kurtosis: 4.577 Cond. No.			3.99e+21		

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[2] The smallest eigenvalue is 1.38e-28. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

0.6.3 3. ROI and Marginal Contribution Analysis

Calculates Return on Investment (ROI) and average contribution to sales by media channel.

```
[18]: # Define the list of original media spend channels
     spend_channels = ['tv_spend', 'radio_spend', 'print_spend', 'search_spend', |
      # Retrieve model coefficients (from the geo-inclusive model or use_
      →model_adstock if geo is not included)
     coeffs = model with geo.params
     # Calculate contribution and ROI for each media channel
     contrib_values = []
     roi_values = []
     for ch in spend_channels:
         ch_trans = f'{ch}_transformed' # Transformed version of the spend variable
         coef = coeffs[ch_trans] # Coefficient from the regression model
         avg_trans = data[ch_trans].mean() # Average transformed spend
         avg_spend = data[ch].mean() # Average actual spend
         # Contribution is the coefficient times the average transformed value
         contribution = coef * avg_trans
         # ROI is contribution divided by the average actual spend
         roi = contribution / avg_spend if avg_spend != 0 else None
          # Store results
         contrib_values.append(contribution)
         roi_values.append(roi)
      # Create a DataFrame to summarize contributions and ROIs by channel
     df_contrib_roi_geo = pd.DataFrame({
          'channel': spend_channels,
          'contribution': contrib_values,
          'roi': roi_values
     })
 []: df_contrib_roi_geo
 []:
             channel contribution
                                         roi
     0
            tv_spend 40426.675355 6.228439
     1 radio_spend 22575.263459 4.497711
     2 print_spend 10995.905744 5.680310
     3 search_spend 72374.227808 5.140147
     4 social_spend 27812.133260 3.635978
```

```
[19]: # Set visual style
      sns.set(style="whitegrid")
      # Create figure with two horizontal bar plots
      fig, axes = plt.subplots(1, 2, figsize=(14, 6))
      # Contribution plot
      sns.barplot(
          x="contribution", y="channel", hue="channel", legend=False,
          data =df_contrib_roi_geo.sort_values("contribution", ascending=True),
          palette="Blues_d", ax=axes[0]
      axes[0].set_title("Marginal Contribution per Channel", fontsize=14)
      axes[0].set_xlabel("Estimated weekly sales contribution")
      axes[0].set_ylabel("Channel")
      # ROI plot
      sns.barplot(
          x="roi", y="channel", hue="channel", legend=False,
          data = df_contrib_roi_geo.sort_values("roi", ascending=True),
          palette="Greens_d", ax=axes[1]
      axes[1].set_title("Estimated ROI per Channel", fontsize=14)
      axes[1].set_xlabel("Sales per monetary unit invested")
      axes[1].set_ylabel("") # Hide redundant label
      # Adjust layout for clarity
      plt.tight_layout()
      plt.show()
```


0.6.4 4. Regional and Temporal ROI Analysis

Examines how ROI varies across geographies and time periods to uncover channel performance patterns.

```
[49]: # Define the list of media spend channels
      spend channels = ['tv spend', 'radio spend', 'print spend', 'search spend', '
       # Extract global model coefficients
      coeffs = model_with_geo.params
      # Initialize list to store ROI and contribution results by region and time
      geo_time_results = []
      # Group the data by geography, year, month, and quarter
      for (geo, year, month, quarter), group in data.groupby(['geo', 'year', 'month', __

¬"quarter"]):
          for ch in spend_channels:
              ch_trans = f'{ch}_transformed'
              coef = coeffs.get(ch_trans, 0) # Get coefficient; use 0 if not found
              avg_trans = group[ch_trans].mean() # Mean transformed media spend for
       ⇔the group
              avg_spend = group[ch].mean()
                                            # Mean actual media spend for the
       \hookrightarrow qroup
              contribution = coef * avg_trans # Compute estimated contribution to_
       ⇔sales
             roi = contribution / avg_spend if avg_spend != 0 else None # Compute_
       \hookrightarrow ROI
              # Store the result for this geo-time-channel combination
              geo_time_results.append({
                  'geo': geo,
                  'year': year,
                  'month': month,
                  "quarter": quarter,
                  'channel': ch,
                  'contribution': contribution,
                  'roi': roi
              })
      # Create a final DataFrame with the results
      df_geo_month_roi = pd.DataFrame(geo_time_results)
      # Export results to CSV (optional)
```

```
df_geo_month_roi.to_csv("./data/ROI_Contribution_geo_year.csv", index=False)
# Display the top results sorted by ROI in descending order
print(df_geo_month_roi.sort_values(by="roi", ascending=False).head())
```

```
year month quarter
                                    channel contribution
       geo
7332
      Geo9
           2022
                    12
                             4 print_spend 10544.370508 2752.638300
752
     Geo12
           2021
                             1 print_spend 7042.527624 1362.467476
                     3
      Geo0 2021
                    12
                             4 print_spend 7497.059152 1122.246918
57
                             2 print_spend
4952 Geo32
                     5
                                             3273.768886
                                                         896.540688
           2023
4452 Geo30
           2021
                     3
                             1 print_spend
                                             8517.333353 740.344313
```

0.7 Model Evaluation

This section includes statistical validation of the regression model using residual diagnostics.

0.7.1 1. Residual Diagnostics

Uses the Ljung-Box and Breusch-Pagan tests to check for autocorrelation and heteroskedasticity in residuals.

```
[20]: # Extract model residuals and fitted (predicted) values
      residuals = model_with_geo.resid
      fitted = model_with_geo.fittedvalues
      # Plot residuals vs. fitted values to visually assess homoscedasticity,
       ⇔(constant variance)
      plt.figure(figsize=(8, 5))
      plt.scatter(fitted, residuals, alpha=0.5)
      plt.axhline(0, color='red', linestyle='--') # Reference line at zero
      plt.title("Residuals vs. Fitted Values")
      plt.xlabel("Fitted Values")
      plt.ylabel("Residuals")
      plt.tight layout()
      plt.show()
      # Plot Autocorrelation Function (ACF) and Partial Autocorrelation Function
       \hookrightarrow (PACF) of residuals
      fig, ax = plt.subplots(1, 2, figsize=(14, 5))
      plot_acf(residuals, lags=30, ax=ax[0]) # Autocorrelation plot
      plot_pacf(residuals, lags=30, ax=ax[1]) # Partial autocorrelation plot
      ax[0].set_title("ACF of Residuals")
      ax[1].set_title("PACF of Residuals")
      plt.tight_layout()
      plt.show()
      # Perform Ljung-Box test to check for autocorrelation in residuals
      ljung_box = acorr_ljungbox(residuals, lags=[12], return_df=True)
```


Ljung-Box test (lag=12):
 lb_stat lb_pvalue
12 17.907369 0.118532

Breusch-Pagan test: Test statistic: 1027.96

p-value: 0.0000

Interpretation: Heteroskedasticity present