Merge and count step.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

1

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

9

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2

Merge and count step.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2

16

Merge and count step.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0

Merge and count step.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0

Merge and count step.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0 + 0

Merge and count step.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0 + 0 = 13