PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-309963

(43) Date of publication of application: 26.11.1996

(51)Int.CI.

B41J 2/01 B41J 2/125

(21)Application number: 07-122306

(71)Applicant : CANON INC

(22)Date of filing:

(72)Inventor: KONO TAKESHI

SAITO ATSUSHI

SUGIYAMA SHIGEYUKI

ONO TAKASHI **NOHATA YUKIO**

KORI SHINICHIRO

(54) INK JET PRINTER AND FACSIMILE EQUIPMENT

22.05.1995

(57)Abstract:

PURPOSE: To effectively detect the discharge amount of ink by small ink consumption even if the accuracy of a unit for aligning an optical path with a head for discharging the ink is not so high in an optical discharge failure detecting structure for detecting the discharge failure of an ink jet head according to the number of ink droplets for shutting OFF the path.

CONSTITUTION: When a power source is turned ON (step S1), a home position is detected (step S2), a carriage is moved from this point at a predetermined speed, and ink is continuously discharged at zones P1 to P2 capable of existing a photosensor (step S3). The number S of steps of a motor to the time point of the maximum output Vmax of the output change of the photosensor according to the continuous ink discharge is obtained (step S5), and then the ink is discharged in the following discharge failure detecting processes (steps S9 to S14).

LEGAL STATUS

[Date of request for examination]

29.06.1999

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3145898

[Date of registration]

05.01.2001

[Number of appeal against examiner's decision

of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

[JP,08·309963,A]

* NOTICES *

Japan Patent Office is not responsible for any

damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] An ink jet printing equipment which prints on printed data medium by breathing out ink using an ink jet arm head with two or more ink deliveries characterized by providing the following A detection means with a light emitting device and a photo detector A migration means to which this detection means and said ink jet arm head are moved relatively A regurgitation control means to which regurgitation is made to carry out from said ink jet arm head in the 1st predetermined successive range including an optical path which is made to move relatively said detection means and said ink jet arm head, and is formed between said light emitting devices and said photo detectors between the migration concerned by this migration means Distribution of an output of said detection means to change with the ink regurgitation from said ink jet arm head of said 1st successive range by this regurgitation control means is searched for. A range decision means to appoint the 2nd predetermined successive range included from this distribution in said 1st successive range, While moving relatively said ink jet arm head and said detection means with said migration means and making regurgitation perform from said ink jet arm head between the migration concerned in said 2nd successive range A poor regurgitation detection means to detect the poor regurgitation of the delivery concerned based on an output of said detection means at the time of the regurgitation concerned

[Claim 2] Said 2nd successive range is an ink jet printing equipment according to claim 1 characterized by being one corresponding to maximum of said output distribution.

[Claim 3] Said regurgitation control means is an ink jet printing equipment according to claim 1 or 2 characterized by performing regurgitation in said 1st successive range among two or more deliveries of said ink jet arm head using some deliveries.

[Claim 4] Said ink jet arm head is an ink jet printing equipment according to claim 1 to 3 characterized by being what ink is made to produce air bubbles using heat energy, and carries out the regurgitation of the ink based on generation of these air bubbles.

IClaim 5] Facsimile apparatus which performs a printed output based on received data using an ink jet arm head with two or more ink deliveries characterized by providing the following A detection means with a light emitting device and a photo detector A migration means to which this detection means and said ink jet arm head are moved relatively A regurgitation control means to which regurgitation is made to carry out from said ink jet arm head in the 1st predetermined successive range including an optical path which is made to move relatively said detection means and said ink jet arm head, and is formed between

said light emitting devices and said photo detectors between the migration concerned by this migration means Distribution of an output of said detection means to change with the ink regurgitation from said ink jet arm head of said 1st successive range by this regurgitation control means is searched for. A range decision means to appoint the 2nd predetermined successive range included from this distribution in said 1st successive range, While moving relatively said ink jet arm head and said detection means with said migration means and making regurgitation perform from said ink jet arm head between the migration concerned in said 2nd successive range A poor regurgitation detection means to detect the poor regurgitation of the delivery concerned based on an output of said detection means at the time of the regurgitation concerned

[Claim 6] Said 2nd successive range is facsimile apparatus according to claim 5 characterized by being one corresponding to maximum of said output distribution.

[Claim 7] Said regurgitation control means is facsimile apparatus according to claim 5 or 6 characterized by performing regurgitation in said 1st successive range among two or more deliveries of said ink jet arm head using some deliveries.

[Claim 8] Said ink jet arm head is facsimile apparatus according to claim 5 to 7 characterized by being what ink is made to produce air bubbles using heat energy, and carries out the regurgitation of the ink based on generation of these air bubbles.

[Translation done.]

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Industrial Application] This invention relates to the ink jet printing equipment used for facsimile apparatus, a printer, a copying machine, etc. in detail about an ink jet printing equipment.

[0002]

[Description of the Prior Art] As this kind of equipment, what is used for facsimile apparatus is explained with reference to <u>drawing 1</u>.

[0003] Two or more sheets are accumulated and contained by the cassette 51, it lets out one sheet of recording paper P at a time with the feed roller 52, and it is sent out on the conveyance way which the conveyance roller 53 forms. Furthermore, it is conveyed by rotation of the conveyance roller 53 to the print section B. This print section B arranges the delivery of plurality (for example, 64 pieces) in the conveyance direction (the direction of vertical scanning) of the recording paper P, has the ink jet arm head prepared in the above mentioned conveyance direction and the direction (main scanning direction) which intersects perpendicularly possible [a scan], and prints an image etc. by carrying out the regurgitation of the ink to the recording paper P. Along with the bottom guide 55, it is conveyed to the discharge section, and the recording paper P with which the print was made is discharged by the discharge roller 56 and the discharge koro 57 on the delivery roller pair delivery stacker 58 which has been arranged on the conveyance way at the downstream of the print section B and which is the discharge loading section, and is loaded by 54.

[0004] By the way, although many things are known as a method which prints to printed data medium, such as paper and a sheet for OHP, the ink jet method used with equipment conventionally mentioned above also in this carries out the regurgitation of the direct ink to printed data medium, and its running cost is comparatively low, and it has an advantage, like the noise produced with that actuation is small. While it has such an advantage, by the ink jet method, an ink piece and the poor regurgitation are discovered promptly and it is necessary to prevent a poor print beforehand.

l0005] The ink drop which had between the light emitting device of transparency mold photosensor and photo-detectors breathed out passes as a method of detecting a poor regurgitation condition, such as non-regurgitation by the ink piece or blinding, in an ink jet printing equipment, and the technology which detects based on whether the light between the above-mentioned elements is interrupted is known.

[0006] In the example of 1 configuration of the above-mentioned transparency mold photosensor, a lens is really fabricated by the luminescence side of a light emitting device, and, thereby, abbreviation parallel light can be projected now towards a photo detector in it. On the other hand, in the light-receiving side of

a photo detector, an about [0.7mmx0.7mm] hole is formed on an optical axis of a mold member, and this is narrowing down the detection range about 0.7mm of the height direction, and about 0.7mm crosswise in the whole region between light-receiving and luminescence. Moreover, a light emitting device and a photo detector are arranged so that the optical axis to which these are connected may be parallel to the delivery train of an ink jet arm head and may cross the trajectory of a regurgitation ink drop, and the gap of a light emitting device and a photo detector is prepared so that it may become larger than the range of the above-mentioned delivery train. Thereby, when it can pass through the detection range between a light emitting device and a photo detector, the ink regurgitation is performed good and an ink drop passes through this detection range, an ink drop interrupts the light from a luminescence side, and all the ink drops breathed out from each delivery of an ink jet arm head decrease the quantity of light by the side of light-receiving, and have the composition that change of the output of a photo detector is obtained. The path is the minute drop of the shape of a fog 50 micrometers or less, the ink drop breathed out does not interrupt the light from a luminescence side completely by the regurgitation from one delivery, and the rate of protection from light usually increases it gradually according to the number of deliveries which carries out the regurgitation. Therefore, if the output of transparency mold photosensor changes more than a constant rate, it will be detected as the ink regurgitation being normal, and with [output change] a constant rate [below], the regurgitation of ink can detect it as poor conversely.

[0007] Since the detection technology of the poor regurgitation mentioned above can detect without adding components special to an ink jet arm head, it is used as an effective means and it is.

[0008] By the way, it is necessary to perform alignment of a photosensor optical axis and the delivery train of an ink jet arm head, and when detecting the above poor regurgitation, it is necessary to carry out the regurgitation of the ink from each delivery so that the optical path may be intersected. In that case, the movement magnitude from the criteria location of an arm head to the above-mentioned optical axis is set up beforehand fundamentally, and the above-mentioned positioning is performed by moving the arm head according to this.

[0009] However, by dispersion in the regurgitation angle of the ink by manufacture dispersion of each component part of the device concerning migration of an arm head, and manufacture dispersion of an ink jet arm head etc. It takes into consideration that the ink drop breathed out from each delivery of an arm head to a photosensor optical axis shifts a maximum of about 1mm even if it performs the above positioning processings.

* NOTICES *

Japan Patent Office is not responsible for any

damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] It is the **** cross section from the side showing the 1 conventional example of facsimile apparatus.

[Drawing 2] It is a **** cross section from the side about the facsimile apparatus concerning one example of this invention.

[Drawing 3] It is the perspective diagram showing the details of the print section in the above mentioned facsimile apparatus.

[Drawing 4] It is the block diagram showing the control configuration of the above mentioned facsimile apparatus.

[Drawing 5] It is the flow chart which shows the procedure of processing concerning the poor regurgitation detection concerning the 1st example of this invention.

[Drawing 6] It is the mimetic diagram showing the configuration for the poor regurgitation detection processing concerning the 1st example of the above.

<u>[Drawing 7]</u> It is the timing chart of the poor regurgitation detection processing concerning the 1st example of the above.

[Description of Notations]

A Read station

B Print section

C Feed section

5 Ink Jet Arm Head

8 Photosensor

15 Carriage

21 Home Position Sensor

24 Control Section

25 CPU

26 ROM

27 RAM

28 A/D·Conversion Circuit

30 Carriage Motor

31 Paper Feed Motor

32 33 Motorised circuit

[Translation done.]

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-309963

(43)公開日 平成8年(1996)11月26日

(51) Int.Cl.⁶

識別記号 庁内整理番号

FΙ

技術表示箇所

B 4 1 J 2/01

2/125

B41J 3/04

1 0 1 Z

104K

審査請求 未請求 請求項の数8 OL (全 11 頁)

(21)出願番号

(22)出顧日

特願平7-122306

平成7年(1995)5月22日

(71)出願人 000001007

キヤノン株式会社

東京都大田区下丸子3丁目30番2号

(72)発明者 河野 健

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(72) 発明者 齋藤 篤

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(72)発明者 杉山 茂行

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(74)代理人 弁理士 谷 義一 (外1名)

最終頁に続く

(54) 【発明の名称】 インクジェットプリント装置およびファクシミリ装置

(57)【要約】

【目的】 インクジェットヘッドの吐出不良を、光路を 遮るインク滴の数によって検知する光学的な吐出不良検 知構成において、光路とインクを吐出するヘッドとの位 置合せに係る装置の精度がそれ程高くなくても、少ない インク消費量で確実な吐出量検知を行う。

【構成】 装置電源が投入されると(ステップS1)、ホームポジションを検出し(ステップS2)、この点からキャリッジを一定速度で移動させ、フォトセンサが存在し得る区間P1~P2で連続的にインク吐出を行う(ステップS3)。そして、この連続的なインク吐出によるフォトセンサの出力変化のうち、最大の出力Vmaxとなる時点までのモータのステップ数Sを求め(ステップS5)、以後の吐出不良検知処理(ステップS9~S14)では、この位置で吐出を行う。

【特許請求の範囲】

【請求項1】 複数のインク吐出口を有したインクジェ ットヘッドを用い、被プリント媒体にインクを吐出して プリントを行うインクジェットプリント装置において、 発光素子および受光素子を有した検出手段と、

該検出手段と前記インクジェットヘッドとを相対的に移 動させる移動手段と、

該移動手段により、前記検出手段と前記インクジェット ヘッドとを相対的に移動させ、当該移動の間に、前記発 光素子と前記受光素子との間に形成される光路を含む所 定の第1移動範囲で前記インクジェットヘッドから吐出 を行わせる吐出制御手段と、

該吐出制御手段による前記第1移動範囲の前記インクジ エットヘッドからのインク吐出によって変化する前記検 出手段の出力の分布を求め、該分布から前記第1移動範 囲に含まれる所定の第2移動範囲を定める範囲決定手段 と、

前記移動手段により前記インクジェットヘッドと前記検 出手段とを相対的に移動させ、当該移動の間に前記第2 移動範囲で前記インクジェットヘッドから吐出を行わせ るとともに、当該吐出時の前記検出手段の出力に基づい て当該吐出口の吐出不良を検知する吐出不良検知手段 と、

を具えたことを特徴とするインクジェットプリント装 置。

【請求項2】 前記第2移動範囲は、前記出力分布の最 大値に対応した一点であることを特徴とする請求項1に 記載のインクジェットプリント装置。

【請求項3】 前記吐出制御手段は、前記インクジェッ トヘッドの複数の吐出口のうち、一部の吐出口を用いて 30 前記第1移動範囲での吐出を行うことを特徴とする請求 項1または2に記載のインクジェットプリント装置。

【請求項4】 前記インクジェットヘッドは、熱エネル ギーを利用してインクに気泡を生じさせ、該気泡の生成 に基づいてインクを吐出するものであることを特徴とす る請求項1ないし3のいずれかに記載のインクジェット プリント装置。

【請求項5】 複数のインク吐出口を有したインクジェ ットヘッドを用い、受信したデータに基づいてプリント 出力を行うファクシミリ装置において、

発光素子および受光素子を有した検出手段と、

該検出手段と前記インクジェットヘッドとを相対的に移 動させる移動手段と、

該移動手段により、前記検出手段と前記インクジェット ヘッドとを相対的に移動させ、当該移動の間に、前記発 光素子と前記受光素子との間に形成される光路を含む所 定の第1移動範囲で前記インクジェットヘッドから吐出 を行わせる吐出制御手段と、

該吐出制御手段による前記第1移動範囲の前記インクジ

出手段の出力の分布を求め、該分布から前記第1移動範 囲に含まれる所定の第2移動範囲を定める範囲決定手段 と、

2

前記移動手段により前記インクジェットヘッドと前記検 出手段とを相対的に移動させ、当該移動の間に前記第2 移動範囲で前記インクジェットヘッドから吐出を行わせ るとともに、当該吐出時の前記検出手段の出力に基づい て当該吐出口の吐出不良を検知する吐出不良検知手段 と、

を具えたことを特徴とするファクシミリ装置。

【請求項6】 前記第2移動範囲は、前記出力分布の最 大値に対応した一点であることを特徴とする請求項5に 記載のファクシミリ装置。

【請求項7】 前記吐出制御手段は、前記インクジェッ トヘッドの複数の吐出口のうち、一部の吐出口を用いて 前記第1移動範囲での吐出を行うことを特徴とする請求 項5または6に記載のファクシミリ装置。

【請求項8】 前記インクジェットヘッドは、熱エネル ギーを利用してインクに気泡を生じさせ、該気泡の生成 に基づいてインクを吐出するものであることを特徴とす る請求項5ないし7のいずれかに記載のファクシミリ装 置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はインクジェットプリント 装置に関し、詳しくは、ファクシミリ装置、プリンタ、、 複写機等に用いられるインクジェットプリント装置に関 するものである。

[0002]

【従来の技術】この種の装置として、ファクシミリ装置 に用いられるものについて図1を参照して説明する。

【0003】記録紙Pはカセット51に複数枚が積み重 ねられて収納されており、給紙ローラ52によって1枚 ずつ繰り出され、搬送ローラ53が形成する搬送路へと 送り出される。さらに、搬送ローラ53の回転によりプ リント部Bへと搬送される。このプリント部Bは、記録 紙Pの搬送方向(副走査方向)に複数(例えば64個) の吐出口を配列し、上記搬送方向と直交する方向(主走 査方向) に走査可能に設けられたインクジェットヘッド を有し、記録紙Pに対してインクを吐出することによっ て画像等をプリントする。プリントがなされた記録紙P は、その搬送路においてプリント部Bの下流側に配置さ れた排紙ローラ対54によって下ガイド55に沿って排 出部へ搬送され、排出ローラ56および排出コロ57に より排出積載部である排紙スタッカ58上へ排出され、 積載される。

【0004】ところで、紙、OHP用シート等の被プリ ント媒体に対してプリントを行なう方式としては種々知 られているが、この中でも上述した従来装置で用いられ ェットヘッドからのインク吐出によって変化する前記検 50 るインクジェット方式は、被プリント媒体に対して直接

インクを吐出するものであり、ランニングコストが比較 的低く、また、その動作に伴なって生ずる騒音が小さい 等の利点を有するものである。このような利点を有する 一方、インクジェット方式では、インク切れや吐出不良 を速やかに発見し、プリント不良等を未然に防止するこ とが必要となる。

【0005】インクジェットプリント装置においてインク切れや目詰まりによる不吐出など、吐出不良状態を検知する方法として、透過型フォトセンサの発光素子と受光素子との間を吐出されたインク滴が通過し、上記素子間の光を遮るか否かに基づいて検知を行う技術が知られている。

【0006】上記透過型フォトセンサの一構成例では、 発光素子の発光面にレンズが一体成形され、これによ り、受光素子に向けて略平行光を投射できるようになっ ている。他方、受光素子の受光面においてはモールド部 材により0.7mm×0.7mm程度の穴が光軸上に形 成され、これにより受光、発光間全域において検出範囲 を高さ方向の約0.7mm、幅方向約0.7mmに絞り 込んでいる。また、発光素子と受光素子は、これらを結 20 ぶ光軸がインクジェットヘッドの吐出口列と平行でかつ 吐出インク滴の飛翔経路と交わるように配置され、ま た、発光素子と受光素子の間隔は上記吐出口列の範囲よ りも広くなるよう設けられる。これにより、インクジェ ットヘッドの各吐出口から吐出されるインク滴は全て発 光素子と受光素子の間の検出範囲を通過でき、インク吐 出が良好に行われ、この検出範囲をインク滴が通過する 場合には、インク滴が発光側からの光を遮り、受光側へ の光量を減少させ、受光素子の出力の変化が得られる構 成になっている。吐出されるインク滴はその径が50μ m以下の霧状の微小な液滴であり、通常、1 つの吐出口 からの吐出によって発光側からの光を完全に遮るもので はなく、吐出する吐出口数に応じて徐々に遮光の割合が 増加するものである。従って、透過型フォトセンサの出 力が一定量以上に変化すればインク吐出は正常であると 検知し、逆に、出力変化が一定量以下であれば、インク の吐出が不良であると検知することができる。

【0007】上述した吐出不良の検知技術はインクジェットヘッドに特別な部品を付加することなく検知を行うようにすることができるので、有効な手段として用いられいる。

【0008】ところで、上述のような吐出不良を検知するときは、フォトセンサ光軸とインクジェットヘッドの吐出口列との位置合わせを行い、その光路に交差するように各吐出口からインクを吐出する必要がある。その場合、基本的にはヘッドの基準位置から上記光軸までの移動量を予め設定しておき、これに従ったヘッドの移動を行うことにより上記位置決めを行う。

【0009】しかしながら、ヘッドの移動にかかる機構の各構成部品の製造ばらつき、インクジェットヘッドの

製造ばらつきによるインクの吐出角度のばらつき等により、上記のような位置決め処理を行ったとしても、フォトセンサ光軸に対しヘッドの各吐出口から吐出されるインク滴が最大1mm程度ずれるということを考慮し、従来技術にあっては、吐出不良検知の際には、上記ずれの範囲より大きめの、光軸に対して両側約2mmの範囲において、吐出を行うようにしている。そして、その吐出の間のフォトセンサ出力が一定量を越えるか否かを判断することにより、吐出不良の検知を行うものとしている。

[0010]

【発明が解決しようとする課題】しかしながら、上記従来技術においては、吐出不良検知の際には、フォトセンサの光軸の両側2mmの範囲でインクが吐出されるため、各吐出口から吐出されるインク滴数は約50~100発となる。従って、例えば吐出口数が64とすると検知毎に3200~6400発のインク滴が吐出されることになり、その消費量は比較的大量となる。その結果、インクジェットプリント装置のランニングコストを上昇させるものとなっていた。

【0011】また、インクジェットプリント装置のコストダウンを図るため各構成部品において比較的大きな寸法許容差を認める場合には、上記光軸とヘッドとの位置合せのばらつきがさらに大きくなるため、インク消費量の状況がさらに悪化することになる。

【0012】本発明の目的は、上記従来技術の問題点を解決し、フォトセンサとインクジェットヘッドとの位置合せに関する各構成部品の精度がそれ程高くなくても、吐出不良検知処理で用いるインク量を少なくできるインクジェットプリント装置を提供することにある。

[0013]

【課題を解決するための手段】そのために本発明では、 複数のインク吐出口を有したインクジェットヘッドを用 い、被プリント媒体にインクを吐出してプリントを行う インクジェットプリント装置において、発光素子および 受光素子を有した検出手段と、該検出手段と前記インク ジェットヘッドとを相対的に移動させる移動手段と、該 移動手段により、前記検出手段と前記インクジェットへ ッドとを相対的に移動させ、当該移動の間に、前記発光 素子と前記受光素子との間に形成される光路を含む所定 の第1移動範囲で前記インクジェットヘッドから吐出を 行わせる吐出制御手段と、該吐出制御手段による前記第 1移動範囲の前記インクジェットヘッドからのインク吐 出によって変化する前記検出手段の出力の分布を求め、 該分布から前記第1移動範囲に含まれる所定の第2移動 範囲を定める範囲決定手段と、前記移動手段により前記 インクジェットヘッドと前記検出手段とを相対的に移動 させ、当該移動の間に前記第2移動範囲で前記インクジ エットヘッドから吐出を行わせるとともに、当該吐出時 の前記検出手段の出力に基づいて当該吐出口の吐出不良

.5

を検知する吐出不良検知手段と、を具えたことを特徴とする。

【0014】また、複数のインク吐出口を有したインク ジェットヘッドを用い、受信したデータに基づいてプリ ント出力を行うファクシミリ装置において、発光素子お よび受光素子を有した検出手段と、該検出手段と前記イ ンクジェットヘッドとを相対的に移動させる移動手段 と、該移動手段により、前記検出手段と前記インクジェ ットヘッドとを相対的に移動させ、当該移動の間に、前 記発光素子と前記受光素子との間に形成される光路を含 む所定の第1移動範囲で前記インクジェットヘッドから 吐出を行わせる吐出制御手段と、該吐出制御手段による 前記第1移動範囲の前記インクジェットヘッドからのイ ンク吐出によって変化する前記検出手段の出力の分布を 求め、該分布から前記第1移動範囲に含まれる所定の第 2移動範囲を定める範囲決定手段と、前記移動手段によ り前記インクジェットヘッドと前記検出手段とを相対的 に移動させ、当該移動の間に前記第2移動範囲で前記イ ンクジェットヘッドから吐出を行わせるとともに、当該 吐出時の前記検出手段の出力に基づいて当該吐出口の吐 出不良を検知する吐出不良検知手段と、を具えたことを 特徴とする。

[0015]

【作用】以上の構成によれば、検出手段とインクジェットへッドとの位置関係を、所定の第1の範囲でインク吐出を行い、そのときの検出手段の出力分布に基づいて知ることができるので、吐出不良検知の際のインク吐出する範囲を最小限の第2の範囲とすることができる。

[0016]

【実施例】以下、図面を参照して本発明の実施例を詳細 に説明する。

【0017】(第1実施例)図2は本発明を適用したファクシミリ装置の一例を側方から視た断面図である。

【0018】まず、図2を参照してファクシミリ装置の 概略構成について説明する。図2において、符号Aは原稿を光学的に読み取る読取部、符号Bはインクジェット プリント装置を用いたプリント部、符号Cはシートカセットとこれに積載された記録紙等のシートを分離してこれをプリンタ部Bに供給する給紙部をそれぞれ示す。なお、これら各部の機械的構成は公知のものと同様である。

【0019】記録紙Pの搬送経路は矢印Gで示す通りである。すなわち、給紙部Cの給紙カセット1に積載された記録紙Pは、給紙ローラ2および分離爪3によってピックアップされ、搬送手段としての搬送ローラ4によってプリント部Bに送り込まれる。プリント部Bにおいては、インクジェットヘッド5よりインクが吐出されてプリントが行われ、その後、装置内をある程度の距離搬送された後、排紙ローラ6によって排紙スタッカ7に排出、積載される。

6

【0020】次にプリント部Bの詳細な構成について図3を参照して説明する。

【0021】図3において、本実施例のインクジェットへッド5(図3には不図示)はインクタンクと一体に形成され、そのタンクのインクが無くなった時点でこのタンクとともに新たなものと交換されるカートリッジ形態のインクジェットカートリッジ50として構成されるものである。インクジェットへッド5は、密度360DPIで、64個の吐出口を1列に配し、各吐出口に対応してその内部のインク路には電気熱変換素子が設けられ、その発熱によって膜沸騰を起こしてインク中に生じる気泡の圧力によって吐出口よりインクを吐出するものである。

【0022】インクジェットカートリッジ50を着脱自 在に装着するキャリッジ15は、記録紙Pの搬送方向 (副走査方向、図中矢印G方向) とは直交する方向、す なわち主走査方向(図中矢印H方向)に往復移動できる ようガイド棒16および突き当て部15aにより摺動自 在に保持されている。上記キャリッジ15の往復移動 は、キャリッジモータ30 (図4参照) によって駆動さ れるプーリ17およびこれに巻回されるタイミングベル ト18によって行われ、この際にインクジェットヘッド 5に与える吐出信号および電力は、フレキシブルケーブ ル19によって装置本体の電気回路等より供給される。 【0023】また、キャップ20は、上記キャリッジ1 5 がプリント動作を待機する位置 (ホームポジション) に対応して配置され、必要に応じて上下動し、上昇時は インクジェットヘッド5の吐出口が配設面を覆ってイン クの蒸発やゴミの付着を防止する。ここで、インクジェ ットヘッド5とキャップ20との相対的位置関係の制御 は、装置本体に設けられたキャリッジホームセンサ21 とキャリッジ15に設けられた遮光板15bとを用いて 行われる。このキャリッジホームセンサ21としては透 過型のフォトインタラプタが用いられ、キャリッジ15 が移動して待機位置まで移動した時に、キャリッジホー ムセンサ21の一部から照射された光が遮光板15bに よってその透過が遮られることを利用し、インクジェッ トヘッド5とキャップ20とが相対的に対向した所定の 位置にあることを検知するものである。

【0024】記録紙Pは図中プリント部の下側より上方へ給紙され、搬送ローラ4および紙ガイド22によって水平方向に曲げられて、矢印G方向に搬送される。搬送ローラ4および排紙ローラ6は、それぞれ紙送りモータ31(図4参照)によって駆動され、キャリッジ15の往復移動と連動して高精度に記録紙Pを図中G方向に搬送する。拍車23は排紙ローラ6に対向する位置で、図示しない軸受部材により主走査方向と平行に所定の長さ離間して複数箇所に配設されており、プリント直後の記録紙上の未定着画像に接触しても画像に影響を与えずに記録紙Pをガイドし搬送するよう構成されている。その

ため、拍車23は、撥水性の高い材料で形成され、記録 紙面とのこ刃状の円周部のみで記録紙Pに接触する。

【0025】フォトセンサ8は、上記キャップ20と搬送される記録紙Pの一方の端部との間で、インクジェットヘッド5の吐出口列が通過する範囲に対応した位置に配置され、インクジェットヘッド5の各吐出口から吐出されるインク滴を光学的に検知する透過型フォトインタラプタであり、インクジェットヘッド5におけるインク吐出不良をその出力から判断できるものである。

【0026】本実施例で用いているフォトセンサ8は、発光素子に赤外LEDを用い、そのLEDの発光面にはレンズを一体成形し、これにより略平行な光が投射される。フォトセンサ8の受光素子には、フォトトランジスタが用いられ、受光素子の受光面にはモールド部材により0.7mm×0.7mmの穴が光軸上に形成され、受光、発光間全域において検出範囲が高さ方向の0.7mm、幅方向0.7mmに絞り込まれる。また、発光素子とは、これらを結ぶ光軸が、インクジェットへッド5の吐出口列と平行で、かつ、発光素子と受光素子の間隔がインクジェットへッド5の吐出口配列範囲よりも広くなるよう配置され、これにより、上記光軸に対応する位置にインクジェットへッド5の吐出口列が位置すると、各吐出口から吐出されるインク滴は全て発光素子と受光素子の間の検出範囲を通過可能となる。

【0027】このように、本実施例で用いるフォトセンサ8は、上記従来例で説明したものと同様のものであり、従って、前述したように、このセンサの受光素子、発光素子のばらつき、これら素子の組立ガタ等により、センサによって最大20%程度の出力誤差を有している。

【0028】なお、インクジェットヘッド5の吐出口列とフォトセンサ8の光軸との相対的位置の制御は、前述のキャップ20との位置決め同様に、装置本体に設けられたキャリッジホームセンサ21を用いる。すなわち、このセンサ21が検出するホームポジションの位置からフォトセンサ8の光軸まで移動する所定の距離を、キャリッジを駆動するモータのステップ数に換算し予めシーケンス上に定数として設定しておくものである。

【0029】次に、本実施例ファクシミリ装置の電気回路主要部を図4に示すブロック図を参照して説明する。

【0030】図4において、24はファクシミリ装置全体を制御するための制御部でありマイクロプロセッサ等のCPU25、このCPU25が実行する制御プログラムや各種データを記憶しているROM26、およびCPU25のワークエリアとして使用され、各種データを一時的に保存するためのRAM27等を有している。この制御部24は装置において基板上の回路として形成される。フォトセンサ8の出力はA/D変換回路28によりディジタル値に変換され、CPU25にて解析可能なものとされる。キャリッジモータ30および紙送りモータ

31は、それぞれモータ駆動回路33および32によるパルスステップ数によって回転角度制御可能なモータであり、制御部24によってその回転が制御される。キャリッジホームセンサ21の出力は制御部24に入力し、インクジェットヘッドの移動制御に用いられる。

【0031】図5は、本実施例の上記構成に基づく吐出不良検知に係るシーケンスを示すフローチャート、図6は、その検知に係る本例装置における構成の模式図、図7は、シーケンスに係るタイミングチャートである。以下、これらの図を参照して本実施例の吐出不良検知に係る処理について説明する。

【0032】ファクシミリ装置の電源が投入されると (ステップS1)、キャリッジ15を移動させることによりキャリッジホームセンサ21によってキャリッジ15のホームポジションを検出する (ステップS2)。次に、ホームポジションから一定速度 (約300mm/Sec)でキャリッジを移動し、図6に示すように、インクジェットヘッド5の吐出口列5cの位置がフォトセンサ8の検出位置に達する (約2mm) 手前の所定位置P1から、検出位置を (約2mm) 越えた所定位置P2までの間においてヘッド5の全吐出口よりインクを6kHzの周波数で連続吐出し、その後キャリッジを停止する (ステップS3)。ここにおけるインクの吐出発数はキャリッジの移動速度、吐出範囲によって定めるものであり、各吐出口より80発吐出する。

【0033】そして、この連続吐出の間、フォトセンサ8の出力をA/D変換回路28を介して微小時間間隔(100μs)でサンプリングする(ステップS4)。さらにこのサンプリングデータからフォトセンサ8の出力分布の最大値Vmax、ホームポジションからこのVmaxを出力する位置までの時間t1、および上記キャリッジ速度と時間t1に基づくホームポジションからVmaxを出力する位置までのキャリッジモータ30のステップ数Sを求め(ステップS5、図7参照)、ステップ数SをRAM27に記憶し(ステップS6)、プリント命令があるまで待機状態とする(ステップS7)。

【0034】プリント命令を受けると記録紙Pをピックアップしてプリント部Bへ送り、1ページ分の画像データについてプリントを行った後(ステップS8)、RAM27に記憶しているステップ数Sのデータを参照して、キャリッジ15をホームポジションからステップ数Sを送った位置に移動し停止させる(ステップS9)。この移動により、インクジェットヘッド5の吐出口列5cの位置はフォトセンサ8の光軸に対応し吐出インク滴がセンサ8の光路と交差できる位置関係となる。なお、この位置関係は基本的にインクジェットヘッドや装置の構成部品を交換しない限り維持されるが、上述のように装置の電源投入時にはステップ数Sを求める処理を行い、より正確に見回すことができる。なお、上記フォトセンサ8の出力分布を得るときに、複数の吐出口の一部

に吐出不良を生じていることもあり得るが、この場合においても出力分布の最大となる位置は、ヘッドとフォトセンサの上述した適切な位置関係をなすものであるので差し支えない。また、ステップ数Sを一点に対応させるのではなく、従来例で示した $P_1 \sim P_2$ より狭い範囲に対応させ、この間で以下に示す処理を行うようにしてもよい。

【0035】次に、ヘッドの全吐出口より各10発ずつインクを吐出するとともに(ステップS10)、この吐出の間、フォトセンサ8の出力をステップS4の処理と同様にサンプリングする(ステップS11)。そして、このサンプリングデータに基づき、フォトセンサ8の出力が一定値に達しない場合は、吐出不良が生じているとしてエラー動作を行う(ステップS14)。例えば受信データをメモリに格納するとともにエラー表示を出力し、また、プリント動作を終了する。フォトセンサ8の出力が一定以上と判断し、かつこのあと次の頁が存在する場合は(ステップS12, S13)、次の紙のピックアップを開始して、同様の動作を繰り返す。次ページのデータが存在しなければステップS9の待機状態に戻る(ステップS13)。

【0036】なお、上述したように、ヘッドとフォトセンサとの適切な位置関係を求める処理においても、ある程度の広い範囲にインク吐出を行い、インクを消費することになるが、この処理は電源投入時のみに行われ、その後の吐出不良検知のための吐出は、本実施例の場合、ページ毎に上記により定められた位置のみで行われるため、従来例よりもはるかに少ないインク消費量となる。

【0037】なお、上記構成ではA/D変換回路を使用し高速にサンプリングする例について説明したが、A/D変換回路を使用せずにより廉価なオペアンプによるコンパレータ回路を使用し、ここで、センサ出力値に対して一定の閾値を設定し、センサ出力がその閾値を越えた瞬間および閾値より下がった瞬間を制御部に割り込みをかけて時間を計測し、その二時点の中間点を最大値が得られる時間 t 1 として近似することも可能である。

【0038】次に、上記実施例のプリント部に用いられるインクジェットヘッドの吐出原理について説明する。

【0039】インクジェットヘッドは、一般に微細な液体吐出口(オリフィス)、液路(インク路)およびこの液路の一部に設けられるエネルギー作用部と、該作用部にある液体に作用させる熱エネルギーを発生するエネルギー発生素子とを備え、キャリッジに対し交換可能に設けられるものである。

【0040】このようなエネルギーを発生する他のエネルギー発生素子としては、ピエゾ素子等の電気機械変換体を用いたもの、レーザ等の電磁波を照射して、そこにある液体に吸収させて発熱させ、該発熱による作用で液滴を吐出、飛翔させるようにしたもの等が知られている。その中でも上記実施例のように電気熱変換素子が発

10

生する熱エネルギーによって液体を吐出させる方式は、 インクジェットヘッドの液体吐出口(オリフィス)を高 密度に配列することができるために高解像力のプリント を行うのに適している。

【0041】また、電気熱変換素子を用いたインクジェットヘッドは、全体的なコンパクト化も容易で、かつ、最近の半導体分野における技術の進歩と信頼性の向上が著しいIC技術やマイクロ加工技術の長所を十二分に活用でき、長尺化および面状化(2元化)が容易であること等から、マルチノズル化、高密度実装化が容易で、しかも大量に生産性よく、製造コストも廉価なものを提供することが可能である。

【0042】このようにエネルギー発生手段に電気熱変換素子を用い、半導体製造プロセスを経て製造されたインクジェット用ヘッドは、一般には各インク吐出口に対応した液路を設け、該液路ごとに該液路を満たす液体に熱エネルギーを作用させて、対応するインク吐出口から液体を吐出して飛翔用液滴を形成する手段としての電気熱変換素子が設けられ、各液路には、各液路に連通している共通液室から液体が供給される構造となっている。

【0043】なお、インク吐出部の製造方法について本出願人は、第1の基板上に、少なくとも液路を形成するための固体層と、少なくとも液路の壁の形成に利用する活性エネルギー線硬化性材料層と、第2の基板を順次積層した後、該第2の基板上にマスクを積層し、該マスクの上方から活性エネルギー線を照射して、活性エネルギー線硬化性材料層の少なくとも液路の壁を構成部分として硬化させ、さらに固体層と活性エネルギー線硬化性材料層の未硬化部分を二つの基板間から除去し、少なくとも液路を形成する方法を提案している(例えば特開昭62-253457号公報参照)。

【0044】(その他の実施例)上記第一の実施例の吐出不良検知のシーケンスにおけるステップS4では全吐出口(64個の吐出口)からインクを吐出するものとしたが、本実施例では一部の吐出口のみ吐出させ、キャリッジとフォトセンサの最も適した位置関係を求めることもできる。ここで、一部の吐出口とは、例えば64個の吐出口のうち、第1番目から第16番目までの16個の吐出口であり、これのみを使用することにより、一層本発明の目的であるインク消費量を少なくしてランニングコストの低減を図ることができる。

【0045】なお、一部の吐出口を用いる場合にフォトセンサ出力が所定量に達しない場合、すなわち一部に吐出不良を生じているおそれがある場合には、他の一部の吐出口を用いて上記位置関係を求めることもできる。

【0046】また、上記のように一部の吐出口を使用し、キャリッジとフォトセンサの最も適した位置関係を求めることを、仮に吐出不良検知毎に実行したとしても、従来例に比べてインクの消費量を抑えることができることは明らかである。

[0047]

【発明の効果】以上説明したように、検出手段とインクジェットヘッドとの位置関係を、所定の第1の範囲でインク吐出を行い、そのときの検出手段の出力分に基づいて知ることができるので、吐出不良検知の際のインク吐出する範囲を最小限の第2の範囲とすることができる。

【0048】この結果、フォトセンサ等、検出手段のヘッドとの位置合せに係る精度がそれ程高くなくても、少ないインク消費量で確実な吐出不良検知を行うことができる。

【図面の簡単な説明】

【図1】ファクシミリ装置の一従来例を示す側方から視 た断面図である。

【図2】本発明の一実施例に係るファクシミリ装置を側方から視た断面図である。

【図3】上記ファクシミリ装置におけるプリント部の詳細を示す斜視図である。

【図4】上記ファクシミリ装置の制御構成を示すブロック図である。

【図5】本発明の第1の実施例に係る吐出不良検知に係 20 る処理の手順を示すフローチャートである。 12

【図6】上記第1の実施例に係る吐出不良検知処理のための構成を示す模式図である。

【図7】上記第1の実施例に係る吐出不良検知処理のタイミングチャートである。

【符号の説明】

- A 読取り部
- B プリント部
- C 給紙部
- 5 インクジェットヘッド
- 8 フォトセンサ
 - 15 キャリッジ
 - 21 ホームポジションセンサ
 - 24 制御部
 - 25 CPU
 - 26 ROM
 - 27 RAM
 - 28 A/D変換回路
 - 30 キャリッジモータ
 - 31 紙送りモータ
 - 32, 33 モータ駆動回路

【図1】

【図2】

[図3]

【図6】

【図4】

【図5】

フロントページの続き

(72) 発明者 小野 隆

東京都大田区下丸子3丁目30番2号 キャ ノン株式会社内

(72)発明者 野畠 之雄

東京都大田区下丸子3丁目30番2号 キャノン株式会社内

(72)発明者 郡 慎一郎 東京都大田区下丸子3丁目30番2号 キャ ノン株式会社内 THIS PAGE BLANK (USPTO)