Единицы в МКТ и термодинамике.

Величины	Обозна чение	Единицы	Единица уста- навливается по формуле-
Молярная масса	кг/моль	Килограмм на моль равен молярной массе вещества, имеющего при количестве вещества 1 моль массу 1 кг.	$M = \frac{m}{v}$
Коэффи циент поверхнос тного натяже ния	Н/м	Ньютон на метр равен поверхностному натяжению жидкости, создаваемому силой 1 Н. пРиложенной к участку кот ура свободной поверхности длиной 1 м и действующей нормально к контуру и по касательной к поверхности.	$\sigma = \frac{F}{1}$
Количест во теплоты,	Дж	Джоуль равен количеству теплоты, Эквивалентному работе 1 Дж	
Теплоемк ость	Дж/К	Джоуль на кельвин равен теплоемкости системы, температура которой повышает ся на 1 К при подведении к системе количества теплоты 1 Дж.	$C = \frac{Q}{\Delta T}$
Удельная теплоемко сть	Дж/К кг	Джоуль на килограмм-кельвин равен удельной теплоемкости вещества, имеющего при массе 1 кг теплоемкость 1 Дж/К.	$c = \frac{C}{m}$
Молярная теплоемко сть	Дж/ моль:К	Джоуль на моль-кельвин равен молярной теплоемкости вещества, имеющего при количестве вещества 1 моль теплоемкость 1 Дж/К.	$C_M = c \cdot M$
Удельная теплота кипения, плавления	Дж/кг	Джоуль на килограмм равен удельной теплоте процесса, в котором веществу массой 1 кг сообщается (или отбирается от него) количество теплоты 1 Дж.	$r = \frac{Q}{m} \lambda = \frac{Q}{m}$

Связь единиц СИ с другими в МКТ и термодинамике

Температура термодинамическая	$T(K)=t(^{0}C)+273,15$	
Молярная масса	1г/моль=10 ⁻³ кг/моль	
Коэффициент поверхностного натяжения	1дин/см=10 ⁻³ H/м	
Количество тепло ты, внутренняя энергия	1кал = 4,1868 Дж	
Теплоемкость	1кал/0С=4,1868Дж/К	
Удельная теплоемкость	$1 \text{кал/(r}^{0}\text{C}) =$ $4,1868 \text{Дж/(кг K)}$ $1 \text{эрг/(r}^{0}\text{C}) =$ 10^{-4}Дж/(кг K)	
Удельная теплота кипения, плавления	$1 \ \text{ккал/кг} = 1 \ \text{кал/г} =$ $4,1868 \cdot 10^3 \ \text{Дж/кг}$ $1 \ \text{эрг/г} = 10^{-4} \ \text{Дж/кг}$	