

New Network Technologies & Challenges for the Future - FlexRay, CAN FD, IP

Tariq Javaid

Automotive Networks

vector

Automotive Networks

Why CAN?

Point-to-point networking

Each unit of information to be transported is allocated to a communication channel in the form of an electrical wire.

With growing demands for communication, point-to-point wiring leads to enormous wiring expense with the following primary consequences:

- High complexity and susceptibility to errors
- High cost and effort
- Space and weight problems

Bus networking

All information is transported over a single medium (bus).

→ All ECUs share the bus

The transition from point-to-point networking to bus networking offers advantages that include:

- Reduced complexity and susceptibility to errors
- Reduced cost and effort
- Reduced space/weight requirements

CAN Standard & Implementation

Reference	mode	I	CAN	Standards		Implementation		
2 Data Link	LLC							
Data Link Layer	MAC		CAN Protocol		ISO 11898-1		CAN Controller	
1	PLS							
Physical	PMA		CAN		ISO 11898-2		CAN Transceiver	
Layer	MDI		Physical Layer		ISO 11898-3		CAN Transcerver	

- ▶ ISO 11898-1: CAN Protocol (Event triggered)
- ▶ ISO 11898-2: High-Speed Physical Layer (up to 1 MBaud)
- ▶ ISO 11898-3: Low-Speed Physical Layer (up to 125 KBaud)

CAN Data Frame

Structure

- ▶ **SOF** Start Of Frame
 - RTR Remote Transmission Request
- ▶ **IDE** Identifier Extension

- ▶ **DLC** Data Length Code
- ► **ACK** Acknowledgement
- ▶ **EOF** End Of Frame

Automotive Networks

Why CAN FD?

CAN networks reached practical maximums of data transfer

- ▶ Many CAN buses have reached 50%-95%+ bus load level
- ► CAN messages contain ≥50% overhead
 - Standard CAN 111 bits/message for 64 bits of data*
 - Extended CAN 131 bits/message for 64 bits of data*
- ▶ At most, only ~40-50% of the bandwidth is used to exchange useful data
- ► Current CAN bus speeds ≤ 1Mbit/s
 - Limited by physical characteristics of in-vehicle wiring
 - ▶ Most auto networks ≤ 500Kbit/s
 - ▶ J1939 networks = 250Kbit/s (500Kb/s under consideration)

* - excluding stuff bits

Why CAN FD?

- Maximal CAN bus speed limited due to the In-Frame Response (IFR) mechanism
- ▶ ACK generation delay in CAN controller
 - Propagation delay through the transceiver
 - Propagation delay over wire

What is CAN FD?

Improved CAN protocol

- ▶ CAN FD is a serial communications protocol based on CAN 2.0
- ▶ Two new features added:
 - Support dual bit rates within a message
 - Arbitration-Phase same bit rate as standard CAN
 - ▶ Data-Phase bit rates higher than 1 Mb/s are possible (up to ~8 Mb/s)
 - Support larger data lengths than "classic" CAN
 - ▶ Up to 64 bytes/message

What is CAN FD?

- Differences from CAN to CAN FD are limited to controller hardware
 - Existing CAN transceivers usable up to 2-8 Mbit/s
 - Component re-qualification unnecessary
 - Legacy SW usable
 - ▶ Data fields up to 8 bytes in length
 - Well known technology: Event-Triggered system
- System cost similar to standard CAN
 - ► Controller, crystal, transceiver, node interconnection cost

Consist of two phases – Arbitration phase and Data phase

Start of Frame

► CAN and CAN FD use the same SOF – a single "dominant" bit

CAN frame

CAN FD frame

Arbitration Field

- ▶ Little difference between CAN and CAN FD arbitration fields
 - Both share the same addressing for Standard and Extended formats
 - CAN FD removes the RTR bit and maintains an always dominant r1 bit

Control Field

- CAN and CAN FD share the following bits:
 - ▶ IDE, r0 and the DLC bits

- ► CAN FD adds the following bits to the control field :
 - ► EDL Extended Data Length
 - Determines if CAN (dominant) or CAN FD (recessive)
 - BRS Bit Rate Switch
 - Separates Arbitration phase from Data phase in CAN FD
 - Clock rate switches when BRS is recessive
 - ESI Error State Indicator (error active/passive)

Control Field

- Data Length Code (DLC)
 - ▶ 4 bits used for both formats
 - ► For lengths ≥ 8, CAN FD uses the following DLCs:

1000 = 8	1100 = 24
1001 = 12	1101 = 32
1010 = 16	1110 = 48
1011 = 20	1111 = 64

Data Field

- ▶ 0-8 bytes in CAN
- ▶ 0-8, 12, 16, 20, 24, 32, 48, or 64 bytes in CAN FD
- No data field if DLC = 0

SOF	Identifier	Σ	IDE	EDL	r0	BRS	ESI	DLC	Data 0-8, 12, 16, 20, 24 32, 48, or 64 bytes	CRC	CRC Delimiter	ACK	ACK Delimiter	EOF	IFS	
1	11	1	1	1	1	1	1	4	0512	17 / 21	1	1	1	7	3	

CRC Field

- Size of CRC differs based on CAN/CAN FD and length of DLC
 - ▶ 15 bits for CAN
 - ▶ 17 bits for CAN FD where data field ≤ 16 bytes
 - ▶ 21 bits for CAN FD where data field > 16 bytes
- Preceding stuff bits are included in the CAN FD CRC calculation
 - CAN does not use stuff bits in the CRC calculation
- ► CAN FD CRC delimiter transmitted as 1 bit, but due to phase shift, etc. receiver can accept delimiter of up to 2 bit times
 - ▶ Data Phase of CAN FD frame ends with the sample point of the first bit of the CRC delimiter

ACK Field

- ACK sent at the end of the CRC delimiter bit
- Slight difference in the format between CAN and CAN FD
 - ► CAN FD receiver recognizes up to two bit times as a valid ACK
 - ▶ 1 extra bit time allowed to compensate for transceiver phase shift and bus propagation delay due to the switch from a high data phase clock to a low arbitration phase clock

End of Frame

▶ Frames are delimited by a group of 7 recessive bits

CAN FD Controller

- Controller allows for dynamic switching between CAN CAN FD
- Four Frame Formats:
 - ► CAN standard format 11 bit identifier and fixed bit rate
 - ► CAN extended format 29 bit identifier and fixed bit rate
 - CAN FD standard format 11 bit identifier and dual bit rate
 - CAN FD extended format 29 bit identifier and dual bit rate
- Error Frame:
 - Identical to CAN error frame
 - Error frame is always sent with arbitration bit rate
 - Controller switches automatically to arbitration bit rate

CAN FD Controller

- ▶ Remote Frame:
 - ▶ Remote frame in CAN standard format & in CAN extended format
 - ▶ Remote frames are **undefined** in CAN FD format
 - ▶ RTR bit removed from CAN FD bit-stream

CAN FD Performance

- Basic calculation principles:
 - Stuff bits excluded
 - ▶ Max CAN frame with 111 bits
 - ▶ Max CAN FD frames with 116/568 bits

Frame Type	No. Data-Bytes	Arb. Bit-Rate	Opt. Bit-Rate	Avg. Bit-Rate	Frame Duration
CAN	8	1 Mbit/s	-		111 us
CAN FD	8	1 Mbit/s	4 Mbit/s	2.3 Mbit/s	50.75 us
CAN FD	8	1 Mbit/s	8 Mbit/s	2.9 Mbit/s	39.875 us
CAN FD	64	1 Mbit/s	4 Mbit/s	3.5 Mbit/s	163.75 us
CAN FD	64	1 Mbit/s	8 Mbit/s	5.9 Mbit/s	96.375 us

- CAN FD can decrease bus loading significantly
- Data/Overhead ratio increases for 64 byte significantly

CAN FD Hardware

- CAN FD qualified transceiver roadmap announced
- ▶ MCU sample silicon with full CAN FD support available in 2013
 - Roadmaps presented from ST, NXP and Freescale during CAN FD Tech Day in Detroit (18th October 2012)
- Other semiconductor manufacturers are in preparation

CAN FD Standardization

- CAN ISO standardization
 - ► CAN FD integrated into existing ISO 11898-1 -> start 10/2012
 - ▶ Upgrade CAN conformance test ISO16845 -> in parallel
- ► CAN FD upgrade for J1939
- ► CAN FD (8 byte) in Autosar 4.1.1
- ► CAN FD (64 byte) in Autosar

- -> ongoing
- -> approved
- -> in preparation

Summary

CAN FD provides a migration path compatible with CAN

- CAN 2.0 nodes and CAN FD nodes can communicate with each other as long as the CAN FD frame format is **not** used
- ► CAN FD nodes must meet CAN 2.0/ISO 11898-1 specifications
- Concept with mixed CAN CAN FD networks is possible with the usage of partial network transceivers

Automotive Networks

Why FlexRay?

Requirements and goals

Transmission rate

- Currently, requirements for applications in the powertrain and chassis areas lie in the range of 1 to 2 MBit/s.
- > Future bandwidths of 10 MBit/s are desired.

Composability

- The components should fit together smoothly.
- No changes to the system should be needed afterwards.

Scalability

- A new communication system should permit flexible expansion.
- > The installation or removal of ECUs should not necessitate any reconfiguration of parameters.

Fault tolerance

- > Import information should be transmitted redundantly.
- > The transmission of information has to be predictable (deterministic).

Why FlexRay?

Determinism and indeterminism

- Event-driven control
 - Sending times can be influenced by external events.
 - Worst Case: All ECUs try to send at the same time.
 - → Indeterminism

Highway

- ▶ Time-triggered control
 - Sending time is reserved beforehand and is allocated to an ECU.
 - An ECU starts sending at the same points in time (Schedule).
 - → Determinism

Ski lift

FlexRay

Event-triggered vs. time-triggered

FlexRay

Communication Cycle

- Static Segment
 - Time window for time-synchronous data transfer
 - > Bus access with TDMA (<u>Time</u> <u>Division</u> <u>Multiple</u> <u>Access</u>)
- Symbol Window (optional)
 - Optional window in which a test symbol can be transmitted in each cycle

- Dynamic Segment (optional)
 - Time window for event-driven data transfer
 - Bus access with FTDMA (<u>F</u>lexible <u>Time</u> <u>Division</u> <u>Multiple</u> <u>Access</u>)
- NIT: Network Idle Time
 - Time period for synchronization of network nodes

Automotive Networks

Bandwidth Requirements in infotainment

Why IP?

	Ethernet	MOST
Application	Home, Office, factory, industrial control	Automotive
Standards	IEEE	Proprietary
Medium	POF, Copper	POF
Topology	Ring, hybrid, Star	Ring
Speed	10mb/s - 100gb/s	150mb/s
Volume Production	Billions	Millions
Supplier	Multiple	SMSC
Silicon Cost	Low	High

Why IP?

- ▶ Bandwidth
 - ▶ Not limit for a long time (10/100/1000Mbit/s)
 - Fully Duplex
- Scalability/Flexibility
 - ▶ IP and Ethernet is separated in different network layers
 - > Multiple physical layers available
 - Many protocols
 - Real Time vs. Non Real Time Communication
- Mature Technology
 - Available since 1980
 - Many international standards available

Why IP?

- Availability of BroadR-Reach Physical Layer
 - ► Full Duplex 100Mbit/s
 - Single Twisted Pair
 - > Low cost, easy to handle
 - Unshielded
 - Physical layer available for automotive usage
 - Extended temperature range
 - Organisations
 - > http://www.opensig.org/
 - Additional information
 - > Broadcom

http://www.broadcom.com/products/Physical-Layer/BroadR-Reach-

PHYs

IP Application Area

Networking in & outside of the car

Slide: 36

and ECU via IP. Fast flash

and updates via the OBD

Ethernet Interface.

applications, other cars

and infrastructure.

IP Application Areas

High Speed Calibration

- Used for development only
- High bandwidth required
 - ▶ 100Mbit/s or 1000Mbit/s
- Low latency required
 - Function bypassing
- Standardized in ASAM MCD-1 XCP

"The Universal Measurement and

Calibration Protocol Family"

IP Application Areas

Video Camera

- Replace expensive shielded cable
- Using high bandwidth
- Physical layer
 - Broadcom BroadR-Reach, 100Mbit/s, full duplex, twisted pair
- Streaming on MAC layer level (AVB), time critical

IP Application Areas

Data Backbone

Future Communication System Landscape

Source - Bosch

Network Access

CANoe system

Interfaces to acquire digital and analog Signals.

Interfaces to acquire data traffic on the bus.

I/O Interfaces:

- National Instruments
- Keithley

- IOcab
- VT System

Vector Netzwerk Interfaces:

PCMCIA: CANcardXL

USB: CANcaseXL, VN1610, VN8900

Expresscard: CANcardXLe

PCI, PXI, PCIe: CANboardXL, VN3300

Network Access

CANoe System

Demo

- CANoe simulation based on CAN
- CANoe simulation based on CAN-FD
- CANoe simulation based in FlexRay
- CANoe simulation based on IP

Automotive Networks

Thank you for your attention.

For detailed information about Vector and our products please have a look at:

www.vector.com

Author:

Tariq Javaid

Vector GB

