DISCRETE STRUCTURES Lecture 7. Recurrences

Bui Anh Tuan

Advanced Program in Computer Science

Fall, 2018

Content

Modeling with Recurrence Relations

4□ > 4률 > 4률 > 4률 > 3률 > 9

Example 1.1

Given a number $x \in \mathbb{R}$, how to define x^n ?

Example 1.2

A sum of P_0 is deposited in the saving account with the interest rate of r % compounded annually. How much will be in the account after n years?

$$P_n = (1+r)P_{n-1}$$

Geometric progression, solution: $P_n = (1+r)^n P_0$.

4□▶ 4₫▶ 4½▶ ½ ≥ ∽9<</p>

Tower of Hanoi

How can we move the disks to the 3rd rod, one in a time, following the rule: larger disks are never placed on top of smaller ones?

◆ロト ◆個ト ◆基ト ◆基ト ■ かへで

Tower of Hanoi

https://www.mathsisfun.com/games/towerofhanoi.html

What is the minimum number of moves to win the game?

Let H_n be the minimum number of moves to complete the puzzle. Step 1: 0 moves.

Step 1: 0 moves.

Step 2: H_{n-1} moves.

Step 1: 0 moves.

Step 2: H_{n-1} moves.

Step 3: 1 move.

Step 1: 0 moves.

Step 2: H_{n-1} moves.

Step 3: 1 move.

Step 4: H_{n-1} moves.

$$H_n = 2H_{n-1} + 1$$

• $H_n = 2H_{n-1} + 1 \Leftrightarrow H_n + 1 = 2(H_{n-1} + 1)$: geometric progression.

- $H_n = 2H_{n-1} + 1 \Leftrightarrow H_n + 1 = 2(H_{n-1} + 1)$: geometric progression.
- $H_n + 1 = 2^{n-1}H_1$

- 2 $H_n + 1 = 2^{n-1}H_1 = 2^n$ (since $H_1 = 1$ obviously).
- **3** Therefore, $H_n = 2^n 1$ moves.

Example 1.3

$$H_{64} = 18,446,744,073,709,551,615$$

Suppose that it takes one second for one move, then the time spend for completing the game is:

□ ト 4 回 ト 4 直 ト 4 直 ト 2 の Q ○

- 2 $H_n + 1 = 2^{n-1}H_1 = 2^n$ (since $H_1 = 1$ obviously).
- **3** Therefore, $H_n = 2^n 1$ moves.

Example 1.3

$$H_{64} = 18,446,744,073,709,551,615$$

Suppose that it takes one second for one move, then the time spend for completing the game is: 584,942,417,355 years ≈ 600 billion years.

(□▶ ◀♬▶ ◀불▶ ◀불▶ - 불 - 쒸٩♡

- $H_n = 2H_{n-1} + 1 \Leftrightarrow H_n + 1 = 2(H_{n-1} + 1)$: geometric progression.
- 2 $H_n + 1 = 2^{n-1}H_1 = 2^n$ (since $H_1 = 1$ obviously).
- **3** Therefore, $H_n = 2^n 1$ moves.

Example 1.3

$$H_{64} = 18,446,744,073,709,551,615$$

Suppose that it takes one second for one move, then the time spend for completing the game is: 584,942,417,355 years ≈ 600 billion years.

Compare to:

- the age of the earth: 0.05 billion years
- the age of this universe: 13.8 billion years

Example 1.4 (Fibonacci)

http://setosa.io/ev/eigenvectors-and-eigenvalues/

$$F_n = F_{n-1} + F_{n-2}$$

given that $F_1 = F_2 = 1$.

Solution:
$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$$
.

(ㅁ) (@) (필) (필) (필) (필) 연)

Definition 1.5

A linear homogeneous recurrence relation of degree k with constant coefficients is a relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$

where c_1, c_2, \dots, c_k are real numbers and $c_k \neq 0$.

We try to find solution of the form r^n :

$$r^{n} = c_{1}r^{n-1} + c_{2}r^{n-2} + \dots + c_{k}r^{n-k}$$

This is equivalent to $r^k - c_1 r^{k-1} - c_2 r^{k-2} - \cdots - c_k = 0$.

This is called the characteristic equation.

◆ロト ◆個ト ◆差ト ◆差ト 差 めらで

Theorem 1.6

Consider the recurrence $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$ and its characteristic equation $r^k - c_1 r^{k-1} - c_2 r^{k-2} - \cdots - c_k = 0$.

- $\{r_1, r_2, ..., r_m\}$ are solutions of the characteristic equation;
- $\{\alpha_1, \alpha_2, ..., \alpha_m\}$ are constants.

Then $\alpha_1 r_1^n + \alpha_2 r_2^n + \cdots + \alpha_m r_m^n$ is solution of the recurrence.

ロ ト 4 個 ト 4 重 ト 4 重 ト 3 章 り Q (~)

Example 1.7

Consider the Fibonacci sequence satisfies: $F_n = F_{n-1} + F_{n-2}$, where $F_1 = F_2 = 1$.

Characteristic equation: $r^2 - r - 1 = 0$.

Example 1.7

Consider the Fibonacci sequence satisfies: $F_n = F_{n-1} + F_{n-2}$, where $F_1 = F_2 = 1$.

Characteristic equation: $r^2 - r - 1 = 0$.

This equation has 2 solutions: $r_1 = \frac{1+\sqrt{5}}{2}$ and $r_2 = \frac{1-\sqrt{5}}{2}$.

Example 1.7

Consider the Fibonacci sequence satisfies: $F_n = F_{n-1} + F_{n-2}$, where $F_1 = F_2 = 1$.

Characteristic equation: $r^2 - r - 1 = 0$.

This equation has 2 solutions: $r_1 = \frac{1+\sqrt{5}}{2}$ and $r_2 = \frac{1-\sqrt{5}}{2}$.

One solution of the recurrence $F_n = \alpha_1 r_1^n + \alpha_2 r_2^n$

Example 1.7

Consider the Fibonacci sequence satisfies: $F_n = F_{n-1} + F_{n-2}$, where $F_1 = F_2 = 1$.

Characteristic equation: $r^2 - r - 1 = 0$.

This equation has 2 solutions: $r_1 = \frac{1+\sqrt{5}}{2}$ and $r_2 = \frac{1-\sqrt{5}}{2}$.

One solution of the recurrence $F_n = \alpha_1 r_1^n + \alpha_2 r_2^n = \alpha_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + \alpha_2 \left(\frac{1-\sqrt{5}}{2}\right)^n$

Initial conditions: $F_1 = F_2 = 1$ then

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n$$

Example 1.8

What is the solution of the following recurrence

$$a_n = 6a_{n-1} - 9a_{n-2}$$

with $a_0 = 1$ and $a_1 = 6$.

□ ト 4 個 ト 4 重 ト 4 重 ト 3 里 り 9 ○ ○

Proposition 1.1

Assume r_0 is a solution of the characteristic equation with multiplicity m. Then $\alpha n^j r_0^n$ is solution of the recurrence, for all $0 \le j \le m-1$.

Proposition 1.1

Assume r_0 is a solution of the characteristic equation with multiplicity m. Then $\alpha n^j r_0^n$ is solution of the recurrence, for all $0 \le j \le m-1$.

Theorem 1.9

Consider the recurrence $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$ and its characteristic equation $r^k - c_1 a^{k-1} - c_2 a^{k-2} - \cdots - c_k = 0$.

- $\{r_1, r_2, ..., r_t\}$ are solutions with multiplicity $m_1, m_2, ..., m_t$ of the characteristic equation;
- $\{\alpha_{ij}\}$ are constants.

A solution:
$$a_{n} = (\alpha_{01} + \alpha_{11}n + \alpha_{21}n^{2} + \dots + \alpha_{m_{1}-1}n^{m_{1}-1,1})r_{1}^{n} + (\alpha_{02} + \alpha_{12}n + \alpha_{22}n^{2} + \dots + \alpha_{m_{2}-1}n^{m_{2}-1,2})r_{2}^{n} + \dots + (\alpha_{0t} + \alpha_{1t}n + \alpha_{2t}n^{2} + \dots + \alpha_{m_{t}-1}n^{m_{t}-1,t})r_{t}^{n}$$

Example 1.10

What is the solution of the following recurrence

$$a_n = 6a_{n-1} - 9a_{n-2}$$

with $a_0 = 1$ and $a_1 = 6$.

Characteristic Equation: $r^2 - 6t + 9 = 0$ has solution r=3 multiplicity 2.

Example 1.10

What is the solution of the following recurrence

$$a_n = 6a_{n-1} - 9a_{n-2}$$

with $a_0 = 1$ and $a_1 = 6$.

Characteristic Equation: $r^2 - 6t + 9 = 0$ has solution r=3 multiplicity 2.

A solution: $a_n = (\alpha_0 + \alpha_1 n)3^n$

Example 1.10

What is the solution of the following recurrence

$$a_n = 6a_{n-1} - 9a_{n-2}$$

with $a_0 = 1$ and $a_1 = 6$.

Characteristic Equation: $r^2 - 6t + 9 = 0$ has solution r=3 multiplicity 2.

A solution: $a_n = (\alpha_0 + \alpha_1 n)3^n$

With initial conditions: $a_0 = 1$ and $a_1 = 6$,

(ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ ㅌ 쒸٩♡

Example 1.10

What is the solution of the following recurrence

$$a_n = 6a_{n-1} - 9a_{n-2}$$

with $a_0 = 1$ and $a_1 = 6$.

Characteristic Equation: $r^2 - 6t + 9 = 0$ has solution r=3 multiplicity 2.

A solution: $a_n = (\alpha_0 + \alpha_1 n)3^n$

With initial conditions: $a_0 = 1$ and $a_1 = 6$,

We have $a_n = 3^n + n3^n$.

(□ ▶ ←@ ▶ ← 恵 ▶ ← 恵 → りへ@