Exploring the Wacky World of Water Optics Physics 5CL Capstone Project Presentation

Andrew Binder Fric Du Aren Martinian

University of California, Berkeley

Fall 2022

Introduction

Motivation

We saw some stuff in 5B, and we wanted to recreate it!

Objectives

- Confirm inverse behavior of lenses in media with greater refractive indices
- Confirm Brewster's angle for water
- Show index of refraction varies as function of wavelength of incident light

Theory

Lens Equation:

$$\frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i}$$

Lensmaker's Equation:

$$\frac{1}{f} = \frac{n_{\text{lens}} - n_0}{n_0} \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

(Take
$$n_{\rm air} = 1$$
, $n_{\rm water} = 1.33$, $n_{\rm glass} = 1.53$)

Radius of Curvature:

$$R pprox rac{d\sqrt{d^2 + h^2}}{h}$$

Brewster's Angle:

$$\theta_B = \arctan\left(\frac{n_{\mathrm{lens}}}{n_0}\right)$$

Sellmier:

$$n^2(\lambda) = 1.7726479 - \frac{0.0315734}{2.2535795 - \lambda^2} + \frac{0.00701841}{\lambda^2 - 0.0092513}$$
 General Form: $n^2(\lambda) = 1 + \sum \frac{B_i \lambda^2}{\lambda^2 - C_i}$

Experimental Design

Materials (main experiment):

- Diverging & Converging Lenses
- Tank w/ Water
- Screen
- Light Source (collimated projector)
- F Object

Materials (other experiments):

- Red, Green, & UV lasers
- Semicircular & Rectangular Plastic Boxes w/ Water
- Chalk & UV Fluorescent Dye
- iPhone Flashlight

Experimental Setup

Experimental Procedure

- 1. Place collimated projector on one side of liquid-filled tank
- 2. Place screen some distance away on other side
- 3. Place F object & holder between light source & tank
- 4. Fix distance from light source to converging lens & submerge/align lenses such that light hits screen
- 5. Move diverging lens between converging lens & tank edge
- 6. Record F object size & final distances from F object to both lenses and to the screen

Data Collection

Measurements:

Distance from F object to converging lens: 17.8 cm

• Size of F object: 1.55 ± 0.05 cm

• Radii of curvature:

Lens	Center	Side	Difference (± 0.02)	Length (± 0.01)
Fishbowl	0.69	0.23	0.46	5.7
Double convex	0.88	0.34	0.54	1.6

Table of Data:

Trial	F to D Lens	F to Screen	Size of F
1	23.7	85.3	6.3
2	28.0	85.3	6.0
3	31.8	85.3	5.5
4	34.8	85.3	5.1
5	38.2	85.3	5.0
6	42.9	85.3	4.5

(All values in cm)

Data Analysis

Calculated Values:

Trial	Calculated Image Distance (cm)
1	81.6
2	80.8
3	80.1
4	79.5
5	78.8
6	77.9

Values don't agree well with experimental results! (Experimental ≈ 50)

Other Attempts

3D Printed Lenses

Attempted to 3D print hollow plastic lenses

Spherical Lenses

Attempted to hot glue two lenses together to create watertight seal

Chromatic and Spherical Aberrations

Wavelength & Index of Refraction Experiment

Goal: Confirm relationship between refractive index & wavelength

Experimental Procedure (Experiment 1):

- 1. Prepare setup as shown in image (next slide)
- 2. Shine laser at some angle incident to flat stretch of semicircle
- 3. Estimate angle & adjust polarizer to minimize transmission
- 4. Fine tune angle
- **5.** Repeat procedure for red, green, & UV lasers

Note: Green & Red: use chalk dust; UV & use fluorescent dye

Results & Conclusions:

- Observed opposite trend from what was expected
- <u>Underestimated errors</u> & imprecise measurements
- Good value for refractive index (1.33), but not precise

Other Experiment Continued

Experimental Procedure (Experiment 2):

1. Shine iPhone camera light into water-filled plastic rectangular prism instead

Results & Conclusions:

- Challenging to precisely measure angle & avoid small shifts
- Correct discrepancy (0.015) despite incorrect refractive index

New Experimental Setups

Results and Conclusions

What Went Wrong

- Data was difficult to take
- Data doesn't exactly agree with theoretical results

What Went Right

- Proper behavior is confirmed
- Lenses were a good fit
- Setup did not fall apart

Future Directions

Challenges

More time could yield more accurate/precise results, but expected pattern was observed

Alternative Setups

- Glycerin: fill tank with glycerin (higher refractive index)
- Epoxy resin: cast lens shape into resin mold
- Epoxy resin take 2: Inject lens-shaped air bubbles into resin

Could've worked better since we'd have actual air bubbles

Conclusion

Main Takeaway: Physics 5B did not lie to us about the optics

Thank you!

References

Brewster's angle, November 2022.

L. W. Tilton.

Accurate representation of refractive index of distilled water as a function of wave length.

Journal of Research of the National Bureau of Standards, volume 17, November 1936.

L. Weiss, A. Tazibt, and A. Tidu.

Water density and polarizability deduced from the refractive index determined by interferometric measurements up to 250 mpa. *Journal of Chemical Physics*, 136, March 2012.

A. C. William Emery.

Basic electromagnetic concepts and applications to optical sensors. *Introduction to Satellite Remote Sensing*, 2017.