Import packages

```
import pandas as pd
import numpy as np
import scipy.stats as stats
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
In [2]: # check data directory
# Ls
```

import data into pandas dataframe

```
In [3]: medical_df = pd.read_csv("project_dataset - project_dataset.csv")
    medical_df.head(10)
```

Out[3]:	Employee	ID A	Age	BusinessTravel	MonthlyIncome	JobSatisfaction	Bonus	Department	DistanceFromHome	Education	EducationField	EnvSatisfaction	Gender	JobRole	MaritalStatus	PerformanceRating	TrainingTin
	0	1	41	Travel_Rarely	5993	4	17979	Sales	1	2	Life Sciences	2	Female	Sales Executive	Single	3	
	1	2	49	Travel_Frequently	5130	2	20520	Research & Development	8	1	Life Sciences	3	Male	Research Scientist	Married	4	
	2	4	37	Travel_Rarely	2090	3	6270	Research & Development	2	2	Other	4	Male	Laboratory Technician	Single	3	
	3	5	33 1	Travel_Frequently	2909	3	8727	Research & Development	3	4	Life Sciences	4	Female	Research Scientist	Married	3	
	4	7	27	Travel_Rarely	3468	2	10404	Research & Development	2	1	Medical	1	Male	Laboratory Technician	Married	3	
	5	8	32 1	Travel_Frequently	3068	4	9204	Research & Development	2	2	Life Sciences	4	Male	Laboratory Technician	Single	3	
	6	10	59	Travel_Rarely	2670	1	10680	Research & Development	3	3	Medical	3	Female	Laboratory Technician	Married	4	
	7	11	30	Travel_Rarely	2693	3	10772	Research & Development	24	1	Life Sciences	4	Male	Laboratory Technician	Divorced	4	
	8	12	38	Travel_Frequently	9526	3	38104	Research & Development	23	3	Life Sciences	4	Male	Manufacturing Director	Single	4	
	9	13	36	Travel_Rarely	5237	3	15711	Research & Development	27	3	Medical	3	Male	Healthcare Representative	Married	3	

```
In [4]: # make the EmployeeID as the index column
medical_df = medical_df.set_index('EmployeeID')
medical_df
```

Out[4]:		Age	BusinessTravel	MonthlyIncome	JobSatisfaction	Bonus	Department	DistanceFromHome	Education	EducationField	EnvSatisfaction	Gender	JobRole	MaritalStatus	PerformanceRating	TrainingTimesl
	EmployeeID															
	1	41	Travel_Rarely	5993	4	17979	Sales	1	2	Life Sciences	2	Female	Sales Executive	Single	3	
	2	49	Travel_Frequently	5130	2	20520	Research & Development	8	1	Life Sciences	3	Male	Research Scientist	Married	4	
	4	37	Travel_Rarely	2090	3	6270	Research & Development	2	2	Other	4	Male	Laboratory Technician	Single	3	
	5	33	Travel_Frequently	2909	3	8727	Research & Development	3	4	Life Sciences	4	Female	Research Scientist	Married	3	
	7	27	Travel_Rarely	3468	2	10404	Research & Development	2	1	Medical	1	Male	Laboratory Technician	Married	3	

	2061	36	Travel_Frequently	2571	4	7713	Research & Development	23	2	Medical	3	Male	Laboratory Technician	Married	3	
	2062	39	Travel_Rarely	9991	1	29973	Research & Development	6	1	Medical	4	Male	Healthcare Representative	Married	3	
	2064	27	Travel_Rarely	6142	2	24568	Research & Development	4	3	Life Sciences	2	Male	Manufacturing Director	Married	4	
	2065	49	Travel_Frequently	5390		16170	Sales	2	3	Medical	4	Male	Sales Executive	Married	3	
	2068	34	Travel_Rarely	4404	3	13212	Research & Development	8	3	Medical	2	Male	Laboratory Technician	Married	3	
	1470 rows × 1	19 co	lumns													

Data Preparation

Perform Exploration Data Analysis

- check the data shape
- Check for Null Data
- Check for Duplicates
- Check the data summary statistics
- Check for correlations
- Check for multicolinearity
- Rearranging the columns

```
In [5]: # check the data shape
medical_df.shape
```

Out[5]: (1470, 19)

In [6]: # check for null data
medical_df.isnull().sum()

```
Out[6]:
        BusinessTravel
                                  0
        MonthlyIncome
                                  0
        JobSatisfaction
                                  0
        Bonus
        Department
        DistanceFromHome
        Education
        EducationField
        EnvSatisfaction
                                  0
        Gender
        JobRole
        MaritalStatus
        PerformanceRating
        TrainingTimesLastYear
        YearsAtCompany
                                  0
        YearsSinceLastPromotion
                                  0
        OverTime
                                  0
        Attrition
                                  0
        dtype: int64
```

In [7]: #check for duplicates

medical_df[medical_df.duplicated(keep=False)]

Out[7]: Age BusinessTravel MonthlyIncome JobSatisfaction Bonus Department DistanceFromHome Education EducationField EnvSatisfaction Gender JobRole MaritalStatus PerformanceRating TrainingTimesLastYear

EmployeeID

In [8]: #check the data summary statistics
medical_df.describe(include='all')

Out[8]:		Age	BusinessTravel	MonthlyIncome	JobSatisfaction	Bonus	Department	DistanceFromHome	Education	EducationField	EnvSatisfaction	Gender	JobRole	MaritalStatus	PerformanceRating	TrainingTi
	count	1470.000000	1470	1470.000000	1470.000000	1470.000000	1470	1470.000000	1470.000000	1470	1470.000000	1470	1470	1470	1470.000000	
	unique	NaN	3	NaN	NaN	NaN	3	NaN	NaN	6	NaN	2	9	3	NaN	
	top	NaN	Travel_Rarely	NaN	NaN	NaN	Research & Development	NaN	NaN	Life Sciences	NaN	Male	Sales Executive	Married	NaN	
	freq	NaN	1043	NaN	NaN	NaN	961	NaN	NaN	606	NaN	882	326	673	NaN	
	mean	36.923810	NaN	6502.931293	2.728571	20479.501361	NaN	9.192517	2.912925	NaN	2.721769	NaN	NaN	NaN	3.153741	
	std	9.135373	NaN	4707.956783	1.102846	15066.272964	NaN	8.106864	1.024165	NaN	1.093082	NaN	NaN	NaN	0.360824	
	min	18.000000	NaN	1009.000000	1.000000	3027.000000	NaN	1.000000	1.000000	NaN	1.000000	NaN	NaN	NaN	3.000000	
	25%	30.000000	NaN	2911.000000	2.000000	9333.750000	NaN	2.000000	2.000000	NaN	2.000000	NaN	NaN	NaN	3.000000	
	50%	36.000000	NaN	4919.000000	3.000000	15484.500000	NaN	7.000000	3.000000	NaN	3.000000	NaN	NaN	NaN	3.000000	
	75%	43.000000	NaN	8379.000000	4.000000	26103.750000	NaN	14.000000	4.000000	NaN	4.000000	NaN	NaN	NaN	3.000000	
	max	60.000000	NaN	19999.000000	4.000000	79892.000000	NaN	29.000000	5.000000	NaN	4.000000	NaN	NaN	NaN	4.000000	

```
In [9]: #use heatmap function to understand the data summary better
# use seaborn to visualize the correlation with heatmap
plt.figure(figsize=(8,8))
sns.heatmap(medical_df.corr().round(2),vmin=-1, vmax=1, annot=True,linewidth=.5);
```



```
In [10]: medical_df.columns
         Index(['Age', 'BusinessTravel', 'MonthlyIncome', 'JobSatisfaction', 'Bonus',
                'Department', 'DistanceFromHome', 'Education', 'EducationField',
                'EnvSatisfaction', 'Gender', 'JobRole', 'MaritalStatus',
                'PerformanceRating', 'TrainingTimesLastYear', 'YearsAtCompany',
                'YearsSinceLastPromotion', 'OverTime', 'Attrition'],
               dtype='object')
In [11]: # check for multicolinearity
          from statsmodels.stats.outliers_influence import variance_inflation_factor
         copy_medical = medical_df.copy()
          copy_medical['Attrition'] = copy_medical['Attrition'].map({'Yes':1,'No':0})
          copy_medical['OverTime'] = copy_medical['OverTime'].map({'Yes':1,'No':0})
          copy_medical['MarritalStatus'] = copy_medical['MaritalStatus'].map({'Married':1,'Divorced':2,'Single':3})
          copy_medical['BusinessTravel'] = copy_medical['BusinessTravel'].map({'Travel_Rarely':1, 'Travel_Frequently':2, 'Non-Travel':3})
         copy_medical['Gender'] = copy_medical['Gender'].map({'Female':1, 'Male':0})
         # select certain input variables
         copy_medical = copy_medical[['Age', 'BusinessTravel', 'MonthlyIncome', 'JobSatisfaction', 'Bonus',
                 'DistanceFromHome',
                 'EnvSatisfaction', 'Gender', 'MaritalStatus',
                 'PerformanceRating', 'TrainingTimesLastYear', 'YearsAtCompany',
                 'YearsSinceLastPromotion', 'OverTime', 'Attrition']]
         copy_medical
```

Out[11]:		Age	BusinessTravel	MonthlyIncome	JobSatisfaction	Bonus	DistanceFromHome	EnvSatisfaction	Gender	MaritalStatus	PerformanceRating	TrainingTimesLastYear	YearsAtCompany	YearsSinceLastPromotion	Over
	EmployeeID														
	1	41	1	5993	4	17979	1	2	1	3	3	0	6	0	
	2	49	2	5130	2	20520	8	3	0	1	4	3	10	1	
	4	37	1	2090	3	6270	2	4	0	3	3	3	0	0	
	5	33	2	2909	3	8727	3	4	1	1	3	3	8	3	
	7	27	1	3468	2	10404	2	1	0	1	3	3	2	2	
									•••						
	2061	36	2	2571	4	7713	23	3	0	1	3	3	5	0	
	2062	39	1	9991	1	29973	6	4	0	1	3	5	7	1	
	2064	27	1	6142	2	24568	4	2	0	1	4	0	6	0	
	2065	49	2	5390	2	16170	2	4	0	1	3	3	9	0	
	2068	34	1	4404	3	13212	8	2	0	1	3	3	4	1	

1470 rows × 15 columns

In [12]: # VIF Dataframe
 vif_data = pd.DataFrame()
 vif_data['feature'] = copy_medical.columns
 vif_data

Out[12]:		feature
	0	Age
	1	BusinessTravel
	2	MonthlyIncome
	3	JobSatisfaction
	4	Bonus
	5	DistanceFromHome
	6	EnvSatisfaction
	7	Gender
	8	MaritalStatus
	9	PerformanceRating
	10	TrainingTimesLastYear
	11	YearsAtCompany
	12	YearsSinceLastPromotion
	13	OverTime
	14	Attrition

```
In [13]: #calculating VIF for each feature
         vif data['VIF'] = [variance inflation factor(copy medical.values,i) for i in range(len(copy medical.columns))]
         print(vif data)
                            feature
                                           VIF
         0
                               Age 22.295740
        1
                     BusinessTravel 5.312998
         2
                     MonthlyIncome 111.293878
                    JobSatisfaction 7.053365
                              Bonus 106.448691
                   DistanceFromHome 2.302447
                    EnvSatisfaction 7.161742
                             Gender 1.678806
                      MaritalStatus 5.674453
         9
                  PerformanceRating 40.294776
         10
              TrainingTimesLastYear 5.669428
        11
                     YearsAtCompany 4.540620
        12
            YearsSinceLastPromotion 2.392605
         13
                           OverTime 1.526281
         14
                          Attrition
                                      1.409794
In [14]: # copy_medical.columns
In [15]: # copy medical = copy medical[['Age', 'DistanceFromHome', 'MonthlyIncome', 'JobSatisfaction', 'EnvSatisfaction', 'YearsAtCompany', 'Gender', 'OverTime', 'Attrition']]
In [16]: # copy_medical = pd.get_dummies(copy_medical)
         # copy medical
In [17]: # plt.figure(figsize=(8,8))
         # sns.heatmap(copy medical.corr().round(2),vmin=-1, vmax=1, annot=True);
```

Check for variables that affect the attrition rate

Univariate Analysis

```
In [18]: # use value count function to find the number of counts of
# attributes within the class
# and use normalize to find the proportion of it
attrition = medical_df['Attrition'].value_counts(normalize=True)*100
attrition

Out[18]: No 83.877551
Yes 16.122449
Name: Attrition, dtype: float64

In [19]: attrition.plot(kind='pie',autopct='%.1f%%')
plt.show()
```



```
In [20]: # use graphical to understand the data better
medical_raw_count = medical_df['Attrition'].value_counts()
medical_raw_count.plot(kind='bar')
plt.xlabel('Status')
plt.ylabel('Number of Employees')
plt.title('Employees Attrition from InnovateIQ Corporation')
plt.show()
```


Finding For Attrition:

The data for attrition column shows about 84% of their client are still working in the company. while about 16% has attrited from the medical company. However the class proportion is unbalanced.

Finding For Gender:

The data for gender column shows that 60% of their employees are male and 40% are female regardless their attrition status

```
In [23]: years_at_com = medical_df['YearsAtCompany'].describe()
         years_at_com
         count
                  1470.000000
Out[23]:
                     7.008163
         std
                     6.126525
                     0.000000
         min
         25%
                     3.000000
         50%
                     5.000000
         75%
                     9.000000
         max
                    40.000000
         Name: YearsAtCompany, dtype: float64
In [24]: medical_df['YearsAtCompany'].plot(kind='hist',bins=40)
         plt.title('Working Years Distribution in Organization')
         # check for the skewness and kurtosis
         print("Skewness: {:0.3f}".format(medical_df['YearsAtCompany'].skew()))
         print("Kurtosis: {:0.3f}".format(medical_df['YearsAtCompany'].kurt()))
         Skewness: 1.765
         Kurtosis: 3.936
                     Working Years Distribution in Organization
            200
           175
            150
         ک <sup>125</sup>
         100
75
             75
             50
             25
                      5
                           10
                                15
                                      20
                                           25
                                                 30
In [25]: sns.boxplot(x='YearsAtCompany',data=medical_df)
          plt.show()
```



```
In [26]: medical_df['Age'].describe()
```

```
1470.000000
Out[26]:
                    36.923810
         mean
                    9.135373
         std
         min
                    18.000000
         25%
                    30.000000
         50%
                    36.000000
         75%
                    43.000000
                    60.000000
         Name: Age, dtype: float64
```

```
In [27]: medical_df['Age'].plot(kind='hist',bins=40)
    plt.xlabel('Age')
    plt.ylabel('Number of Employees')
    plt.title('Age Distribution in Organization')
    plt.show()
```



```
In [28]: sns.boxplot(x='Age',data=medical_df)
plt.show()
```



```
medical_df['MonthlyIncome'].plot(kind='hist',bins=20)
```

<AxesSubplot:ylabel='Frequency'> Out[29]:

In [30]: sns.boxplot(x='MonthlyIncome',data=medical_df) plt.show()


```
In [31]: medical_df['PerformanceRating'].plot(kind='hist')
Out[31]: <AxesSubplot:ylabel='Frequency'>
```

```
1200 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 10
```

```
In [32]: envi = medical_df['EnvSatisfaction'].plot(kind='hist')
envi
```

Out[32]: <AxesSubplot:ylabel='Frequency'>


```
In [33]: envi_prop = medical_df['EnvSatisfaction'].value_counts(normalize=True)*100
envi_prop
```

Out[33]: 3 30.816327 4 30.340136

2 19.523810 1 19.319728

Name: EnvSatisfaction, dtype: float64

In [34]: envi_prop.plot(kind='pie',autopct='%.1f%%')

Out[34]: <AxesSubplot:ylabel='EnvSatisfaction'>


```
In [35]: promote = medical_df['YearsSinceLastPromotion'].plot(kind='hist')
    promote
```

Out[35]: <AxesSubplot:ylabel='Frequency'>


```
In [36]: sns.boxplot(x='YearsSinceLastPromotion',data=medical_df)
    plt.show()
```


Out[37]: No 71.70068 Yes 28.29932

Name: OverTime, dtype: float64

```
In [38]: over_prop.plot(kind='pie',autopct='%.1f%%')
plt.title('Employees Worked Overtime')
plt.show()
```

Employees Worked Overtime

Multivariate Analysis

Describe the Attrition based on Gender. Compute the attrition rate based on Gender


```
In [41]: # test with CHI SQUARE test to check if proportion different for female and male by Attrition status has differently significant
    chi,p,dof,exp = stats.chi2_contingency(gender)
    print('the chi square test is {}'.format(round(p,3)))
    # p > 0.05
#The ratios in our data are the same. Gender isn't a strong determinant of an employee beeing attrited or not
```

the chi square test is 0.291

Describe the Attrition based on YearsAtCompany. Compute the attrition rate based on YearsAtCompany

```
In [42]: mean_years = round(medical_df.groupby('Attrition',as_index=False)['YearsAtCompany'].mean())
    mean_years = mean_years.rename(columns={'YearsAtCompany': 'Mean Years working at the Company'})
    mean_years
```

Out[42]: Attrition Mean Years working at the Company 0 No 7.0 1 Yes 5.0

```
In [43]: sns.boxplot(x = 'Attrition', y = 'YearsAtCompany', data = medical_df)
plt.title('Average Employees working in the Company')
plt.show()
```



```
In [44]: fig = plt.figure(figsize=(18,8))
    sns.countplot(x='YearsAtCompany',hue = 'Attrition',data = medical_df)
    plt.ylabel('Number of Employees')
    plt.title('Number of Employees working years in the Company')
    plt.show()
```


LeveneResult(statistic=2.5049476586425445, pvalue=0.11370465713766563)
Ttest_indResult(statistic=-5.1963086670254235, pvalue=2.3188716103863033e-07)

Describe the Attrition based on Income. Compute the attrition rate based on Income

```
In [46]: mean_income = round(medical_df.groupby('Attrition',as_index=False)['MonthlyIncome'].mean(),2)
mean_income = mean_income.rename(columns={'MonthlyIncome': 'Mean Monthly Income'})
mean_income
```

```
        Out[46]:
        Attrition
        Mean Monthly Income

        0
        No
        6832.74

        1
        Yes
        4787.09
```

```
In [47]: sns.boxplot(x ='Attrition', y ='MonthlyIncome', data = medical_df)
plt.show()
```



```
In [48]:
    rate_att=medical_df.groupby(['MonthlyIncome','Attrition']).apply(lambda x:x['MonthlyIncome'].count()).reset_index(name='Counts')
    rate_att['MonthlyIncome']=round(rate_att['MonthlyIncome'],-3)
    rate_att=rate_att.groupby(['MonthlyIncome','Attrition']).apply(lambda x:x['MonthlyIncome'].count()).reset_index(name='Counts')
    fig=px.line(rate_att,x='MonthlyIncome',y='Counts',color='Attrition',title='Monthly Income counts of People in Organization')
    fig.show()
```

Monthly Income counts of People in Organization

LeveneResult(statistic=26.31302358992364, pvalue=3.29070575711061e-07)
Ttest_indResult(statistic=-7.482621586644742, pvalue=4.433588628286071e-13)

Describe the Attrition based on Environment. Compute the attrition rate based on Environment

```
Out[51]: EnvSatisfaction 1 2 3 4
                  No 212 244 391 386
                  Yes 72 43 62 60
In [52]: envi = pd.crosstab(index=medical_df['EnvSatisfaction'],columns=medical_df['Attrition'])
         ax = envi.plot(kind = 'bar')
         ax.bar_label(ax.containers[0], label_type='edge')
         ax.bar_label(ax.containers[1], label_type='edge')
         plt.show()
         400
              Attrition
              No
         350
         300
         250
         200
         150
         100
                                                     60
          50
                              EnvSatisfaction
In [53]: chi,p,dof,exp = stats.chi2_contingency(envi)
         print('the chi square test is {}'.format(p))
         # 5.1234689062894205e-05 < 0.05
         # the satisfaction level from level 1-4, the chances of people leaving the company is slightly decrease.
         # There is a change the company to improve and do better to retain the employees
         the chi square test is 5.1234689062894205e-05
         Describe the Attrition based on Job Satisfaction. Compute the attrition rate based on Job Satisfaction
In [54]: round(pd.crosstab(index=medical_df['Attrition'],columns=medical_df['JobSatisfaction'],normalize='index'),2)
Out[54]: JobSatisfaction
                      1 2 3 4
              Attrition
                   No 0.18 0.19 0.30 0.33
                  Yes 0.28 0.19 0.31 0.22
In [55]: satisfaction_raw = round(pd.crosstab(index=medical_df['Attrition'],columns=medical_df['JobSatisfaction']),2)
         satisfaction_raw
```

```
        Out[55]:
        JobSatisfaction
        1
        2
        3
        4

        Attrition
        No
        223
        234
        369
        407

        Yes
        66
        46
        73
        52
```

```
In [56]: ax = satisfaction_raw.plot(kind = 'bar')

# annotate
ax.bar_label(ax.containers[0], label_type='edge')
ax.bar_label(ax.containers[1], label_type='edge')
ax.bar_label(ax.containers[2], label_type='edge')
ax.bar_label(ax.containers[3], label_type='edge')
plt.title('Attrition based on Job Satisfaction')
plt.show()
```



```
In [57]: chi,p,dof,exp = stats.chi2_contingency(satisfaction_raw)
print('the chi square test is {}'.format(p))

# 0.0005563004510387556 < 0.05
# the job satisfaction level from level 1-4, affect the attrition rate

# the chances of people leaving the company is slightly decrease.
# There is a change the company to improve and do better to retain the employees</pre>
```

the chi square test is 0.0005563004510387556

Describe the Attrition based on Age. Compute the attrition rate based on Age

```
In [58]: mean_age = round(medical_df.groupby('Attrition',as_index=False)['Age'].mean(),1)
    mean_age = mean_age.rename(columns={'Age': 'Mean Age'})
    mean_age
```

 Out[58]:
 Attrition
 Mean Age

 0
 No
 37.6

 1
 Yes
 33.6

```
In [60]: fig,ax = plt.subplots(figsize=(15,7))
    medical_df.groupby(['Age','Attrition']).count()['Gender'].unstack().plot(ax=ax)
    ax.set_title('Attrition based on Age in the Company')
    # ax.grid()
    plt.xticks(medical_df['Age'])
    plt.ylabel('Number of Employees')
    plt.show()
    # the attrition is maximum between the age groups 28-32.
    # The attrition rate keeps on falling with increasing age,
    # as people look after stability in their jobs at these point of times
```



```
In [61]: sns.boxplot(x ='Attrition', y ='Age', data = medical_df)
plt.show()
```


LeveneResult(statistic=1.1583170677572885, pvalue=0.2819916793250208)
Ttest_indResult(statistic=-6.1786638353072165, pvalue=8.356308021103649e-10)

Describe the Attrition based on BusinessTravel. Compute the attrition rate based on BusinessTravel

```
In [63]: round(pd.crosstab(index=medical df['Attrition'],columns=medical df['BusinessTravel'],normalize='index'),2)
Out[63]: BusinessTravel Non-Travel Travel Frequently Travel Rarely
              Attrition
                                            0.17
                                                        0.72
                             0.11
                   Yes
                             0.05
                                            0.29
                                                        0.66
In [64]: | travel_raw = round(pd.crosstab(index=medical_df['Attrition'],columns=medical_df['BusinessTravel']),2)
          travel_raw
Out[64]: BusinessTravel Non-Travel Travel_Frequently Travel_Rarely
              Attrition
                             138
                                            208
                                                        887
                   No
                   Yes
                              12
                                                         156
In [65]: ax = travel raw.plot(kind = 'bar')
          # annotate
          ax.bar_label(ax.containers[0], label_type='edge')
          ax.bar_label(ax.containers[1], label_type='edge')
          ax.bar_label(ax.containers[2], label_type='edge')
         plt.show()
                                              BusinessTravel
                                            Non-Travel
          800
                                             Travel Frequently
                                             Travel Rarely
          600
          400
          200
                        ŝ
                                  Attrition
In [66]: chi,p,dof,exp = stats.chi2_contingency(travel_raw)
          print('the chi square test is {}'.format(p))
         # p < 0.05
         # BusinessTravel is significantly affect the attrition rate
         the chi square test is 5.608614476449931e-06
         Describe the Attrition based on Overtime. Compute the attrition rate based on Overtime
In [67]: round(pd.crosstab(index=medical_df['Attrition'],columns=medical_df['OverTime'],normalize='index'),2)
```

```
Out[67]: OverTime No Yes
          Attrition
               No 0.77 0.23
               Yes 0.46 0.54
In [68]: over_raw = round(pd.crosstab(index=medical_df['Attrition'],columns=medical_df['OverTime']),2)
          over_raw
Out[68]: OverTime No Yes
          Attrition
               No 944 289
              Yes 110 127
In [69]: ax = over_raw.plot(kind = 'bar')
          # annotate
          ax.bar_label(ax.containers[0], label_type='edge')
          ax.bar_label(ax.containers[1], label_type='edge')
         plt.show()
                                                    OverTime
                                                    No.
          800
                                                    Yes
          600
          400
          200
                                                 127
                                            110
                        ŝ
                                  Attrition
In [70]: chi,p,dof,exp = stats.chi2_contingency(over_raw)
         print('the chi square test is {}'.format(p))
         # p < 0.05
         # OverTime is significantly affect the attrition rate
         the chi square test is 8.15842372153832e-21
In [71]: # marry_raw = round(pd.crosstab(index=medical_df['Attrition'],columns=medical_df['MaritalStatus']),2)
         # marry_raw
In [72]: # chi,p,dof,exp = stats.chi2_contingency(marry_raw)
          # p
In [73]: # rearranging the columns
         medical_df.columns
```

```
Index(['Age', 'BusinessTravel', 'MonthlyIncome', 'JobSatisfaction', 'Bonus',
               'Department', 'DistanceFromHome', 'Education', 'EducationField',
               'EnvSatisfaction', 'Gender', 'JobRole', 'MaritalStatus',
               'PerformanceRating', 'TrainingTimesLastYear', 'YearsAtCompany',
               'YearsSinceLastPromotion', 'OverTime', 'Attrition'],
              dtype='object')
In [74]: # medical df = medical df[['Aae', 'BusinessTravel', 'MonthlyIncome', 'JobSatisfaction', 'Bonus',
                  'DistanceFromHome', 'EnvSatisfaction', 'YearsAtCompany',
                 'YearsSinceLastPromotion', 'OverTime', 'Attrition']]
                                     0.86 Yes
         #logistic - overall 0.86 No
                                                      0.78
         # naive - overall 0.82 No 0.87 Yes
                                                      9.41
         # medical df = medical df[['Age', 'BusinessTravel', 'MonthlyIncome', 'JobSatisfaction', 'Bonus',
                 'Department', 'DistanceFromHome',
                 'EnvSatisfaction', 'JobRole',
                 'PerformanceRating', 'TrainingTimesLastYear', 'YearsAtCompany',
                 'YearsSinceLastPromotion', 'OverTime', 'Attrition']]
         #logistic - overall 0.86 No 0.86 Yes
         # medical_df = medical_df[['Age', 'BusinessTravel', 'MonthlyIncome', 'JobSatisfaction', 'DistanceFromHome',
                 'EnvSatisfaction','YearsSinceLastPromotion', 'OverTime', 'Attrition']
         #Loaistic - overall 0.85 No 0.85 Yes 0.83
         #naive - overall 0.84 No 0.86 Yes 0.47
         # medical_df = medical_df[['Age', 'MonthlyIncome',
                 'EnvSatisfaction','YearsSinceLastPromotion', 'OverTime', 'Attrition']]
         #Logistic - overall 0.85 No 0.85
                                                Yes 0.75
         #naive - overall 0.85 No 0.86 Yes 0.57
         # medical df = medical df[['JobSatisfaction', 'DistanceFromHome', 'MaritalStatus', 'OverTime', 'BusinessTravel',
                                  'PerformanceRating', 'TrainingTimesLastYear', 'Attrition']]
         #logistic - overall 0.84 No 0.85
                                                Yes 0.57
         #naive - overall 0.80 No 0.85 Yes 0.23
         # 'Age', 'BusinessTravel', 'MonthlyIncome', 'JobSatisfaction', 'Bonus',
                 'DistanceFromHome', 'EnvSatisfaction', 'Gender', 'MaritalStatus',
                  'PerformanceRating', 'TrainingTimesLastYear', 'YearsAtCompany',
                 'YearsSinceLastPromotion', 'OverTime', 'Attrition'
         # medical_df = medical_df[['JobSatisfaction','Age','OverTime', 'YearsAtCompany',
                                  'EnvSatisfaction','TrainingTimesLastYear','Attrition']]
         #logistic - overall 0.85 No 0.85 Yes 0.62 f1-score no 0.91 yes 0.19
         #naive - overall 0.85 No 0.85 Yes 0.62 f1-score no 0.92 yes 0.23
         # medical_df = medical_df[['BusinessTravel', 'JobSatisfaction',
                 'DistanceFromHome', 'EnvSatisfaction', 'Gender', 'MaritalStatus',
                 'TrainingTimesLastYear', 'YearsAtCompany',
                 'YearsSinceLastPromotion', 'OverTime', 'Attrition']]
         #logistic - overall 0.85 No 0.86
                                                 Yes 0.67 f1-score no 0.92 yes 0.30
         #naive - overall 0.80 No 0.86 Yes 0.33 f1-score no 0.88 yes 0.27
         medical df = medical df[['Age', 'BusinessTravel', 'JobSatisfaction',
                'DistanceFromHome', 'EnvSatisfaction', 'Gender', 'MaritalStatus',
               'TrainingTimesLastYear', 'YearsAtCompany',
```

```
'YearsSinceLastPromotion', 'OverTime', 'Attrition']
#logistic - overall 0.87 No 0.87 Yes 0.78 f1-score no 0.9 yes 0.38
#naive - overall 0.82 No 0.87 Yes 0.40 f1-score no 0.9 yes 0.32
# medical_df = medical_df[['MonthlyIncome', 'BusinessTravel', 'JobSatisfaction',
        'DistanceFromHome', 'EnvSatisfaction', 'Gender', 'MaritalStatus',
        'TrainingTimesLastYear', 'YearsAtCompany',
        'YearsSinceLastPromotion', 'OverTime', 'Attrition']]
#logistic - overall 0.86 No 0.87
                                     Yes 0.75 f1-score no 0.92 yes 0.33
#naive - overall 0.81 No 0.87 Yes 0.39 f1-score no 0.89 yes 0.33
# medical_df = medical_df[['BusinessTravel', 'JobSatisfaction',
        'DistanceFromHome', 'EnvSatisfaction', 'Gender', 'MaritalStatus',
        'TrainingTimesLastYear', 'YearsAtCompany',
        'YearsSinceLastPromotion', 'OverTime', 'Attrition']]
# medical df = medical df[['Age', 'BusinessTravel', 'JobSatisfaction',
        'Department', 'DistanceFromHome', 'Education', 'EducationField',
        'EnvSatisfaction', 'Gender', 'JobRole', 'MaritalStatus',
        'TrainingTimesLastYear', 'YearsAtCompany',
        'YearsSinceLastPromotion', 'OverTime', 'Attrition']]
medical_df
```

Out[74]:

]:		Age	BusinessTravel	JobSatisfaction	DistanceFromHome	EnvSatisfaction	Gender	MaritalStatus	TrainingTimesLastYear	YearsAtCompany	${\it Years Since Last Promotion}$	OverTime	Attrition
	EmployeeID												
	1	41	Travel_Rarely	4	1	2	Female	Single	0	6	0	Yes	Yes
	2	49	Travel_Frequently	2	8	3	Male	Married	3	10	1	No	No
	4	37	Travel_Rarely	3	2	4	Male	Single	3	0	0	Yes	Yes
	5	33	Travel_Frequently	3	3	4	Female	Married	3	8	3	Yes	No
	7	27	Travel_Rarely	2	2	1	Male	Married	3	2	2	No	No
	2061	36	Travel_Frequently	4	23	3	Male	Married	3	5	0	No	No
	2062	39	Travel_Rarely	1	6	4	Male	Married	5	7	1	No	No
	2064	27	Travel_Rarely	2	4	2	Male	Married	0	6	0	Yes	No
	2065	49	Travel_Frequently	2	2	4	Male	Married	3	9	0	No	No
	2068	34	Travel_Rarely	3	8	2	Male	Married	3	4	1	No	No

1470 rows × 12 columns

Assigning X and y variable

```
In [75]: # Assign X and y values for the partitioning
         X = medical df.iloc[:,:-1]
         y = medical_df.iloc[:,-1]
In [76]: X
```

Out[76]:		Age	BusinessTravel	JobSatisfaction	DistanceFromHome	EnvSatisfaction	Gender	MaritalStatus	${\bf Training Times Last Year}$	YearsAtCompany	YearsSinceLastPromotion	OverTime
	EmployeeID											
	1	41	Travel_Rarely	4	1	2	Female	Single	0	6	0	Yes
	2	49	Travel_Frequently	2	8	3	Male	Married	3	10	1	No
	4	37	Travel_Rarely	3	2	4	Male	Single	3	0	0	Yes
	5	33	Travel_Frequently	3	3	4	Female	Married	3	8	3	Yes
	7	27	Travel_Rarely	2	2	1	Male	Married	3	2	2	No
	2061	36	Travel_Frequently	4	23	3	Male	Married	3	5	0	No
	2062	39	Travel_Rarely	1	6	4	Male	Married	5	7	1	No
	2064	27	Travel_Rarely	2	4	2	Male	Married	0	6	0	Yes
	2065	49	Travel_Frequently	2	2	4	Male	Married	3	9	0	No
	2068	34	Travel Rarely	3	8	2	Male	Married	3	4	1	No

1470 rows × 11 columns

Handling Categorical Data

```
In [78]: # Only transform the input variable
    X = pd.get_dummies(X,drop_first=True)
    X.head(5)
```

Out[78]:		Age	JobSatisfaction	DistanceFromHome	EnvSatisfaction	${\bf Training Times Last Year}$	YearsAtCompany	YearsSinceLastPromotion	$Business Travel_Travel_Frequently$	BusinessTravel_Travel_Rarely	Gender_Male	MaritalStatus _.
	EmployeeID											
	1	41	4	1	2	0	6	0	0	1	0	
	2	49	2	8	3	3	10	1	1	0	1	
	4	37	3	2	4	3	0	0	0	1	1	
	5	33	3	3	4	3	8	3	1	0	0	
	7	27	2	2	1	3	2	2	0	1	1	
4		-										•

Partitioning

In [80]: X_train

Out[80]:		Age	JobSatisfaction	DistanceFromHome	EnvSatisfaction	${\bf Training Times Last Year}$	YearsAtCompany	${\it Years Since Last Promotion}$	$Business Travel_Travel_Frequently$	$Business Travel_Travel_Rarely$	Gender_Male	MaritalStatus _.
	EmployeeID											
	1523	44	1	28	4	1	20	14	0	1	1	
	1212	40	2	2	2	2	0	0	1	0	1	
	110	34	2	1	1	2	5	1	0	1	1	
	615	40	1	28	3	2	1	0	0	0	1	
	1161	37	4	25	3	2	6	1	0	1	0	
	***						•••					
	1061	50	3	2	2	2	8	7	0	1	1	
	527	25	4	4	2	3	5	1	0	1	0	
	602	39	3	8	3	3	8	0	1	0	0	
	807	40	2	2	3	2	8	3	1	0	0	
	689	37	3	3	3	2	10	7	0	1	1	

1029 rows × 13 columns

In [81]: print(len(X_train),len(X_test))
1029 441

In [82]: X_train

2/23, 4:05 P	M					Predic	ting Employee Attrition				
Out[82]:		Age JobSatisfaction	DistanceFromHome	EnvSatisfaction	TrainingTimesLastYear	YearsAtCompany	YearsSinceLastPromotion	BusinessTravel_Travel_Frequently	BusinessTravel_Travel_Rarely	Gender_Male	MaritalStatus _.
	EmployeeID										
	1523	44 1	28	4	1	20	14	0	1	1	
	1212	40 2	2	2	2	0	0	1	0	1	
	110	34 2	1	1	2	5	1	0	1	1	
	615	40 1	28	3	2	1	0	0	0	1	
	1161	37 4	25	3	2	6	1	0	1	0	
	1061	50 3	2	2	2	8	7	0	1	1	
	527	25 4	4	2	3	5	1	0	1	0	
	602	39 3	8	3	3	8	0	1	0	0	
	807	40 2	2	3	2	8	3	1	0	0	
	689	37 3	3	3	2	10	7	0	1	1	
	1029 rows ×	13 columns									
4											•
In [83]:	y_train										
Out[83]:	EmployeeID 1523 No										

```
1212
               No
        110
                No
        615
               No
        1161
               No
        1061
               No
        527
        602
                No
        807
                No
        689
        Name: Attrition, Length: 1029, dtype: object
        Scaling the Data or perform Normalization
In [84]: #Scaling the data
         from sklearn.preprocessing import StandardScaler # Zscore normalization
```

In [85]: **X_train**

Train the Model using Logistic Regression

```
In [87]: #Train Logistic Regression Algorithm

#Import LogisticRegression() function
from sklearn.linear_model import LogisticRegression

#Create a Logistic Regression classifier
# random state is 0 because to maintain the data generated value
medical_model = LogisticRegression(random_state=0)

#Train the Logistic Regression algorithm using train set
medical_model.fit(X_train,y_train)

Out[87]: 
LogisticRegression
```

Train the Model using Naive Beyes Thereom

LogisticRegression(random_state=0)

```
In [88]: # # #Train Naive Beyes Thereom Algorithm
# from sklearn.naive_bayes import GaussianNB
# medical_model = GaussianNB()
# medical_model.fit(X_train,y_train)
```

Apply the model to test set

```
In [89]: # Apply the model with the test set
#Feature Scaling the Test Set
from sklearn.preprocessing import StandardScaler
X_test = scaler.transform(X_test)
X_test
```

```
array([[-0.9654471 , 1.17388475, -0.51359262, ..., -0.91335896,
                 1.46848279, -0.63245553],
               [ 0.5435288 , -1.54871647, 0.10336606, ..., 1.09485978,
                -0.68097495, -0.63245553],
                [2.48364067, 1.17388475, -0.26680915, ..., -0.91335896,
                -0.68097495, 1.58113883]
                [-1.39658307, 0.26635101, 0.10336606, ..., -0.91335896,
                -0.68097495, 1.58113883],
                [ 0.5435288 , 1.17388475 , 1.70745862 , ..., -0.91335896 ,
                 1.46848279, -0.632455531,
                [-0.8576631, -1.54871647, -1.00715956, ..., 1.09485978,
                -0.68097495, -0.63245553]])
In [90]: # Apply for Test Set
         y pred=medical model.predict(X test)
         y pred
        array(['No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'Yes',
Out[90]:
                'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'Yes', 'No', 'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'Yes',
                'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'Yes', 'No', 'No', 'Yes',
                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                'No', 'No', 'No', 'No', 'Yes', 'No', 'No', 'No', 'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'Yes',
                'No', 'Yes', 'No', 'Yes', 'No', 'No', 'No', 'No', 'Yes',
                'No', 'No', 'No', 'No', 'No', 'No', 'Yes', 'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'Yes', 'No', 'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'Yes', 'No', 'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                'No', 'No', 'Yes', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                'No', 'No', 'No', 'Yes', 'No', 'No', 'No', 'No', 'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                'No', 'No', 'No', 'Yes', 'No', 'No', 'Yes', 'No', 'No', 'No',
                'No', 'No', 'No', 'No', 'Yes', 'No', 'No', 'No', 'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'Yes', 'No',
                'No', 'No', 'No', 'Yes', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'Yes', 'No', 'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                'No', 'No', 'No', 'Yes', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'Yes', 'No', 'No',
                'No', 'No'], dtype=object)
In [91]: #Dataframe of Predicted Output and Actual Output for Test set
         df_validate = pd.DataFrame({'Actual':y_test,'Predicted':y_pred})
```

df_validate['Predicted']=df_validate['Predicted'] df validate.head(5)

Actual Predicted

Out[91]:

EmployeeID		
916	No	No
1408	No	No
1233	No	No
1640	No	No
1133	No	No

Performance Evaluation

In [92]: # use crosstab to evaluate the categorical pd.crosstab(y_pred,y_test)

Out[92]: Attrition No Yes

row_0		
No	365	53
Yes	5	18

Precision & Sensitivity/Recall Report

• Logistic Regression

Precision & Sensitivity/Recall Report
from sklearn.metrics import classification_report

print(classification_report(y_true=y_test,y_pred=y_pred))

	precision	recall	f1-score	support
No	0.87	0.99	0.93	370
Yes	0.78	0.25	0.38	71
accuracy			0.87	441
macro avg	0.83	0.62	0.65	441
weighted avg	0.86	0.87	0.84	441

using Age -

Precision & Sensitivity/Recall Report

```
In [143]:
           # Precision & Sensitivity/Recall Report
           2 from sklearn.metrics import classification report
           3 print(classification report(y true=y test,y pred=y pred))
                       precision
                                    recall f1-score support
                                                           370
                   No
                            0.87
                                      0.99
                                                0.92
                   Yes
                            0.75
                                      0.21
                                                0.33
                                                           71
                                                           441
                                                0.86
              accuracy
            macro avg
                            0.81
                                      0.60
                                                0.63
                                                           441
          weighted avg
                            0.85
                                      0.86
                                                0.83
                                                           441
```

using Monthly Income -

In [89]:	1	# Precision & Sensitivity/Recall Report
	2	<pre>from sklearn.metrics import classification_report</pre>
	3	<pre>print(classification_report(y_true=y_test,y_pred=y_pred))</pre>

	precision	recall	f1-score	support
No Yes	0.86 0.67	0.98 0.20	0.92 0.30	370 71
163	0.07	0.20	0.50	, 1
accuracy			0.85	441
macro avg	0.77	0.59	0.61	441
weighted avg	0.83	0.85	0.82	441

- using Non Monthly Income and Age -
- Naive Beyes

In [89]:	<pre># Precision & Sensitivity/Recall Report from sklearn.metrics import classification_report print(classification_report(y_true=y_test,y_pred=y_pred))</pre>					
		precision	recall	f1-score	support	
	No	0.87	0.92	0.90	370	
	Yes	0.40	0.27	0.32	71	
	accuracy			0.82	441	
	macro avg	0.64	0.60	0.61	441	
	weighted avg	0.79	0.82	0.80	441	

using Age -

In [93]: # Precision & Sensitivity/Recall Report from sklearn.metrics import classification_report print(classification_report(y_true=y_test,y_pred=y_pred)) precision recall f1-score support 0.99 370 No 0.87 0.93 Yes 0.78 0.25 0.38 71 0.87 accuracy 441 0.83 0.62 0.65 441 macro avg weighted avg 0.86 0.87 0.84 441