

DIPARTIMENTO DI ELETTRONICA INFORMAZIONE E BIOINGEGNERIA

LOCALIZATION, NAVIGATION AND SMART MOBILITY Project presentation A.Y. 2022/2023

General rules

- Project mark
 - July 2023 up to **4 points**
 - September 2023 up to 4 points
 - January 2024 up to 3 points
- The project can be done individually or in group (up to 4 members). The project data are available in WeBeep
- Students can request assistance in case of issues or doubts while working on the project, we can schedule dedicated meeting either individually or by merging more than one group.
- Evaluation strategy: presentation of the results (please also deliver the matlab code and the slides/ppt),
 a report is optional.
- The exact day of presentation will be provided.

UWB localization area

UWB kit

Test area

Data structure – AP positions

Master AP

AP positions

AP 6x3 double 2 1.8600 2.8800 1.8700 5.7600 1.8800 5.6900 3.3500 1.8500 5 2.8700 3.3500 1.8300 3.3500 1.8400 6 У Χ Ζ

Mattia Brambilla - DEIB

Data structure – TDOA measurement

6 APs -> 5 TDOA meas., each column is a timestep
Each TDOA meas. is computed as rho = TOA_MasterAP - TOA_AP
The master AP is AP2
The TDOA is already converted into meters
Pay attention to NaN and outliers (it's a real system...)

TDOA measurements

What to do

1. Load and analyze data

E.g., statistics, coherence, availability, outliers, missing, etc.

If you find something that seems not to be ok, detail how you address the specific issue.

2. Localization algorithms implementation

Implement one localization algorithm and one tracking filter that use TDOA measurements to estimate the UE position. Compare and visualize the results.

3. Tune the tracking filter

Compare the performance of the developed tracking filter by varying filter parameters trying to obtain the best estimated trajectory.

Compare and visualize the results.

NOTE: CAREFULLY SELECT THE WAY TO PRESENT THE RESULTS

Example of estimated trajectories

