

BLG354E / CRN: 21560 5th Week Lecture

Response of DT LTI Systems to an Arbitrary Input:

Since the system is linear, the response y[n] of the system to an arbitrary input x[n] can be expressed as

$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$$

$$y[n] = \mathbf{T}\{x[n]\} = \mathbf{T}\left\{\sum_{k=-\infty}^{\infty} x[k] \,\delta[n-k]\right\} = \sum_{k=-\infty}^{\infty} x[k]\mathbf{T}\{\delta[n-k]\}$$

Since the system is time-invariant, $h[n-k] = T\{\delta[n-k]\}$

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

Therefore a discrete-time LTI system is completely characterized by its impulse response h[n]

Impulse response of an LTI DT system is given as $h[m]=\{5, 0, 3, 2\}$

Find its output pattern if the signal $x[m]=\{4, 1, 3, 2\}$ is applied as the input.

Output: y[m]=x[m]*h[m]

 $h(0-m)={2, 3, 0, 5}$ for m=3, 2, 1, 0

The input x[n] and the impulse response h[n] of a discrete-time LTI system are given by $\begin{cases} x[n] = u[n] \\ h[n] = \alpha^n u[n] \end{cases}$

$$x[n] = u[n]$$

$$h[n] = \alpha^{n}u[n] \qquad 0 < \alpha < 1$$

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

$$y[n] = \sum_{k=0}^{n} \alpha^{n-k}$$

$$y[n] = \sum_{m=n}^{0} \alpha^m = \sum_{m=0}^{n} \alpha^m = \frac{1 - \alpha^{n+1}}{1 - \alpha}$$

- a) Find the impulse response of the system via simulation
- b) Find the system response for x[n]=n(u[n]-u[n-3]) by simulation
- c) Find the system response for x[n]=n(u[n]-u[n-3]) by convolution for the first 5 values
- d) Find the impulse response through analytical solution of the transfer function

Psuedo Code: Y=0.5A+0.5B E=X-Y B=A

A=E

n	Χ	Α	В	Е	Υ
0	1	0.000	0.000	1.000	0.000
1	0	1.000	0.000	-0.500	0.500
2	0	-0.500	1.000	-0.250	0.250
3	0	-0.250	-0.500	0.375	-0.375
4	0	0.375	-0.250	-0.063	0.063
5	0	-0.063	0.375	-0.156	0.156
6	0	-0.156	-0.063	0.109	-0.109
7	0	0.109	-0.156	0.023	-0.023
8	0	0.023	0.109	-0.066	0.066
9	0	-0.066	0.023	0.021	-0.021
10	0	0.021	-0.066	0.022	-0.022
11	0	0.022	0.021	-0.022	0.022
12	0	-0.022	0.022	0.000	0.000
13	0	0.000	-0.022	0.011	-0.011
14	0	0.011	0.000	-0.005	0.005

n	X	Α	В	E	Υ
0	0	0.000	0.000	0.000	0.000
1	1	0.000	0.000	1.000	0.000
2	2	1.000	0.000	1.500	0.500
3	0	1.500	1.000	-1.250	1.250
4	0	-1.250	1.500	-0.125	0.125
5	0	-0.125	-1.250	0.688	-0.688
6	0	0.688	-0.125	-0.281	0.281
7	0	-0.281	0.688	-0.203	0.203
8	0	-0.203	-0.281	0.242	-0.242
9	0	0.242	-0.203	-0.020	0.020
10	0	-0.020	0.242	-0.111	0.111
11	0	-0.111	-0.020	0.065	-0.065
12	0	0.065	-0.111	0.023	-0.023
13	0	0.023	0.065	-0.044	0.044
14	0	-0.044	0.023	0.011	-0.011

0 0 0.5 1.25 0.125 -0.6875 0.28125 0.3125 y0 y1 y2 y3 y4 y5

 $y[n]=\{0, 0, 0.5, 1.25, 0.125, -0.6875, ...\}$

Convolution of periodic DT signals:

If $x_1[n]$ and $x_2[n]$ are both periodic sequences with common period N, the convolution of $x_1[n]$ and $x_2[n]$ does not converge. In this case, we define the periodic convolution of $x_1[n]$ and $x_2[n]$ as

$$f[n] = x_1[n] \otimes x_2[n] = \sum_{k=0}^{N-1} x_1[k] x_2[n-k]$$

Proof:

Show that f[n] as convolution two periodic sequences is periodic with period N.

$$x_2[(n-k)+N] = x_2[n-k]$$

$$f[n+N] = \sum_{k=0}^{N-1} x_1[k] x_2[n+N-k] = \sum_{k=0}^{N-1} x_1[k] x_2[(n-k)+N] = \sum_{k=0}^{N-1} x_1[k] x_2[(n-k)] = f[n]$$

f[n] is periodic

DT Systems with or without Memory:

Since the output y[n] of a memoryless system depends on only the present input x[n], then, if the system is also linear and time-invariant, this relationship can only be of the form

$$y[n] = Kx[n]$$

where K is a (gain) constant. Thus, the corresponding impulse response h[n] is simply

$$h[n] = K\delta[n]$$

Therefore, if $h[n_0] \neq 0$ for $n_0 \neq 0$, the discrete-time LTI system has memory.

Stability of DT LTI systems:

A discrete-time LTI system is BIBO stable if its impulse response is absolutely summable

$$\sum_{k=-\infty}^{\infty} |h[k]| < \infty$$

Proof:

Let's prove the BIBO stability condition for discrete-time LTI systems.

Assume that the input x[n] of a discrete-time LTI system is bounded $\Rightarrow |x[n]| \le k_1 \forall n$

Due to convolution of impulse response and the input, the output will be:

$$|y[n]| = \left|\sum_{k=-\infty}^{\infty} h[k]x[n-k]\right| \le \sum_{k=-\infty}^{\infty} |h[k]||x[n-k]| \le k_1 \sum_{k=-\infty}^{\infty} |h[k]|$$

 $|x(n-k)| \le k_1$ if the impulse response is absolutely summable $\Rightarrow \sum_{k=-\infty}^{\infty} |h[k]| = K < \infty$

$$|y[n]| \le k_1 K = k_2 < \infty$$

Hence the system is BIBO stable

Impulse response of a discrete-time LTI system is given by h[n]=0.5ⁿu[n]

- a) Is this system causal? b) Is this system BIBO stable?

a) The system is causal because h[n]=0 for n<0

b)
$$\sum_{k=-\infty}^{\infty} |h[k]| = \sum_{k=-\infty}^{\infty} |0.5^{k}u[n]|$$

$$= \sum_{k=0}^{\infty} |0.5|^k = \frac{1}{1 - |0.5|} = 2 = C < \infty \implies \text{system is BIBO stable}$$

Modelling and Simulation of the Systems

1	M	mass of the cart	0.5 kg
ı	m	mass of the pendulum	0.5 kg
	b	friction of the cart	0.1 N/m/sec
ļ		length to pendulum center of mass	0.3 m
		inertia of the pendulum	0.006 kg*m^2
ı	u	step force applied to the cart	
2	x	cart position coordinate	
ı	phi	pendulum angle from vertical	

Physical system equation:

$$(M+m)\ddot{x}+b\dot{x}+ml\ddot{\theta}\cos\theta-ml\dot{\theta}^{2}\sin\theta=F$$

 $(I+ml^{2})\ddot{\theta}+mgl\sin\theta=-ml\ddot{x}\cos\theta$

Linearization around very small Φ : $\Theta = \pi + \emptyset$, $\cos(\Theta) = -1$, $\sin(\Theta) = -\emptyset$, and $(d(\Theta)/dt)^2 = 0$

$$(I + ml2)\Phi(s)s2 - mgl\Phi(s) = mlX(s)s2$$
$$(M + m)X(s)s2 + bX(s)s - ml\Phi(s)s2 = U(s)$$

Transfer function:

$$\frac{\Phi(s)}{U(s)} = \frac{\frac{\mathbf{ml}}{\mathbf{q}}s}{s^{2} + \frac{\mathbf{b(I + ml^{2})}}{\mathbf{q}}s^{2} - \frac{(\mathbf{M + m)mgl}}{\mathbf{q}}s - \frac{\mathbf{bmgl}}{\mathbf{q}}$$

State space model

Feedback Control Systems

ML Approach to control systems:

13

