UMassAmherst

College of Engineering

Mechanical and Industrial Engineering

Yearlong Senior Capstone Design

Mid-Year Progress Report

Objective

Design and fabricate the body and legs of a power-efficient, lightweight guide dog robot capable of stair climbing while ensuring a compact body for portability and user-friendliness.

Stair climbing

Portability

Motivation

Guide Dogs

- Training: \$40,000 ×
- Maintenance: \$1000/year X
- Limited availability X

Transmission

Commercially Available Quadrupeds

- Large scale: Can climb stairs but too big X
- Small scale: Can't climb stairs but small enough X

Specifications

	Ideal	Marginal
Rise/go [m/m]	0.20/0.25	0.18/0.28
Battery Capacity [Wh]	288	134
Mass [kg]	21.5	25
Storage Volume [m ³]	<0.45	0.45
Operating Temp. [C°]	<55	55

Engineering Standards: ISO 13482, ISO 286, ADA § 504, ASTM B308/B308M-20, ASTM A1018/A1018M-18

Selected Design Concept

Figure 1: Leg design iterations. (a) Initial two link leg design. (b) Dog anatomy. (c) Bio-inspired leg design.

Figure 3: Body design iterations. (a) 3D printed design. (b) Four-piece sheet metal design. (c) Chosen two-piece sheet metal design

Guide Dog Robot

Ken Suzuki, Salani Seneviratne, Peter White, Connor Delaney, Shaylyn Tavarez, Georges Chebly

Supporting Engineering Analysis

Statics

- Shear/moment diagrams
 - Maximum stress

Dynamics

- Forward/inverse kinematics
 - Inverse dynamics

Strength of Materials

- Max deflectionFEA
 - Column buckling
 - Material strength

Electrical

- Battery life
- Motor control

Figure 4. Stair climbing kinematic analysis.

Proof of Concept Implementation

Figure 5: Selected design concept.

Performance Evaluation

- Stair climbing assessment
 Battery life under constant use
- Max temperatures of CPUs Final collapsed dimensions
- Mass of final assembly

Project Plan

- Spring semester project plan: manufacture prototype
- Self-machine & 3D print simpler parts, camera mounts
- Order complex parts from contract manufacturer
- Setup electronics (motor control, power board, PCB design)

