What is a theory?

Readings for today

- van Rooij, I., & Baggio, G. (2020). Theory before the test: How to build high-verisimilitude explanatory theories in psychological science. PsyArXiv
- Guest, O., & Martin, A. E. (2020). How computational modeling can force theory building in psychological science. PsyArXiv

Topics

1. What is a theory in psychology & neuroscience?

2. Formulating a "good" theory

What is a theory in psychology & neuroscience?

The theories we have

What is a theory?*

Theory: A description of a set of capacities.

Primary explananda (things to be explained)

Informal Building a description based on a theory: collection of observed effects.

Formal Constructing a description using theory: formal logic prima facie via a constructive strategy.

Plausibility constraints
 Theoretical cycle

Plausibility constraints

Assumptions:

1. Theory must provide a means for making rigorous tests possible.

2. Should restrict the number and types of theories/hypotheses considered for testing.

Marr's levels of analysis

LEVELS

Computation

1

Algorithm

2

Implementation

3

Psychological theories: computational level

Algorithm

How to build a theory, f, of capacities, c?

Abduction: Reasoning from observations to generate possible explanations.

Structural form of a theory

$$\overset{\text{theory}}{\sim} \overset{\text{c}}{\leftarrow} \overset{\text{f}(I)}{\sim} = \overset{\text{output}}{\sim}$$

e.g:
$$O = f(I) = \beta_1 I_1 + \beta_2 I_2 + \epsilon$$

 $O = f(I) = \beta_1 I_1^2 + g(I_2) + \epsilon$

Example

Foraging f

Input: A set of sites $S = \{s_0, s_1, s_2, ..., s_n\}$, each site $s_i \in S$ with i > 0 hosts a particular amount of food $g(s) \in \mathbb{N}$, and for each pair of sites $s_i, s_j \in S$ there is a cost of travel $c(s_i, s_j) \in \mathbb{N}$.

Output: An ordering $\pi(S) = [s^0, s^1, ..., s^n, s^0]$ of the elements in S such that $s^0 = s_0$ and the sum of foods collected at $s^1, ..., s^n$ exceeds the total cost of the travel, i.e.,

$$c \leftarrow f(S) = \sum_{s \in S} g(s) \ge c(s^n, s^0) + \sum_{s^i, s^{i+1} \in \pi(S)} c(s^i, s^{i+1})$$

Evolution of a theory

- Start with an informal verbal theory to set conceptual frame.
- Operationalize it to a formal structure to make hypotheses (abduction)
- Design tests to evaluate the hypotheses.
- Use empirical results to refine the form of your theory.

Reducing the space of possible theories

Formulating a "good" theory

Making transparent theories

Open Theorizing: Providing a transparent genealogy for where predictions, explanations, & ideas for experiments come from.

Computational model

Quantitative

The process by which relations are described using a formal logic (e.g., mathematics) that removes ambiguity and constrains the dimensions of a theory.

Benefits:

- 1. Automatically conforms to open theorizing (form & constraints of theory are explicitly described).
- 2. Makes the projection from theory to hypothesis and predictions easier.

Example: The pizza deal

Your favorite pizzeria has a special: two 12" pies for the price of one 18" pie.

Is this a good deal?

Informal theory:

- 2 pies is 2x as much as 1 pie.
- 18" is only 50% more than 12".

Answer: Yes

Example: The pizza deal

Your favorite pizzeria has a special: two 12" pies for the price of one 18" pie.

Is this a good deal?

Quantitative theory:

Food estimate:
$$\phi_i = \sum_{j=1}^{N} \pi R_j^2$$
—radius of pie j

Decision:
$$\omega(\phi_i, \phi_j) = \begin{cases} i, & \text{if } \phi_i > \phi_j \\ j, & \text{otherwise} \end{cases}$$

Answer:

Example: The pizza deal

Your favorite pizzeria has a special: two 12" pies for the price of one 18" pie.

Is this a good deal?

Quantitative theory:

$$\phi_i = 226 \text{ in}^2$$

$$\phi_i = 254 \text{ in}^2$$

Answer: No

Implementation of quantitative theory

Quantitative theory:

Food estimate:
$$\phi_i = \sum_{j=1}^{N} \pi R_j^2$$
—radius of pie j

Decision:
$$\omega(\phi_i, \phi_j) = \begin{cases} i, & \text{if } \phi_i > \phi_j \\ j, & \text{otherwise} \end{cases}$$

Python implementation:

Path functions in theory cycle

Take home message

- Having a formalized theory, preferably in quantitative terms, makes it easier to communicate and test your ideas.
- Theory and evidence dance together. Theory defines where & how you look.
 Evidence revises the search.