Lec 40 函数项级数及其一致收敛性

40.1 函数项级数收敛域与和函数

定义 40.1

- 1. 若 $\sum_{n=1}^{\infty} a_n(x_0)$ 收敛, 则称 $\sum_{n=1}^{\infty} a_n(x)$ 有收敛点 x_0
- 2. $\sum_{n=1}^{\infty} a_n(x)$ 的收敛点的全体称之为 $\sum_{n=1}^{\infty} a_n(x)$ 的收敛域, 记作 I.
- 3. 记 $\sum_{n=1}^{\infty} a_n(x) = S(x), x \in I$, 称 $\mathbf{S}(\mathbf{x})$ 为 $\sum_{n=1}^{\infty} a_n(x)$ 的和函数.

$\sum_{n=1}^{\infty} a_n(x)$ 的收敛域 I 的求法

- 1. 可利用 $\lim_{n\to\infty} \frac{|a_{n+1}(x)|}{|a_n(x)|} = g(x) < 1$, 求出使 $\sum_{n=1}^{\infty} a_n(x)$ 绝对收敛的收敛域;
- 2. 可利用 $\lim_{n\to\infty} \sqrt{|a_n(x)|} = g(x) < 1$, 求出使 $\sum_{n=1}^{\infty} a_n(x)$ 绝对收敛的收敛域;

例 40.1 $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ 的收敛域为 $I = (-\infty, +\infty)$.

$\sum_{n=1}^{\infty} a_n(x)$ 在 I 上的逐点收敛与一致收敛

定义 40.2

- 1. 对 $\forall x_0 \in I, \sum_{n=1}^{\infty} a_n(x_0)$ 都收敛, 则称 $\sum_{n=1}^{\infty} a_n(x)$ 在 I 上逐点收敛.
 - 此时, 令 $S_n(x_0) = a_1(x_0) + a_2(x_0) + \cdots + a_n(x_0)$, $S(x_0) = \sum_{n=1}^{\infty} a_n(x_0)$ 则 $\lim_{n \to \infty} S_n(x) = S(x)$. 即对 $\forall \varepsilon, \forall x_0 \in I, \exists n_0(\varepsilon, x_0) \in \mathbb{N}^*, \forall x_0 \in I, \exists n_0(\varepsilon, x_0) \in \mathbb{N}^*, \forall x_0 \in I, \exists n_0(\varepsilon, x_0) \in \mathbb{N}^*, \forall x_0 \in I, \exists n_0(\varepsilon, x_0) \in \mathbb{N}^*, \forall x_0 \in I, \exists n_0(\varepsilon, x_0) \in \mathbb{N}^*, \forall x_0 \in I, \exists n_0(\varepsilon, x_0) \in \mathbb{N}^*, \forall x_0 \in I, \exists n_0(\varepsilon, x_0) \in \mathbb{N}^*, \forall x_0 \in I, \exists n_0(\varepsilon, x_0) \in \mathbb{N}^*, \forall x_0 \in I, \exists n_0(\varepsilon, x_0) \in \mathbb{N}^*, \forall x_0 \in I, \exists n_0(\varepsilon, x_0) \in \mathbb{N}^*, \forall x_0 \in I, \exists n_0(\varepsilon, x_0) \in \mathbb{N}^*, \forall x_0 \in I, \exists n_0(\varepsilon, x_0) \in \mathbb{N}^*, \forall x_0 \in I, \exists n_0(\varepsilon, x_0) \in \mathbb{N}^*, \forall x_0 \in I, \exists n_0(\varepsilon, x_0) \in \mathbb{N}^*, \forall x_0 \in I, \exists n_0(\varepsilon, x_0) \in \mathbb{N}^*, \forall x_0 \in I, \exists n_0(\varepsilon, x_0) \in \mathbb{N}^*, \forall x_0 \in I, \exists n_0(\varepsilon, x_0) \in \mathbb{N}^*, \forall x_0 \in I, \exists n_0(\varepsilon, x_0) \in \mathbb{N}^*, \forall x_0 \in I, \exists n_0(\varepsilon, x_0) \in \mathbb{N}^*, \forall x_0 \in I, \exists n_0(\varepsilon, x_0) \in \mathbb{N}^*, \forall x_0 \in I, \exists n_0(\varepsilon, x_0) \in \mathbb{N}^*, \forall x_0 \in I, \exists n_0(\varepsilon, x_0) \in \mathbb{N}^*, \forall x_0 \in I, \exists n_0(\varepsilon, x_0) \in \mathbb{N}^*, \forall x_0 \in I, \exists n_0(\varepsilon, x_0) \in \mathbb{N}^*, \forall x_0 \in I, \exists n_0(\varepsilon, x_0) \in \mathbb{N}^*, \forall x_0 \in I, \exists n_0(\varepsilon, x_0) \in \mathbb{N}^*, \forall x_0 \in I, \exists n_0(\varepsilon, x_0) \in \mathbb{N}^*, \forall x_0 \in I, \exists x_0$
- 2. 若对 $\forall \varepsilon, \forall x_0 \in I, \exists N(\varepsilon) \in \mathbb{N}^*, N(\varepsilon)$ 仅与 ε 有关, 与 x_0 无关, 且对 $\forall n > N(\varepsilon), |S_n(x_0) S(x_0)| < \varepsilon$ 恒成立, 则称函数项级数 $\sum_{n=1}^{\infty} a_n(x)$ 在 I 上一致收敛 (uniform convergence).

显然,一致收敛是在逐点收敛的基础上增加了新条件的更强收敛性. 因此,一致收敛列必定是逐点收敛的,反之未必.

40.2 函数项级数一致收敛的四种判别法

定理 40.1 (Cauthy 准则)

$$\sum_{n=1}^{\infty}a_n(x)$$
 在区间 I 上一致收敛 $\Leftrightarrow \forall \varepsilon > 0, \exists N(\varepsilon) \in \mathbb{N}^*, \forall n > N(\varepsilon), \forall p \in \mathbb{N}^*, |a_{n+1}(x) + a_{n+2}(x) + \dots + a_{n+p}(x)| < \varepsilon$ 恒成立.

推论 40.1

对于上述过程,特别地,当 p=1 时, $|a_{n+1}(x)|<\varepsilon$ 恒成立,即 $a_n(x)$ 在 I 上一致趋于零是 $\sum_{n=1}^\infty a_n(x)$ 在区间 I 上一致收敛的必要条件.

 $^{n=1}$ 此时, 即当 $n>N(\varepsilon)$ 时, 由 $|a_{n+1}(x)|<\varepsilon$ 恒成立 $\Rightarrow \sup_{x\in I}|a_n(x)|\to 0 (n\to 0).$

即
$$\lim_{n\to\infty} \sup_{x\in I} |a_n(x)| = 0$$
 成为 $\sum_{n=1}^{\infty} a_n(x)$ 在区间 I 上一致收敛的必要条件.

定理 40.2 (Weierstrass)

 $\ddot{z} |a_n(x)| \leqslant b_n, \forall x \in I, \forall n \in \mathbb{N}^*, \, \text{且} \sum_{n=1}^\infty b_n \, \, \text{收敛}, \, \text{则} \, \sum_{n=1}^\infty a_n(x) \, \, \text{在区间} \, \, I \, \, \text{上一致收敛}.$

称数项级数 $\sum_{n=1}^{\infty} b_n$ 为 $\sum_{n=1}^{\infty} a_n(x)$ 的优级数或控制 (强) 级数.

注 优级数不唯一.

证明 已知正项级数 $\sum_{n=1}^{\infty} b_n$ 收敛,设 $\begin{cases} \sum_{n=1}^{\infty} b_n = B \in \mathbb{R} \\ B_n = b_1 + b_2 + \cdot + \boldsymbol{b}_n \end{cases}$ 则 $\lim_{n \to \infty} B_n = B \Rightarrow \forall \varepsilon > 0, \exists N(\varepsilon) \in \mathbb{R}$

 \mathbb{N}^* , 对 $\forall n > N(\varepsilon)$, $\forall p \in \mathbb{N}^*$, 有 $|b_{n+1} + b_{n+2} + \dots + b_{n+p}| = b_{n+1} + b_{n+2} + \dots + b_{n+p} < \varepsilon$ 恒成立, 此时, 对 $\forall x \in I$, $|a_{n+1}(x) + a_{n+2}(x) + \dots + a_{n+p}(x)| \leq |a_{n+1}(x)| + |a_{n+2}(x)| + \dots + |a_{n+p}(x)| \leq b_{n+1} + b_{n+2} + \dots + b_{n+p} < \varepsilon$ 恒成立. 依一致收敛的 Cauthy 准则, $\sum_{n=1}^{\infty} a_n(x)$ 在区间 I 上一致收敛.

定义 40.3

- 1. $\exists M > 0$, 且 M 与 x 无关, 使得 $|A_n(x)| \leq M$, $\forall n \in \mathbb{N}^*$, $\forall x \in I$, 则称 $A_n(x)$ 在 I 上一 致有界
- 2. $\forall \varepsilon i > 0, \exists N(\varepsilon) \in \mathbb{N}^*, \forall n > \mathbb{N}(\varepsilon), 0 \leq b_n < \varepsilon,$ 其中 $N(\varepsilon)$ 与 I 中的 x 无关, 则称 $b_n(x)$ 在 I 上一致趋于零.

定理 40.3 (Dirichlet)

在
$$\sum_{n=1}^{\infty} a_n(x)b_n(x)$$
 中, 若

- 1. $A_n(x) = a_1(x) + a_2(x) + \cdots + a_N(x)$ 在 I 上一致有界.
- 2. $b_n(x)$ 在 I 上一致趋于零.

则
$$\sum_{n=1}^{\infty} a_n(x)b_n(x)$$
 在 I 上一致收敛.

Ċ.

定理 40.4 (Abel)

在
$$\sum_{n=1}^{\infty} a_n(x)b_n(x)$$
 中, 若

- 1. $\sum_{n=1}^{\infty} a_n(x)$ 在 I 上一致收敛.
- $\underbrace{b_n(x)}_{\infty}$ 关于 n 单调且在 I 上一致有界.

则
$$\sum_{n=1}^{\infty} a_n(x)b_n(x)$$
 在 I 上一致收敛.

40.3 例题

例 40.2 证明: $\sum_{n=1}^{\infty} a_n(x)$ 在 (a,b) 中逐点收敛, 且 $a_n(x)$ 在 a 点右连续. 已知 $\sum_{n=1}^{\infty} a_n(a)$ 发散, 则 $\sum_{n=1}^{\infty} a_n(x)$ 在 (a,b) 中非一致收敛.

注 $a_n(x)$ 在 b 点左连续, 且 $\sum_{n=1}^{\infty} a_n(a)$ 发散, 则同样有 $\sum_{n=1}^{\infty} a_n(x)$ 在 (a,b) 中非一致收敛的结论.

证明 用反证法: 若 $\sum_{n=1}^{\infty} a_n(x)$ 在 (a,b) 一致收敛, 由 Cauthy 准则, $\forall \varepsilon > 0, \exists N(\varepsilon) \in \mathbb{N}^*, \forall n > 0$

 $N(\varepsilon)$, $\forall p \in \mathbb{N}^*$, $|a_{n+1}(x) + a_{n+2}(x) + \cdots + a_{n+p}(x)| < \frac{\varepsilon}{2}$, 对 $\forall x \in (a,b)$ 恒成立. $a_n(x)$ 在 a 点右连续, 对上述不等式两端取 $x \to a^+$ 极限, 由极限保序性 $|a_{n+1}(a) + a_{n+2}(a) + \cdots + a_{n+p}(a)| \le \frac{\varepsilon}{2} < \varepsilon$, 即有 $\forall \varepsilon > 0$, $\exists N(\varepsilon) \in \mathbb{N}^*$, 对 $\forall n > N(\varepsilon)$, $|a_{n+1}(a) + a_{n+2}(a) + \cdots + a_{n+p}(a)| \le \varepsilon$, 可知 $\sum_{n=0}^{\infty} a_n(a)$ 收敛, 这与 $\sum_{n=0}^{\infty} a_n(a)$ 发散矛盾. 故 $\sum_{n=0}^{\infty} a_n(x)$ 在 (a,b) 中非一致收敛.

例 40.3 证明: $\sum_{n=1}^{\infty} x^n$ 在 (-1,1) 中逐点收敛,绝对收敛,内闭一致收敛,但非一致收敛.

证明 $\forall x_0 \in (-1,1)$ 都有 $|x_0| < 1$, 且 $\sum_{n=1}^{\infty} |x_0|^n = \frac{|x_0|}{1-|x_0|}$, 所以 $\sum_{n=1}^{\infty} x^n$ 在 (-1,1) 中逐点收敛, 绝对收敛;

对 $\forall [a,b] \subset (-1,1), \exists r_0 \in (0,1), \notin [a,b] \subset [-r_0,r_0] \subset (-1,1),$ 对 $x \in [a,b],$ 有 $x^n \mid \leq r_0^n, \forall n \in \mathbb{N}^*,$ 且 $\sum_{n=1}^{\infty} r_0^n$ 收敛, 依 Weierstrass 判別法, $\sum_{n=1}^{\infty} x^n$ 在 x^n 在 $x^n \in [a,b]$ 中一致收敛, 即 $x^n \in [a,b]$ 中内闭一致收敛;

再从 $\sum_{n=1}^{\infty} 1^n$ 发散以及例 40.2 知 $\sum_{n=1}^{\infty} x^n$ 在 (-1,1) 中非一致收敛.

例 40.4 证明: $\sum_{n=1}^{\infty} ne^{-nx}$ 在 $(0,+\infty)$ 中逐点收敛,绝对收敛,内闭一致收敛,但非一致收敛.

证明 $\forall x_0 \in (0, +\infty)$,由 $e^{nx_0} = 1 + nx_0 + \frac{(nx_0)^2}{2!} + \frac{(nx_0)^3}{3!} + R_3(x_0) > \frac{(nx_0)^3}{3!} \Rightarrow e^{-nx_0} < \frac{3!}{(nx_0)^3} \Rightarrow ne^{-nx_0} < \frac{6}{n^2x_0^3}$,且 $\sum_{n=1}^{\infty} \frac{6}{n^2x_0^3} = \frac{6}{x_0^3} \sum_{n=1}^{\infty} \frac{1}{n^2}$ 收敛,依比较判别法,所以 $\sum_{n=1}^{\infty} ne^{-nx}$ 在 $(0, +\infty)$ 中逐点收敛,绝对收敛;

对 $\forall [a,b] \subset (0,+\infty)$,有 $\left| n\mathrm{e}^{-nx} \right| \leqslant n\mathrm{e}^{-na}, \forall xin[a,b], \forall n \in \mathbb{N}^*$, 且 $\sum_{n=1}^{\infty} n\mathrm{e}^{-na}$ 收敛, 依 Weier-

strass 判别法, $\sum_{n=1}^{\infty} n e^{-nx}$ 在 [a,b] 中一致收敛, 即 $\sum_{n=1}^{\infty} n e^{-nx}$ 在 $(0,+\infty)$ 中内闭一致收敛;

而 $a_n(x) = ne^{-nx}$ 在 x = 0 处连续, 且 $\sum_{n=1}^{\infty} a_n(0) = \sum_{n=1}^{\infty} n$ 发散, 由例 40.2 知 $\sum_{n=1}^{\infty} ne^{-nx}$ 在 $(0, +\infty)$ 中非一致收敛.

例 40.5 证明: $\sum_{n=1}^{\infty} \frac{\cos nx}{n^{\lambda}}$, $\sum_{n=1}^{\infty} \frac{\sin nx}{n^{\lambda}}$ 当 $\lambda > 1$ 时在 $(-\infty, +\infty)$ 中绝对收敛, 一致收敛; 当 $0 < \lambda \leq 1$ 时, 在 $(k\pi, (k+1)\pi)$ 中条件收敛且内闭一致收敛 $(\forall k \in \mathbb{Z})$.

证明

- 1. 当 $\lambda > 1$ 时,从 $\left| \frac{\cos nx}{n^{\lambda}} \right| \leqslant \frac{1}{n^{\lambda}}, \left| \frac{\sin nx}{n^{\lambda}} \right| \leqslant \frac{1}{n^{\lambda}}$,且 $\sum_{n=1}^{\infty} \frac{1}{n^{\lambda}}$ 逐点,绝对,一致收敛.
- 2. 当 $0 < \lambda \le 1$ 时; 对 $\forall [a,b] \subset (k\pi,(k+1)\pi)$. 由 $\sin \frac{x}{2}$ 在 [a,b] 上连续, 知 $\left| \sin \frac{x}{2} \right|$ 在 [a,b] 中有最小值, 设其为 $\alpha_0(\alpha_0 > 0)$, 则在 $\sum_{n=1}^{\infty} (\cos nx) \frac{1}{n^{\lambda}}$ 中, $|A_n(x)| = |\cos x + \cos 2x + \cdots + \cos nx| \le \frac{1}{|\sin \frac{x}{2}|} \le \frac{1}{\alpha_0} \triangleq M, b_n(x) = \frac{1}{n^{\lambda}}$ 关于 n 单调递减一致趋于 n 0, 依照一致收敛的 Dirichlet 判别法, 当 n0 n0 以 n1 时: n2 n3 n4 在 n5 中条件收敛且一致收敛,故内闭一致收敛。

例 40.6 证明:Riemann 的 $\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$ 在 $(1, +\infty)$ 中逐点收敛, 绝对收敛, 内闭一致收敛, 但非一致收敛.

证明 $\forall x_0 \in (1, +\infty), \sum_{n=1}^{\infty} \frac{1}{n^{x_0}}$ 收敛, 故 $\sum_{n=1}^{\infty} \frac{1}{n^x}$ 在 $(1, +\infty)$ 中逐点收敛, 绝对收敛.

 $\forall [a,b] \subset (1,+\infty), \ \, \left|\frac{1}{n^x}\right| \leqslant \frac{1}{n^a}, \forall x \in [a,b], \forall n \in \mathbb{N}^*, \ \, \mathbb{E}\sum_{n=1}^{\infty} \frac{1}{n^a} \ \, \mathrm{th} \ \, \mathrm{th}$

strass 判别法, $\sum_{n=1}^{\infty} \frac{1}{n^x}$ 在 [a,b] 中一致收敛,故内闭一致收敛.

设
$$a_n(x) = \frac{1}{n^x}$$
, 则 $a_n(x)$ 在 $x = 1$ 处右连续, 且 $\sum_{n=1}^{\infty} a_n(1) = \sum_{n=1}^{\infty} \frac{1}{n}$ 发散, 故可得非一致收敛

注事实上, 对 $\forall \alpha > 0$, $\sum_{n=1}^{\infty} n \mathrm{e}^{-nx}$ 在 $[\alpha, +\infty)$ 中一致收敛; 对 $\forall \alpha > 1$, $\sum_{n=1}^{\infty} \frac{1}{n^x}$ 在 $[\alpha, +\infty)$ 中一致收敛.

▲ 作业 ex7.2:2(1)(3)(7),4(1)(2)(3)(4)(5).