1 Ciclo Compartido

Sea G = (E, V) un grafo, con P y Q dos caminos distintos que nos llevan de v a w. Los notamos:

$$P = v_0, \dots, v_p$$
 y $Q = w_0, \dots, w_q$ con $v_0 = w_0 = v$ y $v_p = w_q = w$

Observemos:

1. Si P y Q no comparten ningún vértice intermedio, entonces podemos generar un ciclo que va desde v hasta w por Q. Luego desde w, podemos volver a v a través de P, generándonos un ciclo. Por ejemplo:

Aquí,
$$P = 1, 2, 3, 4$$
 y $Q = 1, 2, 5, 6, 7, 8, 4$.

- 2. Si P y Q comparten algún vértice intermedio, tenemos dos casos:
 - (a) Si solo comparten un vértice intermedio, podemos generar el ciclo desde v_0 hasta x y luego desde x hasta q_0 . Generándonos así un ciclo. Por ejemplo:

Aquí,
$$P = 1, 2, 3, 4$$
 y $Q = 1, 5, 3, 4$.

(b) Si comparten más de un vértice intermedio, podemos tomar dos x y x' y generar un ciclo entre ellos. Por ejemplo:

Aquí,
$$P = 1, 2, 3, 4, 8, 7$$
 y $Q = 1, 5, 3, 4, 6, 7$.

Ahora la demostración:

Sea G=(E,V) un grafo, con P y Q dos caminos distintos que nos llevan de v a w, tal que G no tenga ningún ciclo que contenga vértices de P o Q.

Los notamos:

$$P = v_0, \dots, v_p$$
 y $Q = w_0, \dots, w_q$ con $v_0 = w_0 = v$ y $v_p = w_q = w$

Como $P \ge Q$ son distintos, deben tener al menos un vértice distinto, formalmente:

$$\exists v \in P \land v \not \in Q \quad \lor \quad \exists v \in Q \land v \not \in P$$

Supongamos que ningún vértice de P o Q pertenece al ciclo, entonces debe existir al menos un vértice v' distinto del origen y el final $(v' \neq v_0 \neq w_0$ y $v' \neq v_p \neq w_q)$ que pertenezca tanto a P como a Q (de otra forma P y Q formarían un ciclo). Llamémoslo v' que cumple $v' \in P \land v' \in Q$.

Ahora podemos definir $P'=(v',v'_1,\ldots,v_p)$ y $Q'=(v',w'_1,\ldots,w'_q)$. Claramente $P'\subseteq P$ y $Q'\subseteq Q$.

¿Y ahora? Si los caminos son del todo distintos, entonces tenemos ya nuestro ciclo, pero como dijimos que G no contiene un ciclo con elementos de P y Q, podemos repetir la operación anterior. Es decir, debe existir un elemento v'' que P' y Q' compartan, distinto del principio y el final, y repetimos.

¿Hasta cuántas veces podremos hacer esto? La cantidad máxima es $\min(|P|, |Q|)$, dado que (por hipótesis) ningún ciclo se puede formar con elementos de P y Q, entonces la única manera que esto se cumpla cada vez, es que P sea igual a Q; pero esto es absurdo, ya que dijimos que P es distinto de Q por al menos un vértice.

Luego, dados P y Q en G, que cumplan todo lo pedido, debe existir un ciclo con elementos de P o elementos de Q.