Contents

1	Distributions			
	1.1 The spaces	1		
	1.2 Derivatives and convolution	2		
	1.3 The Fourier transform	4		
2 Applications of distributions				
3	Oscillatory integrals	ç		

1 Distributions

1.1 The spaces

Problem: Define the 3 spaces of functions $\mathcal{D}, \mathcal{S}, \mathcal{E}$ and of the corresponding distributions. What are the inclusions? Do they have the subspace topology?

1. The function spaces are

$$\mathcal{D}(\mathbb{R}^n) \subset \mathcal{S}(\mathbb{R}^n) \subset \mathcal{E}(\mathbb{R}^n).$$

In short,

- $\mathcal{D}(\mathbb{R}^n)$: bounded derivatives+compact support
- $\mathcal{S}(\mathbb{R}^n)$: bounded derivatives+decay
- $\mathcal{E}(\mathbb{R}^n)$: bounded derivatives.

Formally, \mathcal{S}, \mathcal{E} are locally convex spaces with the following seminorms (each is defined as the space of functions where all the norms exist and are finite, so $\mathcal{D} = C_c^{\infty}$, the functions of compact support, while \mathcal{S}, \mathcal{D} are subsets of C^{∞}). \mathcal{D} is a little different; see below.

Space	Seminorms	
$\mathcal{D}(\mathbb{R}^n)$	$(\sup \partial^{\alpha}\varphi)_{\alpha}$	
$\mathcal{S}(\mathbb{R}^n)$	$(\sup x^{\alpha}\partial^{\beta}\varphi)_{\alpha,\beta}$	
$\mathcal{E}(\mathbb{R}^n)$	$(\sup_K \partial^{\alpha} \varphi)_{\alpha,K}$	

NOTE: The topology we use on $\mathcal{D}(\mathbb{R}^n)$ is actually stronger than the one given by the seminorms: for $f_n \to 0$ we require $\bigcup \operatorname{Supp}(f_n)$ to be contained in a compact set. A function that keeps spreading out does NOT converge to 0. Hence $\mathcal{D} \to \mathcal{S}$ is a continuous map but not homeomorphic onto its image.

2. The spaces of distributions are the dual spaces,

$$\mathcal{D}'(\mathbb{R}^n) \supset \mathcal{S}'(\mathbb{R}^n) \supset \mathcal{E}'(\mathbb{R}^n).$$

They have the w^* -topology.

We use the following from functional analysis (Lemma 2.2.5).

Lemma 1.1: If X is a locally convex space, then X^* is the set of linear functionals u for which there exists C and a finite subset S of seminorms such that

$$|ux| \le C \max_{\|\cdot\| \in S} \|x\|.$$

Equivalently, it is the set of linear functionals such that $x_n \to 0$ implies $ux_n \to 0$ (sequential continuity).

Space	$\forall u \dots$	
$\mathcal{D}'(\mathbb{R}^n)$	$\forall K \exists C, N : \langle u, \varphi \rangle \leq C \sum_{ \alpha \leq N} \sup \partial^{\alpha} \varphi $	
$\mathcal{S}'(\mathbb{R}^n)$	$\exists C, N : \langle u, \varphi \rangle \le C \sum_{ \alpha , \beta \le N} \sup x^{\alpha} \partial^{\beta} \varphi $	
$\mathcal{E}'(\mathbb{R}^n)$	$\exists C, N, K : \langle u, \varphi \rangle \leq C \sum_{ \alpha \leq N} \sup_{K} \partial^{\alpha} \varphi $	

We also have the inclusions $\mathcal{D} \subset \mathcal{E}'$ (because functions in \mathcal{D} have compact support), $\mathcal{S} \subset \mathcal{S}'$, $\mathcal{E} \subset \mathcal{D}'$ (just use Cauchy-Schwarz to show sequential continuity).

1.2 Derivatives and convolution

Problem: Define the translation, reflection, and derivative of a distribution. Relate the derivative to the typical notion of a derivative. Show that if u' = 0 then u = 0.

- 1. Define $\tau_h f(x) = f(x-h)$, $\check{f}(x) = f(-x)$. Define the derivative by $\langle \partial u, f \rangle = -\langle u, \partial f \rangle$. This is consistent with the definition for functions by integration by parts.
- 2. The derivative is continuous. (Easy.)
- 3. Lemma: $\langle \partial u, f \rangle = \lim_{h \to 0} \left\langle \frac{\tau_{-h}u^{-u}}{h}, f \right\rangle$. Proof: Bounce the difference quotient to the other side, and then use the fact that the difference quotient converges uniformly (the remainder in the Taylor expansion is uniformly bounded).
- 4. See Lemma 1.4.3.
- 5. Computing: use ample use of FToC. Use intuition to guess, ex. $H' = \delta_0$.

Problem: 1. Define convolution, and extend its definition as far as you can. What are all the pairs of spaces that you can take convolution between? What are the continuity properties of *? How can we write $\langle \rangle$ as *?

- 2. How does differentiation act with *?
- 3. Prove that * is associative and commutative. (What do you need to show?)
- 4. Prove that $\mathcal{D} \subset \mathcal{D}'$ is dense.
- 1. We have

$$_{\text{eq:dist-conv3}}\mathcal{E} * \mathcal{E}' \subseteq \mathcal{E} \tag{3}$$

$$_{\text{eq:dist-conv4}}\mathcal{D}' * \mathcal{E}' \subset \mathcal{D}'. \tag{4}$$

- (a) Original definition: $f * q = \int f(x y)q(y) dy$.
- (b) Extend: $u * \varphi(x) = \langle u, \tau_x \check{\varphi} \rangle$.
- (c) Extend by $(u_1 * u_2) * \varphi = u_1 * (u_2 * \varphi)$ to (4).

We have

$$\langle u, \varphi \rangle = u * \check{\varphi}(0)$$

(this is useful because now we can use associativity).

- 2. 1.4.8. $\partial^{\alpha}(u*\varphi) = u*\partial^{\alpha}\varphi$ by 1.4.7; in particular, convolution is smooth.
- 3. 1.4.9. Schematic of argument:

$$(u * \varphi) * \psi = \int \langle u, ... \varphi \rangle \psi = \int \langle u, \varphi ... \psi \rangle = \lim \sum \langle u, \varphi ... \psi \rangle = \langle u, \lim \sum \varphi ... \psi \rangle.$$

We want the integral to go inside the brackets, so we have to turn it into a Riemann sum.

For commutativity, we need to show $u_1 * u_2 = u_2 * u_1$ if one is in \mathcal{E}' , the other in \mathcal{D}' . Note $(u_1 * u_2) * (\varphi * \psi) = (u_1 * \psi) * (u_2 * \varphi)$. Key: we can commute φ, ψ .

4. Convolute u with a "good kernel" and then cutoff: $\varphi_m = \chi_m(u * \phi_m) \to u$ where $\chi_m = \chi\left(\frac{x}{m}\right)$ is a bump function and $\phi_m(x) = m^n\psi(mx)$. Now use $\langle u, \varphi \rangle = u * \check{\varphi}(0)$ and associativity to get $u * (\phi_m * (\chi_m \theta)\check{})(x)$. Now $\phi_m * (\chi_m \theta)\check{} = \langle \chi_m \tau_{-x} \phi_m, \theta \rangle$, and $\chi_m \tau_{-x} \phi_m$ is like a good kernel at x, so $\langle \varphi_m, \theta \rangle \to \langle u, \theta \rangle$.

1.3 The Fourier transform

Problem: 1. How do you extend the definition of the Fourier transform? Give an alternate definition that resembles the original definition; when is it valid? What is the connection between the Fourier and Laplace transform?

- 2. Prove the Fourier inversion formula.
- 3. Fill in the table below. (Be careful with the normalizations.) What are the Fourier transforms of $e^{-\varepsilon x^2}$, 1, δ_0 ?
- 1. Define the Fourier transform by $\hat{f} = \int_{\lambda \in \mathbb{R}^n} e^{-i\lambda \cdot x} f(x) dx$. (See p. 136, SS.) We have

$$\widehat{u} = \left\langle u, e^{-i\lambda \cdot x} \right\rangle$$

by exchanging double integrals.

2.

3.

f	$\hat{f} = \int_{\lambda \in \mathbb{R}^n} e^{-i\lambda \cdot x} f(x) dx$	$\widehat{f} = \int_{\lambda \in \mathbb{R}^n} e^{-2\pi i \lambda \cdot x} f(x) dx$
Fourier inversion	$f = \frac{1}{2\pi} \int f(x)e^{i\lambda \cdot x} dx$	$f = \int f(x)e^{2\pi i\lambda \cdot x} dx$
Parseval	$\left \left\langle \widehat{f}, g \right\rangle = \left\langle f, \widehat{g} \right\rangle, \left\langle f, g \right\rangle = \frac{1}{2\pi} \left\langle \widehat{f}, \widehat{g} \right\rangle$	$\left \left\langle \widehat{f}, g \right\rangle = \left\langle f, \widehat{g} \right\rangle, \left\langle f, g \right\rangle = \left\langle \widehat{f}, \widehat{g} \right\rangle$
f(x+h)	$\widehat{f}(\lambda)e^{ih\lambda}$	$\widehat{f}(\lambda)e^{2\pi ih\lambda}$
$f(x)e^{-\varepsilon ih}$		\widehat{f} when $\varepsilon = \frac{1}{2}$
$f(\delta x)$	$\delta^{-1}\widehat{f}(\delta^{-1}\lambda)$	$\delta^{-1}\widehat{f}(\delta^{-1}\lambda)$
f'	$i\lambda\widehat{f}$	$2\pi i\lambda\widehat{f}$
Df = -if'	$\lambda\widehat{f}$	$2\pi\widehat{f}$
xf	$-D\widehat{f}' = i\widehat{f}'$	$-rac{1}{2\pi i}\widehat{f}'$
δ_0	1	1
1	$2\pi\delta_0$	δ_0
$e^{-\varepsilon x^2}$	$\sqrt{\frac{\pi}{\varepsilon}}e^{-rac{\lambda^2}{4\varepsilon}}$	$\sqrt{\frac{\pi}{\varepsilon}}e^{-\frac{\pi}{\varepsilon}\lambda^2}$

Problem: 1. Define Sobolev space and local Sobolev space.

- 2. What are the inclusions?
- 3. "Fourier transform converts smoothness into decay." Make this statement precise and quantitative.
- 1. Definition ?? If $u \in S'(\mathbb{R}^n)$ such that $\hat{u}(\lambda)$ is a function and

$$||u||_{H^s}^2 := \int |\hat{u}(\lambda)|^2 (1+|\lambda|^2)^s d\lambda < \infty$$

then we say $u \in H^s(\mathbb{R}^n)$, $s \in \mathbb{R}$. We say $u \in H^s_{loc}$ if $u\varphi \in H^s$ for every $\varphi \in \mathcal{D}$.

2. $H^{s>\frac{n}{2}}(\mathbb{R}^n)\subseteq C(\mathbb{R}^n)$ by Cauchy-Schwarz. (Careful: we need to show \hat{u} as a function agrees with \hat{u} as a distribution.)

 $\cap H^2(\mathbb{R}^n) \subseteq C^{\infty}(\mathbb{R}^n)$. (More generally, $H^{s>\frac{n}{2}+k}(\mathbb{R}^n) \subseteq C^k(\mathbb{R}^n)$. (I think so.) This shows $\hat{u}\langle\lambda\rangle^{-k} \in L^1$.)

 $D^{\alpha}: H^s \to H^{s-|\alpha|}.$

 $\mathcal{E}(\mathbb{R}^n) \subseteq \bigcup_s H^s(\mathbb{R}^n).$

3. See above.

2 Applications of distributions

Problem: Define an elliptic operator.

Show the existence of a parametrix for an elliptic PDO. What space is it in? State the elliptic regularity theorem.

- 1. (Definition ??) P(D), $D = -i\partial$ corresponds to the polynomial $\sigma_P(\lambda)$. P(D) is elliptic if for all $\sigma \neq 0$, $\sigma_P(\lambda) \neq 0$.
- 2. Define a parametrix to be $E \in \mathcal{D}'$ with $P(D)E = \delta_0 + \omega$, "fundamental solution up to \mathcal{E} ." (Definition ??.

Lemma ??:

Lemma 2.1: Every elliptic PDO has a parametrix $\in \mathcal{S}'(\mathbb{R}^n)$.

Proof:
$$\mathcal{F}^{-1}\left(\frac{1-\chi_R(\lambda)}{P(\lambda)}\right)$$
. Check $P(\lambda) \succsim \langle \lambda \rangle^N$ (Lemma ??).

3. Note E * f is more regular than f (compute the Sobolev norm). We get by writing $u = \delta_0 * u$ the following.

Lemma 2.2: If P(D) is elliptic of degree N; P(D)u = f where $f \in H^s$; $u \in \mathcal{D}'$ with compact support (i.e., in \mathcal{E}'), then $u \in H^{N+s}$.

Why is $\omega * u \in \mathcal{S}$? We don't have $\mathcal{E} * \mathcal{E}' \subseteq \mathcal{S}$!

4. Idea: Use the lemma to bootstrap.

By definition of H^m_{loc} : it suffices to show $u\varphi \in H^{s+N}$ for every $u \in \mathcal{D}$. Use lemma to get

$$P(D)(\mathbf{u}\varphi_{M}) = \underbrace{(P(D)\mathbf{u})}_{f \in H^{s}} \varphi + \underbrace{[P(D), \varphi]}_{-(N-1)} \underbrace{(\varphi_{M-1}\mathbf{u})}_{t}.$$
$$t_{M} \ge \min\{s, t_{M-1} - N + 1\} + N.$$

where t_k is the regularity of $u\varphi_k$. (Warning: $P(D)(uv) \neq vP(D)u + uP(D)v$. For example, for $P(D) = D^2$ it is (u''v) + (2u'v' + uv'').) We inserted φ_M because then we can iterate the process. At each stage,

$$t_k \ge \min\{s + N, t_{k-1} + 1\}$$

so pick M = s + N - t.

Problem: Define a fundamental solution. Find the fundamental solution of the Cauchy-Riemann and heat operator. Prove the Malgrange-Ehrenpries Theorem.

- 1. A fundamental solution for a PDO P(D) is $E \in \mathcal{D}'$ such that $P(D)E = \delta_0$. Then for any f, E * f solves P(D)u = f. (Warning: uniqueness is a different issue.)
- 2. The fundamental solution of $\frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x_1} + i \frac{\partial}{\partial x_2} \right)^1$ is $\frac{1}{\pi z}$.

(Proof: Use Green's Theorem $\oint F \cdot dv = \iint_A \nabla \times F \, dA$ on $\frac{\partial}{\partial \overline{z}}(\varphi E) = E \frac{\partial}{\partial \overline{z}} \varphi$. Note we get a - since the region $|z| > \varepsilon$ is *outside*.)

The fundamental solution of $P(D) = \frac{\partial}{\partial t} - \Delta_x$ is $(t > 0) \cdot (4\pi t)^{-\frac{n}{2}} \exp\left(\frac{-|x|^2}{4t}\right)$.

(Pf. E basically solves the heat equation except at t = 0. To get over this, bounce to φ , write $\int = \lim_{\varepsilon \to 0^+} \int_{\varepsilon}^{\infty}$, and then bounce back to E. Note we get a boundary term in the t direction, $(E\varphi)_t$) in the last IbP.)

3.

Theorem 2.3: Every constant coefficient PDO has a fundamental solution. Proof.

• Guess the solution. $\widehat{E} = \frac{1}{P(\lambda)}$, so

$$\langle E, \varphi \rangle = \frac{1}{(2\pi)^n} \langle \widehat{E}, \widehat{\varphi} \rangle = \frac{1}{(2\pi)^n} \int \frac{\widehat{\varphi}(-\lambda)}{P(\lambda)} d\lambda.$$

• Establish an estimate for $\hat{\varphi}$, when the last variable is thought of as complex. If P(D) is elliptic and $\varphi \in \mathcal{D}$, then

$$|\hat{\varphi}(\lambda',z)| \lesssim_m (1+|z|)^{-m} e^{\delta|\Im z|}, \qquad m \in \mathbb{N}_0.$$

Key: We don't care about the exponential term outside the (compact) support of φ , so it is bounded by $e^{\delta|\Im z|}$. Bound $|z^m\widehat{\varphi}|$, and use IbP to get the derivative onto φ .

The have
$$(z, \overline{z}) = (x + iy, x - iy)$$
 so $\begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{pmatrix} = \begin{pmatrix} \frac{\partial z}{\partial x} & \frac{\partial \overline{z}}{\partial z} \\ \frac{\partial z}{\partial y} & \frac{\partial \overline{z}}{\partial y} \end{pmatrix}$. The Jacobian is $\begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}$ with inverse $\begin{pmatrix} -i & -1 \\ -i & 1 \end{pmatrix} \frac{1}{-2i} = \frac{1}{2} \begin{pmatrix} 1 & -i \\ 1 & i \end{pmatrix}$, so $\begin{pmatrix} \frac{\partial}{\partial z} \\ \frac{\partial}{\partial \overline{z}} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & -i \\ 1 & i \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{pmatrix}$.

• By Cauchy's Theorem,

$$\langle E, \varphi \rangle = \frac{1}{(2\pi)^n} \sum_{i=1}^{\infty} \int_{\Delta_i} d\lambda' \int_{\Im \lambda_n = c_i} d\lambda_n \frac{\hat{\varphi}(-\lambda_1' - \lambda_n)}{P(\lambda)}$$

is a solution provided we can bound $P(\lambda)$ away from 0 and have an estimate on $\hat{\varphi}$. Where do we use the last condition? Also check this is a valid distribution. Figure of Hörmander's staircase.

Given a point μ' , we can bound $P(\mu', \lambda_n)$ away from 0 on some line $\Im \lambda_n = c$ because P is not identically 0 by ellipticity so P has finitely many roots. We can extend to neighborhoods by continuity. Now choose get Δ_i by a compactness argument.

4. Example of use: see example at the end of §4.2.

Problem: Prove the structure theorem for $\mathcal{E}'(X)$.

Theorem 2.4 (Structure Theorem for $\mathcal{E}'(X)$, ??): Every $u \in \mathcal{E}$ can be written as a linear combination of derivatives of continuous functions (supported in X). (" $\mathcal{E} \subseteq \operatorname{span}_{f \in C(X), \alpha} \partial^{\alpha} f$.")

Proof. Idea: The FT takes differential operators to polynomials. First show $u \in H^s$, it does not grow too fast. Transfer to a problem in the Fourier domain. Considering $\langle u, \varphi \rangle$, take a polynomial term away from \hat{u} ; this results in derivatives on φ back in the original domain.

- 1. We know $\hat{u} \in H^s$ for some s. WHY? Thus $\hat{u} \langle \lambda \rangle^{-2m} \in L^1 \cap C$ for $m > \frac{s-n}{4}$ by C-S, and it has a Fourier transform/inverse. (The Fourier inversion holds on continuous L^1 functions whose transform is also L^1 (the FT is always continuous).)
- 2. Note $\varphi \in \mathcal{E}(X)$ may not be the FT of a function. But all functions in $\mathcal{D} \subseteq \mathcal{S}$ are FT's of functions. First step: because u has compact support, for a bump funtion ρ , $\langle u, \varphi \rangle = \langle u, \rho \varphi \rangle$.
- 3. Now

$$\langle u, \rho \varphi \rangle = \frac{1}{(2\pi)^n} \langle (\widehat{u}) \check{,} \widehat{\rho \varphi} \rangle$$

$$= \frac{1}{(2\pi)^n} \left\langle \underbrace{\langle \lambda \rangle^{-2m} \widehat{u}}_{\in L^1}, \widehat{\rho \varphi} \langle \lambda \rangle^{2m} \right\rangle$$

$$= \langle \cdots, P(D)(\rho \varphi) \rangle = \cdots$$

Problem: State and prove the Paley-Wiener-Schwartz Theorem.

Theorem 2.5 (??): Write $\mathcal{D}_X(\mathbb{R}^n)$ for the functions in $\mathcal{D}(\mathbb{R}^n)$ supported on X^2 . The Fourier-Laplace transform is a bijection

$$\mathcal{D}_{\overline{B_{\delta}}} \xrightarrow{\widehat{\bullet}} \left\{ \text{entire } u : \forall N, \frac{\widehat{u}(z)}{e^{\delta |\Im z|}} \prec \langle \lambda \rangle^{N} \right\}$$
$$\mathcal{E}'_{\overline{B_{\delta}}}(\mathbb{R}^{n}) \xrightarrow{\widehat{\bullet}} \left\{ \text{entire } u : \exists N, \frac{\widehat{u}(z)}{e^{\delta |\Im z|}} \precsim \langle \lambda \rangle^{N} \right\}.$$

Proof. 1. Bound the growth of \hat{u} as a complex analytic function (Lemma ??): If $u \in \mathcal{E}'(\mathbb{R}^n)$ and $\operatorname{Supp}(u) \subseteq \overline{B_\delta} = \{x \in \mathbb{R}^n : |x| \le \delta\}$ then there exists $N \ge 0$ such that

$$|\hat{u}(z)| \lesssim (1+|z|)^N e^{\delta|\Im z|}$$

for each $z \in \mathbb{C}^n$.

Proof: If u were a function, we would write out the integral and note that it vanishes outside the support of u. Here we have to treat u as a distribution, and use

$$\langle u, e^{-ix \cdot z} \rangle \le C \sum_{|\alpha| \le N} \sup_{K} |\partial^{\alpha} e^{-ix \cdot z}|.$$

Can we take $K = \overline{B_{\delta}}$? In general, we can't always take K = Supp(u), but in this case we almost can. To do this, replace u by $u\rho_{\varepsilon}$ where $\rho_{\varepsilon} = \psi(\frac{1}{\varepsilon}(|x| - \delta))$ where

$$\psi = \begin{cases} 1, & x \le 0 \\ 0, & x \ge 1. \end{cases}$$
 We get

$$\left\langle u, e^{-ix \cdot z} \right\rangle \leq \sum_{|\alpha_1 + \alpha_2| \leq N} C_{\alpha_1, \alpha_2} \sup_K \partial^{\alpha_1} \rho_{\varepsilon} \partial^{\alpha_2} \varphi \lesssim \left(\frac{1}{\varepsilon}\right)^{|\alpha_1|} e^{(\delta + \varepsilon)|\Im z|} (|\sup_K \partial^{\alpha_2} \varphi|).$$

Take $\varepsilon \to 0$? Seems like an o(1) in the exponent.

2. (1) To show rapid decay, consider $z^{\alpha}\hat{u}$ for all α .

$$|z^{\alpha}\widehat{u}(z)| \lesssim \int (D^{\alpha}u)e^{-i\lambda \cdot z} dx = \int u(-ix)^{\alpha} \underbrace{e^{-i\lambda \cdot z}}_{\text{compact support}} \leq e^{\delta|\Im z|}$$

Conversely, define u by the inverse Fourier transform

$$u = \frac{1}{(2\pi)^n} \int_{\mathbb{R}} \underbrace{\widehat{u}(z)}_{|\cdot| < (1+|z|^{-N})e^{\delta 0}} e^{ix \cdot z} dz.$$

convergent by rapid decay. To use the bound, $e^{\delta \Im z}$ we have to shift the contour of integration to $\mathbb{R} + i\eta$, so that we get the integrand $(\Im z = \eta)$

$$|\cdot| \le e^{-x \cdot \eta + \delta \eta} (1 + |z|)^{-N}.$$

²we may as well write $\mathcal{D}(\mathbb{R}^n)$, right?

Given $|x| > \delta$, choose η in the direction of $x, \to \infty$. (N.B. η is a vector.)

(2) We showed the forward direction. For the reverse, regularize by $\varphi_{\varepsilon} = \varphi\left(\frac{x}{\varepsilon}\right)$.

$$|\widehat{u * \varphi_{\varepsilon}}| \lesssim |U(\lambda)(\widehat{\varphi_{\varepsilon}})| \leq U(\lambda)\varepsilon e^{\varepsilon \lambda}|$$

so Supp $(u_{\varepsilon}) \subseteq \overline{B_{\delta+\varepsilon}}$. Now continuity of * gives $\varphi_{\varepsilon} \xrightarrow{\mathcal{S}'} \delta_0 \implies u * \varphi_{\varepsilon} \xrightarrow{\mathcal{E}'} u$.

Problem: Can we take K = Supp(u) in the definition of \mathcal{E}' ?

3 Oscillatory integrals

Problem: 1. Define an oscillatory integral. (Define a phase function and space of symbols first.)

- 2. State and prove the lemma of stationary phase.
- 3. Write $I_{\Phi}(a)$ as the limit of a sequence of functions in \mathcal{D} .
- 4. Define singular support and find a set that it's included in.
- 5. Find the singular support for the solution E to the wave equation $\frac{1}{c^2}E_{tt} \Delta_x E = 0$, E(0,x) = 0, $E_t(0,x) = \delta_0(x)$.

"Prerequisite": Recall the IbP argument for: if all the derivatives of f up to degree k are L^1 , then $\hat{f} = O\left(\frac{1}{|f|^k}\right)$.

1. An oscillatory integral is denoted

$$I_{\Phi,a} = \int e^{i\Phi(x,\theta)} a(x,\theta) d\theta.$$

and is the distribution $\in \mathcal{D}'$ defined by

$$\langle I_{\Phi,a}, \varphi \rangle = \iint e^{i\Phi(x,\theta)} a(x,\theta) \varphi(x) \, dx \, d\theta$$

where

- $\Phi: X \times \mathbb{R}^k \to \mathbb{R}$ is a **phase function** (i.e., homogeneous of degree 1 in θ , smooth on $X \times \mathbb{R}^k \setminus 0$, continuous on $X \times \mathbb{R}^k$, $d\Phi \neq 0$). Example: $x \cdot \theta$.
- $a \in \text{Sym}(X, \mathbb{R}^n; N)$ is a **symbol** (i.e., a function $X \times \mathbb{R}^n \to \mathbb{R}$ with the growth condition

$$|\partial_r^{\alpha} \partial_{\theta}^{\beta} a| \le \langle \frac{\theta}{\theta} \rangle^{N-\beta}$$

Example: a polynomial in θ of degree N. (It is easy to see $\mathrm{Sym}(X,\mathbb{R}^n)$ is a graded algebra, D_x^{α} doesn't change the order, D_{θ}^{β} reduces it by $|\beta|$.)

Notes for remembering:

- (a) The domain for x does not have to be \mathbb{R}^m , it can be some $X \subseteq \mathbb{R}^m$; the domain for θ has to be \mathbb{R}^n .
- (b) Note that the integral HAS to be taken over x first because compact support of φ makes the integral converge. You cannot use Fubini to interchange limits because the integrand does not converge absolutely—it oscillates in θ .
- 2. Lemma of stationary phase (Lemma ??): Let $\Phi \in C^{\infty}(\mathbb{R})$ such that
 - $\Phi(0) = \Phi'(0) = 0$,
 - $\Phi'(\theta) \neq 0$ on $\mathbb{R} \setminus \{0\}$, and
 - $\Phi''(\theta) \neq 0$ for all θ .

Then for $\chi \in D(\mathbb{R})$ we have

$$\left| \int e^{i\lambda\Phi(\theta)} \chi(\theta) \, d\theta \right| \lesssim |\lambda|^{-\frac{1}{2}}, \quad |\lambda| \to \infty.$$

Relation to oscillatory integrals: This is NOT an OI because Φ is not homogeneous of degree 1 in θ (ex. $\Phi = \theta^2$). This shows what goes wrong: if we then integrate over λ now the integral won't converge. "We expect major contributions from points satisfying $\partial_{\theta}\Phi = 0$," so?

Proof: (1) Use a bump function to kill the bad point 0. Let ρ be bump at 0; shrink it to 0. Write

$$\chi(\theta) = \rho\left(\frac{\theta}{\delta}\right)\chi + \underbrace{\left(\rho\left(\frac{\theta}{\delta}\right)\right)\chi}_{\omega}.$$

The integral of the first part is bounded by $[\delta]$. (2) Invent L that is constant on the first term, and then IbP N times. Let

$$L = \frac{1}{i\lambda\Phi'(\theta)}\frac{d}{d\theta} \implies L* = \frac{\Phi''}{i\lambda\Phi'^2} - \frac{1}{i\lambda\Phi'}\frac{d}{d\theta} = -\frac{1}{i\lambda\Phi'}\frac{d}{d\theta} + O(\lambda^{-1}|\theta|^{-2}).$$

Iterate N times to get terms of the form

$$\sum_{\alpha+\beta=N} \lambda^{-N} \Phi'^{-N-\alpha} \frac{d^{\beta}}{d\theta^{\beta}} P_{\alpha,\beta}(\Phi'',\Phi''',\ldots),$$

 $P_{\alpha,\beta}$ polynomials (induct). Now use

- (a) $|\Phi'| \gtrsim |\theta|$, by $\Phi'' \neq 0$ (hence it doesn't change sign and has a minimum $|\cdot|$).
- (b) ∂_{θ} throws off $\frac{1}{\delta}$.
- (c) ψ is only nonzero when $|\theta| > \delta$.

Taking $(\alpha, \beta) = (N, 0), (0, N)$, get the integrand

$$\lesssim \max(\lambda^{-N}|\theta|^{-2N}, \delta^{-N}\lambda^{-N}|\theta|^{-N}) \lesssim \lambda^{-N}\delta^{-2N+1}$$

Balancing with δ , let $\delta = |\lambda|^{-\frac{1}{2}}$.

3. (Theorem ??) If Φ is a phase function and $a \in \operatorname{Sym}(X, \mathbb{R}^k; N)$ then $I_{\Phi}(a) := \lim_{\varepsilon \searrow 0} I_{\Phi,\varepsilon}(a)$ belongs to D'(X) and has order no greater than N + k + 1. Here

$$I_{\Phi,\varepsilon}(a) = \int e^{i\Phi(x,\theta)} a(x,\theta) \chi(\varepsilon\theta) d\theta$$

where $\chi \in D(\mathbb{R}^n)$ is fixed with $\chi = 1$ on $|\theta| < 1$.

(a) Find a differential operator with $L^*e^{i\Phi}=e^{i\Phi}$ and iterate it. Baby example:

$$\iint e^{i\theta x} f \, dx \, d\theta = -\iint e^{i\theta x} \frac{1}{i\theta} f' \, dx \, d\theta = -\int \frac{1}{i\theta} \widehat{f'}(\theta) \, d\theta = \int \widehat{f}(\theta) \, d\theta = 2\pi f(0)$$

so $I_{\theta x}(1) = 2\pi \delta_0$.

(Lemma ??) Find a differential operator L of the form

$$L = \sum_{j=1}^{k} a_j(x,\theta) \frac{\partial}{\partial \theta_j} + \sum_{j=1}^{n} b_j(x,\theta) \frac{\partial}{\partial x_j} + c(x,\theta)$$

such that $L^*e^{i\Phi} = e^{i\Phi}$. We want it to be a "differential operator on $\mathrm{Sym}(X,\mathbb{R}^k)$ of some order." (We can think of differential operators on $\mathrm{Sym}(X,\mathbb{R}^k)$ as $\mathrm{Sym}(X,\mathbb{R}^k)[\partial_{x_j},\partial_{\theta_j}]$ where ∂_x are order 0 and ∂_θ are order -1.)

We are given the condition $d\Phi \neq 0$ which we use. Note that $\Phi_{\theta_j} \in \operatorname{Sym}(X, \mathbb{R}^k; 0)$, $\Phi_{x_j} \in \operatorname{Sym}(X, \mathbb{R}^k; 1)$. In the below, the purple is what we get from $\partial_{\theta_j}, \partial_{x_j}$. The rest is the a_j and b_j . The underbrace is the order of the differential operator; the ones underneath the purple represent the order of $\partial_{\theta_j}, \partial_{x_j}$.

$$\widetilde{L}\underbrace{\frac{1}{|\theta|^2|\underbrace{|\nabla_{\theta}\Phi|^2} + \underbrace{|\nabla_x\Phi|^2}_2}}_{2} \left(\underbrace{\frac{|\theta|^2}{2}\underbrace{\sum(-i\Phi_{\theta_j})}_{\text{(from diff.)}}\underbrace{\frac{(i\Phi_{\theta_j})e^{i\Phi}}{(\text{from diff.)}}}_{\text{(from diff.)}} + \underbrace{\sum(-i\Phi_{x_j})}_{\text{(from diff.)}}\underbrace{\frac{(i\Phi_{x_j})}{(\text{from diff.)}}}_{\text{(from diff.)}}\right)$$

To fix blowup of the denominator near 0, use instead $L = (1 - \rho)\widetilde{L} + \rho$ for a bump function ρ . (Behavior near 0 doesn't affect the order.)

(b) We have

$$I_{\Phi,\varepsilon}(a) = \iint e^{i\Phi(x,\theta)} a(x,\theta) \chi(\varepsilon\theta) \varphi(x) \, dx \, d\theta$$

. Put in L^M , integrate by parts, noting that since L decrease order by 1, taking M = N + k + 1 suffices (as a has order N, $\chi(\varepsilon\theta)\varphi(x)$ has order 0 uniformly in ε (easy), and $\int_{\mathbb{R}^k} \langle \theta \rangle^{-k-1} d\theta$ converges).

4. (Definition ??) The **singular support** of a distribution is defined to be the complement of the union of all the open sets on which the distribution is smooth:

$$\operatorname{sing} \operatorname{supp}(u) = \left(\bigcup \{U \text{ open } : u \text{ smooth on } U\}\right)^c.$$

(Theorem ??) If Φ is a phase function and $a \in \text{Sym}(X, \mathbb{R}^k; N)$ then sing supp $I_{\Phi}(a) \subseteq M(\Phi)$ where

$$M(\Phi) = \{x : \nabla_{\theta} \Phi(x, \theta) = 0 \text{ for some } \theta \in (\mathbb{R}^k \setminus \{0\}) \cap \text{Supp}[a(x, \theta)]\}$$

(a) Lemma ??: If Φ is a phase function and $a \in \text{Sym}(X, \mathbb{R}^k; N)$ then the function

$$x \mapsto \int e^{i\Phi(x,\theta)} a(x,\theta) \rho(\theta) d\theta$$

is smooth for any $\rho \in \mathcal{D}(\mathbb{R}^k)$.

- (b) Write $a = a\rho + a(1 \rho)$, so we may assume a = 0 in a neighborhood of x = 0.
- (c) Take x_0 such that $|\nabla_{\theta}\Phi(x_0,\theta)| \neq 0$, and a neighborhood N where it's bounded below. We need to show that for $\operatorname{Supp}(\psi) \in N$ that $\psi I_{\Phi}(a)$ is smooth.
- (d) Find $Le^{i\Phi} = e^{i\Phi}$. We can take $L = -i\frac{1}{|\nabla_{\theta}\Phi|^2}\Phi_{\theta}\cdot\nabla_{\theta}$ (We're using that $|\nabla_{\theta}\Phi(x_0,\theta)| \gtrsim 1$ here, so L can be chosen to not involve x.) Write $I = \lim_{\varepsilon \to 0^+} I_{\Phi,\varepsilon}(a)$ and IbP M times. Choose M large to make the integral absolutely convergent.
- 5. Take a Fourier transform in x to obtain an ODE in t. Take the Fourier inverse and separate out behavior near 0 to get