Databázové systémy Přednáška 4. Relační algebra

Jan Laštovička

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI

Obsah

1 Relační algebra

2 Relační výraz SELECT

3 Relační dělen

Those who are enamored of practice without theory are like a pilot who goes into a ship without rudder or compass and never has any certainty where he is going. Practice should always be based upon a sound knowledge of theory.

Leonardo da Vinci (1452–1519)

Operace:

sjednocení

- 1 sjednocení
- 2 průnik

- 1 sjednocení
- 2 průnik
- 3 rozdíl

- 1 sjednocení
- 2 průnik
- 3 rozdíl
- 4 restrikce

- 1 sjednocení
- 2 průnik
- 3 rozdíl
- 4 restrikce
- 5 projekce

- 1 sjednocení
- 2 průnik
- 3 rozdíl
- 4 restrikce
- 5 projekce
- 6 spojení

- 1 sjednocení
- 2 průnik
- 3 rozdíl
- 4 restrikce
- 5 projekce
- 6 spojení
- 7 přejmenování atributů

Operace:

- 1 sjednocení
- 2 průnik
- 3 rozdíl
- 4 restrikce
- 5 projekce
- 6 spojení
- 7 přejmenování atributů

E. F. Codd (1970):

- bez přejmenování
- kartézský součin
- relační rozdíl

- relace
- relační proměnné
- relační algebra

- relace
- relační proměnné
- relační algebra

SQL:

- vychází z relačního modelu
- porušuje relační model

- relace
- relační proměnné
- relační algebra

SQL:

- vychází z relačního modelu
- porušuje relační model

Christopher J. Date a Hugh Darwen:

- The Third Manifesto (1995)
- specifikace relačního jazyka D
- Tutorial D
- Rel

- dotazovací jazyk
- vycházející z predikátové logiky

- dotazovací jazyk
- vycházející z predikátové logiky

Dotazy:

- relační symboly
- logické spojky
- kvantifikátory (existenční a obecný)

- dotazovací jazyk
- vycházející z predikátové logiky

Dotazy:

- relační symboly
- logické spojky
- kvantifikátory (existenční a obecný)

Druhy:

- *n*-ticový relační kalkul
- doménový relační kalkul

- dotazovací jazyk
- vycházející z predikátové logiky

Dotazy:

- relační symboly
- logické spojky
- kvantifikátory (existenční a obecný)

Druhy:

- *n*-ticový relační kalkul
- doménový relační kalkul

Stejná vyjadřovací síla jako relační algebra

Ekvivalence relačních výrazů

Ekvivalence relačních výrazů

Rovnost relací:

- 1 stejné záhlaví
- stejné tělo

Ekvivalence relačních výrazů

Rovnost relací:

- 1 stejné záhlaví
- 2 stejné tělo

 v_1, v_2 : výrazy

ekvivalence v_1, v_2 :

lacksquare hodnota v_1 vždy rovna hodnotě v_2

 v_1, v_2, v_3 : relační výrazy stejného typu

 v_1,v_2,v_3 : relační výrazy stejného typu

Jsou ekvivalentní:

- lacktriangledown v_1 UNION (v_2 UNION v_3)
- lacktriangle (v_1 UNION v_2) UNION v_3

 v_1, v_2, v_3 : relační výrazy stejného typu

Jsou ekvivalentní:

- $lacktriangledown v_1$ UNION (v_2 UNION v_3)
- lacktriangle (v_1 UNION v_2) UNION v_3

Závorky můžeme vynechat:

 v_1 UNION v_2 UNION v_3

 v_1, v_2, v_3 : relační výrazy stejného typu

Jsou ekvivalentní:

- $lacktriangledown v_1$ UNION (v_2 UNION v_3)
- lacktriangle (v_1 UNION v_2) UNION v_3

Závorky můžeme vynechat:

 v_1 UNION v_2 UNION v_3

Podobně:

 v_1 INTERSECT v_2 INTERSECT v_3

 v_1, v_2 : výrazy stejného typu

 v_1,v_2 : výrazy stejného typu

Ekvivalentní:

- lacksquare v_1 INTERSECT v_2
- lacktriangledown v_1 except v_2)

 v_1, v_2 : výrazy stejného typu

Ekvivalentní:

- lacksquare v_1 INTERSECT v_2
- lacktriangledown v_1 EXCEPT v_2)

Operaci průniku můžeme vyjádřit pomocí operace rozdílu.

Ekvivalence podmínek

Ekvivalence podmínek

 c_1, c_2 : podmínky nad A_1, \ldots, A_n

Ekvivalence podmínek

 c_1, c_2 : podmínky nad A_1, \ldots, A_n

Ekvivalentní c_1, c_2 :

pro každou n-tici t nad A_1, \ldots, A_n :

lacktriangle podmínka c_1 je v t splněna, právě když podmínka c_2 je v t splněna

 c_1, c_2, c_3 : podmínky nad A_1, \ldots, A_n

 c_1 , c_2 , c_3 : podmínky nad A_1, \ldots, A_n

Ekvivalentní:

- lacksquare c_1 OR (c_2 OR c_3)
- lacksquare (c_1 OR c_2) OR c_3

 c_1 , c_2 , c_3 : podmínky nad A_1, \ldots, A_n

Ekvivalentní:

- lacksquare c_1 OR (c_2 OR c_3)
- lacksquare (c_1 OR c_2) OR c_3

Vynecháváme závorky:

 c_1 OR c_2 OR c_3

 c_1, c_2, c_3 : podmínky nad A_1, \ldots, A_n

Ekvivalentní:

- lacksquare c_1 OR (c_2 OR c_3)
- lacksquare (c_1 OR c_2) OR c_3

Vynecháváme závorky:

 c_1 OR c_2 OR c_3

Podobně:

 c_1 AND c_2 AND c_3

Tweedledum a Tweedledee (Tydliták a Tydlitek)

Tweedledum a Tweedledee (Tydliták a Tydlitek)

Tweedledum a Tweedledee (Tydliták a Tydlitek)

Za zrcadlem a co tam Alenka našla od Lewise Carrolla.

∅...záhlaví

 $\emptyset \dots$ záhlaví

n-tice se záhlavím \emptyset :

 $\emptyset \dots$ záhlaví

n-tice se záhlavím \emptyset :

 \blacksquare \emptyset (t_0)

∅. . . záhlaví

n-tice se záhlavím \emptyset :

 \blacksquare \emptyset (t_0)

Relace se záhlavím Ø:

∅. . . záhlaví

n-tice se záhlavím \emptyset :

 \blacksquare \emptyset (t_0)

Relace se záhlavím Ø:

prázdná relace (DUM)

∅. . . záhlaví

n-tice se záhlavím \emptyset :

 \blacksquare \emptyset (t_0)

Relace se záhlavím \emptyset :

- prázdná relace (DUM)
- lacktriangle relace s tělem $\{t_0\}$ (DEE)

∅. . . záhlaví

n-tice se záhlavím \emptyset :

 \blacksquare \emptyset (t_0)

Relace se záhlavím \emptyset :

- prázdná relace (DUM)
- \blacksquare relace s tělem $\{t_0\}$ (DEE)

DUM:

- Tweedledum
- nepravda

DEE:

- Tweedledee
- pravda

∅. . . záhlaví

n-tice se záhlavím \emptyset :

 \blacksquare \emptyset (t_0)

Relace se záhlavím \emptyset :

- prázdná relace (DUM)
- \blacksquare relace s tělem $\{t_0\}$ (DEE)

DUM:

- Tweedledum
- nepravda

DEE:

- Tweedledee
- pravda

V SQL neexistují

Obsah

1 Relační algebra

Relační výraz SELECT

3 Relační dělen


```
r_1,\dots,r_n: popisy vstupních relací (n>1) a_1,\dots,a_m: popisy výstupních atributů (m>1) c: podmínka nad vstupními atributy (SELECT DISTINCT a_1, ..., a_m FROM r_1, ..., r_n WHERE c) ... relační výraz
```



```
r_1,\dots,r_n: popisy vstupních relací (n>1) a_1,\dots,a_m: popisy výstupních atributů (m>1) c: podmínka nad vstupními atributy (SELECT DISTINCT a_1, ..., a_m FROM r_1, ..., r_n WHERE c) ... relační výraz
```

Popis vstupní relace:

- relace (vstupní relace)
- jméno relace
- typ relace


```
r_1,\dots,r_n: popisy vstupních relací (n>1) a_1,\dots,a_m: popisy výstupních atributů (m>1) c: podmínka nad vstupními atributy (SELECT DISTINCT a_1, ..., a_m FROM r_1, ..., r_n WHERE c) ... relační výraz
```

Popis vstupní relace:

- relace (vstupní relace)
- jméno relace
- typ relace

Jména vstupních relací: jedinečná


```
r_1,\dots,r_n: popisy vstupních relací (n>1) a_1,\dots,a_m: popisy výstupních atributů (m>1) c: podmínka (SELECT DISTINCT a_1, ..., a_m FROM r_1, ..., r_n WHERE c) ... relační výraz
```



```
r_1,\dots,r_n: popisy vstupních relací (n>1) a_1,\dots,a_m: popisy výstupních atributů (m>1) c: podmínka (SELECT DISTINCT a_1, ..., a_m FROM r_1, ..., r_n WHERE c) ... relační výraz
```

R: jméno vstupní relace

A: atribut v záhlaví R

R.A: vstupní atribut


```
r_1,\dots,r_n: popisy vstupních relací (n>1) a_1,\dots,a_m: popisy výstupních atributů (m>1) c: podmínka (SELECT DISTINCT a_1, ..., a_m FROM r_1, ..., r_n WHERE c) ... relační výraz
```

R: jméno vstupní relace

A: atribut v záhlaví R

R.A: vstupní atribut

Popis výstupního atributu:

- vstupní atribut
- atribut (výstupní atribut)


```
r_1,\dots,r_n: popisy vstupních relací (n>1) a_1,\dots,a_m: popisy výstupních atributů (m>1) c: podmínka (SELECT DISTINCT a_1, ..., a_m FROM r_1, ..., r_n WHERE c) ... relační výraz
```

R: iméno vstupní relace

A: atribut v záhlaví R

R.A: vstupní atribut

Popis výstupního atributu:

- vstupní atribut
- atribut (výstupní atribut)

Výstupní atributy: jedinečné

v: relační výraz

R: jméno relace

v: relační výraz R: jméno relace

v AS R

... popis vstupní relace:

lacktriangleright relace: hodnota v

lacksquare jméno: R

 $\quad \blacksquare \ \, \mathsf{typ} \colon \mathsf{typ} \,\, v$


```
v: relační výraz R: jméno relace
```

```
v AS R
```

... popis vstupní relace:

 \blacksquare relace: hodnota v

lacksquare jméno: R

 \blacksquare typ: typ v

Například:

```
( TABLE child ) AS ch
```


R.A: vstupní atribut

B: atribut

R.A: vstupní atribut

B: atribut

R.A AS B

... popis výstupního atributu:

- vstupní atribut *R*.*A*
- lacktriangle výstupní atribut: B

R.A: vstupní atribut

B: atribut

R.A AS B

- ... popis výstupního atributu:
- vstupní atribut *R*.*A*
- výstupní atribut: B

Například:

ch.name AS child_name

Příklad výrazu SELECT

parent	parent_name	child_name
	Pavel	Anna
	Monika	Bert
	Petr	Bert
	Marie	Daniela

name	age
Anna	3
Bert	4
Cyril	4
	Anna Bert

SELECT DISTINCT p.parent_name AS parent_name, ch.age AS child_age
FROM (TABLE parent) AS p, (TABLE child) AS ch
WHERE p.child_name = ch.name


```
( SELECT DISTINCT a_1, ..., a_m FROM r_1, ..., r_n WHERE c )
```



```
( SELECT DISTINCT a_1, ..., a_m FROM r_1, ..., r_n WHERE c )
```

1 Získání vstupních relací: r_1, \ldots, r_n


```
( SELECT DISTINCT a_1, ..., a_m FROM r_1, ..., r_n WHERE c )
```

- **1** Získání vstupních relací: r_1, \ldots, r_n
- 2 Přejmenování každého atributu A_j ve vstupní relaci r_i na $R_i.A_j$: r_1',\ldots,r_n'


```
( SELECT DISTINCT a_1, ..., a_m FROM r_1, ..., r_n WHERE c )
```

- **1** Získání vstupních relací: r_1, \ldots, r_n
- 2 Přejmenování každého atributu A_j ve vstupní relaci r_i na $R_i . A_j : r_1', \ldots, r_n'$
- \blacksquare Spojení relací r'_1, \ldots, r'_n : s_1


```
( SELECT DISTINCT a_1, ..., a_m FROM r_1, ..., r_n WHERE c )
```

- **1** Získání vstupních relací: r_1, \ldots, r_n
- **2** Přejmenování každého atributu A_j ve vstupní relaci r_i na R_i . A_j : r_1' , . . . , r_n'
- 3 Spojení relací r'_1, \ldots, r'_n : s_1
- 4 Restrikce relace s_1 vzhledem k podmínce c: s_2


```
( SELECT DISTINCT a_1, ..., a_m FROM r_1, ..., r_n WHERE c )
```

- **1** Získání vstupních relací: r_1, \ldots, r_n
- 2 Přejmenování každého atributu A_j ve vstupní relaci r_i na $R_i . A_j : r_1', \ldots, r_n'$
- f 3 Spojení relací r_1',\ldots,r_n' : s_1
- 4 Restrikce relace s_1 vzhledem k podmínce c: s_2
- f 5 Projekce relace s_2 na vstupní atributy uvedené v popisech výstupních atributů: s_3


```
( SELECT DISTINCT a_1, ..., a_m FROM r_1, ..., r_n WHERE c )
```

- **1** Získání vstupních relací: r_1, \ldots, r_n
- 2 Přejmenování každého atributu A_j ve vstupní relaci r_i na $R_i . A_j : r'_1, \ldots, r'_n$
- \blacksquare Spojení relací r'_1, \ldots, r'_n : s_1
- 4 Restrikce relace s_1 vzhledem k podmínce c: s_2
- f 5 Projekce relace s_2 na vstupní atributy uvedené v popisech výstupních atributů: s_3
- 6 Přejmenování vstupních atributů v záhlaví s_3 na výstupní atributy: s_4

Výstupní relace: s_4


```
( SELECT DISTINCT a_1, ..., a_m FROM r_1, ..., r_n WHERE c )
```

- **1** Získání vstupních relací: r_1, \ldots, r_n
- 2 Přejmenování každého atributu A_j ve vstupní relaci r_i na $R_i.A_j$: r_1',\ldots,r_n'
- \blacksquare Spojení relací r'_1, \ldots, r'_n : s_1
- 4 Restrikce relace s_1 vzhledem k podmínce c: s_2
- f 5 Projekce relace s_2 na vstupní atributy uvedené v popisech výstupních atributů: s_3
- f 6 Přejmenování vstupních atributů v záhlaví s_3 na výstupní atributy: s_4

Výstupní relace: s_4

- používá pouze operace relační algebry
- lze chápat jako zkratku

Vyhodnocení příkladu výrazu SELECT

parent

parent_name	child_name	
Pavel	Anna	
Monika	Bert	
Petr	Bert	
Marie	Daniela	

child

age	name
. 3	Anna
4	Bert
1 4	Cyril

#

Vyhodnocení příkladu výrazu SELECT

parent

	parent_name	child_name	
Pavel		Anna	
Monika		Bert	
	Petr	Bert	
	Marie	Daniela	

child name		age
	Anna	3
	Bert	4
	Cyril	4

SELECT DISTINCT p.parent_name AS parent_name, ch.age AS child_age
FROM (TABLE parent) AS p, (TABLE child) AS ch
WHERE p.child_name = ch.name;

Vyhodnocení příkladu výrazu SELECT

parent

parent_name	child_name	
Pavel	Anna	
Monika	Bert	
Petr	Bert	
Marie	Daniela	

child	name	age
	Anna	3
	Bert	4
	Cyril	4

SELECT DISTINCT p.parent_name AS parent_name, ch.age AS child_age
FROM (TABLE parent) AS p, (TABLE child) AS ch
WHERE p.child_name = ch.name;

<pre>parent_name</pre>		child_age
	+-	
Pavel		3
Petr		4
Monika		4
(3 rows)		

Příklad vyhodnocení: krok jedna

Získáme vstupní relace

Příklad vyhodnocení: krok jedna

Získáme vstupní relace

■ Vstupní relace r_1 jménem p:

parent_name	child_name
Pavel	Anna
Monika	Bert
Petr	Bert
Marie	Daniela

■ Vstupní relace r_2 jménem ch:

name	age
Anna	3
Bert	4
Cyril	4

Příklad vyhodnocení: krok dva

Přejmenování atributů vstupních relací na vstupní atributy

Příklad vyhodnocení: krok dva

Přejmenování atributů vstupních relací na vstupní atributy

Relace r'_1 :

p.parent_name	p.child_name	
Pavel	Anna	
Monika	Bert	
Petr	Bert	
Marie	Daniela	

■ Relace r_2' :

ch.name	ch.age
Anna	3
Bert	4
Cyril	4

Příklad vyhodnocení: krok tři

Spojení relací r'_1 a r'_2 .

Příklad vyhodnocení: krok tři

Spojení relací r_1^\prime a r_2^\prime .

Výsledek s1:

Vysicacit of.				
p.parent_name	p.child_name	ch.name	ch.age	
Pavel	Anna	Anna	3	
Monika	Bert	Anna	3	
Petr	Bert	Anna	3	
Marie	Daniela	Anna	3	
Pavel	Anna	Bert	4	
Monika	Bert	Bert	4	
Petr	Bert	Bert	4	
Marie	Daniela	Bert	4	
Pavel	Anna	Cyril	4	
Monika	Bert	Cyril	4	
Petr	Bert	Cyril	4	
Marie	Daniela	Cyril	4	

Příklad vyhodnocení: krok čtyři

Restrikce s_1 vzhledem k podmínce p.child_name = ch.name

Příklad vyhodnocení: krok čtyři

Restrikce s_1 vzhledem k podmínce p.child_name = ch.name Výsledek s_2 :

p.parent_name	p.child_name	ch.name	ch.age
Pavel	Anna	Anna	3
Monika	Bert	Bert	4
Petr	Bert	Bert	4

Příklad vyhodnocení: krok pět

Příklad vyhodnocení: krok pět

Projekce relace s_2 na p.parent_name a ch.age Výsledek s_3 :

p.parent_name	ch.age	
Pavel	3	
Monika	4	
Petr	4	

Příklad vyhodnocení: krok šest

Přejmenování atributů p.parent_name a ch.age v záhlaví s_3 na parent_name a child_age

Příklad vyhodnocení: krok šest

Přejmenování atributů p.parent_name a ch.age v záhlaví s_3 na parent_name a child_age

Výsledek s4:

child_age	
3	
4	
4	

Příklad za použití relační algebry

Příklad za použití relační algebry

Příklad za použití relační algebry


```
# SELECT DISTINCT parent name, child age
  FROM (
         SELECT *
         FROM ( TABLE parent ) AS t1
         NATURAL JOIN (
                         SELECT name AS child_name, age AS child_age
                        FROM ( TABLE child ) AS t
                      ) AS t2
       ) AS t;
 parent name | child age
Pavel
 Monika
 Petr
 (3 rows)
```


R: relační proměnná

R: relační proměnná

R

... popis vstupní relace:

■ vstupní relace: hodnota R

lacksquare jméno: R

lacktriangle typ: typ proměnné R

R: relační proměnná

R

... popis vstupní relace:

■ vstupní relace: hodnota R

lacksquare jméno: R

lacktriangle typ: typ proměnné R

Například: child

R: relační proměnná

```
R ... popis vstupní relace:

• vstupní relace: hodnota R

• jméno: R

• typ: typ proměnné R
```

Například: child

Zjednodušení ukázky:

R: relační proměnná

S: jméno relace

R: relační proměnnáS: jméno relace

R AS S

... popis vstupní relace:

■ vstupní relace: hodnota R

lacksquare jméno: S

 $\ \ \, \mathbf{typ} \colon \mathsf{typ} \ \mathsf{promenne} \ R$

R: relační proměnná S: iméno relace

R AS S

... popis vstupní relace:

■ vstupní relace: hodnota R

lacksquare jméno: S

lacktriangle typ: typ proměnné R

Například: parent AS p

R: relační proměnná S: iméno relace

```
R AS S
```

... popis vstupní relace:

■ vstupní relace: hodnota R

 \blacksquare jméno: S

■ typ: typ proměnné R

Například: parent AS p

Zjednodušení ukázky:

```
SELECT DISTINCT p.parent_name AS parent_name, ch.age AS child_age
FROM parent AS p, child AS ch
WHERE p.child_name = ch.name;
```


R.A: vstupní atribut

R.A: vstupní atribut

R.A

- ... popis výstupního atributu:
- vstupní atribut *R*.*A*
- lacksquare výstupní atribut A

R.A: vstupní atribut

R.A

- ... popis výstupního atributu:
 - vstupní atribut R.A
- výstupní atribut A

Například: p.parent_name

R.A: vstupní atribut

R.A

- ... popis výstupního atributu:
- vstupní atribut R.A
- výstupní atribut A

Například: p.parent_name

Zjednodušení ukázky:

```
SELECT DISTINCT p.parent_name, ch.age AS child_age
FROM parent AS p, child AS ch
WHERE p.child_name = ch.name;
```


R.A:

- vstupní atribut
- lacktriangle neexistuje jiný vstupní atribut $R' \cdot A$

R.A:

- vstupní atribut
- lacktriangle neexistuje jiný vstupní atribut $R' \cdot A$

Místo R.A můžeme psát jen A

R.A:

- vstupní atribut
- lacktriangle neexistuje jiný vstupní atribut R'.A

Místo R.A můžeme psát jen A

Zjednodušení ukázky:

```
SELECT DISTINCT parent_name, age AS child_age
FROM parent, child
WHERE child_name = name;
```

Popis konstantní vstupní relace

Popis konstantní vstupní relace


```
r: neprázdná relace nad A_1,\ldots,A_n \{t_1,\ldots,t_m\}: tělo r v_{ij}: hodnotapřiřazená n-ticí t_j atributu A_i ( 1\leq i\leq n a 1\leq j\leq m) R: jméno relace
```

Popis konstantní vstupní relace

r: neprázdná relace nad A_1, \ldots, A_n


```
\begin{array}{l} \{t_1,\ldots,t_m\}\colon \mathsf{t\check{e}lo}\ r\\ v_{ij}\colon \mathsf{hodnotap\check{r}i\check{r}azen\acute{a}}\ n\text{-tic\'i}\ t_j\ \mathsf{atributu}\ A_i\ \big(\ 1\leq i\leq n\ \mathsf{a}\ 1\leq j\leq m\big)\\ R\colon \mathsf{jm\acute{e}no}\ \mathsf{relace}\\ & (\ \mathsf{VALUES}\ (\ v_{11},\ \ldots,\ v_{1n}\ )\ ,\\ & \vdots\\ & (\ v_{m1},\ \ldots,\ v_{mn}\ )\ )\ \mathsf{AS}\ R\ (\ A_1,\ \ldots,\ A_n\ )\ ) \end{array}
```

- jméno: R
- typ: $\{A_1, ..., A_n\}$

... popis vstupní relace:vstupní relace: r

Ukázka

#

Ukázka


```
# SELECT DISTINCT age
FROM child, ( VALUES ( 'Anna' ), ( 'Bert' ) ) AS const ( val )
WHERE name = val;
```

Ukázka


```
# SELECT DISTINCT age
  FROM child, ( VALUES ( 'Anna' ), ( 'Bert' ) ) AS const ( val )
  WHERE name = val;

age
-----
3
4
(2 rows)
```


*: zkratka za všechny vstupní atributy

*: zkratka za všechny vstupní atributy Vstupní relace musí mít atributy s jedinečnými jmény.

*: zkratka za všechny vstupní atributy

Vstupní relace musí mít atributy s jedinečnými jmény.

Například:

#

*: zkratka za všechny vstupní atributy Vstupní relace musí mít atributy s jedinečnými jmény.

Například:

```
# SELECT DISTINCT *
FROM parent, child
WHERE child name = name;
```


*: zkratka za všechny vstupní atributy

Vstupní relace musí mít atributy s jedinečnými jmény.

Například:

```
# SELECT DISTINCT *
 FROM parent, child
 WHERE child name = name;
parent name | child name | name | age
           | Bert | Bert |
Petr
Monika
           | Bert | Bert | 4
Pavel
                      | Anna |
           l Anna
(3 rows)
```


*: zkratka za všechny vstupní atributy

Vstupní relace musí mít atributy s jedinečnými jmény.

Například:

```
# SELECT DISTINCT *
 FROM parent, child
 WHERE child name = name;
parent name | child name | name | age
 -----
Petr | Bert | Bert | 4
Monika | Bert | Bert | 4
Pavel | Anna | Anna |
(3 rows)
```

^{* ...}parent.parent_name, parent.child_name, child.name, child.age

U

Výraz SELECT: rozdělen klauzulí:

Výraz SELECT: rozdělen klauzulí:

■ Klauzule SELECT:

SELECT DISTINCT a_1 , ..., a_m

Výraz SELECT: rozdělen klauzulí:

■ Klauzule SELECT:

SELECT DISTINCT
$$a_1$$
, ..., a_m

■ Klauzule FROM:

```
FROM r_1, ..., r_n
```


Výraz SELECT: rozdělen klauzulí:

Klauzule SELECT:

SELECT DISTINCT a_1 , ..., a_m

Klauzule FROM:

FROM r_1 , ..., r_n

■ Klauzule WHERE (nepovinná):

WHERE of

Výraz SELECT: rozdělen klauzulí:

■ Klauzule SELECT:

SELECT DISTINCT
$$a_1$$
, ..., a_m

■ Klauzule FROM:

FROM
$$r_1$$
, ..., r_n

■ Klauzule WHERE (nepovinná):

```
WHERE o
```

Například bez klauzule WHERE:

#

Výraz SELECT: rozdělen klauzulí:

Klauzule SELECT:

```
SELECT DISTINCT a_1, ..., a_m
```

■ Klauzule FROM:

```
FROM r_1, ..., r_n
```

■ Klauzule WHERE (nepovinná):

WHERE 6

Například bez klauzule WHERE:

SELECT DISTINCT name FROM child;

Výraz SELECT: rozdělen *klauzulí*:

Klauzule SELECT:

```
SELECT DISTINCT a_1, ..., a_m
```

Klauzule FROM:

```
FROM r_1, ..., r_n
```

■ Klauzule WHERE (nepovinná):

```
WHERE C
```

Například bez klauzule WHERE:

```
# SELECT DISTINCT name FROM child;
```

```
name
```

Anna

Bert

Cyril

(3 rows)

Obsah

1 Relační algebra

2 Relační výraz SELECT

3 Relační dělení

Motivace

completed

student	task
Anna	DISK1
Anna	DISK2
Bert	DISK1
Bert	PAPR1
Cyril	DISK2
Cyril	DISK1
Cyril	PAPR1

disk_course

task
DISK1
DISK2

Kteří studenti splnili všechny předměty z diskrétních struktur?

 t_1 : n-tice nad $A_1, \ldots A_n$ t_2 : n-tice nad B_1, \ldots, B_m $\{A_1, \ldots A_n\} \cap \{B_1, \ldots, B_m\} = \emptyset$

 t_1 : n-tice nad $A_1, \ldots A_n$ t_2 : n-tice nad B_1, \ldots, B_m $\{A_1, \ldots A_n\} \cap \{B_1, \ldots, B_m\} = \emptyset$

 $t_1 \cup t_2$: *n*-tice nad $A_1, \ldots A_n, B_1 \ldots, B_m$

 t_1 : n-tice nad $A_1, \ldots A_n$ t_2 : n-tice nad B_1, \ldots, B_m $\{A_1, \ldots A_n\} \cap \{B_1, \ldots, B_m\} = \emptyset$

 $t_1 \cup t_2$: *n*-tice nad $A_1, \ldots A_n, B_1 \ldots, B_m$

 r_1 : relace nad A_1, \ldots, A_n

 r_2 : relace nad A_m, \ldots, A_n ($1 < m \le n$)


```
t_1: n-tice nad A_1, \ldots A_n

t_2: n-tice nad B_1, \ldots, B_m

\{A_1, \ldots A_n\} \cap \{B_1, \ldots, B_m\} = \emptyset
```

 $t_1 \cup t_2$: *n*-tice nad $A_1, \ldots A_n, B_1, \ldots, B_m$

 r_1 : relace nad A_1, \ldots, A_n r_2 : relace nad A_m, \ldots, A_n $(1 < m \le n)$

r':

- \blacksquare relace nad A_1, \ldots, A_{m-1}
- tělo obsahuje všechny n-tice t' nad A_1, \ldots, A_{m-1} : Pro každou n-tici t_2 v těle r_2 je $t' \cup t_2$ v těle r_1 .
- lacksquare podíl r_1 a r_2

Ukázka relačního dělení

1	student	task
	Anna	DISK1
	Anna	DISK2
	Bert	DISK1
	Bert	PAPR1
	Cyril	DISK2
	Cyril	DISK1
	Cyril	PAPR1

 r_2 task DISK1 DISK2

 r_1 děleno r_2 :

Ukázka relačního dělení

1	student	task
	Anna	DISK1
	Anna	DISK2
	Bert	DISK1
	Bert	PAPR1
	Cyril	DISK2
	Cyril	DISK1
	Cyril	PAPR1

 r_2 task DISK1 DISK2

Vyjádření relačního dělení

Demonstrujeme na ukázce:

completed

student	task
Anna	DISK1
Anna	DISK2
Bert	DISK1
Bert	PAPR1
Cyril	DISK2
Cyril	DISK1
Cyril	PAPR1

disk_course

task
DISK1
DISK2

 r_1 : hodnota proměnné completed

 r_2 : hodnota proměnné disk_course

n = m = 2

 $r_1\dots$ relace nad student a task

 r_2 ...relace nad task

 $A_1 = \mathtt{student}$

 $A_2 = \mathsf{task}$

Relační dělení: krok jedna

Kartézský součin všech projekcí r_1 na atribut A_i $(1 \le i \le m-1)$ a relace r_2 :

```
# SELECT *
 FROM (SELECT DISTINCT student FROM completed) AS t1
 NATURAL JOIN (TABLE disk course) AS t2;
student | task
-----
        | DISK1
Anna
Bert | DISK1
Cyril | DISK1
Anna | DISK2
Bert | DISK2
Cyril
        | DISK2
(6 rows)
```

Relace s_1 : student mohl splnit předmět z kurzu diskrétních struktur

Relační dělení: krok dva


```
Rozdíl s_1 a r_2:
 # ( SELECT *
     FROM (SELECT DISTINCT student FROM completed) AS t1
     NATURAL JOIN (TABLE disk_course) AS t2 )
     EXCEPT
   ( TABLE completed );
  student | task
 -----
         I DISK2
 Bert
 (1 row)
```

Relace s2: Student nesplnil předmět z diskrétních struktur

Relační dělení: krok tři


```
Projekce s_2 na A_1, \ldots, A_{m-1}:
 # SELECT DISTINCT student
   FROM (
           ( SELECT *
             FROM ( SELECT DISTINCT student FROM completed ) AS t1
             NATURAL JOIN (TABLE disk_course) AS t2 )
             EXCEPT
           ( TABLE completed )
         ) AS t:
  student
  Bert.
 (1 row)
```

Relace s_3 : Student nesplnil aspoň jeden předmět z diskrétních struktur

Relační dělení: krok čtyři


```
Rozdíl projekce r_1 na A_1, \ldots, A_{m-1} a s_3:
 # ( SELECT DISTINCT student FROM completed )
     EXCEPT
   ( SELECT DISTINCT student
     FROM (
             ( SELECT *
               FROM ( SELECT DISTINCT student FROM completed ) AS t1
               NATURAL JOIN (TABLE disk course) AS t2 )
               EXCEPT
             ( TABLE completed )
           ) AS t );
  student
  Anna
  Cyril
 (2 rows)
```


 \dots lze vyjádřit operacemi relační algebry