WO 2005/041329 PCT/EP2003/010821

9

CLAIMS

- 1. Solid oxide fuel cell including a cathode, an anode and at least an electrolyte membrane disposed between said anode and said cathode, wherein said anode comprises a ceramic containing at least one of cobalt and iron, said ceramic being mixed with doped ceria.
- 2. Solid oxide fuel cell according to claim 1 wherein the ceramic is a perovskite structure or a perovskite-related structure.
- 3. Solid oxide fuel cell according to claim 1 wherein the ceramic contains cobalt and iron.
- 4. Solid oxide fuel cell according to claim 1 wherein the ceramic has a formula $M_{2-x}Sr_xFe_{2-y}Co_yO_{5\pm\delta}$ wherein M is Ca or a rare earth element; x and y are independently equal to a value comprised between 0 and 2, extremes included, and δ is from stoichiometry

10

15

20

25

30

- 5. Solid oxide fuel cell according to claim 1 wherein the ceramic has a formula $M_xSr_{1-x}Fe_{1.5-y}Co_yO_{3+\delta}$ wherein M is Ca or a rare earth element; wherein x and y are independently equal to a value comprised between 0 and 0.7, extremes included, and δ is from stoichiometry.
- 6. Solid oxide fuel cell according to claim 5 wherein the ceramic is $La_{0.8}Sr_{0.2}FeO_{3.}$
- 7. Solid oxide fuel cell according to claim 1 wherein the ceramic is a lanthanum strontium cobalt iron oxide.
- 8. Solid oxide fuel cell according to claim 7 wherein the lanthanum strontium cobalt iron oxide has a general formula $La_{1-x}Sr_xCo_{1-y}Fe_yO_{3-\delta}$, wherein x and y are independently equal to a value comprised between 0 and 1, extremes included and δ is from stoichiometry.
- 9. Solid oxide fuel cell according to claim 8 wherein a lanthanum strontium cobalt iron oxide has a formula La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-δ}.
- 10. Solid oxide fuel cell according to claim 1 wherein the anode is metal-free.
- 11. Solid oxide fuel cell according to claim 1 wherein the ceramic is mixed with the doped ceria in a ceramic/doped ceria ratio ranging from 50:50 to 95:5.

5

10

20

25

30

- 12. Solid oxide fuel cell according to claim 11 wherein the ratio ranges from 60:40 to 80:20.
- 13. Solid oxide fuel cell according to claim 1 wherein the doped ceria is selected from gadolinia-doped ceria and samaria-doped ceria.
- 14. Solid oxide fuel cell according to claim 1 wherein ceria is doped with a cation selected from lanthanum, ytterbium, yttrium, calcium, terbium, neodymium or dysprosium.
- 15. Solid oxide fuel cell according to claim 1 wherein the doped ceria is doped in an amount of about 20% by mole.
- 16. Solid oxide fuel cell according to claim 1 wherein the doped ceria Ce_{0.8}Gd_{0.2}O_{1.90}.
 - 17. Solid oxide fuel cell according to claim 1 wherein the doped ceria has a submicronic particle size.
- 18. Solid oxide fuel cell according to claim 17 wherein the doped ceria has a particle size is lower than 100 nm.
 - 19. Solid oxide fuel cell according to claim 1 wherein the cathode comprises a ceramic selected from the group consisting of
 - La_{1-x}Sr_xMnO_{3- δ}, wherein x and y are independently equal to a value comprised between 0 and 1, extremes included and δ is from stoichiometry; and
 - La_{1-x}Sr_xCo_{1-y}FeyO_{3- δ}, wherein x and y are independently equal to a value comprised between 0 and 1, extremes included and δ is from stoichiometry.
 - 20. Solid oxide fuel cell according to claim 1 wherein the cathode comprises a doped ceria.
 - 21. Solid oxide fuel cell according to claim 1 wherein the electrolyte comprises a doped ceria.
 - 22. Solid oxide fuel cell according to claim 1 wherein the electrolyte membrane is not supporting.
 - 23. Method for producing energy comprising the steps of:
 - feeding at least one fuel in an anode side of a solid oxide fuel cell comprising an anode comprising a ceramic containing at least one of cobalt

-7

and iron, said ceramic being mixed with doped ceria, a cathode and at least an electrolyte membrane disposed between said anode and said cathode;

- feeding an oxidant in a cathode side of said solid oxide fuel cell; and

PCT/EP2003/010821

- oxidizing said at least one fuel in said solid oxide fuel cell, resulting
 in production of energy.
 - 24. Method according to claim 23 wherein the at least one fuel is hydrogen.
 - 25. Method according to claim 23 wherein the at least one fuel is an alcohol.
- 26. Method according to claim 23 wherein the at least one fuel is a hydrocarbon in gaseous form.
 - 27. Method according to claim 26 wherein the hydrocarbon is substantially dry.
- 28. Method according to claim 23 wherein the at least one fuel is a hydrocarbon in liquid form.
 - 29. Method according to claim 23 wherein the at least one fuel is substantially dry methane.
 - 30. Method according to claim 23 wherein the fuel is internally reformed in the anode side.