4. RNN/LSTM

Computational Music Creativity

Save the Pets

Divide into 4 teams

- Cat rescue
- Dog rescue
- Hamster rescue
- Guinea pig rescue

• Valerio asks questions

- Valerio asks questions
- Only one person answers

- Valerio asks questions
- Only one person answers
- Others from your team can tag

- Valerio asks questions
- Only one person answers
- Others from your team can tag
- If you answer well, you save a pet

- Valerio asks questions
- Only one person answers
- Others from your team can tag
- If you answer well, you save a pet
- Sometimes, you'll have time to reflect with your team

- Valerio asks questions
- Only one person answers
- Others from your team can tag
- If you answer well, you save a pet
- Sometimes, you'll have time to reflect with your team
 - Buzz in to answer

- Valerio asks questions
- Only one person answers
- Others from your team can tag
- If you answer well, you save a pet
- Sometimes, you'll have time to reflect with your team
 - Buzz in to answer
 - Right answer -> 2 pets get saved

- Valerio asks questions
- Only one person answers
- Others from your team can tag
- If you answer well, you save a pet
- Sometimes, you'll have time to reflect with your team
 - Buzz in to answer
 - Right answer -> 2 pets get saved
 - Wrong answer -> 2 pet get killed

What I like

- Straight to the point
- No fluff
- Answer what I ask

Real-time scores

Great for melody / chord generation

- Great for melody / chord generation
- Quality music data >> quantity of music data

- Great for melody / chord generation
- Quality music data >> quantity of music data
- Work well to generate a phrase.
 Beyond that -> random walk

- Great for melody / chord generation
- Quality music data >> quantity of music data
- Work well to generate a phrase.
 Beyond that -> random walk
- Handle simple poliphony well

Use dropout layers (LSTM overfits)

- Use dropout layers (LSTM overfits)
- Craft music-aware representation (MIDI sucks)

- Use dropout layers (LSTM overfits)
- Craft music-aware representation (MIDI sucks)
- Play with temperature

- Use dropout layers (LSTM overfits)
- Craft music-aware representation (MIDI sucks)
- Play with temperature
- Objective evaluation sucks -> use humans

- Use dropout layers (LSTM overfits)
- Craft music-aware representation (MIDI sucks)
- Play with temperature
- Objective evaluation sucks -> use humans
- Genre-specific LSTM >> one LSTM to rule them all

Tips to handle data with LSTMs

- Transpose all your melodies to C / Amin
- Augment data transposing to all keys

Activity 1: LSTM Variation

How do you use an LSTM melody generation model to evaluate melody inpainting variations?

Instructions:

- Work in groups (5 people)
- 10' to come up with solution
- 10' to discuss together

BachBot

BachBot goal

- Generate chorales in the style of Bach from scratch
- Harmonize melodic line (e.g., S), with other 3 voices (A, T, B) in the style of Bach

Corpus

• Train on 350+ Bach Chorales

Corpus pre-processing

Transpose (Cmaj / Amin)

Corpus pre-processing

- Transpose (Cmaj / Amin)
- Quantize

Corpus pre-processing

- Transpose (Cmaj / Amin)
- Quantize
- Tokenize individual notes in SATB, with delimiter (| | |)


```
START
                    (59, True)
                                         (55, False)
(65, False)
                    (55, True)
                                         (48, False)
(59, False)
                    (43, True)
(55, False)
                    111
                                         END
(43, False)
                    (.)
                    (64, False)
(64, False)
                    (60, False)
```

Model architecture

Model training

- Cross-entropy loss between predicted distribution and target distribution
- Teacher forcing

Hyperparameter fine tuning

Grid search

Parameter	Values Searched
num_layers	$\{1, 2, 3, 4\}$
rnn_size	$\{128, 256, 384, 512\}$
wordvec	$\{16, 32, 64\}$
seq_length	$\{64, 128, 256\}$
dropout	$\{0.0, 0.1, 0.2, 0.3, 0.4, 0.5\}$

Evaluation

Activity 2: Evaluation

Provide evaluation strategies to assess the quality of music generated from an LSTM.

For each:

- Pros and cons
- Limitations

Instructions:

- Work in groups (5 people)
- 10' to come up with solution
- 10' to discuss together

Assignment 3: Rock your LSTM

Implement an LSTM to automatically generate sequences of chords for rock music.

Deadline: 25 January at midnight